
Hovav Shacham
Alexandra Boldyreva (Eds.)

 123

LN
CS

 1
09

92

38th Annual International Cryptology Conference
Santa Barbara, CA, USA, August 19–23, 2018
Proceedings, Part II

Advances in Cryptology –
CRYPTO 2018

Lecture Notes in Computer Science 10992

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Hovav Shacham • Alexandra Boldyreva (Eds.)

Advances in Cryptology –

CRYPTO 2018
38th Annual International Cryptology Conference
Santa Barbara, CA, USA, August 19–23, 2018
Proceedings, Part II

123

Editors
Hovav Shacham
The University of Texas at Austin
Austin, TX
USA

Alexandra Boldyreva
Georgia Institute of Technology
Atlanta, GA
USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-96880-3 ISBN 978-3-319-96881-0 (eBook)
https://doi.org/10.1007/978-3-319-96881-0

Library of Congress Control Number: 2018949031

LNCS Sublibrary: SL4 – Security and Cryptology

© International Association for Cryptologic Research 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

The 38th International Cryptology Conference (Crypto 2018) was held at the
University of California, Santa Barbara, California, USA, during August 19–23, 2018.
It was sponsored by the International Association for Cryptologic Research (IACR).
For 2018, the conference was preceded by three days of workshops on various topics.
And, of course, there was the awesome Beach BBQ at Goleta Beach.

Crypto continues to grow, year after year, and Crypto 2018 was no exception. The
conference set new records for both submissions and publications, with a whopping
351 papers submitted for consideration. It took a Program Committee of 46 cryptog-
raphy experts working with 272 external reviewers almost 2.5 months to select the 79
papers which were accepted for the conference. It also took one program chair about 30
minutes to dig up all those stats.

In order to minimize intentional and/or subconscious bias, papers were reviewed in
the usual double-blind fashion. Program Committee members were limited to two
submissions, and their submissions were scrutinized more closely and held to higher
standards. The two program chairs were not allowed to submit papers. Of course, they
were fine with that restriction since they were way too busy to actually write any
papers.

The Program Committee recognized two papers and their authors for standing out
among the rest. “Yes, There Is an Oblivious RAM Lower Bound!”, by Kasper Green
Larsen and Jesper Buus Nielsen, was voted best paper of the conference. Additionally,
“Multi-Theorem Preprocessing NIZKs from Lattices,” by Sam Kim and David J. Wu,
was voted Best Paper Authored Exclusively By Young Researchers. There was no
award for Best Paper Authored Exclusively by Old Researchers.

Crypto 2018 played host for the IACR Distinguished Lecture, delivered by Shafi
Goldwasser. Crypto also welcomed Lea Kissner as an invited speaker from Google.

We would like to express our sincere gratitude to all the reviewers for volunteering
their time and knowledge in order to select a great program for 2018. Additionally, we
are very appreciative of the following individuals and organizations for helping make
Crypto 2018 a success:

Tal Rabin - Crypto 2018 General Chair and Workshops Organizer
Elette Boyle - Workshops Chair
Fabrice Benhamouda - Workshops Organizer
Shafi Goldwasser - IACR Distinguished Lecturer
Lea Kissner - Invited Speaker from Google
Shai Halevi - Author of the IACR Web Submission and Review System
Anna Kramer and her colleagues at Springer
Sally Vito and UCSB Conference Services

We would also like to say thank you to our numerous sponsors, everyone who
submitted papers, the session chairs, the rump session chair, and the presenters.

Lastly, a big thanks to everyone who attended the conference at UCSB. Without
you, we would have had a lot of leftover potato salad at the Beach BBQ.

August 2018 Alexandra Boldyreva
Hovav Shacham

VI Preface

Crypto 2018

The 38th IACR International Cryptology Conference

University of California, Santa Barbara, CA, USA
August 19–23, 2018

Sponsored by the International Association for Cryptologic Research

General Chair

Tal Rabin IBM T.J. Watson Research Center, USA

Program Chairs

Hovav Shacham University of Texas at Austin, USA
Alexandra Boldyreva Georgia Institute of Technology, USA

Program Committee

Shweta Agrawal Indian Institute of Technology, Madras, India
Benny Applebaum Tel Aviv University, Israel
Foteini Baldimtsi George Mason University, USA
Gilles Barthe IMDEA Software Institute, Spain
Fabrice Benhamouda IBM Research, USA
Alex Biryukov University of Luxembourg, Luxembourg
Jeremiah Blocki Purdue University, USA
Anne Broadbent University of Ottawa, Canada
Chris Brzuska Aalto University, Finland
Chitchanok Chuengsatiansup Inria and ENS de Lyon, France
Dana Dachman-Soled University of Maryland, USA
Léo Ducas Centrum Wiskunde & Informatica, The Netherlands
Pooya Farshim CNRS and ENS, France
Dario Fiore IMDEA Software Institute, Spain
Marc Fischlin Darmstadt University of Technology, Germany
Georg Fuchsbauer Inria and ENS, France
Steven D. Galbraith University of Auckland, New Zealand
Christina Garman Purdue University, USA
Daniel Genkin University of Pennsylvania and University

of Maryland, USA
Dov Gordon George Mason University, USA
Viet Tung Hoang Florida State University, USA

Tetsu Iwata Nagoya University, Japan
Stanislaw Jarecki University of California, Irvine, USA
Seny Kamara Brown University, USA
Markulf Kohlweiss University of Edinburgh, UK
Farinaz Koushanfar University of California, San Diego, USA
Xuejia Lai Shanghai Jiao Tong University, China
Tancrède Lepoint SRI International, USA
Anna Lysyanskaya Brown University, USA
Alex J. Malozemoff Galois, USA
Sarah Meiklejohn University College London, UK
Daniele Micciancio University of California, San Diego, USA
María Naya-Plasencia Inria, France
Kenneth G. Paterson Royal Holloway, University of London, UK
Ananth Raghunathan Google, USA
Mike Rosulek Oregon State University, USA
Ron Rothblum MIT and Northeastern University, USA
Alessandra Scafuro North Carolina State University, USA
abhi shelat Northeastern University, USA
Nigel P. Smart Katholieke Universiteit Leuven, Belgium
Martijn Stam University of Bristol, UK
Noah Stephens-Davidowitz Princeton University, USA
Aishwarya Thiruvengadam University of California, Santa Barbara, USA
Hoeteck Wee CNRS and ENS, France
Daniel Wichs Northeastern University, USA
Mark Zhandry Princeton University, USA

Additional Reviewers

Aydin Abadi
Archita Agarwal
Divesh Aggarwal
Shashank Agrawal
Adi Akavia
Navid Alamati
Martin Albrecht
Miguel Ambrona
Ghous Amjad
Megumi Ando
Ralph Ankele
Gilad Asharov
Achiya Bar-On
Manuel Barbosa
Paulo Barreto
James Bartusek
Guy Barwell

Balthazar Bauer
Carsten Baum
Amos Beimel
Itay Berman
Marc Beunardeau
Sai Lakshmi Bhavana
Simon Blackburn
Estuardo Alpirez Bock
Andrej Bogdanov
André Schrottenloher
Xavier Bonnetain
Charlotte Bonte
Carl Bootland
Jonathan Bootle
Christina Boura
Florian Bourse
Elette Boyle

Zvika Brakerski
Jacqueline Brendel
David Butler
Matteo Campanelli
Brent Carmer
Ignacio Cascudo
Wouter Castryck
Andrea Cerulli
André Chailloux
Nishanth Chandran
Panagiotis Chatzigiannis
Stephen Checkoway
Binyi Chen
Michele Ciampi
Benoit Cogliati
Gil Cohen
Ran Cohen

VIII Crypto 2018

Aisling Connolly
Sandro Coretti
Henry Corrigan-Gibbs
Geoffroy Couteau
Shujie Cui
Ting Cui
Joan Daemen
Wei Dai
Yuanxi Dai
Alex Davidson
Jean Paul Degabriele
Akshay Degwekar
Ioannis Demertzis
Itai Dinur
Jack Doerner
Nico Döttling
Benjamin Dowling
Tuyet Thi Anh Duong
Frédéric Dupuis
Betul Durak
Lior Eldar
Karim Eldefrawy
Lucas Enloe
Andre Esser
Antonio Faonio
Prastudy Fauzi
Daniel Feher
Serge Fehr
Nils Fleischhacker
Benjamin Fuller
Tommaso Gagliardoni
Martin Gagné
Adria Gascon
Pierrick Gaudry
Romain Gay
Nicholas Genise
Marilyn George
Ethan Gertler
Vlad Gheorghiu
Esha Ghosh
Brian Goncalves
Junqing Gong
Adam Groce
Johann Großschädl
Paul Grubbs
Jiaxin Guan

Jian Guo
Siyao Guo
Joanne Hall
Ariel Hamlin
Abida Haque
Patrick Harasser
Gottfried Herold
Naofumi Homma
Akinori Hosoyamada
Jialin Huang
Siam Umar Hussain
Chloé Hébant
Yuval Ishai
Ilia Iliashenko
Yuval Ishai
Håkon Jacobsen
Christian Janson
Ashwin Jha
Thomas Johansson
Chethan Kamath
Bhavana Kanukurthi
Marc Kaplan
Pierre Karpman
Sriram Keelveedhi
Dmitry Khovratovich
Franziskus Kiefer
Eike Kiltz
Sam Kim
Elena Kirshanova
Konrad Kohbrok
Lisa Maria Kohl
Ilan Komargodski
Yashvanth Kondi
Venkata Koppula
Lucas Kowalczyk
Hugo Krawczyk
Thijs Laarhoven
Marie-Sarah Lacharite
Virginie Lallemand
Esteban Landerreche
Phi Hung Le
Eysa Lee
Jooyoung Lee
Gaëtan Leurent
Baiyu Li
Benoit Libert

Fuchun Lin
Huijia Lin
Tingting Lin
Feng-Hao Liu
Qipeng Liu
Tianren Liu
Zhiqiang Liu
Alex Lombardi
Sébastien Lord
Steve Lu
Yiyuan Luo
Atul Luykx
Vadim Lyubashevsky
Fermi Ma
Varun Madathil
Mohammad Mahmoody
Mary Maller
Giorgia Azzurra Marson
Daniel P. Martin
Samiha Marwan
Christian Matt
Alexander May
Sogol Mazaheri
Bart Mennink
Carl Alexander Miller
Brice Minaud
Ilya Mironov
Tarik Moataz
Nicky Mouha
Fabrice Mouhartem
Pratyay Mukherjee
Mridul Nandi
Samuel Neves
Anca Nitulescu
Kaisa Nyberg
Adam O’Neill
Maciej Obremski
Olya Ohrimenko
Igor Carboni Oliveira
Claudio Orlandi
Michele Orrù
Emmanuela Orsini
Dag Arne Osvald
Elisabeth Oswald
Elena Pagnin
Chris Peikert

Crypto 2018 IX

Léo Perrin
Edoardo Persichetti
Duong-Hieu Phan
Krzysztof Pietrzak
Bertram Poettering
David Pointcheval
Antigoni Polychroniadou
Eamonn Postlethwaite
Willy Quach
Elizabeth Quaglia
Samuel Ranellucci
Mariana Raykova
Christian Rechberger
Oded Regev
Nicolas Resch
Leo Reyzin
M. Sadegh Riazi
Silas Richelson
Peter Rindal
Phillip Rogaway
Miruna Rosca
Dragos Rotaru
Yann Rotella
Arnab Roy
Manuel Sabin
Sruthi Sekar
Amin Sakzad
Katerina Samari
Pedro Moreno Sanchez

Sven Schaege
Adam Sealfon
Yannick Seurin
Aria Shahverdi
Tom Shrimpton
Luisa Siniscalchi
Kit Smeets
Fang Song
Pratik Soni
Jessica Sorrell
Florian Speelman
Douglas Stebila
Marc Stevens
Bing Sun
Shifeng Sun
Siwei Sun
Qiang Tang
Seth Terashima
Tian Tian
Mehdi Tibouchi
Yosuke Todo
Aleksei Udovenko
Dominique Unruh
Bogdan Ursu
María Isabel González

Vasco
Muthuramakrishnan
Venkitasubramaniam
Fre Vercauteren

Fernando Virdia
Alexandre Wallet
Michael Walter
Meiqin Wang
Qingju Wang
Boyang Wei
Mor Weiss
Jan Winkelmann
Tim Wood
David Wu
Hong Xu
Shota Yamada
Hailun Yan
LeCorre Yann
Kan Yasuda
Arkady Yerukhimovich
Eylon Yogev
Yang Yu
Yu Yu
Thomas Zacharias
Wentao Zhang
Hong-Sheng Zhou
Linfeng Zhou
Vassilis Zikas
Giorgos Zirdelis
Lukas Zobernig
Adi Ben Zvi

X Crypto 2018

Sponsors

Crypto 2018 XI

Contents – Part II

Proof Tools

Simplifying Game-Based Definitions: Indistinguishability
up to Correctness and Its Application to Stateful AE 3

Phillip Rogaway and Yusi Zhang

The Algebraic Group Model and its Applications . 33
Georg Fuchsbauer, Eike Kiltz, and Julian Loss

Key Exchange

On Tightly Secure Non-Interactive Key Exchange. 65
Julia Hesse, Dennis Hofheinz, and Lisa Kohl

Practical and Tightly-Secure Digital Signatures and Authenticated
Key Exchange . 95

Kristian Gjøsteen and Tibor Jager

Symmetric Cryptoanalysis

Fast Correlation Attack Revisited: Cryptanalysis on Full Grain-128a,
Grain-128, and Grain-v1 . 129

Yosuke Todo, Takanori Isobe, Willi Meier, Kazumaro Aoki,
and Bin Zhang

A Key-Recovery Attack on 855-round Trivium. 160
Ximing Fu, Xiaoyun Wang, Xiaoyang Dong, and Willi Meier

Improved Key Recovery Attacks on Reduced-Round AES with Practical
Data and Memory Complexities . 185

Achiya Bar-On, Orr Dunkelman, Nathan Keller, Eyal Ronen,
and Adi Shamir

Bernstein Bound on WCS is Tight: Repairing Luykx-Preneel
Optimal Forgeries . 213

Mridul Nandi

Hashes and Random Oracles

Correcting Subverted Random Oracles . 241
Alexander Russell, Qiang Tang, Moti Yung, and Hong-Sheng Zhou

Combiners for Backdoored Random Oracles. 272
Balthazar Bauer, Pooya Farshim, and Sogol Mazaheri

On Distributional Collision Resistant Hashing. 303
Ilan Komargodski and Eylon Yogev

Trapdoor Functions

Fast Distributed RSA Key Generation for Semi-honest
and Malicious Adversaries . 331

Tore Kasper Frederiksen, Yehuda Lindell, Valery Osheter,
and Benny Pinkas

Trapdoor Functions from the Computational Diffie-Hellman Assumption 362
Sanjam Garg and Mohammad Hajiabadi

Round Optimal MPC

Round-Optimal Secure Multiparty Computation with Honest Majority 395
Prabhanjan Ananth, Arka Rai Choudhuri, Aarushi Goel,
and Abhishek Jain

On the Exact Round Complexity of Secure Three-Party Computation 425
Arpita Patra and Divya Ravi

Promise Zero Knowledge and Its Applications to Round Optimal MPC 459
Saikrishna Badrinarayanan, Vipul Goyal, Abhishek Jain,
Yael Tauman Kalai, Dakshita Khurana, and Amit Sahai

Round-Optimal Secure Multi-Party Computation . 488
Shai Halevi, Carmit Hazay, Antigoni Polychroniadou,
and Muthuramakrishnan Venkitasubramaniam

Foundations

Yes, There is an Oblivious RAM Lower Bound!. 523
Kasper Green Larsen and Jesper Buus Nielsen

Constrained PRFs for NC1 in Traditional Groups . 543
Nuttapong Attrapadung, Takahiro Matsuda, Ryo Nishimaki,
Shota Yamada, and Takashi Yamakawa

Lattices

GGH15 Beyond Permutation Branching Programs: Proofs,
Attacks, and Candidates . 577

Yilei Chen, Vinod Vaikuntanathan, and Hoeteck Wee

XIV Contents – Part II

Lower Bounds on Lattice Enumeration with Extreme Pruning 608
Yoshinori Aono, Phong Q. Nguyen, Takenobu Seito, and Junji Shikata

Dissection-BKW . 638
Andre Esser, Felix Heuer, Robert Kübler, Alexander May,
and Christian Sohler

Lattice-Based ZK

Sub-linear Lattice-Based Zero-Knowledge Arguments
for Arithmetic Circuits . 669

Carsten Baum, Jonathan Bootle, Andrea Cerulli, Rafael del Pino,
Jens Groth, and Vadim Lyubashevsky

Lattice-Based Zero-Knowledge Arguments for Integer Relations 700
Benoît Libert, San Ling, Khoa Nguyen, and Huaxiong Wang

Multi-Theorem Preprocessing NIZKs from Lattices 733
Sam Kim and David J. Wu

Efficient MPC

SPDZ2k : Efficient MPC mod 2k for Dishonest Majority 769
Ronald Cramer, Ivan Damgård, Daniel Escudero, Peter Scholl,
and Chaoping Xing

Yet Another Compiler for Active Security or: Efficient MPC
Over Arbitrary Rings . 799

Ivan Damgård, Claudio Orlandi, and Mark Simkin

Author Index . 831

Contents – Part II XV

Proof Tools

Simplifying Game-Based Definitions

Indistinguishability up to Correctness
and Its Application to Stateful AE

Phillip Rogaway(B) and Yusi Zhang

Computer Science Department, University of California Davis,
One Shields Avenue, Davis, USA

rogaway@cs.ucdavis.edu

Abstract. Often the simplest way of specifying game-based crypto-
graphic definitions is apparently barred because the adversary would
have some trivial win. Disallowing or invalidating these wins can lead to
complex or unconvincing definitions. We suggest a generic way around
this difficulty. We call it indistinguishability up to correctness, or IND|C.
Given games G and H and a correctness condition C we define an
advantage measure Advindc

G,H,C wherein G/H distinguishing attacks are
effaced to the extent that they are inevitable due to C. We formalize
this in the language of oracle silencing, an alternative to exclusion-style
and penalty-style definitions. We apply our ideas to a domain where
game-based definitions have been cumbersome: stateful authenticated-
encryption (sAE). We rework existing sAE notions and encompass new
ones, like replay-free AE permitting a specified degree of out-of-order
message delivery.

Keywords: Indistinguishability · Oracle silencing · Provable security
Stateful authenticated encryption

1 Introduction

This paper addresses a common difficulty one encounters in giving game-based
cryptographic definitions: the need to ensure that adversaries don’t get credit
for trivial wins. But what exactly is a trivial win? Sometimes answering this
is not trivial. Our simple but previously unexplored idea is to use a scheme’s
correctness requirement to automatically determine if a win should or shouldn’t
count. We believe that this can lead to simpler and more compelling definitions.

Correctness requirements—for example, that a decryption algorithm properly
reverses the corresponding encryption algorithm—are normally understood as
demands on functionality, not security. Yet we will use correctness to help define
security. More specifically, a correctness condition will be used to map a pair of
games that an adversary can trivially distinguish into a pair of games that it can’t
trivially distinguish. The modified games are identical to the original ones apart
from eliminating wins that exploit generic checks on correctness. The adversary’s
c© International Association for Cryptologic Research 2018
H. Shacham and A. Boldyreva (Eds.): CRYPTO 2018, LNCS 10992, pp. 3–32, 2018.
https://doi.org/10.1007/978-3-319-96881-0_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96881-0_1&domain=pdf

4 P. Rogaway and Y. Zhang

advantage in distinguishing the modified games is elevated to a definition for
indistinguishability up to correctness, or IND|C. In our main elaboration of this,
responses to oracle queries are silenced when the correctness requirement renders
a response fixed. A response is fixed when the answer depends only on the query
history and the correctness constraint. Once silenced, an oracle will stay so.

Besides developing the idea above, this paper is also about an illustrative appli-
cation of it. The problem we look at, significant in its own right, is how to find a
clean and general treatment for stateful authenticated-encryption (sAE). A sender
transmits a sequence of encrypted messages to a receiver. The communication
channel might be reliable or not, and the parties might or might not maintain
state (stateful AE should encompass conventional AE). If the decrypting party
does maintain state, it might have a little or a lot. We seek a metaphorical “knob”
with which one can specify precise expectations regarding replays, omissions, and
out-of-order delivery. Our definition for sAE security does this. Given a set L spec-
ifying exactly which message reorderings are considered permissible, we define a
matching correctness condition. From it and a pair of simple games, which do not
depend on L, one inherits a security notion, courtesy of IND|C. By appropriately
setting L we encompass old sAE notions and significant new ones, like sAE per-
mitting reorderings up to a specified lag in message delivery.

Indistinguishability up to correctness. In somewhat greater detail, the
methodology we suggest works as follows. To define a cryptographic goal one
designs a pair of utopian games G and H that an adversary must try to dis-
tinguish. Game G surfaces the real behavior of some underlying protocol Π,
while game H surfaces the ideal behavior one might wish for. We call the games
utopian because there is some simple adversarial attack to distinguish them. For
example, if we aim to treat public-key encryption (PKE) secure against chosen-
ciphertext attack (CCA), then game G might let the adversary encrypt and
decrypt with the underlying encryption scheme Π, while H properly answers
decryption queries, but answers encryption queries by encrypting zero bits.

The cryptographer next pins down when a scheme is correct . Correctness is
a validity requirement, not a security requirement. It captures what needs to
happen in the absence of an adversary. In our PKE example, correctness for
a scheme Π = (K, E ,D) says that (pk, sk) ←← K(k) and c ←← E(pk,m) implies
D(sk, c) = m. Formally, saying that a scheme Π is correct just means that it
belongs to some class C of correct schemes: for us, a correctness condition is a
class of scheme.

We generalize conventional indistinguishability (IND) to the notion we call
indistinguishability up to correctness (IND|C). The idea is this. Suppose that
the adversary is interacting with a “real” game G that depends on some under-
lying cryptographic scheme Π. What it wants is to distinguish G from some
“ideal” game H (which might also depend on Π). Suppose, at some point in the
adversary’s attack, it asks an oracle query xi. It previously asked x1, . . . , xi−1

and got answers y1, . . . , yi−1. If given this query history t there is only one pos-
sible reply y across all correct schemes Π ∈ C and all internal coins r that G
might use, then we say the oracle’s response is fixed. The games we denote G[ψ]

Simplifying Game-Based Definitions 5

and H[ψ] behave like G and H except that asking a query that is fixed turns
off the oracle: it answers ♦ from that point on. The symbol ψ in the brackets
following G and H denotes the silencing function, and we just described defining
it by way of fixedness. Correctness-directed oracle silencing is the automatic
adjustment of games (G,H) to modified games (G[ψ],H[ψ]). Using this method,
we generalize the IND advantage Advind

G,H(A) = Pr[AG→1]−Pr[AH→1] to the
INDC-advantage Advindc

G,H,C(A) = Advind
G[ψ],H[ψ](A).

There is one more needed element: the adversary needs to know if an oracle
query is going to be silenced—we need ψ to be efficiently computable. One must
show that it is. If it’s not, the intuition that the adversary shouldn’t ask a
question because it trivially knows the answer completely falls apart.

Application: PKE. As a first and simple application of IND|C, we revisit the
standard IND-CCA security notion for PKE. We provide a utopian pair of games,
G1 and H1, and a correctness class C1, thereby obtaining a security notion
PKE.new defined by Advindc

G1,H1,C1. We show, unsurprisingly, that PKE.new is
equivalent to PKE.old, the customary definition for IND-CCA secure PKE.

But wait: just what definition is it that we call customary? Bellare, Hofheinz,
and Kiltz (BHK) describe four variants of IND-CCA secure PKE, which they
denote with suffixes SE, SP, BE, and BP [1]. They explain that researchers
haven’t always been clear as to what version they intend. And they show that
it does make a difference: while the SE and SP notions are equivalent, all other
pairs are inequivalent. BHK suggest that the SE/SP notion is the right defini-
tional variant [1, p. 34 & p. 39], implying that the other two notions are wrong.
We agree. But how can one convincingly justify such a claim? The most convinc-
ing response, in our view, is to say that the SE/SP notion coincides with what
one gets by invalidating all and only the adversarial wins that one must invali-
date because of correctness. The BE and BP notions inappropriately invalidate
additional wins. This is the response that our work formalizes. Similar reasoning
can be used to justify definitional choices that might otherwise seem arbitrary.

Application: sAE. Our second application of IND|C is more involved: we
consider the stateful-AE (sAE) problem, first formalized by Bellare, Kohno, and
Namprempre (BKN) [2]. BKN adjust the customary definition of AE to make
the decryption process stateful. Trying to model the kind of AE achieved by
SSL, they want that ciphertext replays, reorderings, and omissions, as well as
forgeries, will all be flagged as invalid. Formalizing this requires care.

Building on the above, Kohno, Palacio, and Black (KPB) describe five types
of sAE [11], these ranging from a version that forgives all replays, omissions,
and reorderings, to one that demands authentication to fail if any of these trans-
gressions occur. Boyd, Hale, Mjølsnes, and Stebila (BHMS) [4] rework the KPB
taxonomy, defining four levels of sAE. While the games they give are not terri-
bly long, it is not easy to understand their technical constraints [4, Fig. 2]. And
perhaps it was not easy for the authors, either, who made a technical adjust-
ment in one of the four definitions about a year after their first publication [5,
Recv line 4]. And if one wanted to consider some new sAE variant—and we

6 P. Rogaway and Y. Zhang

will explain soon why one might—one would need to start from scratch. The
resulting definition might be hard to verify and easy to get wrong.

In our view, sAE is in a muddy state. The BKN, KPB, and BHMS papers
use different syntax, making rigorous comparisons problematic. And they live in
a sea of disparate and often complex related notions, including UC treatments
of secure channels [6,7,12], the ACCE definition of Jager, Kohlar, Schäge, and
Schwenk [10], and the notion for stream-based channels from Fischlin, Günther,
Marson, and Paterson [8,9].

We go back to the basics for sAE, specifying a scheme’s syntax and an
extremely simple pair of games for the goal, G2 and H2, which the adversary
will be able to easily distinguish them. We then “cancel” the trivial wins via
IND|C. Given a set L that describes the required level of channel fidelity, we
define a corresponding class of correct schemes C2(L). The above induces a
security notion sAE[L] via IND|C. The flavors of sAE from BKN, KPB, and
BHMS correspond to sAE[L] for specific choices of L. Many further choices are
possible. In particular, the set we call L�

1 bans forgeries and replays, but allows
omissions and reordering up to some specified lag �. The level we denote L�

2 bans
forgeries, replays, and reordering, but allows omissions of up to � messages. The
related levels from KPB and BHMS place no limits on � (i.e., � = ∞). Achieving
that aim would normally be impractical, as the decrypting party would need to
maintain unlimited state, using it to record every nonce received.

Besides defining sAE[L] security, we show that the natural way to achieve it
from nonce-based AE does in fact work. We discuss when this scheme is efficient,
and describe efficiency and security improvements that are possible for some L.

Alternatives. The way we have chosen to define IND|C security is not the
only way possible: there are a variety of natural variants. For each, one uses
the correctness condition C to automatically edit utopian games G and H to
new games G′ and H′. Oracle-editing generalizes oracle-silencing. We look at
about half a dozen definitional variants, and evidence the robustness of IND|C
by arguing that, under anticipated side conditions, all but one alternative is
equivalent to our original formulation. For that final variant, meant to deal with
left-or-right style games, we do not know how to prove or disprove equivalence.

2 Indistinguishability up to Correctness

Games. We recall the notion of games from Bellare and Rogaway [3], making
some minor adjustments. See Fig. 1.

A game G is an always-halting algorithm given by code. It has entry points
Initialize, Oracle, and Finalize. The code can obtain successive coin tosses from a
uniformly random string r ←←{0, 1}∞. One runs G with an adversary A, which
can likewise see coins ρ ←← {0, 1}∞. Both the adversary and game maintain
persistent states. A game may depend on an underlying scheme Π : {0, 1}∗ →
{0, 1}∗. We may write GΠ to emphasize G’s dependence on Π. Normally this
dependence is in the form of black-box access to a Π oracle. A game G may also
call out to an arbitrary function ψ whose definition need not be in code.

Simplifying Game-Based Definitions 7

Fig. 1. An adversary interacting with a game. A game G may depend on a
cryptographic scheme Π : {0, 1}∗ → {0, 1}∗. The game G and adversary A are both
provided an initial value k. Adversarial and game randomness are provided by random
strings ρ and r. Pairs xi, yi and uj , vj represent sequences of queries, indexed from 1.
The adversary’s output is z and the game’s outcome is ω.

To execute G with A, the game’s Initialize procedure is first run, passing it an
initial value k. This is normally assumed to be a number, the security parameter,
and presented in unary. Nothing is returned. Next, the adversary A is run, again
invoking it on k. The adversary will make a sequence of Oracle calls (oracle
queries) x1, . . . , xq obtaining corresponding responses y1, . . . , yq. The number of
queries q is up to the adversary. When the adversary has asked all the queries
it wants to ask, it halts with an output z. The game’s Finalize procedure is
then called with z. It returns the game outcome ω. Specifying a game entails
specifying Initialize, Oracle, and Finalize. If the first is omitted, there is only the
default initialization of game variables: 0 for numbers, false for booleans, ε for
strings, and the empty vector Λ = () for vectors. If Finalize is omitted, it is the
algorithm that outputs its input, making the game’s outcome the adversary’s
output. The number Pr[AG(k) → 1] is the probability that A outputs 1 after
interacting with game G given the initial input k. The Finalize procedure is
irrelevant. The number Pr[GA(k) → 1] is the probability that G (it’s Finalize
procedure) outputs 1 after an interaction with A on k.

We can regard GΠ as a function, with yi = GΠ(k, x1, . . . , xi, r) the value
returned by the oracle query when the initial value is k, the queries asked are
x1, . . . , xi, and the coins are r; while ω = GΠ(k, x1, . . . , xq, z, r) is similarly
construed, employing encoding conventions such that the Finalize call is clear.
If we omit r from the arguments then GΠ becomes a randomized function. We
omit k whenever the Initialize procedure does not depend on it.

8 P. Rogaway and Y. Zhang

As an adversary A interacts with a game G, oracle calls and responses can
be recorded in a transcript, which is a vector of strings. Query-terminated tran-
scripts (x1, y1, x2, y2 . . . , xi) have an odd number of strings; response-terminated
transcripts (x1, y1, x2, y2 . . . , xi, yi) have an even number of strings.

Discussion. There is no loss of generality in regarding the underlying cryp-
tographic scheme Π as a function from strings to strings; suitable encoding
conventions allow any scheme of interest to be so encoded. Similarly, games are
routinely described as supporting different types of queries, like “Enc” and “Dec”
queries. This is handled by regarding each query x as encoding a vector whose
first component, x[1], is a label drawn from a specified set.

An oracle query x might be intended only to adjust the game’s internal state,
not to elicit any response. Such queries are called declarative. All other queries
are investigative. We do not adopt any special syntax to differentiate declarative
and investigative queries, but the designer of a game is always free to adopt some
convention to serve this purpose.

Correctness. What does it mean to say that a scheme Π is correct? The
simplest answer is to say Π belongs to some class of schemes C, which are those
deemed correct. That is what we will do; for us a correctness class is a set C of
functions from strings to strings, and defining correctness means specifying C.

Graded notions of correctness, where a scheme is (1− ε)-correct if some bad
event happens with probability at most ε, are outside the scope of our definitions.

Silencing. Given a correctness class C and a game G we define a predicate on
response-terminated transcripts

ValidC,G(x1, y1, . . . , xj , yj) =(∃Π ∈ C)(∃k ∈ {0, 1}∗)(∃r ∈ {0, 1}∞)(∀i ∈ [1..j])
[GΠ(k, x1, x2, . . . , xi, r) = yi] .

In English, a response-terminated transcript is valid if there exists a scheme in
the specified class that could give rise to it. Since adversaries can ask anything
they please, we say that a query-terminated transcript is valid when its longest
proper prefix is: ValidC,G(x1, y1, . . . , xj , yj , x) = ValidC,G(x1, y1, . . . , xj , yj).

Building on the notion of validity, we define a boolean function on query-
terminated transcripts

FixedC,G(x1, y1, . . . , xj , yj , x) = (∃! y) ValidC,G(x1, y1, . . . , xj , yj , x, y) .

Here (∃! y)P (y) means (∃y)P (y) ∧ (∀y1)(∀y2)((P (y1) ∧ P (y2)) ⇒ y1 = y2). In
English, a query-terminated transcript is fixed if the last indicated query has
exactly one valid response. Note that when the transcript t is invalid then
FixedC,G(t) is false, since (∃! y)P (y) ⇒ (∃y)P (y).

Finally, given a correctness class C and game G, we define our preferred
silencing function for this pair by

SilenceC,G(x1, y1, . . . , xj) =
∨

1≤i≤j

FixedC,G(x1, y1, . . . , xi) .

Simplifying Game-Based Definitions 9

Fig. 2. Oracle silencing. Left: Given a game G and a function ψ: {0, 1}∗∗ → {0, 1}
we define the silenced game G[ψ] by silencing the oracle once the boolean value
ψ(x1, y1, . . . , xi) becomes true. Right: The formal definition for the game G[ψ]. The
game’s Finalize procedure is irrelevant.

That is, we silence an oracle response that terminates a transcript t if that
response is now fixed, or was previously. We call this silence-then-shut-down.

IND|C security. Given a game G and a boolean function ψ, which we call a
silencing function, we define the silenced game G[ψ] in Fig. 2. In that game, oracle
responses are adjusted according to ψ: when ψ applied to the yi-terminated
transcript is true, we return ♦ instead of yi.

Now given games G and H and a silencing function ψ, let Advindc
G,H,ψ(A, k) =

Pr[AG[ψ](k)→1] − Pr[AH[ψ](k)→1].
Finally, given games G and H and a correctness class C, let Advindc

G,H,C(A, k) =
Pr[AG[ψ](k)→ 1] − Pr[AH[ψ](k)→ 1] where ψ = SilenceC,G. We call this notion
INDC security, or, perhaps more pretty, IND|C security. (The vertical bar is
meant to suggest conditioning.) Note that the silencing that is applied to the
ideal game H is determined by the real game G.

For an asymptotic notion of INDC security, we assert that games G and H
are indistinguishable up to C if Advindc

G,H,C(A, k) is negligible for any probabilis-
tic polynomial-time (PPT) adversary A. As usual, ε(k) is negligible if for any
polynomial p there exists a number N such that ε(k) < 1/p(k) for all k ≥ N .

Remember that games G = GΠ and H = HΠ may depend on some underlying
scheme Π. A cryptographer who specifies G, H and C has specified a security
measure on protocols Π ∈ C defined by AdvΠ(A, k) = Advindc

GΠ ,HΠ ,C(A, k).

Computability of fixedness. There is no a priori reason to believe that
FixedC,G or SilenceC,G will be computable, let alone efficiently. Yet for IND|C
security to be meaningful, we need FixedC,G to be efficiently computable: if
the adversary doesn’t know that the response to its query is determined by the
correctness constraint, then the query is not trivial, and making it should not be
disqualifying. The most straightforward way of capturing the stated expectation
is to demand that FixedC,G be polynomial-time (PT) computable (if one is in the

10 P. Rogaway and Y. Zhang

asymptotic setting). This is overkill, however, insofar as the only transcripts t
to which FixedC,G will ever be applied are those that are legitimate—those that
can arise in an interaction between A and G or between A and H.

Based on this, we say that fixedness is efficiently computable for (C,G,H)
if there exists a PT-computable function φ such that φ(t) = FixedC,G(t) for all
query-terminated transcripts t satisfying ValidC,G(t) ∨ValidC,H(t). Taking this
a step further, we say that fixedness is efficiently computable for (C,G,H, q) if
there exists a PT-computable function φ such that φ(t) = FixedC,G(t) for all
query-terminated transcripts t satisfying ValidC,G(t)∨ValidC,H(t) and |t| < 2q.
The last part says that t involves at most q queries (where |t| is the number of
components in t). For positive results, we must verify that fixedness is efficiently
computable for (C,G,H), or for (C,G,H, q) with q(k) adequately large.

Further relaxations for efficient computability of fixedness are possible. Since
it is safe to silence too little, it is enough to find an efficiently computable
function φ satisfying φ(t) ⇒ SilenceC,G(t) when ValidC,G(t) ∨ValidC,H(t). Our
examples won’t need this relaxation.

Discussion. We have spoken about the efficient computability of Fixed, but we
could as well have spoken of the efficient computability of Silence. The former is
the more basic object, and simpler to think about. In fact, we not only anticipate
that the boolean Fixed should be efficiently computable, but also the string-
valued function fixedG,C that specifies the real-oracle’s response when it is in
fact fixed (or indicates, alternatively, that it is not). See Sect. 5.

The silencing function ψ used in defining IND|C was not Fixed but the
logical-or of it applied to all transcript prefixes. Once an oracle is silenced, it stays
silenced. An alternative approach, silence-then-forgive, is essentially equivalent;
see Sect. 5. It is to simplify the description of silence-then-forgive that, in Fig. 2,
when a response yi is silenced, we let the growing “transcript” retain the original
(unsilenced) value. This choice is irrelevant for silence-then-shut-down.

As already explained, if fixedness is not efficiently computable the intuition
underlying oracle silencing breaks down, and IND|C becomes meaningless. It
could even happen that silenced games are harder to distinguish than the utopian
ones. For example, given a one-way permutation F with hardcore bit B, game G
is constructed to select random values x0 and x1 and, on a first oracle query,
provide F (x0) and F (x1). A second oracle query selects b ←←{0, 1} and returns
B(xb). Now whether or not this query is silenced provides information that the
adversary cannot compute. The idea can be elaborated to create indistinguish-
able games whose silenced versions are distinguishable.

The usual notion of indistinguishability, Advind
G,H(A, k) = Pr[AG(k) → 1] −

Pr[AH(k)→1], coincides with Advindc
G,H,ψ(A, k) when ψ(t) = false. Of course IND-

security is symmetric: Advind
G,H(A, k) = Advind

H,G(A, k). This is not true of INDC:
it may be that Advindc

G,H,C(A, k) �= Advindc
H,G,C(A, k). The asymmetry stems from

the fact that we silence based on the real game, listed first in the subscripts.
Oracle silencing provides an alternative to penalty-style and exclusion-style

definitions [1]. We wrap up our discussion by observing that IND|C security
could have been defined using those alternatives, too.

Simplifying Game-Based Definitions 11

procedure G ψ .Initialize(k)
q ← 0; G.Initialize(k)
return

procedure G ψ .Oracle(x)
q ← q + 1; xq ← x
return yq ← G.Oracle(x)

procedure G ψ .Finalize(z)
if ψ(x1, y1, x2, y2, . . . , xq) then return 0
return z

Fig. 3. Penalty-style oracle editing. Oracle queries are answered as usual, but if
the final transcript triggers ψ, the game’s outcome is set to zero.

Penalty-style alternative. Instead of turning off an adversary’s oracle
when it asks an offending question, we could answer the query as usual but,
at the end of the game, declare it forfeit. This is what Bellare, Hofheinz, and
Kiltz call a penalty-style definition [1]. We formalize what is needed in Fig. 3,
mapping a game G and a function ψ to a corresponding game G�ψ�. An alter-
native version of indistinguishability up to correctness, INDC0, is then defined
by saying that Advindc0

G,H,C(A, k) = Pr[(G�ψ�)A(k) → 1] − Pr[(H�ψ�)A(k) → 1]
where ψ = SilenceC,G. In effect, the adversary’s output z has been replaced by
z ∧ ∧

j ¬FixedC,G(x1, y1, . . . , xj). For an asymptotic notion of INDC0 security,
we say that games G and H are penalty-style indistinguishable up to C if for
any PPT adversary A, the function Advindc0

G,H,C(A, k) is negligible.
What is the relationship between oracle-silencing IND|C and penalty-style

INDC0? Assuming fixedness is efficiently computable, the two ways of adjusting
games are equivalent. For concision, we give an asymptotic version of the result.
The proof, which is easy, is in Appendix A.1.

Theorem 1. Let G and H be games and let C be a correctness class. Assume
fixedness is efficiently computable for (G,H,C). Then G and H are indistinguish-
able up to C iff they are penalty-style indistinguishable up to C.

The above might be interpreted as saying that oracle silencing is new language
for something that doesn’t need it. That misses the point, that oracle-silencing
grounds the natural explanation how and why one edits the utopian games.

Exclusion-style alternative. And what of exclusion-style definitions [1],
where one limits consideration to adversaries that are “well-behaved”? It is pos-
sible, although awkward, to describe IND|C in this way. After defining games GΠ

and HΠ and the correctness class C, we restrict attention from all adversaries U
to the subset A that, when interacting with GΠ or HΠ , never create a transcript t
such that FixedG,C(t) is true. One attends only to adversaries in A.

The above description might sound problematic because there is no way to
inspect an adversary’s description and know if it’s in A. It doesn’t matter. As
long as fixedness is efficiently computable for (G,H,C), one can take an adversary

12 P. Rogaway and Y. Zhang

A ∈ U and put a “wrapper” around it so that it conforms with A. The wrapped
adversary behaves like A unless it is about to ask a query that would make
FixedG,H,C(t) true, in which case it outputs 0 and halts. In this way one names
a class of adversaries A such that the ind-advantage among adversaries in it
coincides with the indc-advantage over adversaries in U. So security notions that
can be described by oracle silencing can be described exclusion-style. Not that
doing so is wise. Exclusion-style definitions compel consideration of adversary
classes. They disqualify adversaries that only rarely misbehave. They ignore
whether or not an adversary can “know” it has misbehaved. And they promote
ambiguity, as the relevant restrictions are not expressed in game code.

Further variants. Beyond penalty-style and exclusion-style formulations of
IND|C, more alternatives are possible. See Sect. 5 for some interesting ones.

3 Public-Key Encryption

Let us consider the well-known IND-CCA security notion for a public-key encryp-
tion (PKE) scheme. We first review the syntax. A PKE scheme Π is a tuple
of algorithms Π = (K, E ,D) where probabilistic algorithm K takes in a secu-
rity parameter k, encoded in unary, and generates a public key pk and a secret
key sk; probabilistic algorithm E takes in a public key pk and a plaintext m, and
returns a ciphertext c; and deterministic decryption algorithm D takes in a secret
key sk and a ciphertext c, and returns a message m. For simplicity, we assume a
message space of {0, 1}∗. An appropriate encoding of the component algorithms
is implicitly assumed whenever we regard Π as a map Π : {0, 1}∗ → {0, 1}∗.

To apply our techniques, the first step is to specify the class of correct
PKE schemes. This is easily done, letting

C1 = {Π = (K, E ,D) | (∀k)(∀m) [(pk, sk) ←←K(k); c ←←E(pk, m): D(sk, c) = m]}

denote the schemes we consider correct. The condition is absolute: decryption of
c ←←E(k,m) must always return m, which is the customary requirement.

The second step is to write down the utopian real and ideal games. For this,
we ask the adversary to distinguish between a game that encrypts a message m
of the adversary’s choice and a game that encrypts an equal length string of zero-
bits. For both games, the adversary can request the public key and has access
to a proper decryption oracle. See Fig. 4. Those games only allow the adversary
a single Enc query. This restriction is unnecessary, but including it reduces the
gap between our new notion and the traditional one for IND-CCA that we use.

The games are indeed utopian: if the adversary queries Enc(1), getting back c,
then queries Dec(c), getting back m, it will earn advantage 1 by returning m.
Naturally this is where oracle silencing comes into play: if Dec is queried with
the response c returned by a previous Enc query then FixedC1,G1 will almost
always be true, resulting in the query being silenced. Why do we say almost
always, and not always? The answer is closely related to how one can efficiently
compute FixedC1,G1.

Simplifying Game-Based Definitions 13

procedure Initialize (k) Game G1
111 (pk, sk) ←← K(k)

procedure Key
112 return pk

procedure Enc (m)
113 if asked return ⊥
114 asked ← true
115 return E(pk, m)

procedure Dec (c)
116 return D(sk, c)

procedure Initialize (k) Game H1
121 (pk, sk) ←← K(k)

procedure Key
122 return pk

procedure Enc (m)
123 if asked return ⊥
124 asked ← true
125 return E(pk, 0|m|)

procedure Dec (c)
126 return D(sk, c)

Fig. 4. Utopian games used to define PKE.new. The games are easily distin-
guished in the ind-sense. The problem is fixed by switching to indc-advantage.

Computing fixedness. As just indicated, even if a transcript t has a Dec(c)
follow an Enc(m) that returns c, it is not always the case that FixedC1,G1(t) =
true. At issue is the fact that there are some peculiar transcripts that can arise
in the ideal setting but would never arise in the real setting. Recall that our
formalization demands that we do not silence a query ending a transcript t that
could never arise in the “real” setting. One such counterexample is a Dec(c) query
that returns m, followed by an Enc(m′) query that returns c, where m �= m′.
This can’t happen in the “real” game, since it would violate correctness. Since
we only silence valid transcripts, once such an invalid event takes place, in a
run with H, we never silence any further queries—even for a Dec(c) following
some Enc(m) query that returns c.

The code of Fig. 5 attends to such subtleties. There we write out a formula for
a candidate function φ that efficiently computes fixedness for (C1,G1,H1). Func-
tion φ makes sure the mentioned counterexample does not occur (first line), and
it also checks for the “usual” concern: a decryption query that asks to decrypt
the challenge ciphertext (second line). But there are still some additional, näıve
queries to deal with (the last three lines). These are: a Key query subsequent
to the first such query; an Enc query subsequent to the first such query; and a
repeating Dec(c) query, for some value c. The responses to any of those queries
will be silenced. Our result on the computability of fixedness is as follows.

Theorem 2. There is a PT algorithm that computes fixedness for (C1,G1,H1).
In fact, the algorithm of Fig. 5 computes it.

For a proof, see Appendix A.2.
To define the security of a PKE scheme against IND-CCA attack, we let

Advpke.new
Π (A, k) = Advindc

G1[Π],H1[Π],C1(A, k) for the games and correctness class
described. We say that a PKE scheme Π is PKE.new-secure if Advpke.new

Π (A, k)

14 P. Rogaway and Y. Zhang

procedure φ(x1, y1, . . . , xt)
201 return (i, j) xi = (Dec, yj) ∧ xj [1] = Enc ∧ xj [2] = yi

202 (∃ j) xj [1] = Enc ∧ xt = (Dec, yj) ∨
203 (∃ j) xj [1] = Key ∧ xt[1] = Key ∨
204 (∃ j) xj [1] = Enc ∧ xt[1] = Enc ∨
205 (∃ j, c) xj = xt = (Dec, c)

Fig. 5. Formula for computing fixedness for PKE.new. Line 201 is the validity
check, while line 202–205 are the fixedness checks.

procedure Initialize (k) Game G0
311 (pk, sk) ←← K(k)

procedure Key
312 return pk

procedure Test (m1, m2)
313 if tested return ⊥
314 tested ← true
315 c∗ ←← E(pk, m1)
316 return c∗

procedure Dec (c)
317 if c = c∗ then return ⊥
318 return D(sk, c)

procedure Initialize (k) Game H0
321 (pk, sk) ←← K(k)

procedure Key
322 return pk

procedure Test (m1, m2)
323 if tested return ⊥
324 tested ← true
325 c∗ ←← E(pk, m2)
326 return c∗

procedure Dec (c)
327 if c = c∗ then return ⊥
328 return D(sk, c)

Fig. 6. The PKE.old notion for IND-CCA secure public-key encryption. The
formulation is equivalent to the SE and SP notions from BHK [1].

is negligible for all PPT adversaries A. We have already shown that fixedness is
efficiently computable for (C1,G1,H1).

How does our PKE.new notion compare with “standard” IND-CCA security
for a public-key encryption scheme? By the latter we mean the (equivalent)
IND-CCA-SE and IND-CCA-SP notions of BHK [1]. We define it using the G0
and H0 games of Fig. 6. Let Advpke.old

Π (A, k) = Advind
G0,H0(A, k) and define Π

as PKE.old-secure if Advpke.old
Π (A, k) is negligible for any PPT A.

The new and old PKE security notions are equivalent. Equivalence isn’t quite
obvious, because the silencing criteria not only includes adversaries querying
a Dec on the challenge ciphertext—the sole criterion for PKE.old—but, also,
adversaries not having triggered any “invalid” events. Less significantly, we’re
also looking at a real-vs-ideal game, rather than a left-or-right style one. Still,
one can show that the notions are equivalent.

Simplifying Game-Based Definitions 15

Theorem 3. A PKE scheme is PKE.new-secure iff it is PKE.old-secure.

The proof is in Appendix A.3.
Theorem 3 supports the idea that the (equivalent) SE and SP notions of

BHK are right, while the other two notions are not [1]. One of the uses of IND|C
security is to justify or call into question an existing definition by, in effect,
looking at what the correctness condition itself has to say.

The structure of the proof of Theorem 3 can be generalized. We observe
that Fixed can always be decomposed into a validity check and a fixedness check :

Fixed(x1, y1, . . . , xq) =Valid(x1, y1, . . . , xq−1, yq−1) (validity)

∧ (
(∀yq, y

′
q) Valid(x1, y1, . . . , xq, yq)∧

Valid(x1, y1, . . . , xq, y
′
q) ⇒ yq = y′

q

)
(fixedness)

A recapitulation of the proof with the decomposition above allows us to draw
the following conclusion: as long as both validity and fixedness checks are effi-
ciently computable, the removal of validity checks will give us an equivalent
indistinguishability notion. Related discussions can be found in Sect. 5.

4 Stateful AE

Syntax. A scheme for stateful AE (sAE) is a tuple of algorithms Π = (K, E ,D)
where key-generation algorithm K is a probabilistic algorithm that returns a
string, while encryption algorithm E : K × A × M × S → (C ∪ {⊥}) × S and
decryption algorithm D: K×A× C× S → (M ∪ {⊥})× S are deterministic. We
call K, M, C, A, and S the key space, message space, ciphertext space, associated-
data (AD) space, and state space, respectively. We assume that K contains the
support of K, and that there’s a constant τ , the ciphertext expansion, such that
(c, s′) = E(k, a,m, s) and c �= ⊥ implies |c| = |m| + τ . For simplicity, we regard
the ciphertext expansion of sAE schemes as a fixed and universal constant (e.g.,
τ = 128), referring to τ without tying it to any specific scheme.

Level sets. Suppose a party encrypts messages 1, 2, . . . , 100, sending them,
encrypted and in order, to some receiver. Due to an active adversary or an unre-
liable transport, that receiver might recover the sequence of messages (1, 3, 2),
or maybe (1, 10), or perhaps (1, 2, 2, 3). In each case, should an authentication
error be generated? The answer depends on multiple factors: the anticipated
properties of the communication channel; your willingness to have the decrypt-
ing party maintain state; how much state you think that party should maintain;
and the damage you anticipate from omissions, insertions, and reorderings.

16 P. Rogaway and Y. Zhang

Level Definition and description

L0 N
∗. This level-set deems all orderings permissible, regardless of omissions,

replays, or reorderings. A receiver for this level-set can be stateless. This is
the level-set that corresponds to conventional (stateless) AE.

L1 {n ∈ N
∗: i = j ⇒ ni = nj and |nj −max0≤i<j ni| ≤ + 1 for all 1≤ j ≤|n|}.

Here we do not permit replays, but do allow omissions and reorderings up
to the specified lag. When = ∞ there is no limit on the lag and the notion
roughly corresponds to level-2 in Kohno et al. [11] and Boyd et al. [4].

L2 {n ∈ N
∗ : 1 ≤ ni − ni−1 ≤ + 1 for all 1 ≤ i ≤ |n|}. This level-set does

not permit replays or reorderings, but allows omissions up to lost packets.
When = ∞ there is no limit on permissible gaps and the notion roughly
corresponds to level-3 in Kohno et al. [11] and Boyd et al. [4]

L3 {n ∈ N
∗ : ni = i for all 1 ≤ i ≤ |n|}. This is the strictest level-set: the only

permissible receipt order is sending order. This matches the notion for sAE
put forward by Bellare et al. [2], level-5 in Kohno et al. [11], and level-4 in
Boyd et al. [4]. It is what one expects to achieve over a reliable transport.

Fig. 7. Basic level-sets for sAE. The value � ≥ 0, the maximal lag, is a number or
the value ∞. The named sets impose increasingly stringent requirements for rejecting
replays, omissions, and out-of-order delivery. Throughout, n = (n1, . . . , nβ) and n0 = 0.

How might one specify the targeted level of channel fidelity? It can be done
by giving a level-set, a set L ⊆ N

∗ (where N = {1, 2, 3, . . .} excludes 0). An
element n ∈ L is called a permissible ordering. The intended semantics of n =
(n1, . . . , nβ) being in L is that if the sender transmits a sequence of messages
1, 2, . . . , and the receiver recovers, in order, messages n1, . . . , nβ , then this is an
acceptable degree of fidelity if and only if n ∈ L. To make sense, we require of
any level-set L that n ∈ L implies n′ ∈ L for any prefix n′ of n.

Examples of significant level-sets are given in Fig. 7. We call the level-sets
named there the basic level-sets. Due to the superscript �, there are infinitely
many basic level-sets. The goals associated to levels L0, L

∞
1 , L∞

2 and L3 = L0
1 =

L0
2 are described in prior work [4,11], while the L�

1 and L�
2 goals, for � ∈ N,

have not been formalized, although they would seem to be targeted by secure
messaging apps like Signal [13].

To apply oracle silencing we need to specify a class of correct sAE schemes.
That class will depend on the level-set L. Intuitively, a correct sAE scheme for
level-L should satisfy the following condition. Suppose you encrypt a sequence
of plaintexts to create ciphertexts we number 1, 2, 3, . . ., and then you decrypt,
in order, the ciphertexts numbered n1, n2, . . . , nβ . If (n1, . . . , nβ) ∈ L then you
must get back the correct sequence of plaintexts. Correctness places no demands
on what happens for sequences outside of L. Nor does it levy demands once E
declines to encrypt a string. The correctness class C2(L) associated to level-set
L is formalized at the top of Fig. 8.

Utopian setting. We specify the utopian games for sAE in the bottom of
Fig. 8, which defines games G2 and H2. The only thing peculiar in the code

Simplifying Game-Based Definitions 17

C2(L) is the set of all sAE schemes Π = (K, E , D) that satisfy:

∀k ∈ K ∀(a1, m1), (a2, m2), . . . ∈ A × M ∀(n1, . . . , nβ) ∈ L

s0 ← ε; r0 ← ε; α ← max(n1, . . . nβ);
for i ← 1 to α do (ci, si) ← E(k, ai, mi, si−1);
for i ← 1 to β do (mi, ri) ← D(k, ani , cni , ri−1):

((∀i ∈ [1..α]) (ci = ⊥)) ⇒ ((∀i ∈ [1..β]) (mi = mni))

procedure Initialize Game G2
511 k ←← K

procedure Enc(a, m)
512 (c, s) ←← E(k, a, m, s)
513 return c

procedure Dec(a, c, σ)
514 (m, r) ← D(k, a, c, r)
515 if σ then return b ←← {0, 1}
516 return m

procedure Initialize Game H2
521 k ←← K

procedure Enc(a, m)
522 (c, s) ←← E(k, a, 0|m|, s)
523 return c

procedure Dec(a, c, σ)
524 if σ then return b ←← {0, 1}
525 return ⊥

Fig. 8. Top: Correctness classes for sAE. The function maps a level-set L to a
correctness class C2(L). Bottom: The utopian real and ideal games for sAE.
The games depend on an underlying sAE scheme Π = (K, E ,D).

is the boolean flag σ provided to Dec queries. When set, only a random bit is
returned by the game. This is a way for the adversary to mark a declarative query
(p. 6), meaning an oracle call in which the adversary is not seeking information,
but only trying to side-effect the game’s internal state. Returning a random bit
is just an idiom to exempt a declarative query from getting silenced (as Fixed
will never be true). Without supporting such an ability, our adversary would
effectively be unable to ask a decryption query that it knows the answer to, even
if asking such a query would help set the oracle to a state in which the adversary
could subsequently cause damage. We call σ the declarative flag.

Given an sAE protocol Π and a level-set L, we define Advsae[L]
Π (A) as

Advindc
G2[Π],H2[Π],C2(L)(A). Informally, scheme Π is sAE[L]-secure if Advsae[L]

Π (A)
is small for any reasonable adversary A. Following prevailing traditions in sym-
metric cryptography, our notion is concrete, not asymptotic, although one could
always provide K with a security parameter and support an asymptotic notion.

Computing fixedness. It would be nice to give an efficiently computable
formula for FixedC2(L),G2, hereinafter abbreviated as FixedL, for an arbitrary
level-set L. But this is not possible—there is no such algorithm—because, in
our treatment, level-sets can be arbitrarily bizarre. So we content ourselves with
showing efficient computability of fixedness for the basic level-sets. We believe
that any “natural” level-set L will have the same property, but stating a sufficient
condition on L seems to get rather technical.

18 P. Rogaway and Y. Zhang

Theorem 4. For any basic level-set L the fixedness function is efficiently com-
putable for (C2(L),G2,H2, 2τ − 3).

See Appendix A.4 for the proof.

N2S construction. We now give a simple construction for making an sAE
scheme out of a classical nonce-based AE scheme (an nAE scheme) [14]. First
we review the syntax and security notions for nonce-based AE.

An nAE scheme Π = (K, E ,D) consists of a probabilistic key-generation
algorithm that draws a key from the key space K; a deterministic encryption
algorithm E : K×N×A×M → C that takes in a key k ∈ K, a nonce n ∈ N, an AD
a ∈ A and a message m ∈ M and outputs a ciphertext c ∈ C; and a deterministic
decryption algorithm D: K×N ×A× C → M ∪ {⊥} that takes in a key k ∈ K,
a nonce n ∈ N, an AD a ∈ A and a ciphertext c ∈ C and either outputs a
decrypted message m ∈ M or a failure symbol ⊥. Correctness is defined in the
natural way: for all (k, n, a,m) ∈ K×N×A×M and c ← E(k, n, a,m) it holds
that D(k, n, a, c) = m. We also assume that for all (k, n, a,m) ∈ K×N×A×M,
the expansion τ = |E(k, n, a,m)| − |m| is a constant.

For the nAE security definition, let $(·, ·, ·) be an oracle that takes in n ∈ N

and a ∈ A and m ∈ M and returns a fresh random string of |m| + τ bits; and
let ⊥(·, ·, ·) be an oracle that takes in n ∈ N and a ∈ A and c ∈ C and always
returns ⊥. The advantage of an adversary A against an nAE scheme Π is then
defined as

Advnae
Π (A) = Pr

[
k ∈ K: AE(k,·,·,·),D(k,·,·,·)→1

]
− Pr

[
A$(·,·,·),⊥(·,·,·)→1

]
.

We require that A never asks (n, a, c) of its right oracle if some previous left oracle
query (n, a,m) returned c; and that A does not repeat nonces when asking its
left oracle. (The first condition could itself be recovered via IND|C.) Informally,
an nAE scheme Π is secure if for all such adversaries with reasonable resources,
the advantage Advnae

Π (A) is small.
Construction N2S turns an nAE scheme Π with key space K ⊆ {0, 1}∗, nonce

space N = {0, 1}η, AD space A ⊆ {0, 1}∗ and message space M ⊆ {0, 1}∗ and
ciphertext expansion τ into an sAE scheme Π = (K, E ,D) with the same key
space, AD space, and message space. Given an nAE scheme Π and a level-set L,
the sAE scheme Π = N2S(Π,L) is defined and illustrated in Fig. 9.

The construction is quite simple. For encryption, the state is maintained as
a counter n that gets incremented with each message sent. When n is used as
a string, it is encoded into η bits. The ciphertext is formed by concatenating n
and the ciphertext returned by the nAE scheme. For decryption, the state is the
vector n of nonces received so far. The decryption algorithm outputs failure if
either the underlying nAE scheme says so or the received nonce, when appended
to the list of prior ones, does not comprise a permissible ordering in L. We have
the following result for the security of N2S:

Theorem 5. Let Π = (K, E ,D) be an nAE scheme with nonce length η and
ciphertext expansion τ . Let L be a level-set and let A an adversary that asks

Simplifying Game-Based Definitions 19

Fig. 9. Top: Definition of the N2S construction. For Π = (K, E ,D) an nAE
scheme with η-bit nonces and L a level-set, we construct the sAE scheme N2S(Π, L) =
(K, E ,D). Bottom: Illustration of the N2S construction. Messages can be rejected
because D calls for this or because the provided nonce, once concatenated to the prior
ones received, is not in L. Various optimizations are possible, depending on L.

q ≤ min{2η, 2τ − 3} queries. Then there exists an adversary B, generically
described in the proof of this theorem, such that

Advnae
Π (B) ≥ Advsae[L]

N2S[Π,L](A) .

Adversary B is efficient if A is efficient and L is a basic level-set.

The efficiency referred to in the theorem statement is made more concrete by
the theorem’s proof, which is in Appendix A.5.

Discussion. While the decrypting party must, in general, maintain an unbound-
edly long state vector n, for many level-sets this is unnecessary: the decryption
algorithm will be able to make the decision it needs to make, at line 633, by
retaining a finite amount of state. In particular, level-set L0 needs no retained
state; level-set L�

1 needs the last � + 1 nonces; and level-sets L�
2 and L3 need the

last nonce received.

20 P. Rogaway and Y. Zhang

Our N2S construction includes in the ciphertext the nonce used for the under-
lying nAE encryption. This is the usual way to use an nAE scheme, and the choice
keeps our construction simple. But it has downsides, both for security and effi-
ciency. The presence of the nonce reveals information that one might wish to
hide. It might identify which user a message was sent by (as when one user has
sent many messages, and another user has sent few). The presence of the nonces
excludes the possibility of achieving IND$-security, meaning indistinguishability
from random bits; it is, in fact, the reason we defined sAE security using the
weaker notion of indistinguishability from the encryption of zero-bits (line 522 of
Fig. 8). As for efficiency, N2S increases the ciphertext expansion from the nAE
scheme’s τ bits to η + τ bits, which may be unnecessary.

Addressing the efficiency complaint first, we note that if one is targeting
sAE level L3 (a reliable channel), the nonce n need not be included with the
ciphertext, for the receiver will know what it must be if the ciphertext is to
be valid. For levels L�

1 and L�
2, with � ∈ N, we can also reduce the ciphertext

length. Instead of including the entire nonce n in the ciphertext, it is sufficient to
include n mod (2�+2) for L�

1 or n mod (�+1) for L�
2. From this the receiver can

reconstruct the only possible value of n for a valid message. In practical settings,
one would expect this information to fit in a single byte. Thus L�

1 and L�
2 are

nicer than L∞
1 and L∞

2 not only for capping the state of the decrypting party
but, also, for reducing ciphertext expansion.

As for security, what change to N2S is needed to achieve the stronger IND$
definition? (For that, change line 522 to replace c by |m| + τ many uniformly
random bits.) Perhaps the most obvious approach is to include in the ciphertext
the enciphered nonce, rather than the nonce itself. One would use a blockcipher
and a separate key. If η is small, like 32 or 96, one would need a blockcipher with
an unusual block length. And the IND$ security would now degrade, unpleas-
antly, with q2/2η. So a better construction, perhaps, is to append the nonce n
to the plaintext and encrypt using a zero-nonce MRAE scheme [15], rather than
a conventional nAE scheme like we used for N2S. This avoids the quantitative
security loss and works for any level-set L. For L�

1 and L�
2 one can use the trick

from the last paragraph and include only n mod � within the scope of what is
MRAE-encrypted. It is tempting to try to eliminate this too, using the nonce as
the AD value and have the decrypting party employ trial decryptions. But this
scheme is problematic because it does not achieve perfect correctness, which is
required in our treatment of IND|C.

While it is beyond the scope of this paper to formalize and prove all of the
claims made in the last couple of paragraphs, it is our contention that all of
them are straightforward to establish within the framework of IND|C.

5 Variants

Formalizations of IND|C are quite robust with respect to definitional adjust-
ments. In this section we describe three IND|C variants and explain in what
sense each is equivalent. The three variants are: (1) whether or not to silence

Simplifying Game-Based Definitions 21

oracle responses from the “ideal” game that are invalid in the “real” game;
(2) whether to silence-then-shut-down or silence-then-forgive, the latter mean-
ing that oracle responses after silencing will still be returned to the adversary;
and (3) whether to silence ideal-side responses, as we have done throughout, or
to replace them with the real-side values.

At the end of Sect. 2 we described further alternatives, (0) a penalty-style
version of IND|C, and (0′) an exclusion-style variant. One concludes from these
examples that many of the definitional choices we have made are not significant.

We go on to look at a more distant alternative to INDC, which we call
symmetric INDC. Meant to deal with left-or-right games instead of real-or-ideal
ones, this variant silences oracle responses whenever the correctness condition
dictates fixed but distinct responses from the two sides. We suspect that this
approach is, once again, as expressive as our other treatments of IND|C.

Before we describe our IND|C variants, let us clarify what it means to say
that one way of defining advantage is equivalent to another. Suppose first that
one has defined security measures Advxxx

Π (A) and Advyyy
Π (A). Then we may

regard them as equivalent if any adversary A can be generically converted into
an almost-as-efficient adversary B for which Advyyy

Π (B) is nearly as high as
Advxxx

Π (A); and the other way around.
Now, for our more abstract setting, suppose we have two ways of associ-

ating an advantage measure to a primitive Π, a class C containing it, and a
pair of Π-dependent games (G,H). Call these Advxxx

GΠ ,HΠ ,C and Advyyy
GΠ ,HΠ ,C.

Then these approaches for defining security are equivalently expressive, or just
equivalent, if there’s a generic method to construct from (G,H) a pair (G′,H′)
such that Advxxx

GΠ ,HΠ ,C and Advyyy
G′

Π ,H′
Π ,C are equivalent (in the sense of the last

paragraph); and, also, the other way around.

(1) Silencing invalid transcripts. Recall that the formula we’ve been using
for FixedG,C(x1, y1, . . . , xi) is (∃! yi)ValidG,C(x1, y1, . . . , xi, yi) where the sym-
bol ∃! means there exists one and only one. This choice implies that an adversary,
when interacting with the ideal game H, will receive responses yi (in not yet
silenced games) for which the yi-ending transcript could not occur with the real
game—that is, when ValidG,C(x1, y1, . . . , xi, yi) = false. The rationale behind
this choice is that the adversary should be given a chance to win the distinguish-
ing game by observing that a response is invalid—that it could not occur with
the “real” oracle—but that determination should still fall on the adversary.

Yet a natural variant is to silence invalid replies, effectively marking tran-
scripts where the ideal oracle has failed to provide a plausible response. The new
silencing condition would define Fixed1

G,C(x1, y1, . . . , xi) as

(∀y, y′) (ValidG,C(x1, y1, . . . , xi, y) ∧ValidG,C(x1, y1, . . . , xi, y
′) ⇒ y = y′)

and would silence by

Silence1G,C(x1, y1, . . . , xj) =
∨

1≤i≤j

Fixed1
G,C(x1, y1, . . . , xi).

22 P. Rogaway and Y. Zhang

In words, we silence whenever there is at most one valid response, rather than
demanding that there be exactly one valid response. We denote the advan-
tage of adversary A under this new silencing condition by Advindc1

G,H,C(A) =
Advindc

G[ψ],H[ψ],C where ψ = Silence1G,C. We call the notion INDC1 security.
We argue that when ValidG,C is efficiently computable, this alteration is

irrelevant. Given an INDC adversary A, one can construct an INDC1 adver-
sary A′ that behaves as A does except when it sees a response yi for which
ValidG,C(x1, y1, . . . , xi, yi) is false. When this happens, adversary A′ halts with
a return value of 0. The constructed adversary is about as efficient as the origi-
nal one (if ValidG,C is easily computed) and has advantage no smaller than A’s.
Conversely, the exact same reduction turns an INDC1 adversary A′ to an INDC
adversary A of comparable efficiency and undiminished advantage.

(2) Silence-then-forgive. Our INDC formalization effectively punishes the
adversary for triggering silencing: once silencing happens, the oracle shuts down
and becomes useless. One might argue that this is overly punitive—that there is
no reason to do anything other than silence just the offending query. We call this
alternative silence-then-forgive. We explain that, when the silencing function is
efficiently computable, the difference is inconsequential.

The silence-then-forgive notion is easy to formalize. We use the same Valid
and Fixed predicates as defined in Sect. 2, but for the silencing function, instead
of using the logical-or of Fixed applied to transcript prefixes, we use Fixed
directly. That is, we let Silence2 = Fixed and define

Advind2
G,H,C(A) = Pr[AG[ψ] ⇒ 1] − Pr[AH[ψ] ⇒ 1]

where ψ = Silence2C,G. We call this the INDC2 advantage of adversary A.
Given an INDC adversary A differentiating G and H, an INDC2 adversary A′

can simply execute A in a black-box manner and whenever A asks a query that
will be silenced according to ψ, adversary A′ would stop its own interaction and
continue simulating the ♦ response to A. Conversely, given an INDC2 adver-
sary A′, an INDC adversary A can simply execute A′ and whenever it asks a
query that will be silenced according to ψ, adversary A would ask the same
query, but setting the declarative flag. It then returns a ♦ response to A′. Since
setting the declarative flag guarantees the response would not be silenced, adver-
sary A would never trigger silencing. The simulation is perfect. The argument
implies that the two silencing notions are equally expressive.

(3) Ideal-side editing. So far, all of our INDC variants silence both the real
and ideal sides. Consider the following alternative to oracle silencing: the real
game G is never changed, while the ideal game H, instead of being silenced when
a response is fixed according to G, returns that fixed response.

Simplifying Game-Based Definitions 23

To formalize this, we change the boolean predicate Fixed into a function
fixed that returns the unique string-valued response that is determined when
the original predicate returns true, and returns ∗ (for “not-fixed”) otherwise:

fixedC,G(x1, y1, . . . , xi) =

{
y when (∃! y) ValidC,G(x1, y1, . . . , xi, y)
∗ otherwise

We then extend the notion G[ψ] to include the case where ψ is a string-or-∗-
valued function. Specifically, the Oracle procedure of G[ψ] behaves as below.

procedure G[ψ].Oracle(x)
i ← i + 1; xi ← x; yi ← G.Oracle(x)
if ψ(x1, y1, . . . , xi) �= ∗ then yi ← ψ(x1, y1, . . . , xi)
return yi

Finally, we define INDC3 advantage by Advindc3
G,H,C(A) = Advind

G,H[ψ](A) where
ψ = fixedC,G. We call this INDC variant ideal-side editing.

We argue that INDC3 is equivalent to INDC assuming fixedG,C is effi-
ciently computable. Let A be an INDC adversary differentiating a real game G
and an ideal game H, where C is the underlying class. One can construct an
INDC3 adversary A′ executing A in a black-box manner. Whenever A asks a
query xi such that the history so far, when applied to fixedG,C, results in a
string response yi, then A′ stops its own interaction and provides the silencing
mark ♦ to A. Conversely, with A′ an INDC3 adversary we can construct an
INDC adversary A executing A′ in a black-box manner. Whenever A′ first asks
a query xi such that fixedG,C(x1, y1, . . . , xi) = yi �= ∗, adversary A would for-
ward xi to its own game, but would set a declarative flag so that silencing is not
triggered. It then returns yi to A′. Both reductions are perfect in simulating the
game interaction.

(4) Symmetric silencing. Our last form of game-editing is meant to deal with
left-or-right style games instead of real-or-ideal style games. A typical example
was given in Sect. 3, the treatment of CCA-secure PKE in which an oracle accepts
two equal-length plaintexts and encrypts either the left or the right one of them.
Can one directly use our INDC definition in such a setting?

One can, but doing so doesn’t make sense. A real game is different from an
ideal one, and its privileged position makes it reasonable that Advindc

G,H,C is not
Advindc

H,G,C. But a left game and a right game ought not be treated differently: it
should be the case that the order of naming them doesn’t matter.

Although the rationale just stated is a philosophical one, we have found that
trying to apply IND|C to the LR-style games of Sect. 3 just doesn’t work.

Here is a way to realize symmetric silencing: silence when the responses of
the games are distinct fixed strings. Namely, let

Fixed 4
G,H,C(t)=

(
fixedC,G(t) �= fixedC,H(t) ∧ fixedC,G(t) �= ∗ ∧ fixedC,H(t) �= ∗) .

24 P. Rogaway and Y. Zhang

Note that the predicate is symmetric: Fixed 4
G,H,C = Fixed 4

H,G,C. Define the
silencing function Silence 4

G,H,C(t) as the logical-or of Fixed 4
G,H,C(t′) applied to

all prefixes t′ of t. The INDC-SYM advantage of an adversary A is then defined
as Advindc-sym

G,H,C (A) = Advind
G[ψ],H[ψ](A) where ψ = Silence 4

G,H,C.
We use the games in Sect. 3 to give an example. Let G and H be the left and

right games in Fig. 6 with line 317 and line 327 removed, and let C be the class
of correct PKE schemes. We remove the two lines so that the decryption does
not exclude challenged ciphertext and thus the games become “utopian.” The
Fixed 4

G,H,C predicate, in this case, evaluates to true if (1) no two encryptions of
the same-side but distinct plaintexts return identical ciphertexts (validity condi-
tion); and (2) a decryption of c is asked while there was a previous ENC(m1,m2)
oracle returning c and m1 �= m2 (fixedness condition). Therefore, apart from the
explicit checking of an additional validity condition, the INDC-SYM notion again
coincides with the conventional IND-CCA one.

6 Conclusions

Definitions in cryptography often vary in subtle ways, and deciding among them
can seem rather subjective. The IND|C framework may help lessen this sub-
jectivity. It embodies a thesis that a definition is “right” when it attends to
the limits imposed by correctness, but goes no further than that in restricting
adversarial behavior.

We suspect there are many cryptographers who have written definitions with
an implicit view that what they aim to do is to disallow all and only the adver-
sarial behaviors that some correctness condition dictates. The challenge of this
work has been in figuring out how to make this vague conception real.

The IND|C approach is rather abstract. Definitions one gets out of it may
require significant investigation to concretely characterize or understand. For
this reason, one might claim that IND|C doesn’t banish complexity so much as
hide it. At least with a complicated game, the argument might go, you can see
the complexity before your eyes.

We regard the critique as mostly off-base. Most fundamentally, it is unreal-
istic to think that complex cryptographic goals admit simple formulations when
described in low-level terms. A more realistic aim is to find abstraction bound-
aries that help modularize definitions and enhance intuition.

The situation is reminiscent of UC [6], where an ideal functionality can be
simply specified, a definition inherited from it, but it may be quite unclear what
that notion means. Yet the hidden complexity behind IND|C isn’t remotely
at the level of UC. Nor, in our simpler setting, is there much difficulty with
rigor. Perhaps IND|C may come to serve as an alternative to UC, for some
cryptographic problems, the utopian game H corresponding to the specification
of the ideal functionality.

Acknowledgments. Many thanks to anonymous reviewers of this paper, whose ques-
tions motivated the addition of Sect. 5. Thanks to the NSF, which provided funding
for this work under grants CNS 1314885 and CNS 1717542.

Simplifying Game-Based Definitions 25

References

1. Bellare, M., Hofheinz, D., Kiltz, E.: Subtleties in the definition of IND-CCA:
when and how should challenge decryption be disallowed? J. Cryptol. 28(1), 29–48
(2015). 5, 10, 11, 14, 15

2. Bellare, M., Kohno, T., Namprempre, C.: Breaking and provably repairing the
SSH authenticated encryption scheme: a case study of the encode-then-encrypt-
and-MAC paradigm. ACM Trans. Inf. Syst. Secur. 7(2), 206–241 (2004). https://
doi.acm.org/10.1145/996943.996945. 5, 16

3. Bellare, M., Rogaway, P.: The security of triple encryption and a frame-
work for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT
2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006). https://doi.org/
10.1007/11761679 25. 6

4. Boyd, C., Hale, B., Mjølsnes, S.F., Stebila, D.: From stateless to stateful: generic
authentication and authenticated encryption constructions with application to
TLS. In: Sako, K. (ed.) CT-RSA 2016. LNCS, vol. 9610, pp. 55–71. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-29485-8 4. 5, 16

5. Boyd, C., Hale, B., Mjølsnes, S.F., Stebila, D.: From stateless to stateful: generic
authentication and authenticated encryption constructions with application to
TLS. Cryptology ePrint Archive, Report 2015/1150, revision 20160919:152253
(2016). https://eprint.iacr.org/2015/1150. 5

6. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. Cryptology ePrint Archive, Report 2000/067 (2000). http://eprint.iacr.
org/2000/067. 6, 24

7. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for
building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol.
2045, pp. 453–474. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-
44987-6 28. 6

8. Fischlin, M., Günther, F., Marson, G.A., Paterson, K.G.: Data is a stream: security
of stream-based channels. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015.
LNCS, vol. 9216, pp. 545–564. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-48000-7 27. 6

9. Fischlin, M., Gnther, F., Marson, G.A., Paterson, K.G.: Data is a stream: security
of stream-based channels. Cryptology ePrint Archive, Report 2017/1191 (2017).
https://eprint.iacr.org/2017/1191. 6

10. Jager, T., Kohlar, F., Schäge, S., Schwenk, J.: On the security of TLS-DHE in the
standard model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 273–293. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-32009-5 17. 6

11. Kohno, T., Palacio, A., Black, J.: Building secure cryptographic transforms, or
how to encrypt and MAC. Cryptology ePrint Archive, Report 2003/177 (2003).
http://eprint.iacr.org/2003/177. 5, 16

12. Namprempre, C.: Secure channels based on authenticated encryption schemes: a
simple characterization. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501,
pp. 515–532. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36178-
2 32. 6

13. Perrin, T., Marlinspike, M.: The double ratchet algorithm. Open Whisper Systems
(2016). https://signal.org/docs/specifications/doubleratchet/. 16

14. Rogaway, P.: Authenticated-encryption with associated-data. In: Atluri, V. (ed.)
ACM CCS 2002: 9th Conference on Computer and Communications Security,
18–22 November 2002, pp. 98–107. ACM Press, Washington D.C. (2002). 18

https://doi.acm.org/10.1145/996943.996945
https://doi.acm.org/10.1145/996943.996945
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/978-3-319-29485-8_4
https://eprint.iacr.org/2015/1150
http://eprint.iacr.org/2000/067
http://eprint.iacr.org/2000/067
https://doi.org/10.1007/3-540-44987-6_28
https://doi.org/10.1007/3-540-44987-6_28
https://doi.org/10.1007/978-3-662-48000-7_27
https://doi.org/10.1007/978-3-662-48000-7_27
https://eprint.iacr.org/2017/1191
https://doi.org/10.1007/978-3-642-32009-5_17
https://doi.org/10.1007/978-3-642-32009-5_17
http://eprint.iacr.org/2003/177
https://doi.org/10.1007/3-540-36178-2_32
https://doi.org/10.1007/3-540-36178-2_32
https://signal.org/docs/specifications/doubleratchet/

26 P. Rogaway and Y. Zhang

15. Rogaway, P., Shrimpton, T.: A provable-security treatment of the key-wrap prob-
lem. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 373–390.
Springer, Heidelberg (2006). https://doi.org/10.1007/11761679 23. 20

A Proofs

A.1 Proof of Theorem 1

It suffices to give mutual reductions between INDC and INDC0 adversaries.
Since fixedness is efficiently computable for (G,H,C) we know there exists a PT
algorithm φ that computes FixedC,G for all valid transcripts. In the following
we give the two reductions.

Let A be an INDC adversary. We construct an INDC0 adversary B that does
the following: it runs A as a black-box and forwards every query made by A.
Before forwarding a query xt, however, it appends xt to the recorded transcript
and computes φ on it. If φ returns true then B stops forwarding and from then
on keeps returning ♦ to A. Clearly B is PPT when A is. In addition, adversary B
never triggers the penalty in Finalize, and it perfectly simulates the INDC game
for A.

Conversely, let B be an INDC0 adversary. We construct A that does the
following: it runs B as a black-box and forwards every query made by B. But A
gives up and returns 0 whenever it sees ♦ returned by the game. When B is PPT
then so is A. For the advantage, let badG and badH denote the events that A sees
a ♦ response when interacting with G and H, then we have Advindc

G,H,C(A, k) =
Pr[AG[ψ] → 1] − Pr[AH[ψ] → 1] = Pr[AG[ψ] → 1 ∩ ¬badG] − Pr[AH[ψ] → 1 ∩
¬badH] = Pr[G�ψ�

B →1]−Pr[H�ψ�
B →1] = Advindc0

G,H,C(B, k), and the reduction
is complete.

A.2 Proof of Theorem 2

First note that the formula φ in Fig. 5 is PT-computable. We must show that
ValidC1,G1(x1, y1, . . . , xt) ∨ ValidC1,H1(x1, y1, . . . , xt) implies φ(x1, y1, . . . , xt) =
FixedC1,G1(x1, y1, . . . , xt).

Fix such a transcript. We claim that ValidC1,G1(x1, y1, . . . , xt−1, yt−1) if and
only if line 201 in Fig. 5 is true. The only-if direction is straightforward: the
negation of line 201 violates correctness required by the scheme class C1. For
the if direction, consider the artificial scheme Π = (K, E ,D), whose definition
depends on the transcript, with the following behavior:

– K(k): regardless of k, if there is any (xi, yi) = (Key,pk) then output pk.
Otherwise output an arbitrary string.

– E(pk,m): output c←←T [m] where T [m] ⊆ {0, 1}∗ are sets of strings, indexed
by m ∈ {0, 1}∗, which satisfy:
• if there is an (xi, yi) = ((Enc,m), c) then c ∈ T [m].
• (m �= m′) ⇒ (T [m] ∩ T [m′] = ∅).

https://doi.org/10.1007/11761679_23

Simplifying Game-Based Definitions 27

• if there is an (xi, yi) = ((Dec, c),m): when m is not the challenge plaintext
then c /∈ T [m′] for all m′ ∈ {0, 1}∗; otherwise c ∈ T [m]. (By the challenge
plaintext we mean the input to the first Enc query in the transcript, if it
exists.)

– D(sk, c): if (∃m) c ∈ T [m], then output m; else if there exists some (xi, yi) =
((Dec, c),m) then output m; else output an arbitrary string.

It is straightforward to verify that Π as constructed above is correct and can
generate the given transcript. It remains to show well-definedness, namely, the
existence of indexed sets T [m] for m ∈ {0, 1}∗. Note the only possible contradic-
tion in the construction of T is between the first bullet and the third bullet in the
description of E . However, such a contradiction can only take place when there
is an (xi, yi) = ((Enc,m), c) and an (xj , yj) = ((Dec, c),m′) such that m �= m′,
exactly the case excluded by line 201 in Fig. 5. The if direction is thus proved.

If φ(x1, y1, . . . , xt) is true then one of the lines 202–205 is true. From the code
of G1 and the definition of C1, it is straightforward to verify that whichever
line in 202–205 is true, the values recorded in the transcript determine the
value of G1Π(k, x1, . . . , xt, r). Additionally, since the above claim says when-
ever line 201 is true then the transcript is valid, we conclude that the value
of FixedC1,G1(x1, y1, . . . , xt) is true.

Conversely, if φ(x1, y1, . . . , xt) is false then either line 201 or the disjunction
of line 202–205 is false. In the former case, our claim implies the falseness of
ValidC1,G1(x1, y1, . . . , xt), so FixedC1,G1(x1, y1, . . . , xt) is also false. In the latter
case, consider the artificial scheme we just constructed. Since such a scheme
can always generate the given history as long as the indexed set T satisfies the
required properties, it suffices to give two instantiations of Π which generate
distinct responses for xt. A routine check of the code of G1 concludes that: for
all transcripts not falling in the four cases of line 202–205, such instantiations
can indeed be given. We conclude that FixedC1,G1(x1, y1, . . . , xt) in this case, is
also false.

A.3 Proof of Theorem 3

We give reductions for both directions. First, let A be a PPT IND-CCA adversary
attacking Π. We construct an INDC-adversary B that does the following. For
all Dec queries and Key queries asked by A, forward them to its own game if ψ
evaluates to false for the current transcript; otherwise simulate the answers by
itself without forwarding (which could be done by an inspection of the code of the
four games (G1,H1,G0,H0)). For the first Test query (m1,m2) queried by A, we
let B draw a random coin b←←{0, 1} and query Enc(mb). Now Advindc

G1,H1,C1(B) =
Advind

Π (A)/2, and B is also PPT.
Next, let B be a PPT IND|C adversary, we construct an IND-CCA adver-

sary A that does the following: forward all Dec queries and Key queries; for the
Enc query m, let A query Test(m, 0|m|). In addition A will also silence queries
made by B by computing ψ. This reduction simulates perfectly except for one
problematic case: when B triggered an invalid event (the negation of line 201

28 P. Rogaway and Y. Zhang

in Fig. 5) and asks for a decryption of the challenged ciphertext, by the formula
of ψ he should see an unsilenced response, but the IND-CCA adversary A can-
not simulate such a response for him. However, since an invalid event necessarily
implies that A is in the ideal world, we could simply let A return 0. Therefore,
the advantage of B is preserved.

A.4 Proof of Theorem 4

We introduce some notation first. Given n ∈ N
∗ and a vector X, we define X[n]

recursively by X[∅] = ∅ and X[n || i] = X[n] ||Xi if 1 ≤ i ≤ |X|, while
X[n] otherwise. For n = [i, i + 1, . . . , j] we may write X[i..j] instead of X[n].
We use t = (x1, y1, . . . , xq) to denote a query-terminated transcript that
is ValidC2(L),G2(t) ∨ValidC2(L),H2(t) and satisfies q ≤ 2τ − 3.

Our proof strategy is as follows. We first give the pseudocode of a function φL

for a general level-set L, and then prove its efficient computability when L is a
basic level-set. See Fig. 10 for the code of φL.

procedure φL(t)
711 (x1, y1, . . . , xq) ← t

712 for i ← 1 to q − 1 do
713 if xi[1] = Enc then e ← e + 1; (ae, me, ce) ← (xi[2], xi[3], yi)
714 for i ← 1 to q then
715 if xi[1] = Dec then d ← d + 1; (ad, md, cd) ← (xi[2], yi, xi[3])
716 if (∃i)(∃n ∈ L) (a [1..i], c [1..i]) = (a[n], c[n]) ∧ mi = ⊥ then return false

717 if (∃n,n ∈ L) n = n ∧ (m[n] = m[n]) ∧ (a[n], c[n]) = (a[n], c[n])
718 then return false

719 return xq[1] = Dec ∧ xq[4] = false ∧ (∃n ∈ L) (a , c) = (a[n], c[n])

Fig. 10. Computing fixedness for sAE.

We claim φL indeed computes fixedness. Let t be such a transcript that satis-
fies the stated condition in the above, we use (a1, c1), . . . , (ae, ce) and (a′

1, c
′
1), . . . ,

(a′
d, c

′
d) to denote its encryption history and decryption history, defined as

in Fig. 10. Given a decryption query (a′
i, c

′
i), we say it is n-honest if n ∈

L∧(a′[1..i], c′[1..i]) = (a[n], c[n]); and it is honest if it is n-honest for some n ∈ L.
We use h to denote the largest index of honest decryption queries in the decryp-
tion history, namely h = max{i: (a′

i, c
′
i) is honest}.

We try to define an artificial scheme Π ∈ C2(L), out of two functions F :
N × A × M → C ∪ {⊥} and G : N × A × C → M ∪ {⊥}. We require for all
(n, a) ∈ N×A, the projected Fn,a(·), apart from its possible mapping to ⊥, is an
injection with ciphertext expansion τ : We accordingly write F−1

n,a(c) to denote
the unique m ∈ M such that Fn,a(m) = c or ⊥ if such m does not exist. Basically,
the behavior of F has some restrictions that depend on the given transcript t,

Simplifying Game-Based Definitions 29

procedure K
811 return 0

procedure E(k, a, m, s)
821 if s = ε then s ← 0
822 s ← s + 1
823 return (Fs,a(m), s)

procedure D(k, a, c, r)
824 if isNum(r) then

825 r ← r + 1; return (G(r, a, c), r)
826 if r = ε then r ← {Λ}
827 r ← ∅

828 for n ∈ r do
829 for n ∈ {n: n || n ∈ L} do
830 if F −1

n,a(c) = ⊥ then
831 m ← F −1

n,a(c)
832 r ← r ∪ {n || n}
833 if r = ∅ then return (G(0, a, c), 0)
834 return (m, r)

Conditions on F for Π ∈ C2(L) and Π being able to generate the history:

841 (∀q)(∀a1, . . . , aq ∈ A)(∀c1, . . . , cq ∈ C)(∀n,n ∈ L)
842 For i ← 1 to q do (mi, mi) ← (F −1

ni,ai
(ci), F −1

ni,ai
(ci)):

843 ((∀i) mi = ⊥ ∧ mi = ⊥) ⇒ ((∀i) mi = mi)

844 (∀i ∈ {1, . . . , e}) Fi,ai(mi) = ci (∀i ∈ N) ch+1 /∈ Range(Fi,a
h+1

)

Fig. 11. Code of the artificial sAE scheme.

and such restriction serves its best to make sure Π can generate t. Ultimately,
we expect Π to have the following properties:

If the validity check is passed (both the if conditions in line 716 and 717
are false) then Π is well-defined, correct, and can generate t. On top of
that, if the fixedness check does not pass (line 719 returns false), then
there are multiple instantiations of Π that generate distinct responses for
the last query in t.

We call these two properties the existence property and the multiplicity property.
The code of Π is given in Fig. 11. We first make two observations about it:

– When F satisfies line 842–843, the variable m assigned in line 831 is identical
across iterations for each decryption in a correctness experiment as shown in
Fig. 8, and Π ∈ C2(L). This can be proved by an induction on the number
of decryption queries in a correctness experiment. The inductive argument
is: after the first i decryptions (a1, c1), (a2, c2), . . . , (ai, ci) in a correctness
experiment, all vectors n in the receiver state are reorderings in L, and for
each n let (m1, . . . ,mt) ← (F−1

n1,a1
(c1), . . . F−1

nt,at
(ct)) then (�i) mi = ⊥ and

the vector m is identical for all n in the receiver state.
– When F satisfies all lines 842–844, the scheme Π can generate the encryp-

tion history. What’s more, as long as the if condition in line 716 in Fig. 10
evaluates to false, then Π, with some instantiation of G, can generate
the decryption history as well. The generation of the encryption history
is obvious by line 844. For the generation of the decryption history, note
that ValidC2(L),G2(t) ∨ ValidC2(L),H2(t) implies that an n-honest decryption

30 P. Rogaway and Y. Zhang

query (a′
i, c

′
i) must have a response either equal to mni

(in the real world)
or ⊥ (in the ideal world). Since the falseness of the if condition in line 716
of Fig. 10 excludes the latter case, the correctness of Π thus ensures those
honest decryption queries’ responses can be generated. For those post-honest
decryption queries, since line 844 implies that the first of those queries c′h+1

is not in the range of Fi,a′
h+1

(·) for any i, the updated receiver state r′ will
be set to ∅ and from this point the decryption will depend only on G. With
the help of the additive state, by simply assigning G(i − h − 1, a′

i, c
′
i) ← m′

i

for all i > h, we can make Π generate the given decryption history as well.

Based on the above two observations, we first prove the existence property.
For a number i ∈ N, let num2strj(i) be the binary representation of i with j bits
(leading 0 padded when i � 2j). Suppose t is such that both the if conditions
in line 716 and 717 evaluate to false then consider the following F :

Fi,a(m) =

⎧
⎪⎨

⎪⎩

ci if a = ai ∧ m = mi;
H(i,m) else if i ≤ e;
⊥ otherwise,

where H : {1, 2, . . . , q} ×M → C satisfies

1. H(i, ·) is an injection for all i with ciphertext expansion τ ;
2. i �= j ⇒ Range(H(i, ·)) ∩ Range(H(j, ·)) = ∅;
3. t.ci /∈ Range(H(i, ·)) for all i;
4. t.c′h+1 /∈ Range(H(i, ·)) for all i.

It’s easy to see such an H really exists by the condition q ≤ 2τ − 3. We
claim that this instantiation satisfies the three conditions in Fig. 11, which would
imply the existence property. Indeed, line 844 is obvious. For line 841–843, let
(a1, a2, . . . , aq), (c1, c2, . . . , cq), n and n′ be as quantified, then ((∀i) mi �= ⊥ ∧
m′

i �= ⊥) implies that for all i, either ci ∈ Range(H(ni, ·)) ∩ Range(H(n′
i, ·)),

or ci is equal to t.cj for some j (We use the notation t.ci to differentiate the ci

being quantified in the statement of line 841–843 and the ci recorded in the
transcript t). In the former case, by the second property of H above we have
ni = n′

i, hence mi = m′
i. In the latter case, suppose for contradiction that

mi �= m′
i and let i be the minimal such index. Since by the instantiation of F ,

for j ≤ i either ni = n′
i (the case we just analyzed) or (ai, ci) = (t.a[ni], t.c[ni]) =

(t.a[n′
i], t.c[n

′
i]), we conclude (t.a[n], t.c[n]) = (t.a[n′], t.c[n′]). The assumption

mi �= m′
i therefore contradicts with the condition that line 717 in Fig. 10 returns

false.
We next show the multiplicity property. There are three cases of t.xq to

consider. They are: (1) Dec query with the declarative flag set to true; (2) Dec
query that is not honest; (3) Enc query. The first case is trivial. For the second
case, since our construction depends on an arbitrary function G after a dishonest
decryption, there are always multiple ways of specifying different G so as xq will
have distinct outputs. For the third case, it suffices to extend the instantiation
of F by H in the above with e replaced by e+1. By the condition q ≤ 2τ −3, the

Simplifying Game-Based Definitions 31

procedure φj(t)
911 (x1, y1, . . . , xq) ← t

912 if xq[1] = Dec ∨ xq[4] = false then return false

913 for i ← 1 to q − 1 do
914 if xi[1] = Enc then
915 e ← e + 1; (ae, me, ce) ← (xi[2], xi[3], yi);
916 ac2i[ae, ce] ← ac2i[ae, ce] ∪ {e}
917 if j = 0 then
918 for i ← 1 to e do
919 if ac2m[ae, ce] = ♦ and ac2m[ae, ce] = me then return false

920 ac2m[ae, ce] ← me

921 else
922 queue ← (Λ, Λ)
923 while (n1,n2) ← pop(queue) do
924 for (n1, n2) ∈ Next(Lj ,n1, e) × Next(Lj ,n2, e) do
925 if (a[n1], c[n1]) = (a[n2], c[n2]) then
926 if m[n1] = m[n2] then return false

927 push(queue, (n1 || n1,n2 || n2))
928 for i ← 1 to q do
929 if xi[1] = Dec then
930 d ← d + 1; (ad, md, cd) ← (xi[2], yi, xi[3])
931 N ← {Λ}
932 for i ← 1 to d do
933 for n ∈ N do
934 for n ∈ ac2i[ai, ci] do
935 if n || n ∈ Lj then
936 N ← N ∪ {n || n}
937 if mi = ⊥ then return false

938 N ← N ; N ← ∅

939 return N = ∅

Fig. 12. Pseudocode of algorithms computing fixedness for sAE. The algo-
rithm φ�

j computes fixedness for (C2(L�
j), G2, H2, 2τ − 3) where τ is the ciphertext

expansion for sAE schemes. The only dependences on level-sets are in line 924 and
line 935, where Next(L,n, e) = {n ∈ {1, . . . , e} : n ||n ∈ L}. The value Next(L, ·, ·) is
efficiently computable for all L ∈ {L0, L

�
1, L

�
2, L3}.

four conditions can still be satisfied by a proper choice of H, and all successive
logic thus follows. The different way of instantiating H(e + 1, ·) thus guarantees
multiplicity property.

To complete the proof, we need to write pseudocode of efficient algorithms
for the procedure φL where L is a basic level set. See Fig. 12 for the concrete
code of these algorithms that instantiate φL.

32 P. Rogaway and Y. Zhang

A.5 Proof of Theorem 5

We describe the code of B in terms of A. See Fig. 13. We claim that this reduction
achieves perfect simulation. To see why, note that the only bad event which
semantically differs from an otherwise perfect simulation is line 1032, which
causes digression from the semantics of H2 but not that of G2, hence it suffices
to show in an execution between B and the ideal side, line 1032 is never reached.
Suppose for contradiction that it is reached, then by the code semantics, oracle
silencing has not taken place, and the nonces in the nc input for Dec queries so
far form a reorder n ∈ L. Consider the first Dec query of which nc = (n1, c) for
some c. Due to the monotonicity of silencing and the event n = ⊥, at the point
of the query, line 1029 is reached and the if conditions there can be either true or
false. If it is true, then in the ideal world H2 we must have m assigned as ⊥, and
accordingly n gets assigned to ⊥, contradicting to the assumption that line 1032
is reached later. If it is false, then at this query the vector n1 already forms a
valid reorder of the encryption history at the time, so this query should already
have been silenced at line 1024, a contradiction again.

When A queries Enc(a, m)
1011 if silenced return ♦
1012 t ← t || (Enc, a, m)
1013 if ψL(t) then
1014 silenced ← true; return ♦
1015 n ← n + 1
1016 c ← Enc(n, a, m)
1017 t ← t || c
1018 return n || c

When A queries Dec(a, nc)
1021 if silenced return ♦
1022 t ← t || (Dec, a, c)
1023 if ψL(t) then
1024 silenced ← true; return ♦

1025 if n = ⊥ then m ← ⊥
1026 else
1027 n || c ← nc; n ← n || n
1028 if n /∈ L then m ← ⊥
1029 else if
1030 (m) ((Enc, n, m), c) = t.xn

1031 then m ← Dec(n, a, c)
1032 else m ← m
1033 if m = ⊥ then n ← ⊥
1034 t ← t || m
1035 return m

When A outputs b
1036 Output b

Fig. 13. Construction of an nAE adversary out of an sAE adversary. The
reduction simulates perfectly since the only bad event in line 1032 never takes place in
the ideal setting.

We conclude that B simulates for A a perfect execution of the silenced
(G2N2S[Π,L],H2N2S[Π,L]) games. Adversary B is efficient when A is and the proof
is complete.

The Algebraic Group Model
and its Applications

Georg Fuchsbauer1, Eike Kiltz2, and Julian Loss2(B)

1 Inria, ENS, CNRS, PSL, Paris, France
georg.fuchsbauer@ens.fr

2 Ruhr University Bochum, Bochum, Germany
{eike.kiltz,julian.loss}@rub.de

Abstract. One of the most important and successful tools for assess-
ing hardness assumptions in cryptography is the Generic Group Model
(GGM). Over the past two decades, numerous assumptions and proto-
cols have been analyzed within this model. While a proof in the GGM
can certainly provide some measure of confidence in an assumption, its
scope is rather limited since it does not capture group-specific algorithms
that make use of the representation of the group.

To overcome this limitation, we propose the Algebraic Group Model
(AGM), a model that lies in between the Standard Model and the GGM.
It is the first restricted model of computation covering group-specific
algorithms yet allowing to derive simple and meaningful security state-
ments. To prove its usefulness, we show that several important assump-
tions, among them the Computational Diffie-Hellman, the Strong Diffie-
Hellman, and the interactive LRSW assumptions, are equivalent to the
Discrete Logarithm (DLog) assumption in the AGM. On the more prac-
tical side, we prove tight security reductions for two important schemes
in the AGM to DLog or a variant thereof: the BLS signature scheme
and Groth’s zero-knowledge SNARK (EUROCRYPT 2016), which is the
most efficient SNARK for which only a proof in the GGM was known.
Our proofs are quite simple and therefore less prone to subtle errors than
those in the GGM.

Moreover, in combination with known lower bounds on the Discrete
Logarithm assumption in the GGM, our results can be used to derive
lower bounds for all the above-mentioned results in the GGM.

Keywords: Algebraic algorithms · Generic group model
Security reductions · Cryptographic assumptions

1 Introduction

Starting with Nechaev [Nec94] and Shoup [Sho97], much work has been devoted
to studying the computational complexity of problems with respect to generic
group algorithms over cyclic groups [BL96,MW98,Mau05]. At the highest level,
generic group algorithms are algorithms that do not exploit any special structure
c© International Association for Cryptologic Research 2018
H. Shacham and A. Boldyreva (Eds.): CRYPTO 2018, LNCS 10992, pp. 33–62, 2018.
https://doi.org/10.1007/978-3-319-96881-0_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96881-0_2&domain=pdf

34 G. Fuchsbauer et al.

of the representation of the group elements and can thus be applied in any
cyclic group. More concretely, a generic algorithm may use only the abstract
group operation and test whether two group elements are equal. This property
makes it possible to prove information-theoretic lower bounds on the running
time for generic algorithms. Such lower bounds are of great interest since for
many important groups, in particular for elliptic curves, no helpful exploitation
of the representation is currently known.

The class of generic algorithms encompasses many important algorithms such
as the baby-step giant-step algorithm and its generalization for composite-order
groups (also known as Pohlig-Hellman algorithm [HP78]) as well as Pollard’s rho
algorithm [Pol78]. However, part of the common criticism against the generic
group model is that many algorithms of practical interest are in fact not generic.
Perhaps most notably, index-calculus and some factoring attacks fall outside the
family of generic algorithms, as they are applicable only over groups in which
the elements are represented as integers.

Another example is the “trivial” discrete logarithm algorithm over the addi-
tive group Zp, which is the identity function.

With this motivation in mind, a number of previous works considered
extensions of the generic group model [Riv04,LR06,AM09,JR10]. Jager and
Rupp [JR10] considered assumptions over groups equipped with a bilinear map
e : G1 × G2 −→ G3, where G1 and G2 are modeled as generic groups, and G3 is
modeled in the Standard Model. (This is motivated by the fact that in all prac-
tical bilinear groups, G1 and G2 are elliptic curves whereas G3 is a sub-group
of a finite field). However, none of these models so far capture algorithms that
can freely exploit the representation of the group. In this work, we propose a
restricted model of computation which does exactly this.

1.1 Algebraic Algorithms

Let G be a cyclic group of prime order p. Informally, we call an algorithm Aalg

algebraic if it fulfills the following requirement: whenever Aalg outputs a group
element Z ∈ G, it also outputs a “representation” �z = (z1, . . . , zt) ∈ Z

t
p such

that Z =
∏

i L
zi
i , where �L = (L1, . . . ,Lt) is the list of all group elements that

were given to Aalg during its execution so far.
Such algebraic algorithms were first considered by Boneh and Venkatesan

[BV98] in the context of straight-line programs computing polynomials over the
ring of integers Zn, where n = pq. Later, Paillier and Vergnaud [PV05] gave a
more formal and general definition of algebraic algorithms using the notion of
an extractor algorithm which efficiently computes the representation �z.

In our formalization of algebraic algorithms, we distinguish group elements
from all other parameters at a syntactical level, that is, other parameters must
not depend on any group elements. This is to rule out pathological exploits of
the model, see below.

Algebraic Group Model 35

While this class of algebraic algorithms certainly captures a much broader
class of algorithms than the class of generic algorithms (e.g., index-calculus algo-
rithms), it was first noted in [PV05] that the class of algebraic algorithms actually
includes the class of generic algorithms.

Algebraic algorithms have mostly been studied so far in the context of prov-
ing impossibility results [BV98,Cor02,PV05,BMV08,GBL08,AGO11,KMP16],
i.e., to disprove the existence of an algebraic security reduction between two
cryptographic primitives (with certain good parameters). Only quite recently,
a small number of works have considered the idea of proving statements with
respect to algebraic adversaries [ABM15,BFW16].

1.2 Algebraic Group Model

We propose the algebraic group model (AGM) — a computational model in which
all adversaries are modeled as algebraic. In contrast to the GGM, the AGM does
not allow for proving information-theoretic lower bounds on the complexity of
an algebraic adversary. Similar to the Standard Model, in the AGM one proves
security implications via reductions. Specifically, H ⇒alg G for two primitives H
and G means that every algebraic adversary Aalg against G can be transformed
into an algebraic adversary Balg against H with (polynomially) related running
times and success probabilities. It follows that if H is secure against algebraic
adversaries, so is G. While algebraic adversaries have been considered before (see
above), to the best of our knowledge, our work is the first to provide a clean and
formal framework for security proofs with respect to algebraic adversaries. We
elaborate further on our model below.
Concrete Security Implications in the AGM. Indeed, one can exploit
the algebraic nature of an adversary in the AGM to obtain stronger security
implications than in the Standard Model. The first trivial observation is that
the classical knowledge of exponent assumption1 [Dam92] holds by definition in
the AGM.

We are able to show that several important computational assumptions are
in fact equivalent to the Discrete Logarithm assumption over prime-order groups
in the AGM, including the following:

– Diffie-Hellman assumption [DH76]
– (Interactive) strong Diffie-Hellman assumption [ABR01]
– (Interactive) LRSW assumption [LRSW99,CL04].

The significance of the Strong Diffie-Hellman Assumption comes from its equiv-
alence to the IND-CCA security of Hashed ElGamal encryption (also known
as Diffie-Hellman Integrated Encryption Standard) in the random oracle model
[ABR01]. The LSRW assumption (named its authors [LRSW99]) is of impor-
tance since it is equivalent to the (UF-CMA) security of Camenisch-Lysyanskaya
1 The knowledge of exponent assumption states that for every algorithm A that, given

g and X = gx, outputs (A,B) with B = Ax, there exists an extractor algorithms
that, given the same input, outputs a satisfying (A,B) = (ga,Xa).

36 G. Fuchsbauer et al.

(CL) signatures [CL04]. CL signatures are a central building block for anony-
mous credentials [CL04,BCL04,BCS05], group signatures [CL04,ACHdM05], e-
cash [CHL05], unclonable functions [CHK+06], batch verification [CHP07], and
RFID encryption [ACdM05]. Via our results, the security of all these schemes is
implied by the discrete logarithm assumption in the AGM.

Our result can be interpreted as follows. Every algorithm attacking one of the
above-mentioned problems and schemes must solve the standard discrete loga-
rithm problem directly, unless the algorithm relies on inherently non-algebraic
operations. In particular, powerful techniques such as the index-calculus algo-
rithms do not help in solving these problems any better then they do for solving
the discrete logarithm problem directly.

Moreover, we show the tight equivalence of the security of the following
schemes to the underlying hardness assumptions in the AGM:
– IND-CCA1 (aka lunchtime) security of the standard ElGamal Encryption to a

parametrized variant of Decisional Diffie-Hellman assumption where in addi-
tion to gx, gy the adversary receives gx2

, . . . , gxq

, where q is the maximal
number of decryption queries.

– The UF-CMA security of the BLS signature scheme [BLS04] to the discrete
logarithm problem in the random oracle model. Previous reductions non-
tightly reduced from the CDH problem, with a tightness loss linear in the
number of signing queries. This loss is known to be inherent [Cor02,KK12],
even in the random oracle model.

– The security of the so far most efficient zero-knowledge SNARK scheme by
Groth [Gro16] to a parametrized variant of the discrete logarithm problem,
where in addition to gx the adversary receives gx2

, . . . , gx2n−1
, where n is the

degree of the quadratic arithmetic programs. The only previous proof of the
security of this scheme is in the generic group model.

Relation to the Generic Group Model. The AGM is stronger (in the
sense that it puts more restrictions on the attackers) than the Standard Model,
but weaker than the GGMl. In spite of this, all of our reductions are purely
generic algorithms. As mentioned above, any generic algorithm can be modeled
within the AGM. In particular, combining arbitrary generic operations with alge-
braic ones will yield an algebraic algorithm. This suggests the following idea. Let
H and G be two computational problems and let Aalg be an algebraic algorithm
that solves problem G. If we can convert Aalg by means of a generic reduction
algorithm Rgen into an algorithm Balg for problem H, then clearly, Balg is also
an algebraic algorithm. However, we obtain an even stronger statement for free:
Namely, if Agen is a generic algorithm solving G, then Bgen is a generic algorithm
solving H. This means that results in the AGM directly carry over to the GGM.

For this reason, we believe that our model offers an alternative, perhaps
simpler method of proving the hardness of computational problems within the
GGM. This applies in particular to interactive assumptions, which can be rather
difficult to analyze in the GGM. For example, we prove that the discrete log-
arithm assumption implies the LRSW assumption in the AGM. As the dis-
crete logarithm assumption holds in the GGM, we instantly obtain that the

Algebraic Group Model 37

LRSW assumption holds in the GGM. The first (rigorous) proof of the LRSW
assumption within the GGM was presented in the work of [BFF+14] (the original
work [LRSW99] provided only a proof sketch), but was derived from a more gen-
eral theorem and proven using an automated proof verification tool. We hope
that our proof can offer some additional insight over the proof of [BFF+14].
Another example is our tight equivalence of the IND-CCA1 security of ElGamal
and our parametrized variant of the Decisional Diffie-Hellman (DDH) assump-
tion in the algebraic group model. Together with the known generic

√
p/q attack

on ElGamal [BG04] for certain primes p (see also [Che06]), our result proves the
tight generic bound Θ̃(

√
p/q) on the complexity of breaking IND-CCA1 security

of ElGamal in the GGM.
We also remark that proofs in the AGM have an inherently different inter-

pretation than proofs in the GGM. To analyze the hardness of an assumption
in the GGM, one must explicitly augment the model by any functionality that
is offered by the structure of the group. As a simple example, let us consider a
group G which is equipped with a symmetric bilinear map e : G × G −→ GT .
The bilinear map can be modeled in the GGM via an oracle. However, it is
not clear whether e can be used to gather even further information about the
elements of G. Though it is widely believed that this is not the case, a proof in
the GGM provides no answer to this question, because the GGM itself is based
on the conjecture that e does not offer any functionality beyond a bilinear map.
In contrast, the AGM captures any such exploit without the need of having to
model it explicitly and considers the relation between two problems instead of
their individual hardness. This means that if one can reduce H to G in the AGM
and H is conjectured to remain hard with respect to algebraic algorithms, even
when given e, then also G remains hard. No similar statement can be inferred
in the GGM. Thus, the AGM allows for a more fine grained assessment of the
hardness of computational problems than the GGM.

The gap between the two models becomes even more apparent if one considers
structural properties of G which cannot be meaningfully modeled as an oracle
in the GGM. As an example, consider the Jacobi symbol, which was shown to
be generically hard to compute in [JS09]. Indeed, it was left as an open problem
in [AM09] to re-examine the equivalence of factoring and breaking the RSA
assumption if an additional oracle for the Jacobi symbol were given. Though
their results are stated in the generic ring model rather than the GGM, it seems
they are similarly confronted with the issue of explicitly modeling such an oracle.

Limitations of the AGM. As already noted, one of the main benefits of
our model over the GGM is the ability to reason about algorithms that arbi-
trarily exploit the structure of the group. So which algorithms are not covered
in this manner? Obviously, outputting an obliviously sampled group element
(with unknown representation) is forbidden. This coincides with the GGM of
Maurer [Mau05] and which also excludes the possibility of obliviously sampling
a random group element. For this reason, our model is strictly weaker than the
one from [Mau05] in the sense that any security reduction derived in Maurer’s
GGM also holds in the AGM. In contrast, the GGM defined by Shoup [Sho97]

38 G. Fuchsbauer et al.

does allow for such a sampling process. Similar to Maurer’s GGM, we can allow
obliviously sampling a random group element X through an additional oracle
O() that can be called during the execution of Aalg. By definition, the outputs of
O() are added to the list �L. We have thus argued that both versions of the GGM
(i.e., the ones by Maurer and Shoup) are strictly stronger than the AGM. Also
note that simulating O() to Aalg as part of a reduction is straight-forward and
always possible; the reduction simply samples r and returns gr to the adversary.
As the reduction knows r, adding O() to an experiment does not change it and
is completely without loss of generality. From a practical point of view, it seems
that generating and outputting a random group element without knowing a rep-
resentation is generally not of much help. We therefore believe that the AGM
captures most algorithms of practical interest.

1.3 Related Work and Open Questions

We have already mentioned the semi generic group model (SGGM) [JR10] as
related work, but we discuss here some key differences of their model to ours in
more detail. First, the SGGM is a very restrictive model in the sense that the
class of problems it captures is limited. The main theorem of [JR10] (Theorem 3)
holds only for pairing-based computational problems in which the output consists
of a single element in either one of the base groups. In contrast, the AGM does
not require a pairing group setting and thus applies to a much broader class
of computational problems. Second, by extending the AGM to pairing groups,
we are able to model all three groups as algebraic and reason again about a
broader class of problems, in which the output can also consist of elements
in the target group. To extend the AGM to the pairing setting, we allow the
algebraic adversary to compute any element in the target group by applying the
pairing to elements in the respective base groups.

Dent [Den02] shows that the generic group model as proposed Shoup [Sho97]
inherits the known weaknesses in the random oracle model [CGH98]. Thus, there
exist schemes which can be proven secure in Shoup’s GGM, but are pathologi-
cally insecure when viewed in the standard model. An interesting open question is
whether the AGM bears similar weaknesses. A promising line of research related
to this question has recently been initiated by Bitansky et al. [BCPR16]. Namely,
they show that indistinguishability obfuscation (iO) implies the existence of non-
extractable one-way functions. If these non-extractable one-way functions were
furthermore algebraic (such as the knowledge of exponent assumption [Dam92]),
then this would invalidate the AGM (under the assumption that iO exists).

Another promising direction for future research is to prove further reductions
between common computational assumptions in the AGM. In particular, it would
be interesting to classify different such assumptions within the AGM, for example
along the lines of work [SS01,Kil01,Boy08,JR15,CM14,MRV16,GG17].

We leave it as an open problem to come up with a meaningful formalization of
the AGM for decisional assumptions. At a technical level, the main difficulty in
this task arises from the fact that an algorithm, i.e., distinguisher, in a decisional
problem is asked to output a bit rather than a group element. Therefore, such an

Algebraic Group Model 39

algorithm is trivially considered algebraic in our framework. It would therefore
be interesting to develop a model which captures the algebraic properties of such
algorithms in more detail.

A further potential for follow-up work would be to investigate whether it is
possible to automate proofs in the AGM. Indeed, for the case of the GGM this
has been considered in [BFF+14,ABS16] and it would be interesting to see if
similar automated tools can be derived for the AGM.

Finally, we remark that all of our results require prime-order groups and do
not yet extend to the setting of pairing groups. When generalizing our results to
composite-order groups, we expect to encounter the following technical difficulty:
Given, e.g., an equation of the form ax ≡n b, where n is composite, there might
be (exponentially) many solutions for the unknown x in case gcd(a, n) > 1. This
interferes with the proof strategies presented in this work and requires a more
involved analysis. In fact, proving a reduction from the discrete logarithm prob-
lem to the CDH problem in the AGM for group orders containing multiple prime
factors (e.g., n = p2) is excluded by [MW98]. Hardness bounds in the GGM
for composite-order groups have been considered in [Sho97,MW98,Mau05].
Generalizing the GGM to pairing groups has been the subject, e.g., of the works
of [Boy08,KSW08,RLB+08]. Extending the AGM to either one of these regimes
is an interesting line of research for future work.

2 Algebraic Algorithms

Algorithms. We denote by s $← S the uniform sampling of the variable s from
the (finite) set S. All our algorithms are probabilistic (unless stated otherwise)
and written in uppercase letters A,B. To indicate that algorithm A runs on
some inputs (x1, . . . , xn) and returns y, we write y $← A(x1, . . . , xn). If A has
access to an algorithm B (via oracle access) during its execution, we write y $←
AB(x1, . . . , xn).

Security games. We use a variant of (code-based) security games [BR04,
Sho04]. In game Gpar (defined relative to a set of parameters par), an adversary
A interacts with a challenger that answers oracle queries issued by A. It has
a main procedure and (possibly zero) oracle procedures which describe how
oracle queries are answered. We denote the output of a game Gpar between a
challenger and an adversary A via GA

par. A is said to win if GA
par = 1. We define

the advantage of A in Gpar as AdvG
par,A := Pr

[
GA

par = 1
]

and the running time
of GA

par as TimeG
par,A.

40 G. Fuchsbauer et al.

Fig. 1. Left: Algebraic game cdh relative to group description G = (G, g, p) and
adversary A. All group elements are written in bold, uppercase letters. Right: Algebraic
game cdh relative to group description G = (G, g, p) and algebraic adversary Aalg. The
algebraic adversary Aalg additionally returns a representation �z = (a, b, c) of Z such
that Z = gaXbYc.

Security Reductions. Let G,H be security games. We write Hpar
(Δε,Δt)=⇒ Gpar

if there exists an algorithm R (called (Δε,Δt)-reduction) such that for all algo-
rithms A, algorithm B defined as B := RA satisfies

AdvH
par,B ≥ 1

Δε
· AdvG

par,A, TimeH
par,B ≤ Δt · TimeG

par,A.

2.1 Algebraic Security Games and Algorithms

We consider algebraic security games GG for which we set par to a fixed group
description G = (G, g, p), where G is a cyclic group of prime order p generated
by g. In algebraic security games, we syntactically distinguish between elements
of group G (written in bold, uppercase letters, e.g., A) and all other elements,
which must not depend on any group elements. As an example of an algebraic
security game, consider the Computational Diffie-Hellman game cdhA

G , depicted
in Fig. 1 (left).

We now define algebraic algorithms. Intuitively, the only way for an algebraic
algorithm to output a new group element Z is to derive it via group multiplica-
tions from known group elements.

Definition 1. (Algebraic algorithm) An algorithm Aalg executed in an algebraic
game GG is called algebraic if for all group elements Z that Aalg outputs (i.e.,
the elements in bold uppercase letters), it additionally provides the representation
of Z relative to all previously received group elements. That is, if �L is the list of
group elements L0, . . . ,Lm ∈ G that Aalg has received so far (w.l.o.g. L0 = g),
then Aalg must also provide a vector �z such that Z =

∏
i L

zi
i . We denote such an

output as [Z]�z.

Remarks on Our Model. Algebraic algorithms were first considered in
[BV98,PV05], where they are defined using an additional extractor algorithm
which computes for an output group element a representation in basis �L. We
believe that our definition gives a simpler and cleaner definition of algebraic
algorithms. If one assumes that the extractor algorithm has constant running
time, then our definition is easily seen to be equivalent to theirs. Indeed, this

Algebraic Group Model 41

view makes sense for algorithms in the GGM since the representation �z trivially
follows from the description of the algorithm. However, if running the extractor
algorithm imposes some additional cost, then this will clearly affect the running
times of our reductions. If the cost of the extractor is similar to that of the solver
adversary, then reductions in our model that neither call an algebraic solver mul-
tiple times nor receive from it a non-constant amount of group elements (along
with their representations) will remain largely the same in both models.

For the inputs to algebraic adversaries we syntactically distinguish group ele-
ments from other inputs and require that the latter not depend on any group
elements. This is necessary to rule out pathological cases in which an algorithm
receives “disguised” group elements and is forced to output an algebraic repre-
sentation of them (which it might not know). To illustrate the issue, consider an
efficient algorithm A, which on input X ′ := X‖⊥ returns X, where X is a group
element, but X ′ is not. If A is algebraic then it must return a representation of
X in g (the only group element previously seen), which would be the discrete
logarithm of X.

Allowing inputs of form X ′ while requiring algorithms to be algebraic leads
to contradictions. (E.g., one could use Aalg to compute discrete logarithms: given
a challenge X = gx, run [X]x $← Aalg(X‖⊥) and return x.) We therefore demand
that non-group-element inputs must not depend on group elements. (Note that
if Aalg’s input contains X explicitly then it can output [X](0,1) with a valid
representation of X relative to �L = (g,X).)

Finally, we slightly abuse notation and let an algebraic algorithm also rep-
resent output group elements as combinations of previous outputs. This makes
some of our proofs easier and is justified since all previous outputs must them-
selves have been given along with an according representation. Therefore, one
can always recompute a representation that depends only on the initial inputs
to the algebraic algorithm.

Integrating with Random Oracles in the AGM. As mentioned above,
an algorithm A that samples (and outputs) a group element X obliviously, i.e.,
without knowing its representation, is not algebraic. This appears to be problem-
atic if one wishes to combine the AGM with the Random Oracle Model [BR93].
However, group elements output by the random oracle are included by definition
in the list �L. This means that for any such element, a representation is trivially
available to Aalg.

2.2 Generic Security Games and Algorithms

Generic algorithms Agen are only allowed to use generic properties of group G.
Informally, an algorithm is generic if it works regardless of what group it is run in.
This is usually modeled by giving an algorithm indirect access to group elements
via abstract handles. It is straight-forward to translate all of our algebraic games
into games that are syntactically compatible with generic algorithms accessing
group elements only via abstract handles.

42 G. Fuchsbauer et al.

We say that winning algebraic game GG is (ε, t)-hard in the generic group
model if for every generic algorithm Agen it holds that

TimeG
G,Agen

≤ t =⇒ AdvG
G,Agen

≤ ε.

We remark that usually in the generic group model one considers group oper-
ations (i.e., oracle calls) instead of the running time. In our context it is more
convenient to measure the running time instead, assuming every oracle call takes
one unit time.

As an important example, consider the algebraic Discrete Logarithm Game
dlogG in Fig. 2 which is

(
t2/p, t

)
-hard in the generic group model [Sho97,Mau05].

We assume that a generic algorithm Agen additionally provides the repre-
sentation of Z relative to all previously received group elements, for all group
elements Z that it outputs. This assumption is w.l.o.g. since a generic algorithm
can only obtain new group elements by multiplying two known group elements;
hence it always knows a valid representation. This way, every generic algorithm
is also an algebraic algorithm.

Furthermore, if Bgen is a generic algorithm and Aalg is an algebraic algorithm,
then Balg := B

Aalg
gen is also is an algebraic algorithm. We refer to [Mau05] for more

on generic algorithms.

2.3 Generic Reductions Between Algebraic Security Games

Let GG and HG be two algebraic security games. We write HG (Δε,Δt)=⇒alg GG if there
exists a generic algorithm Rgen (called generic (Δε,Δt)-reduction) such that for
every algebraic algorithm Aalg, algorithm Balg defined as Balg := R

Aalg
gen satisfies

AdvH
G,Balg

≥ 1
Δε

· AdvG
G,Aalg

, TimeH
G,Balg

≤ Δt · TimeG
G,Aalg

.

Note that we deliberately require reduction Rgen to be generic. Hence, if Aalg

is algebraic, then Balg := R
Aalg
gen is algebraic; if Aalg is generic, then Balg := R

Aalg
gen

is generic. If one is only interested in algebraic adversaries, then it suffices to
require reduction Rgen to be algebraic. But in that case one can no longer infer
that Balg := R

Aalg
gen is generic in case Aalg is generic.

Composing information-theoretic lower bounds with reductions in
the AGM. The following lemma explains how statements in the AGM carry
over to the GGM.

Lemma 1. Let GG and HG be algebraic security games such that HG (Δε,Δt)=⇒alg GG
and winning HG is (ε, t)-hard in the GGM. Then, GG is (ε · Δε, t/Δt)-hard in
the GGM.

Proof. Let Agen be a generic algorithm playing in game GG . Then by our premise
there exists a generic algorithm Balg = R

Aalg
gen such that

AdvH
G,Balg

≥ 1
Δε

· AdvG
G,Aalg

, TimeH
G,Balg

≤ Δt · TimeG
G,Aalg

.

Algebraic Group Model 43

Fig. 2. Discrete Logarithm Game dlog, Square Diffie-Hellman Game sq-dh, and Lin-
ear Combination Diffie-Hellman Game lc-dh relative to group G and adversary A.

Assume TimeG
G,Aalg

≤ t/Δt; then TimeH
G,Balg

≤ Δt ·TimeG
G,Aalg

≤ t. Since winning
HG is (ε, t)-hard in the GGM, it follows that

ε ≥ AdvH
G,Balg

≥ 1
Δε

· AdvG
G,Aalg

and thus ε · Δε ≥ AdvG
G,Aalg

, which proves that GG is (εΔε, t/Δt)-hard in the
GGM. ��

3 The Diffie-Hellman Assumption and Variants

In this section we consider some variants of the standard Diffie-Hellman assump-
tion [DH76] and prove them to be equivalent to the discrete logarithm assump-
tion (defined via algebraic game dlogG of Fig. 2) in the Algebraic Group Model.

3.1 Computational Diffie-Hellman

Consider the Square Diffie-Hellman Assumption [MW99] described in algebraic
game sq-dhG and the Linear Combination Diffie-Hellman Assumption described
in algebraic game lc-dhG (both in Fig. 2), which will be convenient for the proof
of Theorem 2.

As a warm-up we now prove that the Discrete Logarithm assumption is
tightly equivalent to the Diffie-Hellman, the Square Diffie-Hellman, and the Lin-
ear Combination Diffie-Hellman Assumption in the Algebraic Group Model. The
equivalence of the Square Diffie-Hellman and Diffie-Hellman problems was pre-
viously proven in [MW99,BDZ03].

Theorem 1. dlogG
(1,1)
=⇒alg

{
cdhG , sq-dhG

}
and dlogG

(3,1)
=⇒alg lc-dhG .

Proof. Let Aalg be an algebraic adversary executed in game sq-dhG ; cf. Fig. 3.
As Aalg is an algebraic adversary, it returns a solution Z together with a

representation (a, b) ∈ Z
2
p such that

Z = gx2
= ga(gx)b. (1)

44 G. Fuchsbauer et al.

Fig. 3. Algebraic adversary Aalg playing in sq-dhG .

We now show how to construct a generic reduction Rgen that calls Aalg exactly
once such that for Balg := R

Aalg
gen we have

Advdlog
G,Balg

= Advsq-dh
G,Aalg

.

Rgen works as follows. On input a discrete logarithm instance X, it runs Aalg on X.
Suppose Aalg is successful. Equation (1) is equivalent to the quadratic equation
x2 − bx − a ≡p 0 with at most two solutions in x. (In general such equations are
not guaranteed to have a solution but since the representation is valid and Aalg

is assumed to be correct, there exists at least one solution for x.) Rgen can test
which one (out of the two) is the correct solution x by testing against X = gx.
Moreover, it is easy to see that Rgen only performs generic group operations and
is therefore generic. Hence, Balg := R

Aalg
gen is algebraic, which proves

dlogG
(1,1)
=⇒alg sq-dhG .

The statement dlogG
(1,1)
=⇒alg cdhG follows, since given an adversary against

cdhG (see Fig. 1), we can easily construct an adversary against sq-dhG that runs
in the same time and has the same probability of success (given X = gx, sample
r $← Zp, run the cdh adversary on (X,Xr), obtain Z and return Z

1
r).

It remains to show that sq-dhG
(3,1)
=⇒alg lc-dhG . Given an algebraic solver Calg

executed in game lc-dhG , we construct an adversary Aalg against sq-dhG as fol-
lows: On input X = gx, Aalg samples r $← Zp and computes either (X, gr),
(gr,X), or (X,Xr) each with probability 1/3. Note that this instance is cor-
rectly distributed. It then runs Calg on the resulting tuple (X1,X2) and receives
(Z, u, v, w) together with (a, b, c) s.t. Z = gaXb

1X
c
2. If u = 0, then the choice

X1 = X, X2 = gr yields Z = gux2+vxr+wr2
, from which gx2

can be computed
as gx2

= (ZX−vrg−wr2
)

1
u . Clearly, Aalg is able to compute an algebraic repre-

sentation of gx2
from the values (a, b, c) and thus is algebraic itself. The cases

v = 0, w = 0 follow in a similar fashion. ��
Corollary 1. cdhG and sq-dhG are

(
t2/p, t

)
-hard in the generic group model

and lc-dhG is
(
3t2/p, t

)
-hard in the generic group model.

For the subsequent sections and proofs, we will not make explicit the reduc-
tion algorithm Rgen every time (as done above).

Algebraic Group Model 45

3.2 Strong Diffie-Hellman

Consider the Strong Diffie-Hellman Assumption [ABR01] described via game
sdhG in Fig. 4. We now prove that the Discrete Logarithm Assumption (non-
tightly) implies the Strong Diffie-Hellman Assumption in the Algebraic Group
Model. We briefly present the main ideas of the proof. The full proof of The-
orem 2 can be found in the full version of our paper [FKL17]. Let Aalg be an
algebraic adversary playing in sdhG and let Z = gz denote the Discrete Loga-
rithm challenge. We show an adversary Balg against dlogG that simulates sdhG
to Aalg. Balg appropriately answers Aalg’s queries to the oracle O(·, ·) by using the
algebraic representation of the queried elements provided by Aalg. Namely, when
(Y′,Z′) is asked to the oracle, Balg obtains vectors�b,�c such that Y′ = gb1Xb2Yb3

and Z′ = gc1Xc2Yc3 . As long as b2 = b3 = 0, Balg can answer all of Aalg’s queries
by checking whether Xb1 = Z′. On the other hand, if b2 = 0 or b3 = 0, then
Balg simply returns 0. Informally, the simulation will be perfect unless Aalg man-
ages to compute a valid solution to lc-dhG . All of these games can be efficiently
simulated by Balg, as we have shown in the previous section.

Fig. 4. Strong Diffie-Hellman Game sdh relative to G and adversary A.

Theorem 2. dlogG
(4q,1)
=⇒alg sdhG , where q is the maximum number of queries

to oracle O(·, ·) in sdhG.

Corollary 2. sdhG is
(

t2

4pq , t
)
-hard in the generic group model.

4 The LRSW Assumption

The interactive LRSW assumption [LRSW99,CL04] is defined via the algebraic
security game lrsw in Fig. 5.

We prove that the LRSW assumption is (non-tightly) implied by the Discrete
Logarithm Assumption in the Algebraic Group Model. We give a high-level
sketch of the main ideas here; the full proof of Theorem 3 can be found in
the full version of our paper [FKL17]. Let Aalg be an algebraic adversary playing
in lrswG and let Z = gz denote the Discrete Logarithm challenge. We construct
an adversary Balg against dlogG , which simulate lrswG to Aalg by embedding the
value of z in one of three possible ways. Namely, it either sets X := Z or Y := Z,
or it chooses a random the query by Aalg to the oracle O(·) in lrswG to embed the

46 G. Fuchsbauer et al.

Fig. 5. Game lrsw relative to G and adversary A.

value of z. These behaviours correspond in our proof to the adversaries Calg,Dalg,
and Ealg, respectively. After obtaining a solution (m∗, [A∗]�a, [B∗]�b, [C

∗]�c) on a
fresh value m∗ = 0 from Aalg, the adversaries use the algebraic representations
�a,�b,�c obtained from Aalg to suitably rewrite the values of A∗,C∗. They then
make use of the relation (A∗)(xm∗y+x) = C∗ to obtain an equation mod p,
which in turn gives z.

Theorem 3. dlogG
(6q,1)
=⇒alg lrswG , where q ≥ 6 is the maximum number of

queries to O(·) in lrswG .

Corollary 3. lrswG is
(
t, t2

6pq

)
-hard in the generic group model.

5 ElGamal Encryption

In this section we prove that the IND-CCA1 (aka. lunchtime security) of the
ElGamal encryption scheme (in its abstraction as a KEM) is implied by a
parametrized (“q-type”) variant of the Decision Diffie-Hellman Assumption in
the Algebraic Group Model.

Advantage for decisional algebraic security games. We parameterize
a decisional algebraic game G (such as the game in Fig. 7) with a parameter bit
b. We define the advantage of adversary A in G as

AdvG
par,A :=

∣
∣ Pr

[
GA

par,0 = 1
] − Pr

[
GA

par,1 = 1
]∣
∣.

We define TimeG
par,Aalg

independently of the parameter bit b, i.e., we consider
only adversaries that have the same running time in both games Gpar,0,Gpar,1.
In order to cover games that define the security of schemes (rather than
assumptions), instead of par = G, we only require that G be included in
par. Let Gpar,Hpar be decisional algebraic security games. As before, we
write Hpar

(Δε,Δt)=⇒ alg Gpar if there exists a generic algorithm Rgen (called generic

(Δε,Δt)-reduction) such that for algebraic algorithm Balg defined as Balg := R
Aalg
gen ,

we have

AdvH
par,Balg

≥ 1
Δε

· AdvG
par,Aalg

, TimeH
par,Balg

≤ Δt · TimeG
par,Aalg

.

Algebraic Group Model 47

Fig. 6. IND-CCA1 Game ind-cca1 relative to KEM KEM = (Gen,Enc,Dec), parame-
ters par, and adversary A.

Key Encapsulation Mechanisms. A key encapsulation mechanism (KEM for
short) KEM = (Gen,Enc,Dec) is a triple of algorithms together with a symmetric-
key space K. The randomized key generation algorithm Gen takes as input a set of
parameters, par, and outputs a public/secret key pair (pk, sk). The encapsulation
algorithm Enc takes as input a public key pk and outputs a key/ciphertext pair
(K,C) such that K $← K. The deterministic decapsulation algorithm Dec takes
as input a secret key sk and a ciphertext C and outputs a key K ∈ K or a special
symbol ⊥ if C is invalid. We require that KEM be correct : For all possible pairs
(K,C) output by Enc(pk), we have Dec(sk, C) = K. We formalize IND-CCA1
security of a KEM via the games (for b = 0, 1) depicted in Fig. 6.

In the following, we consider the ElGamal KEM EG defined in Fig. 8. We also
consider a stronger variant of the well-known Decisional Diffie-Hellman (DDH)
assumption that is parametrized by an integer q. In the q-DDH game, defined
in Fig. 7, the adversary receives, in addition to (gx, gy), the values gx2

, . . . , gxq

.

Lemma 2. [Che06] For q < p1/3, q-ddhG is
(

t2q
p log p , t

)
-hard in the generic group

model.

The proof of the following theorem can be found in the full version of our
paper [FKL17]. In the proof, we condisder the algebraic games depicted in Fig. 9.

Theorem 4. ind-cca1EG,G
(1,1)⇐⇒alg q-ddhG , where q − 1 is the maximal number

of queries to Dec(·) in ind-cca1EG,G .

Corollary 4. For q < p1/3, ind-cca1EG,G is (t2q
p log p , t)-hard in the generic group

model, where q − 1 is the maximal number of queries to Dec(·) in ind-cca1EG,G .

6 Tight Reduction for the BLS Scheme

For this section, we introduce the notion of groups G equipped with a symmetric,
(non-degenerate) bilinear map e : G×G → GT , where GT denotes the so-called
target group. We now set G = (p,G,GT , g, e) (Fig. 9).

Signature Schemes. A signature scheme SIG = (SIGGen,SIGSig,SIGVer) is a
triple of algorithms. The randomized key generation algorithm SIGGen takes as
input a set of parameters, par, and outputs a public/secret key pair (pk, sk). The
randomized signing algorithm SIGSig takes as input a secret key sk and a message

48 G. Fuchsbauer et al.

Fig. 7. q-Decisional Diffie-Hellman Game q-ddh relative to G and adversary A.

Fig. 8. ElGamal KEM EG = (Gen,Enc,Dec)

Fig. 9. Games ind-cca1A
EG,G,0 and ind-cca1A

EG,G,1 with algebraic adversary Aalg. The

boxed statement is only executed in ind-cca1A
EG,G,1.

m in the message space M and outputs a signature σ in the signature space S.
The deterministic signature verification algorithm SIGVer takes as input a public
key pk, a message m, and a signature σ and outputs b ∈ {0, 1}. We require that
SIG be correct : For all possible pairs (pk, sk) output by SIGGen, and all mes-
sages m ∈ M, we have Pr[SIGVer(pk,m,SIGSig(m, sk)) = 1] = 1. We formalize
unforgeability under chosen message attacks for SIG via game uf -cmaSIG,par

depicted in Fig. 10.
In the following, we show how in the AGM with a random oracle, the secu-

rity of the BLS signature scheme [BLS04], depicted in Fig. 11, can be tightly
reduced to the discrete logarithm problem. Boneh, Lynn and Shacham [BLS04]
only prove a loose reduction to the CDH problem. In the AGM we manage to
improve the quality of the reduction, leveraging the fact that a forgery comes
with a representation in the basis of all previously answered random oracle and
signature queries. We embed a discrete logarithm challenge in either the secret
key or inside the random oracle queries–a choice that remains hidden from the
adversary. Depending on the adversary’s behavior we always solve the discrete
logarithm challenge in one of the cases.

Algebraic Group Model 49

Fig. 10. Game uf -cma defining (existential) unforgeability under chosen-message
attacks for signature scheme SIG, parameters par and adversary A.

Fig. 11. Boneh, Lynn and Shacham’s signature scheme BLSG . Here, H is a hash func-
tion that is modeled as a random oracle.

Theorem 5. dlogG
(4,1)
=⇒alg uf -cmaBLS,G in the random oracle model.

Proof. Let Aalg be an algebraic adversary playing in G := uf -cmaAalg

BLS,G , depicted
in Fig. 12.

As Aalg is an algebraic adversary, at the end of G, it returns a forgery Σ∗ on a
message m∗ ∈ Q together with a representation �a = (â, a′, ā1, ..., āq , ã1, ..., ãq) s.t.

Σ∗ = H(m∗)x = gâXa′
q∏

i=1

Hāi
i

q∏

i=1

Σãi
i . (2)

Here, the representation is split (from left to right) into powers of the generator
g, the public key X, all of the answers to hash queries Hi, i ∈ [q], and the
signatures Σi, i ∈ [q], returned by the signing oracle. In the following, we denote
the discrete logarithm of H(m∗) w.r.t. basis g as r∗ and for all i ∈ [q], we denote

Fig. 12. Game G = uf -cma
Aalg

BLS,G relative to adversary Aalg.

50 G. Fuchsbauer et al.

the discrete logarithm of H(mi) as ri. Equation (2) is thus equivalent to

xr∗ ≡p x(a′ + Σiriãi) + (â + Σiriāi). (3)

In the full version of our paper we show how to efficiently compute x from
Eq. (3). Again, the main idea is to perform a case distinction over the cases
where the coefficient of x is zero, or non-zero, respectively. ��
Corollary 5. uf -cmaBLS,G is

(
t, t2

4p

)
-hard in the generic group model with a

random oracle.

7 Groth’s Near-Optimal zk-SNARK

In order to cover notions such as knowledge soundness, which are defined via
games for two algorithms, we generalize the notion of algebraic games and reduc-
tions between them. We write GA,X

par to denote that A and X play in Gpar

and define the advantage AdvG
par,A,X := Pr[GA,X

par = 1] and the running time
TimeG

par,A,X as before. To capture definitions that require that for every A there
exists some X (which has black-box access to A) such that AdvG

par,A,X is small,
we define algebraic reductions for games Gpar of this type as follows.

We write Hpar
(Δε,Δt)=⇒ alg Gpar if there exist generic algorithms Rgen and Sgen

such that for all algebraic algorithms Aalg we have

AdvH
par,Balg

≥ 1
Δε

· AdvG
par,Aalg,Xalg

, TimeH
par,Balg

≤ Δt · TimeG
par,Aalg,Xalg

.

with Balg defined as Balg := R
Aalg
gen and Xalg defined as Xalg := S

Aalg
gen .

The q-discrete logarithm assumption. We define a parametrized (“q-
type”) variant of the DLog assumption via the algebraic security game q-dlog
in Fig. 13. We will show that Groth’s [Gro16] scheme, which is the most efficient
SNARK system to date, is secure under q-DLog in the algebraic group model.

Fig. 13. q-Discrete Logarithm Game q-dlog relative to G and adversary A.

Non-interactive zero-knowledge arguments of knowledge. Groth
[Gro16] considers proof systems for satisfiability of arithmetic circuits, which
consist of addition and multiplication gates over a finite field F. As a tool,
Gennaro et al. [GGPR13] show how to efficiently convert any arithmetic cir-
cuit into a quadratic arithmetic program (QAP) R, which is described by F,

Algebraic Group Model 51

integers � ≤ m and polynomials ui, vi, wi ∈ F[X], for 0 ≤ i ≤ m, and t ∈ F[X],
where the degrees of ui, vi, wi are less than the degree n of t. (The relation R
can also contain additional information aux.)

A QAP R defines the following binary relation of statements φ and wit-
nesses w, where we set a0 := 1:

R =

{
(φ, w)

∣∣∣∣ φ = (a1, . . . , a�) ∈ F
�, w = (a�+1, . . . , am) ∈ F

m−�(∑m
i=0 aiui(X)

)·(∑m
i=0 aivi(X)

) ≡ ∑m
i=0 aiwi(X) (mod t(X))

}

A non-interactive argument system for a class of relations R is a 3-tuple
SNK = (Setup,Prv,Vfy) of algorithms. Setup on input a relation R ∈ R out-
puts a common reference string crs; prover algorithm Prv on input crs and a
statement/witness pair (φ,w) ∈ R returns an argument π; Verification Vfy on
input crs, φ and π returns either 0 (reject) or 1 (accept). We require SNK to
be complete, i.e., for all crs output by Setup, all arguments for true statements
produced by Prv are accepted by Vfy.

Knowledge soundness requires that for every adversary A there exists an
extractor XA that extracts a witness from any valid argument output by A. We
write (y; z) $← (A ‖XA)(x) when A on input x outputs y and XA on the same
input (including A’s coins) returns z. Knowledge soundness is defined via game
knw-snd A,XA

SNK,R in Fig. 14.

Fig. 14. Left: Knowledge soundness game knw-snd relative to SNK = (Setup,
Prv,Vfy), adversary A and extractor XA. Right: Knowledge soundness game k-snd-aff
relative to NILP = (LinSetup,PrfMtrx,Test), extractor X and affine adversary A (right).

Zero-knowledge for SNK requires that arguments do not leak any information
besides the truth of the statement. It is formalized by demanding the existence of
a simulator which on input a trapdoor (which is an additional output of Setup)
and a true statement φ returns an argument which is indistinguishable from an
argument for φ output by Prv (see [Gro16] for a formal definition).

A (preprocessing) succinct argument of knowledge (SNARK) is a knowledge-
sound non-interactive argument system whose arguments are of size polynomial
in the security parameter and can be verified in polynomial time in the security
parameter and the length of the statement.

52 G. Fuchsbauer et al.

Non-interactive linear proofs of degree 2. NILPs (in Groth’s [Gro16]
terminology) are an abstraction of many SNARK constructions introduced by
Bitansky et al. [BCI+13]. We only consider NILPs of degree 2 here. Such a
system NILP is defined by three algorithms as follows. On input a quadratic
arithmetic program R, LinSetup returns �σ ∈ F

μ for some μ. On input R, φ and
w, algorithm PrfMtrx generates a matrix P ∈ F

κ×μ (where κ is the proof length).
And on input R and φ, Test returns matrices T1, . . . , Tη ∈ F

μ+κ. The last two
algorithms implicitly define a prover and a verification algorithm as follows:

◦ �π $← LinPrv(R,�σ, φ,w): run P $← PrfMtrx(R,φ,w); return �π := P�σ.
◦ b $← LinVfy(R,�σ, φ, �π): (T1, . . , Tη) $←Test(R,φ); return 1 iff for all 1 ≤ k ≤ η:

(�σ� |�π�)Tk (�σ� |�π�)� = 0. (4)

Let Tk =: (tk,i,j)1≤i,j,≤μ+κ; w.l.o.g. we assume that tk,i,j = 0 for all k and
i ∈ {μ + 1, . . . , μ + κ} and j ∈ {1, . . . , μ}.

We require a NILP to satisfy statistical knowledge soundness against affine
prover strategies, which requires the existence of an (efficient) extractor X that
works for all (unbounded) adversaries A. Whenever A returns a proof matrix P
which leads to a valid proof P�σ for a freshly sampled �σ, X can extract a witness
from P . The notion is defined via game k-snd-aff X,A

NILP,R in Fig. 14.

Non-interactive arguments from NILPs. From a NILP for a quadratic
arithmetic program over a finite field F = Zp for some prime p, one can construct
an argument system over a bilinear group G = (p,G, g, e). We thus consider QAP
relations R of the form

R =
(G,F = Zp, �,

{
ui(X), vi(X), wi(X)

}m

i=0
, t(X)

)
, (5)

and define the degree of R as the degree of n of t(X).

Fig. 15. Argument system (Setup,Prv,Vfy) from a NILP (LinSetup,PrfMtrx,Test).

Algebraic Group Model 53

The construction of SNK = (Setup,Prv,Vfy) from NILP = (LinSetup,PrfMtrx,
Test) is given in Fig. 15, where we write 〈�x〉 for (gx1 , . . . , gx|�x|). Setup first samples
a random group generator g and then embeds the NILP CRS “in the exponent”.
Using group operations, Prv computes LinPrv in the exponent, and using the
pairing, Vfy verifies LinVfy in the exponent.

Groth’s near-optimal SNARK for QAPs. Groth [Gro16] obtains his
SNARK system by constructing a NILP for QAPs and then applying the con-
version in Fig. 15. Recall that R, as in (5), defines a language of statements
φ = (a1, . . . , a�) ∈ F

� with witnesses of the form w = (a�+1, . . . , am) ∈ F
m−�

such that (with a0 := 1):
(∑m

i=0 aiui(X)
) · (∑m

i=0 aivi(X)
)

=
∑m

i=0 aiwi(X) + h(X)t(X) (6)

for some h(X) ∈ F[X] of degree at most n − 2. Groth’s NILP is given in Fig. 16.

Theorem 6 ([Gro16, Theorem 1]). The construction in Fig. 16 in a NILP
with perfect completeness, perfect zero-knowledge and statistical knowledge
soundness against affine prover strategies.

Groth embeds his NILP in asymmetric bilinear groups, which yields a more
efficient SNARK. He then shows that the scheme is knowledge-sound in the
generic group model for symmetric bilinear groups (which yields a stronger
result, as the adversary is more powerful than in asymmetric groups). Since
we aim at strengthening the security statement, we also consider the symmetric-
group variant (which is obtained by applying the transformation in Fig. 15). We
now show how from an algebraic adversary breaking knowledge soundness one
can construct an adversary against the q-DLog assumption.

Fig. 16. Groth’s NILP (LinSetup,PrfMtrx,Test).

54 G. Fuchsbauer et al.

Theorem 7. Let SNK denote Groth’s [Gro16] SNARK for degree-n QAPs
defined over (symmetric) bilinear group G with n2 ≤ (p − 1)/8. Then we have

q-dlog
(3,1)
=⇒alg knw-sndSNK with q := 2n − 1.

Let us start with a proof overview. Consider an algebraic adversary Aalg against
knowledge soundness that returns (φ, [�Π]P) on input (R, 〈�σ〉). Since Aalg is alge-
braic and its group-element inputs are 〈�σ〉, we have �Π = 〈P�σ〉 with P ∈ F

3×μ.
By the definition of Vfy, the proof �Π is valid iff P�σ satisfies LinVfy. By Groth’s
theorem (Theorem 6) there exists an extractor X, which on input P such that
P�σ satisfies LinVfy extracts a witness (see game k-snd-aff NILP,R in Fig. 14).

So it seems this extractor X should also work for Aalg (which returns P as
required). However, X is only guaranteed to succeed if P�σ verifies for a randomly
sampled �σ, whereas for Aalg in knw-snd SNK,R it suffices to return P so that P�σ
verifies for the specific �σ for which it received 〈�σ〉. To prove knowledge soundness,
it now suffices to show that an adversary can only output P which works for all
choices of �σ (from which X will then extract a witness).

In the generic group model this follows rather straight-forwardly, since the
adversary has no information about the concrete �σ. In the AGM however, A is
given 〈�σ〉. Examining the structure of a NILP CRS �σ (Fig. 16), we see that its
components are defined as multivariate (Laurent) polynomials evaluated at a
random point �x = (α, β, γ, δ, τ).

Now what does it mean for Aalg to output a valid P? By the definition of
LinVfy via Test (cf. Eq. (4) with �π := P�σ), it means that Aalg found P such that

(�σ� | (P�σ))�)T (�σ� | (P�σ)�)� = 0. (7)

If we interpret the components of �σ as polynomials over X1, . . . , X5 (correspond-
ing to �x = (α, β, γ, δ, τ)) then the left-hand side of (7) defines a polynomial
QP (�X).

On the other hand, what does it mean that P�σ verifies only for the specific �σ
from Aalg’s input? It means that QP ≡ 0, that is, QP is not the zero polynomial,
since otherwise (7) would hold for any choice of �x, that is P�σ′ would verify for
any �σ′.

We now bound the probability that Aalg behaves “badly”, that is, it returns
a proof that only holds with respect to its specific CRS. To do so, we bound the
probability that given 〈�σ〉, Aalg returns a nonzero polynomial QP which vanishes
at �x, that is, the point that defines �σ. By factoring QP , we can then extract
information about �x, which was only given as group elements 〈�σ〉. In particular,
we embed a q-DLog instance into the CRS 〈�σ〉, for which we need q to be at
least the maximum of the total degrees of the polynomials defining σ, which for
Groth’s NILP is 2n−1. We then factor the polynomial to obtain its roots, which
yields the challenge discrete logarithm.

Algebraic Group Model 55

Proof (of Theorem 7). Let R be a QAP of degree n (cf. (5)). Let NILP =
(LinSetup,PrfMtrx,Test) denote Groth’s NILP (Fig. 16). By Theorem 6 there
exists an extractor X, which on input R, statement φ ∈ LR, and P ∈ F

μ×κ

such that LinVfy(R,�σ, φ, P�σ) = 1 for �σ $← LinSetup(R) returns a witness w with
probability Advk-snd-aff

NILP,R,X,F for any affine F.
Let SNK denote Groth’s SNARK obtained from NILP via the transformation

in Fig. 15 and let Aalg be an algebraic adversary in the game knw-snd SNK,R.
From X we construct an extractor XA for Aalg in Fig. 17. Note that since Aalg is
algebraic, we have �Π = 〈P�σ〉. We thus have

Vfy(R, �Σ, φ, �Π) = Vfy(R, �Σ, φ, 〈P�σ〉) = LinVfy(R,�σ, φ, P�σ), (8)

where the last equality follows from the definition of Vfy (Fig. 15). Game
knw-snd Aalg,XA

SNK,R is written out in Fig. 17 and our goal is to upperbound
Advknw-snd

SNK,R,Aalg,XA
.

Consider the affine prover A′ in Fig. 18 and k-snd-aff X,A′
NILP, with the code of

A′ written out, also in Fig. 18.

Fig. 17. Extractor XA defined from X and Aalg (left) and knowledge soundness game
knw-snd for a SNARK built from NILP = (LinSetup,PrfMtrx,Test), algebraic adver-
sary Aalg and XA (right).

Fig. 18. Affine prover A′ defined from Aalg (left) and game k-snd-aff for NILP, extrac-
tor X and A′ (right).

56 G. Fuchsbauer et al.

Comparing the right-hand sides of Figs. 17 and 18, we see that knw-snd
returns 1 whereas k-snd-aff returns 0 if LinVfy returns 0 for P�ρ w.r.t. �ρ, but it
returns 1 for P�σ w.r.t. �σ. Let bad denote the event when this happens; formally
defined as a flag in game k-snd-aff in Fig. 18. By definition, we have

Advknw-snd
SNK,R,Aalg,XA

≤ Advk-snd-aff
NILP,R,X,A′ + Pr

[
bad = 1

]
. (9)

In order to simplify our analysis, we first make a syntactical change to NILP
by multiplying out all denominators, that is, we let LinSetup (cf. Fig. 16) return

�σ :=
(
δγ, αδγ, βδγ, δγ2, δ2γ, {δγτ i}n−1

i=0 ,
{
δ
(
βui(τ) + αvi(τ) + wi(τ)

)}�

i=0
,

{
γ
(
βui(τ) + αvi(τ) + wi(τ)

)}m

i=�+1
,
{
γτ it(τ)

}n−2

i=0

)
. (10)

Note that this does not affect the distribution of the SNARK CRS as running
the modified LinSetup amounts to the same as choosing g′ $← G and running the
original setup with g := (g′)δγ , which again is a uniformly random generator.

Observe that the components of LinSetup defined in (10) can be described
via multivariate polynomials Si(�x) of total degree at most 2n − 1 with �x :=
(α, β, γ, δ, τ), and LinSetup can be defined as picking a random point �x $← (F∗)5

and returning the evaluations σi := Si(�x) of these polynomials.
Let T be as defined by Test in Fig. 16. By (4) we have

LinVfy(R,�σ, φ, P�σ) = 1 ⇐⇒ �σ�(
(Id |P�) · T · (Id |P�)�)

�σ = 0.

Let �S be the vector of polynomials defined by LinSetup. For a matrix P define
the following multivariate polynomial

QP (�X) := (�S(�X))�(
(Id |P�) · T · (Id |P�)�)

�S(�X) (11)

of degree at most (2n − 1)2. Then for any �x ∈ (F∗)5 and �σ := �S(�x) we have

LinVfy
(
R,�σ, φ, P�σ)

)
= 1 ⇐⇒ QP (�x) = 0. (12)

Groth [Gro16] proves Theorem 6 by arguing that an affine prover without
knowledge of �σ can only succeed in the game k-snd-aff NILP,R by making LinVfy
return 1 on every �σ, or stated differently using (12), by returning P with QP ≡ 0.
He then shows that from such P one can efficiently extract a witness.

The adversary’s probability of succeeding despite QP ≡ 0 is bounded via
the Schwartz-Zippel lemma: the total degree of QP is at most d = (2n − 1)2

(using the modified �σ from (10)). The probability that QP (�x) = 0 for a random
�x $← (F ∗)5 is thus bounded by d

p−1 . This yields

Advk-snd-aff
NILP,R,X,A′ ≤ (2n−1)2

p−1 . (13)

Algebraic Group Model 57

In order to bound Advknw-snd
SNK,R,Aalg,XA

in (9) we will construct an adversary Balg

such that

Pr
[
bad = 1

] ≤ (
1 − (2n−1)2

p−1

) · Advq-dlog
G,Balg

with q = 2n − 1. (14)

For bad to be set to 1, Aalg’s output P must be such that QP ≡ 0: otherwise,
LinVfy returns 1 for any �x and in particular LinVfy(R, �ρ, φ, P �ρ) = 1.

bad = 1 implies thus that Aalg on input 〈�σ〉 = 〈�S(�x)〉 returns P such that

QP ≡ 0 and QP (�x) = 0. (15)

We now use such Aalg to construct an adversary Balg against q-DLog with q :=
2n − 1.

Adversary Balg(〈z〉, 〈z2〉, ..., 〈zq〉): On input a q-DLog instance, Balg simulates
k-snd-aff X,A′

NILP,R for Aalg. It first picks a random value �y ← (F∗)5, (implicitly)
sets xi := yiz, that is,

α := y1z β := y2z γ := y3z δ := y4z τ := y5z

and generates a CRS 〈�σ〉 := 〈�S(�x)〉 = 〈�S(α, β, γ, δ, τ)〉 as defined in (10).
Since the total degree of the polynomials Si defining �σ is bounded by 2n − 1
(the degree of the last component of �σ), Balg can compute �σ from its q-DLog
instance.
Next, Balg runs (φ, [�Π]P) $← Aalg(R, 〈�σ〉) and from P computes the multivari-
ate polynomial QP (�X) as defined in (11). If QP ≡ 0 or QP (�x) = 0 (by (8)
and (12) the latter is equivalent to Vfy(R, �Σ, φ, �Π) = 0), then Balg aborts. (∗)
Otherwise Balg defines the univariate polynomial

Q′
P (X) := QP (y1X, . . . , y5X).

If Q′
P ≡ 0 then Balg aborts. (∗∗)

Otherwise Balg factors Q′
P to obtain its roots (of which by (11) there are at

most (2n−1)2), checks them against its DLog instance to determine whether
z is among them, and if so, returns z.

First note that Balg perfectly simulates k-snd-aff X,A′
NILP,R for Aalg. Let us analyze

the probability that Balg finds the target z provided that bad = 1. In this case
Balg will not abort at (∗).

Since Q′
P (z) = QP (y1z, . . . , y5z) = QP (�x), by (15) we have Q′

P (z) = 0. Thus
if Q′

P ≡ 0 then Balg finds z by factoring Q′
P . It remains to argue that Q′

P ≡ 0.
By (15) we have QP ≡ 0. By the Schwartz-Zippel lemma, the probability that
for a random �y $← (F∗)5, we have QP (�y) = 0 is bounded by d

p−1 where d is
the total degree of QP , which is bounded by (2n − 1)2. Since QP (�y) = Q′

P (1),
we have Q′

P ≡ 0 with probability at least 1 − (2n−1)2

p−1 . Since the choice of �y is
perfectly hidden from the adversary’s view this shows

Advq-dlog
G,Balg

≥ (
1 − (2n−1)2

p−1

) · Pr
[
bad = 1

] ≥ 1
2 · Pr

[
bad = 1

]
,

58 G. Fuchsbauer et al.

where the last inequality comes from n2 ≤ (p − 1)/8. Putting this together
with (13), we have shown that

Advknw-snd
SNK,R,Aalg,XA

≤ q2

p−1 + 2 · Advq-dlog
G,Balg

.

Following the generic bound for Boneh and Boyen’s SDH assumption [BB08],
we may assume that Advq-dlog

G,Balg
≥ q2

p−1 . The above equation thus implies

Advknw-snd
SNK,R,Aalg,XA

≤ 3 · Advq-dlog
G,Balg

,

which concludes the proof. ��
Corollary 6. It is

(
3t2q+3q3

p , t
)
-hard to break knowledge soundness of Groth’s

SNARK [Gro16] in the generic group model.

The corollary follows from the generic
(

t2q+q3

p , t
)
-hardness of q-dlog , which

is derived analogously to the bound for Boneh and Boyen’s SDH assumption
[BB08].

We remark that the above result is not specific to Groth’s SNARK; it applies
to any SNARK built from a NILP whose setup evaluates multivariate polyno-
mials on a random position. The maximal total degree of these polynomials
determines the parameter q in the q-DLog instance.

Acknowledgments. We thank Dan Brown for valuable comments and Pooya Farshim
for discussions on polynomials. We also thank Helger Lipmaa for sharing with us his
independent security proof for Groth’s SNARK. The first author is supported by the
French ANR EfTrEC project (ANR-16-CE39-0002). The second author was supported
in part by ERC Project ERCC (FP7/615074) and by DFG SPP 1736 Big Data. The
third author was supported by ERC Project ERCC (FP7/615074).

References

[ABM15] Abdalla, M., Benhamouda, F., MacKenzie, P.: Security of the J-PAKE
password-authenticated key exchange protocol. In: 2015 IEEE Sympo-
sium on Security and Privacy, pp. 571–587. IEEE Computer Society Press,
May 2015. 35

[ABR01] Abdalla, M., Bellare, M., Rogaway, P.: The oracle Diffie-Hellman assump-
tions and an analysis of DHIES. In: Naccache, D. (ed.) CT-RSA 2001.
LNCS, vol. 2020, pp. 143–158. Springer, Heidelberg (2001). https://doi.
org/10.1007/3-540-45353-9 12. 35, 45

[ABS16] Ambrona, M., Barthe, G., Schmidt, B.: Automated unbounded analysis
of cryptographic constructions in the generic group model. In: Fischlin,
M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666,
pp. 822–851. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-49896-5 29. 39

[ACdM05] Ateniese, G., Camenisch, J., de Medeiros, B.: Untraceable RFID tags via
insubvertible encryption. In: Atluri, V., Meadows, C., Juels, A. (eds.)
ACM CCS 2005, pp. 92–101. ACM Press, November 2005. 36

https://doi.org/10.1007/3-540-45353-9_12
https://doi.org/10.1007/3-540-45353-9_12
https://doi.org/10.1007/978-3-662-49896-5_29
https://doi.org/10.1007/978-3-662-49896-5_29

Algebraic Group Model 59

[ACHdM05] Ateniese, G., Camenisch, J., Hohenberger, S., de Medeiros, B.: Practi-
cal group signatures without random oracles. Cryptology ePrint Archive,
Report 2005/385 (2005). http://eprint.iacr.org/2005/385. 36

[AGO11] Abe, M., Groth, J., Ohkubo, M.: Separating short structure-preserving
signatures from non-interactive assumptions. In: Lee, D.H., Wang, X.
(eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 628–646. Springer, Hei-
delberg (2011). https://doi.org/10.1007/978-3-642-25385-0 34. 35

[AM09] Aggarwal, D., Maurer, U.: Breaking RSA generically is equivalent to
factoring. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp.
36–53. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-
01001-9 2. 34, 37

[BB08] Boneh, D., Boyen, X.: Short signatures without random oracles and the
SDH assumption in bilinear groups. J. Cryptol. 21(2), 149–177 (2008). 58

[BCI+13] Bitansky, N., Chiesa, A., Ishai, Y., Paneth, O., Ostrovsky, R.: Succinct
non-interactive arguments via linear interactive proofs. In: Sahai, A. (ed.)
TCC 2013. LNCS, vol. 7785, pp. 315–333. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-36594-2 18. 52

[BCL04] Bangerter, E., Camenisch, J., Lysyanskaya, A.: A cryptographic frame-
work for the controlled release of certified data. In: Security Protocols
Workshop, pp. 20–24 (2004). 36

[BCPR16] Bitansky, N., Canetti, R., Paneth, O., Rosen, A.: On the existence
of extractable one-way functions. SIAM J. Comput. 45(5), 1910–1952
(2016). 38

[BCS05] Backes, M., Camenisch, J., Sommer, D.: Anonymous yet accountable
access control. In: WPES, pp. 40–46 (2005). 36

[BDZ03] Bao, F., Deng, R.H., Zhu, H.F.: Variations of Diffie-Hellman problem. In:
Qing, S., Gollmann, D., Zhou, J. (eds.) ICICS 2003. LNCS, vol. 2836,
pp. 301–312. Springer, Heidelberg (2003). https://doi.org/10.1007/978-
3-540-39927-8 28. 43

[BFF+14] Barthe, G., Fagerholm, E., Fiore, D., Mitchell, J.C., Scedrov, A., Schmidt,
B.: Automated analysis of cryptographic assumptions in generic group
models. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS,
vol. 8616, pp. 95–112. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-662-44371-2 6. 37, 39

[BFW16] Bernhard, D., Fischlin, M., Warinschi, B.: On the hardness of proving
CCA-security of signed ElGamal. In: Cheng, C.-M., Chung, K.-M., Per-
siano, G., Yang, B.-Y. (eds.) PKC 2016, Part I. LNCS, vol. 9614, pp.
47–69. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-
49384-7 3. 35

[BG04] Brown, D.R.L., Gallant, R.P.: The static Diffie-Hellman problem. Cryp-
tology ePrint Archive, Report 2004/306 (2004). http://eprint.iacr.org/
2004/306. 37

[BL96] Boneh, D., Lipton, R.J.: Algorithms for black-box fields and their applica-
tion to cryptography (extended abstract). In: Koblitz, N. (ed.) CRYPTO
1996. LNCS, vol. 1109, pp. 283–297. Springer, Heidelberg (1996). https://
doi.org/10.1007/3-540-68697-5 22. 33

[BLS04] Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing.
J. Cryptol. 17(4), 297–319 (2004). 36, 48

[BMV08] Bresson, E., Monnerat, J., Vergnaud, D.: Separation results on the “one-
more” computational problems. In: Malkin, T. (ed.) CT-RSA 2008.
LNCS, vol. 4964, pp. 71–87. Springer, Heidelberg (2008). 35

http://eprint.iacr.org/2005/385
https://doi.org/10.1007/978-3-642-25385-0_34
https://doi.org/10.1007/978-3-642-01001-9_2
https://doi.org/10.1007/978-3-642-01001-9_2
https://doi.org/10.1007/978-3-642-36594-2_18
https://doi.org/10.1007/978-3-540-39927-8_28
https://doi.org/10.1007/978-3-540-39927-8_28
https://doi.org/10.1007/978-3-662-44371-2_6
https://doi.org/10.1007/978-3-662-44371-2_6
https://doi.org/10.1007/978-3-662-49384-7_3
https://doi.org/10.1007/978-3-662-49384-7_3
http://eprint.iacr.org/2004/306
http://eprint.iacr.org/2004/306
https://doi.org/10.1007/3-540-68697-5_22
https://doi.org/10.1007/3-540-68697-5_22

60 G. Fuchsbauer et al.

[Boy08] Boyen, X.: The uber-assumption family (invited talk). In: Galbraith, S.D.,
Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 39–56. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-85538-5 3. 38, 39

[BR93] Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for
designing efficient protocols. In: Ashby, V. (ed.) ACM CCS 1993, pp.
62–73. ACM Press, November 1993. 41

[BR04] Bellare, M., Rogaway, P.: Code-based game-playing proofs and the secu-
rity of triple encryption. Cryptology ePrint Archive, Report 2004/331
(2004). http://eprint.iacr.org/2004/331. 39

[BV98] Boneh, D., Venkatesan, R.: Breaking RSA may not be equivalent to factor-
ing. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 59–71.
Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054117. 34, 35,
40

[CGH98] Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology,
revisited (preliminary version). In: 30th ACM STOC, pp. 209–218. ACM
Press, May 1998. 38

[Che06] Cheon, J.H.: Security analysis of the strong Diffie-Hellman problem.
In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 1–11.
Springer, Heidelberg (2006). https://doi.org/10.1007/11761679 1. 37, 47

[CHK+06] Camenisch, J., Hohenberger, S., Kohlweiss, M., Lysyanskaya, A.,
Meyerovich, M.: How to win the clonewars: efficient periodic n-times
anonymous authentication. In: Juels, A., Wright, R.N., De Capitani di
Vimercati, S. (eds.) ACM CCS 2006, pp. 201–210. ACM Press, Octo-
ber/November 2006. 36

[CHL05] Camenisch, J., Hohenberger, S., Lysyanskaya, A.: Compact e-cash. In:
Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 302–321.
Springer, Heidelberg (2005). https://doi.org/10.1007/11426639 18. 36

[CHP07] Camenisch, J., Hohenberger, S., Pedersen, M.Ø.: Batch verification of
short signatures. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515,
pp. 246–263. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-72540-4 14. 36

[CL04] Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous cre-
dentials from bilinear maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS,
vol. 3152, pp. 56–72. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-28628-8 4. 35, 45

[CM14] Chase, M., Meiklejohn, S.: Déjà Q: using dual systems to revisit q-type
assumptions. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 622–639. Springer, Heidelberg (2014). https://doi.
org/10.1007/978-3-642-55220-5 34. 38

[Cor02] Coron, J.-S.: Optimal security proofs for PSS and other signature schemes.
In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 272–
287. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-
7 18. 35, 36

[Dam92] Damg̊ard, I.: Towards practical public key systems secure against chosen
ciphertext attacks. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol.
576, pp. 445–456. Springer, Heidelberg (1992). https://doi.org/10.1007/
3-540-46766-1 36. 35, 38

[Den02] Dent, A.W.: Adapting the weaknesses of the random oracle model to the
generic group model. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol.
2501, pp. 100–109. Springer, Heidelberg (2002). https://doi.org/10.1007/
3-540-36178-2 6. 38

https://doi.org/10.1007/978-3-540-85538-5_3
http://eprint.iacr.org/2004/331
https://doi.org/10.1007/BFb0054117
https://doi.org/10.1007/11761679_1
https://doi.org/10.1007/11426639_18
https://doi.org/10.1007/978-3-540-72540-4_14
https://doi.org/10.1007/978-3-540-72540-4_14
https://doi.org/10.1007/978-3-540-28628-8_4
https://doi.org/10.1007/978-3-540-28628-8_4
https://doi.org/10.1007/978-3-642-55220-5_34
https://doi.org/10.1007/978-3-642-55220-5_34
https://doi.org/10.1007/3-540-46035-7_18
https://doi.org/10.1007/3-540-46035-7_18
https://doi.org/10.1007/3-540-46766-1_36
https://doi.org/10.1007/3-540-46766-1_36
https://doi.org/10.1007/3-540-36178-2_6
https://doi.org/10.1007/3-540-36178-2_6

Algebraic Group Model 61

[DH76] Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans.
Inf. Theory 22(6), 644–654 (1976). 35, 43

[GBL08] Garg, S., Bhaskar, R., Lokam, S.V.: Improved bounds on security reduc-
tions for discrete log based signatures. In: Wagner, D. (ed.) CRYPTO
2008. LNCS, vol. 5157, pp. 93–107. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-85174-5 6. 35

[GG17] Ghadafi, E., Groth, J.: Towards a classification of non-interactive com-
putational assumptions in cyclic groups. In: Takagi, T., Peyrin, T. (eds.)
ASIACRYPT 2017. LNCS, vol. 10625, pp. 66–96. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-70697-9 3. 38

[GGPR13] Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span pro-
grams and succinct NIZKs without PCPs. In: Johansson, T., Nguyen,
P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9 37. 51

[Gro16] Groth, J.: On the size of pairing-based non-interactive arguments. In:
Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol.
9666, pp. 305–326. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-49896-5 11. 36, 50, 52, 53, 54, 56, 58

[HP78] Hellman, M.E., Pohlig, S.C.: An improved algorithm for computing log-
arithms over GF (p) and its cryptographic significance. IEEE Trans. Inf.
Theory 24(1), 106–110 (1978). 34

[JR10] Jager, T., Rupp, A.: The semi-generic group model and applications to
pairing-based cryptography. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS,
vol. 6477, pp. 539–556. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-17373-8 31. 34, 38

[JR15] Joux, A., Rojat, A.: Security ranking among assumptions within the Uber
Assumption framework. In: Desmedt, Y. (ed.) ISC 2013. LNCS, vol. 7807,
pp. 391–406. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
27659-5 28. 38

[JS09] Jager, T., Schwenk, J.: On the analysis of cryptographic assumptions in
the generic ring model. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS,
vol. 5912, pp. 399–416. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-10366-7 24. 37

[Kil01] Kiltz, E.: A tool box of cryptographic functions related to the Diffie-
Hellman function. In: Rangan, C.P., Ding, C. (eds.) INDOCRYPT 2001.
LNCS, vol. 2247, pp. 339–349. Springer, Heidelberg (2001). https://doi.
org/10.1007/3-540-45311-3 32. 38

[KK12] Kakvi, S.A., Kiltz, E.: Optimal security proofs for full domain hash, revis-
ited. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS,
vol. 7237, pp. 537–553. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-29011-4 32. 36

[KMP16] Kiltz, E., Masny, D., Pan, J.: Optimal security proofs for signatures from
identification schemes. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016,
Part II. LNCS, vol. 9815, pp. 33–61. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53008-5 2. 35

[KSW08] Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunc-
tions, polynomial equations, and inner products. In: Smart, N.P. (ed.)
EUROCRYPT 2008. LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78967-3 9. 39

https://doi.org/10.1007/978-3-540-85174-5_6
https://doi.org/10.1007/978-3-540-85174-5_6
https://doi.org/10.1007/978-3-319-70697-9_3
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-642-17373-8_31
https://doi.org/10.1007/978-3-642-17373-8_31
https://doi.org/10.1007/978-3-319-27659-5_28
https://doi.org/10.1007/978-3-319-27659-5_28
https://doi.org/10.1007/978-3-642-10366-7_24
https://doi.org/10.1007/978-3-642-10366-7_24
https://doi.org/10.1007/3-540-45311-3_32
https://doi.org/10.1007/3-540-45311-3_32
https://doi.org/10.1007/978-3-642-29011-4_32
https://doi.org/10.1007/978-3-642-29011-4_32
https://doi.org/10.1007/978-3-662-53008-5_2
https://doi.org/10.1007/978-3-662-53008-5_2
https://doi.org/10.1007/978-3-540-78967-3_9

62 G. Fuchsbauer et al.

[LR06] Leander, G., Rupp, A.: On the equivalence of RSA and factoring regarding
generic ring algorithms. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006.
LNCS, vol. 4284, pp. 241–251. Springer, Heidelberg (2006). https://doi.
org/10.1007/11935230 16. 34

[LRSW99] Lysyanskaya, A., Rivest, R.L., Sahai, A., Wolf, S.: Pseudonym systems. In:
Heys, H.M., Adams, C.M. (eds.) SAC 1999. LNCS, vol. 1758, pp. 184–
199. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-46513-
8 14. 35, 37, 45

[Mau05] Maurer, U.M.: Abstract models of computation in cryptography (invited
paper). In: Smart, N.P. (ed.) Cryptography and Coding 2005. LNCS,
vol. 3796, pp. 1–12. Springer, Heidelberg (2005). https://doi.org/10.1007/
11586821 1. 33, 37, 39, 42

[MRV16] Morillo, P., Ràfols, C., Villar, J.L.: The kernel matrix Diffie-Hellman
assumption. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part
I. LNCS, vol. 10031, pp. 729–758. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53887-6 27. 38

[MW98] Maurer, U.M., Wolf, S.: Lower bounds on generic algorithms in groups.
In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 72–84.
Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054118. 33, 39

[MW99] Maurer, U., Wolf, S.: The relationship between breaking the Diffie-
Hellman protocol and computing discrete logarithms. SIAM J. Comput.
28(5), 1689–1721 (1999). 43

[Nec94] Nechaev, V.I.: Complexity of a determinate algorithm for the discrete
logarithm. Math. Notes 55(2), 165–172 (1994). 33

[Pol78] Pollard, J.M.: Monte Carlo methods for index computation mod p. Math.
Comput. 32, 918–924 (1978). 34

[PV05] Paillier, P., Vergnaud, D.: Discrete-log-based signatures may not be equiv-
alent to discrete log. In: Roy, B.K. (ed.) ASIACRYPT 2005. LNCS, vol.
3788, pp. 1–20. Springer, Heidelberg (2005). 34, 35, 40

[Riv04] Rivest, R.L.: On the notion of pseudo-free groups. In: Naor, M. (ed.) TCC
2004. LNCS, vol. 2951, pp. 505–521. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-24638-1 28. 34

[RLB+08] Rupp, A., Leander, G., Bangerter, E., Dent, A.W., Sadeghi, A.-R.: Suffi-
cient conditions for intractability over black-box groups: generic lower
bounds for generalized DL and DH problems. In: Pieprzyk, J. (ed.)
ASIACRYPT 2008. LNCS, vol. 5350, pp. 489–505. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-89255-7 30. 39

[Sho97] Shoup, V.: Lower bounds for discrete logarithms and related problems.
In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266.
Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-69053-0 18.
33, 37, 38, 39, 42

[Sho04] Shoup, V.: Sequences of games: a tool for taming complexity in secu-
rity proofs. Cryptology ePrint Archive, Report 2004/332 (2004). http://
eprint.iacr.org/2004/332

[SS01] Sadeghi, A.-R., Steiner, M.: Assumptions related to discrete logarithms:
why subtleties make a real difference. In: Pfitzmann, B. (ed.) EURO-
CRYPT 2001. LNCS, vol. 2045, pp. 244–261. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44987-6 16. 38

[FKL17] Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and its
applications. Cryptology ePrint Archive, Report 2017/620 (2017). http://
eprint.iacr.org/2004/332. 45, 47

https://doi.org/10.1007/11935230_16
https://doi.org/10.1007/11935230_16
https://doi.org/10.1007/3-540-46513-8_14
https://doi.org/10.1007/3-540-46513-8_14
https://doi.org/10.1007/11586821_1
https://doi.org/10.1007/11586821_1
https://doi.org/10.1007/978-3-662-53887-6_27
https://doi.org/10.1007/978-3-662-53887-6_27
https://doi.org/10.1007/BFb0054118
https://doi.org/10.1007/978-3-540-24638-1_28
https://doi.org/10.1007/978-3-540-24638-1_28
https://doi.org/10.1007/978-3-540-89255-7_30
https://doi.org/10.1007/3-540-69053-0_18
http://eprint.iacr.org/2004/332
http://eprint.iacr.org/2004/332
https://doi.org/10.1007/3-540-44987-6_16
http://eprint.iacr.org/2004/332
http://eprint.iacr.org/2004/332

Key Exchange

On Tightly Secure Non-Interactive
Key Exchange

Julia Hesse1(B), Dennis Hofheinz2, and Lisa Kohl2

1 Technische Universität Darmstadt, Darmstadt, Germany
julia.hesse@crisp-da.de

2 Karlsruhe Institute of Technology, Karlsruhe, Germany
{dennis.hofheinz,lisa.kohl}@kit.edu

Abstract. We consider the reduction loss of security reductions for non-
interactive key exchange (NIKE) schemes. Currently, no tightly secure
NIKE schemes exist, and in fact Bader et al. (EUROCRYPT 2016) pro-
vide a lower bound (of Ω(n2), where n is the number of parties an
adversary interacts with) on the reduction loss for a large class of NIKE
schemes.

We offer two results: the first NIKE scheme with a reduction loss of
n/2 that circumvents the lower bound of Bader et al., but is of course
still far from tightly secure. Second, we provide a generalization of Bader
et al.’s lower bound to a larger class of NIKE schemes (that also covers
our NIKE scheme), with an adapted lower bound of n/2 on the reduction
loss. Hence, in that sense, the reduction for our NIKE scheme is optimal.

1 Introduction

Tight security reductions. A security reduction relates the security of a
cryptographic construction to the difficulty to solve some assumed-to-be-hard
problem. In other words, to base the security of a scheme S on the hardness of a
problem P , one has to show how to solve P given an adversary that successfully
attacks S. As one usually considers asymptotic security, both adversary and
problem solver are required to have polynomial running time and non-negligible
success probability.

Many security reductions now guess where in S to embed problem P . For
example, in case of a signature scheme, the security reduction might guess in
which generated signature (an instance of) P is embedded. Asymptotically, this
is fine, as an S-attacker can only ask for a polynomial number of signatures.

J. Hesse—Parts of work done while at École Normale Supérieure, Paris, supported
by ERC Project CryptoCloud FP7/2007-2013 Grant Agreement no. 339563.
D. Hofheinz—Supported by ERC Project PREP-CRYPTO (724307), and by DFG
grants HO 4534/4-1 and HO 4534/2-2.
L. Kohl—Supported by ERC Project PREP-CRYPTO (724307), by DFG grant HO
4534/2-2 and by a DAAD scholarship. Parts of work done while visiting Interdisci-
plinary Center Herzliya.

c© International Association for Cryptologic Research 2018
H. Shacham and A. Boldyreva (Eds.): CRYPTO 2018, LNCS 10992, pp. 65–94, 2018.
https://doi.org/10.1007/978-3-319-96881-0_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96881-0_3&domain=pdf

66 J. Hesse et al.

But when instantiating the scheme with concrete parameters, this guessing step
leads to the following paradox: Considering a number of, say, 230 signature
queries (which is realistic when thinking of servers) and a security parameter
λ = 100, the concrete loss in success probability introduced by the reduction
would actually be larger than a factor of 2λ/4. When aiming at concrete security
guarantees (derived from the hardness of P), one thus has to account for the
number of expected signatures at the time of set-up, when choosing keylengths.

This makes so called tight security reductions a desirable goal. A security
reduction is regarded as tight, if (with comparable running times) the success
probability of the problem solver is close to the success probability of the under-
lying attacker. More precisely, one usually requires the success probabilities to
only differ up to a small constant factor (or, for a broader notion of tightness,
up to a factor linear in the security parameter). Tight security reductions allow
to choose the security parameter for concrete instantiation independently of the
number of expected instantiations (or, say, generated signatures in case of a
signature scheme).

Positive and negative results on tight security. Schemes with tight
security reductions could already be constructed for a variety of cryptographic
applications (such as public-key encryption [2,6,19,20,26,28,36,37], identity-
based encryption [3,7,11,23,31], digital signature schemes [1,27,34,36,37], or
zero-knowledge proofs [20,28]). For public-key encryption schemes, the price to
pay for an (almost) tight reduction has been reduced to essentially only one
additional group element in ciphertexts [19,20].

On the other hand, starting with the work of Coron [12], a number of works
show that certain types of reductions are inherently non-tight (in the sense that
a problem solver derived from a given adversary has a significantly reduced
success probability). For instance, [4,12,29,32] prove that any “simple” reduction
for a sufficiently “structured” signature scheme must lose a factor of Ω(qsig),
where qsig is the number of adversarial signature queries. (Here, the definitions
of “simple” and “structured” vary across these papers.) Similar lower bounds
exist also for specific schemes and other primitives [4,16,18,35,39]. Particularly
interesting to our case is the work of Bader et al. [4], which proves lower bounds
on the reduction loss of signature, encryption, and non-interactive key exchange
schemes in the standard model.

Our focus: non-interactive key exchange. In this work, we investigate
tight reductions for non-interactive key exchange (NIKE) schemes in the two-
party setting1. Intuitively, a NIKE scheme enables any two parties Pi and Pj

to compute a common shared key Kij using a public-key infrastructure only,
but without any interaction. (That is, Kij should be an efficiently computable
1 We focus on the two-party setting assuming a public key infrastructure (PKI) since

this setting allows for efficient standard-model constructions. Intuitively, stronger
settings (multi-party, identity-based with/without setup) appear to require qualita-
tively stronger tools to give any construction at all, tightly secure or not. However,
since any n-party NIKE can be viewed as a 2-party NIKE by fixing n-2 identities,
our lower bound trivially generalizes to multi-user NIKE schemes.

On Tightly Secure Non-Interactive Key Exchange 67

Reference |pk| model sec. loss assumption uses

Diffie–Hellman [14] 1 × G HKR n2 DDH -
Ours, Sec. 3 3 × G HKR n/2 DDH -
CKS08 [10] 2 × G DKR 2 CDH ROM
FHKP13 [17] 1 × ZN DKR n2 factoring ROM
FHKP13 [17] 2 × G + 1 × Zp DKR n2 DBDH asymm. pairing
Ours, full version [25] 12 × G DKR n/2 DLIN symm. pairing

Fig. 1. Comparison of existing NIKE schemes. |pk| denotes the size of the public keys,
measured in numbers of group elements and exponents. “DKR” or “HKR” denote
the CKS-heavy security notion from [17] with dishonest, resp. honest key registrations.
Regarding security loss, n denotes the number of honest parties the adversary interacts
with and q is the total number of queries made by the adversary. The losses of the two
constructions from [17] stems from applying a generic transformation (from the same
paper) to level the security guarantees of all compared schemes. Our construction from
Sect. 3 is instantiated with the HPS of Cramer–Shoup based on DDH. For more details
we refer to the full version [25]. We omit the second scheme from [17] since we focus
on non-interactive key registration procedures.

function of Pi’s public and Pj ’s private key, and we require Kij = Kji.) Already
the original Diffie-Hellman key exchange [14] forms a NIKE scheme (although
one that only satisfies a weak form of security). However, the formal investigation
of NIKE schemes started with the work of Cash et al. [10], with a more detailed
investigation provided in [17].

While there exist highly secure and efficient NIKE schemes (e.g., [10,17]),
currently there is no NIKE scheme with a tight security reduction to a standard
assumption (and in the standard model). We believe that this is no coincidence:
as we will detail below, the rich interdependencies among NIKE keys prevent
existing techniques to achieve tight security. Also, it might be interesting to note
that the already mentioned work of Bader et al. [4] presents a particularly strong
(i.e., quadratic) lower bound of Ω(n2) on the reduction loss of NIKE schemes,
where n is the number of parties that the adversary interacts with. While the
scheme of [10] is proven only in the random oracle model, this lower bound
applies to the scheme of [17].

Our results. In this work, we provide two contributions. First, we construct an
efficient and modular NIKE scheme with a reduction significantly tighter than
previous reductions. Concretely, our reduction targets the �-Linear assumption
in pairing-friendly groups, and has a loss of n/2, where n is the number of users
an adversary interacts with. Thus, our scheme is the first to break (or, rather,
circumvent) the lower bound of Bader et al. [4]. As a technical tool, we also
present a generic transformation that turns any mildly secure NIKE scheme
(i.e., secure only against passive adversaries) into a strongly secure one (secure
against active adversaries).

Second, we show that our security reduction is optimal, in the sense that we
can generalize the result of Bader et al. [4] to our scheme, at the price of a smaller

68 J. Hesse et al.

lower bound (of precisely n/2). Our generalization follows the high-level ideas of
Bader et al. (who in turn follow Coron’s work [12]). However, unlike their result,
we even consider NIKE schemes and reductions that make nontrivial changes to
the public-key infrastructure itself. We believe that our second result points out
the inherent difference between the public-key or signature settings (in which we
already have tightly secure schemes from standard assumptions), and the NIKE
setting (in which a broader range of lower bounds holds, and, to our knowledge,
no tight schemes exist).

We note that in line with previous works [4,24], our negative result does not
consider schemes or reductions in the random oracle model.

1.1 Technical Overview

In order to describe our results, it will be helpful to first recall existing lower
bounds results (and in particular the result of Bader et al. [4]). This way, we
will be able to detail how we circumvent these lower bounds, and what other
obstacles still block the way to a tight reduction.

A closer look on existing lower bound results. It might be interest-
ing to see why these lower bounds do not contradict any of the constructions
mentioned above. All mentioned lower bounds use a “meta-reduction” (cf. [9])
that turns any tight reduction into a successful problem solver (even without a
given successful adversary). To describe how a meta-reduction works, assume
a reduction R that interacts with an adversary A. Assume further that R first
solves a number of problem instances for A, and then expects A to solve a new
problem instance. (For instance, in the signature setting, R might first generate
many signatures for A on messages of A’s choice, and then expect A to forge a
signature for a fresh message.) R will then try to solve its own input instance
using the fresh solution provided by A.

Now a meta-reduction M runs R, and takes the place of A in an interaction
with R. Intuitively, M will try to feed R with R’s own problem solutions, and
hope that R can use one of those to solve its own input. Of course, security
games generally require the adversary to generate a fresh problem solution to
avoid trivial attacks. (For instance, the standard security game for signatures [22]
requires the adversary to forge a signature for a message that has not been signed
before.) Hence, M runs R twice: in the first run, M asks R for the solutions to,
say, q randomly chosen problem instances z1, . . . , zq. Then, M rewinds R, asks for
solutions to different problem instances z̃i, and submits the previously obtained
solution to one zi as fresh solution.

Of course, R may fail to convert a zi-solution into a solution to its own input
sometimes (depending on its reduction loss), and this leaves a “loophole” for R
to escape the meta-reduction strategy of M . However, a combinatorial argument
of [12] shows that R must have a reduction loss of Ω(qsig) to use this loophole.

For this strategy of M , it is essential that the reduction R will “accept” a
problem solution that it has generated itself. To this end, [12,32] require unique
signatures (i.e., problem solutions), and [4,29] require re-randomizable signatures

On Tightly Secure Non-Interactive Key Exchange 69

(so that any valid signature produced by R can be converted in a random signa-
ture by M). However, this property is violated (in a very strong sense) by many of
the tightly secure signature schemes mentioned above (e.g., [1,27,36,37]). Specif-
ically, the corresponding (tight) reductions find a way to produce special valid-
looking signatures for an adversary that are however useless to solving a problem
instance. (Of course, these signatures are not re-randomizable or unique.)

The argument of Bader et al. for NIKE schemes. Bader et al. [4] adapt
the above argument to NIKE schemes. To describe their argument, we first
recall the NIKE security experiment (according to [10]). A NIKE adversary may
request an arbitrary number n of public keys pki, and may adaptively corrupt
an arbitrary subset of them (in which case the adversary gets the corresponding
secret keys ski).2 Finally, the adversary selects two public keys pki∗ , pkj∗ that
have not been corrupted, and then must distinguish between their shared key
Ki∗,j∗ , and an independently random value.3

Now assume a reduction R that turns any NIKE adversary into a successful
problem solver. This reduction R has to be able to answer adversarial corruption
queries, and come up with the corresponding secret keys ski. Intuitively, a meta-
reduction M can take the role of an adversary, and first obtain some of these
keys ski from R. Then, M can rewind R, and choose to be challenged on a shared
key Ki∗,j∗ that can be computed from one previously obtained ski.

The main difference to the signature case above is that n public keys pki give
rise to O(n2) shared keys (or, problem instances/solutions) Kij . In particular,
O(n) corruptions enable M to compute O(n2) shared keys (and thus to poten-
tially solve a quadratic number of shared key challenges). If R turns any of those
challenge solutions into a problem solution, then M succeeds. Hence, R must fail
with probability 1 − O(1/n2). (Another way to view this is that the reduction’s
success has to vanish with the failures of the simulation.)

How to circumvent the NIKE lower bound. However, similar to previous
works, Bader et al. assume that any secret key (or, more generally, problem
solution) output by R can be used to solve corresponding challenges posed by R.
This assumption can in fact be violated easily, e.g., by allowing many different
secret keys per public key. (That is, a secret key is not uniquely determined
by a given public key and, e.g., R may hand out different secret keys upon a
corruption query.) Furthermore, different secret keys (for a given public key)
may behave differently in the computation of shared keys, and thus may not
necessarily be useful in solving a given challenge. Similar ideas are at the core
of known techniques for improving tightness, in particular in the context of
corruptions [5].

While this first thought allows to circumvent the lower bound of Bader et al.,
its concrete implementation is not clear at all in the context of NIKE schemes.

2 We omit additional capabilities of the adversary which are not relevant for this
overview.

3 Like [4], we consider only one challenge pair of public keys (and not an arbitrary
number, like the “m-CKS-heavy” notion of [17].

70 J. Hesse et al.

In particular, there should be many secret keys (with different functionality) for
a given public key, but the secret keys obtained through corruptions should still
satisfy correctness (in the sense that pki and skj lead to the same shared key as
ski and pkj). (We note that this obstacle is specific to NIKE schemes, and in our
opinion the main reason why obtaining tightly secure NIKE schemes appears to
be particularly difficult.)

Our scheme. To explain our solution, it might be easiest to first outline our
scheme (which, in its basic form, is a variation of the password-authenticated
key exchange scheme of [21,33]). Let L be a language, and assume a hash proof
system (HPS) for L with public keys hpk and secret keys hsk. We write Hhsk(x)
for hash proof of an L-instance x under key hsk. Then, public and secret keys of
our NIKE scheme are of the following form:

pk = (hpk, x) sk = (hsk, x, w),

where x ∈ L with witness w, and a HPS keypair (hpk, hsk) are randomly chosen.
Given pki = (hpki, xi) and skj = (hskj , xj , wj), the corresponding NIKE shared
key is computed as Kij = Hhskj

(xi) ·Hhski
(xj), where the hash value Hhski

(xj) is
computed from (and uniquely determined by) hpki and wj . We have correctness
in the sense Kji = Hhski(xj) · Hhskj (xi) = Hhskj (xi) · Hhski(xj) = Kij .

Recall that there are many HPS secret keys hsk for any given public key hpk.
However, all these secret keys act identically on any x ∈ L. Hence, in order to
benefit from the non-uniqueness of hsk, a NIKE reduction will have to switch
at least one x ∈ L in a NIKE public key pki to a no-instance x /∈ L. Let us
call such a NIKE public key (with x /∈ L) “invalid”. For an invalid pki, no (full)
secret key exists. This means that our reduction must hope that no invalid pki

is ever corrupted. Since a NIKE adversary may corrupt all public keys except
for the two selected challenge keys pki∗ , pkj∗ , this means that our reduction may
instead fail with probability 1 − 2/n.

In other words, already with one invalid public key, our reduction has a loss
of at least n/2. On the bright side, we will present a strategy that uses precisely
one invalid public key to leverage a NIKE security reduction (with loss n/2).
This reduction is of course far from tight, but it has a loss still considerably
better than the O(n2) lower bound by Bader et al., and thus is significantly
tighter than previous constructions. In a nutshell, our security proof proceeds in
game hops:

1. We start with the NIKE security game.
2. We guess one index i∗, and hope that pki∗ is one of the challenge public

keys finally selected in the adversary’s challenge. (If this is not the case, the
reduction fails.) Since there are 2 challenge public keys, this step loses a factor
of n/2.

3. We choose xi∗ /∈ L. Since we may assume that pki∗ is selected as challenge,
this change will not be detectable (assuming L has a hard subset membership
problem).

On Tightly Secure Non-Interactive Key Exchange 71

4. Finally, we observe that now, all keys Ki∗j (for arbitrary j) are randomized
by the smoothness of the underlying HPS. In fact, HPS smoothness implies
that Ki∗j is close to uniform, even given pkj . In particular, this holds for
j = j∗ and the final challenge Ki∗j∗ .

Note that while [10] also crucially relies on HPSs, there are significant tech-
nical differences. Namely, [10] uses hash proof systems mainly as a tool to imple-
ment a “replacement decryption method” that allows to forget parts of the secret
key. In other words, they use HPSs exclusively in “proof mode”. In contrast, for
our basic NIKE scheme we use the HPS only in “randomization mode”, i.e. to
randomize shared keys.

Instantiations and variants. Our basic scheme only requires a HPS for a
language with hard subset membership problem, and thus can be implemented
efficiently from various computational assumptions (such as the DDH [13], �-
Linear [30], DCR [13], or QR [13] assumptions). However, this basic scheme
satisfies only a relatively mild form of security called “honest key registration”
or “HKR” security in [17]. Hence, we also present a general transformation that
turns any mildly secure NIKE scheme into one that satisfies a stronger form of
security (dubbed “dishonest key registration” or “DKR” security in [17]). Our
scheme requires a suitable non-interactive zero-knowledge proof system, and,
very loosely speaking, adapts the Naor-Yung paradigm [38] to NIKE schemes.
We finally give a concrete and optimized instance under the �-MDDH assump-
tion [15] (for any � ≥ 2 in pairing-friendly groups). For details we refer to the
full version [25].

We note that we view our construction as a “first” that demonstrates how
to circumvent existing lower bounds for a particularly challenging application.
We do not claim superior efficiency of our (fully secure) scheme over existing
state-of-the-art NIKE schemes, not even when taking into account the reduction
loss in the choice of group sizes. Still, Fig. 1 provides an overview over existing
NIKE schemes, in particular in comparison to our scheme.

Our new lower bound. Even though it breaks the existing bound of Bader
et al. [4], the reduction loss (of O(n)) of our scheme might be a bit disappointing.
Our second result shows that we can extend the results from [4] to show that
the reduction loss (at least for our scheme) is optimal. Specifically, we are able
to give new lower bounds on the tightness of NIKE reductions even for schemes
with invalid public keys.

In more detail, we show that a weak validity check (on public keys) is suffi-
cient to prove a meaningful lower bound. Namely, we require that validity of a
public key (in the sense that two valid public keys admit only one shared key)
is verifiable given that public key and one of its possible secret keys. Hence, as
long as a given public key is not corrupted, its validity may not be efficiently
verifiable, and a reduction can hope to substitute it with an invalid key. (Note
that this is precisely what happens in the proof of our NIKE scheme.)

On the other hand, this weak validity check allows us to again apply a rewind-
ing argument as in [4]. Namely, as soon as the reduction returns a secret key

72 J. Hesse et al.

on an extraction query, we can check whether the given public key was actually
valid and in this case use the obtained secret key later to compute the unique
shared key. The only case where we fail to do so is if the reduction does not
return a valid secret key for a certain public key in all rewinding attempts. But
then we can simply abort with high probability, namely in case this public key is
part of the extraction queries (which happens with probability 1−2/n). In other
words, we prove that the best a reduction can do is to switch one public key to
invalid and hope that this public key is not part of the extraction queries. We
can thus conclude that a NIKE (such as ours) that admits a non-public validity
check still suffers from a security reduction loss of at least n/2.

Roadmap. In Sect. 2 we provide the necessary preliminaries. In Sect. 3 we
present our construction of a mildly secure NIKE with a security reduction
whose tightness significantly improves upon existing NIKEs. In Sect. 4 we show
how to transform a mildly secure NIKE into a strongly secure one. In Sect. 5 we
prove a new lower bound for a broad class of NIKE schemes including ours. In
the full version [25] we provide a concrete instantiation of our NIKE. Further, we
show how to tweak efficiency of the transformation from mild to strong security
when using our NIKE construction.

2 Preliminaries

Notation. Throughout the paper, λ denotes the security parameter. We say
that a function is negligible in λ if its inverse vanishes asymptotically faster than
any polynomial in λ. If a probabilistic algorithm A has running time polynomial
in λ, we say that A is probabilistic polynomial time (PPT). We use y ← A(x)
to denote that y is assigned the output of A running on input x, and we write
y ← A(x; r) to make the randomness r used by a probabilistic algorithm explicit.
We use y

$← X to denote sampling from a set X uniformly at random. For n ∈ N

by [n] we denote the set {1, . . . , n}. Let ε ∈ [0, 1] and X ,Y distributions. To
denote that X and Y have statistical distance at most ε, we write X ≡ε Y and
say X and Y are ε-close.

2.1 Hash Proof Systems

Definition 1 (Subset membership problem). We call SMP := Setup a sub-
set membership problem, if Setup is a PPT algorithm with the following prop-
erties.

Setup(1λ) outputs a compact (i.e. with length polynomial in λ) description
(X,L,R), where L ⊂ X are sets and R is an efficiently computable relation
with

x ∈ L ⇐⇒ ∃ witness w with (x,w) ∈ R.

(We say a relation R is efficiently computable if given a pair (x,w) it can be
efficiently checked whether (x,w) ∈ R.)

On Tightly Secure Non-Interactive Key Exchange 73

Further we require for all (X,L,R) in the image of Setup that it is possible to
efficiently sample elements x uniformly at random from X\L (written x

$← X\L)
and to sample elements x uniformly random from L together with witness w
(written (x,w) $← R).

Definition 2 (Subset membership assumption). Let SMP be a subset mem-
bership problem. We say that the subset membership assumption holds for SMP,
if for all PPT algorithms A it holds that

Advsmp
A,SMP(λ) :=|Pr[A(1λ, (X,L,R), x) = 1|(x,w) $← R]

− Pr[A(1λ, (X,L,R), x) = 1|x $← X \ L]|

is negligible in λ, where (X,L,R) $← SMP.Setup(1λ).

We will employ the notion of a hash proof system based on [13].

Definition 3 (Hash Proof Systems (HPS)). Let SMP be a subset membership
problem. We call HPS := Setup a hash proof system for SMP, if it is a PPT
algorithm of the following form.

Setup(1λ) first samples public parameters PPSMP := (X,L,R) ← SMP.Setup(1λ)
for the underlying subset membership problem. Further Setup chooses sets
HSK,Π,HPK such that elements can be efficiently sampled at random from
HSK (denoted hsk

$← HSK). Further Setup chooses an efficiently computable
map

α : HSK −→ HPK,

a family of efficiently computable functions

H := {Hhsk : X −→ Π | hsk ∈ HSK}

and an efficiently computable map

F : R × HPK −→ Π

such that for all hsk ∈ HSK, hpk ∈ HPK with α(hsk) = hpk and for all
(x,w) ∈ R we have

Hhsk(x) = F (x,w, hpk).

Finally, Setup outputs PP := (PPSMP,HSK,H, α, F), which contains PPSMP

together with the compact (i.e. with length polynomial in λ) description of
HSK,H, α and F .

We need a property of a HPS called smoothness, introduced in [13].

74 J. Hesse et al.

Definition 4 (Smoothness). Let SMP be a subset membership problem and
HPS be a hash proof system for SMP. We call HPS ε-smooth if for all PP :=
((X,L,R),HSK,H, α, F) in the image of HPS.Setup, the following distributions
are ε-close:

⎧
⎨

⎩
(x, hpk,Hhsk(x))

∣
∣
∣
∣
∣
∣

hsk
$← K

hpk := α(hsk)
x

$← X \ L

⎫
⎬

⎭
≡ε

⎧
⎨

⎩
(x, hpk, π)

∣
∣
∣
∣
∣
∣

hsk
$← K

hpk := α(hsk)
x ← X \ L, π

$← Π

⎫
⎬

⎭
.

(Recall that Π is the image set of Hhsk.) In other words, on statements x outside
the language L, the output of the private evaluation algorithms is ε-close to
uniformly random even under knowledge of the public key. Note though that this
statement only holds as long as no image of Hhsk on input x ∈ X \ L is known.

2.2 Non-Interactive Key Exchange (NIKE)

We formally define the notion of NIKE, following [10,17] and also adopting
most of their notation. A NIKE scheme NIKE consists of three algorithms
(Setup, KeyGen, SharedKey), an identity space IDS and a shared key space K
which is the output space of SharedKey.

– Setup: On input 1λ, this probabilistic algorithm outputs the system param-
eters PP.

– KeyGen: On input PP and an ID ID, this probabilistic algorithm outputs a
tuple (pk, sk) ∈ PK × SK.

– SharedKey: On input of the public parameters PP and two identity, public
key pairs (ID1, pk1), (ID2, sk2), this deterministic algorithm outputs a shared
key K12 ∈ K. We assume that K contains a failure symbol ⊥.

Table 1. Types of queries for different security models, taken from [17], where qx

denotes the maximum number of allowed queries of the adversary to oracle Ox. �, -
and n mean that an adversary is allowed to make arbitrary, zero or n queries of this
type, in an arbitrary order.

Model qregH qregC qextr qrevH qrevC qtest

DKR CKS-light 2 � - - � 1

DKR CKS � � - - � �
DKR CKS-heavy � � � � � 1

DKR m-CKS-heavy � � � � � �
HKR CKS-light 2 - - - - 1

HKR CKS � - - - - �
HKR CKS-heavy � - � � - 1

HKR m-CKS-heavy � - � � - �

On Tightly Secure Non-Interactive Key Exchange 75

Exp[hkr|dkr]−cks−heavy
A,NIKE (λ):

PP $← NIKE.Setup(1λ)
QregH := ∅, QregC := ∅ , Qextr := ∅,
Qrev := ∅
b� ← AOH, OregC(·), OrevC(·, ·)

(PP)
if b = b� ∧ ID�

1, ID
�
2 /∈ Qextr

∧{ID�
1, ID

�
2} /∈ Qrev

output 1
else

b′ $← {0, 1}
output b′

OregH(ID):
if (ID, ·, ·) /∈ OregC ∪ QregH

(pk, sk) $← NIKE.KeyGen(PP, ID)
QregH := QregH ∪ {(ID, pk, sk)}
return pk

else return ⊥

OregC(ID, pk):
if (ID, ·, ·) /∈ OregH ∪ OregC

QregC := QregC ∪ {(ID, pk, ⊥)}
else return ⊥

Oextr(ID):
if ∃sk : (ID, pk, sk) ∈ QregH

Qextr := Qextr ∪ {ID}
return sk

else return ⊥

OrevH(ID1, ID2):
if ∃sk1, sk2 : (ID1, pk1, sk1),

(ID2, pk2, sk2) ∈ QregH

Qrev := Qrev ∪ {{ID1, ID2}}
return NIKE.SharedKey(ID1, pk1, ID2, sk2)

else return ⊥

OrevC(ID1, ID2):
if ∃sk1 : (ID1, pk1, sk1) ∈ QregH,

(ID2, pk2, ·) ∈ QregC

Qrev := Qrev ∪ {{ID1, ID2}}
return NIKE.SharedKey(ID2, pk2, ID1, sk1)

if ∃sk2 : (ID2, pk2, sk2) ∈ QregH,
(ID1, pk1, ·) ∈ QregC

Qrev := Qrev ∪ {{ID1, ID2}}
return NIKE.SharedKey(ID1, pk1, ID2, sk2)

else return ⊥

Otest(ID�
1, ID

�
2):

b
$← {0, 1}

if ∃sk�
1, sk

�
2 : (ID�

1, pk
�
1, sk

�
1),

(ID�
2, pk

�
2, sk

�
2) ∈ QregH

K0 = NIKE.SharedKey(ID�
1, pk

�
1, ID

�
2, sk

�
2)

K1
$← K

return Kb

else return ⊥

Fig. 2. Experiment for HKR and DKR CKS-heavy security of a NIKE scheme NIKE

with shared key space K. The highlighted parts only occur in the setting of dishonest
key registration. The oracle Otest may only be queried once. OH comprises the oracles
OregH, OrevH, Oextr and Otest. We use · to denote an arbitrary entry of a tuple. I.e.,
OregH \ {(ID, ·, ·)} denotes the set OregH without any tuple that contains ID in the first
position.

We always require NIKE to be perfectly correct, meaning that for all corre-
sponding key pairs (ID1, pk1, sk1), (ID2, pk2, sk2) generated by KeyGen it holds

SharedKey(ID1, pk1, ID2, sk2) = SharedKey(ID2, pk2, ID1, sk1) �= ⊥

Security. We quickly recall the game-based security notion from [10], called the
CKS model, with its refinements from [17]. The model is defined via adversarial
queries to oracles implemented by a challenger C. The challenger C keeps track

76 J. Hesse et al.

of all honest and corrupt registered identities and their keys. We informally
describe the oracles provided to the adversary attacking a NIKE NIKE below.

– OregH for registering an honest user. C generates a key pair using NIKE.KeyGen
and hands the public key to the adversary.

– OregC for registering a corrupt user. The adversary may introduce a public
key without providing the corresponding secret key.

– Oextr for extracting a secret key of an honest user.
– OrevH for revealing a shared key of an honest pair of users.
– OrevC for revealing a shared key between a corrupted and an honest user.
– Otest for obtaining a challenge. A provides a pair of users it wishes to be

challenged upon. C then flips a coin and replies either with their real shared
key or a random one.

First, C runs PP $← NIKE.Setup(1λ) and gives PP to A. Then, the adversary
may make an arbitrary number of the above queries, in an arbitrary order.
Finally, the adversary outputs a bit b̂ and wins if b̂ = b. Note that the adversary
may register each ID only once4.

To obtain different notions of CKS security, the adversary is restricted in
the number of its queries. See Table 1 for a complete list. Notions that admit
OregC and OrevC queries are said to allow dishonest key registrations, dubbed
DKR. Notions that do not allow such types of queries are called with honest key
registration, or HKR for short.

In this paper, we are interested in CKS - heavy secure NIKE schemes. We
provide the corresponding security experiment in Fig. 2.

Definition 5 (HKR- and DKR-CKS-heavy security). Let NIKE be a
NIKE. We say NIKE is CKS-heavy secure with honest key registration, or HKR-
CKS-heavy secure, if for any PPT adversary A the advantage

Advhkr−cks−heavy
A,NIKE (λ) = |Pr[Exphkr−cks−heavy

A,NIKE (λ) ⇒ 1] − 1/2|

is negligible in λ, where Exphkr−cks−heavy
A,NIKE is provided in Fig. 2. Similarly, we say

that NIKE is CKS-heavy secure with dishonest key registration, or DKR-CKS-
heavy secure, if for any PPT adversary A the advantage

Advdkr−cks−heavy
A,NIKE (λ) = |Pr[Expdkr−cks−heavy

A,NIKE (λ) ⇒ 1] − 1/2|

is negligible in λ.

2.3 Public Key Encryption

Definition 6 (Public key encryption). We call a tuple of PPT algorithms
PKE := (KeyGen, Enc, Dec) a public key encryption scheme if the following holds.

4 In practice, this can be implemented by appending a counter to an identity string.

On Tightly Secure Non-Interactive Key Exchange 77

Expind−cpa
A=(A1,A2),PKE

(λ):

(ppk, psk) ← PKE.KeyGen(1λ)
(M0, M1, st) ← A1(1λ, ppk)
b

$← {0, 1}
C := Enc(ppk, Mb)
b� ← A2(st , C)
if b = b� output 1
else output 0

Fig. 3. IND-CPA experiment.

– KeyGen(1λ) returns a key pair (ppk, psk).
– Enc(ppk,M) returns a ciphertext C.
– Dec(psk, C) returns a message M or a special rejection symbol ⊥.

We further require Correctness, that is for all (ppk, psk) in the range of
KeyGen(1λ), for all messages M and for all C in the range of Enc(pk,M) we
require

Dec(sk, C) = 1.

Definition 7 (IND-CPA). Let PKE be a public key encryption scheme. We say
PKE is IND-CPA secure if for all PPT adversaries A we have that

Advind−cpa
A,PKE (λ) := |Pr[Expind−cpa

A,PKE (λ) ⇒ 1] − 1/2|

is negligible in λ, where Expind−cpa
A,PKE (λ) is defined as in Fig. 3 and we require

|M0| = |M1|.

2.4 Non-Interactive Zero Knowledge Proof of Knowledge

The notion of a quasi-adaptive non-interactive zero-knowledge proof was intro-
duced in [8]. The following definition of non-interactive zero-knowledge is an
adaptation of [20] with some differences. Note for instance, that we consider
computational zero-knowledge instead of perfect zero-knowledge. We will employ
such proofs to generically transform a NIKE which is secure in the HKR-CKS-
heavy security model to a NIKE which is secure in the DKR-CKS-heavy security
model.

Definition 8 (QANIZK). Let SMP be a subset membership problem. Let (X,L,
R) ← SMP.Setup(1λ). A quasi adaptive non-interactive zero-knowledge proof
(QANIZK) for SMP is a tuple of PPT algorithms PS := (Setup, Gen, Ver, Sim) of
the following form.

– Setup(1λ, (X,L,R)) generates a common reference string crs and a trapdoor
trp. We assume (X,L,R) to be part of the crs.

78 J. Hesse et al.

Expextr
A,PS(λ):

(X, L, R) ← SMP.Setup(1λ)

(crs, trp, extr) $← PS.Setup(1λ, (X, L, R))
Qsim := ∅
(x�, Π�) ← AOsim(·),Oextract(·,·)(1λ, crs)
w ← Oextract(x�, Π�)
if PS.Ver(x�, Π�) = 1 ∧ (x�, w) /∈ R
∧x� /∈ Qsim

output 1
else output 0

Osim(x):
Qsim := Qsim ∪ {x}
Π ← PS.Sim(crs, trp, x)
return Π

Oextract(x, Π):
if x /∈ Qsim

w ← PS.Extract(crs, extr, x, Π)
return w

else return ⊥

Fig. 4. Experiment for a extraction in the presence of simulated proofs. The adversary
tries to set up a pair (x, Π) such that a witness w is not extractable from Π.

– Prove(crs, x, w) given a word x ∈ L and a witness w with R(x,w) = 1, outputs
a proof Π.

– Ver(crs, x,Π) on input crs, x ∈ X and Π outputs a verdict b ∈ {0, 1}.
– Sim(crs, trp, x) given a crs with corresponding trapdoor trp and a word x ∈ X,

outputs a proof Π.

Further we require the following properties to hold.

Perfect completeness: For all security parameters λ, all (X,L,R) in the
image of SMP.Setup(1λ), all (crs, trp) in the range of Setup(1λ, (X,L,R)),
all words x ∈ L, all witnesses w such that R(x,w) = 1 and all Π in the
range of Prove(crs, x, w) we have

Ver(crs, x,Π) = 1.

Computational zero-knowledge: For all security parameters λ, all (X,L,R)
in the range of SMP.Setup(1λ), all tuples (crs, trp) in the range of
Setup(1λ, (X,L,R)), we have for all PPT adversaries A that

Advzk
A,PS(λ) :=|Pr[AOprv(·,·)(1λ, crs) = 1] − Pr[AOsim(·,·)(1λ, crs) = 1|

is negligible in λ, where both oracles on input (x,w) first check whether
(x,w) ∈ R. If this is the case, Oprv returns Prove(crs, x, w) and Osim returns
Sim(crs, trp, x) (and ⊥ otherwise).

The following definition is tailored to our purposes. We require a strong
notion of proof of knowledge in the sense that we need to be able to extract a
witness while simulating proofs ourselves.

On Tightly Secure Non-Interactive Key Exchange 79

NIKE.Setup(1λ)

(PPSMP, HSK, H, α, F) $← HPS.Setup(1λ)
PP := (PPSMP, HSK, H, α, F)
return PP

NIKE.SharedKey(PP, ID1, pk1, ID2, sk2)
parse PP =: (PPSMP, HSK, H, α, F)
parse pk1 =: (hpk1, x1)
parse sk2 =: (hsk2, x2, w2)
K12 := Hhsk2(x1) · F (x2, w2, hpk1)
return K12

NIKE.KeyGen(PP, ID)
parse PP =: (PPSMP, HSK, H, α, F)
parse PPSMP =: (X, L, R)
hsk

$← HSK
hpk := α(hsk)
(x, w) $← R
pk := (hpk, x)
sk := (hsk, x, w)
return (pk, sk)

Fig. 5. Our NIKE scheme. Recall that H = {Hhsk : X → Π | hsk ∈ K} is a family of
functions and F : R × HPK → Π a function (where HPK is the image of α).

Definition 9 (QANIZK Proof of knowledge). Let PS′ be a QANIZK for
a subset membership problem SMP, where SMP.Setup returns tuples (X,L,R).
Let Setup denote an algorithm that, on input (1λ, (X,L,R)) runs (crs, trp) $←
PS′.Setup(1λ, (X,L,R)) and outputs (crs, trp, extr) with an additional trap-
door extr. Let Gen := PS′.Gen, Prove := PS′.Prove, Ver := PS′.Ver, Sim :=
PS′.Sim. Let further Extract be an algorithm that on input (crs, extr, x,Π)
returns a witness w. We say PS = (Setup, Gen, Prove, Ver, Sim, Extract) is a
QANIZK Proof of Knowledge for SMP (QANIZKPoK), if for all PPT adver-
saries A the advantage

Advextr
A,PS(λ) := Pr[Expextr

A,PS(λ) ⇒ 1]

is negligible in λ, where Expextr
A,PS(λ) is as defined in Fig. 4.

3 Our Construction

We now present a NIKE scheme that is secure in the HKR setting. Our reduction
loses a factor of qregH/2, where qregH is the number of honest users. Our scheme
uses a hash proof system and its security relies on the hardness of the underlying
subset membership problem as well as the smoothness of the HPS. It is presented
in Fig. 3.

Let us first elaborate on why our NIKE scheme does not fall under the impos-
sibility result of Bader et al. [4]. To enforce that the output of a successful NIKE
attacker can always be used to solve the challenge given to the reduction, Bader
et al. require that the NIKE scheme allows only public keys whose correspond-
ing secret keys are uniquely determined. This way, the shared key between two
public keys is uniquely determined and will be useful to solve the challenge.
Moreover, the uniqueness condition has to be efficiently checkable given only
a public key. This essentially prevents a reduction from switching public keys

80 J. Hesse et al.

to “invalid” public keys that violate the uniqueness condition. Formally, Bader
et al. require an efficient algorithm PKCheck for testing uniqueness.

Our scheme does not provide such an algorithm, since essentially deciding
uniqueness amounts to deciding a subset membership problem that we assume
to be hard. This way, our reduction will have a way to indistinguishably switch
one of the public keys to “invalid” by drawing it from outside the subgroup.
Note that for such an invalid public key there exist no secret key, since secret
keys contain a witness for the public key belonging to the subgroup. While this
non-existence of a secret key helps us in arguing security, it also introduces an
inherent loss in our reduction; namely, our reduction has to abort whenever the
adversary wants to see the secret key corresponding to the invalid key, which
occurs with probability 2/qregH and thus results in a loss of qregH/2. We now
provide a proof of security that meets exactly this loss.

Theorem 1. Let SMP be a subset membership problem, and let HPS be a hash
proof system for SMP, such that for all PP := (PPSMP,HSK,H, α, F) in the range
of HPS.Setup the image Π of F and all Hhsk ∈ H is a commutative multiplicative
group. If the subset membership assumption holds for SMP and if HPS is ε-smooth
with ε negligible in λ, then the NIKE scheme NIKE described in Fig. 5 is a per-
fectly correct, HKR-CKS-heavy secure NIKE. Further, the reduction to SMP loses
a factor of qregH/2, where qregH is the number of queries to OregH that A makes.
More formally, if A is an adversary with running time tA against the scheme
in the HKR-CKS-heavy model, there exists an adversary B with running time
tB ≈ tA breaking the subset membership problem SMP such that

Advhkr−cks−heavy
A,NIKE (λ) ≤ qregH/2 · (Advsmp

B,SMP(λ) + ε)

Proof. Perfect correctness. Let the public parameters be PP := (PPSMP,

HSK,H, α, F) $← NIKE.Setup(1λ) and (pk1, sk1) ← NIKE.KeyGen(PP, ID1), (pk2,
sk2) ← NIKE.KeyGen(PP, ID2). Let further pk1 =: (hpk1, x1), pk2 =: (hpk2, x2)
and sk1 =: (hsk1, x1, w1), sk2 =: (hsk2, x2, w2). As HPS is a hash proof system
and as x1, x2 ∈ L, hpk1 = α(hsk1)), hpk2 = α(hsk2)) we have

Hhsk2(x1) = F (x1, w1, hpk2) and Hhsk1(x2) = F (x2, w2, hpk1).

This yields

K12 = Hhsk2(x1) · F (x2, w2, hpk1) = Hhsk1(x2) · F (x1, w1, hpk2) = K21

as required.

CKS-heavy security. We prove that the NIKE meets CKS-heavy security with
honest key registration in a number of hybrid games. We provide an overview of
the games in Fig. 6. By Pr[Gi] we denote the probability that A wins game Gi.

Game G0: The real experiment. Game G0 is the HKR-CKS-heavy exper-
iment as presented in Fig. 2, where A plays with a challenger C. We have
thus

Advhkr−cks−heavy
A,NIKE (λ) = |Pr[G0] − 1/2| .

On Tightly Secure Non-Interactive Key Exchange 81

Game OregH if i = i� Oextr(IDi�) OrevH({ID, IDi�}) Otest({ID, IDi�)} Explanation
G0 (x, w) $← R ski� ski�/sk ski�/sk = Exphkr−cks−heavy

A,NIKE

G1 (x, w) $← R ski� sk sk perfect correctness
G2 (x, w) $← R abort sk sk qregH/2 loss

G3 x
$← X \ L abort sk sk SMP assumption

G4 x
$← X \ L abort sk K0 ← K smoothness HPS

Fig. 6. Games G0 to G4 we employ to prove the NIKE presented in Fig. 3 HKR-CKS-

heavy secure. From game G1 on the index i�
$← qregH is chosen ahead of time. By IDi�

we denote the i�-th registered honest user. The oracle Otest may only be queried once.
In Column 4 and 5, we give the secret key employed to compute NIKE.SharedKey. By
denoting the input as a set {·} we want to indicate that we consider both inputs pk, pki�

and pki� , pk. In game G0 there is thus two possibility secret keys to be employed,
depending on the order of the input.

Game G1: Guess the challenge. Recall that by qregH we denote the number
of OregH queries of A. From game G1 on, an index i� ← qregH is chosen ahead
of time. The final goal will be to switch the i�-th registered honest user IDi�

to invalid and hope it is part of the test query. As a first step, from game G1

on we will make ski� redundant for OrevH and Otest queries. Namely, if A asks
a query of this form with input (ID, IDi�) (for an arbitrary identity ID) we
will compute the shared key employing sk, where (ID, pk, sk) ∈ QregH, instead
of ski� . By perfect correctness of NIKE we have

Pr[G1] = Pr[G0].

Game G2: Abort upon wrong guess. We change the winning condition
of the game as follows. If IDi� is not included in the test query of A, the
experiment returns 1 with probability 1/2 and aborts. Then it holds

Pr[G2] = Pr[G1] · 2/qregH + 1/2 · (1 − 2/qregH)
= (Pr[G1] − 1/2) · 2/qregH + 1/2

and thus

Pr[G1] − 1/2 = qregH/2 · (Pr[G2] − 1/2).

Game G3: Remove the secret key. Upon receiving the i�-th register honest
user query, C deviates from the NIKE.KeyGen procedure as follows: instead of
drawing (xi� , wi�) $← R, C draws xi�

$← X \ L. Note that this way there is no
wi� such that R(xi� , wi�) = 1 and thus C cannot compute a secret key ski� .
Instead, C adds (IDi� , pki� , ski�) := (IDi� , (hpki� , xi�), (hski� ,⊥)) to QregH. A
distinguisher between both games can be turned directly into a SMP attacker
B putting his challenge in the place of xi� . If the challenge was in L, Game
G2 was simulated, else it was Game G3. Observe that it is crucial here that

82 J. Hesse et al.

C does not make use of wi� anymore due to the changes made in Game 1.
This yields

|Pr[G2] − Pr[G3]| ≤ Advsmp
B,SMP(λ).

Game G4: Randomize the test query. C changes the answer to the query
Otest(IDi� , ID)5 by drawing K0

$← K, where K = Π is the image of the hash
functions of the HPS. To analyze the distinguishing advantage, note that
in the former game it holds that K0 = NIKE.SharedKey(IDi� , pki� , ID, sk) =
Hhsk(xi�)·F (x,w, hpki�) with (ID, pk, sk) = (ID, (hpk, x), (hsk, w)) ∈ QregH and
(IDi� , pki� , ski�) = (IDi� , (hpki� , xi�), (hski� ,⊥)) ∈ QregH. The two distribu-
tions (xi� , hpk,Hhsk(xi�)), (xi� , hpk, r

$← Π) are ε-close by the ε-smoothness
of the HPS, and thus K0 was already statistically close to the uniform distri-
bution over Π in Game G3. We thus have

|Pr[G3] − Pr[G4]| ≤ ε.

We now show that the advantage of A playing the CKS-heavy game is neg-
ligible. We repeatedly use a folklore technique - add zero, then apply the
triangle inequality - to go through all the above games until Game G4, for
which the winning probability of A is 1/2 since its view does not depend on
the challenge bit.

Advhkr−cks−heavy
A,NIKE (λ) = |Pr[G0] − 1/2| = |Pr[G1] − 1/2|
= qregH/2 · |Pr[G2] − Pr[G3] + Pr[G3] − 1/2|
≤ qregH/2 · |Pr[G3] − Pr[G4] + Pr[G4] − 1/2| + qregH/2 · Advsmp

B,SMP(λ)

≤ qregH/2 · |Pr[G4] − 1/2| + qregH/2 · (Advsmp
B,SMP(λ) + ε)

= qregH/2 · (Advsmp
B,SMP(λ) + ε)

Remark 1. A variant of our NIKE can be obtained if there is a total ordering <
on all identities. Then, the shared key of ID1, ID2 can be computed as the hash
of the statement provided by the smaller identity. More formally, we modify
NIKE.SharedKey as follows:

NIKE.SharedKey(ID1, pk1, ID2, sk2) : = Hhsk2(x1)
= F (x1, w1, hpk2) =:NIKE.SharedKey(ID2, pk2, ID1, sk1),

where ID1 < ID2. The only change in the proof of security is that in game G2

the challenger aborts if the guessed i� is not the smallest identity contained in
the test query. This yields a reduction loss of qregH.

5 Note that, starting with Game G2, i� is always one of the inputs to Otest.

On Tightly Secure Non-Interactive Key Exchange 83

NIKEdkr.Setup(1λ)
PP ← NIKE.Setup(1λ)
PPPS ← PS.Setup(1λ, (XNIKE, LNIKE, RNIKE))
parse PPPS := (crs, trp, extr)
PPdkr := (PP, crs)
return PPdkr

NIKEdkr.SharedKey(PPdkr, ID1, pk1, ID2, sk2)
parse PPdkr =: (PP, crs)
parse pk1 =: (pk′

1, Π
′
1)

if PS.Ver(crs, ID1, pk
′
1, Π

′
1) = 1

return NIKE.SharedKey(ID1, pk
′
1, ID2, sk2)

else return ⊥

NIKEdkr.KeyGen(PPdkr, ID)
parse PPdkr =: (PP, crs)
r ← Rrand

(pk, sk) ← NIKE.KeyGen(PP, ID; r)
Π ← PS.Prove(crs, ID, pk, sk, r)
return ((pk, Π), sk)

Fig. 7. A generic transformation from HKR-CKS-heavy security to DKR-CKS-heavy
security. (XNIKE, LNIKE, RNIKE) is defined as in Remark 2.

4 Security Against Dishonest Key Generation

In this section we want to show how to achieve CKS-heavy security for our
scheme allowing dishonest key registrations. That is the adversary is allowed to
dishonestly register keys and ask for shared keys where one of the public keys is
registered dishonestly.

Due to space limitations we only provide the generic transformation from
a HKR-CKS-heavy secure NIKE to a DKR-CKS-heavy secure NIKE. For the
proof of security and for a more efficient transformation of an instantiation of
our NIKE from Sect. 3 we refer to the full version [25].

Remark 2. Every NIKE induces a SMP as follows. Let NIKE be a NIKE with
public key space PK and secret key space SK and randomness space Rrand.
Then we define an SMP SMPNIKE as follows. On input 1λ, SMPNIKE.Setup generates
PP ← NIKE.Setup(1λ) and sets

XNIKE := IDS × PK,

LNIKE := {(ID, pk) ∈ X | ∃sk, r : (pk, sk) = NIKE.KeyGen(PP, ID; r)} and
RNIKE := {(ID, pk, sk, r) | (pk, sk) = NIKE.KeyGen(PP, ID; r)}.

Theorem 2. If NIKE is a perfectly correct, HKR-CKS-heavy secure NIKE and
PS is an QANIZKPoK for the SMP SMPNIKE, then the NIKEdkr presented in
Fig. 7 with algorithms NIKEdkr.Setup, NIKEdkr.KeyGen, NIKEdkr.SharedKey is per-
fectly correct and secure in the DKR-CKS-heavy model. More precisely, if A is
an adversary on NIKEdkr with running time tA, there exists adversaries B,B1,B2

with running times tB ≈ tB1 ≈ tB2 ≈ tA such that

Advdkr−cks−heavy
A,NIKEdkr

(λ) ≤Advzk
B,PS(λ) + Advextr

B1,PS(λ) + Advhkr−cks−heavy
B2,NIKE (λ).

84 J. Hesse et al.

Expuf−cks−heavy
A=(A1,A2),n,NIKE(λ):

PP $← NIKE.Setup(1λ)
ID1, ..., IDn

$← IDS (all disjoint)

(pki, ski)
$← NIKE.KeyGen(PP, IDi), i = 1, ..., n

(st , {i�, j�}) ← A1(PP, ID1, pk1, ..., IDn, pkn)
K� ← A2(st , (ski)i∈[n]\{i�,j�})
if K� = NIKE.SharedKey(IDi� , pki� , IDj� , skj�)

then output 1
else output 0

Fig. 8. Experiment for UF -CKS - heavyn security of a NIKE scheme NIKE with shared
key space K, for any n ∈ N. The set C := {i�, j�} contains the indices of the two public
keys A wishes to be challenged upon. The set [n] \ C contains all indices of the n − 2
public keys for which A learns a secret key from the experiment.

5 Optimality of Our Construction

Our NIKE scheme in Sect. 3 does not meet the lower bound regarding tight-
ness proven in [4]. We can circumvent their result since our scheme does not
offer a public and efficient algorithm for checking validity of public keys (called
PKCheck in [4]): the reduction introduces invalid public keys where the statement
is not from the language. It follows from the hardness of the subset membership
problem that this is not detectable given just the public key.

This immediately raises the question whether, in this new setting without
efficient and public PKCheck, we can still obtain a lower bound for the tightness
of HKR -CKS - heavy-secure NIKE schemes. We answer this question in the
affirmative and prove a new lower bound that meets the loss of our reduction in
Sect. 3. To present our result, we first give some definitions.

Since HKR -CKS - heavy security provides several oracles to the adversary
which can be queried in an arbitrary order, a reduction to HKR -CKS - heavy-
security cannot be formalized as an algorithm in a short and easy way. As
done in previous impossibility results before, we thus prove our result w.r.t a
weaker security notion that is easier to present. Afterwards, we show that our
result carries over to HKR -CKS - heavy-security. Our weaker notion is called
UF -CKS - heavyn

6. The security experiment is depicted in Fig. 8. Observe that
the experiment provides the adversary with all but two secret keys, and thus
implicitly with all but one shared key. The adversary chooses which keys he
wants to see after obtaining all public keys in the system. The notion is further
weakened by letting the number of users in the system be a fixed n ∈ N instead
of letting the adversary determine it on-the-fly (i.e., via OregH queries).

6 We work with an even weaker notion that [4]. The main difference is that our adver-
sary only has a secret key oracle (from which it can compute shared keys itself),
while the adversary in [4] is provided with a shared key oracle.

On Tightly Secure Non-Interactive Key Exchange 85

The next lemma allows us to prove a lower bound w.r.t UF -CKS - heavyn

instead of HKR -CKS - heavy . It will become crucial that the reduction is tight.

Lemma 1 (HKR -CKS - heavy ⇒ UF -CKS - heavyn). For every adversary A
attacking UF -CKS - heavyn in running time tA with success probability εA, there
exists an adversary B attacking CKS - heavy in running time tB ≈ tA and success
probability εB = εA.

Proof. Let A = (A1,A2) be a UF -CKS - heavyn adversary. We show how to
construct a HKR -CKS - heavy adversary B.

On input PP by the challenger, the adversary B first generates random,
disjoint identities ID1, ..., IDn and calls the oracle OregH(IDi) for all i ∈ [n]. B
thus obtains pk1..., pkn. Now, B runs A1(PP, pk1, ..., pkn) and obtains a state
stA and a set C := {i�, j�}. Now, for every i ∈ [n] \ C, B1 queries its oracle
Oextr(IDi) which returns a secret key ski. Next, B1 runs A2(stA, (ski)i∈[n]\C) and
obtains a key K�. The adversary B finally queries its test oracle on (IDi� , IDj�)
which returns a key K. It outputs 0 if K� = K and 1 otherwise. As we assume
the shared key to be uniquely determined and as further B only queries Oextr on
identities IDi with i /∈ C we obtain εB = εA.

We recall the definition of a non-interactive complexity assumption, taken
verbatim from [4], Definitions 4 and 5.

Definition 10 (Non-interactive complexity assumption). A non-
interactive complexity assumption (NICA) N = (T, V, U) consists of three
turing machines. The instance generation machine (c, w) $← T (1λ) takes the
security parameter as input, and outputs a problem instance c and a witness w.
U is a PPT machine, which takes as input c and outputs a candidate solution
s. The verification TM V takes as input (c, w) and a candidate solution s. If
V (c, w, s) = 1, then we say that s is a correct solution to the challenge c.

Definition 11. We say that B (t, ε)-breaks a NICA N = (T,U, V) if B runs in
time t(λ) and it holds that

|Pr[Expnica
B,N (1λ) ⇒ 1] − Pr[Expnica

U,N (1λ) ⇒ 1]| ≥ ε(λ),

where Expnica
B,N is the experiment defined in Fig. 9 and the probability is taken

over the random coins consumed by T and the uniformly random choices in the
experiment.

Now we are ready to formalize what we mean by a reduction Λ from a NICA
to the UF -CKS - heavyn security of NIKE. We closely follow the structure of [4]
and similar to [4,12,29,32,35] only consider a certain class of reductions.

Definition 12 (Simple reduction). We call a TM Λ a (tΛ, n, εΛ, εA)-reduction
from breaking a NICA N = (T,U, V) to breaking the UF -CKS - heavyn security of
NIKE, if Λ turns an adversary A = (A1,A2) that runs in time tA and has advantage
εA to break Expuf−cks−heavy

A,n,NIKE (as provided in Fig. 8) into a TM B that runs in time

86 J. Hesse et al.

tΛ + tA and has advantage εΛ to break N (see Definition 11). We call Λ simple,
if Λ has only black-box access to A and executes A only once (and in particular
without rewinding).

Expnica
B,N=(T,U,V)(λ):

(c, w) $← T (1λ)
s ← B(c)
return V (c, w, s)

Fig. 9. Security experiment for a non-interactive complexity assumption (NICA).

In the following we will only consider simple reductions. Note that even
though this seems to restrict the class of reductions heavily, actually most reduc-
tions (including reductions performing hybrid steps) are simple. The security
proofs of all existing NIKE schemes [10,14,17] we are aware of7 are simple
reductions.

Since our notion of UF -CKS - heavyn-security requires only two rounds of
interaction between the adversary and the challenger, we are able to give a very
compact formal description of the algorithm Λ := (Λ1, Λ2, Λ3) as follows:

– Λ1 is a probabilistic algorithm that gets as input a (set of) NICA challenge(s)
c and outputs public parameters PP, a set of identities and public keys
ID1, pk1, ..., IDn, pkn and a state st1.

– Λ2 is a deterministic algorithmn that receives as input C ⊆ [n] with |C| = 2
(else aborts) and st1 and outputs (st2, (ski)i∈[n]\C).

– Λ3 is a deterministic algorithm that receives as input st2 and K̃ and outputs
an s.

5.1 A Weaker Validity Check

We expand the results from [4] by relaxing the assumptions on the publicly check-
able validity of public keys. Recall that [4] requires a method PKCheck allowing to
efficiently verify whether a public key pk was generated by NIKE.KeyGen(PP, ID),
e.g., whether there exists a secret key sk and random coins r such that (pk, sk) ←
NIKE.KeyGen(PP, ID; r). We will only require the following notion of weak check-
ability of public keys. In particular, we only require it to be checkable whether
a public key is valid given a corresponding secret key.

Definition 13. Let NIKE be a NIKE with secret key space SK, identity space
IDS and public key space PK. We say that NIKE satisfies weak checkability of
public keys, if there exists a efficiently computable function

wPKCheck : IDS × PK × SK → {0, 1}
7 Remember that we restrict to 2-party key exchange protocols in the setting where a

PKI is available.

On Tightly Secure Non-Interactive Key Exchange 87

with the following properties:

For all (pk, sk) ← NIKE.KeyGen(PP, ID) we have wPKCheck(ID, pk, sk) = 1. (1)

For all (ID1, pk1, sk1), (ID1, pk1, sk
′
1), (ID2, pk2, sk2) with wPKCheck(ID1, pk1, sk1)

= wPKCheck(ID1, pk1, sk
′
1) = wPKCheck(ID2, pk2, sk2) = 1 it holds

NIKE.SharedKey(ID2, pk2, ID1, sk1) = NIKE.SharedKey(ID2, pk2, ID1, sk
′
1).
(2)

We call a secret key sk valid for (ID, pk) if wPKCheck(ID, pk, sk) = 1. We further
define the language of valid public keys

Lvalid := {(ID, pk) | ∃sk : wPKCheck(ID, pk, sk) = 1}.

Property 2 now implies that any two tuples (ID1, pk1), (ID2, pk2) ∈ Lvalid lead
to a unique shared key independently of which valid secret key is employed to
compute the shared key.

Remark 3. Note that a NIKE for which it can be efficiently verified whether a
pair (pk, sk) lies in the image of NIKE.KeyGen(PP, ID) in particular satisfies weak
checkability of public keys with

wPKCheck(ID, pk, sk) =

{
1 if ∃r : (pk, sk) = NIKE.KeyGen(PP, ID; r)
0 else

.

5.2 A Lower Bound on Tightness

In this section we show that if a NIKE NIKE satisfies weak checkable uniqueness,
then any simple reduction from a NICA to the UF -CKS - heavyn-security of
NIKE it has to inherently lose a factor of n/2 in reduction, where n is the number
of public keys. Further, we show that the NIKE NIKE presented in Fig. 5 satisfies
weak checkability of public keys. Note that by definition any NIKE supporting
weak checkability of public keys is perfectly correct, that is for all (IDi, pki, ski)

$←
NIKE.KeyGen(PP, IDi), i ∈ {1, 2}, we have

NIKE.SharedKey(ID1, pk1, ID2, sk2) = NIKE.SharedKey(ID2, pk2, ID1, sk1).

Theorem 3. Let N = (T,U, V) be a non-interactive complexity assumption and
n ∈ poly(λ). Let NIKE be a UF -CKS - heavyn secure NIKE with shared key space
K, public key space PK and secret key space SK which satisfies weak checkability
of public keys via algorithm wPKCheck. Let further evaluating wPKCheck require
time twPKCheck. Then any reduction Λ = (Λ1, Λ2, Λ3) from N to NIKE has to lose
a factor n/2 assuming N is hard. More formally, for any simple (tΛ, n, εΛ, 1)-
reduction from breaking the assumption N to breaking the UF -CKS - heavyn-
security of NIKE, there exists an adversary B breaking N in running time

tB ≤ n(n − 1)
2

tΛ +
n(n − 1)(n − 2)

2
twPKCheck

88 J. Hesse et al.

with success probability

εB ≥ εΛ − 2
n

.

Remark 4. We have εA = 1 and εB = η(λ) for a negligible function η (as N
is assumed to be hard). We can thus transform the last equation into εΛ ≤
2
nεA + η(λ). This implies the claimed reduction loss of n/2.

Proof. We follow the proof structure of [4,29,35].

The hypothetical adversary. In the following we describe a hypothetical
adversary A = (A1,A2). Note that this adversary might not be efficient, but in
order to prove the reduction loss of n/2 we show how to simulate it efficiently.

A1(PP, ID1, pk1, . . . , IDn, pkn) chooses C := {i�, j�} ⊆ [n] with |C| = 2 uni-
formly at random. It outputs (st , C), where st = (PP, ID1, pk1, . . . , IDn, pkn,
C).

A2(st , (ski)i∈[n]\C) checks whether wPKCheck(IDi, pki, ski) = 1 for all i ∈ [n] \
C and whether (IDi, pki) ∈ Lvalid for both i ∈ C. If this is the case A2

computes a secret key skj� s.t. wPKCheck(IDj� , pkj� , skj�) = 1 and outputs
K� = NIKE.SharedKey(IDi� , pki� , IDj� , skj�). Otherwise A2 outputs ⊥.

As we have (ID, pk, sk) ∈ Runique for all (pk, sk) ← NIKE.KeyGen(PP, ID) and
further NIKE.SharedKey returns a unique key for all tuples passing wPKCheck,
due to property 2 of Definition 13 the hypothetical adversary always wins in the
UF -CKS - heavyn experiment.

We now describe an adversary B attempting to break N = (T,U, V). The
strategy is to run the reduction Λ = (Λ1, Λ2, Λ3) simulating A efficiently. Let c
be the input of B, where (c, w) ← T (1λ). Let SK [],SK �[] be arrays of n entries
initialized by ∅ and maintained throughout the reduction by B.

1. The adversary B runs (st1,PP, ID1, pk1, . . . , IDn, pkn) ← Λ1(c).
2. The adversary B samples {i�, j�} = C� ⊂ [n] with |C�| = 2 uniformly at

random.
3. For each C ⊂ [n] with |C| = 2 the adversary B runs the reduction Λ2(st1, C).

Let (stC
2 , (skC

i)i∈[n]\C) denote the output of the respective execution. When-
ever wPKCheck(IDi, pki, sk

C
i) = 1 for an i ∈ [n] \ C the adversary sets

SK [i] = skC
i . If C = C�, B additionally sets SK �[i] = skC�

i

4. If there exists an i ∈ [n] \C� with SK �[i] = ∅ (i.e. wPKCheck(IDi, pki, sk
C�

i) =
0) or there exists a i ∈ C� such that SK [i] = ∅ (i.e. wPKCheck(IDi, pki, sk

C
i) =

0 for all C ⊆ [n] with |C| = 2) then B sets K� = ⊥. Otherwise B computes
K� = NIKE.SharedKey(IDi� , pki� , IDj� ,SK [j�]).

5. Finally, the adversary B outputs s
$← Λ3(stC�

2 , C�,K�).

Efficiency of B. In the third step Λ2 has to be executed
(
n
2

)
= n(n−1)

2 times.
Each time the validity check has to be performed n − 2 times. For the running
time of B it thus holds

tB ≤ n(n − 1)
2

tΛ +
n(n − 1)(n − 2)

2
twPKCheck.

On Tightly Secure Non-Interactive Key Exchange 89

Success probability of B. Let C� = {i�, j�} as before. Consider the following
two events:

check - fails : ∃i ∈ [n] \ C� such that SK �[i] = ∅
pk - valid : ∀i ∈ C� it holds that SK [i] �= ∅

We first want to show that in the case of check - fails ∨ pk - valid, B simulates
the hypothetical adversary A perfectly. If check - fails occurs, then B returns ⊥.
The hypothetical adversary would have returned ⊥ as well because in this case
it holds wPKCheck(IDi, pki, sk

C�

i) = 0 for an i ∈ [n] \ C�. If pk - valid occurs,
we have (IDi, pki) ∈ Lvalid for all i ∈ [n] (as in this case for each i ∈ [n]
there exists a set C ⊂ [n] such that the reduction Λ2 provided an skC

i with
wPKCheck(IDi, pki, sk

C
i) = 1 at some point). In this case the shared key K� is

unique by property 1 in Definition 13 and can be computed by B with the secret
key SK[j�].

We summarize all other possible cases in the event

bad = ¬check - fails ∧ ¬pk - valid,

which is well-defined, as Λ2 is deterministic.
We now bound the probability that bad happens. For this, we observe that

¬pk - valid can only occur if the event E := (∃i ∈ [n] s.t. SK[i] = ∅) occurs.
As C� is chosen uniformly at random and the view of Λ2 is independent of C�,
we have i ∈ [n] \ C� with probability 1 − 2/n. In this case check - fails occurs
and thus Pr[check - fails| E] ≥ 1 − 2/n. Now since ¬pk - valid ⇒ E it holds
that Pr[¬check - fails ∧ ¬pk - valid] ≤ Pr[¬check - fails ∧ E] = Pr[¬check - fails|E] ·
Pr[E] ≤ Pr[¬check - fails|E] = 1 − Pr[check - fails|E] ≤ 2/n. We thus obtain

Pr[bad] ≤ 2/n.

Let εB
∣
∣
¬bad

denote the probability of B to win under the condition that bad

does not occur and εΛ

∣
∣
¬bad

accordingly. We have

|εB − εΛ| ≤ ∣
∣εB

∣
∣
¬bad

− εΛ

∣
∣
¬bad

∣
∣ + Pr[bad] = Pr[bad] ≤ 2

n
.

Remark 5. As shown in [4] it is straightforward to generalize Theorem 3 to simple
(tΛ, n, εΛ, εA)-reductions for general εA by letting the hypothetical adversary
(and B respectively) toss a coin and only return K� with probability εA.

Remark 6. While Theorem 3 establishes the impossibility of tight security reduc-
tions for a large class of NIKE schemes, it thereby also gives a hint about how
a tight NIKE scheme has to be constructed. Namely, such a scheme has to vio-
late the assumptions made in the theorem such as the existence of an efficient
PKCheck that, given the secret key, decides uniqueness of shared keys. More
detailed, a tight NIKE scheme needs to allow a reduction to indistinguishably
switch public keys to invalid (in fact, even tightly switch many of them in one
step), such that invalid public keys admit many secret keys that lead do different
shared keys. It is an interesting open question how to construct such a scheme.

90 J. Hesse et al.

5.3 Weak Checkable Uniqueness of Our NIKE

Lemma 2. If instantiated with a hash proof system HPS where membership in
HSK is efficient checkable for all sets of secret keys in the image of HPS.Setup,
the NIKE NIKE presented in Fig. 5 complies with weak checkability of public keys.

Proof. Let PP := ((X,L,R),HSK,H, α, F) $← NIKE.Setup(1λ). We define

wPKCheck(ID, (hpk, x), (hsk, x, w)) :=

⎧
⎪⎨

⎪⎩

1 if hsk ∈ HSK ∧ α(hsk) = hpk

∧ (x,w) ∈ R

0 else
.

We have to show that wPKCheck is efficiently computable and further that
wPKCheck meets properties 1 and 2 in Definition 13. By prerequisites we have
that membership in HSK is efficiently checkable. Further, by definition of a hash
proof system the map α and the relation R are efficiently computable. Property
1 follows straightforward from the definition of wPKCheck. Note that actually we
have equality, that is

wPKCheck(ID, pk, sk) = 1 ⇔ ∃r : (pk, sk) = NIKE.KeyGen(PP, ID; r).

It remains to prove property 2: for all (ID1, pk1, sk1), (ID1, pk1, sk
′
1), (ID2, pk2,

sk2) that all pass wPKCheck we have

NIKE.SharedKey(ID2, pk2, ID1, sk1) = NIKE.SharedKey(ID2, pk2, ID1, sk
′
1).

Let in the following pk1 =: (hpk1, x1), pk2 =: (hpk2, x2), sk1 =: (hsk1, w1),
sk′

1 =: (hsk′
1, w

′
1) and sk2 =: (hsk2, w2). By the properties of the hash proof

system we have that for hsk1, hsk
′
1 ∈ HSK with α(hsk1) = α(hsk′

1) = hpk1 and
x2 ∈ L it holds

Hhsk1(x2) = F (x2, w2, hpk) = Hhsk′
1
(x2)

and for w′
1 with (x1, w

′
1) ∈ R it holds

F (x1, w1, hpk2) = Hhsk2(x1) = F (x1, w
′
1, hpk2).

This yields

NIKE.SharedKey(ID2, pk2, ID1, sk1) = Hhsk1(x2) ⊕ F (x1, w1, hpk2)
= Hhsk′

1
(x2) ⊕ F (x′

1, w
′
1, hpk2)

= NIKE.SharedKey(ID2, pk2, ID1, sk
′
1).

Corollary 1 (Informal). The security reduction in the proof of Theorem 1 is
optimal regarding tightness among all simple reductions.

Proof. Theorem 3 shows that simple security reductions for a NIKE admitting
a weak PKCheck encounter a loss of at least n/2. Lemma 2 proves that our
NIKE admits such a weak PKCheck and thus from Theorem 3 it follows that

On Tightly Secure Non-Interactive Key Exchange 91

UF -CKS - heavyn-security of our NIKE can only be shown by a simple reduc-
tion if the reduction loses at least a factor of n/2. Now Lemma 1 shows that
a UF -CKS - heavyn adversary tightly implies a HKR -CKS - heavy adversary.
Thus, any reduction with loss M from a NICA to HKR -CKS - heavy security
would imply a reduction with loss M to UF -CKS - heavyn security. It follows
that M ≥ n/2.

Remark 7. Since DKR-CKS-heavy security also tightly implies UF -CKS -
heavyn security, our result carries over to DKR-CKS-heavy secure NIKE schemes
that comply with weak checkable uniqueness.

Acknowledgements. We would like to thank Kenny Paterson for collaboration at
early stages of this work. Also, we would like to thank the anonymous reviewers of
Crypto 2018 for their helpful comments.

References

1. Abe, M., Hofheinz, D., Nishimaki, R., Ohkubo, M., Pan, J.: Compact structure-
preserving signatures with almost tight security. In: Katz, J., Shacham, H. (eds.)
CRYPTO 2017, Part II. LNCS, vol. 10402, pp. 548–580. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-63715-0 19

2. Abe, M., David, B., Kohlweiss, M., Nishimaki, R., Ohkubo, M.: Tagged one-time
signatures: tight security and optimal tag size. In: Kurosawa, K., Hanaoka, G. (eds.)
PKC 2013. LNCS, vol. 7778, pp. 312–331. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-36362-7 20

3. Attrapadung, N., Hanaoka, G., Yamada, S.: A framework for identity-based encryp-
tion with almost tight security. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015,
Part I. LNCS, vol. 9452, pp. 521–549. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-48797-6 22

4. Bader, C., Jager, T., Li, Y., Schäge, S.: On the impossibility of tight cryptographic
reductions. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS,
vol. 9666, pp. 273–304. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-49896-5 10

5. Bader, C., Hofheinz, D., Jager, T., Kiltz, E., Li, Y.: Tightly-secure authenticated
key exchange. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part I. LNCS, vol.
9014, pp. 629–658. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-46494-6 26

6. Bellare, M., Boldyreva, A., Micali, S.: Public-key encryption in a multi-user setting:
security proofs and improvements. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 259–274. Springer, Heidelberg (2000). https://doi.org/10.1007/3-
540-45539-6 18

7. Blazy, O., Kiltz, E., Pan, J.: (Hierarchical) identity-based encryption from affine
message authentication. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part
I. LNCS, vol. 8616, pp. 408–425. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-662-44371-2 23

8. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its appli-
cations (Extended Abstract). In: Proceedings of 20th ACM STOC, pp. 103–112.
ACM Press, May 1988

https://doi.org/10.1007/978-3-319-63715-0_19
https://doi.org/10.1007/978-3-642-36362-7_20
https://doi.org/10.1007/978-3-642-36362-7_20
https://doi.org/10.1007/978-3-662-48797-6_22
https://doi.org/10.1007/978-3-662-48797-6_22
https://doi.org/10.1007/978-3-662-49896-5_10
https://doi.org/10.1007/978-3-662-49896-5_10
https://doi.org/10.1007/978-3-662-46494-6_26
https://doi.org/10.1007/978-3-662-46494-6_26
https://doi.org/10.1007/3-540-45539-6_18
https://doi.org/10.1007/3-540-45539-6_18
https://doi.org/10.1007/978-3-662-44371-2_23
https://doi.org/10.1007/978-3-662-44371-2_23

92 J. Hesse et al.

9. Boneh, D., Venkatesan, R.: Breaking RSA may not be equivalent to factoring.
In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 59–71. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0054117

10. Cash, D., Kiltz, E., Shoup, V.: The Twin Diffie-Hellman problem and applications.
In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 127–145. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3 8

11. Chen, J., Wee, H.: Fully, (almost) tightly secure IBE and dual system groups. In:
Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 435–
460. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1 25

12. Coron, J.-S.: Optimal security proofs for PSS and other signature schemes. In:
Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 272–287. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7 18

13. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-46035-7 4

14. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf. The-
ory 22(6), 644–654 (1976)

15. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework
for Diffie-Hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013,
Part II. LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-40084-1 8

16. Fleischhacker, N., Jager, T., Schröder, D.: On tight security proofs for Schnorr
signatures. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part I. LNCS, vol.
8873, pp. 512–531. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-45611-8 27

17. Freire, E.S.V., Hofheinz, D., Kiltz, E., Paterson, K.G.: Non-interactive key
exchange. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp.
254–271. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36362-
7 17

18. Garg, S., Bhaskar, R., Lokam, S.V.: Improved bounds on security reductions for
discrete log based signatures. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol.
5157, pp. 93–107. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
85174-5 6

19. Gay, R., Hofheinz, D., Kohl, L.: Kurosawa-Desmedt meets tight security. In: Katz,
J., Shacham, H. (eds.) CRYPTO 2017, Part III. LNCS, vol. 10403, pp. 133–160.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63697-9 5

20. Gay, R., Hofheinz, D., Kiltz, E., Wee, H.: Tightly CCA-secure encryption without
pairings. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part I. LNCS,
vol. 9665, pp. 1–27. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-49890-3 1

21. Gennaro, R., Lindell, Y.: A framework for password-based authenticated key
exchange. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 524–543.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9 33

22. Goldwasser, S., Micali, S., Rivest, R.L.: A Digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988)

23. Gong, J., Chen, J., Dong, X., Cao, Z., Tang, S.: Extended nested dual system
groups, revisited. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.)
PKC 2016, Part I. LNCS, vol. 9614, pp. 133–163. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49384-7 6

https://doi.org/10.1007/BFb0054117
https://doi.org/10.1007/978-3-540-78967-3_8
https://doi.org/10.1007/978-3-642-40084-1_25
https://doi.org/10.1007/3-540-46035-7_18
https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/978-3-662-45611-8_27
https://doi.org/10.1007/978-3-662-45611-8_27
https://doi.org/10.1007/978-3-642-36362-7_17
https://doi.org/10.1007/978-3-642-36362-7_17
https://doi.org/10.1007/978-3-540-85174-5_6
https://doi.org/10.1007/978-3-540-85174-5_6
https://doi.org/10.1007/978-3-319-63697-9_5
https://doi.org/10.1007/978-3-662-49890-3_1
https://doi.org/10.1007/978-3-662-49890-3_1
https://doi.org/10.1007/3-540-39200-9_33
https://doi.org/10.1007/978-3-662-49384-7_6

On Tightly Secure Non-Interactive Key Exchange 93

24. Guo, F., Chen, R., Susilo, W., Lai, J., Yang, G., Mu, Y.: Optimal security reduc-
tions for unique signatures: bypassing impossibilities with a counterexample. In:
Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part II. LNCS, vol. 10402, pp. 517–
547. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63715-0 18

25. Hesse, J., Hofheinz, D., Kohl, L.: On tightly secure non-interactive key exchange.
In: IACR Cryptology ePrint Archive 2018, p. 237 (2018). http://eprint.iacr.org/
2018/237

26. Hofheinz, D.: Adaptive partitioning. In: Coron, J.-S., Nielsen, J.B. (eds.) EURO-
CRYPT 2017, Part II. LNCS, vol. 10212, pp. 489–518. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-56617-7 17

27. Hofheinz, D.: Algebraic partitioning: fully compact and (almost) tightly secure
cryptography. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016, Part I. LNCS,
vol. 9562, pp. 251–281. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-49096-9 11

28. Hofheinz, D., Jager, T.: Tightly secure signatures and public-key encryption. In:
Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 590–607.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5 35

29. Hofheinz, D., Jager, T., Knapp, E.: Waters signatures with optimal security reduc-
tion. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol.
7293, pp. 66–83. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
30057-8 5

30. Hofheinz, D., Kiltz, E.: Secure hybrid encryption from weakened key encapsulation.
In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 553–571. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5 31

31. Hofheinz, D., Koch, J., Striecks, C.: Identity-based encryption with (almost) tight
security in the multi-instance, multi-ciphertext setting. In: Katz, J. (ed.) PKC
2015. LNCS, vol. 9020, pp. 799–822. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-46447-2 36

32. Kakvi, S.A., Kiltz, E.: Optimal security proofs for full domain hash, revisited. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
537–553. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 32

33. Katz, J., Ostrovsky, R., Yung, M.: Efficient password-authenticated key exchange
using human-memorable passwords. In: Pfitzmann, B. (ed.) EUROCRYPT 2001.
LNCS, vol. 2045, pp. 475–494. Springer, Heidelberg (2001). https://doi.org/10.
1007/3-540-44987-6 29

34. Katz, J., Wang, N.: Efficiency improvements for signature schemes with tight secu-
rity reductions. In: Jajodia, S., Atluri, V., Jaeger, T. (eds.) ACM CCS 03, pp.
155–164. ACM Press, October 2003

35. Lewko, A., Waters, B.: Why proving HIBE systems secure is difficult. In: Nguyen,
P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 58–76. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5 4

36. Libert, B., Peters, T., Joye, M., Yung, M.: Compactly hiding linear spans. In: Iwata,
T., Cheon, J.H. (eds.) ASIACRYPT 2015, Part I. LNCS, vol. 9452, pp. 681–707.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48797-6 28

37. Libert, B., Joye, M., Yung, M., Peters, T.: Concise multi-challenge CCA-secure
encryption and signatures with almost tight security. In: Sarkar, P., Iwata, T.
(eds.) ASIACRYPT 2014, Part II. LNCS, vol. 8874, pp. 1–21. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-45608-8 1

https://doi.org/10.1007/978-3-319-63715-0_18
http://eprint.iacr.org/2018/237
http://eprint.iacr.org/2018/237
https://doi.org/10.1007/978-3-319-56617-7_17
https://doi.org/10.1007/978-3-662-49096-9_11
https://doi.org/10.1007/978-3-662-49096-9_11
https://doi.org/10.1007/978-3-642-32009-5_35
https://doi.org/10.1007/978-3-642-30057-8_5
https://doi.org/10.1007/978-3-642-30057-8_5
https://doi.org/10.1007/978-3-540-74143-5_31
https://doi.org/10.1007/978-3-662-46447-2_36
https://doi.org/10.1007/978-3-662-46447-2_36
https://doi.org/10.1007/978-3-642-29011-4_32
https://doi.org/10.1007/978-3-642-29011-4_32
https://doi.org/10.1007/3-540-44987-6_29
https://doi.org/10.1007/3-540-44987-6_29
https://doi.org/10.1007/978-3-642-55220-5_4
https://doi.org/10.1007/978-3-662-48797-6_28
https://doi.org/10.1007/978-3-662-45608-8_1

94 J. Hesse et al.

38. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen
ciphertext attacks. In: Proceedings of 22nd ACM STOC, pp. 427–437. ACM Press,
May 1990

39. Seurin, Y.: On the exact security of Schnorr-type signatures in the random oracle
model. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol.
7237, pp. 554–571. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-29011-4 33

https://doi.org/10.1007/978-3-642-29011-4_33
https://doi.org/10.1007/978-3-642-29011-4_33

Practical and Tightly-Secure
Digital Signatures and Authenticated

Key Exchange

Kristian Gjøsteen1 and Tibor Jager2(B)

1 NTNU - Norwegian University of Science and Technology, Trondheim, Norway
kristian.gjosteen@ntnu.no

2 Paderborn University, Paderborn, Germany
tibor.jager@upb.de

Abstract. Tight security is increasingly gaining importance in real-
world cryptography, as it allows to choose cryptographic parameters
in a way that is supported by a security proof, without the need to
sacrifice efficiency by compensating the security loss of a reduction
with larger parameters. However, for many important cryptographic
primitives, including digital signatures and authenticated key exchange
(AKE), we are still lacking constructions that are suitable for real-world
deployment.

We construct the first truly practical signature scheme with tight secu-
rity in a real-world multi-user setting with adaptive corruptions. The
scheme is based on a new way of applying the Fiat-Shamir approach to
construct tightly-secure signatures from certain identification schemes.

Then we use this scheme as a building block to construct the first
practical AKE protocol with tight security. It allows the establishment
of a key within 1 RTT in a practical client-server setting, provides for-
ward security, is simple and easy to implement, and thus very suitable for
practical deployment. It is essentially the “signed Diffie-Hellman” pro-
tocol, but with an additional message, which is crucial to achieve tight
security. This additional message is used to overcome a technical diffi-
culty in constructing tightly-secure AKE protocols.

For a theoretically-sound choice of parameters and a moderate num-
ber of users and sessions, our protocol has comparable computational
efficiency to the simple signed Diffie-Hellman protocol with EC-DSA,
while for large-scale settings our protocol has even better computational
performance, at moderately increased communication complexity.

1 Introduction

Tight security. In modern cryptography it is standard to propose new cryp-
tographic constructions along with a proof of security. The provable security
paradigm, which goes back to a seminal work of Goldwasser and Micali [27],

K. Gjøsteen—Funded by The Research Council of Norway under Project No. 248166.

c© International Association for Cryptologic Research 2018
H. Shacham and A. Boldyreva (Eds.): CRYPTO 2018, LNCS 10992, pp. 95–125, 2018.
https://doi.org/10.1007/978-3-319-96881-0_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96881-0_4&domain=pdf

96 K. Gjøsteen and T. Jager

becomes increasingly relevant for “real-world” cryptosystems today. For instance,
the upcoming TLS version 1.31 is the first version of this important protocol where
formal security proofs were used as a basis for several fundamental design deci-
sions [44].

A security proof usually describes a reduction (in a complexity-theoretic
sense), which turns an efficient adversary A breaking the considered cryptosys-
tem into an efficient adversary B breaking some underlying complexity assump-
tion, such as the discrete logarithm problem, for example. If B can be shown to
have about the same running time and success probability as A (up to a constant
factor), then the reduction is said to be tight. However, many security proofs are
not tight. For example, we are often only able to show that if A runs in time tA
and has success probability εA, then B runs in time tB ≈ tA, but we can bound
its success probability only as εB ≥ εA/Q, where Q is the security loss. Q can
often be “large”, e.g., linear or even quadratic in the number of users.

If Q is polynomially bounded, then this still yields a polynomial-time reduc-
tion in the sense of classical asymptotic complexity theory. However, if we want
to deploy the cryptosystem in practice, then the size of cryptographic parameters
(like for instance the size of an underlying algebraic group, where the discrete
logarithm problem is assumed to be hard) must be determined. If we want to
choose these parameters in a theoretically-sound way, then a larger loss Q must
be compensated by larger parameters, which in turn has a direct impact on
efficiency. For example, in the discrete logarithm setting, this would typically
require an increase in the group order by a factor Q2. As a concrete example,
232 users with 232 sessions each and quadratic security loss would force us to
use 521 bit elliptic curves instead of 256 bit elliptic curves, which more than
quintuples the cost of an exponentiation on one typical platform (as measured
by openssl speed). Thus, in order to be able to instantiate the cryptosystem
with “optimal” parameters, we need a tight security proof.

The possibility and impossibility of tight security proofs has been consid-
ered for many primitives, including symmetric encryption [29,31,36], public-key
encryption [3,5,24,32], (hierarchical) identity-based encryption [11,16], digital
signatures [22,23,32,33,37,43,45,47], authenticated key exchange [2], and more.
It also becomes increasingly relevant in “real-world” cryptography. For instance,
most recently, Gueron and Lindell [29] improved the tightness of the AES-
GCM-SIV nonce misuse-resistant encryption scheme, with a new nonce-based
key derivation method. This construction is now part of the current draft of the
corresponding RFC proposal,2 won the best paper award at ACM CCS 2017,
and is already used in practice in Amazon’s AWS key management scheme.3

In many important areas with high real-world relevance, including digital
signature schemes and authenticated key exchange protocols, we still do not
have any tightly-secure constructions that are suitable for practical deployment.
Known schemes either have a security loss which is at least linear in the number

1 See https://tools.ietf.org/html/draft-ietf-tls-tls13-23 for the latest draft.
2 See https://tools.ietf.org/html/draft-irtf-cfrg-gcmsiv-07.
3 See https://rwc.iacr.org/2018/Slides/Gueron.pdf.

https://tools.ietf.org/html/draft-ietf-tls-tls13-23
https://tools.ietf.org/html/draft-irtf-cfrg-gcmsiv-07
https://rwc.iacr.org/2018/Slides/Gueron.pdf

Practical and Tightly-Secure Digital Signatures 97

of users (typical for digital signatures) or even quadratic in the number of proto-
col sessions (typical for authenticated key exchange), if a real-world multi-user
security model is considered. This huge security loss often makes it impossible
to choose deployment parameters in a theoretically-sound way, because such
parameters would have to be unreasonably large and thus impractical.

1.1 Tightly-Secure Digital Signatures

In the domain of digital signatures, there are two relevant dimensions for tight-
ness: (i) the number of signatures issued per public key, and (ii) the number of
users (=public keys).

For some important “real-world” schemes, such as Schnorr signatures, impos-
sibility results suggest that current proof techniques are not sufficient to achieve
tightness [22,23,43,47], not even if only the first dimension is considered in a
single-user setting. Some other schemes have a tight security proof in the first
dimension [10,32,37,45]. However, in a more realistic multi-user setting with
adaptive corruptions, which appears to be the “right” real-world security notion
for applications of signatures such as key exchange, cryptocurrencies, secure
instant messaging, or e-mail signatures, there are only very few constructions
with tight security in both dimensions.

One construction is due to Bader [1]. It is in the random oracle model [6],
but this seems reasonable, given the objective of constructing simple and effi-
cient real-world cryptosystems. However, the construction requires bilinear maps
(aka. pairings). Even though bilinear maps have become significantly more effi-
cient in the past years, their practical usability is still not comparable to schemes
over classical algebraic groups, such as elliptic curves without pairings. Fur-
thermore, bilinear maps involve rather complex mathematics, and are therefore
rather difficult to implement, and not yet available on many platforms and soft-
ware libraries, in particular not for resource-constrained lightweight devices or
smartcards. Finally, recent advances in solving the discrete logarithm problem
[4] restrain the applicability of bilinear maps in settings with high performance
and security requirements.

The other two known constructions are due to Bader et al. [2]. Both have a
security proof in the standard model (i.e., without random oracles), but are also
based on bilinear maps. The first one uses a simulation-sound Groth-Sahai [28]
proof system, which internally uses a tree-based signature scheme to achieve
tightness. Thus, a signature of the resulting construction consists of hundreds
of group elements, and is therefore not suitable for practical deployment. The
second scheme is more efficient, but here public keys consist of hundreds of group
elements, which is much larger than the public key size of any other schemes
currently used in practice, and seems too large for many applications.

In summary, the construction of a practical signature scheme without bilin-
ear maps, which provides tight security in a realistic multi-user setting with
corruptions and in the standard sense of existential unforgeability under chosen-
message attacks, is an important open problem. A solution would provide a very
useful building block for applications where the multi-user setting with adaptive

98 K. Gjøsteen and T. Jager

corruptions appears to be the “right” real-world security notion, such as those
mentioned above.

The difficulty of constructing tightly-secure signatures. Constructing a tightly-
secure signature scheme in a real-world multi-user security model with adaptive
corruptions faces the following technical challenge. In the μ-user setting, the
adversary A receives as input a list pk1, . . . , pkμ of public keys. We denote the
corresponding secret keys with sk1, . . . , skμ. A is allowed to ask two types of
queries. It may either output a tuple (m, i), to request a signature for a cho-
sen message m under secret key sk i. The security experiment responds with
σ

$← Sign(sk i,m). Or it may “corrupt” keys. To this end, it outputs an index
i, and the experiment responds with sk i. Adversary A breaks the security, if
it outputs (i∗,m∗, σ∗) such that σ∗ verifies correctly for a new message m∗

and with respect to an uncorrupted key pk i∗ . Note that this is the natu-
ral extension of existential unforgeability under chosen-message attacks (EUF-
CMA) to the multi-user setting with corruptions. Following [2], we will call it
MU-EUF-CMAcorr-security . Security in this sense is implied by the standard EUF-
CMA security definition, by a straightforward reduction that simply guesses the
index i∗ of the uncorrupted key, which incurs a security loss of Q = 1/μ that is
linear in the number of users.

Now let us consider the difficulty of constructing a security reduction B which
does not lose a factor Q = 1/μ. On the one hand, in order to avoid the need to
guess an uncorrupted key, B must “know” all secret keys sk1, . . . , skμ, in order
to be able to answer key corruption queries.

On the other hand, however, the reduction B must be able to extract the
solution to a computationally hard problem from the forgery (i∗,m∗, σ∗). If B
“knows” sk i∗ , then it seems that it could compute (m∗, σ∗) even without the help
of the adversary. Now, if B is then able to extract the solution of a “hard” com-
putational problem from (m∗, σ∗), then this means that the underlying hardness
assumption must be false, and thus the reduction B is not meaningful.

The above argument seems to suggests that achieving tight MU-EUF-CMAcorr-
security is impossible. One can even turn this intuition into a formal impossi-
bility result, as done in [3]. However, it turns out that the impossibility holds
only for schemes where the distribution of signatures that are computable with a
secret key sk i∗ known to reduction B is identical to the distribution of signatures
(m∗, σ∗) output by adversary A. This provides a leverage to overcome the seem-
ing impossibility. Indeed, the known constructions of tightly MU-EUF-CMAcorr-
secure schemes [1,2] circumvent the impossibility result. As we describe below
in more detail, these constructions essentially ensure that with sufficiently high
probability the adversary A will output a message-signature pair (m∗, σ∗) such
that σ∗ is not efficiently computable, even given sk i∗ .

The main technical challenge in constructing signature schemes with tight
security in a real-world multi-user security model with corruptions is therefore
to build the scheme in a way that makes it possible to argue that the reduction
B is able to extract the solution to a computationally hard problem from the
forged signature computed by A, even though B knows secret keys for all users.

Practical and Tightly-Secure Digital Signatures 99

On constructing tightly-secure signatures without bilinear maps. All previously
known tightly MU-EUF-CMAcorr-secure signature schemes [1,2] essentially work
as follows. A public key pk consists of two public keys pk = (pk0, pk1) of a “base”
signature scheme, which is tightly-secure in a multi-user setting without corrup-
tions. The secret key sk consists of a random secret key sk = sk b, b

$← {0, 1},
for either pk0 or pk1. A signature consists of a Groth-Sahai-based [28] witness-
indistinguishable OR-proof of knowledge, proving knowledge of a signature that
verifies either under pk0 OR under pk1. In the security proof, the reduction B
basically knows sk b (and thus is able to respond to all corruption-queries of A),
but it hopes that A produces a proof of knowledge of a signature under pk1−b,
which can then be extracted from the proof of knowledge and be used to break
the instance corresponding to pk1−b.

A natural approach to adopt this technique to signatures without pair-
ings would be to use a Fiat-Shamir-like proof of knowledge [21], in combi-
nation with the very efficient OR-proofs of Cramer-Damg̊ard-Schoenmakers
(CDS) [18]. However, here we face the following difficulties. First, existing sig-
nature schemes that use a Fiat-Shamir-like proof of knowledge, such as for the
Schnorr scheme [46], are already difficult to prove tightly secure in the single-
user setting, due to known impossibility results [22,23,43,47]. Second, its tightly-
secure variants, such as the DDH-based scheme of Katz-Wang [37] and the CDH-
based schemes of Goh-Jarecki [25] or Chevallier-Mames [17], do not use a proof
of knowledge, but actually a proof of language membership, where we cannot
extract a witness along the lines of [1,2]. Thus, adopting the approach of [1,2]
to efficient signature schemes without pairings requires additional ideas and new
techniques.

Our contributions. We construct the first tightly MU-EUF-CMAcorr-secure signa-
ture scheme which does not require bilinear maps. We achieve this by describing a
new way of combining the efficient EDL signature scheme considered in [25] with
Cramer-Damg̊ard-Schoenmakers proofs [18], in order to obtain tightly-secure sig-
natures in the multi-user setting with adaptive corruptions.

The scheme is very efficient, in particular in comparison to previous schemes
with tight multi-user security. A public key consists of only two group elements,
while the secret key consists of a bit and one integer smaller than the group
order. A signature consists of a random nonce, two group elements and four
integers smaller than the group order. The computational cost of the algorithms
is dominated by exponentiations. Key generation costs a single exponentiation.
Signing costs a single exponentiation plus the generation of a proof, for a total
of seven exponentiations. Verification costs eight exponentiations.

1.2 Tightly-Secure Authenticated Key Exchange

Modern security models for authenticated key exchange consider very strong
adversaries, which control the entire communication network, may adaptively
corrupt parties to learn their long-term secret keys, or reveal session keys
of certain sessions. This includes all security models that follow the classical

100 K. Gjøsteen and T. Jager

Bellare-Rogaway [7] or Canetti-Krawczyk [14] approach, for instance. The adver-
sary essentially breaks the security, if it is able to distinguish a non-revealed
session key from random. Furthermore, in order to achieve desirable properties
like forward security (aka. perfect forward secrecy) [30], the attacker is even
allowed to attack session keys belonging to sessions where one or both parties
are corrupted, as long as these corruptions do not allow the adversary to trivially
win the security experiment (e.g., because it is able to corrupt a communication
partner before the key is computed, such that the attacker can impersonate this
party).

The huge complexity of modern security models for authenticated key
exchange makes it difficult to construct tightly-secure protocols. Most exam-
ples of modern key exchange protocols even have a quadratic security loss in the
total number of protocol sessions, which stems from the fact that a reduction has
to guess two oracles in the security experiment that belong to the protocol ses-
sion “tested” by the adversary (cf. the discussion of the “commitment problem”
below).

Despite the huge practical importance of authenticated key exchange proto-
cols, we currently know only a single example of a protocol that achieves tight
security [2], but it requires complex building blocks, such as one of the tightly-
secure signature schemes sketched above, as well as a special key encapsulation
mechanisms that is composed of two public-key encryption schemes. Given the
huge demand for efficient key exchange protocol in practice, the construction of
a simple and efficient, yet tightly-secure, authenticated key exchange protocol
without these drawbacks is an important open problem.

Our contributions. We describe the first truly practical key exchange protocol
with tight security in a standard security model for authenticated key exchange.
The construction (but not the security proof) is very simple, which makes the
protocol easy to implement and ready to use, even on simple devices.

Our protocol is able to establish a key with very low latency, in three mes-
sages and within a single round-trip time (1-RTT) in a standard client-server
setting. This holds even in a typical real-world situation where both communi-
cation partners are initially not in possession of their communication partner’s
public keys, and therefore have to exchange their certified public keys within the
protocol. Furthermore, the protocol provides full forward security.

In Sect. 5 we analyse the computational efficiency of our protocol, instanti-
ated with our signature scheme, by comparing it to the simple “signed Diffie-
Hellman” protocol, instantiated with EC-DSA. The analysis is based on the
benchmark for ECC arithmetic of OpenSSL, and considers a theoretically-sound
choice of cryptographic parameters based on the tightness of security proofs.
Even though our protocol requires a larger absolute number of exponentiations,
already in small-to-medium-scale settings this is quickly compensated by the fact
that arithmetic in large groups is significantly more costly than in small groups.
In a large-scale setting, our protocol even outperforms signed Diffie-Hellman
with EC-DSA with respect to computational performance. This comes at the

Practical and Tightly-Secure Digital Signatures 101

cost of moderately increased communication complexity, when compared to the
(extremely communication-efficient) EC-DSA-signed Diffie-Hellman protocol.

Sketch of our construction and technical difficulties. Our starting point is the
standard “signed Diffie-Hellman” protocol, instantiated with our tightly-secure
multi-user signature scheme. However, we stress that this is not yet sufficient to
achieve tight security, due to the “commitment problem” described below. We
resolve this problem with an additional message, which is important to achieve
tight security, but does not add any additional latency to the protocol.

More precisely, consider the standard “signed Diffie-Hellman” protocol, exe-
cuted between Alice and Bob, where Bob first sends v = (gb, σB), where σB is
a signature under Bob’s secret key over gb, Alice responds with w = (ga, σA),
where σA is Alice’s signature over ga, and the resulting key is k = gab. Let us
sketch why this protocol seems not to allow for a tight security proof.

In a Bellare-Rogaway-style security model, such as the one that we describe
in Sect. 4.1, each session of each party is modelled by an oracle πs

i , where (i, s) ∈
[μ]×[�], μ is the number of parties and � is the number of sessions per party. Now,
consider a reduction B which receives as input a DDH challenge (g, gx, gy, gz),
and now wants to embed these values into the view of the key exchange adversary
A. One way to do this, which is used in most existing security proofs of “signed
Diffie-Hellman-like” protocols (such as [34,35,39], for instance) is to guess two
oracles πs

i and πt
j , embed gx into the message sent by πs

i , gy into the message
sent by πt

j , and then hope that the adversary will forward gy to πs
i and “test” the

key of oracle πs
i , where the gz-value from the DDH challenge is then embedded.

Note that the need to guess two out of μ� oracles correctly incurs a quadratic
security loss of O(μ2�2), which is extremely non-tight.

A natural approach to improve tightness is to use the well-known random
self-reducibility of DDH [5], and embed randomised versions of gx and gy into the
messages of more than one oracle. However, here we face the following difficulty.
As soon as an oracle πs

i has output a Diffie-Hellman share ga, the reduction B
has essentially committed itself to whether it “knows” the discrete logarithm a.

– If oracle πs
i outputs a randomised version of gx, ga = gx+es

i where es
i is the

randomization, then B does not “know” the discrete logarithm a = x + es
i .

Now it may happen that the adversary A, which controls the network and
possibly also some parties, sends a value h to oracle πs

i (on behalf of some
third party), such that h is not controlled by the reduction B. If then A asks
the reduction to reveal the key of oracle πs

i , then the reduction fails, because
it is not able to efficiently compute k = ha.

– This problem does not occur, if ga = ges
i such that B “knows” the discrete

logarithm a. However, if it now happens that the adversary A decides to
distinguish the key k of oracle πs

i from random, then again the reduction fails,
because it is not able to embed gz into k.

This “commitment problem” is the reason why many classical security proofs,
in particular for signed Diffie-Hellman protocols, have a quadratic security loss.

102 K. Gjøsteen and T. Jager

They embed a DDH challenge into the view of adversary A by guessing two out
of μ� oracles, and the reduction will fail if the guess is incorrect.

We resolve the commitment problem in a novel way by adding an additional
message. We change the protocol such that Alice initiates the protocol with a
message u = G(ga), where G is a cryptographic hash function (cf. Fig. 3). This
message serves as a commitment by Alice to ga. Then the protocol proceeds
as before: Bob sends v = (gb, σB), Alice responds with w = (ga, σA), and the
resulting key is k = gab.4 However, Bob will additionally check whether the
first message u received from Alice matches the third protocol message, that is,
u = G(ga), and abort if not.

As we will prove formally in Sect. 4.2, the additional message u resolves the
commitment problem as follows. We will model G as a random oracle. This
guarantees that from the point of view of the adversary A, a value G(h) forms
a binding and hiding commitment to h. However, for the reduction B, u is not
binding, because B controls the random oracle. We will construct B such that
whenever an oracle πs

i outputs a first protocol message u, then receives back a
message v = (gb, σB), and now has to send message w = (ga, σA), then B it is
able to retroactively decide to embed the element gx from the DDH challenge
into u such that u = G(gx+es

i), or not and it holds that u = G(ges
i). This is

possible by re-programming the random oracle in a suitable way.5

We will explain in Sect. 4.2 that the additional message u does not increase
latency to the protocol, when used in a standard client-server setting. This is
essentially because Alice can send cryptographically protected payload imme-
diately after receiving message v = (gb, σB) from Bob, along with message
w = (ga, σA). Thus, in a typical client-server setting, where the client initi-
ates the protocol and then sends data to the server, the overhead required to
establish a key is only 1 RTT, exactly like for ordinary signed Diffie-Hellman.

Outline. Section 2 recalls the necessary background and standard definitions.
The signature scheme is described and proven secure in Sect. 3, the AKE protocol
is considered in Sect. 4.

2 Background

In this section, we recap some background and standard definitions of Diffie-
Hellman problems, the Fiat-Shamir heuristic, and digital signatures.

4 Our actual protocol will compute the key as k = H(gab) for a hash function H, but
this is not relevant here.

5 We note that a programmable random oracle is not inherently necessary here.
Instead, we could use an equivocal commitment scheme [19] in place of random
oracle G. However, this would make the protocol more complex. Since we want to
maximise efficiency and simplicity of the protocol, we consider the random oracle as
an adequate choice for our purpose.

Practical and Tightly-Secure Digital Signatures 103

Diffie-Hellman Problems. Let G denote a cyclic group of prime order p and
let g be a generator. Let DDH be the set of DDH tuples {(ga, gb, gab) | a, b ∈
{0, 1, . . . , p − 1}.

Definition 1. Let A be an algorithm that takes two group elements as input
and outputs a group element. The success probability af A against the Compu-
tational Diffie-Hellman (CDH) problem is

SuccCDH
G,g (A) = Pr[A(x, y) = z | (x, y, z) ← DDH].

We say that A (t, ε)-breaks CDH if A runs in time t and its success probability
SuccCDH

G,g (A) is at least ε.

Definition 2. Let A be an algorithm that takes three group elements as input
and outputs 0 or 1. The advantage of A against the Decision Diffie-Hellman
(DDH) problem [12] is

AdvDDH
G,g (A) = |Pr[A(x, y, z) = 0 | (x, y, z) ← DDH]−

Pr[A(x, y, z) = 0 | (x, y, z) ← G
3]|.

We say that A (t, ε)-breaks DDH if A runs in time t and its advantage
AdvDDH

G,g (A) is at least ε.

In proofs, it is often convenient to consider an adversary that sees multiple
CDH/DDH problems. The n-CDH adversary must solve a CDH problem, but
it gets to choose the group elements from two lists of randomly chosen group
elements. The n-DDH adversary gets n tuples, all of which are either DDH tuples
or random tuples. Again, it is often convenient if some of these DDH tuples share
coordinates.

Definition 3. Let A be an algorithm that takes as input 2n group elements and
outputs two integers and a group element. The success probability of A against
the n-CDH problem is

Succn-CDH
G,g (A) = Pr

[
(xi, yj , z) ∈ DDH

∣∣∣∣ x1, . . . , xn, y1, . . . , yn ← G;
(i, j, z) ← A(x, . . . , xn, y1, . . . , yn)

]
.

Definition 4. Let A be an algorithm that outputs 0 or 1. A has access to an
oracle that on input of an integer i returns three group elements. If i > 0, then
the first group element returned will be the same as the first group element in
the oracle’s ith response. Let O0 be such an oracle that returns randomly chosen
DDH tuples. Let O1 be such an oracle that returns randomly chosen triples of
group elements.

The advantage of the algorithm A against the n-DDH problem is

Advn-DDH
G,g (A′) = |Pr[AO0 = 0] − Pr[AO1 = 0]|.

104 K. Gjøsteen and T. Jager

It is clear that 1-CDH and 1-DDH correspond to the ordinary problems.
Likewise, it is clear that we can embed a CDH or DDH problem in a n-CDH or
n-DDH problem, so a hybrid argument would relate their advantage. However,
the DH problems are random self-reducible, which means that we can create
better bounds.

Theorem 1. Let A be an adversary against n-CDH. Then there exists an adver-
sary B against CDH such that

Succn-CDH
G,g (A) = SuccCDH

G,g (B).

The difference in running time is linear in n.

Theorem 2. Let A be an adversary against n-DDH. Then there exists an adver-
sary B against DDH such that

Advn-DDH
G,g (A′) ≤ AdvDDH

G,g (B) +
1
p
.

The difference in running time is linear in n.

The proof of the first theorem is straight-forward. A proof of the second
theorem can be found in e.g. Bellare, Boldyreva and Micali [5].

Proofs of equality of discrete logarithms. Sigma protocols are special three-move
protocols originating in the Schnorr identification protocol [46]. We shall need
a proof of equality for discrete logarithms [15] together with the techniques for
creating a witness-indistinguishable OR-proof [18].

Let y, x, z ∈ G be such that x = ga and z = ya. The standard sigma protocol
[15] for proving that logg x = logy z works as follows:

Commitment. Sample ρ ← {0, 1, . . . , p − 1}. Compute α0 = gρ and α1 = yρ.
The commitment is (α0, α1).

Challenge. Sample β ← {0, 1, . . . , p − 1}. The challenge is β.
Response. Compute γ ← ρ − βa mod p. The response is γ.
Verification. The verifier accepts the response if

α0 = gγxβ α1 = yγzβ .

The usual special honest verifier zero knowledge simulator producing a sim-
ulated conversation on public input (x, y, z) and challenge β is denoted by
ZSimeq(x, y, z;β), and it is a perfect simulator. The cost of generating a proof is
dominated by the two exponentiations, while the simulation cost is dominated
by four exponentiations.

We turn the proofs non-interactive using the standard Fiat-Shamir [21]
heuristic, in which case the proof is a pair of integers (β, γ). We denote the
algorithm for generating a non-interactive proof πeq that logg x = logy z by
ZPrveq(a;x, y, z). The algorithm for verifying that πeq is a valid proof of this

Practical and Tightly-Secure Digital Signatures 105

claim is denoted by ZVfyeq(πeq;x, y, z), which outputs 1 if and only if the proof
is valid.

Based on this proof of equality for a pair of discrete logarithms, an OR-proof
for the equality of one out of two pairs of discrete logarithms can be constructed
using standard techniques [18].

Briefly, the prover chooses a random challenge β1−b and uses the perfect
simulator ZSimeq(. . .) to generate a simulated proof for the inequal pair. It then
runs the equal d.log. prover which produces a commitment. When the verifier
responds with a challenge β, the prover completes the proof for the equal pair
using the challenge βb = β − β1−b. It then responds with both challenges and
both responses. The verifier checks that the challenges sum to β.

We denote the special honest verifier simulator by

ZSimeq,or(x0, x1, y0, y1, z0, z1;β0, β1)

We note that for any given challenge pair (β0, β1), the simulator generates a
particular transcript with probability 1/p2.

Again, we can turn these proofs non-interactive using Fiat-Shamir and a hash
function H2. In this case, the proof is a tuple (β0, β1, γ0, γ1) of integers, and the
verifier additionally checks that the hash value equals the sum of β0 and β1. The
non-interactive algorithms for generating and verifying proofs are denoted by
ZPrveq,or(b, ab;x0, x1, y0, y1, z0, z1) and ZVfyeq,or(πeq,or;x0, x1, y0, y1, z0, z1). The
cost of generating a proof is dominated by the two exponentiations for the real
equality proof and the four exponentiations for the fake equality proof.

As usual, the simulator is perfect. In addition, these proofs have very strong
properties in the random oracle model.

Theorem 3. Let A be an algorithm in the random oracle model, making at most
l hash queries, that outputs a tuple (x0, x1, y0, y1, z0, z1) of group elements and
a proof πeq,or. The probability that ZVfyeq,or(πeq,or;x0, x1, y0, y1, z0, z1) = 1, but
(x0, y0, z0) �∈ DDH and (x1, y1, z1) �∈ DDH, is at most l+1

p .

The proof of the theorem is straightforward and is implicit in e.g. Goh and
Jarecki [25].

Digital Signatures. A digital signature scheme consists of a triple (Gen,Sign,Vfy)
of algorithms. The key generation algorithm Gen (possibly taking a set of param-
eters Π as input) outputs a key pair (vk , sk). The signing algorithm Sign takes a
signing key sk and a message m as input and outputs a signature σ. The verifica-
tion algorithm Vfy takes a verification key vk , a message m and a signature σ as
input and outputs 0 or 1. For correctness, we require that for all (vk , sk) ← Gen
we have that Pr[Vfy(vk ,m,Sign(sk ,m))] = 1.

3 Signatures with Tight Multi-User Security

Now we are ready to describe our signature scheme with tight multi-user security
in a “real-world” security model with adaptive corruptions.

106 K. Gjøsteen and T. Jager

3.1 Security Definition

We define multi-user existential unforgeability under adaptive chosen-message
attacks with adaptive corruptions, called MU-EUF-CMAcorr security in [2]. Con-
sider the following game between a challenger C and an adversary A, which is
parametrized by the number of public keys μ.

1. For each i ∈ [μ], it computes (pk (i), sk (i)) $← Gen(Π). Furthermore, it initial-
izes a set Scorr to keep track of corrupted keys, and μ sets S1, . . . ,Sμ, to keep
track of chosen-message queries. All sets are initially empty. Then it outputs
(pk (1), . . . , pk (μ)) to A.

2. A may now issue two different types of queries. When A outputs an index
i ∈ [μ], then C updates Scorr := Scorr ∪{i} and returns sk (i). When A outputs
a tuple (m, i), then C computes σ := Sign(ski,m), adds (m,σ) to Si, and
responds with σ.

3. Eventually A outputs a triple (i∗,m∗, σ∗).

Definition 5. Let A be a MU-EUF-CMAcorr-adversary against a signature
scheme Σ = (Gen,Sign,Vfy). The advantage of A is

Adveuf-cma
Σ (A) = Pr

[
(m∗, i∗, σ∗) ← AC :

i∗ �∈ Scorr ∧ (m∗, ·) �∈ Si∗

∧Vfy(vk(i∗),m∗, σ∗) = 1

]
.

We say that A (t, ε, μ)-breaks the MU-EUF-CMAcorr-security of Σ if A runs in
time t and Adveuf-cma

Σ (A) ≥ ε. Here, we include the running time of the security
experiment into the running time of A.

Remark 1. We include the running time of the security experiment into the
running time t of A, because this makes it slightly simpler to analyse the running
time of our reduction precisely. Let tExp denote the time required to run the
security experiment alone, and let tA be the running time of the adversary
alone. Given that the experiment can be implemented very efficiently, we may
assume tA ≥ tExp for any conceivable adversary A, so this increases the running
time at most by a small constant factor. It allows us to make the analysis of our
reduction more rigorous.

3.2 Construction

Let H1 : R × {0, 1}∗ → G be a hash function from a randomness set R and a
message space {0, 1}∗ to the group G. The digital signature scheme Σmu works
as follows:

Key generation. Sample b ← {0, 1}, ab ← {0, 1, . . . , p − 1} and x1−b ← G.
Compute xb ← gab . The signing key is sk = (b, ab) and the verification key is
vk = (x0, x1).

Practical and Tightly-Secure Digital Signatures 107

Signing. To sign a message m using signing key sk = (b, ab), sample t ← R
and z1−b ← G, let y = H1(t,m) and compute zb ← yab . Then create a
non-interactive zero knowledge proof

πeq,or ← ZPrveq,or(b, ab;x0, x1, y, y, z0, z1)

proving that logg x0 = logy z0 or logg x1 = logy z1. The signature is σ =
(t, z0, z1, πeq,or).

Verification. To verify a signature σ = (t, z0, z1, πeq,or) on a message m under
verification key vk = (x0, x1), compute y = H1(t,m) and verify that πeq,or is
a proof of the claim that logg x0 = logy z0 or logg x1 = logy z1 by checking
that ZVfyeq,or(πeq,or;x0, x1, y, y, z0, z1) = 1.

The correctness of the scheme follows directly from the correctness of the
non-interactive zero knowledge proof.

Theorem 4. Let S be a forger for the signature scheme Σmu in the random
oracle model, making at most l hash queries (with no repeating queries), inter-
acting with at most μ users and asking for at most n signatures. Then there
exists adversaries B and C against DDH and CDH, respectively, such that

Adveuf-cma
Σmu

(A) ≤ AdvDDH
G,g (B) + 2 SuccCDH

G,g (C) +
nl

p2
+

nl

|R| +
1
p

+
ln

2p
+

l + 1
p

.

The difference in running time is linear in μ + l + n.

3.3 Proof of Theorem 4

The proof proceeds as a sequence of games between a simulator and a forger for
the signature scheme. For each game Gi, there is an event Ei corresponding to
the adversary “winning” the game. We prove bounds on the differences Pr[Ei]−
Pr[Ei+1] for consecutive games, and finally bound the probability Pr[E5] for the
last game. Our claim follows directly from these bounds in the usual fashion.

Game 0 The first game is the standard multi-user signature game where μ key
pairs are generated. The adversary S may ask for signatures on any message
under any un-revealed key. The adversary may also ask for any signing key.

Let E0 be the event that the adversary produces a valid forgery (and let Ei

be the corresponding event for the remaining games). We have that

Adveuf-cma
Σmu

(S) = Pr[E0]. (1)

Game 1 In this game, when the adversary asks for a signature on a message,
instead of creating the zero knowledge proofs using ZPrveq,or(. . .), we sample
challenges β0, β1 and create a simulated proof using ZSimeq,or(. . . ;β0, β1) and
then reprogram the random oracle H2 such that H2(. . .) = β0 + β1 mod p.

108 K. Gjøsteen and T. Jager

Since the challenge in the simulated conversation has been chosen uniformly
at random, this change is not observable unless the random oracle H2 had been
queried at this exact position before the reprogramming, and the reprogramming
attempt fails.

As discussed in Sect. 2, the simulator will choose any particular proof with
probability at most 1/p2, so the probability that any reprogramming attempt
fails is at most l/p2. The probability of the exceptional event, that at least one
of the n attempts fail, is then upperbounded by nl/p2, giving us

|Pr[E1] − Pr[E0]| ≤ nl/p2. (2)

Game 2 Next, when the adversary asks for a signature on a message, instead of
just computing the hash of the message directly, we sample ξ ← {0, 1, . . . , p−1},
compute y ← gξ and then reprogram the random oracle H1 such that
H1(t,m) = y.

Since t is sampled from a set R with |R| elements, if there are at most l hash
queries in the game, the probability that any one reprogramming attempt fails
is at most l/|R|. The probability of the exceptional event, that at least one of
the n attempts fail, is then upperbounded by nl/|R|, giving us

|Pr[E2] − Pr[E1]| ≤ nl

|R| . (3)

Game 3 We now modify the key generation algorithm used by the simulator,
so that instead of sampling x1−b from G, it samples a1−b ← {0, 1, . . . , p − 1}
and computes x1−b ← ga1−b . The experiment stores the a1−b along with ab as
(b, a0, a1). However, when the adversary asks for a signing key, the simulator still
returns (b, ab).

In the original key generation algorithm, x1−b is sampled from the uniform
distribution on the group. The key value a1−b is sampled from the uniform
distribution on {0, 1, . . . , p − 1}, so x1−b will also be sampled from the same
distribution in this game. Since a1−b is never used and never revealed, this game
is indistinguishable from the previous game and

Pr[E3] = Pr[E2]. (4)

Game 4 We now modify the signing algorithm used by the simulator, so that
instead of sampling z1−b from G, we compute z1−b ← ya1−b .

To bound the difference between this game and the previous one, we need
the auxillary μ + n-DDH distinguisher B′ given in Fig. 1.

Regardless of which oracle B′ interacts with, the verification key element x1−b

and y are sampled from the uniform distribution on G, just like it is in both this
game and the previous game.

When the adversary B′ interacts with the oracle O1 which returns random
tuples, then the oracle samples its third coordinate from the uniform distribution
on G, and this value is independent of all other values. Thus z1−b is sampled
from the uniform distribution on G, just like in Game 3.

Practical and Tightly-Secure Digital Signatures 109

The distinguisher has access to an oracle O.
It proceeds to run Game 4 with S with the following modifications:

1. The key generation algorithm used by the simulator queries its oracle with 0
and gets the reply (x, y, z). It sets x1−b ← x and discards y, z.

2. The signing algorithm used by the simulator, when signing with the signing
key (b, a0, a1) corresponding to the public key (x0, x1) with x1−b equal to the
first group element of the ith oracle response, the simulator sends i to its
oracle and receives the response (x1−b, y, z). It then uses y unchanged as the
hash value and sets z1−b ← z.

If S eventually produces a valid forgery, the distinguisher outputs 0. Otherwise it
outputs 1.

Fig. 1. μ + n-DDH distinguisher B′ used in the proof of Theorem 4.

When the adversary B′ interacts with the oracle O0 which returns DDH
tuples, then (x1−b, y, z1−b) is a DDH tuple, just like in Game 4.

We conclude that B′ perfectly simulates the two games, depending on which
oracle it has access to, and by Theorem 2 it follows that there exists a DDH
adversary B such that

|Pr[E4] − Pr[E3]| = |Pr[B′O0] − Pr[B′O1]| ≤ AdvDDH
G,g (B) +

1
p
. (5)

At this point, we observe that in this game, the adversary has no information
about b for any of the unrevealed keys.

Game 5 We now modify the signing algorithm, so that instead of computing
z1−b ← ya1−b , we compute z1−b ← xξ

1−b, where ξ comes from the computation
y ← gξ introduced in Game 2.

Since ya1−b = (gξ)a1−b = (ga1−b)ξ = xξ
1−b, the adversary cannot detect this

change. Therefore
Pr[E5] = Pr[E4]. (6)

Note that in this game, the fake signing key a1−b introduced in Game 3 is
no longer actually used for anything except computing x1−b.

Suppose the adversary wins Game 5 by outputting a signature
(t, z0, z1, πeq,or) for a message m and hash y = H1(t,m) under the verification
key (x0, x1) with signature key (b, a0, a1).

Since we can recover a tuple (x0, x1, y, y, z0, z1) and a proof πeq,or, we would
like to apply Theorem 3. But this is tricky because we simulate proofs and repro-
gram the random oracle involved in the theorem. However, since the adversary’s
forgery must be on a message that has not been signed by our signature oracle,
the forgery cannot involve any value for which we have reprogrammed the ran-
dom oracle, unless the adversary has found a collision in H1. This collision must

110 K. Gjøsteen and T. Jager

The solver takes (x1, . . . , xl, y1, . . . , yl) as input.
It proceeds to run Game 5 with S with the following modifications:

1. When the key generation algorithm used by the simulator generates the ith
key pair, it sets x1−b ← xi.
The algorithm remembers (x1−b, i).

2. When the forger S queries the hash oracle with the jth value (t, m) that has
not been seen before, the hash oracle sets y ← yj and reprograms the hash
oracle so that H1(t, m) = y.
The algorithm remembers (t, m, j).

When the signature forger outputs a valid signature (t, z0, z1, πeq,or) for a
message m under an unrevealed key (b, a0, a1) with corresponding public key
(x0, x1), the solver recalls (x1−b, i) and (t, m, j) and outputs

(i, j, z1−b).

Fig. 2. l-CDH adversary C′ used in the proof of Theorem 4.

involve a (t,m) pair from a signing query, which means that the probability of
a collision is at most ln/2p.

When there is no such collision, Theorem 3 applies and we know that either
logy z0 = logg x0 or logy z1 = logg x1 (or both), except with probability (l+1)/p.

Since the forger S has no information about b, it follows that if equality holds
for one of the discrete logarithm pairs, then logy z1−b = logg x1−b at least half
the time.

Consider the l-CDH adversary C′ given in Fig. 2. It is clear that it perfectly
simulates Game 5 with the adversary S. Furthermore, when the output signature
satisfies logy z1−b = logg x1−b, the l-CDH adversary outputs the correct answer.
By Theorem 1 there exists a CDH adversary C such that

Pr[E5] ≤ 2 SuccCDH
G,g (C) +

ln

2p
+

l + 1
p

. (7)

Theorem 4 now follows from Eqs. (1)–(7).

4 Key Exchange

Now we describe our construction of a tightly-secure key exchange protocol,
which uses the signature scheme presented above as a subroutine and addition-
ally resolves the “commitment-problem” sketched in the introduction. This yields
the first authenticated key exchange protocol which does not require a trusted
setup, has tight security, and truly practical efficiency. The security proof is in
the Random Oracle Model [6].

Practical and Tightly-Secure Digital Signatures 111

4.1 Security Model

Up to minor notational changes and clarifications, our security model is iden-
tical to the model from [2], except that we use the recent approach of Li and
Schäge [41] to define “partnering” of oracles. Furthermore, we include a “sender
identifier” into the Send query (its relevance is discussed below). As in [2], we
let the adversary issue more than one Test-query, in order to achieve tightness
in this dimension, too.

Execution Environment. We consider μ parties P1, . . . , Pμ. Each party Pi is
represented by a set of � oracles, {π1

i , . . . , π�
i}, where each oracle corresponds

to a single protocol execution, and � ∈ N is the maximum number of protocol
sessions per party. Each oracle is equipped with a randomness tape containing
random bits, but is otherwise deterministic. Each oracle πs

i has access to the
long-term key pair (sk(i), pk(i)) of party Pi and to the public keys of all other
parties, and maintains a list of internal state variables that are described in the
following:

– ρs
i is the randomness tape of πs

i .
– Pids

i stores the identity of the intended communication partner.
– Ψs

i ∈ {accept, reject} indicates whether oracle πs
i has successfully completed

the protocol execution and “accepted” the resulting key.
– ks

i stores the session key computed by πs
i .

For each oracle πs
i these variables are initialized as (Pids

i , Ψ
s
i , ks

i) = (∅, ∅, ∅),
where ∅ denotes the empty string. The computed session key is assigned to
the variable ks

i if and only if πs
i reaches the accept state, that is, we have

ks
i �= ∅ ⇐⇒ Ψs

i = accept.

Attacker Model. The attacker A interacts with these oracles through queries. Fol-
lowing the classical Bellare-Rogaway approach [7], we consider an active attacker
that has full control over the communication network, and to model further real
world capabilites of an attacker, we provide additionally queries. The Corrupt-
query allows the adversary to compromise the long-term key of a party. The
Reveal-query may be used to obtain the session key that was computed in a
previous protocol instance. The RegisterCorrupt enables the attacker to register
maliciously-generated public keys, and we do not require the adversary to know
the corresponding secret key. The Test-query does not correspond to any real
world capability of an adversary, but it is used to evaluate the advantage of A
in breaking the security of the key exchange protocol. However, we do not allow
reveals of ephemeral randomness, as in [8,14]. More precisely:

– Send(i, s, j,m): A can use this query to send any message m of its choice
to oracle πs

i on behalf of party Pj . The oracle will respond according to the
protocol specification and depending on its internal state.

112 K. Gjøsteen and T. Jager

If (Pids
i , Ψ

s
i) = (∅, ∅) and m = ∅, then this means that A initiates a protocol

execution by requesting πs
i to send the first protocol message to party Pj . In

this case, πs
i will set Pids

i = j and respond with the first message according
to the protocol specification.
If (Pids

i , Ψ
s
i) = (∅, ∅) and m �= ∅, then this means that A sends a first protocol

message from party Pj to πs
i . In this case, πs

i will set Pids
i = j and respond

with the second message according to the protocol specification. This is the
only reason why we include the “partner identifier” j in the Send query.
If Pids

i = j′ �= ∅ and j �= j′, then this means that the partner id of πs
i has

already been set to j′, but the adversary issues a Send-query with j �= j′. In
this case, πs

i will abort by setting Ψs
i = reject and responding with ⊥.

Finally, if πs
i has already rejected (that is, it holds that Ψs

i = reject), then
πs

i always responds with ⊥.
If Send(i, s, j,m) is the τ -th query asked by A, and oracle πs

i sets variable
Ψs

i = accept after this query, then we say that πs
i has τ -accepted.

– Corrupt(i): This query returns the long-term secret key ski of party Pi. If the
τ -th query of A is Corrupt(i), then we call Pi τ -corrupted, or simply corrupted.
If Pi is corrupted, then all oracles π1

i , . . . , π�
i respond with ⊥ to all queries.

We assume without loss of generality that Corrupt(i) is only asked at most
once for each i. If Corrupt(i) has not yet been issued by A, then we say that
party i is currently ∞-corrupted.

– RegisterCorrupt(i, pk(i)): This query allows A to register a new party Pi, i > μ,
with public key pk(i). If the same party Pi is already registered (either via
RegisterCorrupt-query or i ∈ [μ]), a failure symbol ⊥ is returned to A. Other-
wise, Pi is registered, the pair (Pi, pk(i)) is distributed to all other parties.
Parties registered by this query are called adversarially-controlled. All parties
controlled by the adversary are defined to be 0-corrupted. Furthermore, there
are no oracles corresponding to these parties.

– Reveal(i, s): In response to this query πs
i returns the contents of ks

i . Recall
that we have ks

i �= ∅ if and only if Ψs
i = accept. If Reveal(i, s) is the τ -th

query issued by A, we call πs
i τ -revealed. If Reveal(i, s) has not (yet) been

issued by A, then we say that oracle πs
i is currently ∞-revealed.

– Test(i, s): If Ψs
i �= accept, then a failure symbol ⊥ is returned. Otherwise πs

i

flips a fair coin bs
i , samples k0

$← K at random, sets k1 = ks
i , and returns kbsi

.
The attacker may ask many Test-queries to different oracles, but not more
than one to each oracle. Jumping slightly ahead, we note that there exists a
trivial adversary that wins with probability 1/4, if we allow Test-queries of
the above form to “partnered” oracles. In order to address this, we have to
define partnering first. Then we will disallow Test-queries to partnered oracles
in the AKE security definition (Definition 7).

Partnering and original keys. In order to exclude trivial attacks, we need a
notion of “partnering” of two oracles. Bader et al. [2] base their security defini-
tion on the classical notion of matching conversations of Bellare and Rogaway
[7]. However, Li and Scháge [41] showed recently that this notion is error-prone
and argued convincingly that it captures the cryptographic intuition behind

Practical and Tightly-Secure Digital Signatures 113

“secure authenticated key exchange” in a very conservative way. This is because
the strong requirement of matching conversation even rules out theoretical
attacks based on “benign malleability” (e.g., efficient re-randomizability of sig-
natures), which does not match any practical attacks, but breaks matching con-
versations, and thus seems stronger than necessary. This may hinder the design
of simple and efficient protocols.

The new idea of [41] is to based “partnering” on an original key of a pair of
oracles (πs

i , π
t
j). Recall that we consider an oracle πs

i as a deterministic algorithm,
but with access to a fixed randomness tape ρs

i . The original key K0(πs
i , π

t
j) of

a pair of oracles (πs
i , π

t
j) consists of the session key that both oracles would

have computed by executing the protocol with each other, and where πs
i sends

the first message. Note that K0(πs
i , π

t
j) depends deterministically on the partner

identities i and j and the randomness ρs
i and ρt

j of both oracles. Note also that
for certain protocols it may not necessarily hold that K0(πs

i , π
t
j) = K0(πt

j , π
s
i),

thus the order of oracles in the K0 function matters.

Definition 6 (Partnering). We say that oracle πs
i is partnered to oracle πt

j,
if at least one of the following two condition holds.

1. πs
i has sent the first protocol message and it holds that ks

i = K0(πs
i , π

t
j)

2. πs
i has received the first protocol message and it holds that ks

i = K0(πt
j , π

s
i)

Security experiment. Consider the following game, played between an adversary
A and a challenger C. The game is parameterized by two numbers μ (the number
of honest identities) and � (the maximum number of protocol executions per
party).

1. C generates μ long-term key pairs (sk(i), pk(i)), i ∈ [μ]. It provides a A with
all public keys pk(1), . . . , pk(μ).

2. The challenger C provides A with the security experiment, by implementing
a collection of oracles {πs

i : i ∈ [μ], s ∈ [�]}. A may adaptively issue Send,
Corrupt, Reveal, RegisterCorrupt and Test queries to these oracles in arbitrary
order.

3. At the end of the game, A terminates and outputs (i, s, b′), where (i, s) spec-
ifies an oracle πs

i and b′ is a guess for bs
i .

We write GΠ(μ, �) to denote this security game, carried out with parameters
μ, � and protocol Π.

Definition 7 (AKE Security). An attacker A breaks the security of protocol
Π, if at least one of the following two events occurs in GΠ(μ, �):

Attack on authentication. Event breakA denotes that at any point throughout the
security experiment there exists an oracle πs

i such that all the following conditions
are satisfied.

1. πs
i has accepted, that is, it holds that Ψs

i = accept.
2. It holds that Pids

i = j for some j ∈ [μ] and party Pj is ∞-corrupted.
3. There exists no unique oracle πt

j that πs
i is partnered to.

114 K. Gjøsteen and T. Jager

Attack on key indistinguishability. We assume without loss of generality that
A issues a Test(i, s)-query only to oracles with Ψs

i = accept, as otherwise the
query returns always returns ⊥. We say that event breakKE occurs if A outputs
(i, s, b′) and all the following conditions are satisfied.

1. breakA does not occur throughout the security experiment.
2. The intended communication partner of πs

i is not corrupted before the
Test(i, s)-query. Formally, if Pids

i = j and πs
i is τ -tested, then it holds that

j ≤ μ and party Pj is τ ′-corrupted with τ ′ ≥ τ .
3. The adversary never asks a Reveal-query to πs

i . Formally, we require that πs
i

is ∞-revealed throughout the security experiment.
4. The adversary never asks a Reveal-query to the partner oracle of πs

i .
6 For-

mally, we demand that πt
j is ∞-revealed throughout the security experiment.

5. A answers the Test-query correctly. That is, it holds that bs
i = b′, and if

there exists an oracle πt
j that πs

i is partnered to, then A must not have asked
Test(j, t).

The advantage of the adversary A against AKE security of Π is

AdvAKE
Π (A) = max {Pr [breakA] , |Pr [breakKE] − 1/2|} .

We say that A (εA, t, μ, �)-breaks Π if its running time is t and AdvAKE
Π (A) ≥ εA.

Again, we include the running time of the security experiment into the running
time of A (cf. Remark 1).

Remark 2. Note that Definition 7 defines event breakKE such that it occurs only
if breakA does not occur. We stress that this is without loss of generality. It makes
the two possible ways to break the security of the protocol mutually exclusive,
which in turn makes the reasoning in a security proof slightly simpler.

Remark 3. Note that an oracle πs
i may be corrupted before the Test(i, s)-query.

This provides security against key-compromise impersonation attacks. Further-
more, the communication partner πt

j may be corrupted as well, but only after
πs

i has accepted (to prevent the trivial impersonation attack), which provides
forward security (aka. perfect forward secrecy).

4.2 Construction

In this section, we construct our protocol, based on a digital signature scheme
Σ = (Gen,Sign,Vfy), a prime-order group (G, g, p), and cryptographic hash func-
tions G : {0, 1}∗ → {0, 1}κ and H : G → {0, 1}d for some d ∈ N.

6 Note that conditions 1 and 2 together imply that there exists a unique oracle πt
j that

πs
i is partnered to, as otherwise breakA occurs.

Practical and Tightly-Secure Digital Signatures 115

Protocol description. Let us consider a protocol execution between two parties
Alice and Bob. The protocol is essentially the classical “signed Diffie-Hellman”
with hashed session key, except that there is an additional first message which
contains a cryptographic commitment to the Diffie-Hellman share ga of the ini-
tiator of the protocol. This adds another message to the protocol, but is an
important ingredient to achieve tightness, along the lines sketeched in the intro-
duction. We stress that this additional message does not increase the latency of
the protocol. That is, the protocol initiator is able to send cryptographically-
protected payload data after one round-trip times (RTTs), exactly as with ordi-
nary signed Diffie-Hellman.

boBecilA

a
$← Zp

−
u = G(ga)

→−−−−−−−−−−−−
b

$← Zp

TB := u||gb||sr
σB := Sign(skB , TB)

← −
v = (gb, σB)−−−−−−−−−−−−

T ′
B := u||gb||sr

Vfy(pkB , T ′
B , σB)

?= 1
TA := u||v||ga||cl

σA := Sign(skA, TA)
k̂A := (ga)b

kA := H(k̂A)

−
w = (ga, σA)→−−−−−−−−−−−−

T ′
A := u||v||ga||cl

Vfy(pkA, T ′
A, σA)

?= 1
u

?= G(ga)
k̂B := (gb)a

kB := H(k̂B)

Fig. 3. Basic protocol outline.

Each party is in possession of a long-term key pair (pk , sk) $← Gen(1κ) for
signature scheme Σ. We write (pkA, skA) and (pkB , skB) to denote the key pair
of Alice and Bob, respectively. If Alice initiates a key exchange, then both parties
proceed as follows.

1. Alice chooses a random exponent a
$← Zp, computes u := G(ga), and sends

u to Bob.
2. When Bob receives u, he picks b

$← Zp and defines its local transcript of
messages as TB = u||gb||sr, where sr is a constant that indicates that Bob

116 K. Gjøsteen and T. Jager

acts as a server in this session. Then it computes σB := Sign(skB, TB), and
responds with v := (gb, σB) to Alice.

3. When Alice receives v := (gb, σB), she first defines her local view of Bob’s
transcript as T ′

B = u||gb||sr and checks Vfy(pkB , T ′
B , σB) ?= 1. If not, then

she terminates the protocol execution and sets ΨA := reject. Otherwise, she
defines her local transcript as TA = u||v||ga||cl, where cl �= sr is a constant
indicating that Alice acts as a client. Then she computes σA := Sign(skA, TA)
and sends w := (ga, σA) to Bob. Furthermore, she first computes an “internal
Diffie-Hellman key” k̂A = gab, and then the actual session key as kA = H(k̂A),
and sets ΨA := accept.

4. When Bob receives w := (ga, σA), he first defines his local view of Alice’s
transcript as T ′

A = u||v||ga||cl and checks whether Vfy(pkA, T ′
A, σA) = 1

and whether ga matches the commitment from the first message, that is, it
holds that u = G(ga). If one of these checks fails, then he sets ΨB := reject
and terminates. Otherwise he first computes its “internal Diffie-Hellman key”
k̂B = gab, and then the actual session key kB = H(k̂B), and sets ΨA :=
accept.

Remark 4. We make the “internal Diffie-Hellman key” explicit in the above
description, because it will be useful to refer to it in order to define a certain
event in the security proof.

Remark 5. We point out that the signatures σA and σB over TA = u||v||ga||cl
and TB = u||gb||sr protect the whole message transcripts, which is more
than actually necessary for our security proof (for which signing ga and gb,
respectively, would actually be sufficient). However, this is not only a more con-
servative design, but also facilitates a future security proof of the protocol in a
security model based on matching conversations, such as the one from [2].

This seems easily possible, by instantiating the protocol with a strongly
MU-EUF-CMAcorr-secure signature scheme in the sense of [13]. Indeed, our sig-
nature scheme can easily be made tight strongly-unforgeable, by applying the
generic transformation of [49], but this would increase the size of signatures by
one group element and one exponent. We leave it as an interesting open prob-
lem to prove tight strong MU-EUF-CMAcorr-security directly for our signature
scheme, without increasing the size of signatures.

Correctness. It is straightforward to verify that this protocol is correct.

Efficiency and latency. At a first glance, our protocol seems less efficient than
ordinary signed Diffie-Hellman, because the additional message u adds another
protocol round and thus latency. We stress that this is actually not the case, for
typical applications. Consider a setting where Alice (a client) wants to send cryp-
tographically protected payload data to a server (Bob). To this end, she initiates
the protocol by sending message u. Then she waits for message v, which takes
about 1 RTT (round trip time). Finally, she computes message w. At this time
Alice has already accepted the key exchange, in particular she has computed the

Practical and Tightly-Secure Digital Signatures 117

key kA. This means that she can immediately send cryptographically protected
payload data along with message w. Thus, the latency overhead of our protocol,
defined as the time that Alice has to wait before she can send cryptographically
protected payload, is only 1 RTT.

Now let us compare this to standard signed Diffie-Hellman, which essentially
corresponds to our protocol restricted to messages v and w, without the addi-
tional commitment message u. In the same setting as above, the client Alice
would now send the first protocol message v and then wait for w, which again
takes 1 RTT. Only then is Alice able to compute the session key, and use it to
send cryptographically protected payload. Thus, even though one message less
is sent, it still takes 1 RTT before the session key can be used by Alice.

Thus, while our tightly-secure protocol uses an additional message u, this
message does not increase the latency of key establishment at all. Furthermore,
message u can be as small as 20–32 bytes in practice, such that the total com-
munication overhead incurred by the key exchange protocol is not significantly
increased. At the same time, the best known security proof of signed Diffie-
Hellman has even quadratic security loss. In contrast, our protocol achieves tight-
ness with only constant security loss, without significantly increasing latency or
communication complexity.

Efficiency in real-world PKI settings. As usual in cryptographic theory, our
security model considers a setting where each party “magically” has access to
all public keys of all other parties. In practice, this is not realistic. Instead, in
typical real-world protocols like TLS [20] public keys are typically exchanged
within the protocol, along with certificates attesting their authenticity. Often
this requires additional protocol rounds, and thus adds further messages and
latency to the protocol.

We point out that our protocol does not require any such additional pro-
tocol rounds when used in a real-world PKI setting. Concretely, we could
simply extend message v to v = (gb, σB , pkB , certB), where (pkB , certB) is
the certified public key of Bob. Message w would be adopted accordingly to
w = (ga, σA, pkA, certA), where (pkA, certAB) is the certified public key of
Alice.

Preventing unknown key-shake (UKS) attacks. Blake-Wilson and Menezes [9]
introduced UKS attacks, where a party Alice can be tricked into believing that
it shares a key with Eve, even though actually the key is shared with a different
party Bob. A simple generic method to prevent such attacks in protocols that use
digital signatures for authentication (such as ours) is to include user identities
in signatures. In a real-world setting where certified public keys are exchanged
during the protocol, one could sign the certificates along with all other messages.

Server-only authentication. Another important real-world application scenario
is where only the server is authenticated cryptographically, while the client is
not in possession of a long-term cryptographic key pair, and thus the protocol
can only achieve unilateral authentication. This setting has been considered e.g.

118 K. Gjøsteen and T. Jager

in [38] for TLS, and in [26,42,48] for more general key exchange protocols. While
we do not model and prove it formally, we expect that our protocol achieves
tight security also for server-only authentication, by an adopting the security
model from Sect. 4 and the proof to the unilateral setting. More precisely, in
this setting we would consider a security model where we distinguish between
client oracles (which are not in possession of a cryptographic long-term key),
and server oracles in possession of long-term signature keys. For authentication,
the proof is identical, except that event breakA is restricted to accepting client
oracles. For key indistinguishability, we would allow Test-queries only for sessions
that involve a Diffie-Hellman share that originates from a client oracle controlled
by the experiment (as otherwise the adversary is trivially able to win). In this
case, we are able to embed a DDH challenge exactly as in the proof for mutual
authentication.

Theorem 5. Consider protocol Π as defined above, where hash functions G and
H are modeled as random oracles. Let A be an adversary that (t, μ, �, εA)-breaks
Π. Then we can construct and adversaries BA and BKE such that:

1. Either BA (t′, ε′, μ)-breaks the MU-EUF-CMAcorr-security of (Gen,Sign,Vfy)
with t′ = O(t) and ε′ ≥ εA − μ2�2/p.

2. Or BKE (t′, ε′)-breaks the decisional Diffie-Hellman assumption in (G, g, p)
with t′ = O(t) and ε′ ≥ εA − t2/2d − μ2�2/p − μ2�2/2d − μ�t/p.

The proof of Theorem 5 consists of two parts. First, we prove that any adversary
breaking authentication in the sense of Definition 7 implies an algorithm breaking
the MU-EUF-CMAcorr-security of the signature scheme. This part is standard,
with a straightforward reduction. Then we prove key indistinguishability. This
result contains the main novelty of our proof. It follows the approach sketched in
the introduction very closely. Due to space limitations, the full proofs are given
only in the full version, which can be found at the Cryptology ePrint Archive at
https://eprint.iacr.org/2018/.

5 Efficiency Analysis

Let us compare an instantiation of our protocol from Sect. 4.2, instantiated with
our signature scheme from Sect. 3.2, to plain “signed Diffie-Hellman”, instanti-
ated with EC-DSA. The latter is the currently most efficient practical instantia-
tion of an authenticated key exchange protocol over simple groups with explicit
authentication (in contrast, some protocols, such as NAXOS [40], do not provide
explicit authentication via digital signatures, but only implicit authentication via
indistinguishability of keys).

We consider a setting where both the signature scheme and the Diffie-Hellman
key exchange are instantiated over the same group. This is desirable in practice
for many different reasons. Most importantly, it reduces the size of the imple-
mentation. This makes the protocol not only faster to implement, but also easier
to implement securely (e.g., constant-time and resilient to other side-channels)

https://eprint.iacr.org/2018/

Practical and Tightly-Secure Digital Signatures 119

and easier to maintain, which are very desirable properties, from a real-world
security point of view.

Furthermore, an implementation requiring a small codebase or circuit size is
particularly desirable for resource-constrained devices, such as IoT devices, where
tightness is particularly relevant due to the large number of devices in use.

Computational efficiency. In order to compare the efficiency of protocols, we
count the number of exponentiations, as this is the most expensive computa-
tion to be performed. Below we will also briefly discuss the potential impact of
optimisations.

Our protocol. Each party running our protocol has to perform two exponen-
tiations to perform the Diffie-Hellman key exchange, seven exponentiations
to sign a message, and eight exponentiations to verify a signature. In total,
this amounts to 17 exponentiations.

Signed Diffie-Hellman. Executing the signed Diffie-Hellman protocol with
EC-DSA takes two exponentiations to perform the Diffie-Hellman key
exchange, one exponentiation to compute an EC-DSA signature, and two
exponentiations to verify a signature. In total, this amounts to 5 exponenti-
ations.

Thus, our protocol requires 3.4 times more exponentiations than signed Diffie-
Hellman.

Theoretically-sound instantiations. Let us consider a desired security level equiv-
alent to an 128-bit symmetric key.

Our protocol. The tightness of our security proof allows to instantiate out
protocol on a 256-bit elliptic curve group, such as the NIST P-256 curve,
independent of the number of users or sessions.

Signed Diffie-Hellman. When instantiating plain “signed Diffie-Hellman”, we
have to compensate the quadratic security loss of Q = μ2�2 of the security
proof, depending on the number of users μ and the number of sessions �, by
choosing a larger group. For instance:
– In a small-to-medium-scale setting with μ = 216 and � = 216, the security

loss amounts already to a factor of Q = 264. In order to compensate this
with larger parameters, we have to increase the group size by a factor of
Q2 = 2128. We can do this by using the NIST P-384 curve.

– In a large-scale setting with μ = 232 and � = 232, the security loss amounts
even to a factor of Q = 2128. In order to compensate this with larger
parameters, we have to increase the group size by a factor of Q2 = 2256,
e.g., by using the NIST P-521 curve.

Remark 6. To justify the numbers chosen above, let us consider Facebook as an
example. Facebook lists 2.13 billion active users in December 2017, see https://
newsroom.fb.com/company-info/. Even if we assume that each user performs
only a single TLS handshake (that is, only a single login) per month, this amounts

https://newsroom.fb.com/company-info/
https://newsroom.fb.com/company-info/

120 K. Gjøsteen and T. Jager

to about 231 execution of the TLS protocol per month, and about 234 per year
(the lifetime of the certified public key). Since known security proofs for TLS
have a quadratic security loss, we thus have a security loss of 268 already in the
single-user setting where only Facebook is considered.

Comparison of computational efficiency. In order to estimate the time required
for one exponentiation for different curves, we consider OpenSSL as an example.
OpenSSL is a very widely-used and stable cryptographic library with good per-
formance properties. The benchmark tests of elliptic curve Diffie-Hellman, which
analyse the performance of different elliptic curves implemented by OpenSSL,
can be run on a system where OpenSSL is installed by executing the command
openssl speed ecdh.

We ran this benchmark on a MacBook Pro computer with 3.3 GHz Intel Core
i7 CPU and 16 GB RAM, running Mac OS Version 10.13.2. Figure 1 summarises
the results for the considered NIST curves (P256, P384, P521), as well as suitable
alternatives. Note that one ECDH operation for the P384 curve takes about 2.7
times longer than for P256, while for P521 it is even about 7.7 times longer.
The results for other families of curves (K233/409/571 and B283/409/571) are
comparable.

Table 1. OpenSSL Benchmark Results for NIST Curves

Curve Security level Time/Operation in s Operations per s

NIST P256 128 0.0021 476.9

NIST P384 128 0.0056 179.7

NIST P521 128 0.0161 62.0

NIST K233 128 0.0016 640.1

NIST K409 128 0.0068 147.6

NIST K571 128 0.0151 66.4

NIST B283 128 0.0035 284.6

NIST B409 128 0.0074 135.1

NIST B571 128 0.0167 59.8

Comparison of communication complexity. Now let us compare the amount of
data to be transmitted for a key exchange. Again, we consider “128-bit security”.
We assume that each element of an n-bit elliptic group takes n + 1 bits, which
can be achieved via standard point compression.

Our protocol. This protocol requires the transmission of two group elements
for the Diffie-Hellman key exchange, each consisting of 257 bits, plus two
signatures (each consisting of a random 256-bit nonce, two group elements,
and four 256-bit exponents, which yields 1794 bits), plus the first protocol

Practical and Tightly-Secure Digital Signatures 121

message, which corresponds to one 256-bit value, if SHA-256 is used.
In total, this yields 2 · 257 + 2 · 1794 + 256 = 4358 bytes, which corresponds
to ≈ 545 bytes.

Signed Diffie-Hellman. When instantiating plain “signed Diffie-Hellman”
with EC-DSA, each party sends one group element plus one signature con-
sisting of two exponents. This yields:
– When using the NIST P-384 curve, this amounts to 2 ·385+4 ·384 = 2306

bits, which corresponds to ≈ 289 bytes.
– In a large-scale setting with the NIST P-521 curve, this amounts to 2 ·

522 + 4 · 521 = 3128 bits, or ≈ 391 bytes.

Conclusion. Even though the absolute number of exponentiations required to
run our protocol is larger than for simple signed Diffie-Hellman, it turns out
that for small-to-medium-scale settings the overall computational efficiency is
already comparable to signed Diffie-Hellman, if the group order is chosen in
a theoretically-sound way. For large-scale settings, it is even significantly bet-
ter. Concretely, the fact that our protocol requires 3.4 times more exponen-
tiations is already almost compensated by the fact that an exponentiation is
about 2.7-times more expensive in the small-to-medium-scale setting. Further-
more, given that in the large-scale setting an exponentiation is about 7.7 times
more expensive, it turns out that our protocol is even significantly more effi-
cient by a factor greater than 2.25. We note that this pencil-and-paper analysis
considers näıve exponentiation, and does not yet involve optimisations, such as
pre-computations, which usually tend to be more effective if more exponentia-
tions are performed.

The improved computational efficiency comes at only very moderate cost
of increased communication complexity, amounting to 256 bytes for the entire
protocol in the small-to-medium-scale setting, and 154 bytes in the large-scale
setting. This holds in comparison to the very minimalistic EC-DSA-signed Diffie-
Hellman protocol, which is of course extremely communication-efficient in com-
parison to any other protocol with similar properties.

Given that our protocol is the first proposal for a truly practical and tightly-
secure key exchange protocol, we expect that future work building upon our
techniques will be able to improve this further.

References

1. Bader, C.: Efficient signatures with tight real world security in the random-oracle
model. In: Gritzalis, D., Kiayias, A., Askoxylakis, I.G. (eds.) CANS 2014. LNCS,
vol. 8813, pp. 370–383. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
12280-9 24

2. Bader, C., Hofheinz, D., Jager, T., Kiltz, E., Li, Y.: Tightly-secure authenticated
key exchange. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part I. LNCS, vol.
9014, pp. 629–658. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-46494-6 26

https://doi.org/10.1007/978-3-319-12280-9_24
https://doi.org/10.1007/978-3-319-12280-9_24
https://doi.org/10.1007/978-3-662-46494-6_26
https://doi.org/10.1007/978-3-662-46494-6_26

122 K. Gjøsteen and T. Jager

3. Bader, C., Jager, T., Li, Y., Schäge, S.: On the impossibility of tight cryptographic
reductions. In: Fischlin, M., Coron, J.S. (eds.) EUROCRYPT 2016, Part II. LNCS,
vol. 9666, pp. 273–304. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-49896-5 10

4. Barbulescu, R., Duquesne, S.: Updating key size estimations for pairings. J. Cryp-
tol. (2018). https://doi.org/10.1007/s00145-018-9280-5

5. Bellare, M., Boldyreva, A., Micali, S.: Public-key encryption in a multi-user setting:
security proofs and improvements. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 259–274. Springer, Heidelberg (2000). https://doi.org/10.1007/3-
540-45539-6 18

6. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: Ashby, V. (ed.) ACM CCS 1993, pp. 62–73. ACM Press,
November 1993

7. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg
(1994). https://doi.org/10.1007/3-540-48329-2 21

8. Bergsma, F., Jager, T., Schwenk, J.: One-round key exchange with strong security:
an efficient and generic construction in the standard model. In: Katz, J. (ed.) PKC
2015. LNCS, vol. 9020, pp. 477–494. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-46447-2 21

9. Blake-Wilson, S., Menezes, A.: Unknown key-share attacks on the station-to-
station (STS) protocol. In: Imai, H., Zheng, Y. (eds.) PKC 1999. LNCS, vol. 1560,
pp. 154–170. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-49162-
7 12

10. Blazy, O., Kakvi, S.A., Kiltz, E., Pan, J.: Tightly-secure signatures from chameleon
hash functions. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 256–279.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2 12

11. Blazy, O., Kiltz, E., Pan, J.: (Hierarchical) identity-based encryption from affine
message authentication. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part
I. LNCS, vol. 8616, pp. 408–425. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-662-44371-2 23

12. Boneh, D.: The decision Diffie-Hellman problem. In: Buhler, J.P. (ed.) ANTS 1998.
LNCS, vol. 1423, pp. 48–63. Springer, Heidelberg (1998). https://doi.org/10.1007/
BFb0054851. Invited paper

13. Boneh, D., Shen, E., Waters, B.: Strongly unforgeable signatures based on com-
putational Diffie-Hellman. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.)
PKC 2006. LNCS, vol. 3958, pp. 229–240. Springer, Heidelberg (2006). https://
doi.org/10.1007/11745853 15

14. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for
building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol.
2045, pp. 453–474. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-
44987-6 28

15. Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F.
(ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993).
https://doi.org/10.1007/3-540-48071-4 7

16. Chen, J., Wee, H.: Fully, (almost) tightly secure IBE and dual system groups. In:
Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 435–
460. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1 25

17. Chevallier-Mames, B.: An efficient CDH-based signature scheme with a tight secu-
rity reduction. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 511–526.
Springer, Heidelberg (2005). https://doi.org/10.1007/11535218 31

https://doi.org/10.1007/978-3-662-49896-5_10
https://doi.org/10.1007/978-3-662-49896-5_10
https://doi.org/10.1007/s00145-018-9280-5
https://doi.org/10.1007/3-540-45539-6_18
https://doi.org/10.1007/3-540-45539-6_18
https://doi.org/10.1007/3-540-48329-2_21
https://doi.org/10.1007/978-3-662-46447-2_21
https://doi.org/10.1007/978-3-662-46447-2_21
https://doi.org/10.1007/3-540-49162-7_12
https://doi.org/10.1007/3-540-49162-7_12
https://doi.org/10.1007/978-3-662-46447-2_12
https://doi.org/10.1007/978-3-662-44371-2_23
https://doi.org/10.1007/978-3-662-44371-2_23
https://doi.org/10.1007/BFb0054851
https://doi.org/10.1007/BFb0054851
https://doi.org/10.1007/11745853_15
https://doi.org/10.1007/11745853_15
https://doi.org/10.1007/3-540-44987-6_28
https://doi.org/10.1007/3-540-44987-6_28
https://doi.org/10.1007/3-540-48071-4_7
https://doi.org/10.1007/978-3-642-40084-1_25
https://doi.org/10.1007/11535218_31

Practical and Tightly-Secure Digital Signatures 123

18. Cramer, R., Damg̊ard, I., Schoenmakers, B.: Proofs of partial knowledge and sim-
plified design of witness hiding protocols. In: Desmedt, Y. (ed.) CRYPTO 1994.
LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994). https://doi.org/10.1007/
3-540-48658-5 19

19. Di Crescenzo, G., Katz, J., Ostrovsky, R., Smith, A.: Efficient and non-interactive
non-malleable commitment. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS,
vol. 2045, pp. 40–59. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-
44987-6 4

20. Dierks, T., Rescorla, E.: The Transport Layer Security (TLS) Protocol Version
1.2. RFC 5246 (Proposed Standard), August 2008. https://www.rfc-editor.org/
rfc/rfc5246.txt, updated by RFCs 5746, 5878, 6176, 7465, 7507, 7568, 7627, 7685,
7905, 7919

21. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

22. Fleischhacker, N., Jager, T., Schröder, D.: On tight security proofs for Schnorr
signatures. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part I. LNCS, vol.
8873, pp. 512–531. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-45611-8 27

23. Garg, S., Bhaskar, R., Lokam, S.V.: Improved bounds on security reductions for
discrete log based signatures. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol.
5157, pp. 93–107. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
85174-5 6

24. Gay, R., Hofheinz, D., Kiltz, E., Wee, H.: Tightly CCA-secure encryption without
pairings. In: Fischlin, M., Coron, J.S. (eds.) EUROCRYPT 2016, Part I. LNCS,
vol. 9665, pp. 1–27. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-49890-3 1

25. Goh, E.J., Jarecki, S.: A signature scheme as secure as the Diffie-Hellman problem.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 401–415. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9 25

26. Goldberg, I., Stebila, D., Ustaoglu, B.: Anonymity and one-way authentication in
key exchange protocols. Des. Codes Crypt. 67(2), 245–269 (2013). https://doi.org/
10.1007/s10623-011-9604-z

27. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2),
270–299 (1984)

28. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In:
Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3 24

29. Gueron, S., Lindell, Y.: Better bounds for block cipher modes of operation via
nonce-based key derivation. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu,
D. (eds.) ACM CCS 2017, pp. 1019–1036. ACM Press, October/November 2017

30. Günther, C.G.: An identity-based key-exchange protocol. In: Quisquater, J.J.,
Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 29–37. Springer,
Heidelberg (1990). https://doi.org/10.1007/3-540-46885-4 5

31. Hoang, V.T., Tessaro, S.: The multi-user security of double encryption. In: Coron,
J., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part II. LNCS, vol. 10211, pp. 381–411.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56614-6 13

32. Hofheinz, D., Jager, T.: Tightly secure signatures and public-key encryption. In:
Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 590–607.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5 35

https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/3-540-44987-6_4
https://doi.org/10.1007/3-540-44987-6_4
https://www.rfc-editor.org/rfc/rfc5246.txt
https://www.rfc-editor.org/rfc/rfc5246.txt
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-662-45611-8_27
https://doi.org/10.1007/978-3-662-45611-8_27
https://doi.org/10.1007/978-3-540-85174-5_6
https://doi.org/10.1007/978-3-540-85174-5_6
https://doi.org/10.1007/978-3-662-49890-3_1
https://doi.org/10.1007/978-3-662-49890-3_1
https://doi.org/10.1007/3-540-39200-9_25
https://doi.org/10.1007/s10623-011-9604-z
https://doi.org/10.1007/s10623-011-9604-z
https://doi.org/10.1007/978-3-540-78967-3_24
https://doi.org/10.1007/3-540-46885-4_5
https://doi.org/10.1007/978-3-319-56614-6_13
https://doi.org/10.1007/978-3-642-32009-5_35

124 K. Gjøsteen and T. Jager

33. Hofheinz, D., Jager, T., Knapp, E.: Waters signatures with optimal security reduc-
tion. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol.
7293, pp. 66–83. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
30057-8 5

34. Jager, T., Kohlar, F., Schäge, S., Schwenk, J.: On the security of TLS-DHE in the
standard model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 273–293. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-32009-5 17

35. Jager, T., Kohlar, F., Schäge, S., Schwenk, J.: Authenticated confidential channel
establishment and the security of TLS-DHE. J. Cryptol. 30(4), 1276–1324 (2017)

36. Jager, T., Stam, M., Stanley-Oakes, R., Warinschi, B.: Multi-key authenticated
encryption with corruptions: reductions are lossy. In: Kalai, Y., Reyzin, L. (eds.)
TCC 2017, Part I. LNCS, vol. 10677, pp. 409–441. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-70500-2 14

37. Katz, J., Wang, N.: Efficiency improvements for signature schemes with tight secu-
rity reductions. In: Jajodia, S., Atluri, V., Jaeger, T. (eds.) ACM CCS 2003, pp.
155–164. ACM Press, October 2003

38. Krawczyk, H., Paterson, K.G., Wee, H.: On the security of the TLS protocol: a
systematic analysis. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I.
LNCS, vol. 8042, pp. 429–448. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40041-4 24

39. Krawczyk, H., Wee, H.: The OPTLS protocol and TLS 1.3. In: IEEE European
Symposium on Security and Privacy, EuroS&P 2016, Saarbrücken, Germany, 21–24
March 2016, pp. 81–96. IEEE (2016). https://doi.org/10.1109/EuroSP.2016.18

40. LaMacchia, B.A., Lauter, K., Mityagin, A.: Stronger security of authenticated key
exchange. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784,
pp. 1–16. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75670-
5 1

41. Li, Y., Schäge, S.: No-match attacks and robust partnering definitions: defining
trivial attacks for security protocols is not trivial. In: Thuraisingham, B.M., Evans,
D., Malkin, T., Xu, D. (eds.) ACM CCS 2017, pp. 1343–1360. ACM Press, Octo-
ber/November 2017

42. Maurer, U., Tackmann, B., Coretti, S.: Key exchange with unilateral authenti-
cation: composable security definition and modular protocol design. Cryptology
ePrint Archive, Report 2013/555 (2013). http://eprint.iacr.org/2013/555

43. Paillier, P., Vergnaud, D.: Discrete-log-based signatures may not be equiva-
lent to discrete log. In: Roy, B.K. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp.
1–20. Springer, Heidelberg (2005). https://doi.org/10.1007/11593447 1

44. Paterson, K.G., van der Merwe, T.: Reactive and proactive standardisation of TLS.
In: Chen, L., McGrew, D.A., Mitchell, C.J. (eds.) SSR 2016. LNCS, vol. 10074, pp.
160–186. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49100-4 7

45. Schäge, S.: Tight proofs for signature schemes without random oracles. In: Pater-
son, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 189–206. Springer, Hei-
delberg (2011). https://doi.org/10.1007/978-3-642-20465-4 12

46. Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard,
G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, New York (1990).
https://doi.org/10.1007/0-387-34805-0 22

47. Seurin, Y.: On the exact security of schnorr-type signatures in the random oracle
model. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol.
7237, pp. 554–571. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-29011-4 33

https://doi.org/10.1007/978-3-642-30057-8_5
https://doi.org/10.1007/978-3-642-30057-8_5
https://doi.org/10.1007/978-3-642-32009-5_17
https://doi.org/10.1007/978-3-642-32009-5_17
https://doi.org/10.1007/978-3-319-70500-2_14
https://doi.org/10.1007/978-3-319-70500-2_14
https://doi.org/10.1007/978-3-642-40041-4_24
https://doi.org/10.1007/978-3-642-40041-4_24
https://doi.org/10.1109/EuroSP.2016.18
https://doi.org/10.1007/978-3-540-75670-5_1
https://doi.org/10.1007/978-3-540-75670-5_1
http://eprint.iacr.org/2013/555
https://doi.org/10.1007/11593447_1
https://doi.org/10.1007/978-3-319-49100-4_7
https://doi.org/10.1007/978-3-642-20465-4_12
https://doi.org/10.1007/0-387-34805-0_22
https://doi.org/10.1007/978-3-642-29011-4_33
https://doi.org/10.1007/978-3-642-29011-4_33

Practical and Tightly-Secure Digital Signatures 125

48. Shoup, V.: On formal models for secure key exchange. Cryptology ePrint Archive,
Report 1999/012 (1999). http://eprint.iacr.org/1999/012

49. Steinfeld, R., Pieprzyk, J., Wang, H.: How to strengthen any weakly unforgeable
signature into a strongly unforgeable signature. In: Abe, M. (ed.) CT-RSA 2007.
LNCS, vol. 4377, pp. 357–371. Springer, Heidelberg (2006). https://doi.org/10.
1007/11967668 23

http://eprint.iacr.org/1999/012
https://doi.org/10.1007/11967668_23
https://doi.org/10.1007/11967668_23

Symmetric Cryptoanalysis

Fast Correlation Attack Revisited
Cryptanalysis on Full Grain-128a, Grain-128, and Grain-v1

Yosuke Todo1(B), Takanori Isobe2, Willi Meier3, Kazumaro Aoki1,
and Bin Zhang4,5

1 NTT Secure Platform Laboratories, Tokyo 180-8585, Japan
todo.yosuke@lab.ntt.co.jp

2 University of Hyogo, Hyogo 650-0047, Japan
3 FHNW, Windisch, Switzerland

4 TCA Laboratory, SKLCS, Institute of Software,
Chinese Academy of Sciences, Beijing, China

5 State Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878, China

Abstract. A fast correlation attack (FCA) is a well-known cryptanal-
ysis technique for LFSR-based stream ciphers. The correlation between
the initial state of an LFSR and corresponding key stream is exploited,
and the goal is to recover the initial state of the LFSR. In this paper,
we revisit the FCA from a new point of view based on a finite field,
and it brings a new property for the FCA when there are multiple lin-
ear approximations. Moreover, we propose a novel algorithm based on
the new property, which enables us to reduce both time and data com-
plexities. We finally apply this technique to the Grain family, which is
a well-analyzed class of stream ciphers. There are three stream ciphers,
Grain-128a, Grain-128, and Grain-v1 in the Grain family, and Grain-v1 is
in the eSTREAM portfolio and Grain-128a is standardized by ISO/IEC.
As a result, we break them all, and especially for Grain-128a, the crypt-
analysis on its full version is reported for the first time.

Keywords: Fast correlation attack · Stream cipher · LFSR
Finite field · Multiple linear approximations · Grain-128a
Grain-128 · Grain-v1

1 Introduction

Stream ciphers are a class of symmetric-key cryptosystems. They commonly
generate a key stream of arbitrary length from a secret key and initialization
vector (iv), and a plaintext is encrypted by XORing with the key stream. Many
stream ciphers consist of an initialization and key-stream generator. The secret
key and iv are well mixed in the initialization, where a key stream is never output,
and the mixed internal state is denoted as the initial state in this paper. After the
initialization, the key-stream generator outputs the key stream while updating
the internal state. The initialization of stream ciphers generally requires much
processing time, but the key-stream generator is very efficient.
c© International Association for Cryptologic Research 2018
H. Shacham and A. Boldyreva (Eds.): CRYPTO 2018, LNCS 10992, pp. 129–159, 2018.
https://doi.org/10.1007/978-3-319-96881-0_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96881-0_5&domain=pdf

130 Y. Todo et al.

LFSR

et

stzt

f

Fig. 1. Model of LFSR-based stream ciphers

LFSRs are often used in the design of stream ciphers, where the update
function consists of one or more LFSRs and non-linear functions. Without loss
of generality, the key-stream generator of LFSR-based stream ciphers can be
represented as Fig. 1, where the binary noise et is generated by the non-linear
function. LFSR-based stream ciphers share the feasibility to guarantee a long
period in the key stream.

A (fast) correlation attack is an important attack against LFSR-based stream
ciphers. The initial idea was introduced by Siegenthaler [1], and it exploits the
bias of et. We guess the initial state s(0) = (s0, s1, . . . , sn−1), compute st for
t = n, n + 1, . . . , N − 1, and XOR st with corresponding zt. If we guess the
correct initial state, highly biased et is acquired. Otherwise, we assume that the
XOR behaves at random. When we collect an N -bit key stream and the size of
the LFSR is n, the simple algorithm requires a time complexity of N2n.

Following up the correlation attack, many algorithms have been proposed
to avoid the exhaustive search of the initial state, and they are called as “fast
correlation attack.” The seminal work was proposed by Meier and Staffelbach [2],
where the noise et is efficiently removed from zt by using parity-check equations,
and st is recovered. Several improvements of the original fast correlation attack
have been proposed [3–8], but they have limitations such as the number of taps
in the LFSR is significantly small or the bias of the noise is significantly high.
Therefore, their applications are limited to experimental ciphers, and they have
not been applied to modern concrete stream ciphers.

Another approach of the fast correlation attack is the so-called one-pass algo-
rithm [9,10], and it has been successfully applied to modern concrete stream
ciphers [11–13]. Similarly to the original correlation attack, we guess the ini-
tial state and recover the correct one by using parity-check equations. To
avoid exhaustive search over the initial state, several methods have been pro-
posed to decrease the number of secret bits in the initial state involved by
parity-check equations [14,15]. In the most successful method, the number of
involved secret bits decreases by XORing two different parity-check equations.
Let et = 〈s(0), at〉 ⊕ zt be the parity-check equation, where 〈s(0), at〉 denotes
an inner product between s(0) and at, and we assume that et is highly biased.
Without loss of generality, we first detect a set of pairs (j1, j2) such that the first
� bits in aj1 ⊕ aj2 are 0, where such a set of pairs is efficiently detected from the
birthday paradox. Then, 〈s(0), aj1 ⊕ aj2〉 ⊕ zj1 ⊕ zj2 is also highly biased, and
the number of involved secret bits decreases from n to n − �. Later, this method
is generalized by the generalized birthday problem [16]. Moreover, an efficient
algorithm was proposed to accelerate the one-pass algorithm [14]. They showed
that the guess and evaluation procedure can be regarded as a Walsh-Hadamard

Fast Correlation Attack Revisited 131

transform, and the fast Walsh-Hadamard transform (FWHT) can be applied to
accelerate the one-pass algorithm. While the naive algorithm for the correlation
attack requires N2n, the FWHT enables us to evaluate it with the time com-
plexity of N +n2n. When the number of involved bits decreases from n to n− �,
the time complexity also decreases to N + (n − �)2n−�. The drawback of the
one-pass algorithm with the birthday paradox is the increase of the noise. Let
p be the probability that et = 1, and the correlation denoted by c is defined as
c = 1−2p. If we use the XOR of parity-check equations to reduce the number of
involved secret bits, the correlation of the modified equations drops to c2. The
increase of the noise causes the increase of the data complexity.

Revisiting Fast Correlation Attack. In this paper, we revisit the fast cor-
relation attack. We first review the structure of parity-check equations from a
new point of view based on a finite field, and the new viewpoint brings a new
property for the fast correlation attack. A multiplication between n×n matrices
and an n-bit fixed vector is generally used to construct parity-check equations.
Our important observation is to show that this multiplication is “commutative”
via the finite field, and it brings the new property for the fast correlation attack.

We first review the traditional wrong-key hypothesis, i.e., we observe correla-
tion 0 when incorrect initial state is guessed. The new property implies that we
need to reconsider the wrong-key hypothesis more carefully. Specifically, assum-
ing that there are multiple high-biased linear masks, the traditional wrong-key
hypothesis does not hold. We then show a modified wrong-key hypothesis.

The new property is directly useful to improve the efficiency of the fast corre-
lation attack when there are multiple high-biased linear masks. In the previous
fast correlation attack, the multiple approximations are only useful to reduce
the data complexity but are not useful to reduce the time complexity [11]. We
propose a new algorithm that reduces both time and data complexities. Our new
algorithm is a kind of the one-pass algorithm, but the technique to avoid the
exhaustive search of the initial state is completely different from previous ones.
The multiple linear masks are directly exploited to avoid the exhaustive search.

Applications. We apply our new algorithm to the Grain family, where there
are three well-known stream ciphers: Grain-128a [20], Grain-128 [21], and
Grain-v1 [22]. The Grain family is amongst the most attractive stream ciphers,
and especially Grain-v1 is in the eSTREAM portfolio and Grain-128a is stan-
dardized by ISO/IEC [23]. Moreover the structure is recently used to design a
lightweight hash function [24] and stream ciphers [25,26].

Our new algorithm breaks each of full Grain-128a, Grain-128, and Grain-v1.
Among them, this is the first cryptanalysis against full Grain-128a1. Regarding

1 Grain-128a has two modes of operation: stream cipher mode and authenticated
encryption mode. We can break the stream cipher mode under the known-plaintext
setting. However we cannot attack the authenticated encryption mode under the
reasonable assumption.

132 Y. Todo et al.

Table 1. Summary of results, where the key-stream generator and initialization are
denoted as ksg and init, respectively.

Target Attack Assumption Data Time Reference

Grain-128a ksg fast correlation attack - 2113.8 2115.4 Sect. 5

Grain-128 init dynamic cube attack chosen IV 263 290 [17]

init dynamic cube attack chosen IV 262.4 284 [18]

ksg fast correlation attack - 2112.8 2114.4 Sect. 5.4

Grain-v1 ksg fast near collision attack - 219 286.1 † [19]

ksg fast correlation attack - 275.1 276.7 Sect. 6

† In [19], the time complexity is claimed as 275.7 but the unit of the time complexity
is 1 update function of reference code on software implementation. Here we adjusted
the time complexity for the fair comparison.

full Grain-128, our algorithm is the first attack against the key-stream generator.
Regarding full Grain-v1, our algorithm is more efficient than the previous attack
[19], and it breaks Grain-v1 obviously faster than the brute-force attack.

To realize the fast correlation attack against all of the full Grain family,
we introduce novel linear approximate representations. They well exploit their
structure and reveal a new important vulnerability of the Grain family (Table 1).

Comparisons with Previous Attacks Against Grain Family. To under-
stand this paper, it is not necessary to understand previous attacks, but we
summarize previous attacks against the Grain family.

Before Grain-v1, there is an original Grain denoted by Grain-v0 [27], and it
was broken by the fast correlation attack [11]. Grain-v1 is tweaked to remove
the vulnerability of Grain-v0. Nevertheless, our new fast correlation attack can
break full Grain-v1 thanks to the new property.

The near collision attack is the important previous attack against Grain-v1
[28], and very recently, an improvement called the fast near collision attack was
proposed [19], where the authors claimed that the time complexity is 275.7. How-
ever, this estimation is controversial because the unit of the time complexity is
“1 update function of reference code on software implementation,” and they esti-
mated 1 update function to be 210.4 cycles. Therefore, the pure time complexity
is rather 275.7+10.4 = 286.1 cycles, which is greater than 280. On the other hand,
the time complexity of the fast correlation attack is 276.7, where the unit of the
(dominant) time complexity is at most one multiplication with fixed values over
the finite field. It is obviously faster than the brute-force attack, but it requires
more data than the fast near collision attack.

Grain-128 is more aggressively designed than Grain-v1, where a quadratic
function is adopted for the nonlinear feedback polynomial of the NFSR. Unfor-
tunately, this low degree causes vulnerability against the dynamic cube attack
[29]. While the initial work by Dinur and Shamir is a weak-key attack, it was then
extended to the single-key attack [17] and recently improved [18]. The dynamic

Fast Correlation Attack Revisited 133

cube attack breaks the initialization, and the fast correlation attack breaks
the key-stream generator. Note that different countermeasures are required for
attacks against the key-stream generator and initialization. For example, we can
avoid the dynamic cube attack by increasing the number of rounds in the ini-
tialization, but such countermeasure does not prevent the attack against the
key-stream generator.

Grain-128a was designed to avoid the dynamic cube attack. The degree of
the nonlinear feedback polynomial is higher than in Grain-128. No security flaws
have been reported on full Grain-128a, but there are attacks against Grain-128a
whose number of rounds in the initialization is reduced [30–32].

2 Preliminaries

2.1 LFSR-Based Stream Ciphers

The target of the fast correlation attack is LFSR-based stream ciphers, which
are modeled as Fig. 1 simply. The LFSR generates an N -bit output sequence
as {s0, s1, . . . , sN−1}, and the corresponding key stream {z0, z1, . . . , zN−1} is
computed as zt = st ⊕ et, where et is a binary noise.

Let

f(x) = c0 + c1x
1 + c2x

2 + · · · + cn−1x
n−1 + xn

be the feedback polynomial of the LFSR and s(t) = (st, st+1, . . . , st+n−1) be an
n-bit internal state of the LFSR at time t. Then, the LFSR outputs st, and the
state is updated to s(t+1) as

s(t+1) = s(t) × F = s(t) ×

⎛
⎜⎜⎜⎜⎜⎝

0 · · · 0 0 c0
1 · · · 0 0 c1
...

. . .
...

...
...

0 · · · 1 0 cn−2

0 · · · 0 1 cn−1

⎞
⎟⎟⎟⎟⎟⎠

,

where F is an n × n binary matrix that represents the feedback polynomial
f(x). In concrete LFSR-based stream ciphers, the binary noise et is nonlinearly
generated from the internal state or another internal state.

2.2 Fast Correlation Attack

The fast correlation attack (FCA) exploits high correlation between the internal
state of the LFSR and corresponding key stream [1,2]. We first show the most
simple model, where we assume that et itself is highly biased. Let p be the
probability of et = 1, and the correlation c is defined as c = 1−2p. We guess the
initial internal state s(0), calculate {s0, s1, . . . , sN−1} from the guessed s(0), and
evaluate

∑N−1
t=0 (−1)st⊕zt , where the sum is computed over the set of integers.

134 Y. Todo et al.

If the correct initial state is guessed, the sum is equal to
∑N−1

t=0 (−1)et and follows
a normal distribution N (Nc,N)2. On the other hand, we assume that the sum
behaves at random when an incorrect initial state is guessed. Then, it follows a
normal distribution N (0, N). To distinguish the two distributions, we need to
collect N ≈ O(1/c2) bits of the key stream.

The FCA can be regarded as a kind of a linear cryptanalysis [33]. The output st

is linearly computed from s(0) as st = 〈s(0), At〉, where At is the 1st row vector in
the transpose of F t denoted by TF t. In other words, At is used as linear masks, and
the aim of attackers is to find s(0) such that

∑N−1
t=0 (−1)〈s(0),At〉 is far from N/2.

Usually, the binary noise et is not highly biased in modern stream ciphers,
but we may be able to observe high correlation by summing optimally chosen
linear masks. In other words, we can execute the FCA if

e′
t =

⊕
i∈Ts

〈s(t+i), Γi〉 ⊕
⊕
i∈Tz

zt+i

is highly biased by optimally choosing Ts, Tz, and Γi, where s(t+i) and Γi are
n-bit vectors. Recall s(t) = s(0) × F t, and then, e′

t is rewritten as

e′
t =

⊕
i∈Ts

〈
s(t+i), Γi

〉
⊕

⊕
i∈Tz

zt+i

=
⊕
i∈Ts

〈
s(0) × F t+i, Γi

〉
⊕

⊕
i∈Tz

zt+i

=

〈
s(0),

(⊕
i∈Ts

(Γi × TF i)

)
× TF t

〉
⊕

⊕
i∈Tz

zt+i.

For simplicity, we introduce Γ denoted by Γ =
⊕

i∈Ts
(Γi × TF i). Then, we can

introduce the following parity-check equations as

e′
t =

〈
s(0), Γ × TF t

〉
⊕

⊕
i∈Tz

zt+i. (1)

We redefine p as the probability satisfying e′
t = 1 for all possible t, and the

correlation c is also redefined from the corresponding p. Then, we can execute
the FCA by using Eq. (1). Assuming that N parity-check equations are collected,
we first guess s(0) and evaluate

∑N−1
t=0 (−1)e′

t . While the sum follows a normal
distribution N (0, N) in the random case, it follows N (Nc,N) if the correct s(0)

is guessed.
The most straightforward algorithm requires the time complexity of O(N2n).

Chose et al. showed that the guess and evaluation procedure can be regarded as a
Walsh-Hadamard transform [14]. The fast Walsh-Hadamard transform (FWHT)
can be successfully applied to accelerate the algorithm, and it reduces the time
complexity to O(N + n2n).
2 Accurately, when the correct initial state is guessed, it follows N (Nc, N + Nc2).

However, since N is huge and Nc2 is small, the normal distribution N (Nc, N) is
enough to approximate the distribution.

Fast Correlation Attack Revisited 135

Definition 1 (Walsh-Hadamard Transform (WHT)). Given a function
w : {0, 1}n → Z, the WHT of w is defined as ŵ(s) =

∑
x∈{0,1}n w(x)(−1)〈s,x〉.

When we guess s ∈ {0, 1}n, the empirical correlation
∑N−1

t=0 (−1)e′
t is rewritten as

N−1∑
t=0

(−1)e′
t =

N−1∑
t=0

(−1)〈s,Γ×TF t〉⊕⊕
i∈Tz

zt+i

=
∑

x∈{0,1}n

⎛
⎝ ∑

t∈{0,1,...,N−1|Γ×TF t=x}
(−1)〈s,x〉⊕⊕

i∈Tz
zt+i

⎞
⎠

=
∑

x∈{0,1}n

⎛
⎝ ∑

t∈{0,1,...,N−1|Γ×TF t=x}
(−1)

⊕
i∈Tz

zt+i

⎞
⎠ (−1)〈s,x〉.

Therefore, from the following public function w as

w(x) :=
∑

t∈{0,1,...,N−1|Γ×TF t=x}
(−1)

⊕
i∈Tz

zt+i ,

we get ŵ by using the FWHT, where ŵ(s) is the empirical correlation when s is
guessed.

3 Revisiting Fast Correlation Attack

We first review the structure of the parity-check equation by using a finite field
and show that Γ × TF t is “commutative.” This new observation brings a new
property for the FCA, and it is very important when there are multiple linear
masks. As a result, we need to reconsider the wrong-key hypothesis carefully,
i.e., there is a case that the most simple and commonly used hypothesis does
not hold. Moreover, we propose a new algorithm that successfully exploits the
new property to reduce the data and time complexities in the next section.

3.1 Reviewing Parity-Check Equations with Finite Field

We review Γ ×TF t by using a finite field GF(2n), where the primitive polynomial
is the feedback polynomial of the LFSR.

Recall the notation of At ∈ {0, 1}n, which was defined as the 1st row vector
in TF t, and then, the ith row vector of TF t is represented as At+i−1. Let α be a
element as f(α) = 0 and it is a primitive element of GF(2n). We notice that αt

becomes natural conversion of At ∈ {0, 1}n. We naturally convert Γ ∈ {0, 1}n

136 Y. Todo et al.

to γ ∈ GF(2n). The important observation is that Γ × TF also becomes natural
conversion of γα ∈ GF(2n) because of

Γ × TF = Γ ×

⎛
⎜⎜⎜⎜⎜⎝

0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
0 0 · · · 0 1
c0 c1 · · · cn−2 cn−1

⎞
⎟⎟⎟⎟⎟⎠

.

This trivially derives that Γ × TF t is also natural conversion of γαt ∈ GF(2n),
and of course, the multiplication is commutative, i.e., γαt = αtγ. We finally con-
sider a matrix multiplication corresponding to αtγ. Let Mγ be an n × n binary
matrix, where the ith row vector of TMγ is defined as the natural conversion
of γαi−1. Then, αtγ is the natural conversion of At × TMγ , and we acquire
Γ × TF t = At × TMγ . The following shows an example to understand this
relationship.

Example 1. Let us consider a finite field GF(28) = GF(2)[x]/(x8 + x4 + x3 +
x2 + 1). When Γ = 01011011, the transpose matrix of the corresponding binary
matrix Mγ is represented as

TMγ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 1 1 0 1 1
1 0 0 1 0 1 0 1
1 1 1 1 0 0 1 0
0 1 1 1 1 0 0 1
1 0 0 0 0 1 0 0
0 1 0 0 0 0 1 0
0 0 1 0 0 0 0 1
1 0 1 0 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where the first row coincides with Γ and the second row is natural conversion of
γα. Then, Γ × TF t = At × TMγ , and for example, when t = 10,

Γ × TF 10 = A10 × TMγ ,

⇔ (
0 1 0 1 1 0 1 1

) ×

⎛

⎜
⎜
⎜⎜
⎜
⎜
⎜⎜
⎜
⎜
⎝

0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 0 1 1 1 0 0 0

⎞

⎟
⎟
⎟⎟
⎟
⎟
⎟⎟
⎟
⎟
⎠

10

=
(
0 0 1 0 1 1 1 0

) ×

⎛

⎜
⎜
⎜⎜
⎜
⎜
⎜⎜
⎜
⎜
⎝

0 1 0 1 1 0 1 1
1 0 0 1 0 1 0 1
1 1 1 1 0 0 1 0
0 1 1 1 1 0 0 1
1 0 0 0 0 1 0 0
0 1 0 0 0 0 1 0
0 0 1 0 0 0 0 1
1 0 1 0 1 0 0 0

⎞

⎟
⎟
⎟⎟
⎟
⎟
⎟⎟
⎟
⎟
⎠

,

and the result is 00010101.

We review Eq. (1) by using the “commutative” feature as
〈
s(0), Γ × TF t

〉
=

〈
s(0), At × TMγ

〉
=

〈
s(0) × Mγ , At

〉
,

Fast Correlation Attack Revisited 137

and Eq. (1) is equivalently rewritten as

e′
t =

〈
s(0) × Mγ , At

〉
⊕

⊕
i∈Tz

zt+i.

The equation above implies the following new property.

Property 1. We assume that we can observe high correlation when we guess s(0)

and parity-check equations are generated from Γ × TF t. Then, we can observe
exactly the same high correlation even if we guess s(0) × Mγ and parity-check
equations are generated from At instead of Γ × TF t.

Hereinafter, γ ∈ GF(2n) is not distinguished from Γ ∈ {0, 1}n, and we use γ
as a linear mask for simplicity.

3.2 New Wrong-Key Hypothesis

We review the traditional and commonly used wrong-key hypothesis, where we
assume that the empirical correlation behaves as random when an incorrect
initial state is guessed. However, Property 1 implies that we need to consider
this hypothesis more carefully.

We assume that the use of a linear mask Γ leads to high correlation, and
we simply call such linear masks highly biased linear masks. When we generate
parity-check equations from Γ × TF t, let us consider the case that we guess
incorrect initial state s′(0) = s(0) × Mγ′ . From Property 1

〈
s′(0), Γ × TF t

〉
=

〈
s(0) × Mγ′ , At × TMγ

〉
=

〈
s(0), At × TMγγ′

〉

In other words, it is equivalent to the case that γγ′ is used as a linear mask
instead of γ. If both γ and γγ′ are highly biased linear masks, we also observe high
correlation when we guess s(0)×Mγ′ . Therefore, assuming that the target stream
cipher has multiple linear masks with high correlation, the entire corresponding
guessing brings high correlation.

We introduce a new wrong-key hypothesis based on Property 1. Assuming
that there are m linear masks whose correlation is high and the others are
correlation zero, we newly introduce the following wrong-key hypothesis.

Hypothesis 1 (New Wrong-Key Hypothesis). Assume that there are m
highly biased linear masks as γ1, γ2, . . . , γm, and parity-check equations are gen-
erated from At. Then, we observe high correlation when we guess s(0) × Mγi

for
any i ∈ {1, 2, . . . ,m}. Otherwise, we assume that it behaves at random, i.e., the
correlation becomes 0.

The new wrong-key hypothesis is a kind of extension from the traditional wrong-
key hypothesis.

138 Y. Todo et al.

4 New Algorithm Exploiting New Property

Overview. We first show the overview before we detail our new attack
algorithm. In this section, let n be the size of the LFSR in the target LFSR-based
stream cipher, and we assume that there are m (�2n) highly biased linear masks
denoted by γ1, γ2, . . . , γm. The procedure consists of three parts: constructing
parity-check equations, FWHT, and removing γ.

– We first construct parity-check equations. Parity-check equations of the
traditional FCA are constructed from Γ × TF t and

⊕
i∈Tz

zt+i. In our new
algorithm, we construct parity-check equations from At instead of Γ × TF t.

– We use the fast Walsh-Hadamard transform (FWHT) to get solutions with
high correlation. In other words, we evaluate s such that 〈s,At〉 ⊕ ⊕

i∈Tz
zt+i

is highly biased. As we explained in Sect. 3.1, we then observe high correlation
when s = s(0) × Mγi

, and there are m solutions with high correlation. Unfor-
tunately, even if FWHT is applied, we have to guess n bits and it requires n2n

time complexity. It is less efficient than the exhaustive search when the size
of the LFSR is greater than or equal to the security level. To overcome this
issue, we bypass some bits out of n bits by exploiting m linear masks. Specif-
ically, we bypass β bits, i.e., we guess only (n−β) bits and β bits are fixed to
constant (e.g., 0). Even if β bits are bypassed, there are m2−β solutions with
high correlation in average. Therefore, m > 2β is a necessary condition.

– We pick solutions whose empirical correlation is greater than a threshold,
where some of solutions are represented as s = s(0) × Mγi

. To remove Mγi
,

we exhaustively guess the applied γi and recover s(0). Assuming that Np

solutions are picked, the time complexity is Np × m. If the expected number
of occurrences that the correct s(0) appears is significantly greater than that
for incorrect ones, we can uniquely determine s(0). We simulate them by using
the Poisson distribution in detail.

4.1 Detailed Algorithm

Let n be the state size of the LFSR and κ be the security level. We assume that
there are mp (� 2n) linear masks γ1, γ2, . . . , γmp

with positive correlation that
is greater than a given c. Moreover we assume that there are mm (� 2n) linear
masks ρ1, ρ2, . . . , ρmm

with negative correlation that is smaller than −c. Note
that c is close to 0, and m = mp + mm.

Constructing Parity-Check Equations. We first construct parity-check
equations from At and

⊕
i∈Tz

zt+i for t = 0, 1, . . . , N −1, and the time complex-
ity is N . The empirical correlation follows N (Nc,N) and N (−Nc,N) when we
guess one of s(0) ×Mγi

and s(0) ×Mρi
, respectively 3. Otherwise we assume that

the empirical correlation follows N (0, N).
3 The correlation c is the lower bound for all γi. Therefore, while the empirical

correlation may not follow N (Nc, N), it does not affect the attack feasibility because
it is far from N (0, N).

Fast Correlation Attack Revisited 139

FWHT with Bypassing Technique. We next pick s ∈ {0, 1}n such that

|
∑N−1

t=0 (−1)e′
t

N | ≥ th, where e′
t = 〈s,At〉 ⊕ ⊕

i∈Tz
zt+i and th (> 0) is a threshold.

Let ε1 be the probability that values following N (0, N) is greater than th, and let
ε2 be the probability that values following N (Nc,N) is greater than th. Namely,

ε1 =
1√

2πN

∫ ∞

th

exp
(

− x2

2N

)
dx, ε2 =

1√
2πN

∫ ∞

th

exp
(

− (x − Nc)2

2N

)
dx.

Note that the probability that values following N (0, N) is smaller than −th is
also ε1 and the probability that values following N (−Nc,N) is smaller than −th
is also ε2. Let Sp and Sm be the set of picked solutions with positive and negative
correlation, respectively. The expected size of Sp and Sm is (2nε1 + mpε2) and
(2nε1 + mmε2), respectively, when the whole of n-bit s is guessed.

Unfortunately, if we guess the whole of n-bit s, the time complexity of FWHT
is n2n and it is less efficient than the exhaustive search when n ≥ κ. To reduce the
time complexity, we assume multiple solutions. Instead of guessing the whole of
s, we guess its partial (n−β) bits, where bypassed β bits are fixed to constants,
e.g., all 0. Then, the time complexity of the FWHT is reduced from n2n to
(n − β)2n−β . Even if β bits are bypassed, mp2−βε2 (resp. mm2−βε2) solutions
represented as s(0) ×Mγi

(resp. s(0) ×Mρi
) remain. Moreover, the size of Sp and

Sm also decreases to (2n−βε1 +mp2−βε2) and (2n−βε1 +mm2−βε2), respectively.

Removing γ. For all s ∈ Sp and all j ∈ {1, 2, . . . ,mp}, we compute s × M−1
γj

.
It computes s(0) × Mγi

× M−1
γj

and becomes s(0) when i = j. Since there are
mp2−βε2 solutions represented as s(0) × Mγi

in Sp, the correct s(0) appears
mp2−βε2 times. On the other hand, every incorrect initial state appears about
mp(2n−βε1 + mp2−βε2)2−n times when we assume uniformly random behavior.
In total, every incorrect initial state appears about

λ1 = mp(2n−βε1 + mp2−βε2)2−n + mm(2n−βε1 + mm2−βε2)2−n

= (m2n−βε1 + (m2
p + m2

m)2−βε2)2−n

times when we assume uniformly random behavior. On the other hand, the
correct s(0) appears

λ2 = (mp + mm)2−βε2 = m2−βε2

times.
The number of occurrences that every incorrect initial state appears follows

the Poisson distribution with parameter λ1, and the number of occurrences that
the correct s(0) appears follows the Poisson distribution with parameter λ2. To
recover the unique correct s(0), we introduce a threshold thp as

∞∑
k=thp

λk
1e

−λ1

k!
< 2−n.

140 Y. Todo et al.

The probability that the number of occurrences that s(0) appears is greater than
thp is estimated as

∑∞
k=thp

λk
2e−λ2

k! . Therefore, if the probability is close to one,
we can uniquely recover s(0) with high probability.

4.2 Estimation of Time and Data Complexities

The procedure consists of three parts: constructing parity-check equations,
FWHT, and removing γ. The first step requires the time complexity N , where the
unit of the time complexity is a multiplication by α over GF(2n) and

⊕
i∈Tz

zt+i.
The second step requires the time complexity (n − β)2n−β , where the unit of
the time complexity is an addition or subtraction4. The final step requires the
time complexity (m2n−βε1 +(m2

p +m2
m)2−βε2), where the unit of the time com-

plexity is a multiplication by fixed values over GF(2n). These units of the time
complexity are not equivalent, but at least, they are more efficient than the unit
given by the initialization of stream ciphers. Therefore, for simplicity, we regard
them as equivalent, and the total time complexity is estimated as

N + (n − β)2n−β + m2n−βε1 + (m2
p + m2

m)2−βε2.

Proposition 1. Let n be the size of the LFSR in an LFSR-based stream cipher.
We assume that there are m linear masks whose absolute value of correlation is
greater than c. When the size of bypassed bits is β, we can recover the initial
state of the LFSR with time complexity 3(n − β)2n−β and the required number
of parity-check equations is N = (n − β)2n−β, where the success probability is∑∞

k=thp

λk
2e−λ2

k! , where thp is the minimum value satisfying

∞∑
k=thp

Nke−N

k!
< 2−n,

and

λ2 =
m2−β

√
2πN

∫ ∞

th

exp
(

− (x − Nc)2

2N

)
dx,

th =
√

2N × erfc−1

(
2(n − β)

m

)
.

Proof. The total time complexity is estimated as

N + (n − β)2n−β + m2n−βε1 + (m2
p + m2

m)2−βε2.

In the useful attack parameter, since (m2
p + m2

m)2−βε2 is significantly smaller
than the others, we regard it as negligible. We consider the case that other three
terms are balanced, i.e.,

N = (n − β)2n−β = m2n−βε1,

4 Since we only use N < 2n parity-check equations, it is enough to use additions or
subtraction on n-bit registers.

Fast Correlation Attack Revisited 141

−239 −240

2-42

2-41

2-40

240 239 2380

0

Normal distributions

The sum of

pr
ob

ab
ili

ty

Random case
Biased case

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Poisson distributions

of occurrences that correct/incorrect initial state appears

pr
ob

ab
ili

ty

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Incorrect initial states
Correct initial state

thp = 15th = 239.96715

Fig. 2. Theoretical estimation for Example 2.

where ε1 is estimated as

ε1 =
1√

2πN

∫ ∞

th

exp
(

− x2

2N

)
dx =

1
2

× erfc
(

th√
2N

)
=

n − β

m
.

Thus, when th is

th =
√

2N × erfc−1

(
2(n − β)

m

)
,

complexities of the three terms are balanced. We finally evaluate the probability
that the initial state of the LFSR is uniquely recovered. The number of occur-
rences that each incorrect value appears follows the Poisson distribution with
parameter λ1 = N2−n. To discard all 2n−1 incorrect values, recall thp satisfying∑∞

k=thp

λk
1e−λ1

k! < 2−n. Then, the success probability is
∑∞

k=thp

λk
2e−λ2

k! where λ2

is

λ2 = m2−βε2 =
m2−β

√
2πN

∫ ∞

th

exp
(

− (x − Nc)2

2N

)
dx

��
Example 2. Let us consider an attack against an LFSR-based stream cipher with
80-bit LFSR. We assume that there are 214 linear masks whose correlation is
greater than 2−36. For β = 9, we use N = (80−9)×280−9 ≈ 277.1498 parity-check
equations. The left figure of Fig. 2 shows two normal distributions: random and
biased cases. If we use a following threshold

th =
√

2N × erfc−1

(
2(n − β)

m

)
≈ 239.9672,

ε1 = (n − β)/m ≈ 2−7.8503 and ε2 = 0.99957. The expected number of picked
solutions is 280−9ε1 + 214−9ε2 ≈ 263.1498 + 31.98627 ≈ 263.1498. We apply 214

142 Y. Todo et al.

inverse linear masks to the picked solutions and recover s(0), and the time com-
plexity is 263.1498+14 = 277.1498.

The number of occurrences that each incorrect value appears follows the
Poisson distribution with parameter λ1 = 277.1498−80 = 2−2.8502. On the other
hand, the number of occurrences that s(0) appears follows the Poisson distri-
bution with parameter λ2 = 214−9 × 0.99957 ≈ 31.98627. The right figure of
Fig. 2 shows two Poisson distributions. For example, when thp = 15 is used,
the probability that an incorrect value appears at least 15 is smaller than 2−80.
However, the corresponding probability for s(0) is 99.9%. As a result, the total
time complexity is 3 × 277.1498 ≈ 278.7348.

5 Application to Grain-128a

We apply the new algorithm to the stream cipher Grain-128a [20], which has two
modes of operations: stream cipher mode and authenticated encryption mode.
We assume that all output sequences of the pre-output function can be observed.
Under the known-plaintext scenario, this assumption is naturally realized for the
stream cipher mode because the output is directly used as a key stream. On the
other hand, this assumption is very strong for the authenticated encryption mode
because only even-clock output is used as the key stream. Therefore, we do not
claim that the authenticated encryption mode can be broken.

5.1 Specification of Grain-128a

Let s(t) and b(t) be 128-bit internal states of the LFSR and NFSR at time t,
respectively, and s(t) and b(t) are represented as s(t) = (st, st+1, . . . , st+127) and
b(t) = (bt, bt+1, . . . , bt+127). Let yt be an output of the pre-output function at
time t, and it is computed as

yt = h(s(t), b(t)) ⊕ st+93 ⊕
⊕
j∈A

bt+j , (2)

yt

st st+127bt bt+127

24 5

27 7 1

6

h

fg

Fig. 3. Specification of Grain-128a

Fast Correlation Attack Revisited 143

where A = {2, 15, 36, 45, 64, 73, 89}, and h(s(t), b(t)) is defined as

h(s(t), b(t)) = h(bt+12, st+8, st+13, st+20, bt+95, st+42, st+60, st+79, st+94)

= bt+12st+8 ⊕ st+13st+20 ⊕ bt+95st+42 ⊕ st+60st+79 ⊕ bt+12bt+95st+94.

Moreover, st+128 and bt+128 are computed by

st+128 = st ⊕ st+7 ⊕ st+38 ⊕ st+70 ⊕ st+81 ⊕ st+96,

bt+128 = st ⊕ bt ⊕ bt+26 ⊕ bt+56 ⊕ bt+91 ⊕ bt+96 ⊕ bt+3bt+67 ⊕ bt+11bt+13

⊕ bt+17bt+18 ⊕ bt+27bt+59 ⊕ bt+40bt+48 ⊕ bt+61bt+65 ⊕ bt+68bt+84

⊕ bt+88bt+92bt+93bt+95 ⊕ bt+22bt+24bt+25 ⊕ bt+70bt+78bt+82.

Let zt be the key stream at time t, and zt = yt in the stream cipher mode. On
the other hand, in the authenticated encryption mode, zt = y2w+2i, where w is
the tag size. Figure 3 shows the specification of Grain-128a.

5.2 Linear Approximate Representation for Grain-128a

If there are multiple linear masks with high correlation, the new algorithm can be
applied. In this section, we show that Grain-128a has many linear approximate
representations, and they produce many linear masks.

93
94796042952013812

g f

93
94796042952013812

g f

93
94796042952013812

g f n

n n

n

h

h

h

Fig. 4. Linear Approximate Representation for Grain-128a

Figure 4 shows the high-level view of the linear approximate representation.
It involves from tth to (t + n + 1)th rounds, where b(t) and b(t+n+1) must be
linearly inactive to avoid involving the state of NFSR. Moreover, yt+i is linearly
active for i ∈ Tz, and the linear mask of the input of the (t+ i)-round h function
denoted by Λi must be nonzero for i ∈ Tz. Otherwise, it must be zero.

We focus on the structure of the h function, where the input consists of
7 bits from the LFSR and 2 bits from the NFSR. Then, non-zero Λi can take
several values, and specifically, Λi can take 64 possible values (see Table 2) under

144 Y. Todo et al.

the condition that a linear mask for 2 bits from NFSR is fixed. Since the sum
of yt+i for i ∈ Tz is used, it implies that there are 64|Tz| linear approximate
representations. These many possible representations are obtained by exploiting
the structure of the h function, and this structure is common for all ciphers in
the Grain family. In other words, this is a new potential vulnerability of the
Grain family.

We first consider Tz to construct the linear approximate representation, but
it is difficult to find an optimal Tz. Our strategy is heuristic and does not guar-
antee the optimality, but the found Tz is enough to break full Grain-128a. Once
Tz is determined, we first evaluate the correlation of a linear approximate rep-
resentation on fixed Λi for i ∈ {0, 1, . . . , n}. The high-biased linear mask γ used
in our new algorithm is constructed by Λi, and the correlation of γ is estimated
from the correlation of Λi.

Finding Linear Masks with High Correlation. We focus on the sum of
key stream bits, i.e.,

⊕
i∈Tz

yt+i. From Eq. (2), the sum is represented as

⊕
i∈Tz

yt+i =
⊕
i∈Tz

⎛
⎝h(s(t+i), b(t+i)) ⊕ st+i+93 ⊕

⊕
j∈A

bt+i+j

⎞
⎠

=
⊕
i∈Tz

(
h(s(t+i), b(t+i)) ⊕ st+i+93

)
⊕

⊕
j∈A

(⊕
i∈Tz

bt+j+i

)
.

We first consider an appropriate set Tz. We focus on
⊕

i∈Tz
bt+j+i and

choose Tz such that
⊕

i∈Tz
bt+j+i is highly biased. Concretely, we tap 6 bits

whose index corresponds to linearly tapped bits in the g function, i.e., Tz =
{0, 26, 56, 91, 96, 128}. Then, for any j,

⊕
i∈Tz

bt+j+i = bt+j ⊕ bt+j+26 ⊕ bt+j+56 ⊕ bt+j+91 ⊕ bt+j+96 ⊕ bt+j+128

= st+j ⊕ g′(b(t+j)),

where

g′(b(t)) = bt+3bt+67 ⊕ bt+11bt+13 ⊕ bt+17bt+18 ⊕ bt+27bt+59 ⊕ bt+40bt+48

⊕ bt+61bt+65 ⊕ bt+68bt+84 ⊕ bt+88bt+92bt+93bt+95

⊕ bt+22bt+24bt+25 ⊕ bt+70bt+78bt+82.

Note that all bits in g′(b(t)) are nonlinearly involved, and the correlation may
be high. Then

⊕
i∈Tz

yt+i =
⊕
i∈Tz

(
h(s(t+i), b(t+i)) ⊕ st+i+93

)
⊕

⊕
j∈A

(
st+j ⊕ g′(b(t+j))

)

=
⊕
i∈Tz

st+i+93 ⊕
⊕
j∈A

st+j ⊕
⊕
i∈Tz

h(s(t+i), b(t+i)) ⊕
⊕
j∈A

g′(b(t+j)).

Fast Correlation Attack Revisited 145

Table 2. Correlation of the h function. The horizontal axis shows Λh,i[1 − 3], the
vertical axis shows Λh,i[5 − 8], and 512 × corh,i is shown in every cell.

000 001 010 011 100 101 110 111
0000 -32 -32 -32 32 -32 -32 -32 32
0001 0 0 0 0 0 0 0 0
0010 -32 -32 -32 32 -32 -32 -32 32
0011 0 0 0 0 0 0 0 0
0100 -32 -32 -32 32 -32 -32 -32 32
0101 0 0 0 0 0 0 0 0
0110 32 32 32 -32 32 32 32 -32
0111 0 0 0 0 0 0 0 0
1000 -32 -32 -32 32 0 0 0 0
1001 0 0 0 0 -32 -32 -32 32
1010 -32 -32 -32 32 0 0 0 0
1011 0 0 0 0 -32 -32 -32 32
1100 -32 -32 -32 32 0 0 0 0
1101 0 0 0 0 -32 -32 -32 32
1110 32 32 32 -32 0 0 0 0
1111 0 0 0 0 32 32 32 -32

Case of Λh,i[0, 4] = 00.

000 001 010 011 100 101 110 111
0000 -32 -32 -32 32 -32 -32 -32 32
0001 0 0 0 0 0 0 0 0
0010 -32 -32 -32 32 -32 -32 -32 32
0011 0 0 0 0 0 0 0 0
0100 -32 -32 -32 32 -32 -32 -32 32
0101 0 0 0 0 0 0 0 0
0110 32 32 32 -32 32 32 32 -32
0111 0 0 0 0 0 0 0 0
1000 32 32 32 -32 0 0 0 0
1001 0 0 0 0 32 32 32 -32
1010 32 32 32 -32 0 0 0 0
1011 0 0 0 0 32 32 32 -32
1100 32 32 32 -32 0 0 0 0
1101 0 0 0 0 32 32 32 -32
1110 -32 -32 -32 32 0 0 0 0
1111 0 0 0 0 -32 -32 -32 32

Case of Λh,i[0, 4] = 01.

000 001 010 011 100 101 110 111
0000 -32 -32 -32 32 32 32 32 -32
0001 0 0 0 0 0 0 0 0
0010 -32 -32 -32 32 32 32 32 -32
0011 0 0 0 0 0 0 0 0
0100 -32 -32 -32 32 32 32 32 -32
0101 0 0 0 0 0 0 0 0
0110 32 32 32 -32 -32 -32 -32 32
0111 0 0 0 0 0 0 0 0
1000 -32 -32 -32 32 0 0 0 0
1001 0 0 0 0 32 32 32 -32
1010 -32 -32 -32 32 0 0 0 0
1011 0 0 0 0 32 32 32 -32
1100 -32 -32 -32 32 0 0 0 0
1101 0 0 0 0 32 32 32 -32
1110 32 32 32 -32 0 0 0 0
1111 0 0 0 0 -32 -32 -32 32

Case of Λh,i[0, 4] = 10.

000 001 010 011 100 101 110 111
0000 -32 -32 -32 32 32 32 32 -32
0001 0 0 0 0 0 0 0 0
0010 -32 -32 -32 32 32 32 32 -32
0011 0 0 0 0 0 0 0 0
0100 -32 -32 -32 32 32 32 32 -32
0101 0 0 0 0 0 0 0 0
0110 32 32 32 -32 -32 -32 -32 32
0111 0 0 0 0 0 0 0 0
1000 32 32 32 -32 0 0 0 0
1001 0 0 0 0 -32 -32 -32 32
1010 32 32 32 -32 0 0 0 0
1011 0 0 0 0 -32 -32 -32 32
1100 32 32 32 -32 0 0 0 0
1101 0 0 0 0 -32 -32 -32 32
1110 -32 -32 -32 32 0 0 0 0
1111 0 0 0 0 32 32 32 -32

Case of Λh,i[0, 4] = 11.

We next consider a linear approximate representation of h(s(t+i), b(t+i)). Let
Λi ∈ {0, 1}9 be the input linear mask for the h function at time t + i, and
Λi = (Λi[0], Λi[1], . . . , Λi[8]). Then,

h(s(t+i), b(t+i))
≈ Λi[0]bt+i+12 ⊕ Λi[4]bt+i+95 ⊕ 〈Λi[1 − 3], (st+i+8, st+i+13, st+i+20)〉

⊕ 〈Λi[5 − 8], (st+i+42, st+i+60, st+i+79, st+i+94)〉,
where Λi[x−y] denotes a sub vector indexed from xth bit to yth bit. Let corh,i(Λi)
be the correlation of the h function at time t + i, and Table 2 summarizes them.
From Table 2, corh,i(Λi) is 0 or ±2−4. We have 6 active h functions because

146 Y. Todo et al.

|Tz| = 6, and let ΛTz
∈ {0, 1}9×|Tz| be the concatenated linear mask, i.e., ΛTz

=
(Λ0, Λ26, Λ56, Λ91, Λ96, Λ128). The total correlation from all active h functions
depends on ΛTz

, and it is computed as corh(ΛTz
) = (−1)|Tz|+1

∏
i∈Tz

corh,i(Λi)
because of the piling-up lemma. Therefore, if Λi with correlation 0 is used for any
i ∈ Tz, corh(ΛTz

) = 0. Otherwise, corh(ΛTz
) = ±2−24.

We guess all terms involved in the internal state of the LFSR in the FCA.
Under the correlation ±2−24, we get

⊕
i∈Tz

yt+i ≈ (term by guessings(t))

⊕
⊕
i∈Tz

(Λi[0]bt+i+12 ⊕ Λi[4]bt+i+95) ⊕
⊕
j∈A

(
g′(b(t+j))

)
.

Therefore, if

corg(ΛTz
) = Pr

⎡
⎣⊕

i∈Tz

(Λi[0]bt+i+12 ⊕ Λi[4]bt+i+95) ⊕
⊕
j∈A

(
g′(b(t+j))

)
= 0

⎤
⎦

− Pr

⎡
⎣⊕

i∈Tz

(Λi[0]bt+i+12 ⊕ Λi[4]bt+i+95) ⊕
⊕
j∈A

(
g′(b(t+j))

)
= 1

⎤
⎦

is high, the FCA can be successfully applied. Note that corg(ΛTz
) is indepen-

dent of Λi[1 − 3, 5 − 8] for any i ∈ Tz. To evaluate its correlation, we divide⊕
j∈A

(
g′(b(t+j))

)
into 20 terms such that bt+67 and bt+137 are involved by

multiple terms. Then, we try out 4 possible values of (bt+67, bt+137) and eval-
uate correlation independently. As a result, when (bt+67, bt+137) = (0, 0) and
(bt+67, bt+137) = (0, 1), the correlation is −2−33.1875 and −2−33.4505, respectively.
On the other hand, the correlation is 0 when bt+67 = 1. Therefore

corg(ΛTz
) =

−2−33.1875 − 2−33.4505

4
= −2−34.313

when Λi[0, 4] = 0 for all i ∈ Tz.
We similarly evaluate corg(ΛTz

) when Λi[0, 4] = 0 for any i ∈ Tz. If
one of Λ0[0], Λ26[0], Λ56[0], Λ91[4], Λ96[4], and Λ128[4] is 1, the correlation is
always 0 because bt+12, bt+38, bt+68, bt+186, bt+191, and bt+223 are not involved
to

⊕
j∈A

(
g′(b(t+j))

)
. Table 3 summarizes corg(ΛTz

) when Λ0[0], Λ26[0], Λ56[0],
Λ91[4], Λ96[4], and Λ128[4] are 0.

For any fixed Λi, we can get the following linear approximate representation
⊕
i∈Tz

yt+i ≈
⊕
i∈Tz

st+i+93 ⊕
⊕
j∈A

st+j ⊕
⊕
i∈Tz

〈Λi[1 − 3], (st+i+8, st+i+13, st+i+20)〉

⊕
⊕
i∈Tz

〈Λi[5 − 8], (st+i+42, st+i+60, st+i+79, st+i+94)〉. (3)

Fast Correlation Attack Revisited 147

Table 3. Summary of correlations when Λi[0, 4] is fixed. Let ∗ be arbitrary bit.

Λ0[4] Λ26[4] Λ56[4] Λ91[0] Λ96[0] Λ128[0] corg(ΛTz)

0 0 0 0 0 0 −2−34.3130

0 0 0 0 0 1 +2−36.1875

0 0 0 0 1 0 −2−37.5860

0 0 0 0 1 1 +2−39.4605

0 0 0 1 0 0 −2−34.9230

0 0 0 1 0 1 +2−36.7975

0 0 0 1 1 0 +2−37.5860

0 0 0 1 1 1 −2−39.4605

0 0 1 0 0 0 −2−35.8980

0 0 1 0 0 1 +2−37.7724

0 0 1 0 1 0 −2−39.1710

0 0 1 0 1 1 +2−41.0454

0 0 1 1 0 0 −2−36.5080

0 0 1 1 0 1 +2−38.3825

0 0 1 1 1 0 +2−39.1710

0 0 1 1 1 1 −2−41.0454

0 1 0 0 0 0 −2−35.3636

0 1 0 0 0 1 +2−37.2381

0 1 0 0 1 0 −2−38.1710

0 1 0 0 1 1 +2−40.0454

0 1 0 1 0 0 −2−35.8490

0 1 0 1 0 1 +2−37.7235

0 1 0 1 1 0 +2−38.1710

0 1 0 1 1 1 −2−40.0454

0 1 1 0 0 0 −2−36.9486

0 1 1 0 0 1 +2−38.8230

0 1 1 0 1 0 −2−39.7559

0 1 1 0 1 1 +2−41.6304

0 1 1 1 0 0 −2−37.4340

0 1 1 1 0 1 +2−39.3085

0 1 1 1 1 0 +2−39.7559

0 1 1 1 1 1 −2−41.6304

1 ∗ ∗ ∗ ∗ ∗ 0

From the piling-up lemma, the correlation is computed as

−corg(ΛTz
) × corh(ΛTz

),

where corg(Tz) is summarized in Table 3 and corh(ΛTz
) = (−1)|Tz|+1

∏
i∈Tz

corh,i(Λi).

148 Y. Todo et al.

How to Find Multiple γ. The correlation of the linear approximate repre-
sentation on fixed Λi was estimated in the paragraph above. The linear mask γ
used in the FCA directly is represented as

γ =
∑
i∈Tz

(
Λi[1]αi+8 + Λi[2]αi+13 + Λi[3]αi+20 + Λi[5]αi+42

+ Λi[6]αi+60 + Λi[7]αi+79 + Λi[8]αi+94 + αi+93
)

+
∑
j∈A

αj .

If different ΛTz
s derive the same γ, we need to sum up corresponding correlations.

Clearly, since this linear approximate representation does not involve Λi[0, 4]
for i ∈ Tz, we need to sum up 22×|Tz| = 212 correlations, where Λi[1−3, 5−8] is
identical and only Λi[0, 4] varies for i ∈ Tz. Let V be a linear span whose basis
is 12 corresponding unit vectors.

Moreover, there are special relationships. When we focus on Λ56[6] and Λ96[3],
corresponding elements over GF(2128) are identical because α56+60 = α96+20 =
α116. In other words, (Λ56[6], Λ96[3]) = (0, 0) and (Λ56[6], Λ96[3]) = (1, 1) derive
the same γ, and (Λ56[6], Λ96[3]) = (1, 0) and (Λ56[6], Λ96[3]) = (0, 1) also derive
the same γ. We have 3 such relationships as follows.

– Λ56[6] and Λ96[3]. Then, α56+60 = α96+20 = α116.
– Λ91[2] and Λ96[1]. Then, α91+13 = α96+8 = α104.
– Λ91[7] and Λ128[5]. Then, α91+79 = α128+42 = α170.

Therefore, from following three vectors

w1(δ[0]) = (09,09,000000100,000000000,000δ[0]00000,000000000),

w2(δ[1]) = (09,09,000000000,001000000,0δ[1]0000000,000000000),

w3(δ[2]) = (09,09,000000000,000000010, 000000000,00000δ[2]000),

a linear span W (δ) = span(w1(δ[0]), w2(δ[1]), w3(δ[2])) is defined, where
δ[i] = δ[i] ⊕ 1. As a result, the correlation for γ denoted by corγ is estimated as

corγ =
∑

w∈W (δ)

∑
v∈V

−corg(ΛTz
⊕ v) × corh(ΛTz

⊕ v ⊕ w).

Note that corg is independent of w ∈ W (δ).
We heuristically evaluated γ with high correlation. As shown in Table 2, the

number of possible Λi is at most 64. Otherwise, corh is always 0. Therefore,
the search space is reduced from 254 to 236. Moreover, Λ0 is not involved in
W (δ), and the absolute value of corγ is invariable as far as we use Λ0 satisfying
corh,0 = ±2−4. Therefore, we do not need to evaluate Λ0 anymore, and the
search space is further reduced from 236 to 230. While Λ26 is also not involved
to W (δ), we have non-zero correlation for both cases as Λ26[4] = 0 and 1 (see
Table 3). If the sign of corh,26 for Λ26[4] = 0 is different from that for Λ26[4] = 1,
they cancel each other out. Therefore, we should use Λ26 such that the sign

Fast Correlation Attack Revisited 149

of correlation of Λ26 is equal to that of Λ26 ⊕ (000010000), and the number of
such candidates is 32. Then, we do not need to evaluate Λ26 anymore, and the
search space is further reduced from 230 to 224. We finally evaluated 224 ΛTz

exhaustively. As a result, we found 49152 × 64 × 32 ≈ 226.58 γ whose absolute
value of correlation is greater than 2−54.2381.

5.3 Estimation of Attack Complexity and Success Probability

We apply the attack algorithm described in Sect. 3, and Proposition 1 is used
to estimate the attack complexity and success probability. Figure 5 shows the
relationship between the time complexity, success probability, and the size of
bypassed bits, where (n,m, c) = (128, 49152× 64× 32,±2−54.2381) is used. From
Fig. 5, β = 21 is preferable. The time complexity is 3 × (128 − 21) × 2128−21 ≈
2115.3264 and the corresponding success probability is almost 100%. Moreover
when β = 22, the time complexity is 2114.3129 and the success probability is
60.95%.

The estimation above only evaluates the time complexity to recover the initial
state of the LFSR. To recover the secret key, we need to recover the whole of
the initial state. Our next goal is to recover the initial state of the NFSR under
the condition that the initial state of the LFSR is uniquely determined, but it
is not difficult. We have several methods to recover the initial state and explain
the most simple method.

The key stream is generated as Eq. (2). We focus on (y0, . . . , y34), which
involves 128 bits as (b2, . . . , b129). We first guess 93 bits, and the remaining
35 bits are recovered by using corresponding Eq. (2). Specifically, we first guess
(b33, . . . , b75, b80, . . . , b129). Then, (b76, . . . , b79) are uniquely determined by using
(y31, . . . , y34). Similarly, we can uniquely determine the remaining 31 bits step by
step. While we need to guess 93 bits, the time complexity is negligible compared
with that for the FCA.

0 5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

β

pr
ob

ab
ili

ty

11
0

11
5

12
0

12
5

13
0

13
5

lo
g2

(c
om

pl
ex

it
y)

Probability
Complexity

Fig. 5. Time complexity and success probability. FCA against Grain-128a.

150 Y. Todo et al.

5.4 Application to Grain-128

We also applied our technique to Grain-128, but we briefly show the result due
to the page limitation. Since Grain-128 is very similar to Grain-128a, we can
use the same Tz. Then, corg = −2−32, where Λ26[4] and Λ91[0] can be chosen
arbitrary but the others must be 0.

We heuristically evaluated γ with high correlation, and we used the same
strategy as the case of Grain-128a. As a result, we found 215 × 64 × 32 = 226 γ
with correlation ±2−51. We apply the attack algorithm described in Sect. 3, and
Proposition 1 is used to estimate the attack complexity and success probability.
As a result, β = 22 is preferable, and the time complexity is 3 × (128 − 22) ×
2128−22 ≈ 2114.3129 and the corresponding success probability is 99.0%.

6 Application to Grain-v1

6.1 Specification of Grain-v1

Let s(t) and b(t) be 80-bit internal states of the LFSR and NFSR at time t,
respectively, and s(t) and b(t) are represented as s(t) = (st, st+1, . . . , st+79) and
b(t) = (bt, bt+1, . . . , bt+79), respectively. Then, let zt be a key stream at time t,
and it is computed as

zt = h(s(t), b(t)) ⊕
⊕
j∈A

bt+j , (4)

where A = {1, 2, 4, 10, 31, 43, 56} and h(s(t), b(t)) is defined as

h(s(t), b(t)) = h(st+3, st+25, st+46, st+64, bt+63)
= st+25 ⊕ bt+63 ⊕ st+3st+64 ⊕ st+46st+64 ⊕ st+64bt+63

⊕ st+3st+25st+46 ⊕ st+3st+46st+64 ⊕ st+3st+46bt+63

⊕ st+25st+46bt+63 ⊕ st+46st+64bt+63.

Moreover, st+80 and bt+80 are computed by

st+80 = st ⊕ st+13 ⊕ st+23 ⊕ st+38 ⊕ st+51 ⊕ st+62,

bt+80 = st ⊕ bt+62 ⊕ bt+60 ⊕ bt+52 ⊕ bt+45 ⊕ bt+37 ⊕ bt+33 ⊕ bt+28 ⊕ bt+21

⊕ bt+14 ⊕ bt+9 ⊕ bt ⊕ bt+63bt+60 ⊕ bt+37bt+33 ⊕ bt+15bt+9

⊕ bt+60bt+52bt+45 ⊕ bt+33bt+28bt+21 ⊕ bt+63bt+45bt+28bt+9

⊕ bt+60bt+52bt+37bt+33 ⊕ bt+63bt+60bt+21bt+15

⊕ bt+63bt+60bt+52bt+45bt+37 ⊕ bt+33bt+28bt+21bt+15bt+9

⊕ bt+52bt+45bt+37bt+33bt+28bt+21.

Fast Correlation Attack Revisited 151

6.2 Fast Correlation Attack Against Grain-v1

When we use Tz = {0, 14, 21, 28, 37, 45, 52, 60, 62, 80}, we focus on the sum of
the key stream bits, i.e., zt+0 ⊕ zt+14 ⊕ zt+21 ⊕ zt+28 ⊕ zt+37 ⊕ zt+45 ⊕ zt+52 ⊕
zt+60 ⊕ zt+62 ⊕ zt+80.

⊕
i∈Tz

zt+i =
⊕
i∈Tz

h(s(t+i), b(t+i)) ⊕
⊕
j∈A

(⊕
i∈Tz

bt+j+i

)
.

For any j,
⊕
i∈Tz

bt+j+i = st+j ⊕ g′(b(t+j)),

where g′(b(t)) is defined as

g′(b(t)) = bt+33 ⊕ bt+9 ⊕ bt+63bt+60 ⊕ bt+37bt+33 ⊕ bt+15bt+9 ⊕ bt+60bt+52bt+45

⊕ bt+33bt+28bt+21 ⊕ bt+63bt+45bt+28bt+9 ⊕ bt+60bt+52bt+37bt+33

⊕ bt+63bt+60bt+21bt+15 ⊕ bt+63bt+60bt+52bt+45bt+37

⊕ bt+33bt+28bt+21bt+15bt+9 ⊕ bt+52bt+45bt+37bt+33bt+28bt+21.

Then
⊕
i∈Tz

zt+i =
⊕
i∈Tz

h(s(t+i), b(t+i)) ⊕
⊕
j∈A

(
st+j ⊕ g′(b(t+j))

)

=
⊕
j∈A

st+j ⊕
⊕
i∈Tz

h(s(t+i), b(t+i)) ⊕
⊕
j∈A

g′(b(t+j)).

We next consider a linear approximate representation of h(s(t+i), b(t+i)). Let
Λi be the input linear mask for the h function at time t + i. Then

h(s(t+i), b(t+i))
≈ Λi[4]bt+i+63 ⊕ 〈Λi[0 − 3], (st+i+3, st+i+25, st+i+46, st+i+64)〉.

Let corh,i(Λi) be the correlation of the h function at time t + i, and Table 4
summarizes them. From Table 4, corh,i(Λi) is 0 or ±2−2. Since we have |Tz| = 10
active h functions, the total correlation from all active h functions is computed

Table 4. Correlation of the h function, where 32 × corh,i is shown in every cell.

Λi[0 − 3]

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

Λi[4] = 0 0 0 0 0 0 −8 0 8 0 8 0 −8 −8 8 −8 8

Λi[4] = 1 0 −8 0 8 −8 −8 −8 −8 0 0 0 0 0 −8 0 8

152 Y. Todo et al.

Table 5. Summary of correlations when Λi[4] is fixed.

Λ14[4] Λ21[4] Λ28[4] Λ45[4] corg(ΛTz)

0 0 0 0 −2−39.7159

0 0 0 1 −2−43.4500

0 0 1 0 −2−39.6603

0 0 1 1 −2−43.7260

0 1 0 0 +2−45.1228

0 1 0 1 −2−42.9025

0 1 1 0 +2−44.3802

0 1 1 1 −2−42.6875

1 0 0 0 +2−41.9519

1 0 0 1 +2−43.5233

1 0 1 0 +2−41.8662

1 0 1 1 +2−43.6420

1 1 0 0 −2−44.9114

1 1 0 1 +2−42.8544

1 1 1 0 −2−44.5232

1 1 1 1 +2−42.7302

as (−1)|Tz|+1
∏

i∈Tz
corh,i(Λi) = ±2−20 because of the piling-up lemma. Note

that Λi[0 − 3] is independent from the state of the NFSR.
All terms involved in the internal state of the LFSR can be guessed in the

FCA. Therefore, under the correlation ±2−20, we get
⊕
i∈Tz

zt+i = (term by guessing) ⊕
⊕
i∈Tz

(Λi[4]bt+i+63) ⊕
⊕
j∈A

(
g′(b(t+j))

)
.

Therefore, if

corg(ΛTz
) = Pr

⎡
⎣⊕

i∈Tz

(Λi[4]bt+i+63) ⊕
⊕
j∈A

(
g′(b(t+j))

)
= 0

⎤
⎦

− Pr

⎡
⎣⊕

i∈Tz

(Λi[4]bt+i+63) ⊕
⊕
j∈A

(
g′(b(t+j))

)
= 1

⎤
⎦

is high, the FCA can be successfully applied.
Similarly to the case of Grain-128a, we evaluate corg(ΛTz

). If one of
Λ0[4], Λ37[4], Λ52[4], Λ60[4], Λ62[4], and Λ80[4] is 1, the correlation is always
0 because bt+63, bt+100, bt+115, bt+123, bt+125, and bt+143 are not involved
in

⊕
j∈A

(
g′(b(t+j))

)
. Table 5 summarizes corg(ΛTz

) when Λi[4] = 0 for
i ∈ {0, 37, 52, 60, 62, 80}.

Fast Correlation Attack Revisited 153

For any fixed Λi, we can get the following linear approximate representation
⊕
i∈Tz

zt+i ≈
⊕
j∈A

st+j ⊕
⊕
i∈Tz

〈Λi[0 − 3], (st+i+3, st+i+25, st+i+46, st+i+64)〉. (5)

From the piling-up lemma, the correlation is computed as −corg(ΛTz
) ×

corh(ΛTz
).

How to Find Multiple γ. The correlation of the linear approximate repre-
sentation on fixed Λi was estimated in the paragraph above. The linear mask γ
used in the FCA directly is represented as

γ =
∑
i∈Tz

(
Λi[0]αi+3 + Λi[1]αi+25 + Λi[2]αi+46 + Λi[3]αi+64

)
+

∑
j∈A

αj .

If different Λh have the same γ, we need to sum up corresponding correlations.
This linear approximate representation does not use Λi[4] for i ∈ Tz. There-

fore, we need to sum up 2|Tz| = 210 correlations, where Λi[0 − 3] is identical and
only Λi[5] varies for i ∈ Tz. Let V be a linear span whose basis is 12 correspond-
ing unit vectors.

Moreover, there are special relationships similar to the case of Grain-128a,
and we have four such relationships as

– Λ37[2] and Λ80[0]. Then, α37+46 = α80+3 = α83.
– Λ62[3] and Λ80[2]. Then, α62+64 = α80+46 = α126.
– Λ0[2] and Λ21[1]. Then, α0+46 = α21+25 = α46.
– Λ21[3] and Λ60[1]. Then, α21+64 = α60+25 = α85.

Therefore, from following four vectors

w1(δ[0]) = (00000,05, 00000,05,00100,05,05,00000, 00000,δ[0]0000),

w2(δ[1]) = (00000,05, 00000,05,00000,05,05,00000, 00010,00δ[1]00),

w3(δ[2]) = (00100,05, 0δ[2]000,05,00000,05,05,00000, 00000,00000),

w4(δ[3]) = (00000,05, 00010,05,00000,05,05,0δ[3]000,00000,00000),

a linear span W (δ) = span(w1(δ[0]), w2(δ[1]), w3(δ[2]), w4(δ[3])) is defined,
where δ[i] = δ[i] ⊕ 1. Then, let corγ be the correlation of γ, and

corγ =
∑

w∈W (δ)

∑
v∈V

−corg(ΛTz
⊕ v) × corh(ΛTz

⊕ v ⊕ w).

We heuristically evaluated γ with high correlation. For every element in Tz,
since the subset {14, 28, 45, 52} is independent of the special relationship, we first
focus on the subset. Since bt+63+52 is not involved in

⊕
j∈A

(
g′(b(t+j))

)
, Λ52[4]

must be 0. Therefore, Λ52[0 − 3] should be chosen as

Λ52[0 − 3] ∈ {0101, 0111, 1001, 1011, 1100, 1101, 1110, 1111},

154 Y. Todo et al.

and corγ is invariable as far as we use Λ52 satisfying corh,52 = ±2−2. We do not
need to evaluate Λ52 anymore, and the search space is reduced from 240 to 236.
For i ∈ {14, 28, 45}, corresponding masks should be chosen as

Λi[0 − 3] ∈ {0101, 0111, 1001, 1011, 1100, 1101, 1110, 1111}

because corg(ΛTz
) is high when (Λ14[4], Λ21[4], Λ28[4], Λ45[4]) is 0010 or 0000.

Let us focus on Table 5. We have three-type linear masks as

– Λi[0 − 3] ∈ {1001, 1011, 1100, 1110}, where corh,i = ±2−2 for Λi[4] = 0 but
corh,i = 0 for Λi[4] = 1.

– Λi[0 − 3] ∈ {0111, 1101}, where the sign of corh,i is different in each case of
Λi[4] = 0 or 1.

– Λi[0 − 3] ∈ {0101, 1111}, where the sign of corh,i is the same in both cases of
Λi[4] = 0 and 1.

Since corγ is invariable in each case, it is enough to evaluate one from each case.
Therefore, the search space is reduced from 236 to 33 × 224. We finally evaluated
9 × 224 ΛTz

exhaustively. As a result, we found about 442368 γ whose absolute
value of correlation is greater than 2−36.

Estimating Attack Complexity and Success Probability. We apply the
attack algorithm described in Sect. 3, and Proposition 1 is used to estimate
the attack complexity and success probability. Figure 6 shows the relationship
between the time complexity, success probability, and the size of bypassed bits,
where (n,m, c) = (80, 442368,±2−36) is used. From Fig. 6, β = 11 is preferable,
and the time complexity is 3×(80−11)×280−11 ≈ 276.6935 and the corresponding
success probability is almost 100%.

5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

β

pr
ob

ab
ili

ty

70
75

80
85

lo
g2

(c
om

pl
ex

it
y)

Probability
Complexity

Fig. 6. Time complexity and success probability. FCA against Grain-v1.

Fast Correlation Attack Revisited 155

7 Verifications, Observations, and Countermeasures

7.1 Experimental Verification

We verify our algorithm by applying it to a toy Grain-like cipher, where the sizes
of the LFSR and NFSR are 24 bits, and st+24, bt+24, and zt are computed as

st+24 = st ⊕ st+1 ⊕ st+2 ⊕ st+7,

bt+24 = st ⊕ bt ⊕ bt+5 ⊕ bt+14 ⊕ bt+20bt+21 ⊕ bt+11bt+13bt+15,

zt = h(st+3, st+7, st+15, st+19, bt+17) ⊕
⊕

j∈{1,3,8}
bt+j ,

where the h function is as the one used in Grain-v1.

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

Theoretical and experimental simulations

of occurrences that correct/incorrect initial state appars

pr
ob

ab
ili

ty

Incorrect initial states (theoretical)
Correct initial state (theoretical)
Incorrect initial state (experimental)
Correct initial state (experimental)

thp = 9

Fig. 7. Comparison between the theoretical and experimental estimations.

Similarly to the case of Grain-128a, Tz is used by tapping linear part of the
feedback polynomial of NFSR, i.e., Tz = {0, 5, 14, 24}. Then, the sum of the key
stream is

⊕
i∈Tz

zt+i =
⊕
i∈Tz

h(s(t+i), b(t+i)) ⊕
⊕

j∈{1,3,8}

(
st+j + g′(b(t+j))

)
,

where g′(b(t)) = bt+20bt+21⊕bt+11bt+13bt+15. The ANF of the h function involves
bt+17, bt+22, bt+31, and bt+41. If Λi[4] = 1 is used for i ∈ {0, 14, 24}, the cor-
relation is always 0 because

⊕
j∈{1,3,8} g′(b(t+j)) does not involve bt+17, bt+31,

and bt+41. Only bt+22 is involved to
⊕

j∈{1,3,8} g′(b(t+j)). Therefore, we evalu-
ated correlations of

⊕
j∈{1,3,8} g′(b(t+j)) and

⊕
j∈{1,3,8} g′(b(t+j)) ⊕ bt+22, and

they have the correlation 2−3.41504. For i ∈ {0, 14, 24}, we have 8 possible linear
masks. Moreover, we should use 0101 and 1111 for the linear mask Λ14[0 − 3]
because the sign of the correlation is the same in either case of Λ14[4] = 0 and
Λ14[4] = 1. As a result, we have 8×8×8×2 = 1024 linear masks whose absolute

156 Y. Todo et al.

value of correlations is 2×2−8−3.41504 = 2−10.41504, where the factor 2 is derived
from the sum of correlations for Λ14[4] = 0 and Λ14[4] = 1.

For example, when β = 5, the data complexity is (24 − 5) × 224−5 ≈ 223.25.
From Proposition 1, when we use th = 6579 as the threshold for the normal dis-
tribution, the complexities for three steps of the attack algorithm are balanced.
Moreover, when we use thp = 9 as the threshold for the Poisson distribution, the
probability that incorrect initial state appears at least thp times is 2−26 < 2−24.

We randomly choose the initial state and repeat the attack algorithm 1000
times. Figure 7 shows the comparison of the Poisson distributions between the
theoretical and experimental ones. From this figure, our experimental results
almost follow the theoretical one.

7.2 Another View to Find Preferable Tz

In our strategy, we first searched for Tz, which brings the best linear charac-
teristic. A mixed integer linear programming (MILP) is often applied to search
for the best linear characteristics of block ciphers [34,35], and this method is
naturally applied to search for the best linear characteristic of the fast corre-
lation attack. We first generate an MILP model to represent linear trail with
specific number of rounds R. Then, we maximize the probability of the linear
characteristic under the condition that b(0) and b(R) are linearly inactive.

We used Tz = {0, 26, 56, 91, 96, 128} and Tz = {0, 14, 21, 28, 37, 45, 52, 60,
62, 80} for Grain-128a and Grain-v1, respectively, and they bring the best lin-
ear characteristic. For Grain-128a and Grain-v1, the correlation of the linear
characteristic are ±2−80.159 and ±2−38.497, respectively. It is not enough to esti-
mate the correlation only from the best characteristic because we need to take
into account of the effect by multiple characteristics. For example, assuming
that there are two characteristics whose absolute values of correlations are the
same but their signs are different, these two characteristics cancel each other. On
the other hand, if their signs are the same, we can observe double correlations.
Especially, it is very interesting that Grain-128a has significant gain from the
best linear characteristic. While the MILP is useful to find the best characteris-
tic, there is no method to find multiple linear characteristics without repeating
MILPs. Therefore, we used the MILP only to detect a preferable Tz, and the
corresponding correlation is estimated as explained in Sects. 5 and 6.

7.3 Possible Countermeasure Against Our New Attack

The simplest countermeasure is to suppress the output at every second position
when the key stream is output. For example, the authenticated encryption mode
of Grain-128a has such structure, where the key stream is output only in the even
clock. When we attack Grain-128a, we want to use Tz = {0, 26, 56, 91, 96, 128},
but we cannot tap 91. As far as we search, we cannot detect a preferable Tz under
the condition that the tapped indices are only even numbers. On the other hand,
this countermeasure leads to low throughput.

Fast Correlation Attack Revisited 157

Another countermeasure would be to limit the length of the key stream for
each pair of secret key and iv. It would become difficult to collect enough parity-
check equations to execute the FCA. Lightweight stream ciphers often have such
restriction, e.g., Plantlet outputs only 230-bit key stream for each pair of secret
key and iv [26]. On the other hand, the advantage of stream ciphers can keep
high performance once the initialization finishes, and such restriction does not
use the advantage very well.

Acknowledgments. The authors thank the anonymous CRYPTO 2018 reviewers for
careful reading and many helpful comments. Takanori Isobe was supported in part
by Grant-in-Aid for Young Scientist (B) (KAKENHI 17K12698) for Japan Society for
the Promotion of Science. Bin Zhang is supported by the National Key R&D Research
programm (Grant No. 2017YFB0802504), the program of the National Natural Science
Foundation of China (Grant No. 61572482), National Cryptography Development Fund
(Grant No. MMJJ20170107).

References

1. Siegenthaler, T.: Correlation-immunity of nonlinear combining functions for cryp-
tographic applications. IEEE Trans. Inf. Theory 30(5), 776–780 (1984)

2. Meier, W., Staffelbach, O.: Fast correlation attacks on certain stream ciphers. J.
Cryptol. 1(3), 159–176 (1989)

3. Zeng, K., Yang, C.H., Rao, T.R.N.: An improved linear syndrome algorithm in
cryptanalysis with applications. In: Menezes, A.J., Vanstone, S.A. (eds.) CRYPTO
1990. LNCS, vol. 537, pp. 34–47. Springer, Heidelberg (1991). https://doi.org/10.
1007/3-540-38424-3 3

4. Mihaljevic, M.J., Golic, J.D.: A fast iterative algorithm for a shift register initial
state reconstruction given the noisy output sequence. In: Seberry, J., Pieprzyk,
J. (eds.) AUSCRYPT 1990. LNCS, vol. 453, pp. 165–175. Springer, Heidelberg
(1990). https://doi.org/10.1007/BFb0030359

5. Chepyzhov, V., Smeets, B.J.M.: On a fast correlation attack on certain stream
ciphers. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 176–185.
Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-46416-6 16

6. Johansson, T., Jönsson, F.: Improved fast correlation attacks on stream ciphers via
convolutional codes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp.
347–362. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 24

7. Johansson, T., Jönsson, F.: Fast correlation attacks based on turbo code tech-
niques. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 181–197.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1 12

8. Canteaut, A., Trabbia, M.: Improved fast correlation attacks using parity-check
equations of weight 4 and 5. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 573–588. Springer, Heidelberg (2000). https://doi.org/10.1007/3-
540-45539-6 40

9. Chepyzhov, V.V., Johansson, T., Smeets, B.J.M.: A simple algorithm for fast cor-
relation attacks on stream ciphers. In: Goos, G., Hartmanis, J., van Leeuwen, J.,
Schneier, B. (eds.) FSE 2000. LNCS, vol. 1978, pp. 181–195. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-44706-7 13

https://doi.org/10.1007/3-540-38424-3_3
https://doi.org/10.1007/3-540-38424-3_3
https://doi.org/10.1007/BFb0030359
https://doi.org/10.1007/3-540-46416-6_16
https://doi.org/10.1007/3-540-48910-X_24
https://doi.org/10.1007/3-540-48405-1_12
https://doi.org/10.1007/3-540-45539-6_40
https://doi.org/10.1007/3-540-45539-6_40
https://doi.org/10.1007/3-540-44706-7_13

158 Y. Todo et al.

10. Mihaljevi, M.J., Fossorier, M.P.C., Imai, H.: Fast correlation attack algorithm with
list decoding and an application. In: Matsui, M. (ed.) FSE 2001. LNCS, vol. 2355,
pp. 196–210. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45473-
X 17

11. Berbain, C., Gilbert, H., Maximov, A.: Cryptanalysis of Grain. In: Robshaw, M.
(ed.) FSE 2006. LNCS, vol. 4047, pp. 15–29. Springer, Heidelberg (2006). https://
doi.org/10.1007/11799313 2

12. Lee, J., Lee, D.H., Park, S.: Cryptanalysis of sosemanuk and SNOW 2.0 using linear
masks. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 524–538.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89255-7 32

13. Zhang, B., Xu, C., Meier, W.: Fast correlation attacks over extension fields, large-
unit linear approximation and cryptanalysis of SNOW 2.0. In: Gennaro, R., Rob-
shaw, M. (eds.) CRYPTO 2015, Part I. LNCS, vol. 9215, pp. 643–662. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-6 31

14. Chose, P., Joux, A., Mitton, M.: Fast correlation attacks: an algorithmic point of
view. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 209–221.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7 14

15. Zhang, B., Feng, D.: Multi-pass fast correlation attack on stream ciphers. In:
Biham, E., Youssef, A.M. (eds.) SAC 2006. LNCS, vol. 4356, pp. 234–248. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-74462-7 17

16. Wagner, D.A.: A generalized birthday problem. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 288–304. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-45708-9 19

17. Dinur, I., Güneysu, T., Paar, C., Shamir, A., Zimmermann, R.: An experimentally
verified attack on full grain-128 using dedicated reconfigurable hardware. In: Lee,
D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 327–343. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0 18

18. Fu, X., Wang, X., Chen, J.: Determining the nonexistent terms of non-linear mul-
tivariate polynomials: How to break Grain-128 more efficiently. IACR Cryptol.
ePrint Archive 2017, 412 (2017)

19. Zhang, B., Xu, C., Meier, W.: Fast near collision attack on the Grain v1 stream
cipher. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part II. LNCS,
vol. 10821, pp. 771–802. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-78375-8 25

20. Ågren, M., Hell, M., Johansson, T., Meier, W.: Grain-128a: a new version of Grain-
128 with optional authentication. IJWMC 5(1), 48–59 (2011)

21. Hell, M., Johansson, T., Maximov, A., Meier, W.: A stream cipher proposal: Grain-
128. In: IEEE International Symposium on Information Theory (ISIT 2006). IEEE,
pp. 1614–1618 (2006)

22. Hell, M., Johansson, T., Meier, W.: Grain: a stream cipher for constrained envi-
ronments. IJWMC 2(1), 86–93 (2007)

23. ISO/IEC: JTC1: ISO/IEC 29167–13: Information technology - automatic identi-
fication and data capture techniques - part 13: Crypto suite Grain-128A security
services for air interface communications (2015)

24. Aumasson, J., Henzen, L., Meier, W., Naya-Plasencia, M.: Quark: a lightweight
hash. J. Cryptol. 26(2), 313–339 (2013)

25. Armknecht, F., Mikhalev, V.: On lightweight stream ciphers with shorter internal
states. In: Leander, G. (ed.) FSE 2015. LNCS, vol. 9054, pp. 451–470. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-48116-5 22

26. Mikhalev, V., Armknecht, F., Müller, C.: On ciphers that continuously access the
non-volatile key. IACR Trans. Symmetric Cryptol. 2016(2), 52–79 (2016)

https://doi.org/10.1007/3-540-45473-X_17
https://doi.org/10.1007/3-540-45473-X_17
https://doi.org/10.1007/11799313_2
https://doi.org/10.1007/11799313_2
https://doi.org/10.1007/978-3-540-89255-7_32
https://doi.org/10.1007/978-3-662-47989-6_31
https://doi.org/10.1007/3-540-46035-7_14
https://doi.org/10.1007/978-3-540-74462-7_17
https://doi.org/10.1007/3-540-45708-9_19
https://doi.org/10.1007/3-540-45708-9_19
https://doi.org/10.1007/978-3-642-25385-0_18
https://doi.org/10.1007/978-3-319-78375-8_25
https://doi.org/10.1007/978-3-319-78375-8_25
https://doi.org/10.1007/978-3-662-48116-5_22

Fast Correlation Attack Revisited 159

27. Hell, M., Johansson, T., Meier, W.: Grain - a stream cipher for constrained envi-
ronments (2005). http://www.ecrypt.eu.org/stream

28. Zhang, B., Li, Z., Feng, D., Lin, D.: Near collision attack on the Grain v1 stream
cipher. In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424, pp. 518–538. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-43933-3 27

29. Dinur, I., Shamir, A.: Breaking Grain-128 with dynamic cube attacks. In: Joux,
A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 167–187. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-21702-9 10

30. Lehmann, M., Meier, W.: Conditional differential cryptanalysis of Grain-128a. In:
Pieprzyk, J., Sadeghi, A.-R., Manulis, M. (eds.) CANS 2012. LNCS, vol. 7712, pp.
1–11. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35404-5 1

31. Todo, Y., Isobe, T., Hao, Y., Meier, W.: Cube attacks on non-blackbox polynomials
based on division property. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS,
vol. 10403, pp. 250–279. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63697-9 9

32. Wang, Q., Hao, Y., Todo, Y., Li, C., Isobe, T., Meier, W.: Improved division
property based cube attacks exploiting algebraic properties of superpoly. CRYPTO
2018, Accepted at CRYPTO 2018 (2018). http://eprint.iacr.org/2017/1063

33. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994).
https://doi.org/10.1007/3-540-48285-7 33

34. Mouha, N., Wang, Q., Gu, D., Preneel, B.: Differential and linear cryptanalysis
using mixed-integer linear programming. In: Wu, C.-K., Yung, M., Lin, D. (eds.)
Inscrypt 2011. LNCS, vol. 7537, pp. 57–76. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-34704-7 5

35. Sun, S., Hu, L., Wang, P., Qiao, K., Ma, X., Song, L.: Automatic security eval-
uation and (related-key) differential characteristic search: application to SIMON,
PRESENT, LBlock, DES(L) and other bit-oriented block ciphers. In: Sarkar, P.,
Iwata, T. (eds.) ASIACRYPT 2014, Part I. LNCS, vol. 8873, pp. 158–178. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-8 9

http://www.ecrypt.eu.org/stream
https://doi.org/10.1007/978-3-662-43933-3_27
https://doi.org/10.1007/978-3-642-21702-9_10
https://doi.org/10.1007/978-3-642-35404-5_1
https://doi.org/10.1007/978-3-319-63697-9_9
https://doi.org/10.1007/978-3-319-63697-9_9
http://eprint.iacr.org/2017/1063
https://doi.org/10.1007/3-540-48285-7_33
https://doi.org/10.1007/978-3-642-34704-7_5
https://doi.org/10.1007/978-3-642-34704-7_5
https://doi.org/10.1007/978-3-662-45611-8_9

A Key-Recovery Attack
on 855-round Trivium

Ximing Fu1, Xiaoyun Wang2,3,4(B), Xiaoyang Dong2, and Willi Meier5

1 Department of Computer Science and Technology,
Tsinghua University, Beijing 100084, China

2 Institute for Advanced Study, Tsinghua University, Beijing 100084, China
xiaoyunwang@mail.tsinghua.edu.cn

3 School of Mathematics, Shandong University, Jinan 250100, China
4 Key Laboratory of Cryptologic Technology and Information Security,

Ministry of Education, Shandong University, Jinan 250100, China
5 FHNW, Windisch, Switzerland

Abstract. In this paper, we propose a key-recovery attack on Trivium
reduced to 855 rounds. As the output is a complex Boolean polynomial
over secret key and IV bits and it is hard to find the solution of the secret
keys, we propose a novel nullification technique of the Boolean polyno-
mial to reduce the output Boolean polynomial of 855-round Trivium.
Then we determine the degree upper bound of the reduced nonlinear
boolean polynomial and detect the right keys. These techniques can be
applicable to most stream ciphers based on nonlinear feedback shift reg-
isters (NFSR). Our attack on 855-round Trivium costs time complexity
277. As far as we know, this is the best key-recovery attack on round-
reduced Trivium. To verify our attack, we also give some experimental
data on 721-round reduced Trivium.

Keywords: Trivium · Nullification technique · Polynomial reduction
IV representation · Key-recovery attack

1 Introduction

Most symmetric cryptographic primitives can be described by boolean functions
over secret variables and public variables. The secret variables are often key
bits, the public variables are often plaintext bits for block ciphers and IV bits for
stream ciphers. The ANF (algebraic normal form) representation of the output is
usually very complex by repeatedly executing a simple iterative function, where
the iterative function is a round function for block ciphers or a feedback function
for stream ciphers based on nonlinear feedback shift registers. For stream ciphers,
obtaining the exact output boolean functions is usually impossible. But if its
degree is low, the cipher can not resist on many known attacks, such as higher
order differential attacks [13,15], cube attacks [1,4], and integral attacks [14].
Hence, it is important to reduce the degree of polynomials for cryptanalysis of
stream ciphers.
c© International Association for Cryptologic Research 2018
H. Shacham and A. Boldyreva (Eds.): CRYPTO 2018, LNCS 10992, pp. 160–184, 2018.
https://doi.org/10.1007/978-3-319-96881-0_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96881-0_6&domain=pdf

A Key-Recovery Attack on 855-round Trivium 161

Trivium, based on a nonlinear feedback shift register (NFSR), is one of the
finalists by eSTREAM project and has been accepted as ISO standard [2,10].
Trivium has a simple structure, with only bit operations, so that it can be
applicable to source restricted applications such as RFID. By iteratively using
NFSR, the degree increases rapidly and the output is a complex boolean function
over key and IV bits.

There have been lots of cryptanalysis of Trivium since its submission. The
early results include the chosen IV statistical attack [6,7], which was applied to
key-recovery attack on Trivium reduced to 672 rounds. Inspired by the message
modification technique [20,21], Knellwolf et al. invented the conditional differ-
ential tool [11], which was applicable to distinguishing stream ciphers based on
NFSR. In [12], Knellwolf et al. proposed a distinguishing attack on 961-round
Trivium with practical complexity for weak keys.

Cube attacks are the major methods for recent cryptanalysis results of
reduced round Trivium. In [4], Dinur and Shamir proposed a practical full key
recovery on Trivium reduced to 767 rounds, using cube attacks. Afterwards,
Aumasson et al. [1] provided the distinguishers of 790-round Trivium with com-
plexity 230. Then Fouque and Vannet [8] provided a practical full key recovery
for 784/799 rounds Trivium. Todo et al. [19] proposed a key-recovery attack on
832-round Trivium, where one equivalent bit can be recovered with complex-
ity of around 277, combined with division property [18]. All of these attacks
exploited low degree properties of the ANF of the output bit over IV bits. As
though the degree is not low, i.e., the degree is equal to the number of variables,
there is a possibility to construct distinguishers if there are missing (IV) terms.
In [3,5], Dinur and Shamir exploited the density of IV terms, combined with
nullification technique, and broke the full-round Grain128. Based on nullifica-
tion technique [3,5], degree evaluation and IV representation techniques were
proposed and the missing IV terms can be obtained with probability 1 [9]. The
degree upper bounds of Trivium-like ciphers were obtained [16] using the degree
evaluation techniques. Then a key-recovery attack on 835-round Trivium was
proposed in [17] using correlation cube attack with a complexity of 275. Though
the cube attack and cube tester tools can be applied to obtain the low-degree
information, it is restricted by the computing ability. It is hard to execute cube
tester programs of dimension more than 50 on a small cluster of cores.

In this paper, we focus on the cryptanalysis on round-reduced Trivium. We
first propose a novel observation of the Boolean polynomial and invent a new
nullification technique for reducing the output Boolean polynomial. After nulli-
fication, we determine the degree upper bound of the reduced polynomial, which
can serve as the distinguishers. In this process, large quantities of state terms
arise to be processed. We present a series of techniques to help discard mono-
mials, including degree evaluation and degree reduction techniques. Based on
these reduction techniques for boolean polynomials, we propose the first key-
recovery attack on 855-round Trivium with time complexity 277. We summarize
the related results in Table 1.

162 X. Fu et al.

Table 1. Some related key-recovery results for reduced round Trivium.

Rounds Complexity Ref.

736 230 [4]

767 236 [4]

799 Practical [8]

832 277 [19]

835 275 [17]

855 277 Sect. 4

The rest of the paper is organised as follows. In Sect. 2, some basic related
preliminaries will be shown. The basic techniques used in this paper and the
attack framework will be introduced in Sect. 3. Based on the Boolean polynomial
reduction techniques and IV representation, a key recovery attack on 855-round
Trivium is proposed in Sect. 4, combined with a new nullification technique.
Finally, Sect. 5 summarizes the paper.

2 Preliminaries

In this section, some basic notations used in this paper are introduced in the
following subsections.

2.1 Notations

ANF the Algebraic Normal Form
IV bit public variables of Trivium
IV term product of certain IV bits
state bit internal state bit in the initialization of Trivium stream cipher
state term product of certain state bits, IV bits or key bits

2.2 Brief Description of Trivium

Trivium can be described by a 288-bit nonlinear feedback shift register si (1 ≤
i ≤ 288). During the initialization stage, s1 to s80 are set to 80 key bits, s94 to
s173 are set with 80 IV bits, s286, s287, s288 are set to 1s and the other state bits
are set to zeros, i.e.,

(s1, s2, . . . , s93) ← (K0, . . . ,K79, 0, . . . , 0)
(s94, s95, . . . , s177) ← (IV0, . . . , IV79, 0, . . . , 0)
(s178, s179, . . . , s288) ← (0, . . . , 0, 1, 1, 1).

A Key-Recovery Attack on 855-round Trivium 163

Then the NFSR is updated for 1152 rounds with the following updating
function, i.e.,

for i ← 1 : 4 · 288 do
t1 ← s66 + s91 · s92 + s93 + s171
t2 ← s162 + s175 · s176 + s177 + s264
t3 ← s243 + s286 · s287 + s288 + s69
(s1, s2, . . . , s93) ← (t3, s1, . . . , s92)
(s94, s95, . . . , s177) ← (t1, s94, . . . , s176)
(s178, s179, . . . , s288) ← (t2, s178, . . . , s287)

end for
After the initialization, the output bits oi can be generated by the following

functions.
for i ← 1 : N do

t1 ← s66 + s91 · s92 + s93 + s171
t2 ← s162 + s175 · s176 + s177 + s264
t3 ← s243 + s286 · s287 + s288 + s69
oi ← s66 + s93 + s162 + s177 + s243 + s288
(s1, s2, . . . , s93) ← (t3, s1, . . . , s92)
(s94, s95, . . . , s177) ← (t1, s94, . . . , s176)
(s178, s179, . . . , s288) ← (t2, s178, . . . , s287)

end for
Then the message can be encrypted by exclusive-or with oi. To outline our
technique more conveniently, we describe Trivium using the following iterative
expression. We use srw (0 ≤ w ≤ 2) shown in Eq. 1 to illustrate r-round (1 ≤ r ≤
1152) s1, s94 and s178 separately. Let zr denote the output bit after r rounds of
initialization. Then the initialization process can be illustrated by the following
formula

sr0 = sr−66
2 + sr−109

2 sr−110
2 + sr−111

2 + sr−69
0 ,

sr1 = sr−66
0 + sr−91

0 sr−92
0 + sr−93

0 + sr−78
1 ,

sr2 = sr−69
1 + sr−82

1 sr−83
1 + sr−84

1 + sr−87
2 .

(1)

The srw (0 ≤ w ≤ 2) is denoted as internal state bit in this paper. The
multiplication of state bits

∏

i∈I,j∈J

sji is denoted as a state term. The output

can be described using the state terms as zr = sr−65
0 + sr−92

0 + sr−68
1 + sr−83

1 +
sr−65
2 + sr−110

2 .

2.3 Representation of Boolean Functions for Stream Ciphers

Supposing that there are m IV bits, i.e., v0, v1, . . . , vm−1 and n key bits, i.e.,
k0, k1, . . . , kn−1, the Algebraic Normal Form (ANF) of the internal state bit or
output bit s could be written as the following style:

s =
∑

I,J

∏

i∈I

vi
∏

j∈J

kj , (2)

164 X. Fu et al.

where the sum operation is over field F2. The
∏

i∈I vi
∏

j∈J kj is also denoted
as a state term of s and

∏
i∈I vi is denoted as its corresponding IV term. Let

IV term tI =
∏

i∈I vi be the multiplication of vi whose indices are within I, the
ANF of s can be rewritten as

s =
∑

I

tIgI(k), (3)

where gI(k) is the sum of the corresponding coefficient function of terms whose
corresponding IV term is tI . The |I| is denoted as the degree of IV term tI ,
deg(tI). The degree of s is deg(s) = maxI{deg (tI)}.

2.4 Cube Attack and Cube Tester

Cube attack [4] is introduced by Dinur and Shamir at EUROCRYPT 2009.
This method is also known as high-order differential attack introduced by Lai
[15] in 1994. It assumes the output bit of a cipher is a d-degree polynomial
f(k0..., kn−1, v0..., vm−1) over GF (2). The polynomial can be written as a sum
of two polynomials:

f(k0..., kn−1, v0..., vm−1) = tI · P + QtI (k0..., kn−1, v0..., vm−1)

tI is called maxterm and is a product of certain public variables, for example
(v0, ..., vs−1), 1 ≤ s ≤ m, which is called a cube CtI ; P is called superpoly;
QtI (k0..., kn−1, v0..., vm−1) is the remainder polynomial and none of its terms is
divisible by tI . The major idea of the cube attack is that the sum of f over all
values of the cube CtI (cube sum) is:

∑

x′=(v0,...,vs−1)∈CtI

f(k0, ..., kn−1, x
′, ...vm−1) = P

whose degree is at most d-s, where the cube CtI contains all binary vectors of
length s and the other public variables are fixed to constants. In cube attack, P
is a linear function over key bits. The key is recovered by solving a system of
linear equations derived by different cubes CtI .

Dynamic cube attack [5] is also introduced by Dinur and Shamir in FSE
2011. The basic idea is to find dynamic variables, which depend on some of the
public cube variables and some private variables (the key bits), to nullify the
complex function P = P1 · P2 + P3, where the degree of P3 is relatively lower
than the degree of P and P1 ·P2 is a complex function. Then guess the involved
key bits and compute the dynamic cube variables to make P1 to be zero and the
function is simplified greatly. The right guess of key bits will lead the cube sum
to be zero otherwise the cube sums will be random generally.

Cube testers [1] are used to detect non-random properties. Suppose in Eq. 3,
an IV term tI does not exist in the ANF of s, e.g. the coefficient gI(k) = 0. Hence,
the cube sum over cube CtI is definitely zero for different key guessing. However,
if the IV term tI exists, the value of cube sum gI(k) is dependent on the key
guessing. This property was applied to break full-round Grain128 [5,9].

A Key-Recovery Attack on 855-round Trivium 165

3 Basic Ideas

3.1 New Observation of Boolean Polynomial Reduction

In this paper, we propose a new nullification technique based on a lemma as
follows.

Lemma 1. Suppose z is the output polynomial of a cipher, and

z = P1P2 + P3. (4)

Then the polynomial can be reduced to a simpler one (1 + P1)z = (1 + P1)P3 by
multiplying 1 + P1 in both sides of Eq. (4) if deg(P1P2) > deg((1 + P1)P3).

Lemma 1 can be verified by (P1 + 1)z = (P1 + 1)P1P2 + (P1 + 1)P3 = (P1 +
1)P3. In our cryptanalysis of Trivium, P1 is a simple polynomial over several IV
bits and key bits, while P2 is much more complex than P3. In our nullification
technique, we multiply P1+1 in both sides of Eq. (4) to nullify the most complex
polynomial P2 without changing P3. The result (1+P1)z = (1+P1)P3 could be
analyzed by considering P3 and 1 + P1 independently, and then multiply them
together to get (1 + P1)z.

3.2 Outline of Our Attack

Based on the novel observation in Sect. 3.1, our attack includes two phases, which
are the preprocessing phase and on-line attack phase.

In the preprocessing phase,

1. We apply the new nullification technique by determining P1, then multiply
1 + P1 in both sides of Eq. 4 and obtain the reduced polynomial (1 + P1)P3.

2. We study the polynomial (1 +P1)P3 and prove its upper bound degree to be
d mathematically, then cubes of dimension d + 1 lead to distinguishers.

In the on-line phase, we guess the partial key bits in P1, and compute the
cube sums of (P1 + 1)z over (d + 1)-degree IV terms:

i For the right key guessing, (P1 + 1)z = (P1 + 1)P3. Thus the cube sums must
be zero.

ii For the wrong key guessing, the equation becomes (P ′
1+1)z = (P ′

1+1)P1P2+
(P ′

1 + 1)P3, which is more complex and dominated by P2, thus the cube sums
are not always zero.

We focus on constructing the distinguishers in the preprocessing phase and
it costs most computing sources.

166 X. Fu et al.

3.3 Constructing Distinguishers

After obtaining the reduced polynomial (1 + P1)P3, our major work is to study
this polynomial and derive distinguishers. In our analysis, we demonstrate that
the degree of the reduced polynomial is strictly lower than 70. As the degree is
so high, such a result was hard to achieve in previous works. So we introduce
various details of reducing polynomials in an iterative process.

We introduce several techniques to discard monomials in advance during the
iterative computation of the ANF representation of the output bit (1 + P1)P3.
Suppose we are proving the upper bound degree of (1 + P1)P3’s ANF to be
d, then the following techniques are used to reduce the Boolean polynomial of
(1 + P1)P3 by discarding monomials in advance. The whole process could be
divided into the following three steps shown in Fig. 1.

– Step 1. We compute forward to express the ANF of some internal state bits
over IV bits and key bits. In Trivium, the internal state bits sji (0 ≤ i ≤ 2,
0 ≤ j ≤ 340) are computed in a PC.

– Step 2. During the iterative computation of the ANF representation of
(1 + P1)P3 in the backward direction (decryption), we introduce the fast
discarding monomial technique in Sect. 3.4, which includes the following
two algorithms:

• First, we propose the degree evaluation algorithm to obtain the degree
bounds of internal state bits. As the monomials of (1 +P1)P3’s ANF is a
product of these internal state bits, the degree of a monomial is bounded
by the sum of the degrees of the multiplied internal state bits, which
is regarded as the degree estimation of the monomial. If the estimated
degrees of monomials are lower than d, they are discarded directly.

• Second, we exploit the iterative structure of Trivium, and find that the
(1 + P1)P3’s ANF contains many products of consecutive internal state
bits. Thus, we pre-compute the degree reductions of those products,
which is dt =

∑
i deg(xi) − deg(

∏
i xi), where xi is an internal state bit.

Thus, the degree of a monomial is upper bounded by the difference value
between the sum of the multiplied internal state bits and the correspond-
ing degree reduction dt. If it is smaller than d, the monomial is discarded.

– Step 3. For the left monomials of (1 + P1)P3’s ANF, we introduce IV rep-
resentation technique in Sect. 3.5 to determine the upper bound degree of
(1+P1)P3 or find the d-degree missing product of certain IV bits (missing IV
term). In IV representation technique, the symbolic key bits in the internal
state bits are removed and only IV bits are left. Combining with repeated IV
term removing algorithm, we can simplify monomials of (1 + P1)P3’s ANF
without losing the missing IV term information. If we find an IV term is not
in the IV representation of (1 + P1)P3, we can conclude that it is also not in
(1 + P1)P3.

A Key-Recovery Attack on 855-round Trivium 167

Fig. 1. Framework of constructing distinguishers

3.4 Fast Discarding Monomial Techniques

In Step 2 of Fig. 1, during the iterative computation of the ANF representation
of (1+P1)P3 in the backward direction (decryption), there arise more and more
state terms. We will give several techniques to simplify the polynomial by dis-
carding monomials in advance. In this Step, repeated state terms arise according
to the Trivium encryption scheme. The repeated state terms are removed using
Algorithm 1. The complexity of Algorithm 1 is O(n), supposing there are n state
terms.

Algorithm 1. Repeated-(state)term Removing Algorithm
Input: The vector T with n terms, i.e., T1, T2, . . ., Tn.
Output: Updated T with m terms, where m ≤ n.
1: Initialize an empty Hash Set H.
2: for i ← 1 : n do
3: Compute the Hash value of Ti, i.e., H(Ti)
4: if H.contains(Ti) is true then
5: H.delete(Ti)
6: else
7: H.insert(Ti)
8: end if
9: end for

Degree evaluation technique. As we are proving the degree of the Boolean
polynomial (1+P1)P3 to be d, thus many monomials with lower degree produced
during the iterative computation backward (decryption) in Step 3 are deleted
without consideration (we do not need to continue the iterative computation over
those monomials). We estimate those monomials using degree information of
the internal state bits in lower rounds. This section presents a degree evaluation
algorithm for the internal state bits. For example, we are going to estimate the
degree of bi = bi−3 + bi−1bi−2.

deg(bi) = deg(bi−3 + bi−1bi−2)
= max{deg(bi−3),deg(bi−1bi−2)}
≤ max{deg(bi−3),deg(bi−1) + deg(bi−2)}

(5)

168 X. Fu et al.

If we continue to decompose bi, we find

bi−1bi−2 = (bi−4 + bi−2bi−3)(bi−5 + bi−3bi−4)
= bi−4bi−5 + bi−3bi−4 + bi−2bi−3bi−5 + bi−2bi−3bi−4,

(6)

If deg(bi−1) = deg(bi−2bi−3) and deg(bi−2) = deg(bi−3bi−4), then in Eq. (5),
deg(bi−1) + deg(bi−2) may add deg(bi−3) twice. So in order to obtain a more
accurate degree estimation, we are willing to decompose bi for several rounds
backwards.

For Trivium, the ANFs of sji (0 ≤ i ≤ 2, 0 ≤ j ≤ 340) are exactly obtained in
a PC and their exact degrees can be obtained. For example, in the cryptanalysis
of 855-round Trivium, we compute ANF of sji (0 ≤ i ≤ 2, 0 ≤ j ≤ 340) over 75
free IV variables1, the degrees are shown in Table 2. To estimate the degree of sri
for r > 340, we decompose sri until the state terms are the product of internal
state bits sji for j < end = � r

32� × 32 − 128 considering the efficiency tradeoff of
the computation.

Table 2. Degree deg(sji) of sji for 0 ≤ i ≤ 2, 0 ≤ j ≤ 340

j+ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

s
j=0
0 0

s
j=0
1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1

s
j=0
2 0 1 1 1 2 2 2 1 1 0 2 2 2 2 2 2 2 2 2 2 2 2 1 1 2 2 2 2 2 2 2 2 2 2 1

s
j=35
0 1 1 1

s
j=35
1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1

s
j=35
2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

s
j=70
0 2 2 2 1 1 0 2 2 2 2 2 2 2 2 2 2 2 2 1 1 2 2 2 2 2 2 2 2 2 2 1 1 2 2 2

s
j=70
1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1

s
j=70
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

s
j=105
0 2 2 2 2 2 2 2 2 3 3 3 3 2 1 1 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3

s
j=105
1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 2 2 2 1

s
j=105
2 2

s
j=140
0 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3

s
j=140
1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 1 1 2 2 2 2 2 3 3 3 3 2 1 2 3 3 3 3 3 3 3

s
j=140
2 2

s
j=175
0 3 4 4 4 4 3 3 4 4 4 4

s
j=175
1 3 4 4 5 5 5 5 5 3

s
j=175
2 2

s
j=210
0 3 4 4 4 4 4 4 4 4 3 4 4 3 4 4 4 4 4 4 4 4 3 4 4 4 4 4 4 4 4 3 4 4 4 4

s
j=210
1 2 4 5

s
j=210
2 2 2 2 2 2 2 2 2 3 3 3 3 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 5 5

s
j=245
0 4 4 4 4 3 4 3 3 4 4 4 4 4

s
j=245
1 5 6 6 6 6 6 5 5

s
j=245
2 5 5 5 3 3 4 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 5 5 6 6 6 6 6 6 6 6 6 6 6 6

s
j=280
0 4 5 5 5 5 5 4

s
j=280
1 6 6 6 6 6 6 6 5 5 6 6 7 7 7 7 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

s
j=280
2 6 6 6 6 7 7 8 8 8 8 8 8 5 6 8

s
j=315
0 4 4 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 5 5 6 6 6 6 6 6 6

s
j=315
1 7 7 7 7 7 7 7 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

s
j=315
2 8

1 The other 5 IV bits are fixed as zero and their positions are given in Sect. 4.1.

A Key-Recovery Attack on 855-round Trivium 169

For example, we estimate the degree upper bound of s3411 , where end =
� r
32� × 32 − 128 = 192. We first express s3411 using state bits in less rounds, and

discard the state terms of degree lower than d.

– Step 1. First, we express s3412 = s2721 + s2591 s2581 + s2571 + s2542 according to
Eq. (1).

– Step 2. According to Table 2 highlighted in red, let d = max{deg(s2721),
deg(s2591) + deg(s2581),deg(s2571),deg(s2542 } = max{5, 5 + 5, 5, 5} = 10.

– Step 3. Discarding the state terms of degree lower than 10, we get s341∗
2 =

s2591 s2581 . Iteratively compute s341∗
2 and discard state terms with degree lower

than 10, there is no state term surviving. We reset d = d − 1 and repeat
the above decomposition and discarding process. We can get the result
s341∗∗
2 = s1660 s1670 s1930 +s1670 s1680 s1920 +s1660 s1670 s1680 +s1650 s1670 s1680 +s1670 s1680 s1801 +
s1660 s1670 s1811 .

– Step 4. Note that there is still a state bit s1931 in s341∗∗
2 that is bigger than

end=192. So we continue to iteratively compute and discard state terms with
degree lower than 9, and we get:

s341∗∗∗
2 = s562 s572 s832 s842 s1012 + s572 s582 s832 s842 s1002 + s562 s572 s582 s832 s842 +
s970 s572 s582 s832 s842 + s980 s562 s572 s832 s842 + s1240 s562 s572 s1012 + s1240 s572 s582 s1002 +
s1240 s562 s572 s582 + s1240 s552 s572 s582 + s552 s572 s582 s832 s842 + s970 s1240 s572 s582
+s980 s1240 s562 s572 + s572 s582 s822 s832 s1022 + s582 s592 s822 s832 s1012 + s572 s582 s592 s822 s832 +
s562 s582 s592 s822 s832 + s980 s582 s592 s822 s832 + s990 s572 s582 s822 s832 + s1230 s572 s582 s1022 +
s1230 s582 s592 s1012 + s1230 s572 s582 s592 + s1230 s562 s582 s592 + s980 s1230 s582 s592
+s990 s1230 s572 s582 + s562 s572 s582 s592 s1012 + s980 s562 s572 s582 s592 + s552 s562 s572 s582 s1022 +
s552 s562 s582 s592 s1012 + s552 s562 s572 s582 s592 + s980 s552 s562 s582 s592 + s990 s552 s562 s572 s582 +
s1140 s572 s582 s1022 + s1140 s582 s592 s1012 + s1140 s572 s582 s592 + s1140 s562 s582 s592 + s890 s900 s572 s582 s1002 +
s980 s1140 s582 s592 + s990 s1140 s572 s582 + s1150 s562 s572 s1012 + s1150 s572 s582 s1002 + s1150 s562 s572 s582 +
s1150 s552 s572 s582 + s970 s1150 s572 s582 + s980 s1150 s562 s572 + s890 s900 s562 s572 s1012 +
s890 s900 s562 s572 s582 + s890 s900 s552 s572 s582 + s890 s900 s970 s572 s582 + s890 s900 s980 s562 s572 .

(7)
– Step 5. Here, there is no state bit in rounds more than end = 192, the

expression ends and there are still state terms that survive. Then the current
degree d = 9 is the estimated degree of s3412 .

– Step 6. Note that, if there is no state item in s341∗∗∗
2 surviving, which means

the degree added twice or more shown in Eq. (6) happens to the iterative
computation of s3412 . So the degree must be less than 9. We reset d = 8 and
continue the above steps 3–5 to get a more accurate degree bound.

We summarise the above 6 steps as Algorithm 2. We only estimate degree of
sri for r ≤ 665 and list the results in Table 3.

Degree reduction technique. In this part, we formally consider the property
in Eq. (6), that deg(bi−3) is added twice. We call it degree reduction. Define the
degree reduction dt as

dt =
∑

i∈I

deg(xi) − deg(
∏

i∈I

xi), (8)

where xi is a state bit.

170 X. Fu et al.

Algorithm 2. Degree Evaluation Algorithm (DEG) of State Bit
Input: The value t and r which indicates the state bit srt .
Output: DEG(srt)=d.
1: Initialize the degree bound d similar to the above Step 2., the end point end.
2: len ← 0
3: while len = 0 do
4: Iteratively express srt using state bits sji , where 0 ≤ j ≤ 2 and 0 ≤ j < end.

During each expression, discard the state terms of degree lower than d. Let len
be the number of remaining state terms.

5: if len = 0 then
6: d ← d − 1
7: end if
8: end while
9: Return d

We pay attention to the degree reduction of the state term
∏l+t−1

j=l sji for a
specific i ∈ [0, 2]. This state term results from the iteration structure of Trivium
scheme, whose high degree state terms come from the multiplication of sjis

j+1
i

shown in Eq. (1). After several rounds of iteration, the high degree state terms
are in the form

∏l+t−1
j=l sji . Define the degree reduction dt =

∑l+t−1
j=l deg(sji) −

deg(
∏l+t−1

j=l sji).

Table 3. The estimated upper bound degree DEG(sji) of sri for r ≤ 689

j+ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

s
j=340
0 6 6 6 6 6 6 6 6 6 6 7 7 8 9 9 9 9 8 6 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

s
j=340
1 7 8 8 8 8 7 6 7 8 8 8 8 8 8 8 8

s
j=340
2 8 9 9 9 9 9 9 9 10 10 10 10 10 9 10 10 10 10 10 10 10 10 10 10 11 11 11 11 11 11 10 10 11 12 13

s
j=375
0 9 9 9 9 9 10 10 11 11 11 11 11 11 9 10 11 11 11 12 13 14 15 15 15 15 15 13 11 14 15 15 15 15 15 15

s
j=375
1 8 9 9 9 9 9 9 8 8 9 9

s
j=375
2 13 13 13 12 12 13 13 13 12 12 13 13 13 13 13 13 13 13 12 13 13 12 13 13 13 13 13 13 13 13 12 13 13 13 13

s
j=410
0 15

s
j=410
1 9 9 9 9 9 9 9 9 10 12 12 12 12 10 10 11 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 13 14 15 17

s
j=410
2 13 13 13 12 12 12 13 13 13 13 13 13 13 12 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 14 14 14

s
j=445
0 15 15 15 15 15 15 16 16 16 16 16 16 16 16 16 16 16 16 16 17 18 18 18 18 19 18 18 19 19 19 19 19 19 19 18

s
j=445
1 18 18 18 17 14 12 15 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 19 20 20 20 20 20 20 20 20

s
j=445
2 14 14 12 12 13 14 15

s
j=480
0 18 19 20 22 22 22 22 22 21 21 22 21

s
j=480
1 19 20 20 20 21 22 23 24 24 24 24 24 24 21 22 24 24 24 25 25 25 25 25 25 25 26 26 26 26 26 26 26 26 26 26

s
j=480
2 15 15 16 16 17 17 17 17 16 15 16 17 17 17 17 17 17 17 17 17 18 20 21 21 21 20 18 18 20 21 21 21 21 21 21

s
j=515
0 21 22 23 23 23 23 23 23 23 24 24 24 24 24 24

s
j=515
1 26 26 26 26 26 26 27 27 27 27 27 27 27 26 27 28 29 29 29 29 29 28 29 29 29 29 29 30 31 31 31 31 31 32 32

s
j=515
2 21 21 21 21 21 21 21 21 22 23 24 26 27 28 28 29 28 25 27 29 29 29 28 29 29 29 30 31 32 33 33 33 33 33 33

s
j=550
0 24 25 26 26 26 26 25 23 25 26 27 27 27 27 27 27 27 26 27 28 29 29 29 29 29 28 29 29 29 29 28 29 29 29 29

s
j=550
1 32 32 32 32 32 33 35 35 35 35 35 35 33 34 35 37 37 37 37 37 37 36 36 38 40 41 41 41 41 40 40 41 41 41 40

s
j=550
2 31 32 33 34 35 36 37 37 37 36 36 36 35 36 36 36 37 38 39 40 40 40 40 40 40 40 40 44 45 45 45 45 45 45 45

s
j=585
0 29 29 29 29 29 29 30 31 31 31 31 31 31 30 30 31 31 31 31 31 31 31 31 31 32 34 36 37 37 37 35 34 36 37 37

s
j=585
1 40 41 41 41 41 41 41 41 41 40 41 41 40 41 41 41 41 41 41 41 41 40 41 41 41 41 42 42 42 41 40 41 42 42 42

s
j=585
2 45 45 45 45 45 45 42 42 42 42 42 42 42 43 44 44 44 44 45 45 46 46 46 48 47 46 46 48 48 48 48 48 49 49 48

s
j=620
0 38 38 41 42 42 42 42 41 38 39 42 42 43 45 47 50 53 54 54 54 53 49 45 51 54 54 54 54 54 55 56 56 56 56 56

s
j=620
1 42 42 42 42 42 43 44 44 44 45 45 44 45 45 45 45 45 45 45 45 44 45 46 49 50 50 50 50 47 46 48 51 52 52 52

s
j=620
2 49 49 49 49 50 51 51 51 50 51 52 54 54 54 54 54 54 54 56 58 58 58 59 59 59 59 60 62 62 62 62 62 62 60 59

s
j=655
0 56 56 56 56 56 56 56 57 60 62 64 64 64 64 64 64 63 61 63 64 65 67 70 72 73 73 73 73 74 74 69 72 74 74 75

s
j=655
1 52 51 52 52 52 52 52 53 54 57 59 61 62 62 62 59

s
j=655
2 61 66 68 69 69 69 69 68 68 69 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 71 71 71 71 71 71 71 69 69

A Key-Recovery Attack on 855-round Trivium 171

The degree reduction can help discard state terms of lower degree dramati-
cally, as it can help predict the change of degree before expression operation2.
We take the state term s3401 s3411 as an example to illustrate the process to com-
pute the degree reduction dt. Algorithm 2 is first used to obtain the degree of
state bits as shown in Tables 2 and 3.

Let end be � r
32� × 32 − 128 = 192, too. The degree bound d is initialized as

d = DEG(s3401) + DEG(s3411) and dt = 0. Express the s3401 s3411 by one iteration
using Eq. (1). Discard the state terms of degree lower than d − dt = d, there is
no state term surviving. Increase the dt by 1, such that dt = 1. Express s3401 s3411

again and discard the state terms of degree lower than d− dt = d− 1, the result
is s2490 s2500 s2621 + s2480 s2490 s2631 . Continue to compute iteratively, the remaining
state terms are s1700 s1710 s1800 s1402 s1412 +s1700 s1710 s1810 s1392 s1402 +s1710 s1720 s1790 s1392 s1402 +
s1710 s1720 s1800 s1382 s1392 . There is no state bits sji with j bigger than end = 192 in all
the state terms, hence the expression ends. Degree reduction dt = 1 is returned.
Thus the deg(s3401 s3411) ≤ DEG(s3401) + DEG(s3411) − dt = 7 + 7 − 1 = 13. The
degree reduction algorithm is shown in Algorithm3

Algorithm 3. Degree Reduction Algorithm of State Term
Input: The value i, r, t which indicates the state term degree reduction.
Output: The degree reduction dt =

∑l+t−1
j=l deg(sji) − deg(

∏l+t−1
j=l sji).

1: Initialize the degree bound d =
∑l+t−1

i=l DEG(sji) , degree reduction dt = 0, end
point end and number of survived state terms len.

2: while len = 0 do
3: Express the state term

∏l+t−1
j=l sji using state bits sji , where 0 ≤ i ≤ 2 and

0 ≤ j < end, discard the state terms of degree lower than d− dt. Let len be the
number of remaining state terms.

4: if len = 0 then
5: dt ← dt + 1
6: end if
7: end while
8: Return dt

3.5 IV Representation Techniques

In the cryptanalysis of stream ciphers, the output is a boolean function over
key and IV bits. But obtaining the exact expression is hard, thus we propose
IV representation technique to reduce the computation complexity for obtaining
the degree information.

Definition 1. (IV representation) Given a state bit s =
∑

I,J

∏
i∈I vi

∏
j∈J kj,

the IV representation of s is sIV =
∑

I

∏
i∈I vi.

For example, if a boolean polynomial is s = v0k1 + v0k0k2 + v1k1k2 + v0v1k2,
then its corresponding IV representation is sIV = v0 + v0 + v1 + v0v1.
2 The details are given in Sect. 4.2.

172 X. Fu et al.

IV representation with repeated IV terms Removing Algorithm. Due
to neglection of key bits, there are lots of repeated IV terms. Here we give an
algorithm to remove the repeated IV terms of sIV . The details of the algorithm
are shown in Algorithm 4. This algorithm is based on a Hash function. First,
an empty hash set is initialized. For each IV term Ti, compute the hash value
as H(Ti) (Line 3), then determine if Ti is already in H. If not, then insert Ti

into H (Lines 4–5). Applying Algorithm4 to the above example, the result is
v0 + v1 + v0v1. Note that this algorithm is slightly different from Algorithm1. If
we apply Algorithm 1 to sIV , the result is v1 + v0v1.

In the iterative computation process of the output bit of Trivium, it should
be noted that if an IV term exists in s, it must also exist in sIV , but not the
opposite. For example, x1 = v0(k1k2 +k0k2)+v1 +v0v1k2, x2 = v2k0k1 +v1v2k1
and s = x1x2. We use the IV representations of x1 and x2 to approximate the
IV representation of s. Thus, x1IV = v0 + v1 + v0v1, x2IV = v2 + v1v2, and
sIV = x1IV x2IV = v0v2 + v1v2 + v0v1v2. However, s = x1x2 = v1v2(k0k1 + k1).
So if we find an IV term is not in sIV , we can conclude that it is not
in s either . We use this to determine the degree upper bound of the output
ANF of Trivium.

Algorithm 4. Repeated-IV term Removing Algorithm
Input: The vector T with n IV terms, i.e., T1, T2, . . ., Tn.
Output: Updated T with m IV terms, where m ≤ n.
1: Initialize an empty Hash set H.
2: for i ← 1 : n do
3: Compute the Hash value of Ti, i.e., H(Ti).
4: if H.contains(Ti) is false then
5: H.insert(Ti).
6: end if
7: end for

After using IV representation combined with Algorithm4, all the existent IV
terms are left by ignoring their repetition. With collision-resistent hash function
H, the time complexity of Algorithm 4 is O(n) for processing n IV terms. It needs
several minutes to apply Algorithm 4 on 1 billion IV terms on a single core.

4 Key Recovery Attack on 855-round Trivium

In the attack on 855-round Trivium, all the 80-bit IV are initiated with free
variables: IVi = vi, i ∈ [0, 79].

The output of 855-round Trivium can be described using the internal
state bits:

z855 = s7900 + s7630 + s7871 + s7721 + s7902 + s7452 . (9)

As a first step of the attack on 855-round Trivium, we need to determine P1.

A Key-Recovery Attack on 855-round Trivium 173

4.1 Determining the Nullification Scheme for the Output
Polynomial of 855-round Trivium

For 855-round Trivium, the degree of output bit z is very high, as shown in [19].
So it is not easy to find the missing IV terms in the complex z = P1P2 + P3.
However, based on the new observation of Boolean polynomial introduced in
Sect. 3.1. we can choose P1 to reduce the Boolean polynomial (1 + P1)z = (1 +
P1)P3 such that the degree of (1+P1)P3 is lower. The lower, the better. In fact,
the lower the degree of a state term, the less high degree IV terms it can deduce.

Degrees of state bits are obtained first in order to determine the high degree
state terms. The exact Boolean polynomial of sji for i ∈ [0, 2] and j ∈ [0, 340]
can be obtained. The other degree upper bounds can be obtained by executing
Algorithm 2.

For a search of P1, we use the decomposition of Trivium and preserve the
high degree state terms (bigger than a given bound dependent on our computing
ability in a PC), where the degree of state terms means the sum of degrees of
each state bit in the earlier rounds involved. We decompose until all the state
bits are within the range of [0, 276]. The key points to determine P1 come from
3 criteria: (1) the frequency of P1 is high; (2) the degree of P1 is low; (3) the
equivalent key guesses in P1 are minimized. We calculate the frequency of state
bits and find that s2101 occurs in about 3

4 of all the preserved high state terms.
The degree of s2101 is 5 and can be reduced to 2 after nullifying the 5 IV bits,
and there are only 3 equivalent key bits to be guessed. So we choose P1 = s2101 .

The output polynomial can be rewritten as

z = s2101 P2 + P3, (10)

where P2 and P3 do not contain s2101 . Polynomial P2 is so complex
that it is hard to compute its degree and density information while
P3 is relatively simple. Here P1 = s2101 = v59v60v61 + v59v60v76
+v17v59v60 + v30v31v59v60 + v32v59v60 + v59v60v62 + v59v60v77 + v59v60k20
+v59v61v73v74 + v59v73v74v76 + v17v59v73v74 + v30v31v59v73v74 + v32v59v73v74+
v59v62v73v74 + v59v73v74v77 + v59v73v74k20 + v59v60v74v75 + v59v60v75v76+
v59v73v74v75+v59v73v74v75v76+v59v61v75+v59v74v75+v17v59v75+v30v31v59v75+
v32v59v75 + v59v62v75 + v59v75v77 + v59v75k20 + v60v61v72v73 + v60v72v73v76+
v17v60v72v73 + v30v31v60v72v73 + v32v60v72v73 + v60v62v72v73 + v60v72v73v77+
v60v72v73k20 + v61v72v73v74 + v72v73v74v76 + v17v72v73v74 + v30v31v72v73v74+
v32v72v73v74 + v62v72v73v74 + v72v73v74v77 + v72v73v74k20 + v60v72v73v74v75+
v60v72v73v75v76+v72v73v74v75v76+v61v72v73v75+v17v72v73v75+v30v31v72v73v75+
v32v72v73v75+v62v72v73v75+v72v73v75v77+v72v73v75k20+v60v61v74+v60v74v76+
v17v60v74 + v30v31v60v74 + v32v60v74 + v60v62v74 + v60v74v77 + v60v74k20+
v17v73v74 + v30v31v73v74 + v32v73v74 + v62v73v74 + v73v74v77 + v73v74k20+
v16v60v61+v16v60v74v75+v16v60v76+v16v61v73v74+v16v73v74v75+v16v73v74v76+
v16v61v75 + v16v74v75 + v16v17 + v16v30v31 + v16v32 + v16v62 + v16v77 + v16k20+
v29v30v60v61+v29v30v60v74v75+v29v30v60v76+v29v30v61v73v74+v29v30v73v74v75+
v29v30v73v74v76+v29v30v61v75+v29v30v74v75+v17v29v30+v29v30v31+v29v30v32+
v29v30v62 + v29v30v77 + v29v30k20 + v31v60v61 + v31v60v74v75 + v31v60v76+

174 X. Fu et al.

v31v61v73v74 + v31v73v74v75 + v31v73v74v76 + v31v61v75 + v31v74v75 + v17v31+
v30v31+v31v62+v31v77+v31k20+v60v61+v61v75+v61v74v75+v17v61+v30v31v61+
v32v61 + v61k20 + v60v74v75v76 + v60v76 + v73v74v75v76 + v17v76 + v30v31v76+
v32v76 + v76v77 + v76k20 + v60v61k19 + v60v74v75k19 + v60v76k19 + v61v73v74k19+
v73v74v75k19+v73v74v76k19+v61v75k19+v74v75k19+v17k19+v30v31k19+v32k19+
v62k19 + v77k19 + k19k20 + v34v35 + v34v48v49 + v34v50 + v35v47v48 + v47v48v49+
v47v48v50 + v35v49 + v48v49 + k57 + v69 + v4v5 + v6 + v36 + v51 + v60 + v73v74+
v75 + k63 + v62v74v75 + v74v75v77 + v75v76 + v18 + v33 + v63 + v78 + k21 + k28k29+
k3 + k30 + k12 + k37k38 + k39 + v24.

IV Nullification. The degree of s2101 is 5 and the IV bits involved in s2101 are
shown in Table 4.

Table 4. Count of IV bits in s2101 before IV nullification.

IV v4 v5 v6 v16 v17 v18 v24 v29 v30 v31 v32 v33 v34 v35 v36 v47 v48
Count 1 1 1 14 14 1 1 14 27 26 13 1 3 3 1 3 5
IV v49 v50 v51 v59 v60 v61 v62 v63 v69 v72 v73 v74 v75 v76 v77 v78

Count 4 2 1 28 44 26 13 1 1 26 56 62 46 26 14 1

In order to simplify s2101 so that it is easier to obtain the degree bound of
(1 + s2101)P3, we nullify v74, v60, v75, v30 and v48.

After nullifying the 5 IV bits, we obtain the simplified boolean function:

s2101 = v16v17 + v16v32 + v16v62 + v16v77 + v16k20 + v17v31 + v31v62+
v31v77 + v31k20 + v17v61 + v32v61 + v61k20 + v17v76 + v32v76 + v76v77+
v76k20 + v17k19 + v32k19 + v62k19 + v77k19 + k19k20 + v34v35 + v34v50+
v35v49 + k57 + v69 + v4v5 + v6 + v36 + v51 + k63 + v18 + v33 + v63+
v78 + k21 + k28k29 + k3 + k30 + k12 + k37k38 + k39 + v24.

(11)

Here, the degree of s2101 is 2 and key information equivalent to 3 bits in s2101 are
k19, k20 and k57 + k63 + k21 + k28k29 + k3 + k30 + k12 + k37k38 + k39. The IV bits
involved in s2101 are shown in Table 5.

After determining P1 = s2101 , we multiply 1 + s2101 in both sides of Eq. (10),
then (1+ s2101)z = (1+ s2101)P3. Finding the non-randomness in (1+ s2101)P3 will
help us to construct the cube tester of 855-round Trivium. More specifically, we
will determine the nonexistent IV terms of degree 70 in (1+s2101)P3. First, we will
reduce the polynomial, then IV presentation technique is applied to determine
the nonexistent IV terms. The framework is presented in Fig. 2 and details are
shown in the following Sect. 4.2.

A Key-Recovery Attack on 855-round Trivium 175

Table 5. Frequency of IV bits in s2101 after IV nullification.

IV v4 v5 v6 v16 v17 v18 v24 v31 v32 v33 v34 v35
Count 1 1 1 5 5 1 1 4 4 1 2 2
IV v36 v49 v50 v51 v61 v62 v63 v69 v76 v77 v78

Count 1 1 1 1 3 3 1 1 4 4 1

State
Terms

Repeated Term Removing
Degree Evaluation
Degree Reduction

Discarding Monomials

Repeat (Algorithm 4)IV Representation

70-degree IV terms

Left State Terms

Deleted State Terms

Fig. 2. Framework of determining the missing IV terms

4.2 Determining the Degree Bound of Reduced Polynomial

We are going to iteratively compute (1 + s2101)P3. In each iteration, many state
terms of (1 + s2101)P3 are produced. Based on our computing ability, we can
compute the IV terms of degree around 70. In computing the 70-degree IV terms,
we use a cluster of 600–2400 cores. Since we are finding the 70-degree missing IV
terms, state terms with degree less than 70 are removed without consideration,
because they do not contain those 70-degree IV terms certainly. The removing
process could be divided into 2 steps:

1. Deleting state terms according to degree evaluation;
2. Deleting state terms according to degree reduction.

Degree evaluation phase. After nullifying the 5 IV bits in Sect. 4.1, the exact
boolean functions and degrees of state bits sji for 0 ≤ i ≤ 2 and 0 ≤ j ≤ 340
can be updated. Then we execute Algorithm 2 to obtain the degrees of the other
state bits, partially in Tables 2 and 3. For example, given a state term b1b2, we
first find DEG(b1) and DEG(b2) in Tables 2 and 3, if DEG(b1) + DEG(b2) < 70,
then deg(b1b2) ≤ DEG(b1) + DEG(b2) < 70, delete b1b2.

176 X. Fu et al.

Degree reduction phase. In the structure of stream ciphers based on NFSR,
degree reduction arises often due to the iterative structure. We use Algorithm3
to obtain the degree reduction, which is shown in Tables 6, 7 and 8 for products
of 2 consecutive state bits sjis

j+1
i (t = 2), 3 consecutive state bits sjis

j+1
i sj+2

i

(t = 3) and 4 consecutive state bits sjis
j+1
i sj+2

i sj+3
i (t = 4), respectively. Note

that we only list the degree reduction when j ≥ 340. The degree reduction for
j < 340 is much easier to obtain in a PC.

Table 6. Degree reductions dt(s
j
is

j+1
i) of sjis

j+1
i with t = 2

j+ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

j = 340, i = 0
j = 340, i = 1 0 2 2 2 2 2 2 2 2 1 1 1 1 1 1
j = 340, i = 2 1 3 3 3 3 3 3 2 4 4 4 4 4 4 4 4 4 4 4 3 2 2 2 1 3 3 3 3 3 3 3 3 2 2
j = 374, i = 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2 1 2 3 4 6 6 6 6 6 6 6 6 6 6 5 5
j = 374, i = 1 0 1 1 1 1 1 1 1 1
j = 374, i = 2 4
j = 408, i = 0 5 5 5 5 5 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 3 3 2 1 1 1
j = 408, i = 1 1 1 1 1 1 1 1 1 1 0 0 3 2 3
j = 408, i = 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2
j = 442, i = 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 0 0 0 0 0 0 2 1 1 2 2 2 1 3 3 3 3 3 3 3
j = 442, i = 1 4 4 7 8 8 7 7 7 7 7 7 7 7 7 7 7 6 5 4 3 3 3 3 3 3 3 3 3 2 3 4 4 4 4
j = 442, i = 2 3 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
j = 476, i = 0 3 3 1 1 1 0 0 3 3 3 3 3 3 3 3 3 3 3 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
j = 476, i = 1 4 4 4 4 4 4 4 3 4 5 6 8 8 8 8 8 8 8 8 8 8 7 9 9 9 9 9 9 8 10 10 10 10 10
j = 476, i = 2 1 1 1 1 1 0 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 5 7 7 7 7 7 7 7 7
j = 510, i = 0 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 3 3 3 3 2 1 1
j = 510, i = 1 10 10 10 10 10 9 8 8 8 8 7 9 8 8 8 8 8 8 8 7 8 10 10 10 9 9 9 9 9 9 9 10 11 11
j = 510, i = 2 7 6 4 3 3 3 3 3 3 3 3 3 2 3 4 4 7 8 10 9 11 11 11 11 11 11 11 11 11 10 9 9 9 9
j = 544, i = 0 3 3 3 3 3 3 2 1 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 4 6 6 6 6 6 6 6 6
j = 544, i = 1 11 11 11 10 10 10 10 10 10 10 9 9 12 12 12 11 10 10 10 9 10 12 12 12 12 12 12 12 11 10 12 13 13 13
j = 544, i = 2 11 11 11 11 11 11 11 11 10 9 8 8 10 10 10 8 8 8 8 8 8 7 7 6 6 7 7 7 7 6 6 6 16 16
j = 578, i = 0 6 6 6 6 6 6 6 6 6 6 6 5 4 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
j = 578, i = 1 13 13 13 13 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 11 11 11 11 11 11 11 11 11 11 11 11 10 12
j = 578, i = 2 16 15 15 15 15 15 15 15 15 15 15 15 15 9 9 9 9 9 9 9 10 12 12 12 12 13 12 14 14 14 18 18 17 16
j = 612, i = 0 0 0 0 0 0 0 0 0 0 0 3 5 5 6 6 6 6 6 6 5 4 5 5 7 11 12 11 10 10 5 5 5 5 5
j = 612, i = 1 12 12 12 12 12 12 12 11 10 10 10 9 11 12 12 12 11 13 13 13 12 10 9 9 9 8 7 7 7 6 5 10 12 12
j = 612, i = 2 16 13 12 12 11 13 13 13 13 13 13 12 13 15 15 15 14 13 12 16 16 16 16 16 15 15 18 20 19 18 17 16 16 15
j = 646, i = 0 5 5 5 6 6 4 2 2 4 4 4 4 4 4 4 3 3 7 8 12 12 12 11 11 10 10 10 8 7 7 9 13 16 18
j = 646, i = 1 12 12 12 12 11 9 9 9 9 9 9 9 9 8
j = 646, i = 2 16 18 18 18 18 18 18 18 17 15 17 19 21 21 21 21 21 21 20 22 21 20 20 20 20 20 20 19 18 18 18 18 18 18

In the cryptanalysis of Trivium, the degree reduction may be more compli-
cated. Further degree reduction for t > 4 is hard to be obtained using PC for
loop executing Algorithm 3. Some man-made work should be involved to obtain
further degree reduction. The degree reduction can help discard state terms
of lower degree dramatically. For example, if the state term b1b2 goes through
degree evaluation phase, that means DEG(b1) + DEG(b2) ≥ 70, then we check if
DEG(b1) + DEG(b2) − dt(b1b2) < 70. If yes, deg(b1b2) < 70 and delete it.

For example, the Eq. (9) can be expressed furthermore using state bits: z855 =
s7242 + s6802 s6812 + s6792 + s7210 + s6972 + s6532 s6542 + s6522 + s6940 + s7210 + s6950 s6960 +
s6940 + s7091 + s7060 + s6800 s6810 + s6790 + s6941 + s7211 + s7071 s7081 + s7061 + s7032 + s6761 +
s6621 s6631 +s6611 +s6582 . Then s6522 , s6761 , s6611 , can be discarded because their degree
are lower than 68, shown in Table 3 highlighted in red, and the total degree of
the multiplication of each one with (1 + s210) is lower than 70. In addition, the
state terms highlighted in blue can be discarded by removing the repeated state
terms. Furthermore, the output can be expressed using state bits in lower rounds
and more state terms can be discarded.

A Key-Recovery Attack on 855-round Trivium 177

Table 7. Degree reductions dt(s
j
is

j+1
i sj+2

i) of sjis
j+1
i sj+2

i with t = 3

j+ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

j = 340, i = 0
j = 340, i = 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 2 2 2 2 2 2 2 2 1 1 1 1 1 1
j = 340, i = 2 0 3 3 3 3 3 2 2 4 4 4 4 4 4 4 4 4 4 4 3 2 2 1 1 3 3 3 3 3 3 3 2 0 1
j = 374, i = 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 1 3 5 5 5 5 5 5 5 5 5 5 5 5
j = 374, i = 1 0 0 1 0 0 0 0 0 0 0
j = 374, i = 2 3
j = 408, i = 0 5 5 5 5 5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 2 1 1 1
j = 408, i = 1 0 0 0 0 0 0 0 0 0 0 0 3 2 1 2
j = 408, i = 2 3 2 2 2 1 1 1 1 1 1 1 0
j = 442, i = 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 2 2 1 1 3 3 3 3 3 3 3
j = 442, i = 1 2 3 7 8 8 7 7 7 7 7 7 7 7 7 7 7 6 5 4 3 3 3 3 3 3 3 3 2 1 2 4 4 4 4
j = 442, i = 2 2 2 2 2 2 2 2 1 1 3 3 3 3 3 3 3 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
j = 476, i = 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 0
j = 476, i = 1 4 4 4 4 4 4 3 2 3 4 6 8 8 8 8 8 8 8 8 8 7 7 9 9 9 9 9 8 8 10 10 10 10 10
j = 476, i = 2 1 1 1 1 0 0 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 0 1 5 7 7 7 7 7 7 7 7
j = 510, i = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2 1 1 3 3 3 3 0 0 0
j = 510, i = 1 10 10 10 10 10 9 8 8 8 7 7 9 8 7 7 7 7 7 6 5 7 9 9 9 9 9 9 9 8 8 7 9 11 10
j = 510, i = 2 7 6 4 3 3 3 3 3 3 3 3 2 1 2 2 3 7 8 9 9 11 11 11 11 11 11 11 11 11 9 7 7 7 9
j = 544, i = 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 2 5 5 5 5 5 5 5 5
j = 544, i = 1 10 10 10 9 10 10 10 10 10 9 7 8 12 11 10 9 9 9 8 6 8 11 11 11 11 11 11 10 7 7 10 11 11 11
j = 544, i = 2 11 11 11 11 11 11 11 10 8 7 6 6 7 7 7 4 4 4 4 4 3 1 1 0 0 1 0 0 0 0 0 0 15 15
j = 578, i = 0 5 5 5 5 5 5 5 5 5 5 5 3 0
j = 578, i = 1 10 10 12
j = 578, i = 2 15 15 15 15 15 15 15 15 15 15 15 15 15 6 6 6 6 6 6 5 8 10 10 10 9 11 10 12 12 12 18 18 17 16

After the above 2 steps to reduce (1 + s2101)P3, the degrees of the left state
terms are possibly higher or equal to 70. As the dimension is high, a cube tester
over such a big dimension is far beyond our computing ability. For the left
state terms, we use IV representation for each left state terms and remove the
repeated IV terms using Algorithm 4 in order to determine the missing 70-degree
IV terms. After the above steps, there is no 70-degree IV term in (1 + s2101)P3.
So the degree of (1 + s2101)P3 is strictly lower than 70, which is summarized as
the following Lemma 2.

Lemma 2. Set the v74, v60, v75, v30 and v48 to zeros, then the degree of
(1 + s2101)z855 is bounded by 70, where z855 is the output after 855-round ini-
tializations.

According to Lemma 2, we strictly prove that the degree of the reduced poly-
nomial is lower than 70, so the sum over any selected cube of dimension 70 is
zero, such that the distinguishers can be constructed.

Table 8. Degree reductions dt(s
j
is

j+1
i sj+2

i sj+3
i) of sjis

j+1
i sj+2

i sj+3
i with t = 4

j+ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

j = 340, i = 0
j = 340, i = 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 0 4 4 4 4 4 4 3 3 2 2 2 2 2 2
j = 340, i = 2 2 6 6 6 6 5 5 4 8 8 8 8 8 8 8 8 8 7 6 5 4 3 3 2 6 6 6 6 6 6 5 3 2 4
j = 374, i = 0 0 0 0 0 0 0 0 0 4 4 4 4 4 4 4 4 3 2 0 2 5 8 12 12 12 12 12 12 12 12 11 11 10 10
j = 374, i = 1 2 1 0 0 2 2 2 2 2 2 2 2
j = 374, i = 2 8
j = 408, i = 0 10 10 10 10 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 7 7 6 6 6 6 6 6 6 5 4 3 2 2 2
j = 408, i = 1 2 2 2 2 2 2 2 1 0 0 0 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 5 4 2 3
j = 408, i = 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 7 7 6 6 6 6 6 5 5 4 4 4 4 4 4 3 2
j = 442, i = 0 2 2 2 2 2 1 0 0 0 2 2 2 1 0 0 0 0 0 0 0 1 0 1 4 3 3 2 6 6 6 6 6 6 6
j = 442, i = 1 5 7 13 15 15 14 14 14 14 14 14 14 14 14 13 12 10 8 7 6 6 6 6 6 6 6 5 4 2 4 8 8 8 8
j = 442, i = 2 5 4 4 4 4 4 4 3 3 6 6 6 6 6 6 5 4 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

178 X. Fu et al.

4.3 Online Phase and Complexity Analysis

We first guess the 3 key bits in s2101 , i.e. k19, k20 and k57 + k63 + k21 + k28k29 +
k3 + k30 + k12 + k37k38 + k39 as shown in Eq. (11), for the right guess the result
is 0 while for wrong guesses, the result is 1 with probability 1

2 . If the sum over
cubes of dimension 70 is 1, then the key guess is wrong and dropped (Line 7).
After the first cube sum, about half key bits remain, and sum over another cube
again. The remaining guess is the key. The on-line phase is shown in Algorithm5.

Algorithm 5. On-line Attack
1: Initialize the possible key space KEY with size of 23.
2: for i ← 1 : 3 do
3: for Each possible key in KEY do
4: Compute the value s2101 , so that obtain the value of (1 + s2101)z,
5: Compute cube sums zsum of (1 + s2101)z,
6: if zsum = 1 then
7: Delete key from KEY .
8: end if
9: end for

10: end for

For each guess, we need to sum over a cube of dimension 70, so that the
complexity is 23 · 270 + 22 · 270 + 21 · 270 ≈ 274.

After the above process, the bits k19, k20 and k57 + k63 + k21 + k28k29 + k3 +
k30+k12+k37k38+k39 can be determined. k19 and k20 are single master key bits.
Let c = k57 + k63 + k21 + k28k29 + k3 + k30 + k12 + k37k38 + k39 (c is 0 or 1), then
it can be rewritten as k57 = k63 +k21 +k28k29 +k3 +k30 +k12 +k37k38 +k39 + c.
We guess the other 77 key bits excluding k19, k20 and k57, the value k57 can
be obtained directly. So the other 77 key bits excluding k19, k20 and k57 can be
recovered by brute force. Thus the complexity to recover all the key bits is 277.

4.4 Experimental Verification

We apply a powerful nullification technique to reduce the output polynomial,
and prove the degree bound of the reduced polynomial theoretically and recover
key bits. To make the attack more clear, we give an attack instance. We give
two attacks on 721-round Trivium: a distinguishing attack and a key-recovery
attack.

Obtain the Degree Upper Bound of Output of 721-round Trivium.
Initial IVi = vi with i ∈ [0, 79]. In the example attack on 721-round Trivium, we
only use 40 freedom variables, i.e. set v2·j+1 = 0 for j ∈ [0, 39] and the other 40
IV bits are freedom variables.

A Key-Recovery Attack on 855-round Trivium 179

The exact boolean functions of the first 340 state bits sji for i ∈ [0, 2] and
j ∈ [0, 340] can be obtained directly on PC. Hence, the degrees of them can
be obtained directly. Degrees upper bounds of other state bits can be evaluated
using Algorithm 2 and are shown in Table 9. Note that in Table 9, the estimated
degrees of some state bits are larger than 40, e.g. DEG(s6652) = 41, which is
because the accuracy of Algorithm 2 decreases for state bits with large rounds.
Thus we only apply this algorithm to sji for j ≤ 665.

The output of 721-round Trivium is z721 = s6560 + s6290 + s6531 + s6381 + s6562 +
s6112 . According to Table 9, the 6 state terms (bits) highlighted in red are of
degree lower than 40, so the degree of z721 is lower than 40, which can serve as
distinguishers. This result can be obtained easily by rough computing.

Next, we give a more accurate bound of z721. In the following, we will deter-
mine whether z721’s degree is bigger than 37. The 6 state bits are expressed
using state bits in lower rounds again and substituted into z721, which is called
the substitution or expression process in [9]. Then z721 = s5902 + s5462 s5472 +
s5452 + s5870 + s5632 + s5192 s5202 + s5182 + s5600 + s5870 + s5610 s5620 + s5600 + s5751 + s5720 +
s5460 s5470 +s5450 +s5601 +s5871 +s5731 s5741 +s5721 +s5692 +s5421 +s5281 s5291 +s5271 +s5242 .
According to degree upper bounds Table 9, deg(s5902) = 27 < 37 highlighted
in blue, so s5902 is removed. Then deg(s5462 s5472) ≤ DEG(s5462) + DEG(s5472) =
20 + 21 = 41 and 41 ≥ 37, so the degree of s5462 s5472 is possibly bigger than 36
and left. After discarding all the state terms whose degrees are lower than 36,
z721|deg>36 = s5462 s5472 + s5731 s5741 . Continue substitution and expression process
for z721|deg>36 and finally, there remain no state terms with degree bigger than
36, so that the degree bound of z721 is 36. The details of the above step are
shown in AppendixA.

A Key-Recovery Attack on 721-round Trivium. Similar to the IV setting
above for distinguishing 721-round Trivium, we set v2·j+1 = 0 for j ∈ [0, 39] and
the other 40 IV bits are freedom variables.

According to our attack outline introduced in Sect. 3.2, we need to deter-
mine the nullification scheme first. We express the output of 721-round Trivium
iteratively and calculate the frequency of state bits in the polynomial. Then we
choose s2901 as P1, the output can be rewritten as z721 = s2901 P2 + P3. Multiply
1+ s2901 with z721 such that the result is (1+ s2901)z721 = (1+ s2901)P3. We study
the reduced polynomial (1 + s2901)P3. In order to decrease the number of key
bits in s2901 , we choose to nullify v58, v64 and v72, so that there are 37 freedom
variables. Set the degree bound to 32, we express (1+s2901)P3 using internal state
bits furthermore and discard state terms whose degree are lower than 32 + dt,
where dt is the corresponding degree reduction. We use IV presentation, com-
bined with Algorithm4 in order to obtain the IV terms of degree higher than 32.
Finally, there is no IV term. Hence, we prove that the degree of (1 + s2901)z721 is
lower than 32. Then the sum of (1+s2901)z721 over any selected cube of dimension
32 is zero. This process can be executed in an hour in a PC.

180 X. Fu et al.

Table 9. Degree upper bounds DEG(sji) of the state bits sji for j ≤ 665

j+ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

s
j=0
0 0

s
j=0
1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

s
j=0
2 0 1 0 1 0 1

s
j=35
0 1 0 1

s
j=35
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

s
j=35
2 1

s
j=70
0 0 1

s
j=70
1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

s
j=70
2 1

s
j=105
0 1 1 1 1 1 1 1 1 1 1 2

s
j=105
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1

s
j=105
2 1

s
j=140
0 2

s
j=140
1 2 2 2 2 2 2 2 2 2 2 2 2

s
j=140
2 1

s
j=175
0 2

s
j=175
1 2 3 3 3 3

s
j=175
2 1

s
j=210
0 2

s
j=210
1 3

s
j=210
2 1 1 1 1 1 2

s
j=245
0 2

s
j=245
1 3 4 4 4 4 4

s
j=245
2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

s
j=280
0 2 3 3 3 3

s
j=280
1 4

s
j=280
2 4 4 4 4 4 4 4 4 5

s
j=315
0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4

s
j=315
1 4

s
j=315
2 5

s
j=350
0 4 4 4 4 5 6 7

s
j=350
1 4

s
j=350
2 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

s
j=385
0 7 7 7 7 7 7 7 7 7 7 7 7 8 9

s
j=385
1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

s
j=385
2 7

s
j=420
0 9 10 10

s
j=420
1 7 8 9 11 11 11 11 11 11 11 11 11

s
j=420
2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8

s
j=455
0 10 10 10 10 10 10 10 10 10 10 10 11 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 13 13 13 13 13 13

s
j=455
1 11 11 11 11 11 11 11 11 12 12 12 12 12 12 12 12 12 12 12 12 13 13 13 13 13 13 13 13 13 13 13 13 13 14 15

s
j=455
2 8 9 10 10 10 10 10

s
j=490
0 13

s
j=490
1 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 16 16 16 16 16 16 16 16 16 16 16 16 16 16 17 17

s
j=490
2 10 10 10 10 10 10 10 10 10 10 10 10 11 13 14

s
j=525
0 13 14 14 14 14 14 14 14 14 14 14 14 14

s
j=525
1 17 18 19 19 19 19 20 21 21

s
j=525
2 14 14 15 17 18 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19 20 21 21 21 21 21 21 21 21 21 21 21 22 23 23

s
j=560
0 14 14 15 16 18

s
j=560
1 21 21 21 21 21 21 22 23

s
j=560
2 23 23 23 23 23 23 23 23 23 23 24 25 25 25 25 25 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 26 26 26 26

s
j=595
0 19 19 19 19 20 20 20 20 20 20 20 20 20 20 20 20 21 23 24 24 24 24 24 24 24 24 24 24 25 27 27 27 27 27 27

s
j=595
1 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 24 24 24 24 24 24 24 24 24 24 24 24 24 25 26 26 26

s
j=595
2 26 26 26 26 26 26 26 26 26 26 27 28 29 29 29 29 29 29 29 29 30 30 30 30 30 30 30 30 30 30 30 31 31 31 31

s
j=630
0 27 27 27 27 27 27 28 31 33 33 33 34 34 34 34 34 34 34 34 34 34 34 34 34 36 37 37 37 37 37 37 37 37 37 37

s
j=630
1 26 26 26 26 26 26 26 26 26 27 28 28 28 28 28 28 28 28 28 28 28 28 28 29 29 29 29 29 29 29 29 30 30 30 30

s
j=630
2 31 31 31 31 32 33 33 33 33 34 36 37 37 37 37 37 37 37 38 39 39 39 39 39 39 39 39 40 41 41 41 41 41 41 41

A Key-Recovery Attack on 855-round Trivium 181

Guess the key bit involved in s2901 . For right guess, sum over a cube of dimen-
sion 32 is zero while for wrong guesses, the result is 1 with probability 1

2 . The
key bits involved in s2901 are shown in Table 10. After 19 summations over cubes
of dimension 32, the 19 key bits can be recovered. The complexity is about
2 × 219 × 232 = 252. The other key bits can be recovered using brute force with
a complexity of 261. Hence, the total complexity of recovering all key bits of
721-round Trivium is 261.

Table 10. The key bits involved in s2901 .

Equivalent key bits
k18, k17, k63, k61, k59, k60 + k16k17, k35 + k60k61 + k62, k33 + k58k59 + k60, k15 + k40k41 + k42,
k42k43 + k44, k48 + k73k74 + k75 + k61k62, k47 + k72k73 + k74 + k60k61 + k62, k46 + k71k72+
k73 + k59k60, k45 + k70k71 + k72 + k58k59 + k60, k34k35 + k34k60k61 + k34k62 + k35k59k60+
k59k60k61 + k59k60k62 + k35k61 + k60k61 + k21+ k46k47 + k48 + k36, k33k34 + k33k59k60+
k33k61 + k34k58k59 + k58k59k60 + k58k59k61 + k34k60 + k59k60 + k20 + k45k46 + k47 + k35 + k62,
k16k17 + k16k42k43 + k16k44 + k17k41k42 + k41k42k43 + k41k42k44 + k17k43 + k42k43 + k3+
k28k29 + k30 + k45 + k48 + k73k74 + k75 + k61k62 + k9, k15k16 + k15k41k42 + k15k43 + k16k40k41+
k40k41k42 + k40k41k43 + k16k42 + k41k42 + k2 + k27k28 + k29 + k44 + k47 + k72k73 + k74+
k60k61 + k62, k

∗(A complex expression of key bits).

5 Conclusions

In this paper, we propose the Boolean polynomial reduction techniques and
IV representation, which can be applicable to cryptanalysis of stream ciphers
based on NFSRs. These techniques can help obtain more accurate degree bounds.
We apply these techniques to the cryptanalysis of reduced round Trivium. For
recovering the key bits of Trivium, we propose a new nullification technique.
Combined with the distinguishers, we propose a key-recovery attack on 855 round
Trivium, where 3 equivalent key bits can be recovered with complexity of 274.
The other key bits can be recovered by brute force with a complexity of 277.

Furthermore, our flexible methods can be applied to attack more round of
Trivium by adjustment of P1, which is our future work. In addition, the degree
evaluation and degree reduction techniques can be applicable to other encryption
primitives such as Grain family.

Acknowledgement. The authors would like to thank anonymous reviewers for their
helpful comments. We also thank National Supercomputing Center in Wuxi for their
support of Sunway TaihuLight, which is the most powerful supercomputer. This work
was supported by the National Key Research and Development Program of China
(Grant No. 2017YFA0303903), and National Cryptography Development Fund (No.
MMJJ20170121), and Zhejiang Province Key R&D Project (No. 2017C01062).

182 X. Fu et al.

References

1. Aumasson, J.-P., Dinur, I., Meier, W., Shamir, A.: Cube testers and key recovery
attacks on reduced-round MD6 and Trivium. In: Dunkelman, O. (ed.) FSE 2009.
LNCS, vol. 5665, pp. 1–22. Springer, Heidelberg (2009). https://doi.org/10.1007/
978-3-642-03317-9 1

2. De Cannière, C., Preneel, B.: Trivium. In: Robshaw, M., Billet, O. (eds.) New
Stream Cipher Designs. LNCS, vol. 4986, pp. 244–266. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-68351-3 18

3. Dinur, I., Güneysu, T., Paar, C., Shamir, A., Zimmermann, R.: An experimentally
verified attack on full grain-128 using dedicated reconfigurable hardware. In: Lee,
D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 327–343. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0 18

4. Dinur, I., Shamir, A.: Cube attacks on tweakable black box polynomials. In: Joux,
A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 278–299. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-01001-9 16

5. Dinur, I., Shamir, A.: Breaking grain-128 with dynamic cube attacks. In: Joux,
A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 167–187. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-21702-9 10

6. Englund, H., Johansson, T., Sönmez Turan, M.: A framework for chosen IV statis-
tical analysis of stream ciphers. In: Srinathan, K., Rangan, C.P., Yung, M. (eds.)
INDOCRYPT 2007. LNCS, vol. 4859, pp. 268–281. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-77026-8 20

7. Fischer, S., Khazaei, S., Meier, W.: Chosen IV statistical analysis for key recovery
attacks on stream ciphers. In: Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS,
vol. 5023, pp. 236–245. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-68164-9 16

8. Fouque, P.-A., Vannet, T.: Improving key recovery to 784 and 799 rounds of Triv-
ium using optimized cube attacks. In: Moriai, S. (ed.) FSE 2013. LNCS, vol.
8424, pp. 502–517. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-43933-3 26

9. Fu, X., Wang, X., Chen, J.: Determining the nonexistent terms of non-linear mul-
tivariate polynomials: how to break grain-128 more efficiently. IACR Cryptology
ePrint Archive 2017, 412 (2017). http://eprint.iacr.org/2017/412

10. International Organization for Standardization (ISO): ISO/IEC 29192–3:2012,
Information technology - Security techniques - Lightweight cryptography - Part
3: Stream ciphers (2012)

11. Knellwolf, S., Meier, W., Naya-Plasencia, M.: Conditional differential cryptanalysis
of NLFSR-based cryptosystems. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol.
6477, pp. 130–145. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-17373-8 8

12. Knellwolf, S., Meier, W., Naya-Plasencia, M.: Conditional differential cryptanalysis
of Trivium and KATAN. In: Miri, A., Vaudenay, S. (eds.) SAC 2011. LNCS, vol.
7118, pp. 200–212. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-28496-0 12

13. Knudsen, L.R.: Truncated and higher order differentials. In: Preneel, B. (ed.) FSE
1994. LNCS, vol. 1008, pp. 196–211. Springer, Heidelberg (1995). https://doi.org/
10.1007/3-540-60590-8 16

14. Knudsen, L., Wagner, D.: Integral cryptanalysis. In: Daemen, J., Rijmen, V. (eds.)
FSE 2002. LNCS, vol. 2365, pp. 112–127. Springer, Heidelberg (2002). https://doi.
org/10.1007/3-540-45661-9 9

https://doi.org/10.1007/978-3-642-03317-9_1
https://doi.org/10.1007/978-3-642-03317-9_1
https://doi.org/10.1007/978-3-540-68351-3_18
https://doi.org/10.1007/978-3-642-25385-0_18
https://doi.org/10.1007/978-3-642-01001-9_16
https://doi.org/10.1007/978-3-642-21702-9_10
https://doi.org/10.1007/978-3-540-77026-8_20
https://doi.org/10.1007/978-3-540-68164-9_16
https://doi.org/10.1007/978-3-540-68164-9_16
https://doi.org/10.1007/978-3-662-43933-3_26
https://doi.org/10.1007/978-3-662-43933-3_26
http://eprint.iacr.org/2017/412
https://doi.org/10.1007/978-3-642-17373-8_8
https://doi.org/10.1007/978-3-642-17373-8_8
https://doi.org/10.1007/978-3-642-28496-0_12
https://doi.org/10.1007/978-3-642-28496-0_12
https://doi.org/10.1007/3-540-60590-8_16
https://doi.org/10.1007/3-540-60590-8_16
https://doi.org/10.1007/3-540-45661-9_9
https://doi.org/10.1007/3-540-45661-9_9

A Key-Recovery Attack on 855-round Trivium 183

15. Lai, X.: Higher order derivatives and differential cryptanalysis. In: Blahut, R.E.,
Costello, D.J., Maurer, U., Mittelholzer, T. (eds.) Communications and Cryptog-
raphy, pp. 227–233. Springer, Boston (1994). https://doi.org/10.1007/978-1-4615-
2694-0 23

16. Liu, M.: Degree evaluation of NFSR-based cryptosystems. In: Katz, J., Shacham,
H. (eds.) CRYPTO 2017. LNCS, vol. 10403, pp. 227–249. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-63697-9 8

17. Liu, M., Yang, J., Wang, W., Lin, D.: Correlation cube attacks: from weak-key
distinguisher to key recovery. Cryptology ePrint Archive, Report 2018/158 (2018).
https://eprint.iacr.org/2018/158

18. Todo, Y.: Structural evaluation by generalized integral property. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 287–314. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5 12

19. Todo, Y., Isobe, T., Hao, Y., Meier, W.: Cube attacks on non-blackbox polynomials
based on division property. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS,
vol. 10403, pp. 250–279. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63697-9 9

20. Wang, X., Yin, Y.L., Yu, H.: Finding collisions in the full SHA-1. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005).
https://doi.org/10.1007/11535218 2

21. Wang, X., Yu, H.: How to break MD5 and other hash functions. In: Cramer, R.
(ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005).
https://doi.org/10.1007/11426639 2

A The Details of Determining the Degree Upper Bound
of Output for 721-round Trivium

For z721|deg>36 = s5462 s5472 + s5731 s5741 , the 4 state bits s5462 , s5472 , s5731 , s5741 can
be expressed using state bits furthermore. Substitute the 4 state bits using
the expression and discard the state terms whose degree is lower than 37,
then the resulted z721|deg>36 = s4631 s4641 s4781 + s4641 s4651 s4771 + s4810 s4820 s5080 +
s4820 s4830 s5070 + s4820 s4830 s4951 + s4810 s4820 s4961 . Then the state bits involved in
the polynomial can be expressed using state bits, so that we can obtain
z721|deg>36 = s4120 s3722 s3732 s3982 s3992 + s4130 s3712 s3722 s3982 s3992 + s4130 s3732 s3742 s3972 s3982 +
s4140 s3722 s3732 s3972 s3982 + s4030 s4040 s3722 s3732 s4172 + s4030 s4040 s3732 s3742 s4162 + s4030 s4040

s3722 s3732 s3742 +s4030 s4040 s3712 s3732 s3742 +s4030 s4040 s4130 s3732 s3742 +s4030 s4040 s4140 s3722 s3732 +
s4040 s4050 s3712 s3722 s4162 + s4040 s4050 s3722 s3732 s4152 + s4040 s4050 s3712 s3722 s3732 + s4040 s4050 s3702

s3722 s3732 + s4040 s4050 s4120 s3722 s3732 + s4040 s4050 s4130 s3712 s3722 .
Repeat the process above and we can obtain z721|deg>36 = s2901 s2911 s3051 s2932

s2942 s2952 s3032 s3042 + s2911 s2921 s3041 s2932 s2942 s2952 s3032 s3042 + s2901 s2911 s2921 s2932 s2942 s2952 s3032

s3042 + s2891 s2911 s2921 s2932 s2942 s2952 s3032 s3042 + s2911 s2921 s2862 s2932 s2942 s2952 s3032 s3042 + s2901

s2911 s2872 s2932 s2942 s2952 s3032 s3042 + s2901 s2911 s3051 s2922 s2942 s2952 s3032 s3042 + s2911 s2921 s3041

s2922 s2942 s2952 s3032 s3042 + s2901 s2911 s2921 s2922 s2942 s2952 s3032 s3042 + s2891 s2911 s2921 s2922 s2942 s2952

s3032 s3042 + s2911 s2921 s2862 s2922 s2942 s2952 s3032 s3042 + s2901 s2911 s2872 s2922 s2942 s2952 s3032 s3042 +
s2891 s2901 s3041 s2932 s2942 s2952 s3042 s3052 + s2901 s2911 s3031 s2932 s2942 s2952 s3042 s3052 + s2891 s2901 s2911

s2932 s2942 s2952 s3042 s3052 + s2881 s2901 s2911 s2932 s2942 s2952 s3042 s3052 + s2901 s2911 s2852 s2932 s2942 s2952

s3042 s3052 + s2891 s2901 s2862 s2932 s2942 s2952 s3042 s3052 + s2891 s2901 s3041 s2922 s2942 s2952 s3042 s3052 +

https://doi.org/10.1007/978-1-4615-2694-0_23
https://doi.org/10.1007/978-1-4615-2694-0_23
https://doi.org/10.1007/978-3-319-63697-9_8
https://eprint.iacr.org/2018/158
https://doi.org/10.1007/978-3-662-46800-5_12
https://doi.org/10.1007/978-3-319-63697-9_9
https://doi.org/10.1007/978-3-319-63697-9_9
https://doi.org/10.1007/11535218_2
https://doi.org/10.1007/11426639_2

184 X. Fu et al.

s2901 s2911 s3031 s2922 s2942 s2952 s3042 s3052 + s2891 s2901 s2911 s2922 s2942 s2952 s3042 s3052 + s2881 s2901 s2911

s2922 s2942 s2952 s3042 s3052 + s2901 s2911 s2852 s2922 s2942 s2952 s3042 s3052 + s2891 s2901 s2862 s2922 s2942 s2952

s3042 s3052 + s2891 s2901 s3041 s2942 s2952 s2962 s3022 s3032 + s2901 s2911 s3031 s2942 s2952 s2962 s3022 s3032 +
s2891 s2901 s2911 s2942 s2952 s2962 s3022 s3032 + s2881 s2901 s2911 s2942 s2952 s2962 s3022 s3032 + s2901 s2911 s2852

s2942 s2952 s2962 s3022 s3032 + s2891 s2901 s2862 s2942 s2952 s2962 s3022 s3032 + s2891 s2901 s3041 s2932 s2952 s2962

s3022 s3032 + s2901 s2911 s3031 s2932 s2952 s2962 s3022 s3032 + s2891 s2901 s2911 s2932 s2952 s2962 s3022 s3032 +
s2881 s2901 s2911 s2932 s2952 s2962 s3022 s3032 + s2901 s2911 s2852 s2932 s2952 s2962 s3022 s3032 + s2891 s2901 s2862

s2932 s2952 s2962 s3022 s3032 + s2881 s2891 s3031 s2942 s2952 s2962 s3032 s3042 + s2891 s2901 s3021 s2942 s2952

s2962 s3032 s3042 + s2881 s2891 s2901 s2942 s2952 s2962 s3032 s3042 + s2871 s2891 s2901 s2942 s2952 s2962 s3032

s3042 + s2891 s2901 s2842 s2942 s2952 s2962 s3032 s3042 + s2881 s2891 s2852 s2942 s2952 s2962 s3032 s3042 + s2881

s2891 s3031 s2932 s2952 s2962 s3032 s3042 + s2891 s2901 s3021 s2932 s2952 s2962 s3032 s3042 + s2881 s2891 s2901 s2932

s2952 s2962 s3032 s3042 + s2871 s2891 s2901 s2932 s2952 s2962 s3032 s3042 + s2891 s2901 s2842 s2932 s2952 s2962 s3032

s3042 + s2881 s2891 s2852 s2932 s2952 s2962 s3032 s3042 .
Substitute once again and there remains no state term, so that the degree

of z721 is lower than 37, which can be derived as distinguishers with lower com-
plexity.

Improved Key Recovery Attacks
on Reduced-Round AES with Practical

Data and Memory Complexities

Achiya Bar-On1, Orr Dunkelman2(B), Nathan Keller1, Eyal Ronen3,
and Adi Shamir3

1 Department of Mathematics, Bar-Ilan University, Ramat Gan, Israel
2 Computer Science Department, University of Haifa, Haifa, Israel

orrd@cs.haifa.ac.il
3 Computer Science Department, The Weizmann Institute, Rehovot, Israel

Abstract. Determining the security of AES is a central problem in
cryptanalysis, but progress in this area had been slow and only a hand-
ful of cryptanalytic techniques led to significant advancements. At Euro-
crypt 2017 Grassi et al. presented a novel type of distinguisher for AES-
like structures, but so far all the published attacks which were based
on this distinguisher were inferior to previously known attacks in their
complexity. In this paper we combine the technique of Grassi et al. with
several other techniques to obtain the best known key recovery attack
on 5-round AES in the single-key model, reducing its overall complex-
ity from about 232 to about 222.5. Extending our techniques to 7-round
AES, we obtain the best known attacks on AES-192 which use practical
amounts of data and memory, breaking the record for such attacks which
was obtained 18 years ago by the classical Square attack.

1 Introduction

The Advanced Encryption Standard (AES) is the best known and most widely
used secret key cryptosystem, and determining its security is one of the most
important problems in cryptanalysis. Since there is no known attack which can
break the full AES significantly faster than via exhaustive search, researchers
had concentrated on attacks which can break reduced round versions of AES.
Such attacks are important for several reasons. First of all, they enable us to
assess the remaining security margin of AES, defined by the ratio between the
number of rounds which can be successfully attacked and the number of rounds
in the full AES. In addition, they enable us to develop new attack techniques
which may become increasingly potent with additional improvements. Finally,
there are many proposals for using reduced round AES (and especially its 4 or
5 rounds versions) as components in larger schemes, and thus successful crypt-
analysis of these variants can be used to attack those schemes. Examples of such
proposals include ZORRO [17], LED [21] and AEZ [22] which use 4-round AES,
and WEM [7], Hound [16], and ELmD [3] which use 5-round AES.
c© International Association for Cryptologic Research 2018
H. Shacham and A. Boldyreva (Eds.): CRYPTO 2018, LNCS 10992, pp. 185–212, 2018.
https://doi.org/10.1007/978-3-319-96881-0_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96881-0_7&domain=pdf

186 A. Bar-On et al.

Over the last twenty years, dozens of papers on the cryptanalysis of reduced-
round AES were published, but only a few techniques led to significant reduc-
tions in the complexity of key recovery attacks. In the standard model (where the
attack uses a single key rather than related keys), these techniques include the
Square attack [8,15], impossible differential cryptanalysis [1,23], the Demirci-
Selçuk attack [10,12], and the Biclique attack [2]. In most of these cases, it took
several years — and a series of subsequent improvements — from the inven-
tion of the technique until it was developed into its current form. For example,
impossible differential cryptanalysis was applied to AES already in 2000 [1] as
an attack on 5-round AES, but it was only very recently that Boura et al. [6]
improved it into its best currently known variant which breaks 7-round AES with
an overall complexity of about 2107. The Demirci-Selçuk attack was presented
in 2005 [10] with a huge memory complexity of over 2200, and it took 8 years
before Derbez et al. [12] enhanced it in 2013 into an attack on 7-round AES with
an overall complexity which is just below 2100. Therefore, the development of
any new attack technique is a major breakthrough with potentially far reaching
consequences.

The latest such development happened in 2017, when Grassi et al. [20] pub-
lished a new property of AES, called multiple-of-8, which had not been observed
before by other researchers. At first, it was not clear whether the new observation
can at all lead to attacks on AES which are competitive with respect to previ-
ously known results. This question was partially resolved by Grassi [19], who
used this observation to develop a new type of attack which can break 5-round
AES in data, memory and time complexities of 232. However, a variant of the
Square attack [15] can break the same variant with comparable data and time
complexities but with a much lower memory complexity of 29. Consequently, the
new technique did not improve the best previously known attack on 5 rounds,
and its extensions to more than 5 rounds (see [19]) were significantly inferior to
other attacks.

In this paper we greatly improve Grassi’s attack, and show how to attack
5-round AES in data, memory and time complexities of less than 222.5, which is
about 500 times faster than any previous attack on the same variant. Due to the
exceptionally low complexity of our attack, we could verify it experimentally by
running it on real data generated from hundreds of randomly chosen keys. As
we expected, the success rate of our full key recovery attack rose sharply from
0.24 to 1 as we increased the amount of available data from 222 to 223 in tiny
increments of 20.25.

By extending our technique to larger versions of AES, we obtain new attacks
on AES-192 and AES-256 which have the best time complexity among all the
attacks on 7-round AES which have practical data and memory complexities.

Low data and memory attacks were studied explicitly in a number of
papers (e.g., [4,5,12]), but progress in applying such attacks to AES had been
even slower than the progress in the “maximum complexity” metric. While
some results were obtained on variants with up to 5 rounds, the best such
attack on 6 and more rounds is still the improved Square attack presented by

Improved Attacks on AES with Practical Data and Memory Complexities 187

Ferguson et al. [15] in 2000. We use the observation of Grassi et al., along with the
dissection technique [14] and several other techniques, to beat this 18-year old
record and develop the best attacks on 7-round AES in this model. In particular,
our attack on 7-round AES with 192-bit keys requires 230 data, 232 memory and
2153 time, which outperforms the Square attack in all three complexity measures
simultaneously.

A summary of the known and new key recovery attacks in the single key
model on 5 and 7 rounds of AES appears in Tables 1 and 2, respectively. The
specified complexities describe how difficult it is to find some of the key bytes.
Since our new attacks can find with the same complexity any three key bytes
which share the same generalized diagonal, we can rerun them several times for
different diagonals to find the full key with only slightly elevated complexities.

Table 1. Attacks on 5-Round AES (partial key recovery)

Attack Data Memory Time

(Chosen plaintexts) (128-bit blocks) (encryptions)

MitM [11] 8 256 264

Imp. Polytopic [25] 15 241 270

Partial Sum [26] 28 small 238

Square [9] 211 small 244

Square [9] 233 232 234

Improved Square [15] 233 small 233

Yoyo [24] 211.3 ACC small 231

Imp. Diff. [1] 231.5 238 233

Mixture Diff. [19] 232 232 232

Our Attack (Sect. 4) 222.25 220 222.5

ACCAdaptive Chosen Plaintexts and Ciphertexts

The paper is organized as follows. In Sect. 2 we briefly describe AES and
introduce our notations, and in Sect. 3 we describe the new 4-round distinguisher
which was discovered and used by Grassi. In Sect. 4 we show how to exploit this
distinguisher in a better way to obtain improved attacks on 5-round AES. We
extend the attack to 6-round AES in Sect. 5, and then extend it again to 7 rounds
in Sect. 6. In Sect. 7 we explore other points on the time-memory-data tradeoff
curve. Section 8 summarizes our paper.

2 Brief Introduction to the AES

2.1 A Short Description of AES

The Advanced Encryption Standard (AES) [9] is a substitution-permutation
network which has 128 bit plaintexts and 128, 192, or 256 bit keys. Its 128 bit

188 A. Bar-On et al.

Table 2. Attacks on 7-Round AES (full key recovery)

AES Variant Attack Data Memory Time

(Chosen Plaintexts) (128-bit blocks) (encryptions)

AES-128 Imp. Diff. [6] 2105 274 2106.88

MitM [13] 297 298 299

AES-192 MitM [13] 297 298 299

MitM [12] 232 2129.7 2129.7

Collision [18] 232 280 2140

Square [15] 236.2 236.2 2155

Our Attack (Sect. 6) 230 232 2153

Our Attack (Sect. 7) 232 240 2145

AES-256 MitM [13] 297 298 299

MitM [12] 232 2133.7 2133.7

Collision [18] 232 280 2140

Square [15] 236.4 236.4 2172

Our Attack (Sect. 6) 230 248 2161.6

internal state is treated as a byte matrix of size 4× 4, where each byte represents
a value in GF (28). An AES round (described in Fig. 1) applies four operations
to this state matrix:

– SubBytes (SB) — applying the same 8-bit to 8-bit invertible S-box 16 times
in parallel on each byte of the state,

– ShiftRows (SR) — cyclically shifting the i’th row by i bytes to the left,
– MixColumns (MC) — multiplication of each column by a constant 4× 4

matrix over the field GF (28), and
– AddRoundKey (ARK) — XORing the state with a 128-bit subkey.

An additional AddRoundKey operation is applied before the first round, and
in the last round the MixColumns operation is omitted.

For the sake of simplicity we shall denote AES with n-bit keys by AES-n.
The number of rounds depends on the key length: 10 rounds for 128-bit keys, 12
rounds for 192-bit keys, and 14 rounds for 256-bit keys. The rounds are numbered
0, . . . , Nr − 1, where Nr is the number of rounds. We use ‘AES’ to denote all
three variants of AES.

The key schedule of AES transforms the key into Nr+1 128-bit subkeys. We
denote the subkey array by W [0, . . . , 4 ·Nr+3], where each word of W [·] consists
of 32 bits. When the length of the key is Nk 32-bit words, the user supplied key
is loaded into the first Nk words of W [·], and the remaining words of W [·] are
updated according to the following rule:

– For i = Nk, . . . , 4 · Nr + 3, do
• If i ≡ 0 mod Nk then W [i] = W [i − Nk] ⊕ SB(W [i − 1] ≪ 8) ⊕

RCON [i/Nk],

Improved Attacks on AES with Practical Data and Memory Complexities 189

• else if Nk = 8 and i ≡ 4 mod 8 then W [i] = W [i − 8] ⊕ SB(W [i − 1]),
• Otherwise W [i] = W [i − 1] ⊕ W [i − Nk],

where ≪ denotes rotation of the word by 8 bits to the left, and RCON [·] is an
array of predetermined constants.

2.2 Notations

In the sequel we use the following definitions and notations.
The state matrix at the beginning of round i is denoted by xi, and its bytes

are denoted by 0, 1, 2, . . . , 15, as described in Fig. 1. Similarly, the state matrix
after the SubBytes and the ShiftRows operations of round i are denoted by x′

i

and x′′
i , respectively. The difference between two values in state xi is denoted by

Δ(xi). We use this notation only when it is clear from the context which are the
values whose difference we refer to.

We denote the subkey of round i by ki, and the first (whitening) key by k−1,
i.e., ki = W [4 · (i + 1)]||W [4 · (i + 1) + 1]||W [4 · (i + 1) + 2]||W [4 · (i + 1) + 3].
In some cases, we are interested in interchanging the order of the MixColumns
operation and the subkey addition. As these operations are linear they can be
interchanged, by first XORing the data with an equivalent subkey and only
then applying the MixColumns operation. We denote the equivalent subkey for
the altered version by ui, i.e., ui = MC−1(ki). The bytes of the subkeys are
numbered by 0, 1, . . . , 15, in accordance with the corresponding state bytes.

In cases when we interchange the order of the MixColumns operation of
round i and the subkey addition, we denote the state right after the subkey
addition (and just before the MixColumns operation) by x̄i.

The plaintext is sometimes denoted by x−1, and so x0 = x−1 ⊕ k−1.
The j’th byte of the state xi is denoted xi,j . When several bytes j1, . . . , j�

are considered simultaneously, they are denoted xi,{j1,...,j�}. When a full col-
umn is considered, it is denoted xi,Col(j), and if several columns are considered
simultaneously, we denote them by xi,Col(j1,...,j�).

Sometimes we are interested in ‘shifted’ columns, i.e., the result of the appli-
cation of ShiftRows to a set of columns. This is denoted by xi,SR(Col(j1,...,j�)).
Similarly, a set of ‘inverse shifted’ columns (i.e., the result of the application of
SR−1 to a set of columns) is denoted by xi,SR−1(Col(j1,...,j�)).

In the attacks on 5-round AES (both Grassi’s attack and our attack), we
consider encryptions of a quartet of values. To simplify notations, while the
plaintext/ciphertext pairs are denoted by (Pj , Cj), j = 1, . . . , 4, we denote the
intermediate values by (xi, yi, zi, wi), where xi corresponds to the encryption
process of P1 and so x−1 = P1, yi corresponds to the encryption process of P2

and so y−1 = P2, etc.
In the attacks on 6-round and 7-round AES, we consider encryptions of sev-

eral (e.g., 4 or 8) pairs of values. To simplify notations, in this case we denote
the plaintext pairs by (Pj , P̂j), j = 1, . . . , 8, the corresponding ciphertext pairs
by (Cj , Ĉj), j = 1, . . . , 8, and the corresponding pairs of intermediate values by
(xj

i,�, x̂
j
i,�), for j = 1, . . . , 8.

190 A. Bar-On et al.

In all attacks, we exploit plaintext pairs (P, P̂) for which the corresponding
intermediate values satisfy Δ(x′′

4,SR(Col(0))) = 0 (i.e., have a zero difference in the
first shifted column just before the MixColumns operation of round 4). Hence,
throughout the paper we call such pairs good pairs.

Finally, we measure the time complexity of all the attacks in units which are
equivalent to a single encryption operation of the relevant reduced round variant
of AES. We measure the space complexity in units which are equivalent to the
storage of a single plaintext (namely, 128 bits). To be completely fair, we count
all operations carried out during our attacks, and in particular we do not ignore
the time and space required to prepare the various tables we use.

00
01
02
03

04
05
06
07

08
09
0a
0b

0c
0d
0e
0f

00
05
0a
0f

04
09
0e
03

08
0d
02
07

0c
01
06
0b

52
09
6a
d5

30
36
a5
38

bf

40
a3
9e

81
f3

d7
fb

0a
1b
00
11

1e
07
14
0d

02
13
08
19

16
0f
1c
05

SB SR MC ARK

xi x′
i x′′

i

⊕

ki

Fig. 1. An AES Round

3 The 4-Round Distinguisher of Grassi

In this section we present the distinguisher for 4-round AES, which serves as
the basis to all our attacks. The distinguisher was presented by Grassi [19],
as a variant of the 5-round distinguisher introduced at Eurocrypt’17 by Grassi
et al. [20]. Note that the distinguisher holds in a more general setting than the
one presented here. For sake of simplicity, we concentrate on the special case
used in our attacks.

Definition 1. Let xi, yi be two intermediate values at the input to round i of
AES, such that xi,Col(1,2,3) = yi,Col(1,2,3) (i.e., xi and yi may differ only in the
first column). We say that (zi, wi) is a mixture of (xi, yi) if for each j = 0, 1, 2, 3,
the unordered pairs (xi,j , yi,j) and (zi,j , wi,j) are equal. That is, either the j’th
bytes of zi and wi are equal to those of xi and yi, respectively, or they are
swapped. In such a case, (xi, yi, zi, wi) is called a mixture quadruple.

Remark 1. Note that for each (xi, yi) such that xi,j �= yi,j for all j = 0, 1, 2, 3,
there are 7 possible (unordered) mixtures that can be represented by vectors
in {0, 1}4 which record whether zi,j is equal to xi,j or to yi,j , for j = 0, 1, 2, 3.
For example, (1000) corresponds to the mixture (zi, wi) such that zi,Col(0) =
(xi,0, yi,1, yi,2, yi,3) and wi,Col(0) = (yi,0, xi,1, xi,2, xi,3).

Improved Attacks on AES with Practical Data and Memory Complexities 191

Observation 1. Let (xi, yi, zi, wi) be a mixture quadruple of intermediate values
at the input to round i of AES. Then the corresponding intermediate values
(xi+2, yi+2, zi+2, wi+2) sum up to zero, i.e.,

xi+2 ⊕ yi+2 ⊕ zi+2 ⊕ wi+2 = 0. (1)

Consequently, if for j ∈ {0, 1, 2, 3} we have xi+2,SR−1(Col(j))⊕yi+2,SR−1(Col(j)) =
0, then the corresponding intermediate values (x′′

i+3, y
′′
i+3, z

′′
i+3, w

′′
i+3) (i.e., just

before the MixColumns operation of round i + 3) satisfy

x′′
i+3,SR(Col(j)) ⊕ y′′

i+3,SR(Col(j)) = z′′
i+3,SR(Col(j)) ⊕ w′′

i+3,SR(Col(j)) = 0.

Proof. Let (xi, yi, zi, wi) be as in the assumption. The mixture structure is
preserved through the SubBytes operation of round i, and then ShiftRows
spreads the active bytes between the columns, such that each column contains
exactly one of them. As a result, for each j ∈ {0, 1, 2, 3}, the unordered pairs
(x′′

i,Col(j), y
′′
i,Col(j)) and (z′′

i,Col(j), w
′′
i,Col(j)) are equal. This property is clearly pre-

served by MixColumns and by the subsequent AddRoundKey and SubBytes
operations. It follows that the intermediate values (x′

i+1, y
′
i+1, z

′
i+1, w

′
i+1) sum

up to zero. As ShiftRows, MixColumns, and AddRoundKey are linear opera-
tions, this implies xi+2 ⊕ yi+2 ⊕ zi+2 ⊕ wi+2 = 0.

Now, if for some j we have xi+2,SR−1(Col(j)) ⊕ yi+2,SR−1(Col(j)) = 0,
then by the round structure of AES we have xi+3,Col(j) ⊕ yi+3,Col(j) = 0,
and thus, x′′

i+3,SR(Col(j)) ⊕ y′′
i+3,SR(Col(j)) = 0. Furthermore, by (1) we have

zi+2,SR−1(Col(j)) ⊕ wi+2,SR−1(Col(j)) = 0, and thus by the same reasoning as
for (x, y), we get z′′

i+3,SR(Col(j)) ⊕ w′′
i+3,SR(Col(j)) = 0, as asserted.

Grassi [19] used his distinguisher to mount an attack on 5-round AES with
data, memory, and time complexities of roughly 232. The attack algorithm is
given in Algorithm 1.

Algorithm 1. Grassi’s 5-Round Attack
1: Ask for the encryption of 232 chosen plaintexts in which SR−1(Col(0)) assumes all

232 possible values and the rest of the bytes are constant.
2: Find a pair of ciphertexts (C1, C2) = (x5, y5) with zero difference in SR(Col(0)).
3: for each guess of k−1,SR−1(Col(0)) do
4: Partially encrypt the corresponding plaintexts (P1, P2) = (x−1, y−1) through

AddRoundKey and round 0 to obtain (x1, y1).
5: Let (z1, w1) be a mixture of (x1, y1), partially decrypt it to find the correspond-

ing plaintext pair (P3, P4) = (z−1, w−1), and denote the corresponding ciphertexts
by (C3, C4) = (z5, w5).

6: if (z5, w5) does not satisfy z5,SR(Col(0)) ⊕ w5,SR(Col(0)) = 0 then
7: discard the key guess k−1,SR−1(Col(0)).
8: end if
9: end for

10: Repeat Steps (1)–(8) for the other three columns, and check the remaining key
guesses by trial encryption.

192 A. Bar-On et al.

The structure of chosen plaintexts is expected to contain about 263 · 2−32 = 231

pairs for which the ciphertexts have a zero difference in SR(Col(0)). The adver-
sary can find one of them easily in time 232, using a hash table. Step 3 of the attack
requires only a few operations for each key guess. Since (x1, y1, z1, w1) form a mix-
ture quadruple, by Observation 1 we know that if (x5, y5) have zero difference in
SR(Col(0)), then we must have z5,SR(Col(0)) ⊕ w5,SR(Col(0)) = 0. (Note that the
MixColumns operation in the last round is omitted, and thus, the difference in
the state z5 is equal to the difference in the state z′′

4 discussed in Observation 1.)
Therefore, if the condition fails, we can safely discard the key guess. The probabil-
ity of a random key to pass this filtering is 2−32, and thus, we expect only a few key
guesses to remain. Thus, the data, memory, and time complexities for recovering
32 key bits are 232, and for recovering the full key are 234.

4 Improved Attack on 5-Round AES

In this section we present our improved attack on 5-round AES, which requires
less than 222.5 data, memory, and time to recover 24 key bits and less than 225.5

data, memory, and time to recover the full key. This is the first attack on 5-
round AES whose all complexities are below 232. The attack was fully verified
experimentally.

Our attack is based on Grassi’s attack and enhances it using several observa-
tions. First we present and analyze the observations, then we present the attack
algorithm and analyze its complexity, and finally we describe the experiments
we performed to verify the attack.

4.1 The Observations Behind the Attack

1. Reducing the data complexity to 224. Our first observation is that we
can reduce the amount of data significantly, and still find the mixture quadruple
we need for Grassi’s attack. Indeed, as mentioned above, when we start with 232

plaintexts, it is expected that the data contains about 231 mixture quadruples,
while we need only one mixture quadruple for the attack.

Instead, we may start with 224 plaintexts taken arbitrarily from the structure
of size 232 used in Grassi’s attack. These plaintexts form 247 pairs, and we expect
that in 215 of them, the ciphertexts have zero difference in SR(Col(0)). Fix one
such pair, (C1, C2) = (x5, y5). For each guess of the 32 bits of k−1,SR−1(Col(0)),
and for each of the 7 possible types of mixture, the probability that the mixture of
(x1, y1) is contained in our data set is (224/232)2 = 2−16. As there are 215 possible
pairs (x5, y5) and 7 possible types of mixture, we expect that with probability
1 − (1 − 2−16)7·215 ≈ 0.97, that the data contains a mixture quadruple with
respect to the correct value of k−1,SR−1(Col(0)), which is sufficient for mounting
the attack. Hence, the data complexity can be reduced to 224 chosen plaintexts.
As the memory is used only to store and filter the data, the memory complexity
is reduced to 224, as well.

Improved Attacks on AES with Practical Data and Memory Complexities 193

However, if we simply apply Grassi’s attack with the reduced number of
plaintexts, its time complexity is increased significantly due to the need to go
over the 215 pairs of (x5, y5) for each key guess. This will be resolved in the next
observations.

2. Reducing the time complexity by changing the order of operations.
Our second observation is that if (x1, y1, z1, w1) is a mixture quadruple then
x1 ⊕ y1 ⊕ z1 ⊕ w1 = 0, and consequently, x′′

0 ⊕ y′′
0 ⊕ z′′

0 ⊕ w′′
0 = 0 as well.

This allows to perform a preliminary check of whether (x1, y1, z1, w1) can be
a mixture quadruple, by checking a local condition for each of the bytes in
k−1,SR−1(Col(0)) separately (i.e., bytes 0,5,10,15). That is, given a quartet of
plaintexts (P1, P2, P3, P4), we can perform the check whether it is a mixture
quadruple using Algorithm 2.

Algorithm 2. Efficient Guessing of k−1,SR−1(Col(0))

1: for each guess of k−1,0 do
2: Compute the corresponding differences x′′

0,0 ⊕ y′′
0,0 and z′′

0,0 ⊕ w′′
0,0.

3: if x′′
0,0 ⊕ y′′

0,0 �= z′′
0,0 ⊕ w′′

0,0 then
4: Discard the guess of k−1,0.
5: end if
6: end for
7: Repeat the above steps for bytes 5,10,15 of k−1 and bytes 1,2,3 of x′′, y′′, z′′, and

w′′, respectively.
8: for each remaining guess of k−1,{SR−1(Col(0))} do
9: Encrypt the quartet through round 0.

10: Check whether the values (x1, y1, z1, w1) constitute a mixture quadruple.
11: end for

We can use this procedure to replace the guess of k−1,SR−1(Col(0)) performed
in Grassi’s attack. Specifically, as described above, given 224 plaintexts, we expect
215 pairs in which the ciphertexts have zero difference in SR(Col(0)). We take
all 229 pairs of such pairs, and the procedure is applied for each of them.

As Steps 1–7 offer a 32-bit filtering condition, it is expected that only a few
suggestions of the key k−1,SR−1(Col(0) pass to Steps 8–11. Then, each suggestion is
checked using a 1-round partial encryption. It is clear that if the data set contains
a mixture quadruple (which occurs with a decent probability as described above),
then the procedure will succeed for the right guess of k−1,SR−1(Col(0). For a wrong
guess, the probability to pass Steps 1 and 2 is 2−64, and so all wrong guesses are
expected to be discarded.

Let us analyze the complexity of the attack. In Steps 1–6 we go over the 28

possible values of k−1,0, and check the condition for each of them separately. The
same goes for each repetition of Step 7. The complexity of Steps 8–11 is even
lower. Hence, the overall complexity of the attack is 229 ·28 ·4 = 239 applications
of a single S-box, which are roughly equivalent to 233 encryptions.

194 A. Bar-On et al.

3. Reducing the time complexity even further by using a precom-
puted table. We can further reduce the time complexity of this step using a
precomputed table of size 221.4 bytes. To construct the table, we consider each
quartet of inputs to SubBytes of the form (0, a, b, c), where (a, b, c) are arranged
in increasing order (e.g., as numbers in base 2).1 For each quartet, we go over
the 28 values of the key byte k̂ and store in the entry (a, b, c) of the table the
values of k̂ for which

SB(k̂) ⊕ SB(a ⊕ k̂) ⊕ SB(b ⊕ k̂) ⊕ SB(c ⊕ k̂) = 0. (2)

It is expected that a single value of k̂ satisfies Condition (2). Now, if we are
given a quartet (x, y, z, w) of plaintext bytes and want to find the value of k−1,0

such that the four intermediate values after SubBytes sum up to zero, we do the
following:

1. Consider the quartet (0, y ⊕ x, z ⊕ x,w ⊕ x).
2. Reorder it using the binary ordering to obtain (0, a, b, c) with a < b < c. Then

access the table at the entry (a, b, c) and retrieve the value k̂.
3. Set k−1,0 = k̂ ⊕ x.

The key k−1,0 we found is indeed the right one, since the values after the addition
of k0,−1 are (k̂, k̂ ⊕ y, k̂ ⊕ z, k̂ ⊕ w), and thus Condition (2) means exactly that
the four values after SubBytes sum up to zero.

The table requires 224/3! ≈ 221.4 bytes of memory. In a naive implementation,
its generation requires 221.4 · 28 = 229.4 applications of a single S-box and a few
more XOR operations, which is less than 223.4 5-round encryptions. However, it
can be generated much faster, as follows.

Instead of going over all triplets (a, b, c) and for each of them going over
all values of k̂, we go over triplets a, b, k̂. For each of them, we compute t =
SB(k̂) ⊕ SB(a ⊕ k̂) ⊕ SB(b ⊕ k̂). We know that Condition 2 holds for (a, b, c, k̂)
if and only if SB(c ⊕ k̂) = t, or equivalently, c = SB−1(t) ⊕ k̂. (Note that
this value may not be unique). Therefore, we write k̂ in the table entry/entries
of (a, b, SB−1(t) ⊕ k̂) and move to the next value of k̂. In this way, the table
generation requires less than 224 S-box applications, which is negligible with
respect to other steps of the attack.

Once the table is constructed, Step 1 of the procedure described in Improve-
ment 2 can be performed by 4 table lookups. Hence, the total time complexity of
the attack is reduced to 229 times (4 table lookups + one round of encryption),
which is less than 229 encryptions.

4. Reducing the overall complexity to 222.25 by a wise choice of plain-
texts. So far, we reduced the data and memory complexity to 224 and the time
complexity to 229. We show now that all three parameters can be reduced to
about 222.25 by a specific choice of the plaintexts.
1 As the quartets in which in some byte, not all four values are distinct, are less than

7% of the quartets, we can remove them from the analysis for sake of simplicity,
with a negligible effect on the attack’s complexity.

Improved Attacks on AES with Practical Data and Memory Complexities 195

Recall that in Improvement 1 we assumed that the 224 plaintexts are arbi-
trarily taken from the structure of size 232 used in Grassi’s attack (in which
SR−1(Col(0)) assume all possible values and the rest of the bytes are constant).
Instead of doing this, we choose all plaintexts such that byte 0 is constant in all
of them. We claim that this significantly increases the probability of a plaintext
quartet to form a mixture quadruple.

Indeed, let us fix (P1, P2) and a type of mixture, and estimate the probabil-
ity that for another pair (P3, P4), the intermediate values (x1, y1, z1, w1) form a
mixture quadruple of the fixed type. The check can be performed in two steps,
like in the procedure described in Improvement 2. First we check whether the
corresponding intermediate values (x1, y1, z1, w1) sum up to zero (a 32-bit con-
dition), and only then we check that the quadruple is indeed a mixture (which
is a 31-bit condition, since as we already know that the four values sum up to
zero, once the condition for z1 holds, the condition for w1 holds for free, and
there are two possibilities for the ordering between z1 and w1). As described in
Improvement 2, the first condition is translated to four independent conditions
of the form x′′

0,j ⊕y′′
0,j ⊕z′′

0,j ⊕w′′
0,j = 0, for j ∈ {0, 1, 2, 3}. In our case, due to the

choice of plaintexts, the condition in byte 0 holds for free! Therefore, the overall
probability is boosted from 2−63 to 2−55.

On the other hand, we note that only three of the 7 types of mixture are
possible in this case. Indeed, in the mixtures of types (1000), (0100), (0010) and
(0001), there are two of the values (x1, y1, z1, w1) which differ in a single byte.
As all four values x′′

0 , y′′
0 , z′′

0 , w′′
0 agree on byte 0, this is impossible since the

branching number of the MixColumns operation is 5 (which means that for any
pair of inputs/outputs to MC, the number of bytes in which the inputs differ
plus the number of bytes in which the outputs differ is at least 5).

Therefore, the probability of (P3, P4) taken from our structure to lead into
a mixture quadruple with (P1, P2) is expected to be 3 · 2−55. This allows us
to reduce the data complexity, and consequently, also the memory and time
complexities.

Assume that we start with 222.25 plaintexts, taken arbitrarily from the 224

plaintexts that assume all values in bytes 5, 10, 15 and have all other bytes con-
stant. These plaintexts form (222.25)2/2 = 243.5 unordered pairs, and thus, 286

unordered pairs of pairs. The probability that a pair-of-pairs gives rise to a mix-
ture quadruple is 3 ·2−55. Hence, we expect 3 ·2−55 ·286 = 3 ·231 mix quadruples.
With a ‘decent’ probability, in at least one of them, the ciphertexts (C1, C2) have
zero difference in SR(Col(0)), and thus, it can be used for the attack.

In the attack, we first insert the ciphertexts into a hash table to find the pairs
for which the ciphertexts have zero difference in SR(Col(0)). It is expected that
243.5 · 2−32 = 211.5 pairs are found. Then, for each of the (211.5)2/2 = 222 pairs-
of-pairs, we check whether the corresponding intermediate values (x1, y1, z1, w1)
constitute a mixture quadruple, as described in Improvement 3. Thus, the time
complexity is reduced by a factor of 27 (as we have to check 222 quartets instead
of 229), and so the time complexity is less than 222 encryptions, which is less
than the time required for encrypting the plaintexts.

196 A. Bar-On et al.

5. Reducing the data complexity a bit further by checking several
columns instead of one. Finally, the data complexity can be reduced a bit
further by considering not only plaintext pairs for which the ciphertexts have
zero difference in SR(Col(0)), but also pairs for which the ciphertexts satisfy
the same condition for one of the columns 1,2,3. This increases the probability
of a quartet to be useful for the attack by a factor of 4, and thus, allows us to
reduce the data complexity by another factor of 41/4 =

√
2. On the other hand,

this requires to use four hash tables to filter the ciphertexts (each corresponding
to a different shifted column of the ciphertext), and thus, increases the memory
complexity by a factor of 4. As this is not a clear improvement but rather a
data/memory tradeoff, we do not include it in the attack algorithm below.

4.2 The Attack Algorithm and Its Analysis

The algorithm of our 5-round attack is given in Algorithm 3.

Algorithm 3. Efficient 5-Round Attack
Preprocessing

1: Initialize an empty table T .
2: for all a < b < c do
3: Store in T [a, b, c] all bytes values k̂ which satisfy SB(k̂) ⊕ SB(a ⊕ k̂) ⊕ SB(b ⊕

k̂) ⊕ SB(c ⊕ k̂) = 0.
4: end for

Online phase
5: Ask for the encryption of 222.25 chosen plaintexts in which bytes 5, 10, 15 assume

different values and the rest of the bytes are constant.
6: Store in a list L all ciphertext pairs (C1, C2) such that C1,SR(Col(0))⊕C2,SR(Col(0)) =

0.
7: for all pairs of pairs (C1, C2), (C3, C4) ∈ L do
8: Let the corresponding plaintexts be (P1, P2, P3, P4) = (x−1, y−1, z−1, w−1),

respectively.
9: Compute the values (y−1,5 ⊕ x−1,5, z−1,5 ⊕ x−1,5, w−1,5 ⊕ x−1,5), and sort the

three bytes in an increasing order to obtain (a, b, c).
10: for each value k̂ in T [a, b, c] do
11: Store in L5 the value k−1,5 = k̂ ⊕ x−1,5.
12: end for
13: Repeat the above steps for bytes 10 and 15 (with lists L10 and L15, respectively).
14: for all subkey candidates (k−1,5 ∈ L5, k−1,10 ∈ L10, k−1,15 ∈ L15) do
15: Partially encrypt (P1, P2, P3, P4) through round 0 and compute

x1, y1, z1, w1.
16: if (x1, y1, z1, w1) does not constitute a mixture quadruple then
17: Discard subkey candidate.
18: end if
19: end for
20: end for
21: Output all guesses of k−1,5, k−1,10, k−1,15 which remained.

Improved Attacks on AES with Practical Data and Memory Complexities 197

As described in Improvement 4, T can be prepared in time of 221.4 S-box
evaluations, and contains 221.4 byte values. Steps 5,6 can be easily performed
in time 222.25 using a hash table of size 222.25 24-bit values, which are less than
220 128-bit blocks. The expected size of the list L is 243.5 · 2−32 = 211.5. Hence,
Steps 7–20 are performed for 222 pairs of pairs. As described in Improvement 4,
these steps take less than a single encryption for each quartet, and thus, their
total complexity is less than 222 encryptions. Therefore, the data complexity
of the attack is 222.25 chosen plaintexts, the memory complexity is 220 128-bit
blocks, and the time complexity is dominated by encrypting the plaintexts.

It is clear from the algorithm that if the data contains a mixture quadruple
for which the ciphertexts (P1, P2) have zero difference in SR(Col(0)), then for
the right value of k−1,{5,10,15}, this quadruple will be found and so the right key
will remain. The probability of a wrong key suggestion to remain is extremely
low, as in the attack we examine ((222.25)2/2)2/2 = 286 quartets and the filtering
condition is on about 117.4 bits (which consist of 64 bits on the ciphertext side –
requiring zero difference in SR(Col(0)) for two ciphertext pairs, and 53.4 bits on
the plaintext side – requiring that the values (x1, y1, z1, w1) constitute a mixture
quadruple). So, the probability for a wrong key to pass the filtering is 2−31.4.
As there are 224 possible key suggestions, with a high probability no wrong keys
remain.

Note that the attack does not recover the value of k−1,0 since the question
whether a quartet of plaintexts in the structure evolves into a mixture quadruple
does not depend on k−1,0.

In order to recover the full key, we repeat the attack for each of the four
columns on the plaintext side, and apply it once again for the first column, with
byte 15 as the ‘constant byte’ instead of byte 0. This recovers 4 ·24+8 = 104 bits
of the key, and the rest of the key can be recovered by exhaustive key search.
Therefore, for full key recovery we need data complexity of 5·222.25 ≈ 224.6 chosen
plaintexts, memory complexity of 220 128-bit blocks (as the memory can be
reused between the attacks), and time complexity of less than 225.5 encryptions.

It is clear from the above analysis that the attack succeeds with a high prob-
ability, that can be made very close to 100% by increasing the data complexity
by a factor of 2. To achieve the exact value, we fully implemented the attack
experimentally.

4.3 Experimental Verification

We have successfully implemented the 5-round attack. To verify our attack suc-
cess probability and its dependence on the data complexity, we performed the
following experiment. We took four possible amounts of data, 222, 222.25, 222.5,
and 223 chosen plaintexts, and for each of them we ran the attack which recovers
3 key bytes for 200 different keys. The results we obtained were the following: For
222 plaintexts, the attack succeeded 100 times. For 222.25 plaintexts, the attack
succeeded 143 times. For 222.5 plaintexts, the attack succeeded 187 times, and
for 223 plaintexts, the attack succeeded in all 200 experiments.

198 A. Bar-On et al.

Based on these experiments, we calculated the success probability of full key
recovery as p5, where p is the probability of recovering three key bytes (as in order
to recover the full key we have to perform 5 essentially independent variants of
the attack). Similarly, we calculated the probability when two diagonals in the
ciphertext are examined as 1−(1−p)2, since the attack fails only if two essentially
independent applications of the basic attack fail.

The full details are given in Table 3. As can be seen in the table, with 222.5

chosen plaintexts, checking a single diagonal on the ciphertext side is already
sufficient for a success rate of over 93% for recovering the first 3 key bytes, and
over 70% for recovering the entire key. With 222.25 plaintexts, checking a single
diagonal in the ciphertext is sufficient for recovering 3 key bytes with success rate
of over 70%, but if we want success rate of over 65% for recovering the entire
key, we have to check another diagonal on the ciphertext side, which slightly
increases the memory complexity to 221 128-bit blocks.

Table 3. Success probability of the attack for different data complexities

Structure size One diagonal Two diagonals

Key material 3 Bytes Full key 3 Bytes Full key

222 0.5 0.031 0.75 0.24

222.25 0.715 0.187 0.919 0.655

222.5 0.935 0.715 0.996 0.979

223 1 1 1 1

The experimental results clearly support our analysis presented above. We
note that the significant increase of the success rate when the data complexity
is increased very moderately follows from the fact that the attack examines
quartets, and so multiplying the data by a modest factor of 20.25 doubles the
number of quartets that can be used in the attack.

5 Attacks on 6-Round AES

In this section we present attacks on 6-round AES. We start with a simple exten-
sion of Grassi’s attack to 6 rounds, and then we present several improvements
that allow reducing the attack complexity significantly. Our best attack has data
and memory complexities of 227.5 and time complexity of 281. These results are
not very interesting on their own sake, as they are clearly inferior to the improved
Square attack on the same variant of AES [15]. However, a further extension of
the same attack techniques will allow us obtaining an attack on 7-round AES-
192, which clearly outperforms all known attacks on reduced-round AES-192
with practical data and memory complexities (including the improved Square
attack).

Improved Attacks on AES with Practical Data and Memory Complexities 199

5.1 An Extension of Grassi’s Attack to 6 Rounds

Recall that in Grassi’s attack on 5-round AES, we take a structure of 232 plain-
texts that differ only in SR−1(Col(0)), and search for ciphertext pairs that have
zero difference in SR(Col(0)). Actually, the 4-round distinguisher underlying the
attack guarantees a zero difference only in the state x′′

4,SR(Col(0)), but as the 5th
round is the last one, the MixColumns operation is omitted, and so, the zero
difference can be seen in the ciphertext.

When we consider 6-round AES, in order to recover the state x′′
4,SR(Col(0)) by

partial decryption we must guess all 128 key bits. However, we can recover one
of these 4 bytes by guessing only four equivalent key bytes. Indeed, if we guess
k5,SR(Col(0)) and interchange the order between the MixColumns and AddRound-
Key operations of round 4, we can partially decrypt the ciphertexts through
round 5 and MixColumns to obtain the value of byte 0 before MixColumns. As
AddRoundKey does not affect differences, this allows us evaluating differences
at the state x′′

4,0.
By the distinguisher, the difference in this byte for both pairs in the mixture

quadruple is zero. However, this is only an 16-bit filtering. In order to obtain
an additional filtering, we recall that by Remark 1, each pair has 7 mixtures.
Checking the condition for all of them, we get a 64-bit filtering, that is sufficient
for discarding almost all wrong key guesses. The attack is given in Algorithm 4.

For the right key guess, it is expected that after 232 pairs (P1, P̂1), we will
encounter a good pair (i.e., a pair for which the difference in the state x′′

4,SR(Col(0))

is zero), and then by the distinguisher, the difference in the same state for
all other 7 mixtures is zero as well. Hence, the right key is expected to be
suggested. (Concretely, the probability that the right key is not suggested is
(1−2−32)2

32 ≈ e−1). For wrong key guesses, for each pair (P1, P̂1), the probability
to pass the filtering of Step 10 is 2−64, and thus, the probability that there exists
a guess of k5,SR(Col(0)) that passes it is 2−32. Hence, for all values of (P1, P̂1)
except a few values, the list L1 remains empty and the pair is discarded after
Step 15. For the few remaining pairs, the probability that there exists a guess of
k5,SR(Col(1)) that passes the filtering of Step 17 is again 2−32, and so, for all but
very few guesses of k−1,{SR−1(Col(0))}, all pairs are discarded. The few remaining
guesses are easily checked by trial encryption.

The most time consuming part of the attack is Steps 9,10, which are per-
formed for 264 key guesses and 232 plaintext pairs. (Note that Step 17 is per-
formed for a much smaller number of pairs, and thus is negligible.) Steps 9,10
essentially consist of partial decryption of one column through round 5 for 16 val-
ues – which is clearly less than a single 6-round encryption. Therefore, the time
complexity of the attack is 264 · 232 = 296 encryptions. The memory complex-
ity is 232 (dominated by storing the plaintexts), and the success probability is
1−e−1 = 0.63. The attack recovers the full subkey k5, which yields immediately
the full secret key via the key scheduling algorithm.2

2 We assume, for sake of simplicity, that the attack is mounted on AES-128. When
the attack is applied to AES-192 or AES-256, the rest of the key can be recovered
easily by auxiliary techniques.

200 A. Bar-On et al.

Algorithm 4. Attacking 6-Round AES
1: Ask for the encryption of 232 chosen plaintexts in which SR−1(Col(0)) assumes all

232 possible values and the rest of the bytes are constant.
2: for each guess of k−1,SR−1(Col(0)) do

3: Select arbitrarily 232 plaintexts pairs (P i
1 , P̂

i
1) from the structure.

4: for each pair (x1
−1, y

1
−1) = (P1, P̂1) do

5: Partially encrypt (x1
−1, x̂

1
−1) through round 0, obtain (x1

1, x̂
1
1).

6: Let the 7 mixtures of (x1
1, x̂

1
1) be (x2

1, x̂
2
1), . . . , (x

8
1, x̂

8
1).

7: Partially decrypt the 7 mixtures to obtain the plaintext pairs (P2, P̂2) =
(x2

−1, x̂
2
−1), . . . , (P8, P̂8) = (x8

−1, x̂
8
−1).

8: for each value of k5,SR(Col(0)) do

9: Take all ciphertext pairs (C1, Ĉ1), . . . , (C8, Ĉ8).
10: Partially decrypt them through rounds 5,4.

11: if for all 1 ≤ j ≤ 8: xj′′
4,0 ⊕ x̂j′′

4,0 = 0 (i.e., all 8 pairs have a zero difference
in byte 0 before the MixColumns of round 4) then

12: Store k5,SR(Col(0)) in a list L1.
13: end if
14: end for
15: if L1 is empty then
16: Discard the pair (P1, P̂1).
17: else
18: Repeat the same procedure for k5,SR(Col(1)), with respect to the byte

x′′
4,7 and L2.

19: if L2 is not empty then
20: Repeat the same procedure for k5,SR(Col(2)) and k5,SR(Col(3)), with

respect to bytes x′′
4,10 and x′′

4,15, respectively.
21: Output the remaining key suggestion.
22: else
23: Discard the pair (P1, P̂1).
24: end if
25: end if
26: end for � If no pairs remain, move to the next guess of k−1,SR−1(Col(0)).
27: end for

5.2 Improvements of the 6-Round Attack

In this section we present two improvements of the 6-round attack described
above, which allow us to reduce its complexity significantly. While the resulting
attack is still inferior to some previously known attacks on 6-round AES, we
describe the improvements here since they will be used in our attack on 7-round
AES, and will be easier to understand in the ‘simpler’ case of the 6-round variant.

1. Using the meet-in-the-middle (MITM) approach. We observe that
instead of guessing the subkey k5,{0,7,10,13}, we can use a MITM procedure.
Indeed, the difference in the byte x′′

4,0 (which we want to evaluate in the attack)
is a linear combination of the differences in the four bytes x5,0, x5,1, x5,2, x5,3.

Improved Attacks on AES with Practical Data and Memory Complexities 201

Specifically, by the definition of MixColumns−1, we have

Δ(x′′
4,0) = 0Ex · Δ(x5,0) ⊕ 0Bx · Δ(x5,1) ⊕ 0Dx · Δ(x5,2) ⊕ 09x · Δ(x5,3),

and thus the equation Δ(x′′
4,0) = 0 can be written in the form

0Ex · Δ(x5,0) ⊕ 0Bx · Δ(x5,1) = 0Dx · Δ(x5,2) ⊕ 09x · Δ(x5,3). (3)

Hence, instead of guessing the four key bytes k5,{0,7,10,13} which allow us to
compute the values of x5,0, x5,1, x5,2, x5,3 and to check the 64-bit condition on
the differences in x′′

4,0, we can do the following:

1. Guess bytes k5,{0,7} and compute x5,0, x5,1. Store in a table the contribution
of these bytes to Eq. (3), i.e., the concatenation of the values 0Ex · Δ(xj

5,0) ⊕
0Bx · Δ(xj

5,1) for j = 1, . . . , 8.
2. Guess bytes k5,{10,13} and compute x5,2, x5,3. Compute the contribution of

these bytes to Eq. (3), i.e., the concatenation of the values 0Dx · Δ(xj
5,2) ⊕

09x · Δ(xj
5,3) for j = 1, . . . , 8, and search it in the table.

3. For each match in the table, store in L1 the combination k5,{0,7,10,13}. If there
are no matches in the table, discard the pair (P1, P̂1).

This meet-in-the-middle procedure is clearly equivalent to guessing k5,{0,7,10,13}
and checking the condition on x′′

4,0 directly. The time complexity of the proce-
dure, for each pair (P1, P̂1), is 2·216 evaluations of two S-boxes for 16 ciphertexts,
and 2 · 216 lookups into a table of size 216, which are less than 216 encryptions.

This procedure can replace Steps 7–10 in the attack presented above, while
all other parts of the attack remain unchanged. (Of course, Step 17 can be
replaced similarly, but its complexity is anyway negligible.) This reduces the
time complexity of the attack to 232 ·232 ·216 = 280 encryptions, without affecting
the data and memory complexities.

2. Reducing the data complexity by using less mixtures. We would like to
reduce the data complexity by considering only part of the structure of size 232,
as we did in Improvement 1 of the 5-round attack. In order to get a significant
reduction in the data complexity, we first need to reduce the number of mixtures
used in the attack.

We observe that we may use 3 mixtures of each pair instead of all possible
7 mixtures. As a result, the filtering in Step 10 above is reduced to 32 bits, and
thus, for each pair (P1, P̂1), about one value of k5,{0,7,10,13} is inserted into the
list L1. Similarly, in Steps 17, 19 it is expected that a few suggestions of the
entire key k5 remain for each pair (P1, P̂1). These suggestions are easily checked
by trial encryption.

How does this modification affect the time complexity? On the one hand,
Steps 9, 10 are now repeated four times for each pair (P1, P̂1). On the other hand,
each application of this step becomes twice faster since the partial decryptions
are performed for 8 ciphertexts instead of 16. Hence, the overall time complexity

202 A. Bar-On et al.

becomes 4· 12 ·280 = 281 encryptions. The memory complexity remains unchanged,
and so is the success probability.

The reduction of the number of mixtures allows us reducing the data com-
plexity effectively, similarly to the reduction we did in Improvement 1 of the
5-round attack. Note that the entire structure of 232 plaintext contains 263 pairs,
and about 231 of them are good and so can be used in the attack. Hence, if we
take a random subset S of the structure of size α232, the probability that one of
these 231 good pairs, along with at least three of its 7 mixtures, is included in S,
is approximately 231α8 · (

7
3

) ≈ 236α8. Hence, if we take α = 2−4.5, with a good
probability the plaintext set S contains a pair that can be used in the attack.

Formally, the changes required in the attack algorithm are only in Steps 1–6,
and are the following:

1. Take a structure of 227.5 chosen plaintexts with the same value in all bytes
but those of SR−1(Col(0)).

2. For each guess of subkey k−1,SR−1(Col(0)), go over all pairs of plaintexts
(P1, P̂1) in S, and for each of them do the following:
(a) Partially encrypt (P1, P̂1) = (x1

−1, x̂
1
−1) through AddRoundKey and

round 0 to obtain (x1
1, x̂

1
1). Consider all 7 mixtures of (x1

1, x̂
1
1) (denoted

by (x2
1, x̂

2
1), . . . , (x

8
1, x̂

8
1)), and partially decrypt them to find the corre-

sponding plaintext pairs (P2, P̂2) = (x2
−1, x̂

2
−1), . . . , (P8, P̂8) = (x8

−1, x̂
8
−1).

Check whether for at least three of them, both plaintexts are included in
S. If yes, continue as in the original attack. If no, discard the pair (P1, P̂1).

The complexity of checking all pairs (P1, P̂1) is less than 254 encryptions, which is
negligible with respect to other steps of the attack. Since the expected number of
pairs that are not discarded instantly is 232, the attack complexity is the same as
the original attack – 281 encryptions. The success probability is 1−(1−2−32)2

32 ≈
1 − e−1 = 0.63, as in the original attack.

To summarize, the data and memory complexity of the improved attack is
227.5, and its time complexity is 281 encryptions. Both improvements will be
used in the 7-round attacks presented in the next section.

6 Attacks on 7-Round AES-192 and AES-256

In this section we present our new attacks on 7-round AES. First we present the
attack on AES-256, which extends the 6-round attack by another round using a
MITM technique, and then uses dissection [14] to reduce the memory complexity
of the attack. Then we show how in the case of AES-192, the key schedule can be
used (in conjunction with a more complex dissection attack) to further reduce the
data and time complexities of the attack. Our best attack on AES-192 recovers
the full key with data complexity of 230, memory complexity of 232, and time
complexity of 2153, which is better than all previously known attacks on reduced-
round AES-192 with practical data and memory complexities.

Improved Attacks on AES with Practical Data and Memory Complexities 203

6.1 Basic Attack on AES-192 and AES-256

The basic attack is a further extension by one round of the 6-round attack.
Recall that in the 6-round attack we guess the subkey bytes k5,{0,7,10,13} and
check whether the state bytes x5,{0,1,2,3} satisfy a linear condition (Eq. 3). When
we consider 7-round AES, in order to check this condition we have to guess the
entire subkey k6 and bytes 0, 7, 10, 13 of the equivalent subkey u5. Of course, this
leads to an extremely high time complexity. In addition, the filtering condition
– which is on only 64 bits (i.e., 8 pairs with zero difference in a single byte) – is
far from being sufficient for discarding such a huge amount of key material.

In order to improve the filtering condition, we attack two columns simultane-
ously. That is, we guess the entire subkey k6 and bytes 0, 7, 10, 13 and 1, 4, 8, 14
of u5 and check linear conditions on both state bytes x5,{0,1,2,3} (which is Eq. 3)
and state bytes x5,{4,5,6,7} (which is the following equation:

0Dx · Δ(x5,5) ⊕ 09x · Δ(x5,6) = 0Bx · Δ(x5,4) ⊕ 0Ex · Δ(x5,7), (4)

that corresponds to the condition Δ(x′′
4,7) = 0). Thus, we have 4 more key bytes

to guess, but the filtering is increased to 128 bits.
In order to reduce the time complexity, we extend the MITM procedure

described in Sect. 5.2 to cover round 6 as well. Specifically, we modify the MITM
procedure described in Improvement 1 of Sect. 5.2 as follows:

1. Guess bytes k6,SR(Col(0,3)) and u5,{0,1,13,14}, and compute x5,0, x5,1 and
x5,5, x5,6. Store in a table the contribution of bytes x5,0, x5,1 to Eq. (3) (i.e.,
the concatenation of the values 0Ex ·Δ(xj

5,0)⊕0Bx ·Δ(xj
5,1) for j = 1, . . . , 8),

and the contribution of bytes x5,5, x5,6 to Eq. (4) (i.e., the concatenation of
the values 0Dx · Δ(xj

5,5) ⊕ 09x · Δ(xj
5,6) for j = 1, . . . , 8) – 128 bits in total.

2. Guess bytes k6,SR(Col(1,2)) and u5,{4,7,8,10}, and compute x5,2, x5,3 and
x5,4, x5,7. Compute the contribution of bytes x5,2, x5,3 to Eq. (3) and the
contribution of bytes x5,4, x5,7 to Eq. (4), and search it in the table.

3. For each match in the table, store in L1 the combination k6,
u5,{0,1,4,7,8,10,13,14}.

After the MITM procedure, for each guess of k−1,SR−1(Col(0)) and for each pair
(P1, P̂1), we remain with 2192 ·2−128 = 264 key suggestions. To discard the wrong
ones, we repeat the attack for Col(2) of x5 (where now the only key bytes we
need to guess are u5,{2,5,8,15} and we can again use MITM), and for Col(3) of
x5 (where the only key bytes we need to guess are u5,{3,6,9,12} and we can again
use MITM). In total, we have a 256-bit filtering, and so we obtain on average
2256 ·2−256 = 1 suggestions for the entire subkeys u5, k6, which of course yield the
secret key. The remaining suggestions can be checked easily by trial encryption.

What is the time complexity of the attack? The most time consuming
operation is the first MITM procedure which is performed for 232 guesses of
k−1,SR−1(Col(0)) and for 232 pairs (P1, P̂1), and consists of 296 times decrypt-
ing a full AES round and one column of another round, for 16 ciphertexts,

204 A. Bar-On et al.

plus 2 · 296 table lookups. Estimating a table lookup as one full AES round (fol-
lowing common practice), the total time complexity is 232 · 232 · 296 · 3 = 2161.6

encryptions.
The memory complexity is 296, required for the MITM procedure. The data

complexity of the attack is 232 chosen plaintexts. However, it can be reduced
using Improvement 2 described in Sect. 5.2. Instead of taking the full structure
of 232 plaintexts, we can take an arbitrary subset of 230 plaintexts. As discussed
above, there are 231 good pairs that can be used in the attack, and given a pair,
the probability that it belongs to S along with all its 7 mixtures is approximately
231 · (2−2)16 = 1/2. In addition, if the attack fails for all pairs, we can repeat
the attack with other shifted columns of x′′

4 instead of x′′
4,SR(0). As described in

Improvement 5 in Sect. 4.1, this increases the number of good pairs by a factor
of 4 – which means that on average, 2 pairs will be included in S along with all
their 7 mixtures. Therefore, starting with 230 plaintexts, the success probability
of the attack is still above 1 − e−1 = 0.63.

We do not present the attack algorithm here, as it will be subsumed by the
improved attack algorithm we present in the next subsection.

6.2 Improved Attack on AES-192 and AES-256 Using Dissection

In this section we show that the memory complexity of the attack described
above can be reduced from 296 to 248 without affecting the data and time com-
plexities, using the dissection technique [14].

For ease of exposition, we first briefly recall the generic dissection attack on
4-encryption (denoted in [14] Dissect2(4, 1)) and then present its application in
our case.

The algorithm Dissect2(4, 1) is given four plaintext/ciphertext pairs (P1, C1),
. . . , (P4, C4) to a 4-round cipher. It is assumed that the block length is n bits,
and that in each round i (for i = 0, 1, 2, 3) there is an independent n-bit key ki.
The algorithm finds all values of (k0, k1, k2, k3) that comply with the 4 plain-
text/ciphertext pairs (the expected number of keys is, of course, one), in time
O(22n) and memory O(2n). Instead of using the notations of [14], we will be
consistent with our notations, and denote the plaintexts by (x0, y0, z0, w0) and
the intermediate values before round i by (xi, yi, zi, wi).

The dissection algorithm is the following:

1. Given plaintexts (x0, y0, z0, w0) = (P1, P2, P3, P4) and their corresponding
ciphertexts (x4, y4, z4, w4) = (C1, C2, C3, C4), for each candidate value of x2:

2. (a) Run a standard MITM attack on 2-round encryption with (x0, x2) as a
single plaintext/ciphertext pair, to find all keys (k0, k1) which ‘encrypt’
x0 to x2. For each of these 2n values, partially encrypt y0 = P2 using
(k0, k1), and store in a table the corresponding values of y2, along with
the values of (k0, k1).

(b) Run a standard MITM attack on 2-round encryption with (x2, x4) as a
single plaintext/ciphertext pair, to find all keys (k2, k3) which ‘encrypt’ x2

to x4. For each of these 2n values, partially decrypt C2 using (k2, k3) and

Improved Attacks on AES with Practical Data and Memory Complexities 205

check whether the suggested value for y2 appears in the table. If so, check
whether the key (k0, k1, k2, k3) suggested by the table and the current
(k2, k3) candidate encrypts P3 and P4 into C3 and C4, respectively.

We call the two 2-round MITM procedures internal ones, and the final MITM
step external.

The time complexity of each of the two internal 2-round MITM attacks is
about 2n, and so is the time complexity of the external MITM procedure. As
these procedures are performed for each value of x2, the time complexity of the
attack is O(22n) operations. The memory complexity is O(2n), required for each
of the MITM procedures. Note that the time complexity of the attack is not
better than the complexity of a simple MITM attack on a 4-round cipher with
independent round keys. The advantage of dissection is the significant reduction
in memory complexity – from 22n to O(2n).

While this may not be clear at a first glance, a standard MITM attack can be
transformed into a Dissect2(4, 1) attack whenever each of the two parts of the
MITM procedure can be further subdivided into two parts whose contributions
are independent, given that a ‘partial guess in the middle’ (like the guess of x2

above) can be performed. This is the case in our attack.
Note that the contribution of the first part of the MITM procedure described

above to each of Eqs. (3), (4) can be represented as the XOR of two independent
contributions: the contribution of state bytes x5,0 and x5,5, which can be com-
puted by guessing k6,SR(Col(0)) and u5,{0,1}, and the contribution of state bytes
x5,1 and x5,6 which can be computed by guessing k6,SR(Col(3)) and u5,{13,14}. The
second half can be divided similarly. The contribution of each side to Eqs. (3),
(4) plays the role of the guessed intermediate value. Hence, we introduce the
following auxiliary notations. For 1 ≤ j ≤ 8, let

aj = 0Ex · Δ(xj
5,0) ⊕ 0Bx · Δ(xj

5,1) = 0Dx · Δ(xj
5,2) ⊕ 09x · Δ(xj

5,3) (5)

denote the contributions of the two sides to Eq. (3) for ciphertext pair (Cj , Ĉj),
and let

bj = 0Dx · Δ(xj
5,5) ⊕ 09x · Δ(xj

5,6) = 0Bx · Δ(x5,4) ⊕ 0Ex · Δ(x5,7) (6)

denote the contributions of the two sides to Eq. (4) for ciphertext pair (Cj , Ĉj).
This allows us to mount the following attack:

1. Constructing the plaintext pool. Take a structure S of 230 chosen plain-
texts with the same value in all bytes but those of SR−1(Col(0)).

2. For each guess of subkey k−1,SR−1(Col(0)), go over all chosen pairs of plaintexts
(P1, P̂1) in S, and for each of them do the following:
(a) Checking that the pair can be used in the attack, i.e., the

pair and all its 7 mixtures are in the plaintext pool. Partially
encrypt (P1, P̂1) = (x1

−1, x̂
1
−1) through AddRoundKey and round 0 to

obtain (x1
1, x̂

1
1). Consider all 7 mixtures of (x1

1, x̂
1
1), which we denote

(x2
1, x̂

2
1), . . . , (x

8
1, x̂

8
1), and partially decrypt them to find the corresponding

206 A. Bar-On et al.

plaintext pairs (P2, P̂2) = (x2
−1, x̂

2
−1), . . . , (P8, P̂8) = (x8

−1, x̂
8
−1). Check

whether for all of them, both plaintexts are included in S. If no, discard
the pair (P1, P̂1).

(b) For each candidate value of (a1, a2, a3, a4, a5, a6) do the following:
(c) First internal MITM procedure:

i. Guess bytes k6,SR(Col(0)) and u5,0, and compute x5,0. Store in a table
the contribution of the byte x5,0 to Eq. (3) for the pairs (C1, Ĉ1), . . . ,
(C6, Ĉ6), i.e., the concatenation of the values 0Ex · Δ(xj

5,0) ⊕ aj for
j = 1, . . . , 6 – 48 bits in total.

ii. Guess bytes k6,SR(Col(3)) and u5,13, and compute x5,1. Compute the
contribution of the byte x5,1 to Eq. (3) for the pairs (C1, Ĉ1), . . . ,
(C6, Ĉ6), i.e., the concatenation of the values 0Bx · Δ(xj

5,1) for j =
1, . . . , 6, and check it in the table.

iii. For each value found in the table, use the suggested value of
k6,SR(Col(0,3)) and u5,{0,13}, guess bytes u5,{1,14}, and partially decrypt
the ciphertexts to obtain the values (a7, a8, b1, b2, . . . , b8). Store
them in a table, together with the suggestion for k6,SR(Col(0,3)) and
u5,{0,1,13,14}.

(d) Second internal MITM procedure:
i. Guess bytes k6,SR(Col(1)) and u5,7, and compute x5,3. Store in a table

the contribution of the byte x5,3 to Eq. (3) for the pairs (C1, Ĉ1), . . . ,
(C6, Ĉ6), i.e., the concatenation of the values 09x · Δ(xj

5,3) ⊕ aj for
j = 1, . . . , 6 – 48 bits in total.

ii. Guess bytes k6,SR(Col(2)) and u5,10, and compute x5,2. Compute the
contribution of the byte x5,2 to Eq. (3) for the pairs (C1, Ĉ1), . . . ,
(C6, Ĉ6), i.e., the concatenation of the values 0Dx · Δ(xj

5,1) for j =
1, . . . , 6, and check it in the table.

iii. For each value found in the table, use the suggested value of
k6,SR(Col(1,2)) and u5,{7,10}, guess bytes u5,{4,8}, and partially decrypt
the ciphertexts to obtain the values (a7, a8, b1, b2, . . . , b8). Check
whether the vector exists in the table. If yes, store in a table L the
suggested value of k5 and u5,{0,1,4,7,8,10,13,14}.

(e) Completing the attack: For each remaining key suggestion, repeat the
attack for the two last shifted columns of u5, with respect to the state
bytes x′′

4,10 and x′′
4,13, to filter wrong key guesses and obtain suggestions

for the entire k6 and u5. For each remaining suggestion, use k6, u5 to
retrieve the full key and check it by trial encryption.

The memory complexity of the attack is 248 80-bit values (required in
Step 2(c)), which are less than 248 128-bit blocks. As for the time complex-
ity, for each guess of k−1,{0,5,10,15}, each pair (P1, P̂1), and each guessed 48-bit
value (a1, . . . , a6), the internal MITM procedures take 240 time and the exter-
nal MITM procedure consists of 248 times decrypting a full AES round and
one column of another round, for 16 ciphertexts, plus 2 · 296 table lookups.
Estimating a table lookup as one full AES round, the total time complexity of

Improved Attacks on AES with Practical Data and Memory Complexities 207

this step is 232 · 232 · 248 · 248 · 3 = 2161.6 encryptions. The complexity of all other
steps is negligible.

Therefore, the data complexity of the attack is 230 chosen plaintexts, the
memory complexity is 248 128-bit blocks, and the time complexity is 2161.6

encryptions. The success probability is 1 − e−1 = 0.63.

6.3 Improved Attacks on AES-192 Exploiting the Key Schedule

While in the attack on AES-256 the subkeys we guess in the last two rounds are
independent, in the case of AES-192 there exists a strong relation between u5

and k6. Specifically, by the AES key schedule we have

k5,Col(1) = k6,Col(2) ⊕ k6,Col(3), (7)

and
k5,Col(0) = k6,Col(2) ⊕ SB(k6,Col(1) ≪ 8) ⊕ RCON [5]. (8)

Since u5,Col(j) = MC−1(k5,Col(j)) for each j, two columns of u5 can be expressed
as combinations of bytes of k6. As these two columns contain half of the bytes
of u5 guessed in the attack, we will be able to use them to enhance the filtering
condition. Specifically, this enables us to attack a single column in x5 (and so
guess only bytes u5,SR(Col(0)) and the entire k6, a total of 160 key bits), and use
Eqs. (7) and (8) as additional filtering conditions in the MITM procedure, thus
increasing the filtering to 80 bits. This allows us to reduce the time complexity
of the attack to 2152 and the memory complexity of the attack to 240, without
affecting the data complexity.

By using a much more complex variant of the dissection attack, we can
further reduce the memory complexity to 232 without affecting the data and
time complexities, thus obtaining an attack which recovers the full secret key
in 230 data, 232 memory, and 2153 time, which outperforms the classical Square
attack in all three complexity parameters. The details will be presented in the
full version of the paper.

7 An Alternative Improvement for the 6-Round
and 7-Round Attacks

As we mentioned in several places, an obvious point in which Grassi’s attack can
be enhanced is deploying the fact that while the structure of size 232 contains
231 good pairs, we need only one good pair (along with its mixtures) to apply
the attack. So far, we exploited the abundance of good pairs to reduce the data
complexity – we took a smaller structure of plaintexts, which was sufficiently
large so that at least one good pair, along with the required mixtures, is included
in our structure.

208 A. Bar-On et al.

In this section we suggest an alternative way to exploit the abundance of good
pairs – ask that the good pair we use in the attack will satisfy some additional
property, which will allow reducing the time complexity of the attack. We first
demonstrate the improvement on the 6-round attack, and then we apply it (or
more precisely, a variant of it) to the 7-round attack on AES-192.

An alternative improvement to the 6-round attack. Recall that in the 6-
round attack, we guess bytes k−1,SR−1(Col(0)), go over 232 plaintext pairs (P1, P̂1),
and perform a MITM attack on 4 bytes of the subkey k5. Now, instead of taking
any ciphertext pair which corresponds to a plaintext pair (P1, P̂1), we add a
restriction on the ciphertext pair, that can be checked easily. Specifically, we
require that in the ciphertext pair (C1, Ĉ1), there is a zero difference in the
entire shifted column SR(Col(0)). Among the 263 ciphertext pairs, about 231

satisfy this extra condition. But importantly, out of the 231 good pairs, about 27

satisfy this condition, since in the good pairs, we already know that Δ(x′′
4,0) = 0,

and so 8 bits out of the 32 bits of the extra condition are satisfied for sure. Thus,
among the pairs that satisfy the extra condition, the probability of a pair to be
good is enhanced from 2−32 to 2−24.

This implies that instead of checking 232 pairs (P1, P̂1) as we do in the basic
attack, it is sufficient to check 224 pairs that satisfy the extra condition. We can
thus modify Steps 1–3 of the attack as follows:

1. Consider a structure of 232 chosen plaintexts in which SR−1(Col(0)) assume
all 232 possible values and the rest of the bytes are constant. Insert the cor-
responding ciphertexts into a hash table indexed by bytes SR(Col(0)) of the
ciphertext, and extract all plaintext pairs (P1, P̂1) for which the corresponding
ciphertexts have difference zero in SR(Col(0)).

Then the attack is applied without change, with the advantage that it is sufficient
to apply Step 2 for 224 pairs instead of 232. This reduces the time complexity by
a factor of 28, without affecting the other parameters of the attack.

While this improvement cannot be completely combined with the data com-
plexity reduction described in Improvement 2 of Sect. 5 (as once we case an
additional restriction, the number of good pairs we can use is reduced signifi-
cantly), the data complexity can still be slightly reduced. Note that after the
initial filtering of Step 1, the data still contains 27 good pairs, while we need
only a single pair. By the same argument as in Improvement 2, if we take a
subset S of size α232, the probability that one of these 27 remaining good pairs,
along with at least three of its 7 mixtures (that do not need to satisfy the basic
filtering condition!), is included in S, is approximately 27α8 ·(73

) ≈ 212α8. Hence,
if we take α = 2−1.5, with a good probability the plaintext set S contains a good
pair that can be used in the attack.

Therefore, overall we obtain an attack with data and memory complexity of
230.5, and time complexity of 273 encryptions.

Improved Attacks on AES with Practical Data and Memory Complexities 209

An alternative improvement to the attack on 7-round AES-192. Recall
that in the first step of the attack, we guess bytes k−1,SR−1(Col(0)), go over 232

plaintext pairs (P1, P̂1), and perform a MITM attack on 4 bytes of the subkey
u5 and the entire subkey k6 (a total of 160 subkey bits), with an 80-bit filtering.
After that step, we are left with 2144 key suggestions and have to find a source
for additional filtering. We obtain this filtering by examining x5,Col(1) and using
the condition Δ(x′′

4,7) = 0. Since we already know the subkey bytes u5,{1,4}, we
can guess bytes u5,{11,14}, partially decrypt the ciphertexts to find the values
x5,Col(1), and obtain a 64-bit filtering by checking the condition on the state
Δ(x′′

4,7), for all 8 pairs. Naively, this increases the time complexity to 2160. In
Sect. 6 we suggested either to perform a MITM procedure on these two key
bytes, or to retrieve them instantly using a large precomputed table. The former
suggestion increases the time complexity to 2153, while the latter increases the
memory complexity to 2144. We show how to obtain the additional filtering
without increasing neither the time nor the memory complexity.

As in the 6-round attack, we add a requirement on the good pairs. Specifi-
cally, we require that in the ciphertext pair (C1, Ĉ1), there is a zero difference in
the entire shifted column SR(Col(2)). As a result, we know that in the interme-
diate values that correspond to (C1, Ĉ1), we have Δ(x5,7) = 0. In addition, as
we know u5,{1,4}, we can compute Δ(x5,{4,5}) for the same pair. Furthermore,
assuming that (C1, Ĉ1) is a good pair, we also know that its intermediate val-
ues satisfy Δ(x′′

4,7) = 0. Now, consider the MixColumns operation in round 4,
Column 1 in the encryption process of (C1, Ĉ1). We know the difference in three
bytes after MixColumns and in one byte before MixColumns. By the structure
of MixColumns, this allows to retrieve the input and output differences in all
other bytes, by simply solving a system of linear equations. In particular, we
retrieve Δ(x5,6). On the other hand, we can obtain the difference Δ(x′

5,6) by
partial decryption. This gives us the input and output differences to the Sub-
Bytes operation in round 5, byte 6, which allows us to retrieve the actual values
in the state x′

5,6 by a single lookup into a precomputed table of size 216. Finally,
from the value x′

5,6 we can recover u5,14 by partial decryption, and then we can
repeat the above procedure with one of the other pairs (Cj , Ĉj) to retrieve u5,11,
using the fact that we can compute the difference Δ(x5,{4,5,6}) with the subkey
material we already know.

As a result, we obtain the subkey bytes u5,{11,14} and can apply the additional
filtering, without increasing neither the time nor the memory complexity. To
summarize, the data complexity of the attack is 232 (note that we cannot reduce
the data complexity in this attack, since only very few good pairs satisfy our
additional restriction on (C1, Ĉ1) and so we must keep all of them available),
the memory complexity is 240 and the time complexity is 2145.6 (where both the
memory and the time complexities are dominated by the first step of the MITM
procedure).

210 A. Bar-On et al.

8 Summary

In this paper we developed and experimentally verified the best known key recov-
ery attack on 5-round AES, reducing its total complexity from 232 to 222.5. We
then extended the attack to 7-round AES, obtaining the best key recovery attacks
on the 192 and 256 bit versions of this cryptosystem which have practical data
and memory complexities. The main problems left open by our results is whether
it is possible to extend our new attacks to larger versions of AES, and whether it
is possible to use our results to attack other primitives which use reduced-round
AES (e.g., 5-round AES) as a component.

Acknowledgements. The research of Achiya Bar-On and of Nathan Keller was sup-
ported by the European Research Council under the ERC starting grant agreement
n. 757731 (LightCrypt) and by the BIU Center for Research in Applied Cryptography
and Cyber Security in conjunction with the Israel National Cyber Bureau in the Prime
Minister’s Office. The research of Orr Dunkelman was supported by the Israel Ministry
of Science and Technology.

References

1. Biham, E., Keller, N.: Cryptanalysis of Reduced Variants of Rijndael (1999).
Unpublished manuscript

2. Bogdanov, A., Khovratovich, D., Rechberger, C.: Biclique cryptanalysis of the full
AES. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp.
344–371. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-
0 19

3. Bossuet, L., Datta, N., Mancillas-López, C., Nandi, M.: ELmD: a pipelineable
authenticated encryption and its hardware implementation. IEEE Trans. Comput.
65(11), 3318–3331 (2016)

4. Bouillaguet, C., Derbez, P., Dunkelman, O., Fouque, P., Keller, N., Rijmen, V.:
Low-data complexity attacks on AES. IEEE Trans. Inf. Theor. 58(11), 7002–7017
(2012). https://doi.org/10.1109/TIT.2012.2207880

5. Bouillaguet, C., Derbez, P., Fouque, P.-A.: Automatic search of attacks on round-
reduced AES and applications. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol.
6841, pp. 169–187. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-22792-9 10

6. Boura, C., Lallemand, V., Naya-Plasencia, M., Suder, V.: Making the impossible
possible. J. Cryptol. 31(1), 101–133 (2018). https://doi.org/10.1007/s00145-016-
9251-7

7. Cho, J., et al.: WEM: a new family of white-box block ciphers based on the
even-mansour construction. In: Handschuh, H. (ed.) CT-RSA 2017. LNCS, vol.
10159, pp. 293–308. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
52153-4 17

8. Daemen, J., Knudsen, L., Rijmen, V.: The block cipher Square. In: Biham, E. (ed.)
FSE 1997. LNCS, vol. 1267, pp. 149–165. Springer, Heidelberg (1997). https://doi.
org/10.1007/BFb0052343

9. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Information Security and Cryptography. Springer, Heidelberg (2002).
https://doi.org/10.1007/978-3-662-04722-4

https://doi.org/10.1007/978-3-642-25385-0_19
https://doi.org/10.1007/978-3-642-25385-0_19
https://doi.org/10.1109/TIT.2012.2207880
https://doi.org/10.1007/978-3-642-22792-9_10
https://doi.org/10.1007/978-3-642-22792-9_10
https://doi.org/10.1007/s00145-016-9251-7
https://doi.org/10.1007/s00145-016-9251-7
https://doi.org/10.1007/978-3-319-52153-4_17
https://doi.org/10.1007/978-3-319-52153-4_17
https://doi.org/10.1007/BFb0052343
https://doi.org/10.1007/BFb0052343
https://doi.org/10.1007/978-3-662-04722-4

Improved Attacks on AES with Practical Data and Memory Complexities 211

10. Demirci, H., Selçuk, A.A.: A meet-in-the-middle attack on 8-round AES. In:
Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 116–126. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-71039-4 7

11. Derbez, P.: Meet-in-the-middle attacks on AES. Ph.D. thesis, Ecole Normale
Supérieure de Paris – ENS Paris (2013)

12. Derbez, P., Fouque, P.-A.: Exhausting Demirci-Selçuk meet-in-the-middle attacks
against reduced-round AES. In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424, pp.
541–560. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43933-
3 28

13. Derbez, P., Fouque, P.-A., Jean, J.: Improved key recovery attacks on reduced-
round, in the single-key setting. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 371–387. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-38348-9 23

14. Dinur, I., Dunkelman, O., Keller, N., Shamir, A.: Efficient dissection of compos-
ite problems, with applications to cryptanalysis, knapsacks, and combinatorial
search problems. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 719–740. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-32009-5 42

15. Ferguson, N.: Improved cryptanalysis of Rijndael. In: Goos, G., Hartmanis, J., van
Leeuwen, J., Schneier, B. (eds.) FSE 2000. LNCS, vol. 1978, pp. 213–230. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-44706-7 15

16. Fouque, P.-A., Karpman, P., Kirchner, P., Minaud, B.: Efficient and provable white-
box primitives. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part I. LNCS,
vol. 10031, pp. 159–188. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53887-6 6

17. Gérard, B., Grosso, V., Naya-Plasencia, M., Standaert, F.-X.: Block ciphers that
are easier to mask: how far can we go? In: Bertoni, G., Coron, J.-S. (eds.) CHES
2013. LNCS, vol. 8086, pp. 383–399. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-40349-1 22

18. Gilbert, H., Minier, M.: A collision attack on 7 rounds of Rijndael. In: Preproceed-
ings of Third AES Candidate Conference, pp. 230–241 (2000)

19. Grassi, L.: Mixture differential cryptanalysis: new approaches for distinguishers
and attacks on round-reduced AES. Cryptology ePrint Archive, Report 2017/832
(2017). https://eprint.iacr.org/2017/832

20. Grassi, L., Rechberger, C., Rønjom, S.: A new structural-differential property of
5-round AES. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part II.
LNCS, vol. 10211, pp. 289–317. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56614-6 10

21. Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.: The LED block cipher. In:
Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 326–341. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-23951-9 22

22. Hoang, V.T., Krovetz, T., Rogaway, P.: Robust authenticated-encryption AEZ and
the problem that it solves. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015,
Part I. LNCS, vol. 9056, pp. 15–44. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-46800-5 2

23. Mala, H., Dakhilalian, M., Rijmen, V., Modarres-Hashemi, M.: Improved impossi-
ble differential cryptanalysis of 7-round AES-128. In: Gong, G., Gupta, K.C. (eds.)
INDOCRYPT 2010. LNCS, vol. 6498, pp. 282–291. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-17401-8 20

https://doi.org/10.1007/978-3-540-71039-4_7
https://doi.org/10.1007/978-3-662-43933-3_28
https://doi.org/10.1007/978-3-662-43933-3_28
https://doi.org/10.1007/978-3-642-38348-9_23
https://doi.org/10.1007/978-3-642-38348-9_23
https://doi.org/10.1007/978-3-642-32009-5_42
https://doi.org/10.1007/978-3-642-32009-5_42
https://doi.org/10.1007/3-540-44706-7_15
https://doi.org/10.1007/978-3-662-53887-6_6
https://doi.org/10.1007/978-3-662-53887-6_6
https://doi.org/10.1007/978-3-642-40349-1_22
https://doi.org/10.1007/978-3-642-40349-1_22
https://eprint.iacr.org/2017/832
https://doi.org/10.1007/978-3-319-56614-6_10
https://doi.org/10.1007/978-3-319-56614-6_10
https://doi.org/10.1007/978-3-642-23951-9_22
https://doi.org/10.1007/978-3-662-46800-5_2
https://doi.org/10.1007/978-3-662-46800-5_2
https://doi.org/10.1007/978-3-642-17401-8_20

212 A. Bar-On et al.

24. Rønjom, S., Bardeh, N.G., Helleseth, T.: Yoyo tricks with AES. In: Takagi, T.,
Peyrin, T. (eds.) ASIACRYPT 2017, Part I. LNCS, vol. 10624, pp. 217–243.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70694-8 8

25. Tiessen, T.: Polytopic cryptanalysis. In: Fischlin, M., Coron, J.-S. (eds.) EURO-
CRYPT 2016, Part I. LNCS, vol. 9665, pp. 214–239. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49890-3 9

26. Tunstall, M.: Improved “Partial Sums”-based square attack on AES. In: Sama-
rati, P., Lou, W., Zhou, J. (eds.) SECRYPT 2012 - Proceedings of the Interna-
tional Conference on Security and Cryptography, Rome, Italy, 24–27 July 2012,
SECRYPT is part of ICETE - The International Joint Conference on e-Business
and Telecommunications, pp. 25–34. SciTePress (2012)

https://doi.org/10.1007/978-3-319-70694-8_8
https://doi.org/10.1007/978-3-662-49890-3_9

Bernstein Bound on WCS is Tight

Repairing Luykx-Preneel Optimal Forgeries

Mridul Nandi(B)

Indian Statistical Institute, Kolkata, India
mridul.nandi@gmail.com

Abstract. In Eurocrypt 2018, Luykx and Preneel described hash-key-
recovery and forgery attacks against polynomial hash based
Wegman-Carter-Shoup (WCS) authenticators. Their attacks require 2n/2

message-tag pairs and recover hash-key with probability about 1.34 × 2−n

where n is the bit-size of the hash-key. Bernstein in Eurocrypt 2005 had
provided an upper bound (known as Bernstein bound) of the maximum
forgery advantages. The bound says that all adversaries making O(2n/2)
queries of WCS can have maximum forgery advantage O(2−n). So, Luykx
and Preneel essentially analyze WCS in a range of query complexities
where WCS is known to be perfectly secure. Here we revisit the bound
and found that WCS remains secure against all adversaries making q �√

n × 2n/2 queries. So it would be meaningful to analyze adversaries with
beyond birthday bound complexities.

In this paper, we show that the Bernstein bound is tight by describ-
ing two attacks (one in the “chosen-plaintext model” and other in the
“known-plaintext model”) which recover the hash-key (hence forges)
with probability at least 1

2
based on

√
n × 2n/2 message-tag

pairs. We also extend the forgery adversary to the Galois Counter Mode
(or GCM). More precisely, we recover the hash-key of GCM with
probability at least 1

2
based on only

√
n
�

× 2n/2 encryption
queries, where � is the number of blocks present in encryption queries.

Keywords: WCS authenticator · GCM · Polynomial hash
Universal hash · AXU · Key-recovery · Forgery

1 Introduction

Wegman-Carter Authentication. In 1974 [GMS74], Gilbert, MacWilliams
and Sloane considered a coding problem which is essentially an one-time authen-
tication protocol (a fresh key is required for every authentication). Their solu-
tions required a key which is as large as the message to be authenticated. Later
in 1981, Wegman and Carter [WC81] proposed a simple authentication proto-
col based on an almost strongly universal2 hash function which was described in
their early work in [CW79]. The hash-key size is the order of logarithm of message
length (which is further reduced by some constant factor due to Stinson [Sti94]).

c© International Association for Cryptologic Research 2018
H. Shacham and A. Boldyreva (Eds.): CRYPTO 2018, LNCS 10992, pp. 213–238, 2018.
https://doi.org/10.1007/978-3-319-96881-0_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96881-0_8&domain=pdf

214 M. Nandi

The hash-key can be the same for every authentication, but it needs a fresh con-
stant sized random key (used to mask the hash-output). More precisely, let κ be
a hash-key of an n-bit hash function ρκ and R1, R2, . . . be a stream of secret n-
bit keys. Given a message m and its unique message number n (also known as a
nonce), the Wegman-Carter (WC) authenticator computes Rn ⊕ ρκ(m) as a tag.

Almost Xor-Universal or AXU Hash. In [Kra94] Krawczyk had shown
that almost strong universal2 property can be relaxed to a weaker hash (named
as AXU or almost-xor universal hash by Rogaway in [Rog95]). The polynomial
hashing [dB93,BJKS94,Tay94], division hashing [KR87,Rab81] are such exam-
ples of AXU hash functions which were first introduced in a slightly different
context. Afterwards, many AXU hash functions have been proposed for instanti-
ating Wegman-Carter authentication [Sho96,HK97,Ber05a,BHK+99,MV04]. A
comprehensive survey of universal hash functions can be found in [Ber07,Nan14].
Among all known examples, the polynomial hashing is very popular as it requires
hash-key of constant size and, both key generation and hash computation are
very fast.

Wegman-Carter-Shoup or WCS Authenticator. To get rid of onetime
masking in Wegman-Carter authenticator, Brassard (in [Bra83]) proposed to use
a pseudorandom number generator which generates the keys R1, R2, . . . , from a
short master key K. However, in some application, message number can come in
arbitrary order and so a direct efficient computation of Rn is much desired (it is
alternatively known as pseudorandom function or PRF). Brassard pointed out
that the Blum-Blum-Shub pseudorandom number generator [BBS86] outputs
can be computed directly. As blockciphers are more efficient, Shoup ([Sho96])
considered the following variant of WC authentication:

WCSK,κ(n1,m) := eK(n) ⊕ ρκ(m)

where eK is a keyed blockcipher modeled as a pseudorandom permutation
(PRP). This was named as WCS authenticator by Bernstein in [Ber05b].

The use of PRPs enables practical and fast instantiations of WCS authen-
ticators. The WCS authentication mechanism implicitly or explicitly has been
used in different algorithms, such as Poly1305-AES [Ber05a] and Galois Counter
Mode or GCM [MV04,AY12]. GCM was adopted in practice, e.g. [MV06,JTC11,
SCM08]. GCM and its randomized variants, called RGCM [BT16], are used in
TLS 1.2 and TLS 1.3.

1.1 Known Security Analysis of WCS prior to Luykx-Preneel
Eurocrypt 2018

Hash-Key Recovery Attacks of WCS. Forgery and key-recovery are the
two meaningful security notions for an authenticator. Whenever we recover hash-
key, the security is completely lost as any message can be forged. Security of WCS
relies on the nonce which should not repeat over different executions [Jou,HP08].
Most of the previously published nonce respecting attacks aim to recover the

Bernstein Bound on WCS is Tight 215

polynomial key [ABBT15,PC15,Saa12,ZTG13] based on multiple verification
attempts. The total number of message blocks in all verification attempts should
be about 2n to achieve some significant advantage.

Provable Security Analysis of WCS. The WC authenticator based on
polynomial hashing has maximum forgery or authenticity advantage v�

2n against
all adversaries who make at most q authentication queries and v verification
queries consisting of at most � blocks. By applying the standard PRP-PRF
switching lemma, WCS (which is based on a random permutation π) has an
authenticity advantage at most v�

2n + (v+q)2

2n . So the bound becomes useless as q

approaches 2n/2 (birthday complexity). Shoup proved that the advantage is at
most v�

2n for all q < 2
n−log �

2 [Sho96]. So, when � = 210, n = 128, the above bound
says that the authenticity advantage is at most v�/2128, whenever q ≤ 259. This
is clearly better than the classical bound. However, the application of Shoup’s
bound would be limited if we allow large �.

Bernstein Bound. Finally, Bernstein [Ber05b] provided an improved bound for
WCS which is valid for wider range of q. The maximum authenticity advantage
is shown to be bounded above by

B(q, v) := v · ε · (1 − q

2n
)

−(q+1)
2 (1)

for all q, where ρκ is an ε-AXU hash function. Thus, when q = O(2n/2), the
maximum success probability is O(v · ε) which is clearly negligible for all reason-
able choices of v and ε. For example, the forgery advantage against 128-bit WCS
based on polynomial hashing is at most (1) 1.7v� × 2−128 when q ≤ 264, and
(2) 3000v� × 2−128 when q = 266 (so WCS remains secure even if we go beyond
birthday bound query complexity).

1.2 Understanding the Result Due to Luykx and Preneel in [LP18]

False-key or True-key set. All known key-recovery attacks focus on reduc-
ing the set of candidate keys, denoted T, which contains the actual key. But the
set of candidate keys, also called true-key set, is constructed from verification
attempts. Recently, a true-key set (equivalently false-key set which is simply
the complement of the true-key set) is constructed from authentication queries
only. After observing some authentication outputs of a WCS based on a blockci-
pher eK , some choices for the key can be eliminated using the fact that outputs
of the blockcipher are distinct. More precisely, we can construct the following
false-key set F based on a transcript τ := ((n1,m1, t1), . . . , (nq,mq, tq)) where
ti = eK(ni) ⊕ ρκ(mi):

F := {x : ti ⊕ ρx(mi) = tj ⊕ ρx(mj), for some i �= j}. (2)

It is easy to see that the hash-key κ �∈ F, since otherwise, there would exist
i �= j, eK(ni) = eK(nj), which is a contradiction. So, a random guess of a
key from outside the false-key set would be a correct guess with probability at

216 M. Nandi

least 1
2n−E(|F|) . This simple but useful observation was made in [LP18]. We also

use this idea in our analysis.

– Lower bound on the expected size of false-key set.
Based on the above discussion, one natural approach would be to maximize the
false-key set to obtain higher key-recovery advantage. This has been considered
in [LP18]. Proposition 3.1 of [LP18] states that

E(|F|) ≥ q(q−1)
4 , for all q <

√
2n − 3.

In other words, expected size of the false-key set grows quadratically. They have
stated the following in Sect. 3 of [LP18].

“We describe chosen-plaintext attacks which perfectly match the bounds for
both polynomial-based WCS MACs and GCM.”

Issue 1: The Luykx-Preneel attack is no better than random guessing.
Their attack can eliminate about one fourth keys. In other words, there are still
three-fourth candidate keys are left. So, the key-recovery advantage KR(q) is
about 1.34

2n (1.34 times more than a random guess attack without making any
query). Naturally, as the key-recovery advantage is extremely negligible, claiming
such an algorithm as an attack is definitely under question.

– Upper bound on the expected size of false-key set.
Now we discuss the other claim of [LP18]. They claimed that (Theorem 5.1
of [LP18]) the size of the false-key set cannot be more than q(q + 1)/2 after
observing q responses of polynomial-based WCS. In other words, irrespective
of the length of queries �, the upper bound of the size of the false-key set is
independent of �. At a first glance this seem to be counter-intuitive as the number
of roots of a polynomial corresponding to a pair of query-responses can be as
large as �. So, at best one may expect the size of the false-key set can be

(
q
2

)
�.

But, on the other extreme there may not be a single root for may pairs of queries.
On the average, the number of roots for every pair of messages turns out to be
in the order of q2, independent of �. We investigate the proof of Theorem 5.1
of [LP18] and in the very first line they have mentioned that

“Using Thm. 4.1, Cor. 5.1, and Prop. 5.3, we have...”

However, the Cor 5.1 is stated for all q ≤ Mγ (a parameter defined in Eq. 41
of [LP18]). They have not studied how big Mγ can be. We provide an estimation
which allows us to choose Mγ such that �

(
Mγ

2

)
= 2n − �. With this bound, the

Theorem 5.1 can be restated as

E(|F|) ≤ q(q + 1)
2

for all q <
2n/2

√
�

. (3)

By combining Proposition 3.1 and a corrected version of Theorem 5.1 as just
mentioned, we can conclude that

E(|F|) = Θ(q2), for all q <
2n/2

√
�

.

Bernstein Bound on WCS is Tight 217

In other words, authors have found a tight estimate of expected size of the
false-key set in a certain range of q.

Issue 2: Usefulness of an upper bound of the false-key set: The lower
bound of the expected false-key set immediately leads to a lower bound of key-
recovery advantage. However, an upper bound of the expected false-key set does
not lead to an upper bound of key-recovery advantage. This is mainly due to
the fact, the key-recovery advantage based on q authentication responses can be
shown as

KR(q) = E(
1

2n − |F|) ≥ 1
2n − E(|F|) .

The inequality follows from the Jensen inequality. So an upper bound of E(|F|)
does not give any implication on KR(q). Moreover, dealing the expression
E(1/(2n − |F|)) directly is much harder. So the usefulness of an upper bound of
the expected size of false-key set is not clear to us (other than understanding
tightness of size of the false-key set which could be of an independent interest).

1.3 Our Contributions

In this paper, we resolve the optimality issue of the Bernstein bound. We first
provide a tight alternative expression of the Berstein bound. In particular, we

observe that B(q, v) = Θ(v · ε · e
q2

2n+1). So WCS is secure against all adversaries
with q � √

n × 2n/2 queries. An adversary must make about
√

n × 2n/2 queries
to obtain some significant advantage. In this paper we describe three attacks to
recover the hash key and analyze their success probabilities.

1. The first two attacks (in the known-plaintext and the chosen-plaintext mod-
els) are against WCS based on a polynomial hash; they also work for other
hashes satisfying certain regular property. Our attacks are also based a false-
key (equivalently a true-key set) as described in the Luykx-Preneel attack.
Unlike the Luykx-Preneel attack, we however choose message randomly in
case of chosen-plaintext model. The query complexity of our attacks is also
beyond the birthday complexity. In particular, these attacks require

√
n2n

authentication queries. So the bound due to Bernstein is tight (even in the
known-plaintext model) when q ≈ √

n2n.
2. We also extend these attacks to the authentication algorithm of GCM which

utilizes the ciphertext of GCM encryption to reduce the complexity of encryp-
tion queries. In particular, if each encryption query contains � blocks, then
this attack requires

√
n
� × 2n encryption queries to recover the hash key used

in GCM authentication. We have proved that our forgery is optimum by
proving a tight upper bound on the maximum forgery advantage.

3. We also provide a simple proof on the tightness of the false-key set which
works for all q. In particular, we show that the expected size of the false-key
set is at most q(q − 1)/2n.

218 M. Nandi

2 Preliminaries

Notations. We write X ←$X to denote that the random variable X is sampled
uniformly (and independently from all other random variables defined so far)
from the set X. Let (a)b := a(a − 1) · · · (a − b + 1) for two positive integers
b ≤ a. A tuple (x1, . . . , xq) is simply denoted as xq. We call xq coordinate-wise
distinct if xi’s are distinct. We write the set {1, 2, . . . ,m} as [m] for a positive
integer m. We use standard asymptotic notations such as o(·), O(·), Θ(·) and
Ω(·) notations. For real functions f(x), g(x), we write f = O(g) (equivalently
g = Ω(f)) if there is some positive constant C such that f(x) ≤ Cg(x) for all
x. If both f = O(g) and g = O(f) hold then we write f = Θ(g). We write
f(x) = o(g(x)) if lim

x→∞
f(x)
g(x) = 0.

Jensen Inequality. We write E(X) to denote the expectation of a real valued
random variable X. A twice differentiable function f is called convex if for all x
(from the domain of f), f ′′(x) > 0. For example, (1) 1/x is a convex function
over the set of all positive real numbers and (2) 1

N−x is convex over the set of all
positive real number less than N . For every convex function f and a real valued
random variable X, E(f(X)) ≥ f(E(X)) (Jensen Inequality). In particular, for all
positive random variable X,

E
(1
X

) ≥ 1
E(X)

(4)

and for all positive random variable Y < N ,

E
(1
N − Y

) ≥ 1
N − E(Y)

(5)

Lemma 1. Let 0 < ε ≤ √
2 − 1. Then, for all positive real x ≤ ε,

e−(1+ε)x ≤ 1 − x.

Proof. It is well known (from calculus) that e−x ≤ 1−x+ x2

2 for all real x. Let
η = 1 + ε <

√
2. So

e−(1+ε)x ≤ 1 − (1 + ε)x +
η2x2

2
≤ 1 − (1 + ε)x + x2

= 1 − x − x(ε − x) ≤ 1 − x ��
We also know that 1 − x ≤ e−x. So, the above result informally says that 1 − x
and e−x are “almost” the same whenever x is a small positive real number.

Bernstein Bound on WCS is Tight 219

2.1 Security Definitions

Pseudorandom Permutation Advantage. Let PermB be the set of all per-
mutations over B. A blockcipher over a block set B is a function e : K×B → B
such that for all key k ∈ K, e(k, ·) ∈ PermB. So, a blockcipher is a keyed family
of permutations. A uniform random permutation or URP is denoted as π, where
π ←$PermB. The pseudorandom permutation advantage of a distinguisher A

against a blockcipher e is defined as

Advprpe (A) :=
∣
∣ Pr

K ←$K
(AeK returns 1) − Pr

π
(Aπ returns 1)

∣
∣.

Let A(q, t) denote the set of all adversaries which runs in time at most t and
make at most q queries to either a blockcipher or a random permutation. We
write Advprp(q, t) = max

A∈A(q,t)
Advprpe (A).

Authenticator. A nonce based authenticator with nonce space N, key space
K, message space M and tag space B is a function γ : K × N × M → B.
We also write γ(k, ·, ·) as γk(·, ·) and hence a nonce based authenticator can
be viewed as a keyed family of functions. We say that (n,m, t) is valid for γk

(or for a key k when γ is understood) if γk(n,m) = t. We define a verifier
Verγk

: N × M × B → {0, 1} as

Verγk
(n,m, t) =

{
1 if (n,m, t) is valid for γk,

0 otherwise.

We also simply write Verk instead of Verγk
.

An adversary A against a nonce based authenticator makes authentication
queries to γK and verification queries to VerK for a secretly sampled K ←$K.
An adversary is called

– nonce-respecting if nonces in all authentication queries are distinct,
– single-forgery (or multiple-forgery) if it submits only one (or more than one)

verification query,
– key-recovery if it finally returns an element from key space.

In this paper we only consider nonce-respecting algorithm. We also assume that
A does not submit a verification query (n,m, t) to VerγK

for which (n,m) has
already been previously queried to the authentication oracle. Let A(q, v, t) denote
the set of all such nonce-respecting algorithms which runs in time t and make at
most q queries to an authenticator and at most v queries to its corresponding ver-
ifier. In this paper our main focus on analyzing the information-theoretic adver-
saries (which can run in unbounded time). So we write A(q, v) = ∪t<∞ A(q, v, t).

View of an Adversary. An adversary A ∈ A(q, v) makes queries (n1,m1),
. . ., (nq,mq) to an authenticator γK adaptively and obtain responses t1, . . . , tq
respectively. It also makes (n′

1,m
′
1, t

′
1), . . . , (n

′
v,m′

v, t′v) to verifier VerK and
obtain responses b1, . . . , bv ∈ {0, 1} respectively. The authentication and veri-
fication queries can be interleaved and adaptive. Note that all ni’s are distinct

220 M. Nandi

as we consider only nonce-respecting adversary, however, n′
i’s are not necessarily

distinct and can match with nj values. We also assume that both q and v are
fixed and hence non-random. We call the tuple

(
(n1,m1, t1), . . . , (nq,mq, tq), (n′

1,m
′
1, t

′
1, b1), . . . , (n

′
v,m′

v, t′v, bv)
)

view and denote it as view(AγK ,VerK) (which is a random variable induced by
the randomness of A and the key of γ). Let

V = (N × M × B)q × (N × M × B × {0, 1})v

be the set of all possible views. We say that a view τ ∈ V is realizable if

Pr
A,K

(view(AγK) = τ) > 0.

Authenticity Advantage. Following the notation of the view of an adversary
as denoted above, we define the authenticity advantage of A as

Authγ(A) := Pr(∃i, bi = 1).

In words, it is the probability that A submits a valid verification query which has
not been obtained through a previous authentication query. In this paper, we are
interested in the following maximum advantages for some families of adversaries:

Authγ(q, v, t) = max
A∈A(q,v,t)

Auth(A), Authγ(q, v) = max
A∈A(q,v)

Auth(A).

So Authγ(q, v) is the maximum advantage for all information theoretic adver-
saries with the limitation that it can make at most q authentication queries and
v verification queries. It is shown in [BGM04,Ber05a] that

Authγ(q, v) ≤ v · Authγ(q, 1). (6)

Key-recovery Advantage. A full-key-recovery algorithm A is an adversary
interacting with γK and VerK and finally it aims to recover the key K. Once the
key K is recovered, the full system is broken and so one can forge as many times
as it wishes. For some authenticators, we can do the forgeries when a partial
key is recovered. Let K = K′ ×H for some sets K′ and H. We call Hhash-key
space. Let K = (K ′,H) ←$K′ × H.

Definition 1 (key-recovery advantage). A hash-key recovery algorithm (or
we simply say that a key-recovery algorithm) A is an adversary interacting with
γK and VerK and finally it returns h, an element from H. We define key-recovery
advantage of A against γ as

KRγ(A) := Pr(AγK ,VerK ⇒ h ∧ h = H).

The above probability is computed under randomness of A and K = (K ′,H).

Bernstein Bound on WCS is Tight 221

Similar to the maximum authenticity advantages, we define

KRγ(q, v, t) = max
A∈A(q,v,t)

KR(A), KRγ(q, v) = max
A∈A(q,v)

KR(A).

When v = 0, we simply write KRγ(q, t) and KRγ(q). A relationship between
key-recovery advantage and authenticity advantage is the following which can
be proved easily KRγ(q) ≤ Authγ(q, 1).

Authenticated Encryption. In addition to nonce and message, an authen-
ticated encryption γ′ takes associated data and returns a ciphertext-tag pair. A
verification algorithm Verγ′ takes a tuple of nonce, associated data, ciphertext
and tag, and determines whether it is valid (i.e. there is a message corresponding
to this ciphertext and tag) or not. A forgery adversary A submits a fresh tuple
(not obtained through encryption queries) of nonce, associated data, ciphertext
and tag. Similar to authenticity advantage of an authenticator, authenticity of
an adversary A, denoted Authγ′(A) is the probability that it submits a fresh
valid tuple.

Almost XOR Universal and Δ-Universal Hash Function. Let ρ : H×
M → B, for some additive commutative group B. We denote the subtraction
operation in the group as “−”. We call ρ ε-ΔU (ε-Δ-universal) if for all x �= x′ ∈
M and δ ∈ B,

Pr(ρκ(x) − ρκ(x′) = δ) ≤ ε.

Here, the probability is taken under the uniform distribution κ ←$H. Note that
ε ≥ 1/N (since, for any fixed x, x′,

∑
δ Pr(ρκ(x) − ρκ(x′) = δ) = 1). When

B = {0, 1}b for some positive integer b and the addition is “⊕” (bit-wise XOR
operation), we call ρ ε-almost-xor-universal or ε-AXU hash function.

3 Known Analysis of WCS

We describe a real and an idealized version of WCS.

Definition 2 (WCS authenticator). Let eK be a blockcipher over a commu-
tative group B of size N with a key space K′ and ρκ : M → B is a keyed hash
function with a key space K. On an input (n,M) ∈ B×M, we define the output
of WCS as

WCSK,κ(n,M) = eK(n) + ρκ(M). (7)

Here, the pair (K,κ), called secret key, is sampled uniformly from K′ × K.
An idealized version of WCS is based on a uniform random permutation

π ←$PermB (replacing the blockcipher e) and it is defined as

iWCSπ,κ(n,m) = π(n) + ρκ(M) (8)

where the hash key κ ←$K (and independent of the random permutation).

222 M. Nandi

WCS is a nonce based authenticator in which n is the nonce and M is a mes-
sage. The most popular choice of B is {0, 1}n for some positive integer n and
the blockcipher is AES [DR05,Pub01] (in which n = 128). The WCS and the
ideal-WCS authenticators are computationally indistinguishable provided the
underlying blockcipher e is a pseudorandom permutation. More formally, one
can easily verify the following relations by using standard hybrid reduction;

AuthWCS(q, v, t) ≤ AuthiWCS(q, v) + Advprpe (q + v, t + t′), (9)
KRWCS(q, v, t) ≤ KRiWCS(q, v) + Advprpe (q + v, t + t′) (10)

where t′ is the time to compute q + v executions of hash functions ρκ.

Polynomial Hash. Polynomial hash is a popular candidate for the keyed hash
function in WCS (also used in the tag computation of GCM [MV04]). Here we
assume that B is a finite field of size N . Given any message M := (m1, . . . ,md) ∈
Bd and a hash key κ ∈ K = B, we define the polynomial hash output as

PolyM (κ) := md · κ + md−1 · κ2 + · · · + m1 · κd. (11)

There are many variations of the above definition. Note that it is not an AXU
hash function over variable-length messages (as appending zero blocks will not
change the hash value). To incorporate variable length message, we sometimes
preprocess the message before we run the polynomial hash. One such example
is to pad a block which encodes the length of the message. One can simply
prepend the constant block 1 to the message. These can be easily shown to be
�
N -AXU over the padded message space M = ∪≤�

i=1B
i. In this paper we ignore

the padding details and for simplicity, we work only on the padded messages.
Whenever we use the polynomial hash in the WCS authenticator, we call its
hash-key κ the polynomial-key.

Nonce Misuse. The input n is called nonce which should not repeat over dif-
ferent executions. Joux [Jou] and Handschuh and Preneel [HP08] exhibit attacks
which recover the polynomial key the moment a nonce is repeated. For any two
messages M �= M ′ ∈ Bd,

WCSK,κ(n,M) − WCSK,κ(n,M ′) = PolyM (κ) − PolyM ′(κ)

which is a nonzero polynomial in κ of degree at most d. By solving roots of the
polynomial (which can be done efficiently by Berlekamp’s algorithm [Ber70] or
the Cantor-Zassenhaus algorithm [CZ81]), we can recover the polynomial key.
So it is an essential for a WCS authenticator to keep the nonce unique.

3.1 Shoup and Bernstein Bound on WCS

Let iWCS (we simply call it ideal-WCS) be based on a URP and an ε-AXU hash
function ρ. When we replace the outputs of URP by uniform random values,
Wegman and Carter had shown that (in [WC81]) the forgery advantage os less

Bernstein Bound on WCS is Tight 223

than vε (independent of the number of authentication queries). So by applying
the classical PRP-PRF switching lemma, we obtain

AuthiWCS(q, v) ≤ v · ε +
(q + v)2

2N
. (12)

So the classical bound is useless as q approaches
√

N or as v approaches to
ε−1. In [Sho96] Shoup provided an alternative bound (which is improved and
valid in a certain range of q). In particular, he proved

AuthiWCS(q, v) ≤ v · ε · (1 − q2ε

2
)−1. (13)

The above bound is a form of multiplicative (instead of additive form of the
classical bounds). Thus, the above bound is simplified as

AuthiWCS(q, v) ≤ 2εver(v) := 2v · ε, ∀q ≤
√

ε−1. (14)

So the ideal-WCS is secure up to q ≤
√

ε−1 queries. When ε = 1/N , it says that
authentication advantage is less 2v · ε for all q ≤ √

N . In other words, ideal-
WCS is secure against birthday complexity adversaries. However, when the hash
function is polynomial hash, Shoup’s bound says that the ideal-WCS is secure
up to q ≤ √

N/�. For example, when we authenticate messages of sizes about 224

bytes (i.e. � = 220) using AES-based ideal-WCS, we can ensure security up to
q = 254 queries. Like the classical bound, it also does not provide guarantees for
long-term keys. Bernstein proved the following stronger bound for WCS.

Theorem 1 (Bernstein Bound([Ber05b])). For all q and v

AuthiWCS(q, v) ≤ B(q, v) := v · ε · (1 − q

N
)− q+1

2 . (15)

As a simple corollary (recovering the hash-key implies forgery), for all v ≥ 1 we
have

KRiWCS(q, v) ≤ B(q, v), KRiWCS(q, 0) ≤ B(q, 1). (16)

The key-recovery bound was not presented in [Ber05b], but it is a simple straight-
forward corollary from the fact that recovering hash-key implies forgery.

3.2 Interpretation of the Bernstein Bound

We now provide the interpretation of the bound which is crucial for understand-
ing the optimality of ideal-WCS. As 1 − x ≤ e−x, we have

B(q, 1) ≥ ε · e
q(q+1)

2N .

Obviously, the Bernstein bound becomes more than one when q(q + 1)/2 ≥
N ln N (note that ε ≥ N−1). So we assume that q(q +1)/2 ≤ N ln N . We denote
n = log2 N . By Lemma 1, we have

224 M. Nandi

B(q, 1) ≤ ε · e
q(q+1)

2N (1+ q
N)

≤ ε · e
q(q+1)

2N × e
q ln N

N

≤ ε · e
q(q+1)

2N × (1 +

√
2 ln3 N

N
)

≤ ε · e
q(q+1)

2N × (1 +
2n1.5

2n/2
) = ε · e

q(q+1)
2N × (1 + negl(n))

where negl(n) = 2n1.5

2n/2 . Thus, B(q, v) = Θ(v ·ε ·e q(q+1)
2N). Let us introduce another

parameter δ, called the tolerance level. We would now solve for q and v satisfying
B(q, v) = δ (or the inequality B(q, v) ≥ δ) for any fixed constant δ. In other
words, we want to get a lower bound of q and v to achieve at least δ authenticity
advantage.

1. Case 1. When v · ε = δ and q ≥ 1 we have B(q, �) ≥ δ. In other words, one
needs to have sufficient verification attempts (and only one authentication
query suffices) to have some significant advantage. We would like to note
that even when q = O(

√
N), B(q, v) = Θ(v · ε). So the advantages remain

same up to some constant factor for all values of q = O(
√

N). In other words,
we can not exploit the number of authentication queries within the birthday-
bound complexity.

2. Case 2. v · ε < δ. Let us assume that vε/δ = Nβ for some positive real
β. In this case one can easily verify that q = Ω(

√
δN log N) to achieve at

least δ advantage. In other words, if q = o(
√

N log N) and v = o(ε−1) then
B(q, v) = o(1).

Tightness of the bound for the Case 1. We have seen that when
q = O(

√
N), we have Authγ(q, v) = O(v · ε). In fact, it can be easily seen to

be tight (explained below) when the hash function is the polynomial hash func-
tion PolyM (κ).

Key Guess Forgery/Key-Recovery. Suppose WCS is based on the polyno-
mial hash. Given a tag t of a known nonce-message pair (n,M) with M ∈ B�,
a simple guess attack works as follows. It selects a subset B1 ⊆ B of size � and
defines a message M ′ ∈ M and t′ such that the following identity as a polynomial
in x holds:

PolyM ′(x) − t′ = PolyM (x) − t +
∏

α∈B1

(x − α).

If κ ∈ B1 then it is easy to verify that t′ is the tag for the nonce-message
pair (n,M ′). The success probability of the forging attack is exactly �/N . If the
forgery is allowed to make v forging attempts, it first chooses v disjoint subsets
B1, . . . ,Bv ⊆ B, each of size �. It then performs the above attack for each set
Bi. The success probability of this forgery is exactly v�/N . The same attack
was used to eliminate false keys systematically narrowing the set of potential
polynomial keys and searching for “weak” keys.

Bernstein Bound on WCS is Tight 225

Remark 1. The tightness of multiple-forgery advantage for WCS based on the
polynomial hash can be extended similarly to all those hash functions ρ for which
there exist v + 1 distinct messages M1, . . . ,Mv,M and c1, . . . , cv ∈ B such that

Pr(ρκ(Mi) = ρκ(M) + ci, ∀i) = vε�.

Why the Bernstein bound is better than the classical birthday bound?
One may think the Bernstein bound is very close to the classical birthday bound
of the form q2/2n and they differ by simply logarithmic factor. However, these
two bound are quite different in terms of the data or query limit in the usage of
algorithms. We illustrate the difference through an example. Let n = 128, and
the maximum advantage we can allow is 2−32. Suppose a construction C has
maximum forgery advantage q2

n2n (a beyond birthday bound with logarithmic
factor). Then we must have the constraint q ≤ 251.5. Whereas, WCS can be used
for at most 264 queries. In other words, Bernstein bound actually provide much
better life time of key than the classical birthday bound.

4 False-Key/True-Key Set: A Tool for Key-Recovery
and Forgery

Our main goal of the paper is to obtain hash-key-recovery attacks against WCS
and GCM. Note that we do not recover the blockcipher key. So key-recovery
advantage of whats follows would mean the probability to recover the hash-key
only.

Query System and Transcript. A key-recovery (with no verification attempt)
or a single forgery adversary has two components. The first component Q,
called query system, is same for both key-recovery and forgery. It makes
queries to WCSK,κ adaptively and obtains responses. Let (n1,M1), . . ., (nq,Mq)
be authentication queries with distinct ni (i.e., the query system is nonce-
respecting) and let ti denote the response of ith query. Let τ := τ(Q) =
((n1,M1, t1), . . . , (nq,Mq, tq)) denote the transcript.

Based on the transcript, a second component of forgery returns a fresh
(n,M, t) (not in the transcript). If n �= ni for all i then the forgery of WCS is
essentially reduced to a forgery of the URP (in particular, forging the value of
π(n)). Hence, the forgery advantage in that case is at most 1/(N −q). The most
interesting case arises when n = ni for some i. Similarly, the second component
of a key-recovery adversary returns an element k ∈ K (key space of the random
function) based on the transcript τ obtained by the query system.

Definition 3 (False-key set [LP18]). With each τ = ((n1,M1, t1), . . .,
(nq,Mq, tq)), we associate a set

Fτ = {x ∈ K | ∃i �= j, ρx(Mi) − ρx(Mj) + tj − ti = 0,Mi �= Mj}
and we call it the false-key set.

226 M. Nandi

Note that Pr(κ ∈ Fτ) = 0 and so the term false-key set is justi-
fied. In other words, the true key κ can be any one of the elements from
T := K \ Fτ , called the true-key set. Given a query system Q, let us con-
sider the key-recovery adversary which simply returns a random key k from the
true-key set. Let us denote the key-recovery adversary as QTK . The following
useful bound is established in [LP18].

Lemma 2 ([LP18]). Following the notation as described above we have

KRWCS(QTK) ≥ 1
N − E(|Fτ(Q)|) . (17)

Proof. Given a transcript τ , the probability that k = κ is exactly 1
N−|Fτ | . Then,

KRWCS(QTK) =
∑

τ

Pr(k = κ | τ) × Pr(τ)

=
∑

τ

1
N − |Fτ | Pr(τ)

= E(
1

N − |Fτ |). (18)

Here the expectation is taken under the randomness of the transcript. A tran-
script depends on the randomness of π, κ and the random coins of the query
system. Note that the function f(x) = 1

N−x is convex in the interval (0, N) and
so by using Jensen inequality, we have KRWCS(QTK) ≥ 1

N−E(|Fτ(Q)|) . ��
In [LP18], it was also shown that E(|Fτ(Q)| ≤ q(q + 1)/2 for all q < Mγ

where
Mγ = max{q : min

mq,tq
|Tτ | ≥ �}

where τ denotes the transcript ((m1, t1), . . . , (mq, tq)) (ignoring nonce values as
these are redundant). A straight forward estimation of Mγ is 2n/2/

√
�. Here we

give a very simple proof of the above bound for all q.

Lemma 3. For all q, E(|Fτ(Q)| ≤ q(q + 1)/2.

Proof. We define an indicator random variable Ix which takes value 1 if and
only if there exists i �= j such that ρx(Mi) − ρx(Mj) + tj − ti = 0. We observe
that |Fτ | =

∑
x∈K Ix.

Let us denote π(ni) as Vi. Note that for all i, ti = Vi + ρκ(Mi). Now,
E(|Fτ |) =

∑
x∈K E(Ix). We write px = E(Ix) which is nothing but the probability

that there exists i �= j such that Vi −Vj = ρx(Mi)− ρκ(Mi)+ ρx(Mi)+ ρκ(Mi).
By using the union bound we have px ≤ (

q
2

)
/(N − 1). So

E(|Fτ |) ≤ Nq(q − 1)
2(N − 1)

≤ q(q − 1)
2

+
q(q − 1)
2(N − 1)

Bernstein Bound on WCS is Tight 227

We can clearly assume that q < N and so by using simple inequality the lemma
follows. ��

True-key Set. Instead of the false-key set we focus on the true key set. The
set Tτ := K \ Fτ is called the true-key set. In terms of the true-key set, we
can write KRWCS(QTK) = E(1

|Tτ(Q)|). Let π(ni) = Vi and ai,x := ai,x(κ) :=
ρκ(Mi) − ρx(Mi). We can equivalently define the true-key set as

Tτ = {x ∈ K | t1 − ρx(M1), . . . , tq − ρx(Mk) are distinct}
= {x ∈ K | V1 + a1,x, . . . ,Vq + aq,x are distinct}. (19)

Now we define an indicator random variable Ix as follows:

Ix =
{

1, if V1 + a1,x, . . . ,Vq + aq,x are distinct
0, otherwise

Let px denote the probability that V1 + a1,x, . . . ,Vq + aq,x are distinct. So,

E(|Tτ |) =
∑

x

E(Ix) =
∑

x∈K

px.

When we want to minimize the expected value of the size of the true-key set,
we need to upper bound the probability px for all x. We use this idea while we
analyze our key-recovery attacks.

5 Key-Recovery Security Attacks of WCS

5.1 A Chosen-Plaintext Key-Recovery Attack

In this section we provide a chosen-plaintext attack against any WCS based on
any blockcipher and a keyed hash function which satisfies a reasonable assump-
tion, called differential regular. This property is satisfied by the polynomial hash.
A function f : M → B is called regular if X ←$M ⇒ f(X) ←$B. Now we define
a special type of keyed hash functions.

Definition 4. A keyed hash function ρκ : K → B is called differential regular
if for all distinct x, k ∈ K, the function mapping M ∈ M to ρk(M) − ρx(M) is
regular.

The polynomial hash is clearly differential regular. For example, when the
message space is B and κ �= x, the function mapping m ∈ B to ρκ(m)−ρx(m) =
m(κ − x) is regular.

Theorem 2. Suppose WCS is based on a blockcipher and a keyed differential
regular hash function ρ. Then,

KRWCS(q) ≥ 1

1 + N ′e− q(q−1)
2N

(20)

where N ′ = |K| (size of the hash-key space). In particular, when q(q − 1) =
2N log N ′ we have KRWCS(q, �) ≥ 1/2.

228 M. Nandi

Interpretation of the result. When N ′ = N (key size is same as the block
size), we can achieve 0.5 key-recovery advantage after making roughly

√
2N log N

authentication queries . If N ′ = N c for some c > 1 (the hash-key size is larger
than the block size) we need roughly

√
2cN log N (which is a constant multiple of

the number queries required for hash-key space of size N) authentication queries.

Proof. Suppose WCS := WCSK,κ is the WCS authenticator based on a block-
cipher eK and a keyed differential regular hash function ρκ. We describe our
key-recovery attack1 A as follows:

1. Choose q messages M1, . . . ,Mq ←$M and make authentication queries
(ni,Mi), i ∈ [q] for distinct nonces ni’s.

2. Let t1, . . . , tq be the corresponding responses.
3. Construct the true-key set

Tτ = {k | (ti − ρk(Mi))′s are distinct}.

4. Return a key k ←$Tτ .

Here, τ = ((n1,M1, t1), . . . , (nq,Mq, tq)) is the transcript of the adversary A.
We also note that Pr(κ ∈ Tτ) = 1 and so we have seen that KRWCS(A) = E(1

|Tτ |).
Here the expectation is taken under randomness of transcript. The randomness
of a transcript depends on the randomness of K, κ and the messages Mi. By
using Jensen inequality, we have

KRWCS(A) ≥ 1
E(|Tτ |) .

We will now provide an upper bound of E(|Tτ |). In fact, we will provide an
upper bound on the conditional expectation after conditioning the blockcipher
key K and hash-key κ. Note that ti = eK(ni) + ρκ(Mi) and hence the true-key
set is the set of all x for which Ri,x := eK(ni) + ρκ(Mi) − ρx(Mi) are distinct
for all i ∈ [q].

Claim. Given K and κ, the conditional distributions of Ri,x’s are uniform and
independent over B, whenever x �= κ.

Proof of the Claim. Once we fix K and κ, for every x �= κ, ρκ(Mi) − ρx(Mi)
is uniformly distributed (as ρ is differentially regular). So eK(ni) + ρκ(Mi) −
ρx(Mi)’s are also uniformly and independently distributed since eK(ni)’s are
some constants nd Mi’s are independently sampled.

1 We note that the similar attack is considered in [LP18] where the messages are fixed
and distinct. However in their attacks the analysis is done for q ≤ 2n/2 whereas, we
analyze for all q.

Bernstein Bound on WCS is Tight 229

Now we write |Tτ | =
∑

x Ix where Ix is the indicator random variable which
takes values 1 if and only if Ri,x are distinct for all i. Note that Ri,x are distinct
for all i has probability exactly

∏q−1
i=1 (1 − i

N) (same as the birthday paradox

bound). As 1 − x ≤ e−x for all x, we have E(Ix) = Pr(Ix = 1) ≤ e− q(q−1)
N . So,

E(|T| | K,κ) = 1 +
∑

x	=κ

E(Ix)

≤ 1 + (N ′ − 1)e− q(q−1)
2N .

This bound is true for all K and κ and hence E(|T|) ≤ 1 + (N ′ − 1)e− q(q−1)
2N .

This completes the proof. ��

5.2 Known-Plaintext Attack

Now we show a known-plaintext attack for polynomial-based hash in which we
do not assume any randomness of messages. So our previous analysis does not
work in this case. We first describe a combinatorial result which would be used
in our known plaintext key-recovery advantage analysis.

Lemma 4. Let V1, . . . ,Vq be a uniform without replacement sample from B and
a1, . . . , aq ∈ B be some distinct elements, for some q ≤ N/6. Then,

px := Pr(V1 + a1, . . . ,Vq + aq are distinct) ≤ e−q2/4N .

Proof. For 1 ≤ α ≤ q, let hα denote the number of tuples vα = (v1, . . . , vα)
such that v1 + a1, . . . , vα + aα are distinct. Clearly, h1 = N . Now we establish
some recurrence relation between hα+1 and hα. We also abuse the term hα to
represent the set of solutions vα = (v1, . . . , vα) such that v1 + a1, . . . , vα + aα

are distinct.
Given any solution vα (among the hα solutions), we want to estimate the

number of ways we can choose vα+1. Note that

vα+1 �∈ {v1, . . . , vα} ∪ {v1 + a1 − aα+1, . . . , vα + aα − aα+1}.

Let Sα := {v1 + a1 − aα+1, . . . , vα + aα − aα+1}. As vα is one solution from hα,
the size of the set Sα is exactly α. Note that if vi = vj + aj − aα then j must be
different from i as ai’s are distinct. For any i �= j ≤ α, we denote h′

α(i, j) be the
number of vα such that v1 + a1, . . . , vα + aα are distinct and vi + ai = vj + aj

(once again we abuse this term to represent the set of solutions). So by the
principle of inclusion and exclusion, we write

hα+1 = (N − 2α)hα +
∑

i	=j

h′
α(i, j).

Claim. For all i �= j ≤ α, h′
α(i, j) ≤ hα

N−2α .

230 M. Nandi

Proof of claim. Let us assume i = α and j = α − 1. The proof for the other
cases will be similar. Any solution for h′

α(α, α − 1) is a solution for hα−1 and
vα = vα−1 + aα−1 − aα. However, all solutions corresponding to hα satisfy the
solution corresponding to hα−1 and vα is not a member of a set of size at most
2α. So the claim follows.

Now, we have

hα+1 ≤ hα(N − 2α) + α(α − 1)hα/(N − 2α).

In other words,

hα+1

hα
≤ (N − 2α) +

α(α − 1)
N − 2α

=
N2 − 4αN + 5α2 − α

N − 2α
.

Now we simplify the upper bound as follows.

N2 − 4αN + 5α2 − α

N − 2α
= (N − α)

N2 − 4αN + 5α2 − α

N2 − 3αN + 2α2

= (N − α)(1 − αN + α − 3α2

N2 − 3αN + 2α2
)

≤ (N − α)(1 − αN + α − 3α2

N2
)

≤ (N − α)(1 − α

2N
)

provided α(N +1)− 3α2 ≥ αN/2, equivalently (N +2) ≥ 6α. So for all α ≤ q ≤
N/6 we have

hα+1

hα
≤ (N − α)(1 − α

2N
) ≤ (N − α)e− α

2N .

By multiplying the ratio for all 1 ≤ α ≤ q −1 and the fact that h1 = N , we have
hq ≤ (N)qe

−q2/4N . The lemma follows from the definition that px = hq

(N)q
. ��

Now we consider the key-recovery adversary considered in [LP18]. However,
they considered transcripts with

√
N queries and were able to show a key-

recovery advantage about 1.3/N . However, we analyze it for all queries q and
the key-recovery advantage can reach to 1/2 for q = O(

√
N log N).

Theorem 3. Suppose m1, . . . ,mq ∈ B be distinct messages and n1, . . . ,nq be
distinct nonces. Let ti = WCSπ,κ(ni,mi) where ρκ is the polynomial hash. Then,
there is an algorithm A which recovers the hash-key κ with probability at least

1

1 + (N − 1)e− q2
4N

.

So when q =
√

4N log N , the key-recovery advantage is at least 1
2 .

Proof. We denote π(ni) = Vi. So V1, . . . ,Vq forms a without replacement ran-
dom sample from B. We write ti = Vi + ρκ(mi) = Vi + κ · mi. As before we
define the true-key set as

T := {x ∈ B | t1 − x · m1, . . . , tq − x · mq are distinct}.

Bernstein Bound on WCS is Tight 231

Clearly κ ∈ T. Let us fix x �= κ and denote ai = (κ − x) · mi. Note that ai’s are
distinct. So given a hash-key κ, we write the size of true-key set |T| as the sum
of the indicator random variables as follows: |T| = 1 +

∑
x	=κ Ix where Ix takes

value 1 if and only if V1 + a1, . . . ,Vq + aq are distinct. So,

E(|T| | κ) = 1 +
∑

x	=κ

E(Ix)

= 1 +
∑

x	=κ

px

where
px := Pr(V1 + a1, . . . ,Vq + aq are distinct).

By Lemma 4, we know that px ≤ e− q2

4N and hence E(|T| | κ) ≤ 1+(N −1)e− q2

4N .

This is true for all hash-keys κ and hence we have E(|T|) ≤ 1 + (N − 1)e− q2

4N .
This completes the proof. ��

6 Key-Recovery Security Analysis of GCM

Definition of GCM. We briefly describe how GCM works. We refer the reader
to see [MV04] for details. HereB = {0, 1}n (with n = 128) Let eK be a blockcipher
as before. We derive hash-key as κ = eK(0n). Given a message (m1, . . . ,m�) ∈ B�

and a nonce n ∈ {0, 1}b−s for some s, we define the ciphertext as

ci = V′
i ⊕ mi, i ∈ [�],V′

i = eK(n‖〈i + 1〉)
where 〈i〉 represents s-bit encoding of the integer i. Finally, the tag is computed
as xor of V := eK(n‖〈1〉) and the output of the polynomial hash of the associated
data and the ciphertext with length encoding. So, t = V⊕c0κ⊕c1κ

2⊕· · · where
c0 is the block which encodes the length of message (same as the ciphertext) and
the associated data.

In other words, the tag is computed as a WCS authentication over the cipher-
text with the hash-key derived from the blockcipher. So, one can have a similar
key-recovery attack as stated in Theorem 2 which requires roughly

√
n × 2n/2

authentication queries. More precisely, after making 268 authentication queries
with the first message block random we can recover eK(0) with probability at
least 1/2. Note that the ciphertext blocks are uniformly distributed as it is an
XOR of message blocks and some blockcipher outputs independent of the mes-
sage blocks. Now we show a more efficient algorithm B which utilize the length
of messages as described below.

1. Choose q messages M1, . . . ,Mq ←$B� and fix some associated data Ai = A.
Make authentication queries (ni,Mi, A), i ∈ [q] for distinct nonces ni’s.

2. Let (C1, t1), . . . , (Cq, tq) be the corresponding responses.
3. Let Mi = mi,1‖ · · · mi,� and Ci = ci,1‖ · · · ci,� where ni,j , ci,j ∈ B. Construct

a set
V′ = {V′

i,j := mi,j ⊕ ci,j | i ∈ [q], j ∈ [�]}

232 M. Nandi

4. Construct the true-key set

T= {k ∈ B | ti ⊕ ρk(A,Ci) �∈ V′ ∀i ∈ [q]}.

5. Return a key k ←$T.

Remark 2. One may incorporate the relation that ti ⊕ ρk(A,Ci)’s are distinct
while defining the true-key set. We can gain some complexity up to some small
constant factor. For the sake of simplicity of the analysis and the attack, we keep
the basic simple attack algorithm as described above.

Theorem 4. Let N = 2n where n is the block size of the blockcipher used in
GCM.

KRGCM(q, �) ≥ 1

1 + Ne− �q2
N

(21)

In particular, when �q2 = N log N we have KRGCM(q, �) ≥ 1/2.

For example, when n = 128, � = 215 we now need q = 260 encryption queries
to recover κ = eK(0). Once we recover κ, we can forge as many times as required.
Moreover, one can define a universal forgery (for any chosen message and asso-
ciated data but not the nonce).

Proof. From the permutation nature of the blockcipher, it is easy to see that
eK(0) ∈ T as defined in the algorithm. So, as before

KRGCM(A) ≥ 1
E(|T|) .

We will now provide an upper bound of E(|Tτ |). In fact, we will provide an upper
bound of the conditional expectation after conditioning the blockcipher key K
(so that all blockcipher outputs are fixed). Since message blocks are uniformly
distributed, the ciphertext blocks are also uniformly distributed (due to one-time
padding). This proves that after conditioning the blockcipher key K,

R1,x := t1 ⊕ ρx(A,C1), . . . , Rq,x := tq ⊕ ρx(A,Cq) ←$B.

Now, we define an indicator random variable Ix to be one if Ri,x �∈ V′ for all
i ∈ [q] and 0 otherwise. So, from the definition of T, it is easy to see that

|T| = 1 +
∑

x	=κ

Ix.

Condition a blockcipher key K (and hence the hash-key κ = eK(0n) is fixed),
and fix some x �= κ. Now,

E(Ix | K) = Pr(Ix = 1 | K)

=
q∏

i=1

(
N − �q

N
)

≤ e− �q2

N .

Bernstein Bound on WCS is Tight 233

When x = κ, clearly, Ix = 1. So,

E(|T| | K) = 1 +
∑

x	=κ

E(Ix)

≤ 1 + Ne− �q2

N .

This bound is true for all blockcipher keys K and hence E(|T|) ≤ 1 + Ne− �q2

N .
This completes the proof. ��

We show that when �q2 =
√

2NlogN , we achieve some significant forgery
advantage. Bernstein proved an upper bound of the forgery advantage for WCS.
A similar proof is also applicable for GCM. In particular, we show that forgery
advantage of GCM for single forging attempt is at most �

N · O(e
4�q2

N). So when
we consider v forging attempts, the maximum forging advantage is at most
v · �

N ·O(e
4σq
N). So our forgery algorithm (which is induced from the key-recovery

algorithm) is also optimum for GCM. We denote the maximum forging advan-
tage as AuthGCM(q, v, σ, �) where σ denotes the total number of blocks present
in message and associated data in all q encryption queries, and � denotes the
number of blocks present in associated data and message or ciphertext for the
largest query among all encryption and verification attempts. A similar result
has been stated in Appendix C of [IOM12a] (full version of [IOM12b]).

Theorem 5. Let GCM be based on the ideal n-bit random permutation π. Then,
for all q, v and �,

AuthGCM(q, v, σ, �) = v · �

N
· O(e

4σq
N) (22)

Proof. We use xq to denote a q tuple (x1, . . . , xq). For positive integers r ≤ m,
we write (m)r := m(m − 1) · · · (m − r + 1). Bernstein proved an upper bound
of the interpolation probability of a random permutation π as described below.
Let δN (q) = (1 − (q − 1)/N)−q/2.

Theorem 4.2 in [Ber05b] showed that for all 0 < r ≤ N ,

1
(N)r

≤ δN (r)
Nr

=
(1 − r−1

N)− r
2

Nr
. (23)

Note that for any r distinct inputs x1, . . . , xr and outputs y1, . . . , yr the prob-
ability that π(x1) = y1, . . . , π(xr) = yr is exactly 1

(N)r
. We use this result to

prove our result.
Without loss of generality we assume that A is deterministic and the nonce

in the forging attempt is one of the nonce in the encryption queries (since oth-
erwise the bound can be shown to be smaller that what we claimed). We also
assume that adversary makes single forging attempt (i.e. v = 1). Let A make
queries (ni,mi, ai) and obtain response (ci, ti) where mi = (mi[1], . . . ,mi[�i]),
ai = (ai[1], . . . , ai[�′

i]) and ci = (ci[1], . . . , ci[�i]) and let σ =
∑q

i=1(�i + �′
i)

234 M. Nandi

(total number of blocks in all queries). We call (nq,mq, aq, cq, tq) transcript (for
encryption queries).

Let (n∗, a∗, c∗, t∗) denote the forging attempt where c∗ contains �∗ blocks.
According to our simplification, let n∗ = ni for some i. So cq, tq determine the
whole transcript including the forging attempt. Let us write zi = mi ⊕ ci. It is
also easy to see that tq, zq also determine the transcript.

Let F denote the forgery event, n∗ = ni and d = t∗ ⊕ ti. More-
over, for every k (a candidate of hash key), we set yi(k) = ti ⊕ ρk(ai‖ci).
Now, Pr(F) = Pr(ρκ(ai‖ci) ⊕ ρκ(a∗‖m∗) = d). This can be written as the
following sum

Pr(F) =
∑

tq,zq

Pr(ρκ(ai‖ci) ⊕ ρκ(a∗‖c∗) = d ∧ A obtains zq, tq)

=
∑

tq,zq

Pr(ρκ(ai‖ci) ⊕ ρκ(a∗‖c∗) = d ∧ E(κ))

where the sum is taken over all tq and all those zq for which all blocks of zi’s are
distinct. The event E(κ) denotes that π(n1‖〈1〉) = y1(κ), . . . , π(nq‖〈1〉) = yq(κ)
and π(ni‖〈j〉) = zi[j] for all 1 ≤ i ≤ q, 1 ≤ j ≤ �i.

Now conditioning on any π(0) := κ = k such that ρκ(ai‖ci) ⊕ ρκ(a∗‖c∗) = d

(there are at most max{�i + �′
i, �

∗ + �
′∗} + 1 ≤ � choices of k), the conditional

probability is reduced to Pr(E(k)) which should be 1
(N−1)q+σ

(note that π(0) is
conditioned and the event E(k) defines q + σ many inputs-outputs of π). So,

Pr(F) =
∑

tq,zq

Pr(ρκ(ai‖ci) ⊕ ρκ(a∗‖c∗) = d ∧ E(κ))

=
∑

tq,zq

Pr(ρκ(ai‖ci) ⊕ ρκ(a∗‖c∗) = d) × Pr(E(κ) | ρκ(ai‖ci) ⊕ ρκ(a∗‖c∗) = d)

≤
∑

tq,zq

�

N
· 1

(N − 1)q+σ

=
� · (N)σ · Nq

(N)q+σ+1

Note that in the above sum, we vary all distinct values of z blocks and so there
are (N)σ such choices of z. Now it remains to simplify the bound.

Pr(F) ≤ � · (N)σ · Nq

(N)q+σ+1

=
� · Nq

(N − σ)q+1

≤(a)
� · Nq

(N − σ)q+1
δN−σ(q + 1)

=
�

N
× (1 − σ

N
)−(q+1) × (1 − q

N − σ
)−(q+1)/2.

Bernstein Bound on WCS is Tight 235

The inequality (a) follows from Eq. 23 with N as N −σ. This provides the forgery
bound for GCM (without using the privacy bound for GCM). For the values of
q, � and σ of our interest, we can assume that σ ≤ N/2 and 1 − x = Θ(e−x)
(Lemma 1). So we can rewrite the upper bound of the forgery advantage of
GCM as

�

N
· O(e

σ(q+1)+q(q+1)
N) =

�

N
· O(e

(σ+q)(q+1)
N) =

�

N
· O(e

4σq
N).

The proof for v forging attempts simply follows by multiplying above bound
by v. ��
Remark 3. The above bound says that, as long as qσ = o(N log N), the forgery
advantage is negligible and hence we need qσ to be in the order of N log N to get
non-negligible advantage. Along with our forgery adversary on GCM, we have
shown the above forgery bound of GCM is indeed tight.

7 Conclusion

In this paper we describe key-recover attacks on WCS and GCM. The query
complexity of the attack match with the Bernstein bound and hence we prove
the tightness of Bernstein bound. Although the query complexity of our attacks
are optimal, a straightforward implementation would require O(N) memory
and time complexity. Very recently Leurent and Sibleyras [LS18] demonstrated
attacks for WCS. They have described a method to recover hash key of WCS
(and counter mode encryption) with O(22n/3) query and time complexity. How-
ever, the success probability analysis of their attack is heuristic. It would be an
interesting problem to see whether our concrete analysis can be adapted to their
attacks.

Acknowledgments. The author would like to thank Anirban Ghatak, Eik List,
Subhamoy Maitra, Bart Mennink and anonymous reviewers for their useful comments.
The author would also like to thank Atul Luykx for the initial discussion of the paper.
This work is supported by R. C. Bose Center for Cryptology and Security.

References

[ABBT15] Abdelraheem, M.A., Beelen, P., Bogdanov, A., Tischhauser, E.: Twisted
polynomials and forgery attacks on GCM. In: Oswald, E., Fischlin, M.
(eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 762–786. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5 29

[AY12] Aoki, K., Yasuda, K.: The security and performance of “GCM” when
short multiplications are used instead. In: Kuty�lowski, M., Yung, M. (eds.)
Inscrypt 2012. LNCS, vol. 7763, pp. 225–245. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-38519-3 15

[BBS86] Blum, L., Blum, M., Shub, M.: A simple unpredictable pseudo-random
number generator. SIAM J. Comput. 15(2), 364–383 (1986)

https://doi.org/10.1007/978-3-662-46800-5_29
https://doi.org/10.1007/978-3-642-38519-3_15

236 M. Nandi

[Ber70] Berlekamp, E.R.: Factoring polynomials over large finite fields. Math.
Comput. 24(111), 713–735 (1970)

[Ber05a] Bernstein, D.J.: The Poly1305-AES message-authentication code. In:
Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 32–
49. Springer, Heidelberg (2005). https://doi.org/10.1007/11502760 3

[Ber05b] Bernstein, D.J.: Stronger security bounds for Wegman-Carter-Shoup
authenticators. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol.
3494, pp. 164–180. Springer, Heidelberg (2005). https://doi.org/10.1007/
11426639 10

[Ber07] Bernstein, D.J.: Polynomial evaluation and message authentication.
http://cr.yp.to/papers.html#pema. ID b1ef3f2d385a926123e1517392e20
f8c. Citations in this document, 2 (2007)

[BGM04] Bellare, M., Goldreich, O., Mityagin, A.: The power of verification queries
in message authentication and authenticated encryption. IACR Cryptol-
ogy ePrint Archive, 2004:309 (2004)

[BHK+99] Black, J., Halevi, S., Krawczyk, H., Krovetz, T., Rogaway, P.: UMAC: fast
and secure message authentication. In: Wiener, M. (ed.) CRYPTO 1999.
LNCS, vol. 1666, pp. 216–233. Springer, Heidelberg (1999). https://doi.
org/10.1007/3-540-48405-1 14

[BJKS94] Bierbrauer, J., Johansson, T., Kabatianskii, G., Smeets, B.: On fam-
ilies of hash functions via geometric codes and concatenation. In:
Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 331–342.
Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48329-2 28.
http://cr.yp.to/bib/entries.html#1994/bierbrauer

[Bra83] Brassard, G.: On computationally secure authentication tags requiring
short secret shared keys. In: Chaum, D., Rivest, R.L., Sherman, A.T.
(eds.) Advances in Cryptology, pp. 79–86. Springer, Boston, MA (1983).
https://doi.org/10.1007/978-1-4757-0602-4 7

[BT16] Bellare, M., Tackmann, B.: The multi-user security of authenticated
encryption: AES-GCM in TLS 1.3. In: Robshaw, M., Katz, J. (eds.)
CRYPTO 2016. LNCS, vol. 9814, pp. 247–276. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53018-4 10

[CW79] Carter, L., Wegman, M.N.: Universal classes of hash functions. J. Comput.
Syst. Sci. 18(2), 143–154 (1979)

[CZ81] Cantor, D.G., Zassenhaus, H.: A new algorithm for factoring polynomials
over finite fields. Math. Comput. 36(154), 587–592 (1981)

[dB93] den Boer, B.: A simple and key-economical unconditional authentication
scheme. J. Comput. Secur. 2, 65–71 (1993). http://cr.yp.to/bib/entries.
html#1993/denboer

[DR05] Daemen, J., Rijmen, V.: Rijndael/AES. In: van Tilborg, H.C.A. (ed.)
Encyclopedia of Cryptography and Security, pp. 520–524. Springer,
Boston (2005). https://doi.org/10.1007/0-387-23483-7

[GMS74] Gilbert, E.N., MacWilliams, F.J., Sloane, N.J.A.: Codes which detect
deception. Bell Labs Tech. J. 53(3), 405–424 (1974)

[HK97] Halevi, S., Krawczyk, H.: MMH: software message authentication in
the Gbit/second rates. In: Biham, E. (ed.) FSE 1997. LNCS, vol.
1267, pp. 172–189. Springer, Heidelberg (1997). https://doi.org/10.1007/
BFb0052345

https://doi.org/10.1007/11502760_3
https://doi.org/10.1007/11426639_10
https://doi.org/10.1007/11426639_10
http://cr.yp.to/papers.html#pema
https://doi.org/10.1007/3-540-48405-1_14
https://doi.org/10.1007/3-540-48405-1_14
https://doi.org/10.1007/3-540-48329-2_28
http://cr.yp.to/bib/entries.html#1994/bierbrauer
https://doi.org/10.1007/978-1-4757-0602-4_7
https://doi.org/10.1007/978-3-662-53018-4_10
http://cr.yp.to/bib/entries.html#1993/denboer
http://cr.yp.to/bib/entries.html#1993/denboer
https://doi.org/10.1007/0-387-23483-7
https://doi.org/10.1007/BFb0052345
https://doi.org/10.1007/BFb0052345

Bernstein Bound on WCS is Tight 237

[HP08] Handschuh, H., Preneel, B.: Key-recovery attacks on universal hash func-
tion based MAC algorithms. In: Wagner, D. (ed.) CRYPTO 2008. LNCS,
vol. 5157, pp. 144–161. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-85174-5 9

[IOM12a] Iwata, T., Ohashi, K., Minematsu, K.: Breaking and repairing GCM secu-
rity proofs (2012)

[IOM12b] Iwata, T., Ohashi, K., Minematsu, K.: Breaking and repairing GCM
security proofs. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012.
LNCS, vol. 7417, pp. 31–49. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-32009-5 3

[Jou] Joux, A.: Comments on the draft GCM specification-authentication fail-
ures in NIST version of GCM

[JTC11] JTC1: ISO/IEC 9797–1:2011 information technology - security techniques
- message authentication codes (MACs) - part 1: Mechanisms using a block
cipher (2011)

[KR87] Karp, R.M., Rabin, M.O.: Efficient randomized pattern-matching algo-
rithms. IBM J. Res. Dev. 31, 249–260 (1987). http://cr.yp.to/bib/entries.
html#1987/karp

[Kra94] Krawczyk, H.: LFSR-based hashing and authentication. In: Desmedt, Y.G.
(ed.) CRYPTO 1994. LNCS, vol. 839, pp. 129–139. Springer, Heidelberg
(1994). https://doi.org/10.1007/3-540-48658-5 15

[LP18] Luykx, A., Preneel, B.: Optimal forgeries against polynomial-based MACs
and GCM. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS,
vol. 10820, pp. 445–467. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-78381-9 17

[LS18] Leurent, G., Sibleyras, F.: The missing difference problem, and its appli-
cations to counter mode encryption. In: Nielsen, J.B., Rijmen, V. (eds.)
EUROCRYPT 2018. LNCS, vol. 10821, pp. 745–770. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-78375-8 24

[MV04] McGrew, D.A., Viega, J.: The security and performance of the
Galois/Counter Mode (GCM) of operation. In: Canteaut, A.,
Viswanathan, K. (eds.) INDOCRYPT 2004. LNCS, vol. 3348, pp.
343–355. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-
540-30556-9 27

[MV06] McGrew, D., Viega, J.: The use of Galois Message Authentication Code
(GMAC) in IPsec ESP and AH. Technical report, May 2006

[Nan14] Nandi, M.: On the minimum number of multiplications necessary for uni-
versal hash functions. In: Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS,
vol. 8540, pp. 489–508. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46706-0 25

[PC15] Procter, G., Cid, C.: On weak keys and forgery attacks against polynomial-
based MAC schemes. J. Cryptol. 28(4), 769–795 (2015)

[Pub01] NIST FIPS Pub. 197: Advanced encryption standard (AES). Federal infor-
mation processing standards publication, 197(441):0311 (2001)

[Rab81] Rabin, M.O.: Fingerprinting by random polynomials (1981). http://cr.
yp.to/bib/entries.html#1981/rabin. Note: Harvard Aiken Computational
Laboratory TR-15-81

[Rog95] Rogaway, P.: Bucket hashing and its application to fast message authen-
tication. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp.
29–42. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-44750-
4 3

https://doi.org/10.1007/978-3-540-85174-5_9
https://doi.org/10.1007/978-3-540-85174-5_9
https://doi.org/10.1007/978-3-642-32009-5_3
https://doi.org/10.1007/978-3-642-32009-5_3
http://cr.yp.to/bib/entries.html#1987/karp
http://cr.yp.to/bib/entries.html#1987/karp
https://doi.org/10.1007/3-540-48658-5_15
https://doi.org/10.1007/978-3-319-78381-9_17
https://doi.org/10.1007/978-3-319-78381-9_17
https://doi.org/10.1007/978-3-319-78375-8_24
https://doi.org/10.1007/978-3-540-30556-9_27
https://doi.org/10.1007/978-3-540-30556-9_27
https://doi.org/10.1007/978-3-662-46706-0_25
https://doi.org/10.1007/978-3-662-46706-0_25
http://cr.yp.to/bib/entries.html#1981/rabin
http://cr.yp.to/bib/entries.html#1981/rabin
https://doi.org/10.1007/3-540-44750-4_3
https://doi.org/10.1007/3-540-44750-4_3

238 M. Nandi

[Saa12] Saarinen, M.-J.O.: Cycling attacks on GCM, GHASH and other polyno-
mial MACs and hashes. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549,
pp. 216–225. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-34047-5 13

[SCM08] Salowey, J., Choudhury, A., McGrew, D.: AES Galois Counter Mode
(GCM) cipher suites for TLS. Technical report, August 2008

[Sho96] Shoup, V.: On fast and provably secure message authentication based on
universal hashing. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109,
pp. 313–328. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-
68697-5 24

[Sti94] Stinson, D.R.: Universal hashing and authentication codes. Des. Codes
Cryptogr. 4(3), 369–380 (1994)

[Tay94] Taylor, R.: An integrity check value algorithm for stream ciphers. In:
Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 40–48. Springer,
Heidelberg (1994). https://doi.org/10.1007/3-540-48329-2 4

[WC81] Wegman, M.N., Carter, L.: New hash functions and their use in authenti-
cation and set equality. J. Comput. Syst. Sci. 22(3), 265–279 (1981)

[ZTG13] Zhu, B., Tan, Y., Gong, G.: Revisiting MAC forgeries, weak keys and
provable security of Galois/Counter Mode of operation. In: Abdalla, M.,
Nita-Rotaru, C., Dahab, R. (eds.) CANS 2013. LNCS, vol. 8257, pp. 20–
38. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-02937-5 2

https://doi.org/10.1007/978-3-642-34047-5_13
https://doi.org/10.1007/978-3-642-34047-5_13
https://doi.org/10.1007/3-540-68697-5_24
https://doi.org/10.1007/3-540-68697-5_24
https://doi.org/10.1007/3-540-48329-2_4
https://doi.org/10.1007/978-3-319-02937-5_2

Hashes and Random Oracles

Correcting Subverted Random Oracles

Alexander Russell1, Qiang Tang2(B), Moti Yung3, and Hong-Sheng Zhou4

1 University of Connecticut, Mansfield, USA
acr@cse.uconn.edu

2 New Jersey Institute of Technology, Newark, USA
qiang@njit.edu

3 Columbia University, New York City, USA
moti@cs.columbia.edu

4 Virginia Commonwealth University, Richmond, USA
hszhou@vcu.edu

Abstract. The random oracle methodology has proven to be a power-
ful tool for designing and reasoning about cryptographic schemes, and
can often act as an effective bridge between theory and practice. In this
paper, we focus on the basic problem of correcting faulty—or adversari-
ally corrupted—random oracles, so that they can be confidently applied
for such cryptographic purposes.

We prove that a simple construction can transform a “subverted” ran-
dom oracle—which disagrees with the original one at a negligible frac-
tion of inputs—into a construction that is indifferentiable from a random
function. Our results permit future designers of cryptographic primitives
in typical kleptographic settings (i.e., with adversaries who may sub-
vert the implementation of cryptographic algorithms but undetectable
via blackbox testing) to use random oracles as a trusted black box, in
spite of not trusting the implementation. Our analysis relies on a gen-
eral rejection re-sampling lemma which is a tool of possible independent
interest.

1 Introduction

The random oracle methodology [7] has proven to be a powerful tool for designing
and reasoning about cryptographic schemes. It consists of the following two steps:
(i) design a scheme Π in which all parties (including the adversary) have oracle
access to a common truly random function, and establish the security of Π in
this favorable setting; (ii) instantiate the random oracle in Π with a suitable
cryptographic hash function (such as SHA256) to obtain an instantiated scheme
Π ′. The random oracle heuristic states that if the original scheme Π is secure,
then the instantiated scheme Π ′ is also secure. While this heuristic can fail
in various settings [19] the basic framework remains a fundamental design and
analysis tool. In this work we focus on the problem of correcting faulty—or
adversarially corrupted—random oracles so that they can be confidently applied
for such cryptographic purposes.

c© International Association for Cryptologic Research 2018
H. Shacham and A. Boldyreva (Eds.): CRYPTO 2018, LNCS 10992, pp. 241–271, 2018.
https://doi.org/10.1007/978-3-319-96881-0_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96881-0_9&domain=pdf

242 A. Russell et al.

Specifically, given a function h̃ drawn from a distribution which agrees in most
places with a uniform function, we would like to produce a corrected version that
has stronger uniformity properties. Our problem shares some features with the
classical “self-checking and self-correcting program” paradigm [9–11]: we wish
to transform a program that is faulty at a small fraction of inputs (modeling an
evasive adversary) to a program that is correct at all points. In this light, our
model can be viewed as an adaptation of the classical theory that considers the
problem of “self-correcting a probability distribution.” Notably, in our setting the
functions to be corrected are structureless—specifically, drawn from the uniform
distribution—rather than heavily structured. Despite that, the basic procedure
for correction and portions of the technical development are analogous.

One particular motivation for correcting random oracles in a cryptographic
context arises from recent work studying security in the kleptographic setting.
In this setting, the various components of a cryptographic scheme may be sub-
verted by an adversary so long as the tampering cannot be detected via black-
box testing. This is a challenging setting for a number of reasons highlighted by
[6,49,50]: one particular difficulty is that the random oracle paradigm is directly
undermined. In terms of the discussion above, the random oracle—which is even-
tually to be replaced with a concrete function—is subject to adversarial subver-
sion which complicates even the first step (i) of the random oracle methodology
above. Our goal is to provide a generic approach that can rigorously “protect”
random oracles from subversion.

1.1 Our Contributions

We first give two concrete attacking scenarios where hash functions are sub-
verted in the kleptographic setting. We then express the security properties
by adapting the successful framework of indifferentiability [23,41] to our setting
with adversarial subversion. This framework provides a satisfactory guarantee of
modularity—that is, that the resulting object can be directly employed by other
constructions demanding a random oracle. We call this new notion “crooked”
indifferentiability to reflect the role of adversary in the modeling; see below.
(A formal definition appears in Sect. 2.)

We prove that a simple construction involving only public randomness can
boost a “subverted” random oracle into a construction that is indifferentiable
from a random function (Sects. 3 and 4). We remark that our technical devel-
opment establishes a novel “rejection re-sampling” lemma, controlling the dis-
tribution emerging from adversarial re-sampling of product distributions. This
may be a technique of independent interest. We expand on these contributions
below.

Consequences of kleptographic hash subversion. We first illustrate the
damages that are caused by using hash functions that are subverted at only a
negligible fraction of inputs with two concrete examples:

(1) Chain take-over attack on blockchain. For simplicity, consider a proof-of-work
blockchain setting where miners compete to find a solution s to the “puzzle”

Correcting Subverted Random Oracles 243

h(pre||transactions||s) ≤ d, where pre denotes the hash of previous block, trans-
actions denotes the set of valid transactions in the current block, and d denotes
the difficulty parameter. Here h is intended to be a strong hash function. Note
that, the mining machines use a program h̃(·) (or a dedicated hardware module)
which could be designed by a clever adversary. Now if h̃ has been subverted so
that h̃(∗||z) = 0 for a randomly chosen z—and h̃(x) = h(x) in all other cases—
this will be difficult to detect by prior black-box testing; on the other hand, the
adversary who created h̃ has the luxury of solving the proof of work without
any effort for any challenge, and thus can completely control the blockchain. (A
fancier subversion can tune the “backdoor” z to other parts of the input so that
it cannot be reused by other parties; e.g., h̃(w||z) = 0 if z = f(w) for a secret
pseudorandom function known to the adversary.)

(2) System sneak-in attack on password authentication. In Unix-style system,
during system initialization, the root user chooses a master password α and the
system stores the digest ρ = h(α), where h is a given hash function normally
modeled as a random oracle. During login, the operating system receives input
x and accepts this password if h(x) = ρ. An attractive feature of this practice
is that it is still secure if ρ is accidentally leaked. In the presence of klepto-
graphic attacks, however, the module that implements the hash function h may
be strategically subverted, yielding a new function h̃ which destroys the security
of the scheme above: for example, the adversary may choose a relatively short
random string z and define h̃(y) = h(y) unless y begins with z, in which case
h̃(zx) = x. As above, h and h̃ are indistinguishable by black-box testing; on
the other hand, the adversary can login as the system administrator using ρ
and its knowledge of the backdoor z (without knowing the actual password α,
presenting zρ instead).

The model of “crooked” indifferentiability. The problem of cleaning defec-
tive randomness has a long history in computer science. Our setting requires that
the transformation must be carried out by a local rule and involve an exponen-
tially small amount of public randomness (in the sense that we wish to clean a
defective random function h : {0, 1}n → {0, 1}n with only a polynomial length
random string). The basic framework of correcting a subverted random oracle is
the following:

First, a function h : {0, 1}n → {0, 1}n is drawn uniformly at random. Then,
an adversary may subvert the function h, yielding a new function h̃. The sub-
verted function h̃(x) is described by an adversarially-chosen (polynomial-time)
algorithm H̃h(x), with oracle access to h. We insist that h̃(x) �= h(x) only at
a negligible fraction of inputs.1 Next, the function h̃ is “publicly corrected” to

1 We remark that tampering with even a negligible fraction of inputs can have devas-
tating consequences in many settings of interest: e.g., the blockchain and password
examples above. Additionally, the setting of negligible subversion is precisely the
desired parameter range for existing models of kleptographic subversion and secu-
rity. In these models, when an oracle is non-negligibly defective, this can be easily
detected by a watchdog using a simple sampling and testing regimen, see e.g., [49].

244 A. Russell et al.

a function h̃R (defined below) that involves some public randomness R selected
after h̃ is supplied.2

We wish to show that the resulting function (construction) is “as good as”
a random oracle, in the sense of indifferentiability. We say a construction CH

(having oracle access to an ideal primitive H) is indifferentiable from another
ideal primitive F , if there exists a simulator S so that (CH ,H) and (F ,S) are
indistinguishable to any distinguisher D.

To reflect our setting, an H-crooked-distinguisher ̂D is introduced; the H-
crooked-distinguisher ̂D first prepares the subverted implementation H̃ (after
querying H first); then a fixed amount of (public) randomness R is drawn and
published; the construction C uses only subverted implementation H̃ and R.
Now following the indifferentiability framework, we will ask for a simulator
S, such that (C H̃H

(·, R),H) and (F ,SH̃(R)) are indistinguishable to any H-
crooked-distinguisher ̂D who even knows R. A similar security preserving theo-
rem [23,41] also holds in our model. See Sect. 2 for details.

The construction. The construction depends on a parameter � = poly(n)
and public randomness R = (r1, . . . , r�), where each ri is an independent and
uniform element of {0, 1}n. For simplicity, the construction relies on a family of
independent random oracles hi(x), for i ∈ {0, . . . , �}. (Of course, these can all
be extracted from a single random oracle with slightly longer inputs by defining
h̃i(x) = h̃(i, x) and treating the output of hi(x) as n bits long.) Then we define

h̃R(x) = h̃0

(

�
⊕

i=1

h̃i(x ⊕ ri)

)

= h̃0

(

g̃R(x)
)

.

Note that the adversary is permitted to subvert the function(s) hi by choosing
an algorithm Hh∗(x) so that h̃i(x) = Hh∗(i, x). Before diving into the analysis,
let us first quick demonstrate how some simpler constructions fail.

Simple constructions and their shortcomings. Although during the stage of man-
ufacturing the hash functions h̃∗ = {h̃i}�

i=0, the randomness R := r1, . . . , r� are
not known to the adversary, they become public in the second query phase. If the
“mixing” operation is not carefully designed, the adversary could choose inputs
accordingly, trying to “peel off” R. We discuss a few examples:

1. h̃R(x) is simply defined as h̃1(x ⊕ r1). A straightforward attack is as follows:
the adversary can subvert h1 in a way that h̃1(m) = 0 for a random input
m; the adversary then queries m ⊕ r1 on h̃R(·) and can trivially distinguish
h̃ from a random function.

2 We remark that in many settings, e.g., the model of classical self-correcting programs,
we are permitted to sample fresh and “private” randomness for each query; in our
case, we may only use a single polynomial-length random string for all points. Once
R is generated, it is made public and fixed, which implicitly defines our corrected
function h̃R(·). This latter requirement is necessary in our setting as random oracles
are typically used as a public object—in particular, our attacker must have full
knowledge of R.

Correcting Subverted Random Oracles 245

2. h̃R(x) is defined as h̃1(x⊕r1)⊕h̃2(x⊕r2). Now a slightly more complex attack
can still succeed: the adversary subverts h1 so that h̃1(x) = 0 if x = m||∗,
that is, when the first half of x equals to a randomly selected string m with
length n/2; likewise, h2 is subverted so that h̃2(x) = 0 if x = ∗||m, that is,
the second half of x equals m. Then, the adversary queries m1||m2 on h̃R(·),
where m1 = m ⊕ r1,0, and m2 = m ⊕ r2,1, and r1,0 is the first half of r1, and
r2,1 is the second half of r2. Again, trivially, it can be distinguished from a
random function.
This attack can be generalized in a straightforward fashion to any � ≤ n/λ:
the input can be divided in into consecutive substrings each with length λ,
and the “trigger” substrings can be planted in each chunk.

Challenges in the analysis. To analyze security in the “crooked” indifferentia-
bility framework, our simulator needs to ensure consistency between two ways
of generating output values: one is directly from the construction CH̃h

(x,R);
the other calls for an “explanation” of F—a truly random function—via recon-
struction from related queries to H (in a way consistent with the subverted
implementation H̃). To ensure a correct simulation, the simulator must suitably
answer related queries (defining one value of CH̃h

(x,R)). We develop a theo-
rem establishing an unpredictability property of the internal function g̃R(x) to
guarantee the success of simulation. In particular, we prove that for any input x
(if not yet “fully decided” by previous queries), the output of g̃R(x) is unpred-
icatable to the distinguisher even if she knows the public randomness R (even
conditioned on adaptive queries generated by ̂D).

Section 4 develops the detailed security analysis for the property of the inter-
nal function g̃R(x). The proof of correctness for this construction is complicated
by the fact that the “defining” algorithm H̃ is permitted to make adaptive
queries to h during the definition of h̃; in particular, this means that even when
a particular “constellation” of points (the hi(x ⊕ ri)) contains a point that is
left alone by H̃ (which is to say that it agrees with hi()) there is no guarantee
that

⊕

i hi(x ⊕ ri) is uniformly random. This suggests focusing the analysis on
demonstrating that the constellation associated with every x ∈ {0, 1}n will have
at least one “good” component, which is (i.) not queried by H̃h(·) when eval-
uated on the other terms, and (ii.) answered honestly. Unfortunately, actually
identifying such a good point with certainty appears to require that we examine
all of the points in the constellation for x, and this interferes with the standard
“exposure martingale” proof that is so powerful in the random oracle setting
(which capitalizes on the fact that “unexamined” values of h can be treated as
independent and uniform values).

To sidestep this difficulty, we prove a “resampling” lemma, which lets us
examine all points in a particular constellation, identify one “good” one of inter-
est, and then resample this point so as to “forget” about all possible conditioning
this value might have. The resampling lemma gives a precise bound on the effects
of such conditioning.

246 A. Russell et al.

Immediate applications: Our correction function can be easily applied to
save the faulty hash implementation in several important application scenarios,
as explained in the motivational examples.

(1) For proof-of-work based blockchains, as discussed above, miners may rely on
a common library h̃ for the hash evaluation, perhaps cleverly implemented
by an adversary. Here h̃ is determined before the chain has been deployed.
We can then prevent the adversary from capitalizing on this subversion by
applying our correction function. In particular, the public randomness R can
be embedded in the genesis block; the function h̃R(·) is then used for mining
(and verification) rather than h̃.

(2) The system sneak-in can also be resolved immediately by applying our cor-
recting random oracle. During system initialization (or even when the oper-
ating system is released), the system administrator generates some random-
ness R and wraps the hash module h̃ (potentially subverted) to define h̃R(·).
The password α then gives rise to the digest ρ = h̃R(α) together with the
randomness R. Upon receiving input x, the system first “recovers” h̃R(·)
based on the previously stored R, and then tests if ρ = h̃R(x). The access
will be enabled if the test is valid. As the corrected random oracle ensures
the output to be uniform for every input point, this remains secure in the
face of subversion.3

1.2 Related Work

Related work on indifferentiability. The notion of indifferentiability was proposed
by Maurer et al. [41], as an extension of the classical concept of indistinguisha-
bility when one or more oracles are publicly available (such as a random oracle).
It was later adapted by Coron et al. [23] and generalized to several other variants
in [29,33,34,47,53]. Notably, a line of elegant work demonstrated the equivalence
of the random oracle model and the ideal cipher model; in particular, the Feistel
construction (with a small constant number of rounds) is indifferentiable from
an ideal cipher, see [24–26]. Our work adapts the indifferentiability framework
to the setting where the construction uses only a subverted implementation,
which we call “crooked indifferentiability,” where the construction aims to be
indifferentiable from another repaired random oracle.
Related work on self-correcting programs. The theory of program self-testing,
and self-correcting, was pioneered by the work of Blum et al. [9–11]. This the-
ory addresses the basic problem of program correctness by verifying relationships
between the outputs of the program on randomly selected inputs; a similar prob-
lem is to turn an almost correct program into one that is correct at every point
with overwhelming probability. Rubinfeld’s thesis [48] is an authoritative survey
of the basic framework and results. Our results can be seen as a distributional
analogue of this theory but with two main differences: (i). we insist on using

3 Typical authentication of this form also uses password “salt,” but this doesn’t change
the structure of the attack or the solution.

Correcting Subverted Random Oracles 247

only public randomness drawn once for the entire “correction”; (ii). our target
object is a distribution, rather than a particular function.
Related work on random oracles. The random oracle methodology [7] can signif-
icantly simplify both cryptographic constructions and proofs, even though there
exist schemes which are secure using random oracles, but cannot be instanti-
ated in the standard model, [19]. On the other hand, efforts have been made to
identify instantiable assumptions/models in which we may analyze interesting
cryptographic tasks [4,12–14,16,18,20,39]. Also, we note that research efforts
have also been made to investigate weakened idealized models [37,38,40,45].
Finally, there are several recent nice works about random oracle in the auxiliary
input model (or with pre-processing) [31,51]. Our model shares some similarities
that the adversary may embed some preprocessed information into the subverted
implementation, but our subverted implementation can further misbehave. Our
results strengthen the random oracle methodology in the sense that using our
construction, we can even tolerate a faulty hash implementation.
Related work on kleptographic security. Kleptographic attacks were originally
introduced by Young and Yung [54,55]; In such attacks, the adversary pro-
vides subverted implementations of the cryptographic primitive, trying to learn
secret without being detected. In recent years, several remarkable allegations of
cryptographic tampering [42,46], including detailed investigations [21,22], have
produced a renewed interest in both kleptographic attacks and in techniques
for preventing them [1–3,5,6,8,15,27,28,30,32,43,49,50,52]. None of those work
considered how to actually correct a subverted random oracle.

Concurrently, Fischlin et al. [36] also considered backdoored (keyed) hash
functions, and how to immunize them particularly for the settings of HMAC
and HKDF. They focused on preserving some weaker property of weak pseu-
dorandomness for the building block of the compression function. We aim at
correcting all the properties of a subverted random oracle, and moreover, our
correction function can be applied to immunize backdoored public hash func-
tions, which was left open in [36].
Similar constructions in other context. Our construction follows the simple intu-
ition by mixing and input and output by XORing multiple terms. This share
similarities in constructions in several other scenarios, e.g., about hardness ampli-
fication, notably the famous Yao XOR lemma, and for weak PRF [44]; and ran-
domizers in the bounded storage model [35]. Our construction has to have an
external layer of h0 to wrap the XOR of terms, and our analysis is very different
from them due to that our starting point of a subverted implementation.

2 The Model: Crooked Indifferentiability

2.1 Preliminary: Indifferentiability

The notion of indifferentiability introduced by Maurer et al. [41] has been found
very useful for studying the security of hash function and many other primitives,
especially model them as idealized objectives. This notion is an extension of the

248 A. Russell et al.

classical notion of indistinguishability, when one or more oracles are publicly
available. The indifferentiability notion in [41] is given in the framework of ran-
dom systems providing interfaces to other systems. Coron et al. [23] demonstrate
an equivalent indifferentiability notion for random oracles but in the framework
of Interactive Turing Machines (as in [17]). The indifferentiability formulation
in this subsection is essentially taken from [23]. In the next subsection, we will
introduce our new notion, crooked indifferentiability.

Defining indifferentiability. We consider ideal primitives. An ideal primitive is
an algorithmic entity which receives inputs from one of the parties and returns
its output immediately to the querying party. We now proceed to the definition
of indifferentiability [23,41]:

Definition 1 (Indifferentiability [23,41]). A Turing machine C with oracle
access to an ideal primitive G is said to be (tD, tS , q, ε)-indifferentiable from an
ideal primitive F , if there is a simulator S, such that for any distinguisher D, it
holds that :

∣

∣Pr[DC ,G = 1] − Pr[DF,S = 1]
∣

∣ ≤ ε .

The simulator S has oracle access to F and runs in time at most tS . The distin-
guisher D runs in time at most tD and makes at most q queries. Similarly, CG is
said to be (computationally) indifferentiable from F if ε is a negligible function
of the security parameter λ (for polynomially bounded tD and tS). See Fig. 1.

C G F S

D

Fig. 1. The indifferentiability notion: the distinguisher D either interacts with algo-
rithm C and ideal primitive G, or with ideal primitive F and simulator S. Algorithm
C has oracle access to G, while simulator S has oracle access to F .

As illustrated in Fig. 1, the role of the simulator is to simulate the ideal
primitive G so that no distinguisher can tell whether it is interacting with C and
G, or with F and S; in other words, the output of S should look “consistent”
with what the distinguisher can obtain from F . Note that normally the simulator
does not see the distinguisher’s queries to F ; however, it can call F directly when
needed for the simulation.

Correcting Subverted Random Oracles 249

Replacement. It is shown in [41] that if C G is indifferentiable from F , then C G

can replace F in any cryptosystem, and the resulting cryptosystem is at least as
secure in the G model as in the F model.

We use the definition of [41] to specify what it means for a cryptosystem to be
at least as secure in the G model as in the F model. A cryptosystem is modeled
as an Interactive Turing Machine with an interface to an adversary A and to a
public oracle. The cryptosystem is run by an environment E which provides a
binary output and also runs the adversary. In the G model, cryptosystem P has
oracle access to C (which has oracle access to G), whereas attacker A has oracle
access to G. In the F model, both P and SA (the simulator) has direct oracle
access to F . The definition is illustrated in Fig. 2.

C G

P A

E

F

P SA

E

Fig. 2. The environment E interacts with cryptosystem P and attacker A. In the G
model (left), P has oracle access to C whereas A has oracle access to G. In the F
model, both P and SA have oracle access to F .

Definition 2. A cryptosystem P is said to be at least as secure in the G model
with algorithm C, as in the F model, if for any environment E and any attacker
A in the G model, there exists an attacker SA in the F model, such that:

Pr[E(PC ,AG) = 1] − Pr[E(PF ,SF
A) = 1] ≤ ε.

where ε is a negligible function of the security parameter λ, and the notation
E(PC ,AG) defines the output of E after interacting with P,A as on the left side
of Fig. 2 (similarly we can define the right hand side). Moreover, a cryptosys-
tem is said to be computationally at least as secure, etc., if E, A and SA are
polynomial-time in λ.

We have the following security preserving (replacement) theorem, which says
that when an ideal primitive is replaced by an indifferentiable one, the security
of the “bigger” cryptosystem remains:

250 A. Russell et al.

Theorem 1 ([23,41]). Let P be a cryptosystem with oracle access to an ideal
primitive F . Let C be an algorithm such that C G is indifferentiable from F .
Then cryptosystem P is at least as secure in the G model with algorithm C as
in the F model.

2.2 Crooked Indifferentiability

The ideal primitives that we focus on in this paper are random oracles. A ran-
dom oracle [7] is an ideal primitive which provides a random output for each
new query, and for the identical input queries the same answer will be given.
Next we will formalize a new notion called crooked indifferentiability to charac-
terize subversion. For simplicity, our formalization here is for random oracles, we
remark that the formalization can be easily extended for other ideal primitives.

Crooked indifferentiability for random oracles. Let us briefly recall our
goal: as mentioned in the Introduction, we are considering to repair a sub-
verted/faulty random oracle, such that the corrected construction can be used
as good as a random oracle. It is thus natural to consider the indifferentiability
notion. However, we need to adjust the notion to properly model the subversion
and to avoid trivial impossibility.

We use H to denote the original random oracle and H̃z to be the subverted
implementation (where z could be the potential backdoor hardcoded in the
implementation and we often ignore it using H̃ for simplicity). There will be
several modifications to the original indifferentiability notion. (1) The deter-
ministic construction C will have the oracle access to the random oracle via the
subverted implementation H̃, not via the original ideal primitive H; This creates
lots of difficulty (and even impossibility) for us to develop a suitable construc-
tion. For that reason, the construction is allowed to access to trusted but public
randomness r (see Remark 1 below). (2) The simulator will also have the ora-
cle access to the subverted implementation H̃ and also the public randomness
r. Item (2) is necessary as it is clearly impossible to have an indifferentiability
definition with a simulator that has no access to H̃, as the distinguisher can
simply make query an input such that C will use a value that is modified by
H̃ while S has no way to reproduce it. More importantly, we will show below
that, the security will still be preserved to replace an ideal random oracle with
a construction satisfying our definition (with an augmented simulator). We will
prove the security preserving (i.e., replacement) theorem from [23,41] similarly
with our adapted notions. (3) To model the whole process of the subversion and
correction, we consider a two-stage adversary: subverting and distinguishing. For
simplicity, we simply consider them as parts of one distinguisher, and do not use
separate the notations and state passing.

Definition 3 (H-crooked indifferentiability). Consider a distinguisher ̂D
and the following multi-phase real execution. Initially, the distinguisher ̂D who
has oracle access to ideal primitive H, publishes a subverted implementation of H
(denoted as H̃). Secondly, a uniformly random string r is sampled and published.

Correcting Subverted Random Oracles 251

Thirdly, a deterministic construction C is then developed: the construction C
has random string r as input, and has the oracle access to H̃ (the crooked version
of H). Finally, the distinguisher ̂D, also having random string r as input, and
the oracle access to the pair (C ,H), returns a decision bit b. Often, we call ̂D,
the H-crooked-distinguisher.

In addition, consider the corresponding multi-phase ideal execution with the
same H-crooked-distinguisher ̂D. In the ideal execution, ideal primitive F is
provided. The first two phases are the same (as that in the real execution). In
the third phase, a simulator S will be developed: the simulator has a random
string r as input, and has the oracle access to H̃, as well as the ideal primitive
F . In the last phase, the H-crooked-distinguisher ̂D, after having random string
r as input, and having the oracle access to an alternative pair (F ,S), returns a
decision bit b.

We say that construction C , is (t
̂D, tS , q, ε)-H-crooked-indifferentiable from

ideal primitive F , if there is a simulator S so that for any H-crooked-
distinguisher ̂D, (let u be the coins of ̂D), it satisfies that the real execution
and the ideal execution are indistinguishable. Specifically,
∣
∣
∣
∣

Pr
u,r,H

[

H̃ ← D̂ : D̂C H̃ (r),H(λ, r) = 1

]

− Pr
u,r,F

[

H̃ ← D̂ : D̂F,SH̃,F (r)(λ, r) = 1

]∣
∣
∣
∣
≤ ε(λ) .

Here H : {0, 1}λ → {0, 1}λ and F : {0, 1}k → {0, 1}k denote random func-
tions. See Fig. 3 for detailed illustration of the last phase in both real and ideal
executions (the distinguishing).

C H̃ H F
S

H̃

̂D

Fig. 3. The H-crooked indifferentiability notion: the distinguisher D̂, in the first phase,
manufactures and publishes a subverted implementation denoted as H̃, for ideal prim-
itive H; then in the second phase, a random string r is published; after that, in the
third phase, construction C , or simulator S is developed; the H-crooked-distinguisher
D̂, in the last phase, either interacting with algorithm C and ideal primitive H, or with
ideal primitive F and simulator S, return a decision bit. Here, algorithm C has oracle
access to H̃, while simulator S has oracle access to F and H̃.

252 A. Russell et al.

Remark 1 (The necessity of public randomness). It appears difficult to achieve
feasibility without randomness. Intuitively: suppose the corrected hash is repre-
sented as g

(

H̃(f(x))
)

, i.e., g(·), f(·) are correction functions, f will be applied
to each input x before calling H̃, and g will be further applied to the corre-
sponding output; then the attacker can plant a trigger using f(z) for a random
backdoor z, such that H̃ (f(z)) = 0. It is easy to see that the attacker who has
full knowledge of (z, g(0)) and can use this pair to distinguish, as F(z) would be
a random value that would not hit g(0) with a noticeable probability. Similarly,
we can see that it is also infeasible if the randomness is generated before the
faulty implementation is provided. For this reason, we allow the model to have
a public randomness that is generated after H̃ is supplied, but such randomness
would be available to everyone, including the attacker.

Remark 2 (Comparison with preprocessing). There have been several recent nice
works [31,51] about random oracle with preprocessing, in which the adversary
can have some auxiliary input compressing the queries. While in the first phase
of our model, we also allow the adversary to generate such an auxiliary string
as part of the backdoor z (or part of the instruction of H̃). We further allow
the crooked implementation to deviate from the original random oracle. In this
sense, the preprocessing model for random oracle can be considered to defend
against a similar attacker than us, but the attacker would provide an honest
implementation (only treating the backdoor as the auxiliary input). We note
that their construction using simple salting mechanism [51] cannot correct a
subverted random oracle as in our model: the distinguisher plants a trigger z into
the inputs that H̃(z||∗) = 0 for a randomly chosen z. In this way, the salt would
be subsumed into the ∗ part and has no effect on the faulty implementation.

Remark 3 (Extensions). For simplicity, our definition is mainly for random ora-
cle. It is not very difficult to extend our crooked indifferentiability notion to the
other setting such as ideal cipher, as long as we represent the interfaces properly,
while the multi-phase executions can be similarly defined. Another interesting
extension is to consider a global random oracle (while in the current definition,
there would be an independent instance in the real and ideal execution). We
leave those interesting questions to be explored in future works.

Replacement with crooked indifferentiability. Security preserving
(replacement) has been shown in the indifferentiability framework [41]: if C G

is indifferentiable from F , then C G can replace F in any cryptosystem, and
the resulting cryptosystem in the G model is at least as secure as that in the
F model. We next show that the replacement property can also hold in our
crooked indifferentiability framework. Recall that, in the “standard” indifferen-
tiability framework [23,41], a cryptosystem can be modeled as an Interactive
Turing Machine with an interface to an adversary A and to a public oracle.
There the cryptosystem is run by a “standard” environment E (see Fig. 2). In
our crooked indifferentiability framework, a cryptosystem also has the interface
to an adversary A and to a public oracle. However, now the cryptosystem is run
by a environment ̂E that can “crook” the oracle.

Correcting Subverted Random Oracles 253

Consider an ideal primitive G. Similar to the G-crooked-distinguisher, we
can define the G-crooked-environment ̂E as follows: Initially, the G-crooked-
environment ̂E manufactures and then publishes a subverted implementation
of the ideal primitive G, denoted as G̃. Then ̂E runs the attacker A, and the
cryptosystem P is developed. In the G model, cryptosystem P has oracle access
to C whereas attacker A has oracle access to G; note that, C has oracle access
to G̃, not directly to G. In the F model, both P and SA (the simulator) have ora-
cle access to F . Finally, the G-crooked-environment ̂E returns a binary decision
output. The definition is illustrated in Fig. 4.

C G̃ G

P A

̂E

F

P SA

̂E

Fig. 4. The environment Ê interacts with cryptosystem P and attacker A. In the G
model (left), P has oracle access to C (who has oracle access to G) whereas A has
oracle access to G; In the F model, both P and SA have oracle access to F .

Definition 4. Consider ideal primitives G and F . A cryptosystem P is said to
be at least as secure in the G-crooked model with algorithm C as in the F model,
if for any G-crooked-environment ̂E and any attacker A in the G-crooked model,
there exists an attacker SA in the F model, such that:

Pr[̂E(PC G̃
,AG) = 1] − Pr[̂E(PF ,SF

A) = 1] ≤ ε.

where ε is a negligible function of the security parameter λ, and ̂E(PC G̃
,AG)

describes the output of ̂E running the experiment in the G-world (the left side of
Fig. 4), and similarly for ̂E(PF ,SF

A).

We now demonstrate the following theorem which shows that security is
preserved when replacing an ideal primitive by a crooked-indifferentiable one:

Theorem 2. Let P be a cryptosystem with oracle access to an ideal primitive
F . Let C be an algorithm such that C G is crooked-indifferentiable from F . Then
cryptosystem P is at least as secure in the G-crooked model with algorithm C as
in the F model.

254 A. Russell et al.

Proof. The proof is very similar to that in [23,41]. Let P be any cryptosystem,
modeled as an Interactive Turing Machine. Let ̂E be any crooked-environment,
and A be any attacker in the G-crooked model. In the G-crooked model, P has
oracle access to C (who has oracle access to G̃, not directly to G.), whereas A has
oracle access to ideal primitive G; moreover, the crooked-environment ̂E interacts
with both P and A. This is illustrated in Fig. 5 (left part).

Since C is crooked-indifferentiable from F (see Fig. 3), one can replace
(C G̃ ,G) by (F ,S) with only a negligible modification of the G-crooked-
environment ̂E ’s output distribution. As illustrated in Fig. 5, by merging attacker
A and simulator S, one obtains an attacker SA in the F model, and the difference
in ̂E ’s output distribution is negligible. �	

C G̃ G

P A

̂E
̂D

F
S

G̃

P A

̂E
̂D

SA

Fig. 5. Construction of attacker SA from attacker A and simulator S.

3 The Construction

Now we proceed to give the construction. Given subverted implementations of
the hash functions {h̃i}i=0,...,�, (the original version of each is hi(·) could be
considered as h(i, ·)), the corrected function is defined as:

h̃R(x) = h̃0(g̃R(x)) = h̃0

(

�
⊕

i=1

h̃i(x ⊕ ri)

)

.

where R = (r1, . . . , r�) are sampled uniformly after {h̃i(·)} is provided, and then
revealed to the public, and the internal function g̃R(·) is defined below:

g̃R(x) =
�

⊕

i=1

h̃i(x ⊕ ri).

Correcting Subverted Random Oracles 255

We wish to show that such a construction will be indifferentiable to an actual
random oracle (with the proper input/output length). This implies that the
distribution of values taken by h̃R(·) at inputs that have not been queried have
negligible distance from the uniform distribution.

Theorem 3. Suppose h : {0, . . . , �} × {0, 1}n → {0, 1}n defines a family of
random oracles hi : {0, 1}n → {0, 1}n as h(i, ·), for i = 0, . . . , �, and � ≥ 3n + 1.
Consider a (subversion) algorithm H̃ and H̃h(x) defines a subverted random
oracle h̃. Assume that for every h (and every i),

Pr
x∈{0,1}n

[h̃(i, x) �= h(i, x)] = negl(n) . (1)

The construction h̃R(·) is (t
̂D, tS , q, ε)-indifferentiable from a random oracle

F : {0, 1}n → {0, 1}n, for any t
̂D, with tS = poly(q), ε = negl(n) and q is the

number of queries made by the distinguisher ̂D as in Definition 3.

Roadmap for the proof. We first describe the simulator algorithm. The main
challenge for the simulator is to ensure the consistency of two ways of generat-
ing the output values of h̃R(·), (it could also be reconstructed by querying the
original random oracle directly together with the subverted implementation h̃ to
replace the potentially corrupted terms). The idea for simulation is fairly simple:
for an input x, F (x) would be used to program h0 on input g̃R(x).

There are two obstacles that hinder the simulation: (1) for some x, h0 has
been queried on g̃R(x) before the actual programing step, thus the simulator has
to abort; (2) the distinguisher queries on some input x such that g̃R(x) falls into
the incorrect portion of inputs to h̃0.

To bound the probability of these two events, we first establish the property
of the internal function g̃R(·) that no adversary can find an input value that
falls into a small domain (or for any input x, the output is unpredicatable to the
adversary if he has not made any related queries.). See Theorem 4 below. Note
that the bound is conditioned on adaptive queries of the distinguisher.

Theorem 4 (Informal). Suppose the subverted implementation disagrees with
the original oracle at only a negligible fraction of inputs, then with an over-
whelming probability in R, conditioned on the h(q1), . . . , h(qs) (made by any ̂D),
for all x outside the “queried” set {t | hi(t ⊕ ri)was queried}, and every event
E ⊂ {0, 1}n,

Pr
h

[g̃R(x) ∈ E] ≤ poly(n)
√

Pr[E] + negl(n).

In particular, if |E| is exponentially small in {0, 1}n, the probability g̃R(x)
falls into E would be negligible for any x.

Next, our major analysis will focus on proving this theorem for g̃R(·).
We first set down and prove a “rejection resampling” lemma. This is instru-

mental in our approach to Theorem 5 (the formal version of Theorem 4), show-
ing that this produces unpredictable values, even to an adaptive adversary with
access to the (public) randomness R;

256 A. Russell et al.

Surveying the proof in more detail, recall that a value g̃R(x) is determined
as the XOR of a “constellation” of values

⊕

h̃i(x ⊕ ri); intuitively, if we could
be sure that (a) at least one of these terms, say x ⊕ ri, was not queried by
H̃h(·) when evaluated on the other terms and, (b) this isolated term x ⊕ ri was
answered “honestly” (that is, h̃i(x ⊕ ri) = hi(x ⊕ ri)), then it seems reasonable
to conclude that the resulting value, the XOR of the results, is close to uniform.

However, applying this intuition to rigorously prove Theorem 5 faces a few
challenges. Perhaps the principal difficulty is that it is not obvious how to “par-
tially expose” the random oracle h to take advantage of this intuition: specifically,
a traditional approach to proving such strong results is to expose the values taken
by the h(x) “as needed,” maintaining the invariant that the unexposed values
are uniform and conditionally independent on the exposed values.

In our setting, we would ideally like to expose all but one of the values of a
particular constellation {hi(x⊕ri)} so as to guarantee that the last (unexposed)
value has the properties (a) and (b) above. While randomly guessing an ordering
could guarantee this with fairly high probability ≈ 1 − 1/� we must have such a
favorable event take place for all x, and so must somehow find a way to guarantee
exponentially small failure probabilities. The rejection resampling lemma,
discussed above, permits us to examine all the points in a particular constel-
lation, identify a good point (satisfying (a) and (b)) and then “pretend” that
we never actually evaluated the point in question. In this sense, the resampling
lemma quantifies the penalty necessary for “unexposing” a point of interest.

A less challenging difficulty is that, even conditioned on h̃i(x⊕ri) = hi(x⊕ri),
this value may not be uniform, as the adversary may choose to be “honest”
based on some criteria depending on x or, even, other adaptively-queried points.
Finally, of course, the subversion algorithm H̃h(·) is fully-adaptive, and only
needs to disrupt g̃R(x) at a single value of x.

4 Security Proof

We begin with an abstract formulation of the properties of our construction and
the analysis, and then transition to the detailed description of the simulator
algorithm and its effectiveness.

4.1 The Simulator Algorithm

The main task of the simulator is to ensure the answers to {hi}-queries to be
consistent with the value of F (·), since for each input x, h̃R(x) is determined by
a sequence of related queries to {hi} and H̃, (or simply the backdoor z) and the
value of R. The basic idea is to program the external layer h0 using values of
F (x), such that the value F (x) is set for h0(g̃R(x)). The value g̃R(x) is obtained
by S executing the subverted implementations {h̃i}.

Let us define the simulator S (answering queries in two stages) as below:
In the first stage, A makes random oracle queries when manufacturing the

subverted implementations {h̃i}i=0,...,�.

Correcting Subverted Random Oracles 257

On input queries x1, . . . , xq1 (at A’s choice on which random oracle to query)
that A makes before outputting the implementations (and the backdoor), S
answers all those using uniform strings respectively. S maintains a table. See
Table 1. (w.l.o.g, we simply assume the adversary asks all the hash queries for
each value xi, if not, the simulator asks himself to prepare the table.) S and D
also both receive a random value for R.

Table 1. RO queries in phase-I

RO query xi h0(xi) h1(xi) . . . h�(xi)

x1 v1,0 v1,1 . . . v1,�

x2 v2,0 v2,1 . . . v2,�

...
...

...
... . . .

xq1 vq1,0 vq1,1 . . . vq1,�

In the second stage, the distinguisher D now having input R, will ask both
queries to the construction and the random oracles. The simulator S now also
has these extra information of R and oracle access to the implementation h̃ and
will answer the random oracle queries to ensure consistency. In particular:

On input query mj to the kj-th random oracle hkj
, S defines the adjusted

query m′
j := mj ⊕ rkj

, and prepares answers for all related queries, i.e., for each
i, the input m′

j ⊕ ri to hi; and the input g̃R(m′
j) to h0.

– If kj > 0:
S runs the implementation h̃i on m′

j ⊕ri = mj ⊕rkj
⊕ri, for all i ∈ {1, . . . , �},

to derive the value g̃R(m′
j) =

⊕�
i=1 h̃i(m′

j ⊕ri). During the execution of h̃i on
those inputs, S also answers the random oracle queries (or read from Table 1)
on those values if the implementation makes any. In more detail,
1. S first checks in both tables whether m′

j ⊕ ri has been queried for hi

(Table 2 first), if queried in either of them, S returns the corresponding
answer; if not queried, S simply returns a random value uj,i as answer
and records it in Table 2;

2. S checks whether g̃R(m′
j) has been queried for h0. If not, S queries F

on m′
j and gets a response F (m′

j). S then checks whether m′
j has been

queried in stage-I, (i.e., check Table 1). If yes and the corresponding value
vj,0 does not equal to F (m′

j), S aborts; otherwise, S sets F (m′
j) = uj,0

as the answer for h0(g̃R(m′
j)).

– If kj = 0:
S checks whether mj has been queried for h0 in stage-II, i.e., there exists an
m′

t in Table 2 such that g̃R(m′
t) = mj . If yes, S simply uses the corresponding

value ut,0 as answer; If not, S checks whether it has been queried in stage-I,
S returns the value of vi,0 if mj has been queried. Otherwise, S chooses a
random value vj,0 as the response and records it in Table 2.

258 A. Russell et al.

Table 2. Phase-II queries: The headers are adjusted random oracle queries m′
i =

mi ⊕ rki if mi is queried for hki , and ui,0 = F (mi).

Adjusted query m′
i h1(m

′
i ⊕ r1) . . . h�(m

′
i ⊕ r�) g̃R(m′

i) h0

(

g̃R(m′
i)

)

m′
1 = m1 ⊕ rk1 u1,1 . . . u1,� g̃R(m′

1) u1,0

m′
2 = m2 ⊕ rk2 u2,1 . . . u2,� g̃R(m′

2) u2,0

...
... . . .

...
...

...

m′
q = mq ⊕ rkq uq,1 . . . uq,� g̃R(m′

q) uq,0

Probability analysis. Let us define the event that S aborts as Abort. According
to the description, S aborts only when the distinguisher D finds an input m
such that the g̃R(m) = x has either been queried for h0 in stage-I, or queried
in stage-II before any of {m ⊕ ri}i=1,...,� has been queried for hi. We can define
T0 = {x|x is queried for h0}, and following Theorem 5 (to be proven below),
Pr[Abort] ≤ |T0|

2n ≤ q+q1
2n ≤ negl(n) for any polynomially large q, q1.

We also define the event Bad as that the distinguisher finds an input m, such
that h̃0(g̃R(m)) �= h0(g̃R(m)), also we define T1 = {m|h̃0(g̃R(m)) �= h0(g̃R(m))}.
Following Theorem 5, Pr[Bad] ≤ |T1|

2n + negl(n) ≤ negl(n). The latter inequality
comes from the condition h̃ disagrees with h only at negligible fraction of inputs.

Furthermore, it is easy to see, conditioned on S does not abort, and Bad does
not happen, the simulation is perfect.

In the rest of the paper, we will focus on proving our main theorem about
the property of the internal function g̃R(·).

4.2 A Rejection Resampling Lemma

We first prove a general rejection re-sampling lemma, and use it as a machinery to
prove our main theorem for g̃R(·). Let Ω1, . . . , Ωk be a family of sets and let Ω =
Ω1 × · · · × Ωk. We treat Ω as a probability space under the uniform probability
law: for an event E ⊂ Ω, we let μ(E) = |E|/|Ω| denote the probability of E. For
an element x = (x1, . . . , xk) ∈ Ω and an index i, we define the random variable
Rix = (x1, . . . , xi−1, y, xi+1, . . . , xk) where y is drawn uniformly at random from
Ωi. We say that such a random variable arises by “resampling” x at the index i.

We consider the effect that arbitrary “adversarial” resampling can have on
the uniform distribution. Specifically, for a function A : Ω → {1, . . . , k}, we con-
sider the random variable RA(X)X, where X is a uniformly distributed random
variable and the index chosen for resampling is determined by A (as a function
of X). By this device, the function A implicitly defines a probability law μA on
Ω, where the probability of an event E is given by

μA(E) = Pr[RA(X)X ∈ E] .

Correcting Subverted Random Oracles 259

Lemma 1 (Rejection re-sampling). Let X be a random variable uniform on
Ω = Ω1 × · · · × Ωk. Let A : Ω → {1, . . . , , k} and define Z = RA(X)X and μA as
above. Then, for any event E,

μ(E)2

k
≤ μA(E) ≤ k · μ(E) .

Remark 4. Jumping ahead, such a resampling lemma will be used to define a
good event E such that one term of h̃i(x ⊕ ri) will be uniformly chosen (not
correlated with any other term), thus yields a uniform distribution for the sum-
mation. The actual adversarial distribution μA(E) is thus bounded not too far
from μ(E). Let us first prove this useful lemma.

Proof. Consider an event E ⊂ X. To simplify our discussion of the adver-
sarial resampling process discussed above, we remark that the random vari-
ables RiX and RA(X)X can be directly defined over the probability space
Ω × Ω: Consider two independent random variables, X and Y , each drawn
uniformly on Ω; then, for any i the random variable RiX can be described
(X1, . . . , Xi−1, Yi,Xi+1, . . . , Xk) and RA(X)X = (Z1, . . . , Zk) where

Zi =

{

Yi if i = A(X),
Xi otherwise.

Note that for any fixed i, the probability law of RiX is the uniform law on Ω.

Upper bound. It follows that for an event E

μA(E) = Pr
X,Y

[RA(X)X ∈ E] ≤ Pr
X,Y

[∃i, RiX ∈ E] ≤ k · μ(E) ,

which establishes the claimed upper bound on μA(E).

Lower bound. As for the lower bound, define

Bi = {x ∈ Ω | A(x) = i} and Ei = E ∩ Bi .

As the Bi, Ei partition Ω,E respectively, and
∑

i μA(Ei) = μA(E). Observe that

Pr
X,Y

[RA(X)X ∈ E] =
∑

i

Pr
X,Y

[RA(x)X ∈ Ei] ≥
∑

i

Pr
X,Y

[X ∈ Bi and RiX ∈ Ei]

≥
∑

i

Pr
X,Y

[X ∈ Ei and RiX ∈ Ei] .

(2)
To complete the proof, we will prove that for any i and for any event F

Pr
X,Y

[X ∈ F andRiX ∈ F] ≥ Pr[F]2 . (3)

Putting aside the proof of (3) for a moment, observe that applying (3) to the
events Ei in the expansion (2) above yields the following by Cauchy-Schwarz.

Pr
X,Y

[RA(X)X ∈ E] ≥
∑

i

Pr[Ei]2 ≥ Pr[E]2

k

260 A. Russell et al.

Finally, we return to establish (3). Observe that for an event F ,

PrX,Y [X ∈ F and RiX ∈ F]

=
1

|Ωi|
∑

(x1,...,xk)∈Ω

Pr[X ∈ F and RiX ∈ F | ∀j �= i, Xj = xj] Pr[∀j �= i, Xj = xj] .

(The leading 1/|Ωi| term cancels the sum over xi, which not referenced in the
argument of the sum.) Under such strong conditioning, however, the two events
X ∈ F and RiX ∈ F are independent and, moreover, have the same probability.
(Conditioned on the other coordinates, the event depends only on coordinate i
of the result that is uniform and independent for the two random variables.) As

Pr[∀j �= i,Xj = xj] =
1

∏

i�=j |Ωj |

we may rewrite the sum above as

PrX,Y [X ∈ F andRiX ∈ F]

=
1

|Ωi|
∑

(x1,...,xk)∈Ω

Pr[X ∈ F and RiX ∈ F | ∀j �= i,Xj = xj] · 1
∏

i�=j |Ωj |

=
1

|Ω|
∑

(x1,...,xk)∈Ω

Pr[X ∈ F and RiX ∈ F | ∀j �= i,Xj = xj]

=
1

|Ω|
∑

(x1,...,xk)∈Ω

Pr[X ∈ F | ∀j �= i,Xj = xj]2

≥ 1
|Ω|2

⎛

⎝

∑

(x1,...,xk)∈Ω

Pr[X ∈ F | ∀j �= i,Xj = xj]

⎞

⎠

2

= Pr[X ∈ F]2 ,

where the inequality is Cauchy-Schwarz. �	
We remark that these bounds are fairly tight. For the lower bound—the case
of interest in our applications—let Ei ⊂ Ωi be a family of events with small
probability ε and E = {(ω1, . . . , ωk, ωk+1) | ∃ unique i ≤ k, ωi ∈ Ei} ⊂ ∏k+1

i Ωi.
When ε � 1/k, Pr[E] ≈ kε while Pr[RA(X)X ∈ E] ≈ kε2 = (kε)2/k for the
strategy which, in case the event occurred, redraws the offending index and,
in case the event did not occur, redraws the k + 1st “dummy” index. For the
upper bound, consider an event E consisting of a single point x in the hypercube
{0, 1}k; then Pr[E] = 2−k and Pr[RA(X)X ∈ E] ≥ 2−k(k + 1)/2 for the strategy
which re-randomizes any coordinate on which the sample and x disagree (the
strategy can be defined arbitrarily on the point x itself).

Correcting Subverted Random Oracles 261

4.3 Establishing Pointwise Unpredictability

In this section, we focus our attention on the “internal” function (for � > 3n)

g̃R(x) =
�

⊕

i=1

h̃i(x ⊕ ri) .

In particular, we will prove that for each x, the probability that the adversary
can force the output of g̃R(x) to fall into some range E is polynomial in the
density of the range (that is, the probability that a uniform element lies in E).
Thus, the output will be unpredictable to the adversary if she has not queried
the corresponding random oracles.

Intuition about the analysis. As discussed above, we want to show that for
every x, there exist at least one term hi(x⊕ri) satisfying: (i) hi(x⊕ri) is answered
honestly (that is, hi(x⊕ri) = h̃i(x⊕ri); (ii) hi(x⊕ri) is not correlated with other
terms. In order to ensure condition (ii), we proceed in two steps. We first turn to
analyze the probability that hi(x⊕ri) has not been queried by Hh∗(x⊕rj) for all
other index j. This is still not enough to demonstrate perfect independence, as
the good term is subject to the condition of (i), but it suffices for our purposes. As
discussed above, for analytical purposes we consider an exotic distribution that
calls for this “good” term to be independently re-sampled and apply rejection
re-sampling lemma to ensure the original (adversarial) distribution is not too far
from the exotic one. We first recall the theorem for the internal function:

Theorem 5. Suppose h : {0, . . . , �} × {0, 1}n → {0, 1}n defines a family of
random oracles hi : {0, 1}n → {0, 1}n as h(i, ·), for i = 0, . . . , �, and � ≥ 3n + 1.
Consider a (subversion) algorithm H and Hh(x) defines a subverted random
oracle h̃. Assume that for every h (and every i),

Pr
x∈{0,1}n

[h̃(i, x) �= h(i, x)] = negl(n) .

Then, with overwhelming probability in R, h, and conditioned on the h(q1), . . . ,
h(qs) (made by any ̂D), for all x outside the “queried” set {t | hi(t ⊕ ri)
was queried} and every event E ⊂ {0, 1}n,

Pr
h

[g̃R(x) ∈ E] ≤ poly(n)
√

Pr[E] + negl(n).

Proof. Throughout the estimates, we will assume that � > 3n. Here, we overload
the notation h∗ to denote the collection of functions h1, . . . , h�.

We begin by considering the simpler case where no queries are made, and
just focus on controlling the resulting values vis-a-vis a particular event E. At
the end of the proof, we explain how to handle an adaptive family of queries.

Guaranteeing honest answers. First, we ensure that with high probability
in R and h∗, for every x, there is a contributing term h̃i(x ⊕ ri) that is likely (if
the random variable hi(x⊕ ri) is redrawn according to the uniform distribution)

262 A. Russell et al.

to be “honest” in the sense that h̃i(x ⊕ ri) = hi(x ⊕ ri). The reason that this
simple property does not follow straightforwardly is due to the fact that h̃i

may adaptively define the “dishonest” points which are not fixed during the
manufacturing of h̃i.

To begin, let us consider the following random variables defined by random
selection of h∗ (denoting the {hi}) and R, (later used to bound the number of
dishonest terms):

di(α) =

{

1 if h̃i(α) �= hi(α),
0 otherwise;

and Di(α) = Ehi(α)[di(α)] .

(Throughout E[·] denotes expectation. For a given h∗ and an element α, the
value Di(α) is defined by redrawing the value of hi(α) uniformly at random;
equivalently, Di(α) is the conditional expectation of di(α) obtained by setting
all other values of h∗() except hi(α).) Note that by assumption, for each i,

Eh∗ Eα[Di(α)] = Eh∗ Eα Ehi(α)[di(α)] = Eh∗ Eα[di(α)] ≤ ε ,

where α is chosen uniformly and ε is the (negligible) disagreement probability
of (1) above.

We introduce several events that play a basic role in the proof.
Flat functions. We say that h∗ is flat if, for each i, Eα[Di(α)] ≤ ε1/3,

where α is drawn uniformly.
Note that Pr[h∗ not flat] = Pr[∃i ∈ [�],Eα[Di(α)] > ε1/3], thus

Pr[h∗ not flat] ≤ � · Eh∗ Eα[Di(α)]/ε1/3 = �ε2/3

by Markov’s inequality and the union bound. Further, observe that if h∗ is flat,
then for any x ∈ {0, 1}n, any 0 < k ≤ �, and random choices of R = {r1, . . . , r�},

ER

∑

I⊂[�],
|I|=k

∏

i

Di(x ⊕ ri) =
∑

I⊂[�],
|I|=k

∏

i

Eri
Di(x ⊕ ri) ≤

(

�

k

)

εk/3 ≤ (�3ε)k/3 .

Next, we will use this property to show that with a sufficiently large �, e.g.,
� = 3n, then for each x, we can find an index i such that Di(x ⊕ ri) is small.

Honesty under resampling. For a tuple R = (r1, . . . , r�), functions h∗,
and an element x ∈ {0, 1}n, we say that the triple (R, h∗, x) is honest if

∑

I⊂[�],
|I|=3n

∏

i

Di(x ⊕ ri) ≤ 23n(�3ε)n .

If R and h∗ are “universally” honest, which is to say that (R, h∗, x) is honest for
all x ∈ {0, 1}n, we simply say (R, h∗) is honest. Then Pr

R
[(R, h∗) is not honest] =

Pr
R

[∃x, (R, h∗, x) is not honest] . When h∗ is flat, we have the following:

Pr
R

[(R, h∗) is not honest] ≤ 2n · ER

(

∑

I⊂[�],
|I|=3n

∏

i

Di(x ⊕ ri)
)

/23n(�3ε)n ≤ 2−2n

Correcting Subverted Random Oracles 263

by Markov’s inequality (on the random variable
∑

I⊂[�],
|I|=3n

∏

i Di(x ⊕ ri)) and the

union bound. Observe that if (R, h∗) is honest, then for every x,

max
I⊂[�]

|I|=3n

∏

i

Di(x ⊕ ri) ≤ 23n(�3ε)n .

It follows that, for every set I of size 3n, there exists an element i ∈ I so that

Di(x ⊕ ri) ≤ 3n
√

23n(�3ε)n = 2� 3
√

ε.

That said, conditioned on h∗ being flat, with an overwhelming probability
(that is, 1 − negl(n)) in R, the pair (R, h∗) is honest and so gives rise to at least
one small Di(x⊕ri) for each x (recall that the smaller Di(α) is, the fewer points
that hi disagrees h̃i).

Unfortunately, merely ensuring that some term of each “constellation”
{h̃i(x ⊕ ri)} is honest with high probability is not enough—it is possible that a
clever adversary can adapt other terms to an honest term to interfere with the
final value of g̃R(x). The next part focuses on controlling these dependencies.

Controlling dependence among the terms. We now transition to controlling
dependence between various values of h̃i(x). In particular, for every x we want
to ensure that there exists some i so that hi(x⊕ ri) was never queried by H̃h∗(·)
when evaluated on all other x ⊕ rj , i.e., for all j ∈ [�] and j �= i.

Note that the set of queries made by H̃h∗(u) is determined entirely by h∗ and
u: thus, conditioned on a particular h∗, the event (over R) that H̃h∗(u) queries
hs(x ⊕ rs) and the event that H̃h∗(u′) queries ht(x ⊕ rt) are independent (for
any u, u′ and s �= t). We introduce the following notation for these events: for a
pair of indices i, j (i �= j), we define

Qi→j(x) =

{

1 if H̃h∗(x ⊕ ri) queries hj(x ⊕ rj),
0 otherwise.

In light of the discussion above, for an element x and a fixed value of h∗, consider
a subset T ⊂ [�] and a function s : T → [�]; we treat such a function as a
representative for the event that each “target” t ∈ T was queried by a “source”
s(t). (Note that there could be multiple such functions s(·) for T). We define

Qs(x) =
∏

t∈T

Qs(t)→t(x) .

We also introduce a couple of new notions for the ease of presentation:
Independent fingerprints. We say that a representative s : T → [�] is

independent if s(T) ∩ T = ∅, which is to say that the range of the function lies
in [�] \ T . For any such independent fingerprint s(·), note that (for any x, h∗):

ER[Qs(x)] = ER

[

∏

t∈T

Qs(t)→t(x)

]

=
∏

t∈T

ER

[

Qs(t)→t(x)
] ≤

(

τ(n)
2n

)|T |
, (4)

264 A. Russell et al.

where τ(n) denotes the running time (and, hence, an upper bound on the number
of queries) of H̃h(x) on inputs of length n.

We will next use such notion to bound the number of bad terms that were
queried by some other term.

Dangerous set. For a fixed x, h∗, and R, we say that a set T ⊂ [�] is
dangerous if every element t in T is queried by some H̃h∗(x ⊕ ri) for i �= t.

We claim that if T is a dangerous set then we can always identify an inde-
pendent fingerprint s : T ′ → [�] for a subset T ′ ⊂ T with |T ′| ≥ |T |/2.

To see this, we build T ′ as follows: write T = {t1, . . . , tm} and consider the
elements in order t1, . . . , tm; for each element ti, we add it to T ′, if ti is queried
by some elements in T 4, pick one of them, denoted as tj (for j > i), define
s(ti) = tj , and remove tj from T . Observe now that (i) each element in T ′ maps
to a value (or was queried by a term) outside of T ′; (ii) each element ti added
to T ′ removes at most two elements of T (ti and s(ti)), and hence |T ′| ≥ |T |/2.

If follows that for a set T the number of such possible independent fingerprints
(whose image is at least half the size of T) is bounded by:

∑

m≥|T |/2

(|T |
m

)

(� − 1) · · · (� − m) ≤ 2|T |�|T |

We conclude from (4) that for any fixed set T (and any fixed x and h∗)

Pr
R

[T is dangerous] ≤ Pr[Qs(x) occurs for some independent fingerprint]

≤ 2|T |�|T |
(

τ(n)
2n

)|T |/2
=

(

4�2τ(n)
2n

)|T |/2
.

By taking the union bound over all sets T of size k, it follows immediately that

Pr
R

[

k of the hi(x ⊕ ri) are queried by some other {h̃j(x ⊕ rj)}j �=i,j∈[�]

]

≤
(

�

k

) (

4�2τ(n)
2n

)k/2

≤ �k

(

4�2τ(n)
2n

)k/2

≤
(

4�4τ(n)
2n

)k/2

. (5)

The above bound guarantees that, for any fixed x, with overwhelming probabil-
ity, there are � − k terms that were never queried by any other terms.

k-sparsity: Finally, we say that the pair (R, h∗) is k-sparse if for all x, the
set of queries made by Hh∗(x ⊕ ri) includes no more than k of the hi(x ⊕ ri).

Applying the union bound over all 2n strings x to (5), we conclude that, for
even constant k (say k = 5), we have

Pr
h∗,R

[(R, h∗) is not k-sparse] ≤ 2n

(

4�4τ(n)
2n

)k/2

≤ 2−nΘ(k)
.

4 We overload the notation a bit, here the elements in T simply denote the indices of
the terms.

Correcting Subverted Random Oracles 265

With the preparatory work behind us, we turn to guaranteeing that each x
possesses a good term (one that is both well behaved under resampling and not
queried by other terms).

Establishing existence of a good term. Next, we wish to show that for any
event E with Pr[E] = μ(E), and for any x,

Pr
h∗,R

[g̃R(x) ∈ E] ≤ poly(n)
√

μ(E) + negl(n) .

In particular, if E has negligible density, the probability that g̃R(x) ∈ E is
likewise negligible.

We say that R is flat-honest if Prh∗ [(R, h∗) not honest | h∗ is flat] ≤ 2−n .
Observe that by Markov’s inequality a uniformly selected R is flat-honest with
probability 1 − 2−n.

We also say R is uniformly-k-sparse if Prh∗ [(R, h∗) is notk − sparse] ≤ 2−n .
Assuming k is a sufficiently large constant (e.g., 5), note that by Markov’s
inequality a random R is uniformly-k-sparse with probability 1 − 2−n.

Now we know that selection of a uniformly random R = (r1, . . . , r�), with
probability 1 − 2n−1, is both uniformly-k-sparse (for the constant k discussed
above) and flat-honest. We condition, for the moment, on such a choice of R.
In this case, a random function h∗ is likely to be both k-sparse and honest: it
follows that for every x there is some term hi(x⊕ri) that is not queried by H to
determine the value of the other terms and, moreover, it is equal to h̃i(x⊕ri) with
an overwhelming probability. We say that such a pair (R, h∗) is unpredictable;
otherwise, we say that (R, h∗) is predictable.

Pr
h∗

[h∗ predictable (for R)] = Pr
h∗

[(R, h∗) not k-sparse or not honest]

≤ Pr
h∗

[(R, h∗) not k-sparse] +

Pr
h∗

[(R, h∗) not honest and h∗ flat] +

Pr
h∗

[(R, h∗) not honest and h∗ not flat]

≤ Pr
h∗

[(R, h∗) not k-sparse] +

Pr
h∗

[(R, h∗) not honest | h∗ flat] +

Pr
h∗

[h∗ not flat]

≤ 2−n + 2−n + �ε2/3 .

(6)

For each x, we can be sure there is at least one term h̃i(x ⊕ ri) which is
typically answered according to hi(x ⊕ ri) (i.e., answered honestly) and never
queried by the other terms. Unfortunately, to identify this term, we needed to
evaluate h̃ on the whole constellation of points; the rejection resampling lemma
lets us correct for this with a bounded penalty.

266 A. Russell et al.

To complete the analysis, we consider the following experiment: conditioned
on R, consider the probability that g̃R(x) ∈ E when h∗ is drawn as follows:

– if (R, h∗) is unpredictable, there is a (lexicographically first) index i for which
hi(x ⊕ ri) is queried by no other h̃j(x ⊕ rj) and is honest. Now, redraw the
value of hi(x ⊕ ri) uniformly at random.

These rules define a distribution on h∗ that is no longer uniform. Note, however,
that redrawing hi(x⊕ ri) does not affect the values of h̃i(x⊕ rj) (for distinct j);
as g̃R(x) =

⊕

i h̃i(x ⊕ ri), under this exotic distribution (for any x),

Pr
resampled h∗

[

g̃R(x) ∈ E
R unif. k-sparse
& flat honest

]

≤ μ(E) + (2 · 2−n + �ε2/3) + 2�ε1/3 ,

where the 2�ε1/3 term arises because we have only the guarantee that Di(x) ≤
2�ε1/3 from the condition on honesty.

However, based on the rejection resampling lemma above, we conclude

Pr
h∗

[

g̃R(x) ∈ E
R unif. k-sparse
& flat honest

]

≤
√

�
(

μ(E) + 2 · 2−n/2 + 3�ε1/3
)

≤ O(
√

�μ(E) +
√

�2−n/4 + �ε1/6) .

(7)

and, hence, that

Pr
h∗,R

[g̃R(x) ∈ E] ≤ 2−n + O
(
√

�μ(E) +
√

�2−n/4 + �ε1/6
)

= O
(
√

�μ(E) +
√

�2−n/4 + �ε1/6
)

,

where the 2−n term comes from the cases that a randomly chosen R is not
flat-honest or universal-k-sparse.

Conditioning on adaptive queries. Finally, we return to the problem of han-
dling adaptive queries. With R and z fixed, the queries generated by Qh∗(R, z)
depend only on h∗ and we may ramify the probability space of h according to the
queries and responses of Q; we say α = ((q1, a1), . . . , (qt, at)) is a transcript for
Q if Q queries h∗ at q1, . . . , qt and receives the responses a1, . . . , at. We remark
that if E is an event for which Pr

h
[E | R, z] ≤ ε, then by considering the natural

martingale given by iterative exposure of values of h∗ at the points queried by
Qh(R, z), we have that ε ≥ Pr[E | R, z] =

∑

α Pr[E | α,R, z] · Pr[α | R, z].
In particular, events with negligible probability likewise occur with negligible
probability for all but a negligible fraction of transcripts α. Thus, the global
properties of h discussed in the previous proof are retained even conditioned on
a typical transcript α.

We require one amplification of the high-probability structural statements
developed above. Note that, with overwhelming probability in R and h, every
constellation {x ⊕ ri} (an argument to hi) contains only a constant number of
points that are queried by more than a 2−n fraction of other points in the domain

Correcting Subverted Random Oracles 267

of h∗. (Indeed, the fraction of points in the domain of h∗ that are queried by
Hh(z, x) for at least w(n) values of x can be no more than poly(n)/w(n), where
the polynomial is determined by the running time of H.) We say that a pair R, z
is diffuse if a randomly selected h has this property with probability 1 − 2−n/2;
note that a random pair (R, z) is diffuse with probability 1 − 2−n/2.

Consider then conditioning on the event that (R, z) is flat-honest, uniformly-
4-sparse, and diffuse; note that in this case, with high probability in h every x
has an member of its constellation which is not queried by other members of
the constellation, only queried by H() at a vanishing fraction of other points in
the domain, and has Di(x ⊕ ri) ≤ 2� 3

√
ε. We emphasize that these properties

are global properties, holding for all x in the domain of h. In particular, we can
apply the argument above to any x for which none of the qi touch its constellation
{x ⊕ ri}. This concludes the proof. �	

5 Conclusions

We initiate the study of correcting subverted random oracles, where each sub-
verted version disagrees with the original random oracle at a negligible fraction of
inputs. We demonstrate that such an attack is devastating in several real-world
scenarios. We give a simple construction that can be proven indifferentiable from
a random oracle. Our analysis involves developing a new machinery of rejection
resampling lemma which may be with independent interests. Our work provides
a general tool to transform a buggy implementation of random oracle into a
well-behaved one which can be directly applied to the kleptographic setting.

There are many interesting problems worth further exploring, such as better
constructions, correcting other ideal objectives under subversion and more.

Acknowledgement. The authors thank Jonathan Katz for suggesting the indifferen-
tiability framework as a modeling tool, and we thank anonymous reviewers for valuable
comments.

References

1. Abelson, H., et al.: Keys under doormats. Commun. ACM 58(10), 24–26 (2015)
2. Ateniese, G., Magri, B., Venturi, D.: Subversion-resilient signature schemes. In:

Ray, I., Li, N., Kruegel, C. (eds.) ACM CCS 15, pp. 364–375. ACM Press, October
2015

3. Bellare, M., Hoang, V.T.: Resisting randomness subversion: fast deterministic and
hedged public-key encryption in the standard model. In: Oswald, E., Fischlin, M.
(eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 627–656. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46803-6 21

4. Bellare, M., Hoang, V.T., Keelveedhi, S.: Instantiating random oracles via UCEs.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 398–415.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1 23

5. Bellare, M., Jaeger, J., Kane, D.: Mass-surveillance without the state: strongly
undetectable algorithm-substitution attacks. In: Ray, I., Li, N., Kruegel, C. (eds.)
ACM CCS 15, pp. 1431–1440. ACM Press, October 2015

https://doi.org/10.1007/978-3-662-46803-6_21
https://doi.org/10.1007/978-3-642-40084-1_23

268 A. Russell et al.

6. Bellare, M., Paterson, K.G., Rogaway, P.: Security of symmetric encryption against
mass surveillance. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol.
8616, pp. 1–19. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-
44371-2 1

7. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: Ashby, V. (ed.) ACM CCS 93, pp. 62–73. ACM Press, Nov.
(1993)

8. Bellovin, S.M., Blaze, M., Clark, S., Landau, S.: Going bright: wiretapping without
weakening communications infrastructure. IEEE Secur. Priv. 11(1), 62–72 (2013)

9. Blum, M.: Designing programs that check their work. Technical report TR-88-
009, International Computer Science Institure, November 1988. http://www.icsi.
berkeley.edu/pubs/techreports/tr-88-009.pdf

10. Blum, M., Kannan, S.: Designing programs that check their work. In: 21st ACM
STOC, pp. 86–97. ACM Press, May 1989

11. Blum, M., Luby, M., Rubinfeld, R.: Self-testing/correcting with applications to
numerical problems. In: 22nd ACM STOC, pp. 73–83. ACM Press, May 1990

12. Boldyreva, A., Cash, D., Fischlin, M., Warinschi, B.: Foundations of non-malleable
hash and one-way functions. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol.
5912, pp. 524–541. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-10366-7 31

13. Boldyreva, A., Fischlin, M.: Analysis of random oracle instantiation scenarios
for OAEP and other practical schemes. In: Shoup, V. (ed.) CRYPTO 2005.
LNCS, vol. 3621, pp. 412–429. Springer, Heidelberg (2005). https://doi.org/10.
1007/11535218 25

14. Boldyreva, A., Fischlin, M.: On the security of OAEP. In: Lai, X., Chen, K. (eds.)
ASIACRYPT 2006. LNCS, vol. 4284, pp. 210–225. Springer, Heidelberg (2006).
https://doi.org/10.1007/11935230 14

15. Camenisch, J., Drijvers, M., Lehmann, A.: Anonymous attestation with subverted
TPMs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part III. LNCS, vol.
10403, pp. 427–461. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63697-9 15

16. Canetti, R.: Towards realizing random oracles: hash functions that hide all partial
information. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 455–469.
Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052255

17. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society Press, October
2001

18. Canetti, R., Dakdouk, R.R.: Extractable perfectly one-way functions. In: Aceto, L.,
Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz,
I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 449–460. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-70583-3 37

19. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited
(preliminary version). In: 30th ACM STOC, pp. 209–218. ACM Press, May 1998

20. Canetti, R., Micciancio, D., Reingold, O.: Perfectly one-way probabilistic hash
functions (preliminary version). In: 30th ACM STOC, pp. 131–140. ACM Press,
May 1998

21. Checkoway, S., et al.: A systematic analysis of the Juniper Dual EC incident. In:
Proceedings of ACM CCS 2016 (2016). http://eprint.iacr.org/2016/376

22. Checkoway, S., et al.: On the practical exploitability of dual EC in TLS implemen-
tations. In: Proceedings of the 23rd USENIX Security Symposium, San Diego, CA,
USA, 20–22 August 2014, pp. 319–335 (2014)

https://doi.org/10.1007/978-3-662-44371-2_1
https://doi.org/10.1007/978-3-662-44371-2_1
http://www.icsi.berkeley.edu/pubs/techreports/tr-88-009.pdf
http://www.icsi.berkeley.edu/pubs/techreports/tr-88-009.pdf
https://doi.org/10.1007/978-3-642-10366-7_31
https://doi.org/10.1007/978-3-642-10366-7_31
https://doi.org/10.1007/11535218_25
https://doi.org/10.1007/11535218_25
https://doi.org/10.1007/11935230_14
https://doi.org/10.1007/978-3-319-63697-9_15
https://doi.org/10.1007/978-3-319-63697-9_15
https://doi.org/10.1007/BFb0052255
https://doi.org/10.1007/978-3-540-70583-3_37
http://eprint.iacr.org/2016/376

Correcting Subverted Random Oracles 269

23. Coron, J.-S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-Damg̊ard revisited: how
to construct a hash function. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621,
pp. 430–448. Springer, Heidelberg (2005). https://doi.org/10.1007/11535218 26

24. Coron, J.-S., Holenstein, T., Künzler, R., Patarin, J., Seurin, Y., Tessaro, S.: How to
build an ideal cipher: the indifferentiability of the Feistel construction. J. Cryptol.
29(1), 61–114 (2016)

25. Dachman-Soled, D., Katz, J., Thiruvengadam, A.: 10-round Feistel is indifferen-
tiable from an ideal cipher. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT
2016, Part II. LNCS, vol. 9666, pp. 649–678. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49896-5 23

26. Dai, Y., Steinberger, J.: Indifferentiability of 8-round Feistel networks. In: Rob-
shaw, M., Katz, J. (eds.) CRYPTO 2016, Part I. LNCS, vol. 9814, pp. 95–120.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-4 4

27. Degabriele, J.P., Farshim, P., Poettering, B.: A more cautious approach to security
against mass surveillance. In: Leander, G. (ed.) FSE 2015. LNCS, vol. 9054, pp.
579–598. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48116-
5 28

28. Degabriele, J.P., Paterson, K.G., Schuldt, J.C.N., Woodage, J.: Backdoors in pseu-
dorandom number generators: possibility and impossibility results. In: Robshaw,
M., Katz, J. (eds.) CRYPTO 2016, Part I. LNCS, vol. 9814, pp. 403–432. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-4 15

29. Demay, G., Gaži, P., Hirt, M., Maurer, U.: Resource-restricted indifferentiability.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
664–683. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-
9 39

30. Dodis, Y., Ganesh, C., Golovnev, A., Juels, A., Ristenpart, T.: A formal treat-
ment of backdoored pseudorandom generators. In: Oswald, E., Fischlin, M. (eds.)
EUROCRYPT 2015, Part I. LNCS, vol. 9056, pp. 101–126. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46800-5 5

31. Dodis, Y., Guo, S., Katz, J.: Fixing cracks in the concrete: random oracles with
auxiliary input, revisited. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017,
Part II. LNCS, vol. 10211, pp. 473–495. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-56614-6 16

32. Dodis, Y., Mironov, I., Stephens-Davidowitz, N.: Message transmission with reverse
firewalls–secure communication on corrupted machines. In: Robshaw, M., Katz,
J. (eds.) CRYPTO 2016. Part I, volume 9814 of LNCS, pp. 341–372. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-4 13

33. Dodis, Y., Puniya, P.: On the relation between the ideal cipher and the random
oracle models. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp.
184–206. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878 10

34. Dodis, Y., Puniya, P.: Feistel networks made public, and applications. In: Naor,
M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 534–554. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-72540-4 31

35. Dziembowski, S., Maurer, U.M.: Optimal randomizer efficiency in the bounded-
storage model. J. Cryptol. 17(1), 5–26 (2004)

36. Fischlin, M., Janson, C., Mazaheri, S.: Backdoored hash functions: immunizing
HMAC and HKDF. Cryptology ePrint Archive, Report 2018/362 (2018). http://
eprint.iacr.org/2018/362

37. Katz, J., Lucks, S., Thiruvengadam, A.: Hash functions from defective ideal ciphers.
In: Nyberg, K. (ed.) CT-RSA 2015. LNCS, vol. 9048, pp. 273–290. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-16715-2 15

https://doi.org/10.1007/11535218_26
https://doi.org/10.1007/978-3-662-49896-5_23
https://doi.org/10.1007/978-3-662-49896-5_23
https://doi.org/10.1007/978-3-662-53018-4_4
https://doi.org/10.1007/978-3-662-48116-5_28
https://doi.org/10.1007/978-3-662-48116-5_28
https://doi.org/10.1007/978-3-662-53018-4_15
https://doi.org/10.1007/978-3-642-38348-9_39
https://doi.org/10.1007/978-3-642-38348-9_39
https://doi.org/10.1007/978-3-662-46800-5_5
https://doi.org/10.1007/978-3-319-56614-6_16
https://doi.org/10.1007/978-3-319-56614-6_16
https://doi.org/10.1007/978-3-662-53018-4_13
https://doi.org/10.1007/11681878_10
https://doi.org/10.1007/978-3-540-72540-4_31
http://eprint.iacr.org/2018/362
http://eprint.iacr.org/2018/362
https://doi.org/10.1007/978-3-319-16715-2_15

270 A. Russell et al.

38. Kawachi, A., Numayama, A., Tanaka, K., Xagawa, K.: Security of encryption
schemes in weakened random oracle models. In: Nguyen, P.Q., Pointcheval, D.
(eds.) PKC 2010. LNCS, vol. 6056, pp. 403–419. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-13013-7 24

39. Kiltz, E., O’Neill, A., Smith, A.: Instantiability of RSA-OAEP under Chosen-
plaintext attack. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 295–313.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7 16

40. Liskov, M.: Constructing an ideal hash function from weak ideal compression func-
tions. In: Biham, E., Youssef, A.M. (eds.) SAC 2006. LNCS, vol. 4356, pp. 358–375.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74462-7 25

41. Maurer, U., Renner, R., Holenstein, C.: Indifferentiability, impossibility results on
reductions, and applications to the random oracle methodology. In: Naor, M. (ed.)
TCC 2004. LNCS, vol. 2951, pp. 21–39. Springer, Heidelberg (2004). https://doi.
org/10.1007/978-3-540-24638-1 2

42. Menn, J.: Exclusive: secret contract tied NSA and security industry pioneer.
Reuters, December 2013

43. Mironov, I., Stephens-Davidowitz, N.: Cryptographic reverse firewalls. In: Oswald,
E., Fischlin, M. (eds.) EUROCRYPT 2015, Part III. LNCS, vol. 9057, pp. 657–686.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6 22

44. Myers, S.: Efficient amplification of the security of weak pseudo-random function
generators. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 358–
372. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6 22

45. Numayama, A., Isshiki, T., Tanaka, K.: Security of digital signature schemes in
weakened random oracle models. In: Cramer, R. (ed.) PKC 2008. LNCS, vol.
4939, pp. 268–287. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-78440-1 16

46. Perlroth, N., Larson, J., Shane, S.: N.S.A. able to foil basic safeguards of privacy
on web. The New York Times (2013). http://www.nytimes.com/2013/09/06/us/
nsa-foils-much-internet-encryption.html

47. Ristenpart, T., Shacham, H., Shrimpton, T.: Careful with composition: limitations
of the indifferentiability framework. In: Paterson, K.G. (ed.) EUROCRYPT 2011.
LNCS, vol. 6632, pp. 487–506. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-20465-4 27

48. Rubinfeld, R.A.: A mathematical theory of self-checking, self-testing and self-
correcting programs. Ph.D. thesis, University of California at Berkeley, Berkeley,
CA, USA (1991). UMI Order No. GAX91-26752

49. Russell, A., Tang, Q., Yung, M., Zhou, H.-S.: Cliptography: clipping the power of
kleptographic attacks. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part
II. LNCS, vol. 10032, pp. 34–64. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-53890-6 2

50. Russell, A., Tang, Q., Yung, M., Zhou, H.-S.: Generic semantic security against a
kleptographic adversary. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D.
(eds.) ACM CCS 17, pp. 907–922. ACM Press, October 2017

51. Coretti, S., Dodis, Y., Guo, S., Steinberger, J.: Random oracles and non-uniformity.
In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp.
227–258. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9 9

52. Schneier, B., Fredrikson, M., Kohno, T., Ristenpart, T.: Surreptitiously weaken-
ing cryptographic systems. Cryptology ePrint Archive, Report 2015/097 (2015).
http://eprint.iacr.org/2015/097

https://doi.org/10.1007/978-3-642-13013-7_24
https://doi.org/10.1007/978-3-642-14623-7_16
https://doi.org/10.1007/978-3-540-74462-7_25
https://doi.org/10.1007/978-3-540-24638-1_2
https://doi.org/10.1007/978-3-540-24638-1_2
https://doi.org/10.1007/978-3-662-46803-6_22
https://doi.org/10.1007/3-540-44987-6_22
https://doi.org/10.1007/978-3-540-78440-1_16
https://doi.org/10.1007/978-3-540-78440-1_16
http://www.nytimes.com/2013/09/06/us/nsa-foils-much-internet-encryption.html
http://www.nytimes.com/2013/09/06/us/nsa-foils-much-internet-encryption.html
https://doi.org/10.1007/978-3-642-20465-4_27
https://doi.org/10.1007/978-3-642-20465-4_27
https://doi.org/10.1007/978-3-662-53890-6_2
https://doi.org/10.1007/978-3-662-53890-6_2
https://doi.org/10.1007/978-3-319-78381-9_9
http://eprint.iacr.org/2015/097

Correcting Subverted Random Oracles 271

53. Soni, P., Tessaro, S.: Public-seed pseudorandom permutations. In: Coron, J.-S.,
Nielsen, J.B. (eds.) EUROCRYPT 2017, Part II. LNCS, vol. 10211, pp. 412–441.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56614-6 14

54. Young, A., Yung, M.: The dark side of “black-box” cryptography, or: should we
trust capstone? In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 89–103.
Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 8

55. Young, A., Yung, M.: Kleptography: using cryptography against cryptography.
In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 62–74. Springer,
Heidelberg (1997). https://doi.org/10.1007/3-540-69053-0 6

https://doi.org/10.1007/978-3-319-56614-6_14
https://doi.org/10.1007/3-540-68697-5_8
https://doi.org/10.1007/3-540-69053-0_6

Combiners for Backdoored
Random Oracles

Balthazar Bauer1,2, Pooya Farshim1,2(B), and Sogol Mazaheri3

1 DI/ENS, CNRS, PSL University, Paris, France
balthazar.bauer@ens.fr, pooya.farshim@gmail.com

2 Inria, Paris, France
3 Cryptoplexity, Technische Universität Darmstadt, Darmstadt, Germany

sogol.mazaheri@cryptoplexity.de

Abstract. We formulate and study the security of cryptographic hash
functions in the backdoored random-oracle (BRO) model, whereby a
big brother designs a “good” hash function, but can also see arbitrary
functions of its table via backdoor capabilities. This model captures
intentional (and unintentional) weaknesses due to the existence of
collision-finding or inversion algorithms, but goes well beyond them by
allowing, for example, to search for structured preimages. The latter can
easily break constructions that are secure under random inversions.

BROs make the task of bootstrapping cryptographic hardness some-
what challenging. Indeed, with only a single arbitrarily backdoored
function no hardness can be bootstrapped as any construction can be
inverted. However, when two (or more) independent hash functions are
available, hardness emerges even with unrestricted and adaptive access
to all backdoor oracles. At the core of our results lie new reductions from
cryptographic problems to the communication complexities of various
two-party tasks. Along the way we establish a communication complex-
ity lower bound for set-intersection for cryptographically relevant ranges
of parameters and distributions and where set-disjointness can be easy.

Keywords: Random oracle · Combiner · Communication complexity
Set-disjointness · Set-intersection · Lower bounds

1 Introduction

Hash functions are one of the most fundamental building blocks in the design
of cryptographic protocols. From a provable security perspective, a particularly
successful methodology to use hash functions in protocols has been the introduc-
tion of the random-oracle (RO) model [5,15]. This model formalizes the intuition
that the outputs of a well-designed hash function look random by giving all par-
ties, honest or otherwise, oracle access to a uniformly chosen random function.
The strong randomness properties inherent in the oracle, in turn, facilitate the
security analyses of many protocols.

c© International Association for Cryptologic Research 2018
H. Shacham and A. Boldyreva (Eds.): CRYPTO 2018, LNCS 10992, pp. 272–302, 2018.
https://doi.org/10.1007/978-3-319-96881-0_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96881-0_10&domain=pdf

Combiners for Backdoored Random Oracles 273

The cryptanalytic validation of hash functions can strengthen our confidence
in this RO-like behavior. On the other hand, as such analyses improve, (unin-
tentional) weaknesses in hash functions are discovered, which can lead to their
partial or total break of security. However, cryptanalytic validation might also
fail to detect intentional weaknesses that are built into systems. For example
such backdoors might be themselves built using cryptographic techniques, which
make them hard to detect. Prominent examples show that such backdoors exist
and can be exploited in various ways [6,10,11].

In this work we revisit a classical question on protecting against failures
of hash functions. Numerous works in this area have studied if, and to what
level, by combining different hash functions one can offer such protections;
see [7,16,17,20] for theoretical treatments and [13,26,30] for cryptanalytic work.
However, most work has their focus on unintentional failures (to protect against
cryptanalytic advances). In this work, we consider a more adversarial view of
hash function failures and ask if well-designed, but possibly backdoored hash
functions can be used to build backdoor-free hash functions?

Depending on what well-designed means, what adversarial powers the back-
doors provide, and what security goals are targeted, different solutions emerge.
Hash-function combiners in the works above typically convert two or more hash
functions into a new one that is secure as long as any of the underlying hash
functions is secure. For example, the concatenation combiner builds a collision-
resistant hash function given k hash functions as long as one function is collision
resistant. Multi-property combiners for other notions, such as PRG, MAC or
PRF security, also exist [17].

Typical combiners, however, do not necessarily offer protection when all hash
functions fail. Intuitively, the goal here is more challenging as all “sources of
hardness” have been rendered useless. Despite this, a number of works [20,23,26,
27,33] take a more practical approach and introduce an intermediate weakened
RO model, where hash functions are vulnerable to strong forms of attack, but
are otherwise random.

This is an approach that we also adopt here. Since our goal is to protect
against adversarial weaknesses (aka. backdoors), we place no assumptions on
hash-function weaknesses—they can go well beyond computing random preim-
ages or collisions.

1.1 Contributions

We introduce a substantially weakened RO model where an adversary, on top of
hash values, can also obtain arbitrary functions of the table of the hash function.
We formalize this capability via access to a backdoor oracle Bd(f) that on input
a function f returns f(〈H〉), arbitrary auxiliary information about the function
table of the hash function H. We call this the backdoored random-oracle (BRO)
model.

Such backdoors are powerful enough to allow for point inversions—simply
hardwire the point y that needs to be inverted into a function f [y] that searches
for a preimage of y under H—or finding collisions. But they can go well beyond

274 B. Bauer et al.

them. For example, although Liskov [27] proves one-way security of the combiner
H(0|x1|x2)|H(1|x2|x1) under random inversions, it becomes insecurewhen inverted
points are not assumed to be random: given y1|y2 simply look for an inverse 0|x′

1|x′
2

for y1 such that 1|x′
2|x′

1 also maps to y2. BRO can also model arbitrary prepro-
cessing attacks (aka. non-uniform attacks) as any auxiliary information about 〈H〉
can be computed via a one-time oracle access at the onset. This means that col-
lisions (without salting) can be easily found. Furthermore, since Bd calls can be
adaptive, salting does not help in our setting at all. Indeed, with a single hash func-
tion and arbitrary backdoor capabilities no combiner can exist as any construction
CH(x) can be easily inverted by a function that sees the entire 〈H〉 and searches
for inversions.

In practice it is natural to assume that independent hash functions are avail-
able. We can easily model this by an extension to the k-BRO model, whereby k
independent ROs and their respective backdoor oracles are made available.1 The
interpretation in our setting is that different “trusted” authorities have designed
and made public hash functions that display good (i.e., RO-like) behaviors, but
their respective backdoors enable computing any function of the hash tables.
We ask if these hash functions can be combined in way that renders their back-
doors useless. We observe that the result of Hoch and Shamir [20] can be seen
as one building a collision-resistant hash function in the 2-BRO model assuming
backdoor oracles that allow for random inversions only.

From a high-level point of view, our main result shows that in the 2-BRO
model cryptographic hardness can be bootstrapped, even with access to both
backdoor oracles and even when arbitrary backdoor capabilities are provided. In
other words, there are secure constructions in the 2-BRO model that can tolerate
arbitrary weaknesses in all underlying hash functions. At the core of our results
lies new links with hard problems in the area of communication complexity.

Communication complexity. The communication complexity [24,38] of a
two-party task f(S, T) is the minimum communication cost over two-party pro-
tocols that compute f(S, T). Two rich and well-studied problems in this area are
the set-disjointness and set-intersection problems (see [9] for a survey). Here two
parties hold sets S and T respectively. In set-disjointness, their goal is to decide
whether or not S ∩ T = ∅; in set-intersection they need to compute at least one
element in this intersection. Typically, work in communication complexity stud-
ies communication cost over all inputs, that is, the worst-case communication
complexity of a problem, as the focus is on lower bounds. Cryptographic appli-
cations, on the other hand, usually require average-case hardness. Distributional
(average-case) communication complexity of a problem averages the communi-
cation cost over random choices of (S, T) from some distribution μ. We will rely
on average-case lower bounds in this work.

1 Note that k-BRO can be viewed as a restricted version of the 1-BRO model where
k ROs are built from a single RO acting on k separate domains and backdoor capa-
bilities are restricted to these domains only.

Combiners for Backdoored Random Oracles 275

The basic ideas. In this work, we focus on the parallel (concatenation) and
sequential (cascade) composition of hash functions H1 and H2 and consider the
combiners:

CH1,H2
| (x) := H1(x)|H2(x) and CH1,H2◦ (x) := H2(H1(x)) .

Here H1 : {0, 1}n → {0, 1}n+s1 and H2 : {0, 1}n → {0, 1}n+s2 in the first con-
struction, and H1 : {0, 1}n → {0, 1}n+s1 and H2 : {0, 1}n+s1 → {0, 1}n+s1+s2 in
the second.

Consider the one-way security of the concatenation combiner in the 2-BRO
model. An adversary is given a point y∗ := y∗

1 |y∗
2 := H1(x∗)|H2(x∗) for a random

x∗. It has access to the backdoor oracles Bd1 and Bd2 for functions H1 and H2

respectively. Its goal is to compute a preimage x for y∗ under CH1,H2
| . This is the

case iff H1(x) = y∗
1 and H2(x) = y∗

2 . Now define two sets S := H−
1 (y∗

1), the set
of preimages of y∗

1 under H1, and T := H−
2 (y∗

2), the set of preimages of y∗
2 under

H2. Thus the adversary wins iff x ∈ S ∩ T .
The two backdoor oracles respectively know S and T as they are part of

the descriptions of the two hash functions. This allows us to convert a success-
ful one-way adversary to a two-party protocol that computes an element x of
the intersection S ∩ T . Put differently, if the communication complexity of set-
intersection for sets that are distributed as above has a high lower bound, then
the adversary has to place a large number of queries, which, in turn, allows us
to conclude that the concatenation combiner is one-way in the 2-BRO model.

The question is: for which sets S and T is set-intersection hard? Suppose the
hash functions H1,H2 : {0, 1}n → {0, 1}m are compressing and m = n − s. Then
on average the sets S and T would each have 2s elements. We can of course
communicate these sets in O(2s) bits and find a preimage. However, the cost
of this attack when s is linear in n (or even super-logarithmic in n) becomes
prohibitive. This raises the question if set-intersection is hard for, say, s = n/2
and where the distribution over (S, T) is induced by the two hash functions,
where except a single element in common (guaranteed to exist by the rules
of the one-way game) all others are sampled uniformly and independently at
random and included in the sets.

We observe that hardness of the set-disjointness problem implies hardness
of set-intersection as the parties can verify that a given element is indeed in
both their sets.2 Set-disjointness is a better studied problem. To the best of
our knowledge two results on set-disjointness with parameters and distributions
close to those in our setting have been proven. First, a classical (and technical)
result of Babai, Simon and Frankl [1] which shows an Ω(

√
N) lower bound for

random and independent sets S and T of size exactly
√

N in a universe of size
N . Second, a result based on information-theoretic arguments due to Bar-Yossef
et al. [2], for dependent sets S and T , which has been adapted to Bernoulli
product distributions in lectures by Moshkovitz and Barak [32, Lecture 9] and

2 On the other hand, for sufficiently large sets that intersect with high probability,
set-disjointness is easy whereas set-intersection can remain hard.

276 B. Bauer et al.

Guruswami and Cheraghchi [19, Lecture 21]. The distribution is as follows: for
each of the N elements in the universe, independent Ber(1/

√
N) bits are sampled.

(The probability of 1 is 1/
√

N .) The sets then consist of all elements for which
the bit is set to 1.3 The authors again prove an Ω(

√
N) lower bound (which

is tight up to logarithmic factors). We note that both these results only hold
for protocols that err with probability at most ε ≤ 1/100. However, we only
found incomplete proofs of set-disjointness for product Bernoulli distributions,
and thus have included a self-contained proof in the full version of this paper [4,
Appendix C]. We also prove a distributional communication complexity lower
bound for set-intersection for parameters where set-disjointness can be easy.

The second result is better suited for our purposes as the size restriction in
the first one would restrict us to regular random oracles. Indeed, the distribution
induced on the preimages of y∗

1 (resp. y∗
2) by the hash function outside the

common random point is Bernoulli: Pr[H1(x) = y∗
1] = 1/2m (resp. Pr[H2(x) =

y∗
2] = 1/2m) for any x and independently for values of x. We use this fact to show

that set-intersection and set-disjointness problems are, respectively, sufficient to
prove it is hard to invert random co-domain points (a property that we call
random preimage resistance, rPre) or even decide if a preimage exists (which
we call oblivious PRG, oPRG). The main benefit of these games is that they do
away with the common point guaranteed to exist by the rules of one-way game
(and also similar technicalities associated with the standard PRG game). These
games can then be related to the one-way and PRG games via cryptographic
reductions.

Our lower bound for set-intersection allows us to prove strong one-way secu-
rity for some parameters, while the set-disjointness bound only enables proving
weak PRG security. Using amplification techniques we can then convert the
weak results to strong one-way functions [18] or strong PRGs [29]. Note that the
reductions for all these results are fully black-box and thus would relativize [34].
This implies that the same proofs also hold in the presence of backdoor oracles.
Construction of other primitives in minicrypt also relativize. This means we also
obtain backdoor-free PRFs, MACs, PRPs, and symmetric encryption schemes
in our model. The resulting constructions, however, are often too inefficient to
be of any practical use. The bottleneck for PRG efficiency here is the proven
lower bounds for set-disjointness. New lower bounds that give trade-offs between
protocol error and communication complexity will enable more efficient/secure
constructions. We discuss in Sect. 4 why the current proof does not permit this.

Recall that collision resistance can not be based on one-way functions [36].
The concatenation combiner, on the other hand, appears to be collision resistant
as simultaneous collisions seem hard to find, even with respect to arbitrary
backdoors for each hash function. Indeed, an analysis of collision resistance for
this combiner reveals a natural multi-instance analogue of the set-intersection
problem, which to the best of our knowledge has not been studied yet. Assuming
the hardness of this problem (which we leave open) we get collision resistance.

3 The expected size of such Bernoulli sets is N/
√

N =
√

N , but this size can deviate
from the mean and this distribution is not identical to that by Babai et al. [1].

Combiners for Backdoored Random Oracles 277

Table 1. Overview of results for concatenation and cascade. Functions Hi have stretch
si. The parameters for collision resistance are conjectural.

Combiner Strong OW Weak PRG Strong CR

Concatenation s1, s2 = −(ε + 1) · n/2
for 0 < ε < 1/3

s1 = −n/2 + 1,
s2 = −n/2

s1, s2 ≤ −n/2 − 1

Cascade s1 = (1+ε)·n, s2 = −n
for −1/2 < ε < 0

s1 = 2n, s2 =−2n + 1 s1 = 2n,
s2 = −2n − 1

We note that fully black-box amplification for collision-resistance also exists [8],
and it is sufficient to prove hardness for small values of protocol error ε (should
this be the case as in the case single-instance set-disjointness).

We carry out similar analyses for the cascade combiner, for which different
choices of parameters lead to security. Although the overall approach remains
the same, we need to deal with difficulties arising from one of the sets being
the image of a hash function. The latter distribution is somewhat different to
Bernoulli sets (as elements are not chosen independently). We show, however,
that by addition of noise one-way and PRG security can be based on known lower
bounds. For collision-resistance we give a reduction to a multi-instance analogue
of set-intersection (whose hardness remains open). We analyze the security of
the xor combiner in the full version of this paper [4].

We summarize our results in Table 1. Roughly speaking, strong security
demands that the advantage of adversaries in the corresponding security game is
negligible, while for weak security it suffices that the advantage is not overwhelm-
ing. In the table, concatenation is with respect to hash function H1 : {0, 1}n →
{0, 1}n+s1 and H2 : {0, 1}n → {0, 1}n+s2 , while cascade is with respect to hash
function H1 : {0, 1}n → {0, 1}n+s1 and H2 : {0, 1}n+s1 → {0, 1}n+s1+s2 . The
stretch values s1 and s2 can assume negative values (compressing), positive val-
ues (expanding), or be zero (length-preserving).

1.2 Discussion

Backdoors as weaknesses. One of the main motivations for the works of
Liskov [27] and Hoch and Shamir [20] is the study of design principles for sym-
metric schemes that can offer protections against weaknesses in their underlying
primitives. For example, Hoch and Shamir study the failure-friendly double-pipe
hash construction of Lucks [28]. Similarly, Liskov shows that his zipper hash is
indifferentiable from a random oracle even with an inversion oracle for its under-
lying compression function. Proofs of security in the unrestricted BRO model
would strengthen these results as they place weaker assumptions on the types
of weaknesses that are discovered.

Auxiliary inputs. As mentioned above, a closely related model to BRO is
the Auxiliary-Input RO (AI-RO) model, introduced by Unruh [37] and recently
refined by Dodis, Guo, and Katz [14] and Coretti et al. [12]. Here the result of a

278 B. Bauer et al.

one-time preprocessing attack with access to the full table of the random oracle is
made available to an adversary. The BRO and AI-RO models are similar in that
they both allow for arbitrary functions of the random oracle to be computed.
However, BRO allows for adaptive, instance-dependent auxiliary information,
whereas the AI-RO model only permits a one-time access at the onset.4 Thus
AI-RO is identical to BRO when only a single Bd query at the onset is allowed.
Extension to multiple ROs can also be considered for AI-ROs, where independent
preprocessing attacks are performed on the hash functions. A corollary is that
any positive result in the k-BRO model would also hold in the k-AI-RO model.
Results in k-AI-RO model can be proven more directly using the decomposition
of high-entropy densities as the setting is non-interactive.

Feasibility in 1-BRO. As already observed, any combiner in 1-BRO is insecure
with respect to arbitrary backdoors. We can, however, consider a model where
backdoor capabilities are restricted to inversions only. Security in such models
will depend on the exact specification of backdoor functionalities F . For exam-
ple, under random inversions positive results can be established using standard
lazy sampling techniques. But another natural choice is to consider functions
which output possibly adversarial preimages, i.e., functions f [y] whose outputs
are restricted to those x for which H(x) = y. As we have seen, under such
generalized inversions provably secure constructions can fail. Moreover, proving
security under general inversions seems to require techniques from communica-
tion complexity as we do here.

Other settings. Proofs in the random-oracle model often proceed via direct
information-theoretic analyses. Here we give cryptographic reductions (some-
what similarly to the standard model) that isolate the underlying communication
complexity problems. These problems have diverse applications in other fields
(such as circuit complexity, VLSI design, and combinatorial auctions), which
motivate their study outside cryptographic contexts. Any improvement in lower
bounds for them would also lead to improvements in the security/efficiency of
cryptographic constructions. We discussed the benefits of proofs for arbitrary
error above. As other examples, results in multi-party communication complex-
ity would translate to the k-BRO model for k > 2 or those in quantum commu-
nication complexity can be used to built quantum-secure BRO combiners.

1.3 Future Work

Our work leaves a number of problems open, some of which are closer to work
in communication complexity. We discuss these below.

Lower bounds for set-disjointness that do not assume a small error would
improve the security and/or efficiency of our PRG constructions. Moreover, we do
not currently have a lower bound for themulti-instance analogue of set-intersection
that we need for proving collision resistance. Finding the “maximal” backdoor

4 Arguably, the AI-RO model is better named the Non-Uniform RO model: auxiliary
input is often instance dependent whereas non-uniform input is not.

Combiners for Backdoored Random Oracles 279

capabilities in the 1-BRO model under which hardness can be bootstrapped
remains an interesting open problem. Katz, Lucks, and Thiruvengadam [22] study
the construction of collision-resistant hash functions from ideal ciphers that are
vulnerable to differential related-key attacks. We leave the study of combiners for
other backdoored primitives, such as ideal ciphers, for future work.

2 Preliminaries

We let N denote the set of non-negative integers and {0, 1}n be the set of all
binary strings of length n ∈ N. For two bit strings x and y, we denote their
concatenation by x|y. We let [N] denote the set {1, . . . , N}. For a finite set S,
we denote by s←←S the uniform random variable over S. The Bernoulli random
variable x←← Ber(p) takes value 1 with probability p and 0 with probability 1−p.
The Binomial random variable x1, . . . , xn ←← Bin(n, p) constitutes a sequence of n
independent Bernoulli samples. We will sometimes use e−x := limn→∞(1−x/n)n.

2.1 Random Oracles

A hash function H with n-bit inputs and m-bit outputs is simply a function
with signature H : {0, 1}n → {0, 1}m. We let Fun[n,m] denote the set of all such
functions. Fun[n,m] is finite and we endow it with the uniform distribution. For
a hash function H, we let 〈H〉 denote the function table of H encoded as a string
of length m2n. We see the x-th m-bit block of 〈H〉 as H(x), identifying strings
x ∈ {0, 1}n with integers in [1, 2n]. The random-oracle (RO) model (for a given
n and m) is a model of computation where all parties have oracle access to a
function H←← Fun[n,m].

Backdoor functions. A backdoor function for H ∈ Fun[n,m] is a function
f : Fun[n,m] → {0, 1}t. A backdoor capability class F is a set of such backdoor
functions. The unrestricted class contains all functions. But the class can be
also restricted, for example, functions f [y] for y ∈ {0, 1}m whose outputs x
are restricted to be in H−(y), where H−(y) is the set preimages of y under H.
Randomness can also be hardwired.

The BRO model. In the backdoored random-oracle (BRO) model, a random
function H←← Fun[n,m] is sampled. All parties are provided with oracle access
to H. Adversarial parties are additionally given access to the procedure

Proc. Bd(f) : return f(〈H〉)

for f ∈ F . Formally, we denote this model by BRO[n,m,F], but will omit
[n,m,F] when it is clear from the context. When F = ∅, we recover the con-
ventional RO model. As discussed in the introduction, when the adversarial
parties call the backdoor oracle only once and before any hash queries, we
recover random oracles with auxiliary input, the AI-RO model [12, Definition 2].
Thus, BRO also models oracle-dependent auxiliary input or pre-computation

280 B. Bauer et al.

Fig. 1. The one-way, pseudorandomness, and collision resistance games for CHi ∈
Fun[n, m].

attacks as special cases. In the k-BRO model (with the implicit parameters
[ni,mi,Fi] for i = 1, . . . , k) access to k independent random oracles Hi ∈
Fun[ni,mi] and their respective backdoors Bdi with capabilities Fi are pro-
vided. That is, procedure Bdi(f) returns f(〈Hi〉). In this work we are primarily
interested in the 1-BRO and 2-BRO models with unrestricted F .

We observe that the 2-BRO[n,m,F1, n,m,F2] model is identical to the 1-
BRO[n + 1,m,F] model where for H ∈ Fun[n + 1,m] we define H1(x) := H(0|x),
H2(x) := H(1|x) and F to consist of two types of functions: those in F1 and
dependent on values H(0|x), that is the function table of H1, only, and those in
F2 and dependent on values of H(1|x), that is the function table of H2, only.
Thus the adversary in the unrestricted 2-BRO model has less power than in the
unrestricted 1-BRO model.

2.2 Cryptographic Notions

We recall the basic notions of one-wayness, pseudorandomness, and collision-
resistance for a construction CH1,H2 in the 2-BRO model in Fig. 1. We omit the
implicit parameters from the subscripts and use CHi in place of CH1,H2 to ease
notation. These notions can also be defined in the 1-BRO model analogously by
removing access to H2 and Bd2 throughout. The advantage terms are

AdvowCHi (A) := Pr[OWA
CHi], Advprg

CHi
(A) := 2 · Pr[PRGA

CHi] − 1,

AdvcrCHi (A) := Pr[CRA
CHi] .

All probabilities in this model are also taken over random choices of Hi. Infor-
mally CH1,H2 is OW, PRG, or CR if the advantage of any adversary A querying
its oracles, such that the total length of the received responses remains “reason-
able”, is “small”. Note that if one only considers backdoor functions with 1-bit
output lengths, the total length of the oracle responses directly translates to the
number of queries made by A. We denote by Q(A) the number of oracle queries

Combiners for Backdoored Random Oracles 281

Fig. 2. The random preimage resistance (rPre), oblivious PRG (oPRG), and image
uniformity (IU) games for CHi ∈ Fun[n, m].

made by an adversary A to Hi and Bdi. Weak security in each case means that
the corresponding advantage is less than 1 and not overwhelming.

We define variants of the above games which will be helpful in our analyses.
For a function H ∈ Fun[n,m], define Img(H) := H({0, 1}n) and Img(H) :=
{0, 1}m\Img(H). The random preimage-resistance (rPre) game is defined similarly
to everywhere preimage-resistance (ePre) [35] except that a random co-domain
point (as opposed to any such point) must be inverted. This definition differs from
one-way security in two aspects: the distribution of H(x) for a uniform x might not
be uniform. Furthermore, some points in the co-domain might not have any preim-
ages. We also define a decisional variant, called oblivious PRG (oPRG), where the
adversary has to decide if a random co-domain point has a preimage. We formalize
these games in Fig. 2. The advantage terms are defined as:

Advrpre
CHi

(A) := Pr[rPreA
CHi] Advoprg

CHi
(A) := Pr[oPRGA

CHi]

Weak analogues of the above security notions (for example weak rPre or weak
oPRG) are defined by requiring the advantage to be bounded away from 1 (i.e.,
not to be overwhelming). These definitions can be formalized in the asymptotic
language, but we use concrete parameters here.

We state two lemmas that relate OW and rPre, resp. PRG and oPRG: for
functions that have uniform images, as defined below, we show that OW security
is implied by rPre security and PRG security is implied by oPRG security.

Image Uniformity. Let CHi ∈ Fun[n,m] be a construction in the 2-BRO
model. In the image uniformity game IU defined in Fig. 2, an adversary, given
access to all backdoor oracles, must decide whether a given value is chosen uni-
formly at random from the image of CHi or computed as the image of a value x
chosen uniformly at random from the domain. The advantage term is

AdviuCHi (A) := 2 · Pr[IUA
CHi] − 1 ,

where the probability is taken over random choices of Hi.

282 B. Bauer et al.

The following lemma upper bounds the advantage of adversaries playing the
image uniformity game for combiners with different stretch values. We denote by
US the uniform distribution over a set S. We also let Up

f denote the distribution
defined by Up

f (x) = |f−1(x)|/2n, where f ∈ Fun[n,m] is a uniform function. We
refer the readers to [4, Appendix A] for proofs.

Lemma 1 (Combiner image uniformity). Let CH1,H2
t : {0, 1}n → {0, 1}m

be a combiner for t ∈ {|, ◦}. Let H : {0, 1}n → {0, 1}m be a hash function. Then

Adviu
C
Hi
t

(A) ≤ EH

[
ΔTV

(UImg(H),Up
H

)]
+ 2 · pt ,

where p| = 0 and p◦ ≤ 22n1−m1 is the probability that H1 : {0, 1}n1 → {0, 1}m1 is
not injective (i.e., it has at least one collision). Let 2n = C ·2m·γ for constants C
and γ. Then the above statistical distance is negligible for γ > 1 and 0 < γ < 1
when C = 1, while for γ = 1 and C ≤ 1 it less than e−C · (

C/(1 − e−C) − 1
)

plus negligible terms.

Now we can relate our notions of rPre and oPRG with their classical variants,
i.e., one-way and PRG security. Proofs of both lemmas are included in the full
version [4, Appendix B].

Lemma 2 (rPre+IU =⇒ OW). Let CHi ∈ Fun[n,m] be a construction in the
2-BRO model. Then for any adversary A against the one-way security of CHi ,
there is an adversary B against the image uniformity and an adversary C against
the rPre security of CHi , all in the 2-BRO model and using identical backdoor
functionalities, such that

AdvowCHi (A) ≤ AdviuCHi (B) +
1
α

· Advrpre
CHi

(C) − 1 − α

α
,

where α := Pr[y ∈ Img(CHi)] over a random choice of y ∈ {0, 1}m and Hi.

An analogous result also holds for oPRG security.

Lemma 3 (oPRG + IU =⇒ PRG). Let CHi ∈ Fun[n,m] be a construction in
the 2-BRO model which is expanding with m − n ≥ 0.53. Then for any adver-
sary A against the PRG security of CHi , there is an adversary B against the
image uniformity and an adversary C against the oPRG security of CHi , both in
the 2-BRO model and using identical backdoor functionalities, such that

Advprg
CHi

(A) ≤ AdviuCHi (B) +
1 − α

α
· Advoprg

CHi
(C) − (1 − α) ,

where α := Pr[y ∈ Img(CHi)] over a random choice of y ∈ {0, 1}m and Hi.

3 Black-Box Combiners

A standard way to build a good hash function from a number of possibly “faulty”
hash functions is to combine them [25]. For instance, given k hash functions

Combiners for Backdoored Random Oracles 283

H1, . . . ,Hk, the classical concatenation combiner is guaranteed to be collision
resistant as long as one out of the k hash functions is collision resistant. More
formally, a black-box collision-resistance combiner C is a pair of oracle circuits
(CHi ,RA) where CHi is the construction and RA is a reduction that given as
oracle any procedure A that finds a collision for CHi , returns collisions for all of
the underlying Hi’s. We are interested in a setting where none of the available
hash functions is good. Under this assumption, however, a secure hash function
must be built from scratch, implying that the source of cryptographic hardness
must lie elsewhere. As we discussed above, this question has been studied in the
RO model.

We briefly explore the difficulty in the standard model here. We consider a
variant of this problem where the hash functions are weak due to the existence
of backdoors. A generation algorithm Gen outputs keys (hk, bk), where hk is used
for hashing and bk enables an unspecified backdoor capability (such as finding
preimages or collisions). Our hardness assumption is that the hash function
with key hk is collision resistant without access to bk. However, when bk is
available, no security is assumed. In this setting, the definition of a combiner
can be simplified: instead of requiring the existence of a reduction RA as above,
we can proceed in the standard way and require that the advantage of any
adversary A(S) that gets any subset S ⊂ {bk1, . . . , bkk} of the backdoors of size
|S| ≤ k −1 to be small.5 Let us call a combiner secure against any set of at most
t backdoors a

(
k

k−t

)
-combiner.

It is trivial to see that a
(
k
0

)
-combiner is also a

(
k
1

)
-combiner. It is also easy to

see that a black-box combiner is also a
(
k
1

)
-combiner. We are, however, interested

in the feasibility of
(
k
0

)
-combiners. In this setting there is an assumed source of

hardness, namely the collision resistance of hash functions without backdoors.
But constructions that have to work with a provided set of keys seem hard.6 We
next give a simple impossibly result that formalizes this intuition under fully
black-box constructions.

Theorem 1. For any positive k ∈ N, there are no fully black-box constructions
of compressing collision-resistant

(
k
0

)
-combiners.

Proof idea. Let (H,A) be a pair of oracles such that H(hk, ·) implements a random
function and A(〈C〉, hk1, . . . , hkk, bk1, . . . , bkk) is a break oracle that operates as

5 The classical setting can be viewed as one where bk’s are fixed, which leads to a dif-
ficulty when the new definition is used: a combiner (formally speaking) can “detect”
which hash functions are the good ones and use them. Since this detection procedure
is not considered practical, one instead asks for the existence of a reduction R as
discussed above.

6 Without this restriction, a trivial construction exists: generate a fresh hash key and
“forget” its backdoor. In practice, however, hash keys model sampling of a (unkeyed)
hash function from a family. Moreover, it is unclear if the designer of the combiner
will securely erase the generated backdoor. Thus, we assume that for any generated
key its backdoor is also available.

284 B. Bauer et al.

follows. It interprets 〈C〉 as the description of a combiner. It then checks that each
bki indeed enables generating collisions under hki. If so, it (inefficiently) finds a
random collision for CH(hk1,·),...,H(hkk,·) and returns it. An efficient reduction R is
given oracle access to A and H as well as a key hk∗ (without its backdoor bk∗).
It should find a collision for H(hk∗, ·) while making a small (below birthday)
number of queries to the two oracles A and H. We show that any such reduction
R must have a negligible success probability. ��

We distinguish between two cases based on whether the reduction R uses the
provided break oracle A or not. Without the use of A, the reduction would break
collision resistance for hk∗ on its own, contradicting the collision resistance of
hk∗ beyond the birthday bound. To use A the reduction has to provide it with
k keys hki and some other keys bki that enable finding collisions (since A checks
this). However, none of the provided keys hki can be hk∗, since R must also
provide some b̃k

∗
that enables finding collisions under hk∗, which means that R

can directly use b̃k
∗

to compute a collision for H(hk∗, ·), once again contradicting
the assumed collision resistance of hk∗ beyond the birthday bound. Thus, R does
not use hk∗. A random oracle H(hk∗, ·), however, is collision resistant even in
the presence of random collisions for H(hk, ·) for hk �= hk∗. This means that
R, which places a small number of oracle queries, will have a negligible success
probability.

There is room to circumvent this result by considering non-black-box con-
structions. Here, we will study hash function combiners in the k-BRO model,
where the hash oracles model access to different hk and the backdoor oracles
model access to the corresponding bk’s. As mentioned above, this approach has
also been adapted in a number of previous works, both from a provable security
as well as a cryptanalytic view [20,21,23,26,31]. In this work we will focus on
basic security properties of the concatenation (parallel) and cascade (sequential)
combiners in the unrestricted 2-BRO model.

4 Communication Complexity

The communication cost [24,38] of a two-party deterministic protocol π on inputs
(x, y) is the number of bits that are transmitted in a run of the protocol π(x, y).
We denote this by CC(π(x, y)). The worst-case communication complexity of π
is max(x,y) CC(π(x, y)). A protocol π computes a task (function) f : X ×Y → Z
if the last message of π(x, y) is f(x, y). The communication complexity of a
task f is the minimum communication complexity of any protocol π that com-
putes f . Protocols can also be randomized and thus might err with probability
Pr[π(x, y) �= f(x, y)]. Following cryptographic conventions, we denote protocol
correctness by Advfμ(π), where f is a placeholder for the name of the task f .

Combiners for Backdoored Random Oracles 285

In the cryptographic setting we are interested in distributional (aka. average-
case) communication complexity measured by averaging the communication cost
over random choices of inputs and coins. A standard coin-fixing argument shows
that in the distributional setting any protocol can be derandomized with no
change in communication complexity, and thus we can focus on deterministic pro-
tocols. For a given distribution μ over the inputs (x, y), the protocol error and
correctness are computed by taking the probability over the choice of (x, y). We
define the distributional communication cost of a deterministic protocol π as

Dμ(π) := E(x,y)∼μ[CC(π(x, y))].

The distributional communication complexity of a task f with error ε is

Dε
μ(f) := min

π
Dμ(π) ,

where the minimum is taken over all deterministic protocols π which err with
probability at most ε. In this work, we need to slightly generalize functional
tasks to relational tasks R(x, y) ⊆ Z and define error as Pr[π(x, y) �∈ R(x, y)].

Two central problems in communication complexity that have received sub-
stantial attention are the set-disjointness and the set-intersection problems. In
set-disjointness two parties, holding sets S and T respectively, compute the
binary function DISJ(S, T) := (S ∩ T = ∅). In set-intersection, their goal is to
compute the relation INT(S, T) := S∩T ; that is, the last message of the protocol
should be equal to some element in the intersection. Note that set-disjointness
can be seen as a decisional version of set-intersection and is easier. As mentioned,
we are interested in average-case lower bounds for these tasks and moreover we
focus on product distributions, where the sets are chosen independently.

Two main results to this end have been proven.7 A classical result of Babai,
Frankl, and Simon [1] establishes an Ω(

√
N) lower bound for set-disjointness

where the input sets S and T are independent random subsets of [N] of size
exactly

√
N . This result, however, is restrictive for us as it roughly translates to

regular functions in the cryptographic setting. Moreover, its proof uses intricate
combinatorial arguments, which are somewhat hard to work with.

A second result considers the following distribution. Each element x ∈ [N]
is thrown into S independently with probability p. (And similarly for T with
probability q.) We can view S as a N -bit string X where its i-th bit xi is 1 iff
i ∈ S. Thus the distribution can be viewed as N i.i.d. Bernoulli random variables
xi ∼ Ber(p) where p := Pr[xi = 1]. Thus the elements of the sets form a binomial
distribution, and accordingly we write S ∼ Bin(N, p) and T ∼ Bin(N, q). We
define μ(p, q) as the product of these distributions. When p = q = 1/2 we get
the product uniform distribution over the subsets of [N] × [N], but typically we
will be looking at much smaller values of p and q of order 1/

√
N .

7 We note that most of the work on distributional communication complexity is driven
by Yao’s min-max lemma, which lower bounds worst-case communication complex-
ity using distributional communication complexity for some (often non-uniform)
distribution.

286 B. Bauer et al.

Using information-theoretic techniques [2], the following lower bound can be
established.

Theorem 2 (Set-Disjointness Lower Bound). Let N ∈ N and assume
p, q ∈ (0, 1/2] with p ≤ q and pq = 1/(δN) for some δ > 1. Let μ(p, q) be the
product binomial distribution over subsets S, T ⊆ [N]. Assume ε < (δ−1)p0

(4+δ) and
let p0 := Pr[DISJ(S, T) = 0]. Then

Dε
μ(p,q)(DISJ) ≥ Np

8
· (

(δ − 1)p0 − (4 + δ)ε
)2

.

We have included a detailed proof of the above theorem in the full version [4,
Appendix C], which follows those in [19,32]. Our proof generalizes the original
result, which was only claimed for p = q = 1/

√
N .8 Roughly speaking, the

proof proceeds along the following lines. We can lower bound the communication
complexity of any protocol by the total information leaked by its transcripts
about each coordinate (xi, yi). The latter can be lower bounded based on the
statistical distance in protocol transcripts when xi = 1∧yi = 0 and xi = 0∧yi =
1. This step uses a number of information-theoretic inequalities, which we include
with proofs in the full version. Finally, we show that a highly correct protocol
can be used as a distinguisher with constant advantage: When xi = 0 ∧ yi = 0,
for a constant fraction of the inputs the sets will be disjoint. However, when
xi = 1 ∧ yi = 1 they necessarily intersect, but this condition happens for a
constant fraction of the inputs. We get a

√
N lower bound by averaging over

the i’s.
In this section we also prove a communication complexity lower bound for

the set-intersection problem over Bernoulli sets for which set-disjointness can be
easy. Although the overall proof structure will be similar to that in [19,32], we
will differ in a number of places. First, as above we leave the Bernoulli parameters
free so as to be able to compute a feasible region where the lower bound will
be non-trivial. We also use the fact that a candidate element can be checked
to belong to the intersection (whereas a decision bit for disjointness cannot be
checked for correctness). This ensures that the protocol error is one-sided, and
allows us to remove the requirement of ε being sufficiently small. Finally, we
will bound the probability that the protocol outputs a random element in the
intersection. This leads to a distinguisher that succeeds with smaller advantage,
but overall will lead to a non-trivial bound. We state and prove the formal
result next.

8 In the full version of this paper [4, Appendix C.3] we give a new refined proof that
extends the theorem to δ ≥ 0.8.

Combiners for Backdoored Random Oracles 287

Theorem 3 (Set-Intersection Lower Bound). Let N ∈ N and assume
p, q ∈ (0, 1/2] with p ≤ q. Let μ(p, q) be the product binomial distribution over
subsets S, T ⊆ [N]. Let ε be the protocol error and set p0 := Pr[DISJ(S, T) = 0].
If ε ≤ p0 then

Dε
μ(p,q)(INT) ≥ Np

8
·
(p0 − ε

Npq

)2

.

For sufficiently large N we have p0 = 1 − (1 − pq)N ≈ 1 − e−Npq. If pq � 1/N
we get that p0 ≈ 1 (the sets intersect with overwhelming probability) and for the
theorem we would need that ε ≤ 1.

Let us first give some preliminaries and state two lemmas that are used in
the proof of Theorem 3. For random variables X and Y , their statistical dis-
tance (aka. total variance) is denoted by ΔTV(X,Y), their mutual information
is denoted by I(X;Y), and their Hellinger distance is denoted by ΔHel(X,Y):

ΔHel(X,Y) :=
√

1 −
∑

z∈D

√
Pr[X = z] Pr[Y = z] .

Statistical and Hellinger distance are related (cf. proofs in [4, Appendix C.1]) via:

Δ2
Hel(X,Y) ≤ ΔTV(X,Y) ≤

√
2 · ΔHel(X,Y) .

Below, Lemma 4, proven in the full version [4, Appendix C.1], relates the
mutual information of two random variables with their Hellinger distance.

Lemma 4 (Information to Hellinger). Let X and Y be random variables
and Yx := Y |X = x, i.e., Y conditioned on X = x. Then

Ex∈X [Δ2
Hel(Y, Yx)] ≤ I(X;Y) .

Next we state the cut-and-paste lemma from communication complexity. A
proof is included in [4, Appendix C.2].

Lemma 5 (Cut-and-Paste). Let Π(X,Y) denote a random variable for the
transcripts of a deterministic protocol on input bit strings (X,Y) such that the
corresponding sets S and T are drawn from μ, i.e., S, T ∼ μ. Let a, b ∈ {0, 1}
and define Πi

a,b(X,Y) := Π(X,Y) | xi = a∧yi = b. Then for each i, it holds that

Δ2
Hel(Π

i
0,0,Π

i
1,1) = Δ2

Hel(Π
i
0,1,Π

i
1,0) .

Now we can prove the claimed lower bound on the communication complexity
of set-intersection.

Proof of Theorem 3. Let π be a deterministic protocol with error at most ε, i.e.,

Pr
(S,T)∼μ

[π(X,Y) ∈ INT(S, T)] ≥ 1 − ε ,

288 B. Bauer et al.

where X and Y are bit string representations of S and T as explained above. Let
Π(X,Y) denote a random variable for the transcripts of protocol π on inputs
(X,Y) with corresponding sets (S, T) ∼ μ. We write X = (x1, . . . , xN) and
Y = (y1, . . . , yN) where xi, yi ∈ {0, 1}. For random variables A and B, let
supp(A) denote the support of A (i.e., the set of values that have a non-zero
probability of happening), and H(A) denote the Shannon entropy. We have

Dε
μ(p,q)(INT) ≥ log |supp(Π(X,Y))|

≥ H(Π(X,Y)) = H(Π(X,Y)) + H(X,Y) − H(X,Y,Π(X,Y))

= I(X,Y ; Π) = I(x1, . . . , xN , y1, . . . , yN ; Π) ≥
N∑

i=1

I(xi, yi; Π) ,

where the last inequality holds due to the independence of x1, . . . , xN , y1, . . . , yN

(cf. [4, Appendix C.1]). Let Πi
a,b be Π conditioned on the i-th coordinates of X

and Y being fixed to a and b respectively:

Πi
a,b(X,Y) := Π(X,Y) | xi = a ∧ yi = b .

By Lemma 4 we know

I(xi, yi; Π) ≥ E(a,b)[Δ2
Hel(Π

i
a,b,Π)] ,

where (a, b) ∼ Ber(p) × Ber(q) and ΔHel is the Hellinger distance.
Since q ≥ p we have that q(1 − p) ≥ p(1 − q) and since q ≤ 1/2, we also have

that p(1 − q) ≥ p/2. Thus

I(xi, yi; Π) ≥ p(1 − q) · Δ2
Hel(Π

i
1,0,Π) + q(1 − p) · Δ2

Hel(Π
i
0,1,Π)

≥ p(1 − q) · (Δ2
Hel(Π

i
1,0,Π) + Δ2

Hel(Π
i
0,1,Π)

)

≥ p/2 · (
Δ2

Hel(Π
i
1,0,Π) + Δ2

Hel(Π
i
0,1,Π)

)

≥ p/4 · (
ΔHel(Πi

1,0,Π) + ΔHel(Πi
0,1,Π)

)2

≥ p/4 · Δ2
Hel(Π

i
1,0,Π

i
0,1) .

The last inequality is by the triangle inequality for the metric ΔHel, and the
penultimate inequality uses x2 + y2 ≥ (x + y)2/2. Hence,

Dε
μ(p,q)(INT) ≥ N · Ei[I(xi, yi; Π)]

≥ Np/4 · Ei[Δ2
Hel(Π

i
1,0,Π

i
0,1)]

= Np/4 · Ei[Δ2
Hel(Π

i
0,0,Π

i
1,1)]

≥ Np/8 · Ei[Δ2
TV(Πi

0,0,Π
i
1,1)]

≥ Np/8 · (
Ei[ΔTV(Πi

0,0,Π
i
1,1)]

)2
,

where the third inequality uses the cut-and-paste lemma of communication com-
plexity (Lemma 5) which states that Δ2

Hel(Π
i
1,0,Π

i
0,1) = Δ2

Hel(Π
i
0,0,Π

i
1,1) for

Combiners for Backdoored Random Oracles 289

any deterministic protocol π. The penultimate inequality uses ΔTV(A,B) ≤√
2ΔHel(A,B), which implies Δ2

Hel(Π
i
0,0,Π

i
1,1) ≥ 1/2Δ2

TV(Πi
0,0,Π

i
1,1), and the last

inequality is by Jensen. Thus it remains to lower bound ΔTV(Πi
0,0,Π

i
1,1).

For every i we have

Pr[Πi
0,0(X,Y) = i] = 0 .

This is because we have conditioned on xi = yi = 0 and the two parties can
check whether or not i belongs to their sets.

Now we look at xi = yi = 1. We show that the protocol over a random choice
of i should output i with the expected probability, that is, 1/|S ∩ T |. Note that
the expected size of the intersection is

E[|S ∩ T |] = E[
N∑

i=1

xiyi] =
N∑

i=1

E[xiyi] = Npq ,

where we have used the linearity of expectation and independence of xi and yi.
We proceed as follows.

Ei[Pr[Πi
1,1(X,Y) = i]] =

=
1
N

∑
Pr[Π(X,Y) = i|xi = yi = 1]

=
1

Npq

∑
Pr[Π(X,Y) = i ∧ xi = yi = 1]

=
1

Npq

∑

i

∑

(x,y): xi=yi=1∧π(x,y)=i

Pr[(X,Y) = (x, y)]

=
1

Npq

∑

(x,y): π(x,y) correct and x∩y �=∅
Pr[(X,Y) = (x, y)]

=
1

Npq

(∑

(x,y)

Pr[(x, y)] −
∑

x∩y=∅
Pr[(x, y)] −

∑

π(x,y) fails

Pr[(x, y)]
)

≥ 1 − Pr[DISJ(S, T) = 1] − ε

Npq
=

p0 − ε

Npq
.

Thus we get that

Ei[ΔTV(Πi
0,0,Π

i
1,1)] ≥ (p0 − ε)/(Npq) ,

and overall we obtain

Dε
μ(p,q)(INT) ≥ Np

8
·
(p0 − ε

Npq

)2

,

as required. ��

290 B. Bauer et al.

Fig. 3. Region where set inter-
section is hard with p = 1/Nα

and q = 1/Nβ .

Letting p = 1/Nα and q = 1/Nβ with α ≥ β
(since we assumed p ≤ q), for a non-trivial lower
bound—that is an exponentially large right-hand
side in the displayed equation above—we would
need to have that α+2β > 1. We also require that
1 − α − β > 0 so that the expected intersection
size Npq is exponentially large, in which case p0 ≈
1 and set-disjointness is easy. These inequalities
lead to the feasibility region shown in Fig. 3. We
have included the symmetric region for α ≤ β.

In this work, we will rely on set-disjointness
and set-intersection problems, as well as the fol-
lowing multi-set extensions of them. These prob-
lems are additionally parameterized by the num-
ber of sets. Here Alice holds M1 sets Si ∼ Bin(N, p) for i ∈ [M1] and Bob
holds M2 sets Tj ∼ Bin(N, q) for j ∈ [M2]. Their goal is to solve the following
problems.

1. Find (i, x) such that x ∈ Si ∩Ti, or return ⊥ if all the intersections are empty.
We call this the (M1,M2)-INT problem, a natural multi-instance version of
INT. A decisional variant would ask for an index i and a decision bit indicating
if Si ∩ Ti = ∅. When M1 = M2 = 1, these problems are the usual INT and
DISJ problems.

2. Find (i, j, x, x′) with x �= x′ such that x, x′ ∈ Si ∩ Tj , or return ⊥ if no such
tuple exists. We call this the (M1,M2)-2INT problem. When M1 = M2 = 1
this problem is at least as hard as the INT problem since finding two distinct
elements in the intersection is harder than finding one.

Remark. Intuitively, the INT problem is a harder task than (M1,M2)-2INT. One
can solve the (M1,M2)-2INT problem using a protocol for INT as follows. Alice
chooses a random point x in one of its sets Si and sends it to Bob. Bob will then
search through his sets to find a set Tj such that x ∈ Tj . With high probability
such a set exists if the number of sets and/or the probability parameters are large
enough. Alice and Bob will then run the protocol for INT on sets Si and Tj to find
an x′ ∈ Si ∩Tj . This element will be different from x with good probability (again
under appropriate choices of parameters). Indeed, this is simply the communica-
tion complexityway of saying “collision-resistance implies one-wayness.”However,
we are interested in a reduction in the converse direction (as we already have lower
bounds for INT). This seems hard as from a cryptographic point of view, as a clas-
sical impossibility by Simon [36] shows that collision resistance cannot be based
on one-way functions (or even permutations) in a black-box way. Despite this, it
is conceivable that direct information-theoretic analyses (similar to those for set-
disjointness and set-intersection) can lead to non-trivial lower bounds. We leave

Combiners for Backdoored Random Oracles 291

proving hardness for this “collision resistance” analogue of set-intersection as an
interesting open problem for future work.9

5 The Concatenation Combiner

In this section we study the security of the concatenation combiner

CH1,H2(x) := H1(x)|H2(x)

in the 2-BRO model, where H1 ∈ Fun[n, n + s1] and H2 ∈ Fun[n, n + s2]. We
will prove one-way security, pseudorandomness, and collision resistance for this
construction. Our results will rely on the hardness of set-intersection and set-
disjointness for the first two properties, and the presumed hardness of finding
two elements in the intersection given multiple instances.

5.1 One-Way Security

In the full version of this paper [4, Appendix D] we show that when H1 or H2

is (approximately) length preserving or somewhat expanding the concatenation
combiner is not (strongly) one-way in the 2-BRO model. In both cases preimage
sets will be only polynomially large and can be communicated. Accordingly, only
when both hash functions are (somewhat) compressing we can achieve one-way
security.

To this end, we first give a direct reduction from random preimage resis-
tance (rPre, as defined in Fig. 2) to set-intersection. By Lemma 2 we know that
any (weak) rPre-secure function is also a (weak) OW-secure function. In par-
ticular, for the highly compressing setting where s1, s2 ≤ −n/2 − 4 we show
strong one-way security. For settings where the parameters only enable weak
security according to the set-intersection theorem, we can apply hardness ampli-
fication [18] to get a strongly one-way function.

In our reductions to communication complexity protocols throughout the
paper, we make the following simplifying assumptions. (1) The adversary is
deterministic; (2) It does not query Hi at all and instead computes hash values
via the Bdi oracles; (3) It queries Bdi with functions that have 1-bit outputs;
and (4) It starts with a query to Bd1.

We are now ready to prove our first cryptographic hardness result.

Theorem 4. Let H1 ∈ Fun[n, n + s1] and H2 ∈ Fun[n, n + s2] and CH1,H2(x) :=
H1(x)|H2(x). Then for any adversary A against the rPre security of CH1,H2 in
the 2-BRO model there is a 2-party protocol π against set-intersection with μ :=
μ(p, q) where p := 1/2n+s1 and q := 1/2n+s2 and such that

Advrpre
CH1,H2

(A) ≤ Advintμ (π) and Dμ(π) ≤ Q(A) + 3n + s1 + s2 .

9 We note that our setting is different to direct sum/product theorems where the focus
is on hardness amplification. One shows, for example, that computing n independent
copies of a function requires n times the communication for one copy for product dis-
tributions [3].

292 B. Bauer et al.

Proof. Let A be an adversary against the rPre security of CH1,H2 in the 2-BRO
model for H1 and H2. Adversary A is given a random point y := y1|y2 ∈
{0, 1}2n+s1+s2 and needs to either find an x such that H1(x)|H2(x) = y1|y2
or say that no such x exists. Let

S1 := H−
1 (y1) and S2 := H−

2 (y2) .

Hence A outputs an x ∈ S1 ∩ S2 as long as S1 ∩ S2 �= ∅. We note that these
sets are Bernoulli. Indeed, for each x we have that Pr[x ∈ S1] = 1/2n+s1 and
Pr[x ∈ S2] = 1/2n+s2 , and these events are independent for different values of x.

We use A to build a 2-party protocol for set-intersection over a product
distribution μ := μ(p, q) with p := 1/2n+s1 and q := 1/2n+s2 as follows. Alice
holds a set S1 ⊆ {0, 1}n and Bob holds a set S2 ⊆ {0, 1}n distributed according
to μ. Alice (resp., Bob) samples hash function H1 (resp., H2) as follows. Alice
picks a random y1 ∈ {0, 1}n+s1 and Bob picks a random y2 ∈ {0, 1}n+s2 . Alice
defines H1 to map all points in S1 to y1. She maps x ∈ {0, 1}n \ S1 to random
points in {0, 1}n+s1 \ {y1}. Similarly Bob defines H2 to map all points x ∈ S2 to
y2 and x ∈ {0, 1}n \ S1 to random points in {0, 1}n+s2 \ {y2}. As a result, Alice
knows the full function table of H1 and similarly Bob knows the full function
table of H2.

Alice and Bob now run two copies of A in tandem as follows, where the
state values stA and stB are initially set to y1|y2 (with only 2n + s1 + s2 bits of
communication).

Alice: It resumes/starts A(stA). It terminates if it receives a final guess x from
Bob. It answers all pending Bd2 queries—there are none to start with—
using the values just received from Bob. It answers all Bd1 queries using the
function table of H1 until A queries Bd2 or terminates. If A terminates with
a final guess x, it forwards x to Bob and terminates. Else it saves the current
state stA of A locally and forwards all Bd1 answers that it has provided to
A since the last resumption to Bob. It hands the execution over to Bob.

Bob: It resumes A(stB). It terminates if it receives a final guess x from Alice.
It answers all pending Bd1 queries using the values received from Alice. It
answers all Bd2 queries using the function table of H2 until A queries Bd1 or
terminates. If A terminates with a final guess x, it forwards x to Alice and
terminates. Else it saves the current state stB of A locally and forwards all
Bd2 answers that it has provided to A since the last resumption to Alice. It
hands the execution over to Alice.

We claim that Alice and Bob run A in an environment that is identical to
the rPre game in the 2-BRO model. The hash functions H1 and H2 sampled by
Alice and Bob are uniformly distributed. To see this note that for any (x, y) the
probability that H1(x) = y is 1/|{0, 1}n+s1 | (and similarly for H2). Furthermore,
this event is independent of the hash values that are set for all other values
x′ �= x. Thus, Alice and Bob faithfully run A in the environment that it expects
by answering its backdoor queries using their knowledge of the full tables of the
two functions.

Combiners for Backdoored Random Oracles 293

Whenever A succeeds in breaking the rPre security of CH1,H2 , the protocol
above computes an x ∈ S1 ∩ S2 or says that no such x exists. In either case,
the protocol solves the set-intersection problem. Thus the correctness of this
protocol is at least the advantage of the adversary A.

This execution of A by Alice and Bob ensures that oracle queries do not
affect the communication cost of Alice and Bob. It is only their answers (plus
the final x) that affects the communication cost, since the queried functions
f are locally computed and only their answers are communicated. If A makes
Q(A) queries to Bd1 and Bd2 in total and each query has a 1-bit output, the
total communication complexity of the protocol is Q(A) plus those bits needed
to communicate y1 and y2 and the final guess x. ��

We now check that the parameters for hash functions can be set such that
their concatenation is a one-way function.

Corollary 1. For H1,H2 ∈ Fun[n, (1 − ε)n/2] with 0 < ε < 1/3 the concatena-
tion combiner is a strongly one-way compressing function in Fun[n, (1 − ε)n].

Proof. The feasible region in Fig. 3 for α = β consists of 1/3 < α < 1/2. In
our setting α = β = (1 − ε)/2, which means concatenation is strongly rPre
secure when 0 < ε < 1/3. Since the combined function is compressing (where
γ = 1/(1 − ε) > 1), the image-uniformity bound is negligible and also Pr[y ∈
Img(CHi)] in Lemma 2 is overwhelming. Using these bounds and Lemma 2 we
get that strong rPre security implies strong OW security. ��

We conjecture that concatenation is strongly one-way even for 1/3 ≤ ε < 1.
The intuition is that in the one-way game a point is “planted” in a large intersec-
tion, which seems hard to discover without essentially communicating the entire
intersection. Tighter lower bounds for set-intersection can be used to establish this.

5.2 PRG Security

We now consider the PRG security of the concatenation combiner. Our reduction
in Theorem 4 from rPre to set-intersection can be easily adapted to the decisional
setting. That is, we can show that a decisional variant of rPre can be reduced to
the set-disjointness problem. The decisional variant of rPre asks the adversary
to decide whether or not a random co-domain point y1|y2 has a preimage. This
is exactly the oblivious PRG (oPRG) notion that we defined in Sect. 2. We get
the following result.

Theorem 5. Let H1 ∈ Fun[n, n + s1] and H2 ∈ Fun[n, n + s2] and CH1,H2(x) :=
H1(x)|H2(x). Then for any adversary A against the oblivious PRG security of
CH1,H2 in the 2-BRO model there is a 2-party protocol π against set-disjointness
with μ := μ(p, q) where p := 1/2n+s1 and q := 1/2n+s2 and such that

Advoprg
CH1,H2

(A) ≤ Advdisjμ (π) and Dμ(π) ≤ Q(A) + 2n + s1 + s2 + 1 .

We next check if concrete parameters can be set to obtain an expanding PRG.

294 B. Bauer et al.

Corollary 2. For s1 = −n/2 + 1 and s2 = −n/2, the concatenation combiner
gives a weak PRG in Fun[n, n + 1].

Proof. The theorem gives a reduction to set-disjointness with parameters p =
1/2n/2+1 and q = 1/2n/2. For large n we get, δ = 2, p0 = 1 − e−1/2 and
(δ−1)p0/(4+δ) < 0.0656, which means we can set ε = 0.065. By set-disjointness
lower bound, this means any adversary with advantage at least 0.935 must place
at least O(2n/2) queries in total to its oracles.

By Lemma 1 we have that AdviuCHi (B) ≤ e−C · (
C/(1 − e−C) − 1

)
. In our

case C = 1/2 < 1, and the right hand side above is upper bounded by ≤ 0.165.
(We have removed the negligible terms and instead approximated the constants
by slightly larger values.)

In Lemma 3 in order to meet the bound Advoprg
CHi

(C) < (2 − α − AdviuCHi (B)) ·
α/(1−α), we would need 0.935 ≤ (2−α−0.165) ·α/(1−α). After some algebra
this gives α ≥ 0.39343. With m = n + s, we need to have 1 − e−2−s ≥ 0.39343,
which means s ≤ 1.00018. Thus we can set s = 1 (which also satisfies s ≥ 0.53
as required in the lemma). ��

We can obtain a strong PRG by amplification. However, we need an amplifier
that woks on PRGs with (very) small stretch. Such a construction is given
by Maurer and Tessaro [29]. In their so-called Concatenate-and-Extract (CaE)
construction one sets

PRG(r, x1, . . . , xm) := r|Ext(r,CH1,H2(x1)| · · · |CH1,H2(xm)
)

,

where Ext is a sufficiently good randomness extractor, for instance a two-
universal hash function. We refer to the original work for concrete parameters.
It is safe to assume the extractor is backdoor-free, since it is an information-
theoretic object and relatively easy to implement.

5.3 Collision Resistance

The classical result of Simon [36] shows that collision-resistance relies on qual-
itatively stronger assumptions than one-way functions. In the theorem below
we prove collision resistance based on the hardness of the multi-instance 2INT
problem as defined in Sect. 4. As discussed in the final remark of that section,
we do not expect that a reduction to the INT problem exists.

Theorem 6. Let H1 ∈ Fun[n, n + s1] and H2 ∈ Fun[n, n + s2] and CH1,H2(x) :=
H1(x)|H2(x). Then for any adversary A against the collision resistance of CH1,H2

in the 2-BRO model there is a 2-party protocol π′ against multi-instance two-
element set-intersection problem over μ′ := μ(p′, q′) with p′ := 2n ln 2/2n+s1

and q′ := 2n ln 2/2n+s2 and where Alice holds M1 := 2n+s1 sets and Bob holds
M2 := 2n+s2 sets such that

AdvcrCH1,H2 (A) ≤ Advmi-2int
μ′ (π′) + 2 · 2−n and Dμ′(π′) ≤ Q(A) + 4n + s1 + s2 .

Combiners for Backdoored Random Oracles 295

Proof. We follow an overall strategy that is similar to one for the rPre reduction.
For each i ∈ {0, 1}n+s1 , Alice sets H−

1 (i) := Si and for each j ∈ {0, 1}n+s2 Bob
sets H−

2 (j) := Tj and they simulate the two hash functions. However, this leads
to a problem: Si are not necessarily disjoint and furthermore their union does
not cover the entire domain {0, 1}n. (The same is true for Tj .) Put differently,
the distributions of sets formed by hash preimages of co-domain points do not
match independently chosen sets from a Bernoulli distribution.

We treat this problem in two step. The first step is a direct reduction to
a “partitioned” modification of the multi-instance set-intersection. In this par-
titioned problem Alice gets sets Si := H−

1 (i) for i ∈ {0, 1}n+s1 and a random
oracle H1 ∈ Fun[n, n+s1]. Similarly, Bob gets sets Tj := H−

2 (j) for j ∈ {0, 1}n+s2

and an independent random oracle H2 ∈ Fun[n, n + s2]. Their goal is to find a
tuple (i, j, x, x′) with x �= x′ such that x, x′ ∈ Si ∩ Tj . Thus, these sets exactly
correspond to hash preimages as needed in the reduction above, and a solution
would translate to a collision for the combined hash function.

We then show that hardness of the (standard) multi-instance two-element
set-intersection problem implies the hardness of the partitioned problem with
an increase in the Bernoulli parameter.10 ��
Lemma 6 (Partitioned =⇒ Independent). For any two-party protocol
π against the partitioned multi-instance set-intersection problem there is a two-
party protocol π′ against multi-instance set-intersection problem such that

Advmi-2int
μ′ (π′) ≥ Advpart-2intμ (π) − 2 · 2−n and Dμ′(π′) ≤ Dμ(π) .

Here μ := μ(p, q) is the distribution induced by hash preimages and μ′ :=
μ′(p′, q′) is a product Bernoulli with p′ := 2n ln 2 · p and q′ := 2n ln 2 · q.

Proof. To focus on the core ideas, we simplify and let M1 = M2 = M = 2n+s

and p = q = 1/2n+s. Suppose we have sets Si and Tj for i = 1, . . . ,M and
j = 1, . . . ,M as an instance for the multi-instance intersection. Let p′ = q′ =
2n ln 2 · p. Then

Pr[∃x ∈ {0, 1}n ∀i ∈ [M] : x �∈ Si] ≤ 2n Pr[∀i ∈ [M] : x �∈ Si]

≤ 2n(1 − p′)1/p ≤ 2ne−2n ln 2 = 2−n .

Thus with these parameters the sets Si (and similarly Tj) will cover the full
domain, that is

⋃M
i=1 Si = {0, 1}n.

Note that with these parameters any two sets Si and Tj will intersect with
overwhelming probability. However, finding an element in the intersection may
still be hard; see conjecture below.

Our next step it to redistribute the elements among the sets so that they
form partitions. We do this via the algorithm ReDist shown in Fig. 4. ReDist
iterates through elements x in the domain and leaves x in exactly one of the
sets. (By the above covering property such a set always exits.)
10 Another strategy would be to change the number of sets involved. But this runs into

a problem as this number must match the size of the co-domain of the hash function.

296 B. Bauer et al.

Fig. 4. Redistribution of elements to form a partition.

This procedure will be applied to Si (resp., Tj) to produce non-overlapping
sets S̃i (resp. T̃j). Furthermore, we always have that S̃i ⊆ Si and T̃i ⊆ Ti,
since elements are only deleted from the sets and never added to them. Thus
S̃i ∩ T̃j ⊆ Si ∩ Tj as well, and this means that any solution with respect to the
tweaked sets will also be a valid solution for the original (Bernoulli) sets.

We still need to show that the distribution of the tweaked sets is identical
to that given by hash preimages under a random oracle. Let Ex,i be the event
that x ∈ S̃i. Since the algorithm does not treat any of the i’s in a special way,
we claim that Pr[Ex,i] is independent of i. Indeed for any i, j we have

Pr[Ex,i]=Pr[x ∈ Si] Pr[ix = i|x ∈ Si]=Pr[x ∈ Sj] Pr[ix = j|x ∈ Sj]=Pr[Ex,j].

This is because Pr[x ∈ Si] = Pr[x ∈ Sj] and Pr[ix = i|x ∈ Si] = Pr[ix = j|x ∈
Sj]. If we call this common probability ex, since x is guaranteed belongs to one of
the M sets, we have that

∑
i∈[M] ex = 1. Thus ex = 1/M = Pr[H1(x) = i]. Note

that the algorithm assigns different values of x independently of all other values
already assigned, we get that the event H1(x) = i is independent for different x.

Finally, solutions with respect to the tweaked sets always exist when s1+s2 <
0. This is because the problem is equivalent to finding collisions for a function
H1(x)|H2(x) that is compressing, which necessarily exist. ��

The birthday attack gives a 2min(n+s1,n+s2)/2 upper bound on the security of
the combined hash function. Balancing the digest lengths with s1 = s2 = n/2,
leads to a maximum collision security of at most 2n/4. Proving a lower bound, on
the other hand, remains an interesting open problem. We formulate a conjecture
towards proving this next.

Conjecture 1. The multi-instance 2-element set-intersection problem over
Bernoulli sets in a universe of size N with p = q = 1/

√
N and

√
N sets for

each party has communication complexity

Dε
μ(p,q)((

√
N,

√
N)-2INT) ≥ Ω̃(N1/4)

for a sufficiently small protocol error ε and where Ω̃ hides logarithmic factors.

Combiners for Backdoored Random Oracles 297

We note that a lower bound for protocols with a sufficiently small error would
be sufficient for feasibility results as collision resistance can also be amplified in
a black-box way [8].

6 The Cascade Combiner

We now look at the security of the cascade combiner

CH1,H2(x) := H2(H1(x))

in the 2-BRO model, where H1 ∈ Fun[n, n + s1] and H2 ∈ Fun[n + s1, n +
s1 + s2]. We will prove one-way security and pseudorandomness based on set-
intersection and set-disjointness respectively, and collision resistance based on
a variant finding two intersecting points given multiple instances for one party
and a single set for the other.

6.1 One-Way Security

Similarly to the concatenation combiner, we can reduce the random preimage
resistance (rPre) security of the cascade combiner to set-intersection.

Theorem 7. Let H1 ∈ Fun[n, n + s1] and H2 ∈ Fun[n + s1, n + s1 + s2] and
CH1,H2(x) := H2(H1(x)). Then for large enough n and any adversary A against
the rPre security of CH1,H2 in the 2-BRO model there is a 2-party protocol π
against set-intersection with μ := μ(p, q) where p := 1/2s1 and q := 1/2n+s1+s2

and such that

Advrpre
CH1,H2

(A) ≤ Advintμ (π) +
√

n2−n/2(1 + 2s2−s1) and Dμ(π) ≤ Q(A) + 3n + s1 + s2.

Proof. We follow a strategy similar to the reductions in Sect. 5. Given a random
y∗ ∈ {0, 1}n+s1+s2 the task of the adversary A against rPre security of CH1,H2 is
to a find a z such that CH1,H2(z) = y∗. With such a z, one can then also compute
x := H1(z) and conclude that x ∈ I ∩ T where

I := H1({0, 1}n) and T := H−
2 (y∗)

with I, T ⊆ {0, 1}n+s1 . The set T is Bernoulli with parameter Pr[y ∈ T] =
1/2n+s1+s2 . Although set I appears to be Bernoulli,

Pr[x ∈ I] = 1 − Pr[∀z : H1(z) �= x] = 1 − (1 − 1/2n+s1)2
n

it is not, since these probabilities are not independent for different values of x.
Our strategy to deal with this and ultimately construct a protocol π for

solving set-intersection is to start with a Bernoulli set S (Alice’s input), and
program H1 on all x ∈ {0, 1}n to values y that will be taken from S, but are also
set to collide with the right probability. This will ensure that the image of H1

contains most of S and is also distributed as the image of a random oracle.

298 B. Bauer et al.

We proceed as follows. Initially the set of assigned domain points X and
assigned co-domain points Y are empty. We then iterate through x ∈ {0, 1}n in
a random order. A bit b decides at each iteration decides if the hash value y for
x should collide with a previously assigned value or not. If so, we sample y from
the set of already assigned values Y . Otherwise, y should be a non-colliding value
and we sample it from S if S is non-empty (and remove y from S), or otherwise
we sample it outside the already assigned points Y . The pseudo-code for this
algorithm, which we call HashSam, is shown in Fig. 5.

Fig. 5. Hash sampler centered around a Bernoulli set S.

Setting m := n+s1, we now need to check that (1) the returned hash function
H1 is distributed as a random oracle {0, 1}n → {0, 1}m when S is Bernoulli with
parameter p = 1/2s1 , and (2) if x ∈ H1({0, 1}n) ∩ H−

2 (y∗), then we also have
that x ∈ S ∩ T with good probability.

We first prove (1). The intuition is that the algorithm treats all inputs and
outputs in a uniform way, and hence no particular values are special. Formally,
let x∗ and y∗ be any fixed values. We show that Pr[H1(x∗) = y∗] = 1/2m, even
given the previously assigned values. We use a subscript i to denote the values
of various variables in the i-th iteration. Looking at different execution branches
of the algorithm we can calculate Pr[yi = y∗|xi = x∗, Yi,Xi] as

Pr[bi = 1] Pr[y∗ ∈ Yi]
1

|Yi| + Pr[bi = 0]
(

Pr[Si = ∅] Pr[y∗ �∈ Yi]
1

2m − |Yi|+

+ Pr[Si �= ∅] Pr[y∗ ∈ Si]
1

|Si|
)

.

Letting θi := Pr[Si = ∅] we can simplify to

|Yi|
2m

|Yi|
2m

1
|Yi| +

(
1 − |Yi|

2m

)(
θi

(
1 − |Yi|

2m

) 1
2m − |Yi| +

(
1 − θi

) |Si|
2m

1
|Si|

)
=

1
2m

.

Combiners for Backdoored Random Oracles 299

Note we have used the fact that Si is a Bernoulli set in Pr[y∗ ∈ Si] = |Si|
2m . Hence

Pr[H1(x∗) = y∗|Yi,Xi] =
2n
∑

i=1

Pr[yi = y∗|xi = x∗, Yi,Xi] Pr[xi = x∗] =
1

2m
.

Therefore the probability of sampling any given hash function is (1/2m)2
n

, as
required.

Let us now consider (2). When I ⊆ S, any solution with respect to I is also
one with respect to S (that is, solutions are not lost). Hence we only look at the
case S ⊆ I and bound |I \S| = |I|−|S|. Since |I| ≤ 2n and E[|S|] = 2n+s1/2s1 =
2n, we get that for any t

Pr[|I| − |S| > t] ≤ Pr[2n − |S| > t] = Pr[E[|S|] − |S| > t] .

Applying the Chernoff bounds we obtain

Pr
[
E[|S|] − |S| > tE[|S|]

]
≤ e− t2

2+t E[|S|] .

Setting t :=
√

n/2n, we get with overwhelming probability that |I\S| ≤ √
n2n/2 .

Hence T ∩ (I \ S) will be non-empty with negligible probability
√

n2−n/2−s1−s2 ,
in which case if x ∈ I ∩ T =⇒ x ∈ S ∩ T . ��

If H1 ∈ Fun[n, (2 + ε)n] and H2 ∈ Fun[(2 + ε)n, (1 + ε)n]), we have a
reduction to set-intersection with parameters N = 2(2+ε)n, p = 1/2(1+ε)n, and
q = 1/2(1+ε)n. Thus with notation as in the description of the feasible in Fig. 3
we have that α = β = (1 + ε)/(2 + ε). As in Corollary 1 we would need
The point (α, β) lies in the feasible region for 1/3 < (1 + ε)/(2 + ε) < 1/2,
which means −1/2 < ε < 0. Since the combined function is compressing (with
γ = 1/(1+ε) > 1) and p◦ ≈ 1−e−2−ε·n

is negligible, the image uniformity bound
is negligible and hence, similarly to Corollary 1 we get strong OW security.

6.2 PRG and CR Security

We briefly outline how to treat the PRG security and collision resistance of
cascade. We omit the proofs as the techniques and proof structures are similar
to our other results above.

PRG security. We can prove an analogous result for the oblivious PRG secu-
rity of the cascade construction. Its reduction is identical to that for rPre security
given above, except that the underlying assumption is set-disjointness. Setting
s1 = 2n (H1 is length doubling) and s2 = −2n + 1 (H2 compresses by almost a
factor of 3) leads to a reduction to an instance of set-intersection with parameters
N = 23n, p = 1/22n, and q = 1/2n+1. In this case δ = 2 and p0 = 1−e−1/2. With
these parameters we can carry out an analysis similar to Corollary 2: We set the
error ε = 0.065 which is smaller than (δ − 1)p0/(4 + δ) < 0.0656 as required in
Theorem 2 for an exponential number of queries. The combined hash function

300 B. Bauer et al.

maps n bits to n + 1 bits and hence C = 1/2. Furthermore, p◦ is negligible as a
function from n bits to 3n bits is injective with overwhelming probability. Thus
we can apply Lemma 3 with s = 1 as in Corollary 2 to get a weak PRG.

Collision resistance. We can treat the collision resistance of cascade simi-
larly. The difference is that in the reduction Alice will use the HashSam algorithm
in Fig. 5 to adapt a (single) Bernoulli set S that she holds to a hash image set
I. On the other hand, Bob uses the ReDist algorithm in Fig. 4 to redistribute
elements in multiple Bernoulli sets that he holds so that they form a partition
of the entire domain of H2. The rest of the proof, which is included in the full
version [4, Appendix E], proceeds similarly to Lemma 6. For setting parameters,
observe that any collision for H1 is necessarily a collision for H2(H1(·)). Since
collisions for H1 can be easily found using Bd1, we need H1 to be injective. For
example, s1 = 2n (co-domain points are 3n bits) would lead to an injective H1

with overwhelming probability.

Acknowledgments. We thank Marc Fischlin for participating in the early stages of
this work. We also thank the CRYPTO’18 (sub)reviewers for their valuable comments.
Bauer was supported by the French ANR Project ANR-16-CE39-0002 EfTrEC. Farshim
was supported by the European Research Council under the European Community’s
Seventh Framework Programme (FP7/2007-2013 Grant Agreement no. 339563 - Cryp-
toCloud). Mazaheri was supported by the German Federal Ministry of Education and
Research (BMBF) and by the Hessian State Ministry for Higher Education, Research
and the Arts, within CRISP.

References

1. Babai, L., Frankl, P., Simon, J.: Complexity classes in communication complexity
theory (preliminary version). In: 27th FOCS, pp. 337–347 (1986)

2. Bar-Yossef, Z., Jayram, T.S., Kumar, R., Sivakumar, D.: An information statistics
approach to data stream and communication complexity. In: 43rd FOCS, pp. 209–
218 (2002)

3. Barak, B., Braverman, M., Chen, X., Rao, A.: How to compress interactive com-
munication. In: 42nd ACM STOC, pp. 67–76 (2010)

4. Bauer, B., Farshim, P., Mazaheri, S.: Combiners for backdoored random oracles.
Cryptology ePrint Archive (2018)

5. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: ACM CCS 1993, pp. 62–73 (1993)

6. Bernstein, D.J., Lange, T., Niederhagen, R.: Dual EC: a standardized back door.
Cryptology ePrint Archive, Report 2015/767 (2015). http://eprint.iacr.org/2015/
767

7. Boneh, D., Boyen, X.: On the impossibility of efficiently combining collision resis-
tant hash functions. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp.
570–583. Springer, Heidelberg (2006). https://doi.org/10.1007/11818175 34

8. Canetti, R., Rivest, R.L., Sudan, M., Trevisan, L., Vadhan, S.P., Wee, H.: Ampli-
fying collision resistance: a complexity-theoretic treatment. In: Menezes, A. (ed.)
CRYPTO 2007. LNCS, vol. 4622, pp. 264–283. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-74143-5 15

http://eprint.iacr.org/2015/767
http://eprint.iacr.org/2015/767
https://doi.org/10.1007/11818175_34
https://doi.org/10.1007/978-3-540-74143-5_15

Combiners for Backdoored Random Oracles 301

9. Chattopadhyay, A., Pitassi, T.: The story of set disjointness. SIGACT News 41(3),
59–85 (2010)

10. Checkoway, S., Maskiewicz, J., Garman, C., Fried, J., Cohney, S., Green, M.,
Heninger, N., Weinmann, R.-P., Rescorla, E., Shacham, H.: A systematic anal-
ysis of the juniper dual EC incident. In: ACM CCS 2016, pp. 468–479 (2016)

11. Checkoway, S., et al.: On the practical exploitability of dual EC in TLS implemen-
tations. In: 23rd USENIX Security Symposium (USENIX Security 14), pp. 319–335
(2014)

12. Coretti, S., Dodis, Y., Guo, S., Steinberger, J.: Random oracles and non-uniformity.
Cryptology ePrint Archive, Report 2017/937 (2017). http://eprint.iacr.org/2017/
937

13. Dinur, I.: New attacks on the concatenation and XOR hash combiners. In: Fischlin,
M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part I. LNCS, vol. 9665, pp. 484–508.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-3 19

14. Dodis, Y., Guo, S., Katz, J.: Fixing cracks in the concrete: random oracles with
auxiliary input, revisited. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017,
Part II. LNCS, vol. 10211, pp. 473–495. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-56614-6 16

15. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

16. Fischlin, M., Lehmann, A.: Security-amplifying combiners for collision-resistant
hash functions. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 224–
243. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5 13

17. Fischlin, M., Lehmann, A., Pietrzak, K.: Robust multi-property combiners for hash
functions. J. Cryptol. 27(3), 397–428 (2014)

18. Goldreich, O.: Foundations of Cryptography: Basic Tools, vol. 1. Cambridge Uni-
versity Press, Cambridge (2001)

19. Guruswami, V., Cheraghchi, M.: Set disjointness lower bound via product distribu-
tion. Scribes for Information theory and its applications in theory of computation
(2013). http://www.cs.cmu.edu/∼venkatg/teaching/ITCS-spr2013/

20. Hoch, J.J., Shamir, A.: On the strength of the concatenated hash combiner when
all the hash functions are weak. In: Aceto, L., Damg̊ard, I., Goldberg, L.A.,
Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II.
LNCS, vol. 5126, pp. 616–630. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-70583-3 50

21. Joux, A.: Multicollisions in iterated hash functions. Application to cascaded con-
structions. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 306–316.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8 19

22. Katz, J., Lucks, S., Thiruvengadam, A.: Hash functions from defective ideal ciphers.
In: Nyberg, K. (ed.) CT-RSA 2015. LNCS, vol. 9048, pp. 273–290. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-16715-2 15

23. Kawachi, A., Numayama, A., Tanaka, K., Xagawa, K.: Security of encryption
schemes in weakened random oracle models. In: Nguyen, P.Q., Pointcheval, D.
(eds.) PKC 2010. LNCS, vol. 6056, pp. 403–419. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-13013-7 24

24. Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University
Press, New York (1997)

25. Lehmann, A.: On the security of hash function combiners. Ph.D. thesis, TU Darm-
stadt (2010)

http://eprint.iacr.org/2017/937
http://eprint.iacr.org/2017/937
https://doi.org/10.1007/978-3-662-49890-3_19
https://doi.org/10.1007/978-3-319-56614-6_16
https://doi.org/10.1007/978-3-319-56614-6_16
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-540-74143-5_13
http://www.cs.cmu.edu/~venkatg/teaching/ITCS-spr2013/
https://doi.org/10.1007/978-3-540-70583-3_50
https://doi.org/10.1007/978-3-540-70583-3_50
https://doi.org/10.1007/978-3-540-28628-8_19
https://doi.org/10.1007/978-3-319-16715-2_15
https://doi.org/10.1007/978-3-642-13013-7_24

302 B. Bauer et al.

26. Leurent, G., Wang, L.: The sum can be weaker than each part. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015, Part I. LNCS, vol. 9056, pp. 345–367.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5 14

27. Liskov, M.: Constructing an ideal hash function from weak ideal compression func-
tions. In: Biham, E., Youssef, A.M. (eds.) SAC 2006. LNCS, vol. 4356, pp. 358–375.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74462-7 25

28. Lucks, S.: A failure-friendly design principle for hash functions. In: Roy, B. (ed.)
ASIACRYPT 2005. LNCS, vol. 3788, pp. 474–494. Springer, Heidelberg (2005).
https://doi.org/10.1007/11593447 26

29. Maurer, U.M., Tessaro, S.: A hardcore lemma for computational indistinguisha-
bility: security amplification for arbitrarily weak PRGs with optimal stretch. In:
Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 237–254. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-11799-2 15

30. Mendel, F., Rechberger, C., Schläffer, M.: MD5 is weaker than weak: attacks
on concatenated combiners. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol.
5912, pp. 144–161. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-10366-7 9

31. Mittelbach, A.: Cryptophia’s short combiner for collision-resistant hash functions.
In: Jacobson, M., Locasto, M., Mohassel, P., Safavi-Naini, R. (eds.) ACNS 2013.
LNCS, vol. 7954, pp. 136–153. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-38980-1 9

32. Moshkovitz, D., Barak, B.: Communication complexity. Scribes for Advanced
Complexity Theory (2012). https://people.csail.mit.edu/dmoshkov/courses/adv-
comp/

33. Numayama, A., Isshiki, T., Tanaka, K.: Security of digital signature schemes in
weakened random Oracle models. In: Cramer, R. (ed.) PKC 2008. LNCS, vol.
4939, pp. 268–287. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-78440-1 16

34. Reingold, O., Trevisan, L., Vadhan, S.P.: Notions of reducibility between cryp-
tographic primitives. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 1–20.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24638-1 1

35. Rogaway, P., Shrimpton, T.: Cryptographic hash-function basics: definitions, impli-
cations, and separations for preimage resistance, second-preimage resistance, and
collision resistance. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp.
371–388. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-25937-
4 24

36. Simon, D.R.: Finding collisions on a one-way street: can secure hash functions
be based on general assumptions? In: Nyberg, K. (ed.) EUROCRYPT 1998.
LNCS, vol. 1403, pp. 334–345. Springer, Heidelberg (1998). https://doi.org/10.
1007/BFb0054137

37. Unruh, D.: Random oracles and auxiliary input. In: Menezes, A. (ed.) CRYPTO
2007. LNCS, vol. 4622, pp. 205–223. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-74143-5 12

38. Yao, A.C.-C.: Some complexity questions related to distributive computing (pre-
liminary report). In: Proceedings of the Eleventh Annual ACM Symposium on
Theory of Computing, pp. 209–213 (1979)

https://doi.org/10.1007/978-3-662-46800-5_14
https://doi.org/10.1007/978-3-540-74462-7_25
https://doi.org/10.1007/11593447_26
https://doi.org/10.1007/978-3-642-11799-2_15
https://doi.org/10.1007/978-3-642-10366-7_9
https://doi.org/10.1007/978-3-642-10366-7_9
https://doi.org/10.1007/978-3-642-38980-1_9
https://doi.org/10.1007/978-3-642-38980-1_9
https://people.csail.mit.edu/dmoshkov/courses/adv-comp/
https://people.csail.mit.edu/dmoshkov/courses/adv-comp/
https://doi.org/10.1007/978-3-540-78440-1_16
https://doi.org/10.1007/978-3-540-78440-1_16
https://doi.org/10.1007/978-3-540-24638-1_1
https://doi.org/10.1007/978-3-540-25937-4_24
https://doi.org/10.1007/978-3-540-25937-4_24
https://doi.org/10.1007/BFb0054137
https://doi.org/10.1007/BFb0054137
https://doi.org/10.1007/978-3-540-74143-5_12
https://doi.org/10.1007/978-3-540-74143-5_12

On Distributional Collision
Resistant Hashing

Ilan Komargodski1(B) and Eylon Yogev2

1 Cornell Tech, New York, NY 10044, USA
komargodski@cornell.edu

2 Weizmann Institute of Science, 76100 Rehovot, Israel
eylon.yogev@weizmann.ac.il

Abstract. Collision resistant hashing is a fundamental concept that is
the basis for many of the important cryptographic primitives and pro-
tocols. Collision resistant hashing is a family of compressing functions
such that no efficient adversary can find any collision given a random
function in the family.

In this work we study a relaxation of collision resistance called
distributional collision resistance, introduced by Dubrov and Ishai
(STOC ’06). This relaxation of collision resistance only guarantees that
no efficient adversary, given a random function in the family, can sample a
pair (x, y) where x is uniformly random and y is uniformly random condi-
tioned on colliding with x.

Our first result shows that distributional collision resistance can be
based on the existence of multi-collision resistance hash (with no addi-
tional assumptions). Multi-collision resistance is another relaxation of
collision resistance which guarantees that an efficient adversary cannot
find any tuple of k > 2 inputs that collide relative to a random func-
tion in the family. The construction is non-explicit, non-black-box, and
yields an infinitely-often secure family. This partially resolves a ques-
tion of Berman et al. (EUROCRYPT ’18). We further observe that in a
black-box model such an implication (from multi-collision resistance to
distributional collision resistance) does not exist.

Our second result is a construction of a distributional collision resis-
tant hash from the average-case hardness of SZK. Previously, this
assumption was not known to imply any form of collision resistance
(other than the ones implied by one-way functions).

1 Introduction

Collision resistant hashing (CRH) is one of the most fundamental building blocks
in any cryptographic protocol. Collision resistance is associated with a family of

I. Komargodski—Supported in part by a Packard Foundation Fellowship and by an
AFOSR grant FA9550-15-1-0262.
E. Yogev—Supported in part by a grant from the Israel Science Foundation (no.
950/16).

c© International Association for Cryptologic Research 2018
H. Shacham and A. Boldyreva (Eds.): CRYPTO 2018, LNCS 10992, pp. 303–327, 2018.
https://doi.org/10.1007/978-3-319-96881-0_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96881-0_11&domain=pdf

304 I. Komargodski and E. Yogev

compressing functions H = {h : {0, 1}2n → {0, 1}n} and it assures us that while
it is easy to compute h(x) for any h ∈ H and x ∈ {0, 1}2n, for any polynomial
time algorithm it is hard to find x1 �= x2 such that h(x1) = h(x2) for a random
h ← H. Families of functions with the above presumed hardness exist based on a
variety of assumptions such as the hardness of factoring integers, finding discrete
logs in finite groups, learning with errors (LWE), and more. On the other hand
there is no known construction of CRHs based solely on the existence of one-way
functions or even one-way permutations and, furthermore, such a construction
does not exist in a black-box model [34].

Recently, [22] introduced a relaxation of collision resistance called multi -
collision resistance (MCRH). In multi-collision resistance, the family of com-
pressing functions H is associated with a parameter k = k(n) and the security
requirement is that for any polynomial-time algorithm and a random h ← H it
is hard to find distinct x1, . . . , xk such that h(x1) = . . . = h(xk). In follow-up
works [5,7,23], multi-collision resistance was studied as an independent primitive
and shown to have many applications.

CRH trivially implies MCRH for any k ≥ 2 and the latter implies one-way func-
tions. Furthermore, in a black-box model, MCRH for any k > 2 cannot be used to
get a CRH, yet MCRH cannot be constructed from one-way permutations [5,23].
In terms of constructions, [5] gave a construction of an MCRH from the (average-
case) min-max entropy approximation assumption first studied in [13]. This is a
strengthening of the entropy approximation assumption that is known to be com-
plete for (average-case) non-interactive statistical zero-knowledge (NISZK) [17].
The applications of MCRH in [5,7,23] are broad, showing that not only it is a nat-
ural relaxation of CRH, but it is also a useful replacement in several key appli-
cations such as constant-round statistically-hiding succinct commitments and
various zero-knowledge protocols.

In this work we study yet another relaxation of CRH, called distributional
collision resistance (dCRH), introduced by Dubrov and Ishai [12] (see more on
their work below). The security notion of this primitive says that it may be
possible to find some specific collision, but it is computationally hard to sample
a random collision. More precisely, given a random hash function h ← H, it is
computationally hard to sample a pair (x1, x2) such that x1 is uniform and x2 is
uniform in the set h−1(x1) = {x : h(x1) = h(x)}. This definition is reminiscent
of the distributional version of one-way function, where we require hardness of
coming up with a uniform preimage of a random image. In the world of one-way
functions, by a result of Impagliazzo and Luby [20], the distributional version is
known to be existentially equivalent to plain one-way functions (by an explicit
and black-box transformation).

Very little is known about dCRH function families. Intuitively, this is a very
weak notion of collision resistance since an adversary may be able to actually
find all collisions (but with a skewed distribution). Nevertheless, as observed by
Dubrov and Ishai [12], in a black-box model, dCRH cannot be constructed from
one-way permutations. (The oracle of Simon [34] that finds a random collision
is actually an oracle that breaks dCRH.) The main question we are interested

On Distributional Collision Resistant Hashing 305

in is the power of dCRH and its relation to MCRH and CRH. Can CRH be
constructed from dCRH? Can dCRH be constructed from weak assumptions
that are not known to imply CRH or MCRH? In what scenarios does the notion
of dCRH suffice? What is the relation between MCRH and dCRH? (The latter
question was explicitly asked by Berman et al. [5]).

1.1 Our Results

We begin by observing that the separation of [23] of CRH from MCRH uses
the same oracle of Simon [34] that finds a random collision. Thus, the separa-
tion actually applies to dCRH, thereby implying that there is no black-box
construction of a dCRH from an MCRH.

MCRH ⇒ DCRH. Our first result is that the existence of MCRH for any
constant k ∈ N implies the existence of dCRH (and no further assumptions).
Our proof is non-constructive and uses an adversary in a non-black-box way.
Actually, our proof results in an infinitely-often dCRH, and should merely serve
as evidence that multi-collision resistance is a stronger assumption than dis-
tributional collision resistance. This partially resolves the question of Berman
et al. [5] mentioned above.

dCRHMCRH

CRH

SZK

EAmin,max

One-way functions

Thm. 1

[32]

Thm. 2

[5]

[34]
[23,5]

[23]

[23]

Fig. 1. An illustration of the known results and our new implications. Solid lines mean
positive implications, namely, a solid arrow from A to B means that the existence of A
implies the existence of B. Crossed out dashed red lines mean black-box separations,
namely, such a line from A to B means that there is an impossibility for a black-box
construction of B from A. (Color figure online)

306 I. Komargodski and E. Yogev

SZK ⇒ DCRH. Our second result is an explicit construction of a dCRH
from the average-case hardness of the class of problems that posses a statistical
zero-knowledge (SZK) proof. More concretely, our construction is based on the
average-case hardness of the statistical difference problem, that is known to be
complete for SZK, by a result of Sahai and Vadhan [33]. This assumption is
known to imply one-way functions by a result of Ostrovsky [32], but is not
known to imply multi-collision resistance (let alone plain collision resistance). It
is also weaker than the assumption used by Berman et al. [5] to construct an
MCRH.

As an application, we obtain that indistinguishability obfuscation and one-
way permutations (and thus their many derivatives) do not imply hardness in
SZK via black-box reductions. We use the result of Asharov and Segev [1] that
shows that indistinguishability obfuscation and one-way permutations do not
imply (in a black-box model) collision resistance. We observe that their separa-
tion applies to distributional collision resistance as well (again, because they use
the oracle of Simon [34] that finds a random collision) which immediately implies
our result. Previously, a direct proof of this result (i.e., not going through [1])
was shown by Bitansky et al. [6].

A summary of the known results together with ours appears in Fig. 1.

1.2 Related Work

The work of Dubrov and Ishai. Dubrov and Ishai [12] studied the question
of whether every efficiently samplable distribution can be efficiently sampled,
up to a small statistical distance, using roughly as much randomness as the
length of its output. They gave a positive answer to this question under various
assumptions. They further showed that a negative answer to their question gives
rise to a construction of a distributional collision resistant hash from any one-way
permutation, thus bypassing the separation of Simon [34].

Overcoming black-box barriers. The framework of black-box constructions
was introduced by Impagliazzo and Rudich [21] in order to capture “natural”
constructions of one primitive from another. This framework has been exten-
sively used to capture the limits of cryptographic primitives under this sort of
constructions. Black-box constructions are not only the most natural ones, but
often they result with more efficient and scalable construction since each building
block is treated independently as a “black-box”.

A black-box separation does not mean that one primitive cannot be con-
structed from another, but rather that specific or natural types of constructions
cannot work. Due to the nature of these constructions, in many cases it is hard
to imagine a construction that circumvents the separation. Indeed, we have only
a few examples where a black-box barrier was circumvented.

A well known tool that enables to bypass such limitations is using garbled
circuits on circuits with embedded cryptography (e.g., a one-way function). This
technique was used by Beaver [4] to construct round-efficient OT extension pro-
tocols (see also the recent work of Garg et al. [15]). They have also been recently

On Distributional Collision Resistant Hashing 307

used by Döttling and Garg [11] to construct an IBE scheme from the computa-
tional Diffie-Hellman assumption.

Another technique, introduced by Barak et al. [3], is via derandomization.
Mahmoody and Pass [31] showed a black-box separation for constructions of non-
interactive commitments from a stronger notion of one-way functions, which they
called hitting one-way functions. Then, using the derandomization technique,
they showed that there exists a non-black-box construction of non-interactive
commitments from hitting one-way functions. Note that the notion of a hitting
one-way function was introduced especially for this purpose.

Another technique inspired by complexity theory is due to Harnik and
Naor [19] who introduced the task of compressibility of NP instances. Here,
the task is to come up with a compression scheme that preserves the solution to
an instance of a problem rather than preserving the instance itself. One of their
results is a construction of a collision resistant hash function from any one-way
function, assuming a compression algorithm for SAT. (Recall that there is no
black-box construction of collision resistant hash functions from one-way func-
tions [34].) Fortnow and Santhanam [14] showed that such a compression algo-
rithm cannot exist unless NP ⊆ coNP/poly. The result of Dubrov and Ishai [12]
discussed above can be viewed as complementary to the one of Harnik and
Naor [19], as they show consequences of the non-existence of (strong forms of)
such algorithms.

A more recent technique comes from the area of program obfuscation. There,
it was first shown by Asharov and Segev [1] that a private-key functional encryp-
tion scheme cannot be used to construct a public-key encryption scheme in a
black-box way. Here, the definition of black-box is more delicate as we do not
want to limit the obfuscation to circuits that have no cryptography in them.
So, the actual separation is from an even stronger primitive called private-key
functional encryption for oracle-aided circuits which are allowed to have one-
way function gates. This separation was bypassed by Bitansky et al. [8] using
a non-black-box component of Brakerski et al. [10] (see also [24]), where they
generate a functional key for a function that calls the encryption/key-generation
procedure of the same scheme. In the same line of works and the same high-
level non-black-box use, indistinguishability obfuscation was constructed from
a primitive called constant-degree multilinear maps in works by Lin, Vaikun-
tanathan, and Tessaro [25–28], while such constructions were proven impossible
in a black-box model by Mahmoody et al. [30].

Lastly, we mention that there is a rich line of work, starting with Barak [2],
on non-black-box simulation. Here, the construction is black-box but only the
simulator (which is constructed to prove the security of the scheme) is allowed
to be non-black-box (usually in a potential adversary).

Statistical zero-knowledge. The notion of statistical zero-knowledge (SZK)
proofs was introduced in the seminal work of Goldwasser, Micali and Rackoff [18].
It is known that homomorphic encryption schemes and non-interactive computa-
tional private-information retrieval schemes imply hard problems in SZK [9,29].

308 I. Komargodski and E. Yogev

Concrete assumptions such as Discrete Log, QR, lattices, and more, are also
known to imply SZK hardness.

The class of (promise problems) with SZK proofs is characterized by the
problems statistical difference (SD) and entropy difference (ED) by results of
Sahai and Vadhan [33] and Goldreich and Vadhan [17]. Statistical difference is
the problem of deciding whether two distributions (specified by circuits that
sample from them) are close or far in statistical distance. Entropy difference is
the problem of deciding which of two given distributions (specified by circuits
that sample from them) has noticeably higher Shannon entropy than the other.

There are closely related problems that are known to be complete for the
class NISZK – the class that contains all (promise) problems for which there
is a non-interactive statistical zero-knowledge proof. The complete problems,
presented by Goldreich et al. [16], are statistical difference from uniform (SDU)
and entropy approximation (EA). The former is the SD problem but where one
of the distributions is the uniform one. The latter is the ED problem but where
one of the distributions has known entropy k (so the goal is to decide whether
the other distribution has entropy bigger than k + 1 or smaller than k − 1).

The assumption of Berman et al. [5] (leading to a construction of MCRH)
is the average-case hardness of the promise problem to distinguish between dis-
tributions (specified by circuits) whose min-entropy is at least k from ones with
max-entropy at most k−1. It is a strengthening of the (average-case) EA assump-
tion which is in turn stronger than (average-case) ED and (average-case) SD.

1.3 Our Techniques

We give an overview of our proof of existence of a dCRH family based on MCRH.
It is instructive to give the idea of the construction and proof first in an idealized
world where we have an (imaginary) oracle Magic. This oracle Magic, given any
efficiently samplabe distribution D over pairs (x1, x2) and any particular value
x∗
1, samples x2 from the marginal of D conditioned on x∗

1 being the first output.
Using this oracle, we show how to transform an MCRH family to a dCRH family.
Then, we show how to replace the oracle with an efficient procedure; this is the
non-black-box part in our construction. Notice that in general this oracle cannot
be implemented in polynomial time (unless P = NP). Our implementation will
not exactly be of the oracle Magic, but of a much weaker one which is still
enough to carry out the proof.

To simplify the argument even further let us start with a 3-MCRH func-
tion family H where each function maps 2n bits to n bits. By definition, no
polynomial-time algorithm, given h ← H, can find a triple of values that are
mapped to the same image. We assume towards contradiction that dCRH fam-
ilies do not exist. In particular, H is not a dCRH and thus there exists an
adversary A that can break its security. Namely, A can sample random pairs of
collisions relative to h ← H. We show that given A and the oracle Magic we
can find a 3-collision relative to a given h.

Given h, we run A to get a collision (x1, x2), i.e., h(x1) = h(x2). We treat A
as describing a distribution over pairs of inputs that collide and run the oracle

On Distributional Collision Resistant Hashing 309

Magic on A with x∗
1 = x1 to sample another pair of collision (x1, x3), i.e.,

h(x1) = h(x2). This results with three values x1, x2, x3 that collide relative to
h, that is, h(x1) = h(x2) = h(x3). Are they all distinct? We argue that indeed
this is the case.

The first pair (x1, x2) was sampled uniformly at random, namely, x1 is uni-
formly random and x2 is uniformly random conditioned on colliding with x1.
Since our hash function is compressing enough, with high probability we have
that the set of preimages h(−1)(x1) is exponentially large and thus the proba-
bility that x1 = x2 is negligible. What about x3? Recall that x3 is also sampled
uniformly at random conditioned on colliding with x1, that is, uniformly at ran-
dom from all the preimages of h(x). Thus, the probability that x3 is either x1 or
x2 is negligible, which completes the argument that x1, x2 and x3 are a 3-way
collision.

We have shown that if H is not a dCRH family, then the adversary together
with the oracle Magic can be used to find a 3-way collision. It remains to explain
how we implement this oracle. Our key observation is that in the (false) world
where dCRH do not exist and MCRH does exist, we can actually implement an
efficient yet limited version of this oracle (where x∗ is uniform rather than arbi-
trary) which suffices for the purposes of our proof. This is the non-constructive
(and non-black-box) part of the proof and is our main new insight.

We define a new hash family H′ that depends not only on H but also on the
adversary A. Each h′ ∈ H′ uses the input x as random coins to run the adversary
A. If the adversary needs � random coins then our hash function h′ will map �
bits to n bits (w.l.o.g. � > 2n). First, let A1 be the adversary A that outputs
only the first element of the collision that A finds. That is, A1(h; r) on input a
hash function h ← H and random coins r, runs A(h; r) on h with coins r to get
a collision (x, y) and it outputs only x. Using A1 and a key h ∈ H we define a
key h′ ∈ H′ as follows:

h′(x) = h(A1(h;x)).

This is why our construction is non-explicit: we do not know who the adversary
A is, but we only know it exists.

Since H′ is also not a dCRH function family, there exists an adversary A′

that can sample a random collision relative to h′ ← H′. We use A′ in order to
implement (some version of) the oracle Magic. First, we run A′ on h′ to get a
collision (x1, x2). Since x1 is uniform, we have that A1 gets random bits and will
output u1 which is part of a pair (u1, u2) that collides relative to h. Moreover,
x2 is chosen such that it collides with x1. Thus, if we let (u3, u4) ← A(h;x2),
then it must be that h(u1) = h(u3), and therefore h(u1) = h(u2) = h(u3). Can
we show that u1, u2, and u3 are all distinct?

Let Uy be the set of all u’s that h maps to y = h(u1). Since h is compress-
ing enough, the set Uy is exponentially large. Moreover, since x1 is uniformly
random, then (u1, u2) is a random collision (under the right distribution) which
implies that u1 �= u2 with high probability. Arguing distinctness of u3 is slightly
more involved. Our goal is to show that indeed u3 is sampled uniformly from
the set Uy and thus will be distinct from u1, u2 with high probability.

310 I. Komargodski and E. Yogev

Recall that x2 is sampled uniformly at random conditioned on h′(x2) ∈ Uy.
Thus, the distribution of the element u3 depends on the adversary A, and how
he uses his random coins to output a pair (u3, u4) that collide relative to h and
where h(u3) = y. Since A is an adversary for H, we know that A1 “maps”
randomnesses x to elements u. For a string u, denote by Xu the set of all x’s
such that A1(h;x) = u. By the guarantee on the output distribution of A,
this mapping is regular in the sense that for each u, u′ ∈ Uy, it holds that
|Xu| = |Xu′ |. Thus, the probability that u3 = u1 (and similarly u3 = u2) is
bounded by the probability that x2 comes from Xu1 . By the above, x2 comes
(uniformly) from one of the Xu’s where u ∈ Uy. But, Uy is exponentially large
and all the Xu’s are of the same size, implying that the probability that u3 = u1

is exponentially small. Altogether, indeed u1, u2, and u3 form a 3-way collision.
The above argument is slightly over-simplified since it does not take into

account errors that A or A′ can make. In addition, we assumed that A and A′

above output uniformly random collisions in the corresponding families, while
in reality they can only be used to sample a collision which is statistically close
to a random one. In the formal proof we handle these issues.

Finding larger collisions. In the proof above we used an adversary A that can
find random pairs of collisions to construct a new hash function family, for which
there is an adversary A′ with which we designed an algorithm that finds 3-way
collisions in the alleged 3-MCRH function family H. Let us call this algorithm
by BreakMCRH. We first observe that BreakMCRH actually finds an (almost)
random 3-way collision, namely, breaking the security of H as a distributional
3-MCRH. The distribution of our 3-way collision (x1, x2, x3) is such that x1 is
uniformly random and x2 and x3 are independent uniformly random conditioned
on colliding with x1.

We thus use BreakMCRH in a recursive manner to replace the adversary A
(that finds pairs) and define a new hash function family. Finally, we modify the
final algorithm BreakMCRH to find a 4-way collision. To this end, we define a
new hash function family H′ such that each h′ ∈ H′ is defined as

h′(x) = h(BreakMCRH1(h;x)),

where BreakMCRH1(h;x) is the algorithm BreakMCRH but outputs only the first
element from the triple. Since (distributional) 3-MCRH do not exist, there is an
adversary that can find a triple of collisions in a random h′. Similarly to the
proof above, we use the first two elements to get a 3-way collision. Then, since
the extra third element in the collision is sampled uniformly from a large set of
pre-images it can be used to find the fourth colliding input.

This process can be generalized and continued for several iterations. The cost
of each iteration is a polynomial blow-up in the running time of the hash function
and the reduction (and also the success probability). Thus, we can apply this
iteratively for k times where k ∈ N is any fixed constant, resulting with the
statement that k-MCRH implies a dCRH.

A construction from statistical difference. To present the idea behind the
construction let us assume first that we have circuits C0, C1 : {0, 1}n → {0, 1}n

On Distributional Collision Resistant Hashing 311

such that it is computationally hard to distinguish whether they describe dis-
tributions that are identical or disjoint. This corresponds to the statistical dif-
ference problem with parameters 0 and 1. We will overload C0 and C1 and let
them denote (also) the corresponding distributions.

Our hash function h : {0, 1}n+1 → {0, 1}n is indexed by both circuits C0 and
C1, and it operates as follows

hC0,C1(x, b) = Cb(x).

Let us assume that it is not a dCRH. Namely, there is an efficient adversary
A that gets C0 and C1, and finds (x, b), (x′, b′) that collide relative to hC0,C1 ,
as defined above. We claim that if the collision is such that b �= b′ then the
circuits C0 and C1 must be identically distributed. Indeed, if b �= b′, this means
that we have x, x′ such that, say, C0(x) = C1(x′) which means that the induced
distributions are not disjoint (and hence must be identical). The other case, if
b = b′, can occur in both cases that the distributions are identical or disjoint,
but each will happen only with probability 1/2. Thus, to distinguish the two
cases we run the adversary A and check whether b �= b′. If the distributions are
identical, it will always be that b = b′, while if they are disjoint this will happen
only with probability 1/2. This is enough to distinguish between whether C0 and
C1 are disjoint or identical with noticeable probability.

The case where the statistical distance is not 0 or 1 but is ε vs. (1 − ε) for
a small constant ε > 0 follows the same high-level idea but requires a slightly
more involved analysis. The goal is to relate the probability that b = b′ to the
statistical distance between C0 and C1 and show that these values are correlated.
We choose to use a specific f -divergence called the triangular discrimination1

measure which is defined by

ΔTD(C0, C1) =
∑

y

(Pr[C0 = y] − Pr[C1 = y])2

Pr[C0 = y] + Pr[C1 = y]
.

We first related the probability that b′ = b to the triangular discrimination
between C0 and C1 by (simple) algebraic manipulations. Concretely, we show that

Pr[b′ = b] =
1
2

+
ΔTD(C0, C1)

4
.

Then, we use the fact that the triangular discrimination can be bounded both
from above and from below by a function that depends on the statistical dis-
tance.2 More precisely, it holds that

2Δ(C0, C1)2 ≤ ΔTD(C0, C1) ≤ 2Δ(C0, C1).
1 f -divergence is a family of measures of distance between probability distributions

defined by Df (P‖Q) =
∑

x Q(x) · f (P (x)/Q(x)). Statistical distance is a special
case with f(x) = |1 − x| and triangular discrimination is a special case with f(x) =
(x − 1)2/(x + 1).

2 This is why we use the triangular discrimination measure as opposed to more well-
known measures such as the Kullback-Leibler divergence. The latter is only lower-
bounded by a function that depends on the statistical distance.

312 I. Komargodski and E. Yogev

We use this to get our separation between the value of Pr[b′ = b] in the case that
C0 and C1 are close and in the case that they are far.

2 Preliminaries

Unless stated otherwise, the logarithms in this paper are base 2. For an integer
n ∈ N we denote by [n] the set {1, . . . , n}. For a distribution X we denote by
x ← X an element chosen from X uniformly at random. We denote by ◦ the
string concatenation operation. A function negl : N → R

+ is negligible if for every
constant c > 0, there exists an integer Nc such that negl(n) < n−c for all n > Nc.
Throughout the paper, we denote by n the security parameter.

2.1 Distance Measures

Definition 1 (Statistical distance). The statistical distance between two ran-
dom variables X,Y over a finite domain Ω, is defined by

Δ(X,Y) � 1
2

·
∑

x∈Ω

|Pr[X = x] − Pr[Y = x]| .

We say that X and Y are δ-close (resp. -far) if Δ(X,Y) ≤ δ (resp. Δ(X,Y) ≥ δ).

We will use another (less well-known) distance measure called the triangular
discrimination (a.k.a Le Cam Divergence).

Definition 2 (Triangular discrimination). The triangular discrimination
between two random variables X,Y over a finite domain Ω, is defined by

ΔTD(X,Y) =
∑

x∈Ω

(Pr[X = x] − Pr[Y = x])2

Pr[X = x] + Pr[Y = x]

It is known that the triangular discrimination is bounded from above by the
statistical distance and from below by the statistical distance squared (see, for
example, [35, Eq. (2.11)]).

Proposition 1. For any two random variables X,Y over the same finite domain,
it holds that

2 · Δ(X,Y)2 ≤ ΔTD(X,Y) ≤ 2 · Δ(X,Y).

2.2 Efficient Function Families

A function f , with input length m1(n) and outputs length m2(n), specifies for
every n ∈ N a function fn : {0, 1}m1(n) → {0, 1}m2(n). We only consider func-
tions with polynomial input lengths (in n) and occasionally abuse notation and
write f(x) rather than fn(x) for simplicity. The function f is computable in

On Distributional Collision Resistant Hashing 313

polynomial time (efficiently computable) if there exists an algorithm that for
any x ∈ {0, 1}m1(n) outputs fn(x) and runs in time polynomial in n.

A function family ensemble is an infinite set of function families, whose ele-
ments (families) are indexed by the set of integers. Let F = {Fn : Dn → Rn}n∈N

stand for an ensemble of function families, where each f ∈ Fn has domain Dn

and range Rn. An efficient function family ensemble is one that has an efficient
sampling and evaluation algorithms.

Definition 3 (Efficient function family ensemble). A function family
ensemble F = {Fn : Dn → Rn}n∈N is efficient if:

– F is samplable in polynomial time: there exists a probabilistic polynomial-time
machine that given 1n, outputs (the description of) a uniform element in Fn.

– There exists a deterministic algorithm that given x ∈ Dn and (a description
of) f ∈ Fn, runs in time poly(n, |x|) and outputs f(x).

2.3 Distributional Collision Resistant Hash Functions

A distributional collision resistant hash function is a hash function with the
security guarantee that no efficient adversary can sample a uniform collision.
This relaxation of classical collision resistance was introduced by Dubrov and
Ishai [12].

For h : {0, 1}m → {0, 1}n, we associate a random variable COLh ⊆ {0, 1}m ×
{0, 1}m over pairs of inputs (x1, x2) to h sampled by the following process: x1

is chosen uniformly at random from {0, 1}m and then x2 is chosen uniformly at
random from the set {x ∈ {0, 1}m : h(x) = h(x1)}. Note that it is possible that
x1 = x2.

Definition 4 (Distributional collision resistant hashing). Let H = {Hn :
{0, 1}m(n) → {0, 1}n}n∈N be an efficient function family ensemble, where m(n) <
n. We say that H is a secure distributional collision resistant hash (dCRH)
function family if for any probabilistic polynomial-time algorithm A and any
two negligible functions δ(·) and ε(·), it holds that

Pr
h←H

[Δ (A(1n, h),COLh) ≤ δ(n)] ≤ 1 − ε(n)

for all sufficiently large n ∈ N. Note that the probability above is only over the
choice of h ← H.

We say that a dCRH as above is infinitely-often secure if the above security
only holds for infinitely many n’s rather than for all large enough n’s.

2.4 Multi-collision Resistant Hash Functions

A multi-collision resistant hash function is a relaxation of standard notion of
collision resistant hash function in which it is hard to find multiple distinct values
that all collide on the same value. This primitive has been recently studied in
several works [5,7,22,23].

314 I. Komargodski and E. Yogev

Definition 5 (Multi-collision resistant hashing). Let k = k(n) be a poly-
nomial function. An efficient function family ensemble H = {Hn : {0, 1}2n →
{0, 1}n}n∈N is a secure k-multi-collision resistant hash (MCRH) function fam-
ily if for any probabilistic polynomial-time algorithm A there exists a negligible
function negl(·) such that for all n ∈ N, it holds that

Pr
[
x1, . . . , xk are distinct and

h(x1) = · · · = h(xk)

∣∣∣∣
h ← Hn

(x1, . . . , xk) ← A(h)

]
≤ negl(n).

We call such x1, . . . , xk that map to the same value under h a k-way collision.

3 Constructing dCRH from MCRH

In this section we present our main result. The theorem states that the existence
of any MCRH implies the existence of a dCRH. Our construction is non-black-box.

Theorem 1. Assuming the existence of a secure 3-MCRH function family that
compresses 2n bits to n bits, then there exists an (infinitely often) secure dCRH
function family.

Proof. Let H = {h : {0, 1}2n → {0, 1}n} be a secure 3-MCRH function family.
Assume towards contradiction that infinitely-often dCRH function families do
not exist, and we will show that 3-MCRH families do not exist as well (which is
a contradiction). Since there are no dCRH function families, in particular, H is
not a dCRH and there exists an adversary A and two negligible functions δ(·)
and ε such that for all large enough n’s it holds that

Pr
h←H

[Δ (A(1n, h),COLh) ≤ δ(n)] > 1 − ε(n)

That is, A gets h ∈ H as input, and randomness r and outputs a collision
(x1, x2) that is distributed as a random collision from COLh. We denote this
process by (x1, x2) ← A(h; r) (notice that we omit the 1n argument to simplify
notation). Denote by A1 the same adversary that outputs only x1. That is,
x1 ← A1(h; r).

Our key observation is that we can use A1 to define a new family H′ of
hash functions which will be an infinitely-often secure dCRH function family.
The keys in this family are denoted by h′ and have the same representation as
h ∈ H but perform a different operation. Let � = �(n) be an upper bound on
the number of random bits that A uses, and assume that � > 2n without loss
of generality. We define a new hash family where the input x is used as random
coins to run the adversary A1. Formally, we define each function in the family
H′ = {h′ : {0, 1}� → {0, 1}n} by

h′(x) = h(A1(h;x)).

On Distributional Collision Resistant Hashing 315

Again, since there are no infinitely-often dCRH function families, then in par-
ticular, H′ is not a dCRH. Thus, again again there is an adversary A′ and two
negligible functions δ′(·) and ε′(·) such that

Pr
h′←H′

[Δ (A′(1n, h′),COLh′) ≤ δ(n)] > 1 − ε(n) .

We show how to construct an adversary BreakH that uses both A and A′ to
break the security of the given MCRH. The full description of BreakH(1n, h) is
given in Fig. 2.

Fig. 2. The description of the adversary BreakH that uses A and A′ to break the
security of the MCRH function family H.

To simplify the analysis we will analyze a different adversary called B̃reakH.
This adversary is inefficient but its output distribution is negligibly close (in
statistical distance) to the output distribution of BreakH. So, once we show
that B̃reakH breaks H, we will get that BreakH breaks H with almost the same
probability which is a contradiction.

Let us set-up some notation first. Recall that COLh is a distribution over
pairs of inputs (x1, x2) to h such that x1 is chosen uniformly at random and
x2 is chosen uniformly at random conditioned on h(x1) = h(x2). Let COL1h be
a distribution that outputs the first element in the collision, namely x1. Let
COL2h,x1

be the distribution that outputs the second elements conditioned on
colliding with the first, namely, a random x2 conditioned on h(x1) = h(x2). We
also denote by COLh(r) a sample from COLh using randomness r.

Fig. 3. The description of the adversary B̃reakH that uses A and A′ to break the
security of the MCRH function family H.

316 I. Komargodski and E. Yogev

Claim 1. If B̃reakH breaks the security of H, then so does BreakH.

Proof. We prove the claim by defining a hybrid adversaries BreakH∗ and show
the following sequence of implications:

1. If B̃reakH breaks the security of H, then so does BreakH∗.
2. If BreakH∗ breaks the security of H, then so does BreakH.

The adversary BreakH∗ is the same as B̃reakH except that we change Item 3
to the following:

2. (u1, u2) ← A(h;x1), where x1 ← COL1h′ .

First, we argue that if B̃reakH breaks the security of H, then so does BreakH∗.
Denote by μ̃(n) the success probability of B̃reakH in breaking the security of H.
With probability 1 − ε(n) over the choice of h ← H we sample a “good” h,
that is, a h for which the adversary A outputs a collision that is δ(n)-close
to one from COLh. Then, for any such “good” h, the success probability of
BreakH∗ is μ̃(n)−δ(n). So, overall, the success probability of BreakH∗ is μ∗(n) =
μ̃(n)− δ(n)− ε(n). To simplify the analysis we will analyze a different adversary
called B̃reakH, described in Fig. 3.

Second, we argue that if BreakH∗ breaks the security of H, then so does
BreakH. Denote by μ∗(n) the success probability of BreakH∗ in breaking the
security of H. With probability 1 − ε′(n) (over the choice of h′ ← H′) the
adversary A′ outputs a collision that is δ′(n)-close to one from COLh′ . Then,
for any such “good” h, the success probability of BreakH is μ∗(n) − δ′(n). So,
overall, the success probability of BreakH is μ(n) = μ∗(n) − δ′(n) − ε′(n).

Combining both of the above, we have that if B̃reakH breaks the security of
H with probability μ̃(n), then BreakH breaks it with probability

μ(n) = μ̃(n) − δ(n) − ε(n) − δ′(n) − ε′(n). �

By the definition of x1 ← COL1h and x2 ← COL2h,x1
, we have that x1 is

uniformly random in the domain of h′ (namely, {0, 1}�) and x2 is a uniform
element in {0, 1}� conditioned on satisfying h(x1) = h(x2).

Lemma 1. With all but negligible probability we have that h(u1) = h(u2) =
h(u3).

Proof. By the union bound

Pr[h(u1) = h(u2) = h(u3)] ≥ 1 − Pr[h(u1) �= h(u2) or h(u1) �= h(u3)]
≥ 1 − Pr[h(u1) �= h(u2)] − Pr[h(u1) �= h(u3)].

If (x1, x2) is a collision under h′, by definition of h′, then it holds that

h(u1) = h(A1(h;x1)) = h(A1(h;x2)) = h(u3).

On Distributional Collision Resistant Hashing 317

Thus, since by the definition of COLh′ , the inputs x1 and x2 are a collision
relative to h′, then u1 and u3 are a collision relative to h. That is,

Pr[h(u1) �= h(u3)] = 0.

Additionally, recall that the pair (x1, x2) is a random collision sampled via
COLh. Namely, x1 is uniformly random in {0, 1}�. Since A outputs a collision
relative to h for all but a δ(n)-fraction of possible randomnesses, it must be that
h(u1) = h(u2), except with probability δ(n). That is,

Pr[h(u1) �= h(u2)] ≤ δ(n). �

What is left to show, and is the most technical part of the proof, is that all
three elements u1, u2, u3 are distinct. An illustration of the main ideas and the
notations used in the proof is given in Fig. 4.

Fig. 4. An illustration of the ideas and notations used in the proof of the proof.

Lemma 2. With all but negligible probability we have that u1, u2, u3 are distinct.

Proof. To argue distinctness, we first show that set of inverses of h(u1) is large
with high probability. We use the following claim.

Claim 2. For any h ∈ H, it holds that

Pr
x←{0,1}2n

[|h−1(h(x))| > 2n/2] ≥ 1 − 2−n/2.

318 I. Komargodski and E. Yogev

Proof. We count how many x’s might there be that satisfy |{h−1(h(x))}| ≤
2n/2. Let us denote by U1, . . . , Uk a partition of {0, 1}2n into sets according to
the output of h. That is, ∀i ∀x, y ∈ Ui : h(x) = h(y) and for all i �= j and
x ∈ Ui, y ∈ Uj it holds that h(x) �= h(y). Each set Ui that is larger than 2n/2 is
called “good” and others are called “bad”. The total number of sets k is bounded
by 2n and thus, there can be at most 2n bad sets Ui. Namely, the total number
of elements in the bad sets is bounded by 2n · 2n/2 = 23n/2. Thus, the number
of elements in good sets is 22n − 23n/2 = (1 − 2−n/2) · 22n and each such good
element x satisfies |{h−1(h(x))}| > 2n/2. �

Let y = h(u1) and let us denote all the values u that are mapped to y by:

Uy = {u | h(u) = y}.

Note that, by Claim 2, with very high probability over the choice of x1, it
holds that

|Uy| ≥ 2n/2. (1)

The elements u1 and u2 are a sample of COLh using fresh randomness x1. Since
x2 is sampled from the set of all preimages of x1, we have that

Pr[u1 �= u2] ≥ Pr
[
u1 �= u2 | |U | > 2n/2

]
· Pr

[
|U | > 2n/2

]

≥ 1 − negl(n).

We continue to show that u3 is distinct from u1, u2. From now on, let us con-
dition on x1 being such that Eq. (1) holds. We also condition on h ∈ H being such
that Δ(A(1n, h),COLh) ≤ δ(n). The former happens with probability 1−2−Ω(n)

and the latter happens with probability 1−ε(n). Overall, by the conditioning we
will lose an additive negl(n) term in the overall success probability of B̃reakH.

The algorithm A1 (i.e., A when restricted to output only the first element)
gives us a mapping between x’s and u’s. Namely, for every x ∈ {0, 1}�, there is
a u ∈ {0, 1}2n such that (u, ·) = A(h;x). For u ∈ {0, 1}2n, denote

Xu = {x | A1(h;x) = u}.

We claim that for any two u, u′, the sizes of Xu and Xu′ are roughly the same.

Claim 3. For any u, u′ ∈ Uy,

Pr
(x1,x2)←COLh′

[x2 ∈ Xu] ∈ Pr
(x1,x2)←COLh′

[x2 ∈ Xu′] ± δ(n).

Proof. Since A(h; ·) outputs a pair that is distributed statistically close to a
pair coming from COLh and in the latter the first element is uniformly random
in {0, 1}2n, it must be that A1(h; ·) is distributed almost uniformly at random.
Hence, the mapping between x’s and u’s is regular, except with probability δ(n).
Namely,

|Xu|
2�

∈ |Xu′ |
2�

± δ(n).

On Distributional Collision Resistant Hashing 319

The claim now follows since x2 is chosen uniformly at random from the set of
all values that go to y. �

By the definition of Xu, by Claim 3, and by Eq. (1), we have that

Pr[u3 = u1] ≤ Pr[x2 ∈ Xu1] ≤ 1
|Uy| + δ(n) ≤ negl(n).

By a similar reasoning, it holds that

Pr[u3 = u2] ≤ Pr[x2 ∈ Xu2] ≤ 1
|Uy| + δ(n) ≤ negl(n).

Therefore, we get that u3 /∈ {u1, u2} with all but negligible probability. �
Combining Lemmas 1 and 2 we get that we will find a 3-way collision with high
probability which concludes the proof. �
Distributional MCRH. One can also defined a distribution notion for a k-
MCRH. Here, the task of the adversary is to find, given a hash function h ← H,
not an arbitrary k-way collision, but one that is statistically close to a random
one. By a random k-way collision we mean the following distribution. First,
sample x1 uniformly at random and then sample x2, . . . , xk independently uni-
formly at random conditioned on h(xi) = h(x1) for every 2 ≤ i ≤ k. We call this
distribution COLk

h.
We observe that in the proof above we get an algorithm that finds a 3-way

collision that is statistically close to a random one from COL3h. That is, the
proof above shows that existence of dCRH can be based on the existence of the
seemingly weaker notion of distributional 3-MCRH.

3.1 Going Beyond 3-MCRH

In the previous section we have shown how to construct a dCRH from a 3-
MCRH family. Our construction and proof inherently relied on the fact that an
adversary cannot find a 3-way collision. In this part, we show how to extend
the ideas from the above proof to give a recursive construction that shows the
existence of a dCRH from the existence of a k-MCRH for any constant k. We
will exemplify the idea for k = 4 next and explain the general afterwards.

Suppose that we are given a 4-MCRH family H and assume towards contra-
diction that dCRH function families do not exist. As in the proof above, there is
an adversary A that breaks H as a dCRH and finds a random collision from COLh,
where h ← H. We define H′ = {h′ : {0, 1}� → {0, 1}n} as in the proof above

h′(x) = h(A1(h;x)).

Since H′ do not exist, the adversary BreakH3 � BreakH from Fig. 2 can be used
to find a random 3-way collision (u1, u2, u3) for a random key h ← H. Denote
by �′ = �′(n) an upper bound on the number of bits of randomness used by
BreakH3.

320 I. Komargodski and E. Yogev

The key observation is that we can use BreakH3 recursively to get an algo-
rithm BreakH4 that find a 4-way collision. We define an new hash function family
H′′ = {h′′ : {0, 1}�′ → {0, 1}n} by

h′′(x) = h(BreakH1
3(h;x)),

where BreakH1
3 is a modified version of the algorithm BreakH3 that outputs only

the first element from its output triple. Since the function family H′′ is not a
dCRH, there is an algorithm A′′ that can find a collision in h′′ ← H′′ that is
statistically close to one from COLh′′ . We construct an algorithm BreakH4(1n,
h) that is similar to BreakH3(1n, h), except that it uses BreakH3(1n, h) instead
of the adversary A to find a 4-way collision.

That is, BreakH4 runs A′′ to get a random collision (x1, x2). Then, x1 is used
as randomness to BreakH3(1n, h) to get a 3-way collision (u1, u2, u3), and x2 is
used to get (u4, u5, u6). Similarly to the arguments in the original proof, here we
claim that u4 will also hash to the same value as u1, u2, and u3, and since it is
random in the set of all elements that collide with u1, the probability that it is
distinct from u1, u2, and u3 is very high. Thus, u1, u2, u3, u4 is a 4-way collision
with high probability. (Not only that, it is actually negligibly-close to a random
4-way collision.)

The general case. The above idea extends to starting with a k-MCRH for
higher values of k. Namely, our transformation allows one to go from k-MCRH
to dCRH. But, there is a cost in parameters since in each step, the algorithm we
construct and the construction itself incur a polynomial blowup in the running
time (and also a decrease in the success probability). Thus, we can apply this
iteratively k times for any constant k ∈ N. This results with the statement that
the existence of k-MCRH for any constant k implies the existence of dCRH. The
resulting algorithm is denoted BreakHk+1(1n, h) and is given in Fig. 5.

Fig. 5. The description of the adversary BreakHk+1.

Remark 1 (A note on non-uniformity). Notice that the first step in the above
argument from 3-MCRH to dCRH results with an infinitely-often dCRH. This
can be circumvented by having a non-uniform construction. In particular, instead
of having a single adversary A that works for infinitely many input length, we can
hardwire an adversary that works for each input length. The result is a standard

On Distributional Collision Resistant Hashing 321

dCRH (as opposed to an infinitely-often one) that is computed by circuits instead
of Turing machines. This is important for our recursive argument, as otherwise
each step of the reduction might work on a different sequence of input lengths.

Remark 2 (Distributional multi-collision resistance). The above idea can be
summarized as a transformation from k-dMCRH to a (k − 1)-dMCRH. A k-
dMCRH is the distributional analog of MCRH, where the goal of the adversary
is to come up with a random k-way collision (x1, . . . , xk). The distribution of
such a collision relative to a hash function h is that x1 is chosen uniformly at
random and x2, . . . , xk are all chosen independently and uniformly at random
conditioned on colliding with x1 on h.

4 Constructing dCRH from SZK

In this section we show how to construct a dCRH from the average-case hard-
ness of SZK. The statistical difference problem, which is complete for SZK [33],
is a promise problem where one is given two distributions, described by circuits
that sample from them, and the goal is to decide whether the distributions are
close or far in statistical distance. The hardness of SZK implies the hardness of
SD. For our application we will need the average-case hardness of this problem,
where there is an underlying efficient sampler that samples the two aforemen-
tioned circuits.

Definition 6 (Distributions encoded by circuits). Let C : {0, 1}n →
{0, 1}n be a Boolean circuit. The distribution encoded by C is the distribution
induced on {0, 1}n by evaluating the circuit C on a uniformly sampled string
of length n. We abuse notation and sometimes write C for the distribution
defined by C.

Definition 7 (The statistical difference problem). Statistical Differ-
ence is the promise problem SDε,1−ε = (SDY ,SDN) over all pairs of circuits
C0, C1 : {0, 1}n → {0, 1}n, where the “Yes” instances are those that encode sta-
tistically far distributions

SDY = {(C0, C1) : Δ(C0, C1) ≥ 1 − ε}
and the “No” instances are those that encode statistically close distributions

SDN = {(C0, C1) : Δ(C0, C1) ≤ ε}.

Definition 8 (Average-case hardness). We say that the SDε,1−ε problem
is hard-on-the-average if there exists a probabilistic polynomial-time sampler S
that outputs pairs of circuits C0, C1 : {0, 1}n → {0, 1}n such that for any (non-
uniform) probabilistic polynomial-time decider D that outputs “Y” or “N”, there
exists a negligible function negl(·) such that for all n ∈ N it holds that

Pr
(C0,C1)←S(1n)

[x ← D(C0, C1) and (C0, C1) ∈ SDx] ≤ 1
2

+ negl(n).

322 I. Komargodski and E. Yogev

The beautiful result of Sahai and Vadhan [33] shows that (average-case)
SD

1
3 , 23 is complete for (average-case) SZK. Not only that, they showed that

the constants 1/3 and 2/3 in the Statistical Difference problem are somewhat
arbitrary and the gap can be amplified. In more detail, they showed that given
two distributions D0,D1, and a number k, then in polynomial time (in k) one
can sample from distributions D′

0 and D′
1 such that if Δ(D0,D1) ≤ 1/3, then

Δ(D′
0,D

′
1) ≤ 2−k, and if Δ(D0,D1) ≥ 2/3, then Δ(D′

0,D
′
1) ≤ 1 − 2−k.

Our main result in this section is a construction of a dCRH that compresses
by 1 bit from the average-case hardness of SZK.

Theorem 2. There exists an explicit dCRH mapping n bit to (n−1) bits assum-
ing the average-case hardness of SZK.

Proof. Since SZK is hard-on-the-average, SD
1
3 , 23 is hard-on-the-average. Also,

SDε,1−ε for ε = 0.01 is average-case hard [33]. Let S be the sampler for SDε,1−ε.
We define our dCRH family H next. The key sampler for H runs the simulator

S and outputs the two circuits (that describe distributions). Given a key (C0, C1)
we define the hash function h(C0,C1) : {0, 1}n → {0, 1}n−1 in by

hC0,C1(x, b) = Cb(x). (2)

In the rest of the proof we shall prove that this function family is a dCRH.
We will do so by contradiction, showing that if it were insecure, then we would
get a statistical-distance distinguisher for circuits that are output by S. This is
a contradiction to the average-case hardness of SDε,1−ε.

Suppose (towards contradiction) that H is not a dCRH. This means that
there is a probabilistic polynomial-time adversary A and two negligible functions
δ(·) and ε(·) such that A with probability at least 1 − ε(n) over the choice of
h ← H can generate a collision which is δ-close to a uniform one from COLh.
That is,

Pr
h←H

[Δ (A(1n, h),COLh) ≤ δ(n)] > 1 − ε(n).

We design an algorithm BreakSD that uses A and solves SD on circuits given by
S(1n; ·). The idea is pretty simple: we run A to get a collision pair ((x, b), (x′, b′)).
If b = b′, then we output “Y” (i.e., far) and otherwise, we output “N” (i.e., close).
This algorithm is described in Fig. 6.

Fig. 6. The description of the adversary BreakSD.

We next prove that when the statistical distance between C0 and C1 is large,
then with high probability the collision will be such that b = b′. On the other

On Distributional Collision Resistant Hashing 323

hand, when the distributions are far, the collision will be with b = b′ only
with bounded probability. If the gap between the events is noticeable, then our
algorithm is able to decide whether C0 and C1 are close or far with noticeable
probability which violates the average-case hardness of SD.

Before we formalize this intuition, let us set up some notation. We say that
h ∈ H is “good” if the adversary A acts well on this h, namely,

Δ (A(1n, h),COLh) ≤ δ(n).

Since A succeeds to come up with a uniform collision for all but a negligible
fraction of the h’s, we have that

Pr
h←H

[h is “good”] ≥ 1 − 1
n

.

From now on, we condition on the case that h is “good” and lose a factor of n−1

in the success probability. Moreover, we know that for good functions h it holds
that A outputs a collision that is negligibly-close to COLh. Thus, we can analyze
the success probability of BreakSD with COLh instead of A, and at the end lose
another factor of δ(n). Together, these two lost factors will not be significant
since our distinguishing gap will be Ω(1).

In the following lemma we show that the probability that the adversary
outputs a collision in which b = b′ is related to the triangular discrimination
between C0 and C1 (see Definition 2).

Lemma 3. It holds that

Pr[b′ = b] =
1
2

+
ΔTD(C0, C1)

4
.

By this lemma together with Proposition 1 (that says that the triangular dis-
crimination is bounded from above by the statistical distance and from below by
the square of the statistical distance), we get that when the statistical distance
between C0 and C1 is at least 1− ε = 0.99, then Pr[b′ = b] > 0.6, while when the
statistical distance between C0 and C1 is at most ε = 0.01, then Pr[b′ = b] < 0.55.
Overall, our adversary has a noticeable distinguishing gap, as required. We prove
Lemma 3 next.

Proof of Lemma 3. Let Py = Prx←{0,1}n [C0(x) = y] be the probability that
C0 outputs y and similarly define Qy = Prx←{0,1}n [C1(x) = y].

It happens that b′ = b if b = b′ = 0 or if b = b′ = 1. So, by the rule of total
probability

Pr[b′ = b] = Pr[b = 0] · Pr[b′ = 0 | b = 0] + Pr[b = 1] · Pr[b′ = 1 | b = 1].

324 I. Komargodski and E. Yogev

Expanding the LHS (the RHS is expanded analogously):

Pr[b = 0]· Pr[b′ = 0 | b = 0]

=
1
2

·
∑

y∈{0,1}n

Pr[b′ = 0 ∧ y′ = y | b = 0]

=
1
2

·
∑

y∈{0,1}n

Pr[b′ = 0 | b = 0 ∧ y′ = y] · Pr[y′ = y | b = 0]

=
1
2

·
∑

y∈{0,1}n

Py · Py

Py + Qy
.

Thus,

Pr[b′ = b] =
1
2

·
∑

y∈{0,1}n

P 2
y

Py + Qy
+

1
2

·
∑

y∈{0,1}n

Q2
y

Py + Qy
. (3)

Let us expand the LHS (again, the RHS is expanded analogously):

∑

y∈{0,1}n

P 2
y

Py + Qy
=

∑

y∈{0,1}n

P 2
y − Q2

y + Q2
y

Py + Qy

=
∑

y∈{0,1}n

(Py − Qy) +
∑

y∈{0,1}n

Q2
y

Py + Qy

=
∑

y∈{0,1}n

Q2
y

Py + Qy
.

Hence,

∑

y∈{0,1}n

P 2
y

Py + Qy
=

1
2

·
∑

y∈{0,1}n

P 2
y + Q2

y

Py + Qy

=
1
4

·
∑

y∈{0,1}n

(Py + Qy)2

Py + Qy
+

1
4

·
∑

y∈{0,1}n

(Py − Qy)2

Py + Qy

=
1
2

+
1
4

·
∑

y∈{0,1}n

(Py − Qy)2

Py + Qy
.

�
By plugging this into Eq. (3), we finish the proof. �

5 Open Questions and Further Research

In this work, we presented two constructions of DCRH from different assump-
tions. The first construction is from the existence of an MCRH. This construction

On Distributional Collision Resistant Hashing 325

is non-black-box which is necessary due to a black-box separation between the
two. The other construction is from the average-case hardness of SZK. This con-
struction is fully black-box. There are many questions still left open regarding
the power of DCRH and its relation to other notions of collision resistance.

We do not know how to construct an MCRH from a dCRH. We also do not
know how to separate MCRH from dCRH or even CRH from dCRH. The latter
questions require coming up with a new oracle that can only be used to find
collision that are far from random ones.

Another question we did not address in this work is the applicability of
dCRH. Does it (existentially) imply any useful cryptographic primitive that is
not implied by one-way functions?

Acknowledgments. We thank the anonymous reviewers of CRYPTO 2018 for their
elaborate and useful comments. We are grateful to Itay Berman and Ron Rothblum
for explaining how to use triangular discrimination in the analysis in Theorem 2. We
also thank Moni Naor and Rafael Pass for useful discussions.

References

1. Asharov, G., Segev, G.: Limits on the power of indistinguishability obfuscation
and functional encryption. SIAM J. Comput. 45(6), 2117–2176 (2016)

2. Barak, B.: How to go beyond the black-box simulation barrier. In: 42nd Annual
Symposium on Foundations of Computer Science, FOCS, pp. 106–115 (2001)

3. Barak, B., Ong, S.J., Vadhan, S.P.: Derandomization in cryptography. SIAM J.
Comput. 37(2), 380–400 (2007)

4. Beaver, D.: Correlated pseudorandomness and the complexity of private compu-
tations. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on the
Theory of Computing, pp. 479–488. ACM (1996)

5. Berman, I., Degwekar, A., Rothblum, R.D., Vasudevan, P.N.: Multi-collision resis-
tant hash functions and their applications. In: Nielsen, J.B., Rijmen, V. (eds.)
EUROCRYPT 2018. LNCS, vol. 10821, pp. 133–161. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-78375-8 5

6. Bitansky, N., Degwekar, A., Vaikuntanathan, V.: Structure vs. hardness through
the obfuscation lens. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol.
10401, pp. 696–723. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63688-7 23

7. Bitansky, N., Kalai, Y.T., Paneth, O.: Multi-collision resistance: a paradigm for
keyless hash functions. IACR Cryptology ePrint Archive 2017, 488 (2017). (To
appear in STOC 2018)

8. Bitansky, N., Nishimaki, R., Passelègue, A., Wichs, D.: From cryptomania to
obfustopia through secret-key functional encryption. In: Hirt, M., Smith, A. (eds.)
TCC 2016. LNCS, vol. 9986, pp. 391–418. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53644-5 15

9. Bogdanov, A., Lee, C.H.: Limits of provable security for homomorphic encryption.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 111–128.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4 7

10. Brakerski, Z., Komargodski, I., Segev, G.: Multi-input functional encryption in the
private-key setting: stronger security from weaker assumptions. In: Fischlin, M.,

https://doi.org/10.1007/978-3-319-78375-8_5
https://doi.org/10.1007/978-3-319-63688-7_23
https://doi.org/10.1007/978-3-319-63688-7_23
https://doi.org/10.1007/978-3-662-53644-5_15
https://doi.org/10.1007/978-3-662-53644-5_15
https://doi.org/10.1007/978-3-642-40041-4_7

326 I. Komargodski and E. Yogev

Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 852–880. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5 30

11. Döttling, N., Garg, S.: Identity-based encryption from the Diffie-Hellman assump-
tion. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 537–
569. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7 18

12. Dubrov, B., Ishai, Y.: On the randomness complexity of efficient sampling. In:
Proceedings of the 38th Annual ACM Symposium on Theory of Computing, pp.
711–720. ACM (2006)

13. Dvir, Z., Gutfreund, D., Rothblum, G.N., Vadhan, S.P.: On approximating the
entropy of polynomial mappings. In: Innovations in Computer Science - ICS, pp.
460–475 (2011)

14. Fortnow, L., Santhanam, R.: Infeasibility of instance compression and succinct
pcps for NP. J. Comput. Syst. Sci. 77(1), 91–106 (2011)

15. Garg, S., Mahmoody, M., Mohammed, A.: Lower bounds on obfuscation from all-
or-nothing encryption primitives. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017.
LNCS, vol. 10401, pp. 661–695. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63688-7 22

16. Goldreich, O., Sahai, A., Vadhan, S.: Can statistical zero knowledge be made
non-interactive? Or on the relationship of SZK and NISZK. In: Wiener, M.
(ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 467–484. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 30

17. Goldreich, O., Vadhan, S.P.: Comparing entropies in statistical zero knowledge
with applications to the structure of SZK. In: Proceedings of the 14th Annual
IEEE Conference on Computational Complexity, p. 54. IEEE Computer Society
(1999)

18. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

19. Harnik, D., Naor, M.: On the compressibility of NP instances and cryptographic
applications. SIAM J. Comput. 39(5), 1667–1713 (2010)

20. Impagliazzo, R., Luby, M.: One-way functions are essential for complexity based
cryptography (extended abstract). In: 30th Annual Symposium on Foundations of
Computer Science, FOCS, pp. 230–235. IEEE Computer Society (1989)

21. Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way per-
mutations. In: Proceedings of the 21st Annual ACM Symposium on Theory of
Computing, 14–17 May 1989, Seattle, Washigton, USA, pp. 44–61. ACM (1989)

22. Komargodski, I., Naor, M., Yogev, E.: White-box vs. black-box complexity of
search problems: ramsey and graph property testing. In: 58th IEEE Annual Sym-
posium on Foundations of Computer Science, FOCS, pp. 622–632 (2017)

23. Komargodski, I., Naor, M., Yogev, E.: Collision resistant hashing for paranoids:
dealing with multiple collisions. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT
2018. LNCS, vol. 10821, pp. 162–194. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-78375-8 6

24. Komargodski, I., Segev, G.: From minicrypt to obfustopia via private-key func-
tional encryption. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS,
vol. 10210, pp. 122–151. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-56620-7 5

25. Lin, H.: Indistinguishability obfuscation from constant-degree graded encoding
schemes. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665,
pp. 28–57. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-
3 2

https://doi.org/10.1007/978-3-662-49896-5_30
https://doi.org/10.1007/978-3-319-63688-7_18
https://doi.org/10.1007/978-3-319-63688-7_22
https://doi.org/10.1007/978-3-319-63688-7_22
https://doi.org/10.1007/3-540-48405-1_30
https://doi.org/10.1007/978-3-319-78375-8_6
https://doi.org/10.1007/978-3-319-78375-8_6
https://doi.org/10.1007/978-3-319-56620-7_5
https://doi.org/10.1007/978-3-319-56620-7_5
https://doi.org/10.1007/978-3-662-49890-3_2
https://doi.org/10.1007/978-3-662-49890-3_2

On Distributional Collision Resistant Hashing 327

26. Lin, H.: Indistinguishability obfuscation from SXDH on 5-linear maps and locality-
5 PRGs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp.
599–629. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7 20

27. Lin, H., Tessaro, S.: Indistinguishability obfuscation from trilinear maps and block-
wise local PRGs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol.
10401, pp. 630–660. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63688-7 21

28. Lin, H., Vaikuntanathan, V.: Indistinguishability obfuscation from DDH-like
assumptions on constant-degree graded encodings. In: IEEE 57th Annual Sym-
posium on Foundations of Computer Science, FOCS, pp. 11–20. IEEE Computer
Society (2016)

29. Liu, T., Vaikuntanathan, V.: On basing private information retrieval on NP-
hardness. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9562, pp.
372–386. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49096-
9 16

30. Mahmoody, M., Mohammed, A., Nematihaji, S., Pass, R., Shelat, A.: Lower
bounds on assumptions behind indistinguishability obfuscation. In: Kushilevitz,
E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9562, pp. 49–66. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-49096-9 3

31. Mahmoody, M., Pass, R.: The curious case of non-interactive commitments –
on the power of black-box vs. non-black-box use of primitives. In: Safavi-Naini,
R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 701–718. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5 41

32. Ostrovsky, R.: One-way functions, hard on average problems, and statistical zero-
knowledge proofs. In: Structure in Complexity Theory Conference, pp. 133–138.
IEEE Computer Society (1991)

33. Sahai, A., Vadhan, S.P.: A complete problem for statistical zero knowledge. J.
ACM 50(2), 196–249 (2003)

34. Simon, D.R.: Finding collisions on a one-way street: can secure hash functions
be based on general assumptions? In: Nyberg, K. (ed.) EUROCRYPT 1998.
LNCS, vol. 1403, pp. 334–345. Springer, Heidelberg (1998). https://doi.org/10.
1007/BFb0054137

35. Topsøe, F.: Some inequalities for information divergence and related measures of
discrimination. IEEE Trans. Inf. Theory 46(4), 1602–1609 (2000). https://doi.org/
10.1109/18.850703

https://doi.org/10.1007/978-3-319-63688-7_20
https://doi.org/10.1007/978-3-319-63688-7_21
https://doi.org/10.1007/978-3-319-63688-7_21
https://doi.org/10.1007/978-3-662-49096-9_16
https://doi.org/10.1007/978-3-662-49096-9_16
https://doi.org/10.1007/978-3-662-49096-9_3
https://doi.org/10.1007/978-3-642-32009-5_41
https://doi.org/10.1007/BFb0054137
https://doi.org/10.1007/BFb0054137
https://doi.org/10.1109/18.850703
https://doi.org/10.1109/18.850703

Trapdoor Functions

Fast Distributed RSA Key Generation
for Semi-honest and Malicious

Adversaries

Tore Kasper Frederiksen1, Yehuda Lindell2,3(B), Valery Osheter3,
and Benny Pinkas2

1 Security Lab, Alexandra Institute, Aarhus, Denmark
tore.frederiksen@alexandra.dk

2 Department of Computer Science, Bar-Ilan University, Ramat Gan, Israel
yehuda.lindell@biu.ac.il, benny@pinkas.net

3 Unbound Tech Ltd., Petach Tikva, Israel
valery.osheter@unboundtech.com

Abstract. We present two new, highly efficient, protocols for securely
generating a distributed RSA key pair in the two-party setting. One
protocol is semi-honestly secure and the other maliciously secure. Both
are constant round and do not rely on any specific number-theoretic
assumptions and improve significantly over the state-of-the-art by allow-
ing a slight leakage (which we show to not affect security).

For our maliciously secure protocol our most significant improvement
comes from executing most of the protocol in a “strong” semi-honest
manner and then doing a single, light, zero-knowledge argument of cor-
rect execution. We introduce other significant improvements as well. One
such improvement arrives in showing that certain, limited leakage does
not compromise security, which allows us to use lightweight subprotocols.
Another improvement, which may be of independent interest, comes in
our approach for multiplying two large integers using OT, in the mali-
cious setting, without being susceptible to a selective-failure attack.

Finally, we implement our malicious protocol and show that its perfor-
mance is an order of magnitude better than the best previous protocol,
which provided only semi-honest security.

1 Introduction

RSA [RSA78] is the oldest, publicly known, public key encryption scheme. This
scheme allows a server to generate a public/private key pair, s.t. any client

T. K. Frederiksen—The majority of the work was done while at Bar-Ilan University,
Israel.
Tore, Yehuda and Benny were supported by the BIU Center for Research in Applied
Cryptography and Cyber Security in conjunction with the Israel National Cyber
Bureau in the Prime Minsters Office. Yehuda and Benny were also been funded by
the Israel Science Foundation (grant No. 1018/16). Tore has also received funding
from the European Union’s Horizon 2020 research and innovation programme under
grant agreement No. 731583.

c© International Association for Cryptologic Research 2018
H. Shacham and A. Boldyreva (Eds.): CRYPTO 2018, LNCS 10992, pp. 331–361, 2018.
https://doi.org/10.1007/978-3-319-96881-0_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96881-0_12&domain=pdf

332 T. K. Frederiksen et al.

knowing the public key can use this to encrypt a message, which can only be
decrypted using the private key. Thus the server can disclose the public key and
keep the private key secret. This allows anyone to encrypt a message, which
only the server itself can decrypt. Even though RSA has quite a few years on its
back, it is still in wide use today such as in TLS, where it keeps web-browsing
safe through HTTPS. Its technical backbone can also be used to realize digital
signatures and as such is used in PGP. However, public key cryptography, RSA
in particular, is also a primitive in itself, widely used in more complex cryp-
tographic constructions such as distributed signature schemes [Sho00], (homo-
morphic) threshold cryptosystems [HMRT12] and even general MPC [CDN01].
Unfortunately, these complex applications are not in the client-server setting,
but in the setting of several distrusting parties, and thus require the private
key to be secretly shared between the parties. This is known as distributed key
generation and in order to do this, without a trusted third party, is no easy feat.
Even assuming the parties act semi-honestly, and thus follow the prescribed pro-
tocol, it is a slow procedure as the fastest known implementation takes 15 min
for 2048 bit keys [HMRT12]. For the malicious setting we are unaware of pre-
vious implementation. However, in many practical settings such a key sharing
only needs to be done once for a static set of parties, where the key pair is then
used repeatedly afterwards. Thus, a setup time of 15 min is acceptable, even if
it is not desirable. Still, there are concrete settings where this is not acceptable.

Motivation. In the world of MPC there are many cases where a setup time of
more than a few seconds is unacceptable. For example consider the case of a static
server and a client, with a physical user behind it, wishing to carry out some
instant, ad-hoc computation. Or the setting where several users meet and want
to carry out an auction of a specific item. In these cases, and any case where a
specific set of participating parties will only carry out few computations, it is not
acceptable for the users to wait more than 15 min before they start computing.
In such cases only a few seconds would be acceptable.

However, if a maliciously secure shared RSA key pairs could be generated in
a few seconds, another possible application appears as well: being able to gen-
erate public key pairs in an enterprise setting, without the use of a Hardware
Security Module (HSM). A HSM is a trusted piece of hardware pervasively used
in the enterprise setting to construct and store cryptographic keys, guaranteed
to be correct and leakage free. However, these modules are slow and expensive,
and in general reflects a single point of failure. For this reason several compa-
nies, such as Unbound and Sepior have worked on realizing HSM functionality
in a distributed manner, using MPC and secret-sharing. This removes the sin-
gle point of failure, since computation and storage will be distributed between
physically separated machines, running different operating systems and having
different system administrators. Thus if one machine gets fully compromised by
an adversary, the overall security of the generated keys will not be affected. This
has been done successfully for the generation of symmetric keys, which usually
does not need a specific mathematical structure. Unfortunately, doing this for
RSA keys is not so easy. However, being able to generate a key pair with the

Fast Distributed RSA Key Generation 333

private key secretly shared will realize this functionality. But for such a dis-
tributed system to be able to work properly in an enterprise setting such gener-
ation tasks must be completed in a matter of seconds.

In this paper we take a big step towards being able to generate a shared
RSA key between two parties in a matter of seconds, even if one of the parties is
acting maliciously and not following the prescribed protocol. Thus opening up
for realizing the applications mentioned above.

The Setting. We consider two parties P1 and P2 whose goal is to generate
an RSA modulus of a certain length, such that the knowledge of the private
key is additively shared among them. Namely, the parties wish to compute the
following:

Common input: A parameter � describing the desired bits of the primes in an
RSA modulus, and a public exponent e.

Common output: A modulus N of length 2� bits.
Private outputs: P1 learns outputs p1, q1, d1, and P2 learns outputs p2, q2, d2,

for which it holds that
– (p1 + p2) and (q1 + q2) are prime numbers of length � bits.
– N = (p1 + p2) · (q1 + q2).
– e · (d1 + d2) = 1 mod φ (N).

(Namely, (d1 + d2) is the RSA private key for (N, e).)

Furthermore, we want the functionality to work (or abort) even if one of the
parties is not following the protocol. That is, in the malicious setting.

Distributed RSA Key Generation. It turns out that all prior work follows a
common structure for distributed RSA key generation. Basically, since there is
no efficient algorithm for constructing random primes, what is generally done
is simply to pick random, odd numbers, and hope they are prime. However,
the Prime Number Theorem tells us that this is not very likely. In fact, for
numbers of the size needed for RSA, the probability that a random odd number
is prime is around one in 350. Thus to generate an RSA key, many random prime
candidates must be generated and tested in some way. Pairs of prime candidates
must then be multiplied together to construct a modulus candidate. Depending
on whether the tests of the prime candidates involve ensuring that a candidate
is prime except with negligible probability, or only that it is somewhat likely to
be prime, the modulus candidate must also be tested to ensure that it is the
product of two primes. We briefly outline this general structure below:

Candidate Generation: The parties generate random additive shares of
potential prime numbers. This may involve ensuring that a candidate is prime
except with negligible probability, insuring that the candidate does not con-
tain small prime factors, or simply that it is just an odd number.

Construct Modulus: Two candidates are multiplied together to construct a
candidate modulus.

Verify Modulus: This involves ensuring that the public modulus is the prod-
uct of two primes. However, this is not needed if the prime candidates were
guaranteed to be prime (except with negligible probability).

334 T. K. Frederiksen et al.

Construct Keys: Using the additive shares of the prime candidates, along with
the modulus, the shared RSA key pair is generated.

With this overall structure in mind we consider the chronology of efficient dis-
tributed RSA key generation.

Related Work. Work on efficient distributed RSA key generation was started
with the seminal result of Boneh and Franklin [BF01]. A key part of their
result is an efficient algorithm for verifying biprimality of a modulus without
knowledge of its factors. Unfortunately, their protocol is only secure in the semi-
honest setting, against an honest majority. Several followup works handle both
the malicious and/or dishonest majority setting [PS98,FMY98,Gil99,ACS02,
DM10,HMRT12,Gav12]. First Frankel et al. [FMY98] showed how to achieve
malicious security against a dishonest minority. Their protocol proceeds like
Boneh and Franklin’s scheme [BF01], but uses different types of secret shar-
ing along with zero-knowledge arguments to construct the modulus and do the
biprimality test in a malicious secure manner. Furthermore, for their simulation
proof to go through, they also require that all candidate shares are committed
to using an equivocable commitment. Poupard and Stern [PS98] strengthened
this result to achieve security against a malicious majority (specifically the two-
party setting) using 1-out-of-β OT, with some allowed leakage though. Later
Gilboa [Gil99] showed how to get semi-honest security in the dishonest major-
ity (specifically two-party) setting. Gilboa’s approach follows along the lines of
Boneh and Franklin’s protocol [BF01], by using their approach for biprimal-
ity testing, but also introduces three new efficient approaches for computing
the modulus from additive shares: one based on homomorphic encryption, one
based on oblivious polynomial evaluation and one based on oblivious transfer.
Both Algesheimer et al. [ACS02] and Damg̊ard and Mikkelsen [DM10] instead do
a full primality test of the prime candidates individually, rather than a biprimal-
ity test of the modulus. In particular the protocol of Algesheimer et al. [ACS02]
is secure in the semi-honest setting (but can be made malicious secure) against a
dishonest minority, and executes a distributed Rabin-Miller primality test using
polynomial secret sharing with Θ(log(N)) round complexity, where N is the
public modulus. On the other hand Damg̊ard and Mikkelsen’s protocol [DM10]
is maliciously secure against a dishonest minority and also executes a distributed
Rabin-Miller test, using a special type of verifiable secret sharing called repli-
cated secret sharing which allows them to achieve constant round complexity.
Later Hazay et al. [HMRT12] introduced a practical protocol maliciously secure
against a dishonest majority (in the two-party setting), which is leakage-free.
More specifically their protocol is based on the homomorphic encryption app-
roach from Gilboa’s work [Gil99], but adds zero-knowledge proofs on top of all
the steps to ensure security against malicious parties. However, they conjectured
that it would be sufficient to only prove correctness of a constructed modulus.
This conjecture was confirmed correct by Gavin [Gav12]. In his work Gavin
showed how to build a maliciously secure protocol against a dishonest majority
(the two-party setting) by having black-box access to methods for generating
a modulus candidate which might be incorrect, but is guaranteed to not leak

Fast Distributed RSA Key Generation 335

info on the honest party’s shares. The protocol then verifies the execution for
every failed candidate and for the success modulus a variant of the Boneh and
Franklin biprimality test [BF01] is carried out in a maliciously secure manner
by using homomorphic encryption and zero-knowledge.

Contributions. We present two new protocols for distributed RSA key genera-
tion. One for the semi-honest setting and one for the malicious setting. Neither
of our protocols rely on any specific number theoretic assumptions, but instead
are based on oblivious transfer (OT), which can be realized efficiently using
an OT extension protocol [KOS15,OOS17]. The malicious secure protocol also
requires access to an IND-CPA encryption scheme, coin-tossing, zero-knowledge
and secure two-party computation protocols. In fact, using OT extension signif-
icantly reduces the amount of public key operations required by our protocols.
This is also true for the maliciously secure protocol as secure two-party compu-
tation (and thus zero-knowledge) can be done black-box based on OT.

We show that our maliciously secure protocols is more than an order of
magnitude faster than its competitor. We achieve malicious security so cheaply
mainly by executing a slightly stronger version of our semi-honest protocol
and adding a new, lightweight zero-knowledge argument at the end, to ensure
that the parties have behaved honestly. This overall idea has been hypothe-
sized [HMRT12] and affirmed [Gav12]. However, unlike previous approaches in
this paradigm [DM10,Gav12] our approach does not require rerunning and veri-
fying the honesty of candidates that are discarded, thus increasing efficiency. We
achieve this by introducing a new ideal functionality which gives the adversary
slightly more (yet useless) power than normally allowed. This idea may be of
independent interest as it is relevant for other schemes where many candidate
values are constructed and potentially discarded throughout the protocol. We
furthermore show how to eliminate much computation in the malicious setting
by allowing a few bits of leakage on the honest party’s prime shares. We carefully
argue that this does not help an adversary in a non-negligible manner.

We also introduce a new and efficient approach to avoid selective failure
attacks when using Gilboa’s protocol [Gil99] for multiplying two large integers
together. We believe this approach may be of independent interest as well.

Finally, we present an implementation of our maliciously secure protocol,
showing it to be an order of magnitude faster than the most efficient previous
semi-honest protocol [HMRT12]. In particular, a four thread implementation
takes on average less than 40 s to generate a maliciously secure 2048 bit key,
whereas the protocol of Hazay et al. [HMRT12] on average required 15 min for
a semi-honestly secure 2048 bit key.

2 Preliminaries

Our protocols use several standard building blocks, namely oblivious transfer,
and for the maliciously secure protocol, coin-tossing, an IND-CPA encryption
scheme, a zero-knowledge protocol along with secure two-party computation. We
here formalize these building blocks.

336 T. K. Frederiksen et al.

FIGURE 2.1 (F�,β
OT)

Functionality interacts with a sender snd and receiver rec. It is initialized with
the public values �, β ∈ N. It proceeds as follows:

– Upon receiving (transfer) from snd and (receive, i) from rec with
i ∈ {0, . . . , β − 1} the functionality picks uniformly random values
m0, . . . , mβ−1 ∈ {0, 1}� and sends (transfer, m0, . . . , mβ−1) to snd and
(transfer, mi) to rec.

– If a party is maliciously corrupted then it will receive its output first
and if it returns the message (deliver) then the functionality will give
the honest party its output, otherwise if the corrupted party returns the
message (abort), then output (abort) to the honest party.

Ideal functionality for random oblivious transfer

Random OT. Our protocol relies heavily on random OT both in the candidate
generation and construction of modulus phases. The functionality of random OT
is described in Fig. 2.1. Specifically we suffice with a functionality that samples
the sender’s messages at random and lets the receiver choose which one of these
random messages it wishes to learn. Random OTs of this form can be realized
highly efficiently based on an OT extension, which uses a small number of “base”
OTs to implement any polynomial number of OTs using symmetric cryptography
operations alone. The state-of-the-art 1-out-of-2 OT extension is given by Keller
et al. [KOS15] and for 1-out-of-β OT, by Orrù et al. [OOS17]. In some cases
we need the sender to be able to specifically choose its messages. However, this
is easily achieved by using the random OT-model as a black box and we will
sometimes abuse notation and assume that F�,β

OT supports specific messages,
by allowing the sender to input the message (transfer, a0, . . . , aβ−1), and the
receiver receiving message (transfer, ai).

AES. Our maliciously secure scheme also requires usage of AES. However, any
symmetric encryption scheme will do as long as it is a block-cipher (with blocks
of at least κ bits) and can be assumed to be a pseudo-random permutation
(PRP) and used in a mode that is IND-CPA secure. We will denote this scheme
by AES : {0, 1}κ × {0, 1}∗ → {0, 1}∗ and have that AES−1

K (AESK(M)) = M
when K ∈ {0, 1}κ

,M ∈ {0, 1}∗.

Coin-tossing. We require a coin-tossing functionality several places in our mali-
ciously secure protocols. Such a functionality samples a uniformly random ele-
ment from a specific set and hands it to both parties. We formally capture the
needed functionality in Fig. 2.2.

Zero-Knowledge Argument-of-Knowledge. As part of the setup phase of our mali-
cious protocol we need both parties to prove knowledge of a specific piece of infor-
mation. For this purpose we require a zero-knowledge argument-of-knowledge.
More formally, let L ⊂ {0, 1}∗ be a publicly known language in NP and ML be
a language verification function of this language i.e. for all x ∈ L there exist

Fast Distributed RSA Key Generation 337

FIGURE 2.2 (FCT)

Functionality interacts with P1 and P2. Upon receiving (toss,R) from both
parties, where R is a description of a ring, sample a uniformly random element
x ∈ R and send (random, x) to both parties.

Corruption: If a party is corrupt, then send (random, x) to this party first,
and if it returns the message (deliver) then send (random, x) to the other
party, otherwise if the corrupted party returns the message (abort) then
output (abort) to the honest party.

Ideal functionality for coin-tossing

FIGURE 2.3 (FML
ZK)

Functionality interacts with two parties P and V . It is initialized on a deter-
ministic polytime language verification function ML : {0, 1}∗ × {0, 1}∗ →
{�, ⊥}. It proceeds as follows:

– On input (prove, x, w) from P and (verify, x′) from V . If x = x′ and
ML(x, w) = � output (�) to V , otherwise output (⊥).

Ideal functionality for zero-knowledge argument-of-knowledge

a string w of length polynomial in the size of x s.t. ML(x,w) = � and for all
x �∈ L,w ∈ {0, 1}∗ then ML(x,w) = ⊥. Thus this function outputs � if and only
if w is a string that verifies that x belongs to the language L. We use this to
specify the notion of a zero-knowledge argument-of-knowledge that a publicly
known value x ∈ L. Specifically one party, P the prover, knows a witness w and
wish to convince the other party, V the verifier, that ML(x,w) = � without
revealing any information on w.

We formalize this in Fig. 2.3 and note that such a functionality can be realized
very efficiently using garbled circuits [JKO13] or using the “MPC-in-the-head”
approach [GMO16].

Two-party Computation. We use a maliciously secure two-party computation
functionality in our protocol. For completeness we here formalize the ideal func-
tionality we need for this in Fig. 2.4. Such a functionality can be implemented
efficiently in constant rounds using a garbled circuit protocol [Lin16].

Notation. We let κ be the computational security parameter and s the statistical
security parameter. We use � to denote the amount of bits in a prime factor of an
RSA modulus. Thus � ≥ κ. We use [a] to denote the list of integers 1, 2, . . . , a. We
will sometimes abuse notation and implicitly view bit strings as a non-negative
integer.

338 T. K. Frederiksen et al.

FIGURE 2.4 (Ff
2PC)

Functionality interacts with two parties P1 and P2. It is initialized on a deter-
ministic polytime function f : {0, 1}n1+n2 → {0, 1}m1+m2 . It proceeds as
follows:

Input: On input (input, xI) from PI where xI ∈ {0, 1}nI , where no message
(input, ·) was given by PI before, store xI .

Output: After having received messages (input, ·) from both P1 and P2,
compute y1‖y2 = y = f(x) where x = x1‖x2 and y1 ∈ {0, 1}m1 , y2 ∈
{0, 1}m2 . Then return (output, y1) to P1 and (output, y2) to P2.

Corruption: If party PI is corrupt, then it is given yI from the functionality
before y3−I is given to P3−I . If PI returns the message (deliver) then
send y3−I to party PI , otherwise if P3−I returns the message (abort)
then output (abort) to PI .

Ideal functionality for two-party computation

3 Construction

This section details constructions of protocols for two-party RSA key generation.
We first describe in Sect. 3.1 the general structure of our protocols. We describe
in Sect. 3.2 a protocol for the semi-honest setting which is considerably more
efficient than previous protocols for this task. Finally, we describe in Sect. 3.3
our efficient protocol which is secure against a malicious adversary.

3.1 Protocol Structure

Following previous protocols for RSA key generation, as described in Sect. 1, the
key generation protocol is composed of the following phases:

Candidate Generation: In this step, the two parties choose random shares
p1 and p2, respectively, with the hope that p1 + p2 is prime. For our mali-
ciously secure protocol they also commit to their choices. The parties then
run a secure protocol, based on 1-out-of-β OT, which rules out the possibility
that p1 + p2 is divisible by any prime number smaller than some pre-agreed
threshold B1. We call this the first trial division.
If p1 + p2 is not divisible by any such prime then it passed on to the next
stage, otherwise it is discarded.

Construct Modulus: Given shares of two candidate primes p1, p2 and q1, q2,
the parties run a secure protocol, based on 1-out-of-2 OT, which computes
the candidate modulus N = (p1 + p2)(q1 + q2). The output N is learned by
both parties.

Verify Modulus: This step consists of two phases in our semi-honest protocol
and three phases in the malicious protocol. Both protocols proceeds s.t. once
N is revealed and in the open, the parties run a second trial division, by
locally checking that no primes smaller than a threshold B2 (B1 < B2) are

Fast Distributed RSA Key Generation 339

a factor of N . If N is divisible by such a number then N is definitely not a
valid RSA modulus and is discarded. For an N not discarded, the parties run
a secure biprimality test which verifies that N is the product of two primes. If
it is not, it is discarded. For the malicious protocol, a proof of honesty phase
is added to ensure that N is constructed in accordance with the commitments
from Candidate Generation and that N is indeed a biprime, constructed using
the “correct” shares, even if one party has acted maliciously.

Construct Keys: Up to this point, the parties generated the modulus N .
Based on the value Φ(N) mod e and their prime shares p1, q1, respectively
p2, q2, the parties can locally compute their shares of the secret key d1, respec-
tively d2 s.t. e · (d1 + d2) = 1 mod φ(N).

In principle, the protocol could run without the first and second trial division
phases. Namely, the parties could choose their shares, compute N and run the
biprimality test to check whether N is the product of two primes. The goal of
the trial division tests is to reduce the overall run time of the protocol: Checking
whether p is divisible by β, filters out 1/β of the candidate prime factors, and
reduces, by a factor of 1−1/β, the number of times that the other phases of the
protocol need to run. It is easy to see that trial divisions provide diminishing
returns as β increases. The thresholds B1, B2 must therefore be set to minimize
the overall run time of the protocol.

The phases of the protocol are similar to those in previous work that was
described in Sect. 1. Our protocol has two major differences: (1) Almost all cryp-
tographic operations are replaced by the usage of OT extension, which is consid-
erably more efficient than public key operations was has been used previously.
(2) Security against malicious adversaries is achieved efficiently, by observing
that most of checks that are executed in the protocol can be run while being
secure only against semi-honest adversaries, assuming privacy is kept against
malicious attacks and as long as the final checks that are applied to the chosen
modulus N are secure against malicious adversaries.

3.2 The Semi-honest Construction

The protocol consists of the phases described in Sect. 3.1, and is described in
Figs. 3.2 and 3.3. These phases are implemented in the following way:

Candidate Generation: The parties P1 and P2 choose private random strings
p1 and p2, respectively, of length � − 1 bits, subject to the constraint that the
two least significant bits of p1 are 11, and the two least significant bits of p2 are
0 (this ensures that the sum of the two shares is equal to 3 modulo 4).

The parties now check, for each prime number 3 ≤ β ≤ B1, that (p1 + p2) �=
0 mod β. In other words, if we use the notation a1 = p1 mod β and a2 = −p2 mod
β, then the parties need to run a secure protocol verifying that a1 �= a2.

Previous approaches for doing this involved using a modified BGW pro-
tocol [BF01], Diffie-Hellman based public key operations (which have to be
implemented over relatively long moduli, rather than in elliptic-curve based
groups) [HMRT12], and using a 1-out-of-β OT [PS98]. We take our point of

340 T. K. Frederiksen et al.

FIGURE 3.1 (OT-divisibility Test)

The parties have common input β ∈ N and P1 has p1 ∈ N and P2 has p2 ∈ N.
The procedure returns ⊥ iff β|(p1 + p2), otherwise it returns �.

1. P2 inputs (transfer) to Fκ,β
OT and learns random messages {mi}i∈[β].

2. P1 computes a1 = p1 mod β and inputs (receive, a1) to Fκ,β
OT and gets

output (deliver, ma1).
3. P2 lets a2 = −p2 mod β and sends ma2 to P1.
4. P1 checks whether ma1 = ma2 and outputs ⊥ and sends it to P2 if this is

the case, otherwise it outputs � and sends this to P2.

The 1-out-of-β OT based trial division procedure

departure in the latter approach, but improve the efficiency by having a lower
level of abstraction and using an efficient random OT extension. We describe
our approach by procedure Div-OT in Fig. 3.1.

The parties run this test for each prime 3 ≤ β ≤ B1 in increasing order (where
B1 is the pre-agreed threshold). Note that the probability that the shares are
filtered by the test is 1/β and therefore the test provides diminishing returns as
β increases. The threshold B1 is chosen to optimize the overall performance of
the entire protocol.

Construct Modulus: Once two numbers pass the previous test, the parties
have shares of two candidate primes p1, p2 and q1, q2. They then run a secure
protocol which computes the candidate modulus

N = (p1 + p2) (q1 + q2) = p1q1 + p2q2 + p1q2 + p2q1.

The multiplication p1q1 (resp. p2q2) is computed by P1 (resp. P2) by itself. The
other two multiplications are computed by running a protocol by Gilboa [Gil99],
which reduces the multiplication of � − 1 bit long numbers to � − 1 invocations
of 1-out-of-2 OTs, implemented using an efficient OT extension. The protocol
works as follows: Assume that the sender’s input is a and that the receiver’s input
is b, and that they must compute shares of a · b. Let the binary representation
of b be b = b�−1, . . . , b2, b1. For each bit the two parties run a 1-out-of-2 OT
protocol where the sender’s inputs are (ri, (ri + a) mod 22�), and the receiver’s
input is bi, where ri is a random 22� bit integer. Denote the receiver’s output as
ci = ri + a · bi mod 22�. It is easy to verify that

a · b =
(∑

i∈[�−1]2
i−1 · ci

)
+

(∑
i∈[�−1] − 2i−1 · ri

)
.

These will therefore be the two outputs of the multiplication protocol. We imple-
ment this protocol based on random OT.

After constructing the modulus, the parties verify that the public exponent
e will work with this specific modulus. I.e. that gcd(φ(N), e) = 1. Namely, that
gcd(N − p − q + 1, e) = 1. This is done in the same manner as Boneh and
Franklin [BF01], where P1 computes w1 = N + 1 − p1 − q1 mod e and P2

Fast Distributed RSA Key Generation 341

computes w2 = p2 + q2 mod e. The parties exchange the values w1 and w2 and
then verify that w1 �= w2. If instead w1 = w2 it means that e is a factor of φ(N)
and the parties discard the candidate shares.

PROTOCOL 3.2 (Semi-honest Key Generation ΠRSA-semi - Part 1)

Candidate Generation
1. P1 picks a uniformly random value p̃1 ∈ Z2�−3 and defines p1 = 4 ·

p̃1 + 3.
2. P2 picks a uniformly random value p̃2 ∈ Z2�−3 and defines p2 = 4p̃2.
3. Let B = {β ≤ B1|β is prime}. The parties execute procedure Div-OT

in Fig. 3.1 for each β ∈ B, where P1 uses input p1 and P2 input p2. If
any of these calls output ⊥, then discard the candidate pair p1, p2.

Construct Modulus
Let p1, q1, p2, q2 be two candidates that passed the generation phase above,
where P1 knows p1 = 4 · p̃1+3, q1 = 4 · q̃1+3 and P2 knows p2 = 4 · p̃2, q2 =
4 · q̃2.
1. The parties execute the following steps for each α ∈ {p, q} and i ∈

[� − 1]:
(a) P2 chooses a uniformly random value rα,i ∈ Z22� and sets c0,α,i =

rα,i and

c1,α,i =

{
rα,i + q2 mod 22� if α = p

rα,i + p2 mod 22� if α = q

(b) P2 invokes F2�,2
OT with input (transfer, c0,α,i, c1,α,i).

(c) P1 inputs (receive, α1,i) to F2�,2
OT , α1,i is the i’th bit of α1. P1 thus

receives the message (deliver, cα1,i,i) from F2�,2
OT for i ∈ [� − 1].

2. P1 computes zα
1 =

∑
i∈[�−1] cα1,i,i · 2i−1 mod 22� and P2 computes

zα,i
2 = − ∑

i∈[�−1] rα,i · 2i−1 mod 22�.

3. P2 computes a2 = p2q2 + zp
2 + zq

2 mod 22� and sends this to P1.
4. P1 computes a1 = p1q1 + zp

1 + zq
1 mod 22� and sends this to P2.

5. P1 and P2 then compute (p1 + p2)(q1 + q2) = N = (a1 + a2 mod P)
mod 22�.

6. P1 computes w1 = N + 1 − p1 − q1 mod e and sends this to P2.
Similarly P2 computes w2 = p2 + q2 mod e and sends this to P1.

7. P1 and P2 checks if w1 = w2. If this is the case they discard the
candidate N and its associated shares p1, q1, p2, q2. Otherwise they
define the value w = w1 − w2 mod e for later use.

Protocol for semi-honestly secure RSA key generation in the FOT-hybrid model

Verify Modulus: As previously mentioned, for our semi-honest protocol the
verification of the modulus consists of two phases in a pipelined manner; first a
trial division phase and then a full biprimality test. Basically, the full biprimality
test is significantly slower than the trial division phase, thus, the trial division
phase weeds out unsuitable candidates much cheaper than the biprimality test.
Thus, overall we expect to execute the biprimality test much fewer times when
doing trial division first.

342 T. K. Frederiksen et al.

PROTOCOL 3.3 (Semi-honest Key Generation ΠRSA-semi - Part 2)

Trial Division
Let B = {B1 < p ≤ B2|p is prime} for some previously decided B2.
P2 then executes trial division of the integers up to B2. If a factor is
found then send ⊥ to P1 and discard N and its associated prime shares
p1, q1, p2, q2. Otherwise send � to P1.

Biprimality Test
The parties execute the biprimality test described in Fig. 3.4 and discard
the candidate N if the test fails.

Generate Shared Key
1. Both parties use the value w computed in 7 in Construct Modulus

associated with the candidate N to compute b = w−1 mod e, and
then finally P1 computes d1 = �−b·(N+1−p1−q1)+1

e
	. If e| − p2 − q2

then P2 computes d2 = 1 + �−b·(−p2−q2)
e

	, otherwise P2 computes

d2 = �−b·(−p2−q2)
e

	.
2. P1 outputs (N, p1, q1, d1) and P2 outputs (N, p2, q2, d2).

Protocol for semi-honestly secure RSA key generation in the FOT-hybrid model

FIGURE 3.4 (Biprimality test [BF01])

1. The parties execute following test s times.
(a) P1 samples a random value γ ∈ Z

×
N with Jacobi symbol 1 over N .

(b) P1 sends γ to P2.

(c) P1 computes γ1 = γ
N+1−p1−q1

4 mod N and sends this value to P2.

(d) P2 checks if γ1 ·γ −p2−q2
4 mod N
= ±1. In this case P2 sends ⊥ to P1

and the parties break the loop and discard the candidate N .
2. The parties verify that gcd(N, p + q − 1) = 1.

(a) P1 chooses a random number r̄1 ∈ Z2�+s and P2 chooses a random
r̄2 ∈ Z2�+s . (The parties will verify that gcd((r̄1+ r̄2) ·(p+q−1), N) =
1.)

(b) The parties run a multiplication protocol (similar to that run in
the “Construct Modulus” step modulo 22�+s+2) where they com-
pute shares α1, α2 (known to P1, P2 respectively) of r̄1 · (p2 + q2 − 1)
mod 22�+s+2, and shares β1, β2 of r̄2 · (p1 + q1) mod 22�+s+2.

(c) P1 sends to P2 the value s1 = r̄1(p1 + q1) + α1 + β1 mod 22�+s+2.
(d) P2 computes s2 = r̄2(p2 + q2 −1)+α2 +β2 mod 22�+s+2, and verifies

that gcd(s1 + s2, N) = 1. If this is not the case then it sends ⊥ to P1

and discard the candidate N .

The biprimality test of Boneh and Franklin [BF01]

The trial division phase itself is very simple: since both parties know the
candidate modulus N , one party simply try to divide it by all primes numbers
in the range B1 < β ≤ B2. If successful, then N is discarded.

If N passes the trial division, we must still verify that it is in fact a biprime,
except with negligible probability. To do this we use a slightly modified version

Fast Distributed RSA Key Generation 343

FIGURE 3.5 (FRSA-semi)

Functionality interacts with parties P1 and P2. Upon query of an integer � ∈ N

and a prime e from both parties the functionality proceeds as follows:

– Sample random values p1, p2, q1, q2 of � − 1 bits each s.t. p1 ≡ q1 ≡ 3
mod 4 and p2 ≡ q2 ≡ 0 mod 4, p = p1 + p2 and q = q1 + q2 are prime,
and gcd((p − 1)(q − 1), e) = 1.

– Compute d = e−1 mod (p − 1)(q − 1), let b = ((p − 1)(q − 1))−1 mod e

and set d2 = �−b·(−p2−q2)
e

	 and d1 = d − d2.
– Output (N = pq, b, p1, q1, d1) to P1 and (N = pq, b, p2, q2, d2) to P2.

Ideal functionality for generating a shared RSA key semi-honestly

of the biprimality suggested by Boneh and Franklin [BF01], which relies on
number-theoretic properties of N = pq where p = 3 mod 4 and q = 3 mod 4.
(Note that in the prime-candidate generation, p and q were guaranteed to have
this property.) The test is described in Fig. 3.4. By slightly modified, we mean
that step 2), which ensures that gcd(N, p + q − 1) = 1, is computed without the
need of doing operations in the group ZN [x]/(x2 + 1))∗/Z∗

N .

Construct Keys: This phase is a simplified version of what is done by Boneh
and Franklin [BF01]. Using the values w1 and w2 defined in construct modulus
the parties compute w = w1 − w2 mod e and then b = w−1 mod e. P1 defines
its share of the private key as d1 =
−b·(N+1−p1−q1)+1

e �. P2 defines its share of
the private key as d2 = 1 +
−b·(−p2−q2)

e � or d2 =
−b·(−p2−q2)
e � or depending on

whether e|p2 + q2 or not.
We formally describe the full semi-honest protocol in Figs. 3.2 and 3.3.

Ideal functionality. The exact ideal functionality, FRSA-semi, our semi-honest pro-
tocol realizes is expressed in Fig. 3.5. The functionality closely reflects the specific
construction of the modulus and the shares of the private key of our protocol.
In particular, we notice that both primes of the public modulus are congruent
to 3 modulo 4, which is needed for the Boneh and Franklin biprimality test to
work. Based on these shared primes, the shares of the private keys are gener-
ated and handed to the parties. This part of the functionality closely follows the
previous literature [BF01,Gil99,ACS02,DM10,Gav12]. First notice using primes
congruent to 3 modulo 4 does not decrease security. This follows since all primes
suitable for RSA are odd this means that only about half of potential primes are
not used. Thus the amount of possible moduli are reduced by around 75%. How-
ever, this is similar to all previous approaches. Furthermore, this does not give
an adversary any noticeable advantage in finding primes used in key generation.

Next notice that the value φ(N) mod e is leaked. This leakage comes implic-
itly from how the shares d1 and d2 are constructed (although it is made explicit
in the ideal functionality). We note that since we use the method of Boneh and
Franklin [BF01] for this computation, this leakage is also present in their work
and any other protocol that uses this approach to generate the shared keys.

344 T. K. Frederiksen et al.

Specifically this means that at most log(e) bits of information on the honest
party’s secret shares are leaked. Thus when e is small, this does not pose any
issue. However, using the common value of e = 216+1 this could pose a problem.
We show how to avoid leaking φ(N) mod e in our maliciously secure protocol.

Using this functionality we get the following theorem:

Theorem 3.6. The protocol ΠRSA-semi in Figs. 3.2 and 3.3 securely realizes the
ideal functionality FRSA-semi in Fig. 3.5 against a static and semi-honest adver-
sary in the F ·,·

OT-hybrid model.

We will not prove this theorem directly. The reason being that the following
section will make it apparent that all steps of the semi-honest protocol is also
part of the malicious protocol. Now remember that a simulator for a semi-honest
protocol receives the output of the corrupt party. In our protocol this will in
particular mean the prime shares. Thus our semi-honest simulator will proceed
like the malicious one for the same steps, using the corrupt party’s prime shares.

3.3 Malicious Construction

The malicious protocol follows the semi-honest one with the following exceptions:

– The underlying OT functionality must be maliciously secure.
– An extractable commitment to each party’s choice of shares is added to the
construct candidate phase. This is needed since the simulator must be able to
extract the malicious party’s choice of shares in order to construct messages
indistinguishable from the honest party, consistent with any cheating strategy
of the malicious party.

– A new and expanded version of the Gilboa protocol is used to compute a
candidate modulus. This is done since a malicious P2 (the party acting as the
sender in the OTs) might launch a selective failure attack (details below).

– We use OT to implement an equality check of w1 = N +1−p1−q1 mod e and
w2 = p2 + q2 mod e to ensure that gcd(φ(N), e) = 1 without leaking w1 and
w2, and thus avoid leaking φ(N) mod e which is leaked in the semi-honest
protocol.

– A proof of honesty step is added to the verify modulus phase, which is used
to have the parties prove to one another that they have executed the protocol
correctly.

– The private key shares are randomized and computed using a secure protocol.

For OT we simply assume access to any ideal functionalities as described in
Sect. 2. Regarding the AES-based commitments, the expanded Gilboa protocol
and the proof of honesty, we give further details below.

AES-based commitments. We implement these “commitments” as follows: Before
Candidate Generation, in a phase we will call Setup each party “commits” to
a random AES key K by sending c = AESAESr(K)(0) for a random r (chosen
by coin-tossing). This unusual “double encryption” ensure that c is not only

Fast Distributed RSA Key Generation 345

hiding K, through the encryption, but also binding to K. The key K is then
used to implement a committing functionality. This is done by using K as the
key in an AES encryption, where the value we want to commit to is the message
encrypted. However, for our proof to go through we require this “commitment”
to be extractable. Fortunately this is easily achievable if the simulator knows
K and to ensure this we do a zero-knowledge argument of knowledge of K s.t.
c = AESAESr(K)(0). By executing this zero-knowledge argument the simulator
can clearly extract K (assuming the zero-knowledge argument is an ideal func-
tionality).

Expanded Gilboa Protocol. The usage of OT in the malicious setting is infamous
for selective failure vulnerabilities [KS06,MF06] and our setting is no different.
Specifically, what a malicious P2 can do is to guess that P1’s choice bit is 0 (or 1)
in a given step of the Gilboa protocol. In this case, P2 inputs the correct message
for choice 0, i.e. the random string r. But for the message for a choice of 1 it
inputs the 0-string. If P2’s guess was correct, then the protocol executes correctly.
However, if its guess was wrong, then the result of the Gilboa protocol, i.e. the
modulus, will be incorrect. If this happens then the protocol will abort during
the proof of honesty. Thus, two distinct and observable things happen dependent
on whether P2’s guess was correct or not and so P2 learns the choice bit of P1

by observing what happens. In fact, P2 can repeat this as many times as it
wants, each time succeeding with probability 1/2 (when P1’s input is randomly
sampled). This means that with probability 2−x it can learn x of P1’s secret
input bits.

To prevent this attack we use the notion of noisy encodings. A noisy encoding
is basically a linear encoding with some noise added s.t. decoding is only possible
when using some auxiliary information related to the noise. We have party P1

noisily encode its true input to the Gilboa protocol. Because of the linearity it
is possible to retrieve the true output in the last step of the Gilboa protocol
(where the parties send their shares to each other in order to learn the result
N) without leaking anything on the secret shares of P1, even in the presence of
a selective failure attack.

In a bit more detail, we define a 2−s-statistically hiding noisy encoding of a
value a ∈ Z2�−1 as follows:

– Let P be the smallest prime larger than 22�.
– Pick random values h1, . . . , h2�+3s, g ∈ FP and random bits d1, . . . , d2�+3s

under the constraint that g +
∑

i∈[2�+3s] hi · di mod P = a.
– The noisy encoding is then (h1, . . . , h2�+3s, g) and the decoding info is (d1, . . . ,

d2�+3s).

Now for each of its shares, p1 and q1, P1 noisily encodes as described and
sends the noisy encodings (hp,1, . . . , hp,2�+3s, gp) and (hq,1, . . . , hq,2�+3s, gq) to
P2. Next, when they execute the OT steps, P1 uses the decoding info (dp,1, . . . ,
dp,2�+3s) and (dq,1, . . . , dq,2�+3s) of p1 and q1 respectively and uses this as input
the OTs instead of the bits of p1 and q1. For each such bit of p1, P2 inputs to the
OT a random value c0,p,i = ri and the value c1,p,i = ri + q2 (and also operates

346 T. K. Frederiksen et al.

in a similar way for q). P1 then receives the values cdp,i,p,i, cdq,i,q,i ∈ ZP and P2

holds the values c0,p,i, c1,p,i, c0,q,i, c1,q,i ∈ ZP . It turns out that leaking at most s
bits of (dp,1, . . . , dp,2�+3s) and (dq,1, . . . , dq,2�+3s) to P2 does not give more than a
2−s advantage in finding the value encoded. Thus, even if P2 launches s selective
failure attacks it gains no significant knowledge on P1’s shares.

After having completed the OTs, the parties compute their shares of the mod-
ulus N by using the linearity of the encodings. We believe that this approach to
thwart selective failure attacks, when multiplying large integers, could be used
other settings as well. In particular, we believe that for certain choices of param-
eters our approach could make a protocol like MASCOT [KOS16] more efficient
since it would be possible to eliminate (in their terminology) the combining step.

Proof of Honesty. The proof of honesty has three responsibilities: first, it
is a maliciously secure execution of the full biprimality test of Boneh and
Franklin [BF01]; second, it verifies that the modulus is constructed from the val-
ues committed to in candidate generation. Finally it generates a random sharing
of the private key. The proof of honesty is carried out twice. Once where party
P1 acts as the prover and P2 the verifier, and once where P2 acts the prover and
P1 the verifier. Thus each party gets convinced of the honesty of the other party
and learns their respective shares of the private key.

To ensure a correctly executed biprimality test, a typical zero-knowledge
technique is used, where coin-tossing is used to sample public randomness and
the prover randomizes its witness along with the statement to prove. The verifier
then gets the option to decide whether he wants to learn the value used for
randomizing or the randomized witness. This ensures that the prover can only
succeed with probability 1/2 in convincing the verifier if it does not know a
witness.

To ensure that the modulus was constructed from the values committed to,
a small secure two-party computation is executed which basically verifies that
this is the case. Since the commitments are AES-based, this can be carried out
in a very lightweight manner. Furthermore, to ensure that the values used in the
maliciously secure biprimality test are also consistent with the shares committed
to, we have the prover commit to the randomization values as well and verify
these, along with their relation to the shares. Finally, we let the proving party
input some randomness which is used to randomize the verifying party’s share
of the private key. We formally describe the full protocol in Figs. 3.7, 3.8, 3.9
and 3.10.

Ideal Functionality. We express the ideal functionality that our protocol real-
izes in Fig. 3.12 When there is no corruption the functionality simply proceeds
almost as the semi-honest functionality in Fig. 3.5. That is, making a shared key
based on random primes congruent to 3 modulo 4, but where the shares of the
secret key are sampled at random in the range between −22�+s and 22�+s. This
means that the value φ(N) mod e is not leaked. When a party is corrupted the
adversary is allowed certain freedoms in its interaction with the ideal function-
ality. Specifically the adversary is given access to several commands, allowing it
and the functionality to generate a shared RSA key through an interactive game.

Fast Distributed RSA Key Generation 347

PROTOCOL 3.7 (Malicious Key Generation ΠRSA - Part 1)

Setup
1. The parties call (toss, {0, 1}κ) on FCT twice to sample uniformly ran-

dom bitvectors r1, r2 ∈ {0, 1}κ. (Note that these outputs are known
to both parties.)

2. For I ∈ {1, 2} party PI picks a uniformly random value KI ∈ {0, 1}κ,
computes and sends AESAESrI (KI)(0) = cI to P3−I .

3. Let ML be the function outputting � on input ((rI , cI), KI)
if and only if AESAESrI (KI)(0) = cI . For I ∈ {1, 2} party

PI inputs (prove, (rI , cI), KI) on FML
ZK and party P3−I inputs

(verify, (rI , cI)). (The simplest way of implementing these proofs
is probably using garbled circuits [JKO13].)

4. If any of these calls output (⊥) then the parties abort. Otherwise they
continue.

Candidate Generation
1. P1 picks a uniformly random value p̃1 ∈ Z2�−3 , defines p1 = 4 · p̃1 + 3,

computes and sends Hp̃1 = AESK1(p̃1) to P2.
2. P2 picks a uniformly random value p̃2 ∈ Z2�−3 and defines p2 = 4 · p̃2,

computes and sends Hp̃2 = AESK2(p̃2) to P1.
3. Let B = {β ≤ B1|β is prime}. The parties execute procedure Div-OT

in Fig. 3.1 for each β ∈ B, where P1 uses input p1 and P2 input p2.
If any of these calls output ⊥, then discard the candidate pair p1, p2.

Protocol for maliciously secure RSA key generation.

The functionality closely reflects what the adversary can do in our protocol.
Specifically we allow a malicious party to repeatedly query the functionality to
learn a random modulus, based on its choice of prime shares. This is reflected
by commands sample and construct. Sample lets the adversary input its desired
share of a prime and the functionality then samples a random share for the
honest party s.t. the sum is prime. This command also ensures that the primes
work with the choice of public exponent e. I.e., that gcd(e, (p − 1)(q − 1)) = 1.
Specifically it verifies that the gcd of e and the prime candidate minus one is equal
to one. This implies that no matter which two primes get paired to construct a
modulus, it will always hold that gcd(e, φ(N)) = 1. Construct lets the adversary
decide on two primes (of which it only knows its own shares) that should be
used to construct a modulus and generate shares of the secret key in the same
manner as done by Boneh and Franklin [BF01]. Finally, the adversary can then
decide which modulus it wishes to use, which is reflected in the command select.

However, the functionality does allow the adversary to learn a few bits of
information of the honest party’s prime shares. In particular, the trial division
part of our candidate generation phase, allows the adversary to gain some knowl-
edge on the honest party’s shares, as reflected in command leak. Specifically the
adversary gets to guess the remainder of the honest party’s shares modulo β,
for each β ∈ B and is informed whether its guess was correct or not. In case the
malicious party is P2 then if any of its guesses for a particular prime is wrong,
the adversary loses the option of selecting the modulus based on this prime.

348 T. K. Frederiksen et al.

PROTOCOL 3.8 (Malicious Key Generation ΠRSA - Part 2)

Construct Modulus
Let p1, q1, p2, q2 be two candidates that passed the generation phase above,
where P1 knows p1 = 4p̃1 + 3, q1 = 4q̃1 + 3 and Hp̃2 , Hq̃2 and P2 knows
p2 = 4p̃2, q2 = 4q̃2 and Hp̃1 , Hq̃1 . Furthermore, let P be the smallest prime
number greater than 22�.
1. For each α ∈ {p, q} party P1 picks a list of values

hα,1, . . . , hα,2�+3s, gα ∈ ZP and a list of bits dα,1, . . . , dα,2�+3s ∈ {0, 1}
uniformly at random under the constraint that gα +

∑
i∈[2�+3s] hα,i ·

dα,i mod P = α1.
2. The parties execute the following steps for each α ∈ {p, q} and i ∈

[2� + 3s]:
(a) P2 chooses a uniformly random value rα,i ∈ ZP and sets

c0,α,i = rα,i and c1,α,i =

{
rα,i + q2 mod P if α = p

rα,i + p2 mod P if α = q
.

(b) P2 invokes F2�+3s,2
OT with input (transfer, c0,α,i, c1,α,i).

(c) P1 inputs (receive, dα,i) to F2�+3s,2
OT . P1 thus receives the message

(deliver, cdα,i,i) from F2�+3s,2
OT .

3. P1 sends the values hα,1, . . . , hα,2�+3s, gα to P2 for α ∈ {p, q}.
4. P1 computes zα

1 =
∑

i∈[2�+3s] cdα,i,i · hα,i mod P and P2 computes

zα
2 = − ∑

i∈[2�+3s] rα,i · hα,i mod P.

5. P2 computes a2 = p2q2 + zp
2 + gp · q2 + zq

2 + gq · p2 mod P and sends
this to P1.

6. P1 computes a1 = p1q1 + zp
1 + zq

1 mod P and sends this to P2.
7. P1 and P2 then compute N = (a1 + a2 mod P) mod 22�.
8. P1 computes w1 = N + 1 − p1 − q1 mod e and similarly P2 computes

w2 = p2 + q2 mod e.
9. P2 inputs (transfer) to Fκ,�log(e)�

OT and learns r0, . . . , rβ−1 ∈ {0, 1}κ.
10. P1 inputs (receive, w1) and thus learns rw1 .
11. P2 sends rw2 to P1.
12. If rw1 = rw2 then P1 informs P2 of this and they both discard the

candidate N and its associated shares p1, q1, p2, q2.

Protocol for maliciously secure RSA key generation.

The functionality keeps track of the adversary’s queries and what was leaked
to it, through the set J and dictionary C. Basically the set J stores the unique
ids of primes the simulator has generated and which the adversary can use to
construct an RSA modulus. Thus the ids of primes already used to construct
a modulus are removed from this set. The same goes for primes a malicious
P2 have tried to learn extra bits about, but failed (as reflected in leak). The
dictionary C on the other hand, maps prime ids already used to construct an
RSA modulus, into this modulus. This means that once two primes have been
used, using construct, to construct a modulus, their ids are removed from J
and instead inserted into C. After the construction we furthermore allow the

Fast Distributed RSA Key Generation 349

PROTOCOL 3.9 (Malicious Key Generation ΠRSA - Part 3)

Trial Division
Let B = {B1 < p ≤ B2|p is prime}. P2 then executes trial division of the
integers up to B2. If a factor is found then send ⊥ to P1 and discard N
and its associated prime shares p1, q1, p2, q2. Otherwise send � to P1.

Biprimality Test
The parties execute the biprimality test described in Fig. 3.4. However
after step 2.a P1 sends Hr̄1 = AESK1(r̄1) and P2 sends Hr̄2 = AESK2(r̄2).
Furthermore in step 2.b they use the maliciously secure version of the
multiplication protocol from “Construct Modulus” (modulo the smallest
prime larger than 22�+s+2).

Proof of Honesty
The parties call (toss,Z×

N) on FCT enough times to get s distinct random
elements, denoted by γi ∈ Z

×
N s.t. JN (γi) = 1 for i ∈ [s].

(Recall that p̃ denotes p � 2, i.e. p shifted to the right two steps.) Execute
the following steps where P = P1, V = P2 with p̃P = p̃1 and p̃V = p̃2 and
where P = P2, V = P1 with p̃P = p̃2 and p̃V = p̃1. Similarly for q̃1, q̃2:

1. For each i ∈ [s], P computes γi,P = γ
N−5

4 −p̃P −q̃P

i mod N
2. P sends γ1,P , . . . , γs,P to V .
3. For each i ∈ [s], V then verifies that γ−p̃V −q̃V

i · γi,P ≡ ±1 mod N .
4. If any of the checks do not pass then V sends ⊥ to P , outputs ⊥ and

aborts.
5. For each j ∈ [s], P picks a random value tj ∈ {0, 1}�−2+s. It then

computes AESKP (tj) = Htj and sends this to V .

6. For each i, j ∈ [s], P then sends the values γ̄i,j = γ
tj

i mod N to V .
7. The parties call (toss, {0, 1}) on FCT s times to sample uniformly

random bits b1, . . . , bs ∈ {0, 1}.
8. For each j ∈ [s], P then sends vj = bj · (−p̃P − q̃P) + tj to V .
9. For each i, j ∈ [s] V checks that

γ
vj

i mod N =? γ̄i,j · γ
bj

i,P · γ
−bj · N−5

4
i mod N

If this is not the case then it sends ⊥ to P , outputs ⊥ and aborts.

Protocol for maliciously secure RSA key generation.

adversary PI to pick a value w′
I ∈ [0, e[and learn if w′

I = w3−I when w3−I is
constructed according to the protocol using the honest party’s shares. However,
if the corrupt party is P2 and it guesses correctly then it won’t be allowed to use
the candidate.

Finally we have the command abort which allows an adversary to abort the
functionality at any point it wishes, as is the norm in maliciously secure dishonest
majority protocols.

Security. If there is no corruption we have the same security as described for
the semi-honest protocol in Sect. 3.2, except that φ(N) mod e is not implicitly
leaked by party’s secret key share. Next we see that allowing the adversary to
query the functionality for moduli before making up its mind does not influ-

350 T. K. Frederiksen et al.

PROTOCOL 3.10 (Malicious Key Generation ΠRSA - Part 4)

Proof of Honesty (continued)
11. P picks uniformly at random a value ρP ∈ {0, 1}2�+s.
12. The parties define the following function f , where P gives private

input (p̃P , q̃P , KP , r̄P , ρP), V gives private input (p̃V , q̃V , KV , r̄V). Let
σ = sP +sV mod P, based on the values from step 2 of the biprimality
test, where P is the smallest prime larger than 22�+s+2. They both give
public input (N, e, cP , rP , cV , rV , σ, Hp̃P , Hq̃P , Hr̄P , Hp̃V , Hq̃V , Hr̄V ,
{bj , vj , Htj }i∈[s]):

w : = N − 5 − 4(p̃P + q̃P + p̃V + q̃V) mod e ,

χ : = (Hp̃P =? AESKP (p̃P)) ∧ (Hq̃P =? AESKP (q̃P))

∧ (cP =? AESAESrP
(KP)(0)) ∧ (Hr̄P =? AESKP (r̄P))

∧ (Hp̃V =? AESKV (p̃V)) ∧ (Hq̃V =? AESKV (q̃V))

∧ (cV =? AESAESrV
(KV)(0)) ∧ (Hr̄V =? AESKV (r̄V))

∧ (∀j ∈ [s] : AESKP (vj + bj · (p̃P + q̃P)) =? Htj)

∧ (N =? (4(p̃V + p̃P) + 3) · (4(q̃V + q̃P) + 3))

∧ σ =? (r̄P + r̄V) · (4(p̃1 + p̃2 + q̃1 + q̃2) + 5)

∧ w
= 0

if V = P1 : dV :=

⌊−(w−1 mod e) · (N − 5 − 4p̃1 − 4q̃1) + 1

e

⌋

else : dV :=

⌊−(w−1 mod e) · (−4p̃2 − 4q̃2)

e

⌋
if χ = 1 : d̄V := dV − ρP

else : d̄V = ⊥
Output (χ, d̄V) to V and (⊥) to P

13. The parties then use F2PC to compute the output of f and abort if
χ = 0.a

Generate Shared Key
1. P1 computes and outputs d1 = d̄1 + ρ1.
2. If e| − 4p̃2 − 4q̃2 then P2 computes and outputs d2 = d̄2 + ρ2, else it

computes and outputs d2 = d̄2 + ρ2 + 1.

a This step must be done in parallel for both the cases where P1 is the
prover and P1 the verifier.

Protocol for maliciously secure RSA key generation.

ence security. Since the adversary is polytime bounded, it can only query for
polynomially many moduli. Furthermore, as the honest party’s shares are ran-
domly sampled by the functionality, and since they are longer than the security
parameter (e.g. 1021 vs. 128) the adversary will intuitively not gain anything

Fast Distributed RSA Key Generation 351

from having this ability. Arguments for why this is the case have been detailed
by Gavin [Gav12].

Regarding the allowed leakage we show in the full version that (for standard
parameters) at most log2(e/(e−1))+2 log2(B1/2) bits are leaked to a malicious
party without the protocol aborting, no matter if P1 or P2 is malicious. If P2 is
malicious it may choose to try to learn (1 + ε)x bits of the honest party’s prime
shares for a small ε ≤ 1 with probability at most 2−x. However, if it is unlucky
and does not learn the extra bits then it will not be allowed to use a modulus
based on the prime it tried to get some leakage on.

We now argue that this leakage is not an issue, neither in theory nor in
practice. For the theoretical part, assume learning some extra bits on the hon-
est party’s prime shares would give the adversary a non-negligible advantage in
finding the primes of the modulus. This would then mean that there exists a
polytime algorithm breaking the security of RSA with non-negligible probabil-
ity by simply exhaustively guessing what the leaked bits are and then running
the adversary algorithm on each of the guesses. Thus if the amount of leaked
bits is O(polylog(κ)), for the computational security parameter κ, then such an
algorithm would also be polytime, and cannot exist under the assumption that
RSA is secure. So from a theoretical point of view, we only need to argue that
the leakage is O(polylog(κ)). To do so first notice that B1 is a constant tweaked
for efficiency. But for concreteness assume it to be somewhere between two con-
stants, e.g., 31 and 3181.1 Since B1 is a constant it also means that the leakage
is constant and thus O(1) ∈ O(polylog(κ)).

However, if the concrete constant is greater than κ this is not actually saying
much, since we then allow a specific value greater than 2κ time to be polynomial
in κ. However, it turns out that for B1 = 31 the exact leakage is only 3.4 bits
and for B1 = 3181 it is 5.7 bits.

Formally we prove the following theorem in the full version.

Theorem 3.11. The protocol ΠRSA in Figs. 3.7, 3.8, 3.9 and 3.10 securely real-
izes the ideal functionality FRSA in Fig. 3.12 against a static and malicious adver-
sary in the F ·,·

OT-, FCT-, FZK-, F2PC-hybrid model assuming AES is IND-CPA and
a PRP on the first block per encryption.

3.4 Outline of Proof

Efficient Malicious Security. One of the reasons we are able to achieve mali-
cious security in such an efficient manner is because of our unorthodox ideal
functionality. In particular, by giving the adversary the power to discard some
valid moduli, we can prove our protocol secure using a simulation argument
without having to simulate the honest party’s shares of potentially valid moduli
discarded throughout the protocol. This means, that we only need to simulate
for the candidate N and its shares p1, q1, p2, q2 that actually get accepted as an
output of the protocol.
1 We find it unrealistic that the a greater or smaller choice will be yield a more efficient

execution of our protocol.

352 T. K. Frederiksen et al.

FIGURE 3.12 (FRSA)

Upon query of bitlength 2� and public exponent e from parties P1 and P2

proceed as functionality FRSA-semi in Fig. 3.5. Otherwise, letting PI for I ∈
{1, 2} denote the corrupt party, the functionality initializes an empty set J
and a dictionary C mapping IDs to a tuple of elements. Allow the adversary
to execute any combination of the following commands:

Sample. On input (j, pI,j) where j
∈ J , pI,j ≤ 2�−1 and pI,j ≡ 3 mod 4 if
I = 1 or pI,j ≡ 0 mod 4 if I = 2: select a random value p3−I,j of � − 1
bits, under the constraint that pj = p1,j + p2,j ≡ 3 mod 4 is prime and
gcd(e, pj − 1) = 1. Add j to J .

Leak. For each j ∈ J and for each β ≤ B1 where β is prime, let PI input a
value aj,β and if I = 1 return a bit indicating if aj,β
= −p2,j mod β. If
I = 2 return a bit indicating if aj,β
= p1,j mod β and set J = J\{j} if
aj,β = p1,j mod β.

Construct. On input (j, j′, w′
I) from PI where j, j′ ∈ J but j, j′
∈ C then

compute
d = e−1 mod (pj − 1)(pj′ − 1). Pick a random integer d1 ∈ [22�+s] and
set d2 = d − d1. Return (N = pj · pj′ , pI , dI) to PI and set C[j] = C[j′] =
(N, d3−I , j, j′) and J = J\{j, j′}. If PI returns a value w′

I,j,j′ ∈ [0, e − 1],
proceed as follows: If I = 1 notify P1 whether w′

1,j,j′ = p2,j +p2,j′ mod e
or not. If instead I = 2 then notify P2 whether w′

2,j,j′ = N+1−(p1,j+p1,j′)
mod e or not. Furthermore, if I = 2 and � was returned set C = C\{j, j′}.

Select. On the first input (j, j′) with j, j′ ∈ C from PI , where C[j] =
(N, d3−I , j, j′) send (N, p3−I,j , q3−I,j , d3−I) to P3−I and stop accepting
commands.

Abort. If PI inputs ⊥ at any time then output ⊥ to both parties and abort.

Ideal functionality for generating shared RSA key

Another key reason for our efficiency improvements is the fact that almost
all of the protocol is executed in a “strong” semi-honest manner. By this we
mean that only privacy is guaranteed when a party is acting maliciously, but
correctness is not. This makes checking a candidate modulus N much more
efficient than if full malicious security was required. At the end of the protocol,
full malicious security is ensured for a candidate N by the parties proving that
they have executed the protocol correctly.

The Simulator. With these observations about the efficiency of the protocol
in mind, we see that the overall strategy for our simulator is as follows, assuming
w.l.o.g. that PI is the honest party and P3−I is corrupted.

For the Setup phase the simulator simply emulates the honest party’s choice
of key KI by sampling it at random. The reason this is sufficient is that because
AES is a permutation and KI is random, thus AESrI (KI) is random in the view
of the adversary. The crucial thing to notice is that nothing is leaked about this
when using it as key in the second encryption under the PRP property. We do
strictly need the second encryption since the encryption key rI is public, thus if

Fast Distributed RSA Key Generation 353

we didn’t have the second encryption an adversary could decrypt and learn KI !
Regarding the zero-knowledge proof we notice that the simulator can extract
the adversary’s input K ′

3−I . We notice that the simulator can emulate FML

ZK by
verifying K ′

3−I in the computation of c3−I . Again we rely on AES being a PRP
to ensure that if K ′

3−I is not the value used in computing c3−I then the check
will always fail because it would require the adversary to find K ′

3−I �= K3−I s.t.
AESr3−I (K ′

3−I) = AESr3−I (K3−I). Thus the adversary is committed to some
specific key K3−I extracted by the simulator.

For Candidate Generation the simulator starts by sampling a random value
p̃I and extracts the malicious party’s share p̃3−I from its “commitment” Hp̃3−I ,
since the simulator knows the key K3−I . Furthermore, since we use AES in a
mode s.t. it is IND-CPA secure the adversary cannot distinguish between the
values Hp̃I simulated or the values sent in the real protocol.

Next see that if 4(p̃1 + p̃2)+3 is not a prime, then the simulator will emulate
the rest of the protocol using the random value it sampled. This simulation will
be statistically indistinguishable from the real world since the simulator and the
honest party both sample at random and follow the protocol. Furthermore, since
the shares don’t add up to a prime, any modulus based on this will never be
output in the real protocol since the proof of honesty will discover if N is not a
biprime.

On the other hand, if the shares do sum to a prime then the simulator
uses sample on the ideal functionality FRSA to construct a prime based on the
malicious party’s share p̃3−I . It then simulates based on the value extracted from
the malicious party. Specifically for the OT-based trial division, the simulator
extracts the messages of the malicious party and uses these as input to leak on
the ideal functionality. This allows the simulator to learn whether the adversary’s
input to the trial division plus the true and internal random value held by the
ideal functionality is divisible by β.

To simulate construction of a modulus, we first consider a hybrid functional-
ity, which is the same as FRSA, except that a command full-leak is added. This
command allows the simulator to learn the honest party’s shares of a prime
candidate, under the constraint that it is not used in the RSA that key the
functionality outputs. It is easy to see that adding this method to the function-
ality does not give the adversary more power, since it can only learn the honest
party’s shares of primes which are independent of the output.

With this expanded, hybrid version of FRSA in place, the simulator emulates
the construction of a modulus by first checking if one of the candidate values
were prime and the other was not. In this case it uses full-leak to learn the
value that is prime and then simulates the rest of the protocol like an honest
party. This will be statistically indistinguishable from the real execution since
the modulus will never be used as output since it is not a biprime and so will be
discarded, at the latest, in the proof of honesty phase.

However, if both candidate values are marked as prime the simulator simu-
lates the extended Gilboa protocol for construction of the modulus. It does so
by extracting the malicious party’s input to the calls to Fκ,β

OT . Based on this it

354 T. K. Frederiksen et al.

can simulate the values of the honest party. This is pretty straightforward, but
what is key is that no info on the honest party’s prime shares is leaked to the
adversary in case of a selective failure attack (when the adversary is the sender
in Fκ,β

OT). To see this, first notice that selecting h1, . . . , h2�+2s, g at random and
computing g +

∑
i∈[2�+2s] hi · di mod P is in fact a 2-universal hash function.

This implies, using some observations by Ishai et al. [IPS09], that whether these
values are picked at random s.t. they hash to the true input or are just random,
is 2−s indistinguishable. Thus extending the function with h2�+2s+1, . . . g2�+3s,
allows the adversary to learn s of the bits di without affecting the indistinguish-
able result. Since s is the statistical security parameter and each di is picked at
random, this implies that the adversary cannot learn anything non-negligible.

The proof of security of the remaining steps is quite straightforward. For trial
division the simulator basically acts as an honest party since all operations are
local. For the biprimality test the simulation is also easy. For step 1, it is simply
following the proof by Boneh and Franklin [BF01], for step 2, simulation can
be done using the same approach as for the Gilboa protocol. Regarding proof of
honesty the simulation follows the steps for the simulation of the biprimality test
and uses the emulation of the coin-tossing functionality to learn what challenge
it needs to answer and can thus adjust the value sent to the verifier that will
make the proof accept. Finally the key generation is also unsurprising as all the
computations are local.

4 Instantiation

Optimizations. Fail-fast. It is possible to limit the amount of tests carried
out on composite candidates, in all of the OT-based trial division, the second
trial division and the biprimality test, by simply employing a fail-fast approach.
That is, to simply break the loop of any of these tests, as soon as a candidate
fails. This leads to significantly fewer tests, as in all three tests a false positive is
more likely to be discovered in the beginning of the test. (For example, a third
of the candidates are likely to fail in the first trial division test, which checks for
divisibility by 3.)

Maximum runtime. In the malicious protocol an adversary can cheat in such
a way that a legitimate candidate (either prime or modulus) gets rejected. In
particular this means that the adversary could make the protocol run forever.
For example, if he tries to learn 1024 bits of the honest party’s shares by cheating
then we expect to discard 21023 good candidate moduli! Thus, tail-bounds for
the choice of parameters should be computed s.t. the protocol will abort once
it has considered more candidate values than would be needed to find a valid
modulus e.w.p. 2−s. In fact, it is strictly needed in order to limit the maximum
possible leakage from selective failure attacks.

Synchronous execution. To ensure that neither party P1 nor party P2 sits idle at
any point in time of the execution of the protocol, we can have them exchange
roles for every other candidate. Thus, every party performs both roles, but on

Fast Distributed RSA Key Generation 355

two different candidates at the same time, throughout the execution of the pro-
tocol. For example, while Alice executes as P1 in the candidate generation on
one candidate, she simultaneously executes the candidate generation as P2 for
another candidate. Similarly for Bob. The result of this is that no party will
have to wait for the other party to complete a step as they will both do the
same amount of computation in each step.

Leaky two-party computation. We already discussed in Sect. 3.3 how leaking a
few bits of information on the honest party’s prime shares does not compromise
the security of the protocol. Along the same line, we can make the observation
that learning a predicate on the honest party’s share will in expectation not
give more than a single bit of information to the adversary. In particular it can
learn at most x bits of information with probability at most 2−x. This is the
same leakage that is already allowed to P2, and thus allowing this would not
yield any significant change to the leakage of our protocol. This means that it
can suffice to construct only two garbled circuits to implement F2PC by using
the dual-execution approach [MF06]. This is compared to the s garbled circuits
needed in the general case where no leakage is allowed [Lin16].

Constant rounds. We note that the way our protocols ΠRSA-semi and ΠRSA are
presented in Figs. 3.2 and 3.3, respectively Figs. 3.7, 3.8, 3.9 and 3.10 does not
give constant time. This is because they are expressed iteratively s.t. candidate
primes are sampled until a pair passing all the tests is found. However it is
possible to simply execute each step of the protocols once for many candidates
in parallel. This is because, based on the Prime Number Theorem, we can find
the probability of a pair of candidates being good. This allows us to compute
the amount of candidate values needed to ensure that a good modulus is found,
except with negligible probability. Unfortunately this will in most situations lead
to many candidate values being constructed unnecessarily. For this reason it is
in practice more desirable to construct batches of candidates in parallel instead
to avoid doing a lot of unnecessary work, yet still limit the amount of round of
communication.

Efficiency Comparison. We here try to compare the efficiency of our protocol
with previous work. This is done in Table 1.

With regards to more concrete efficiency we recall that both our protocols
and previous work have the same type of phases, working on randomly sampled
candidates in a pipelined manner. Because of this feature, all protocols limit
the amount of unsuitable candidates passing through to the expensive phases,
by employing trial division. This leads to fewer executions of expensive phases
and thus to greater concrete efficiency. In some protocols this filtering is applied
both to individual prime candidates and to candidate moduli, leading to min-
imal executions of the expensive phases. Unfortunately this is not possible in
all protocols. For this reason we also show in Table 1 which protocols manage
to improve the expected execution time by doing trial division of the prime
candidates, respectively the moduli.

356 T. K. Frederiksen et al.

T
a
b
le

1
.

C
o
m

p
a
ri

so
n

o
f

th
e

d
iff

er
en

t
p
ro

to
co

ls
fo

r
d
is

tr
ib

u
te

d
R

S
A

k
ey

g
en

er
a
ti

o
n
.

T
h
e

b
es

t
p
o
ss

ib
le

va
lu

es
a
re

h
ig

h
li
g
h
te

d
in

b
o
ld

.
A

ll
va

lu
es

a
ss

u
m

e
a

co
n
st

a
n
t,

a
n
d

m
in

im
a
l,

a
m

o
u
n
t

o
f
p
a
rt

ic
ip

a
ti

n
g

p
a
rt

ie
s;

i.
e.

2
o
r

3
.
T

h
e

co
lu

m
n
A
m
o
u
n
t
o
f
ca
n
d
id
a
te
s

ex
p
re

ss
es

th
e

ex
p
ec

te
d

a
m

o
u
n
t

o
f

ra
n
d
o
m

ca
n
d
id

a
te

s
th

a
t

m
u
st

b
e

g
en

er
a
te

d
b
ef

o
re

fi
n
d
in

g
a

su
it

a
b
le

m
o
d
u
lu

s.
T

h
e

co
lu

m
n
C
a
n
d
id
a
te

ge
n
er
a
ti
o
n

ex
p
re

ss
es

th
e

co
m

p
u
ta

ti
o
n
a
l
b
it

co
m

p
le

x
it
y

re
q
u
ir

ed
to

co
n
st

ru
ct

a
si
n
gl
e

ca
n
d
id

a
te

p
ri

m
e.

T
h
e

co
lu

m
n
C
o
n
st
ru
ct

m
od
u
lu
s

ex
p
re

ss
es

th
e

co
m

p
u
ta

ti
o
n
a
l
b
it

co
m

p
le

x
it
y

re
q
u
ir

ed
to

co
n
st

ru
ct

a
si
n
gl
e

p
o
te

n
ti

a
l
m

o
d
u
lu

s,
b
a
se

d
o
n

tw
o

p
ri

m
e

ca
n
d
id

a
te

s.
T

h
e

co
lu

m
n
(B

i)
p
ri
m
a
li
ty

te
st

ex
p
re

ss
es

th
e

co
m

p
u
ta

ti
o
n
a
l
b
it

co
m

p
le

x
it
y

re
q
u
ir

ed
to

v
er

if
y

th
a
t
a
si
n
gl
e

p
ri

m
e

ca
n
d
id

a
te

is
p
ri

m
e

ex
ce

p
t
w

it
h

n
eg

li
g
ib

le
p
ro

b
a
b
il
it
y

o
r
(d

ep
en

d
in

g
o
n

th
e

p
ro

to
co

l)
to

v
er

if
y

th
a
t
a
si
n
gl
e

m
o
d
u
lu

s
is

th
e

p
ro

d
u
ct

o
f
tw

o
p
ri

m
es

ex
ce

p
t
w

it
h

n
eg

li
g
ib

le
p
ro

b
a
b
il
it
y.

T
h
e

co
lu

m
n

L
ea
ka
ge

ex
p
re

ss
es

h
ow

m
a
n
y

b
it

s
o
f
in

fo
rm

a
ti

o
n

o
f
th

e
h
o
n
es

t
p
a
rt

y
’s

sh
a
re

s
o
f
th

e
p
ri

m
es

th
a
t

is
le

a
k
ed

to
th

e
a
d
v
er

sa
ry

.
H

er
e

τ
m

ea
n
s

th
a
t

∑ β
∈B

1
lo

g
(β

β
−
1

) b
it

s
ca

n
b
e

le
a
k
ed

to
a

m
a
li
ci

o
u
s

a
d
v
er

sa
ry

.
F
u
rt

h
er

m
o
re

,
th

e
a
d
v
er

sa
ry

is
a
ll
ow

ed
to

p
ic

k
a

p
ro

b
a
b
il
it
y

x
w

it
h

w
h
ic

h
it

le
a
rn

s
(1

+
ε)

x
ex

tr
a

b
it

s.
H

ow
ev

er
,
if

th
e

a
d
v
er

sa
ry

d
o
es

n
o
t

le
a
rn

th
e

ex
tr

a
b
it

s
th

en
th

e
h
o
n
es

t
p
a
rt

y
le

a
rn

s
th

a
t

th
e

a
d
v
er

sa
ry

h
a
s

a
ct

ed
m

a
li
ci

o
u
sl

y.

S
ch

e
m
e

A
ss
u
m
p
ti
o
n
s

Dishonestmajority

Malicioussecure

Primetrialdivision

Modulustrialdivision

R
o
u
n
d
s

A
m
o
u
n
t
o
f

c
a
n
d
id
a
te
s

C
a
n
d
id
a
te

g
e
n
e
ra

ti
o
n

C
o
n
st
ru

c
t

m
o
d
u
lu
s

(B
i)
p
ri
m
a
li
ty

te
st

L
e
a
k
a
g
e

O
u
r
re
su

lt
∗

IN
D
-C

P
A
,

F O
T
,

F C
T

�
�

�
�

O
(1

)
O
(1

)
O
(1

)
O
(�

2
/
lo
g
2
(�
))

O
(�
)

O
(�
)

O
(�
)

O
(�

2
)

O
(�

2
)

O
(�

2
)

O
(s

·�
3
)

τ
+

2

[B
F
0
1
]

N
o
n
e

✗
✗

�
�

O
(1

)
O
(1

)
O
(1

)
O
(�

2
/
lo
g
2
(�
))

O
(�
)

O
(�
)

O
(�
)

O
(�

2
)

O
(�

2
)

O
(�

2
)

O
(s

·�
3
)

2

[F
M

Y
9
8
]

D
L

✗
�

✗
�

O
(1

)
O
(1

)
O
(1

)
O
(�

2
/
lo
g
2
(�
))

O
(�

3
)

O
(�

3
)

O
(s

2
·�

3
)

2

[P
S
9
8
]†

F O
T

�
�

�
�

O
(1

)
O
(1

)
O
(1

)
O
(�

2
/
lo
g
2
(�
))

O
(�
)

O
(�
)

O
(�
)

O
(�

2
)

O
(�

2
)

O
(�

2
)

?
τ
+

2

[G
il
9
9
]

P
R
G
,

F O
T

�
✗

✗
�

O
(1

)
O
(1

)
O
(1

)
O
(�

2
/
lo
g
2
(�
))

O
(�
)

O
(�
)

O
(�
)

O
(�

2
)

O
(�

2
)

O
(�

2
)

O
(s

·�
3
)

2

[A
C
S
0
2
]

N
o
n
e

✗
✗

�
✗

O
(�
)

O
(�

/
lo
g
(�
))

O
(�

/
lo
g
(�
))

O
(�

/
lo
g
(�
))

O
(�
)

O
(�
)

O
(�
)

O
(�

2
)

O
(�

2
)

O
(�

2
)

O
(s

·�
3
)

2

[D
M

1
0
]

C
R
S
,
S
tr
o
n
g
R
S
A

✗
�

�
�

O
(1

)
O
(1

)
O
(1

)
O
(�

2
/
lo
g
2
(�
))

O
(�

3
)

O
(�

3
)

o
(s

·�
3
)

o
(s

·�
3
)

o
(s

·�
3
)

2

[H
M

R
T
1
2
]

D
C
R
,
D
D
H

�
�

�
�

O
(1

)‡
O
(�

2
/
lo
g
2

�)
O
(�

3
)

O
(�

3
)

O
(s

·�
3
)

2
∗ :

F
o
r
th

e
m
a
li
c
io
u
s
p
ro

to
c
o
l

O
(s

2
·�

3
)
o
p
e
ra

ti
o
n
s
a
re

e
x
e
c
u
te
d

o
n
ce

p
e
r
su

c
c
e
ss
fu
l
k
e
y
p
a
ir

g
e
n
e
ra

ti
o
n
.

† :
T
h
e
a
u
th

o
rs

d
o
n
o
t
d
e
sc
ri
b
e
h
o
w

to
e
n
su

re
b
ip
ri
m
a
li
ty

in
c
a
se

o
f
a
m
a
li
c
io
u
s
a
d
v
e
rs
a
ry
.

‡ :
C
o
n
st
a
n
t
ro

u
n
d

o
n

a
v
e
ra

g
e
.

Fast Distributed RSA Key Generation 357

To give a proper idea of the efficiency of the different protocols we must also
consider the asymptotics. However, because of the diversity in primitives used in
the previous protocols, and in the different phases, we try to do this by comparing
the computational bit complexity. Furthermore to make the comparison as fair
as possible we assume the best possible implementations available today are used
for underlying primitives. In particular we assume an efficient OT extension is
used for OTs [KOS15].

Based on the table we can make the following conclusions regarding the effi-
ciency of our protocols. First, considering the semi-honest protocol; we see that
the only real competition is Algesheimer et al. as they expect to test asymptoti-
cally fewer prime candidates than us. However, this comes at the price of a large
amount of rounds requires, making it challenging to use efficiently over the Inter-
net. Furthermore, unlike our protocol, they require an honest majority making
it possible for them to leverage efficient information theoretic constructions.

For the malicious security model we see that the only real competition lies in
the work of Poupard and Stern [PS98]. However, we note that they don’t provide
a full maliciously secure protocol. In particular they do not describe how to do a
biprimality test secure against a malicious and dishonest majority. Thus the only
other protocol considering the same setting as us is the one by Hazay et al.. This
is also the newest of the schemes and is considered the current state-of-the-art
in this setting. However, this protocol requires asymptotically more operations
for candidate generation, construction of modulus and the biprimality test.

Implementation. Below we outline the concrete implementation choices we
made. We implement AES in counter mode, using AES-NI, with κ = 128 bit
keys. For 1-out-of-2 OT (needed during the Construct Modulus phase) we use
the maliciously secure OT extension of Keller et al. [KOS15]. For the base OTs
we use the protocol of Peikert et al. [PVW08] and for the internal PRG we
use AES-NI with the seed as key, in counter mode. For the random 1-out-of-
β OT we use the random 1-out-of-2 OT above using the protocol of Naor and
Pinkas [NP99]. For the coin-tossing we use the standard “commit to randomness
and then open” approach.

In the Construct Modulus phase, instead of having each party sample the
values hα,1, . . . , hα.2�+3s, gα ∈ ZP and send them to the other party, we instead
have it sample a seed and generate these values through a PRG. The party then
only needs to send the seed to the other party. This saves a large amount of
communication complexity without making security compromises.

Our implementation implemented OT extension in batches of 8912 OTs.
Whenever a batch of OTs is finished, the program calls a procedure which gen-
erates a new block of 8192 OTs. Most of the cryptographic operations were
implemented using OpenSSL, but big-integer multiplication was implemented in
assembler instead of using the OpenSSL implementation for efficiency reasons.

We did not implement yet the zero-knowledge argument or the two-party
computation since they can be efficiently realized using existing implementations
of garbled circuits (such as JustGarble [BHKR13] or TinyGarble [SHS+15]) by

358 T. K. Frederiksen et al.

using the protocol of Jawurek et al. [JKO13] for zero-knowledge and the dual-
execution approach [MF06] for the two-party computation. These protocols are
only executed once in our scheme using well tested implementations, and thus,
as is described later in this section, we can safely estimate that the effect on the
total run time is marginal.

Experiments. We implemented our maliciously secure protocol and ran exper-
iments on Azure, using Intel Xeon E5-2673 v.4 - 2.3 Ghz machines with 64 Gb
RAM, connected by a 40.0 Gbps network. are pretty strong servers).

We used the code to run 50 computations of a shared 2048 bit modulus, and
computed the average run time. The results are as follows:

– With a single threaded execution, the average run time was 134 s.
– With four threads, the average run time was 39.1 s.
– With eight threads, the average run time was 35 s.

The run times showed a high variance (similar to the results of the imple-
mentation reported by Hazay et al. [HMRT12] for their protocol). For the single
thread execution, the average run time was 134 s while the median run time was
84.9 s (the fastest execution took 8.2 s and the slowest execution took 542 s).

Focusing on the single thread execution, we measured the time consumed by
different major parts of the protocol. The preparation of the OT extension tables
took on average 12% of the run time, the multiplication protocol computing N
took 66%, and the biprimality test took 7%. (These percentages were quite
stable across all executions and showed little variance.) Overall these parts took
85% of the total run time. The bulk of the time was consumed by the secure
multiplication protocol. In that protocol, most time was spent on computing
the values zα

1 , zα
2 (line 4 in Fig. 3.8). This is not surprising since each of these

computations computes 2� + 3s = 2168 bignum multiplications.
Note that these numbers exclude the time required to do the zero-knowledge

argument of knowledge in Setup and the two-party computation in Proof of Hon-
esty. The zero-knowledge argument of knowledge requires about 12,000 AND
gates (for two AES computations), and our analysis in Appendix A shows that
the number of AND gates that need to be evaluated in the circuits of the honesty
proof is at most 22 million. We also measured a throughput of computing about
3.2 million AND gates in Yao’s protocol on the machines that we were using.
Therefore we estimate that implementing these computations using garbled cir-
cuits will contribute about 7 s to the total time.

Comparing to previous work, the only other competitive protocol (for 2048
bit keys) with implementation work is the one by Hazay et al. [HMRT12]. Unfor-
tunately their implementation is not publicly available and thus we are not able
to make a comparison on the same hardware. However, we do not that the
fastest time they report is 15 min on a 2.3 GHz dual-core Intel desktop, for their
semi-honestly secure protocol.

Fast Distributed RSA Key Generation 359

References

[ACS02] Algesheimer, J., Camenisch, J., Shoup, V.: Efficient computation modulo a
shared secret with application to the generation of shared safe-prime prod-
ucts. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 417–432.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9 27

[BF01] Boneh, D., Franklin, M.K.: Efficient generation of shared RSA keys. J.
ACM 48(4), 702–722 (2001)

[BHKR13] Bellare, M., Hoang, V.T., Keelveedhi, S., Rogaway, P.: Efficient garbling
from a fixed-key blockcipher. In: IEEE Symposium on Security and Pri-
vacy, pp. 478–492. IEEE Computer Society (2013)

[CDN01] Cramer, R., Damg̊ard, I., Nielsen, J.B.: Multiparty computation from
threshold homomorphic encryption. In: Pfitzmann, B. (ed.) EURO-
CRYPT 2001. LNCS, vol. 2045, pp. 280–300. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44987-6 18

[DM10] Damg̊ard, I., Mikkelsen, G.L.: Efficient, robust and constant-round dis-
tributed RSA key generation. In: Micciancio, D. (ed.) TCC 2010. LNCS,
vol. 5978, pp. 183–200. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-11799-2 12

[FMY98] Frankel, Y., MacKenzie, P.D., Yung, M.: Robust efficient distributed RSA-
key generation. In: STOC, pp. 663–672 (1998)

[Gav12] Gavin, G.: RSA modulus generation in the two-party case. IACR Cryp-
tology ePrint Archive 2012:336 (2012)

[Gil99] Gilboa, N.: Two party RSA key generation. In: Wiener, M. (ed.) CRYPTO
1999. LNCS, vol. 1666, pp. 116–129. Springer, Heidelberg (1999). https://
doi.org/10.1007/3-540-48405-1 8

[GMO16] Giacomelli, I., Madsen, J., Orlandi, C.: ZKBoo: faster zero-knowledge for
boolean circuits. In: Holz, T., Savage, S. (eds.) USENIX Security Sympo-
sium, pp. 1069–1083. USENIX Association (2016)

[HMRT12] Hazay, C., Mikkelsen, G.L., Rabin, T., Toft, T.: Efficient RSA key gen-
eration and threshold paillier in the two-party setting. In: CT-RSA, pp.
313–331 (2012)

[IPS09] Ishai, Y., Prabhakaran, M., Sahai, A.: Secure arithmetic computation with
no honest majority. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444,
pp. 294–314. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-00457-5 18

[JKO13] Jawurek, M., Kerschbaum, F., Orlandi, C.: Zero-knowledge using garbled
circuits: how to prove non-algebraic statements efficiently. In: Sadeghi,
A.-R., Gligor, V.D., Yung, M. (eds.) ACM SIGSAC, pp. 955–966. ACM
(2013)

[KOS15] Keller, M., Orsini, E., Scholl, P.: Actively secure OT extension with
optimal overhead. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015.
LNCS, vol. 9215, pp. 724–741. Springer, Heidelberg (2015). https://doi.
org/10.1007/978-3-662-47989-6 35

[KOS16] Keller, M., Orsini, E., Scholl, P.: MASCOT: faster malicious arith-
metic secure computation with oblivious transfer. In: Weippl, E.R.,
Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM
SIGSAC, pp. 830–842. ACM (2016)

[KS06] Kiraz, M.S., Schoenmakers, B.: A protocol issue for the malicious case of
Yao’s garbled circuit construction. In: Proceedings of 27th Symposium on
Information Theory in the Benelux, pp. 283–290 (2006)

https://doi.org/10.1007/3-540-45708-9_27
https://doi.org/10.1007/3-540-44987-6_18
https://doi.org/10.1007/978-3-642-11799-2_12
https://doi.org/10.1007/978-3-642-11799-2_12
https://doi.org/10.1007/3-540-48405-1_8
https://doi.org/10.1007/3-540-48405-1_8
https://doi.org/10.1007/978-3-642-00457-5_18
https://doi.org/10.1007/978-3-642-00457-5_18
https://doi.org/10.1007/978-3-662-47989-6_35
https://doi.org/10.1007/978-3-662-47989-6_35

360 T. K. Frederiksen et al.

[Lin16] Lindell, Y.: Fast cut-and-choose-based protocols for malicious and covert
adversaries. J. Cryptology 29(2), 456–490 (2016)

[MF06] Mohassel, P., Franklin, M.: Efficiency tradeoffs for malicious two-party
computation. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC
2006. LNCS, vol. 3958, pp. 458–473. Springer, Heidelberg (2006). https://
doi.org/10.1007/11745853 30

[NP99] Naor, M., Pinkas, B.: Oblivious transfer and polynomial evaluation. In:
Vitter, J.S., Larmore, L.L., Leighton, F.T. (eds.) STOC, pp. 245–254.
ACM (1999)

[OOS17] Orrù, M., Orsini, E., Scholl, P.: Actively secure 1-out-of-n OT extension
with application to private set intersection. In: CT-RSA, pp. 381–396
(2017)

[PS98] Poupard, G., Stern, J.: Generation of shared RSA keys by two parties. In:
Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 11–24.
Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49649-1 2

[PVW08] Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient
and composable oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008.
LNCS, vol. 5157, pp. 554–571. Springer, Heidelberg (2008). https://doi.
org/10.1007/978-3-540-85174-5 31

[RSA78] Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital
signatures and public-key cryptosystems. Commun. ACM 21(2), 120–126
(1978)

[Sch12] Schneider, T.: Engineering Secure Two-Party Computation Protocols:
Design, Optimization, and Applications of Efficient Secure Function Eval-
uation. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
30042-4

[Sho00] Shoup, V.: Practical threshold signatures. In: Preneel, B. (ed.) EURO-
CRYPT 2000. LNCS, vol. 1807, pp. 207–220. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-45539-6 15

[SHS+15] Songhori, E.M., Hussain, S.U., Sadeghi, A.-R., Schneider, T., Koushanfar,
F.: TinyGarble: highly compressed and scalable sequential garbled cir-
cuits. In: IEEE Symposium on Security and Privacy, pp. 411–428. IEEE
Computer Society (2015)

A The Size of the Circuit for the Proof of Honesty

The circuit that is evaluated in the honesty proof contains the following compo-
nents:

– AES computation: Four AES encryptions of single blocks (for verifying the
commitments to the keys in Step 2), and s+6 encryptions of values of length
|N |/2 + s bits. For |N | = 2048 bits this translates to 4 + 46 · 9 = 418 AES
blocks. With an AES circuit of size 6000 AND gates, this translates to 2.5M
gates.

– Multiplications: The circuit computes two multiplications where each of the
inputs is |N |/2 bits long. For |N | = 2048 using Karatsuba multiplication this
takes 1.040M gates [Sch12].

– Division: The circuit computes a division of an |N | bit value by e = 216 + 1.
For |N | = 2048 the size of this component is about 900K AND gates.

https://doi.org/10.1007/11745853_30
https://doi.org/10.1007/11745853_30
https://doi.org/10.1007/3-540-49649-1_2
https://doi.org/10.1007/978-3-540-85174-5_31
https://doi.org/10.1007/978-3-540-85174-5_31
https://doi.org/10.1007/978-3-642-30042-4
https://doi.org/10.1007/978-3-642-30042-4
https://doi.org/10.1007/3-540-45539-6_15

Fast Distributed RSA Key Generation 361

– Computing the inverse of an |N | bit number modulo e: This operation is
done by first reducing the number modulo e and then raising the result to
the power of e−2 modulo e. The first step takes about 900K AND gates, and
the second step takes 64K AND gates.

– Comparisons, additions, and multiplications by small numbers (smaller than
e): These operations are implemented with a number of gates that is linear
in the size of their inputs, and is therefore quite small. We estimate an upper
bound of 100 K for the number of AND gates in all these operations.

The total size of the circuit is therefore less than 5.5M AND gates. The honesty
proof should be carried out by each of the parties, and dual execution requires
computing the circuit twice. Therefore the total number of AND gates computed
is less than 22M.

Trapdoor Functions from
the Computational Diffie-Hellman

Assumption

Sanjam Garg1(B) and Mohammad Hajiabadi1,2

1 University of California, Berkeley, USA
{sanjamg,mdhajiabadi}@berkeley.edu

2 University of Virginia, Charlottesville, USA

Abstract. Trapdoor functions (TDFs) are a fundamental primitive in
cryptography. Yet, the current set of assumptions known to imply TDFs
is surprisingly limited, when compared to public-key encryption. We
present a new general approach for constructing TDFs. Specifically, we
give a generic construction of TDFs from any Chameleon Encryption
(Döttling and Garg [CRYPTO’17]) satisfying a novel property which
we call recyclability. By showing how to adapt current Computational
Diffie-Hellman (CDH) based constructions of chameleon encryption to
yield recyclability, we obtain the first construction of TDFs with secu-
rity proved under the CDH assumption. While TDFs from the Decisional
Diffie-Hellman (DDH) assumption were previously known, the possibility
of basing them on CDH had remained open for more than 30 years.

Keywords: Trapdoor functions
Computational Diffie-Hellman assumption · Hash encryption

1 Introduction

Trapdoor functions (TDFs) are a fundamental primitive in cryptography, his-
torically pre-dating the complexity-based development of public key encryption
(PKE) [11,28]. Informally, TDFs are a family of functions, where each function
in the family is easy to compute given the function’s index key, and also easy
to invert given an associated trapdoor key. The security requirement is that
a randomly chosen function from the family should be hard to invert without
knowledge of a trapdoor key.

Research supported in part from DARPA/ARL SAFEWARE Award
W911NF15C0210, AFOSR Award FA9550-15-1-0274, AFOSR YIP Award,
DARPA and SPAWAR under contract N66001-15-C-4065, a Hellman Award and
research grants by the Okawa Foundation, Visa Inc., and Center for Long-Term
Cybersecurity (CLTC, UC Berkeley). The views expressed are those of the author
and do not reflect the official policy or position of the funding agencies.

c© International Association for Cryptologic Research 2018
H. Shacham and A. Boldyreva (Eds.): CRYPTO 2018, LNCS 10992, pp. 362–391, 2018.
https://doi.org/10.1007/978-3-319-96881-0_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96881-0_13&domain=pdf

Trapdoor Functions from the Computational Diffie-Hellman Assumption 363

A salient difference between TDFs and PKE lies in their inversion (decryp-
tion) algorithms: while the inversion algorithm of a TDF recovers the entire
pre-image in full, the decryption algorithm of a PKE only recovers the corre-
sponding plaintext, and not necessarily the randomness. This full-input recovery
feature of TDFs is useful in may applications. For example, suppose we have two
image points y1 := F(ik1, x1) and y2 := F(ik2, x2) of a trapdoor function F, and
we want to convince Alice — who is given both y1 and y2 but only a trapdoor
key tk1 for ik1 — that x1 = x2. This will be easy for Alice to do herself: retrieve
x1 from y1 using the trapdoor key tk1 and check whether y1 = F(ik1, x1) and
y2 = F(ik2, x1).1 This is a very useful property, especially in the context of
chosen-ciphertext (CCA2) security, and is in fact the main reason behind the
success of building CCA2-secure PKE in a black-box way from various forms of
TDFs [23,27,29]. In contrast, enabling this technique based on PKE [25] requires
the use of expensive non-interactive zero knowledge proofs [4,16], which in turn
require strong assumptions and lead to non-black-box constructions.

The deterministic structure of TDFs, however, comes with a price, making
the construction of TDFs more challenging than that of PKE. This belief is
justified by an impossibility result of Gertner, Malkin and Reingold [18] showing
that TDFs cannot be built from PKE in a black-box way. As another evidence,
while it was known from the 80’s how to build semantically-secure PKE from
the Decisional Diffie-Hellman (DDH) assumption [15,20,32], it took two decades
to realize TDFs based on DDH [27].

Despite the fundamental nature of TDFs and extensive research on this
notion [1–3,17,23,27,29,31] a long-standing question has remained open:

Can trapdoor functions be based on the Computational Diffie-Hellman (CDH)
Assumption?

The main difficulty of the above question is that all known DDH-based con-
structions of TDFs, e.g., [17,27], exploit properties of DDH, such as pseudoran-
domness of low rank matrices of group elements, which do not hold in the CDH
setting (see Sect. 1.1).

Apart from being a natural question, it has the following theoretical moti-
vation: since we know that TDFs are not necessary in a black-box sense for
PKE [18], there may be computational assumptions that imply PKE but not
TDFs. Thus, it is important to understand whether TDFs can be obtained from
all existing computational assumptions that imply PKE. This provides insights
into the hardness nature of TDFs as well as our computational assumptions.

1.1 Lack of CDH-Based Techniques for TDF

Diffie-Hellman related assumptions (even DDH) do not naturally lend themselves
to a TDF construction. The main reason why it is more difficult to build TDFs

1 Here we also need to assume that certifying whether a given point is in the domain
of a trapdoor function can be done efficiently.

364 S. Garg and M. Hajiabadi

from such assumptions, compared to, say, factoring related assumptions, is that
we do not know of any generic trapdoors for the discrete log problem. Indeed, a
long standing open problem in cryptography is whether PKE can be based on
the sole hardness of the discrete log problem. To see how this makes things more
difficult, consider ElGamal encryption: to encrypt a group element gm under a
public key (g, g1), we return (gr, gr

1 · gm), where r is a random exponent. The
decryption algorithm can recover gm but not r because computing r is as hard
as solving the discrete log problem.

Known DDH-based TDF constructions [17,27] get around the above obstacle
by designing their TDFs in such a way that during inversion, one will only need
to solve the discrete log problem over a small space, e.g., recovering a bit b from
gb. The main idea is as follows: the index key ik of their TDF is gM, where g
is a generator of the group G of order p and M ∈ Z

n×n
p is a random n × n

invertible matrix and gM denotes entry-wise exponentiation. Let tk := M−1 be
the trapdoor key. Using ik, the evaluation algorithm on input x ∈ {0, 1}n may
use the algebraic property of the group to compute y := gMx ∈ G

n. Now using
tk and y one can compute gx ∈ G

n, hence retrieving x.
To argue about one-wayness, one uses the following property implied by

DDH: the matrix gM is computationally indistinguishable from a matrix gM1 ,
where M1 is a random matrix of rank one. If the index key is now set to gM1

and if we have 2n � p, then even an unbounded adversary cannot retrieve the
original x from y. This argument is used to establish one-wayness for the TDF.

Unfortunately, the above rank indistinguishability property used to prove
one-wayness is not known (and not believed) to be implied by CDH. Thus,
designing TDFs based on CDH requires new techniques.

Finally, we mention that even from the Computational Bilinear Assump-
tion [6] (i.e., pairing-based CDH) no TDF constructions are known. The closest
is a result of Wee [30], showing that trapdoor relations, which are much weaker
than TDFs, can be built from CDH. Roughly, trapdoor relations are a relaxed
version of TDFs, in that the function might not be efficiently computable on indi-
vidual points but one may sample efficiently a random input element together
with its corresponding image.

1.2 Our Results and Techniques

We give the first construction of TDFs under the CDH assumption. Our con-
struction is black-box and is obtained through a general construction of TDFs
from a primitive we call a recyclable one-way function with encryption (OWFE).
Moreover, we show that an adaptive strengthening of our notion of recyclable
OWEF yields a black-box construction of CCA2-secure PKE.

An OWFE is described by a one-way function fpp : {0, 1}n → {0, 1}ν , where
pp is a public parameter, together with encapsulation/decapsulation algorithms
(E,D). Specifically, E takes as input pp, an image y ∈ {0, 1}ν of fpp, an index
i ∈ [n] and a selector bit b ∈ {0, 1}, and produces an encapsulated ciphertext
ct and a corresponding key bit e ∈ {0, 1}. The algorithm D allows anyone to
retrieve e from ct using any pre-image x of y whose ith bit is b. For security,

Trapdoor Functions from the Computational Diffie-Hellman Assumption 365

letting y := fpp(x), we require if (ct, e) $←− E(pp, y, (i, b)) and xi �= b, then even
knowing x one cannot recover e from ct with probability better than 1

2 +negl(λ),
where λ is the security parameter. That is, for any x ∈ {0, 1}n, i ∈ [n], we have

(x, ct, e)
c≡ (x, ct, e′), where e′ $←− {0, 1}, (ct, e) $←− E(pp, f(pp, x), (i, 1 − xi)) and

c≡ denotes computational indistinguishability. Our OWFE notion is a weakening
of the hash encryption notion [13] in that we do not require f to be collision
resistant. The following is a variant of the CDH-based construction of [13].

CDH-based instantiation of OWFE [13]. Let G be a group of prime order
p. The public parameter is a 2 × n matrix of random group elements pp :=
(g1,0,g2,0,...,gn,0

g1,1,g2,1,...,gn,1

)
and y := f(pp, x ∈ {0, 1}n) =

∏

j∈[n]

gj,xj .

To perform E(pp, y, (i, b)), sample ρ
$←− Zp and return (ct, e), where

ct :=
(

g′
1,0,g′

2,0,...,g′
n,0

g′
1,1,g′

2,1,...,g′
n,1

)
,where g′

i,1−b := ⊥, g′
i,b := gρ

i,b

and for all j �= i : g′
j,0 := gρ

j,0 and g′
j,1 := gρ

j,1

and e := HC(yρ), where HC is a hardcore bit function. The function D is now
derived easily. See the main body for the proof of security.

Recyclability. Our recyclability notion asserts that the ciphertext part output,
ct, of the key encapsulation algorithm E is independent of the corresponding
image input part y. That is, letting E1 and E2 refer to the first and second
output of E, for any values of y1 and y2, we always have E1(pp, y1, (i, b); ρ) =
E1(pp, y2, (i, b); ρ). It is easy to verify that the above CDH-based OWFE satisfies
this property. Thus, we may drop y as an input to E1 and obtain the following:

Property 1. Letting x ∈ {0, 1}n, xi = b, ct := E1(pp, (i, b); ρ) and y := f(pp, x):

D(pp, x, ct) = E2(pp, y, (i, b); ρ).

1.3 Sketch of Our OWFE-Based Construction and Techniques

Let (K, f,E,D) be a recyclable OWFE scheme.2 Our TDF construction is based
on a new technique that we call bits planting. Briefly, the input X to our TDF
consists of a domain element x ∈ {0, 1}n of f(pp, ·) and a blinding string b ∈
{0, 1}n×r, for some r that we will specify later. The output Y is comprised of
y := f(pp, x), as well as a matrix of bits in which we copy all the bits of b in the
clear but in hidden spots determined by x; we fill up the rest of the matrix with
key bits that somehow correspond to bit-by-bit encryption of x under y. To an
adversary, the matrix is “unrevealing,” with no indicative signs of what spots
corresponding to the blinding part — which contain b in the clear. However,
using our designed trapdoor, an inverter can pull out both x and b from Y with
all but negligible probability.
2 K is the public-parameter generation algorithm. See Definition 3.

366 S. Garg and M. Hajiabadi

Warm-up Construction. We first give a warm up construction in which our
inversion algorithm only recovers half of the input bits (on average). Our TDF
input is of the form (x,b) ∈ {0, 1}n×{0, 1}n. This warm-up construction contains
most of the ideas behind the full-blown construction.

– Key generation: The trapdoor key is tk :=
(ρ1,0,...,ρn,0

ρ1,1,...,ρn,1

)
a matrix of ran-

domness values, and the index key is ik := pp,
(

ct1,0,...,ctn,0
ct1,1,...,ctn,1

)
, formed as:

ik := pp,

(
ct1,0 := E1(pp, (1, 0); ρ1,0), . . . , ctn,0 := E1(pp, (n, 0); ρn,0)
ct1,1 := E1(pp, (1, 1); ρ1,1), . . . , ctn,1 := E1(pp, (n, 1); ρn,1)

)
.

– Evaluation F(ik,X): Parse ik := pp,
(

ct1,0,...,ctn,0
ct1,1,...,ctn,1

)
and parse the input X as

(x ∈ {0, 1}n,b := b1 · · · bn ∈ {0, 1}n). Set y := f(pp, x). For i ∈ [n] set Mi as
follows:

Mi :=
(
D(pp, x, cti,0)

bi

)
∗=

(
E2(pp, y, (i, 0); ρi,0)

bi

)
if xi = 0

Mi :=
(

bi

D(pp, x, cti,1)

)
∗=

(
bi

E2(pp, y, (i, 1); ρi,1)

)
if xi = 1 (1)

The matrix Mi is computed using the deterministic algorithm D and the
equalities specified as ∗= follow by Property (1).
Return Y := (y,M1|| . . . ||Mn).

– Inversion F−1(tk,Y): Parse Y := (y,M1|| . . . ||Mn) and tk :=
(ρ1,0, ..., ρn,0

ρ1,1, ..., ρn,1

)
.

Set

(M′
1|| . . . ||M′

n) :=
(
E2(pp, y, (1, 0); ρ1,0), . . . ,E2(pp, y, (n, 0); ρn,0)
E2(pp, y, (1, 1); ρ1,1), . . . ,E2(pp, y, (n, 1); ρn,1)

)
. (2)

Output (x,b := b1 . . . bn), where we retrieve xi and bi as follows. If M′
i,1 = Mi,1

and M′
i,2 �= Mi,2 (where Mi,1 is the first element of Mi), then set xi := 0 and

bi := Mi,2. If M′
i,1 �= Mi,1 and M′

i,2 = Mi,2, then set xi := 1 and bi := Mi,1.
Else, set xi := ⊥ and bi := ⊥.

One-Wayness (Sketch). We show (ik,Y)
c≡ (ik,Ysim), where (ik,Y) is as above

and

Ysim := y,

(
E2(pp, y, (1, 0); ρ1,0), . . . ,E2(pp, y, (n, 0); ρn,0)
E2(pp, y, (1, 1); ρ1,1), . . . ,E2(pp, y, (n, 1); ρn,1)

)
.

Noting that we may produce (ik,Ysim) using only pp and y, the one-wayness of
f(pp, ·) implies it is hard to recover x from (ik,Ysim), and so also from (ik,Y).

Why (ik,Y)
c≡ (ik,Ysim)? Consider Ysim,1, whose first column is the same as

Ysim and whose subsequent columns are the same as Y. We prove (x, ik,Y)
c≡

(x, ik,Ysim,1); the rest will follow using a hybrid argument.

Trapdoor Functions from the Computational Diffie-Hellman Assumption 367

Letting M1 be formed as in Eq. 1, to prove (x, ik,Y)
c≡ (x, ik,Ysim,1) it suffices

to show

x,

(
E1(pp, y, (1, 0); ρ1,0)
E1(pp, (1, 1); ρ1,1)

)
,M1

c≡ x,

(
E1(pp, (1, 0); ρ1,0)
E1(pp, (1, 1); ρ1,1)

)
,

(
E2(pp, y, (1, 0); ρ1,0)
E2(pp, y, (1, 1); ρ1,1)

)
.

(3)

We prove Eq. 3 using the security property of OWFE, which says

(x,E1(pp, (1, 1 − x1); ρ), b′)
c≡ (x,E1(pp, (1, 1 − x1); ρ),E2(pp, y, (1, 1 − x1); ρ)) ,

(4)

where b′ $←− {0, 1} and ρ is random. We give an algorithm that converts a sample
from either side of Eq. 4 into a sample from the same side of Eq. 3. On input
(x, ct1, b1), sample (ct2, b2)

$←− E(pp, y, (1, x1)) and

– if x1 = 0, then return x,
(
ct2
ct1

)
,
(
b2
b1

)
;

– else if x1 = 1, then return x,
(
ct1
ct2

)
,
(
b1
b2

)
.

The claimed property of the converter follows by inspection. Finally, we mention
that the argument used to prove Eq. 3 builds on a technique used by Brakerski
et al. [7] to build circularly-secure PKE.

Correctness. F−1 recovers on average half of the input bits: F−1 fails for an
index i ∈ [n] if bi = E2(pp, y, (i, 1 − xi); ρi,1−xi). This happens with probability
1
2 because bi is a completely random bit.

Boosting correctness. To boost correctness, we provide r blinding bits for each
index i of x ∈ {0, 1}n. That is, the input to the TDF is (x,b) ∈ {0, 1}n ×{0, 1}rn.
We will also expand ik by providing r encapsulated ciphertexts for each position
(i, b) ∈ [n] × {0, 1}. This extra information will bring the inversion error down
to 2−r. We will show that one-wayness is still preserved.

On the role of blinding. One may wonder why we need to put a blinding
string b in the TDF input. Why do not we simply let the TDF input be x and
derive multiple key bits for every index i of x by applying D to the corresponding
ciphertexts provided for that position i in the index key ik; the inverter can still
find the matching bit for every index. The reason behind our design choice is
that by avoiding blinders, it seems very difficult (if not impossible) to give a
reduction to the security of the OWFE scheme.

1.4 CCA2 Security

Rosen and Segev [29] show that an extended form of one-wayness for TDFs,
which they term k-repetition security, leads to a black-box construction of CCA2-
secure PKE. Informally, a TDF is k-repetition secure if it is hard to recover
a random input X from F(ik1,X), . . . ,F(ikk,X), where ik1, . . . , ikk are sampled
independently. They show that k-repetition security, for k ∈ Θ(λ), suffices for
CCA2 security.

368 S. Garg and M. Hajiabadi

We give a CCA2 secure PKE by largely following [29], but we need to over-
come two problems. The first problem is that our TDF is not k-repetition secure,
due to the blinding part of the input. We overcome this by observing that a
weaker notion of k-repetition suffices for us: one in which we should keep x the
same across all k evaluations but may sample b freshly each time. A similar
weakening was also used in [26].

The second problem is that our inversion may fail with negligible probability
for every choice of (ik, tk) and a bit care is needed here. In particular, the simu-
lation strategy of [29] will fail if the adversary can create an image Y, which is a
true image of a domain point X, but which the inversion algorithm fails to invert.
To overcome this problem, we slightly extend the notion of security required by
OWFE, calling it adaptive OWFE, and show that if our TDF is instantiated
using this primitive, it satisfies all the properties needed to build CCA2 secure
PKE.

Comparison with related CCA2 constructions. We note that CCA2-secure
PKE constructions from CDH are already known, e.g., [9,22,30], which are
more efficient than the one obtained by instantiating our construction using
CDH. We presented a CCA-2 secure construction just to show the black-box
utility of our base general primitive. The recent results of [7,12–14], combined
with [8], show that CCA-secure PKE can be built from a related primitive called
chameleon/batch encryption, but in a non-black-box way.

1.5 Discussion

Black-box power of chameleon encryption . Our work is a contribution
toward understanding the black-box power of the notion of chameleon encryp-
tion. Recent works [7,12,13] show that chameleon encryption (and its variants)
may be used in a non-black-box way to build strong primitives such as identity-
based encryption (IBE). The work of Brakerski et al. [7] shows also black-box
applications of (a variant of) this notion, obtaining in turn circularly-secure and
leakage-resilient PKE from CDH. Our work furthers the progress in this area,
by giving a black-box construction of TDFs.

Related work. Hajiabadi and Kapron [21] show how to build TDFs from any
reproducible circularly secure single-bit PKE. Informally, a PKE is reproducible
if given a public key pk′, a public/secret key (pk, sk) and a ciphertext c :=
PKE.E(pk′, b′; r), one can recycle the randomness of c to obtain PKE.E(pk, b; r)
for any bit b ∈ {0, 1}. Brakerski et al. [7] recently built a circularly secure
single-bit PKE using CDH. Their construction is not reproducible, however. (The
following assumes familiarity with [7].) In their PKE, a secret key x of their PKE
is an input to their hash function and the public key y is its corresponding image.
To encrypt a bit b they (a) additively secret-share b into (b1, . . . , bn), where
n = |x| and (b) form 2n ciphertext cti,b, where cti,b encrypts bi using y relative
to (i, b). Their scheme is not reproducible because the randomness used for step
(a) cannot be recycled and also half of the randomness used to create hash
encryption ciphertexts in step (b) cannot be recycled. (This half corresponds to

Trapdoor Functions from the Computational Diffie-Hellman Assumption 369

the bits of the target secret key w.r.t. which we want to recycle randomness.) It
is not clear whether their scheme can be modified to yield reproducibility.

Open problems. Our work leads to several open problems. Can our TDF be
improved to yield perfect correctness? Our current techniques leave us with a
negligible inversion error. Can we build lossy trapdoor functions (LTDF) [27]
from recyclable-OWFE/CDH? Given the utility of LTDFs, a construction based
on CDH will be interesting. Can we build deterministic encryption based on
CDH matching the parameters of those based on DDH [5]?

2 Preliminaries

Notation. We use λ for the security parameter. We use
c≡ to denote compu-

tational indistinguishability between two distributions and use ≡ to denote two
distributions are identical. For a distribution D we use x

$←− D to mean x is sam-
pled according to D and use y ∈ D to mean y is in the support of D. For a set
S we overload the notation to use x

$←− S to indicate that x is chosen uniformly
at random from S.

Definition 1 (Trapdoor Functions (TDFs)). Let w = w(λ) be a polynomial.
A family of trapdoor functions TDF with domain {0, 1}w consists of three PPT
algorithms TDF.K, TDF.F and TDF.F−1 with the following syntax and security
properties.

– TDF.K(1λ): Takes the security parameter 1λ and outputs a pair (ik, tk) of
index/trapdoor keys.

– TDF.F(ik,X): Takes an index key ik and a domain element X ∈ {0, 1}w and
outputs an image element Y.

– TDF.F−1(tk,Y): Takes a trapdoor key tk and an image element Y and outputs
a value X ∈ {0, 1}w ∪ {⊥}.
We require the following properties.

– Correctness: For any (ik, tk) ∈ TDF.K(1λ)

Pr[TDF.F−1(tk,TDF.F(ik,X)) �= X] = negl(λ), (5)

where the probability is taken over X
$←− {0, 1}w.

– One-wayness: For any PPT adversary A

Pr[A(ik,Y) = X] = negl(λ), (6)

where (ik, tk) $←− TDF.K(1λ), X $←− {0, 1}w and Y = TDF.F(ik,X).

A note about the correctness condition. Our correctness notion relaxes that
of perfect correctness by allowing the inversion algorithm to fail (with respect to
any trapdoor key) for a negligible fraction of evaluated elements. This relaxation

370 S. Garg and M. Hajiabadi

nonetheless suffices for all existing applications of perfectly-correct TDFs. Our
correctness notion, however, implies a weaker notion under which the correctness
probability is also taken over the choice of the index/trapdoor keys. This makes
our result for constructing TDFs stronger.

Definition 2 (Computational Diffie-Hellman (CDH) Assumption). Let
G be a group-generator scheme, which on input 1λ outputs (G, p, g), where G

is the description of a group, p is the order of the group which is always a
prime number and g is a generator of the group. We say that G is CDH-hard
if for any PPT adversary A: Pr[A(G, p, g, ga1 , ga2) = ga1a2] = negl(λ), where

(G, p, g) $←− G(1λ) and a1, a2
$←− Zp.

3 Recyclable One-Way Function with Encryption

We will start by defining the notion of a one-way function with encryption. This
notion is similar to the chameleon encryption notion of Döttling and Garg [13].
However, it is weaker in the sense that it does not imply collision-resistant hash
functions.

Next, we will define a novel ciphertext-randomness recyclability property
for one-way function with encryption schemes. We will show that a variant of
the chameleon encryption construction of Döttling and Garg [13] satisfies this
ciphertext-randomness recyclability property.

3.1 Recyclable One-Way Function with Encryption

We provide the definition of a one-way function with encryption. We define the
notion as a key-encapsulation mechanism with single bit keys.

Definition 3 (One-Way Function with Encryption (OWFE)). An
OWFE scheme consists of four PPT algorithms K, f, E and D with the following
syntax.

– K(1λ): Takes the security parameter 1λ and outputs a public parameter pp for
a function f from n bits to ν bits.

– f(pp, x): Takes a public parameter pp and a preimage x ∈ {0, 1}n, and outputs
y ∈ {0, 1}ν .

– E(pp, y, (i, b); ρ): Takes a public parameter pp, a value y, an index i ∈ [n], a
bit b ∈ {0, 1} and randomness ρ, and outputs a ciphertext ct and a bit e.3

– D(pp, x, ct): Takes a public parameter pp, a value x and a ciphertext ct, and
deterministically outputs e′ ∈ {0, 1} ∪ {⊥}.

We require the following properties.

– Correctness: For any pp ∈ K(1λ), any i ∈ [n], any x ∈ {0, 1}n and any
randomness value ρ, the following holds: letting y := f(pp, x), b := xi and
(ct, e) := E(pp, y, (i, b); ρ), we have e = D(pp, x, ct).

3 ct is assumed to contain (i, b).

Trapdoor Functions from the Computational Diffie-Hellman Assumption 371

– One-wayness: For any PPT adversary A:

Pr[f(pp,A(pp, y)) = y] = negl(λ),

where pp
$←− K(1λ), x $←− {0, 1}n and y := f(pp, x).

– Security for encryption: For any i ∈ [n] and x ∈ {0, 1}n:

(x, pp, ct, e)
c≡ (x, pp, ct, e′)

where pp
$←− K(1λ), (ct, e) $←− E(pp, f(pp, x), (i, 1 − xi)) and e′ $←− {0, 1}.

Definition 4 (Recyclability). We say that an OWFE scheme (f,K,E,D) is
recyclable if the following holds. Letting E1 and E2 refer to the first and second
output of E, the value of E1(pp, y, (i, b); ρ) is always independent of y. That is,
for any pp ∈ K(1λ), y1, y2 ∈ {0, 1}ν , i ∈ [n], b ∈ {0, 1} and randomness ρ:
E1(pp, y1, i, b); ρ) = E1(pp, y2, (i, b); ρ).

We now conclude the above definitions with two remarks.

Note 1 (Simplified Recyclability). Since under the recyclability notion the
ciphertext output ct of E is independent of the input value y, when referring to
E1, we may omit the inclusion of y as an input and write ct = E1(pp, (i, b); ρ).

Note 2. If the function f(pp, ·) is length decreasing (e.g., f(pp, ·) : {0, 1}n
→
{0, 1}n−1), then the one-wayness condition of Definition 3 is implied by the com-
bination of the security-for-encryption and correctness conditions. In our defi-
nition, however, we do not place any restriction on the structure of the function
f, and it could be, say, a one-to-one function. As such, under our general defi-
nition, the one-wayness condition is not necessarily implied by those two other
conditions.

3.2 Adaptive One-Way Function with Encryption

For our CCA application we need to work with an adaptive version of the notion
of OWFE. Recall by Note 1 that a ciphertext ct does not depend on the corre-
sponding y. The security for encryption notion (Definition 3) says if (ct, e) is
formed using an image y := f(pp, x) and parameters (i, b), and if xi �= b, then
even knowing x does not help an adversary in distinguishing e from a random
bit. The adaptive version of this notion allows the adversary to choose x after
seeing ct. This notion makes sense because ct does not depend on the image y,
and so ct may be chosen first.

Definition 5 (Adaptive OWFE). We say that E = (K, f,E,D) is an adaptive
one-way function with encryption scheme if E is correct in the sense of Defini-
tion 3, f is one-way in the sense of Definition 3 and that E is adaptively secure
in the following sense.

372 S. Garg and M. Hajiabadi

Fig. 1. The AdapOWFE[t](E ,A) Experiment

– Adaptive Security: For any PPT adversary A, we have the following: the
probability that AdapOWFE[t = 1](E ,A) outputs 1 is 1

2 + negl(λ), where the
experiment AdapOWFE[t] is defined in Fig. 1.

We remind the reader that in Step 3 of Fig. 1 the algorithm E1 does not
take any y as input because of Note 1. The following lemma is obtained using a
straightforward hybrid argument, so we omit the proof.

Lemma 1. Let E = (K, f,E,D) be an adaptive OWFE scheme. For any poly-
nomial t := t(λ) and any PPT adversary A, we have Pr[AdapOWFE[t](E ,A) =
1] ≤ 1

2 + negl(λ).

3.3 Construction from CDH

We give a CDH-based construction of a recyclable adaptive OWFE based on
a group scheme G (Definition 2), which is a close variant of constructions given
in [10,13].

– K(1λ): Sample (G, p, g) $←− G(1λ). For each j ∈ [n] and b ∈ {0, 1}, choose

gj,b
$←− G. Output

pp := G, p, g,

(
g1,0, g2,0, . . . , gn,0

g1,1, g2,1, . . . , gn,1

)
. (7)

– f(pp, x): Parse pp as in Eq. 7, and output y :=
∏

j∈[n]

gj,xj .

– E(pp, y, (i, b)): Parse pp as in Eq. 7. Sample ρ
$←− Zp and proceed as follows:

Trapdoor Functions from the Computational Diffie-Hellman Assumption 373

1. For every j ∈ [n]\{i}, set cj,0 := gρ
j,0 and cj,1 := gρ

j,1.
2. Set ci,b := gρ

i,b and ci,1−b := ⊥.
3. Set e := HC(yρ).4

4. Output (ct, e) where ct :=
(

c1,0, c2,0, . . . , cn,0

c1,1, c2,1, . . . , cn,1

)
.

– D(pp, x, ct): Parse ct :=
(

c1,0, c2,0, . . . , cn,0

c1,1, c2,1, . . . , cn,1

)
. Output HC(

∏

j∈[n]

cj,xj).

Lemma 2. Assuming that G is CDH-hard and n ∈ ω(log p), the construction
described above is an adaptive one-way function with encryption scheme satisfy-
ing the recyclability property.

Proof. We start by proving one-wayness.

One-wayness. The fact that fpp for a random pp is one-way follows by the
discrete-log hardness (and hence CDH hardness) of G. Let g∗ be a random

group element for which we want to find r∗ such that gr∗
= g∗. Sample i1

$←− [n]

and b1
$←− {0, 1} and set gi1,b1 := g∗. For all i ∈ [n] and b ∈ {0, 1} where

(i, b) �= (i1, b1), sample ri,b
$←− Zp and set gi,b := gri,b . Set pp :=

(
g1,0, . . . , gn,0

g1,1, . . . , gn,1

)
.

Sample x′ at random from {0, 1}n subject to the condition that x′
i1

= 1− b1. Set
y :=

∏
j∈[n] gj,x′

j
. Call the inverter adversary on (pp, y) to receive x ∈ {0, 1}n.

Now if n ∈ ω(log p), then by the leftover hash lemma with probability negligibly
close to 1

2 we have xi1 = b1, allowing us to find r∗ from ri,b’s.

Recyclability. We need to show that the ciphertext output ct of E is indepen-
dent of the input value y. This follows immediately by inspection.

Notation. For a matrix M :=
(

a1,0, a2,0, . . . , an,0

a1,1, a2,1, . . . , an,1

)
, i ∈ [n] and b ∈ {0, 1}, we

define the matrix M′ := M|(i, b) to be the same as M except that instead of ai,b

we put ⊥ in M′. If M is matrix of group elements, then Mr denotes element-wise
exponentiation to the power of r.

Security for encryption. We show if G is CDH-hard, then the scheme is
adaptively secure. Suppose that there exists an adversary A for which we have
Pr[AdapOWFE[t = 1](E ,A)] = 1

2 + 1
q > 1

2 + negl(λ). Using standard techniques
we may transform A into a predictor B who wins with probability at least 1

2 + 1
q

in the following experiment:

1. (i∗, b∗) $←− B(1λ).
2. Sample

pp :=
(

g1,0, g2,0, . . . , gn,0

g1,1, g2,1, . . . , gn,1

)
$←− G

2×n. (8)

4 We assume that the HC(·) is a hardcore bit function. If a deterministic hard-core
bit for the specific function is not known then we can use the Goldreich-Levin [19]
construction. We skip the details of that with the goal of keeping exposition simple.

374 S. Garg and M. Hajiabadi

3. Sample ρ
$←− Zp and set ct := ppρ|(i∗, b∗).

4. (x, b) $←− B(pp, ct).

5. B wins if xi∗ = b∗ and b = HC(yρ), where y :=
∏

j∈[n]

gj,xj .

Using the Goldreich-Levin theorem we know that there should be an adversary
B1 that wins with non-negligible probability in the following:

1. (i∗, b∗) $←− B1(1λ).
2. Sample

pp :=
(

g1,0, g2,0 . . . , gn,0

g1,1, g2,1, . . . , gn,1

)
$←− G

2×n. (9)

3. Sample ρ
$←− Zp and set ct := ppρ|(i∗, b∗).

4. (x, g∗) $←− B1(pp, ct).

5. B1 wins if xi∗ = b∗ and g∗ = yρ, where y :=
∏

j∈[n]

gj,xj .

We now show how to use B1 to solve the CDH problem.

CDH Adversary A1(g, g1, g2):

– Run B1(1λ) to get (i∗, b∗).

– For any j ∈ [n] \ {i∗} and b ∈ {0, 1} sample αj,b
$←− Zp and set gj,b = gαj,b .

Set gi∗,b∗ := g1 and gi∗,1−b∗ = gα, where α
$←− Zp. Set

pp :=
(

g1,0, g2,0 . . . , gn,0

g1,1, g2,1, . . . , gn,1

)
.

– Set g′
i∗,1−b∗ = g2 and g′

i∗,b∗ = ⊥. For any j ∈ [n] \ {i∗} and b ∈ {0, 1} set

g′
j,b = g

(α−1·αj,b)
2 . Set

ct :=
(

g′
1,0, g

′
2,0 . . . , g′

n,0

g′
1,1, g

′
2,1, . . . , g

′
n,1

)
. (10)

– Run B1(pp, ct) to get (x, g∗). If xi �= b∗
i then return ⊥. Otherwise

• Set
gu :=

g∗
∏i∗−1

j=1 g′
j,xj

· ∏n
j=i∗+1 g′

j,xj

.

• Return gα
u .

By inspection one may easily verify that whenever B1 wins, A1 also wins.
The proof is now complete. �

Trapdoor Functions from the Computational Diffie-Hellman Assumption 375

4 TDF Construction

In this section we describe our TDF construction. We first give the following
notation.

Extending the notation for D. For a given pp, a sequence ct := (ct1, . . . , ctr)
of encapsulated ciphertexts and a value x, we define D(pp, x, ct) to be the con-
catenation of D(pp, x, cti) for i ∈ [r].

Algorithm Perm. For two lists u1 and u2 and a bit b we define Perm(u1,u2, b)
to output (u1,u2) if b = 0, and (u2,u1) otherwise.

Construction 3 (TDF Construction).

Base Primitive. A recyclable OWFE scheme E = (K, f,E,D). Let Rand be the
randomness space of the encapsulation algorithm E.

Construction. The construction is parameterized over two parameters n =
n(λ) and r = r(λ), where n is the input length to the function f, and r will be
instantiated in the correctness proof. The input space of each TDF is {0, 1}n+nr.
We will make use of the fact explained in Note 1.

– TDF.K(1λ):
• Sample pp ← K(1λ).
• For each i ∈ [n] and selector bit b ∈ {0, 1}:

ρi,b := (ρ(1)i,b , . . . , ρ
(r)
i,b) $←− Randr

cti,b := (E1(pp, (i, b); ρ
(1)
i,b), . . . ,E1(pp, (i, b); ρ

(r)
i,b)).

• Form the index key ik and the trapdoor key tk as follows:

ik := (pp, ct1,0, ct1,1, . . . , ctn,0, ctn,1) (11)

tk :=
(
pp,ρ1,0,ρ1,1, . . . ,ρn,0,ρn,1

)
. (12)

– TDF.F(ik,X):
• Parse ik as in Eq. 11 and parse

X := (x ∈ {0, 1}n,b1 ∈ {0, 1}r, . . . ,bn ∈ {0, 1}r).

• Set y := f(pp, x).
• For all i ∈ [n] set

ei := D(pp, x, cti,xi).

• Return
Y :=

(
y,Perm(e1,b1, x1), . . . ,Perm(en,bn, xn)

)
.

– TDF.F−1(tk,Y):
• Parse tk as in Eq. 12 and Y := (y, b̃1,0, b̃1,1, . . . , b̃n,0, b̃n,1).
• Reconstruct x := x1 · · · xn bit-by-bit and b := (b1, . . . ,bn) vector-by-vector

as follows. For i ∈ [n]:

376 S. Garg and M. Hajiabadi

∗ Parse ρi,0 := (ρ(1)i,0 , . . . , ρ
(r)
i,0) and ρi,1 := (ρ(1)i,1 , . . . , ρ

(r)
i,1).

∗ If

b̃i,0 =
(
E2(pp, y, (i, 0); ρ(1)i,0), . . . ,E2(pp, y, (i, 0); ρ(r)i,0)

)
and

b̃i,1 �=
(
E2(pp, y, (i, 1); ρ(1)i,1), . . . ,E2(pp, y, (i, 1); ρ(r)i,1)

)
, (13)

then set xi = 0 and bi = b̃i,1.
∗ Else, if

b̃i,0 �=
(
E2(pp, y, (i, 0); ρ(1)i,0), . . . ,E2(pp, y, (i, 0); ρ(r)i,0)

)
and

b̃i,1 =
(
E2(pp, y, (i, 1); ρ(1)i,1), . . . ,E2(pp, y, (i, 1); ρ(r)i,1)

)
, (14)

then set xi = 1 and bi = b̃i,0.
∗ Else, halt and return ⊥.

• If y �= f(pp, x), then return ⊥. Otherwise, return (x,b).

We will now give the correctness and one-wayness statements about our TDF,
and will prove them in subsequent subsections.

Lemma 3 (TDF Correctness). The inversion error of our constructed TDF
is at most n

2r . That is, for any (ik, tk) ∈ TDF.K(1λ) we have

β := Pr[TDF.F−1(tk, (TDF.F(ik,X))) �= X] ≤ n

2r
, (15)

where the probability is taken over X := (x,b1, . . . ,bn) $←− {0, 1}n+nr. By choos-
ing r ∈ ω(log λ) we will have a negligible inversion error.

For one-wayness we will prove something stronger: parsing X := (x, . . .),
then recovering any x′ satisfying f(pp, x) = f(pp, x′) from (ik,TDF.F(ik,X)) is
infeasible.

Lemma 4 (One-Wayness). The TDF (TDF.K,TDF.F,TDF.F−1) given in
Construction 3 is one-way. That is, for any PPT adversary A

Pr[A(ik,Y) = x′ and f(pp, x′) = y] = negl(λ), (16)

where (ik := (pp, . . .), tk) $←− TDF.K(1λ), X := (x, . . .) $←− {0, 1}n+nr and Y :=
(y, . . .) := TDF.F(ik,X).

By combining Lemmas 2, 3 and 4 we will obtain our main result below.

Theorem 4 (CDH Implies TDF). There is a black-box construction of TDFs
from CDH-hard groups.

Trapdoor Functions from the Computational Diffie-Hellman Assumption 377

4.1 Proof of Correctness: Lemma 3

Proof Let X := (x,b1, . . . ,bn) $←− {0, 1}n+nr be as in the lemma and

Y := TDF.F(ik,X) := (y, b̃1,0, b̃1,1, . . . , b̃n,0, b̃n,1). (17)

By design, for all i ∈ [n]: b̃i,1−xi = bi. Parse

tk := (ρ1,0,ρ1,1, . . . ,ρn,0,ρn,1) ,

ρi,b := (ρ(1)i,b , . . . , ρ
(r)
i,b), for i ∈ [n] and b ∈ {0, 1}.

Consider the execution of TDF.F−1(tk,Y). By the correctness of our recyclable
OWFE E we have the following: the probability that TDF.F−1(tk,Y) �= X is the
probability that for some i ∈ [n]:

bi =
(
E2(pp, y, (i, 1 − xi); ρ

(1)
i,1−xi

), . . . ,E2(pp, y, (i, 1 − xi); ρ
(r)
i,1−xi

)
)

. (18)

Now since bi, for all i, is chosen uniformly at random and independently of
x, the probability of the event in Eq. 18 is 1

2r . A union bound over i ∈ [n] gives
us the claimed error bound. �

4.2 Proof of One-wayness: Lemma 4

We will prove Lemma 4 through a couple of hybrids, corresponding to the real
and a simulated view. We first give the following definition which will help us
describe the two hybrids in a compact way.

Definition 6 Fix pp, x ∈ {0, 1}n and y := f(pp, x). We define two PPT algo-
rithms Real and Sim, where Real takes as input (pp, x) and Sim takes as input
(pp, y). We stress that Sim does not take x as input.

The algorithm Real(pp, x) outputs (CT,E) and the algorithm Sim(pp, y) out-
puts (CT,Esim), sampled in the following way.

– Sample
(

ρ1,0, . . . , ρn,0

ρ1,1, . . . , ρn,1

)
$←− Rand2×n.

– Set

CT :=
(
ct1,0, . . . , ctn,0

ct1,1, . . . , ctn,1

)
:=

(
E1(pp, (1, 0); ρ1,0), . . . ,E1(pp, (n, 0); ρn,0)
E1(pp, (1, 1); ρ1,1), . . . ,E1(pp, (n, 1); ρn,1)

)
.

– Set

E :=
(
b1,0, . . . , bn,0

b1,1, . . . , bn,1

)
,

where, for all i ∈ [n]:

• if xi = 0, then bi,0 := D(pp, x, cti,0) and bi,1
$←− {0, 1}.

• if xi = 1, then bi,0
$←− {0, 1} and bi,1 := D(pp, x, cti,1).

378 S. Garg and M. Hajiabadi

– Set

Esim :=
(
E2(pp, y, (1, 0); ρ1,0), . . . ,E2(pp, y, (n, 0); ρn,0)
E2(pp, y, (1, 1); ρ1,1), . . . ,E2(pp, y, (n, 1); ρn,1)

)

We now prove the following lemma which will help us to prove the indistin-
guishability of the two hybrids in our main proof.

Lemma 5. Fix polynomial r := r(λ) and let x ∈ {0, 1}n. We have

(pp, x,CT1,E1, . . . ,CTr,Er)
c≡ (pp, x,CT1,Esim,1, . . . ,CTr,Esim,r), (19)

where pp
$←− K(1λ), and for all i ∈ [r], we sample (CTi,Ei)

$←− Real(pp, x) and

(CTi,Esim,i)
$←− Sim(pp, f(pp, x)).

Proof. Fix x ∈ {0, 1}n and let y := f(pp, x). For the purpose of doing a hybrid
argument we define two algorithms SReal and SSim below.

– SReal(i, pp, x): sample ρ0, ρ1
$←− Rand and return (ct, e), where

ct :=
(
ct0
ct1

)
:=

(
E1(pp, (i, 0); ρ0)
E1(pp, (i, 1); ρ1)

)
(20)

and e is defined as follows:
• if xi = 0, then e :=

(
D(pp, x, ct0)

b

)
, where b

$←− {0, 1};

• if xi = 1, then e :=
(

b
D(pp, x, ct1)

)
, where b

$←− {0, 1}.

– SSim(i, pp, y): Return (ct, esim), where ct is sampled as in Eq. 20 and esim is
sampled as

esim :=
(
E2(pp, y, (i, 0); ρ0)
E2(pp, y, (i, 1); ρ1)

)
.

We will show that for all i ∈ [n] and x ∈ {0, 1}n

(pp, x, ct, e)
c≡ (pp, x, ct, esim), (21)

where

pp
$←− K(1λ), (ct, e) $←− SReal(i, pp, x) and (ct, esim) $←− SSim(i, pp, f(pp, x)).

From Eq. 21 using a simple hybrid argument the indistinguishability claimed in
the lemma (Eq. 19) is obtained. Note that for the hybrid argument we need to
make use of the fact that that x is provided in both sides of Eq. 21, because we
need to know x to be able to build the intermediate hybrids between those of
Eq. 19. Thus, in what follows we will focus on proving Eq. 21.

To prove Eq. 21, first note that by the correctness of the OWFE scheme E ,
we have

(pp, x, ct, e) ≡ (pp, x, ct, e′),

where ct and e are sampled according to SReal(i, pp, x) as above (using random-
ness values ρ0 and ρ1), and e′ is sampled as:

Trapdoor Functions from the Computational Diffie-Hellman Assumption 379

– if xi = 0, then e′ :=
(
E2(pp, y, (i, 0); ρ0)

b

)
, where b

$←− {0, 1};

– if xi = 1, then e′ :=
(

b
E2(pp, y, (i, 1); ρ1)

)
, where b

$←− {0, 1}.

Thus, we will prove
(pp, x, ct, e′)

c≡ (pp, x, ct, esim). (22)

We derive Eq. 22 from the security-for-encryption requirement of the scheme
(K, f,E,D).

Recall that the security for encryption requirement asserts that no PPT
adversary can distinguish between (x, ct1, e1) and (x, ct1, e2), where pp

$←− K(1λ),

(ct1, e1)
$←− E(pp, f(pp, x), (i, 1 − xi)) and e2

$←− {0, 1}. Let us call (x, ct1, e1) the
simulated challenge and (x, ct1, e2) the random challenge.

To build the reduction we show the existence of a procedure Turn that gener-
ically turns a simulated challenge into a sample of SSim(i, pp, x) and turns a
random challenge into a sample of SReal(i, pp, y).

The algorithm Turn(x, ct, e) returns (ct1, e1), formed as follows:

– Sample ρ
$←− Rand. Then

• if xi = 0, then return

ct1 =
(
E1(pp, (i, 0); ρ)

ct

)
e1 =

(
E2(pp, y, (i, 0); ρ)

e

)

• if xi = 1, then return

ct1 =
(

ct
E1(pp, (i, 0); ρ)

)
e1 =

(
e

E2(pp, y, (i, 0); ρ)

)

It should be clear by inspection that the output of Turn(x, ct, e) is identically
distributed to SReal(i, pp, x) if (x, ct, e) is a random challenge (defined above),
and identically distributed to SSim(i, pp, x) if (x, ct, e) is a simulated challenge.
The proof is now complete. �
Proof (of Lemma4). To prove Lemma 4 we define two hybrids and will use the
notation viewi to refer to the view sampled in Hybrid i.

Hybrid 0. The view (ik,Y) is produced honestly as in the real executions of the
scheme TDF. That is,

– Sample pp
$←− K(1λ), x $←− {0, 1}n and let y := f(pp, x).

– For all j ∈ [r] sample (CT(j),E(j)) $←− Real(pp, x). Parse

CT(j) :=

⎛

⎝
ct

(j)
1,0, . . . , ct

(j)
n,0

ct
(j)
1,1, . . . , ct

(j)
n,1

⎞

⎠ E(j) :=

⎛

⎝
b
(j)
1,0, . . . , b

(j)
n,0

b
(j)
1,1, . . . , b

(j)
n,1

⎞

⎠ .

380 S. Garg and M. Hajiabadi

– For all i ∈ [n] and d ∈ {0, 1} set

cti,d := (ct(1)i,d , . . . , ct
(r)
i,d)

bi,d := (b(1)i,d , . . . , b
(r)
i,d).

– Form the view (ik,Y) as follows:

((pp, ct1,0, ct1,1, . . . , ctn,0, ctn,1)︸ ︷︷ ︸
ik

, (y,b1,0,b1,1, . . . ,bn,0,bn,1)︸ ︷︷ ︸
Y

) (23)

Hybrid 1. The view (ik,Y) is produced the same as Hybrid 0 except that for

all j ∈ [r] we sample (CT(j),E(j)) now as (CT(j),E(j)) $←− Sim(pp, y).
We prove that the two views are indistinguishable and then we will show

that inverting the image under view1 is computationally infeasible.

Indistinguishability of the views: By Lemma 5 we have view0
c≡ view1.

The reason is that the view in either hybrid is produced entirely based on
(CT(1),E(1), . . . ,CT(r),E(r)) and that this tuple is sampled from the distribution
Real(pp, x) in one hybrid and from Sim(pp, y) in the other.

One-wayness in Hybrid 1: We claim that for any PPT adversary A

Pr[A(view1) = x′ and f(pp, x′) = y] = negl(λ). (24)

Recall that view1 := (ik,Y) is the view in Hybrid 1 and that the variables pp
and y are part of ik := (pp, . . .) and Y := (y, . . .). The proof of Eq. 24 follows
from the one-wayness of f, taking into account the fact that view1 in its entirety
is produced solely based on pp and y := f(pp, x) (and especially without knowing
x). This is because all the underlying variables (CT(j),E(j)) — for all j — are

produced as (CT(j),E(j)) $←− Sim(pp, y), which can be formed without knowledge
of x.

Completing the Proof of Lemma 4. Let view0 := (ik,Y) and parse ik :=
(pp, . . .) and Y := (y, . . .). For any PPT adversary A we need to show that the
probability that A on input view0 outputs x′ ∈ {0, 1}n such that f(pp, x′) = y is
negligible. We know that B fails to compute such a string x′ with non-negligible
probability if the view ((pp, . . .), (y, . . .)) is sampled according to view1. Since
view0

c≡ view1, the claim follows. �

4.3 Extended One-Wayness

For our CCA2 application we need to prove a stronger property than the stan-
dard one-wayness for our constructed TDF. This extension requires that if we
evaluate m correlated inputs under m independent functions from the TDF fam-
ily, the result still cannot be inverted.

Trapdoor Functions from the Computational Diffie-Hellman Assumption 381

Lemma 6 (Extended One-Wayness). Let TDF = (TDF.K,TDF.F,TDF.F−1)
be the TDF built in Construction 3 based on an arbitrary parameter r = r(λ).
Let m := m(λ). For any PPT adversary A

Pr[A(view := (ik1, . . . , ikm,Y1, . . . ,Ym)) = x] = negl(λ),

where x
$←− {0, 1}n and for i ∈ [m], (iki, tki)

$←− TDF.K(1λ), bi
$←− {0, 1}nr

and Yi := TDF.F(iki, x||bi). Thus, there exists a hardcore function HC such that
HC(x) remains pseudorandom in the presence of view.

Proof. For any PPT adversary A we need to show that the probability that
A(view) outputs x is negligible. It is easy to verify by inspection that the distri-
bution of view can be perfectly formed based on the view (ik∗,Y∗) of an inverter
against the one-wayness of the trapdoor function (TDF.K,TDF.F,TDF.F−1) of
Construction 3 but under the new parameter r′ = m × r. Invoking Lemma 4 our
claimed one-wayness extension follows. �

5 CCA2-Secure Public-Key Encryption

In this section we show how to use our constructed TDF to build a CCA2 secure
PKE. For the proof of CCA2 security we need to assume that the OWFE scheme
underlying the TDF is adaptively secure (Definition 5).

Notation. Let TDF := (TDF.K,TDF.F,TDF.F−1) be as in Sect. 4. We will inter-
pret the input X to the TDF as (x, s), where x ∈ {0, 1}n corresponds to f’s pre-
image part and s ∈ {0, 1}n1 corresponds to the blinding part. In particular, if r
is the underlying parameter of the constructed TDF as in Construction 3, then
n1 = n × r.

Ingredients of our CCA2-secure PKE. Apart from a TDF with the above
syntax, our CCA2 secure construction also makes use of a one-time signature
scheme SIG = (SIG.K,SIG.Sign,SIG.Ver) with prefect correctness, which in turn
can be obtained from any one-way function. A one-time signature scheme SIG
with message space {0, 1}η is given by three PPT algorithms SIG.K, SIG.Sign and
SIG.Ver satisfying the following syntax. The algorithm SIG.K on input a security
parameter 1λ outputs a pair (vk, sgk) consisting of a verification key vk and a
signing key sgk. The signing algorithm SIG.Sign on input a signing key sgk and
a message m ∈ {0, 1}η outputs a signature σ. For correctness, we require that
for any (vk, sgk) ∈ SIG.K(1λ), any message m ∈ {0, 1}η and any signature σ ∈
SIG.Sign(sgk,m): SIG.Ver(vk,m, σ) = �. The one-time unforgeability property
requires that the success probability of any PPT adversary A in the following
game be at most negligible. Sample (vk, sgk) $←− SIG.K(1λ) and give vk to A.
Now, A(vk) may call a signing oracle SgnOracle[sgk](·) only once, where the

oracle SgnOracle[sgk](·) on input m returns σ
$←− SIG.Sign(sgk,m). Finally, A(vk)

should return a pair (m′, σ′) of message/signature and will win if (m, σ) �= (m′, σ′)
and that SIG.Ver(vk,m′, σ′) = �.

382 S. Garg and M. Hajiabadi

Our CCA2 primitive. We will build a CCA2 secure single-bit PKE, which by
the result of [24] can be boosted into many-bit CCA2 secure PKE. Since we deal
with single-bit CCA2 PKE, we may assume without loss of generality that the
CCA adversary issues all her CCA oracles after seeing the challenge ciphertext.

We will now describe our CCA2-secure PKE scheme.

Construction 5 (CCA2 Secure PKE). The construction is parameterized
over a parameter m := m(λ), which denotes the size of the verification key of
the underlying signature scheme SIG. Let HC be a bit-valued hardcore function
whose existence was proved in Lemma 6.

– PKE.K(1λ): For i ∈ [m] and b ∈ {0, 1}, sample (ikb
i , tk

b
i)

$←− TDF.K(1λ). Form
(pk, sk) the public/secret key as follows:

pk := (ik01, ik
1
1, . . . , ik

0
m, ik1m), sk := (tk01, tk

1
1, . . . , tk

0
m, tk1m). (25)

– PKE.E(pk, b): Parse pk as in Eq. 25. Sample (vk, sgk) $←− SIG.K(1λ), x
$←−

{0, 1}n and set

X1 := (x, s1
$←− {0, 1}n1), . . . , Xm := (x, sm

$←− {0, 1}n1). (26)

Let b′ = b ⊕ HC(x) and for i ∈ [m] let Yi = TDF.F(ikvkii ,Xi). Return

c := (vk,Y1, . . . ,Ym, b′,Sign(sgk,Y1|| . . . ||Ym||b′)) . (27)

– PKE.D(sk, c): Parse sk as in Eq. 25 and parse

c := (vk,Y1, . . . ,Ym, b′, σ). (28)

• Set msg := Y1|| · · ·Ym||b′. If SIG.Ver(vk,msg, σ) = ⊥, then return ⊥.
• Otherwise, for i ∈ [m] set Xi := TDF.F−1(tkvkii ,Yi). Check that for all

i ∈ [n]: Yi = TDF.F(ikvkii ,Xi). If not, return ⊥.
• If there exists x ∈ {0, 1}n and s1, . . . , sm ∈ {0, 1}n1 such that for all

i ∈ [m], Xi = (x, si), then return b′ ⊕ HC(x). Otherwise, return ⊥.

Correctness. If the underlying signature scheme SIG = (SIG.K,SIG.Sign,
SIG.Ver) is correct and also that the underlying TDF (TDF.K,TDF.F,TDF.F−1)
is correct in the sense of Definition 1, the above constructed PKE is correct in a
similar sense: for any (pk, sk) ∈ PKE.K(1λ) and plaintext bit b ∈ {0, 1} we have
Pr[PKE.D(sk,PKE.E(pk, b))] = negl(λ). The proof of this is straightforward.

6 Proof of CCA2 Security

We will prove the following theorem.

Theorem 6 (CCA2 security). Let (TDF.K,TDF.F,TDF.F−1) be the TDF that
results from Construction 3 based on a recyclable OWFE (K, f,E,D). Assuming
(K, f,E,D) is adaptively secure, the PKE given in Construction 5 is CCA2 secure.

Trapdoor Functions from the Computational Diffie-Hellman Assumption 383

We need to show that the probability of success of any CCA2 adversary is
the CCA2 game is at most 1

2 + negl(λ). Fix the adversary A in the remainder of
this section. We give the following event that describes exactly the success of A.

Event Success. Let (pk, sk) $←− PKE.K(1λ), bplain
$←− {0, 1}, c

$←− PKE.E(pk,
bplain). Run the adversary A on (pk, c) and reply to any query c′ �= c of A with
PKE.D(sk, c′). We say that the event Success holds if A outputs bplain.

Road Map. To prove Theorem 6, in Sect. 6.1 we define a simulated experiment
Sim and we show that the probability of success of any CCA2 adversary in this
experiment is 1

2 + negl(λ). Next, in Sect. 6.2 we will show that the probabilities
of success of any CCA2 adversary in the real and simulated experiments are
negligibly close, establishing Theorem 6.

6.1 Simulated CCA2 Experiment

We now define a simulated way of doing the CCA2 experiment. Roughly, our
simulator does not have the full secret key (needed to reply to CCA2 queries
of the adversary), but some part of it. Our simulation is enabled a syntactic
property of our constructed TDF. We first state the property and then prove
that it is satisfied by our TDF. We require the existence of an efficient algorithm
Recover for our constructed TDF (TDF.K,TDF.F,TDF.F−1) that satisfies the
following property.

Algorithm Recover: The input to the algorithm is an index key ik, a pre-fix
input x ∈ {0, 1}n and a possible image Y. The output of the algorithm is X ∈
{0, 1}n+n1 ∪ {⊥}. As for correctness we requite the following. For any (ik, ∗) ∈
TDF.K(1λ), x ∈ {0, 1}n and Y both the following two properties hold:

– if for no s ∈ {0, 1}n1 TDF.F(ik, x||s) = Y, then Recover(ik, x,Y) = ⊥
– if for some s, TDF.F(ik, x||s) = Y, then Recover(ik, x,Y) returns (x, s).

Lemma 7 (Existence of Recover). There exists an efficient algorithm Recover
with the above properties for our constructed TDF .

Proof. To build Recover, first parse the given inputs as follows: ik = (pp, . . .),
x ∈ {0, 1}n and Y := (y, b̃1,0, b̃1,1, . . . , b̃n,0, b̃n,1). Do the following steps:

1. For all i ∈ [n] set bi := b̃i,1−xi .
2. Let s = b1|| · · · ||bn

3. Check if Y = TDF.F(ik, x||s). If the check holds, return (x, s). Otherwise,
return ⊥.

The correctness of the algorithm Recover follows by inspection. �
Sim(ik1, . . . , ikm,Y1, . . . ,Ym, b): The simulated experiment differs from the

real experiment in that the challenger does not know the trapdoor keys of half
of the index keys that are given to the CCA adversary as part of the public key.
The challenger, however, tries to produce accurate answers based on her partial
knowledge.

Formally, do the following steps.

384 S. Garg and M. Hajiabadi

1. Initializing the CCA Adversary:
(a) Sample (vk, sgk) $←− SIG.K(1λ).

(b) For all i ∈ [m] set ikvkii := iki and sample (ik1−vki
i , tk1−vki

i) $←− TDF.K(1λ).

(c) Sample a challenge bit bplain
$←− {0, 1} and let b1 := bplain ⊕ b. Set

msg := Y1|| · · · ||Ym||b1.

Sample σ
$←− SIG.Sign(sgk,msg) and set

pk := (ik01, ik
1
1, . . . , ik

0
m, ik1m), c := (vk,Y1, . . . ,Ym, b1, σ).

Run the CCA2 adversary A on (pk, c).
2. Simulating the CCA responses:

Respond to a CCA2-oracle query c′ := (vk′,Y′
1, . . . ,Y

′
m, b′, σ′) as follows:

(a) Letting msg′ := Y′
1|| · · · ||Y′

m||b′ if Ver(vk′,msg′, σ′) = ⊥, then return ⊥.
Otherwise, if vk′ = vk, then halt and return ⊥.

(b) Otherwise, let Q consist all of all indices i ∈ [m] for which we have
vk′

i �= vki. For i ∈ Q set X′
i := TDF.F−1(tkvk

′
i

i ,Y′
i) and check if Y′

i =
TDF.F(ikvk

′
i

i ,X′
i); if this fails for any i ∈ Q, then return ⊥. Now if there

exists x′ ∈ {0, 1}n such that for all i ∈ Q we have X′
i = (x′, ∗) then

continue with the following steps and otherwise return ⊥.
(I) for all j ∈ [m] \ Q, let X′

j := Recover(ik
vk′

j

j , x′,Y′
j). Reply to the query

c′ with HC(x′) if for all j we have X′
j �= ⊥; otherwise, reply to the

query with ⊥.
3. Forming the output of the experiment: The experiment outputs 1 if A

outputs bplain; otherwise, the experiments outputs 0.

Event Successsim. The event that Sim(ik1, . . . , ikm,Y1, . . . ,Ym, b) outputs 1

where x
$←− {0, 1}n, b := HC(x) and for i ∈ [m], (iki, tki)

$←− TDF.K(1λ),

si
$←− {0, 1}nr and Yi := TDF.K(iki, x||si).
We now show that the probability of the event Successsim is 1

2 + negl(λ). We
will then show in the next section that the probability of the event Success is
close to that of Successsim, hence obtaining our main result.

Lemma 8.
α := Pr[Successsim] ≤ 1

2
+ negl(λ). (29)

Proof. This lemma follows by Lemma 6. Suppose the input to Sim is sampled
exactly as done in the event Successsim, except that we sample b

$←− {0, 1}
(instead of setting b := HC(x)). In this case the output of the simulation is
1 with probability 1/2. Now Lemma 6 implies that α = 1

2 +negl(λ) (Eq. 29), and
the proof is complete. �

Trapdoor Functions from the Computational Diffie-Hellman Assumption 385

6.2 Relating the Simulated and Real Experiments

We will now show that the probabilities of the events Success and Successsim
are negligibly close, hence obtaining Theorem6 from Lemma 8. To this end, we
define below two events Forge and Spoof, and show that the difference of the
probabilities of Success and Successsim is at most the sum of the probabilities
of Forge and Spoof. We will then show that both these events happen with
negligible probability.

Event Forge: In the experiment Sim(ik1, . . . , ikm,Y1, . . . ,Ym, b) we let Forge be
the event that A issues a CCA2 query

c′ := (vk′,Y′
1, . . . ,Y

′
m, b′, σ′)

such that vk = vk′ and Ver(vk,Y′
1|| · · · ||Y′

m||b′, σ′) = �. Recall that vk is part of
the challenge ciphertext c := (vk, . . .) given to the adversary.

Informally, the event Spoof below describes a situation in which a decryption
query during the execution of Sim is answered with a non ⊥ string, but the same
query may be replied to with ⊥ under the real decryption oracle.

Event Spoof: Let c := (vk, . . .) be the challenge ciphertext formed during
Sim(ik1, . . . , ikm,Y1, . . . ,Ym, b). We let Spoof be the event that A issues a CCA2
query

c′ := (vk′,Y′
1, . . . ,Y

′
m, b′, σ′)

for which the following holds. Let Q be the set of indices i ∈ [m] for which we
have vki �= vk′

i. For some h ∈ Q and for some w ∈ [m] \ Q we have

– TDF.F−1(tkvk
′
h

h ,Y′
h) = (x′, ∗) �= ⊥; and

– s′j := Recover(ikvk
′
w

w , x′,Y′
w) �= ⊥ but TDF.F−1(tkvk

′
w

w ,Y′
w) = ⊥.

We will now prove the following three lemmas.

Lemma 9. We have

|Pr[Success] − Pr[Successsim]| ≤ Pr[Forge] + Pr[Spoof].

Lemma 10.
Pr[Forge] ≤ negl(λ).

Lemma 11.
Pr[Spoof] ≤ negl(λ).

Let us first derive the proof of Theorem 6 and then prove each of the lemmas.

Proof of Theorem 6. Follows from Lemmas 8 and 9, taking into account the
fact that the experiment Real(1λ) is the real CCA2 experiment. �

We prove Lemmas 9 and 10 and will prove Lemma11 in Sect. 6.3.

386 S. Garg and M. Hajiabadi

Proof (of Lemma 9). First of all, note that the input (pk, c) given to the CCA2
adversary under the simulated experiment is identically distributed to that under
the real CCA2 experiment. Thus, any possible difference between the simulated
and real experiments must be due to the ways in which decryption queries are
answered. We will now show that if at any point a decryption query is answered
to differently under Sim and Real, then either Forge or Spoof must happen. First,
in order for a query c′ to be answered differently, either (1) the query c′ is replied
to with ⊥ under Sim and with some b′ ∈ {0, 1} under Real; or (2) c′ is replied to
with some b′ ∈ {0, 1} under Sim and with ⊥ under Real. In particular, we cannot
have a situation in which c′ is replied to with some b′ ∈ {0, 1} under Sim and
with 1 − b′ under Real. The reason for this is that if both experiments reply to
a query with something other than ⊥, then the underlying recovered pre-image
x′ must be the same, hence both will end up replying with the same bit.

Let c := (vk, . . .) be the challenge ciphertext of the underlying CCA2 adver-
sary and c′ := (vk′,msg′, σ′) be an issued query. We now consider all possible
cases:

– If Sim replies to c′ := (vk′,msg′, σ′) with ⊥, then one of the following must
hold.

• SIG.Ver(vk′,msg′, σ′) = ⊥: in this case Real also replies to with ⊥;
• SIG.Ver(vk′,msg′, σ′) = � and vk = vk′: in this case the event Forge

happens;
• Sim returns ⊥ as a result of Step 2b of the execution of Sim: that is,
TDF.F−1(tkvk′

i
i ,Y′

i) = ⊥: in this case Real also replies with ⊥
• Sim replies with ⊥ as a result of Step (I): in this case by correctness of

Recover we will know Real will also reply with ⊥.
– If Real replies to c′ with ⊥ and Sim replies to c′ with some b′ ∈ {0, 1}, then

we may easily verify that the event Spoof must necessarily hold. We omit the
details. �

Proof (of Lemma 10). Suppose Pr[Forge] > negl(λ). We show how to build
an adversary B against the one-time unforgeability of SIG = (SIG.K,SIG.Sign,
SIG.Ver). Build BSgnOracle[sgk](·)(vk) as follows. Sample the input (ik1, . . . , ikm,
Y1, . . . ,Ym, b) to Sim and form the tuple msg as in the execution of Sim
on this input. Then request a signature σ for the message msg by calling
SgnOracle[sgk](·) on msg. Form (pk, c) as in Sim and run the CCA2 adversary

A on (pk, c). Let q be the number queries that A asks. Choose i
$←− [q] to be a

guess for the index of the first query for which the event Forge occurs and output
the pair of message/signature contained in that query. Note that B can perfectly
reply to all the previous i − 1 queries of A, because all of those can be replied
to without knowing sgk. If α := Pr[Forge], then B will win with probability at
least α

q . �

6.3 Proof of Lemma 11

The proof of Lemma 11 is based on a property of our TDF that we now state
and prove. Informally, if the OWFE scheme used in our TDF construction is

Trapdoor Functions from the Computational Diffie-Hellman Assumption 387

adaptively secure, then the constructed TDF has the property that given a
random index key ik, it is infeasible to produce an image element which is in the
range of the trapdoor function TDF.F(ik, ·), but which “inverts” to ⊥.

Lemma 12. Let TDF = (TDF.K,TDF.F,TDF.F−1) be the TDF built in Sect. 4,
with the underlying parameter r := r(λ) ∈ ω(log λ), based on a recyclable OWFE
scheme OWFE = (K, f,E,D). Assuming OWFE is adaptive (Definition 5), for any
PPT adversary A:

Pr[(X,Y) $←− A(ik) s.t. Y = TDF.F(ik,X),TDF.F−1(tk,Y) = ⊥] = negl(λ), (30)

where (ik, tk) $←− TDF.K(1λ).

Proof. Let Surprise be the event of the lemma. Parse

ik := (pp, ct1,0, ct1,1, . . . , ctn,0, ctn,1), tk := (ρ1,0,ρ1,1, . . . ,ρn,0,ρn,1), (31)

and for all i′ ∈ [n] and b′ ∈ {0, 1} parse

cti′,b′ := (ct(1)i′,b′ , . . . , ct
(r)
i′,b′) (32)

ρi′,b′ := (ρ(1)i′,b′ , . . . , ρ
(r)
i′,b′).

Recall that for all i′ ∈ [n], b′ ∈ {0, 1} and j ∈ [r] we have

ct
(j)
i′,b′ = E1(pp, (i′, b′); ρ(j)i′,b′). (33)

Also, parse (X,Y), the output of A(ik), as

X := (x ∈ {0, 1}n,b1 ∈ {0, 1}r, . . . ,bn ∈ {0, 1}r) (34)
Y := (y,b1,0 ∈ {0, 1}r,b1,1 ∈ {0, 1}r, . . . ,bn,0 ∈ {0, 1}r,bn,1 ∈ {0, 1}r).

If the event Surprise happens, then by definition we have Y = TDF.F(ik,X)
and TDF.F−1(tk,Y) = ⊥. Thus, by definition of TDF.F−1, for some i ∈ [n] we
must have

bi =
(
E2(pp, y, (i, 1 − xi); ρ

(1)
i,1−xi

), . . . ,E2(pp, y, (i, 1 − xi); ρ
(r)
i,1−xi

)
)

. (35)

We show how to use Eq. 35 to break the adaptive security of OWFE.
We show how to build an adversary against the adaptive security of OWFE

in the sense of Lemma 1. Sample i
$←− [n] and b

$←− {0, 1} — The value of b will
serve as a guess bit for 1 − xi (see Eq. 35). Give the pair (i, b) to the challenger
to receive (pp, ct1, . . . , ctr). Set cti,b := (ct1, . . . , ctr) and sample all other cti′,b′ ,
for (i′, b′) �= (i, b), as in Eq. 32 and form the index ik as in Eq. 31. Call A(ik) to
receive (X,Y) and parse them as in Eq. 34. If xi = b then return ⊥. Otherwise,
give x to the challenger to receive some e′ ∈ {0, 1}r. If e′ = bi then return 0,
and otherwise return 1.

388 S. Garg and M. Hajiabadi

If the probability of the event Surprise is non-negligible, then A wins with
a probability non-negligibly greater than 1

2 . The reason is if e′ was generated
uniformly at random from {0, 1}r, then the probability that e′ = bi is 1

2r =
negl(λ). On the other hand, if e′ was generated as a result of true encapsulation
encryptions (see the description of the game in Lemma 1), then the probability
that e′ = bi is the probability of the event in Eq. 35, which is non-negligible.
Thus, we break the adaptive security of OWFE, a contradiction to Lemma 1. �
Proof (of Lemma 11). The proof of this lemma follows easily from Lemma 12,
so we will give a sketch of the proof. Let β := Pr[Spoof]. We show how to build
an adversary B in the sense of Lemma 12 that wins with probability β

poly(λ) .
Recall h and w from the event Spoof. The adversary B(ik) acts as follows.

– Sample (vk, sgk) $←− SIG.K(1λ).

– Guess w
$←− [m]

– Set ikvkww := ik. Also, sample (ik1−vkw
w , tk1−vkw

w) $←− TDF.K(1λ)

– For all i ∈ [m] \ {w} and b ∈ {0, 1}, sample (ikb
i , tk

b
w) $←− TDF.K(1λ).

– Sample x
$←− {0, 1}n, b := HC(x) and for i ∈ [m], Yi := TDF.K(ikvkii , x||si).

– Sample bplain
$←− {0, 1} and set b1 := bplain ⊕ b.

– Set the challenge public key and ciphertext (pk, c) as in Sim and run the
CCA2 adversary A on (pk, c).

Now guess η to be the index of the first query of A that causes Spoof to
happen and guess h

$←− [m] be the underlying index defined in the event Forge.
Note that B can perfectly simulate the response all the first η − 1 queries of A
as in Sim. The reason is that B has the trapdoor key for all ik1−vki

i , and so it can
perform as in Sim.
The ηth query. Letting the ηth query be

c′ := (vk′,Y′
1, . . . ,Y

′
m, b′

ciph, σ′)

B acts as follows: set (x′, sh) := TDF.F−1(tkvk
′
h

h ,Y′
h) and X′

w := Recover(ik, x′,Y′
w).

Finally, B returns (X′
w,Y′

w).
It is now easy to verify if Spoof occurs and that all the guesses of the adversary

B were correct (i.e., the guessed values for h, w and vk′
w) — which happens with

probability 1
poly(λ) — the adversary B wins in the sense of Lemma 12. �

Acknowledgments. We would like to thank the anonymous reviewers for their useful
comments, and thank Mohammad Mahmoody and Adam O’Neill for useful discussions.

Trapdoor Functions from the Computational Diffie-Hellman Assumption 389

References

1. Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and efficiently searchable
encryption. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 535–552.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5 30

2. Bellare, M., Fischlin, M., O’Neill, A., Ristenpart, T.: Deterministic encryption:
definitional equivalences and constructions without random oracles. In: Wagner, D.
(ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 360–378. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-85174-5 20

3. Bellare, M., Halevi, S., Sahai, A., Vadhan, S.P.: Many-to-one trapdoor functions
and their relation to public-key cryptosystems. In: Krawczyk, H. (ed.) CRYPTO
1998. LNCS, vol. 1462, pp. 283–298. Springer, Heidelberg (1998). https://doi.org/
10.1007/BFb0055735

4. Blum, M., Feldman, P., Micali, S.: Proving security against chosen ciphertext
attacks. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 256–268.
Springer, New York (1990). https://doi.org/10.1007/0-387-34799-2 20

5. Boldyreva, A., Fehr, S., O’Neill, A.: On notions of security for deterministic
encryption, and efficient constructions without random oracles. In: Wagner, D.
(ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 335–359. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-85174-5 19

6. Boneh, D., Boyen, X.: Secure identity based encryption without random oracles.
In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 443–459. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8 27

7. Brakerski, Z., Lombardi, A., Segev, G., Vaikuntanathan, V.: Anonymous IBE,
leakage resilience and circular security from new assumptions. In: Nielsen, J.B.,
Rijmen, V. (eds.) EUROCRYPT 2018, Part I. LNCS, vol. 10820, pp. 535–564.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9 20

8. Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based
encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 207–222. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-24676-3 13

9. Cash, D., Kiltz, E., Shoup, V.: The twin Diffie-Hellman problem and applications.
In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 127–145. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3 8

10. Cho, C., Döttling, N., Garg, S., Gupta, D., Miao, P., Polychroniadou, A.: Laconic
oblivious transfer and its applications. In: Katz, J., Shacham, H. (eds.) CRYPTO
2017, Part II. LNCS, vol. 10402, pp. 33–65. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-63715-0 2

11. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf. The-
ory 22(6), 644–654 (1976)

12. Döttling, N., Garg, S.: From selective IBE to full IBE and selective HIBE. In:
Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part I. LNCS, vol. 10677, pp. 372–408.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2 13

13. Döttling, N., Garg, S.: Identity-based encryption from the Diffie-Hellman assump-
tion. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS, vol. 10401, pp.
537–569. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7 18

14. Döttling, N., Garg, S., Hajiabadi, M., Masny, D.: New constructions of identity-
based and key-dependent message secure encryption schemes. In: Abdalla, M.,
Dahab, R. (eds.) PKC 2018, Part I. LNCS, vol. 10769, pp. 3–31. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-76578-5 1

https://doi.org/10.1007/978-3-540-74143-5_30
https://doi.org/10.1007/978-3-540-85174-5_20
https://doi.org/10.1007/BFb0055735
https://doi.org/10.1007/BFb0055735
https://doi.org/10.1007/0-387-34799-2_20
https://doi.org/10.1007/978-3-540-85174-5_19
https://doi.org/10.1007/978-3-540-28628-8_27
https://doi.org/10.1007/978-3-319-78381-9_20
https://doi.org/10.1007/978-3-540-24676-3_13
https://doi.org/10.1007/978-3-540-24676-3_13
https://doi.org/10.1007/978-3-540-78967-3_8
https://doi.org/10.1007/978-3-319-63715-0_2
https://doi.org/10.1007/978-3-319-63715-0_2
https://doi.org/10.1007/978-3-319-70500-2_13
https://doi.org/10.1007/978-3-319-63688-7_18
https://doi.org/10.1007/978-3-319-76578-5_1

390 S. Garg and M. Hajiabadi

15. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196,
pp. 10–18. Springer, Heidelberg (1985). https://doi.org/10.1007/3-540-39568-7 2

16. Feige, U., Lapidot, D., Shamir, A.: Multiple non-interactive zero knowledge proofs
based on a single random string (extended abstract). In: 31st FOCS, St. Louis,
Missouri, 22–24 October 1990, pp. 308–317. IEEE Computer Society Press (1990)

17. Freeman, D.M., Goldreich, O., Kiltz, E., Rosen, A., Segev, G.: More constructions
of lossy and correlation-secure trapdoor functions. In: Nguyen, P.Q., Pointcheval,
D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 279–295. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-13013-7 17

18. Gertner, Y., Malkin, T., Reingold, O.: On the impossibility of basing trapdoor
functions on trapdoor predicates. In: 42nd FOCS, Las Vegas, NV, USA, 14–17
October 2001, pp. 126–135. IEEE Computer Society Press (2001)

19. Goldreich, O., Levin, L.A.: A hard-core predicate for all one-way functions. In: 21st
ACM STOC, Seattle, WA, USA, 15–17 May 1989, pp. 25–32. ACM Press (1989)

20. Goldwasser, S., Micali, S.: Probabilistic encryption and how to play mental poker
keeping secret all partial information. In: 14th ACM STOC, San Francisco, CA,
USA, 5–7 May 1982, pp. 365–377. ACM Press (1982)

21. Hajiabadi, M., Kapron, B.M.: Reproducible circularly-secure bit encryption: appli-
cations and realizations. In: Gennaro, R., Robshaw, M.J.B. (eds.) CRYPTO 2015,
Part I. LNCS, vol. 9215, pp. 224–243. Springer, Heidelberg (2015). https://doi.
org/10.1007/978-3-662-47989-6 11

22. Haralambiev, K., Jager, T., Kiltz, E., Shoup, V.: Simple and efficient public-key
encryption from computational Diffie-Hellman in the standard model. In: Nguyen,
P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 1–18. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13013-7 1

23. Kiltz, E., Mohassel, P., O’Neill, A.: Adaptive trapdoor functions and chosen-
ciphertext security. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
673–692. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-
5 34

24. Myers, S., Shelat, A.: Bit encryption is complete. In: 50th FOCS, Atlanta, GA,
USA, 25–27 October 2009, pp. 607–616. IEEE Computer Society Press (2009)

25. Naor, M., Yung, M: Public-key cryptosystems provably secure against chosen
ciphertext attacks. In: 22nd ACM STOC, Baltimore, MD, USA, 14–16 May 1990,
pp. 427–437. ACM Press (1990)

26. Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem:
extended abstract. In: Mitzenmacher, M. (ed.) 41st ACM STOC, Bethesda, MD,
USA, 31 May–2 June 2009, pp. 333–342. ACM Press (2009)

27. Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: Ladner,
R.E., Dwork, C. (eds.) 40th ACM STOC, Victoria, British Columbia, Canada,
17–20 May 2008, pp. 187–196. ACM Press (2008)

28. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signature
and public-key cryptosystems. Commun. Assoc. Comput. Mach. 21(2), 120–126
(1978)

29. Rosen, A., Segev, G.: Chosen-ciphertext security via correlated products. In: Rein-
gold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 419–436. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-00457-5 25

30. Wee, H.: Efficient chosen-ciphertext security via extractable hash proofs. In: Rabin,
T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 314–332. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-14623-7 17

https://doi.org/10.1007/3-540-39568-7_2
https://doi.org/10.1007/978-3-642-13013-7_17
https://doi.org/10.1007/978-3-662-47989-6_11
https://doi.org/10.1007/978-3-662-47989-6_11
https://doi.org/10.1007/978-3-642-13013-7_1
https://doi.org/10.1007/978-3-642-13190-5_34
https://doi.org/10.1007/978-3-642-13190-5_34
https://doi.org/10.1007/978-3-642-00457-5_25
https://doi.org/10.1007/978-3-642-14623-7_17

Trapdoor Functions from the Computational Diffie-Hellman Assumption 391

31. Wee, H.: Dual projective hashing and its applications — lossy trapdoor functions
and more. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS,
vol. 7237, pp. 246–262. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-29011-4 16

32. Yao, A.C.-C: Theory and applications of trapdoor functions (extended abstract).
In: 23rd FOCS, pp. 80–91. IEEE Computer Society Press, Chicago, 3–5 November
1982

https://doi.org/10.1007/978-3-642-29011-4_16
https://doi.org/10.1007/978-3-642-29011-4_16

Round Optimal MPC

Round-Optimal Secure Multiparty
Computation with Honest Majority

Prabhanjan Ananth1(B), Arka Rai Choudhuri2, Aarushi Goel2,
and Abhishek Jain2

1 Massachusetts Institute of Technology, Cambridge, USA
prabhanjan@csail.mit.edu

2 Johns Hopkins University, Baltimore, USA
{achoud,aarushig,abhishek}@cs.jhu.edu

Abstract. We study the exact round complexity of secure multiparty
computation (MPC) in the honest majority setting. We construct several
round-optimal n-party protocols, tolerating any t < n

2
corruptions.

1. Security with abort: We give the first construction of two round
MPC for general functions that achieves security with abort against
malicious adversaries in the plain model. The security of our protocol
only relies on one-way functions.

2. Guaranteed output delivery: We also construct protocols that
achieve security with guaranteed output delivery: (i) Against fail-
stop adversaries, we construct two round MPC either in the (bare)
public-key infrastructure model with no additional assumptions, or
in the plain model assuming two-round semi-honest oblivious trans-
fer. In three rounds, however, we can achieve security assuming only
one-way functions. (ii) Against malicious adversaries, we construct
three round MPC in the plain model, assuming public-key encryp-
tion and Zaps.
Previously, such protocols were only known based on specific learn-
ing assumptions and required the use of common reference strings.

All of our results are obtained via general compilers that may be of
independent interest.

1 Introduction

The notion of secure multiparty computation (MPC) [20,31] is fundamental in
cryptography. Informally speaking, an MPC protocol allows mutually distrusting
parties to jointly evaluate a function over their private inputs in such a manner
that the protocol execution does not leak anything beyond the function output.

A fundamental measure of efficiency in MPC is round complexity, i.e., the
number of rounds of communication between the parties. Protocols with smaller
round complexity are more desirable so as to minimize the effect of network
latency, which in turn decreases the time complexity of the protocol. Over the
last three decades, the round complexity of MPC has been extensively studied
in various security models.
c© International Association for Cryptologic Research 2018
H. Shacham and A. Boldyreva (Eds.): CRYPTO 2018, LNCS 10992, pp. 395–424, 2018.
https://doi.org/10.1007/978-3-319-96881-0_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96881-0_14&domain=pdf

396 P. Ananth et al.

MPC with Honest Majority. In this work, we study the exact round com-
plexity of MPC in the honest majority setting, where an adversary may corrupt
up to t parties out of n = 2t+1 total parties. We seek to construct round-optimal
protocols in the plain model without any trusted setup assumptions.

The study of MPC in the honest majority model was initiated in the works
of [5,9]. We recall the main security notions that have been studied over the
years in this model:

• Security with Abort: In this notion, an adversary may learn the function
output but prevent the honest parties from doing so by prematurely aborting
the protocol. This is the most well-studied notion in the dishonest majority
setting, where four rounds are known to be necessary for security against
malicious adversaries [15,27]. Interestingly, this lower bound does not hold
in the honest majority setting, which opens doors to achieving this notion in
fewer rounds.

• Guaranteed Output Delivery: This notion guarantees that the honest
parties always learn the function output (computed over the inputs of “active”
parties) even if some parties prematurely abort the protocol. A relaxation of
this notion, referred to as fairness, guarantees that either all the parties learn
the output or no one does.
It is well known that fairness and guaranteed output delivery are impossible
to realize for general functions in the dishonest majority setting [10]. In the
honest majority setting, however, these notions are indeed possible (see, e.g.,
[5,11]).

Our Questions. We now summarize the state of the art results for the afore-
mentioned security notions and state our motivating questions. We refer the
reader to Sect. 1.2 for a more comprehensive survey of prior work.

We first focus on security with abort. Ishai et al. [26] constructed two round
protocols in a “super” honest majority model where a malicious adversary can
corrupt up to t � n

3 parties (see also [24,29] for efficiency improvements when
n = 3, t = 1). Their protocol achieves a weaker notion of selective security with
abort, where the adversary can choose which honest parties learn the output.
This is necessary since their protocol only uses private channels.

We ask whether it is possible to handle the optimal corruption threshold of
t < n

2 in two rounds (which are known to be optimal [23]), while also achieving
standard notion of security with abort (with the additional use of broadcast):

Q1: Does there exist a two round MPC protocol in the plain model that
achieves security with abort against any t < n

2 malicious corruptions?

For the case of semi-honest adversaries, Ishai and Kushilevitz [25] constructed
two-round MPC in the super honest majority model assuming only one-way
functions for general computations, and with unconditional security for NC1

computations. More recently, several new two-round MPC protocols have been
constructed (see [6,16] and references therein); however, these protocols neces-
sarily require at least semi-honest oblivious transfer since they can also handle

Round-Optimal Secure Multiparty Computation with Honest Majority 397

a dishonest majority of corruptions. We ask whether it is possible to construct
two-round (semi-honest) MPC with honest majority, from weaker assumptions:

Q2: Does there exist a two round MPC protocol for general computations in the
plain model against any t < n

2 corruptions, based only on one-way functions?

We next consider the stronger notion of guaranteed output delivery. In this
setting, Gennaro et al. [18] established the impossibility of two round proto-
cols against t � 2 malicious adversaries in the plain model. More recently, Dov
Gordon et al. [21] established the impossibility of two round protocols over broad-
cast channel (but no private channels) against fail-stop1 adversaries in the com-
mon reference string (CRS) model. Put together, these works leave open the
possibility of achieving guaranteed output delivery against fail-stop adversaries
in two rounds using private channels in the plain model or just using broadcast
channels in the bare public-key (BPK) model.2

Q3: Does there exist a two round MPC protocol that achieves guaranteed
output delivery against any t < n

2 fail-stop corruptions?

In the broadcast-only model, Dov Gordon et al. [21] also constructed a
three round protocol with guaranteed output delivery tolerating t < n

2 fail-
stop corruptions.3 Their protocol, however, requires the use of a CRS and its
security is based on the learning with errors assumption. To achieve security
against malicious adversaries, they compile their protocol with non-interactive
zero-knowledge (NIZK) proofs [7,14]. Their work leaves open the possibility of
constructing three round protocols in the plain model, based on general assump-
tions:

Q3: Does there exist a three round MPC protocol over broadcast channel that
achieves guaranteed output delivery against any t < n

2 malicious corruptions
based on general assumptions, in the plain model?

1.1 Our Results

In this work, we resolve all of the aforementioned questions in the affirmative.
Below, we elaborate upon our results in more detail. Unless mentioned otherwise,
all of our results are in the plain model, and do not require any trusted setup.

Security with Abort. We construct two-round MPC for general computations
that achieves security with abort against any minority of malicious corruptions,
based on one-way functions.
1 A fail-stop adversary behaves like a semi-honest adversary, except that it may choose

to abort at any point (on all the communication channels) based on its view.
2 The BPK model was proposed in [8] where, prior to the start of the protocol, every

player is required to declare a public key and store it in a public file. Since no
assumptions are made on whether or not the public keys deposited are unique or
“bad”, this is considered a weaker model than the standard PKI model.

3 Assuming a special-purpose public-key infrastructure, their protocol can be collapsed
to two rounds.

398 P. Ananth et al.

Theorem 1 (Informal). Assuming one-way functions, there exists a two round
MPC protocol for general circuits that achieves security with abort against any
t < n

2 malicious corruptions.

We emphasize that our protocol in the above theorem only makes black-box
use of one-way functions. In order to prove the above theorem, we devise a gen-
eral compiler that “compresses” an arbitrary polynomial round MPC protocol
(that may use both broadcast and private point-to-point channels) that achieves
security with abort against any minority of malicious corruptions [5,9] into a
two round MPC protocol. Our compiler builds upon the recent beautiful work
of Garg and Srinivasan [16] who construct two-round UC secure MPC with dis-
honest majority from two-round UC secure oblivious transfer, in the CRS model.
Indeed, our compiler can be viewed as an honest-majority analogue of their work
(in the plain model).

Guaranteed Output Delivery. We next turn our attention to constructing
protocols with guaranteed output delivery. We first consider security against
fail-stop adversaries. In this case, we devise a round-preserving compiler that
accepts any two-round semi-honest MPC protocol with a “delayed-function”
property4 and outputs a new protocol that achieves guaranteed output delivery
against non-rushing fail-stop adversaries. If the underlying protocol tolerates
semi-malicious5 corruptions, then the resulting protocol achieves security against
rushing, semi-malicious fail-stop adversaries. Our compiler only requires the use
of one-way functions.

Theorem 2 (Informal). Assuming one-way functions, there exists a general
compiler that transforms any two round semi-honest (resp., semi-malicious)
MPC protocol with delayed-function property into a two-round protocol that
achieves guaranteed output delivery against non-rushing fail-stop (resp., rush-
ing, semi-malicious fail-stop) adversaries.

Our compiler yields the following two kinds of protocols: (i) Protocols in the
plain model that use only private channels, if the underlying protocol only uses
broadcast channels. (ii) Protocols in the (bare) public-key model that only use
broadcast channels, if the underlying protocol uses private channels. We note that
in the latter case, the use of BPK model is necessary due to the impossibility
result of [21].

By applying our compiler from Theorem2 on a variant of the protocol from
Theorem 1 that achieves delayed-function6 property, we obtain the following
result in the BPK model:

4 Roughly, a two-round MPC protocol satisfies the delayed-function property if the
first round messages of the honest parties are computed independent of the function
and the number of parties.

5 A semi-malicious adversary is similar to a semi-honest adversary, except that it may
choose its input and randomness arbitrarily [1].

6 In the technical sections, we describe a simply modification to achieve this property.
The same idea also works for the protocols of [16].

Round-Optimal Secure Multiparty Computation with Honest Majority 399

Corollary 1 (Informal). There exists a two round MPC protocol over broad-
cast channels in the BPK model that achieves guaranteed output delivery against
any t < n

2 (semi-malicious) fail-stop corruptions.

Furthermore, the above protocol can also be easily modified to obtain a three
round protocol in the plain model based only on one-way functions.

Next, by applying the compiler from Theorem2 on a delayed-function variant
of the semi-honest protocol from [16] (that only uses broadcast channels, unlike
the protocol in Theorem 1), we get the following result:

Corollary 2 (Informal). Assuming the existence of semi-honest (resp., semi-
malicious), two-round oblivious transfer, there exists a two round MPC protocol
over private channels that achieves guaranteed output delivery against any t < n

2
fail-stop (resp., semi-malicious fail-stop) corruptions in the plain model.

We next consider security against malicious adversaries. We devise another
compiler that accepts any two-round MPC protocol with guaranteed output
delivery against semi-malicious fail-stop adversaries and outputs a three-round
protocol that achieves guaranteed output delivery against malicious adversaries.
The main tool used in our compiler is a new notion of multi-verifier zero-
knowledge (MVZK) proofs, which may be of independent interest. Briefly, an
MVZK protocol is a multiparty interactive protocol between a single prover
and multiple verifiers where the soundness and zero knowledge properties only
hold when a majority of the parties are honest. An MVZK must also achieve
a strong completeness property such that the honest verifiers always accept the
proof given by an honest prover even if some of the verifiers (who constitute a
minority) are dishonest.

Theorem 3 (Informal). Assuming public-key encryption and two round
delayed-input7 multi-verifier zero-knowledge arguments, there exists a general
compiler that transforms any two round MPC protocol with guaranteed output
delivery against semi-malicious fail-stop adversaries into a three round protocol
with guaranteed output delivery against malicious adversaries.

Our compiler only requires broadcast channels, and is therefore optimal in
the number of rounds, in keeping with the impossibility result of [21]. We next
give a simple construction of delayed-input MVZK arguments based on Zaps [13]
(i.e., two round witness indistinguishable proofs), following the construction of
NIZKs in the multi-CRS model [22]. Then, applying our compiler on the protocol
from Corollary 1, we obtain the following result:

Corollary 3 (Informal). Assuming Zaps and public-key encryption, there
exists a three round MPC protocol over broadcast channels that achieves guar-
anteed output delivery against any t < n

2 malicious corruptions.

7 Delayed-input property for MVZK is defined in the same manner as two-party inter-
active proofs [28], namely, by allowing the prover to choose the instance after the
first round of the protocol.

400 P. Ananth et al.

1.2 Related Work

Over the years, the round complexity of MPC has been extensively studied both
in the honest majority and dishonest majority settings. Here, we focus on the
honest majority setting and refer the reader to [2] for a comprehensive survey of
the literature in the dishonest majority setting.

The study of constant-round MPC was initiated by Beaver et al. [3]. They
constructed such protocols against malicious adversaries in the honest majority
setting using pseudorandom generators (PRGs). Damg̊ard and Ishai [12] later
achieved a similar result by making only black-box use of PRGs.

In a seminal work, Ishai and Kushilevitz [25] constructed two round and
three round semi-honest MPC protocols that tolerate t � n

3 and t < n
2 corrup-

tions, respectively. Subsequently, Ishai et al. [26] constructed two round proto-
cols against t � n

3 malicious corruptions, achieving selective security with abort.
More recently, Ishai et al. [24,29] constructed simpler two round protocols for
n = 3 parties that tolerate any single, malicious corruption.

While the work of [5] already achieved fairness, several subsequent works also
achieve guaranteed output delivery (see, e.g., [11] for references). We highlight
a few results in this regime. Damg̊ard and Ishai [12] constructed a three round
MPC protocol with guaranteed output delivery for t < n

5 . Ishai et al. [26] con-
structed a two round protocol with guaranteed output delivery using only private
channels for the special case of t = 1, n � 5. Further, they also constructed a
two-round protocol in the client server model, with n clients and m > 2 servers,
that tolerates a single corrupted client and t � n

5 colluding servers. Subsequently,
Asharov et al. [1] constructed five round protocols with guaranteed delivery for
t < N/2, assuming learning with errors (LWE) and NIZKs. More recently, Ishai
et al. [24] constructed several protocols with guaranteed output delivery for the
case of t = 1 and n = 4: a two round statistically secure protocol for linear
functionalities, a two round computationally secure protocol for general func-
tionalities with guaranteed output delivery from injective one-way functions,
and a two round unconditionally secure protocol for general functionalities with
guaranteed output delivery in the preprocessing model. Dov Gordon et al. [21]
constructed a three round protocol with guaranteed output delivery in the CRS
model with broadcast-only messages assuming LWE and NIZKs.

Gennaro et al. [18] established a lower bound for achieving guaranteed output
delivery against malicious adversaries. They ruled out the existence of two round
protocols in the plain model that achieve guaranteed output delivery against
t � 2 malicious parties. More recently, Dov Gordon et al. [21] established a
stronger lower bound for protocols that only use broadcast channels. Specifically,
they ruled out the existence of two round protocols over broadcast channels that
achieve guaranteed output delivery against (non-rushing) fail-stop adversaries in
the CRS model.

Round-Optimal Secure Multiparty Computation with Honest Majority 401

2 Preliminaries

In our constructions, we make use of some well studied primitives like garbled
circuits [31] and threshold secret sharing [30]. While garbled circuits with selec-
tive security suffice for our application in Sect. 4, we require adaptive garbled
circuits in Sect. 5. An adaptively secure garbled circuit is one where the adver-
sary first gets to see a garbling for any circuit of his choice. After seeing this
garbled circuit, he can adaptively choose an input and obtain labels correspond-
ing to that input. For our application, the online complexity (i.e., size of input
wire labels) is not important; as such it suffices to use one-time pads with Yao’s
garbled circuits as suggested in the work of Bellare et al. [4] to obtain adaptively
secure garbled circuits from one-way functions. We refer the reader to [4] or the
full version of our paper for a formal definition of this primitive.

We use various notions of security for secure multiparty computation (MPC)
in our constructions. Apart from the standard notion of security with abort that
guarantees correctness of output of the honest parties (when the adversary does
not prematurely abort), we also consider a relaxed notion of security called
privacy with knowledge of output [26]. The only difference from the definition
for security with abort is that in the ideal world, on receiving outputs from
the trusted party, the adversary can choose the output it wants to send to the
honest parties. It is easy to see that this is a weaker notion since the correctness
of output for the honest parties is no longer guaranteed. A formal definition of
this can be found in the full version of our paper, or in [26]. We also consider
security with guaranteed output delivery against both fail-stop and malicious
adversaries.

For our application in Sect. 5, we also consider MPC protocols with a delayed
function property, i.e., protocols where the first round messages of all parties are
independent of the function and the number of parties in the protocol.

3 Definitions

In this section, we define some new notions that we consider in this work.

3.1 Multiparty Oblivious Transfer Protocol

A multiparty oblivious transfer (OT) protocol consists of n-parties, where one
of the parties Pn is the receiver and every other party P1, . . . , Pn−1 is a sender.
Sender Pi has inputs mi,0,mi,1 and the receiver R has a private input σ1. At
the end of this protocol every party learns only {mi,σ1}i∈[n−1].

Before proceeding we note that every player gets the output. Therefore, on
completion of the protocol there is no receiver security. For our applications this
is completely fine. On the other hand, we will insist that if the second round of
the protocol is not executed the receiver privacy is maintained. We should also
point out that we have given a general definition, but this can be appropriately

402 P. Ananth et al.

modified to let only the receiver obtain the output by setting every other party’s
output to be ⊥.

We consider protocols that have both broadcast and private messages mB

and mpriv. But for convenience of notation we denote this as m := (mB ,mpriv).
When we say such a message is sent, we indicate that mB is sent by broadcast
and mpriv is sent privately.

We consider a variant of the multiparty OT protocol, which we shall denote
as multiparty homomorphic oblivious transfer protocol. In this variant there is a
special designated sender ̂S (=Pn−1) with an additional input σ2. At the end of
the protocol, every party learns only {mi,σ1⊕σ2}i∈[n−1]. The regular multi-party
OT can be thought of as a special mode of the homomorphic oblivious transfer
where the additional input from this special designated sender is ignored (or set
to 0). Hence, it is convenient to formally define the homomorphic notion of the
multiparty OT, but we shall use both these notions:

Definition 1 (Multiparty Homomorphic OT Protocol). A two round 1-
out-of-2 multiparty homomorphic oblivious transfer protocol OT =

(

OTR
1 ,OT

̂S
1 ,

OTS
1 ,OT2,OT3

)

is an interactive protocol between n parties, where one of the
parties is the receiver, one of the parties is a special designated sender and
the others are senders. The sender parties Pi for i ∈ [n − 1] have inputs
mi,0,mi,1 ∈ {0, 1}λ, the receiver party Pn has an input bit σ1 ∈ {0, 1}, and
the special designated sender Pn−1 has an additional input σ2 ∈ {0, 1}.
First round. The parties compute their first round messages as follows:

– Receiver:
{

otn[j]1→n,n−1

}

j∈[n]
← OTR

1 (σ1) where otn[j]1→n,n−1 refers to the
message that the party j receives from the receiver (party Pn). The subscript
→ n, n−1 denotes that the designated special sender is Pn−1 while the receiver
is Pn.

– Special sender:
{

otn−1[j]1→n,n−1

}

j∈[n]
← OT

̂S
1 ((mn−1,0,mn−1,1) , σ2). The

notation is almost identical to the previous case, but the notation here iden-
tifies this as a message from the special sender (party Pn−1).

– Senders: Each party i ∈ [n − 2] computes
{

oti[j]1→n,n−1

}

j∈[n]
← OTS

1

(mi,0,mi,1). The notation is almost identical to the previous case, but the
notation here identifies this as the message from the corresponding sender
(party Pi).

Each party sends Pj its corresponding message. Thus, at the end of the first
round each party Pj has

{

oti[j]1→n,n−1

}

i∈[n]
.

Second Round. Each party Pi computes their second round message

oti[⊥]2→n,n−1 ← OT2

(

{

otj [i]1→n,n−1

}

j∈[n]

)

. Here by ⊥ we denote that the mes-
sage is broadcast to every party.

Output Computation. Every party computes the output as follows
(

{m̃i}i∈[n−1]

)

:= OT3

(

{

oti[⊥]2→n,n−1

}

i∈[n]

)

Round-Optimal Secure Multiparty Computation with Honest Majority 403

We require the following properties from the protocol:

1. Correctness: For every σ1, σ2 ∈ {0, 1}, and sender input messages ∀i ∈
[n], b ∈ {0, 1} mi,b ∈ {0, 1}λ, Pr

[∀i ∈ [n − 1] m̃i = mi,σ1⊕σ2

]

= 1 where
the randomness is over the coins used to compute the first and second round
messages of the protocol.

2. Security: We consider two notions of security depending on whether or not
the second round of the protocol is executed:
– Privacy. If the protocol terminates at the end of the first round, then the

notion of privacy is satisfied;
– Privacy with Knowledge of Outputs against Malicious Minority:

If the second round is executed (by the honest parties at least), then for
any PPT adversary A controlling a minority set of the parties, there exists
a PPT simulator Sim = (SimOT,ExtOT) satisfying the security notion of
privacy with knowledge of outputs (defined in Sect. 2).
The role of the extractor ExtOT is to extract the adversary’s input from
its first round messages. On the other hand, the role of the SimOT is to
generate the transcript for the protocol.

Instantiation. The multiparty homomorphic oblivious transfer protocol with
inputs ({mi,b[�]}i∈[n−1],b∈{0,1},�∈[λ] , σ1, σ2), where σ1, σ2,mi,b[�] ∈ {0, 1}, can be
thought of as a vector of degree 2 polynomials in F2: ∀i ∈ [n−1], � ∈ [λ] mi,0[�] ·
(1+σ1 +σ2)+mi,1[�] · (σ1 +σ2). The work of Ishai et al. [26] gives us an explicit
construction for such a degree 2 polynomial computation protocol:

Theorem 4 ([26]). For n = 2t + 1, where t is the number of corrupted parties,
there exists a 2 round protocol that computes a vector of polynomials of degree 2
and satisfies statistical t-privacy with knowledge of outputs.

We note that the original stated lemma in [26] requires |F| > n, but this
condition can be relaxed to computing polynomials in F2 if we can construct a
2-multiplicative (2t+1, t) linear secret sharing scheme that is pairwise verifiable
(see [26] for details). In fact, [26] discusses how to construct such a scheme, which
in turn suffices for our notion of the multiparty homomorphic OT.

3.2 Multi-Verifier Zero Knowledge Proof System

A multi-verifier zero-knowledge proof system consists of a prover P and n ver-
ifiers V1, . . . , Vn. The prover and the verifiers share a statement x that belongs
to an NP-language. The prover additionally holds a private input w. If w is a
valid witness for the statement x, all honest verifiers must be able to output 1.
If x does not belong to the NP-language, honest verifiers should not output 1
with a very high probability. The verifiers should not learn anything about w in
either case.

Consider n verifiers, where t can be corrupted. For completeness, t � n,
for soundness, t � n − 1, and for ZK, t � n. Note that in the extreme case,
the definition subsumes the standard ZK definition since all the verifiers can be

404 P. Ananth et al.

combined into one. In our constructions, we will focus on the honest-majority
case, where for soundness, t � n−1

2 and for ZK, t � n
2 . For our constructions, we

require a two round multi-verifier zero knowledge protocol that satisfies delayed
input property, i.e., first round messages of both the prover and verifier and
second round messages of verifier are independent of the statement.

A formal definition of this primitive is as follows:

Definition 2 (Two Round Multi-Verifier Zero Knowledge). A two round
multi-verifier zero-knowledge proof system associated with an NP relation R is
an interactive zero-knowledge protocol with a prover P and n verifiers V1, . . . , Vn.
The prover and the verifiers hold an instance x of the language L(R) defined by
the relation R. The prover also holds a string w ∈ {0, 1}λ. It can be defined as
a tuple of PPT algorithms mvzk := (P1

mvzk,V
1
mvzk,P

2
mvzk,V

2
mvzk,Verifymvzk).

– pMsg1 ← P1
mvzk(1

λ): P1
mvzk takes the security parameter λ as input and outputs

first round messages of the prover.
– vMsg1i ← V1

mvzk(1
λ, i): V1

mvzk takes the security parameter λ and index i of the
verifier as input and outputs first round messages of the verifier.

– pMsg2 ← P2
mvzk(trans

1
mvzk, x, w): P2

mvzk takes the first round transcript of mvzk,
trans1mvzk := (pMsg1, {vMsg1i }i∈[n]), the statement x and the witness w as
input and outputs second round messages of the prover.

– vMsg2i ← V2
mvzk(i, trans

1
mvzk): V

2
mvzk takes index i of the verifier and the first

round transcript of mvzk, trans1mvzk := (pMsg1, {vMsg1i }i∈[n]) as input and
outputs second round messages of the verifier.

– b := Verifymvzk(i, {transrmvzk}r∈[2], x): Verifymvzk takes index i of the verifier,
the entire transcript of the protocol and the statement x as input and outputs
a bit b.

We want the multi-verifier zero-knowledge proof system to satisfy the following
properties:

1. Completeness: For every n.u. PPT adversary A that corrupts up to t veri-
fiers, let H ⊂ [n] be the set of honest verifiers, then for every x ∈ L(R) and
for all honest verifiers Vi, where i ∈ H,

Pr[Verifymvzk(i, {transrmvzk}r∈[2], x) = 1] = 1

2. Soundness: For every adversary A controlling the prover (P ∗) and upto t
verifiers, let H ⊆ [n] be the set of honest verifiers, then for every x /∈ L(R)
and for all honest verifiers Vi where i ∈ H,

Pr[Verifymvzk(i, {transrmvzk}r∈[2], x) = 1] � μ(λ)

for some negligible function μ.
We require a slightly stronger notion of soundness, where soundness holds,
even if an adversarial prover is allowed to choose the statement after looking
at the first round messages of honest verifiers.

Round-Optimal Secure Multiparty Computation with Honest Majority 405

3. Zero-Knowledge: For every n.u. PPT adversary A, that corrupts upto t ver-
ifiers, let H ⊆ [n] be the set of honest verifiers, then there exists a PPT Sim-
ulator Simmvzk := (Sim1

mvzk,Sim
2
mvzk), s.t., for every x ∈ L(R), w ∈ R(x), z ∈

{0, 1}∗ and a negligible function μ(.),

|Pr[ExpZKA,Simmvzk
(1λ, 0) = 1] − Pr[ExpZKA,Simmvzk

(1λ, 1) = 1]| � μ(λ)

where the experiment ExpZKA,Simmvzk
(1λ, b) is defined as follows:

(a) The adversary A gets (pMsg1, {vMsg1i }i∈H), which are computed as
follows:
– If b = 0: pMsg1 ← P1

mvzk(1
λ), {vMsg1i }i∈H ← {V1

mvzk(1
λ, i)}i∈H

– If b = 1: (pMsg1, {vMsg1i }i∈H) ← Sim1
mvzk(1

λ,H).
(b) The adversary A sends {vMsg1i }i/∈H and specifies x,w and gets

(pMsg2, {vMsg2i }i∈H), which are computed as follows:
– If b = 0: pMsg2 ← P2

mvzk(trans
1
mvzk, x, w), {vMsg2i }i∈H ←

{V2
mvzk(i, trans

1
mvzk)}i∈H .

– If b = 1: (pMsg2, {vMsg2i }i∈H) ← Sim2
mvzk(H, trans1mvzk, x).

(c) The adversary outputs a bit b′, which is the output of the experiment.

If the soundness property only holds against polynomial-time adversaries,
then we refer to the above system as an argument system.

In the full version, we provide a construction of multi-verifier ZK arguments
based on Zaps. Our protocol is based on the multi-CRS NIZK construction of
[22], with some changes to achieve the strong completeness property.

4 Security with Abort Against Malicious Adversaries

Overview. We start by providing an overview of our construction. Our starting
point is the recent beautiful work of Garg and Srinivasan [16].

Recap of [16] . Garg and Srinivasan [16] constructed two-round maliciously secure
MPC against dishonest majority based on any two-round OT in the CRS model
with some specific security properties (that we discuss below). At a high level,
their protocol works by compiling a multi-round maliciously secure protocol of
a very specific syntactic structure (where each round only consists of a single
bit broadcast by one party to all the other parties), which they refer to as a
conforming protocol, into a two round protocol using OT.

The compiler of Garg and Srinivasan uses a two-round OT protocol in the
CRS model with the following properties: (1) simulation-based security against
malicious receivers (which implies that the simulator can extract the input bit
from a malicious receiver); and (2) equivocation of the honest receiver bit. Unfor-
tunately, in two rounds, these properties can only be achieved in the common
random string (CRS) model in the dishonest majority setting.

At a high level, OT is used to transmit garbled circuit labels for a single
input (that corresponds to a message in the underlying conforming protocol) to

406 P. Ananth et al.

an evaluator. Loosely speaking, a “speaker” party in any round of the under-
lying conforming protocol sends a receiver’s OT message in the first round of
the two-round protocol. The receiver’s message is computed using as input the
bit b which is supposed to be broadcast in the underlying protocol. Note that
these messages are not actually known in the first round, so the “speaker” party
actually prepares multiple OT messages. Every other party (unaware of this
bit ahead of time) computes the OT protocol message with the two labels for
its own garbled circuit as its sender input. At a later point, when the message
bit is broadcast, the OT receiver also reveals the randomness used to compute
the appropriate first OT message. This enables an evaluator, different from the
receiver, to obtain the appropriate labels for each garbled circuit and then eval-
uate them correctly.

However, this release of the randomness used to compute the OT receiver
messages creates a problem during simulation against a rushing adversary since
a simulator, who computes an OT receiver message on behalf of an honest party,
does not know what inputs to use. For this reason, the compiler in [16] requires
the ability to equivocate receiver’s randomness.

Challenges. We face some challenges in adopting the template of [16] to achieve
our goal of constructing a maliciously secure two-round MPC protocol in the
honest majority setting from one-way functions. We highlight a couple of them
below.

– Issue #1. Replacing Oblivious Transfer: If we have any hope of basing our
construction on one-way functions, we first need to figure out how to replace
the oblivious transfer protocols in [16] for the honest majority setting. Note
that the oblivious transfer protocols are used in two places in [16]: (i) in the
interactive secure MPC protocol and, (ii) in the transformation of conforming
protocols into two-round secure MPC protocols. We handle both (i) and (ii)
separately.

– Issue #2. Private Channels: We first handle (i) by starting with a interac-
tive secure MPC protocol in the honest majority setting. The existence of
such a protocol achieving perfect security is known in literature [5,9]. How-
ever such protocols, in addition to broadcast channels, inherently use private
channels – every pair of parties has a channel designated to them such that
any communication on this channel cannot be observed by an external entity.
However, the approach of [16] starts with an interactive secure MPC protocol
that uses only broadcast channels. Hence, we need to modify their approach
that will enable us to handle private channels in the underlying interactive
secure MPC protocol.

Multiparty Homomorphic Oblivious Transfer. Towards solving both the above
issues, we introduce the notion of multiparty homomorphic oblivious transfer.
For simplicity, we first focus on achieving the weaker goal of semi-honest secure
two-round MPC in the honest majority setting.

As the name suggests, this notion is a multiparty protocol where only three
of the parties have inputs and the rest of the parties have no inputs. These three

Round-Optimal Secure Multiparty Computation with Honest Majority 407

parties are termed as sender, receiver and designated sender. The sender8, has
inputs (m0,m1), receiver has input a bit σ1 and the designated sender has input
a mask σ2. At the end of the protocol, every party receives the output mσ1⊕σ2 .
We can also consider a weaker notion where the designated sender does not
supply any input and we term such a notion as multiparty OT (in particular,
not homomorphic). In this case, every party receives mσ1 .

We can use this protocol to replace the oblivious transfer protocols in the
transformation from conforming protocols to two-round secure MPC protocols.
Moreover this protocol can be instantiated from two-round perfectly secure MPC
protocols for quadratic polynomials [5,9]9. To see how this can be used to solve
the issue of private channels, we make the following modifications to the frame-
work of [16].

– We start with an interactive perfectly secure MPC protocol that uses only
broadcast channels in the pre-processing setting. By pre-processing, we mean
that the parties can exchange information with each other over private chan-
nels before seeing any input. Once pre-processing phase is over, the parties
receive the inputs in the online phase and during this phase, they perform
secure computation only using broadcast channels. Such a protocol can be
achieved by starting with an perfectly secure protocol without pre-processing
but using private channels: the parties can exchange one-time pads (of suit-
able length) in the pre-processing phase to emulate the private channels in
the online phase. In particular, whenever a party Pi has to send a message to
another party Pj , it encrypts its message using the one-time pad Pj sent to
Pi during the online phase. We transform such a interactive MPC protocol
into a conforming protocol in the pre-processing setting.

– To transform a conforming protocol in the pre-processing setting into a
two-round protocol, the main challenge we encounter is to get rid of the
pre-processing phase. Specifically, every party in the two-round protocol is
required to commit to all its actions (corresponding to the conforming pro-
tocol) in the first round. This is not possible if we start with a conforming
protocol in the pre-processing setting since the actions of the parties depend
on the output of the pre-processing phase which cannot be computed before
the first round in the two-round protocol. This is where we crucially use the
homomorphism property of the multiparty homomorphic OT protocol.

Malicious Security. While the use of multiparty homomorphic OT protocol can
be used to achieve a semi-honest secure two-round MPC protocol in the honest
majority setting, we need additional mechanisms to prove security against mali-
cious adversaries. We start by incorporating the equivocation mechanism inside
our multiparty homomorphic protocol.
8 For simplicity, we explain the main ideas using just a single sender. We use a gener-

alized version with multiple senders.
9 Note that [5,9] dealt with computations over large fields while we need to securely

compute quadratic polynomials over boolean fields. By suitably using extension fields
in [5] we can solve this issue.

408 P. Ananth et al.

Equivocation. Instead of using an OT protocol that explicitly allows for ran-
domness equivocation, we achieve a similar effect from the fact that an honest
receiver’s input in the multiparty OT protocol is not fixed in the adversary’s
view when it can corrupt only a minority of parties.

Given a maliciously secure multiparty homomorphic OT protocol satisfying
these properties, one could obtain the required compiler following the above
strategy. However, we do not know of such a protocol in only two rounds.

Towards this, we note that the work of Ishai, Kushilevitz and Paskin [26]
construct a two round protocol for degree 2 polynomial computation, in the
honest majority setting. While their protocol does not achieve full malicious
security, it achieves a weaker notion they refer to as privacy with knowledge of
outputs. Roughly, this notion is similar to standard malicious security, except
that it does not guarantee correctness of outputs received by the honest parties.
In particular, the adversary can explicitly set the output of the honest parties to
any value of its choice (in this sense, it “knows” the honest party outputs). Since
a multi-party OT can be represented as a degree 2 polynomial computation, a
two-round multi-party OT protocol achieving this weaker security notion can be
obtained from [26].

Our main insight is that this weaker notion of multiparty homomorphic OT
can still be used to obtain our desired compiler. In the protocol by Garg and
Srinivasan [16], it is essential that OT security holds against malicious receivers
that attempt to equivocate their receiver bit. It would seem that in our weaker
model, since the adversary can set the output to be a value of its choice, it could
potentially change the output from say mb to m1−b, where b was its input to the
OT protocol. This would completely break simulation since the adversary could
essentially equivocate its input, and thus the guarantees of the protocol in [16]
would no longer apply. This is where we use the knowledge of output property
of the protocol, i.e. the output that the honest parties receive is known to the
adversary. In the case of the OT protocol, when the sender is honest, an ideal
world adversary receives only mb and m1−b remains hidden. Thus the output of
honest parties forced by the adversary are independent of m1−b. This does not
stop the adversary to from setting it to a random value. However, since messages
mb and m1−b correspond to wire keys of a garbled circuit, we can rely on the
security of the garbling scheme which ensures that a garbled circuit cannot be
evaluated unless the evaluator has one of the keys.

4.1 Conforming Protocols

Let Φ be an n-party deterministic MPC protocol with honest majority. Let
P = {P1, . . . , Pn} be the set of parties in the protocol with inputs x1, . . . , xn

respectively. A conforming protocol can be defined by a tuple of 3 functions
(pre, comp, post).

Pre-processing Phase: For each (i ∈ [n]), party Pi computes the following:
(zi, v̂i) ← pre(1λ, i, xi). The randomized algorithm pre takes as input, the index

Round-Optimal Secure Multiparty Computation with Honest Majority 409

i of the party, its input xi and outputs zi ∈ {0, 1}�/n and v̂i ∈ {0, 1}�. v̂i is
private information, that it retains with itself. We require that v̂i[k] = 0 for all
k ∈ [�] \ {(i − 1)�/n, · · · , i�/n}. zi is a public value that is broadcast to every
other party in the protocol.

Each party Pi additionally samples masks rk→i for all k ∈ [n] \ {i} of appro-
priate length (to be discussed shortly). The mask rk→i is sent privately to Pk.

Computation Phase: The computation phase can be viewed as a series of
T actions Φ1, . . . , ΦT . Each action Φr, for t ∈ [T], can be parsed as tuple of 5
indices, Φt = (i∗, j∗, f, g, h), where i∗ ∈ [n], j∗ ∈ [n]∪{⊥}, and f, g, h ∈ [�]. Since
Φ is a deterministic protocol, Φ1, . . . , ΦT , are known to each party in advance.

– For all j ∈ [n] \ {i}, Ij→i = {h | Φ·(j, i, ·, ·, h)}, and Ii := ∪j∈[n]\{i}Ij→i
10.

Hence, for each k ∈ [n] \ {i}, rk→i ∈ {0, 1}|Ik→i|. From each rk→i, we want to
refer to the bit in rk→i that is associated with the index h. This is achieved
by defining the following function rk→i(h) := rk→i[ρ(h)], where ρ(h) is the
index of h in Ik→i. We are able to do so because we are treating as an ordered
set.

– We now create the vector v ∈ {0, 1}� from v̂ and masks rk→i.

vi[k] :=

⎧

⎪

⎨

⎪

⎩

v̂[k] if k ∈ {(i − 1)�/n, · · · , i�/n}
rπ(k)→i[k] if k ∈ Ii

0 otherwise

where π(k) is j such that k ∈ Ij→i. We simply update v̂ to include the mask
bits at the appropriate position. It is important to note that these updates make
sense only if for every i the sets Ij→i are disjoint. This will indeed be enforced
in the conforming protocol (see below).

Let For each i ∈ [n], party Pi does the following:
Sets, sti = (z1|| . . . ||zn) ⊕ vi

For each t ∈ {1, . . . , T},

1. Parse Φt as (i∗, j, f, g, h)
2. If i = i∗, compute sti[h] = NAND(sti[f], sti[g]) ⊕ ri→j(h) (where ri→j(h) = 0

if j =⊥) and broadcast sti[h] ⊕ vi[h] to all other parties.
3. Else, updates sti[h] to the bit value received from Pi∗ .

We require each action Φt, for t ∈ [T], to update a unique position h in the
state. More specifically, ∀t, t′ ∈ [T] such that t �= t′, if Φt = (., ., ., ., h) and
Φt′ = (., ., ., ., h′), then h �= h′. Additionally, for every party Pi we require that
a bit at index h sent privately to a party Pj is not used as a input to a NAND
computation by Pi. Formally, ∀t ∈ [T] if Φt = (i, j, ·, ·, h) where j �=⊥ then
�t′ ∈ [t, T] such that Φt′ = (i, ·, h, ·, ·) or Φt′ = (i, ·, ·, h, ·). We denote Ai ⊂ [T]
be set of rounds in which party Pi sends a bit.

10 We abuse notation slightly and consider each Ij→i to be an ordered set, ordered
increasingly by h.

410 P. Ananth et al.

We note that the non-repetition of h ensures that for every i, k the sets Ii→k

are disjoint.

Output Phase: For each i ∈ [n], party Pi outputs post(sti).

Transformation to a Conforming Protocol. Let Π be an n-party determin-
istic MPC protocol with honest majority. Let P = {P1, . . . , Pn} be the parties
in the protocol Π. Let each party Pi have input xi ∈ {0, 1}m. We want to trans-
form this protocol Π to a conforming protocol Φ, while preserving its security
and correctness. We allow the protocol Π to use both broadcast and private
channels.

We can assume w.l.o.g. that only a single bit is communicated by one party
in each round of Π. This can trivially be achieved by increasing the round
complexity of the protocol. As discussed, this bit can be broadcast or sent to
a specific party. Since only a single bit is communicated in each round by one
party, the message complexity in this case is equivalent to the round complexity.
Let the message/round complexity of Π after increasing the round complexity
be p. Let Cr be the circuit computed in round r ∈ [p]. Again we can assume
without loss of generality that this circuit is only composed of NAND gates with
fan-in two and each Cr is composed of q NAND gates.

We now describe how to transform Π into a conforming protocol Φ. There
are T = pq rounds in Φ. Let � = mn + pq and �′ = pq/n

– pre(1, xi):
1. Samples ri ← {0, 1}m and si ← ({0, 1}g−1||0)p/n.
2. Output zi := xi ⊕ ri||0�′

and vi := 0�/n|| . . . ||ri||si|| . . . ||0�/n

– comp := {Φ1, . . . , ΦT }: As specified in the transformation above, each round
r ∈ [p] in Π is expanded into q actions in Φ. Each of these actions {Φt}t,
where t ∈ {(r − 1)q + 1, . . . , rq} is a single NAND computation. For each t,
Φt is set as (i∗, j∗, f, g, h). f, g are the locations in sti∗ that the tth NAND
gate in Cr is computed on. h is the first location in sti∗ amongst the locations
(i∗ −1)�/n+m+1 to i�/n that has not been updated before. For t ∈ {(r−1)
q + 1, . . . , rq − 1}, j∗ :=⊥, and for t = rq, j∗ is set to be the recipient of the
bit in the round r of Π. If the bit is to be broadcast in round r of Π, j∗ is
set to ⊥.

– post(i, sti) Party Pi gathers messages sent by other parties in Π from the
final sti and runs the output phase of Π to output the output.

To ensure the global invariant property (defined shortly) when there are
private channels involved, we require the second property described in the con-
forming protocol. Namely, if a player Pi sends a bit in index h over a private
channel, Pi cannot subsequently use the index h as an input to a NAND gate.
This is easily fixed by “copying” the bit at index h by recomputing the bit to
a new position h′ in the subsequent round of Pi. This increases the number of
NAND gate in each round by 1, and does not affect the transformation above.

The changes in the conforming protocol, and the transformation is to accom-
modate underlying protocols that use both broadcast and private channels. The
conforming protocol in [16] relies on the underlying protocol to use only broad-
cast channels.

Round-Optimal Secure Multiparty Computation with Honest Majority 411

4.2 Our Compiler

Building Blocks. The main primitives required in this construction are:

1. A maliciously secure conforming protocol Φ with honest majority.
2. A garbling scheme (Garble,Eval) for circuits.
3. A 2 round Multiparty Homomorphic Oblivious Transfer Protocol that works

in the honest majority setting.

Theorem 5. Assuming maliciously secure conforming protocol Φ, secure gar-
bling scheme (Garble,Eval) and a 2 round multiparty homomorphic OT protocol
the two round protocol Π described below achieves security with abort against
any t < n

2 malicious corruptions.

We instantiate the underlying MPC protocol with an information-theoretic
honest majority MPC protocol such as [5,9]. Further, our compiler makes only
black-box use of one-way functions.

While we describe our complier for malicious adversaries using both broad-
cast and private channels, it is easy to see that our protocol is secure against
semi-honest adversaries that use only private channels.

Protocol. Let P = {P1, . . . , Pn} be the set of parties in the protocol and let
{x1, . . . , xn} and {r̃1, . . . , r̃n} be their respective inputs and randomness. Next,
we describe the protocol Π in detail:

Round 1. Each party Pi does the following:

1. Run the pre-computation phase to compute (zi, vi): (zi, v̂i,) ← pre(1λ, i,
(xi, r̃i)). Sample masks {rj→i}j∈[n]\{i} of appropriate length and construct
vi as in the conforming protocol (see Subsect. 4.1). Broadcast zi and send
each rj→i to Pj .

2. For each round t ∈ [T]:
– Parse Φt as (i∗, j∗, f, g, h)
– If Pi is the speaker, i.e., i = i∗, we compute the first round OT receiver

messages. Specifically, for each α, β ∈ {0, 1}:
{

oti[j]
1,t,α,β
→i∗,j∗

}

j∈[n]
← OTR

1 (vi,h ⊕ NAND (vi,f ⊕ α, vi,g ⊕ β)) .

In the case that j∗ =⊥, this is the regular OT (without the special
designated sender). Send Pj its corresponding message.

– Else (if i �= i∗),
– it computes the sender OT messages. First, it generates labels for the

t-th round:
{

labi,t
k,0, lab

i,t
k,1

}

k∈[�]
← Gen(1λ). Next, it computes the OT

messages: ∀α, β ∈ {0, 1}
– if i = j∗,11

{
oti[j]

1,t,α,β
→i∗,j∗

}
j∈[n]

← OT
̂S
1

(
labi,t

h,ri∗→i(h), lab
i,t
h,1⊕ri∗→i(h), ri∗→i(h)

)

11 The labels are ordered such that when σ1 ⊕ σ2 = ri∗→i(h) ⊕ γ, the selected label
would be labi,t

h,γ .

412 P. Ananth et al.

– else,
{

oti[j]
1,t,α,β
→i∗,j∗

}

j∈[n]
← OTS

1

(

labi,t
h,0, lab

i,t
h,1

)

where h is the index specified by Φt.
Send

{

oti[j]
1,t,α,β
→i∗,j∗

}

α,β∈{0,1}
to party Pj .

Round 2. Each party Pi does the following:

1. Set state. The local state is defined as sti := (z1|| . . . ||zi|| . . . ||zn) ⊕ vi

2. For each t from T to 1,
(a) Parse Φt as (i∗, j∗, f, g, h)
(b) Compute the second round OT messages as follows:

∀α, β ∈ {0, 1}, oti[⊥]2,t,α,β
→i∗,j∗ ← OT2

(

{

otj [i]
1,t,α,β
→i∗,j∗

}

j∈[n]

)

(c) Compute the garbled circuit as

P̃i,t ← Garble

(

P

[

i, Φt, vi,
{

oti[⊥]2,t,α,β
→i∗,j∗

}

α,β∈{0,1}
, lab

i,t+1
, {ri→j}j∈[n]\{i}

]

,

{

labi,t
k,b

}

k∈[�],b∈{0,1}

)

.

where the program P is defined in Fig. 1.
3. Broadcast the garbled program, and the keys to the first circuit:

(

{P̃i,t}t∈[T],
{

labi,1
k,sti,k

}

k∈[�]

)

to every other party.

Evaluation. To compute the output of the protocol, each party Pi does the
following:

1. For each j ∈ [n], let ˜lab
j,1

:=
{

labj,1
k

}

k∈[�]
be the labels received from party

Pj at the end of Round 2.
2. For each t from 1 to T do:

(a) Parse Φt as (i∗, j∗, f, g, h)
(b) Evaluate the t-th garbled circuit received from party i∗

(

(α, β, γ), ˜lab
i∗,t+1

, oti∗ [⊥]2,t
→i∗,j∗

)

:= Eval

(

P̃i∗,t, ˜lab
i∗,t

)

(c) Update the h-th bit in the local state: sti,h := γ ⊕ vi,h.
(d) Evaluate the t-th garbled circuits for each other party.

For each j �= i∗ compute:
(

{

labj,t+1
k

}

k∈[�]\{h}
, otj [⊥]2,t

→i∗,j∗

)

:= Eval
(

P̃j,t, ˜lab
j,t)

Round-Optimal Secure Multiparty Computation with Honest Majority 413

(e) To compute the label of the h-th input wire, of the (t + 1)-th garbled
circuit, for each party other than i∗, we apply the OT output function
OT3. Recover

(

{

labj,t+1
h

}

j∈[n]\{i∗}

)

:= OT3

(

{

otj [⊥]2,t
→i∗,j∗

}

j∈[n]

)

For each j �= i∗ set ˜lab
j,t+1

:=
{

labj,t+1
k

}

k∈[�]
.

3. Compute the output as post(i, sti).

Fig. 1. Program P

Correctness. An important property of the protocol is that ∀i, j ∈ [n] and
k ∈ �, we have sti[k] ⊕ vi[k] = stj [k] ⊕ vj [k]. This is denoted by a value st∗,
which we shall refer to as the global invariant. In addition, the transcript of the
execution in the computation phase is denoted by Z ∈ {0, 1}T . Correctness of
the protocol in [16] follows from this global invariant property and the structure
of vi.

From the correctness of the multiparty homomorphic OT, the difference from
the protocol in [16] arises when there exists t ∈ [T] such that Φt = (·, j, ·, ·, h)
such that j �=⊥. Or in other words, when there is a private message to be sent.
In this case, every Pi for i ∈ [n] \ {j} sets their respective state sti[h] to be
ri→j ⊕ δ where δ is the computation of the NAND functionality, and ri→j is the
mask selected by Pj . From the structure of vi, for every i ∈ [n] \ {j}, vi[h] = 0.
On the other hand, Pj updates its state to be stj [h] = δ, but from the structure
of vj , we have vj [h] = ri→j . Thus this maintains the global invariant, ∀i, j ∈ [n]
and k ∈ �, we have sti[k] ⊕ vi[k] = stj [k] ⊕ vj [k].

In addition, since Pj knows vj [h] in the first round, it can compute the OT
receiver message in the first round to subsequently use position h in the protocol.

414 P. Ananth et al.

But this is not true for Pi, which is why we incorporate the process of “copying”
the bit sent to get around this issue (see Subsect. 4.1).

The proof of our construction can be found in the full version of our paper.

4.3 Achieving Function-Delayed Property

A conforming protocol Φ is defined by computation steps or actions Φi, . . . , ΦT

where T is the total number of rounds of this conforming protocol. The pre-
processing phase in [16] depends only on T , and is otherwise independent of Φ.
We shall leverage this fact to construct protocols for functions that require at
most T rounds in the conforming protocol. The function itself can be decided
after the pre-processing phase, but must be fixed prior to the computation phase.

An action for a given round t is denoted by a five-tuple (i, f, g, h), where
i ∈ [n], j ∈ [n] ∪ {⊥}f, g, h ∈ [�]. Given that the state is of length �12, there can
be at most n · (n + 1) · �3 actions. While there are further restrictions on the
choices of (f, g, h), we are satisfied with a loose upper bound. When we compress
the protocol, as in [16], we seem to run into a problem since we send messages
for the computation phase in the first round of the compressed protocol, prior
to the function being decided.

To account for this, we compute first round OT messages for all possible
actions in each round.

For instance, party Pi computes receiver OT messages as follows: ∀j ∈
[n] ∪ {⊥}, f, g, h ∈ [�], ∀α, β ∈ {0, 1} oti,j,f,g,h

1,t,α,β ← OTR
1 (vi,h ⊕ NAND

(vi,f ⊕ α, vi,g ⊕ β)) Similarly Pi computes the first round OT messages when it
takes the roles of the special designate sender, and the sender. These OT messages
are indexed by the tuple (i, j, f, g, h). Thus for each round t, there are 4·n·(n+1)·�3
(polynomially many) first round OT messages that are computed. These are sent
to the respective parties in the first round.

By the second round, when the parties are creating the garbled circuit they
are aware of the function Φ being computed. Let the action in the t-th round be
(̂i,̂j, ̂f, ĝ,̂h). Thus, when party Pi is preparing its garbled circuit, it will compute
its second round OT message accordingly.

While we have described how to achieve the function delayed property in
our protocol, the same ideas hold for the protocol in [16]. In fact, we will use
the function delayed property of both our protocol, and that of [16] to achieve
subsequent results. Further discussion, and the security sketch can be found in
the full version.

5 Guaranteed Output Delivery: Fail-Stop Adversaries

In this section we describe a general compiler to get a two-round MPC proto-
col with guaranteed output delivery against semi-malicious fail stop adversaries,
from any 2 round semi-malicious MPC protocol that satisfies the delayed func-
tion property and only uses broadcast channels.
12 It is typically polynomial in the security parameter.

Round-Optimal Secure Multiparty Computation with Honest Majority 415

Overview. A semi-malicious fail stop adversary may choose to abort at any
point in the protocol. To achieve security with guaranteed output delivery, we
want to implement a mechanism that enables the honest parties to continue
the execution, even if some parties abort prematurely. In a two-round protocol,
a corrupted party might choose to abort either in the first round or in the
second round. If a party aborts in the first round, the honest parties should be
able to alter the functionality and continue execution while ignoring its input.
However, if a party only aborts in the second round, we cannot ignore its input
because such a protocol would clearly not be secure.13 Let us say that a party is
“active”, if it does not abort in the first round. In order to achieve guaranteed
output delivery, we need to make sure that the honest parties have sufficient
information about the input of all the active parties (in some encoded manner)
by the end of the first round, so that even if an active party aborts in the second
round, the honest parties can still include its input in the computation of the
output.

Let us first focus on adversaries who only abort in the first round. In order to
give the honest parties enough liberty to modify the functionality in case some
parties abort, a secure protocol with guarantee of output must have a delayed
function property, namely, where the first round message of an honest party is
independent of the function and the number of parties. Indeed, for this reason,
our starting point is a two-round semi-malicious protocol with delayed function
property.

In order to handle adversaries who abort in the second round, our main idea
is to require each party to send, in the first round itself, a garbled circuit of an
augmented second-round next-message function. This augmented next-message
function takes a list of active and inactive parties as input and computes second
round messages for the appropriate functionality (namely, where the inputs of
the inactive parties are set to some default values). To enable the honest parties
to continue execution in the second round, we also require each party to send
(t+1, n) secret shares of all the labels for its garbled circuit over private channels
(in particular, each party only receives one of the shares for each label). At the
end of the first round, each party prepares of list of active and inactive parties
based on who aborted the protocol. In the second round, each party simply
broadcasts the appropriate shares for each garbled circuit, based on its list of
active and inactive parties. Since we use a (t + 1, n) secret sharing scheme, even
if some parties abort in the second round, the honest parties have sufficient
information to compute the output.

Finally, we remark that our techniques can be seen as a generalization of the
techniques used by Dov Gordon et al. in [21], who constructed a three round
protocol with guaranteed output delivery using threshold fully homomorphic
encryption with special properties. In contrast, we develop a general compiler
using only one-way functions.

13 Indeed, such a protocol would allow an adversary to “ignore” the input of one or
more honest parties and learn multiple outputs, which would clearly break security.

416 P. Ananth et al.

5.1 Our Construction

Building Blocks. The main primitives required in this construction are:

1. A two-round semi-malicious MPC protocol Φ, with delayed function property
that only uses broadcast channels.

2. An adaptive garbling scheme (AdapGarble,AdapEval) for circuits.
3. A threshold secret sharing scheme. We denote this by SS(Share,Reconstruct).

Next, we establish some notations that are used in our construction.

Active Parties. For any two-round semi-malicious protocol Φ, we say that a
party is ‘active’ in an execution of Φ, if it does not abort in the first round. Let
active ∈ {0, 1}n be an n-bit binary string that denotes which parties are active
in the last round of the protocol. For each i ∈ [n], we set activei := 1, if party
Pi is active and activei := 0 otherwise.

Augmented Next Message Function. Let Φ be a 2 round MPC protocol
that supports delayed function property (i.e, where the first round messages of
each honest party is independent of the function). Let Msgj

Φ(i, xi, trans
j−1
Φ ; ri) be

the next message function for round j. It takes as input, party index i, it’s input
xi, previous round transcripts transj−1

Φ and randomness ri. Delayed function
property ensures that Msg1Φ(·, ·, ·; ·) is independent of the function F that the
MPC computes and only Msg2Φ(·, ·, ·; ·) depends on it.

We define an ‘augmented’ second round next message function, that addition-
ally takes a list of active parties (active) in the protocol as input, and computes
the second round messages. More specifically, this augmented next message func-
tion has the function F and default inputs for all parties hard coded inside it.
Given a list active, it substitutes the actual input of an inactive party with this
default input in F and computes the second round messages. We denote this aug-
mented second round next message function by AugMsg2Φ(i, xi, trans

1
Φ, active; ri).

Theorem 6. Let Φ be any two-round semi-honest (resp., semi-malicious)
broadcast channel MPC protocol with delayed function property, (AdapGarble,
AdapEval) be an adaptively secure garbling scheme for circuits and SS(Share,
Reconstruct) be a threshold secret sharing scheme. There exists a general com-
piler that transforms Φ into a two-round protocol that achieves guaranteed output
delivery against non-rushing fail-stop (resp., rushing, semi-malicious fail-stop)
adversaries.

A few corollaries of the above theorem are in order:

• The protocol from Theorem 5 (with the function-delayed property) can be
easily transformed into a protocol that only uses broadcast channels in the
BPK model [8]. Applying the compiler from Theorem6 to this protocol, we
obtain a two-round broadcast-channel MPC protocol in the BPK model that
achieves guaranteed output delivery against any t < n

2 (semi-malicious) fail-
stop corruptions.

Round-Optimal Secure Multiparty Computation with Honest Majority 417

• The semi-honest construction from [16] can be modified to support the
function-delayed property as discussed in Sect. 4.3. Applying the compiler
from Theorem 6 to this modified construction, we obtain a two round MPC
protocol over private point to point channels, that achieves guaranteed out-
put delivery against any t < n

2 non-rushing fail-stop (resp., rushing, semi-
malicious fail-stop) corruptions in the plain model, based on two round semi-
honest oblivious transfer.

We now describe our protocol in detail. For simplicity, we describe a compiler
that uses both broadcast and private channels. But since this protocol is only
secure against fail-stop adversaries, it can be easily modified to work only using
private channels in the plain model. If the underlying protocol works in the
(bare) public key model, then the compiler can be modified to work only using
broadcast channels. We specify these modifications in the protocol description.

Protocol. Let P = {P1, . . . , Pn} be the set of parties in the protocol. Let
{x1, . . . , xn} be their respective inputs and {r1, . . . , rn} be their respective ran-
domness used in the underlying protocol Φ. If the underlying program assumes
existence of the BPK model, then let {pk1, . . . , pkn} and {sk1, . . . , skn} be the
respective public and secret keys of the parties. Let λ be the security parameter.

Round 1. Each party Pi does the following in the first round:

1. Computes the first round message Φ1
i using its input xi and randomness ri,

i.e., Φ1
i := Msg1Φ(i, xi,⊥; ri)

2. Computes an adaptive garbling of the augmented second round next message
function AugMsg2Φ[i, xi; ri](·, ·) with it’s index i, input xi and randomness
ri hardcoded inside it. This function only takes the first round transcript
(trans1Φ) and the list active as input, i.e., (ÑMFi, {labw,b

i }w∈[inp],b∈{0,1}) ←
AdapGarble(1λ,AugMsg2Φ[i, xi; ri]), where inp is the length of input to
AugMsg2Φ[i, xi; ri].

3. Uses a threshold secret sharing scheme to compute (t+1, n) shares of the input
labels, i.e., {labw,b

i,1 , . . . , labw,b
i,n }w∈inp,b∈{0,1} ← Share(1λ, {labw,b

i }w∈inp,b∈{0,1})

4. Broadcasts M1
i := (Φ1

i , ÑMFi) to all other parties.
5. Sends {labw,b

i,j }w∈inp,b∈{0,1} to party Pj (for j ∈ [n]\{i}) over private channels.
(In the BPK model, the message for party Pj is encrypted under pkj and
then sent over the broadcast channel.)

At the end of Round 1. Each party Pi does the following:

1. For j from 1 to n:

(a) If party Pj sent its first round messages, parse M1
j as (Φ1

j , ÑMF
j
) and

set activej := 1
(b) If party Pj aborts in the first round, set Φ1

j := 0�, where � is the length
of each party’s first round message in Φ and set activej := 0

2. Sets trans1Φ := {Φ1
j}j∈[n].

418 P. Ananth et al.

3. In the BPK model, it decrypts the encrypted labels sent by other parties
using its secret key ski.

Round 2. Each party Pi does the following in the second round:

1. It sets z = trans1Φ||active.
2. For each garbled circuit {ÑMFj}j∈[n], it sends shares for the key and the

labels corresponding to active and trans1Φ i.e., M2
i := {labw,z[w]

j,i }w∈[inp],j∈[n].

We assume that lab
trans1Φ||active
j,i = ⊥ for a party Pj that aborts in the second

round.

Output Phase. Let Y be the set of any t+1 parties that send first and second
round. messages. Each party Pi does the following:

1. For j ∈ Y:
(a) Parse M2

j as {labw,z[w]
k,j }w∈[inp],k∈[n]

(b) If activej = 1, reconstruct the input labels and evaluate the garbled
circuit, i.e., {labw,z[w]

j }w∈[inp] := {Reconstruct({labw,z[w]
j,k }k∈Y)}w∈[inp] and

Φ2
j := AdapEval(ÑMFj , {labw,z[w]

j }w∈[inp])
2. Let A be the set of ‘active’ parties in the protocol.
3. Runs the output phase of Φ, OutΦ({Φ2

j}j∈A) to learn the output.

Remark. The above compiler can also be modified to get a three-round pro-
tocol in the plain model only assuming one-way functions. This main idea is to
divide the first round messages of the above compiler into two. More specifically,
the parties exchange their first round messages of Φ (which may include private
channel messages) in the first round. In the second round, each party Pi com-
putes an adaptive garbled circuit on the augmented second round next message
function AugMsg2Φ[i, xi, trans

1
Φ,i; ri](.) of Φ, that has it’s index i, input xi, it’s

first round transcript trans1Φ,i and randomness ri hard wired inside it. Since the
first round messages are already hard-wired, this garbled circuit only takes the
list of ‘active’ parties as input. Each party also secret shares all the input labels
to this garbled circuit. The third round proceeds similar to the second round in
the above compiler, with the only difference that all the parties who participate
in the first two rounds constitute the list of ‘active’ parties. Instantiating this
modified compiler with the protocol from Theorem5 (with the function-delayed
property), we get the following corollary:

Corollary 4. Assuming one-way functions, there exists a three round MPC pro-
tocol that achieves guaranteed output delivery against any t < n

2 (semi-malicious)
fail-stop corruptions.

Round-Optimal Secure Multiparty Computation with Honest Majority 419

6 Guaranteed Output Delivery: Malicious Adversaries

In this section we describe a general compiler to get a three-round malicious
MPC protocol with guaranteed output delivery in the plain model from our two
round semi-malicious MPC protocol with guaranteed output delivery.

Overview. In order to compile our semi-malicious protocol from the previous
section into a maliciously secure one, we use the standard “commit-and-prove”
methodology of [20], where the adversary initially commits to his input and ran-
domness and then gives a zero-knowledge proof of “honest behavior” together
with each round of the underlying semi-malicious protocol. We note, however,
that implementing this methodology in the setting of guaranteed output deliv-
ery requires extra care. In particular, we need to ensure that all the honest
parties have a consistent view of which parties aborted in a given round since the
behavior of an honest party in the next round depends upon this view.

Note that if the underlying semi-malicious protocol uses private channels,
then a party may need to prove different statements to different parties in order
to establish honest behavior, and in particular, the statement being proven by
party i to party j may not be known to another party k. This presents a problem
in ensuring that the honest parties have consistent views (of the form as discussed
above). Therefore, as a first step, we transform the two-round semi-malicious
protocol into a three-round protocol that only uses broadcast channels, using
public-key encryption. However, if the underlying semi-malicious protocol works
in the (bare) public key model and only uses broadcast channels, we can trans-
form this two-round semi-malicious protocol into a three-round semi-malicious
protocol in the plain model by exchanging public keys in the first round.

Next we note that zero-knowledge proofs with black-box simulation are
known to require at least four rounds [19]. To overcome this lower bound, and
in order to obtain a three round maliciously secure protocol, we leverage the
fact that we are in the honest majority setting. Towards this, we define a new
notion of multi-verifier zero-knowledge (MVZK) proofs. Briefly, an MVZK proof
system is an interactive multiparty protocol between a prover and multiple ver-
ifiers. Similar to standard ZK, we require MVZK to achieve soundness and zero
knowledge properties. In particular, we require the soundness property to hold
as long as the honest verifiers constitute a majority. Similarly, we require ZK
property to hold as long as the honest prover and the honest verifiers, together
constitute a majority. In order to use MVZK in our setting, we also require
a “strong completeness” property which guarantees that any set of dishonest
verifiers (who constitute a minority) cannot prevent the honest verifiers from
accepting a proof from an honest prover.

We implement our compiler using two-round MVZK arguments with a
delayed input property, namely, where the first round messages of the honest par-
ties are independent of the statement. We note that while our two-round MPC
protocol from Sect. 4 can be used to construct a two-round MVZK without the
aforementioned strong completeness property; therefore it does not suffice here.
Instead, in the full version, we give a construction of two round delayed-input

420 P. Ananth et al.

MVZK (that achieves strong completeness) from Zaps, following the construc-
tion of multi-CRS NIZKs by Groth and Ostrovsky [22]. We then use this MVZK
to implement our compiler.

6.1 Our Construction

Building Blocks. The main primitives required in this construction are:

1. A two-round MPC protocol Π that achieves guaranteed output
delivery against semi-malicious fail-stop adversaries. Let Msgj

Π(i, xi,
{transkΠ}k∈[j−1]; ri) be the next message function for round j. It takes
as input, index i of the party, it’s input xi, previous round transcripts
{transkΠ}k∈[j−1] and randomness ri.

2. A threshold secret sharing scheme. We denote this by SS := (Share,
Reconstruct).

3. Two-round delayed-input multi-verifier zero-knowledge arguments
mvzk := (P1

mvzk,V
1
mvzk,P

2
mvzk,V

2
mvzk,Verifymvzk).

4. A public-key encryption scheme E := (Gen,Enc,Dec)

Theorem 7. Let Π be a two-round MPC protocol with guaranteed output deliv-
ery against semi-malicious fail-stop adversaries, (AdapGarble,AdapEval) be an
adaptively secure garbling scheme, mvzk := (P1

mvzk,V
1
mvzk,P

2
mvzk,V

2
mvzk,Verifymvzk)

be a delayed-input MVZK argument system and E := (Gen,Enc,Dec) be a PKE
scheme. Then there exists a general compiler that transforms Π into a three
round protocol with guaranteed output delivery against malicious adversaries.

Applying the compiler from Theorem7 to the two-round BPK model proto-
col from Sect. 5, we get a three round protocol based on Zaps and public-key
encryption. Next, we describe the protocol in detail:

Protocol. Let P = {P1, . . . , Pn} be the set of parties in the protocol and let
{x1, . . . , xn} be their respective inputs. Let λ be the security parameter.

Round 1. Each party Pi does the following in the first round:

1. Generates a key pair for the public key encryption scheme, i.e., (pki, ski) :=
Gen(1λ; qi)

2. Computes the first round prover message of MVZK and verifier messages
for all other parties, i.e., pMsg1,i ← Pmvzk(1λ) and {vMsg1,j

i }j∈[n]\i ←
{Vmvzk(1λ, i)}j∈[n]\i

3. Broadcasts M1
i := (pki, pMsg1,i, {vMsg1,j

i }j∈[n]\i) to all other parties.

At the end of Round 1. Each Party Pi for i ∈ [n] does the following:

1. For j from 1 to n:
(a) If Party Pj sends its first round messages, parse M1

j as
(pkj , pMsg1,j , {vMsg1,k

j }k∈[n]\j)
(b) Else, set pMsg1,j := ⊥ and {vMsg1,k

j }k∈[n]\j := ⊥

Round-Optimal Secure Multiparty Computation with Honest Majority 421

2. For j from 1 to n, set trans1,j
mvzk := (pMsg1,j , {vMsg1,j

k }k∈[n]\j).

Round 2. Each party Pi does the following in the first round:

1. Computes the first round message Π1
i using its input xi and randomness ri,

i.e., Π1
i := Msg1Π(i, xi,⊥; ri)

2. Uses a threshold secret sharing scheme to compute (t + 1, n) shares of Xi =
(xi, ri), i.e., {Xi,1, . . . , Xi,n} := Share(1λ,Xi; si)

3. For each j ∈ [n], it encrypts the share Xi,j under public key pkj , i.e., ci,j :=
Enc(pkj ,Xi,j ; ti,j)

4. Proves the following:
(a) The public key pki was honestly generated AND
(b) Each ciphertext ci,j is an honestly computed encryption AND
(c) The first round messages of Π are computed honestly using the input

xi and randomness ri that were honestly secret shared and each of these
shares were honestly encrypted.

Using the language:

L ={(Π1
i , {pkj}j∈[n], {ci,j}j∈[n]) | ∃(xi, ri, si, qi, {ti,j}j∈[n])

s.t. ((pki, ·) = Gen(1λ; qi)) AND (Π1
i = Msg1Π(i, xi,⊥; ri))

AND ({Xi,j , . . . , Xi,n} := Share(1λ,Xi; si))
AND ({ci,j}j∈[n] := {Enc(pkj ,Xi,j ; ti,j)}j∈[n]))}

It computes second round prover messages of mvzk as follows:
Let Yi = (Π1

i , {pkj}j∈[n], {ci,j}j∈[n]) and Wi = (xi, ri, si, qi, {ti,j}j∈[n]), i.e.,
pMsg2,i ← Pmvzk(trans

1,i
mvzk, Yi,Wi)

5. Computes second round verifier messages of mvzk for all other parties for the
same language, i.e., {vMsg2,j

i }j∈[n]\i ← {Vmvzk(i, trans
1,j
mvzk)}j∈[n]\i

6. Computes another set of first round prover message of MVZK and verifier mes-

sages for all other parties, i.e., p̃Msg
1,i ← Pmvzk(1λ) and {ṽMsg

1,j

i }j∈[n]\i ←
{Vmvzk(1λ, i)}j∈[n]\i

7. Broadcasts M2
i := (Π1

i , {ci,j}j∈[n], pMsg2,i, {vMsg2,j
i }j∈[n]\i, p̃Msg

1,i
,

{ṽMsg
1,j

i }j∈[n]\i) to all other parties.

At the end of Round 2. Each party does the following:

1. For j from 1 to n:
(a) If Party Pj sent its first and second round messages, parse M2

j as

(Π2
i , {cj,k}j∈[n], pMsg2,j , {vMsg2,k

i }k∈[n]\j , p̃Msg
1,j

, {ṽMsg
1,k

i }k∈[n]\j)

(b) Else set pMsg2,j , p̃Msg
1,j

:= ⊥ and {vMsg2,k
j , ṽMsg

1,k

j }k∈[n]\j := ⊥
2. For j from 1 to n:

(a) Set Yj := (Π1
j , {pkk}k∈[n], {cj,k}k∈[n])

(b) If Verifymvzk(i, {transr,jmvzk}r∈[2], Yj)=1, decrypt cj,i, i.e., mj,i :=
Dec(ski, cj,i) and parse mj,i as Xj,i

422 P. Ananth et al.

(c) Else:
i. Set Π1

j := 0�, where � is the length first round messages in Π.

ii. Set p̃Msg
1,j

:= ⊥ and {ṽMsg
1,k

j }k∈[n]\j := ⊥
3. For j from 1 to n, set trans1,j

m̃vzk
:= (p̃Msg

1,j
, {ṽMsg

1,j

k }k∈[n]\j).
4. Set trans1Π := {Π1

j }j∈[n].

Round 3. Each party Pi does the following in the third round:

1. Computes second round messages of Π, i.e., Π2
i := Msg2Π(i, xi, trans

1
Π ; ri)

2. Proves that the second round message Π2
i was computed honestly using the

language L = {(Π2
i , trans1Π) | ∃(xi, ri) s.t. Π2

i := Msg2Π(i, xi, ri, trans
1
Π)}.

It computes second round prover messages of mvzk as follows; Let Zi =

(Π2
i , trans1Π) and Wi = (xi, ri), i.e., p̃Msg

2,i ← Pmvzk(trans
1,i

m̃vzk
, Zi,Wi)

3. Computes second round verifier messages of mvzk for all other parties for the

same language, i.e., {ṽMsg
2,j

i }j∈[n]\i ← {Vmvzk(i, trans
1,j

m̃vzk
)}j∈[n]\i

4. Broadcasts M3
i := (Π2

i , p̃Msg
2,i

, {ṽMsg
2,j

i }j∈[n]\i) to all other parties.

Output Phase. Each party Pi does the following:

1. For j from 1 to [n]
(a) If party Pj sent a message in the third round, parse M3

i as

(Π2
j , p̃Msg

2,j
, {ṽMsg

2,k

j }k∈[n]\j)

(b) Else set Π2
j := ⊥, p̃Msg

2,j
:= ⊥ and {ṽMsg

2,k

j }k∈[n]\j := ⊥
2. For j from 1 to n:

(a) Set Zj := (Π2
j , trans1Π)

(b) If Verifymvzk(i, {transr,jm̃vzk
}r∈[2], Zj) = 0, set Π2

j := ⊥
3. Set trans2Π = {Π2

j }j∈[n] and run the output phase of Π, OutΠ(trans1Π , trans2Π)
to learn the output.

Acknowledgments. This research was supported in part by a DARPA/ARL Safe-
ware Grant W911NF-15-C-0213, and a subaward from NSF CNS-1414023. We would
like to thank Sanjam Garg, Yuval Ishai and Akshayaram Srinvisan for pointing out
the limitation of using conforming protocols of [17] towards achieving information-
theoretic security for our first construction. The second author would like to thank
Ignacio Cascudo for helpful discussions.

Round-Optimal Secure Multiparty Computation with Honest Majority 423

References

1. Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs, D.:
Multiparty computation with low communication, computation and interaction
via threshold FHE. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 483–501. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-29011-4 29

2. Badrinarayanan, S., Goyal, V., Jain, A., Kalai, Y.T., Khurana, D., Sahai, A.:
Promise zero knowledge and its applications to round optimal MPC. In: CRYPTO
(2018). https://eprint.iacr.org/2017/1088

3. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols
(extended abstract). In: 22nd ACM STOC, pp. 503–513. ACM Press, May 1990

4. Bellare, M., Hoang, V.T., Rogaway, P.: Adaptively secure garbling with applica-
tions to one-time programs and secure outsourcing. In: Wang, X., Sako, K. (eds.)
ASIACRYPT 2012. LNCS, vol. 7658, pp. 134–153. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-34961-4 10

5. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In: 20th
ACM STOC, pp. 1–10. ACM Press, May 1988

6. Benhamouda, F., Lin, H.: k -round multiparty computation from k -round oblivious
transfer via garbled interactive circuits. In: Nielsen, J.B., Rijmen, V. (eds.) EURO-
CRYPT 2018, Part II. LNCS, vol. 10821, pp. 500–532. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-78375-8 17

7. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its appli-
cations (extended abstract). In: 20th ACM STOC, pp. 103–112. ACM Press, May
1988

8. Canetti, R., Goldreich, O., Goldwasser, S., Micali, S.: Resettable zero-knowledge
(extended abstract). In: 32nd ACM STOC, pp. 235–244. ACM Press, May 2000

9. Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure protocols
(extended abstract). In: 20th ACM STOC, pp. 11–19. ACM Press, May 1988

10. Cleve, R.: Limits on the security of coin flips when half the processors are faulty
(extended abstract). In: 18th ACM STOC, pp. 364–369. ACM Press, May 1986

11. Cohen, R., Lindell, Y.: Fairness versus guaranteed output delivery in secure mul-
tiparty computation. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part II.
LNCS, vol. 8874, pp. 466–485. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-662-45608-8 25

12. Damg̊ard, I., Ishai, Y.: Constant-round multiparty computation using a black-box
pseudorandom generator. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp.
378–394. Springer, Heidelberg (2005). https://doi.org/10.1007/11535218 23

13. Dwork, C., Naor, M.: Zaps and their applications. In: 41st FOCS, pp. 283–293.
IEEE Computer Society Press, November 2000

14. Feige, U., Lapidot, D., Shamir, A.: Multiple non-interactive zero knowledge proofs
based on a single random string (extended abstract). In: 31st FOCS, pp. 308–317.
IEEE Computer Society Press, October 1990

15. Garg, S., Mukherjee, P., Pandey, O., Polychroniadou, A.: The exact round com-
plexity of secure computation. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT
2016, Part II. LNCS, vol. 9666, pp. 448–476. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49896-5 16

https://doi.org/10.1007/978-3-642-29011-4_29
https://doi.org/10.1007/978-3-642-29011-4_29
https://eprint.iacr.org/2017/1088
https://doi.org/10.1007/978-3-642-34961-4_10
https://doi.org/10.1007/978-3-319-78375-8_17
https://doi.org/10.1007/978-3-662-45608-8_25
https://doi.org/10.1007/978-3-662-45608-8_25
https://doi.org/10.1007/11535218_23
https://doi.org/10.1007/978-3-662-49896-5_16
https://doi.org/10.1007/978-3-662-49896-5_16

424 P. Ananth et al.

16. Garg, S., Srinivasan, A.: Two-round multiparty secure computation from minimal
assumptions. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part II.
LNCS, vol. 10821, pp. 468–499. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-78375-8 16

17. Garg, S., Srinivasan, A.: Two-round multiparty secure computation from minimal
assumptions. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol.
10821, pp. 468–499. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
78375-8 16

18. Gennaro, R., Ishai, Y., Kushilevitz, E., Rabin, T.: On 2-round secure multiparty
computation. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 178–193.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9 12

19. Goldreich, O., Krawczyk, H.: On the composition of zero-knowledge proof sys-
tems. SIAM J. Comput. 25(1), 169–192 (1996). https://doi.org/10.1137/S0097539
791220688

20. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: Aho, A. (ed.) 19th ACM
STOC, pp. 218–229. ACM Press, May 1987

21. Dov Gordon, S., Liu, F.-H., Shi, E.: Constant-round MPC with fairness and guar-
antee of output delivery. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015,
Part II. LNCS, vol. 9216, pp. 63–82. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-48000-7 4

22. Groth, J., Ostrovsky, R.: Cryptography in the multi-string model. In: Menezes, A.
(ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 323–341. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-74143-5 18

23. Halevi, S., Lindell, Y., Pinkas, B.: Secure computation on the web: computing
without simultaneous interaction. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 132–150. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22792-9 8

24. Ishai, Y., Kumaresan, R., Kushilevitz, E., Paskin-Cherniavsky, A.: Secure com-
putation with minimal interaction, revisited. In: Gennaro, R., Robshaw, M. (eds.)
CRYPTO 2015, Part II. LNCS, vol. 9216, pp. 359–378. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48000-7 18

25. Ishai, Y., Kushilevitz, E.: Randomizing polynomials: a new representation with
applications to round-efficient secure computation. In: 41st FOCS, pp. 294–304.
IEEE Computer Society Press, November 2000

26. Ishai, Y., Kushilevitz, E., Paskin, A.: Secure multiparty computation with minimal
interaction. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 577–594.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7 31

27. Katz, J., Ostrovsky, R.: Round-optimal secure two-party computation. In:
Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 335–354. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8 21

28. Lapidot, D., Shamir, A.: Publicly verifiable non-interactive zero-knowledge proofs.
In: Menezes, A.J., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 353–
365. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-38424-3 26

29. Mohassel, P., Rosulek, M., Zhang, Y.: Fast and secure three-party computation:
the garbled circuit approach. In: Ray, I., Li, N., Kruegel, C. (eds.) ACM CCS 2015,
pp. 591–602. ACM Press, October 2015

30. Shamir, A.: How to share a secret. Commun. Assoc. Comput. Mach. 22(11), 612–
613 (1979)

31. Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: 27th
FOCS, pp. 162–167. IEEE Computer Society Press, October 1986

https://doi.org/10.1007/978-3-319-78375-8_16
https://doi.org/10.1007/978-3-319-78375-8_16
https://doi.org/10.1007/978-3-319-78375-8_16
https://doi.org/10.1007/978-3-319-78375-8_16
https://doi.org/10.1007/3-540-45708-9_12
https://doi.org/10.1137/S0097539791220688
https://doi.org/10.1137/S0097539791220688
https://doi.org/10.1007/978-3-662-48000-7_4
https://doi.org/10.1007/978-3-662-48000-7_4
https://doi.org/10.1007/978-3-540-74143-5_18
https://doi.org/10.1007/978-3-642-22792-9_8
https://doi.org/10.1007/978-3-642-22792-9_8
https://doi.org/10.1007/978-3-662-48000-7_18
https://doi.org/10.1007/978-3-642-14623-7_31
https://doi.org/10.1007/978-3-540-28628-8_21
https://doi.org/10.1007/3-540-38424-3_26

On the Exact Round Complexity
of Secure Three-Party Computation

Arpita Patra(B) and Divya Ravi

Indian Institute of Science, Bangalore, India
{arpita,divyar}@iisc.ac.in

Abstract. We settle the exact round complexity of three-party compu-
tation (3PC) in honest-majority setting, for a range of security notions
such as selective abort, unanimous abort, fairness and guaranteed out-
put delivery. Selective abort security, the weakest in the lot, allows the
corrupt parties to selectively deprive some of the honest parties of the
output. In the mildly stronger version of unanimous abort, either all or
none of the honest parties receive the output. Fairness implies that the
corrupted parties receive their output only if all honest parties receive
output and lastly, the strongest notion of guaranteed output delivery
implies that the corrupted parties cannot prevent honest parties from
receiving their output. It is a folklore that the implication holds from
the guaranteed output delivery to fairness to unanimous abort to selec-
tive abort. We focus on two network settings– pairwise-private channels
without and with a broadcast channel.

In the minimal setting of pairwise-private channels, 3PC with selective
abort is known to be feasible in just two rounds, while guaranteed output
delivery is infeasible to achieve irrespective of the number of rounds. Set-
tling the quest for exact round complexity of 3PC in this setting, we show
that three rounds are necessary and sufficient for unanimous abort and
fairness. Extending our study to the setting with an additional broadcast
channel, we show that while unanimous abort is achievable in just two
rounds, three rounds are necessary and sufficient for fairness and guaran-
teed output delivery. Our lower bound results extend for any number of
parties in honest majority setting and imply tightness of several known
constructions.

The fundamental concept of garbled circuits underlies all our upper
bounds. Concretely, our constructions involve transmitting and evalu-
ating only constant number of garbled circuits. Assumption-wise, our
constructions rely on injective (one-to-one) one-way functions.

1 Introduction

In secure multi-party computation (MPC) [19,37,67], n parties wish to jointly
perform a computation on their private inputs in a secure way, so that no adver-
sary A actively corrupting a coalition of t parties can learn more information
than their outputs (privacy), nor can they affect the outputs of the computation
other than by choosing their own inputs (correctness). MPC has been a subject
c© International Association for Cryptologic Research 2018
H. Shacham and A. Boldyreva (Eds.): CRYPTO 2018, LNCS 10992, pp. 425–458, 2018.
https://doi.org/10.1007/978-3-319-96881-0_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96881-0_15&domain=pdf

426 A. Patra and D. Ravi

of extensive research and has traditionally been divided into two classes: MPC
with dishonest majority [2,12,16,27,28,31,37] and MPC with honest majority
[6–8,10,11,18,25,26,64]. While the special case of MPC with dishonest major-
ity, namely the two-party computation (2PC) has been at the focus of numerous
works [1,42,46,54,59,65–67], the same is not quite true for the special case of
MPC protocols with honest majority.

The three-party computation (3PC) and MPC with small number of parties
maintaining an honest majority make a fascinating area of research due to myr-
iad reasons as highlighted below. First, they present useful use-cases in practice,
as it seems that the most likely scenarios for secure MPC in practice would
involve a small number of parties. In fact, the first large scale implementation
of secure MPC, namely the Danish sugar beet auction [15] was designed for the
three-party setting. Several other applications solved via 3PC include statistical
data analysis [14], email-filtering [52], financial data analysis [14] and distributed
credential encryption service [60]. The practical efficiency of 3PC has thus got
considerable emphasis in the past and some of them have evolved to technologies
[3,13,20,30,33,52,53]. Second, in practical deployments of secure computation
between multiple servers that may involve long-term sensitive information, three
or more servers are preferred as opposed to two. This enables recovery from faults
in case one of the servers malfunctions. Third and importantly, practical appli-
cations usually demand strong security goals such as fairness (corrupted parties
receive their output only if all honest parties receive output) and guaranteed
output delivery (corrupted parties cannot prevent honest parties from receiving
their output) which are feasible only in honest majority setting [22]. Fourth and
interestingly, there are evidences galore that having to handle a single corrupt
party can be leveraged conveniently and taken advantage of to circumvent known
lower bounds and impossibility results. A lower bound of three rounds has been
proven in [35] for fair MPC with t ≥ 2 and arbitrary number of parties, even
in the presence of broadcast channels. [43] circumvents the lower bound by pre-
senting a two-round 4PC protocol tolerating a single corrupt party that provides
guaranteed output delivery without even requiring a broadcast channel. Veri-
fiable secret sharing (VSS) which serves as an important tool in constructing
MPC protocols are known to be impossible with t ≥ 2 with one round in the
sharing phase irrespective of the computational power of the adversary [5,34,62].
Interestingly enough, a perfect VSS with (n = 5, t = 1) [34], statistical VSS with
(n = 4, t = 1) [43,62] and cryptographic VSS with (n = 4, t = 1) [5] are shown
to be achievable with one round in the sharing phase.

The world of MPC for small population in honest majority setting witnesses
a few more interesting phenomena. Assumption-wise, MPC with 3, 4 and 5 par-
ties can be built from just One-way functions (OWF) or injective one-way func-
tions/permutations [17,43,60], shunning public-key primitives such as Oblivious
Transfer (OT) entirely, which is the primary building block in the 2-party set-
ting. Last but not the least, the known constructions for small population in the
honest majority setting perform arguably better than the constructions with two
parties while offering the same level of security. For instance, 3PC with honest

On the Exact Round Complexity of Secure Three-Party Computation 427

majority [43,60] allows to circumvent certain inherent challenges in malicious
2PC such as enforcing correctness of garbling which incurs additional communi-
cation.

The exact round complexity is yet another measure that sets apart the proto-
cols with three parties over the ones with two parties. For instance, 3PC protocol
is achievable just in two rounds with the minimal network setting of pairwise-
private channels [43]. The 2PC (and MPC with dishonest majority) protocols
achieving the same level of security (with abort) necessarily require 4 rounds
[50] and have to resort to a common reference string (CRS) to shoot for the best
possible round complexity of 2 [41].

With the impressive list of motivations that are interesting from both the
theoretical and practical viewpoint, we explore 3PC in the honest majority set-
ting tolerating a malicious adversary. In this work, we set our focus on the exact
round complexity of 3PC. To set the stage for our contributions, we start with
a set of relevant works below.

Related Works. Since round complexity is considered an important measure of
efficiency of MPC protocols, there is a rich body of work studying the round
complexity of secure 2PC and MPC protocols under various adversarial settings
and computational models. We highlight some of them below. Firstly, it is known
that two rounds of interaction are essential for realizing an MPC protocol irre-
spective of the setting. This is because in a 1-round protocol, a corrupted party
could repeatedly evaluate the “residual function” with the inputs of the honest
parties fixed on many different inputs of its own (referred as “residual function”
attack) [41]. In the plain model, any actively secure 2PC is known to require 5
rounds in non-simultaneous message model [50] (under black-box simulation).
The bound can be improved to 4 even in the dishonest majority setting [32] in
simultaneous message model and tight upper bounds are presented in [2,16,40].
With a common reference string (CRS), the lower bound can be further improved
to 2 rounds [41]. Tight upper bounds are shown in [31] under indistinguishabil-
ity obfuscation (assumption weakened to witness encryption by [39]), and in [61]
under a variant of Fully Homomorphic Encryption (FHE) and Non-interactive
Zero-knowledge.

In the honest majority setting which is shown to be necessary [22] and suffi-
cient [10,18,24] for the feasibility of protocols with fairness and guaranteed out-
put delivery, the study on round complexity has seen the following interesting
results. Three is shown to be the lower bound for fair protocols in the stand-alone
model (surprisingly even with access to a CRS), assuming non-private channels
[39]. The same work presents a matching upper bound that provides guaranteed
output delivery, uses a CRS and a broadcast channel and relies on a ‘special’
FHE. Their protocol can be collapsed to two rounds given access to PKI where
the infrastructure carries the public keys corresponding to the ‘special’ FHE. In
the plain model, three rounds are shown to be necessary for MPC with fairness
and t ≥ 2, even in the presence of a broadcast channel and arbitrary number of
parties [35]. In an interesting work, [43] circumvents the above result by consider-
ing 4PC with one corruption. The protocol provides guaranteed output delivery,

428 A. Patra and D. Ravi

yet does not use a broadcast channel. In the same setting (plain model and no
broadcast), [43] presents a 2-round 3PC protocol tolerating single corruption;
whose communication and computation efficiency was improved by the 3-round
protocol of [60]. Both these protocols achieve a weaker notion of security known
as security with selective abort. Selective abort security [44] (referred as ‘secu-
rity with abort and no fairness’ in [38]) allows the corrupt parties to selectively
deprive some of the honest parties of the output. In the mildly stronger version
of unanimous abort (referred as ‘security with unanimous abort and no fairness’
in [38]), either all or none of the honest parties receive the output. An easy
observation concludes that the 3PC of [60] achieves unanimous abort, when its
third round message is broadcasted, albeit for functions giving the same output
to all. The works relevant to honest majority setting are listed below.

3PC has been studied in different settings as well. High-throughput MPC
with non-constant round complexity are studied in [3,30]. [21] studies 3PC with
dishonest majority. Recently, [17] presents a practically efficient 5-party MPC
protocol in honest majority setting, going beyond 3-party case, relying on dis-
tributed garbling technique based on [7].

Ref. Setting Round Network Setting/Assumption Security Comments

[4] t < n/2 ≥ 5 private channel, Broadcast/CRS,

FHE, NIZK

fairness upper bound

[39] t < n/2 3 non-private channel,

Broadcast/CRS, FHE

guaranteed output delivery upper bound

[39] t < n/2 2 non-private channel,

Broadcast/CRS, PKI, FHE

guaranteed output delivery upper bound

[44] n = 5, t = 1 2 private channel/OWF guaranteed output delivery upper bound

[43] n = 3, t = 1 2 private channel/OWF selective abort upper bound

[43] n = 4, t = 1 2 private channel/(injective) OWF guaranteed output delivery upper bound

[60] n = 3, t = 1 3 private channel, Broadcast/PRG unanimous abort upper bound

[39] t < n/2 3 non-private channel,

Broadcast/CRS

fairness lower bound

[35] n; t > 1 3 private channel, Broadcast fairness lower bound

1.1 Our Results

In this paper, we set our focus on the exact round complexity of 3PC protocols
with one active corruption achieving a range of security notions, namely selective
abort, unanimous abort, fairness and guaranteed output delivery in a setting
with pair-wise private channels and without or with a broadcast channel (and
no additional setup). In the minimal setting of pair-wise private channels, it is
known that 3PC with selective abort is feasible in just two rounds [43], while
guaranteed output delivery is infeasible to achieve irrespective of the number
of rounds [23]. No bound on round complexity is known for unanimous abort
or fairness. In the setting with a broadcast channel, the result of [60] implies
3-round 3PC with unanimous abort. Neither the round optimality of the [60]
construction, nor any bound on round complexity is known for protocols with
fairness and guaranteed output delivery.

On the Exact Round Complexity of Secure Three-Party Computation 429

This work settles all the above questions via two lower bound results and
three upper bounds. Both our lower-bounds extend for general n and t with
strict honest majority i.e. n/3 ≤ t < n/2. They imply tightness of several known
constructions of [43] and complement the lower bound of [35] which holds for
only t > 1. Our upper bounds are from injective (one-to-one) one-way functions.
The fundamental concept of garbled circuits (GC) contributes as their key basis,
following several prior works in this domain [21,43,60]. The techniques in our
upper bounds do not seem to extend for t > 1, leaving open designing round-
optimal protocols for the general case with various security notions. We now
elaborate on the results below:

Without Broadcast Channel. In this paper, we show that three rounds are nec-
essary to achieve 3PC with unanimous abort and fairness, in the absence of a
broadcast channel. The sufficiency is proved via a 3-round fair protocol (which
also achieves unanimous abort security). Our lower bound result immediately
implies tightness of the 3PC protocol of [43] achieving selective abort in two
rounds, in terms of security achieved. This completely settles the questions on
exact round complexity of 3PC in the minimal setting of pair-wise private chan-
nels. Our 3-round fair protocol uses a sub-protocol that is reminiscent of Condi-
tional Disclosure of Secrets (CDS) [36], with an additional property of authen-
ticity that allows a recipient to detect the correct secret. Our implementation
suggests a realisation of authenticated CDS from privacy-free GCs.

With Broadcast Channel. With access to a broadcast channel, we show that it
takes just two rounds to get 3PC with unanimous abort, implying non-optimality
of the 3-round construction of [60]. On the other hand, we show that three
rounds are necessary to construct a 3PC protocol with fairness and guaranteed
output delivery. The sufficiency for fairness already follows from our 3-round
fair protocol without broadcast. The sufficiency for guaranteed output delivery
is shown via yet another construction in the presence of broadcast. The lower
bound result restricted for t = 1 complements the lower bound of [35] making
three rounds necessary for MPC with fairness in the honest majority setting
for all the values of t. The lower bound further implies that for two-round fair
(or guaranteed output delivery) protocols with one corruption, the number of
parties needs to be at least four, making the 4PC protocol of [43] an optimal one.
Notably, our result does not contradict with the two-round protocol of [39] that
assumes PKI (where the infrastructure contains the public keys of a ‘special’
FHE), CRS and also broadcast channel.

The table below captures the complete picture of the round complexity of
3PC. The necessity of two rounds for any type of security follows from [41] via
the ‘residual attack’. Notably, broadcast facility only impacts the round com-
plexity of unanimous abort and guaranteed output delivery, leaving the round
complexity of selective abort and fairness unperturbed.

430 A. Patra and D. Ravi

Security Without
Broadcast

References
Necessity/
Sufficiency

With
Broadcast

References
Necessity/
Sufficiency

Selective Abort 2 [41]/[43] 2 [41]/[43]

Unanimous Abort 3 This paper/This paper 2 [41]/This paper

Fairness 3 This paper/This paper 3 This paper/This paper

Guaranteed
output delivery

Impossible [23] 3 This paper/This paper

1.2 Techniques

Lower Bounds. We present two lower bounds– (a) three rounds are necessary for
achieving fairness in the presence of pair-wise channels and a broadcast channel;
(b) three rounds are necessary for achieving unanimous abort in the presence
of just pair-wise channels. The lower bounds are shown by taking a special 3-
party function and by devising a sequence hybrid executions under different
adversarial strategies, allowing to conclude any 3PC protocol computing the
considered function cannot be simultaneously private and fair or secure with
unanimous abort.

Upper Bounds. We present three upper bounds– (a) 3-round fair protocol; (b) 2-
round protocol with unanimous abort and (c) 3-round protocol with guaranteed
output delivery. The former in the presence of just pairwise channels, the latter
two with an additional broadcast channel. The known generic transformations
such as, unanimous abort to (identifiable) fairness [45] or identifiable fairness
to guaranteed output delivery [24], does not help in any of our constructions.
For instance, any 3-round fair protocol without broadcast cannot take the former
route as it is not round-preserving and unanimous abort in two rounds necessarily
requires broadcast as shown in this work. A 3-round protocol with guaranteed
output delivery cannot be constructed combining both the transformations due
to inflation in round complexity.

Building on the protocol of [60], the basic building block of our protocols
needs two of the parties to enact the role of the garbler and the remaining party
to carry out the responsibility of circuit evaluation. Constrained with just two or
three rounds, our protocols are built from the parallel composition of three sub-
protocols, each one with different party enacting the role of the evaluator (much
like [43]). Each sub-protocol consumes two rounds. Based on the security needed,
the sub-protocols deliver distinct flavours of security with ‘identifiable abort’. For
the fair and unanimous abort, the identifiability is in the form of conflict that
is local (privately known) and public/global (known to all) respectively, while
for the protocol with guaranteed output delivery, it is local identification of
the corrupt. Achieving such identifiability in just two rounds (sometime without
broadcast) is challenging in themselves. Pulling up the security guarantee of these
subprotocols via entwining three executions to obtain the final goals of fairness,
unanimous abort and guaranteed output delivery constitute yet another novelty
of this work. Maintaining the input consistency across the three executions pose
another challenge that are tackled via mix of novel techniques (that consume no

On the Exact Round Complexity of Secure Three-Party Computation 431

additional cost in terms of communication) and existing tricks such as ‘proof-of-
cheating’ or ‘cheat-recovery’ mechanism [21,54]. The issue of input consistency
does not appear in the construction of [60] at all, as it does not deal with parallel
composition. On the other hand, the generic input consistency technique adopted
in [43] can only (at the best) detect a conflict locally and cannot be extended to
support the stronger form of identifiability that we need.

Below, we present the common issues faced and approach taken in all our
protocols before turning towards the challenges and way-outs specific to our con-
structions. Two of the major efficiency bottlenecks of 2PC from garbled circuits,
namely the need of multiple garbled circuits due to cut-and-choose approach
and Oblivious Transfer (OT) for enabling the evaluator to receive its input in
encoded form are bypassed in the 3PC scenario through two simple tricks [43,60].
First, the garblers use common randomness to construct the same garbled cir-
cuit individually. A simple comparison of the GCs received from the two garblers
allows to conclude the correctness of the GC. Since at most one party can be
corrupt, if the received GCs match, then its correctness can be concluded. Sec-
ond, the evaluator shares its input additively among the garblers at the onset of
the protocol, reducing the problem to a secure computation of a function on the
garblers’ inputs alone. Specifically, assuming P3 as the evaluator, the computa-
tion now takes inputs from P1 and P2 as (x1, x31) and (x2, x32) respectively to
compute C(x1, x2, x31, x32) = f(x1, x2, x31 ⊕ x32). Since the garblers possess all
the inputs needed for the computation, OT is no longer needed to transfer the
evaluator’s input in encoded form to P3.

Next, to force the garblers to input encoding and decoding information (the
keys) that are consistent with the GCs, the following technique is adopted. Notice
that the issue of input consistency where a corrupt party may use different inputs
as an evaluator and as a garbler in different instances of the sub-protocols is dis-
tinct and remains to be tackled separately. Together with the GC, each garbler
also generates the commitment to the encoding and decoding information using
the common shared randomness and communicates to the evaluator. Again a
simple check on whether the set of commitments are same for both the gar-
blers allows to conclude their correctness. Now it is infeasible for the garblers to
decommit the encoded input corresponding to their own input and the evalua-
tor’s share to something that are inconsistent to the GC without being caught.
Following a common trick to hide the inputs of the garblers, the commitments
on the encoding information corresponding to every bit of the garblers’ input
are sent in permuted order that is privy to the garblers. The commitment on the
decoding information is relevant only for the fair protocol where the decoding
information is withheld to force a corrupt evaluator to be fair. Namely, in the
third round of the final protocol, the evaluator is given access to the decoding
information only when it helps the honest parties to compute the output. This
step needs us to rely on the obliviousness of our garbling scheme, apart from
privacy. The commitment on the decoding information and its verification by
crosschecking across the garblers are needed to prevent a corrupt party to lie
later. Now we turn to the challenges specific to the constructions.

432 A. Patra and D. Ravi

Achieving fairness in 3 rounds. The sub-protocol for our fair construction only
achieves a weak form of identifiability, a local conflict to be specific, in the
absence of broadcast. Namely, the evaluator either computes the encoded output
(‘happy’ state) or it just gets to know that the garblers are in conflict (‘confused’
state) in the worst case. The latter happens when it receives conflicting copies
of GCs or commitments to the encoding/decoding information. In the composed
protocol, a corrupt party can easily breach fairness by keeping one honest eval-
uator happy and the other confused in the end of round 2 and selectively enable
the happy party to compute the output by releasing the decoding information in
the third round (which was withheld until Round 2). Noting that the absence of
a broadcast channel ensues conflict and confusion, we handle this using a neat
trick of ‘certification mechanism’ that tries to enforce honest behaviour from a
sender who is supposed to send a common information to its fellow participants.

A party is rewarded with a ‘certificate’ for enacting an honest sender and
emulating a broadcast by sending the same information to the other two par-
ties, for the common information such as GCs and commitments. This protocol
internally mimics a CDS protocol [36] for equality predicate, with an additional
property of ‘authenticity’, a departure from the traditional CDS. An authenti-
cated CDS allows the receiver to detect correct receipt of the secret/certificate
(similar to authenticated encryption where the receiver knows if the received
message is the desired one). As demonstrated below, the certificate allows to
identify the culprit behind the confusion on one hand, and to securely trans-
mit the decoding information from a confused honest party to the happy honest
party in the third round, on the other. The certificate, being a proof of correct
behaviour, when comes from an honest party, say Pi, the other honest party who
sees conflict in the information distributed by Pi communicated over point-to-
point channel, can readily identify the corrupt party responsible for creating the
conflict in Round 3. This aids the latter party to compute the output using the
encoded output of the former honest party. The certificate further enables the
latter party to release the decoding information in Round 3 in encrypted form
so that the other honest party holding a certificate can decrypt it. The release of
encryption is done only for the parties whose distributed information are seen in
conflict, so that a corrupt party either receives its certificate or the encryption
but not both. Consequently, it is forced to assist at least one honest party in
getting the certificate and be happy to compute the output, as only a happy
party releases the decoding information on clear. In a nutshell, the certification
mechanism ensures that when one honest party is happy, then no matter how the
corrupt party behaves in the third round, both the honest parties will compute
the output in the third round. When no honest party is happy, then none can
get the output. Lastly, the corrupt party must keep one honest party happy, for
it to get the output.

Yet again, we use garbled circuits to implement the above where a party
willing to receive a certificate acts as an evaluator for a garbled circuit imple-
menting ‘equality’ check of the inputs. The other two parties act as the garblers
with their inputs as the common information dealt by the evaluator. With no

On the Exact Round Complexity of Secure Three-Party Computation 433

concern of input privacy, the circuit can be garbled in a privacy-free way [29,49].
The certificate that is the key for output 1 is accessible to the evaluator only
when it emulates a broadcast by dealing identical copies of the common infor-
mation to both the other parties. Notably, [47] suggests application of garbling
to realise CDS.

Achieving unanimous abort in 2 rounds. Moving on to our construction with
unanimous abort, the foremost challenge comes from the fact that it must be
resilient to any corrupt Round 2 private communication. Because there is no
time to report this misbehaviour to the other honest party who may have got
the output and have been treated with honest behaviour all along. Notably,
in our sub-protocols, the private communication from both garblers in second
round inevitably carries the encoded share of the evaluator’s input (as the share
themselves arrives at the garblers’ end in Round 1). This is a soft spot for a
corrupt garbler to selectively misbehave and cause selective abort. While the
problem of transferring encoded input shares of the evaluator without relying
on second round private communication seems unresolvable on the surface, our
take on the problem uses a clever ‘two-part release mechanism’. The first set
of encoding information for random inputs picked by the garblers themselves is
released in the first round privately and any misbehaviour is brought to notice
in the second round. The second set of encoding information for the offsets of
the random values and the actual shares of the evaluator’s input is released
in the second round via broadcast without hampering security, while allowing
public detection. Thus the sub-protocol achieves global/public conflict and helps
the final construction to exit with ⊥ unanimously when any of the sub-protocol
detects a conflict.
Achieving guaranteed output delivery in 3 rounds. For achieving this stronger
notion, the sub-protocol here needs a stronger kind of identifiability, identifying
the corrupt locally to be specific, to facilitate all parties to get output within an
additional round no matter what. To this effect, our sub-protocol is enhanced
so that the evaluator either successfully computes the output or identifies the
corrupt party. We emphasise that the goals of the sub-protocols for unanimous
abort and guaranteed output delivery, namely global conflict vs. local identifica-
tion, are orthogonal and do not imply each other. The additional challenge faced
in composing the executions to achieve guaranteed output delivery lies in deter-
mining the appropriate ‘committed’ input of the corrupt party based on which
round and execution of sub-protocol it chooses to strike. Tackling input consis-
tency. We take a uniform approach for all our protocols. We note that a party
takes three different roles across the three composed execution: an evaluator, a
garbler who initiate the GC generation by picking the randomness, a co-garbler
who verifies the sanity of the GC. In each instance, it gets a chance to give inputs.
We take care of input consistency in two parts. First, we tie the inputs that a
party can feed as an evaluator and as a garbler who initiates a GC construction
via a mechanism that needs no additional communication at all. This is done by
setting the permutation strings (used to permute the commitments of encoding
information of the garblers) to the shares of these parties’ input in a certain way.

434 A. Patra and D. Ravi

The same trick fails to work in two rounds for the case when a party acts as
a garbler and a co-garbler in two different executions. We tackle this by super-
imposing two mirrored copies of the sub-protocol where the garblers exchange
their roles. Namely, in the final sub-protocol, each garbler initiates an indepen-
dent copy of garbled circuit and passes on the randomness used to the fellow
garbler for verification. The previous trick is used to tie the inputs that a party
feeds as an evaluator and as a garbler for the GC initiated by it (inter-execution
consistency). The input consistency of a garbler for the two garbled circuits (one
initiated by him and the other by the co-garbler) is taken care using ‘proof-of-
cheating’ mechanism [54] where the evaluator can unlock the clear input of both
the other parties using conflicting output wire keys (intra-execution consistency).
While this works for our protocols with unanimous abort and guaranteed output
delivery, the fair protocol faces additional challenges. First, based on whether a
party releases a clear or encoded input, a corrupt garbler feeding two different
inputs can conclude whether f leads to the same output for both his inputs,
breaching privacy. This is tackled by creating the ciphertexts using conflicting
input keys. Second, inspite of the above change, a corrupt garbler can launch
‘selective failure attack’ [51,58] and breach privacy of his honest co-garbler. We
tackle this using ‘XOR-tree approach’ [55] where every input bit is broken into s
shares and security is guaranteed except with probability 2−(s−1) per input bit.
We do not go for the refined version of this technique, known as probe-resistant
matrix, [55,66] for simplicity.

On the assumption needed. While the garbled circuits can be built just from
OWF, the necessity of injective OWF comes from the use of commitments that
need binding property for any (including adversarially-picked) public parameter.
Our protocols, having 2–3 rounds, seem unable to spare rounds for generating
and communicating the public parameters by a party who is different from the
one opening the commitments.

On concrete efficiency. Though the focus is on the round complexity, the concrete
efficiency of our protocols is comparable to Yao [67] and require transmission
and evaluation of few GCs (upto 9) (in some cases we only need privacy-free
GCs which permit more efficient constructions than their private counterparts
[29,49]). The broadcast communication of the optimized variants of our protocols
is independent of the GC size via applying hash function. We would like to draw
attention towards the new tricks such as the ones used for input consistency,
getting certificate of good behaviour via garbled circuits, which may be of both
theoretical and practical interest. We believe the detailed take on our protocols
will help to lift them or their derivatives to practice in future.

1.3 Roadmap

We present a high-level overview of the primitives used in Sect. 2. We present
our 3-round fair protocol, 2-round protocol with unanimous abort and 3-round
protocol with guaranteed output delivery in Sects. 3, 4 and 5 respectively. Our
lower bound results appear in Sect. 6. The security definitions, complete security

On the Exact Round Complexity of Secure Three-Party Computation 435

proofs and optimizations appear in the full version [63]. We define authenticated
CDS and show its realisation from one of the sub-protocols used in our fair
protocol in the full version.

2 Preliminaries

2.1 Model

We consider a set of n = 3 parties P = {P1, P2, P3}, connected by pair-wise
secure and authentic channels. Each party is modelled as a probabilistic polyno-
mial time Turing (PPT) machine. We assume that there exists a PPT adversary
A, who can actively corrupt at most t = 1 out of the n = 3 parties and make
them behave in any arbitrary manner during the execution of a protocol. We
assume the adversary to be static, who decides the set of t parties to be cor-
rupted at the onset of a protocol execution. For our 2-round protocol achieving
unanimous abort and 3-round protocol achieving guaranteed output delivery, a
broadcast channel is assumed to exist.

We denote the cryptographic security parameter by κ. A negligible function
in κ is denoted by negl(κ). A function negl(·) is negligible if for every polynomial
p(·) there exists a value N such that for all m > N it holds that negl(m) < 1

p(m) .
We denote by [x], the set of elements {1, . . . , x} and by [x, y] for y > x, the set
of elements {x, x + 1, . . . , y}. For any x ∈R {0, 1}m, xi denotes the bit of x at
index i for i ∈ [m]. Let S be an infinite set and X = {Xs}s∈S , Y = {Ys}s∈S be
distribution ensembles. We say X and Y are computationally indistinguishable, if
for any PPT distinguisher D and all sufficiently large s ∈ S, we have |Pr[D(Xs) =
1] − Pr[D(Ys) = 1]| < 1/p(|s|) for every polynomial p(·).

2.2 Primitives

Garbling Schemes. The term ‘garbled circuit’ (GC) was coined by Beaver [7],
but it had largely only been a technique used in secure protocols until they
were formalized as a primitive by Bellare et al. [9]. ‘Garbling Schemes’ as they
were termed, were assigned well-defined notions of security, namely correctness,
privacy, obliviousness, and authenticity. A garbling scheme G is characterised by
a tuple of PPT algorithms G = (Gb,En,Ev,De) described below.

– Gb (1κ, C) is invoked on a circuit C in order to produce a ‘garbled circuit’ C,
‘input encoding information’ e, and ‘output decoding information’ d.

– En (x, e) encodes a clear input x with encoding information e in order to
produce a garbled/encoded input X.

– Ev (C,X) evaluates C on X to produce a garbled/encoded output Y.
– De (Y, d) translates Y into a clear output y as per decoding information d.

We give an informal intuition of the notion captured by each of the security
properties, namely correctness, privacy, obliviousness, and authenticity. Correct-
ness enforces that a correctly garbled circuit, when evaluated, outputs the correct

436 A. Patra and D. Ravi

output of the underlying circuit. Privacy aims to protect the privacy of encoded
inputs. Authenticity enforces that the evaluator can only learn the output label
that corresponds to the value of the function. Obliviousness captures the notion
that when the decoding information is withheld, the garbled circuit evaluation
leaks no information about any underlying clear values; be they of the input,
intermediate, or output wires of the circuit. The formal definitions are presented
in the full version [63].

We are interested in a class of garbling schemes referred to as projective in
[9]. When garbling a circuit C : {0, 1}n �→ {0, 1}m, a projective garbling scheme
produces encoding information of the form e =

(
e0
i , e

1
i

)
i∈[n]

, and the encoded
input X for x = (xi)i∈[n] can be interpreted as X = En(x, e) = (exi

i)i∈[n].
Our 3-round fair protocol relies on garbling schemes that are simultaneously

correct, private and oblivious. One of its subroutine uses a garbling scheme that
is only authentic. Such schemes are referred as privacy-free [29,49]. Our protocols
with unanimous abort and guaranteed output delivery need a correct, private
and authentic garbling scheme that need not provide obliviousness. Both these
protocols as well as the privacy-free garbling used in the fair protocol further
need an additional decoding mechanism denoted as soft decoding algorithm sDe
[60] that can decode garbled outputs without the decoding information d. The
soft-decoding algorithm must comply with correctness: sDe(Ev(C,En(e, x))) =
C(x) for all (C, e, d). While both sDe and De can decode garbled outputs, the
authenticity needs to hold only with respect to De. In practice, soft decoding in
typical garbling schemes can be achieved by simply appending the truth value
to each output wire label.

Non-interactive Commitment Schemes. A non-interactive commitment scheme
(NICOM) consists of two algorithms (Com,Open) defined as follows. Given a
security parameter κ, a common parameter pp, message x and random coins r,
PPT algorithm Com outputs commitment c and corresponding opening infor-
mation o. Given κ, pp, a commitment and corresponding opening information
(c, o), PPT algorithm Open outputs the message x. The algorithms should sat-
isfy correctness, binding (i.e. it must be hard for an adversary to come up with
two different openings of any c and any pp) and hiding (a commitment must
not leak information about the underlying message) properties. We need this
kind of strong binding as the same party who generates the pp and commitment
is required to open later. Two such instantiations of NICOM based on sym-
metric key primitives (specifically, injective one-way functions) and the formal
definitions of the properties are given in the full version. We also need a NICOM
scheme that admits equivocation property. An equivocal non-interactive commit-
ment (eNICOM) is a NICOM that allows equivocation of a certain commitment
to any given message with the help of a trapdoor. The formal definitions and
instantiations appear in the full version [63].

Symmetric-Key Encryption (SKE) with Special Correctness. Our fair protocol
uses a SKE π = (Gen,Enc,Dec) which satisfies CPA security and a special cor-
rectness property [48,56]– if the encryption and decryption keys are different,

On the Exact Round Complexity of Secure Three-Party Computation 437

then decryption fails with high probability. The definition and an instantiation
appear in the full version.

3 3-round 3PC with Fairness

This section presents a tight upper bound for 3PC achieving fairness in the
setting with just pair-wise private channels. Our lower bound result showing
necessity of three rounds for unanimous abort assuming just pairwise private
channels (appears in the full version [63]) rules out the possibility of achieving
fairness in 2 rounds in the same setting. Our result from Sect. 6.1 further shows
tightness of 3 rounds even in the presence of a broadcast channel.

Building on the intuition given in the introduction, we proceed towards more
detailed discussion of our protocol. Our fair protocol is built from parallel com-
position of three copies of each of the following two sub-protocols: (a) fairi where
Pi acts as the evaluator and the other two as garblers for computing the desired
function f . This sub-protocol ensures that honest Pi either computes its encoded
output or identifies just a conflict in the worst case. The decoding information is
committed to Pi, yet not opened. It is released in Round 3 of the final composed
protocol under subtle conditions as elaborated below. (b) certi where Pi acts as
the evaluator and the other two as garblers for computing an equality checking
circuit on the common information distributed by Pi in the first round of the
final protocol. Notably, though the inputs come solely from the garblers, they
are originated from the evaluator and so the circuit can be garbled in a privacy-
free fashion. This sub-protocol ensures either honest Pi gets its certificate, the
key for output 1 (meaning the equality check passes through), or identifies a
conflict in the worst case. The second round of certi is essentially an ‘authenti-
cated’ CDS for equality predicate tolerating one active corruption. Three global
variables are maintained by each party Pi to keep tab on the conflicts and the
corrupt. Namely, Ci to keep the identity of the corrupt, flagj and flagk (for dis-
tinct i, j, k ∈ [3]) as indicators of detection of conflict with respect to information
distributed by Pj and Pk respectively. The sub-protocols fairi and certi assure
that if neither the two flags nor Ci is set, then Pi must be able to evaluate the
GC successfully and get its certificate respectively.

Once {fairi, certi}i∈[3] complete by the end of round 2 of the final proto-
col fair, any honest party will be in one of the three states: (a) no corruption
and no conflict detected ((Ci = ∅) ∧ (flagj = 0) ∧ (flagk = 0)); (b) corruption
detected (Ci �= ∅); (c) conflict detected (flagj = 1) ∨ (flagk = 1). An honest
party, guaranteed to have computed its encoded output and certificate only in
the first state, releases these as well as the decoding information for both the
other parties unconditionally in the third round. In the other two states, an
honest party conditionally releases only the decoding information. This step is
extremely crucial for maintaining fairness. Specifically, a party that belongs to
the second state, releases the decoding information only to the party identified
to be honest. A party that belongs to the third state, releases the decoding infor-
mation in encrypted form only to the party whose distributed information are

438 A. Patra and D. Ravi

not agreed upon, so that the encryption can be unlocked only via a valid certifi-
cate. A corrupt party will either have its certificate or the encrypted decoding
information, but not both. The former when it distributes its common informa-
tion correctly and the latter when it does not. The only way a corrupt party can
get its decoding information is by keeping one honest party in the first state, in
which case both the honest parties will be able to compute the output as follows.
The honest party in state one, say Pi, either gets it decoding information on clear
or in encrypted form. The former when the other honest party, Pj is in the first
or second state and the latter when Pj is in the third state. Pi retrieves the
decoding information no matter what, as it also holds the certificate to open the
encryption. An honest party Pj in the second state, on identifying Pi as honest,
takes the encoded output of Pi and uses its own decoding information to com-
pute the output. The case for an honest party Pj in the third state is the most
interesting. Since honest Pi belongs to the first state, a corrupt party must have
distributed its common information correctly as otherwise Pi will find a conflict
and would be in third state. Therefore, Pj in the third state must have found
Pi’s information on disagreement due the corrupt party’s misbehaviour. Now,
Pi’s certificate that proves his correct behaviour, allows Pj to identify the cor-
rupt, enter into the second state and compute the output by taking the encoded
output of honest Pi. In the following, we describe execution fairi assuming input
consistency, followed by certi. Entwining the six executions, tackling the input
consistency and the final presentation of protocol fair appear in the end.

3.1 Protocol fairi

At a high level, fairi works as follows. In the first round, the evaluator shares
its input additively between the two garblers making the garblers the sole input
contributors to the computation. In parallel, each garbler initiates construction
of a GC and commitments on the encoding and decoding information. While
the GC and the commitments are given to the evaluator Pi, the co-garbler,
acting as a verifier, additionally receives the source of the used randomness
for GC and openings of commitments. Upon verification, the co-garbler either
approves or rejects the GC and commitments. In the former case, it also releases
its own encoded input and encoded input for the share of Pi via opening the
commitments to encoding information in second round. In the latter case, Pi

sets the flag corresponding to the generator of the GC to true. Failure to open
a verified commitment readily exposes the corrupt to the evaluator. If all goes
well, Pi evaluates both circuits and obtains encoded outputs. The correctness of
the evaluated GC follows from the fact that it is either constructed or scrutinised
by a honest garbler. The decoding information remains hidden (yet committed)
with Pi and the obliviousness of GC ensures that Pi cannot compute the output
until it receives the correct opening.

To avoid issues of adaptivity, the GCs are not sent on clear in the first round
to Pi who may choose its input based on the GCs. Rather, a garbler sends
a commitment to its GC to Pi and it is opened only by the co-garbler after
successful scrutiny. The correctness of evaluated GC still carries over as a corrupt

On the Exact Round Complexity of Secure Three-Party Computation 439

garbler cannot open to a different circuit than the one committed by an honest
garbler by virtue of the binding property of the commitment scheme. We use
an eNICOM for committing the GCs and decoding information as equivocation
is needed to tackle a technicality in the security proof. The simulator of our
final protocol needs to send the commitments on GC, encoding and decoding
information without having access to the input of an evaluator Pi (and thus also
the output), while acting on behalf of the honest garblers in fairi. The eNICOM
cannot be used for the encoding information, as they are opened by the ones
who generate the commitments and eNICOM does not provide binding in such
a case. Instead, the GCs and the decoding information are equivocated based on
the input of the evaluator and the output.

Protocol fairi appears in Fig. 1 where Pi returns encoded outputs Yi =
(Yj

i ,Y
k
i) (initially set to ⊥) for the circuits created by Pj , Pk, the commit-

ments to the respective decoding information Cdec
j , Cdec

k and the flags flagj , flagk

(initially set to false) to be used in the final protocol. The garblers output their
respective corrupt set, flag for the fellow garbler and opening for the decoding
information corresponding to its co-garbler’s GC and not its own. This is to
ensure that it cannot break the binding of eNICOM which may not necessarily
hold for adversarially-picked public parameter.

Lemma 1. During fairi, Pβ /∈ Cα holds for honest Pα, Pβ.

Proof. An honest Pα would include Pβ in Cα only if one of the following hold:
(a) Both are garblers and Pβ sends commitments to garbled circuit, encoding
and decoding information inconsistent with the randomness and openings shared
privately with Pα (b) Pα is an evaluator and Pβ is a garbler and either (i) Pβ ’s
opening of a committed garbled circuit fails or (ii) Pβ ’s opening of a committed
encoded input fails. It is straightforward to verify that the cases will never occur
for honest (Pα, Pβ). �

Lemma 2. If honest Pi has Ci = ∅ and flagj = flagk = 0, then Yi = (Yj
i ,

Yk
i) �= ⊥.

Proof. According to fairi, Pi fails to compute Yi when it identifies the corrupt or
finds a mismatch in the common information Dj or Dk or receives a nOK signal
from one of its garblers. The first condition implies Ci �= ∅. The second condition
implies, Pi would have set either flagj or flagk to true. For the third condition,
if Pj sends nOK then Pi would set flagk = 1. Lastly, if Pk sends nOK, then Pi sets
flagj = 1. Clearly when Ci = ∅ ∧ flagj = 0 ∧ flagk = 0, Pi evaluates both Cj ,Ck

and obtains Yi = (Yj
i ,Y

k
i) �= ⊥. �

3.2 Protocol certi

When a party Pi in fairi is left in a confused state and has no clue about the
corrupt, it is in dilemma on whether or whose encoded output should be used
to compute output and who should it release the decoding information (that

440 A. Patra and D. Ravi

Fig. 1. Protocol fairi

On the Exact Round Complexity of Secure Three-Party Computation 441

it holds as a garbler) to in the final protocol. Protocol certi, in a nutshell, is
introduced to help a confused party to identify the corrupt and take the honest
party’s encoded output for output computation, on one hand, and to selectively
deliver the decoding information only to the other honest party, on the other.
Protocol certi implements evaluation of an equality checking function that takes
inputs from the two garblers and outputs 1 when the test passes and outputs the
inputs themselves otherwise. In the final protocol, the inputs are the common
information (GCs and commitments) distributed by Pi across all executions of
fairj . The certificate is the output key corresponding to output 1. Since input
privacy is not a concern here, the circuit is enough to be garbled in privacy-
free way and authenticity of garbling will ensure a corrupt Pi does not get the
certificate. certi follows the footstep of fairi with the following simplifications:
(a) Input consistency need not be taken care across the executions implying
that it is enough one garbler alone initiates a GC and the other garbler simply
extends its support for verification. To divide the load fairly, we assign garbler
Pj where i = (j + 1) mod 3 to act as the generator of GC in certi. (b) The
decoding information need not be committed or withheld. We use soft decoding
that allows immediate decoding.

Similar to fairi, at the end of the protocol, either Pi gets its certificate (either
the key for 1 or the inputs themselves), or sets its flags (when GC and com-
mitment do not match) or sets its corrupt set (when opening of encoded inputs
fail). Pi outputs its certificate, the flag for the GC generator and corrupt set,
to be used in the final protocol. The garblers output the key for 1, flag for its
fellow garbler and the corrupt set. Notice that, when certi is composed in the
bigger protocol, Pi will be in a position to identify the corrupt when the equality
fails and the certificate is the inputs fed by the garblers. The protocol appears
in Fig. 2.

Lemma 3. During certi, Pβ /∈ Cα holds for honest Pα, Pβ.

Proof. An honest Pα would include Pβ in Cα only if one of the following holds:
(a) Pβ sends inconsistent (sβ ,Wβ) to Pα. (b) Pβ ’s opening of committed encoded
input or garbled circuit fails. It is straightforward to verify that the cases will
never occur for honest (Pβ , Pα). �
Lemma 4. If an honest Pi has Ci = ∅ and flagj = flagk = 0, then, certi �= ⊥.

Proof. The proof follows easily from the steps of the protocol. �

3.3 Protocol fair

Building on the intuition laid out before, we only discuss input consistency that
is taken care in two steps: Inter-input consistency (across executions) and intra-
input consistency (within an execution). In the former, Pi’s input as an evaluator
in fairi is tied with its input committed as garblers for its own garbled circuits
in fairj and fairk. In the latter, the consistency of Pi’s input for both garbled
circuits in fairj (and similarly in fairk) is tackled. We discuss them one by one.

442 A. Patra and D. Ravi

Fig. 2. Protocol certi

We tackle the former in a simple yet clever way without incurring any addi-
tional overhead. We explain the technique for enforcing P1’s input consistency
on input x1 as an evaluator during fair1 and as a garbler during fair2, fair3 with
respect to his GC C1. Since the protocol is symmetric in terms of the roles of
the parties, similar tricks are adopted for P2 and P3. Let in the first round of
fair1, P1 shares its input x1 by handing x12 and x13 to P2 and P3 respectively.
Now corresponding to C1 during fair2, P1 and P3 who act as the garblers use x13

as the permutation vector p11 that defines the order of the commitments of the
bits of x1. Now input consistency of P1’s input is guaranteed if m11 transferred
by P1 in fair2 is same as x12, P1’s share for P2 in fair1. For an honest P1, the
above will be true since m11 = p11 ⊕x1 = x13 ⊕x1 = x12. If the check fails, then
P2 identifies P1 as corrupt. This simple check forces P1 to use the same input in
both fair1 and fair2 (corresponding to C1). A similar trick is used to ensure input
consistency of the input of P1 across fair1 and fair3 (corresponding to C1) where

On the Exact Round Complexity of Secure Three-Party Computation 443

P1 and P2 who act as the garblers use x12 as the permutation vector p11 for the
commitments of the bits of x1. The evaluator P3 in fair3 checks if m11 transferred
by P1 in fair3 is same as x13 that P3 receives from P1 in fair1. While the above
technique enforces the consistency with respect to P1’s GC, unfortunately, the
same technique cannot be used to enforce P1’s input consistency with respect
to C2 in fair3 (or fair2) since p21 cannot be set to x12 which is available to P2

only at the end of first round. While, P2 needs to prepare and broadcast the
commitments to the encoding information in jumbled order as per permutation
string p21 in the first round itself. We handle it differently as below.

The consistency of Pi’s input for both garbled circuits in fairj (and similarly
in fairk) is tackled via ‘cheat-recovery mechanism’ [54]. We explain with respect
to P1’s input in fair3. P2 prepares a ciphertext (cheat recovery box) with the
input keys of P1 corresponding to the mismatched input bit in the two garbled
circuits, C1 and C2 in fair3. This ciphertext encrypts the input shares of gar-
blers that P3 misses, namely, x12 and x21. This would allow P3 to compute the
function on clear inputs directly. To ensure that the recovered missing shares
are as distributed in fair1 and fair2, the shares are not simply distributed but
are committed via NICOM by the input owners and the openings are encrypted
by the holders. Since there is no way for an evaluator to detect any mismatch
in the inputs to and outputs from the two GCs as they are in encoded form,
we use encryption scheme with special correctness to enable the evaluator to
identify the relevant decryptions. Crucially, we depart from the usual way of
creating the cheat recovery boxes using conflicting encoded outputs. Based on
whether the clear or encoded output comes out of honest P3 in round 3, corrupt
garbler P1 feeding two different inputs to C1 and C2 can conclude whether its
two different inputs lead to the same output or not, breaching privacy. Note that
the decoding information cannot be given via this cheat recovery box that uses
conflicting encoded outputs as key, as that would result in circularity.

Despite using the above fix, the mechanism as discussed above is susceptible
to ‘selective failure attack’, an attack well-known in the 2-party domain. While in
the latter domain, the attack is launched to breach the privacy of the evaluator’s
input based on whether it aborts or not. Here, a corrupt garbler can prepare
the ciphertexts in an incorrect way and can breach privacy of its honest co-
garbler based on whether clear or encoded output comes out of the evaluator.
We elaborate the attack in fair3 considering a corrupt P1 and single bit inputs.
P1 is supposed to prepare two ciphertexts corresponding to P2’s input bit using
the following key combinations– (a) key for 0 in C1 and 1 in C2 and (b) vice-
versa. Corrupt P1 may replace one of the ciphertexts using key based on encoded
input 0 of P2 in both the GCs. In case P2 indeed has input 0 (that he would use
consistently across the 2 GCs during fair3), then P3 would be able to decrypt
the ciphertext and would send clear output in Round 3. P1 can readily conclude
that P2’s input is 0. This attack is taken care via the usual technique of breaking
each input bit to s number of xor-shares, referred as ‘XOR-tree approach’ [55]
(probe-resistance matrix [55,66] can also be used; we avoid it for simplicity). The
security is achieved except with probability 2−(s−1). Given that input consistency

444 A. Patra and D. Ravi

is enforced, at the end of round 2, apart from the three states– (a) no corruption
and no conflict detected (b) corrupt identified (c) conflict detected, a party can
be in yet another state. Namely, no corruption and no conflict detected and the
party is able to open a ciphertext and compute f on clear. A corrupt party
cannot be in this state since the honest parties would use consistent inputs and
therefore the corrupt would not get access to conflicting encoded inputs that
constitute the key of the ciphertexts. If any honest party is in this state, our
protocol results in all parties outputting this output. In Round 3, this party can
send the computed output along with the opening of the shares he recovered
via the ciphertexts as ‘proof’ to convince the honest party of the validity of the
output. The protocol fair appears in Figs. 3 and 4.

We now prove the correctness of fair. The intuitive proof of fairness and
formal proof of security are presented in the full version [63].

Lemma 5. During fair, Pj /∈ Ci holds for honest Pi, Pj.

Proof. An honest Pi will not include Pj in its corrupt set in the sub-protocols
{fairα, certα}α∈[3] following Lemmas 1 and 3. Now we prove the statement indi-
vidually investigating the three rounds of fair.

In Round 1 of fair, Pi includes Pj as corrupt only if (a) Pi, Pj are gar-
blers and Pj sets pjj �= xji or (b) Pj sends ppj , cji, oji, xji to Pi such that
Open(ppj , cji, oji) �= xji. None of them will be true for an honest Pj . In Round 2
of fair, Pi includes Pj as corrupt only if (a) Pj is a garbler and Pi is an evaluator
and mjj �= xji or (b) Pi obtains certi = (γ′

j , γ
′
k) and detects Pj ’s input γ′

j in
certi to be different from the information sent by him. The former will not be
true for an honest Pj . The latter also cannot hold for honest Pj by correctness
of the privacy-free garbling used. In the last round of fair, Pi will identify Pj as
corrupt, if it has flagk = 1 and yet receives certk which is same as keyk from Pk.
A corrupt Pk receives keyk only by handing out correct and consistent common
information to Pi and Pj until the end of Round 1. Namely, the following must
be true for Pk to obtain keyk (except for the case when it breaks the authen-
ticity of the GC): (i) γi and γj for certk must be same and (ii) Pk must not be
in the corrupt set of any honest party at the end of Round 1. In this case, flagk

cannot be 1. �

Lemma 6. No corrupt party can be in st1 by the end of Round 1, except with
negligible probability.

Proof. For a corrupt Pk, its honest garblers Pi and Pj creates the ciphertexts cts
using keys with opposite meaning for their respective inputs from their garbled
circuits. Since honest Pi and Pj use the same input for both the circuits, Pk

will not have a key to open any of the ciphertexts. The openings (oij , oji) are
therefore protected due to the security of the encryption scheme. Subsequently,
Pk cannot compute y. �
Definition 1. A party Pi is said to be ‘committed’ to a unique input xi, if Pj

holds (cij , cik, oij , xij) and Pk holds (cij , cik, oik, xik) such that: (a) xi = xij⊕xik

and (b) cij opens to xij via oij and likewise, cik opens to xik via oik.

On the Exact Round Complexity of Secure Three-Party Computation 445

Fig. 3. A Three-Round Fair 3PC protocol

We next prove that a corrupt party must have committed its input if some honest
party is in st1 or st2. To prove correctness, the next few lemmas then show that
an honest party computes its output based on its own output or encoded output
if it is in st1 or st2 or relies on the output or encoded output of the other

446 A. Patra and D. Ravi

Fig. 4. A Three-Round Fair 3PC protocol

honest party. In all cases, the output will correspond to the committed input of
the corrupt party.

Lemma 7. If an honest party is in {st1, st2}, then corrupt party must have
committed a unique input.

Proof. An honest Pi is in {st1, st2} only when Ci = ∅, flagj = 0, flagk = 0 hold
at the end of Round 2. Assume Pk is corrupt. Pk has not committed to a unique
xk implies either it has distributed different copies of commitments (cki, ckj) to
the honest parties or distributed incorrect opening information to some honest
party. In the former case, flagk will be set by Pi. In the latter case, at least one
honest party will identify Pk to be corrupt by the end of Round 1. If it is Pi, then
Ci �= ∅. Otherwise, Pj populates its corrupt set with Pk, leading to Pi setting
flagk = 1 in Round 2. �
Lemma 8. If an honest party is in st1, then its output y corresponds to the
unique input committed by the corrupt party.

On the Exact Round Complexity of Secure Three-Party Computation 447

Proof. An honest Pi is in st1 only when Ci = ∅, flagj = 0, flagk = 0 hold at
the end of Round 2 and it computes y via decryption of the ciphertexts ct sent
by either Pj or Pk. Assume Pk is corrupt. By Lemma 7, Pk has committed
to its input. The condition flagj = 0 implies that Pk exchanges the commit-
ments on the shares of Pj ’s input, namely {cji, cjk}, honestly. Now if Pi opens
honest Pj ’s ciphertext, then it unlocks the opening information for the missing
shares, namely (okj , ojk) corresponding to common and agreed commitments
(ckj , cjk). Using these it opens the missing shares xkj ← Open(ckj , okj) and
xjk ← Open(cjk, ojk) and finally computes output on (xi, xji ⊕ xjk, xki ⊕ xkj).
Next, we consider the case when Pi computes y by decrypting a ct sent by corrupt
Pk. In this case, no matter how the ciphertext is created, the binding property
of NICOM implies that Pk will not be able to open cjk, ckj to anything other
than xjk, xkj except with negligible probability. Thus, the output computed is
still as above and the claim holds. �
Lemma 9. If an honest party is in st2, then its encoded output Y corresponds
to the unique input committed by the corrupt party.

Proof. An honest Pi is in st2 only when Ci = ∅, flagj = 0, flagk = 0 hold at the
end of Round 2. The conditions also imply that Pi has computed Yi successfully
(due to Lemma 2) and Pk has committed to its input (due to Lemma 7). Now
we show that Yi correspond to the unique input committed by the corrupt Pk.
We first note that Pk must have used the same input for both the circuits Cj

and Ck in fairi. Otherwise one of the ciphertexts prepared by honest Pj must
have been opened and y would be computed, implying Pi belongs to st1 and not
in st2 as assumed. We are now left to show that the input of Pk for its circuit
Ck in fairi is the same as the one committed.

In fair, honest Pj would use permutation string pkk = xkj for permuting
the commitments in Dk corresponding to xk. Therefore, one can conclude that
the commitments in Dk are constructed correctly and ordered as per xkj . Now
the only way Pk can decommit x′

k is by giving mkk = pkk ⊕ x′
k. But in this

case honest Pi would add Pk to Ci as the check mkk = xki would fail (mkk =
pkk ⊕ x′

k �= pkk ⊕ xk) and will be in st3 and not in st2 as assumed. �
Lemma 10. If an honest party is in st2, then its output y corresponds to the
unique input committed by the corrupt party.

Proof. Note that an honest party Pi in st2 either uses y of another party in st1

or computes output from its encoded output Yi. The proof for the former case
goes as follows. By Lemma 6, a corrupt Pk can never be in st1. The correctness
of y computed by an honest Pj follows directly from Lemma 8. For the latter
case, Lemma 9 implies that Yi corresponds to the unique input committed by
the corrupt party. All that needs to be ensured is that Pi gets the correct decod-
ing information. The condition flagj = flagk = 0 implies that the commitment
to the decoding information is computed and distributed correctly for both Cj

and Ck. Now the binding property of eNICOM ensures that the decoding infor-
mation received from either Pj (for Ck) or Pk (for Cj) must be correct implying
correctness of y (by correctness of the garbling scheme). �

448 A. Patra and D. Ravi

Lemma 11. If an honest party is in st3 or st4, then its output y corresponds
to the unique input committed by the corrupt party.

Proof. An honest party Pi in st3 either uses y of another party in st1 or com-
putes output from encoded output Yj of Pj who it identifies as honest. For the
latter case note that an honest Pj will never be identified as corrupt by Pi, due
to Lemma 5. The claim now follows from Lemma 6, Lemma 8 and the fact that
corrupt Pk cannot forge the ‘proof’ oij (binding of NICOM) for the former case
and from Lemma 9 and the fact that it possesses correct decoding information
as a garbler for Yj for the latter case. An honest party Pi in st4 only uses y of
another party in st1. The lemma follows in this case via the same argument as
before. �
Theorem 1. Protocol fair is correct.

Proof. In order to prove the theorem, we show that if an honest party, say Pi

outputs y that is not ⊥, then it corresponds to x1, x2, x3 where xj is the input
committed by Pj (Definition 1). We note that an honest Pi belong to one among
{st1, st2, st3, st4} at the time of output computation. The proof now follows
from Lemmas 7, 8, 10, 11. �

4 2-round 3PC with Unanimous Abort

This section presents a tight upper bound for 3PC achieving unanimous abort in
the setting with pair-wise private channels and a broadcast channel. The impos-
sibility of one-round protocol in the same setting follows from “residual function”
attack [41]. Our lower bound result presented in the full version [63] rules out the
possibility of achieving unanimous abort in the absence of a broadcast channel
in two rounds. This protocol can be used to yield a round-optimal fair protocol
with broadcast (lower bound in Sect. 6.1) by application of the transformation
of [45] that compiles a protocol with unanimous abort to a fair protocol via eval-
uating the circuits that compute shares (using error-correcting secret sharing)
of the function output using the protocol with unanimous abort and then uses
an additional round for reconstruction of the output.

In an attempt to build a protocol with unanimous abort, we note that any
protocol with unanimous abort must be robust to any potential misbehaviour
launched via the private communication in the second round. Simply because,
there is no way to report the abort to the other honest party who may have
seen honest behaviour from the corrupt party all along and has got the output,
leading to selective abort. Our construction achieves unanimity by leveraging
the availability of the broadcast channel to abort when a corrupt behaviour
is identified either in the first round or in the broadcast communication in the
second round, and behaving robustly otherwise. In summary, if the corrupt party
does not strike in the first round and in the broadcast communication of the
second round, then our construction achieves robustness.

Turning to the garbled circuit based constructions such as the two-round
protocol of [43] achieving selective abort or the composition of three copies of

On the Exact Round Complexity of Secure Three-Party Computation 449

the sub-protocol fairi of fair, we note that the second round private communi-
cation that involves encoding information for inputs is crucial for computing
the output and cannot transit via broadcast because of input privacy breach.
A bit elaborately, the transfer of the encoding information for the inputs of the
garblers can be completed in the first round itself and any inconsistency can be
handled via unanimous abort in the second round. However, a similar treatment
for the encoding information of the shares of the evaluator seems impossible as
they are transferred to garblers only in the first round. We get past this seem-
ingly impossible task via a clever ‘two-part release mechanism’ for the encoding
information of the shares of the evaluator. Details follow.

Similar to protocol fair, we build our protocol ua upon three parallel execu-
tions of a sub-protocol uai (i ∈ [3]), each comprising of two rounds and with each
party Pi enacting the role of the evaluator once. With fairi as the starting point,
each sub-protocol uai allows the parties to reach agreement on whether the run
was successful and the evaluator got the output or not. A flag flagi is used as
an indicator. The protocol ua then decides on unanimous abort if at least one
of the flags from the three executions uai for i ∈ [3] is set to true. Otherwise,
the parties must have got the output. Input consistency checks ensure that the
outputs are identical. Intra-execution input consistency is taken care by cheat-
recovery mechanism (similar and simplified version of what protocol fair uses),
while inter-execution input consistency is taken care by the same trick that we
use in our fair protocol. Now looking inside uai, the challenge goes back to find-
ing a mechanism for the honest evaluator to get the output when a corrupt party
behaves honestly in the first round and in the broadcast communication of the
second round. In other words, its private communication in the second round
should not impact robustness. This is where the ‘two-part release mechanism’
for the encoding information of the shares of the evaluator kicks in. It is realized
by tweaking the function to be evaluated as f(xj , xk, (zj ⊕ rj) ⊕ (zk ⊕ rk)) in
the instance uai where Pi enacts the role of the evaluator. Here rj , rk denote
random pads chosen by the garblers Pj , Pk respectively in the first round. The
encoding information for these are released to Pi privately in the first round
itself. Any inconsistent behaviour in the first round is detected, the flag is set
and the the protocol exits with ⊥ unanimously. Next, zj and zk are the offsets
of these random pads with the actual shares of Pi’s input and are available only
at the end of first round. The encoding information for these offsets and these
offsets themselves are transferred via broadcast in the second round for public
verification. As long as the pads are privately communicated, the offsets do not
affect privacy of the shares of Pi’s input. Lastly, note that the encoding infor-
mation for a garbler’s input for its own generated circuit can be transferred in
the first round itself. This ensures that a corrupt garbler misbehaves either in
the first round or in the broadcast communication in the second round or lets
the evaluator get the output via its own GC. The formal description and proof
of security of ua appear in the full version [63].

450 A. Patra and D. Ravi

5 3-round 3PC with Guaranteed Output Delivery

In this section, we present a three-round 3PC protocol, given access to pairwise-
private channels and a broadcast channel. The protocol is round-optimal follow-
ing 3-round lower bound for fair 3PC proven in Sect. 6.1. The necessity of the
broadcast channel for achieving guaranteed output delivery with strict honest
majority follows from [23].

Our tryst starts with the known generic transformations that are relevant
such as the transformations from the unanimous abort to (identifiable) fair pro-
tocol [45] or identifiable fair to guaranteed output delivery [24]. However, these
transformations being non-round-preserving do not turn out to be useful. Turn-
ing a 2-round protocol offering unanimous (or even selective) abort with identi-
fiability (when the honest parties learn about the identity of the corrupt when
deprived of the output) to a 3-round protocol with guaranteed output delivery
in a black-box way show some promise. The third round can be leveraged by
the honest parties to exchange their inputs and compute output on the clear.
We face two obstacles with this approach. First, there is neither any known 2-
round construction for selective/unanimous abort with identifiability nor do we
see how to transform our unanimous abort protocol to one with identifiability
in two rounds. Second, when none of the parties (including the corrupt) receive
output from the selective/unanimous abort protocol and the honest parties com-
pute it on the clear in the third round by exchanging their inputs and taking a
default value for the input of the corrupt party, it is not clear how the corrupt
party can obtain the same output (note that the ideal functionality demands
delivering the output to the adversary).

We get around the above issues by taking a non-blackbox approach and
tweaking uai and fairi to get yet another sub-protocol godi that achieves a form of
local identifiability. Namely, the evaluator Pi in godi either successfully computes
the output or identifies the corrupt party. As usual, our final protocol god is built
upon three parallel executions of godi (i ∈ [3]), each comprising of two rounds
and with each party Pi enacting the role of the evaluator once. Looking ahead,
the local identifiability helps in achieving guaranteed output delivery as follows.
In a case when both honest parties identify the corrupt party and the corrupt
party received the output by the end of Round 2, the honest parties can exchange
their inputs and reconstruct the corrupt party’s input using the shares received
during one of the executions of godi and compute the function on clear inputs
in the third round. Otherwise, the honest party who identifies the corrupt can
simply accept the output computed and forwarded by the other honest party.
The issue of the corrupt party getting the same output as that of the honest
parties when it fails to obtain any in its instance of godi is taken care as follows.
First, the only reason a corrupt party in our protocol does not receive its output
in its instance of godi is due to denial of committing its input. In this case it is
detected early and the honest parties exchange inputs in the second round itself
so that at least one honest party computes the output using a default input of
the corrupt party by the end of Round 2 and hands it over to others in Round
3. The protocol and the proof appear in the full version [63].

On the Exact Round Complexity of Secure Three-Party Computation 451

6 Lower Bounds

In this paper, we present two lower bounds– (a) three rounds are necessary for
achieving fairness in the presence of pair-wise private channels and a broad-
cast channel; (b) three rounds are necessary for achieving unanimous abort in
the presence of just pair-wise private channels (and no broadcast). The sec-
ond result holds even if broadcast was allowed in the first round. Our results
extend for any n and t with 3t ≥ n > 2t via standard player-partitioning tech-
nique [57]. Our results imply the following. First, selective abort is the best
amongst the four notions (considered in this work) that we can achieve in two
rounds without broadcast (from (b)). Second, unanimous abort as well as fair-
ness require 3 rounds in the absence of broadcast (from (b)). Third, broadcast
does not help to improve the round complexity of fairness (from (a)). Lastly,
guaranteed output delivery requires 3 rounds with broadcast (from (a)). The
first lower bound appears below. We prove the second lower bound in the full
version [63].

6.1 The Impossibility of 2-round Fair 3PC

In this section, we show that it is impossible to construct a fair 2-round 3PC
for general functions. [39] presents a lower bound of three rounds assuming non-
private point-to-point channels and a broadcast channel (their proof crucially
relies on the assumption of non-private channels). [35] presents a three-round
lower bound for fair MPC with t ≥ 2 (arbitrary number of parties) in the
same network setting as ours. Similar to the lower bounds of [35,39] (for the
function of conjunction of two input bits), our lower bound result does not
exploit the rushing nature of the adversary and hence holds for non-rushing
adversary as well. Finally, we observe that the impossibility of 2-round 3PC
for the information-theoretic setting follows from the impossibility of 2-round
3-party statistical VSS of [62] (since VSS is a special case of MPC). We now
prove the impossibility formally.

Theorem 2. There exist functions f such that no two-round fair 3PC proto-
col can compute f , even in the honest majority setting and assuming access to
pairwise-private and broadcast channel.

Proof. Let P = {P1, P2, P3} denote the set of 3 parties and the adversary A may
corrupt any one of them. We prove the theorem by contradiction. We assume
that there exists a two-round fair 3PC protocol π that can compute f(x1, x2, x3)
defined below for Pi’s input xi:

f(x1, x2, x3) =

{
1 if x2 = x3 = 1
0 otherwise

At a high level, we discuss two adversarial strategies A1 and A2 of A. We
consider party Pi launching Ai in execution Σi (i ∈ [2]) of π. Both the executions

452 A. Patra and D. Ravi

are assumed to be run for the same input tuple (x1, x2, x3) and the same random
inputs (r1, r2, r3) of the three parties. (Same random inputs are considered for
simplicity and without loss of generality. The same arguments hold for distri-
bution ensembles as well.) When strategy A1 is launched in execution Σ1, we
would claim that by correctness of π, A corrupting P1 should learn the output
y = f(x1, x2, x3). Here, we note that the value of f(x1, x2, x3) depends only on
the inputs of honest P2, P3 (i.e. input values x2, x3) and is thus well-defined. We
refer to f(x1, x2, x3) as the value determined by this particular combination of
inputs (x2, x3) henceforth. Now, since A corrupting P1 learnt the output, due
to fairness, P2 should learn the output too in Σ1. Next strategy A2 is designed
so that P2 in Σ2 can obtain the same view as in Σ1 and therefore it gets the
output too. Due to fairness, we can claim that P3 receives the output in Σ2. A
careful observation then lets us claim that P3 can, in fact, learn the output at
the end of Round 1 itself in π. Lastly, using the above observation, we show a
strategy for P3 that explicitly allows P3 to breach privacy.

We use the following notation: Let pr
i→j denote the pairwise communication

from Pi to Pj in round r and br
i denote the broadcast by Pi in round r, where

r ∈ [2], {i, j} ∈ [3]. Vi denotes the view of party Pi at the end of execution of π.
Below we describe the strategies A1 and A2.

A1: P1 behaves honestly during Round 1 of the protocol. In Round 2, P1 waits
to receive the messages from other parties, but does not communicate at all.

A2: P2 behaves honestly towards P3 in Round 1, i.e. sends the messages p1
2→3, b

1
2

according to the protocol specification. However P2 does not communicate
to P1 in Round 1. In Round 2, P2 waits to receive messages from P3, but
does not communicate to the other parties.

Next we present the views of the parties in the two executions Σ1 and Σ2

in Table 1. The communications that could potentially be different from the
communications in an honest execution (where all parties behave honestly) with
the considered inputs and random inputs of the parties are appended with �
(e.g. p2

1→3(�)). We now prove a sequence of lemmas to complete our proof.

Lemma 12. A corrupt P1 launching A1 in Σ1 should learn the output y =
f(x1, x2, x3).

Proof. The proof follows easily. Since P1 behaved honestly during Round 1, it
received all the desired communication from honest P2 and P3 in Round 2 (refer
to Table 1 for the view of P1 in Σ1 in the end of Round 2). So it follows from
the correctness property that his view at the end of the protocol i.e. V1 should
enable P1 to learn the correct function output f(x1, x2, x3). �

Lemma 13. A corrupt P2 launching A2 in Σ2 should learn the output y.

Proof. We prove the lemma with the following two claims. First, the view of
P2 in Σ2 subsumes the view of honest P2 in Σ1. Second, P2 learns the out-
put in Σ1 due to the fact that the corrupt P1 learns it and π is fair. We

On the Exact Round Complexity of Secure Three-Party Computation 453

Table 1. Views of P1, P2, P3 in Σ1 and Σ2

Σ1 Σ2

V1 V2 V3 V1 V2 V3

Initial Input (x1, r1) (x2, r2) (x3, r3) (x1, r1) (x2, r2) (x3, r3)

Round 1 p12→1, p13→1 p11→2, p13→2, p11→3, p12→3, –, p13→1, p11→2, p13→2, p11→3, p12→3,

b12, b13 b11, b13 b11, b12 b12, b13 b11, b13 b11, b12

Round 2 p22→1, p23→1, –, p23→2, –, p22→3, –, p23→1, p21→2(�), p23→2, –, p21→3(�),

b22, b23 b23 b22 b23 b21(�), b23 b21(�)

now prove our first claim. In Σ1, we observe that P2 has received communi-
cation from both P1 and P3 in the first round, and only from P3 in the sec-
ond round. So V2 = {x2, r2, p

1
1→2, b

1
1, p

1
3→2, b

1
3, p

2
3→2, b

2
3} (refer to Table 1). We

now analyze P2’s view in Σ2. Both P1 and P3 are honest and must have sent
{p1

1→2, b
1
1, p

1
3→2, b

1
3} according to the protocol specifications in Round 1. Since P3

received the expected messages from P2 in Round 1, P3 must have sent {p2
3→2, b

2
3}

in Round 2. Note that we can rule out the possibility of P3’s messages in this
round having been influenced by P1 possibly reporting P2’s misbehavior towards
P1. This holds since P3 would send the messages in the beginning of Round 2.
We do not make any assumption regarding P1’s communication to P2 in Round
2 since P1 has not received the expected message from P2 in Round 1. Thus,
overall, P2’s view V2 comprises of {x2, r2, p

1
1→2, b

1
1, p

1
3→2, b

1
3, p

2
3→2, b

2
3} (refer to

Table 1). Note that there may also be some additional messages from P1 to P2

in Round 2 which can be ignored by P2. These are marked with ‘(�)′ in Table 1.
A careful look shows that the view of P2 in Σ2 subsumes the view of honest P2

in Σ1. This concludes our proof. �
Lemma 14. P3 in Σ2 should learn the output y by the end of Round 1.

Proof. According to the previous lemma, P2 should learn the function output in
Σ2. Due to fairness property, it must hold that an honest P3 learns the output as
well (same as obtained by P2 i.e. y with respect to x2). First, we note that as per
strategy A2, P2 only communicates to P3 in Round 1. Second, we argue that the
second round communication from P1 does not impact P3’s output computation
as follows.

We observe that the function output depends only on (x2, x3). Clearly, Round
1 messages {p1

1→3, b
1
1} of P1 does not depend on x2. Next, since there is no private

communication to P1 from P2 as per strategy A2, the only information that can
possibly hold information on x2 and can impact the round 2 messages of P1 is b1

2.
However, since this is a broadcast message, P3 holds this by the end of Round 1
itself. �
Lemma 15. A corrupt P3 violates the privacy property of π.

Proof. The adversary corrupting P3 participates in the protocol honestly by
fixing input x3 = 0. Since P3 can get the output from P2’s and P1’s round 1
communication (Lemma 14), it must be true that P3 can evaluate the function

454 A. Patra and D. Ravi

f locally by plugging in any value of x3. (Note that P2 and P1’s communication
in round 1 are independent of the communication of P3 in the same round.) Now
a corrupt P3 can plug in x3 = 1 locally and learn x2 (via the output x2 ∧ x3).
In the ideal world, corrupt P3 must learn nothing beyond the output 0 as it has
participated in the protocol with input 0. But in the execution of π (in which
P3 participated honestly with input x3 = 0), P3 has learnt x2. This is a clear
breach of privacy as P3 learns x2 regardless of his input. �
Hence, we have arrived at a contradiction, completing the proof of Theorem 2.

�

Acknowledgement. The first author would like to acknowledge partial support
from Google Inc. and SERB Women Excellence Award from Science and Engineering
Research Board of India. The second author would like to acknowledge partial support
from Indian Association for Research in Computing Science (IARCS) and Microsoft
Research India.

References

1. Afshar, A., Mohassel, P., Pinkas, B., Riva, B.: Non-interactive secure computation
based on cut-and-choose. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 387–404. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-642-55220-5 22

2. Ananth, P., Choudhuri, A.R., Jain, A.: A new approach to round-optimal secure
multiparty computation. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS,
vol. 10401, pp. 468–499. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63688-7 16

3. Araki, T., Furukawa, J., Lindell, Y., Nof, A., Ohara, K.: High-throughput semi-
honest secure three-party computation with an honest majority. In: ACM CCS
(2016)

4. Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs, D.:
Multiparty computation with low communication, computation and interaction
via threshold FHE. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 483–501. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-29011-4 29

5. Backes, M., Kate, A., Patra, A.: Computational verifiable secret sharing revisited.
In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 590–609.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0 32

6. Beaver, D.: Efficient multiparty protocols using circuit randomization. In: Feigen-
baum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432. Springer, Heidelberg
(1992). https://doi.org/10.1007/3-540-46766-1 34

7. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols
(extended abstract). In: ACM STOC (1990)

8. Beerliová-Trub́ıniová, Z., Hirt, M.: Efficient multi-party computation with dispute
control. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 305–328.
Springer, Heidelberg (2006). https://doi.org/10.1007/11681878 16

9. Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. In: CCS
(2012)

https://doi.org/10.1007/978-3-642-55220-5_22
https://doi.org/10.1007/978-3-642-55220-5_22
https://doi.org/10.1007/978-3-319-63688-7_16
https://doi.org/10.1007/978-3-319-63688-7_16
https://doi.org/10.1007/978-3-642-29011-4_29
https://doi.org/10.1007/978-3-642-29011-4_29
https://doi.org/10.1007/978-3-642-25385-0_32
https://doi.org/10.1007/3-540-46766-1_34
https://doi.org/10.1007/11681878_16

On the Exact Round Complexity of Secure Three-Party Computation 455

10. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In:
STOC (1988)

11. Ben-Sasson, E., Fehr, S., Ostrovsky, R.: Near-linear unconditionally-secure mul-
tiparty computation with a dishonest minority. In: Safavi-Naini, R., Canetti, R.
(eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 663–680. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 39

12. Bendlin, R., Damg̊ard, I., Orlandi, C., Zakarias, S.: Semi-homomorphic encryption
and multiparty computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS,
vol. 6632, pp. 169–188. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-20465-4 11

13. Bogdanov, D., Laur, S., Willemson, J.: Sharemind: a framework for fast privacy-
preserving computations. In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS,
vol. 5283, pp. 192–206. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-88313-5 13

14. Bogdanov, D., Talviste, R., Willemson, J.: Deploying secure multi-party compu-
tation for financial data analysis. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol.
7397, pp. 57–64. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
32946-3 5

15. Bogetoft, P., et al.: Secure multiparty computation goes live. In: Dingledine, R.,
Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 325–343. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-03549-4 20

16. Brakerski, Z., Halevi, S., Polychroniadou, A.: Four round secure computation with-
out setup. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 645–
677. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2 22

17. Chandran, N., Garay, J.A., Mohassel, P., Vusirikala, S.: Efficient, constant-round
and actively secure MPC: beyond the three-party case. In: ACM CCS (2017)

18. Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure protocols
(extended abstract). In: ACM STOC (1988)

19. Chaum, D., Damg̊ard, I.B., van de Graaf, J.: Multiparty computations ensuring
privacy of each party’s input and correctness of the result. In: Pomerance, C. (ed.)
CRYPTO 1987. LNCS, vol. 293, pp. 87–119. Springer, Heidelberg (1988). https://
doi.org/10.1007/3-540-48184-2 7

20. Chida, K., et al.: Implementation and evaluation of an efficient secure computation
system using ‘R’ for healthcare statistics. J. Am. Med. Inform. Assoc. (2014)

21. Choi, S.G., Katz, J., Malozemoff, A.J., Zikas, V.: Efficient three-party computation
from cut-and-choose. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS,
vol. 8617, pp. 513–530. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-44381-1 29

22. Cleve, R.: Limits on the security of coin flips when half the processors are faulty
(extended abstract). In: ACM STOC (1986)

23. Cohen, R., Haitner, I., Omri, E., Rotem, L.: Characterization of secure multiparty
computation without broadcast. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016.
LNCS, vol. 9562, pp. 596–616. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-49096-9 25

24. Cohen, R., Lindell, Y.: Fairness versus guaranteed output delivery in secure mul-
tiparty computation. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS,
vol. 8874, pp. 466–485. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-45608-8 25

https://doi.org/10.1007/978-3-642-32009-5_39
https://doi.org/10.1007/978-3-642-20465-4_11
https://doi.org/10.1007/978-3-642-20465-4_11
https://doi.org/10.1007/978-3-540-88313-5_13
https://doi.org/10.1007/978-3-540-88313-5_13
https://doi.org/10.1007/978-3-642-32946-3_5
https://doi.org/10.1007/978-3-642-32946-3_5
https://doi.org/10.1007/978-3-642-03549-4_20
https://doi.org/10.1007/978-3-319-70500-2_22
https://doi.org/10.1007/3-540-48184-2_7
https://doi.org/10.1007/3-540-48184-2_7
https://doi.org/10.1007/978-3-662-44381-1_29
https://doi.org/10.1007/978-3-662-44381-1_29
https://doi.org/10.1007/978-3-662-49096-9_25
https://doi.org/10.1007/978-3-662-49096-9_25
https://doi.org/10.1007/978-3-662-45608-8_25
https://doi.org/10.1007/978-3-662-45608-8_25

456 A. Patra and D. Ravi

25. Cramer, R., Damg̊ard, I., Dziembowski, S., Hirt, M., Rabin, T.: Efficient multi-
party computations secure against an adaptive adversary. In: Stern, J. (ed.) EURO-
CRYPT 1999. LNCS, vol. 1592, pp. 311–326. Springer, Heidelberg (1999). https://
doi.org/10.1007/3-540-48910-X 22

26. Damg̊ard, I., Nielsen, J.B.: Scalable and unconditionally secure multiparty com-
putation. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 572–590.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5 32

27. Damg̊ard, I., Orlandi, C.: Multiparty computation for dishonest majority: from
passive to active security at low cost. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 558–576. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-14623-7 30

28. Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 38

29. Frederiksen, T.K., Nielsen, J.B., Orlandi, C.: Privacy-free garbled circuits with
applications to efficient zero-knowledge. In: Oswald, E., Fischlin, M. (eds.) EURO-
CRYPT 2015. LNCS, vol. 9057, pp. 191–219. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46803-6 7

30. Furukawa, J., Lindell, Y., Nof, A., Weinstein, O.: High-throughput secure three-
party computation for malicious adversaries and an honest majority. In: Coron,
J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10211, pp. 225–255.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56614-6 8

31. Garg, S., Polychroniadou, A.: Two-round adaptively secure MPC from indistin-
guishability obfuscation. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS,
vol. 9015, pp. 614–637. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46497-7 24

32. Garg, S., Mukherjee, P., Pandey, O., Polychroniadou, A.: The exact round com-
plexity of secure computation. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT
2016. LNCS, vol. 9666, pp. 448–476. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49896-5 16

33. Geisler, M.: Viff: Virtual ideal functionality framework (2007)
34. Gennaro, R., Ishai, Y., Kushilevitz, E., Rabin, T.: The round complexity of verifi-

able secret sharing and secure multicast. In: ACM STOC (2001)
35. Gennaro, R., Ishai, Y., Kushilevitz, E., Rabin, T.: On 2-round secure multiparty

computation. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 178–193.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9 12

36. Gertner, Y., Ishai, Y., Kushilevitz, E., Malkin, T.: Protecting data privacy in
private information retrieval schemes. J. Comput. Syst. Sci. (2000)

37. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: ACM STOC (1987)

38. Goldwasser, S., Lindell, Y.: Secure computation without agreement. In: Malkhi, D.
(ed.) DISC 2002. LNCS, vol. 2508, pp. 17–32. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-36108-1 2

39. Dov Gordon, S., Liu, F.-H., Shi, E.: Constant-round MPC with fairness and guar-
antee of output delivery. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015.
LNCS, vol. 9216, pp. 63–82. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-48000-7 4

40. Halevi, S., Hazay, C., Polychroniadou, A., Venkitasubramaniam, M.: Round-
optimal secure multi-party computation. Cryptology ePrint Archive, Report
2017/1056 (2017). https://eprint.iacr.org/2017/1056

https://doi.org/10.1007/3-540-48910-X_22
https://doi.org/10.1007/3-540-48910-X_22
https://doi.org/10.1007/978-3-540-74143-5_32
https://doi.org/10.1007/978-3-642-14623-7_30
https://doi.org/10.1007/978-3-642-14623-7_30
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/978-3-662-46803-6_7
https://doi.org/10.1007/978-3-662-46803-6_7
https://doi.org/10.1007/978-3-319-56614-6_8
https://doi.org/10.1007/978-3-662-46497-7_24
https://doi.org/10.1007/978-3-662-46497-7_24
https://doi.org/10.1007/978-3-662-49896-5_16
https://doi.org/10.1007/978-3-662-49896-5_16
https://doi.org/10.1007/3-540-45708-9_12
https://doi.org/10.1007/3-540-36108-1_2
https://doi.org/10.1007/3-540-36108-1_2
https://doi.org/10.1007/978-3-662-48000-7_4
https://doi.org/10.1007/978-3-662-48000-7_4
https://eprint.iacr.org/2017/1056

On the Exact Round Complexity of Secure Three-Party Computation 457

41. Halevi, S., Lindell, Y., Pinkas, B.: Secure computation on the web: computing
without simultaneous interaction. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 132–150. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22792-9 8

42. Huang, Y., Katz, J., Kolesnikov, V., Kumaresan, R., Malozemoff, A.J.: Amortizing
garbled circuits. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol.
8617, pp. 458–475. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-44381-1 26

43. Ishai, Y., Kumaresan, R., Kushilevitz, E., Paskin-Cherniavsky, A.: Secure compu-
tation with minimal interaction, revisited. In: Gennaro, R., Robshaw, M. (eds.)
CRYPTO 2015. LNCS, vol. 9216, pp. 359–378. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48000-7 18

44. Ishai, Y., Kushilevitz, E., Paskin, A.: Secure multiparty computation with minimal
interaction. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 577–594.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7 31

45. Ishai, Y., Kushilevitz, E., Prabhakaran, M., Sahai, A., Yu, C.-H.: Secure protocol
transformations. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol.
9815, pp. 430–458. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-53008-5 15

46. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer
– efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5 32

47. Ishai, Y., Wee, H.: Partial garbling schemes and their applications. In: Esparza,
J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol.
8572, pp. 650–662. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-43948-7 54

48. Jafargholi, Z., Wichs, D.: Adaptive security of Yao’s garbled circuits. In: Hirt, M.,
Smith, A. (eds.) TCC 2016. LNCS, vol. 9985, pp. 433–458. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53641-4 17

49. Jawurek, M., Kerschbaum, F., Orlandi, C.: Zero-knowledge using garbled circuits:
how to prove non-algebraic statements efficiently. In: CCS (2013)

50. Katz, J., Ostrovsky, R.: Round-optimal secure two-party computation. In:
Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 335–354. Springer, Hei-
delberg (2004). https://doi.org/10.1007/978-3-540-28628-8 21

51. Kiraz, M.S., Schoenmakers, B.: A protocol issue for the malicious case of Yao’s
garbled circuit construction. In: 27th Symposium on Information Theory in the
Benelux (2006)

52. Launchbury, J., Archer, D., DuBuisson, T., Mertens, E.: Application-scale secure
multiparty computation. In: Shao, Z. (ed.) ESOP 2014. LNCS, vol. 8410, pp. 8–26.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54833-8 2

53. Launchbury, J., Diatchki, I.S., DuBuisson, T., Adams-Moran, A.: Efficient lookup-
table protocol in secure multiparty computation. In: ACM SIGPLAN ICFP 2012
(2012)

54. Lindell, Y.: Fast cut-and-choose based protocols for malicious and covert adver-
saries. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp.
1–17. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1 1

55. Lindell, Y., Pinkas, B.: An efficient protocol for secure two-party computation
in the presence of malicious adversaries. In: Naor, M. (ed.) EUROCRYPT 2007.
LNCS, vol. 4515, pp. 52–78. Springer, Heidelberg (2007). https://doi.org/10.1007/
978-3-540-72540-4 4

https://doi.org/10.1007/978-3-642-22792-9_8
https://doi.org/10.1007/978-3-642-22792-9_8
https://doi.org/10.1007/978-3-662-44381-1_26
https://doi.org/10.1007/978-3-662-44381-1_26
https://doi.org/10.1007/978-3-662-48000-7_18
https://doi.org/10.1007/978-3-642-14623-7_31
https://doi.org/10.1007/978-3-662-53008-5_15
https://doi.org/10.1007/978-3-662-53008-5_15
https://doi.org/10.1007/978-3-540-85174-5_32
https://doi.org/10.1007/978-3-662-43948-7_54
https://doi.org/10.1007/978-3-662-43948-7_54
https://doi.org/10.1007/978-3-662-53641-4_17
https://doi.org/10.1007/978-3-540-28628-8_21
https://doi.org/10.1007/978-3-642-54833-8_2
https://doi.org/10.1007/978-3-642-40084-1_1
https://doi.org/10.1007/978-3-540-72540-4_4
https://doi.org/10.1007/978-3-540-72540-4_4

458 A. Patra and D. Ravi

56. Lindell, Y., Pinkas, B.: A proof of security of Yao’s protocol for two-party compu-
tation. J. Cryptol. (2009)

57. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann (1996)
58. Mohassel, P., Franklin, M.: Efficiency tradeoffs for malicious two-party com-

putation. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006.
LNCS, vol. 3958, pp. 458–473. Springer, Heidelberg (2006). https://doi.org/10.
1007/11745853 30

59. Mohassel, P., Rosulek, M.: Non-interactive secure 2PC in the offline/online and
batch settings. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS,
vol. 10212, pp. 425–455. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-56617-7 15

60. Mohassel, P., Rosulek, M., Zhang, Y.: Fast and secure three-party computation:
the garbled circuit approach. In: ACM CCS (2015)

61. Mukherjee, P., Wichs, D.: Two round multiparty computation via multi-key FHE.
In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp.
735–763. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-
5 26

62. Patra, A., Choudhary, A., Rabin, T., Rangan, C.P.: The round complexity of ver-
ifiable secret sharing revisited. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol.
5677, pp. 487–504. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-03356-8 29

63. Patra, A., Ravi, D.: On the exact round complexity of secure three-party computa-
tion. Cryptology ePrint Archive, Report 2018/481 (2018). https://eprint.iacr.org/
2018/481

64. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with
honest majority (extended abstract). In: ACM STOC (1989)

65. Rindal, P., Rosulek, M.: Faster malicious 2-party secure computation with
online/offline dual execution. In: USENIX Security Symposium (2016)

66. Shelat, A., Shen, C.-H.: Fast two-party secure computation with minimal assump-
tions. In: ACM CCS (2013)

67. Yao, A.C.-C.: Protocols for secure computations (extended abstract). In: FOCS
(1982)

https://doi.org/10.1007/11745853_30
https://doi.org/10.1007/11745853_30
https://doi.org/10.1007/978-3-319-56617-7_15
https://doi.org/10.1007/978-3-319-56617-7_15
https://doi.org/10.1007/978-3-662-49896-5_26
https://doi.org/10.1007/978-3-662-49896-5_26
https://doi.org/10.1007/978-3-642-03356-8_29
https://doi.org/10.1007/978-3-642-03356-8_29
https://eprint.iacr.org/2018/481
https://eprint.iacr.org/2018/481

Promise Zero Knowledge and Its
Applications to Round Optimal MPC

Saikrishna Badrinarayanan1(B), Vipul Goyal2, Abhishek Jain3,
Yael Tauman Kalai4, Dakshita Khurana1, and Amit Sahai1

1 UCLA, Los Angeles, USA
{saikrishna,dakshita,sahai}@cs.ucla.edu

2 CMU, Pittsburgh, USA
goyal@cs.cmu.edu

3 JHU, Baltimore, USA
abhishek@cs.jhu.edu

4 Microsoft Research, MIT, Cambridge, USA
yael@microsoft.com

Abstract. We devise a new partitioned simulation technique for MPC
where the simulator uses different strategies for simulating the view of
aborting adversaries and non-aborting adversaries. The protagonist of
this technique is a new notion of promise zero knowledge (ZK) where the
ZK property only holds against non-aborting verifiers. We show how to
realize promise ZK in three rounds in the simultaneous-message model
assuming polynomially hard DDH (or QR or Nth-Residuosity).

We demonstrate the following applications of our new technique:
– We construct the first round-optimal (i.e., four round) MPC protocol

for general functions based on polynomially hard DDH (or QR or
Nth-Residuosity).

– We further show how to overcome the four-round barrier for MPC
by constructing a three-round protocol for “list coin-tossing” – a
slight relaxation of coin-tossing that suffices for most conceivable
applications – based on polynomially hard DDH (or QR or Nth-
Residuosity). This result generalizes to randomized input-less func-
tionalities.

S. Badrinarayanan, D. Khurana and A. Sahai—Research supported in part from
a DARPA/ARL SAFEWARE award, NSF Frontier Award 1413955, NSF grants
1619348, 1228984, 1136174, and 1065276, BSF grant 2012378, a Xerox Faculty
Research Award, a Google Faculty Research Award, an equipment grant from Intel,
and an Okawa Foundation Research Grant. This material is based upon work sup-
ported by the Defense Advanced Research Projects Agency through the ARL under
Contract W911NF-15-C-0205. The views expressed are those of the authors and do
not reflect the official policy or position of the Department of Defense, the National
Science Foundation, or the U.S. Government. Fifth author’s research also supported
by the UCLA Dissertation Year Fellowship.
V. Goyal—Work supported in part by a grant from Northrop Grumman.
A. Jain—Supported in part by a DARPA/ARL Safeware Grant W911NF-15-C-0213,
and a subaward from NSF CNS-1414023.

c© International Association for Cryptologic Research 2018
H. Shacham and A. Boldyreva (Eds.): CRYPTO 2018, LNCS 10992, pp. 459–487, 2018.
https://doi.org/10.1007/978-3-319-96881-0_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96881-0_16&domain=pdf

460 S. Badrinarayanan et al.

Previously, four round MPC protocols required sub-exponential-time
hardness assumptions and no multi-party three-round protocols were
known for any relaxed security notions with polynomial-time simula-
tion against malicious adversaries.

In order to base security on polynomial-time standard assumptions,
we also rely upon a leveled rewinding security technique that can be
viewed as a polynomial-time alternative to leveled complexity leveraging
for achieving “non-malleability” across different primitives.

1 Introduction

Provably secure protocols lie at the heart of the theory of cryptography. How can
we design protocols, not only so that we cannot devise attacks against them, but
so that we can prove that no such attacks exist (under well-studied complexity
assumptions)? The goal of achieving a proof of security has presented many
challenges and apparent trade-offs in secure protocol design. This is especially
true with regards to the goal of minimizing rounds of interaction, which has
been a long-standing driver of innovation in theoretical cryptography. We begin
by focusing on one such challenge and apparent trade-off in the context of zero-
knowledge (ZK) protocols [19], one of the most fascinating and broadly applicable
notions in cryptography.

Recall that in a ZK protocol, a prover should convince a verifier that some
statement is true, without revealing to the verifier anything beyond the valid-
ity of the statement being proven. It is known that achieving zero knowledge
with black-box simulation1 is impossible with three or fewer rounds of simul-
taneous message exchange [14,17]. A curious fact emerges, however, when we
take a closer look at the proof of this impossibility result. It turns out that
three-round ZK is impossible when considering verifiers that essentially behave
completely honestly, but that sometimes probabilistically refuse to finish the
protocol. This is bizarre: ZK protocols are supposed to prevent the verifier from
learning information from the prover; how can behaving honestly but aborting
the protocol early possibly help the verifier learn additional information? Indeed,
one might think that we can prove that such behavior cannot possibly help the
verifier learn additional information. Counter-intuitively, however, it turns out
that such early aborts are critical to the impossibility proofs of [14,17]. This
observation is the starting point for our work; now that we have identified a
key (but counter-intuitive) reason behind the impossibility results, we want to
leverage this understanding to bypass the impossibility result in a new and use-
ful way.

1 In this work, we focus on black-box simulation. However, no solutions for three-
round ZK from standard assumptions with non-black-box simulation [2] are presently
known either. [6] showed how to construct 3 round ZK using non-black-box simu-
lation from the non-standard assumption that keyless multi-collision resistant hash
functions exist.

Promise Zero Knowledge and Its Applications to Round Optimal MPC 461

Promise Zero Knowledge. Our main idea is to consider adversarial verifiers that
promise not to abort the protocol early with noticeable probability. However, we
do not limit ourselves only to adversarial verifiers that behave honestly; we con-
sider adversarial verifiers that may deviate from the prescribed protocol arbitrar-
ily, as long as this deviation does not cause the protocol to abort. A promise zero-
knowledge protocol is one that satisfies the correctness and soundness guarantees
of ordinary zero-knowledge protocols, but only satisfies the zero knowledge guar-
antee against adversarial verifiers that “promise” not to abort with noticeable
probability. The centerpiece of our work is a construction of three-round promise
zero-knowledge protocol, in the simultaneous message model, for proving state-
ments where the statement need not be decided until the last (third) round, but
where such statements should come from a distribution such that both a state-
ment and a witness for that statement can be sampled in the last round. We call
this primitive a distributional delayed-input promise zero-knowledge argument.
Our construction requires only on DDH/QR/Nth-Residuosity assumption. Inter-
estingly, in our construction, we rely upon information learned from the verifier
in the third round, to simulate its view in the third round!

Partitioned Simulation, and Applications to MPC. But why should we care
about promise ZK? Actual adversaries will not make any promise regarding
what specific types of adversarial behavior they will or will not engage in. How-
ever, recall our initial insight – early aborting by an adversary should, generally
speaking, only hurt the adversary, not help it. We know due to the impossibility
results of [14,17], that we cannot leverage this insight to achieve three-round
standard ZK (with black-box simulation). Our goal instead, then, is to use our
insight to replace ZK with promise ZK for the construction of other secure pro-
tocols. Specifically, we consider the most general goal of secure protocol design:
secure multi-party computation (MPC), as we discuss further below.

To do so, we devise a novel partitioned simulation strategy for leveraging
promise ZK. At a high-level, we split the simulation into two disjoint cases,
depending upon whether or not the adversary is an aborting adversary (i.e., one
who aborts with high probability). In one case, we will exploit promise ZK. In
the other, we exploit the intuition that early aborting should only harm the
adversary, to devise alternate simulation strategies that bypass the need for
ZK altogether, and instead essentially rely on a weaker notion called strong
witness indistinguishability, that was recently constructed in three rounds (in
the “delayed-input” setting) in [24].

Secure Multi-Party Computation. The notion of secure multiparty computation
(MPC) [18,34] is a unifying framework for general secure protocols. MPC allows
mutually distrusting parties to jointly evaluate any efficiently computable func-
tion on their private inputs in such a manner that each party does not learn
anything beyond the output of the function.

The round complexity of MPC has been extensively studied over the last
three decades in a long sequence of works [1,4,7,8,14,18,20,25,26,29]. In this
work, we study the problem of round-optimal MPC against malicious adversaries

462 S. Badrinarayanan et al.

who may corrupt an arbitrary subset of parties, in the plain model without
any trust assumptions. The state-of-the-art results on round-optimal MPC for
general functions are due to Ananth et al. [1] and Brakerski et al. [7], both
of which rely on sub-exponential-time hardness assumptions. (See Sect. 1.2 for a
more elaborate discussion on related works.) Our goal, instead is to base security
on standard, polynomial-time assumptions.

We now highlight the main challenge in basing security on polynomial-time
assumptions. In the setting of four round protocols in the simultaneous-message
model, a rushing adversary may always choose to abort after receiving the hon-
est party messages in the last round. At this point, the adversary has already
received enough information to obtain the purported output of the function
being computed. This suggests that we must enforce “honest behavior” on the
parties within the first three rounds in order to achieve security against malicious
adversaries. As discussed above, three-round zero knowledge is impossible, and
this is precisely why we look to our new notion of promise ZK and partitioned
simulation to resolve this challenge.

However, this challenge is exacerbated in the setting of MPC as we must not
only enforce honest behavior but also ensure non-malleability across different
cryptographic primitives that are being executed in parallel within the first three
rounds. We show how to combine our notions of promise ZK with new simulation
ideas to overcome these challenges, relying only on polynomial-time assumptions.

Coin Tossing. Coin-tossing allows two or more participants to agree on an unbi-
ased coin (or a sequence of unbiased coins). Fair multiparty coin-tossing is known
to be impossible in the dishonest majority setting [10]. Therefore, while current
notions of secure coin-tossing require that the protocol have a (pseudo)-random
outcome, the adversary is additionally allowed to abort depending on the out-
come of the toss.

Presently, secure multiparty coin-tossing is known to require at least four
rounds w.r.t. black-box simulation [14,25]. In this work, we seek to overcome
this barrier.

Towards this, our key observation is that coin-tossing is perfectly suited
for application of partitioned simulation. The definition of secure coin-tossing
roughly requires the existence of a simulator that successfully forces externally
sampled random coin, and produces a distribution over adversary’s views that
is indistinguishable from a real execution. To account for the adversary abort-
ing or misbehaving based on the outcome, the simulator is allowed to either
force an external coin, or force an abort as long as the simulated distribution
remains indistinguishable from the real one. Crucially, in the case of an adver-
sary that always aborts before the end of the protocol, the prescribed output
of any secure coin-tossing protocol is also abort: therefore, the simulator never
needs to force any external coin against such an adversary! Simulating the view
of such adversaries that always abort is thus completely trivial. This leaves the
case of non-aborting adversaries, which is exactly the setting that promise ZK
was designed for.

Promise Zero Knowledge and Its Applications to Round Optimal MPC 463

Using promise ZK, we design a three-round protocol for “list coin-tossing” – a
notion that is slightly weaker that regular coin-tossing, but nevertheless, suffices
for nearly all important applications of coin-tossing (see below for a discussion).
Therefore, promise ZK gives us a way to overcome the four-round barrier for
secure coin-tossing [14,25].

1.1 Our Results

We introduce the notion of promise ZK proof systems and devise a new parti-
tioned simulation strategy for round-efficient MPC protocols. Our first result is
a three-round distributional delayed-input promise ZK argument system based
on DDH/QR/Nth-Residuosity.

Theorem 1 (Informal). Assuming DDH/QR/Nth-Residuosity, there exists a
three round distributional delayed-input promise ZK argument system in the
simultaneous-message model.

Round-Optimal MPC. We present two applications of partitioned simulation to
round-optimal MPC. We first devise a general compiler that converts any three-
round semi-malicious MPC protocol, where the first round is public-coin (i.e., the
honest parties simply send random strings in the first round), into a four-round
malicious secure MPC protocol. Our compiler can be instantiated with standard
assumptions such as DDH or Quadratic Residuosity or Nth-Residuosity. The
resulting protocol is optimal in the number of rounds w.r.t. black-box simulation
[14]. A three round semi-malicious protocol with the aforementioned property
can be obtained based on DDH/QR/Nth Residuosity [5,15].

Theorem 2 (Informal). Assuming DDH/QR/Nth-Residuosity, there exists a
four round MPC protocol for general functions with black-box simulation.

List Coin-Tossing. We also study the feasibility of multiparty coin-tossing in
only three rounds. While three round coin-tossing is known to be impossible
[14], somewhat surprisingly, we show that a slightly relaxed variant that we
refer to as list coin-tossing is, in fact, possible in only three rounds.

Very briefly, in list coin-tossing, the simulator is allowed to receive polynomi-
ally many random string samples from the ideal functionality (where the exact
polynomial may depend upon the adversary), and it may choose any one of
them as its output. It is not difficult to see that this notion already suffices for
most conceivable applications of coin-tossing, such as implementing a common
random string setup. For example, consider the setting where we want to gen-
erate a CRS in the setup algorithm of a non-interactive zero knowledge (NIZK)
argument system. Now, in the ideal world, instead of running a simulator which
“forces” one particular random string given by the ideal functionality, we can
substitute it with the simulator of a list coin tossing protocol that receives poly-
nomially many random strings from the ideal functionality and “forces” one of
them as the CRS. This would still suffice for the NIZK argument system.

464 S. Badrinarayanan et al.

We achieve the following result:

Theorem 3 (Informal). Assuming DDH/QR/Nth-Residuosity, there exists a
three round multiparty list coin-tossing protocol with black-box simulation. This
can be generalized to randomized inputless functionalities where security is
defined analogously to list coin-tossing.

Finally, we note that by applying the transformation2 of [14] on the protocol
from Theorem 3 for the two-party case, we can obtain a four round two-party list
coin-tossing protocol in the unidirectional-message model. This result overcomes
the barrier of five rounds for standard two-party coin-tossing established by [25].

Corollary 1 (Informal). Assuming DDH/QR/Nth-Residuosity, there exists
a four round two-party list coin-tossing protocol in the unidirectional-message
model with black-box simulation.

Leveled Rewinding Security. While promise ZK addresses the issue of prov-
ing honest behavior within three rounds, it does not address non-malleability
issues that typically plague security proofs of constant-round protocols in the
simultaneous-message model. In particular, when multiple primitives are being
executed in parallel, we need to ensure that they are non-malleable w.r.t. each
other. For example, we may require that a primitive A remains “secure” while
the simulator (or a reduction) is (say) trying to extract adversary’s input from
primitive B via rewinding.

In the works of [1,7], such issues are addressed by using complexity lever-
aging. In particular, they rely upon multiple levels of complexity leveraging to
establish non-malleability relationships across primitives, e.g., by setting the
security parameters such that primitive X is more secure than primitive Y that
is more secure than primitive Z, and so on. Such a use a complexity leveraging
is, in fact, quite common in the setting of limited rounds (see, e.g., [9]).

We instead rely upon a leveled rewinding security technique to avoid the
use of complexity leveraging and base security on polynomial-time assumptions.
Roughly, in our constructions, primitives have various levels of “bounded rewind-
ing” security that are carefully crafted so that they enable non-malleability rela-
tionships across primitives, while still enabling rewinding-based simulation and
reductions. E.g., a primitive X may be insecure w.h.p. against 1 rewind, how-
ever, another primitive Y may be secure against 1 rewind but insecure against 2
rewinds. Yet another primitive Z may be secure against 2 rewinds but insecure
against 3 rewinds, and so on. We remark that leveled rewinding security with a
“single level” was previously used in [22]; here we extend this idea to “multiple
levels”.

2 The work of Garg et al. [14] establishes an impossibility result for three round multi-
party coin-tossing by transforming any three round two-party coin-tossing protocol
in the simultaneous-message model into a four round two-party coin-tossing pro-
tocol in the unidirectional-message model, and then invoking [25] who proved the
impossibility of four round two-party coin-tossing.

Promise Zero Knowledge and Its Applications to Round Optimal MPC 465

1.2 Related Work

Concurrent Work. In a concurrent and independent work, Halevi et al. [23]
construct a four round MPC protocol against malicious adversaries in the
plain model based on different assumptions than ours. In particular, they rely
upon enhanced trapdoor permutations and public-key encryption schemes that
admit affine homomorphisms with equivocation (which in turn can be based on
LWE/DDH/QR; see [23]). They do not consider the problems of promise ZK and
list coin-tossing. We discuss more related work in the full version of the paper.

2 Technical Overview

In this section, we provide an overview of the main ideas underlying our results.

2.1 Promise Zero Knowledge

Recall that the notion of promise ZK is defined in the simultaneous-message
model, where in every round, both the prover and the verifier send a message
simultaneously.3 Crucially, the ZK property is only defined w.r.t. a set of admis-
sible verifiers that promise to send a “valid” non-aborting message in the last
round with some noticeable probability.

We construct a three round distributional promise ZK protocol with black-
box simulation based on DDH/QR/Nth-Residuosity. We work in the delayed-
input setting where the statement being proven is revealed to the (adversarial)
verifier only in the last round.4 Further, we work in the distributional setting,
where statements being proven are sampled from an efficiently sampleable public
distribution, i.e., it is possible to efficiently sample a statement together with a
witness.

For simplicity of presentation, here we describe our construction using an
additional assumption of two-round WI proofs, a.k.a. Zaps [12]. In our actual
construction of promise ZK, we replace the Zaps with three round delayed-input
WI proofs with some additional security guarantees that we construct based on
Assuming DDH/QR/Nth-Residuosity.5

3 An adversarial prover or verifier can be rushing, i.e., it may wait to receive a message
from the honest party in any round before sending its own message in that round.

4 In our actual construction, we consider a slightly more general setting where a state-
ment x has two parts (x1, x2): the first part x1 is revealed in the second round while
the second part x2 is revealed in the third round. This generalization is used in our
applications of promise ZK, but we ignore it here for simplicity of presentation.

5 In particular, replacing Zaps with delayed-input WI proofs relies on leveled rewinding
security technique with multiple levels that we describe in Sect. 2.2. We do not discuss
it here to avoid repetition.

466 S. Badrinarayanan et al.

Our construction of promise ZK roughly follows the FLS paradigm [13]
for ZK:

• First, the prover and the verifier engage in a three round “trapdoor generation
phase” that determines a secret “trapdoor” that is known to the verifier but
not the prover.

• Next, in a proof phase, the prover commits to 0 in a (three round) delayed-
input extractable commitment and proves via a Zap that either the purported
statement is true or that it committed to the trapdoor (instead of 0).

By appropriately parallelizing both of these phases, we obtain a three round
protocol in the simultaneous-message model. Below, we discuss the challenges in
proving soundness and promise ZK properties.

Proving Soundness. In order to argue soundness, a natural strategy is to
rewind the cheating prover in the second and third round to extract the value it
has committed in the extractable commitment. If this value is the trapdoor, then
we can (hopefully) break the hiding property of the trapdoor generation phase
to obtain a contradiction. Unfortunately, this strategy doesn’t work as is since
the trapdoor generation phase is parallelized with the extractable commitment.
Thus, while extracting from the extractable commitment, we may inadvertently
also break the security of the trapdoor generation phase! Indeed, this is the key
problem that arises in the construction of non-malleable protocols.

To address this, we observe that in order to prove soundness, it suffices to
extract the trapdoor from the cheating prover with some noticeable probability
(as opposed to overwhelming probability). Now, suppose that the extractable
commitment scheme is such that it is possible to extract the committed value
via k rewinds (for some small integer k) if the “main thread” of execution is
non-aborting with noticeable probability. Then, we can still argue soundness if
the trapdoor generation has a stronger hiding property, namely, security under
k rewinds (but is insecure under more than k rewinds to enable simulation; see
below). This is an example of leveled rewinding security technique with a single
level; later we discuss its application with multiple levels.

We note that standard extractable commitment schemes such as [31,32] (as
well as their delayed-input variants) achieve the above extraction property for
k = 1. This means that we only require the trapdoor generation phase to main-
tain hiding property under 1 rewinding. Such a scheme can be easily constructed
from one-way functions.

Proving Promise ZK. In order to prove the promise ZK property, we construct
a simulator that learns information from the verifier in the third round, in order
to simulate its view in the third round! Roughly, our simulator first creates
multiple “look-ahead” execution threads6 with the adversarial verifier in order
to extract the trapdoor from the trapdoor generation phase. Note that unlike

6 Throughout, whenever the simulator rewinds, we call each rewound execution a look-
ahead thread. The messages that are eventually output by the simulator constitute
the main thread.

Promise Zero Knowledge and Its Applications to Round Optimal MPC 467

typical ZK protocols where such a look-ahead thread only consists of partial
protocol transcript, in our case, each look-ahead thread must contain a full
protocol execution since the trapdoor generation phase completes in the third
round.

Now, since the adversarial verifier may be rushing, the simulator must first
provide its third round message (namely, the second message of Zap) on each
look-ahead thread in order to learn the verifier’s third round message. Since the
simulator does not have a trapdoor yet, the only possibility for the simulator
to prepare a valid third round message is by behaving honestly. However, the
simulator does not have a witness for the statement proven by the honest prover.
Thus, it may seem that we have run into a circularity.

This is where the distributional aspect of our notion comes to the rescue.
Specifically, on the look-ahead execution threads, the simulator simply samples
a fresh statement together with a witness from the distribution and proves the
validity of the statement like an honest prover. Once it has extracted the trap-
door, it uses its knowledge to cheat (only) on the main thread (but continues to
behave honestly on each look-ahead thread).7

2.2 Four Round Secure Multiparty Computation

We now describe the main ideas underlying our compiler from any three round
semi-malicious MPC protocol Π (where the first round is public coin) to a four
round malicious-secure MPC protocol Σ. For simplicity of presentation, in the
discussion below, we ignore the first round of Π, and simply treat it as a two
round protocol.

Starting Ideas. Similar to several previous works, our starting idea is to follow
the GMW paradigm [18] for malicious security. This entails two main steps: (1)
Enabling extraction of adversary’s inputs, and (2) Forcing honest behavior on
the adversary in each round of Π. A natural idea to implement the first step
is to require each party to commit to its input and randomness via a three
round extractable commitment protocol. To force honest behavior, we require
each party to give a delayed-input ZK proof together with every message of Π
to establish that it is “consistent” with the input and randomness committed in
the extractable commitment.

In order to obtain a four-round protocol Σ, we need to parallelize all of these
sub-protocols appropriately. This means that while the proof for the second
message of Π can be given via a four round (delayed-input) regular ZK proof,
we need a three round proof system to prove the well-formedness of the first
message of Π. However, as discussed earlier, three-round ZK proofs are known
to be impossible w.r.t. black-box simulation [14,17] and even with non-black box
simulation, are not known from standard assumptions.

Promise ZK and Partitioned Simulation. While [1,7] tackled this issue by
using sub-exponential hardness, we address it via partitioned simulation to base
7 The idea of using a witness to continue simulation is an old one [3]. Most recently,

[24] used this idea in the distributional setting.

468 S. Badrinarayanan et al.

security on polynomial-time assumptions. Specifically, we use different mecha-
nisms for proving honest behavior depending upon whether or not the adversary
is aborting in the third round. For now, let us focus on the case where the
adversary does not abort in the third round of Σ; later we discuss the aborting
adversary case.

For the non-aborting case, we rely upon a three-round (delayed-input) dis-
tributional promise ZK to prove well-formedness of the first message of Π. As
we discuss below, however, integrating promise ZK in our construction involves
overcoming several technical challenges due to specific properties of the promise
ZK simulator (in particular, its requirement to behave honestly in look-ahead
threads).8 We also remark that in our actual construction, to address non-
malleability concerns [11], the promise ZK and the standard ZK protocols that
we use are suitably “hardened” using three-round non-malleable commitments
[21,27] to achieve simulation soundness [33] in order to ensure that the proofs
given by the adversarial parties remain sound even when the proofs given by hon-
est parties are simulated. For simplicity of discussion, however, here we largely
ignore this point, and instead focus on the technical ideas that are more unique
to our construction.

We now proceed to discuss the main technical challenges underlying our
construction and its proof of security.

How to do “Non-Malleable” Input Extraction? Let us start with the issue
of extraction of adversary’s input and trapdoors (for simulation of ZK proofs).
In the aforementioned protocol design, in order to extract adversary’s input and
trapdoors, the simulator rewinds the second and third rounds. Note, however,
that this process also rewinds the input commitments of the honest parties since
they are executed in parallel. This poses the following fundamental challenge:
we must somehow maintain privacy of honest party’s inputs even under rewinds,
while still extracting the inputs of the adversarial parties.

A plausible strategy to address this issue is to cheat in the rewound executions
by sending random third round messages in the input commitment protocol on
behalf of each honest party. This effectively nullifies the effect of rewinding on
the honest party input commitments. However, in order to implement such a
strategy, we need the ability to cheat in the ZK proofs since they are proving
“well-formedness” of the input commitments.9

Unfortunately, such a strategy is not viable in our setting. As discussed in
the previous subsection, in order to simulate the promise ZK on the main thread,
the simulator must behave “honestly” on the rewound execution threads. This
suggests that we cannot simply “sidestep” the issue of rewinding and instead
must somehow make the honest party input commitments immune to rewinding.

8 Our construction of four round MPC, in fact, uses promise ZK in a non-black-box
manner for technical reasons. We ignore this point here as it is not important to the
discussion.

9 Indeed, [1] implement such a strategy in their security proof by relying on sub-
exponential hardness assumptions.

Promise Zero Knowledge and Its Applications to Round Optimal MPC 469

Yet, we must do this while still keeping the adversary input commitments
extractable. Thus, it may seem that we have reached an impasse.

Leveled Rewinding Security to the Rescue. In order to break the symme-
try between input commitments of honest and adversarial parties, we use the
following sequence of observations:

• The security of the honest party input commitments is only invoked when we
switch from a hybrid experiment (say) Hi to another experiment Hi+1 inside
our security proof. In order to argue indistinguishability of Hi and Hi+1 by
contradiction, it suffices to build an adversary that breaks the security of hon-
est party input commitments with some noticeable probability (as opposed
to overwhelming probability).

• This means that the reduction only needs to generate the view of the adver-
sary in hybrids Hi and Hi+1 with some noticeable probability. This, in turn,
means that the reduction only needs to successfully extract the adversary’s
inputs and trapdoor (for generating its view) with noticeable probability.

• Now, recall that the trapdoor generation phase used in our promise ZK con-
struction is secure against one rewind. However, if we rewind two times, then
we can extract the trapdoor with noticeable probability.

• Now, suppose that we can construct an input commitment protocol that
maintains hiding property even if it is rewound two times, but guarantees
extraction with noticeable probability if it is rewound three times. Given such
a commitment scheme, we resolve the above problem as follows: the reduction
rewinds the adversary three times, which ensures that with noticeable prob-
ability, it can extract both the trapdoor and the inputs from the adversary.
In the first two rewound executions, the reduction generates the third round
messages of the honest party input commitments honestly. At this point, the
reduction already has the trapdoor. Now, in the third rewound execution, it
generates random third messages in the honest party input commitments and
uses the knowledge of the trapdoor to cheat in the proof.

The above strategy allows us to extract the adversary’s inputs with noticeable
probability while still maintaining privacy of honest party inputs. To complete
this idea, we construct a new extractable commitment scheme from injective one-
way functions that achieves the desired “bounded-rewinding security” property.

Taking a step back, note that in order to implement the above strategy, we
created two levels of rewinding security: while the trapdoor generation phase is
secure against one rewind (but insecure against two rewinds), the input commit-
ment protocol is secure against two rewinds (but insecure against three rewinds).
We refer to this technique as leveled rewinding security with multiple levels, and
this is precisely what allows us to avoid the use of leveled complexity leveraging.

Using Promise ZK. In the works of [1,7], the simulator behaves honestly in the
first three rounds using random inputs for the honest parties. We depart from this
proof strategy, and instead, require our simulator to cheat even in the first three

470 S. Badrinarayanan et al.

rounds on the main thread.10 Indeed, such a simulation strategy seems necessary
for our case since the recent two-round semi-malicious MPC protocols of [5,15] –
which we use to instantiate our compiler – require a cheating simulation strategy
even in the first round.

To implement this proof strategy, we turn to promise ZK. However, recall that
promise ZK simulator works by behaving honestly in the look-ahead threads.
When applied to our MPC construction, this means that we must find a way to
behave honestly on the look-ahead threads that are used for extracting inputs
and trapdoors from the adversary. However, at first it is not immediately clear
how to implement such a strategy. Clearly, our final simulator cannot use honest
party inputs on the look-ahead threads to behave honestly.

Instead, our simulator uses random inputs to behave honestly on the look-
ahead threads. The main challenge then is to argue that when we switch from
using real honest inputs (in an intermediate hybrid) to random inputs on the
look-ahead threads, the probability of extraction of adversary’s inputs and trap-
doors remains unchanged. Crucially, here, we do not need to consider a joint
view across all the look-ahead threads, and instead, it suffices to argue the indis-
tinguishability of adversary’s view on each look-ahead thread (when we switch
from real input to random input) one at a time. We rely upon techniques from
the work of Jain et al. [24] for this indistinguishability argument. The same proof
technique is also used to argue security in the case when the adversary aborts
in the third round with overwhelming probability. We discuss this next.

Aborting Adversary Case. In the case where the adversary aborts in the
third round with overwhelming probability, we cannot rely upon promise ZK
since there is no hope for extraction from such an aborting adversary (which
is necessary for simulating promise ZK). Therefore, in this case, the simulator
simply behave honestly on the main thread using random inputs (as in [1,7]).
The main challenge then is to switch in an indistinguishable manner from honest
behavior in the first three rounds using real inputs to honest behavior using
random inputs, while relying only on polynomial-time assumptions.

We address this case by relying upon techniques from [24]. We remark that
we cannot directly use the three-round strong WI argument system of [24] since
it requires the instance being proven to be disclosed to the verifier only in the
third round of the protocol. This is not true in our case, since the instance also
consists of the transcript of the three-round extractable commitment (and other
sub-protocols like the trapdoor generation). Nevertheless, we are able to use
ideas from [24] in a non-black-box manner to enable our security proof; we refer
the reader to the technical sections for more details.

Other Issues. We note that since our partitioned simulation technique crucially
relies upon identifying whether an adversary is aborting or not, we have to take
precaution during simulation to avoid the possibility of the simulator running in

10 We emphasize that this strategy is only used in the case where the adversary does
not abort in the third round. As we discuss below, we use a different strategy in the
aborting adversary case.

Promise Zero Knowledge and Its Applications to Round Optimal MPC 471

exponential time. For this reason, we use ideas first developed in [17] and later
used in many subsequent works, to ensure that the running time of our simulator
is expected polynomial-time.

Finally, we note that the above discussion is oversimplified, and omits several
technical points. We refer the reader to the technical sections for full details.

2.3 List Coin-Tossing

We now describe the main ideas underlying our construction of three round
multiparty list coin-tossing. We start by describing the basic structure of our
protocol:

• We start with a two-round semi-honest multiparty coin-tossing protocol based
on injective one-way functions. Such a protocol can be constructed as follows:
In the first round, each party i commits to a string ri chosen uniformly at
random, using a non-interactive commitment scheme. In the second round,
each party reveals ri without the decommitment information. The output is
simply the XOR of all the ri values.

• To achieve malicious security, we “compile” the above semi-honest protocol
with a (delayed-input) distributional promise ZK protocol. Roughly speaking,
in the third round, each party i now proves that the value ri is the one it
had committed earlier. By parallelizing the two sub-protocols appropriately,
we obtain a three round protocol.

We first note that as in the case of our four round MPC protocol, here also we
need to “harden” the promise ZK protocol with non-malleability properties. We
do so by constructing a three-round simulation-extractable promise ZK based on
DDH/QR/Nth-Residuosity and then using it in the above compiler. Nevertheless,
for simplicity of discussion, we do not dwell on this issue here, and refer the reader
to the technical sections for further details.

We now describe the main ideas underlying our simulation technique. As in
the case of four round MPC, we use partitioned simulation strategy to split the
simulation into two cases, depending upon whether the adversary aborts or not
in the third round.

Aborting Case. If the adversary aborts in the third round, then the simulator
simply behaves honestly using a uniformly random string ri on behalf of each
honest party i. Unlike the four round MPC case, indistinguishability can be
argued here in a straightforward manner since the simulated transcript is identi-
cally distributed as a real transcript. The main reason why such a strategy works
is that since the parties do not have any input, there is no notion of “correct
output” that the simulator needs to enforce on the (aborting) adversary. This is
also true for any randomized inputless functionality, and indeed for this reason,
our result extends to such functionalities. Note, however, that this is not true
for general functionalities where each party has an input.

Non-Aborting Case. We next consider the case where the adversary does not
abort in the third round with noticeable probability. Note that in this case,

472 S. Badrinarayanan et al.

when one execution thread completes, the simulator learns the random strings
rj committed to by the adversarial parties by simply observing the adversary’s
message in the third round.

At this point, the simulator queries the ideal functionality to obtain the ran-
dom output (say) R and then attempts to “force” it on the adversary. This
involves simulating the simulation-extractable promise ZK and sending a “pro-
grammed” value r′

i on behalf of one of the honest parties so that it leads to the
desired output R. Now, since the adversary does not abort in the last round
with noticeable probability, it would seem that after a polynomial number of
trials, the simulator should succeed in forcing the output. At this point, it may
seem that we have successfully constructed a three round multiparty coin-tossing
protocol, which would contradict the lower bound of [14]!

We now explain the flaw in the above argument. As is typical to security with
abort, an adversary’s aborting behavior may depend upon the output it receives
in the last round. For example, it may always choose to abort if it receives an
output that starts with 00. Thus, if the simulator attempts to repeatedly force
the same random output on the adversary, it may never succeed.

This is where list coin-tossing comes into the picture. In list coin-tossing,
the simulator obtains a polynomial number of random strings from the ideal
functionality, as opposed to a single string in regular coin-tossing. Our simulator
attempts to force each of (polynomially many) random strings one-by-one on
the adversary, in the manner as explained above. Now, each of the trials are
independent, and therefore the simulator is guaranteed to succeed in forcing one
of the random strings after a polynomial number of attempts.

Organization. We define some preliminaries in Sect. 3 and some building blocks
for our protocols in Sect. 4. In Sect. 5, we define and construct Simulation-
Extractable Promise ZK. Due to lack of space, our three round List Coin Tossing
protocol and our four round maliciously secure MPC protocol are described in
the full version of the paper.

3 Preliminaries

Here, we recall some preliminaries that will be useful in the rest of the paper.
Throughout this paper, we will use λ to denote the security parameter, and
negl(λ) to denote any function that is asymptotically smaller than 1

poly(λ) for any
polynomial poly(·). We will use PPT to describe a probabilistic polynomial time
machine. We will also use the words “rounds” and “messages” interchangeably,
whenever clear from context.

3.1 Secure Multiparty Computation

In this work we follow the standard real/ideal world paradigm for defining secure
multi-party computation. We refer the reader to [16] for the precise definition.

Promise Zero Knowledge and Its Applications to Round Optimal MPC 473

Semi-malicious adversary. An adversary is said to be semi-malicious if it follows
the protocol correctly, but with potentially maliciously chosen randomness.

3.2 Delayed-Input Interactive Arguments

In this section, we describe delayed-input interactive arguments.

Definition 1 (Delayed-Input Interactive Arguments). An n-round
delayed-input interactive protocol (P, V) for deciding a language L is an argu-
ment system for L that satisfies the following properties:

– Delayed-Input Completeness. For every security parameter λ ∈ N, and
any (x,w) ∈ RL such that |x| ≤ 2λ,

Pr[(P, V)(1λ, x, w) = 1] = 1 − negl(λ).

where the probability is over the randomness of P and V . Moreover, the
prover’s algorithm initially takes as input only 1λ, and the pair (x,w) is given
to P only in the beginning of the n’th round.

– Delayed-Input Soundness. For any PPT cheating prover P ∗ that
chooses x∗ (adaptively) after the first n − 1 messages, it holds that if x∗ /∈ L
then

Pr[(P ∗, V)(1λ, x∗) = 1] = negl(λ).

where the probability is over the random coins of V .

Remark 1. We note that in a delayed-input interactive argument satisfying
Definition 1, completeness and soundness also hold when (part of) the instance
is available in the first (n − 1) rounds.

We will also consider delayed-input interactive arguments in the simultaneous-
message setting, that satisfy soundness against rushing adversaries.

3.3 Extractable Commitments

Here onwards until Sect. 5, we will discuss protocols where only one party sends
a message in any round.

Definition 2 (Extractable Commitments). Consider any statistically
binding, computationally hiding commitment scheme 〈C,R〉. Let Trans〈C(m, rC),
R(rR)〉 denote a commitment transcript with committer input m, committer ran-
domness rC and receiver randomness rR, and let Decom(τ,m, rC) denote the
algorithm that on input a commitment transcript τ , committer message m and
randomness rC outputs 1 or 0 to denote whether or not the decommitment was
accepted (we explicitly require the decommitment phase to not require receiver
randomness rR).

Then 〈C,R〉 is said to be extractable if there exists an expected PPT oracle
algorithm E, such that for any PPT cheating committer C∗ the following holds.

474 S. Badrinarayanan et al.

Let Trans〈C∗, R(rR)〉 denote a transcript of the interaction between C∗ and R.
Then EC∗

(Trans〈C∗, R(rR)〉) outputs m, rC such that over the randomness of E
and of sampling Trans〈C∗, R(rR)〉:

Pr[(∃m̃ �= m, r̃C) such that Decom(τ, m̃, r̃C) = 1] = negl(λ)

Remark 2. The notion of extraction described in Definition 2 is often referred
to as over-extraction. This is because the extractor E is allowed to output any
arbitrary value if Trans〈C∗, R(rR)〉 does not contain a commitment to any valid
message. On the other hand, if Trans〈C∗, R(rR)〉 is a valid commitment to some
message m, E must output the correct committed message m.

Definition 3 (k-Extractable Commitments). An extractable commitment
satisfying Definition 2 is said to be k-extractable if there exists a polynomial p(·)
such that the extractor EC∗

(Trans〈C∗, R(rR)〉) with k − 1 queries to C∗, outputs
m, rC such that over the randomness of E and of sampling Trans〈C∗, R(rR)〉:

Pr[Decom(τ,m, rC) = 1] ≥ p(λ)

Delayed-Input Extractable Commitments. We say that an extractable commit-
ment is delayed-input if the committer uses the input message m only in the last
round of the protocol.

Theorem 4. [31,32] For any constant K > 0, assuming injective one-way func-
tions, there exists a three round delayed-input K-extractable commitment scheme
satisfying Definition 3.

3.4 Non-Malleable Commitments

We start with the definition of non-malleable commitments by Pass and
Rosen [30] and further refined by Lin et al. [28] and Goyal [20]. (All of these
definitions build upon the original definition of Dwork et al. [11]).

In the real experiment, a man-in-the-middle adversary MIM interacts with
a committer C in the left session, and with a receiver R in the right session.
Without loss of generality, we assume that each session has identities or tags,
and require non-malleability only when the tag for the left session is different
from the tag for the right session.

At the start of the experiment, the committer C receives an input val and
MIM receives an auxiliary input z, which might contain a priori information
about val. Let MIM〈C,R〉(val, z) be a random variable that describes the value
˜val committed by MIM in the right session, jointly with the view of MIM in the
real experiment.

In the ideal experiment, a PPT simulator S directly interacts with MIM. Let
Sim〈C,R〉(1λ, z) denote the random variable describing the value ˜val committed
to by S and the output view of S.

In either of the two experiments, if the tags in the left and right interaction
are equal, then the value ˜val committed in the right interaction, is defined to
be ⊥.

Promise Zero Knowledge and Its Applications to Round Optimal MPC 475

We define a strengthened version of non-malleable commitments for use in
this paper.

Definition 4 (Special Non-malleable Commitments). A three round com-
mitment scheme 〈C,R〉 is said to be special non-malleable if:

– For every synchronizing11 PPT MIM, there exists a PPT simulator S such
that the following ensembles are computationally indistinguishable:

{MIM〈C,R〉(val, z)}λ∈N,val∈{0,1}λ,z∈{0,1}∗ and {Sim〈C,R〉(1
λ, z)}λ∈N,val∈{0,1}λ,z∈{0,1}∗

– 〈C,R〉 is delayed-input, that is, correctness holds even when the committer
obtains his input only in the last round.

– 〈C,R〉 satisfies last-message pseudorandomness, that is, for every non-
uniform PPT receiver R∗, it holds that {REALR∗

0 (1λ)}λ and {REALR∗
1 (1λ)}λ

are computationally indistinguishable, where for b ∈ {0, 1}, the random vari-
able REALR∗

b (1λ) is defined via the following experiment.
1. Run C(1λ) and denote its output by (com1, σ), where σ is its secret state,

and com1 is the message to be sent to the receiver.
2. Run the receiver R∗(1λ, com1), who outputs a message com2.
3. If b = 0, run C(σ, com2) and send its message com3 to R∗. Otherwise,

if b = 1, compute com3
$← {0, 1}m and send it to R∗. Here m = m(λ)

denotes |com3|.
4. The output of the experiment is the output of R∗.

– 〈C,R〉 satisfies 2-extractability according to Definition 3.

Goyal et al. [21] construct three-round special non-malleable commitments
satisfying Definition 4 based on injective OWFs.

Imported Theorem 1 ([21]). Assuming injective one-way functions, there
exists a three round non-malleable commitment satisfying Definition 4.

4 Building Blocks

We now describe some of the building blocks we use in our constructions.

4.1 Trapdoor Generation Protocol

In this section, we define and construct a primitive called Trapdoor Generation
Protocol. In such a protocol, a sender S (a.k.a. trapdoor generator) communi-
cates with a receiver R. The protocol satisfies two properties: (i) Sender security,
i.e., no cheating PPT receiver can learn a valid trapdoor, and (ii) Extraction,
i.e., there exists an expected PPT algorithm (a.k.a. extractor) that can extract
a trapdoor from an adversarial sender via rewinding.
11 A synchronizing adversary is one that sends its message for every round before

obtaining the honest party’s message for the next round.

476 S. Badrinarayanan et al.

We construct a three-round trapdoor generation protocol where the first
message sent by the sender determines the set of valid trapdoors, and in the
next two rounds the sender proves that indeed it knows a valid trapdoor. Such
schemes are known in the literature based on various assumptions [8,31,32].
Here, we consider trapdoor generation protocols with a stronger sender security
requirement that we refer to as 1-rewinding security. Below, we formally define
this notion and then proceed to give a three-round construction based on one-
way functions. Our construction is a minor variant of the trapdoor generation
protocol from [8].

Syntax. A trapdoor generation protocol

TDGen = (TDGen1,TDGen2,TDGen3,TDOut,TDValid,TDExt)

is a three round protocol between two parties - a sender (trapdoor generator) S
and receiver R that proceeds as below.

1. Round 1 - TDGen1(·):
S computes and sends tdS→R

1 ← TDGen1(rS) using a random string rS .
2. Round 2 - TDGen2(·):

R computes and sends tdR→S
2 ← TDGen2(tdS→R

1 ; rR) using randomness rR.
3. Round 3 - TDGen3(·):

S computes and sends tdS→R
3 ← TDGen3(tdR→S

2 ; rS)
4. Output - TDOut(·)

The receiver R outputs TDOut(tdS→R
1 , tdR→S

2 , tdS→R
3).

5. Trapdoor Validation Algorithm - TDValid(·):
Given input (t, tdS→R

1), output a single bit 0 or 1 that determines whether
the value t is a valid trapdoor corresponding to the message td1 sent in the
first round of the trapdoor generation protocol.

In what follows, for brevity, we set td1 to be tdS→R
1 . Similarly we use td2 and

td3 instead of tdR→S
2 and tdS→R

3 , respectively. Note that the algorithm TDValid
does not form a part of the interaction between the trapdoor generator and
the receiver. It is, in fact, a public algorithm that enables public verification of
whether a value t is a valid trapdoor for a first round message td1.

Extraction. There exists a PPT extractor algorithm TDExt that, given a
set of values12 (td1, {tdi

2, td
i
3}3i=1) such that td12, td

2
2, td

3
2 are distinct and

TDOut(td1, tdi
2, td

i
3) = 1 for all i ∈ [3], outputs a trapdoor t such that TDValid

(t, td1) = 1.

1-Rewinding Security. We define the notion of 1-rewinding security for a trap-
door generation protocol TDGen. Consider the following experiment between a
sender S and any (possibly cheating) receiver R∗.
12 These values can be obtained from the malicious sender via an expected PPT rewind-

ing procedure. The expected PPT simulator in our applications performs the neces-
sary rewindings and then feeds these values to the extractor TDExt.

Promise Zero Knowledge and Its Applications to Round Optimal MPC 477

Experiment E:

– R∗ interacts with S and completes one execution of the protocol TDGen. R∗

receives values (td1, td3) in rounds 1 and 3 respectively.
– Then, R∗ rewinds S to the beginning of round 2.
– R∗ sends S a new second round message td∗

2 and receives a message td∗
3 in

the third round.
– At the end of the experiment, R∗ outputs a value t∗.

Definition 5 (1-Rewinding Security). A trapdoor generation protocol
TDGen = (TDGen1,TDGen2,TDGen3,TDOut,TDValid) achieves 1-rewinding
security if, for every non-uniform PPT receiver R∗ in the above experiment E,

Pr
[

TDValid(t∗, td1) = 1
]

= negl(λ),

where the probability is over the random coins of S, and where t∗ is the output
of R∗ in the experiment E, and td1 is the message from S in round 1.

Construction. We describe our construction of a three round trapdoor gener-
ation protocol based on one way functions in the full version of the paper.

4.2 WI with Non-adaptive Bounded Rewinding Security

We define the notion of three-round delayed-input witness indistinguishable (WI)
argument with “bounded-rewinding security,” and construct such a primitive
assuming the existence of polynomially hard DDH (or QR or Nth-Residuosity).
In the non-delayed-input setting, such a primitive was implicitly constructed and
used previously by Goyal et al. [22].13

We formally define three-round delayed-input WI with non-adaptive
bounded-rewinding security here. In the full version, we describe a construc-
tion for the same. For our applications, we instantiate the rewinding parameter
B with the value 6.

Definition 6 (3-Round Delayed-InputWI with Non-adaptive Bounded
Rewinding Security). Fix a positive integer B. A delayed-input 3-round inter-
active argument (as defined in Definition 1) for an NP language L, with an NP
relation RL is said to be WI with Non-adaptive B-Rewinding Security if for every
non-uniform PPT interactive Turing Machine V ∗, it holds that {REALV ∗

0 (1λ)}λ

and {REALV ∗
1 (1λ)}λ are computationally indistinguishable, where for b ∈ {0, 1}

the random variable REALV ∗
b (1λ) is defined via the following experiment. In what

follows we denote by P1 the prover’s algorithm in the first round, and similarly
we denote by P3 his algorithm in the third round.

Experiment REALV ∗
b (1λ):

13 Specifically, they consider non-delayed-input WI with 1-rewinding security.

478 S. Badrinarayanan et al.

1. Run P1(1λ) and denote its output by (rwi1, σ), where σ is its secret state, and
rwi1 is the message to be sent to the verifier.

2. Run the verifier V ∗(1λ, rwi1), who outputs {(xi, wi)}i∈[B−1], xB, wB
0 , wB

1 and
a set of messages {rwii2}i∈[B].

3. For each i ∈ [B − 1], run P3(σ, rwii2, x
i, wi), and for i = B, run

P3(σ, rwii2, x
i, wi

b) where P3 is the (honest) prover’s algorithm for generat-
ing the third message of the WI protocol, and send its message {rwii3}i∈[B]

to V ∗.

In the full version, we prove the following theorem:

Theorem 5. Assuming DDH/QR/Nth-Residuosity, there exists a three round
delayed-input witness-indistinguishable argument system with non-adaptive (B =
6)-rewinding security.

5 Promise Zero Knowledge

In this section, we introduce our new notion of promise zero knowledge interac-
tive arguments. Unlike the standard notion of zero knowledge interactive argu-
ments that is defined in the unidirectional-message model of communication,
promise ZK is defined in the simultaneous-message model, where in every round,
both the prover and the verifier simultaneously send a message to each other.
Crucially, in promise ZK, the zero knowledge property is only required to hold
against a specific class of “valid” verifiers (that do not send invalid messages).

Validity Check. First, we enhance the syntax for simultaneous-message interac-
tive arguments to include an additional algorithm Valid. That is, a simultaneous-
message interactive argument is denoted by (P, V,Valid). The notions of com-
pleteness and soundness remain intact as before. Looking ahead, the intuition
behind introducing the new algorithm is that we want to capture those verifiers
who send a “valid” message in every round (including the last round). We do
this by using the Valid algorithm.

This algorithm Valid is protocol specific. For example, if the honest verifier
is instructed to prove knowledge of a trapdoor that he generated, and the proof
fails, then his messages are not valid. Importantly, even if only the verifier’s
last message is invalid, and even though the prover does not need to explicitly
respond to this message14 we refer to this transcript as invalid. We denote by
Valid the (public verification) algorithm which checks whether the transcript,
including the verifier’s last message, is valid or not, that is,

Valid(Trans(P (x,w), V ∗)) = 1

14 We use this promise ZK protocol as a building block in our MPC protocols, and in
these protocols, the party acting as prover does indeed read this last ZK message
sent by the verifier, and based on its validity decides whether to abort the MPC
protocol.

Promise Zero Knowledge and Its Applications to Round Optimal MPC 479

if and only if all the messages sent by V ∗ appear to be valid, given the transcript.
The correctness requirement of this algorithm is that if the verifier’s messages
are generated honestly according to the protocol, then

Pr[Valid(Trans(P (x,w), V)) = 1] = 1.

Looking ahead, in our protocols, at the end of each execution of the ZK protocol,
the prover will check whether the verifier sent “valid” messages, and if not, the
prover will abort.

5.1 Definitions

We now proceed to describe our notion of promise zero knowledge. Roughly
speaking, we define promise ZK similarly to standard ZK, with two notable
differences: First, promise ZK is defined in the simultaneous-message model.
Second, the zero knowledge property is only defined w.r.t. a special class of
verifiers who generate a valid transcript, with some noticeable probability. In
order to define this notion, we need to have an estimation of the probability that
the cheating verifier sends an invalid message throughout the protocol.

Validity Approximation. Consider a delayed-input simultaneous message interac-
tive argument system (P, V,Valid). Consider any verifier V ∗, and any efficiently
sampleable distribution D = {Dλ}, where Dλ samples pairs (x,w) such that
x ∈ {0, 1}λ and (x,w) ∈ RL

In what follows we denote by P = (P1, P2), a prover that is split into two
parts. First, (viewV ∗,1, st) ← P1(1λ) is obtained, and then P2(x,w, st) continues
the rest of the P algorithm with V ∗. This is done primarily because we would
like to approximate the the validity probability of V ∗ conditioned on viewV ∗,1.

Let Trans(P2(x,w, st), V ∗) denote the protocol transcript between P2 and V ∗:
that is, Trans(P, V ∗) = (viewV ∗,1,Trans(P2(x,w, st), V ∗)). Let

qviewV ∗,1 = Pr[Valid(viewV ∗,1,Trans(P2(x, w, st), V ∗)) = 1|(viewV ∗,1, st) ← P1(1
λ)]

where the probability is over the generation of (x,w) ← Dλ and the coins of P2.
We emphasize that qviewV ∗,1 depends on D and on V ∗, we omit this dependence
from the notation to avoid cluttering.

Definition 7. For any constant c ∈ N, a PPT oracle algorithm pExtractc is said
to be a validity approximation algorithm, if the following holds for all malicious
verifiers V ∗ and for all efficiently sampleable distributions D = {Dλ}:
– If pExtractV

∗,D
c (viewV ∗,1, st) = 0, then qviewV ∗,1 < 2 · λ−c.

– Otherwise, if pExtractV
∗,D

c (viewV ∗,1, st) = p, then p ≥ λ−c and p
2 <

qviewV ∗,1 < 2 · p.

We now formalize our notion of promise ZK. We note that this only considers
the delayed-input distributional setting. For simplicity of exposition, we restrict
ourselves to 3-round protocols since this work is only concerned with construc-
tions and applications of 3-round promise zero-knowledge. We note that this
definition can be extended naturally to any number of rounds.

480 S. Badrinarayanan et al.

Definition 8 (Promise Zero Knowledge). A 3-round distributional delayed-
input simultaneous-message interactive argument (P, V,Valid) for a language L is
said to be promise zero knowledge against delayed-input verifiers if there exists an
oracle machine Sim = (Sim1,Sim2,Sim3) such that for every constant c ∈ N, and
any validity approximation algorithm pExtractc, for every polynomials ν = ν(λ)
and ν̃ = ν̃(λ), for every efficiently sampleable distribution D = {Dλ} such that
Supp(Dλ) = {(x,w) : x ∈ L ∩ {0, 1}λ, w ∈ RL(x) where x = (x2, x3), w =
(w2, w3)}, for any delayed-input PPT verifier V ∗ that obtains xi in round i and
any z ∈ {0, 1}poly(λ), conditions 1 and 2 (defined below) hold for REALV ∗ and
IDEALV ∗ (defined below).

– REALV ∗ is computed as follows:
• Sample (viewV ∗,1, st) ← P1(1λ).
• Sample (x,w) ← Dλ where x = (x2, x3).
• Execute the interaction (viewV ∗,1, 〈P2(x,w, st), V ∗(viewV ∗,1)〉), where V ∗

obtains xi in round i.
• The output of the experiment is the view of V ∗ in the execution

(x, 〈P (x,w), V ∗(viewV ∗,1)〉).
– IDEALV ∗ is computed as follows:

• Sample (viewV ∗,1, st) ← P1(1λ).
• Compute p = pExtractV

∗
c (viewV ∗,1, st).

• Sample (x,w) ← Dλ where x = (x2, x3).
• If p = 0,

∗ Execute the interaction (viewV ∗,1, 〈P2(x,w, st), V ∗(viewV ∗,1)〉), where
V∗ obtains xi in round i.

∗ The output of the experiment is (x, 〈P (x,w), V ∗(viewV ∗,1)〉).
• Else, execute SimV ∗

(x, viewV ∗,1, st, p) → (viewV ∗,2, viewV ∗,3), which oper-
ates as follows:
∗ Compute SimV ∗

1 (viewV ∗,1, st, p) → st1.
∗ Then compute SimV ∗

2 (x2, viewV ∗,1, st1) → (viewV ∗,2, st2).
∗ Finally, compute SimV ∗

3 (x3, viewV ∗,1, viewV ∗,2, st2) to output (viewV ∗,3).

Conditions 1 and 2 are defined as follows:

1. No PPT distinguisher can distinguish REALV ∗ from IDEALV ∗ with advantage
greater than λ−c.

2. For any input x = (x2, x3), the running time of SimV ∗
1 (viewMIM,1, st, p) is poly-

nomial in λ and linear in 1
p , and the running times of SimV ∗

2 (x2, viewV ∗,1, st) and

SimV ∗
3 (x3, viewV ∗,1, viewV ∗,2, st2) are polynomial in λ and independent of p.

Going forward, we use promise ZK argument to refer to a distribu-
tional promise zero-knowledge simultaneous-message argument system, satisfy-
ing delayed-input completeness and soundness, as well as zero-knowledge against
delayed-input verifiers according to Definition 8.

Promise Zero Knowledge and Its Applications to Round Optimal MPC 481

Defining Simulation-Sound Promise ZK in the multi-party setting. We now con-
sider a man-in-the-middle adversary that interacts in promise zero-knowledge
protocols as follows: It opens polynomially many sessions where it plays the role
of the verifier interacting with an honest prover; these are called “left” sessions,
and we denote by ν the number of such left sessions. We note that in all left ses-
sions, the honest prover proves the same statement with the same witness. It can
simultaneously initiate polynomially many sessions where it plays the role of the
prover interacting with an honest verifier: these are called “right” sessions, and
we denote by ν̃ the number of such right sessions. We restrict ourselves to syn-
chronous (rushing) adversaries, that for each round j, send all their j’th round
messages (in all sessions), before observing any of the honest parties messages
for the next round of the protocol.

We formalize the notion of simulation-soundness against a rushing man-in-
the-middle adversary below, where we use ã to denote any random variable a
that corresponds to a right session.

Redefining Validity Approximation. Similarly to before, we need to approxi-
mate the probability that the messages sent by a man-in-the-middle adversary
in the left execution are valid, conditioned on all messages in the first round
of the protocol. We consider ν “left” sessions and ν̃ “right” sessions. Similar
to the setting of promise ZK, we denote by P = (P1, P2), an honest prover for
the “left” sessions that is split into two parts, P1 generates the first round mes-
sage, and P2 generates the messages of the second and third rounds. Below, we
abuse notation and use P, P1, P2 not only to denote the interaction of the honest
prover in a single session, but also to denote the interaction of the honest prover
in all ν left sessions, using independent randomness for each such execution.
Let Transleft(P2(x,w, viewMIM,1, st),MIM) denote all the transcripts in the “left”
sessions between P2(x,w, viewMIM,1, st) and MIM, which can be decomposed as
follows: Transleft(P,MIM) = (viewMIM,1,Transleft(P2(x,w, viewMIM,1, st),MIM)).
For any viewMIM,1 sampled according to honest prover and verifier strategy as
described above, let qviewMIM,1 =

Pr[Valid(viewMIM,1,Transleft(P2(x, w, viewMIM,1, st),MIM)) = 1|(viewMIM,1, st) ← P1(1
λ)]

where Valid above refers to the AND of all the validity tests for each of the ν left
sessions, and the probability is over the generation of (x,w) ← Dλ and the coins
of each of the ν instantiations of P2. We emphasize that qviewMIM,1 depends on
D and on MIM, we omit this dependence from the notation to avoid cluttering.
We re-define the algorithm pExtractc from Definition 8 to depend additionally
on the honest verifier first messages in the right sessions.

Definition 9. For any constant c ∈ N, a PPT oracle algorithm pExtractc is said
to be a validity approximation algorithm, if the following holds for all MIM and
for all efficiently sampleable distributions D = {Dλ}, with probability at least
1 − 2−λ over the coins of the algorithm, we have that:

482 S. Badrinarayanan et al.

– If pExtractMIM,D
c (viewMIM,1, st) = 0, then qviewMIM,1 < 2 · λ−c.

– Else, if pExtractMIM,D
c (viewMIM,1, st) = p, then p ≥ λ−c and p

2 < qviewMIM,1 <
2 · p.

Remark 3. We briefly describe a canonical polynomial-time validity approxima-
tion algorithm for any constant c ∈ N:

1. pExtractMIM,D
c (viewMIM,1, st) executes λ2 ·λc independent executions of all ses-

sions with MIM, using freshly sampled instance-witness pairs from the distri-
bution Dλ to complete the left executions in the role of the honest provers,
and acting as honest verifiers in the right sessions.

2. Let ρ be the number of these executions that resulted in all left executions
begin valid. We call such executions successful trials.

3. If ρ < λ2, output 0.
4. Otherwise, output ρ/(λ2 · λc).

We now informally analyze this algorithm:

– Observe that if pExtractMIM,D
c (viewMIM,1, st) outputs zero, this means that

fewer than λ2 trials succeeded. On the other hand, if qviewMIM,1 ≥ 2 · λ−c,
then the expected number of successful trials is at least 2λ2. By a Chernoff
bound, except with probability at most 2−λ, at least λ2 trials must succeed
if qviewMIM,1 ≥ 2 · λ−c. Thus, the first condition is satisfied.

– Observe that if pExtractMIM,D
c (viewMIM,1, st) outputs a nonzero value, then this

value must be at least λ−c by construction. And again, the required condition
on qviewMIM,1 follows immediately from a Chernoff bound.

For simplicity, we restrict ourselves to 3 rounds in the definition below. This
suffices for our construction and applications.

Definition 10 (Simulation-Sound Promise Zero Knowledge). A 3-round
publicly-verifiable promise zero-knowledge argument against delayed-input veri-
fiers (P, V,Valid) is said to be simulation-sound if there exists an oracle machine
Sim = (Sim1,Sim2,Sim3) such that, for every constant c ∈ N, and any valid-
ity approximation algorithm pExtractc, for every polynomials ν = ν(λ) and
ν̃ = ν̃(λ), for every efficiently sampleable distribution D = {(Xλ,Wλ)} such
that Supp((X ,W)λ) = {(x,w) : x ∈ L ∩ {0, 1}λ, w ∈ RL(x) where x = (x2, x3)},
and every distribution X ′

λ such that Xλ and X ′
λ are computationally indistin-

guishable, for any PPT synchronous MIM that initiates ν “left” sessions and ν̃
“right” sessions, we require the following to hold. Let

SimMIM(x′, viewMIM,1, st, p) → (viewMIM,2, viewMIM,3, {x̃i}i∈[ν̃])

where viewMIM,1 are all the messages sent in the first round (both left and right
executions) with MIM, and st denotes all the corresponding secret states of the
honest parties, and p = pExtractMIM,D

c (viewMIM,1, st).

Promise Zero Knowledge and Its Applications to Round Optimal MPC 483

– For any input x′ = (x′
2, x

′
3), we have that SimMIM(x′, viewMIM,1, st, p) operates

by first computing
SimMIM

1 (viewMIM,1, st, p) → st1

then computing

SimMIM
2 (x′

2, viewMIM,1, st1) → (viewMIM,2, st2)

and then computing

SimMIM
3 (x′

2, x
′
3, viewMIM,1, viewMIM,2, st2) = (viewMIM,3, {x̃i}i∈[ν̃]).

Here, viewMIM,2 and viewMIM,3 denotes the set of all messages sent in the
second and third round (respectively) of the multi-party execution with MIM.
We require that {x̃i} (which is part of the output of SimMIM) is consistent15

with (viewMIM,2, viewMIM,3).
– For any input x′ = (x′

2, x
′
3), we require that the running time of

SimMIM
1 (viewMIM,1, st, p) is polynomial in λ and linear in 1

p , while the running
times of SimMIM

2 (x′
2, viewMIM,1, st1) and SimMIM

3 (x′
2, x

′
3, viewMIM,1, viewMIM,2,

st2) are polynomial in λ, independent of p.
– If Pr

[

pExtractMIM
c (viewMIM,1, st) ≥ λ−c

]

≥ λ−c, then we have:
(
x′, viewMIM,1, IDEALMIM(x′, viewMIM,1, st)

∣∣∣ pExtractMIM
c (viewMIM,1, st) ≥ λ−c

)
≈

(
x, viewMIM,1,REALMIM(x, w, viewMIM,1, st)

∣∣∣ pExtractMIM
c (viewMIM,1, st) ≥ λ−c

)

where (x,w) ← (X ,W)λ, x′ ← X ′
λ, and (viewMIM,1, st) is generated by simu-

lating all the messages sent in the first round of the execution with MIM,16

where viewMIM,1 denotes all the simulated messages and st denotes the secret
states of all the honest parties, and

IDEALMIM(x′, viewMIM,1, st) = (viewMIM,1, viewMIM,2, viewMIM,3),

where the variables (viewMIM,2, viewMIM,3) are computed by running SimMIM(x′,
viewMIM,1, st, p) for p = pExtractMIM,D

c (viewMIM,1, st). The experiment
REALMIM (x,w, viewMIM,1) is computed by running a real world execution with
MIM, where the provers in the “left” sessions uses the input (x,w) and where
the first round messages are viewMIM,1, and by Valid(Transleft(P2(x,w, st))) we
mean that all left sessions in the execution of REALMIM are valid.

– Over the randomness of Sim, of generating (viewMIM,1, st) and over x′ ← X ′
λ,

Pr

[

∨

i∈[ν̃]

(

Acc(T̃ransi) = 0
)

∨

⎛

⎝

∧

i∈[ν̃]

x̃i ∈ L

⎞

⎠

]

≥ 1 − λ−c,

15 Note that (viewMIM,2, viewMIM,3) includes the instances {x̃i}, and we add the instances
explicitly to the output of SimMIM only so that we will be able to refer to it later.

16 Note that this can be simulated easily since the protocol is delayed-input which
means that the parties do not use their private inputs to compute their first round
message.

484 S. Badrinarayanan et al.

where {T̃ransi} is the transcript of the i’th right execution when (viewMIM,1,
viewMIM,2, viewMIM,3) are computed in IDEALMIM(x′, viewMIM,1, st) as above,
and Acc(T̃ransi) = 0 denotes the event that the (publicly verifiable) transcript
T̃ransi causes an honest verifier to reject.

5.2 Constructing Simulation Sound Promise ZK

In this section, we describe our construction of Simulation Sound Promise ZK.
Formally, we prove the following theorem:

Theorem 6. Assuming the existence of polynomially hard DDH/QR/Nth-
Residuosity, there exists a three round simulation-sound promise ZK argument
according to Definition 10.

The Protocol. Let P and V denote the prover and verifier, respectively. Let L
be any NP language with an associated relation RL. Let Dλ = (Xλ,Wλ) be any
efficiently sampleable distribution on RL.

Building Blocks. Our construction relies on the following cryptographic primi-
tives.

– TDGen = (TDGen1,TDGen2,TDGen3,TDOut) is the three-message trapdoor
generation protocol from Sect. 4, that is 3-extractable according to Definition
3, with corresponding extractor TDExt.

– RWI = (RWI1,RWI2,RWI3,RWI4) is the three round delayed-input witness
indistinguishable argument with non-adaptive bounded rewinding security for
B = 6 from Definition 6. The fourth algorithm RWI4 is the final verification
algorithm.

– NMCom = (NMCom1,NMCom2,NMCom3) denotes a special non-malleable
commitment according to Definition 4.

NP Languages. We define the following relation R′ that will be useful in our
construction. Parse instance st = (x, c, td1), where c = (c1, c2, c3). Parse witness
w = (w, t, r). Then, R′(st,w) = 1 if and only if :

(

R(x,w) = 1

)

∨

(

TDValid(td1, t) = 1 ∧ c1 = NMCom1(r) ∧ c3 =

NMCom3(t, c1, c2; r)

)

. We denote the corresponding language by L′.

That is, either :

1. x is in the language L with witness w, OR,
2. the third non-malleable commitment (c1, c2, c3) is to a value t that is a valid

trapdoor for the message td1 generated using the trapdoor generation algo-
rithms.

We construct a three round protocol πSE−PZK = (P, V,Valid) for L in Fig. 1.
The completeness of this protocol follows from the correctness of the underlying
primitives.

Promise Zero Knowledge and Its Applications to Round Optimal MPC 485

Fig. 1. Three round Simulation-Sound Promise ZK argument.

5.3 Security Proof

Due to lack of space, we defer the proof of our protocol to the full version.

Acknowledgements. We thank Silas Richelson, Shai Halevi, Carmit Hazay,
Antigoni Polychroniadou, Muthuramakrishnan Venkitasubramaniam and the anony-
mous reviewers of STOC 2018 for useful comments in an earlier draft of this paper.

486 S. Badrinarayanan et al.

References

1. Ananth, P., Choudhuri, A.R., Jain, A.: A new approach to round-optimal secure
multiparty computation. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS,
vol. 10401, pp. 468–499. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63688-7 16

2. Barak, B.: How to go beyond the black-box simulation barrier. In: 2001 Proceedings
of the 42nd IEEE Symposium on Foundations of Computer Science, pp. 106–115.
IEEE (2001)

3. Barak, B., Sahai, A.: How to play almost any mental game over the net - con-
current composition via super-polynomial simulation. In: Proceedings of the 46th
Annual IEEE Symposium on Foundations of Computer Science (FOCS 2005), 23–
25 October 2005, Pittsburgh, PA, USA, pp. 543–552 (2005). https://doi.org/10.
1109/SFCS.2005.43

4. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols
(extended abstract). In: STOC, pp. 503–513 (1990)

5. Benhamouda, F., Lin, H.: k -round multiparty computation from k -round oblivious
transfer via garbled interactive circuits. In: Nielsen, J.B., Rijmen, V. (eds.) EURO-
CRYPT 2018. LNCS, vol. 10821, pp. 500–532. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-78375-8 17

6. Bitansky, N., Kalai, Y.T., Paneth, O.: Multi-collision resistance: a paradigm for
keyless hash functions. IACR Cryptology ePrint Archive 2017, 488 (2017). http://
eprint.iacr.org/2017/488

7. Brakerski, Z., Halevi, S., Polychroniadou, A.: Four round secure computation with-
out setup. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 645–
677. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2 22

8. Ciampi, M., Ostrovsky, R., Siniscalchi, L., Visconti, I.: Delayed-input non-
malleable zero knowledge and multi-party coin tossing in four rounds. In: Kalai,
Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 711–742. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-70500-2 24

9. Ciampi, M., Ostrovsky, R., Siniscalchi, L., Visconti, I.: Concurrent non-malleable
commitments (and more) in 3 rounds. In: Robshaw, M., Katz, J. (eds.) CRYPTO
2016. LNCS, vol. 9816, pp. 270–299. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-53015-3 10

10. Cleve, R.: Limits on the security of coin flips when half the processors are faulty
(extended abstract). In: Hartmanis, J. (ed.) STOC, pp. 364–369. ACM (1986)

11. Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography (extended abstract).
In: STOC, pp. 542–552 (1991)

12. Dwork, C., Naor, M.: Zaps and their applications. In: FOCS, pp. 283–293 (2000)
13. Feige, U., Lapidot, D., Shamir, A.: Multiple non-interactive zero knowledge proofs

based on a single random string (extended abstract). In: FOCS, pp. 308–317 (1990)
14. Garg, S., Mukherjee, P., Pandey, O., Polychroniadou, A.: The exact round

complexity of secure computation. In: Fischlin, M., Coron, J.-S. (eds.) EURO-
CRYPT 2016. LNCS, vol. 9666, pp. 448–476. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49896-5 16

15. Garg, S., Srinivasan, A.: Two-round multiparty secure computation from minimal
assumptions. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol.
10821, pp. 468–499. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
78375-8 16

https://doi.org/10.1007/978-3-319-63688-7_16
https://doi.org/10.1007/978-3-319-63688-7_16
https://doi.org/10.1109/SFCS.2005.43
https://doi.org/10.1109/SFCS.2005.43
https://doi.org/10.1007/978-3-319-78375-8_17
https://doi.org/10.1007/978-3-319-78375-8_17
http://eprint.iacr.org/2017/488
http://eprint.iacr.org/2017/488
https://doi.org/10.1007/978-3-319-70500-2_22
https://doi.org/10.1007/978-3-319-70500-2_24
https://doi.org/10.1007/978-3-662-53015-3_10
https://doi.org/10.1007/978-3-662-53015-3_10
https://doi.org/10.1007/978-3-662-49896-5_16
https://doi.org/10.1007/978-3-662-49896-5_16
https://doi.org/10.1007/978-3-319-78375-8_16
https://doi.org/10.1007/978-3-319-78375-8_16

Promise Zero Knowledge and Its Applications to Round Optimal MPC 487

16. Goldreich, O.: The Foundations of Cryptography - Volume 2, Basic Applications.
Cambridge University Press, New York (2004)

17. Goldreich, O., Kahan, A.: How to construct constant-round zero-knowledge proof
systems for NP. J. Cryptol. 9(3), 167–190 (1996)

18. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A
completeness theorem for protocols with honest majority. In: STOC, pp. 218–229
(1987)

19. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM J. Comput. 18, 186–208 (1989)

20. Goyal, V.: Constant round non-malleable protocols using one way functions. In:
STOC, pp. 695–704 (2011)

21. Goyal, V., Pandey, O., Richelson, S.: Textbook non-malleable commitments. In:
STOC, pp. 1128–1141 (2016)

22. Goyal, V., Richelson, S., Rosen, A., Vald, M.: An algebraic approach to non-
malleability. In: FOCS, pp. 41–50 (2014)

23. Halevi, S., Hazay, C., Polychroniadou, A., Venkitasubramaniam, M.: Round-
optimal secure multi-party computation. IACR Cryptology ePrint Archive. 2017,
1056 (2017). http://eprint.iacr.org/2017/1056. Accepted to CRYPTO 2018

24. Jain, A., Kalai, Y.T., Khurana, D., Rothblum, R.: Distinguisher-dependent simula-
tion in two rounds and its applications. In: Katz, J., Shacham, H. (eds.) CRYPTO
2017. LNCS, vol. 10402, pp. 158–189. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-63715-0 6

25. Katz, J., Ostrovsky, R.: Round-optimal secure two-party computation. In:
Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 335–354. Springer, Hei-
delberg (2004). https://doi.org/10.1007/978-3-540-28628-8 21

26. Katz, J., Ostrovsky, R., Smith, A.: Round efficiency of multi-party computation
with a dishonest majority. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol.
2656, pp. 578–595. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-
39200-9 36

27. Khurana, D.: Round optimal concurrent non-malleability from polynomial hard-
ness. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part II. LNCS, vol. 10678, pp.
139–171. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70503-3 5

28. Lin, H., Pass, R., Venkitasubramaniam, M.: Concurrent non-malleable commit-
ments from any one-way function. In: Canetti, R. (ed.) TCC 2008. LNCS, vol.
4948, pp. 571–588. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-78524-8 31

29. Pass, R.: Bounded-concurrent secure multi-party computation with a dishonest
majority. In: Proceedings of the 36th Annual ACM Symposium on Theory of Com-
puting, Chicago, IL, USA, 13–16 June 2004, pp. 232–241 (2004)

30. Pass, R., Rosen, A.: Concurrent non-malleable commitments. In: FOCS, pp. 563–
572 (2005)

31. Prabhakaran, M., Rosen, A., Sahai, A.: Concurrent zero knowledge with logarith-
mic round-complexity. In: FOCS, pp. 366–375 (2002)

32. Rosen, A.: A note on constant-round zero-knowledge proofs for NP. In: Naor,
M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 191–202. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24638-1 11

33. Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In: FOCS, pp. 543–553 (1999)

34. Yao, A.C.: Protocols for secure computations (extended abstract). In: FOCS (1982)

http://eprint.iacr.org/2017/1056
https://doi.org/10.1007/978-3-319-63715-0_6
https://doi.org/10.1007/978-3-319-63715-0_6
https://doi.org/10.1007/978-3-540-28628-8_21
https://doi.org/10.1007/3-540-39200-9_36
https://doi.org/10.1007/3-540-39200-9_36
https://doi.org/10.1007/978-3-319-70503-3_5
https://doi.org/10.1007/978-3-540-78524-8_31
https://doi.org/10.1007/978-3-540-78524-8_31
https://doi.org/10.1007/978-3-540-24638-1_11

Round-Optimal Secure Multi-Party
Computation

Shai Halevi1(B), Carmit Hazay2, Antigoni Polychroniadou3,
and Muthuramakrishnan Venkitasubramaniam4

1 IBM Research, New York, USA
shaih@alum.mit.edu

2 Bar-Ilan University, Ramat Gan, Israel
carmit.hazay@biu.ac.il

3 Cornell Tech and University of Rochester, New York, USA
antigoni@cornell.edu

4 University of Rochester, New York, USA
muthuv@cs.rochester.edu

Abstract. Secure multi-party computation (MPC) is a central crypto-
graphic task that allows a set of mutually distrustful parties to jointly
compute some function of their private inputs where security should hold
in the presence of a malicious adversary that can corrupt any number of
parties. Despite extensive research, the precise round complexity of this
“standard-bearer” cryptographic primitive is unknown. Recently, Garg,
Mukherjee, Pandey and Polychroniadou, in EUROCRYPT 2016 demon-
strated that the round complexity of any MPC protocol relying on black-
box proofs of security in the plain model must be at least four. Following
this work, independently Ananth, Choudhuri and Jain, CRYPTO 2017
and Brakerski, Halevi, and Polychroniadou, TCC 2017 made progress
towards solving this question and constructed four-round protocols based
on non-polynomial time assumptions. More recently, Ciampi, Ostrovsky,
Siniscalchi and Visconti in TCC 2017 closed the gap for two-party proto-
cols by constructing a four-round protocol from polynomial-time assump-
tions. In another work, Ciampi, Ostrovsky, Siniscalchi and Visconti TCC
2017 showed how to design a four-round multi-party protocol for the spe-
cific case of multi-party coin-tossing.

In this work, we resolve this question by designing a four-round
actively secure multi-party (two or more parties) protocol for general
functionalities under standard polynomial-time hardness assumptions
with a black-box proof of security.

Keywords: Secure multi-party computation · Garbled circuits
Round complexity · Additive errors

1 Introduction

Secure multi-party computation. A central cryptographic task, secure multi-
party computation (MPC), considers a set of parties with private inputs that wish
c© International Association for Cryptologic Research 2018
H. Shacham and A. Boldyreva (Eds.): CRYPTO 2018, LNCS 10992, pp. 488–520, 2018.
https://doi.org/10.1007/978-3-319-96881-0_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91563-0_17&domain=pdf

Round-Optimal Secure Multi-Party Computation 489

to jointly compute some function of their inputs while preserving privacy and
correctness to a maximal extent [Yao86,CCD87,GMW87,BGW88].

In this work, we consider MPC protocols that may involve two or more
parties for which security should hold in the presence of active adversaries that
may corrupt any number of parties (i.e. dishonest majority). More concretely,
we are interested in identifying the precise round complexity of MPC protocols
for securely computing arbitrary functions in the plain model.

In [GMPP16], Garg, et al., proved a lower bound of four rounds for MPC
protocols that relies on black-box simulation. Following this work, in inde-
pendent works, Ananth et al. [ACJ17] and Brakerski et al. [BHP17] showed
a matching upper bound by constructing four-round protocols based on the
Decisional Diffie-Hellman (DDH) and Learning With Error (LWE) assumptions,
respectively, albeit with super-polynomial hardness. More recently, Ciampi et
al. in [COSV17b] closed the gap for two-party protocols by constructing a four-
round protocol from standard polynomial-time assumptions. The same authors
in another work [COSV17a] showed how to design a four-round multi-party pro-
tocol for the specific case of multi-party coin-tossing.

The state-of-affairs leaves the following fundamental question regarding
round complexity of cryptographic primitives open:

Does there exist four-round secure multi-party computation protocols
for general functionalities based on standard polynomial-time hardness
assumptions and black-box simulation in the plain model?

We remark that tight answers have been obtained in prior works where
one or more of the requirements in the motivating question are relaxed. In
the two-party setting, the recent work of Ciampi et al. [COSV17b] showed
how to obtain a four-round protocol based on trapdoor permutations. Assum-
ing trusted setup, namely, a common reference string, two-round constructions
can be obtained [GGHR14,MW16] or three-round assuming tamper-proof hard-
ware tokens [HPV16].1 In the case of passive adversaries, (or even the slightly
stronger setting of semi-malicious2 adversaries) three round protocols based
on the Learning With Errors assumption have been constructed by Braker-
ski et al. [BHP17]. Ananth et al. gave a five-round protocol based on DDH
[ACJ17]. Under subexponential hardness assumptions, four-round constructions
were demonstrated in [BHP17,ACJ17]. Under some relaxations of superpoly-
nomial simulation, the work of Badrinarayanan et al. [BGJ+17] shows how to
obtain three-round MPC assuming subexponentially secure LWE and DDH. For
specific multi-party functionalities four-round constructions have been obtained,
e.g., coin-tossing by Ciampi et al. [COSV17b]. Finally, if we assume an honest
majority, the work of Damgard and Ishai [DI05] provided a three-round MPC
protocol. If we allow trusted setup (i.e. not the plain model) then a series of works
1 Where in this model the lower bound is two rounds.
2 A semi-malicious adversary is allowed to invoke a corrupted party with arbitrary cho-

sen input and random tape, but otherwise follows the protocol specification honestly
as a passive adversary.

490 S. Halevi et al.

[CLOS02,GGHR14,MW16,BL18,GS17] have shown how to achieve two-round
multiparty computation protocols in the common reference string model under
minimal assumptions. In the tamper proof setup model, the work of [HPV16]
show how to achieve three round secure multiparty computation assuming only
one-way functions.

1.1 Our Results

The main result we establish is a four-round multi-party computation protocol
for general functionalities in the plain model based on standard polynomial-
time hardness assumptions. Slightly more formally, we establish the following
theorem.

Theorem 1.1 (Informal). Assuming the existence of injective one-way func-
tions, ZAPs and a certain affine homomorphic encryption scheme, there exists
a four-round multi-party protocol that securely realizes arbitrary functionalities
in the presence of active adversaries corrupting any number of parties.

This theorem addresses our motivating question and resolves the round complex-
ity of multiparty computation protocols. The encryption scheme that we need
admits a homomorphic affine transformation

c = Enc(m) �→ c′ = Enc(a · m + b) for plaintext a, b,

as well as some equivocation property. Roughly, given the secret key and encryp-
tion randomness, it should be possible to “explain” the result c′ as coming from
c′ = Enc(a′ · m + b′), for any a′, b′ satisfying am + b = a′m + b′. We show
how to instantiate such an encryption scheme by relying on standard additively
homomorphic encryption schemes (or slight variants thereof). More precisely, we
instantiate such an encryption scheme using LWE, DDH, Quadratic Residuos-
ity (QR) and Decisional Composite Residuosity (DCR) hardness assumptions.
ZAPs on the other hand can be instantiated using the QR assumption or any
(doubly) enhanced trapdoor permutation such as RSA or bilinear maps. Injec-
tive one-way functions are required to instantiate the non-malleable commitment
scheme from [GRRV14] and can be instantiated using the QR. In summary, all
our primitives can be instantiated by the single QR assumptions and therefore
we have the following corollary

Corollary 1.2. Assuming QR, there exists a four-round multi-party protocol
that securely realizes arbitrary functionalities in the presence of active adver-
saries corrupting any number of parties.

1.2 Our Techniques

Starting point: the [ACJ17] protocol. We begin from the beautiful work of
Ananth et al. [ACJ17], where they used randomized encoding [AIK06] to reduce

Round-Optimal Secure Multi-Party Computation 491

the task of securely computing an arbitrary functionality to securely computing
the sum of many three-bit multiplications. To implement the required three-bit
multiplications, Ananth et al. used an elegant three-round protocol, consisting
of three instances of a two-round oblivious-transfer subprotocol, as illustrated in
Fig. 1.

Fig. 1. The three-bit multiplication protocol from [ACJ17], using two-round oblivious
transfer. The OT sub-protocols are denoted by OT[Receiver(b), Sender(m0, m1)], and
u, v, w are the receivers’ outputs in the three OT protocols. The outputs of P1, P2, P3

are s1, s2, s3, respectively. The first message in OTγ can be sent in the second round,
together with the sender messages in OTα and OTβ . The sum of s1, s2, s3 results into
the output x1x2x3.

Using this three-round multiplication subprotocol, Ananth et al. constructed
a four-round protocol for the semi-honest model, then enforced correctness in
the third and fourth rounds using zero-knowledge proofs to get security against
a malicious adversary. In particular, the proof of correct behavior in the third
round required a special three-round non-malleable zero-knowledge proof, for
which they had to rely on super-polynomial hardness assumptions. (A four-round
proof to enforce correctness in the last round can be done based on standard
assumptions.) To eliminate the need for super-polynomial assumptions, our very
high level approach is to weaken the correctness guarantees needed in the third
round, so that we can use simpler proofs. Specifically we would like to be able to
use two-round (resettable) witness indistinguishable proofs (aka ZAPs [DN07]).

WI using the Naor-Yung approach. To replace zero-knowledge proofs by
ZAPs, we must be able to use the honest prover strategy (since ZAPs have
no simulator), even as we slowly remove the honest parties’ input from the
game. We achieve this using the Naor-Yung approach: We modify the three-bit
multiplication protocol by repeating each OT instance twice, with the receiver
using the same choice bit in both copies and the sender secret-sharing its input
bits between the two. (Thus we have a total of six OT instances in the modified
protocol.) Crucially, while we require that the sender proves correct behavior
relative to its inputs in both instances, we only ask the receiver to prove that it
behaves correctly in at least one of the two.

In the security proof, this change allows us to switch in two steps from the real
world where honest parties use their real inputs as the choice bit, to a simulated

492 S. Halevi et al.

world where they are simulated using random inputs. In each step we change
the choice bit in just one of the two OT instances, and use the other bit that we
did not switch to generate the ZAP proofs on behalf of the honest parties.3

We note that intuitively, this change does not add much power to a real-world
adversary: Although an adversarial receiver can use different bits in the two
OT instances, this will only result in the receiver getting random bits from the
protocol, since the sender secret-shares its input bits between the two instances.

Extraction via rewinding. While the adversary cannot gain much by using
different bits in different OT instances, we crucially rely on the challenger in our
hybrid games to use that option. Hence we must compensate somehow for the
fact that the received bits in those OT protocols are meaningless. To that end,
the challenger (as well as the simulator in the ideal model) will use rewinding to
extract the necessary information from the adversary.

But rewinding takes rounds, so the challenger/simulator can only extract
this information at the end of the third round.4 Thus we must rearrange the
simulater so that it does not need the extracted information — in particular the
bits received in the OT protocols — until after the third round. Looking at the
protocol in Fig. 1, there is only one place where a value received in one of the
OTs is used before the end of the third round. To wit, the value u received in
the second round by P1 in OTα is used in the third round when P1 plays the
sender in OTγ .

This causes a real problem in the security proof: Consider the case where
P2 is an adversarial sender and P1 an honest receiver. In some hybrid we would
want to switch the choice bit of P1 from its real input to a random bit, and argue
that these hybrids are close by reduction to the OT receiver privacy. Inside the
reduction, we will have no access to the values received in the OT, so we cannot
ensure that it is consistent with the value that P1 uses as the sender in OTγ

(with P3 as the receiver). We would like to extract the value of u from the
adversary, but we are at a bind: we must send to the adversary the last message
of OTγ before we can extract u, but we cannot compute that message without
knowing u.

Relaxing the correctness guarantees. To overcome the difficulty from above,
we relax the correctness guarantees of the three-bit multiplication protocol,
allowing the value that P1 sends in OTγ (which we denote by u′) to differ from
the value that it received in OTα (denoted u). The honest parties will still use
u′ = u, but the protocol no longer includes a proof for that fact (so the adversary
can use u′ �= u, and so can the challenger). This modification lets us introduce
into the proof an earlier hybrid in which the challenger uses u′ �= u, even on
behalf of an honest P1. (That hybrid is justified by the sender privacy of OTγ .)

3 We do not need to apply a similar trick to the sender role in the OT subprotocols,
since the sender bits are always random.

4 To get it by then, the ZAPs are performed in parallel to the second and third rounds
of the three-bit multiplication protocol.

Round-Optimal Secure Multi-Party Computation 493

Then, we can switch the choice bit of P1 in OTα from real to random, and the
reduction to the OT receiver privacy in OTα will not need to use the value u.5

Dealing with additive errors. Since the modified protocol no longer requires
proofs that u′ = u, an adversarial P1 is free to use u′ �= u, thereby introducing
an error into the three-bit multiplication protocol. Namely, instead of computing
the product x1x2x3, an adversarial P1 can cause the result of the protocol to be
(x1x2 + (u′ − u))x3. Importantly, the error term e = u′ − u cannot depend on
the input of the honest parties. (The reason is that the value u received by P1

in OTα is masked by r2 and hence independent of P2’s input x2, so any change
made by P1 must also be independent of x2.).

To deal with this adversarial error, we want to use a randomized encoding
scheme which is resilient to such additive attacks. Indeed, Genkin et al. presented
transformations that do exactly this in [GIP+14,GIP15,GIW16]. Namely, they
described a compiler that transforms an arbitrary circuit C to another circuit C′

that is resilient to additive attacks. Unfortunately, using these transformations
does not work out of the box, since they do not preserve the degree of the cir-
cuit. So even if after using randomized encoding we get a degree-three function,
making it resilient to additive attacks will blow up the degree, and we will not
be able to use the three-bit multiplication protocol as before.

What we would like, instead, is to first transform the original function f that
we want to compute into a resilient form f̂ , then apply randomized encoding
to f̂ to get a degree-three encoding g that we can use in our protocol. But this
too does not work out of the box: The adversary can introduce additive errors in
the circuit of g, but we only know that f̂ is resilient to additive attacks, not its
randomized encoding g. In a nutshell, we need distributed randomized encoding
that has offline (input independent) and online (input dependent) procedures
that satisfies the following three conditions:

– The offline encoding has degree-3 (in the randomness);
– The online procedure is decomposable (encodes each bit separately);
– The offline procedure is resilient to additive attacks on the internal wires of

the computation.

As such the encoding procedure in [AIK06] does not meet these conditions.

BMR to the rescue. To tackle this last problem, we forgo “generic” random-
ized encoding, relying instead on the specific multiparty garbling due to Beaver
et al. [BMR90] (referred to as “BMR encoding”) and show how it can be mas-
saged to satisfy the required properties.6 For this specific encoding, we carefully
align the roles in the BMR protocol to those in the three-bit multiplication pro-
tocol, and show that the errors in the three-bit multiplication instances with

5 The reduction will still need to use u in the fourth round of the simulation, but by
then we have already extracted the information that we need from the adversary.

6 We remark that our BMR encoding differs from general randomized encoding as
we allow some “local computation” on the inputs before it is fed into the offline
encoding procedure.

494 S. Halevi et al.

a corrupted P1 can be effectively translated to an additive attack against the
underlying computation of f̂ , see Lemma 3.2. Our final protocol, therefore, pre-
compiles the original function f to f̂ using the transformations of Genkin et
al., then applies the BMR encoding to get f̂ ′ which is of degree-three and still
resilient to the additive errors by a corrupted P1. We remark here that another
advantage of relying on BMR encoding as opposed to the randomized encoding
from [AIK06] is that it can be instantiated based on any one-way function. In
contrast the randomized encoding of [AIK06] requires the assumption of PRGs
in NC1.

A Sketch of the Final Protocol. Combining all these ideas, our (almost)
final protocol proceeds as follows: Let C be a circuit that we want to evaluate
securely, we first apply to it the transformation of Genkin et al. to get resilience
against additive attacks, then apply BMR encoding to the result. This gives us
a randomized encoding for our original circuit C. We use the fact that the BMR
encoding has the form CBMR(x; (λ, ρ)) = (x ⊕ λ, g(λ, ρ)) where each output bit
of g has degree three (or less) in the (λ, ρ). Given the inputs x = (x1, . . . , xn),
the parties choose their respective pieces of the BMR randomness λi, ρi, and
engage in our modified three-bit multiplication protocol Π ′ (with a pair of OT’s
for each one in Fig. 1), to compute the outputs of g(λ, ρ). In addition to the third
round message of Π ′, each party Pi also broadcasts its masked input xi ⊕ λi.

Let witi be a witness of “correct behavior” of party Pi in Π ′ (where the wit-
ness of an OT-receiver includes the randomness for only one of the two instances
in an OT pair). In parallel with the execution of Π ′, each party Pi also engages in
three-round non-malleable commitment protocols for witi, and two-round ZAP
proofs that witi is indeed a valid witness for “correct behavior” (in parallel to
rounds 2,3). Once all the proofs are verified, the parties broadcast their final mes-
sages si in the protocol Π ′, allowing them to complete the computation of the
encoding output g(λ, ρ). They now all have the BMR encoding CBMR(x; (λ, ρ)),
so they can locally apply the corresponding BMR decoding procedure to com-
pute C(x).

Other Technical Issues Non-malleable Commitments. Recall that we
need a mechanism to extract information from the adversary before the fourth
round, while simultaneously providing proofs of correct behavior for honest par-
ties via ZAPs. In fact, we need the stronger property of non-malleability, namely
the extracted information must not change when the witness in the ZAP proofs
changes.

Ideally, we would want to use standard non-malleable commitments and
recent work of Khurana [Khu17] shows how to construct such commitments in
three rounds. However, our proof approach demands additional properties of the
underlying non-malleable commitment, but we do not know how to construct
such commitments in three rounds. Hence we relax the conditions of standard
non-malleable commitments. Specifically, we allow for the non-malleable com-
mitment scheme to admit invalid commitments. (Such weaker commitments are

Round-Optimal Secure Multi-Party Computation 495

often used as the main tool in constructing full-fledged non-malleable commit-
ments, see [GRRV14,Khu17] for few examples.)

A consequence of this relaxation is the problem of “over-extraction” where an
extractor extracts the wrong message from an invalid commitment. We resolve
this in our setting by making each party provide two independent commitments
to its witness, and modify the ZAP proofs to show that at least one of these two
commitments is a valid commitment to a valid witness.

This still falls short of yeilding full-fledged non-malleable commitments, but
it ensures that the witness extracted in at least one of the two commitments is
valid. Since the witness in our case includes the input and randomness of the OT
subprotocols, the challenger in our hybrids can compare the extracted witness
against the transcript of the relevant OT instances and discard invalid witnesses.

Another obstacle is that in some intermediate hybrids, some of the informa-
tion that the challenger should commit to is only known in later rounds of the
protocol, hence we need the commitments to be input-delayed. For this we rely
on a technique of Ciampi et al. [COSV16] for making non-malleable commit-
ments into input-delayed ones. Finally, we observe that we can instantiate the
“weak simulation extractable non-malleable commitments” that we need from
the three-round non-malleable commitment scheme implicit in the work of Goyal
et al. [GRRV14].

Equivocable oblivious transfer. In some hybrids in the security proof, we
need to switch the sender bits in the OT subprotocols. For example in one step
we switch the P2 sender inputs in OTα from (−r2, x2−r2) to (−r2, x̃2−r2) where
x2 is the real input of P2 and x̃2 is a random bit. (We also have a similarly step
for P1’s input in OTγ .)

For every instance of OT, the challenger needs to commit to the OT random-
ness on behalf of the honest party and prove via ZAP that it behaved correctly
in the protocol. Since ZAPs are not simulatable, the challenger can only provide
these proofs by following the honest prover strategy, so it needs to actually have
the sender randomness for these OT protocols. Recalling that we commit twice
to the randomness, our security proof goes through some hybrids where in one
commitment we have the OT sender randomness for one set of values and in the
other we have the randomness for another set. (This is used to switch the ZAP
proof from one witness to another).

But how can there be two sets of randomness values that explain the same
OT transcript? To this end, we use an equivocable oblivious transfer protocol.
Namely, given the receiver’s randomness, it is possible to explain the OT tran-
script after the fact, in such a way that the “other sender bit” (the one that
the receiver does not get) can be opened both ways. In all these hybrids, the
OT receiver gets a random output bit. So the challenger first runs the protocol
according to the values in one hybrid, then rewinds the adversary to extract
the randomness of the receiver, where it can then explain (and hence prove) the
sender’s actions in any way that it needs, while keeping the OT transcript fixed.

We show how to instantiate the equivocable OT that we need from
(a slightly weak variant of) additive homomorphic encryption, with an additional

496 S. Halevi et al.

equivocation property. Such encryption schemes can in turn be constructed under
standard (polynomial) hardness assumptions such as LWE, DDH, Quadratic
Residuosity (QR) and Decisional Composite Residuosity (DCR).

Premature rewinding. One subtle issue with relying on equivocable OT is
that equivocation requires knowing the randomness of the OT receiver. To get
this randomness, the challenger in our hybrids must rewind the receiver, so
we introduce in some of the hybrids another phase of rewinding, which we call
“premature rewinding.” This phase has nothing to do with the adversary’s input,
and it has no effect on the transcript used in the main thread. All it does is
extract some keys and randomness, which are needed to equivocate.

No four-round proofs. A side benefit of using BMR garbling is that the
authentication properties of BMR let us do away completely with the four-round
proofs from [ACJ17]. In our protocol, at the end of the third round the parties
hold a secret sharing of the garbled circuit, its input labels, and the translation
table to interpret the results of the garbled evaluation. Then in the last round
they just broadcast their shares and input labels, then reconstruct the circuit,
evaluate the circuit, and recover the result.

Absent a proof in the fourth round, the adversary can report arbitrary values
as its shares, even after seeing the shares of the honest parties, but we argue
that it still can not violate privacy or correctness. It was observed in prior work
[LPSY15] that faulty shares for the garbled circuit itself or the input labels can
at worst cause an honest party to abort, and such an event will be independent
of the inputs of the honest parties. Roughly speaking, this is because the so
called “active path” in the evaluation is randomized by masks from each party.
Furthermore, if an honest party does not abort and completes evaluation, then
the result is correct. This was further strengthened in [HSS17], and was shown
to hold even when the adversary is rushing. One course of action still available to
the adversary is to modify the translation tables, arbitrarily making the honest
party output the wrong answer. This can be fixed by a standard technique of
precompiling f to additionally receive a MAC key from each party and output
the MACs of the output under all keys along with the output. Each honest party
can then verify the garbled-circuit result using its private MAC key.

A modular presentation with a “defensible” adversary. In order to make
our presentation more modular, we separate the issues of extraction and non-
malleability from the overall structure of the protocol by introducing the notion
of a “defensible” adversary. Specifically, we first prove security in a simpler model
in which the adversary voluntarily provides the simulator with some extra infor-
mation. In a few more details, we consider an “explaining adversary” that at
the end of the third round outputs a “defense” (or explanation) for its actions
so far.7

This model is somewhat similar to the semi-malicious adversary model of
Asharov et al. [AJL+12] where the adversary outputs its internal randomness
7 The name “defensible adversaries” is adapted from the work of Haitner et al.

[HIK+11].

Round-Optimal Secure Multi-Party Computation 497

with every message. The main difference is that here we (the protocol design-
ers) get to decide what information the adversary needs to provide and when.
We suspect that our model is also somewhat related to the notion of robust
semi-honest security defined in [ACJ17], where, if a protocol is secure against
defensible adversaries and a defense is required after the kth round of the pro-
tocol, then it is plausible that the first k rounds admits robust semi-honest
security.

Once we have a secure protocol in this weaker model, we add to it commit-
ment and proofs that would let us extract from the adversary the same infor-
mation that was provided in the “defense”. As we hinted above, this is done by
having the adversary commit to that information using (a weaker variant of)
simulation extractable commitments, and also prove that the committed values
are indeed a valid “defense” for its actions. While in this work we introduce
“defensible” adversaries merely as a convenience to make the presentation more
modular, we believe that it is a useful tool for obtaining round-efficient protocols.

1.3 Related and Concurrent Work

The earliest MPC protocol is due to Goldreich et al. [GMW87]. The round
complexity of this approach is proportional to the circuit’s multiplication depth
(namely, the largest number of multiplication gates in the circuit on any path
from input to output) and can be non-constant for most functions. In Table 1, we
list relevant prior works that design secure multiparty computation for arbitrary
number parties in the stand-alone plain model emphasizing on the works that
have improved the round complexity or cryptographic assumptions.

Table 1. Prior works that design secure computation protocols for arbitrary number
of parties in the plain model where we focus on constant round constructions.

Protocol Functionality Round Assumptions Sub-exponential

[BMR90,KOS03] General O(1) CRHF, ETDP Yes

[Pas04] General O(1) CRHF, ETDP No

[PW10] General O(1) ETDP Yes

[LP11,Goy11] General O(1) ETDP No

[LPV12] General O(1) OT No

[GMPP16] General 6 LWE Yes

5 iO Yes

[ACJ17] General 5 DDH No

4 DDH Yes

[BHP17] General 4 LWE Yes

[COSV17b] Coin Tossing 4 ETDP No

In concurrent work, simultaneously Benhamouda and Lin [BL18] and Garg
and Srinivasan [GS17] construct a five-round MPC protocol based on minimal

498 S. Halevi et al.

assumptions. While these protocols rely on the minimal assumption of 4-round
OT protocol, they require an additional round to construct their MPC.

In another concurrent work, Badrinarayanan et al. [BGJ+18] establish the
main feasibility result presented in this work, albeit with different techniques
and slightly different assumptions. Their work compiles the semi-malicious pro-
tocol of [BL18,GS17] while we build on modified variants of BMR and the 3-bit
multiplication due to [ACJ17]. Both works rely on injective OWFs, and whereas
we also need ZAPs and affine homomorphic encryption scheme, they also need
dense cryptosystems and two-round OT.

2 Preliminaries

2.1 Affine Homomorphic PKE

We rely on public-key encryption schemes that admit an affine homomorphism
and an equivocation property. As we demonstrate via our instantiations, most
standard additively homomorphic encryption schemes satisfy these properties.
Specifically, we provide instantiations based on Learning With Errors (LWE),
Decisional Diffie-Hellman (DDH), Quadratic Residuosity (QR) and Decisional
Composite Residuosity (DCR) hardness assumptions.

Definition 2.1 (Affine homomorphic PKE). We say that a public key
encryption scheme (M = {Mκ}κ,Gen,Enc,Dec) is affine homomorphic if

– Affine transformation: There exists an algorithm AT such that for every
(PK,SK) ← Gen(1κ), m ∈ Mκ, rc ← Drand(1κ) and every a, b ∈
Mκ, DecSK(AT(PK, c, a, b)) = am + b holds with probability 1, and c =
EncPK(m; rc), where Drand(1κ) is the distribution of randomness used by Enc.

– Equivocation: There exists an algorithm Explain such that for every
(PK,SK) ← Gen(1κ), every m,a0, b0, a1, b1 ∈ Mκ such that a0m + b0 =
a1m + b1 and every rc ← Drand(1κ), it holds that the following distributions
are statistically close over κ ∈ N:

• {σ ← {0, 1}; r ← Drand(1κ); c∗ ← AT(PK, c, aσ, bσ; r) : (m, rc, c
∗, r,

aσ, bσ)}, and
• {σ ← {0, 1}; r ← Drand(1κ); c∗ ← AT(PK, c, aσ, bσ; r);

t ← Explain(SK, aσ, bσ, a1−σ, b1−σ,m, rc, r) : (m, rc, c
∗, t, a1−σ, b1−σ)},

where c = EncPK(m; rc).

In the full version [HHPV17], we demonstrate how to meet Definition 2.1
under a variety of hardness assumptions.

Definition 2.2 (Resettable reusable WI argument). We say that a two-
message delayed-input interactive argument (P, V) for a language L is reset-
table reusable witness indistinguishable, if for every PPT verifier V ∗, every
z ∈ {0, 1}∗, P r[b = b′] ≤ 1/2+μ(κ) in the following experiment, where we denote
the first round message function by m1 = wi1(r1) and the second round message

Round-Optimal Secure Multi-Party Computation 499

function by wi2(x,w,m1, r2). The challenger samples b ← {0, 1}. V ∗ (with aux-
iliary input z) specifies (m1

1, x
1, w1

1, w
1
2) where w1

1, w
1
2 are (not necessarily dis-

tinct) witnesses for x1. V ∗ then obtains second round message wi2(x1, w1
b ,m1

1, r)
generated with uniform randomness r. Next, the adversary specifies arbitrary
(m2

1, x
2, w2

1, w
2
2), and obtains second round message wi2(x2, w2

b ,m2
1, r). This con-

tinues m(κ) = poly(κ) times for a-priori unbounded m, and finally V ∗ outputs b.

ZAPs (and more generally, any two-message WI) can be modified to obtain
resettable reusable WI, by having the prover apply a PRF on the verifier’s mes-
sage and the public statement in order to generate the randomness for the proof.
This allows to argue, via a hybrid argument, that fresh randomness can be used
for each proof, and therefore perform a hybrid argument so that each proof
remains WI. In our construction, we will use resettable reusable ZAPs. In gen-
eral, any multitheorem NIZK protocol implies a resettable reusable ZAP which
inturn can be based on any (doubly) enhanced trapdoor permutation.

2.2 Additive Attacks and AMD Circuits

In what follows we borrow the terminology and definitions verbatim from
[GIP+14,GIW16]. We note that in this work we work with binary fields F2.

Definition 2.3 (AMD code[CDF+08]). An (n, k, ε)-AMD code is a pair of
circuits (Encode,Decode) where Encode : Fn → F

k is randomized and Decode :
F

k → F
n+1 is deterministic such that the following properties hold:

– Perfect completeness. For all x ∈ F
n,

Pr[Decode(Encode(x)) = (0,x)] = 1.

– Additive robustness. For any a ∈ F
k,a �= 0, and for any x ∈ F

n it holds that

Pr[Decode(Encode(x) + a) /∈ ERROR] ≤ ε.

Definition 2.4 (Additive attack). An additive attack A on a circuit C is a
fixed vector of field elements which is independent from the inputs and internal
values of C. A contains an entry for every wire of C, and has the following
effect on the evaluation of the circuit. For every wire ω connecting gates a and
b in C, the entry of A that corresponds to ω is added to the output of a, and
the computation of the gate b uses the derived value. Similarly, for every output
gate o, the entry of A that corresponds to the wire in the output of o is added to
the value of this output.

Definition 2.5 (Additively corruptible version of a circuit). Let C : FI1×
. . . × F

In → F
O1 × . . . × F

On be an n-party circuit containing W wires. We
define the additively corruptible version of C to be the n-party functionality fA :
F

I1 × . . . × F
In × F

W → F
O1 × . . . × F

On that takes an additional input from
the adversary which indicates an additive error for every wire of C. For all
(x,A), fA(x,A) outputs the result of the additively corrupted C, denoted by
CA, as specified by the additive attack A (A is the simulator’s attack on C)
when invoked on the inputs x.

500 S. Halevi et al.

Definition 2.6 (Additively secure implementation). Let ε > 0. We say
that a randomized circuit ̂C : Fn → F

t × F
k is an ε-additively-secure implemen-

tation of a function f : Fn → F
k if the following holds.

– Completeness. For every x ∈ F
n, Pr[̂C(x) = f(x)] = 1.

– Additive attack security. For any additive attack A there exist aIn ∈ F
n, and

a distribution AOut over F
k, such that for every x ∈ F

n,

SD(CA(x), f(x + aIn) + AOut) ≤ ε

where SD denotes statistical distance between two distributions.

Theorem 2.7 ([GIW16], Theorem 2). For any boolean circuit C : {0, 1}n →
{0, 1}m, and any security parameter κ, there exists a 2−κ-additively-secure imple-
mentation ̂C of C, where |̂C| = poly(|C|, n, κ). Moreover, given any additive
attack A and input x, it is possible to identify aIn such that ̂CA(x) = f(x+aIn).

Remark 2.1. Genkin et al. [GIW16] present a transformation that achieves
tighter parameters, namely, better overhead than what is reported in the pre-
ceding theorem. We state this theorem in weaker form as it is sufficient for our
work.

Remark 2.2. Genkin et al. [GIW16] do not claim the stronger version where
the equivalent aIn is identifiable. However their transformation directly yields a
procedure to identify aIn. Namely each bit of the input to the function f needs
to be preprocessed via an AMD code before feeding it to ̂C. aIn can be computed
as Decode(xEncode + AIn) − x where xEncode is the encoded input x via the AMD
code and AIn is the additive attack A restricted to the input wires. In other
words, either the equivalent input is x or the output of ̂C will be ERROR.

Fig. 2. Additively corruptible 3-bit multiplication functionality.

Round-Optimal Secure Multi-Party Computation 501

3 Warmup MPC: The Case of Defensible Adversaries

For the sake of gradual introduction of our technical ideas, we begin with a
warm-up, we present a protocol and prove security in an easier model, in which
the adversary volunteers a “defense” of its actions, consisting of some of its
inputs and randomness. Specifically, instead of asking the adversary to prove an
action, in this model we just assume that the adversary reveals all its inputs and
randomness for that action.

The goal of presenting a protocol in this easier model is to show that it is
sufficient to prove correct behavior in some but not all of the “OT subprotocols”.
Later in Sect. 4 we will rely on our non-malleability and zero-knowledge machin-
ery to achieve similar results. Namely the adversary will be required to prove
correct behavior, and we will use rewinding to extract from it the “defense” that
our final simulator will need.

3.1 Step 1: 3-Bit Multiplication with Additive Errors

The functionality that we realize in this section, FA
MULT is an additively corrupt-

ible version of the 3-bit multiplication functionality. In addition to the three bits
x1, x2, x3, FA

MULT also takes as input an additive “error bit” eIn from P1, and
eOut from the adversary, and computes the function (x1x2 + eIn)x3 + eOut. The
description of FA

MULT can be found in Fig. 2.
Our protocol relies on an equivocable affine-homomorphic-encryption scheme

(Gen,Enc,Dec,AT,Explain) (over F2) as per Definition 2.1, and an additive secret
sharing scheme (Share,Recover) for sharing 0. The details of our protocol are
as follows. We usually assume that randomness is implicit in the encryption
scheme, unless specified explicitly. See Fig. 3 for a high level description of pro-
tocol ΠDMULT.

Fig. 3. Round 1, 2 and 3 of ΠDMULT protocol. In the fourth round each party Pi adds
the zero shares to sj and broadcasts the result.

502 S. Halevi et al.

Protocol 1 (3-bit Multiplication protocol ΠDMULT)

Input & Randomness: Parties P1, P2, P3 are given inputs (x1, eIn), x2, x3,
respectively. P1 chooses a random bit s1 and P2 chooses two random bits s2, r2
(in addition to the randomness needed for the sub-protocols below).

Round 1:
• Party P1 runs key generation twice, (pk1

a, sk1
a), (pk2

a, sk2
a) ← Gen,

encrypts C1
α[1] := Encpk1

a
(x1) and C2

α[1] := Encpk2
a
(x1), and broadcasts

((pk1
a,C1

α[1]), (pk2
a,C2

α[1])) (to be used by P2).
• P3 runs key generation four times, (pk1

β , sk1
β), (pk2

β , sk2
β),

(pk1
γ , sk1

γ), (pk2
γ , sk2

γ) ← Gen(1κ).

Next it encrypts using the first two keys, C1
β [1] := Encpk1

β
(x3) and C2

β [1] :=
Encpk2

β
(x3), and broadcasts

(

(pk1
β ,C1

β [1]), (pk2
β ,C2

β [1])
)

(to be used by P2),
and (pk1

γ ,pk2
γ) (to be used in round 3 by P1).

• Each party Pj samples random secret shares of 0, (z1j , z2j , z3j) ←
Share(0, 3) and sends zi

j to party Pi over a private channel.
Round 2:

• Party P2 samples x1
α, x2

α such that x1
α + x2

α = x2 and r1α, r2α such that
r1α + r2α = r2. It use affine homomorphism to compute C1

α[2] := (x1
α �

C1
α[1]) � r1α and C2

α[2] := (x2
α � C2

α[1]) � r2α.
Party P2 also samples r1β , r2β such that r1β + r2β = r2 and s1β , s2β such
that s1β + s2β = s2, and uses affine homomorphism to compute C1

β [2] :=
(r1β � C1

β [1]) � s1β and C2
β [2] := (r2β � C2

β [1]) � s2β.
P2 broadcasts (C1

α[2],C2
α[2]) (to be used by P1) and (C1

β [2],C2
β [2]) (to be

used by P3).
• Party P3 encrypt C1

γ [1] := Encpk1
γ
(x3) and C2

γ [1] := Encpk2
γ
(x3) and broad-

cast (C1
γ [1],C2

γ [1]) (to be used by P1).
Round 3:

• Party P1 computes u := Decsk1
a
(C1

α[2]) + Decsk2
a
(C2

α[2]) and u′ = u + eIn.
Then P1 samples u1

γ , u2
γ such that u1

γ + u2
γ = u′ and s1γ , s2γ such that

s1γ + s2γ = s1. It uses affine homomorphism to compute C1
γ [2] := (u1

γ �
C1

γ [1]) � s1γ and C2
γ [2] := (u2

γ � C2
γ [1]) � s2γ .

P1 broadcasts (C1
γ [2],C2

γ [2]) (to be used by P3).
Defense: At this point, the adversary broadcasts its “defense:” It gives an
input for the protocol, namely x�. For every “OT protocol instance” where the
adversary was the sender (the one sending C�

�[2]), it gives all the inputs and
randomness that it used to generate these messages (i.e., the values and ran-
domness used in the affine-homomorphic computation). For instances where
it was the receiver, the adversary chooses one message of each pair (either
C1

�[1] or C2
�[1]) and gives the inputs and randomness for it (i.e., the plaintext,

keys, and encryption randomness). Formally, let trans be a transcript of the
protocol up to and including the 3rd round

Round-Optimal Secure Multi-Party Computation 503

trans
def=

(

pk1
a,C1

α[1],C1
α[2],pk2

a,C2
α[1],C2

α[2], pk1
β ,C1

β [1],C1
β [2],pk2

β ,C2
β [1],C2

β [2],
pk1

γ ,C1
γ [1],C1

γ [2],pk2
γ ,C2

γ [1],C2
γ [2]

)

transbP1

def=
(

pkb
a,Cb

α[1], C1
γ [2],C2

γ [2]
)

trans0P2
= trans1P2

def=
(

C1
α[2],C2

α[2], C1
β [2],C2

β [2]
)

transbP3

def=
(

pkb
β ,Cb

β [1], pkb
γ ,Cb

γ [1]
)

we have three NP languages, one per party, with the defense for that party
being the witness:

LP1 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

trans

∣

∣

∣

∣

∣

∣

∣

∣

∃ (x1, eIn, ρα, ska, σα, u1
γ , u2

γ , s1γ , s2γ)

s.t.

(

(pk1
a, ska = Gen(ρα) ∧ C1

α[1] = Encpk1
a
(x1;σα))

∨ (pk2
a, ska = Gen(ρα) ∧ C2

α[1] = Encpk2
a
(x1;σα))

)

∧ C1
γ [2] = u1

γ � C1
γ [1] � s1γ ∧ C2

γ [2] = u2
γ � C2

γ [1] � s2γ

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(1)

LP2 =

⎧

⎨

⎩

trans

∣

∣

∣

∣

∣

∣

∃ (x1
α, x2

α, s1β , s2β , r1α, r2α, r1γ , r2γ) s.t. r1α + r2α = r1γ + r2γ
∧ C1

α[2] = x1
α � C1

α[1] � r1α ∧ C2
α[2] = x2

α � C2
α[1] � r2α

∧ C1
β [2] = r1β � C1

β [1] � s1β ∧ C2
β [2] = r2β � C2

β [1] � r2β

⎫

⎬

⎭

(2)

LP3 =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

trans

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∃ (x3, ρβ , skβ , σβ , ργ , skγ , σγ)

s.t.

(

(pk1
β , skβ = Gen(ρβ) ∧ C1

β [1] = Encpk1
β
(x3;σβ))

∨ (pk2
β , skβ = Gen(ρβ) ∧ C2

β [1] = Encpk2
β
(x3;σβ))

)

∧
(

(pk1
γ , skγ = Gen(ργ) ∧ C1

γ [1] = Encpk1
γ
(x3;σγ))

∨ (pk2
γ , skγ = Gen(ργ) ∧ C2

γ [1] = Encpk2
γ
(x3;σγ))

)

⎫

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎭

(3)

Round 4:
• P3 computes v := Decsk1

β
(C1

β [2]) + Decsk2
β
(C2

β [2]), w := Decsk1
γ
(C1

γ [2]) +
Decsk2

γ
(C2

γ [2]), and s3 := v + w.
• Every party Pj adds the zero shares to sj, broadcasting Sj := sj+

∑3
i=1 zj

i .

– Output: All parties set the final output to Z = S1 + S2 + S3.

Lemma 3.1. Protocol ΠDMULT securely realizes the functionality FA
MULT (cf.

Fig. 2) in the presence of a “defensible adversary” that always broadcasts valid
defense at the end of the third round.

Proof. We first show that the protocol is correct with a benign adversary.
Observe that u′ = eIn + x1(x1

α + x2
α) − (r1α + r2α) = eIn + x1x2 − r2, and similarly

v = x3r2 − s2 and w = x3u
′ − s1. Therefore,

S1 + S2 + S3 = s1 + s2 + s3 = s1 + s2 + (v + w)
= s1 + s2 + (x3r2 − s2) + (x3u

′ − s1)
= x3r2 + x3(x1x2 − r2 + eIn)
= (x1x2 + eIn)x3

as required. We continue with the security proof.

504 S. Halevi et al.

To argue security we need to describe a simulator and prove that the simu-
lated view is indistinguishable from the real one. Below fix inputs x1, eIn, x2, x3,
and a defensible PPT adversary A controlling a fixed subset of parties I ⊆ [3]
(and also an auxiliary input z).

The simulator S chooses random inputs for each honest party (denote these
values by x̂i), and then follows the honest protocol execution using these random
inputs until the end of the 3rd round. Upon receiving a valid “defense” that
includes the inputs and randomness that the adversary used to generate (some
of) the messages Ci

�[j], the simulator extracts from that defense the effective
inputs of the adversary to send to the functionality, and other values to help
with the rest of the simulation. Specifically:

– If P3 is corrupted then its defense (for one of the Ci
β [1]’s and one of the

Ci
γ [1]’s) includes a value for x3, that we denote x∗

3. (A defensible adversary is
guaranteed to use the same value in the defense for C�

β [1] and in the defense
for C

�

γ [1]’s.)
– If P2 is corrupted then the defense that it provides includes all of its inputs

and randomness (since it always plays the “OT sender”), hence the simulator
learns a value for x2 that we denote x∗

2, and also some values r2, s2. (If P2 is
honest then by r2, s2 we denote below the values that the simulator chose for
it.)

– If P1 is corrupted then its defense (for either of the Ci
α[1]’s) includes a value

for x1 that we denote x∗
1.

From the defense for both C1
γ [2],C2

γ [2] the simulator learns the uγ
i ’s and

sγ
i ’s, and it sets u′ := u1

γ + u2
γ and s1 := s1γ + s2γ .

The simulator sets u := x∗
1x

∗
2 − r2 if P2 is corrupted and u := x∗

1x̂2 − r2
if P2 is honest, and then computes the effective value e∗

In := u′ − u. (If P1 is
honest then by s1, u, u′ we denote below the values that the simulator used
for it.)

Let x∗
i and e∗

In be the values received by the functionality. (These are computed
as above if the corresponding party is corrupted, and are equal to xi, eIn if it is
honest.) The simulator gets back from the functionality the answer y = (x∗

1x
∗
2 +

e∗
In)x

∗
3.

Having values for s1, s2 as described above, the simulator computes s3 := y−
s1−s2 if P3 is honest, and if P3 is corrupted then the simulator sets v := r2x

∗
3−s2,

w := ux∗
3 − s1 and s3 := v + w. It then proceeds to compute the values Sj that

the honest parties broadcast in the last round.
Let s be the sum of the si values for all the corrupted parties, and let z be the

sum of the zero-shares that the simulator sent to the adversary (on behalf of all
the honest parties), and z′ be the sum of zero-shared that the simulator received
from the adversary. The values that the simulator broadcasts for the honest
parties in the fourth round are chosen at random, subject to them summing
up to y − (s + z − z′).

If the adversary sends its fourth round messages, an additive output error is
computed as eOut := y−∑

j S̃j where S̃j are the values that were broadcast in the
fourth round. The simulator finally sends (deliver, eOut) to the ideal functionality.

Round-Optimal Secure Multi-Party Computation 505

This concludes the description of the simulator, it remains to prove
indistinguishability. Namely, we need to show that for the simulator
S above, the two distributions REALΠDMULT,A(z),I(κ, (x1, eIn), x2, x3) and
IDEALFA

MULT,S(z),I(κ, (x1, eIn), x2, x3) are indistinguishable. We argue this via
a standard hybrid argument. We provide a brief sketch below.

High-level sketch of the proof. On a high-level, in the first two intermediate
hybrids, we modify the fourth message of the honest parties to be generated
using the defense and the inputs chosen for the honest parties, rather than the
internal randomness and values obtained in the first three rounds of the protocol.
Then in the next hybrid below we modify the messages Si that are broadcast
in the last round. In the hybrid following this, we modify P3 to use fake inputs
instead of its real inputs where indistinguishability relies on the semantic security
of the underlying encryption scheme. In the next hybrid, the value u is set to
random u′ rather than the result of the computation using C2

α[1] and C2
α[2].

This is important because only then we carry out the reduction for modifying
P1’s input. Indistinguishability follows from the equivocation property of the
encryption scheme. Then we modify the input x1 and indistinguishability relies
on the semantic security. Then, we modify the input of P2 from real to fake which
again relies on the equivocation property. Finally we modify the Si’s again to
use the output from the functionality FA

MULT which is a statistical argument and
this is the ideal world. A formal proof appears in the full version [HHPV17].

Between Defensible and Real Security. In Sect. 4 below we show how to
augment the protocol above to provide security against general adversaries, not
just defensible ones, by adding proofs of correct behavior and using rewinding
for extraction.

There is, however, one difference between having a defensible adversary and
having a general adversary that proves correct behavior: Having a proof in the
protocol cannot ensure correct behavior, it only ensures that deviation from the
protocol will be detected (since the adversary cannot complete the proof). So
we still must worry about the deviation causing information to be leaked to the
adversary before it is caught.

Specifically for the protocol above, we relied in the proof on at least one in
each pair of ciphertexts being valid. Indeed for an invalid ciphertext C, it could
be the case that C ′ := (u � C) � s reveals both u and s. If that was the case,
then (for example) a corrupt P1 could send invalid ciphertexts C1,2

α [1] to P2, then
learn both x1,2

α (and hence x2) from P2’s reply.
One way of addressing this concern would be to rely on maliciously secure

encryption (as defined in [OPP14]), but this is a strong requirement, much harder
to realize than our Definition 2.1. Instead, in our BMR-based protocol we ensure
that all the inputs to the multiplication gates are just random bits, and have
parties broadcast their real inputs masked by these random bits later in the pro-
tocol. We then use ZAP proofs of correct ciphertexts before the parties broadcast
their masked real inputs. Hence, an adversary that sends two invalid ciphertexts
can indeed learn the input of (say) P2 in the multiplication protocol, but this

506 S. Halevi et al.

is just a random bit, and P2 will abort before outputting anything related to
its real input in the big protocol. For that, we consider the following two NP
languages:

L′
P1 =

⎧

⎨

⎩

trans2

∣

∣

∣

∣

∣

∣

∃ (x1, ρα, ska, σα)

s.t.

(

(pk1
a, ska = Gen(ρα) ∧ C1

α[1] = Encpk1
a
(x1;σα))

∨ (pk2
a, ska = Gen(ρα) ∧ C2

α[1] = Encpk2
a
(x1;σα))

)

⎫

⎬

⎭

L′
P3 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

trans2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∃ (x3, ρβ , skβ , σβ , ργ , skγ)

s.t.

(

(pk1
β , skβ = Gen(ρβ) ∧ C1

β [1] = Encpk1
β
(x3;σβ))

∨ (pk2
β , skβ = Gen(ρβ) ∧ C2

β [1] = Encpk2
β
(x3;σβ))

)

∧ (

(pk1
γ , skγ = Gen(ργ)))

)

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

where trans2 is a transcript of the protocol up to and including the 2rd round.
Note that P2 does not generate any public keys and thus need not prove anything.

3.2 Step 2: Arbitrary Degree-3 Polynomials

The protocol ΠDMULT from above can be directly used to securely compute any
degree-3 polynomial for any number of parties in this “defensible” model, roughly
by just expressing the polynomial as a sum of degree-3 monomials and running
ΠDMULT to compute each one, with some added shares of zero so that only the
sum is revealed.

Namely, party Pi chooses an n-of-n additive sharing of zero zi =
(z1i , . . . , zn

j) ← Share(0, n), and sends zj
i to party j. Then the parties run one

instance of the protocol ΠDMULT for each monomial, up to the end of the third
round. Let si,m be the value that Pi would have computed in the mth instance
of ΠDMULT (where si,m := 0 if Pi’s is not a party that participates in the protocol
for computing the mth monomial). Then Pi only broadcasts the single value

Si =
∑

m∈[M]

si,m +
∑

j∈[n]

zi
j .

where M denotes the number of degree-3 monomials. To compute multiple
degree-3 polynomials on the same input bits, the parties just repeat the same
protocol for each output bit (of course using an independent sharing of zero for
each output bit).

In terms of security, we add the requirement that a valid “defense” for the
adversary is not only valid for each instance of ΠDMULT separately, but all these
“defenses” are consistent: If some input bit is a part of multiple monomials
(possibly in different polynomials), then we require that the same value for that
bit is used in all the corresponding instances of ΠDMULT. We denote this modified
protocol by ΠDPOLY and note that the proof of security is exactly the same as
the proof in the previous section.

Round-Optimal Secure Multi-Party Computation 507

3.3 Step 3: Arbitrary Functionalities

We recall from the works of [BMR90,DI06,LPSY15] that securely realizing arbi-
trary functionalities f can be reduced to securely realizing the “BMR-encoding”
of the Boolean circuit C that computes f . Our starting point is the observation
that the BMR encoding of a Boolean circuit C can be reduced to computing
many degree-3 polynomials. However, our protocol for realizing degree-3 poly-
nomials from above lets the adversary introduce additive errors (cf. Functional-
ity FA

MULT), so we rely on a pre-processing step to make the BMR functionality
resilient to such additive attacks. We will immunize the circuit to these attacks
by relying on the following primitives and tools:

Information theoretic MAC {MACα}: This will be required to protect the
output translation tables from being manipulated by a rushing adversary.
Namely, each party contributes a MAC key and along with the output of
the function its authentication under each of the parties keys. The idea here
is that an adversary cannot simply change the output without forging the
authenticated values.

AMD codes (Definition 2.3): This will be required to protect the inputs
and outputs of the computation from an additive attack by the adversary.
Namely, each party encodes its input using an AMD code. The original com-
puted circuit is then modified so that it first decodes these encoded inputs,
then runs the original computation and finally, encodes the outcome.

Additive attack resilient circuits (i.e. AMD circuits, Sect. 2.2): This will
be required to protect the computation of the internal wire values from an
additive attack by the adversary. Recall from Sect. 3.1 that the adversary may
introduce additive errors to the computed polynomials whenever corrupting
party P1. To combat with such errors we only evaluate circuits that are
resilient to additive attacks.

Family of pairwise independent hash functions: We will need this to
mask the key values of the BMR encoding. The parties broadcast all keys in
a masked format, namely, h, h(T)⊕ k for a random string T , key k and hash
function h. Then, when decrypting a garbled row, only T is revealed. T and
h can be combined with the broadcast message to reveal k.

Next we explain how to embed these tools in the BMR garbling computa-
tion. Let f(x̂1, . . . , x̂n) be an n-party function that the parties want to compute
securely. At the onset of the protocol, the parties locally apply the following
transformation to the function f and their inputs:

1. Define

f1
(

(x̂1, α1), . . . , (x̂n, αn)
)

=
(

f(x),MACα1(f(x)), . . . ,MACαn
(f(x))

)

where x = (x̂1, . . . , x̂n) are the parties’ inputs.
The MAC verification is meant to detect adversarial modifications to out-

put wires (since our basic model allows arbitrary manipulation to the output
wires).

508 S. Halevi et al.

2. Let (Encode,Decode) be the encoding and decoding functions for an AMD
code, and define

Encode′(x̂1, . . . , x̂n) = (Encode(x̂1), . . . ,Encode(x̂n))

and
Decode′(y1, . . . , yn) = (Decode(y1), . . . ,Decode(yn)).

Then define a modified function

f2(x) = Encode′(f1(Decode′(x))).

Let C be a Boolean circuit that computes f2.
3. Next we apply the transformations of Genkin et al. [GIP+14,GIW16] to cir-

cuit C to obtain ̂C that is resilient to additive attacks on its internal wire
values.

4. We denote by BMR.Encode
̂C((x1, R1), ..., (xn, Rn)) our modified BMR ran-

domized encoding of circuit ̂C with inputs xi and randomness Ri, as described
below. We denote by BMR.Decode the corresponding decoding function for
the randomized encoding, where, for all i, we have

BMR.Decode(BMR.Encode
̂C((x1, R1), ..., (xn, Rn)), Ri) = ̂C(x1, . . . , xn).

In the protocol for computing f , each honest party Pi with input x̂i begins
by locally encoding its input via an AMD code, xi := Encode(x̂i; $) (where $
is some fresh randomness). Pi then engages in a protocol for evaluating the
circuit ̂C (as defined below), with local input xi and a randomly chosen MAC
key αi. Upon receiving an output yi from the protocol (which is supposed to be
AMD encoded, as per the definition of f2 above), Pi decodes and parses it to
get y′

i := Decode(yi) = (z, t1, . . . , tn). Finally Pi checks whether ti = MACαi
(z),

outputting z if the verification succeeds, and ⊥ otherwise.

A modified BMR encoding. We describe the modified BMR encoding for a
general circuit D with n inputs x1, . . . , xn. Without loss of generality, we assume
D is a Boolean circuit comprising only of fan-in two NAND gates. Let W be
the total number of wires and G the total number of gates in the circuit D. Let
F = {Fk : {0, 1}κ → {0, 1}4κ}k∈{0,1}∗,κ∈N be a family of PRFs.

The encoding procedure takes the inputs x1, . . . , xn and additional random
inputs R1, . . . , Rn. Each Rj comprises of PRF keys, key masks and hash functions
from pairwise independent family for every wire. More precisely, Rj (j ∈ [n]) can
be expressed as {λj

w, kj
w,0, k

j
w,1, T

j
w,0, T

j
w,1, h

j
w,0, h

j
w,1}w∈[W] where λj

w are bits,
kj

w,b are κ bit PRF keys, T j
w,b are 4κ bits key masks, and hj

w,b are hash functions
from a pairwise independent family from 4κ to κ bits.

The encoding procedure BMR.Encode
̂C on input ((x1, R1), ..., (xn, Rn)) out-

puts
⎧
⎪⎪⎨

⎪⎪⎩

(Rg,j
00 , Rg,j

01 , Rg,j
10 , Rg,j

11)g∈[G],j∈[n],r1,r2∈{0,1} // Garbled Tables

(hj
w,b, Γ

j
w,b)w∈[W],j∈[n],b∈{0,1}, // masked key values

(Λw, k1
w,Λw

, . . . , kn
w,Λw

)w∈Inp, // keys and masks for input wires

(λw)w∈Out // Output translation table

⎫
⎪⎪⎬

⎪⎪⎭

Round-Optimal Secure Multi-Party Computation 509

where

Rg,j
r1,r2

=
(

n
⊕

i=1

Fki
a,r1

(g, j, r1, r2)
)

⊕
(

n
⊕

i=1

Fki
b,r2

(g, j, r1, r2)
)

⊕ Sg,j
r1,r2

Sg,j
r1,r2

= T j
c,0 ⊕ χr1,r2 · (T j

c,1 ⊕ T j
c,0)

χr1,r2 = NAND
(

λa ⊕ r1, λb ⊕ r2
) ⊕ λc = [(λa ⊕ r1) · (λb ⊕ r2) ⊕ 1] ⊕ λc

Γ j
w,b = hj

w,b(T
j
w,b) ⊕ kj

w,b

λw =
{

λjw
w if w ∈ Inp // input wire

λ1
w ⊕ · · · ⊕ λn

w if w ∈ [W]/Inp // internal wire

Λw = λw ⊕ xw for all w ∈ Inp // masked input bit

and wires a, b and c ∈ [W] denote the input and output wires respectively for
gate g ∈ [G]. Inp ⊆ [W] denotes the set of input wires to the circuit, jw ∈ [n]
denotes the party whose input flows the wire w and xw the corresponding input.
Out ⊆ [W] denotes the set of output wires.

We remark that the main difference with standard BMR encoding is that
when decrypting a garbled row, a value T �

�,� is revealed and the key is obtained
by unmasking the corresponding h�

�,�, h
�
�,�(T

�
�,�) ⊕ k�

�,� value that is part of the
encoding. This additional level of indirection of receiving the mask T and then
unmasking the key is required to tackle errors to individual bits of the plaintext
encrypted in each garbled row.

The decoding procedure basically corresponds to the evaluation of the garbled
circuit. More formally, the decoding procedure BMR.Decode is defined iteratively
gate by gate according to some standard (arbitrary) topological ordering of the
gates. In particular, given an encoding information kj

w,Λw
for every input wire

w and j ∈ [n], of some input x, then for each gate g with input wires a and b
and output wire c compute

T j
c = Rg,j

r1,r2
⊕

n
⊕

i=1

(

Fki
a,Λa

(g, j, Λa, Λb) ⊕ Fki
b,Λb

(g, j, Λa, Λb)
)

Let Λc denote the bit for which T j
c = T j

c,Λc
and define kj

c = Γ j
c,Λc

⊕ hj
c,Λc

(T j
c).

Finally given Λw for every output wire w, compute the output carried in wire w

as Λw ⊕
(

⊕n
j=1 λj

w

)

.

Securely computing BMR.Encode using ΠDPOLY. We decompose the compu-
tation of BMR.Encode into an offline and online phase. The offline part of the
computation will only involve computing the “plaintexts” in each garbled row,
i.e. S�,�

�,� values and visible mask Λw values for input wires. More precisely, the
parties compute

{(Sg,j
00 , Sg,j

01 , Sg,j
10 , Sg,j

11)g∈[G],j∈[n],r1,r2∈{0,1}, (Λw)w∈Inp}.

Observe that the S�,�
�,� values are all degree-3 computations over the randomness

R1, . . . , Rn and therefore can be computed using ΠDPOLY. Since the Λw values

510 S. Halevi et al.

for the input wires depend only on the inputs and internal randomness of party
Pjw

, the Λw value can be broadcast by that party Pjw
. The offline phase com-

prises of executing all instances of ΠDPOLY in parallel in the first three rounds.
Additionally, the Λw values are broadcast in the third round. At the end of the
offline phase, in addition to the Λw values for the input wires, the parties obtain
XOR shares of the S�,�

�,� values.
In the online phase which is carried out in rounds 3 and 4, each party Pj

broadcasts the following values:

– ˜R�,j
�,� values that correspond to the shares of the S�,j

�,� values masked with Pj ’s
local PRF computations.

– hj
�,�, Γ

j
�,� = hj

�,�(T
j
�,�) ⊕ kj

�,� that are the masked key values.
– λj

w for each output wire w that are shares of the output translation table.

Handling errors. Recall that our ΠDPOLY protocol will allow an adversary
to introduce errors into the computation, namely, for any degree-3 monomial
x1x2x3, if the party playing the role of P1 in the multiplication sub-protocol is
corrupted, it can introduce an error eIn and the product is modified to (x1x2 +
eIn)x3. The adversary can also introduce an error eOut that is simply added to
the result of the computation, namely the S�,�

�,� values. Finally, the adversary can
reveal arbitrary values for λj

w, which in turn means the output translation table
can arbitrarily assign the keys to output values.

Our approach to tackle the “eIn” errors is to show that these errors can be
translated to additive errors on the wires of ̂C and then rely on the additive
resilience property of ̂C. Importantly, to apply this property, we need to demon-
strate the errors are independent of the actual wire value. We show this in two
logical steps. First, by carefully assigning the roles of the parties in the mul-
tiplication subprotocols, we can show that the shares obtained by the parties
combine to yield Sg,j

r1,r2
+ eg,j

r1,r2
· (T j

c,0 ⊕ T j
c,1) where eg,j

r1,r2
is a 4κ bit string (and

‘·’ is applied bitwise). In other words, by introducing an error, the adversary
causes the decoding procedure of the randomized encoding to result in a string
where each bit comes from either T j

c,b or T j
c,1−b. Since an adversary can incor-

porate different errors in each bit of S�,�
�,� , it could get partial information from

both the T values. We use a pairwise independent hash function family to mask
the actual key, and by the left-over hash lemma, we can restrict the adversary
from learning at most one key. As a result, if the majority of the bits in eg,j

r1,r2

are 1 then the “value” on the wire flips, and otherwise it is “correct”.8 The
second logical step is to rely on the fact that there is at least one mask bit λj

w

chosen by an honest party to demonstrate that the flip event on any wire will
be independent of the actual wire value.

To address the “eOut” errors, following [LPSY15,HSS17], we show that the
BMR encoding is already resilient to such adaptive attacks (where the adversary

8 Even if a particular gate computation is correctly evaluated, it does not necessar-
ily mean this is the correct wire value as the input wire values to the gate could
themselves be incorrect due to additive errors that occur earlier in the circuit.

Round-Optimal Secure Multi-Party Computation 511

may add errors to the garbled circuit even after seeing the complete garbling and
then deciding on the error).

Finally, to tackle a rushing adversary that can modify the output of the
translation table arbitrarily, we rely on the MACs to ensure that the output
value revealed can be matched with the MACs revealed along with the output
under each party’s private MAC key.

Role assignment in the multiplication subprotocols. As described above,
we carefully assign roles to parties to restrict the errors introduced in the multi-
plication protocol. Observe that χr1,r2 is a degree-2 computation, which in turn
means the expressions T j

c,0⊕χr1,r2(T
j
c,1⊕T j

c,0) over all garbled rows is a collection
of polynomials of degree at most 3. In particular, for every j ∈ [n], every gate
g ∈ G with input wires a, b and an output wire c, Sg,j

r1,r2
involves the computation

of one or more of the following monomials:

– λj1
a λj2

b (T j
c,1 ⊕ T j

c,0) for j, j1, j2 ∈ [n].
– λj1

c (T j
c,1 ⊕ T j

c,0) for j, j1 ∈ [n].
– T j

c,0.

We first describe some convention regarding how each multiplication triple is
computed, namely assign parties with roles P1, P2 and P3 in ΠDMULT (Sect. 3.1),
and what products are computed. Letting Δj

c = (T j
c,1 ⊕ T j

c,0), we observe that
every product always involves Δj

c as one of its operands. Moreover, every term
can be expressed as a product of three operands, where the product λj1

c Δj
c will

be (canonically) expressed as (λj1
c)2Δj

c and singleton monomials (e.g., the bits of
the keys and PRF values) will be raised to degree 3. Then, for every polynomial
involving the variables λj1

a , λj2
b and Δj

c, party Pj will be assigned with the role of
P3 in ΠDMULT whereas the other parties Pj1 and Pj2 can be assigned arbitrarily
as P1 and P2. In particular, the roles are chosen so as to restrict the errors
introduced by a corrupted P1 in the computation to only additive errors of the
form eInδ where δ is some bit in Δj

c, where it follows from our simulation that
eIn will be independent of δ for honest Pj .

We now proceed to a formal description of our protocol.

Protocol 2 (Protocol ΠDMPC secure against defensible adversaries)

Input: Parties P1, . . . , Pn are given input x̂1, . . . , x̂n of length κ′, respectively,
and a circuit ̂C as specified above.
Local pre-processing: Each party Pi chooses a random MAC key αi and
sets xi = Encode(x̂i, αi). Let κ be the length of the resulting xi’s, and we fix
the notation [xi]j as the jth bit of xi. Next Pi chooses all the randomness that
is needed for the BMR encoding of the circuit ̂C. Namely, for each wire w,
Pi chooses the masking bit λi

w ∈ {0, 1}, random wire PRF keys ki
w,0, k

i
w,1 ∈

{0, 1}κ, random functions from a universal hash family hi
w,0, h

i
w,1 : {0, 1}4κ →

{0, 1}κ and random hash inputs T i
w,0, T

i
w,1 ∈ {0, 1}4κ.

Then, for every non-output wire w and every gate g for which w is one of
the inputs, Pi compute all the PRF values Θi,w,g

j,r1,r2
= Fki

w,r1
(g, j, r1, r2) for

512 S. Halevi et al.

j = 1, . . . , n and r1, r2 ∈ {0, 1}. (The values λi
w, T i

w,r, and Θi,w,g
j,r1,r2

, will
play the role of Pi’s inputs to the protocol that realizes the BMR encoding
BMR.Encode

̂C.)
The parties identity the set of 3-monomials that should be computed by the
BMR encoding BMR.Encode

̂C and index them by 1, 2, . . . ,M . Each party Pi

identifies the set of monomials, denoted by Seti, that depends on any of its
inputs (λi

w, T i
w,r, or Θi,w,g

j,r1,r2
). As described above, each Pi also determines

the role, denoted by Role(t, i) ∈ {P1, P2, P3}, that it plays in the computation
of the t-th monomial (which is set to ⊥ if Pi does not participate in the
computation of the t-th monomial).
– Rounds 1,2,3: For each i ∈ [M], parties P1, . . . , Pn execute ΠDPOLY for

the monomial pi up until the 3rd round of the protocol with random inputs
for the BMR encoding BMR.Encode

̂C. Along with the message transmitted
in the 3rd round of ΠDPOLY, party Pj broadcasts the following:

• For every input wire w ∈ W that carries some input bit [xj]k from Pj’s
input, Pj broadcasts Λw = λw ⊕ [xj]k.

For every j ∈ [n], let {S
,j}
∈M be the output of party Pj for the M degree-3
monomials. It reassembles the output shares to obtain Sg,j

r1,r2
for every garbled

row r1, r2 and gate g.
– Defense: At this point, the adversary broadcasts its “defense:” The

defense for this protocol is a collection of defenses for every monomial
that assembles the BMR encoding. The defense for every monomial is as
defined in protocol ΠDMULT from Sect. 3. Namely, for each party Pi there
is an NP language

L∗
Pi

=

⎧

⎪

⎨

⎪

⎩

(trans1, . . . , transM)

∣

∣

∣

∣

∣

∣

∣

transj ∈ Lp1 , Lp2 , Lp3 if Pi is assigned the role

P1, P2, P3, respectively, in the jth instance of ΠDMULT

∧ all the transj
′
s are consistent with the same value of xi

⎫

⎪

⎬

⎪

⎭

– Round 4: Finally for every gate g ∈ G and r1, r2 ∈ {0, 1}, Pj (j ∈ [n])
broadcasts the following:

• ˜Rg,i
r1,r2

= Fkj
a,r1

(g, j, r1, r2) ⊕ Fkj
b,r2

(g, i, r1, r2) ⊕ Sg,i
r1,r2

for every i ∈ [n].

• kj
w,Λw

for every input wire w.
• λj

w for every output wire w.
• (Γ j

w,0, Γ
j
w,1) = (h(T j

w,0) ⊕ kj
w,0, h(T j

w,1) ⊕ kj
w,1) for every wire w.

– Output: Upon collecting { ˜Rg,j
r1,r2

}j∈[n],g∈[G],r1,r2∈{0,1}, the parties com-
pute each garbled row by Rg,j

r1,r2
=

⊕n
j=1

˜Rg,j
r1,r2

and run the decoding pro-
cedure BMR.Decode on some standard (arbitrary) topological ordering of
the gates. Concretely, let g be a gate in this order with input wires a, b and
output wire c. If a party does not have masks Λa, Λb or keys (ka, kb) cor-
responding to the input wires when processing gate g it aborts. Otherwise,
it will compute

T j
c = Rg,j

r1,r2
⊕

n
⊕

i=1

(

Fki
a,Λa

(g, j, Λa, Λb) ⊕ Fki
b,Λb

(g, j, Λa, Λb)
)

.

Round-Optimal Secure Multi-Party Computation 513

Party Pj identifies Λc such that T j
c = T j

c,Λc
. If no such Λc exists the party

aborts. Otherwise, each party defines ki
c = Γ i

c,Λc
⊕h(T j

c). The evaluation is
completed when all the gates in the topological order are processed. Finally
given Λw for every output wire w, the parties compute for every output
wire w, Λw ⊕

(

⊕n
j=1 λj

w

)

and decode the outcome using Dec.

This concludes the description of our protocol. We next prove the following
Lemma.

Lemma 3.2 (MPC secure against defensible adversaries). Protocol
ΠDMPC securely realizes any n-input function f in the presence of a “defensi-
ble adversary” that always broadcasts valid defense at the end of the third round.

Proof. Let A be a PPT defensible adversary corrupting a subset of parties I ⊂
[n], then we prove that there exists a PPT simulator S with access to an ideal
functionality F that implements f , and simulates the adversary’s view whenever
it outputs a valid defense at the end of the third round. We use the terminology
of active keys to denote the keys of the BMR garbling that are revealed during
the evaluation. Inactive keys are the hidden keys. Denoting the set of honest
parties by I, our simulator S is defined below.

Description of the simulator.

– Simulating rounds 1–3. Recall that the parties engage in an instance of ΠDPOLY

to realize the BMR encoding BMR.Encode
̂C in the first three rounds. The sim-

ulator samples random inputs for the honest parties and generates their mes-
sages using these random inputs. For every input wire that is associated with
an honest party’s input, the simulator chooses a random Λw and sends these
bits to the adversary as part of the 3rd message. At this point, a defensible
adversary outputs a valid defense. Next the simulator executes the following
procedure to compute the fourth round messages of the honest parties.

SimGarble(defense):
1. The simulator extracts from the defense λj

w and T j
w,0, T

j
w,0⊕T j

w,1 for every
corrupted party Pj and internal wire w. Finally, it obtains the vector of
errors eg,j

r1,r2
for every gate g, r1, r2 ∈ {0, 1} and j ∈ I, introduced by the

adversary for row (r1, r2) in the garbling of gate g.9

2. The simulator defines the inputs of the corrupted parties by using the Λw

values revealed in round 3 corresponding to the wires w carrying inputs
of the corrupted parties. Namely, for each such input wire w ∈ W , the
simulator computes ρw = Λw ⊕ λw and the errors in the input wires
and fixes the adversary’s input {xI} to be the concatenation of these
bits incorporating the errors. S sends Decode(xI) to the trusted party
computing f , receiving the output ỹ. S fixes y = Encode(ỹ) (recall that
Encode in the encoding of an AMD code). Let y = (y1, . . . , ym).

9 The errors are bits and are extracted for each monomial where the corrupted party
plays the role of P1. For simplicity of notation we lump them all in a single vector.

514 S. Halevi et al.

3. Next, the simulator defines the S�,�
�,� values, i.e the plaintexts in the gar-

bled rows. Recall that the shares of the S�,�
�,� values are computed using

the ΠDPOLY subprotocol. Then the simulator for the main protocol, uses
the S�,�

�,� values that are defined by the simulation of ΠDPOLY. Next, S
chooses a random Λw ← {0, 1} for every internal wire w ∈ W . Finally, it
samples a single key kj

w for every honest party j ∈ I and wire w ∈ W . We
recall that in the standard BMR garbling, the simulator sets the garbled
row so that for every gate g with input wires a, b and output wire c, only
the row Λa, Λb is decryptable and decrypting this row gives the single
key chosen for wire c (denoted by an active key). In our modified BMR
garbling, we will essentially ensure the same, except that we also need to
simulate the errors introduced in the computation.

More formally, the simulator considers an arbitrary topological order-
ing on the gates. Fix some gate g in this sequence with a, b as input wires
and c as the output wire. Then, for every honest party Pj and random
values T j

c,0 and T j
c,1 that were involved in the computation of the S�,�

�,�

values for this gate within the above simulation of ΠDPOLY, the simulator
defines the bits of Sg,j

Λa,Λb
to be (eg,j

Λa,Λb
· T j

c,Λc
) ⊕ (ēg,j

Λa,Λb
· T j

c,Λ̄c
) if the

majority of the bits in eg,j
Λa,Λb

is 1 and (ēg,j
Λa,Λb

· T j
c,Λc

) ⊕ (eg,j
Λa,Λb

· T j

c,Λ̄c
)

otherwise. Here ēg,j
Λa,Λb

refers to the complement of the vector eg,j
Λa,Λb

and
“·” is bitwise multiplication.

4. Next, it generates the fourth message on behalf of the honest parties.
Namely, for every gate g and an active row Λa, Λb, the shares of the honest
parties are computed assuming the output of the polynomials defined in
the BMR encoding are Sg,j

Λa,Λb
for every j masked with the PRF under

the keys kj
a, kj

b as defined by R̃g,j
Λa,Λb

. For the remaining three rows the
simulator sends random strings. On behalf of every honest party Pj , in
addition to the shares, the fourth round message is appended with a
broadcast of the message (r, h(T j

w,Λw
) ⊕ kj

w) if Λw = 1 and (h(T j
w,Λw

) ⊕
kj

w, r) if Λw = 0 where r is sampled randomly. Intuitively, upon decrypting
Sg,j

Λa,Λb
for any gate g, the adversary learns the majority of the bits of T j

c,Λc

with which it can learn only kj
c .

– The simulator sends the messages as indicated by the procedure above on
behalf of the honest parties. If the adversary provides its fourth message,
namely, ˜Rg,j

r1,r2
for j ∈ [n], g ∈ [G], r1, r2 ∈ {0, 1}, the simulator executes

the following procedure that takes as input all the messages exchanged in
the fourth round, the Λw values broadcast in the third round and the target
output y. It determines whether the final output needs to be delivered to the
honest parties in the ideal world.

ReconGarble(4th round messages, Λw for every input wire w,y):
• The procedure reconstructs the garbling GCA using the shares and the

keys provided. First, the simulator checks that the output key of every key
obtained during the evaluation is the active key kj

c,Λc
encrypted by the

simulator. In addition, the simulator checks that the outcome of GCA is y.

Round-Optimal Secure Multi-Party Computation 515

If both events hold, the the procedure outputs the OK message, otherwise
it outputs ⊥.

– Finally, if the procedure outputs OK the simulator instructs the trusted
party to deliver ỹ to the honest parties.

In the full version [HHPV17], we provide a formal proof of the following
claim:

Claim 3.3 REALΠDMPC,A(z),I(κ, x̂1, . . . , x̂n)
c≈ IDEALF,S(z),I(κ, x̂1, . . . , x̂n).

4 Four-Round Actively Secure MPC Protocol

In this section we formally describe our protocol.

Protocol 3 (Actively secure protocol ΠMPC)

Input: Parties P1, . . . , Pn are given input x̂1, . . . , x̂n of length κ′, respectively,
and a circuit ̂C.

– Local pre-processing: Each party Pi chooses a random MAC key αi

and sets xi = Encode(x̂i, αi). Let κ be the length of the resulting xi’s, and
we fix the notation [xi]j as the jth bit of xi. Next Pi chooses all the ran-
domness that is needed for the BMR encoding of the circuit ̂C. Namely,
for each wire w, Pi chooses the masking bit λi

w ∈ {0, 1}, random wire
PRF keys ki

w,0, k
i
w,1 ∈ {0, 1}κ, random functions from a pairwise indepen-

dent hash family hi
w,0, h

i
w,1 : {0, 1}4κ → {0, 1}κ and random hash inputs

T i
w,0, T

i
w,1 ∈ {0, 1}4κ.

Then, for every non-output wire w and every gate g for which w is one
of the inputs, Pi computes all the PRF values Θi,w,g

j,r1,r2
= Fki

w,r1
(g, j, r1, r2)

for j = 1, . . . , n and r1, r2 ∈ {0, 1}. (The values λi
w, T i

w,r, and Θi,w,g
j,r1,r2

, will
play the role of Pi’s inputs to the protocol that realizes the BMR encoding
BMR.Encode

̂C.)
The parties identify the set of 3-monomials that should be computed by

the BMR encoding BMR.Encode
̂C and enumerate them by integers from [M].

Moreover, each party Pi identifies the set of monomials, denoted by Seti, that
depends on any of its inputs (λi

w, T i
w,r, or Θi,w,g

j,r1,r2
). As described in Sect. 3.3,

each Pi also determines the role, denoted by Role(t, i) ∈ {P1, P2, P3}, that it
plays in the computation of the t-th monomial(which is set to ⊥ if Pi does
not participate in the computation of the t-th monomial).

– Round 1: For i ∈ [n] each party Pi proceeds as follows:
• Engages in an instance of the three-round non-malleable commitment pro-

tocol nmcom with every other party Pj, committing to arbitrarily chosen
values w0,i, w1,i. Denote the messages sent within the first round of this
protocol by nmcom0

i,j [1],nmcom1
i,j [1], respectively.

• Broadcasts the message Πi,j
DMPC[1] to every other party Pj.

516 S. Halevi et al.

• Engages in a ZAP protocol with every party other Pj for the NP language
L′

Role(t,i) defined in Sect. 3.1, for every monomial in case Role(t, i) ∈
{P1, P3}. Note that the first message, denoted by ZAPENC

i,j [1] is sent by Pj

(so Pi sends the first message to all the Pj’s for their respective ZAPs).
– Round 2: For i ∈ [n] each party Pi proceeds as follows:

• Sends the messages nmcom0
i,j [2] and nmcom1

i,j [2] for the second round of
the respective non-malleable commitment.

• Engages in a ZAP protocol with every other party Pj for the NP language
LRole(t,i) defined in Sect. 3.1 for every monomial Mt. As above, the first
message, denoted by ZAPCOM

i,j [1] is sent by Pj (so Pi sends the first message
to all the Pj’s for their respective ZAPs).

• Sends the message Πi,j
DMPC[2] to every other party Pj.

• Sends the second message ZAPENC
i,j [2] of the ZAP proof for the language

L′
Role(t,i).

– Round 3: For i ∈ [n] each party Pi proceeds as follows:
• Sends the messages nmcom0

i,j [3], nmcom1
i,j [3] for the third round of the

respective non-malleable commitment. For b ∈ {0, 1} define the NP lan-
guage:

Lnmcom =
{
nmcom∗

i,j [1], nmcom∗
i,j [2], nmcom∗

i,j [3]|
∃ b ∈ {0, 1} and (wi, ρi) s.t. nmcomb

i,j = nmcom(wi; ρi)
}

.

• Chooses w̃0,i and w̃1,i such that ∀t ∈ [Seti], w0,i + w̃0,i = w1,i + w̃1,i =
witi where witi is the witness of transcript (trans0Role(1,i)|| . . . ||
trans0Role(|Seti|,i)||trans0nmcom) and Role(t, i) ∈ {P1, P2, P3}, where transb� is
as defined in Sect. 3.1.

• Generates the message ZAPCOM
i,j [2] for the second round of the ZAP pro-

tocol relative to the NP language

LRole(1,i) ∧ . . . ∧ LRole(|Seti|,i) ∧ Lnmcom ∧ (

wb,i + w̃b,i = witi
)

where LRole(·,i) is defined in protocol 1.
• Broadcasts the message Πi,j

DMPC[3] to every other party Pj.
For every j ∈ [n], let {S
,j}
∈M be the output of party Pj for the M degree-3
polynomials. It reassembles the output shares to obtain Sg,j

r1,r2
for every garbled

row r1, r2 and gate g.
– Round 4: Finally, broadcasts the message Πi,j

DMPC[4] to every other party Pj.
– Output: As defined in ΠDMPC.

This concludes the description of our protocol. The proof for the following
theorem can be found in [HHPV17].

Theorem 4.1 (Main). Assuming the existence of affine homomorphic encryp-
tion (cf. Definition 2.1) and enhanced trapdoor permutations, Protocol ΠMPC

securely realizes any n-input function f in the presence of static, active adver-
saries corrupting any number of parties.

Round-Optimal Secure Multi-Party Computation 517

Acknowledgements. We thank the anonymous reviewers for their valuable feedback.
Following Ananth et. al. [ACJ17], we would like to acknowledge Yuval Ishai’s contri-
bution in the three-bit three-round multiplication protocol employed in this work. We
would also like to thank Daniel Genkin, Yuval Ishai and Mor Weiss for several discus-
sions on binary AMD resilient circuits.

The first author was supported by the Defense Advanced Research Projects Agency
(DARPA) and Army Research Office(ARO) under Contract No. W911NF-15-C-0236.
The second author was supported by the BIU Center for Research in Applied Cryp-
tography and Cyber Security in conjunction with the Israel National Cyber Bureau in
the Prime Minister’s Office. The third author was supported by the National Science
Foundation under Grant No. 1617676, 1526377 and 1618884, IBM under Agreement
4915013672 and the Packard Foundation under Grant 2015-63124. The last author was
supported by the National Science Foundation under Grant No. 1526377 and 1618884, a
Google Faculty Research grant and DIMACS Special Focus on Cryptography program.
The work was partially done while the fourth author was at Cornell Tech.

The views expressed are those of the authors and do not reflect the official policy
or position of the Department of Defense, the National Science Foundation, or the U.S.
Government.

References

[ACJ17] Ananth, P., Choudhuri, A.R., Jain, A.: A new approach to round-optimal
secure multiparty computation. In: Katz, J., Shacham, H. (eds.) CRYPTO
2017. LNCS, vol. 10401, pp. 468–499. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-63688-7 16

[AIK06] Applebaum, B., Ishai, Y., Kushilevitz, E.: Cryptography in NC0. SIAM J.
Comput. 36(4), 845–888 (2006)

[AJL+12] Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V.,
Wichs, D.: Multiparty computation with low communication, computa-
tion and interaction via threshold FHE. In: Pointcheval, D., Johansson,
T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 483–501. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4 29

[BGJ+17] Badrinarayanan, S., Goyal, V., Jain, A., Khurana, D., Sahai, A.: Round
optimal concurrent MPC via strong simulation. In: Kalai, Y., Reyzin, L.
(eds.) TCC 2017. LNCS, vol. 10677, pp. 743–775. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-70500-2 25

[BGJ+18] Badrinarayanan, S., Goyal, V., Jain, A., Kalai, Y.T., Khurana, D., Sahai,
A.: Promise zero knowledge and its applications to round optimal MPC
(2018)

[BGW88] Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems
for non-cryptographic fault-tolerant distributed computation (extended
abstract). In: STOC, pp. 1–10 (1988)

[BHP17] Brakerski, Z., Halevi, S., Polychroniadou, A.: Four round secure computa-
tion without setup. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol.
10677, pp. 645–677. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-70500-2 22

[BL18] Benhamouda, F., Lin, H.: k -round multiparty computation from k -round
oblivious transfer via garbled interactive circuits. In: Nielsen, J.B., Rijmen,
V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 500–532. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-78375-8 17

https://doi.org/10.1007/978-3-319-63688-7_16
https://doi.org/10.1007/978-3-319-63688-7_16
https://doi.org/10.1007/978-3-642-29011-4_29
https://doi.org/10.1007/978-3-319-70500-2_25
https://doi.org/10.1007/978-3-319-70500-2_22
https://doi.org/10.1007/978-3-319-70500-2_22
https://doi.org/10.1007/978-3-319-78375-8_17

518 S. Halevi et al.

[BMR90] Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure pro-
tocols (extended abstract). In: STOC, pp. 503–513 (1990)

[CCD87] Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure
protocols (abstract). In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol.
293, pp. 462–462. Springer, Heidelberg (1988). https://doi.org/10.1007/3-
540-48184-2 43

[CDF+08] Cramer, R., Dodis, Y., Fehr, S., Padró, C., Wichs, D.: Detection of alge-
braic manipulation with applications to robust secret sharing and fuzzy
extractors. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp.
471–488. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
78967-3 27

[CLOS02] Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable
two-party and multi-party secure computation. In: STOC, pp. 494–503
(2002)

[COSV16] Ciampi, M., Ostrovsky, R., Siniscalchi, L., Visconti, I.: Concurrent non-
malleable commitments (and more) in 3 rounds. In: Robshaw, M., Katz, J.
(eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 270–299. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53015-3 10

[COSV17a] Ciampi, M., Ostrovsky, R., Siniscalchi, L., Visconti, I.: Delayed-input non-
malleable zero knowledge and multi-party coin tossing in four rounds. In:
Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 711–742.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2 24

[COSV17b] Ciampi, M., Ostrovsky, R., Siniscalchi, L., Visconti, I.: Round-optimal
secure two-party computation from trapdoor permutations. In: Kalai, Y.,
Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 678–710. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-70500-2 23

[DI05] Damg̊ard, I., Ishai, Y.: Constant-round multiparty computation using a
black-box pseudorandom generator. In: Shoup, V. (ed.) CRYPTO 2005.
LNCS, vol. 3621, pp. 378–394. Springer, Heidelberg (2005). https://doi.
org/10.1007/11535218 23

[DI06] Damg̊ard, I., Ishai, Y.: Scalable secure multiparty computation. In: Dwork,
C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 501–520. Springer, Heidel-
berg (2006). https://doi.org/10.1007/11818175 30

[DN07] Dwork, C., Naor, M.: Zaps and their applications. SIAM J. Comput. 36(6),
1513–1543 (2007)

[GGHR14] Garg, S., Gentry, C., Halevi, S., Raykova, M.: Two-round secure MPC from
indistinguishability obfuscation. In: Lindell, Y. (ed.) TCC 2014. LNCS,
vol. 8349, pp. 74–94. Springer, Heidelberg (2014). https://doi.org/10.1007/
978-3-642-54242-8 4

[GIP+14] Genkin, D., Ishai, Y., Prabhakaran, M., Sahai, A., Tromer, E.: Circuits
resilient to additive attacks with applications to secure computation. In:
STOC, pp. 495–504 (2014)

[GIP15] Genkin, D., Ishai, Y., Polychroniadou, A.: Efficient multi-party com-
putation: from passive to active security via secure SIMD circuits. In:
Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp.
721–741. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-
48000-7 35

[GIW16] Genkin, D., Ishai, Y., Weiss, M.: Binary AMD circuits from secure multi-
party computation. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol.
9985, pp. 336–366. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-53641-4 14

https://doi.org/10.1007/3-540-48184-2_43
https://doi.org/10.1007/3-540-48184-2_43
https://doi.org/10.1007/978-3-540-78967-3_27
https://doi.org/10.1007/978-3-540-78967-3_27
https://doi.org/10.1007/978-3-662-53015-3_10
https://doi.org/10.1007/978-3-319-70500-2_24
https://doi.org/10.1007/978-3-319-70500-2_23
https://doi.org/10.1007/11535218_23
https://doi.org/10.1007/11535218_23
https://doi.org/10.1007/11818175_30
https://doi.org/10.1007/978-3-642-54242-8_4
https://doi.org/10.1007/978-3-642-54242-8_4
https://doi.org/10.1007/978-3-662-48000-7_35
https://doi.org/10.1007/978-3-662-48000-7_35
https://doi.org/10.1007/978-3-662-53641-4_14
https://doi.org/10.1007/978-3-662-53641-4_14

Round-Optimal Secure Multi-Party Computation 519

[GMPP16] Garg, S., Mukherjee, P., Pandey, O., Polychroniadou, A.: The exact round
complexity of secure computation. In: Fischlin, M., Coron, J.-S. (eds.)
EUROCRYPT 2016. LNCS, vol. 9666, pp. 448–476. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-49896-5 16

[GMW87] Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game
or A completeness theorem for protocols with honest majority. In: STOC,
pp. 218–229 (1987)

[Goy11] Goyal, V.: Constant round non-malleable protocols using one way func-
tions. In: Proceedings of the 43rd ACM Symposium on Theory of Comput-
ing STOC 2011, San Jose, CA, USA, pp. 695–704, 6–8 June 2011 (2011)

[GRRV14] Goyal, V., Richelson, S., Rosen, A., Vald, M.: An algebraic approach to
non-malleability. In: FOCS, pp. 41–50 (2014)

[GS17] Garg, S., Srinivasan, A.: Two-round multiparty secure computation from
minimal assumptions. IACR Cryptol. ePrint Archive 2017, 1156 (2017)

[HHPV17] Halevi, S., Hazay, C., Polychroniadou, A., Venkitasubramaniam, M.:
Round-optimal secure multi-party computation. IACR Cryptol. ePrint
Archive 2017, 1056 (2017)

[HIK+11] Haitner, I., Ishai, Y., Kushilevitz, E., Lindell, Y., Petrank, E.: Black-
box constructions of protocols for secure computation. SIAM J. Comput.
40(2), 225–266 (2011)

[HPV16] Hazay, C., Polychroniadou, A., Venkitasubramaniam, M.: Composable
security in the tamper-proof hardware model under minimal complex-
ity. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9985, pp.
367–399. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-
53641-4 15

[HSS17] Hazay, C., Scholl, P., Soria-Vazquez, E.: Low cost constant round MPC
combining BMR and oblivious transfer. In: Takagi, T., Peyrin, T. (eds.)
ASIACRYPT 2017. LNCS, vol. 10624, pp. 598–628. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-70694-8 21

[Khu17] Khurana, D.: Round optimal concurrent non-malleability from polynomial
hardness. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10678,
pp. 139–171. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70503-3 5

[KOS03] Katz, J., Ostrovsky, R., Smith, A.: Round efficiency of multi-party compu-
tation with a dishonest majority. In: Biham, E. (ed.) EUROCRYPT 2003.
LNCS, vol. 2656, pp. 578–595. Springer, Heidelberg (2003). https://doi.
org/10.1007/3-540-39200-9 36

[LP11] Lin, H., Pass, R.: Constant-round non-malleable commitments from any
one-way function. In: STOC, pp. 705–714 (2011)

[LPSY15] Lindell, Y., Pinkas, B., Smart, N.P., Yanai, A.: Efficient constant round
multi-party computation combining BMR and SPDZ. In: Gennaro, R.,
Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 319–338.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-
7 16

[LPV12] Pass, R., Lin, H., Venkitasubramaniam, M.: A unified framework for UC
from only OT. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS,
vol. 7658, pp. 699–717. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-34961-4 42

[MW16] Mukherjee, P., Wichs, D.: Two round multiparty computation via multi-
key FHE. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS,

https://doi.org/10.1007/978-3-662-49896-5_16
https://doi.org/10.1007/978-3-662-53641-4_15
https://doi.org/10.1007/978-3-662-53641-4_15
https://doi.org/10.1007/978-3-319-70694-8_21
https://doi.org/10.1007/978-3-319-70503-3_5
https://doi.org/10.1007/978-3-319-70503-3_5
https://doi.org/10.1007/3-540-39200-9_36
https://doi.org/10.1007/3-540-39200-9_36
https://doi.org/10.1007/978-3-662-48000-7_16
https://doi.org/10.1007/978-3-662-48000-7_16
https://doi.org/10.1007/978-3-642-34961-4_42
https://doi.org/10.1007/978-3-642-34961-4_42

520 S. Halevi et al.

vol. 9666, pp. 735–763. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-49896-5 26

[OPP14] Ostrovsky, R., Paskin-Cherniavsky, A., Paskin-Cherniavsky, B.: Mali-
ciously circuit-private FHE. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO
2014. LNCS, vol. 8616, pp. 536–553. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-662-44371-2 30

[Pas04] Pass, R., Wee, H.: Constant-round non-malleable commitments from sub-
exponential one-way functions. In: Gilbert, H. (ed.) EUROCRYPT 2010.
LNCS, vol. 6110, pp. 638–655. Springer, Heidelberg (2010). https://doi.
org/10.1007/978-3-642-13190-5 32

[PW10] Pass, R., Wee, H.: Constant-Round Non-malleable Commitments from
Sub-exponential One-Way Functions. In: Gilbert, H. (ed.) EUROCRYPT
2010. LNCS, vol. 6110, pp. 638–655. Springer, Heidelberg (2010)

[Yao86] Yao, A.C.-C: How to generate and exchange secrets (extended abstract).
In: FOCS, pp. 162–167 (1986)

https://doi.org/10.1007/978-3-662-49896-5_26
https://doi.org/10.1007/978-3-662-49896-5_26
https://doi.org/10.1007/978-3-662-44371-2_30
https://doi.org/10.1007/978-3-662-44371-2_30
https://doi.org/10.1007/978-3-642-13190-5_32
https://doi.org/10.1007/978-3-642-13190-5_32

Foundations

Yes, There is an Oblivious RAM Lower
Bound!

Kasper Green Larsen1,2(B) and Jesper Buus Nielsen1,2

1 Computer Science, Aarhus University, Aarhus, Denmark
larsen@cs.au.dk

2 Computer Science and DIGIT, Aarhus University, Aarhus, Denmark

Abstract. An Oblivious RAM (ORAM) introduced by Goldreich and
Ostrovsky [JACM’96] is a (possibly randomized) RAM, for which the
memory access pattern reveals no information about the operations per-
formed. The main performance metric of an ORAM is the bandwidth
overhead, i.e., the multiplicative factor extra memory blocks that must be
accessed to hide the operation sequence. In their seminal paper introduc-
ing the ORAM, Goldreich and Ostrovsky proved an amortized Ω(lg n)
bandwidth overhead lower bound for ORAMs with memory size n. Their
lower bound is very strong in the sense that it applies to the “offline” set-
ting in which the ORAM knows the entire sequence of operations ahead
of time.

However, as pointed out by Boyle and Naor [ITCS’16] in the paper
“Is there an oblivious RAM lower bound?”, there are two caveats with
the lower bound of Goldreich and Ostrovsky: (1) it only applies to “balls
in bins” algorithms, i.e., algorithms where the ORAM may only shuf-
fle blocks around and not apply any sophisticated encoding of the data,
and (2), it only applies to statistically secure constructions. Boyle and
Naor showed that removing the “balls in bins” assumption would result
in super linear lower bounds for sorting circuits, a long standing open
problem in circuit complexity. As a way to circumventing this barrier,
they also proposed a notion of an “online” ORAM, which is an ORAM
that remains secure even if the operations arrive in an online manner.
They argued that most known ORAM constructions work in the online
setting as well.

Our contribution is an Ω(lg n) lower bound on the bandwidth over-
head of any online ORAM, even if we require only computational security
and allow arbitrary representations of data, thus greatly strengthening
the lower bound of Goldreich and Ostrovsky in the online setting. Our
lower bound applies to ORAMs with memory size n and any word size
r ≥ 1. The bound therefore asymptotically matches the known upper
bounds when r = Ω(lg2 n).

K. G. Larsen—Supported by a Villum Young Investigator grant 13163 and an AUFF
starting grant.
J. B. Nielsen—Supported by the European Union’s Horizon 2020 research and inno-
vation programme under grant agreement #731583 (SODA).

c© International Association for Cryptologic Research 2018
H. Shacham and A. Boldyreva (Eds.): CRYPTO 2018, LNCS 10992, pp. 523–542, 2018.
https://doi.org/10.1007/978-3-319-96881-0_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96881-0_18&domain=pdf

524 K. G. Larsen and J. B. Nielsen

1 Introduction

It is often attractive to store data at an untrusted party, and only retrieve the
needed parts of it. Encryption can help ensure that the party storing the data
has no idea of what it is storing, but still it is possible to get information about
the stored data by analyzing the access pattern.

Goldreich and Ostrovsky [GO96] solved this problem in a model with a client
that is equipped with a random oracle and small (constant size) memory. The
client runs a program while using a (larger) RAM stored on a server, where the
access pattern is observed by the adversary. The results from [GO96] shows that
any program in the standard RAM model can be transformed using an “obliv-
ious RAM simulator” into a program for the oblivious RAM model, where the
access pattern is information theoretically hidden. Whereas it is not reasonable
to assume a random oracle in a real implementation, Goldreich and Ostrovsky
point out that one can replace it by a pseudorandom function (PRF) that only
depends on a short key stored by the client. This way, one obtains a solution that
is only computationally secure. The construction in [GO96] had an overhead of
polylog(n), where the overhead is defined to be the number of memory blocks
communicated per operation and n is defined as the number of memory blocks of
the ORAM. The paper at the same time showed a lower bound on the overhead
of Ω(lg n).

There has been a surge in research on ORAMs in recent years, both on prac-
tical efficiency, asymptotic efficiency, practical applications and theoretical appli-
cations. There are literally hundreds of papers on the subject and any list will
leave out important results. However, a good starting point for getting an overview
of the breadth of the research is [PR10,DMN11,GM11,GMOT12,KLO12,
WST12,SS13,CLP14,GHL+14,GLO15,BCP16,LO17,Goo17,Goo18], their ref-
erences and the papers citing them.

A seminal result was the Path ORAM [SvDS+13], which has an amortized
O(lg n) bandwidth cost (measured in blocks communicated) for blocks of size
Ω(lg2 n) bits. It was the first to achieve this overhead. Since the lower bound
in [GO96] applies to any block size, this seems to have finished the story by
giving matching lower and upper bounds. However, as pointed out by Boyle
and Naor [BN16], there are two caveats with the lower bound of Goldreich and
Ostrovsky: (1) it only applies to “balls in bins” algorithms, i.e., algorithms where
the ORAM may only shuffle blocks around and not apply any sophisticated
encoding of the data, and (2), it only applies to statistically secure constructions.
This leaves open the question whether a non-“balls in bins” ORAM construction
or an inherently computationally secure only ORAM construction could beat the
lg n lower bound. In this work we show that this is not the case.

1.1 Our Contributions

Before we state our result we present the class of ORAM schemes our new lower
bound applies to.

Yes, There is an Oblivious RAM Lower Bound! 525

Online ORAMs. Boyle and Naor showed that proving lower bounds without the
“balls in bins” assumption would result in super-linear lower bounds for sorting
circuits, a long standing open problem in circuit complexity. As a way to circum-
venting this barrier, they proposed a notion of an “online” ORAM, which is an
ORAM that remains secure even if the operations arrive in an online manner.
They argued that most known ORAM constructions work in the online setting
as well. Also, most applications of ORAM schemes require that the scheme is
online.

Passive ORAMs. It is implicit in the original definition of ORAMs that the
server is passive storage. There are also ORAM constructions (for instance,
Onion ORAM [DvDF+16] and the recent proposal in [AFN+16]), which allow
the server to perform untrusted computation on behalf of the client. Our lower
bound does not apply to such ORAMs. And indeed most of these schemes
achieves sub-logarithmic overhead.

Problem Statement. To be a bit more precise, the purpose of the online ORAM is
to allow a client to store data on an untrusted server. The online ORAM provides
security in the sense that it hides the data access pattern from the server (which
blocks are read/written). More formally, an online ORAM supports the following
two operations:

– write(a,data): Store data in the block of address a, where a ∈ [n] and data ∈
{0, 1}r.

– read(a): Return the contents of the block of address a.

During operation, the ORAM maybe perform the same type of operations on a
memory stored on a server. The server memory space may be larger than that of
the ORAM and the block size need not be the same. To distinguish the two, we
refer to blocks at the server as memory cells, we use w to denote the number of
bits in a memory cell and we use r to denote the number of bits in a block, i.e.,
r is the number of bits in the data arguments of the write(a,data) operations.

An online ORAM is secure in the following sense: Let y be a sequence of
operations for the ORAM:

y := (op1, . . . , opM)

where each opi is either a write(a,data) or read(a) operation. Let

A(y) := (A(op1), . . . , A(opM))

denote the memory access pattern to the server from the online ORAM, i.e., each
A(opj) is the list of addresses of the cells accessed at the server while processing
opj . For a randomized construction A(y) is a random variable. Security is defined
as follows: for two distinct sequences of operations y and z with the same number
of operations, A(y) and A(z) are computationally indistinguishable. In the main
text we will give a more formal definition. The present informal definition is only
to be able to present our result.

We prove the following theorem.

526 K. G. Larsen and J. B. Nielsen

Theorem 1 (informal). Any online ORAM with n blocks of memory, consist-
ing of r ≥ 1 bits each, must have an expected amortized bandwidth overhead of
Ω(lg(nr/m)) on sequences of Θ(n) operations. Here m denotes the client mem-
ory in bits. This holds in the random oracle model, requiring only computational
indistinguishability, holds for any server cell size w and allows for arbitrary
representations of the data in memory. For the natural setting of parameters
r ≤ m ≤ n1−ε for an arbitrarily small constant ε > 0, the lower bound simplifies
to Ω(lg n).

Discussion 1. Comparing our definition of an online ORAM to that of Boyle
and Naor [BN16], our security definition is slightly stricter in the sense that
for us, A(y) also lets the adversary see which block accesses belong to which
operations. Boyle and Naor simply define A(y) as A(op1) · · · A(opM) (without
the comma separation). We believe our stricter definition is justifiable as it seems
questionable to base security on not knowing when one operation has finished
processing, at least in an online setting where operations arrive one at a time
and we don’t know before hand how many operations we have to process. To
the best of our knowledge, all online ORAM implementations also satisfy our
stricter security definition.

Discussion 2. Most ORAM constructions have w = Θ(r), i.e., the server memory
cells have the same asymptotic number of bits as the block size of the ORAM.
However, this is not a strict requirement, and the Path ORAM [SvDS+13] in
fact has r = Θ(lg2 n) and w = Θ(lg n) in order to achieve their O(lg n) amor-
tized bandwidth overhead, i.e., the ORAM block size and the server memory cells
have very different sizes. When dealing with w and r that are not asymptotically
the same, one defines the bandwidth overhead as the multiplicative factor extra
bits that must be accessed from the server compared to just reading the r bits
comprising a block. Thus if an ORAM accesses t memory cells per operation, its
bandwidth overhead is tw/r. The Path ORAM accesses an amortized Θ(lg2 n)
memory cells per operation. This is Θ(w lg2 n) = Θ(lg3 n) bits, which is a mul-
tiplicative factor Θ((lg3 n)/r) = Θ(lg n) overhead, i.e., its bandwidth overhead
is Θ(lg n). Our lower bound holds regardless of the memory cell size w.

1.2 Proof Strategy

In the following, we give a brief overview of the ideas in our lower bound proof.
Our first observation is that the definition of the online ORAM coincides with
the definition of an oblivious data structure, as defined in [WNL+14], solving
the following array maintenance problem:

Definition 1. In the array maintenance problem, we must maintain an array
B of n r-bit entries under the following two operations:

– write(a, data): Set the contents of B[a] to data, where a ∈ [n] and data ∈
{0, 1}r.

– read(a): Return the contents of B[a].

Yes, There is an Oblivious RAM Lower Bound! 527

This data structure view allows us to re-use techniques for proving data struc-
ture lower bounds. More concretely, we prove a lower bound for oblivious data
structures solving the array maintenance problem and then use the argument
above to conclude the same lower bound for online ORAMs.

Data structure lower bounds are typically proved in the cell probe model of
Yao [Yao81]. Intuitively, this model is the same as the standard RAM, except that
computation is free of charge and we only pay for memory accesses. This matches
the ORAM performance metrics perfectly as we care about the bandwidth over-
head and the memory accesses revealing no information. We thus tweak the
definition of the cell probe model such that it captures client memory and other
technical details of the online ORAM not normally found in data structures. We
will define our model, which we term the oblivious cell probe model, formally
in Sect. 2. Another advantage of this data structure view is that it accurately
captures the online setting of online ORAMs and thus allow us to circumvent
the circuit complexity barrier demonstrated by Boyle and Naor [BN16].

The strongest current techniques for proving lower bounds in the cell probe
model, can prove lower bounds of the form Ω̃(lg2 n) [Lar12] for problems with
a lg n-bit output, and Ω̃(lg1.5 n) for decision problems [LWY18], i.e., one-bit
answers to queries. Here Ω̃ hides polyloglog factors. We did not manage to use
these techniques to prove lower bounds for ORAMs, but instead took inspiration
from the so-called information transfer method of Pǎtraşcu and Demaine [PD06],
which can prove lower bounds of Ω(lg n). It would be quite exciting if the tech-
niques in [Lar12,LWY18] could be tweaked to prove ω(lg n) lower bounds for
e.g. the worst case bandwidth overhead of ORAMs. We leave this as intriguing
future work.

The basic idea in the information transfer method, is to consider a distribu-
tion over sequences of M operations on a data structure. One then considers a
binary tree T on top of such a random sequence, having an operation in each
leaf. The next step is to consider the memory accesses arising from processing
the M operations. Each such memory access is assigned to a node v ∈ T as fol-
lows: For a memory access p to a memory cell c, let �i be the leaf of T containing
the operation that caused the memory access p. Let �j , with j < i, be the leaf
corresponding to the last time c was accessed prior to p. We associate p with the
lowest common ancestor of �i and �j . The next step is to prove that for every
node v ∈ T , there has to be many memory accesses assigned to v. Since each
memory access is assigned to only one node in T , we can sum up the number of
memory accesses assigned to all the nodes of T and get a lower bound on the
total number of accesses.

Now to lower bound the number of memory accesses assigned to a node v,
observe that such memory accesses correspond precisely to operations in the
right subtree of v accessing memory cells last accessed during the operations in
the left subtree. To prove that there must be many such memory accesses, one
proves that the answers to the queries (read operations) in the right subtree
depends heavily on the updates (write operations) in the left subtree. In this
way, one basically shows that every leaf must make a memory access for every
ancestor in T , resulting in an Ω(lg M) lower bound.

528 K. G. Larsen and J. B. Nielsen

The problem for us, is that the array maintenance problem is trivial for
standard data structures. Thus the above approach fails utterly without more
ideas. The issue is that for any distribution over read and write operations,
we cannot prove that a read operation in some leaf of T has to make memory
accesses for every ancestor in T . Basically, for most nodes, the read operations in
the right subtree will request array entries not written to in the left subtree and
thus will not need to access anything written there. Our key idea for exploiting
the security requirement is that, if we change the distribution over operations,
then the number of memory accesses assigned to the nodes of T cannot change
drastically as this would be observable by an adversary who can simply construct
T and assign the memory accesses. We can therefore examine the nodes v of T ,
and for each one, change the distribution over operations such that the read
operations in the right subtree requests precisely the array entries written to in
the left subtree. By an entropy argument, there has to be many memory accesses
under such a distribution. And by our security requirement, this translates back
to many memory accesses under the original distribution. We refer the reader to
Sect. 3 for the full details.

2 Oblivious Cell Probe Model

In this section, we formally define a lower bound model for proving lower bounds
for oblivious data structures. As mentioned earlier, an ORAM immediately gives
an oblivious data structure for array maintenance. Hence we set out to prove
lower bounds for such data structures.

Our new model is an extension of the cell probe model of Yao [Yao81]. The
cell probe model is traditionally used to prove lower bounds for word-RAM data
structures and is extremely powerful in the sense that it allows arbitrary compu-
tations and only charge for memory accesses. We augment the cell probe model
to capture the client side memory of an ORAM. To make clear the distinction
between our lower bound model and traditional upper bound models, we call
ours the oblivious cell probe model. The reason why we introduce this model, is
that it allows for a clean proof and definition, plus it brings in all the techniques
developed for proving data structure lower bounds. Moreover, we hope that our
work inspires other lower bound proofs for oblivious data structures, and thus
our thorough definition may serve as a reference.

Problems. A data structure problem in the oblivious cell probe model is defined
by a universe U of update operations, a universe Q of queries and an output
domain O. Furthermore, there is a query function f : U∗ × Q → O. For a
sequence of updates u1 . . . uM ∈ U and a query q ∈ Q we say that the answer to
the query q after updates u1 . . . uM is f(u1 . . . uM , q).

As an example, consider the array maintenance problem (Definition 1). Here
U is the set of all write(a,data) operations, Q is the set of all read(a) operations
and O is {0, 1}r.

Yes, There is an Oblivious RAM Lower Bound! 529

Oblivious Cell Probe Data Structure. An oblivious cell probe data structure
with client memory m bits for a problem P = (U ,Q,O, f) consists of a random
access memory of w-bit cells, a client memory of m bits and a random bit string
R of some finite length �. We make no restrictions on �, only that it is finite.
Note in particular that R can be exponentially long and hence contain all the
randomness needed by the oblivious RAM and/or a random oracle. We will call
R the random-oracle bit-string. Each cell of the memory has an integer address
amongst [K] and we typically assume w ≥ max{lg K, lg M} such that any cell
can store the address of any other cell and the index of any operation performed
on it.

When processing an operation, an oblivious cell probe data structure may
read or write memory cells. The cell to read or write in each step may depend
arbitrarily on the client memory contents and all contents of cells read so far
while processing the operation. Moreover, after each read or write, the oblivious
cell probe data structure may change the contents of the client memory. The per-
formance measure is defined solely as the number of memory cells read/written
to while processing an operation, i.e., computation is free of charge. To capture
this formally, an oblivious cell probe data structure is defined by a decision tree
Top for every operation op ∈ U ∪ Q, i.e., it has one decision tree for every pos-
sible operation in the data structure problem. The tree is meant to capture in
a crisp way the operation of the oblivious data structure. Each node represents
a “step” of computation which might depend on the local client memory of the
oblivious data structure, the randomness R and all server memory positions read
so far while processing the operation. It may also read a memory position on
the server or write a memory position on the server. The “implementation” of
the operation can therefore depend on previous operations to the extent that
information about them is stored in the local memory.

More formally, each decision tree Top is a rooted finite tree. Each node v of
Top is labelled with an address i ∈ [K] and it has one child for every triple of
the form (m0, c0, r) where m0 ∈ {0, 1}m, c0 ∈ {0, 1}w and r ∈ {0, 1}�. Each
edge to a child is furthermore labelled with a triple (j,m1, c1) with j ∈ [K],
m1 ∈ {0, 1}m and c1 ∈ {0, 1}w. To process an operation op, the oblivious cell
probe data structure starts its execution at the root of the corresponding tree Top

and traverses a root to leaf path in Top. When visiting a node v in this traversal,
labelled with some address iv ∈ [K] it probes the memory cell of address iv. If C
denotes its contents, M denotes the current contents of the client memory and
R denotes the random-oracle bit-string, the process continues by descending to
the child of v corresponding to the tuple (M,C,R). If the edge to the child is
labelled (j,m1, c1), then the memory cell of address j has its contents updated
to c1 and the client memory is updated to m1. We say that memory cell j is
probed. We make no requirements that m1 �= M , c1 �= C or j �= i. The execution
stops when reaching a leaf of Top.

Finally, each leaf v of a tree Top, where op is in Q, is labelled with a w-bit
string Lv (the answer to the query). We say that the oblivious cell probe data
structure returns Lv as its answer to the query op.

530 K. G. Larsen and J. B. Nielsen

Definition 2 (Expected Amortized Running Time). We say that an obliv-
ious cell probe data structure has expected amortized running time t(M) on a
sequence y of M operations from U ∪ Q if the total number of memory probes
is no more than t(M) · M in expectation. The expectation is taken over a uni-
formly random random-oracle string r ∈ {0, 1}�. We say that an oblivious cell
probe data structure has expected amortized running time t(M) if it has expected
amortized running time t(M) on all sequences y of operations from U ∪ Q.

We proceed to define security. Let

y := (op1, . . . , opM)

denote a sequence of M operations to the data structure problem, where each
opi ∈ U ∪ Q. For an oblivious cell probe data structure, define the (possibly
randomized) probe sequence on y as the tuple:

A(y) := (A(op1), . . . , A(opM))

where A(opi) is the sequence of memory addresses probed while processing opi.
More precisely, let A(y;R) := (A(op1;R), . . . , A(opM ;R)) be the deterministic
sequence of operations when the random-oracle bit-string is R and let A(y) be
the random variable describing A(y;R) for a uniformly random R ∈ {0, 1}�.

Definition 3 (Correctness). We say that an oblivious cell probe data struc-
ture has failure probability δ if, for every sequence and any operation op in the
sequence, the data structure answers op correctly with probability at least 1 − δ.

Definition 4 (Security). An oblivious cell probe data structure is said to be
secure if the following two properties hold:

Indistinguishability: For any two data request sequences y and z of the same
length M , their probe sequences A(y) and A(z) cannot be distinguished with
probability better than 1

4 by an algorithm which is polynomial time in M +
lg |U| + lg |Q| + w.

Correctness: The oblivious cell probe data structure has failure probability at
most 1/3.

Discussion 1. It is clear that for most uses of an ORAM, having indistinguisha-
bility of 1/4 and failure probability 1/3 is not satisfactory. However, for the sake
of a lower bound, allowing these large constant slack parameters just gives a
stronger bound. In particular, when M, lg |U|, lg |Q|, w ∈ poly(k) for a security
parameter k, then our bound applies to computational indistinguishability by
an adversary running in time poly(k).

Discussion 2. Since the random-oracle bit-string and the decision trees are finite,
the model does not capture algorithms which might potentially run for arbitrary
many steps with vanishing probability. However, any such algorithm might at

Yes, There is an Oblivious RAM Lower Bound! 531

the price of an error probability on the output be pruned to a finite decision
tree consuming only a finite amount of randomness. By pruning at a sufficiently
high depth, an arbitrarily small error probability in O(2−n) may be introduced.
Since we allow a large constant error probability of 1/3 our lower bound also
applies to algorithms which might potentially run for arbitrary many step with
vanishing probability on sequences of length poly(n).

Discussion 3. For online ORAMs, we are typically interested in the bandwidth
overhead, which is the multiplicative factor extra bits that must be accessed
compared to the underlying RAM being simulated. If the underlying RAM/array
has r-bit entries, we have that a sequence of M operations can be processed by
accessing Mr bits. Thus for ORAMs with (server) cell size w bits, this translates
into the minimum number of probes being Mr/w. Thus if an oblivious data
structure for the array maintenance problem has expected amortized running
time t(M), then the corresponding ORAM has an expected amortized bandwidth
overhead of t(M)w/r.

3 Lower Bound

In this section, we prove our lower bound for oblivious cell probe data structures
solving the array maintenance problem and thus indirectly also prove a lower
bound for online ORAMs. The model is recapped in Fig. 1. The formal statement
of our result is as follows:

Theorem 2. Let D be an oblivious cell probe data structure for the array main-
tenance problem on arrays of n r-bit entries where r ≥ 1. Let w denote the cell
size of D, let m denote the number of bits of client memory. If D is secure accord-
ing to Definition 4, then there exists a sequence y of Θ(n) operations such that
the expected amortized running time of D on y is Ω(lg(nr/m)r/w). In terms of
bandwidth overhead, this means that the expected amortized bandwidth overhead
is Ω(lg(nr/m)). For the most natural setting of r ≤ m ≤ n1−ε, this simplifies to
Ω(lg n).

Let D be as in Theorem 2 and let [K] ⊆ [2w] be the set of possible addresses of
its memory cells. Throughout our lower bound proof, we assume that D has fail-
ure probability at most 1/32 instead of 1/3. Note that the lower bound extends
to failure probability 1/3 (or any failure probability bounded away from 1/2)
simply because one can always run a constant number of independent copies in
parallel and use a majority vote when answering a read operation.

We prove our lower bound for processing the following fixed sequence of
M = 2n operations:

– We perform a sequence y of intermixed read and write operations. The
sequence has n of each type and looks as follows:

y := write(0, 0̄), read(0),write(0, 0̄), read(0), . . . ,write(0, 0̄), read(0)

where 0̄ denotes the all-zeroes bit string of length r.

532 K. G. Larsen and J. B. Nielsen

Fig. 1. An ORAM implements an array of r-bit entries. Each operation can be a read
or a write. Each operation op makes read and write probes to the server memory. The
sequence of probes made during an operation op is called the access pattern of op and is
written as A(op). Words in the server memory are called cells. Each cell is w bits. The
ORAM is restricted to m bits of storage between two operations. During an operation
it can use unlimited storage.

The sequence y is just the sequence of alternating write and read operations
that all access the first array entry, and the write operations just store 0̄ in it.
What makes this sequence costly is of course that the probe sequence of D on y
must be computationally indistinguishable from all other sequences of M = 2n
operations.

To exploit this, define A(y) as the random variable giving the probe sequence
(as defined in Sect. 2) of D when processing y. Since our sequence has M =
2n operations on an array with r-bit entries, we have a minimum bandwidth
usage of 2nr bits. The data structure D has a cell size of w bits, and thus
the minimum number of probes is 2nr/w. Thus by definition, we have that the
expected amortized bandwidth overhead is E[|A(y)|]w/(2nr). Our goal is thus
to lower bound E[|A(y)|]. Our proof is an adaptation of the information transfer
technique by Pǎtraşcu and Demaine [PD06] for proving data structure lower
bounds in the cell probe model. The basic proof strategy is as follows:

For any sequence of M = 2n operations z of the form:

write(i1, d1), read(i2),write(i3, d3), read(i4), . . . ,write(i2n−1, d2n−1), read(i2n),

Yes, There is an Oblivious RAM Lower Bound! 533

Fig. 2. Illustration of how probes are associated to nodes. The second to bottom layer is
a sequence of 16 intermixed read and write operations write(0, 7), read(3), write(1, 42),
read(6), We only show the two first pairs. Under each pair of commands we show
for illustration the probes that they made. In the nodes we illustrate where the probes
would be associated. As an example, take leaf number 8 (the right most leaf). It did
the 10’th probe. That probe probed cell 2. That happened last time in leaf number 6
by probe p8. The lowest common ancestor of leafs 6 and 8 therefore contains p10.

we consider a binary tree T (z) with n leaves, on top of the 2n operation. There is
one leaf in T (z) for each consecutive pair write(ij , dj), read(ij+1). Let opi denote
the i’th operation in the sequence z, i.e., op1 is the first write(i1, d1) opera-
tion, op2 is the first read(i2) operation and so on. Consider the probe sequence
A(z) = (A(op1), A(op2), . . . , A(op2n)) where each A(opi) is the sequence of mem-
ory addresses probed when D processes A(opi) during the sequence of opera-
tions z. Let p1, . . . , pT denote the concatenation of all the sequences of probed
memory addresses, i.e., p1, . . . , pT = A(op1) ◦ A(op2) ◦ · · · ◦ A(op2n) where ◦ is
concatenation.

We assign each probed address pi to a node of T (z). If pi = s for some
address s ∈ [K] ⊆ [2w], then let pj with j < i denote the last time cell s was
probed prior to pi. Let �i and �j denote the leaves of T (z) containing the two
operations whose processing caused the probes pi and pj , i.e., if pi is a probe
resulting from opa, then �i is the leaf containing opa. We assign pi to the lowest
common ancestor of �i and �j . If pj does not exist, i.e., the memory cell with
address s was not probed before, then we do not assign pi to any node of T (z).
See Fig. 2 for an illustration.

Our goal is to show that for the sequence y, it must be the case that most
nodes of T (y) have a large number of probes assigned to them (in expectation).
Since a probe is assigned to only one node of the tree, we can sum up the number
of probes assigned to all nodes of T (y) to get a lower bound on the total number
of probes in A(y). In more detail, consider a node v ∈ T (y). Our proof will show

534 K. G. Larsen and J. B. Nielsen

that the read instructions in the right subtree of v have to probe many cells
that were last probed during the operations in the left subtree. This corresponds
precisely to the set of probes assigned to v being large.

To gain intuition for why the read operations in the right subtree must make
many probes to cells written in the left subtree, observe that from the indistin-
guishability requirement, the probe sequence must look identical regardless of
whether D is processing y, or if we instead process a random sequence in which
the write operations in the left subtree are write(1, d1),write(2, d2), . . . and the
reads in the right subtree are read(1), read(2), . . . , where each di is a uniformly
random r-bit string. In the latter case, the read operations have to recover all
the (random) bits written in the left subtree and thus must probe many cells
written in the left subtree by an entropy argument. Since counting the probes
assigned to a node v can be done in poly-time in M + r without knowing the
arguments to the instructions, it follows from the indistinguishability property
that for A(y), there also has to be a large number of probes assigned to the node
v. The argument is fleshed out in a bit more detail in Fig. 3.

We proceed to give a formal proof.

Nodes with Large Information Transfer. In the following, we argue that for
many nodes in T (y), there must be a large number of probes assigned to v in
expectation. We can then sum this up over all nodes in T (y). We do this as
follows: For a sequence of operations z of the form

write(i1, d1), read(i2),write(i3, d3), read(i4), . . . ,write(i2n−1, d2n−1), read(i2n),

and for every internal node v in T (z), let Pv(z) denote the set of probes assigned
to v. Using the terminology by Pǎtraşcu and Demaine [PD06], we refer to the set
Pv(z) as the information transfer in node v. We thus want to lower bound the
size of the information transfer in the nodes of T (y). To do so, define depth(v)
to be the distance from the root of T (y) to v. We prove the following:

Lemma 1. If D has failure probability at most 1/32, then for every internal
node v ∈ T (y) with depth d ∈ {5, . . . , (1/2) lg(nr/m)}, it holds that

E [|Pv(y)|] = Ω(nr/(w2d)).

Let us first briefly give an explanation why the lemma only is proven for d ∈
{5, . . . , (1/2) lg(nr/m)}. Consider a node at depth d. It has about nr/2d nodes
below it. So a node at depth d = lg(nr/m) has about m nodes below it. Recall
that m is the size of the client memory between two operations. By going only to
depth (1/2) lg(nr/m) we ensure that the node has to transfer much more than
m bits such that the client memory plays essentially no role in the information
transfer. Starting only from d = 5 makes some steps in the proof simpler.

Before proving Lemma 1, we show that it implies our main result. Since every
probe in A(y) is assigned to at most one node in T (y), and using linearity of
expectation together with the fact that there are 2d nodes of depth d in T (y),
we have:

Yes, There is an Oblivious RAM Lower Bound! 535

Fig. 3. We sketch the intuition of the proof. Assume for simplicity that the ORAM
has perfect correctness, is deterministic and has no client memory. Consider a node v
sitting at depth d. It has two sub-tree T � and T r. Each of them has L = n

2d+1 write
and read operations in their leafs. Consider the sequence of operations which in each
write in T � writes a fresh uniform value di ∈ {0, 1}r and which in T r reads these values
back. In the sub-tree T 0 preceding T � the sequence will just write and read zero-values.
There is an information transfer of r ·L bits from the write operations in T � to the read
operations in T r, as the string D = (d1, . . . , dL) is being retrieved by the ORAM while
in T r. We argue that this information goes through v in the sense that there must be
Lr/w probes assigned to v (illustrated using the dotted arrow in the figure). Namely,
there must in T r clearly be Lr/w probes that give information on D as each probe
gives at most w bits of information. A probe in T r gets assigned either to a node in
T r, to the node v or to an ancestor of v. Consider first a probe p1 which gets assigned
to an ancestor of v. It reads a cell which was last written before D was stored. Hence it
cannot give information on D. Consider a probe p3 assigned to a node in T r. This node
was last written by an operation in T r. Hence it cannot give new information which
was not previously learned by a probe in T r. Therefore all probes giving information
on D are assigned to v, so there are Lr/w probes assigned to v. If the scheme is only
correct on a fraction 1−δ of the reads, proportionally less information is transferred, so
only (1 − δ)Lr/w probes are needed. Also, m bits of information could be transferred
via the client memory when moving from T � to T r, reducing the needed number of
probes to δLr/w − m/w. If d is small enough, this will still be Ω(Lr/w).

536 K. G. Larsen and J. B. Nielsen

E[|A(y)|] ≥
∑

v∈T (y)

E[|Pv(y)|]

≥
(1/2) lg(nr/m)∑

d=5

∑

v∈T (y):depth(v)=d

E[|Pv|]

= Ω

⎛

⎝
(1/2) lg(nr/m)∑

d=5

∑

v∈T (y):depth(v)=d

nr/(w2d)

⎞

⎠

= Ω

⎛

⎝
(1/2) lg(nr/m)∑

d=5

2d · nr/(w2d)

⎞

⎠

= Ω (nr lg(nr/m)/w) .

Thus the expected amortized bandwidth overhead is

E[|A(y)|]w/(2nr) = Ω(lg(nr/m))

as claimed. What remains is to prove Lemma 1.

Lower Bounding the Probes. Consider a node v in T (y) whose depth is d =
depth(v) ∈ {5, . . . , (1/2) lg(nr/m)}. To prove Lemma 1, we consider a distribu-
tion over sequences of M = 2n operations of the form

write(i1, d1), read(i2),write(i3, d3), read(i4), . . . ,write(i2n−1, d2n−1), read(i2n).

Our distribution will be chosen such that if we draw a sequence Zv from the
distribution and run D on Zv, then the read operations in v’s right subtree
must probe many cells last written during the operations in v’s left subtree.
This means that Pv(Zv) must be large. We will then use the computational
indistinguishability to argue that Pv(y) must be just as large.

In greater detail, let Zv be the random variable giving a sequence of 2n
operations chosen as follows: For every read(ij) not in the subtree rooted at v’s
right child, we simply have ij = 0. For every write(ij , dj) not in the subtree
rooted at v’s left child, we have ij = 0 and dj = 0̄. For the n/2d+1 read opera-
tions in v’s right subtree read(ij), . . . , read(ij+n/2d+1−1), we have ij = 1, ij+1 =
2, . . . , ij+n/2d+1−1 = n/2d+1, i.e., the read operations in v’s right subtree sim-
ply read the array entries 1, 2, 3, . . . , n/2d+1 in that order. Finally for the n/2d+1

write operations in v’s left subtree write(ij , dj), . . . ,write(ij+n/2d+1 , dj+n/2d+1−1)
we have ij = 1, jj+1 = 2, . . . , ij+n/2d+1−1 = n/2d+1 and all dj are independent
and uniformly random w-bit strings. Thus for the random sequence Zv, the read
operations in v’s right subtree precisely read the n/2d+1 array entries that were
filled with random bits during the n/2d+1 write operations in v’s left subtree.

Yes, There is an Oblivious RAM Lower Bound! 537

All other operations just read and write array entry 0 as in the fixed sequence
y. We prove the following via an entropy argument:

Lemma 2. If D has failure probability at most 1/32, then there exists a universal
constant C > 0 such that

Pr[|Pv(Zv)| ≥ Cnr/(w2d)] ≥ 1/2.

Before proving Lemma 2, we show that it implies Lemma 1. For this, observe
that by averaging, Lemma 2 implies that there must exist a sequence z in the
support of Zv such that

Pr[|Pv(z)| ≥ Cnr/(w2d)] ≥ 1/2.

From our security definition, A(y) and A(z) must be computationally indis-
tinguishable. We argue that this implies that E[|Pv(y)|] ≥ (C/4)nr/(w2d) =
Ω(nr/(w2d)). To see this, assume for the sake of contradiction that E[|Pv(y)|] <
(C/4)nr/(w2d). By Markov’s inequality, we get Pr[|Pv(y)| ≥ Cnr/(w2d)] ≤ 1/4.
An adversary can now distinguish z and y as follows: Given a sequence a ∈ {y, z},
run D on the sequence a to obtain A(a). Construct from A(a) the tree T (a)
and the set Pv(a) (an adversary knows precisely which probes belong to which
operations and can thus construct all the sets Pv(a) for all nodes v in T (a) in
polynomial time in M and w). Output 1 if |Pv(a)| ≥ Cnr/(w2d) and 0 otherwise.
This distinguishes y and z with probability at least 1/4. Thus all that remains
is to prove Lemma 2.

Encoding Argument. To prove Lemma 2, we assume for the sake of contradiction
that the lemma is false, i.e., D has failure probability at most 1/32 but:

Pr[|Pv(Zv)| ≥ (1/100)nr/(w2d)] < 1/2.

We will use this D to give an impossible encoding of the (random) data

dj , dj+1, . . . , dj+n/2d+1−1

written in the left subtree of v in the sequence Zv. Let H(·) denote binary
Shannon entropy and observe that:

H(dj , dj+1, . . . , dj+n/2d+1−1 | R) = nr/2d+1 ,

where R denotes the random bits of the random oracle (these are independent
of the input distribution). This is because the variables

dj , dj+1, . . . , dj+n/2d+1−1

are uniformly random and independent r-bit strings. From Shannon’s source
coding theorem, any (possibly randomized) encoding of

dj , dj+1, . . . , dj+n/2d+1−1,

conditioned on R, must use nr/2d+1 bits in expectation. This also holds for
encoding and decoding algorithms which are not computationally efficient. Our
encoding and decoding procedures are as follows:

538 K. G. Larsen and J. B. Nielsen

Encoding. The encoder Alice is given

dj , dj+1, . . . , dj+n/2d+1−1, R .

Alice does as follows:

1. From dj , dj+1, . . . , dj+n/2d+1−1 she constructs the sequence Zv. She then runs
D on Zv using the randomness R. While running the sequence Zv on D, she
collects the set F of read operations read(ij) in v’s right subtree which fail to
report the correct value dj written by the write operation write(ij , dj) in v’s
left subtree. If either |Pv(Zv)| ≥ (1/100)nr/(w2d) or |F | ≥ (1/8)n/2d+1, then
she writes down a 0-bit, followed by nr/2d+1 bits giving a straight-forward
encoding of dj , dj+1, . . . , dj+n/2d+1−1. Otherwise, she writes down a 1-bit and
proceeds to the next step.

2. She now writes down the contents and addresses of all memory cells whose
address is in Pv(Zv). Let Z�

v denote operations in v’s left subtree and let Z0
v

denote the prefix of Zv containing all operations up to just before Z�
v. The

contents she writes down is the contents as they were just after processing the
prefix Z0

v ◦ Z�
v. She also writes down the m client memory bits as they were

immediately after processing Z0
v ◦ Z�

v. Finally, she also writes down |F | using
lg n bits as well as lg

(
n/2d+1

|F |
)

bits specifying which read operations in v’s right
subtree that fail together with |F |r bits specifying the correct answers to the
failing read operations. The first part costs |Pv(Zv)|(lg K+w) ≤ |Pv(Zv)|2w ≤
(1/25)nr/2d+1 where [K] is the address space of memory cells. Writing down
the client memory costs m bits and writing down the failing read’s and their
correct answers costs at most

lg n + |F |r + lg
(

n/2d+1

|F |

)
≤ lg n + (1/8)nr/2d+1 + lg

(
n/2d+1

(1/8)n/2d+1

)

≤ lg n + (1/8)nr/2d+1 · (1 + lg(8e)/r)
≤ lg n + (3/4)nr/2d+1

≤ (4/5)nr/2d+1.

Thus Alice’s message has length at most m+(21/25)nr/2d+1 if we she reaches
step 2.

Decoding. The decoder Bob is given the message from Alice as well as R. His
task is to recover

dj , dj+1, . . . , dj+n/2d+1−1 .

He proceeds as follows:

1. He starts by checking the first bit of the encoding. If this is a 0-bit, the
remaining part is an encoding of dj , dj+1, . . . , dj+n/2d+1−1 and he is done.
Otherwise, he proceeds to the next step.

Yes, There is an Oblivious RAM Lower Bound! 539

2. Bob runs the operations in Z0
v on D, using the randomness R. Note that

these operations are fixed (they all access array entry 0) and are thus known
to Bob. He now skips all the instructions Z�

v in v’s left subtree (which are
unknown to him). He sets the client memory to what Alice told him it was
after processing Z0

v ◦ Z�
v. He then overwrites all memory cells that appear

in Pv(Zv) (Alice sent the addresses and contents of these as they were right
after processing Z0

v ◦Z�
v). Let Zr

v denote the operations in v’s right subtree. He
then starts processing the operations Zr

v using the randomness R, starting
with the client memory contents that Alice sent him. We claim that this
will give exactly the same execution as when Alice executed Zr

v . To see this,
consider any memory cell with address s and look at the first time it is probed
during Bob’s simulation of Zr

v . There are two cases: either the contents were
overwritten due to Alice’s message. In this case, the contents are consistent
with Alice’s execution. Otherwise, the probe must be assigned to some node
w ∈ T (Zv) other than v. If w is an ancestor of v, then the cell cannot have
been updated during Z�

v (by definition of how we assign probes to nodes in
T) and Bob has the correct contents from his own simulation of Z0

v . If w
is a descendant of v, it means that the cell was already probed during Zr

v ,
contradicting that this was the first probe to the cell. Since Bob can finish
the simulation (using the randomness R), he gets the same set of answers to
all read operations in v’s right subtree as Alice did. Finally, he uses the last
part of Alice’s message to correct the answers to all read operations in Zr

v

which fail. He is now done since the answers to the read operations in Zr
v

reveal dj , dj+1, . . . , dj+n/2d+1−1.

Analysis. What remains is to show that the above encoding length is less than
nr/2d+1 in expectation, yielding the sought contradiction. If G denotes the event
that Alice writes a 0-bit, we have that the expected length of the encoding is no
more than:

1 + Pr[G] · nr/2d+1 + (1 − Pr[G])(m + (21/25)nr/2d+1).

Since 5 ≤ d ≤ (1/2) lg(nr/m), we have

m ≤ nr/22d = (nr/2d+1)/2d−1 ≤ (1/16)(nr/2d+1) .

Therefore the above is no more than:

1 + Pr[G] · nr/2d+1 + (1 − Pr[G])(1/16 + 21/25)nr/2d+1 ≤
1 + Pr[G] · nr/2d+1 + (1 − Pr[G])(91/100)nr/2d+1.

Since the failure probability of D is no more than 1/32, it follows from Markov’s
inequality and linearity of expectation that Pr[|F | ≥ (1/8)n/2d+1] ≤ 1/4. By a
union bound, we have

Pr[G] ≤ Pr[|Pv(Zv)| ≥ (1/100)nr/(w2d)] + Pr[|F | ≥ (1/8)n/2d+1]
≤ 1/2 + 1/4 ≤ 3/4.

540 K. G. Larsen and J. B. Nielsen

This means that the expected length of our encoding is no more than

1 + (3/4) · nr/2d+1 + (1/4)(91/100)nr/2d+1 < nr/2d+1.

This gives our sought contradiction and completes the proof of Theorem2.

4 Conclusion and Future Work

It is 22 years since Goldreich and Ostrovsky proved the ORAM lower
bound [GO96] assuming statistical security and “balls in bins”. No progress was
done on strengthening the bound for two decades. Two years ago, Boyle and Naor
asked the question, Is There an Oblivious RAM Lower Bound? [BN16]. We have
answered this question in the affirmative by eliminating both restrictions of the
Goldreich-Ostrovsky lower bound.

The oblivious cell probe model and our lower bound for the array main-
tenance problem and online ORAMs open up a number of exciting questions.
A number of papers (cf. [WNL+14]) have designed oblivious data structures.
There is no reason why our proof technique cannot also be applied to prove
lower bounds for such oblivious data structures.

Acknowledgment. Kasper Green Larsen wishes to thank Vinod Vaikuntanathan for
introducing him to oblivious RAMs and oblivious data structures during a visit at
MIT, eventually leading to the results in this paper.

References

[AFN+16] Abraham, I., Fletcher, C.W., Nayak, K., Pinkas, B., Ren, L.: Asymptot-
ically tight bounds for composing ORAM with PIR. Cryptology ePrint
Archive, Report 2016/849 (2016). https://eprint.iacr.org/2016/849

[BCP16] Boyle, E., Chung, K.-M., Pass, R.: Oblivious parallel RAM and applica-
tions. In: Kushilevitz, E., Malkin, T. (eds.) [KM16], pp. 175–204 (2016)

[BN16] Boyle, E., Naor, M.: Is there an oblivious RAM lower bound? In: Proceed-
ings of the 2016 ACM Conference on Innovations in Theoretical Computer
Science, pp. 357–368 (2016)

[CLP14] Chung, K.-M., Liu, Z., Pass, R.: Statistically-secure ORAM with Õ(lg2 n)
Overhead. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part II.
LNCS, vol. 8874, pp. 62–81. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-662-45608-8 4

[DMN11] Damg̊ard, I., Meldgaard, S., Nielsen, J.B.: Perfectly secure oblivious RAM
without random oracles. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597,
pp. 144–163. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-19571-6 10

[DvDF+16] Devadas, S., van Dijk, M., Fletcher, C.W., Ren, L., Shi, E., Wichs,
D.: Onion ORAM: a constant bandwidth blowup oblivious RAM. In:
Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9563, pp.
145–174. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-
49099-0 6

https://eprint.iacr.org/2016/849
https://doi.org/10.1007/978-3-662-45608-8_4
https://doi.org/10.1007/978-3-662-45608-8_4
https://doi.org/10.1007/978-3-642-19571-6_10
https://doi.org/10.1007/978-3-642-19571-6_10
https://doi.org/10.1007/978-3-662-49099-0_6
https://doi.org/10.1007/978-3-662-49099-0_6

Yes, There is an Oblivious RAM Lower Bound! 541

[GHL+14] Gentry, C., Halevi, S., Lu, S., Ostrovsky, R., Raykova, M., Wichs, D.: Gar-
bled RAM revisited. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT
2014. LNCS, vol. 8441, pp. 405–422. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-642-55220-5 23

[GLO15] Garg, S., Lu, S., Ostrovsky, R.: Black-box garbled RAM. In: Guruswami,
V. (ed.) IEEE 56th Annual Symposium on Foundations of Computer Sci-
ence, FOCS 2015, Berkeley, CA, USA, 17–20 October 2015, pp. 210–229.
IEEE Computer Society (2015)

[GM11] Goodrich, M.T., Mitzenmacher, M.: Privacy-preserving access of out-
sourced data via oblivious RAM simulation. In: Aceto, L., Henzinger,
M., Sgall, J. (eds.) ICALP 2011, Part II. LNCS, vol. 6756, pp. 576–587.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22012-
8 46

[GMOT12] Goodrich, M.T., Mitzenmacher, M., Ohrimenko, O., Tamassia, R.:
Privacy-preserving group data access via stateless oblivious RAM sim-
ulation. In: Rabani, Y. (ed.) [Rab12], pp. 157–167 (2012)

[GO96] Goldreich, O., Ostrovsky, R.: Software protection and simulation on obliv-
ious RAMs. J. ACM 43(3), 431–473 (1996)

[Goo17] Goodrich, M.T.: BIOS ORAM: improved privacy-preserving data access
for parameterized outsourced storage. In: Thuraisingham, B.M., Lee, A.J.
(eds.) Proceedings of the 2017 on Workshop on Privacy in the Electronic
Society, Dallas, TX, USA, 30 October–3 November 2017, pp. 41–50. ACM
(2017)

[Goo18] Goodrich, M.T.: Isogrammatic-fusion ORAM: improved statistically
secure privacy-preserving cloud data access for thin clients. In: Proceed-
ings of the 13th ACM ASIA Conference on Information, Computer and
Communication Security (2018, to appear)

[KLO12] Kushilevitz, E., Lu, S., Ostrovsky, R.: On the (in)security of hash-based
oblivious RAM and a new balancing scheme. In: Rabani, E. (ed.) [Rab12],
pp. 143–156 (2012)

[KM16] Kushilevitz, E., Malkin, T. (eds.): TCC 2016, Part II. LNCS, vol. 9563.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49099-0

[Lar12] Larsen, K.G.: The cell probe complexity of dynamic range counting. In:
Proceedings of the 44th ACM Symposium on Theory of Computation, pp.
85–94 (2012)

[LO17] Lu, S., Ostrovsky, R.: Black-box parallel garbled RAM. In: Katz, J.,
Shacham, H. (eds.) CRYPTO 2017, Part II. LNCS, vol. 10402, pp. 66–92.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63715-0 3

[LWY18] Larsen, K.G., Weinstein, O., Yu, H.: Crossing the logarithmic barrier for
dynamic boolean data structure lower bounds. In: Symposium on Theory
of Computing, STOC 2018 (2018, to appear)

[PD06] Pǎtraşcu, M., Demaine, E.D.: Logarithmic lower bounds in the cell-probe
model. SIAM J. Comput. 35(4), 932–963 (2006)

[PR10] Pinkas, B., Reinman, T.: Oblivious RAM revisited. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 502–519. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-14623-7 27

[Rab12] Rabani, Y. (ed.) Proceedings of the Twenty-Third Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2012, Kyoto, Japan, 17–19
January 2012. SIAM (2012)

https://doi.org/10.1007/978-3-642-55220-5_23
https://doi.org/10.1007/978-3-642-55220-5_23
https://doi.org/10.1007/978-3-642-22012-8_46
https://doi.org/10.1007/978-3-642-22012-8_46
https://doi.org/10.1007/978-3-662-49099-0
https://doi.org/10.1007/978-3-319-63715-0_3
https://doi.org/10.1007/978-3-642-14623-7_27

542 K. G. Larsen and J. B. Nielsen

[SS13] Stefanov, E., Shi, E.: Oblivistore: high performance oblivious distributed
cloud data store. In 20th Annual Network and Distributed System Security
Symposium, NDSS 2013, San Diego, California, USA, 24–27 February
2013. The Internet Society (2013)

[SvDS+13] Stefanov, E., van Dijk, M., Shi, E., Fletcher, C.W., Ren, L., Yu, X.,
Devadas, S.: Path ORAM: an extremely simple oblivious RAM proto-
col. In: Sadeghi, A.-R., Gligor, V.D., Yung, M. (eds.) 2013 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2013, Berlin,
Germany, 4–8 November 2013, pp. 299–310. ACM (2013)

[WNL+14] Wang, X.S., Nayak, K., Liu, C., Hubert Chan, T.-H., Shi, E., Stefanov,
E., Huang, Y.: Oblivious data structures. In: Ahn, G.-J., Yung, M., Li, N.
(eds.) Proceedings of the 2014 ACM SIGSAC Conference on Computer
and Communications Security, Scottsdale, AZ, USA, 3–7 November 2014,
pp. 215–226. ACM (2014)

[WST12] Williams, P., Sion, R., Tomescu, A.: Privatefs: a parallel oblivious file sys-
tem. In: Yu, T., Danezis, G., Gligor, V.D. (eds.) The ACM Conference on
Computer and Communications Security, CCS 2012, Raleigh, NC, USA,
16–18 October 2012, pp. 977–988. ACM (2012)

[Yao81] Yao, A.C.-C.: Should tables be sorted? J. ACM 28(3), 615–628 (1981)

Constrained PRFs for NC1

in Traditional Groups

Nuttapong Attrapadung1, Takahiro Matsuda1, Ryo Nishimaki2(B),
Shota Yamada1, and Takashi Yamakawa2

1 National Institute of Advanced Industrial Science and Technology (AIST),
Tokyo, Japan

{n.attrapadung,t-matsuda,yamada-shota}@aist.go.jp
2 Secure Platform Laboratories, NTT Corporation, Tokyo, Japan

{nishimaki.ryo,yamakawa.takashi}@lab.ntt.co.jp

Abstract. We propose new constrained pseudorandom functions
(CPRFs) in traditional groups. Traditional groups mean cyclic and mul-
tiplicative groups of prime order that were widely used in the 1980s and
1990s (sometimes called “pairing free” groups). Our main constructions
are as follows.

– We propose a selectively single-key secure CPRF for circuits with
depth O(log n) (that is, NC 1 circuits) in traditional groups where n
is the input size. It is secure under the L-decisional Diffie-Hellman
inversion (L-DDHI) assumption in the group of quadratic residues
QRq and the decisional Diffie-Hellman (DDH) assumption in a tra-
ditional group of order q in the standard model.

– We propose a selectively single-key private bit-fixing CPRF in tradi-
tional groups. It is secure under the DDH assumption in any prime-
order cyclic group in the standard model.

– We propose adaptively single-key secure CPRF for NC1 and private
bit-fixing CPRF in the random oracle model.

To achieve the security in the standard model, we develop a new tech-
nique using correlated-input secure hash functions.

1 Introduction

1.1 Background

Pseudorandom functions (PRFs) are one of the most fundamental notions in
cryptography [27]. A PRF is a deterministic function PRF(·, ·) : K × D → R
where K, D, and R are its key space, domain, and range, respectively. Roughly
speaking, we say that PRF is a secure PRF if outputs of PRF(msk, ·) look random
for any input x ∈ D and a randomly chosen key msk ∈ K. Not only are PRFs
used to construct secure encryption schemes but also they frequently appear in
the constructions of various cryptographic primitives.

c© International Association for Cryptologic Research 2018
H. Shacham and A. Boldyreva (Eds.): CRYPTO 2018, LNCS 10992, pp. 543–574, 2018.
https://doi.org/10.1007/978-3-319-96881-0_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96881-0_19&domain=pdf

544 N. Attrapadung et al.

Constrained PRF. Boneh and Waters introduced the notion of constrained PRFs
(CRPFs) [16] (Kiayias, Papadopoulos, Triandopoulos, and Zacharias [35] and
Boyle, Goldwasser, and Ivan [10] also proposed the same notion in their concur-
rent and independent works). CPRFs are an advanced type of PRFs. Specifi-
cally, if we have a master secret key msk of a CPRF PRF, then we can generate a
“constrained” key skf for a function f : D → {0, 1}. We can compute the value
PRF(msk, x) from skf and x if f(x) = 0 holds; otherwise cannot. For an input x
such that f(x) = 1, the value PRF(msk, x) looks pseudorandom.1

CPRFs with various types of function classes have been considered. Here,
we explain the classes of bit-fixing functions and circuits since we present new
CPRFs for these functions.

Bit-fixing functions: Let {0, 1}n be the domain of a CPRF. Each function in
this class is specified by a “constraint vector” c = (c1, . . . , cn) ∈ {0, 1, ∗}n,
from which a bit-fixing function fc : {0, 1}n → {0, 1} is defined as follows. If
ci = ∗ or xi = ci holds for all i ∈ [n], then fc(x) = 0; otherwise fc(x) = 1.

Circuits: This class consists of functions {fC} computable by polynomial-sized
boolean circuits C, defined by fC(·) := C(·). We call a CPRF for this function
class simply a CPRF for circuits. If a CPRF supports functions computable
by polynomial-sized boolean circuits with depth O(log n), where n is the
input-length of the circuits, then we call it a CPRF for NC1.

The number of constrained keys that can be released (to a potentially mali-
cious party) is one of the important security measures of CPRFs. If a-priori
unbounded polynomially many constrained keys could be released (i.e., the
number of queries is not a-priori bounded), then a CPRF is called collusion-
resistant. If only one constrained key can be released, it is called a single-key
secure CPRF. Boneh and Waters [16] showed that (collusion-resistant) CPRFs
have many applications such as broadcast encryption with optimal ciphertext
length. (See their paper and references therein for more details.)

Private CPRF. Boneh, Lewi, and Wu [13] proposed the notion of privacy for
CPRFs (Kiayias et al. also proposed policy privacy as essentially the same
notion [35]). Roughly speaking, private CPRFs do not reveal information about
constraints embedded in constrained keys beyond what is leaked from the eval-
uation results using the constrained keys.

Known instantiations. The first papers on CPRFs [10,16,35] observed that the
Goldreich-Goldwasser-Micali [27] PRF yields a puncturable PRF2 (and a CPRF

1 We note that the role of the constraining function f is “reversed” from the definition
by Boneh and Waters [16], in the sense that the evaluation by a constrained key skf

is possible for inputs x with f(x) = 1 in their definition, while it is possible for
inputs x for f(x) = 0 in our paper. Our treatment is the same as Brakerski and
Vaikuntanathan [15].

2 A constrained key in which a set of points is hard-wired enables us to compute an
output if an input is not in the specified set.

Constrained PRFs for NC1 in Traditional Groups 545

for related simple functions). However, it turned out that achieving CPRFs for
other types of function classes is quite challenging. Here, we review some prior
works on CPRFs whose function classes are related to those we focus on in this
study (i.e., bit-fixing functions and NC1 circuits).

Boneh and Waters [16] constructed a left-right CPRF3 in the random oracle
model (ROM) from bilinear maps, and a collusion-resistant bit-fixing CPRF and
collusion-resistant CPRF for circuits from multilinear maps [25] in the standard
model. After that, Brakerski and Vaikuntanathan [15] constructed a single-key
secure CPRF for circuits from standard lattice-based assumptions, without rely-
ing on multilinear maps.

Boneh et al. [13] constructed a collusion-resistant private CPRF for circuits
from indistinguishability obfuscation (IO) [9,26], and a single-key private bit-
fixing CPRF and puncturable CPRF from multilinear maps [13]. After that, a
single-key private puncturable PRF [12], a single-key private CPRF for NC1 [18],
and a single-key private CPRF for circuits [14,37] were constructed from stan-
dard lattice assumptions.

Our motivation. (Private) CPRFs have been attracting growing attention as
above since they are useful tools to construct various cryptographic primi-
tives [13,16]. A number of other types of CPRFs have been constructed [2,8,
23,32,32,33,33]. However, all of known sufficiently expressive (private) CPRFs
(such as bit-fixing, circuits) rely on IO, multilinear maps, or lattices, and there
is currently no candidate of secure multilinear maps.

Very recently, Bitansky [11] and Goyal, Hohenberger, Koppula, and
Waters [28] proposed sub-string match4 CPRFs in traditional groups to con-
struct verifiable random functions. In this paper, by traditional groups we mean
the multiplicative groups of prime order5 that have been widely used to con-
struct various cryptographic primitives such as the ElGamal public-key encryp-
tion scheme, around two decades before bilinear maps dominate the area of
cryptography [7]. (Of course, they are still being used for many cryptographic
primitives.) However, their CPRFs are not expressive enough and do not satisfy
the standard security requirements of CPRFs6. See Tables 1 and 2 for compar-
isons. There is no construction of expressive enough (private) CPRF in tradi-
tional groups. This status might be reasonable since lattices and multilinear maps
are stronger tools.

3 There are left and right constrained keys in which v� and vr are hard-wired, respec-
tively. We can compute outputs by using the left (resp. right) constrained key if the
first (resp. last) half of an input is equal to v� (resp. vr).

4 This is the negation of bit-fixing functions, that is, fc(x) = 0 if there exists an
index i such that xi �= ci (i-th bit of a constraint) and ci �= ∗. It can be seen as a
generalization of punctured predicates.

5 For example, cyclic group H ⊂ Z
∗
q of a prime order p such that q = 2p + 1 where q

is also a prime.
6 In their sub-string match CPRFs, adversaries are not given access to the evaluation

oracle, which gives outputs of a CPRF for queried inputs. We call such security
no-evaluation security in this paper.

546 N. Attrapadung et al.

Based on the motivation mentioned above, we tackle the following question:

Is it possible to construct sufficiently expressive (private) CPRFs in traditional
groups?

In this study, we give affirmative answers to this question and show that
traditional groups are quite powerful tools. From the theoretical point of view,
the more instantiations of cryptographic primitives are available, the more desir-
able. One reason is that constructions from different tools can be alternatives
when one tool is broken (like multilinear maps). Another reason is that, gen-
erally, new instantiations shed light on how to construct the studied primitive,
and widen and deepen our insights on it. One remarkable example of this line of
research would be the recent work by Döttling and Garg [22], who constructed
an identity-based encryption (IBE) scheme and a hierarchical IBE scheme in
traditional groups. Another example would be the work by Boyle, Ishai, and
Gilboa [17], who constructed communication-efficient secure two-party proto-
cols in traditional groups. It is also expected that new instantiations provide us
with insights on how to use the studied primitive in applications (in the real
world or in the construction of another primitive as a building block).

1.2 Our Contributions

In this paper, we present new constructions of a CPRF and a private CPRF in
traditional groups as main contributions.

The properties of our CPRFs are summarized as follows.

– Our first CPRF is a selectively single-key secure7 CPRF forNC 1 in tradi-
tional groups. It is secure under the L-decisional Diffie-Hellman inversion
(L-DDHI) assumption8 in the group of quadratic residues QRq and the deci-
sional Diffie-Hellman (DDH) assumption9 in a traditional group G of order
q in the standard model. Here, QRq denotes the group of quadratic residue
modulo q, where q is a prime such that q = 2p + 1 and p is also a prime.
We need to use this specific type of group for technical reasons. See Sects. 1.3
and 4 for the details.

– Our second CPRF is a selectively single-key private bit-fixing CPRF in tradi-
tional groups. Specifically, it is secure under the standard DDH assumption
in any prime-order cyclic group in the standard model.

7 Adversaries commit a function to be embedded in a constrained key at the beginning
of the security experiment and have access to the evaluation oracle, which gives
outputs of CPRFs for queried inputs.

8 The L-DDHI assumption in a group H of order p [4,21] says that it is hard to distin-

guish (g, gα, gα2
, . . . , gαL

, g1/α) from (g, gα, gα2
, . . . , gαL

, gz) where g
R← H, α, z

R←
Zp. See the full version [3] for the rigorous definition.

9 The DDH assumption in a group G of order q says that it is hard to distinguish

(g, gx, gy, gxy) from (g, gx, gy, gz) where g
R← G, x, y, z

R← Zq.

Constrained PRFs for NC1 in Traditional Groups 547

– Our third and fourth CPRFs are an adaptively10 single-key secure CPRF for
NC1 circuits and an adaptively single-key private bit-fixing CPRF, both in
the ROM. Our standard model and ROM constructions of CPRFs for NC1,
share high-level ideas behind the constructions in common, and the same is
true for our bit-fixing CPRFs. These connections are explained in Sect. 1.3.
Due to the space limit, we omit the constructions in the ROM in this paper.

The main technique that enables us to achieve the above results, is a novel use
of correlated-input secure hash functions. We will explain the technical overview
in Sect. 1.3.

As an application of our results, we can obtain a single-key secret-key
attributed-based encryption (ABE) scheme with optimal ciphertext overhead in
traditional groups. A (multi-key) public-key ABE scheme with optimal cipher-
text overhead was presented by Zhandry [39], but it is based on multilinear maps.
See the full version [3] for more details.

Table 1. Comparison of CPRFs (we omit constructions based on multilinear maps or
IO). In “Function” column, sub-match is sub-string match. Prefix-fixing means that a
constrained key with prefix p enables us to compute outputs for inputs p‖∗. “# keys”
column means the number of issuable constrained keys. “Eval.O” column means the
evaluation oracle is available for adversaries or not. “Tool” column means what kinds
of cryptographic tools are used. GGM, pairing, and group mean the PRF by Goldre-
ich, Goldwasser, and Micali [27], bilinear maps, and traditional groups, respectively.
In “Assumptions” column, OWF, BDDH, LWE, and 1D-SIS mean one-way function,
bilinear Diffie-Hellman, learning with errors, and one-dimensional short integer solu-
tion assumptions, respectively. In “Model” column, Std means the standard model. In
“Misc” column, key-hom means key-homomorphic property.

Reference Function # keys Eval.O Tool Assumptions Model Misc

[16] puncturea N/A N/A GGM OWF Std

[16] left/right multi � pairing BDDH ROM

[35] puncturea N/A N/A GGM OWF Std

[10] puncturea N/A N/A GGM OWF Std

[8] prefix-fixing multi � lattice LWE Std key-hom

[15] circuit single � lattice LWE, 1D-SIS Std

[11] sub-match single no group DDH Std

[28] sub-match single no group L-power DDH Std

[28] sub-match single no group Φ-hiding Std

Ours NC1 single � group DDH, L-DDHI Std
a More precisely, they consider slightly different functions, but we write just “puncture”
for simplicity since their constructions are based on the GGM PRF. See their papers
for details.

10 Adversaries can decide a function for which it makes the key query at any time.

548 N. Attrapadung et al.

Table 2. Comparison of private CPRFs (we omit constructions based on multilinear
maps and IO). See Table 1 for terms.

Reference Predicate # keys Eval.O Tool Assumptions Model

[35] puncturea N/A N/A GGM OWF Std

[12] puncture N/A N/A lattice LWE, 1D-SIS Std

[18] bit-fixing single � lattice LWE Std

[18] NC1 single � lattice LWE Std

[14] circuit single � lattice LWE Std

[37] circuit single � lattice LWE, 1D-SIS Std

Ours bit-fixing single � group DDH Std
a Same as in Table 1.

1.3 Technical Overview

In this section, we provide an overview of our construction ideas. We ignore
many subtle issues in this section and focus on the essential ideas for simplicity.

Basic construction satisfying no-evaluation security. To illustrate our ideas in
a modular manner, we start with a no-evaluation secure CPRF for NC1, that
is, adversaries do not have access to the evaluation oracle. We denote the PRF
by PRFNE. It turns out that even in this simple setting, it is non-trivial to
construct a CPRF for NC1 in traditional groups (or bilinear groups) since known
constructions use some sort of “fully homomorphic” properties of lattices or
multilinear maps, both of which are not available in traditional groups. In the
following, let λ be the security parameter.

The first challenge is how to implement an NC1 circuit constraint in a key.
Our idea is to encode an NC1 circuit f11 into a bit string f = (f1, . . . , fz) ∈
{0, 1}z and then embed this into a secret key. When evaluating a PRF value on
input x = (x1, . . . , xn) ∈ {0, 1}n, we will “homomorphically” evaluate U(·, x) on
the secret key, where U(·, ·) is a universal circuit that outputs U(f, x) = f(x) on
input (f, x). To make the representation of the universal circuit U(·, ·) compatible
with our algebraic setting, we regard U(·, ·) as a degree-D polynomial of the vari-
ables {fi} and {xj}, such that D is some fixed polynomial of λ.12 Furthermore,
we extend the input space of U(·, ·) to be non-binary, where the computation
is done over Zp using the polynomial representation of U(·, ·). Specifically, we
allow the input of the form ((b1, . . . , bz), x) ∈ Z

z
p × {0, 1}n.

Now, we give a more detailed description of PRFNE. A master secret key msk

of PRFNE is of the form (b1, . . . , bz, α, g), where bi
R← Zp for each i ∈ [z] and

11 Here, we identify a circuit that computes a function f with f itself.
12 We can construct a universal circuit U whose depth is only constant times deeper

than that of f by the result of Cook and Hoover [20]. It is well known that an NC1

circuit can be represented by a polynomial with polynomial degree (for example,
this fact is used for functional encryption for NC1 [31]).

Constrained PRFs for NC1 in Traditional Groups 549

α
R← Z

∗
p, and g is a generator of a traditional group H of order p. (We will

turn to the explanation on this group H later in this subsection.) The evalua-
tion algorithm of PRFNE outputs gx′/α, where x′ = U((b1, . . . , bz), x) ∈ Zp. To
compute a constrained key skf of an NC1 circuit f , we set b′

i := (bi − fi)α−1.
The constrained key is skf = (f, b′

1, . . . , b
′
z, g, gα, gα2

, . . . , gαD−1
).

We then look closer at why this construction achieves the constraint defined
by the NC1 circuit f . When we compute x′ := U((b1, . . . , bz), x) by using bi =
α · b′

i + fi, we can write the computation of U in the following way:

x′ = U((α · b′
1 + f1, . . . , α · b′

z + fz), x) = f(x) +
D∑

j=1

cjα
j ,

where the coefficients {cj}j are efficiently computable from the descriptions of U
and f , {b′

i}i, and x since the degree D is polynomial in the security parameter.
This can be seen by observing that U((α · b′

1 + f1, . . . , α · b′
z + fz), x) should

be equal to f(x) when α = 0 since we have U((f1, . . . , fz), x) = f(x) by the
definition of a universal circuit.

– If f(x) = 0, then we can compute gx′/α = gf(x)/α+
∑D−1

j=0 cjαj

since the
gf(x)/α part disappears and the remaining part is computable from skf =
(f, b′

1, . . . , b
′
z, g, gα, . . . , gαD−1

) and x.
– If f(x) = 1, then gx′/α = gf(x)/α+

∑D−1
j=0 cjαj

looks random since g1/α looks
random even if (g, gα, . . . , gαD−1

) is given, due to the (D − 1)-DDHI assump-
tion in H.

This is a high-level intuition for why PRFNE for NC1 is no-evaluation secure.
This CPRF PRFNE is our base construction, and the idea behind our construction
here is inspired by the affine partitioning function used in the recent construction
of a verifiable random function by Yamada [38].

On the other hand, this construction can be broken by making only one
evaluation query: Suppose that x �= x̂ satisfy f(x) = f(x̂) = 1. Then we can
write PRFNE(msk, x) = g1/α+

∑D−1
j=0 cjαj

and PRFNE(msk, x̂) = g1/α+
∑D−1

j=0 ĉjαj

by
using {cj}j and {ĉj}j that are efficiently computable by an adversary. Then we
have PRFNE(msk, x̂) = PRFNE(msk, x) ·g

∑D−1
j=0 (ĉj−cj)α

j

. Therefore if an adversary
obtains PRFNE(msk, x), then it can efficiently compute PRFNE(msk, x̂) and break
the security of the PRF.

Single-key secure construction in the ROM. To achieve security against adver-
saries making a-priori unbounded polynomially many evaluation queries (i.e.,
the number of queries is polynomial, but not fixed in advance), we consider
using a random oracle as an intermediate step. (This construction is denoted
by PRFrom.) PRFrom is the same as PRFNE except that an output is now com-
puted by H(gx′/α), instead of gx′/α, where H : H → {0, 1}n′

is a cryptographic
hash function. In the ROM where H is modeled as a random oracle, adversaries
make hash queries and obtain outputs of the hash function H. If f(x) = 1, then

550 N. Attrapadung et al.

an adversary cannot compute gx′/α due to the no-evaluation security, and thus
H(gx′/α) seems uniformly random from the view of the adversary. Therefore
evaluation queries from an adversary can be answered with uniformly random
strings, and the adversary cannot notice whether this is a correct behavior of
the evaluation oracle as long as it does not find a collision (x1, x2) such that
gx′

1/α = gx′
2/α where x′

i = U((b1, . . . , bz), xi). Our real construction is slightly
modified from the above construction so that such a collision exists only with
negligible probability (see Sect. 4.1 for the detail).

The second challenge is how to remove the random oracle and achieve security
against a-priori unboundedpolynomially evaluation queries in the standardmodel.

Replacing a random oracle with a correlated-input secure hash function. We
observe that we do not need the full power of random oracles to prove the secu-
rity of CPRFs. Specifically, we can use a correlated-input secure hash function
(CIH) [5,29,30,34]13, instead of random oracles.

Here, we briefly recall the definition of a CIH whose definition is associated
with a class of functions Ψ . At the beginning, the challenger chooses the chal-
lenge bit coin

R← {0, 1}, a function description CIH,14 and a random element r
from the domain of CIH. The adversary is given CIH and access to an oracle
that, upon a query ψi ∈ Ψ from the adversary, answers CIH(ψi(r)) if coin = 1;
otherwise the oracle answers the query with RF(ψi(r)), where RF is a truly ran-
dom function. If it is hard for adversaries to distinguish the case coin = 1 from
the case coin = 0, we say that CIH is correlated-input pseudorandom for Ψ (or
simply, a CIH for Ψ).15

If there exists a CIH for group-induced functions ψΔ : H → H such that
Δ ∈ H and ψΔ(y) := y · Δ (denoted by CIH0) where · is the group operation
of H, then CIH0(PRFNE(msk, x)) is a secure CPRF. This can be seen as follows:
For x satisfying f(x) = 1, PRFNE(msk, x) can be written as g1/α · g

∑D−1
j=0 cjαj

where g1/α is pseudorandom and g
∑D−1

j=0 cjαj

is efficiently computable from the
view of an adversary as discussed above. By applying the security of a CIH by
setting y := g1/α and Δ = g

∑D−1
j=0 cjαj

, we can see that CIH0(PRFNE(msk, x))
is computationally indistinguishable from RF(PRFNE(msk, x)). This is computa-
tionally indistinguishable from a random function as long as PRFNE(msk, x) has
no collision, and the actual construction of PRFNE(msk, x) is made collision-free
as mentioned in the previous paragraph.

13 Several works defined similar notions in different names such as related-key security.
We use the name “correlated-input security” since we think it is the most suitable
name for our usage.

14 In the formal security definition, the function is parameterized by a public param-
eter generated by some setup procedure. We ignore the public parameter in the
explanation below for simplicity. See Sect. 2.2 for the rigorous security definition for
CIHs.

15 The definition of CIHs in this paper can be seen as a hybrid of correlated-input
pseudorandom by Goyal et al. [30] and RKA-PRG by Bellare and Cash [5]. See
Sect. 2.2 for the formal definition.

Constrained PRFs for NC1 in Traditional Groups 551

However, there is one subtle issue: The only known instantiation of CIH for
group induced functions which satisfies our security requirements is the CIH
based on the DDH assumption by Bellare and Cash [5] (denoted by CIHBC). In
CIHBC, we consider the m-dimensional, component-wise group-induced functions
Ψg-indc

m := {ψ�a | �a ∈ (Z∗
q)

m}, where ψ�a : (Z∗
q)

m → (Z∗
q)

m is defined by ψ�a(�r) :=
�a��r and � denotes the component-wise group operation on Z

∗
q . Here, the domain

of CIHBC is not compatible with the range of PRFNE (the output is gx′/αi ∈ H).
One might think that m-folded parallel running of PRFNE on H := Z

∗
q works, but

this is not the case. This is because if H := Z
∗
q , then the L-DDHI assumption

can be easily broken by computing the Jacobi symbol.
We observe that the attack based on the Jacobi symbol does not work if we

consider the group of quadratic residues modulo q, denoted by QRq instead of Z∗
q ,

and it is reasonable to assume the L-DDHI assumption holds on QRq. However,
if we set H := QRq, then we cannot simply use the security of CIHBC since it is not
obvious if the security of CIHBC still holds when we restrict the domain of CIHBC

to QR
m
q . We resolve the issue by proving that the CIH obtained by restricting

the domain of CIHBC to QR
m
q (denoted by CIH

B̃C
) is also secure as a CIH for

component-wise group operations on QR
m
q under the DDH assumption on a

group of an order p = q−1
2 if p is a prime. See Sect. 3 for more details of CIH

B̃C
.

We are now ready to explain our CRPF PRF for NC1. It uses multiple
instances of PRFNE and apply a CIH for m-dimensional component-wise group-
induced functions to the outputs from those instances. That is, we define

PRFNC1(msk, x) := CIH
B̃C

(
PRFNE(msk1, x), . . . ,PRFNE(mskm, x)

)
.

Now, we look closer at why correlated-input pseudorandomness helps us
achieve security in the presence of a-priori unbounded polynomially many eval-
uation queries. In PRFNE, when the inputs x with f(x) = 1 are used, we can
view its output as consisting of two separate parts. Specifically, we can write
gx′/α = gf(x)/α+

∑D−1
j=0 cjαj

= Aux(msk) · SEval(skf , x) if we define Aux(msk) :=
g1/α and SEval(skf , x) := g

∑D−1
j=0 cjαj

(where SEval stands for “semi”-evaluation).
The first part is computable only from msk, and the second part is computable
from skf and x. Thanks to the (D − 1)-DDHI assumption, it is now easy to see
that Aux(msk) is indistinguishable from a random element even if skf is given.
Therefore, it holds that

PRFNC1(msk, x) ≈c CIHB̃C

(
r1 · SEval(skf,1, x), . . . , rm · SEval(skf,m, x)

)
,

where ri
R← H for all i ∈ [m] and ≈c denotes computational indistinguishability.

Furthermore, skf,i denotes the secret key associated to f generated from mski.
(Namely, it corresponds to the i-th instance.) Here, φi := SEval(skf,i, x) ∈ H

are adversarially chosen correlated values and fall in the component-wise group-
induced functions Ψg-indc

m due to (φ1, . . . , φm) ∈ H
m. Therefore, by applying the

correlated-input pseudorandomness of CIH
B̃C

, we obtain

CIH
B̃C

(r1 · φ1, . . . , rm · φm) ≈c RF(r1 · φ1, . . . , rm · φm).

552 N. Attrapadung et al.

As long as adversaries do not find a collision (x1, x2) such that (SEval(skf,1, x1),
. . . ,SEval(skf,m, x1)) = (SEval(skf,1, x2), . . . ,SEval(skf,m, x2)), PRFNC1(msk, ·)
is pseudorandom since RF is a truly random function. It is not difficult to see
that a collision is hard to find by the universality of the modified PRFNE (see
Lemma 8 for the detail). Therefore, we can prove the pseudorandomness of
PRF against a-priori unbounded polynomially many evaluation queries in the
standard model by using the security of CIH for (m-dimensional, component-
wise) group-induced functions.

How to achieve private constraint. Here, we give a brief explanation on how
our single-key private CPRF for bit-fixing functions is constructed. The basic
strategy is the same as that of our CPRFs for NC1. That is, we firstly construct a
private bit-fixing CPRF in the ROM, and then convert it into a private bit-fixing
CPRF in the standard model via a CIH for an appropriate function class.

Our single-key private bit-fixing CPRF in the ROM is very simple. This
is slightly different from what we present in the full version of this paper [3],
but we stick to the following construction in this section since it is consis-
tent with the standard model construction in Sect. 5.1. A master secret key
is msk := {si,b}i∈[n],b∈{0,1} and a PRF output for input x is H(

∑n
i=1 si,xi

) where
H is a (standard) hash function. For convenience, we define PRFbf-NE(msk, x) :=∑n

i=1 si,xi
. A constrained key for c ∈ {0, 1, ∗}n is {ti,b}i∈[n],b∈{0,1} where

ti,b := si,b if ci = ∗ or ci = b; otherwise ti,b
R← Zp. If an input does not match

the constraint c, then the sum includes completely unrelated values and we
cannot compute the correct output. Adversaries are given just random values
by the random oracle. Moreover, adversaries cannot distinguish two different
constraints as long as a challenge input does not satisfy the constraints since
both si,b and ti,b are uniformly random values in Zp. This construction satisfies
adaptive single-key privacy in the random oracle model, without relying on any
complexity assumption.

Now we replace the cryptographic hash function (random oracle) H with a
CIH CIHaff for affine functions Φaff = {φ�u,�v : Z

m
p → Z

m
p } where �u ∈ (Z∗

p)
m,

�v ∈ Z
m
p , and φ�u,�v(�x) := �u � �x + �v where � is component-wise multiplication in

Zp. Our private bit-fixing CPRF is defined by

PRFBF(msk, x) := CIHaff

(
PRFbf-NE(msk1, x), . . . ,PRFbf-NE(mskm, x)

)
.

A constrained key skc consists of constrained keys for c with respect to mskj , for
all j ∈ [m]. It is easy to see that the correctness holds. For the security, we set
ti,b,j := si,b,j − αj for ci �= ∗ and b = 1 − ci where αj

R← Zp. Then, we can write
∑n

i=1 si,xi,j = uαj+vj for some u ∈ [n] (especially u �= 0) where vj =
∑n

i=1 ti,xi,j

for an evaluation query x from an adversary, since x is not allowed to satisfy
the constraint. For two different constraints, the adversary cannot distinguish
which constraint is used in a constrained key (that is, si,b,j ≈c ti,b,j + αj) since
ti,b,j is uniformly random. Here, αj ’s are uniformly random and u and vj are
adversarially chosen values. It is easy to see that this falls into the class of affine

Constrained PRFs for NC1 in Traditional Groups 553

functions. Thus, we can use the security of the CIH CIHaff for affine functions,
and obtain

CIHaff(uα1 + v1, . . . , uαm + vm) ≈c RF(uα1 + v1, . . . , uαm + vm).

As long as a collision of (PRFbf-NE(msk1, ·), . . . ,PRFbf-NE(mskm, ·) is not found,
RF(uα1 + v1, . . . , uαm + vm) is indistinguishable from a random value. Further-
more, it is not difficult to show that the condition holds by the universality of
Ft(x) := (uα1 + v1, . . . , uαm + vm). Therefore, we can prove the security of our
private bit-fixing CPRF. See the full version of this paper [3] for the details.

1.4 Other Related Works

While we focus on (private) CPRFs without IO and multilinear maps, many
expressive (private) CPRFs have been proposed based on IO or multilinear
maps: collusion-resistant CPRFs for circuit based on multilinear maps [8,16],
adaptively secure CPRFs based on IO [32,33], collusion-resistant CPRFs for
Turing machines based on (differing-input) IO [2,23], collusion-resistant private
CPRFs for circuits based on IO [13].

Cohen,Goldwasser, and Vaikuntanathan showed a connection between CPRFs
for some class of functions and computational learning theory [19]. See the papers
and references therein for more details.

Organization. The rest of the paper is organized as follows. After introducing
minimum notations, security definitions, and building blocks in Sect. 2, we present
our correlated-input secure hash function in Sect. 3, our CPRFs for NC1 and its
security proofs in Sect. 4, and our private bit-fixing CPRF in Sect. 5. Many materi-
als are omitted in this extended abstract due to the space limit. See the full version
for all details [3].

2 Preliminaries

In this section, we review some notations and definitions, tools, and crypto-
graphic primitives.

Notations. We denote by “poly(·)” an unspecified integer-valued positive poly-
nomial of λ and by “negl(λ)” an unspecified negligible function of λ. For sets D
and R, “Func(D,R)” denotes the set of all functions with domain D and range R.

Group generator. For convenience, we introduce the notion of a “group gener-
ator”. We say that a PPT algorithm GGen is a group generator, if it takes a
security parameter 1λ as input and outputs a “group description” G := (G, p)
where G is a group with prime order p = Ω(2λ), from which one can efficiently
sample a generator uniformly at random.

554 N. Attrapadung et al.

2.1 Constrained Pseudorandom Function

Here, we give the syntax and security definitions for a constrained pseudorandom
function (CPRF). For clarity, we will define a CPRF as a primitive that has
a public parameter. However, this treatment is compatible with the standard
syntax in which there is no public parameter, because it can always be contained
as part of a master secret key and constrained secret keys.

Syntax. Let F = {Fλ,k}λ,k∈N be a class of functions16 where each Fλ,k is a set of
functions with domain {0, 1}k and range {0, 1}, and the description size (when
represented by a circuit) of every function in Fλ,k is bounded by poly(λ, k).

A CPRF for F consists of the five PPT algorithms (Setup,KeyGen,Eval,
Constrain,CEval) where (Setup,KeyGen,Eval) constitutes a PRF (where a key
msk output by KeyGen is called a master secret key), and the last two algorithms
Constrain and CEval have the following interfaces:

Constrain(pp,msk, f) R→ skf : This is the constraining algorithm that takes as
input a public parameter pp, a master secret key msk, and a function f ∈ Fλ,n,
where n = n(λ) = poly(λ) is the input-length specified by pp. Then, it outputs
a constrained key skf .

CEval(pp, skf , x) =: y: This is the deterministic constrained evaluation algorithm
that takes a public parameter pp, a constrained key skf , and an element
x ∈ {0, 1}n as input, and outputs an element y ∈ R.

As in an ordinary PRF, whenever clear from the context, we will drop pp from
the inputs of Eval, Constrain, and CEval, and the executions of them are denoted
as “Eval(msk, x)”, “Constrain(msk, f)”, and “CEval(skf , x)”, respectively.

Correctness. For correctness of a CPRF for a function class F = {Fλ,k}λ,k∈N,
we require that for all λ ∈ N, pp R← Setup(1λ) (which specifies the input length
n = n(λ) = poly(λ)), msk

R← KeyGen(pp), functions f ∈ Fλ,n, and inputs x ∈
{0, 1}n satisfying f(x) = 0, we have CEval(Constrain(msk, f), x) = Eval(msk, x).

Remark 1. We note that in our definition, the role of the constraining functions
f is “reversed” from that in the original definition [16], in the sense that cor-
rectness (i.e. the equivalence Eval(msk, ·) = CEval(skf , ·)) is required for inputs
x with f(x) = 0, while it is required for inputs x with f(x) = 1 in the original
definition [16].

Security. Here, we give the security definitions for a CPRF. We only consider
CPRFs that are secure in the presence of a single constrained key, for which we
consider two flavors of security: selective single-key security and adaptive single-
key security. The former notion only captures security against adversaries A that

16 In this paper, a “class of functions” is a set of “sets of functions”. Each Fλ,k in F
considered for a CPRF is a set of functions parameterized by a security parameter
λ and an input-length k.

Constrained PRFs for NC1 in Traditional Groups 555

decide the constraining function f (and the constrained key skf is given to A)
before seeing any evaluation result of the CPRF, while the latter notion has no
such restriction and captures security against adversaries that may decide the
constraining function f at any time. Also, in Sect. 4, as a security notion for a
CPRF used as a building block, we will use the notion of no-evaluation security,
which captures security against adversaries that have no access to the evaluation
oracle. The definition below reflects these differences.

Fig. 1. The experiment for defining single-key security for a CPRF.

Formally, for a CPRF CPRF = (Setup,KeyGen,Eval,Constrain,CEval) (with
input-length n = n(λ)) for a function class F = {Fλ,k}λ,k∈N and an adversary
A = (A1,A2), we define the single-key security experiment ExptcprfCPRF,F,A(λ) as
described in Fig. 1 (left).

In the security experiment, the adversary A’s single constraining query is
captured by the function f included in the first-stage algorithm A1’s output.
Furthermore, A1 and A2 have access to the challenge oracle OChal(·) and the
evaluation oracle Eval(msk, ·), where the former oracle takes x∗ ∈ {0, 1}n as
input, and returns either the actual evaluation result Eval(msk, x∗) or the output
RF(x∗) of a random function, depending on the challenge bit coin ∈ {0, 1}.

We say that an adversary A = (A1,A2) in the security experiment
ExptcprfCPRF,F,n,A(λ) is admissible if A1 and A2 are PPT and respect the following
restrictions:

– f ∈ Fλ,n.
– A1 and A2 never make the same query twice.
– All challenge queries x∗ made by A1 and A2 satisfy f(x∗) = 1, and are distinct

from any of the evaluation queries x that they submit to the evaluation oracle
Eval(msk, ·).

Furthermore, we say that A is selectively admissible if, in addition to the above
restrictions, A1 makes no challenge or evaluation queries. Finally, we say that A

556 N. Attrapadung et al.

is a no-evaluation adversary if A1 and A2 are PPT, and they do not make any
queries, except that A2 is allowed to make only a single challenge query x∗ such
that f(x∗) = 1.

Definition 1 (Security of CPRF). We say that a CPRF CPRF for a function
class F is adaptively single-key secure, if for all admissible adversaries A, the
advantage Advcprf

CPRF,F,A(λ) := 2 · |Pr[ExptcprfCPRF,F,A(λ) = 1] − 1/2| is negligible.
We define selective single-key security (resp. no-evaluation security) of CPRF

analogously, by replacing the phrase “all admissible adversaries A” in the above
definition with “all selectively admissible adversaries A” (resp. “all no-evaluation
adversaries A”).

Remark 2. As noted by Boneh and Waters [16], without loss of generality we can
assume that A makes a challenge query only once, because security for a single
challenge query can be shown to imply security for multiple challenge queries
via a standard hybrid argument. Hence, in the rest of the paper we only use the
security experiment with a single challenge query for simplicity.

Remark 3. In some existing works [16,23,24], the term “selective” is used to
mean that A has to make a challenge query at the beginning of the security
experiment. On the other hand, in this paper, “selective” means that A has to
make a constraining query at the beginning of the security experiment, which is
the same definitional approach by Brakerski and Vaikuntanathan [15].

2.2 Correlated-Input Secure Hash Function

Here, we review the definition of a correlated-input secure hash function (CIH)
that was originally introduced in Goyal et al. [30].

Syntactically, a CIH is an efficiently computable deterministic (hash) function
that has a public parameter pp that is generated by using some setup procedure,
and we refer to such a pair of function and setup procedure as a publicly param-
eterized function. In this paper, we will consider a CIH that is associated with
a group generator GGen. Thus, we model its setup algorithm by a “parameter
generation” algorithm PrmGen that takes a group description G generated by
GGen as input, and outputs a public parameter pp.

Formally, a publicly parameterized function CIH with respect to a group
generator GGen, consists of the two PPT algorithms (PrmGen,Eval) with the
following interfaces:

PrmGen(G) R→ pp: This is the parameter generation algorithm that takes as
input a group description G output by GGen(1λ). Then, it outputs a pub-
lic parameter pp, where we assume that pp contains G and the descriptions
of the domain D and the range R.

Eval(pp, x) =: y: This is the deterministic evaluation algorithm that takes a pub-
lic parameter pp and an element x ∈ D as input, and outputs an element
y ∈ R.

Constrained PRFs for NC1 in Traditional Groups 557

When there is no confusion, we will abuse the notation and denote by
“CIH(pp, x)” to mean the execution of Eval(pp, x). Furthermore, when pp is clear
from the context, we may sometimes drop pp from the input of CIH, and treat
as if it is a single function (e.g. “CIH : D → R”) for more intuitive descriptions.

Security of CIHs. The security definition of a CIH that we use in this paper
is a slightly generalized version of correlated-input pseudorandomness [30] (see
Remark 4 for the differences from related works).

Let GGen be a group generator, and CIH = (PrmGen,Eval) be a publicly
parameterized function with respect to GGen. Let F = {Fλ,z}λ∈N,z∈{0,1}∗ be a
class of functions, where each Fλ,z is a set of functions parameterized by λ ∈ N

and z ∈ {0, 1}∗,17 and it is required that for all λ ∈ N, if G R← GGen(1λ) and
pp

R← PrmGen(G), then the domain and the range of functions in Fλ,pp are
identical to the domain of Eval(pp, ·).

For the publicly parameterized function CIH, the group generator GGen,
the function class F , and an adversary A, we define the security experiment
ExptcihCIH,F,A(λ) as described in Fig. 2.

Fig. 2. Left: The security experiment for a CIH. Right: The definition of the oracle
O in the experiment.

Note that in the experiment, the oracle O(·) that A has access to, takes
f ∈ Fλ,pp as input, and returns either the evaluation result CIH(pp, f(x)) or
the output RF(f(x)) of the random function RF, depending on the challenge bit
coin ∈ {0, 1}.

Definition 2 (Security of CIH). Let CIH be a publicly parameterized function
with respect to a group generator GGen, and let F be a function class. We say that
CIH is a CIH for F (or, F-CIH) with respect to GGen, if for all PPT adversaries
A, the advantage Advcih

CIH,GGen,F,A(λ) := 2 · |Pr[ExptcihCIH,GGen,F,A(λ) = 1] − 1/2| is
negligible.
17 For a class of functions F considered for CIHs, we allow each member of F to be

parameterized by not only λ ∈ N but also z ∈ {0, 1}∗. The role of z is to associate
the functions with a public parameter pp generated by Setup(1λ). See the security
experiment in Fig. 2.

558 N. Attrapadung et al.

Remark 4 (On the difference between CIHs and related-key secure PRFs (or
PRGs)). This remark provides additional information for readers who are famil-
iar with related primitives. We note that Definition 2 is essentially the same as
the definition of a related-key secure pseudorandom generator (RKA-PRG) by
Bellare and Cash [5, Sect. 6, Eq. (27)]. A very minor difference is that we explic-
itly consider public parameters in the syntax. An RKA-PRG can be seen as a
generalized version of correlated-input pseudorandomness by Goyal, O’Neill, and
Rao [30, Definition 7]. If A in the security of a CIH must declare functions that
will be queried to the oracle at the beginning of the experiment (i.e., selective
security) and RF(f(x)) is replaced by a uniformly random element in R, then
it is the same as correlated-input pseudorandomness. The reason why we select
the name “CIH” is that it is well-suited for our usage.

Moreover, an RKA-PRF implies an RKA-PRG18. Therefore, the RKA-PRF
(or RKA-PRG) by Bellare and Cash [5, Theorem 4.2] and the RKA-PRF by
Abdalla, Benhamouda, Passelègue, and Paterson [1, Theorem 7] are secure CIHs
under our definition. (Of course, supported function classes are the same as
theirs.)

In Sects. 3 and 5, we introduce two concrete function classes for CIHs used
as building blocks in our proposed CPRFs.

3 Building Block: Correlated-Input Secure Hash

In this section, we construct a CIH for group-induced functions on QR
n
q , Its secu-

rity under the DDH assumption is proven in the full version [3]. The definition
of group-induced functions is given below.

Quadratic Residuosity groups. A safe prime q is a prime such that q = 2p+1 for
some p which is also a prime. We denote by QRq the subgroup of all quadratic
residues in Z

∗
q . From an elementary result, we have that QRq is a group of prime

order p. We denote by SPGGen(1λ) a group generator that outputs a group
description (G, q) where q is a safe prime and q = Ω(2λ).

CIH for group-induced functions. The notion of (component-wise) group-induced
functions with respect to a group generator GGen is a function class Ψg-indc =
{Ψg-indc

λ,z }λ∈N,z∈{0,1}∗ satisfying the following property for all (λ, z) ∈ N×{0, 1}∗:
If z can be parsed as a tuple (G, n, z′) so that G = (G, q) is a group description
output by GGen(1λ), n ∈ N, and z′ ∈ {0, 1}∗, then we have Ψg-indc

λ,z = {ψ�a :
(Z∗

q)
n → (Z∗

q)
n | �a ∈ (Z∗

q)
n}, where for each �a ∈ (Z∗

q)
n, ψ�a(�x) := �a � �x ∈ (Z∗

q)
n

and � denotes the component-wise multiplication in Z
∗
q .

18 If we fix an input of a PRF and view its key as a seed of a PRG, then the former
can be seen as a latter.

Constrained PRFs for NC1 in Traditional Groups 559

Naor-Reingold PRF. We recall the Naor-Reingold PRF [36] denoted by NR. The
setup takes 1λ as input and outputs pp = (G, g, n) where G is a group of prime
order q output from GGen(1λ). The key msk = {xi}n

i=0 is chosen as xi
R← Z

∗
q ,

and the evaluation of the function on input (u1, . . . , un) ∈ {0, 1}n is defined as
NR((x0, . . . , xn), (u1, . . . , un)) := gx0

∏n
i=1 x

ui
i . Our PRF used in our CIH, denoted

by NR′, is a variant of NR. NR′ is defined as NR, except that msk = {xi}n
i=0 is

chosen as xi
R← QRq, instead of xi

R← Z
∗
q . In particular, the function evaluation

of NR′ matches NR, but its domain is restricted to QR
n+1
q × {0, 1}n.

CIH Construction. We are now ready to describe our CIH for the (component-
wise) group-induced functions with respect to SPGGen. It can be considered as a
variant of the hash function by Bellare and Cash [5], denoted as CIHBC, which we
recall as follows. The public parameter consists of the description of G, which is a
cyclic group of order q, output from the group generator GGen(1λ), a generator
g of G, and a collision-resistant hash function Hcr : G

n+1 → {0, 1}n−2. The
evaluation is defined as follows.

The function is CIHBC : (Z∗
q)

n+1 −→ G and

CIHBC(�x) := NR
(

�x, 11‖Hcr

(
NR(�x, e0), ...,NR(�x, en)

))

where e0 = 0n and ek = 0k−1‖1‖0n−k for k ∈ [n].
Our variant of CIH is exactly the same as CIHBC but the domain is restricted.

In more detail, our CIH is operated on QR
n+1
q → G with exactly the same evalu-

ation as CIHBC. Note that due to our restriction on the domain, the NR evaluation
inside the function is thus restricted to NR′. We denote this CIH as CIH

B̃C
.

Theorem 1. If the DDH assumption holds with respect to SPGGen and Hcr is
a CRHF, then CIH

B̃C
is a secure CIH for the (component-wise) group-induced

functions with respect to SPGGen.

The proof of Theorem 1 is given in the full version [3].

4 CPRF for NC1 Circuits

In this section, we first show a construction of a CPRF for NC1 circuits with
no-evaluation security, where an adversary is not allowed to make evaluation
queries (Sect. 4.1). We then show that by combining the scheme with our CIH
in Sect. 3, we can upgrade the security to the selective single-key security, where
the adversary is allowed to make evaluation queries unbounded times after it is
given the secret key (Sect. 4.2). We also show that the adaptive security can be
achieved in the random oracle model in the full version [3].

560 N. Attrapadung et al.

4.1 Our Basic Constrained PRF

Here, we give a construction of a CPRF for NC1 with no-evaluation security.
We then prove that the scheme has additional properties that we call semi-
evaluability and universality. These properties will be used in security proofs of
our selectively/adaptively secure CPRF for NC1 in the standard/random-oracle
model.

Notations. In the following, we will sometimes abuse notation and evaluate a
boolean circuit C(·) : {0, 1}� → {0, 1} on input y ∈ R

� for some ring R. The
evaluation is done by regarding C(·) as the arithmetic circuit whose AND gates
(y1, y2)
→ y1∧y2 being changed to the multiplication gates (y1, y2)
→ y1y2, NOT
gates y
→ ¬y changed to the gates y
→ 1−y, and the OR gates (y1, y2)
→ y1∨y2
changed to the gates (y1, y2)
→ y1 + y2 − y1y2. It is easy to observe that if the
input is confined within {0, 1}� ⊆ R, the evaluation of the arithmetized version
of C(·) equals to that of the binary version. (Here, we identify ring elements
0, 1 ∈ R with the binary bit.) In that way, we can regard C(·) as an �-variate
polynomial over R. The degree of C(·) is defined as the maximum of the total
degree of all the polynomials that appear during the computation.

Class of Functions. Let n = poly(λ), z(n) = poly(n), and d(n) = O(log n) be
parameters. The function class that will be dealt with by the scheme is denoted
by FNC1

= {FNC1

λ,n(λ)}λ∈N, where FNC1

λ,n consists of (Boolean) circuits f whose
input size is n(λ), the description size is z(n), and the depth is d(n). We can set
the parameters arbitrarily large as long as they do not violate the asymptotic
bounds above, and thus the function class corresponds to NC1 circuits with
bounded size. The following lemma will be helpful when describing our scheme.

Lemma 1. Let n = poly(λ). There exists a family of universal circuit {Un}n∈N

of degree D(λ) = poly(λ) such that Un(f, x) = f(x) for any f ∈ FNC1

λ,n(λ) and
x ∈ {0, 1}n.

Proof. Due to the result by Cook and Hoover [20], there exists a universal circuit
Un(·) of depth O(d) = O(log n) and size poly(n, z, d) = poly(λ). Furthermore,
the degree of Un(·) is bounded by 2O(d) = poly(n) = poly(λ). �

Construction. Let FNC1
= {FNC1

λ,k }λ,k∈N be the family of the circuit defined as
above and {Un}n∈N be the family of the universal circuit defined in Lemma 1. Let
the parameter D(λ) be the degree of the universal circuit (chosen as specified in
Lemma 1). Since we will fix n in the construction, we drop the subscripts and just
denote FNC1

and U in the following. We also let HGen be any group generator.
The description of our CPRF CPRFNE = (Setup,KeyGen,Eval,Constrain,CEval)
is given below.

Constrained PRFs for NC1 in Traditional Groups 561

Setup(1λ): It obtains the group description H = (H, p) by running H R←
HGen(1λ). It then outputs the public parameter pp := H.19

KeyGen(pp): It chooses (b1, ..., bz)
R← Z

z
p, α

R← Z
∗
p, and g, h1, . . . , hn

R← H. Then
it outputs msk := (b1, . . . , bz, α, g, h1, . . . , hn).

Eval(msk, x): Given input x ∈ {0, 1}n, it computes and outputs

X := gU((b1,...,bz),(x1,...,xn))/α ·
∏

i∈[n]

hxi
i .

Constrain(msk, f): It first parses (b1, ..., bz, α, g, h1, . . . , hn) ← msk. Then it sets

b′
i := (bi − fi)α−1 mod p for i ∈ [z]

where fi is the i-th bit of the binary representation of f . It then outputs

skf := (f, b′
1, . . . , b

′
z, g, gα, . . . , gαD−1

, h1, . . . , hn).

CEval(skf , x): It parses (f, b′
1, . . . , b

′
z, g, gα, . . . , gαD−1

, h1, . . . , hn) ← skf . As
proved in Lemma 2 below, it is possible to efficiently compute {ci}i∈[D] that
satisfies

U((b1, . . . , bz), (x1, . . . , xn)) = f(x) +
D∑

i=1

ciα
i (1)

from skf and x. If f(x) = 0, it computes X :=
∏D

i=1(g
αi−1

)ci · ∏n
j=1 h

xj

j and
outputs X. Otherwise it outputs ⊥.

Correctness and semi-evaluability. In order to prove the correctness, it
suffices to show the following lemma.

Lemma 2. Given skf , x, one can efficiently compute {ci}i∈[D] satisfying Eq.
(1).

Proof. The algorithm evaluates the circuit U(·) on input (b′
1Z + f1, . . . , b

′
zZ +

fz, x1, . . . , xn) to obtain {ci}i∈{0,1,...,D} such that

U(b′
1Z + f1, . . . , b

′
zZ + fz, x1, . . . , xn) = c0 +

∑

i∈[D]

ciZ
i (2)

where Z denotes the indeterminant of the polynomial ring Zp[Z]. Note that
the computation is done over the ring Zp[Z] and can be efficiently performed,
since we have D = poly(λ). We prove that {ci}i∈[D] actually satisfies Eq. (1).
To see this, we first observe that by setting Z = 0 in Eq. (2), we obtain c0 =
U(f1, . . . , fz, x1 . . . , xn) = f(x). To conclude, we further observe that by setting
Z = α in Eq. (2), we recover Eq. (1), since we have bj = b′

jα+fj by the definition
of b′

j . This completes the proof of the lemma. �
19 Here, we intentionally use the symbol H and HGen instead of G and GGen. Looking

ahead, in Sect. 4.2, the latter symbols will be used to represent yet another group of
order q and corresponding group generator. There, we should require H to be QRq.

562 N. Attrapadung et al.

The lemma implies an additional property of the CPRF that we call semi-
evaluability, which will be useful in our security proof. We formally state it
in the following lemma:

Lemma 3. There exist deterministic and efficient algorithms SEval and Aux
satisfying the following property. For all FNC1

and x such that f(x) = 1 and for
all possible msk

R← KeyGen(pp), skf
R← Constrain(msk, f), we have

SEval(skf , x) · Aux(msk) = Eval(msk, x),

where “·” indicates the group operation on H. (We refer to this property of our
CPRF as semi-evaluability.)

Proof. We define SEval and Aux as follows.

SEval(skf , x): It first parses (f, b′
1, . . . , b

′
z, g, gα, . . . , gαD−1

, h1, . . . , hn) ← skf .
It then compute {cj}j∈[D] that satisfies Eq. (1). It finally computes X ′ :=
∏D

i=1(g
αi−1

)ci · ∏
j∈[n] h

xj

j and outputs X ′.
Aux(msk): It parses (b1, . . . , bz, α, g, h1, . . . , hn) ← msk and outputs g1/α.

The lemma readily follows from Eq. (1) and f(x) = 1. �

Universality. The following lemma indicates that the above scheme can be
seen as a universal hashing. The only reason why we need h1, . . . , hn in pp is to
ensure this property. Formally, we have the following lemma. The lemma will be
used later in this section.

Lemma 4. For all x, x′ ∈ {0, 1}n with x �= x′ and pp output by Setup(1λ), we
have

Pr[msk
R← KeyGen(pp) : Eval(msk, x) = Eval(msk, x′)] = 1

p .

Proof. Since x �= x′, there exists an index i such that xi �= x′
i. Let us fix

msk except for hi. Then, we can see that there exists a unique hi such that
Eval(msk, x) = Eval(msk, x′) holds. Since hi is chosen uniformly at random from
H, the lemma follows. �

No-evaluation security.

Theorem 2. If the (D − 1)-DDHI assumption holds with respect to HGen, then
CPRFNE defined above satisfies no-evaluation security as a CPRF for the circuit
class FNC1

.

Proof. Let A = (A1,A2) be any no-evaluation adversary that attacks the no-
evaluation security of CPRF. We prove the above theorem by considering the
following sequence of games.

Game 0: This is the real single-key security experiment Exptcprf
CPRFNE,FNC1 ,A(λ)

against the no-evaluation adversary A = (A1,A2). Namely,

Constrained PRFs for NC1 in Traditional Groups 563

coin
R← {0, 1}

pp
R← Setup(1λ)

msk
R← KeyGen(pp)

X∗ R← H

(f, stA) R← A1(pp)
skf

R← Constrain(msk, f)
ĉoin

R← AOChal(·)
2 (skf , stA)

Return (ĉoin ?= coin)

where the challenge oracle OChal(·) is
described below.

OChal(x∗): Given x∗ ∈ {0, 1}n as
input, it returns Eval(msk, x∗) if
coin = 1 and X∗ if coin = 0.

We recall that OChal(·) is queried at
most once during the game.

Game 1: In this game, we change the way skf is sampled. In particular, we
change the way of choosing {bi}i∈[z] and {b′

i}i∈[z]. Namely, given the con-
straining query f from A1, the game picks (b′

1, . . . , b
′
z)

R← Z
z
p, α

R← Z
∗
p, and

sets bi := b′
iα + fi mod p for i ∈ [z].

Game 2 In this game, we change the challenge oracle OChal(·) as follows:
OChal(x∗): Given x∗ ∈ {0, 1}n as input, it returns SEval(skf , x∗) ·Aux(msk) if

coin = 1 and X∗ if coin = 0.
Game 3: In this game, we further change the challenge oracle as follows:

OChal(x∗): Given x∗ ∈ {0, 1}n as input, it first picks ψ
R← H and returns

SEval(skf , x) · ψ if coin = 1 and X∗ if coin = 0.
Game 4 In this game, the oracle is changed as follows.

OChal(x∗): Given x∗ ∈ {0, 1}n as input, it returns X∗ regardless of the value
of coin.

Let Ti be the event that Game i returns 1.

Lemma 5. It holds that Pr[T1] = Pr[T0], Pr[T2] = Pr[T1], Pr[T3] = Pr[T4],
and |Pr[T4] − 1/2| = 0.

Lemma 6. If the (D − 1)-DDHI assumption holds, then |Pr[T3] − Pr[T2]| =
negl(λ).

Therefore, the advantage of A is Advcprf

CPRFNE,FNC1 ,A(λ) = 2 · |Pr[T0] − 1/2| =
negl(λ). See the full version for proofs of these lemmas. �

4.2 Selectively-Secure CPRF in the Standard Model

Here, we give our CPRF for NC1 with selectively single-key security in the
standard model. The scheme is obtained by combining our CPRF CPRFNE =
(SetupNE,KeyGenNE,EvalNE,ConstrainNE,CEvalNE) for the function class FNC1

in
Sect. 4.1 with our CIH CIH

B̃C
= (PrmGen

B̃C
,Eval

B̃C
) constructed in Sect. 3. For

the simplicity of the notation, we will denote Eval
B̃C

(ppCIH, ·) by CIH
B̃C

(·) when
ppCIH is clear. Let SPGGen denote the group generator defined in Sect. 3. The con-
struction of our scheme CPRFNC1-Sel = (Setup,KeyGen,Eval,Constrain,CEval) is
as follows:

564 N. Attrapadung et al.

Setup(1λ): It first runs G0
R← SPGGen(1λ) to obtain the group description G0 :=

(G, q). Recall that G0 also defines the description of the group QRq ⊂ Z
∗
q

of prime order p = (q − 1)/2. We denote the description of the group by
G1 := (QRq, p). It then samples ppCIH

R← PrmGen
B̃C

(G0). Let ppNE := G1. It
outputs pp := (ppCIH, ppNE).

KeyGen(pp): It first parses (ppCIH, ppNE) ← pp and runs mski
R← KeyGenNE(ppNE)

for i ∈ [m]. It then outputs msk := (msk1, ...,mskm).
Eval(msk, x): It first parses (msk1, ...,mskm) ← msk and outputs

y := CIH
B̃C

(
EvalNE(msk1, x), ...,EvalNE(mskm, x)

)
.

where we recall that we have CIH
B̃C

: (QRq)m → G and EvalNE(mski, ·) :
{0, 1}n → QRq for i ∈ [m] (for simplicity, we omit writing ppCIH and ppNE

here).
Constrain(msk, f): It first parses (msk1, ...,mskm) ← msk. It then computes

skf,i
R← ConstrainNE(mski, f) for i ∈ [m] and outputs skf := (skf,1, ..., skf,m).

CEval(skf , x): It first parses (skf,1, ..., skf,m) ← skf . It then computes Xi :=
EvalNE(skf,i, x) for i ∈ [m] and outputs CIH

B̃C
(X1, ...,Xm).

Remark 5. In the above, we need m instances of CPRFNE, which may seem redun-
dant. This is necessary because the domain of the CIH constructed in Sect. 3 is
QR

m for m = poly(λ), and thus input of the CIH must be an m-dimensional
vector. If we had a CIH for group-induced function on QR, then the m times
blowup could be avoided.

Remark 6. The algorithm Setup implicitly uses the group generator SPGGen′

that first runs SPGGen to obtain G = (G, q) and then outputs the group descrip-
tion (QRq, p). Here, from the technical reason, we assume that the description of
QRq implicitly contains that of G as well. While our construction in Sect. 4.1 can
be instantiated with any prime-order group generator HGen, our scheme above
requires to instantiate the scheme with the specific group generator SPGGen′.

It is easy to observe that the correctness of the above scheme follows from
that of the underlying schemes. The following theorem addresses the security of
the scheme.

Theorem 3. The above construction CPRFNC1-Sel is a selective single-key
secure CPRF for the function class FNC1

if the (D−1)-DDHI assumption holds
with respect to SPGGen′ (see Remark 6) and the DDH assumption holds with
respect to SPGGen.

Proof. The security of the scheme will be proven by the no-evaluation security,
semi-evaluability, and universality of CPRFNE as well as correlated-input security
of CIH

B̃C
for (component-wise) group-induced functions. Let A = (A1,A2) be

any selectively admissible adversary that attacks the selective single-key security
of CPRF. For simplicity, we assume that A2 never makes the same query twice,
makes a challenge query only once (see Remark 2), and all evaluation queries x

Constrained PRFs for NC1 in Traditional Groups 565

made by A2 satisfy f(x) = 1. In the following, Q denotes the upper bound on
the number of the access to the evaluation oracle Eval(msk, ·) made by A2. We
prove the theorem by considering the following sequence of games.

Game 0: This is the actual single-key security experiment Exptcprf
CPRFNC1-Sel,FNC1 ,A

(λ) against the selective adversary A = (A1,A2) where the coin of the game is
fixed to coin = 1. Namely,

pp
R← Setup(1λ)

msk
R← KeyGen(pp)

(f, stA) R← A1(pp)
skf

R← Constrain(msk, f)
ĉoin

R← AOChal(·),Eval(msk,·)
2 (skf , stA)

Return ĉoin

where we describe Eval(msk, ·) and
OChal(·) below.

Eval(msk, ·): Given x ∈ {0, 1}n as
input, it returns Eval(msk, x).

OChal(·): Given x∗ ∈ {0, 1}n as input,
it returns y∗ = Eval(msk, x∗).
(Recall that we set coin = 1 in this
game.)

Game 1: In this game, we do not differentiate the challenge oracle OChal(·) from
Eval(msk, ·) and identify them. Namely, A2 is equipped with the following
oracle OMerge(·) defined below, instead of OChal(·) and Eval(msk, ·):
OMerge(·): Given the j-th query x(j) ∈ {0, 1}n from A2, the oracle first

computes X
(j)
i := EvalNE(mski, x

(j)) for i ∈ [m], and then returns
y(j) := CIH

B̃C
(X(j)

1 , . . . , X
(j)
m).

(We note that OMerge(·) simply returns Eval(msk, x) given x.) Since we do not
differentiate the challenge query x∗ from the evaluation queries in this game,
we have x∗ = x(j) for some j ∈ [Q + 1].

Game 2: Let Col be the event that there exist j1 �= j2 ∈ [Q + 1] such that
(X(j1)

1 , . . . , X
(j1)
m) = (X(j2)

1 , . . . , X
(j2)
m). If Col occurs, the game immediately

aborts and outputs a uniformly random bit. The rest is the same as the
previous game.

Game 3 In this game, we change the way {X
(j)
i }i∈[m],j∈[Q+1] is created. In par-

ticular, OMerge(·) works as follows:
OMerge(·): Given the j-th query x(j) ∈ {0, 1}n from A2, it proceeds as follows.
There are two cases to consider:

1. For the first query x(1), it first computes

X
(1)
i := EvalNE(mski, x

(1)) for i ∈ [m].

Then, it computes and returns y(1) := CIH
B̃C

(X(1)
1 , . . . , X

(1)
m).

2. To answer queries x(j) with j > 1, it first computes

X
(j)
i := X

(1)
i · SEvalNE(skf,i, x

(1))−1 · SEvalNE(skf,i, x
(j)) (3)

for i ∈ [m]. Then it computes and returns y(j) := CIH
B̃C

(X(j)
1 , . . . , X

(j)
m).

566 N. Attrapadung et al.

Note that during the above phase, as soon as the game finds j1 �= j2 ∈ [Q + 1]
such that (X(j1)

1 , . . . , X
(j1)
m) = (X(j2)

1 , . . . , X
(j2)
m), the game aborts and outputs

a random bit (as specified in Game 2).

Game 4 We define Col′ as the event that there exist j1 �= j2 ∈ [Q + 1] such that

SEvalNE(skf,i, x
(j1)) = SEvalNE(skf,i, x

(j2)) ∀i ∈ [m].

In this game, the game aborts when Col′ occurs instead of Col.
Game 5: In this game, we change the way X

(1)
i is chosen. In particular, the first

item of the description of the oracle OMerge(·) in Game 3 is changed as follows:

1. For the first query x(1), the oracle sets

X
(1)
i

R← QRq for i ∈ [m].

Then, it computes and returns y(1) := CIH
B̃C

(X(1)
1 , . . . , X

(1)
m).

Game 6 In this game, we further change the oracle OMerge(·) as follows:
OMerge(·): Given the j-th query x(j) ∈ {0, 1}n from A2, it picks y(j) R← G and

returns it.
Game 7 This is the real game with the coin being fixed to coin = 0. Namely, A2

is equipped with the oracles OChal(·) and Eval(msk, ·) that work as follows.
(We do not consider OMerge(·) any more.)
Eval(msk, ·) : Given x ∈ {0, 1}n as input, it returns Eval(msk, x).
OChal(·): Given x∗ ∈ {0, 1}n as input, it picks y∗ R← G and returns it. (Recall

that we set coin = 0 in this game.)

Let Ti be the event that Game i returns 1.

Lemma 7. Pr[T1] = Pr[T0].

Proof. Since coin = 1 in Game 0, we have OChal(·) = Eval(msk, ·). Therefore, this
is only the conceptual change. �
Lemma 8. If m ≥ n, |Pr[T2] − Pr[T1]| = negl(λ).

See the full version [3] for the proof of this lemma. This is proved by the union
bound and the universality of CPRFNE (Lemma 4).

Lemma 9. Pr[T3] = Pr[T2].

Proof. We prove that the change is only conceptual. The difference between the
games is that X

(j)
i is computed as EvalNE(mski, x

(j)) in Game 2, whereas it is
computed as the right-hand side of Eq. (3) in Game 3. We show here that they
are actually equivalent. The right-hand side of Eq. (3) equals to

X
(1)
i · SEvalNE(skf,i, x

(1))−1 · SEvalNE(skf,i, x
(j))

= AuxNE(mski) · SEvalNE(skf,i, x
(1)) · SEvalNE(skf,i, x

(1))−1 · SEvalNE(skf,i, x
(j))

= AuxNE(mski) · SEvalNE(skf,i, x
(j))

= EvalNE(mski, x
(j))

Constrained PRFs for NC1 in Traditional Groups 567

where we used our simplification assumption that f(x(1)) = f(x(j)) = 1 and
semi-evaluability (Lemma 3) in the first and the last equations above. �

Lemma 10. Pr[T4] = Pr[T3].

Proof. It suffices to show that the abort conditions Col and Col′ are equivalent.
We have

SEvalNE(skf,i, x
(j1)) = SEvalNE(skf,i, x

(j2)) ∀i ∈ [m]

⇔ AuxNE(mski) · SEvalNE(skf,i, x
(j1))

= AuxNE(mski) · SEvalNE(skf,i, x
(j2)) ∀i ∈ [m]

⇔ X
(j1)
i = X

(j2)
i ∀i ∈ [m].

Hence, the change is only conceptual. The lemma readily follows. �

Lemma 11. If CPRFNE satisfies no-evaluation security when instantiated by the
group generator HGen := SPGGen′, we have |Pr[T5] − Pr[T4]| = negl(λ).

Proof. For the sake of the contradiction, let us assume |Pr[T5] − Pr[T4]| is non-
negligible for the adversary A = (A1,A2). We consider the following hybrid
games for k ∈ {0, 1, . . . ,m}:

Game 4.k: This is the same as Game 4 with the following difference. In this game,
X

(1)
i is set as X

(1)
i = EvalNE(mski, x

(1)) when i > k and X̃i
R← QRq when

i ≤ k.

By the definition, we have Game 4.0 (resp. Game 4.m) is equivalent to Game 4
(resp. Game 5). Therefore, we have

|Pr[T5] − Pr[T4]| = Pr[T4.m] − Pr[T4.0]| ≥
∑

k∈[m]

|Pr[T4.k] − Pr[T4.k−1]|

where Pr[Ti] denotes the probability that Game 4.k outputs 1. By the above
inequality, we have that there exists an index k∗ such that |Pr[T4.k∗] −
Pr[T4.k∗−1]| is non-negligible. We then construct an adversary B = (B1,B2)
that breaks the no-evaluation security of the underlying scheme CPRFNE. The
description of B is as follows.

B1(ppNE): Given the group description ppNE = (QRq, p), B1 first recovers the
group description G0 = (G, q) from (QRq, p) (See remark Remark 6). B1 then
samples ppCIH

R← PrmGen
B̃C

(G0) and sets pp := (ppCIH, ppNE). It then runs
(f, stA) R← A1(pp) and outputs (f, stB := stA).

BOChal(·)
2 (skf , stB): Here, we denote the master secret key of the no-evaluation
security game (played for B) by msk′. The task of B2 is to distinguish
whether OChal(·) corresponds to EvalNE(msk′, ·) or RF(·). First, B2 picks
mski

R← KeyGenNE(ppNE) for i ∈ {k∗ + 1, . . . , m}. B2 then runs A2(skf , stA)
and simulates OMerge(·) for A2 as follows:

568 N. Attrapadung et al.

− To answer the first query x(1) from A2, B2 submits the same x(1) to
its challenge oracle OChal(·). Then, B2 is given R. Then, B2 sets X

(1)
i =

SEvalNE(mski, x
(1)) for i ≥ k∗ + 1, X

(1)
k∗ = R, and samples X

(1)
i

R← QRq

for i ≤ k∗ − 1. Finally, B2 returns y(1) = CIH
B̃C

(X(1)
1 , . . . , X

(1)
m) to A2.

− To answer the query x(j) with j > 1 from A2, B2 first
parses skf → (skf,1, . . . , skf,m) and computes X

(j)
i := X

(1)
i ·

SEvalNE(skf,i, x
(1))−1 · SEvalNE(skf,i, x

(j)) for i ∈ [m]. It then returns
y(j) = CIH

B̃C
(X(j)

1 , . . . , X
(j)
m) to A2.

Note that during the above phase, as soon as B2 finds j1 �= j2 ∈ [Q] such
that (X(j1)

1 , . . . , X
(j1)
m) = (X(j2)

1 , . . . , X
(j2)
m), B2 aborts and outputs a random

bit. When A2 terminates with output ĉoin, B2 outputs ĉoin as its guess and
terminates.

The above completes the description of B. It is straightforward to see that
B makes only single challenge query. It is also easy to see that B simulates
Game 4.(k∗ −1) for A when B’s challenge oracle is EvalNE(msk′, ·) and Game 4.k∗

when B’s challenge oracle is RF(·). Note that in the former case, B implicitly sets
mskk∗ := msk′. Since B outputs 1 if and only if A outputs 1, we have that B’s
advantage is |Pr[T4.k∗−1] − Pr[T4.k∗]|, which is non-negligible. This completes
the proof of the lemma. �
Lemma 12. If CIH

B̃C
is a Ψg-indc-CIH with respect to SPGGen, then we have

|Pr[T6] − Pr[T5]| = negl(λ).

Proof. For the sake of the contradiction, let us assume that |Pr[T6] − Pr[T5]| is
non-negligible for the adversary A = (A1,A2). We then construct an adversary
B that breaks the security of CIH

B̃C
as follows.

BO(·)(ppCIH): At the beginning of the game, B is given the public parameter
ppCIH of the CIH. Then it parses the group description (G, q) from ppCIH

and obtains the description of another group ppNE := (QRq, p). It then sets
pp := (ppCIH, ppNE) and runs (f, stA) R← A1(pp). It further samples mski

R←
KeyGenNE(ppNE) and skf,i

R← ConstrainNE(mski, f) for i ∈ [m]. It then gives
the input skf := (skf,1, . . . , skf,m) and stA to A2 and simulates OMerge(·) for
A2 as follows:
− To answer the first query x(1) from A2, B queries its oracle on input

�φ(1) := (1, . . . , 1) ∈ QR
m
q to obtain y(1). It then passes y(1) to A2.

− To answer the query x(j) with j > 1 from A2, B first parses skf →
(skf,1, . . . , skf,m) and computes φ

(j)
i := SEvalNE(skf,i, x

(1))−1 · SEvalNE

(skf,i, x
(j)) for i ∈ [m]. B then sets �φ(j) = (φ(j)

1 , . . . , φ
(j)
m) and queries �φ(j)

to its oracle. Given the response y(j) from the oracle, B2 relays the same
value to A2.

Note that during the above phase, as soon as B finds j1 �= j2 ∈ [Q] such
that SEvalNE(skf,i, x

(j1)) = SEvalNE(skf,i, x
(j2)) for all i ∈ [m], it aborts and

outputs a random bit. When A2 terminates with output ĉoin, B outputs the
same ĉoin and terminates.

Constrained PRFs for NC1 in Traditional Groups 569

The above completes the description of B. Here, we prove that B simulates
Game 5 when B’s challenge coin coin′ is 1 and Game 6 when coin′ = 0.

We start by proving the former statement. When coin′ = 1, the CIH security
experiment chooses randomness �R := (R1, . . . , Rm) R← QR

m
q during the game

and the oracle O(·) returns CIH
B̃C

(�R � �φ) on input B’s query �φ = (φ1, . . . , φm) ∈
QR

m
q . The view of A2 corresponds to Game 5, with X

(1)
i being implicitly set as

X
(1)
i := Ri for i ∈ [m].

We next show the latter statement. When coin′ = 0, the CIH security exper-
iment chooses randomness �R := (R1, . . . , Rm) R← QR

m
q during the game and the

oracle O(·) returns RF(�R � �φ) on input B’s query �φ = (φ1, . . . , φm) where RF(·)
is a random function. In order to prove that B simulates Game 6, it suffices to
show that all the queries made by B are distinct. We have

φ
(j1)
i = φ

(j2)
i ⇐⇒ SEvalNE(skfi

, x(j1)) = SEvalNE(skf,i, x
(j2))

by the definition. Since B aborts whenever Col′ occurs, this implies that B does
not make the same oracle query twice. �
Lemma 13. We have |Pr[T7] − Pr[T6]| = negl(λ).

Proof. This can be proven by applying the same game changes as that from
Game 0 to Game 6 in a reverse order, with the only difference that the challenge
query x∗ is always returned by a uniformly random group element y∗ R← G. �
We have

Advcprf

CPRFNC1-Sel,FNC1 ,A(λ) = |Pr[T7] − Pr[T0]| ≤
7∑

i=1

|Pr[Ti] − Pr[Ti−1]| = negl(λ).

This completes the proof of the theorem. �

5 Private Constrained PRF for Bit-Fixing

In this section, we construct a single-key private CPRF for bit-fixing. Our scheme
is selectively secure under the DDH assumption. We also construct an adaptively
secure single-key private CPRF for bit-fixing in the ROM in the full version [3].

Bit-fixing functions. First, we define a function class of bit-fixing functions for-
mally. The class BF = {BFn}n∈N of bit-fixing functions is defined as follows20.
BFn is defined to be the set {BFc}c∈{0,1,∗}n where

BFc(x) :=

{
0 if for all i, ci = ∗ or xi = ci

1 otherwise
.

By an abuse of notation, we often write c to mean BFc when the latter is given
as an input to an algorithm.
20 According to the definition given in [3], we should give BFλ,n for all λ ∈ N and

n ∈ N. However, since BFλ,n is the same for all λ if n is fixed in the case of the
bit-fixing, we use this simpler notation.

570 N. Attrapadung et al.

CIH for affine functions. We introduce the notion of affine functions for CIH
since it is used in our private CPRF for bit-fixing. The class of affine functions
with respect to a group generator GGen, denoted by Φaff = {Φaff

λ,z}λ∈N,z∈{0,1}∗ , is
a function class satisfying the following property for every (λ, z) ∈ N × {0, 1}∗:
If z can be parsed as a tuple (G,m, z′) so that G = (G, p) is a group description
output by GGen(1λ), m ∈ N, and z′ ∈ {0, 1}∗, then we have Φaff

λ,z = {φ�u,�v : Zm
p →

Z
m
p | �u ∈ (Z∗

p)
m, �v ∈ Z

m
p }, where for each �u,�v, φ�u,�v(�x) := �u � �x + �v ∈ Z

m
p and �

denotes the component-wise multiplication in Zp.
We will use the following theorem that is implicitly proven by

Abdalla et al. [1] (see also Remark 4).

Theorem 4. (implicit in [1, Theorem 7]) Let GGen be a group generator. If
the DDH assumption holds with respect to GGen, then for any polynomial m =
m(λ) ∈ Ω(λ), there exists a Φaff-CIH CIHaff = (PrmGenaff ,Evalaff) with respect to
GGen, with the following property: For all λ ∈ N, if G = (G, p) R← GGen(1λ) and
pp

R← PrmGenaff(G), then pp can be parsed as (G,m, z′) for some z′ ∈ {0, 1}∗,
and furthermore Evalaff(pp, ·) is a function with domain Z

m
p and range G.

This theorem is derived from the following facts. (1) Abdalla et al. [1] con-
structed RKA-PRF for affine functions based on the DDH assumption. (2) Bel-
lare and Cash [6] showed that RKA-PRF for a function class implies RKA-PRG
for the same function class. (3) Our definition of CIH is the same as that of
RKA-PRG (See Remark 4).

5.1 Construction in the Standard Model

Construction. Here, we give a construction of a selectively secure private
CPRF for bit-fixing. Our CPRF is built on a Φaff -CIH, which is known
to exist under the DDH assumption [1]. Let GGen be a group generator
that given 1λ, generates a description of group of an �p-bit prime order,
and CIHaff = (PrmGenaff ,Evalaff) be a Φaff -CIH. For simplicity, we denote
EvalCIH(ppCIH, ·) by CIHaff(·) when ppCIH is clear. Our scheme CPRFpriv,std =
(Setup,KeyGen,Eval,Constrain,CEval) is described as follows. Let n(λ) (often
denoted as n for short) be an integer, which is used as the input length of
CPRFpriv,std.

Setup(1λ) : It generates G R← GGen(1λ) to obtain the group description G :=
(G, p), and runs ppCIH

R← PrmGenaff(G) to obtain ppCIH := (G,m, z′). Recall
that ppCIH specifies the domain Z

m
p and the range R of CIHaff . It outputs

pp := (ppCIH, 1n).
KeyGen(pp) : It chooses si,b,j

R← Zp for i ∈ [n], b ∈ {0, 1} and j ∈ [m], and
outputs msk := {si,b,j}i∈[n],b∈{0,1},j∈[m].

Eval(msk, x) : It parses {si,b,j}i∈[n],b∈{0,1},j∈[m] ← msk. It computes Xj :=∑n
i=1 si,xi,j for j ∈ [m]. Then it computes y := CIHaff(X1, ...,Xm) and outputs

it.

Constrained PRFs for NC1 in Traditional Groups 571

Constrain(msk, c ∈ {0, 1, ∗}n): It parses {si,b}i∈[n],b∈{0,1} ← msk, picks αj
R← Zp

for j ∈ [m]. Then it defines {ti,b,j}i∈[n],b∈{0,1},j∈[m] as follows. For all i ∈ [n],
b ∈ {0, 1} and j ∈ [m], it sets

ti,b,j :=

{
si,b,j If ci = ∗ or b = ci

si,b,j − αj If ci �= ∗ and b = 1 − ci

.

Then it outputs skc := {ti,b,j}i∈[n],b∈{0,1},j∈[m].
CEval(skc, x): It parses {ti,b,j}i∈[n],b∈{0,1},j∈[m] ← skc, computes Xj :=

∑n
i=1

ti,xi,j for j ∈ [m] and y := CIHaff(X1, ...,Xm), and outputs y.

Theorem 5. If CIH is a Φaff-CIH and 22n−m�p is negligible, then the above
scheme is a selectively single-key secure CPRF for BF with selective single-key
privacy.

We prove the correctness and Theorem 5 in the full version [3].

Acknowledgement. We thank Keita Xagawa for letting us know the relation between
CIH and RKA-PRG. The first, second, and fourth authors were supported by JST
CREST Grant No. JPMJCR1688. The fourth author was supported by JSPS KAK-
ENHI Grant Number 16K16068.

References

1. Abdalla, M., Benhamouda, F., Passelègue, A., Paterson, K.G.: Related-key security
for pseudorandom functions beyond the linear barrier. In: Garay, J.A., Gennaro,
R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 77–94. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-44371-2 5

2. Abusalah, H., Fuchsbauer, G., Pietrzak, K.: Constrained PRFs for unbounded
inputs. In: Sako, K. (ed.) CT-RSA 2016. LNCS, vol. 9610, pp. 413–428. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-29485-8 24

3. Attrapadung, N., Matsuda, T., Nishimaki, R., Yamada, S., Yamakawa, T.: Con-
strained PRFs for NC1 in traditional groups. IACR Cryptol. ePrint Arch. 2018,
154 (2018)

4. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3 4

5. Bellare, M., Cash, D.: Pseudorandom functions and permutations provably secure
against related-key attacks. IACR Cryptol. ePrint Arch., 397 (2010). Version
20150729:233210. Preliminary Version Appeared in CRYPTO 2010

6. Bellare, M., Cash, D.: Pseudorandom functions and permutations provably secure
against related-key attacks. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol.
6223, pp. 666–684. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-14623-7 36

7. Boneh, D., Franklin, M.K.: Identity-based encryption from the weil pairing. SIAM
J. Comput. 32(3), 586–615 (2003)

https://doi.org/10.1007/978-3-662-44371-2_5
https://doi.org/10.1007/978-3-319-29485-8_24
https://doi.org/10.1007/978-3-540-24676-3_4
https://doi.org/10.1007/978-3-642-14623-7_36
https://doi.org/10.1007/978-3-642-14623-7_36

572 N. Attrapadung et al.

8. Banerjee, A., Fuchsbauer, G., Peikert, C., Pietrzak, K., Stevens, S.: Key-
homomorphic constrained pseudorandom functions. In: Dodis, Y., Nielsen, J.B.
(eds.) TCC 2015, Part II. LNCS, vol. 9015, pp. 31–60. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46497-7 2

9. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P.,
Yang, K.: On the (im)possibility of obfuscating programs. J. ACM 59(2), 601–648
(2012)

10. Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom func-
tions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501–519. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54631-0 29

11. Bitansky, N.: Verifiable random functions from non-interactive witness-
indistinguishable proofs. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol.
10678, pp. 567–594. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70503-3 19

12. Boneh, D., Kim, S., Montgomery, H.: Private puncturable PRFs from standard
lattice assumptions. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part
I. LNCS, vol. 10210, pp. 415–445. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56620-7 15

13. Boneh, D., Lewi, K., Wu, D.J.: Constraining pseudorandom functions privately.
In: Fehr, S. (ed.) PKC 2017, Part II. LNCS, vol. 10175, pp. 494–524. Springer,
Heidelberg (2017). https://doi.org/10.1007/978-3-662-54388-7 17

14. Brakerski, Z., Tsabary, R., Vaikuntanathan, V., Wee, H.: Private constrained PRFs
(and mode) from LWE. In: TCC 2017 (2017)

15. Brakerski, Z., Vaikuntanathan, V.: Constrained key-homomorphic PRFs from stan-
dard lattice assumptions. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II.
LNCS, vol. 9015, pp. 1–30. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-46497-7 1

16. Boneh, D., Waters, B.: Constrained pseudorandom functions and their applica-
tions. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol.
8270, pp. 280–300. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-42045-0 15

17. Boyle, E., Gilboa, N., Ishai, Y.: Breaking the circuit size barrier for secure compu-
tation under DDH. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part I. LNCS,
vol. 9814, pp. 509–539. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53018-4 19

18. Canetti, R., Chen, Y.: Constraint-hiding constrained PRFs for NC1 from LWE.
In: EUROCRYPT 2017, Part I, pp. 446–476 (2017)

19. Cohen, A., Goldwasser, S., Vaikuntanathan, V.: Aggregate pseudorandom func-
tions and connections to learning. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015,
Part II. LNCS, vol. 9015, pp. 61–89. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-46497-7 3

20. Cook, S.A., Hoover, H.J.: A depth-universal circuit. SIAM J. Comput. 14(4), 833–
839 (1985)

21. Camenisch, J., Hohenberger, S., Lysyanskaya, A.: Compact E-Cash. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 302–321. Springer, Heidelberg
(2005). https://doi.org/10.1007/11426639 18

22. Döttling, N., Garg, S.: Identity-based encryption from the diffie-hellman assump-
tion. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS, vol. 10401, pp.
537–569. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7 18

https://doi.org/10.1007/978-3-662-46497-7_2
https://doi.org/10.1007/978-3-642-54631-0_29
https://doi.org/10.1007/978-3-319-70503-3_19
https://doi.org/10.1007/978-3-319-70503-3_19
https://doi.org/10.1007/978-3-319-56620-7_15
https://doi.org/10.1007/978-3-319-56620-7_15
https://doi.org/10.1007/978-3-662-54388-7_17
https://doi.org/10.1007/978-3-662-46497-7_1
https://doi.org/10.1007/978-3-662-46497-7_1
https://doi.org/10.1007/978-3-642-42045-0_15
https://doi.org/10.1007/978-3-642-42045-0_15
https://doi.org/10.1007/978-3-662-53018-4_19
https://doi.org/10.1007/978-3-662-53018-4_19
https://doi.org/10.1007/978-3-662-46497-7_3
https://doi.org/10.1007/978-3-662-46497-7_3
https://doi.org/10.1007/11426639_18
https://doi.org/10.1007/978-3-319-63688-7_18

Constrained PRFs for NC1 in Traditional Groups 573

23. Deshpande, A., Koppula, V., Waters, B.: Constrained pseudorandom functions for
unconstrained inputs. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016,
Part II. LNCS, vol. 9666, pp. 124–153. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-49896-5 5

24. Fuchsbauer, G., Konstantinov, M., Pietrzak, K., Rao, V.: Adaptive security of
constrained PRFs. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part II.
LNCS, vol. 8874, pp. 82–101. Springer, Heidelberg (2014). https://doi.org/10.1007/
978-3-662-45608-8 5

25. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
1–17. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9 1

26. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. SIAM J.
Comput. 45(3), 882–929 (2016)

27. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J.
ACM 33(4), 792–807 (1986)

28. Goyal, R., Hohenberger, S., Koppula, V., Waters, B.: A generic approach to con-
structing and proving verifiable random functions. In: Kalai, Y., Reyzin, L. (eds.)
TCC 2017. LNCS, vol. 10678, pp. 537–566. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-70503-3 18

29. Goldenberg, D., Liskov, M.: On related-secret pseudorandomness. In: Micciancio,
D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 255–272. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-11799-2 16

30. Goyal, V., O’Neill, A., Rao, V.: Correlated-input secure hash functions. In: Ishai,
Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 182–200. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19571-6 12

31. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption with bounded
collusions via multi-party computation. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 162–179. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 11

32. Hofheinz, D., Kamath, A., Koppula, V., Waters, B.: Adaptively secure constrained
pseudorandom functions. IACR Cryptol. ePrint Arch. 2014, 720 (2014)

33. Hohenberger, S., Koppula, V., Waters, B.: Adaptively secure puncturable pseudo-
random functions in the standard model. In: Iwata, T., Cheon, J.H. (eds.) ASI-
ACRYPT 2015, Part I. LNCS, vol. 9452, pp. 79–102. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48797-6 4

34. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers effi-
ciently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4 9

35. Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegatable pseu-
dorandom functions and applications. ACMCCS 2013, 669–684 (2013)

36. Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random
functions. J. ACM 51(2), 231–262 (2004)

37. Peikert, C., Shiehian, S.: Privately constraining and programming PRFs, the LWE
way. In: Abdalla, M., Dahab, R. (eds.) PKC 2018. LNCS, vol. 10770, pp. 675–701.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76581-5 23

https://doi.org/10.1007/978-3-662-49896-5_5
https://doi.org/10.1007/978-3-662-49896-5_5
https://doi.org/10.1007/978-3-662-45608-8_5
https://doi.org/10.1007/978-3-662-45608-8_5
https://doi.org/10.1007/978-3-642-38348-9_1
https://doi.org/10.1007/978-3-319-70503-3_18
https://doi.org/10.1007/978-3-319-70503-3_18
https://doi.org/10.1007/978-3-642-11799-2_16
https://doi.org/10.1007/978-3-642-19571-6_12
https://doi.org/10.1007/978-3-642-32009-5_11
https://doi.org/10.1007/978-3-662-48797-6_4
https://doi.org/10.1007/978-3-540-45146-4_9
https://doi.org/10.1007/978-3-319-76581-5_23

574 N. Attrapadung et al.

38. Yamada, S.: Asymptotically compact adaptively secure lattice IBEs and verifiable
random functions via generalized partitioning techniques. In: Katz, J., Shacham,
H. (eds.) CRYPTO 2017, Part III. LNCS, vol. 10403, pp. 161–193. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-63697-9 6

39. Zhandry, M.: How to avoid obfuscation using witness PRFs. In: Kushilevitz, E.,
Malkin, T. (eds.) TCC 2016, Part II. LNCS, vol. 9563, pp. 421–448. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49099-0 16

https://doi.org/10.1007/978-3-319-63697-9_6
https://doi.org/10.1007/978-3-662-49099-0_16

Lattices

GGH15 Beyond Permutation Branching
Programs: Proofs, Attacks,

and Candidates

Yilei Chen1(B), Vinod Vaikuntanathan2, and Hoeteck Wee3

1 Boston University, Boston, USA
chenyl@bu.edu

2 MIT, Cambridge, USA
vinodv@csail.mit.edu

3 CNRS and ENS, PSL, Paris, France
wee@di.ens.fr

Abstract. We carry out a systematic study of the GGH15 graded
encoding scheme used with general branching programs. This is moti-
vated by the fact that general branching programs are more efficient than
permutation branching programs and also substantially more expressive
in the read-once setting. Our main results are as follows:

– Proofs. We present new constructions of private constrained PRFs
and lockable obfuscation, for constraints (resp. functions to be obfus-
cated) that are computable by general branching programs. Our con-
structions are secure under LWE with subexponential approxima-
tion factors. Previous constructions of this kind crucially rely on the
permutation structure of the underlying branching programs. Using
general branching programs allows us to obtain more efficient con-
structions for certain classes of constraints (resp. functions), while
posing new challenges in the proof, which we overcome using new
proof techniques.

– Attacks. We extend the previous attacks on indistinguishability
obfuscation (iO) candidates that use GGH15 encodings. The new
attack simply uses the rank of a matrix as the distinguisher, so we
call it a “rank attack”. The rank attack breaks, among others, the
iO candidate for general read-once branching programs by Halevi,
Halevi, Shoup and Stephens-Davidowitz (CCS 2017).

– Candidate Witness Encryption and iO. Drawing upon insights
from our proofs and attacks, we present simple candidates for witness
encryption and iO that resist the existing attacks, using GGH15
encodings. Our candidate for witness encryption crucially exploits
the fact that formulas in conjunctive normal form (CNFs) can be
represented by general, read-once branching programs.

1 Introduction

Graph-induced graded encodings – henceforth called GGH15 encodings – were
put forth by Gentry, Gorbunov and Halevi [23] as a candidate instantiation of
(approximate) cryptographic multilinear maps [8,20], with the hope that these
c© International Association for Cryptologic Research 2018
H. Shacham and A. Boldyreva (Eds.): CRYPTO 2018, LNCS 10992, pp. 577–607, 2018.
https://doi.org/10.1007/978-3-319-96881-0_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96881-0_20&domain=pdf

578 Y. Chen et al.

encodings could in turn be used to build advanced cryptographic primitives
whose security is related to the hardness of the learning with errors (LWE)
problem [36]. In addition, following [20,21], the same work presented candidate
constructions of multi-party key exchange and indistinguishability obfuscation
(iO) starting from these graded encoding schemes.

In the last few years, a very fruitful line of works has shed a great deal of
insight into the use of GGH15 encodings in two complementary settings: con-
structing security reductions from LWE (partially validating the intuition in
GGH15), and demonstrating efficient attacks. The former include constructions
of private constrained pseudorandom functions (PRFs) [13], lockable obfuscation
(aka obfuscating the “compute-then-compare” functionality) [26,38] and encryp-
tion schemes that constitute counter-examples for circular security [27,30]. The
latter include efficient attacks [15,17] on the key exchange and iO candidates
described in [23]. One of the key distinctions between the two settings is whether
an adversary can obtain encodings of zero from honest evaluations. For all the
applications that can be based on LWE, the adversary cannot trivially obtain
encodings of zero; whereas the attacks apply only to settings where the adver-
sary can trivially obtain encodings of zero. There is much grey area in between,
where we neither know how to obtain encodings of zero nor are we able to prove
security based on LWE (e.g., in the setting of witness encryption).

This work. In this work, we explore the use of GGH15 encodings together with
general (non-permutation) matrix branching programs. In particular, we present
(i) new constructions of private constrained PRFs and lockable obfuscation from
LWE, (ii) new attacks on iO candidates, and (iii) new candidates for iO and
witness encryption that resist our new attacks as well as prior attacks. At the
core of these results are new techniques and insights into the use of GGH15
encodings for a larger class of branching programs.

Most of the prior constructions and candidates for the primitives we consider
follow the template laid out in [21]: start with the class of NC1 circuits, repre-
sented using permutation branching programs, which are specified by a collec-
tion of permutation matrices {Mi,b}i∈[h],b∈{0,1}. Computation in such a program
proceeds by taking a subset product of these matrices, where the choice of the
subset is dictated by the input but the order in which the matrices are multi-
plied is oblivious to the input. To cryptographically “protect” this computation,
we will first pre-process and randomize {Mi,b} to obtain a new collection of
matrices {Ŝi,b}, and then encode the latter using graded encodings. Functional-
ity (e.g. evaluation in lockable obfuscation and iO) relies on the fact that we can
check whether some subset product of the Ŝi,b’s is zero (or the identity matrix)
using the underlying graded encodings. Any security proof or attack would of
course depend on the class of matrices Mi,b’s we start out with, and how the
Ŝi,b’s are derived.

Beyond permutation matrices. From a feasibility point of view, working with
permutation matrices is without loss of generality. We know that any NC1 circuit

GGH15 Beyond Permutation Branching Programs 579

(or even a logspace computation) can be represented as a permutation matrix
branching program [5]. Moreover, any general branching program, where the
underlying matrices are possibly low-rank, can be converted to a permutation
branching program with a polynomial blow-up in the number and dimensions of
these matrices. Nonetheless, there are advantages to working with more general,
not necessarily permutation or full-rank, branching programs:

– The first is concrete efficiency. For instance, representing equality or point
functions on �-bit string would use O(�2) constant-width matrices with per-
mutation branching programs, but just 2� width-one matrices (i.e. entries)
with general branching programs.

– The second is that in the read-once setting, general branching programs are
more expressive than permutation branching programs. The restriction to
read-once branching programs is useful in applications such as iO and witness
encryption, as they allow us to disregard “multiplicative bundling” factors
that protect against mixed-input attacks, which in turn yields much more
efficient constructions. This was shown in a recent work of Halevi, Halevi,
Shoup and Stephens-Davidowitz (HHSS) [29], which presented an iO candi-
date for read-once branching programs based on GGH15 encodings. Their
candidate is designed for general read-once branching programs, as read-once
permutation branching programs only capture an extremely limited class of
functions.

This raises the natural question of the security of GGH15-based constructions
when applied to general (non-permutation, possibly low-rank) matrix branching
programs, as is exactly the focus of this work. Indeed, the afore-mentioned proof
techniques and attacks break down in this setting. In particular, the HHSS iO
candidate appears to resist the existing attacks in [15,17], thanks in part to the
use of low-rank matrices (cf. [29, Sect. 1.2]).

We proceed to describe our results and techniques in more detail.

1.1 Our Results I: New Cryptographic Constructions from LWE

We present new constructions of private constrained PRFs and lockable obfusca-
tion that work directly with general matrix branching programs. As with prior
works, our constructions are secure under the LWE assumption with subex-
ponential approximation factors. Our result generalizes the previous construc-
tions in [13,26,38] which only work for permutation branching programs, and
yields improved concrete efficiency for several interesting classes of functions
that can be represented more efficiently using general branching programs, as
described next.

– Lockable obfuscation [26,38] refers to the average-case secure virtual black-
box (VBB) obfuscation for a class of functionalities C[f, y] which, on input x,
output 1 if f(x) = y and 0 otherwise. The average-case refers (only) to a uni-
formly random choice of y (more generally, y with sufficient min-entropy). For

580 Y. Chen et al.

lockable obfuscation, we obtain improved constructions for a class of “com-
pute” functions where each output bit is computed using a general branching
program applied to the input x (whereas [26,38] require permutation branch-
ing programs). To illustrate the efficiency gain, consider the case where each
output bit of the underlying function f computes a disjunction or conjunction
of the � input bits. In this case, we achieve up to a quadratic gain in efficiency
due to our support for general branching programs. This class generalizes the
distributional conjunction obfuscator studied in [10,12,38].

– Private puncturable PRFs are an important special case of constrained
PRFs, with many applications such as 2-server private information retrieval
(PIR) [6]. We obtain a very simple private puncturable PRF with a quadratic
efficiency improvement over the recent GGH15-based construction of Canetti
and Chen [13]. Nonetheless, our construction is admittedly less efficient –for
most settings of parameters– than the more complex constructions in [6,11]
that combines techniques from both fully-homomorphic and attribute-based
encryption.

Next, we provide a very brief overview of our techniques, and defer a more
detailed technical overview to Sect. 2.

New constructions and proof techniques. A GGH15 encoding of a low-norm
matrix Ŝ w.r.t. two matrices A0 and A1 is defined to be along the edge A0 �→ A1

and is computed as
D ← A−1

0 (ŜA1 + E)

where for all A, Y with proper dimensions, the notation D ← A−1(Y) means
that D is a random low-norm matrix such that AD = Y mod q.

The constructions in [13,26,27,38] encode any permutation matrix M ∈
{0, 1}w×w as a GGH15 encoding of Ŝ = M ⊗ S , i.e.

A−1
0 ((M ⊗ S)A1 + E)

for a random low-norm S. The crux of the analysis is to show that M is hid-
den under the LWE assumption, namely: for any permutation matrix M ∈
{0, 1}w×w,

(A0,A−1
0 ((M ⊗ S)A1 + E)) ≈c (A0,V) (1)

where A0,A1 are uniformly random over Zq, S,V,E are random low-norm
matrices, ≈c stands for computational indistinguishable. The proof of (1) follows
quite readily from the fact that given any permutation matrix M ∈ {0, 1}w×w,
we have:

(A, (M ⊗ S)A + E) ≈c (A,U)

under the LWE assumption, where U is uniformly random.
However, this statement is false for arbitrary matrices M, take for instance

M = 0w×w, the all-0 matrix. Indeed, the reader can easily come up with rank-
(w − 1) matrices M for which Eq. (1) fails to hold.

GGH15 Beyond Permutation Branching Programs 581

In our construction, we encode an arbitrary matrix M as a GGH15
encoding of

Ŝ =
(
M ⊗ S

S

)

That is, we append S along the diagonal. We then establish the following ana-
logue of (1) under the LWE assumption: for any arbitrary M ∈ {0, 1}w×w,

(
JA0,A−1

0

((
M ⊗ S

S

)
A1 + E

))
≈c

(
JA0,V

)
(2)

where J is any matrix of the form [� | I], and A0,A1,S,V,E are distributed
as in (1). This statement is qualitatively incomparable with (1): it is stronger
in that it works for arbitrary M, but weaker in that the distinguisher only sees
partial information about A0.

Proving the statement in (2) requires a new proof strategy where we will
treat S (instead of A0,A1) as a public matrix known to the distinguisher. In
particular, we start with taking the bottom part of A1 as the LWE secret, in
conjunction with the public S in the bottom-right diagonal; then use an extension
of the trapdoor sampling lemma by Gentry et al. [25] to produce an “oblique”
(while statistically indistinguishable) preimage sample using only the trapdoor
of the top part of A0; finally argue that the “oblique” sample is computationally
indistinguishable from random Gaussian using the top part of A0 as the LWE
secret. Walking through these steps requires new techniques on analyzing the
trapdoor sampling detailed in Sect. 4. We refer the readers to Sects. 2.2 and 5.3
for further explanation of the proof techniques.

Next, we show that the weaker guarantee in (2) (in that the distinguisher gets
JA0 instead of A0) is sufficient for constructions of constrained PRFs and lock-
able obfuscation based on GGH15 encodings; this yields new constructions that
are directly applicable to general, non-permutation matrix branching programs.

1.2 Our Results II: New Attacks on iO Candidates

Next, we turn our attention to iO, where adversaries can obtain encodings of zero
through honest evaluations. Concretely, we focus on iO candidates that follow
the [21] template described earlier in the introduction: start with a branching
program {Mi,b}, pre-process and randomize {Mi,b} to obtain a matrices {Ŝi,b},
and encode the latter using GGH15 encodings.

We present an attack that run in time sizeO(c) for general read-c branching
programs of size size. In particular, we have a polynomial-time attack when c is
constant, as is the case for the iO candidate in [29] which corresponds to c = 1.
Our attack covers various “safeguards” in the literature, such as Kilian-style
randomization, multiplicative bundling, and diagonal padding.

582 Y. Chen et al.

Attack overview. Our attack is remarkably simple, and proceeds in two steps:

1. Compute a matrix V whose (i, j)’th entry correspond to an iO evaluation on
input x(i) | y(j) that yields an encoding of zero. The dimensions of V and the
number of evaluations is polynomial in sizec.

2. Output the rank of V (over Z). More precisely, check if rank(V) is above some
threshold.

Step 1 was used in the attack of Coron et al. [17] and Chen et al. [15], both
originated from the zeroizing attack of Cheon et al. [16] on CLT13 [19]. The
novelty of our analysis lies in showing that rank(V) leaks information about the
Ŝi,b’s and thus the plaintext branching program matrices Mi,b’s. So we call the
attack a “rank attack”.

Our attack improves upon the previous attack of Chen et al. [15] on GGH15-
based iO candidates in several ways: (i) we have a classical as opposed to a
quantum attack, and (ii) it is applicable to a larger class of branching programs,
i.e. branching programs that are not necessarily input-partitioned or using per-
mutation matrices.

Why the rank-attack works? To get a taste of the rank-attack, let’s consider an
oversimplified description of the iO candidates based on GGH15 encodings. Let
{Ŝi,b} be the randomization of plaintext matrices {Mi,b}. Then the obfuscated
code is the GGH15 encodings of the Ŝi,b matrices

A0, {Di,b}i∈[h],b∈{0,1} where Di,b ← A−1
i−1

(
Ŝi,bAi + Ei,b

)

Evaluation proceeds by first computing the product of A0 with the subset prod-
uct of the Di,b matrices. As an example, for the obfuscation of a 3-step branching
program that computes all-0 functionality, the evaluation on input x = 000 gives

Eval(x) = A0 · D1,0 · D2,0 · D3,0 = Ŝ1,0Ŝ2,0E3,0 + Ŝ1,0E2,0D3,0 + E1,0D2,0D3,0 (3)

To give a sense of why computing the rank is useful in an attack, we make
a further simplification, that suppose we manage to learn the monomial

Ŝ1,0E2,0D3,0 ∈ Z
t×m.

W.h.p., the Gaussians E2,0,D3,0 and therefore its product E2,0D3,0 are full rank
(over Z), so the rank of this term is that of Ŝ1,0, which leaks some information
about the rank of M1,0. Note that learning the rank of M1,0 leaks no useful
information for permutation branching programs, but is sufficient to break iO
for general branching programs.

In actuality, a single evaluation corresponding to an encoding of zero only
provides a single value in Z, which is a sum of products of the form above,
multiplied by some left and right bookend vectors. To extract the important
information out of the summation of random-looking terms, we will first form a
matrix V of evaluations on appropriately chosen inputs. The matrix V has the
property that it factors into the product of two matrices V = X ·Y. We proceed

GGH15 Beyond Permutation Branching Programs 583

analogously to the toy example in two steps with X,Y playing the roles of Ŝ1,0

and E2,0 · D3,0:

1. argue that Y is non-singular over Q so that rank(V) = rank(X), and
2. argue that rank(X) leaks information about the underlying branching pro-

gram.

So far we have described what the analysis looks like for the read-once branch-
ing programs (i.e. c = 1). For the case of c > 1, the analysis has the flavor of
converting the obfuscated code of a read-c branching program into the read-once
setting, using the “tensor switching lemmas” from previous attacks [4,18] on iO
candidates that use GGH13 and CLT13.

The code that demonstrates the attack as a proof-of-concept is available at
https://github.com/wildstrawberry/cryptanalysesBPobfuscators.

1.3 Our Results III: New Candidates

Given the insights from our proofs and attacks, we present simple candidates for
witness encryption and iO based on GGH15 encodings. Our witness encryption
candidate relies on the observation from [24] that to build witness encryption for
general NP relations, it suffices to build witness encryption for CNF formulas,
and that we can represent CNF formulas using general, read-once branching
programs. The ciphertext corresponding to a formula Ψ and a message μ ∈ {0, 1}
is of the form described in (2), namely

JA0,

{
A−1

i−1

((
Mi,b ⊗ Si,b

μSi,b

)
Ai + Ei,b

)}

where J is a specific matrix of the form [� | I] and the Mi,b’s are the read-once
branching program representing Ψ .

Starting from the witness encryption candidate, we also present an iO can-
didate for NC1 circuits that appear to resist our rank attack as well as all prior
attacks. In order to thwart the rank attack, our iO candidate necessarily reads
each input bit ω(1) times. To then prevent mixed-input attacks, we rely on an
extension of multiplicative bundling factors used in prior works that uses matri-
ces instead of scalars.

We stress that an important design goal in these candidates is simplicity so
as to facilitate the security analysis. We believe and anticipate that any attacks
or partial security analysis for these candidates (perhaps in some weak ideal-
ized model cf. [22]) would enhance our understanding of witness encryption and
obfuscation.

1.4 Discussion and Open Problems

Perspective. The proposal of candidate multilinear maps [20] from lattice-type
assumptions in 2013 has triggered a major paradigm shift in cryptography and

https://github.com/wildstrawberry/cryptanalysesBPobfuscators

584 Y. Chen et al.

enabled numerous cryptographic applications, most notably indistinguishabil-
ity obfuscation [21]. Among the three multilinear maps candidates [19,20,23],
GGH15 is the only one that has served as a basis for new cryptographic
applications based on established lattice problems, as demonstrated in e.g.
[13,26,27,38]. We believe that extending the safe settings of GGH15 (where secu-
rity can be based on the LWE assumption), as explored in this work through
the generalized GGH15 framework as well as both proofs and attacks, will pave
the way towards new cryptographic constructions.

Open problems. We conclude with a number of open problems:

– Study the security of our candidate for witness encryption, either prove secu-
rity under instance-independent assumptions, or find a direct attack on the
scheme. For the former (i.e., prove security), the only proof strategy in the
existing literature is to build and prove a so-called positional witness encryp-
tion scheme [24], for which the security definition allows the adversary to
obtain encodings of zeroes. Unfortunately, the natural extensions of our can-
didate witness encryption scheme to a positional variant are susceptible to the
rank attack in the presence of encodings of zeroes. For the latter (i.e., directly
attack the scheme), all existing attack strategies on GGH15 encodings as used
in our candidate require encodings of zeroes, which are not readily available
in the witness encryption setting.

– Find a polynomial-time attack for iO candidates for branching programs
where every input repeats c = O(λ) time where λ is the security parame-
ter. The analysis of known attacks, including our rank attack, yields running
times that grow exponentially with c. There are possibilities that the analysis
is not tight and the rank attack or prior attacks could in fact succeed with
a smaller running time. However we have not detected such a phenomenon
with experiments for small c.

– Note that all our candidate constructions are of the form: AJ ,
{Di,b}i∈[h],b∈{0,1} and evaluation/decryption proceeds by first computing

AJDx′ := AJ

∏h
i=1 Di,x′

i
for some x′ ∈ {0, 1}h. Consider the following

restricted class of adversaries that only gets oracle access to x′ �→ AJDx′

instead of Aj , {Di,b}i∈[h],b∈{0,1}. Note that our rank attack as well as various
mixed-input and zeroizing attacks can all be implemented using this restricted
adversaries. Can we prove (or break) security of our witness encryption or iO
candidates against this restricted class of adversaries under some reasonable
instance-independent assumptions?

Independent work. Variants of our new lemmas related to lattice preimage sam-
pling in Sect. 4 were presented in an independent work of Goyal, Koppula and
Waters [28], for different purposes from ours. In [28], the lemmas were used as
intermediate building blocks en route a collusion resistant traitor tracing scheme
based on the LWE assumption.

GGH15 Beyond Permutation Branching Programs 585

1.5 Reader’s Guide

The rest of the article is organized as follows. Section 2 provides a more detailed
overview of our techniques. Section 4 provides new lemmas related to lattice
preimage sampling. Section 5 gives a formal construction of the generalized-
GGH15 encoding, the security notions, and the main technical proof that suffices
for the applications. Due to the page limitation we leave the applications, the
attacks, and the witness encryption and iO candidates in the full version avail-
able at https://eprint.iacr.org/2018/360.

2 Technical Overview

In this section, we present a more detailed overview of our techniques. We briefly
describe the notation used in this overview and the paper, and refer the reader
to Sect. 3 for more details. We use boldface upper-case and lower-case letters
for matrices and vectors respectively. Given a bit-string x ∈ {0, 1}h, we use
Mx to denote matrix subset product

∏h
i=1 Mi,xi

. Given matrices A,B, we use
A−1(B) to denote a random low-norm Gaussian D satisfying AD = B mod q.
Two probability distributions are connected by ≈s or ≈c if they are statistically
close or computationally indistinguishable.

2.1 Generalized GGH15 Encodings

In this work, we think of GGH15 as encoding two collections of matrices, one
collection is arbitrary and the other one is random, and computing some function
γ of a subset product of these matrices; we refer to this as (generalized) γ-GGH15
encodings.1 That is, the γ-GGH15 encoding takes as input two collections of
matrices {Mi,b}i∈[�],b∈{0,1} , {Si,b}i∈[�],b∈{0,1}, an additional matrix A�, and the
output is a collection of matrices

A0, {Di,b}i∈[�],b∈{0,1}

such that for all x ∈ {0, 1}�, we have

A0 · Dx ≈ γ(Mx,Sx) · A�

where Mx,Dx,Sx denotes subset-product of matrices as defined earlier. Here,

Mi,b ∈ {0, 1}w×w,Si,b ∈ Z
n×n,A0,A� ∈ Z

γ(w,n)×m
q ,Di,b ∈ Z

m×m.

Intuitively, we also want to hide the Mi,b’s, which we will come back to after
describing the choices for γ and the construction.

1 See Remark 5.2 for a comparison with the original GGH15 encodings.

https://eprint.iacr.org/2018/360

586 Y. Chen et al.

Choices for γ. There are several instantiations for γ in the literature [12,13,21,
23,26,29,38]:

γ×(M,S) = MS, γ⊗(M,S) := M ⊗ S, γdiag(M,S) :=
(
M

S

)

where the first γ× requires working with rings so that multiplication commutes.
More generally, for the construction, we require that γ be multiplicatively homo-
morphic, so that

γ(M,S)γ(M′,S′) = γ(MM′,SS′)

as is clearly satisfied by the three instantiations above.

The γ-GGH15 construction. We briefly describe the construction of γ-GGH15
encodings implicit in [23], from the view-point of “cascaded cancellations” [2,
27,30]. The starting point of the construction is to expand γ(Mx,Sx) ·A� using
multiplicative homomorphism as a matrix product

γ(Mx,Sx) · A� =
�∏

i=1

γ(Mi,xi
,Si,xi

) · A�

Next, it randomizes the product by sampling random (wide, rectangular) matri-
ces A0, . . . ,A�−1 over Zq along with their trapdoors, and rewrites the product
as a series of “cascaded cancellations”:

γ(Mx,Sx) · A� = A0 ·
�∏

i=1

A−1
i−1(γ(Mi,xi

,Si,xi
)Ai)

where A−1
i−1(·) denotes random low-norm Gaussian pre-images as defined earlier.2

For functionality, it suffices to define Di,b to be A−1
i−1(γ(Mi,b,Si,b)Ai), but

that would not be sufficient to hide the underlying Mi,b’s. Instead, the construc-
tion introduces additional error terms {Ei,b}i∈[�],b∈{0,1}, and defines3

Di,b ← A−1
i−1(γ(Mi,b,Si,b)Ai + Ei,b)

Observe that for all x ∈ {0, 1}�, we have

A0 · Dx ≈ γ(Mx,Sx) · A�

2 A reader who is familiar with Kilian’s randomization for branching programs should
notice the similarity. In Kilian’s randomization, we randomize the product

Mx =

�∏

i=1

R−1
i−1Mi,xiRi

by picking random invertible matrices R1, . . . ,R�−1 along with R0 = R� = I. Here,
we replace the square matrices Ri’s with wide rectangular matrices Ai’s, and change
from left-multiplying R−1

i−1 to sampling a random Gaussian preimage of Ai−1.
3 In the GGH15 terminology, Di,b would be an encoding of γ(Mi,b,Si,b) relative to

the path i − 1 �→ i.

GGH15 Beyond Permutation Branching Programs 587

where ≈ refers to an additive error term that depends on | Di,b |, | Ei,b |, |
γ(Mi,b,Si,b) |, which we require to be small.

Semantic security. Following [13,26,27,38], we consider the following notion of
semantic security for γ-GGH15 encodings, namely that

(semantic security.) The output (A0, {Di,b}i∈[�],b∈{0,1}) computation-
ally hides {Mi,b}i∈[�],b∈{0,1}. We only require that security holds “on aver-
age” over random {Si,b}i∈[�],b∈{0,1} ,A�.

Prior works [13,26,38] showed that the γ⊗-GGH15 encodings achieve seman-
tic security if we restrict the Mi,b’s to be permutation matrices. That is,

Informal Lemma. Under the LWE assumption, we have that for all
permutation matrices {Mi,b}i∈[�],b∈{0,1},

(A0, {Di,0,Di,1}i∈[�]) ≈c (A0, {Vi,0,Vi,1}i∈[�]) (4)

where Di,b ← A−1
i−1((Mi,b ⊗ Si,b)Ai + Ei,b), and Vi,0,Vi,1 are random

low-norm Gaussians.

As mentioned earlier in the introduction, the proof of security crucially relies on
the fact that any permutation matrix M, LWE tells us that (A, (M⊗S)A+E) ≈c

(A,U), where U is uniformly random. We sketch the proof of the semantic
security of γ⊗-GGH15 for � = 1, which extends readily to larger � (here the
major changes in the hybrid arguments are highlighted with boxes):

(
A0, {A−1

0 ((M1,b ⊗ S1,b)A1 + E1,b)}b∈{0,1}
)

≈c

(
A0, {A−1

0 (U1,b) }b∈{0,1}
)

// LWE

≈s

(
A0, { V1,b }b∈{0,1}

)
// GPV

2.2 This Work: Semantic Security for Arbitrary Matrices

Without further modifications, γ-GGH15 encoding does not achieve semantic
security for arbitrary matrices. Concretely, given A0,D1,0, we can compute

A0 · D1,0 = γ(M1,0,S1,0)A1 + E1,0

which might leak information about the structure of M1,0. In particular, we can
distinguish between M1,0 being Iw×w versus 0w×w for all of γ×, γ⊗, γdiag.

The key to our new cryptographic constructions for general branching pro-
grams is a new technical lemma asserting semantic security for γdiag-GGH15
encodings with arbitrary matrices where we replace A0 with JA0 for some wide
bookend matrix J that statistically “loses” information about A0:

588 Y. Chen et al.

New Lemma, Informal. Under the LWE assumption, we have that for
all matrices {Mi,b}i∈[�],b∈{0,1} over Z,

(JA0, (Di,0,Di,1)i∈�) ≈c (JA0, (Vi,0,Vi,1)i∈�) (5)

where J is any matrix of the form [� | I], Di,b ← A−1
i−1(

(
Mi,b

Si,b

)
Ai +

Ei,b), and Vi,0,Vi,1 are random low-norm Gaussians.

New proof technique. We prove a stronger statement for the seman-
tic security of γdiag-GGH15, namely the semantic security holds even given
S1,0,S1,1, . . . ,S�,0,S�,1 (but not A1, . . . ,A�). Our proof departs significantly
from the prior analysis – in particular, we will treat A1, . . . ,A� as LWE secrets.
Let Ai,Ai denote the top and bottom parts of A, and define Ei,b,Ei,b analo-
gously. This means that

A−1
i−1(γdiag(Mi,b,Si,b)Ai + Ei,b) = A−1

i−1

(
Mi,bAi + Ei,b

Si,bAi + Ei,b

)

We will use A1, . . . ,A� as LWE secrets in the following order:
A�, . . . ,A1,A0, . . . ,A�−1. We sketch the proof for � = 1 (and it extends readily
to larger �):

(
JA0, {A−1

0

(
M1,bA1 + E1,b

S1,bA1 + E1,b

)
}b∈{0,1}

)

≈c

(
JA0, { A

−1

0

(
M1,bA1 + E1,b

) }b∈{0,1}
)

≈s

(
U0 , {A−1

0

(
M1,bA1 + E1,b

)}b∈{0,1}
)

≈c

(
U0, { V1,b }b∈{0,1}

)

where the notations and analysis of hybrid arguments are as follows

– The first ≈c follow from a more general statement, namely for all i and for
any Zi,b, we have

{
A−1

i−1

(
Zi,b

Si,bAi + Ei,b

)}
b∈{0,1}

≈c

{
A

−1

i−1

(
Zi,b

)}
b∈{0,1}

even if the distinguisher gets Ai−1,Si,b,Zi,b. The proof of this statement
follows by first applying LWE with Ai as the secret4 to deduce that

{Si,b,Si,bAi + Ei,b}b∈{0,1} ≈c {Si,b,Ui,b}b∈{0,1}
4 Here, we could have used Si,0,Si,1 as the LWE secrets and Ai as the public matrix;

however, this strategy would break down when Mi,b depends on Si,b, which is needed
in the applications.

GGH15 Beyond Permutation Branching Programs 589

where the Ui,b matrices are uniformly random over Zq, followed by a new
statistical lemma about trapdoor sampling which tells us that for all but
negligibly many Ai−1, we have that for all Zi,b,

A−1
i−1

(
Zi,b

Ui,b

)
≈s A

−1

i−1

(
Zi,b

)

– The ≈s follows from the structure of J, which implies (A0,JA0) ≈s (A0,U0),
where U0 is a uniformly random matrix.

– The final ≈c follows from a more general statement, which says that under
the LWE assumption, we have that for any Z,

A−1(Z + E) ≈c A−1(U)

where the distributions are over random choices of A,E,U, provided A is
hidden from the distinguisher. The proof uses the Bonsai technique [14]. Sup-
pose A is of the form [A1 | A2] where A1 is uniformly random, A2 sampled
with a trapdoor. Then, we have via the Bonsai technique [14]:

A−1(Z + E) ≈s

(−V
A−1

2 (A1V + E + Z)

)

where V is a random low-norm Gaussian. We then apply the LWE assumption
to (V,A1V+E) with A1 as the LWE secret. Once we replace A1V+E with
a uniformly random matrix, the rest of the proof follows readily from the
standard GPV lemma.

Extension: combining γ⊗, γdiag. For the applications to private constrained PRFs
and lockable obfuscation, we will rely on γ⊗diag-GGH15 encodings, where

γ⊗diag(M,S) :=
(
M ⊗ S

S

)

We observe that our proof of semantic security for γdiag also implies semantic
security for γ⊗diag, where we give out JA0 instead of A0. This follows from the
fact that our proof for γdiag goes through even if the Mi,b’s depend on the Si,b’s,
since we treat the latter as public matrices when we invoke the LWE assumption.

2.3 New Cryptographic Constructions from LWE

Using γ⊗diag-GGH15 encodings and the proof that semantic security of γ⊗diag

holds for arbitrary M matrices, we are ready to construct private constrained
PRFs and lockable obfuscation where the constraint/function can be recognized
by arbitrary matrix branching programs. Here we briefly explain the private
constrained PRF construction as an example.

Before that we recall some terminologies for matrix branching programs. In
the overview, we focus on read-once matrix branching programs for notational
simplicity, although our scheme works for general matrix branching programs

590 Y. Chen et al.

with any input pattern and matrix pattern (possibly low-rank matrices). A (read-
once) matrix branching program for a function fΓ : {0, 1}� → {0, 1} is specified
by Γ :=

{
{Mi,b}i∈[�],b∈{0,1} ,P0,P1

}
such that for all x ∈ {0, 1}�,

Mx =
�∏

i=1

Mi,xi
= PfΓ (x)

We will work with families of branching programs {Γ}, which share the same
P0,P1.

Private constrained PRFs. We proceed to provide an overview of our con-
struction of private constrained PRFs using γ⊗diag-GGH15 encodings. As a quick
overview of a private constrained PRF, a private constrained PRF allows the
PRF master secret key holder to derive a constrained key given a constraint
predicate C. The constrained key is required to randomize the output on every
input x s.t. C(x) = 0, preserve the output on every input x s.t. C(x) = 1. In
addition, the constraint C is required to be hidden given the description of the
constrained key.

Let ei ∈ {0, 1}1×w denotes the unit vector with the ith coordinate being
1, the rest being 0. Consider a class of constraints recognizable by branching
programs

ΓC :=
{{

Mi,b ∈ {0, 1}w×w
}

i∈[�],b∈{0,1} ,P0,P1

}
,

where the target matrices P0,P1 satisfy e1P0 = e1, e1P1 = 01×w.
We use γ⊗diag to encode {Mi,b}i∈[�],b∈{0,1}, which means for i = 0, ..., �,

Ai ∈ Z
(nw+n)×m
q . Denote A0 as the bottom n rows of Ai, Ai as the top nw

rows of Ai. Inside Ai let A
(j)

i denote the (j − 1)nth to jnth rows of Ai, for
j ∈ [w].

Define the output of the normal PRF evaluation as

x �→ �SxA�	p

where � · 	p denotes the rounding-to-Zp operation used in previous LWE-based
PRFs, which we suppress in the rest of this overview for notational simplicity.

We set J := (e1 ⊗ I | I) so that J · A0 = A
(1)

0 + A0, then

J · γ⊗diag(Mx,Sx) · A� = ((e1 · Mx) ⊗ Sx) · A� + SxA� =

{
SxA� if fΓ (x) = 1

SxA
(1)
� + SxA� if fΓ (x) = 0

Given Γ , the constrained key is constructed as

A
(1)

0 + A0, (Di,0,Di,0)i∈[�]

where (A0, {Di,b}i∈[�],b∈{0,1}) ← GGHEnc⊗diag({Mi,b}i∈[�],b∈{0,1} ,

{Si,b}i∈[�],b∈{0,1} ,A�).

GGH15 Beyond Permutation Branching Programs 591

The constrained evaluation on an input x gives

(A
(1)

0 + A0) · Dx ≈ J · γ⊗diag(Mx,Sx) · A�

which equals to SxA� if fΓ (x) = 1, SxA
(1)

� + SxA� if fΓ (x) = 0.

A special case: private puncturable PRFs. A private puncturable PRF can be
obtained by simply using branching program with 1×1 matrices (i.e. let w = 1).
The punctured key at x∗ is given by

A0 + A0, {Di,b}i∈[�],b∈{0,1}

where

Di,x∗
i

← A
−1
i−1

((
Si,x∗

i

Si,x∗
i

)
Ai + Ei,x∗

i

)
,Di,1−x∗

i
← A

−1
i−1

((
0

Si,1−x∗

)
Ai + Ei,1−x∗

i

)
.

The construction extends naturally to allow us to puncture at sets of points
specified by a wildcard pattern {0, 1, �}�.

Security. In the security proof, we will use the fact that whenever fΓ (x) = 0,

constrained evaluation outputs SxA
(1)

� +SxA�, so that the normal PRF output
is masked by the boxed term. More formally, in the security game, the adversary
gets a constrained key for ΓC , and oracle access to a PRF evaluation oracle Eval.
We consider the following sequence of games:

– Replace the output of the Eval oracle by

(A
(1)

0 + A0) · Dx − Sx · A(1)

�

This is statistically indistinguishable from the real game, since (A
(1)

0 + A0) ·
Dx ≈ Sx · A(1)

� + Sx · A�, and the approximation disappears w.h.p. after
rounding.

– Apply semantic security to replace (Di,0,Di,0)i∈[�] with random. Here,
we require that semantic security holds even if the distinguisher gets
{Si,b}i∈[�],b∈{0,1} ,A�, where the latter are needed in order to compute

Sx · A(1)

� . This implies constraint-hiding.
– Now, we can apply the BLMR analysis to deduce pseudorandomness of Sx ·

A
(1)

� , where we treat A
(1)

� as the seed of the BLMR PRF [7]. This implies
pseudorandomness of the output of the Eval oracle.

3 Preliminaries

Notations and terminology. In cryptography, the security parameter (denoted as
λ) is a variable that is used to parameterize the computational complexity of the

592 Y. Chen et al.

cryptographic algorithm or protocol, and the adversary’s probability of breaking
security. An algorithm is “efficient” if it runs in (probabilistic) polynomial time
over λ.

When a variable v is drawn randomly from the set S we denote as v
$←

S or v ← U(S), sometimes abbreviated as v when the context is clear. We
use ≈s and ≈c as the abbreviation for statistically close and computationally
indistinguishable.

Let R,Z,N be the set of real numbers, integers and positive integers. Denote
Z/(qZ) by Zq. The rounding operation �a	p : Zq → Zp is defined as multiplying
a by p/q and rounding the result to the nearest integer.

For n ∈ N, [n] := {1, ..., n}. A vector in R
n (represented in column form

by default) is written as a bold lower-case letter, e.g. v. For a vector v, the ith

component of v will be denoted by vi. A matrix is written as a bold capital letter,
e.g. A. The ith column vector of A is denoted ai. In this article we frequently
meet the situation where a matrix A is partitioned into two pieces, one stacking
over the other. We denote it as A =

(
A
A

)
. The partition is not necessarily even.

We will explicitly mention the dimension when needed.
The length of a vector is the �p-norm ‖v‖p = (

∑
vp

i)1/p. The length of a
matrix is the norm of its longest column: ‖A‖p = maxi ‖ai‖p. By default we use
�2-norm unless explicitly mentioned. When a vector or matrix is called “small”,
we refer to its norm.

Subset products (of matrices) appear frequently in this article. For a given
h ∈ N, a bit-string v ∈ {0, 1}h, we use Xv to denote

∏
i∈[h] Xi,vi

(it is implicit
that {Xi,b}i∈[h],b∈{0,1} are well-defined).

The tensor product (Kronecker product) for matrices A ∈ R
�×m, B ∈ R

n×p

is defined as

A ⊗ B =

⎡
⎣a1,1B, . . . , a1,mB

. . . , . . . , . . .
a�,1B, . . . , a�,mB

⎤
⎦ ∈ R

�n×mp. (6)

The rank of the resultant matrix satisfies rank(A ⊗ B) = rank(A) · rank(B).
For matrices A ∈ R

�×m, B ∈ R
n×p, C ∈ R

m×u, D ∈ R
p×v,

(AC) ⊗ (BD) = (A ⊗ B) · (C ⊗ D). (7)

Lemma 3.1 (Leftover hash lemma). Let H = {h : X → Y} be a 2-universal
hash function family. Then for any random variable X ∈ X , for ε > 0 s.t.
log(|Y|) ≤ H∞(X) − 2 log(1/ε), the distributions

(h, h(X)) and (h,U(Y))

are ε-statistically close.

3.1 Lattices Background

Smoothing parameter. We recall the definition of smoothing parameter and some
useful facts.

GGH15 Beyond Permutation Branching Programs 593

Definition 3.2 (Smoothing parameter [32]). For any n-dimensional lattice
Λ and positive real ε > 0, the smoothing parameter ηε(Λ) is the smallest real
σ > 0 such that ρ1/σ(Λ∗ \ {0}) ≤ ε.

Lemma 3.3 (Smoothing parameter bound from [25]). For any n-
dimensional lattice Λ(B) and for any ω(

√
log n) function, there is a negligible

ε(n) for which
ηε(Λ) ≤ ‖B̃‖ · ω(

√
log n)

Lemma 3.4 (Smooth over the cosets [25]). Let Λ, Λ′ be n-dimensional lat-
tices s.t. Λ′ ⊆ Λ. Then for any ε > 0, σ > ηε(Λ′), and c ∈ R

n, we have

Δ(DΛ,σ,c mod Λ′, U(Λ mod Λ′)) < 2ε

Lemma 3.5 ([32,35]). Let B be a basis of an n-dimensional lattice Λ, and let
σ ≥ ‖B̃‖ · ω(log n), then Prx←DΛ,σ

[‖x‖ ≥ σ · √
n ∨ x = 0] ≤ negl(n).

Lemma 3.6 ([9,25]). There is a p.p.t. algorithm that, given a basis B of an
n-dimensional lattice Λ(B), c ∈ R

n, σ ≥ ‖B̃‖ ·√ln(2n + 4)/π, outputs a sample
from DΛ,σ,c.

Learning with errors. We recall the learning with errors problem.

Definition 3.7 (Decisional learning with errors (LWE) [37]). For n,m ∈
N and modulus q ≥ 2, distributions for secret vectors, public matrices, and error
vectors θ, π, χ ⊆ Zq. An LWE sample is obtained from sampling s ← θn, A ←
πn×m, e ← χm, and outputting (A, sTA + eT mod q).

We say that an algorithm solves LWEn,m,q,θ,π,χ if it distinguishes the LWE
sample from a random sample distributed as πn×m × U(Z1×m

q) with probability
bigger than 1/2 plus non-negligible.

Lemma 3.8 (Regularity of Ajtai function [37]). Fix a constant c > 1, let
m ≥ cn log q. Then for all but q

−(c−1)n
4 fraction of A ∈ Z

n×m
q , the statistical

distance between a random subset-sum of the columns of A and uniform over
Z

n
q is less than q

−(c−1)n
4 .

Lemma 3.9 (Standard form [9,33,34,37]). Given n ∈ N, for any m =
poly(n), q ≤ 2poly(n). Let θ = π = U(Zq), χ = DZ,σ where σ ≥ 2

√
n. If there

exists an efficient (possibly quantum) algorithm that breaks LWEn,m,q,θ,π,χ, then
there exists an efficient (possibly quantum) algorithm for approximating SIVP
and GapSVP in the �2 norm, in the worst case, to within Õ(nq/σ) factors.

We drop the subscripts of LWE when referring to standard form of LWE
with the parameters specified in Lemma 3.9. In this article we frequently use the
following variant of LWE that is implied by the standard form.

Lemma 3.10 (LWE with small public matrices [7]). For n,m, q, σ
chosen as was in Lemma 3.9, LWEn′,m,q,U(Zq),DZ,σ,DZ,σ

is as hard as
LWEn,m,q,U(Zq),U(Zq),DZ,σ

for n′ ≥ 2 · n log q.

594 Y. Chen et al.

Trapdoor and preimage sampling. Given A ∈ Z
n×m
q , denote the kernel lattice of

A as
Λ⊥(A) := {c ∈ Z

m : A · c = 0n (mod q)} .

Given any y ∈ Z
n
q , σ > 0, we use A−1(y, σ) to denote the distribution of a

vector d sampled from DZm,σ conditioned on Ad = y (mod q). We sometimes
suppress σ when the context is clear.

Lemma 3.11 ([1,3,31]). There is a p.p.t. algorithm TrapSam(1n, 1m, q) that,
given the modulus q ≥ 2, dimensions n, m such that m ≥ 2n log q, outputs
A ≈s U(Zn×m

q) with a trapdoor τ .

Following Lemmas 3.6 and 3.11,

Lemma 3.12. There is a p.p.t. algorithm that for σ ≥ 2
√

n log q, given
(A, τ) ← TrapSam(1n, 1m, q), y ∈ Z

n
q , outputs a sample from A−1(y, σ).

Lemma 3.13 ([25]). For all but negligible probability over (A, τ) ←
TrapSam(1n, 1m, q), for sufficiently large σ ≥ 2

√
n log q, the following distri-

butions are efficiently samplable and statistically close:
{
A,x,y : y ← U(Zn

q),x ← A−1(y, σ)
} ≈s {A,x,y : x ← DZm,σ,y = Ax} .

Lemma 3.14 (Bonsai technique [14]). Let n,m,m1,m2, q ∈ N, σ ∈ R satisfy
m = m1 + m2, m2 ≥ 2n log q, σ > 2

√
n log q. For any y ∈ Z

n
q , the following two

distributions are efficiently samplable and statistically close.

1. Let (A, τ) ← TrapSam(1n, 1m, q), d ← A−1(y, σ). Output (A,d).
2. Let A1 ← U(Zn×m1

q), (A2, τ2) ← TrapSam(1n, 1m2 , q); d1 ← DZm1 ,σ, d2 ←
A−1

2 (y − A1 · d1, σ). Let A = [A1,A2], d = [dT
1 ,dT

2]T . Output (A,d).

4 New Lemmas on Preimage Sampling

In this section, we present new lemmas related to lattice preimage sampling.
These lemmas are essential to the proof of semantic security for non-permutation
branching programs, as outlined in Sect. 2.2.

The first is a statistical lemma which states that for all but negligibly many
matrix A (with proper dimensions), for any matrix Z, the following two distri-
butions are statistically indistinguishable:

(
A,A−1

(
Z
U

)) ≈s

(
A,A

−1
(Z)

)

where the distributions are over random choices of a matrix U and probability
distributions A−1(·) and A

−1
(·). This is in essence an extension of the trapdoor

sampling lemma from Gentry, Peikert and Vaikuntanathan [25].

GGH15 Beyond Permutation Branching Programs 595

The second is a computational lemma which states that for any matrix Z,
the following two distributions are computationally indistinguishable:

A−1(Z + E) ≈c A−1(U)

where the distributions are over random private choices of A,E and U and the
coins of A−1(·). The computational indistinguishability relies on the hardness
of the decisional learning with errors (LWE) problem.

4.1 The Statistical Lemma

We prove the above statistical lemma for vectors; the setting for matrices follow
readily via a hybrid argument.

Lemma 4.1. Let ε > 0. Given σ ∈ R+, n′, n,m, q ∈ N. For all but a q−2n′

fraction of A ∈ Z
n′×m
q , all but a q−2n fraction of A ∈ Z

n×m
q , let A :=

(
A
A

)
. For

σ > ηε(Λ⊥(A)), m ≥ 9(n′ + n) log q. For a fixed z ∈ Z
n′
q , for u ← U(Zn

q), we
have

A−1(
(
z
u

)
, σ) and A

−1
(z, σ)

are 2ε-statistically close.

Proof. We need two lemmas to assist the proof of Lemma 4.1.

Lemma 4.2. Let c > 9. For n′, n,m, q ∈ N such that m ≥ c(n′ + n) log q. For
all but q−2n′

fraction of A ∈ Z
n′×m
q , all but q−2n fraction of A ∈ Z

n×m
q , we have{

A · x | x ∈ {0, 1}m ∩ Λ⊥(A)
}

= Z
n
q .

Proof. From Lemma 3.8, we have for all but q−2n′
fraction of A ∈ Z

n′×m
q

∣∣∣∣ Pr
x∈{0,1}m

[A · x = 0n′
] − q−n′

∣∣∣∣ < 2q−2n′ ⇒ Pr
x∈{0,1}m

[A · x = 0n′
] > 0.99 · q−n′

(8)

Let x ← U({0, 1}m ∩ Λ⊥(A)), we have H∞(x) > m − 2n′ log q. For δ > 0, by
setting m ≥ n log q + 2n′ log q + 2 log(1/δ), we have that for A ← U(Zn×m

q),

(A,A · x) and (A, U(Zn
q))

are δ-statistically close following leftover hash lemma (cf. Lemma 3.1).
Then Lemma 4.2 follows by setting δ = q−4n and take a union bound for A.

Lemma 4.3. For n′, n,m, q ∈ N, σ > 0. A ∈ Z
n′×m
q , A ∈ Z

n×m
q . Assuming

the columns of A :=
(
A
A

)
generate Z

n′+n
q . For any vectors u ∈ Z

n
q , z ∈ Z

n′
q ,

and c ∈ Z
m where A · c =

(
z
u

)
mod q. The conditional distribution D of x ←

c + DΛ⊥(A),σ,−c given Ax = u mod q is exactly c + DΛ⊥(A),σ,−c.

596 Y. Chen et al.

Proof. Observe that the support of D is c+Λ⊥(A). We compute the distribution
D: for all x ∈ c + Λ⊥(A),

D(x) =
ρσ(x)

ρσ(c + Λ⊥(A))
=

ρσ,−c(x − c)
ρσ,−c(Λ⊥(A))

= DΛ⊥(A),σ,−c(x − c). (9)

Finally from Lemma 3.4, let Λ = Λ⊥(A), Λ′ = Λ⊥(A), we have Λ′ ⊆ Λ. Since
σ > ηε(Λ′), DΛ⊥(A),σ,−c is 2ε-statistically close to uniform over the cosets of the
quotient group (Λ⊥(A)/Λ⊥(A)). The rest of the proof of Lemma 4.1 follows
Lemma 4.3 and Lemma 4.2.

4.2 The Computational Lemma

Lemma 4.4. Given n,m, k, q ∈ N, σ ∈ R such that n,m, k ∈ poly(λ), m ≥
4n log q, σ ≥ 2

√
n log q. For arbitrary matrix Z ∈ Z

n×k
q , the following two distri-

butions are computationally indistinguishable assuming LWEm,k,q,U(Zq),DZ,σ,DZ,σ
.

Distribution 1. Let A, τ ← TrapSam(1n, 1m, q), E ← Dn×k
Z,σ . Sample D ←

A−1(Z + E, σ) using τ . Output D.
Distribution 2. Sample D = Dm×k

Z,σ . Output D.

Proof. We prove a stronger statement where the computational indistinguisha-
bility holds even when Z is given to the adversary. The proof uses the Bonsai
technique [14]. Let m = m1 + m2 such that m1,m2 ≥ 2n log q. We introduce 2
intermediate distributions,

Distribution 1.1. Let A1 ← U(Zn×m1
q), (A2, τ2) ← TrapSam(1n, 1m2 , q). Sam-

ple D1 ← Dm1×k
Z,σ . Let E ← Dn×k

Z,σ , sample D2 ← A−1
2 ((−A1 ·D1 +E+Z), σ)

using τ2. Let D :=
(
D1
D2

)
. Output D.

Distribution 1.2. Let A1 ← U(Zn×m1
q), (A2, τ2) ← TrapSam(1n, 1m2 , q). Sam-

ple D1 ← Dm1×k
Z,σ . Let U ← U(Zn×k

q), sample D2 ← A−1
2 ((U + Z), σ) using

τ2. Let D :=
(
D1
D2

)
. Output D.

Then Distributions 1 and 1.1 are statistically close following Lemma 3.14.
Distributions 2 and 1.2 are statistically close following Lemma 3.13.

It remains to prove that Distribution 1.1 ≈c Distribution 1.2 assuming
LWEm1,k,q,U(Zq),DZ,σ,DZ,σ

. This follows by taking (D1,−A1 ·D1 +E) as the LWE
sample, where A1 is the concatenation of n independent uniform secret vectors,
D1 is the low-norm public matrix and E is the error matrix.

Formally, suppose there exists a p.p.t. distinguisher A for Distribution 1.1 and
Distribution 1.2, we build a distinguisher A′ for LWEm1,k,q,U(Zq),DZ,σ,DZ,σ

. Given
the challenge sample (D1,Y1), A′ runs (A2, τ2) ← TrapSam(1n, 1m2 , q), samples
D2 ← A−1

2 ((Y1 +Z), σ) using τ2, send D :=
(
D1
D2

)
to the adversary A. If A says

it is from Distribution 1.1, then A′ chooses “LWE”; if A says Distribution 1.2,
then A′ chooses “random”. The success probability of A′ is same to the success
probability of A.

GGH15 Beyond Permutation Branching Programs 597

5 Generalized GGH15 Encodings

We present the abstraction of generalized GGH15 encodings. The abstraction
includes a construction framework and definitions of security notions.

5.1 The Construction Framework

We begin with a description of the construction:

Construction 5.1 (γ-GGH15 Encodings). The randomized algorithm
ggh.encode takes the following inputs

– Parameters5 1λ, h, n,m, q, t, w ∈ N, σ ∈ R
∗ and the description of a distri-

bution χ over Z.
– A function γ : Zw×w × Z

n×n → Z
t×t.

– Matrices
{
Mi,b ∈ Z

w×w
i,b

}
i∈[h],b∈{0,1}

,
{
Si,b ∈ Z

n×n
i,b

}
i∈[h],b∈{0,1}

.

– A matrix Ah ∈ Z
t×m
q .

It generates the output as follows

– Samples {Ai, τi ← TrapSam(1t, 1m, q)}i∈{0,1,...,h−1}.
– Samples {Ei,b ← χt×m}i∈[h],b∈{0,1}.

– For i ∈ [h], b ∈ {0, 1}, let Ŝi,b := γ(Mi,b,Si,b), then samples

Di,b ← A−1
i−1(Ŝi,b · Ai + Ei,b, σ)

using τi−1.
– Outputs A0, {Di,b}i∈[h],b∈{0,1}.

We require γ to be multiplicatively homomorphic:

γ(M,S) · γ(M′,S′) = γ(M · M′,S · S′)

Remark 5.2 (Comparison with GGH15). The goal of the original GGH15 graded
encodings in [23] was to emulate the functionality provided by multi-linear maps
with respect to some underlying directed acyclic graph. The basic unit of the
construction is an encoding of a low-norm matrix Ŝ along A0 �→ A1 given by
A−1

0 (ŜA1 +E), where Ŝ must be drawn from some high-entropy distribution to
achieve any meaningful notion of security.

Following [13,26,27,38], we think of Ŝ as being deterministically derived from
an arbitrary low-norm matrix M and a random low-norm matrix S via some fixed
function γ given by γ : (M,S) �→ M ⊗ S in the afore-mentioned constructions.
Here, we make γ an explicit parameter to the construction, so that we obtain a
family of constructions parameterized by γ, which we refer to as the “γ-GGH15
encodings”.
5 In the rest of the presentation, these parameters are omitted in the input of
ggh.encode.

598 Y. Chen et al.

Looking ahead to Sect. 5.2, another advantage of decoupling Ŝ into M and
S is that we can now require semantic security for arbitrary inputs M and
random choices of S (more precisely, arbitrary {Mi,b}i∈[h],b∈{0,1} and random
{Si,b}i∈[h],b∈{0,1}), as considered in [38]. Moreover, this notion of semantic secu-
rity can be achieved under the LWE assumption for some specific γ and classes
of matrices M. Here, we make explicit the idea that semantic security should
be defined with respect to some fixed auxiliary function aux of the matrices
{Si,b}i∈[h],b∈{0,1} ,A0, . . . ,Ah.

Functionality. The next lemma captures the functionality provided by the con-
struction, namely that for all x ∈ {0, 1}h,

A0 · Dx ≈ γ(Mx,Sx) · Ah

Lemma 5.3 (Functionality of γ-GGH15 encodings). Suppose γ is mul-
tiplicatively homomorphic. For all inputs to the Construction 5.1 s.t. σ >
Ω(

√
t log q), m > Ω(t log q), ‖χ‖ ≤ σ; we have for all x ∈ {0, 1}h, with all

but negligible probability over the randomness in Construction 5.1,

‖A0 · Dx − γ(Mx,Sx) · Ah‖∞ ≤ h ·
(

mσ · max
i,b

‖γ(Mi,b,Si,b)‖
)h

.

Proof. Recall Ŝi,b = γ(Mi,b,Si,b). It is straight-forward to prove by induction
that for all h′ = 0, 1, . . . , h:

A0 ·
h′∏

k=1

Dk,xk =

⎛

⎝
h′∏

i=1

Ŝi,xi

⎞

⎠Ah′ +
h′∑

j=1

⎛

⎝
(

j−1∏

i=1

Ŝi,xi

)
· Ej,xj ·

h∏

k=j+1

Dk,xk

⎞

⎠ (10)

The base case h′ = 0 holds trivially. The inductive step uses the fact that for all
h′ = 1, . . . , h:

Ah′−1 · Dh′,xh′ = Ŝh′,xh′ · Ah′ + Eh′,xh′

From the homomorphic property of γ we can deduce that

h∏

i=1

Ŝi,xi =
h∏

i=1

γ(Mi,xi ,Si,xi) = γ(Mx,Sx)

Finally, we bound the error term as follows:

‖A0 · Dx − γ(Mx,Sx) · Ah‖∞ =

∥∥∥∥∥∥

h∑

j=1

⎛

⎝
j−1∏

i=1

(Ŝi,xi) · Ej,xj ·
h∏

k=j+1

Dk,xk

⎞

⎠

∥∥∥∥∥∥
∞

≤ h · √
t · σ ·

(√
t · max

i,b
‖γ(Mi,b,Si,b)‖ · σ · √

m

)h−1

≤ h ·
(

max
i,b

‖γ(Mi,b,Si,b)‖ · σ · m

)h

Looking ahead, in the applications we will set the parameters to ensure that
the threshold B := h · (mσ ·maxi,b ‖γ(Mi,b,Si,b)‖)h is relatively small compared
to the modulus q.

GGH15 Beyond Permutation Branching Programs 599

Remark 5.4 (Dimensions of Ah). The construction and many analyses in this
article can be obviously generalized to the cases where the dimensions of matrices
are more flexible. As an example, the matrix Ah can be chosen from Z

t
q instead

of Zt×m
q (as a result, Dh,0, Dh,1 are from Z

m instead of Z
m×m). This change

maintains necessary functionalities, reduce the size of the construction, and is
(more importantly) necessary for one of the proofs in the paper. For the ease
of presentation we keep all the A matrices with the same dimension, all the D
matrices with the same dimension, and mention the exceptions as they arise.

Interesting γ functions. We are interested in the following 3 γ functions:

– γ⊗ : {0, 1}w×w × Z
n×n → Z

(wn)×(wn), M,S �→ M ⊗ S.
γ⊗ with permutation matrices M was introduced and studied in [13,26,27,38].

– γdiag : Zw×w × Z
n×n → Z

(w+n)×(w+n), M,S �→
(
M

S

)
.

γdiag is implicit in the constructions in [21,29] and is central to the security
analysis in this work.

– γ⊗diag : {0, 1}w×w × Z
n×n → Z

(wn+n)×(wn+n), M,S �→
(
M ⊗ S

S

)
.

We introduce γ⊗diag in this work, which would be central to the applications
in this paper.

Note that all of the three γ functions are multiplicatively homomorphic and
norm-preserving.

5.2 Security Notions

Intuitively, semantic security says that for all M, the output of the γ-GGH15
encodings

A0, {Di,b}i∈[h],b∈{0,1}

hides {Mi,b}i∈[h],b∈{0,1}, for random choices of {Si,b}i∈[h],b∈{0,1} and A0, . . . ,Ah.
We consider a more general notion parameterized by some fixed function aux of
{Si,b}i∈[h],b∈{0,1} ,A0, . . . ,Ah, and we require that aux, {Di,b}i∈[h],b∈{0,1} hides
{Mi,b}i∈[h],b∈{0,1}.

Definition 5.5 (Semantic security with auxiliary input). We say that
the γ-GGH15 encodings satisfies semantic security with auxiliary input aux for
a family of matrices M ⊆ Z

w×w if for all {Mi,b ∈ M}i∈[h],b∈{0,1}, we have

aux, {Di,b}i∈[h],b∈{0,1} ≈c aux,
{

(Dm×m
Z,σ)

i,b

}
i∈[h],b∈{0,1}

where

Si,b ← D
n×n
Z,σ , Ah ← U(Z

t×m
q),

{
Di,b

} ← ggh.encode(γ,
{
Mi,b

}
i∈[h],b∈{0,1} ,

{
Si,b

}
i∈[h],b∈{0,1} , Ah)

and aux is a fixed function of {Si,b}i∈[h],b∈{0,1} ,A0, . . . ,Ah.

600 Y. Chen et al.

Remark 5.6 (γ⊗-GGH encodings with permutation matrices). Canetti and Chen
[13] (also, [26,38]) showed that the γ⊗-GGH15 encoding satisfies semantic secu-
rity with auxiliary input (A0,A1, . . . ,Ah) for the family of permutation matrices
in {0, 1}w×w.

We can prove that the γ⊗-GGH15 encoding satisfies semantic security with
auxiliary input (A0, {Si,b}i∈[�],b∈{0,1}) for the family of permutation matrices
in {0, 1}w×w, by using the LWE assumption with the Si,b as the public matri-
ces. Such a proof requires a multiplicative blow-up (of roughly O(log q)) in the
dimensions of the Si,b matrices. One of the advantages of using the S matrices
as the public matrices is that we can use the same S0,S1 across all the h levels,
similar to the PRF construction in [7].

5.3 Semantic Security for γdiag-GGH15 and γ⊗diag-GGH15
Encodings

In this section, we prove semantic security of the γdiag-GGH15 and γ⊗diag-
GGH15 encodings in Construction 5.1 under the LWE assumption, where

γdiag(M,S) =
(
M

S

)
, γ⊗diag(M,S) =

(
M ⊗ S

S

)
.

In fact, we show that this holds given auxiliary input about A0 and
{Si,b}i∈[h],b∈{0,1}.

S-dependent security. Concretely, we will derive semantic security of γ⊗diag from
that of γdiag by showing that the construction γdiag satisfies a stronger notion
of S-dependent security where the matrices {Mi,b}i∈[h],b∈{0,1} may depend on
{Si,b}i∈[h],b∈{0,1}:

Definition 5.7 (S-dependent semantic security with auxiliary input).
We say that the γ-GGH15 encodings satisfies S-dependent semantic security with
auxiliary input aux for a family of matrices M ⊆ Z

w×w if for every polynomial-
size circuit f : (Zn×n)2h → M2h, we have

aux, {Di,b}i∈[h],b∈{0,1} ≈c aux,
{

(Dm×m
Z,σ)

i,b

}
i∈[h],b∈{0,1}

where

Si,b ← Dn×n
Z,σ ,Ah ← U(Zt×m

q), {Mi,b}i∈[h],b∈{0,1} = f({Si,b}i∈[h],b∈{0,1}),

{Di,b} ← ggh.encode(γ, {Si,b}i∈[h],b∈{0,1} , {Mi,b}i∈[h],b∈{0,1} ,Ah)

and aux is a fixed function of {Si,b}i∈[h],b∈{0,1} ,A0, . . . ,Ah.

Theorem 5.8 (S-dependent semantic security of γdiag). Assuming
LWEn,2m,q,U(Zq),DZ,σ,DZ,σ

, the γdiag-GGH15 encodings in Construction 5.1 sat-
isfies S-dependent semantic security for M = Z

w×w with auxiliary input

aux = {Si,b}i∈[h],b∈{0,1} ,J · A0,Ah

GGH15 Beyond Permutation Branching Programs 601

where Ah ∈ Z
w×m
q is the top w rows of Ah and J ∈ {0, 1}n×(t−n) | In×n.

Remark 5.9 (Necessity of JA0). Ideally, we would liked to have shown that
semantic security holds with auxiliary input A0 (as opposed to JA0). However,
such a statement is false for general M ∈ Z

w×w. Concretely, given A0,D1,0, we
can compute A0 · D1,0 which leaks information about the structure of M1,0. In

particular, we can distinguish between
(

1 0
0 1

)
and

(
0 1
0 1

)
.

As an immediate corollary, we then have:

Corollary 5.10 (semantic security of γ⊗diag). Assuming LWEn,2m,q,U(Zq),
DZ,σ,DZ,σ, the γ⊗diag-GGH15 encodings in Construction 5.1 satisfies semantic
security for M = Z

w×w with auxiliary input

aux = {Si,b}i∈[h],b∈{0,1} ,J · A0,Ah

where Ah ∈ Z
wn×m
q is the top wn rows of Ah and J ∈ {0, 1}n×(t−n) | In×n.

5.4 Proof of the Main Theorem

Proof (Proof of Theorem 5.8). For t, n, w ∈ N such that t = w + n. For any

matrix X ∈ Z
t×∗, let X =

(
X
X

)
, where X ∈ Z

w×∗, X ∈ Z
n×∗. For the sake

of completeness we spell out the details of the real and simulated distributions
which will be proven indistinguishable.

The real and simulated distributions. In the real distribution the adversary is
given

J · A0,
{

Di,b ,Si,b,Mi,b

}
i∈[h],b∈{0,1}

,Ah

where

– {Ai, τi ← TrapSam(1t, 1m, q)}i∈{0,1,...,h−1} ,Ah ← U(Zt×m
q)

– Si,b ← Dn×n
Z,σ , {Mi,b}i∈[h],b∈{0,1} ← f({Si,b}i∈[h],b∈{0,1})

– Di,b ← A−1
i−1

(
Mi,bAi + Ei,b

Si,bAi + Ei,b

)
,Ei,b ← χt×m

The simulated distribution is generated in the same way except that the
adversary is given

J · A0,
{

Vi,b ,Si,b,Mi,b

}
i∈[h],b∈{0,1}

,Ah

where Vi,b ← Dm×m
Z,σ .

To show that the real distribution is computationally indistinguishable from
the simulated one, we introduce the following intermediate distributions.

602 Y. Chen et al.

Distributions 1.i, for i ∈ {h + 1, h, ..., 1}. Let Distribution 1.(h + 1) be iden-
tical to the real distribution. For i = h down to 1, let Distributions 1.i be
the same to Distributions 1.(i + 1), except that Ai−1, Di,0, Di,1 are sampled
differently. Let (Ai−1, τi−1) ← TrapSam(1w, 1m, q), Ai−1 ← U(Zn×m

q). Sample

Di,b ← A
−1

i−1((Mi,bAi + Ei,b), σ) using τi−1, b ∈ {0, 1}.

Distributions 2.0. Distribution 2.0 is sampled identically to Distribution 1.1,
except that J · A0 is replaced with a uniformly random matrix U $← Z

n×m.
Since J ∈ {0, 1}n×(t−n) | In×n, U ≈s J ·A0 for A0, τ0 ← TrapSam(1t, 1m, q) due
to Lemma 3.11.

Distributions 2.j, for j ∈ {1, ..., h}. For j = 1, 2, ..., h, let Distributions 2.j be the
same to Distributions 2.(j − 1), except that Dj,0, Dj,1 are sampled simply from
Dm×m

Z,σ . Note that Distribution 2.h is identical to the simulated distribution,
except that in Distribution 2.h, U $← Z

n×m is in the place where J ·A0 is in the
simulated distribution, so they are statistically close again due to Lemma 3.11.

The sequence. We will show that:

Real = 1.(h + 1) ≈c 1.h ≈c · · · ≈c 1.1 ≈s 2.0 ≈c 2.1 ≈c · · · ≈c 2.h ≈s Simulated

In particular, the ≈c’s will rely on the LWE assumption, using A1, . . . ,A� as
LWE secrets in the following order: A�, . . . ,A1,A0, . . . ,A�−1.

Lemma 5.11. For i ∈ [h], Distribution 1.(i + 1) ≈c Distribution 1.i assuming
LWEn,2n,q,U(Zq),DZ,σ,DZ,σ

.

Roughly speaking, we will show that for all i ∈ [h],
{
A−1

i−1

(
Mi,bAi + Ei,b

Si,bAi + Ei,b

)}
b∈{0,1}

≈c

{
A

−1

i−1(Mi,bAi + Ei,b)
}

b∈{0,1}

where the distinguisher is also given Ai−1, τi−1,Si,0,Si,1,Mi,0,Mi,1,Ai, but not
Ai, so that we can treat Ai as a LWE secret, cf. Lemma 4.4.

Proof. We introduce an intermediate distribution 1.i∗, which is generated in the
same way as Distributions 1.(i + 1), except that Di,0, Di,1 are sampled as:

Di,b ← A−1
i−1

((
Mi,bAi + Ei,b

Ui,b

)
, σ

)
, b ∈ {0, 1}.

where (Ui,0,Ui,1) ← U(Zn×m
q × Z

n×m
q).

The intermediate distribution 1.i∗ is statistically close to Distribution 1.i due
to Lemma 4.1. It remains to prove that 1.i∗ is computationally indistinguishable
from Distribution 1.(i+1). This follows Lemma 3.10, by treating Ai as the LWE
secret, and Si,0,Si,1 as the public matrices.

GGH15 Beyond Permutation Branching Programs 603

Formally, if there’s an adversary A that distinguishes Distributions 1.(i + 1)
and 1.i∗, we build a distinguisher A′ for LWEn,2n,q,U(Zq),DZ,σ,DZ,σ

as follows. Once
given the LWE challenge

Si,0,Si,1,Yi,0,Yi,1

where Si,0,Si,1 are the low-norm public matrices, Yi,0,Yi,1 are either the
LWEn,2n,q,U(Zq),DZ,σ,DZ,σ

samples with the common secret Ai ← U(Zn×m
q), or

independent uniform samples from Z
n×m
q × Z

n×m
q . The LWE distinguisher A′

proceeds as follows:

1. Sample
{
Sk,b ← Dn×n

Z,σ

}
k∈[h],k
=i,b∈{0,1}

.

2. For k ∈ [h], b ∈ {0, 1}, compute Mk,b ∈ Z
w×w using f({Sk,b}k∈[h],b∈{0,1}).

3. For k ∈ {0, 1, ..., i − 1}, sample Ak, τk ← TrapSam(1t, 1m, q). For k ∈
{i, i + 1, ..., h − 1}, sample Ak, τ̄k ← TrapSam(1w, 1m, q). Sample Ah ←
U(Zt×m

q).
4. For k ∈ [h], b ∈ {0, 1}, samples

Dk,b ←

⎧⎪⎪⎨
⎪⎪⎩
A−1

k−1

(
Mk,bAk+Ek,b

Sk,bAk+Ek,b

)
using τk−1 if k ≤ i − 1

A−1
i−1

(
Mi,bAi+Ei,b

Yi,b

)
using τi−1 if k = i

A
−1

k−1(Mk,bAk + Ek,b) using τ̄k−1 if k ≥ i + 1

with standard deviation σ.

The LWE distinguisher A′ then sends

J · A0,
{

Dk,b ,Sk,b,Mk,b

}
k∈[h],b∈{0,1}

,Ah.

to the adversary A. If A says it is Distribution 1.(i + 1), it corresponds to the
LWE samples with low-norm public matrices; if A says Distribution 1.i∗, it
corresponds to the uniform distribution.

Lemma 5.12. For j ∈ [h], Distribution 2.(j −1) ≈c Distributions 2.j assuming
LWEm,2m,q,U(Zq),DZ,σ,DZ,σ

.

Roughly speaking, we will show that for all j ∈ [h],
{
A

−1

j−1(Mj,bAj + Ej,b)
}

b∈{0,1}
≈c

{
Dm×m

Z,σ

}
b∈{0,1}

where the distinguisher is also given Mj,0,Mj,1,Aj , but not Aj−1, so as to
trigger Lemma 4.4.

Proof. For j ∈ [h], suppose there exists an adversary A that distinguishes Dis-
tributions 2.(j − 1) and 2.j, we build a distinguisher A′ for Distributions 1 and
2 in Lemma 4.4 as follows. Given challenging samples

Dj,0 | Dj,1 ∈ Z
m×2m

604 Y. Chen et al.

either obtained from A
−1

j−1(
[
Mj,0Aj + Ej,0 | Mj,1Aj + Ej,1

]
) which corresponds

to Distribution 1 in Lemma 4.4 (by treating
[
Mj,0Aj | Mj,1Aj

]
as the arbitrary

matrix Z); or from Dm×2m
Z,σ which corresponds to Distribution 2 in Lemma 4.4.

The distinguisher A′ proceeds as follows:

1. For k ∈ [h], b ∈ {0, 1}, sample Sk,b ← Dn×n
Z,σ .

2. For k ∈ [h], b ∈ {0, 1}, compute Mk,b ∈ Z
w×w using f({Sk,b}k∈[h],b∈{0,1}).

3. For k ∈ {j, j + 1, ..., h − 1}, sample Ak, τ̄k ← TrapSam(1w, 1m, q). Sample
Ah ← U(Zt×m

q).
4. For k ∈ {1, 2, ..., j − 1, j + 1, ..., h} , b ∈ {0, 1}, samples

Dk,b ←
{

Dm×m
Z,σ if k ≤ j − 1

A
−1

k−1(Mk,bAk + Ek,b, σ) using τ̄k−1 if k ≥ j + 1
.

5. Sample U ← U(Zn×m
q).

A′ then sends
U,

{
Dk,b ,Sk,b,Mk,b

}
k∈[h],b∈{0,1}

,Ah.

to the adversary A. Note that A′ correctly produce the output without Aj−1.
So if A determines that the samples are from Distribution 2.(j − 1), A′ chooses
Distribution 1 in Lemma 4.4; if A determines that the samples are from Distri-
bution 2.j, A′ chooses Distribution 2 in Lemma 4.4.

Theorem 5.8 follows from Lemmas 5.11 and 5.12.

Acknowledgments. Y.C. is supported by the NSF MACS project. Part of this work
was done while visiting ENS. V.V. is supported in part by NSF Grants CNS-1350619
and CNS-1414119, Alfred P. Sloan Research Fellowship, Microsoft Faculty Fellowship,
the NEC Corporation and a Steven and Renee Finn Career Development Chair from
MIT. This work was also sponsored in part by the Defense Advanced Research Projects
Agency (DARPA) and the U.S. Army Research Office under contracts W911NF-15-C-
0226 and W911NF-15-C-0236. H.W. is supported by ERC Project aSCEND (H2020
639554). Part of this work was done while visiting CQT.

References

1. Ajtai, M.: Generating hard instances of the short basis problem. In: Wiedermann,
J., van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 1–9.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48523-6 1

2. Alamati, N., Peikert, C.: Three’s compromised too: circular insecurity for any cycle
length from (ring-)LWE. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part II.
LNCS, vol. 9815, pp. 659–680. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-53008-5 23

3. Alwen, J., Peikert, C.: Generating shorter bases for hard random lattices. Theory
Comput. Syst. 48(3), 535–553 (2011)

4. Apon, D., Döttling, N., Garg, S., Mukherjee, P.: Cryptanalysis of indistinguisha-
bility obfuscations of circuits over GGH13. In: ICALP, volume 80 of LIPIcs, pp.
38:1–38:16. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2017)

https://doi.org/10.1007/3-540-48523-6_1
https://doi.org/10.1007/978-3-662-53008-5_23
https://doi.org/10.1007/978-3-662-53008-5_23

GGH15 Beyond Permutation Branching Programs 605

5. Mix Barrington, D.A.: Bounded-width polynomial-size branching programs recog-
nize exactly those languages in nc1. In: Hartmanis, J. (ed.) STOC, pp. 1–5. ACM
(1986)

6. Boneh, D., Kim, S., Montgomery, H.W.: Private puncturable PRFs from standard
lattice assumptions. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part
I. LNCS, vol. 10210, pp. 415–445. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56620-7 15

7. Boneh, D., Lewi, K., Montgomery, H.W., Raghunathan, A.: Key homomorphic
PRFs and their applications. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013,
Part I. LNCS, vol. 8042, pp. 410–428. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-40041-4 23

8. Boneh, D., Silverberg, A.: Applications of multilinear forms to cryptography. Con-
temp. Math. 324(1), 71–90 (2003)

9. Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness of
learning with errors. In: Proceedings of the Forty-Fifth Annual ACM Symposium
on Theory of Computing, pp. 575–584. ACM (2013)

10. Brakerski, Z., Rothblum, G.N.: Obfuscating conjunctions. In: Canetti, R., Garay,
J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 416–434. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1 24

11. Brakerski, Z., Tsabary, R., Vaikuntanathan, V., Wee, H.: Private constrained PRFs
(and more) from LWE. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part I. LNCS,
vol. 10677, pp. 264–302. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-70500-2 10

12. Brakerski, Z., Vaikuntanathan, V., Wee, H., Wichs, D.: Obfuscating conjunctions
under entropic ring LWE. In: ITCS, pp. 147–156. ACM (2016)

13. Canetti, R., Chen, Y.: Constraint-hiding constrained PRFs for NC1 from LWE. In:
Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part I. LNCS, vol. 10210, pp.
446–476. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7 16

14. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a
lattice basis. J. Cryptol. 25(4), 601–639 (2012)

15. Chen, Y., Gentry, C., Halevi, S.: Cryptanalyses of candidate branching program
obfuscators. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part III.
LNCS, vol. 10212, pp. 278–307. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56617-7 10

16. Cheon, J.H., Han, K., Lee, C., Ryu, H., Stehlé, D.: Cryptanalysis of the multilinear
map over the integers. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part
I. LNCS, vol. 9056, pp. 3–12. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-46800-5 1

17. Coron, J.-S., Lee, M.S., Lepoint, T., Tibouchi, M.: Cryptanalysis of GGH15 mul-
tilinear maps. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part II. LNCS,
vol. 9815, pp. 607–628. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53008-5 21

18. Coron, J.-S., Lee, M.S., Lepoint, T., Tibouchi, M.: Zeroizing attacks on indistin-
guishability obfuscation over CLT13. In: Fehr, S. (ed.) PKC 2017, Part I. LNCS,
vol. 10174, pp. 41–58. Springer, Heidelberg (2017). https://doi.org/10.1007/978-
3-662-54365-8 3

19. Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over the inte-
gers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp.
476–493. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-
4 26

https://doi.org/10.1007/978-3-319-56620-7_15
https://doi.org/10.1007/978-3-319-56620-7_15
https://doi.org/10.1007/978-3-642-40041-4_23
https://doi.org/10.1007/978-3-642-40041-4_23
https://doi.org/10.1007/978-3-642-40084-1_24
https://doi.org/10.1007/978-3-319-70500-2_10
https://doi.org/10.1007/978-3-319-70500-2_10
https://doi.org/10.1007/978-3-319-56620-7_16
https://doi.org/10.1007/978-3-319-56617-7_10
https://doi.org/10.1007/978-3-319-56617-7_10
https://doi.org/10.1007/978-3-662-46800-5_1
https://doi.org/10.1007/978-3-662-46800-5_1
https://doi.org/10.1007/978-3-662-53008-5_21
https://doi.org/10.1007/978-3-662-53008-5_21
https://doi.org/10.1007/978-3-662-54365-8_3
https://doi.org/10.1007/978-3-662-54365-8_3
https://doi.org/10.1007/978-3-642-40041-4_26
https://doi.org/10.1007/978-3-642-40041-4_26

606 Y. Chen et al.

20. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
1–17. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9 1

21. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candi-
date indistinguishability obfuscation and functional encryption for all circuits. In:
FOCS, pp. 40–49 (2013)

22. Garg, S., Miles, E., Mukherjee, P., Sahai, A., Srinivasan, A., Zhandry, M.: Secure
obfuscation in a weak multilinear map model. In: Hirt, M., Smith, A. (eds.) TCC
2016, Part B2. LNCS, vol. 9986, pp. 241–268. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53644-5 10

23. Gentry, C., Gorbunov, S., Halevi, S.: Graph-induced multilinear maps from lattices.
In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015, pp. 498–527.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7 20

24. Gentry, C., Lewko, A.B., Waters, B.: Witness encryption from instance indepen-
dent assumptions. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I.
LNCS, vol. 8616, pp. 426–443. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-662-44371-2 24

25. Gentry, C., Peikert, C., Vaikuntanathan V.: Trapdoors for hard lattices and new
cryptographic constructions. In: STOC, pp. 197–206 (2008)

26. Goyal, R., Koppula, V., Waters, B.: Lockable obfuscation. In: FOCS, pp. 612–621
(2017)

27. Goyal, R., Koppula, V., Waters, B.: Separating semantic and circular security for
symmetric-key bit encryption from the learning with errors assumption. In: Coron,
J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part II. LNCS, vol. 10211, pp. 528–
557. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56614-6 18

28. Goyal, R., Koppula, V., Waters, B.: Collusion resistant traitor tracing from learning
with errors. In: STOC (2018)

29. Halevi, S., Halevi, T., Shoup, V., Stephens-Davidowitz, N.: Implementing BP-
obfuscation using graph-induced encoding. In: ACM CCS, pp. 783–798 (2017)

30. Koppula, V., Waters, B.: Circular security separations for arbitrary length cycles
from LWE. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part II. LNCS, vol.
9815, pp. 681–700. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-53008-5 24

31. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 41

32. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on Gaussian
measure. SIAM J. Comput. 37(1), 267–302 (2007)

33. Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem:
extended abstract. In: STOC, pp. 333–342 (2009)

34. Peikert, C., Regev, O., Stephens-Davidowitz, N.: Pseudorandomness of ring-LWE
for any ring and modulus. In: STOC, pp. 461–473. ACM (2017)

35. Peikert, C., Rosen, A.: Efficient collision-resistant hashing from worst-case assump-
tions on cyclic lattices. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876,
pp. 145–166. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878 8

https://doi.org/10.1007/978-3-642-38348-9_1
https://doi.org/10.1007/978-3-662-53644-5_10
https://doi.org/10.1007/978-3-662-53644-5_10
https://doi.org/10.1007/978-3-662-46497-7_20
https://doi.org/10.1007/978-3-662-44371-2_24
https://doi.org/10.1007/978-3-662-44371-2_24
https://doi.org/10.1007/978-3-319-56614-6_18
https://doi.org/10.1007/978-3-662-53008-5_24
https://doi.org/10.1007/978-3-662-53008-5_24
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/11681878_8

GGH15 Beyond Permutation Branching Programs 607

36. Regev, O.: On lattices, learning with errors, random linear codes, and cryptog-
raphy. In: Gabow, H.N., Fagin, R. (eds.) Proceedings of the 37th Annual ACM
Symposium on Theory of Computing, Baltimore, MD, USA, 22–24 May 2005, pp.
84–93. ACM (2005)

37. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. J. ACM 56(6), 34 (2009)

38. Wichs, D., Zirdelis, G.: Obfuscating compute-and-compare programs under LWE.
In: FOCS, pp. 600–611 (2017)

Lower Bounds on Lattice Enumeration
with Extreme Pruning

Yoshinori Aono1, Phong Q. Nguyen2,3(B), Takenobu Seito4, and Junji Shikata5

1 National Institute of Information and Communications Technology,
Tokyo, Japan

2 Inria Paris, Paris, France
Phong.Nguyen@inria.fr

3 CNRS, JFLI, University of Tokyo, Tokyo, Japan
4 Bank of Japan, Tokyo, Japan

5 Yokohama National University, Yokohama, Japan

Abstract. At Eurocrypt ’10, Gama, Nguyen and Regev introduced lat-
tice enumeration with extreme pruning: this algorithm is implemented in
state-of-the-art lattice reduction software and used in challenge records.
They showed that extreme pruning provided an exponential speed-up
over full enumeration. However, no limit on its efficiency was known,
which was problematic for long-term security estimates of lattice-based
cryptosystems. We prove the first lower bounds on lattice enumeration
with extreme pruning: if the success probability is lower bounded, we
can lower bound the global running time taken by extreme pruning. Our
results are based on geometric properties of cylinder intersections and
some form of isoperimetry. We discuss their impact on lattice security
estimates.

1 Introduction

Among all the candidates submitted in 2017 to the NIST standardization of
post-quantum cryptography, the majority are based on hard lattice problems,
such as LWE and NTRU problems. Unfortunately, security estimates for lat-
tice problems are known to be difficult: many different assessments exist in the
research literature, which is reflected in the wide range of security estimates in
NIST submissions (see [2]), depending on the model used. One reason is that
the performance of lattice algorithms depends on many parameters: we do not
know how to select these parameters optimally, and we do not know how far
from optimal are current parameter selections. The most sensitive issue is the
evaluation of the cost of a subroutine to find shortest or nearly shortest lat-
tice vectors in certain dimensions (typically the blocksize of blockwise reduction
algorithms). In state-of-the-art lattice reduction software [7,9,11], this subrou-
tine is implemented by lattice enumeration with extreme pruning, introduced at

The views expressed in this paper are those of authors and do not necessarily reflect
the official views of the Bank of Japan.

c© International Association for Cryptologic Research 2018
H. Shacham and A. Boldyreva (Eds.): CRYPTO 2018, LNCS 10992, pp. 608–637, 2018.
https://doi.org/10.1007/978-3-319-96881-0_21

Lower Bounds on Lattice Enumeration with Extreme Pruning 609

Eurocrypt ’10 by Gama, Nguyen and Regev [16] as a generalization of pruning
methods introduced by Schnorr et al. [34,35] in the 90s. Yet, most lattice-based
NIST submissions chose their parameters based on the assumption that siev-
ing [1,8,20,22,28] (rather than enumeration) is the most efficient algorithm for
this subroutine. This choice goes back to the analysis of NewHope [3, Sect. 6],
which states that sieving is more efficient than enumeration in dimension ≥ 250
for both classical and quantum computers, based on a lower bound on the cost
of sieving (ignoring subexponential terms) and an upper bound on the cost
of enumeration (either [11, Table 4] or [10, Table 5.2]). In dimensions around
140− 150, this upper bound is very close to actual running times for solving the
largest record SVP challenges [32], which does not leave much margin for future
progress; and for dimensions ≥ 250, a numerical extrapolation has been used,
which is also debatable.

It would be more consistent to compare the sieving lower bound by a lower
bound on lattice enumeration with extreme pruning. Unfortunately, no such
lower bound is known: the performances of extreme pruning strongly depends
on the choice of bounding function, and it is unknown how good can be such
a function. There is only a partial lower bound on the cost of extreme pruning
in [11], assuming that the choice of step bounding function analyzed in [16] is
optimal. And this partial lower bound is much lower than the upper bound given
in [10,11].

Our results. We study the limitations of lattice enumeration with extreme prun-
ing. We prove the first lower bound on the cost of extreme pruning, given a lower
bound on the global success probability. This is done by studying the case of
a single enumeration with cylinder pruning, and generalizing it to the extreme
pruning case of multiple enumerations, possibly infinitely many. Our results are
based on geometric properties of cylinder intersections and a probabilistic form
of isoperimetry: usually, isoperimetry refers to a geometric inequality involving
the surface area of a set and its volume.

Our lower bounds are easy to compute and appear to be reasonably tight in
practice, at least in the single enumeration case: we introduce a cross-entropy-
based method which experimentally finds upper bounds somewhat close to our
lower bounds.

Impact. By combining our lower bounds with models of strongly-reduced lat-
tice bases introduced in [7,11,26] and quantum speed-ups for enumeration [6],
we obtain more sound comparisons with sieving: see Fig. 1 for an overview. It
suggests that enumeration is faster than sieving up to higher dimensions than
previously considered by lattice-based submissions to NIST post-quantum cryp-
tography standardization: the cost lower bound used by many NIST submissions
is not as conservative as previously believed, especially in the quantum setting.
Concretely, in the quantum setting, the lower bounds of enumeration and siev-
ing cross in dimensions roughly 300–400 in the HKZ-basis model or beyond 500
in the Rankin-basis model, depending on how many enumerations are allowed.
We note that in high dimension, our lower bound for enumeration with 1010

610 Y. Aono et al.

Fig. 1. Upper/lower bounds on the classical/quantum cost of enumeration with cylin-
der pruning, using strongly-reduced basis models. See Sect. 5 for the exact meaning
of these curves: the lower bounds correspond to (16) and (17) and the upper bounds
are found by the algorithm in Sect. 4. For comparison, we also displayed several curves
from [2]: 20.292n and 20.265n as the simplified classical/quantum complexity of sieve
algorithms, and the numerical extrapolation of enumeration cost of [17, (2)]. (Color
figure online)

HKZ bases is somewhat close to the numerical extrapolation of [17, (2)], called
Core-Enum+O(1) in [2].

Technical overview. Enumeration is the simplest algorithm to solve hard lattice
problems: it outputs L∩B, given a lattice L and an n-dimensional ball B ⊆ Rn.
It dates back to the early 1980s [15,18,29] but has been significantly improved
in practice in the past twenty years, thanks to pruning methods introduced by
Schnorr et al. [33–35], and later revisited and generalized as respectively cylinder
pruning by Gama, Nguyen and Regev [16] and discrete pruning by Aono and
Nguyen [5]: pruning methods offer a trade-off by enumerating over a special
subset S ⊆ B, at the expense of missing solutions. Gama et al. [16] introduced
the idea of extreme pruning where one repeats pruned enumeration many times
over different sets S: this can be globally faster than full enumeration, even if
a single enumeration has a negligible probability of returning solutions. In the

Lower Bounds on Lattice Enumeration with Extreme Pruning 611

case of cylinder pruning, [16] showed that the speed-up can be asymptotically
exponential for simple choices of the pruning subset S.

Cylinder pruning uses the intersection S of n cylinders defined by a lattice
basis and a bounding function f : by using different lattice bases B, one obtains
different sets S. The running time and the success probability of cylinder pruning
depend on the quality of the basis, and the bounding function f . But when one
uses different bases, these bases typically have approximately the same quality,
which allows to focus on f , which determines the radii of S.

The probability of success of cylinder pruning is related to the volume of S,
whereas its cost is related to the volumes of the ‘canonical’ projections of S. We
show that if the success probability is lower bounded, that is, if S is sufficiently
big (with respect to its volume, or its Gaussian measure for the case of solving
LWE), then the function f defining S can be lower bounded: as a special case, if
S occupies a large fraction of the ball, f is lower bounded by essentially the linear
pruning function of [16]. This immediately gives lower bounds on the volumes
of the projections of S, but we significantly improve these direct lower bounds
using the following basic form of isoperimetry: for certain distributions such
as the Gaussian distribution, among all Borel sets of a given volume, the ball
centered at the origin has the largest probability. The extreme pruning case is
obtained by a refinement of isoperimetry over finitely many sets: it is somewhat
surprising that we obtain a lower bound even in the extreme case where we allow
infinitely many sets S.

All our lower bounds are easy to compute. To evaluate their tightness, we
introduce a method based on cross-entropy to compute good upper bounds in
practice, i.e., good choices of f . This is based on earlier work by Chen [10].

Open problem. Our lower bounds are specific to cylinder pruning [16]. It would
be interesting to obtain tight lower bounds for discrete pruning [5].

Roadmap. In Sect. 2, we introduce background and notation on lattices, enumer-
ation and its cost estimations. Section 3 presents our lower bounds as geometric
properties of cylinder intersections. Section 4 shows how to obtain good upper
bounds in practice, by finding nice cylinder intersections using cross-entropy.
Finally, in Sect. 5, we evaluate the tightness of our lower bounds and discuss
security estimates for the hardness of finding nearly shortest lattice vectors. The
appendix includes proofs of technical results. The full version of this paper on
eprint also includes sage scripts to compute our lower bounds.

2 Background

2.1 Notation

Throughout the paper, we use row representations of matrices. The Euclidean
norm of a vector v ∈ Rn is denoted ‖v‖. The ‘canonical’ projection of u ∈ Rn

onto Rk for 1 ≤ k ≤ n is the truncation τk(u) = (u1, . . . , uk).

612 Y. Aono et al.

Measures. We denote by vol the standard Lebesgue measure over Rn. We denote
by ρn,σ the centered Gaussian measure of variance σ2, whose pdf over Rn is

(2πσ2)−n/2e−‖x‖2/(2σ2).

The standard Gaussian measure is ρn = ρn,1.

Balls. We denote by Balln(R) the n-dimensional zero-centered ball of radius R.
Let Vn(R) = vol(Balln(R)). Let u = (u1, . . . , un) be a point chosen uniformly at
random from the unit sphere Sn−1, e.g. ui = xi/

√∑n
j=1 x2

j , where x1, . . . , xn are
independent, normally distributed random variables with mean 0 and variance 1.
Then ‖τk(u)‖2 =

∑k
i=1 x2

i∑k
i=1 x2

i +
∑n

i=k+1 x2
i

= X
X+Y , where X and Y have distributions

Gamma(k/2, θ = 2) and Gamma((n − k)/2, θ = 2) respectively. Here, we use
the scale parametrization to represent Gamma distributions. Hence, ‖τk(u)‖2

has distribution Beta(k/2, (n− k)/2). In particular, ‖τn−2(u)‖2 has distribution
Beta(n/2 − 1, 1), whose pdf is x(n/2)−2/B(n/2 − 1, 1) = (n/2 − 1)x(n/2)−2. It
follows that the truncation τn−2(u) is uniformly distributed over Balln−2(1),
which allows to transfer our results to random points in balls.

Recall that the cumulative distribution function of the Beta(a, b) distribution
is the regularized incomplete beta function Ix(a, b) defined as:

Ix(a, b) =
1

B(a, b)

∫ x

0

ua−1(1 − u)b−1du, (1)

where B(a, b) = Γ(a)Γ(b)
Γ(a+b) denotes the beta function. We have the following

elementary bounds (by integrating by parts):

xa(1 − x)b−1

aB(a, b)
≤ Ix(a, b) ∀a > 0, b ≥ 1, 0 ≤ x ≤ 1 (2)

Ix(a, b) ≤ xa

a · B(a, b)
∀a > 0, b ≥ 1, 0 ≤ x ≤ 1 (3)

For z ∈ [0, 1] and a, b > 0, I−1
z (a, b) + I−1

1−z(b, a) = 1 which is immediate from
the relation Ix(a, b) + I1−x(b, a) = 1.

Finally, P (s, x) =
∫ x

0
ts−1e−tdt/Γ(s) is the regularized incomplete gamma

function.

Lattices. A lattice L is a discrete subgroup of Rm, or equivalently the set
L(b1, . . . ,bn) = {∑n

i=1 xibi : xi ∈ Z} of all integer combinations of n linearly
independent vectors b1, . . . ,bn ∈ Rm. Such bi’s form a basis of L. All the bases
of L have the same number n of elements, called the dimension or rank of L, and
the same n-dimensional volume of the parallelepiped {∑n

i=1 aibi : ai ∈ [0, 1)}
they generate. We call this volume the co-volume, or determinant, of L, and
denote it by covol(L). The lattice L is said to be full-rank if n = m. The most
famous lattice problem is the shortest vector problem (SVP), which asks to find
a non-zero lattice vector of minimal Euclidean norm. The closest vector problem
(CVP) asks to find a lattice vector closest to a target vector.

Lower Bounds on Lattice Enumeration with Extreme Pruning 613

Orthogonalization. For a basis B = (b1, . . . ,bn) of a lattice L and i ∈ {1, . . . , n},
we denote by πi the orthogonal projection on span(b1, . . . ,bi−1)⊥. The Gram-
Schmidt orthogonalization of the basis B is defined as the sequence of orthogonal
vectors B� = (b�

1, . . . ,b
�
n), where b�

i := πi(bi). We can write each bi as b�
i +∑i−1

j=1 μi,jb�
j for some unique μi,1, . . . , μi,i−1 ∈ R. Thus, we may represent the

μi,j ’s by a lower-triangular matrix μ with unit diagonal. The projection of a
lattice may not be a lattice, but πi(L) is an n+1−i dimensional lattice generated
by πi(bi), . . . , πi(bn), with covol(πi(L)) =

∏n
j=i

∥∥b�
j

∥∥.

The Gaussian Heuristic. For a full-rank lattice L in Rn and a measurable set
C ⊂ Rn, the Gaussian heuristic estimates the number of lattice points inside
of C to be approximately vol(C)/vol(L). Accordingly, we would expect that
λ1(L) might be close to GH(L) = Vn(1)−1/nvol(L)1/n, which holds for a random
lattice L.

Cylinders. The performances of cylinder pruning are directly related to the
following bodies. Define the (k-dimensional) cylinder-intersection of radii R1 ≤
· · · ≤ Rk as the set

CR1,...,Rk
=

{
(x1, . . . , xk) ∈ Rk, ∀j ≤ k,

j∑
�=1

x2
� ≤ R2

j

}
⊆ Ballk(Rk).

Gama et al. [16] showed how to efficiently compute tight lower and upper bounds
for vol(CR1,...,Rk

), thanks to the Dirichlet distribution and special integrals.

2.2 Enumeration with Cylinder Pruning

To simplify notations, we assume that we focus on the SVP setting, i.e. to find
short lattice vectors, rather than the more general CVP setting. Let L be a full-
rank lattice in Rn. Given a basis B = (b1, . . . ,bn) of L and a radius R > 0,
Enumeration [15,18,29] outputs L ∩ S where S = Balln(R) by a depth-first
tree search: by comparing all the norms of the vectors obtained, one extracts a
shortest non-zero lattice vector.

We follow the general pruning framework of [5], which replaces S by a subset
of S depending on B. Given a function f : {1, . . . , n} → [0, 1], Gama et al. [16]
introduced the following set to generalize the pruned enumeration of [34,35]:

Pf (B,R) = {x ∈ Rn s.t. ‖πn+1−i(x)‖ ≤ f(i)R for all 1 ≤ i ≤ n}, (4)

where the πi is the projection over span(b1, . . . ,bi−1)⊥. The set Pf (B,R) should
be viewed as a random variable. Note that Pf (B,R) ⊆ Balln(R) and if g is the
constant function equal to 1, then Pg(B,R) = Balln(R).

Gama et al. [16] noticed that the basic enumeration algorithm can actually
compute L ∩ Pf (B,R) instead of L ∩ Balln(R), just by changing its parameters.
We call cylinder pruning this form of pruned enumeration, because Pf (B,R) is
an intersection of cylinders, since each equation ‖πn+1−i(x)‖ ≤ f(i)R defines a
cylinder. Cylinder pruning was historically introduced in the SVP setting, but
its adaptation to CVP is straightforward, as was shown by Liu and Nguyen [21].

614 Y. Aono et al.

Complexity of Enumeration. The advantage is that for suitable choices of f ,
enumerating L ∩ Pf (B,R) is much cheaper than enumerating L ∩ Balln(R):
indeed, [16] shows that cylinder pruning runs in

∑n
k=1 Nk poly-time operations,

where Nk is the number of points of πn+1−k(L∩Pf (B,R)): this is because Nk is
exactly the number of nodes at depth n− k +1 of the enumeration tree which is
searched by cylinder pruning. By the Gaussian heuristic, we have heuristically
Nk ≈ Hk where:

Hk =
vol(πn+1−k(Pf (B,R)))

covol(πn+1−k(L))
=

vol(CRf(1),...,Rf(k))
covol(πn+1−k(L))

.

It follows that the complexity of cylinder pruning is heuristically:

N =
n∑

k=1

vol(CRf(1),...,Rf(k))∏n
i=n−k+1 ‖b�

i ‖
(5)

This N is a heuristic estimate of the number of nodes in the tree searched
by cylinder pruning. It depends on one hand on R and the bounding function
f , but on the other hand on the quality of the basis B, because of the term∏n

i=n−k+1 ‖b�
i ‖. In the SVP setting, one can further divide (5) by two, because

of symmetries in the enumeration tree.

Success Probability. We consider two settings:

Approximation Setting: The algorithm is successful if and only if we find at
least one non-zero point of L ∩ Pf (B,R), that is L ∩ Pf (B,R) �⊆ {0}. This is
the situation studied in [5] and corresponds to the use of cylinder pruning in
blockwise lattice reduction. By the Gaussian heuristic, the number of points
of L ∩ Pf (B,R) is heuristically:

vol(Pf (B,R))
covol(L)

=
vol(CRf(1),...,Rf(n))

covol(L)
.

So we estimate the probability of success as:

Pr
succ

= min
(

1,
vol(CRf(1),...,Rf(n))

covol(L)

)
. (6)

Since covol(L) = Vn(GH(L)), if R = βGH(L), then (6) becomes

Pr
succ

= min
(

1, βn vol(CRf(1),...,Rf(n))
Vn(R)

)
. (7)

Unique Setting: This corresponds to the situation studied in [16] and to
bounded distance decoding (BDD). There is a secret vector v ∈ L, whose
distribution is assumed to be the Gaussian distribution over Rn of parameter
σ. The algorithm is successful if and only if v is returned by the algorithm,
i.e. if and only if v ∈ Pf (B,R). So we estimate the probability of success as:

Pr
succ

= ρn,σ(Pf (B,R)) = ρn,σ(Cf(1)R,...,f(n)R). (8)

Lower Bounds on Lattice Enumeration with Extreme Pruning 615

3 Lower Bounds for Cylinder Pruning

In this section, we prove novel geometric properties of cylinder intersections: if a
cylinder intersection is sufficiently big (with respect to its volume or its Gaussian
measure), we can lower bound the radii defining the intersection, as well as the
volume of all its canonical projections, which are also cylinder intersections.

A basic ingredient behind these properties is a special case of cylinder inter-
sections, corresponding to the step-bounding functions used in [16]. More pre-
cisely, we consider the intersection of a ball with a cylinder, which we call a
ball-cylinder:

Dk,n(R,R′) =

{
(x1, . . . , xn) ∈ Rn,

k∑
l=1

x2
l ≤ R2 and

n∑
l=1

x2
l ≤ R′2

}
.

In other words, Dk,n(R,R′) = CR,...,R,R′,...,R′ where R is repeated k times, and
R′ is repeated n − k times. The following result is trivial:

Lemma 1. Let R1 ≤ R2 ≤ · · · ≤ Rn and 1 ≤ k ≤ n. Then:

CR1,...,Rn
⊆ Dk,n(Rk, Rn).

Note that for fixed k, n and R′, vol(Dk,n(R,R′)) is an increasing function of R.
The following lemma gives properties of the volume and Gaussian measures of
ball-cylinders, based on the background:

Lemma 2. Let R ≤ R′ and 1 ≤ k ≤ n. Then:

vol(Dk,n(R,R′)) = Vn(R′) × I(R/R′)2(k/2, 1 + (n − k)/2)
ρk,σ(Ballk(R)) ≥ ρn,σ(Dk,n(R,R′)) ≥ ρk,σ(Ballk(R))ρn,σ(Balln(R′))

ρn,σ(Balln(R)) = P (n/2, R2/(2σ2))

Proof. Because Dk,n(R,R′) ⊆ Balln(R′), vol(Dk,n(R,R′))/Vn(R′) is the proba-
bility that a random vector (x1, . . . , xn) (chosen uniformly at random from the
n-dimensional ball of radius R′) satisfies

∑k
l=1 x2

l ≤ R2, that is,
∑k

l=1(xl/R′)2 ≤
(R/R′)2. It follows that this probability is also the probability that a random
vector (y1, . . . , yn) (chosen uniformly at random from the n-dimensional unit
ball) satisfies:

∑k
l=1 y2

l ≤ (R/R′)2. From the background, we know that
∑k

l=1 y2
l

has distribution Beta(k/2, (n + 2 − k)/2), which proves the first equality.
Note that Dk,n(R,R′) ⊆ Dk,n(R,+∞), which proves that ρn,σ(Dk,n

(R,R′)) ≤ ρk,σ(Ballk(R)). Furthermore, by the Gaussian correlation inequal-
ity on convex symmetric sets, we have:

ρn,σ(Dk,n(R,R′)) ≥ ρn,σ(Balln(R′)) × ρn,σ

(
{(x1, . . . , xn) ∈ Rn :

k∑
i=1

x2
i ≤ R2}

)

= ρk,σ(Ballk(R))ρn,σ(Balln(R′))

which proves that ρn,σ(Dk,n(R,R′)) ≥ P (k/2, R2/(2σ2))P (n/2, R′2/(2σ2)).

616 Y. Aono et al.

Finally, let x1, . . . , xn be independent, normally distributed random vari-
ables with mean 0 and variance 1. Then X =

∑n
i=1 x2

i has the distribution
Gamma(n/2, θ = 2) whose CDF is P (n/2, x/2). Therefore ρn(Balln(R)) =
P (n/2, R2/2). ��

3.1 Lower Bounds on Cylinder Radii

The following theorem lower bounds the radii of any cylinder intersection cov-
ering a fraction of the ball:

Theorem 1. Let 0 ≤ R1 ≤ · · · ≤ Rn be such that vol(CR1,...,Rn
) ≥ αVn(Rn),

where 0 ≤ α ≤ 1. If for all 1 ≤ k ≤ n, we define αk > 0 by Iαk
(k/2, 1 + (n −

k)/2) = α, then vol(Dk,n(
√

αkRn, Rn)) ≤ vol(CR1,...,Rn
) and:

Rk ≥ √
αkRn.

Proof. Lemma 1 shows that:

vol(CR1,...,Rn
) ≤ vol(Dk,n(Rk, Rn)).

On the other hand, Lemma 2 shows that by definition of αk:

vol(Dk,n(
√

αkRn, Rn))

= Vn(Rn) × Iαk

(
k

2
, 1 +

n − k

2

)
= αVn(Rn) ≤ vol(CR1,...,Rn

),

which proves the first statement. Hence:
vol(Dk,n(

√
αkRn, Rn)) ≤ vol(Dk,n(Rk, Rn)), which implies that Rk ≥ √

αkRn.
��

The parameter α in Theorem 1 is directly related to our success probability
(7) in the approximation setting: indeed, if Rn = βGH(L) and Prsucc ≥ γ, then
α = γ/βn satisfies the condition of Theorem 1. We have the following Gaussian
analogue of Theorem 1, where the lower bound on the volume is replaced by a
lower bound on the Gaussian measure:

Theorem 2. Let 0 ≤ R1 ≤ · · · ≤ Rn be such that ρn,σ(CR1,...,Rn
) ≥ β, where

0 ≤ β ≤ 1. If for all 1 ≤ k ≤ n we define βk > 0 by P (k/2, βk/(2σ2)) = β, then
ρn,σ(Dk,n(

√
βk, Rn)) ≤ ρn,σ(CR1,...,Rn

) and Rk ≥ √
βk.

Proof. On the one hand, Lemma 1 shows that:

ρn,σ(CR1,...,Rn
) ≤ ρn,σ(Dk,n(Rk, Rn)).

On the other hand, Lemma 2 shows that by definition of βk:

ρn,σ(Dk,n(
√

βk, Rn)) ≤ P (k/2, βk/2(σ2)) = β ≤ ρn,σ(CR1,...,Rn
),

which proves the first statement. Hence:

ρn,σ(Dk,n(
√

βk, Rn)) ≤ ρn,σ(Dk,n(Rk, Rn)),

which implies that Rk ≥ √
βk. ��

Lower Bounds on Lattice Enumeration with Extreme Pruning 617

In Theorem 2, β can be chosen as any lower bound on the success probability in
the unique setting (8).

Theorem 1 allows to derive numerical lower bounds on the radii, from any
lower bound on the success probability. However, there is a special case for which
the lower bound has a simple algebraic form, thanks to the following technical
lemma (proved in Appendix A):

Lemma 3. If 1 ≤ k ≤ n, then:

1 − P (1/2, 1/2) ≤ Ik/n(k/2, (n − k)/2) ≤ P (1/2, 1/2) (9)

By coupling Theorem 1 and Lemma 3, we obtain that the squared radii of any
high-volume cylinder intersection are lower bounded by linear functions:

Theorem 3. Let 0 ≤ R1 ≤ · · · ≤ Rn such that vol(CR1,...,Rn
) ≥ P (1/2, 1/2) ×

Vn(Rn). Then for all 1 ≤ k ≤ n:

Rk ≥
√

k

n + 2
Rn.

Proof. The assumption and (9) imply that

vol(CR1,...,Rn
) ≥ Ik/(n+2)(k/2, 1 + (n − k)/2)Vn(Rn).

Hence, we can apply Theorem 1 with αk =
√

k/(n + 2). ��
Note that P (1/2, 1/2) ≈ 0.683 . . . , so any bounding function with high success
probability must have a cost lower bounded by that of some linear pruning,
which means that its speed-up (compared to full enumeration) is at most single-
exponential (see [16]).

3.2 Lower Bounds on Cylinder Volumes from Isoperimetry

The lower bounds on radii given by Theorems 1 and 2 provide lower bounds on
vol(CR1,...,Rk

) for all 1 ≤ k ≤ n − 1. Indeed, if Rk ≥ √
αkRn, then:

vol(CR1,...,Rk
) ≥ vol(C√

α1Rn,...,
√

αkRn
).

Such lower bounds immediately provide a lower bound on the cost of enumeration
with cylinder pruning, because of (5).

In this subsection, we show that this direct lower bound can be significantly
improved, namely it can be replaced by Vk(

√
αkRn). Our key ingredient is the

following isoperimetric result, which says that among all Borel sets of given
volume, the ball centered at the origin has the largest measure, for any isotropic
measure which decays monotonically radially away :

Theorem 4 (Isoperimetry). Let A be a Borel set of Rk. Let D be a distri-
bution over Rk such that its probability density function f is radial and decays

618 Y. Aono et al.

monotonically radially away: f(x) ≤ f(y) whenever ‖x‖ ≥ ‖y‖. If a random
variable X has distribution D, then:

Pr(X ∈ A) ≤ Pr(X ∈ B),

where B is the ball of Rk centered at the origin such that vol(B) = vol(A).

Proof. The statement is proved in [38, pp. 498–499] for the special case where D
is the Gaussian distribution over Rk. However, the proof actually works for any
radial probability density function which decays monotonically radially away. ��
It implies the following:

Lemma 4. Let 1 ≤ k ≤ n. Let π = τk be the canonical projection of Rn over
Rk. Let C be a subset of the n-dimensional ball of radius R′ such that both C
and π(C) are measurable. If R is the radius of the k-dimensional ball of volume
vol(π(C)), then:

vol(C) ≤ vol(Dk,n(R,R′)) and ρn,σ(C) ≤ ρn,σ(Dk,n(R,R′)).

Proof. Let B′ be the n-dimensional centered ball of radius R′. Let B be the
k-dimensional centered ball of radius R. Let x be chosen uniformly at random
from B′. Since C ⊆ B′, vol(C)/Vn(R′) is exactly Pr(x ∈ C), and we have:

Pr(x ∈ C) ≤ Pr(π(x) ∈ π(C)).

Let D be the distribution of y = π(x) ∈ Rk. Then by Theorem4,

Pr(y ∈ π(C)) ≤ Pr(y ∈ B).

Hence:

Pr(x ∈ C) ≤ Pr(y ∈ B) =
vol(Dk,n(R,R′))

Vn(R′)
,

which proves the first statement. Similarly, if x is chosen from the Gaussian
distribution corresponding to ρn,σ, then

ρn,σ(C)/ρn,σ(B′) = Pr(x ∈ C) ≤ Pr(π(x) ∈ π(C)).

Let D′ be the distribution of y = π(x) ∈ Rk: this is a Gaussian distribution.
Then by Theorem 4,

Pr(y ∈ π(C)) ≤ Pr(y ∈ B) =
ρn,σ(Dk,n(R,R′))

ρn,σ(B′)
.

��
It has the following geometric consequence:

Corollary 1. Let R1 ≤ R2 ≤ · · · ≤ Rn and 1 ≤ k ≤ n. Let R > 0 such
that vol(CR1,...,Rn

) ≥ vol(Dk,n(R,Rn)) or ρn,σ(CR1,...,Rn
) ≥ ρn,σ(Dk,n(R,Rn)).

Then:
vol(CR1,...,Rk

) ≥ Vk(R).

Lower Bounds on Lattice Enumeration with Extreme Pruning 619

Proof. Let C = CR1,...,Rn
and π = τk be the canonical projection of Rn over

Rk. Then π(C) = CR1,...,Rk
. If r is the radius the k-dimensional ball of volume

vol(π(C)), Lemma 4 implies that: vol(C) ≤ vol(Dk,n(r,Rn)) and ρn,σ(C) ≤
ρn,σ(Dk,n(r,Rn)). Thus, by definition of R, we have either vol(Dk,n(R,Rn)) ≤
vol(C) ≤ vol(Dk,n(r,Rn)) or ρn,σ(Dk,n(R,Rn)) ≤ ρn,σ(C) ≤ ρn,σ(Dk,n(r,Rn)),
which each imply that r ≥ R. ��
Note that CR1,...,Rk

and Ballk(R) are the projections of respectively CR1,...,Rn

and Dk,n(R,Rn) over Rk. So the corollary is a bit surprising: if one particular
body is “bigger” than the other, then so are their projections. Obviously, this
cannot hold for arbitrary bodies in the worst case.

This corollary implies the following lower bounds, which strengthens
Theorem 1:

Corollary 2. Under the same assumptions as Theorem1, we have:

vol(CR1,...,Rk
) ≥ Vk(

√
αkRn).

Proof. From Theorem 1, we have: vol(CR1,...,Rn
) ≥ vol(Dk,n(

√
αkRn, Rn)). And

we apply Corollary 1. ��
Similarly, we obtain:

Corollary 3. Under the same assumptions as Theorem2, we have:

vol(CR1,...,Rk
) ≥ Vk(

√
βkRn).

It would be interesting to study if the lower bounds of the last two corollaries
can be further improved.

3.3 Generalisation to Finitely Many Cylinder Intersections

In this section, we give an analogue of the results of Sect. 3.2 to finitely many
cylinder intersections, which corresponds to the extreme pruning setting. The
key ingredient is the following refinement of isoperimetry:

Theorem 5 (Isoperimetry). Let A1, . . . , Am be Borel sets of Rk. Let D be
a distribution over Rk such that its probability density function f is radial and
decays monotonically radially away: f(x) ≤ f(y) whenever ‖x‖ ≥ ‖y‖. If a
random variable X has distribution D, then:

1
m

m∑
i=1

Pr(X ∈ Ai) ≤ Pr(X ∈ B),

where B is the ball of Rk centered at the origin such that vol(B) =
1
m

∑m
i=1 vol(Ai).

Proof. The statement is proved in [38, pp. 499–500] for the special case where D
is the Gaussian distribution over Rk. However, the proof actually works for any
radial probability density function which decays monotonically radially away. ��

620 Y. Aono et al.

Lemma 5. Let 1 ≤ k ≤ n. Let π = τk be the canonical projection of Rn over Rk.
Let C1, . . . , Cm ⊆ Balln(R′) such that all the Ci’s and π(Ci)’s are measurable.
If R is the radius of the k-dimensional ball of volume 1

m

∑m
i=1 vol(π(Ci)), then:

1
m

m∑
i=1

vol(Ci) ≤ vol(Dk,n(R,R′)) and
1
m

m∑
i=1

ρn,σ(Ci) ≤ ρn,σ(Dk,n(R,R′)).

Proof. Let B′ be the n-dimensional centered ball of radius R′. Let B be the
k-dimensional centered ball of radius R such that vol(B) = 1

m

∑m
i=1 vol(π(Ci)).

Let x be chosen uniformly at random from B′. Since Ci ⊆ B′, vol(Ci)/Vn(R′) is
exactly Pr(x ∈ Ci), and we have:

Pr(x ∈ Ci) ≤ Pr(π(x) ∈ π(Ci)).

Let D be the distribution of y = π(x) ∈ Rk. Then by Theorem5,

1
m

m∑
i=1

Pr(y ∈ π(Ci)) ≤ Pr(y ∈ B).

Hence:
1
m

m∑
i=1

Pr(x ∈ Ci) ≤ Pr(y ∈ B) =
vol(Dk,n(R,R′))

Vn(R′)
,

which proves the first statement. ��
It has the following geometric consequence:

Corollary 4. Let C1, . . . , Cm ⊆ Balln(Rn) be n-dimensional cylinder inter-
sections. Let 1 ≤ k ≤ n and denote by π = τk the canonical projection of
Rn over Rk. Let R > 0 such that 1

m

∑m
i=1 vol(Ci) ≥ vol(Dk,n(R,Rn)) or

1
m

∑m
i=1 ρn,σ(Ci) ≥ ρn,σ(Dk,n(R,Rn)). Then:

1
m

m∑
i=1

vol(π(Ci)) ≥ Vk(R).

Proof. If r is the radius of the k-dimensional ball of volume 1
m

∑m
i=1 vol(π(Ci)),

the Lemma 5 implies that: 1
m

∑m
i=1 vol(Ci) ≤ vol(Dk,n(r,Rn)) and

1
m

∑m
i=1 ρn,σ(Ci) ≤ ρn,σ(Dk,n(r,Rn)). Thus, by definition of R, we have either

vol(Dk,n(R,Rn)) ≤ vol(C) ≤ vol(Dk,n(r,Rn)) or ρn,σ(Dk,n(R,Rn)) ≤ ρn(C) ≤
ρn,σ(Dk,n(r,Rn)), which each imply that r ≥ R. ��
Theorem 6. Let C1, . . . , Cm ⊆ Balln(Rn) be n-dimensional cylinder inter-
sections such that

∑m
i=1 vol(Ci) ≥ mαVn(Rn), where 0 ≤ α ≤ 1. If for

all 1 ≤ k ≤ n, we define αk > 0 by Iαk
(k/2, 1 + (n − k)/2) = α, then

vol(Dk,n(
√

αkRn, Rn)) ≤ 1
m

∑m
i=1 vol(Ci) and:

m∑
i=1

vol(π(Ci)) ≥ mVk(
√

αkRn),

where π = τk denotes the canonical projection of Rn over Rk.

Lower Bounds on Lattice Enumeration with Extreme Pruning 621

Proof. Lemma 2 shows that by definition of αk:

vol(Dk,n(
√

αkRn, Rn)) = αVn(Rn) ≤ 1
m

m∑
i=1

vol(Ci),

which proves the first statement. And the rest follows by Lemma 4. ��
Again, the parameter α in Theorem 6 is directly related to our global success
probability (7) in the approximation setting: the global success probability is
≤ ∑m

i=1 vol(Ci)/covol(L) so if Rn = βGH(L) and the global success probability
is ≥ γ, then α = γ/(mβn) satisfies the condition of Theorem 1.

We have the following Gaussian analogue of Theorem6:

Theorem 7. Let C1, . . . , Cm ⊆ Balln(Rn) be n-dimensional cylinder intersec-
tions such that

∑m
i=1 ρn,σ(Ci) ≥ mβ, where 0 ≤ β ≤ 1/m. If for all 1 ≤ k ≤ n,

we define βk > 0 by P (k/2, βk/(2σ2)) = β, then ρn,σ(Dk,n(
√

βkRn, Rn)) ≤
1
m

∑m
i=1 ρn,σ(Ci) and:

m∑
i=1

vol(π(Ci)) ≥ mVk(βk),

where π = τk denotes the canonical projection of Rn over Rk.

In the unique setting, the global success probability is ≤ ∑m
i=1 ρn,σ(Ci), so if

the global success probability is ≥ γ, then β = γ/m satisfies the condition of
Theorem 7.

Surprisingly, we will show that Theorems 6 and 7 imply that we can lower
bound the cost of extreme pruning, independently of the number m of cylinder
intersections:

Lemma 6. Let the global probability 0 ≤ α′ ≤ 1 and 1 ≤ k ≤ n. Let α = α′/m
and αk > 0 such that Iαk

(k/2, 1 + (n − k)/2) = α. Then, mVk(
√

αk) is strictly
decreasing w.r.t. m, yet lower bounded by some linear function of α′:

mVk(
√

αk) > α′ · kVk(1)
2

· B

(
k

2
, 1 +

n − k

2

)
.

Furthermore, for fixed α′, k and n, the left-hand side converges to the right-hand
side when m goes to infinity and αk is defined as above.

Lemma 6 implies that the cost of enumeration decreases as the number of cylin-
der intersections increases, if the global probability α′ is fixed. However, there is
a limit given by some linear function of α′ which depends only on n.

To prove the lemma, we use the following two lemmas:

Lemma 7. For a ≥ 0, b ≥ 1, 0 < z ≤ 1:

∂

∂z
I−1
z (a, b) ≥ 1

az
I−1
z (a, b)

622 Y. Aono et al.

Proof. Substituting x = I−1
z (a, b) in (3) we obtain:

(1 − I−1
z (a, b))b−1(I−1

z (a, b))a

aB(a, b)
≤ z.

This implies that

∂

∂z
I−1
z (a, b) = B(a, b)(1 − I−1

z (a, b))1−b(I−1
z (a, b))1−a ≥ 1

az
I−1
z (a, b).

��
Lemma 8. For a ≥ 0, b ≥ 1:

lim
y→0+

y

(I−1
y (a, b))a

=
1

a · B(a, b)

Proof. Bounding inequalities (2) and (3) from both sides implies that

lim
x→0+

Ix(a, b)
xa

=
1

a · B(a, b)
.

Letting x = I−1
y (a, b), the claim holds. ��

Proof of Lemma 6
We have Iαk

(k/2, 1+ (n− k)/2) = α′/m and αk = I−1
α′/m(k/2, 1+ (n− k)/2).

This gives:

mVk(
√

αk) = Vk(1)m ·
(
I−1
α′/m(k/2, 1 + (n − k)/2)

)k/2

.

Thus, to show the first claim, it suffices to prove that

g(y) =
1
y

(
I−1
α′y(k/2, 1 + (n − k)/2)

)k/2

is strictly increasing over 0 < y ≤ 1.
For simplicity, we write I := I−1

α′y(k/2, 1 + (n − k)/2) and we have:

g′(y) =
α′k
2y

Ik/2−1 · ∂I

∂y
− Ik/2

y2

By Lemma 7, we can see that ∂I
∂y ≥ 2

α′ky > I and g′(y) > 0 which proves the
first claim. The lower bound can be derived by the limit of the function. By the
relationship

lim
m→∞ mVk(

√
αk) = Vk(1) · lim

y→0+
g(y),

and the straightforward consequence of Lemma 8,

lim
y→0+

g(y) = α′ · k

2
· B

(
k

2
, 1 +

n − k

2

)
,

we obtain the second claim. ��
By a similar technique, we can show a similar result for the Gaussian case:

the proof is postponed to Appendix A.3.

Lower Bounds on Lattice Enumeration with Extreme Pruning 623

Lemma 9. Let the global probability 0 ≤ β′ ≤ 1 and 1 ≤ k ≤ n. Let β =
β′/m and βk > 0 such that P (k/2, βk/(2σ2)) = β. Then, mVk(

√
βk) is strictly

decreasing w.r.t. m, yet lower bounded by some linear function of β′:

mVk(
√

βk) > β′(2πσ2)k/2.

Moreover, for fixed β′, k and σ, the left-hand side converges to the right-hand
side when m goes to infinity and βk is defined as above.

4 Efficient Upper Bounds Based on Cross-Entropy

In order to guess how tight are our lower bounds in practice, we need to be
able to find efficiently very good bounding functions for cylinder pruning. Dif-
ferent methods have been used over the years (see [7,9,10,16]). In this section,
we present the method that we used to generate bounding functions that try
to minimize the enumeration cost, under the constraint that the success prob-
ability is greater than a given p0 > 0. From our experience, different methods
usually give rise to close bounding functions, but their running time can vary
significantly.

4.1 Our Formulation and Previous Algorithms

Usually, the problem to find optimal cost has two formulations and our algorithm
targets the first one:

1. [7,11] for a given basis B, radius R, and target probability p0, minimize the
cost (5) subject to the constraint that the probability (6) is greater than
p0. The variables are R1, . . . , Rn. This kind of constrained optimization is
known as monotonic optimization because the objective function and con-
straint functions are both monotonic, i.e., f(x1, . . . , xn) ≤ f(x′

1, . . . , x
′
n) if

xi ≤ x′
i for all i. It is known that the optimal value is on the border (see,

for example [12]). A heuristic random perturbation is implemented in the
progressive BKZ library [7], and an outline of the cross-entropy method is
mentioned in Chen’s thesis [10].

2. [9] for a given basis B and radius, minimize the expected cost of extreme
pruning [16]: m ·EnumCost+(m−1) ·PreprocessCost where m is a variable
defining the number of bases, and therefore the success probability of the enu-
meration. The variables are R1, . . . , Rn and m. This is an unconstrained opti-
mization problem. A heuristic gradient descent and the Nelder-Mead method
are implemented in the fpLLL library [9].

We explain why we introduce a new approach. All the known approaches try
to minimize an approximate upper bound of the enumeration cost: this approx-
imation is the sum of n terms, where each term can be derived from the compu-
tation of a simplex volume (following [16]) which costs O(n2), where the unit is
number of floating-point operations and the required precision might be linear

624 Y. Aono et al.

in n. Although there exists an O(n2) algorithm to compute the approximate
upper bound [4, Sect. 3.3], a naive random perturbation strategy is too slow to
converge.

Besides, we think that the Nelder-Mead and gradient descent are not suit-
able for our optimization problem. If we want to apply such methods to the
constrained problem, a usual approach converts the problem into a correspond-
ing global optimization problem by introducing penalty functions. Then, we find
a near-optimal solution to the original problem by using the optimized variable
of the converted problem. However, we know that the optimal point is on the
border at which the penalty functions must change drastically. It could make
the optimal point of the new problem far from the original one. Hence, we need
an algorithm to solve our constrained problem directly.

For this purpose, we revisit Chen’s partial description [10] of the cross-entropy
method to solve the problem (i). In Sect. 4.2, we give a brief overview of the cross-
entropy method, and in Sect. 4.3, we explain how we modify it for our purpose.

4.2 A Brief Introduction to the Cross Entropy Method

The original motivation of the cross entropy method is to speed up Monte-
Carlo simulation for approximating a probability. If the target probability is
extremely small, the number of sampling points must be huge. To solve this issue,
Rubinstein [30] introduced the cross entropy method and showed that the algo-
rithm could be used for combinatorial optimization problems. This subsection
gives a general presentation of the cross-entropy method: we will apply it to the
optimization of pruning functions. For more information, see for example [14,30].

Let χ be the whole space of combinations and consider a cost function S : χ →
R≥0 that we want to minimize. Assume that we have a probability distribution
Dχ,u defined over χ and parametrized by a vector u. We fix the corresponding
probability density function fu(x). A cross-entropy algorithm to find the optimal
combination X∗ := argminX∈χS(X) is outlined in Algorithm 1; here we use the
description in the textbook [14, Algorithm 2.3].

The stochastic program in Step 4 is the problem of finding the parameter
vector v which optimizes

arg max
v

N∑
i=1

IS(Xi)≤γt
log fv(Xi) (10)

where

IS(Xi)≤γt
=

{
1 if S(Xi) ≤ γt

0 if S(Xi) > γt

is the characteristic function. It is known that the new distribution Dχ,vt
derived

from the solution is closer to the ideal distribution Dχ,opt that outputs the opti-
mal Xopt = arg minX S(X) with probability 1, than the previous distribution
Dχ,vt−1 . In other words, the cost of sampled elements from Dχ,vt

are likely to

Lower Bounds on Lattice Enumeration with Extreme Pruning 625

Algorithm 1. A Generic Framework of the Cross-Entropy Method
Input: Searching space χ,cost function S : χ → R≥0, initial parameter vector

v0, algorithm parameter ρ,N, d;for example, N = 1000, ρ = 0.1 and d = 10.
Output: An approximation S(x∗) of the minimal and corresponding x∗.
1: t ← 1
2: According to Dχ,vt−1 , sample X1, . . . , XN from χ
3: Let the threshold γt be the �ρN�-th smallest value of S(Xi)
4: Solve the stochastic program (10) for the inputs (X1, . . . , XN , γt,vt−1) and

find the new parameter vt

5: if the found minimum S(X∗) during the execution of the algorithm is not
updated in the last d loop then

6: output the smallest S(X∗) and X∗

7: else
8: let t ← t + 1 and goto Step 2
9: end if

smaller than that of samples from Dχ,vt−1 . This is quantified by the function to
measure the distance between two probability distributions:

D(g, fv) :=
∫

g(x) log
g(x)
fv(x)

dx

which is known as the cross-entropy, or Kullback-Leibler distance. The above
algorithm wants to minimize the distance from the optimal state g by changing
the parameter vector v.

The stochastic program (10) can be easily solved analytically if the family of
distribution function {fv(x)}v∈V is a natural exponential family (NEF) [31]. In
particular, if the function fv(x) is convex and differentiable with respect to v,
the solution of (10) is obtained by solving the simultaneous equations

N∑
i=1

IS(Xi)≤γt
∇ log fv(Xi) = 0. (11)

The Gaussian product (12) used in the next section is one of the simplest
examples of such functions.

4.3 Our Algorithm

For the generic algorithm (Algorithm 1), we substitute our cost function and
constraints. Then, we modify the sampler and introduce the FACE strategy as
explained in this section. Recall that the input is a lattice basis and its Gram-
Schmidt lengths, a radius R and a target probability p0. We mention that our
algorithm follows [19, Algorithm 2] for optimization over a subset of R

m by
Kroese, Porotsky and Rubinstein.

626 Y. Aono et al.

Modified sampler: The sampling parameter is u = (c1, . . . , cn−1, σ1,
. . . , σn−1) ∈ R

2n−2
≥0 where c and σ correspond to the center and deviation respec-

tively.
Since the bounding radii must increase and the last coordinate is Rn = 1,

the searching space is

χ = {(x1, . . . , xn−1) ∈ (0, 1]n : x1 ≤ x2 ≤ · · · ≤ xn−1} ⊂ R
n−1.

To sample from the space following the parameter u, define the corresponding
probability distribution Dχ,u as follows: sample each ui from N(ci, σ

2
i) indepen-

dently, if all ui ≥ 0, then let (x1, . . . , xn) be (u1, . . . , un) sorted in increasing
order and output it. We sort the output because because we do not know a
suitable distribution from which the sampling from χ is easy. As we will see
later, when the algorithm is about to converge, the Gaussian parameters σi

become small, and the distributions of ui’s and xi become close. Below we assume
that the probability density function of Dχ,u is sufficiently close to that of the
Gaussian product

fu(X) =
1

(2π)n/2

n−1∏
i=1

(
1
σi

exp(−(xi − ci)2/(2σ2
i))

)
. (12)

The gradients of log of the function are

∂

∂ci
log fu(X) =

xi − ci

σ2
i

,

and
∂

∂σi
log fu(X) = − 1

σi
+

(xi − ci)2

σ3
i

.

Substituting them into (11), we obtain the formulas to update ci and σi as
follows

cnew
i ←

∑
j:S(Xj)≤γt

xj,i

|{j : S(Xj) ≤ γt}|

σnew
i ←

√∑
j:S(Xj)≤γt

(xj,i − ci)2

|{j : S(Xj) ≤ γt}|

(13)

where we denote xj,i for the i-th coordinate of Xj .

The FACE strategy: For practical speedup, we can employ the fully-automated
cross-entropy (FACE) strategy described in [14, Sect. 4.2]. It simply replaces the
full sampling in Step 2 in Fig. 1 by a recycling strategy. Consider a list L =
{X1, . . . , XN}. If the cost of a new sample is less than maxi∈[N] S(Xi), replace the
new sample to the maximum element in the list, and update the parameter vector
by (13) using all items in the list, i.e., with γt = +∞.

We did preliminary experiments on this strategy and found that our problem
has a typical trend, i.e. if the size N of list is small (≈ 10), the minimum cost
mini∈[N] S(Xi) decreases very fast but seems to stay near a local minimum. On

Lower Bounds on Lattice Enumeration with Extreme Pruning 627

the other hand, if we choose a large N (≈ 1000), the speed of convergence is slow,
but the pruning function found is better than in the small case if we use many
loop iterations. Hence, we start with a small N and increase it little by little.

Integrating the above, we give the pseudocode of our optimizing algorithm
in Algorithm 2. We used a heuristic parameter set Ninit = 10 and Nmax = 50,
and terminate the computation if v is not updated in the last 10 loop iterations.

Algorithm 2. Cross-Entropy Method for Optimizing Pruning Radii
Input: Gram-Schmidt lengths (‖b�

1‖, . . . , ‖b�
n‖), Radius of the ball R, Target

probability p0, initial and maximum size of list N , Nmax, initial parameter
vector u = (c, σ), parameter to increase list size d.

Output: A near optimal cost and corresponding radii (R1, . . . , Rn)
1: Sample new X = (R1, . . . , Rm) from Dχ,u

2: if Pr(X) < p0 then
3: goto Step 1
4: end if
5: if |L| < N then
6: L ← L ∪ X
7: else
8: Xi ← argmaxXi∈LCost(Xi)
9: end if

10: if Cost(X) < Cost(Xi) then
11: Replace Xi by X
12: Update u by using list L
13: end if
14: if u is not updated in the last d loops then
15: N ← N + 1
16: end if
17: if N > Nmax then
18: output minimum among X1, . . . , XN−1 and exit
19: end if
20: goto Step 1

5 Tightness and Applications to Security Estimates

In this section, we study the heuristic cost N of (5) divided by two (SVP setting).

5.1 Modeling Strongly Reduced Bases

The cost (5) of cylinder pruning over Pf (B,R) depends both on the quality of
the basis B, the radius R and the pruning function f . The results of Sect. 3 allow
to lower bound the numerator of each term of (5), but we also need to lower

628 Y. Aono et al.

bound the part depending on the basis B. This was already discussed in [7,11,25]
using two models of strongly reduced bases: the Rankin model used in [11,25]
which provides conservative bounds by anticipating progress in lattice reduction,
and the HKZ model used in [7,11] which is closer to the state-of-the-art. This
part is more heuristic than Sect. 3.

The HKZ model. The BKZ algorithm tries to approximate HKZ-reduced bases,
which are bases B such that ‖b�

i ‖ = λ1(πi(L)) for all 1 ≤ i ≤ n. When run-
ning BKZ, an HKZ basis is the best output one can hope for. On the other
hand, a BKZ-reduced basis with large blocksize will be close to an HKZ-basis,
so this model is somewhat close to the state-of-the-art. It corresponds to an
idealized Kannan’s algorithm [18] where enumerations are only performed over
HKZ-reduced bases (see [23] for more practical variants). Unfortunately, in the-
ory, we do not know what the ‖b�

i ‖’s of an HKZ basis will look like exactly,
except for i = 1, but we can make a guess. Following [7,11], we assume that for
1 ≤ i ≤ n−50, ‖b�

i ‖ ≈ GH(πi(L)) = Vn−i+1(1)−1/(n−i+1) (
∏n

k=i ‖b�
k‖)1/(n−i+1),

which means that we assume that πi(L) behaves like a random lattice. Then we
can simulate ‖b�

i ‖ for 1 ≤ i ≤ n − 50 by a simple recursive formula. We stop at
n−50, because Chen and Nguyen [11] reported that the last projected lattices do
not behave like random lattices. For the remaining indices, they proposed to use
a numerical table from experimental results in low dimension: we use the same
table. Note that for a large dimension such as 200, errors in the last coordinates
are not an issue because the contribution of the terms k ≤ 50 in N is negligible.

The Rankin model. It is known that HKZ bases are not optimal for minimizing
the running time of enumeration. For instance, Nguyen [27, Chap. 3] noticed
a link between the cost of enumeration and the Rankin invariants of a lattice,
which provides lower bounds on heuristic estimates of the number of nodes and
identifies better bases than HKZ. However, finding these better bases is currently
more expensive [13] than finding HKZ-reduced bases. Recall that the Rankin
invariants γn,m(L) of an n-rank lattice L satisfy:

γn,m(L) := min
S: sublattice of L

rank(S)=m

(
vol(S)

covol(L)m/n

)2

≤
∏m

i=1 ‖b�
i ‖2

covol(L)2m/n
, (14)

for any basis (b1, . . . ,bn) of L. We have the following lower bound [37, Corollary
1] for Rankin’s constant γn,m := maxL γn,m(L):

γn,m ≥
(

n ·
∏n

n−m+1 Z(j)∏m
j=2 Z(j)

)2/n

where Z(j) := ζ(j)Γ(j/2)π−j/2. (15)

According to [36], it seems plausible that most lattices come close to realizing
Rankin constants: for any ε > 0 and sufficiently large n, most lattices L “should”
verify γn,m(L)1/(2m) ≥ γ

1/(2m)
n,m − ε for all m.

Lower Bounds on Lattice Enumeration with Extreme Pruning 629

Ignoring ε, if we lower bound any term of the form
∏m

i=1 ‖b�
i ‖2

covol(L)2m/n in the sim-
plified cost (5) by the right-hand side of (15), we obtain the following heuristic
lower bound formula:

N =
1

2

n∑

k=1

vol(CR1,...,Rk
)

n−k∏

i=1

‖b�
i ‖

vol(L)
>

1

2

n∑

k=1

vol(CR1,...,Rk
)

vol(L)k/n

⎛

⎜⎜⎜⎜⎜⎝
(n − k)

n∏

j=k+1

Z(j)

n−k∏

j=2

Z(j)

⎞

⎟⎟⎟⎟⎟⎠

1
n−k

In both cases, substituting the volume lower bounds in Sects. 3.2 and 3.3, we
obtain closed formulas to find the lower bound complexity which are suitable for
numerical analyses.

On the other hand, for any n-rank lattice L, and any fixed m ∈ {1, . . . ,

n − 1}, there is a basis (b1, . . . ,bn) of L such that
∏m

i=1 ‖b�
i ‖2

covol(L)2m/n = γn,m(L). This
existence would only be guaranteed for fixed m, such as for the m maximizing
the corresponding number Nn+1−m of nodes in the enumeration tree at depth m.
By idealization, we call Rankin basis a basis such that for all m ∈ {1, . . . , n−1},
∏m

i=1 ‖b�
i ‖2

covol(L)2m/n is approximately less than the right-hand side of (15): since such
bases may not exist, this is an over-simplification to guess how much speed-
up might be possible with the best bases. We use Rankin bases to compute
speculative upper bounds, anticipating progress in lattice reduction.

5.2 Explicit Lower Bounds

We summarize the applications of the results of Sects. 3.2 and 3.3, to compute
lower bounds on the number of nodes searched by cylinder pruning with lower
bounded success probability.

Single Enumeration. By Corollary 2, if α is a lower bound on the success prob-
ability,

N ≥ 1
2

n∑
k=1

Vk(
√

αkRn)∏n
i=n−k+1 ‖b�

i ‖
(16)

where αk is defined by Iαk
(k/2, 1 + (n − k)/2) = α.

For the Gaussian case with success probability ≥ β, from Corollary 3,

N ≥ 1
2

n∑
k=1

Vk(
√

βk)∏n
i=n−k+1 ‖b�

i ‖

where βk is defined by P (k/2, βk/(2σ2)) = β.

630 Y. Aono et al.

Multiple Enumerations. For the situation where one can use m bases, let α′ be
a lower bound on the global success probability. Then by Lemma 6,

N ≥ α′

4

n∑
k=1

kVk(Rn)B(k/2, 1 + (n − k)/2)∏n
i=n−k+1 ‖b�

i ‖
(17)

where α′ satisfies vol(∪m
i=1Ci) ≥ α′vol(Rn).

Lemma 9 also implies a lower bound for the Gaussian setting with global
success probability ρn,σ(∪m

i=1Ci) ≥ β′:

N ≥ β′

2

n∑
k=1

(2πσ2)k/2

∏n
i=n−k+1 ‖b�

i ‖
.

5.3 Radii Tightness

To check tightness, we give two figures (Fig. 2) that compare the lower bound of
radii from Corollary 2, and the best radii generated by our cross entropy method.
The comparison is for two regimes: high and low success probability. Note that
the left probability 0.6827 is an approximation of P (1

2 , 1
2) for which the linear

pruning is the best known proved lower bound.
We see that the radii bounds are reasonably tight in both cases. We deduce

that in these examples, the enumeration cost bounds will also be tight, because
the cost is dominated by what happens around k ≈ n/2.

We note that it is to easier to compute lower bounds than upper bounds.

5.4 Security Estimates for Enumeration

Figure 1 (in the introduction) displays four bounds on the cost of enumeration in
several situations, for varying dimension and simulated HKZ bases and Rankin
bases:

– The thin red curve is an upper bound of the enumeration cost using M =
1010 bases with single success probability α = 10−10 computed by the cross-
entropy method.

– The bold red curve is a lower bound of the enumeration cost using M = 1010

bases with single success probability α = 10−10 computed by M times (16).
– The thin green curve is an upper bound of the enumeration cost w.r.t.

infinitely many bases with global success probability α′ = 1. This is computed
by M times an upper bound of the enumeration cost with single success prob-
ability 1/M for a very large M where the single cost is greater than lattice
dimension.

– The bold green curve is a lower bound of the enumeration cost w.r.t. infinitely
many bases with a large global success probability. This is computed by (17)
with α′ = 1.

Lower Bounds on Lattice Enumeration with Extreme Pruning 631

Fig. 2. Comparison of lower bound and near optimal radii; for the 150-dimensional sim-
ulated HKZ basis, compute near optimal radii and lower bound radii for α = 0.6827 �
P (1

2
, 1
2
) (Top) and α = 10−10 (Bottom).

In all experiments, we take the radius by Rn = GH(L). The cost is the number
of nodes of the enumeration tree in the classical computing model. The security
level is the base-2 logarithm of the cost, which is divided by two in the quantum
computing model [6,24].

We also draw the curve of 20.292n and 20.265n which are simplified lower
bounds of the cost for solving SVP-n used in [2] for classical and quantum
computers, respectively.

In all the situations where we use 1010 bases, the upper bounds (thin red
curve) and the lower bounds (bold red curve) are close to each other, which
demonstrates the tightness of our lower bound.

In the classical setting, our lower bounds for enumeration are higher than
sieve lower bounds. On the other hand, in the quantum setting, there are cases
where enumeration is faster than quantum sieving. For instance, if an attacker
could find many quasi-Rankin bases by some new lattice reduction algorithm,
the claimed 2128 quantum security might be dropped to about 296 security. In
such a situation, the required blocksize would increase from about 480 to 580.

632 Y. Aono et al.

5.5 Experimental Environments

All experiments were performed by a standard server with two Intel Xeon E5-
2660 CPUs and 256-GB RAM. We used the boost library version 1.56.0, which
has efficient subroutines to compute (incomplete) beta, (incomplete) gamma and
zeta functions with high precision.

Acknowledgements. This work was supported by JSPS KAKENHI Grant Numbers
16H02780, 16H02830 and 18H03238, and JST CREST JPMJCR168A.

References

1. Ajtai, M., Kumar, R., Sivakumar, D.: A sieve algorithm for the shortest lattice
vector problem. In: Proceedings of the 33rd STOC, pp. 601–610. ACM (2001)

2. Albrecht, M.R., et al.: Estimate all the LWE, NTRU schemes! Posted on the
PQC-forum, 1 February 2018. https://estimate-all-the-lwe-ntru-schemes.github.
io/paper.pdf

3. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange - a
new hope. In: Proceedings of the 25th USENIX Security Symposium, pp. 327–343.
USENIX Association (2016)

4. Aono, Y.: A faster method for computing Gama-Nguyen-Regev’s extreme pruning
coefficients. CoRR, abs/1406.0342 (2014)

5. Aono, Y., Nguyen, P.Q.: Random sampling revisited: lattice enumeration with
discrete pruning. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS,
vol. 10211, pp. 65–102. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
56614-6 3

6. Aono, Y., Nguyen, P.Q., Shen, Y.: Quantum lattice enumeration and tweaking
discrete pruning (2018). https://eprint.iacr.org/2018/546

7. Aono, Y., Wang, Y., Hayashi, T., Takagi, T.: Improved progressive BKZ algorithms
and their precise cost estimation by sharp simulator. In: Fischlin, M., Coron, J.-S.
(eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 789–819. Springer, Heidelberg
(2016)

8. Becker, A., Ducas, L., Gama, N., Laarhoven, T.: New directions in nearest neighbor
searching with applications to lattice sieving. In: Proceedings of the 27th ACM-
SIAM Symposium on Discrete Algorithms (SODA), pp. 10–24 (2016)

9. The FPLLL Development Team.: FPLLL, a lattice reduction library (2016).
https://github.com/fplll/fplll

10. Chen, Y.: Réduction de réseau et sécurité concrète du chiffrement complètement
homomorphe. Ph.D. thesis, Univ. Paris 7 (2013)

11. Chen, Y., Nguyen, P.Q.: BKZ 2.0: better lattice security estimates. In: Lee, D.H.,
Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer, Heidel-
berg (2011)

12. Cheon, M.-S.: Global optimization of monotonic programs: applications in poly-
nomial and stochastic programming. Ph.D. thesis, Georgia Institute of Technology
(2005)

13. Dadush, D., Micciancio, D.: Algorithms for the densest sub-lattice problem. In:
Proceedings of the 24th ACM-SIAM Symposium on Discrete Algorithms, SODA
2013, pp. 1103–1122 (2013)

https://estimate-all-the-lwe-ntru-schemes.github.io/paper.pdf
https://estimate-all-the-lwe-ntru-schemes.github.io/paper.pdf
https://doi.org/10.1007/978-3-319-56614-6_3
https://doi.org/10.1007/978-3-319-56614-6_3
https://eprint.iacr.org/2018/546
https://github.com/fplll/fplll

Lower Bounds on Lattice Enumeration with Extreme Pruning 633

14. de Boer, P.-T., Kroese, D.P., Mannor, S., Rubinstein, R.Y.: A tutorial on the
cross-entropy method. Ann. Oper. Res. 134(1), 19–67 (2005)

15. Fincke, U., Pohst, M.: Improved methods for calculating vectors of short length in
a lattice, including a complexity analysis. Math. Comput. 44(170), 463–471 (1985)

16. Gama, N., Nguyen, P.Q., Regev, O.: Lattice enumeration using extreme pruning.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 257–278. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5

17. Hülsing, A., Rijneveld, J., Schanck, J.M., Schwabe, P.: NTRU-HRSS-KEM: algo-
rithm specifications and supporting documentation. NIST submission, 30 Novem-
ber 2017

18. Kannan, R.: Improved algorithms for integer programming and related lattice prob-
lems. In: Proceedings of the 15th ACM STOC, pp. 193–206 (1983)

19. Kroese, D.P., Porotsky, S., Rubinstein, R.Y.: The cross-entropy method for con-
tinuous multi-extremal optimization. Methodol. Comput. Appl. Probab. V 8(3),
383–407 (2006)

20. Laarhoven, T.: Sieving for shortest vectors in lattices using angular locality-
sensitive hashing. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS,
vol. 9215, pp. 3–22. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-47989-6 1

21. Liu, M., Nguyen, P.Q.: Solving BDD by enumeration: an update. In: Dawson, E.
(ed.) CT-RSA 2013. LNCS, vol. 7779, pp. 293–309. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-36095-4 19

22. Micciancio, D., Voulgaris, P.: Faster exponential time algorithms for the shortest
vector problem. In: Proceedings of the ACM-SIAM SODA, pp. 1468–1480 (2010)

23. Micciancio, D., Walter, M.: Fast lattice point enumeration with minimal overhead.
In: Proceedings of the SODA 2015, pp. 276–294 (2015)

24. Montanaro, A.: Quantum walk speedup of backtracking algorithms. ArXiv e-prints
(2015)

25. Nguyen, P.Q.: Public-key cryptanalysis. In: Luengo, I. (ed.) Recent Trends in Cryp-
tography. Contemporary Mathematics, vol. 477. AMS-RSME (2009)

26. Nguyen, P.Q.: Hermite’s constant and lattice algorithms. In: The LLL Algorithm:
Survey and Applications. Springer, Heidelberg (2010). In [27]

27. Nguyen, P.Q., Vallée, B. (eds.): The LLL Algorithm: Survey and Applications.
Information Security and Cryptography. Springer, Heidelberg (2009). https://doi.
org/10.1007/978-3-642-02295-1

28. Nguyen, P.Q., Vidick, T.: Sieve algorithms for the shortest vector problem are
practical. J. Math. Cryptol. 2, 181–207 (2008)

29. Pohst, M.: On the computation of lattice vectors of minimal length, successive
minima and reduced bases with applications. SIGSAM Bull. 15(1), 37–44 (1981)

30. Rubinstein, R.Y.: Optimization of computer simulation models with rare events.
Eur. J. Oper. Res. 99, 89–112 (1996)

31. Rubinstein, R.Y., Kroese, D.P.: The Cross-Entropy Method, A Unified Approach
to Combinatorial Optimization, Monte-Carlo Simulation and Machine Learning.
Information Science and Statistics. Springer, New York (2004). https://doi.org/
10.1007/978-1-4757-4321-0

32. Schneider, M., Gama, N.: SVP challenge. http://www.latticechallenge.org/svp-
challenge/

33. Schnorr, C.P.: Lattice reduction by random sampling and birthday methods. In:
Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 145–156. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-36494-3 14

https://doi.org/10.1007/978-3-642-13190-5
https://doi.org/10.1007/978-3-662-47989-6_1
https://doi.org/10.1007/978-3-662-47989-6_1
https://doi.org/10.1007/978-3-642-36095-4_19
https://doi.org/10.1007/978-3-642-02295-1
https://doi.org/10.1007/978-3-642-02295-1
https://doi.org/10.1007/978-1-4757-4321-0
https://doi.org/10.1007/978-1-4757-4321-0
http://www.latticechallenge.org/svp-challenge/
http://www.latticechallenge.org/svp-challenge/
https://doi.org/10.1007/3-540-36494-3_14

634 Y. Aono et al.

34. Schnorr, C.-P., Euchner, M.: Lattice basis reduction: improved practical algorithms
and solving subset sum problems. Math. Program. 66, 181–199 (1994)

35. Schnorr, C.P., Hörner, H.H.: Attacking the Chor-Rivest cryptosystem by improved
lattice reduction. In: Guillou, L.C., Quisquater, J.-J. (eds.) EUROCRYPT 1995.
LNCS, vol. 921, pp. 1–12. Springer, Heidelberg (1995). https://doi.org/10.1007/3-
540-49264-X 1

36. Shapira, U., Weiss, B.: A volume estimate for the set of stable lattices. Comptes
Rendus Mathématique 352(11), 875–879 (2014)

37. Thunder, J.L.: Higher-dimensional analogs of Hermite’s constant. Michigan Math.
J. 45(2), 301–314 (1998)

38. Venkatesh, S.A.: The Theory of Probability: Explorations and Applications. Cam-
bridge University Press, Cambridge (2012)

A Proof of Lemma 3

Let

p(k, n) := Ik/n

(
k

2
,
n − k

2

)
=

∫ k/n

0
z

k
2 −1(1 − z)

n−k
2 −1dz

B(k
2 , n−k

2)
(18)

To prove Lemma 3, it suffices to show that: for any integers 1 ≤ k < n,

p(n, k) ≤ P (
1
2
,
1
2
) =

∫ 1/2

0
t−1/2e−t

Γ(1
2)

≈ 0.682689...

A.1 Formulas and Lemmas

We have

Γ(a + 1) = aΓ(a) and B(a, b + 1) = B(a, b)
b

a + b
. (19)

The following recurrence formulas hold (see 8.17.18 and 8.17.21 of NIST
Digital Library of Mathematical Functions http://dlmf.nist.gov/8.17 respec-
tively):

Ix(a, b) = Ix(a + 1, b − 1) +
xa(1 − x)b−1

aB(a, b)
. (20)

Ix(a, b) = Ix(a, b + 1) − xa(1 − x)b

bB(a, b)
. (21)

We recall:

Theorem 8 (Chebyshev integral inequality). For any nonnegative, monotoni-
cally increasing function f(x) and monotonically decreasing function g(x), we
have ∫ b

a

f(x)g(x)dx ≤ 1
b − a

(∫ b

a

f(x)dx

)
·
(∫ b

a

g(x)dx

)
.

Lemma 10. For a, b > 1, the function za(1 − z)b is maximized at zmax = a
a+b .

Furthermore, it is strictly increasing over z ∈ [0, zmax] and strictly decreasing
over z ∈ [zmax, 1].

https://doi.org/10.1007/3-540-49264-X_1
https://doi.org/10.1007/3-540-49264-X_1
http://dlmf.nist.gov/8.17

Lower Bounds on Lattice Enumeration with Extreme Pruning 635

A.2 Proof Body

The proof of Lemma 3 can be derived from the following three lemmas.

Lemma 11. If n ≥ 2, then: p(1, n) < p(1, n + 2).

Proof. By (21), we have

p(1, n) = I 1
n

(
1
2
,
n + 1

2

)
− n−1/2(1 − 1/n)

n−1
2

n−1
2 · B

(
1
2 , n−1

2

)

= I 1
n+2

(
1
2
,
n + 1

2

)
+

∫ 1
n
1

n+2
z−1/2(1 − z)

n−1
2 dz

B
(

1
2 , n+1

2

) − n−1/2(1 − 1/n)
n−1
2

n−1
2 · B

(
1
2 , n−1

2

) .

Then J = p(1, n) − p(1, n + 2) is equal to the last two terms. We will show
that J < 0. From (19), we have B

(
1
2 , n+1

2

)
= n−1

n B
(

1
2 , n−1

2

)
and we get

J ′ = J · (n− 1)B
(

1
2
,
n − 1

2

)
= n

∫ 1
n

1
n+2

z−1/2(1− z)
n−1
2 dz − 2n−1/2(1− 1/n)

n−1
2

of which we want to show negativeness.
Since the integral function z−1/2(1 − z)

n−1
2 is strictly decreasing, the trivial

bound

n

∫ 1
n

1
n+2

z−1/2(1 − z)
n−1
2 dz

< n

(
1
n

− 1
n + 2

) (
1

n + 2

)−1/2 (
1 − 1

n + 2

)n−1
2

=
2√

n + 2

(
1 − 1

n + 2

)n−1
2

holds. Thus, letting f(x) = 1√
x
(1−1/x)

n−1
2 , we have J ′ < 2(f(n+2)−f(n)) and

it suffices to show that f(x) is strictly decreasing over the range x ∈ (n, n + 2).
It is equivalent to check that the derivative of g(x) = f(1/x) =

√
x(1 − x)

n−1
2

is > 0 for 1
n+2 < x < 1

n . We have:

(log g(x))′ =
g′(x)
g(x)

=
1
2x

+
n − 1

2
1

x − 1
=

nx − 1
2x(x − 1)

which is > 0 if 0 < x < 1
n . Hence, g(1/(n + 2)) < g(1/n), f(n + 2) < f(n), and

J ′ = J · (n − 1)B
(

1
2
,
n − 1

2

)
= 2(f(n + 2) − f(n)) < 0.

Therefore, p(1, n) = p(1, n + 2) + J < p(1, n + 2) for any n ≥ 2. ��
Corollary 5. If n ≥ 2, then p(1, n) < P (1

2 , 1
2).

Proof. With p(1, 2) = 1
2 and p(1, 3) = 1√

3
≈ 0.5773 and the known result

p(1, n) → P (1
2 , 1

2) (n → ∞), we obtain that p(1, n) < P (1
2 , 1

2) for n ≥ 2. ��

636 Y. Aono et al.

Lemma 12. p(2, n) < P (1
2 , 1

2) for any n ≥ 2

Proof. By definition,

p(2, n) =
Γ

(
n
2

)

Γ(1)Γ
(

n
2 − 1

)
∫ 2

n

0

(1 − z)
n−4
2 dz =

n − 2
2

∫ 2
n

0

(1 − z)
n−4
2 dz

= 1 −
(

1 − 2
n

)n
2 −1

.

For 2 ≤ n ≤ 8, we can check it is smaller than 0.68 numerically, Also, for n ≥ 9,
since the function (1 − 1/x)x is monotonically increasing with x, we have

1 −
(

1 − 2
n

)n
2 −1

< 1 −
(

1 − 2
n

)n
2

≤ 1 − (1 − 2/9)9/2 < 0.68 < P

(
1
2
,
1
2

)
.

��
Lemma 13. p(k + 2, n) < p(k, n) for any 1 ≤ k < n.

Proof. By definition and (20)

p(k + 2, n)

= I k+2
n

(
k

2
+ 1,

n − k

2
− 1

)
= I k+2

n

(
k

2
,
n − k

2

)
− 2

k

(k+2
n)

k
2 (n−k−2

n)
n−k−2

2

B(k
2 , n−k

2)

= p(k, n) +

∫ k+2
n

k
n

z
k
2 −1(1 − z)

n−k
2 −1dz

B(k
2 , n−k

2)
− 2

k

(k+2
n)

k
2 (n−k−2

n)
n−k−2

2

B(k
2 , n−k

2)
.

Thus, it suffices to show

∫ k+2
n

k
n

z
k
2 −1(1 − z)

n−k
2 −1dz − 2

k

(
k + 2

n

) k
2

(
n − k − 2

n

)n−k−2
2

:= I − J < 0.

Let us define g(z) = z
k
2 +1(1 − z)

n−k
2 −1 which is strictly increasing over

[0, k+2
n]. Since z−2 is strictly decreasing, Chebyshev’s integral inequality implies

that

I =
∫ k+2

n

k
n

z−2g(z)dz <
n

2

∫ k+2
n

k
n

z−2dz

∫ k+2
n

k
n

g(z)dz =
n2

k(k + 2)

∫ k+2
n

k
n

g(z)dz

<
n2

k(k + 2)
· 2
n

g

(
k + 2

n

)
= J.

Therefore, we have I < J and it derives p(k + 2, n) < p(k, n). ��

Lower Bounds on Lattice Enumeration with Extreme Pruning 637

A.3 Proof of Lemma 9

Recall that P (a, z) :=
∫ z
0 xa−1e−xdx

Γ(a) which implies:

e−zza

Γ(a + 1)
< P (a, z) <

za

Γ(a + 1)
for a > 0, z > 0. (22)

Also, they imply the bound

P−1(a, x) > (Γ(a + 1)x)1/a for a > 0, 0 < x < 1 (23)

and the limits

lim
z→0+

P (a, z)
za

=
1

Γ(a + 1)
and lim

x→0+

x

(P−1(a, x))a
=

1
Γ(a + 1)

. (24)

Hence, we have

lim
m→∞ mVk(

√
βk) = Vk(1) lim

m→∞ m · (
2σ2P−1(k/2, β)

)k/2

= Vk(1) · β′ · Γ(k/2 + 1)(2σ2)k/2 = β′ · (2πσ2)k/2.

To show the decreasing property, it suffices to show that g(y) = 1
y ·

(P−1(k/2, β′y))k/2 is strictly increasing over 0 < y ≤ 1.
We use the inequality

∂

∂x
P−1(a, x) = Γ(a)eP −1(a,x)P−1(a, x)1−a ≥ P−1(a, x)

ax

which is immediate from the left hand side of (22) with z = P−1(a, x).
Hence, denoting P := P−1(k/2, β′y) for simplicity,

g′(y) =
β′k
2y

P k/2−1 · ∂P

∂y
− P k/2

y2
>

β′k
2y

P k/2−1 · P

(k/2)β′y
P k/2−1 − P k/2

y2
= 0

This completes the proof. ��

Dissection-BKW

Andre Esser1(B), Felix Heuer1, Robert Kübler1, Alexander May1,
and Christian Sohler2

1 Horst Görtz Institute for IT Security, Ruhr University Bochum, Bochum, Germany
{andre.esser,felix.heuer,robert.kuebler,alexander.may}@rub.de

2 Department of Computer Science, TU Dortmund, Dortmund, Germany
christian.sohler@tu-dortmund.de

Abstract. The slightly subexponential algorithm of Blum, Kalai and
Wasserman (BKW) provides a basis for assessing LPN/LWE security.
However, its huge memory consumption strongly limits its practical
applicability, thereby preventing precise security estimates for crypto-
graphic LPN/LWE instantiations.

We provide the first time-memory trade-offs for the BKW algorithm.

For instance, we show how to solve LPN in dimension k in time 2
4
3

k
log k

and memory 2
2
3

k
log k . Using the Dissection technique due to Dinur et al.

(Crypto ’12) and a novel, slight generalization thereof, we obtain fine-
grained trade-offs for any available (subexponential) memory while the
running time remains subexponential.

Reducing the memory consumption of BKW below its running time
also allows us to propose a first quantum version QBKW for the BKW
algorithm.

1 Introduction

The Learning Parity with Noise (LPN) problem [4] and its generalization to arbi-
trary moduli, the Learning with Errors (LWE) problem [29], lie at the heart of
our most promising coding-based and lattice-based post-quantum cryptographic
constructions [2,26,28]. With the NIST standardization [1], we have the urgent
pressure to identify LPN/LWE instantiations that allow for efficient construc-
tions, but yet give us the desired level of classic and quantum security.

Hence, we have to run cryptanalytic algorithms on medium-scale parameter
sets in order to properly extrapolate towards cryptographic instantiations.

In LPN of dimension k and error-rate 0 ≤ p < 1/2, one has to recover a secret
s ∈ F

k
2 from samples (ai, 〈ai, s〉 + ei) for uniformly random ai ∈ F

k
2 and inner

products with Bernoulli distributed error ei, i.e., Pr[ei = 1] = p.
It is not hard to see that for constant error p, any candidate solution s′ can

be checked for correctness in time polynomial in p and k. This gives a simple
brute-force LPN algorithm with time complexity 2k and constant memory.

The algorithm of Blum, Kalai and Wassermann [5] solves the faulty system
of linear equations from LPN/LWE by a block-wise Gaussian elimination. In
a nutshell, BKW takes sums of two vectors whenever they cancel a block of
c© International Association for Cryptologic Research 2018
H. Shacham and A. Boldyreva (Eds.): CRYPTO 2018, LNCS 10992, pp. 638–666, 2018.
https://doi.org/10.1007/978-3-319-96881-0_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96881-0_22&domain=pdf

Dissection-BKW 639

Θ(k
log k) bits to keep the accumulating error under control. In cryptographic

constructions we usually have constant p, for which the BKW algorithm runs in
time 2

k
log k (1+o(1)), albeit using the same amount of memory.

These two algorithms, brute-force and BKW, settle the initial endpoints for
our time-memory trade-offs. Hence, for gaining a log(k)-factor in the run time
exponent one has to invest memory up to the point where memory equals run
time. Interestingly, this behavior occurs in the second method of choice for mea-
suring LWE security, lattice reduction, too.

Whereas on lattices of dimension n, lattice enumeration such as Kannan’s
algorithm [21] takes time 2O(n log n) with polynomial memory only, lattice sieving
methods [12,22–24] require 2O(n) time and memory. Due to their large memory
requirements, in practice lattice sieving is currently outperformed by enumera-
tion, and there is an increasing interest in constructing time-memory trade-offs,
e.g., by lattice tuple sieving [3,18,19].

For BKW, the research so far mainly concentrated on run time, where many
optimizations have been proposed in the cryptographic literature, e.g. [7,16,17,
25,32]. While these improvements may significantly reduce the running time
for breaking concrete LPN instances such as (k, p) = (512, 1/4) or (512, 1/8),
to the best of our knowledge for the running time exponent k

log k (1 + o(1)) all
improvements only affect the o(1)-term. Moreover, all proposals share the same
huge memory requirements as original BKW, making it impossible to run them
even in moderately large dimensions.

As a consequence state-of-the-art BKW implementations are currently only
possible in dimension k up to around 100. For instance [14] reported a break
of (k, p) = (135, 1/4). However, of the total 6 days running time, the authors
spent 2.5 days for an exponential preprocessing, followed by less than 2 h BKW
in dimension 99, and another 3.5 days of exponential decoding. The reason for
this run-time imbalance is that BKW in dimension 99 had already consumed all
available memory, namely 240 bits.

Hence, if we really want to break larger LPN instances in practice, we must
study time-memory trade-offs that sacrifice a bit of running time, but stay in
the sub-exponential time regime at the benefit of a manageable memory.

Our contribution. We provide the first time-memory trade-offs for the BKW
algorithm. These trade-offs give us a smooth interpolation for the complexities
of solving LPN between the known endpoints 2k time for brute-force and 2

k
log k

for BKW.
Since our algorithms’ running times remain subexponential even for given

memory below the requirement 2
k

log k of classic BKW, we (asymptotically) out-
perform all previous algorithms (e.g. [14]) that solved LPN in exponential time
when classic BKW was not applicable due to memory restrictions.

As a starting point, we consider—instead of 2-sums as in the original BKW
algorithm—c-sums for (constant) c > 2 that cancel some blocks of bits. The use
of sums of more than 2 vectors has already been discussed in the literature for
improving the running time of BKW, e.g. by Zhang et al. [32] as an extension

640 A. Esser et al.

Table 1. c-sum-algorithms: Given a list L and some target t, the algorithms output
|L| sets each containing c entries from L adding to t. Memory consumption of the

algorithms coincides with the size of list L. Let Nc := (MBKW)
log c
c−1 = 2

log c
c−1

k
log k .

c-sum Algorithm Memory Time for

classic sorting (BKW) N2 N2 c = 2 [5]

Naive Nc Nc
c−1 c ≥ 2 Sect. 4.1

Dissection Nc Nc
c−√

2c c = 4, 7, 11, 16, . . . Sect. 5.2

Tailored Dissection Nc
α Nc

c−α
√

2c c = 4, 7, 11, 16, . . . α ∈ [1,
√

c√
c−1] Sect. 5.3

quantum Naive + Grover Nc Nc
c/2 c ≥ 2 Sect. 4.2

LF (k) of the BKW variants LF1 and LF2 by Levieil and Fouque [25], using
Wagner’s k-list algorithm [31].

Since the number of c-sums grows exponentially in c, so does the number
of c-sums whose sum cancels some block of bits. In turn, we systematically use
c-sums to significantly lower the number of samples N that need to be stored,
at the slightly increased cost of finding such c-sums.

We show that the complexities of any c-sum BKW algorithm are domi-
nated by the cost of computing c-sums. As a consequence we abstract the
c-sum-problem from the BKW algorithm and study various memory-friendly
algorithms to solve it. We ensure that our c-sum algorithms do not require more
memory than already consumed by c-sum BKW for storing its samples. In fact,
our BKW algorithms have sample and (thus) memory complexity as little as
Nc := MBKW

log c
c−1 for any constant c ∈ N, where MBKW := 2

k
log k denotes the

memory (and sample) requirement of classic BKW.
In Table 1, we give a brief overview of our c-sum algorithms complexities, and

therefore also of our c-sum BKW complexities. We stress that all c-sum algorithms
from Table 1, including those that use the Dissection technique [10,30], may be
studied for arbitrary list sizes outside of the BKW context.

Naive. We first consider a naive approach that computes all (c− 1)-sums of list
entries and looks for some matching cth vector. This naive approach already gives
us a smooth first time-memory trade-off, informally captured in the following
theorem.

Theorem 1.1 (Naive BKW Trade-Off, informal). Let c ∈ N. The LPN
problem in dimension k can be solved in Time T and space M where

log T = log c · k

log k
, log M =

log c

c − 1
· k

log k
.

Observe that the trade-off behaves quite nicely as a function of c. While we can
reduce the memory consumption almost by a factor of 1

c this comes at the cost
of only a (log c)-factor in the run time exponent.

Note that for c = 2 Theorem 1.1 yields the well-known BKW complexities.
While we consider constant c throughout this work, we point out that our results

Dissection-BKW 641

hold up to a choice of c(k) = k1− log log k
log k for which the formulas in Theorem1.1

(as well as for the upcoming trade-offs) result in exponential running time in
k with polynomial memory, matching the endpoint of the LPN brute-force
algorithm. See Fig. 1 (stars) for an illustration of this time-memory trade-off.

QBKW. Using a standard Grover-search in our naive c-sum algorithm to identify
(c − 1)-sums for which there exists a matching cth vector, we halve the running
time complexity exponent from log c· k

log k down to log c
2 · k

log k . See Fig. 1 (triangles)
for the resulting trade-off curve.

Dissection. We replace our naive c-sum algorithm by more advanced
time-memory techniques like Schroeppel-Shamir [30] and its generalization,
Dissection [10], to reduce the classic running time. We call the resulting
algorithm Dissection-BKW. To give some illustrative results, with the
Schroeppel-Shamir technique Dissection-BKW achieves exponents

log T =
4
3

k

log k
, log M =

2
3

k

log k

(see the diamond at log M = 2
3

k
log k in Fig. 1). Using 7-Dissection, Dissection-

BKW achieves exponents

log T = 1.87
k

log k
, log M = 0.47

k

log k

(see the diamond at log M ≈ 0.47 k
log k in Fig. 1).

Theorem 1.2 (Dissection BKW Trade-Off, informal). Let c ∈ N be
sufficiently large. The LPN problem in dimension k can be solved in Time T
and space M where

log T =

(
1 −

√
2
c

)
· log c · k

log k
, log M =

log c

c − 1
· k

log k
.

Hence, in comparison to Theorem 1.1 Dissection mitigates the price we pay for
saving a factor of log c

c−1 in memory from 1 down to
(
1 −√

2/c
)
.

The trade-off is depicted by the diamonds in Fig. 1. Interestingly, when clas-
sically employing Schroeppel-Shamir we are on par (see point (23 , 4

3) in Fig. 1)
with the complexities from the quantum trade-off as Schroeppel-Shamir allows
for a square-root gain in the running time; the same as using a Grover-search in
a quantum algorithm.

Tailored Dissection. Eventually, we introduce a new slight generalization of
the Dissection technique that we call tailored Dissection. It allows us to achieve
a piece-wise continuous trade-off (line segments depicted in Fig. 1) covering the
sub-exponential memory regime entirely.

The full version of this work [13] also contains a discussion how our results
translate from the LPN setting to LWE.

642 A. Esser et al.

Fig. 1. Illustration of our BKW trade-offs. Instantiations exist exactly for marks as
well as everywhere on solid lines. Naive BKW trade-off in stars (see Theorem 1.1),
QBKW trade-off in triangles and Dissection-BKW trade-offs in diamonds and solid
line segments (see Theorem 1.2).

2 Preliminaries

2.1 Notation

For a ≤ b ∈ N let [a, b] := {a, a + 1, . . . , b} and [a] := [1, a]. For a set S and
s ≤ |S| let

(
S
s

)
denote the set of all size-s subsets of S. A list L = (l1, . . . , li)

is an element L ∈ Si and is of length |L| = i. We let ∅ denote the empty list.
For two lists L1, L2 we write L1 ⊆ L2 if all elements from L1 are contained in
L2 at least as often as in L1. We write shortly l ∈ L2 for (l) ⊆ L2. For lists
L1 = (l1, . . . , li) and L2 = (li+1, . . . , lj) we let L1 ∪ L2 := (l1, . . . , li, li+1, . . . , lj).
Logarithms are always base 2.

For v ∈ F
a
2 and b ≤ a we denote the last b coordinates of v by lowb(v). We

let ui denote the ith unit vector. 0b denotes the zero vector of dimension b.
By UM we denote the uniform distribution on a finite set M , by Berp we

denote the Bernoulli distribution, i.e., X ∼ Berp means that Pr [X = 1] = 1 −
Pr [X = 0] = p. For n independent random variables X1, . . . , Xn

iid∼ Berp their
sum X is binomial distributed with parameters n and p, denoted X ∼ Binn,p.
A probability p(k) is called overwhelming in k, if 1 − p(k) is negligible in k. We
denote deterministic assignments in algorithms by ←.

Theorem 2.1 (Chernoff Bound, [27]). Let X ∼ Binn,p. Then

Pr [X ≤ (1 − r)np] ≤ exp
(

−1
2
r2np

)
for any r ∈ [0, 1]. (1)

Dissection-BKW 643

2.2 The LPN Problem

Definition 2.1 ((Search) LPN Problem). Let k ∈ N, s ∈ F
k
2 and p ∈ [0, 1

2)
be a constant. Let Sample denote an oracle that, when queried, samples a ∼ UFk

2
,

e ∼ Berp and outputs a sample of the form (a, b) := (a, 〈a, s〉 + e). The LPNk

problem consists of recovering s given access to Sample. In the following we call
k the dimension, s the secret, p the error rate, b the label of a and e the noise.

Brute-Force Sampling Algorithm. A straight-forward way to recover the
first bit s1 of the secret s is to query Sample until we obtain a sample of the
form (u1, b). Then b = 〈u1, s〉 + e = s1 + e. Hence, Pr [s1 = b] = 1 − p > 1

2 .
However, as Sample draws a uniformly from F

k
2 , we expect to have to query the

oracle 2k times to have a = u1.
Further, to boost the confidence in recovering s1 correctly from merely 1 − p

to being overwhelming (in k) one may collect many samples (u1, bi) and decide
on s1 by majority vote, whose error is bounded in the following lemma.

Lemma 2.1 (Majority Vote). Let q > 1
2 and X1, . . . , Xn ∼ Berq indepen-

dently. Then

Pr

[
n∑

i=1

Xi >
n

2

]
≥ 1 − exp

(
− n

2q

(
q − 1

2

)2
)

.

Proof. Since X :=
∑n

i=1 Xi ∼ Binn,q, using Theorem 2.1 with r = 1 − 1
2q gives

Pr
[
X >

n

2

]
≥ 1 − exp

(
−1

2

(
1 − 1

2q

)2

nq

)
= 1 − exp

(
− n

2q

(
q − 1

2

)2
)

.

�
Corollary 2.1. For n := 2(1−p)k

(1
2−p)2

many samples, a majority vote recovers s1

correctly with probability at least 1 − exp(−k).

Proof. Let us define Xi = 1 iff bi = s1, which implies q = 1 − p. Lemma 2.1
yields the desired result. �
Therefore, for any constant error rate p, the majority vote requires only a linear
number n = O(k) of labels of the form (u1, bi). Clearly, we can recover the remain-
ing bits sj , j = 2, . . . , k of the secret s by querying Sample until we obtained
sufficiently many samples with a = uj . Overall, the probability that we recover
all bits of s correctly is at least (1 − exp(−k))k ≥ 1 − k · exp(−k) = 1 − negl(k).

2.3 Combining Samples

In [5], Blum, Kalai and Wasserman introduced the idea to construct a = u1 from
a collection of N arbitrary samples rather than merely waiting for a sample where

644 A. Esser et al.

a = u1. Their core idea is based on synthesizing a new sample from two existing
ones (a1, b1), (a2, b2) via addition

(a1 ⊕ a2, b1 ⊕ b2) = (a1 ⊕ a2, 〈a1 ⊕ a2, s〉 ⊕ e1 ⊕ e2) .

For such a synthesized sample, which we call a 2-sum of samples, we have a1 ⊕
a2 ∼ UFk

2
and e1 ⊕ e2 ∼ Berp′ where p′ = 1

2 − 1
2 (1 − 2p)2 > p according to the

following Piling-Up lemma.

Lemma 2.2 (Piling-Up Lemma [14]). Let p ∈ [0, 1] and ei ∼ Berp, i ∈ [n]
be identically, independently distributed. Then

n⊕
i=1

ei ∼ Ber 1
2− 1

2 (1−2p)n .

Summing up two or more samples enables us to synthesize samples at the expense
of an error rate approaching 1

2 exponentially fast in the number of summands.

3 The c-Sum-Problem and its Application to BKW

3.1 A Generalized BKW Algorithm

While BKW repeatedly adds pairs of samples to zero out chunks of coordinates,
we add c > 2 samples to accomplish the same. Beneficially, as the number of
size-c subsets grows exponentially in c, this allows for a drastic reduction in the
number of initially required samples (thus, memory as well) while still finding
sufficiently many sums of c vectors adding up to zero on a block of coordinates.

We give our c-sum-BKW in Algorithm 1. For a block-size b and j ∈ [a] we refer
to the coordinates [k−jb+1, k−(j−1)b] as the jth stripe. Essentially, c-sum-BKW
consists of a for-loop (line 4) that generates zeros (resp. the first unit vector) on
the jth stripe for j ∈ [a− 1] (resp. the ath stripe). This step is repeated multiple
times (see line 2) to obtain sufficiently many labels of u1 samples in order to
let a majority vote determine the first bit s1 of the secret s with overwhelming
probability. This process is repeated k times to recover all bits of s.

For a list L as constructed in line 3, j ∈ [a] and t ∈ F
b
2 we let c-sum(L, j, t)

denote an algorithm that outputs a new list L where the coordinates of each
entry match t on the jth stripe (see lines 5, 6). If L should shrink to size 0
throughout an execution, we abort and return a failure symbol (see lines 7, 8).

We point out that (essentially) the original BKW algorithm may be obtained
by letting c-sum add pairs of vectors whose sum matches t on the jth stripe
to L′.

Let us introduce the c-sum-problem lying at the heart of any algorithm that
shall be used to instantiate c-sum. In short, given a list of vectors L ∈ (Fb

2)
∗,

i.e., a stripe from the c-sum-BKW point of view, the c-sum-problem asks to collect
sums of c vectors that add up to some target t ∈ F

b
2.

Dissection-BKW 645

Algorithm 1. c-sum-BKW(k, p, εa, N) � c ∈ N

Input: dimension k, error rate p, εa > 0, N ≥ 2
b+c log c+1

c−1 , access to Sample

Output: s ∈ F
k
2

1: a := log k
(1+εa) log c

, b := k
a
, n := 8(1−p)k

(1−2p)2ca

2: for i ← 1, . . . , n do
3: Query N samples from Sample and save them in L.
4: for j ← 1, . . . , a − 1 do
5: L ← c-sum(L, j, 0b)

6: L ← c-sum(L, a,u1)
7: if L = ∅ then
8: return ⊥
9: Pick (u1, bi) uniformly from L.

10: s1 ← majorityvote(b1, . . . , bn)
11: Determine s2, . . . , sk the same way.
12: return s = s1 . . . sk

Definition 3.1 (The c-Sum-Problem (c-SP)). Let b, c,N ∈ N with c ≥ 2.
Let L := (l1, . . . , lN) be a list where li ∼ UFb

2
for all i and let t ∈ F

b
2 be a target.

A single-solution of the c-SPb is a size-c set L ∈ (
[N]
c

)
such that⊕

j∈L
lj = t .

A solution is a set of at least N distinct single-solutions. The c-sum-problem
c-SPb consists of finding a solution when given L, t while c is usually fixed in
advance. We refer to (L, t, c) as an instance of the c-SPb, concisely (L, t) if c is
clear from the context.

Note that by definition a solution to the c-sum-problem c-SPb consists of at
least N single-solutions. These may again be combined into a new list of size (at
least) N . Thus, we may apply a c-SPb solving algorithm on different b-bit stripes
of a list. Further, the list does not shrink if a solution exists in each iteration.

Obviously, a solution should exist whenever the list size N is large enough,
since then sufficiently many c-sums add up to some given target t. In the follow-
ing, we show that the lower bound for the list-size N from Algorithm 1 guarantees
the existence of such a solution with overwhelming probability under the follow-
ing heuristic assumption that is regularly used in the analysis of BKW-type
algorithms [6,7,32].

Independence Heuristic. Obviously, c-sums
⊕

j∈L lj are stochastically depen-
dent for L ⊆ [N] with |L| = c. However, their dependency should only mildly
affect the runtime of an iterative collision search as in BKW-type algorithms. For
instance, it has been shown in [9] that the dependence between 2-sums

⊕
j∈L lj

merely affects the overall runtime exponent by an o(1)-term. We heuristically
assume that this also holds for c > 2, and therefore treat (iterative) c-sums as
independent in our run time analyses.

646 A. Esser et al.

We provide various experiments in Sect. 6.1 that support the Independence
Heuristic.

For Algorithm 1, we need the following lemma only for the special case α = 1.
However, our Tailored Dissection approach in Sect. 5.3 also requires α > 1.

Lemma 3.1. Let (L, t) be a c-SPb instance with

|L| = Nα, where N = 2
b+c log c+1

c−1 and α ≥ 1 .

Then, under the Independence Heuristic, (L, t) has at least Nα single-solutions
with probability 1 − exp(−N/4).

Proof. For every L ⊆ [N] with |L| = c define an indicator variable that takes
value XL = 1 iff

⊕
j∈L lj = t.

Let X =
∑

L XL be the number of single-solutions to the c-SPb. Under
the Independence Heuristic, the XL can be analyzed as if independent, thus
X ∼ Bin(Nα

c),2−b is binomially distributed. Hence,

E[X] =
(

Nα

c

)
· 2−b ≥

(
Nα

c

)c

· 2−b . (2)

Since log N = b+c log c+1
c−1 , we obtain

logE[X] ≥ c(α log N − log c) − b ≥ α (c(log N − log c) − b)

= α ·
(
c

(
b + c log c + 1 − (c − 1) log c

c − 1

)
− b

)

= α · cb + c log c + c − (c − 1)b
c − 1

= α · b + c log c + 1 + c − 1
c − 1

= α · (log N + 1) ≥ α log N + 1 . (3)

Thus, our choice of N guarantees E[X] ≥ 2Nα. We can upper-bound the
probability that the c-sum-problem has less than Nα single-solutions solution
using our Chernoff bound from Theorem2.1 as

Pr [X < Nα] ≤ Pr
[
X <

1
2
E[X]

]
≤ exp

(
−E[X]

8

)
≤ exp

(
−N

4

)
. �

Observation 3.1. Clearly, any algorithm solving the c-sum-problem may be
used to replace c-sum in lines 5 and 6 of c-sum-BKW (Algorithm 1). As a con-
sequence we do not distinguish between c-sum and an algorithm solving the
c-sum-problem.

We now give Theorem 3.2 stating that c-sum-BKW inherits its complexities
from c-sum. As a result, we may focus on solving the c-sum-problem in the
remainder of this work.

Dissection-BKW 647

Theorem 3.2 (Correctness and Complexities of c-sum-BKW). Let c-sum
denote an algorithm solving the c-SPb in expected time Tc,N and expected memory
Mc,N with overwhelming success probability, where N ≥ 2

b+c log c+1
c−1 . Under the

Independence Heuristic c-sum-BKW solves the LPNk problem with overwhelming
probability in time T , memory M , where

T = (Tc,N)1+o(1) , M = (Mc,N)1+o(1) ,

using N1+o(1) samples.

Proof. Let a = log k
(1+εa) log c and b = k

a as in Algorithm 1. Consider one iteration of
the for-loop in line 2. As stated in Lemma 3.1 there exists a solution to the c-SPb

instance (implicitly defined via the jth stripe of L and target 0b (resp. u1)) with
probability at least 1− exp(−N

4). Hence, the probability that there is a solution
to the instance in each iteration is greater than(

1 − exp
(

−N

4

))an

≥ 1 − an · exp
(

−N

4

)
.

We now analyze the probability that a single bit of the secret gets recov-
ered correctly. Since we build c-sums iteratively a times in lines 4–6, eventu-
ally we obtain vectors being a sum of at most ca samples, having an error of
1
2 − 1

2 (1 − 2p)ca

according to Lemma 2.2.
Note that the labels b1, . . . , bn collected in line 10 are stochastically indepen-

dent as each bi is obtained from freshly drawn samples. Now Corollary 2.1 yields
that n := 8(1−p)k

(1−2p)2ca samples are sufficient for the majority vote to determine a bit
of s correctly with error probability at most exp(−k). Using the Union Bound,
one bit of the secret s gets successfully recovered with probability at least

1 − an · exp
(

−N

4

)
− exp(−k) .

As we have to correctly recover all, i.e., k bits of s, the overall success probability
of c-sum-BKW is at least(

1 − 2an · exp
(

−N

4

)
− exp(−k)

)k

≥ 1 − 2ank · exp
(

−N

4

)
− k exp(−k) .

Let us look at the term 2ank · exp
(−N

4

)
. Since n = Õ(2κpca

) for some constant
κp, we obtain for constant c

2ank = Õ(n) = 2O(kε′
) with ε′ < 1, whereas N = 2Θ(b) = 2Θ(k

a
) = 2

Θ(k
log k

)
. (4)

Thus, the factor exp
(−N

4

)
clearly dominates and makes the overall success

probability overwhelming in k.
Let us now analyze the time and memory complexity of c-sum-BKW. Since

c-sum has only expected time/memory complexity, this expectation will be inher-
ited to c-sum-BKW. We later show how to remove the expectation from c-sum-BKW’s
complexities by a standard technique.

648 A. Esser et al.

Let us start with the running time of c-sum-BKW, where we ignore the negli-
gible overhead of iterations of line 2 caused by failures in the c-sum-algorithm.
Clearly, Tc,N ≥ N . Hence, one iteration of the for-loop can be carried out in
time Õ(max{N, a · Tc,N}) = Õ(Tc,N). Thus, for recovering the whole secret we
get a running time of Õ(n · Tc,N). From Equation (4) we already know that
N dominates n, which implies that Tc,N dominates n. More precisely, we have
n · Tc,N = (Tc,N)1+o(1). Hence, we can also express the overall expected running
time as (Tc,N)1+o(1).

The memory consumption is dominated by c-sum, which gives us in total
expected Õ(Mc,N) = (Mc,N)1+o(1). The sample complexity of c-sum-BKW is
Õ(knN) = Õ(nN) = N1+o(1).

It remains to remove the expectations from the complexity statements for
time and memory, while keeping the success probability overwhelming. We run
c-sum-BKW k times aborting each run if it exceeds its expected running time
or memory by a factor of 4. A standard Markov bound then shows that this
modified algorithm fails to provide a solution with probability at most 2−k. For
details see the full version [13]. �

In the following section, we discuss an algorithm to naively solve the c-sum-
problem leading to a first trade-off in the subexponential time/memory regime
that also allows for a quantum speedup.

4 First Time-Memory Trade-Offs for BKW

4.1 A Classic Time-Memory Trade-Off

A straight-forward algorithm to solve an instance of the c-sum-problem is to
compute all sums of c elements from L. For N = |L| this approach takes time
O(N c) while it requires memory O(N).

With little effort, we can do slightly better: Let L be sorted. Now let us
brute-force all (c− 1)-sums from L, add t, and check whether the result appears
in L. This gives us by construction a c-sum that matches t.

The details of this c-sum-naive approach are given in Algorithm2. Notice
that whenever we call c-sum-naive, we should first sort the input list L, which
can be done in additional time Õ(N).
The following lemma shows correctness and the complexities of Algorithm 2.

Lemma 4.1. c-sum-naive finds a solution of the c-SPb in time Õ (
N c−1

)
and

memory Õ(N).

Proof. See full version [13].

Let us now replace in the c-sum-BKW algorithm the c-sum subroutine with
Algorithm 2 c-sum-naive, and call the resulting algorithm c-sum-naive-BKW.

Dissection-BKW 649

Algorithm 2. c-sum-naive(L, t) � c ∈ N

Input: Sorted list L = (v1, . . . , vN) ∈ (Fb
2)

N , target t ∈ F
b
2

Output: S ⊆ (
[N]
c

)
or ⊥

1: for all V = {i1, . . . ic−1} ⊆ [N] do
3: for all ic ∈ [N] \ V satisfying vic = t ⊕ (⊕i∈Vvi) do
4: S ← S ∪ {{i1, . . . , ic}}
5: if |S| = N then
6: return S
7: return ⊥

Theorem 4.1 (Naive Trade-Off). Let c ∈ N. For all ε > 0 and suffi-
ciently large k, under the Independence Heuristic c-sum-naive-BKW solves the
LPNk problem with overwhelming success probability in time T = 2ϑ(1+ε), using
M = 2μ(1+ε) memory and samples, where

ϑ = log c · k

log k
, μ =

log c

c − 1
· k

log k
.

Proof. Let N := 2
b+c·log c+1

c−1 . According to Lemma 4.1 c-sum-naive is correct and
we can apply Theorem 3.2 to conclude that c-sum-naive-BKW solves LPN with
overwhelming success probability.

Further Lemma 4.1 shows that c-sum-naive runs in time

Tc,N = Õ(N c−1) = Õ(2b+c log c+1) = Õ(2b) for constant c.

Thus, by Theorem 3.2 c-sum-naive-BKW runs in time T = 2b(1+o(1)). Since
c-sum-BKW operates on stripes of width b = log c · k(1+εa)

log k (see the definition in
Algorithm 1), we obtain the claimed complexity T = 2ϑ(1+εa+o(1)) = 2ϑ(1+ε) for
every ε > εa and sufficiently large k.

Since c-sum-naive requires memory Mc,N = Õ(N), by Theorem 3.2 the
memory complexity of c-sum-BKW is (for constant c)

M = (Mc,N)1+o(1) = N1+o(1) = (2
b

c−1)1+o(1) =
(
2

log c
c−1 · k

log k
)1+o(1)

.

The sample complexity of c-sum-BKW is N1+o(1) (see Theorem 3.2) and therefore
identical to M . �
Figure 1 shows the time-memory trade-off from Theorem 4.1 depicted by stars.

4.2 A Quantum Time-Memory Trade-Off

Grover’s algorithm [15] identifies a marked element in an unsorted database
D in time O(

√|D|) with overwhelming probability. A matching lower bound
Ω(

√|D|) by Donotaru and Høyer [11] shows that Grover’s algorithm is optimal.
We use a modification of Grover’s algorithm due to [8], denoted Grover, that
applies even in case the number of marked elements is unknown.

650 A. Esser et al.

Theorem 4.2 (Grover Algorithm [8]). Let f : D → {0, 1} be a function
with non-empty support. Then Grover outputs with overwhelming probability a
uniformly random preimage of 1, making q queries to f , where

q = Õ
(√

|D|
|f−1(1)|

)
.

We use Grover’s algorithm to speed up our naive approach to solving the
c-sum-problem. While we previously brute-forced all (c − 1)-sums in list L and
checked if there is a fitting cth entry in L, we now employ a Grover-search to
immediately obtain (c − 1)-sums for which there exists a suitable cth element in
L. Let us define the Grover function ft as

ft :
(

[|L|]
c − 1

)
→ {0, 1},V �→

⎧⎪⎨
⎪⎩

1 ∃ic ∈ [|L|] \ V :
c−1∑
j=1

lij = lic
+ t

0 else
.

Given some V ∈ f−1
t (1) we can recover all ic such that V∪{ic} is a single-solution

of instance (L, t) in time Õ(log |L|) if L is sorted.

Algorithm 3. Q-c-sum(L, t) � c ∈ N

Input: Sorted list L = (v1, . . . , vN) ∈ (Fb
2)

N , target t ∈ F
b
2

Output: S ⊆ (
[N]
c

)
or ⊥

1: repeat Õ(N) times
2: V = (i1, . . . , ic−1) ← Groverft

3: for all ic ∈ [N] \ V satisfying vic = t ⊕ (⊕i∈Vvi) do
4: S ← S ∪ {{i1, . . . , ic}}
5: if |S| = N then
6: return S
7: return ⊥

Lines 3–7 of Q-c-sum and c-sum-naive are identical. We merely replaced the
brute-force search (line 1 in Algorithm 2) by a Grover-search (lines 1, 2 in
Algorithm 3).

Lemma 4.2. Q-c-sum solves the c-SPb with overwhelming probability in time
Õ (

N c/2
)

and memory Õ(N).

Proof. See full version [13].

Let QBKW denote algorithm c-sum-BKW where c-sum is instantiated using Q-c-sum.

Theorem 4.3. Let c ∈ N. For all ε > 0 and sufficiently large k, under the
Independence Heuristic QBKW solves the LPNk problem with overwhelming success
probability in time T = 2ϑ(1+ε), using M = 2μ(1+ε) memory and samples, where

ϑ =
c

2 · (c − 1)
· log c · k

log k
, μ =

log c

c − 1
· k

log k
.

Dissection-BKW 651

Proof. The proof proceeds along the lines of the proof of Theorem4.1.

The trade-off from Theorem 4.3 is depicted in Fig. 1 on Page 5 by triangles.

5 Time-Memory Trade-Offs for BKW via Dissection

While a naive approach already led to a first time-memory trade-off, a meet-in-
the-middle approach for solving the c-sum-problem prohibits a trade-off, as we
explain in Sect. 5.1. As a consequence, we resort to the more advanced Dissection
technique [10,30] in Sect. 5.2. However, as Dissection merely leads to instanti-
ations for a rather sparse choice of available memory, we give a slight general-
ization of Dissection tailored to any given amount of memory. This allows for a
trade-off covering the whole range of possible memory (see Sect. 5.3).

Let us define the specific structure of single-solutions that are recovered by
all c-sum-problem algorithms in this section.

Definition 5.1 (Equally-split (Single-)Solution). Let (L, t) be an c-SPb

instance. Partition L into lists L1, . . . , Lc of size L
c each. A single-solution is

equally-split (wrt. L1, . . . , Lc) if it corresponds to list elements l1, . . . , lc whereby
li ∈ Li for all i ∈ [c]. An equally-split solution is a collection of N equally-split
single-solutions.

Lemma 5.1. Let (L, t) be a c-SPb instance with

|L| = Nα, where N = 2
b+c log c+1

c−1 and α ≥ 1 .

Then, under the Independence Heuristic, (L, t) has at least Nα equally-split
single-solutions with probability 1 − exp(−N/4).

Proof. Let X be a random variable for the number of equally-split single-
solutions. Then E[X] =

(
Nα

c

)c · 2−b. Hence, Eq. (2) is satisfied, and the rest
follows as in the proof of Lemma 3.1. �

5.1 Meet-in-the-Middle and Beyond

Let (L, t) be an instance of the c-SPb. In a meet-in-the-middle approach one splits
a c-sum t = vi1 ⊕ . . .⊕vic

into two parts t =
(
vi1 ⊕ . . .⊕vi c

2

)⊕(
vi c

2+1
⊕ . . .⊕vic

)
.

Let us define L1 := (v1, . . . , v |L|
2

), L2 := (v |L|
2 +1

, . . . , v|L|) and consider a single-

solution corresponding to c
2 elements from L1 and L2 each:

(vi1 , . . . , vi c
2
) ⊆ L1 and (vi c

2+1
, . . . , vic

) ⊆ L2 .

If we compute all c
2 -sums of elements from L1 and save them in a new list L

c
2
1 ,

then for each c
2 -sum v of L2 we can check if w := v ⊕ t ∈ L

c
2
1 . If so, v and w form

a single-solution since v⊕w = t. Obviously, this approach has expected time and
memory complexity Õ(max(|L|, |L| c

2)) = Õ(|L| c
2) for c ≥ 2. Yet, choosing c > 2

652 A. Esser et al.

only leads to worse complexities, time and memory-wise, while for c = 2 the
complexities for the meet-in-the-middle approach are as bad as for c-sum-naive.

Schroeppel and Shamir’s Meet-in-the-Middle. We present a heuristic sim-
plification of the Schroeppel-Shamir algorithm [30] due to Howgrave-Graham
and Joux [20].

In a nutshell, the idea of Schroeppel and Shamir is to run a meet-in-the-
middle attack but impose an artificial constraint τ on the c

2 -sums. This results
in lists L

c
2 ,τ
1 that are significantly smaller than L

c
2
1 in the original meet-in-the-

middle approach. In order to find all single-solutions, one iterates τ over its whole
domain. L

c
2 ,τ
1 is in turn built from smaller lists as follows. Let t = vi1 ⊕ . . . ⊕ vic

and write

t = vi1 ⊕ . . . ⊕ vi c
4︸ ︷︷ ︸

�11

⊕ vi c
4+1

⊕ . . . ⊕ vi c
2︸ ︷︷ ︸

�12

⊕ vi c
2+1

⊕ . . . ⊕ vi 3c
4︸ ︷︷ ︸

�21

⊕ vi 3c
4 +1

⊕ . . . ⊕ vic︸ ︷︷ ︸
�22

.

Create four lists L
c
4
11, L

c
4
12, L

c
4
21, L

c
4
22 containing all c

4 -sums of elements from the
first, second, third, and fourth quarter of L. Let �i,j denote elements from L

c
4
ij for

i, j = 1, 2. As a constraint we choose low c
4 log |L|(�11 ⊕ �12) = τ for some fixed τ .

Now we construct L
c
2 ,τ
1 from L

c
4
11 and L

c
4
12 using a meet-in-the-middle approach

requiring expected time Õ(|L| c
4). Similarly, we can compute all elements of list

L
c
2 ,t⊕τ
2 to obtain sums of c

2 vectors (c
4 from L

c
4
2,1 and L

c
4
2,2 each) matching t ⊕ τ

on the last |τ | = c
4 log |L| bits. Eventually, given the elements from L

c
2 ,t⊕τ
2 and

list L
c
2 ,τ
1 one can some recover single-solutions as before. Thereby list L

c
2 ,τ
1 is of

expected size

E

[∣∣∣L c
2 ,τ
1

∣∣∣] =
∣∣∣L c

4
11

∣∣∣ · ∣∣∣L c
4
12

∣∣∣ · 2−|τ | = |L|2· c
4− c

4 = |L| c
4 .

We conclude that the expected memory consumption of the algorithm is given
by Õ(max

{|L|, |L| c
4
}
).

As we iterate over 2|τ | = |L| c
4 choices of τ requiring expected time Õ(|L| c

4)
per iteration, the overall expected running time is given by Õ(|L| c

2) for all c ≥
4. Hence, for c = 4 we obtain an algorithm as fast as the meet-in-the-middle
approach, while consuming only expected memory Õ(|L|).

Note that it is sufficient to store list L
c
2 ,τ
1 while all elements from L

c
2 ,t⊕τ
2 may

be computed and checked on-the-fly, i.e., without storing its elements.

The Schroeppel-Shamir algorithm is a special case of Dissection run on 4
lists in the subsequent section, which further exploits the asymmetry between
storing lists and computing (memory-free) lists on the fly.

5.2 Dissection

Dissection can be considered as a memory-friendly member of the class of k-list
algorithms [31]. A Dissection algorithm is given c lists Lc, . . . , L1 and a target t.

Dissection-BKW 653

For simplicity the algorithm merely sums list elements to obtain target t rather
than outputting a single-solution explicitly. One could keep track of indices of
those elements that sum to t, but for ease of notation we omit this. Instead, we
employ some abstract “index recovering” procedure later.

High-level Structure of Dissection. A Dissection identifying sums of vec-
tors adding up to some target t consists of the following steps

(1) A loop iterates over an artificially introduced constraint τ . For each τ :
(1.1) A meet-in-the-middle approach is run to obtain a list L of sums from

the first few lists that add up to τ on a some bits. List L is kept in
memory.

(1.2) Dissection is called recursively to find sums from the remaining lists
that sum to t⊕τ on a some bits. Found sums are passed to the parent
call on-the-fly.

(1.3) For all sums passed from the recursive call in step (1.2) list L is
searched to construct sums adding up to τ on some more bits.

Before giving the fully-fledged Dissection algorithm, let us give an 11-Dissection
example.

Fig. 2. High-level structure of an 11-Dissection on input lists L11, . . . , L1. Recursively
called 7- and 4-Dissection enclosed in dashed boxes. Arrows entering a list from the
right side indicate a check on-the-fly. Arrows leaving a list on the left side indicate that
a found match is returned on-the-fly. Arrows entering a list from the top indicate that
the list below is populated with entries from above and stored entirely.

Example 5.1 (11-Dissection). An 11-Dissection is run on lists L11, . . . , L1 and
some target t. It loops through an artificial constraint τ3. Within each iteration:
A list L(11,8) containing sums l11 ⊕ . . . ⊕ l8 consistent with constraint τ3 where
l11 ∈ L11, . . . , l8 ∈ L8 is computed and stored. Then, still within the first
iteration of the loop, a 7-Dissection is run (see Fig. 2) on lists L7, . . . , L1 and a
modified target t⊕τ3. The 7-Dissection itself introduces a constraint τ2 and stores
a list L(7,5) containing sums of elements from L7, L6, L5 fulfilling τ2. It recursively
calls a 4-Dissection, i.e. Schroeppel-Shamir (Sect. 5.1), on target t ⊕ τ3 ⊕ τ2.
Internally, the 4-Dissection introduces another constraint τ1.

Whenever a partial sum is identified by the 4-Dissection, it is passed to the
7-Dissection on-the-fly while the 4-Dissection carries on. See the “chain” at the

654 A. Esser et al.

bottom in Fig. 2 traversing lists from right to left. Once, the 7-Dissection receives
a sum, it immediately checks for a match in list L(7,5) and discards or returns
it—in case of the latter—enriched by a matching element from L(7,5) to the
11-Dissection and continues.

Whenever the 11-Dissection receives a sum from the 7-Dissection, it instantly
checks for a match in list L(11,8) to detect if a single-solution has been found.

Definition 5.2 (Join Operator). Let d ∈ N and L1, L2 ∈ (Fd
2)

∗ be lists. The
join of L1 and L2 is defined as

L1 �� L2 := (l1 ⊕ l2 : l1 ∈ L1, l2 ∈ L2) .

For t ∈ F
≤d
2 the join of L1 and L2 on t is defined as

L1 ��t L2 := (l1 ⊕ l2 : l1 ∈ L1, l2 ∈ L2 ∧ low|t|(l1 ⊕ l2) = t) .

If L2 = (l2) we write L1 ��t l2 instead of L1 ��t (l2).

Clearly, computing elements contained in a sequence of joins can be implemented
memory-friendly without having to explicitly compute intermediate lists.

Definition 5.3 (The Magic Sequence [10]). Let c−1 := 1 and

ci := ci−1 + i + 1 (5)

for all i ∈ N ∪ {0}. The magic sequence is defined as magic := (ci)i∈N≥1 .

One easily verifies that, alternatively,

magic =
(

1
2

· (i2 + 3i + 4
))

i∈N≥1

. (6)

As Dissection formulated in the language of k-list algorithms might be of
independent interest we deter from adding c-SPb-solving related details to the
Dissection algorithm presented next, but rather introduce a simple wrapper algo-
rithm (see Algorithm 5) to solve the c-sum-problem afterwards.

We define the class of Dissection algorithms recursively. Let L2, L1 ∈ (Fd
2)

∗,
d ∈ N and t ∈ F

≤d
2 . Then

c0-Dissect(L2, L1, t, inner) := L2 ��t L1 . (7)

Here, “inner” indicates that c0-Dissect was called recursively by another Dis-
section algorithm in contrast to an initial, explicit call to run Dissection that
will be called with parameter “outer”.

We proceed to define ci-Dissect for i ≥ 1. Lists are denoted by L and
input-lists are numbered Lci

down to L1 for ci ∈ magic. As a reading aid, list
and element indices keep track of input-lists they originated from: A list L(j,i) is
the output of a join of lists Lj �� . . . �� Li for j > i. List elements are denoted l.
We write l(j,i) to indicate that l(j,i) is a sum of elements lκ ∈ Lκ for κ = j, . . . , i.

The optimality of this recursive structure is shown in [10]. We now establish
the required properties of Algorithm4 in a series of lemmata. We give detailed
proofs in the full version [13].

Dissection-BKW 655

Algorithm 4. ci-Dissect(Lci
, . . . , L1, t, pos) � ci ∈ magic

Input: Lists Lci , . . . , L1 ∈ (Fb
2)

2λ

where λ ≤ b
i
, target t ∈ F

b
2, pos ∈ {outer, inner}

Output: S ⊆ (
[N]
ci

)
or ⊥

1: for all τi ∈ F
i·λ
2 do

2: L(ci,ci−1+1) ← Lci ��τi (Lci−1 �� . . . �� Lci−1+1)
3: for all l(ci−1,1) passed from ci−1-Dissect(Lci−1,. . .,L1,lowi·λ(t)⊕τi,inner) do
4: for all l(ci,1) ∈ L(ci,ci−1+1) ��t l(ci−1,1) do
5: if pos = inner then

pass l(ci,1) to ci+1-Dissect
6: else

S ← S ∪ {recover indices(l(ci,1))}
7: return S

Algorithm 5. ci-sum-Dissect(L, t) � ci ∈ magic

Input: L ∈ (Fb
2)

N , target t ∈ F
b
2

Output: S ⊆ (
[N]
ci

)
or ⊥

1: Partition L into ci lists Lci , . . . , L1 of size N
ci

each

2: S ← ci-Dissect(Lci , . . . , L1, t, outer)
3: if |S| < N then
4: return ⊥
5: return S

Lemma 5.2 (Correctness of ci-Dissect). For some fixed ja let la := La(ja)
denote the jtha element of list La. When ci-Dissect(Lci

, . . . , L1, t, outer) halts,
set S contains (jci

, . . . , j1) ∈ [2λ]ci if and only if
⊕ci

a=1 la = t.

Proof. See full version [13].

Lemma 5.3 (Memory Consumption of ci-Dissect). For all i ≥ 1
algorithm ci-Dissect requires expected memory Õ(max{2λ,E[|S|]}).

Proof. See full version [13].

Lemma 5.4. Let i ≥ 1 and consider one iteration of the for-loop in line
1 within a call of ci-Dissect(· · · , inner). Then, in total, expected Õ(2ci−2·λ)
elements are returned in line 5.

Proof. See full version [13].

Lemma 5.5. Let i ≥ 1. Algorithm ci-Dissect(· · · , inner) runs in expected
time Õ(2ci−1·λ).

Proof. See full version [13].

656 A. Esser et al.

Lemma 5.6 (Running Time of ci-Dissect). Let i ≥ 1. A call of algorithm
ci-Dissect(· · · , outer) runs in expected time Õ(max{2ci−1·λ,E[|S|]}).

Proof. See full version [13].

Lemma 5.7. Let b ∈ N and ci ∈ magic. For t ∈ F
b
2 let (L, t) be an instance

of the ci-SPb where |L| = N := 2
b+ci·log ci+1

ci−1 . Under the Independence Heuristic
ci-sum-Dissect solves the ci-SPb with overwhelming probability in expected time
T = Õ(N ci−1) and expected memory M = Õ(N).

Proof. From Lemma 5.1 we know that at least N equally-split single-solutions
exist with overwhelming probability. Lemma5.2 ensures that ci-Dissect recov-
ers all of them. Note that the lists defined in line 1 are of length

2λ =
N

ci
= 2

b+ci·log ci+1
ci−1 −log ci = 2

b+log ci+1
ci−1 .

One easily verifies that λ = b+log ci+1
ci−1 ≤ b

i as syntactically required by ci-Dissect.
Hence, Algorithm 5 solves the c-SPb with overwhelming probability.
From Lemma 5.3 we have

M = Õ(max{2λ,E[|S|]}) = Õ(max{N,E[|S|]}) .

Under the Independence Heuristic we obtain E
[|S|] =

(
N
ci

)ci · 2−b = 2N , where

the last equality follows from Eq. (3). Therefore, M = Õ(N).
From Lemma 5.6 we conclude

T = Õ(max{2ci−1·λ,E[|S|]}) = Õ(N ci−1) . �
Since ci−1 = ci − i − 1 by Eq. (5) and i ≈ √

2ci by Eq. (6), we see
that ci-sum-Dissect reduces the time complexity of solving the c-sum-problem
from N c−1 (c-sum-naive) down to roughly N c−√

2c (see also Table 1). Let
ci-Dissect-BKW denote the variant of c-sum-BKW, where c-sum is instantiated
using ci-sum-Dissect.

Theorem 5.1 (Dissection Trade-Off). Let ci ∈ magic, ε > 0 and k ∈ N

sufficiently large. Under the Independence Heuristic ci-Dissect-BKW solves the
LPNk problem with overwhelming success probability in time T = 2ϑ(1+ε), using
M = 2μ(1+ε) memory and samples, where

ϑ =
(

1 − i

ci − 1

)
· log ci · k

log k
, μ =

log ci

ci − 1
· k

log k
.

Proof. Let N := 2
b+ci·log ci+1

ci−1 . It follows from Lemma 5.7 and Theorem 3.2 that
ci-Dissect-BKW solves LPN with overwhelming probability. We now combine
Lemma 5.7 and Theorem 3.2 to compute the running time T and memory com-
plexity M of ci-Dissect-BKW. We have

log T = ci−1 · b + ci · log ci + 1
ci − 1

· (1 + o(1)) ,

Dissection-BKW 657

whereby c-sum-BKW operates on stripes of size b = log ci · k·(1+εa)
log k . Hence

log T =
(

ci−1 log ci

ci − 1
· k · (1 + εa)

log k
+

ci−1 · (ci log ci + 1)
ci − 1

)
· (1 + o(1))

=
ci−1 log ci

ci − 1
· k

log k
· (1 + εa + o(1))

=
ci−1

ci − 1
· log ci · k

log k
· (1 + ε)

for every ε > εa and sufficiently large k. Finally

log T
(5)
=

(
1 − i

ci − 1

)
· log ci · k

log k
· (1 + ε) .

Analogously we have for M :

log M =
log ci

ci − 1
· k

log k
· (1 + ε) ,

for every ε > εa and sufficiently large k. The sample complexity of c-sum-BKW is
N1+o(1) = M . �

The trade-off of Theorem 5.1 clearly improves over the naive trade-off initially
obtained in Theorem 4.1. While the memory consumption of the Dissection app-
roach remains the same as for the naive trade-off, we can reduce the price we
have to pay in time from log ci down to (1 − i

ci−1) · log ci.
The trade-off from Theorem 5.1 is given in Fig. 1 on Page 5 as diamonds.

Although it improves over the naive tradeoff from Sect. 4.1, this improvement
comes at the price of covering only ci-sums with ci ∈ magic. Given some available
memory M , one would choose the minimal ci ∈ magic such that ci-Dissect-BKW
consumes at most memory M . However, such a choice of ci is unlikely to fully
use M . In the following section, we show how to further speed up the algorithm
by using M entirely.

5.3 Tailored Dissection

Assume, we run ci-sum-Dissect and our available memory is not fully used.
Recall that ci-sum-Dissect collects single-solutions while iterating an outmost
loop over some constraint. In a nutshell, access to additional memory allows us to
increase the size of lists Lci

, . . . , L1, where N = |Lci
| + . . . + |L1|. Thereby, the

number of equally-split single-solutions of a c-sum-problem instance increases
significantly beyond N . As it suffices to identify (roughly) N single-solutions,
we may prune the outmost loop of ci-Dissect to recover N (rather than all)
equally-split single-solutions.

Yet, examining a fraction of the solution space only leads to recovering a
respective fraction of single-solutions if the latter are distributed sufficiently
uniformly.1

1 Imagine many single-solutions concentrated on few constraints τi as a counterexample.

658 A. Esser et al.

Let us briefly recall that the total number of existing single-solutions taken
over the initial choice of input lists is close to a binomial distribution under
the Independence Heuristic. This allowed us to show that ci-sum-Dissect suc-
ceeds with high probability as sufficiently many single-solutions exist with high
probability.

Now, let us denote the random variable of the number of single-solutions
gained in the jth iteration of the outmost loop of ci-Dissect by Zj . In order to
prove that a certain number of iterations is already sufficient to collect enough
single-solutions with high probability we require information on the distribution
of sums of Zj . However, as we show shortly, already Zj is distributed rather
awkwardly and it seems to be a challenging task to obtain Chernoff-style results
ensuring that the sum of Zj does not fall too short from its expectation with
high probability. In turn, we resort to the following heuristic.

Tailoring Heuristic. Let ci ∈ magic. Let random variable Zj denote the num-
ber of single-solutions gained in the jth iteration of the outmost for-loop of
ci-Dissect taken over the initial choice of input lists. We heuristically assume
that there exists a polynomial function poly(λ), such that for all J ⊆ {1, . . . , 2iλ}
we have

Pr

⎡
⎣∑

j∈J
Zj <

1
poly(λ)

· E
[∑

j∈J
Zj

]⎤⎦ ≤ negl(λ) . (8)

In particular, it follows from Equation (8) that for all ι ≤ 2iλ we have

Pr

⎡
⎣ι·poly(λ)∑

j=1

Zj ≥ E

[ι∑
j=1

Zj

]⎤⎦ ≥ 1 − negl(λ) .

That is, we can compensate the deviation of the sums of Zj below its expectation
by iterating poly(λ) more often.2

As for the Independence Heuristic we ran experiments to verify the Tailoring
Heuristic (Sect. 6.2).

Algorithm 6. tailored-ci-sum-Dissect(L, t) � ci ∈ magic

Input: L ∈ (Fb
2)

Nα

where N := 2
b+ci·log ci+1

ci−1 and α ≥ 1, target t ∈ F
b
2

Output: S ⊆ (
[Nα]

ci

)
or ⊥

1: Partition L into ci lists Lci , . . . , L1 of size 2λ := Nα

ci
each

2: S ← ci-Dissect(Lci , . . . , L1, t, outer) � halt ci-Dissect once |S| = Nα

3: if |S| < Nα then
4: return ⊥
5: return S

2 Clearly, it does not make sense to iterate ι · poly(λ) > 2i·λ times. However, once
we would have ι · poly(λ) > 2i·λ iterating 2iλ times is sufficient to collect enough
single-solutions as shown in Lemma 3.1.

Dissection-BKW 659

We stress that the only syntactical difference of tailored-ci-sum-Dissect
compared to ci-sum-Dissect (Algorithm 5) is the increase of the size of list L
from N to Nα for α ≥ 1 and the halt condition added as a comment in line 2.

Lemma 5.8 (Tailored Dissection). Let b ∈ N, ci ∈ magic and α ∈ [1, ci−1
ci−1

].
For t ∈ F

b
2 let (L, t) be an instance of the ci-SPb for |L| = Nα whereby

N := 2
b+ci·log ci+1

ci−1 . Under the Independence and Tailoring Heuristic tailored-
ci-sum-Dissect solves the ci-SPb with overwhelming probability in expected time
T = Õ (

N ci−1−i·(α−1)
)

and expected memory M = Õ (Nα).

Proof. See full version [13].

The complexities of tailored-ci-sum-Dissect are given in Table 1 where we
simplified α’s upper bound using ci−1 ≈ ci −

√
2ci. Let tailored-ci-BKW denote

c-sum-BKW, where the c-sum-problem is solved via tailored-ci-sum-Dissect.

Theorem 5.2 (Tailored-Dissection Trade-Off). Let ci ∈ magic and further
α ∈ [1, ci−1

ci−1
], ε > 0 and k ∈ N sufficiently large. Under the Independence and

Tailoring Heuristic tailored-ci-BKW solves the LPNk problem with overwhelming
success probability in time T = 2ϑ(1+ε), using M = 2μ(1+ε) memory and samples,
where

ϑ =
(

1 − α · i

ci − 1

)
· log ci · k

log k
, μ =

α · log ci

ci − 1
· k

log k
.

Proof. See full version [13].

Intuitively, it is clear how to choose optimal parameters for tailored-ci-BKW
for any given amount of memory M : Find the minimal ci ∈ magic such that
ci-Dissect-BKW uses at most memory M . Then, resort to tailored-ci-BKW using
memory M entirely by choosing the right α. The trade-off achieved via this
approach is given in Fig. 1 on page 5 (line segments). A formal justification of
the approach is contained in the full version [13].

6 Experimental Verification of Heuristics

We present experimental results to verify our Independence Heuristic as well as
our Tailoring Heuristic.

6.1 Experiments for the Independence Heuristic

We tested the Independence Heuristic for ci ∈ {4, 7}. We iteratively moni-
tored the number of single-solutions found after a run of ci-sum-Dissect on
successive stripes starting with a list of size N . For each ci we repeatedly
called ci-sum-Dissect on three stripes. After each call we stored the number
of single-solutions found. To analyze the impact of dependencies amongst the

660 A. Esser et al.

Fig. 3. Distribution of the number of single-solutions over successive runs of
ci-sum-Dissect. Under the Independence Heuristic this distribution is close to
Bin(N/ci)

ci ,2−b . All parameters are given in Table 2.

Dissection-BKW 661

list elements—rather than influences due to variations in the number of single-
solutions found—we pruned lists of more than N single-solutions down to N
before starting the next run, and discarded lists where less than N single-
solutions were found.

Note that during the first run all list elements are independent and uni-
formly distributed, even if their c-sums are not. While the list elements remain
uniform on a “fresh” stripe in subsequent runs of ci-sum-Dissect they are not
independent anymore what could affect (besides c-sums being dependent) the
distribution of existing single-solutions even further. Under the Independence
Heuristic the number of single-solutions found is close to being Bin(N/ci)

ci ,2−b

distributed after any run of ci-sum-Dissect.
Our experiments with parameters as given in Table 2 lead to the plots given

in Fig. 3. The measured relative frequencies are given by points, while the contin-
uous plots are the benchmark distributions Bin(N/ci)

ci ,2−b for our Independence
Heuristic.

Table 2. Parameters for testing the Independence Heuristic. Parameter a denotes the
number of stripes of width b.

ci a b N run sample size in thous. given in

1 108 Fig. 3a

c1 = 4 3 25 2048 2 100 Fig. 3b

3 58 Fig. 3c

1 29 Fig. 3d

c2 = 7 3 33 441 2 23 Fig. 3e

3 18 Fig. 3f

We see from Fig. 3 that the distribution of the output list-size is close to their
benchmark, even after three iterations of the c-sum subroutine, where already
43 = 64-sums (resp. 73 = 343-sums) haven been built.

We also used the Independence Heuristic in Lemma 5.8 to show that the
random variables Zj of the number of single-solutions gained in the jth iteration
over a constraint is close to being binomially Binx·y,2−(b−iλ) distributed, where
x ∼ Bin2(i+1)·λ,2−iλ and y ∼ Bin2λci−1 ,2−iλ . In order to verify this experimentally,
we computed several instances with parameter set

i = 1 (c1 = 4), b = 25, a = 3, N = 8192 .

Each time we performed three consecutive runs of 4-sum-Dissect on succes-
sive stripes and stored the number of single-solutions obtained per constraint
after each iteration. The results are given in Fig. 4. Again, the obtained relative
frequencies accurately match the benchmark curve Binx·y,2−(b−iλ) .

662 A. Esser et al.

Fig. 4. Distribution of the number of single-solutions per constraint in the first
(Fig. 4a), second (Fig. 4b) and third run (Fig. 4c) of 4-sum-Dissect.

6.2 Experiments on the Tailoring Heuristic

As in the previous subsection, let Zj be the number of single-solutions obtained
per constraint iteration in ci-sum-Dissect. In Tailored Dissection it is required
that the sum of these random variables is close to its expectation. The Tailoring
Heuristic states that this is true with overwhelming probability, if we slightly
increase the expected number of required iterations by a polynomial factor.

To test the Tailoring Heuristic we ran 4-sum-Dissect (without tailoring) on
three stripes (a = 3) with N = 8192 and varying choice of b. We summed the
numbers Zj of single-solutions found per randomized constraint τj during the
last run in a list, until their sum exceeded N . The results can be found in Table 3
and Fig. 5.

Dissection-BKW 663

Table 3. Parameters and results for testing the Tailoring Heuristic for 4-sum-Dissect,
N = 8192.

E[iterations to reach N]

b theory experiments 99% confidence interval sample size in thous. given in

25 32 32.50 32.50 · (1± 0.031) 50

28 256 255.40 255.40 · (1± 0.031) 100 Fig. 5a

29 512 511.78 511.78 · (1± 0.026) 150 Fig. 5b

30 1024 1024.20 1024.20 · (1± 0.021) 250 Fig. 5c

Fig. 5. Required number of iterations to collect at least N single-solutions. N = 8192.

We see in Table 3 that the experimentally required numbers of iteration very
accurately match their theoretical predictions (that were computed under the

664 A. Esser et al.

Independence Heuristic). Moreover, we experimentally need only a small factor
to achieve a 99% confidence interval, even for low expectations. This means that
the distribution has small variance and sharply concentrates around its mean,
as can also been seen in Fig. 5. This all supports the validity of our Tailoring
Heuristic for the analysis of Tailored Dissection BKW.

Acknowledgements. We would like to thank Eamonn Postlethwaite for his detailed
feedback and helpful suggestions on an earlier version of this paper. We are grateful to
the anonymous CRYPTO reviewers for their valuable comments.

Andre Esser was supported by DFG Research Training Group GRK 1817. Felix
Heuer, Alexander May and Christian Sohler were supported by Mercator Research
Center Ruhr, project “LPN-Krypt”.

References

1. http://csrc.nist.gov/groups/ST/post-quantum-crypto/
2. Alekhnovich, M.: More on average case vs approximation complexity. In: 44th

FOCS, pp. 298–307. IEEE Computer Society Press, October 2003
3. Bai, S., Laarhoven, T., Stehlé, D.: Tuple lattice sieving. LMS J. Comput. Math.

19(A), 146–162 (2016)
4. Blum, A., Furst, M.L., Kearns, M.J., Lipton, R.J.: Cryptographic primitives based

on hard learning problems. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773,
pp. 278–291. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48329-
2 24

5. Blum, A., Kalai, A., Wasserman, H.: Noise-tolerant learning, the parity problem,
and the statistical query model. In: 32nd ACM STOC, pp. 435–440. ACM Press,
May 2000

6. Bogos, S., Tramèr, F., Vaudenay, S.: On solving LPN using BKW and variants -
implementation and analysis. Crypt. Commun. 8(3), 331–369 (2016). https://doi.
org/10.1007/s12095-015-0149-2

7. Bogos, S., Vaudenay, S.: Optimization of LPN solving algorithms. In: Cheon, J.H.,
Takagi, T. (eds.) ASIACRYPT 2016, Part I. LNCS, vol. 10031, pp. 703–728.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6 26

8. Boyer, M., Brassard, G., Høyer, P., Tapp, A.: Tight bounds on quantum searching.
arXiv preprint quant-ph/9605034 (1996)

9. Devadas, S., Ren, L., Xiao, H.: On iterative collision search for LPN and subset
sum. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part II. LNCS, vol. 10678, pp.
729–746. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70503-3 24

10. Dinur, I., Dunkelman, O., Keller, N., Shamir, A.: Efficient dissection of compos-
ite problems, with applications to cryptanalysis, knapsacks, and combinatorial
search problems. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 719–740. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-32009-5 42

11. Dohotaru, C., Hoyer, P.: Exact quantum lower bound for grover’s problem. arXiv
preprint arXiv:0810.3647 (2008)

12. Ducas, L.: Shortest vector from lattice sieving: a few dimensions for free. In:
Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part I. LNCS, vol. 10820, pp.
125–145. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9 5

http://csrc.nist.gov/groups/ST/post-quantum-crypto/
https://doi.org/10.1007/3-540-48329-2_24
https://doi.org/10.1007/3-540-48329-2_24
https://doi.org/10.1007/s12095-015-0149-2
https://doi.org/10.1007/s12095-015-0149-2
https://doi.org/10.1007/978-3-662-53887-6_26
https://doi.org/10.1007/978-3-319-70503-3_24
https://doi.org/10.1007/978-3-642-32009-5_42
https://doi.org/10.1007/978-3-642-32009-5_42
http://arxiv.org/abs/0810.3647
https://doi.org/10.1007/978-3-319-78381-9_5

Dissection-BKW 665

13. Esser, A., Heuer, F., Kübler, R., May, A., Sohler, C.: Dissection-BKW. Cryptology
ePrint Archive, Report 2018/569 (2018). https://eprint.iacr.org/2018/569

14. Esser, A., Kübler, R., May, A.: LPN decoded. In: Katz, J., Shacham, H. (eds.)
CRYPTO 2017, Part II. LNCS, vol. 10402, pp. 486–514. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-63715-0 17

15. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: 28th
ACM STOC, pp. 212–219. ACM Press, May 1996

16. Guo, Q., Johansson, T., Löndahl, C.: Solving LPN using covering codes. In: Sarkar,
P., Iwata, T. (eds.) ASIACRYPT 2014, Part I. LNCS, vol. 8873, pp. 1–20. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-8 1

17. Guo, Q., Johansson, T., Stankovski, P.: Coded-BKW: solving LWE using lattice
codes. In: Gennaro, R., Robshaw, M.J.B. (eds.) CRYPTO 2015, Part I. LNCS, vol.
9215, pp. 23–42. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-
47989-6 2

18. Herold, G., Kirshanova, E.: Improved algorithms for the approximate k -list prob-
lem in euclidean norm. In: Fehr, S. (ed.) PKC 2017, Part I. LNCS, vol. 10174, pp.
16–40. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54365-8 2

19. Herold, G., Kirshanova, E., Laarhoven, T.: Speed-Ups and time–memory trade-
offs for tuple lattice sieving. In: Abdalla, M., Dahab, R. (eds.) PKC 2018, Part I.
LNCS, vol. 10769, pp. 407–436. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-76578-5 14

20. Howgrave-Graham, N., Joux, A.: New generic algorithms for hard knapsacks. In:
Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 235–256. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 12

21. Kannan, R.: Improved algorithms for integer programming and related lattice prob-
lems. In: 15th ACM STOC, pp. 193–206. ACM Press, April 1983

22. Laarhoven, T.: Sieving for shortest vectors in lattices using angular locality-
sensitive hashing. In: Gennaro, R., Robshaw, M.J.B. (eds.) CRYPTO 2015, Part I.
LNCS, vol. 9215, pp. 3–22. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-47989-6 1

23. Laarhoven, T., Mariano, A.: Progressive lattice sieving. In: Lange, T., Steinwandt,
R. (eds.) PQCrypto 2018. LNCS, vol. 10786, pp. 292–311. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-79063-3 14

24. Laarhoven, T., de Weger, B.: Faster sieving for shortest lattice vectors using spher-
ical locality-sensitive hashing. In: Lauter, K.E., Rodŕıguez-Henŕıquez, F. (eds.)
LATINCRYPT 2015. LNCS, vol. 9230, pp. 101–118. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-22174-8 6

25. Levieil, É., Fouque, P.-A.: An improved LPN algorithm. In: De Prisco, R., Yung,
M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 348–359. Springer, Heidelberg (2006).
https://doi.org/10.1007/11832072 24

26. Lyubashevsky, V., Peikert, C., Regev, O.: A toolkit for ring-LWE cryptography.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
35–54. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9 3

27. Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomized Algorithms
and Probabilistic Analysis. Cambridge University Press, New York (2005)

28. Regev, O.: New lattice based cryptographic constructions. In: 35th ACM STOC,
pp. 407–416. ACM Press, June 2003

29. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. J. ACM 56(6), 34:1–34:40 (2009). https://doi.org/10.1145/1568318.1568324

https://eprint.iacr.org/2018/569
https://doi.org/10.1007/978-3-319-63715-0_17
https://doi.org/10.1007/978-3-662-45611-8_1
https://doi.org/10.1007/978-3-662-47989-6_2
https://doi.org/10.1007/978-3-662-47989-6_2
https://doi.org/10.1007/978-3-662-54365-8_2
https://doi.org/10.1007/978-3-319-76578-5_14
https://doi.org/10.1007/978-3-319-76578-5_14
https://doi.org/10.1007/978-3-642-13190-5_12
https://doi.org/10.1007/978-3-662-47989-6_1
https://doi.org/10.1007/978-3-662-47989-6_1
https://doi.org/10.1007/978-3-319-79063-3_14
https://doi.org/10.1007/978-3-319-22174-8_6
https://doi.org/10.1007/11832072_24
https://doi.org/10.1007/978-3-642-38348-9_3
https://doi.org/10.1145/1568318.1568324

666 A. Esser et al.

30. Schroeppel, R., Shamir, A.: A T=O(2n/2), S=O(2n/4) algorithm for certain np-
complete problems. SIAM J. Comput. 10(3), 456–464 (1981). https://doi.org/10.
1137/0210033

31. Wagner, D.: A Generalized birthday problem. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 288–304. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-45708-9 19

32. Zhang, B., Jiao, L., Wang, M.: Faster algorithms for solving LPN. In: Fischlin,
M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part I. LNCS, vol. 9665, pp. 168–195.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-3 7

https://doi.org/10.1137/0210033
https://doi.org/10.1137/0210033
https://doi.org/10.1007/3-540-45708-9_19
https://doi.org/10.1007/3-540-45708-9_19
https://doi.org/10.1007/978-3-662-49890-3_7

Lattice-Based ZK

Sub-linear Lattice-Based Zero-Knowledge
Arguments for Arithmetic Circuits

Carsten Baum1, Jonathan Bootle2, Andrea Cerulli2, Rafael del Pino3,
Jens Groth2, and Vadim Lyubashevsky3(B)

1 Bar-Ilan University, Ramat Gan, Israel
carsten.baum@biu.ac.il

2 University College London, London, UK
{jonathan.bootle.14,andrea.cerulli.13,j.groth}@ucl.ac.uk

3 IBM Research - Zurich, Rüschlikon, Switzerland
vadim.lyubash@gmail.com

Abstract. We propose the first zero-knowledge argument with sub-
linear communication complexity for arithmetic circuit satisfiability over
a prime p whose security is based on the hardness of the short integer
solution (SIS) problem. For a circuit with N gates, the communication

complexity of our protocol is O
(√

Nλ log3 N
)
, where λ is the security

parameter. A key component of our construction is a surprisingly simple
zero-knowledge proof for pre-images of linear relations whose amortized
communication complexity depends only logarithmically on the number
of relations being proved. This latter protocol is a substantial improve-
ment, both theoretically and in practice, over the previous results in
this line of research of Damg̊ard et al. (CRYPTO 2012), Baum et al.
(CRYPTO 2016), Cramer et al. (EUROCRYPT 2017) and del Pino and
Lyubashevsky (CRYPTO 2017), and we believe it to be of independent
interest.

Keywords: Sigma-protocol · Zero-knowledge argument
Arithmetic circuit · SIS assumption

1 Introduction

Zero-knowledge proofs and arguments are used throughout cryptography as a
key ingredient to ensure security in complex protocols. They form an important
part of applications such as authentication protocols, electronic voting systems,

Jonathan Bootle, Andrea Cerulli and Jens Groth were supported by funding from
the European Research Council under the European Union’s Seventh Framework
Programme (FP/2007-2013)/ERC Grant Agreement n. 307937. Rafael del Pino and
Vadim Lyubashevsky were supported in part by the SNSF ERC Transfer Starting
Grant CRETP2-166734-FELICITY. Carsten Baum acknowledges support by the
BIU Center for Research in Applied Cryptography and Cyber Security in conjunction
with the Israel National Cyber Bureau in the Prime Ministers Office.

c© International Association for Cryptologic Research 2018
H. Shacham and A. Boldyreva (Eds.): CRYPTO 2018, LNCS 10992, pp. 669–699, 2018.
https://doi.org/10.1007/978-3-319-96881-0_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96881-0_23&domain=pdf

670 C. Baum et al.

encryption primitives, multi-party computation schemes, and verifiable compu-
tation protocols. Therefore, designing zero-knowledge protocols with strong secu-
rity and high efficiency is of the utmost importance.

A zero-knowledge argument allows a prover to convince a verifier that a
particular statement is true, without the prover revealing any other information
that she knows about the statement. Statements are of the form u ∈ L, where L
is a language in NP. We call w a witness for statement u if (u,w) ∈ R, where R is
a polynomial time decidable binary relation associated with L. Zero-knowledge
arguments must be complete, sound and zero-knowledge.

Completeness: A prover with witness w for u ∈ L can convince the verifier.
Soundness: A prover cannot convince the verifier when u /∈ L.
Zero-knowledge: The interaction should not reveal anything to the verifier

except that u ∈ L. In particular, it should not reveal the prover’s witness w.

We wish to design a zero-knowledge argument based on the short integer solu-
tion (SIS) assumption. Lattice problems appear to resist quantum attacks, and
possess attractive worst-case to average-case reductions, in stark contrast with
number theoretic assumptions such as the hardness of factoring or computing
discrete logarithms. Moreover, using SIS (and the even more efficient Ring-SIS)
yields better computational efficiency, which is a significant bottleneck in many
zero-knowledge arguments.

1.1 Our Contributions

We provide an honest verifier zero-knowledge argument for arithmetic circuit sat-
isfiability over Zp, for an arbitrary prime p. Our argument is based on the SIS
assumption [Ajt96,MR04], which is conjectured to be secure even against a quan-
tum adversary. Our argument has an expected constant number of moves and
sub-linear communication complexity, as shown in Table 1. Moreover, it achieves
small soundness error in a single protocol execution. Moreover, both the prover
and verifier have quasi-linear computational complexity in the amount of compu-
tation it would require to evaluate the arithmetic circuit directly. The argument
therefore improves on the state-of-the-art in communication complexity for lat-
tice proof systems and is efficient on all performance parameters.

Table 1. Performance of our zero-knowledge argument for arithmetic circuit satisfia-
bility. Here N is the number of gates in the arithmetic circuit, and λ is the security
parameter.

Expected Communication Prover Complexity Verifier Complexity

Moves (bits) (bit ops) (bit ops)

O(1) O(
√

Nλ log3 N) O(N log N(log λ)2) O(N(log λ)3)

Sub-linear Lattice-Based Zero-Knowledge Arguments 671

Techniques. We draw inspiration from the discrete logarithm based arithmetic
circuit satisfiability argument of Bootle et al. [BCC+16], which requires 5 moves
and has square root communication complexity in the number of multiplication
gates. In their argument the prover commits to all the wires using homomorphic
commitments, and embeds the wire values into a polynomial that verifies prod-
ucts and linear relations simultaneously, avoiding the cost for addition gates.

Almost all parts of the original arguments adapt seamlessly to the SIS setting,
except for two important issues:

– To achieve sub-linear communication, we need a technique for proving knowl-
edge of commitment openings in sub-linear space.

– Due to the new algebraic setting, we require new techniques for achieving
negligible soundness in a single run of the protocol.

The first of these issues has been an open problem in a fairly active area of
research, and we sketch our solution below.

Proof of Knowledge. Suppose that we have a linear relation

As = t mod q, (1)

where A ∈ Z
r×v
q , t ∈ Z

r
q are public and s ∈ Z

v
q is a vector with small coefficients,

and we want to give a zero-knowledge proof of knowledge of an s̄ with small
coefficients (the coefficients of s̄ may be larger than those of s) that satisfies

As̄ = t mod q. (2)

We do not currently know of any an efficient linear-communication protocol
for proving knowledge of a single relation of the above form in a direct way. There
are protocols, however, that allow for proofs of many such relations for the same
A but different si (and thus different t i) in linear amortized complexity. We will
mention these previous works in more detail in Sect. 1.2.

In this work, we give a protocol for proving (1) where the proof length is a
factor λ

� · O(log v�λ) larger than the total bit-length of � pre-images s1, . . . , s�

of the relations, where λ is the security parameter. More specifically, to prove
knowledge of � pre-images s1, . . . , s� whose coefficients have log s bits each, the
prover needs to send λ vectors in Z

v
q whose coefficients require O(log v�λs) bits to

represent. Ignoring logarithmic terms, our proof essentially requires a fixed-size
proof regardless of the number of relations being proved. The previously best
results had proofs that were at least linear in the total size of the pre-images.

Surprisingly, the proof of knowledge protocol turns out to just be a parallel
repetition of λ copies of the ZKPoK implicit in the signing protocol from [Lyu12].
In particular, if we write the � relations as AS = T mod q, where S ∈ Z

v×�
q , then

the protocol begins with the prover selecting a “masking” value Y with small
coefficients and sending W = AY mod q. The verifier then picks a random
challenge matrix C ∈ {0, 1}�×(λ+2), and sends it to the prover. The prover
computes Z = SC + Y and performs a rejection sampling step in order to

672 C. Baum et al.

make the distribution of Z independent from S , and if it passes, sends Z to the
verifier. The verifier checks that all columns comprising Z have small norms and
that AZ = TC +W mod q. This protocol can be shown to be zero-knowledge
using exactly the same techniques as in [Lyu09,Lyu12].

To show that the protocol is a proof of knowledge, we make the following
observation: if the prover succeeds with probability ε > 2−λ, and she succeeded
for a random C , then there is a probability of ε−2−λ−2 that she would success-
fully answer another challenge C ′ �= C that is constructed such that all rows
except the ith are the same as that of C , and the ith row is picked uniformly at
random. This property follows from an averaging (or “heavy row”) type argu-
ment. The implication is that if the prover succeeds in time t with probability
ε, then the extractor can extract responses to two such commitments C ,C ′ in
expected time O(t/ε). Obtaining two responses Z ,Z ′ for two such challenges
allows the extractor to compute A(Z − Z ′) = T (C − C ′) where C − C ′ is 0
everywhere except in row i. Since C �= C ′, this implies that some position in
row i is ±1. If t i is the ith column of T and z i is the ith column of Z − Z ′,
then we have a solution Az i = ±t i. Repeating this extraction � times, each
time rewinding by fixing all rows in the challenge except for the ith, results in
an algorithm that runs in expected time O(� · t/ε), which is only a factor of �
larger than the expected running time of a successful prover.

In the case that we are proving (1) over the polynomial ring Z[X]/(Xd + 1),
the proof can be even shorter, as we can reduce the number of columns in C
to ≈ λ/ log 2d because we can use challenges of the form ±Xi and prove the
knowledge of s̄ such that As̄ = 2t using the observation from [BCK+14].

Commitment Scheme. Central to the main proof of proving circuit satisfiability
is being able to commit to N values in Zp and giving a ZKPoK for the values such
that the total size of the commitments and the proofs is sub-linear in N . For this,
it is necessary to use a compressing commitment scheme – i.e. one in which we
can commit to n elements of Zp in space less than n elements. The scheme that
we will use is the “classic” statistically-hiding commitment scheme based on the
hardness of SIS that was already implicit in the original work of Ajtai [Ajt96].
The public randomness consists of two matrices A ∈ Z

r×2r logp q
q ,B ∈ Z

r×n
q , and

committing to a message string s ∈ Z
n
p where p < q involves picking a random

vector r ∈ Z
2r logp q
p and outputting the commitment t = Ar + Bs mod q.

Thus the commitment of n elements of Zp requires r log q bits. One can set
the parameters such that n = poly(r) and the commitment scheme will still
be computationally binding based on the worst-case hardness of approximating
SIVP for all lattices of dimension r.

We now explain the intuition for putting together this commitment scheme
with the zero-knowledge proof system we described above to produce a commit-
ment to N values in Zp such that the total size of the commitments and the
ZKPoK of the committed values is O(

√
Nλ log N). The idea is to create N/n

commitments (for some choice of n which will be optimized later), with each
one committing to n values. Our motivation is that an arithmetic circuit over

Sub-linear Lattice-Based Zero-Knowledge Arguments 673

Zp with N gates has 3N wire values in Zp. Now, we can arrange all of the wire
values in the circuit into, for example, a 3N/n × n matrix over Zp, and make
one homomorphic commitment to all of the elements in each row of the matrix.
Then, we can employ techniques from [Gro09a,BCC+16], where checking arith-
metic circuit satisfiability is reduced to checking linear-algebraic statements over
committed matrices, using a homomorphic commitment scheme.

The total space requirement for these commitments is therefore N
n · r logp q.

We now have a linear equation of the form
[
A B

]
[
R
S

]
= T mod q. Using

our new zero-knowledge proof, the communication complexity of proving the

knowledge of a short
[
R̄
S̄

]
∈ Z

(r logp q+n)×N/n
q such that

[
A B

]
[
R̄
S̄

]
= T mod

q requires sending λ vectors of length r logp q + n with coefficients requiring
O(log Nλp) bits, for a total bit-length of n ·λ ·O(log Nλp). Combining the proof
size with the commitment size results in a total bit-size of

N

n
· r log q + n · λ · O(log Nλp).

We minimize the above by setting n =
√

Nr logp q

λ log Nλp , which makes the size

O
(√

Nrλ(logp q)(log Nλp)
)

.

Based on the complexity of the best known algorithm against the SIS prob-
lem, one can set log q, r = O(log N), thus making the proof size of order
O(
√

Nλ log3 N).

1.2 Related Work

Zero-knowledge proofs were invented by Goldwasser et al. [GMR85]. It is useful
to distinguish between zero-knowledge proofs, with statistical soundness, and
zero-knowledge arguments with computational soundness. The most efficient
proofs have communication proportional to the size of the witness [IKOS07,
KR08,GGI+15] and proofs cannot in general have communication that is smaller
than the witness size unless surprising results about the complexity of solving
SAT instances hold [GH98,GVW02]. Kilian [Kil92] showed that in contrast to
proofs, zero-knowledge arguments can have very low communication complexity.
His construction relied on the PCP theorem, and thus incurred a large compu-
tational cost.

Group theoretic zero-knowledge arguments. Schnorr [Sch91] and Guillou and
Quisquater [GQ88] gave early examples of practical zero-knowledge arguments
for concrete number theoretic problems. Extending Schnorr’s protocols, there
have been many constructions of zero-knowledge arguments based on the dis-
crete logarithm assumption, for instance [CD97,Gro09a]. The most efficient dis-
crete logarithm based zero-knowledge arguments for arithmetic circuits are by

674 C. Baum et al.

Bootle et al. [BCC+16] and later optimised in [BBB+17], which have logarith-
mic communication complexity and require a linear number of exponentiations.

An exciting line of research [Gro10a,Lip12,BCCT12,GGPR13,BCCT13,
PHGR13,Gro16] on succinct non-interactive arguments (SNARGs) has yielded
pairing-based constructions where the arguments consist of a constant number
of group elements. However, it can be shown that all SNARKs must rely on
non-falsifiable knowledge extractor assumptions [GW11]. In contrast, since our
argument is interactive, we do not need to rely on these strong assumptions.

Lattice-based zero-knowledge arguments. The first zero-knowledge proofs from
lattice-based assumptions were aimed at lattice problems themselves. Goldreich
and Goldwasser [GG98] presented constant round interactive zero knowledge
proofs for the complements of the approximate Shortest Vector Problem (SVP)
and the approximate Closest Vector Problem (CVP). Micciancio and Vadhan
[MV03] later constructed statistical zero knowledge proofs for these problems
which had efficient provers.

Stern’s protocol [Ste94] was one of the first zero-knowledge identification
protocols to be based on a post-quantum assumption, namely, on the hardness
of syndrome decoding for a random linear code, which is essentially proving (1)
where q = 2 and ‖s‖ � √

v. The protocol achieves constant soundness error, and
thus requires many parallel repetitions. Stern’s work prompted many variants
and similar protocols. For example, [LNSW13] adapts the protocol for larger q,
which implies proving knowledge of SIS solutions.

Another technique for creating zero-knowledge proofs is the “Fiat-Shamir
with Aborts” approach [Lyu09,Gro10b,Lyu12]. When working over polynomial
rings R, it gives a proof of knowledge of a vector s̄ with small coefficients (though
larger than those in s) and a ring element c̄ with very small coefficients satisfy-
ing As̄ = c̄t . As long as the ring R has many elements with small coefficients,
such proofs are very efficient, producing soundness of 1 − 2−128 with just one
iteration. While these proofs are good enough for constructing practical digi-
tal signatures (e.g. [GLP12,DDLL13,BG14]), commitment schemes with proofs
of knowledge [BKLP15,BDOP16], and certain variants of verifiable encryption
schemes [LN17], they prove less than what the honest prover knows. In many
applications where zero-knowledge proofs are used, in particular those that need
to take advantage of additive homomorphisms, the presence of the element c̄
makes these kinds of “approximate” proofs too weak to be useful. As of today,
we do not have any truly practical zero-knowledge proof systems that give a
proof of (1).

The situation is more promising when one considers amortized proofs. The
work of [BD10] uses MPC-in-the-head to prove knowledge of plaintexts for mul-
tiple Regev [Reg05] ciphertexts. Damg̊ard and López-Alt [DL12] extend the
[BD10] results to prove knowledge of plaintext in Zp, rather than bits, and
provide a proof for the correctness of multiplications. Combining these together
gives a zero-knowledge proof for the satisfiability of arithmetic circuits with lin-
ear communication in the circuit size.

Sub-linear Lattice-Based Zero-Knowledge Arguments 675

Another idea for proving the relation in (1) is to use the above-mentioned
“Fiat-Shamir with Aborts” protocol, but with challenges that come from the
set {0, 1}. The works of [BDLN16,CDXY17,dPL17] gave a series of improved
protocols that were able to employ this technique in the amortized setting. Their
proofs had a small polynomial “slack” (i.e. the ratio between the original commit-
ted s and the extracted s̄) and were of approximate linear size when the number
of commitments was a couple of thousand. The schemes are considerably less
efficient when one is proving fewer relations.

The amortized zero-knowledge proof in the current work improves on the
above series of papers in two important ways. First, the number of relations
necessary before the size of our proof is linear only in λ. But more importantly, if
we have more than λ relations, the communication complexity does not increase
except for small logarithmic factors (i.e. the proof size becomes sub-linear).

Hash-based zero-knowledge arguments. Recently Bootle et al. [BCG+17] used
error-correcting codes and linear-time collision-resistant hash functions to give
proof systems for the satisfiability of an arithmetic circuit where the prover
uses a linear number of field multiplications. Verification is even more efficient,
requiring only a linear number of additions. While their proofs and arguments
are asymptotically very efficient, they are not quite practical as their choices of
error-correcting codes and hash functions involves very large constants.

An another effective way to construct efficient zero-knowledge proofs is to fol-
low the so-called MPC-in-the-head paradigm of [IKOS07]. This approach proved
itself to give very efficient constructions both theoretically and practically. Most
notably, ZKBOO [GMO16] and subsequent optimisation ZKB++ [CDG+17]
use hash functions to construct zero-knowledge arguments for the satisfia-
bility of boolean circuits. Their communication complexity is linear in the
circuit size, but the use of symmetric primitives gives good performances in
practice. Ligero [AHIV17] provides another implementation of the MPC-in-the-
head paradigm and used techniques similar to [BCG+17] to construct sublinear
arguments for arithmetic circuits.

2 Preliminaries

Algorithms in our schemes receive a security parameter λ as input (some-
times implicitly) written in unary. The intuition is that the higher the security
parameter, the lower the risk of the scheme being broken. Given two functions
f, g : N → [0, 1] we write f(λ) ≈ g(λ) when |f(λ) − g(λ)| = λ−ω(1). We say that
f is negligible when f(λ) ≈ 0 and that f is overwhelming when f(λ) ≈ 1. For
any integer N , [N] denotes the set {0, 1, . . . , N − 1} of integers.

2.1 Notation

Throughout this paper we will consider a ring R, which will be either Z or
the polynomial ring Z[X]/(Xd + 1) for d some power of 2. We will denote ele-
ments of R by lowercase letters, (column) vectors over R in bold lowercase

676 C. Baum et al.

and matrices over R in bold uppercase. e.g. A =
[
a1, . . . ,ak

] ∈ Rl×k with
a i = (ai1, . . . , aim)T ∈ Rl. We will consider the norm of elements in R to be
||a||2 = |a| if a ∈ Z, and ‖a‖2 =

√∑
a2

i if a =
∑

aiX
i ∈ Z[X]/(Xd + 1).

We extend the notation to vectors and matrices ‖a‖2 =
√∑ ‖ai‖22, ‖A‖2 =

√∑ ‖a i‖22. We will also consider the quotient ring Rq = R/qR for odd q. In
the quotient ring, the norm of an element Rq will be the norm of its unique
representative R with coefficients in

[− q−1
2 , q−1

2

]
.

We will also consider the operator norm of matrices over R defined as s1(A) =
max

‖x‖2 �=0

(‖Ax‖2
‖x‖2

)
.

Probability Distributions. Let D denote a distribution over some set. Then,
d ← D means that d was sampled from the distribution D. If we write d

$← S
for some finite set S without a specified distribution this means that d was sam-
pled uniformly random from S. We let Δ(X,Y) indicate the statistical distance
between two distributions X,Y . Define the function ρσ(x) = exp

(
−x2

2σ2

)
and the

discrete Gaussian distribution over the integers, Dσ, as

Dσ(x) =
ρ(x)
ρ(Z)

where ρ(Z) =
∑

v∈Z

ρ(v).

We will write X ← Dr×m
σ to mean that every coefficient of the matrix X is

distributed according to Dσ.
Using the tail bounds for the 0-centered discrete Gaussian distribution (cf.

[Ban93]), we can show that for any σ > 0 the norm of x ← Dσ can be upper-
bounded using σ. Namely, for any k > 0 it holds that

Pr
x←Dσ

[|x| > kσ] ≤ 2e−k2/2, (3)

and when x is drawn from Dr
σ, we have

Pr
x←Dr

σ

[‖x‖2 >
√

2r · σ] < 2−r/4. (4)

We will abuse the notation x ← Dσ when x ∈ Z[X]/(Xd + 1) to denote the
distribution in which each coefficient of x is taken from Dσ. It is clear that in
this case ||x||2 can be bounded using Eq. 4 with d instead of r.

2.2 Lattice-Based Commitment Schemes

A commitment scheme allows a sender to create commitments to secret values,
which she might then decide to reveal later. The main properties of commitment
schemes are hiding and binding. Hiding guarantees that commitments do not
leak information about the committed values, while binding guarantees that the
sender cannot change her mind and open commitments to different values.

Sub-linear Lattice-Based Zero-Knowledge Arguments 677

Formally, a non-interactive commitment scheme is a pair of probabilistic
polynomial-time algorithms (Gen,Com). The setup algorithm ck ← Gen(1λ)
generates a commitment key ck, which specifies message, randomness and
commitment spaces Mck,Rck,Cck. It also specifies an efficiently sampleable prob-
ability distribution DRck

over Rck and a binding set Bck ⊂ Mck ×Rck. The com-
mitment key also specifies a deterministic polynomial-time commitment function
Comck : Mck×Rck → Cck. We define Comck(m) to be the probabilistic algorithm
that given m ∈ Mck samples r ← DRck

and returns c = Comck(m ; r).
The commitment scheme is homomorphic, if the message, randomness and

commitment spaces are abelian groups (written additively) and we have for all
λ ∈ N, and for all ck ← Gen(1λ), for all m0,m1 ∈ Mck and for all r0, r1 ∈ Rck

Comck(m0; r0) + Comck(m1; r1) = Comck(m0 + m1; r0 + r1).

Definition 1 (Hiding). The commitment scheme is computationally hiding if
a commitment does not reveal the committed value. Formally, we say the commit-
ment scheme is hiding if for all probabilistic polynomial time stateful interactive
adversaries A

Pr
[

ck ← Gen(1λ); (m0,m1) ← A(ck); b ← {0, 1};
r ← DRck

; c ← Comck(mb; r) : A(c) = b

]
≈ 1

2
,

where A outputs m0,m1 ∈ Mck.

Definition 2 (Binding). The commitment scheme is computationally binding
if a commitment can only be opened to one value within the binding set Bck. For
all probabilistic polynomial time adversaries A

Pr
[

ck ← Gen(1λ); (m0, r0,m1, r1) ← A(ck) :
m0 �= m1 and Comck(m0; r0) = Comck(m1; r1)

]
≈ 0,

where A outputs (m0, r0), (m1, r1) ∈ Bck.

The commitment scheme is compressing if the sizes of commitments are
smaller than the sizes of the committed values.

Ajtai’s One-Way Function. The standard one-way function used in lattice
cryptography maps a vector Rn to Rr via the function

fA(s) = As,

where A is a fixed, randomly-chosen matrix in Rr×n. Ajtai’s seminal
result [Ajt96] stated that when R = Zq, it is as hard to find elements s with
some bounded norm ‖s‖ ≤ B such that fA(s) = 0 for random A, as it is to find
short vectors in any lattice of dimension r. This is called the short integer solu-
tion (SIS) problem and its hardness increases as r, q increase and B decreases;
but somewhat surprisingly, the hardness of SIS is essentially unaffected by n as

678 C. Baum et al.

soon as n is large enough. The independence of the hardness from n holds both
theoretically and in practice.

When solving SIS, one can ignore, if one wishes, any columns of A by set-
ting the corresponding coefficient of s to 0, and solving SIS over the remaining
columns. It was computed in [MR08] that if n is very large, then one should
solve SIS for a submatrix where the number of columns is n′ =

√
r log q/ log δ

for some constant δ.1 With such a setting of n′, one expects to find a vector of
length approximately

min{q, 2
√

r log q log δ}. (5)

Compressing Commitments Based on SIS. The fact that a larger n (after
a certain point) does not decrease the security of the scheme allows one to
construct simple compressing commitment schemes where the messages are ele-
ments in Zp for p < q. The commitment scheme, which was already implicit
in the aforementioned work of Ajtai [Ajt96], uses uniformly-random matrices
A1 ∈ Z

r×2r logp q
q and A2 ∈ Z

r×n
q as a commitment key, where n is the number

of elements that one wishes to commit to. A commitment to a vector m ∈ Z
n
p

involves choosing a random vector r ∈ Z
2r logp q
p and outputting the commitment

vector v = A1r + A2m mod q. By the leftover hash lemma, (A1,A1r mod q)
is statistically close to uniform, and so the commitment scheme is statistically
hiding.2

To prove binding, note that if there are two different (r ,m) �= (r ′,m ′) such
that v = A1r +A2m = A1r

′ +A2m
′ mod q, then A1(r −r ′)+A2(m −m ′) =

0 mod q, and the non-zero vector s =
[
r − r ′

m − m ′

]
is a solution to the SIS problem

for the matrix A = [A1 A2]. As long as the parameters are set such that ‖s‖ is
smaller than the value in (5), the binding property of the commitment is based
on an intractable version of the SIS problem.

The commitment scheme we will be working with in this paper works as
follows:

Gen(1λ) → ck: Select a ring R (either Z or Z[X]/(Xd + 1)), and parameter
p, q, r, v,N,B, σ according to Table 2, and let Rq = R/qR.
Pick uniformly at random matrices A1 ← Rr×r logp q

q and A2 ← Rr×n
q .

Return ck = (p, q, r, v, �,N,B,Rq, A1, A2).
The commitment key defines message, randomness, commitment and bind-
ing spaces and distribution Mck = Rn

q Rck = R2r logp q
q ,Cck = Rr

q,Bck ={
s =

[
m
r

]
∈ Rn+2r logp q

q

∣
∣
∣ ||s|| < B

}
,DRck

= Dr
σ.

1 This constant δ is related to the optimal block-size in BKZ reduction [GN08], which
is the currently best way of solving the SIS problem. Presently, the optimal lattice
reductions set δ ≈ 1.005.

2 For improved efficiency, one could reduce the number of columns in A1 and make
the commitment scheme computationally-hiding based on the hardness of the LWE
problem.

Sub-linear Lattice-Based Zero-Knowledge Arguments 679

Comck(m ; r): Given m ∈ Rn
q and r ∈ R2r logp q

q return c = A1r + A2s.

In the following, when we make multiple commitments to vectors m1, . . . ,
m� ∈ Mck we write C = Comck(M ;R) when concatenating the commitment
vectors as C = [c1, · · · , c�]. It corresponds to computing C = A1R + A2M
with M = [m1, · · · ,m�] and randomness R = [r1, · · · , r �].

2.3 Arguments of Knowledge

We aim to give efficient lattice-based proofs for arithmetic circuit satisfiability
over Zp. The strategy we will employ is to commit to the values of a satisfying
assignment to the wires, execute a range proof to demonstrate the committed
values are within a suitable range, and to prove the committed values satisfy
the constraints imposed by the arithmetic circuit. We will now formally define
arguments of knowledge.

Let R be a polynomial time decidable ternary relation. The first input will
contain some public parameters (aka common reference string) pp. We define
the corresponding language Lpp indexed by the public parameters that consists
of elements u with a witness w such that (pp, u, w) ∈ R. This is a natural
generalisation of standard NP languages, which can be cast as the special case
of relations that ignore the first input.

A proof system consists of a PPT parameter generator PGen, and interactive
and stateful PPT algorithms P and V used by the prover and verifier. We write
(tr, b) ← 〈P(pp),V(pp, t)〉 for running P and V on inputs pp, s, and t and getting
communication transcript tr and the verifier’s decision bit b. Our convention is
b = 0 means reject and b = 1 means accept.

Definition 3 (Argument of knowledge). The proof system (PGen,P,V) is
called an argument of knowledge for the relation R if it is complete and knowl-
edge sound as defined below.

Definition 4 (Statistical completeness). (PGen,P,V) has statistical com-
pleteness with completeness error ρ : N → [0; 1] if for all adversaries A

Pr
[

pp ← PGen(1λ); (u,w) ← A(pp); (tr, b) ← 〈P(pp, u, w),V(pp, u)〉 :
(pp, u, w) ∈ R and b = 0

]
≤ ρ(λ).

Definition 5 (Computational knowledge soundness). (K,P,V) is knowl-
edge sound with knowledge soundness error ε : N → [0; 1] if for all deterministic
polynomial time P∗ there exists an expected polynomial time extractor E such
that for all PPT adversaries A

Pr
[

pp ← PGen(1λ); (u, s) ← A(pp); (tr, b) ← 〈P∗(pp, u, s),V(pp, u)〉;
w ← EP ∗(pp,u,s)(pp, u, tr, b) : (pp, u, w) /∈ R and b = 1

]
≤ ε(λ).

It is sometimes useful to relax the definition of knowledge soundness to hold only
for a larger relation R̄ such that R ⊂ R̄. In this work, our zero-knowledge proofs

680 C. Baum et al.

of pre-images will for instance have “slack”. Thus, even though v is constructed
using r ,m with coefficients in Zp, we will only be able to prove knowledge of
vectors r̄ , m̄ with larger norms. This extracted commitment is still binding as

long as the parameters are set such that the vector s̄ =
[
r̄ − r̄ ′

m̄ − m̄ ′

]
has norm

smaller than the bound in (5).3

Concretely, if we would like to make a commitment to N values in Zp, then
to satisfy (5) we need to make sure that q > ‖s̄‖ and

√
r log q log δ > log ‖s̄‖. In

the protocols in our paper, we will have ‖s̄‖ < N2p2 and p < N , which implies
that r = O(log N).

We say the proof system is public coin if the verifier’s challenges are chosen
uniformly at random independently of the prover’s messages. A proof system
is special honest verifier zero-knowledge if it is possible to simulate the proof
without knowing the witness whenever the verifier’s challenges are known in
advance.

Definition 6 (Special honest-verifier zero-knowledge). A public-coin
argument of knowledge (PGen,P,V) is said to be statistical special honest-
verifier zero-knowledge (SHVZK) if there exists a PPT simulator S such that
for all interactive and stateful adversaries A

Pr
[

pp ← PGen(1λ); (u,w,) ← A(pp); (tr, b) ← 〈P(pp, u, w),V(σ, u;)〉 :
(pp, u, w) ∈ R and A(tr) = 1

]

≈ Pr
[

pp ← PGen(1λ); (u,w,) ← A(pp); (tr, b) ← S(pp, u,) :
(pp, u, w) ∈ R and A(tr) = 1

]
,

where 	 is the randomness used by the verifier.

Full Zero-Knowledge. In real life applications special honest verifier zero-
knowledge may not suffice since a malicious verifier may give non-random chal-
lenges. However, it is easy to convert an SHVZK argument into a full zero-
knowledge argument secure against arbitrary verifiers in the common reference
string model using standard techniques, and when using the Fiat-Shamir heuris-
tic to make the argument non-interactive SHVZK suffices to get zero-knowledge
in the random oracle model.

3 Amortized Proofs of Knowledge

We will consider amortized proofs of knowledge for preimages of the Ajtai one-
way function. Formally, given a matrix A ∈ Rr×v

q the relation we want to give

3 Commitments over other rings, such as Zq[X]/(Xd + 1) can be done in the same
manner as above based on the hardness of the Ring-SIS problem [PR06,LM06] for
which the bound in (5) still appears to hold in practice.

Sub-linear Lattice-Based Zero-Knowledge Arguments 681

a zero-knowledge proof of knowledge for is

R =

⎧
⎪⎪⎨

⎪⎪⎩

(pp, u, w) = ((q, �, β,R,A, c),T ,S)
∣
∣
∣
∣

(A,S ,T) ∈ Rr×v
q × Rv×� × Rr×�

q ∧ AS = c · T ∧ [‖si‖2 ≤ β]
i∈[�]

⎫
⎪⎪⎬

⎪⎪⎭

with S = [s1, · · · , s�] where R is implicitly fixed in advance. The multiplier c
depends on the instantiation of the proof: for R = Z our proof achieves c = 1
and is exact, while for R = Z [X] /(Xd + 1) it only guarantees that c = 2.

Fig. 1. Amortized proof for � equations. The ring R can be either Z or Z [X] /(Xd +1),
the challenge set C will be respectively {0, 1} or {0} ⋃ {±Xj

}
j<d

We consider a generalization of Σ-Protocols in which honest instances only
complete with some constant probability 1/ρ, this is to accommodate the fact
that the rejection sampling step described in Lemma 1 only outputs 1 with prob-
ability 1/ρ. In practice such a restriction is not too inconvenient: though the
interactive protocol has to be repeated an average of ρ times to terminate, what
we are interested in is usually the non-interactive protocol obtained by using
the Fiat-Shamir transform, in which case the prover only has to output a proof
when she obtains a challenge which passes the rejection step.

In our zero-knowledge proof, the prover will want to output a matrix Z whose
distribution should be independent of the secret matrix S . During the protocol,
the prover obtains Z ′ = B + Y where B depends on the secret S and Y is a
“masking” matrix each of whose coefficients is a discrete Gaussian with standard
deviation σ. To remove the dependency of Z ′ on B , we use the rejection sampling
procedure from [Lyu12] in Algorithm 1, which has the properties described in
Lemma 1.

682 C. Baum et al.

Algorithm 1. Rej(Z ,B , σ, ρ)
u ← [0, 1)

if u > 1
ρ

· exp
(

−2〈Z ,B〉+‖B‖2

2σ2

)
then

return 0
else

return 1
end if

Lemma 1 ([Lyu12]). Let B ∈ Rr×n be any matrix. Consider a procedure that
samples a Y ← Dr×n

σ and then returns the output of Rej(Z := Y + B,B, σ, ρ)
where σ ≥ 12

ln ρ · ‖B‖. The probability that this procedure outputs 1 is within
2−100 of 1/ρ. The distribution of Z, conditioned on the output being 1, is within
statistical distance of 2−100 of Dr×n

σ .

We give a useful lemma for knowledge extraction. In essence this lemma
will be used to show that a prover who can output a verifying output for a
challenge c1, . . . , c� has a high probability of also being able to answer a challenge
c′
1, c2, . . . , c� in which only c′

1 �= c1.

Lemma 2 ([Dam10]). Let H ∈ {0, 1}�×n for some n, � > 1, such that a frac-
tion ε of the inputs of H are 1. We say that a row of H is “heavy” if it contains
a fraction at least ε/2 of ones. Then more than half of the ones in H are located
in heavy rows.

We describe our proof system in Fig. 1. Our first instantiation is with R = Z

in which case the one-way function will rely on the SIS problem and the challenge
set will be C�×n for C = {0, 1}, this solution allows the extractor of the protocol
to obtain exact preimages of the t i and requires n ≥ λ + 2. This ensures that
communication only grows linearly in λ regardless of the size of � (since Z ∈
Z

v×n
q).

Theorem 1. Let R = Z, C = {0, 1}, v, r = poly(λ), and n ≥ λ+2. Let s > 0 be
an upper bound on s1(S), ρ > 1 be a constant, σ ∈ R be such that σ ≥ 12

ln ρs
√

�n,
and B =

√
2vσ. Then the protocol described in Fig. 1 is a zero-knowledge proof

of knowledge for R.

Proof. We will prove correctness and zero-knowledge here as the proofs are
straightforward and very similar to prior works. We will however defer the proof
of soundness to Lemma 3.

Correctness: If P and V are honest then the probability of abort is exponen-
tially close to 1−1/ρ since ‖SC‖2 ≤ s1(S)‖C‖2 ≤ s

√
�n. The equation verified

by V is true by construction of Z . Since each coefficient of Z is statistically
close to Dσ, then according to (4) we have ‖z i‖2 ≤ √

2vσ with overwhelming
probability.

Sub-linear Lattice-Based Zero-Knowledge Arguments 683

Honest-Verifier Zero-Knowledge: We will now prove that our protocol is
honest-verifier zero-knowledge. More concretely, we show that the protocol is
zero-knowledge when the prover does not abort prior to sending Z . The rea-
son that this is enough for practical purposes is that HVZK Σ-protocols can
be turned into non-interactive proofs via the Fiat-Shamir transform. The non-
interactive protocol generates the challenge C as the hash of W and T , and
otherwise repeats the prover’s part of the protocol until a non-abort occurs,
whereupon the prover outputs the transcript (W ,C ,Z). Only the non-aborting
transcripts will be seen by V, and thus only they need to be simulated. Further
below we will also sketch how to modify our protocol to obtain an interactive
zero-knowledge proof.
Let S(A,T) be the following PPT algorithm:

1. Sample C ← {0, 1}�×n

2. Sample Z ← Dv×n
σ

3. Set W = AZ − TC
4. Output (W ,C ,Z)

It is clear that Z verifies with overwhelming probability. We already showed
in the section on correctness that in the real protocol when no abort occurs
the distribution of Z is within statistical distance 2−100 of Dv×n

σ . Since W
is completely determined by A,T ,Z and C , the distribution of (W ,C ,Z)
output by S is within 2−100 of the distribution of these variables in the actual
non-aborting run of the protocol.

To turn our proof into a full interactive HVZK proof, one can use the above
simulator together with a standard transformation: in the first message of the pro-
tocol, P will send a statistically hiding commitment of W to the verifier. Later
in the third round, she will then send both the opening and the message Z , given
that the protocol would not abort. The above simulator S(A,T) can then, in the
beginning of the protocol, flip a coin to determine if the simulation is aborting.
If so, then it can just commit to a uniformly random value, and otherwise to the
correct value W . In order to make the protocol secure against arbitrary verifiers
one can run an interactive coin-flipping protocol to generate C .

Lemma 3 (Knowledge Soundness). For any prover P∗ who succeeds with
probability ε > 2−λ (i.e. ≥ 2−n+2) over her random tape χ ∈ {0, 1}x and the
challenge choice C

$← C�×n, there exists a knowledge extractor E running in
expected time poly(λ)/ε who can extract a witness S′ := (s′

1, . . . , s
′
�) ∈ Rv×�,

such that AS′ = T, and ∀i ∈ [�] ‖s′
i‖2 ≤ 2B.

Proof. For i ∈ [�], let t i ∈ Rn be the ith column of T , and cT
i ∈ R1×n be

the ith row of C (note that cT
i are not the transpose of the columns of C but

really its rows). Note that t ic
T
i ∈ Rr×n and TC =

∑�
i=1 t ic

T
i . For any fixed i,

we describe an extractor Ei who can extract a preimage of t i of norm less than
2B in expected O(1/ε) executions, and the full result follows by running each
extractor (of which there are � = poly(λ)).

684 C. Baum et al.

Consider a matrix H i ∈ {0, 1}2n(�−1)+x×2n

whose rows are indexed by the value
of (χ, cT

1 , . . . , cT
i−1, c

T
i+1, . . . , c

T
�) and whose columns are indexed by the value of

cT
i . An entry of H i will be 1 if P∗ succeeds for the corresponding challenge (i.e.

produces an accepting Z). We will say that a row of H i is “heavy” if it contains
a fraction of at least ε/2 ones, i.e. if it contains more than 2k ∗ ε/2 > 2 ones.
The extractor Ei will proceed as follow:

1. Run P∗ on random challenges C ′ until it succeeds, and obtains Z ′ that
verifies. This takes expected time 1/ε.

2. Run P∗ on random challenges C ′′ where ∀j �= i, c′′T
j = c′T

j and c′′T
i is freshly

sampled. If after λ/ε attempts P∗ has not output a valid response Z ′′, abort.

The extractor Ei runs in expected time poly(λ)/ε, and aborts with probability
less than 1/2+2−λ. The running time is clear from the definition of Ei. To com-
pute the abort probability note that in step 2 all the challenges C ′′ considered
are in the same row of H i as C ′, if we call Abort the event where Ei aborts and
Heavy the event that C ′ is in a row of H i, we have:

Pr [Abort] = Pr
[
Abort Heavy

]
Pr [Heavy] + Pr

[
Abort ¬Heavy]Pr [¬Heavy]

According to Lemma 2, Pr [¬Heavy] < 1/2. On the other hand if the row is heavy
then for a random sample in this row P∗ has probability at least ε/2−2−n > ε/4
of outputting a valid answer (the probability is ε/2 − 2−n and not ε/2 because
we want a reply for a challenge different from C ′). Thus the probability that
P∗ does not succeed on any of the λ/ε challenges C ′′ is Pr

[
Abort Heavy

]
<

(1 − ε/4)λε < e−4λ < 2−λ, and therefore Pr [Abort] < 1/2 + 2−λ. By running
Ei O(λ) times we obtain an extractor that runs in expected time poly(λ)/ε and
outputs two valid pairs C ′,Z ′ and C ′′,Z ′′ such that ∀j �= i, c′T

j = c′′T
j , and

c′T
i �= c′′T

i .
Since both transcripts verify we know that AZ ′ = TC ′+W =

∑r
j=1 tjc

′T
j +W

and that AZ ′′ = TC ′′ + W =
∑r

j=1 tjc
′′T
j + W , which implies that

A(Z ′ − Z ′′) =
∑r

j=1 tj(c′T
j − c′′T

j) = t i(c′T
i − c′′T

i) If we consider an index
l ∈ [�] such that c′T

i [l] �= c′′T
i [l], and assume w.l.o.g that c′T

i [l] − c′′T
i [l] = 1,

then by only considering the lth column of the previous equation we obtain
A(z ′

l − z ′′
l) = t i where ‖z ′

l − z ′′
l ‖2 ≤ 2B.

Our second instantiation uses R = Z [X] /(Xd + 1) and C = {0}⋃{±Xj
}

j<d
.

This protocol only proves R with c = 2, i.e. the extractor will only obtain
preimages of 2t i but the number of columns in the response matrix Z can
be reduced by a factor of log(2d + 1) as the soundness now only requires that
n log(2d+1) ≥ λ+2. It is worth noting that in this protocol the values of r and v
would typically be chosen to be around d times smaller than in the instantiation
with R = Z, because A will be a matrix of polynomials of degree d. We first
give a lemma about the difference on monomials in Z [X] /(Xd + 1) which will
be useful in the extraction.

Sub-linear Lattice-Based Zero-Knowledge Arguments 685

Lemma 4 ([BCK+14] Lemma 3.2). Let d be a power of 2, let a, b ∈
{±Xi : i ≥ 0} ∪ {0}. Then 2(a − b)−1 mod Xd + 1 only has coefficients
in {−1, 0, 1}. In particular

∥
∥2(a − b)−1

∥
∥
2

≤ √
d.

Theorem 2. Let R = Z [X] /Xd + 1, C = {0}⋃{±Xj
}
, v, r = poly(λ), and

n ≥ (λ + 2)/ log(2d + 1). Let s ∈ R be an upper bound on s1(S), ρ > 1 be a
constant, σ ∈ R be such that σ ≥ 12

ln ρs
√

�n, and B =
√

2mdσ. Then the protocol
described in Fig. 1 is a SHVZK proof of knowledge.

Proof. The proofs for correctness and zero-knowledge are nearly identical to the
ones of Theorem 1. We will prove soundness in Lemma 5.

Lemma 5 (Knowledge Soundness). For any prover P∗ who succeeds with
probability ε > 2−λ(≥ 2−n log(2d+1)+2) over his random tape χ ∈ {0, 1}x and
the challenge choice C ← C�×n there exists a knowledge extractor E who can
extract a witness S′ := (s′

1, . . . , s
′
�) ∈ Rv×�, such that AS′ = 2T, and ∀i ∈ [�]

‖s′
i‖2 ≤ 2

√
dB, in expected time poly(λ)/ε.

Proof. The first part of the proof (obtaining C ′,Z ′ and C ′′,Z ′′) is identical
to the one of Lemma 3 except for the fact that the matrix H i has different
dimensions. Let δ = log(2d + 1). Since for each j ∈ [�], cT

j is sampled from a set

of size 2nδ, we have H i ∈ {0, 1}2nδ(�−1)+x×2nδ

. The heavy rows of H i will contain
2nδε/2 > 2 ones, and the extractor can proceed as in the proof of Lemma 3.
Assume that Ei has extracted C ′,Z” and C ′′,Z ′′ such that ∀j �= i, c′T

j = c′′T
j ,

and c′T
i �= c′′T

i . As previously we have A(Z ′ − Z ′′) =
∑�

j=1 tj(c′T
j − c′′T

j) =
t i(c′T

i − c′′T
i) If we consider an index l ∈ [�] such that c′T

i [l] �= c′′T
i [l], since

C = {0}⋃{±Xj
}
0≤j≤d−1

, we have according to Lemma 4 that there exists a

g ∈ R such that 2−1(c′T
i [l]−c′′T

i [l])g = 1 and ‖g‖2 ≤ √
d. Hence A(z ′

l −z ′′
l)g =

2t i · 2−1(c′T
i [l] − c′′T

i [l])g = 2t i, with ‖(z ′
l − z ′′

l)g‖2 ≤ 2
√

dB.

4 Argument for the Satisfiability of an Arithmetic Circuit

In this section, we show how to construct arguments for the satisfiability of an
arithmetic circuit based on the SIS assumption. We take inspiration from the
arguments of [Gro09a,BCC+16] which rely on homomorphic commitments based
on the hardness of discrete logarithm and translate them into the lattice settings.
We obtain sublinear communication arguments with improved computational
efficiency with respect to [Gro09a,BCC+16].

At a high level, [BCC+16] reduces the satisfiability of an arithmetic circuit
to the verification of two sets of constraints: multiplication constraints, arising
from multiplication gates; linear constraints, arising from additions and multi-
plication by constant gates. Then, it shows how to embed each of these sets of
constraints into a polynomial equation over Zp. An argument for the satisfia-
bility of an arithmetic circuit can then be constructed by giving arguments for

686 C. Baum et al.

the satisfiability of such polynomial equations, evaluating at random challenge
points and using the Schwarz-Zippel lemma to argue soundness.

We give arithmetic circuit arguments over Zp for much smaller p (e.g. p =
poly(λ)). Therefore, a straightforward translation of the above approach yield
arguments which only have inverse polynomial soundness error, as O(1/p) is
inverse-polynomial in the security parameter in this setting. The soundness error
could be reduced by repeated the protocol multiple times in parallel, resulting
into a significant computational and communication overhead.

Therefore, we devise a more complex embedding technique in order to apply
the Schwarz-Zippel lemma over larger fields. Cramer, Damg̊ard and Keller give
in [CDK14] an amortised proof of knowledge of k commitments over Zp are
embedded into GF (pk), with soundness error O(1/pk). We follow a similar app-
roach and embed the constraints for the satisfiability of the circuit into poly-
nomial equations over an extension field. While [CDK14] only give a proof of
knowledge, we also construct a product argument for the openings of k com-
mitments over Zp embedded into an extension field of degree 2k with soundness
O(1/p2k).

We start by recalling how [BCC+16] embedded the satisfiability of an arith-
metic circuit into a polynomial equations over Zp and then extend it to GF (p2k).

Reduction of Circuit Satisfiability to a Hadamard Matrix Product
and Linear Constraints over Zp . We consider arithmetic circuits with fan-in
2 addition and multiplication gates. Multiplication gates are directly represented
as equations of the form a · b = c, and we refer to a, b, c as the left, right and
output wires, respectively.

The satisfiability of an arithmetic circuit can be described as a system of
equations in the entries of three matrices A,B,C. The multiplication gates define
a set of N equations A ◦ B = C, where ◦ is the Hadamard (entry-wise) product.

The circuit description also contains constraints on the wires between multi-
plication gates. Denoting the rows of the matrices A,B,C as

a i = (ai,1, . . . , ai,n) bi = (bi,1, . . . , bi,n) ci = (ci,1, . . . , ci,n) for i ∈ {1, . . . , m}

these constraints can be expressed as U < 2N linear equations of inputs and
outputs of multiplication gates of the form

m∑

i=1

a i · wu,a,i +
m∑

i=1

bi · wu,b,i +
m∑

i=1

ci · wu,c,i = Ku for u ∈ {1, . . . , U} (6)

for constant vectors wu,a,i,wu,b,i,wu,c,i and scalars Ku. We refer to [BCC+16]
for a more detailed explanation of this process.

In total, to capture all multiplications and linear constraints, we have N +U
equations that the wires must satisfy in order for the circuit to be satisfiable.

Sub-linear Lattice-Based Zero-Knowledge Arguments 687

Reduction to Two Polynomial Equations. Let Y be a formal indetermi-
nate. We will reduce the N +U equations above to a two polynomial equations in
Y by embedding distinct equations into distinct powers of Y . In our argument
we will then require the prover to prove that these two equations hold when
replacing Y by a random challenge received from the verifier. More explanation
behind this process can be found in the full version of this paper.

Let us define wa,i(Y) =
∑U

u=1 wu,a,iY
N+1+u,w b,i(Y) =

∑U
u=1 wu,b,iY

N+1+u

wc,i(Y) =
∑U

u=1 wu,c,iY
N+1+u, K(Y) =

∑U
u=1 KuY N+1+u

Then the circuit is satisfied if and only if

m∑

i=1

a i · wa,i(Y) +
m∑

i=1

bi · w b,i(Y) +
m∑

i=1

ci · w c,i(Y) − K(Y) = 0 (7)

m∑

i=1

a i ◦ biY
i =

m∑

i=1

ciY
i (8)

Sublinear Communication Product Argument. To give an argument for the satis-
fiability of an arithmetic circuit it is sufficient to give arguments showing that (7)
and (8) are satisfied. For the purpose of constructing sublinear communication
arguments, we craft polynomials which will have particular terms equal to zero
if and only if (7) and (8) are satisfied. This can then be proved by having
the prover reveal evaluations of the polynomials at random points to the ver-
ifier, who can check that the evaluations are correct using the homomorphic
property of the commitment scheme. We define a(X) := a0 +

∑m
i=1 a iy

iXi,
b(X) := bm+1 +

∑m
i=1 biX

m+1−i and c :=
∑m

i=1 ciy
i.

We have designed these polynomials such that the Xm+1 term of a(X)◦b(X)
is equal to

∑m
i=1 ciy

i. We conclude that the Xm+1 term of a(X) ◦ b(X) is
exactly c if and only if (8) is satisfied. A similar approach can followed to embed
the satisfiability of (7) into the constant term of polynomial which is tested at
random challenge evaluation points.

4.1 Amortisation Over Field Extensions

We now show how to extend the previous approach to work over field exten-
sions. This will allow us to give an efficient amortised argument for the product
of openings of commitments. This will be used to give efficient arguments for
the satisfiability of an arithmetic circuit achieving sublinear communication and
O(1/p2k) soundness error.

Let GF (p2k) � Zp[φ]/〈f(φ)〉, where f is a polynomial of degree 2k that is
irreducible over Zp. Our goal is to embed k elements of Zp into the extension
field in a way so that we can multiply two GF (p2k) elements in a way that does
not interfere with the products of the original Zp elements. Let e1, . . . , ek be
distinct interpolation points in Zp (note that in particular, this forces p > k).
Let l1(X), . . . , lk(X) be the Lagrange polynomials associated with the points ei,
which have degree k − 1. Let l0(X) =

∏k
j=1(X − ei), which has degree k.

688 C. Baum et al.

Now, suppose that we have a1, . . . , ak, b1, . . . , bk and c1, . . . , ck in Zp such that
aj · bj = cj mod p for each j. By evaluating the expression at each interpolation
point, we see that the following statement about polynomials holds over Zp:(∑k

j=1 aj lj(X)
)

·
(∑k

j=1 bj lj(X)
)

≡
(∑k

j=1 cj lj(X)
)

mod l0(X).

Therefore, there are c′
0, . . . , c

′
k−2 ∈ Zp such that

(∑k
j=1 aj lj(X)

)
·

(∑k
j=1 bj lj(X)

)
=
(∑k

j=1 cj lj(X)
)

+ l0(X)
∑k−2

j=0 c′
jX

j .
The degree of f is 2k, so if we choose the basis B = {l1(φ), . . . ,

lk(φ), l0(φ), φl0(φ), . . . , φk−1l0(φ) for GF (p2k)}, we can perform multiplications
of extension field elements without any overflow modulo f interfering with
the individual product relations aibi = ci in Zp. We can therefore port he

above equality into GF (p2k) as the equality
(∑k

j=1 aj lj(φ)
)

·
(∑k

j=1 bj lj(φ)
)

=
(∑k

j=1 cj lj(φ)
)

+ l0(φ)
∑k−2

j=0 c′
jφ

j .
This allows one multiplication of committed values to be performed without

any overflow modulo f . As we shall see in the next subsection, this is sufficient
for verifying multiplication triples for arithmetic circuit satisfiability.

We also need to be able to view single commitments to elements of Zp as
elements of the extension field in a way that helps to verify linear consistency
relations between the elements.

Now, suppose that we have a1, . . . , ak, b1, . . . , bk and c1, . . . , ck in Zp, and
coefficients wa,1, . . . , wa,k, wb,1, . . . , wb,k and wc,1, . . . , wc,k in Zp such that
∑k

j=1 ajwa,j +
∑k

j=1 bjwb,j +
∑k

j=1 cjwc,j = K mod p. By comparing coef-
ficients, we see that the following statement about polynomials holds over
Zp:
(∑k

j=1 ajX
j−1
)

·
(∑k

j=1 wa,jX
k−j
)

+
(∑k

j=1 bjX
j−1
)

·
(∑k

j=1 wb,jX
k−j
)

+
(∑k

j=1 cjX
j−1
)

·
(∑k

j=1 wc,jX
k−j
)

= KXk−1+
∑2k−2

j=0,j �=k−1 KjX
j , where the

Kj are extra terms determined from the a, b, c and w values.
If we choose the basis B′ = 1, φ, φ2, . . . , φ2k−1 for GF (p2k), we can perform

multiplications of extension field elements in a way that always yields a useful
linear relation in the φk−1 term without any overflow modulo f .

By viewing multiplication in GF (p2k) as a linear map over Z
2k
p , we can

simulate arithmetic in the extension field using arithmetic in Z
2k
p .

Let A1, . . . , A2k ∈ C2k be homomorphic commitments to single elements,
a1, . . . , ak ∈ Zp. We can consider the tuple A = (A1, . . . , Ak) to be a commitment
to an element a = (a1, . . . , a2k) of GF (p2k). Now, if we consider x ∈ Z

2k
p as an

element of GF (p2k), then there is a matrix Mx which simulates multiplication
by x in Z

2k
p when we multiply on the left by Mx . Since the Ai are homomorphic

commitments, we can obtain a commitment to x ∗a by computing MxA, where
∗ represents multiplication in GF (p2k).

Reduction of Circuit Satisfiability to a Hadamard Matrix Product
and Linear Constraints over GF (p2k). Let N = mnk be the number of
multiplication gates in the arithmetic circuit. To reduce circuit satisfiability to
constraints over GF (p2k), we can consider the same polynomial equations as

Sub-linear Lattice-Based Zero-Knowledge Arguments 689

before, written over GF (p2k) rather than Zp. We consider the rows of matrices
A, B, and C as before, but this time, we label the row vectors of the matrices
a i,j , bi,j and ci,j ∈ Z

n
p , for 1 ≤ i ≤ m and 1 ≤ j ≤ k. Now, we consider the row

vectors a i,1, . . . ,a i,k, which are elements of Zn
p , as an element in GF (p2k)n.

Let ai = (a i,1,a i,2, . . . ,a i,k,0, . . . ,0)T represent this element in GF (p2k)n.
Each column of the matrix represents a separate element of GF (p2k).

Satisfiability conditions over Zp were embedded using scalar products,
denoted by ·, and element-wise products, denoted by ◦. If a and b in Z

2k×n
p repre-

sent elements of GF (p2k)n, then each column represents an element of GF (p2k),
and the scalar products and element-wise products of a and b are computed
using the columns. We denote the element-wise product by a © b and the scalar
product by a

⊙
b to avoid confusion with any other matrix products on a and b.

a =

⎛

⎝v1 v2 . . . vn

⎞

⎠, b =

⎛

⎝w1 w2 . . . wn

⎞

⎠

a © b =

⎛

⎝Mv1w1 Mv2w2 . . . Mvnwn

⎞

⎠

a
⊙

b = Mv1w1 + Mv2w2 + . . . + Mvn
wn

Note that in the verification equations, although the verifier computes high
powers of random challenges x and y , the verifier only computes quadratic
polynomials of values such as a and b which have been sent by the prover. This
is important, because when we expand a and b in terms of their coefficients ai

and bi, we see that the verifier only computes expressions which have degree 2
in the prover’s secret committed wire values, embedded as elements of GF (p2k).
Therefore, considering a field extension of degree 2k with the basis B is sufficient
for our purposes: we only need to ensure that a single multiplication in GF (p2k)
preserves the individual product relations embedded in the GF (p) elements.

When embedding satisfiability conditions into a polynomial over Zp, using
random challenges x, y ∈ Zp, the prover could send linear combinations of vectors
a i ∈ Z

n
p such as a(x) = a0 +

∑m
i=1 a iy

ixi to the verifier.
However, when embedding satisfiability conditions into a polynomial over

GF (p2k), using random challenges x ,y ∈ GF (p2k), the prover sends linear com-
binations of vectors ai ∈ GF (p2k)n such as a(x) = a0 +

∑m
i=1(My)i(Mx)iai.

Committing and Performing Calculations in a Lattice Setting. Com-
mitment schemes based on lattice assumptions often require messages to be
‘small’ elements of the base ring in which the commitment is computed. There-
fore, we consider the wire values in the arithmetic circuit to be integers in [p]
inside a larger ambient ring Zq where the commitments are computed.

We can still simulate the action of GF (p2k) over the integers by applying
the same multiplication matrices over the integers rather than working modulo
p. Whenever the prover and verifier multiply by powers of random challenges
x ∈ [p]2k, they reduce powers of matrices such as Mx and My modulo p before
applying these matrices to commitments or openings. For example, the prover

690 C. Baum et al.

will send openings a and b to the verifier: a =
∑m

i=0(M
i
xM i

y mod p)ai and

b =
∑m

i=0(M
(m+1−i)
x mod p)bi.

For this reason, the verification equations will compare quantities that are
congruent modulo p, but not equal over the integers, or in Zq, as the prover and
verifier will have computed and reduced various terms modulo p, but performed
this reduction at different times during the computation. Therefore, the prover
will send an additional commitment D containing a message which is a multiple
of p and corrects the discrepancy.

5 Parameter Selection

In this section we introduce notation for the parameters in our arithmetic circuit
argument, and specify the choice of values in our arguments to ensure asymptotic
security. Due to the large number of different variables used in the arithmetic
circuit argument, and the fact that the arithmetic circuit argument and earlier
proof of knowledge are quite independent of one another, we redefine certain
variable names which were used earlier on for use in the arithmetic circuit argu-
ment. Parameter λ is dictated by the desired security level, and p and N come
from the arithmetic circuit whose satisfiability is to be proven. All other param-
eters are derived from the table below, can be written in terms of λ, p and N ,
and are chosen in order to ensure that the commitment scheme is binding on a
large enough message space for security.

Parameters and Asymptotic Sizes. In order to satisfy the constraints above,
we choose the parameters in Table 2. Let λ be the security parameter, and sup-
pose that we wish to verify an arithmetic circuit with N gates, over Zp.

Table 2. Parameter choices for our arithmetic circuit argument.

Parameter Size Description

λ Security parameter for our arguments

p poly(λ) Underlying field for the arithmetic circuit

N kmn = poly(λ) Number of multiplication gates in the arithmetic circuit

P O(nk2m2p2) Maximum size of elements committed by honest prover

B O(PN) Soundness slack from proof of knowledge

P ′ P ′ = BP Commitment scheme must be binding up to elements in [P ′].

n n ≈
√

Nr log q
λ log Nλp

Controls length of vectors in the SAT argument

k k ≈ λ/ log2 p Controls soundness error of the SAT argument

m m = N/kn Number of commitments in SAT argument is O(mk)

q q ≈ P ′√r Modulus for SIS instances.

r r = O(logn) Commitments lie in Z
d
q .

Sub-linear Lattice-Based Zero-Knowledge Arguments 691

6 Product Argument

The following protocol allows the prover to prove that they know N = nmk
triples satisfying multiplicative relations.

We give parameters for our protocol in Sect. 5.
Consider the commitment scheme Comck : Zn

q × Z
n′
q �→ C introduced earlier

in Sect. 2.2, where ck consists of the public matrices used to generate a SIS
instance. Let A ∈ Z

2k×n
q and R ∈ Z

2k×n′
q . Define the extended commitment

scheme Comck
∗ as

Comck
∗(A;R) :=

⎛

⎜
⎜
⎜
⎝

Comck(a1; r1)
Comck(a2, r2)
...
Comck(a2k; r2k)

⎞

⎟
⎟
⎟
⎠

where a i ∈ Z
n
p , r i ∈ Z

n′
p are the row vectors of A and R.

Common Reference String: Commitment key ck. The basis B for the exten-
sion field GF (p2k), which specifies how elements should be multiplied.

Statement: Description of a set of N = kmn multiplication relations over Zp.
Prover’s Witness: Values Ai, Bi, Ci ∈ Z

k×n
p , 1 ≤ i ≤ m, such that ∀i, Ai◦Bi ≡

Ci mod p.
Argument:
P Since ∀i, Ai ◦ Bi ≡ Ci mod p, then for 1 ≤ i ≤ m, we can write

[
Ai

0k×n

]
©
[

Bi

0k×n

]
=
[

Ci

C ′
i

]
mod p

for some C ′
i ∈ [p]k×n, 1 ≤ i ≤ m, by our choice of basis B.

The prover randomly selects A0, Bm+1 ← D2k×n
σ1

.
The prover selects αi and βi uniformly at random from [p]k×n′

and γi uni-
formly at random from [p]2k×n′

for 1 ≤ i ≤ m, and selects α0, βm+1 ←
D2k×n′

σ1
.

For 1 ≤ i ≤ m, the prover computes

Ai = Comck
∗
([

Ai

0k×n

]
;
[

αi

0k×n′

])
C i = Comck

∗
([

Ci

C ′
i

]
; γi

)

B i = Comck
∗
([

Bi

0k×n

]
;
[

βi

0k×n′

])

Note that by definition, Ai and B i ∈ C2k consist of k commitments and k
trivial commitments in the k final components. The prover also computes

A0 = Comck
∗ (A0;α0) , Bm+1 = Comck

∗ (Bm+1;βm+1)

The prover sends {Ai}m
i=0, {B i}m+1

i=1 , {C i}m
i=1 to the verifier.

692 C. Baum et al.

V The verifier picks y ← [p]2k, and sends y to the prover.
P The prover computes polynomials A(X), B(X), which have matrix coeffi-

cients, in the indeterminate X ∈ Z
2k
q , and also computes C.

A(X) = A0 +
m∑

i=1

M i
X (M i

y mod p)
[

Ai

0k×n

]

B(X) = Bm+1 +
m∑

i=1

Mm+1−i
X

[
Bi

0k×n

]

C =
m∑

i=1

M i
y

[
Ci

C ′
i

]
mod p

The prover computes A(X) © B(X) mod p.

A(X) © B(X) mod p = Mm+1
X C +

2m∑

l=0,l �=m+1

M l
XHl mod p

where Hl ∈ [p]2k×n.
For 0 ≤ l ≤ 2m, l �= 0, the prover selects ηl uniformly at random from [p]2k×n′

,
and computes H l = Comck

∗(Hl; ηl).
The prover sends {H l}2m

l=0,l �=m to the verifier.
V The verifier picks x ← [p]2k, and sends x to the prover.
P The prover computes the following values modulo p.

A = A0 +
m∑

i=1

(M i
xM i

y mod p)
[

Ai

0k×n

]

α = α0 +
m∑

i=1

(M i
xM i

y mod p)
[

αi

0k×n′

]

B = Bm+1 +
m∑

i=1

(Mm+1−i
x mod p)

[
Bi

0k×n

]

β = βm+1 +
m∑

i=1

(Mm+1−i
x mod p)

[
βi

0k×n′

]

Note that A ≡ A(x) mod p and B ≡ B(x) mod p.
The prover computes

D = (A © B mod p) −
m∑

i=1

(M i
y mod p)

[
Ci

C ′
i

]
−

2m∑

l=0,l �=m+1

(M l
x mod p)Hl

The prover randomly selects δ ← D2k×n′
σ2

and computes D = Comck
∗(D; δ).

The prover randomly selects E ← p · D2k×n
σ3

, ε ← D2k×n′
σ4

and computes
E = Comck

∗(E; ε). Note that E is 0 modulo p.
The prover sends D and E to the verifier.

Sub-linear Lattice-Based Zero-Knowledge Arguments 693

V The verifier picks z ← [p]2k, and sends z to the prover.
P The prover runs Rej((A||α||B||β), (A||α||B||β)− (A0||α0||Bm+1||βm+1), σ1, e),

and aborts according to the result.
The prover computes the following

ρ =
m∑

i=1

(Mm+1
x M i

y mod p)γi +
2m∑

l=0,l �=m+1

(M l
x mod p)ηl + δ

The prover runs Rej(ρ, ρ − δ, σ2, e).
The prover computes D̄ = (Mz mod p)D + E and δ̄ = (Mz mod p)δ + ε.
The prover runs Rej(D̄/p,D/p, σ3, e).
The prover runs Rej(δ̄, δ, σ4, e).
The prover sends A,α,B, β, ρ, D̄, δ̄ to the verifier.

V The prover and the verifier engage in a proof-of-knowledge, as shown in Fig. 1,
including every commitment sent from the prover to the verifier.
The verifier accepts if and only if

Comck
∗(A; α) =

m∑
i=0

(M i
xM i

y mod p)Ai

Comck
∗(B; β) =

m+1∑
i=1

(Mm+1−i
x mod p)B i

Comck
∗(A © B mod p; ρ) =

m∑
i=1

(Mm+1
x M i

y mod p)C i

+
2m∑

l=0,l�=m+1

(M l
x mod p)H l + D

Comck
∗(D̄; δ̄) = (Mz mod p)D + E

D̄ = 0 mod p
∥∥D̄

∥∥
2

≤ 2
√

knσ3p

‖(A||α||B||β)‖2 ≤ 4
√

knσ1 ‖ρ‖2 ≤ 2
√

knσ2

∥∥δ̄
∥∥
2

≤ 2
√

knσ4

and the proof-of-knowledge is accepting.

Sizes of Standard Deviations

σ1 = 48
√

knkmp2, σ2 = 72
√

2knkmp,

σ3 = 24
√

2knkp(1 + 6kmp), σ4 = 24
√

2k2pnσ2

Security Analysis

Theorem 3. Given the statistically hiding, computationally binding commit-
ment scheme based on SIS, the argument for multiplication triples has statistical
completeness, statistical special honest verifier zero-knowledge and computational
knowledge-soundness.

The proof of Theorem 3 can be found in the full version of this paper.

694 C. Baum et al.

Efficiency. The above argument uses 7 moves of interaction and results in
an overall 9 move argument when combined with the proof-of-knowledge sub-
protocols. For the product argument, the prover must send 8mk + 6k commit-
ments to the verifier, and 14nk integers as commitments openings, plus the com-
munication for the proof-of-knowledge. Sub-linear communication is achieved by
setting parameters as in Table 2. This gives communication of approximately
O(

√
N log N) elements of Zq.

For q = poly(λ), the prover’s computational costs are given by
O(N log N(log λ)2) bit operations for the prover. The verifier’s computational
costs are dominated by computing the same types of linear combinations as the
prover, giving computational costs of O(N(log λ)3) bit operations.

7 Linear Constraint Argument Description

Using similar ideas to those in the multiplication protocol, in the full version of
this paper, we give a protocol which allows the prover to prove that N = nmk
committed values satisfy the linear consistency relations

m,k∑
i=1,j=1

ai,j · wu,a,i,j +

m,k∑
i=1,j=1

bi,j · wu,b,i,j +

m,k∑
i=1,j=1

ci,j · wu,c,i,j = Ku for u ∈ {1, . . . , U}

(9)

Without loss of generality, we pad the linear consistency relations so that U
is divisible by k.

The protocol, security proof, and complexity analysis are very similar to that
of the argument for proving multiplication triples in the previous section.

We select parameters for our protocol in Sect. 5.

Security Analysis

Theorem 4. Given the statistically hiding, computationally binding commit-
ment scheme based in SIS, the argument for linear consistency constraints has
statistical completeness, statistical special honest verifier zero-knowledge and
computational knowledge-soundness.

The proof of Theorem4 can be found in the full version of this paper.

Efficiency. The above argument uses 7 moves of interaction and results in
an overall 9 move argument when combined with the proof-of-knowledge sub-
protocols. For the product argument, the prover must send 7km + 9k − 1 com-
mitments to the verifier, and 10nk + 2k integers as commitment openings, plus
the communication for the proof-of-knowledge. The asymptotic costs of the pro-
tocol are the same as for the argument for multiplication triples in the previous
section. Combined with the proof of knowledge, this gives an arithmetic circuit
argument with the stated efficiency.

Sub-linear Lattice-Based Zero-Knowledge Arguments 695

8 Arithmetic Circuit Argument

The product protocol given in Sect. 6 and the linear consistency protocol given in
Sect. 7 imply an arithmetic circuit protocol with the same asymptotic efficiency
as the two subprotocols, in which the prover forms O(mk) commitments, each
to n wire values in p, and runs both subprotocols in order to prove that they
satisfy the arithmetic circuit, reusing the same commitments Ai,B i,C i to the
wires in both subprotocols.

This yields a zero-knowledge argument for arithmetic circuit satisfiability
with communication costs O(

√
N log N) elements of Zq, computational costs of

O(N log N) for the prover, and approximately O(N) for the verifier.

References

[AHIV17] Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero:
lightweight sublinear arguments without a trusted setup. In: Thuraising-
ham et al. [TEMX17], pp. 2087–2104

[Ajt96] Ajtai, M.: Generating hard instances of lattice problems (extended
abstract). In: 28th ACM STOC, pp. 99–108. ACM Press, May 1996

[Ban93] Banaszczyk, W.: New bounds in some transference theorems in the geom-
etry of numbers. Mathematische Annalen 296, 625–635 (1993)

[BBB+17] Bunz, B., Bootle, J., Boneh, D., Poelstra, A., Maxwell, G.: Bulletproofs:
short proofs for confidential transactions and more. Cryptology ePrint
Archive, Report 2017/1066 (2017). https://eprint.iacr.org/2017/1066

[BCC+16] Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-
knowledge arguments for arithmetic circuits in the discrete log setting.
In: Fischlin and Coron [FC16], pp. 327–357

[BCCT12] Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: From extractable col-
lision resistance to succinct non-interactive arguments of knowledge, and
back again. In: Goldwasser, S. (ed.) ITCS 2012, pp. 326–349. ACM, Jan-
uary 2012

[BCCT13] Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: Recursive composition
and bootstrapping for SNARKS and proof-carrying data. In: Boneh, D.,
Roughgarden, T., Feigenbaum, J. (eds.) 45th ACM STOC, pp. 111–120.
ACM Press, June 2013

[BCG+17] Bootle, J., Cerulli, A., Ghadafi, E., Groth, J., Hajiabadi, M., Jakobsen,
S.K.: Linear-time zero-knowledge proofs for arithmetic circuit satisfiabil-
ity. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Part III. LNCS,
vol. 10626, pp. 336–365. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-70700-6 12

[BCK+14] Benhamouda, F., Camenisch, J., Krenn, S., Lyubashevsky, V., Neven,
G.: Better zero-knowledge proofs for lattice encryption and their appli-
cation to group signatures. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT
2014, Part I. LNCS, vol. 8873, pp. 551–572. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-45611-8 29

https://eprint.iacr.org/2017/1066
https://doi.org/10.1007/978-3-319-70700-6_12
https://doi.org/10.1007/978-3-319-70700-6_12
https://doi.org/10.1007/978-3-662-45611-8_29

696 C. Baum et al.

[BD10] Bendlin, R., Damg̊ard, I.: Threshold decryption and zero-knowledge
proofs for lattice-based cryptosystems. In: Micciancio, D. (ed.) TCC 2010.
LNCS, vol. 5978, pp. 201–218. Springer, Heidelberg (2010). https://doi.
org/10.1007/978-3-642-11799-2 13

[BDLN16] Baum, C., Damg̊ard, I., Larsen, K.G., Nielsen, M.: How to prove knowl-
edge of small secrets. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016,
Part III. LNCS, vol. 9816, pp. 478–498. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53015-3 17

[BDOP16] Baum, C., Damg̊ard, I., Oechsner, S., Peikert, C.: Efficient commit-
ments and zero-knowledge protocols from ring-SIS with applications to
lattice-based threshold cryptosystems. Cryptology ePrint Archive, Report
2016/997 (2016). http://eprint.iacr.org/2016/997

[BG14] Bai, S., Galbraith, S.D.: An improved compression technique for signa-
tures based on learning with errors. In: Benaloh, J. (ed.) CT-RSA 2014.
LNCS, vol. 8366, pp. 28–47. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-04852-9 2

[BKLP15] Benhamouda, F., Krenn, S., Lyubashevsky, V., Pietrzak, K.: Efficient
zero-knowledge proofs for commitments from learning with errors over
rings. In: Pernul, G., Ryan, P.Y.A., Weippl, E. (eds.) ESORICS 2015,
Part I. LNCS, vol. 9326, pp. 305–325. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-24174-6 16

[CD97] Cramer, R., Damg̊ard, I.: Linear zero-knowledge - a note on efficient zero-
knowledge proofs and arguments. In: 29th ACM STOC, pp. 436–445.
ACM Press, May 1997

[CDG+17] Chase, M., Derler, D., Goldfeder, S., Orlandi, C., Ramacher, S., Rech-
berger, C., Slamanig, D., Zaverucha, G.: Post-quantum zero-knowledge
and signatures from symmetric-key primitives. In: Thuraisingham et al.
[TEMX17], pp. 1825–1842

[CDK14] Cramer, R., Damg̊ard, I., Keller, M.: On the amortized complexity of
zero-knowledge protocols. J. Cryptol. 27(2), 284–316 (2014)

[CDXY17] Cramer, R., Damg̊ard, I., Xing, C., Yuan, C.: Amortized complexity
of zero-knowledge proofs revisited: achieving linear soundness slack. In:
Coron and Nielsen [CN17], pp. 479–500

[CN17] Coron, J.-S., Nielsen, J.B. (eds.): EUROCRYPT 2017, Part I. LNCS,
vol. 10210. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
56620-7

[Dam10] Damg̊ard, I.: On Σ-protocols (2010). http://www.cs.au.dk/∼ivan/Sigma.
pdf

[DDLL13] Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures
and bimodal gaussians. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013,
Part I. LNCS, vol. 8042, pp. 40–56. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-40041-4 3

[DL12] Damg̊ard, I., López-Alt, A.: Zero-knowledge proofs with low amortized
communication from lattice assumptions. In: Visconti, I., De Prisco, R.
(eds.) SCN 2012. LNCS, vol. 7485, pp. 38–56. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32928-9 3

[dPL17] del Pino, R., Lyubashevsky, V.: Amortization with fewer equations for
proving knowledge of small secrets. In: Katz, J., Shacham, H. (eds.)
CRYPTO 2017, Part III. LNCS, vol. 10403, pp. 365–394. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-63697-9 13

https://doi.org/10.1007/978-3-642-11799-2_13
https://doi.org/10.1007/978-3-642-11799-2_13
https://doi.org/10.1007/978-3-662-53015-3_17
http://eprint.iacr.org/2016/997
https://doi.org/10.1007/978-3-319-04852-9_2
https://doi.org/10.1007/978-3-319-04852-9_2
https://doi.org/10.1007/978-3-319-24174-6_16
https://doi.org/10.1007/978-3-319-24174-6_16
https://doi.org/10.1007/978-3-319-56620-7
https://doi.org/10.1007/978-3-319-56620-7
http://www.cs.au.dk/~ivan/Sigma.pdf
http://www.cs.au.dk/~ivan/Sigma.pdf
https://doi.org/10.1007/978-3-642-40041-4_3
https://doi.org/10.1007/978-3-642-40041-4_3
https://doi.org/10.1007/978-3-642-32928-9_3
https://doi.org/10.1007/978-3-319-63697-9_13

Sub-linear Lattice-Based Zero-Knowledge Arguments 697

[FC16] Fischlin, M., Coron, J.-S. (eds.): EUROCRYPT 2016, Part II. LNCS,
vol. 9666. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-49896-5

[GG98] Goldreich, O., Goldwasser, S.: On the limits of non-approximability of
lattice problems. In: 30th ACM STOC, pp. 1–9. ACM Press, May 1998

[GGI+15] Gentry, C., Groth, J., Ishai, Y., Peikert, C., Sahai, A., Smith, A.D.: Using
fully homomorphic hybrid encryption to minimize non-interative zero-
knowledge proofs. J. Cryptol. 28(4), 820–843 (2015)

[GGPR13] Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span pro-
grams and succinct NIZKs without PCPs. In: Johansson, T., Nguyen,
P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9 37

[GH98] Goldreich, O., H̊astad, J.: On the complexity of interactive proofs with
bounded communication. Inf. Process. Lett. 67, 205–214 (1998)

[GLP12] Güneysu, T., Lyubashevsky, V., Pöppelmann, T.: Practical lattice-based
cryptography: a signature scheme for embedded systems. In: Prouff, E.,
Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 530–547. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-33027-8 31

[GMO16] Giacomelli, I., Madsen, J., Orlandi, C.: Zkboo: faster zero-knowledge for
boolean circuits. In: 25th USENIX Security Symposium, pp. 1069–1083
(2016)

[GMR85] Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of inter-
active proof-systems (extended abstract). In: 17th ACM STOC, pp. 291–
304. ACM Press, May 1985

[GN08] Gama, N., Nguyen, P.Q.: Predicting lattice reduction. In: Smart, N. (ed.)
EUROCRYPT 2008. LNCS, vol. 4965, pp. 31–51. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78967-3 3

[GQ88] Guillou, L.C., Quisquater, J.-J.: A practical zero-knowledge protocol fit-
ted to security microprocessor minimizing both transmission and mem-
ory. In: Barstow, D., et al. (eds.) EUROCRYPT 1988. LNCS, vol. 330,
pp. 123–128. Springer, Heidelberg (1988). https://doi.org/10.1007/3-540-
45961-8 11

[Gro09a] Groth, J.: Linear algebra with sub-linear zero-knowledge arguments. In:
Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 192–208. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8 12

[Gro10a] Groth, J.: Short pairing-based non-interactive zero-knowledge arguments.
In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-
8 19

[Gro10b] Groth, J.: A verifiable secret shuffle of homomorphic encryptions. J. Cryp-
tol. 23(4), 546–579 (2010)

[Gro16] Groth, J.: On the size of pairing-based non-interactive arguments. In:
Fischlin and Coron [FC16], pp. 305–326

[GVW02] Goldreich, O., Vadhan, S.P., Wigderson, A.: On interactive proofs with a
laconic prover. Comput. Complex. 11(1–2), 1–53 (2002)

[GW11] Gentry, C., Wichs, D.: Separating succinct non-interactive arguments
from all falsifiable assumptions. In: Fortnow, L., Vadhan, S.P. (eds.) 43rd
ACM STOC, pp. 99–108. ACM Press, June 2011

[IKOS07] Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from
secure multiparty computation. In: Johnson, D.S., Feige, U. (eds.) 39th
ACM STOC, pp. 21–30. ACM Press, June 2007

https://doi.org/10.1007/978-3-662-49896-5
https://doi.org/10.1007/978-3-662-49896-5
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-33027-8_31
https://doi.org/10.1007/978-3-540-78967-3_3
https://doi.org/10.1007/3-540-45961-8_11
https://doi.org/10.1007/3-540-45961-8_11
https://doi.org/10.1007/978-3-642-03356-8_12
https://doi.org/10.1007/978-3-642-17373-8_19
https://doi.org/10.1007/978-3-642-17373-8_19

698 C. Baum et al.

[Kil92] Kilian, J.: A note on efficient zero-knowledge proofs and arguments
(extended abstract). In: 24th ACM STOC, pp. 723–732. ACM Press, May
1992

[KR08] Kalai, Y.T., Raz, R.: Interactive PCP. In: Aceto, L., Damg̊ard, I., Gold-
berg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.)
ICALP 2008, Part II. LNCS, vol. 5126, pp. 536–547. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-70583-3 44

[Lip12] Lipmaa, H.: Progression-free sets and sublinear pairing-based non-
interactive zero-knowledge arguments. In: Cramer, R. (ed.) TCC 2012.
LNCS, vol. 7194, pp. 169–189. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-28914-9 10

[LM06] Lyubashevsky, V., Micciancio, D.: Generalized compact knapsacks are
collision resistant. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener,
I. (eds.) ICALP 2006, Part II. LNCS, vol. 4052, pp. 144–155. Springer,
Heidelberg (2006). https://doi.org/10.1007/11787006 13

[LN17] Lyubashevsky, V., Neven, G.: One-shot verifiable encryption from lattices.
In: Coron and Nielsen [CN17], pp. 293–323

[LNSW13] Ling, S., Nguyen, K., Stehlé, D., Wang, H.: Improved zero-knowledge
proofs of knowledge for the ISIS problem, and applications. In: Kurosawa,
K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 107–124. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-36362-7 8

[Lyu09] Lyubashevsky, V.: Fiat-Shamir with aborts: applications to lattice and
factoring-based signatures. In: Matsui, M. (ed.) ASIACRYPT 2009.
LNCS, vol. 5912, pp. 598–616. Springer, Heidelberg (2009). https://doi.
org/10.1007/978-3-642-10366-7 35

[Lyu12] Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval,
D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
738–755. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-29011-4 43

[MR04] Micciancio, D., Regev, O.: Worst-case to average-case reductions based on
Gaussian measures. In: 45th FOCS, pp. 372–381. IEEE Computer Society
Press, October 2004

[MR08] Micciancio D., Regev O.: Lattice-based Cryptography. In: Bernstein, D.J.,
Buchmann, J., Dahmen, E. (eds.) Post-Quantum Cryptography. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-540-88702-7 5

[MV03] Micciancio, D., Vadhan, S.P.: Statistical zero-knowledge proofs with effi-
cient provers: lattice problems and more. In: Boneh, D. (ed.) CRYPTO
2003. LNCS, vol. 2729, pp. 282–298. Springer, Heidelberg (2003). https://
doi.org/10.1007/978-3-540-45146-4 17

[PHGR13] Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: nearly prac-
tical verifiable computation. In: 2013 IEEE Symposium on Security and
Privacy, pp. 238–252. IEEE Computer Society Press, May 2013

[PR06] Peikert, C., Rosen, A.: Efficient collision-resistant hashing from worst-case
assumptions on cyclic lattices. In: Halevi, S., Rabin, T. (eds.) TCC 2006.
LNCS, vol. 3876, pp. 145–166. Springer, Heidelberg (2006). https://doi.
org/10.1007/11681878 8

[Reg05] Regev, O.: On lattices, learning with errors, random linear codes, and
cryptography. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC, pp.
84–93. ACM Press, May 2005

[Sch91] Schnorr, C.-P.: Efficient signature generation by smart cards. J. Cryptol.
4(3), 161–174 (1991)

https://doi.org/10.1007/978-3-540-70583-3_44
https://doi.org/10.1007/978-3-642-28914-9_10
https://doi.org/10.1007/978-3-642-28914-9_10
https://doi.org/10.1007/11787006_13
https://doi.org/10.1007/978-3-642-36362-7_8
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-29011-4_43
https://doi.org/10.1007/978-3-642-29011-4_43
https://doi.org/10.1007/978-3-540-88702-7_5
https://doi.org/10.1007/978-3-540-45146-4_17
https://doi.org/10.1007/978-3-540-45146-4_17
https://doi.org/10.1007/11681878_8
https://doi.org/10.1007/11681878_8

Sub-linear Lattice-Based Zero-Knowledge Arguments 699

[Ste94] Stern, J.: A new identification scheme based on syndrome decoding. In:
Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 13–21. Springer,
Heidelberg (1994). https://doi.org/10.1007/3-540-48329-2 2

[TEMX17] Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.): ACM CCS
17. ACM Press, October/November (2017)

https://doi.org/10.1007/3-540-48329-2_2

Lattice-Based Zero-Knowledge
Arguments for Integer Relations

Benôıt Libert1,2(B), San Ling3, Khoa Nguyen3, and Huaxiong Wang3

1 CNRS, Laboratoire LIP, Lyon, France
benoit.libert@ens-lyon.fr

2 ENS de Lyon, Laboratoire LIP (U. Lyon, CNRS, ENSL, Inria, UCBL),
Lyon, France

3 School of Physical and Mathematical Sciences,
Nanyang Technological University, Singapore, Singapore

Abstract. We provide lattice-based protocols allowing to prove rela-
tions among committed integers. While the most general zero-knowledge
proof techniques can handle arithmetic circuits in the lattice setting,
adapting them to prove statements over the integers is non-trivial, at
least if we want to handle exponentially large integers while working
with a polynomial-size modulus q. For a polynomial L, we provide zero-
knowledge arguments allowing a prover to convince a verifier that com-
mitted L-bit bitstrings x, y and z are the binary representations of inte-
gers X, Y and Z satisfying Z = X + Y over Z. The complexity of our
arguments is only linear in L. Using them, we construct arguments allow-
ing to prove inequalities X < Z among committed integers, as well as
arguments showing that a committed X belongs to a public interval [α, β],
where α and β can be arbitrarily large. Our range arguments have log-
arithmic cost (i.e., linear in L) in the maximal range magnitude. Using
these tools, we obtain zero-knowledge arguments showing that a com-
mitted element X does not belong to a public set S using ˜O(n · log |S|)
bits of communication, where n is the security parameter. We finally
give a protocol allowing to argue that committed L-bit integers X, Y
and Z satisfy multiplicative relations Z = XY over the integers, with
communication cost subquadratic in L. To this end, we use our protocol
for integer addition to prove the correct recursive execution of Karat-
suba’s multiplication algorithm. The security of our protocols relies on
standard lattice assumptions with polynomial modulus and polynomial
approximation factor.

1 Introduction

Lattice-based cryptography has been an extremely active area since the cele-
brated results of Ajtai [3] and Regev [58]. In comparison with discrete-logarithm
and factoring-based techniques, it indeed offers numerous advantages like simpler
arithmetic operations, a better asymptotic efficiency, advanced functionalities or
a conjectured resistance to quantum computing. Its development was further

c© International Association for Cryptologic Research 2018
H. Shacham and A. Boldyreva (Eds.): CRYPTO 2018, LNCS 10992, pp. 700–732, 2018.
https://doi.org/10.1007/978-3-319-96881-0_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96881-0_24&domain=pdf

Lattice-Based Zero-Knowledge Arguments for Integer Relations 701

boosted by breakthrough results of [26,53] showing how to safely use lattice
trapdoors, which have been the cornerstone of many advanced primitives.

While lattices enable powerful functionalities that have no counterpart using
traditional number theoretic tools, they do not easily lend themselves to the real-
ization of certain fundamental tasks, like efficient zero-knowledge proofs. Zero-
knowledge protocols [30] make it possible to prove properties about certain secret
witnesses in order to have users demonstrate their correct behavior while protect-
ing their privacy. For simple statements such as proving knowledge of a secret
key, efficient solutions have been reported in [39,47,50,55]. In order to prove
relations among committed values, the best known methods rely on the extra
algebraic structure [5,8,60] offered by the ring-LWE or ring-SIS problems [51]
and no truly efficient solution is known for standard (i.e., non-ideal) lattices.

In this paper, we investigate the problem of proving, under standard lattice
assumptions, that large committed integers satisfy certain algebraic relations.
Namely, if cx, cy and cz are commitments to integers X,Y,Z of arbitrary poly-
nomial bit-size L = poly(n), where n is the security parameter, we consider the
problem of proving statements of the form Z = X + Y and Z = X · Y over Z.
Note that this problem is different from the case of arithmetic circuits addressed
in [8]: here, we are interested in proving relations over the integers. Furthermore,
we would like to design zero-knowledge arguments for various other relations
among large committed integers. As specific applications, we consider the prob-
lems of: (i) Proving that a committed integer X belongs to a publicly known
range [α, β]; (ii) Proving order relations Y < X < Z between committed integers
Y,X,Z; (iii) Proving that a committed element X does not belong to a public
set (which allows users to prove their non-blacklisting).

While these problems received much attention in the literature, the most
efficient solutions [21,34,48] handling large integers appeal to integer commit-
ments [22,25] based on hidden-order groups (e.g., RSA groups), which are vul-
nerable to quantum computing. In particular, designing a solution based on mild
assumptions in standard lattices is a completely open problem to our knowl-
edge. Even in ideal lattices, handling integers of polynomial length L requires to
work with exponentially large moduli, which affects both the efficiency and the
approximation factor of the lattice assumption. Here, our goal is to realize the
aforementioned protocols using polynomial moduli and approximation factors.

If we were to use known zero-knowledge proof systems [5,8,60] in ideal lattices
to handle additive relations over Z, we would need (super-)exponentially large
moduli. In particular, in order to prove that committed integers X,Y,Z of bit-
size L = poly(n) satisfy Z = X + Y , these protocols would require to prove that
Z = X + Y mod q for a large modulus q = 2poly(n). With current techniques,
this would imply to work with a commitment scheme over rings Rq, for the same
modulus q. In terms of efficiency, a single ring element would cost thousand times
L bits to represent since the modulus should contain more than L bits. When it
comes to proving smallness of committed values (in order to prove Z = X + Y
over Z via Z = X + Y mod q, the prover should guarantee that X and Y are
small w.r.t. q) together with relations among them, the prover may need to send

702 B. Libert et al.

hundreds of ring elements. As a consequence, the communication cost could be
as large as k ·L, where k is up to hundreds of thousands. In terms of security, we
note that such approaches may require at least sub-exponential approximation
factors for the underlying ideal-lattice problems. Moreover, ensuring soundness
may be non-trivial as the protocols of [5,8] only guarantee relaxed soundness.

Our Contributions. We provide statistical zero-knowledge arguments allow-
ing to prove additive and multiplicative relations among committed integers of
bit-size L = poly(n) under mild assumptions in standard (i.e., non-ideal) lattices.
Our protocols can work with two flavors of the commitment scheme by Kawachi,
Tanaka and Xagawa (KTX) [39]. If we commit to integers in a bit-by-bit fashion,
the modulus q can be as small as ˜O(n) and the security of our protocols can rely
on the worst-case hardness of SIVPγ with γ = ˜O(n), which turns out to be one
the weakest assumptions in the entire literature on lattice-based cryptography.
On the other hand, if we rely on a stronger assumption with γ = ˜O(

√
L · n) for

a modulus q = ˜O(
√

L · n), then we can commit to L bits at once and reduce the
communication cost. For this all-at-once commitment variant, the complexities
of our protocols are summarized as follows.

The protocol for integer additions has communication cost (ζ + 20L) · κ bits,
where ζ = ˜O(n) + 6L log q is the cost of proving knowledge of valid openings
for the commitments to X,Y,Z and κ = ω(log n) is the number of protocol
repetitions to make the soundness error negligibly small. Thus, the actual cost for
proving the additive relation is 20L ·κ bits. In terms of computation complexity,
both the prover and the verifier only perform O(L) simple operations.

We offer two options for proving integer multiplications. For practically inter-
esting values of L, e.g., L ≤ 8000, we can emulate the schoolbook multiplica-
tion algorithm by proving L additive relations, and obtain communication cost
˜O(n+L2) ·κ as well as computation costs O(L2) for both parties. To our knowl-
edge, all known methods for proving integer multiplications (sometimes implic-
itly) involve O(L2) computation and/or communication complexities. Can we
break this quadratic barrier?

As a theoretical contribution, we put forward the first protocol for multi-
plicative relations that does not incur any quadratic costs. Specifically, by prov-
ing in zero-knowledge the correct execution of a Karatsuba multiplication algo-
rithm [38], we obtain both computation and communication complexities of order
O(Llog2 3).

Applications. While our protocol for additive relations only handles non-
negative integers, it suffices for many applications, such as arguments of inequali-
ties among committed integers, range membership for public/hidden ranges, and
set non-membership. Moreover, it can also be used in higher-level protocols like
zero-knowledge lists [27].1 In particular, for a set of N elements with bit-size
˜O(n), our protocol for proving non-membership of a committed value only cost
˜O(n · log N) bits. In the lattice setting, this is the first non-membership proof
1 These involve a prover wishing to convince a verifier that a committed list contains

elements {ai}i in a specific order without revealing anything else.

Lattice-Based Zero-Knowledge Arguments for Integer Relations 703

that achieves communication cost logarithmic in the cardinality of the set. Mean-
while, in our protocol for proving that a committed L-bit integer belongs to a
given range [α, β], where β − α ≈ 2L, besides the cost of proving knowledge of
a valid opening for the commitment, the prover only has to send 23L · κ bits
to the verifier. In Table 1, we provide the concrete cost of the protocol variant
achieving soundness error 2−80, for commonly used lattice parameters.

Table 1. Concrete communication cost of our lattice-based zero-knowledge argument
(Sect. 5.1) for proving knowledge of committed integer X belonging to a given range,
w.r.t. various range sizes. We work with lattice parameters n = 256, q ≈ 215, m = 4608.
To achieve soundness error 2−80, we set κ = 137.

Range size 21000 22000 24000 28000

Proving knowledge of committed X 3.16 3.65 4.63 6.59

Proving range membership of X 0.38 0.75 1.5 3

Total communication cost 3.54 MB 4.4 MB 6.13 MB 9.59 MB

We remark that, if we only had to prove the correct evaluation of binary
addition circuits, MPC-based techniques [20,28,36] could perform slightly better
than our protocols. However, they become much less efficient for the algebraic
parts of the statements we have to prove (in particular, we also need to prove
knowledge of openings of SIS-based commitments). Indeed, the MPC-in-the head
paradigm [36] and its follow-ups [20,28] have linear complexities in the size of the
circuit, which is much larger than the witness size as the commitment relation
entails Θ(n(L + m)) additions and multiplications over Zq. In our protocols,
proving knowledge of an opening takes Θ((L + m) log q) bits of communication.

Our Techniques. We proceed by emulating integer commitments by means
of bit commitments. To commit to an L-bit integer X in an all-in-one fashion,
we generate a KTX commitment cx =

∑L−1
i=0 ai · xi + B · r ∈ Z

n
q to its binary

representation (xL−1, . . . , x0)2 using public matrices A = [a0 | . . . |aL−1] ∈ Z
n×L
q

and B ∈ Z
n×m
q and random coins r ←↩ U({0, 1}m).

Integer Additions. To prove additive relations among committed integers, we
come up with an idea that may sound natural for computer processors, but,
to the best of our knowledge, has not been considered in the context of zero-
knowledge proofs. The idea is to view integer additions as binary additions with
carries. Suppose that we add two bits x and y with carry-in cin to obtain a
bit z and carry-out cout. Then, the relations among these bits are captured by
equations

z = x + y + cin mod 2, cout = x · y + z · cin + cin mod 2,

which is equivalent to a homogeneous system of two equations over Z2. Using
the above adder, we consider the addition of L-bit integers X = (xL−1, ..., x0)2

704 B. Libert et al.

and Y = (yL−1, ..., y0)2 assuming that the committed sum is of length L+1 and
written as Z = (zL, zL−1, ..., z0)2. For each i ∈ {0, ..., L − 1}, we denote by ci+1

the carry-out of the i-th addition and define cL = zL. The equations become

z0 + x0 + y0 = 0 mod 2
c1 + x0 · y0 = 0 mod 2

z1 + x1 + y1 + c1 = 0 mod 2
c2 + x1 · y1 + z1 · c1 + c1 = 0 mod 2

...
zL−1 + xL−1 + yL−1 + cL−1 = 0 mod 2

zL + xL−1 · yL−1 + zL−1 · cL−1 + cL−1 = 0 mod 2.

We observe that all the terms in the above equations are either bits or products
of two bits. By adapting the Stern-like [59] techniques for hiding secret bits [44]
and handling quadratic relations [42], we manage to prove that the bits of X,Y,Z
satisfy the above equations modulo 2, which is equivalent to X + Y = Z over Z.
Meanwhile, to prove that those bits coincide with the values committed under
the KTX commitment requires to additionally prove a linear equation modulo q.

Interestingly, we show that, not only the problem of proving additive relations
among committed integers can be reduced to proving secret bits satisfying linear
and quadratic equations modulo 2 and one linear equation modulo q, such type
of reduction is doable for all subsequently considered relations (multiplications,
range membership, set non-membership). To handle the reduced statements in
a modular manner, we thus design (in Sect. 3) a general zero-knowledge protocol
that subsumes all argument systems of this work. In comparison with previous
protocols [39,43,45,47] built on Stern’s framework [59], this general protocol
introduces a technical novelty which allows to reduce the communication cost.

Range Membership and Set Non-Membership. Our techniques for addi-
tions of non-negative integers directly yield a method for proving inequalities of
the form X ≤ Z, where it suffices to show the existence of non-negative integer
Y such that X + Y = Z. This method can be further adapted to handle strict
inequalities. To prove that X < Z, we demonstrate the existence of non-negative
Y such that X + Y + 1 = Z, for which only a small additional treatment for the
least significant bits of X,Y,Z is needed. Then, by combining two sub-protocols
for inequalities, we can obtain range arguments for the statements “X ∈ [α, β]”,
“X ∈ [α, β)”, “X ∈ (α, β]” and “X ∈ (α, β)”, where X is committed under the
KTX commitment, and α, β can be hidden/committed or public.

Given the techniques for proving inequalities, we can further obtain argu-
ments of non-membership. In order to prove that a committed string X ∈ {0, 1}k

does not belong to a public set S = {s1, . . . , sN}, the prover generates a (pub-
licly computable) Merkle tree [52] whose leaves are the elements of S arranged
in lexicographical order. Then, the prover can use the technique of Libert et al.
[44] – which allows arguing possession of a path in a lattice-based Merkle tree
– to prove knowledge of two paths leading to adjacent leaves for which the cor-

Lattice-Based Zero-Knowledge Arguments for Integer Relations 705

responding set elements Y,Z ∈ {0, 1}k satisfy Y < X < Z in lexicographical
order. Here, the adjacency of the leaves Y and Z is argued using our techniques
for integers additions, which allows proving that their labels (i.e., the binary
encoding of the path that connects them to the root) encode integers V,W such
that W = V + 1.

Subquadratic Integer Multiplications. Proving multiplicative relations
among L-bit committed integers with subquadratic complexity requires some
additional tricks. Karatsuba’s technique [38] divides integers X,Y into equal
halves X = X1|X0 and Y = Y1|Y0, each of which has length L/2. If the length
is odd, the factors must be padded with zeroes in the left halves, which raises
technical difficulties as will be explained below. We have X = 2L/2 · X1 + X0

and Y = 2L/2 · Y1 + Y0, so that X · Y can be written

X · Y = (2L − 2L/2)(X1Y1) + (1 − 2L/2)(X0Y0) + 2L/2(X1 + X0)(Y1 + Y0). (1)

To prove this equation, we first prove knowledge of 3 partial products and then
prove their correct shifting w.r.t. multiplication by powers of 2 before proving
the correctness of additions. Each of the factors X1, Y1,X0, Y0,X1 + X0, Y1 + Y0

of (1) is recursively broken into 3 smaller products until reaching an easy-to-prove
“base multiplication”. One difficulty is that the length of X1 + X0 and Y1 + Y0

are one bit longer than the length L/2 of X0,X1, Y0, Y1. Since L/2 + 1 is odd,
we need to pad with a zero before dividing any further and the same issue arises
when dividing X1, Y1,X0, Y0. In the context of zero-knowledge proofs, it makes
it very complicated to keep track of the lengths of witnesses in the underlying
equations and determine where the original bits of X and Y should be.

To address the problems caused by carry-on bits in additions, Knuth [40]
suggested to use subtractions and re-write the product X · Y as

(2L + 2L/2) · (X1 · Y1) + (1 + 2L/2) · (X0 · Y0) − 2L/2 · (X1 − X0) · (Y1 − Y0). (2)

The difference X1−X0 is now guaranteed to have length L/2, which allows using
L = 2k and recursively come down to base multiplications of two-bit integers.
However, this modification introduces another problem as X1 − X0 and Y1 − Y0

can now be negative integers, which are more difficult to handle in our setting.
For this reason, we need to make sure that we always subtract a smaller integer
from a larger one, while preserving the ability to prove correct computations.

To this end, our idea is to compare X1 and X0 and let the smaller one be
subtracted from the larger one. To do this, we define auxiliary variables X ′

1,X
′
0

such that X ′
1 > X ′

0 and {X ′
1,X

′
0} = {X1,X0}. Letting b be the bit such that

b = 1 if X ′
1 ≥ X ′

0 and b = 0 otherwise, this can be expressed by the equation:

(X ′
1 − X ′

0) = b · (X1 − X0) + (1 − b) · (X0 − X1),

which is provable in zero-knowledge using our techniques for integer additions.
If we repeat the above process and define variables Y ′

1 , Y ′
0 such that {Y ′

1 , Y ′
0} =

{Y1, Y0} and an order control bit c ∈ {0, 1}, if we define d = b + c mod 2,
we have

706 B. Libert et al.

(X1 − X0) · (Y1 − Y0) = (X ′
1 − X ′

0) · (Y ′
1 − Y ′

0) if d = 0
(X1 − X0) · (Y1 − Y0) = −(X ′

1 − X ′
0) · (Y ′

1 − Y ′
0) if d = 1.

The term (X1 − X0) · (Y1 − Y0) appearing in Eq. (2) can thus be written as

(X1 − X0) · (Y1 − Y0) = (1 − d) · (X ′
1 − X ′

0) · (Y ′
1 − Y ′

0) − d · (X ′
1 − X ′

0) · (Y ′
1 − Y ′

0),

which yields an equation compatible our techniques while avoiding to handle
negative integers. At each recursive step, we further divide the differences X ′

1−X ′
0

and Y ′
1 − Y ′

0 and keep track of the control bits b, c, d which are part of the
witnesses.

Related Work. The first integer commitment scheme was proposed by Fujisaki
and Okamoto [25] who suggested to use it to prove relation over the integers.
They underlined the importance of zero-knowledge arguments over the integers
in order to be able to prove modular relations when the modulus is not known in
advance, when the commitment key is generated. Damg̊ard and Fujisaki [22] cor-
rected a flaw in the Fujisaki-Okamoto commitment and generalized it to abelian
groups satisfying specific properties.

Lipmaa [48] highlighted the cryptographic importance of the class D of Dio-
phantine sets2 [1] and gave improved constructions of zero-knowledge proofs for
Diophantine equations. As special cases, he obtained efficient zero-knowledge
arguments for intervals, unions of intervals, exponential relations and gcd rela-
tions. In [33], Groth suggested another integer commitment scheme based on the
Strong RSA assumption [4] which, like [22,25], relies on groups of hidden order.
Couteau, Peters and Pointcheval [21] recently suggested to combine integer com-
mitments with a commitment scheme to field elements in order to improve the
efficiency of zero-knowledge proofs over the integers. They also revisited the
Damg̊ard-Fujisaki commitment [22] and proved it the security of its companion
argument system under the standard RSA assumption. While our results are not
as general as those of [21,48] as we do not handle negative integers, they suffice
for many applications of integer commitments, as we previously mentioned.

Range proofs were introduced by Brickell et al. [10] and received a permanent
attention [9,12,18,19,21,31,35,48] since then. They served as a building block of
countless cryptographic applications, which include anonymous credentials [14],
anonymous e-cash [13], auction protocols [49], e-voting [34] and many more.

Currently known range proofs proceed via two distinct approaches. The first
one proceeds by breaking integers into bits or small digits [7,10,12,23,31,35],
which allows communicating a sub-logarithmic (in the range size) number of
group elements in the best known constructions [12,31,35]. The second approach
[9,21,34,48] appeals to integer commitments and groups of hidden order. This
approach is usually preferred for very large ranges (which often arise in appli-
cations like anonymous credentials [14], where range elements are comprised of

2 For k, � ∈ N, a Diophantine set is a set of the form S = {x ∈ Z
k | ∃w ∈ Z

� :
PS(x,w) = 0}, for some representing polynomial PS(X ,W) defined over integer
vectors X ∈ Z

k, W ∈ Z
�. Any recursively enumerable set is [24] Diophantine.

Lattice-Based Zero-Knowledge Arguments for Integer Relations 707

thousands of bits) where it tends to be more efficient and it does not require the
maximal range length to be known when the commitment key is chosen.

Despite three decades of research, all known efficient range proofs (by “effi-
cient”, we mean that the communication complexity should be only logarithmic
in the range size) build on quantum-vulnerable assumptions and the only candi-
dates supporting very large integers rely on groups of hidden order. By proving
knowledge of small secret vectors, lattice-based protocols [39,47] can be seen
as providing a limited form of range proofs: if we can prove that a committed
x ∈ Z

m has infinity norm ‖x‖∞ < B for some basis B < q of a B-ary representa-
tion, we can prove that x encodes an integer X in the range [0, Bm−1]. However,
it is not clear how to deal with arbitrary ranges. Using homomorphic integer com-
mitments, any range [α, β] can be handled (see [17] and references therein) by
exploiting the homomorphic properties of the commitment scheme and proving
that X − α ∈ [0, β − α]. With homomorphic commitments used in the context
of lattice-based cryptography, there is no obvious way to shift the committed
value by an integer α when α > q. Even with a sub-exponential modulus q, the
size L of integers can be at most sub-linear in n. To our knowledge, no flexible
solution has been proposed in the lattice setting, let alone under standard lattice
assumptions with polynomial approximation factors and polynomial-size moduli.
Our schemes thus provide a first answer to this question.

In the context of set non-membership, our construction bears resemblance
with a technique used by Nakanishi et al. [56] to handle revocation in privacy-
preserving protocols by proving inequalities over the integers. For a public set
S = {s1, . . . , sN} arranged in lexicographical order, they rely on a trusted
authority to create Camenisch-Lysyanskaya signatures [16] on all ordered pairs
{Msgi = (si, si+1)}N−1

i=1 of adjacent set elements. To prove that a committed
s is not in S, the prover proceeds with a proof of knowledge of two message-
signature pairs (Msgj , sigj), (Msgj+1, sigj+1) for which Msgj = (sj , sj+1) and
Msgj+1 = (sj+1, sj+2) contain elements sj , sj+1 such that sj < s < sj+1.
While this approach could be instantiated with our technique for proving integer
inequalities, it would require proofs of knowledge of signatures and thus lattice
trapdoors (indeed, all known lattice-based signatures compatible with proofs of
knowledge rely on lattice trapdoors [26,53]). By using proofs of knowledge of a
Merkle tree path [44] instead of signatures, our solution eliminates the need for
lattice trapdoors, which allows for a better efficiency (note that proving inequal-
ities sj < s < sj+1 incurs a complexity Ω(log N) in both cases, so that using
Merkle trees does not affect the asymptotic complexity). Moreover, the technique
of Nakanishi et al. [56] involves a trusted entity to sign all pairs (si, si+1)}N−1

i=1

in a setup phase whereas no trusted setup is required in our construction.
Other approaches to prove (non-)membership of a public set were suggested

in [12,15,41,46]. However, they rely on a trusted entity to approve the sets
of which (non-)membership must be proven during a setup phase. Setup-free
accumulator-based set membership proofs were described in [11,44], but they
are not known to support non-membership proofs.

708 B. Libert et al.

In [6], Bayer and Groth cleverly used Σ protocols to handle proofs of
non-membership without assuming a trusted setup. Their construction achieves
logarithmic complexity in the cardinality of the set, but it crucially relies on
commitment schemes, like Pedersen’s discrete-log-based commitment [57], with
homomorphic properties over the message space and the randomness space. For
lack of a lattice-based commitment scheme with similar properties, their app-
roach does not seem readily instantiable under lattice assumptions.

2 Preliminaries

Notations. When working with an integer X ∈ [0, 2L − 1], we use the notation
X = (xL−1, . . . , x0)2 to describe its bits, and use bold lower-case letter x to
denote the representation of X as binary column vector (xL−1, . . . , x0) ∈ {0, 1}L.
The column concatenation of matrices A ∈ Z

n×k and B ∈ Z
n×m is denoted by

[A|B] ∈ Z
n×(k+m). When concatenating column vectors x ∈ Z

k and y ∈ Z
m, for

simplicity, we often use the notation (x‖y) ∈ Z
k+m (instead of (x�‖y�)�).

2.1 Lattice-Based Cryptographic Building Blocks

We first recall the average-case problem SIS and its hardness.

Definition 1 (SIS∞
n,m,q,β [2,26]). Given uniformly random matrix A ∈ Z

n×m
q ,

find a non-zero vector x ∈ Z
m such that ‖x‖∞ ≤ β and A · x = 0 mod q.

If m,β = poly(n), and q > β · ˜O(
√

n), the SIS∞
n,m,q,β problem is at least as hard

as worst-case lattice problem SIVPγ for some γ = β · ˜O(
√

nm) (see, e.g., [26,54]).
We will use two SIS-based cryptographic ingredients: the commitment scheme

of Kawachi, Tanaka and Xagawa [39] (KTX) and the Merkle hash tree from [44].

The KTX commitment scheme. The scheme works with security parameter
n, prime modulus q = O(

√
L · n), and dimension m = n(log2 q
 + 3). We will

consider several flavours of the scheme.
In the variant that allows committing to L ≤ poly(n) bits, the commitment

key is (a0, . . . ,aL−1,B) ←↩ U(Zn×(m+L)
q). To commit to a bitstring x0, . . . , xL−1,

one samples r ←↩ U({0, 1}m), and outputs c =
∑L−1

i=0 ai ·xi+B·r mod q. Then, to
open the commitment, one simply reveals x0, . . . , xL−1 ∈ {0, 1} and r ∈ {0, 1}m.

If one can compute two valid openings (x′
0, . . . , x

′
L−1, r

′) and (x′′
0 , . . . , x′′

L−1,
r′′) for the same commitment c, where (x′

0, . . . , x
′
L−1) �= (x′′

0 , . . . , x′′
L−1), then one

can compute a solution to the SIS∞
n,m+L,q,1 problem associated with the uniformly

random matrix [a0 | . . . | B] ∈ Z
n×(m+L)
q . Thus, the scheme is computationally

binding, assuming the worst-case hardness of SIVP
˜O(

√
L·n). On the other hand, by

the Leftover Hash Lemma [29], the distribution of a commitment c is statistically
close to uniform over Z

n
q . This implies that the scheme is statistically hiding.

Lattice-Based Zero-Knowledge Arguments for Integer Relations 709

In the special case when L = 1, the scheme becomes a bit commitment
scheme, in which case it can use a small modulus q = ˜O(n) and rely on a weak
SIVP assumption with γ = ˜O(n).

Kawachi et al. [39] extended the above fixed-length commitment scheme to a
string commitment scheme COM : {0, 1}∗ ×{0, 1}m → Z

n
q . The obtained scheme

is also statistically hiding for the given setting of parameters, and computation-
ally binding assuming that SIVP

˜O(n) is hard.
Here, we will use the first commitment variant to commit to secret bits and

the string commitment scheme COM as a building block for Stern-like protocols.

Lattice-based Merkle hash tree. The construction relies on the following
collision-resistant hash function. Let n be the security parameter, q = ˜O(n),
k = n	log2 q
 and m = 2k. Define the “powers-of-2” matrix

G = In ⊗ [1 2 4 . . . 2�log2 q	−1] ∈ Z
n×k
q .

Note that for every v ∈ Z
n
q , we have v = G · bin(v), where bin(v) ∈ {0, 1}k

denotes the binary representation of v.
For matrix B = [B0 | B1] ←↩ U(Zn×m

q), where B0,B1 ∈ Z
n×k
q , define the

function hB : {0, 1}k × {0, 1}k → {0, 1}k as follows:

(u0,u1) �→ hB(u0,u1) = bin
(

B0 · u0 + B1 · u1 mod q
)

.

Note that hB(u0,u1) = u ⇔ B0 · u0 + B1 · u1 = G · u mod q. This hash
function was shown collision-resistant if SIVP

˜O(n) is hard [2,44]. It allows build-
ing Merkle trees to securely accumulate data. In particular, for an ordered set
S = {d0, . . . ,d2�−1} consisting of 2� ∈ poly(n) elements of bit-size k, one builds
the binary tree of depth � on top of elements of the set, as follows. First, asso-
ciate the 2� leaf nodes with elements of the set, with respect to the order of these
elements. Then, every non-leaf node of the tree is associated with the hash value
of its two children. Finally, output the root of the tree u ∈ {0, 1}k. Note that,
the collision resistance of the hash function hB guarantees that it is infeasible
to find a tree path starting from the root u and ending with d′ �∈ S.

2.2 Zero-Knowledge Argument Systems and Stern-Like Protocols

We will work with statistical zero-knowledge argument systems, where remain
zero-knowledge for any cheating verifier while the soundness property only holds
against computationally bounded cheating provers. More formally, let the set of
statements-witnesses R = {(y, w)} ∈ {0, 1}∗ × {0, 1}∗ be an NP relation. A two-
party game 〈P,V〉 is called an interactive argument system for the relation R
with soundness error e if the following conditions hold:

– Completeness. If (y, w) ∈ R then Pr
[〈P(y, w),V(y)〉 = 1

]

= 1.

– Soundness. If (y, w) �∈ R, then ∀ PPT ̂P: Pr[〈 ̂P(y, w),V(y)〉 = 1] ≤ e.

710 B. Libert et al.

An argument system is called statistical zero-knowledge if there exists a PPT
simulator S(y) having oracle access to any ̂V(y) and producing a simulated
transcript that is statistically close to the one of the real interaction between
P(y, w) and ̂V(y). A related notion is argument of knowledge, which requires
the witness-extended emulation property. For protocols consisting of 3 moves
(i.e., commitment-challenge-response), witness-extended emulation is implied by
special soundness [32], where the latter assumes that there exists a PPT extrac-
tor which takes as input a set of valid transcripts with respect to all possible
values of the “challenge” to the same “commitment”, and outputs w′ such that
(y, w′) ∈ R.

The statistical zero-knowledge arguments of knowledge presented in this work
are Stern-like [59] protocols. In particular, they are Σ-protocols in the general-
ized sense defined in [37] (where 3 valid transcripts are needed for extraction,
instead of just 2). The basic protocol consists of 3 moves: commitment, challenge,
response. If a statistically hiding and computationally binding string commit-
ment scheme, such as the KTX scheme [39], is employed in the first move, then
one obtains a statistical zero-knowledge argument of knowledge (ZKAoK) with
perfect completeness, constant soundness error 2/3. In many applications, the
protocol is repeated κ = ω(log n) times to make the soundness error negligibly
small in n.

3 A General Zero-Knowledge Argument of Knowledge

This section presents a general Stern-like zero-knowledge argument system that
subsumes all the subsequent constructions in Sects. 4, 5 and 6. Before describing
the protocol, we first recall two previous Stern-like techniques that it will use.

3.1 Some Previous Extending-then-Permuting Techniques

Let us recall the techniques for proving knowledge of a single secret bit x, and
for proving knowledge of bit product x1 · x2, from [42,44], respectively. These
techniques will be employed in the protocol presented in Sect. 3.2.

For any bit b ∈ {0, 1}, denote by b the bit b = b + 1 mod 2, and by ext2(b)
the 2-dimensional vector (b, b) ∈ {0, 1}2.

For any bit c ∈ {0, 1}, define P 2
c as the permutation that transforms the

integer vector v = (v0, v1) ∈ Z
2 into P 2

c (v) = (vc, vc). Namely, if c = 0 then P 2
c

keeps the arrangement the coordinates of v; or swaps them if c = 1. Note that:

v = ext2(b) ⇐⇒ P 2
c (v) = ext2(b + c mod 2). (3)

As shown in [44], the equivalence (3) helps proving knowledge of a secret bit x
that may appear in several correlated linear equations. To this end, one extends
x to ext2(x) ∈ {0, 1}2, and permutes the latter using P 2

c , where c is a uniformly
random bit. Seeing the permuted vector ext2(x + c mod 2) convinces the verifier
that the original vector ext2(x) is well-formed – which in turn implies knowledge
of some bit x – while c acts as a “one-time pad” that completely hides x.

Lattice-Based Zero-Knowledge Arguments for Integer Relations 711

To prove that a bit is the product x1 · x2 of two secret bits, Libert et al. [42]
introduced the following t echnique. For any two bits b1, b2, define

ext4(b1, b2) = (b1 · b2, b1 · b2, b1 · b2, b1 · b2) ∈ {0, 1}4,

which is an extension of the bit product b1 · b2. Next, define a specific type of
permutation associated with two bits, as follows.

For any two bits c1, c2 ∈ {0, 1}, define P 4
c1,c2 as the permutation that trans-

forms the integer vector v = (v0,0, v0,1, v1,0, v1,1) ∈ Z
4 into

P 4
c1,c2(v) =

(

vc1,c2 , vc1,c2 , vc1,c2 , vc1,c2

) ∈ Z
4.

For any bits b1, b2, c1, c2 and any vector v = (v0,0, v0,1, v1,0, v1,1) ∈ Z
4, we have

v = ext4(b1, b2) ⇐⇒ P 4
c1,c2(v) = ext4(b1 + c1 mod 2, b2 + c2 mod 2). (4)

As a result, to prove the well-formedness of x1 · x2, one can extend it to the
vector ext4(x1, x2), permute the latter using P 4

c1,c2 , where c1, c2 are uniformly ran-
dom bits, and send the permuted vector to the verifier who should be convinced
that the original vector, i.e., ext4(x1, x2), is well-formed, while learning nothing
else about x1 and x2, thanks to the randomness of c1 and c2. Furthermore, this
sub-protocol can be combined with other Stern-like protocols, where one has to
additionally prove that x1, x2 satisfy other conditions. This is done by using the
same “one-time pads” c1, c2 at all occurrences of x1 and x2, respectively.

3.2 Our General Protocol

Let N,m1,m2 be positive integers, where m1 ≤ N . Let T =
{(i1, j1), . . . , (i|T |, j|T |)} be a non-empty subset of [N] × [N]. Define d1 =
2(m1 + m2), d2 = 2N + 4|T | and d = d1 + d2. Let n1 ≤ d1, n2 ≤ d2 and
q > 2 be positive integers. The argument system we aim to construct can be
summarized as follows.

Public input consists of g1, . . . ,gm1 ,b1, . . . ,bm2 ,u1 ∈ Z
n1
q and

{h�,k}(�,k)∈[n2]×[N]; {f�,t}(�,t)∈[n2]×[|T |]; v1, . . . , vn2 ∈ Z2.

Prover’s witness is (N + m2)-bit vector s = (s1, . . . , sm1 , . . . , sN , . . . ,
sN+m2).
Prover’s goal is to prove in zero-knowledge that:

1. The first m1 bits s1, . . . , sm1 and the last m2 bits sN+1, . . . , sN+m2 satisfy the
following linear equation modulo q.

∑

i∈[m1]

gi · si +
∑

j∈[m2]

bj · sN+j = u1 mod q. (5)

712 B. Libert et al.

2. The first N bits s1, . . . , sm1 , . . . , sN satisfy the following n2 equations modulo
2 that contain N linear terms and a total of |T | quadratic terms {sit

·sjt
}|T |

t=1.

∀� ∈ [n2] :
N

∑

k=1

h�,k · sk +
|T |
∑

t=1

f�,t · (sit
· sjt

) = v� mod 2. (6)

Looking ahead, all the statements that we will consider in Sects. 4, 5 and 6
can be handled as special cases of the above general protocol, which will serve
as an “umbrella” for all of our subsequent constructions.

As a preparation for the protocol construction, let us first introduce a few
notations and techniques.

Encoding vector ENC(·). In the protocol, we will work with a binary vector
of length d that has a very specific constraint determined by N + m2 bits. For
any b = (b1, . . . , bm1 , . . . , bN , . . . , bN+m2) ∈ {0, 1}N+m2 , we denote by ENC(b) ∈
{0, 1}d the vector encoding b as follows:

ENC(b) =
(

ext2(b1) ‖ . . . ‖ ext2(bm1) ‖ ext2(bN+1) ‖ . . . ‖ ext2(bN+m2)

‖ ext2(b1) ‖ . . . ‖ ext2(bN) ‖ ext4(bi1 , bj1) ‖ . . . ‖ ext4(bi|T | , bj|T |)
)

,

where ext2(·) and ext4(·, ·) are as in Sect. 3.1.

Permutation Γ . To prove in zero-knowledge of a vector that has the form
ENC(·), we will need to a specific type of permutation. To this end, we associate
each c = (c1, . . . , cN , . . . , cN+m2) ∈ {0, 1}N+m2 with a permutation Γc that acts
as follows. When being applied to vector

v =
(

v1‖ . . . ‖vm1‖vm1+1‖ . . . ‖vm1+m2‖vm1+m2+1‖ . . . ‖vm1+m2+N‖
‖vm1+m2+N+1‖ . . . ‖vm1+m2+N+|T |

) ∈ Z
d,

whose first m1 +m2 +N blocks are of length 2 and last |T | blocks are of length 4,
it transforms these blocks as described below.

vi �→ P 2
ci

(vi),∀i ∈ [m1]; vm1+j �→ P 2
cN+j

(vm1+j),∀j ∈ [m2];

vm1+m2+k �→ P 2
ck

(vm1+m2+k),∀k ∈ [N];

vm1+m2+N+t �→ P 4
cit ,cjt

(vm1+m2+N+t),∀t ∈ [|T |].

Based on the equivalences observed in (3)–(4), it can be checked that the
following holds. For all b, c ∈ {0, 1}N+m2 , all v ∈ Z

d,

v = ENC(b) ⇐⇒ Γc(v) = ENC(b + c mod 2). (7)

Let us now present the protocol, based on the above notations and techniques.
First, we perform the following extensions for the secret objects:

{

∀k ∈ [N + m2] : sk = ext2(sk) ∈ {0, 1}2
∀(it, jt) ∈ T : yit,jt

= ext4(sit
, sjt

) ∈ {0, 1}4. (8)

Lattice-Based Zero-Knowledge Arguments for Integer Relations 713

Now, we will perform some transformations regarding Eq. (5). Observe that,
for each i ∈ [m1], if we form matrix Gi = [0n1 | gi] ∈ Z

n1×2
q , then we will have

Gi · si = gi · si mod q. Similarly, for each j ∈ [m2], if we form Bj = [0n1 | bj] ∈
Z

n1×2
q , then we will have Bj · sN+j = bj · sN+j mod q.

Therefore, if we build matrix M1 = [G1 | . . . | Gm1 | B1 | . . . |
Bm2] ∈ Z

n1×d1
q , Eq. (5) can be expressed as M1 · w1 = u1 mod q, where

w1 =
(

s1‖ . . . ‖sm1‖sN+1‖ . . . ‖sN+m2

) ∈ {0, 1}d1 .
Next, we will unify all the n2 equations in (6) into just one equation modulo 2,

in the following manner. We form matrices
{

H�,k =
[

0 | h�,k

] ∈ Z
1×2
2 ,∀(�, k) ∈ [n2] × [N];

F�,t =
[

0 | 0 | 0 | f�,t

] ∈ Z
1×4
2 ,∀(�, t) ∈ [n2] × [|T |],

and note that H�,k · sk = h�,k · sk mod 2 and F�,t · yit,jt
= f�,t · (sij

· sit
) mod 2.

Thus, (6) can be rewritten as:

H1,1 · s1 + . . . + H1,N · sN + F1,1 · yi1,j1 + · · · + F1,|T | · yi|T |,j|T | = v1 mod 2

H2,1 · s1 + . . . + H2,N · sN + F2,1 · yi1,j1 + · · · + F2,|T | · yi|T |,j|T | = v2 mod 2

...
...

...

Hn2,1 · s1 + · · · + Hn2,N · sN + Fn2,1 · yi1,j1 + · · · + Fn2,|T | · yi|T |,j|T | = vn2 mod 2.

Letting u2 = (v1, . . . , vn2)
� ∈ Z

n2
2 , the above equations can be unified into

M2 · w2 = u2 mod 2, (9)

where matrix M2 ∈ Z
n2×d2
2 is built from H�,k,F�,t, and

w2 =
(

s1‖ . . . ‖sN‖yi1,j1‖ . . . ‖ yi|T |,j|T |

) ∈ {0, 1}2N+4|T |.

Now, let us construct the vector w = (w1‖w2) ∈ {0, 1}d, which has the form
(

s1‖ . . . ‖sm1‖sN+1‖ . . . ‖ sN+m2‖s1 ‖ . . . ‖sN ‖yi1,j1‖ . . . ‖ yi|T |,j|T |

)

,

where its components blocks are as described in (8). Then, by our above defini-
tion of encoding vectors, we have w = ENC(s).

The transformations we have done so far allow us to reduce the original
statement to proving knowledge of vector s ∈ {0, 1}N+m2 , such that the compo-
nent vectors w1 ∈ {0, 1}d1 , w2 ∈ {0, 1}d2 of w = ENC(s) satisfy the equations
M1 · w1 = u1 mod q and M2 · w2 = u2 mod 2. The derived statement can be
handled in Stern’s framework, based on the following main ideas.

– To prove that w = ENC(s), we will use the equivalence (7). To this end, we
sample a uniformly random c ∈ {0, 1}N+m2 and prove instead that Γc(w) =
ENC(s + c mod 2). Seeing this, the verifier is convinced in ZK that w indeed
satisfies the required constraint, thanks to the randomness of c.

714 B. Libert et al.

– To prove that equations M1 · w1 = u1 mod q and M2 · w2 = u2 mod 2 hold,
we sample uniformly random r1 ∈ Z

d1
q , r2 ∈ Z

d2
2 , and demonstrate that

M1 · (w1 + r1) = u1 + M1 · r1 mod q;M2 · (w2 + r2) = u2 + M2 · r2 mod 2.

The interactive protocol. Our interactive protocol goes as follows.

– The public input consists of matrices M1,M2 and vectors u1,u2, which are
constructed from the original public input, as discussed above.

– The prover’s witness consists of the original secret vector s ∈ {0, 1}N+m2 and
vector w = (w1‖w2) = ENC(s) derived from s, as described above.

The prover P and the verifier V interact as described in Fig. 1. The protocol
uses the KTX string commitment scheme COM, which is statistically hiding
and computationally binding. For simplicity of presentation, for vectors w =
(

w1‖w2

) ∈ Z
d and r =

(

r1‖r2
) ∈ Z

d, we denote by w � r the operation that
computes z1 = w1 + r1 mod q, z2 = w2 + r2 mod 2, and outputs d-dimensional
integer vector z =

(

z1‖z2
)

. We note that, for all c ∈ {0, 1}N+m2 , if t = Γc(w)
and s = Γc(r), then we have Γc(w � r) = t � s.

The described protocol can be seen as an improved version of a Stern-like
protocol presented in [45], in the following aspect. In the case Ch = 1, instead
of sending Γc(w) = ENC(c�) - which costs d = 2(m1 +m2) + 2N + 4|T | bits, we
let the prover send c� which enables the verifier to compute the value ENC(c�)
and which costs only N +m2 bits. Due to this modification, the results from [45]
are not directly applicable to our protocol, and thus, in the proof of Theorem 1,
we will analyze the protocol from scratch.

Theorem 1. Suppose that COM is a statistically hiding and computationally
binding string commitment. Then, the protocol described above is a statistical
ZKAoK for the considered relation, with perfect completeness, soundness error
2/3 and communication cost ζ+2+N+m2+2(m1+m2)	log2 q
+2N+4|T |, where
ζ = O(n log n) is the total bit-size of CMT and two commitment randomness.

Proof. We first analyze the completeness and efficiency of the protocol. Then we
prove that it is a zero-knowledge argument of knowledge.

Completeness. Suppose that the prover is honest and follows the protocol.
Then, observe that the verifier outputs 1 under the following conditions.

1. t � v = Γc(z). This conditions holds, since w = ENC(s), and by equiva-
lence (7), we have t = ENC(c�) = ENC(s + c mod 2) = Γc(ENC(s)) = Γc(w).
Hence, t � v = Γc(w) � Γc(r) = Γc(w � r) = Γc(z).

2. M1 · x1 − u1 = M1 · r1 mod q and M2 · x2 − u2 = M2 · r2 mod 2. These
two equations hold, because x1 = w1 + r1 mod q, x2 = w2 + r2 mod 2 and
M1 · w1 = u1 mod q, M2 · w2 = u2 mod 2.

Therefore, the protocol has perfect completeness.

Lattice-Based Zero-Knowledge Arguments for Integer Relations 715

Fig. 1. The interactive protocol.

Efficiency. Both prover and verifier only have to carry out O(d) simple oper-
ations modulo q and modulo 2. In terms of communication cost, apart from
ζ bits needed for transferring CMT and two commitment randomness, the
prover has to send a vector in {0, 1}N+m2 , a vector in Z

d1
q and a vector

in Z
d2
2 , while the verifier only has to send 2 bits. Thus, the total cost is

ζ + 2 + N + m2 + 2(m1 + m2)	log2 q
 + 2N + 4|T | bits. (When COM is the
KTX string commitment scheme, we have ζ = 3n	log2 q
 + 2m.)

Zero-Knowledge Property. We construct a PPT simulator SIM interacting
with a (possibly dishonest) verifier ̂V, such that, given only the public input, it
outputs with probability negligibly close to 2/3 a simulated transcript that is
statistically close to the one produced by the honest prover in the real interaction.

The simulator first chooses a random Ch ∈ {1, 2, 3} as a prediction of the
challenge value that ̂V will not choose.

Case Ch = 1: SIM uses linear algebra over Zq and Z2 to find w′
1 ∈ Z

d1
q and

w′
2 ∈ Z

d2
2 s.t. M1 · w′

1 = u1 mod q and M2 · w′
2 = u2 mod 2. Let w′ = (w′

1‖w′
2).

Next, it samples c ← U({0, 1}N+m2), r1 ← U(Zd1
q), r2 ← U(Zd2

2), and com-
putes r = (r1‖r2), z′ = w′ � r. Then, it samples randomness ρ1, ρ2, ρ3 for COM

716 B. Libert et al.

and sends the commitment CMT =
(

C ′
1, C

′
2, C

′
3

)

to ̂V, where

C ′
1 = COM(c,M1 · r1 mod q,M2 · r2 mod 2; ρ1),

C ′
2 = COM(Γc(r); ρ2), C ′

3 = COM(Γc(z′); ρ3).

Receiving a challenge Ch from ̂V, the simulator responds as follows:

– If Ch = 1: Output ⊥ and abort.
– If Ch = 2: Send RSP =

(

c, z′, ρ1, ρ3
)

.
– If Ch = 3: Send RSP =

(

c, r, ρ1, ρ2
)

.

Case Ch = 2: SIM samples s′ ← U({0, 1}N+m2) and computes w′ = ENC(s′).
Next, it picks c ← U({0, 1}N+m2), and r1 ← U(Zd1

q), r2 ← U(Zd2
2), and com-

putes r = (r1‖r2), z′ = w′ � r. Then, it samples randomness ρ1, ρ2, ρ3 for COM

and sends the commitment CMT =
(

C ′
1, C

′
2, C

′
3

)

to ̂V, where

C ′
1 = COM(c,M1 · r1 mod q,M2 · r2 mod 2; ρ1),

C ′
2 = COM(Γc(r); ρ2), C ′

3 = COM(Γc(z′); ρ3).

Receiving a challenge Ch from ̂V, the simulator responds as follows:

– If Ch = 1: Send RSP =
(

s′ + c mod 2, Γc(r), ρ2, ρ3
)

.
– If Ch = 2: Output ⊥ and abort.
– If Ch = 3: Send RSP =

(

c, r, ρ1, ρ2
)

.

Case Ch = 3: SIM prepares CMT =
(

C ′
1, C

′
2, C

′
3

)

as in the case Ch = 2 above,
except that C ′

1 is computed as

C ′
1 = COM(c,M1 · (w′

1 + r1) − u1 mod q,M2 · (w′
2 + r2) − u2 mod 2; ρ1).

Receiving a challenge Ch from ̂V, it responds as follows:

– If Ch = 1: Send RSP computed as in the case (Ch = 2, Ch = 1).
– If Ch = 2: Send RSP computed as in the case (Ch = 1, Ch = 2).
– If Ch = 3: Output ⊥ and abort.

In all the above cases, since COM is statistically hiding, the distribution of the
commitment CMT and that of the challenge Ch from ̂V are statistically close to
those of the real interaction. Hence, the probability that the simulator outputs ⊥
is negligibly far from 1/3. Moreover, whenever the simulator does not halt, it
provides an accepting transcript, of which the distribution is statistically close to
that of the prover in a real interaction. We thus described a simulator that can
successfully emulate the honest prover with probability negligibly close to 2/3.

Argument of Knowledge. Suppose that we have RSP1 = (c�,v, ρ
(1)
2 , ρ

(1)
3),

RSP2 = (b,x, ρ
(2)
1 , ρ

(2)
3), and RSP3 = (e,y, ρ

(3)
1 , ρ

(3)
2), which are accepting tran-

scripts for the three possible values of the challenge and the same commitment

Lattice-Based Zero-Knowledge Arguments for Integer Relations 717

CMT = (C1, C2, C3). Let us parse x and y as x = (x1‖x2), y = (y1‖y2), where
x1,y1 ∈ Z

d1
q and x2,y2 ∈ Z

d2
2 . The validity of the given responses implies that:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

C1 = COM(b,M1 · x1 − u1 mod q,M2 · x2 − u2 mod 2; ρ(2)1);
C1 = COM(e,M1 · y1 mod q,M2 · y2 mod 2; ρ(3)1);
C2 = COM(v; ρ(1)2) = COM(Γe(y); ρ32);
C3 = COM(t � v; ρ(1)3) = COM(Γb(x); ρ(2)3),

where t = ENC(c�). Since COM is computationally binding, we can deduce that:

b = e; v = Γe(y); t � v = Γb(x);
M1 · x1 − u1 = M1 · y1 mod q; M2 · x2 − u2 = M2 · y2 mod 2.

Let s′ = c�+e mod 2 and w′ = [Γe]−1(t). Since t = ENC(c�), by equivalence (7),
we have that w′ = ENC(s′). Furthermore, note that Γe(w′) � Γe(y) = Γe(x),
which implies that w′ � y = x.

Now, parse w′ as w′ = (w′
1‖w′

2), where w′
1 ∈ {0, 1}d1 and w′

2 ∈ {0, 1}d2 .
Then, we have w′

1 + y1 = x1 mod q, w′
2 + y2 = x2 mod 2, and

M1 · w′
1 = M1 · x1 − M1 · y1 = u1 mod q;

M2 · w′
2 = M2 · x2 − M2 · y2 = u2 mod 2.

This implies w′ = (w′
1‖w′

2) = ENC(s′), as well as M1 · w′
1 = u1 mod q and

M2 · w′
2 = u2 mod 2. Let s′ = (s′

1, . . . , s
′
m1

, . . . , s′
N , . . . , s′

N+m2
) ∈ {0, 1}N+m2 .

By reversing the transformations, it can be seen that the bits of s′ satisfy
∑

i∈[m1]

gi · s′
i +

∑

j∈[m2]

bj · s′
N+j = u1 mod q;

∀� ∈ [n2] :
N

∑

k=1

h�,k · s′
k +

|T |
∑

t=1

f�,t · (s′
it

· s′
jt

) = v� mod 2.

Hence, we have extracted s′ = (s′
1, . . . , s

′
m1

, . . . , s′
N , . . . , s′

N+m2
), which is a valid

witness for the considered relation. ��
As we mentioned earlier, all the statements we will consider in the next sections
will be reduced into instances of the presented general protocol. For each of
them, we will employ the same strategy. First, we demonstrate that the consid-
ered statement can be expressed as an equation modulo q of the form (5) and
equations modulo 2 of the form (6). This implies that we can run the general
protocol to handle the statement, and obtain a statistical ZKAoK via Theorem 1.
Next, as the complexity of the protocol depends on m1 + m2, N, |T |, we count
these respective numbers in order to evaluate its communication cost.

4 Zero-Knowledge Arguments for Integer Additions

This section presents our lattice-based ZK argument system for additive rela-
tion among committed integers. Let n be the security parameter, and let

718 B. Libert et al.

L = poly(n). Given KTX commitments to L-bit integers X = (xL−1, . . . , x0)2,
Y = (yL−1, . . . , y0)2 and (L+1)-bit integer Z = (zL, zL−1, . . . , z0)2, the protocol
allows the prover to convince the verifier in ZK that X + Y = Z over Z.

As discussed in Sects. 1 and 2.1, using different flavors of the KTX commit-
ment scheme, we can commit to all the bits of X,Y,Z at once or a bit-by-bit
fashion. Both approaches are both compatible with (and independent of) our
ZK techniques. Depending on which commitments we use, we obtain different
give trade-offs in terms of parameters, key sizes, security assumptions and com-
munication costs. In the following, we will use the former variant, which yields
communication complexity ˜O(L + n). Our protocol can be easily adjusted to
handle the bit-wise commitment variant, which yields complexity ˜O(L · n), but
allows smaller parameters, smaller keys and weaker lattice assumption.

Commitments. Let a prime q = ˜O(
√

L · n) and m = n(log2 q
 + 3). Choose a
commitment key (a0, . . . ,aL−1,aL,b1, . . . ,bm) ←↩ U(Zn×(L+m+1)

q). To commit
to X,Y,Z, sample ri,1, . . . , ri,m,←↩ U({0, 1}), for i ∈ {1, 2, 3}, and compute

⎧

⎪

⎨

⎪

⎩

∑L−1
i=0 ai · xi +

∑m
j=1 bj · r1,j = cx mod q;

∑L−1
i=0 ai · yi +

∑m
j=1 bj · r2,j = cy mod q;

∑L
i=0 ai · zi +

∑m
j=1 bj · r3,j = cz mod q,

(10)

and output commitments cx, cy, cz ∈ Z
n
q . The scheme relies on the worst-case

hardness of SIVPγ , for γ = ˜O(
√

L · n).
Before presenting our protocol, we note that the three equations (10) can be

unified into one equation of the form

L−1
∑

i=0

a(1)
i · xi +

L−1
∑

i=0

a(2)
i · yi +

L
∑

i=0

a(3)
i · zi +

∑

(i,j)∈[3]×[m]

b(i)
j · ri,j = c mod q, (11)

where a(1)
i ,a(2)

i ,a(3)
i ∈ Z

3n
q are extensions of ai; b(1)

j ,b(2)
j ,b(3)

j ∈ Z
3n
q are exten-

sions of bj ; and c = (cx‖cy‖cz) ∈ Z
3n
q . Having done this simple transformation,

we observe that Eq. (11) does have the form captured by Eq. (5) in the protocol
we put forward in Sect. 3. Here, the secret bits contained in the equations are
the bits of X,Y,Z and those of the commitment randomness.

Proving Integer Additions. At a high level, our main idea consists in trans-
lating the addition operation X + Y over the integers into the binary addition
operation with carries of (xL−1, . . . , x0)2 and (yL−1, . . . , y0)2 and proving that
this process indeed yields result (zL, zL−1, . . . , z0)2. For the latter statement,
we capture the whole process as equations modulo 2 that contain linear and
quadratic terms, and show how this statement, when combined with the com-
mitment equations (11), reduces to an instance of the protocol of Sect. 3.

Let us first consider the addition of two bits x, y with carry-in bit cin. Let the
output be bit z and the carry-out bit be cout. Then, observe that the relation
among x, y, z, cin, cout ∈ {0, 1} is captured by equations

Lattice-Based Zero-Knowledge Arguments for Integer Relations 719

{

z = x + y + cin mod 2
cout = x · y + z · cin + cin mod 2

⇐⇒
{

z + x + y + cin = 0 mod 2
cout + x · y + z · cin + cin = 0 mod 2.

Therefore, the addition with carries of (xL−1, . . . , x0)2 and (yL−1, . . . , y0)2 results
in (zL, zL−1, . . . , z0)2 if and only if the following equations hold:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

z0 + x0 + y0 = 0 mod 2;
c1 + x0 · y0 = 0 mod 2;
z1 + x1 + y1 + c1 = 0 mod 2;
c2 + x1 · y1 + z1 · c1 + c1 = 0 mod 2;

...
zL−1 + xL−1 + yL−1 + cL−1 = 0 mod 2;
zL + xL−1 · yL−1 + zL−1 · cL−1 + cL−1 = 0 mod 2.

(12)

Here, for each i ∈ {1, . . . , L − 1}, ci denotes the carry-out bit at the i-th step
which is also the carry-in bit at the (i+1)-th step. (The last carry-out bit is zL.)

Now, observe that, together with Eq. (11), the 2L equations in (12) lead
us to an instance of the protocol of Sect. 3. It indeed fits the pattern if we let
N := 4L, m1 := 3L + 1, m2 := 3m and denote the ordered tuple of N + m2

secret bits
(

x0, . . . , xL−1, y0, . . . , yL−1, z0, . . . , zL, c1, . . . , cL−1, r1,1, . . . , r3,m

)

by
(

s1, . . . , sN+m2

)

. Then, note that the first m1 bits s1, . . . , sm1 and the last m2

bits sN+1, . . . , sN+m2 satisfy the linear equation modulo q from (11), while the
first N bits s1, . . . , sN satisfy the equations modulo 2 in (12), which contain N
linear terms and a total of |T | := 2L − 1 quadratic terms, i.e.:

x0 · y0, x1 · y1, z1 · c1, . . . , xL−1 · yL−1, zL−1 · cL−1.

As a result, our ZK argument system can be obtained from the protocol
constructed in Sect. 3. The protocol is a statistical ZKAoK assuming the security
of two variants of the KTX commitment scheme: the variant used to commit
to X, Y , Z - which relies on the hardness of SIVP

˜O(
√

L·n), and the commitment
COM used in the interaction between two parties - which relies on the hardness of
SIVP

˜O(n). By Theorem 1, each execution of the protocol has perfect completeness,
soundness error 2/3 and communication cost

O(n log n) + 3m + 2(3L + 1 + 3m)	log2 q
 + 20L

bits, where O(n log n) is the total bit-size of 3 KTX commitments (sent by the
prover in the first move) and 2 commitment randomness. Here, it is important
to note that the cost of proving knowledge of valid openings for cx, cy, cz is
O(n log n) + 3m + 2(3L + 1 + 3m)	log2 q
 bits. Thus, the actual cost for proving
the addition relation is 20L bits.

We further remark that the protocol can easily be adapted to less challenging
situations such as: (i) The bit-size of the sum Z is public known to be exactly L
(instead of L+1); (ii) Not all elements X,Y,Z need to be hidden and committed.

720 B. Libert et al.

Indeed, in those scenarios, our strategy of expressing the considered relations as
equations modulo q and modulo 2 easily goes through. Moreover, it even simpli-
fies the resulting protocols and reduces their complexity because the number of
secret bits to deal with is smaller than in the above protocol.

5 Logarithmic-Size Arguments for Range Membership
and Set Non-Membership

We present two applications of our zero-knowledge protocol for integer additions
from Sect. 4: range membership and set non-membership arguments.

5.1 Range Membership Arguments

Our range arguments build on the integer addition protocol of Sect. 4. We
consider the problem of proving in ZK that a committed integer X satisfies
X ∈ [α, β], i.e., α ≤ X ≤ β, for publicly known integers α, β.

Let L = poly(n), q = ˜O(
√

L · n) and m = n(log2 q
 + 3). Suppose that L-bit
integer X = (xL−1, . . . , x0)2 is committed via the KTX commitment scheme,
using a public commitment key a0, . . . ,aL−1,b1, . . . ,bm ∈ Z

n
q and randomness

r1, . . . , rm ∈ {0, 1}. Namely, the commitment c ∈ Z
n
q is computed as

L−1
∑

i=0

ai · xi +
m

∑

j=1

bj · rj = c mod q. (13)

Our goal is to prove in ZK that X ∈ [α, β], for publicly given L-bit integers
α = (αL−1, . . . , α0)2 and β = (βL−1, . . . , β0)2.

The main idea. We observe that X satisfies α ≤ X ≤ β if and only if there
exist non-negative L-bit integers Y,Z such that

α + Y = X and X + Z = β. (14)

We thus reduce the task of proving X ∈ [α, β[to proving two addition relations
among integers, which can be achieved using the techniques of Sect. 4. To this
end, it suffices to demonstrate that the relations among the secret bits of X,Y,Z
and public bits of α, β can be expressed as equations modulo 2 of the form (6).

The underlying equations modulo 2. Let the bits of integers Y,Z be
(yL−1, . . . , y0)2 and (zL−1, . . . , z0)2, respectively. The addition α + Y = X
over Z, when viewed as a binary addition with carries, can be expressed as
the following 2L equations modulo 2 which contain L − 1 quadratic terms
x1 · c1, . . . , xL−1 · cL−1.

Lattice-Based Zero-Knowledge Arguments for Integer Relations 721

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

x0 + y0 = α0 mod 2;
c1 + α0 · y0 = 0 mod 2; // First carry-bit

x1 + y1 + c1 = α1 mod 2;
c2 + α1 · y1 + x1 · c1 + c1 = 0 mod 2; // Second carry-bit

...
cL−1 + αL−2 · yL−2 + xL−2 · cL−2 + cL−2 = 0 mod 2;
xL−1 + yL−1 + cL−1 = αL−1 mod 2;
αL−1 · yL−1 + xL−1 · cL−1 + cL−1 = 0 mod 2. // Last carry-bit is 0.

(15)

The relation X + Z = β is handled similarly. We obtain the following
2L equations modulo 2, which contain L quadratic terms x0 · z0, x1 · z1, . . . ,
xL−1 · zL−1.

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

x0 + z0 = β0 mod 2;
e1 + x0 · z0 = 0 mod 2; // First carry-bit

x1 + z1 + e1 = β1 mod 2;
e2 + x1 · z1 + β1 · e1 + e1 = 0 mod 2; // Second carry-bit

...
eL−1 + xL−2 · zL−2 + βL−2 · eL−2 + eL−2 = 0 mod 2;
xL−1 + zL−1 + eL−1 = βL−1 mod 2;
xL−1 · zL−1 + βL−1 · eL−1 + eL−1 = 0 mod 2. // Last carry-bit is 0.

(16)

Combining (15) and (16), we obtain a system of 4L equations modulo 2,
which contain N := 5L − 2 linear terms

x0, . . . , xL−1, y0, . . . , yL−1, z0, . . . , zL−1, c1, . . . , cL−1, e1, . . . , eL−1,

and a total of |T | = 2L − 1 quadratic terms

x1 · c1, . . . , xL−1 · cL−1, x0 · z0, x1 · z1, . . . , xL−1 · zL−1.

Putting it altogether. Based on the above transformations, we have translated
the task of proving that committed integer X satisfies X ∈ [α, β] to proving
knowledge of N + m2 = 5L − 2 + m secret bits

x0, . . . , xL−1, y0, . . . , yL−1, z0, . . . , zL−1, c1, . . . , cL−1, e1, . . . , eL−1, r1, . . . , rm, (17)

where the first m1 = L bits and the last m2 = m bits satisfy Eq. (13) modulo q,
while the first N = 5L−2 bits satisfy a system of equations modulo 2 containing
N linear terms and |T | = 2L−1 quadratic terms. In other words, we have reduced
the considered statement to an instance of the general protocol of Sect. 3.2. By
running the latter with the witness described in (17), we obtain a statistical
ZKAoK hardness of based on the hardness of SIVPγ with factor γ ≤ ˜O(

√
L · n).

722 B. Libert et al.

Each execution of the protocol has perfect completeness, soundness error 2/3
and communication cost

O(n log n) + m + 2(L + m)	log2 q
 + 23L

bits, where O(n log n) is the total bit-size of 3 KTX commitments (sent by the
prover in the first move) and 2 commitment randomness. Here, the cost of prov-
ing knowledge of a valid opening for c is O(n log n) + m + 2(L + m)	log2 q
 bits.
The actual cost for proving the range membership thus amounts to 23L bits.

Variants. Our techniques can be easily adapted to handle other variants of
range membership arguments. To prove a strict inequality, e.g., X < β for a
given β, we can simply prove that X ≤ β − 1 using the above approach. In the
case of hidden ranges, e.g., when we need prove that Y < X < Z where X,Y,Z
are all committed, then we proceed by proving the existence of non-negative
L-bit integers Y1, Z1 such that Y + Y1 + 1 = X and X + Z1 + 1 = Z. This can
be done by executing two instances of the protocol for addition relation among
committed integers from Sect. 4.

5.2 Set Non-Membership Arguments

In this section, we construct a protocol allowing to prove that a committed
element is not in a public set Set. The goal is to do this without relying on a
trusted third party to approve the description of Set by signing its elements or
any other means. To this end, we combine our protocols for integer addition
and inequalities with arguments of knowledge of a path in a Merkle tree [44].
While Merkle trees were introduced for proving set membership, we (somewhat
counter-intuitively) use them for dual purposes.

For security parameter n, choose q = ˜O(n), k = n	log2 q
 and m = 2k.
Sample uniformly random matrices A,B0,B1 ∈ Z

n×k
q , and denote their columns

as a0, . . . ,ak−1,b0,0, . . . ,b0,k−1,b1,0, . . . ,b1,k−1 ∈ Z
n
q . These vectors will serve

as public key for the KTX commitment scheme with k-bit committed values,
while matrix B = [B0 | B1] ∈ Z

n×2k
q will also serve as the public key for the

Merkle tree from [43]. Let G ∈ Z
n×k
q be the “powers-of-2” matrix of Sect. 2.1.

Let X = (xk−1, . . . , x0)2 be a k-bit integer, and let c ∈ Z
n
q be a KTX com-

mitment to X, i.e., we have the following equation modulo q:

k−1
∑

i=0

ai · xi +
∑

(i,j)∈{0,1}×k

bi,j · ri,j = c mod q, (18)

where bits r0,1, . . . , r1,k ∈ {0, 1} are the commitment randomness.
Let Set = {S1, . . . , SM} be a public set containing M = poly(n) integers of

bit-size k, where S1 < S2 < . . . < SM . We wish to prove in ZK that an integer
X, which has been committed to via c ∈ Z

n
q , does not belong to Set. We aim at

communication complexity O(log M), so that the protocol scales well for large
sets. To this end, we will use the lattice-based Merkle hash tree from [44].

Lattice-Based Zero-Knowledge Arguments for Integer Relations 723

Without loss of generality, assuming that M = 2� − 2 for some positive
integer �.3 For each i = 0, . . . , M , let si ∈ {0, 1}k be the binary-vector repre-
sentation of Si. Let s0 = (0, . . . , 0) and sM+1 = (1, . . . , 1) be the all-zero and
all-one vectors of length k, which represent 0 and 2k − 1, the smallest and the
largest non-negative integers of bit-size k, respectively. Using the SIS-based hash
function hB (see Sect. 2.1), we build a Merkle tree of depth � on top of 2� vectors
s0, s1, . . . , sM , sM+1 and obtain the root u ∈ {0, 1}k. For each i ∈ [0,M + 1],
the tree path from leaf si to root u is determined by the � bits representing
integer i.

We prove knowledge of two consecutive paths from leaves y ∈ {0, 1}k and z ∈
{0, 1}k to the public root u such that the k-bit integers Y and Z corresponding
to y and z satisfy Y < X < Z, where X is the integer committed in c.

Let v�−1, . . . , v0 and w�−1, . . . , w0 be the bits determining the paths from the
leaves y and z, respectively, to root u. Then, by “consecutive”, we mean that the
�-bit integers V = (v�−1, . . . , v0)2 and W = (w�−1, . . . , w0)2 satisfy V + 1 = W .

We remark that the truth of the statement – which is ensured by the sound-
ness of the argument – implies that the integer committed in c does not belong
to Set, assuming the collision-resistance of the Merkle hash tree and the secu-
rity of the commitment scheme. This is because: (i) The existence of the two
tree paths guarantees that y, z ∈ Set; (ii) The fact that they are consecutive
further ensures that (y, z) = (si, si+1), for some i ∈ [0,M]; (iii) The inequalities
Y < X < Z then implies that either X < S1 or SM < X or Sj < X < Sj+1, for
some j ∈ [1,M − 1]. In either case, it must be true that X �∈ Set.

The considered statement can be divided into 4 steps: (1) Proving knowledge
of X committed in c; (2) Proving knowledge of the tree paths from y and z; (3)
Proving the range membership Y < Z < X; (4) Proving the addition relation
V + 1 = W . We show that the entire statement can be expressed as one linear
equation modulo q together with linear and quadratic equations modulo 2, which
allows reducing it to an instance of the general protocol from Sect. 3.2. Regarding
(1), we have obtained Eq. (18). As for (2), we use the techniques from [44] to
translate Merkle tree inclusions into a set of provable equations modulo q and
modulo 2. The sub-statement (3) can be handled as in Sect. 5.1. Finally, (4) can
easily be expressed as 2� − 1 simple equations modulo 2.

The details of these steps are provided in the full version of the paper. We
finally remark that set elements can have a longer representation than k =
n	log q
 bits if we hash them into k-bit string before building the Merkle tree.
For this purpose, a SIS-based hash function HSIS : {0, 1}m → Z

n
q like [2] should

be used to preserve the compatibility with zero-knowledge proofs.

3 If M does not have this form, one can duplicate S1 sufficiently many times until the
cardinality of the set has this property. Our protocol remains the same in this case.

724 B. Libert et al.

6 Subquadratic Arguments for Integer Multiplications

For L = poly(n), we consider the problem of proving that committed integers
X = (xL−1, . . . , x0)2, Y = (yL−1, . . . , y0)2, Z = (z2L−1, . . . , z0)2 satisfy the mul-
tiplicative relation Z = XY . This task can be realized by running L instances
of the protocol for integer additions from Sect. 4, but this naive method would
yield complexity at least O(L2). Our target here is to design an asymptoti-
cally more efficient protocol with computation/communication cost subquadratic
in L. From a theoretical point of view, such a protocol is particularly interest-
ing, because its execution must somehow employ a subquadratic multiplication
algorithm. This inspires us to consider for the first time in the context of ZK
proofs the Karatsuba multiplication algorithm [38] that achieves subquadratic
complexity O(Llog2 3). Specifically, we will prove that the result of applying
the Karatsuba algorithm to committed integers X,Y is exactly the committed
integer Z.

Commitments. Choose a prime q = ˜O(
√

L ·n) and let m = n(log2 q
+3). We
use the KTX commitment scheme with public key (a0, . . . ,a2L−1,b1, . . . ,bm) ←↩

U(Zn×(2L+m)
q). Let cx, cy, cz ∈ Z

n
q be commitments to X,Y,Z, where

⎧

⎪

⎨

⎪

⎩

∑L−1
i=0 ai · xi +

∑m
j=1 bj · r1,j = cx mod q;

∑L−1
i=0 ai · yi +

∑m
j=1 bj · r2,j = cy mod q;

∑2L−1
i=0 ai · zi +

∑m
j=1 bj · r3,j = cz mod q,

where bits {ri,j}(i,j)∈[3]×[m] are the commitment randomness. Then, as in Sect. 4,
we can unify the 3 equations into one linear equation modulo q:

L−1
∑

i=0

a
(1)
i · xi +

L−1
∑

i=0

a
(2)
i · yi +

2L−1
∑

i=0

a
(3)
i · zi +

∑

(i,j)∈[3]×[m]

b
(i)
j · ri,j = c mod q. (19)

6.1 An Interpretation of the Karatsuba Algorithm

Let L = 2k for some positive integer k. We will employ a variant of the Karatsuba
algorithm, suggested by Knuth [40, Sect. 4.3.3]. First, we need to interpret the
execution of the algorithm in a fashion compatible with our ZK technique.

The First Iteration. For the first application of Karatsuba algorithm, we break
X and Y into their “most significant” and “least significant” halves:

X = [X(1),X(0)] and Y = [Y (1), Y (0)], (20)

where X(1),X(0), Y (1), Y (0) are L/2-bit integers. Then, as suggested by Knuth,
the product Z can be written as:

Z = XY = (2L + 2L/2) · X(1)Y (1) + (2L/2 + 1) · X(0)Y (0)

−2L/2 · (X(1) − X(0))(Y (1) − Y (0)). (21)

Lattice-Based Zero-Knowledge Arguments for Integer Relations 725

The advantage of Knuth’s approach over Karatsuba’s is that it allows working
with the differences (X(1) − X(0)), (Y (1) − Y (0)) that guarantee to have bit-
size L/2, rather than working with the sums (X(1) + X(0)), (Y (1) + Y (0)) that
cause a burden of carry-on bits. However, this modification introduces a new
issue as these differences may be negative, which are more difficult to handle in
our setting. For this reason, we need to make sure that we always subtract a
smaller integer from a larger one, while preserving the ability to prove correct
computations.

Let ̂X(1), ̂X(0) such that ̂X(1) ≥ ̂X(0) and { ̂X(1), ̂X(0)} = {X(1),X(0)}. If we
use an order control bit b that is assigned value 1 if X(1) ≥ X(0), or value 0
otherwise, and let X(2) = ̂X(1) − ̂X(0) ≥ 0, then we have the relations

̂X(1) = b · X(1) + b · X(0); ̂X(0) = b · X(1) + b · X(0); X(2) + ̂X(0) = ̂X(1). (22)

Conversely, if non-negative integers X(1),X(0), ̂X(1), ̂X(0),X(2) and bit b sat-
isfy (22), then it holds that { ̂X(1), ̂X(0)} = {X(1),X(0)} and ̂X(1) ≥ ̂X(0) and
X(2) = ̂X(1) − ̂X(0).

Similarly, we can obtain ̂Y (1), ̂Y (0) such that ̂Y (1) ≥ ̂Y (0), non-negative Y (2)

such that Y (2) = ̂Y (1) − ̂Y (0), as well as a control bit d satisfying

̂Y (1) = d · Y (1) + d · Y (0); ̂Y (0) = d · Y (1) + d · Y (0); Y (2) + ̂Y (0) = ̂Y (1). (23)

Relations (22)–(23) essentially establish a “bridge” that allows us to work (in
the subtractions X(1)−X(0) and Y (1)−Y (0) incurring in (21)) with non-negative
integers X(2) and Y (2) instead of possibly negative integers. Indeed, letting s =
b + d mod 2, we have

(X(1) − X(0))(Y (1) − Y (0)) = s · X(2)Y (2) − s · X(2)Y (2).

Then, Eq. (21) can be expressed as

Z = XY = (2L + 2L/2)Z(1) + (2L/2 + 1)Z(0) + 2L/2(s · Z(2)) − 2L/2(s · Z(2)),
(24)

where Z(1) = X(1)Y (1), Z(0) = X(0)Y (0) and Z(2) = X(2)Y (2) are L-bit integers.
These values are computed based on recursive applications of the Karatsuba
algorithm until we reach integers of bit-size L/2k−1 = 2, as described below.

The Recursion. For t = 1 to k − 2, and for string α ∈ {0, 1, 2}t, on input of
L/2t-bit integers X(α) and Y (α), we recursively obtain L/2t+1-bit integers

X(α1); X(α0); ̂X(α1); ̂X(α0); X(α2); Y (α1); Y (α0); ̂Y (α1); ̂Y (α0); Y (α2),

726 B. Libert et al.

and bits b(α), d(α), s(α) satisfying the following relations.
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

X(α) = [X(α1),X(α0)];
̂X(α1) = b(α) · X(α1) + b

(α) · X(α0); ̂X(α0) = b
(α) · X(α1) + b(α) · X(α0);

X(α2) + ̂X(α0) = ̂X(α1);
Y (α) = [Y (α1), Y (α0)];
̂Y (α1) = d(α) · Y (α1) + d

(α) · Y (α0); ̂Y (α0) = d
(α) · Y (α1) + d(α) · Y (α0);

Y (α2) + ̂Y (α0) = ̂Y (α1);
s(α) = b(α) + d(α) mod 2.

(25)

Let Z(α1) = X(α1)Y (α1), Z(α0) = X(α0)Y (α0), Z(α2) = X(α2)Y (α2). Note that
these L/2t-bit integers satisfy the equation:

Z(α) := X(α)Y (α) =
(

2L/2t

+ 2L/2t+1) · Z(α1) + (2L/2t+1
+ 1) · Z(α0)

+ 2L/2t+1 · (s(α) · Z(α2)) − 2L/2t+1 · (s(α) · Z(α2)). (26)

We remark that the number of secret bits contained in the integers

{X(α1); X(α0); ̂X(α1); ̂X(α0); X(α2)}, where α ∈ {0, 1, 2}t,∀t = 0, . . . , k − 2,

derived from X in the above process is

5 ·
k−2
∑

t=0

(

3t · L

2t+1

)

=
5L

3
·

k−2
∑

t=0

(

3
2

)t+1

=
10L

3
·
(

3
2

)k

− 5L =
10
3

· 3log2 L − 5L.

That is also the number of secret bits in the integers derived from Y . Meanwhile,
the number of control bits b(α), d(α), s(α) is 3 ·∑k−2

t=0 3t = (3log2 L −3)/2. In total,
the process gives us O(3log2 L) = O(Llog2 3) secret bits.

6.2 Representing All Relations as Equations Modulo 2

As shown in Sects. 4 and 5, to prove that committed integers satisfy some state-
ment, it suffices to demonstrate that the statement can be expressed as one
linear equation modulo q together with linear and quadratic equations modulo
2, which effectively reduces it to an instance of the general protocol of Sect. 3.2.
We have already obtained the linear equation modulo q from (19). Our main task
is now to show that all the relations among O(Llog2 3) secret bits obtained in
Sect. 6.1 can be expressed in terms of linear and quadratic equations modulo 2.

We observe that, apart from the linear equations s(α) = b(α) + d(α) mod 2,
there are several common types of relations among the secret objects derived in
Sect. 6.1, for which we handle as follows.

The first type is relation of the form X(α) = [X(α1),X(α0)], between an L/2t-
bit integer X(α) and its halves X(α1) and X(α0). Let X(α) = (x(α)

L
2t −1

, . . . , x
(α)
0)2

Lattice-Based Zero-Knowledge Arguments for Integer Relations 727

and X(α1) = (x(α1)
L

2t+1 −1
, . . . , x

(α1)
0)2, X(α0) = (x(α0)

L

2t+1 −1
, . . . , x

(α0)
0)2. This type of

relation can be expressed as the following linear equations modulo 2:

∀i = 0, . . . ,
L

2t+1
− 1 : x

(α0)
i + x

(α)
i = 0 mod 2; x

(α1)
i + x

(α)

i+ L

2t+1
= 0 mod 2.

The second type is relation of the form

̂X(α1) = b(α) · X(α1) + b
(α) · X(α0); ̂X(α0) = b

(α) · X(α1) + b(α) · X(α0),

reflecting how L/2t+1-bit integers ̂X(α1), ̂X(α0) are computed from X(α1),X(α0)

based on a control bit b(α). This type of relation can be translated into the
following equations modulo 2, with respect to the bits of those integers

∀i = 0, . . . , L/2t+1 − 1 : x̂
(α1)
i + b(α) · x

(α1)
i + b

(α) · x
(α0)
i = 0 mod 2;

∀i = 0, . . . , L/2t+1 − 1 : x̂
(α0)
i + b

(α) · x
(α1)
i + b(α) · x

(α0)
i = 0 mod 2,

that contains 4 · L
2t+1 quadratic terms.

The third type is the addition relation X(α2)+ ̂X(α0) = ̂X(α1) among L/2t+1-
bit integers. This can be handled using our techniques from Sect. 4, resulting in
equations modulo 2 with less than 2 · L

2t+1 quadratic terms in total.
The fourth type of relations appears when we reach the base multiplication

of 2-bit integers: e.g., Z(α1) = X(α1)Y (α1), where α ∈ {0, 1, 2}k−2. Let X(α1) =
(x(α1)

1 , x
(α1)
0)2, Y (α1) = (y(α1)

1 , y
(α1)
0)2 and Z(α1) = (z(α1)

3 , z
(α1)
2 , z

(α1)
1 , z

(α1)
0)2.

This relation can then be expressed by the following equations modulo 2, which
contain 6 quadratic terms.

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

z
(α1)
0 + x

(α1)
0 · y

(α1)
0 = 0 mod 2;

t
(α1)
1,0 + x

(α1)
1 · y

(α1)
0 = 0 mod 2; // assign value x

(α1)
1 · y

(α1)
0 to t

(α1)
1,0

t
(α1)
0,1 + x

(α1)
0 · y

(α1)
1 = 0 mod 2; // assign value x

(α1)
0 · y

(α1)
1 to t

(α1)
0,1

z
(α1)
1 + t

(α1)
1,0 + t

(α1)
0,1 = 0 mod 2;

c
(α1)
1 + t

(α1)
1,0 · t

(α1)
0,1 = 0 mod 2; // carry bit

t
(α1)
1,1 + x

(α1)
1 · y

(α1)
1 = 0 mod 2; // assign value x

(α1)
1 · y

(α1)
1 to t

(α1)
1,1

z
(α1)
2 + t

(α1)
1,1 + c

(α1)
1 = 0 mod 2;

z
(α1)
3 + t

(α1)
1,1 · c

(α1)
1 = 0 mod 2,

The other types of relations come into the scene when we add up partial products
and their shifts to compute the Z(α)’s and finally reach Z, which are reflected
by equations (26) and (24). To handle the shifts, e.g., left-shifting integer Z(α1)

by L/2t+1 positions, we assign an auxiliary variable ˜Z(α1) := 2L/2t+1 · Z(α1) and
express the relations between bits of ˜Z(α1) and Z(α1) as linear equations mod-
ulo 2, as is done for the first type of relation considered above. After performing
all the shifts, we will need to handle a few additions of integers to compute a par-
tial product such as Z(α) in (26). There, the subtraction by 2L/2t+1 · (s(α) ·Z(α2))

728 B. Libert et al.

can be transformed into an equivalent addition relation. Then, we can repre-
sent each of the addition operations in (26) as linear and quadratic equations
modulo 2.

Based on the above discussion, it can be seen that the whole execution of the
Karatsuba algorithm can be expressed as linear and quadratic equations modulo
2. Combining with the linear equation modulo q from (19), we thus obtain an
instance of the general protocol from Sect. 3.2. As a result, we achieve a statistical
ZKAoK of committed integers X,Y,Z satisfying XY = Z. The security of the
argument system relies on the binding of the COM used in the interaction and
the binding of the commitment variant used for committing to X,Y,Z. Overall,
the protocol is secure assuming the hardness of SIVP

˜O(
√

L·n).
We remark that, in our process of translating the relations in Sect. 6.1 into

equations modulo 2, for each type of relations, the number of secret bits and
the number of quadratic terms we need to handle are only a constant times
larger than those before translating. Thus, the final numbers N and |T | are of
order O(Llog2 3). Meanwhile, from Eq. (19), we obtain that m1 + m2 = 4L + 3m.
Therefore, when repeating the protocol κ = ω(log n) times to achieve negligible
soundness error, the total communication cost is of order

(O(

L + m) log q
)

+
O(Llog2 3)

) · κ. In terms of computation cost, the total number of bit operations
performed by the prover and the verifier is of order O(Llog2 3), i.e., subquadratic
in L.

Acknowledgements. Part of this research was funded by Singapore Ministry of Edu-
cation under Research Grant MOE2016-T2-2-014(S) and by the French ANR ALAM-
BIC project (ANR-16-CE39-0006). Another part was funded by BPI-France in the
context of the national project RISQ (P141580). This work was also supported in part
by the European Union PROMETHEUS project (Horizon 2020 Research and Innova-
tion Program, grant 780701).

References

1. Adleman, L., Mander, K.: Diophantine complexity. In: SFCS, pp. 81–88. IEEE
Computer Society (1976)

2. Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In:
STOC 1996 (1996)

3. Ajtai, M.: Generating hard instances of the short basis problem. In: Wiedermann,
J., van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 1–9.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48523-6 1

4. Barić, N., Pfitzmann, B.: Collision-free accumulators and fail-stop signature
schemes without trees. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233,
pp. 480–494. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-69053-
0 33

5. Baum, C., Damg̊ard, I., Oechsner, S., Peikert, C.: Efficient commitments and zero-
knowledge protocols from ring-sis with applications to lattice-based threshold cryp-
tosystems. IACR Cryptology ePrint Archive, 2016:997 (2016)

https://doi.org/10.1007/3-540-48523-6_1
https://doi.org/10.1007/3-540-69053-0_33
https://doi.org/10.1007/3-540-69053-0_33

Lattice-Based Zero-Knowledge Arguments for Integer Relations 729

6. Bayer, S., Groth, J.: Zero-knowledge argument for polynomial evaluation with
application to blacklists. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT
2013. LNCS, vol. 7881, pp. 646–663. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-38348-9 38

7. Bellare, M., Goldwasser, S.: Verifiable partial key escrow. In: ACM-CCS (1997)
8. Benhamouda, F., Krenn, S., Lyubashevsky, V., Pietrzak, K.: Efficient zero-

knowledge proofs for commitments from learning with errors over rings. In: Pernul,
G., Ryan, P.Y.A., Weippl, E. (eds.) ESORICS 2015. LNCS, vol. 9326, pp. 305–325.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24174-6 16

9. Boudot, F.: Efficient proofs that a committed number lies in an interval. In: Preneel,
B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 431–444. Springer, Heidelberg
(2000). https://doi.org/10.1007/3-540-45539-6 31

10. Brickell, E.F., Chaum, D., Damg̊ard, I.B., van de Graaf, J.: Gradual and verifiable
release of a secret (Extended Abstract). In: Pomerance, C. (ed.) CRYPTO 1987.
LNCS, vol. 293, pp. 156–166. Springer, Heidelberg (1988). https://doi.org/10.1007/
3-540-48184-2 11

11. Camacho, P., Hevia, A., Kiwi, M.A., Opazo, R.: Strong accumulators from collision-
resistant hashing. Int. J. Inf. Sec. 11(5), 349–363 (2012)

12. Camenisch, J., Chaabouni, R., Shelat, A.: Efficient protocols for set membership
and range proofs. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp.
234–252. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89255-
7 15

13. Camenisch, J., Hohenberger, S., Lysyanskaya, A.: Compact e-cash. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 302–321. Springer, Heidelberg
(2005). https://doi.org/10.1007/11426639 18

14. Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anony-
mous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.)
EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44987-6 7

15. Camenisch, J., Lysyanskaya, A.: Dynamic accumulators and application to efficient
revocation of anonymous credentials. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 61–76. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
45708-9 5

16. Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous credentials
from bilinear maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
56–72. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8 4

17. Chaabouni, R.: Enhancing privacy protection: set membership, range proofs, and
the extended access control. Ph.D. thesis, EPFL, Lausanne (2017)

18. Chaabouni, R., Lipmaa, H., Zhang, B.: A non-interactive range proof with constant
communication. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 179–199.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32946-3 14

19. Chan, A., Frankel, Y., Tsiounis, Y.: Easy come — easy go divisible cash. In: Nyberg,
K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 561–575. Springer, Heidelberg
(1998). https://doi.org/10.1007/BFb0054154

20. Chase, M., Derler, D., Goldfeder, S., Orlandi, C., Ramacher, S., Rechberger, C.,
Slamanig, D., Zaverucha, G.: Post-quantum zero-knowledge and signatures from
symmetric-key primitives. In: ACM-CCS (2017)

21. Couteau, G., Peters, T., Pointcheval, D.: Removing the strong RSA assumption
from arguments over the integers. In: Coron, J.-S., Nielsen, J.B. (eds.) EURO-
CRYPT 2017. LNCS, vol. 10211, pp. 321–350. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-56614-6 11

https://doi.org/10.1007/978-3-642-38348-9_38
https://doi.org/10.1007/978-3-642-38348-9_38
https://doi.org/10.1007/978-3-319-24174-6_16
https://doi.org/10.1007/3-540-45539-6_31
https://doi.org/10.1007/3-540-48184-2_11
https://doi.org/10.1007/3-540-48184-2_11
https://doi.org/10.1007/978-3-540-89255-7_15
https://doi.org/10.1007/978-3-540-89255-7_15
https://doi.org/10.1007/11426639_18
https://doi.org/10.1007/3-540-44987-6_7
https://doi.org/10.1007/3-540-45708-9_5
https://doi.org/10.1007/3-540-45708-9_5
https://doi.org/10.1007/978-3-540-28628-8_4
https://doi.org/10.1007/978-3-642-32946-3_14
https://doi.org/10.1007/BFb0054154
https://doi.org/10.1007/978-3-319-56614-6_11
https://doi.org/10.1007/978-3-319-56614-6_11

730 B. Libert et al.

22. Damg̊ard, I., Fujisaki, E.: A statistically-hiding integer commitment scheme based
on groups with hidden order. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol.
2501, pp. 125–142. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
36178-2 8

23. Damg̊ard, I., Jurik, M.: A generalisation, a simplification and some applications
of Paillier’s probabilistic public-key system. In: Kim, K. (ed.) PKC 2001. LNCS,
vol. 1992, pp. 119–136. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-
44586-2 9

24. Davis, M., Putnam, H., Robinson, J.: The decision problem for exponential dio-
phantine equations. Ann. Math. 74, 425–436 (1961)

25. Fujisaki, E., Okamoto, T.: Statistical zero knowledge protocols to prove modular
polynomial relations. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp.
16–30. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052225

26. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: STOC (2008)

27. Ghosh, E., Ohrimenko, O., Tamassia, R.: Zero-knowledge authenticated order
queries and order statistics on a list. In: Malkin, T., Kolesnikov, V., Lewko, A.B.,
Polychronakis, M. (eds.) ACNS 2015. LNCS, vol. 9092, pp. 149–171. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-28166-7 8

28. Giacomelli, I., Madsen, J., Orlandi, C.: ZKBoo: faster zero-knowledge for Boolean
circuits. In: USENIX Security Symposium (2016)

29. Goldwasser, S., Kalai, Y.T., Peikert, C., Vaikuntanathan, V.: Robustness of the
learning with errors assumption. In: ICS 2010, pp. 230–240 (2010)

30. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof-systems. In: STOC (1985)

31. González, A., Ráfols, C.: New techniques for non-interactive shuffle and range
arguments. In: Manulis, M., Sadeghi, A.-R., Schneider, S. (eds.) ACNS 2016. LNCS,
vol. 9696, pp. 427–444. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
39555-5 23

32. Groth, J.: Evaluating security of voting schemes in the universal composability
framework. In: Jakobsson, M., Yung, M., Zhou, J. (eds.) ACNS 2004. LNCS, vol.
3089, pp. 46–60. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-
24852-1 4

33. Groth, J.: Cryptography in subgroups of Z∗
n. In: Kilian, J. (ed.) TCC 2005. LNCS,

vol. 3378, pp. 50–65. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-
540-30576-7 4

34. Groth, J.: Non-interactive zero-knowledge arguments for voting. In: Ioannidis,
J., Keromytis, A., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp. 467–482.
Springer, Heidelberg (2005). https://doi.org/10.1007/11496137 32

35. Groth, J.: Efficient zero-knowledge arguments from two-tiered homomorphic com-
mitments. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp.
431–448. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-
0 23

36. Ishai, Y., Kushilevitz, E., Ostrovksy, R., Sahai, A.: Zero-knowledge from secure
multiparty computation. In: STOC (2007)

37. Jain, A., Krenn, S., Pietrzak, K., Tentes, A.: Commitments and efficient zero-
knowledge proofs from learning parity with noise. In: Wang, X., Sako, K. (eds.)
ASIACRYPT 2012. LNCS, vol. 7658, pp. 663–680. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-34961-4 40

38. Karatsuba, A., Ofman, Y.: Multiplication of many-digital numbers by automatic
computers. Phys. Dokl. 7, 595–596 (1963)

https://doi.org/10.1007/3-540-36178-2_8
https://doi.org/10.1007/3-540-36178-2_8
https://doi.org/10.1007/3-540-44586-2_9
https://doi.org/10.1007/3-540-44586-2_9
https://doi.org/10.1007/BFb0052225
https://doi.org/10.1007/978-3-319-28166-7_8
https://doi.org/10.1007/978-3-319-39555-5_23
https://doi.org/10.1007/978-3-319-39555-5_23
https://doi.org/10.1007/978-3-540-24852-1_4
https://doi.org/10.1007/978-3-540-24852-1_4
https://doi.org/10.1007/978-3-540-30576-7_4
https://doi.org/10.1007/978-3-540-30576-7_4
https://doi.org/10.1007/11496137_32
https://doi.org/10.1007/978-3-642-25385-0_23
https://doi.org/10.1007/978-3-642-25385-0_23
https://doi.org/10.1007/978-3-642-34961-4_40

Lattice-Based Zero-Knowledge Arguments for Integer Relations 731

39. Kawachi, A., Tanaka, K., Xagawa, K.: Concurrently secure identification schemes
based on the worst-case hardness of lattice problems. In: Pieprzyk, J. (ed.) ASI-
ACRYPT 2008. LNCS, vol. 5350, pp. 372–389. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-89255-7 23

40. Knuth, D.E.: The Art of Computer Programming. Seminumerical Algorithms, vol.
2, 3rd edn. Addison-Wesley, Reading (1998)

41. Li, J., Li, N., Xue, R.: Universal accumulators with efficient nonmembership proofs.
In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 253–269. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-72738-5 17

42. Libert, B., Ling, S., Mouhartem, F., Nguyen, K., Wang, H.: Zero-knowledge argu-
ments for matrix-vector relations and lattice-based group encryption. In: Cheon,
J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 101–131. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6 4

43. Libert, B., Ling, S., Mouhartem, F., Nguyen, K., Wang, H.: Signature schemes
with efficient protocols and dynamic group signatures from lattice assumptions. In:
Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 373–403.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6 13

44. Libert, B., Ling, S., Nguyen, K., Wang, H.: Zero-knowledge arguments for lattice-
based accumulators: logarithmic-size ring signatures and group signatures without
trapdoors. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol.
9666, pp. 1–31. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-
49896-5 1

45. Libert, B., Ling, S., Nguyen, K., Wang, H.: Zero-knowledge arguments for lattice-
based PRFs and applications to e-cash. In: Takagi, T., Peyrin, T. (eds.) ASI-
ACRYPT 2017. LNCS, vol. 10626, pp. 304–335. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-70700-6 11

46. Libert, B., Peters, T., Yung, M.: Scalable group signatures with revocation. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
609–627. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 36

47. Ling, S., Nguyen, K., Stehlé, D., Wang, H.: Improved zero-knowledge proofs of
knowledge for the ISIS problem, and applications. In: Kurosawa, K., Hanaoka,
G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 107–124. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-36362-7 8

48. Lipmaa, H.: On Diophantine complexity and statistical zero-knowledge arguments.
In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 398–415. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-40061-5 26

49. Lipmaa, H., Asokan, N., Niemi, V.: Secure vickrey auctions without threshold trust.
In: Blaze, M. (ed.) FC 2002. LNCS, vol. 2357, pp. 87–101. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-36504-4 7

50. Lyubashevsky, V.: Lattice-based identification schemes secure under active attacks.
In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 162–179. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78440-1 10

51. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 1

52. Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989.
LNCS, vol. 435, pp. 218–238. Springer, New York (1990). https://doi.org/10.1007/
0-387-34805-0 21

https://doi.org/10.1007/978-3-540-89255-7_23
https://doi.org/10.1007/978-3-540-89255-7_23
https://doi.org/10.1007/978-3-540-72738-5_17
https://doi.org/10.1007/978-3-662-53890-6_4
https://doi.org/10.1007/978-3-662-53890-6_13
https://doi.org/10.1007/978-3-662-49896-5_1
https://doi.org/10.1007/978-3-662-49896-5_1
https://doi.org/10.1007/978-3-319-70700-6_11
https://doi.org/10.1007/978-3-319-70700-6_11
https://doi.org/10.1007/978-3-642-29011-4_36
https://doi.org/10.1007/978-3-642-29011-4_36
https://doi.org/10.1007/978-3-642-36362-7_8
https://doi.org/10.1007/978-3-540-40061-5_26
https://doi.org/10.1007/3-540-36504-4_7
https://doi.org/10.1007/978-3-540-78440-1_10
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/0-387-34805-0_21
https://doi.org/10.1007/0-387-34805-0_21

732 B. Libert et al.

53. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 41

54. Micciancio, D., Peikert, C.: Hardness of SIS and LWE with small parameters.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 21–39.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4 2

55. Micciancio, D., Vadhan, S.P.: Statistical zero-knowledge proofs with efficient
provers: lattice problems and more. In: Boneh, D. (ed.) CRYPTO 2003. LNCS,
vol. 2729, pp. 282–298. Springer, Heidelberg (2003). https://doi.org/10.1007/978-
3-540-45146-4 17

56. Nakanishi, T., Fujii, H., Hira, Y., Funabiki, N.: Revocable group signature schemes
with constant costs for signing and verifying. In: Jarecki, S., Tsudik, G. (eds.) PKC
2009. LNCS, vol. 5443, pp. 463–480. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-00468-1 26

57. Pedersen, T.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1 9

58. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography.
In: STOC (2005)

59. Stern, J.: A new paradigm for public key identification. IEEE Trans. Inf. Theory
42(6), 2757–2768 (1996)

60. Xie, X., Xue, R., Wang, M.: Zero knowledge proofs from Ring-LWE. In: Abdalla,
M., Nita-Rotaru, C., Dahab, R. (eds.) CANS 2013. LNCS, vol. 8257, pp. 57–73.
Springer, Cham (2013). https://doi.org/10.1007/978-3-319-02937-5 4

https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-642-40041-4_2
https://doi.org/10.1007/978-3-540-45146-4_17
https://doi.org/10.1007/978-3-540-45146-4_17
https://doi.org/10.1007/978-3-642-00468-1_26
https://doi.org/10.1007/978-3-642-00468-1_26
https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1007/978-3-319-02937-5_4

Multi-Theorem Preprocessing NIZKs
from Lattices

Sam Kim(B) and David J. Wu(B)

Stanford University, Stanford, USA
{skim13,dwu4}@cs.stanford.edu

Abstract. Non-interactive zero-knowledge (NIZK) proofs are funda-
mental to modern cryptography. Numerous NIZK constructions are
known in both the random oracle and the common reference string (CRS)
models. In the CRS model, there exist constructions from several classes
of cryptographic assumptions such as trapdoor permutations, pairings,
and indistinguishability obfuscation. Notably absent from this list, how-
ever, are constructions from standard lattice assumptions. While there
has been partial progress in realizing NIZKs from lattices for specific
languages, constructing NIZK proofs (and arguments) for all of NP from
standard lattice assumptions remains open.

In this work, we make progress on this problem by giving the first
construction of a multi-theorem NIZK argument for NP from standard
lattice assumptions in the preprocessing model. In the preprocessing
model, a (trusted) setup algorithm generates proving and verification
keys. The proving key is needed to construct proofs and the verification
key is needed to check proofs. In the multi-theorem setting, the proving
and verification keys should be reusable for an unbounded number of
theorems without compromising soundness or zero-knowledge. Exist-
ing constructions of NIZKs in the preprocessing model (or even the
designated-verifier model) that rely on weaker assumptions like one-
way functions or oblivious transfer are only secure in a single-theorem
setting. Thus, constructing multi-theorem NIZKs in the preprocessing
model does not seem to be inherently easier than constructing them in
the CRS model.

We begin by constructing a multi-theorem preprocessing NIZK
directly from context-hiding homomorphic signatures. Then, we show
how to efficiently implement the preprocessing step using a new cryp-
tographic primitive called blind homomorphic signatures. This primitive
may be of independent interest. Finally, we show how to leverage our
new lattice-based preprocessing NIZKs to obtain new malicious-secure
MPC protocols purely from standard lattice assumptions.

1 Introduction

The concept of zero-knowledge is fundamental to theoretical computer sci-
ence. Introduced in the seminal work of Goldwasser, Micali, and Rackoff [62],

The full version of this paper is available at https://eprint.iacr.org/2018/272.pdf.

c© International Association for Cryptologic Research 2018
H. Shacham and A. Boldyreva (Eds.): CRYPTO 2018, LNCS 10992, pp. 733–765, 2018.
https://doi.org/10.1007/978-3-319-96881-0_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96881-0_25&domain=pdf
https://eprint.iacr.org/2018/272.pdf

734 S. Kim and D. J. Wu

a zero-knowledge proof system enables a prover to convince a verifier that some
statement is true without revealing anything more than the truth of the state-
ment. Traditionally, zero-knowledge proof systems for NP are interactive, and in
fact, interaction is essential for realizing zero-knowledge (for NP) in the standard
model [61].

Non-interactive zero-knowledge. Nonetheless, Blum, Feldman, and Micali
[16] showed that meaningful notions of zero-knowledge are still realizable in the
non-interactive setting, where the proof consists of just a single message from
the prover to the verifier. In the last three decades, a beautiful line of works
has established the existence of NIZK proof (and argument) systems for all of
NP in the random oracle model [45,81] or the common reference string (CRS)
model [40,44,65,66,86], where the prover and the verifier are assumed to have
access to a common string chosen by a trusted third party. Today, we have NIZK
candidates in the CRS model from several classes of cryptographic assumptions:1

(doubly-enhanced) trapdoor permutations [40,44,65], pairings [66], and indis-
tinguishability obfuscation [86]. Notably absent from this list are constructions
from lattice assumptions [6,83]. While some partial progress has been made in
the case of specific languages [7,79], the general case of constructing NIZK proofs
(or even arguments) for all of NP from standard lattice assumptions remains a
longstanding open problem.

NIZKs in a preprocessing model. In this work, we make progress on this
problem by giving the first multi-theorem NIZK argument for NP from standard
lattice assumptions in the preprocessing model. In the NIZK with preprocessing
model [42], there is an initial (trusted) setup phase that generates a proving key
kP and a verification key kV . The proving key is needed to construct proofs while
the verification key is needed to check proofs. In addition, the setup phase is run
before any statements are proven (and thus, must be statement-independent). In
the multi-theorem setting, we require that soundness holds against a prover who
has oracle access to the verifier (but does not see kV), and that zero-knowledge
holds against a verifier who has oracle access to the prover (but does not see kP).
The NIZK with preprocessing model generalizes the more traditional settings
under which NIZKs have been studied. For instance, the case where kP is public
(but kV is secret) corresponds to designated-verifier NIZKs [34,36,39], while
the case where both kP and kV are public corresponds to the traditional CRS
setting, where the CRS is taken to be the pair (kP , kV).

Why study the preprocessing model? While the preprocessing model is
weaker than the more traditional CRS model, constructing multi-theorem NIZK

1 There are also NIZK candidates based on number-theoretic assumptions [15,16,41]
which satisfy weaker properties. We discuss these in greater detail in Sect. 1.2 and
Remark 4.7.

Multi-Theorem Preprocessing NIZKs from Lattices 735

arguments (and proofs) in this model does not appear to be any easier than con-
structing them in the CRS model. Existing constructions of NIZKs in the prepro-
cessing model from weaker assumptions such as one-way functions [38,42,69,75]
or oblivious transfer [73] are only secure in the single-theorem setting. As we
discuss in greater detail in Remark 4.7, the constructions from [38,42,75]
only provide single-theorem zero-knowledge, while the constructions in [69,73]
only provide single-theorem soundness. Even in the designated-verifier set-
ting [34,36,39] (where only the holder of a verification key can verify the proofs),
the existing constructions of NIZKs for NP based on linearly-homomorphic
encryption suffer from the so-called “verifier-rejection” problem where soundness
holds only against a logarithmically-bounded number of statements. Thus, the
only candidates of multi-theorem NIZKs where soundness and zero-knowledge
hold for an unbounded number of theorems are the constructions in the CRS
model, which all rely on trapdoor permutations, pairings, or obfuscation. Thus,
it remains an interesting problem to realize multi-theorem NIZKs from lattice
assumptions even in the preprocessing model.

Moreover, as we show in Sect. 6.1, multi-theorem NIZKs in the preprocessing
model suffice to instantiate many of the classic applications of NIZKs for boosting
the security of multiparty computation (MPC) protocols. Thus, our new con-
structions of reusable NIZK arguments from standard lattice assumptions imply
new constructions of round-optimal, near-optimal-communication MPC proto-
cols purely from lattice assumptions. Our work also implies a succinct version of
the classic Goldreich-Micali-Wigderson compiler [59,60] for boosting semi-honest
security to malicious security, again purely from standard lattice assumptions.
Furthermore, studying NIZKs in the preprocessing model may also serve as a
stepping stone towards realizing NIZKs in the CRS model from standard lattice
assumptions. For example, the starting point of the first multi-theorem NIZK
construction by Feige, Lapidot, and Shamir [44] was a NIZK proof for graph
Hamiltonicity in the preprocessing model.

1.1 Multi-Theorem Preprocessing NIZKs from Lattices

The focus of this work is on constructing NIZKs in the preprocessing model
(which we will often refer to as a “preprocessing NIZK”) from standard lattice
assumptions. As we discuss in Sect. 1.2 and in Remark 4.7, this is the first can-
didate of reusable (i.e., multi-theorem) NIZK arguments from a standard lattice
assumption. Below, we provide a high-level overview of our main construction.

Homomorphic signatures. A homomorphic signature scheme [5,18,19,63]
enables computations on signed data. Specifically, a user can sign a message
x using her private signing key to obtain a signature σ. Later on, she can dele-
gate the pair (x, σ) to an untrusted data processor. The data processor can then
compute an arbitrary function g on the signed data to obtain a value y = g(x)
along with a signature σg,y. The computed signature σg,y should certify that
the value y corresponds to a correct evaluation of the function g on the original

736 S. Kim and D. J. Wu

input x. In a context-hiding homomorphic signature scheme [18,22], the com-
puted signature σg,y also hides the input message x. Namely, the pair (y, σg,y)
reveals no information about x other than what could be inferred from the out-
put y = g(x). Gorbunov et al. [63] gave the first construction of a context-hiding
homomorphic signature scheme for general Boolean circuits (with bounded
depth) from standard lattice assumptions.

From homomorphic signatures to zero-knowledge. The notion of
context-hiding in a homomorphic signature scheme already bears a strong resem-
blance to zero-knowledge. Namely, a context-hiding homomorphic signature
scheme allows a user (e.g., a prover) to certify the result of a computation
(e.g., the output of an NP relation) without revealing any additional information
about the input (e.g., the NP witness) to the computation. Consider the follow-
ing scenario. Suppose the prover has a statement-witness pair (x,w) for some NP
relation R and wants to convince the verifier that R(x,w) = 1 without reveal-
ing w. For sake of argument, suppose the prover has obtained a signature σw

on the witness w (but does not have the signing key for the signature scheme),
and the verifier holds the verification key for the signature scheme. In this case,
the prover can construct a zero-knowledge proof for x by evaluating the relation
Rx(w) := R(x,w) on (w, σw). If R(x,w) = 1, then this yields a new signature
σR,x on the bit 1. The proof for x is just the signature σR,x. Context-hiding
of the homomorphic signature scheme says that the signature σR,x reveals no
information about the input to the computation (the witness w) other than what
is revealed by the output of the computation (namely, that R(x,w) = 1). This is
precisely the zero-knowledge property. Soundness of the proof system follows by
unforgeability of the homomorphic signature scheme (if there is no w such that
Rx(w) = 1, the prover would not be able to produce a signature on the value 1
that verifies according to the function Rx).

While this basic observation suggests a connection between homomorphic
signatures and zero-knowledge, it does not directly give a NIZK argument. A
key problem is that to construct the proof, the prover must already possess a
signature on its witness w. But since the prover does not have the signing key
(if it did, then the proof system is no longer sound), it is unclear how the prover
obtains this signature on w without interacting with the verifier (who could hold
the signing key). This is the case even in the preprocessing model, because we
require that the preprocessing be statement-independent (and in fact, reusable
for arbitrarily many adaptively-chosen statements).

Preprocessing NIZKs from homomorphic signatures. Nonetheless, the
basic observation shows that if we knew ahead of time which witness w the prover
would use to construct its proofs, then the setup algorithm can simply give the
prover a homomorphic signature σw on w. To support this, we add a layer of
indirection. Instead of proving that it knows a witness w where R(x,w) = 1, the
prover instead demonstrates that it has an encryption ctw of w (under some key
sk), and that it knows some secret key sk such that ct decrypts to a valid witness

Multi-Theorem Preprocessing NIZKs from Lattices 737

w where R(x,w) = 1.2 A proof of the statement x then consists of the encrypted
witness ctw and a proof πR,x,ctw that ctw is an encryption of a satisfying witness
(under some key). First, if the encryption scheme is semantically-secure and the
proof is zero-knowledge, then the resulting construction satisfies (computational)
zero-knowledge. Moreover, the witness the prover uses to construct πR,x,ctw is
always the same: the secret key sk. Notably, the witness is statement-independent
and can be reused to prove arbitrarily many statements (provided the encryption
scheme is CPA-secure).

This means we can combine context-hiding homomorphic signatures (for
general circuits) with any CPA-secure symmetric encryption scheme to obtain
NIZKs in the preprocessing model as follows:

– Setup: The setup algorithm generates a secret key sk for the encryption
scheme as well as parameters for a homomorphic signature scheme. Both the
proving and verification keys include the public parameters for the signature
scheme. The proving key kP additionally contains the secret key sk and a
signature σsk on sk.

– Prove: To generate a proof that an NP statement x is true, the prover takes a
witness w where R(x,w) = 1 and encrypts w under sk to obtain a ciphertext
ctw. Next, we define the witness-checking function CheckWitness[R, x, ctw]
(parameterized by R, x, and ctw) that takes as input a secret key sk and
outputs 1 if R(x,Decrypt(sk, ctw)) = 1, and 0 otherwise. The prover homo-
morphically evaluates CheckWitness[R, x, ctw] on (sk, σsk) to obtain a new
signature σ∗ on the value 1. The proof consists of the ciphertext ctw and the
signature σ∗.

– Verify: Given a statement x for an NP relation R and a proof π = (ct, σ∗),
the verifier checks that σ∗ is a valid signature on the bit 1 according to the
function CheckWitness[R, x, ct]. Notice that the description on the function
only depends on the relation R, the statement x, and the ciphertext ct, all of
which are known to the verifier.

Since the homomorphic signature scheme is context-hiding, the signature σ∗

hides the input to CheckWitness[R, x, ctw], which in this case, is the secret key
sk. By CPA-security of the encryption scheme, the ciphertext hides the witness
w, so the scheme provides zero-knowledge. Soundness again follows from unforge-
ability of the signature scheme. Thus, by combining a lattice-based homomor-
phic signature scheme for general circuits [63] with any lattice-based CPA-secure
symmetric encryption scheme, we obtain a (multi-theorem) preprocessing NIZK
from lattices. In fact, the verification key in our construction only consists of
the public parameters for the homomorphic signature scheme, and thus, can be
made public. This means that in our construction, only the proving key needs to
be kept secret, so we can equivalently view our construction as a multi-theorem
“designated-prover” NIZK. We discuss this in greater detail in Remark 4.6.

2 This is a classic technique in the construction of non-interactive proof systems and
has featured in many contexts (e.g., [56,87]).

738 S. Kim and D. J. Wu

An appealing property of our preprocessing NIZKs is that the proofs are
short: the length of a NIZK argument for an NP relation R is |w| + poly(λ, d)
bits, where |w| is the length of a witness for R and d is the depth of the circuit
computing R. The proof size in NIZK constructions from trapdoor permutations
or pairings [40,44,65,66] typically scale with the size of the circuit computing R
and multiplicatively with the security parameter. Previously, Gentry et al. [56]
gave a generic approach using fully homomorphic encryption (FHE) to reduce
the proof size in any NIZK construction. The advantage of our approach is that
we naturally satisfy this succinctness property, and the entire construction can
be based only on lattice assumptions (without needing to mix assumptions). We
discuss this in greater detail in the full version of this paper [74]. We also give the
complete description of our preprocessing NIZK and security analysis in Sect. 4.

Blind homomorphic signatures for efficient preprocessing. A limitation
of preprocessing NIZKs is we require a trusted setup to generate the proving and
verification keys. One solution is to have the prover and verifier run a (malicious-
secure) two-party computation protocol (e.g., [76]) to generate the proving and
verification keys. However, generic MPC protocols are often costly and require
making non-black-box use of the underlying homomorphic signature scheme.

In this work, we describe a conceptually simpler and more efficient way of
implementing the preprocessing without relying on general MPC. We do so by
introducing a new cryptographic notion called blind homomorphic signatures.
First, we observe that we can view the two-party computation of the setup phase
as essentially implementing a “blind signing” protocol where the verifier holds
the signing key for the homomorphic signature scheme and the prover holds the
secret key sk. At the end of the blind signing protocol, the prover should learn
σsk while the verifier should not learn anything about sk. This is precisely the
properties guaranteed by a blind signature protocol [35,47]. In this work, we
introduce the notion of a blind homomorphic signature scheme which combines
the blind signing protocol of traditional blind signature schemes while retaining
the ability to homomorphically operate on ciphertexts. Since the notion of a blind
homomorphic signatures is inherently a two-party functionality, we formalize it
in the model of universal composability [24]. We provide the formal definition of
the ideal blind homomorphic signature functionality in Sect. 5.

In Sect. 5.1, we show how to securely realize our ideal blind homomorphic
signature functionality in the presence of malicious adversaries by combining
homomorphic signatures with any UC-secure oblivious transfer (OT) protocol
[27]. Note that security against malicious adversaries is critical for our primary
application of leveraging blind homomorphic signatures to implement the setup
algorithm of our preprocessing NIZK candidate. At a high-level, we show how
to construct a blind homomorphic signature scheme from any “bitwise” homo-
morphic signature scheme—namely, a homomorphic signature scheme where the
signature on an �-bit message consists of � signatures, one for each bit of the mes-
sage. Moreover, we assume that the signature on each bit position only depends
on the value of that particular bit (and not the value of any of the other bits of

Multi-Theorem Preprocessing NIZKs from Lattices 739

the message); of course, the � signatures can still be generated using common or
correlated randomness. Given a bitwise homomorphic signature scheme, we can
implement the blind signing protocol (on �-bit messages) using � independent
1-out-of-2 OTs. Specifically, the signer plays the role of the sender in the OT
protocol and for each index i ∈ [�], the signer signs both the bit 0 as well as the
bit 1. Then, to obtain a signature on an �-bit message, the receiver requests the
signatures corresponding to the bits of its message.

While the high-level schema is simple, there are a few additional details that
we have to handle to achieve robustness against a malicious signer. For instance,
a malicious signer can craft the parameters of the homomorphic signature scheme
so that when an evaluator computes on a signature, the resulting signatures no
longer provide context-hiding. Alternatively, a malicious signer might mount a
“selective-failure” attack during the blind-signing protocol to learn information
about the receiver’s message. We discuss how to address these problems by
giving strong definitions of malicious context-hiding for homomorphic signatures
in Sect. 3, and give the full construction of blind homomorphic signatures from
oblivious transfer in Sect. 5.1. In particular, we show that the Gorbunov et al. [63]
homomorphic signature construction satisfies our stronger security notions, and
so coupled with the UC-secure lattice-based OT protocol of Peikert et al. [80], we
obtain a UC-secure blind homomorphic signature scheme from standard lattice
assumptions. Moreover, the blind signing protocol is a two-round protocol, and
only makes black-box use of the underlying homomorphic signature scheme.

UC-secure preprocessing NIZKs. Finally, we show that using our UC-secure
blind homomorphic signature candidate, we can in fact realize the stronger
notion of UC-secure NIZK arguments in a preprocessing model from standard
lattice assumptions. This means that our NIZKs can be arbitrarily composed
with other cryptographic protocols. Our new candidates are thus suitable to
instantiate many of the classic applications of NIZKs for boosting the security
of general MPC protocols. As we show in Sect. 6, combining our preprocessing
UC-NIZKs with existing lattice-based semi-malicious MPC protocols such as [78]
yields malicious-secure protocols purely from standard lattice assumptions (in
a reusable preprocessing model). We also show that our constructions imply a
succinct version of the classic GMW [59,60] protocol compiler (where the total
communication overhead of the compiled protocol depends only on the depth,
rather than the size of the computation).

Towards NIZKs in the CRS model. In this paper, we construct the first
multi-theorem preprocessing NIZK arguments from standard lattice assump-
tions. However, our techniques do not directly generalize to the CRS setting.
While it is possible to obtain a publicly-verifiable preprocessing NIZK (i.e., make
the verification key kV public), our construction critically relies on the prover
state being hidden. This is because the prover state contains the secret key the
prover uses to encrypt its witness in the proofs, so publishing this compromises
zero-knowledge. Nonetheless, we believe that having a better understanding of

740 S. Kim and D. J. Wu

NIZKs in the preprocessing model provides a useful stepping stone towards the
goal of building NIZKs from lattices in the CRS model, and we leave this as an
exciting open problem.

Preprocessing NIZKs from other assumptions? Our work gives the
first construction of a multi-theorem preprocessing NIZK from standard lattice
assumptions. It is an interesting challenge to obtain multi-theorem preprocessing
NIZKs from other assumptions that are currently not known to imply NIZKs
in the CRS model. For instance, a natural target would be to construct multi-
theorem NIZKs in the preprocessing model from the decisional Diffie-Hellman
(DDH) assumption.

1.2 Additional Related Work

In this section, we survey some additional related work on NIZK constructions,
blind signatures, and homomorphic signatures.

Other NIZK proof systems. In the CRS model, there are several NIZK
constructions based on specific number-theoretic assumptions such as quadratic
residuosity [15,16,41]. These candidates are also secure in the bounded-theorem
setting where the CRS can only be used for an a priori bounded number of
proofs. Exceeding this bound compromises soundness or zero-knowledge. In the
preprocessing model, Kalai and Raz [70] gave a single-theorem succinct NIZK
proof system for the class LOGSNP from polylogarithmic private information
retrieval (PIR) and exponentially-hard OT. In this work, we focus on constructing
multi-theorem NIZKs, where an arbitrary number of proofs can be constructed
after an initial setup phase.

NIZKs have also been constructed for specific algebraic languages in both
the publicly-verifiable setting [64,67] as well as the designated-verifier setting
[33]. In the specific case of lattice-based constructions, there are several works
on building hash-proof systems, (also known as smooth projective hash func-
tions [37]) [14,71,91], which are designated-verifier NIZK proofs for a specific
language (typically, this is the language of ciphertexts associated with a par-
ticular message). In the random oracle model, there are also constructions of
lattice-based NIZK arguments from Σ-protocols [77,90]. Recently, there has
also been work on instantiating the random oracle in Σ-protocols with lattice-
based correlation-intractable hash functions [26]. However, realizing the nec-
essary correlation-intractable hash functions from lattices requires making the
non-standard assumption that Regev’s encryption scheme [83] is exponentially
KDM-secure against all polynomial-time adversaries. In our work, we focus on
NIZK constructions for general NP languages in the plain model (without ran-
dom oracles) from the standard LWE assumption (i.e., polynomial hardness of
LWE with a subexponential approximation factor).

Very recently, Rothblum et al. [84] showed that a NIZK proof system for a
decisional variant of the bounded distance decoding (BDD) problem suffices for
building NIZK proof system for NP.

Multi-Theorem Preprocessing NIZKs from Lattices 741

Blind signatures. The notion of blind signatures was first introduced by
Chaum [35]. There are many constructions of blind signatures from a wide range
of assumptions in the random oracle model [1,12,13,17,21,82,85,88], the CRS
model [2–4,23,47,49,57,72], as well as the standard model [50–52,68].

Homomorphic signatures. There are many constructions of linearly homo-
morphic signatures [5,8–10,18–20,31,43,48,53,89]. Beyond linear homomor-
phisms, a number of works [11,19,32] have constructed homomorphic signatures
for polynomial functions from lattices or multilinear maps. For general circuits,
Gorbunov et al. [63] gave the first homomorphic signature scheme from lattices,
and Fiore et al. [46] gave the first “multi-key” homomorphic signature scheme
from lattices (where homomorphic operations can be performed on signatures
signed under different keys).

2 Preliminaries

We begin by introducing some basic notation. For an integer n ≥ 1, we write [n]
to denote the set of integers {1, . . . , n}. For a positive integer q > 1, we write
Zq to denote the ring of integers modulo q. For a finite set S, we write x ←R S
to denote that x is sampled uniformly at random from S. For a distribution D,
we write x ← D to denote that x is sampled from D. Throughout this work, we
use λ to denote a security parameter. We typically use bold uppercase letters
(e.g., A, B) to denote matrices and bold lowercase letters (e.g., u, v) to denote
vectors.

We say that a function f is negligible in λ, denoted negl(λ), if f(λ) = o(1/λc)
for all constants c ∈ N. We say that an event happens with negligible probability
if the probability of the event occurring is bounded by a negligible function, and
we say that an event happens with overwhelming probability if its complement
occurs with negligible probability. We say an algorithm is efficient if it runs in
probabilistic polynomial time in the length of its input. We write poly(λ) to
denote a quantity whose value is upper-bounded by a fixed polynomial in λ.
We say that two families of distributions D1 = {D1,λ}λ∈N and D2 = {D2,λ}λ∈N

are computationally indistinguishable if no efficient algorithm can distinguish
samples from either D1 or D2, except with negligible probability. We denote this
by writing D1

c≈ D2. We write D1
s≈ D2 to denote that D1 and D2 are statistically

indistinguishable (i.e., the statistical distance between D1 and D2 is bounded by
a negligible function). In the full version of this paper [74], we provide additional
preliminaries in on CPA-secure encryption as well as lattice-based cryptography.

3 Homomorphic Signatures

A homomorphic signature scheme enables computations on signed data. Given
a function C (modeled as a Boolean circuit) and a signature σx that certifies a
message x, one can homomorphic derive a signature σC(x) that certifies the value

742 S. Kim and D. J. Wu

C(x) with respect to the function C. The two main security notions that we are
interested in are unforgeability and context-hiding. We first provide a high-level
description of the properties:

– Unforgeability: We say a signature scheme is unforgeable if an adversary
who has a signature σx on a message x cannot produce a valid signature on
any message y �= C(x) that verifies with respect to the function C.

– Context-hiding: Context-hiding says that when one evaluates a function
C on a message-signature pair (x, σx), the resulting signature σC(x) on C(x)
should not reveal any information about the original message x other than
the circuit C and the value C(x). In our definition, the homomorphic sig-
nature scheme contains an explicit “hide” function that implements this
transformation.

Syntax and notation. Our construction of blind homomorphic signatures from
standard homomorphic signatures (Sect. 5.1) will impose some additional struc-
tural requirements on the underlying scheme. Suppose the message space for
the homomorphic signature scheme consists of �-tuples of elements over a set X
(e.g., the case where X = {0, 1} corresponds to the setting where the message
space consists of �-bit strings). Then, we require that the public parameters

—

pk

of the scheme can be split into a vector of public keys
—

pk = (pk1, . . . , pk�). In
addition, a (fresh) signature on a vector x ∈ X � can also be written as a tuple
of � signatures σ = (σ1, . . . , σ�) where σi can be verified with respect to the
verification key vk and the ith public key pki for all i ∈ [�]. In our description
below, we often use vector notation to simplify the presentation.

Definition 3.1 (Homomorphic Signatures [19,63]). A homomorphic sig-
nature scheme with message space X , message length � ∈ N, and function class
C = {Cλ}λ∈N, where each Cλ is a collection of functions from X � to X , is defined
by a tuple of algorithms ΠHS = (PrmsGen,KeyGen,Sign,PrmsEval,SigEval,Hide,
Verify,VerifyFresh,VerifyHide) with the following properties:

– PrmsGen(1λ, 1�) → # —

pk: On input the security parameter λ and message
length �, the parameter-generation algorithm returns a set of � public keys
—

pk = (pk1, . . . , pk�).
– KeyGen(1λ) → (vk, sk): On input the security parameter λ, the key-generation

algorithm returns a verification key vk, and a signing key sk.
– Sign(pki, sk, xi) → σi: On input a public key pki, a signing key sk, and a

message xi ∈ X , the signing algorithm returns a signature σi.
Vector variant: For

—

pk = (pk1, . . . , pk�), and x = (x1, . . . , x�) ∈ X �, we write
Sign(

—

pk, sk,x) to denote component-wise signing of each message. Namely,
Sign(

—

pk, sk,x) outputs signatures σ = (σ1, . . . , σ�) where σi ← Sign(pki, sk, xi)
for all i ∈ [�].

– PrmsEval(C,
—

pk′) → pkC : On input a function C : X � → X and a collection of
public keys

—

pk′ = (pk′
1, . . . , pk

′
�), the parameter-evaluation algorithm returns

an evaluated public key pkC .

Multi-Theorem Preprocessing NIZKs from Lattices 743

Vector variant: For a circuit C : X � → X k, we write PrmsEval(C,
—

pk′) to
denote component-wise parameter evaluation. Namely, let C1, . . . , Ck be func-
tions such that C(x1, . . . , x�) =

(
C1(x1, . . . , x�), . . . , Ck(x1, . . . , x�)

)
. Then,

PrmsEval(C,
—

pk′) evaluates pkCi
← PrmsEval(Ci,

—

pk′) for i ∈ [k], and outputs
pkC = (pkC1

, . . . , pkCk
).

– SigEval(C,
—

pk′,x,σ) → σ: On input a function C : X � → X , public keys
—

pk′ = (pk′
1, . . . , pk

′
�), messages x ∈ X �, and signatures σ = (σ1, . . . , σ�),

the signature-evaluation algorithm returns an evaluated signature σ.
Vector variant: We can define a vector variant of SigEval analogously to that
of PrmsEval.

– Hide(vk, x, σ) → σ∗: On input a verification key vk, a message x ∈ X , and a
signature σ, the hide algorithm returns a signature σ∗.
Vector variant: For x = (x1, . . . , xk) and σ = (σ1, . . . , σk), we write
Hide(vk,x,σ) to denote component-wise evaluation of the hide algorithm.
Namely, Hide(vk,x,σ) returns (σ∗

1 , . . . , σ
∗
k) where σ∗

i ← Hide(vk, xi, σi) for
all i ∈ [k].

– Verify(pk, vk, x, σ) → {0, 1}: On input a public key pk, a verification key vk,
a message x ∈ X , and a signature σ, the verification algorithm either accepts
(returns 1) or rejects (returns 0).
Vector variant: For a collection of public keys

—

pk′ = (pk′
1, . . . , pk

′
k), mes-

sages x = (x1, . . . , xk), and signatures σ = (σ1, . . . , σk), we write
Verify(

—

pk′, vk,x,σ) to denote applying the verification algorithm to each signa-
ture component-wise. In other words, Verify(

—

pk′, vk,x,σ) accepts if and only
if Verify(pk′

i, vk, xi, σi) accepts for all i ∈ [k].
– VerifyFresh(pk, vk, x, σ) → {0, 1}: On input a public key pk, a verification key

vk, a message x ∈ X , and a signature σ, the fresh verification algorithm either
accepts (returns 1) or rejects (returns 0).
Vector variant: We can define a vector variant of VerifyFresh analogously to
that of Verify.

– VerifyHide(pk, vk, x, σ∗) → {0, 1}: On input a public key pk, a verification key
vk, a message x ∈ X , and a signature σ∗, the hide verification algorithm
either accepts (returns 1) or rejects (returns 0).
Vector variant: We can define a vector variant of VerifyHide analogously to
that of Verify.

Correctness. We now state the correctness requirements for a homomorphic
signature scheme. Our definitions are adapted from the corresponding ones
in [63]. Our homomorphic signature syntax has three different verification algo-
rithms. The standard verification algorithm Verify can be used to verify fresh
signatures (output by Sign) as well as homomorphically-evaluated signatures
(output by SigEval). The hide verification algorithm VerifyHide is used for ver-
ifying signatures output by the context-hiding transformation Hide, which may
be structurally different from the signatures output by Sign or SigEval. Finally,
we have a special verification algorithm VerifyFresh that can be used to verify sig-
natures output by Sign (before any homomorphic evaluation has taken place).

744 S. Kim and D. J. Wu

While Verify subsumes VerifyFresh, having a separate VerifyFresh algorithm is
useful for formulating a strong version of evaluation correctness. Due to space
limitations, we defer the formal correctness definitions to the full version of this
paper [74].

Unforgeability. Intuitively, a homomorphic signature scheme is unforgeable
if no efficient adversary who only possesses signatures σ1, . . . , σ� on messages
x1, . . . , x� can produce a signature σy that is valid with respect to a function C
where y �= C(x1, . . . , x�). We give the formal definition in the full version.

Context-hiding. The second security requirement on a homomorphic signature
scheme is context-hiding, which roughly says that if a user evaluates a function
C on a message-signature pair (x,σ) to obtain a signature σC(x), and then runs
the hide algorithm on σC(x), the resulting signature σ∗

C(x) does not contain any
information about x other than what is revealed by C and C(x). We define this
formally in the full version.

Compactness. The final property that we require from a homomorphic signa-
ture scheme is compactness. Roughly speaking, compactness requires that given
a message-signature pair (x,σ), the size of the signature obtained from homo-
morphically evaluating a function C on σ depends only on the size of the output
message |C(x)| (and the security parameter) and is independent of the size of
the original message |x|.

Structural properties of homomorphic signatures. Definition 3.1 spec-
ifies a bitwise homomorphic signature scheme where the signature on an �-bit
message x = x1 · · · x� consists of � separate signatures σ = (σ1, . . . , σ�) with
respect to � public keys

—

pk = (pk1, . . . , pk�), one for each bit of the message.
As discussed in Sect. 1.1, this property is essentially to our construction of blind
homomorphic signatures from homomorphic signatures and oblivious transfer.
In addition to a bitwise homomorphic signature scheme, we also require a
decomposable homomorphic signature scheme for our full construction. In a
decomposable homomorphic signature scheme, a signature σ of a message x
can be decomposed into a message-independent σpk that contains no informa-
tion about x, and a message-dependent component σm. In the full version of this
paper [74], we use this decomposability property to show that the homomor-
phic signature construction of Gorbunov et al. [63] simultaneously satisfies full
unforgeability and context-hiding (against malicious signers).

4 Preprocessing NIZKs from Homomorphic Signatures

In this section, we begin by formally defining the notion of a non-interactive zero-
knowledge argument in the preprocessing model (i.e., “preprocessing NIZKs”).

Multi-Theorem Preprocessing NIZKs from Lattices 745

This notion was first introduced by De Santis et al. [42], who also gave the first
candidate construction of a preprocessing NIZK from one-way functions. Mul-
tiple works have since proposed additional candidates of preprocessing NIZKs
from one-way functions [38,69,75] or oblivious transfer [73]. However, all of these
constructions are single-theorem: the proving or verification key cannot be reused
for multiple theorems without compromising either soundness or zero-knowledge.
We provide a more detailed discussion of existing preprocessing NIZK construc-
tions in Remark 4.7.

Definition 4.1 (NIZK Arguments in the Preprocessing Model). Let R
be an NP relation, and let L be its corresponding language. A non-interactive
zero-knowledge (NIZK) argument for L in the preprocessing model consists of
a tuple of three algorithms ΠPPNIZK = (Setup,Prove,Verify) with the following
properties:

– Setup(1λ) → (kP , kV): On input the security parameter λ, the setup
algorithm (implemented in a “preprocessing” step) outputs a proving key kP

and a verification key kV .
– Prove(kP , x, w) → π: On input the proving key kP , a statement x, and a

witness w, the prover’s algorithm outputs a proof π.
– Verify(kV , x, π) → {0, 1}: On input the verification key kV , a statement x,

and a proof π, the verifier either accepts (with output 1) or rejects (with
output 0).

Moreover, ΠPPNIZK should satisfy the following properties:

– Completeness: For all x,w where R(x,w) = 1, if we take (kP , kV) ←
Setup(1λ);

Pr[π ← Prove(kP , x, w) : Verify(kV , x, π) = 1] = 1.

– Soundness: For all efficient adversaries A, if we take (kP , kV) ← Setup(1λ),
then

Pr[(x, π) ← AVerify(kV ,·,·)(kP) : x /∈ L ∧ Verify(kV , x, π) = 1] = negl(λ).

– Zero-Knowledge: For all efficient adversaries A, there exists an efficient
simulator S = (S1,S2) such that if we take (kP , kV) ← Setup(1λ) and τV ←
S1(1λ, kV), we have that

∣
∣
∣Pr[AO0(kP ,·,·)(kV) = 1] − Pr[AO1(kV ,τV ,·,·)(kV) = 1]

∣
∣
∣ = negl(λ),

where the oracle O0(kP , x, w) outputs Prove(kP , x, w) if R(x,w) = 1 and ⊥
otherwise, and the oracle O1(kV , τV , x, w) outputs S2(kV , τV , x) if R(x,w) =
1 and ⊥ otherwise.

Remark 4.2 (Comparison to NIZKs in the CRS Model). Our zero-knowledge
definition in Definition 4.1 does not allow the simulator to choose the verification
state kV . We can also consider a slightly weaker notion of zero-knowledge where
the simulator also chooses the verification state:

746 S. Kim and D. J. Wu

– Zero-Knowledge: For all efficient adversaries A, there exists an efficient
simulator S = (S1,S2) such that if we take (kP , kV) ← Setup(1λ) and
(k̃V , τ̃V) ← S1(1λ), we have that

∣
∣
∣Pr[AProve(kP ,·,·)(kV) = 1] − Pr[AO(k̃V ,τ̃V ,·,·)(k̃V) = 1]

∣
∣
∣ = negl(λ),

where the oracle O(k̃V , τ̃V , x, w) outputs S2(k̃V , τ̃V , x) if R(x,w) = 1 and ⊥
otherwise.

We note that this definition of zero-knowledge captures the standard notion of
NIZK arguments in the common reference string (CRS) model. Specifically, in
the CRS model, the Setup algorithm outputs a single CRS σ. The proving and
verification keys are both defined to be σ.

Preprocessing NIZKs from homomorphic signatures. As described in
Sect. 1.1, we can combine a homomorphic signature scheme (for general cir-
cuits) with any CPA-secure symmetric encryption scheme to obtain a prepro-
cessing NIZK for general NP languages. We give our construction and security
analysis below. Combining the lattice-based construction of homomorphic sig-
natures of [63] with any lattice-based CPA-secure encryption [6,58], we obtain
the first multi-theorem preprocessing NIZK from standard lattice assumptions
(Corollary 4.5). In Remark 4.6, we note that a variant of Construction 4.3 also
gives a publicly-verifiable preprocessing NIZK.

Construction 4.3 (Preprocessing NIZKs from Homomorphic Signa-
tures). Fix a security parameter λ, and define the following quantities:

– Let R : {0, 1}n ×{0, 1}m → {0, 1} be an NP relation and L be its correspond-
ing language.

– Let ΠSE = (SE.KeyGen,SE.Encrypt,SE.Decrypt) be a symmetric encryption
scheme with message space {0, 1}m and secret-key space {0, 1}ρ.

– For a message x ∈ {0, 1}n and ciphertext ct from the ciphertext space of ΠSE,
define the function fx,ct(kSE) := R(x,SE.Decrypt(kSE, ct)).

– Let ΠHS = (PrmsGen,KeyGen,Sign,PrmsEval,SigEval,Hide,Verify, VerifyFresh,
VerifyHide) be a homomorphic signature scheme with message space {0, 1},
message length ρ, and function class C that includes all functions of the form
fx,ct.3

We construct a preprocessing NIZK argument ΠNIZK = (Setup,Prove,Verify) as
follows:

– Setup(1λ) → (kP , kV): First, generate a secret key kSE ← SE.KeyGen(1λ).
Next, generate

—

pkHS ← PrmsGen(1λ, 1ρ) and a signing-verification key-
pair (vkHS, skHS) ← KeyGen(1λ). Next, sign the symmetric key σk ←
Sign(

—

pkHS, skHS, kSE) and output

kP = (kSE,
—

pkHS, vkHS,σk) and kV = (
—

pkHS, vkHS, skHS).
3 Since it is more natural to view x ∈ {0, 1}n as a string rather than a vector, we drop

the vector notation x and simply write x in this section.

Multi-Theorem Preprocessing NIZKs from Lattices 747

– Prove(kP , x, w) → π: If R(x,w) = 0, output ⊥. Otherwise, parse kP =
(kSE,

—

pkHS, vkHS,σk). Let ct ← SE.Encrypt(kSE, w), and Cx,ct be the cir-
cuit that computes the function fx,ct defined above. Compute the signature
σ′

x,ct ← SigEval(Cx,ct,
—

pkHS, kSE,σk) and then σ∗
x,ct ← Hide(vkHS, 1, σ′

x,ct). It
outputs the proof π = (ct, σ∗

x,ct).
– Verify(kV , x, π) → {0, 1}: Parse kV = (

—

pkHS, vkHS, skHS) and π = (ct, σ∗
x,ct).

Let Cx,ct be the circuit that computes fx,ct defined above. Then, compute
pkx,ct ← PrmsEval(Cx,ct,

—

pkHS), and output VerifyHide(pkx,ct, vkHS, 1, σ∗
x,ct).

Theorem 4.4 (Preprocessing NIZKs from Homomorphic Signatures).
Let λ be a security parameter and R be an NP relation (and let L be its corre-

sponding language). Let ΠNIZK be the NIZK argument in the preprocessing model
from Construction 4.3 (instantiated with a symmetric encryption scheme ΠSE

and a homomorphic signature scheme ΠHS). If ΠSE is CPA-secure and ΠHS

satisfies evaluation correctness, hiding correctness, selective unforgeability, and
context-hiding, then ΠNIZK is a NIZK argument for R in the preprocessing model.

We give the proof of Theorem 4.4 in the full version [74]. Combining
Construction 4.3 with a lattice-based homomorphic signature scheme [63] and
any LWE-based CPA-secure encryption scheme [6,58], we have the following
corollary.

Corollary 4.5 (Preprocessing NIZKs from Lattices). Under the LWE
assumption, there exists a multi-theorem preprocessing NIZK for NP.

Remark 4.6 (Publicly-Verifiable Preprocessing NIZK). Observe that the verifi-
cation algorithm in Construction 4.3 does not depend on the signing key skHS
of the signature scheme. Thus, we can consider a variant of Construction 4.3
where the verification key does not contain skHS, and thus, the verification state
can be made public. This does not compromise soundness because the prover’s
state already includes the other components of the verification key. However, this
publicly-verifiable version of the scheme does not satisfy zero-knowledge accord-
ing to the strong notion of zero-knowledge in Definition 4.1. This is because
without the signing key, the simulator is no longer able to simulate the sig-
natures in the simulated proofs. However, if we consider the weaker notion of
zero-knowledge from Remark 4.2 where the simulator chooses the verification key
for the preprocessing NIZK, then the publicly-verifiable version of the scheme is
provably secure. Notably, when the simulator constructs the verification key, it
also chooses (and stores) the signing key for the homomorphic signature scheme.
This enables the simulator to simulate signatures when generating the proofs.
The resulting construction is a publicly-verifiable preprocessing NIZK (i.e., a
“designated-prover” NIZK).

Remark 4.7 (Preprocessing NIZKs from Weaker Assumptions). By definition,
any NIZK argument (or proof) system in the CRS model is also a preprocessing
NIZK (according to the notion of zero-knowledge from Remark 4.2). In the CRS

748 S. Kim and D. J. Wu

model (and without random oracles), there are several main families of assump-
tions known to imply NIZKs: number-theoretic conjectures such as quadratic
residuosity [15,16,41],4 trapdoor permutations [40,44,65], pairings [66], or indis-
tinguishability obfuscation [86]. In the designated-verifier setting, constructions
are also known from additively homomorphic encryption [34,36,39]. A number of
works have also studied NIZKs in the preprocessing model, and several construc-
tions have been proposed from one-way functions [38,42,69,75] and oblivious
transfer [73]. Since lattice-based assumptions imply one-way functions [6,83],
oblivious transfer [80], and homomorphic encryption [55,83], one might think
that we can already construct NIZKs in the preprocessing model from standard
lattice assumptions. To our knowledge, this is not the case:

– The NIZK constructions of [38,42,75] are single-theorem NIZKs, and in par-
ticular, zero-knowledge does not hold if the prover uses the same proving key
to prove multiple statements. In these constructions, the proving key contains
secret values, and each proof reveals a subset of the prover’s secret values. As
a result, the verifier can combine multiple proofs together to learn additional
information about each statement than it could have learned had it only seen
a single proof. Thus, the constructions in [38,42,75] do not directly give a
multi-theorem NIZK.
A natural question to ask is whether we can use the transformation by
Feige et al. [44] who showed how to generically boost a NIZK (in the CRS
model) with single-theorem zero-knowledge to obtain a NIZK with multi-
theorem zero-knowledge. The answer turns out to be negative: the [44] trans-
formation critically relies on the fact that the prover algorithm is publicly
computable, or equivalently, that the prover algorithm does not depend on
any secrets.5 This is the case in the CRS model, since the prover algorithm
depends only on the CRS, but in the preprocessing model, the prover’s algo-
rithm can depend on a (secret) proving key kP . In the case of [38,42,75],
the proving key must be kept private for zero-knowledge. Consequently, the
preprocessing NIZKs of [38,42,75] do not give a general multi-theorem NIZK
in the preprocessing model.

– The (preprocessing) NIZK constructions based on oblivious transfer [73],
the “MPC-in-the-head” paradigm [69], and the ones based on homomorphic
encryption [34,36,39] are designated-verifier, and in particular, are vulnera-
ble to the “verifier rejection” problem. Specifically, soundness is compromised
if the prover can learn the verifier’s response to multiple adaptively-chosen

4 Some of these schemes [16,41] are “bounded” in the sense that the prover can only
prove a small number of theorems whose total size is bounded by the length of the
CRS.

5 At a high-level, the proof in [44] proceeds in two steps: first show that single-theorem
zero knowledge implies single-theorem witness indistinguishability, and then that
single-theorem witness indistinguishability implies multi-theorem witness indistin-
guishability. The second step relies on a hybrid argument, which requires that it be
possible to publicly run the prover algorithm. This step does not go through if the
prover algorithm takes in a secret state unknown to the verifier.

Multi-Theorem Preprocessing NIZKs from Lattices 749

statements and proofs. For instance, in the case of [73], an oblivious trans-
fer protocol is used to hide the verifier’s challenge bits; namely, the verifier’s
challenge message is fixed during the preprocessing, which means the verifier
uses the same challenge to verify every proof. A prover that has access to a
proof-verification oracle is able to reconstruct the verifier’s challenge bit-by-
bit and compromise soundness of the resulting NIZK construction. A similar
approach is taken in the preprocessing NIZK construction of [69].

From the above discussion, the only candidates of general multi-theorem NIZKs
in the preprocessing model are the same as those in the CRS model. Thus,
this work provides the first candidate construction of a multi-theorem NIZK in
the preprocessing model from standard lattice assumptions. It remains an open
problem to construct multi-theorem NIZKs from standard lattice assumptions
in the standard CRS model.

In the full version of this paper [74], we highlight several additional properties
of our multi-theorem preprocessing NIZK. We also describe another approach
for instantiating our construction using context-hiding homomorphic MACs [28–
30,54]. While existing homomorphic MAC constructions from one-way functions
do not suffice for our constructions (they are not context-hiding), they do provide
another potential avenue towards realizing multi-theorem preprocessing NIZKs
from weaker assumptions.

5 Blind Homomorphic Signatures

One limitation of preprocessing NIZKs is that we require a trusted setup to gen-
erate the proving and verification keys. One solution is to have the prover and
the verifier run a (malicious-secure) two-party computation protocol (e.g., [76])
to generate the proving and verification keys. However, generic MPC protocols
are often costly and require making non-black-box use of the underlying homo-
morphic signature scheme. In this section, we describe how this step can be
efficiently implemented using a new primitive called blind homomorphic signa-
tures. We formalize our notion in the model of universal composability [24].
This has the additional advantage of allowing us to realize the stronger notion
of a preprocessing universally-composable NIZK (UC-NIZK) from standard lat-
tice assumptions. We give our UC-NIZK construction and then describe several
applications to boosting the security of MPC in Sect. 6. We refer to the full
version for a review of the UC model.

We now define the ideal blind homomorphic signature functionality Fbhs. Our
definition builds upon existing definitions of the ideal signature functionality Fsig

by Canetti [25] and the ideal blind signature functionality Fblsig by Fischlin [47].
To simplify the presentation, we define the functionality in the two-party setting,
where there is a special signing party (denoted S) and a single receiver who
obtains the signature (denoted R). While this is a simpler model than the multi-
party setting considered in [25,47], it suffices for the applications we describe in
this work.

750 S. Kim and D. J. Wu

Ideal signature functionalities. The Fsig functionality from [25] essentially
provides a “registry service” where a distinguished party (the signer) is able to
register message-signature pairs. Moreover, any party that possesses the verifica-
tion key can check whether a particular message-signature pair is registered (and
thus, constitutes a valid signature). The ideal functionality does not impose any
restriction on the structure of the verification key or the legitimate signatures,
and allows the adversary to choose those values. In a blind signature scheme,
the signing process is replaced by an interactive protocol between the signer and
the receiver, and the security requirement is that the signer does not learn the
message being signed. To model this, the Fblsig functionality from [47] asks the
adversary to provide the description of a stateless algorithm IdealSign in addi-
tion to the verification key to the ideal functionality Fblsig. For blind signing
requests involving an honest receiver, the ideal functionality uses IdealSign to
generate the signatures. The message that is signed (i.e., the input to IdealSign)
is not disclosed to either the signer or the adversary. This captures the intuitive
requirement that the signer does not learn the message that is signed in a blind
signature scheme. Conversely, if a corrupt user makes a blind signing request,
then the ideal functionality asks the adversary to supply the signature that could
result from such a request.

Capturing homomorphic operations. In a homomorphic signature scheme,
a user possessing a signature σ on a message x should be able to compute a
function g on σ to obtain a new signature σ∗ on the message g(x). In turn, the
verification algorithm checks that σ∗ is a valid signature on the value g(x) and
importantly, that it is a valid signature with respect to the function g. Namely,
the signature is bound not only to the computed value g(x) but also to the
function g.6 To extend the ideal signature functionality to support homomor-
phic operations on signatures, we begin by modifying the ideal functionality to
maintain a mapping between function-message pairs and signatures (rather than
a mapping between messages and signatures). In this case, a fresh signature σ
(say, output by the blind signing protocol) on a message x would be viewed
as a signature on the function-message pair (fid, x), where fid here denotes the
identity function. Then, if a user subsequently computes a function g on σ,
the resulting signature σ∗ should be viewed as a signature on the new pair
(g ◦ fid, g(x)) = (g, g(x)). In other words, in a homomorphic signature scheme,
signatures are bound to a function-message pair, rather than a single message.

Next, we introduce an additional signature-evaluation operation to the ideal
functionality. There are several properties we desire from our ideal functionality:

– The ideal signature functionality allows the adversary to decide the structure
of the signatures, so it is only natural that the adversary also decides the
structure of the signatures output by the signature evaluation procedure.

6 If there is no binding between σ∗ and the function g, then we cannot define a
meaningful notion of unforgeability.

Multi-Theorem Preprocessing NIZKs from Lattices 751

– Signature evaluation should be compatible with the blind signing process.
Specifically, the receiver should be able to compute on a signature it obtained
from the blind signing functionality, and moreover, the computation (if
requested by an honest receiver) should not reveal to the adversary on which
signature or message the computation was performed.

– The computed signature should also hide the input message. In particular, if
the receiver obtains a blind signature on a message x and later computes a
signature σ∗ on g(x), the signature σ∗ should not reveal the original (blind)
message x.

To satisfy these properties, the ideal functionality asks the adversary to addition-
ally provide the description of a stateless signature evaluation algorithm IdealEval
(in addition to IdealSign). The ideal functionality uses IdealEval to generate the
signatures when responding to evaluation queries. We capture the third prop-
erty (that the computed signatures hide the input message to the computation)
by setting the inputs to IdealEval to only include the function g that is com-
puted and the output value of the computation g(x). The input message x is not
provided to IdealEval.

Under our definition, the signature evaluation functionality takes as input a
function-message pair (fid, x), a signature σ on (fid, x) (under the verification
key vk of the signature scheme), and a description of a function g (to compute
on x). The output is a new signature σ∗ on the pair (g, g(x)). That is, σ∗ is a
signature on the value g(x) with respect to the function g. When the evaluator
is honest, the signature on (g, g(x)) is determined by IdealEval(g, g(x)) (without
going through the adversary). As discussed above, IdealEval only takes as input
the function g and the value g(x), and not the input; this means that the com-
puted signature σ∗ hides all information about x other than what is revealed
by g(x). When the evaluator is corrupt, the adversary chooses the signature on
(g, g(x)), subject to basic consistency requirements.7 Once an evaluated signa-
ture is generated, the functionality registers the new signature σ∗ on the pair
(g, g(x)). Our definition implicitly requires that homomorphic evaluation be non-
interactive. Neither the adversary nor the signer is notified or participates in the
protocol.

Preventing selective failures. In our definition, the functionalities IdealSign
and IdealEval must either output ⊥ on all inputs, or output ⊥ on none of
the inputs. This captures the property that a malicious signer cannot mount a
selective failure attack against an honest receiver, where the function of whether
the receiver obtains a signature or not in the blind signing protocol varies depend-
ing on its input message. In the case of the blind signing protocol, we do allow a
malicious signer to cause the protocol to fail, but this failure event must be inde-
pendent of the receiver’s message. We capture this in the ideal functionality by
allowing a corrupt signer to dictate whether a blind signing execution completes

7 The adversary is not allowed to re-register a signature that was previously declared
invalid (according to the verification functionality) as a valid signature.

752 S. Kim and D. J. Wu

successfully or not. However, the corrupt signer must decide whether a given
protocol invocation succeeds or fails independently of the receiver’s message.

Simplifications and generalizations. In defining our ideal blind homo-
morphic signature functionality, we impose several restrictions to simplify the
description and analysis. We describe these briefly here, and note how we could
extend the functionality to provide additional generality. Note that all of the
applications we consider (Sect. 6) only require the basic version of the function-
ality (Fig. 1), and not its generalized variants.

– One-time signatures. The ideal blind homomorphic signature functionality
supports blind signing of a single message. Namely, the ideal blind signing
functionality only responds to the first signing request from the receiver and
ignores all subsequent requests. Moreover, the ideal functionality only sup-
ports signature evaluation requests after a signature has been successfully
issued by the ideal signing functionality. We capture this via a ready flag that
is only set at the conclusion of a successful signing operation. We can relax
this single-signature restriction, but at the cost of complicating the analysis.

– Single-hop evaluation. Our second restriction on the ideal blind homomor-
phic signature functionality is we only consider “single-hop” homomorphic
operations: that is, we only allow homomorphic operations on fresh signa-
tures. In the ideal functionality, we capture this by having the signature
evaluation functionality ignore all requests to compute on function-message
pairs (f, x) where f �= fid is not the identity function. A more general def-
inition would also consider “multi-hop” evaluation where a party can per-
form arbitrarily many sequential operations on a signature. The reason we
present our definition in the simpler single-hop setting is because existing
constructions of homomorphic signatures [63] (which we leverage in our con-
struction) do not support the multi-hop analog of our definition. This is
because under our definition, the ideal evaluation functionality essentially
combines the homomorphic evaluation with the context-hiding transforma-
tion in standard homomorphic signature schemes. The current homomorphic
signature candidate [63] does not support homomorphic computation after
performing context-hiding, and so, cannot be used to realize the more gen-
eral “multi-hop” version of our functionality. For this reason, we give our
definition in the single-hop setting.

We give the formal specification of the ideal blind homomorphic signature func-
tionality Fbhs in Fig. 1.

5.1 Constructing Blind Homomorphic Signatures

In Fig. 2, we give the formal description of our blind homomorphic signature
protocol Πbhs in the F�,s

ot -hybrid model.8 Here, we provide a brief overview of
8 For the protocol description and its security proof, we use the vector notation x to

represent the messages (in order to be consistent with the homomorphic signature
notation).

Multi-Theorem Preprocessing NIZKs from Lattices 753

Functionality Fbhs

The ideal blind homomorphic signature functionality Fbhs runs with a signer S,
a receiver R, and an ideal adversary S. The functionality is parameterized by
a message length � and a function class H. We write fid to denote the identity
function.

Key Generation: Upon receiving a value (sid, keygen) from the signer S,
send (sid, keygen) to the adversary S. After receiving (sid, vkey, vk) from S, give
(sid, vkey, vk) to S and record vk. Then, initialize an empty list L, and a ready flag
(initially unset).

Signature Generation: If a signature-generation request has already been pro-
cessed, ignore the request. Otherwise, upon receiving a value (sid, sign, vk, x) from
the receiver R (for some message x ∈ {0, 1}�), send (sid, signature) to S, and let
(sid, IdealSign, IdealEval) be the response from S, where IdealSign and IdealEval are
functions that either output ⊥ on all inputs or on no inputs. Record the tuple
(IdealSign, IdealEval). If S is honest, send (sid, signature) to S to notify it that a
signature request has taken place. If S is corrupt, then send (sid, sig-success) to S
and let (sid, b) be the response from S. If b �= 1, send (sid, signature, (fid, x), ⊥) to
R. Otherwise, proceed as follows:

– If R is honest, generate σ ← IdealSign(x), and send (sid, signature, (fid, x), σ) to
R.

– If R is corrupt, send (sid, sign, x) to S to obtain (sid, signature, (fid, x), σ).

If (vk, (fid, x), σ, 0) ∈ L, abort. Otherwise, add (vk, (fid, x), σ, 1) to L, and if σ �= ⊥,
set the flag ready.

Signature Verification: Upon receiving an input (sid, verify, vk′, (f, x), σ) from
a party P ∈ {S,R}, proceed as follows:

– Correctness: If f /∈ H, then set t = 0. If vk = vk′ and (vk, (f, x), σ, 1) ∈ L, then
set t = 1.

– Unforgeability: Otherwise, if vk = vk′, the signer S has not been corrupted, and
there does not exist (vk, (fid, x′), σ′, 1) ∈ L for some x′, σ′ where x = f(x′),
then set t = 0, and add (vk, (f, x), σ, 0) to L.

– Consistency: Otherwise, if there is already an entry (vk′, (f, x), σ, t′) ∈ L for
some t′, set t = t′.

– Otherwise, send (sid, verify, vk′, (f, x), σ) to the adversary S. After receiving
(sid, verified, (f, x), σ, τ) from S, set t = τ and add (vk′, (f, x), σ, τ) to L.

Send (sid, verified, (f, x), σ, t) to P. If t = 1, we say the signature successfully
verified.

Fig. 1. The Fbhs functionality. The description continues on the next page.

754 S. Kim and D. J. Wu

Functionality Fbhs (Continued)

Signature Evaluation: If the ready flag has not been set, then ignore the request.
Otherwise, upon receiving an input (sid, eval, vk, g, (f, x), σ) from a party P ∈
{S,R}, ignore the request if f �= fid. If f = fid, then apply the signature verification
procedure to (sid, verify, vk, (f, x), σ), but do not forward the output to P. If the
signature does not verify, then ignore the request. Otherwise, proceed as follows:

– If g /∈ H, then set σ∗ = ⊥.
– Otherwise, if P is honest, compute σ∗ ← IdealEval(g, g(x)).
– Otherwise, if P is corrupt, send (sid, eval, g, (f, x), σ) to S to obtain

(sid, signature, (g, g(x)), σ∗).

Finally, send (sid, signature, (g, g(x)), σ∗) to P. If σ∗ �= ⊥ and (vk, (g, g(x)), σ∗, 0) ∈
L, abort. If σ∗ �= ⊥ and (vk, (g, g(x)), σ∗, 0) /∈ L, add (vk, (g, g(x)), σ∗, 1) to L.

Fig. 1. (continued)

the construction. As discussed in Sect. 1.1, our construction combines homo-
morphic signatures with any UC-secure oblivious transfer protocol [27]. The
key-generation, signature-verification, and signature-evaluation operations in
Πbhs just correspond to running the underlying ΠHS algorithms.

The blind signing protocol is interactive and relies on OT. Since we use a
bitwise homomorphic signature scheme, a signature on an �-bit message consists
of � signatures, one for each bit of the message. In the first step of the blind
signing protocol, the signer constructs two signatures (one for the bit 0 and one
for the bit 1) for each bit position of the message. The receiver then requests
the signatures corresponding to the bits of its message using the OT protocol.
Intuitively, the OT protocol ensures that the signer does not learn which set of
signatures the receiver requested and the receiver only learns a single signature
for each bit position. However, this basic scheme is vulnerable to a “selective-
failure” attack where the signer strategically generates invalid signatures for
certain bit positions of the message x. As a result, whether the receiver obtains
a valid signature on its entire message becomes correlated with its message itself.
To prevent this selective-failure attack, we use the standard technique of having
the receiver first split its message x into a number of random shares w1, . . . ,wt

where x =
⊕

i∈[t] wi. Instead of asking for a signature on x directly, it instead
asks for a signature on the shares w1, . . . ,wt. Since the signatures on the shares
w1, . . . ,wt are homomorphic, the receiver can still compute a signature on the
original message x and hence, correctness of signing is preserved. Moreover, as we
show in the proof of Theorem 5.1, unless the malicious signer correctly guesses all
of the shares of w1, . . . ,wt the receiver chose, the probability that the receiver
aborts (due to receiving an invalid signature) is independent of x no matter
how the malicious signer generates the signatures. We formally summarize the
security properties of Πbhs in the following theorem, but defer its proof to the
full version [74].

Multi-Theorem Preprocessing NIZKs from Lattices 755

Theorem 5.1 (Blind Homomorphic Signatures). Fix a security parameter
λ. Define parameters �, t, and s as in Πbhs (Fig. 2) where t = ω(log λ). Let H be
a function class over {0, 1}� and let ΠHS be a homomorphic signature scheme for
the message space {0, 1} and function class H′ such that for any function f ∈ H,
we have f ◦ frecon ∈ H′, where frecon is the share-reconstruction function from
Fig. 2. Suppose that ΠHS satisfies correctness, unforgeability, and context-hiding.
Then, the protocol Πbhs (when instantiated with ΠHS) securely realizes the ideal
functionality Fbhs (Fig. 1) with respect to function class H in the presence of
(static) malicious adversaries in the F�,s

ot -hybrid model.

Blind homomorphic signatures from LWE. Combining the fully-secure
homomorphic signature scheme described in the full version [74] (based on [63])
with the lattice-based UC-secure oblivious transfer protocol from [80], we obtain
a blind homomorphic signature scheme from standard lattice assumptions. We
describe our instantiation below.

Fact 5.2 (Oblivious Transfer from LWE [80]). Let λ be a security param-
eter and define parameters �, s = poly(λ). Then, under the LWE assumption,
there exists a protocol Πot that security realizes the ideal OT functionality F�,s

ot

in the presence of malicious adversaries in the CRS model (and assuming static
corruptions). Moreover, the protocol Πot is round-optimal: it consists of one
message from the receiver to the signer and one from the receiver to the signer.

Corollary 5.3 (Blind Homomorphic Signatures from LWE). Let λ be
a security parameter. Then, under the LWE assumption, for all d = poly(λ),
there exists a protocol Π ′

bhs that securely realizes Fbhs for the class of depth-d
Boolean circuits in the presence of malicious adversaries in the CRS model (and
assuming static corruptions). Moreover, the protocol Π ′

bhs satisfies the following
properties:

– The key-generation, signature-verification, and signature-evaluation protocols
are non-interactive.

– The signature-generation protocol (i.e., blind signing) is a two-round interac-
tive protocol between the signer and the receiver (one message each way).

– The length of a signature is poly(λ, d).

Proof. Let Πbhs be the protocol from Fig. 2 instantiated with a lattice-based
homomorphic signature scheme (see the full version [74]). By Theorem 5.1, proto-
col Πbhs securely realizes Fbhs in the F�,s

ot -hybrid model, for some �, s = poly(λ).
We let Π ′

bhs be the protocol obtained by instantiating the functionality F�,s
ot in

Πbhs with the protocol from Fact 5.2. Security of Π ′
bhs then follows from the uni-

versal composition theorem. Key generation, signature verification, and signature
evaluation in Π ′

bhs simply corresponds to invoking the associated functionalities
of the underlying homomorphic signature scheme, and thus, are non-interactive.
The signature length is also inherited from ΠHS. The blind signing protocol
reduces to a single invocation of F�,s

ot , which by Fact 5.2, can be implemented
by just two rounds of interaction.

756 S. Kim and D. J. Wu

Fig. 2. The Πbhs protocol. The protocol description continues on the next page.

Multi-Theorem Preprocessing NIZKs from Lattices 757

Fig. 2. (continued)

6 Universally-Composable Preprocessing NIZKs

In this section, we show how to combine blind homomorphic signatures with
CPA-secure encryption to obtain UC-NIZKs in the preprocessing model from
standard lattice assumptions. We give our protocol ΠZK in the Fbhs-hybrid model
in Fig. 3. Next, we state the formal security theorem and describe how to instan-
tiate it from standard lattice assumptions. We give the proof of Theorem 6.1 in
the full version of this paper [74].

Theorem 6.1 (Preprocessing Zero-Knowledge Arguments). Let ΠSE =
(KeyGen,Encrypt,Decrypt) be a CPA-secure encryption scheme. Then, the pro-
tocol ΠZK in Fig. 3 (instantiated with ΠSE) securely realizes FZK in the presence
of (static) malicious adversaries in the Fbhs-hybrid model.

Corollary 6.2 (Preprocessing UC-NIZKs from LWE). Let λ be a security
parameter. Then, under the LWE assumption, for all d = poly(λ), there exists
a protocol Π ′

NIZK that securely realizes FZK in the presence of (static) malicious
adversaries in the CRS model for all NP relations R that can be computed by a
circuit of depth at most d. The protocol Π ′

NIZK satisfies the following properties:

– The (one-time) preprocessing phase is a two-round protocol between the prover
and the verifier.

– The prover’s and verifier’s algorithms are both non-interactive.
– If R is an NP relation, then the length of a proof of membership for the

language associated with R is m+poly(λ, d), where m is the size of the witness
associated with R.

758 S. Kim and D. J. Wu

Protocol ΠZK in the Fbhs-Hybrid Model

Let λ be a security parameter and ΠSE = (KeyGen,Encrypt,Decrypt) be a CPA-
secure encryption scheme. We assume that the prover P and the verifier V have
access to the ideal functionality Fbhs, where P is the receiver R and V is the signer
S. For any NP relation R, define the Boolean-valued function CheckWitnessR,ct,x,
parameterized by R, a statement x, and a ciphertext ct as follows: on input a secret
key sk, CheckWitnessR,ct,x(sk) outputs 1 if and only if R(x,Decrypt(sk, ct)) = 1,
and 0 otherwise. We implicitly assume that CheckWitnessR,ct,x ∈ H, where H is
the function class associated with Fbhs.

Preprocessing phase: In the preprocessing phase, the prover and verifier do the
following:

1. The verifier sends (sid, keygen) to Fbhs and receives in response a verification
key vk. The verifier sends vk to the prover. Subsequently, when the verifier
receives (sid, signature) from Fbhs, it sets the ready flag.

2. The prover begins by sampling a secret key sk ← KeyGen(1λ). Then, it requests
a signature on sk under vk by sending (sid, sign, vk, sk) to Fbhs. The prover
receives a signature σsk from Fbhs. If σsk = ⊥, then the prover aborts.

Prover: On input a tuple (sid, ssid, prove, R, x, w) where R(x, w) = 1, the prover
proceeds as follows:

1. Encrypt the witness w to obtain a ciphertext ct ← Encrypt(sk, w).
2. Submit (sid, eval, vk,CheckWitnessR,ct,x, (fid, sk), σsk) to Fbhs to obtain a signa-

ture σ∗.
3. Set π = (ct, σ∗) and send (sid, ssid, proof, R, x, π) to the verifier.

Verifier: When the verifier receives a tuple (sid, ssid, proof, R, x, π), it ignores
the request if the ready flag has not been set. Otherwise, it parses π = (ct, σ),
and ignores the message if π does not have this form. Otherwise, it submits
(sid, verify, vk, (CheckWitnessR,ct,x, 1), σ) to Fbhs. If the signature is valid (i.e., Fbhs

replies with 1), then the verifier accepts and outputs (sid, ssid, proof, R, x). Other-
wise the verifier ignores the message.

Fig. 3. Preprocessing ZK argument in the Fbhs-hybrid model.

Proof. Fix a depth bound d = poly(λ). First, we can instantiate the CPA-secure
encryption scheme ΠSE = (KeyGen,Encrypt,Decrypt) in Fig. 3 from lattices using
any lattice-based CPA-secure symmetric encryption scheme [6,58]. Let d′ be a
bound on the depth of the circuit that computes the CheckWitnessR,ct,x function
in Fig. 3. Note that d′ = poly(λ, d), since the depth of the relation R is bounded
by d and the depth of the Decrypt function is poly(λ). By Corollary 5.3, under
the LWE assumption, there exists a protocol Π ′

bhs that securely realizes Fbhs

for the class of all depth-d′ Boolean circuits in the presence of (static) malicious

Multi-Theorem Preprocessing NIZKs from Lattices 759

adversaries. The claim then follows by combining Theorem 6.1 with Corollary 5.3
and the universal composition theorem. We now check the additional properties:

– The preprocessing phase corresponds to the blind signing protocol of Π ′
bhs,

which is a two-round protocol between the signer and the verifier.
– The prover’s algorithm corresponds to signature evaluation while the

verifier’s algorithm corresponds to signature verification. Both of these are
non-interactive in Π ′

bhs.
– The length of a proof for an NP relation R consists of an encryption of the

witness under ΠSE (of size m + poly(λ)) and a signature under Π ′
bhs (of size

poly(λ, d)). The total size is bounded by m + poly(λ, d). ��

6.1 Applications to MPC

In the full version of this paper, we describe several applications of our prepro-
cessing UC-NIZKs to boosting the security of MPC protocols. Specifically, we
show that combining our construction with the round-optimal, semi-malicious
MPC protocol of Mukherjee-Wichs [78] yields a round-optimal, malicious-secure
MPC protocol from lattices in a reusable preprocessing model where the commu-
nication complexity only depends on the size of the inputs/outputs. Then, we
show how to obtain a succinct version of the GMW [59,60] compiler from lattice
assumptions.

Acknowledgments. We thank Dan Boneh and Akshayaram Srinivasan for many
insightful comments and discussions on this work. We thank the anonymous reviewers
for helpful comments on the presentation. This work was funded by NSF, DARPA,
a grant from ONR, and the Simons Foundation. Opinions, findings and conclusions
or recommendations expressed in this material are those of the authors and do not
necessarily reflect the views of DARPA.

References

1. Abe, M.: A secure three-move blind signature scheme for polynomially many signa-
tures. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 136–151.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6 9

2. Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-
preserving signatures and commitments to group elements. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 209–236. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-14623-7 12

3. Abe, M., Haralambiev, K., Ohkubo, M.: Signing on elements in bilinear groups for
modular protocol design. IACR Cryptology ePrint Archive (2010)

4. Abe, M., Ohkubo, M.: A framework for universally composable non-committing
blind signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
435–450. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-
7 26

https://doi.org/10.1007/3-540-44987-6_9
https://doi.org/10.1007/978-3-642-14623-7_12
https://doi.org/10.1007/978-3-642-10366-7_26
https://doi.org/10.1007/978-3-642-10366-7_26

760 S. Kim and D. J. Wu

5. Ahn, J.H., Boneh, D., Camenisch, J., Hohenberger, S., Shelat, A., Waters, B.:
Computing on authenticated data. J. Cryptol. 28(2), 351–395 (2015)

6. Ajtai, M.: Generating hard instances of lattice problems. In: STOC (1996)
7. Alamati, N., Peikert, C., Stephens-Davidowitz, N.: New (and old) proof systems

for lattice problems. In: Abdalla, M., Dahab, R. (eds.) PKC 2018. LNCS, vol.
10770, pp. 619–643. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
76581-5 21

8. Ateniese, G., et al.: Provable data possession at untrusted stores. In: ACM CCS
(2007)

9. Ateniese, G., Kamara, S., Katz, J.: Proofs of storage from homomorphic identi-
fication protocols. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
319–333. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-
7 19

10. Attrapadung, N., Libert, B.: Homomorphic network coding signatures in the stan-
dard model. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011.
LNCS, vol. 6571, pp. 17–34. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-19379-8 2

11. Backes, M., Fiore, D., Reischuk, R.M.: Verifiable delegation of computation on
outsourced data. In: ACM CCS (2013)

12. Baldimtsi, F., Lysyanskaya, A.: Anonymous credentials light. In: ACM CCS (2013)
13. Bellare, M., Namprempre, C., Pointcheval, D., Semanko, M.: The one-more-RSA-

inversion problems and the security of Chaum’s blind signature scheme. J. Cryptol.
16(3), 185–215 (2003)

14. Benhamouda, F., Blazy, O., Ducas, L., Quach, W.: Hash proof systems over lattices
revisited. In: Abdalla, M., Dahab, R. (eds.) PKC 2018. LNCS, vol. 10770, pp. 644–
674. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76581-5 22

15. Blum, M., De Santis, A., Micali, S., Persiano, G.: Noninteractive zero-knowledge.
SIAM J. Comput. 20(6), 1084–1118 (1991)

16. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its appli-
cations. In: STOC (1988)

17. Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based
on the Gap-Diffie-Hellman-Group signature scheme. In: Desmedt, Y.G. (ed.) PKC
2003. LNCS, vol. 2567, pp. 31–46. Springer, Heidelberg (2003). https://doi.org/10.
1007/3-540-36288-6 3

18. Boneh, D., Freeman, D.M.: Homomorphic signatures for polynomial functions. In:
Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 149–168. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4 10

19. Boneh, D., Freeman, D.M.: Linearly homomorphic signatures over binary fields
and new tools for lattice-based signatures. In: Catalano, D., Fazio, N., Gennaro,
R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 1–16. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19379-8 1

20. Boneh, D., Freeman, D.M., Katz, J., Waters, B.: Signing a linear subspace: sig-
nature schemes for network coding. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009.
LNCS, vol. 5443, pp. 68–87. Springer, Heidelberg (2009). https://doi.org/10.1007/
978-3-642-00468-1 5

21. Brands, S.A.: Rethinking Public Key Infrastructures and Digital Certificates:
Building in Privacy. MIT Press, Cambridge (2000)

22. Brzuska, C., et al.: Security of sanitizable signatures revisited. In: Jarecki, S.,
Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 317–336. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-00468-1 18

https://doi.org/10.1007/978-3-319-76581-5_21
https://doi.org/10.1007/978-3-319-76581-5_21
https://doi.org/10.1007/978-3-642-10366-7_19
https://doi.org/10.1007/978-3-642-10366-7_19
https://doi.org/10.1007/978-3-642-19379-8_2
https://doi.org/10.1007/978-3-642-19379-8_2
https://doi.org/10.1007/978-3-319-76581-5_22
https://doi.org/10.1007/3-540-36288-6_3
https://doi.org/10.1007/3-540-36288-6_3
https://doi.org/10.1007/978-3-642-20465-4_10
https://doi.org/10.1007/978-3-642-19379-8_1
https://doi.org/10.1007/978-3-642-00468-1_5
https://doi.org/10.1007/978-3-642-00468-1_5
https://doi.org/10.1007/978-3-642-00468-1_18

Multi-Theorem Preprocessing NIZKs from Lattices 761

23. Camenisch, J., Koprowski, M., Warinschi, B.: Efficient blind signatures without
random oracles. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp.
134–148. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30598-
9 10

24. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: FOCS (2001)

25. Canetti, R.: Universally composable signature, certification, and authentication.
In: CSFW (2004)

26. Canetti, R., Chen, Y., Reyzin, L., Rothblum, R.D.: Fiat-Shamir and correlation
intractability from strong KDM-Secure encryption. In: Nielsen, J.B., Rijmen, V.
(eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 91–122. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-78381-9 4

27. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-
party and multi-party secure computation. In: STOC (2002)

28. Catalano, D.: Homomorphic signatures and message authentication codes. In:
Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp. 514–519.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10879-7 29

29. Catalano, D., Fiore, D.: Practical homomorphic MACs for arithmetic circuits. In:
Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 336–
352. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9 21

30. Catalano, D., Fiore, D., Gennaro, R., Nizzardo, L.: Generalizing homomorphic
MACs for arithmetic circuits. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol.
8383, pp. 538–555. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
642-54631-0 31

31. Catalano, D., Fiore, D., Warinschi, B.: Efficient network coding signatures in the
standard model. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012.
LNCS, vol. 7293, pp. 680–696. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-30057-8 40

32. Catalano, D., Fiore, D., Warinschi, B.: Homomorphic signatures with efficient ver-
ification for polynomial functions. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO
2014. LNCS, vol. 8616, pp. 371–389. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-662-44371-2 21

33. Chaidos, P., Couteau, G.: Efficient designated-verifier non-interactive zero-
knowledge proofs of knowledge. IACR Cryptology ePrint Archive (2017)

34. Chaidos, P., Groth, J.: Making sigma-protocols non-interactive without random
oracles. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 650–670. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2 29

35. Chaum, D.: Blind signatures for untraceable payments. In: Chaum, D., Rivest,
R.L., Sherman, A.T. (eds.) Advances in Cryptology, pp. 199–203. Springer, Boston
(1983). https://doi.org/10.1007/978-1-4757-0602-4 18

36. Cramer, R., Damg̊ard, I.: Secret-key zero-knowlegde and non-interactive verifi-
able exponentiation. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 223–237.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24638-1 13

37. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-46035-7 4

38. Damg̊ard, I.: Non-interactive circuit based proofs and non-interactive perfect zero-
knowledge with preprocessing. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS,
vol. 658, pp. 341–355. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-
47555-9 28

https://doi.org/10.1007/978-3-540-30598-9_10
https://doi.org/10.1007/978-3-540-30598-9_10
https://doi.org/10.1007/978-3-319-78381-9_4
https://doi.org/10.1007/978-3-319-10879-7_29
https://doi.org/10.1007/978-3-642-38348-9_21
https://doi.org/10.1007/978-3-642-54631-0_31
https://doi.org/10.1007/978-3-642-54631-0_31
https://doi.org/10.1007/978-3-642-30057-8_40
https://doi.org/10.1007/978-3-642-30057-8_40
https://doi.org/10.1007/978-3-662-44371-2_21
https://doi.org/10.1007/978-3-662-44371-2_21
https://doi.org/10.1007/978-3-662-46447-2_29
https://doi.org/10.1007/978-1-4757-0602-4_18
https://doi.org/10.1007/978-3-540-24638-1_13
https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/3-540-47555-9_28
https://doi.org/10.1007/3-540-47555-9_28

762 S. Kim and D. J. Wu

39. Damg̊ard, I., Fazio, N., Nicolosi, A.: Non-interactive zero-knowledge from homo-
morphic encryption. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876,
pp. 41–59. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878 3

40. De Santis, A., Di Crescenzo, G., Ostrovsky, R., Persiano, G., Sahai, A.: Robust non-
interactive zero knowledge. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp.
566–598. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8 33

41. De Santis, A., Micali, S., Persiano, G.: Non-interactive zero-knowledge proof sys-
tems. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 52–72. Springer,
Heidelberg (1988). https://doi.org/10.1007/3-540-48184-2 5

42. De Santis, A., Micali, S., Persiano, G.: Non-interactive zero-knowledge with pre-
processing. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 269–282.
Springer, New York (1990). https://doi.org/10.1007/0-387-34799-2 21

43. Dodis, Y., Vadhan, S.P., Wichs, D.: Proofs of retrievability via hardness amplifi-
cation. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 109–127. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-00457-5 8

44. Feige, U., Lapidot, D., Shamir, A.: Multiple non-interactive zero knowledge proofs
based on a single random string. In: FOCS (1990)

45. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

46. Fiore, D., Mitrokotsa, A., Nizzardo, L., Pagnin, E.: Multi-key homomorphic
authenticators. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol.
10032, pp. 499–530. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-53890-6 17

47. Fischlin, M.: Round-optimal composable blind signatures in the common reference
string model. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 60–77.
Springer, Heidelberg (2006). https://doi.org/10.1007/11818175 4

48. Freeman, D.M.: Improved security for linearly homomorphic signatures: a generic
framework. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS,
vol. 7293, pp. 697–714. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-30057-8 41

49. Fuchsbauer, G.: Automorphic signatures in bilinear groups and an application to
round-optimal blind signatures. IACR Cryptology ePrint Archive (2009)

50. Fuchsbauer, G., Hanser, C., Kamath, C., Slamanig, D.: Practical round-optimal
blind signatures in the standard model from weaker assumptions. In: Zikas, V., De
Prisco, R. (eds.) SCN 2016. LNCS, vol. 9841, pp. 391–408. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-44618-9 21

51. Fuchsbauer, G., Hanser, C., Slamanig, D.: Practical round-optimal blind signatures
in the standard model. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS,
vol. 9216, pp. 233–253. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-48000-7 12

52. Garg, S., Rao, V., Sahai, A., Schröder, D., Unruh, D.: Round optimal blind sig-
natures. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 630–648.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9 36

53. Gennaro, R., Katz, J., Krawczyk, H., Rabin, T.: Secure network coding over the
integers. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp.
142–160. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13013-
7 9

54. Gennaro, R., Wichs, D.: Fully homomorphic message authenticators. In: Sako,
K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8270, pp. 301–320. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-42045-0 16

https://doi.org/10.1007/11681878_3
https://doi.org/10.1007/3-540-44647-8_33
https://doi.org/10.1007/3-540-48184-2_5
https://doi.org/10.1007/0-387-34799-2_21
https://doi.org/10.1007/978-3-642-00457-5_8
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-662-53890-6_17
https://doi.org/10.1007/978-3-662-53890-6_17
https://doi.org/10.1007/11818175_4
https://doi.org/10.1007/978-3-642-30057-8_41
https://doi.org/10.1007/978-3-642-30057-8_41
https://doi.org/10.1007/978-3-319-44618-9_21
https://doi.org/10.1007/978-3-662-48000-7_12
https://doi.org/10.1007/978-3-662-48000-7_12
https://doi.org/10.1007/978-3-642-22792-9_36
https://doi.org/10.1007/978-3-642-13013-7_9
https://doi.org/10.1007/978-3-642-13013-7_9
https://doi.org/10.1007/978-3-642-42045-0_16

Multi-Theorem Preprocessing NIZKs from Lattices 763

55. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC (2009)
56. Gentry, C., Groth, J., Ishai, Y., Peikert, C., Sahai, A., Smith, A.D.: Using fully

homomorphic hybrid encryption to minimize non-interative zero-knowledge proofs.
J. Cryptol. 28(4), 820–843 (2015)

57. Ghadafi, E., Smart, N.P.: Efficient two-move blind signatures in the common ref-
erence string model. In: Gollmann, D., Freiling, F.C. (eds.) ISC 2012. LNCS, vol.
7483, pp. 274–289. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-33383-5 17

58. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. In:
FOCS (1984)

59. Goldreich, O., Micali, S., Wigderson, A.: How to prove all NP statements in
zero-knowledge and a methodology of cryptographic protocol design (extended
abstract). In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 171–185.
Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 11

60. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: STOC (1987)

61. Goldreich, O., Oren, Y.: Definitions and properties of zero-knowledge proof sys-
tems. J. Cryptol. 7(1), 1–32 (1994)

62. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof-systems (extended abstract). In: STOC (1985)

63. Gorbunov, S., Vaikuntanathan, V., Wichs, D.: Leveled fully homomorphic signa-
tures from standard lattices. In: STOC (2015)

64. Groth, J.: Simulation-sound NIZK proofs for a practical language and constant size
group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284,
pp. 444–459. Springer, Heidelberg (2006). https://doi.org/10.1007/11935230 29

65. Groth, J.: Short non-interactive zero-knowledge proofs. In: Abe, M. (ed.) ASI-
ACRYPT 2010. LNCS, vol. 6477, pp. 341–358. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-17373-8 20

66. Groth, J., Ostrovsky, R., Sahai, A.: Perfect non-interactive zero knowledge for NP.
In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 339–358. Springer,
Heidelberg (2006). https://doi.org/10.1007/11761679 21

67. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups.
In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3 24

68. Hanzlik, L., Kluczniak, K.: A short paper on blind signatures from knowledge
assumptions. In: Grossklags, J., Preneel, B. (eds.) FC 2016. LNCS, vol. 9603, pp.
535–543. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54970-
4 31

69. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge proofs from
secure multiparty computation. SIAM J. Comput. 39(3), 1121–1152 (2009)

70. Kalai, Y.T., Raz, R.: Succinct non-interactive zero-knowledge proofs with prepro-
cessing for LOGSNP. In: FOCS (2006)

71. Katz, J., Vaikuntanathan, V.: Smooth projective hashing and password-based
authenticated key exchange from lattices. In: Matsui, M. (ed.) ASIACRYPT 2009.
LNCS, vol. 5912, pp. 636–652. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-10366-7 37

72. Kiayias, A., Zhou, H.-S.: Concurrent blind signatures without random oracles. In:
De Prisco, R., Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 49–62. Springer,
Heidelberg (2006). https://doi.org/10.1007/11832072 4

https://doi.org/10.1007/978-3-642-33383-5_17
https://doi.org/10.1007/978-3-642-33383-5_17
https://doi.org/10.1007/3-540-47721-7_11
https://doi.org/10.1007/11935230_29
https://doi.org/10.1007/978-3-642-17373-8_20
https://doi.org/10.1007/11761679_21
https://doi.org/10.1007/978-3-540-78967-3_24
https://doi.org/10.1007/978-3-662-54970-4_31
https://doi.org/10.1007/978-3-662-54970-4_31
https://doi.org/10.1007/978-3-642-10366-7_37
https://doi.org/10.1007/978-3-642-10366-7_37
https://doi.org/10.1007/11832072_4

764 S. Kim and D. J. Wu

73. Kilian, J., Micali, S., Ostrovsky, R.: Minimum resource zero-knowledge proofs. In:
Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 545–546. Springer, New
York (1990). https://doi.org/10.1007/0-387-34805-0 47

74. Kim, S., Wu, D.J.: Multi-theorem preprocessing NIZKs from lattices. IACR Cryp-
tology ePrint Archive 2018:272 (2018)

75. Lapidot, D., Shamir, A.: Publicly verifiable non-interactive zero-knowledge proofs.
In: Menezes, A.J., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 353–
365. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-38424-3 26

76. Lindell, Y., Pinkas, B.: An efficient protocol for secure two-party computation
in the presence of malicious adversaries. In: Naor, M. (ed.) EUROCRYPT 2007.
LNCS, vol. 4515, pp. 52–78. Springer, Heidelberg (2007). https://doi.org/10.1007/
978-3-540-72540-4 4

77. Ling, S., Nguyen, K., Stehlé, D., Wang, H.: Improved zero-knowledge proofs of
knowledge for the ISIS problem, and applications. In: Kurosawa, K., Hanaoka,
G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 107–124. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-36362-7 8

78. Mukherjee, P., Wichs, D.: Two round multiparty computation via multi-key FHE.
In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp.
735–763. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-
5 26

79. Peikert, C., Vaikuntanathan, V.: Noninteractive statistical zero-knowledge proofs
for lattice problems. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp.
536–553. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-
5 30

80. Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and compos-
able oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp.
554–571. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-
5 31

81. Pointcheval, D., Stern, J.: Security proofs for signature schemes. In: Maurer, U.
(ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 387–398. Springer, Heidelberg
(1996). https://doi.org/10.1007/3-540-68339-9 33

82. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind sig-
natures. J. Cryptol. 13(3), 361–396 (2000)

83. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: STOC (2005)

84. Rothblum, R.D., Sealfon, A., Sotiraki, K.: Towards non-interactive zero-knowledge
for NP from LWE. IACR Cryptology ePrint Archive (2018)

85. Rückert, M.: Lattice-based blind signatures. In: Abe, M. (ed.) ASIACRYPT 2010.
LNCS, vol. 6477, pp. 413–430. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-17373-8 24

86. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In: STOC (2014)

87. Santis, A.D., Persiano, G.: Zero-knowledge proofs of knowledge without interac-
tion. In: FOCS (1992)

88. Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard,
G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, New York (1990).
https://doi.org/10.1007/0-387-34805-0 22

89. Shacham, H., Waters, B.: Compact proofs of retrievability. In: Pieprzyk, J. (ed.)
ASIACRYPT 2008. LNCS, vol. 5350, pp. 90–107. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-89255-7 7

https://doi.org/10.1007/0-387-34805-0_47
https://doi.org/10.1007/3-540-38424-3_26
https://doi.org/10.1007/978-3-540-72540-4_4
https://doi.org/10.1007/978-3-540-72540-4_4
https://doi.org/10.1007/978-3-642-36362-7_8
https://doi.org/10.1007/978-3-662-49896-5_26
https://doi.org/10.1007/978-3-662-49896-5_26
https://doi.org/10.1007/978-3-540-85174-5_30
https://doi.org/10.1007/978-3-540-85174-5_30
https://doi.org/10.1007/978-3-540-85174-5_31
https://doi.org/10.1007/978-3-540-85174-5_31
https://doi.org/10.1007/3-540-68339-9_33
https://doi.org/10.1007/978-3-642-17373-8_24
https://doi.org/10.1007/978-3-642-17373-8_24
https://doi.org/10.1007/0-387-34805-0_22
https://doi.org/10.1007/978-3-540-89255-7_7

Multi-Theorem Preprocessing NIZKs from Lattices 765

90. Xie, X., Xue, R., Wang, M.: Zero knowledge proofs from Ring-LWE. In: Abdalla,
M., Nita-Rotaru, C., Dahab, R. (eds.) CANS 2013. LNCS, vol. 8257, pp. 57–73.
Springer, Cham (2013). https://doi.org/10.1007/978-3-319-02937-5 4

91. Zhang, J., Yu, Y.: Two-round PAKE from approximate SPH and instantia-
tions from lattices. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS,
vol. 10626, pp. 37–67. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70700-6 2

https://doi.org/10.1007/978-3-319-02937-5_4
https://doi.org/10.1007/978-3-319-70700-6_2
https://doi.org/10.1007/978-3-319-70700-6_2

Efficient MPC

SPDZ2k : Efficient MPC mod 2k

for Dishonest Majority

Ronald Cramer1,2, Ivan Damg̊ard3(B), Daniel Escudero3,
Peter Scholl3, and Chaoping Xing4

1 CWI, Amsterdam, The Netherlands
2 Leiden University, Leiden, The Netherlands

3 Aarhus University, Aarhus, Denmark
ivan@cs.au.dk

4 Nanyang Technological University, Singapore, Singapore

Abstract. Most multi-party computation protocols allow secure com-
putation of arithmetic circuits over a finite field, such as the integers
modulo a prime. In the more natural setting of integer computations
modulo 2k, which are useful for simplifying implementations and appli-
cations, no solutions with active security are known unless the majority
of the participants are honest.

We present a new scheme for information-theoretic MACs that are
homomorphic modulo 2k, and are as efficient as the well-known standard
solutions that are homomorphic over fields. We apply this to construct
an MPC protocol for dishonest majority in the preprocessing model that
has efficiency comparable to the well-known SPDZ protocol (Damg̊ard
et al., CRYPTO 2012), with operations modulo 2k instead of over a field.
We also construct a matching preprocessing protocol based on oblivious
transfer, which is in the style of the MASCOT protocol (Keller et al.,
CCS 2016) and almost as efficient.

1 Introduction

In the context of secure multi-party computation (MPC) there are n parties
P1, . . . , Pn who want to compute a function f : Rn → Rn securely on an input
(x1, . . . , xn), where each party Pi holds xi, without revealing the inputs to each
other and only by exchanging messages between them. The main security guar-
antee we would like to achieve is that at the end of the interaction each party Pi

only learns xi and the i-th component of f(x1, . . . , xn), and nothing else. This
should hold even if an adversary corrupts some of the parties and, in case of
active or malicious corruption, takes control of the corrupted parties and have
them do what the adversary wants. These ideas are formalized by requiring that
using the protocol should be essentially equivalent to having a trusted third party
compute the function. For such a formalization see, for example, the Universal
Composability Framework (UC) [4].

It is well known that the hardest case to handle efficiently is the dishonest
majority case, where t ≥ n/2 parties are actively corrupted. Here we cannot
c© International Association for Cryptologic Research 2018
H. Shacham and A. Boldyreva (Eds.): CRYPTO 2018, LNCS 10992, pp. 769–798, 2018.
https://doi.org/10.1007/978-3-319-96881-0_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96881-0_26&domain=pdf

770 R. Cramer et al.

guarantee that the protocol terminates correctly, and we have to use computa-
tionally heavy public-key technology — unconditional security is not possible in
this scenario. However, in a recent line of work [2,9], it was observed that we
can push the use of public-key tools into a preprocessing phase, where one does
not need to know the inputs or even the function to be computed. This phase
produces “raw material” (correlated randomness) that can be used later in an
online phase to compute the function much more efficiently and with uncondi-
tional security (given the correlated randomness).

In all existing protocols that handle a dishonest majority and active corrup-
tions, the function being computed must be expressed in terms of arithmetic
operations (i.e. additions and multiplications) over a finite field, such as the
integers modulo a prime. However, in many applications one would like to use
numbers modulo some M that is chosen by the application and is not necessarily
a prime. In particular, M = 2k is interesting because computation modulo 2k

matches closely what happens on standard CPUs and hence protocol designers
can take advantage of the tricks found in this domain. For instance, functions
containing comparisons and bitwise operations are typically easier to implement
using arithmetic modulo 2k; these kinds of operations are expensive to emulate
with finite field arithmetic, and also very common in applications of MPC such as
secure benchmarking based on linear programming [6]. This has been done suc-
cessfully by the team behind the Sharemind suite of protocols [3], which allows
bitwise operations and integer arithmetic mod 232. However, in their basic set-
ting, they could only get a passively secure solution: here, even corrupt players
are assumed to follow the protocol. Also, the security of Sharemind completely
breaks down if half (or more) of the players are corrupted, and the efficiency
does not scale well beyond three parties.

To obtain active security over fields, the main idea of modern protocols is
to use unconditionally secure message authentication codes (MACs) to prevent
players from lying about the data they are given in the preprocessing phase.
A typical example is the SPDZ protocol [7,9], where security reduces to the
following game: we have a data value x, a random MAC key α and a MAC
m = αx, all in some finite field F. The adversary is given x but not α or αx.
He may now specify errors to be added to x, α and m, and we let x′, α′,m′ be
the resulting values. The adversary wins if x �= x′ and m′ = α′x′. It is easy to
see that the adversary must guess α to win, and so the probability of winning is
1/|F|. This authentication scheme is additively homomorphic, which is exploited
heavily in the SPDZ protocol and is crucial for its efficiency.

However, the security proof depends on the fact that any non-zero value in F

is invertible, and it is easy to see that if we replace the field by a ring, say Z2k ,
then the adversary can cheat with large probability. For instance, in the ring
Z2k he can choose x′ = x + 2k−1 and cheat with probability 1/2. Up to now, it
has been an open problem to design a homomorphic authentication scheme that
would work over Z2k or more generally ZM for any M , and is as efficient as the
SPDZ scheme.

SPDZ2k : Efficient MPC mod 2k for Dishonest Majority 771

1.1 Our Contributions

In this paper we solve the above question: we design a new additively homomor-
phic authentication scheme that works in Z2k

1, and is as efficient as the standard
solution over a field. The main idea is to choose the MAC key α randomly in
Z2s , where s is the security parameter, and compute the MAC αx in Z2k+s . We
explain below why this helps. We also design a method for checking large batches
of MACs with a communication complexity that does not depend on the size of
the batch. We believe that these techniques will be of independent interest.

We then use the MAC scheme to design a SPDZ-style online protocol that
securely computes an arithmetic circuit over Z2k with statistical security, assum-
ing access to a preprocessing functionality that outputs multiplication triples in
a suitable format. The total computational work done is dominated by O(|C|n)
elementary operations in the ring Z2k+s , where C is the circuit to be computed.
So if k ≥ s, the work needed per player is equal to the work needed to compute
C in the clear, up to a constant factor — as is the case for the SPDZ protocol.
As in other protocols from this line of work, the overhead becomes more sig-
nificant when k is small. Each player stores data from the preprocessing of size
O(|C|(k + s)) bits. However, the communication complexity is O(|C|k) bits plus
an overhead that does not depend on C. This is due to the batch-checking of
MACs mentioned above.

Our final result is an implementation of the preprocessing functionality to
generate multiplication triples. It has communication complexity O((k+s)2) bits
per multiplication gate, and is roughly as efficient as the MASCOT protocol [14],
which is the state of the art for preprocessing over a field using oblivious transfer.
Concretely, our triple generation protocol has around twice the communication
cost of MASCOT, due to the overhead incurred when we have to work over
larger rings in certain scenarios. However, this additional cost seems like a small
price to pay for the potential benefits to applications from working modulo 2k

instead of in a field.

1.2 Overview of Our Techniques

For the authentication scheme, as mentioned, we have a data item x ∈ Z2k+s , a
key α ∈ Z2k+s and we define the MAC as m = αx mod 2k+s. Note that we want
to authenticate k-bit values, so although x ∈ Z2k+s , only the least significant
k bits matter. The adversary is given x, and specifies errors ex, eα, em, which
define modified values x′ = x + ex, α′ = α + eα,m′ = m + em. He wins if
m′ = α′x′ mod 2k+s, but note that since we store data in the least significant
k bits only, this is only a forgery if ex mod 2k �= 0. As we show in detail in
Sect. 3, if the adversary wins, he is able to compute exα mod 2k+s. From this,
and ex mod 2k �= 0, it follows that the adversary can effectively guess α mod 2s,
which is only possible with probability 2−s.

We also want to batch-check many MACs using only a small amount of com-
munication. The SPDZ protocol [9] uses a method that basically takes a random
1 We use modulus 2k throughout, but the scheme easily extends to any modulus.

772 R. Cramer et al.

linear combination of all messages and MACs and checks only the resulting mes-
sage and MAC. Unfortunately, applying the analysis we just sketched to this
scenario does not give a negligible probability of cheating, unless we ‘lift’ again
and compute MACs modulo 2k+2s, but then our storage and preprocessing costs
would become significantly bigger. We provide a more complicated but tighter
analysis showing that we can still compute MACs mod 2k+s and the batch
checking works with 2−s+log s error probability, so we only need increase s by a
few bits.

Using these MACs, we can create an information-theoretically secure MPC
protocol over Z2k in the preprocessing model, similar to the online phase of
SPDZ from [7]. To implement the preprocessing phase, we follow the style of
MASCOT [14], which uses oblivious transfer to produce shares of authenticated
multiplication triples. We first design a protocol for authenticating values using
correlated oblivious transfer, which allows creating the secret-shared MACs that
will be added to the preprocessing data. This stage is similar to MASCOT,
whereby first a passively secure protocol is used to compute shares of the MACs
αxi, for each value xi that is to be authenticated, and then a random linear
combination of these values is opened, and the resulting MAC checked for cor-
rectness. The main change we need to make here is that, depending on the size
of the xi’s being authenticated, we may need to first compute the MACs over a
larger ring in order to apply our analysis of taking random linear combinations.

Once the authentication scheme has been implemented, the main task is
to create the multiplication triples needed in the online phase of our proto-
col. For this we also follow a similar approach to MASCOT, where the overall
idea is that each party Pi chooses its shares (ai, bi) and then is engaged in
an oblivious transfer subprotocol with Pj for each j �= i, where shares of the
cross products aibj and ajbi are obtained. This yields shares of the product
(
∑n

i=1 ai)(
∑n

j=1 bj) =
∑n

i=1 aibi +
∑

i�=j(a
ibj + ajbi), as required. Behind this

simplification lies the problem that some information about the honest parties’
shares can be leaked to a cheating adversary. In MASCOT this potential leakage
is mitigated by “spreading out” the randomness by taking random linear combi-
nations on correlated triples (with the same b value). When working over fields,
the inner product yields a 2-universal hash function so the new distribution can
be argued to be close to uniform using the Leftover Hash Lemma. However, this
is not true anymore over rings like Z2k . We overcome this issue by starting with
triples where the shares of a are bits instead of ring elements, and then taking
linear combinations over the bits. These combinations correspond to a subset
sum over Z2k , which is a 2-universal hash function, so allows for removing the
leakage.

Additionally, random combinations are used in MASCOT to check the cor-
rectness of a triple by “sacrificing” another one. The security argument is that
if the adversary manages to authenticate an incorrect triple, then it will have to
guess the randomness used in the sacrifice step, which is unlikely. This is argued
by deriving an equation from which we can solve for the random value. In order

SPDZ2k : Efficient MPC mod 2k for Dishonest Majority 773

to extend this argument to the ring case, we use the technique sketched at the
beginning of this section, working over Z2k+s to check correctness modulo 2k.

Organization of this document. Section 2 introduces the notation we will use
throughout this document. It also introduces the oblivious transfer and coin toss-
ing functionalities, FROT and FRand, which constitute our most basic building
blocks and will be used to implement the offline phase of our protocol. We then
describe our information-theoretic MAC scheme in Sect. 3, and we show how to
check correctness of several authenticated values assuming a functionality FMAC

that generates keys and MACs. Next, in Sect. 4 we show how to use our scheme
to realise the functionality FOnline, i.e. to evaluate securely any arithmetic circuit
modulo 2k, in the preprocessing model.

The next two sections are concerned with the implementation of the pre-
processing functionality FPrep. Section 5 deals with the implementation of the
functionality FMAC, i.e. the distribution of the MAC key and the generation of
MACs. Our construction is based on a primitive called vector Oblivious Linear
Function Evaluation (FvOLE). This can be implemented using Correlated Obliv-
ious Transfer (FΔ-OT), which as we mention in that section can be implemented
using our basic primitive FROT. On the other hand, Sect. 6 builds on top of our
MAC scheme and generates multiplication triples that will be used during the
online phase of our protocol to evaluate multiplication gates. Finally, in Sect. 7
we provide an efficiency analysis of our protocol.

Related work. There are only a few previous works that study MPC over
rings, and none of these offer security against an active adversary who corrupts
a dishonest majority of the parties. Cramer et al. showed how to contruct actively
secure MPC over black-box rings [5] using secret-sharing techniques for honest
majority, but this is only a feasibility result and the concrete efficiency is not
clear. As already mentioned, Sharemind [3] allows mixing of secure computation
over the integers modulo 2k with boolean computations, but is restricted to
the three-party setting when at most one party is corrupted. In some settings
Sharemind can also provide active security [18].

More recently, Damg̊ard, Orlandi and Simkin [8] present a compiler that
transforms a semi-honest secure protocol for t corruptions into a maliciously
secure protocol that is secure against a smaller number of corruptions (approx-
imately

√
t). This also works for protocols in the preprocessing model, but will

always result in a protocol for honest majority, so they can tolerate a smaller
number of corruptions. On the other hand, their compiler is perfectly secure, so
it introduces no overhead that depends on the security parameter. Thus, their
results are incomparable to ours.

2 Preliminaries

Notation. We denote by ZM the set of integers x such that 0 ≤ x ≤ M − 1.
The congruence x ≡ y mod 2k will be abbreviated as x ≡k y. We let x mod M
denote the remainder of x when divided by M , and we take this representative

774 R. Cramer et al.

as an element of the set ZM . Given two vectors x and y of the same dimensions,
x ∗ y denotes their component-wise product, 〈x ,y〉 denotes their dot product
and x [i] denotes the i-th entry of x .

2.1 Oblivious Transfer and Coin Tossing Functionalities

We use a standard functionality for oblivious transfer on random �-bit strings,
shown in Fig. 1. This can be efficiently realised using OT extension techniques
with an amortized cost of κ bits per random OT, where κ is a computational
security parameter [13]. We use the notation Fτ

ROT to denote τ parallel copies of
FROT functionalities.

Functionality FROT

On input (Sender, Pj , �) from Pj and (Receiver, b, Pi) from Pi, the functionality
samples random values r0, r1 ←R Z2� , then sends (r0, r1) to Pj and rb to Pi.
If Pj is corrupted then the functionality instead allows the adversary to choose
(r0, r1) before sending rb to Pi.

Fig. 1. Random Oblivious Transfer functionality between a sender and receiver

We also use a coin tossing functionality, which on input (Rand) from all
parties, sample r ←R R and output r to all parties. This can be implemented
in the random oracle model by having each party Pi first commit to a random
seed si with H(i‖si), then opening all commitments and using

⊕
i si as a seed

to sample from R.

3 Information-Theoretic MAC Scheme

In this section we introduce our secret-shared, information-theoretic message
authentication scheme. This forms the backbone of our MPC protocol over Z2k .
The scheme has two parameters, k, where 2k is the size of the ring in which
computations are performed, and a security parameter s. In the MAC scheme
itself and the online phase of our MPC protocol there is no restriction on k,
whilst in the preprocessing phase k also affects security.

There is a single, global key α =
∑

i αi mod 2k+s, where each party holds
a random additive share αi ∈ Z2s . For every authenticated, secret value x ∈
Z2k , the parties will have additive shares on this value over the larger ring
modulo 2k+s, namely shares xi ∈ Z2k+s such that x′ =

∑
i xi mod 2k+s and

x ≡k x′. The parties will also have additive shares modulo 2k+s of the MAC
m = α · x′ mod 2k+s. We will denote this representation by [x], so we have:

[x] =
(
xi, mi, αi

)n

i=1
∈ (Z2k+s × Z2k+s × Z2s)n ,

∑
i

mi ≡k+s

(∑
i

xi) · (∑
i

αi)

SPDZ2k : Efficient MPC mod 2k for Dishonest Majority 775

Notice that if the parties have [x] and [y], then it is straightforward to obtain
by means of local operations [x + y], [c · x] and [x + c], where the arithmetic is
modulo 2k+s and c is a constant. We state the procedures that allow the parties
to do this in Fig. 2.

Procedure AffineComb

This procedure allows the parties to compute authenticated shares of y = c+c1 ·x1+
· · · + ct · xt mod 2k+s given c, c1, . . . , ct, [x1], . . . , [xt]. The input to this procedure
are the constants c, c1, . . . , ct ∈ Z2k+s , the shares of the values {xj

i}t
i=1, the shares

of the MACs {mj
i}t

i=1, owned by each party Pj , and the shares of the MAC key
{αj}j .

1. Party P1 sets y1 = c + c1 · x1
1 + · · · + ct · x1

t mod 2k+s;
2. Each party Pj , j �= 1, sets yj = c1 · xj

1 + · · · + ct · xj
t mod 2k+s;

3. Each party Pj sets mj = αj · c + c1 · mj
1 + · · · + ct · mj

t mod 2k+s.

At the end of the procedure {yj}j are additive shares of y modulo 2k+s and {mj}j

are shares of α · y mod 2k+s, the MAC of y. To simplify the exposition, we write

[c + c1 · x1 + · · · + ct · xt] = c + c1 · [x1] + · · · + ct · [xt]

whenever this procedure is called.

Fig. 2. Procedure for obtaining authenticated shares of affine combinations of shared
values

In Fig. 3 we define the functionality FMAC, which acts as a trusted dealer
who samples and distributes shares of the MAC key, and creates secret-shared
MACs of additively shared values input by the parties. As with previous works,
it allows corrupt parties to choose their own shares instead of sampling them at
random, since our protocols allow the adversary to influence the distribution of
these. We will show how to implement this functionality in Sect. 5.

3.1 Opening Values and Checking MACs

Given an authenticated sharing [x], a natural (but insufficient) approach to open-
ing and reconstructing x is for each party to first broadcast the share xi and
then compute x′ =

∑
i xi mod 2k+s. The parties can then check the MAC rela-

tion x′ · α without revealing the key α using the method from [7]. Although
this method guarantees integrity of the opened result modulo 2k (by the same
argument sketched in the introduction), it does not suffice for privacy when
accounting for the fact that x may be a result of applying linear combinations
on other private inputs. For example, suppose x = y + z for some previous

776 R. Cramer et al.

Functionality FMAC

The functionality generates shares of a global MAC key and, on input shares of a
value, distributes shares of a tag of this value. Let A be the set of corrupted parties
and s be a security parameter.

Initialize: On receiving (Init) from all parties, sample random values αj ←R Z2s

for j /∈ A and receive shares αj ∈ Z2s , for j ∈ A, from the adversary. Store the
MAC key α =

∑n
j=1 αj (over Z) and output αj to party Pj .

Macro Auth(�, x1, . . . , xn) (this is an internal subroutine only)
1. Let x =

∑n
j=1 xj mod 2� and m = α · x mod 2�

2. Wait for input {mj}j∈A from the adversary and sample {mj}j /∈A at random
conditioned on m ≡�

∑n
j=1 mj . Output (m1, . . . , mn).

Authentication: On input (MAC, �, r, {xj
i}t

i=1) from each party Pj , where xj
i ∈

Z2r and � ≥ r:
1. Wait for the adversary to send messages (guess, j, Sj), for every j /∈ A,

where Sj efficiently describes a subset of {0, 1}s. If αj ∈ Sj for all j then
send (success) to A. Otherwise, send ⊥ to all parties and abort.

2. Execute Auth(�, x1
i , . . . , x

n
i) for i = 1, . . . , t, and then wait for the adversary

to send either OK or Abort. If the adversary sends OK then send the MAC
shares mj

i ∈ Z2� to party Pj , otherwise abort.

Fig. 3. Functionality for generating shares of global MAC key, distributing shares of
inputs and tags

inputs y, z. When opening x modulo 2k+s, although for correctness we only care
about the lower k bits of x, to verify the MAC relation we have to reveal the
entire shares modulo 2k+s. This leaks whether or not the sum y + z overflowed
modulo 2k.

To prevent this leakage we use an authenticated, random s-bit mask to hide
the upper s bits of x when opening. The complete protocol for doing this is
shown below.

Procedure SingleCheck([x]):

1. Generate a random, shared value [r] using FMAC, where r ∈ Z2s

2. Compute [y] = [x + 2kr]
3. Each party broadcasts their shares yi and reconstructs y =

∑
i yi mod 2k+s

4. Pi commits to zi = mi − y · αi mod 2k+s, where mi is the MAC share on y
5. All parties open their commitments and check that

∑
i zi ≡k+s 0

6. If the check passes then output y mod 2k

SPDZ2k : Efficient MPC mod 2k for Dishonest Majority 777

Claim 1. If the MAC check passes then y ≡k x, except with probability at
most 2−s.

Proof. Suppose a corrupted party opens [y] to some y′ = y + δ, where δ ∈ Z2k+s

can be chosen by A, and δ �≡k 0. To pass the MAC check, they must also come
up with an additive error Δ in the committed values zi such that

∑
i zi + Δ is

zero modulo 2k+s. This simplifies to finding Δ ∈ Z2k+s such that
∑

i

(mi − (x + δ) · αi) + Δ ≡k+s 0

⇔ δ · α ≡k+s −Δ

Let v be the largest integer such that 2v divides δ, and note that because
δ �≡k 0 we have v < k. This means that we can divide the above by 2v, reducing
the modulus from 2k+s to 2k+s−v accordingly:

δ

2v
· α ≡k+s−v − Δ

2v

By definition of v, δ
2v must be an odd integer, hence invertible modulo 2k+s−v.

Multiply by its inverse gives

α ≡k+s−v − Δ

2v
·
(

δ

2v

)−1

Note that k + s − v > s, since v < k, which implies that A must have guessed
α mod 2s to come up with δ and Δ which pass the check. This requires guessing
the s least significant bits of α, which are uniformly random, so the probability
of success is at most 2−s. ��

3.2 Batch MAC Checking with Random Linear Combinations

The method described in the previous section allows the parties to open and then
check one shared value [x]. However, in our MPC protocol many such values will
be opened, and using the previous method to check each one of these would have
the drawback that we need shared, authenticated random masks for each value to
be opened, consuming a lot of additional preprocessing data.2 In order to avoid
this, we present a batch MAC checking procedure for opening and checking t
shared values [x1], . . . , [xt], which uses just one random mask to check the whole
batch.

Technically speaking, our main contribution here is a new analysis of the
distribution of random linear combinations of adversarially chosen errors modulo
2k, when lifting these combinations to the larger ring Z2k+s . If we naively apply
the analysis from Claim 1 to this case, then we would have to lift to an even
bigger ring Z2k+2s to prove security, adding extra overhead when creating and

2 Note that in previous SPDZ-like protocols these extra masks are not needed.

778 R. Cramer et al.

Procedure BatchCheck

Procedure for opening and checking the MACs on t shared values [x1], . . . , [xt].
Let xj

i , m
j
i , α

j be Pj ’s share, MAC share and MAC key share for [xi].

Open phase:

1. Each party Pj broadcasts for each i the value x̃j
i = xj

i mod 2k.
2. The parties compute x̃i =

∑n
j=1 x̃j

i mod 2k+s.

MAC check phase:

3. The parties call FRand(Zt
2s) to sample public random values χ1, . . . , χt ∈ Z2s

and then compute ỹ =
∑t

i=1 χi · x̃i mod 2k+s.
4. Each party Pj samples rj ←R Z2s , and then calls FMAC on input (s, s, rj , MAC)

to obtain [r]. Denote Pj ’s MAC share on r by �j .

5. Each party Pj computes pj =
∑t

i=1 χi · pj
i mod 2s where pj

i = x
j
i −x̃

j
i

2k and
broadcasts p̃j = pj + rj mod 2s.

6. Parties compute p̃ =
∑n

j=1 p̃j mod 2s.
7. Each party Pj computes mj =

∑t
i=1 χi · mj

i mod 2k+s and zj = mj − αj · ỹ −
2k · p̃ · αj + 2k · �j mod 2k+s. Then it commits to zj , and then all parties open
their commitments.

8. Finally, the parties verify that
∑n

j=1 zj ≡k+s 0. If the check passes then the
parties accept the values x̃i mod 2k, otherwise they abort.

Fig. 4. Procedure for checking a batch of MACs

storing the MACs. With our more careful analysis in Lemma 1 below, we can
still work over Z2k+s and obtain failure probability around 2−s+log s, which gives
a significant saving.

Suppose the parties wish to open [x1], . . . , [xt], hence learn the values
x1, . . . , xt modulo 2k. Denote the shares, MAC shares and MAC key share held
by Pj as xj

i ,m
j
i , α

j respectively. To initially open the values, the parties simply
broadcast their shares x̃j

i = xj
i mod 2k and reconstruct x̃i =

∑
j x̃j

i (as before,
we cannot send the upper s bits of xj

i for privacy reasons). As the parties do
not have MACs on the values modulo 2k, these s dropped bits will have to be
used at some point during the MAC check, by adding them back in to the linear
combination of MACs being checked. Crucially, by postponing the use of these
s bits until the MAC check phase, our protocol only needs one authenticated
random value to mask them, instead of t. The procedure that achieves this is
described in Fig. 4, and its guarantees are stated in the following theorem.

Theorem 1. Suppose that the inputs [x1], . . . , [xt] to the BatchCheck procedure
are consistent sharings of x1, . . . , xt under the MAC key α =

∑
i αi mod 2s,

and the honest parties’ shares αj ∈ Z2s are uniformly random in the view of

SPDZ2k : Efficient MPC mod 2k for Dishonest Majority 779

an adversary corrupting at most n − 1 parties. Then, if the procedure does not
abort, the values x̃i accepted by the parties satisfy xi ≡k x̃i with probability at
least 1 − 2−s+log(s+1).

The following lemma will be used in the proof of this theorem. The lemma
is very general, which will allow us to use it also when we prove the security of
the preprocessing phase of our protocol. However, in the current context, this
lemma will be used with � = k + s, r = k and m = s, and the δ’s can be thought
of as the errors introduced by the adversary during the opening phases.

Lemma 1. Let �, r and m be positive integers such that � − r ≤ m. Let
δ0, δ1, . . . , δt ∈ Z, and suppose that not all the δi’s are zero modulo 2r, for i > 0.
Let Y be a probability distribution on Z. Then, if the distribution Y is indepen-
dent from the uniform distribution sampling α below, we have

Pr
α,χ1,...,χt←RZ2m ,

y←RY

[

α ·
(

δ0 +
t∑

i=1

χi · δi

)

≡� y

]

≤ 2−�+r+log(�−r+1),

Proof. Define S := δ0+
∑t

i=1 χi ·δi, and define E to be the event that α ·S ≡� y.
Let W be the random variable defined as min(�, e), where 2e is the largest power
of two dividing S. We will use the following claims.

Proposition 1.

i. Pr[E | W = r + c] ≤ 2−(�−r−c) for any c ∈ {1, . . . , � − r}
ii. Pr[E | 0 ≤ W ≤ r] ≤ 2−(�−r)

iii. Pr[W = r + c] ≤ 2−c for any c ∈ {1, . . . , � − r}
Proof. For the first part, suppose that 0 < c < � − r (the case c = � − r is
trivial), in particular, w = r + c is the largest exponent such that 2w divides
S and therefore S/2w is an odd integer. From the definitions of E and w we
have that E holds if and only if α · S ≡� y, which in turn is equivalent to
α · S

2w ≡�−w
y
2w and therefore to α ≡�−w

y
2w · (

S
2w

)−1
Since α is uniformly

random in Z2m and independent of the right-hand side, and also � − w < m
(as r < w and � − r ≤ m), we conclude that the event holds with probability
2−(�−w) = 2−(�−r−c), conditioned on W = r + c.

Similarly, if 0 ≤ w ≤ r then � − w ≥ � − r and so α ≡�−r
y
2w · (

S
2w

)−1
. As

� − r ≤ m, the event holds with probability at most 2−(�−r) if conditioned on
0 ≤ W ≤ r. This proves the second part.

For the third part, we must also look at the randomness from the χi coef-
ficients. Suppose without loss of generality that δt is non-zero modulo 2r, and
suppose that W = r + c some 1 ≤ c ≤ � − r. Since 2W |S, we have S ≡r+c 0,
and so

χt · δt ≡r+c −δ0 −
∑

i�=t

χi · δi

︸ ︷︷ ︸
=S′

780 R. Cramer et al.

Let 2v be the largest power of two dividing δt, and note that by assumption we
have v < r so r + c − v > c. Therefore,

χt · δt

2v
≡r+c−v

S′

2v

χt ≡r+c−v
S′

2v

(
δt

2v

)−1

χt ≡c
S′

2v

(
δt

2v

)−1

By the same argument as previously, and from the fact that c ≤ � − r ≤ m, this
holds with probability 2−c, over the randomness of χt ←R Z2m , as required.

Putting things together, we apply the law of total probability over all possible
values of w, obtaining:

Pr[E] = Pr[E | 0 ≤ W ≤ r] · Pr[0 ≤ W ≤ r] +

�−r∑
c=1

Pr[E | W = r + c] · Pr[W = r + c]

≤ 2−�+r · 1 +

�−r∑
c=1

2−�+r+c · 2−c = 2−�+r +

�−r∑
c=1

2−�+r

= (� − r + 1) · 2−�+r ≤ 2−�+r+log(�−r+1)

where the first inequality comes from applying item ii of Proposition 1 on the
left, and items i and iii on the right. ��

Now we proceed with the proof of Theorem 1.

Proof (of Theorem 1). We first assume that A sends no Key Query messages
to FMAC, and later discuss how the claim still holds when this is not the case.

First of all notice that if no error is introduced by the adversary, then the
check passes. Now, let y =

∑t
i=1 χi · xi mod 2s+k, pi =

∑n
j=1 pj

i mod 2s and
p =

∑n
j=1 pj mod 2s. If all parties followed the protocol then the following chain

of congruences holds

n∑

j=1

zj ≡k+s

n∑

j=1

mj − ỹ ·
n∑

j=1

αj − 2k · p̃ ·
n∑

j=1

αj + 2k ·
n∑

j=1

�j

≡k+s α · y − α · ỹ − α · 2k · p̃ + 2k · α · r

≡k+s α · (y − ỹ − 2k · (p̃ − r))

≡k+s α · (y − ỹ − 2k · p)

≡k+s α ·
t∑

i=1

χi · (
xi − x̃i − 2kpi

) ≡k+s 0

where the last equality holds due to the fact that for all i = 1, . . . , t we have
xi = x̃i + 2k · pi.

SPDZ2k : Efficient MPC mod 2k for Dishonest Majority 781

Now, consider the case in which the adversary does not open correctly to x̃i

and p̃ in the execution of the procedure. Let x̃i +δi mod 2k+s and p̃+ε mod 2s

be the values opened in steps 1 and 5 respectively, so the value computed in
step 3 is equal to ỹ′ = ỹ + δ mod 2k+s, where δ =

∑t
i=1 χi · δi mod 2k+s. As a

consequence, the share that an honest Pj should open in step 7 is zj−αj ·(δ+2kε)
mod 2k+s. However, the adversary can open this value plus some errors that sum
up to a value Δ ∈ Z2k+s . If the check passes, this means that

0 ≡k+s

n∑

j=1

(
zj − αj · (δ + 2kε)

)
+ Δ ⇔ α · (δ + 2kε) ≡k+s Δ.

Suppose that for some index it holds that δi �≡k 0. By setting δ0 = 2kε,
� = k + s, r = k, m = s and Y to be the distribution of Δ produced by the
adversary, we observe we are in the same setting as the hypothesis of Lemma 1.
This allows us to conclude that the probability that the check passes is bounded
by 2−�+r+log(�−r+1) = 2−s+log(s+1).

Handling key queries. We now show that this probability is the same for an
adversary who makes some successful queries to an honest party’s αj using the
(guess) command of FMAC. Let S be the set of possible keys guessed by A (if
there is more than one query then we take S to be the intersection of all sets).
The probability that all these queries are successful is no more than |S|/2s, and
conditioned on this event, the min-entropy of the honest party’s key share is
reduced to log|S| ≤ s. Therefore, instead of success probability 2−s+log(s+1) as
above, the overall probability of A performing successful key queries and passing
the check is bounded by

|S|/2s · 2− log|S|+log(log|S|+1) = 2−s+log(log|S|+1) ≤ 2−s+log(s+1)

as required. ��

4 Online Phase

Our protocol is divided in two phases, a preprocessing phase and an online phase.
The preprocessing, which is independent of each party’s input, implements a func-
tionality FPrep which generates the necessary shared, authenticated values needed
to compute the given function securely. This functionality is stated in Fig. 5.

The main difference, with respect to SPDZ, is that instead of generating the
random input masks and multiplication triples over the same space as the inputs,
we sample them over Z2k+s , even though we are doing computations in Z2k . In
the input phase, this is necessary to mask the parties’ input whilst also obtaining
a correct MAC over Z2k+s . For the triples, we sample the shares and compute the
MACs in Z2k+s , but only care about correctness of the multiplication modulo
2k, so the upper s bits of a triple are just random.3

3 These s bits are not actually required to be random, since whenever we open a value
using BatchCheck the upper s bits of all shares are masked anyway. However, it
simplifies the description of the functionality to use random shares.

782 R. Cramer et al.

Modulo these differences, the online phase of our protocol, shown in Fig. 7,
is similar to that in other secret sharing-based protocols like GMW, BeDOZa,
SPDZ and MASCOT [2,9,11,14].

Shares of the inputs are distributed by means of the random shares provided
by FPrep. When an addition gate is found, the parties obtain the output by

Functionality FPrep

The preprocessing functionality has all the same features as FMAC, with the addi-
tional commands:

Input: On input (Input, Pi) from all parties, do the following:
1. Sample a random value r ∈ Z2k+s and generate random shares r =

∑n
j=1 rj

mod 2k+s. If Pi is corrupted, instead let the adversary choose all shares rj

and compute r accordingly.
2. Run the Auth macro to generate shares and MAC shares of [r].
3. Send r to Pi, and the relevant shares of [r] to each party.

Triple: On input (Triple) from all parties, the functionality performs the following
steps
1. Sample random shares {(aj , bj)}j /∈A ⊆ (Z2k+s)2

2. Wait for input {(aj , bj , cj)}j∈A ⊆ (Z2k+s)3 from the adversary and set
c = a · b mod 2k, where a =

∑n
j=1 aj mod 2k and b =

∑n
j=1 bj mod 2k.

3. Sample {cj}j /∈A ⊆ Z2k+s and r ∈ Z2s subject to c + 2kr ≡k+s

∑n
j=1 cj .

4. Finally, the functionality runs the Auth macro to generate sharings
[a], [b], [c] and sends the j-th output of each result to party Pj .

Fig. 5. Functionality for the preprocessing phase

Functionality FOnline

Initialization: The functionality receives input (Init, k) from all parties.
Input: On input (Input, Pi, vid, x) from party Pi and input (Input, Pi) from the

other parties, where vid is a fresh, valid identifier, the functionality stores
(vid, x mod 2k).

Add: On input (add, vid1, vid2, vid3) from all parties, the functionality retrieves
(if present in memory) the values (vid1, x1), (vid2, x2) and stores (vid3, x1 +
x2 mod 2k).

Multiply: On input (multiply, vid1, vid2, vid3) from all parties, the functionality
retrieves (if present in memory) the values (vid1, x1), (vid2, x2) and stores
(vid3, x1 · x2 mod 2k).

Output: On input (output, vid) from all honest parties, the functionality looks for
(vid, y) in memory and if present, sends y to the adversary. The functionality
then waits for a message Abort or Proceed from the adversary: if it sends Abort
then the functionality aborts, otherwise the value y is delivered to all parties.

Fig. 6. Ideal functionality for the online phase

SPDZ2k : Efficient MPC mod 2k for Dishonest Majority 783

Protocol ΠOnline

The protocol is parameterized by k, which specifies the word size on which the
operations are to be performed, and a security parameter s.

Initialize: The parties call the functionality FPrep as follows:
1. On input (Init) to get MAC key shares αj ∈ Z2s .
2. On input (Input, Pi) for all parties to obtain random sharings [r] where Pi

learns r, for every input that Pi will provide.
3. On input (Triple) to get enough triples ([a], [b], [c]).

Input: To share an input xi held by Pi:
1. Pi broadcasts ε = xi − r mod 2k+s, where [r] is the next unused input

mask.
2. The parties compute [xi] = [r] + ε.

Add: To add two values [x] and [y] the parties compute locally [z] = [x] + [y].
Multiply: To multiply two values [x] and [y]:

1. Open [x] − [a] as ε and [y] − [b] as δ using the Open phase of BatchCheck,
where ([a], [b], [c]) is the next unused triple.

2. Locally compute [x · y] = [c] + ε · [b] + δ · [a] + ε · δ.
Output: To output a value [y]:

1. Call the procedure BatchCheck to check the MACs on the values that have
been opened so far in multiplications.

2. If this does not abort, the parties open and check the MAC on [y] using
the procedure SingleCheck from Section 3.1.

Fig. 7. Protocol for reactive secure multi-party computation over Z2k

adding their shares locally. On the other hand, multiplication triples are used
for the multiplication gates, where the fact that x · y = c + ε · b + δ · a + ε · δ
for c = a · b, ε = x − a and δ = y − b allows us to evaluate multiplications
as affine operations on x and y, once the values of ε and δ are known. Finally,
after checking correctness of all the values opened in multiplications using the
batch MAC checking procedure from Sect. 3, the values for the output wires are
revealed (Fig. 6).

The proof of the following theorem is quite straightforward, given the analysis
of the MACs in Sect. 3.

Theorem 2. The protocol ΠOnline implements FOnline in the FPrep-hybrid model,
with statistical security parameter s.

5 Preprocessing: Creating the MACs

We now show how to authenticate additively shared values with the linear MAC
scheme, realising the functionality FMAC from Sect. 3 (Fig. 3). Recall that after
sampling shares of the MAC key α ∈ Z2s , the functionality takes as input secret-
shared values x ∈ Z2r , and produces shares of the MAC x · α mod 2�. The input

784 R. Cramer et al.

and output widths r and � are parameters with � ≥ r. In our protocol we actually
require � ≥ 2s and � ≥ r + s, where s is the security parameter, but if these
do not hold then we work with �′ = max(r + s, 2s) and reduce the outputs
modulo 2�.

Building block: vector oblivious linear function evaluation. To create the
MACs, we will use a functionality for random vector oblivious linear function
evaluation (vector-OLE) over the integers modulo 2�. This is a protocol between
two parties, PA and PB, that takes as input a fixed element α ∈ Z2s from party
PA, a vector x from party PB, then samples a random vector b ∈ Z2� as output
to PB , and sends a = b + α · x mod 2� to PA. In the specification of our ideal
functionality in Fig. 8, x is a vector of length t + 1, with the first t components
from Z2r and the final component from Z2� . This is because our MAC generation
protocol will create a batch of t MACs at once on r-bit elements, but to do this
securely we also need to authenticate an additional random mask of � bits.

Notice that the functionality also allows a corrupted PB to try to guess a
subset of Z2s in which α lies, but if the guess is incorrect the protocol aborts.
This is needed in order to efficiently implement FvOLE using oblivious transfer on
correlated messages, based on existing oblivious transfer extension techniques.

Functionality Fs
vOLE

Initialize: On receiving (sid, Init, α) from PA, where α ∈ Z2s , and (sid, Init) from
PB , store α and ignore any subsequent (sid, Init) messages.

Vector-OLE: On input (sid, �, r, t,x) from PB , where x ∈ Z
t
2r × Z2� :

1. Sample b ←R Z
t+1
2� . If PB is corrupted, instead receive b from A.

2. Compute a = b + α · x mod 2�

3. If PA is corrupted, receive a ∈ Z
t
2� from A and recompute b = a − α · x.

4. If PB is corrupted, wait for A to input a message (guess, S), where S
efficiently describes a subset of {0, 1}s. If α ∈ S then send (success) to A.
Otherwise, send ⊥ to both parties and terminate.

5. Output a to PA and b to PB .

Fig. 8. Random vector oblivious linear function evaluation functionality over Z2k+s

MAC generation protocol. Each party samples a random MAC key share αi,
and uses this to initialize an instance of FvOLE with every other party. On input
a vector of additive secret shares x i = (xi

1, . . . , x
i
t) from every Pi, each party

samples a random �′-bit mask xi
t+1, and then uses FvOLE to compute two-party

secret-sharings of the products αi · (x j‖xj
t+1) for all j �= i. Each party can then

obtain a share of the MACs α · x (where α =
∑

αi and x =
∑

x i), by adding
up all the two-party sharings together with the product αi · x i.

So far, the protocol is only passively secure, since there is nothing to prevent
a corrupt Pj from using inconsistent values of αj or x j with two different honest
parties, so the corrupt parties’ inputs may not be well-defined. To prevent this

SPDZ2k : Efficient MPC mod 2k for Dishonest Majority 785

issue, and ensure that in the security proof the simulator can correctly extract
the adversary’s inputs, we add a consistency check in steps 6–11: this challenges
the parties to open a random linear combination of all authenticated values. This
is where we need the additional random mask xt+1, to prevent any leakage on
the parties inputs from opening this linear combination. The check does not rule
out all possible deviations in the protocol, however, in what follows we show that
it ensures that the sum of all the errors directed towards any given honest party
is zero, so these errors all cancel out. Intuitively, this suffices to realise FMAC

because the functionality only adds a MAC to the sum of all parties’ inputs, and
not the individual shares themselves (Fig. 9).

Protocol ΠAuth

Initialize: Each party Pi samples a MAC key share αi ←R Z2s . Every pair of
parties (Pi, Pj) initializes an instance of FvOLE, where Pi inputs αi.

Authentication: To authenticate the values x = (x1, . . . , xt) over Z2� , where
each party Pj inputs an additive share xj ∈ Z

t
2r :

1. Let �′ = max(�, r + s, 2s).
2. Each party Pj samples a random mask xj

t+1 ←R Z2�′ and defines x̃j :=
(xj , xj

t+1) ∈ Z
t
2r × Z2�′ .

3. Every pair (Pi, Pj) (for i �= j) calls their FvOLE instance with input
(�′, r, t, x̃j) from Pj .

4. Pj receives bj,i and Pi receives ai,j , such that ai,j = bj,i +αi · x̃j mod 2�′
.

5. For h = 1, . . . , t + 1, each party Pj defines the MAC share

mj
h = αj · xj

h +
∑
i�=j

(aj,i − bj,i)[h] mod 2�′

Consistency check:
6. Sample χ1, . . . , χt ←R Z

t
2s using FRand.

7. Each party Pj computes and broadcasts x̂j =
∑t

i=1 xj
i ·χi +xj

t+1 mod 2�′
.

8. Each party Pj defines m̂j =
∑t

h=1 mj
h ·χh +mj

t+1 mod 2�′
and x̂ =

∑
i x̂i.

9. Each party Pj commits to and then opens zj = m̂j − x̂ · αj mod 2�′
.

10. All parties check that
∑

i zi = 0 mod 2�′
and abort if the check fails.

11. Each party Pj outputs the MAC shares mj
1, . . . , m

j
t mod 2�.

Fig. 9. Protocol for authenticating secret-shared values

5.1 Security

We now analyse the consistency check of the MAC creation protocol. There are
two main types of deviations that a corrupt Pj can perform, namely (1) Input
inconsistent values of αj to the initialization phase of FvOLE with different honest
parties, and (2) Input inconsistent shares x j in the authentication stage.

786 R. Cramer et al.

For both types of errors, we define the correct values αj ,x j to be those used
in the FvOLE instance with an arbitrary, fixed honest party, say Pi0 . We then
define the errors

γj,i = αj,i − αj and δj,i = x j,i − x j ,

for each j ∈ A and i /∈ A. For an honest party Pi, we also define αi,j ,x i,j to be
equal to αi,x i for all j �= i.

In Claims 2 and 3 below we will show that, if the consistency check passes,
then with overwhelming probability the sum of all corrupted parties’ values
is well-defined. That is, the values

∑
j∈A αj and

∑
j∈A x j would be exactly

same even if they were defined using the inputs from Pj with a different hon-
est party Pi1 �= Pi0 . Since the MACs are computed based only on the sum
of the MAC key shares and input shares, this suffices to prove security of the
protocol.

Suppose that the corrupted parties compute the MAC shares mj as an honest
Pj would, using the values αj ,x j we defined above, as well as the values aj,i, bj,i

sent to FvOLE. Note that even though a corrupt Pj need not do this, any deviation
here can be modelled by an additive error in the commitment to zj in step 9, so
we do not lose any generality.

The sum of the vector of MAC shares on x is then given by
∑

i

m i =
∑

i

αi · x i +
∑

i

∑

j �=i

(a i,j − bj,i)

=
∑

i

αi · x i +
∑

i

∑

j �=i

αi,j · x j,i)

= α · x +
∑

i/∈A

x i ·
∑

j∈A

γj,i

︸ ︷︷ ︸
=γi

+
∑

i/∈A

αi ·
∑

j∈A

δj,i

︸ ︷︷ ︸
=δi

After taking random linear combinations with the vector χ = (χ1, . . . , χt) to
compute the MAC on x̂, these MAC shares satisfy

∑

i

m̂i = α · x̂ +
∑

i/∈A

(〈x i,χ〉 + xi
t+1) · γi +

∑

i/∈A

αi · 〈δj ,χ〉 (1)

To pass the consistency check, the adversary must first open the random
linear combination x̂ to some (possibly incorrect) value, say x̂ + ε, in step 7.
Then they must come up with an error Δ ∈ Z2�′ such that

0 ≡�′
∑

i

zi + Δ

≡�′
∑

i

(mi − (x̂ + ε) · αi) + Δ

SPDZ2k : Efficient MPC mod 2k for Dishonest Majority 787

⇔ −Δ ≡�′
∑

i

mi − (x̂ + ε) · α

≡�′ α · ε +
∑

i/∈A

(〈x i,χ〉 + xi
t+1)

︸ ︷︷ ︸
=ui

·γi +
∑

i/∈A

αi · 〈δj ,χ〉

−Δ −
∑

j∈A

αj · ε ≡�′
∑

i/∈A

ui · γi +
∑

i/∈A

αi · (〈δj ,χ〉 + δj
t+1 + ε)

where the last two congruences come from substituting (1) and moving infor-
mation known by the adversary to the left-hand side.

When proving the two claims below we assume that the adversary does not
send any (guess) messages to FvOLE. Similarly to the proof of Theorem 1, these
can easily be extended to handle this case.

Claim 2. If at least one γi �= 0 then the probability of passing the check is no
more than 2−s+log n.

Proof. Let i be an index for where γi �= 0. Recall that γi =
∑

j /∈A γj,i, where
each γj,i < 2s, therefore γi < 2s+log n. Note that the distribution of ui is uniform
in Z2�′ and independent of all other terms, due to the extra mask xi

t+1, so we
can write ui · γi ≡�′ Δ′, for some Δ′ that is independent of ui. Dividing by 2v,
the largest power of two dividing γi, we get

ui · γi

2v
≡�′−v

Δ′

2v

ui ≡�′−v
Δ′

2v
·
(

γi

2v

)−1

Since v < s + log n, this holds with probability at most 2−�′+s+log n ≤ 2−s+log n

since �′ ≥ 2s.

Claim 3. Suppose γi = 0 for all i /∈ A, and δj is non-zero modulo 2k in at least
one component for some j. Then, the probability of passing the check is no more
than 2−s+log(�′−r+1).

Proof. Pick an honest party, say Pi0 , and similarly to the previous claim, we can
write the equivalence as

αi0 · (〈δi,χ〉 + δi
t+1 + ε) ≡�′ Δ′

for some Δ′ that is independent of the honest party’s MAC key share αi0 . We
can then apply Lemma 1 with r = r,m = s, � = �′ and δ0 = δi

t+1 + ε to obtain
the bound 2−�′+r+log(�′−r+1), which proves the claim since �′ ≥ r + s.

The above two claims show that, except with negligible probability in s and r,
the sum of all errors directed towards any given honest party is zero, so all errors
introduced by corrupt parties cancel out and the outputs form a correct MAC

788 R. Cramer et al.

on the underlying shared value. In particular, for the security proof, this implies
that in the ideal world the MAC shares seen by the environment (including those
of honest parties’) are identically distributed to the MAC shares output in the
real world.

We have the following theorem.

Theorem 3. The protocol ΠAuth securely realises FMAC in the (FvOLE,FRand)-
hybrid model.

6 Preprocessing: Creating Multiplication Triples

In this section we focus on developing a protocol that implements the Triple
command in the preprocessing functionality. More precisely, let FTriple be the
functionality that has the same features as FPrep (Fig. 5), but without the Input
command. Our protocol, described in Fig. 10, implements the functionality FTriple

in the (FROT,FMAC,FRand)-hybrid model (Fig. 11).
The protocol itself is very similar to the one used in MASCOT [14], with

several changes introduced in order to cope with the fact that our ring Z2k has
non-invertible elements. Most of these changes involve taking the coefficients of
random linear combinations in a different ring Z2s , which is useful to argue that
certain equations of the form r ·a ≡k+s b are satisfied with low probability. This
can be seen for example in the sacrifice step, where the random value t is chosen
to have at least s random bits, instead of k. Additionally, in our protocol (like
in MASCOT) random linear combinations must be used to extract randomness
from partially leaked values a1, . . . , at, which still have reasonably high entropy.
In order to use the Leftover Hash Lemma in this context one needs to make
sure that taking random linear combinations yields a universal hash function.
However, in contrast to the field case it is not true in general that the function
r1 ·a1 + · · ·+ rt ·at mod 2k is universal, unless we make some assumptions about
the set the values ai are picked from. In the case of our protocol, we force the
ai to be −1, 0 or 1. With this additional condition it can be shown that the
function above is universal.

The Multiply phase generates shares {(a i, bi, ci)}n
i=1 such that Pi has

(a i, bi, ci), where a i is a vector of bits, bi is a random element of Z2k+s and
ci is a vector of random elements of Z2k+s . These values satisfy c = a · b, where
c =

∑n
i=1 c

i mod 2k+s, a =
∑n

i=1 a
i mod 2k+s and b =

∑n
i=1 bi mod 2k+s. This

is achieved by letting the parties choose their shares on a and b, and using obliv-
ious transfer to compute the cross products a i · bj . However, this is not a fully
functional multiplication triple yet as it might not satisfy the right multiplica-
tive relation (besides other technical issues like a being a short vector, and not
a value in Z2k+s). To check that the triple is correct, the Sacrifice phase uses
another triple to check correctness. As the name suggests, one triple is “sacri-
ficed” (i.e. opened) so that we can check correctness of the other while keeping
it secret.

On the other hand, we must also ensure that the triple looks random to all
parties. As we will see shortly in the proof of Theorem 4, if the triple is correct

SPDZ2k : Efficient MPC mod 2k for Dishonest Majority 789

Protocol ΠTriple

The integer parameter τ = 4s + 2k specifies the size of the input triple used to
generate each output triple.

Multiply:
1. Each party Pi samples ai = (ai

1, . . . , a
i
τ) ←R (Z2)τ , bi ←R Z2k+s

2. Every ordered pair of parties (Pi, Pj) does the following:
(a) Both parties call Fτ

ROT with Pi as the receiver and Pj as the sender. Pi

inputs the bits (ai
1, . . . , a

i
τ) ∈ (Z2)τ .

(b) Pj receives qj,i
0,h, qj,i

1,h ∈ Z2k+s and Pi receives si,j
h = qj,i

ai
h

,h
for h =

1, . . . , τ .
(c) Pj sends dj,i

h = qj,i
0,h − qj,i

1,h + bj mod 2k+s, for h = 1, . . . , τ .
(d) Pi sets ti,j

h = si,j
h + ai

h · dj,i
j mod 2k+s for h = 1, . . . , τ . In particular

ti,j
h ≡k+s si,j

h + ai
h · dj,i

j

≡k+s qj,i

ai
h

,h
+ ai

h ·
(
qj,i
0,h − qj,i

1,h + bj
)

≡k+s qj,i
0,h + ai

hbj .

Therefore, the following equation holds modulo 2k+s on each entry

⎛
⎜⎜⎜⎝

ti,j
1

ti,j
2
...

ti,j
τ

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

qj,i
0,1

qj,i
0,2
...

qj,i
0,τ

⎞
⎟⎟⎟⎠ + bj

⎛
⎜⎜⎜⎝

ai
1

ai
2
...

ai
τ

⎞
⎟⎟⎟⎠

(e) Pi sets ci
i,j = ti,j

1 , ti,j
2 , . . . , ti,j

τ

) ∈ (Z2k+s)τ .
(f) Pj sets cj

i,j = − qj,i
0,1, q

j,i
0,2, . . . , q

j,i
0,τ

) ∈ (Z2k+s)τ .
(g) The following congruence holds

ci
i,j + cj

i,j ≡k+s ai · bj ,

where the modulo congruence is component-wise.
3. Each party Pi computes:

ci = ai · bi +
∑
j �=i

(ci
i,j + ci

j,i) mod 2k+s

Fig. 10. Triple generation protocol

this will reveal some partial information about the honest parties’ shares to the
adversary. This means that the adversary can guess a particular bit of these
shares, which would allow him to distinguish in the simulation. This issue is
addressed by the step Combine, which takes place before the Sacrifice step.
Here the parties take a random linear combination of a . Now, in order to pass

790 R. Cramer et al.

Protocol ΠTriple (continuation)

Combine:
1. Sample r, r̂ ←R FRand ((Z2k+s)τ).
2. Each party Pi sets

ai =
τ∑

h=1

rha
i[h] mod 2k+s, ci =

τ∑
h=1

rhc
i[h] mod 2k+s and

âi =
τ∑

h=1

r̂ha
i[h] mod 2k+s, ĉi =

τ∑
h=1

r̂hc
i[h] mod 2k+s

Authenticate: Each party Pi runs FMAC on their shares to obtain authenticated
shares [a], [b], [c], [â], [ĉ].

Sacrifice: Check correctness of the triple ([a], [b], [c]) by sacrificing [â], [ĉ].
1. Sample t := FRand (Z2s).
2. Execute the procedure AffineComb to compute [ρ] = t · [a] − [â]
3. Execute the procedure BatchCheck on [ρ] to obtain ρ.
4. Execute the procedure AffineComb to compute [σ] = t · [c] − [ĉ] − [b] · ρ.
5. Run BatchCheck on [σ] to obtain σ, and abort if this value is not zero

modulo 2k+s.
Output: Generate using FMAC a random value [r] with r ∈ Z2s . Output

([a], [b], [c + 2kr]) as a valid triple.

Fig. 11. Triple generation protocol (continuation)

the check, the adversary has to guess a random combination of the bits of a ,
which is much harder.

At this point a triple ([a], [b], [c]) has been created, with c ≡k a · b. However,
the s most significant bits of c have some information that could allow the
adversary to guess the shares of a of the honest parties. Moreover, correctness
of the triple is only required modulo 2k, as this is the modulus in the circuit the
parties want to compute. Therefore, in order to mitigate this issue the parties use
a random authenticated mask to hide the s most significant bits of c. This mask is
very similar to the one used in the procedure SingleCheck from Sect. 3.1. In fact,
in an actual implementation we could ignore the mask on the triples, as these
will be masked before opening in the MAC checking procedures. However, if we
wish to apply the Composition Theorem to our final protocol, each subprotocol
must be UC secure by itself, regardless of any further composition.

Now we proceed with the main theorem of the section, which states the
security of the protocol in Fig. 10.

Theorem 4. If τ ≥ 4k + 2s, then the protocol ΠTriple (Fig. 10) securely
implements FTriple in the (FROT,FMAC,FRand)-hybrid model, with statistical
security parameter k.

Proof. Let Z be an environment, which we also refer to as adversary, corrupting
a set A of at most n − 1 parties. We construct a simulator S that has access

SPDZ2k : Efficient MPC mod 2k for Dishonest Majority 791

to the ideal functionality FTriple and interacts with Z in such a way that the
real interaction and the simulated interaction are indistinguishable to Z. Our
simulator S proceeds as follows:

Simulating the Multiply phase. The simulator emulates the functionality
Fτ

ROT and sends qj,i
0,h, qj,i

1,h ∈ Z2k for h ∈ {1, . . . , τ} to every j ∈ A (on behalf
of each honest party Pi). When a corrupted party Pj sends dj,i

h to an honest
party Pi, h ∈ {1, . . . , τ}, the simulator uses its knowledge on the q’s to extract
the values of b used by the adversary as bj

h = dj,i
h −qj,i

0,h +qj,i
1,h mod 2k (notice

that if all the parties were honest we would have that all bj
h for h ∈ {1, . . . , τ}

are equal, however, the adversary can take any strategy and this may not
be the case here). The simulator then emulates the multiplication procedure
according to the protocol using a fixed consistent value bj for each j ∈ A (say
the value of bj

1 used with a fixed honest party Pi0). We let bj,i ∈ (Z2k+s)τ

denote the vector of values of b that Pj tried to use in interaction with the
emulated honest party Pi in step (c) and we define δb = bj,i − bj (modulo
2k+s on each entry) where bj is the vector (bj , . . . , bj).
In a similar way, we define δj,i

a = aj,i − aj where aj = aj,i0 (these are the
errors introduced by Pj when interacting with Pi with respect to the values
used in the interaction with Pi0) and aj,i is the vector that the corrupt party
Pj used in the random OT when interacting with honest party Pi. Notice
that δj,i

a ∈ {−1, 0, 1}τ .
Simulating the Combining phase. All the computations are local, so S just

emulates FRand and proceeds according to the protocol.
Simulating the Authentication phase. Now S emulates FMAC with inputs

from the corrupt parties provided by Z. Notice that S can compute the actual
values that each corrupt party should authenticate. The simulator authenti-
cates these and defines eAuth and êAuth to be the total error introduced by
the adversary in this step. Note that here eAuth, êAuth �= 0 essentially means
that the adversary authenticates values different from those computed in the
previous phases. If Z sends Abort to FMAC then S sends Abort to FTriple.

Simulating the Sacrifice step. The simulator opens a uniform value in Z2k+s

as the value of ρ, and aborts if the triple that it has internally stored is
incorrect modulo 2k. Otherwise it stores this triple as a valid triple.

Now we argue that the environment Z cannot distinguish between the hybrid
execution and the simulated one. We begin by noticing that in the Multiply
phase the adversary only learns the mask di,j

h for each i ∈ A, but they look
perfectly random as the values qi,j

1−aj
h,h

are uniformly random and never revealed

to Z. On the other hand, we still need to argue that the value ρ during the
Sacrifice step has indistinguishable distributions in both executions, and that
the triple ([a], [b], [c]) obtained in the real execution is indistinguishable from the
triple generated in the ideal execution (where a and b are uniformly random).

In order to analyze these distributions, we study what is the effect of the
adversarial behavior in the final shared value c, and we do this by considering

792 R. Cramer et al.

what happens in the real execution at the end of step 2 when executed by a
pair of parties (Pi, Pj). If both j and i are honest, then the vectors ci

i,j and cj
i,j

computed at the end of the execution satisfy ci
i,j + cj

i,j ≡k+s a i · bj . Also, if j

and i are both corrupt then we can safely assume that ci
i,j + cj

i,j ≡k+s a i · bj

also holds, since any variation on this will result in an additive error term which
depends only in adversarial values and therefore it will get absorbed by the
authentication phase. Now suppose that j is corrupt and i is honest, then Pi

uses a i and Pj uses bj,i, so the vectors ci
i,j and cj

i,j computed at the end of the
execution satisfy

ci
i,j + cj

i,j ≡k+s a i · bj,i ≡k+s a i · δj,i
b + a i · bj .

Similarly, if i is corrupt and j is honest, then Pi uses a i,j and Pj uses bj , so the
vectors ci

i,j and cj
i,j computed at the end of the execution satisfy

ci
i,j + cj

i,j ≡k+s a i,j · bj ≡k+s δi,j
a · bj + a i · bj .

Now, if ci is the vector obtained by party Pi at the end of the multiplication,
then we have that

c ≡k+s a · b +
∑

i/∈A

a i ∗ δi
b

︸ ︷︷ ︸
ea

+
∑

j /∈A

δj
a · bj

︸ ︷︷ ︸
eb

where a =
∑n

i=1 a
i, b =

∑n
i=1 bi, δi

b =
∑

j∈A δj,i
b and δj

a =
∑

i∈A δi,j
a , and all

congruences are considered component-wise. Notice that each entry in δj
a is the

sum of at most n bits and therefore it is upper bounded strictly by n, since
we assume that n � 2k+s we can consider the sum a =

∑n
i=1 a

i (without the
modulus).

Assume all parties (including corrupt ones) take the right linear combination
in the combine phase (every adversarial misbehavior will result in an additive
error term that only depends on values that the adversary has, and this term
will be absorbed by the error term in the authentication phase). Therefore, after
the combination and authentication phases the parties obtain values [b], [a], [c],
[â], [ĉ] where b, a, c, â, ĉ ∈ Z2k+s satisfy

c ≡k+s a · b + ea + eb + eAuth

ĉ ≡k+s â · b + êa + êb + êAuth

and

c ≡k+s

τ∑

h=1

rh · c[h], ĉ =
τ∑

h=1

r̂h · c[h]

a ≡k+s

τ∑

h=1

rh · a [h], â ≡k+s

τ∑

h=1

r̂h · a [h]

SPDZ2k : Efficient MPC mod 2k for Dishonest Majority 793

ea ≡k+s

τ∑

h=1

rh · ea[h], êa ≡k+s

τ∑

h=1

r̂h · ea[h]

eb ≡k+s

τ∑

h=1

rh · eb[h], êb ≡k+s

τ∑

h=1

r̂h · eb[h].

We prove the following two claims can be proven using the same techniques
as in the single and batch MAC checking protocols from Sect. 3, and Lemma 1.

Claim 4. If the sacrifice step passes, then it holds that e := ea +eb +eAuth ≡k 0
and ê := êa + êb + êAuth ≡k 0 with probability at least 1 − 2−s.

Claim 5. Suppose that the sacrificing step passes, then all the errors
{δi

a[h]}h,i/∈A are zero except with probability at most 2−k+log(n·(k+1−log n)).

The previous claim allows us to conclude that eb = êb ≡k+s 0, except with
negligible probability. Now we would like to claim that the value ρ ∈ Z2k+s

opened in the sacrifice step is indistinguishable from the one opened in the real
execution. Since in the ideal execution the simulator opens a uniform value,
what we actually need to show is that in a real execution ρ looks (close to)
uniform. Given that ρ = t · a − â mod 2k, this can be accomplished by showing
that â looks uniform to the environment. In order to see that â ≡k+s

∑τ
h=1 r̂h ·

a [h] ≡k+s

∑n
i=1

(∑τ
h=1 r̂h · a i[h]

)
is uniformly distributed it suffices to show

that at least for one i0 /∈ A it holds that âi0 looks uniform to the environment,
where âi =

∑τ
h=1 r̂h · a i[h] mod 2k+s, and that all these values are actually

independent. This can be shown using the Leftover Hash Lemma by giving a
good lower bound on the min-entropy of a i0 . We proceed with the details below.

Using Claims 4 and 5, we have that whenever the sacrifice step passes it
holds that

−eAuth ≡k ea ≡k

τ∑

h=1

rh · ea[h] ≡k

τ∑

h=1

rh

∑

i/∈A

a i[h] · δi
b[h].

and

−êAuth ≡k êa ≡k

τ∑

h=1

r̂h · ea[h] ≡k

τ∑

h=1

r̂h

∑

i/∈A

a i[h] · δi
b[h].

Intuitively, the only information that the adversary has about the honest party’s
shares is that the sacrifice step passed, which in turn implies that the above
equation holds. Ideally, the fact that this relation holds should not reveal so
much information about {a i}i/∈A to the adversary. Indeed, this will be the case,
which will be seen when we bound by below the entropy of this random variable.
To this end, let m = n − |A| be the number of honest parties and let S ⊆ Z

m·τ
2

be the set of all possible honest shares (a i)i/∈A for which the sacrifice step would
pass. Notice that in particular, these shares satisfy the equations above and
therefore they are completely determined by the errors that are introduced by

794 R. Cramer et al.

the adversary. Moreover, since the shares (a i)i/∈A are uniformly distributed in
S, the min-entropy of these shares is log |S|. Additionally, the vectors in (a i)i/∈A

are independent one from each other, hence there is at least one honest party
Pi0 such that the min entropy of a i0 is at least log |S|

m . In the following we show
that ai0 =

∑τ
h=1 rh ·a i0 [h] mod 2k+s and âi0 =

∑τ
h=1 r̂h ·a i0 [h] mod 2k+s look

random to the environment.
Let β be the probability of passing the sacrifice step, i.e. β = |S|

2mτ = 2−c

where c = mτ − log |S|. We get that

H∞
(
a i0

) ≥ log |S|
m

= τ − c

m
≥ τ − c.

Now consider the function hr ,r̂ : (Z2)τ → (Z2k+s)2 given by

hr ,r̂ (a) =

(
τ∑

h=1

r [h] · a [h] mod 2k+s,
τ∑

h=1

r̂ [h] · a [h] mod 2k+s

)

,

We claim that this family of functions is 2−universal. Let a ,a ′ ∈ (Z2)τ such
that a �= a ′, say a [h0] �≡k+s a ′[h0]. If hr ,r̂ (a) = hr ,r̂ (a ′) then

∑τ
h=1 r [h]·(a [h]−

a ′[h]) ≡k+s 0 and
∑τ

h=1 r̂ [h] · (a [h] − a ′[h]) ≡k+s 0. Given that a and a ′ are
vectors of bits, we have that a [h0] − a ′[h0] = ±1, so we can solve for r [h0] and
r̂ [h0] in the equations above. Therefore, these equations hold with probability
at most 1

2k+s · 1
2k+s = 1

22(k+s) over the choice of (r , r̂), and hence the family is
2-universal.

According to the Leftover Hash Lemma, even if the adversary knows r and r̂ ,
the statistical distance between hr ,r̂ (X) and the uniform distribution in (Z2k+s)2

is at most 2−κ, provided that H∞ (X) ≥ 2κ + 2(k + s). This is satisfied if we
take κ = 1

2 · (τ − c − 2 · (k + s)).
Finally, ignoring the event in which the check passes with some non-zero

errors, which happens with negligible probability, the distinguishing advantage
of Z is the multiplication between the probability of passing the sacrifice step
and the probability of distinguishing the output distribution from random, given
that the check passed. This is equal to

β · 2−κ = 2−c · 2− 1
2 ·(τ−c−2·(k+s)) = 2− τ−2·(k+s)

2 − c
2 .

Since we want this probability to be bounded by 2−s for any c, we take τ so that
s ≤ τ−2·(k+s)

2 , which is equivalent to τ ≥ 4s + 2k. ��

7 Efficiency Analysis

We now turn to estimating the efficiency of our preprocessing protocol, focus-
ing on the triple generation phase since this is likely to be the bottleneck in
most applications. We emphasise that the costs presented here, compared with
those of previous protocols, do not take into account the benefits to applications

SPDZ2k : Efficient MPC mod 2k for Dishonest Majority 795

from working over Z2k instead of a finite field with arithmetic modulo a prime.
Supporting natural arithmetic modulo 2k offers advantages on several levels:
it simplifies implementations by avoiding the need for modular arithmetic, it
reduces the complexity of compiling existing programs into arithmetic circuits,
and we believe that it will also be beneficial in performing operations such as
secure comparison and bit decomposition of shared values more efficiently than
standard techniques using arithmetic modulo p.

Cost of the preprocessing. When authenticating a secret-shared value
x ∈ Z2k , the main cost is running the vector OLEs, which have inputs over
Z2k and outputs over Z2k+s , when the MAC key α ∈ Z2s . Each vector OLE
requires s correlated OTs on messages over Z2� , where � = max(k+s, 2s), which
gives an amortized cost of s · � bits for each component of the vector OLE. We
ignore the cost of the consistency check, since this is independent of the number
of values being authenticated.

To generate a triple, we need τ random OTs on strings of length k + s bits,
which cost k + s bits of communication each using [13], followed by τ · (k + s)
bits to send the dj,i values. The parties then authenticate 5 values in Z2k+s ,
which requires generating MACs modulo Z2k+2s for security. Generating these
MACs costs 5 · s · (k + 2s) · n(n − 1) bits of communication using ΠAuth based
on correlated OT, since the vector OLEs are performed with � = k + 2s. The
costs of FRand and the sacrifice check are negligible compared to this, since the
MAC check can be performed in a batch when producing many triples at once.
This gives a total cost estimate of 5s(k + 2s) + 2τ(k + s) bits per triple. Setting
τ = 4s + 2k (to give failure probability 2−s) this becomes 2(k + 2s)(9s + 4k).

Comparison with MASCOT. Table 1 shows the estimated communication
complexity of our protocol for two parties creating a triple in different rings. Note
that like MASCOT [14] — the most practical OT-based protocol for actively
secure, dishonest majority MPC over finite fields — we expect that communi-
cation will be the bottleneck, since the protocol has very simple computational
costs. In the table we fix the computational security parameter to 128, and set
the statistical security parameter to s = 64 in a 64 or 128-bit ring, or s = 32 in
the 32-bit ring, giving the claimed security bounds (cf. Theorem 1 and Claim 5).
Compared with MASCOT, our protocol needs around twice as much communi-
cation for 64 or 128-bit triples, with roughly the same level of statistical security.
Over the integers modulo 232, the overhead reduces to around 50% more than
MASCOT, although here the statistical security parameters of 26 and 32 bits
may be too low for some applications. Note that many applications will not be
possible with MASCOT or SPDZ over a 32-bit field, since here integer overflow
(modulo p) occurs more easily, and emulating operations such as secure com-
parison and bit decomposition over a field requires working with a much larger
modulus to avoid overflow. When working over Z232 instead, this should not be
necessary.

These overheads for triple generation, compared with MASCOT, come from
the fact that our protocol sometimes needs to work in larger rings to ensure
security. For example, for the triple check to be secure, our protocol authenticates

796 R. Cramer et al.

shares of triples modulo 2k+s, even though the triples are only ever used modulo
2k in the online phase. This means that when creating these MACs with the
protocol from Sect. 5, we need to work over Z2k+2s to ensure security. We leave
it to future work to try to avoid these costs and improve efficiency.

Table 1. Communication cost of our protocol and previous protocols for various rings
and fields, and statistical security parameters

Protocol Message space Stat. security Input cost Triple cost

(kbit) (kbit)

Z232 26 3.17 79.87

Ours Z264 57 12.48 319.49

Z2128 57 16.64 557.06

32-bit field 32 1.06 51.20

MASCOT 64-bit field 64 4.16 139.26

128-bit field 64 16.51 360.44

Comparison with SPDZ using homomorphic encryption. In very recent
work [15], Keller, Pastro and Rotaru presented a new variant of the SPDZ
protocol that improves upon the performance of MASCOT. In the two-party
setting, they show that an optimized implementation of the original SPDZ [9]
runs around twice as fast as MASCOT, and give a new variant that performs 6
times as fast in 64-bit fields; this would probably be around 12 times as fast as
our protocol for 64-bit rings. The original SPDZ uses somewhat homomorphic
encryption based on the ring-LWE assumption, while their newer variant uses
additively homomorphic encryption, and the conjecture that ring-LWE based
additively homomorphic encryption has “linear-only” homomorphism. It seems
likely that both of these protocols could be adapted to generate triples over Z2k

using our techniques. One challenge, however, is to adapt the ciphertext pack-
ing techniques used in SPDZ for messages over Fp to the case of Z2k , to allow
parallel homomorphic operations on ciphertexts; it was shown how this can be
done in [10], but it’s not clear how efficient this method is in practice.

Acknowledgements. This work has been supported by the European Research
Council (ERC) under the European Unions’s Horizon 2020 research and innovation pro-
gramme under grant agreement No 669255 (MPCPRO); the European Union’s Horizon
2020 research and innovation programme under grant agreement No 731583 (SODA);
the European Union’s Horizon 2020 research and innovation programme under grant
agreement No 74079 (ALGSTRONGCRYPTO); and the Danish Independent Research
Council under Grant-ID DFF-6108-00169 (FoCC).

SPDZ2k : Efficient MPC mod 2k for Dishonest Majority 797

References

1. Asharov, G., Lindell, Y., Schneider, T., Zohner, M.: More efficient oblivious trans-
fer extensions with security for malicious adversaries. In: Oswald, E., Fischlin, M.
(eds.) EUROCRYPT 2015, Part I. LNCS, vol. 9056, pp. 673–701. Springer, Hei-
delberg (2015). https://doi.org/10.1007/978-3-662-46800-5 26

2. Bendlin, R., Damg̊ard, I., Orlandi, C., Zakarias, S.: Semi-homomorphic encryption
and multiparty computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS,
vol. 6632, pp. 169–188. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-20465-4 11

3. Bogdanov, D., Laur, S., Willemson, J.: Sharemind: a framework for fast privacy-
preserving computations. In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS,
vol. 5283, pp. 192–206. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-88313-5 13

4. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society Press, October
2001

5. Cramer, R., Fehr, S., Ishai, Y., Kushilevitz, E.: Efficient multi-party computation
over rings. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 596–613.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9 37

6. Damg̊ard, I., Damg̊ard, K., Nielsen, K., Nordholt, P.S., Toft, T.: Confidential
benchmarking based on multiparty computation. In: Grossklags, J., Preneel, B.
(eds.) FC 2016. LNCS, vol. 9603, pp. 169–187. Springer, Heidelberg (2017). https://
doi.org/10.1007/978-3-662-54970-4 10

7. Damg̊ard, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical
covertly secure MPC for dishonest majority – or: breaking the SPDZ limits. In:
Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp.
1–18. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40203-6 1

8. Damg̊ard, I., Orlandi, C., Simkin, M.: Yet another compiler for active security or:
efficient MPC over arbitrary rings. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO
2018. LNCS, vol. 10992, pp. 799–829. Springer, Cham (2018)

9. Damg̊ard, I., Pastro, V., Smart, N.P., Zakarias, S.: Multiparty computation
from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 38

10. Gentry, C., Halevi, S., Smart, N.P.: Better bootstrapping in fully homomorphic
encryption. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS,
vol. 7293, pp. 1–16. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-30057-8 1

11. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: Aho, A. (ed.) 19th ACM
STOC, pp. 218–229. ACM Press, May 1987

12. Impagliazzo, R., Levin, L.A., Luby, M.: Pseudo-random generation from one-way
functions (extended abstracts). In: 21st ACM STOC, pp. 12–24. ACM Press, May
1989

13. Keller, M., Orsini, E., Scholl, P.: Actively secure OT extension with optimal over-
head. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part I. LNCS, vol.
9215, pp. 724–741. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-47989-6 35

https://doi.org/10.1007/978-3-662-46800-5_26
https://doi.org/10.1007/978-3-642-20465-4_11
https://doi.org/10.1007/978-3-642-20465-4_11
https://doi.org/10.1007/978-3-540-88313-5_13
https://doi.org/10.1007/978-3-540-88313-5_13
https://doi.org/10.1007/3-540-39200-9_37
https://doi.org/10.1007/978-3-662-54970-4_10
https://doi.org/10.1007/978-3-662-54970-4_10
https://doi.org/10.1007/978-3-642-40203-6_1
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/978-3-642-30057-8_1
https://doi.org/10.1007/978-3-642-30057-8_1
https://doi.org/10.1007/978-3-662-47989-6_35
https://doi.org/10.1007/978-3-662-47989-6_35

798 R. Cramer et al.

14. Keller, M., Orsini, E., Scholl, P.: MASCOT: faster malicious arithmetic secure com-
putation with oblivious transfer. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C.,
Myers, A.C., Halevi, S. (eds.) ACM CCS 2016, pp. 830–842, ACM Press, October
2016

15. Keller, M., Pastro, V., Rotaru, D.: Overdrive: making SPDZ great again. In:
Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp. 158–
189. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7 6

16. Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new approach to practi-
cal active-secure two-party computation. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 681–700. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 40

17. Nielsen, J.B., Schneider, T., Trifiletti, R.: Constant round maliciously secure 2PC
with function-independent preprocessing using LEGO. In: 24th NDSS Symposium.
The Internet Society (2017). http://eprint.iacr.org/2016/1069

18. Pettai, M., Laud, P.: Automatic proofs of privacy of secure multi-party computa-
tion protocols against active adversaries. In: IEEE 28th Computer Security Foun-
dations Symposium, CSF 2015, Verona, Italy, 13–17 July 2015, pp. 75–89. IEEE
(2015)

19. Scholl, P.: Extending oblivious transfer with low communication via key-
homomorphic PRFs. In: Abdalla, M., Dahab, R. (eds.) PKC 2018. LNCS, vol.
10769, pp. 554–583. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
76578-5 19

https://doi.org/10.1007/978-3-319-78372-7_6
https://doi.org/10.1007/978-3-642-32009-5_40
http://eprint.iacr.org/2016/1069
https://doi.org/10.1007/978-3-319-76578-5_19
https://doi.org/10.1007/978-3-319-76578-5_19

Yet Another Compiler for Active Security
or: Efficient MPC Over Arbitrary Rings

Ivan Damg̊ard, Claudio Orlandi, and Mark Simkin(B)

Aarhus University, Aarhus, Denmark
{ivan,orlandi,simkin}@cs.au.dk

Abstract. We present a very simple yet very powerful idea for turning
any passively secure MPC protocol into an actively secure one, at the
price of reducing the threshold of tolerated corruptions.

Our compiler leads to a very efficient MPC protocols for the impor-
tant case of secure evaluation of arithmetic circuits over arbitrary rings
(e.g., the natural case of Z2�) for a small number of parties. We show
this by giving a concrete protocol in the preprocessing model for the
popular setting with three parties and one corruption. This is the first
protocol for secure computation over rings that achieves active security
with constant overhead.

1 Introduction

Secure Computation. Secure Multiparty Computation (MPC) allows a set
of participants P1, . . . , Pn with private inputs respectively x1, . . . , xn to learn
the output of some public function f evaluated on their private inputs i.e.,
z = f(x1, . . . , xn) without having to reveal any other information about their
inputs. Seminal MPC results from the 80s [3,6,18,26] have shown that with
MPC it is possible to securely evaluate any boolean or arithmetic circuit with
information theoretic security (under the assumption that a strict minority of the
participants are corrupt) or with computational security (when no such honest
majority can be assumed).

As is well known, the most efficient MPC protocols are only passively secure.
What is perhaps less well known is that by settling for passive security, we
also get a wider range of domains over which we can do MPC. In addition to
the standard approach of evaluating boolean or arithmetic circuits over fields,
we can also efficiently perform computations over other rings. This has been
demonstrated by the Sharemind suite of protocols [5], which works over the
ring Z2� . Sharemind’s success in practice is probably, to a large extent, due
to the choice of the underlying ring, which closely matches the kind of ring
CPUs naturally use. Closely matching an actual CPU architecture allows easier
programming of algorithms for MPC, since programmers can reuse some of the
tricks that CPUs use to do their work efficiently.

While passive security is a meaningful security notion that is sometimes suf-
ficient, one would of course like to have security against active attacks. However,
c© International Association for Cryptologic Research 2018
H. Shacham and A. Boldyreva (Eds.): CRYPTO 2018, LNCS 10992, pp. 799–829, 2018.
https://doi.org/10.1007/978-3-319-96881-0_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96881-0_27&domain=pdf

800 I. Damg̊ard et al.

the known techniques, such as the GMW compiler, for achieving active security
incur a significant overhead, and while more efficient approaches exist, they usu-
ally need to assume that the computation is done over a field, and they always
have an overhead that depends on the security parameter. Typically, such pro-
tocols, like the BeDOZa or SPDZ protocols [4,11,13], start with a preprocessing
phase which generates the necessary correlated randomness [19] in the form of
so called multiplication triples. This is followed by an information theoretic and
therefore very fast online phase where the triples are consumed to evaluate the
arithmetic circuit. To get active security in the on-line phase, protocols employ
information-theoretic MACs that allow to detect whether incorrect information
is sent. Using such MACs forces the domain of computation to be a field which
excludes, of course, the ring Z2� . The only exception is recent work subsequent to
ours [10]. This is not a compiler but a specific protocol for the preprocessing model
which allows MACs for the domain Z2� . This is incomparable to our result for this
setting: compared to our result, the protocol from [10] tolerates larger number of
corruptions, but it introduces an overhead in storage and computational work pro-
portional to the product of the security parameter and the circuit size.

Another alternative is to use garbled circuits. However, they incur a rather
large overhead when active security is desired, and cannot be used at all if
we want to do arithmetic computation directly over a large ring. Thus, a very
natural question is:

Can we go from passive to active security at a small cost and can we do so
in a general way which allows us to do computations over general rings?

Our results. In this paper we address the above question by making three main
contributions:

1. A generic transformation that compiles a protocol with passive security
against at least 2 corruptions into one that is actively secure (but against
a smaller number of corruptions). This works both for the preprocessing and
the standard model. The transformation preserves perfect and statistical secu-
rity and its overhead depends only on the number of players, and not on the
security parameter. Thus, for a constant number of parties it loses only a
constant factor in efficiency.

2. We present a preprocessing protocol for 3 parties. It generates multiplication
triples to be used by a particular protocol produced by our compiler. This
preprocessing can generate triples over any ring Zm and has constant compu-
tational overhead for large enough m; more precisely, if m is exponential in
the statistical security parameter. We build this preprocessing from scratch,
not by using our compiler. This, together with our compiler, gives a plug-in
replacement for the Sharemind protocol as explained below.

3. A generic transformation that works for a large class of protocols including
those output by our passive-to-active compiler. It takes as input a proto-
col that is secure with abort and satisfies certain extra conditions, and pro-
duces a new protocol with complete fairness [8]. In security with abort, the
adversary gets the output and can then decide if the protocol should abort.

Yet Another Compiler for Active Security 801

In complete fairness the adversary must decide whether to abort without see-
ing the output. This is relevant in applications where the adversary might
“dislike” the result and would prefer that it is not delivered. The transfor-
mation has an additive overhead that only depends on the size of the output
and not the size of the computation. It works in the honest majority model
without broadcast. In this model we cannot guarantee termination in general
so security with complete fairness is essentially the best we can hope for.

Discussion of results. Our passive-to-active compiler can, for instance, be
applied to the straightforward 3-party protocol that represents secret values
using additive secret sharing over Z2� and does secure multiplication using multi-
plication triples created in a preprocessing phase. This protocol is secure against
2 passive corruptions. Applying our compiler results in a 3-party protocol Π
in the preprocessing model that is information theoretically secure against 1
corruption and obtains active security with abort. Π can be used as plug-in
replacement for the Sharemind protocol. It has better (active) instead of passive
security and is essentially as efficient. This, of course, is only interesting if we
can implement the required preprocessing efficiently, which is exactly what we
do as our second result, discussed in more detail below.

The compiler is based on the idea of turning each party in the passively secure
protocol into a “virtual” party, and then each virtual party is independently
emulated by 2 or more of the real parties (i.e., each real party will locally run
the code of the virtual party). Intuitively, if the number of virtual parties for
which a corrupt party is an emulator is not larger than the privacy threshold of
the original protocol, then our transform preserves the privacy guarantees of the
original protocol. Further, if we can guarantee that each virtual party is emulated
by at least one honest party, then this party can detect faulty behaviour by the
other emulators and abort if needed, thus guaranteeing correctness. Moreover, if
we set the parameters in a way that we are guaranteed an honest majority among
the emulators, then we can even decide on the correct behaviour by majority
vote and get full active security. While this in hindsight might seem like a simple
idea, proving that it actually works in general requires us to take care of some
technical issues relating, for instance, to handling the randomness and inputs of
the virtual parties.

The approach is closely related to replicated secret sharing which has been
used for MPC before [17,22] (see the related work section for further discussion),
but to the best of our knowledge, this is the first general construction that
transforms an entire passively secure protocol to active security. From this point
of view, it can be seen as a construction that unifies and “explains” several earlier
constructions.

While our construction works for any number of parties it unfortunately does
not scale well, and the resulting protocol will only tolerate corruptions of roughly√

n of the n parties and has a multiplicative overhead of order n compared to
the passively secure protocol. This is far from the constant fraction of corrup-
tions we know can be tolerated with other techniques. We show two ways to
improve this. First, while our main compiler preserves adaptive security, we also

802 I. Damg̊ard et al.

present an alternative construction that only works for static security but toler-
ates n/ log n active corruptions, and has overhead log2 n. Second, we show that
using results from [7], we get a protocol for any number n of parties tolerating
roughly n/4 malicious corruptions. We do this by starting from a protocol for
5 parties tolerating 2 passive corruptions, use our result to constructs a 5 party
protocol tolerating 1 active corruption, and then use a generic construction from
[7] based on monotone formulae. Note that a main motivation for the results
from [7] was to introduce a new approach to the design of multiparty protocols.
Namely, first design a protocol for a constant number of parties tolerating 1
active corruption, and then apply player emulation and monotone formulae to
get actively secure multiparty protocols. From this point of view, adding our
result extends their idea in an interesting way: using a generic transformation
one can now get active and information theoretic security for a constant fraction
of corruptions from a seemingly even simpler object: a protocol for a constant
number of parties that is passively secure against 2 corruptions.

Our second result, the preprocessing protocol, is based on the idea that we can
quite easily create multiplication triples involving secret shared values a, b, c ∈
Zm and where ab = c mod m if parties behave honestly. The problem now is that
the standard efficient approach to checking whether ab = c mod m only works
if m is prime, or at least has only large prime factors. We solve this by finding
a way to embed the problem into a slightly larger field Zp for a prime p. We
can then check efficiently if ab = c mod p. In addition we make sure that a, b are
small enough so that this implies ab = c over the integers and hence also that
ab = c mod m.

Our final result, the compiler for complete fairness, works for protocols where
the output is only revealed in the last round, as is typically the case for protocols
based on secret sharing. Roughly speaking, the idea is to execute the protocol
up to its last round just before the outputs are delivered. We then compute
verifiable secret sharings of the data that parties would send in the last round –
as well as one bit that says whether sending these messages would cause an abort
in the original protocol. Of course, this extra computation may abort, but if it
does not and we are told that the verifiably shared messages are correct, then
it is too late for the adversary to abort; as we assume an honest majority the
shared messages can always be reconstructed. While this basic idea might seem
simple, the proof is trickier than one might expect – as we need to be careful
with the assumptions on the original protocol to avoid selective failure attacks.

1.1 Related Work

Besides what is already mentioned above, there are several other relevant works.
Previous compilers, notably the GMW [18] and the IPS compiler [20,21], allow
to transform passively secure protocols into maliciously secure ones. The GMW
compiler uses zero-knowledge proofs and, hence, is not blackbox in the underlying
construction. It produces protocols which are far from practically efficient. The
IPS compiler works, very roughly speaking, by using an inner protocol to sim-
ulate the protocol execution of an outer protocol. The outer protocol computes

Yet Another Compiler for Active Security 803

the desired functionality. The inner protocol protocols computes the individual
computation steps of the outer protocol. The compiler is blackbox with respect
to the inner, but not the outer protocol and it requires the existence of obliv-
ious transfer. It is unclear whether the IPS compiler can be used to produce
practically efficient protocols.

In contrast, our compiler does not require any computational assumption
and thus preserves any information theoretic guarantees the underlying protocol
has. Our transform does not have any large hidden constants and can produce
actively secure protocols with efficiency that may be of practical interest.

In a recent work by Furukawa et al. [17], a practically very efficient three-
party protocol with one active corruption was proposed. Their protocol uses
replicated secret sharing and only works for bits. As the authors state themselves,
it is not straightforward to generalize their protocol to more than three parties,
while maintaining efficiency. In contrast, our protocol works over any arbitrary
ring and can easily be generalized to any number of players. Furthermore our
transform produces protocols with constant overhead, whereas their protocol
does not have constant overhead.

The idea of using replication to detect active corruptions has been used
before. For instance, Mohassel et al. [23] propose a three-party version of Yao’s
protocol. In a nutshell, their approach is to let two parties garble a circuit sepa-
rately and to let the third party check that the circuits are the same. Our results
in this work are more general in the sense that we propose a general transform
to obtain actively secure protocols from passively secure ones. In [14], Desmedt
and Kurosawa use replication to design a mix-net with t2 servers secure against
(roughly) t actively corrupted servers. A simple approach to MPC based on
replicated secret sharing was proposed by Maurer in [22]. It has been the basis
for practical implementations like [5].

2 Preliminaries

Notation. If X is a set, then v ← X means that v is a uniformly random value
chosen from X . When A is an algorithm, we write v ← A(x) to denote a run of
A on input x that produces output v. For n ∈ N, we write [n] to denote the set
{1, 2, . . . , n}. For n party protocols, we will write Pi+1 and implicitly assume a
wrap-around of the party’s index, i.e. Pn+1 = P1 and P1−1 = Pn. All logarithms
are assumed to be base 2.

Security Definitions. We will use the UC model throughout the paper, more
precisely the variant described in [9]. We assume the reader has basic knowledge
about the UC model and refer to [9] for details. Here we only give a very brief
introduction: We consider the following entities: a protocol ΠF for n players
that is meant to implement an ideal functionality F . An environment Z that
models everything external to the protocol which means that Z chooses inputs
for the players and is also the adversarial entity that attacks the protocol. Thus
Z may corrupt players passively or actively as specified in more detail below.
We have an auxiliary functionality G that the protocol may use to accomplish

804 I. Damg̊ard et al.

its goal. Finally we have a simulator S that is used to demonstrate that ΠF
indeed implements F securely.

In the definition of security we compare two processes: First, the real process
executes Z, ΠF and G together, this is denoted Z � ΠF � G. Second, we consider
the ideal process where we execute Z, S and F together, denoted Z �S �F . The
role of the simulator S is to emulate Z’s view of the attack on the protocol, this
includes the views of the corrupted parties as well as their communication with
G. To be able to do this, S must send inputs for corrupted players to F and will
get back outputs for the corrupted players. A simulator in the UC model is not
allowed to rewind the environment.

Both processes are given a security parameter k as input, and the only output
is one bit produced by Z. We think of this bit as Z’s guess at whether it has
been part of the real or the ideal process. We define preal respectively pideal to
be the probabilities that the real, respectively the ideal process outputs 1, and
we say that Z � ΠF � G ≡ Z � S � F if |preal − pideal| is negligible in k.

Definition 1. We say that protocol ΠF securely implements functionality F
with respect to a class of environments Env in the G-hybrid model if there exists
a simulator S such that for all Z ∈ Env we have Z � ΠF � G ≡ Z � S � F .

Different types of security can now be captured by considering different
classes of environments: For passive t-security, we consider any Z that corrupts
at most t players. Initially, it chooses inputs for the players. Corrupt players
follow the protocol so Z only gets read access to their views. For biased passive
t-security, we consider any Z that corrupts at most t players. Initially, it chooses
inputs for the players, as well as random coins for the corrupt players. Then cor-
rupt players follow the protocol so Z only gets read access to their views. This
type of security has been considered in [1,24] and intuitively captures passively
secure protocols where privacy only depends on the honest players choosing their
randomness properly. This is actually true for almost all known passively secure
protocols. Finally, for active t-security, we consider any Z that corrupts at most
t players, and Z takes complete control over corrupt players.

One may also distinguish between unconditional or computational security
depending on whether the environment class contains all environments of a cer-
tain type or only polynomial time ones. We will not be concerned much with
this distinction, as our main compiler is the same regardless, and preserves both
unconditional and computational security. For simplicity, we will consider uncon-
ditional security by default. We also consider by default adaptive security, mean-
ing that Z is allowed to adaptive choose players to corrupt during the protocol.

We will consider synchronous protocols throughout, so protocols proceed in
rounds in the standard way, with a rushing adversary. We will always assume that
point-to-point secure channels are available. In addition, we will also sometimes
make use of other auxiliary functionalities, as specified in the next subsection.

Ideal Functionalities. The broadcast functionality Fbcast (Fig. 1) allows a party to
send a value to a set of other parties, such that either all receiving parties receive
the same value or all parties jointly abort by outputting ⊥. This functionality is

Yet Another Compiler for Active Security 805

known as detectable broadcast [15] and while unconditionally secure broadcast
with termination among n parties requires that strictly less than n/3 parties
are corrupted [25], this bound does not apply to detectable broadcast, which
can be instantiated with information-theoretic security tolerating any number
of corruptions [16].

Functionality Fbcast

The ideal functionality runs with parties P1, . . . , Pn and environment Z.

– Pi sends (v,P) to Fbcast, where v ∈ {0, 1}∗ and P ⊂ {P1 . . .Pn}.
– If P contains a corrupted party, then Z receives v. Otherwise it only

receives notification that a broadcast has been started. Z then decides
whether to continue or to abort by sending a bit to the ideal functionality.

• If Z continues, then Fbcast sends v to all Pj ∈ P.
• If Z aborts, then Fbcast sends ⊥ to all Pj ∈ P.

Fig. 1. The broadcast functionality

Functionality Fcflip

The ideal functionality runs with parties P1, . . . , Pn and environment Z.

– The functionality waits for messages of the form (cflip,P) from all parties.
– After receiving all such messages, and a deliver message from the envi-

ronment Z, the functionality Fcflip picks a random string r ← {0, 1}λ and
outputs r to all parties in P.

Fig. 2. The coin flip functionality

Using the coin flip functionality Fcflip (Fig. 2), a set of parties can jointly
generate and agree on a uniformly random λ-bit string. In the case of an hon-
est majority, this functionality can be implemented with information-theoretic
security via verifiable secret sharing (VSS) [9] as follows: Let P be the set of
players that want to perform a coin flip. To realize the functionality, every par-
ticipating party Pi ∈ P secret shares a random bit string ri among all the other
players. Once every player in P shared its bit string ri, we let all players in P

reconstruct all bit strings and output
⊕

i ri. This is done by having all play-
ers send all their shares to players in P. Here we assume that reconstruction
is non-interactive, i.e., players send shares to each other and each player locally
computes the secret. Such VSS schemes exist, as is well known. It is important to
note that a VSS needs broadcast in the sharing phase, and since we only assume
detectable broadcast, the adversary may force the VSS to abort. However, since

806 I. Damg̊ard et al.

the decision to abort or not must be made without knowing the shared secret
(by privacy of the VSS) the adversary cannot use this to bias the output of the
coinflip.

The standard functionality Ftriple (Fig. 3) allows three parties P1, P2, and P3

to generate a replicated secret sharing of multiplication triples. In this functional-
ity, the adversary can corrupt one party and pick its shares. The remaining shares
of the honest parties are chosen uniformly at random. The intuition behind this
ideal functionality is that, even though the adversary can pick its own shares, it
does not learn anything about the remaining shares, and hence it does not learn
anything about the actual value of the multiplication triple that is secret shared.
We will present a communication efficient implementation of this functionality
in Sect. 5.

Functionality Ftriple

The ideal functionality is parameterized by an integer m, runs with parties
P1, P2, P3 and environment Z.

– If party Pi is corrupted, then the environment Z can input (corrupt, v)
where v = (ai+1, ai+2, bi+1, bi+2, ci+1, ci+2) all in Zm.

– Upon receiving init from all honest parties the functionality Ftriple picks
the undefined (ai, bi, ci) uniformly at random, such that (a1 + a2 + a3) ·
(b1 + b2 + b3) = (c1 + c2 + c3) ∈ Zm and outputs:

• (a1, b1, c1) to P2 and P3,
• (a2, b2, c2) to P3 and P1,
• (a3, b3, c3) to P1 and P2.

Fig. 3. Triple generation functionality

Finally, for any function f with n inputs and one output, we will let Ff

denote a UC functionality for computing f securely with (individual) abort.
That is, once it receives inputs from all n parties it computes f and then sends
the output to the environment Z. Z returns for each player a bit indicating if
this player gets the output or will abort. Ff sends the output to the selected
players and sends ⊥ to the rest. We consider three (stronger) variants of this:
Funanimous

f where Z must give the output to all players or have them all abort;
F fair

f where Z is not given the output when it decides whether to abort; and
F fullactive

f where the adversary cannot abort at all.

3 Our Passive to Active Security Transform

The goal of our transform is to take a passively secure protocol and convert it
into a protocol that is secure against a small number of active corruptions.

Yet Another Compiler for Active Security 807

For simplicity, let us start with a passively secure n-party protocol (n ≥ 3)
that we will convert into an n-party protocol in the Fcflip-hybrid model that is
secure against one active corruption.

The main challenge in achieving security against an actively corrupted party,
is to prevent it from deviating from the protocol description and sending mal-
formed messages. Our protocol transform is based upon the observation that,
assuming one active corruption, every pair of parties contains at least one honest
party. Now instead of letting the real parties directly run the passively secure
protocol, we will let pairs of real parties simulate virtual parties that will com-
pute, using the passively secure protocol, the desired functionality on behalf of
the real parties. More precisely, for 1 ≤ i ≤ n, the real parties Pi and Pi+1 will
simulate virtual party Pi. In the first phase of our protocol, Pi and Pi+1 will
agree on some common input and randomness that we will specify in a moment.
In the second phase, the virtual parties will run a passively secure protocol on
the previously agreed inputs and randomness. Whenever virtual party Pi sends
a message to Pj , we will realize this by letting Pi and Pi+1 both send the same
message to Pj and Pj+1. Note that when both Pi and Pi+1 are honest, these two
messages will be identical since they are constructed according to the same (pas-
sively secure) protocol, using the same shared randomness and the previously
received messages. The “action” of receiving a message at the virtual party Pj

is emulated by having the real parties Pj and Pj+1 both receive two messages
each. Both parties now check locally whether the received messages are identical
and, if not, broadcast an “abort” message. Otherwise they continue to execute
the passively secure protocol. The high-level idea behind this approach is that
the adversary controlling one real party cannot send a malformed message and
at the same time be consistent with the other honest real party simulating the
same virtual party. Hence, either the adversary behaves honestly or the protocol
will be aborted.

Remember that we need all real parties emulating the same virtual party
to agree on a random tape and a common input. Agreeing on a random tape
is trivial in the Fcflip-hybrid model, we can just invoke Fcflip for each virtual Pi

and have it send the random string to the corresponding real parties Pi and
Pi+1. Moreover, in the process of agreeing on inputs for the virtual parties we
need to be careful in not leaking any information about the real parties’ original
inputs. Towards this goal, we will let every real party secret share, e.g. XOR, its
input among all virtual parties. Now, instead of letting the underlying passively
secure protocol compute f(x1, . . . , xn), where real Pi holds input xi, we will use
it to compute f ′((x1

1, . . . , x
1
n), . . . , (xn

1 , . . . , xn
n)) := f(

⊕
i xi

1, . . . ,
⊕

i xi
n), where

virtual party Pi has input
(
xi
1, . . . , x

i
n

)
, i.e. one share of every original input.

As a small example, for the case of three parties, we would get P1 = {P1,P2}
holding input

(
x1
1, x

1
2, x

1
3

)
, P2 = {P2,P3} with input

(
x2
1, x

2
2, x

2
3

)
, and P3 =

{P3,P1} with
(
x3
1, x

3
2, x

3
3

)
. Since every real party only participates in the simu-

lation of two virtual parties, no real party learns enough shares to reconstruct
the other parties’ inputs. More precisely, for arbitrary n ≥ 3 and one corruption,
each real party will participate in the simulation of two virtual parties, thus

808 I. Damg̊ard et al.

the underlying passively secure protocol needs to be at least passively 2-secure.
Actually, each real party will learn not only two full views, but also one of the
inputs of each other virtual party, since it knows the shares it distributed itself.
As we will see in the security proof this is not a problem and passive 2-security
is, for one active corruption, a sufficient condition on the underlying passively
secure protocol.

The approach described above can be generalized to a larger number of cor-
rupted parties. The main insight for one active corruption was that each set of
two parties contains one honest party. For more than one corruption, we need to
ensure that each set of parties of some arbitrary size contains at least one hon-
est party that will send the correct message. Given n parties and t corruptions,
each virtual party needs to be simulated by at least t + 1 real parties. We let
real parties Pi, . . . ,Pi+t simulate virtual party Pi

1. This means that every real
party will participate in the simulation of t + 1 virtual parties. Since we have
t corruptions, the adversary can learn at most t (t + 1) views of virtual parties,
which means that our underlying passively secure protocol needs to have at least
passive

(
t2 + t

)
-security.

In the following formal description, let Pi be the virtual party that is simu-
lated by Pi, . . . ,Pi+t. By slight abuse of notation, we use the same notation for
the virtual party Pj and the set of real parties that emulate it. When we say Pi

sends a message to Pj , we mean that each real party in Pi will send one message
to every real party in Pj . Let Vi be the set of virtual parties in whose simulation
Pi participates.

Let f be the n-party functionality we want to compute, and Πf ′ be a passive(
t2 + t

)
-secure protocol that computes f ′, i.e., it computes f on secret shares

as described above. We construct Π̃f that computes f and is secure against t
active corruption as follows:

The protocol Π̃f :

1. Pi splits its input xi into n random shares, s.t. xi =
⊕

1≤j≤n xj
i , and for all

j ∈ [n] send (xj
i ,Pj) to Fbcast (which then sends xj

i to all parties in Pj).
2. For i ∈ [n] invoke Fcflip on input Pi. Each Pi receives {rj |Pj ∈ Vi} from the

functionality.
3. Pi receives

(
xj
1, . . . , x

j
n

)
for every Pj ∈ Vi from Fbcast. If any xj

i = ⊥, abort
the protocol.

4. All virtual parties, simulated by the real parties, jointly execute Πf ′ , where
each real party in Pi uses the same randomness ri that it obtained through
Fcflip. Whenever Pi receives a message from Pj , each member of Pi checks
that it received the same message from all parties in Pj . If not, it aborts (this
includes the case where a message is missing). Once a player makes it to the
end of Πf ′ without aborting, it outputs whatever is output in Πf ′ .

1 Any other distribution of real party among virtual parties that ensures that each
real party simulates equally many virtual parties would work as well.

Yet Another Compiler for Active Security 809

Theorem 1. Let n ≥ 3. Suppose Πf ′ implements Ff ′ with passive
(
t2 + t

)
-

security. Then Π̃f as described above implements Ff in the (Fbcast, Fcflip)-hybrid
model with active t-security.

Remark 1. We construct a protocol where the adversary can force some honest
players to abort while others terminate normally. We can trivially extend this to
a protocol implementing Funanimous

f where all players do the same: we just do a
round of detectable broadcast in the end where players say whether they would
abort in the original protocol. If a player hears “abort” from anyone, he aborts.

Remark 2. In Step 1 of the protocol the parties perform a XOR based n-out-
of-n secret sharing. We remark that any n-out-of-n secret sharing scheme could
be used here instead. In particular, when combining the transform with the
preprocessing protocol of Sect. 5, it will be more efficient to do the sharing in
the ring (Zm,+).

Remark 3. Our compiler is information-theoretically secure. This means that
our compiler outputs a protocol that is computationally, statistically, or perfectly
secure if the underlying protocol was respectively computationally, statistically,
or perfectly secure. This is particularly interesting, since, to the best of our
knowledge, our compiler is the first one to preserve statistical and perfect security
of the underlying protocol.

Remark 4. The theorem trivially extends to compilation of protocols that use an
auxiliary functionality G, such as a preprocessing functionality. We would then
obtain a protocol in the (Fbcast,Fcflip,G)-hybrid model. We leave the details to
the reader.

Proof. Before getting into the details of the proof, let us first roughly outline the
possibilities of an actively malicious adversary and our approach to simulating
his view in the ideal world. The protocol can be split into two separate phases.
First all real parties secret share their inputs among the virtual parties through
the broadcast functionality. A malicious party P∗

i can pick an arbitrary input
xi, but the broadcast functionality ensures that all parties simulating some vir-
tual party Pj will receive the same consistent share xj

i from the adversary. Since
every virtual party is simulated by at least one honest real party, the simulator
will obtain all secret shares of all inputs belonging to A. This allows the sim-
ulator to reconstruct these inputs and query the ideal functionality to retrieve
f(x′

1, . . . , x
′
n) where if Pj is honest then x′

j = xj is the input chosen by the
environment and if Pj is corrupt x′

j =
⊕

i xi
j is the input extracted by the sim-

ulator. Having the inputs of all corrupted parties and the output from the ideal
functionality, we can use the simulator of Πf ′ to simulate the interaction with
the adversary. At this point, there are two things to note.

First, we have n real parties that simulate n virtual parties. Since the adver-
sary can corrupt at most t real parties, we simulate each virtual party by t + 1
real parties. As each real party participates in the same amount of simulations
of virtual parties, we get that each real party simulates t + 1 virtual parties.

810 I. Damg̊ard et al.

This means that the adversary can learn at most t2 + t views of the virtual
parties and, hence, since Πf ′ is passively

(
t2 + t

)
-secure, the adversary cannot

distinguish the simulated transcript from a real execution.
Second, the random tapes are honestly generated by Fcflip. The simulator

knows the exact messages that the corrupted parties should be sending and how
to respond to them. Upon receiving an honest message from a corrupted party,
the simulator responds according to underlying simulator. If the adversary tries
to cheat, the simulator aborts. Aborting is fine, since, in a real world execution,
the adversary would be sending a message, which is inconsistent with at least
one honest real party that simulates the same virtual party, and this would make
some receiving honest party abort.

Given this intuition, let us now proceed with the formal simulation. Let Z
be the environment (that corrupts at most t parties). Let P

∗ be the set of real
parties that are corrupted before the protocol execution starts. Let V

∗ be the
set of virtual parties that are simulated by at least one corrupt real party from
P

∗. We will construct a simulator SΠ̃f
using the simulator SΠf′ for f ′. In the

specification of the simulator we will often say that it sends some message to a
corrupt player. This will actually mean that Z gets the message as Z plays for
all the corrupted parties.

SΠ̃f
:

1. For each Pi ∈ P
∗ and j ∈ [n], Z sends (xj

i ,Pj) to Fbcast (which is emulated
by SΠ̃f

). For each Pj ∈ V
∗ and each corrupt emulator in Pj , send to Z the

shares this emulator would receive from Fbcast, that is, {xj
i}i=1..n where for a

corrupt Pi we use the share specified by Z before and for honest Pi we use a
random value.

2. For each Pi ∈ P
∗, compute xi =

⊕
j xj

i and send it to the ideal functionality
Ff to retrieve z = f(x1, . . . , xn), where all xi with Pi
∈ P

∗ are the honest
parties’ inputs in the ideal execution.

3. To simulate the calls to Fcflip, for each corrupt Pj , choose rj at random and
send it to each corrupt emulator of Pj .
Note that, at this point, we know the inputs and random tapes of all currently
corrupted parties. With this, we can check in the following whether corrupt
players follow the protocol.

4. Start the simulator SΠf′ and tell it that the initial set of corrupted play-
ers is V

∗. We will emulate both its interface towards Ff ′ and towards its
environment, as described below.

5. When SΠf′ queries Ff ′ for inputs of corrupted players, we return, for each
Pj ∈ V

∗, xj
1, ..., x

j
n. When it queries for the output we return z.

6. For each round in Πf ′ the following is done until the protocol ends or aborts:
(a) Query SΠf′ for the messages sent from honest to corrupt virtual parties

in the current round. For each such message to be received by a corrupted
Pj , send this message to all corrupt real parties in Pj .

Yet Another Compiler for Active Security 811

(b) Get from Z the messages from corrupt to honest real players in the current
round. Compute the set A of honest real players that, given these message,
will abort. For all corrupt Pj and honest Pi, compute the correct message
mj,i to be sent in this round from Pj to Pi. Tell SΠf′ that Pj sent mj,i to
Pi in this round.

(c) If we completed the final round, stop the simulation. Else, if A contains
all real honest parties, send “abort” to Ff and stop the simulation. Else,
If A = ∅ go to step 6a. Else, do as follows in the next round (in which the
protocol will abort because A
= ∅): Query SΠf′ for the set of messages M
sent from honest to corrupt virtual parties in the current round. For all
real parties in A tell Z that they send nothing in this round. For all other
real honest players compute, as in step 6a, what messages they would
send to corrupt real players given M and send these to Z. Send “abort”
to Ff and stop the simulation.

It remains to specify how adaptive corruptions are handled: Whenever the
adversary adaptively corrupts a new party Pi, we go through all virtual parties Pj

in Vi (the virtual parties simulated by Pi) and consider the following two cases.
First, if Pj already contained a corrupted party, then we already know how to
simulate the view for this virtual player. Second, if Pi is the first corrupted party
in Pj , then we add Pi to V

∗ and tell SΠf′ that Pj is now corrupt and we forward
the response of SΠf′ to Z, namely the (simulated) current view of Pj . Since the
view of Pj contains this virtual party’s random tape, we can continue our overall
simulation as above.

We now need to show that SΠ̃f
works as required. For contradiction assume

that we have an environment Z for which Z � SΠ̃f
� Ff
≡ Z � Πf � Fcflip � Fbcast.

We will use Z to construct an environment Z ′ that breaks the assumed security
of Πf ′ and so reach a contradiction.

Z ′:

1. Run internally a copy of Z, and get the initial set of corrupted real players
from Z, this determines the set V

∗ of corrupt virtual players as above, so Z ′

will corrupt this set (recall that Z ′ acts as environment for Πf ′).
2. For each real honest party Pi, get its input xi from Z. Choose random shares

xj
i subject to xi =

⊕
j xj

i .
3. Execute with Z Step 1 of SΠ̃f

’s algorithm, but instead of choosing random
shares on behalf of honest players, use the shares chosen in the previous step.
This will fix the inputs {xj

i}i=1..n of every virtual player Pj . Z ′ specifies these
inputs for the parties in Πf ′ .

4. Recall that Z ′ (being a passive environment) has access to the views of the
players in V

∗. This initially contains the randomness rj of corrupt Pj . Z ′ uses
this rj to execute Step 3 of SΠ̃f

.

812 I. Damg̊ard et al.

5. Now Z ′ can expect to see the views of the corrupt Pj ’s as they execute the
protocol Therefore Z ′ can perform Step 6 of SΠ̃f

with one change only: it will
get the messages from honest to corrupt players by looking at the views of
the corrupt Pj ’s, but will forward these messages to Z exactly as SΠ̃f

would
have done. In the end Z ′ outputs the guess produced by Z.

Now, all we need to observe is that if Z ′ runs in the ideal process, the view
seen by its copy of Z is generated using effectively the same algorithm as in SΠ̃f

,
since the views of corrupt virtual parties come from SΠf′ . On the other hand, if
Z ′ runs in the real process, its copy of Z will see a view distributed exactly as
what it would see in a normal real process. This is because the first 4 steps of Z ′

is a perfect simulation of the real Πf , and the last step aborts exactly when the
real protocol would have aborted and otherwise provides real protocol messages
to Z. Therefore Z ′ can distinguish real from ideal process with exactly the same
advantage as Z. �

Efficiency of our transform. In our transform every real party emulates t + 1
virtual parties which constitutes the only computational overhead of our trans-
form (if we ignore the computational effort in checking that the t + 1 received
messages are equal).

Since our transform mainly works by sending messages in a redundant fash-
ion, it incurs a multiplicative bandwidth overhead that depends on the num-
ber of active corruptions we want to tolerate. Assume the underlying protocol
Πf ′ sends a total of m messages and further assume that we want to toler-
ate t corruptions. This means that every virtual party Pi will be simulated by
t + 1 real parties. Whenever a virtual party Pi sends a message to Pj , we send
(t + 1) · (t + 1) = t2 + 2t + 1 real messages. Ignoring messages sent for the coin-
flips and share distribution, our transform produces a protocol that sends at
most m · (t2 + 2t + 1

)
messages.

For the special case, where n = 3, t = 1, and P1 = {P1,P2}, P2 = {P2,P3},
and P3 = {P3,P1}, it holds that for all i
= j, |Pi ∩Pj | = 1. Hence, every message
from Pi to Pj is realized by sending 3 real messages, which results in 3m total
messages sent during the second phase of our transform.

Active security without Fcflipand Fbcast: By the UC composition theorem, we can
replace the functionalities Fcflip and Fbcast in our compiled protocol by secure
implementations and still have a secure protocol. It should be noted that for
t corruptions we have n ≥ (

t2 + t
)

+ 1 and thus we are always in an honest
majority setting. This means that both functionalities can be implemented with
information theoretic security in the basic point-to-point secure channels model
as described in Sect. 2.

The implementation of Fcflip uses verifiable secret sharing (VSS). Note that
even though VSS in itself is powerful enough to realize secure multiparty compu-
tation, we only use it for the coin flip functionality. Thus, the number of VSSs we
need depends only on the amount of randomness used in the passively secure pro-
tocol, and this can be reduced using a pseudorandom generator. Besides (and per-
haps more importantly) for the large class of protocols with biased passive security

Yet Another Compiler for Active Security 813

we do not need Fcflip at all to compile them. Recall that, in the biased passive secu-
rity model, we still assume that all parties follow the protocol execution honestly,
but corrupted parties have the additional power of choosing their random tapes
in a non-adaptive, but arbitrary manner. Adversaries who behave honestly, but
tamper with their random tapes have been previously considered in [1,24].

If our compiler starts with a protocol Πf ′ that is secure against biased passive
adversaries, then we can avoid the use of a coin-flipping functionality, since any
random tape is secure to use. We can modify our compiler in a straightforward
fashion. Rather than executing one coin-flip for every Pi to agree on a random
tape, we simply let one party from each Pi broadcast an arbitrarily chosen ran-
dom tape to the other members of Pi. Now, since we do not need Fcflip, and we
do not need to implement VSS for this purpose.

Guaranteed Output Delivery. At the cost of reducing the threshold t of active
corruptions that our transform can tolerate, we can obtain guaranteed output
delivery. For this we need to ensure that an adversary cannot abort in neither the
first phase, nor the second phase of our protocol. In the first phase, when each real
party broadcasts its input shares to the virtual parties, we can ensure termination
by simply letting every Pi to be simulated by 3t + 1 real parties. In this case
each Pi contains less than 1/3 corruptions and unconditionally secure broadcast
(with termination) exists among the members of Pi. Using this approach, the
adversary can learn t (3t + 1) views and thus the underlying protocol needs to
have passive

(
3t2 + t

)
-security.

Another approach that gives slightly better parameters is to only assume
an honest majority in each Pi and use detectable broadcast. In this case
the underlying protocol needs to be passively

(
2t2 + t

)
-secure and thus, since

n ≥ (
2t2 + t

)
+ 1, unconditionally secure broadcast with termination exists

among all parties. If a real party simulating a virtual party aborts during a
detectable broadcast (to members of Pi), it will broadcast (with guaranteed ter-
mination) this abort to all parties. At this point an honest sender, who initiated
the broadcast, can broadcast its share for that virtual party among all parties
in the protocol. Intuitively, since the broadcast failed, there is at least one cor-
rupted party in the virtual party and thus the adversary already learned the
sender’s input share, so we do not need to keep it secret any more. If the sender
is corrupt and does not broadcast its share after an abort, then all parties replace
the sender’s input by some default value.

In the second phase of our protocol, real parties simulating virtual parties
are currently aborting as soon as they receive inconsistent messages, as they
cannot distinguish a correct message from a malformed one. If we ensure that
every virtual party is simulated by an honest majority, then, whenever a real
party receives a set of messages representing a message from a virtual party, it
makes a majority decision. That is, it considers the most frequent message as
the correct one and continues the protocol based on this message. Let Π̃f denote
the modified protocol as described above. We then have the following corollary
whose proof is a trivial modification of the proof of Theorem 1.

814 I. Damg̊ard et al.

Corollary 1. Let n ≥ 3. Suppose Πf ′ implements Ff ′ with passive
(
2t2 + t

)
-

security. Then Π̃f as described above implements Ffullactive
f with active

t-security in the (Fbcast, Fcflip)-hybrid model.

3.1 Tolerating More Corruptions Assuming Static Adversaries

In this section we sketch a technique that allows to improve the number of
corruptions tolerated by our compiler if we restrict the adversary to only perform
static corruptions, i.e., if the adversary must choose the corrupted parties before
the protocol starts, and we assume a sufficiently large number of parties.

In contrast to our compiler from Theorem 1, instead of choosing which real
parties will emulate which virtual party in a deterministic way, we will now
map real parties to virtual parties in a probabilistic fashion. Intuitively, since
the adversary has to choose who to corrupt before the assignment and since
the assignment is done in a random way, this can lead to better bounds when
transforming protocols with a large number of parties.

Our new transform works as follows: At the start of the protocol, the parties
invoke Fcflip and use the obtained randomness to select uniformly at random a set
of real parties to emulate each virtual party. Then we execute the transformed
protocol Πf exactly as we specified above.

Let us define a virtual party in our transform to be controlled by the adversary
if it is only emulated by corrupt real parties, and let us define a virtual party to
be observed by the adversary if it is emulated by at least one corrupt real party.
In the proof of Theorem 1, we need to ensure two conditions for our trans-
form to be secure. (1) No virtual party can be controlled by the adversary and,
(2) the number of virtual parties observed by the adversary must be smaller than
the privacy threshold of the passively secure protocol Πf ′ .

We now show that we can set the parameters of the protocol in a way that
these two properties are satisfied (except with negligible probability) and in a
way that produces better corruption bounds than our original transform.

In the analysis we assume that n = Θ(λ), where n is, as before, the number
of virtual and real parties, while λ is the statistical security parameter. We also
assume that the security threshold of the underlying passively secure protocol
Πf ′ is cn for some constant c. Finally, let e be the number of real parties that
emulate each virtual party, and let e = u log n for a constant u. The number
of corrupt real parties that can be tolerated by our transform is then at most
d · n/ log n for some constant d. We choose the constants d and u such that
c < 1 − du.

To show (1), it is easy to see that (by a union bound) the probability that
at least one virtual party is fully controlled by the adversary (i.e., it is emulated
only by corrupt real parties) is at most:

n

(
dn

n log n

)e

= n

(
d

log n

)e

Since we set e = u log n, this probability is negligible.

Yet Another Compiler for Active Security 815

As for (2), the probability that a virtual party is not observed by the adver-
sary (i.e., it is emulated only by honest parties) is (1 − d/ log n)e, so that the
expected number of such parties is n(1 − d/ log n)e which for large n (and hence
small values of d/ log n) converges to

n(1 − de/ log n) = n(1 − du).

As we choose d and u such that c < 1 − du, it then follows immediately from a
Chernoff bound that the number of virtual parties with only honest emulators
is at least cn with overwhelming probability. Let Π̄f denote the protocol using
this probabilistic emulation strategy. We then have:

Corollary 2. Let n = Θ(λ). Suppose Πf ′ realizes the n-party functionality Ff ′

with passive and static cn-security for a constant c. Then Π̄f realizes Ff with
active and static d · n/ log n-security in the (Fbcast,Fcflip)-hybrid model, for a
constant d.

Moreover, compared to the protocol obtained using our adaptively secure
transform, Π̄f has asymptotically better multiplicative overhead of only
O((log n)2).

3.2 Achieving Constant Fraction Corruption Threshold

A different approach for improving the bound of corruptions that we can tolerate
is to combine our compiler with the results of Cohen et al. [7].

In [7], the authors show how to construct a multiparty protocol for any
number of parties from a protocol for a constant number k of parties and a
log-depth threshold formula of a certain form. The formula must contain no
constants and consist only of threshold gates with k inputs that output 1 if at
least j input bits are 1. The given k-party protocol should be secure against j−1
(active) corruptions. In [7], constructions are given for such formulae, and this
results in multiparty protocols tolerating essentially a fraction (j − 1)/(k − 1)
corruptions.

For instance, from a protocol for 5 parties tolerating 2 passive corruptions
(in the model without preprocessing), our result constructs a 5 party protocol
tolerating 1 active corruption. Applying the results from [7], we get a protocol for
any number n of parties tolerating n/4 − o(n) malicious corruptions. This pro-
tocol is maliciously secure with abort, but we can instead start from a protocol
for 7 parties tolerating 3 passive corruptions and use Corollary 1 to get a proto-
col for 7 parties, 1 active corruption and guaranteed output delivery. Applying
again the results from [7], we get a protocol for any number n of parties toler-
ating n/6 − o(n) malicious corruptions with guaranteed output delivery. These
results also imply that if we accept that the protocol construction is not explicit,
or we make a computational assumption, then we get threshold exactly n/4,
respectively n/6.

816 I. Damg̊ard et al.

4 Achieving Security with Complete Fairness

The security notion achieved by our previous results is active security with
abort, namely the adversary gets to see the output and then decides whether the
protocol should abort – assuming we want to tolerate the maximal number of
corruptions the construction can handle. However, security with abort is often
not very satisfactory: it is easy to imagine cases where the adversary may for
some reason “dislike” the result and hence prefers that it is not delivered.

However, there is a second version that is stronger than active security with
abort, yet weaker than full active security, which is called active security with
complete fairness [8]. Here the adversary may tell the functionality to abort or
ask for the output, but once the output is given, it will also be delivered to the
honest parties.

In this section we show how to get general MPC with complete fairness
from MPC with abort, with essentially the same efficiency. This will work if
we have honest majority and if the given MPC protocol has a compute-then-
open structure, a condition that is satisfied by a large class of protocols. The
skeptical reader may ask why such a result is interesting, since with honest
majority we can get full active security without abort anyway. Note, however,
that this is only possible if we assume that unconditionally secure broadcast with
termination is given as an ideal functionality. In contrast, we do not need this
assumption as our results above can produce compute-then-open protocols that
only need detectable broadcast (which can be implemented from scratch) and
our construction below that achieves complete fairness does not need broadcast
with termination either.

We define the following:

Definition 2. Πf is a compute-then-open protocol for computing function f if
it satisfies the following:

– It implements Ff with active t-security, where t < n/2.2

– One can identify a particular round in the protocol, called the output round,
that has properties as defined below. The rounds up to but not including the
output round are called the computation phase.

– The adversary’s view of the computation phase is independent of the honest
party’s input. More formally, we assume that the simulator always simulates
the protocol up to the output round without asking for the output.

– The total length of the messages sent in the output round depends only on
the number of players, the size of the output and (perhaps) on the security
parameter3. We use di,j to denote the message sent from party i to party j
in the output round.

2 We believe that our results also extend to the computational case, but since we are
in an honest majority setting, we only focus on statistical and perfect security.

3 In particular, it does not depend on the size of the evaluated function.

Yet Another Compiler for Active Security 817

– At the end of the computation phase, the adversary knows whether a given
set of messages sent by corrupt parties in the output round will cause an
abort. More formally, there is an efficiently computable Boolean function
fabort which takes as input the adversary’s view v of the computation phase
and messages d = {di,j | 1 ≤ i ≤ t, 1 ≤ j ≤ n}, where we assume without loss
of generality that the first t parties are corrupted. Now, when corrupt parties
have state v and send d in the output round, then if fabort(v,d) = 0 then all
honest players terminate the protocol normally, otherwise at least one aborts,
where both properties hold except with negligible probability.

– One can decide whether the protocol aborts based only on all messages sent
in the output round4. More formally, we assume the function fabort can also
take as input messages dall = {di,j | 1 ≤ i ≤ t, 1 ≤ j ≤ n}. Then, if parties
P1, ..., Pn send messages dall in the output round and fabort(dall) = 0, then all
honest players terminate the protocol, otherwise some player aborts (except
with negligible probability).

Note that the function fabort is assumed to be computable in two different
ways: from the set of all messages sent in the output round, or from adversary’s
view. The former is used by our compiled protocol, while the latter is only used
by the simulator of that protocol.

A typical example of a compute-then-open protocol can be obtained by apply-
ing our compiler from Sect. 3 to a secret-sharing based and passively secure pro-
tocol, such as BGW: In the compiled protocol, the adversary can only make it to
the output round by following the protocol. Therefore he knows what he should
send in the output round and that the honest players will abort if they don’t see
what they expect. From the set of all messages sent in the output round, one
can determine if an abort will occur by simple equality checks. More generally,
it is straightforward to see that if one applies the compiler to a compute-then-
open passively secure protocol, then the resulting protocol also has the same
structure.

We can now show the following:

Theorem 2. Assume we are given a compiler that constructs from the circuit
for a function f a compute-then-open protocol Πf that realizes Ff , with active
t-security. Then we can construct a new compiler that constructs a compute-
then-open protocol Π ′

f that realizes F fair
f with active t-security. The complexity

of Π ′
f is larger than that of Πf by an additive term that only depends on the

number of players, the size of the outputs and the security parameter.

Proof. Let Deal be a probabilistic algorithm that on input a string s produces
shares of s in a verifiable secret sharing scheme with perfect t-privacy and
non-interactive reconstruction, we write Deal(s) = (Deal1(s), . . . , Dealn(s))
where Deali(s) is the i′th share produced. For t < n/2 this is easily constructed,

4 This restriction is only for simplicity, our results extend to the more general case
where termination also depends on some state information that parties keep private,
as long as the size of this state only depends on the size of the output.

818 I. Damg̊ard et al.

e.g., by first doing Shamir sharing with threshold t and then appending to each
share unconditionally secure MACs that can be checked by the other parties.
Such a scheme will reconstruct the correct secret except with negligible prob-
ability (statistical correctness) and has the extra property that given a secret
s and an unqualified set of shares, we can efficiently compute a complete set
Deal(s) that is consistent with s and the shares we started from.

Now given function f , we construct the protocol Π ′
f from Πf as follows:

1. Run the computation phase of Πf (where we abort if Πf aborts) and let
dall = {di,j | 1 ≤ i ≤ t, 1 ≤ j ≤ n} denote the messages that parties would
send in the output round of Πf . Note that each party Pi can compute what
he would send at this point.

2. Let f ′ be the following function: it takes as input a set of strings dall =
{di,j | 1 ≤ i ≤ t, 1 ≤ j ≤ n}. It computes Deal(di,j) for 1 ≤ i, j ≤ n and
outputs to party Pl Deal(di,j)l. Finally, it outputs fabort(dall) to all parties.
Now we run Πf ′ , where parties input the di,j ’s they have just computed.

3. Each player uses detectable broadcast to send a bit indicating if he terminated
Πf ′ or aborted.

4. If any player sent abort, or if Πf ′ outputs 1, all honest players abort. Oth-
erwise parties reconstruct each di,j from Deal(di,j) (which we have from the
previous step): each party Pl sends Deal(di,j)l to Pj , for 1 ≤ i ≤ n (recall
that Pj is the receiver of di,j), and parties apply the reconstruction algorithm
of the VSS.

5. Finally parties complete protocol Πf , assuming dall = {di,j | 1 ≤ i ≤ t, 1 ≤
j ≤ n} were sent in the output round.

The claim on the complexity of Π ′
f is clear, since Πf is a compute-then-open

protocol and steps 2–4 only depend on the size of the messages in the output
round and not on the size of the total computation.

As for security, the idea is that just before the output phase of the original
protocol, instead of sending the di’s we use a secure computation Πf ′ to VSS
them instead and also to check if they would cause an abort or not. This new
computation may abort or tell everyone that the di’s are bad, but the adversary
already knew this by assumption since Πf is a compute-then-open protocol. So
by privacy of the VSS, nothing is revealed by doing this. On the other hand, if
there is no abort and we are told the di’s are good, the adversary can no longer
abort, as he cannot stop the reconstruction of the VSSs.

More formally, we construct a simulator T as follows:

1. First run the simulator S for Πf up to the output round. Then run the sim-
ulator S′ for Πf ′ where T also emulates the functionality Ff ′ . In particular,
T can observe the inputs S′ produced for f ′ on behalf of the corrupt parties,
that is, messages d = {di,j | 1 ≤ i ≤ t, 1 ≤ j ≤ n} where we assume without
loss of generality that the first t parties are corrupt.

Yet Another Compiler for Active Security 819

2. Note that T now has the adversary’s view v of the computation phase of Πf

(from S) and messages d , so T computes fabort(v,d). Since Πf is a compute-
then-open protocol, this bit equals the output from f ′, so we give this bit to
S′, who will now, for each honest player, say whether that player aborts or
gets the output.

3. T can now trivially simulate the round of detectable broadcasts, as it knows
what each honest player will send. If anyone broadcasts “abort”, or the output
from f ′ was 1, T sends “abort” to Ff and stops. Otherwise, T asks for the
output y from f which we pass to S, who will now produce a set of messages
dhonest to be sent by honest players in the output round. In response, we
tell S the corrupt parties sent d . By assumption we know that this will not
cause S to abort. So we now have a complete set of messages dall (including
messages from the honest parties) that is consistent with y.

4. Now T exploits t-privacy of the VSS: during the run of Πf ′ t shares of each
Deal(di,j) have been given to the adversary. T now completes each set of
shares to be consistent with di,j , and sends the resulting shares on behalf of
the honest parties in Π ′

f .
5. Finally, we let S complete its simulation of the execution of Πf after the

output round (if anything is left).

It is clear that T does not abort after it asks for the output. Further the output
of T working with f is statistically close to that of the real protocol. This follows
easily from the corresponding properties of S and S′ and statistical correctness
of the VSS. �

The construction in Theorem 2 is quite natural, and works for a more general
class of protocols than those produced by our main result, but we were unable
to find it in the literature.

It should also be noted that when applying the construction to protocols
produced by our main result, we can get a protocol that is much more efficient
than in the general case. This is because the computation done by the function f ′

becomes quite simple: we just need a few VSSs and some secure equality checks.

5 Efficient Three-Party Computation Over Rings

To illustrate the potential of our compiler from Sect. 3, we provide a protocol for
secure three-party computation over arbitrary rings Zm that is secure against
one active corruption, and has constant online communication overhead for any
value of m. That is, during the online phase, the communication overhead does
not depend on the security parameter.

The protocol uses the preprocessing/online circuit evaluation approach firstly
introduced by Beaver [2]. During the preprocessing phase, independently of the
inputs and the function to be computed, the parties jointly generate a suf-
ficient amount of additively secret shared multiplication triples of the form
c = a · b ∈ Zm. During the online phase, the parties then consume these triples
to evaluate an arithmetic circuit over their secret inputs.

820 I. Damg̊ard et al.

The online phase of Beaver’s protocol tolerates 2 passive corruptions and
thus we can directly apply Theorem 1 to obtain a protocol for the online phase
that is secure against one active corruption. What is left is the preprocessing
phase, i.e., how to generate the multiplicative triples. Our technical contribution
here is a novel protocol for this task. Note that this protocol does not use our
compiler. Instead it produces the triples to be used by the compiled online pro-
tocol. Furthermore, since Beaver’s online phase is deterministic, our protocol, as
opposed to the general compiler, does not require to use any coin flip protocol.

For the sake of concreteness, in this section we give an explicit description
of the entire protocol. In the preprocessing protocol we create replicated secret
shares of multiplication triples5. Afterwards we briefly describe the online phase
we obtain from applying our compiler to Beaver’s online phase. The communica-
tion of our preprocessing protocol is only O(log m + λ) many bits per generated
triple, meaning that the overhead for active security is a constant when m is
exponential in the (statistical) security parameter.

5.1 The Preprocessing Protocol

The goal of our preprocessing protocol is to generate secret shared multiplication
triples of the form c = a · b ∈ Zm, where m is an arbitrary ring modulus. Our
approach can be split into roughly three steps. First, we optimistically generate
a possibly incorrect multiplication triple over the integers. In the second step,
we optimistically generate another possibly incorrect multiplication triple in Zp,
where p is some sufficiently large prime. We interpret our integer multiplication
triple from step one as a triple in Zp and “sacrifice” our second triple from Zp to
check its validity. In the third step we exploit the fact that the modulo operation
and the product operation are interchangeable. That is, each party reduces its
integer share modulo m to obtain a share of a multiplication triple in Zm.

The main idea in step one is, that we can securely secret share a value a ∈ Zm

over the integers by using shares that are log m + λ bits large. The extra λ bits
in the share size ensure that for any two values in Zm the resulting distributions
of shares are statistically close.

We now proceed with a more formal description of the different parts of
the protocol. We start by introducing some useful notation for replicated secret
sharing:

Replicated Secret Sharing – Notation and Invariant: We write [a]Z =
(a1, a2, a3) for a replicated integer secret sharing of a and [a]p = (a1, a2, a3) for
a replicated secret sharing modulo p. In both cases it holds that a = a1 +a2 +a3

(where the additions are over the integer in the first case and modulo p in the
latter). As an invariant for both kinds of secret sharing, each party Pi will know
the shares ai+1 and ai−1.

5 Note that for the three-party case an additively secret shared value among virtual
parties, corresponds to a replicated additively secret shared value among the real
parties.

Yet Another Compiler for Active Security 821

Replicated Secret Sharing – Input: When a party Pi wants to share a value
a ∈ Zp, Pi picks uniformly random a1, a2 ← Zp and defines a3 = a − a1 − a2

mod p. Then Pi sends shares aj−1 and aj+1 to Pj . Finally Pi+1 and Pi−1 echo
ai to each other and abort if the value they received in this echo phase differs
from what they received from Pi. When using integer secret sharing instead, the
shares need to be large enough to statistically hide the secret. That is, when a
party Pi wants to share a value a ∈ {0, . . . , m − 1}, Pi picks uniformly random
a1, a2 ← {0, . . . , 2�log m�+λ − 1} and defines a3 = a − a1 − a2. Then Pi sends
shares aj−1 and aj+1 to Pj . Now, Pj checks if |aj±1| ≤ 2�log m�+λ+1 and aborts
otherwise.6 Finally Pi+1 and Pi−1 echo ai to each other and abort if the value
they received in this echo phase differs from what they received from Pi.

Replicated Secret Sharing – Reveal: When parties want to open a share
[a], Pi sends its shares ai+1 and ai−1 to Pi+1 and Pi−1 respectively. When Pi

receives share ai from Pi+1 and share a′
i from Pi−1, Pi aborts if ai
= a′

i or
outputs a = a1 + a2 + a3 otherwise.7

Replicated Secret Sharing – Linear Combination: Since the secret sharing
we use here is linear, we can compute linear functions without interaction i.e.,
when executing [c] = [a]+ [b] each party will locally add its shares8. We consider
three kind of additions:

– [c]p = [a]p + [b]p, where all the shares are added modulo p;
– [c]Z = [a]Z + [b]Z, where the shares are added over the integers (note that the

magnitude of the shares will increase when using integer secret sharing);
– [c]p = [a]p + [b]Z, where the shares are added modulo p. Note that in the this

case, if a is uniform modulo p then c is uniform modulo p.9

Replicated Secret Sharing – Multiplication: Given two sharings [a]p, [b]p,
we can compute a secret sharing of the product [c = a · b] in the following way:

1. Pi samples a random si ← Zp and computes ui = ai+1bi+1 + ai+1bi−1 +
ai−1bi+1 + si;

2. Pi sends ui to Pi+1 and si to party Pi−1;
3. Finally, party Pi defines its own two shares of c as ci+1 = ui−1 − si and

ci−1 = ui − si+1;

When performing multiplications with integer secret sharings, we need to
ensure that the chosen randomness is large enough to hide the underlying secrets.

6 To keep the protocol symmetric, we use the bound for a3 for all three shares.
7 There is no need to explicitly check for the size of a share in the reconstruction phase

since, by the assumption that at least one among Pi+1 and Pi−1 is honest, one of
the received shares will be the correct one.

8 The implementation of [c] = [a] + k and [c] = k · [a] i.e., addition and multiplication
by constant, follows trivially.

9 We will use this property twice in the protocol: once, when mixing integer triples
and p-modular triples in the multiplication checking phase, and finally, to argue that
the resulting triples will be uniform modulo m.

822 I. Damg̊ard et al.

In particular, given two sharings [a]Z, [b]Z, such that all shares are bounded by
B, we can compute a secret sharing of the product [c = a · b]Z in the following
way:

1. Pi samples a random si ← {0, . . . , 22�log B�+λ+2 − 1} and computes ui =
ai+1bi+1 + ai+1bi−1 + ai−1bi+1 + si;

2. Pi sends ui to Pi+1 and si to party Pi−1;
3. Pi checks that the received shares are of the correct size i.e., |ui−1| ≤

22�log B�+λ+3 and |si+1| ≤ 22�log B�+λ+2

4. Finally, party Pi defines its own two shares of c as ci+1 = ui−1 − si and
ci−1 = ui − si+1;

Armed with these tools we are now ready to describe our preprocessing pro-
tocol. The protocol is similar in spirit to previous protocols (e.g., [12,13]) for
generating multiplication triples, and like in previous work we start by gen-
erating two possibly incorrect triples, and then “sacrificing” one to check the
correctness of the other. The main novelty of this protocol is that the two triples
actually live in different domains. One is a an integer secret sharing, while the
others is a modular secret sharing. For the sake of exposition we describe the
protocol to generate a single multiplicative triple but, as with previous work, it
will be more efficient to generate many triples in parallel.

The Preprocessing Protocol – Generate Random Triples:

1. Every Pi picks random ai, bi ← Zm and generates sharings of [ai]Z, [bi]Z;
2. All parties jointly compute [a]Z = [a1]Z + [a2]Z + [a3]Z and [b]Z = [b1]Z +

[b2]Z + [b3]Z;10

3. All parties jointly compute [c]Z = [a]Z · [b]Z (optimistically using the multi-
plication protocol described above);

4. Every Pi picks random xi, yi, ri ← Zp and generates sharings of
[xi]p, [yi]p, [ri]p;

5. All parties jointly compute [x]p = [x1]p + [x2]p + [x3]p and [y]p = [y1]p +
[y2]p + [y3]p and [r]p = [r1]p + [r2]p + [r3]p;

6. All parties jointly compute [z]p = [x]p · [y]p (optimistically using the multi-
plication protocol described above);

7. All parties open r;
8. All parties jointly compute [e]p = r[x]p + [a]Z;
9. All parties jointly compute [d]p = [y]p + [b]Z;

10. All parties jointly open e, d, then compute and open

[t]p = de − rd[x]p − e[y]p + r[z]p − [c]Z

and abort if the result is not 0;

10 Note that if now we convert the sharing of [a]Z to [a]m by having each party take
their shares and locally reduce modulo m, we get that, from the adversary’s point
of view, a is uniformly random in Zm, since at least one honest party choose ai as a
uniform value modulo m; the same argument applies symmetrically to [b]Z.

Yet Another Compiler for Active Security 823

11. If the protocol did not abort, all parties output (modular) sharings
[a]m, [b]m, [c]m by reducing their integer shares modulo m;

We now argue that:

Theorem 3. The above protocol securely realizes Ftriple with statistical security
parameter λ in the presence of one active corruption when |p| = O(log m + λ).

Proof. We only give an informal argument for the security of the protocol, since
its proof is quite similar to the proof of many previous protocols in the literature
(such as [4,12,13], etc.).

We first argue for correctness of the protocol, focusing on steps 1,2 and 9:
Note that, if there is an output, the output is correct and uniform modulo m.
It is correct since, if c = ab over the integer then c = ab mod m as well. And
the values a, b, c are distributed uniformly since there is at least one honest
party (in fact, two), who will pick ai uniformly at random in Zm, therefore
a = a1 + a2 + a3 mod m will be uniform over Zm as well (the same applies of
course also to b and c).

We now describe the simulator strategy for the individual subroutines, and
then we build the overall simulator for the protocol in a bottom-up fashion. To
keep the notation simpler we assume that P1 is corrupt. This is w.l.o.g. due to
the symmetry of the protocol. To account for rushing adversaries, we always
let the adversary send their message after seeing the message output by the
simulator on behalf of the honest parties. As usual, the simulator keeps track
of the shares that all parties (honest and corrupt) are supposed to hold at all
times.

Simulator – Honest Parties Inputs: To simulate an honest party inputting
a value a the simulator follows the share procedure but replacing a with 0. The
simulator then sends a2, a3 to the adversary P1 and stores a1, a2, a3. Now the
simulator receives a′

2 (or a′
3 depending on whether we are simulating a P2 input

or a P3 input) back from the adversary and aborts if a′
2
= a2 (as an honest party

would do).
When performing sharings modulo p, the distribution of the simulated a2, a3

are identical as in the real protocol (trivially for a2, and since a1 is random
and unknown to the adversary, a3 will be uniformly distributed in both cases).
When performing integer sharings, the distribution of the simulated a2 is trivially
identical in the real and simulated execution while a3 is statistically close. This
can be easily seen considering the distribution of a3 + a2 which is a − a1 in the
real protocol and −a1 in the simulated execution. Since a < m and a1 is uniform
between 0 and m · 2λ the distributions are statistically close with parameter λ.

Simulator – Corrupt Party Input: When simulating the input of the corrupt
party P1 the simulator receives (a1, a3) (on behalf of P2) and (a′

1, a2) on behalf
of P3. The simulator aborts if a1
= a′

1 (like the two honest party would do).
When simulating an input in Zp the simulator reconstructs a =

∑
i ai mod p.

When simulating an integer input the simulator checks in addition that the
shares received are of the right size and then reconstructs a =

∑
i ai. Note that

824 I. Damg̊ard et al.

now |a| < 3 · 2�log m�+λ+1 which could be larger than m, but not larger than p
given our parameters.

Simulator – Multiplication: When simulating multiplications the simulator
picks random (u3, s2) (see below for the distribution) and sends them to P1.
Then the simulator receives (u1, s1) from P1. This uniquely defines the corrupt
party shares of c, namely c2 = u3 − s1 and c3 = u1 − s2. Note that the simulator
can already now compute the error δc = c−ab from the stored shares of a, b and
the received values u1, s1 i.e., δc = u1 − (a2b2 + a2b3 + a3b2 + s1). The simulator
sets the final share of c to be c1 = ab + δc − c2 − c3 and remembers (c1, c2, c3)
and δc.

When simulating multiplications in Zp the simulator picks (u3, s2) uniformly
at random, thus the view of the adversary is perfectly indistinguishable in the
real and simulated execution: this is trivial for s2, and for u3 we can see that
it will also be uniformly random as well since in the real protocol s3 is chosen
uniformly at random.

When simulating integer multiplications the simulator picks (u3, s2) uni-
formly at random in {0, . . . , 22�log B�+λ+2 − 1}, thus the view of the adversary
is statistically close in the real and simulated execution (trivially for s2, and
since in the protocol s3 is used to mask a value of magnitude at most 3B3, the
distributions are statistically close with parameter λ. Note that when simulating
integer multiplications the simulator will also abort if the received shares (u1, s1)
exceed their bounds. This means that at this point the value of |c| = |∑i ci| is
bounded by 24B22λ. As we know from the input phase that all shares are bound
by B = 2�log m�+λ+1 we get that by setting p to be e.g., larger than 100m222λ

we can ensure that even in the presence of a corrupt party the value of c will
not exceed p.

Simulator – Fake Reveal: At any point the simulator can open a sharing
(a1, a2, a3) to any value a + δ1 of its choice. To do so, the simulator sends two
identical shares (a1 + δ1) to P1 (simulating that both the honest P2 and P3 send
the same share to P1). Then, P1 sends its (possibly malicious) shares a2 + δ2
and a3 + δ3 to the simulator. Now the simulator aborts if δ2
= 0 or if δ3
= 0.
Note the aborting condition is exactly the same as in the real protocol, where
e.g., the honest P2 receives a2 from P1 and a′

2 from P3 and aborts if the two
values are different. Finally note that the view of the adversary is exactly the
same in the real and simulated execution.

Putting Things Together – Overall Simulator Strategy: We are now
ready to describe the overall simulation strategy. Note that all the settings in
which the simulator aborts in the previous subroutines are identical to the abort
conditions of the honest parties in the protocol and moreover are “predictable”
by the adversary (i.e., the adversary knows that sending a certain message will
make the protocol abort). The labels of the steps of the simulator refer to the
respective steps in the protocol.

0. As already described, the simulator keeps track of the shares that all parties
(honest and corrupt) are supposed to hold at all times.

Yet Another Compiler for Active Security 825

1a. (Send on behalf of P2 and P3) The simulator simulates P2 and P3 sharing
values a2, a3, b2, b3 as described above (e.g., the input are set to be 0);

1b. (Receive from P1) The simulator receives the (maliciously chosen) shares
of a1 using the procedure described above. In particular, now a1 is well
defined and bounded.

2. The simulator keeps track of the shares of a and b that all parties are
supposed to store after the addition; (note that since the shares of the
honest parties are simulated to 0 we have a = a1 and b = b1 at this point);

3. The simulator uses the simulation strategy for the multiplication protocol
as explained above. If the simulation does not abort the value of c and δc

are now well defined and bounded.
4. The simulator runs the sharing subroutine for x2, y2, r2, x3, y3, r3 (e.g., all

values are set to 0).
5. The simulator keeps track of the shares of x, y and r that all parties are

supposed to store after the addition; (at this point x, y and r are well
defined);

6. The simulator uses the simulation strategy for the multiplication protocol
as explained above. If the simulation does not abort the value of z and δz

are now well defined.
7. The simulator now runs the fake reveal subroutine and opens r to a uni-

formly random value;
8–9. The simulator keeps track of the shares of e, d that all parties are supposed

to store after the executions of the linear combination;
10a. The simulator runs the fake reveal subroutine and opens e, d to two uni-

formly random values;
10b. If the simulation did not abort so far the simulator runs the fake reveal

subroutine and opens t to rδz − δc mod p. The simulator aborts if t
= 0
as an honest party do, but also aborts if δc
= 0 or δz
= 0.

11. If the simulator did not abort yet, then the simulator inputs the shares of
the multiplicative triple owned by the adversary (a2, a3, b2, b3, c2, c3) to the
ideal functionality Ftriple.

We have already argued for indistinguishability for the various subroutines
(thanks to the large masks used in the integer secret sharings). Note that when
we combine them in the overall simulator we add an extra aborting condition
between a real world execution of the protocol and a simulated execution, namely
that the simulation always aborts when the triple is incorrect (during the triple
check phase). We conclude that the view of the adversary in these two cases
are statistically close in λ thanks to the correctness check at steps 4–10: assume
that the multiplication triples are correct i.e., that z = xy mod p and c = ab
over the integers. Now, if we make sure that p is large enough such that the
shares of a,b, and c are the same over the integers and modulo p, then the
resulting t will always be 0. Note that this is guaranteed by the check, during
the sharing phase, of the magnitude of the shares chosen by the other parties.
Finally, assume that c
= ab e.g., c = ab + δc (with δc
= 0) and z = xy + δz.

826 I. Damg̊ard et al.

Now the result of the check will be t = rδz − δc mod p: Since the value
r is picked by the simulator after the values δc, δz have already been defined,
we finally have that t is equal to 0 with probability p−1 which is negligible as
desired.

5.2 Online Phase

Here we briefly sketch the online phase of our protocol i.e., the protocol resulting
by applying our compiler to Beaver’s passively protocol, which is secure against
1 active corruption. In what follows we describe the protocol explicitly i.e., we
describe directly the steps to be performed by the real parties and with no access
to helping ideal functionalities: since the online phase of Beaver’s protocol is
completely deterministic, we do not need the coin flip functionality and, since
we only have 3 parties, the broadcast functionality is easily implemented: when
Pi broadcasts to a set {Pi,Pj}, this is implemented by sending a message to
Pj and, when Pi broadcasts to a set {Pj ,Pk}, this is implemented by sending
the same message to both parties, who then echo it to each other and abort
if the two received messages are different. Finally, note that an additive secret
sharing a = a1 + a2 + a3 mod m among the virtual parties P1,P2,P3 (i.e., where
Pi knows ai) is exactly the same as a replicated secret sharing [a]m (as described
above) between the real parties P1,P2,P3, and therefore we can continue using
the notation introduced for the preprocessing phase.

Online Phase – Setup and Invariant: Let C be the arithmetic circuit that
the real parties wish to evaluate, where every input wire is associated to some
party Pi. As before, for a value x ∈ Zm we write [x]m to denote the situation
where Pi knows two shares xi+1, xi−1 such that

∑
i xi = x.

Online Phase – Input Gates: Remember that in our general compiler the
secret sharing happened “outside” of the passive MPC protocol and then we
modified the circuit to be evaluated by adding a layer of linear operations to
reconstruct the secret sharings of the inputs. This is not necessary in the special
case of Beaver’s protocol, since after a single sharing we already have the inputs
in the desired, replicated secret shared format. Therefore, for every input wire in
C associated to Pi with input x ∈ Zm, we let Pi pick random shares (x1, x2, x3) ∈
Z
3
m s.t.,

∑
i xi = x, and sends xi to Pi−1 and Pi+1. Finally Pi−1 and Pi+1 echo

xi to each other and abort if the value they received in this echo phase differs
from what they received from Pi.

Online Phase – Output Gates/Open Subroutine: Whenever the parties
need to be able to reveal the content of a shared value [z]m, we let Pi sends its
shares zi+1 and zi−1 to Pi+1 and Pi−1 respectively. When Pi receives share zi

from Pi+1 and share z′
i from Pi−1, Pi aborts if zi
= z′

i or outputs z = z1+z2+z3
otherwise. During the circuit evaluation we open wires to output the result of
the computation and as a subroutine during the evaluation of multiplication
gates.

Yet Another Compiler for Active Security 827

Online Phase – Linear Gates: Linear gates (binary additions, unary additions
by constant and multiplication by constant) can be locally implemented by share
manipulations in the same way as for the preprocessing phase.

Online Phase – Multiplication Gates: Binary multiplication of two shared
values [x]m, [y]m is performed by finding an unused preprocessed multiplication
triple [a]m, [b]m, [c]m and then running Beaver’s protocol, i.e.:

1. Open e = [a]m + [x]m
2. Open d = [b]m + [y]m
3. Locally compute [z]m = [c]m + e · [y]m + d · [x]m − ed

Acknowledgements. We thank the anonymous reviewers for their useful feedback.
This project has received funding from: the European Research Council (ERC) under
the European Unions’s Horizon 2020 research and innovation programme (grant
agreement No 669255); the Danish Independent Research Council under Grant-ID
DFF-6108-00169 (FoCC); the European Union’s Horizon 2020 research and innova-
tion programme under grant agreement No 731583 (SODA).

References

1. Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs, D.:
Multiparty computation with low communication, computation and interaction
via threshold FHE. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 483–501. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-29011-4 29

2. Beaver, D.: Efficient multiparty protocols using circuit randomization. In:
Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432. Springer,
Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1 34

3. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In: Pro-
ceedings of the 20th Annual ACM Symposium on Theory of Computing, 2–4 May
1988, Chicago, Illinois, USA, pp. 1–10 (1988)

4. Bendlin, R., Damg̊ard, I., Orlandi, C., Zakarias, S.: Semi-homomorphic encryption
and multiparty computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS,
vol. 6632, pp. 169–188. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-20465-4 11

5. Bogdanov, D., Laur, S., Willemson, J.: Sharemind: a framework for fast privacy-
preserving computations. In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS,
vol. 5283, pp. 192–206. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-88313-5 13

6. Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure protocols
(extended abstract). In: 20th ACM STOC, pp. 11–19. ACM Press, May 1988

7. Cohen, G., et al.: Efficient multiparty protocols via log-depth threshold formulae.
Electronic Colloquium on Computational Complexity (ECCC), 20:107 (2013)

8. Cohen, R., Lindell, Y.: Fairness versus guaranteed output delivery in secure mul-
tiparty computation. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part II.
LNCS, vol. 8874, pp. 466–485. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-662-45608-8 25

https://doi.org/10.1007/978-3-642-29011-4_29
https://doi.org/10.1007/978-3-642-29011-4_29
https://doi.org/10.1007/3-540-46766-1_34
https://doi.org/10.1007/978-3-642-20465-4_11
https://doi.org/10.1007/978-3-642-20465-4_11
https://doi.org/10.1007/978-3-540-88313-5_13
https://doi.org/10.1007/978-3-540-88313-5_13
https://doi.org/10.1007/978-3-662-45608-8_25
https://doi.org/10.1007/978-3-662-45608-8_25

828 I. Damg̊ard et al.

9. Cramer, R., Damg̊ard, I., Nielsen, J.B.: Secure Multiparty Computation and Secret
Sharing. Cambridge University Press, New York (2015)

10. Cramer, R., Damgrd, I., Escudero, D., Scholl, P., Xing, C.: SPDZ2k: efficient MPC
mod 2k for dishonest majority. CRYPTO (2018). https://eprint.iacr.org/2018/482

11. Damg̊ard, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical
covertly secure MPC for dishonest majority – or: breaking the SPDZ limits. In:
Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp.
1–18. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40203-6 1

12. Damg̊ard, I., Orlandi, C.: Multiparty computation for dishonest majority: from
passive to active security at low cost. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 558–576. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-14623-7 30

13. Damg̊ard, I., Pastro, V., Smart, N.P., Zakarias, S.: Multiparty computation
from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 38

14. Desmedt, Y., Kurosawa, K.: How to break a practical MIX and design a new one.
In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 557–572. Springer,
Heidelberg (2000). https://doi.org/10.1007/3-540-45539-6 39

15. Fitzi, M., Gisin, N., Maurer, U.M., von Rotz, O.: Unconditional Byzantine
agreement and multi-party computation secure against dishonest minorities from
scratch. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 482–
501. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7 32

16. Fitzi, M., Gottesman, D., Hirt, M., Holenstein, T., Smith, A.: Detectable Byzan-
tine agreement secure against faulty majorities. In: Ricciardi, A. (ed.) 21st ACM
PODC, pp. 118–126. ACM, July 2002

17. Furukawa, J., Lindell, Y., Nof, A., Weinstein, O.: High-throughput secure three-
party computation for malicious adversaries and an honest majority. In: Coron,
J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part II. LNCS, vol. 10211, pp. 225–
255. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56614-6 8

18. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: Aho, A. (ed.) 19th ACM
STOC, pp. 218–229. ACM Press, May 1987

19. Ishai, Y., Kushilevitz, E., Meldgaard, S., Orlandi, C., Paskin-Cherniavsky, A.: On
the power of correlated randomness in secure computation. In: Sahai, A. (ed.) TCC
2013. LNCS, vol. 7785, pp. 600–620. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-36594-2 34

20. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer
– efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5 32

21. Lindell, Y., Oxman, E., Pinkas, B.: The IPS compiler: optimizations, variants and
concrete efficiency. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp.
259–276. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-
9 15

22. Maurer, U.M.: Secure multi-party computation made simple. In: Cimato, S.,
Persiano, G., Galdi, C. (eds.) SCN 2002. LNCS, vol. 2576, pp. 14–28. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-36413-7 2

23. Mohassel, P., Rosulek, M., Zhang, Y.: Fast and secure three-party computation: the
garbled circuit approach. In: Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security, Denver, CO, USA, 12–16 October 2015,
pp. 591–602 (2015)

https://eprint.iacr.org/2018/482
https://doi.org/10.1007/978-3-642-40203-6_1
https://doi.org/10.1007/978-3-642-14623-7_30
https://doi.org/10.1007/978-3-642-14623-7_30
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/3-540-45539-6_39
https://doi.org/10.1007/3-540-46035-7_32
https://doi.org/10.1007/978-3-319-56614-6_8
https://doi.org/10.1007/978-3-642-36594-2_34
https://doi.org/10.1007/978-3-642-36594-2_34
https://doi.org/10.1007/978-3-540-85174-5_32
https://doi.org/10.1007/978-3-642-22792-9_15
https://doi.org/10.1007/978-3-642-22792-9_15
https://doi.org/10.1007/3-540-36413-7_2

Yet Another Compiler for Active Security 829

24. Mukherjee, P., Wichs, D.: Two round multiparty computation via multi-key FHE.
In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol.
9666, pp. 735–763. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-49896-5 26

25. Pease, M., Shostak, R., Lamport, L.: Reaching agreement in the presence of faults.
J. ACM (JACM) 27(2), 228–234 (1980)

26. Yao, A.C.-C.: How to generate and exchange secrets (extended abstract). In: 27th
FOCS, pp. 162–167. IEEE Computer Society Press, October 1986

https://doi.org/10.1007/978-3-662-49896-5_26
https://doi.org/10.1007/978-3-662-49896-5_26

Author Index

Abdalla, Michel I-597
Aggarwal, Divesh III-459
Agrawal, Shashank III-643
Ananth, Prabhanjan II-395, III-427
Aoki, Kazumaro II-129
Aono, Yoshinori II-608
Arribas, Victor I-121
Asharov, Gilad I-407, III-753
Attrapadung, Nuttapong II-543

Badrinarayanan, Saikrishna II-459
Ball, Marshall I-789
Barbosa, Manuel I-187
Bar-On, Achiya II-185
Bauer, Balthazar II-272
Baum, Carsten II-669
Benhamouda, Fabrice I-531
Ben-Zvi, Adi I-255
Berman, Itay III-674
Bilgin, Begül I-121
Bishop, Allison III-731
Boneh, Dan I-565, I-757
Bonneau, Joseph I-757
Bootle, Jonathan II-669
Bourse, Florian III-483
Boyle, Elette III-243, III-302
Brakerski, Zvika III-67
Bünz, Benedikt I-757

Cascudo, Ignacio III-395
Catalano, Dario I-597
Cerulli, Andrea II-669
Chen, Long III-96
Chen, Yilei II-577
Cheon, Jung Hee III-184
Chida, Koji III-34
Choudhuri, Arka Rai II-395
Cogliati, Benoît I-722
Cohen, Ran III-243
Coretti, Sandro I-693
Cramer, Ronald II-769, III-395

Damgård, Ivan II-769, II-799
Data, Deepesh III-243

Datta, Nilanjan I-631
De Meyer, Lauren I-121
Degwekar, Akshay I-531, III-674
del Pino, Rafael II-669
Demertzis, Ioannis I-371
Dinur, Itai III-213
Dobraunig, Christoph I-662
Dodis, Yevgeniy I-155, I-693, I-722
Dong, Xiaoyang II-160
Dunkelman, Orr II-185
Dutta, Avijit I-631

Eichlseder, Maria I-662
Ephraim, Naomi III-753
Escudero, Daniel II-769
Esser, Andre II-638

Farshim, Pooya I-187, II-272
Fiore, Dario I-597
Fisch, Ben I-757
Frederiksen, Tore Kasper II-331
Fu, Ximing II-160
Fuchsbauer, Georg II-33

Ganesh, Chaya III-643
Garg, Sanjam II-362, III-273, III-335,

III-515, III-545
Gay, Romain I-597
Genkin, Daniel III-34
Gennaro, Rosario I-565
Gjøsteen, Kristian II-95
Goel, Aarushi II-395
Goldfeder, Steven I-565
Goyal, Rishab I-467
Goyal, Vipul I-501, II-459
Grassi, Lorenzo I-662
Groth, Jens II-669, III-698
Grubbs, Paul I-155
Guo, Siyao I-693

Hajiabadi, Mohammad II-362, III-335
Halevi, Shai I-93, II-488
Hamada, Koki III-34

Hao, Yonglin I-275
Hazay, Carmit II-488, III-3
Hesse, Julia II-65
Heuer, Felix II-638
Hhan, Minki III-184
Hoang, Viet Tung I-221
Hofheinz, Dennis II-65
Hubáček, Pavel III-243

Ikarashi, Dai III-34
Ishai, Yuval I-531, III-302, III-427
Isobe, Takanori I-275, II-129

Jaeger, Joseph I-33
Jager, Tibor II-95
Jain, Aayush I-565
Jain, Abhishek II-395, II-459
Ji, Zhengfeng III-126
Jiang, Haodong III-96
Joux, Antoine III-459

Kalai, Yael Tauman II-459
Kalka, Arkadius I-255
Kamara, Seny I-339
Katz, Jonathan I-722, III-365
Keller, Nathan II-185, III-213
Khurana, Dakshita II-459
Kiayias, Aggelos III-577
Kikuchi, Ryo III-34
Kiltz, Eike II-33
Kim, Jiseung III-184
Kim, Sam I-565, II-733
Klein, Ohad III-213
Kohl, Lisa II-65
Kohlweiss, Markulf III-698
Komargodski, Ilan II-303, III-753
Koppula, Venkata I-467
Kowalczyk, Lucas I-437, III-731
Kübler, Robert II-638
Kumar, Ashutosh I-501

Lallemand, Virginie I-662
Larsen, Kasper Green II-523
Leander, Gregor I-662
Lee, Changmin III-184
Lee, Jooyoung I-722
Leurent, Gaëtan I-306
Li, Chaoyun I-275
Libert, Benoît II-700
Lindell, Yehuda II-331, III-34

Ling, San II-700
List, Eik I-662
Liu, Feng-Hao III-577
Liu, Yi-Kai III-126
Loss, Julian II-33
Lyubashevsky, Vadim II-669

Ma, Zhi III-96
Mahmoody, Mohammad III-335, III-545
Malkin, Tal I-437, III-731
Maller, Mary III-698
Masny, Daniel III-545
Matsuda, Takahiro II-543
May, Alexander II-638
Mazaheri, Sogol II-272
Meckler, Izaak III-545
Meier, Willi I-275, II-129, II-160
Meiklejohn, Sarah III-698
Mendel, Florian I-662
Miao, Peihan III-273
Miers, Ian III-698
Minelli, Michele III-483
Minihold, Matthias III-483
Moataz, Tarik I-339
Mohammed, Ameer III-335
Mohassel, Payman III-643

Nandi, Mridul I-306, I-631, II-213
Nguyen, Khoa II-700
Nguyen, Phong Q. II-608
Nielsen, Jesper Buus II-523
Nikov, Ventzislav I-121
Nikova, Svetla I-121
Nishimaki, Ryo II-543
Nof, Ariel III-34

Ohrimenko, Olya I-339
Orlandi, Claudio II-799
Orsini, Emmanuela III-3
Osheter, Valery II-331
Ostrovsky, Rafail III-515, III-608

Paillier, Pascal III-483
Papadopoulos, Dimitrios I-371
Papamanthou, Charalampos I-371
Pass, Rafael III-753
Pastro, Valerio III-731
Patra, Arpita II-425
Pellet-Mary, Alice III-153
Persiano, Giuseppe III-608

832 Author Index

Pinkas, Benny II-331
Poettering, Bertram I-3
Polychroniadou, Antigoni II-488, III-302
Prakash, Anupam III-459

Rabin, Tal I-531
Ranellucci, Samuel III-365
Rasmussen, Peter M. R. I-565
Ravi, Divya II-425
Raykova, Mariana III-731
Rechberger, Christian I-662
Reparaz, Oscar I-121
Ristenpart, Thomas I-155
Rogaway, Phillip II-3
Ronen, Eyal II-185
Rosen, Alon I-789
Rösler, Paul I-3
Rosulek, Mike III-365
Rotem, Lior I-63
Rothblum, Ron D. III-674
Russell, Alexander II-241
Russell, Andrew I-467

Sabin, Manuel I-789
Sahai, Amit I-565, II-459, III-427
Santha, Miklos III-459
Scholl, Peter II-769, III-3
Segev, Gil I-63, I-407
Seito, Takenobu II-608
Shahaf, Ido I-407
Shamir, Adi II-185
Shi, Kevin III-731
Shikata, Junji II-608
Shoup, Victor I-93
Sibleyras, Ferdinand I-306
Simkin, Mark II-799
Smart, Nigel I-121
Sohler, Christian II-638
Song, Fang III-126
Soria-Vazquez, Eduardo III-3
Srinivasan, Akshayaram III-273, III-515
Steinberger, John I-722
Stepanovs, Igors I-33

Tang, Qiang II-241
Tessaro, Stefano I-221
Thiruvengadam, Aishwarya I-722
Todo, Yosuke I-275, II-129
Trieu, Ni I-221
Tsaban, Boaz I-255
Tselekounis, Yiannis III-577

Ullman, Jonathan I-437
Ursu, Bogdan I-597

Vaikuntanathan, Vinod II-577
Vasudevan, Prashant Nalini I-789, III-674
Venkitasubramaniam, Muthuramakrishnan

II-488
Venturi, Daniele III-608
Visconti, Ivan III-608

Wang, Hong III-96
Wang, Huaxiong II-700
Wang, Qingju I-275
Wang, Xiao III-365
Wang, Xiaoyun II-160
Waters, Brent I-467
Wee, Hoeteck II-577
Wichs, Daniel I-437
Woodage, Joanne I-155
Wu, David J. II-733

Xing, Chaoping II-769, III-395

Yamada, Shota II-543
Yamakawa, Takashi II-543
Yasuda, Kan I-631
Yogev, Eylon II-303
Yuan, Chen III-395
Yung, Moti II-241

Zhang, Bin II-129
Zhang, Yusi II-3
Zhang, Zhe I-722
Zhang, Zhenfeng III-96
Zhou, Hong-Sheng II-241

Author Index 833

	Preface
	Crypto 2018 The 38th IACR International Cryptology Conference
	Contents – Part II
	Proof Tools
	Simplifying Game-Based Definitions
	1 Introduction
	2 Indistinguishability up to Correctness
	3 Public-Key Encryption
	4 Stateful AE
	5 Variants
	6 Conclusions
	References
	A Proofs
	A.1 Proof of Theorem 1
	A.2 Proof of Theorem 2
	A.3 Proof of Theorem 3
	A.4 Proof of Theorem 4
	A.5 Proof of Theorem 5

	The Algebraic Group Model and its Applications
	1 Introduction
	1.1 Algebraic Algorithms
	1.2 Algebraic Group Model
	1.3 Related Work and Open Questions

	2 Algebraic Algorithms
	2.1 Algebraic Security Games and Algorithms
	2.2 Generic Security Games and Algorithms
	2.3 Generic Reductions Between Algebraic Security Games

	3 The Diffie-Hellman Assumption and Variants
	3.1 Computational Diffie-Hellman
	3.2 Strong Diffie-Hellman

	4 The LRSW Assumption
	5 ElGamal Encryption
	6 Tight Reduction for the BLS Scheme
	7 Groth's Near-Optimal zk-SNARK
	References

	Key Exchange
	On Tightly Secure Non-Interactive Key Exchange
	1 Introduction
	1.1 Technical Overview

	2 Preliminaries
	2.1 Hash Proof Systems
	2.2 Non-Interactive Key Exchange (NIKE)
	2.3 Public Key Encryption
	2.4 Non-Interactive Zero Knowledge Proof of Knowledge

	3 Our Construction
	4 Security Against Dishonest Key Generation
	5 Optimality of Our Construction
	5.1 A Weaker Validity Check
	5.2 A Lower Bound on Tightness
	5.3 Weak Checkable Uniqueness of Our NIKE

	References

	Practical and Tightly-Secure Digital Signatures and Authenticated Key Exchange
	1 Introduction
	1.1 Tightly-Secure Digital Signatures
	1.2 Tightly-Secure Authenticated Key Exchange

	2 Background
	3 Signatures with Tight Multi-User Security
	3.1 Security Definition
	3.2 Construction
	3.3 Proof of Theorem 4

	4 Key Exchange
	4.1 Security Model
	4.2 Construction

	5 Efficiency Analysis
	References

	Symmetric Cryptoanalysis
	Fast Correlation Attack Revisited
	1 Introduction
	2 Preliminaries
	2.1 LFSR-Based Stream Ciphers
	2.2 Fast Correlation Attack

	3 Revisiting Fast Correlation Attack
	3.1 Reviewing Parity-Check Equations with Finite Field
	3.2 New Wrong-Key Hypothesis

	4 New Algorithm Exploiting New Property
	4.1 Detailed Algorithm
	4.2 Estimation of Time and Data Complexities

	5 Application to Grain-128a
	5.1 Specification of Grain-128a
	5.2 Linear Approximate Representation for Grain-128a
	5.3 Estimation of Attack Complexity and Success Probability
	5.4 Application to Grain-128

	6 Application to Grain-v1
	6.1 Specification of Grain-v1
	6.2 Fast Correlation Attack Against Grain-v1

	7 Verifications, Observations, and Countermeasures
	7.1 Experimental Verification
	7.2 Another View to Find Preferable Tz
	7.3 Possible Countermeasure Against Our New Attack

	References

	A Key-Recovery Attack on 855-round Trivium
	1 Introduction
	2 Preliminaries
	2.1 Notations
	2.2 Brief Description of Trivium
	2.3 Representation of Boolean Functions for Stream Ciphers
	2.4 Cube Attack and Cube Tester

	3 Basic Ideas
	3.1 New Observation of Boolean Polynomial Reduction
	3.2 Outline of Our Attack
	3.3 Constructing Distinguishers
	3.4 Fast Discarding Monomial Techniques
	3.5 IV Representation Techniques

	4 Key Recovery Attack on 855-round Trivium
	4.1 Determining the Nullification Scheme for the Output Polynomial of 855-round Trivium
	4.2 Determining the Degree Bound of Reduced Polynomial
	4.3 Online Phase and Complexity Analysis
	4.4 Experimental Verification

	5 Conclusions
	References
	A The Details of Determining the Degree Upper Bound of Output for 721-round Trivium

	Improved Key Recovery Attacks on Reduced-Round AES with Practical Data and Memory Complexities
	1 Introduction
	2 Brief Introduction to the AES
	2.1 A Short Description of AES
	2.2 Notations

	3 The 4-Round Distinguisher of Grassi
	4 Improved Attack on 5-Round AES
	4.1 The Observations Behind the Attack
	4.2 The Attack Algorithm and Its Analysis
	4.3 Experimental Verification

	5 Attacks on 6-Round AES
	5.1 An Extension of Grassi's Attack to 6 Rounds
	5.2 Improvements of the 6-Round Attack

	6 Attacks on 7-Round AES-192 and AES-256
	6.1 Basic Attack on AES-192 and AES-256
	6.2 Improved Attack on AES-192 and AES-256 Using Dissection
	6.3 Improved Attacks on AES-192 Exploiting the Key Schedule

	7 An Alternative Improvement for the 6-Round and 7-Round Attacks
	8 Summary
	References

	Bernstein Bound on WCS is Tight
	1 Introduction
	1.1 Known Security Analysis of WCS prior to Luykx-Preneel Eurocrypt 2018
	1.2 Understanding the Result Due to Luykx and Preneel in luykx18
	1.3 Our Contributions

	2 Preliminaries
	2.1 Security Definitions

	3 Known Analysis of WCS
	3.1 Shoup and Bernstein Bound on WCS
	3.2 Interpretation of the Bernstein Bound

	4 False-Key/True-Key Set: A Tool for Key-Recovery and Forgery
	5 Key-Recovery Security Attacks of WCS
	5.1 A Chosen-Plaintext Key-Recovery Attack
	5.2 Known-Plaintext Attack

	6 Key-Recovery Security Analysis of GCM
	7 Conclusion
	References

	Hashes and Random Oracles
	Correcting Subverted Random Oracles
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work

	2 The Model: Crooked Indifferentiability
	2.1 Preliminary: Indifferentiability
	2.2 Crooked Indifferentiability

	3 The Construction
	4 Security Proof
	4.1 The Simulator Algorithm
	4.2 A Rejection Resampling Lemma
	4.3 Establishing Pointwise Unpredictability

	5 Conclusions
	References

	Combiners for Backdoored Random Oracles
	1 Introduction
	1.1 Contributions
	1.2 Discussion
	1.3 Future Work

	2 Preliminaries
	2.1 Random Oracles
	2.2 Cryptographic Notions

	3 Black-Box Combiners
	4 Communication Complexity
	5 The Concatenation Combiner
	5.1 One-Way Security
	5.2 PRG Security
	5.3 Collision Resistance

	6 The Cascade Combiner
	6.1 One-Way Security
	6.2 PRG and CR Security

	References

	On Distributional Collision Resistant Hashing
	1 Introduction
	1.1 Our Results
	1.2 Related Work
	1.3 Our Techniques

	2 Preliminaries
	2.1 Distance Measures
	2.2 Efficient Function Families
	2.3 Distributional Collision Resistant Hash Functions
	2.4 Multi-collision Resistant Hash Functions

	3 Constructing dCRH from MCRH
	3.1 Going Beyond 3-MCRH

	4 Constructing dCRH from SZK
	5 Open Questions and Further Research
	References

	Trapdoor Functions
	Fast Distributed RSA Key Generation for Semi-honest and Malicious Adversaries
	1 Introduction
	2 Preliminaries
	3 Construction
	3.1 Protocol Structure
	3.2 The Semi-honest Construction
	3.3 Malicious Construction
	3.4 Outline of Proof

	4 Instantiation
	References
	A The Size of the Circuit for the Proof of Honesty

	Trapdoor Functions from the Computational Diffie-Hellman Assumption
	1 Introduction
	1.1 Lack of CDH-Based Techniques for TDF
	1.2 Our Results and Techniques
	1.3 Sketch of Our OWFE-Based Construction and Techniques
	1.4 CCA2 Security
	1.5 Discussion

	2 Preliminaries
	3 Recyclable One-Way Function with Encryption
	3.1 Recyclable One-Way Function with Encryption
	3.2 Adaptive One-Way Function with Encryption
	3.3 Construction from CDH

	4 TDF Construction
	4.1 Proof of Correctness: Lemma3
	4.2 Proof of One-wayness: Lemma4
	4.3 Extended One-Wayness

	5 CCA2-Secure Public-Key Encryption
	6 Proof of CCA2 Security
	6.1 Simulated CCA2 Experiment
	6.2 Relating the Simulated and Real Experiments
	6.3 Proof of Lemma11

	References

	Round Optimal MPC
	Round-Optimal Secure Multiparty Computation with Honest Majority
	1 Introduction
	1.1 Our Results
	1.2 Related Work

	2 Preliminaries
	3 Definitions
	3.1 Multiparty Oblivious Transfer Protocol
	3.2 Multi-Verifier Zero Knowledge Proof System

	4 Security with Abort Against Malicious Adversaries
	4.1 Conforming Protocols
	4.2 Our Compiler
	4.3 Achieving Function-Delayed Property

	5 Guaranteed Output Delivery: Fail-Stop Adversaries
	5.1 Our Construction

	6 Guaranteed Output Delivery: Malicious Adversaries
	6.1 Our Construction

	References

	On the Exact Round Complexity of Secure Three-Party Computation
	1 Introduction
	1.1 Our Results
	1.2 Techniques
	1.3 Roadmap

	2 Preliminaries
	2.1 Model
	2.2 Primitives

	3 3-round 3PC with Fairness
	3.1 Protocol fairi
	3.2 Protocol certi
	3.3 Protocol fair

	4 2-round 3PC with Unanimous Abort
	5 3-round 3PC with Guaranteed Output Delivery
	6 Lower Bounds
	6.1 The Impossibility of 2-round Fair 3PC

	References

	Promise Zero Knowledge and Its Applications to Round Optimal MPC
	1 Introduction
	1.1 Our Results
	1.2 Related Work

	2 Technical Overview
	2.1 Promise Zero Knowledge
	2.2 Four Round Secure Multiparty Computation
	2.3 List Coin-Tossing

	3 Preliminaries
	3.1 Secure Multiparty Computation
	3.2 Delayed-Input Interactive Arguments
	3.3 Extractable Commitments
	3.4 Non-Malleable Commitments

	4 Building Blocks
	4.1 Trapdoor Generation Protocol
	4.2 WI with Non-adaptive Bounded Rewinding Security

	5 Promise Zero Knowledge
	5.1 Definitions
	5.2 Constructing Simulation Sound Promise ZK
	5.3 Security Proof

	References

	Round-Optimal Secure Multi-Party Computation
	1 Introduction
	1.1 Our Results
	1.2 Our Techniques
	1.3 Related and Concurrent Work

	2 Preliminaries
	2.1 Affine Homomorphic PKE
	2.2 Additive Attacks and AMD Circuits

	3 Warmup MPC: The Case of Defensible Adversaries
	3.1 Step 1: 3-Bit Multiplication with Additive Errors
	3.2 Step 2: Arbitrary Degree-3 Polynomials
	3.3 Step 3: Arbitrary Functionalities

	4 Four-Round Actively Secure MPC Protocol
	References

	Foundations
	Yes, There is an Oblivious RAM Lower Bound!
	1 Introduction
	1.1 Our Contributions
	1.2 Proof Strategy

	2 Oblivious Cell Probe Model
	3 Lower Bound
	4 Conclusion and Future Work
	References

	Constrained PRFs for NC1 in Traditional Groups
	1 Introduction
	1.1 Background
	1.2 Our Contributions
	1.3 Technical Overview
	1.4 Other Related Works

	2 Preliminaries
	2.1 Constrained Pseudorandom Function
	2.2 Correlated-Input Secure Hash Function

	3 Building Block: Correlated-Input Secure Hash
	4 CPRF for NC1 Circuits
	4.1 Our Basic Constrained PRF
	4.2 Selectively-Secure CPRF in the Standard Model

	5 Private Constrained PRF for Bit-Fixing
	5.1 Construction in the Standard Model

	References

	Lattices
	GGH15 Beyond Permutation Branching Programs: Proofs, Attacks, and Candidates
	1 Introduction
	1.1 Our Results I: New Cryptographic Constructions from LWE
	1.2 Our Results II: New Attacks on iO Candidates
	1.3 Our Results III: New Candidates
	1.4 Discussion and Open Problems
	1.5 Reader's Guide

	2 Technical Overview
	2.1 Generalized GGH15 Encodings
	2.2 This Work: Semantic Security for Arbitrary Matrices
	2.3 New Cryptographic Constructions from LWE

	3 Preliminaries
	3.1 Lattices Background

	4 New Lemmas on Preimage Sampling
	4.1 The Statistical Lemma
	4.2 The Computational Lemma

	5 Generalized GGH15 Encodings
	5.1 The Construction Framework
	5.2 Security Notions
	5.3 Semantic Security for diag-GGH15 and diag-GGH15 Encodings
	5.4 Proof of the Main Theorem

	References

	Lower Bounds on Lattice Enumeration with Extreme Pruning
	1 Introduction
	2 Background
	2.1 Notation
	2.2 Enumeration with Cylinder Pruning

	3 Lower Bounds for Cylinder Pruning
	3.1 Lower Bounds on Cylinder Radii
	3.2 Lower Bounds on Cylinder Volumes from Isoperimetry
	3.3 Generalisation to Finitely Many Cylinder Intersections

	4 Efficient Upper Bounds Based on Cross-Entropy
	4.1 Our Formulation and Previous Algorithms
	4.2 A Brief Introduction to the Cross Entropy Method
	4.3 Our Algorithm

	5 Tightness and Applications to Security Estimates
	5.1 Modeling Strongly Reduced Bases
	5.2 Explicit Lower Bounds
	5.3 Radii Tightness
	5.4 Security Estimates for Enumeration
	5.5 Experimental Environments

	References
	A Proof of Lemma 3
	A.1 Formulas and Lemmas
	A.2 Proof Body
	A.3 Proof of Lemma 9

	Dissection-BKW
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 The LPN Problem
	2.3 Combining Samples

	3 The c-Sum-Problem and its Application to BKW
	3.1 A Generalized BKW Algorithm

	4 First Time-Memory Trade-Offs for BKW
	4.1 A Classic Time-Memory Trade-Off
	4.2 A Quantum Time-Memory Trade-Off

	5 Time-Memory Trade-Offs for BKW via Dissection
	5.1 Meet-in-the-Middle and Beyond
	5.2 Dissection
	5.3 Tailored Dissection

	6 Experimental Verification of Heuristics
	6.1 Experiments for the Independence Heuristic
	6.2 Experiments on the Tailoring Heuristic

	References

	Lattice-Based ZK
	Sub-linear Lattice-Based Zero-Knowledge Arguments for Arithmetic Circuits
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work

	2 Preliminaries
	2.1 Notation
	2.2 Lattice-Based Commitment Schemes
	2.3 Arguments of Knowledge

	3 Amortized Proofs of Knowledge
	4 Argument for the Satisfiability of an Arithmetic Circuit
	4.1 Amortisation Over Field Extensions

	5 Parameter Selection
	6 Product Argument
	7 Linear Constraint Argument Description
	8 Arithmetic Circuit Argument
	References

	Lattice-Based Zero-Knowledge Arguments for Integer Relations
	1 Introduction
	2 Preliminaries
	2.1 Lattice-Based Cryptographic Building Blocks
	2.2 Zero-Knowledge Argument Systems and Stern-Like Protocols

	3 A General Zero-Knowledge Argument of Knowledge
	3.1 Some Previous Extending-then-Permuting Techniques
	3.2 Our General Protocol

	4 Zero-Knowledge Arguments for Integer Additions
	5 Logarithmic-Size Arguments for Range Membership and Set Non-Membership
	5.1 Range Membership Arguments
	5.2 Set Non-Membership Arguments

	6 Subquadratic Arguments for Integer Multiplications
	6.1 An Interpretation of the Karatsuba Algorithm
	6.2 Representing All Relations as Equations Modulo 2

	References

	Multi-Theorem Preprocessing NIZKs from Lattices
	1 Introduction
	1.1 Multi-Theorem Preprocessing NIZKs from Lattices
	1.2 Additional Related Work

	2 Preliminaries
	3 Homomorphic Signatures
	4 Preprocessing NIZKs from Homomorphic Signatures
	5 Blind Homomorphic Signatures
	5.1 Constructing Blind Homomorphic Signatures

	6 Universally-Composable Preprocessing NIZKs
	6.1 Applications to MPC

	References

	Efficient MPC
	SPDZ2k: Efficient MPC mod 2k for Dishonest Majority
	1 Introduction
	1.1 Our Contributions
	1.2 Overview of Our Techniques

	2 Preliminaries
	2.1 Oblivious Transfer and Coin Tossing Functionalities

	3 Information-Theoretic MAC Scheme
	3.1 Opening Values and Checking MACs
	3.2 Batch MAC Checking with Random Linear Combinations

	4 Online Phase
	5 Preprocessing: Creating the MACs
	5.1 Security

	6 Preprocessing: Creating Multiplication Triples
	7 Efficiency Analysis
	References

	Yet Another Compiler for Active Security or: Efficient MPC Over Arbitrary Rings
	1 Introduction
	1.1 Related Work

	2 Preliminaries
	3 Our Passive to Active Security Transform
	3.1 Tolerating More Corruptions Assuming Static Adversaries
	3.2 Achieving Constant Fraction Corruption Threshold

	4 Achieving Security with Complete Fairness
	5 Efficient Three-Party Computation Over Rings
	5.1 The Preprocessing Protocol
	5.2 Online Phase

	References

	Author Index

