
Hovav Shacham
Alexandra Boldyreva (Eds.)

 123

LN
CS

 1
09

93

38th Annual International Cryptology Conference
Santa Barbara, CA, USA, August 19–23, 2018
Proceedings, Part III

Advances in Cryptology –
CRYPTO 2018

Lecture Notes in Computer Science 10993

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Hovav Shacham • Alexandra Boldyreva (Eds.)

Advances in Cryptology –

CRYPTO 2018
38th Annual International Cryptology Conference
Santa Barbara, CA, USA, August 19–23, 2018
Proceedings, Part III

123

Editors
Hovav Shacham
The University of Texas at Austin
Austin, TX
USA

Alexandra Boldyreva
Georgia Institute of Technology
Atlanta, GA
USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-96877-3 ISBN 978-3-319-96878-0 (eBook)
https://doi.org/10.1007/978-3-319-96878-0

Library of Congress Control Number: 2018949031

LNCS Sublibrary: SL4 – Security and Cryptology

© International Association for Cryptologic Research 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

The 38th International Cryptology Conference (Crypto 2018) was held at the
University of California, Santa Barbara, California, USA, during August 19–23, 2018.
It was sponsored by the International Association for Cryptologic Research (IACR).
For 2018, the conference was preceded by three days of workshops on various topics.
And, of course, there was the awesome Beach BBQ at Goleta Beach.

Crypto continues to grow, year after year, and Crypto 2018 was no exception. The
conference set new records for both submissions and publications, with a whopping
351 papers submitted for consideration. It took a Program Committee of 46 cryptog-
raphy experts working with 272 external reviewers almost 2.5 months to select the 79
papers which were accepted for the conference. It also took one program chair about 30
minutes to dig up all those stats.

In order to minimize intentional and/or subconscious bias, papers were reviewed in
the usual double-blind fashion. Program Committee members were limited to two
submissions, and their submissions were scrutinized more closely and held to higher
standards. The two program chairs were not allowed to submit papers. Of course, they
were fine with that restriction since they were way too busy to actually write any
papers.

The Program Committee recognized two papers and their authors for standing out
among the rest. “Yes, There Is an Oblivious RAM Lower Bound!”, by Kasper Green
Larsen and Jesper Buus Nielsen, was voted best paper of the conference. Additionally,
“Multi-Theorem Preprocessing NIZKs from Lattices,” by Sam Kim and David J. Wu,
was voted Best Paper Authored Exclusively By Young Researchers. There was no
award for Best Paper Authored Exclusively by Old Researchers.

Crypto 2018 played host for the IACR Distinguished Lecture, delivered by Shafi
Goldwasser. Crypto also welcomed Lea Kissner as an invited speaker from Google.

We would like to express our sincere gratitude to all the reviewers for volunteering
their time and knowledge in order to select a great program for 2018. Additionally, we
are very appreciative of the following individuals and organizations for helping make
Crypto 2018 a success:

Tal Rabin - Crypto 2018 General Chair and Workshops Organizer
Elette Boyle - Workshops Chair
Fabrice Benhamouda - Workshops Organizer
Shafi Goldwasser - IACR Distinguished Lecturer
Lea Kissner - Invited Speaker from Google
Shai Halevi - Author of the IACR Web Submission and Review System
Anna Kramer and her colleagues at Springer
Sally Vito and UCSB Conference Services

We would also like to say thank you to our numerous sponsors, everyone who
submitted papers, the session chairs, the rump session chair, and the presenters.

Lastly, a big thanks to everyone who attended the conference at UCSB. Without
you, we would have had a lot of leftover potato salad at the Beach BBQ.

August 2018 Alexandra Boldyreva
Hovav Shacham

VI Preface

Crypto 2018

The 38th IACR International Cryptology Conference

University of California, Santa Barbara, CA, USA
August 19–23, 2018

Sponsored by the International Association for Cryptologic Research

General Chair

Tal Rabin IBM T.J. Watson Research Center, USA

Program Chairs

Hovav Shacham University of Texas at Austin, USA
Alexandra Boldyreva Georgia Institute of Technology, USA

Program Committee

Shweta Agrawal Indian Institute of Technology, Madras, India
Benny Applebaum Tel Aviv University, Israel
Foteini Baldimtsi George Mason University, USA
Gilles Barthe IMDEA Software Institute, Spain
Fabrice Benhamouda IBM Research, USA
Alex Biryukov University of Luxembourg, Luxembourg
Jeremiah Blocki Purdue University, USA
Anne Broadbent University of Ottawa, Canada
Chris Brzuska Aalto University, Finland
Chitchanok Chuengsatiansup Inria and ENS de Lyon, France
Dana Dachman-Soled University of Maryland, USA
Léo Ducas Centrum Wiskunde & Informatica, The Netherlands
Pooya Farshim CNRS and ENS, France
Dario Fiore IMDEA Software Institute, Spain
Marc Fischlin Darmstadt University of Technology, Germany
Georg Fuchsbauer Inria and ENS, France
Steven D. Galbraith University of Auckland, New Zealand
Christina Garman Purdue University, USA
Daniel Genkin University of Pennsylvania and University

of Maryland, USA
Dov Gordon George Mason University, USA
Viet Tung Hoang Florida State University, USA

Tetsu Iwata Nagoya University, Japan
Stanislaw Jarecki University of California, Irvine, USA
Seny Kamara Brown University, USA
Markulf Kohlweiss University of Edinburgh, UK
Farinaz Koushanfar University of California, San Diego, USA
Xuejia Lai Shanghai Jiao Tong University, China
Tancrède Lepoint SRI International, USA
Anna Lysyanskaya Brown University, USA
Alex J. Malozemoff Galois, USA
Sarah Meiklejohn University College London, UK
Daniele Micciancio University of California, San Diego, USA
María Naya-Plasencia Inria, France
Kenneth G. Paterson Royal Holloway, University of London, UK
Ananth Raghunathan Google, USA
Mike Rosulek Oregon State University, USA
Ron Rothblum MIT and Northeastern University, USA
Alessandra Scafuro North Carolina State University, USA
abhi shelat Northeastern University, USA
Nigel P. Smart Katholieke Universiteit Leuven, Belgium
Martijn Stam University of Bristol, UK
Noah Stephens-Davidowitz Princeton University, USA
Aishwarya Thiruvengadam University of California, Santa Barbara, USA
Hoeteck Wee CNRS and ENS, France
Daniel Wichs Northeastern University, USA
Mark Zhandry Princeton University, USA

Additional Reviewers

Aydin Abadi
Archita Agarwal
Divesh Aggarwal
Shashank Agrawal
Adi Akavia
Navid Alamati
Martin Albrecht
Miguel Ambrona
Ghous Amjad
Megumi Ando
Ralph Ankele
Gilad Asharov
Achiya Bar-On
Manuel Barbosa
Paulo Barreto
James Bartusek
Guy Barwell

Balthazar Bauer
Carsten Baum
Amos Beimel
Itay Berman
Marc Beunardeau
Sai Lakshmi Bhavana
Simon Blackburn
Estuardo Alpirez Bock
Andrej Bogdanov
André Schrottenloher
Xavier Bonnetain
Charlotte Bonte
Carl Bootland
Jonathan Bootle
Christina Boura
Florian Bourse
Elette Boyle

Zvika Brakerski
Jacqueline Brendel
David Butler
Matteo Campanelli
Brent Carmer
Ignacio Cascudo
Wouter Castryck
Andrea Cerulli
André Chailloux
Nishanth Chandran
Panagiotis Chatzigiannis
Stephen Checkoway
Binyi Chen
Michele Ciampi
Benoit Cogliati
Gil Cohen
Ran Cohen

VIII Crypto 2018

Aisling Connolly
Sandro Coretti
Henry Corrigan-Gibbs
Geoffroy Couteau
Shujie Cui
Ting Cui
Joan Daemen
Wei Dai
Yuanxi Dai
Alex Davidson
Jean Paul Degabriele
Akshay Degwekar
Ioannis Demertzis
Itai Dinur
Jack Doerner
Nico Döttling
Benjamin Dowling
Tuyet Thi Anh Duong
Frédéric Dupuis
Betul Durak
Lior Eldar
Karim Eldefrawy
Lucas Enloe
Andre Esser
Antonio Faonio
Prastudy Fauzi
Daniel Feher
Serge Fehr
Nils Fleischhacker
Benjamin Fuller
Tommaso Gagliardoni
Martin Gagné
Adria Gascon
Pierrick Gaudry
Romain Gay
Nicholas Genise
Marilyn George
Ethan Gertler
Vlad Gheorghiu
Esha Ghosh
Brian Goncalves
Junqing Gong
Adam Groce
Johann Großschädl
Paul Grubbs
Jiaxin Guan

Jian Guo
Siyao Guo
Joanne Hall
Ariel Hamlin
Abida Haque
Patrick Harasser
Gottfried Herold
Naofumi Homma
Akinori Hosoyamada
Jialin Huang
Siam Umar Hussain
Chloé Hébant
Yuval Ishai
Ilia Iliashenko
Yuval Ishai
Håkon Jacobsen
Christian Janson
Ashwin Jha
Thomas Johansson
Chethan Kamath
Bhavana Kanukurthi
Marc Kaplan
Pierre Karpman
Sriram Keelveedhi
Dmitry Khovratovich
Franziskus Kiefer
Eike Kiltz
Sam Kim
Elena Kirshanova
Konrad Kohbrok
Lisa Maria Kohl
Ilan Komargodski
Yashvanth Kondi
Venkata Koppula
Lucas Kowalczyk
Hugo Krawczyk
Thijs Laarhoven
Marie-Sarah Lacharite
Virginie Lallemand
Esteban Landerreche
Phi Hung Le
Eysa Lee
Jooyoung Lee
Gaëtan Leurent
Baiyu Li
Benoit Libert

Fuchun Lin
Huijia Lin
Tingting Lin
Feng-Hao Liu
Qipeng Liu
Tianren Liu
Zhiqiang Liu
Alex Lombardi
Sébastien Lord
Steve Lu
Yiyuan Luo
Atul Luykx
Vadim Lyubashevsky
Fermi Ma
Varun Madathil
Mohammad Mahmoody
Mary Maller
Giorgia Azzurra Marson
Daniel P. Martin
Samiha Marwan
Christian Matt
Alexander May
Sogol Mazaheri
Bart Mennink
Carl Alexander Miller
Brice Minaud
Ilya Mironov
Tarik Moataz
Nicky Mouha
Fabrice Mouhartem
Pratyay Mukherjee
Mridul Nandi
Samuel Neves
Anca Nitulescu
Kaisa Nyberg
Adam O’Neill
Maciej Obremski
Olya Ohrimenko
Igor Carboni Oliveira
Claudio Orlandi
Michele Orrù
Emmanuela Orsini
Dag Arne Osvald
Elisabeth Oswald
Elena Pagnin
Chris Peikert

Crypto 2018 IX

Léo Perrin
Edoardo Persichetti
Duong-Hieu Phan
Krzysztof Pietrzak
Bertram Poettering
David Pointcheval
Antigoni Polychroniadou
Eamonn Postlethwaite
Willy Quach
Elizabeth Quaglia
Samuel Ranellucci
Mariana Raykova
Christian Rechberger
Oded Regev
Nicolas Resch
Leo Reyzin
M. Sadegh Riazi
Silas Richelson
Peter Rindal
Phillip Rogaway
Miruna Rosca
Dragos Rotaru
Yann Rotella
Arnab Roy
Manuel Sabin
Sruthi Sekar
Amin Sakzad
Katerina Samari
Pedro Moreno Sanchez

Sven Schaege
Adam Sealfon
Yannick Seurin
Aria Shahverdi
Tom Shrimpton
Luisa Siniscalchi
Kit Smeets
Fang Song
Pratik Soni
Jessica Sorrell
Florian Speelman
Douglas Stebila
Marc Stevens
Bing Sun
Shifeng Sun
Siwei Sun
Qiang Tang
Seth Terashima
Tian Tian
Mehdi Tibouchi
Yosuke Todo
Aleksei Udovenko
Dominique Unruh
Bogdan Ursu
María Isabel González

Vasco
Muthuramakrishnan
Venkitasubramaniam
Fre Vercauteren

Fernando Virdia
Alexandre Wallet
Michael Walter
Meiqin Wang
Qingju Wang
Boyang Wei
Mor Weiss
Jan Winkelmann
Tim Wood
David Wu
Hong Xu
Shota Yamada
Hailun Yan
LeCorre Yann
Kan Yasuda
Arkady Yerukhimovich
Eylon Yogev
Yang Yu
Yu Yu
Thomas Zacharias
Wentao Zhang
Hong-Sheng Zhou
Linfeng Zhou
Vassilis Zikas
Giorgos Zirdelis
Lukas Zobernig
Adi Ben Zvi

X Crypto 2018

Sponsors

Crypto 2018 XI

Contents – Part III

Efficient MPC

TinyKeys: A New Approach to Efficient Multi-Party Computation 3
Carmit Hazay, Emmanuela Orsini, Peter Scholl,
and Eduardo Soria-Vazquez

Fast Large-Scale Honest-Majority MPC for Malicious Adversaries 34
Koji Chida, Daniel Genkin, Koki Hamada, Dai Ikarashi, Ryo Kikuchi,
Yehuda Lindell, and Ariel Nof

Quantum Cryptography

Quantum FHE (Almost) As Secure As Classical . 67
Zvika Brakerski

IND-CCA-Secure Key Encapsulation Mechanism in the Quantum
Random Oracle Model, Revisited . 96

Haodong Jiang, Zhenfeng Zhang, Long Chen, Hong Wang, and Zhi Ma

Pseudorandom Quantum States . 126
Zhengfeng Ji, Yi-Kai Liu, and Fang Song

Quantum Attacks Against Indistinguishablility Obfuscators Proved
Secure in the Weak Multilinear Map Model . 153

Alice Pellet-Mary

Cryptanalyses of Branching Program Obfuscations over GGH13
Multilinear Map from the NTRU Problem . 184

Jung Hee Cheon, Minki Hhan, Jiseung Kim, and Changmin Lee

MPC

An Optimal Distributed Discrete Log Protocol with Applications
to Homomorphic Secret Sharing . 213

Itai Dinur, Nathan Keller, and Ohad Klein

Must the Communication Graph of MPC Protocols be an Expander?. 243
Elette Boyle, Ran Cohen, Deepesh Data, and Pavel Hubáček

Two-Round Multiparty Secure Computation Minimizing Public
Key Operations. 273

Sanjam Garg, Peihan Miao, and Akshayaram Srinivasan

Limits of Practical Sublinear Secure Computation . 302
Elette Boyle, Yuval Ishai, and Antigoni Polychroniadou

Garbling

Limits on the Power of Garbling Techniques for Public-Key Encryption 335
Sanjam Garg, Mohammad Hajiabadi, Mohammad Mahmoody,
and Ameer Mohammed

Optimizing Authenticated Garbling for Faster Secure
Two-Party Computation . 365

Jonathan Katz, Samuel Ranellucci, Mike Rosulek, and Xiao Wang

Information-Theoretic MPC

Amortized Complexity of Information-Theoretically Secure MPC Revisited . . . 395
Ignacio Cascudo, Ronald Cramer, Chaoping Xing, and Chen Yuan

Private Circuits: A Modular Approach . 427
Prabhanjan Ananth, Yuval Ishai, and Amit Sahai

Various Topics

A New Public-Key Cryptosystem via Mersenne Numbers 459
Divesh Aggarwal, Antoine Joux, Anupam Prakash, and Miklos Santha

Fast Homomorphic Evaluation of Deep Discretized Neural Networks 483
Florian Bourse, Michele Minelli, Matthias Minihold, and Pascal Paillier

Oblivious Transfer

Adaptive Garbled RAM from Laconic Oblivious Transfer 515
Sanjam Garg, Rafail Ostrovsky, and Akshayaram Srinivasan

On the Round Complexity of OT Extension . 545
Sanjam Garg, Mohammad Mahmoody, Daniel Masny,
and Izaak Meckler

Non-malleable Codes

Non-Malleable Codes for Partial Functions with Manipulation Detection 577
Aggelos Kiayias, Feng-Hao Liu, and Yiannis Tselekounis

Continuously Non-Malleable Codes in the Split-State Model
from Minimal Assumptions . 608

Rafail Ostrovsky, Giuseppe Persiano, Daniele Venturi, and Ivan Visconti

XIV Contents – Part III

Zero Knowledge

Non-Interactive Zero-Knowledge Proofs for Composite Statements 643
Shashank Agrawal, Chaya Ganesh, and Payman Mohassel

From Laconic Zero-Knowledge to Public-Key Cryptography:
Extended Abstract . 674

Itay Berman, Akshay Degwekar, Ron D. Rothblum,
and Prashant Nalini Vasudevan

Updatable and Universal Common Reference Strings with Applications
to zk-SNARKs . 698

Jens Groth, Markulf Kohlweiss, Mary Maller, Sarah Meiklejohn,
and Ian Miers

Obfuscation

A Simple Obfuscation Scheme for Pattern-Matching with Wildcards 731
Allison Bishop, Lucas Kowalczyk, Tal Malkin, Valerio Pastro,
Mariana Raykova, and Kevin Shi

On the Complexity of Compressing Obfuscation . 753
Gilad Asharov, Naomi Ephraim, Ilan Komargodski, and Rafael Pass

Author Index . 785

Contents – Part III XV

Efficient MPC

TinyKeys: A New Approach to Efficient
Multi-Party Computation

Carmit Hazay1, Emmanuela Orsini2, Peter Scholl3(B),
and Eduardo Soria-Vazquez4

1 Bar-Ilan University, Ramat Gan, Israel
carmit.hazay@biu.ac.il

2 KU Leuven ESAT/COSIC, Leuven, Belgium
emmanuela.orsini@kuleuven.be

3 Aarhus University, Aarhus, Denmark
peter.scholl@cs.au.dk

4 University of Bristol, Bristol, UK
eduardo.soria-vazquez@bristol.ac.uk

Abstract. We present a new approach to designing concretely efficient
MPC protocols with semi-honest security in the dishonest majority set-
ting. Motivated by the fact that within the dishonest majority setting
the efficiency of most practical protocols does not depend on the num-
ber of honest parties, we investigate how to construct protocols which
improve in efficiency as the number of honest parties increases. Our cen-
tral idea is to take a protocol which is secure for n − 1 corruptions and
modify it to use short symmetric keys, with the aim of basing security
on the concatenation of all honest parties’ keys. This results in a more
efficient protocol tolerating fewer corruptions, whilst also introducing an
LPN-style syndrome decoding assumption.

We first apply this technique to a modified version of the semi-honest
GMW protocol, using OT extension with short keys, to improve the effi-
ciency of standard GMW with fewer corruptions. We also obtain more
efficient constant-round MPC, using BMR-style garbled circuits with
short keys, and present an implementation of the online phase of this
protocol. Our techniques start to improve upon existing protocols when
there are around n = 20 parties with h = 6 honest parties, and as these
increase we obtain up to a 13 times reduction (for n = 400, h = 120)

C. Hazay—Supported by the European Research Council under the ERC consolida-
tors grant agreement No. 615172 (HIPS), and by the BIU Center for Research in
Applied Cryptography and Cyber Security in conjunction with the Israel National
Cyber Bureau in the Prime Minister’s Office.
E. Orsini—Supported in part by ERC Advanced Grant ERC-2015-AdG-IMPaCT.
P. Scholl—Supported by the European Union’s Horizon 2020 research and innovation
programme under grant agreement No. 731583 (SODA), and the Danish Indepen-
dent Research Council under Grant-ID DFF-6108-00169 (FoCC).
E. Soria-Vazquez—Supported by the European Union’s Horizon 2020 research and
innovation programme under the Marie Sk�lodowska-Curie grant agreement No.
643161, and by ERC Advanced Grant ERC-2015-AdG-IMPaCT.

c© International Association for Cryptologic Research 2018
H. Shacham and A. Boldyreva (Eds.): CRYPTO 2018, LNCS 10993, pp. 3–33, 2018.
https://doi.org/10.1007/978-3-319-96878-0_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96878-0_1&domain=pdf

4 C. Hazay et al.

in communication complexity for our GMW variant, compared with the
best-known GMW-based protocol modified to use the same threshold.

1 Introduction

Secure multi-party computation (MPC) protocols allow a group of n parties
to compute some function f on the parties’ private inputs, while preserving
a number of security properties such as privacy and correctness. The former
property implies data confidentiality, namely, nothing leaks from the protocol
execution but the computed output. The latter requirement implies that the
protocol enforces the integrity of the computations made by the parties, namely,
honest parties are not lead to accept a wrong output. Security is proven either
in the presence of an honest-but-curious adversary that follows the protocol
specification but tries to learn more than allowed from its view of the protocol, or
a malicious adversary that can arbitrarily deviate from the protocol specification
in order to compromise the security of the other parties in the protocol.

The efficiency of a protocol typically also depends on how many corrupted
parties can be tolerated before security breaks down, a quantity known as the
threshold, t. With semi-honest security, most protocols either require t < n/2
(where n is the number of parties), in which case unconditionally secure pro-
tocols [BOGW88,CCD88] based on Shamir secret-sharing can be used, or sup-
port any choice of t up to n − 1, as in computationally secure protocols based
on oblivious transfer [GMW87,Gol04]. Interestingly, within these two ranges,
the efficiency of most practical semi-honest protocols does not depend on t. For
instance, the GMW [GMW87] protocol (and its many variants) is full-threshold,
so supports any t < n corruptions. However, we do not know of any practical
protocols with threshold, say, t = 2

3n, or even t = n/2 + 1, that are more effi-
cient than full-threshold GMW-style protocols. One exception to this is when
the number of parties becomes very large, in which case protocols based on com-
mittees can be used. In this approach, due to an idea of Bracha [Bra85], first a
random committee of size n′ � n is chosen. Then every party secret-shares its
input to the parties in the committee, who runs a secure computation protocol
for t < n′ to obtain the result. The committee size n′ must be chosen to ensure
(with high probability) that not the whole committee is corrupted, so clearly
a lower threshold t allows for smaller committees, giving significant efficiency
savings. However, this technique is only really useful when n is very large, at
least in the hundreds or thousands.

In this paper we investigate designing MPC protocols where an arbitrary
threshold for the number of corrupted parties can be chosen, which are practical
both when n is very large, and also for small to medium sizes of n. Specifically,
we ask the question:

Can we design concretely efficient MPC protocols where the performance
improves gracefully as the number of honest parties increases?

TinyKeys: A New Approach to Efficient Multi-Party Computation 5

Note that the performance of an MPC protocol can be measured both
in terms of communication overhead and computational overhead. Using fully
homomorphic encryption [Gen09], it is possible to achieve very low commu-
nication overhead that is independent of the circuit size [AJL+12] even in
the malicious setting, but for reasonably complex functions FHE is impracti-
cal due to very high computational costs. On the other hand, practical MPC
protocols typically communicate for every AND gate in the circuit, and use
oblivious transfer (OT) to carry out the computation. Fast OT extension tech-
niques allow a large number of secret-shared bit multiplications1 to be performed
using only symmetric primitives and an amortized communication complexity of
O(κ) [IKNP03] or O(κ/ log κ) [KK13,DKS+17] bits, where κ is a computational
security parameter. This leads to an overall communication complexity which
grows with O(n2κ/ log κ) bits per AND gate in protocols based on secret-sharing
following the [GMW87] style, and O(n2κ) in those based on garbled circuits in
the style of [Yao86,BMR90,BLO16].

Short keys for secure computation. Our main idea towards achieving the
above goal is to build a secure multi-party protocol with h honest parties, by
distributing secret key material so that each party only holds a small part of the
key. Instead of basing security on secret keys held by each party individually, we
then base security on the concatenation of all honest parties’ keys.

As a toy example, consider the following simple distributed encryption of a
message m under n keys:

Ek(m) =
n⊕

i=1

H(i, ki) ⊕ m

where H is a suitable hash function and each key ki ∈ {0, 1}� belongs to party
Pi. In the full-threshold setting with up to n−1 corruptions, to hide the message
we need each party’s key to be of length � = 128 to achieve 128-bit computa-
tional security. However, if only t < n − 1 parties are corrupted, it seems that,
intuitively, an adversary needs to guess all h := n − t honest parties’ keys to
recover the message, and potentially each key ki can be much less than 128 bits
long when h is large enough. This is because the “obvious” way to try to guess
m would be to brute force all h keys until decrypting “successfully”.

In fact, recovering m when there are h unknown keys corresponds to solving
an instance of the regular syndrome decoding problem [AFS03], which is related
to the well-known learning parity with noise (LPN) problem, and believed to be
hard for suitable choices of parameters.

1.1 Our Contribution

In this work we use the above idea of short secret keys to design new MPC
protocols in both the constant round and non-constant round settings, which
1 Note that OT is equivalent to secret-shared bit multiplication, and when constructing

MPC it is more convenient to use the latter definition.

6 C. Hazay et al.

improve in efficiency as the number of honest parties increases. We consider
security against a static, honest-but-curious adversary, and leave it for future
work to extend our techniques to the malicious case based on, e.g. message
authentication codes. Our contribution is captured by the following:

GMW-style MPC with short keys (Sect. 3). We present a GMW-style
MPC protocol for binary circuits, where multiplications are done with OT exten-
sion using short symmetric keys. This reduces the communication complexity of
OT extension-based GMW from O(n2κ/ log κ) [KK13] to O(nt�), where the key
length � decreases as the number of honest parties, h = n − t, increases. When
h is large enough, we can even have � as small as 1.
To construct this protocol, we first analyse the security of the IKNP OT exten-
sion protocol [IKNP03] when using short keys, and formalise the leakage obtained
by a corrupt receiver in this case. We then show how to use this version of
“leaky OT” to generate multiplication triples using a modified version of the
GMW method, where pairs of parties use OT to multiply their shares of random
values. We also optimize our protocol by reducing the number of communica-
tion channels using two different-sized committees, improving upon the standard
approach of choosing one committee to do all the work.

Multi-party garbled circuits with short keys (Sect. 4). Our second
contribution is the design of a constant round, BMR-style [BMR90] protocol
based on garbled circuits with short keys. Our offline phase uses the multiplica-
tion protocol from the previous result in order to generate the garbled circuit,
using secret-shared bit and bit/string multiplications as done in previous works
[BLO16,HSS17], with the exception that the keys are shorter. In the online
phase, we then use the LPN-style assumption to show that the combination of
all honest parties’ �-bit keys suffices to obtain a secure garbling protocol. This
allows us to save on the key length as a function of the number of honest parties.
As well as reducing communication with a smaller garbled circuit, we also reduce
computation when evaluating the circuit, since each garbled gate can be evalu-
ated with only O(n2�/κ) block cipher calls (assuming the ideal cipher model),
instead of O(n2) when using κ-bit keys. For this protocol, � can be as small as
8, giving a significant saving over 128-bit keys used previously.

Concrete Efficiency Improvements. The efficiency of our protocols depends
on the total number of parties, n, and the number of honest parties, h, so there
is a large range of parameters to explore when comparing with other works.
We discuss this in more detail in Sect. 5. Our protocols seem most significant
in the dishonest majority setting, since when there is an honest majority there
are unconditionally secure protocols with O(n log n) communication overhead
and reasonable computational complexity e.g. [DN07], whilst our protocols have
Ω(nt) communication overhead.

Our GMW-style protocol starts to improve upon previous protocols when we
reach n = 20 parties and t = 14 corruptions: here, our triple generation method
requires less than half the communication cost of the fastest GMW-style protocol
based on OT extension [DKS+17] tolerating up to n − 1 corruptions. When the

TinyKeys: A New Approach to Efficient Multi-Party Computation 7

number of honest parties is large enough, we can use 1-bit keys, giving a 25-fold
reduction in communication over previous protocols when n = 400 and t = 280.
In addition, we describe a simple threshold-t variant of GMW-style protocols,
which our protocol still outperforms by 1.1x and 13x, respectively, in these two
scenarios.

For our constant round protocol, with n = 20, t = 10 we can use 32-bit keys,
so the size of each garbled AND gate is 1/4 the size of [BLO16]. As n increases
the improvements become greater, with a 16-fold reduction in garbled AND gate
size for n = 400, t = 280. We also reduce the communication cost of creating the
garbled circuit. Here, the improvement starts at around 50 parties, and goes
up to a 7 times reduction in communication when n = 400, t = 280. Note that
our protocol does incur a slight additional overhead, since we need to use extra
“splitter gates”, but this cost is relatively small.

To demonstrate the practicality of our approach, we also present an imple-
mentation of the online evaluation phase of our constant-round protocol for key
lengths ranging between 1–4 bytes, and with an overall number of parties ranging
from 15–1000; more details can be found in Sect. 5.

Applications. Our techniques seem most useful for large-scale MPC with
around 70% corruptions, where we obtain the greatest concrete efficiency
improvements. An important motivation for this setting is privacy-preserving
statistical analysis of data collected from a large network with potentially thou-
sands of nodes. In scenarios where the nodes are not always online and connected,
our protocols can also be used with the “random committee” approach discussed
earlier, so only a small subset of, say, a hundred nodes need to be online and
interacting during the protocol.

An interesting example is safely measuring the Tor network [DMS04] which
is among the most popular tools for digital privacy, consisting of more than
6000 relays that can opt-in for providing statistics about the use of the network.
Nowadays and due to privacy risks, the statistics collected over Tor are generally
poor: There is a reduced list of computed functions and only a minority of the
relays provide data, which has to be obfuscated before publishing [DMS04].
Hence, the statistics provide an incomplete picture which is affected by a noise
that scales with the number of relays. Running MPC in this setting would enable
for more complex, accurate and private data processing, for example through
anomaly detection and more sophisticated censorship detection. Moreover, our
protocols are particularly well-suited to this setting since all relays in the network
must be connected to one another already, by design.

Another possible application is for securely computing the interdomain rout-
ing within the Border Gateway Protocol (BGP), which is performed at a large
scale of thousands of nodes. A recent solution in the dishonest majority set-
ting [ADS+17] centralizes BGP so that two parties run this computation for all
Autonomous Systems. Our techniques allow scaling to a large number of sys-
tems computing the interdomain routing themselves using MPC, hence further
reducing the trust requirements.

8 C. Hazay et al.

Decisional Regular Syndrome Decoding problem. The security of our
protocols relies on the Decisional Regular Syndrome Decoding (DRSD) problem,
which, given a random binary matrix H, is to distinguish between the syndrome
obtained by multiplying H with an error vector e = (e1‖ · · · ‖eh) where each
ei ∈ {0, 1}2�

has Hamming weight one, and the uniform distribution. This can
equivalently be described as distinguishing

⊕h
i=1 H(i, ki) from the uniform dis-

tribution, where H is a random function and each ki is a random �-bit key (as
in the toy example described earlier).

We remark that when h is large enough, the problem is unconditionally hard
even for � = 1, which means for certain parameter choices in our GMW-based
protocol we can use 1-bit keys without introducing any additional assumptions.
This introduces a significant saving in our triple generation protocol.

Additional related work. Another work which applies a similar assumption
to secure computation is that of Applebaum [App16], who built garbled circuits
with the free-XOR technique in the standard model under the LPN assump-
tion. Conceptually, our work differs from Applebaum’s since our focus is to
improve the efficiency of multi-party protocols with fewer corruptions, whereas
in [App16], LPN is used in a more modular way in order to achieve encryption
with stronger properties and under a more standard assumption.

In a recent work [NR17], Nielsen and Ranellucci designed a protocol in the
dishonest majority setting with malicious, adaptive security in the presence of
t < cn corruption for t ∈ [0, 1). Their protocol is aimed to work with a large num-
ber of parties and uses committees to obtain a protocol with poly-logarithmic
overhead. This protocol introduces high constants and is not useful for practical
applications.

Finally, in a concurrent work [BO17], Ben-Efraim and Omri also explore how
to optimize garbled circuits in the presence of non-full-threshold adversaries. By
using deterministic committees they achieve AND gates of size 4(t+1)κ, where κ
is the computational security parameter. By using the same technique we achieve
a size of 4(t + h)�, where � � κ depends on h, a parameter for the minimum
number of honest parties in the committee. The rest of their results apply only
to the honest majority setting.

1.2 Technical Overview

In what follows we explain the technical side of our results in more detail.

Leaky oblivious transfer (OT). We first present a two-party secret-shared
bit multiplication protocol, based on a variant of the IKNP OT extension proto-
col [IKNP03] with short keys. Our protocol performs a batch of r multiplications
at once. Namely, the parties create r correlated OTs on �-bit strings using the
OT extension technique of [IKNP03], by transposing a matrix of � OTs on r-bit
strings and swapping the roles of sender and receiver. In contrast to the IKNP
OT extension and followups, that use κ ‘base’ OTs for computational security
parameter κ, we use � = O(log κ) base OTs.

TinyKeys: A New Approach to Efficient Multi-Party Computation 9

This protocol leaks some information on the global secret Δ ← {0, 1}� picked
by the receiver, as well as the inputs of the receiver. Roughly speaking, the
leakage is of the form H(i,Δ) + xi, where xi ∈ {0, 1} is an input of the receiver
and H is a hash function with 1-bit output. Clearly, when � is short this is not
secure to use on its own, since all of the receiver’s inputs only have � bits of
min-entropy (based on the choice of Δ).

MPC from leaky OT. We then show how to apply this leaky two-party pro-
tocol to the multi-party setting, whilst preventing any leakage on the parties
shares. The main observation is that, when using additive secret-sharing, we
only need to ensure that the sum of all honest parties’ shares is unpredictable;
if the adversary learns just a few shares, they can easily be rerandomized by
adding pseudorandom shares of zero, which can be done non-interactively using
a PRF. However, we still have a problem, which is that in the standard GMW
approach, each party Pi uses OT to multiply their share xi with every other
party Pj ’s share yj . Now, there is leakage on the same share xi from each of
the OT instances between all other parties, which seems much harder to prevent
than leakage from just a single OT instance.

To work around this problem, we have the parties add shares of zero to their
xi inputs before multiplying them. So, every pair (Pi, Pj) will use leaky OT
to multiply xi ⊕ si,j with yj , where si,j is a random share of zero satisfying⊕n

i=1 si,j = 0. This preserves correctness of the protocol, because the parties
end up computing an additive sharing of:

n⊕

i=1

n⊕

j=1

(xi ⊕ si,j)yj =
n⊕

j=1

yj
n⊕

i=1

(xi ⊕ si,j) = xy.

This also effectively removes leakage on the individual shares, so we only need
to be concerned with the sum of the leakage on all honest parties’ shares, and
this turns out to be of the form:

⊕n
i=1(H(i,Δi) + xi) which is pseudorandom

under the decisional regular syndrome decoding assumption.
We realize our protocol using a hash function with a polynomial-sized

domain, so that is can be implemented using a CRS which simply outputs a
random lookup-table. This means that, unlike when using the IKNP protocol,
we do not need to rely on a random oracle or a correlation robustness assump-
tion.

When the number of parties is large enough, we can improve our triple gen-
eration protocol using random committees. In this case the amortized commu-
nication cost is ≤ nhn1(� + �κ/r + 1) bits per multiplication where we need to
choose two committees of sizes nh and n1 which have at least h and 1 honest
parties, respectively.

Garbled circuits with short keys. We next revisit the multi-party garbled
circuits technique by Beaver, Micali and Rogaway, known as BMR, that extends
the classic Yao garbling [Yao86] to an arbitrary number of parties, where essen-
tially all the parties jointly garble using one set of keys each. This method was

10 C. Hazay et al.

recently improved in a sequence of works [LPSY15,LSS16,BLO16,HSS17], where
the two latter works further support the Free-XOR property.

Our garbling method uses an expansion function H : [n] × {0, 1} × {0, 1}� →
{0, 1}n�+1, where � is the length of each parties’ keys used as wire labels in the
garbled circuit. To garble a gate, the hash values of the input wire keys ki

u,b and
ki

v,b are XORed over i and used to mask the output wire keys.
Specifically, for an AND gate g with input wires u, v and output wire w, the

4 garbled rows g̃a,b, for each (a, b) ∈ {0, 1}2, are computed as:

g̃a,b =

(
n⊕

i=1

H(i, b, ki
u,a) ⊕ H(i, a, ki

v,b)

)
⊕ (c, k1

w,c, . . . , k
n
w,c).

Security then relies on the DRSD assumption, which implies that the sum of h
hash values on short keys is pseudorandom, which suffices to construct a secure
garbling method with h honest parties.

Using this assumption instead of a PRF (as in recent works) comes with
difficulties, as we can no longer garble gates with arbitrary fan-out, or use the
free-XOR technique, without degrading the DRSD parameters. To allow for arbi-
trary fan-out circuits with our protocol we use splitter gates, which take as input
one wire w and provide two outputs wires u, v, representing the same wire value.
Splitter gates were previously introduced as a fix for an error in the original
BMR paper in [TX03]. We stress that transforming a general circuit description
into a circuit with only fan-out-1 gates requires adding at most a single splitter
gate per AND or XOR gate.

The restriction to fan-out-1 gates and the use of splitter gates additionally
allows us to garble XOR gates for free in BMR without relying on circular
security assumptions or correlation-robust hash functions, based on the FlexOR
technique [KMR14] where each XOR gate uses a unique offset. Furthermore, the
overhead of splitter gates is very low, since garbling a splitter gate does not use
the underlying MPC protocol: shares of the garbled gate can be generated non-
interactively. We note that this observation also applies to Yao’s garbled circuits,
but the overhead of adding splitter gates there is more significant; this is because
in most 2-party protocols, the size of the garbled circuit is the dominant cost
factor, whereas in multi-party protocols the main cost is creating the garbled
circuit in a distributed manner.

2 Preliminaries

We denote the security parameter by κ. We say that a function μ : N → N

is negligible if for every positive polynomial p(·) and all sufficiently large κ it
holds that μ(κ) < 1

p(κ) . The function μ is noticeable (or non-negligible) if there
exists a positive polynomial p(·) such that for all sufficiently large κ it holds that
μ(κ) ≥ 1

p(κ) . We use the abbreviation PPT to denote probabilistic polynomial-
time. We further denote by a ← A the uniform sampling of a from a set A,
and by [d] the set of elements {1, . . . , d}. We often view bit-strings in {0, 1}k

TinyKeys: A New Approach to Efficient Multi-Party Computation 11

as vectors in F
k
2 , depending on the context, and denote exclusive-or by “⊕” or

“+”. If a, b ∈ F2 then a · b denotes multiplication (or AND), and if c ∈ F
κ
2 then

a · c ∈ F
κ
2 denotes the product of a with every component of c.

Security and Communication Models. We prove security of our protocols in
the universal composability (UC) framework [Can01]. See We assume all parties
are connected via secure, authenticated point-to-point channels, which is the
default method of communication in our protocols. The adversary model we
consider is a static, honest-but-curious adversary who corrupts a subset A ⊂ [n]
of parties at the beginning of the protocol. We denote by Ā the subset of honest
parties, and define h = |Ā| = n − t.

Functionality Fr
Zero(P)

On receiving (zero) from all parties in P = {P1, . . . , Pn}:
1. Sample random shares s2, . . . , sn ← {0, 1}r and let s1 = s2 ⊕ · · · ⊕ sn

2. Send si to party Pi

Fig. 1. Random zero sharing functionality.

Random Zero-Sharing. Our protocols require the parties to generate random
additive sharings of zero, as in the FZero functionality in Fig. 1. This can be
done efficiently using a PRF F , with interaction only during a setup phase, as
in [AFL+16].

2.1 Regular Syndrome Decoding Problem

We now describe the Regular Syndrome Decoding (RSD) problem and some of
its properties.

Definition 2.1. A vector e ∈ F
m
2 is (m,h)-regular if e = (e1‖ · · · ‖eh) where

each ei ∈ {0, 1}m/h has Hamming weight one. We denote by Rm,h the set of all
the (m,h)-regular vectors in F

m
2 .

Definition 2.2 (Regular Syndrome Decoding (RSD)). Let r, h, � ∈ N

with m = h · 2�, H ← F
r×m
2 and e ← Rm,h. Given (H,He), the RSDr,h,�

problem is to recover e with noticeable probability.

The decisional version of the problem, given below, is to distinguish the
syndrome He from uniform.

Definition 2.3 (Decisional Regular Syndrome Decoding (DRSD)). Let
H ← F

r×m
2 and e ← Rm,h, and let Ur be the uniform distribution on r bits. The

DRSDr,h,� problem is to distinguish between (H,He) and (H, Ur) with noticeable
advantage.

12 C. Hazay et al.

Hash function formulation. The DRSD problem can be equivalently described
as distinguishing from uniform

⊕h
i=1 H(i, ki) where H : [h] × {0, 1}� → {0, 1}r

is a random hash function, and each ki ← {0, 1}�. With this formulation, it is
easier to see how the DRSD problem arises when using our protocols with short
keys, since this appears when summing up a hash function applied to h honest
parties’ secret keys.

To see the equivalence, we can define a matrix H ∈ F
r×h·2�

2 , where for each
i ∈ {0, . . . , h − 1} and k ∈ [2�], column i · 2� + k of H contains H(i, k). Then,
multiplying H with a random (m,h)-regular vector e is equivalent to taking the
sum of H over h random inputs, as above.

Statistical hardness of DRSD. We next observe that for certain parameters
where the output size of H is sufficiently smaller than the min-entropy of the
error vector e, the distribution in the decisional problem is statistically close to
uniform. Proofs and the general case of �-bit keys are given in [HOSS18].

Lemma 2.1. If � = 1 and h ≥ r + s then DRSDr,h,� is statistically hard, with
distinguishing probability 2−s.

Search-to-decision reduction. For all parameter choices of DRSD, there is a
simple reduction to the search version of the regular syndrome decoding problem
with the same parameters.

Lemma 2.2. Any efficient distinguisher for the DRSDr,h,� problem can be used
to efficiently solve RSDr,h,�.

3 GMW-Style MPC with Short Keys

In this section we design a protocol for generating multiplication triples over F2

using short secret keys, with reduced communication complexity as the num-
ber of honest parties increases. More concretely, we first design a leaky protocol
for secret-shared two-party bit multiplication, based on correlated OT and OT
extension techniques with short keys. This protocol is not fully secure and we
precisely define the leakage obtained by the receiver. We next show how to
use the leaky protocol to produce multiplication triples, removing the leakage
by rerandomizing the parties’ shares with shares of zero, and using the DRSD
assumption. Finally, this protocol can be used with Beaver’s multiplication triple
technique [Bea92] to obtain MPC for binary circuits with an amortized commu-
nication complexity of O(nt�) bits per triple, where t is the threshold and � is
the secret key length. When the number of honest parties is large enough we can
even use � = 1 and avoid relying on DRSD.

3.1 Leaky Two-Party Secret-Shared Multiplication

We first present our protocol for two-party secret-shared bit multiplication, based
on a variant of the [IKNP03] OT extension protocol, modified to use short keys.

TinyKeys: A New Approach to Efficient Multi-Party Computation 13

Functionality Fr,�
Δ-ROT

After receiving Δ ∈ {0, 1}� from PS and (x1, . . . , xr) ∈ {0, 1}r from PR, do the
following:

1. Sample qi ← {0, 1}�, for i ∈ [r], and let ti = qi ⊕ xi · Δ.
2. Output qi to PS and ti to PR, for i ∈ [r].

Fig. 2. Functionality for oblivious transfer on random, correlated strings.

With short keys we cannot hope for computational security based on standard
symmetric primitives, because an adversary can search every possible key in
polynomial time. Our goal, therefore, is to define the precise leakage that occurs
when using short keys, in order to remove this leakage at a later stage.

OT extension and correlated OT. Recall that the main observation of the
IKNP protocol for extending oblivious transfer [IKNP03] is that correlated OT
is symmetric, so that κ correlated OTs on r-bit strings can be locally converted
into r correlated OTs on κ-bit strings. Secondly, a κ-bit correlated OT can be
used to obtain an OT on chosen strings with computational security. The first
stage of this process is abstracted away by the functionality FΔ-ROT in Fig. 2.

Using IKNP to multiply an input bit xk from the sender, PA, with an input
bit yk from PB , the receiver, PB sends yk as its choice bit to FΔ-ROT and learns
tk = qk ⊕ yk · Δ. The sender PA obtains qk, and then sends

dk = H(qk) ⊕ H(qk ⊕ Δ) ⊕ xk,

where H is a 1-bit output hash function. This allows the parties to compute
an additive sharing of xk · yk as follows: PA defines the share H(qk), and PB

computes H(tk) ⊕ yk · dk. This can be repeated many times with the same Δ
to perform a large batch of poly(κ) secret-shared multiplications, because the
randomness in Δ serves to computationally mask each x with the hash values
(under a suitable correlation robustness assumption for H). The downside of this
is that for Δ ∈ {0, 1}κ, the communication cost is O(κ) bits per two-party bit
multiplication, to perform the correlated OTs.

Variant with short keys. We adapt this protocol to use short keys by per-
forming the correlated OTs on �-bit strings, instead of κ-bit, for some small key
length � = O(log κ) (we could have � as small as 1). This allows FΔ-ROT to be
implemented with only O(�) bits of communication per OT instead of O(κ).

Our protocol, shown in Fig. 4, performs a batch of r multiplications at once.
First the parties create r correlated OTs on �-bit strings using FΔ-ROT. Next,
the parties hash the output strings of the correlated OTs, and PA sends over the
correction values dk, which are used by PB to convert the random OTs into a
secret-shared bit multiplication. Finally, we require the parties to add a random
value (from FZero, shown in Fig. 1) to their outputs, which ensures that they
have a uniform distribution.

14 C. Hazay et al.

Note that if � ∈ O(log κ) then the hash function HAB has a polynomial-sized
domain, so can be described as a lookup table provided as a common input to
the protocol by both parties. At this stage we do not make any assumptions
about HAB ; this means that the leakage in the protocol will depend on the
hash function, so its description is also passed to the functionality FLeaky-2-Mult

(Fig. 3). We require HAB to take as additional input an index k ∈ [r] and a bit in
{0, 1}, to provide independence between different uses, and our later protocols
require the function to be different in protocol instances between different pairs
of parties (we use the notation HAB to emphasize this).

Functionality Fr,�
Leaky-2-Mult

Input: (x1, . . . , xr) ∈ F
r
2 from PA and (y1, . . . , yr) ∈ F

r
2 from PB .

Common input: A hash function HAB : [r] × {0, 1} × {0, 1}� → {0, 1}.

1. Sample zA, zB ← F
r
2 such that zA + zB = x ∗ y (where ∗ denotes component-

wise product).
2. Output zA to PA and zB to PB .

Leakage: If PB is corrupt:

1. Let H ∈ F
r×2�

2 be defined so that entry (k, k′) of H is HAB(k, 1 ⊕ yk, tk ⊕ k′),
where tk ← {0, 1}�.

2. Sample a random unit vector e ∈ F
2�

2 and send (H,u = He+ x) to A.

Fig. 3. Ideal functionality for leaky secret-shared two-party bit multiplication

Leakage. We now analyse the exact security of the protocol in Fig. 4 when using
short keys, and explain how this is specified in the functionality FLeaky-2-Mult

(Fig. 3). Since a random share of zero is added to the outputs, note that the out-
put distribution is uniformly random. Also, like IKNP, the protocol is perfectly
secure against a corrupt PA (or sender), so we only need to be concerned with
leakage to a corrupt PB who also sees the intermediate values of the protocol.

The leakage is different for each k, depending on whether yk = 0 or yk = 1, so
we consider the two cases separately. Within each case, there are two potential
sources of leakage: firstly, the corrupt PB’s knowledge of tk and ρk may cause
leakage (where ρk is a random share of zero), since these values are used to define
PA’s output. Secondly, the dk values seen by PB, which equal

dk = HAB(k, yk, tk) ⊕ HAB(k, 1 ⊕ yk, tk ⊕ Δ) ⊕ xk, (1)

may leak information on PA’s inputs xk.

Case 1 (yk = 1). In this case there is only leakage from the values tk and ρk,
which are used to define PA’s output. Since zA

k = HAB(k, 0, tk ⊕ Δ) ⊕ ρk, all of
PA’s outputs (and hence, also inputs) where yk = 1 effectively have only � bits
of min-entropy in the view of PB , corresponding to the random choice of Δ. In

TinyKeys: A New Approach to Efficient Multi-Party Computation 15

this case PB’s output is zB
k = zA

k ⊕ xk = HAB(k, 0, tk ⊕ Δ) ⊕ ρk ⊕ xk. To ensure
that PB’s view is simulable the functionality needs to sample a random string
Δ ← {0, 1}� and leak HAB(k, 0, tk ⊕ Δ) ⊕ xk to a corrupt PB .

Concerning the dk values, notice that when yk = 1 PB can compute
HAB(k, 1, tk) and use (1) to recover HAB(k, 0, qk)+xk, which equals zA

k +ρk+xk.
However, this is not a problem, because in this case we have zB

k = zA
k + xk, so

dk can be simulated given PB ’s output.

Case 2 (yk = 0). Here the dk values seen by PB causes leakage on PA’s inputs,
because Δ is short. Looking at (1), dk leaks information on xk because Δ ←
{0, 1}� is the only unknown in the equation, and is fixed for every k. Similarly
to the previous case, this means that all of PA’s inputs where yk = 0 have only �
bits of min-entropy in the view of an adversary who corrupts PB . We can again
handle this leakage, by defining FLeaky-2-Mult to leak HAB(k, 1, tk ⊕ Δ) + xk to
a corrupt PB .

Note that there is no leakage from the tk values when yk = 0, because then
tk = qk, so these messages are independent of Δ and the inputs of PA.

In the functionality FLeaky-2-Mult, we actually modify the above slightly so
that the leakage is defined in terms of linear algebra, instead of the hash func-
tion HAB , to simplify the translation to the DRSD problem later on. There-
fore, FLeaky-2-Mult defines a matrix H ∈ F

r×2�

2 , which contains the 2� values
{HAB(k, 1 ⊕ yk, tk ⊕ Δ)}Δ∈{0,1}� in row k, where each tk is uniformly random.
Given H, the leakage from the protocol can then be described by sampling a
random unit vector e ∈ F

2�

2 (which corresponds to Δ ∈ {0, 1}� in the protocol)
and leaking u = He + x to a corrupt PB .

Communication complexity. The cost of computing r secret-shared products
is that of � random, correlated OTs on r-bit strings, and a further r bits of com-
munication. Using OT extension [IKNP03,ALSZ13] to implement the correlated
OTs the amortized cost is �(r +κ) bits, for computational security κ. This gives
a total cost of �(r + κ) + r bits.

In [HOSS18] we prove the following.

Theorem 3.1. Protocol Πr,�
Leaky-2-Mult securely implements the functionality

Fr,�
Leaky-2-Mult with perfect security in the (FΔ-ROT,FZero)-hybrid model in the

presence of static honest-but-curious adversaries.

3.2 MPC for Binary Circuits From Leaky OT

We now show how to use the leaky OT protocol to compute multiplication triples
over F2, using a GMW-style protocol [GMW87,Gol04] optimized for the case of
at least h honest parties. This can then be used to obtain a general MPC protocol
for binary circuits using Beaver’s method [Bea92].

Triple generation. We implement the triple generation functionality over F2,
shown in Fig. 5. Recall that to create a triple using the GMW method, first each
party locally samples shares xi, yi ← F2. Next, the parties compute shares of
the product based on the fact that:

16 C. Hazay et al.

Protocol Πr,�
Leaky-2-Mult

Parameters: r, number of multiplications; �, key length.
Input: x = (x1, . . . , xr) ∈ F

r
2 from PA and y = (y1, . . . , yr) ∈ F

r
2 from PB .

Common input: A hash function HAB : [r] × {0, 1} × {0, 1}� → {0, 1}.
1. PA and PB invoke Fr,�

Δ-ROT where PA is sender with a random input Δ ←
{0, 1}�, and PB is receiver with inputs (y1, . . . , yr). PA receives random strings
qk ∈ {0, 1}� and PB receives tk = qk ⊕ yk · Δ, for k ∈ [r].

2. Call Fr
Zero so that PA and PB obtain the same random ρk ∈ {0, 1} for every

k ∈ [r].
3. For each k ∈ [r], PA privately sends to PB :

dk = HAB(k, 0, qk) + HAB(k, 1, qk + Δ) + xk.

4. PB outputs

zB
k = HAB(k, yk, tk) + yk · dk + ρk, for k ∈ [r].

5. PA outputs
zA

k = HAB(k, 0, qk) + ρk, for k ∈ [r].

Fig. 4. Leaky secret-shared two-party bit multiplication protocol

(
n∑

i=1

xi) · (
n∑

i=1

yi) =
n∑

i=1

xiyi +
n∑

i=1

∑

j �=i

xiyj .

where xi denotes Pi’s share of x =
∑

i xi.
Since each party can compute xiyi on its own, in order to obtain additive

shares of z = xy it suffices for the parties to obtain additive shares of xiyj for
every pair i �= j. This is done using oblivious transfer between Pi and Pj , since
a 1-out-of-2 OT implies two-party secret-shared bit multiplication.

Functionality Fr
Triple

1. Sample (xi
j , y

i
j , z

i
j) ← F

3
2, for i ∈ [n] and j ∈ [r], subject to the constraint that∑

i

zi
j =

∑
i

xi
j

) ·
∑

i

yi
j

)

2. Output (xi
j , y

i
j , z

i
j) to party Pi, for j ∈ [r].

Fig. 5. Multiplication triple generation functionality.

If we use the leaky two-party batch multiplication protocol from the previous
section, this approach fails to give a secure protocol because the leakage in

TinyKeys: A New Approach to Efficient Multi-Party Computation 17

FLeaky-2-Mult allows a corrupt PB to guess PA’s inputs with probability 2−�.
When using this naively, PA carries out a secret-shared multiplication using
the same input shares with every other party, which allows every corrupt party
to attempt to guess PA’s shares, increasing the success probability further. If
the number of corrupted parties is not too small then this gives the adversary
a significant chance of successfully guessing the shares of every honest party,
completely breaking security.

To avoid this issue, we require PA to randomize the shares used as input to
FLeaky-2-Mult, in such a way that we still preserve correctness of the protocol. To
do this, the parties will use FZero to generate random zero shares si,j ∈ F2 (held
by Pi), satisfying

∑
i si,j = 0 for all j ∈ [n], and then Pi and Pj will multiply

xi + si,j and yj . This means that all parties end up computing shares of:

n∑

i=1

n∑

j=1

(xi + si,j)yj =
n∑

j=1

yj
n∑

i=1

(xi + si,j) = xy,

so still obtain a correct triple.
Finally, to ensure that the output shares are uniformly random, fresh shares

of zero will be added to each party’s share of xy. Note that masking each xi

input to FLeaky-2-Mult means that it doesn’t matter if the individual shares are
leaked to the adversary, as long as it is still hard to guess the sum of all shares.
This means that we only need to be concerned with the sum of the leakage from
FLeaky-2-Mult. Recall that each individual instance leaks the input of an honest
party Pi masked by Hiei, where Hi is a random matrix and ei ∈ F

2�

2 is a random
unit vector. Summing up all the leakage from h honest parties, we get

h∑

i=1

Hiei = (H1‖ · · · ‖Hh)

⎛

⎜⎝
e1

...
eh

⎞

⎟⎠

This is exactly an instance of the DRSDr,h,� problem, so is pseudorandom for an
appropriate choice of parameters.

We remark that the number of triples generated, r, affects the hardness of
DRSD. However, we can create an arbitrary number of triples without changing
the assumption by repeating the protocol for a fixed r.

Reducing the number of OT channels. The above approach reduces com-
munication of GMW by a factor κ/�, for �-bit keys, but still requires a complete
network of n(n − 1) OT and communication channels between the parties. We
can reduce this further by again taking advantage of the fact that there are at
least h honest parties. We observe that when using our two-party secret-shared
multiplication protocol to generate triples, information is only leaked on the xi

shares, and not the yi shares of each triple. This means that h − 1 parties can
choose their shares of y to be zero, and y will still be uniformly random to an

18 C. Hazay et al.

adversary who corrupts up to t = n − h parties. This reduces the number of OT
channels needed from n(n − 1) to (t + 1)(n − 1).

When the number of parties is large enough, we can do even better using
random committees. We randomly choose two committees, P(h) and P(1), such
that except with negligible probability, P(h) has at least h honest parties and P(1)

has at least one honest party. Only the parties in P(h) choose non-zero shares of
x, and parties in P(1) choose non-zero shares of y; all other parties do not take
part in any OT instances, and just output random sharings of zero. We remark
that it can be useful to choose the parameter h lower than the actual number
of honest parties, to enable a smaller committee size (at the cost of potentially
larger keys). When the total number of parties, n, is large enough, this means the
number of interacting parties can be independent of n. The complete protocol,
described for two fixed committees satisfying our requirements, is shown in Fig. 6.

Protocol Πr
Triple

CRS: Random hash functions Hi : [r] × {0, 1} × {0, 1}� → {0, 1}, for i ∈ [n].

The protocol runs between a set of parties P = {P1, . . . , Pn}, containing two (pos-
sibly overlapping) subsets P(h), P(1), such that P(h) has at least h honest parties
and P(1) has at least one honest party.

1. Each party Pi ∈ P(h) samples xi
k ← F2, and each Pj ∈ P(1) samples yj

k ← F2,
for k ∈ [r].

2. Call F (n+1)r
Zero so that each Pi ∈ P obtains shares (ρi

1, . . . , ρ
i
r), (s

i,j
1 , . . . , si,j

r)j∈[n],
such that

⊕
i ρi

k = 0 and
⊕

i si,j
k = 0.

3. Every pair (Pi, Pj) ∈ P(h) ×P(1) runs Fr,�
Leaky-2-Mult(Hi) on input {xi

k+si,j
k }k∈[r]

from Pi and {yj
k}k∈[r] from Pj . For k ∈ [r], Pi receives ai,j

k and Pj receives bj,i
k

such that ai,j
k + bj,i

k = (xi
k + si,j

k) · yj
k.

4. Each Pi ∈ P computes, for k ∈ [r]:

zi
k = (xi

k + si,i
k) · yi

k +
∑
j �=i

(ai,j
k + bi,j

k) + ρi
k

where if any value xi
k, yi

k, ai,j
k , bi,j

k has not been defined by Pi, it is set to zero.
5. Pi outputs the shares (xi

k, yi
k, zi

k)k∈[r].

Fig. 6. Secret-shared triple generation using leaky two-party multiplication.

Communication complexity. Recall from the analysis in Sect. 3.1 that when
using protocol ΠLeaky-2-Mult with ΠTriple, the cost of computing r secret-shared
triples is that of � random, correlated OTs on r-bit strings, and a further r bits of
communication between every pair of parties. This gives a total cost of �(r+κ)+r
bits between every pair of parties who has an OT channel (ignoring FZero and
the seed OTs for OT extension, since their communication cost is independent
of the number of triples). If the two committees P(h),P(1) have sizes nh ≤ n and
n1 ≤ t + 1 then we have the following theorem (proven in [HOSS18]).

TinyKeys: A New Approach to Efficient Multi-Party Computation 19

Theorem 3.2. Protocol ΠTriple securely realizes Fr
Triple in the (Fr,�

Leaky-2-Mult,

F (n+1)r
Zero)-hybrid model, based on the DRSDr,h,� assumption, where h is the

number of honest parties in P(h). The amortized communication cost is ≤
nhn1(� + �κ/r + 1) bits per triple.

Parameters for unconditional security. Recall from Lemma 2.1 that if � = 1
and h ≥ r + s for any �, then DRSDr,h,� is statistically hard, with statistical
security 2−s. This means when h is large enough we can use 1-bit keys, and
every pair of parties who communicates only needs to send 2+κ/r bits over the
network.2

MPC using multiplication triples. Our protocol for multiplication triples
can be used to construct a semi-honest MPC protocol for binary circuits using
Beaver’s approach [Bea92]. The parties first secret-share their inputs between all
other parties. Then, XOR gates can be evaluated locally on the shares, whilst
an AND gate requires consuming a multiplication triple, and two openings with
Beaver’s method. Each opening can be done with 2(n−1) bits of communication
as follows: all parties send their shares to P1, who sums the shares together and
sends the result back to every other party.

In the 1-bit key case mentioned above, using two (deterministic) committees
of sizes n and t+1 and setting, for instance, r = κ implies the following corollary.
Note that the number of communication channels is (t+1)(n−1) and not (t+1)n,
because in the deterministic case P(1) is contained in P(h), so t + 1 sets of the
shared cross-products can be computed locally.

Corollary 3.3. Assuming OT and OWF, there is a semi-honest MPC protocol
for binary circuits with an amortized communication complexity of no more than
3(t + 1)(n − 1) + 4(n − 1) bits per AND gate, if there are at least κ + s honest
parties.

4 Multi-Party Garbled Circuits with Short Keys

In this section we present our second contribution: a constant-round MPC pro-
tocol based on garbled circuits with short keys. The protocol has two phases,
a preprocessing phase independent of the parties’ actual inputs where the gar-
bled circuit is mutually generated by all parties, and an online phase where the
computation is performed. We first abstractly discuss the details of our garbling
method, and then turn to the two protocols for generating and evaluating the
garbled circuit.

4.1 The Multi-Party Garbling Scheme

Our garbling method is defined by the functionality F�BMR
Preprocessing (Fig. 7), which

creates a garbled circuit that is given to all the parties. It can be seen as a variant

2 Note that we still need computational assumptions for OT and zero sharing in order
to implement FLeaky-2-Mult and FZero.

20 C. Hazay et al.

Functionality F�BMR
Preprocessing

Common input: A function H : [n] × {0, 1} × {0, 1}�BMR → {0, 1}n�BMR+1. Let H′

denote the same function excluding the least significant bit of the output.

Let Cf be a boolean circuit with fan-out-one gates. Denote by AND,XOR and SPLIT
its sets of AND, XOR and Splitter gates, respectively. Given a gate, let I and O be
the set of its input and output wires, respectively. If g ∈ SPLIT, then I = {w} and
O = {u, v}, otherwise O = {w}.
The functionality proceeds as follows ∀i ∈ [n]:

1. ∀g ∈ XOR, sample Δi
g ← {0, 1}�BMR .

2. For each circuit-input wire u, sample λu ← {0, 1} and ki
u,0 ← {0, 1}�BMR . If u

is input to a XOR gate g, set ki
u,1 = ki

u,0 ⊕ Δi
g, otherwise ki

u,1 ← {0, 1}�BMR .
3. Passing topologically through all the gates g ∈ {AND ∪ XOR ∪ SPLIT} of the

circuit:
– If g ∈ XOR:

• Set λw =
⊕

x∈I λx

• Set ki
w,0 =

⊕
x∈I ki

x,0 and ki
w,1 = ki

w,0 ⊕ Δi
g

– If g ∈ AND:
• Sample λw ← {0, 1}.
• ki

w,0 ← {0, 1}�BMR . If w is input to a XOR gate g′ set ki
w,1 = ki

w,0⊕Δi
g′ ,

else ki
w,1 ← {0, 1}�BMR .

• For a, b ∈ {0, 1}, representing the public values of wires u and v, let
c = (a⊕λu) ·(b⊕λv)⊕λw. Store the four entries of the garbled version
of g as:

g̃a,b =

(
n⊕

i=1

H(i, b, ki
u,a) ⊕ H(i, a, ki

v,b)

)

⊕ (c, k1
w,c, . . . , k

n
w,c), (a, b) ∈ {0, 1}2.

– If g ∈ SPLIT:
• Set λx = λw for every x ∈ O.
• ∀x ∈ O, sample ki

x,0 ← {0, 1}�BMR . If x ∈ O is input to a XOR gate
g′, set ki

x,1 = ki
x,0 ⊕ Δi

g′ , otherwise ki
x,1 ← {0, 1}�BMR .

• For c ∈ {0, 1}, the public value on w, store the two entries of the
garbled version of g as:

g̃c =

(
n⊕

i=1

H′(i, 0, ki
w,c),

n⊕
i=1

H′(i, 1, ki
w,c)

)

⊕ (k1
u,c, . . . , k

n
u,c, k

1
v,c, . . . , k

n
v,c), c ∈ {0, 1}

4. Output: For each circuit-input wire u, send λu to the party providing inputs
to Cf on u. For every circuit wire v and i ∈ [n], send ki

v,0, k
i
v,1 to Pi. Finally,

send to all parties g̃ for each g ∈ AND ∪ SPLIT and λw for each circuit-output
wire w.

Fig. 7. Multi-party garbling functionality

TinyKeys: A New Approach to Efficient Multi-Party Computation 21

of the multi-party garbling technique by Beaver, Micali and Rogaway [BMR90],
known as BMR, which has been used and improved in a recent sequence of works
[LPSY15,LSS16,BLO16,HSS17].

The main idea behind BMR is that every party Pi contributes a pair of keys
ki

w,0, k
i
w,1 ∈ {0, 1}κ and a share of a wire mask λi

w ∈ {0, 1} for each wire w
in the circuit. To garble a gate, the corresponding output wire key from every
party is encrypted under the combination of all parties’ input wire keys, using a
PRF or PRG, so that no single party knows all the keys for a gate. In addition,
the free-XOR property can be supported by having each party choose their keys
such that ki

w,0 ⊕ ki
w,1 = Δi, where Δi is a global fixed random string known to

Pi.
The main difference between our work and recent related protocols is that we

use short keys of length �BMR instead of κ, and then garble gates using a random,
expanding function H : [n] × {0, 1} × {0, 1}�BMR → {0, 1}n�BMR+1. Instead of
basing security on a PRF or PRG, we then reduce the security of the protocol
to the pseudorandomness of the sum of H when applied to each of the honest
parties’ keys, which is implied by the DRSD problem from Sect. 2.1. We also use
H′ to denote H with the least significant output bit dropped, which we use for
garbling splitter gates.

To garble an AND gate g with input wires u, v and output wire w, each of
the 4 garbled rows g̃a,b, for (a, b) ∈ {0, 1}2, is computed as:

g̃a,b =

(
n⊕

i=1

H(i, b, ki
u,a) ⊕ H(i, a, ki

v,b)

)
⊕ (c, k1

w,c, . . . , k
n
w,c), (2)

where c = (a ⊕ λu) · (b ⊕ λv) ⊕ λw and λu, λv, λw are the secret-shared wire
masks. Each row can be seen as an encryption of the correct n output wire keys
under the corresponding input wire keys of all parties. Note that, for each wire,
Pi holds the keys ki

u,0, k
i
u,1 and an additive share λi

u of the wire mask. The extra
bit value that H takes as input is added to securely increase the stretch of H
when using the same input key twice, preventing a ‘mix-and-match’ attack on
the rows of a garbled gate. The output of H is also extended by an extra bit, to
allow encryption of the output wire mask c.3

Splitter gates. When relying on the DRSD problem, the reuse of a key in mul-
tiple gates degrades parameters and makes the problem easier (as the parameter
r grows, the key length must be increased), so we cannot handle circuits with
arbitrary fan-out. For this reason, we restrict our exposition of the garbling to
fan-out-one circuits with so-called splitter gates. This type of gate takes as input
a single wire w and provides two output wires u, v, each of them with fresh, inde-
pendent keys representing the same value carried by the input wire. Converting
an arbitrary circuit to use splitter gates incurs a cost of roughly a factor of two
in the circuit size (see [HOSS18]).
3 This only becomes necessary when using short keys — in BMR with full-length keys

the parties can recover the wire mask by comparing the output with their own two
keys, but this does not work if collisions are possible.

22 C. Hazay et al.

Splitter gates were previously introduced in [TX03] as a fix for a similar issue
in the original BMR paper [BMR90], where the wire “keys” were used as seeds
for a PRG in order to garble the gates, so that when a wire was used as input
to multiple gates, their garbled versions did not use independent pseudorandom
masks. Other recent BMR-style papers avoid this issue by applying the PRF over
the gate identifier as well, which produces distinct, independent PRF evaluations
for each gate.

Free-XOR. The Free-XOR [KS08] optimization results in an improvement in
both computation and communication for XOR gates where a global fixed ran-
dom Δi is chosen by each party Pi and the input keys are locally XORed,
yielding the output key of this gate. We cannot use the standard free-XOR
technique [KS08,BLO16] for the same reason discussed above: reusing a sin-
gle offset across multiple gates would make the DRSD problem easier and
not be secure. We therefore introduce a new free-XOR technique (inspired by
FleXOR [KMR14]) which, combined with our use of splitter gates, allows gar-
bling XOR gates for free without additional assumptions. For each arbitrary
fan-in XOR gate g, each party chooses a different offset Δi

g, allowing for a free-
XOR computation for wires using keys with that offset. For general circuits, this
would normally introduce the problem that the input wires may not have the
correct offset, requiring some ‘translation’ to Δg. However, because we restrict
to gates with fan-out-one and splitter gates, we know that each input wire to g
is not an input wire to any other gate, so we can always ensure the keys use the
correct offset without any further changes.

Compiling to fan-out-one circuits with splitter gates. Let Cf be an arbi-
trary fan-out circuit, with A AND gates and X XOR gates, both with fan-in-two.
Let ICf

and OCf
be the number of circuit-input and circuit-output wires, respec-

tively. We will now compute the number S of splitter gates that the compiled
circuit needs. First, note that each time a wire w is used as input to another gate
or as a circuit-output wire, w’s fan-out is increased by one. Each of the AND,
XOR gates in the pre-compiled circuit provides a fresh output wire to be used
in Cf , while using for its inputs two pre-existing wires in the circuit. Output
wires also use one pre-existing wire each, while input wires use no pre-existing
wires. This means that, to compile Cf to be a fan-out-one circuit, we need to
add up to (2 ·X +2 ·A+OCf

)−(A+X +ICf
) wires. Each of these missing wires,

however, can be created by using a splitter gate in the compiled circuit, since
each of these gates uses one wire to generate two fresh new wires. So, putting all
the pieces together, the compiled circuit requires S ≤ X +A+OCf

−ICf
splitter

gates. This gives a close upper bound, as if w is a circuit output wire and an
input wire of another gate then it is being counted twice rather than once in the
formula.

TinyKeys: A New Approach to Efficient Multi-Party Computation 23

Functionality FBit×Bit

After receiving (xi, yi) ∈ F
2
2 from each party Pi, sample zi ← F2 such that

∑
i zi =

(
∑

i xi) · (∑i yi), and send zi to party Pi.

Fig. 8. Secret-shared bit multiplication functionality

Functionality F�BMR
BitString(Pj)

After receiving (xi, yi) ∈ F
2
2 from each party Pi, as well as Δ ∈ F

�BMR
2 from Pj ,

sample Zi ← F2 such that
∑

i Zi = (
∑

i xi) · Δ, and send Zi to party Pi.

Fig. 9. Secret-shared bit/string multiplication functionality

4.2 Protocol and Functionalities for Bit and Bit/String
Multiplication

Even though we could implement both FBit×Bit and F�BMR
BitString(Pj) using FTriple,

there are more efficient ways to implement the latter: One by building directly
from FLeaky-2-Mult, and another using [ALSZ13].

– FLeaky-2-Mult-hybrid implementation (Fig. 11): As the length-�BMR string Rj
g

is not secret-shared and just known to one party, we only need to perform
n − 1 invocations of FLeaky-2-Mult in order to multiply it with a secret-shared
bit x = x1 + · · · + xn. The protocol uses random shares of zero to mask the
inputs and outputs of FLeaky-2-Mult, similarly to the ΠTriple protocol.
Note that this does not directly implement the functionality shown in
Fig. 9, because Πr,�BMR

Bit×String performs a batch of r independent multiplica-
tions in parallel. However, in the protocol Π�BMR

Preprocessing all the gates can
be garbled in parallel, so a batch version of the functionality (as described
in Fig. 10) suffices. The amortized communication complexity obtained is
�BMR(1 + �OT + �OTκ/r) bits.

– [ALSZ13] implementation: The amortized communication complexity is κ +
�BMR bits.

24 C. Hazay et al.

Functionality Fr,�BMR
BitString

After receiving input (Pj , x
i
1, . . . , x

i
m) from every party Pi, and additional inputs

Δ1, . . . , Δr from Pj , where each xi
k ∈ {0, 1} and Δk ∈ {0, 1}�BMR :

1. Sample Zi
k ← {0, 1}�BMR , for i ∈ [n] and k ∈ [r], subject to the constraint that⊕

i

Zi
k = Δk ·

⊕
i

xi
k, for k ∈ [r]

2. Output Zi
1, . . . , Z

i
r to party Pi

Fig. 10. Batch secret-shared bit/string multiplication between Pj and all parties

Protocol Πr,�BMR
Bit×String, n-party Bit/String-Mult

To multiply the strings Δ1, . . . , Δr ∈ {0, 1}�BMR held by Pj with secret-shared bits
(xi

1, . . . , x
i
r)i∈[n]:

1. Denote the v-th bit of Δk by Δk,v. For v ∈ [�BMR]:
(a) Call F2r

Zero so that each Pi obtains fresh shares
(ρi

1,v, . . . , ρi
m,v, σi

1,v, . . . , σi
m,v), such that

⊕
i ρi

k,v = 0 and
⊕

i σi
k,v = 0

(b) For each i 	= j, Pi and Pj run Fr,�OT
Leaky-2-Mult on input (xi

k ⊕ σi
k,v)k∈[r] from

Pi and (Δk[v])k∈[r] from Pj . Pi receives ai
k,v and Pj receives bi

k,v such that
ai

k,v ⊕ bi
k,v = Δk[v] · (xi

k ⊕ σi
k).

2. Each Pi, for i 	= j, outputs the �BMR-bit strings Zi
k := (ai

k,1⊕ρi
k,1, . . . , a

i
k,�BMR

⊕
ρi

k,�BMR
), for k ∈ [r].

3. Pj outputs the �BMR-bit strings Zj
k :=

⊕
i�=j(b

i
k,1, . . . , b

i
k,�BMR

) ⊕
(ρj

k,1, . . . , ρ
j
k,�BMR

), for k ∈ [r].

Fig. 11. n-party secret-shared bit/string multiplication using leaky 2-party multipli-
cation

Communication complexity. The communication complexity of Πr,�BMR
Bit×String

is exactly that of (n−1)�BMR instances of Fr,�OT
Leaky-2-Mult, where �OT is the leakage

parameter used in the protocol Πr,�OT
Leaky-2-Mult. Note that �OT is independent of

�BMR used in the bit/string protocol, but affects the security and cost of realising
FLeaky-2-Mult. The total complexity is then (n − 1)�BMR(�OT(r + κ) + r) bits, or
an amortized cost of (n − 1)�BMR(�OT + �OTκ/r + 1) bits per multiplication.

Theorem 4.1. Protocol Πr,�BMR
Bit×String UC-securely realizes Fr,�BMR

BitString in the F2r
Zero-

hybrid in the presence of static honest-but-curious adversaries, under the
DRSDr,h,�OT assumption.

The proof is a direct extension of the proof of Theorem3.2.

TinyKeys: A New Approach to Efficient Multi-Party Computation 25

4.3 The Preprocessing Protocol

Our protocol for generating the garbled circuit is shown in Fig. 12. We use two
functionalities FBit×Bit (Fig. 8) and FBitString(Pj) (Fig. 9) for multiplying two
additively shared bits, and multiplying an additively shared bit with a string held
by Pj , respectively. FBit×Bit can be easily implemented using a multiplication
triple from FTriple in the previous section, whilst FBitString uses a variant of the
ΠTriple protocol optimized for this task.

Most of the preprocessing protocol is similar to previous works [BLO16,
HSS17], where first each party samples their sets of wire keys and shares of
wire masks, and then the parties interact to obtain shares of the garbled gates.

The Preprocessing Protocol Π�BMR
Preprocessing

Common Input: H : [n]×{0, 1}×{0, 1}�BMR → {0, 1}n�BMR+1, a uniformly random
sampled function and H′ defined from H excluding the least significant bit of the
output. A boolean circuit Cf with fan-out 1. Let AND,XOR and SPLIT be the sets
of AND, XOR and splitter gates, respectively. Given a gate, let I and O be the
set of its input and output wires, respectively. If g ∈ SPLIT, then I = {w} and
O = {u, v}, otherwise O = {w}.
For each i ∈ [n], the protocol proceeds as follows:

1. Free-XOR offsets: For every g ∈ XOR, Pi samples a random value Δi
g ←

{0, 1}�BMR

2. Circuit-input wires’ masks and keys: If w is a circuit-input wire:
(a) Pi samples a key ki

w,0 ← {0, 1}�BMR and a wire mask share λi
w ← {0, 1}.

(b) If w is input to a XOR gate g′, Pi sets ki
w,1 = ki

w,0 ⊕ Δi
g′ , otherwise

ki
w,1 ← {0, 1}�BMR .

3. Intermediate wires’ masks and keys: Passing topologically through all the
gates g ∈ G = {AND ∪ XOR ∪ SPLIT} of the circuit:
(a) If g ∈ XOR, Pi computes:

– λi
w =

⊕
x∈I λi

x.
– ki

w,0 =
⊕

x∈I ki
x,0 and ki

w,1 = ki
w,0 ⊕ Δi

g.
(b) If g /∈ XOR, Pi does as follows:

– If g ∈ AND, λi
w ← {0, 1}. Else if g ∈ SPLIT, sets λi

x = λi
w for every

x ∈ O.
– For every x ∈ O, ki

x,0 ← {0, 1}�BMR . If x ∈ O is input to a XOR gate
g′, set ki

x,1 = ki
x,0 ⊕ Δi

g′ , otherwise sample ki
x,1 ← {0, 1}�BMR .

4. Garble gates: For each gate g ∈ {AND∪ SPLIT}, the parties run the subpro-
tocol Π�BMR

GateGarbling, obtaining back shares g̃i of each garbled gate.
5. Reveal input/output wires’ masks: For every circuit-output wire w, Pi

broadcasts λi
w. For every circuit-input wire w, Pi sends λi

w to the party Pj who
provides input on it. Each party reconstructs the wire masks from her received
values as λw =

⊕n
i=1 λi

w.
6. Open Garbling For each g ∈ {AND ∪ SPLIT}, Pi sends g̃i to P1. P1 recon-

structs every garbled gate, g̃ =
⊕n

i=1 g̃i, and broadcasts it.

Fig. 12. The preprocessing protocol that realizes F�BMR
Preprocessing

26 C. Hazay et al.

It is the second stage where our protocol differs, so we focus here on the details
of the gate garbling procedures.

The Gate Garbling Protocol. We describe the details of the sub-protocol
Π�BMR

GateGarbling (Fig. 13), implementing the gate garbling phase of F�BMR
Preprocessing.

Creating garbled AND gates is done similarly to the OT-based protocol [BLO16],
with the exception that we use short wire keys of length �BMR instead of κ. We
also show how to create sharings of garbled splitter gates without any interaction,
so these are much cheaper than AND gates.

Suppose that for an AND gate g, each Pi holds the wire mask share λi
v and

keys ki
v,0, k

i
v,1 ← {0, 1}�BMR . Pi defines Ri

g = ki
w,0 ⊕ ki

w,1. After that all parties
call FBit×Bit once to compute additive shares of λuv = λu · λv ∈ {0, 1}, which
are then used to locally compute shares of χg,a,b = (a ⊕ λu) · (b ⊕ λv) ⊕ λw, for
each (a, b) ∈ {0, 1}2. Each Pi obtains χi

g,a,b such that χg,a,b = ⊕i∈[n]χ
i
g,a,b. To

compute shares of the products χg,a,b · Ri
g, the parties call F�BMR

BitString(Pi) three
times, for each i ∈ [n], to multiply Ri

g with each of the bits λu, λv, (λuv ⊕ λw).
These can then be used for each Pj to locally obtain the shares (χg,a,b ·Ri

g)
j , for

all (a, b) ∈ {0, 1}2 (just as in [BLO16]).

The Gate Garbling Sub-protocol Π�BMR
GateGarbling

Common Input: a function H : [n]×{0, 1}×{0, 1}�BMR → {0, 1}n�BMR+1; H′ defined
as H excluding the least significant output bit; the gate g to be garbled.
Private Input: Each Pi, i ∈ [n], holds λi

v and ki
v,0, k

i
v,1, for each wire v.

1. If g ∈ AND with input wires {u, v} and output wire w:
(a) Each party Pi defines Ri

g = ki
w,0 ⊕ ki

w,1, for each i ∈ [n]
(b) Call FBit×Bit to compute shares of λu · λv, and use these to locally obtain

shares of

χg,a,b = (a ⊕ λu) · (b ⊕ λv) ⊕ λw, for (a, b) ∈ {0, 1}2

(c) Call F�BMR
BitString(Pi) to get shares of χg,a,b · Ri

g, for each i ∈ [n] and (a, b) ∈
{0, 1}2. Pi then sets ρi

i,a,b = ki
w,0 ⊕ (χg,a,b · Ri

g)i, and ∀j 	= i, Pj sets
ρj

i,a,b = (χg,a,b · Ri
g)j .

(d) Each Pi sets g̃i
a,b = H(i, b, ki

u,a) ⊕ H(i, a, ki
v,b) ⊕ (χi

g,a,b, ρ
i
1,a,b, . . . , ρ

i
n,a,b),

for a, b ∈ {0, 1}.
2. If g ∈ SPLIT with input wire w and output wires {u, v}:

(a) Call F2n�BMR
Zero twice, so that each Pi receives shares si

0, s
i
1 ∈ {0, 1}2n�BMR .

(b) Pi sets ρi
c = si

c ⊕ (0, . . . , ki
u,c, 0, . . . , ki

v,c, . . . , 0) for c ∈ {0, 1}.
(c) Set g̃i

c = H′(i, 0, ki
w,c),H′(i, 1, ki

w,c)
) ⊕ ρi

c, for c ∈ {0, 1}.

Fig. 13. The gate garbling sub-protocol

TinyKeys: A New Approach to Efficient Multi-Party Computation 27

After computing the bit/string products, Pj then computes for each (a, b) ∈
{0, 1}2:

ρj
i,a,b =

{
(χg,a,b · Ri

g)
j j �= i

ki
w,0 ⊕ (χg,a,b · Ri

g)
i j = i.

These values define shares of χg,a,b · Ri
g ⊕ ki

w,0. Finally, each party’s share of the
garbled AND gate is obtained as:

g̃i
a,b = H(i, b, ki

u,a) ⊕ H(i, a, ki
v,b) ⊕ (χi

g,a,b, ρ
i
1,a,b, . . . , ρ

i
n,a,b), a, b ∈ {0, 1}

Summing up these values we obtain:

⊕

i

g̃i
a,b =

⊕

i

H(i, b, ki
u,a) ⊕ H(i, a, ki

v,b) ⊕ (χi
g,a,b, ρ

i
1,a,b, . . . , ρ

i
n,a,b)

=
n⊕

i=1

(H(i, b, ki
u,a) ⊕ H(i, a, ki

v,b)) ⊕ (c, k1
w,c, . . . , k

n
w,c),

where c = χg,a,b, as required.
To garble a splitter gate, we observe that here there is no need for any secure

multiplications within MPC, and the parties can produce shares of the garbled
gate without any interaction. This is because the two output wire values are the
same as the input wire value, so to obtain a share of the encryption of the two
output keys on wires u, v with input wire w, party Pi just computes:

(H′(i, 0, ki
w,c),H

′(i, 1, ki
w,c)) ⊕ (0, . . . , ki

u,c, 0, . . . , ki
v,c, 0, . . . , 0)

for c ∈ {0, 1}, where the right-hand vector contains Pi’s keys in positions i and
n+i. The parties then re-randomize this sharing with a share of zero from FZero,
so that opening the shares does not leak information on the individual keys.4

4.4 Security and Complexity

The above approach reduces size of the garbled circuit by a factor κ/�BMR, for
�BMR-bit keys, but still requires n keys for every row in the garbled gates. Simi-
larly to Sect. 3, when n is large we can reduce this by using a (random) committee
P(h) of size nh that has at least h honest parties. Π�BMR

Preprocessing and Π�BMR
BMR are

then run as if called only by the parties in P(h). For circuit-input wires w where
parties in P \ P(h) provide input, they are sent the masks λw in Π�BMR

Preprocessing,
so in the online phase they can then broadcast Λw = ρi

w ⊕ λw in the same way
as parties in P(h).

4 For AND gates, the shares output by F�BMR
BitString are uniformly random, so do not

need re-randomizing with sharings of zero.

28 C. Hazay et al.

This reduces the size of the garbled circuit by an additional factor of n/nh.
Finally, the same committee P(h) can be combined with a (random) committee
P(1) with a single honest party in order to optimize the bit multiplications needed
to compute the χg,a,b values, as was described in Sect. 3.

In Sect. 5, we give some examples of committee sizes and key lengths that
ensure security, and compare this with the naive approach of running the prepro-
cessing phase of BMR in P(1) only. The following theorem is proved in [HOSS18].

Theorem 4.2. Protocol Π�BMR
Preprocessing UC-securely realizes the functionality

F�BMR
Preprocessing with perfect security in the (FBit×Bit,F�BMR

BitString,F2n�BMR
Zero)-hybrid

model in the presence of static honest-but-curious adversaries.

4.5 The Online Phase

Given the previous description of the garbling phase, the online phase is quite
straightforward, where upon reconstructing the garbled circuit and obtaining all
input keys, the evaluation process is similar to [BMR90]. As in that work, all par-
ties run the evaluation algorithm, which in our case involves each party comput-
ing just 2n hash evaluations per gate. During evaluation, the parties only see the
randomly masked wire values, which we call “public values”, and cannot deter-
mine the actual values being computed. Upon completion, the parties obtain
the actual output using the output wire masks revealed from F�BMR

Preprocessing. The
security of the protocol reduces to the DRSDr,h,�BMR problem, where �BMR is the
key length, h is the number of honest parties, and r is twice the output length
of the function H (sampled by the CRS).

Table 1. Amortized communication cost (in kbit) of producing a single triple in GMW.
We consider [DKS+17] for 1-out-of-4 OT extension in the GMW protocols, and the
protocol from Sect. 3 in our work.

parties n (honest) 20 (6) 50 (15) 60 (20) 80 (30) 150 (40) 200 (50) 400 (120)
(�OT, r) (31, 300) (14, 300) (11, 300) (8, 300) (7, 400) (6, 450) (1, 80)

GMW (t = n − 1) 25.46 164.15 237.18 423.44 1497.5 2666.6 10693.2
GMW (t = n − h) 14.07 84.42 109.88 170.85 818.07 1517.55 5271.56

Ours 12.89 37 40.38 50.01 169.36 261.6 403.63

We remark that in practice, we may want to implement the random function
H in the CRS using fixed-key AES in the ideal cipher model, as is common for
garbling schemes based on free-XOR. In [HOSS18], we show that this reduces
the number of AES calls from O(n2) in previous BMR protocols to O(n2�BMR/κ).
The protocol and the complete proof can be found in [HOSS18].

5 Complexity Analysis and Implementation Results

We now compare the complexity of the most relevant aspects of our approach to
the state-of-the-art prior results in semi-honest MPC protocols with dishonest

TinyKeys: A New Approach to Efficient Multi-Party Computation 29

majority. To demonstrate the practicality of our approach, we also present imple-
mentation results for the online evaluation phase of our BMR-based protocol.
Further details can be found on [HOSS18].

5.1 Threshold Variants of Full-Threshold Protocols

Since the standard GMW and BMR-based protocols allow for up to n−1 corrup-
tions, we also show how to modify previous protocols to support some threshold
t, and compare our protocols with these variants. The method is very simple
(and similar to the use of committees in our protocols), but does not seem to
have been explicitly mentioned in previous literature. To evaluate a circuit C,
all parties first secret-share their inputs to an arbitrarily chosen committee P ′,
of size t+1. Committee P ′ runs the full-threshold protocol for a modified circuit
C ′, which takes all the shares as input, and first XORs them together so that
it computes the same function as C. The committee P ′ then sends the output
to all parties in P. The complexity of the threshold-t variant of a full-threshold
protocol, Π, is then essentially the same as running Π between t + 1 parties
instead of n.

5.2 GMW-Style Protocol

10 20 30 40 50 60 70 80

0

200

400

600

Number of honest parties

n = 100

GMW, t = n− h
Ours

Fig. 14. Amortized communication
cost (in kbit) for producing triples in
GMW for n = 100 parties

We now compare the communication cost
of our triple generation protocol with
the best-known instantiation of GMW,
namely a variant based on 1-out-of-4 OT
to generate triples, recently optimized
by [DKS+17] in the 2-party setting. This
easily extends to the multi-party case with
communication complexity O(n2κ/ log κ)
bits per AND gate, so we consider both
full-threshold and threshold-t (Sect. 5.1)
variants. Note that our protocol from
Sect. 3 has complexity O(nt�) when using
deterministic committees.

As can be seen in Table 1 and Fig. 14,
for a fixed number of honest parties h, the
improvement of our protocol over GMW
(threshold t) becomes greater as the total number of parties increases. Our pro-
tocol starts to beat the best-known GMW protocol for producing multiplication
triples when there are just 6 honest parties. For example, with 20 parties and
14 corruptions, the communication cost of our protocol is roughly 10% lower
than threshold-14 GMW, and only 2 times lower than the cost of standard,
full threshold GMW. As the number of parties (and honest parties) grows, our
improvements become even greater, and when the number of honest parties is
more than 80, we can use 1-bit keys and improve upon the threshold variant of
GMW by more than 13 times.

30 C. Hazay et al.

In [HOSS18], we also analyse the complexity of our protocol when using
random committees, and compare this with the standard approach of running
full-threshold GMW in a single random committee.

5.3 BMR-Style Protocol

Communication Complexity. To show the efficiency of our constant-round
garbling protocol from Sect. 4.5, we provide Table 2, which has two parts. First,
it compares the amortized communication complexity incurred for garbling an
AND gate with [BLO16]. We recall that this is the dominating cost for BMR-
style protocols using Free-XOR, and that we incur no communication for creating
shares of garbled splitter gates. Note that in the first setting of n = 20, t = 10,
although our communication costs are around 3 times lower than [BLO16], we
do not improve upon the threshold-t variant of that protocol, described earlier.
Once we get to 50 parties, though, we start to improve upon [BLO16], with a
reduction in communication going up to 7x for 400 parties and 10x for 1000
parties.

Table 2. Communication complexity for garbling, and size of garbled gates, in BMR-
style protocols in kbit. A = #AND gates, S = #Splitter gates, X = #XOR gates.

parties (honest) 20 (10) 50 (20) 80 (32) 100 (40) 200 (60) 400 (120) 1000 (160)

(�BMR, �OT, r) (32, 23, 530) (27, 13, 450) (17, 8, 380) (15, 7, 400) (8, 5, 370) (8, 1, 80) (8, 1, 120)

[BLO16] (Gb P) 341.24 2200.1 5675.36 8890 35740 143320.8 897102

[BLO16] (Gb P(1)) 98.78 835.14 2112.1 3286.7 17726.45 70654.7 634383.12

Ours (Garbling) 111.7 747.63 1750.48 2678.74 5448.36 10114.99 64474.1

[BLO16] (|GC| P) 10.24A 25.6A 40.96A 51.2A 102.4A 204.8A 512A

[BLO16] (|GC| P(1)) 5.632A 15.88A 25.1A 31.23A 72.19A 143.9A 430.6A

[BLO17] (|GC|) 12.29(A + X) 12.29(A + X) 12.29(A + X) 12.29(A + X) 12.29(A + X) 12.29(A + X) 12.29(A + X)

Ours (|GC|) 2.56(A + S) 5.4(A + S) 5.45(A + S) 6(A + S) 6.4(A + S) 12.8(A+S) 32(A+S)

20 40 60 80

0

2,000

4,000

6,000

Number of honest parties

C
om

m
un

ic
at
io
n
co
m
pl
ex
it
y
(k
bi
t)

n = 100

BLO16
Ours

50 100 150 200 250 300

0

0.5

1

1.5

2

·105

Number of honest parties

n = 500

BLO16
Ours

Fig. 15. Communication complexity cost (in kbit) for garbling when n = 100 and
n = 500

TinyKeys: A New Approach to Efficient Multi-Party Computation 31

The second half of the table shows the size of the garbled circuit in terms
of the total number of AND, XOR and splitter gates. Garbled circuit size only
has a slight impact on communication complexity, when opening the garbled
circuit, which is much lower than the communication in the rest of the garbling
phase. However, if an implementation needs to store the entire garbled circuit in
memory (either for evaluation, or storage for later use) then it is also important to
optimize its size. Here we also compare with [BLO17], which recently showed how
to construct a compact multi-party garbled circuit based on key-homomorphic
PRFs. The size of their garbled circuit is constant and grows with O(κ) per gate,
with security proven in the presence of n − 1 corrupted parties. On the other
hand, their construction has much larger key sizes, does not support free-XOR,
and has a more expensive preprocessing phase needing O(n) secret-shared finite
field multiplications per gate. In Fig. 15 we show the communication complexity
of garbling when n = 100, 500 and for different number of honest parties.

References

[ADS+17] Asharov, G., Demmler, D., Schapira, M., Schneider, T., Segev, G., Shenker,
S., Zohner, M.: Privacy-preserving interdomain routing at internet scale.
PoPETs 2017(3), 147 (2017)

[AFL+16] Araki, T., Furukawa, J., Lindell, Y., Nof, A., Ohara, K.: High-throughput
semi-honest secure three-party computation with an honest majority. In:
Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.)
ACM CCS 2016, pp. 805–817. ACM Press, October 2016

[AFS03] Augot, D., Finiasz, M., Sendrier, N.: A fast provably secure cryptographic
hash function. IACR Cryptology ePrint Archive 2003:230 (2003)

[AJL+12] Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V.,
Wichs, D.: Multiparty computation with low communication, computation
and interaction via threshold FHE. In: Pointcheval, D., Johansson, T. (eds.)
EUROCRYPT 2012. LNCS, vol. 7237, pp. 483–501. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-29011-4 29

[ALSZ13] Asharov, G., Lindell, Y., Schneider, T., Zohner, M.: More efficient oblivious
transfer and extensions for faster secure computation. In: Sadeghi, A.-R.,
Gligor, V.D., Yung, M. (eds.) ACM CCS 2013, pp. 535–548. ACM Press,
November 2013

[App16] Applebaum, B.: Garbling XOR gates “for free” in the standard model. J.
Cryptol. 29(3), 552–576 (2016)

[Bea92] Beaver, D.: Efficient multiparty protocols using circuit randomization. In:
Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432. Springer,
Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1 34

[BLO16] Ben-Efraim, A., Lindell, Y., Omri, E.: Optimizing semi-honest secure mul-
tiparty computation for the internet. In: Weippl, E.R., Katzenbeisser, S.,
Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016, pp. 578–590.
ACM Press, October 2016

[BLO17] Ben-Efraim, A., Lindell, Y., Omri, E.: Efficient scalable constant-round
MPC via garbled circuits. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT
2017. LNCS, vol. 10625, pp. 471–498. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-70697-9 17

https://doi.org/10.1007/978-3-642-29011-4_29
https://doi.org/10.1007/3-540-46766-1_34
https://doi.org/10.1007/978-3-319-70697-9_17
https://doi.org/10.1007/978-3-319-70697-9_17

32 C. Hazay et al.

[BMR90] Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure proto-
cols (extended abstract). In: 22nd ACM STOC, pp. 503–513. ACM Press,
May 1990

[BO17] Ben-Efraim, A., Omri, E.: Concrete efficiency improvements for multiparty
garbling with an honest majority. In: Latincrypt 2017 (2017)

[BOGW88] Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems
for non-cryptographic fault-tolerant distributed computation (extended
abstract). In: 20th ACM STOC, pp. 1–10. ACM Press, May 1988

[Bra85] Bracha, G.: An O(lg n) expected rounds randomized byzantine generals
protocol. In: 17th ACM STOC, pp. 316–326. ACM Press, May 1985

[Can01] Canetti, R.: Universally composable security: a new paradigm for crypto-
graphic protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society
Press, October 2001

[CCD88] Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure
protocols (extended abstract). In: 20th ACM STOC, pp. 11–19. ACM Press,
May 1988

[DKS+17] Dessouky, G., Koushanfar, F., Sadeghi, A.-R., Schneider, T., Zeitouni, S.,
Zohner, M.: Pushing the communication barrier in secure computation
using lookup tables. In: NDSS (2017)

[DMS04] Dingledine, R., Mathewson, N., Syverson, P.F.: Tor: the second-generation
onion router. In: USENIX, pp. 303–320 (2004)

[DN07] Damg̊ard, I., Nielsen, J.B.: Scalable and unconditionally secure multiparty
computation. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp.
572–590. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-
74143-5 32

[Gen09] Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzen-
macher, M. (ed.) 41st ACM STOC, pp. 169–178. ACM Press, May/June
2009

[GMW87] Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a
completeness theorem for protocols with honest majority. In: Aho, A. (ed.)
19th ACM STOC, pp. 218–229. ACM Press, May 1987

[Gol04] Goldreich, O.: The Foundations of Cryptography - Volume 2, Basic Appli-
cations. Cambridge University Press, Cambridge (2004)

[HOSS18] Hazay, C., Orsini, E., Scholl, P., Soria-Vazquez, E.: Efficient MPC from
syndrome decoding (or: Honey, I shrunk the keys) (2018). https://eprint.
iacr.org/2018/208

[HSS17] Hazay, C., Scholl, P., Soria-Vazquez, E.: Low cost constant round MPC
combining BMR and oblivious transfer. In: Takagi, T., Peyrin, T. (eds.)
ASIACRYPT 2017. LNCS, vol. 10624, pp. 598–628. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-70694-8 21

[IKNP03] Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious trans-
fers efficiently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp.
145–161. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-
45146-4 9

[KK13] Kolesnikov, V., Kumaresan, R.: Improved OT extension for transferring
short secrets. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II.
LNCS, vol. 8043, pp. 54–70. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-40084-1 4

https://doi.org/10.1007/978-3-540-74143-5_32
https://doi.org/10.1007/978-3-540-74143-5_32
https://eprint.iacr.org/2018/208
https://eprint.iacr.org/2018/208
https://doi.org/10.1007/978-3-319-70694-8_21
https://doi.org/10.1007/978-3-540-45146-4_9
https://doi.org/10.1007/978-3-540-45146-4_9
https://doi.org/10.1007/978-3-642-40084-1_4
https://doi.org/10.1007/978-3-642-40084-1_4

TinyKeys: A New Approach to Efficient Multi-Party Computation 33

[KMR14] Kolesnikov, V., Mohassel, P., Rosulek, M.: FleXOR: flexible garbling for
XOR gates that beats free-XOR. In: Garay, J.A., Gennaro, R. (eds.)
CRYPTO 2014, Part II. LNCS, vol. 8617, pp. 440–457. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-44381-1 25

[KS08] Kolesnikov, V., Schneider, T.: Improved garbled circuit: free XOR gates and
applications. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol.
5126, pp. 486–498. Springer, Heidelberg (2008). https://doi.org/10.1007/
978-3-540-70583-3 40

[LPSY15] Lindell, Y., Pinkas, B., Smart, N.P., Yanai, A.: Efficient constant round
multi-party computation combining BMR and SPDZ. In: Gennaro, R., Rob-
shaw, M. (eds.) CRYPTO 2015, Part II. LNCS, vol. 9216, pp. 319–338.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-7 16

[LSS16] Lindell, Y., Smart, N.P., Soria-Vazquez, E.: More efficient constant-round
multi-party computation from BMR and SHE. In: Hirt, M., Smith, A. (eds.)
TCC 2016, Part I. LNCS, vol. 9985, pp. 554–581. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53641-4 21

[NR17] Nielsen, J.B., Ranellucci, S.: On the computational overhead of MPC with
dishonest majority. In: Fehr, S. (ed.) PKC 2017, Part II. LNCS, vol. 10175,
pp. 369–395. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-
662-54388-7 13

[TX03] Tate, S.R., Xu, K.: On garbled circuits and constant round secure function
evaluation. CoPS Lab, University of North Texas, Technical report 2:2003
(2003)

[Yao86] Yao, A.C.-C.: How to generate and exchange secrets (extended abstract).
In: 27th FOCS, pp. 162–167. IEEE Computer Society Press, October 1986

https://doi.org/10.1007/978-3-662-44381-1_25
https://doi.org/10.1007/978-3-540-70583-3_40
https://doi.org/10.1007/978-3-540-70583-3_40
https://doi.org/10.1007/978-3-662-48000-7_16
https://doi.org/10.1007/978-3-662-53641-4_21
https://doi.org/10.1007/978-3-662-54388-7_13
https://doi.org/10.1007/978-3-662-54388-7_13

Fast Large-Scale Honest-Majority MPC
for Malicious Adversaries

Koji Chida1, Daniel Genkin2, Koki Hamada1, Dai Ikarashi1, Ryo Kikuchi1,
Yehuda Lindell3(B), and Ariel Nof3

1 NTT Secure Platform Laboratories, Tokyo, Japan
{chida.koji,hamada.koki,ikarashi.dai,kikuchi.ryo}@lab.ntt.co.jp

2 University of Michigan, Ann Arbor, USA
genkin@umich.edu

3 Bar-Ilan University, Ramat Gan, Israel
{yehuda.lindell,ariel.nof}@biu.ac.il

Abstract. Protocols for secure multiparty computation enable a set of
parties to compute a function of their inputs without revealing anything
but the output. The security properties of the protocol must be pre-
served in the presence of adversarial behavior. The two classic adversary
models considered are semi-honest (where the adversary follows the pro-
tocol specification but tries to learn more than allowed by examining
the protocol transcript) and malicious (where the adversary may follow
any arbitrary attack strategy). Protocols for semi-honest adversaries are
often far more efficient, but in many cases the security guarantees are
not strong enough.

In this paper, we present new protocols for securely computing any
functionality represented by an arithmetic circuit. We utilize a new
method for verifying that the adversary does not cheat, that yields a cost
of just twice that of semi-honest protocols in some settings. Our proto-
cols are information-theoretically secure in the presence of a malicious
adversaries, assuming an honest majority. We present protocol variants
for small and large fields, and show how to efficiently instantiate them
based on replicated secret sharing and Shamir sharing. As with previous
works in this area aiming to achieve high efficiency, our protocol is secure
with abort and does not achieve fairness, meaning that the adversary may
receive output while the honest parties do not.

We implemented our protocol and ran experiments for different num-
bers of parties, different network configurations and different circuit
depths. Our protocol significantly outperforms the previous best for this
setting (Lindell and Nof, CCS 2017); for a large number of parties, our
implementation runs almost an order of magnitude faster than theirs.

Supported by the European Research Council under the ERC consolidators grant
agreement no. 615172 (HIPS) and by the BIU Center for Research in Applied Cryp-
tography and Cyber Security in conjunction with the Israel National Cyber Bureau
in the Prime Minister’s Office.

c© International Association for Cryptologic Research 2018
H. Shacham and A. Boldyreva (Eds.): CRYPTO 2018, LNCS 10993, pp. 34–64, 2018.
https://doi.org/10.1007/978-3-319-96878-0_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96878-0_2&domain=pdf

Fast Large-Scale Honest-Majority MPC for Malicious Adversaries 35

1 Introduction

1.1 Background

Protocols for secure computation enable a set of parties with private inputs to
compute a joint function of their inputs while revealing nothing but the output.
The security properties typically required from secure computation protocols
include privacy (meaning that nothing but the output is revealed), correctness
(meaning that the output is correctly computed), independence of inputs (mean-
ing that a party cannot choose its input as a function of the other parties’ inputs),
fairness (meaning that if one party gets output then so do all), and guaranteed
output delivery (meaning that all parties always receive output). Formally, the
security of a protocol is proven by showing that it behaves like an ideal exe-
cution with an incorruptible trusted party who computes the function for the
parties [3,7,16,17]. In some cases, fairness and guaranteed output delivery are
not required, in which case we say that the protocol is secure with abort. This is
standard in the case of no honest majority since not all functions can be com-
puted fairly without an honest majority [9], but security with abort can also in
order to aid the construction of highly efficient protocols (e.g., as in [2,22]).

Despite the stringent requirements on secure computation protocols, in the
late 1980s it was shown that any probabilistic polynomial-time functionality can
be securely computed. This was demonstrated in the computational setting for
any t < n [16,19,26] (with security with abort for the case of t ≥ n/2), in the
information-theoretic setting with t < n/3 [5,8], and in the information-theoretic
setting with t < n/2 assuming a broadcast channel [24]. These feasibility results
demonstrate that secure computation is possible. However, significant work is
needed to construct protocols that are efficient enough to use in practice.

1.2 Our Contributions

In this paper, we consider the problem of constructing highly efficient protocols
that are secure in the presence of static malicious adversaries who control at
most t < n/2 corrupted parties. Our protocol is fundamentally information-
theoretic, but some efficient instantiations are computational (e.g., in order to
generate correlated randomness). In the aim of achieving high efficiency, our
protocols do not achieve fairness (even though this is fundamentally possible in
our setting where t < n/2).

Our constructions work by securely computing an arithmetic circuit repre-
sentation of the functionality over a finite field F. This representation is very
efficient for computations where many additions and multiplications are needed,
like secure statistics. The starting point of our protocols utilizes the significant
observation made by [14,15] that many protocols for semi-honest multiplica-
tion are actual secure in the presence of malicious adversaries up to an additive
attack. This means that the only way an adversary can cheat is to make the
result of the multiplication of shares of x and y be shares of x · y + d, where d
is an explicit value that the adversary knows (in this paper, we formalize this

36 K. Chida et al.

property via an ideal functionality definition). Since d is known by the adver-
sary, it is independent of the values being multiplied, unless the adversary has
some prior knowledge of these values. This property was utilized by [14,15] by
having the multiplication be over randomized values, and making any cheating
be detected unless the adversary is lucky enough to make the additive attack
value match between different randomizations.

Our protocol works by running multiple circuit computations in parallel: one
that computes the circuit over the real inputs and others which compute the
circuit over randomized inputs. The outputs of the randomized circuits are then
used to verify the correctness of the “original” circuit computation, thereby
constituting a SPDZ-like MAC [13]. Security is achieved by the fact that the
randomness is kept secret throughout the computation, and so any cheating by
the adversary will be detected. All multiplications of shares are carried out using
semi-honest protocols (that are actually secure for malicious adversaries up to
an additive attack). Since this dominates the cost of the secure computation
overall, the resulting protocol is highly-efficient. We present different protocols
for the case of small and large fields, where a field is “large” if it is bigger than
2σ where σ is the statistical security parameter. Our protocol for large fields
requires computing one randomized circuit only, and the protocol for small fields
requires δ randomized circuits where δ is such that (|F|/3)δ≥2σ. We note that
our protocol for small fields can be run with δ = 1 in the case of a large field,
but in this case has about 10% more communication than the protocol that is
dedicated to large fields. Both protocols have overall communication complexity
that grows linearly with the number of parties (specifically, each party sends a
constant number of field elements for each multiplication gate).

Based on the above, the running time of our protocol over large fields is just
twice the cost of a semi-honest protocol, and the running time of our proto-
col over small fields is just δ + 1 times the cost of a semi-honest protocol. As
we discuss in the related work below, this is far more efficient than the proto-
cols of [14,15] and the more recent protocol of [22]. The exact efficiency of our
protocols depends on the specific instantiations of the secret sharing method,
multiplication protocol and more. As in [22], we consider two main instantia-
tions: one based on Shamir secret sharing for any number of parties, and one
based on replicated secret sharing for the specific case of three parties. With our
protocol we show that it is possible to compute any arithmetic circuit over large
fields in the presence of malicious adversaries and an honest majority, at the cost
of each party sending only 12 field elements per multiplication gate. For 3-party
computation, we show that using replicated sharing, this cost can be reduced to
only 2 field elements sent by each party per multiplication gate.

1.3 Experimental Results

We implemented our protocol for large fields, using replicated secret sharing
for 3 parties and Shamir sharing for any number of parties. We then ran our
implementation on AWS in two configurations: a LAN network configuration in
a single AWS region (specifically, North Virginia), and a WAN network configu-
ration with parties spread over three AWS regions (specifically, North Virginia,
Germany and India). Each party was run in an independent AWS C4.large

Fast Large-Scale Honest-Majority MPC for Malicious Adversaries 37

instance (2-core Intel Xeon E5-2666 v3 with 2.9 GHz clock speed and 3.75 GB
RAM). We ran extensive experiments to analyze the efficiency of our protocols
for different numbers of parties on a series of circuits of different depths, each
with 1,000,000 multiplication gates, 1,000 inputs wires, and 50 output wires.
The field we used for all our experiments was the 61-bit Mersenne field (and
so security is approximately 2−60). Our experiments show that our protocols
have very good performance for all ranges of numbers of parties, especially in
the LAN configuration (due to the protocol not being constant round). In par-
ticular, this 1 million gates large circuit with depth-20 can be computed in the
LAN configuration in about 300 ms with three parties, 4 s with 50 parties, and
8 s with 110 parties. In the WAN configuration, the running time for this circuit
is about 20 s for 3 parties, and about 2 min for 50 parties (at depth 100, the
running time ranges from 45 s for 3 parties to 3.25 min for 50 parties). Thus, our
protocols can be used in practice to compute arithmetic computations (like joint
statistics) between many parties, while providing malicious security.

The previous best result in this setting was recently achieved in [22]. A circuit
of the same size and depth-20 was computed by them in half a second with three
parties, 29 s with 50 parties and 70 s with 100 parties. Our protocols run much
faster than theirs, from approximately twice as fast for a small number of parties
and up to 10 times faster for a large number of parties.

1.4 Related Work

There is a large body of research focused on improving the efficiency of secure
computation protocols. This work is roughly divided up into constructions of
concretely efficient and asymptotically efficient protocols. Concretely efficient
protocols are often implemented and aim to obtain the best overall running time,
even if the protocol is not asymptotically optimal (e.g., it may have quadratic
complexity and not linear complexity, but for a small number of parties the con-
stants are such that the quadratic protocol is faster). Asymptotically efficient
protocols aim to reduce the cost of certain parts of the protocols (rounds, commu-
nication complexity, etc.), and are often not concretely very efficient. However,
in many cases, asymptotically efficient protocols provide techniques that inform
the construction of concretely efficient protocols.

In the case of multiparty computation (with more than two parties) with a
dishonest majority, concretely efficient protocols were given in [6,11,13,20]. This
setting is much harder than that of an honest majority, and the results are there-
fore orders of magnitude slower (the state-of-the art SPDZ protocol [21] achieves
a throughput of around 30,000 multiplication gates per second with 2 parties in
some settings whereas we achieve a throughput of more than 1 million gates per
second). For the case of an honest majority and arithmetic circuits, the previous
best protocol is that of [22], and they include an in-depth comparison of their pro-
tocol to previous work, both concretely and asymptotically. Our protocol is fun-
damentally different from [22]. In their protocol, they use Beaver triples to verify
correctness. Their main observation is that it is much more efficient to replace
expensive opening operations with multiplication operation, since multiplication

38 K. Chida et al.

can be done with constant communication cost per party in the honest majority
setting. We also use this observation but do not use Beaver triples at all. Thus, in
our protocol, the parties are not required to generate and store these triples. As
a result, our protocol has half the communication cost of [22] for 3 parties using
replicated secret sharing (with each party sending 2 field elements here versus 4
field elements in [22] per multiplication gate), and less than a third of the com-
munication cost of [22] for many parties using Shamir sharing (with each party
sending 12 field elements here versus 42 field elements in [22] per multiplication
gate). Experimentally, our protocol way outperforms [22], as shown in Sect. 6.3,
running up to almost 10 times faster for a large number of parties.

The setting of t < n/2 and malicious adversaries was also studied in [1,2,
23], including implementations. However, they consider only three parties and
Boolean circuits.

2 Preliminaries and Definitions

Notation. Let P1, ..., Pn denote the n parties participating in the computation,
and let t denote the number of corrupted parties. In this work, we assume an
honest majority, and thus t < n

2 . Throughout the paper, we use H to denote the
subset of honest parties and C to denote the subset of corrupted parties. Finally,
we denote by F a finite field and by |F| its size.

2.1 Threshold Secret Sharing

A t-out-of-n secret sharing scheme enables n parties to share a secret v ∈ F so
that no subset of t parties can learn any information about it, while any subset
of t + 1 parties can reconstruct it. We require that the secret sharing scheme
used in our protocol supports the following procedures:

– share(v): In this procedure, a dealer shares a value v ∈ F. For simplicity,
we consider non-interactive secret sharing, where there exists a probabilistic
dealer D that receives v (and some randomness) and outputs shares v1, . . . , vn,
where vi is the share intended for party Pi. We denote the sharing of a value
v by [v]. We use the notation [v]J to denote the shares held by a subset of
parties J ⊂ {P1, . . . , Pn}. We stress that if the dealer is corrupted, then the
shares received by the parties may not be correct. Nevertheless, we abuse
notation and say that the parties hold shares [v] even if these are not correct.
We will define correctness of a sharing formally below.

– share(v, [v]J): This non-interactive procedure is similar to the previous pro-
cedure, except that here the shares of a subset J of parties with |J | ≤ t are
fixed in advance. We assume that there exists a probabilistic algorithm D̃
that receives v, [v]J = {v′

j}j|Pj∈J (and some randomness) and outputs shares
v1, . . . , vn where vi is party Pi’s share, and vj = v′

j for every Pj ∈ J .
We also assume that if |J | = t, then [v]J together with v fully determine all
shares v1, . . . , vn. This also means that any t + 1 shares fully determine all
shares. (This follows since with t+1 shares one can always obtain v. However,
for the secret sharing schemes we use, this holds directly as well.)

Fast Large-Scale Honest-Majority MPC for Malicious Adversaries 39

– reconstruct([v], i): Given a sharing of v and an index i held by the parties, this
interactive protocol guarantees that if [v] is not correct (see formal definition
below), then Pi will output ⊥ and abort. Otherwise, if [v] is correct, then Pi

will either output v or will abort.
– open([v]): Given a sharing of v held by the parties, this procedure guarantees

that at the end of the execution, if [v] is not correct, then all the honest parties
will abort. Otherwise, if [v] is correct, then each party will either output v or
will abort. Clearly, open can be run by any subset of t + 1 or more parties.
We require that if any subset J of t + 1 honest parties output a value v, then
any superset of J will output either v or ⊥ (but no other value).

– local operations: Given correct sharings [u] and [v] and a scalar α ∈ F, the
parties can generate correct sharings of [u + v], [α · v] and [v + α] using
local operations only (i.e., without any interaction). We denote these local
operations by [u] + [v], α · [v], and [v] + α, respectively.

Standard secret sharing schemes like Shamir and replicated secret sharing sup-
port all of these procedures (with their required properties). Throughout the
entire paper, we set the threshold for the secret sharing scheme to be �n−1

2 �,
and we denote by t the number of corrupted parties. Since we assume an honest
majority, it holds that t < n/2 and so the corrupted parties can learn nothing
about a shared secret.

We now define correctness for secret sharing. Let J be a subset of honest
parties of size t + 1, and denote by val([v])J the value obtained by these parties
after running the open procedure, where no corrupted parties or additional hon-
est parties participate. Note that val([v])J may equal ⊥ if the shares held by the
honest parties are not valid. Informally, a secret sharing is correct if every subset
of t + 1 honest parties reconstruct the same value (which is not ⊥). Formally:

Definition 2.1. Let H ⊆ {P1, . . . , Pn} denote the set of honest parties. A shar-
ing [v] is correct if there exists a value v′ ∈ F (v′
= ⊥) such that for every J ⊆ H
with |J | = t + 1 it holds that val([v])J = v′.

In the full version of the paper we show how to efficiently verify that a series of
m shares are correct. Although not required in our general protocol, in some of our
instantiations it is needed to verify that sharing of secrets is carried out correctly.

2.2 Security Definition

We use the standard definition of security based on the ideal/real model
paradigm [7,19], with security formalized for non-unanimous abort. This means
that the adversary first receives the output, and then determines for each honest
party whether they will receive abort or receive their correct output.

3 Building Blocks and Sub-Protocols

In this section, we define a series of building blocks that we need for our proto-
col. The presentation here is general, and each basic protocol can be efficiently
realized using standard secret sharing schemes. We describe these instantiations
in Sect. 6.2.

40 K. Chida et al.

3.1 Generating Random Shares

We define the ideal functionality Frand to generate a sharing of a random value
unknown to the parties. A formal description appears in Functionality 3.1.
The functionality lets the adversary choose the corrupted parties’ shares, which
together with the random secret chosen by the functionality, are used to compute
the shares of the honest parties.

FUNCTIONALITY 3.1 (Frand - Generating Random Shares)

Upon receiving αi for each i with Pi ∈ C from the ideal adversary S, the ideal
functionality Frand chooses a random r ∈ F, sets [r]C = {αi}i|Pi∈C and runs
share(r, [r]C) to receive a share ri for each party Pi. Then, it hands each honest
party Pj its share rj .

As we have mentioned, the way we compute this functionality depends on
the specific secret sharing scheme that is being used, and will be described in
the instantiations in Sect. 6.2.

3.2 Generating Random Coins

Fcoin is an ideal functionality that chooses a random element from F and hands
it to all parties. A simple way to compute Fcoin is to use Frand to generate a
random sharing and then open it. We formally describe and prove this in the
full version of the paper.

3.3 Finput – Secure Sharing of Inputs

In this section, we present our protocol for secure sharing of the parties’ inputs.
The protocol is very simple: for each input x belonging to a party Pj , the parties
call Frand to generate a random sharing [r]; denote the share held by Pi by
ri. Then, r is reconstructed to Pj , who echo/broadcasts x − r to all parties.
Finally, each Pi outputs the share [r + (x − r)] = [x]. This is secure since Frand

guarantees that the sharing of r is correct, which in turn guarantees that the
sharing of x is correct (since adding x − r is a local operation only). In order to
ensure that Pj sends the same value x−r to all parties, a basic echo-broadcast is
used. This is efficient since all inputs can be shared in parallel, utilizing a single
echo broadcast. The formal definition of the ideal functionality for input sharing
appears in Functionality 3.2.

FUNCTIONALITY 3.2 (Finput - Sharing of Inputs)

1. Functionality Finput receives inputs v1, . . . , vM ∈ F from the parties. For ev-
ery i = 1, . . . , M , Finput also receives from S the shares [vi] of the corrupted
parties for the ith input.

2. For every i = 1, . . . , M , Finput computes all shares (v1
i , . . . , vn

i) =
share(vi, [vi]C).
For every j = 1, . . . , n, Finput sends Pj its output shares (vj

1, . . . , v
j
M).

Fast Large-Scale Honest-Majority MPC for Malicious Adversaries 41

A formal description appears in Protocol 3.3.

PROTOCOL 3.3 (Secure Sharing of Inputs)

– Inputs: Let v1, . . . , vM ∈ F be the series of inputs; each vi is held by some Pj .
– The protocol:

1. The parties call Frand M times to obtain sharings [r1], . . . , [rM].
2. For i = 1, . . . , M , the parties run reconstruct([ri], j) for Pj to receive ri,

where Pj is the owner of the ith input. If Pj receives ⊥, then it sends ⊥ to
all parties, outputs abort and halts.

3. For i = 1, . . . , M , party Pj sends wi = vi − ri to all parties.
4. All parties send �w = (w1, . . . , wM), or a collision-resistant hash of the vector,

to all other parties. If any party receives a different vector to its own, then
it outputs ⊥ and halts.

5. For each i = 1, . . . , M , the parties compute [vi] = [ri] + wi.
– Outputs: The parties output [v1], . . . , [vM].

We now prove that Protocol 3.3 securely computes Finput specified in Func-
tionality 3.2.

Proposition 3.4. Protocol 3.3 securely computes Functionality 3.2 with abort
in the presence of malicious adversaries controlling t < n/2 parties.

Proof: Let A be the real adversary. We construct a simulator S as follows:

1. S receives [ri]C (for i = 1, . . . ,M) that A sends to Frand in the protocol.
2. For every i ∈ {1, . . . , M}, S chooses a random ri and computes (r1i , . . . , rn

i) =
share(ri, [ri]C). (This computation may be probabilistic or deterministic,
depending on how many parties are corrupted.)

3. S simulates the honest parties in all reconstruct executions. If an honest party
Pj receives ⊥ in the reconstruction, then S simulates it sending ⊥ to all
parties. Then, S simulates all honest parties aborting.

4. S simulates the remainder of the execution, obtaining all wi values from A
associated with corrupted parties’ inputs, and sending random wj values for
inputs associated with honest parties’ inputs.

5. For every i for which the ith input is that of a corrupted party Pj , simulator
S sends the trusted party computing Finput the input value vi = wi + ri.

6. For every i = 1, . . . , M , S defines the corrupted parties’ shares [vi]C to be
[ri +wi]C . (Observe that S has [vi]C and merely needs to add the scalar wi to
each corrupted party’s share.) Then, S sends [v1]C , . . . , [vM]C to the trusted
party computing Finput.

7. For every honest party Pj , if it aborted in the simulation, then S sends abortj
to the trusted party computing Finput; else, it sends continuej .

8. S outputs whatever A outputs.

The only difference between the simulation by S and a real execution is that
S sends random values wj for inputs associated with honest parties’ inputs.
However, by the perfect secrecy of secret sharing, this is distributed identically
to a real execution.

42 K. Chida et al.

3.4 Secure Multiplication up to Additive Attacks [14,15]

Our construction works by running a multiplication protocol (for multiplying two
values that are shared among the parties) that is not fully secure in the presence
of a malicious adversary and then running a verification step that enables the
honest parties to detect cheating. In order to do this, we start with a multiplica-
tion protocols with the property that the adversary’s ability to cheat is limited
to carrying a so-called “additive attack” on the output. Formally, we say that
a multiplication protocol is secure up to an additive attack if it realizes Fmult

defined in Functionality 3.5. This functionality receives input sharings [x] and [y]
from the honest parties and an additive value d from the adversary, and outputs
a sharing of x ·y+d. (Since the corrupted parties can determine their own shares
in the protocol, the functionality allows the adversary to provide the shares of
the corrupted parties, but this reveals nothing about the shared value.)

FUNCTIONALITY 3.5 (Fmult - Secure Mult. Up To Additive Attack)

1. Upon receiving [x]H and [y]H from the honest parties, the ideal function-
ality Fmult computes x, y and the corrupted parties shares [x]C and [y]C .

2. Fmult hands [x]C and [y]C to the ideal-model adversary/simulator S.
3. Upon receiving d and {αi}i|Pi∈C from S, functionality Fmult defines z =

x · y + d and [z]C = {αi}i|Pi∈C . Then, it runs share(z, [z]C) to obtain a
share zj for each party Pj .

4. The ideal functionality Fmult hands each honest party Pj its share zj .

As we will discuss in the instantiations section (Sect. 6.2), the requirements
defined by this functionality can be met by several semi-honest multiplication
protocols. This will allow us to compute this functionality in a very efficient way.

3.5 Checking Equality to 0

In this section, we present a protocol to check whether a given sharing is a
sharing of the value 0, without revealing any further information on the shared
value. The idea behind the protocol is simple. Holding a sharing [v], the parties
generate a random sharing [r] and multiply it with [v]. Then, the parties open
the obtained sharing and check equality to 0. This works since if v = 0, then
multiplying it with a random r will still yield 0. In contrast, if v
= 0, then the
multiplication will result with 0 only when r = 0, which happens with probability
1
F

only. The protocol is formally described in Protocol 3.7. For multiplying the
sharings, the parties use the Fmult functionality, which allows the adversary to
change the output value via an additive attack. However, since the actual value
is kept unknown, the adversary does not know which value should be added in
order to achieve a sharing of 0.

We prove that Protocol 3.7 realizes the ideal functionality FcheckZero, which
is defined in Functionality 3.6.

Fast Large-Scale Honest-Majority MPC for Malicious Adversaries 43

FUNCTIONALITY 3.6 (FcheckZero – Checking Equality to 0)

The ideal functionality FcheckZero receives [v]H from the honest parties and
uses them to compute v. Then:

– If v = 0, then FcheckZero sends 0 to the simulator S. If S sends reject (resp.,
accept), then FcheckZero sends reject (resp., accept) to the honest parties.

– If v �= 0, then FcheckZero proceeds as follows:
• With probability 1

|F| it sends accept to the honest parties and S.

• With probability 1 − 1
|F| it sends reject to the honest parties and S.

FcheckZero receives the honest parties shares, and use them to reconstruct the
shared value. Then, if it is 0, then the simulator decides whether to send accept
to the honest parties or reject. Otherwise, FcheckZero tosses a coin to decide what
to send to the parties (i.e., in this case, the simulator is not given the opportunity
to modify the output). In particular, when the checked value does not equal to 0,
the output will still be accept with probability 1

|F| . This captures the event in
Protocol 3.7 where v
= 0 but T = 0, which happens also with probability 1

F

since r is uniformly distributed over F.

PROTOCOL 3.7 (Checking Equality to 0 in the (Frand, Fmult)-Hybrid Model)

– Inputs: The parties hold a sharing [v].
– The protocol:

1. The parties call Frand to obtain a sharing [r].
2. The parties call Fmult on [r] and [v] to obtain [T] = [r · v]
3. The parties run open([T]). If a party receives ⊥, then it outputs ⊥. Else, it

continues.
4. Each party checks that T = 0. If yes, it outputs accept; else, it outputs reject.

Proposition 3.8. Protocol 3.7 securely computes FcheckZero with abort in the
(Frand,Fmult)-hybrid model in the presence of malicious adversaries who control
t < n/2 parties.

Proof: Let A be the real adversary. We construct the simulator S as follows.
The ideal execution begins with S receiving the value 0 or 1 from FcheckZero

(depending on if v = 0 or if v
= 0, respectively). It then proceeds according to
the following cases:

Case 1 – v = 0: S plays the role of Frand by receiving the corrupted parties’
shares. Then, S plays the role of Fmult: it receives the corrupted parties’ shares
of T (i.e., [T]C) and the value d to add to the output. Finally, S simulates
the opening of [T] by playing the role of the honest parties. In this case, S can
simulate the real world execution precisely, since it knows that T = d (regardless
of the value of r), and thus it can define the honest parties’ shares of T by running
share(d, [T]C). Then, if d = 0 and A sent the correct shares when opening, then it
sends accept to FcheckZero. Otherwise, the parties open to a value that is not 0, or
the opening fails (if A sends incorrect shares). In the first case, S sends reject to

44 K. Chida et al.

FcheckZero, whereas in the latter it sends abort and simulates the honest parties
aborting in the protocol. Finally, S outputs whatever A outputs.

Observe that in this case, S simulates the real world execution exactly, and
thus the view of A in the simulation is identical to its view in a real execution.
Therefore, the output of the honest parties, which is determined in this case by
A, is the same in both the real and simulated execution.

Case 2 – v
= 0: In this case, S receives the final output from FcheckZero without
being able to influence it (beyond aborting). As in the previous case, S receives
from A the corrupted parties’ shares of r and T and the value d to add to T .
In this case, it holds that T = r · v + d, where r and v are unknown to A.
To simulate the opening of [T], the simulator S either sets T = 0 (in the case
where accept was received from FcheckZero) or chooses a random T ∈ F \ {0}
(in the case where reject was received) and defines the honest parties’ shares
by running share(T, [T]C). Then, S simulates the opening by playing the role of
the honest parties. If A sends incorrect shares, causing the opening to fail, then
S simulated the honest parties aborting in the real world execution and sends
abort to FcheckZero. Finally, S outputs whatever A outputs.

We claim that the view of A is identically distributed in the simulation and in
the real world execution. This holds since the only difference is in the opening of
T . In particular, in the real world, a random r is chosen and then the value of T
is set to be r ·v+d, whereas in the simulation T is chosen randomly from F (this
follows from the fact that T is set to be 0 with probability 1

|F| and to any value
other than 0 with probability 1

|F−1|). In both cases, therefore, T is distributed
uniformly over F. Thus, the view of the adversary A is distributed identically in
both executions. We now proceed to show that the output of the honest parties
is also distributed identically in both executions. In the simulation, the output
is accept with probability 1

|F| , as determined by the trusted party. In the real
execution, the honest parties output accept when T = 0. This happens when
r · v + d = 0, i.e., when r = −d · v−1 (recall that v
= 0 and so it has an
inverse). Since r is distributed uniformly over |F|, then T = 0 with probability
1

|F| , and so the honest parties’ output is accept with the same probability as in
the simulation. This concludes the proof.

4 The Protocol for Large Fields

With all the building blocks described in the previous section, we are now ready
to present our protocol that computes an arithmetic circuit over a large field
on the private inputs of the parties. We stress that by a large field, we mean
that 2/|F| ≤ 2−σ, where σ is the statistical security parameter determining the
allowed error. The protocol works by computing the circuit using Fmult (i.e., a
multiplication protocol that is secure up to additive attacks), and then running a
verification step where the computations of all multiplication gates are verified.

The idea behind the protocol is for the parties to generate a random shar-
ing [r], and then evaluate the arithmetic circuit while preserving the invariant

Fast Large-Scale Honest-Majority MPC for Malicious Adversaries 45

that on every wire, the parties hold shares of the value [x] on the wire and
shares of the randomized value [r · x]. This is achieved by generating [r] using
Frand (Sect. 3.1) and then multiplying each shared input with [r] using Fmult

(Sect. 3.4). For addition and multiplication-by-a-constant gates, each party can
locally compute the sharings of both the output and the randomized output
(since [r · x] + [r · y] = [r · (x + y)]). For multiplication gates, the parties interact
to compute shares of [x · y] and [r · x · y] (given shares of x, r · x, y, r · y). This
is achieving by running Fmult on [x] and [y] to obtain a sharing [z] = [x · y], and
running Fmult on [r ·x] and [y] to obtain a sharing [r · z] = [r ·x · y] (equivalently,
this latter sharing could be generated by multiplying [x] with [r · y]).

As we have described in Sect. 3.4, the multiplication subprotocol that we use
– and is modeled in Fmult – is only secure up to additive attacks. The circuit
randomization technique described above is aimed at preventing the adversary
from carrying out such an attack without getting caught. In order to see why,
consider an attacker who carries out an additive attack when multiplying [x] and
[y] so that the result is [x · y +d] for some d
= 0. Then, in order for the invariant
to be maintained, the adversary needs to cheat in the other multiplication for
this gate so that the result is [r · (x · y + d)]. Now, since the adversary can only
carry out an additive attack, it must make the result be [r · x · y + d′], where
d′ = d·r. However, r is not known, and thus the attacker can only succeed in this
with probability 1/|F|. Thus, in order to prevent cheating in the multiplication
gates, it suffices to check that the invariant is preserved over all wires.

This verification is carried out as follows. After the entire circuit has been
evaluated, the parties compute a random linear combination of the sharings of
the values and the sharings of the randomized values on each multiplication
gate’s output wire; denote the former by [w] and the latter by [u]. Then, [r]
is opened, and the parties locally multiply it with [w]. Clearly, if there was no
cheating, then r · [w] equals [u], and thus [u] − r · [w] equals 0, which can be
checked using FcheckZero (Sect. 3.5). In contrast, if the adversary did cheat, then
as we have mentioned above, the invariant will not hold except with probability
1/|F|. In this case, as we will show below, [u] = r · [w] with probability only 1/|F|
(since they are generated via a random linear combination). When [u−r ·w]
= 0,
then FcheckZero outputs reject except with probability 1/|F|. Overall, we therefore
have that the adversary can cheat with probability at most 2/|F|. We prove this
formally in Lemma 4.2. A full specification appears in Protocol 4.1.

We will provide an exact complexity analysis below (in Sect. 6.2), but for
now observe that the cost is dominated by just 2 invocations of Fmult per mul-
tiplication gate. As we have mentioned in Sect. 3.4, Fmult is securely realized in
the presence of malicious adversaries by several semi-honest multiplication pro-
tocols. Thus, the overall cost of achieving malicious security here is very close
to the semi-honest cost.

Webegin byproving that the verification stephas the property that if the adver-
sary cheats in a multiplication gate, then the T = 0 with probability 2

|F| ≤ 2−σ

(where σ is the statistical security parameter). We call a multiplication triple of a
multiplication gate, the triple of values ([x], [y], [z]), where [x], [y] are the shares on
the inputs wires, and [z] is the shares on the output wire, after the multiplication.
(Note that z may not equal x · y, if the adversary cheated in the multiplication.)

46 K. Chida et al.

PROTOCOL 4.1 (Computing Arithmetic Circuits Over Large Fields)

Inputs: Each party Pj (j ∈ {1, . . . , n}) holds an input xj ∈ F
�.

Auxiliary Input: The parties hold the description of a finite field F (with 3/|F| ≤
2−σ) and an arithmetic circuit C over F that computes f on inputs of length
M = � · n. Let N be the number of multiplication gates in C.

The protocol (throughout, if any party receives ⊥ as output from a call to a
sub-functionality, then it sends ⊥ to all other parties, outputs ⊥ and halts):

1. Secret sharing the inputs:
(a) For each input vi held by party Pj , party Pj sends vi to Finput.
(b) Each party Pj records its vector of shares (vj

1, . . . , v
j
M) of all inputs, as

received from Finput. If a party received ⊥ from Finput, then it sends abort
to the other parties and halts.

2. Generate randomizing share: The parties call Frand to receive a sharing [r].
3. Randomization of inputs: For each input wire sharing [vm] (where m ∈

{1, . . . , M}), the parties call Fmult on [r] and [vm] to receive [r · vm].
4. Circuit emulation: Let G1, ..., GN be a predetermined topological ordering of

the gates of the circuit. For k = 1, ..., N the parties work as follows:
– Gk is an addition gate: Given pairs ([x], [r · x]) and ([y], [r · y]) on

the left and right input wires respectively, the parties locally compute
([x + y], [r · x] + [r · y]) = ([x + y], [r · (x + y)]).

– Gk is a multiplication-by-constant gate: Given ([x], [r · x]) on the input
wire and constant a ∈ F, the parties locally compute ([a · x], [r · (a · x)]).

– Gk is a multiplication gate: Given pair ([x], [r · x]) and ([y], [r · y]) on the
left and right input wires respectively:
(a) The parties call Fmult on [x] and [y] to receive [x · y].
(b) The parties call Fmult on [ri · x] and [y] to receive [ri · x · y].

5. Verification stage: Before the secrets on the output wires are reconstructed, the
parties verify that all the multiplications were carried out correctly, as follows.

Let
{(

[zk], [r · zk]
)}N

k=1
be the pairs on the output wires of all multiplication

gates and let
{(

[vm], [r · vm]
)}M

m=1
be the pairs on the input wires of the circuit.

(a) The parties call Fcoin to receive α1, . . . , αN , β1, . . . , βM ∈ F.
(b) The parties locally compute

[u] =

N∑

k=1

αk ·[r·zk]+

M∑

m=1

βm·[r·vm] and [w] =

N∑

k=1

αk ·[zk]+

M∑

m=1

βm·[vm].

(c) The parties run open([r]) to receive r.
(d) Each party locally computes [T] = [u] − r · [w].
(e) The parties call FcheckZero on [T]. If FcheckZero outputs reject, the parties

output ⊥ and abort. Else, if it outputs accept, the parties proceed to the
next step.

6. Output reconstruction: For each output wire of the circuit, the parties run
reconstruct([v], j), where [v] is the sharing of the value on the output wire, and
Pj is the party whose output is on the wire.
If a party received ⊥ in any call to the reconstruct procedure, then it sends ⊥
to the other parties, outputs ⊥ and halts.

Output: If a party has not output ⊥, then it outputs the values it received on its
output wires.

Fast Large-Scale Honest-Majority MPC for Malicious Adversaries 47

Lemma 4.2. If A sends an additive value d
= 0 in any of the calls to Fmult

in the execution of Protocol 4.1, then the value [T] computed in the verification
stage of Step 5 in Protocol 4.1 equals 0 with probability less than 2/|F|.
Proof: The intuition has been discussed above, and we therefore proceed
directly to the proof.

Consider the multiplication triple ([xk], [yk], [zk]) for the kth multiplication
gate. We stress that the values on the input wires [xk], [yk] may not actually be
the appropriate values as when the circuit is computed by honest parties. How-
ever, in order to prove the lemma, we consider each gate separately, and all that
is important is whether the invariant described above holds on the output wire
(i.e., the randomized result is [r · zk] for whatever zk is here). By the definition
of Fmult, a malicious adversary is able to carry out an additive attack, meaning
that it can add a value to the output of each multiplication gate. Thus, it holds
that val([zk])H = xk · yk + dk and val([r · zk])H = (r · xk + ek) · yk + fk, where
dk, ek, fk ∈ F are the added values in the additive attacks, as follows. The value
dk is the value added by the adversary when Fmult is called with [xk] and [yk].
The value ek is such that the input to Fmult for the randomized multiplication
is [yk] and [r · xk + ek]. This is an accumulated error on the randomized value
from previous gates. Finally, fk is the value added by the adversary when Fmult

is called with the shares [yk] and [r ·xk + ek]. Similarly, for each input wire with
sharing [vm], it holds that val([r · vm])H = r · vm + gm, where gm ∈ F is the value
added by the adversary when Fmult is called with [r] and the shared input [vm].
Thus, we have that

val([u])H =
N∑

k=1

αk · ((r · xk + ek) · yk + fk) +
M∑

m=1

βm · (r · vm + gm)

val([w])H =
N∑

k=1

αk · (xk · yk + dk) +
M∑

m=1

βm · vm

and so

val([T])H = val([u])H − r · val([w])H =

=
N∑

k=1

αk · ((r · xk + ek) · yk + fk) +
M∑

m=1

βm · (r · vm + gm)

− r ·
(

N∑

k=1

αk · (xk · yk + dk) +
M∑

m=1

βm · vm

)

=
N∑

k=1

αk · (ek · yk + fk − r · dk) +
M∑

m=1

βm · gm. (1)

where the second equality holds because r is opened and so the multiplication
r · [w] always yields [r ·w]. Our aim is to show that val([T])H , as shown in Eq. (1),
equals 0 with probability at most 1/|F|. We have the following cases.

48 K. Chida et al.

– Case 1 – there exists some m ∈ {1, . . . , M} such that gm
= 0: Let m0 be the
smallest such m for which this holds. Then, val([T])H = 0 if and only if

βm0 =

⎛

⎜⎝−
N∑

k=1

αk · (ek · yk + fk − r · dk) −
M∑

m=1
m �=m0

βm · gm

⎞

⎟⎠ · gm0
−1

which holds with probability 1
|F| since βm0 is distributed uniformly over F,

and chosen independently of all other values.
– Case 2 – all gm = 0: By the assumption in the lemma, some additive value

d
= 0 was sent to Fmult. Since none was sent for the input randomization,
there exists some k ∈ {1, . . . , N} such that dk
= 0 or fk
= 0. Let k0 be the
smallest such k for which this holds. Note that since this is the first error
added, it holds that ek0 = 0. Thus, in this case, val([T])H = 0 if and only if

αk0 · (fk0 − r · dk0) = −
N∑

k=1
k �=k0

αk · (ek · yk + fk − r · dk) . (2)

If fk0 − r · dk0
= 0, then the above equality holds with probability 1/|F| since
αk0 is distributed uniformly over F, and chosen independently of all other
values. However, if fk0 −r ·dk0 = 0, then equality may hold. (Indeed, the best
strategy of an adversary is to cheat in both multiplications of a single gate,
and hope that the additive values cancel each other out.) Nevertheless, the
probability that fk0 − r · dk0 = 0 is at most 1/|F|, since r is not known to the
adversary when the k0’th gate is computed (and by the security of the secret
sharing scheme, it is completely random). Thus, the probability that Eq. (2)
holds is at most 1

|F| +
(
1 − 1

|F|
)

· 1
|F| < 2

|F| .

In both cases, the probability of equality is upper bounded by 2/|F| and this
completes the proof.

We are now ready to prove the security of Protocol 4.1.

Theorem 4.3. Let σ be a statistical security parameter, and let F be a finite
field such that 3/|F| ≤ 2−σ. Let f be an n-party functionality over F.
Then, Protocol 4.1 securely computes f with abort in the (Finput,Fmult,Fcoin,
Frand,FcheckZero)-hybrid model with statistical error 2−σ, in the presence of a
malicious adversary controlling t < n

2 parties.

Proof: Intuitively, the protocol is secure since if the adversary cheats in any
multiplication, then the value T computed in the verification stage will equal
zero with probability at most 2/|F|, as shown in Lemma 4.2. Then, if indeed
T
= 0, this will be detected in the call to FcheckZero, except with probability
1/|F|. Thus, overall, the adversary can avoid detection with probability at most
3/|F| ≤ 2−σ.

Let A be the real adversary who controls the set of corrupted parties C; the
simulator S works as follows:

Fast Large-Scale Honest-Majority MPC for Malicious Adversaries 49

1. Secret sharing the inputs: S receives from A the set of corrupted parties inputs
(values vj associated with parties Pi ∈ C) and the corrupted parties’ shares
{[vi]C}M

i=1 that A sends to Finput in the protocol. For each honest party’s
input vj , S computes (v1

j , . . . , vn
j) = share(0, [vi]C) (i.e., uses 0 as the input on

the wire). Then, S hands A the shares of the corrupted parties for all inputs.
2. Generate the randomizing share: Simulator S receives the share [r]C of the

corrupted parties that A sends to Frand.
3. Randomization of inputs: For every input wire m = 1, . . . ,M , simulator S

plays the role of Fmult in the multiplication of the mth input [vm] with r.
Specifically, S hands A the corrupted parties shares in [vm] and [r] (it has
these shares from the previous steps). Next, S receives the additive value
d = gm and the corrupted parties’ shares [z]C of the result that A sends to
Fmult. Simulator S stores all of these corrupted parties shares.

4. Circuit emulation: Throughout the emulation, S will use the fact that it
knows the corrupted parties’ shares on the input wires of the gate being
computed. This holds initially from the steps above, and we will show it
computes the output wires of each gate below. For each gate Gk in the circuit,

– If Gk is an addition gate: Given the shares of the corrupted parties on
the input wires, S locally adds them as specified by the protocol, and
stores them.

– If Gk is a multiplication-by-a-constant gate: Given the shares of the cor-
rupted parties on the input wire, S locally multiplies them by the con-
stant, them as specified by the protocol, and stores them.

– If Gk is a multiplication gate: S plays the role of Fmult in this step (as
in the randomization of inputs above). Specifically, simulator S hands A
the corrupted parties’ shares on the input wires as it expects to receive
from Fmult (it has these shares by the invariant), and receives from A
the additive value as well as the corrupted parties’ shares for the output.
These additive values are dk (for the multiplication of the actual values)
and fk (for the multiplication of the randomized value), as defined in the
proof of Lemma 4.2. S stores the corrupted parties’ shares.

5. Verification stage: Simulator S works as follows. S chooses random
α1, . . . , αN , β1, . . . , βM ∈ F and hands them to A, as it expects to receive
from Fcoin. Then, S chooses a random r ∈ F and computes the shares of r by
(r1, . . . , rn) = share(r, [r]C), using the shares [r]C provided by A in the “gen-
erate randomizing share” step above. Next, S simulates the honest parties
sending their shares in open([r]) to A, and receives the shares that A sends
to the honest parties in this open. If any honest party would abort (it knows
whether this would happen since it has all the honest parties’ shares), then S
simulates it sending ⊥ to all parties, externally sends abortj for every Pj ∈ H
to the trusted party computing f , and halts.
Finally, S simulates FcheckZero, as follows. If any non-zero gm, dk, fk was pro-
vided to Fmult by A in the simulation, then S simulates FcheckZero sending
reject, and then all honest parties sending ⊥. Then, S externally sends abortj
for every Pj ∈ H to the trusted party computing f . Otherwise, S proceeds
to the next step.

50 K. Chida et al.

6. Output reconstruction: If no abort had occurred, S externally sends the
trusted party computing f the corrupted parties’ inputs that it received in
the “secret sharing the inputs” step above. S receives back the output values
for each output wire associated with a corrupted party. Then, S simulates
the honest parties in the reconstruction of the corrupted parties’ outputs. It
does this by computing the shares of the honest parties on this wire using the
corrupted parties’ shares on the wire (which it has by the invariant) and the
actual output value it received from the trusted party.
In addition, S receives the messages from A for the reconstructions to the
honest parties. If any of the messages in the reconstruction of an output wire
associated with an honest Pj are incorrect (i.e., the shares sent by A are not
the correct shares it holds), then S sends abortj to instruct the trusted party
to not send the output to Pj . Otherwise, S sends continuej to the trusted
party, instructing it to send Pj its output.

We claim that the view of the adversary in the simulation is identical to its view in
the real execution, except with probability 3/|F|. In order to see this, observe first
that if all gm, dk, fk values equal 0, then the simulation is perfect. The only differ-
ence is that the input shares of the honest parties are to 0. However, by the perfect
secrecy of secret sharing, this has the same distribution as in a real execution.

Next, consider the case that some gm, dk, fk value does not equal 0. In this
case, the simulator S always simulates FcheckZero outputting reject. However,
in a real execution where some gm, dk, fk value does not equal 0, functionality
FcheckZero may return accept either if T = 0, or if T
= 0 but it chose accept with
probability 1/|F in the computation of the functionality output. By Lemma4.2,
the probability that T = 0 in such a real execution is less than 2/|F|, and thus
FcheckZero outputs accept with probability less than 2

|F| +
(
1 − 2

|F|
)

· 1
|F| < 3

|F| .
Since this is the only difference between the real execution and the ideal-model
simulation, we have that the statistical difference between these distributions is
less than 3

|F| ≤ 2−σ, and so the protocol is secure with statistical error 2−σ.

Using pseudo-randomness to reduce the number of calls to Fcoin.
Observe that in the verification phase, we need to call Fcoin many times; once for
each input wire and multiplication gate, to be exact. Instead of calling Fcoin for
every value (since this would be expensive), it suffices to call it once to obtain a
seed for a pseudorandom generator, and then each party locally uses the seed to
obtain as much randomness as needed. (Practically, the key would be an AES
key, and randomness is obtained by running AES in counter mode.) It is not dif-
ficult to show that by the pseudorandomness assumption, the probability that
the adversary can cheat is only negligibly different.1

1 Note that this is not as immediate as it seems since the adversary has the seed/key as
well, and so at this point the pseudorandom property is actually lost. However, the
checks work by generating the randomness after everything else is finished and then
verifying that some equality holds, or that the results are correct. These properties
are actually determined before the key is revealed, and thus security is maintained
even after the key is revealed.

Fast Large-Scale Honest-Majority MPC for Malicious Adversaries 51

Concrete efficiency. We analyze the performance of our protocol. The func-
tionality Fmult is called once for every input wire and twice for every multipli-
cation gate (once for multiplying [x] and [y], and another time for multiplying
[r · x] with [y]). Thus, the overall number of multiplications is (M + 2N) · Fmult,
where M denotes the number of inputs and N the number of multiplication
gates. In addition, there are M calls to Finput, which by Protocol 3.3 reduces
to M invocations of Frand and M reconstructions. Furthermore, there is one
call to Frand for generating [r], one call to Fcoin for generating all the αk, βk

values (which reduces to one Frand and one open), one call to open for [r], and
one call to FcheckZero (which reduces to one call to Frand, one Fmult and one
opening). Finally, let L denote the number of output values, and so the number
of reconstruct operations equals L in order to obtain output. We have that the
overall exact cost of the protocol is

(M + 2N + 1) · Fmult + (M + 3) · Frand + (M + L) · reconstruct + 3 · open.

Clearly, amortizing over the size of the circuit, we have that the average cost is
2 · Fmult per multiplication gate.

Reducing memory. One issue that can arise in the implementation of Proto-
col 4.1 is due to the fact that the parties need to store all of the shares used
throughout the computation in order to run the verification stage. If the circuit
is huge (e.g., has billions of gates), then this can be problematic. However, in
such cases, it is possible to run the verification multiple times. For example, one
can determine that the verification is run after every million gates processed.
Since this involves opening the randomizing share [r], a new randomizing share
[r′] is chosen by running Frand, and the shares on all wires that are still “active”
(meaning that they are input into later gates) are randomized using [r′] (in the
same way that the input wires are randomized). The protocol then proceeds
as before. The additional cost is calling Frand and FcheckZero once every million
gates (or whatever is determined) instead of just once, and multiplying [r′] by
all of the active wires using Fmult at each such iteration instead of just for the
inputs. This will typically only be worthwhile for extremely large circuits.

Small fields. Protocol 4.1 works for fields that are large enough so that 3/|F| is
an acceptable probability of an adversary cheating. In cases where it is desired
to work in a smaller field, one could consider the following strategy. Instead of
having a single randomizing share [r], generate δ such random shares [r1], . . . , [rδ]
(where (3/|F|)δ is small enough). Then, run the same circuit emulation and
verification steps using each ri separately. Since each verification is independent,
this will yield a cheating probability of at most (3/|F|)δ, as required. The problem
with such a strategy is that the simulator must be able to simulate the [T] values
for each verification. Unlike the case of a large field, in this case, there is a good
probability that some of the [T] values will equal 0, even if the adversary cheated
(the only guarantee is that not all [T] values will equal 0). Looking at Eq. (1),
observe that the value of [T] is dependent on the values αk, ek, fk, r, dk, βm, gm

known to the simulator, and an unknown value yk (this is the actual value on
the wire). However, all of these values are known to the distinguisher (since

52 K. Chida et al.

it knows the actual inputs, and also has the adversary’s view) and thus it can
know for certain which [T] values should equal 0 and which should not. Thus,
a simulation strategy where the simulator determines whether [T] equals 0 with
probability 1/|F| if the adversary cheated will fail (since the distinguisher can
verify if the value should actually be zero, depending on the given values). In
the next section, we present a different strategy that solves this problem. In
short, the strategy involves generating the linear combinations in Step 5b of
Protocol 4.1 using shared and secret αk and βm values. Since these values are
never revealed, the distinguisher cannot know if an actual [T] should be 0 or
not, and it suffices to simulate by choosing [T] to equal 0 with probability 1/|F|
in the case that the adversary cheats.

5 A Protocol for Small Fields

Motivation. As discussed at the end of Sect. 4, Protocol 4.1 only works for large
fields. In this section, we describe a protocol variant that works for any field size.
The protocol is similar to Protocol 4.1 except that multiple randomizing shares
and verifications are carried out. In particular, the parties generate δ random
shares [r1], . . . , [rδ] and then verify the correctness of all multiplications by gen-
erating δ independent random linear combinations as in Step 5b of Protocol 4.1
(each with a different ri, and with independent αk, βm values). The main dif-
ference is that instead of αk, βm being public values generated by calls to Fcoin,
they are random shares generated by calling Frand. Furthermore, they are kept
secret and not opened. We show that this yields a cheating probability of at
most (3/|F|)δ, which can be made arbitrarily small by increasing δ. Since Frand

is somewhat more expensive than Fcoin (see Sect. 6.2), Protocol 4.1 is better for
large fields.

Secure sum of products. In order to implement the verification step with
shared and secret αk, βm, it is necessary to compute the following linear combi-
nations efficiently:

[u] =
N∑

k=1

[αk] · [r · zk] +
M∑

m=1

[βm] · [r · vm] and [w] =
N∑

k=1

[αk] · [zk] +
M∑

m=1

[βm] · [vm].

This seems to require an additional four multiplications (e.g., calls to Fmult) per
multiplication gate. Given that Protocol 4.1 requires only two calls to Fmult per
multiplication gate overall, this seems to be considerably more expensive. In
Sect. 6.1, we show how to compute a sum of products, for any number of terms,
essentially at the cost of just a single multiplication. Our construction works for
Shamir and replicated secret sharing, as we use in this paper. This subprotocol is
of independent interest, and can be useful in many other scenarios. For example,
in statistical computations, a sum-of-squares is often needed, and our method can
be used to compute the sum-of-square of millions of values at the cost of just one
multiplication. We formally define the sum-of-products functionality, denoted
Fproduct, in Functionality 5.1. It is very similar to Fmult, with the exception that
it receives two lists of values instead of a single pair. As with Fmult, security is
defined up to additive attacks.

Fast Large-Scale Honest-Majority MPC for Malicious Adversaries 53

FUNCTIONALITY 5.1 (Fproduct - Sum-of-Products Up To Additive Attacks)

1. Upon receiving {[xi]H}�
i=1 and {[yi]H}�

i=1 from the honest parties, the ideal
functionality Fproduct computes xi and yi and the corrupted parties shares
[xi]C and [yi]C , for each i ∈ {1, . . . , �}.

2. Fproduct hands {[xi]C}�
i=1 and {[yi]C}�

i=1 to the ideal-model adversary S.
3. Upon receiving d and {αi}i|Pi∈C from S, functionality Fproduct defines z =

∑�
i=1 xi · yi + d and [z]C = {αi}i|Pi∈C . Then, it runs share(z, [z]C) to obtain

a share zj for each party Pj .
4. The ideal functionality Fproduct hands each honest party Pj its share zj .

The protocol. We now proceed to describe the protocol. As we have described
above, the protocol is very similar to Protocol 4.1 with the exception that the
share randomization and verification are run δ times, and the linear combinations
are computed using secret and shared αk, βm. The formal description of the
protocol appears in Protocol 5.3. Observe that the computation of [ui] and [wi]
in order to compute [Ti] in Steps 6(c)i–6(c)iv in Protocol 5.3 is exactly the same
as the computation of T in Step 5b Protocol 4.1. Namely, we obtain

[ui] =

N∑

k=1

[αk,i] · [ri · zk] +

M∑

m=1

[βm,i] · [ri · vm] and [wi] =

N∑

k=1

[αk,i] · [zk] +

M∑

m=1

[βm,i] · [vm].

Thus, the intuition as to why [Ti] = [ui] − ri · [wi] equals 0 with probability
3/|F| is the same as in Protocol 4.1. Despite this, the proof is different since
here 3/|F| is noticeable, and this affects the simulation. As such, the proof of
the protocol is similar to that of Protocol 4.1 with the exception that the simu-
lator needs to compute the exact probability that each Ti = 0, depending on the
different cases of possible additive attacks. This is due to the fact that some Ti

may equal 0 with probability 1/|F| even when an additive attack does take place.
Unlike the case of large fields, 1/|F| may be noticeable and thus the simulation
cannot afford to just fail in such cases. As we will see in the proof, if the adver-
sary cheats in a multiplication gate, then each Ti = 0 with probability at most
3/|F, and so all Ti = 0 with probability at most (3/|F|)δ ≤ 2−σ, as required.
Thus, the adversary cannot cheat undetected with probability greater than 2−σ.
Nevertheless, the simulation of when Ti = 0 and when Ti
= 0 is needed to show
that revealing this fact does not leak any information about the real input.

Theorem 5.2. Let σ be a statistical security parameter, let F be a finite field,
and let f be a n-party functionality over F. Then, Protocol 5.3 securely computes
f with abort in the (Finput,Fmult,Fcoin,Frand,FcheckZero,Fproduct)-hybrid model
with statistical error 2−σ, in the presence of a malicious adversary controlling
t < n

2 parties.

Proof: We have already described the intuition behind the proof, and so proceed
directly. Let A be the real adversary; we construct the ideal adversary/simulator
S as follows. The simulation up to the verification stage is almost identical to
the simulator in the proof of Theorem4.3 for Protocol 4.1, with appropriate
differences for the fact that the randomization is carried out δ times.

54 K. Chida et al.

PROTOCOL 5.3 (Computing Arithmetic Circuits Over Any Finite F)
Inputs: Each party Pj (j ∈ {1, . . . , n}) holds an input xj ∈ F

�.

Auxiliary Input: The parties hold the description of a finite field F and an
arithmetic circuit C over F that computes f on inputs of length M = � · n. Let N
be the number of multiplication gates in C.

The protocol:
1. Parameter computation: Set δ to be the smallest value for which δ ≥ σ

log(|F|/3) .
2. Secret sharing the inputs:

(a) For each input vi held by party Pj , party Pj sends vi to Finput.
(b) Each party Pj records its vector of shares (vj

1, . . . , v
j
M) of all inputs, as

received from Finput. If a party received ⊥ from Finput, then it sends abort
to the other parties and halts.

3. Generate randomizing shares: For i = 1 to δ, the parties call Frand to receive
a sharing [ri].

4. Randomization of inputs: For each input wire sharing [vm] (where m ∈
{1, . . . , M}) and for every i = 1, . . . , δ, the parties call Fmult on [ri] and [vm]
to receive [ri · vm].

5. Circuit emulation: Let G1, ..., GN be a predetermined topological ordering of
the gates of the circuit. For k = 1, ..., N the parties work as follows:

– Gk is an addition gate: Given tuples ([x], [r1 · x], . . . , [rδ · x]) and
([y], [r1 · y], . . . , [rδ · y]) on the left and right input wires respectively, the
parties locally compute ([x + y], [r1 · (x + y)], . . . , [rδ · (x + y)]).

– Gk is a multiplication-by-a-constant gate: Given a constant a ∈ F and
tuple ([x], [r1 · x], . . . , [rδ · x]) on the input wire, the parties locally com-
pute ([a · x], [r1 · (a · x)], . . . , [rδ · (a · x)]).

– Gk is a multiplication gate: Given tuples ([x], [r1 · x], . . . , [rδ · x]) and
([y], [r1 · y], . . . , [rδ · y]) on the left and right input wires respectively:
(a) The parties call Fmult on [x] and [y] to receive [x · y].
(b) For i = 1 to δ, the parties call Fmult on [ri ·x] and [y] to receive [ri ·x·y].

6. Verification stage: Let {([zk], [r1 · zk], . . . , [rδ · zk])}N
k=1 be the tuples on the

output wires of all multiplication gates and let {([βm,1], . . . , [βm,δ])}M
m=1 be

the tuples on the input wires of the circuit.
(a) For m = 1, . . . , M , the parties call Frand to receive [βm,1], . . . , [βm,δ].
(b) For k = 1, . . . , N , the parties call Frand to receive [αk,1], . . . , [αk,δ].
(c) Compute linear combinations: For i = 1, . . . , δ:

i. The parties call Fproduct on vectors ([α1,i], . . . , [αN,i], [β1,i], . . . , [βM,i])
and ([ri · z1], . . . , [ri, ·zN], [ri · v1], . . . , [ri · vM]) to receive [ui].

ii. The parties call Fproduct on vectors ([α1,i], . . . , [αN,i], [β1,i], . . . , [βM,i])
and ([z1], . . . , [zN], [v1], . . . , [vM]) to receive [wi].

iii. The parties run open([ri]) to receive ri.
iv. Each party locally computes [Ti] = [ui] − ri · [wi].
v. The parties call FcheckZero on [Ti]. If FcheckZero outputs reject, the

parties output ⊥ and abort. Else, if it outputs accept, they proceed.
7. Output reconstruction: For each output wire of the circuit, the parties run

reconstruct([v], j), where [v] is the sharing of the value on the output wire, and
Pj is the party whose output is on the wire.
If a party received ⊥ in any call to the reconstruct procedure, then it sends ⊥
to the other parties, outputs ⊥ and halts.

Output: If a party has not aborted, it outputs the values received on its output
wires.

Fast Large-Scale Honest-Majority MPC for Malicious Adversaries 55

We now show how to simulate the verification step. As in the proof of The-
orem 4.3, the simulator S chooses r1, . . . , rδ ∈ F at random, and generates all
shares by computing (r1i , . . . , rn

i) = share(ri, [ri]C), for every i = 1, . . . , δ. Next,
S simulates δ · (N + M) calls to Frand used to obtain all of the βm,i and αk,i

values. Now, for every i = 1, . . . , δ, S works as follows:

1. S simulates two invocations of Fproduct with A, receiving di,1 and di,2, respec-
tively, as the additive attack of A in these invocations.

2. S simulates the opening of ri by handing A all of the honest parties’ shares as
computed above. If any honest party would abort due to the opening values
sent by A (S knows whether this would happen since it has all the honest
parties’ shares), then S simulates the honest party sending ⊥ to all parties,
externally sends abortj for every Pj ∈ H to the trusted party computing f ,
and halts.

3. S simulates FcheckZero, determining the value of Ti to be equal or not equal
to zero, based on the process described below. If Ti
= 0, then S simulates an
abort, as in the proof of Theorem4.3. Else, S proceeds with the simulation.

If A carried out an additive attack when calling Fmult with [x] and [y] on a wire
(i.e., the actual value multiplication and not the randomization), and yet all
FcheckZero simulations return accept (either because Ti = 0 or because FcheckZero

returns accept with probability 1/|F| even when Ti
= 0), then S outputs fail.
If S did not halt, then it concludes the output reconstruction as in the proof

of Theorem 4.3.
It remains to show how S determines the value of Ti as equal or not equal to

zero, for each i = 1, . . . , δ, and to show that this is the same distribution as in
a real execution. Fix i, and let dk, ek,i, fk,i, gmi

be as in the proof of Lemma4.2
(the additional subscript of i for ek,i, fk,i, gm,i is due to the fact that there are
separate Fmult calls for each randomization multiplication; i.e., for each i =
1, . . . , δ and the associated ri). S determines the probability that Ti = 0 based
on the following mutually-exclusive cases:

1. Case 1 – there exists an m ∈ {1, . . . , M} such that gm,i
= 0: In this case, S
sets Ti = 0 with probability 1/|F| exactly.

2. Case 2 – gm,i = 0 for all m ∈ {1, . . . , M} and dk = 0 for all k ∈ {1, . . . , N},
but there exists some k ∈ {1, . . . , N} for which fk,i
= 0: As in the previous
case, in this case S sets Ti = 0 with probability 1/|F| exactly.

3. Case 3 – gm,i = 0 for all m ∈ {1, . . . ,M} and for all k ∈ {1, . . . , N} it holds
that fk,i −ri ·dk = 0: In this case, S sets Ti = di,1−ri ·di,2 with probability 1.
(Note that this case includes cases that some dk, fk,i
= 0 and it happens that
fk,i − ri · dk = 0, as well as the case that all dk, fk,i equal 0 and so A did not
cheat.)

4. Case 4 – gm,i = 0 for all m ∈ {1, . . . , M} and there exists a k ∈ {1, . . . , N}
such that dk
= 0 and fk,i − ri · dk
= 0: In this case, S sets Ti = 0 with
probability 1/|F| exactly.

Observe that S knows all the additive values, and uses the random choice of ri

above, and so can determine all of the above cases. In addition, observe that this
covers all possible cases.

56 K. Chida et al.

We now analyze all of the above cases and show that the distribution over the
zero/non-zero value of Ti generated by S is identical to that of a real execution.
As in Eq. (1) in the proof of Lemma 4.2, we have that

val([Ti])H =
N∑

k=1

αk,i ·(ek,i ·yk +fk,i −ri ·dk)+
M∑

m=1

βm,i ·gm,i +di,1−ri ·di,2. (3)

We use this to analyze the cases:

1. Case 1: Let m0 ∈ {1, . . . , M} be such that gm0,i
= 0. By Eq. (3) we have
val([Ti])H = 0 if and only if βm0,i =

(− ∑N
k=1 αk,i · (ek,i · yk + fk,i − ri · dk

)−∑M
m=1

m �=m0

βm,i · gm,i − di,1 + ri · di,2

) · gm0,i
−1. By the uniform choice of βm0,i,

this holds in a real execution with probability 1/|F| exactly.
2. Case 2: Let k0 ∈ {1, . . . , N} be such that fk0,i
= 0. As above, val([Ti])H = 0

if and only if αk0,i ·(fk0,i −ri ·dk0) = −∑N
k=1
k �=k0

αk,i ·(ek,i · yk + fk,i − ri · dk)−
di,1+ri ·di,2, but since all dk = 0 we have αk0,i ·(fk0,i−ri ·dk0) = αk0,i ·fk0,i and

so val([Ti])H = 0 if and only if αk0,i =

(
− ∑N

k=1
k �=k0

αk,i · (ek,i · yk + fk,i − ri · dk)

−di,1 + ri · di,2) · fk0,i
−1. As in the previous case, by the uniform choice of

αk0,i, this holds in a real execution with probability 1/|F| exactly.
3. Case 3: In this case, all gm,i = 0, and all fk,i − ri · dk = 0. If this occurs

since all fk,i = 0 and all dk = 0, then clearly Ti = di,1 − ri · di,2 since A did
not cheat during the circuit emulation step. Otherwise, assume that for all
fk,i, dk
= 0 it holds that fk,i − ri · dk = 0. The computation of multiplication
gate Gk involves two calls to Fmult: one with xk and yk, and the other with
ri · xk and yk. By the definition of Fmult and the values dk, fk,i, the output
of the first call to Fmult is zk = xk · yk + dk, and the output of the second
call to Fmult is z′

k = ri · xk · yk + fk,i. Writing xk · yk = zk − dk, we have
that z′

k = ri · (zk − dk) + fk,i = ri · zk − ri · dk + fk,i. However, by this
case assumption, fk,i − ri · dk = 0 and so z′

k = ri · zk. This means that the
invariant of the relation between the real and randomized values on the wires
is maintained, and formally that the kth term in the sum for Ti equals zero.
Since this holds for all k ∈ {1, . . . , N}, we have that Ti = di,1 − ri · di,2 with
probability 1, as determined by the simulator. (We remark that there is no
accumulated error ek,i in this case, since ek,i appears when the invariant on
the wires is not preserved.)

4. Case 4: Let k0 be the first k ∈ {1, . . . , N} for which fk,i−ri ·dk
= 0. Since this
is the first such k, it holds that ek0,i = 0 (note that some previous dk, fk,i may
be non-zero, but as we saw in the previous case, if fk,i − ri ·dk = 0 then there
is no accumulated error). As in case 2, we have that val([Ti])H = 0 if and only

if αk0,i =
(

−∑N
k=1
k �=k0

αk,i · (ek,i · yk + fk,i − ri · dk) − di,1 + ri · di,2

)
· (fk0,i −

ri · dk0)
−1. where division by fk0,i − ri · dk0 is possible since this value is

non-zero. As above, this equality holds with probability exactly 1/|F|, by the
uniform choice of αk0,i.

Fast Large-Scale Honest-Majority MPC for Malicious Adversaries 57

The above demonstrates that the simulation by S of the zero/non-zero value
of Ti is identical to a real execution. Furthermore, since the actual values of
αk,i, βm,i are never revealed in this protocol, the simulation only requires that
the probability that Ti is zero/non-zero be the same as in a real execution.2

It remains to show that S outputs fail with probability at most
(

3
|F|

)δ

, which

is at most 2−σ by the choice of δ in the protocol. Recall that S outputs fail if and
only if there exists some dk
= 0 and yet all FcheckZero invocations return accept
in the simulation. This is indeed a fail, since the outputs received by the honest
parties in the real and ideal executions in this case would be different. Now,
assume that dk
= 0 for some k ∈ {1, . . . , N}. Then, for every i, the simulation
case is either Case 3 or Case 4, where the actual case depends on the value
of ri chosen. FcheckZero returns accept in the ith invocation in the simulation
if either (a) case 3 occurs, meaning that fk,i − ri · dk = 0 which is equivalent
to ri = fk,i/dk, or (b) case 4 occurs and αk,i results in Ti = 0, or (c) Case 4
occurs and Ti
= 0 but FcheckZero returns accept nevertheless. The probability
that accept is received from FcheckZero for any given i equals the probability that
one of (a), (b) or (c) occur. Each one independently occurs with probability
1/|F|: (a) because of the random choice of ri, (b) because of the random choice
of αk,i, and (c) because of the 1/|F| probability that FcheckZero returns accept
on non-zero input. By the union bound, the probability that one of these occur
is therefore upper bound by 3/|F|. We conclude by noting that the above holds
independently for each i ∈ {1, . . . , δ}, and thus the probability that FcheckZero

returns accept for all i ∈ {1, . . . , δ} is upper bound by (3/|F|)δ, as required.

Concrete efficiency. We analyze the performance of our protocol. The main
difference compared to Protocol 4.1 is that functionality Fmult is called δ times
for every input wire and 1+δ for every multiplication gate (once for multiplying
[x] and [y], and δ additional times for multiplying [ri · x] with [y]). Thus, the
overall number of multiplications is (δ·M+(1+δ)·N)·Fmult, where M denotes the
number of inputs and N the number of multiplication gates. Another difference
is that now there are δ calls to Frand for generating [ri], and δ · (M +N) calls for
generating all the αk,i, βm,i values (which are secret here, unlike in Protocol 4.1).
In addition, there are 2δ calls to Fproduct, δ calls to open for [ri], δ calls to
FcheckZero (each of which reduces to one call to Frand, one Fmult and one opening),
and M + L calls to reconstruct as part of Finput and obtaining output (where
L equals the number of output wires). Assuming that Fproduct is equivalent to
Fmult (as will be shown in Sect. 6.2), we have that the overall exact cost of the
protocol is

(δ · M + (1 + δ) · N + 3δ) · Fmult + (δ · (M + N) + 2δ) · Frand + (M + L) · reconstruct + 2δ · open.

2 If βm0,i were to be revealed, as in Protocol 4.1 for large fields, then the question
of whether the equation holds is something that the distinguisher could determine
(since it knows all of the yk values from the input, and it can receive all of the
dk, ek,i, fk,i, gm,i values from the adversary). Thus, it would not suffice to set Ti = 0
with the correct probability but as a function of the actual values. However, S does
not know the yk values and so could not determine this.

58 K. Chida et al.

Amortizing over the size of the circuit, we have that the average cost is (1+ δ) ·
Fmult + δ · Frand per multiplication gate.

We compare now the cost of running Protocol 5.3 with δ = 1 to the cost
of running Protocol 4.1 for large fields. The amortized cost of Protocol 4.1 is
2 · Fmult per multiplication gate, whereas the cost of Protocol 5.3 with δ = 1
is 2 · Fmult + 1 · Frand. Thus, the difference between these protocols depends on
the cost of Frand. As we will see in Sect. 6.2, the cost of Frand for our specific
instantiation for a not-small number of parties is about a third of the cost of
Fmult, making Protocol 5.3 about 17% slower.

It is also instructive to compare the cost of running Protocol 4.1 with a large
field versus running Protocol 5.3 with a smaller field. Concretely, assume that the
computation being carried out is over the integers, and that all values are smaller
than 230, and that security 2−60 is desired. Then, the question that may arise is
whether one should run Protocol 4.1 over a 60-bit field, or whether one should
run Protocol 5.3 with δ = 2 over a 30-bit field. The amortized cost is 2 ·Fmult for
Protocol 4.1 versus 3 ·Fmult +1 ·2 ·Frand ≈ 3.66 ·Fmult for Protocol 5.3 (assuming
the cost of Frand to be one-third of Fmult). Clearly, the communication cost is
double for a 60-bit field, and so the expected communication using Protocol 5.3
is lower in such a case. Regarding computation, empirical experimentation is
needed to make a comparison.

Reducing memory. As in Protocol 4.1, when the circuit is huge, it is highly
undesirable to store all values until completion in order to carry out the veri-
fication. Thus, in such cases, it is preferable to compute the verification while
evaluating the circuit. However, Protocol 4.1 required running a full verification
at intermediate steps to do this, and this incurred additional work to rerandom-
ize the active wires for the next phase, and so on (see the discussion at the end
of Sect. 4). In contrast, Protocol 5.3 is much more amenable to verification-on-
the-fly because the α, β values are never revealed. Thus, it is possible to call
Frand to obtain the [βm,i] shares at the input phase, and to call Frand to obtain
[αk,i] shares during multiplications. Then, the parties can locally store the par-
tial sums for ui and wi, and all previous shares that are no longer needed for
the circuit evaluation can be discarded. This method for verification-on-the-fly
is also very easy to implement.

Reactive computation. In Protocol 4.1 where the α, β values are public, it
is necessary to open [r] in order to compute [T] = [u] − r · [w]. This is because
otherwise the adversary can input an additive value in the multiplication [r] · [w]
that can cancel out a previous error (note that at this stage, α, β are already
known and so the adversary has enough information to make the errors cancel).
In contrast, in Protocol 5.3, the α, β values are never revealed. Thus, it is not
necessary to open the [ri] shares, and the parties can compute [Ti] = [ui] − [ri] ·
[wi], using Fmult with [ri] and [wi]. In a regular one-off computation, this makes
no real difference. However, in the case of reactive computation, where outputs
are revealed, and the computation continues, it is undesirable to open the [ri]
shares, since new randomization is necessary. Thus, in such cases, one can leave
the [ri] shares secret, and compute [Ti] using Fmult as described.

Fast Large-Scale Honest-Majority MPC for Malicious Adversaries 59

6 Instantiations and Experimental Results

Our protocol is generic and can be instantiated in many ways (with different
secret sharing schemes, multiplication protocols, and more). Clearly, the effi-
ciency of our protocol depends significantly on the instantiations. In order to
demonstrate the efficiency of our protocol, we plug in the instantiations pre-
sented in [22], which meet all of our requirements. We consider two secret sharing
schemes: replicated secret sharing for 3 parties, and Shamir sharing [25] for any
number of parties. Recall that our protocol requires instantiations for function-
alities Fmult and Frand, and for procedures open and reconstruct (Finput, Fcoin

and FcheckZero are constructed generically using these functionalities and proce-
dures). We also need to show how to securely realize Fproduct for Protocol 5.3;
we begin by showing this in Sect. 6.1. Then, in Sect. 6.2 we present the concrete
costs of the instantiations from [22] along with Fproduct from Sect. 6.1. Finally, in
Sect. 6.3, we present experimental results of the implementation of our protocol
and compare it to prior work. In the full version of this paper, we describe the
protocols for the instantiation based on the Shamir sharing, including proofs
that the protocols securely compute Frand and Fmult.

6.1 Securely Realizing Functionality 5.1 – Fproduct

Fproduct with Shamir secret sharing. We begin by describing how to securely
realize Fproduct when Shamir sharing is used. Let [x1], . . . , [x�] and [y1], . . . , [y�]
be two vectors of inputs, where the parties wish to compute shares of

∑�
i=1 xi ·yi.

The key observation here is that most (if not all) protocols for multiplication
based on Shamir sharing have two phases:

1. Local multiplication: In this phase, each party locally multiplies its shares
on the two values. This yields a sharing of the product of the two values
on a degree-2t polynomial. Since t < n/2, there is enough “information” to
reconstruct the polynomial (since 2t < n).

2. Degree reduction: In the second phase, the parties run an interactive protocol
that reduces the degree of the polynomial generated in the previous step back
to degree-t, without changing its constant term.

Observe that the protocols of [5,12,18] and others all follow this framework.
The crucial observation regarding how to compute Fproduct is that the parties

can begin by locally computing the sum of the products of their input shares.
Specifically, denote Pj share of xi and yi by xj

i and yj
i , respectively. Then, each

Pj can locally compute zj =
∑�

i=1 xj
i · yj

i , and the shares z1, . . . , zn constitute a
sharing of degree-2t polynomial with constant-term

∑�
i=1 xi·yi. All that therefore

remains is for the parties to run the degree reduction on these shares, and they
obtain a good Shamir sharing of the sum of products.

The above strategy securely computes Fproduct if the degree reduction phase
of the protocol has the property that the only attack possible by the adversary
is an additive attack. That is, if the input shares define a degree-2t polynomial
hiding the secret z, then the adversary can cause the parties to output a degree-t

60 K. Chida et al.

sharing of z + d where d can be extracted by a simulator (exactly as in Fmult).
In the full version of this paper, we show that this property holds for the semi-
honest multiplication protocol of [12].

Fproduct with replicated secret sharing. In the multiplication protocol of [2]
which is also shown to be secure up to an additive attack in [22]), the parties first
locally compute a sum of 3 products of their local shares (given replicated shares
(si, si+1) and (ti, ti+1) of two values s and t held by Pi, each party computes ui =
si · ti + si+1 · ti + si · ti+1). Then, in the next step, each party sends its share ui

– randomized using correlated randomness – to party Pi+1, who defines the pair
(ui+1, ui) as its share of the output. The simple observation here is that if each
party computes many ui’s for each product in the vector and then sums them all
together, the result will be a replicated secret sharing of the entire sum of products.

Efficiency. Using the above method, the cost of a sum of products for any
number of terms is local operations on the vector (similar to addition gates in
the circuit) and interaction equivalent to a single multiplication. Thus, Fproduct

essentially costs the same as Fmult.

Applications. Beyond the use of Fproduct in Protocol 5.3 for computing the ran-
dom linear combinations, this subprotocol can be used to significantly speed up
many secure statistical operations. For example, in order to securely computed
the standard deviation over a large list, the main cost is computing the sum of
squares (of the difference between each item and the mean), and then dividing
by the length of the vector. Using our method, this can be carried out on millions
of data items at the cost of a single multiplication followed by a single division
(and if the number of data items is known, then the division can be carried out
on the result).

6.2 Instantiations from [22] and their Cost

As we have discussed above, we present the cost of Fmult, Frand, open and
reconstruct for Shamir sharing (for any number of parties n) and for replicated
secret sharing (for 3 parties), as described in [22]. The communication costs are
presented in Table 1. In the two instantiations we consider for Shamir sharing,
Frand can be instantiated using PRSS [10] which has zero communication cost
but has computation that is exponential in the number of parties and so is only
good for up to 7 or so parties (as shown in [22]). In addition, Frand can be
instantiated using VAN, which is the hyper-invertible matrices method of [4]

Table 1. The communication cost per party for instantiations in [22], written as the
number of field elements sent.

Fmult Frand open reconstruct
Replicated secret sharing (three parties) 1 0 4 2

Shamir sharing (few parties), Frand with PRSS 6 0 n − 1 1

Shamir sharing (many parties), Frand with VAN 6 2 n − 1 1

Fast Large-Scale Honest-Majority MPC for Malicious Adversaries 61

that utilizes Vandermonde matrices. In both cases, Shamir sharing uses the DN
multiplication protocol of [12].

Table 1 counts the communication costs of each protocol instantiation. The
computational costs are low overall (since we use secret-sharing based primi-
tives), except for PRSS which is exponential in the number of parties and thus
only suitable for a small number. In Sect. 6.3, we show concrete running times
for the replicated secret sharing and Shamir-sharing with VAN instantiations.

Overall protocol costs. As shown in Sects. 4 and 5, the cost per multiplication
gate of Protocol 4.1 is 2·Fmult, and the cost per multiplication gate of Protocol 5.3
is (1+δ) ·Fmult+δ ·Frand. Plugging these into the above instantiations, we obtain
a maliciously secured protocol for three-parties that requires each party to send
only 2 field elements per multiplication gate when the filed is large. For the
multi-party setting, we obtain a protocol with a communication cost of only 12
field elements per multiplication gate for each party when the field is large. This
is shown in Table 2, including a comparison to the cost of the protocol of [22].

Table 2. The communication cost per party for the instantiations in Table 1 and the
protocol of [22], written as the number of field elements sent per multiplication gate.
(Note that Protocol 5.3 with δ = 2 has smaller field elements and thus more elements
sent could actually mean less bandwidth.)

Protocol of [22]
with δ = 1

Protocol 4.1
(large field)

Protocol 5.3
with δ = 1

Protocol 5.3
with δ = 2

Replicated secret sharing
(three parties)

4 2 2 3

Shamir (few parties),
Frand with PRSS

36 12 12 18

Shamir (many parties),
Frand with VAN

42 12 14 22

6.3 Experimental Results

We implemented Protocol 4.1 with two instantiations: replicated secret sharing
for 3 parties and Shamir sharing using VAN for Frand and DN [12] for Fmult (see
Sect. 6.2). The field we used for all our experiments was the 61-bit Mersenne field
(and so security is approximately 2−60). We ran our protocols for different num-
bers of parties on a series of circuits of different depths, each with 1,000,000 mul-
tiplication gates, 1,000 inputs wires, 50 output wires. The circuits had 4 different
depths: 20, 100, 1,000 and 10,000. The experiment was run on AWS in two config-
urations: a LAN network configuration in a single AWS region (specifically, North
Virginia), and a WAN network configuration in three AWS regions (specifcally,
North Virginia, Germany and India). Each party was run in an independent AWS
C4.large instance (2-core Intel Xeon E5-2666 v3 with 2.9 GHz clock speed and
3.75 GB RAM). Each execution (configuration, number of parties, circuit) was
run 5 times, and the result reported is the average run-time (Table 3).

62 K. Chida et al.

Table 3. LAN configuration execution times in milliseconds of a circuit with 1,000,000
multiplication gates, for different depths. The first column gives the running time for
the replicated secret sharing version; all other columns are the Shamir sharing for
different numbers of parties.

Circuit
Depth

3
(replicated)

3 5 7 9 11 30 50 70 90 110

20 319 826 844 1,058 1,311 1,377 2,769 4,053 5,295 6,586 8,281
100 323 842 989 1,154 1,410 1,477 3,760 6,052 8,106 11,457 15,431
1,000 424 1,340 1,704 1,851 2,243 2,887 12,144 26,310 33,294 48,927 79,728
10,000 1,631 6,883 7,424 8,504 12,238 16,394 61,856 132,160 296,047 411,195 544,525

Table 4. LAN configuration execution times in milliseconds of a circuit with 1,000,000
multiplication gates and depth 20. The times for [22] are for the best protocol for the
number of parties.

3
(replicated)

3 5 7 9 11 30 50 70 90 110

Protocol 4.1 319 826 844 1,058 1,311 1,377 2,769 4,053 5,295 6,586 8,281

Protocol of [22] 513 1,229 1,890 3,056 4,009 5,187 15,954 28,978 44,599 58,966 72,096

Speedup 161% 149% 224% 289% 306% 377% 576% 715% 842% 895% 871%

In order to compare our protocol to that of [22], we compare the running
times in a LAN configuration for depth 20 (this is because that is the only
configuration run by them); see Table 4.

As can be seen, our protocol outperforms the best protocol of [22] signifi-
cantly, even for a small number of parties. However, as the number of parties
increases, the gap widens. Observe that the communication difference between
the protocols, as shown in Table 2 would only predict that our protocol would
run 3 times faster than that of [22], whereas experiment yield an almost 10
times faster result for a large number of parties. This may be due to additional
computational work involved in generating the Beaver triples in [22].

Finally, in Table 5, we present the experimental results of running our proto-
col in the WAN configuration. Due to the many rounds of communication, the
results are significantly slower, but demonstrate that it is even possible to run
for quite a large number of parties (e.g., 50 parties) with reasonable time.

Table 5. WAN configuration (North Virginia, Germany and India) execution times in
milliseconds of a circuit with 1,000,000 multiplication gates, for different depths.

Circuit
Depth

3
(replicated)

3 5 7 9 11 30 50

20 3502 20,492 27,772 28,955 24,482 24,729 87,355 128,366
100 10,712 45,250 53,872 50,719 55,716 56,482 134,860 197,321

Fast Large-Scale Honest-Majority MPC for Malicious Adversaries 63

References

1. Araki, T., Barak, A., Furukawa, J., Lichter, T., Lindell, Y., Nof, A., Ohara, K.,
Watzman, A., Weinstein, O.: Optimized honest-majority MPC for malicious adver-
saries - breaking the 1 billion-gate per second barrier. In: The IEEE S&P (2017)

2. Araki, T., Furukawa, J., Lindell, Y., Nof, A., Ohara, K.: High-throughput semi-
honest secure three-party computation with an honest majority. In: The 23rd ACM
CCS, pp. 805–817 (2016)

3. Beaver, D.: Foundations of secure interactive computing. In: Feigenbaum, J. (ed.)
CRYPTO 1991. LNCS, vol. 576, pp. 377–391. Springer, Heidelberg (1992). https://
doi.org/10.1007/3-540-46766-1 31

4. Beerliová-Trub́ıniová, Z., Hirt, M.: Perfectly-secure MPC with linear communica-
tion complexity. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 213–230.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78524-8 13

5. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In: 20th STOC (1988)

6. Burra, S.S., Larraia, E., Nielsen, J.B., Nordholt, P.S., Orlandi, C., Orsini, E.,
Scholl, P., Smart, N.P.: High performance multi-party computation for binary cir-
cuits based on oblivious transfer. ePrint Cryptology Archive, 2015/472 (2015)

7. Canetti, R.: Security and composition of multiparty cryptographic protocols. J.
Cryptol. 13(1), 143–202 (2000)

8. Chaum, D., Crépeau, C., Damg̊ard, I.: Multi-party unconditionally secure proto-
cols. In: 20th STOC, pp. 11–19 (1988)

9. Cleve, R.: Limits on the security of coin flips when half the processors are faulty.
In: 18th STOC, pp. 364–369 (1986)

10. Cramer, R., Damg̊ard, I., Ishai, Y.: Share conversion, pseudorandom secret-sharing
and applications to secure computation. In: Kilian, J. (ed.) TCC 2005. LNCS,
vol. 3378, pp. 342–362. Springer, Heidelberg (2005). https://doi.org/10.1007/978-
3-540-30576-7 19

11. Damg̊ard, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical
covertly secure MPC for dishonest majority – or: breaking the SPDZ limits. In:
Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp.
1–18. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40203-6 1

12. Damg̊ard, I., Nielsen, J.B.: Scalable and unconditionally secure multiparty com-
putation. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 572–590.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5 32

13. Damg̊ard, I., Pastro, V., Smart, N.P., Zakarias, S.: Multiparty computation
from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 38

14. Genkin, D., Ishai, Y., Prabhakaran, M., Sahai, A., Tromer, E.: Circuits resilient to
additive attacks with applications to secure computation. In: STOC 2014 (2014)

15. Genkin, D., Ishai, Y., Polychroniadou, A.: Efficient multi-party computation: from
passive to active security via secure SIMD circuits. In: Gennaro, R., Robshaw, M.
(eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 721–741. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48000-7 35

16. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: 19th
STOC, pp. 218–229 (1987)

https://doi.org/10.1007/3-540-46766-1_31
https://doi.org/10.1007/3-540-46766-1_31
https://doi.org/10.1007/978-3-540-78524-8_13
https://doi.org/10.1007/978-3-540-30576-7_19
https://doi.org/10.1007/978-3-540-30576-7_19
https://doi.org/10.1007/978-3-642-40203-6_1
https://doi.org/10.1007/978-3-540-74143-5_32
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/978-3-662-48000-7_35

64 K. Chida et al.

17. Goldwasser, S., Levin, L.: Fair computation of general functions in presence of
immoral majority. In: Menezes, A.J., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS,
vol. 537, pp. 77–93. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-
38424-3 6

18. Gennaro, R., Rabin, M., Rabin, T.: Simplified VSS and fact-track multiparty com-
putations with applications to threshold cryptography. In: 17th PODC (1998)

19. Goldreich, O.: Foundations of Cryptography: Basic Applications, vol. 2 (2004)
20. Keller, M., Orsini, E., Scholl, P.: MASCOT: faster malicious arithmetic secure

computation with oblivious transfer. In: 23rd ACM CCS, pp. 830–842 (2016)
21. Keller, M., Pastro, V., Rotaru, D.: Overdrive: making SPDZ great again. In:

Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp. 158–
189. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7 6

22. Lindell, Y., Nof, A.: A framework for constructing fast MPC over arithmetic cir-
cuits with malicious adversaries and an honest-majority. In: ACM CCS (2017)

23. Mohassel, P., Rosulek, M., Zhang, Y.: Fast and secure three-party computation:
the garbled circuit approach. In: ACM CCS, pp. 591–602 (2015)

24. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multi-party protocols with
honest majority. In: 21st STOC, pp. 73–85 (1989)

25. Shamir, A.: How to share a secret. CACM 22(11), 612–613 (1979)
26. Yao, A.: How to generate and exchange secrets. In: 27th FOCS, pp. 162–167 (1986)

https://doi.org/10.1007/3-540-38424-3_6
https://doi.org/10.1007/3-540-38424-3_6
https://doi.org/10.1007/978-3-319-78372-7_6

Quantum Cryptography

Quantum FHE (Almost) As Secure
As Classical

Zvika Brakerski(B)

Weizmann Institute of Science, Rehovot, Israel
zvika.brakerski@weizmann.ac.il

Abstract. Fully homomorphic encryption schemes (FHE) allow to
apply arbitrary efficient computation to encrypted data without decrypt-
ing it first. In Quantum FHE (QFHE) we may want to apply an arbitrary
quantumly efficient computation to (classical or quantum) encrypted
data.

We present a QFHE scheme with classical key generation (and clas-
sical encryption and decryption if the encrypted message is itself classi-
cal) with comparable properties to classical FHE. Security relies on the
hardness of the learning with errors (LWE) problem with polynomial
modulus, which translates to the worst case hardness of approximating
short vector problems in lattices to within a polynomial factor. Up to
polynomial factors, this matches the best known assumption for classi-
cal FHE. Similarly to the classical setting, relying on LWE alone only
implies leveled QFHE (where the public key length depends linearly on
the maximal allowed evaluation depth). An additional circular security
assumption is required to support completely unbounded depth. Inter-
estingly, our circular security assumption is the same assumption that is
made to achieve unbounded depth multi-key classical FHE.

Technically, we rely on the outline of Mahadev (arXiv 2017) which
achieves this functionality by relying on super-polynomial LWE modu-
lus and on a new circular security assumption. We observe a connection
between the functionality of evaluating quantum gates and the circuit
privacy property of classical homomorphic encryption. While this con-
nection is not sufficient to imply QFHE by itself, it leads us to a path that
ultimately allows using classical FHE schemes with polynomial modulus
towards constructing QFHE with the same modulus.

1 Introduction

A fully homomorphic encryption (FHE) scheme [17,32] is one where the trans-
formation Enc(x) → Enc(f(x)) can be performed efficiently for any efficiently

The full version of this work is available at https://eprint.iacr.org/2018/338.
Supported by the Israel Science Foundation (Grant No. 468/14), Binational Science
Foundation (Grants No. 2016726, 2014276), and by the European Union Horizon
2020 Research and Innovation Program via ERC Project REACT (Grant 756482)
and via Project PROMETHEUS (Grant 780701).

c© International Association for Cryptologic Research 2018
H. Shacham and A. Boldyreva (Eds.): CRYPTO 2018, LNCS 10993, pp. 67–95, 2018.
https://doi.org/10.1007/978-3-319-96878-0_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96878-0_3&domain=pdf
https://eprint.iacr.org/2018/338

68 Z. Brakerski

computable f , without violating the security of the scheme. This primitive is
very useful for cryptographic applications, and in particular it allows private
outsourcing of computation. That is, using the resources of a powerful third
party to perform a computation without giving up privacy. In recent years it
was shown how to construct FHE based on standard cryptographic assumptions
(mostly lattice related), including ones that are assumed to be secure against
quantum adversaries. In particular, it was shown [1,5,6,9,10,20] that FHE can
be based on the hardness of the learning with errors (LWE) problem introduced
by Regev [29]. LWE was proven to be as hard to solve as the hardness of finding
approximate shortest vectors in arbitrary worst-case lattices, a task for which no
significant quantum speedup is known. The approximation factor directly relates
to a parameter of the LWE problem known as the noise ratio, expressed as a
function of the dimension of the problem.1 Initial schemes [9] relied on LWE with
sub-exponential noise ratio, and thus the hardness of sub-exponential approxi-
mation for lattice problems. Extensive research effort improved the schemes all
the way down to only requiring a polynomial noise ratio [10], which is the gold
standard for LWE-based security.

Understanding the capabilities and boundaries of FHE in various computa-
tional models is a fundamental question in cryptographic study. In this work,
we focus on extending the set of supported functions f to the set of functions
computable in quantum polynomial time, at the necessary cost of the evaluation
process itself becoming quantum as well. This extension is called Quantum FHE
(QFHE).

With developments in quantum computing occurring at an increasing rate,
one could anticipate outsourcing of quantum computation becoming a quite com-
mon. Specifically it is quite likely that the first scalable quantum computers will
be very expensive and require specialized maintenance and thus will not be
directly available to the public. Rather, users will need to send their inputs to
be processed by third party providers. If privacy is desired in this scenario, then
QFHE could become a useful tool. While current research on QFHE, including
this work, is well within the theoretical regime, developing theoretical tools and
techniques could serve as basis for the development of concrete systems in due
time.

Previous Works. Broadbent and Jeffery [11] showed that any classical FHE
scheme can be translated into a quantum one that supports a limited set of
gates (specifically, the evaluation of Clifford gates). Their idea is quite natural
and elegant, and while not explicitly stated in this way, is related to the well
established cryptographic notion of key encapsulation mechanisms (KEM). They
rely on the notion of quantum one time pad (QOTP) that allows to information
theoretically encrypt a quantum state using a single-use classical random pad.
They propose to encrypt a quantum state using a QOTP, and then encrypt the
pad itself using a classical homomorphic encryption scheme. They then show
that Clifford operations in the quantum regime translate into applying a public
1 To the informed reader we clarify that the noise ratio is the inverse of the Gaussian

parameter of the relative noise, i.e. 1/α in the common notation.

Quantum FHE (Almost) As Secure As Classical 69

operation on the quantum part of the QOTP ciphertext, and applying public
classical operations on the classical secret bits of the pad. The latter can be
applied homomorphically since the secret bits of the pad are encrypted using
a classical FHE scheme. They also show that evaluating an a-priori bounded
number of non-Clifford gates is possible at the cost of the ciphertext size blowing
up polynomially with the number of supported non-Clifford gates.

Dulek, Schaffner and Speelman [14] showed how to transfer the dependence
on the number of non-Clifford gates from the ciphertext to the key. Specifically,
their key generation involves generating a quantum gadget for every non-Clifford
gate to be evaluated throughout the lifetime of the scheme, and transferring these
gadgets to the homomorphic evaluator. The gadgets are consumed after a single
use and their quantum nature prevents them from being duplicated or shared.
This allowed for the first time to outsource quantum computation privately and
compactly, but at the cost of quantum preprocessing. The [14] solution used the
KEM approach as well, but required the decryption complexity of the classical
FHE scheme to be bounded (roughly logarithmic space). They instantiate their
scheme with the [9] FHE scheme, thus inheriting its unfavorable properties, but
we believe it can also be instantiated using newer schemes such as [5,6,20], but
it is not clear whether it applies to schemes based on the hardness of polynomial
lattice approximation due to the sequentialization technique of [10] used in these
schemes.

Mahadev [21] very recently presented a scheme whose key generation process
is completely classical. This immediately implies that the keys can be duplicated
and there is no longer a global bound on the total homomorphic capacity of the
system. This scheme also uses key encapsulation, and requires specific properties
of the underlying classical homomorphic encryption. An important property of
the [21] scheme is that the homomorphic evaluation of each quantum gate is not
necessarily perfectly correct, but rather it is only guaranteed to be within small
trace distance of the correct state. These errors accumulate so in the worst case
they are multiplied by the total circuit size. Thus, in order to achieve correctness
up to a negligible trace distance, the per-gate error needs to be negligible as
well. In the [21] solution, the per-gate error is (inversely) related to the noise
rate of the underlying LWE assumption, so in order to achieve correctness for all
polynomial size circuits, it is required to rely on the hardness of super-polynomial
approximation to lattice problems (or even larger, depending on the type of
computation and the user’s desired level of confidence).

Another unusual requirement of [21] from the underlying classical FHE
scheme is randomness recoverability. Namely, that using the secret key it is
possible to recover the randomness of a ciphertext. This is achieved using the
dual scheme to the [1,10,20] scheme, but requires changing the secret key from
being a single vector to a trapdoor to the lattice corresponding to the public key.
This would all be in the realm of low order technicalities, except for the issue of
circular security, which we explain next. Even in the classical setting, relying on
LWE alone only allows to construct leveled FHE, where an a-priori bound on the
depth (but not on the size) of evaluated circuits needs to be known. Overcoming
this issue to obtain a scheme that is secure for any depth requires encrypting the

70 Z. Brakerski

scheme’s own secret key, and explicitly assuming that this does not adversely
impact the security of the scheme. Making this assumption for standard LWE-
based encryption is by now the norm, but one might be less confident about
making this assumption for new distributions of secret keys.

To conclude this overview, we note that there is a distinction in the literature
between QFHE for classical vs. for quantum inputs. The former requires that the
encryption and key generation process are completely classical, so that quantum
computation on classical inputs can be outsourced by a classical entity. This
distinction could suggest that the two notions are incomparable, however we
believe that it is instructive to aspire to achieve a notion that generalizes both.
Specifically, we propose to aspire for QFHE with classical keys, that can encrypt
classical messages using a classical encryption process, and can encrypt quantum
messages using a quantum process, and likewise if the output of homomorphic
evaluation is classical then it should be decryptable by a classical decryption
process. This stronger notion is in fact achieved by [21], although this property
is not highlighted.

Our Results and Approach. We present a QFHE scheme using the high
level outline of [21], but with per-gate error that decays exponentially with the
noise rate of the underlying LWE assumption. Thus, using polynomial noise
rate we are able to achieve exponentially small per-gate error, which means that
we can securely evaluate any polynomial (or even super-polynomial) quantum
circuit while incurring only an exponentially small skew between the output of
homomorphic evaluation and the desired result. We do this by (again) relying
on key encapsulation, this time using the (primal) [1,10,20] scheme as the KEM
component. As for the distribution of secret keys, we do not require to use a
lattice trapdoor as secret key, but our scheme requires publishing an encryption
of the secret key of a [20]-style scheme, and keeping the randomness used to
generate this encryption as a part of its own secret key.

Therefore, if we wish to create a scheme that works for a-priori unbounded
depth, we need to assume circular security respective to a key containing a
standard LWE key as well as randomness that was used to generate encryptions
of this key. Interestingly, this exact assumption is required in order to construct
unbounded depth classical multi-key FHE from [20]-style encryption [8,12,25,
28].2

In terms of our approach, we observe that the [21] method is implicitly inti-
mately connected to the circuit privacy property of the underlying classical
homomorphic scheme. Circuit privacy is the property that after homomorphi-
cally evaluating a function f , the resulting ciphertext Enc(f(x)) does not contain
any information about f except the value f(x) (even statistically). While cir-
cuit privacy is not a sufficient condition, it appears to be necessary for ensuring
functionality in the [21] method.

Circuit private homomorphic encryption schemes are useful for various appli-
cations and this property has been extensively studied in the FHE literature, e.g.
2 Curiously, there is a syntactic resemblance between the randomness of a [1,10,20]

ciphertext and lattice trapdoors generated using the method of [22].

Quantum FHE (Almost) As Secure As Classical 71

in [4,13,16,18]. However, this property is usually considered to be a security fea-
ture, and we find it quite curious that in the quantum setting it turns out to be
related to the correctness of homomorphic evaluation.

Through the circuit privacy lens, the [21] scheme can be viewed as applying
the most rudimentary method for achieving function privacy, known as noise
flooding [16]. This method guarantees privacy that is roughly relative to the noise
rate of the underlying LWE assumption, hence super-polynomial rate is required
to achieve privacy with all but negligible probability. It is not immediately clear
how to apply more modern circuit privacy approaches in the QFHE setting (due
to the additional properties required for quantum homomorphic evaluation), and
the bulk of our technical work goes towards developing techniques to allow this
application. We elaborate more on our techniques below.

1.1 Technical Overview

Our basic approach, traced back to [11], is to rely on key encapsulation. The
ciphertext is encrypted using a quantum one time pad (QOPT), and the (classi-
cal) secret pad is encrypted using a classical FHE. QOTP encryption of a qubit
can be expressed as applying a random Pauli operation, namely a random bit
flip and a random phase flip. This allows to easily evaluate Clifford gates. As
observed in previous works [14,21], a missing piece that would imply QFHE is
being able to homomorphically evaluate the CNOT operation on a given quan-
tum state, but given a classical control bit in encrypted form. To be more explicit,
given a 2-qubit superposition

∑
a,b αa,b|a, b〉 and an encrypted control bit x, out-

put an encapsulated encryption of
∑

a,b αa,b|a, b ⊕ ax〉, i.e. a two-qubit register
and a classically encrypted pad that would decrypt the quantum register to
the aforementioned superposition. The encapsulated version we produce will be
a superposition of the form

∑
a,b(−1)aγphaseαa,b|a, b ⊕ ax ⊕ γflip〉 for some bits

γflip, γphase, together with encryptions of the bits γflip, γphase. One can verify that
indeed

∑
a,b(−1)aγphaseαa,b|a, b ⊕ ax ⊕ γflip〉 can be corrected to the prescribed

output using a proper bit flip and phase flip. We start by describing at a high
level the [21] approach and its relation to circuit privacy.

The [21] Approach and Circuit Privacy. Given
∑

a,b αa,b|a, b〉 and Enc(x),
the idea is to apply classical homomorphic evaluation to generate a superposition
of the form ∑

a,b,μ

αa,b|a, b ⊕ μ〉|Enc(ax ⊕ μ)〉|μ〉

(we ignore normalization factors). This can be done using the properties of the
classical FHE by applying to Enc(x) the function fa,μ(x) = ax ⊕ μ. Now, mea-
sure the register containing |Enc(ax ⊕ μ)〉 to obtain some ciphertext c′, let γflip
denote the bit that it encrypts and note that μ = ax⊕γflip. Then the remainder
superposition is:

∑
a,b αa,b|a, b ⊕ ax ⊕ γflip〉|ax ⊕ γflip〉. So far we used the homo-

morphic ciphertext to introduce an added ax term into the |b〉 register. Finally, to
remove the last register |ax ⊕ γflip〉, measure it in the Hadamard basis, or alter-
natively, apply Fourier Transform and measure the result. We get a measured

72 Z. Brakerski

bit w and the state
∑

a,b(−1)(wx)aαa,b|a, b ⊕ ax ⊕ γflip〉 (with a global factor
(−1)wγflip that can be ignored). Therefore, setting γphase = wx should complete
the proof.

Unfortunately, this outline is too simplistic. We ignored the fact that there
are many possible ciphertexts of the form Enc(ax ⊕ μ), and the specific cipher-
text output by homomorphically evaluating fa,μ might depend on a, μ, which
means that measuring it might collapse the superposition completely. This is
why circuit privacy seems useful, since it will ensure that regardless of a, μ the
distribution of Enc(ax⊕μ) depends only on the bit it encrypts. However, making
a ciphertext private necessarily requires randomness, and we cannot use classi-
cal randomness since it will cause the superposition to collapse just as before.
Therefore, the randomness is taken in superposition, and after measuring c′ we
are left with an additional register containing the randomness conditioned on
c′. In a sense the privacy transformation transferred the information about the
applied circuit from the ciphertext to the randomness register. We are thus left
with

∑
a,b(−1)aγphaseαa,b|a, b ⊕ ax ⊕ γflip〉|ra〉 and we need to find a way to get

rid of this additional randomness register.
In [21] it is shown that using their specific scheme, it is possible to express

ra as r0 ⊕ (ar1) where r0, r1 are binary vectors, and thus again measuring this
register in the Hadamard basis will be effective. This crucially relies on having a
one-to-one mapping between the randomness in the privacy transformation and
the ciphertext c′. This property indeed holds for noise flooding, but not for later
privacy techniques.

To complete this description, we note that after the Hadamard measurement,
the value of r1 now contributes to γphase, and an additional process involving
the lattice trapdoor is introduced in order to show that a classical encryption of
the new γphase can be recovered.

Our Solution. We are inspired by the circuit privacy argument of Bourse et
al. [4] which is applicable to encryption schemes of the type introduced in [20]
(henceforth referred to as GSW) and shows how to achieve circuit privacy with
polynomial noise rate. In GSW an encryption of a bit x is represented by a matrix
over Zq for some modulus q of the form C = ARc + xG, where A is the public
key of the scheme, Rc is a matrix of low norm (say all entries are � q) and G is a
special “gadget” matrix. For our purposes it will be useful to choose the modulus
q to be even (this does not have an effect on the resulting hardness assumption).
The circuit privacy argument of [4] implies that if we sample a integer vector
r from a discrete Gaussian distribution over the set {r : Gr = a q

2Δ (mod q)}
(for some vector Δ), and compute the vector c′ = Cr + (q

2μ + y)Δ, where y is
a discrete Gaussian over Z, then c′ is a circuit private representation of ax ⊕ μ,
i.e. c′ does not reveal information about a, μ beyond the value ax ⊕ μ.3

Let us now see how this method fits into the [21] outline. Specifically, every c′

in this setting will have multiple randomness values associated with it, so there
is no longer a single ra associated with each c′. We will therefore try to find
3 Indeed, c′ does not have the same form as the original ciphertext C, but it can be

correctly decrypted, which is the property we care about.

Quantum FHE (Almost) As Secure As Classical 73

an alternative structural property of the randomness register that will allow us
to remove it without collapsing the superposition. Looking closely, we see that
the randomness consistent with c′ is a discrete Gaussian over variables r, y, μ s.t.
{r : Gr = a q

2Δ (mod q)} and c′ = Cr+(q
2μ+y)Δ = ARcr+(q

2 (ax⊕μ)+y)Δ.
Indeed we observe that this is a Gaussian superposition over the solutions of a
set of linear equations modulo q. In other words over a coset of a q-ary lattice,
where the coset is determined by c′ and by a q

2Δ. This suggests a way out, if we
are willing to replace the binary Fourier Transform with q-ary Fourier Transform
(
FTq : |x〉 → ∑ |w〉e− 2πi

q 〈w,x〉). As a rule of thumb, applying FTq on different
cosets of the same lattice, results in the same output, up to a phase that depends
on the difference between the cosets. In our case, the difference is a multiple of
a, just like we wanted.

Unfortunately, things are not so simple. First of all, indeed the phase is a
multiple of a, but since we applied FTq, this phase might be relative to a q-ary
root of unity, and not to (−1) as we require for our key encapsulation.4 Luckily,
in our case the difference between the cosets is a multiple of q

2 , which translates
to a phase relative to (−1). A greater difficulty comes from the fact that we are
not actually uniform over a the coset, but rather Gaussian, which makes the
transference between the pre-FTq and post-FTq regimes more messy. In par-
ticular, instead of all points having the same phase shift, each measured value
receives phase contributions from many sources which can interfere with each
other. It is known that if the Gaussian parameter is large enough (larger than
the so called “smoothing parameter” of the lattice), then the interference is neg-
ligible. Unfortunately this is not the case here, and we need to explicitly analyze
the post-FTq superposition in order to show that the effect of the interference
only amounts to exponentially small trace distance.

Finally, we note that in order to make the analysis go through, we add an
additional component to the privacy transformation and actually set c′ = Cr +
Ar̂ + (q

2μ + y)Δ, with r̂ being an additional Gaussian parameter. This allows
us to prove useful properties for the resulting lattice, as well as provides us with
a way to recover the new γphase without requiring lattice trapdoors, but rather
using only an encrypted form of Rc and the LWE secret key.

1.2 Paper Organization

The main technical contribution of this paper is the homomorphic evaluation of
classically controlled CNOT, which is outlined above in Sect. 1.1 and formally
analyzed in Sect. 5.

General preliminaries appear in Sect. 2, preliminaries related to the definition
of homomorphic encryption and results from previous works that we use appear in
Sect. 3. In Sect. 4 we describe how to put together the components from previous
works together with our classically controlled CNOT to create the QFHE scheme.

4 One could consider using q-ary QOTP, but this introduces other difficulties since
it changes the class of circuits that are “easy”, analogous to Clifford in the binary
setting.

74 Z. Brakerski

2 Preliminaries

We denote the unit ball by Bm = {x ∈ R
m : ‖x‖2 ≤ 1}, we omit the subscript

when m is clear from the context. Similarly we denote the unit cube by Hm =
{x ∈ R

m : ∀i. x[i] ∈ (−1, 1]}. We will sometimes use the shorthand Bt
m, Ht

m to
denote t · Bm, t · Hm respectively.

Let F : X → C, and let W ⊆ X, then we denote F (W) =
∑

x∈W F (x). For
all q ∈ N we let Zq denote the ring of integers modulo q. We represent elements
in Zq using numbers in the range (− q

2 , q
2] ∩Z. We denote by [x]q the value y s.t.

y = x (mod q) and y ∈ (− q
2 , q

2]. We let [Z]q denote the set Z ∩ (− q
2 , q

2].
We say that we δ-compute a quantum state if we compute a superposition

that is within trace distance O(δ) of that state.

Quantum Rejection Sampling. We recall that quantum rejection sam-
pling allows to take a superposition

∑
x∈X αx|x〉 and any sequence {α′

x}x

s.t. |α′
x| ≤ 1 for all x, and produce a superposition 1

A

∑
x∈X αxα′

x|x〉, where
A =

∑
x∈X |αxα′

x|2. The success probability of this procedure (i.e. the probabil-
ity of not rejecting) is A. If it is efficient to generate the original superposition
then the process can be repeated until successful, 1/A times in expectation.

Log-Infinity Uniformity. It will be convenient for us to consider a measure
we call log-infinity variance.5

Definition 2.1. The log-infinity variance of a vector v ∈ (R+)m is defined as

loginf(v) = ln
(

maxi v[i]
mini v[i]

)

. (1)

If loginf(v) ≤ ε, we say that v is ε-loginf uniform.

We will often use loginf-uniformity for general indexed sets V = {vz ∈ R
+}z∈M ,

where M is some set of indices.
The following properties are easy to verify by definition.

Lemma 2.2. Let V = {vz}z∈M be ε-loginf uniform. Then the following hold:

1. Conditioning. ∀M ′ ⊆ M the sequence V ′ = {vz}z∈M ′ is ε-loginf uniform.
2. Aggregation. ∀a1, . . . , ak ∈ R

+ the sequence {a1vz1 + · · · + akvzk
}z1,...,zk∈M

is ε-loginf uniform.
3. �p

p-Uniformity. Let p ∈ R
+. The distribution defined on M by assigning

probabilities Pr[z] ∝ vp
z is within statistical distance O(pε) of uniform.

2.1 Quantum One Time Pad

The quantum one time pad (QOTP) allows to encrypt a qubit in an information
theoretically secure manner using two random classical bits as symmetric key.
Encrypting a multi-qubit state can be done in a bit by bit manner (using an
independently sampled symmetric key for each qubit in the state).
5 We suspect that this measure has been considered before, but were not able to find

any reference or a well established name for it.

Quantum FHE (Almost) As Secure As Classical 75

– QOTP.Keygen(). Sample two classical bits x, z
$← {0, 1} and outputs (x, z).

– QOTP.Enc((x, z), φ). Given a qubit φ apply the Pauli transformation XxZz

to φ and output the resulting φ̂. More explicitly, the applied transformation
is: (α0|0〉 + α1|1〉) → (α0|x〉 + (−1)zα1|x̄〉).

– QOTP.Dec((x, z), φ̂). Apply the reverse transformation ZzXx to φ̂.

We note that if the message to be encrypted φ is classical, then it is possible to
generate a syntactically correct and unconditionally secure QOTP of φ using a
classical algorithm by simply applying a classical one time pad using randomness
x, and setting z = 0. Furthermore, given any QOTP encryption of a classical
value, it is possible to measure φ̂ and the resulting classical value can be correctly
decrypted using the key (x, z) (or even (x, 0)) by the standard classical one time
pad decryption.

2.2 Discrete and Periodic Gaussians

For s > 0 we define the Gaussian density function ρs(x) := e−π(‖x‖/s)2 , where
x ∈ R

n. For a set of points X ⊆ R
n we denote ρs(X) =

∑
x∈X ρs(x). The

discrete Gaussian distribution DZn,s is one that is supported only over x ∈ Z
n

and such that Pr[DZn,s = x] ∝ ρs(x).

Definition 2.3 (Periodic Gaussian). The q-periodic Gaussian function ρs,q

is the periodic continuation of ρs. Namely ρs,q(x) = ρs(x + qZm).

We show next that when s is sufficiently smaller than q, ρs,q(x) is close to
the non-periodic (but truncated) Gaussian.

Lemma 2.4. Let s > 0, q ∈ N, x ∈ Z
m be such that ‖[x]q‖ < q/4. Then

1 ≤ ρs,q(x)
ρs([x]q)

< 1 + 2−(1
2 (q/s)2−m) (2)

Proof. The lower bound holds by definition. For the upper bound,

ρs,q(x)
ρs([x]q)

=

∑
v∈Zm(ρs([x]q + qv)

ρs([x]q)
(3)

=
∑

v∈Zm

exp
(
−π

(
‖[x]q + qv‖2 − ‖[x]q‖2

)
/s2

)
(4)

= 1 +
∑

v∈Zm\{0}
exp

(
−π

(
‖[x]q + qv‖2 − ‖[x]q‖2

)
/s2

)

︸ ︷︷ ︸
denote by δ

(5)

However, since ‖[x]q‖ < q/4, it holds that for all v ∈ Z
m \ {0}

‖[x]q + qv‖2 − ‖[x]q‖2 ≥ ‖qv‖ · (‖qv‖ − 2‖[x]q‖) (6)

> ‖qv‖ · (‖qv‖ − q/2) (7)
≥ ‖qv‖ · (‖qv‖/2) (8)

= ‖qv‖2/2 (9)

76 Z. Brakerski

Therefore

δ ≤ ρ

((
q

s
√

2
Z

m

)

\ {0}
)

(10)

≤ 2m− 1
2 (q/s)2 , (11)

where the last inequality follows by Lemma 2.10, with t = q

s
√
2
. ��

For one dimensional Gaussians, another bound can be achieved.

Lemma 2.5. Let q ∈ N, s > 0 and x ∈ [Z]q. Then

ρs,q(x) ≤ 2ρs(x)/(1 − ρs(q)) (12)

Proof. We expand the expression:

ρs,q(x) =
∑

j∈Z

e−π(x+jq
s)2 (13)

=
∑

j∈N

e−π(|x|+jq
s)2 +

∑

j∈N

e−π((q−|x|)+jq
s)2 (14)

≤
∑

j∈N

e−π(x
s)2 · e−πj(q

s)2 +
∑

j∈N

e−π((q−|x|)
s)2 · e−πj(q

s)2 . (15)

Since e−π((q−|x|)
s)2 ≤ e−π(x

s)2 , and
∑

j∈N
e−πj(q

s)2 = 1/(1−e−π(q
s)2), the lemma

follows. ��
Corollary 2.6. Let s > 0, q ∈ N, x ∈ Z

m be such that ‖[x]q‖ ≥ t. Then

ρs,q(x) ≤ 2mρs(t)
1 − mρs(q)

, (16)

Proof. We will use Lemma 2.5 as follows:

ρs,q(x) ≤
m∏

i=1

ρs,q(xi) ≤
m∏

i=1

2ρs(x)
1 − ρs(q)

≤ 2m

1 − mρs(q)
· ρs(x) ≤ 2mρs(t)

1 − mρs(q)
.

2.3 Lattices

A lattice, formally, is a discrete subgroup of Rm. In this work we focus on integer
lattices, which are subgroups of Zm. Any lattice can be represented as the Z-span
of a set of basis vectors. The basis is usually represented as a matrix B whose
columns are the elements of the basis. The lattice spanned by the basis B ∈ Z

m×k

is denoted L(B) = {Bt : t ∈ Z
k}. We will usually consider full rank lattices

where B is a square matrix. A coset of a lattice is defined by a vector c ∈ R
m

and denoted as c + Λ = {x : x − v ∈ Λ} (note that many different c vectors can
define the same coset). The dual of Λ is the set Λ∗ = {y : ∀x ∈ Λ. 〈y,x〉 ∈ Z}.

The following is an immediate corollary from Banaszczyk’s transference the-
orems [2].

Quantum FHE (Almost) As Secure As Classical 77

Corollary 2.7. Let Λ be a rank n lattice, and assume that Λ contains k linearly
independent vectors of length ≤ �. Then any set of (n−k+1) linearly independent
vectors in Λ∗ contains a vector of length ≥ 1/�.

Specifically, if Λ contains (n − 1) linearly independent vectors of length ≤ �,
then all vectors in Λ∗ of length < 1/� are on the same line.

Given a lattice Λ ⊆ R
m, we say that T ∈ Z

m×m′
is a σ-trapdoor for Λ if

it has the same rank as Λ and its orthogonalized norm
∥
∥
∥T̃

∥
∥
∥ is at most σ. The

orthogonalized norm is the maximal norm of the columns of T̃, which is in turn
the Gram-Schmidt orthogonalization of the columns of T. An upper bound on
the norm of the columns of T itself is also an upper bound for its trapdoor
quality.

The ε-smoothing parameter of the lattice Λ, denoted ηε(Λ) is defined as the
maximal Gaussian measure over Λ whose Fourier Transform is concentrated
around 0. For our purposes we will only require the following two properties
proven in [19,23,29].

Lemma 2.8. If Λ is of rank m and has a σ-trapdoor then for all ε < 1/2 it

holds that ηε(Λ) ≤ σ ·
√

1
π log(4m/ε).

Lemma 2.9. If ηε(Λ) ≤ s then the sequence {ρs(Λ + d)}d∈Rm is O(ε)-loginf
uniform.

We also use the following lemma, a parameterized version of [31, Lemma 7],
which is in turn a simplified version of [2], and follows by an identical proof.

Lemma 2.10. For any m dimensional lattice Λ, for all d ∈ R
m and for all s, t

it holds that

ρs((Λ + d) \ Bt
m) ≤ 2m−(t/s)2ρs(Λ). (17)

2.4 The Class of q-Ary Lattices

This class of lattices that is very useful in cryptography, and plays a prominent
role in this work as well. A lattice is q-ary, for a modulus q ∈ N, if it contains all
of the vectors in qI (where I is the identity matrix). All such lattices have full
rank.

Every matrix of the form L ∈ Z
n×m
q defines two useful q-ary lattices. The

“perp lattice” Λ⊥
q (L) = {x : Lx = 0 (mod q)}, and the row span Spanq(L) =

{y ∈ Z
m : ∃s ∈ Z

n
q . y = sL (mod q)}, which contrary to our usual convention

will be considered as a lattice of row vectors. The dual of Spanq(L) is 1
q Λ⊥

q (L).
For all v ∈ Z

n
q define Λ⊥

q (L,v) = {x : Lx = v (mod q)} and note that these are
cosets of Λ⊥

q (L).
Translating Corollary 2.7, we get the following.

Corollary 2.11. If Λ⊥
q (L) contains (n−1) linearly independent vectors of length

≤ �, then all vectors in Spanq(L) of length < q/� are on the same line.

78 Z. Brakerski

For all n, we define the gadget matrix G ∈ Z
n×n�log q�
q as the block matrix

G = [I‖2I‖ · · · ‖2�log q�−1I] (where I is the n × n identity matrix). For all
V ∈ {0, 1}n×k we define G−1(V) ∈ {0, 1}n�log q�×k to be the binary matrix
s.t. GG−1(V) = V (mod q). The matrix G has a

√
5-trapdoor (for any values

of n, q).
By the leftover hash lemma, for all m > (n log q + 2), all but 2−n fraction

of the matrices L ∈ Z
n×m
q have a

√
m-trapdoor. The matrix G also has a

√
m-

trapdoor (which is efficiently computable, but we will not require it for the
purpose of this work).

Lastly, the following is a direct corollary of the fact that 1
q Spanq(D) is the

dual of Λ⊥
q (D), the Poisson summation formula and basic properties of the

Fourier Transform (see, e.g., [30]).

Corollary 2.12. For any full rank D ∈ Z
n×m
q , for all v ∈ Z

n
q , w ∈ Z

m
q and

any σ ∈ R
+ it holds that

∑

x∈Λ⊥
q (D,v)

ρσ(x)e− 2πi
q 〈w,x〉 = σm

qn ·
∑

t∈Zn

ρq/σ(w + tD) · e
2πi

q 〈t,v〉 (18)

= σm

qn ·
∑

t∈Zn
q

ρq/σ,q(w + tD) · e
2πi

q 〈t,v〉. (19)

2.5 Learning with Errors

The learning with errors (LWE) problem was defined by Regev [29]. In this
work we exclusively use the decisional version. The LWEn,m,q,χ problem, for
n,m, q ∈ N and for a distribution χ supported over Z is to distinguish between
the distributions (A, sA+ e (mod q)) and (A,u), where A is uniform in Z

n×m
q ,

s is a uniform row vector in Z
n
q , e is a uniform row vector drawn from χm, and

u is a uniform vector in Z
m
q . Often we consider the hardness of solving LWE for

any m = poly(n log q). This problem is denoted LWEn,q,χ.
As shown in [27,29], the LWEn,q,χ problem with χ being the discrete Gaus-

sian distribution with parameter σ = αq ≥ 2
√

n (i.e. the distribution over Z

where the probability of x is proportional to e−π(|x|/σ)2 , see more details below),
is at least as hard as approximating the shortest independent vector problem
(SIVP) to within a factor of γ = Õ(n/α) in worst case dimension n lattices.
This is proven using a quantum reduction. Classical reductions (to a slightly dif-
ferent problem) exist as well [7,26] but with somewhat worse parameters. The
best known (classical or quantum) algorithm for these problems run in time
2 ˜O(n/ log γ), and in particular are conjectured to be intractable for γ = poly(n).

2.6 The q-Ary Fourier Transform

We will use the following flavor of Fourier Transform over the ring Zq for q ∈ N

(this is sometimes called discrete Fourier Transform) which maps functions f :

Quantum FHE (Almost) As Secure As Classical 79

Z
n → C to f̂ : Zn

q → C as

f̂q(w) =
∑

x∈Zn

f(x) · e− 2πi
q 〈w,x〉. (20)

We note that if f is only supported over the cube modulo q, i.e. over Hq/2
n ∩Z

n
q ,

then the q-ary Fourier Transform operator is unitary (up to a global normaliza-
tion factor).

2.7 Generating Gaussian Superpositions over Lattices

It has been shown in previous works [7,19] how to sample from a Gaussian
superposition over a lattice, or a coset of a lattice, given a good enough basis.
We observe that these methods can be extended to generating a Gaussian super-
position by carefully repeating the argument from [7, Sect. 5], replacing rejec-
tion sampling with quantum rejection sampling, and neglecting the far tail of
the Gaussian distribution. We state the result only for integer lattices to avoid
handling matters of precision.

Lemma 2.13 (Lattice Superposition Generation). Let Λ = L(B) ⊆ Z
m

be an m-dimensional lattice, let c ∈ Z
m and let r ≥ √

ln(2m + 4)/π · ‖B̃‖.
Let δ ∈ (0, 1). Then there exists a quantum expected polynomial time algorithm
GenGauss s.t. GenGauss(B, c, r, 1/δ) outputs a quantum state which is within
O(δ) trace distance of

1
√

ρr(Λ + c)

∑

x∈Λ+c

ρ√
2r(x)|x〉. (21)

Furthermore if r ≥ √
log(4m/δ)/π · ‖B̃‖ then the resulting quantum state is

supported only over Z
m ∩ Br

√
m+log(1/δ)

m .

A proof is provided in the full version for the sake of completeness.

3 Homomorphic Encryption Tools and Techniques

3.1 Classical Homomorphic Encryption and Bootstrapping

We now define fully homomorphic encryption in the classical and quantum set-
ting, and introduce Gentry’s bootstrapping theorem.

A homomorphic (public-key) encryption scheme HE = (HE.Keygen,HE.Enc,
HE.Dec,HE.Eval) is a tuple of ppt algorithms as follows (λ is the security param-
eter):

– Key generation (pk, sk)←HE.Keygen(1λ): Outputs a public encryption key
pk and a secret decryption key sk.

– Encryption c←HE.Enc(pk, x): Using the public key pk, encrypts a single bit
message x ∈ {0, 1} into a ciphertext c.

80 Z. Brakerski

– Decryption x←HE.Dec(sk, c): Using the secret key sk, decrypts a ciphertext
c to recover the message x ∈ {0, 1}.

– Homomorphic evaluation ĉ←HE.Eval(C, (c1, . . . , c
), pk): Using the public
key pk, applies a circuit C : {0, 1}
 → {0, 1}
′

to c1, . . . , c
, and outputs
ciphertexts ĉ1, . . . , ĉ
′ .

We overload the functionality of the encryption and decryption procedures by
allowing the encryption to take multi-bit messages as input, and produce a
sequence of ciphertexts corresponding to a bit-by-bit encryption. Similarly we
allow the decryption to take as input a sequence of ciphertexts, decrypt them
one after the other and output the result. We note that when we refer to the
“decryption complexity” of the scheme, we refer to the single ciphertext pro-
cedure (although we will mostly be concerned with computation depth which
remains the same in the overloaded version).

A homomorphic encryption scheme is said to be secure if it is semantically
secure.

Full homomorphism and leveled full homomorphism is defined next.6

Definition 3.1 (compactness and full homomorphism). A scheme HE
is fully homomorphic, if for any efficiently computable circuit C and any set
of inputs x1, . . . , x
, letting (pk, sk)←HE.Keygen(1λ) and ci←HE.Enc(pk, xi), it
holds that

Pr [HE.Dec(sk,HE.Eval(C, (c1, . . . , c
), pk)) �= C(x1, . . . , x
)] = negl(λ).

A fully homomorphic encryption scheme is compact if its decryption circuit is
independent of the evaluated function. The scheme is leveled fully homomorphic
if it takes 1L as additional input in key generation, and can only evaluate depth L
Boolean circuits.

Gentry’s bootstrapping theorem shows how to go from limited amount of
homomorphism to full homomorphism. This method has to do with the aug-
mented decryption circuit and, in the case of pure fully homomorphism, relies
on the weak circular security property of the scheme.

Definition 3.2 (Bootstrappable Homomorphic Encryption). Consider a
homomorphic encryption scheme HE. Let (sk, pk) be properly generated keys and
let C be the set of properly decryptable ciphertexts. Then the set of augmented
decryption functions, {fc1,c2}c1,c2∈C is defined by

fc1,c2(x) = HE.Decx(c1) ∧ HE.Decx(c2).

Namely, the function that uses its input as secret key, decrypts c1, c2 and returns
the NAND of the results.

The scheme HE is bootstrappable if it can homomorphically evaluate its
family of augmented decryption circuits.
6 An informed reader will notice that we define single-hop homomorphism. However

this notion is sufficient and implies the multi-hop version via bootstrapping.

Quantum FHE (Almost) As Secure As Classical 81

Definition 3.3. A public key encryption scheme PKE is said to be weakly cir-
cular secure if it is secure even against an adversary who gets encryptions of the
bits of the secret key.

The bootstrapping theorem is thus as follows.

Theorem 3.4 (bootstrapping [16,17]). A bootstrappable homomorphic
encryption scheme can be transformed into a leveled fully homomorphic encryp-
tion scheme with the same decryption circuit, ciphertext space and public key.

Furthermore, if the aforementioned scheme is also weakly circular secure,
then it can be made into a (non-leveled) fully homomorphic encryption scheme.

3.2 Quantum Fully Homomorphic Encryption

A quantum fully homomorphic encryption (QFHE) is one that can encrypt qubit
registers and apply quantum circuits to encrypted data. For the purpose of this
paper we will only consider QFHE schemes with classical keys.

We start by considering quantum homomorphic encryption. This is a scheme
with similar syntax to the classical setting described above, and is likewise
defined as a sequence of algorithms (HE.Keygen,QHE.Enc,QHE.Dec,QHE.Eval).
The syntactic differences are as follows.

1. HE.Keygen remains a classical probabilistic algorithm.
2. QHE.Enc takes as input a qubit x rather than a bit, and outputs a ciphertext

represented in qubits.
3. QHE.Dec takes as input a ciphertext represented as a quantum register and

outputs the plaintext as a qubit.
4. QHE.Eval takes as input a classical description of a quantum circuit with �

input qubits and �′ output qubits, and a sequence of � quantum ciphertexts.
Its output is a sequence of �′ quantum ciphertexts.

A quantum homomorphic encryption scheme is secure if it is semantically secure.
For the definition of quantum semantic security see [11].

Definition 3.5 (compactness and full homomorphism). A scheme QHE
is fully homomorphic, if for any BQP circuit C and any �-qubit state x1, . . . , x
,
the states ρ1, ρ2 defined henceforth are within negligible trace distance.

We define ρ1 to be the �′-qubit state of the output of C(x1, . . . , x
). We define
ρ2 to be the �′-qubit state produced as follows. Generate (pk, sk)←HE.Keygen(1λ)
and ci←HE.Enc(pk, xi), and output QHE.Dec(sk,QHE.Eval(C, (c1, . . . , c
), pk)).
As in the classical case, a fully homomorphic encryption scheme is compact
if its decryption circuit is independent of the evaluated function. The scheme is
leveled fully homomorphic if it takes 1L as additional input in key generation,
and can only evaluate depth L Boolean circuits.

82 Z. Brakerski

3.3 GSW-Style Classical FHE with Polynomial Modulus

We consider the LWE based fully homomorphic encryption scheme of Gentry,
Sahai and Waters [20]. Specifically we use a result due to Brakerski and Vaikun-
tanathan [10] showing that it is possible to achieve secure FHE using polynomial
modulus.

Theorem 3.6 ([10]). There exist polynomials q0(n), Br(n), Be(n), and a (clas-
sical) bootstrappable fully homomorphic encryption scheme parameterized by any
function q(n) s.t. ∀n. q(n) ∈ [q0(n), 2n], with the following properties.

1. The scheme is secure based on the LWEn,q,χ assumption, with χ = DZ,2
√

n,
and thus on the hardness of SIVPγ for γ = Õ(

√
n · q). Specifically if q is

polynomial then so is γ.
2. The public key of the scheme is a matrix A ∈ Z

n×m
q for some m = O(n log q),

for m > n(log q+2), of the form A =
[

B
sB+e

]
(mod q), where B ∈ Z

(n−1)×m
q

is a random matrix, s $← Z
n−1
q , and ‖e‖ ≤ Be(n). The secret key is the vector

s.
3. When the output of a homomorphic evaluation is a ciphertext encrypting

a bit x ∈ {0, 1}, this ciphertext is a matrix C ∈ Z
n×n�log q�
q of the form

C = ARc+xG (mod q) where Rc ∈ Z
m×n�log q�. Furthermore, the maximum

Euclidean norm of any column in Rc is at most Br(n) (note that this bound
is independent on q, so long as q is in the aforementioned regime).

4. There exists a deterministic polynomial time computable function

TrackRand((C, (c1, . . . , c
), pk), (r1, . . . , r
), (x1, . . . , x
))

whose input consists of (C, (c1, . . . , c
), pk) which is an input to the homo-
morphic evaluation function, as well as the random tapes and messages ri, xi

used to generate each of the ciphertexts ci. Its output is the matrix Rc (where
C = ARc + xG is the output of the original homomorphic evaluation). Fur-
thermore, the depth of TrackRand is only dependent on the depth of C.

We note that property 4 was not proven directly in [10] but follows from analysis
of the GSW method in followups [1,3].

3.4 A Randomness Propagating Classical FHE Scheme

We show that using the scheme from Theorem 3.6 it is possible to generate a
cryptosystem with the same properties, but that in addition produces, as the
output of Eval an encryption of the randomness Rc of the output ciphertext. We
call such a scheme randomness propagating.

Corollary 3.7 (Randomness Propagating Classical FHE). There exists
a (parameterized) scheme with the exact same properties as that of the scheme
from Theorem 3.6, but with an additional property:

Quantum FHE (Almost) As Secure As Classical 83

5. The output of homomorphic evaluation is a ciphertext C as above, in addition
to an encryption of Rc (in bit representation).

The idea for constructing the scheme relies on bootstrapping and is similar to
the construction of fully-dynamic multi-key FHE by [8] via bootstrapping the
schemes of [12,25].

Proof. Since the scheme from Theorem 3.6 is bootstrappable, it can be extended
to one that supports homomorphic evaluation of depth L circuits, for any a-priori
polynomial L. In the new scheme, we change the encryption procedure to first
encrypt the message and then encrypt the randomness that was used to generate
that first ciphertext. Then, to perform the new homomorphic evaluation, first
produce C using the homomorphic evaluation of the original scheme, and then
homomorphically evaluate TrackRand on the encryption of the randomness in
order to produce the encryption of Rc. Since the decryption function did not
change, it is possible to choose L large enough so that the scheme remains
bootstrappable. ��

4 Our Quantum FHE Scheme

Our scheme follows an outline going back to Broadbent and Jeffery [11] and used
also in [14,21]. The idea is to encrypt messages using a quantum one-time pad
(QOTP), and then encrypt the secret pad using a classical FHE scheme (this is
often called key encapsulation or hybrid encryption in cryptographic literature).
It is shown in [11] that applying Clifford gates on the encrypted message can
be carried out by applying it to the QOTP encrypted state, and applying an
appropriate classical operation on the encapsulated key. Since the encapsulated
key is encrypted using a classical FHE, this classical operation can be carried
out thus completing the homomorphic evaluation.

However, to allow evaluating general BQP functionality, it is required to
evaluate gates beyond the Clifford family, in particular it is sufficient to evaluate
the Toffoli gate. It has been shown (see, e.g., [21, Appendix A.3]) that in order to
carry out this operation, it is sufficient to be able to evaluate a CNOT operation
on a quantum input with an encrypted classical control bit. Specifically, it is
sufficient to support the operation that takes as input a register encoding a
general 2-qubit superposition

∑
a,b αa,b|a, b〉 and an encrypted control bit x,

and output an encapsulated encryption of
∑

a,b αa,b|a, b ⊕ ax〉. Namely a QOTP
encrypted state together with a classical encryption of the QOTP key.

Our encryption scheme will be based on the key encapsulation methodology,
using the randomness propagating scheme from Corollary 3.7 as the key encap-
sulation scheme (this is sometimes called a “key encapsulation mechanism”, or
KEM). To show that this scheme can indeed evaluate a CNOT with a classical
control bit we prove the following theorem which constitutes the main technical
contribution of this work. We present the theorem here and explain how to use
it to construct our quantum FHE scheme. The theorem is then proven in Sect. 5
below.

84 Z. Brakerski

Theorem 4.1. For all δ and an appropriately set value of q = poly(n, log(1/δ)),
let A =

[
B

sB+e

]
(mod q) and C = ARc + xG (mod q) be such that there exist

global poly(n log q) bounds on the norms of e,Rc and such that B has a
√

m-
trapdoor (which does not need to be known to any entity).

There exists a quantum polynomial time algorithm taking as input A,C and a
general superposition over two qubits

∑
a,b αa,b|a, b〉. Its output, with probability

1 − O(δ), is a superposition over two qubits of the form
∑

a,b

(−1)a·γphaseαa,b|a, b ⊕ ax ⊕ γflip〉, (22)

as well as two vectors cflip, cphase and two implicit vectors sflip, sphase, defined as
a function of s, e,Rc, x, s.t.

| [〈cflip, sflip〉 − q
2γflip

]
q
| ≤ q/10, (23)

and likewise for 〈cphase, sphase〉.
We note that we purposely provide a theorem with parameterized dependence
on δ, even though it would have been sufficient to just show that there exists a
negligible δ for which the theorem holds. We do this to emphasize the robustness
of our techniques that allow taking the error to be even exponentially small in
the security parameter while still keeping q polynomial.

Putting the Components Together. We follow a similar outline to [21],
with the required changes from our different method of evaluating classically
controlled CNOT. Security follows immediately from the KEM mechanism by
combining the security of the quantum one time pad and the security of the
classical homomorphic encryption. This argument is identical to previous works.

Let δ > 2−poly(n) be some negligible function. We start with instantiating
the randomness propagating scheme from Corollary 3.7. We let q be the (poly-
nomial in n) value implied by Theorem 4.1, when instantiated with the bounds
Be(n), Br(n) from Corollary 3.7 (note that these bounds are independent of q so
there is no circularity here), and instantiate the randomness propagating scheme
accordingly. We furthermore notice that since the matrix B in the public key
is uniformly sampled, it has a

√
m-trapdoor with all but negligible probabil-

ity. Since the scheme is bootstrappable, it can be extended to support depth L
computation for any predefined polynomial L. We will set a proper value for L
later.

As explained, we use this scheme as KEM (key encapsulator) for a QOTP.
As in previous works, homomorphically evaluating a BQP circuit is done gate by
gate (or rather layer by layer). Clifford gates are evaluated as in [11]. To evaluate
CNOT with classical control, we recall that by Corollary 3.7, and our definition
of q, the structure of the matrices A,C allows to apply Theorem 4.1 to obtain
an output 2-bit register, along with the values cflip, cphase.

From this point and on, our outline is again similar to [21]. We note that the
values γflip, γphase can be recovered via a (classical) polynomial time process out

Quantum FHE (Almost) As Secure As Classical 85

of cflip, cphase using (s, e,Rc, x) by computing the vectors sflip, sphase, evaluating
the respective inner product and rounding to the nearest multiple of q/2. Since
we have encryptions of these values, we can set L to be large enough to allow us
to apply this process homomorphically, followed by bootstrapping the resulting
value, thus getting a bootstrapped KEM encryption of γflip, γphase. In other
words, we set L to be large enough so that the resulting scheme is bootstrappable
even after evaluating the quantum circuit.

This completes the proof. We can use Theorem 3.4 to bootstrap the result-
ing scheme to a leveled FHE of any desired depth, while still relying on the
same LWE assumption as the original scheme. Recalling Theorem 3.6, the LWE
parameters used imply hardness under the hardness of approximating SIVP to
within a factor of Õ(

√
nq) = poly(n). Alternatively, if we assume circular secu-

rity, we get a (non-leveled) FHE scheme. We will need to assume the circu-
lar security of the randomness propagating scheme, i.e. of a scheme that also
encrypts the randomness used to generate ciphertexts. Interestingly, as we men-
tion above, this assumption was already proposed in the literature for bootstrap-
ping LWE-based multi-key FHE schemes [8,12,25].

5 Evaluating a Classically Controlled CNOT

In this section we prove Theorem 4.1 by providing a BQP algorithm, setting
parameters and a value for q and proving that the requirements of the theorem
are met.

5.1 The Algorithm

We define m′ = m + n �log q� + 2. The choice of parameters for the values σ, q
is described in Sect. 5.2 below. We recall that we use the term “δ-computing a
quantum state” to refer to computing a state that is within O(δ) trace distance
of the prescribed state.

1. We start with a superposition
∑

a,b αa,b|a, b〉 stored in a register we denote
by INP.

2. Use the algorithm from Sect. 2.7 to δ-compute the superposition

|ψ〉 =
1

√
ρ σ√

2
(Zm+2)

∑

r̂∈Z
m

y,μ∈Z

ρσ(r̂, y, μ)|r̂, y, μ〉. (24)

Specifically, our choice of parameters will ensure that we generate a quantum
state which is supported only over Zm+2 ∩Hq/2

m+2 but is within trace distance
O(δ) from the above.

3. We note that it is possible to δ-compute, for any vector v ∈ Z
n
q , the super-

position

|ψv〉 =
1

√
ρ σ√

2
(Λ⊥

q (G,v))

∑

r∈Λ⊥
q (G,v)

ρσ(r)|r〉, (25)

86 Z. Brakerski

again we will show that we generate a superposition supported only over
Z

n�log q� ∩ Hq/2
n�log q� which is within trace distance O(δ) from the above.

For all a ∈ {0, 1} we define va = a · [0
q/2

] ∈ Z
n
q , and using the above we

δ-compute the superposition
∑

a,b

αa,b|a, b〉 |ψva
〉|ψ〉

︸ ︷︷ ︸
register Ψ

. (26)

4. Let μ0 denote the least significant bit of μ (the last coordinate in the Ψ
register), we apply the transformation |a, b〉 → |a, b ⊕ μ0〉 to the INP register.

5. Consider the (classical, deterministic) ciphertext randomization function
RandCTA,C(r̃) : Z

m′ → Z
n�log q�
q which is defined as follows. Parse r̃ as a

concatenation of r ∈ Z
n�log q�, r̂ ∈ Z

m, y, μ ∈ Z and compute

RandCTA,C(r̃) = Cr + Ar̂ +
[
0
1

]
y +

[
0

q/2

]
μ (mod q). (27)

Apply RandCT to the register Ψ , and add the output to a new |0〉 register.
Measure the new register to obtain a value c′.

6. Apply q-ary Fourier Transform (see Sect. 2.6) over Zq to the register Ψ , and
measure the result to obtain a value w. We note that since Ψ contains a
superposition which is supported over Zm′ ∩Hq/2

m′ , the q-ary Fourier Transform
is indeed a unitary transformation.

7. Output the register INP, and the vectors cflip = c′ and cphase = w, relative
to sflip = [−s, 1] and

sphase = υ =

[
G−1(q

2Δ)

−Rc·G−1(q
2Δ)

0−x

]

.

5.2 Parameters and Definitions

The following matrix D ∈ Z
2n×m′
q , where m′ = m+n �log q�+2, and the lattices

induced by it will play a central role in our analysis. This matrix is defined as
follows.

D =
[
G 0 0 0
C A 0

1
0

q/2

]

. (28)

The m′ − 1 columns of the following matrix are all in the lattice Λ⊥
q (D):

T′ =

⎡

⎢
⎢
⎣

TG 0 0
−RcTG TB 0

0 −eTB 0
0 0 2

⎤

⎥
⎥
⎦ ∈ Z

m′×(m′−1), (29)

where TG ∈ Z
n�log q�×n�log q� is a

√
n �log q�-trapdoor for G and TB ∈ Z

m×m

is a
√

m-trapdoor for B. Note that we will never need to explicitly compute T′.
We furthermore notice that the columns of T′ are vectors in Λ⊥

q (D) since

DT′ = 0 (mod q). (30)

Quantum FHE (Almost) As Secure As Classical 87

An additional important vector is the offset vector:

υ =

[
G−1(q

2Δ)

−Rc·G−1(q
2Δ)

0−x

]

, (31)

where Δ =
[
0
1

] ∈ {0, 1}n (i.e. all zeros except the last coordinate). We note that

D · υ =
[
G 0 0 0
C A 0

1
0

q/2

]

·
[

G−1(q
2Δ)

−Rc·G−1(q
2Δ)

0−x

]

=
[

q
2Δ
0

]
. (32)

Finally we consider the row vector d∗ = [2eRc‖2e‖2‖0] (which we prove
below is the shortest vector in Spanq(D)).

Setting the Parameters. We let p = poly(n log q) denote a polynomial upper
bound on max {‖T′‖, 10 · ‖υ‖, ‖d∗‖} (where ‖T′‖ refers to the maximal column
norm), and set

σ = p ·
√

2n log q + m′(log q + 1) + 2 log(4m′/δ) + 1, (33)

finally we set q = 2 ·
⌈
10 · p · σ · √m′ + log(1/δ)

⌉
, it will be useful for us that q

is even.
One might be worried about circularity of this definition, since p, σ are used

to determine the value of q but depend themselves on log q. Indeed this situation
frequently occurs when choosing parameters for LWE-based constructions, but
it is easily resolved since the dependence of p, σ on q is logarithmic. Specifically,
upper bound log q in the expressions for p, σ by, e.g., log2 n, and compute the
value of q that is implied by these values of p, σ. The result will be q = poly(n)
which indeed justifies the bound log q < log2 n.

Properties of Lattices Induced by D. We prove a few properties that will
be useful down the line.

We let p denote an upper bound on the �2 norm of the columns of T′, note
that p = poly(n log q) for a suitable polynomial. We now invoke Corollary 2.11
to conclude that Spanq(D) has at most a single nonzero vector of norm < q/p
(up to multiplication by scalar). The next claim identifies the shortest vector in
Spanq(D).

Claim 5.1. The shortest vector in Spanq(D) is the vector d∗ = [2eRc‖2e‖2‖0]
(where d∗ = t∗D (mod q) for t∗ = 2 · [−x(s,−1)‖(s,−1)]). All vectors in
Spanq(D) that are not integer multiples of d∗ are of length at least q/p.

Proof. Since T′ contains (m′ − 1) vectors in Λ⊥
q (D) of length at most p, Corol-

lary 2.11 guarantees that Spanq(D) has at most a single nonzero vector of norm
< q/p (up to integer multiplications). We next verify that the shortest of these
vectors is d∗.

88 Z. Brakerski

We can verify that indeed d∗ ∈ Spanq(D) since d∗ = t∗D (mod q). Further-
more, ‖d∗‖ ≤ p < q/p, and therefore either d∗ is the shortest vector, or is an
integer multiple of a shorter vector. However, d∗ is only divisible by 2 (recall
that Spanq(D) is an integer lattice), and the vector d∗/2 = [eRc‖e‖1‖0] is not
in Spanq(D) since q|2. �

For the next claim we recall the definition of loginf-uniformity in Defini-
tion 2.1 and its properties from Lemma 2.2.

Claim 5.2. The sequence
{
ρσ̃(Λ⊥

q (D, v̂))
}
v̂∈Z2n

q
is O(δ)-loginf uniform for any

σ̃ ≥ p ·
√

1
π log(4m′/δ).

Proof. Denote h = [eRc‖e‖1‖0] and notice that h is orthogonal to all columns
of T′. By definition it holds that ρσ̃(Λ⊥

q (D, v̂)) =
∑

r̃∈Λ⊥
q (D,v̂) ρσ̃(r̃), and we

can decompose each element in this sum to a component parallel to h and one
orthogonal to h:

ρσ̃(Λ⊥
q (D, v̂)) =

∑

r̃∈Λ⊥
q (D,v̂)

ρσ̃(r̃)

=
∑

k∈Z

ρσ̃(k/ ‖h‖)
∑

r̃∈Λ⊥
q (D,v̂)

hr̃=k

ρσ̃(r̃ − kh/ ‖h‖2).

Fix a value of k ∈ Z and consider the sum
∑

ρσ̃(r̃ − kh/ ‖h‖2) ranging over all
r̃ ∈ Λ⊥

q (D, v̂) for which hr̃ = k. Consider the lattice Λ̂D containing all vectors in
Λ⊥

q (D) which are orthogonal to h. Then the set of vectors S = {(r̃−kh/ ‖h‖2) :
r̃ ∈ Λ⊥

q (D, v̂),hr̃ = k} is exactly a coset of Λ̂D, and furthermore is supported
only over the hyperplane that is orthogonal to h.

Since T′ is an p-trapdoor for Λ̂D (for p defined above), then ηδ(Λ̂D) ≤
p ·

√
1
π log(4(m′ − 1)/δ) ≤ σ̃. Lemma 2.9 implies therefore that the sequence

{ρσ̃(Λ̂D + d)}d⊥h is O(δ)-loginf uniform. Since the decomposition above shows
that ρσ̃(Λ⊥

q (D, v̂)) is a linear combination of elements from the above sequence,
applying Lemma 2.2 concludes the proof. �

5.3 Analysis

We now prove that the algorithm described above indeed has the properties
required in the theorem statement.

Before Ciphertext Randomization. Recall that in the end of Step 3 of the
algorithm, we δ-compute the superposition

∑

a,b

αa,b|a, b〉|ψva
〉|ψ〉, (34)

which can also be written as

Quantum FHE (Almost) As Secure As Classical 89

∑

a,b

αa,b|a, b〉 1
√

ρ σ√
2
(Zm+2

q)ρ σ√
2
(Λ⊥

q (G,va))

∑

r,r̂,y,μ

ρσ(r, r̂, y, μ)|r, r̂, y, μ〉, (35)

where the sum is over all r ∈ Λ⊥
q (G,va), r̂ ∈ Z

m, y, μ ∈ Z.
Recall that by Lemma 2.8, since G has a O(1)-trapdoor then ηδ(Λ⊥

q (G)) ≤
O(log(n log q/δ)). It follows by Lemma 2.9 that the set

{
ρ σ√

2
(Λ⊥

q (G,v))
}
v∈Zn

q

is δ-loginf uniform. Therefore, the above is within O(δ) trace distance of the
superposition

1
√

ρ σ√
2
(Λ⊥

q (G)×Zm+2)

∑

a,b

αa,b|a, b〉
∑

r,r̂,y,μ

ρσ(r, r̂, y, μ)|r, r̂, y, μ〉, (36)

with r, r̂, y, μ as before.
After applying Step 4, the resulting superposition is thus (ignoring global

normalization)
∑

a,b

αa,b

∑

r,r̂,y,μ

ρσ(r, r̂, y, μ)|a, b ⊕ μ0〉|r, r̂, y, μ〉. (37)

Ciphertext Randomization. In Step 5 we compute
∑

a,b

αa,b

∑

r,r̂,y,μ

ρσ(r, r̂, y, μ)|a, b ⊕ μ0〉|r, r̂, y, μ〉 |RandCTA,C(r, r̂, y, μ)〉
︸ ︷︷ ︸

c′

, (38)

and measure c′. We prove next that with all but O(δ) probability, c′ is a cipher-
text that decrypts to the value μ′ = μ0 ⊕ ax.

Claim 5.3. It holds that

| [(−s, 1) · c′ − q
2μ′]

q
| < q/10 (39)

with probability 1 − O(δ).

Proof. Consider the register holding c′ before it is measured, we have (recalling
that r is only supported over values where Gr = va (mod q) and that q is even)

c′ = Cr + Ar̂ +
[
0
1

]
y +

[
0

q/2

]
μ (mod q)

= ARcr + Ar̂ +
[
0
1

]
y +

[
0

q/2

]
(μ + ax) (mod q)

= A(Rcr + r̂) +
[
0
1

]
y +

[
0

q/2

]
(μ ⊕ ax) (mod q).

Recalling that (−s, 1)A = e, we get that for c′ as above

(−s, 1)c′ = (eRcr + er̂ + y) + q
2μ′ (mod q)

= hr̃ + q
2μ′ (mod q),

where the vector h = [eRc‖e‖1‖0] (which also equals d∗/2) is as defined in
Claim 5.2. By definition of p we have that ‖h‖ ≤ p/2.

90 Z. Brakerski

Therefore, it holds that in order for c′ to not comply with Eq. (39), it must
be the case that |hr̃| > q/10. Due to the bound on the norm of h, this means
that it must be the case that ‖r̃‖ > q/(5p) ≥ σ

√
m′ + log(1/δ). The probability

that this happens, by Lemma 2.10, is at most

ρ σ√
2

(
Λ⊥

q (G) × Z
m+2 \ Bq/(5p)

m′
)

ρ σ√
2
(Λ⊥

q (G) × Zm+2)
≤ δ, (40)

and the claim follows. �
We note that by definition after measuring c′, it holds that r, r̂, y, μ are only

supported over values for which

D ·
[r

r̂
y
μ

]

︸︷︷︸
denote r̃

= v̂a =
[

va

c′

]
(mod q), (41)

where D is as defined in Eq. (28).
Namely, up to this point, we δ-computed the superposition

∑

a,b

αa,b√
ρ σ√

2
(Λ⊥

q (D, v̂a))
|a, b ⊕ ax ⊕ μ′〉

∑

r̃∈Λ⊥
q (D,v̂a)

ρσ(r̃)|r̃〉, (42)

where we note that since we defined μ′ = ax ⊕ μ0 then it holds that b ⊕ μ0 =
b ⊕ ax ⊕ μ′.

Fourier Transform and Measurement. From Claim 5.2 we deduce that we
can remove the v̂a-dependent normalization factor from Eq. (42) at the cost
of O(δ) trace distance, so we conclude that at this point, before Step 6 of the
algorithm, we δ-computed

∑

a,b

αa,b|a, b ⊕ ax ⊕ μ′〉
∑

r̃∈Λ⊥
q (D,v̂a)

ρσ(r̃)|r̃〉
︸ ︷︷ ︸

denote |φa〉

. (43)

In Step 6, we apply a q-ary Fourier transform on the register holding |r̃〉. We
recall that this register is actually supported only over Zm′ ∩Hq/2

m′ , and therefore
we can perform q-ary Fourier Transform as a unitary operation. Since the state
of the register is O(δ)-close in trace distance to the superposition in Eq. (43),
the output of this operation will be O(δ) close in trace distance to the q-ary
Fourier transform of Eq. (43). Formally, the q-ary Fourier transform of |φa〉 is

|φ̂a〉 =
∑

w∈Zm′
q

|w〉
∑

r̃∈Λ⊥
q (D,v̂a)

ρσ(r̃)e− 2πi
q 〈w,r̃〉. (44)

By Corollary 2.12 it holds that
∑

r̃∈ Λ⊥
q (D,v̂a)

ρσ(r̃)e− 2πi
q 〈w,r̃〉 = σm′

q2n ·
∑

t∈Z2n
q

ρq/σ,q(w + tD) · e
2πi

q 〈t,v̂a〉, (45)

Quantum FHE (Almost) As Secure As Classical 91

where we recall the definition of periodic Gaussian from Sect. 2.2: ρσ′,q(x) =
ρσ′(x + qZ). Therefore it holds that

|φ̂a〉 = σm′

q2n ·
∑

w∈Zm′
q

|w〉
∑

t∈Z2n
q

ρq/σ,q(w + tD) · e
2πi

q 〈t,v̂a〉 (46)

= σm′

q2n ·
∑

w∈Zm′
q

|w〉
∑

t∈Z2n
q

ρq/σ,q((w − dw) + tD) · e
2πi

q 〈t−tw,v̂a〉. (47)

For all w, let dw denote the vector in Spanq(D) that is closest to w and let
tw ∈ Z

2n
q be s.t. twD = dw (mod q). We let W denote the set of vectors that

are close to Spanq(D)

W = {w ∈ Z
m′
q : ‖w − dw‖ ≤ q/p}. (48)

We define

|φ̂′
a〉 = σm′

q2n

∑

w∈W

|w〉
∑

k∈Zq

ρq/σ,q((w − dw) + kd∗) · e
2πi

q 〈kt∗−tw,v̂a〉. (49)

Claim 5.4. The trace distance between (the normalized versions of) the super-
positions |φ̂a〉 and |φ̂′

a〉 is O(δ).

Proof. We start by bounding the norm of the difference ‖φ̂a − φ̂′
a‖2. We first

consider w ∈ Z
m′
q \ W . Then in particular it holds that

∥
∥
∥[w + d]q

∥
∥
∥ ≥ q/p for all

d ∈ Spanq(D) and therefore
∣
∣
∣
∣
∣
∣

∑

t∈Z2n
q

ρq/σ,q(w + tD) · e
2πi

q 〈t,v̂a〉

∣
∣
∣
∣
∣
∣
≤ q2n · 2m′ · ρq/σ(q/p)

(1 − m′ρq/σ(q))
(50)

= 22n log q+m′ · e−π(σ/p)2

1 − m′e−πσ2 . (51)

Since we chose σ = p · √2n log q + m′(log q + 1) + 2 log(4m′/δ) + 1 then in par-
ticular m′e−πσ2

< 1/2 and 22n log q+m′ ·e−π(σ/p)2 < δ ·q−m′
/2 which implies that

the above is bounded by δ · q−m′
.

Now let us consider w ∈ W , the absolute value of the difference between φ̂a,
φ̂′

a at w is at most
∑

{t∈Z
2n
q :

t=kt∗ mod q}

ρq/σ,q((w − dw) + tD). (52)

If t �= kt∗ (mod q) then [tD]q ≥ q/p. This is since d∗ = [t∗D]q is the only
vector in Spanq(D) of length < q/p, up to integer multiples. Since ‖[x]q‖ ≤ ‖x‖
it follows that for all x, if ‖[x]q‖ < q/p then [x]q = [kd∗]q for some k ∈ Zq.

92 Z. Brakerski

By definition of W we have ‖w − dw‖ ≤ q/p and therefore by triangle
inequality ‖[(w − dw) + tD]q‖ ≤ 2q/p. Using a similar argument to above we
get

∑

{t∈Z
2n
q :

t=kt∗ mod q}

ρq/σ,q((w − dw) + tD) ≤ q2n · 2m′ · ρq/σ(2q/p)
(1 − m′ρq/σ(q))

< δ · q−m′
. (53)

It follows that:

‖φ̂a − φ̂′
a‖2 ≤

(
σm′

q2n

)2

qm′ · (δ · q−m′
)2 <

(
σm′

q2n

)2

· δ. (54)

We now lower bound ‖φ̂a‖ by simply looking at w = 0:

‖φ̂a‖ ≥
∑

r̃∈Λ⊥
q (D,v̂a)∩Hq/2

m′

ρσ,q(r̃) =
∑

r̃∈Λ⊥
q (D,v̂a)

ρσ(r̃), (55)

however by Claim 5.2, this is lower bounded by

(1 − O(δ))ρσ(Λ⊥
q (D)) = (1 − O(δ))σm′

q2n ρq/σ(Spanq(D)) ≥ (1 − O(δ))σm′

q2n .

Where the first equality follows from Corollary 2.12. The claim thus follows. �

We conclude that up to this point we δ-computed the superposition
∑

a,b

αa,b|a, b ⊕ ax ⊕ μ′〉
∑

w∈W

|w〉
∑

k∈Zq

ρq/σ,q((w − dw) + kd∗) · e
2πi

q 〈kt∗−tw,v̂a〉.

(56)

The next step is to measure the register |w〉. Since w ∈ W it holds that
‖w − dw‖ < q/p. We are left with the superposition

∑

a,b

αa,b|a, b ⊕ ax ⊕ μ′〉
∑

k∈Zq

ρq/σ,q((w − dw) + kd∗) · e
2πi

q 〈kt∗−tw,v̂a〉. (57)

We recall that v̂a can be written as v̂a = v̂0+a· q
2 ·[Δ

0

]
for Δ =

[
0
1

] ∈ {0, 1}n.
Let us now analyze the term 〈kt∗ − tw, v̂a〉 (mod q) that is the exponent of the
above expression (the modq comes from this term bing in the exponent of the
q-th root of unity). We recall that t∗ = 2 · [−x(s,−1)‖(s,−1)] is a multiple
of 2, and therefore q

2t
∗ = 0 (mod q). Let us also denote tw = [t1‖t2], where

t1, t2 ∈ Z
n
q . We get that

〈kt∗ − tw, v̂a〉 = 〈kt∗ − tw, v̂0〉 + a · q

2
〈kt∗ − tw,

[
Δ
0

]〉 (58)

= 〈kt∗ − tw, v̂0〉 − a · q

2
〈t1,Δ〉 (mod q) (59)

Quantum FHE (Almost) As Secure As Classical 93

and plugging into the superposition above we have
∑

a,b

αa,b|a, b ⊕ ax ⊕ μ′〉
∑

k∈Zq

ρq/σ,q((w − dw) + kd∗) · e
2πi

q
〈kt∗−tw,v̂0〉 · (−1)a·〈t1,Δ〉.

Rearranging, we get that the above is equal to

∑

a,b

αa,b(−1)a·〈t1,Δ〉|a, b ⊕ ax ⊕ μ′〉 ·
⎛

⎝
∑

k∈Zq

ρq/σ,q((w − dw) + kd∗) · e
2πi

q
〈kt∗−tw,v̂0〉

⎞

⎠

︸ ︷︷ ︸
Constant scaling factor, independent of a, b.

.

We can thus remove the constant scaling factor and remain with

∑

a,b

αa,b(−1)a·〈t1,Δ〉|a, b ⊕ ax ⊕ μ′〉. (60)

It is left to be shown that 〈t1,Δ〉 (mod 2) is efficiently recoverable given
Rc, x. We recall that we can write w = twD + ew (mod q) with ‖ew‖ ≤ q/p.
Next, we consider the vector

υ =

[
G−1(q

2Δ)

−Rc·G−1(q
2Δ)

0−x

]

, (61)

and note that

D · υ =
[
G 0 0 0
C A 0

1
0

q/2

]

·
[

G−1(q
2Δ)

−Rc·G−1(q
2Δ)

0−x

]

=
[

q
2Δ
0

]
, (62)

which implies that

w · υ = (twD + ew) · υ = twDυ + ewυ = q
2 〈t1,Δ〉 + ewυ (mod q), (63)

and since |ewυ| ≤ ‖ew‖ · ‖υ‖ ≤ q/p · (p/10) ≤ q/10, the theorem follows.

Acknowledgments. The author wishes to thank Urmila Mahadev for numerous
insightful discussions.

References

1. Alperin-Sheriff, J., Peikert, C.: Faster bootstrapping with polynomial error. In:
Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 297–
314. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2 17

2. Banaszczyk, W.: New bounds in some transference theorems in the geometry of
numbers. Math. Ann. 296(1), 625–635 (1993)

https://doi.org/10.1007/978-3-662-44371-2_17

94 Z. Brakerski

3. Boneh, D., et al.: Fully key-homomorphic encryption, arithmetic circuit ABE and
compact garbled circuits. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 533–556. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-642-55220-5 30

4. Bourse, F., Del Pino, R., Minelli, M., Wee, H.: FHE circuit privacy almost for free.
In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part II. LNCS, vol. 9815, pp.
62–89. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-5 3

5. Brakerski, Z.: Fully homomorphic encryption without modulus switching from clas-
sical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol.
7417, pp. 868–886. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-32009-5 50

6. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. In: Goldwasser, S. (ed.) ITCS, pp. 309–325.
ACM (2012)

7. Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness
of learning with errors. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.)
Symposium on Theory of Computing Conference, STOC 2013, Palo Alto, CA,
USA, 1–4 June 2013, pp. 575–584. ACM (2013)

8. Brakerski, Z., Perlman, R.: Lattice-based fully dynamic multi-key FHE with short
ciphertexts. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part I. LNCS, vol.
9814, pp. 190–213. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-53018-4 8

9. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) LWE. In: Ostrovsky, R. (ed.) FOCS, pp. 97–106. IEEE (2011). https://
eprint.iacr.org/2011/344.pdf

10. Brakerski, Z., Vaikuntanathan, V.: Lattice-based FHE as secure as PKE. In: Naor,
M. (ed.) Innovations in Theoretical Computer Science, ITCS 2014, Princeton, NJ,
USA, 12–14 January 2014, pp. 1–12. ACM (2014)

11. Broadbent, A., Jeffery, S.: Quantum homomorphic encryption for circuits of low
t-gate complexity. In: Gennaro and Robshaw [15], pp. 609–629 (2015)

12. Clear, M., McGoldrick, C.: Multi-identity and multi-key leveled FHE from learning
with errors. In: Gennaro and Robshaw [15], pp. 630–656 (2015)

13. Ducas, L., Stehlé, D.: Sanitization of FHE ciphertexts. In: Fischlin, M., Coron,
J.-S. (eds.) EUROCRYPT 2016, Part I. LNCS, vol. 9665, pp. 294–310. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-3 12

14. Dulek, Y., Schaffner, C., Speelman, F.: Quantum homomorphic encryption for
polynomial-sized circuits. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part
III. LNCS, vol. 9816, pp. 3–32. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-53015-3 1

15. Gennaro, R., Robshaw, M. (eds.): CRYPTO 2015, Part II. 9216. Springer, Heidel-
berg (2015). https://doi.org/10.1007/978-3-662-48000-7

16. Gentry, C.: A fully homomorphic encryption scheme. Ph.D. thesis, Stanford Uni-
versity (2009)

17. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher
[24], pp. 169–178 (2009)

18. Gentry, C., Halevi, S., Vaikuntanathan, V.: i-hop homomorphic encryption and
rerandomizable yao circuits. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol.
6223, pp. 155–172. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-14623-7 9

19. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Dwork, C. (ed.) STOC, pp. 197–206. ACM (2008)

https://doi.org/10.1007/978-3-642-55220-5_30
https://doi.org/10.1007/978-3-642-55220-5_30
https://doi.org/10.1007/978-3-662-53008-5_3
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/978-3-662-53018-4_8
https://doi.org/10.1007/978-3-662-53018-4_8
https://eprint.iacr.org/2011/344.pdf
https://eprint.iacr.org/2011/344.pdf
https://doi.org/10.1007/978-3-662-49890-3_12
https://doi.org/10.1007/978-3-662-53015-3_1
https://doi.org/10.1007/978-3-662-53015-3_1
https://doi.org/10.1007/978-3-662-48000-7
https://doi.org/10.1007/978-3-642-14623-7_9
https://doi.org/10.1007/978-3-642-14623-7_9

Quantum FHE (Almost) As Secure As Classical 95

20. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 75–92. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4 5

21. Mahadev, U.: Classical homomorphic encryption for quantum circuits. CoRR,
abs/1708.02130 (2017)

22. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 41

23. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on Gaussian
measures. In: Proceedings of the 45th Symposium on Foundations of Computer
Science (FOCS 2004), Rome, Italy, 17–19 October 2004, pp. 372–381 (2004)

24. Mitzenmacher, M. (ed.): Proceedings of the 41st Annual ACM Symposium on
Theory of Computing, STOC 2009, Bethesda, MD, USA, 31 May–2 June 2009.
ACM (2009)

25. Mukherjee, P., Wichs, D.: Two round multiparty computation via multi-key FHE.
In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol.
9666, pp. 735–763. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-49896-5 26

26. Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem:
extended abstract. In: Mitzenmacher [24], pp. 333–342 (2009)

27. Peikert, C., Regev, O., Stephens-Davidowitz, N.: Pseudorandomness of ring-LWE
for any ring and modulus. In: Hatami, H., McKenzie, P., King, V. (eds.) Pro-
ceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2017, Montreal, QC, Canada, 19–23 June 2017, pp. 461–473. ACM (2017)

28. Peikert, C., Shiehian, S.: Multi-key FHE from LWE, revisited. In: Hirt, M., Smith,
A. (eds.) TCC 2016, Part II. LNCS, vol. 9986, pp. 217–238. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53644-5 9

29. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Gabow, H.N., Fagin, R. (eds.) STOC, pp. 84–93. ACM (2005). Full version
in J. ACM 56(6) (2009)

30. Regev, O., Kol, G.: Lattices in computer science lecture notes - lecture 9
- fourier transform (2004). https://cims.nyu.edu/∼regev/teaching/lattices fall
2004/ln/FourierTransform.pdf

31. Regev, O., Verbin, E.: Lattices in computer science lecture notes - lecture 11 -
transference theorems (2004). https://cims.nyu.edu/∼regev/teaching/lattices fall
2004/ln/transference.pdf

32. Rivest, R., Adleman, L., Dertouzos, M.: On data banks and privacy homomor-
phisms. In: Foundations of Secure Computation, pp. 169–177. Academic Press
(1978)

https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-662-49896-5_26
https://doi.org/10.1007/978-3-662-49896-5_26
https://doi.org/10.1007/978-3-662-53644-5_9
https://cims.nyu.edu/~regev/teaching/lattices_fall_2004/ln/FourierTransform.pdf
https://cims.nyu.edu/~regev/teaching/lattices_fall_2004/ln/FourierTransform.pdf
https://cims.nyu.edu/~regev/teaching/lattices_fall_2004/ln/transference.pdf
https://cims.nyu.edu/~regev/teaching/lattices_fall_2004/ln/transference.pdf

IND-CCA-Secure Key Encapsulation
Mechanism in the Quantum Random

Oracle Model, Revisited

Haodong Jiang1,2, Zhenfeng Zhang2,3(B), Long Chen2,3, Hong Wang1,
and Zhi Ma1,4(B)

1 State Key Laboratory of Mathematical Engineering and Advanced Computing,
Zhengzhou, Henan, China

hdjiang13@gmail.com, wfallmoon@163.com, ma zhi@163.com
2 TCA Laboratory, State Key Laboratory of Computer Science,

Institute of Software, Chinese Academy of Sciences, Beijing, China
{zfzhang,chenlong}@tca.iscas.ac.cn

3 University of Chinese Academy of Sciences, Beijing, China
4 CAS Center for Excellence and Synergetic Innovation Center in Quantum

Information and Quantum Physics, USTC, Hefei, Anhui, China

Abstract. With the gradual progress of NIST’s post-quantum cryptog-
raphy standardization, the Round-1 KEM proposals have been posted for
public to discuss and evaluate. Among the IND-CCA-secure KEM con-
structions, mostly, an IND-CPA-secure (or OW-CPA-secure) public-key
encryption (PKE) scheme is first introduced, then some generic trans-
formations are applied to it. All these generic transformations are con-
structed in the random oracle model (ROM). To fully assess the post-
quantum security, security analysis in the quantum random oracle model
(QROM) is preferred. However, current works either lacked a QROM
security proof or just followed Targhi and Unruh’s proof technique (TCC-
B 2016) and modified the original transformations by adding an addi-
tional hash to the ciphertext to achieve the QROM security.

In this paper, by using a novel proof technique, we present QROM
security reductions for two widely used generic transformations with-
out suffering any ciphertext overhead. Meanwhile, the security bounds
are much tighter than the ones derived by utilizing Targhi and Unruh’s
proof technique. Thus, our QROM security proofs not only provide a
solid post-quantum security guarantee for NIST Round-1 KEM schemes,
but also simplify the constructions and reduce the ciphertext sizes. We
also provide QROM security reductions for Hofheinz-Hövelmanns-Kiltz
modular transformations (TCC 2017), which can help to obtain a variety
of combined transformations with different requirements and properties.

Keywords: Quantum random oracle model
Key encapsulation mechanism · IND-CCA security
Generic transformation

c© International Association for Cryptologic Research 2018
H. Shacham and A. Boldyreva (Eds.): CRYPTO 2018, LNCS 10993, pp. 96–125, 2018.
https://doi.org/10.1007/978-3-319-96878-0_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96878-0_4&domain=pdf

IND-CCA-Secure Key Encapsulation Mechanism 97

1 Introduction

As a foundational cryptography primitive, key encapsulation mechanism (KEM)
is efficient and versatile. It can be used to construct, in a black-box manner, PKE
(the KEM-DEM paradigm [1]), key exchange and authenticated key exchange
[2,3]. Compared with designing a full PKE scheme, the KEM construction is
usually somewhat easier or more efficient. In December 2016, National Institute
of Standards and Technology (NIST) announced a competition with the goal
to standardize post-quantum cryptographic (PQC) algorithms including digital-
signature, public-key encryption (PKE), and KEM (or key exchange) with secu-
rity against quantum adversaries [4]. Among the 69 Round-1 algorithm submis-
sions, posted in December 2017 by NIST for public to discuss and evaluate [4],
there are 39 proposals for KEM constructions.

Indistinguishability against chosen-ciphertext attacks (IND-CCA) [5] is
widely accepted as a standard security notion for many cryptography appli-
cations. However, the security is usually much more difficult to prove than IND-
CPA (and OW-CPA) security, i.e., indistinguishability (and one-way) against
chosen-plaintext attacks. Mostly, generic transformations [6,7] are used to cre-
ate an IND-CCA-secure KEM from some weakly secure (OW-CPA or IND-CPA)
PKEs.

Recently, considering the drawbacks of previous analysis of Fujisaki-Okamoto
(FO) transformation [8,9], such as a non-tight security reduction and the need
for a perfectly correct scheme, Hofheinz, Hövelmanns and Kiltz [7] revisited the
KEM version of FO transformation [6] and provided a fine-grained and modular
toolkit of transformations U�⊥, U⊥, U�⊥

m, U⊥
m, QU�⊥

m and QU⊥
m (In what follows,

these transformations will be categorized as modular FO transformations for
brevity), where m (without m) means K = H(m) (K = H(m, c)), �⊥ (⊥) means
implicit (explicit) rejection1 and Q means adding an additional hash to the
ciphertext. Combing these modular transformations, they obtained several vari-
ants of FO transformation FO�⊥, FO⊥, FO�⊥

m, FO⊥
m, QFO�⊥

m and QFO⊥
m (These

transformations will be categorized as FO transformations in the following).
All the (modular) FO transformations are in the random oracle model (ROM)

[10]. When the KEM scheme is instantiated, the random oracle is usually
replaced by a hash function, which a quantum adversary may evaluate on a
quantum superposition of inputs. As a result, to fully assess post-quantum secu-
rity, we should analyze security in the quantum random oracle model (QROM),
as introduced in [11]. However, proving security in the QROM is quite challeng-
ing, as many classical ROM proof techniques will be invalid [11].

In [7], Hofheinz et al. presented QROM security reductions for QU�⊥
m, QU⊥

m,
QFO�⊥

m and QFO⊥
m. For these transformations, there is an additional hash in

the ciphertext, which plays an important role in their reductions. The security
reductions for U�⊥, U⊥, U�⊥

m, U⊥
m, FO�⊥, FO⊥, FO�⊥

m and FO⊥
m are just presented

in the ROM.
1 In implicit (explicit) rejection, a pseudorandom key (an abnormal symbol ⊥) is

returned for an invalid ciphertext.

98 H. Jiang et al.

Among the 39 KEM submissions, there are 35 schemes that take IND-CCA
as the security goal. Particularly, 25 IND-CCA-secure KEM schemes are con-
structed by utilizing above transformations (see Table 1) from different PKE
schemes, with different security notions (e.g., IND-CPA vs OW-CPA), and
underlying hardness of certain problems over lattice, code theory and isogeny.
In the submissions of LAC, Odd Manhattan, LEDAkem and SIKE, the QROM
security is not considered. In the 16 submissions including FrodoKEM etc.,
QFO�⊥2, QFO⊥, QFO�⊥

m and QFO⊥
m are used, where an additional hash is

appended to the ciphertext. In the other 5 submissions including CRYSTALS-
Kyber, LIMA, SABER, ThreeBears and Classic McEliece, the additional hash
is removed according to recent works [12,13].

For the (modular) FO transformations, the underlying PKE schemes differ
in the following aspects including additional hash, correctness, determinacy, and
security.

– Additional hash. Additional hash here is a length-preserving hash function
(that has the same domain and range size) appended to the ciphertext, which
was first introduced by Targhi and Unruh [14] to prove the QROM security
of the variants of FO transformation [8,9] and OAEP transformation [15,16].
Following Targhi and Unruh’s trick, Hofheinz et al. gave the transformations
QU�⊥

m, QU⊥
m, QFO�⊥

m and QFO⊥
m by adding an additional hash to the corre-

sponding ROM constructions, and presented the QROM security reductions
for them.
Among NIST Round-1 submissions of an IND-CCA-secure KEM, 16 propos-
als use this trick to achieve QROM security. Intuitively, for 128-bit post-
quantum security, this additional hash merely increases the ciphertext size
by 256 bits [17]. However, we note that the QROM security proof in [7,14]
requires the additional hash to be length-preserving. Thus, for some schemes
where the message space is strictly larger than the output space of the hash
function, the increasement of ciphertext size is significant. Hülsing et al. [18]
tried several ways to circumvent this issue, unfortunately all straight forward
approaches failed. For their specific NTRU-based KEM, additional 1128 bits
are needed, which accounts for 11% of the final encapsulation size.
In the ROM, this additional hash is clearly redundant for the constructions
of an IND-CCA-secure KEM [6,7]. Some proposals, e.g., ThreeBears [19],
believe this additional hash adds no security. To accomplish the QROM secu-
rity proof, this additional hash was deliberately introduced, which increased
the ciphertext size and complicated the implementation. Thus, a natural ques-
tion is that: can we improve the QROM security proofs without suffering any
ciphertext overhead for these constructions?

– Correctness error. For many practical post-quantum PKE schemes, e.g.,
DXL [20], Peikert [21], BCNS [22], New hope [23], Frodo [24], Lizard [25],
Kyber [26], NTRUEncrypt [27], NTRU Prime [28], and QC-MDPC [29], there

2 QFO⊥ (QFO�⊥) is the same as QFO⊥
m (QFO�⊥

m) except that K = H(m, c). Its security

proof can be easily obtained from the one for QFO⊥
m (QFO�⊥

m) in [7].

IND-CCA-Secure Key Encapsulation Mechanism 99

exists a small correctness error δ, i.e., the probability of decryption failure in
a legitimate execution of the scheme. Specially, among the KEM submissions
in Table 1, there are 18 proposals that have a correctness error issue.
From a security point of view, it turns out that correctness errors not only
influence the validity of a security proof, but also leak information on the
private key [30]. Particularly, the chosen-ciphertext attacks by exploiting the
gathered correctness errors [30,31] were demonstrated for CCA versions of
NTRUEncrypt and QC-MDPC obtained by using generic transformations,
whose securities were proved assuming the underlying PKEs perfectly correct.
Additionally, recently, Bernstein et al. [32] showed that the HILA5 KEM [33]
does not provide IND-CCA security by demonstrating a key-recovery attack
in the standard IND-CCA attack model using the information obtained from
the correctness errors.
To date, it is not clear how highly these correctness errors can affect the
CCA security of these KEM schemes and how high these correctness errors
should be to achieve a fixed security strength. To the best of our knowledge,
for all previous security analyses about (modular) FO transformations except
the work [7], perfect correctness, i.e., δ = 0, is assumed. Therefore, QROM
security analyses of above (modular) FO transformations with correctness
errors into consideration are preferred.

– Determinacy. According to the work [7], an IND-CCA-secure KEM in the
ROM can be easily constructed by applying the transformation U⊥

m (or U�⊥
m)

to a deterministic PKE (DPKE). Saito et al. [12] showed that a DPKE can
be constructed based on the concepts of the GPV trapdoor function for LWE
[34], NTRU [27], the McEliece PKE [35], and the Niederreiter PKE [36].
However, the popular LWE cryptosystem and variants [37–40] are proba-
bilistic encryption, which are referred by CRYSTALS-Kyber, EMBLEM and
R.EMBLEM, FrodoKEM, KINDI, LAC, Lepton, LIMA, Lizard, NewHope,
Round2, SABER and ThreeBears [4]. Particularly, of the underlying PKEs
in the KEM proposals in Table 1, DPKEs just account for 28%.

– Security notion. IND-CPA security and OW-CPA security are widely
accepted as standard security notions for PKE. In the KEM submissions in
Table 1, all the underlying PKE schemes satisfy the OW-CPA security. The
IND-CPA security is taken as a security goal of a PKE/KEM scheme dur-
ing NIST’s PQC standardization, and satisfied for most latticed-based and
isogeny-based PKE schemes. FO transformations are widely used as they just
require the PKE schemes to have the standard CPA security.
There are also some non-standard security notions, e.g., one-way against
plaintext checking attacks (OW-PCA), one-way against validity checking
attacks (OW-VA), one-way against plaintext and validity checking attacks
(OW-PVCA) for PKE [6,7] and disjoint simulatability (DS) for DPKE [12].
According to [7,12], if the underlying PKE satisfies these non-standard secu-
rities, modular FO transformations can be used to construct an IND-CCA-
secure KEM with a tighter security reduction. Particularly, Saito et al. [12]
presented a tight security proof for U�⊥

m with stronger assumptions for under-

100 H. Jiang et al.

lying DPKE scheme, DS security and perfect correctness, which are satisfied
by Classical McEliece in Table 1.

To accurately evaluate the CCA security of the KEM proposals in Table 1 in
the QROM, taking correctness error into account, we revisit the QROM secu-
rity of above (modular) FO transformations without additional hash and with
different assumptions for the underlying PKE scheme in terms of determinacy
and security.

1.1 Our Contributions

1. For any correctness error δ (0 ≤ δ < 1), we prove the QROM security of
two generic transformations, FO�⊥ and FO�⊥

m in [7], by reducing the standard
OW-CPA security of the underlying PKE to the IND-CCA security of KEM,
see Table 2.
The obtained security bounds are both ε′ ≈ q

√
δ + q

√
ε, where ε′ is the

success probability of an adversary against the IND-CCA security of the
resulting KEM, ε is the success probability of another adversary against the
OW-CPA security of the underlying PKE, and q is the total number of B’s
queries to various oracles. Our security bounds are much better than ε′ ≈
q
√

q2δ + q
√

ε, achieved by [7]. Meanwhile, the additional hash is not required
as it is redundant for our security proofs. In [12], Saito et al. also obtained a

same tight security bound ε′ ≈ q
√

ε for a variant of FO�⊥
m, FO′�⊥

m = TPunc ◦
U�⊥

m
3, by assuming the underlying PKE scheme IND-CPA-secure and perfectly

correct (i.e., δ = 0).
With our tighter QROM security proofs, 16 KEM constructions including
FrodoKEM etc., where QFO�⊥, QFO⊥, QFO�⊥

m and QFO⊥
m are used, can be

simplified by cutting off the additional hash and improved in performance
with respect to speed and sizes. Additionally, although LAC and SIKE are
constructed by using FO�⊥ without the additional hash, the QROM security
proof is not considered in their proposals. Thus, our proofs also provide a
solid post-quantum security guarantee for these two KEM schemes without
any additional ciphertext overhead.

2. For modular FO transformations including U�⊥, U⊥, U�⊥
m and U⊥

m in [7], we
provide QROM security reductions without additional hash for any correct-
ness error δ (0 ≤ δ < 1), see Table 3.
Specifically, we first define the quantum version of OW-PCA and OW-PVCA
by one-way against quantum plaintext checking attacks (OW-qPCA) and one-
way against quantum plaintext and (classical) validity checking attacks (OW-
qPVCA) (quantum plaintext checking attacks mean that the adversary can
make quantum queries to the plaintext checking oracle). For any correctness
error δ (0 ≤ δ < 1), we provide QROM security reductions for, U�⊥ from

3 TPunc is a variant of T in [7].

IND-CCA-Secure Key Encapsulation Mechanism 101

Table 1. List of KEM submissions based on (modular) FO transformations.

Proposals Transformations
Correctness

error
DPKE?

QROM
consideration?

CRYSTALS-Kyber FO�⊥ Y N Y

EMBLEM and R.EMBLEM QFO⊥ Y N Y

FrodoKEM QFO�⊥ Y N Y

KINDI QFO�⊥
m Y N Y

LAC FO�⊥ Y N N

Lepton QFO⊥ Y N Y

LIMA FO⊥
m Na N Y

Lizard QFO�⊥ Y N Y

NewHope QFO�⊥ Y N Y

NTRU-HRSS-KEM QFO⊥
m N N Y

Odd Manhattan U⊥
m N N N

OKCN-AKCN-CNKE QFO�⊥ Y N Y

Round2 QFO�⊥ Y N Y

SABER FO�⊥ Y N Y

ThreeBears FO⊥
m Y N Y

Titanium QFO�⊥ Y N Y

BIG QUAKE QFO⊥ N N Y

Classic McEliece U�⊥ N Y Y

DAGS QFO⊥
m N N Y

HQC QFO⊥ Y N Y

LEDAkem U�⊥m Y Y N

LOCKER QFO⊥ Y N Y

QC-MDPC QFO⊥
m Y N Y

RQC QFO⊥ N N Y

SIKE FO�⊥ N N N

a In the round-1 submission, the LIMA team uses rejection sampling in
encryption to avoid correctness errors. But they claim that they will replace
the rejection sampling in encryption with a “standard” analysis of correct-
ness errors to fix a mistake in previous analysis if LIMA survives until the
second round [41].

102 H. Jiang et al.

Table 2. FO transformations from standard security assumptions.

Transformation
Underlying

security
Security
bound

Additional
hash

Perfectly
correct?

QFO�⊥
m and QFO⊥

m [7] OW-CPA q
√

q2δ + q
√

ε Y N

FO′�⊥
m [12] IND-CPA q

√
ε N Y

FO�⊥ and FO�⊥m Our work OW-CPA q
√

δ + q
√

ε N N

Table 3. Modular FO transformations from non-standard security assumptions.

Transformation
Underlying

security
Security
bound

Additional
hash

DPKE
Perfectly
correct?

QU⊥
m [7] OW-PCA q

√
ε Y N N

QU�⊥
m [7] OW-PCA q

√
ε Y N N

U�⊥m[12] DS ε N Y Y

U�⊥ Our work OW-qPCA q
√

ε N N N

U⊥ Our work OW-qPVCA q
√

ε N N N

U�⊥m Our work OW-CPA q
√

δ + q
√

ε N Y N

U�⊥m Our work DS q
√

δ + ε N Y N

U⊥
m Our work OW-VA q

√
δ + q

√
ε N Y N

OW-qPCA, U⊥ from OW-qPVCA, U�⊥
m from OW-CPA (and DS), U⊥

m from
OW-VA, to IND-CCA without additional hash.

OW-qPCA (OW-qPVCA) security is just a proof artefact for simulating H.
Compared with the DS security notion introduced by [12], the OW-qPCA
security is less restrained and weaker. We note that the DS security notion is
defined for the DPKE scheme which satisfies (1) statistical disjointness and
(2) ciphertext-indistinguishability. Actually, all the DPKE schemes satisfy
the OW-qPCA security as the plaintext checking oracle can be simulated
by re-encryption in a quantum computer. Therefore, all the instantiations of
DS-secure DPKE in [12] are also OW-qPCA-secure. Particularly, the OW-
qPCA security is not restrained to the DPKE scheme. Many post-quantum
PKE schemes satisfy OW-qPCA security, e.g., NTRU [27], McEliece [35],
and Niederreiter [36]. Additionally, we show that the resulting PKE scheme
achieved by applying the transformation T to a OW-CPA-secure PKE [7] is
also OW-qPCA-secure.

Our security reductions preserve the tightness of the ones in [7,12] with-
out additional hash for any correctness error δ (0 ≤ δ < 1), see Table 3.
Our QROM security analyses not only provide post-quantum security guar-
antees for the KEM schemes constructed by using these modular FO

IND-CCA-Secure Key Encapsulation Mechanism 103

transformations, e.g., Odd Manhattan, Classic McEliece and LEDAkem, but
also can help to obtain a variety of combined transformations with different
requirements and properties.

1.2 Techniques

Remove the additional hash. As explained by Targhi and Unruh [14], their
proof technique strongly relies on the additional hash. In their paper, they dis-
cussed the QROM security of a variant of FO transformation from a OW-CPA-
secure PKE to an IND-CCA-secure PKE. To implement the security reduction,
one needs to simulate the decryption oracle without possessing the secret key. In
classical proof, a RO-query list is used to simulate such an oracle. In the QROM,
the simulator has no way to learn the actual content of adversarial RO queries,
therefore such a RO-query list does not exist. Targhi and Unruh circumvented
this issue by adding an additional length-preserving hash (modeled as a RO)
to the ciphertext. In the security reduction, this additional RO is simulated by
a k-wise independent function. For every output of this RO, the simulator can
recover the corresponding input by inverting this function. Thereby, the simula-
tor can answer the decryption queries without a secret key.

When considering the generic transformations from a weakly secure PKE
to an IND-CCA-secure KEM, one needs to simulate the decapsulation oracle
Decaps without the secret key. Indeed, obviously, we can modify the trans-
formations by adding an additional length-preserving hash to the ciphertext so
that the simulator can carry out the decryption. Thus, using the key-derivation-
function (KDF, modeled as a random oracle H), he can easily simulate the
Decaps oracle.

In [11, Theorem 6], Boneh et al. proved the QROM security of a generic
hybrid encryption scheme [10], built from an injective trapdoor function and
symmetric key encryption scheme. Inspired by their proof idea, we present a
novel approach to simulate the Decaps oracle4.

The high level idea is that we associate the random oracle H (KDF in the
KEM) with a secret random function H ′ by setting H = H ′◦g such that H ′(·) =
Decaps(sk, ·). We demand that the function g should be indistinguishable from
an injective function for any efficient quantum adversary. Thus, in the view of
the adversary against the IND-CCA security of KEM, H is indeed a random
oracle. Meanwhile, we can simulate the Decaps oracle just by using H ′. Note
that in our simulation of the Decaps oracle, we circumvent the decryption
computation. Thereby, there is no need to read the content of adversarial RO
queries, which makes it unnecessary to add an additional length-preserving hash
to the ciphertext.

Tighten the security bound. When proving the IND-CCA security of KEM
from the OW-CPA security of underlying PKE for FO�⊥ and FO�⊥

m, reprogram-
ming the random oracles G and H is a natural approach. In quantum setting, the
4 This method is also used by a concurrent and independent work [12].

104 H. Jiang et al.

one-way to hiding (OW2H) lemma [42, Lemma 6.2] is a practical tool to argue the
indistinguishability between games where the random oracles are reprogrammed.
However, the OW2H lemma inherently incurs a quadratic security loss.

To tighten the security bounds, we have to decrease the times of the usage of
the OW2H lemma. [7] analyzed the QROM security of QFO�⊥

m (and QFO⊥
m) by

two steps. First, they presented a QROM security reduction from the OW-CPA
security of the underlying PKE to the OW-PCA security of an intermediate
scheme PKE′. In this step, the random oracle G was reprogrammed, thus by
using the OW2H lemma they obtained that ε′′ ≤ q2δ + q

√
ε, where ε′′ is the

success probability of an adversary against the OW-PCA security of PKE′. In
the second step, they reduced the OW-PCA security of PKE′ to the IND-CCA
security of KEM, where the random oracles H and H ′′ (the additional hash)
were reprogrammed. Again, by using the OW2H lemma, they gained ε′ ≤ q

√
ε′′.

Finally, combing above two bounds, they obtained the security bound of KEM,
ε′ ≤ q

√
q2δ + q

√
ε. Direct combination of the modular analyses leads to twice

utilization of the OW2H lemma, which makes the security bound highly non-
tight.

When considering the QROM security of FO�⊥ and FO�⊥
m, instead of modular

analysis, we choose to reduce the OW-CPA security of underlying PKE to the
IND-CCA security of KEM directly without introducing an intermediate scheme
PKE′. In this way, G and H are reprogrammed simultaneously, thus the OW2H
lemma is used only once in our reductions.

We also find that the order of the games can highly affect the tightness of
the security bound. If we reprogram G and H before simulating the Decaps

oracle with the secret random function H ′, the obtained security bound will be

q

√
ε + q

√
δ, where the ε term has quadratic loss and the δ term has quartic loss.

Therefore, we choose to simulate the Decaps oracle with H ′ before reprogram-
ming G and H. But, in this way, when using the OW2H lemma to argue the
indistinguishability between games where G and H are reprogrammed, one has
to guarantee the consistency of H and H ′. We solve this by generalizing the
OW2H lemma to the case where the reprogrammed oracle and other redundant
oracle can be sampled simultaneously according to some joint distribution (for
complete description of the generalized OW2H lemma, see Lemma 3).

Finally, our derived security bound is q
√

δ + q
√

ε, which is much tighter than
the bound q

√
q2δ + q

√
ε obtained by [7].

1.3 Discussion

Tightness. Having a tight security reduction is a desirable property for practice
cryptography, especially in large-scale scenarios. In the ROM, if we assume that
the underlying PKE scheme in FO�⊥ and FO�⊥

m is IND-CPA-secure, we can obtain
a tight reduction from the IND-CPA security of underlying PKE to IND-CCA
security of resulting KEM [7]. Specially, if the PKE scheme in FO�⊥

m is instan-
tiated with a Ring-LWE-based PKE scheme [39], the security of the underly-
ing Ring-LWE problem can be reduced to the IND-CCA security of KEM [43].

IND-CCA-Secure Key Encapsulation Mechanism 105

In [12], Saito et al. presented a tight security reduction for U�⊥
m by assuming

a stronger underlying DPKE, which is only satisfied by Classic McEliece in
Table 1. For the widely used FO�⊥ and FO�⊥

m, quadratic security loss still exists
even assuming the IND-CPA security of the underlying PKE scheme, see Table 2.
For the tight ROM security reductions in [7,43], the simulators need to make
an elaborate analysis of the RO-query inputs and determine which one of the
query inputs can be used to break the IND-CPA security of the underlying PKE
scheme [7] or solve a decision Ring-LWE problem [43]. However, in the QROM,
such a proof technique will be invalid for the reason that there is no way for the
simulators to learn the RO-query inputs [44,45]. Thus, in the QROM, it is still an
important open problem that whether one can develop a novel proof technique
to obtain a tight reduction for FO�⊥ and FO�⊥

m assuming standard IND-CPA
security of the underlying PKE.

Implicit rejection. For most of the previous generic transformations from
a OW-CPA-secure (or IND-CPA-secure) PKE to an IND-CCA-secure KEM,
explicit rejection is adopted. In [7], Hofheinz et al. presented several transfor-
mations with implicit rejection. These two different versions (explicit rejection
and implicit rejection) have their own merits. The transformation with implicit
rejection [7] does not require the underlying PKE scheme to be γ-spread [8,9]
(meaning that the ciphertexts generated by the probabilistic encryption algo-
rithm have sufficiently large entropy), which may allow choosing better system
parameters for the same security level. Whereas, the ones with explicit rejection
have a relatively simple decapsulation algorithm.

In our paper, we just give QROM security reductions for the transformations
with implicit rejection. It is not obvious how to extend our QROM security proofs
for the transformations with explicit rejection, since the simulator has no way
to tell if the submitted ciphertext is valid. In classical ROM, we usually assume
the underlying PKE is γ-spread. Then, we can recognize invalid ciphertexts just
by testing if they are in the RO-query list, as the probability that the adversary
makes queries to the decapsulation oracle with a valid ciphertext which is not
in the RO-query list is negligible [7–9,43]. Unfortunately, in the QROM, the
adversary makes quantum queries to the RO, above RO-query list does not
exist. Thus, the ROM proof technique for the recognition of invalid ciphertexts
is invalid in the QROM. Here, we leave it as an open problem to prove the
QROM security of the transformations FO�⊥ and FO�⊥

m with explicit rejection.

2 Preliminaries

Symbol description. Denote K, M, C and R as key space, message space,
ciphertext space and randomness space, respectively. For a finite set X, we
denote the sampling of a uniform random element x by x

$← X, and we denote
the sampling according to some distribution D by x←D. By x =?y we denote
the integer that is 1 if x = y, and otherwise 0. Pr[P : G] is the probability that

106 H. Jiang et al.

the predicate P holds true where free variables in P are assigned according to
the program in G. Denote deterministic (probabilistic) computation of an algo-
rithm A on input x by y := A(x) (y ← A(x)). AH means that the algorithm A
gets access to the oracle H.

2.1 Quantum Random Oracle Model

In the ROM [10], we assume the existence of a random function H, and give
all parties oracle access to this function. The algorithms comprising any crypto-
graphic protocol can use H, as can the adversary. Thus we modify the security
games for all cryptographic systems to allow the adversary to make random
oracle queries.

When a random oracle scheme is implemented, some suitable hash function H
is included in the specification. Any algorithm (including the adversary) replaces
oracle queries with evaluations of this hash function. In quantum setting, because
a quantum algorithm can evaluate H on an arbitrary superposition of inputs,
we must allow the quantum adversary to make quantum queries to the random
oracle. We call this the quantum random oracle model [11]. Unless otherwise
specified, the queries to random oracles are quantum in our paper.

Tools. Next we state four lemmas that we will use throughout the paper. The
first two lemmas have been proved in other works, and the complete proofs of
last two are presented in the full version [13]. We refer the reader to [46] for
basic of quantum computation. Here, we just recall two facts about quantum
computation.

– Fact 1. Any classical computation can be implemented on a quantum com-
puter.

– Fact 2. Any function that has an efficient classical algorithm computing it
can be implemented efficiently as a quantum-accessible oracle.

Lemma 1 (Simulating the random oracle [47, Theorem 6.1]). Let H be
an oracle drawn from the set of 2q-wise independent functions uniformly at ran-
dom. Then the advantage any quantum algorithm making at most q queries to
H has in distinguishing H from a truly random function is identically 0.

Lemma 2 (Generic search problem [48,49]). Let γ ∈ [0, 1]. Let Z be a
finite set. N1 : Z → {0, 1} is the following function: For each z, N1(z) = 1
with probability pz (pz ≤ γ), and N1(z) = 0 else. Let N2 be the function with
∀z : N2(z) = 0. If an oracle algorithm A makes at most q quantum queries to
N1 (or N2), then

∣
∣Pr[b = 1 : b ← AN1] − Pr[b = 1 : b ← AN2]

∣
∣ ≤ 2q

√
γ.

Particularly, the probability of A finding a z such that N1(z) = 1 is at most
2q

√
γ, i.e., Pr[N1(z) = 1 : z ← AN1] ≤ 2q

√
γ.

IND-CCA-Secure Key Encapsulation Mechanism 107

Note. [48, Lemma 37] and [49, Theorem 1] just consider the specific case where
all pzs are equal to γ. But in our security proof, we need to consider the case
where pz ≤ γ and pzs are in general different from each other. Fortunately, it is
not difficult to verify that the proof of [48, Lemma 37] can be extended to this
generic case.

The one-way to hiding (OW2H) lemma [42, Lemma 6.2] is a useful tool
for reducing a hiding (i.e., indistinguishability) property to a guessing (i.e., one-
wayness) property in the security proof. Roughly speaking, the lemma states that
if there exists an oracle algorithm A who issuing at most q1 queries to random
oracle O1 can distinguish (x,O1(x)) from (x, y), where y is chosen uniformly at
random, we can construct another oracle algorithm B who can find x by running
A and measuring one of A’s query. However, in our security proof, the oracle
O1 is not a perfect random function and A can have access to other oracle O2

associated to O1. Therefore, we generalize the OW2H lemma.

Lemma 3 (One-way to hiding, with redundant oracle). Let oracles O1,
O2, input parameter inp and x be sampled from some joint distribution D, where
x ∈ {0, 1}n (the domain of O1) and O1(x) is uniformly distributed on {0, 1}m

(the codomain of O1) conditioned on any fixed O1(x′) for all x′ �= x, O2, inp
and x, and independent from O2.

Consider an oracle algorithm AO1,O2 that makes at most q1 queries to O1 and
q2 queries to O2. Denote E1 as the event that AO1,O2 on input (inp, x,O1(x))
outputs 1. Reprogram O1 at x and replace O1(x) by a uniformly random y from
{0, 1}m. Denote E2 as the event that AO′

1,O2 on input (inp, x, y) outputs 1 after
O1 is reprogrammed, where O′

1 is denoted as the reprogrammed O1. Let BO1,O2 be

an oracle algorithm that on input (inp, x) does the following: pick i
$← {1, . . . , q1}

and y
$← {0, 1}m, run AO′

1,O2(inp, x, y) until the i-th query to O′
1, measure the

argument of the query in the computational basis, and output the measurement
outcome. (When A makes less than i queries, B outputs ⊥ /∈ {0, 1}n.) Let

Pr[E1] = Pr[b′ = 1 : (O1,O2, inp, x)←D, b′ ← AO1,O2(inp, x,O1(x))]

Pr[E2] = Pr[b′ = 1 : (O1,O2, inp, x)←D, y
$← {0, 1}m, b′ ← AO′

1,O2(inp, x, y)]
PB := Pr[x′ = x : (O1,O2, inp, x)←D,x′ ← BO1,O2(inp, x)].

Then
|Pr[E1] − Pr[E2]| ≤ 2q1

√
PB .

Note that O2 is unchanged during the reprogramming of O1 at x. Thus,
intuitively, O2 is redundant and unhelpful for A distinguishing (x,O1(x)) from
(x, y). The complete proof of Lemma 3 is similar to the proof of the OW2H
lemma [42, Lemma 6.2] and we present it in the full version [13].

Lemma 4. Let ΩH (ΩH′) be the set of all functions H : {0, 1}n1 × {0, 1}n2 →
{0, 1}m (H ′ : {0, 1}n2 → {0, 1}m). Let H

$← ΩH , H ′ $← ΩH′ , x
$← {0, 1}n1 .

Let F0 = H(x, ·), F1 = H ′(·) Consider an oracle algorithm AH,Fi that makes at

108 H. Jiang et al.

most q queries to H and Fi (i ∈ {0, 1}). If x is independent from the AH,Fi ’s
view,

∣∣Pr[1 ← AH,F0] − Pr[1 ← AH,F1]
∣∣ ≤ 2q

1√
2n1

.

We now sketch the proof of Lemma 4. For the complete proof, please refer to
the full version [13].

Proof sketch. In classical setting, it is obvious that
∣∣Pr[1 ← AH,F0]−

Pr[1 ← AH,F1]
∣∣ can be bounded by the probability that A performs

an H-query with input (x, ∗). As x is independent from AH,Fi ’s view,∣∣Pr[1 ← AH,F0] − Pr[1 ← AH,F1]
∣∣ ≤ q 1

2n1 . In quantum setting, it is not well-
defined that A queries (x, ∗) from H, since H can be queried in superposition.
To circumvent this problem, we follow Unruh’s proof technique in [42, Lemma
6.2] and define a new adversary B who runs A, but at some random query stops
and measures the query input. Let PB be the probability that B measures x.
Similarly to [42, Lemma 6.2], we can bound

∣∣Pr[1 ← AH,F0] − Pr[1 ← AH,F1]
∣∣

by 2q
√

PB . Since x is independent from the AH,Fi ’s view, PB = 1
2n1 . Thus,∣∣Pr[1 ← AH,F0] − Pr[1 ← AH,F1]

∣∣ ≤ 2q 1√
2n1

.

2.2 Cryptographic Primitives

Definition 1 (Public-key encryption). A public-key encryption scheme
PKE = (Gen,Enc,Dec) consists of a triple of polynomial time (in the security
parameter λ) algorithms and a finite message space M. Gen, the key genera-
tion algorithm, is a probabilistic algorithm which on input 1λ outputs a pub-
lic/secret key-pair (pk, sk). The encryption algorithm Enc, on input pk and
a message m ∈ M, outputs a ciphertext c ← Enc(pk,m). If necessary, we
make the used randomness of encryption explicit by writing c := Enc(pk,m; r),

where r
$← R (R is the randomness space). Dec, the decryption algorithm, is a

deterministic algorithm which on input sk and a ciphertext c outputs a message
m := Dec(sk, c) or a special symbol ⊥/∈ M to indicate that c is not a valid
ciphertext.

Definition 2 (Correctness [7]). A PKE is δ-correct if

E[max
m∈M

Pr[Dec(sk, c) �= m : c ← Enc(pk,m)]] ≤ δ,

where the expectation is taken over (pk, sk) ← Gen.

We now define four security notions for public-key encryption: one-way against
chosen plaintext attacks (OW-CPA), one-way against validity checking attacks
(OW-VA), one-way against quantum plaintext checking attacks (OW-qPCA)
and one-way against quantum plaintext and (classical) validity checking attacks
(OW-qPVCA).

IND-CCA-Secure Key Encapsulation Mechanism 109

Definition 3 (OW-ATK-secure PKE). Let PKE = (Gen,Enc,Dec)
be a public-key encryption scheme with message space M. For ATK ∈
{CPA,VA, qPCA, qPVCA}, we define OW-ATK games as in Fig. 1, where

OATK :=

⎧
⎪⎪⎨

⎪⎪⎩

⊥ ATK = CPA
Val(·) ATK = VA
Pco(·, ·) ATK = qPCA

Pco(·, ·),Val(·) ATK = qPVCA.

Define the OW-ATK advantage function of an adversary A against PKE as
AdvOW-ATK

PKE
(A) := Pr[OW-ATKA

PKE = 1].

Game OW-ATK

1 : (pk, sk) ← Gen

2 : m∗ $← M
3 : c∗ ← Enc(pk, m∗)

4 : m′ ← AOATK(pk, c∗)

5 : return m′ =?m∗

Pco(m,c)

1 : if m /∈ M
2 : return ⊥
3 : else return

4 : Dec(sk, c) =?m

Val(c)

1 : m := Dec(sk, c)

2 : if m ∈ M
3 : return 1

4 : else return 0

Fig. 1. Games OW-ATK (ATK ∈ {CPA, VA, qPCA, qPVCA}) for PKE, where OATK

is defined in Definition 3. In games qPCA and qPVCA, the adversary A can query the
Pco oracle with quantum state.

Remark. We note that the security game OW-qPCA (OW-qPVCA) is the same
as OW-PCA (OW-PVCA) except the adversary A’s queries to the Pco oracle. In
OW-qPCA (OW-qPVCA) game, A can make quantum queries to the Pco oracle,
while in OW-PCA (OW-PVCA) game only the classical queries are allowed.
These two new security notations will be used in the security analysis of modular
FO transformations in Sect. 4.

Definition 4 (DS-secure DPKE [12]). Let DM denote an efficiently sam-
pleable distribution on M. A DPKE scheme (Gen,Enc,Dec) with plaintext and
ciphertext spaces M and C is DM-disjoint simulatable if there exists a PPT
algorithm S that satisfies (1) Statistical disjointness: DisjPKE,S := max

pk
Pr[c ∈

Enc(pk,M) : c ← S(pk)] is negligible. (2) Ciphertext-indistinguishability: For
any PPT adversary A, AdvDS-IND

PKE,DM,S(A) := |Pr[A(pk, c∗) → 1 : (pk, sk) ←
Gen;m∗ ← DM; c∗ := Enc(pk,m∗)] − Pr[A(pk, c∗) → 1 : (pk, sk) ← Gen; c∗ ←
S(pk)]| is negligible.

Definition 5 (Key encapsulation). A key encapsulation mechanism KEM
consists of three algorithms Gen, Encaps and Decaps. The key generation algo-
rithm Gen outputs a key pair (pk, sk). The encapsulation algorithm Encaps,
on input pk, outputs a tuple (K, c) where c is said to be an encapsulation of

110 H. Jiang et al.

the key K which is contained in key space K. The deterministic decapsulation
algorithm Decaps, on input sk and an encapsulation c, outputs either a key
K := Decaps(sk, c) ∈ K or a special symbol ⊥/∈ K to indicate that c is not a
valid encapsulation.

Game IND-CCA

1 : (pk, sk) ← Gen

2 : b
$← {0, 1}

3 : (K∗
0 , c∗) ← Encaps(pk)

4 : K∗
1

$← K
5 : b′ ← ADecaps(pk, c∗, K∗

b)

6 : return b′ =?b

Decaps(sk, c)

1 : if c = c∗

2 : return ⊥
3 : else return

4 : K := Decaps(sk, c)

Fig. 2. IND-CCA game for KEM.

We now define a security notion for KEM: indistinguishability against chosen
ciphertext attacks (IND-CCA).

Definition 6 (IND-CCA-secure KEM). We define the IND-CCA game as
in Fig. 2 and the IND-CCA advantage function of an adversary A against KEM
as AdvIND-CCA

KEM
(A) :=

∣∣Pr[IND-CCA
A
KEM = 1] − 1

2

∣∣.

We also define OW-ATK security of PKE, DS security of DPKE and IND-
CCA security of KEM in the QROM, where adversary A can make quantum
queries to random oracles. Following the work [7], we also make the convention
that the number qH of adversarial queries to a random oracle H counts the
total number of times H is executed in the experiment. That is, the number of
A’s explicit queries to H plus the number of implicit queries to H made by the
experiment.

3 Security Proofs for Two Generic KEM Constructions
in the QROM

In this section, we revisit two generic transformations, FO�⊥ and FO�⊥
m, see Figs. 3

and 4. These two transformations are widely used in the post-quantum IND-
CCA-secure KEM constructions, see Table 1. But, there are no QROM security
proofs for them. To achieve QROM security, some proposals, e.g., FrodoKEM,
followed Hofheinz et al.’s work [7] and modified FO�⊥ and FO�⊥

m by adding an
additional length-preserving hash function to the ciphertext. Here, we present
two QROM security proofs for FO�⊥ and FO�⊥

m respectively without suffering any
ciphertext overhead.

IND-CCA-Secure Key Encapsulation Mechanism 111

Gen′

1 : (pk, sk) ← Gen

2 : s
$← M

3 : sk′ := (sk, s)

4 : return (pk, sk′)

Encaps(pk)

1 : m
$← M

2 : c = Enc(pk, m;G(m))

3 : K := H(m, c)

4 : return (K, c)

Decaps(sk′, c)

1 : Parse sk′ = (sk, s)

2 : m′ := Dec(sk, c)

3 : if Enc(pk, m′;G(m′)) = c

4 : return K := H(m′, c)

5 : else return

6 : K := H(s, c)

Fig. 3. IND-CCA-secure KEM-I=FO�⊥[PKE,G,H]

Gen′

1 : (pk, sk) ← Gen

2 : k
$← Kprf

3 : sk′ := (sk, k)

4 : return (pk, sk′)

Encaps(pk)

1 : m
$← M

2 : c = Enc(pk, m;G(m))

3 : K := H(m)

4 : return (K, c)

Decaps(sk′, c)

1 : Parse sk′ = (sk, k)

2 : m′ := Dec(sk, c)

3 : if Enc(pk, m′;G(m′)) = c

4 : return K := H(m′)

5 : else return

6 : K := f(k, c)

Fig. 4. IND-CCA-secure KEM-II=FO�⊥m[PKE,G,H,f]

To a public-key encryption scheme PKE = (Gen, Enc, Dec) with message
space M and randomness space R, hash functions G : M → R, H : {0, 1}∗ →
{0, 1}n and a pseudorandom function (PRF) f with key space Kprf , we associate
KEM-I=FO�⊥[PKE,G,H] and KEM-II= FO�⊥

m[PKE,G,H,f]5 shown in Figs. 3 and
4, respectively. The following two theorems establish that IND-CCA securities
of KEM-I and KEM-II can both reduce to the OW-CPA security of PKE, in the
QROM.

Theorem 1 (PKE OW-CPA
QROM⇒ KEM-I IND-CCA). If PKE is δ-

correct, for any IND-CCA B against KEM-I, issuing at most qD queries to the
decapsulation oracle Decaps, at most qG queries to the random oracle G and
at most qH queries to the random oracle H, there exists a OW-CPA adversary
A against PKE such that AdvIND-CCA

KEM-I
(B) ≤ 2qH

1√
|M| + 4qG

√
δ + 2(qG + qH) ·

√
AdvOW-CPA

PKE
(A) and the running time of A is about that of B.

5 FO�⊥m here is the generic version of FO�⊥m in [7]. In their work, such a pseudorandom
function f is instantiated with H(s, ·) (s is a random seed and contained in the secret
key sk′).

112 H. Jiang et al.

Proof. Let B be an adversary against the IND-CCA security of KEM-I, issuing at
most qD queries to Decaps, at most qG queries to G and at most qH queries to H.
Denote ΩG, ΩH and ΩH′ as the sets of all functions G : M → R, H : M×C → K
and H ′ : C → K, respectively. Consider the games in Figs. 5 and 9.

Game G0. Since game G0 is exactly the IND-CCA game,
∣∣∣∣Pr[GB

0 ⇒ 1] − 1
2

∣∣∣∣ = AdvIND-CCA

KEM-I
(B).

Game G1. In game G1, we change the Decaps oracle that H2(c) is returned
instead of H(s, c) for an invalid encapsulation c. Define an oracle algorithm

AH,Fi (i ∈ {0, 1}), see Fig. 6. Let H = H3, F0(·) = H3(s, ·) (s $← M) and
F1 = H2, where H2 and H3 are chosen in the same way as G0 and G1. Then,
Pr[GB

i ⇒ 1] = Pr[1 ← AH,Fi]. Since the uniform secret s is chosen independently
from AH,Fi ’s view, we can use Lemma 4 to obtain

∣∣Pr[GB
0 ⇒ 1] − Pr[GB

1 ⇒ 1]
∣∣ ≤ 2qH · 1

√|M| .

Game G2. Note that in game G1, H(m, c) = H3(m, c). In game G2, if H-query
input (m, c) satisfies g(m) = c, the response is replaced by Hg

1 (m) = H1◦g(m) =
H1(g(m)) = H1(c), where

g(·) = Enc(pk, ·;G(·)).

GAMES G0 − G4

1 : (pk, sk′) ← Gen′;G $← ΩG

2 : H1, H2
$← ΩH′ ;H3

$← ΩH

3 : m∗ $← M
4 : r∗ := G(m∗) //G0 − G3

5 : r∗ $← R //G4

6 : c∗ := Enc(pk, m∗; r∗)

7 : k∗
0 := H(m∗, c∗)

8 : k∗
0

$← K //G4

9 : k∗
1

$← K
10 : b

$← {0, 1}
11 : b′ ← BG,H,Decaps(pk, c∗, k∗

b)

12 : return b′ =?b

H(m, c)

1 : if Enc(pk, m;G(m)) = c //G2 − G4

2 : return H1(c) //G2 − G4

3 : return H3(m, c)

Decaps (c �= c∗) //G0 − G2

1 : Parse sk′ = (sk, s)

2 : m′ := Dec(sk, c)

3 : if Enc(pk, m′;G(m′)) = c

4 : return K := H(m′, c)

5 : else return

6 : K := H(s, c) //G0

7 : K := H2(c) //G1 − G2

Decaps (c �= c∗) //G3 − G4

1 : return K := H1(c)

Fig. 5. Games G0-G4 for the proof of Theorem 1

IND-CCA-Secure Key Encapsulation Mechanism 113

AH,Fi

1 : (pk, sk) ← Gen;G $← ΩG

2 : m∗ $← M
3 : r∗ := G(m∗)

4 : c∗ := Enc(pk, m∗; r∗)

5 : k∗
0 := H(m∗, c∗); k∗

1
$← K

6 : b
$← {0, 1}

7 : b′ ← BG,H,Decaps(pk, c∗, k∗
b)

8 : return b′ =?b

Decaps (c �= c∗)

1 : m′ := Dec(sk, c)

2 : if Enc(pk, m′;G(m′)) = c

3 : return K := H(m′, c)

4 : else return

5 : K := Fi(c)

Fig. 6. AH,Fi for the proof of Theorem 1.

AN (pk, sk)

1 : Pick 2qG-wise function f

2 : b′′ ← B
˜G(pk, sk)

3 : return b′′

˜G(m)

1 : if N(m) = 0

2 : ˜G(m) = Sample(R \ Rbad(pk, sk, m); f(m))

3 : else

4 : ˜G(m) = Sample(Rbad(pk, sk, m); f(m))

5 : return ˜G(m)

Fig. 7. AN for the proof of Theorem 1

Given (pk, sk) and m ∈ M, let

Rbad(pk, sk,m) := {r ∈ R : Dec(sk,Enc(pk,m; r)) �= m}
denote the set of “bad” randomness. Define

δ(pk, sk,m) =
|Rbad(pk, sk,m)|

|R|
as the fraction of bad randomness and δ(pk, sk) = maxm∈M δ(pk, sk,m).
With this notation δ = E[δ(pk, sk)], where the expectation is taken over
(pk, sk)←Gen.

Let G′ be a random function such that G′(m) is sampled from the uniform
distribution in R \ Rbad(pk, sk,m). Let

g′(·) = Enc(pk, ·;G′(·)).
Distinctly, g′ is an injective function. H1◦g′ has the same output distribution

as H in G1. Thus, distinguishing G2 from G1 is equivalent to distinguishing g
from g′, which is essentially the distinguishing problem between G and G′.

114 H. Jiang et al.

Let N1 be the function such that N1(m) is sampled from the Bernoulli dis-
tribution Bδ(pk,sk,m), i.e., Pr[N1(m) = 1] = δ(pk, sk,m) and Pr[N1(m) = 0] =
1 − δ(pk, sk,m). Let N2 be a constant function that always outputs 0 for any
input. Next, we will show that any algorithm that distinguishes G from G′ can
be converted into an algorithm that distinguishes N1 from N2.

For any efficient quantum adversary B
˜G(pk, sk), we can construct an adver-

sary AN (pk, sk) as in Fig. 7. Sample(Y) is a probabilistic algorithm that returns

a uniformly distributed y
$← Y. Sample(Y; f(m)) denotes the deterministic exe-

cution of Sample(Y) using explicitly given randomness f(m).
Note that G̃ = G if N = N1 and G̃ = G′ if N = N2. Thus, for any fixed

(pk, sk) that is generated by Gen, Pr[1 ← AN1 : (pk, sk)] = Pr[1 ← BG :
(pk, sk)] and Pr[1 ← AN2 : (pk, sk)] = Pr[1 ← BG′

: (pk, sk)]. Conditioned on a
fixed (pk, sk) we obtain by Lemma 2

∣∣∣Pr[1 ← BG : (pk, sk)] − Pr[1 ← BG′
: (pk, sk)]

∣∣∣

=
∣∣Pr[1 ← AN1 : (pk, sk)] − Pr[1 ← AN2 : (pk, sk)]

∣∣ ≤ 2qG

√
δ(pk, sk).

Note that
∣∣Pr[GB

1 ⇒ 1 : (pk, sk)] − Pr[GB
2 ⇒ 1 : (pk, sk)]

∣∣ can be bounded by
the maximum distinguishing probability between G and G′ for B

˜G(pk, sk). Thus,
∣∣Pr[GB

1 ⇒ 1 : (pk, sk)] − Pr[GB
2 ⇒ 1 : (pk, sk)]

∣∣ ≤ 2qG

√
δ(pk, sk).

By averaging over (pk, sk)←Gen we finally obtain
∣∣Pr[GB

1 ⇒ 1] − Pr[GB
2 ⇒ 1]

∣∣ ≤ 2qG

√
δ.

Game G3. In game G3, the Decaps oracle is changed that it makes no use of
the secret key sk′ any more. When B queries the Decaps oracle on c (c �= c∗),
K := H1(c) is returned as the response. Let m′ := Dec(sk, c) and consider the
following two cases.

Case 1: Enc(pk,m′;G(m′)) = c. In this case, H(m′, c) = H1(c). Thus, both
Decaps oracles in G2 and G3 return the same value.

Case 2: Enc(pk,m′;G(m′)) �= c. Random values H2(c) and H1(c) are returned
in G2 and G3 respectively. In G2, H2 is a random function independent of
the oracles G and H, thus H2(c) is uniform at random in B’s view. In G3, B’s
queries to H can only help him get access to H1 at ĉ such that g(m̂) = ĉ for
some m̂. Consequently, if B can not find a m′′ such that g(m′′) = c, H1(c) is
also a fresh random key just like H2(c) in his view. Since m′′ �= m′, finding
such an m′′ is exactly the event E that B finds a plaintext m′′ such that
Dec(sk, g(m′′)) �= m′′. That is, in this case, if E does not happen, the output
distributions of the Decaps oracles in G2 and G3 are same in B’s view.

As a result, G2 and G3 only differ when E happens. By [7, Lemma 4.3], we know
that if B can find a plaintext m′′ such that Dec(sk, g(m′′)) �= m′′ with at most

IND-CCA-Secure Key Encapsulation Mechanism 115

qG quantum queries to g, we can easily construct another adversary B′ who can
find a plaintext m′′ such that N1(m′′) = 1 with at most qG quantum queries
to N1. Considering that the PKE scheme is δ-correct, we can derive the upper
bound of Pr[E] by utilizing Lemma 2, Pr[E] ≤ Pr[N1(m′′) = 1 : (pk, sk) ←
Gen,m′′ ← B′N1] ≤ 2qG

√
δ. Therefore,

∣
∣Pr[GB

2 ⇒ 1] − Pr[GB
3 ⇒ 1]

∣
∣ ≤ Pr[E] ≤ 2qG

√
δ.

Game G4. In game G4, r∗ and k∗
0 are chosen uniformly at random from R and

K, respectively. In this game, bit b is independent from B’s view. Hence,

Pr[GB
4 ⇒ 1] =

1
2
.

Note that in this game we reprogram the oracles G and H on inputs m∗ and
(m∗, c∗) respectively. In classical setting, this will be unnoticed unless the event
Query that B queries G on m∗ or H on (m∗, c∗) happens. Then we can argue
that G3 and G4 are indistinguishable until Query happens. In quantum setting,
due to the quantum queries to G and H, the case is complicated and we will
use Lemma 3 to bound

∣
∣Pr[GB

3 ⇒ 1] − Pr[GB
4 ⇒ 1]

∣
∣. Note that (m∗, c∗) is a valid

plaintext-ciphertext pair, i.e., g(m∗) = c∗. Therefore, H(m∗, c∗) = H1(c∗) =
Hg

1 (m∗). Actually, we just reprogram G and Hg
1 at m∗.

Let (G × Hg
1)(x) := (G(x),Hg

1 (x))6. Hg
1 and H3 are internal random oracles

that B can have access to only by querying the oracle H. Then, the number of
total queries to G × Hg

1 is at most qG + qH . Let H ′
1 be the function such that

H ′
1(g(m∗)) =⊥ and H ′

1 = H1 everywhere else. H ′
1 is exactly the Decaps oracle

in G3 and G4 and unchanged during the reprogramming of G × Hg
1 .

Let AG×Hg
1 ,H′

1 be an oracle algorithm that has quantum access to G × Hg
1

and H ′
1, see Fig. 8. Sample G, H1, Hg

1 and pk in the same way as G3 and G4,

i.e., (pk, sk′) ← Gen′, G $← ΩG,H1
$← ΩH′ ,Hg

1 := H1 ◦ g. Let m∗ $← M.
Then, if r∗ := G(m∗) and k∗

0 := Hg
1 (m∗), AG×Hg

1 ,H′
1 on input

(pk,m∗, (r∗, k∗
0)) perfectly simulates G3. And, if r∗ $← R and k∗

0
$← K, AG×Hg

1 ,H′
1

on input (pk,m∗, (r∗, k∗
0)) perfectly simulates G4. Let BG×Hg

1 ,H′
1 be an oracle

algorithm that on input (pk,m∗) does the following: pick i
$← {1, . . . , qG + qH},

r∗ $← R and k∗
0

$← K, run AG×Hg
1 ,H′

1(pk,m∗, (r∗, k∗
0)) until the i-th query to

G × Hg
1 , measure the argument of the query in the computational basis, output

the measurement outcome (when AG×Hg
1 ,H′

1 makes less than i queries, output
⊥). Define game G5 as in Fig. 9. Then, Pr[BG×Hg

1 ,H′
1 ⇒ m∗] = Pr[GB

5 ⇒ 1].
Applying Lemma 3 with O1 = G × Hg

1 , O2 = H ′
1, inp = pk, x = m∗ and

y = (r∗, k∗
0), we have

∣∣Pr[GB
3 ⇒ 1] − Pr[GB

4 ⇒ 1]
∣∣ ≤ 2(qG + qH)

√
Pr[GB

5 ⇒ 1].

6 Note that if one wants to make queries to G (or Hg
1) by accessing to G × Hg

1 , he
just needs to prepare a uniform superposition of all states in the output register
responding to Hg

1 (or G). This trick [14,50,51] has been used to ignore part of the
output of an oracle.

116 H. Jiang et al.

AG×H
g
1 ,H′

1(pk, m∗, (r∗, k∗
0))

1 : H3
$← ΩH

2 : c∗ := Enc(pk, m∗; r∗)

3 : k∗
1

$← K
4 : b

$← {0, 1}
5 : b′ ← BG,H,Decaps(pk, c∗, k∗

b)

6 : return b′ =?b

H(m, c)

1 : if g(m) = c

2 : return Hg
1 (m)

3 : else return H3(m, c)

Decaps (c �= c∗)

1 : return K := H ′
1(c)

Fig. 8. AG×H
g
1 ,H′

1 for the proof of Theorem 1.

GAMES G5

1 : i
$← {1, . . . , qG + qH}, (pk, sk′) ← Gen′, G $← ΩG

2 : H1
$← ΩH′ , H3

$← ΩH

3 : m∗ $← M, r∗ $← R
4 : c∗ := Enc(pk, m∗; r∗)

5 : k∗
0 , k∗

1
$← K

6 : b
$← {0, 1}

7 : run BG,H,Decaps(pk, c∗, k∗
b) until the i−th query to G × Hg

1

8 : measure the argument m̂

9 : return m̂ =?m∗

H(m, c)

1 : if Enc(pk, m;G(m)) = c

2 : return H1(c)

3 : else return H3(m, c)

Decaps (c �= c∗)

1 : return K := H1(c)

Fig. 9. Game G5 for the proof of Theorem 1

Next, we construct an adversary A against the OW-CPA security of the PKE
scheme such that AdvOW-CPA

PKE
(A) = Pr[GB

5 ⇒ 1]. The adversary A on input (1λ,
pk, c) does the following:

1. Run the adversary B in Game G5.
2. Use a 2qG-wise independent function and two different 2qH -wise independent

functions to simulate the random oracles G, H1 and H3 respectively. The
random oracle H is simulated in the same way as the one in game G5.

3. Answer the decapsulation queries by using the Decaps oracle in Fig. 9.

IND-CCA-Secure Key Encapsulation Mechanism 117

4. Select k∗ $← K and respond to B’s challenge query with (c, k∗).
5. Select i

$← {1, . . . , qG +qH}, measure the argument m̂ of i-th query to G×Hg
1

and output m̂.

According to Lemma 1, AdvOW-CPA

PKE
(A) = Pr[GB

5 ⇒ 1]. Finally, combing this
with the bounds derived above, we can conclude that

AdvIND-CCA

KEM-I
(B) ≤ 2qH

1
√|M| + 4qG

√
δ + 2(qG + qH) ·

√
AdvOW-CPA

PKE
(A).

��
Theorem 2 (PKE OW-CPA

QROM⇒ KEM-II IND-CCA). If PKE is δ-
correct, for any IND-CCA B against KEM-II, issuing at most qD classical
queries to the decapsulation oracle Decaps and at most qG (qH) queries to ran-
dom oracle G (H), there exist a quantum OW-CPA adversary A against PKE
and an adversary A′ against the security of PRF with at most qD classical queries

such that AdvIND-CCA

KEM-II
(B) ≤ AdvPRF(A′)+4qG

√
δ +2(qH + qG) ·

√
AdvOW-CPA

PKE
(A)

and the running time of A is about that of B.

The only difference between KEM-I and KEM-II is the KDF function. In KEM-I,
K = H(m, c), while K = H(m) in KEM-II. Note that given pk and random
oracle G, c is determined by m. The proof of Theorem2 is similar to the one of
Theorem 1 and we present it in the full version [13].

4 Modular Analysis of FO Transformation in the QROM

In [7], Hofheinz et al. introduced seven modular transformations T, U�⊥, U⊥,
U�⊥

m, U⊥
m, QU�⊥

m and QU⊥
m. But, they just presented QROM security reductions

for the transformations T, QU�⊥
m and QU⊥

m. Different from the transformations
U�⊥, U⊥, U�⊥

m and U⊥
m, the transformations QU�⊥

m and QU⊥
m have an additional

length-preserving hash in the ciphertext, thus they can follow the proof technique
in [14,52] to give QROM security reductions for them. As they pointed [14],
their QROM security reductions quite rely on this additional hash. And, QROM
security reductions for U�⊥, U⊥, U�⊥

m and U⊥
m are missing in [7]. In [12], Saito et al.

presented a tight QROM security reduction for U�⊥
m with stronger assumptions

for underlying DPKE scheme, DS-security and perfect correctness.
In this section, we revisit the transformations U�⊥, U⊥, U�⊥

m and U⊥
m, and

argue their QROM security without any modification to the constructions and
with correctness error into consideration. [7] has shown that the transformation
T can turn a OW-CPA-secure PKE into a OW-PCA-secure PKE in the QROM.
In Sect. 4.1, we first show that the resulting PKE scheme by applying T to a OW-
CPA-secure PKE is also OW-qPCA-secure. The QROM security reduction for
U�⊥ (U⊥) from the OW-qPCA (OW-qPVCA) security of PKE to the IND-CCA
security of KEM is given in Sect. 4.2 (4.3). In Sect. 4.4, we show that U�⊥

m (U⊥
m)

transforms any OW-CPA-secure or DS-secure (OW-VA-secure) DPKE into an
IND-CCA-secure KEM in the QROM.

118 H. Jiang et al.

4.1 T: from OW-CPA to OW-qPCA in the QROM

To a public-key encryption PKE = (Gen, Enc, Dec) with message space M and
randomness space R, and a hash function G : M → R, we associate PKE′ =
T [PKE, G]. The algorithms of PKE′ = (Gen, Enc′, Dec′) are defined in Fig. 10.

Theorem 3 (PKE OW-CPA
QROM⇒ PKE′ OW-qPCA). If PKE is δ-

correct, for any OW-qPCA B against PKE′, issuing at most qG quantum queries
to the random oracle G and at most qP quantum queries to the plaintext check-
ing oracle Pco, there exists a OW-CPA adversary A against PKE such that

AdvOW−qPCA

PKE
′ (B) ≤ 2qG · √δ + (1 + 2qG) ·

√
AdvOW-CPA

PKE
(A) and the running time

of A is about that of B.

The proof is essentially the same as the one of [7, Theorem 4.4] except
the argument about the difference in B’s success probability between game
G0 and game G1. Game G0 is exactly the original OW-qPCA game. In game
G1, the Pco oracle is replaced by a simulation that Enc(pk,m;G(m)) =?c
is returned for the query input (m, c). As pk is public and G is a quantum
random oracle, such a Pco simulation can be queried on a quantum superpo-
sition of inputs. Note that G0 and G1 are indistinguishable unless there exits
an adversary who issuing at most qG queries to G can distinguish N1 from a
constant function N2 that always outputs 0 for any input, where N1(m) = 0
if Dec(sk,Enc(pk,m;G(m))) = m, and otherwise N1(m) = 1. Thus, using
Lemma 2, we can obtain that

∣
∣Pr[GB

0 ⇒ 1] − Pr[GB
1 ⇒ 1]

∣
∣ ≤ 2qG · √

δ. Then,
following the security proof of [7, Theorem 4.4], we can easily prove Theorem 3.

Enc′(pk, m)

1 : c = Enc(pk, m;G(m))

2 : return c

Dec′(sk, c)

1 : m′ := Dec(sk, c)

2 : if Enc(pk, m′;G(m′)) = c

3 : return m′

4 : else return ⊥

Fig. 10. OW-qPCA-secure PKE′ = T [PKE, G]

4.2 U�⊥: from OW-qPCA to IND-CCA in the QROM

To a public-key encryption PKE′ = (Gen′, Enc′, Dec′) and a hash function H, we
associate KEM-III = U�⊥[PKE′,H]. The algorithms of KEM-III= (Gen, Encaps,
Decaps) are defined in Fig. 11.

IND-CCA-Secure Key Encapsulation Mechanism 119

Gen

1 : (pk, sk) ← Gen′

2 : s
$← M

3 : sk′ := (sk, s)

4 : return (pk, sk′)

Encaps(pk)

1 : m
$← M

2 : c ← Enc′(pk, m)

3 : K := H(m, c)

4 : return (K, c)

Decaps(sk′, c)

1 : Parse sk′ = (sk, s)

2 : m′ := Dec′(sk, c)

3 : if m′ =⊥
4 : return K := H(s, c)

5 : else return

6 : K := H(m′, c)

Fig. 11. IND-CCA-secure KEM-III = U�⊥[PKE′, H]

Theorem 4 (PKE′ OW-qPCA
QROM⇒ KEM-III IND-CCA). If PKE′ is

δ-correct, for any IND-CCA B against KEM-III, issuing at most qD (classi-
cal) queries to the decapsulation oracle Decaps and at most qH queries to
the quantum random oracle H, there exists a quantum OW-qPCA adversary
A against PKE′ that makes at most qH queries to the Pco oracle such that

AdvIND-CCA

KEM-III
(B) ≤ 2qH

1√
|M| + 2qH ·

√
AdvOW−qPCA

PKE
′ (A) and the running time of

A is about that of B.

The proof skeleton of Theorem 4 is essentially the same as the one of Theo-
rem 1. Here, we briefly state the main differences. The complete proof is presented
in the full version [13].

In KEM-I, the randomness used in the encryption algorithm is determined
by the random oracle G. Given a plaintext m, we can deterministically evaluate
the ciphertext c = Enc(pk,m;G(m)). Thus, we can divide H-query inputs (m, c)
into two categories by judging if (m, c) is a matching plaintex-ciphertext pair
(i.e., c = Enc(pk,m;G(m))) or not. In KEM-III, the encryption algorithm may
be probabilistic, thus the above method will be invalid. Instead, we can query
the Pco oracle to judge whether (m, c) is a matching plaintex-ciphertext pair.
If Pco(m, c) = 1, the random oracle H returns H1(c), otherwise H3(m, c). To
simulate the random oracle H, we make quantum queries to Pco (this is the
reason why we require the scheme PKE′ to be OW-qPCA-secure). Note that
it is impossible that Pco(m1, c) = Pco(m2, c) = 1 for m1 �= m2. Thus, H is
perfectly simulated without introducing the δ term. As B’s queries to H can
only help him get access to H1 at c such that Dec′(sk, c) = m̂ for some m̂ �= ⊥,
the Decaps oracle can be perfectly simulated by H1. Therefore, different from
the security bounds obtained in Theorems 1 and 2, the δ term is removed with
the OW-qPCA security of underlying PKE.

120 H. Jiang et al.

Gen

1 : (pk, sk) ← Gen′

2 : return (pk, sk)

Encaps(pk)

1 : m
$← M

2 : c ← Enc′(pk, m)

3 : K := H(m, c)

4 : return (K, c)

Decaps⊥(sk, c)

1 : m′ := Dec′(sk, c)

2 : if m′ =⊥
3 : return ⊥
4 : else return

5 : K := H(m′, c)

Fig. 12. IND-CCA-secure KEM-IV = U⊥[PKE′, H]

4.3 U⊥: from OW-qPVCA to IND-CCA in the QROM

To a public-key encryption PKE′ = (Gen′, Enc′, Dec′) and a hash function H,
we associate KEM-IV = U⊥[PKE′,H]. We remark that U⊥ is essentially the
transformation [6, Table 2], a KEM variant of the REACT/GEM transforma-
tions [53,54]. The algorithms of KEM-IV= (Gen,Encaps,Decaps⊥) are defined
in Fig. 12.

Theorem 5 (PKE′ OW-qPVCA
QROM⇒ KEM-IV IND-CCA). If PKE′ is

δ-correct, for any IND-CCA B against KEM-IV, issuing at most qD (classical)
queries to the decapsulation oracle Decaps and at most qH queries to the quan-
tum random oracle H, there exists a OW-qPVCA adversary A against PKE′

that makes at most qH queries to the Pco oracle and at most qD queries to

the Val oracle such that AdvIND-CCA

KEM-IV
(B) ≤ 2qH ·

√
AdvOW−qPVCA

PKE
′ (A) and the

running time of A is about that of B.

The only difference between KEM-III and KEM-IV is the response to the
invalid ciphertext in the decapsulation algorithm. When the ciphertext c is
invalid, the decapsulation algorithm in KEM-III returns a pseudorandom key
related to c. In this way, whatever the ciphertext (valid or invalid) is submitted,
the return values have the same distribution. As a result, A can easily simulate
the decapsulation oracle Decaps without recognition of the invalid ciphertexts.
While the decapsulation algorithm in KEM-IV returns ⊥ when the submitted c
is invalid. Thus, in order to simulate Decaps, A needs to judge if the ciphertext
c is valid. As we assume that the scheme PKE′ is OW-qPVCA-secure, A can
query the Val oracle to fulfill such a judgement. Then, it is easy to verify that
by using the same proof method in Theorem4 we can obtain the desired security
bound.

4.4 U�⊥
m/U⊥

m : from OW-CPA/OW-VA to IND-CCA for
Deterministic Encryption in the QROM

The transformation U�⊥
m (U⊥

m) is a variant of U�⊥ (U⊥) that derives the KEM
key as K = H(m), instead of K = H(m, c). To a deterministic public-key

IND-CCA-Secure Key Encapsulation Mechanism 121

encryption scheme PKE′ = (Gen′, Enc′, Dec′) with message space M, a hash
function H : M → K, and a pseudorandom function f with key space Kprf ,
we associate KEM-V = U�⊥

m[PKE′, H, f] and KEM-VI = U⊥
m[PKE′, H] shown in

Figs. 13 and 14, respectively.

Gen

1 : (pk, sk) ← Gen′

2 : k
$← Kprf

3 : sk′ := (sk, k)

4 : return (pk, sk′)

Encaps(pk)

1 : m
$← M

2 : c := Enc′(pk, m)

3 : K := H(m)

4 : return (K, c)

Decaps(sk′, c)

1 : Parse sk′ = (sk, k)

2 : m′ := Dec′(sk, c)

3 : if Enc′(pk, m′) = c

4 : return K := H(m′)

5 : else return

6 : K := f(k, c)

Fig. 13. IND-CCA-secure KEM-V = U�⊥m[PKE′, H, f]

Gen

1 : (pk, sk) ← Gen′

2 : return (pk, sk)

Encaps(pk)

1 : m
$← M

2 : c := Enc′(pk, m)

3 : K := H(m)

4 : return (K, c)

Decaps(sk, c)

1 : m′ := Dec(sk, c)

2 : if Enc′(pk, m′) = c

3 : return K := H(m′)

4 : else return ⊥

Fig. 14. IND-CCA-secure KEM-VI = U⊥
m[PKE′, H]

We note that for a deterministic PKE scheme the OW-PCA security is equiva-
lent to the OW-CPA security as we can simulate the Pco oracle via re-encryption
during the proof. Thus, combing the proofs of Theorem2, Theorem 4, Theorem 5
and [12, Theorem 4.1], we can easily obtain the following two theorems.

Theorem 6 (PKE′ OW-CPA
QROM⇒ KEM-V IND-CCA). If PKE′ is δ-

correct and deterministic, for any IND-CCA B against KEM-V, issuing at most
qE quantum queries to the encryption oracle7, at most qD (classical) queries
to the decapsulation oracle Decaps and at most qH quantum queries to the
random oracle H, there exist a quantum OW-CPA adversary A against PKE′,
an adversary A′ against the security of PRF with at most qD classical queries
and an adversary C against the UM-DS security with a simulator S of PKE′

7 For the deterministic scheme PKE′, given public key pk, quantum adversary B can
execute the encryption algorithm Enc′ in a quantum computer.

122 H. Jiang et al.

(UM is the uniform distribution in M) such that AdvIND-CCA

KEM-V
(B) ≤ AdvPRF(A′)+

4qE

√
δ + 2qH ·

√
AdvOW-CPA

PKE
′ (A) and AdvIND-CCA

KEM-V
(B) ≤ AdvPRF(A′) + 4qE

√
δ +

AdvDS-IND

PKE
′,UM,S(C) + DisjPKE

′,S, and the running time of A (C) is about that of
B.

Theorem 7 (PKE′ OW-VA
QROM⇒ KEM-VI IND-CCA). If PKE′ is δ-

correct and deterministic, for any IND-CCA B against KEM-VI, issuing at most
qE quantum queries to the encryption oracle, at most qD (classical) queries to
the decapsulation oracle Decaps and at most qH quantum queries to the random
oracle H, there exists a quantum OW-VA adversary A against PKE′ who makes
at most qD queries to the Val oracle such that AdvIND-CCA

KEM-VI
(B) ≤ 2qE

√
δ + 2qH ·√

AdvOW-VA

PKE
′ (A) and the running time of A is about that of B.

Acknowledgements. We would like to thank anonymous reviews of Crypto 2018,
Keita Xagawa, Takashi Yamakawa, Jiang Zhang, and Edoardo Persichetti for their help-
ful comments and suggestions. This work is supported by the National Key Research
and Development Program of China (No. 2017YFB0802000), the National Natural
Science Foundation of China (No. U1536205, 61472446, 61701539, 61501514), and the
Open Project Program of the State Key Laboratory of Mathematical Engineering and
Advanced Computing (No. 2016A01).

References

1. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM J. Comput. 33(1),
167–226 (2003)

2. Boyd, C., Cliff, Y., Gonzalez Nieto, J., Paterson, K.G.: Efficient one-round key
exchange in the standard model. In: Mu, Y., Susilo, W., Seberry, J. (eds.) ACISP
2008. LNCS, vol. 5107, pp. 69–83. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-70500-0 6

3. Fujioka, A., Suzuki, K., Xagawa, K., Yoneyama, K.: Strongly secure authenticated
key exchange from factoring, codes, and lattices. Des. Codes Crypt. 76(3), 469–504
(2015)

4. NIST: National institute for standards and technology. Post quantum crypto
project (2017). https://csrc.nist.gov/projects/post-quantum-cryptography/
round-1-submissions

5. Rackoff, C., Simon, D.R.: Non-interactive zero-knowledge proof of knowledge and
chosen ciphertext attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576,
pp. 433–444. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-
1 35

6. Dent, A.W.: A designer’s guide to KEMs. In: Paterson, K.G. (ed.) Cryptogra-
phy and Coding 2003. LNCS, vol. 2898, pp. 133–151. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-540-40974-8 12

7. Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the Fujisaki-
Okamoto transformation. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol.
10677, pp. 341–371. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70500-2 12

https://doi.org/10.1007/978-3-540-70500-0_6
https://doi.org/10.1007/978-3-540-70500-0_6
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://doi.org/10.1007/3-540-46766-1_35
https://doi.org/10.1007/3-540-46766-1_35
https://doi.org/10.1007/978-3-540-40974-8_12
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/978-3-319-70500-2_12

IND-CCA-Secure Key Encapsulation Mechanism 123

8. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. In: Wiener, M.J. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1 34

9. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. J. Cryptol. 26(1), 1–22 (2013)

10. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby,
V. (eds.) Proceedings of the 1st ACM Conference on Computer and Communica-
tions Security - CCS 1993, pp. 62–73. ACM (1993)

11. Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.:
Random oracles in a quantum world. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT
2011. LNCS, vol. 7073, pp. 41–69. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-25385-0 3

12. Saito, T., Xagawa, K., Yamakawa, T.: Tightly-secure key-encapsulation mechanism
in the quantum random oracle model. In: Nielsen, J.B., Rijmen, V. (eds.) EURO-
CRYPT 2018. LNCS, vol. 10822, pp. 520–551. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-78372-7 17

13. Jiang, H., Zhang, Z., Chen, L., Wang, H., Ma, Z.: IND-CCA-secure key encap-
sulation mechanism in the quantum random oracle model, revisited. Technical
report, Cryptology ePrint Archive, Report 2017/1096 (2017). https://eprint.iacr.
org/2017/1096

14. Targhi, E.E., Unruh, D.: Post-quantum security of the Fujisaki-Okamoto and
OAEP transforms. In: Hirt, M., Smith, A.D. (eds.) TCC 2016-B. LNCS, vol.
9986, pp. 192–216. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-53644-5 8

15. Bellare, M., Rogaway, P.: Optimal asymmetric encryption. In: De Santis, A. (ed.)
EUROCRYPT 1994. LNCS, vol. 950, pp. 92–111. Springer, Heidelberg (1995).
https://doi.org/10.1007/BFb0053428

16. Fujisaki, E., Okamoto, T., Pointcheval, D., Stern, J.: RSA-OAEP is secure under
the RSA assumption. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp.
260–274. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8 16

17. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Miller,
G.L. (ed.) Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory
of Computing - STOC 1996, pp. 212–219. ACM (1996)

18. Hülsing, A., Rijneveld, J., Schanck, J.M., Schwabe, P.: High-speed key encapsu-
lation from NTRU. In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS, vol.
10529, pp. 232–252. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
66787-4 12

19. Hamburg, M.: Module-LWE: the three bears. Technical report. https://www.
shiftleft.org/papers/threebears/

20. Ding, J.: A simple provably secure key exchange scheme based on the learning with
errors problem. IACR Cryptology ePrint Archive 2012/688 (2012)

21. Peikert, C.: Lattice cryptography for the internet. In: Mosca, M. (ed.) PQCrypto
2014. LNCS, vol. 8772, pp. 197–219. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-11659-4 12

22. Bos, J.W., Costello, C., Naehrig, M., Stebila, D.: Post-quantum key exchange for
the TLS protocol from the ring learning with errors problem. In: 2015 IEEE Sym-
posium on Security and Privacy - SP 2015, pp. 553–570 (2015)

23. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange
- a new hope. In: Holz, T., Savage, S. (eds.) 25th USENIX Security Symposium -
USENIX Security 2016, pp. 327–343. USENIX Association (2016)

https://doi.org/10.1007/3-540-48405-1_34
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/978-3-319-78372-7_17
https://doi.org/10.1007/978-3-319-78372-7_17
https://eprint.iacr.org/2017/1096
https://eprint.iacr.org/2017/1096
https://doi.org/10.1007/978-3-662-53644-5_8
https://doi.org/10.1007/978-3-662-53644-5_8
https://doi.org/10.1007/BFb0053428
https://doi.org/10.1007/3-540-44647-8_16
https://doi.org/10.1007/978-3-319-66787-4_12
https://doi.org/10.1007/978-3-319-66787-4_12
https://www.shiftleft.org/papers/threebears/
https://www.shiftleft.org/papers/threebears/
https://doi.org/10.1007/978-3-319-11659-4_12
https://doi.org/10.1007/978-3-319-11659-4_12

124 H. Jiang et al.

24. Bos, J.W., Costello, C., Ducas, L., Mironov, I., Naehrig, M., Nikolaenko, V., Raghu-
nathan, A., Stebila, D.: Frodo: take off the ring! Practical, quantum-secure key
exchange from LWE. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C.,
Halevi, S. (eds.) Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security - CCS 2016, pp. 1006–1018. ACM (2016)

25. Cheon, J.H., Kim, D., Lee, J., Song, Y.S.: Lizard: cut off the tail! practical post-
quantum public-key encryption from LWE and LWR. Technical report, Cryptology
ePrint Archive, Report 2016/1126 (2016). http://eprint.iacr.org/2016/1126

26. Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck, J.M.,
Schwabe, P., Stehlé, D.: Crystals-kyber: a CCA-secure module-lattice-based KEM.
In: 2018 IEEE European Symposium on Security and Privacy - EuroSP 2018 (2018,
to appear)

27. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryp-
tosystem. In: Buhler, J.P. (ed.) ANTS-III 1998. LNCS, vol. 1423, pp. 267–288.
Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054868

28. Bernstein, D.J., Chuengsatiansup, C., Lange, T., van Vredendaal, C.: NTRU prime:
reducing attack surface at low cost. In: Adams, C., Camenisch, J. (eds.) SAC 2017.
LNCS, vol. 10719, pp. 235–260. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-72565-9 12

29. Misoczki, R., Tillich, J.P., Sendrier, N., Barreto, P.S.: MDPC-McEliece: new
McEliece variants from moderate density parity-check codes. In: Proceedings of
the 2013 IEEE International Symposium on Information Theory (ISIT), pp. 2069–
2073. IEEE (2013)

30. Howgrave-Graham, N., et al.: The impact of decryption failures on the security
of NTRU encryption. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp.
226–246. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-
4 14

31. Guo, Q., Johansson, T., Stankovski, P.: A key recovery attack on MDPC with CCA
security using decoding errors. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT
2016. LNCS, vol. 10031, pp. 789–815. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-53887-6 29

32. Bernstein, D.J., Groot Bruinderink, L., Lange, T., Panny, L.: HILA5 pindakaas:
on the CCA security of lattice-based encryption with error correction. In: Joux,
A., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2018. LNCS, vol. 10831, pp.
203–216. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89339-6 12

33. Saarinen, M.-J.O.: HILA5: on reliability, reconciliation, and error correction for
ring-LWE encryption. In: Adams, C., Camenisch, J. (eds.) SAC 2017. LNCS, vol.
10719, pp. 192–212. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
72565-9 10

34. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Dwork, C. (ed.) Proceedings of the 40th Annual
ACM Symposium on Theory of Computing - STOC 2008, pp. 197–206. ACM (2008)

35. Mceliece, R.J.: A public-key cryptosystem based on algebraic. DSN progress report
42-44, pp. 114–116 (1978)

36. Niederreiter, H.: Knapsack-type cryptosystems and algebraic coding theory. Probl.
Control Inf. Theory 15(2), 159–166 (1986)

37. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. J. ACM (JACM) 56(6), 34 (2009)

38. Lindner, R., Peikert, C.: Better key sizes (and attacks) for LWE-based encryp-
tion. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–339. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-19074-2 21

http://eprint.iacr.org/2016/1126
https://doi.org/10.1007/BFb0054868
https://doi.org/10.1007/978-3-319-72565-9_12
https://doi.org/10.1007/978-3-319-72565-9_12
https://doi.org/10.1007/978-3-540-45146-4_14
https://doi.org/10.1007/978-3-540-45146-4_14
https://doi.org/10.1007/978-3-662-53887-6_29
https://doi.org/10.1007/978-3-662-53887-6_29
https://doi.org/10.1007/978-3-319-89339-6_12
https://doi.org/10.1007/978-3-319-72565-9_10
https://doi.org/10.1007/978-3-319-72565-9_10
https://doi.org/10.1007/978-3-642-19074-2_21

IND-CCA-Secure Key Encapsulation Mechanism 125

39. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 1

40. Lyubashevsky, V., Peikert, C., Regev, O.: A toolkit for ring-LWE cryptography.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
35–54. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9 3

41. Google: PQC-forum. LIMA (2018). https://groups.google.com/a/list.nist.gov/
forum/#!topic/pqc-forum/6khIivE2KE0

42. Unruh, D.: Revocable quantum timed-release encryption. J. ACM 62(6), 49:1–
49:76 (2015)

43. Albrecht, M.R., Orsini, E., Paterson, K.G., Peer, G., Smart, N.P.: Tightly secure
ring-LWE based key encapsulation with short ciphertexts. In: Foley, S.N., Goll-
mann, D., Snekkenes, E. (eds.) ESORICS 2017. LNCS, vol. 10492, pp. 29–46.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66402-6 4

44. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum private queries. Phys. Rev. Lett.
100(23), 230502 (2008)

45. De Martini, F., Giovannetti, V., Lloyd, S., Maccone, L., Nagali, E., Sansoni, L.,
Sciarrino, F.: Experimental quantum private queries with linear optics. Phys. Rev.
A 80(1), 010302 (2009)

46. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information,
no 2. Cambridge University Press, Cambridge (2000)

47. Zhandry, M.: Secure identity-based encryption in the quantum random oracle
model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp.
758–775. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-
5 44

48. Ambainis, A., Rosmanis, A., Unruh, D.: Quantum attacks on classical proof sys-
tems: the hardness of quantum rewinding. In: 55th IEEE Annual Symposium on
Foundations of Computer Science - FOCS 2014, pp. 474–483. IEEE (2014)

49. Hülsing, A., Rijneveld, J., Song, F.: Mitigating multi-target attacks in hash-based
signatures. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC
2016. LNCS, vol. 9614, pp. 387–416. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49384-7 15

50. Boneh, D., Zhandry, M.: Secure signatures and chosen ciphertext security in a
quantum computing world. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013.
LNCS, vol. 8043, pp. 361–379. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40084-1 21

51. Zhandry, M.: A note on the quantum collision and set equality problems. Quant.
Inf. Comput. 15(7–8), 557–567 (2015)

52. Unruh, D.: Non-interactive zero-knowledge proofs in the quantum random oracle
model. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp.
755–784. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-
6 25

53. Okamoto, T., Pointcheval, D.: REACT: rapid enhanced-security asymmetric cryp-
tosystem transform. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp.
159–174. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45353-9 13

54. Jean-Sébastien, C., Handschuh, H., Joye, M., Paillier, P., Pointcheval, D., Tymen,
C.: GEM: a generic chosen-ciphertext secure encryption method. In: Preneel, B.
(ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 263–276. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-45760-7 18

https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-642-38348-9_3
https://groups.google.com/a/list.nist.gov/forum/#!topic/pqc-forum/6khIivE2KE0
https://groups.google.com/a/list.nist.gov/forum/#!topic/pqc-forum/6khIivE2KE0
https://doi.org/10.1007/978-3-319-66402-6_4
https://doi.org/10.1007/978-3-642-32009-5_44
https://doi.org/10.1007/978-3-642-32009-5_44
https://doi.org/10.1007/978-3-662-49384-7_15
https://doi.org/10.1007/978-3-662-49384-7_15
https://doi.org/10.1007/978-3-642-40084-1_21
https://doi.org/10.1007/978-3-642-40084-1_21
https://doi.org/10.1007/978-3-662-46803-6_25
https://doi.org/10.1007/978-3-662-46803-6_25
https://doi.org/10.1007/3-540-45353-9_13
https://doi.org/10.1007/3-540-45760-7_18

Pseudorandom Quantum States

Zhengfeng Ji1(B), Yi-Kai Liu2,3(B), and Fang Song4(B)

1 Centre for Quantum Software and Information, School of Software,
Faculty of Engineering and Information Technology,

University of Technology Sydney, Ultimo, NSW, Australia
Zhengfeng.Ji@uts.edu.au

2 Applied and Computational Mathematics Division,
National Institute of Standards and Technology (NIST), Gaithersburg, MD, USA

yi-kai.liu@nist.gov
3 Joint Center for Quantum Information and Computer Science (QuICS),

University of Maryland, College Park, MD, USA
4 Computer Science Department, Portland State University, Portland, OR, USA

fang.song@pdx.edu

Abstract. We propose the concept of pseudorandom quantum states,
which appear random to any quantum polynomial-time adversary. It
offers a computational approximation to perfectly random quantum
states analogous in spirit to cryptographic pseudorandom generators, as
opposed to statistical notions of quantum pseudorandomness that have
been studied previously, such as quantum t-designs analogous to t-wise
independent distributions.

Under the assumption that quantum-secure one-way functions exist,
we present efficient constructions of pseudorandom states, showing that
our definition is achievable. We then prove several basic properties of
pseudorandom states, which show the utility of our definition. First,
we show a cryptographic no-cloning theorem: no efficient quantum algo-
rithm can create additional copies of a pseudorandom state, when given
polynomially-many copies as input. Second, as expected for random
quantum states, we show that pseudorandom quantum states are highly
entangled on average. Finally, as a main application, we prove that any
family of pseudorandom states naturally gives rise to a private-key quan-
tum money scheme.

1 Introduction

Pseudorandomness is a foundational concept in modern cryptography and the-
oretical computer science. A distribution D, e.g., over a set of strings or func-
tions, is called pseudorandom if no computationally-efficient observer can distin-
guish between an object sampled from D, and a truly random object sampled
from the uniform distribution [10,56,63]. Pseudorandom objects, such as pseu-
dorandom generators (PRGs), pseudorandom functions (PRFs) and pseudoran-
dom permutations (PRPs) are fundamental cryptographic building blocks, such
as in the design of stream ciphers, block ciphers and message authentication

c© International Association for Cryptologic Research 2018
H. Shacham and A. Boldyreva (Eds.): CRYPTO 2018, LNCS 10993, pp. 126–152, 2018.
https://doi.org/10.1007/978-3-319-96878-0_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96878-0_5&domain=pdf

Pseudorandom Quantum States 127

codes [23,24,27,37,53]. Pseudorandomness is also essential in algorithm design
and complexity theory such as derandomization [32,47].

The law of quantum physics asserts that truly random bits can be generated
easily even with untrusted quantum devices [15,41]. Is pseudorandomness, a
seemingly weaker notion of randomness, still relevant in the context of quantum
information processing? The answer is yes. By a simple counting argument, one
needs exponentially many bits even to specify a truly random function on n-
bit strings. Hence, in the computational realm, pseudorandom objects that offer
efficiency as well as other unique characteristics and strengths are indispensable.

A fruitful line of work on pseudorandomness in the context of quantum
information science has been about quantum t-designs and unitary t-designs
[4,11,12,16,17,26,33,40,43–45,59,69]. However, while these objects are often
called “pseudorandom” in the mathematical physics literature, they are actu-
ally analogous to t-wise independent random variables in theoretical computer
science. Our focus in this work is a notion of computational pseudorandomness,
and in particular suits (complexity-theoretical) cryptography.

The major difference between t-wise independence and cryptographic pseu-
dorandomness is the following. In the case of t-wise independence, the observer
who receives the random-looking object may be computationally unbounded, but
only a priori (when the random-looking object is constructed) fixed number t
samples are given. Thus, quantum t-designs satisfy an “information-theoretic”
or “statistical” notion of security. In contrast, in the case of cryptographic pseu-
dorandomness, the observer who receives the random-looking object is assumed
to be computationally efficient, in that it runs in probabilistic polynomial time
for an arbitrary polynomial that is chosen by the observer, after the random-
looking object has been constructed. This leads to a “computational” notion of
security, which typically relies on some complexity-theoretic assumption, such
as the existence of one-way functions.

In general, these two notions, t-wise independence and cryptographic pseudo-
randomness, are incomparable. In some ways, the setting of cryptographic pseu-
dorandomness imposes stronger restrictions on the observer, since it assumes a
bound on the observer’s total computational effort (say, running in probabilis-
tic polynomial time). In other ways, the setting of t-wise independence imposes
stronger restrictions on the observer, since it forces the observer to make a lim-
ited number of non-adaptive “queries,” specified by the parameter t, which is
usually a constant or a fixed polynomial. In addition, different distance mea-
sures are often used, e.g., trace distance or diamond norm, versus computational
distinguishability.

Cryptographic pseudorandomness in quantum information, which has
received relatively less study, mostly connects with quantum money and post-
quantum cryptography. Pseudorandomness is used more-or-less implicitly in
quantum money, to construct quantum states that look complicated to a dis-
honest party, but have some hidden structure that allows them to be verified
by the bank [1–3,39,68]. In post-quantum cryptography, one natural question
is whether the classical constructions such as PRFs and PRPs remain secure
against quantum attacks. This is a challenging task as, for example, a quantum

128 Z. Ji et al.

adversary may query the underlying function or permutation in superposition.
Fortunately, people have so far restored several positive results. Assuming a
one-way function that is hard to invert for polynomial-time quantum algorithms,
we can attain quantum-secure PRGs as well as PRFs [27,65]. Furthermore, one
can construct quantum-secure PRPs from quantum-secure PRFs using various
shuffling constructions [57,67].

In this work, we study pseudorandom quantum objects such as quantum
states and unitary operators. Quantum states (in analogy to strings) and uni-
tary operations (in analogy to functions) form continuous spaces, and the Haar
measure is considered the perfect randomness on the spaces of quantum states
and unitary operators. A basic question is:

How to define and construct computational pseudorandom approximations of
Haar randomness, and what are their applications?

Our contributions. We propose definitions of pseudorandom quantum states
(PRS’s) and pseudorandom unitary operators (PRUs), present efficient construc-
tions of PRS’s, demonstrate basic properties such as no-cloning and high entan-
glement of pseudorandom states, and showcase the construction of private-key
quantum money schemes as one of the applications.

1. We propose a suitable definition of quantum pseudorandom states.
We employ the notion of quantum computational indistinguishability to define
quantum pseudorandom states. Loosely speaking, we consider a collection
of quantum states

{|φk〉} indexed by k ∈ K, and require that no efficient
quantum algorithm can distinguish between |φk〉 for a random k and a state
drawn according to the Haar measure. However, as a unique consideration in
the quantum setting, we need to be cautious about how many copies of the
input state are available to an adversary.
Classically, this is a vacuous concern for defining a pseudorandom distribution
on strings, since one can freely produce many copies of the input string. The
quantum no-cloning theorem, however, forbids copying an unknown quantum
state in general. Pseudorandom states in terms of single-copy indistinguisha-
bility have been discussed in the literature (see for example [13] and a recent
study [14]). Though this single-copy definition may be suitable for certain
cryptographic applications, it also loses many properties of Haar random
states as a purely classical distributions already satisfies the definition1.
Therefore we require that no adversary can tell a difference even given any
polynomially many copies of the state. This subsumes the single-copy version
and is strictly stronger. We gain from it many interesting properties, such as
the no-cloning property and entanglement property for pseudorandom states
as discussed later in the paper.

1 For example, a uniform distribution over the computational basis state {|k〉} has an
identical density matrix as a Haar random state and satisfy the single-shot definition
of PRS. But distinguishing them becomes easy as soon as we have more than one
copies. These states also do not appear to be hard to clone or possess entanglement.

Pseudorandom Quantum States 129

2. We present concrete efficient constructions of PRS’s with the minimal assump-
tion that quantum-secure one-way functions exist.
Our construction uses any quantum-secure PRF = {PRFk}k∈K and computes
it into the phases of a uniform superposition state (see Eq. (8)). We call such
family of PRS the random phase states. This family of states can be efficiently
generated using the quantum Fourier transform and a phase kick-back trick.
We prove that this family of state is pseudorandom by a hybrid argument. By
the quantum security of PRF, the family is computationally indistinguishable
from a similar state family defined by truly random functions.
We then prove that, this state family corresponding to truly random func-
tions is statistically indistinguishable from Haar random states. Finally, by
the fact that PRF exists assuming quantum-secure one-way functions, we can
base our PRS construction on quantum-secure one-way functions.
We note that Aaronson [1, Theorem 3] has described a similar family of states,
which uses some polynomial function instead of a PRF in the phases. In that
construction, however, the size of the state family depends on (i.e., has to
grow with) the adversary’s number of queries that the family wants to toler-
ate. It therefore fails to satisfy our definition, in which any polynomial number
queries independent of the family are permitted.

3. We prove cryptographic no-cloning theorems for PRS’s, and they give a sim-
ple and generic construction of private-key quantum money schemes based
on any PRS.
We prove that a PRS remains pseudorandom, even if we additionally give
the distinguisher an oracle that reflects about the given state (i.e., Oφ :=
1 − 2|φ〉〈φ|). This establishes the equivalence between the standard and a
strong definition of PRS’s. Technically, this is proved using the fact that with
polynomially many copies of the state, one can approximately simulate the
reflection oracle Oφ.
We obtain general cryptographic no-cloning theorems of PRS’s both with and
without the reflection oracle. The theorems roughly state that given any poly-
nomially many copies of pseudorandom states, no polynomial-time quantum
algorithm can produce even one more copy of the state. We call them cryp-
tographic no-cloning theorems due to the computational nature of our PRS.
The proofs of these theorems use SWAP tests in the reduction from a hypo-
thetical cloning algorithm to an efficient distinguishing algorithm violating
the definition of PRS’s.
Using the strong pseudorandomness and the cryptographic no-cloning the-
orem with reflection oracle, we show that any PRS immediately gives a
private-key quantum money scheme. While much attention has been focused
on public-key quantum money [1–3,39,68], we emphasize that private-key
quantum money is already non-trivial. Early schemes for private-key quan-
tum money due to Wiesner and others were not query secure, and could
be broken by online attacks [9,20,38,61]. Aaronson and Christiano finally
showed a query-secure scheme in 2012, which achieves information-theoretic
security in the random oracle model, and computational security in the
standard model [2]. They used a specific construction based on hidden sub-

130 Z. Ji et al.

space states, whereas our construction (which is also query-secure) is more
generic and can be based on any PRS. The freedom to choose and tweak the
underlying pseudorandom functions or permutations in the PRS may moti-
vate and facilitate the construction of public-key quantum money schemes in
future work.

4. We show that pseudorandom states are highly entangled.
It is known that a Haar random state is entangled with high probability.
We establish a similar result for any family of pseudorandom states. Namely,
the states in any PRS family are entangled on average. It is shown that the
expected Schmidt rank for any PRS is superpolynomial in κ and that the
expected min entropy and von Neumann entropy are of the order ω(log κ)
where κ is the security parameter. This is yet another evidence of the suit-
ability of our definition.
The proof again rests critically on that our definition grants multiple copies
to the distinguisher—if the expected entanglement is low, then SWAP test
with respect to the corresponding subsystems of two copies of the state will
serve as a distinguisher that violates the definition.

5. We propose a definition of quantum pseudorandom unitary operators (PRUs).
We also present candidate constructions of PRUs (without a proof of secu-
rity), by extending our techniques for constructing PRS’s.
Loosely speaking, these candidate PRUs resemble unitary t-designs that
are constructed by interleaving random permutations with the quantum
Fourier transform [26], or by interleaving random diagonal unitaries with the
Hadamard transform [43,44], and iterating this construction several times.
We conjecture that a PRU can be obtained in this way, using only a constant
number of iterations. This is in contrast to unitary t-designs, where a parame-
ter counting argument suggests that the number of iterations must grow with
t. This conjecture is motivated by examples such as the Luby-Rackoff con-
struction of a pseudorandom permutation using multi-round Feistel network
built using a PRF.

Table 1. Summary of various notions that approximate true randomness

Classical Quantum

True randomness Uniform distribution Haar measure

t-wise independence t-wise independent Quantum t-designs
random variables

(this work)
Pseudorandomness PRGs PRS’s

PRFs, PRPs PRUs

Discussion. We summarize the mentioned variants of randomness in Table 1. The
focus of this work is mostly about PRS’s and we briefly touch upon PRUs. We

Pseudorandom Quantum States 131

view our work as an initial step and anticipate further fundamental investigation
inspired by our notion of pseudorandom states and unitary operators.

We mention some immediate open problems. First, can we prove the secu-
rity of our candidate PRU constructions? The techniques developed in quantum
unitary designs [12,26] seem helpful. Second, are quantum-secure one-way func-
tions necessary for the construction of PRS’s? Third, can we establish security
proofs for more candidate constructions of PRS’s? Different constructions may
have their own special properties that may be useful in different settings. It is
also interesting to explore whether our quantum money construction may be
adapted to a public-key money scheme under reasonable cryptographic assump-
tions. Finally, the entanglement property we prove here refers to the standard
definitions of entanglement. If we approach the concept of pseudo-entanglement
as a quantum analogue of pseudo-entropy for a distribution [7], can we improve
the quantitative bounds?

We point out a possible application in physics. PRS’s may be used in place
of high-order quantum t-designs, giving a performance improvement in certain
applications. For example, pseudorandom states can be used to construct toy
models of quantum thermalization, where one is interested in quantum states
that can be prepared efficiently via some dynamical process, yet have “generic” or
“typical” properties as exemplified by Haar-random pure states, for instance [51].
Using t-designs with polynomially large t, one can construct states that are
“generic” in a information-theoretic sense [35]. Using PRS, one can construct
states that satisfy a weaker property: they are computationally indistinguishable
from “generic” states, for a polynomial-time observer.

In these applications, PRS states may be more physically plausible than high-
order quantum t-designs, because PRS states can be prepared in a shorter time,
e.g., using a polylogarithmic-depth quantum circuit, based on known construc-
tions for low-depth PRFs [6,46].

2 Preliminaries

2.1 Notions

For a finite set X , |X | denotes the number of elements in X . We use the notion
YX to denote the set of all functions f : X → Y. For finite set X , we use x ← X
to mean that x is drawn uniformly at random from X . The permutation group
over elements in X is denoted as SX . We use poly(κ) to denote the collection of
polynomially bounded functions of the security parameter κ, and use negl(κ) to
denote negligible functions in κ. A function ε(κ) is negligible if for all constant
c > 0, ε(κ) < κ−c for large enough κ.

In this paper, we use a quantum register to name a collection of qubits that
we view as a single unit. Register names are represented by capital letters in
a sans serif font. We use S(H), D(H), U(H) and L(H) to denote the set of
pure quantum states, density operators, unitary operators and bounded linear
operators on space H respectively. An ensemble of states {(pi, ρi)} represents a
system prepared in ρi with probability pi. If the distribution is uniform, we write

132 Z. Ji et al.

the ensemble as {ρi}. The adjoint of matrix M is denoted as M∗. For matrix
M , |M | is defined to be

√
M∗M . The operator norm ‖M‖ of matrix M is the

largest eigenvalue of |M |. The trace norm ‖M‖1 of M is the trace of |M |. For
two operators M,N ∈ L(H), the Hilbert-Schmidt inner product is defined as

〈M,N〉 = tr(M∗N).

A quantum channel is a physically admissible transformation of quantum
states. Mathematically, a quantum channel

E : L(H) → L(K)

is a completely positive, trace-preserving linear map.
The trace distance of two quantum states ρ0, ρ1 ∈ D(H) is

TD(ρ0, ρ1)
def=

1
2

‖ρ0 − ρ1‖1 . (1)

It is known (Holevo-Helstrom theorem [29,30]) that for a state drawn uniformly
at random from the set {ρ0, ρ1}, the optimal distinguish probability is given by

1 + TD(ρ0, ρ1)
2

.

Define number N = 2n and set X = {0, 1, . . . , N − 1}. The quantum Fourier
transform on n qubits is defined as

F =
1√
N

∑

x,y∈X
ωxy

N |x〉〈y|. (2)

It is a well-known fact in quantum computing that F can be implemented in
time poly(n).

For Hilbert space H and integer m, we use ∨mH to denote the symmetric
subspace of H⊗m, the subspace of states that are invariant under permutations of
the subsystems. Let N be the dimension of H and let X be the set {0, 1, . . . , N −
1} such that H is the span of {|x〉}x∈X . For any x = (x1, x2, . . . , xm) ∈ X m, let
mj be the number of j in x for j ∈ X . Define state

∣
∣x; Sym

〉
=

√∏
j∈X mj !
m!

∑

σ

∣
∣
∣xσ(1), xσ(2), . . . , xσ(m)

〉
. (3)

The summation runs over all possible permutations σ that give different tuples
(xσ(1), xσ(2), . . . , xσ(m)). Equivalently, we have

∣
∣x; Sym

〉
=

1
√

m!
∏

j∈X mj !

∑

σ∈Sm

∣
∣
∣xσ(1), xσ(2), . . . , xσ(m)

〉
. (4)

The coefficients in the front of the above two equations are normalization con-
stants. The set of states {∣∣x; Sym

〉}
x∈X m (5)

Pseudorandom Quantum States 133

forms an orthonormal basis of the symmetric subspace ∨mH [58, Proposition 7.2].
This implies that the dimension of the symmetric subspace is

(
N + m − 1

m

)
.

Let ΠSym
m be the projection onto the symmetric subspace ∨mH. For a per-

mutation σ ∈ Sm, define operator

Wσ =
∑

x1,x2,...,xm∈X

∣
∣xσ−1(1), xσ−1(2), . . . , xσ−1(m)

〉〈
x1, x2, . . . , xm

∣
∣.

The following identity will be useful [58, Proposition 7.1]

ΠSym
m =

1
m!

∑

σ∈Sm

Wσ. (6)

Let μ be the Haar measure on S(H), it is known that [25, Proposition 6]
∫ (|ψ〉〈ψ|)⊗m dμ(ψ) =

(
N + m − 1

m

)−1

ΠSym
m . (7)

2.2 Cryptography

In this section, we recall several definitions and results from cryptography that
is necessary for this work.

Pseudorandom functions (PRF) and pseudorandom permutations (PRP) are
important constructions in classical cryptography. Intuitively, they are families of
functions or permutations that looks like truly random functions or permutations
to polynomial-time machines. In the quantum case, we need a strong requirement
that they still look random even to polynomial-time quantum algorithms.

Definition 1 (Quantum-Secure Pseudorandom Functions and Permu-
tations). Let K,X ,Y be the key space, the domain and range, all implicitly
depending on the security parameter κ. A keyed family of functions

{
PRFk :

X → Y}
k∈K is a quantum-secure pseudorandom function (QPRF) if for any

polynomial-time quantum oracle algorithm A, PRFk with a random k ← K is
indistinguishable from a truly random function f ← YX in the sense that:

∣
∣
∣
∣ Pr
k←K

[APRFk(1κ) = 1
]− Pr

f←YX

[Af (1κ) = 1
]
∣
∣
∣
∣ = negl(κ).

Similarly, a keyed family of permutations
{
PRPk ∈ SX

}
k∈K is a quantum-secure

pseudorandom permutation (QPRP) if for any quantum algorithm A making at
most polynomially many queries, PRPk with a random k ← K is indistinguishable
from a truly random permutation in the sense that:

∣
∣
∣
∣ Pr
k←K

[APRPk(1κ) = 1
]− Pr

P←SX

[AP (1κ) = 1
]
∣
∣
∣
∣ = negl(κ).

134 Z. Ji et al.

In addition, both PRFk and PRPk are polynomial-time computable (on a classical
computer).

Fact 1. QPRFs and QPRPs exist if quantum-secure one-way functions exist.

Zhandry proved the existence of QPRFs assuming the existence of one-way
functions that are hard to invert even for quantum algorithms [65]. Assuming
QPRF, one can construct QPRP using various shuffling constructions [57,67].
Since a random permutation and a random function is indistinguishable by effi-
cient quantum algorithms [64,66], existence of QPRP is hence equivalent to
existence of QPRF.

3 Pseudorandom Quantum States

In this section, we will discuss the definition and constructions of pseudorandom
quantum states.

3.1 Definition of Pseudorandom States

Intuitively speaking, a family pseudorandom quantum states are a set of random
states

{|φk〉}
k∈K that is indistinguishable from Haar random quantum states.

The first idea on defining pseudorandom states can be the following. Without
loss of generality, we consider states in S(H) where H = (C2)⊗n is the Hilbert
space for n-qubit systems. We are given either a state randomly sampled from
the set

{|φk〉 ∈ H}
k∈K or a state sampled according to the Haar measure on

S(H), and we require that no efficient quantum algorithm will be able to tell the
difference between the two cases.

However, this definition does not seem to grasp the quantum nature of the
problem. First, the state family where each |φk〉 is a uniform random bit string
will satisfy the definition—in both cases, the mixed states representing the ensem-
ble are 1/2n. Second, many of the applications that we can find for PRS’s will
not hold for this definition.

Instead, we require that the family of states looks random even if polyno-
mially many copies of the state are given to the distinguishing algorithm. We
argue that this is the more natural way to define pseudorandom states. One
can see that this definition also naturally generalizes the definition of pseudo-
randomness in the classical case to the quantum setting. In the classical case,
asking for more copies of a string is always possible and one does not bother
making this explicit in the definition. This of course also rules out the example
of classical random bit strings we discussed before. Moreover, this strong defini-
tion, once established, is rather flexible to use when studying the properties and
applications of pseudorandom states.

Definition 2 (Pseudorandom Quantum States (PRS’s)). Let κ be the
security parameter. Let H be a Hilbert space and K the key space, both param-
eterized by κ. A keyed family of quantum states

{|φk〉 ∈ S(H)
}

k∈K is pseudo-
random, if the following two conditions hold:

Pseudorandom Quantum States 135

1. (Efficient generation). There is a polynomial-time quantum algorithm G
that generates state |φk〉 on input k. That is, for all k ∈ K, G(k) = |φk〉.

2. (Pseudorandomness). Any polynomially many copies of |φk〉 with the same
random k ∈ K is computationally indistinguishable from the same num-
ber of copies of a Haar random state. More precisely, for any efficient quan-
tum algorithm A and any m ∈ poly(κ),

∣
∣
∣
∣ Pr
k←K

[A(|φk〉⊗m) = 1
]− Pr

|ψ〉←μ

[A(|ψ〉⊗m) = 1
]
∣
∣
∣
∣ = negl(κ),

where μ is the Haar measure on S(H).

3.2 Constructions and Analysis

In this section, we give an efficient construction of pseudorandom states which
we call random phase states. We will prove that this family of states satisfies our
definition of PRS’s. There are other interesting and simpler candidate construc-
tions, but the family of random phase states is the easiest to analyze.

Let PRF : K×X → X be a quantum-secure pseudorandom function with key
space K, X = {0, 1, 2, . . . , N − 1} and N = 2n. K and N are implicitly functions
of the security parameter κ. The family of pseudorandom states of n qubits is
defined

|φk〉 =
1√
N

∑

x∈X
ω
PRFk(x)
N |x〉, (8)

for k ∈ K and ωN = exp(2πi/N).

Theorem 1. For any QPRF PRF : K × X → X , the family of states {|φk〉}k∈K
defined in Eq. (8) is a PRS.

Proof. First, we prove that the state can be efficiently prepared with a single
query to PRFk. As PRFk is efficient, this proves the efficient generation property.

The state generation algorithm works as follows. First, it prepares a state

1
N

∑

x∈X
|x〉

∑

y∈X
ωy

N |y〉.

This can be done by applying H⊗n to the first register initialized in |0〉 and the
quantum Fourier transform to the second register in state |1〉.

Then the algorithm calls PRFk on the first register and subtract the result
from the second register, giving state

1
N

∑

x∈X
|x〉

∑

y∈X
ωy

N

∣
∣y − PRFk(x)

〉
.

The state can be rewritten as

1
N

∑

x∈X
ω
PRFk(x)
N |x〉

∑

y∈X
ωy

N |y〉.

136 Z. Ji et al.

Therefore, the effect of this step is to transform the first register to the required
form and leaving the second register intact.

Next, we prove the pseudorandomness property of the family. For this pur-
pose, we consider three hybrids. In the first hybrid H1, the state will be |φk〉⊗m

for a uniform random k ∈ K. In the second hybrid H2, the state is |f 〉⊗m for
truly random functions f ∈ X X where

|f 〉 =
1√
N

∑

x∈X
ω

f(x)
N |x〉.

In the third hybrid H3, the state is |ψ〉⊗m for |ψ〉 chosen according to the Haar
measure.

By the definition of the quantum-secure pseudorandom functions for PRF,
we have for any polynomial-time quantum algorithm A and any m ∈ poly(κ),

∣
∣Pr

[A(H1) = 1
]− Pr

[A(H2) = 1
]∣∣ = negl(κ).

By Lemma 1, we have for any algorithm A and m ∈ poly(κ),
∣
∣Pr

[A(H2) = 1
]− Pr

[A(H3) = 1
]∣∣ = negl(κ).

This completes the proof by triangle inequality.

Lemma 1. For function f : X → X , define quantum state

|f 〉 =
1√
N

∑

x∈X
ω

f(x)
N |x〉.

For m ∈ poly(κ), the state ensemble
{|f 〉⊗m

}
is statistically indistinguishable

from
{|ψ〉⊗m

}
for Haar random |ψ〉.

Proof. Let m ∈ poly(κ) be the number of copies of the state. We have

E
f

[(|f 〉〈f |)⊗m
]

=
1

Nm

∑

x∈X m,y∈X m

E
f

ω
f(x1)+···+f(xm)−[f(y1)+···+f(ym)]
N

∣
∣x
〉〈
y
∣
∣,

where x = (x1, x2, . . . , xm) and y = (y1, y2, . . . , ym). For later convenience, define
density matrix

ρm = E
f

[(|f 〉〈f |)⊗m
]
.

We will compute the entries of ρm explicitly.
For x = (x1, x2, . . . , xm) ∈ X m, let mj be the number of j in x for j ∈ X .

Obviously, one has
∑

j∈X mj = m. Note that we have omitted the dependence
of mj on x for simplicity. Recall the basis states defined in Eq. (4)

∣
∣x; Sym

〉
=

1
√(∏

j∈X mj !
)
m!

∑

σ∈Sm

∣
∣
∣xσ(1), xσ(2), . . . , xσ(m)

〉
.

Pseudorandom Quantum States 137

For x,y ∈ X m, let mj be the number of j in x and m′
j be the number of j in y.

We can compute the entries of ρm as
〈
x; Sym

∣
∣ρm

∣
∣y; Sym

〉

=
m!

Nm

√(∏
j∈X mj !

)(∏
j∈X m′

j !
) E

f

[
exp

(2πi

N

m∑

l=1

(
f(xl) − f(yl)

))
]
.

When x is not a permutation of y, the summation
∑m

l=1

(
f(xl) − f(yl)

)
is a

summation of terms ±f(zj) for distinct values zj . As f is a truly random function,
f(zj) is uniformly random and independent of f(zj′) for zj
= zj′ . So it is not
hard to verify that the entry is nonzero only if x is a permutation of y. These
nonzero entries are on the diagonal of ρm in the basis of

{∣∣x; Sym
〉}

. These
diagonal entries are

〈
x; Sym

∣
∣ρm

∣
∣x; Sym

〉
=

m!
Nm

∏
j∈X mj !

.

Let ρm
μ be the density matrix of a random state |ψ〉⊗m, for |ψ〉 chosen from

the Haar measure μ. From Eqs. (5) and (7), we have that

ρm
μ =

(
N + m − 1

m

)−1 ∑

x;Sym

∣
∣x; Sym

〉〈
x; Sym

∣
∣.

We need to prove
TD

(
ρm, ρm

μ

)
= negl(κ).

Define

δx;Sym =
m!

Nm
∏

j∈X mj !
−
(

N + m − 1
m

)−1

.

Then
TD(ρm, ρm

μ) =
1
2

∑

x;Sym

|δx;Sym| .

The ratio of the two terms in δx;Sym is

m!
(

N + m − 1
m

)

Nm
∏

j∈X
mj !

=

m−1∏

l=0

(
1 +

l

N

)

∏

j∈X
mj !

.

For sufficient large security parameter κ, the ratio is larger than 1 only if∏
j∈X mj ! = 1, which corresponds to x’s whose entries are all distinct. As there

are
(
N
m

)
such x’s, we can calculate the trace distance as

TD
(
ρm, ρm

μ

)
=
(

N

m

)[
m!
Nm

−
(

N + m − 1
m

)−1]

=
N(N − 1) · · · (N − m + 1)

Nm
− N(N − 1) · · · (N − m + 1)

(N + m − 1) · · · N .

138 Z. Ji et al.

As first term is less than 1 and is at least

(1 − 1
N

) · · · (1 − m − 1
N

) ≥ 1 − 1 + 2 + · · · + (m − 1)
N

For our choices of m ∈ poly(κ) and N ∈ 2poly(κ), this term is 1 − negl(κ) for
sufficiently large security parameter κ. Similar analysis applies to the second
term and this completes the proof.

3.3 Comparison with Related Work

We remark that a similar family of states was considered in [1] (Theorem 3).
However, the size of the state family there depends on a parameter d which
should be larger than the sum of the number of state copies and the number of
queries. In our construction, the key space is fixed for a given security parameter,
which may be advantageous for various applications.

We mention several other candidate constructions of PRS’s and leave detailed
analysis of them to future work. A construction closely related to the random
phase states in Eq. (8) uses random ±1 phases,

|φk〉 =
1√
N

∑

x∈X
(−1)PRFk(x)|x〉.

Intuitively, this family is less random than the random phase states in Eq. (8)
and the corresponding density matrix ρm has small off-diagonal entries, making
the proof more challenging. The other family of candidate states on 2n qubits
takes the form

|φk〉 =
1√
N

PRPk

[∑

x∈X
|x〉 ⊗ |0n〉

]
.

In this construction, the state is an equal superposition of a random subset of size
2n of {0, 1}2n and PRP is any pseudorandom permutation over the set {0, 1}2n.
We call this the random subset states construction.

Finally, we remark that under plausible cryptographic assumptions our PRS
constructions can be implemented using shallow quantum circuits of polyloga-
rithmic depth. To see this, note that there exist PRFs that can be computed in
polylogarithmic depth [6], which are based on lattice problems such as “learn-
ing with errors” (LWE) [52], and are believed to be secure against quantum
computers. These PRFs can be used directly in our PRS construction. (Alter-
natively, one can use low-depth PRFs that are constructed from more general
assumptions, such as the existence of trapdoor one-way permutations [46].)

This shows that PRS states can be prepared in surprisingly small depth,
compared to quantum state t-designs, which generally require at least linear
depth when t is a constant greater than 2, or polynomial depth when t grows
polynomially with the number of qubits [4,12,40,43]. (Note, however, that for t =
2, quantum state 2-designs can be generated in logarithmic depth [16].) Moreover,
PRS states are sufficient for many applications where high-order t-designs are
used [35,51], provided that one only requires states to be computationally (not
statistically) indistinguishable from Haar-random.

Pseudorandom Quantum States 139

4 Cryptographic No-cloning Theorem and Quantum
Money

A fundamental fact in quantum information theory is that unknown or random
quantum states cannot be cloned [18,48,50,60,62]. The main topic of this section
is to investigate the cloning problem for pseudorandom states. As we will see,
even though pseudorandom states can be efficiently generated, they do share the
no-cloning property of generic quantum states.

Let H be the Hilbert space of dimension N and m < m′ be two integers. The
numbers N,m,m′ depend implicitly on a security parameter κ. We will assume
that N is exponential in κ and m ∈ poly(κ) in the following discussion.

We first recall the fact that for Haar random state |ψ〉 ∈ S(H), the success
probability of producing m′ copies of the state given m copies is negligibly small.
Let C be a cloning channel that on input (|ψ〉〈ψ|)⊗m tries to output a state that
is close to (|ψ〉〈ψ|)⊗m′

for m′ > m. The expected success probability of C is
measured by ∫ 〈(|ψ〉〈ψ|)⊗m′

, C((|ψ〉〈ψ|)⊗m)〉dμ(ψ).

It is known that [60], for all cloning channel C, this success probability is bounded
by (

N + m − 1
m

)/(
N + m′ − 1

m′

)
,

which is negl(κ) for our choices of N,m,m′.
We establish a no-cloning theorem for PRS’s which says that no efficient

quantum cloning procedure exists for a general PRS. The theorem is called the
cryptographic no-cloning theorem because of its deep roots in pseudorandomness
in cryptography.

Theorem 2 (Cryptographic No-cloning Theorem). For any PRS family
{|φk〉}k∈K, m ∈ poly(κ), m < m′ and any polynomial-time quantum algorithm
C, the success cloning probability

E
k∈K

〈(|φk〉〈φk |)⊗m′
, C((|φk〉〈φk |)⊗m)〉 = negl(κ).

Proof. Assume on the contrary that there is a polynomial-time quantum cloning
algorithm C such that the success cloning probability of producing m + 1 from
m copies is κ−c for some constant c > 0. We will construct a polynomial-time
distinguisher D that violates the definition of PRS’s. Distinguisher D will draw
2m + 1 copies of the state, call C on the first m copies, and perform the SWAP
test on the output of C and the remaining m + 1 copies. It is easy to see that
D outputs 1 with probability (1 + κ−c)/2 if the input is from PRS, while if the
input is Haar random, it outputs 1 with probability (1 + negl(κ))/2. Since C is
polynomial-time, it follows that D is also polynomial-time. This is a contradiction
with the definition of PRS’s and completes the proof.

140 Z. Ji et al.

4.1 A Strong Notion of PRS and Equivalence to PRS

In this section, we show that, somewhat surprisingly, PRS in fact implies a
seemingly stronger notion, where indistinguishability needs to hold even if a
distinguisher additionally has access to an oracle that reflects about the given
state. There are at least a couple of motivations to consider an augmented notion.
Firstly, unlike a classical string, a quantum state is inherently hidden. Give a
quantum register prepared in some state (i.e., a physical system), we can only
choose some observable to measure which just reveals partial information and
will collapse the state in general. Therefore, it is meaningful to consider offering
a distinguishing algorithm more information describing the given state, and the
reflection oracle comes naturally. Secondly, this stronger notion is extremely
useful in our application of quantum money schemes, and could be interesting
elsewhere too.

More formally, for any state |φ〉 ∈ H, define an oracle Oφ := 1−2|φ〉〈φ| that
reflects about |φ〉.
Definition 3 (Strongly Pseudorandom Quantum States). Let H be a
Hilbert space and K be the key space. H and K depend on the security parameter
κ. A keyed family of quantum states

{|φk〉 ∈ S(H)
}

k∈K is strongly pseudo-
random, if the following two conditions hold:

1. (Efficient generation). There is a polynomial-time quantum algorithm G
that generates state |φk〉 on input k. That is, for all k ∈ K, G(k) = |φk〉.

2. (Strong Pseudorandomness). Any polynomially many copies of |φk〉 with
the same random k ∈ K is computationally indistinguishable from the
same number of copies of a Haar random state. More precisely, for any effi-
cient quantum oracle algorithm A and any m ∈ poly(κ),

∣
∣
∣
∣ Pr
k←K

[AOφk (|φk〉⊗m) = 1
]− Pr

|ψ〉←μ

[AOψ (|ψ〉⊗m) = 1
]
∣
∣
∣
∣ = negl(κ),

where μ is the Haar measure on S(H).

Note that since the distinguisher A is polynomial-time, the number of queries
to the reflection oracle (Oφk

or Oψ) is also polynomially bounded.
We prove the advantage that a reflection oracle may give to a distinguisher is

limited. In fact, standard PRS implies strong PRS, and hence they are equivalent.

Theorem 3. A family of states
{|φk〉}

k∈K is strongly pseudorandom if and only
if it is (standard) pseudorandom.

Proof. Clearly a strong PRS is also a standard PRS by definition. It suffice to
prove that any PRS is also strongly pseudorandom.

Suppose for contradiction that there is a distinguishing algorithm A that
breaks the strongly pseudorandom condition. Namely, there exists m ∈ poly(κ)
and constant c > 0 such that for sufficiently large κ,

∣
∣
∣
∣ Pr
k←K

[AOφk (|φk〉⊗m) = 1
]− Pr

|ψ〉←μ

[AOψ (|ψ〉⊗m) = 1
]
∣
∣
∣
∣ = ε(κ) ≥ κ−c.

Pseudorandom Quantum States 141

We assume A makes q ∈ poly(κ) queries to the reflection oracle. Then, by
Theorem 4, there is an algorithm B such that for any l

∣
∣
∣
∣ Pr
k←K

[AOφk (|φk〉⊗m)
]− Pr

k←K
[B(|φk〉⊗(m+l))

]
∣
∣
∣
∣ ≤ 2q√

l + 1
,

and ∣
∣
∣
∣ Pr
|ψ〉←μ

[AOψ (|ψ〉⊗m)
]− Pr

|ψ〉←μ

[B(|ψ〉⊗(m+l))
]
∣
∣
∣
∣ ≤ 2q√

l + 1
.

By triangle inequality, we have
∣
∣
∣
∣ Pr
k←K

[B(|φk〉⊗(m+l))
]− Pr

|ψ〉←μ

[B(|ψ〉⊗(m+l))
]
∣
∣
∣
∣ ≥ κ−c − 4q√

l + 1
.

Choosing l = 64q2κ2c ∈ poly(κ), we have
∣
∣
∣
∣ Pr
k←K

[B(|φk〉⊗(m+l))
]− Pr

|ψ〉←μ

[B(|ψ〉⊗(m+l))
]
∣
∣
∣
∣ ≥ κ−c/2,

which is a contradiction with the definition of PRS for {|φk〉}. Therefore, we
conclude that PRS and strong PRS are equivalent.

We now show a technical ingredient that allows us to simulate the reflection
oracle about a state by using multiple copies of the given state. This result is
inspired by a similar theorem proved by Ambainis et al. [5, Lemma 42]. Our
simulation applies the reflection about the standard symmetric subspace, as
opposed to a reflection operation about a particular subspace in [5], on the
multiple copies of the given state, which we know how to implement efficiently.

Theorem 4. Let |ψ〉 ∈ H be a quantum state. Define oracle Oψ = 1 − 2|ψ〉〈ψ|
to be the reflection about |ψ〉. Let |ξ〉 be a state not necessarily independent of
|ψ〉. Let AOψ be an oracle algorithm that makes q queries to Oψ. For any integer
l > 0, there is a quantum algorithm B that makes no queries to Oψ such that

TD
(AOψ (|ξ〉),B(|ψ〉⊗l ⊗ |ξ〉)) ≤ q

√
2√

l + 1
.

Moreover, the running time of B is polynomial in that of A and l.

Proof. Consider a quantum register T, initialized in the state |Θ〉T = |ψ〉⊗l ∈
H⊗l. Let Π be the projection onto the symmetric subspace ∨l+1H ⊂ H⊗(l+1),
and let R = 1 − 2Π be the reflection about the symmetric subspace.

Assume without loss of generality that algorithm A is unitary and only per-
forms measurements at the end. We define algorithm B to be the same as A,
except that when A queries Oψ on register D, B applies the reflection R on
the collection of quantum registers D and T. We first analyze the corresponding
states after the first oracle call to Oψ in algorithms A and B,

|ΨA〉 = Oψ

(|φ〉D
)⊗ |Θ〉T, |ΨB〉 = R

(|φ〉D ⊗ |Θ〉T
)
.

142 Z. Ji et al.

For any two states |x〉, |y〉 ∈ H, we have
(〈x| ⊗ 〈Θ|)R(|y〉 ⊗ |Θ〉) = 〈x|y〉 − 2 E

π∈Sl+1

(〈x| ⊗ 〈Θ|)Wπ

(|y〉 ⊗ |Θ〉)

= 〈x|y〉 − 2
l + 1

〈x|y〉 − 2l

l + 1
〈x|ψ〉 〈ψ|y〉

=
l − 1
l + 1

〈x|y〉 − 2l

l + 1
〈x|ψ〉 〈ψ|y〉 ,

where the first step uses the identity in Eq. (6) and the second step follows by
observing that the probability of a random π ∈ Sl+1 mapping 1 to 1 is 1/(l + 1).
These calculations imply that,

(
1 ⊗ 〈Θ|)R(1 ⊗ |Θ〉) =

l − 1
l + 1

1 − 2l

l + 1
|ψ〉〈ψ|.

We can compute the inner product of the two states |ΨA〉 and |ΨB〉 as

〈ΨA|ΨB〉 = tr
((|φ〉 ⊗ |Θ〉) (〈φ| ⊗ 〈Θ|) (Oψ ⊗ 1)R

)

= tr
(
|φ〉〈φ|Oψ

(
1 ⊗ 〈Θ|)R

(
1 ⊗ |Θ〉)

)

= tr
(

|φ〉〈φ|(1 − 2|ψ〉〈ψ|)
(

l − 1
l + 1

1 − 2l

l + 1
|ψ〉〈ψ|

))

=
l − 1
l + 1

+
2l

l + 1
|〈φ|ψ〉|2 − 2(l − 1)

l + 1
|〈φ|ψ〉|2

=
l − 1
l + 1

+
2

l + 1
|〈φ|ψ〉|2

≥ 1 − 2
l + 1

.

This implies that

‖|ΨA〉 − |ΨB〉‖ ≤ 2√
l + 1

.

Let |Ψ q
A〉 and |Ψ q

B〉 be the final states of algorithm A and B before measure-
ment respectively. Then by induction on the number of queries, we have

‖|Ψ q
A〉 − |Ψ q

B〉‖ ≤ 2q√
l + 1

.

This concludes the proof by noticing that

TD
(|Ψ q

A〉, |Ψ q
B〉) ≤ ‖|Ψ q

A〉 − |Ψ q
B〉‖ .

Finally, we show that if A is polynomial-time, then so is B. Based on the
construction of B, it suffices to show that the reflection R is efficiently imple-
mentable for any polynomially large l. Here we use a result by Barenco et al. [8]
which provides an efficient implementation for the projection Π onto ∨l+1H.
More precisely, they design a quantum circuit of size O(poly(l, log dim H)) that

Pseudorandom Quantum States 143

implements a unitary U such that U |φ〉 =
∑

j |ξj 〉|j〉 on H⊗(l+1)⊗H′ for an auxil-
iary space H′ of dimension O(l!). Here |ξ0〉 = Π|φ〉 corresponds to the projection
of |φ〉 on the symmetric subspace. With U , we can implement the reflection R
as U∗SU where S is the unitary that introduces a minus sign conditioned on the
second register being 0.

S|Ψ 〉|j〉 =

{
−|Ψ 〉|j〉 if j = 0,

|Ψ 〉|j〉 otherwise.

4.2 Quantum Money from PRS

Using Theorem 3, we can improve Theorem 2 to the following version. The proof
is omitted as it is very similar to that for Theorem 2 and uses the complexity-
theoretic no-cloning theorem [1,2] for Haar random states.

Theorem 5 (Cryptographic no-cloning Theorem with Oracle). For any
PRS {|φk〉}k∈K, m ∈ poly(κ), m < m′ and any polynomial-time quantum query
algorithm C, the success cloning probability

E
k∈K

〈(|φk〉〈φk |)⊗m′
, COφk

((|φk〉〈φk |)⊗m)〉 = negl(κ).

A direct application of this no-cloning theorem is that it gives rise to new
constructions for private-key quantum money. As one of the earliest findings
in quantum information [9,61], quantum money schemes have received revived
interests in the past decade (see e.g. [1,3,20,21,39,42]). First, we recall the defi-
nition of quantum money scheme adapted from [2].

Definition 4 (Quantum Money Scheme). A private-key quantum money
scheme S consists of three algorithms:

– KeyGen, which takes as input the security parameter 1κ and randomly samples
a private key k.

– Bank, which takes as input the private key k and generates a quantum state
|$〉 called a banknote.

– Ver, which takes as input the private key k and an alleged banknote |¢〉, and
either accepts or rejects.

The money scheme S has completeness error ε if Ver (k, |$〉) accepts with
probability at least 1 − ε for all valid banknote |$〉.

Let Count be the money counter that output the number of valid banknotes
when given a collection of (possibly entangled) alleged banknotes |¢1, ¢2, . . . , ¢r〉.
Namely, Count will call Ver on each banknotes and return the number of times
that Ver accepts. The money scheme S has soundness error δ if for any
polynomial-time counterfeiter C that maps q valid banknotes |$1〉, . . . , |$q〉 to
r alleged banknotes |¢1, . . . , ¢r〉 satisfies

Pr
[
Count

(
k,C(|$1〉, . . . , |$q〉)

)
> q

] ≤ δ.

The scheme S is secure if it has completeness error ≤ 1/3 and negligible sound-
ness error.

144 Z. Ji et al.

For any PRS =
{|φk〉}

k∈K with key space K, we can define a private-key
quantum money scheme SPRS as follows:

– KeyGen(1κ) randomly outputs k ∈ K.
– Bank(k) generates the banknote |$〉 = |φk〉.
– Ver(k, ρ) applies the projective measurement that accepts ρ with probability

〈φk |ρ|φk〉.
We remark that usually the money state |$〉 takes the form |$〉 = |s, ψs〉 where

the first register contains a classical serial number. Our scheme, however, does
not require the use of the serial numbers. This simplification is brought to us by
the strong requirement that any polynomial copies of |φk〉 are indistinguishable
from Haar random states.

Theorem 6. The private-key quantum money scheme SPRS is secure for all
PRS.

Proof. It suffices to prove the soundness of SPRS is negligible. Assume to the
contrary that there is a counterfeiter C such that

Pr
[
Count

(
k,C(|φk〉⊗q)

)
> q

] ≥ κ−c

for some constant c > 0 and sufficiently large κ. From the counterfeiter C, we will
construct an oracle algorithm AOφk that maps q copies of |φk〉 to q + 1 copies
with noticeable probability and this leads to a contradiction with Theorem5.

The oracle algorithm A first runs C and implement the measurement
{

M0 = 1 − |φk〉〈φk |,M1 = |φk〉〈φk |
}

on each copy of the money state C outputs. This measurement can be implemented
by attaching an auxiliary qubit initialized in (|0〉+ |1〉)/√2 and call the reflection
oracle Oφ conditioned on the qubit being at 1 and performs the X measurement
on this auxiliary qubit. This gives r-bit of outcome x ∈ {0, 1}r. If x has Hamming
weight at least q + 1, algorithm A outputs any q + 1 registers that corresponds to
outcome 1; otherwise, it outputs |0〉⊗(q+1). By the construction of A, it succeeds
in cloning q + 1 money states from q copies with probability at least κ−c.

Our security proof of the quantum money scheme is arguably simpler than
that in [2]. In [2], to prove their hidden subspace money scheme is secure, one
needs to develop the so called inner-product adversary method to show the
worst-case query complexity for the hidden subspace states and use a random self-
reducible argument to establish the average-case query complexity. In our case, it
follows almost directly from the cryptographic no-cloning theorem with oracles.
The quantum money schemes derived from PRS’s enjoy many nice features of
the hidden subspace scheme. Most importantly, they are also query-secure [2],
meaning that the bank can simply return the money state back to the user after
verification.

Pseudorandom Quantum States 145

It is also interesting to point out that quantum money states are not neces-
sarily pseudorandom states. The hidden subspace state [2], for example, do not
satisfy our definition of PRS as one can measure polynomially many copies of
the state in the computational basis and recover a basis for the hidden subspace
with high probability.

5 Entanglement of Pseudorandom Quantum States

In this section, we study the entanglement property of pseudorandom quantum
states. Our result shows that any PRS consists of states that have high entan-
glement on average.

The entanglement property of a bipartite pure quantum state is well under-
stood and is completely determined by the Schmidt coefficients of a bipartite
state (see e.g. [31]). Any state |ψ〉 ∈ HA ⊗ HB on system A and B can be
written as

∣
∣ψ
〉

=
R∑

j=1

√
λj

∣
∣ψj

A

〉⊗ ∣
∣ψj

B

〉
,

where λj > 0 for all 1 ≤ j ≤ R and the states |ψj
A〉 (and |ψj

B〉) form a set of
orthonormal states on A (and B respectively). Here, the positive real numbers
λj ’s are the Schmidt coefficients and R is the Schmidt rank of state |ψ〉. Let
ρA be the reduced density matrix of |ψ〉 on system A, then λj is the nonzero
eigenvalues of ρA. Entanglement can be measured by the Schmidt rank R or
entropy-like quantities derived from the Schmidt coefficients. We consider the
quantum α-Rényi entropy of ρA

Sα(ρA) :=
1

1 − α
log
(R∑

j=1

λα
j

)
.

When α → 1, Sα coincides with the von Neumann entropy of ρA

S(ρA) = −
R∑

j=1

λj log λj .

When α → ∞, Sα coincides with the quantum min entropy of ρA

Smin(ρA) = − log ‖ρA‖ = − log λmax,

where λmax is the largest eigenvalue of ρA. For α = 2, the entropy S2 is the
quantum analogue of the collision entropy.

For Haar random state |ψ〉 ∼ μ(HA ⊗ HB) where the dimensions of HA and
HB are dA and dB respectively, the Page conjecture [49] proved in [22,54,55]
states that for dA ≤ dB , the average entanglement entropy is explicitly given as

ES(ρA) =
1

ln 2

⎡

⎣

⎛

⎝
dAdB∑

j=dB+1

1
j

⎞

⎠− dB − 1
2dA

⎤

⎦ > log dA − O(1).

146 Z. Ji et al.

That is, the Haar random states are highly entangled on average and, in fact,
a typical Haar random state is almost maximumly entangled. A more detailed
discussion on this phenomena is give in [28,34]. The following theorem and its
corollary tell us that pseudorandom states are also entangled on average though
the quantitative bound is much weaker.

Theorem 7. Let {|φk〉}k∈K be a family of PRS with security parameter κ. Con-
sider partitions of the state |φk〉 into systems A and B consisting of nA and nB

qubits each where both nA and nB are polynomial in the security parameter. Let
ρk be the reduced density matrix on system A. Then,

E
k

tr(ρ2k) = negl(κ).

Proof. Assume to the contrary that

E
k

tr(ρ2k) ≥ κ−c

for some constant c > 0 and sufficiently large κ. We will construct a distinguisher
A that tells the family of state {|φk〉} apart from the Haar random states.

Consider the SWAP test performed on the system A of two copies of |φk〉.
The test accepts with probability

1 + tr(ρ2k)
2

.

Let distinguisher A be the above SWAP test, we have
∣
∣
∣
∣ Pr
k←K

[A(|φk〉⊗2) = 1
]− Pr

|ψ〉←μ

[A(|ψ〉⊗2) = 1
]
∣
∣
∣
∣

=
1
2

∣
∣
∣
∣E
k

tr(ρ2k) − E
μ

tr(ρ2ψ)
∣
∣
∣
∣ ≥ κ−c/4,

for sufficiently large κ. The last step follows by a formula of Lubkin [36]

E
|ψ〉←μ

tr(ρ2ψ) =
dA + dB

dAdB + 1
=

2nA + 2nB

2nA+nB + 1
= negl(κ).

Corollary 1. Let {|φk〉}k∈K be a family of PRS with security parameter κ. Con-
sider partitions of the state |φk〉 into systems A and B consisting of nA and nB

qubits each where both nA and nB are polynomial in the security parameter. We
have

1. Let Rk be the Schmidt rank of state |φk〉 under the A, B partition, then
Ek Rk ≥ κc for all constant c > 0 and sufficiently large κ.

2. Ek Smin(ρk) = ω(log κ) and Ek S(ρk) = ω(log κ).

Pseudorandom Quantum States 147

Proof. The first item follows from the fact that

tr(ρ2k) ≥ 1
Rk

.

where Rk is the Schmidt rank of state |φk〉. The second item for the min entropy
follows by Jensen’s inequality and

tr(ρ2k) ≥ λ2
max.

Finally, the bound on the expected entanglement entropy follows by the fact
that min entropy is the smallest α-Rényi entropy for all α > 0.

6 Pseudorandom Unitary Operators (PRUs)

6.1 Definitions

Our notion of pseudorandom states readily extends to distributions over unitary
operators. Let H be a Hilbert space and let K a key space, both of which depend
on a security parameter κ. Let μ be the Haar measure on the unitary group
U(H).

Definition 5. A family of unitary operators {Uk ∈ U(H)}k∈K is pseudoran-
dom, if two conditions hold:

1. (Efficient computation). There is an efficient quantum algorithm Q, such
that for all k and any |ψ〉 ∈ S(H), Q(k, |ψ〉) = Uk|ψ〉.

2. (Pseudorandomness). Uk with a random key k is computationally indis-
tinguishable from a Haar random unitary operator. More precisely, for any
efficient quantum algorithm A that makes at most polynomially many queries
to the oracle,

∣
∣
∣
∣ Pr
k←K

[AUk(1κ) = 1
]− Pr

U←μ

[AU (1κ) = 1
]
∣
∣
∣
∣ = negl(κ).

The extensive literature on approximation of Haar randomness on unitary
groups concerns with unitary designs [12,19], which are statistical approxima-
tions to the Haar random distribution up to a fixed t-th moment. Our notion of
pseudorandom unitary operators in terms of computational indistinguishability,
in addition to independent interest, supplements and could substitute for unitary
designs in various applications.

6.2 Candidate Constructions

Clearly, given a pseudorandom unitary family {Uk}, it immediately gives pseu-
dorandom states as well (e.g., {Uk|0〉}). On the other hand, our techniques
for constructing pseudorandom states can be extended to give candidate con-
structions for pseudorandom unitary operators (PRUs) in the following way. Let

148 Z. Ji et al.

H = (C2)⊗n. Assume we have a pseudorandom function PRF : K × X → X ,
with domain X = {0, 1, 2, . . . , N − 1} and N = 2n. Using the phase kick-back
technique, we can implement the unitary transformation Tk ∈ U(H) that maps

Tk : |x〉 �→ ω
PRFk(x)
N |x〉, ωN = exp(2πi/N). (9)

Our pseudorandom states were given by |φk〉 = TkH⊗n|0〉, where H⊗n denotes
the n-qubit Hadamard transform. We conjecture that by repeating the operation
TkH⊗n a constant number of times (with different keys k), we get a PRU. This
is resembles the construction of unitary t-designs in [43,44].

Alternatively, one can give a candidate construction for PRUs based on pseu-
dorandom permutations (PRPs) as follows. First, let PRPk be a pseudorandom
permutation (with key k ∈ K) acting on {0, 1}n, and suppose we have efficient
quantum circuits that compute the permutation Pk : |x〉|y〉 �→ |x〉|y ⊕PRPk(x)〉
as well as its inverse Rk : |x〉|y〉 �→ |x〉|y ⊕PRP−1

k (x)〉 (where ⊕ denotes the bit-
wise xor operation). Then we can compute the permutation in-place by applying
the following sequence of operations:

|x〉|0〉 Pk−−→ |x〉|PRPk(x)〉
SWAP−−−−−→ |PRPk(x)〉|x〉
Rk−−→ |PRPk(x)〉|0〉.

(10)

For simplicity, let us denote this operation by Sk : |x〉 �→ |PRPk(x)〉 (ignoring
the second register, which stays in the state |0〉). Now we can consider repeating
the operation SkH⊗n several times (with different keys k), as a candidate for a
PRU. Note that this resembles the construction of unitary t-designs in [26].

It is an interesting challenge to prove that these constructions actually yield
PRUs. For the special case of non-adaptive adversaries, one could try to use the
proof techniques of [26,43,44] for unitary t-designs. For the general case, where
the adversary can make adaptive queries to the pseudorandom unitary, new
proof techniques seem to be needed. Finally, we can consider combining all of
these ingredients (the pseudorandom operations Sk and Tk, and the Hadamard
transform) to try to obtain more efficient constructions of PRUs.

References

1. Aaronson, S.: Quantum copy-protection and quantum money. In: Proceedings of
the Twenty-Fourth Annual IEEE Conference on Computational Complexity (CCC
2009), pp. 229–242. IEEE Computer Society (2009). https://doi.org/10.1109/CCC.
2009.42

2. Aaronson, S., Christiano, P.: Quantum money from hidden subspaces. In: Pro-
ceedings of the Forty-Fourth Annual ACM Symposium on Theory of Computing,
STOC 2012, pp. 41–60. ACM, New York (2012). https://doi.org/10.1145/2213977.
2213983

https://doi.org/10.1109/CCC.2009.42
https://doi.org/10.1109/CCC.2009.42
https://doi.org/10.1145/2213977.2213983
https://doi.org/10.1145/2213977.2213983

Pseudorandom Quantum States 149

3. Aaronson, S., Farhi, E., Gosset, D., Hassidim, A., Kelner, J., Lutomirski, A.: Quan-
tum money. Commun. ACM 55(8), 84–92 (2012). https://doi.org/10.1145/2240236.
2240258

4. Ambainis, A., Emerson, J.: Quantum t-designs: t-wise independence in the quan-
tum world. In: Proceedings of the Twenty-Second Annual IEEE Conference on
Computational Complexity (CCC 2007), pp. 129–140, June 2007

5. Ambainis, A., Rosmanis, A., Unruh, D.: Quantum attacks on classical proof sys-
tems: the hardness of quantum rewinding. In: Proceedings of the 2014 IEEE
55th Annual Symposium on Foundations of Computer Science, pp. 474–483. IEEE
Computer Society (2014). https://doi.org/10.1109/FOCS.2014.57. Full version at
https://arxiv.org/abs/1404.6898

6. Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
719–737. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 42

7. Barak, B., Shaltiel, R., Wigderson, A.: Computational analogues of entropy. In:
Arora, S., Jansen, K., Rolim, J.D.P., Sahai, A. (eds.) APPROX/RANDOM-2003.
LNCS, vol. 2764, pp. 200–215. Springer, Heidelberg (2003). https://doi.org/10.
1007/978-3-540-45198-3 18

8. Barenco, A., Berthiaume, A., Deutsch, D., Ekert, A., Jozsa, R., Macchiavello,
C.: Stabilization of quantum computations by symmetrization. SIAM J. Comput.
26(5), 1541–1557 (1997). https://doi.org/10.1137/S0097539796302452

9. Bennett, C.H., Brassard, G., Breidbart, S., Wiesner, S.: Quantum cryptography,
or unforgeable subway tokens. In: Chaum, D., Rivest, R.L., Sherman, A.T. (eds.)
Advances in Cryptology, pp. 267–275. Springer, Boston, MA (1983). https://doi.
org/10.1007/978-1-4757-0602-4 26

10. Blum, M., Micali, S.: How to generate cryptographically strong sequences of pseu-
dorandom bits. SIAM J. Comput. 13(4), 850–864 (1984). https://doi.org/10.1137/
0213053

11. Brandão, F.G.S.L., Harrow, A.W., Horodecki, M.: Efficient quantum pseudo-
randomness. Phys. Rev. Lett. 116, 170502 (2016). https://doi.org/10.1103/
PhysRevLett.116.170502

12. Brandão, F.G.S.L., Harrow, A.W., Horodecki, M.: Local random quantum cir-
cuits are approximate polynomial-designs. Commun. Math. Phys. 346(2), 397–434
(2016). https://doi.org/10.1007/s00220-016-2706-8

13. Bremner, M.J., Mora, C., Winter, A.: Are random pure states useful for quan-
tum computation? Phys. Rev. Lett. 102, 190502 (2009). https://doi.org/10.1103/
PhysRevLett.102.190502

14. Chen, Y.H., Chung, K.M., Lai, C.Y., Vadhan, S.P., Wu, X.: Computational notions
of quantum min-entropy. arXiv:1704.07309 (2017)

15. Chung, K.M., Shi, Y., Wu, X.: Physical randomness extractors: generating random
numbers with minimal assumptions. arXiv preprint arXiv:1402.4797 (2014)

16. Cleve, R., Leung, D., Liu, L., Wang, C.: Near-linear constructions of
exact unitary 2-designs. Quantum Inf. Comput. 16(9&10), 721–756 (2016).
http://www.rintonpress.com/xxqic16/qic-16-910/0721-0756.pdf

17. Dankert, C., Cleve, R., Emerson, J., Livine, E.: Exact and approximate unitary
2-designs and their application to fidelity estimation. Phys. Rev. A 80, 012304
(2009). https://doi.org/10.1103/PhysRevA.80.012304

18. Dieks, D.: Communication by EPR devices. Phys. Lett. A 92(6), 271–272 (1982)

https://doi.org/10.1145/2240236.2240258
https://doi.org/10.1145/2240236.2240258
https://doi.org/10.1109/FOCS.2014.57
https://arxiv.org/abs/1404.6898
https://doi.org/10.1007/978-3-642-29011-4_42
https://doi.org/10.1007/978-3-642-29011-4_42
https://doi.org/10.1007/978-3-540-45198-3_18
https://doi.org/10.1007/978-3-540-45198-3_18
https://doi.org/10.1137/S0097539796302452
https://doi.org/10.1007/978-1-4757-0602-4_26
https://doi.org/10.1007/978-1-4757-0602-4_26
https://doi.org/10.1137/0213053
https://doi.org/10.1137/0213053
https://doi.org/10.1103/PhysRevLett.116.170502
https://doi.org/10.1103/PhysRevLett.116.170502
https://doi.org/10.1007/s00220-016-2706-8
https://doi.org/10.1103/PhysRevLett.102.190502
https://doi.org/10.1103/PhysRevLett.102.190502
http://arxiv.org/abs/1704.07309
http://arxiv.org/abs/1402.4797
http://www.rintonpress.com/xxqic16/qic-16-910/0721-0756.pdf
https://doi.org/10.1103/PhysRevA.80.012304

150 Z. Ji et al.

19. Emerson, J., Weinstein, Y.S., Saraceno, M., Lloyd, S., Cory, D.G.: Pseudo-random
unitary operators for quantum information processing. Science 302(5653), 2098–
2100 (2003)

20. Farhi, E., Gosset, D., Hassidim, A., Lutomirski, A., Nagaj, D., Shor, P.: Quantum
state restoration and single-copy tomography for ground states of hamiltonians.
Phys. Rev. Lett. 105, 190503 (2010). https://doi.org/10.1103/PhysRevLett.105.
190503

21. Farhi, E., Gosset, D., Hassidim, A., Lutomirski, A., Shor, P.: Quantum money from
knots. In: Proceedings of the 3rd Innovations in Theoretical Computer Science
Conference, ITCS 2012, pp. 276–289. ACM, New York (2012). https://doi.org/10.
1145/2090236.2090260

22. Foong, S.K., Kanno, S.: Proof of Page’s conjecture on the average entropy of
a subsystem. Phys. Rev. Lett. 72, 1148–1151 (1994). https://doi.org/10.1103/
PhysRevLett.72.1148

23. Goldreich, O., Goldwasser, S., Micali, S.: On the cryptographic applications of ran-
dom functions (extended abstract). In: Blakley, G.R., Chaum, D. (eds.) CRYPTO
1984. LNCS, vol. 196, pp. 276–288. Springer, Heidelberg (1985). https://doi.org/
10.1007/3-540-39568-7 22

24. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J.
ACM 33(4), 792–807 (1986). https://doi.org/10.1145/6490.6503

25. Harrow, A.W.: The church of the symmetric subspace. arXiv:1308.6595 (2013)
26. Harrow, A.W., Low, R.A.: Efficient quantum tensor product expanders and k -

designs. In: Dinur, I., Jansen, K., Naor, J., Rolim, J. (eds.) APPROX/RANDOM-
2009. LNCS, vol. 5687, pp. 548–561. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-03685-9 41

27. H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator
from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)

28. Hayden, P., Leung, D.W., Winter, A.: Aspects of generic entanglement. Commun.
Math. Phys. 265(1), 95–117 (2006). https://doi.org/10.1007/s00220-006-1535-6

29. Helstrom, C.W.: Detection theory and quantum mechanics. Inf. Control 10(3),
254–291 (1967)

30. Holevo, A.S.: An analogue of statistical decision theory and noncommutative prob-
ability theory. Tr. Mosk. Matematicheskogo Obshchestva 26, 133–149 (1972)

31. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entangle-
ment. Rev. Mod. Phys. 81, 865–942 (2009). https://doi.org/10.1103/RevModPhys.
81.865

32. Impagliazzo, R., Wigderson, A.: P = BPP if E requires exponential circuits: deran-
domizing the XOR lemma. In: Proceedings of the Twenty-Ninth Annual ACM
Symposium on Theory of Computing, STOC 1997, pp. 220–229. ACM, New York
(1997). https://doi.org/10.1145/258533.258590

33. Kueng, R., Gross, D.: Qubit stabilizer states are complex projective 3-designs.
arXiv:1510.02767 (2015)

34. Liu, Z.W., Lloyd, S., Zhu, E.Y., Zhu, H.: Entropic scrambling complexities.
arXiv:1703.08104 (2017)

35. Low, R.A.: Large deviation bounds for k-designs. Proc. R. Soc. Lond. A: Math.
Phys. Eng. Sci. 465(2111), 3289–3308 (2009). http://rspa.royalsocietypublishing.
org/content/465/2111/3289

36. Lubkin, E.: Entropy of an n-system from its correlation with a k-reservoir. J. Math.
Phys. 19(5), 1028–1031 (1978)

37. Luby, M., Rackoff, C.: How to construct pseudorandom permutations from pseu-
dorandom functions. SIAM J. Comput. 17(2), 373–386 (1988)

https://doi.org/10.1103/PhysRevLett.105.190503
https://doi.org/10.1103/PhysRevLett.105.190503
https://doi.org/10.1145/2090236.2090260
https://doi.org/10.1145/2090236.2090260
https://doi.org/10.1103/PhysRevLett.72.1148
https://doi.org/10.1103/PhysRevLett.72.1148
https://doi.org/10.1007/3-540-39568-7_22
https://doi.org/10.1007/3-540-39568-7_22
https://doi.org/10.1145/6490.6503
http://arxiv.org/abs/1308.6595
https://doi.org/10.1007/978-3-642-03685-9_41
https://doi.org/10.1007/978-3-642-03685-9_41
https://doi.org/10.1007/s00220-006-1535-6
https://doi.org/10.1103/RevModPhys.81.865
https://doi.org/10.1103/RevModPhys.81.865
https://doi.org/10.1145/258533.258590
http://arxiv.org/abs/1510.02767
http://arxiv.org/abs/1703.08104
http://rspa.royalsocietypublishing.org/content/465/2111/3289
http://rspa.royalsocietypublishing.org/content/465/2111/3289

Pseudorandom Quantum States 151

38. Lutomirski, A.: An online attack against Wiesner’s quantum money.
arXiv:1010.0256 (2010)

39. Lutomirski, A., Aaronson, S., Farhi, E., Gosset, D., Hassidim, A., Kelner, J., Shor,
P.: Breaking and making quantum money: toward a new quantum cryptographic
protocol. In: Proceedings of the Innovations in Theoretical Computer Science Con-
ference, ITCS 2010, pp. 20–31. Tsinghua University Press (2010)

40. Mezher, R., Ghalbouni, J., Dgheim, J., Markham, D.: Efficient quantum pseudo-
randomness with simple graph states. arXiv:1709.08091 (2017)

41. Miller, C.A., Shi, Y.: Robust protocols for securely expanding randomness and
distributing keys using untrusted quantum devices. J. ACM (JACM) 63(4), 33
(2016)

42. Mosca, M., Stebila, D.: Quantum coins. In: Bruen, A.A., Wehlau, D.L. (eds.) Error-
Correcting Codes, Finite Geometries and Cryptography. Contemporary Mathe-
matics, vol. 523, pp. 35–47. American Mathematical Society, Providence (2010).
http://www.ams.org/bookstore?fn=20&arg1=conmseries&ikey=CONM-523

43. Nakata, Y., Hirche, C., Koashi, M., Winter, A.: Efficient quantum pseudorandom-
ness with nearly time-independent Hamiltonian dynamics. Phys. Rev. X 7, 021006
(2017). https://doi.org/10.1103/PhysRevX.7.021006

44. Nakata, Y., Hirche, C., Morgan, C., Winter, A.: Unitary 2-designs from random X-
and Z-diagonal unitaries. J. Math. Phys. 58(5), 052203 (2017). https://doi.org/10.
1063/1.4983266

45. Nakata, Y., Koashi, M., Murao, M.: Generating a state t-design
by diagonal quantum circuits. New J. Phys. 16(5), 053043 (2014).
http://stacks.iop.org/1367-2630/16/i=5/a=053043

46. Naor, M., Reingold, O.: Synthesizers and their application to the parallel construc-
tion of pseudo-random functions. J. Comput. Syst. Sci. 58(2), 336–375 (1999).
https://doi.org/10.1006/jcss.1998.1618

47. Nisan, N., Wigderson, A.: Hardness vs randomness. J. Comput. Syst. Sci. 49(2),
149–167 (1994). https://doi.org/10.1016/S0022-0000(05)80043-1

48. Ortigoso, J.: Twelve years before the quantum no-cloning theorem.
arXiv:1707.06910 (2017)

49. Page, D.N.: Average entropy of a subsystem. Phys. Rev. Lett. 71, 1291–1294 (1993).
https://doi.org/10.1103/PhysRevLett.71.1291

50. Park, J.L.: The concept of transition in quantum mechanics. Found. Phys. 1, 23–33
(1970)

51. Popescu, S., Short, A.J., Winter, A.: Entanglement and the foundations of statis-
tical mechanics. Nat. Phys. 2(11), 754 (2006)

52. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography.
J. ACM (JACM) 56(6), 34 (2009)

53. Rompel, J.: One-way functions are necessary and sufficient for secure signatures.
In: Proceedings of the Twenty-Second Annual ACM Symposium on Theory of
Computing, pp. 387–394. ACM (1990)

54. Sánchez-Ruiz, J.: Simple proof of Page’s conjecture on the average entropy of a sub-
system. Phys. Rev. E 52, 5653–5655 (1995). https://doi.org/10.1103/PhysRevE.52.
5653

55. Sen, S.: Average entropy of a quantum subsystem. Phys. Rev. Lett. 77, 1–3 (1996).
https://doi.org/10.1103/PhysRevLett.77.1

56. Shamir, A.: On the generation of cryptographically strong pseudorandom
sequences. ACM Trans. Comput. Syst. 1(1), 38–44 (1983). https://doi.org/10.1145/
357353.357357

http://arxiv.org/abs/1010.0256
http://arxiv.org/abs/1709.08091
http://www.ams.org/bookstore?fn=20&arg1=conmseries&ikey=CONM-523
https://doi.org/10.1103/PhysRevX.7.021006
https://doi.org/10.1063/1.4983266
https://doi.org/10.1063/1.4983266
http://stacks.iop.org/1367-2630/16/i=5/a=053043
https://doi.org/10.1006/jcss.1998.1618
https://doi.org/10.1016/S0022-0000(05)80043-1
http://arxiv.org/abs/1707.06910
https://doi.org/10.1103/PhysRevLett.71.1291
https://doi.org/10.1103/PhysRevE.52.5653
https://doi.org/10.1103/PhysRevE.52.5653
https://doi.org/10.1103/PhysRevLett.77.1
https://doi.org/10.1145/357353.357357
https://doi.org/10.1145/357353.357357

152 Z. Ji et al.

57. Song, F.: Quantum-secure pseudorandom permutations, June 2017. Blog post.
http://qcc.fangsong.info/2017-06-quantumprp/

58. Watrous, J.: The Theory of Quantum Information. Cambridge University Press,
Cambridge (2018, to be published). A draft copy is available at https://cs.
uwaterloo.ca/∼watrous/TQI/

59. Webb, Z.: The Clifford group forms a unitary 3-design. Quantum Inf. Comput.
16(15&16), 1379–1400 (2016). http://www.rintonpress.com/xxqic16/qic-16-1516/
1379-1400.pdf

60. Werner, R.F.: Optimal cloning of pure states. Phys. Rev. A 58, 1827–1832 (1998).
https://doi.org/10.1103/PhysRevA.58.1827

61. Wiesner, S.: Conjugate coding. SIGACT News 15(1), 78–88 (1983). Original
manuscript written Circa 1970

62. Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299,
802–803 (1982)

63. Yao, A.C.: Theory and application of trapdoor functions. In: 23rd Annual Sym-
posium on Foundations of Computer Science (SFCS 1982), pp. 80–91, November
1982

64. Yuen, H.: A quantum lower bound for distinguishing random functions from
random permutations. Quantum Inf. Comput. 14(13–14), 1089–1097 (2014).
http://dl.acm.org/citation.cfm?id=2685166

65. Zhandry, M.: How to construct quantum random functions. In: FOCS 2012, pp.
679–687. IEEE (2012). http://eprint.iacr.org/2012/182

66. Zhandry, M.: A note on the quantum collision and set equality problems. Quantum
Inf. Comput. 15(7&8) (2015). http://arxiv.org/abs/1312.1027

67. Zhandry, M.: A note on quantum-secure PRPs (2016). https://eprint.iacr.org/
2016/1076

68. Zhandry, M.: Quantum lightning never strikes the same state twice. iACR eprint
2017/1080 (2017)

69. Zhu, H.: Multiqubit Clifford groups are unitary 3-designs. arXiv:1510.02619 (2015)

http://qcc.fangsong.info/2017-06-quantumprp/
https://cs.uwaterloo.ca/~watrous/TQI/
https://cs.uwaterloo.ca/~watrous/TQI/
http://www.rintonpress.com/xxqic16/qic-16-1516/1379-1400.pdf
http://www.rintonpress.com/xxqic16/qic-16-1516/1379-1400.pdf
https://doi.org/10.1103/PhysRevA.58.1827
http://dl.acm.org/citation.cfm?id=2685166
http://eprint.iacr.org/2012/182
http://arxiv.org/abs/1312.1027
https://eprint.iacr.org/2016/1076
https://eprint.iacr.org/2016/1076
http://arxiv.org/abs/1510.02619

Quantum Attacks Against
Indistinguishablility Obfuscators

Proved Secure in the Weak Multilinear
Map Model

Alice Pellet-Mary(B)

Univ Lyon, CNRS, ENS de Lyon, Inria, UCBL, LIP, Lyon, France
alice.pellet mary@ens-lyon.fr

Abstract. We present a quantum polynomial time attack against the
GMMSSZ branching program obfuscator of Garg et al. (TCC’16), when
instantiated with the GGH13 multilinear map of Garg et al. (EURO-
CRYPT’13). This candidate obfuscator was proved secure in the weak
multilinear map model introduced by Miles et al. (CRYPTO’16).

Our attack uses the short principal ideal solver of Cramer et al.
(EUROCRYPT’16), to recover a secret element of the GGH13 multilin-
ear map in quantum polynomial time. We then use this secret element
to mount a (classical) polynomial time mixed-input attack against the
GMMSSZ obfuscator. The main result of this article can hence be seen
as a classical reduction from the security of the GMMSSZ obfuscator to
the short principal ideal problem (the quantum setting is then only used
to solve this problem in polynomial time).

As an additional contribution, we explain how the same ideas can
be adapted to mount a quantum polynomial time attack against the
DGGMM obfuscator of Döttling et al. (ePrint 2016), which was also
proved secure in the weak multilinear map model.

1 Introduction

An obfuscator is a cryptographic primitive that should enable a user to com-
pute a function, without revealing anything about it, except its input-output
behaviour. Unfortunately, such a security notion for obfuscators, called Virtual
Black Box (or VBB) security, has been shown to be impossible to achieve for
all circuits [7]. To circumvent this impossibility result, two directions have been
explored. The first direction is to build a VBB obfuscator for a restricted class of
functions. Recently, the authors of [36] and [25] managed to prove VBB security
of their obfuscator, for the restricted class of compute-and-compare functions,1

under the LWE assumption. The second direction is to consider weaker security
notions, and try to build obfuscators for all circuits under these weaker security
1 A compute-and-compare function CC[f ,α] on input x outputs 1 if f(x) = α and 0

otherwise.

c© International Association for Cryptologic Research 2018
H. Shacham and A. Boldyreva (Eds.): CRYPTO 2018, LNCS 10993, pp. 153–183, 2018.
https://doi.org/10.1007/978-3-319-96878-0_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96878-0_6&domain=pdf

154 A. Pellet-Mary

notions. In addition to their impossibility result, the authors of [7] proposed such
a weaker security notion, called indistinguishablility obfuscation (or iO).

Indistinguishability obfuscation requires that it should be hard to distinguish
between the obfuscation of two equivalent circuits, i.e., circuits that compute the
same function. Even if iO security is weaker than VBB security, achieving iO for
all circuits would have a lot of applications (see, e.g., [22,34]). The first candi-
date obfuscator for iO security was proposed in 2013 by Garg, Gentry, Halevi,
Raykova, Sahai and Waters [22], based on the GGH13 approximate multilinear
map [21]. They showed that iO for the class of polynomial-size branching pro-
grams2 could be bootstrapped to iO for all polynomial-size circuits,3 and they
then described a candidate iO obfuscator for polynomial-size branching pro-
grams (without a security proof). Since 2013, numerous candidate obfuscators
for polynomial-size branching programs have been proposed, all relying on one
of the three candidate cryptographic multilinear map constructions [17,21,24].4

However, none of these candidate obfuscators could be proven secure under clas-
sical hardness assumptions.

The main security weakness of these candidate obfuscators stems from the
underlying candidate multilinear maps. Indeed, all candidate multilinear maps
have been shown to suffer from so-called zeroizing attacks [15,26], and these
zeroizing attacks and their generalizations have made it difficult to design poten-
tially secure iO obfuscators. In the following, we will instantiate all the obfusca-
tors with the GGH13 [21] multilinear map,5 as our attack exploits a weakness
of this specific multilinear map.

In order to improve security confidence, recent obfuscator constructions
carefully instantiate the underlying multilinear map (to try to avoid zeroizing
attacks) and prove VBB security of their obfuscator in some idealised model.
First, the authors of [2,6,12] proved VBB security of their obfuscators in the
so-called ideal graded encoding model, introduced in [11]. But zeroizing attacks
against multilinear maps and the resulting annihilation attacks against obfus-
cators [3,14,31] showed that this model was not adapted to capture potential
attacks against obfuscators. Another model was then proposed in [31]: the weak
multilinear map model. This model captures all the attacks mentioned above,
and two candidate obfuscators were proved secure in this model [19,23].

Previous work. The annihilation attack of Miles, Sahai and Zhandry [31] already
impacted many obfuscators: [2,5,6,12,30,32]. One limitation of this attack is
that it is captured by the weak multilinear map model and so cannot apply
against the recent obfuscators of [19,23]. A formalisation and generalisation of
2 See Sect. 2.3 for the definition of a matrix branching program.
3 The proof relies on Barrington’s theorem [8], and on a bootstrapping procedure

enabled by fully homomorphic encryption.
4 The GGH15 multilinear map is a restricted multilinear map that cannot be used for

all obfuscator constructions.
5 Some obfuscators, like [19] are specifically designed to work with the GGH13 multi-

linear map. Some others can be instantiated with either GGH13 or CLT13 multilinear
map. For those, we only consider the GGH13 instantiation.

Quantum Attacks Against Indistinguishablility Obfuscators 155

this attack was then proposed by [3]. This attack enables to distinguish a larger
class of circuits than the one of [31], but applies to the same candidate obfusca-
tors. Moreover, it only works for single-input branching programs. In a parallel
work, Chen, Gentry and Halevi [14], proposed an attack against the original
obfuscator of [22], and a quantum attack against the GGH15 construction [24],
that were both unbroken so far. These attacks rely on specific branching pro-
grams, namely input partitionable branching programs. Since then, Fernando,
Rasmussen and Sahai [20] proposed a technique to transform any branching pro-
gram into an equivalent branching program which is not input partitionable. This
transformation can be used either with the GGH13 map or with the CLT map.
Hence, using the [22] obfuscator combined with the technique of [20] prevents
the attack of [14].

Our contribution. In this work, we propose quantum polynomial time attacks
against the branching program obfuscators of [19,23], when instantiated with
the GGH13 multilinear map. These candidate obfuscators were not broken yet,
and were proven secure in the weak multilinear map model (the current strongest
ideal model for obfuscators). As a secondary contribution, our attack also applies
to the obfuscators of [2,5,6,30,32], which were already broken in classical poly-
nomial time by [31]. Our attack is still interesting for these obfuscators, as it
uses different techniques than those of [31], and in particular, techniques that
are not captured by the weak multilinear map model. Note that our attack
does not work against the obfuscator of [12], while [31] does. Finally, as a last
contribution, our attack also applies to the circuit obfuscators of [4,37], when
instantiated with the GGH13 multilinear map.6 Overall, we prove the following
theorem (informally stated for the moment).

Theorem 1 (Informal, heuristic). Let O be any of the branching program
obfuscators in [2,5,6,23,30,32], on single or dual input branching programs
(respectively, let O be any of the circuit obfuscators in [4,19,37]), instantiated
with the GGH13 multilinear map [21]. There exist two explicit equivalent branch-
ing programs (respectively, two equivalent circuits) A and A′ such that O(A) and
O(A′) can be distinguished in quantum polynomial time, under some conjecture
and heuristic (see Theorem 3 for a formal statement).

We note that the only part of our attack which is quantum is the principal
ideal solver of Biasse and Song [10]. All the other steps of our attack are classi-
cal. Hence, our attack can also be viewed as a (classical) reduction from the iO
security of the candidate obfuscators mentioned in Theorem 1 to the principal
ideal problem. One might then want to use the classical sub-exponential prin-
cipal ideal solver of Biasse, Espitau, Fouque, Gélin and Kirchner [9] to obtain
a classical sub-exponential attack against the above obfuscators. However, the
dimension of the cyclotomic ring used in current instantiations on the GGH
multilinear map is chosen to be at least λ2 where λ is the security parameter.
6 These obfuscators need composite-order multilinear maps, and hence were originally

instantiated with the CLT multilinear map. However, as observed in [19], the GGH13
multilinear map can also be used with composite-order.

156 A. Pellet-Mary

This is done to thwart the attacks of [1,16,27] over the GGH13 multilinear map,
but it also means that the classical variant of the attack described in this article
is exponential in the security parameter, even when using the sub-exponential
principal ideal solver of [9]. It is still interesting to note that any future improve-
ment for solving the principal ideal problem will directly imply an improvement
for the attack described in this article.

Technical overview. Recent branching program obfuscators, starting with the
one of [6], use the underlying multilinear map to prevent mixed-input attacks,
using so-called straddling set systems. A mixed-input attack is an attack in which
the attacker does not evaluate honestly the obfuscated circuit, but changes the
value of one bit along the computation: for example, if the same bit of the entry
is used twice during the computation, the attacker puts it to 1 the first time
and to 0 the second time. By choosing good levels for the encodings of the
multilinear map, the authors of [6] proved that one could prevent such dishonest
computations: an attacker that tries to mix the bits of the input will obtain a
final encoding which does not have the good level to be zero-tested and provide
a useful output. Following this idea, the obfuscators of [2,5,23,30,32] also used
straddling set systems to prevent mixed-input attacks.

However, straddling set systems only ensures that an attacker cannot mixed
the inputs of the obfuscated program to obtain a dishonest top level encoding of
zero. But it does not prevent an attacker to create a dishonest encoding of zero at
a level higher than the top level. In the case where the multilinear map is ideal,
this is not a security threat, because the attacker should not be able to test at a
level higher than the top level whether it has created an encoding of zero or not.
However, this is not the case of the GGH13 multilinear map. Indeed, using recent
improvements on the short Principal Ideal Problem [10,13,18] (abbreviated as
sPIP), it has been shown that it is possible to recover in quantum polynomial
time some secret zero-testing element h of the GGH13 map (see Sect. 2.2 for more
details on the GGH13 map). Recovering this secret element will then allow us to
zero-test at a higher level than the one initially authorised.7 This is the starting
point of our mixed-input attack against the iO security of [2,5,6,23,30,32].

As said above, all these candidate obfuscators use straddling set systems,
meaning that performing a dishonest evaluation of the branching program out-
puts an encoding at a forbidden level. However, if we perform two well-chosen
dishonest evaluations and take the product of the resulting encodings, we can
obtain an encoding whose level is twice the maximal level of the multilinear map.
The idea to construct well-chosen dishonest evaluations is to take complementary
ones. For instance, assume the first bit of the input is used three times during
the evaluation of the branching program. A first illegal computation could be to
take this first bit to be equal to 0 the first time it is used, and then to 1 for the
other two times. The complementary illegal computation will then be to take
the first bit to be equal to 1 the first time, and to 0 the other two times. These

7 To be correct, we cannot really test whether we have an encoding of 0, but rather
whether we have an encoding which is a product of two encodings of 0. More details
can be found in Sect. 4.

Quantum Attacks Against Indistinguishablility Obfuscators 157

two illegal computation will result in encodings that are not at the top level,
but there levels will be complementary in the sense that taking the product of
them gives an encoding whose level is twice the top-level. We can then use the
new zero-test parameter obtained above to determine whether this product of
illegal encodings is an encoding of zero or not. It then remains to find a pair
of equivalent branching programs such that the illegal encoding obtained above
is an encoding of zero for one of the two branching programs only. We exhibit
such a pair of branching programs in Sect. 4.3. While we just exhibit one pair, it
should be possible to find many other pairs that can also be distinguished. We
do not pursue this, as finding one such pair suffices to violate the iO property.

All the branching program obfuscators described above have a similar struc-
ture. In order to simplify the description of the attack, and to highlight which
characteristics of these obfuscators are needed for the attack, we describe in
Sect. 3 an abstract obfuscator, that captures the obfuscators of [2,5,23,30,32].
This abstract obfuscator is elementary, and it suffices to describe our attack
against it, in order to attack all the obfuscators of [2,5,23,30,32]. The obfusca-
tor of [6] does not completely fit in this abstract obfuscator and is discussed later.

We finally handle the case of the [19] obfuscator. This obfuscator is different
from the ones presented above, as it encodes a circuit rather than a branching
program. However, it also uses straddling set system to prevent mixed-input
attacks. The same ideas as above can then be adapted to mount a mixed-input
attack against the obfuscator of [19], in quantum polynomial time. Here, a new
difficulty arises, as a dishonest evaluation of the circuit may not always be possi-
ble (for example it can lead to impossible additions, between encodings which are
not at the same level). We handle this difficulty by choosing a specific universal
circuit, for which we know that some dishonest evaluations are possible. As in the
case of the branching program obfuscators, we then give an explicit example of
two circuits whose obfuscated versions can be efficiently distinguished by a quan-
tum attacker. Also, as for the the branching program obfuscators, we describe
our attack against a simple circuit obfuscator, which captures the circuit obfus-
cator of [19]. This simple circuit also captures the circuits obfuscators of [4,37],
hence the attack also applies to these obfuscators, when they are instantiated
with the GGH13 multilinear map.

Impact and open problems. To our knowledge, the only GGH13-based branching
program or circuit obfuscator still standing against quantum attackers is the [22]
branching program obfuscator, when combined with the technique of [20] to
prevent input partitioning. We summarize in Fig. 1 the current state of the art
attacks against branching program or circuit obfuscators based on the GGH13
multilinear map. The obfuscators relying on the CLT multilinear map are already
known to be insecure against quantum attackers, as the CLT multilinear map is
known to be broken if we can factor some public modulus, and we have a quantum
polynomial time algorithm for factoring integers [35]. Finally, the obfuscator of
[24], based on the GGH15 multilinear map, has been proven insecure against
quantum attackers in [14]. In light of this, an interesting question could be
to assess the post-quantum security of the obfuscator of [22] when combined
with [20].

158 A. Pellet-Mary

Obfuscator Quantum attack Classical attack
(instantiated with the GGH13 map)

[22] without [20] [14] [14]
[22] combined with [20] none none

[2, 6, 32] [3, 31] [3, 31]
[5, 30] and this work
[12] [3, 31] [3, 31]

[4, 19,23,37] this work none

Fig. 1. Attacks against GGH13-based branching program and circuit obfuscators

Also, we show that solving the short Principal Ideal Problem enables us to
mount a classical attack against the candidate obfuscators of [19,23]. We could
wonder whether the opposite is true: can we base the security of these candidate
obfuscators or variants thereof on the short Principal Ideal Problem?

Finally, it is interesting to note that the mixed-input attack described in this
article crucially relies on the use of straddling set systems. This may seem para-
doxical, as straddling set systems were introduced to build obfuscators secure in
idealized models, hence supposedly more secure than the first candidates. The
first candidate obfuscators [12,22] tried to prevent mixed-input attacks by using
so-called bundling scalars, but it was heuristic and came with no proof. On the
contrary, the use of straddling set systems allows us to prove that the schemes
are resistant to mixed-input attacks if the underlying multilinear map is some-
how ideal, hence giving us a security proof in some idealized model. However,
this comes at the cost of relying more on the security of the underlying multilin-
ear map. So when the obfuscators are instantiated with the GGH13 multilinear
map, which is known to have some weaknesses, this gives more possibilities to an
attacker to transform these weaknesses of the multilinear map into weaknesses
of the obfuscators. This is what we do is this article, by transforming a weakness
of the GGH13 map into a concrete attack against obfuscators using straddling
set systems. It also explains why our attack does not apply to the obfuscators
of [12,22], which did not use straddling set systems.

Roadmap. In Sect. 2, we recall the GGH13 multilinear map, and the notion of
matrix branching programs. In Sect. 3, we define an abstract obfuscator, which
captures all the obfuscators of [2,5,23,30,32], with both single input and dual
input variants. We will then use this abstract obfuscator to present our attack in
Sect. 4. This will prove Theorem 1, except for the obfuscators of [6,19]. We then
discuss in Sect. 4.4 how to adapt the attack to the obfuscator of [6]. Finally, we
describe in Sect. 5 the obfuscator of [19] and explain how to adapt the mixed-
input attack to this obfuscator, hence completing the proof of Theorem 1.

Quantum Attacks Against Indistinguishablility Obfuscators 159

2 Preliminaries

In this section, we first recall some mathematical background and define some
notations. We then recall the settings of the GGH13 multilinear map and the
definition of matrix branching programs. Finally, we recall recent results for the
Principal Ideal Problem, that we will use in our attack.

2.1 Mathematical Background

Rings. Let R be the ring Z[X]/(Xn + 1) for n a power of two, and K =
Q[X]/(Xn + 1) be its fraction field. We let R× denote the set of invertible
elements of R. For an element x ∈ K, we let xi denote its coefficients when
seen as a polynomial of degree less than n, that is x =

∑n−1
i=0 xiX

i. An ideal
of R is a subset I ⊆ R which is stable by addition and by multiplication by an
element of R. If I = gR = {gr|r ∈ R} for some element g ∈ R, we say that I is
a principal ideal generated by g, and we denote it by gR or 〈g〉. We denote by
{σj}j∈[n] the complex embeddings of K in C. We can write these embeddings as
σ1, · · · , σn/2, σ1, · · · , σn/2, where · denotes the complex conjugation. The (alge-
braic) norm of an element x ∈ K is N (x) =

∏
j∈[n] σj(x) ∈ R. The norm of an

ideal I ⊆ R is N (I) = |R/I|. If I = gR is a principal ideal, then N (I) = N (g).
The product of two ideals I, J ⊆ R, denoted by I · J , is the smallest ideal con-
taining {ab | a ∈ I, b ∈ J}. We say that an ideal I ⊆ R is prime if I �= R and
if for all ideals J1, J2 ⊆ R such that I = J1 · J2, then we have either J1 = R or
J2 = R.

Lattices. We view the ring R as an n-dimensional lattice, where the elements
of R are mapped to the vectors of their coefficients, when seen as polynomials of
degree n − 1. For x, y ∈ K, the inner product of x and y is 〈x, y〉 =

∑
i xiyi. We

also define the �2 norm (or Euclidean norm) of x ∈ K by ‖x‖ =
√∑

i x2
i and

the infinite norm of x by ‖x‖∞ = maxi(xi). Recall the following properties, for
any x, y ∈ K

‖x · y‖ ≤ √
n · ‖x‖ · ‖y‖ (1)

‖x‖∞ ≤ ‖x‖ ≤ √
n · ‖x‖∞. (2)

For x ∈ K, the Minkowski embeddings of x is σ(x) := (Re(σ1(x)), Im(σ1(x)),
· · · ,Re(σn/2(x)), Im(σn/2(x))) ∈ R

n. We define the inner product of the
Minkowski embeddings of two elements x, y ∈ K by the usual inner product
over R

n of σ(x) and σ(y). As we are in a cyclotomic ring of order a power of
two, the geometry induced by the coefficient embeddings is the same, up to scal-
ing, as the one induced by the Minkowski embeddings. This means that for any
x, y ∈ K, we have

〈σ(x), σ(y)〉 = n/2 · 〈x, y〉.
In particular, for all x ∈ K, we have

‖σ(x)‖2 =
√

n/2 · ‖x‖, (3)

160 A. Pellet-Mary

where ‖σ(x)‖2 =
√〈σ(x), σ(x)〉.

An ideal I can be seen as a sub-lattice of R, and hence described by a Z-
basis. The Principal Ideal Problem (PIP) is, given a basis of a principal ideal I,
to recover a generator of I, that is an element g ∈ R such that I = 〈g〉.

For any lattice L, real σ > 0 and point c ∈ L, we define the Gaussian weight
function over L by

ρL,σ,c(x) = exp
(−‖x − c‖2

2σ2

)

.

We define the discrete (spherical) Gaussian distribution over L of parameter
σ and centered in c by

∀x ∈ L, DL,σ,c(x) =
ρL,σ,c(x)
ρL,σ,c(L)

,

where ρL,σ,c(L) =
∑

x∈L ρL,σ,c(x). We simplify ρL,σ,0 and DL,σ,0 into ρL,σ and
DL,σ, and say in that case that the distribution is centered.

2.2 The GGH13 Multilinear Map

We recall in this section the GGH13 multilinear map (or shortly GGH map)
of [21], in its asymmetric setting. The GGH multilinear map allows to encode
elements of ring. We can then homomorphically perform additions and multipli-
cations on these elements, under some constraints. It also allows to publicly test
if an encoding encodes zero. Let q be a large integer (usually taken exponential
in n) and define Rq = R/qR. Let g be some small element of R× chosen such
that the ideal 〈g〉 is prime and has a prime norm. The plaintext space will be
R/gR and the encoding space will be Rq.

Encodings. Let κ be some positive integer and z1, · · · , zκ be chosen randomly
in R×

q .8 These zi’s are chosen during the initialisation phase of the GGH map.
Let S be a subset of [κ] and a + gR be an element of R/gR. An encoding of
a + gR at level S is an element of the form

u = c ·
∏

i∈S

z−1
i mod q,

where c is a small representative of a + gR in R. We sometimes abuse notation
by saying that u is an encoding of a ∈ R instead of a + gR ∈ R/gR. We use
the notation [a]S to denote an encoding of a + gR at level S. When there is no
ambiguity on the level of the encoding, we just write it [a], with no subscript.
We say that c is the numerator of the encoding u and

∏
i∈S zi is its denominator.

8 The distribution of the zi’s does not matter here.

Quantum Attacks Against Indistinguishablility Obfuscators 161

Operations on encodings. Let u1 and u2 be the encodings of two elements a1

and a2 at the same level S. Then u1 + u2 is an encoding of a1 + a2 at level S.
Let u1 and u2 be the encodings of two elements u1 and u2 at level S1 and S2

respectively, with S1 ∩S2 = ∅. Then u1·u2 is an encoding of a1·a2 at level S1∪S2.9

Zero-testing. Let Szt denote the set [κ] and z∗ =
∏

i∈Szt
zi. Let h be some

element in R of �2-norm approximately
√

q. We define pzt = hz∗g−1 mod q and
call it the zero-testing parameter. To test if an encoding u at level Szt is an
encoding of zero or not (i.e., to test if the numerator of u is a multiple of g
or not), compute w = u · pzt mod q. If this is smaller than q3/4,10 then u is an
encoding of zero, otherwise it is not. Indeed, if u = bg(z∗)−1 mod q (i.e., u is
an encoding of zero), then w = bh mod q and the parameters are set such that
||bh|| ≤ q3/4 for a correct level-Szt encoding. On the other hand, if u is not an
encoding of zero, then the g−1 in the zero-testing parameter does not cancel out,
and g−1 mod q is very unlikely to be small compared to q. We can prove that in
this case, w will never be smaller than q3/4 (see [21] for more details).

The elements (n, q, κ, pzt) of the multilinear map are public, while the param-
eters (h, g, {zi}i∈[κ]) are secret. In our case, the obfuscator generates the multi-
linear maps and retains these secret elements. Note that to encode an element,
we need to know the secret parameters g and {zi}i. This means that only the
obfuscator will be able to create encodings from scratch. An encoding generated
by the obfuscator, using the secret parameters, is called a fresh encoding, by
opposition to the encodings obtained by adding or multiplying other encodings.

Size of the parameters. The size of the parameters of the GGH multilinear map
may vary depending on the obfuscator. We present here the size recommended
in the original article [21], with a small change for the size of q, due to the fact
that we use the multilinear map in a different way for obfuscators than what
was described in [21].

• The dimension n of R should be taken such that n = Ω(κλ2), where λ is the
security parameter of the scheme. Taking a lower bound in λ2 was the original
choice of [21] to avoid some lattice attacks. It was reduced to n = Ω(κλ log(λ))
in [28]. However, with the recent sub-exponential algorithm of [9] to solve PIP,
it should be increased back to Ω(κλ2). Looking ahead, the attack we describe
in Sect. 4 has a classical variant which is sub-exponential in the dimension n
of the lattice (it has a complexity O(2

√
n+o(1))). However, as n ≥ Ω(λ2), this

remains exponential in the security parameter λ.
• The secret element g is sampled using a Gaussian distribution, with rejection,

such that ‖g‖ = O(n) and ‖1/g‖ = O(n2).
• The modulus q is chosen such that q ≥ nO(κ). In the original GGH scheme,

the modulus q was chosen greater than 28κλ · nO(κ). This extra factor 28κλ

9 Even if S1 ∩ S2 �= ∅, we can still see u1 · u2 as an encoding of a1 · a2 at level S1 ∪ S2,
where S1 ∪ S2 is a multiset, that is we keep multiple copies of elements that appear
both in S1 and S2.

10 This bound is the one chosen in [21], but it is flexible.

162 A. Pellet-Mary

came from the re-randomisation procedure used originally to publicly gener-
ate level-1 encodings. In the case of obfuscators, as the one that generates
encodings knows the secret parameters, it can generates the fresh encodings
with a numerator of size O(poly(n)) instead of O(2λpoly(n)), and hence get
ride of this factor 28κλ. In all the obfuscators described here, except [19], the
modulus q is exponential in λ. In [19], the obfuscator is built such that q
remains polynomial in λ (even if κ is polynomial in λ, the authors managed
to obtain a polynomial modulus q).

• The secret element h is sampled using a centered Gaussian distribution of
parameter

√
q, so that ‖h‖ = Θ(

√
n · √

q). In [21, Sect. 6.4], the authors
suggest to sample h according to a non spherical Gaussian distribution instead
of a spherical one. In the following we will always assume that h is sampled
according to a spherical Gaussian distribution. We discuss the case of non
spherical distributions in the full version [33].

2.3 Matrix Branching Programs

We recall in this section the definition of matrix branching programs, and we
introduce some notation that will be used throughout the article. A branching
program is defined over a ring R.

Definition 1 (d-ary Matrix Branching Program [3]). A d-ary matrix
branching program A of length � and width w over m-bit inputs is given by
a sequence of square matrices

{Ai,b}i∈[�],b∈{0,1}d ∈ Rw×w,

two bookend vectors
A0 ∈ R1×w and A�+1 ∈ Rw×1,

and an input function inp : [�] → [m]d.
Let x ∈ {0, 1}m and let xi denote the i-th bit of x, for i in [m]. We will use

the notation x[inp(i)] = (xinp(i)1 , xinp(i)2 , · · · , xinp(i)d
) ∈ {0, 1}d, where inp(i) =

(inp(i)1, · · · , inp(i)d) ∈ [m]d.
The output of the matrix branching program on input x ∈ {0, 1}m is given by

A(x) =

{
0 if A0 ·

(∏
i∈[�] Ai,x[inp(i)]

)
· A�+1 = 0

1 otherwise.

Remark. A branching program with d = 1 (respectively with d = 2) is also called
a single input (respectively dual input) branching program. In the following, we
will not distinguish between the single input and dual input cases, as our attack
works in the same way in both cases (and even for higher arity d).

We say that two branching programs are equivalent if they compute the same
function. We also introduce a notion of strong equivalence between branching
programs, which will be useful later for the description of the abstract obfuscator
and our attack.

Quantum Attacks Against Indistinguishablility Obfuscators 163

Definition 2 (Strongly equivalent branching programs). We say that
two d-ary matrix branching programs A = (A0, {Ai,b}i∈[�],b∈{0,1}d , A�+1) and
A′ = (A′

0, {A′
i,b}i∈[�],b∈{0,1}d , A′

�+1), with the same length � and the same input
function inp (but not necessarily defined over the same rings) are strongly equiv-
alent if, for all {bi}i∈[�] ∈ ({0, 1}d)�, we have

A0 ·
∏

i∈[�]

Ai,bi
· A�+1 = 0 ⇐⇒ A′

0 ·
∏

i∈[�]

A′
i,bi

· A′
�+1 = 0. (4)

Remark. This notion is stronger than simple equivalence between branching pro-
grams, because we ask that (4) holds for all possible choices of {bi}i∈[�], and not
only for the ones of the form {x[inp(i)]}i∈[�] for some input x (corresponding to
an honest evaluation of the branching program on x). The pair of branching pro-
grams described in Sect. 4.3 gives an example of equivalent branching programs
that are not strongly equivalent.

2.4 The Short Principal Ideal Problem

We define the short Principal Ideal Problem in the following way.

Definition 3 (Short Principal Ideal Problem). Let h ∈ R be sampled
according to some distribution D. The short Principal Ideal Problem is, given
any basis of the ideal 〈h〉 (when seen as a sub-lattice of R), to recover ±Xi · h
for some i ∈ [n].

For cyclotomic fields of order a power of two, when D is a discrete Gaussian
distribution, this problem can be solved in quantum polynomial time, using the
results of [10,13,18]. In [10], the authors show that given any basis of 〈h〉, an
attacker can recover a generator h̃ of the ideal 〈h〉 in quantum polynomial time.11

Then, the authors of [18], based on an observation of [13], proved that from any
generator h̃ of 〈h〉, if h has been sampled using a discrete Gaussian distribution,
then an attacker can recover ±Xi · h, for some i ∈ [n], in (classical) polynomial
time. This second part (recovering ±Xi · h from h̃) relies on the conjecture that
the set of cyclotomic units of R is equal to R× for power-of-two cyclotomic fields.
We summarise this in the following theorem.

Theorem 2 (adapted from [10,18]). Let h ∈ R be sampled according to
a discrete spherical Gaussian distribution of parameter larger than 200 · n1.5.
Then, under Conjecture 1, there is a quantum polynomial time algorithm such
that, given any basis of the ideal 〈h〉, it recovers ±Xi · h for some i ∈ [n], with
constant probability close to 1 over the choice of h.

Conjecture 1. The set of cyclotomic units of R is equal to R× (see [18] for a
definition of cyclotomic units and a discussion of this conjecture).
11 Note that there also exists a classical sub-exponential time algorithm to recover

˜h, due to [9]. However, their algorithm runs in time O(2
√
n+o(1)), but we chose

n ≥ Ω(λ2), so this algorithm is exponential in the security parameter λ.

164 A. Pellet-Mary

3 An Abstract Obfuscator

Following an idea of Miles, Sahai and Zhandry in [31], we define here an abstract
obfuscation scheme. This abstract obfuscator is inspired by the one of [31] but
is a bit simpler and more general. In particular, it captures all the obfuscators
of Theorem 1, except the ones of [6] and [19]. We will then show in Sect. 4
how to apply our quantum attack to this abstract obfuscator, resulting in an
attack against the obfuscators of [2,5,23,30,32] and we will explain how to adapt
the attack to the branching program obfuscator of [6] (which is just slightly
different from the abstract obfuscator defined in this section). The case of the [19]
obfuscator is postponed in Sect. 5 as it is not a branching program obfuscator,
and so the formalism of the abstract branching program obfuscator does not
apply to it.

The abstract obfuscator takes as input a polynomial size d-ary matrix branch-
ing program A (for some integer d > 0), over the ring of integers Z,12 with a
fixed input function inp and with coefficients in {0, 1}. Usually, the obfuscators
pad the branching program with identity matrices, to ensure that the input func-
tion has the desired structure. Here, to simplify the obfuscator, we will assume
that the obfuscator only accepts branching programs with the desired inp func-
tion (the user has to pad the branching program himself before giving it to the
obfuscator). For the attack to work, we ask that there exist two different inte-
gers j1 and j2 such that inp(j1) ∩ inp(j2) �= ∅ (meaning that there is a bit of
the input which is inspected at least twice during the evaluation of the branch-
ing program). This can be assumed for all the obfuscators of Theorem 1.13 Let
w be the width of A, � be its length, A0, A�+1 be its bookend vectors and
{Ai,b}i∈[�],b∈{0,1}d ∈ {0, 1}w×w be its square matrices. Recall that the function
computed by the branching program A is defined by

A(x) =

{
0 if A0 ·

(∏
i∈[�] Ai,x[inp(i)]

)
· A�+1 = 0

1 otherwise.

The abstract obfuscator then proceeds as follows.

• It instantiates the GGH multilinear map and retains its secret parameters
(g, h, {zi}i∈[κ]) and its public parameters (n, q, κ, pzt). The choice of the
parameters of the GGH map depends on the parameters �, w and d of the
branching program A.

• It transforms the matrices of branching program A to obtain a new branching
program Â, with the same parameters w, d, �, the same input function inp,
and which is strongly equivalent to A. We denote by {Âi,b}i∈[�],b∈{0,1}d ∈
(R/gR)w×w and Â0 ∈ (R/gR)1×w, Â�+1 ∈ (R/gR)w×1 the matrices and

12 Most of the time, the matrices of the branching program will be permutation matri-
ces, and the underlying ring will have no importance.

13 This is even mandatory for the dual input version of the obfuscators, as it is usually
required that all pairs (s, t) (or (t, s)) appear in the inp function, for any s, t ∈ [m]
with s �= t.

Quantum Attacks Against Indistinguishablility Obfuscators 165

bookend vectors of Â. Note that this new matrix branching programs has
its coefficients in the ring R/gR and not in {0, 1}. Recall that strong equiva-
lence means that

A0 ·
∏

i∈[�]

Ai,bi
· A�+1 = 0 ⇐⇒ Â0 ·

∏

i∈[�]

Âi,bi
· Â�+1 = 0 (in R/gR) (5)

for all choices of bi ∈ {0, 1}d, with i ∈ [�]. This condition is required for our
attack to work, and is satisfied by all the obfuscators of [2,5,23,30,32]. To
transform the initial branching program A into this new branching pro-
gram Â, the obfuscators of [2,5,23,30,32] first embed the matrices of A into
the ring R/gR (this is possible since the coefficients of the matrices are 0
and 1). Then, they use various tools, taken among the following.14

1. Transform the matrices Ai,b into block-diagonal matrices
(

Ai,b

Bi,b

)

,

were Bi,b are square w′ × w′ matrices in R/gR, chosen arbitrarily (they
can be fixed, or chosen at random, this will have no importance for us),
with w′ polynomial in the security parameter λ. In order to cancel the
extra diagonal block, the vector A0 is transformed into

(
A0 0

)
, with a

block of zeros of size 1×w′. The vector A�+1 is transformed into
(

A�+1

B�+1

)

,

with B�+1 an arbitrary w′ × 1 vector.
2. Use Killian randomisation, that is, choose � + 1 non singular matrices

{Ri}i∈[�+1] ∈ (R/gR)w×w and transform Ai,b into Ri · Ai,b · Radj
i+1, where

Radj
i+1 is the adjugate matrix of Ri+1, i.e., Ri+1 · Radj

i+1 = det(Ri+1) · In.
Transform also A0 into A0 · Radj

1 and A�+1 into R�+1 · A�+1.
3. Multiply by random scalars, i.e., multiply each matrix Ai,b by some ran-

dom scalar αi,b ∈ (R/gR)×. Also multiply A0 and A�+1 by α0 and α�+1

respectively.
We can check that all the transformations described above output a branch-
ing program which is strongly equivalent to the one given in input, so the
final branching program Â is also strongly equivalent to A (as in (5)). In the
following, we will only be interested in (5), not in the details of the transfor-
mation.

• Finally, the obfuscator encodes the matrices {Âi,b}i,b, Â0 and Â�+1 at some
level {Si,b}i,b, S0 and S�+1 respectively, using the GGH multilinear map.
The choice of these levels (called a straddling set system) depends on the
obfuscators, but will have no importance in the following. The only property
that we need, and that is fulfilled by the above obfuscators, is that for any
entry x, the sets S0, S�+1 and Si,x[inp(i)] for i ∈ [l] are disjoint and we have

S0 ∪ (∪i∈[l]Si,x[inp(i)]

) ∪ S�+1 = Szt. (6)

This means that every honest evaluation of the encoded branching program
outputs an element at level Szt, that can be zero-tested. This condition is

14 The obfuscators of [23,32] use the three tools while the ones of [2,5,30] use Tools 2
and 3 only.

166 A. Pellet-Mary

necessary for the above obfuscators to be correct (otherwise we cannot eval-
uate the obfuscated branching program).

• The obfuscator then outputs the elements [Â0]S0 , {[Âi,b]Si,b
}i∈[l],b∈{0,1}d ,

[Â�+1]S�+1 and the public parameters of the GGH map (n, q, κ, pzt).

To evaluate the obfuscated branching program on input x, compute

ux = [Â0]S0 ×
∏

i∈[�]

[Âi,x[inp(i)]]Si,x[inp(i)] × [Â�+1]S�+1 .

By Property (5), this is an encoding of zero if and only if the output of the
original branching program was zero. And by Property (6), this encoding is
at level Szt. So using pzt, we can perform a zero-test and output 0 if this is
an encoding of 0 and 1 otherwise. In the following, we will sometimes simplify
notations and forget about the subscripts Si,b, as the levels of the encodings are
entirely determined by the encoded matrices Ai,b.

For our attack to work, we will need to assume that if we evaluate the obfus-
cated branching program on enough inputs for which the output is zero, then we
can recover a basis of the ideal 〈h〉 (where h is a secret element of the GGH13
map, as described in Sect. 2.2). More formally, we make the following heuristic
assumption.

Heuristic 1. Let X0 be the set of inputs on which the branching program
evaluates to 0 and let x ∈ X0. If we evaluate the obfuscated branching program
on x and zero-test the final encoding, we obtain a ring element of the form
rx · h ∈ R. We assume that the set of all rx · h for x ∈ X0 spans the ideal 〈h〉
(and not a smaller ideal contained in 〈h〉). We also assume that if x is chosen
uniformly in X0, then we can obtain a basis of 〈h〉 with a polynomial number of
samples.

Discussion about Heuristic 1. We make the heuristic assumption above to sim-
plify the description of our attack. This heuristic assumption is coherent with
the numerical experiments we made (see the full version [33] for a description of
the experimental results). Moreover, we also observe that, even if we recover an
ideal J ⊆ 〈h〉 instead of the ideal 〈h〉, we can still handle it if 〈h〉 has a constant
number of prime factors (see the full version for more details).

This completes the definition of our abstract obfuscator, which captures the
obfuscators of [2,5,23,30,32]. In the next section, we describe a mixed-input
attack against this abstract obfuscator, where all we use is that it satisfies Prop-
erties (5) and (6).

4 The Main Attack

We will now prove our main theorem.

Quantum Attacks Against Indistinguishablility Obfuscators 167

Theorem 3. Let O be any of the obfuscators in [2,5,6,23,30,32], on single or
dual input branching programs, instantiated with the GGH13 multilinear map
[21] (respectively, let O be any of the circuit obfuscators in [4,19,37]). Assume
the secret parameter h of the GGH13 multilinear map is sampled using a spher-
ical Gaussian distribution (as in Sect. 2.2). Then, there exist two explicit equiv-
alent branching programs (respectively, two equivalent circuits) A and A′ such
that O(A) and O(A′) can be distinguished in quantum polynomial time, under
Conjecture 1 and Heuristic 1.

The limitation to the case where h is sampled according to a spherical Gaus-
sian distribution is discussed in the full version. We show that if q is large enough,
or if h is a product of a small number of spherical Gaussian distributions, then
our result still holds. We leave as an open problem to show that the attack goes
through for every efficient way of sampling h, or to find a way that allows to
thwart the attack (although we lean towards the former rather than the latter).
The necessity for h being sampled according to a spherical Gaussian distribution
appears in Theorem 2, to solve the short Principal Ideal Problem and recover
the secret element h. It is not used anywhere else in the attack, in particular, it
is not used in the mixed-input part of the attack (see Sect. 4.2).

To prove Theorem 3, we present a quantum polynomial time attack against
the abstract obfuscator described in Sect. 3. This results into an attack against
the iO security of the branching program obfuscators of [2,5,23,30,32]. We then
explain how to slightly modify this attack to use it against the obfuscator of
[6], whose structure is very close to the one of the abstract obfuscator. Finally,
adapting the attack to the circuit obfuscator of [19] will require more work,
because its structure is further away from the abstract obfuscator.

The attack works in two steps. We first recover the secret element h of the
GGH multilinear map. Using the results of [10,13,18], recalled in Sect. 2.4, this
can be done in quantum polynomial time. Knowing this secret element h, we
are able to construct a zero-testing parameter p′

zt at a higher level than Szt.
We can then use this new parameter p′

zt to mount a (classical) polynomial time
mixed-input attack against the abstract obfuscator.

4.1 Creating a New Zero-Testing Parameter in Quantum
Polynomial Time

We first explain in this section how we can recover the secret parameter h of the
multilinear map in quantum polynomial time. We then describe how to construct
a new zero-testing parameter at a level higher than Szt, using h. Note that the
following is folklore, we recall it for the sake of completeness.

The first step is to recover sufficiently many multiples of h, to obtain a basis of
the ideal 〈h〉 (when seen as a sub-lattice of R). This part of the attack was already
described in the original article [21], and can be done in classical polynomial time,
under Heuristic 1. Observe that for each top-level encoding that pass the zero-
test, we obtain a multiple of h. We make the heuristic Assumption 1 to ensure
that we indeed recover a basis of the ideal 〈h〉, by zero-testing sufficiently many

168 A. Pellet-Mary

top-level encodings of zero. For this step to work, we need that the branching
program evaluates sufficiently often to 0, to obtain sufficiently many encodings
of 0. In the following, we will choose branching programs that compute the
always zero function, hence the condition on the number of encodings that pass
the zero-test will be satisfied.

We then recover ±Xih from the basis of the ideal 〈h〉, using Theorem 2. This
can be done in quantum polynomial time, under Conjecture 1, as h is sampled
according to a Gaussian distribution of parameter larger than 200 ·n1.5. The fact
that we recover ±Xjh instead of h will have no importance for our attack,15 so
in the following we will assume that we recovered h exactly. In [21, Sect. 6.4], the
authors propose another distribution for the secret parameter h (the element h
is sampled according to a non spherical Gaussian distribution). Theorem 2 does
not apply as it in this case, but we show in the full version that our attack can
be extended to some other distributions of h.

We now explain how to use h to create a new zero-testing parameter p′
zt at a

higher level than Szt. A close variant of this step was already mentioned in [21,
Sect. 6.3.3]. The authors explained how to use a small multiple of 1/h and a low
level encoding of zero to create a new zero-testing parameter that enabled to test
at a higher level whether the numerator of an encoding was a multiple of g or not
(i.e., if the encoding was an encoding of zero or not). In our case, the situation
is a little different, as we do not know any low level encoding of zero. Hence, we
only manage to create a new zero-testing parameter that enables us to determine
whether the numerator of an encoding is a multiple of g2 or not. In the following,
we will say that an encoding is an encoding at level 2Szt if its denominator is
(z∗)2. For instance, such an encoding can be obtained by multiplying two level
Szt encodings. We see the level 2Szt as a multiset containing all the elements of
Szt twice. We use the secret h to compute a new zero-testing parameter p′

zt at
level 2Szt. Recall that pzt = hz∗g−1 mod q. We then define

p′
zt = p2zth

−2 mod q = (z∗)2 · g−2 mod q.

Again, note that even if we call it a new zero-testing parameter, p′
zt only enables

us to test whether the numerator of a level 2Szt encoding is a multiple of g2,
and not g, as our original zero-test parameter pzt did. But still, being able to
test at a level higher than Szt if the numerator is a multiple of g2 will enable
us to mount a mixed-input attack against the abstract obfuscator of Sect. 3. We
describe this mixed-input attack in the next subsection.

4.2 The Mixed-Input Attack

We now assume that we have built a new pseudo-zero-test parameter p′
zt, as

in Subsect. 4.1 (in quantum polynomial time), and that we are given an obfus-
cated branching program ([Â0]S0 , {[Âi,b]Si,b

}i∈[l],b∈{0,1}d , [Â�+1]S�+1), obtained
by using our abstract obfuscator defined in Sect. 3.

15 This is because both Xj and its inverse −Xn−j have euclidean norm 1.

Quantum Attacks Against Indistinguishablility Obfuscators 169

Let x and y be two different inputs of the branching program. A mixed-
input attack consists in changing the value of some bits of the input during the
evaluation of the obfuscated branching program. For instance, the way we will do
it is by taking some matrix [Âi,y[inp(i)]]Si,y[inp(i)] , instead of [Âi,x[inp(i)]]Si,x[inp(i)] ,
while evaluating the program on x. Such mixed-input attack can leak information
on the program being obfuscated (see the specific choice of branching programs
described in the next subsection). In order to prevent mixed-input attack, the
abstract obfuscator uses a straddling set system. The intuition is that if the
attacker tries to mix the matrices [Âi,x[inp(i)]]Si,x[inp(i)] and [Âi,y[inp(i)]]Si,y[inp(i)] , it
will not get an encoding at level Szt at the end of the computation and hence it
cannot zero-test it. However, we can use our new zero-testing parameter p′

zt to
handle this difficulty.

Let j ∈ [�] and compute

ũx,j = [Â0] ·
∏

i<j

[Âi,x[inp(i)]] · [Âj,y[inp(j)]] ·
∏

j<i≤�

[Âi,x[inp(i)]] · [Â�+1]

ũy,j = [Â0] ·
∏

i<j

[Âi,y[inp(i)]] · [Âj,x[inp(j)]] ·
∏

j<i≤�

[Âi,y[inp(i)]] · [Â�+1],

that is, we exchange [Âj,x[inp(j)]]Sj,x[inp(j)] and [Âj,y[inp(j)]]Sj,y[inp(j)] in the honest
evaluations of the obfuscated branching program on x and y.

The encodings ũx,j and ũy,j will have illegal levels Sx and Sy that are different
from Szt. But as we only exchange two matrices between correct evaluations, we
know that ũx,j · ũy,j will be encoded at the same level as ux ·uy where ux and uy

are the correct evaluations of the obfuscated branching program on x and y.
As ux and uy are correct evaluations, using Property (6), we know that they
are encoded at level Szt. Hence ũx,j · ũy,j is encoded at level 2Szt, and we can
zero-test ũx,j · ũy,j using p′

zt.
Remember that an encoding will pass this zero-test only if its numerator is

a multiple of g2 and not only g. A simple way to ensure that ũx,j · ũy,j has a
numerator which is a multiple of g2 is to choose x and y such that ũx,j and ũy,j

are both encodings of 0 (i.e., their numerator are both multiples of g, and hence
their product has a numerator which is a multiple of g2). Using Property (5) of
our abstract obfuscator, we know that ũx,j is an encoding of 0 if and only if

A0 ·
∏

i<j

Ai,x[inp(i)] · Aj,y[inp(j)] ·
∏

j<i≤�

Ai,x[inp(i)] · A�+1 = 0.

We denote by ãx,j the left hand side of this equation. In the same way, we define

ãy,j = A0 ·
∏

i<j

Ai,y[inp(i)] · Aj,x[inp(j)] ·
∏

j<i≤�

Ai,y[inp(i)] · A�+1,

and we have that ũy,j is an encoding of 0 if and only if ãy,j = 0.
To conclude, if we manage to find two equivalent branching programs A

and A′, two inputs x and y and an integer j ∈ [�] such that ãx,j = ãy,j = 0

170 A. Pellet-Mary

for A but ã′
x,j �= 0 and ã′

y,j �= 0 for A′, then we can distinguish between the
obfuscation of A and the one of A′. Indeed, the numerator of ũx,j · ũy,j will be
a multiple of g2 in the case of A but the numerator of ũ′

x,j · ũ′
y,j will not be a

multiple of g in the case of A′ (and therefore not a multiple of g2 either). Hence,
using p′

zt, we can determine which of the branching program A or A′ has been
obfuscated.

In the next subsection, we present two possible branching programs A and A′

and inputs x and y that satisfy the condition above. We note that this condition
is easily satisfied and it should be possible to find a lot of other branching
programs satisfying it. We just propose here a simple example of such branching
programs, in order to complete the proof of Theorem 1.

4.3 A Concrete Example of Branching Programs

In this section, we present an example of two branching programs A and A′

that are equivalent, but such that their obfuscated versions, obtained using the
abstract obfuscator, can be distinguished using the framework described above,
hence attacking the iO security of the obfuscator.

Remember that for the first step of our attack (recovering h and creating p′
zt,

see Sect. 4.1), we need to have a sufficient number of inputs x that evaluate to
zero. Here, we choose branching programs that compute the always zero function.
We now show how to satisfy the conditions for the second part of the attack
(Sect. 4.2).

Let I = Iw ∈ {0, 1}w×w be the identity matrix and J ∈ {0, 1}w×w be a
matrix of order two (i.e., J �= I and J2 = I). One could for example take

J =

⎛

⎝
0 1
1 0

Iw−2

⎞

⎠ . Our first branching program will consist in identity matrices

only. We will build our second branching program such that when evaluating it
on input x, we have a product of � matrices I (when we forget about the bookend
vectors), but on input y we have a product of �−2 matrices I and 2 matrices J .16

We will then exchange one of these J matrices with an I matrix in the evaluation
on x. The resulting products will then be equal to matrix J instead of matrix I
(as it is the case for the first branching program). We describe the two branching
programs more precisely below.

Input selection function. Recall that the input selection function inp is fixed
and is such that there are at least two distinct integers j1 and j2 such that
inp(j1) ∩ inp(j2) �= ∅. Let s be such that s ∈ inp(j1)∩inp(j2). This means that
when evaluating the branching program on some input, the j1-th and the j2-th
matrices of the product both depend on the s-th bit of the input. Without loss of
generality, we assume that inp(j1) = (s, s2, · · · , sd) and inp(j2) = (s, t2, · · · , td)
for some integers si and ti in [m].

16 As J has order 2, the resulting product will still be the identity matrix.

Quantum Attacks Against Indistinguishablility Obfuscators 171

Matrices. Our first branching program A consists in identity matrices only, i.e.,
Ai,b = I for all i ∈ [�] and b ∈ {0, 1}d. For our second branching program A′,
we take

A′
i,b =

{
I if i �∈ {j1, j2} or b1 = 0
J if i ∈ {j1, j2} and b1 = 1,

where b = (b1, · · · , bd). This means that when evaluating the branching pro-
gram A′ on some input x, if xs = 0, then all the matrices of the product are
identity matrices. And if xs = 1, then the j1-th and j2-th matrices of the product
are J matrices and the others are I matrices. As J has order two, the product
will always be the identity.

Bookend vectors. We take A0 and A�+1 to be two vectors such that A0IA�+1 = 0

but A0JA�+1 �= 0. For instance, with the choice of J =

⎛

⎝
0 1
1 0

Iw−2

⎞

⎠, we can take

A0 =
(
1 0 . . . 0

)
and A�+1 =

(
0 1 0 . . . 0

)T , where AT denotes the transpose of
A for any matrix A. These bookend vectors are the same for both branching
programs, i.e., A′

0 = A0 and A′
�+1 = A�+1.

These two branching programs A and A′ are equivalent as they both compute
the always zero function. Now, take x = 0 . . . 0 and y = 0 . . . 010 . . . 0 where the 1
is at the s-th position, and let j = j1. Let us compute ãx,j , ãy,j for branching
program A and ã′

x,j , ã
′
y,j for branching program A′.

Branching program A. As all matrices are identity matrices in A, exchanging
two matrices does not change the product and we still have

ãx,j = A0 ·
∏

i<j

Ai,x[inp(i)] · Aj,y[inp(j)] ·
∏

j<i≤�

Ai,x[inp(i)] · A�+1 = A0 · I · A�+1 = 0,

ãy,j = A0 ·
∏

i<j

Ai,y[inp(i)] · Aj,x[inp(j)] ·
∏

j<i≤�

Ai,y[inp(i)] · A�+1 = A0 · I · A�+1 = 0.

Branching program A′. Here, we chose our parameters so that an honest
evaluation of A′ on x leads to a product of only I matrices and an honest
evaluation of A′ on y leads to a product of � − 2 matrices I and 2 matrices J .
We also chose j so that we exchange a J matrix with a I matrix. Hence, we have

ã′
x,j = A′

0 ·
∏

i<j

A′
i,x[inp(i)] · A′

j,y[inp(j)] ·
∏

j<i≤�

A′
i,x[inp(i)] · A′

�+1 = A0 · J · A�+1 �= 0,

ã′
y,j = A′

0 ·
∏

i<j

A′
i,y[inp(i)] · A′

j,x[inp(j)] ·
∏

j<i≤�

A′
i,y[inp(i)] · A′

�+1 = A0 · J · A�+1 �= 0.

To conclude, this gives us the desired condition of Sect. 4.2. Indeed, for the
branching program A, the numerator of ũx,j · ũy,j is a multiple of g2, hence
zero-testing it with the parameter p′

zt gives a positive result. Oppositely, for

172 A. Pellet-Mary

the branching program A′, the numerator of ũx,j · ũy,j is not a multiple of g,17

hence zero-testing it with the parameter p′
zt gives a negative result. We can then

distinguish between the obfuscations of A and A′. This completes the proof of
Theorem 1 for the obfuscators of [2,5,23,30,32].

4.4 Other Branching Program Obfuscators

We now discuss the possible extension of this attack to other branching program
obfuscators that are not captured by the abstract obfuscator of Sect. 3.

Obfuscator of [6]. This obfuscator is close to the one described in the abstract
model, except that it obfuscates a slightly different definition of branching pro-
grams. In [6], a branching program A comes with an additional value qacc, and
we have A(x) = 0 if and only if A0 · ∏

i∈[l] Ai,x[inp(i)] · A�+1 = qacc. The only
difference with the definition of branching programs given in Sect. 2.3 is that qacc

may be non-zero. Hence, when multiplying by the scalars αi,b in the obfuscator
(see Tool 3), we may change the output of the function. To enable correct eval-
uation of the obfuscated branching program, the obfuscator of [6] also publishes
encodings of the scalars αi,b at level Si,b.

More formally, the obfuscator of [6] uses Tools 2 and 3 of Sect. 3. In Tool 2, the
authors use R−1

i+1 instead of Radj
i+1, in order to keep the same product (otherwise

the product would be multiplied by the determinants of the Ri matrices). Let
Âi,b = αi,bRiAi,bR−1

i+1 be the matrices obtained after re-randomization (using
Tools 2 and 3). Let Â0 = A0R

−1
1 and Â�+1 = R�+1A�+1. The obfuscator provides

encodings of the matrices Â0, {Âi,b}i,b and Â�+1 at levels S0, {Si,b}i,b and S�+1,
respectively. It also provides encodings of the {αi,b}i,b at levels {Si,b}i,b and an
encoding of qacc at level S0 ∪ S�+1. Then, to evaluate the obfuscated branching
program on input x, one computes

[Â0]S0 ·
∏

i∈[�]

[Âi,x[inp(i)]]Si,x[inp(i)] ·[Â�+1]S�+1 −[qacc]S0∪S�+1 ·
∏

i∈[�]

[αi,x[inp(i)]]Si,x[inp(i)] ,

and tests whether this is an encoding of 0 or not. By construction, this will be
an encoding of 0 at level Szt if and only if A(x) = 0.

The first part of our attack (recovering h and p′
zt) still goes through. We

slightly modify the mixed-input part. Instead of exchanging only the j-th matrix
between the evaluations of x and y, we will also exchange the corresponding αj,b

in the second product. Doing so, we ensure that the product of the αi,b’s remains
the same in both sides of the difference. This also ensures that the level of both
sides will be the same after the exchange, and hence we can still subtract them.
The same example as in Sect. 4.3 will then work also for this obfuscator. This
gives us a way to distinguish in quantum polynomial time between the obfuscated
versions of two equivalent branching programs, hence attacking the iO security
of the obfuscator of [6].
17 The ideal 〈g〉 is chosen prime in GGH so the product of two elements that are not

divisible by g is also not divisible by g.

Quantum Attacks Against Indistinguishablility Obfuscators 173

Obfuscators of [12,22]. Our attack does not seem to extend to the obfuscators
of [12,22]. The obstacle is that the security of these obfuscators against mixed-
input attacks does not rely on the GGH map but on the scalars αi,b, which
are chosen with a specific structure to ensure that the branching program is
correctly evaluated.

More precisely, these obfuscators use (single input) branching programs with
a slightly different definition, where the product of matrices (with the bookend
vectors) is never 0. For instance, the branching programs are chosen such that
the product of the matrices (on honest evaluations) is either 1 or 2, in which cases
we say that the output of the branching program is respectively 0 or 1. Hence,
when evaluating the obfuscated branching program on input x, the user obtains
a top-level encoding of either

∏
i αi,xi

or 2
∏

i αi,xi
depending on the output of

the branching program. In order for the user to determine which one of the two
encodings it has obtained, the obfuscated branching program also provide him
(via a so-called dummy branching program) with a top-level encoding

∏
i αi,xi

.
The user then only has to subtract the two top-level encodings and zero-test to
determine whether A(x) = 0 or 1. Now, if the user tries to mix the inputs, it
can obtain a top-level encoding of (αj,yj

· ∏
i
=j αi,xi

) · ax,j for instance (where
ax,j = 1 or 2 is the product of the corresponding matrices). But, as it is not an
honest evaluation, it will not have a top-level encoding of αj,yj

· ∏
i
=j αi,xi

to
compare it with.

Following the same idea as for the mixed-input attack described above, the
attacker could compute two top-level encodings of (αj,yj

· ∏
i
=j αi,xi

) · ax,j and
(αj,xj

·∏i
=j αi,yi
)·ay,j and then multiply them to obtain an encoding of (

∏
i αi,xi

·∏
i αi,yi

) · ax,j · ay,j at level 2Szt. Now, using the top-level encodings of
∏

i αi,xi

and
∏

i αi,yi
that are provided by the obfuscated branching program, one can

also obtain an encoding of (
∏

i αi,xi
· ∏i αi,yi

) at level 2Szt. So if we could zero-
test at level 2Szt, then we could distinguish between a branching program where
ax,j · ay,j = 1 and one where ax,j · ay,j �= 1. But we cannot zero-test at level
2Szt: our new zero-testing parameter p′

zt only enables us to determine whether
the numerator of an encoding is a multiple of g2 or not. Here, we subtract two
level-2Szt encodings of the same value, so the numerator of the result will be a
multiple of g, but it is very unlikely to be a multiple of g2. Hence, we do not
learn anything by using p′

zt. Because of the final subtraction, we did not manage
to obtain an encoding at level 2Szt whose numerator was a multiple of g2, and
so we did not manage to adapt the mixed-input attack described above to the
obfuscators of [12,22].

5 Adapting the Attack to the Obfuscator of [19]

Unlike the abstract branching program described in Sect. 3, the obfuscator of
[19] does not obfuscate branching programs, but it obfuscates circuits directly.
The structure of this obfuscator is very different from the abstract obfuscator
described in Sect. 3 and so the attack described in Sect. 4 cannot be directly
applied to it. However, similarly to the other obfuscators described above, the

174 A. Pellet-Mary

obfuscator of [19] also uses the levels of the GGH multilinear map to prevent
mixed-input attacks. This is the weakness we exploited to mount a mixed-input
attack against the abstract obfuscator, and here again, this will enable us to
attack the [19] obfuscator, by attacking the underlying GGH multilinear map.
In this section, we first describe in a simplified way the obfuscator of [19] (this
simplified version also captures the obfuscators of [4,37]). We then show how
to adapt our attack to mount a quantum polynomial-time mixed-input attack
against this candidate obfuscator.

5.1 The Obfuscator

The obfuscator of [19] uses the GGH multilinear map [21] in its asymmet-
ric version, but with a composite g. More concretely, sample three elements
g1, g2, g3 ∈ R as for the original g in the GGH map, that is ‖gi‖ = O(n),
‖1/gi‖ = O(n2) and such that N (gi) is a prime integer, for all i ∈ [3]. Then,
let g = g1g2g3. If we denote by Ri = R/giR the quotient rings for i ∈ [3], then
using the Chinese reminder theorem we know that the encoding space R/gR is
isomorphic to R1 × R2 × R3. In the following, it will be useful to choose this
point of view, as we will encode triplets of elements (a1, a2, a3) ∈ R1 × R2 × R3,
using the GGH map.

Let Σ be some subset of {0, 1}l with both l and |Σ| that are polynomial in
the security parameter λ. We will be interested into arithmetic circuits C : Σ →
{0, 1}. By arithmetic circuits, we mean that C performs addition, multiplication
and subtraction over the bits of the element of Σ (i.e., C is an arithmetic circuit
from {0, 1}l to {0, 1}, but we are only interested in its restriction to Σ ⊆ {0, 1}l).
The operations over the bits are performed over Z but we only consider circuits
whose output is in {0, 1}. Let C be a class of such circuits, whose size is bounded
by some polynomial (the properties of this class of circuit will not be interesting
for our attack) and let U be a universal circuit for the class C . The size of U is
also bounded by some polynomial in the security parameter. We abuse notation
by denoting by C both a circuit of C and its bit representation, that is we have
U(σ,C) = C(σ) for any σ ∈ Σ (the first C denotes the bit representation of the
circuit while the second one represent the function computed by the circuit).

To obfuscate a circuit C of the class C , the main idea of [19] is that the
obfuscator will produce GGH encodings of the bits of C and of the bits of all
the possible inputs σ ∈ Σ. Then, to evaluate the obfuscated circuit, it suffices to
homomorphically evaluate the universal circuit U on these encodings and to test
whether the result is 0 or not. In order to prove the security of their obfuscators,
the authors of [19] added other gadgets to their obfuscator. The first idea is
to encode the useful information only in the second slot of the GGH map (in
the ring R2) and to use the two other slots to prevent some mixed-input attack
(where we mix the bits of two circuits). They also use straddling set systems,
like the abstract obfuscator defined in Sect. 3, to prevent other kind of mixed
input attacks (where we mix the bits of two inputs). We describe below in more
details how the obfuscator of [19] obfuscates a circuit C ∈ C . In order to help

Quantum Attacks Against Indistinguishablility Obfuscators 175

understanding what is happening, we also describe in parallel how to evaluate
the obfuscated circuit.

1. First, we encode each bit of all the possible inputs σ ∈ Σ (recall that we chose
|Σ| to be polynomial in the security parameter, so it is possible to enumerate
all the elements of Σ). For each symbol σ ∈ Σ and each bit position i ∈ [l],
define W

(1)
i,σ = [r(1)σ · w

(1)
i,σ]

S
(1)
σ

and R
(1)
σ = [r(1)σ]

S
(1)
σ

, where r
(1)
σ is sampled

uniformly in R/gR× (and only depends on σ) and

w
(1)
i,σ = (y(1)

i , σi, ρ
(1)
i,σ) ∈ R1 × R2 × R3,

for σi the i-th bit of σ and y
(1)
i and ρ

(1)
i,σ sampled uniformly in R1 and R3

respectively. The level S
(1)
σ of the encoding will be chosen to prevent mixed-

input attacks. We will go into more details about the levels of the encodings
later. These encodings W

(1)
i,σ and R

(1)
σ are made public, for i ∈ [l] and σ ∈ Σ.

Note that y
(1)
i is the same for all symbols σ, this will be necessary for cor-

rectness.
2. Second, we encode the bits of the representation of the circuit C ∈ C . We

denote by |C| the size of the bit representation of C. For each 1 ≤ j ≤ |C|,
define W

(2)
j = [r(2) · w

(2)
j]S(2) and R(2) = [r(2)]S(2) , where r(2) is sampled

uniformly in R/gR× and

w
(2)
j = (y(2)

j , Cj , ρ
(2)
j) ∈ R1 × R2 × R3,

for Cj the j-th bit of the representation of C and y
(2)
j and ρ

(2)
j sampled

uniformly in R1 and R3 respectively. Again, the level S(2) of the encoding
will be described later. These encodings W

(2)
j and R(2) are made public, for

1 ≤ j ≤ |C|.

Once we have encodings for the bits of C and for all the possible input values
σ ∈ Σ, as the universal circuit U only performs additions, subtractions and
multiplications, we can homomorphically evaluate it on the encodings. We can
always perform multiplications of encodings, it will only increase the level of the
encodings. However, there is a subtlety for addition and subtraction, as we can
only add and subtract encodings at the same level. To circumvent this difficulty,
the authors of [19] use the encodings R(2) and R

(1)
σ . During the evaluation of the

universal circuit U on the encodings, we will perform computations so that for all
intermediate encodings we compute, we always have encodings of the form [r·w]S
and [r]S , with the same level S. At the beginning, all the encodings described
above have the desired form [r·w]S and [r]S . If we want to multiply [r1 ·w1]S1 and
[r2 ·w2]S2 , we just compute the product of the encodings to get [r1r2 ·w1w2]S1∪S2

and we also compute the product of the r part to obtain [r1r2]S1∪S2 . Note that
here, the union of the two sets S1 ∪ S2 keeps multiple copies of the elements
that appear both in S1 and in S2 (i.e., S1 ∪ S2 is a multiset). If we want to add
[r1 · w1]S1 and [r2 · w2]S2 , then two cases appear. If r1 = r2 and S1 = S2, then

176 A. Pellet-Mary

add both encodings to get [r1 · (w1 +w2)]S1 and keep [r1]S1 . Otherwise, compute
[r1]S1 · [r2 · w2]S2 + [r2]S2 · [r1 · w1]S1 = [r1r2 · (w1 + w2)]S1∪S2 and compute the
product [r1r2]S1∪S2 . We proceed similarly for subtraction.

With this technique, we can evaluate the circuit U on the encodings provided
by the obfuscator, independently of the levels used to encode them. Assume we
evaluate it honestly on the encodings of C and of some input σ ∈ Σ, we then
obtain encodings Wσ = [rσ · wσ]Sσ

and Rσ = [rσ]Sσ
at some level Sσ, for some

rσ ∈ R/gR, where

wσ = (y∗, C(σ), ρσ) ∈ R1 × R2 × R3,

for some y∗ ∈ R1 and ρσ ∈ R3. Note that, as the y
(1)
i ’s do not depend on the

input σ, the value y∗ is the same for all σ’s. We then want to annihilate the
values in the extra slots (that is y∗ and ρσ) to recover the value of C(σ) by
zero-testing. To do that, the obfuscator provides two more encodings.

3. To annihilate the value in the third slot, the obfuscator output encodings
Ŵσ = [r̂σ ·ŵ]

̂Sσ
and R̂σ = [r̂σ]

̂Sσ
, for all σ ∈ Σ, where r̂σ is sampled uniformly

in R/gR× and
ŵ = (ŷ, α̂, 0),

for ŷ and α̂ uniformly chosen in R1 and R×
2 , respectively.

Multiplying the encoding of wσ = (y∗, C(σ), ρσ) obtained above, by this
encoding of ŵ = (ŷ, α̂, 0) enables us to cancel the last slot and to obtain an
encoding of ŵσ := (ŷ · y∗, α̂ · C(σ), 0). We also multiply the r parts, as described
above. Note that to cancel this third slot, the obfuscator outputs one pair of
encodings for each symbol σ ∈ Σ. While this may seem useless because each
encoding encodes the same ŵ, this is in fact required to standardise the levels
of the encodings. Indeed, after evaluating the universal circuit on the encodings
of C and σ, we obtain an encoding whose level depends on σ. By multiplying
with an encoding at a complementary level at this step, we can then ensure that
the level of the product is independent of σ. This property will be important,
because to zero-test the final encoding, we need it to be at the maximal level Szt,
independently of the input σ.

4. Finally, to cancel the first slot, the obfuscator provides two encodings W̄ =
[r̄ · w̄]S̄ and R̄ = [r̄]S̄ , where r̄ is sampled uniformly in R/gR× and

w̄ = (ŷ · y∗, 0, 0).

Note that ŵσ−w̄ = 0 if and only if C(σ) = 0. Hence, it suffices to subtract the
corresponding encodings (using the r part, because the levels of the encodings
will not match) and to zero-test the obtained encoding to determine whether
C(σ) = 0 or 1.

This completes the description of the obfuscator, together with the correct-
ness proof of the evaluation of the obfuscated program. Before describing the
mixed-input attack, we would like to insist on some properties of the obfuscator
described above.

Quantum Attacks Against Indistinguishablility Obfuscators 177

• The levels of the encodings output by the obfuscator are chosen such that all
honest evaluations of the obfuscated circuit on some input σ ∈ Σ produce
encodings with the same level. This level is then chosen to be the maxi-
mal level of the GGH map, and will be denoted by Szt. The obfuscator also
provides a zero-test parameter pzt to enable zero-test at level Szt. In the fol-
lowing, the only thing that will be interesting for our attack is that a honest
evaluation of the obfuscated circuit on any input σ ∈ Σ outputs an encod-
ing at level Szt, so we do not go into more details about the levels of the
encodings.

• As we already noted, the value y∗ obtained in the first slot after evaluating
the universal circuit on the encodings of C and σ does not depend on σ.
This is needed for the last step, where we subtract ŷ · y∗. As we want this
to output 0 for any input (to cancel out the first slot), the value y∗ has to
be independent of σ. This first slot prevents us from mixing the bits of the
circuit C, but does not prevent us from mixing the bits of the input σ (i.e.,
changing the value of some bit during the evaluation). Mixing the bits of
the input is only prevented by the GGH map and the straddling set system
(recall that the levels of the encodings depend on the input σ). This is the
kind on mixed-input attack we will be able to perform after recovering the
secret element h of the GGH map.

Differences between the DGGMM obfuscator and our simplification above. The
obfuscator of [19] obfuscates circuits from Σc to {0, 1} for some constant c,
instead of circuits from Σ to {0, 1} as described above. However, for our attack,
we can take the constant c to be equal to 1, so we simplified a bit the description
of the obfuscator and forgot about this constant c. If needed, the attack can be
easily adapted to the case where c is a constant different from 1.

Also, the obfuscator of [19] uses an extra slot where it computes a PRF,
and which is cancelled out before zero-testing by multiplying by an encoding
of 0 in this slot (the principle is the same as for cancelling the third slot of the
obfuscator described here). This extra slot is used only in the proof of security
and does not interfere with our mixed-input attack, so we removed it from the
description above.18

Finally, in the obfuscator of [19], we have w̄ = (ŷ · y∗, α̂, 0) instead of
w̄ = (ŷ · y∗, 0, 0). So when subtracting, we obtain at the end an encoding of
(0, α̂(1 − C(σ)), 0), which is 0 if and only if C(σ) = 1, instead of 0 if and only if
C(σ) = 1 as in our simplification. However, both versions are equivalent, as we
can always negate the output of the circuit. In order to be consistent with the
other obfuscators described in this article, we decided to stick with the fact that
obtaining an encoding of 0 means that the circuit outputs 0.

The DGGMM obfuscator was designed to obtain a candidate iO obfuscator
from low noise multilinear maps. To do so, the class of circuit C targeted by

18 This extra slot can be captured by the simplification above by taking g3 to be a
product of two prime elements and changing the distribution of the elements ρ in
the third slot of the encodings. This has no impact on our attack.

178 A. Pellet-Mary

the obfuscator described above is a very restrictive one (among other things,
it requires that the circuits have a constant depth and a polynomial number of
inputs). The authors then use a theorem from [29] to bootstrap their construction
for this restricted class of circuit C to an obfuscator for all circuits in P/poly.

Remark. The DGGMM obfuscator is very similar to the previous circuit obfus-
cators of [4,37], and the simple circuit obfuscator described above also cap-
tures these obfuscators. Hence, the attack described below also applies to the
obfuscators of [4,37], when instantiated with the GGH13 multilinear map (these
obfuscators were originally instantiated with the CLT multilinear map, as they
require composite-order multilinear maps, but they can also be instantiated with
a modified version of the GGH13 map, as observed in [19]).

5.2 The Mixed-Input Attack

As mentioned above, the attack will consist in modifying a bit of the input σ
during the computation. The idea is the same as for the attack of Sect. 4. We
start by recovering the secret element h of the GGH map in quantum polynomial
time, using the works of [10,13,18]. As above, we can obtain top level encodings
of 0 each time the circuit evaluates to 0, so by choosing a circuit that evaluates
to 0 sufficiently often, we can recover a basis of the ideal 〈h〉 (under Heuristic 1)
and then recover h exactly (under Conjecture 1). We then construct a new zero-
testing parameter p′

zt at level 2Szt (testing whether the numerator of an encoding
is a multiple of g2, and not only g). This first step of the attack works exactly
as described in Sect. 4.1 and we do not re-explain it here.

The second part of the attack (using p′
zt to mount a mixed input attack)

will differ from the one for the abstract branching program obfuscator. The
first difference is that in the abstract branching program obfuscator, we only
computed products of matrices. So by changing a matrix, we just changed the
final level of the encodings but all the operations remained possible (products of
encodings are always possible, whatever their levels are). Here, as we evaluate
a circuit with additions and multiplications, we must be careful. Indeed, if we
change the level of one encoding of a sum but not the other one, we will not be
able to perform the sum anymore. To circumvent this difficulty, we will use a
specific universal circuit, which ends up by a multiplication. Let U be a universal
circuit for the class of circuit C . We define a new circuit Ũ , which takes as input
a concatenation of the description of two circuits in C and an input σ ∈ Σ and
computes the product of the evaluations of the two circuits on input σ. More
formally, we define

Ũ(σ,C1 · C2) = U(σ,C1) · U(σ,C2).

The circuit Ũ is a universal circuit for the class C · C . Note that when eval-
uating the circuit Ũ , we finish the evaluation with a multiplication. To perform
our mixed input attack, we will evaluate U(·, C1) and U(·, C2) honestly on dif-
ferent inputs σ1 and σ2. As each partial evaluation is honest, we can perform

Quantum Attacks Against Indistinguishablility Obfuscators 179

all the required operations on the encodings. The dishonest computation will be
the last multiplication only.

Let σ1 and σ2 be two distinct elements of Σ. Let C00 be a circuit that
evaluates always to 0 on Σ. We also let C10 be a circuit that evaluates to 1
on σ1 and to 0 otherwise and C01 be a circuit that evaluates to 1 on σ2 and to 0
otherwise. The functions computed by C00 ·C00 and by C01 ·C10 are the same, so
these circuits are equivalent. We will now show how to distinguish the obfuscated
versions of C00 · C00 and C01 · C10, when using the universal circuit Ũ . As both
circuits are equivalent, this will result into an attack against the iO security of
the obfuscator.

Objective: The obfuscator obfuscates the circuit C1 ·C2 ∈ {C00 ·C00, C01 ·C10},
and we want to distinguish whether C1 · C2 = C00 · C00 or C1 · C2 = C01 · C10.

1. The obfuscator encodes the bits of C1 and C2 under the GGH map, as well
as the bits of all possible inputs σ ∈ Σ. In particular, we have encodings for
σ1 and σ2. We homomorphically evaluate U on the encodings of C1 and σ1,
C1 and σ2, C2 and σ1 and C2 and σ2.19 These are honest partial evaluations
of the circuit Ũ on input σ1 and σ2, so we can perform these evaluations (in
particular, there will not be incompatibilities of encodings levels). We obtain
four pairs of encodings (Rb1b2 = [rb1b2]Sb1b2

,Wb1b2 = [rb1b2 · wb1b2]Sb1b2
), for

b1, b2 ∈ {1, 2}2, where

wb1b2 = (yb1 , Cb1(σb2), ρb1b2).

Recall that the y part of the encoding does not depend on the input σ, so
this is independent of b2 for our notations.

2. A honest evaluator of the obfuscated program would then multiply the encod-
ings W11 and W21 (of C1(σ1) and C2(σ1)) and the encodings W12 and W22

(of C1(σ2) and C2(σ2)). However, in order to distinguish which circuit has
been obfuscated, we do not perform these honest computations. Instead, fol-
lowing the idea of the mixed input attack described in Sect. 4.2, we compute
W11 ·W22 and W12 ·W21 (and we do the same for the r part). We then obtain
two encodings W̃1 and W̃2 of

w̃1 := (y∗, C1(σ1) · C2(σ2), ρ11ρ22)
and w̃2 := (y∗, C1(σ2) · C2(σ1), ρ12ρ21)

at levels S11 ∪ S22 and S12 ∪ S21 respectively. Note that the first slot of the
encodings contains y∗, as it would for a honest evaluation.

3. We then complete the computation as if W̃1 was an honest evaluation on σ1

and W̃2 was an honest evaluation on σ2. That is, we first multiply W̃1

by Ŵσ1 and W̃2 by Ŵσ2 to cancel the third slot. We obtain two encodings Ŵ1

and Ŵ2 of

19 Recall that U(σ, C) = C(σ) and the universal circuit we chose is Ũ(σ, C1 · C2) =
U(σ, C1) · U(σ, C2).

180 A. Pellet-Mary

ŵ1 := (y∗ · ŷ, α̂ · C1(σ1) · C2(σ2), 0)
and ŵ2 := (y∗ · ŷ, α̂ · C1(σ2) · C2(σ1), 0)

at levels S11 ∪ S22 ∪ Ŝσ1 and S12 ∪ S21 ∪ Ŝσ2 , respectively.
4. Finally, we cancel the first slot by subtracting W̄ to the encodings Ŵ1 and Ŵ2

obtained above. Note that this subtraction is between encodings that are not
at the same level (for both honest and dishonest evaluations), so the resulting
level is the union of the levels of both parts of the subtraction. We obtain two
encodings W̄1 and W̄2 of

w̄1 := (0, α̂ · C1(σ1) · C2(σ2), 0)
and w̄2 := (0, α̂ · C1(σ2) · C2(σ1), 0)

at levels S11 ∪ S22 ∪ Ŝσ1 ∪ S̄ and S12 ∪ S21 ∪ Ŝσ2 ∪ S̄, respectively.
5. Now, we would like to zero-test the encodings W̄1 and W̄2 obtained above,

but because we mixed the inputs, the levels of the encodings are unlikely
to be Szt and we are not able to zero-test. However, we know that S11 ∪
S21 ∪ Ŝσ1 ∪ S̄ = Szt, because the encoding obtained by honestly evaluating
the obfuscated program on σ1 has this level. In the same way, we know that
S12 ∪ S22 ∪ Ŝσ2 ∪ S̄ = Szt. Hence, the level of the product W̄1 · W̄2 is 2Szt.
Using our p′

zt parameter, we can then test whether its numerator is a multiple
of g2 or not.

• In the case where C1 · C2 = C00 · C00, we have w̄1 = 0 mod g and w̄2 =
0 mod g. Hence, their product is a multiple of g2. So the numerator of
W̄1 · W̄2 is a multiple of g2, and the zero-test using p′

zt answers positively.
• In the case where C1 · C2 = C01 · C10, we have w̄1 = 0 mod g and w̄2 �=

0 mod g. So the product is a multiple of g2 if and only if w̄1 is a multiple
of g2, which is very unlikely (w̄1 is obtained by subtracting two values
that are equal modulo g1, so this is a multiple of g1 but this is unlikely
to be a multiple of g21).

20 Hence, the numerator of W̄1 · W̄2 will not be
a multiple of g2 (with high probability), and the zero-test using p′

zt will
fail.

We can then distinguish between the obfuscated versions of C00 · C00 and
C01 · C10 in (classical) polynomial time, using our new zero-testing parame-
ter p′

zt obtained in quantum polynomial time.

This completes our quantum attack against the obfuscators of [4,19,37] and
the proof of Theorem 1.

Acknowledgments. The author is grateful to Damien Stehlé for helpful discussions
and comments on the draft. The author was supported by an ERC Starting Grant
ERC-2013-StG-335086-LATTAC.

20 Note that even if w̄1 were a multiple of g2, then, by taking p′
zt = (z∗ · g−1)3 mod q,

we could mount the same kind of attack, at level 3Szt instead of 2Szt.

Quantum Attacks Against Indistinguishablility Obfuscators 181

References

1. Albrecht, M.R., Bai, S., Ducas, L.: A subfield lattice attack on overstretched NTRU
assumptions. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp.
153–178. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-
4 6

2. Ananth, P.V., Gupta, D., Ishai, Y., Sahai, A.: Optimizing obfuscation: avoiding
Barrington’s theorem. In: ACM CCS 14: 21st Conference on Computer and Com-
munications Security, pp. 646–658. ACM Press, November 2014

3. Apon, D., Döttling, N., Garg, S., Mukherjee, P.: Cryptanalysis of indistinguisha-
bility obfuscations of circuits over GGH13. In: International Colloquium on
Automata, Languages, and Programming. Springer, Heidelberg (2017)

4. Applebaum, B., Brakerski, Z.: Obfuscating circuits via composite-order graded
encoding. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 528–
556. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7 21

5. Badrinarayanan, S., Miles, E., Sahai, A., Zhandry, M.: Post-zeroizing obfuscation:
new mathematical tools, and the case of evasive circuits. In: Fischlin, M., Coron, J.-
S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 764–791. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-49896-5 27

6. Barak, B., Garg, S., Kalai, Y.T., Paneth, O., Sahai, A.: Protecting obfuscation
against algebraic attacks. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 221–238. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-642-55220-5 13

7. Barak, B., et al.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-44647-8 1

8. Barrington, D.A.M.: Bounded-width polynomial-size branching programs recog-
nize exactly those languages in NC1. In: 18th Annual ACM Symposium on Theory
of Computing, pp. 1–5. ACM Press, May 1986

9. Biasse, J.-F., Espitau, T., Fouque, P.-A., Gélin, A., Kirchner, P.: Computing gen-
erator in cyclotomic integer rings. In: Coron, J.-S., Nielsen, J.B. (eds.) EURO-
CRYPT 2017. LNCS, vol. 10210, pp. 60–88. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-56620-7 3

10. Biasse, J.-F., Song, F.: Efficient quantum algorithms for computing class groups
and solving the principal ideal problem in arbitrary degree number fields. In: Pro-
ceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pp. 893–902. Society for Industrial and Applied Mathematics (2016)

11. Brakerski, Z., Rothblum, G.N.: Obfuscating conjunctions. In: Canetti, R., Garay,
J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 416–434. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-40084-1 24

12. Brakerski, Z., Rothblum, G.N.: Virtual black-box obfuscation for all circuits via
generic graded encoding. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp.
1–25. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8 1

13. Campbell, P., Groves, M., Shepherd, D.: Soliloquy: a cautionary tale. In: ETSI 2nd
Quantum-Safe Crypto Workshop, pp. 1–9 (2014)

14. Chen, Y., Gentry, C., Halevi, S.: Cryptanalyses of candidate branching program
obfuscators. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol.
10212, pp. 278–307. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
56617-7 10

https://doi.org/10.1007/978-3-662-53018-4_6
https://doi.org/10.1007/978-3-662-53018-4_6
https://doi.org/10.1007/978-3-662-46497-7_21
https://doi.org/10.1007/978-3-662-49896-5_27
https://doi.org/10.1007/978-3-642-55220-5_13
https://doi.org/10.1007/978-3-642-55220-5_13
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/978-3-319-56620-7_3
https://doi.org/10.1007/978-3-319-56620-7_3
https://doi.org/10.1007/978-3-642-40084-1_24
https://doi.org/10.1007/978-3-642-54242-8_1
https://doi.org/10.1007/978-3-319-56617-7_10
https://doi.org/10.1007/978-3-319-56617-7_10

182 A. Pellet-Mary

15. Cheon, J.H., Han, K., Lee, C., Ryu, H., Stehlé, D.: Cryptanalysis of the multilinear
map over the integers. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015.
LNCS, vol. 9056, pp. 3–12. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-46800-5 1

16. Cheon, J.H., Jeong, J., Lee, C.: An algorithm for NTRU problems and cryptanalysis
of the GGH multilinear map without a low-level encoding of zero. LMS J. Comput.
Math. 19(A), 255–266 (2016)

17. Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over the inte-
gers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp.
476–493. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-
4 26

18. Cramer, R., Ducas, L., Peikert, C., Regev, O.: Recovering short generators of prin-
cipal ideals in cyclotomic rings. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT
2016. LNCS, vol. 9666, pp. 559–585. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49896-5 20

19. Döttling, N., Garg, S., Gupta, D., Miao, P., Mukherjee, P.: Obfuscation from
low noise multilinear maps. Cryptology ePrint Archive, Report 2016/599 (2016).
http://eprint.iacr.org/2016/599

20. Fernando, R., Rasmussen, P.M.R., Sahai, A.: Preventing CLT attacks on obfus-
cation with linear overhead. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017.
LNCS, vol. 10626, pp. 242–271. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-70700-6 9

21. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
1–17. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9 1

22. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: 54th
FOCS, pp. 40–49. IEEE, October 2013

23. Garg, S., Miles, E., Mukherjee, P., Sahai, A., Srinivasan, A., Zhandry, M.: Secure
obfuscation in a weak multilinear map model. In: Hirt, M., Smith, A. (eds.) TCC
2016-B. LNCS, vol. 9986, pp. 241–268. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-53644-5 10

24. Gentry, C., Gorbunov, S., Halevi, S.: Graph-induced multilinear maps from lat-
tices. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 498–527.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7 20

25. Goyal, R., Koppula, V., Waters, B.: Lockable obfuscation. In: FOCS 2017, pp.
612–621. IEEE (2017)

26. Hu, Y., Jia, H.: Cryptanalysis of GGH map. In: Fischlin, M., Coron, J.-S. (eds.)
EUROCRYPT 2016. LNCS, vol. 9665, pp. 537–565. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49890-3 21

27. Kirchner, P., Fouque, P.-A.: Revisiting lattice attacks on overstretched NTRU
parameters. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS,
vol. 10210, pp. 3–26. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
56620-7 1

28. Langlois, A., Stehlé, D., Steinfeld, R.: GGHLite: more efficient multilinear maps
from ideal lattices. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS,
vol. 8441, pp. 239–256. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-642-55220-5 14

https://doi.org/10.1007/978-3-662-46800-5_1
https://doi.org/10.1007/978-3-662-46800-5_1
https://doi.org/10.1007/978-3-642-40041-4_26
https://doi.org/10.1007/978-3-642-40041-4_26
https://doi.org/10.1007/978-3-662-49896-5_20
https://doi.org/10.1007/978-3-662-49896-5_20
http://eprint.iacr.org/2016/599
https://doi.org/10.1007/978-3-319-70700-6_9
https://doi.org/10.1007/978-3-319-70700-6_9
https://doi.org/10.1007/978-3-642-38348-9_1
https://doi.org/10.1007/978-3-662-53644-5_10
https://doi.org/10.1007/978-3-662-53644-5_10
https://doi.org/10.1007/978-3-662-46497-7_20
https://doi.org/10.1007/978-3-662-49890-3_21
https://doi.org/10.1007/978-3-319-56620-7_1
https://doi.org/10.1007/978-3-319-56620-7_1
https://doi.org/10.1007/978-3-642-55220-5_14
https://doi.org/10.1007/978-3-642-55220-5_14

Quantum Attacks Against Indistinguishablility Obfuscators 183

29. Lin, H.: Indistinguishability obfuscation from constant-degree graded encoding
schemes. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665,
pp. 28–57. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-
3 2

30. Miles, E., Sahai, A., Weiss, M.: Protecting obfuscation against arithmetic attacks.
Cryptology ePrint Archive, Report 2014/878 (2014). http://eprint.iacr.org/2014/
878

31. Miles, E., Sahai, A., Zhandry, M.: Annihilation attacks for multilinear maps: crypt-
analysis of indistinguishability obfuscation over GGH13. In: Robshaw, M., Katz, J.
(eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 629–658. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53008-5 22

32. Pass, R., Seth, K., Telang, S.: Indistinguishability obfuscation from semantically-
secure multilinear encodings. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014.
LNCS, vol. 8616, pp. 500–517. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-662-44371-2 28

33. Pellet-Mary, A.: Quantum attacks against indistinguishablility obfuscators proved
secure in the weak multilinear map model. Cryptology ePrint Archive, Report
2018/533 (2018). http://eprint.iacr.org/2018/533

34. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In 46th Annual ACM Symposium on Theory of Computing, pp.
475–484. ACM Press, May/June 2014

35. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factor-
ing. In: FOCS 1994, pp. 124–134. IEEE (1994)

36. Wichs, D., Zirdelis, G.: Obfuscating compute-and-compare programs under LWE.
In: FOCS 2017, pp. 600–611. IEEE (2017)

37. Zimmerman, J.: How to obfuscate programs directly. In: Oswald, E., Fischlin, M.
(eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 439–467. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46803-6 15

https://doi.org/10.1007/978-3-662-49890-3_2
https://doi.org/10.1007/978-3-662-49890-3_2
http://eprint.iacr.org/2014/878
http://eprint.iacr.org/2014/878
https://doi.org/10.1007/978-3-662-53008-5_22
https://doi.org/10.1007/978-3-662-44371-2_28
https://doi.org/10.1007/978-3-662-44371-2_28
http://eprint.iacr.org/2018/533
https://doi.org/10.1007/978-3-662-46803-6_15

Cryptanalyses of Branching Program
Obfuscations over GGH13 Multilinear

Map from the NTRU Problem

Jung Hee Cheon, Minki Hhan(B), Jiseung Kim, and Changmin Lee

Seoul National University, Seoul, Republic of Korea
{jhcheon,hhan ,tory154,cocomi11}@snu.ac.kr

Abstract. In this paper, we propose cryptanalyses of all existing indis-
tinguishability obfuscation (iO) candidates based on branching programs
(BP) over GGH13 multilinear map for all recommended parameter set-
tings. To achieve this, we introduce two novel techniques, program con-
verting using NTRU-solver and matrix zeroizing, which can be applied to
a wide range of obfuscation constructions and BPs compared to previous
attacks. We then prove that, for the suggested parameters, the existing
general-purpose BP obfuscations over GGH13 do not have the desired
security. Especially, the first candidate indistinguishability obfuscation
with input-unpartitionable branching programs (FOCS 2013) and the
recent BP obfuscation (TCC 2016) are not secure against our attack
when they use the GGH13 with recommended parameters. Previously,
there has been no known polynomial time attack for these cases.

Our attack shows that the lattice dimension of GGH13 must be set
much larger than previous thought in order to maintain security. More
precisely, the underlying lattice dimension of GGH13 should be set to
n = Θ̃(κ2λ) to rule out attacks from the subfield algorithm for NTRU
where κ is the multilinearity level and λ the security parameter.

Keywords: Obfuscations · Multilinear maps
Graded encoding schemes · NTRU

1 Introduction

Constructing a general-purpose program obfuscation has been a long stand-
ing coveted open problem [8,9] in spite of their fruitful applications. At FOCS
2013, Garg et al. suggested the first plausible candidate general-purpose indis-
tinguishability obfuscation (GGHRSW) [23] using branching program (BP) rep-
resentation of functions [10]. This first candidate of iO has ignited the various
subsequent studies [3,5–7,15,24,30,32,34] on obfuscations, all of which stand on
the cryptographic multilinear maps.

To date, there are three plausible candidates of multilinear map; the first is
due to Garg, Gentry, and Halevi [22] (GGH13), the second is due to Coron,
Lepoint, and Tibouchi [19] and the last is due to Gentry, Gorbunov, and
c© International Association for Cryptologic Research 2018
H. Shacham and A. Boldyreva (Eds.): CRYPTO 2018, LNCS 10993, pp. 184–210, 2018.
https://doi.org/10.1007/978-3-319-96878-0_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96878-0_7&domain=pdf

Cryptanalyses of BP Obfuscations over GGH13 Multilinear Map 185

Halevi [25]. The security of three candidates are not well clarifed, whereas some
works [3,7,15,30,34] claim the security under the idealized model, so-called the
generic multilinear map model.

Recently several works try to overcome this gap [6,24,29]. In particular, Garg
et al. proved the security of the slightly modified first candidate iO construction
(GMMSSZ) under the weak multilinear map model of GGH13, which captures
all existing polynomial time attacks on BP obfuscations over GGH13 multilinear
map [24]. Despite the provable security under these models, the practical security
of obfuscations over GGH13 is still in dubious nature.

Direct attack to GGH13. As a direct method of analyzing obfuscations over
GGH13, we may consider attacks on the GGH13 encoding scheme. The latent
hardness problems of GGH13 are the (overstretched) NTRU problem and the
short generator of principal ideal generator problem (SPIP).

The subfield attacks, proposed by Albrecht et al. and Cheon et al. indepen-
dently [1,18], are the most notable algorithms to solve the NTRU problem. These
attacks shows that the underlying NTRU problem of GGH13-based obfuscation
is solved in polynomial time whenever the multilinear level κ is larger than the
security parameter λ. By combining this with the algorithms to solve SPIP [12–
14,20], GGH13 is broken in classical subexponential time on security parameter
λ for the instantiations in [2,27] or quantum polynomial time. This work shows
that the parameters of GGH13 should be set to prevent either the algorithms
for NTRU or PIP.1

Attacks on BP Obfuscations over GGH13. For obfuscations over GGH13
multilinear map, several cryptanalyses have also been suggested. The annihila-
tion attack introduced by Miles et al. [31] showed that some constructions of
single/dual input BP obfuscations [3,6,7,30] do not have the desired security
when they are used for general-purpose and implemented with GGH13. The
authors presented a very simple example of BPs which are threatened by anni-
hilation attacks. Soon after, Apon et al. [4] extended the range of annihilation
attacks to BPs generated by Barrington’s theorem [10] which is the fundamental
method to transform NC1 circuits into bounded width BPs.

Chen et al. [16] presented another attack on BP obfuscation over GGH13
multilinear map. They showed that there exist two functionally equivalent pro-
grams with a special property called input-partitionable, and their obfuscated
programs by GGHRSW can be efficiently distinguished.

Limitations of Previous Works. Despite the diverse attacks on BP obfusca-
tions over GGH13 multilinear map, GGHRSW remains secure against all known
PPT attack when it only takes input-unpartitionable BPs as input, such as BPs
generated by Barrington’s theorem. Meanwhile, there is no known polynomial

1 Indeed, the parameters of original paper [22] are already set to be n = Θ̃(κλ2) so
that known classical algorithms for PIP require exponential time for λ. On the other
hands, the improved parameters [2,27] allow the subexponential time attacks.

186 J. H. Cheon et al.

time attack for multi-input branching program obfuscations including GMMSSZ.
We also remark that the direct approach [1], with the current best algorithm to
solve SPIP [13,20], has the classical exponential running time with respect to
security parameter λ when the dimension n of the base number field satisfies
n = Ω(λ2).

Our Contribution. We present distinguishing attacks on candidates BP iO
over GGH13 multilinear map based on the algorithm to solve the NTRU prob-
lem. With the novel two techniques, program converting and matrix zeroizing
attack, we show that existing general-purpose BP obfuscations cannot achieve
the desired security when the obfuscations use GGH13 with proposed parame-
ters in [2,22,27]. In other words, there are two functionally equivalent BPs with
same length such that their obfuscations obtained by an existing BP obfusca-
tions over GGH13 can be distinguished in polynomial time for the suggested
parameters.

Our attack is applicable to wide range of obfuscations and BPs compared to
the previous attacks. In particular, we show that multi-input BP obfuscations
such as GMMSSZ construction are insecure in the NTRU-solvable parameter
regime. Further, we show that the first candidate indistinguishability obfusca-
tion GGHRSW based on GGH13 with current parameters also does not have the
desired security even if it only obfuscates input-unpartitionable BPs including
branching programs generated by Barrington’s theorem. Although a new prop-
erty of BPs called linear relationally inequivalence is exploited in our attack, we
show that various pairs of BPs satisfy this property.

As a result, we show that the BP obfuscations based on GGH13 multilinear
map with suggested parameters are broken using the algorithm for NTRU solely.
Therefore the underlying lattice dimension n of GGH13 should be set to n =
Θ̃(κ2λ) to maintain 2λ security of obfuscation schemes. This implies the iO based
on GGH13 is even much inefficient than the previous results [1,28].

1.1 Technical Overview

Here we briefly show how our attack is applied to simplified GGHRSW.

Simplified GGHRSW Obfuscation. Let P = {Mi,b ∈ Z
d×d}b∈{0,1},1≤i≤� be

a set of matrices corresponding to a single input BP such that

P (x) :=

{
0 if

∏�
i=1Mi,xi

= Id

1 if
∏�

i=1Mi,xi
�= Id,

where xi is the i-th bit of x. The obfuscator randomizes the given BP over several
steps.

1. Sample random and independent scalars {αi,b, α
′
i,b}b∈{0,1},1≤i≤� such that∏�

i=1 αi,xi
=
∏�

i=1 α′
i,xi

for all x ∈ {0, 1}�.2

2 In fact αi,b = α′
i,b should holds in this simplified setting, but we do not use this

equality to give the idea of our attack.

Cryptanalyses of BP Obfuscations over GGH13 Multilinear Map 187

2. Sample bookend vectors {s, t, s′, t′} such that s · t = s′ · t′.
3. Sample invertible matrices {Ki,K

′
i ∈ Z

d×d}0≤i≤� and set

R0 = s · K−1
0 , R′

0 = s′ · K ′−1
0

Ri,b = αi,b · Ki−1 · Mi,b · K−1
i , R′

i,b = α′
i,b · K ′

i−1 · Id · K ′−1
i

R�+1 = K� · t, R′
�+1 = K ′

� · t′.

For the sake of simplicity, we write R0,b, R�+1,b, R′
0,b, and R′

�+1,b to denote R0,
R�+1, R′

0, and R′
�+1, respectively. The randomized BP can then maintain the

same functionality as the following evaluation, where x0, x�+1 are 0.

P (x) =

{
0 if

∏�+1
i=0Ri,xi

−∏�+1
i=0R

′
i,xi

= 0
1 if

∏�+1
i=0Ri,xi

−∏�+1
i=0R

′
i,xi

�= 0.

As a final step, each entry of the Ri and R′
i is encoded through the GGH13

multilinear map. Let R = Z[X]/〈Xn + 1〉. The plaintext space and encoding
space of GGH13 multilinear map is specified by Rg = R/〈g〉 with some small
element g ∈ R and Rq = R/〈q〉 with some large integer q ∈ Z, respectively. In
GGH13 multilinear map, a random and invertible element z ∈ Rq is sampled.
Then the encoding of m is of the form enc(m) = [(r · g + m)/z]q for some small
random element r ∈ R. The smallness of g and r implies that the size of the
numerator is quite smaller than q. We write enc(Ri,b) to denote the matrix whose
entries are encoding of entries of Ri,b.

Then, in the case of P (x) = 0, evaluation of the encoded BP over input x
can be computed as follows:

�+1∏
i=0

enc(Ri,xi
) −

�+1∏
i=0

enc(R′
i,xi

) =
[e · g

z�+2

]
q

where the term e is the small noise element of R. If it is evaluated for another
input x, the numerator of the evaluated value cannot be a multiple of g.

In order to check whether the numerator of the evaluation value of the
encoded BP is a zero or not, the GGH13 multilinear map provide a zerotest-
ing parameter pzt = [(h · z�+2)/g]q for some element h ∈ R of size ≈ √

q. More
precisely, when the pzt is multiplied by the evaluated value, it is of the form h ·r′

and its size is much smaller than q if the numerator is a multiple of g. Otherwise
it is a large value. Hence, one can publicly test that whether the plaintext of the
encoding is zero or not and an encoded BP give the same functionality with the
original BP by employing the zerotesting parameter pzt.

In summary, the GGHRSW obfuscator outputs the following set as an obfus-
cated BP.

{enc(Ri,b), enc(R′
i,b),pzt}

Goal of Cryptanalysis on Simplified GGHRSW Obfuscation. The sim-
plified GGHRSW obfuscation given above is called indistinguishability obfus-
cation if the following statement holds: For every two BPs P 0 = {M0

i,b}, and

188 J. H. Cheon et al.

P 1 = {M1
i,b} with the same size and the same functionality and randomly cho-

sen c ∈ {0, 1}, any PPT adversary cannot recover c from the given obfuscated
program {enc(Rc

i,b), enc(R
′c
i,b),pzt}.

In other words, our purpose of the cryptanalysis is to recover such c for
appropriately given P 0, P 1 and its obfuscation.

Program Converting Technique. In the first step, we remove the modulus q
using the algorithm for NTRU. The (1, 1) and (1, 2) components of the enc(R1,1)
are of the form [(r1,1 · g + m1,1)/z]q and [(r1,2 · g + m1,2)/z]q, respectively. The
ratio [(r1,1 · g + m1,1)/(r1,2 · g + m1,2)]q of two encodings can be understood as
an instance of the NTRU problem.

By solving the NTRU problem, we can obtain multiples of the denominator
and numerator

β · (r1,1 · g + m1,1, r1,2 · g + m1,2) ∈ R2

for some small element β ∈ R. Further, dividing β · (r1,1 · g + m1,1) by a
[(r1,1 · g + m1,1)/z]q, we can compute [β · z]q. By multiplying this value to all
entries of enc(Ri,b) and enc(R′

i,b), we replace 1/z with a small element β. The
obtained entries are of the form β · (rj,k · g + mj,k), which can be understood as
an element defined in R, not Rq due to its small size. We denote these new BP
matrices with entries in R by {Di,b} and {D′

i,b}, respectively.
Next we consider an input x such that P (x) = 0.3 The corresponding com-

putation of matrices R is zero, thus the following equation holds over R for such
input.

�+1∏
i=0

Di,xi
−

�+1∏
i=0

D′
i,xi

= e · g · β�+2

Hence, the term is a multiple of g. Using the same procedure for other zeros of
P , one can recover several multiples of g and then we can recover a basis of ideal
〈g〉 using lattice algorithms.

Then we can do a plain-like procedure using the above results. More precisely,
the following equations hold.

EvalD (x) :=
�+1∏
i=0

Di,xi
=

�+1∏
i=0

αi,xi
· s ·

�∏
i=1

M c
i,xi

· t (mod g)

Eval′D (x) :=
�+1∏
i=0

D′
i,xi

=
�+1∏
i=0

α′
i,xi

· s′ ·
�∏

i=1

Id · t′ (mod g)

Removing Scalars. In the above step, we removed the modulus q using the
solutions of the NTRU problem and obtained matrices {Di,b,D

′
i,b} and a basis

of ideal 〈g〉. We now remove the effects of scalars α. EvalD (x) and Eval′D (x)

3 Because of this step, our attack cannot be applied to BP obfusaction for evasive
functions.

Cryptanalyses of BP Obfuscations over GGH13 Multilinear Map 189

share the same scalar
∏�+1

i=0 αi,xi
=
∏�+1

i=0 α′
i,xi

due to its definition. Thus, we can
compute

EvalD (x)/Eval′D (x) = 1/(s′ · t′) ·
(

s ·
�∏

i=1

M c
i,xi

· t

)
(mod g).

We note that these values EvalD (x)/Eval′D (x) all share the same scalar
1/(s′ · t′) (mod g).

Matrix Zeroizing Attack. At last we introduce the matrix zeroizing attack.
We denote EvalM 0(x) and ẼvalD (x) as

∏�
i=1 M0

i,xi
and EvalD (x)/Eval′D (x),

respectively.
Then, for several EvalM 0(xj) for 1 ≤ j ≤ τ , we can find a vector q =

(q1, · · · , qτ) such that
∑τ

j=1 qj · EvalM 0(xj) = 0d, where 0d is a zero matrix. If
c = 1 so that the obfuscated BP is derived from P 0, the following equation also
holds.

τ∑
j=1

cj · ẼvalD (xj) = 0d (mod g)

Otherwise, it would not be zero (mod g).
As a result, we can distinguish two obfuscated program efficiently when we

know corresponding branching programs. We remark that the matrix zeroizing
attack and removing scalars step are slightly different for the other BP obfusca-
tions.

Organization. In Sect. 2, we introduce the indistinguishability obfuscation,
matrix branching program and GGH13 multilinear map. In Sect. 3, we show
main results of our cryptanalyses on BP obfuscations over GGH13 multilinear
map. We describe the attackable BP obfuscation Model over GGH13 throughout
the Sect. 4. In addition, we present the algorithm called program converting
technique in Sect. 5. We last propose the matrix zeroizing attack in Sect. 6.

2 Preliminaries

Notations. The set {1, · · · , n} is denoted by [n] for a positive integer n. The set
of integers modulo p is denoted by Zp := Z/pZ. All elements in Zp are considered
as integers in (−p/2, p/2]. We use the bold letters to denote matrices, vectors
and elements of ring. For a = a0 + · · · + an−1 · Xn−1 ∈ R = Z[X]/〈Xn + 1〉, the
size of a means the Euclidean norm of the coefficient vector (a0, · · · , an−1). We
denote (j, k)-th entry of matrix M by M [j, k].

2.1 Matrix Branching Program

A branching program consists of several matrix chains and input functions with
indices of input bit. To evaluate a matrix branching program, we multiply all
matrices and output 0 or 1 depending on whether the product of the matrices is
the same as a given matrix or not. We briefly review matrix branching programs.

190 J. H. Cheon et al.

Definition 1 (w-ary Matrix Branching Programs). Let A0 be a d1 × d�+1

matrix and w, �, d, and N be natural numbers. A w-ary matrix branching
program BP with length � over N -bit inputs consists of the following data;
a set of input functions {inpμ : [�] → [N]}μ∈[w], a set of matrices {Mi,b ∈
Z

di×di+1}i∈[�],b∈{0,1}w . It has a domain for evaluations {0, 1}N , and evaluation
of BP at x = (xv)v∈[w] is computed by

BP (x) = BP(inpμ)μ∈[w],M (x) =

⎧⎨
⎩

0 if
∏�

i=1Mi,(xμ
inpμ(i))μ∈[w]

= A0

1 if
∏�

i=1Mi,(xμ
inpμ(i))μ∈[w]

�= A0

.

When w is set to 1 and ≥ 2, the matrix branching program is called a single-
input and a multi-input matrix branching program, respectively. Throughout
this paper, a matrix A0 is used as the zero matrix 0 or the identity matrix Id if
di = d for all i. Moreover, we simplify the notation (xμ

inpμ(i)
)μ∈[w] as xinp(i).

Barrington proved all boolean functions can be expressed in the form of
matrix branching program with bounded width [10]. The first candidate for
iO [23] and following obfuscations [7,15,30,32] exploit Barrington’s theorem to
transform circuits into BPs.

We also note that there are other methods to convert circuits into branching
programs. Ben-Or and Cleve proved that the similar result to Barrington’s the-
orem for arithmetic circuits [11]. Follow-up studies such as [3,6] suggest more
efficient methods for transformation. Their methods bypass the Barrington’s the-
orem and make a circuit into a branching program directly. However, they still
preserve the length of program, in other words, the length of branching program
is equal to or larger than the size of circuit (number of gates).

We assume a mild condition on the branching programs: The length of
branching program is Ω(N) for the number of input bits N . This is plausible
since all input bits may affect the program, and the existing methods give much
longer lengths. On the other hand, we do not restrict that the width/properties
of the matrices in branching programs and the input function (such as single or
dual input).

2.2 Indistinguishability Obfuscation

Definition 2 (Indistinguishability Obfuscation (iO)). A PPT algorithm
iO is an indistinguishability obfuscation for a circuit class C if the following
conditions are satisfied:

– For all security parameters λ ∈ N, for all circuits C ∈ C, for all inputs x, the
following probability holds:

Pr [C ′(x) = C(x) : C ′ ← iO(λ,C)] = 1.

– For any PPT distinguisher D, there exists a negligible function α satisfying
the following statement: For all security parameters λ ∈ N and all pairs of
circuits C0, C1 ∈ C, C0(x) = C1(x) for all inputs x implies

|Pr [D(iO(λ,C0)) = 1] − Pr [D(iO(λ,C1)) = 1] | ≤ α(λ).

Cryptanalyses of BP Obfuscations over GGH13 Multilinear Map 191

Hereafter, we denote iO(P) by an obfuscated program or obfuscation of a
program, or a branching program P .

2.3 GGH13 Multilinear Map

Garg et al. suggest a candidate of multilinear map based on ideal lattice [22]. It
is used to realize the indistinguishable obfuscation [23]. In this section, we briefly
describe the GGH13 multilinear map. For more details, we recommend readers to
refer [22]. Any parameters of multilinear maps are induced by the multilinearity
parameter κ and the security parameters λ. For the sake of simplicity, we denote
the multilinear maps which has the previous mentioned parameter as (κ, λ)-GGH
multilinear map.

The multilinear map is sometimes called the graded encoding scheme. i.e.,
All encodings of message have corresponding levels. Let g be a secret element in
R = Z[X]/〈Xn +1〉 and q a large integer. Then, the message space and encoding
space are set by M = R/〈g〉 and Rq = R/〈q〉, respectively. In order to represent
a level of encodings, the set of secret invertible elements L = {zi}1≤i≤κ ⊂ Rq is
chosen. We call a subset of L level set and elements in L level parameters.

For a small message m ∈ M, level-L(⊂ L) encoding of m is:

encL(m) =
[
r · g + m∏

i∈L zi

]
q

,

where r ∈ R is a small random element. We call encL(m), enc{zi}(m) a top-level
and level 1 encoding of m, respectively. In addition, for a matrix M , we denote
a matrix whose entries are level-L encodings of corresponding entries of M by
encL(M).

The arithmetic operations between encodings are defined as follows:

encL(m1) + encL(m2) = encL(m1 + m2),
encL1(m1) · encL2(m2) = encL1�L2(m1 · m2).

Additionally, the (κ, λ)-GGH scheme provides a zerotesting parameter which
can be used to determine whether a hidden message of a top-level encoding is
zero or not. The zerotesting parameter pzt is of the form:

pzt =
[
h ·
∏

i∈L
zi

g

]
q

,

where h is an O(
√

q)-size element of R. Given a top-level encoding of zero
encL(0) = [r · g/

∏
i∈L

zi]q, a zerotesting value is:

[pzt · encL(0)]q =
[
h ·
∏

i∈L
zi

g
· r · g∏

i∈L
zi

]
q

= [h · r]q = h · r ∈ R.

We remark that a zerotesting value for a top-level encoding of nonzero gives an
element of the form [h · (r + m · g−1)]q, which is not small by Lemma 4 in [22].
Thus one can decide whether a message is zero or not by the zerotesting value.

192 J. H. Cheon et al.

Several papers [2,22,27] proposed the parameters of (κ, λ)-GGH13 multi-
linear map. Here we introduce the minimum conditions that satisfy the three
works.

– log q = Θ̃(κ · log n)
– n = Θ̃(κε · λδ) for constants δ, ε
– M = Õ(nΘ(1))

Here M is the size bound of numerators r · g + m of level 1 encodings.4 We
note that the suggested parameters in [2,27] choose δ = ε = 1, which enables
the subexponential attack with respect to λ for small κ [1,13]. When δ ≥ 2, all
known direct attacks on GGH13 multilinear map require exponential time for
classical adversary.

3 Main Theorem

In this section, we present the results from our attacks. We denote the obfus-
cation within our attack range as the attackable obfuscation, which is formally
defined by the attackable model in the next section. The attackable obfuscation
model encompasses all suggested BP obfuscations based on GGH13 multilinear
map.

Proposition 1 (Universality of the Attackable Model). BP obfuscations
[3,6,7,23,24,30,32] satisfy all the constraints of the attackable model.5

As a result, we obtain the following main theorem.

Theorem 1. Let O be an attackable obfuscator, κ, λ be the multilinearity level
and the security parameter of underlying GGH13 multilinear map. Suppose that
the modulus q, dimension n, size bound M of numerators of level 1 encoding of
underlying GGH13 satisfy log q = Θ̃(κ·log n),M = Õ(nΘ(1)). Then the following
propositions hold:

1. For n = Θ̃(κ ·λδ) for a constant δ as in [2,22,27], there exist two functionally
equivalent branching programs with Ω(λδ)-length such that their obfuscated
programs by O can be distinguished with high probability in polynomial time
with respect to λ.

2. Moreover, for new parameter constraints n = Θ̃(κε ·λδ) for constants ε < 2, δ,
there exist two functionally equivalent branching programs with Ω(λδ/(2−e))-
length such that their obfuscated programs by O can be distinguished with high
probability in polynomial time with respect to λ.

4 The coefficients of random values are usually sampled from the Gaussian distribu-
tion. This do not hurt the result of this paper because the coefficients are bounded
with overwhelming probability.

5 We deal with easier model in the main body for simplicity. We can extend the model
to capture the construction in [15]. This extended model is placed in Appendix A.

Cryptanalyses of BP Obfuscations over GGH13 Multilinear Map 193

The main theorem is proven by combining converting program technique and
matrix zeroizing attack which are described in Sects. 5 and 6. The bottleneck of
the attack is the algorithm for NTRU, which is exploited in the middle step of
converting technique; the other process can be done in polynomial time, while
the time complexity to solve the NTRU problem relies on the parameters. The
detailed analysis for the time complexity will be discussed in Sect. 5.3.

4 Attackable BP Obfuscations

In this section, we present a new BP obfuscation model which is attackable by
our attack, the attackable model. We call a BP obfuscation captured by our model
an attackable BP obfuscation.

The attackable model is composed of two steps; for a given BP, randomize
BP, and encode randomized BPs by GGH13 multilinear map. More precisely,
for a given branching program BP of the form

P =
{
Mi,b ∈ Z

di×di+1
}

i∈[�],b∈{0,1}w ,

we randomize P by several methods satisfying Definition 3 which will be
described later. And then we encode each entries of randomized matrices and
outputs the obfuscated program as the set

O(P) =
{

S̃, S̃′ ∈ Rd0×(d1+e1)
q

}
∪
{

{M̃i,b ,M̃
′
i,b ∈ R(di+ei)×(di+1+ei+1)

q }i∈[�],b∈{0,1}w ,
}

∪
{

T̃ , T̃ ′ ∈ R(d�+1+e�+1)×d�+2
q

}
and the public parameters of GGH13 multilinear map. S,T denote bookend
matrices, and matrices with apostrophe mean the matrices of dummy program.
In the attackable model, we specify the following property instead of establishing
how to evaluate the program exactly. To evaluate the input value, a new function
Eval

˜M
: {0, 1}N → Rd0×d�+2

q is computed as follows:

Eval
˜M

(x) = S̃ ·
�∏

i=1

M̃i,x inp(i) · T̃ − S̃′ ·
�∏

i=1

M̃ ′
i,x inp(i)

· T̃ ′ ∈ Rd0×d�+2
q .

Proposition 2 (Evaluation of Obfuscation). For a program P and program
O(P) obfuscated by the attackable model, the evaluation of O(P) at a root x
of P yields a top-level GGH13 encoding of zero in specific entry of the matrix
Eval

˜M
(x). In other words, there are two integers u, v such that Eval

˜M
(x)[u, v]

is an encoding of zero at level L for every input x satisfying P (x) = 0.

In the rest of this section, we explain specified descriptions of the attackable
model in Sects. 4.1 and 4.2, and present a constraint of BPs to execute our attack
in Sect. 4.3.

194 J. H. Cheon et al.

4.1 Randomization for Attackable Obfuscation Model

We introduce the conditions for BP randomization of attackable obfuscation
model. These conditions for randomization covers all of the BP randomization
methods suggested in the first candidate iO [23] and its subsequent works [3,6,7,
24,30,32]. In other words, higher dimension embedding, scalar bundling, Kilian
randomization, bookend matrices (vectors), and dummy programs are captured
by the attackable conditions.

Definition 3 (Attackable Conditions for Randomization). For a branch-
ing program P =

{
Mi,b ∈ Z

di×di+1
}

i∈[�],b∈{0,1}w , the attackable randomized
branching program is the set

Rand(P) =
{

RS ,R′
S ∈ Z

d0×(d1+e1)
}

∪
{

{Ri,b ,R
′
i,b ∈ Z

(di+ei)×(di+1+ei+1)}i∈[�],b∈{0,1}w ,
}

∪
{

RT ,R′
T ∈ Z

(d�+1+e�+1)×d�+2

}
satisfying the following properties, where d0, d�+2, ei’s are integers.

1. There exist matrices S0,S
′
0 ∈ Z

d0×d1 ,T0,T
′
0 ∈ Z

d�×d�+1 and scalars αS ,α′
S ,

αT ,α′
T , {αi,b ,α

′
i,b}i∈[�],b∈{0,1}w such that the following equations hold for all

{bi ∈ {0, 1}w}i∈[�]:

RS ·
�∏

i=1

Ri,bi
· RT = αS ·

�∏
i=1

αi,bi
· αT ·

(
S0 ·

�∏
i=1

Mi,bi
· T0

)
,

R′
S ·

�∏
i=1

R′
i,bi

· R′
T = α′

S ·
�∏

i=1

α′
i,bi

· α′
T ·
(

S′
0 ·

�∏
i=1

M ′
i,bi

· T ′
0

)
.

2. The evaluation of randomized program is done by checking whether the fixed
entries of RP (x) := RS ·∏�

i=1 Ri,x inp(i) · RT − R′
S ·∏�

i=1 R′
i,x inp(i)

· R′
T are

zero or not. Especially, there are two integers u, v such that P (x) = 0 ⇒
RP (x)[u, v] = 0.

Matrices with apostrophe are called dummy matrices, RS ,R′
S ,RT ,R′

T bookend
matrices (vectors), and α’s bundling scalars. When some elements of Rand(P)
(or bundling scalars) are trivial elements, we say that there is no such element.

4.2 Encoding by Multilinear Map

After the randomization, we encode the randomized matrix branching program
by GGH13 multilinear map. We stress that we do not encode dummy/bookend
matrices if there are no dummy/bookends, respectively.

For each randomized matrices, Ri,b ,R
′
i,b and randomized bookend matrices

RS ,R′
S ,RT ,R′

T , we obtain the encoded matrices encLi,b
(Ri,b) whose entries

are encoding of corresponding entries of randomized matrix Ri,b . For brevity we

Cryptanalyses of BP Obfuscations over GGH13 Multilinear Map 195

write M̃i,b to denote encLi,b
(Ri,b), and the other matrices M̃ ′

i,b , S̃, S̃′, T̃ , T̃ ′

are defined in similar manner.
Two conditions should hold in the attackable model

1. the evaluation of valid input is top-level, in other words, for all input x,(∪�
i=1Li,x inp(i)

) ∪ LS ∪ LT = L where L denotes top-level set,
2. the sizes of set L’s are all similar, that is, there is a constant C such that

|Li,b |/|Lj,b′ | ≤ C for all i, j, b, b′ and similar inequalities hold for LS , LT .

In practice, the level L’s is determined by the straddling set system introduced
in [7,30], and these constructions satisfy our conditions. Using the condition
1 and Definition 3, Proposition 2 can be easily verified. We also note that the
condition 2 implies � = Θ(κ), where κ is the level of underlying multilinear map.

4.3 Linear Relationally Inequivalent Branching Programs

At last, we explain the condition, linear relationally inequivalence, for branching
programs of attackable BP obfuscation. This condition is used at the last section,
but we note that there are several linear relationally inequivalence BPs as stated
in Proposition 3.

To define the linear relationally inequivalence, we consider evaluations of
invalid inputs of branching program and denote

∏�
i=1 Mi,bi

by M(b) for b =
(b1, · · · , b�). We define linear relations of two BPs and the linear relationally
inequivalence of BPs as

Definition 4 (Linear Relations of Branching Program). For a given
branching program

PM =
{
Mi,b ∈ Z

di×di+1
}

i∈[�],b∈{0,1}w ,

the set of linear relations of PM is

LM :=

⎧⎨
⎩(qb)b∈{0,1}w×� :

∑
b∈{0,1}w×�

qb · M(b) = 0d1×d�+1

⎫⎬
⎭

Definition 5 (Linear Relationally Inequivalence). We say that two
branching programs PM and PN with the same length are linear relationally
inequivalent if LM �= LN .

The set of linear relations of a given BP is easily computed by computing the
kernel, considering BP matrices as vectors. It is clear that LM is a lattice. We
note that the set of linear relations of BP is not determined by the functionality
of BP, and indeed it seems that they are irrelevant.

Further, one can observe that if PM , PN are linear relationally inequivalent
BPs, then so do two extended BPs P ′

M , P ′
N which are obtained by concatenating

some other (functionally equivalent) BPs on the right (or left) of PM , PN . There-
fore we can show that there exist arbitrary large two functionally equivalent BPs
which are linear relationally inequivalent.

We conclude this section by presenting a proposition that shows concrete
examples of linear relationally inequivalent BPs, which are placed in AppendixC.

196 J. H. Cheon et al.

Proposition 3. There are two functionally equivalent, but linear relationally
inequivalent branching programs. Especially, there are examples satisfying the
linear relationally inequivalence which are

(1) generated by Barrington’s theorem and input-unpartitionable or
(2) from non-deterministic finite automata and read-once, in other words, inp

is a bijection.

5 Program Converting Technique

In this section, we describe the program converting technique, which remove the
hindrance of modulus q and g. We first define new notion Y program (of P) if
all entries of branching program matrices corresponding a program P are in a
space Y while preserving many properties. For example, the obfuscated program
O(P) is Rq program. Suppose that the obfuscated program O(P) of program P
is given.

We will convert given obfuscated program O(P) into R and R/〈g〉 program
using the algorithm to solve the NTRU problem, especially subfield attacks [1,18]
which solves the problem with large modulus q.

Proposition 4 ([1,17,18,26]). Let q be a large integer, n a power of two, M
a constant much smaller than q, R = Z[X]/〈Xn + 1〉 and Rq = R/qR. For
a given [f1/f2]q ∈ Rq for f1,f2 ∈ R with size smaller than M , there is an
algorithm to compute (c ·f2, c ·f1) ∈ R2 such that sizes of c, c ·f1 and c ·f2 are
much smaller than q in time 2O(β) ·poly(n) for a constant β satisfying β/ log β =
Θ(n log M/ log2 q).

We note that the similar results hold for other non-cyclotomic ring [17,26] or for
f1,f2 from certain distribution [1]. Throughout in this paper, we only consider
the bounded coefficient f1f2 in cyclotomic ring for brevity.

For given obfuscated program in Rq, we first make the NTRU instances and
solve the problem, and then convert to R program by some computations on
obfuscated matrices. This procedure replaces the level parameter zi with a small
element ci. The R program preserves same functionality with the Rq program.
Subsequently, we convert this R program to R/〈g〉 program by recovering the
ideal 〈g〉.

5.1 Converting to R Program

In order to remove the modulus q, we employ the algorithm for solving NTRU
problem. Let M̃i,b be the obfuscated matrix of Ri,b . Then, each (j, k)-th entries
of obfuscated matrix M̃i,b is of the form

dj,k,b =
[
rj,k,b · g + aj,k,b

zi

]
q

,

Cryptanalyses of BP Obfuscations over GGH13 Multilinear Map 197

where aj,k,b is the (j, k)-th entry of the matrix Ri,b and rj,k,b ∈ R are ran-
dom small elements. Consider an element v = [d1,1,0/d1,2,0]q = [(r1,1,0 · g +
a1,1,0)/(r1,2,0 · g +a1,2,0)]q. Then, v is the instance of the NTRU problem since
the size of denominator and numerator of v is much smaller than q in the param-
eter setup of GGH13 multilinear map.

Applying Proposition 4 to an instance v, one can find a pair (ci · (r1,1,0 · g +
a1,1,0), ci · (r1,2,0 · g + a1,2,0)) ∈ R2 with relatively small ci ∈ R. Further, for
any element dj,k,b ∈ M̃i,b , we can remove the modulus q by computing

ci · (r1,1,0 · g + a1,1,0) · [dj,k,b/d1,1,0]q = ci · (rj,k,0 · g + aj,k,0) ∈ R

because of the small size of ci. Consequently, one can obtain a new matrix Di,b

over R whose (j, k)-th entry is ci · (rj,k,0 · g + aj,k,0).
Similarly, a new dummy matrix D′

i,b over R can be obtained because M̃ ′
i,b

shares the level parameter zi with M̃i,b by multiplying ci · (rj,k,0 · g + aj,k,0)
to [d′

j,k,b/d1,1,0]q where d′
j,k,b is a (j, k)-th entry of S̃′

i,b . We easily observe that
2 · 2w matrices Di,b and D′

i,b share the parameter ci.

For all matrices M̃i,b and M̃ ′
i,b with i ∈ [�] and b ∈ {0, 1}w, we can obtain

new matrices Di,b and D′
i,b over R. In the case of bookend matrices S̃ and

T̃ , they are converted into matrices over R with small constants cS and cT ,
respectively. Note that this step runs in polynomial time if κ is large [1,17,18,26].
Detailed analysis of this part is discussed in Sect. 5.3.

Therefore, we can convert Rq-program O(P) into a new program, R-program
of P :

R(P) = {DS ,DT ,D′
S ,D′

T , {Di,b ,D
′
i,b}i∈[�],b∈{0,1}w}.

Note that the matrix Di,b of R(P) is of the form ci · Ri,b (mod 〈g〉) in R/〈g〉.
Dummy and bookend matrices satisfies similar relations. We denote ci · αi,b

and ci · α′
i,b by ρi,b , ρ′

i,b for simplicity. The properties of Definition 3 is natu-
rally extended to the following. The Proposition 5 means an evaluation of R(P)
preserves the functionality up to constant on the valid input x.

Proposition 5 (Evaluation of R and R/〈g〉 Branching Program). For a
R program given in this section, the following propositions holds:

1. The higher dimension embedding matrices U ’s are eliminated in the product
of randomized matrix branching program, that is, there are matrices S0,S

′
0 ∈

Z
d0×d1 ,T0,T

′
0 ∈ Z

d�+1×d�+2 such that the following equations hold for all input
x:

DS ·
�∏

i=1

Di,bi
· DT = ρS ·

�∏
i=1

ρi,bi
· ρT ·

(
S0 ·

�∏
i=1

Mi,bi
· T0

)
(mod 〈g〉),

D′
S ·

�∏
i=1

D′
i,bi

· D′
T = ρ′

S ·
�∏

i=1

ρ′
i,bi

· ρ′
T ·
(

S′
0 ·

�∏
i=1

M ′
i,bi

· T ′
0

)
(mod 〈g〉).

198 J. H. Cheon et al.

2. The evaluation of R program is done by checking whether the fixed entries of
EvalD (x) := DS ·∏�

i=1 Di,x inp(i) · DT − D′
S ·∏�

i=1 D′
i,x inp(i)

· D′
T is multiple

of g or not. Especially, there are two integers u, v such that P (x) = 0 ⇒
EvalD (x)[u, v] = 0 (mod 〈g〉)

5.2 Recovering 〈G〉 and Converting to R/〈g〉 Program

Next, we will compute a basis of the plaintext space 〈g〉 to transform R program
into R/〈g〉-program. Unlike other attacks, we do not use the assumption ‘input
partitionability’. We exploits the fact that R program which comes from Rq

program has the same functionality up to constant. However, existing attacks
with input partitionable assumption and our cryptanalysis cannot be applied to
a BP program for an ‘evasive function’ since it does not output multiples of g.
It consists of following two steps:

Finding a multiple of g. This step is done by computing EvalD at the zeros
of program P . We compute EvalD (x) for R program R(P) at x satisfying
P (x) = 0. Then, Proposition 5 implies that EvalD (x)[u, v] is a multiple of g.
More precisely, EvalD (x)[u, v] is of the form

cS · cT ·
�∏

i=1

ci · a · g

when pzt · Eval
˜M

(x)[u, v] = a · h (mod q) for some a ∈ R such that ‖a · h‖2 is
less than q3/4.

This procedure outputs the value which is not only multiple of g but also ci’s.
However, we can generate several different R program from O(P) for different
solutions of Proposition 4. We assume that the multiples of g from different R
program are independent multiples of g, with the randomized lattice reduction
algorithm as in [21].

Computing Hermite Normal Form of 〈g〉. For given several random multi-
ples fi·g of g, we can recover a basis of 〈g〉 by computing sum of sufficiently many
ideal 〈f · g〉 represented by a lattice with basis {f · g,f · g · X, · · · ,f · g · Xn−1}
or computing the Hermite Normal Form of union of their generating sets by
applying the lemma [1, Lemma 1].

Both computations are done in polynomial time in λ and κ, since the evalua-
tions and computing the Hermite normal form has a polynomial time complexity.
Eventually, we recover the basis of ideal lattice 〈g〉 and we can efficiently compute
the arithmetics in R/〈g〉. In other words, we get a R/〈g〉 program correspond-
ing to O(P) (or P), whose properties are characterized by Proposition 5. For
convenience, we abuse the notation; from now, R(P) is the R/〈g〉 program and
DS ,DT and Di,b for all i ∈ [�], b ∈ {0, 1}w are matrices over R/〈g〉.

5.3 Analysis of the Converting Technique

We discuss the time complexity of our program converting technique. The pro-
gram converting consists of converting to R program, evaluating of R program,

Cryptanalyses of BP Obfuscations over GGH13 Multilinear Map 199

computing a Hermite Normal Form of an ideal lattice 〈g〉. The last two steps
take polynomial time complexity, so the total cost is dominated by the first
step. More precisely, solving the NTRU problem for each encoded matrix is the
dominant part of the program converting.

To estimate the cost of solving the NTRU problem, we assume that each
component of branching program is encoded by GGH13 multilinear map in level-
1. The general cases are similar but a bit more complex when we assume that
the size of level sets are not too different so that � = Θ(κ).

Suppose that an obfuscated branching program O(P) over (κ, λ)-GGH13
multilinear map is given. As we written in Sect. 2.3, for constants δ, e and security
parameter λ, multilinearity level κ, n, M , and log q are set to be Θ̃(κe ·λδ), nΘ(1),
and Θ̃(κ · log n), respectively. Proposition 4 implies that one can convert the pro-
gram in 2O(β) · poly(λ, κ) time for β

log β = Θ(n log M
log2 q

) = Θ̃
(

λδ

κ2−e

)
. Therefore, the

program converting technique is done in polynomial time for κ = Ω̃(λδ/(2−e)).
Alternatively, the program converting technique is done in polynomial time for
obfuscated programs with length � = Ω̃(λδ/(2−e)).

We note that choosing large n to make the subfield attack work in exponential
time rules out our attack as well. More concretely, if one chooses n = Θ̃(κ2λ) then
the underlying NTRU problem is hard enough to block known subexponential
time attacks.

6 Matrix Zeroizing Attack

In this section, we present a distinguishing attack on R programs to complete our
cryptanalysis of attackable BP obfuscation model. We note that we can evaluate
the R program at invalid inputs, or mixed input, since the multilinearity level
which was the obstacle of mixed inputs is removed in the previous step. We
recall that M(b) denotes

∏�
i=1 Mi,bi

for b = (b1, · · · , b�) and the set of linear
relations

LM =

⎧⎨
⎩(qb)b∈{0,1}w×� :

∑
b∈{0,1}w×�

qb · M(b) = 0d1×d�+1

⎫⎬
⎭

which was defined in Sect. 4.3. We also recall that the two program M and N
are linear relationally inequivalent if LM �= LN .

For two functionally equivalent but linear relationally inequivalent BPs PM

and PN , we will zeroize the R program corresponding to PM by exploiting the
linear relation, whereas R program corresponding to PN would not be a zero
matrix. The result of the matrix zeroizing attack is as follows.

Proposition 6 (Matrix Zeroizing Attack). For functionally equivalent but
linear relationally inequivalent branching programs PM , PN , there is a PPT
algorithm which can distinguish between two R programs R(PM) and R(PN)
obtained by the method in Sect. 5 with non-negligible probability.

200 J. H. Cheon et al.

Now we explain how to distinguish two R programs using linear relationally
inequivalence. Despite the absence of multilinearity level, we still have obsta-
cles to directly exploit linear relationally inequivalence: scalar bundlings. To
explain the main idea of the attack, we assume that, for the time being, all
scalar bundling are trivial in the obtained program in Sect. 5. We later explain
how to deal the scalar bundlings.

Suppose that two BPs PM , PN and an R program

R(PX) = {DS ,DT ,DS ′ ,DT ′ , {Di,b ,D
′
i,b}i∈[�],b∈{0,1}w}

are given. Our goal is to determine X = N or X = M . We can compute a linear
relation (qb) which is an element of LM \LN in polynomial time6 by computing
a basis of kernel, and solve the membership problems of lattice for each vector
in the basis. Then the following equation holds

∑

b∈{0,1}w×�

(
qb · DS ·

�∏

i=1

Di,bi · DT

)
=

∑

b∈{0,1}w×�

(
qb · S0 ·

�∏

i=1

Mi,bi · T0

)

= S0 ·
∑

b∈{0,1}w×�

(
qb ·

�∏

i=1

Mi,bi

)
· T0 = S0 · 0d1×d�+1 · T0 = 0d0×d�+2 (mod 〈g〉)

when X = M whereas this is not hold when X = N . Therefore, the matrix
zeroizing attack works when the scalar bundlings are all trivial.

When the scalar bundlings are not trivial, we can do the similar computation
after recovering ratios of bundling scalars. Assume that we know ρi,u/ρi,v for
every 1 ≤ i ≤ � and u,v ∈ {0, 1}w. Consequently, for r(b) :=

∏
i∈[�] ρi,bi

where
b = (b1, · · · , b�), we can compute r(b)/r(c) for b, c ∈ {0, 1}w×� by multiplying
ratios of bundling scalars. Then, we can calculate

∑
b∈{0,1}w×�

(
qb · r(0)

r(b)
· DS ·

�∏
i=1

Di,bi
· DT

)

=
∑

b∈{0,1}w×�

(
qb · ρS · r(0) · ρT · S0 ·

�∏
i=1

Mi,bi
· T0

)

= ρS · r(0) · ρT · S0 ·
∑

b∈{0,1}w×�

(
qb ·

�∏
i=1

Mi,bi

)
· T0 (mod 〈g〉),

which is a zero matrix if and only if X = M .
Accordingly, we should remove the scalar bundlings or recover ratios of scalar

bundlings to execute the matrix zeroizing attack. In the rest of this section, we
6 The dimension of (qb)b∈{0,1}w×� is 2w×�, which is exponentially large. However, we

can reduce this exponential part by considering a polynomial number of b so that
there are linear relations.

Cryptanalyses of BP Obfuscations over GGH13 Multilinear Map 201

show how to recover or remove (ratios of) scalar bundlings in several cases.
In Sect. 6.2, we explain how to recover all ratios in general cases by complex
techniques.

6.1 Existing BP Obfuscations

In this section, we show how to apply the matrix zeroizing attack on two remark-
able obfuscations, GGHRSW and GMMSSZ. The other examples on obfusca-
tions [6,32] are placed in AppendixB.

GGHRSW. As the first case, we consider the first BP obfuscation, GGHRSW,
which has the identity dummy program. We note that the attack for this case
works for the attackable BP obfuscations with fixed dummy program as well.
For this case, a constraint on the bundling scalars αx = α′

x for every input x is
given where αx = αS ·∏�

i=1 αi,x inp(i) ·αT , α′
x = α′

S ·∏�
i=1 α′

i,x inp(i)
·α′

T . Suppose
R program of P is given by

R(P) = {DS ,DT ,DS ′ ,DT ′ , {Di,b ,D
′
i,b}i∈[�],b∈{0,1}w}.

By Proposition 5, the following equations hold

DS ·
�∏

i=1

Di,x inp(i) · DT = ρS ·
�∏

i=1

ρi,x inp(i) · ρT ·
(

S0 ·
�∏

i=1

Mi,x inp(i) · T0

)
mod 〈g〉,

D′
S ·

�∏

i=1

D′
i,x inp(i)

· D′
T = ρ′

S ·
�∏

i=1

ρ′
i,x inp(i)

· ρ′
T ·

(
S′

0 ·
�∏

i=1

M ′
i,x inp(i)

· T ′
0

)
mod 〈g〉.

Here we assume that each M ′
i,x inp(i)

are identity matrices. Now we consider

the two quantity of evaluations PlainD (x) := DS · ∏�
i=1 Di,x inp(i) · DT and

DummyD (x) := D′
S ·∏�

i=1 D′
i,x inp(i)

· D′
T .

According to the condition of scalar bundlings, ρS · ∏�
i=1 ρi,x inp(i) · ρT =

ρ′
S ·∏�

i=1 ρ′
i,x inp(i)

·ρ′
T since the value c’s are shared for plain and dummy program.

It is possible to remove scalar bundlings by dividing PlainD (x) by DummyD (x).
In other words, we can get d · S0 ·∏�

i=1 Mi,x inp(i) · T0 for some fixed d from the
above division. Since we know all M ’s, the matrix zeroizing attack works well
for the computed quantities.

We remark that the previous analysis [16] analyzed the first candidate iO [23].
Whereas the work in [16] heavily relies on the input partitionable property of
the single input branching program, our algorithm do not need this property.
Moreover, our algorithm can be applied to dual input branching program, so
this attack can be applied to wider range of branching programs.

GMMSSZ. Most notable result for BP obfuscation, GMMSSZ, is suggested by
Garg et al. in TCC 2016 [24]. The authors claim the security of their construc-
tion against all known attack. Nevertheless, the matrix zeroizing attack can be
applied to their obfuscation.

202 J. H. Cheon et al.

GMMSSZ obfuscates low-rank matrix branching program, which is evalu-
ated by checking whether the product M0 ·∏i∈[�] Mi,bi

· M�+1 is zero or not.
There are two distinctive property of the obfuscation; the uniform random
higher dimension embedding and given bookend vectors as inputs. Let M0 =
(β1, · · · , βd1),M�+1 = (γ1, · · · , γd�+1)

T are the given bookend vectors. The book-
end vectors are also extended as H0 = (M0||0),H�+1 = (M�+1||U�+1)T for
randomly chosen U�+1 in the higher dimension embedding step to remove the
higher dimension embedding matrices. Note that the branching programs of this
obfuscation are square, we do not restrict the shape of matrices in this section.

For the evaluation, one compute M̃0 ·∏i∈[�] M̃i,bi
· M̃�+1, which is corre-

sponding to

DS ·
�∏

i=1

Di,bi
· DT = ρS ·

�∏
i=1

ρi,bi
· ρT ·

(
M0 ·

�∏
i=1

Mi,bi
· M�+!

)
(mod 〈g〉)

in R program by Proposition 5. Since we know all M ’s, we can compute the
ratios of scalar bundlings by

ρj,bj
/ρj,b′

j
=

DS ·∏i∈[�] Di,bi
· DT /M0

∏
i∈[�] Mi,bi

· M�+1

DS ·∏i∈[�] Di,b′
i
· DT /M0

∏
i∈[�] Mi,b′

i
· M�+1

for b, b′ which are same at all but j-th bit. Therefore, the matrix zeroizing attack
well works for the construction of [24]. We remark that this method works for
unknown bookend matrices with more complicated technique, see Sect. 6.2.

6.2 Attackable BP Obfuscation, General Case

Now we consider the attackable BP obfuscations in general. We note that an
attackable obfuscation without bookends can be considered as the obfuscation
with bookends by re-naming the matrices. For example, if we name DS :=
D1,0 = ρ1,0 ·D1, then we can regard that DS is a left bookend matrix and ρ1,0

the corresponding scalar bundling.
The case of obfuscation with bookend matrices is most complex, and requires

complicated technique. We will recover the bookend matrices up to constant
multiplication, and proceed the algorithm similar to the case of [24].

Recovering the Bookends. For the sake of simplicity, we only consider the
case of bookend vectors. To tackle constructions using bookend matrices, it is
suffice to consider a fixed (u, v)-entry of output matrix given in Proposition 2.

If the obfuscation has bookend vectors, then the evaluation of R program is
computed by

DS ·
�∏

i=1

Di,bi
· DT = ρS ·

�∏
i=1

ρi,bi
· ρT ·

(
S0 ·

�∏
i=1

Mi,bi
· T0

)
(mod 〈g〉)

Cryptanalyses of BP Obfuscations over GGH13 Multilinear Map 203

for some vectors S0 ∈ (R/〈g〉)1×d1 and T0 ∈ (R/〈g〉)d�+1×1. Let S0 = (β1, · · · ,

βd1), T0 = (γ1, · · · ,γd�+1) and the evaluation DS ·∏�
i=1 Di,bi

· DT is denoted
by EvalD (b1, · · · , b�).

Our idea is removing ρ’s to make equations over S0,T0. Let bi,t ∈ {0, 1}w

for 1 ≤ i ≤ � and t ∈ {0, 1} and t = (t1, · · · , t�) ∈ {0, 1}w. Then the following
two values share the same ρ’s, precisely (ρS ρT)2 ·∏i∈[�] ρi,bi,0ρi,bi,1 :

EvalD (b1,0, · · · , b�,0)·EvalD (b1,1, · · · , b�,1),
EvalD (b1,t1 , · · · , b�,t�

)·EvalD (b1,1−t1 , · · · , b�,1−t�
).

We denote S0 ·∏�
i=1 Mi,bi

· T0 by EqnM (b1, · · · , b�). Then, by the above
relations, we get a equation for β1, · · · ,βd1 ,γ1, · · · ,γd�+1 :

EqnM (b1,0, · · · , b�,0) · EqnM (b1,1, · · · , b�,1)
EvalD (b1,0, · · · , b�,0) · EvalD (b1,1, · · · , b�,1)

=
EqnM (b1,t1 , · · · , b�,t�

) · EqnM (b1,1−t1 , · · · , b�,1−t�
)

EvalD (b1,t1 , · · · , b�,t�
) · EvalD (b1,1−t1 , · · · , b�,1−t�

)
.

Both side of the equation is homogeneous polynomial of degree 4. If we sub-
stitute each degree 4 monomials by another variables, this equation become a
homogeneous linear equation of new variables. The number of new variable is
O(d21d

2
�+1).

Now we assume that we can obtain sufficient number of linearly indepen-
dent equations generated by the explained way. Then, since the system of linear
equations can be solved in O(M3) time by Gaussian elimination for the number
of variable M , we can find all ratios of degree 4 monomials.7 In other words, we
can compute δβ1, · · · , δβd1 , δγ1, · · · , δγd�+1 for some constant δ.

Matrix Zeroizing Attack. The remaining part of the attack is exactly same
with the attack on GMMSSZ. Precisely, we can recover the ratios of scalar
bundlings by computing

ρj,bj
/ρj,b′

j
=

DS ·∏i∈[�] Di,bi
· DT /S0

∏
i∈[�] Mi,bi

· T0

DS ·∏i∈[�] Di,b′
i
· DT /S0

∏
i∈[�] Mi,b′

i
· T0

for b, b′ which are same at all but j-th bits. We note that we do not know exact
values of S0,T0, but we recovered δS0, δT0 in the above step. Thus we can
compute ρj,bj

/ρj,b′
j

by

DS ·∏i∈[�] Di,bi
· DT /(δS0)

∏
i∈[�] Mi,bi

· (δT0)

DS ·∏i∈[�] Di,b′
i
· DT /(δS0)

∏
i∈[�] Mi,b′

i
· (δT0)

.

Therefore the matrix zeroizing attack can be applied to the attackable BP obfus-
cations, which include all existing BP obfuscations over GGH13.
7 Here we assume that g is hard to factorize. If g is factorized in the Gaussian elimi-

nation procedure, we can proceed the algorithm for a factor of g.

204 J. H. Cheon et al.

Acknowledgement. We sincerely thank the anonymous reviewers of Crypto 2018
for their fruitful comments. This work was supported by Institute for Information &
communication Technology Promotion (IITP) grant funded by the Korea government
(MSIT) (No. 2016-6-00598, The mathematical structure of functional encryption and
its analysis) and was based upon work supported by the ARO and DARPA under
Contract No. W911NF-15-C-0227.

References

1. Albrecht, M., Bai, S., Ducas, L.: A subfield lattice attack on overstretched NTRU
assumptions. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp.
153–178. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-
4 6

2. Albrecht, M.R., Cocis, C., Laguillaumie, F., Langlois, A.: Implementing candidate
graded encoding schemes from ideal lattices. In: Iwata, T., Cheon, J.H. (eds.)
ASIACRYPT 2015. LNCS, vol. 9453, pp. 752–775. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48800-3 31

3. Prabhanjan, A., Gupta, D., Ishai, Y., Sahai, A.: Optimizing obfuscation: avoiding
Barrington’s theorem. In: Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, pp. 646–658. ACM (2014)

4. Apon, D., Döttling, N., Garg, S., Mukherjee, P.: Cryptanalysis of indistinguisha-
bility obfuscations of circuits over GGH13. In: LIPIcs-Leibniz International Pro-
ceedings in Informatics, vol. 80. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik
(2017)

5. Applebaum, B., Brakerski, Z.: Obfuscating circuits via composite-order graded
encoding. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 528–
556. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7 21

6. Badrinarayanan, S., Miles, E., Sahai, A., Zhandry, M.: Post-zeroizing obfuscation:
new mathematical tools, and the case of evasive circuits. In: Fischlin, M., Coron, J.-
S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 764–791. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-49896-5 27

7. Barak, B., Garg, S., Kalai, Y.T., Paneth, O., Sahai, A.: Protecting obfuscation
against algebraic attacks. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 221–238. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-642-55220-5 13

8. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S., Yang,
K.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.) CRYPTO
2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001). https://doi.org/10.
1007/3-540-44647-8 1

9. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S., Yang,
K.: On the (im)possibility of obfuscating programs. J. ACM (JACM) 59(2), 6
(2012)

10. Barrington, D.A.: Bounded-width polynomial-size branching programs recognize
exactly those languages in NC 1. In: Proceedings of the Eighteenth Annual ACM
Symposium on Theory of Computing, pp. 1–5. ACM (1986)

11. Ben-Or, M., Cleve, R.: Computing algebraic formulas using a constant number
of registers. In: Proceedings of the 20th Annual ACM Symposium on Theory of
Computing, pp. 254–257 (1988)

12. Biasse, J.-F.: Subexponential time relations in the class group of large degree num-
ber fields. Adv. Math. Commun. 8(4), 407–425 (2014)

https://doi.org/10.1007/978-3-662-53018-4_6
https://doi.org/10.1007/978-3-662-53018-4_6
https://doi.org/10.1007/978-3-662-48800-3_31
https://doi.org/10.1007/978-3-662-46497-7_21
https://doi.org/10.1007/978-3-662-49896-5_27
https://doi.org/10.1007/978-3-642-55220-5_13
https://doi.org/10.1007/978-3-642-55220-5_13
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/3-540-44647-8_1

Cryptanalyses of BP Obfuscations over GGH13 Multilinear Map 205

13. Biasse, J.-F., Espitau, T., Fouque, P.-A., Gélin, A., Kirchner, P.: Computing gen-
erator in cyclotomic integer rings. In: Coron, J.-S., Nielsen, J.B. (eds.) EURO-
CRYPT 2017. LNCS, vol. 10210, pp. 60–88. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-56620-7 3

14. Biasse, J.-F., Song, F.: Efficient quantum algorithms for computing class groups
and solving the principal ideal problem in arbitrary degree number fields. In: Pro-
ceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pp. 893–902. SIAM (2016)

15. Brakerski, Z., Rothblum, G.N.: Virtual black-box obfuscation for all circuits via
generic graded encoding. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp.
1–25. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8 1

16. Chen, Y., Gentry, C., Halevi, S.: Cryptanalyses of candidate branching program
obfuscators. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol.
10212, pp. 278–307. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
56617-7 10

17. Cheon, J.H., Hhan, M., Lee, C.: Cryptanalysis of the overstretched NTRU problem
for general modulus polynomial. IACR Cryptology ePrint Archive, 2017:484 (2017)

18. Cheon, J.H., Jeong, J., Lee, C.: An algorithm for NTRU problems and cryptanalysis
of the GGH multilinear map without a low-level encoding of zero. LMS J. Comput.
Math. 19(A), 255–266 (2016)

19. Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over the inte-
gers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp.
476–493. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-
4 26

20. Cramer, R., Ducas, L., Peikert, C., Regev, O.: Recovering short generators of prin-
cipal ideals in cyclotomic rings. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT
2016. LNCS, vol. 9666, pp. 559–585. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49896-5 20

21. Gama, N., Nguyen, P.Q.: Predicting lattice reduction. In: Smart, N. (ed.) EURO-
CRYPT 2008. LNCS, vol. 4965, pp. 31–51. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-78967-3 3

22. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
1–17. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9 1

23. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: Pro-
ceedings of the 2013 IEEE 54th Annual Symposium on Foundations of Computer
Science, pp. 40–49. IEEE Computer Society (2013)

24. Garg, S., Miles, E., Mukherjee, P., Sahai, A., Srinivasan, A., Zhandry, M.: Secure
obfuscation in a weak multilinear map model. In: Hirt, M., Smith, A. (eds.) TCC
2016. LNCS, vol. 9986, pp. 241–268. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-53644-5 10

25. Gentry, C., Gorbunov, S., Halevi, S.: Graph-induced multilinear maps from lat-
tices. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 498–527.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7 20

26. Kirchner, P., Fouque, P.-A.: Revisiting lattice attacks on overstretched NTRU
parameters. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS,
vol. 10210, pp. 3–26. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
56620-7 1

https://doi.org/10.1007/978-3-319-56620-7_3
https://doi.org/10.1007/978-3-319-56620-7_3
https://doi.org/10.1007/978-3-642-54242-8_1
https://doi.org/10.1007/978-3-319-56617-7_10
https://doi.org/10.1007/978-3-319-56617-7_10
https://doi.org/10.1007/978-3-642-40041-4_26
https://doi.org/10.1007/978-3-642-40041-4_26
https://doi.org/10.1007/978-3-662-49896-5_20
https://doi.org/10.1007/978-3-662-49896-5_20
https://doi.org/10.1007/978-3-540-78967-3_3
https://doi.org/10.1007/978-3-540-78967-3_3
https://doi.org/10.1007/978-3-642-38348-9_1
https://doi.org/10.1007/978-3-662-53644-5_10
https://doi.org/10.1007/978-3-662-53644-5_10
https://doi.org/10.1007/978-3-662-46497-7_20
https://doi.org/10.1007/978-3-319-56620-7_1
https://doi.org/10.1007/978-3-319-56620-7_1

206 J. H. Cheon et al.

27. Langlois, A., Stehlé, D., Steinfeld, R.: GGHLite: more efficient multilinear maps
from ideal lattices. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS,
vol. 8441, pp. 239–256. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-642-55220-5 14

28. Lewi, K., Malozemoff, A.J., Apon, D., Carmer, B., Foltzer, A., Wagner, D., Archer,
D.W., Boneh, D., Katz, J., Raykova, M.: 5Gen: a framework for prototyping appli-
cations using multilinear maps and matrix branching programs. In: Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications Security,
pp. 981–992. ACM (2016)

29. Ma, F., Zhandry, M.: The MMAP strikes back: obfuscation and new multilinear
maps immune to CLT13 Zeroizing attacks. Cryptology ePrint Archive, Report
2017/946 (2017). https://eprint.iacr.org/2017/946

30. Miles, E., Sahai, A., Weiss, M.: Protecting obfuscation against arithmetic attacks.
IACR Cryptology ePrint Archive, 2014:878 (2014)

31. Miles, E., Sahai, A., Zhandry, M.: Annihilation attacks for multilinear maps: crypt-
analysis of indistinguishability obfuscation over GGH13. In: Robshaw, M., Katz, J.
(eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 629–658. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53008-5 22

32. Pass, R., Seth, K., Telang, S.: Indistinguishability obfuscation from semantically-
secure multilinear encodings. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014.
LNCS, vol. 8616, pp. 500–517. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-662-44371-2 28

33. Sahai, A., Zhandry, M.: Obfuscating low-rank matrix branching programs. IACR
Cryptology ePrint Archive, 2014:773 (2014)

34. Zimmerman, J.: How to obfuscate programs directly. In: Oswald, E., Fischlin, M.
(eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 439–467. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46803-6 15

A Extended Attackable BP Obfuscation Model

In this section we introduce an extended model of attackable BP obfuscation
by our attack. The extended attackable BP obfuscation is modified in the ran-
domization step to embraces the obfuscation in [15]. The definition of extended
attackable conditions for randomization is as follows, which is similar to Defini-
tion 3:

Definition 6 (Extended Attackable Conditions for Randomization).
For a branching program P =

{
Mi,b ∈ Z

di×di+1
}

i∈[�],b∈{0,1}w , the extended
attackable randomized branching program is the set

Rand(P) =
{
Ri,b ,R

′
i,b ∈ Z

di×di+1
}

i∈[�],b∈{0,1}w

∪{RS ,R′
S ∈ Z

d0×d1 ,RT ,R′
T ∈ Z

d�+1×d�+2
}

∪{auxJ,b , aux
′
J,b

}
J⊂[N],b∈{0,1}w×|J|

satisfying the following properties, where d0, d�+2, ei’s are integers.

https://doi.org/10.1007/978-3-642-55220-5_14
https://doi.org/10.1007/978-3-642-55220-5_14
https://eprint.iacr.org/2017/946
https://doi.org/10.1007/978-3-662-53008-5_22
https://doi.org/10.1007/978-3-662-44371-2_28
https://doi.org/10.1007/978-3-662-44371-2_28
https://doi.org/10.1007/978-3-662-46803-6_15

Cryptanalyses of BP Obfuscations over GGH13 Multilinear Map 207

1. There exist matrices S0,S
′
0 ∈ Z

d0×d1 ,T0,T
′
0 ∈ Z

d�×d�+1 and scalars αS ,α′
S ,

αT ,α′
T , {αi,b ,α

′
i,b}i∈[�],b∈{0,1}w such that the following equations hold for all

{bi ∈ {0, 1}w}i∈[�]:

RS ·
�∏

i=1

Ri,bi
· RT = αS ·

�∏
i=1

αi,bi
· αT ·

(
S0 ·

�∏
i=1

Mi,bi
· T0

)
,

R′
S ·

�∏
i=1

R′
i,bi

· R′
T = α′

S ·
�∏

i=1

α′
i,bi

· α′
T ·
(

S′
0 ·

�∏
i=1

M ′
i,bi

· T ′
0

)
.

2. The evaluation of randomized program is done by checking whether the fixed
entries of

RP (x) =
∏

J⊂[N]

auxJ,x |J ·RS ·
�∏

i=1

Ri,x inp(i) ·RT −
∏

J⊂[N]

aux′
J,x |J ·R′

S ·
�∏

i=1

R′
i,x inp(i)

·R′
T

is zero or not. Especially, there are two integers u, v such that P (x) = 0 ⇒
RP (x)[u, v] = 0.

After randomizing matrices, we encode every entries and scalars of Rand(P)
separately by GGH13 multilinear map with respect to the level corresponding
to the first index of elements. We denote enc(auxJ,a) by ãuxJ,a for each J ⊂ [N]
and a ∈ {0, 1}w×|J|.

We note that aux’s were not discussed in the main body of our paper. How-
ever, our program converting technique is applied with small modification for
auxiliary scalars as well. More precisely, for each ãuxJ,a , ãuxJ,b , we compute
h = ãuxJ,a/ãuxJ,b and solve the NTRU problem for the instance h. Then we
obtain cJ ·(auxJ,a +ra ·g) for small cJ . For an auxiliary scalar ãuxJ,c correspond-
ing to J , we compute cJ · (auxJ,c + rc · g) = cJ · (auxJ,a + ra · g) · ãuxJ,c/ãuxJ,a .
We can recover dummy auxiliaries as well.

From this calculation, R program is obtained for extended model. the other
step such as recovering the ideal 〈g〉 and the matrix zeroizing attack work cor-
rectly as well.

B Examples of Matrix Zeroizing Attack

Obfuscation in [32]. In this section, we prove that obfuscation in [32] cannot be
iO for general-purpose. This scheme is characterized by several special random-
izations; converting to merged branching program which consists of permutation
matrices, and choose the right bookend vector T = e1 and no left bookend vec-
tor, and then choose identity Kilian matrix K0 = I at the first left position. It
implies that, by Proposition 5, the evaluation of the program is of the form:

�∏
i=1

Di,bi
· DT = ρT ·

�∏
i=1

ρi,bi
·

�∏
i=1

Mi,bi
· e1 = ρT ·

�∏
i=1

ρi,bi
· ek (mod〈g〉),

208 J. H. Cheon et al.

where k is an integer computed by M ’s. Therefore, we can compute ρT ·∏�
i=1 ρi,bi

from the computed value. As a next step, we recover ratios of scalar
bundlings ρj,bj

/ρj,b′
j

for b, b′ which satisfies bi = b′
i for all i ∈ [�] except j

by computing the ratio ρT ·∏�
i=1 ρi,bi

/ρT ·∏�
i=1 ρi,b′

i
. Finally, we can run the

matrix zeroizing attack.

Obfuscation in [6]. Badrinarayanan et al. suggest a construction for obfusca-
tion based on branching program, especially for evasive functions [6].8. In this
section, we prove that obfuscation of Badrinarayanan et al. cannot be a general-
purpose iO. This construction is for low-rank branching program, thus it do not
have dummy matrices and also does not apply higher dimension embeddings.

The original method for their construction is in the bookend; the authors use
no bookend matrices and use special form of Kilian randomization at the first
and last matrices. The first and last Kilian matrices are given as follows:

K0 = diag(β1, · · · , βd1),K
−1
�+1 = diag(γ1, · · · , γd�+1),

where βu, γv are randomly chosen scalars.
To evaluate the obfuscated program, we see

(∏�
i=1 M̃i,bi

)
[u, v] for some u, v.

This is corresponding to the following value, which is computed by Proposition 5,⎛
⎝∏

i∈[�]

Di,bi

⎞
⎠ [u, v] = βu · γv ·

∏
i∈[�]

ρi,bi
·
⎛
⎝∏

i∈[�]

Mi,bi

⎞
⎠ [u, v] (mod 〈g〉)

since S0,T0 are exactly K0,K
−1
�+1. We then can recover the ratio of scalar

bundlings by computing
∏

i∈[�] Di,bi
[u, v]/

∏
i∈[�] Di,b′

i
[u, v] for b, b′ which satis-

fies bi = b′
i for all i ∈ [�] except j. Since we computed ratios of scalar bundlings

ρj,bj
/ρj,b′

j
, we can run the matrix zeroizing attack.

C Examples of Linear Relationally Inequivalent BPs

We exhibit two examples of two functionally equivalent but linear relationally
inequivalent branching programs here. This examples also certify Proposition 3.
The first simple example from nondeterministic finite automata is read-once
BPs, and the second example comes from Barrington’s theorem and thus input-
unpartitionable.

C.1 Read-Once BPs from NFA

Two read-once BPs in Table 1 are from non-deterministic finite automata and
linear relationally inequivalent.
8 We remark that the construction of [6] is similar to the construction of [33], which

is used as a foundation of recent implementation 5Gen [28] and our attack is also
applied to [33] in the same manner.

Cryptanalyses of BP Obfuscations over GGH13 Multilinear Map 209

These two BPs are the point function which output 1 only for input 01, but
they are linear relationally inequivalent. For example,

M0,1 · M1,0 − M0,1 · M1,1 �= 0,

N0,1 · N1,0 − N0,1 · N1,1 = 0.

We note that the matrix Mi,b is the adjacent matrix between {Ai,c}c∈{0,1} and
{Ai+1,c}c∈{0,1}, and N ’s are defined similarly.

Table 1. BPs from NFA

A0,0

A0,1

A1,0

A1,1

A2,0

A2,1

0

0,1

1

0

1

B0,0

B0,1

B1,0

B1,1

B2,0

B2,1

0

1
0

1

0

0,1

0,1

M0,0 =

(
1 0
1 0

)
, M1,0 =

(
1 0
0 0

)
, N0,0 =

(
1 0
1 0

)
, N1,0 =

(
1 0
1 1

)
,

M0,1 =

(
0 0
1 1

)
, M1,1 =

(
0 0
0 1

)
. N0,1 =

(
0 1
0 1

)
, N1,1 =

(
0 0
1 1

)
.

C.2 Input-Unpartionable BPs from Barrington’s Theorem

In the case of Barrington’s theorem, the linear relationally inequivalent matrix
BPs are more complex. We consider the following two functionally equivalent
circuits:

C0 = (X1 ∧ X2) ∧ (¬X1 ∧ X3),
C1 = (¬X1 ∧ X2) ∧ (X1 ∧ X3).

We transform two circuits into the following BPs by Barrington theorem as
follow9:
9 Barrington theorem can be implemented in various ways, but we only consider the

first description in [10]. This description also can be found in [4].

210 J. H. Cheon et al.

PC0 = 0: αρ βρ α−1
ρ β−1

ρ e βδ e β−1
δ · · ·

1: e e e e αδ e α−1
δ e · · ·

PC1 = 0: e βρ e β−1
ρ αδ βδ α−1

δ β−1
δ · · ·

1: αρ e α−1
ρ e e e e e · · ·

input bits 1 2 1 2 1 3 1 3 · · ·
where τσ denotes στσ−1 for permutations τ, σ ∈ S5. In the matrix representation,
the permutations α, β, γ, ρ, δ are of the form

α =

⎡
⎢⎢⎢⎢⎣

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0

⎤
⎥⎥⎥⎥⎦

, β =

⎡
⎢⎢⎢⎢⎣

0 0 1 0 0
1 0 0 0 0
0 0 0 0 1
0 1 0 0 0
0 0 0 1 0

⎤
⎥⎥⎥⎥⎦

, γ =

⎡
⎢⎢⎢⎢⎣

0 0 1 0 0
0 0 0 0 1
0 1 0 0 0
1 0 0 0 0
0 0 0 1 0

⎤
⎥⎥⎥⎥⎦

, ρ =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 0 0 1
0 0 0 1 0

⎤
⎥⎥⎥⎥⎦

, δ =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 0 1
0 1 0 0 0

⎤
⎥⎥⎥⎥⎦

.

We note that two functionally equivalent branching programs PC0 and
PC1 are clearly input-unpartitionable. Now if we consider two (invalid) inputs
x = 0110110111111111 and y = 1111101011111111. These yield, for example,
PC0(x) = αρ · e · e · β−1

ρ · αδ · e · e · e · · · · = αρ · β−1
ρ · αδ = β. The terms in the

right · · · are canceled. Then the equation

PC0(x) − PC0(y) = 0,
PC1(x) − PC1(y) �= 0

hold. Thus two branching programs PC0 and PC1 are functionally equivalent but
linear relationally inequivalent.

MPC

An Optimal Distributed Discrete Log
Protocol with Applications to
Homomorphic Secret Sharing

Itai Dinur1(B), Nathan Keller2, and Ohad Klein2

1 Department of Computer Science, Ben-Gurion University, Beersheba, Israel
dinuri@cs.bgu.ac.il

2 Department of Mathematics, Bar-Ilan University, Ramat Gan, Israel

Abstract. The distributed discrete logarithm (DDL) problem was
introduced by Boyle et al. at CRYPTO 2016. A protocol solving this
problem was the main tool used in the share conversion procedure of their
homomorphic secret sharing (HSS) scheme which allows non-interactive
evaluation of branching programs among two parties over shares of secret
inputs.

Let g be a generator of a multiplicative group G. Given a random
group element gx and an unknown integer b ∈ [−M, M] for a small M ,
two parties A and B (that cannot communicate) successfully solve DDL
if A(gx) − B(gx+b) = b. Otherwise, the parties err. In the DDL protocol
of Boyle et al., A and B run in time T and have error probability that
is roughly linear in M/T . Since it has a significant impact on the HSS
scheme’s performance, a major open problem raised by Boyle et al. was
to reduce the error probability as a function of T .

In this paper we devise a new DDL protocol that substantially reduces
the error probability to O(M · T −2). Our new protocol improves the
asymptotic evaluation time complexity of the HSS scheme by Boyle et
al. on branching programs of size S from O(S2) to O(S3/2). We further
show that our protocol is optimal up to a constant factor for all relevant
cryptographic group families, unless one can solve the discrete logarithm
problem in a short interval of length R in time o(

√
R).

Our DDL protocol is based on a new type of random walk that is com-
posed of several iterations in which the expected step length gradually
increases. We believe that this random walk is of independent interest
and will find additional applications.

Keywords: Homomorphic secret sharing · Share conversion
Fully homomorphic encryption · Discrete logarithm
Discrete logarithm in a short interval · Random walk

1 Introduction

Homomorphic Secret Sharing. Homomorphic secret sharing (HSS) is a prac-
tical alternative approach to fully homomorphic encryption (FHE) [12,17] that

c© International Association for Cryptologic Research 2018
H. Shacham and A. Boldyreva (Eds.): CRYPTO 2018, LNCS 10993, pp. 213–242, 2018.
https://doi.org/10.1007/978-3-319-96878-0_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96878-0_8&domain=pdf

214 I. Dinur et al.

provides some of its functionalities. It was introduced by Boyle et al. [5] at
CRYPTO 2016 and further studied and extended in [4,6,7,10]. The main advan-
tage of HSS over traditional secure multiparty computation protocols [1,8,20] is
that, similarly to FHE, its communication complexity is smaller than the circuit
size of the computed function.

HSS allows homomorphic evaluation to be distributed among two parties who
do not interact with each other. A (2-party) HSS scheme randomly splits an input
w into a pair of shares (w0, w1) such that: (1) each share wi computationally hides
w, and (2) there exists a polynomial-time local evaluation algorithm Eval such
that for any program P from a given class (e.g., a boolean circuit or a branching
program), the output P (w) can be efficiently reconstructed from Eval(w0, P)
and Eval(w1, P).

The main result of [5] is an HSS scheme for branching programs under
the Decisional Diffie-Hellman (DDH) assumption that satisfies P (w) =
Eval(w0, P) + Eval(w1, P). It was later optimized in [4,6], where the security
of the optimized variants relies on other discrete log style assumptions.

Let G be a multiplicative cyclic group of prime order N in which the discrete
log problem is (presumably) hard and let g be a generator of this group. The
scheme of [5] allows the parties to locally multiply an encrypted (small) input
w ∈ Z with an additively secret-shared (small) value y ∈ Z, such that the
result z = wy is shared between the parties. The problem is that at this stage
gz is multiplicatively shared by the parties, so they cannot multiply z with
a new encrypted input w′. Perhaps the most innovative idea of [5] allows the
parties to convert multiplicative shares of gz into additive shares of z without any
interaction via a share conversion procedure. Once the parties have an additive
sharing of z, they can proceed to add it to other additive shares. These operations
allow to evaluate restricted multiplication straight-line (RMS) programs which
can emulate any branching program of size S using O(S) instructions.

The share conversion procedure of [5] is not perfect in the sense that the
parties may err. More specifically, the parties fail to compute correct additive
shares of z with some error probability δ that depends on the running time T of
the parties and on a small integer M that bounds the intermediate computation
values. As share conversion is performed numerous times during the execution
of Eval, its total error probability accumulates and becomes roughly δ ·S, where
S is the number of multiplications performed by the RMS program P . Thus, for
the total error probability to be constant one has to set the running time T of
the parties in the share conversion procedure such that δ ≈ 1/S. Consequently,
the running time to error tradeoff has a significant impact on the performance
of the HSS scheme.

Since the main motivation behind HSS is to provide a practical alternative
to FHE, one of the main open problems posed in [5] was to improve the running
time to error tradeoff of the share conversion procedure. Progress on this open
problem was made in the followup works [4,6] which significantly improved the
practicality of the HSS scheme. Despite this progress, the asymptotic running
time to error tradeoff of the share conversion procedure was not substantially
improved and the running time T in all the schemes grows (roughly) linearly

An Optimal Distributed Discrete Log Protocol with Applications to HSS 215

with the inverse error probability 1/δ (or as M/δ in general). Thus, to obtain
δ ≈ 1/S, one has to set T ≈ S, and since the total number of multiplications in
P is S, the total running time becomes O(S2).

The Distributed Discrete Log Problem. The focus of this paper is on the
“distributed discrete log” (DDL) problem which the parties collectively solve in
the share conversion procedure. We now describe the DDL problem and abstract
away the HSS details for simplicity. The DDL problem involves two parties A and
B. The input of A consists of a group element gx, were x is chosen uniformly
at random from ZN . The input of B consists of gx+b, where b ∈ [−M,M] is
an unknown uniformly chosen integer in the interval (for a small fixed integer
parameter M). The algorithms A,B are restricted by a parameter T which
bounds the number of group operations they are allowed to compute.1 After
executing its algorithm, each party outputs an integer. The parties successfully
solve the DDL instance if A(gx) − B(gx+b) = b. We stress that A and B are not
allowed to communicate.2

If gz is multiplicatively shared by A (party 0) and B (party 1), then gz0 ·gz1 =
gz. In the share conversion procedure party A runs A(g−z0) while party B runs
B(gz1). Assuming they correctly solve DDL for |z| ≤ M , we have A(g−z0) −
B(gz1) = z1 + z0 = z, namely, A(g−z0) and −B(gz1) are additive shares of z as
required.

It is convenient to view the DDL problem as a synchronization problem: A
and B try to agree or synchronize on a group element with a known offset in
the exponent from their input. If they manage to do so, the parties solve DDL
by outputting this offset. For example, if both parties synchronize on gy, then
A(gx) = y − x while B(gx+b) = y − (x + b), so A(gx) − B(gx+b) = b as required.
In particular, if both A and B can solve the discrete logarithm problem for their
input (i.e., compute x and x+ b, respectively), then they can synchronize on the
generator g by outputting A(gx) = 1 − x and B(gx+b) = 1 − (x + b). Of course,
this would violate the security of the HSS scheme, implying that the discrete
logarithm problem in G should be hard and A,B have to find other means to
succeed.

Our Goals. The goal of this paper is to devise algorithms for A and B (i.e.,
a DDL protocol) that maximize their success probability (taken over the ran-
domness of x, b), or equivalently, minimize their error probability δ given T . Our
1 In all algorithms presented in this paper, the bulk of computation involves performing

group operations, hence this is a reasonable complexity measure. Alternatively, the
parameter T may bound the complexity of A, B in some reasonable computational
model.

2 We note that in the applications of [4–6], the distribution of b ∈ [−M, M] is arbi-
trary. However (as we show in Lemma 13), our choice to define and analyze DDL
for the uniform distribution of b ∈ [−M, M] is technically justified since the uniform
distribution is the hardest for DDL: algorithms for A, B that solve DDL with an
error probability δ for the uniform distribution, also solve DDL with with an error
probability O(δ) for any distribution of b ∈ [−M, M].

216 I. Dinur et al.

point of reference is the DDL protocol of [6] (which is a refined version of the
original DDL protocol [5]) that achieves a linear tradeoff between the parameter
T and error probability δ. More precisely, given that A,B are allowed T group
operations, the DDL error probability is roughly M/T . In fact, there are sev-
eral closely related protocols devised in [4–6] which give similar linear tradeoffs
between the parameter T and error probability δ.

Yet another goal of this paper is to better understand the limitations of
DDL protocols. More specifically, we aim to prove lower bounds on the error
probability of DDL protocols by reducing a well-studied computational problem
on groups to DDL. In particular, we are interested in the discrete log in an
interval (DLI) problem, where the input consists of a group element in a known
interval of length R and the goal is to compute its discrete log.

DLI has been the subject of intensive study in cryptanalysis and the best
known algorithms for it are adaptations of the classical baby-step giant-step algo-
rithm and the memory-efficient variant of Pollard [15] (see [11,16] for additional
extensions). These algorithms are based on collision finding and have complexity
of about

√
R. They are the best known in concrete prime-order group families

(in which discrete log is hard) up to large values of the interval R. In particular,
for elliptic curve groups, the best known DLI algorithm has complexity of about√

R where R is as large as the size of the group N (which gives the standard dis-
crete logarithm problem). For some other groups (such as prime order subgroups
of Z∗

p), the best known complexity is about
√

R, where R can be up to subexpo-
nential in log N (as discrete log can be solved in subexponential complexity in
these groups [13,14]). We note that besides its relevance in cryptanalysis, DLI is
solved as part of the decryption process of some cryptosystems (notably in the
cryptosystem by Boneh, Goh and Nissim [3]).

An alternative approach to establishing error probability lower bounds for
DDL is to use the generic group model (GGM), introduced by Shoup [18]. In
GGM, an algorithm is not allowed direct access to the bit representation of
the group elements, but can only obtain randomized encodings of the elements,
available via oracle queries. The generic group model is a standard model for
proving computational lower bounds on certain (presumably hard) problems on
groups and thus establishing confidence in their hardness. Although the bounds
obtained in GGM are relevant to a restricted class of algorithms, it is essen-
tially the only model in which meaningful lower bounds are known for some
computational problems on groups (such as discrete log). Moreover, for sev-
eral problems (such as discrete log computation in some elliptic curve groups),
generic algorithms are essentially the best algorithms known. The downside of
this alternative proof approach is that it does not directly relate DDL to any
hard problem in a group family, but rather establishes a lower bound proof in
an abstract model.

Our Contribution. The main result of this work is closing the gap for DDL
in many concrete group families by presenting upper and lower bounds that are
tight (within a constant factor) based on the hardness of DLI in these families.

An Optimal Distributed Discrete Log Protocol with Applications to HSS 217

We first develop an improved DDL protocol that is applicable in any group G and
achieves a quadratic tradeoff between the parameter T and the error probability,
namely δ = O(M/T 2). This is a substantial improvement over the linear tradeoff
δ = O(M/T) obtained in [4–6]. Therefore, when executing Eval on an RMS
program P with multiplicative complexity S, one can set T = O(S1/2) to obtain
δ = O(1/S) and the total running time is reduced from O(S2) in [4–6] to O(S3/2).
This result directly improves upon the computational complexity of some of the
HSS applications given in [4–6]. For example, in private information retrieval [9]
(PIR), a client privately searches a database distributed among several servers
for the existence of a document satisfying a predicate P . The 1-round 2-server
PIR scheme of [5] supports general searches expressed as branching programs of
size S applied to each document. The computational complexity per document
in the scheme of Boyle et al. is O(S2) and our result reduces this complexity to
O(S3/2).

On the practical side, we fully verified our protocol by extensive experiments.
We hope that it will render HSS practical for new applications.

Our DDL protocol uses a new type of (pseudo) random walk composed of sev-
eral iterations. Each one of these iterations resembles Pollard’s “kangaroo” ran-
dom walk algorithm for solving DLI using limited memory [15]. However DDL is
different from DLI as the parties cannot communicate and seek to minimize their
error probability (rather than make it constant). This leads to a more complex
iterative algorithm, where the parties carefully distribute their time complexity T
among several random walks iterations. These iterations use increasingly longer
step lengths that gradually reduce the error probability towards O(M/T 2).

The new random walk maximizes the probability that parties with close
inputs agree (or synchronize) on a common output without communicating. We
believe that this random walk is of independent interest and will find additional
applications beyond homomorphic secret sharing schemes and cryptography in
general.

After presenting our DDL protocol, we focus on lower bounds and show
that any DDL protocol for a family of groups must have error probability of
δ = Ω(M/T 2), unless DLI (with interval of length R) can be solved in time T ′ ≈
T = o(

√
R) in this family. This is currently not achievable for small (polynomial)

T in standard cryptographic groups (for which the group-based HSS scheme is
deemed to be secure).

Finally, we analyze DDL protocols in the generic group model. In this model,
our DDL protocol is adaptive, as the oracle queries of A and B depend on
the answers to their previous queries. This stands in contrast to the protocols
of [4–6] in GGM, whose oracle queries are fixed in advance (or selected with
high probability from a pre-fixed set of size O(T)). It is therefore natural to
ask whether adaptivity is necessary to obtain optimal DDL protocols in GGM.
Interestingly, we prove that the answer is positive. In fact, we show that the
linear tradeoff obtained in [4–6] is essentially the best possible for non-adaptive
DDL protocols in GGM.

218 I. Dinur et al.

Paper Organization. The rest of the paper is organized as follows. We describe
preliminaries in Sect. 2 and present an overview of our new protocol and related
work in Sect. 3. Our new DDL protocol is analyzed in Sect. 4. We prove lower
bounds on the DDL error probability in concrete group families in Sect. 5 and
finally prove lower bounds on non-adaptive algorithms in GGM in Sect. 6.

2 Preliminaries

In this section we describe the preliminaries required for this work. First we
introduce notation that we use throughout the paper and then we present and
analyze the DDL algorithm of [5], which will serve as a basis for our algorithms.

2.1 Notation for the Distributed Discrete Log Problem

Recall that the parties A and B successfully solve the DDL instance if A(gx) −
B(gx+b) = b. To simplify our notation, we typically do not explicitly write the
parameters G, g,N,M, T in the description of A,B, although some of them will
appear in the analysis. We are interested in the success (or error) probability of
A and B, taken over the randomness of x, b (and possibly over the randomness of
A,B). We denote by err(A,B, x, b, T) the error event A(gx)−B(gx+b) �= b, and
by Prerr(A,B, [M1,M2], T) its probability Pr

x,b
[err(A,B, x, b, T)], where x ∈ ZN

and b ∈ [M1,M2] are uniform (typically, we are interested in M2 = −M1 = M).
We also denote by suc(A,B, x, b, T) the complementary success event A(gx) −
B(gx+b) = b.

When both parties perform the same algorithm A, we shorten the notation
into err(A, x, b, T), Prerr(A, [M1,M2], T), and suc(A, x, b, T), respectively. If the
parameters A,B, x, b, T are apparent from the context, we sometimes use err
and suc instead of err(A,B, x, b, T) and suc(A,B, x, b, T), respectively. As men-
tioned above, A and B can be randomized algorithms and in this case the success
(and error) probabilities are taken over their randomness as well. However, to
simplify our notation we will typically not refer to this randomness explicitly.

We note that the DDL problem considered in [4–6] is slightly different, as
A,B are allowed to perform up to T group operations in expectation. In this
alternative definition, one can construct DDL protocols that are more efficient
than ours by a small constant factor, while our lower bounds remain the same
(again, up to a constant factor).

In the description and analysis of the DDL algorithms, we make frequent use
of group elements of the form gx+j . For sake of simplicity, we denote gj := gx+j .
In addition, we usually assume b ≥ 0, as otherwise we can simply exchange the
names of the parties A and B when they use the same algorithm. Finally, we
refer to a group operation whose output is h as a query to h.

An Optimal Distributed Discrete Log Protocol with Applications to HSS 219

2.2 The Basic DDL Algorithm

Let φ : G → [0, N − 1] be a pseudo-random function (PRF) that maps group
elements to integers. Our protocols evaluate φ on O(T) group elements for
T 	 N1/2. We assume throughout the analysis that φ behaves as a truly ran-
dom permutation on the evaluated group elements, and in particular, we do not
encounter collisions in φ (i.e., for arbitrary h �= h′, φ(h) �= φ(h′)). Our probabilis-
tic calculations are taken over the choice of φ, even though we do not indicate
this explicitly for simplicity.3

We describe the min-based DDL algorithm of [5] in Algorithm 1 and refer
to it as the basic DDL algorithm. The algorithm is executed by both A and B.
When applied to g0 = gx, the algorithm scans the T values g0, g1, . . . , gT−1 and
chooses the index imin for which φ(gi) is minimal. The output of the algorithm
is BasicT (gx) = (imin, gmin). Note that the algorithm depends also on G, g;
however, we do not mention them explicitly in the notation. Furthermore, the
output gmin will only be relevant later, when we use this algorithm as a sub-
procedure. For the sake of analysis, we slightly abuse notation below and refer
to imin as the (only) output of BasicT (gx).

The motivation behind the algorithm is apparent: if party A applies
BasicT (gx) and party B applies BasicT (gx+b), where b 	 T , then the lists of val-
ues scanned by the two algorithms (i.e., g0, g1, . . . , gT−1 and gb, gb+1, . . . , gb+T−1)
contain many common values, and thus, with a high probability the minimum
is one of the common values, resulting in success of the algorithm.

2.3 Analysis of the Basic DDL Algorithm

Error Probability. The following lemma calculates the error probability of the
basic DDL algorithm, as a function of |b| and T .

Lemma 1. The error probability of the basic DDL algorithm is

Pr
x

[err(BasicT , x, b, T)] = Pr[(BasicT (gx) − BasicT (gx+b) �= b)] = 2|b|/(|b| + T).

Proof. We assume b ≥ 0, as otherwise we exchange the names of A and B.
Since both A and B use Algorithm 1, then A computes the function φ on
g0, g1, . . . , gT−1, while B computes this function on gb, gb+1, . . . , gb+T−1. If the
minimum value of φ for each party is obtained on an element gmin = gx · gimin

which is queried by both, then we have BasicT (gx) = imin and BasicT (gx+b) =
imin − b, implying that BasicT (gx) − BasicT (gx+b) = b and the parties are
successful. Similarly, they fail when the minimal value of φ on the elements
3 The function φ (and additional pseudo-random functions defined in this paper) can

be implemented by a keyed MAC, where the key is pre-distributed to A and B. Thus,
our probabilistic calculations should be formally taken over the choice of the key.
They should include an error term that accounts for the distinguishing advantage
of an efficient adversary (A or B in our case) that attempts to distinguish the PRF
from a truly random permutation. However, for an appropriately chosen PRF, the
distinguishing advantage is negligible and we ignore it for the sake of simplicity.

220 I. Dinur et al.

Algorithm 1. BasicT (gx)
1 begin
2 h′ ← gx, i ← 0, min ← ∞;
3 while i < T do
4 y ← φ(h′);
5 if y < min then
6 gmin ← h′;
7 imin ← i, min ← y;

8 end
9 h′ ← h′ · g;

10 i ← i + 1;

11 end
12 Output (imin, gmin);

13 end

g0, g1, . . . , gb+T−1 is obtained on an element computed only by one party, namely
on one of the 2b elements gx ·gi for 0 ≤ i < b or T ≤ i < b+T . Assuming that the
output of φ on each element is uniform and the outputs are distinct, this occurs
with probability 2b/(b + T). Hence Pr

x
[err(BasicT , x, b, T)] = 2|b|/(|b| + T), as

asserted. �

The output difference in case of failure. An important quantity that plays a role
in our improved protocol is the output difference of the parties in case they fail
to synchronize on the same element gmin (i.e., their output difference is not b).
The following lemma calculates the expectation of this difference, as function of
|b| and T .

Lemma 2.

E
[∣∣BasicT (gx) − BasicT (gx+b) − b

∣
∣
∣
∣ err

]
= (|b| + T)/2.

Proof. We assume b ≥ 0. As written above, A computes the function φ on
g0, . . . , gT−1, and B computes this function on gb, . . . , gb+T−1. The ordering of
the values φ(g0), . . . , φ(gb+T−1) is uniform, and so the permutation π satisfying
φ(gπ(0)) < φ(gπ(1)) < . . . < φ(gπ(b+T−1)) is uniformly random in the permu-
tation group of {0, 1, . . . , b + T − 1}. The event err is equivalent to the event
π(0) /∈ [b, T − 1]. Without loss of generality let us restrict ourselves to the event
π(0) < b, i.e. A encounters the minimal group element, and B does not; the other
possibility π(0) ≥ T is symmetric with respect to reflection. Clearly, π(0), which
equals BasicT (gx), is uniformly random in [0, b − 1]. Moreover, BasicT (gx+b) + b
is π (min {i |π(i) > b}) which uniformly distributes in [b, b + T − 1]. Hence the
expected final distance between the parties is (2b+T+1)/2−(b+1)/2 = (b+T)/2.
�

An Optimal Distributed Discrete Log Protocol with Applications to HSS 221

3 Overview of Our New Protocol and Related Work

3.1 The New DDL Protocol

For the sake of simplicity, we assume in this overview that M = 1, hence |b| ≤ 1.
The starting point of our new DDL protocol is Algorithm1. It makes T queries
(i.e., group operations) and fails with probability of roughly 2/T according to
Lemma 1. Let us assume that we run this algorithm with only T/2 queries, which
increases the error probability by a factor of 2 to about 4/T . On the other hand,
we still have a budget of T/2 queries and we can exploit them to reduce the
error probability. Interestingly, simply proceeding to calculate more consecutive
group elements is not an optimal way to exploit the remaining budget.

After the first T/2 queries, we say that A (or B) is placed at group element
gy if φ(gy) is the minimal value in its computed set of size T/2. Assume that A
and B fail to synchronize on the same group element after the first T/2 queries
(which occurs with probability of roughly 4/T). Then, by Lemma 2, A and B
are placed at elements which are at distance of about T/4, i.e., if A is placed at
gy and B is placed at gz, then |y−z| ≈ T/4. Our main idea is to use a somewhat
different procedure in order to try to synchronize A and B in case they fail to
do so after the first T/2 queries, while keeping A and B synchronized if they
already are.

The next procedure employed by both A and B is a (pseudo) random walk
starting from their initial position, whose step length is uniformly distributed in
[1, L − 1], where L ≈ √

T . The step length at group element gy is determined
by ψL−1(gy), where ψL−1 is a pseudo-random function independent of φ that
outputs a uniform integer in [1, L − 1].4 Assume that after the first T/2 queries,
B is placed at distance of about T/4 in front of A. Then A will pass B’s initial
position after about

√
T/2 steps and simple probabilistic analysis shows that A

will land on one of B’s steps after an additional expected number of about
√

T/2
steps. From this point, the walks coincide for the remaining T/2 − √

T steps.
Similarly to Algorithm 1, each party outputs the offset of the minimal φ(gy)
value visited during its walk. Since both A and B use the same deterministic
algorithm, they remain synchronized if they already are at the beginning of the
walks. On the other hand, if they are not initially synchronized, their walks
are expected to coincide on T/2 − √

T elements, and hence the probability that
they remain unsynchronized is roughly

√
T/(T/2) = 2 · T−1/2. Thus, the error

probability at this stage is about 4 · T−1 · 2 · T−1/2 = 8 · T−3/2, which already
significantly improves upon the 2 ·T−1 error probability of Algorithm1 for large
T .

However, we can still do better. For the sake of simplicity, let us completely
ignore constant factors in rest of this rough analysis. Note that we may reserve
an additional number of O(T) queries to be used in another random walk by
shortening the first two random walks, without affecting the failure probability

4 Our analysis assumes that ψL−1 is a truly random function and our probabilistic
calculations are taken over the choice of ψL−1.

222 I. Dinur et al.

significantly. Hence, assume that the parties fail to synchronize after the ran-
dom walk (which occurs with probability of about T−3/2) and that we still have
enough available queries for another random walk with O(T) steps. Since each
party covers a distance of about T 3/2 during its walk, then the expected dis-
tance between the parties in case of failure is roughly T 3/2. We can now perform
another random walk with expected step length of T 3/4 (hence the walks are
expected to coincide after about T 3/4 steps), reducing the error probability to
about T−3/2 · (T 3/4 ·T−1) = T−7/4. This further increases the expected distance
between A and B in case of failure to approximately T 7/4. We continue execut-
ing random walk iterations with a carefully chosen step length (distributing a
budget of O(T) queries among them). After i random walk iterations, the error
probability is reduced to about T−2+2−i

(and the expected distance between
the parties is roughly T 2−2−i

). Choosing i ≈ log log T gives an optimal error
probability of about T−2+1/ log T = O(T−2).

Our new DDL protocol is presented in Algorithms 2 and 3. Algorithm 2
describes a single iteration of the random walk, parameterized by (L, T) which
determine the maximal step length and the number of steps, respectively.5 Algo-
rithm3 describes the full protocol which is composed of application of the basic
DDL algorithm (using t0 < T queries, reserving queries for the subsequent ran-
dom walks), and then I additional random walks, where the i’th random walk is
parameterized by (Li, ti) which determine its maximal step length and number
of steps. Between each two iterations in Step 6, both parties are moved forward
by a large (deterministic) number of steps, in order to guarantee independence
between the iterations (the computation time used to perform these calculations
is negligible compared to T). We are free to choose the parameters I, {Li, ti}, as
long as

∑I
i=0 ti = T is satisfied.

The very rough analysis presented above assumes that we have about T
queries in each of the log log T iterations, whereas we are only allowed T queries
overall. Moreover, it does not accurately calculate the error probability and
the distance between the parties in case of failure in each iteration. Taking all
of these into account in an accurate analysis results in an error probability of
Ω(log T ·T−2). Surprisingly, we can still achieve an error probability of O(T−2).
This is done by a fine tuning of the parameters which distribute the number of
queries among the iterations and select the step length of each random walk. In
particular, it is not optimal to independently optimize the step length of each
iteration and one has to analyze the subtle dependencies between the iterations
in order to achieve an error probability of O(T−2).

As the fine tuning of the parameters is rather involved, in addition to the
theoretical analysis we verified the failure probability by extensive experiments.

5 We assume that the algorithm uses a table containing the pre-computed values
g, g2, . . . , gL−1. Otherwise, it has to compute gzi+1 on-the-fly in Step 10, which
results in a multiplicative penalty of O(log(T)) on the number of group operations.
Of course, it is also possible to obtain a time-memory tradeoff here.

An Optimal Distributed Discrete Log Protocol with Applications to HSS 223

Algorithm 2. RandWL,T (h)

1 begin
2 h′ ← h, i ← 0, min ← ∞, d0 ← 0;
3 while i < T do
4 y ← φ(h′);
5 if y < min then
6 hmin ← h′;
7 dmin ← di, min ← y;

8 end
9 zi+1 ← ψL−1(h

′);
10 h′ ← h′ · gzi+1 ;
11 di+1 ← di + zi+1;
12 i ← i + 1;

13 end
14 Output (dmin, hmin);

15 end

Algorithm 3. IteratedRandWI,t0,{(Li,ti)Ii=1}(h)

1 begin
2 (c0, h0) ← Basict0(h);
3 p0 ← c0;
4 i ← 1;
5 while i ≤ I do

6 h′
i−1 ← hi−1 · g

∑
j<i tjLj ;

7 (ci, hi) ← RandWLi,ti(h
′
i−1);

8 pi ← pi−1 + ci;
9 i ← i + 1;

10 end
11 Output pI ;

12 end

3.2 Related Work

The most closely related work to our DDL algorithm is Pollard’s “kangaroo”
method for solving the discrete logarithm problem in an interval using limited
memory (see [15] and [11,16] for further analysis and extensions). The kangaroo
method launches two random walks (kangaroos), one from the input h = gx

(where x the unknown discrete log) and one from gy, where y is a known value
in an interval of a fixed size R around x. The algorithm is optimized such that the
walks meet at a “distinguished point”, which reveals x. The kangaroo method
thus resembles a single random walk iteration of our DDL algorithm.

On the other hand, there are fundamental differences between the standard
DLI and DDL. These differences result in the iterative structure of our algorithm
that differs from Pollard’s method. First, in contrast to the DLI problem, in DDL

224 I. Dinur et al.

A and B cannot communicate and never know if they succeed to synchronize.
Hence, the parties cannot abort the computation at any time. Second, the goal
in DDL is to minimize the error probability, whereas achieving a constant error
probability (as in standard DLI) is unsatisfactory. To demonstrate the effect of
these differences, observe that solving the discrete log problem in an interval of
size 3 can be trivially done with probability 1 using 3 group operations. On the
other hand, our algorithm for solving DDL for M = 1 is much more complicated
and achieves an error probability of about T−2 using T group operations (which
is essentially optimal for many concrete group families).

Yet another difference between DLI and DDL is that in DLI the boundaries
of the interval of the input h are known, whereas in DDL the input of each
party is completely uniform. The knowledge of the interval boundaries in DLI
allows to shift it to the origin (using the self-reducibility property of discrete log)
and efficiently use preprocessing (with a limited amount of storage) to speed up
the online computation [2]. On the other hand, it is not clear how to efficiently
exploit preprocessing in DDL.

4 The New Distributed Discrete Log Protocol

In this section we study our new DDL protocol in more detail. In Sect. 4.1
we focus on a single iteration of our DDL protocol (i.e., a single random walk
iteration) and analyze its failure probability and the expected distance between
its outputs in case of a failure. In Sect. 4.2 we briefly analyze the complete
protocol. Some parts of the analysis are quite involved and presented in the
extended version of this paper. This includes the proofs of Lemmas 5, 8, 9 and
Theorem 1.

The experimental verification of the protocol is presented in Sect. 4.3. We also
describe some practical considerations regarding the protocol in the extended
version of this paper.

4.1 A Single Iteration of Our DDL Protocol – The Random Walk
DDL Algorithm

Recall that in Algorithm 2 applied with parameters (L, T), both parties perform
a random walk of T steps of the form gy → gy+ai , where the length ai of each step
is determined by a (pseudo) random function ψL−1 : G → {1, 2, . . . , L−1} which
guarantees that the step length is uniformly distributed in the range [1, L − 1].
Each party then chooses among the elements of G visited by its walk, the element
hmin for which φ(hmin) is minimal (as in the basic DDL algorithm).6

Once the parties synchronize in a given iteration, they remain synchronized
in the subsequent ones as each iteration is deterministic. Thus, an application
6 We assume in our analysis that during the application of the whole protocol by a

single party, each function φ, ψL−1 is not evaluated twice on the same input. These
constrains are satisfied since |G| = N is much larger than T (e.g., |G| > cT 2 for a
sufficiently large constant c).

An Optimal Distributed Discrete Log Protocol with Applications to HSS 225

of Algorithm 2 is “relevant” only if the two parties failed to synchronize in the
previous iterations. In this case, the initial distance b between the parties is the
difference between their outputs in the previous iteration. We shall compute the
probability of failure as a function of b (which allows us to treat b as a constant
throughout the analysis), and then substitute the expectation of b – computed
in the analysis of the previous step – into the computation. In particular, as the
expected distance between the outputs in case of failure of the basic DDL algo-
rithm was computed in Lemma 2, we will be able to substitute it as E[|b|] into
the computation of the failure probability of the second iteration of our DDL
protocol. At the same time, in addition to the failure probability we shall com-
pute the expected distance between the outputs in case of failure of Algorithm2
in order to be able to link the examined iteration to the subsequent one.

Additional Notation. In our analysis we use some auxiliary notation. Without
loss of generality, we assume that b ≥ 0 (namely, B is located at distance b in
front of A). We let SA be the number of steps of A until its walk lands on
an element visited by B (i.e., the number of queries made by A strictly before
the first element of A that is included in B’s path). If this never occurs, we
let SA = T . Similarly, we define SB as the number of steps of B until its walk
lands on an element visited by A. Clearly, the walks of A and B coincide for
T − max(SA, SB) steps.

We define UA as the number of steps A performs until it is within reach
of a single step from the starting point of B. Namely, UA = min{i | dA

i >
b − L}, where dA

i is the variable di in Algorithm 2 applied by A. In addition,
we let VA, VB denote the numbers of steps performed by A and B, respectively,
starting from the point where A is within reach of a single step from the starting
point of B, until the walks collide or one of them ends. Furthermore, we denote
Vm = max{VA, VB}. Notice that SA = UA + VA and SB = VB, and hence

max(SA, SB) ≤ UA + Vm. (1)

Below, we evaluate the expectations of the random variables UA, Vm in order to
bound the error probability of synchronization based on Algorithm2.

Finally, while RandWL,T (h) has two outputs, we slightly abuse notation and
refer to dmin as the (only) output of RandWL,T (h) since only this output is
relevant for this analysis.

The Failure Probability of Algorithm 2. First, we bound the expected num-
ber of steps performed by A until it reaches the starting point of B.

Lemma 3. E[UA] < 2b/L.

Proof. By the definition of UA, we have dA
UA

< b. Consider the martingale d′
i =

dA
i − iL/2 (which is indeed a martingale, as ψL−1(h′) computed in the algorithm

are independent and have expectation L/2). The classical Doob’s martingale
theorem yields

0 = d′
0 = E[d′

UA
] = E[dA

UA
] − LE[UA]/2.

As dUA
< b, we deduce E[UA] < 2b/L. �

226 I. Dinur et al.

Our next lemma bounds the expectation of SA+SB, that is, the total number
of steps performed by the two walks together before they meet.

Lemma 4. Suppose the initial distance between the parties, b, satisfies 0 < b <
L. Then E[SA + SB] ≤ L − 1.

Proof. For ease of computation, we do not trim SA and SB with T . Of course, this
can only make the upper bound larger. One easily sees that E[SA + SB] is finite
and depends only on b (and the parameter L). Write Eb for this expectation. We
have E0 = 0, and by dividing into cases according to the result of a single step
of A, we obtain

Eb = 1 +
1

L − 1
(Eb−1 + Eb−2 + . . . + E1 + E0 + E1 + . . . + EL−1−b) .

A valid solution for this system of linear equations is Eb = L−1 for all 0 < b < L.
This is actually the only solution, since the matrix corresponding to this system
is strictly diagonally dominant, and thus is invertible by the Levy-Desplanques
theorem. Therefore, E[SA + SB] = L − 1, independently of b. �

The next lemma bounds the maximum between the numbers of steps per-
formed by A and B between the time A “almost” reached the starting point of
B and the meeting of the walks.

Lemma 5. E[Vm] ≤ (L − 1)/2 +
√

8(L − 1).

The proof of the lemma is a lengthy technical argument, which mainly uses
Lemma 4 and Doob’s martingale theorem.

Now we are ready to estimate the failure probability of Algorithm2.

Lemma 6. Let R = 2b/L + L/2 +
√

8L for 0 < b < L. The error probability of
the random walk DDL algorithm satisfies

Pr
x
[err(RandW, x, b, T)] = Pr[(RandWL,T (gx) − RandWL,T (gx+b) �= b)] ≤ 2R/(T +R).

Proof. The walks of A and B coincide for T − max(SA, SB) steps. Notice that
we have,

E[max(SA, SB)] ≤ E[UA + Vm] ≤ L/2 + 2b/L +
√

8L = R, (2)

where the first inequality uses (1) and the second inequality uses Lemmas 3
and 5. Similarly to the basic DDL algorithm (Lemma1), the error probability
(assuming that the output of φ on each element is uniformly random) is

Pr
x

[err(RandW, x, b, T)] = E[2max(SA, SB)/(T + max(SA, SB))]

≤ E[2max(SA, SB)]
T + E[max(SA, SB)]

≤ 2R

T + R
,

where the first inequality is Jensen’s inequality applied to the increasing concave
function x
→ 2x/(T + x) in the domain x > 0, and the second inequality uses
the monotonicity of the function x
→ 2x/(T + x) and Eq. (2). �

An Optimal Distributed Discrete Log Protocol with Applications to HSS 227

The Output Difference in Case of Failure. Similarly to Lemma 2 which
bounded the expected difference of outputs in case of failure for the basic DDL
algorithm, we bound the analogous quantity for Algorithm2. In order to achieve
this result, we need a “conditional” version of the classical Azuma martingale
inequality.

Lemma 7 (Azuma’s inequality). Let X0,X1, . . . , Xn be a martingale with
|Xi − Xi−1| ≤ V . Then for any t ≥ 0,

Pr
[|Xn − X0| ≥ V · t

√
n
] ≤ 2 exp(−t2/2).

Lemma 8. Let X1, . . . , Xn be independent random variables with |Xi−E[Xi]| ≤
V and let E be an event. Then

E

⎡

⎣ n
max
k=1

∣
∣
∣
∣
∣
∣

∑

i≤k

(Xi − E[Xi])

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
E
⎤

⎦ ≤ V
√

8n log(2/Pr[E]).

To understand the intuition behind the lemma, consider the sum of indepen-
dent {1,−1} random variables {Xi}n

i=1. By Chernoff’s inequality, Pr[|∑ Xi| >

t
√

n] < e−t2/2. However, if we condition on the event E = {∑Xi = n}, then we
have Pr[|∑ Xi| > t

√
n|E] = 1 for all t <

√
n. On the other hand, the probability

of the event E is extremely small. We claim that if one is allowed to condition
only on events with not-so-small probability, then all sums |∑k

i=1 Xi| are not
much larger than the Chernoff bound, which applies without the conditioning.
Our lemma is the martingale version of this intuition.

Finally, we show that either the error probability is “very small” (and so
there is no need to continue the random walk iterations), or we can bound the
distance between the outputs in case of failure.

Lemma 9. If Prerr(RandWL,T , [1, 1], T) ≥ ε, then for 0 < b < L and h1 ∈ G

E
[∣∣RandWL,T (h1) − RandWL,T (h1 · gb) − b

∣
∣
∣
∣ err

]

≤ b + TL/4 + L
√

32T log(2/ε).
(3)

The proof of the lemma is a somewhat lengthy technical argument which mainly
uses Lemma 8.

4.2 The Iterated Random Walk DDL Algorithm

As described in Sect. 3, our full DDL protocol (i.e., Algorithm3) runs iteratively
several stages of Algorithm 2. It depends on a set of parameters: I, which is
the number of iterations in the algorithm (on top of the basic DLL algorithm),
(ti)I

i=0, which represent the number of queries in each of the I +1 iterations, and
(Li)I

i=1, which determine the (maximal) sizes of steps performed in each random
walk iteration.

Given a set of parameters, Lemmas 6 and 9 allow us to compute the failure
probability of IteratedRandW under that set of parameters. A “naive” choice of

228 I. Dinur et al.

parameters leads to a failure probability of O(T−2 log T). However, we show in
the following theorem that the parameters can be chosen in such a way that the
failure probability becomes O(T−2).

Theorem 1. There exists a parameter set PS for which the error probability of
the iterated random walk DDL algorithm is

Prerr(IteratedRandWPS , [1, 1], T)

= Pr[IteratedRandWPS(gx) − IteratedRandWPS(gx+1) �= 1]

≤ 210.2+o(1)/T 2.

We give concrete choices of parameters and experimentally obtained values of
the error probability for various values of T (that take into consideration the
low-order terms) in the extended version of this paper.

A simple distance extension argument (see Sect. 5.5, Lemma 14) allows us to
obtain a similar result for larger distances between the starting points.

Corollary 1. Consider Algorithm3 with the parameter set PS chosen in The-
orem1. Then for any distribution of the initial distance b that has expectation
E[|b|], the error probability of Algorithm3 is at most O(E |b|/T 2). In particular,
Prerr(IteratedRandWPS , [−M,M], T) = O(M/T 2).

We note that when E[|b|] � 1, it is more efficient to start the sequence of
iterations directly with a random walk of expected step length of roughly

√
E[|b|]

(instead of starting it with Algorithm1). This reduces the error probability by
a constant factor.

Dependency of Iterations and Parameter Selection. In Sect. 3, we noted
that in order to minimize the error probability of the protocol it is necessary to
consider the dependencies between the different iterations, rather than optimiz-
ing their error probability independently. We demonstrate this here by analyzing
only two iterations of Algorithm2. We first simplify the formulas in Lemmas 6
and 9 by ignoring low-order terms.

Lemma 6 asserts that the error probability of each iteration is 2R/(T + R),
where R ≈ 2b/L + L/2 (ignoring low-order terms). We can lower bound this
probability by 2R/T ≈ (4b + L2)/2TL. Lemma 9 asserts that the expected dis-
tance between the parties in case of error is at most b+TL/4 (ignoring low-order
terms). Since L is roughly

√
b and b < T 2 at any iteration (as noted in Sect. 3),

then we estimate the expected distance as TL/4.
Let us assume that after iteration i−1 the parties are at distance bi (which is

a random variable). Assume we are allowed T ′ queries in the next two iterations,
where in iteration i we use step length parameter Li and query parameter ti.
After this iteration, the expected distance between the parties is bi+1, which
we estimated above as tiLi/4. Similarly, in iteration i + 1 we use parameters
Li+1 and ti+1 (under the restriction that ti + ti+1 = T ′). Thus, the estimated

An Optimal Distributed Discrete Log Protocol with Applications to HSS 229

error probability of the two iterations (assuming that the previous ones failed to
synchronize) is

4bi + L2
i

2tiLi
· 4bi+1 + L2

i+1

2ti+1Li+1
.

To simplify this expression, for parameters α, β write Li = α
√

bi and Li+1 =
β
√

bi+1 ≈ β/2 · √
tiLi. Then, the error probability expression simplifies to

b
3/4
i

8
· (4 + α2)(4 + β2)

α1/2β · t
1/2
i ti+1

.

It remains to minimize this expression by appropriately selecting α, β, ti, ti+1

(such that ti + ti+1 = T ′). Taking partial derivatives, it is clear that the global
minimum is obtained by selecting different parameters for the two iterations,
namely, the values of α, ti for iteration i are different from β, ti+1 for iteration
i+1. In other words, in order to minimize the error probability it is necessary to
solve the global optimization problem rather than optimize the error probability
of each iteration independently.

4.3 Experimental Verification

In order to evaluate Algorithm 3 in practice, we programmed a simulator which
simulates IteratedRandWPS(gx) and IteratedRandWPS(gx+1), and empirically
approximates Pr[err] as the percentage of pairs of simulations which disagree.
The parameters for these simulations were chosen using a numerical optimizer
based on the analysis above. The results are given in Table 1.7 Since performing
full simulations is too expensive for large values of T , we had to use three opti-
mizations that do not affect the simulator’s reliability. These are detailed in the
extended version of this paper.

5 Error Probability Lower Bounds in Concrete Group
Families

5.1 Overview of the Lower Bound Proof

We outline the main ideas of the lower bound proof in concrete family groups.
For the sake of simplicity, we only consider DDL with M = 1 in this overview
(whereas the proof considers general M).
7 We note that according to the proof of Theorem 1 (given in the extended version of

this paper), I can be taken to be any value between log log(T)+ω(1) and o(
√

log(T)),
without a significant effect on the provable performance of the algorithm. On the
other hand, according to Table 1, I seems to grow more sharply. However, the restric-
tion of I = o(

√
log(T)) is merely an artifact of the proof and the optimal value of

I could be asymptotically larger. Furthermore, the sharp increase of the values of I
in Table 1 could be attributed to low-order terms that have a more noticeable effect
for small T values.

230 I. Dinur et al.

Table 1. Experimental results

T I
∼ log2(tk)

∼ log2(Lk)

T 2 · Pr[err]

σ(SD)

T 2 · Pr[err]

σ(SD)

213 5
6.0, 8.6, 9.6, 10.4, 11.1, 11.7

1.6, 3.6, 5.6, 7.5, 9.4

334

2

336.6

0.3

216 6
7.1, 10.3, 11.6, 12.5, 13.3, 14.1, 14.7

1.6, 3.9, 6.2, 8.3, 10.3, 12.2

390

10

382.5

1

219 7
7.0, 10.3, 12.6, 13.7, 14.7, 15.5, 16.3, 17.1, 17.7

1.6, 2.8, 5.2, 7.4, 9.6, 11.5, 13.4, 15.2

391

25

394

2

222 8
8.2, 12.6, 15.1, 16.4, 17.5, 18.5, 19.3, 20.1, 20.7

1.6, 3.7, 6.7, 9.4, 11.8, 14.1, 16.2, 18.1

—

—

420

4

225 9
8.4, 13.0, 16.5, 18.0, 19.3, 20.5, 21.5, 22.3, 23.1, 23.8

1.6, 3.2, 6.4, 9.4, 12.2, 14.7, 17.0, 19.1, 21.1

—

—

427

10

The fourth columngives the result of simulationswithout the third optimization (detailed
in the extended version of this paper), and the last column uses that optimization.

We first prove in Lemma 10 that in a DDL protocol, using different algo-
rithms for A,B cannot give a significant advantage in the error probability. As
a result, we can assume that both A and B use A’s algorithm, which simplifies
the analysis.

Let us assume that we can solve DDL with error probability δ 	 1 in time T
for M = 1. Our main reduction shows how to use A’s algorithm to solve DLI in
an interval of length about R ≈ 1/δ in time less than 4T with probability 1/2. If
we assume that in a specific family of groups, DLI in an interval of length c · T 2

(for a sufficiently large constant c) cannot be solved in complexity lower than
4T with probability 1/2,8 we must have R ≈ 1/δ < c · T 2 or δ = Ω(T−2), which
gives our main lower bound for the case of M = 1. It is important to stress that
A is a DDL algorithm for M = 1 that is not explicitly given the DLI interval
length parameter R. Yet the reduction below will apply A’s algorithm to solve
DLI with parameter R in a black-box manner.

Recall that a DLI algorithm obtains as input a group element h = gx, where
x is in a known interval of length R ≈ 1/δ. By the self-reducibility of discrete
log, we can assume that h is a uniform group element (i.e., we can multiply the
input by a randomly chosen group element). Our reduction picks a point gz in
the interval (for a known z) and runs A on inputs gx and gz, where |x − z| ≤ R.
We hope that A(gx)−A(gz) = z−x and thus we return z−(A(gx)−A(gz)) = x.

Clearly, the DLI algorithm runs in time less than 4T and it remains to upper
bound its error probability by 1/2. In other words, we need to upper bound

8 We consider only uniform algorithms that can be applied to families of groups (such
as elliptic curve groups) and not non-uniform algorithms that are specialized to a
specific group G. Indeed, in the non-uniform model, there exist algorithms that solve
DLI in an interval of length R in time o(

√
R) for any specific group (see, e.g., [2]).

An Optimal Distributed Discrete Log Protocol with Applications to HSS 231

the probability of A(gx) − A(gz) �= z − x by 1/2. We know that the DDL error
probability is δ for M = 1, namely, if |x − z| ≤ 1, then the required probability
is9 δ. Next, assume that z = x + 2. Then, if A(gx) − A(gx+2) �= 2 this implies
that either A(gx) − A(gx+1) �= 1 or A(gx+1) − A(gx+2) �= 1 (or both). Since
the probability of each of these two events is δ, we can use a union bound to
upper bound the probability that A(gx) − A(gx+2) �= 2 by 2δ. Using a similar
argument (which we refer to as distance extension, formalized in Lemma 14),
we can upper bound the probability of the event A(gx) − A(gz) �= z − x for
|x − z| ≤ R by O(R · δ) and for R = O(1/δ), this gives error probability 1/2, as
required. Note that the same algorithm A is used for any distance |x − z| ≤ R
(which is unknown in advance) and conditioning on this distance is only done
for the sake of analysis.

5.2 The Single Algorithm Distributed Discrete Log Problem

We now define the single algorithm DDL problem, which is the same problem
as general DDL with the restriction that the algorithms of the parties are the
same (i.e., both parties use A’s algorithm). Denote by err(A, x, b, T) the event
A(gx) − A(gx+b) �= b and by Prerr(A, [M1,M2], T) its probability (over x ∈
ZN , b ∈ [M1,M2]). Obviously, the optimal 2-party DDL error probability is a
lower bound on the optimal single algorithm DDL error probability. In this
section, we prove that the bound in the other direction holds as well up to a
constant factor in case M2 = −M1 = M .10

Lemma 10. Prerr(A,B, [−M,M], T) ≥ 1/8 · Prerr(A, [−M,M], T).

Proof. Note that if A(gx+b1)−A(gx+b2) �= b2 −b1, then A(gx+b1)−B(gx) �= −b1
or A(gx+b2) − B(gx) �= −b2 (or both). Therefore, for uniform b1, b2 ∈ [−M,M],

Pr
x,b1,b2

[err(A, x + b1, b2 − b1, T)] = Pr
x,b1,b2

[A(gx+b1) − A(gx+b2) �= b2 − b1]

≤ Pr
x,b1,b2

[(A(gx+b1) − B(gx) �= −b1) ∪ (A(gx+b2) − B(gx) �= −b2)]

≤ Pr
x,b1

[A(gx+b1) − B(gx) �= −b1] + Pr
x,b2

[A(gx+b2) − B(gx) �= −b2]

= 2 · Prerr(A,B, [−M,M], T)

It remains to relate Prerr(A, [−M,M], T) to Pr
x,b1,b2

[err(A, x+ b1, b2 − b1, T)].

Denote the event |b2 − b1| ≤ M by E and note that Pr
b1,b2

[E] ≥ 1/2. Conditioned

on E , if b2 − b1 was uniform in [−M,M], then we would have Pr
x,b1,b2

[err(A, x +

b1, b2 − b1, T) | E] = Prerr(A, [−M,M], T). Although it is not uniform, b2 − b1 is
almost uniform in the sense that for each i ∈ [−M,M], we have Pr

b1,b2
[b2 − b1 =

9 More accurately, it is O(δ), as δ is the average error probability in the interval [−1, 1].
10 It is also possible to prove a similar bound in case the interval [M1, M2] is not

symmetric around the origin.

232 I. Dinur et al.

i] ≥ Pr
b1,b2

[b2 − b1 = M] ≥ (M + 1)/(4M2) and Pr
b1,b2

[b2 − b1 = i] ≤ Pr
b1,b2

[b2 − b1 =

0] ≤ (2M + 1)/(4M2). As the minimal and maximal probabilities assigned to
|b2 − b1| in [−M,M] are within a factor of 2,

Pr
x,b1,b2

[err(A, x + b1, b2 − b1, T) | E] ≥ 1/2 · Prerr(A, [−M,M], T)

and

Pr
x,b1,b2

[err(A, x + b1, b2 − b1, T)]

≥ Pr
x,b1,b2

[err(A, x + b1, b2 − b1, T) | E] · Pr
b1,b2

[E] ≥ 1/4 · Prerr(A, [−M,M], T).

Finally,

Prerr(A,B, [−M,M], T) ≥ 1/2 · Pr
x,b1,b2

[err(A, x + b1, b2 − b1, T)]

≥ 1/8 · Prerr(A, [−M,M], T),

concluding the proof. �

The consequence of the lemma is that for the sake of proving lower bounds on
the error probability, we can restrict our attention to A’s algorithm by analyzing
Prerr(A, [−M,M], T). The lemma immediately gives us the same lower bound
on Prerr(A,B, [−M,M], T), up to a constant factor.

Furthermore, note that by symmetry we have Prerr(A,B, [−M,M], T) ≥
1/8 · Prerr(B, [−M,M], T), hence the general DDL error probability is lower
bounded by the maximal error probability of the (single) algorithms of the two
parties (up to constant factors). Therefore, running different algorithms for the
two parties cannot give a much better result than simply having both players
run the best algorithm in the single algorithm setting.

5.3 Limitation on Randomness

The effect of the internal randomness of a DDL algorithm A on its outcome
is quantified by Prerr(A, [0, 0], T). This quantity measures the probability that
two different executions of A on the same input differ, where the probability is
taken over A’s input gx and its internal randomness. We prove that A’s internal
randomness cannot significantly influence its outcome.

Lemma 11. Assume Prerr(A, [−M,M], T) = δ. Then Prerr(A, [0, 0], T) ≤ 2δ.

Proof. To be more explicit, we denote by A(r, gx) the execution of A with a ran-
domness string r. Assume we fix the output of A(r, gx+b) for some b ∈ [−M,M]
and randomness string r. Then, if A(r1, gx) �= A(r2, gx) for r1, r2, either

An Optimal Distributed Discrete Log Protocol with Applications to HSS 233

A(r1, gx) − A(r, gx+b) �= b or A(r2, gx) − A(r, gx+b) �= b (or both). Hence,

Prerr(A, [0, 0], T)
= Pr

r1,r2,x
[A(r1, gx) �= A(r2, gx)]

≤ Pr
r1,r2,r,x,b

[(A(r1, gx) − A(r, gx+b) �= b) ∪ (A(r2, gx) − A(r, gx+b) �= b)]

≤ Pr
r1,r,x,b

[A(r1, gx) − A(r, gx+b) �= b] + Pr
r2,r,x,b

[A(r2, gx) − A(r, gx+b) �= b]

= 2δ.

�

5.4 Symmetry

We prove the following symmetric property.

Lemma 12. For M2 ≥ M1, Prerr(A, [M1,M2], T) = Prerr(A, [−M2,−M1], T).

Proof. It is sufficient to prove that for any positive integer b, Prerr(A, [b, b], T) =
Prerr(A, [−b,−b], T). This indeed holds, since err(A, x, b, T) and err(A, x +
b,−b, T) are identical events, Prerr(A, [b, b], T) = Pr

x
[err(A, x, b, T)] =

Pr
x

[err(A, x + b,−b, T)] = Prerr(A, [−b,−b], T). �

5.5 Distance Extension

In this section, we show that the distance parameter M of any DDL algorithm
A can be extended at the expense of a linear loss in the error probability.

First, we prove the following lemma which reduces the error probability of
Prerr(A, [−M,M], T) to each one of the indices in the interval. As mentioned
in the Introduction (see Footnote 2), it proves that a DDL algorithm with error
probability δ for uniform b ∈ [−M,M] also solves DDL with an error probability
O(δ) for any distribution on b ∈ [−M,M].

Lemma 13. Assume that Prerr(A, [−M,M], T) = δ. Then, for every b ∈
[−M,M], Prerr(A, [b, b], T) ≤ 4δ.

Proof. We first assume that b ∈ [1,M] and let i ∈ [−M,M − b]. Clearly, if
gx is a uniform group element, then so is gx+i. Therefore, Prerr(A, [b, b], T) =
Pr
x

[err(A, x + i, b, T)]. Furthermore, if the event err(A, x + i, b, T) occurs,

then A(gx+i) − A(gx+i+b) �= b implying that at least one of the events
A(gx) − A(gx+i+b) �= i + b and A(gx) − A(gx+i) �= i must occur. Consequently,
Prerr(A, [b, b], T) (the error probability associated with index b) is upper bounded

234 I. Dinur et al.

by Prerr(A, [i+b, i+b], T)+Prerr(A, [i, i], T) (the sum of error probabilities asso-
ciated with indices i and i + b). Formally,

Prerr(A, [b, b], T) = Pr
x

[err(A, x + i, b, T)]

≤ Pr
x

[err(A, x, i + b, T) ∪ err(A, x, i, T)]

≤ Pr
x

[err(A, x, i + b, T)] + Pr
x

[err(A, x, i, T)]

= Prerr(A, [i + b, i + b], T) + Prerr(A, [i, i], T).

We map the indices in [−M,M] into disjoint pairs of the form i, i + b (this
implies that i ∈ [−M,M − b]). We can obtain at least (2M − b + 1)/2� such
pairs, which is at least (M + 1)/2 for b ∈ [1,M − 1]. On the other hand, for
b = M , the number of pairs is M ≥ (M + 1)/2. We apply the above inequality
to each of the pairs:

δ = Prerr(A, [−M,M], T)

= 1/(2M + 1) ·
M∑

i=−M

Prerr(A, [i, i], T)

≥ 1/(2M + 1) · (M + 1)/2 · Prerr(A, [b, b], T)
≥ Prerr(A, [b, b], T)/4.

Thus, Prerr(A, [b, b], T) ≤ 4δ for b ∈ [1,M].
The proof for b ∈ [−M,−1] follows by symmetry (Lemma 12). Finally, for

b = 0, we have Prerr(A, [0, 0], T) ≤ 2δ by Lemma 11. �

Lemma 14. Let Prerr(A, [−M,M], T) = δ. Then for any β > 1,

Prerr(A, [−βM, βM], T) ≤ 8β · δ.

For the sake of simplicity we assume that βM is an integer (otherwise, we
only consider integer values in [−βM, βM]).

Proof. First, we analyze Prerr(A, [1, βM], T). Let b ∈ [1, βM] and divide it by
M , writing b = b1 · M + b2, for integers b1 ≤ β and b2 ∈ [0,M). We examine the
following b1 + 1 success events:

E1 :suc(A, x,M, T)
E2 :suc(A, x + M,M,T)

. . .

Eb1 :suc(A, x + (b1 − 1)M,M,T)
Eb1+1 :suc(A, x + b1M, b2, T)

Observe that if all b1+1 events hold (i.e. ∩b1+1
i=1 Ei), then A(gx)−A(gx+b1M+b2) =

A(x) − A(gx+b) = b, i.e., suc(A, x, b, T) holds.

An Optimal Distributed Discrete Log Protocol with Applications to HSS 235

By Lemma 13, Pr
x

[Ēi] ≤ 4δ holds for each i ∈ 1, 2, . . . , b1, while Pr
x,b

[Ēb1+1] ≤ 4δ

holds as well by the same lemma. Hence,

1 − Prerr(A, [1, βM], T) ≥ Pr
x,b

[∩b1+1
i=1 Ei] = 1 − Pr

x,b
[∪b1+1

i=1 Ēi]

≥ 1 −
b1+1∑

i=1

Pr
x,b

[Ēi] ≥ 1 − (b1 + 1)4δ ≥ 1 − (β + 1)4δ ≥ 1 − 8β · δ.

Therefore, Prerr(A, [1, βM], T) ≤ 8β · δ. By symmetry (Lemma 12), we
have Prerr(A, [−βM,−1], T) ≤ 8β · δ as well. Since Prerr(A, [0, 0], T) ≤ 2δ by
Lemma 11, we conclude that Prerr(A, [−βM, βM], T) ≤ 8β · δ, as claimed. �

Remark 1. An open question of [5] asked whether the DDL error probability
can be eliminated completely. If we apply the above lemma with no error (i.e.,
Prerr(A, [−M,M], T) = δ = 0), we obtain Prerr(A, [−βM, βM], T) = 0, imply-
ing that the two parties (running A’s algorithm) never err for any distance. This
allows the parties to collectively solve the discrete log problem in G with prob-
ability 1 (a similar reduction will be formally presented in Algorithm4), thus
violating the security assumption of the underlying HSS scheme. Namely, the
DDL error probability cannot be eliminated (in fact it is easy to show that it
must be superpolynomial in 1/N), answering negatively the open question of
Boyle et al.

5.6 Reduction from Discrete Log in an Interval to Distributed
Discrete Log

Recall that the discrete log problem in an interval (DLI) is parametrized by an
interval length R for a cyclic multiplicative group G of size N with generator g.
The input to the problem is a group element h = gx, where11 x ∈ [0, R − 1] and
the goal is to recover x with high probability (which is at least a constant).

The following lemma reduces the DLI problem to DDL.

Lemma 15. For a family of groups, assume that Prerr(A, [−M,M], T) = δ,
where T ≥ log N and δ < 1/32. Then discrete log in an interval of length
R = M/(32δ) can be solved in complexity 4T with probability 1/2.

Proof. Consider Algorithm 4 for solving DLI on input h = gx for x ∈ [0, R − 1].
For the sake of simplicity we assume that R is even.

The algorithm computes h · gy and gy+(R/2), which can be carried out by
performing 2 log N group operations using the square-and-multiply algorithm.
It further invokes A twice in complexity 2T and therefore its total complexity is
2T + 2 log N ≤ 4T (since T ≥ log N).

11 Alternatively, x could be in any fixed interval of length R. The exact interval is
not important as one can easily reduce the problem in a given interval to any other
interval.

236 I. Dinur et al.

Algorithm 4. DLI(h)
1 begin
2 y ←−

R
ZN ;

3 d1 ← A(h · gy);

4 d2 ← A(gy+(R/2));
5 Output (R/2) − (d1 − d2);

6 end

It remains to upper bound the error probability of the algorithm by 1/2. The
algorithm succeeds to return x if (R/2)−(d1−d2) = x, namely d1−d2 = (R/2)−x
or equivalently A(gy+x) − A(gy+(R/2)) = (R/2) − x. Since y ∈ ZN is uniform,
then gy+x is a uniform group element. Moreover, since x ∈ [0, R − 1], then
(R/2) − x ∈ [−R/2, R/2]. Therefore, by Lemma 13, the error probability of the
algorithm is at most

4 · Prerr(A, [−R/2, R/2], T) ≤ 4 · 8 · R/(2M) · Prerr(A, [−M,M], T)
= 16 · R/M · δ = 1/2,

where the first inequality is due to Lemma 14. Note that we use Lemma 13 (and
pay a factor of 4 in the error probability), as x ∈ [0, R − 1] may be selected by
an adversary (whereas Prerr(A, [−R/2, R/2], T) averages the error probability).
�

Theorem 2 is a simple corollary of Lemma 15.

Theorem 2. For a specific family of groups, assume there exists a constant c
such that for any group in the family of size N , DLI in an interval of length
at least c · T 2 cannot be solved in complexity 4T with probability at least 1/2
(where log N ≤ T < B for a bound B). Moreover, assume that there is a DDL
protocol A for this family with time complexity parameter T , maximal distance
parameter M and error probability Prerr(A, [−M,M], T) = δ for δ < 1/32. Then
δ = Ω(M · T−2).

We note that the bound B depends on N according to the concrete group
family. For example, for some subgroups of Z∗

p, B is subexponential in log N .

Proof. By Lemma 15, discrete log in an interval of length R = M/(32δ) can
be solved in complexity 4T with probability 1/2. By our assumption, R =
M/(32δ) < c · T 2 implying that δ = Ω(M · T−2) as claimed. �

6 Error Probability Lower Bounds for Non-Adaptive
Algorithms in the Generic Group Model

In this section, we prove lower bounds on DDL algorithms in the generic group
model (GGM), focusing on non-adaptive algorithms. We first review the generic

An Optimal Distributed Discrete Log Protocol with Applications to HSS 237

group model (GGM) we consider (which is slightly different than the one pro-
posed by Shoup [18]) and formulate DDL in this model. This formulation is given
for the additive group ZN , which is isomorphic to the multiplicative group G of
size N . We note that the proofs of most of the statements in this section are
given in the extended version of this paper.

6.1 Distributed Discrete Log in the Generic Group Model

Let ZN be the additive group of integers, and let S be a set of bit strings of
cardinality at least N . An encoding function of ZN on S is an injective map
σ : ZN → S.

A generic algorithm A for ZN on S for the discrete logarithm problem is a
probabilistic algorithm that takes as input an encoding list of size 2, σ(1), σ(x),
namely, the encodings of a generator of ZN and a uniform x ∈ ZN , where σ
is an encoding function of ZN on S. Throughout its execution, A continues to
maintain the encoding list, and is allowed to extend it using oracle queries. An
oracle query in our model specifies two indices i, j ∈ ZN . The oracle computes
σ(i·x+j) and the returned bit string is appended to the encoding list. A succeeds
to solve the discrete log problem if A(σ; 1, x) = x, and its success probability
is taken over the uniform choices of σ : ZN → S and x ∈ ZN (and perhaps
additional randomness of its own coin tosses). We measure the complexity of
A according to the number of oracle queries it makes. The following success
probability upper bound was proved in [18].

Theorem 3 ([18]). If a generic discrete log algorithm A is allowed T oracle
queries, then Pr

σ,x
[A(σ; 1, x) = x] = O(T 2/N), assuming that N is prime.

We note that our GGM formulation is slightly stronger than the one of [18],
where the queries of A are limited to linear combinations with coefficients of ±1 of
elements in its encoding list. Since any query (i, j) can be issued in Shoup’s orig-
inal GGM after at most O(log N) queries using the double-and-add algorithm,
a stronger GGM algorithm can be simulated by a standard one by increasing
the query complexity by a multiplicative factor of log N . However, by following
its original proof in [18], it is easy to verify that Theorem 3 actually holds with
no modification in our stronger GGM. Obviously, any algorithm in the original
GGM is also an algorithm in the stronger GGM. Therefore, any lower bounds
we obtain in the stronger GGM also apply in the original GGM.

We now describe the basic game of distributed discrete log in GGM. Obvi-
ously, all the results of Sect. 5 also hold in the generic group model. In particular,
by Lemma 10 it is sufficient to consider single algorithm DDL to obtain general
DDL lower bounds.

A party (algorithm) A is given as input σ(1) and the encoding of an additional
group element σ(x) for x ∈ ZN , selected uniformly at random. Algorithm A is
allowed to make T oracle queries. After obtaining the answers from the oracle,
A returns an integer value. Two parties (both running A’s algorithm) win the

238 I. Dinur et al.

DDL game in GGM if

A(σ; 1, x) − A(σ; 1, x + b) = b,

otherwise, they lose the game, or err.
We are interested in proving lower bounds on the DDL error probability as

a function of T , namely

Pr
σ,x,b

[A(σ; 1, x) − A(σ; 1, x + b) �= b].

Analogously to our notation for multiplicative groups, we denote by
err(A, σ, x, b, T) the error event A(σ; 1, x) − A(σ; 1, x + b) �= b, and
by Prerr(A, σ, [M1,M2], T) its probability Pr

σ,x,b
[err(A, σ, x, b, T)], where b ∈

[M1,M2] is a uniform integer. We further denote by suc(A, σ, x, b, T) the com-
plementary success event.

6.2 An Error Probability Lower Bound for Arbitrary Generic
Algorithms

The following theorem gives a DDL error probability lower bound in GGM. The
theorem is a somewhat weaker statement than Theorem 2 (which has implica-
tions in concrete group families).

Theorem 4. For any generic DDL algorithm A, Prerr(A, σ, [−M,M], T) =
Ω(M · T−2), given that M = O(T 2), T = o(

√
N), and N is prime.

We omit the proof, as it is similar to the one of Theorem2. It applies a
reduction to discrete log, while using Theorem 3 to obtain the error probability
lower bound. Alternatively, one could obtain a hardness result for DLI in GGM
(extending Theorem3 to smaller intervals) and apply Theorem2 directly.

6.3 An Error Probability Lower Bound for Non-Adaptive Generic
Algorithms

In this section, we prove a lower bound on the DDL error probability of non-
adaptive generic algorithms, whose oracle queries {(i1, j1), (i2, j2), . . . , (iT , jT)}
are fixed in advance and do not depend on previous answers.

We will prove the following lower bound:

Theorem 5. Any non-adaptive DDL algorithm A satisfies PrerrA, σ, [−1, 1], T
= Ω(1/T), given that T = o(N1/2), and N is prime.

Overview of the Lower Bound Proof on Non-Adaptive Algorithms in
the Generic Group Model. Let us first consider the class of algorithms that
make T consecutive oracle queries to group elements (such as Algorithm 1 and
the ones of [4–6] in general). Consider the executions A(σ; 1, x) and A(σ; 1, x +
T), which query 2T disjoint group elements. In GGM, algorithm executions

An Optimal Distributed Discrete Log Protocol with Applications to HSS 239

that query disjoint elements are essentially independent (as each group element
is associated with a random string), which implies that the probability that
A(σ; 1, x) − A(σ; 1, x + T) �= T is at least 1/2. Recall that we are interested in
the probability that A(σ; 1, x) − A(σ; 1, x + 1) �= 1 and it can be lower bounded
by Ω(T−1) using distance extension (Lemma 14). A similar lower bound applies
if A only queries group elements in a short interval of length O(T).12

Of course, we are interested in proving the Ω(T−1) lower bound for arbitrary
non-adaptive algorithms. The main idea that allows us to achieve this is to define
a transformation that takes an arbitrary non-adaptive algorithm A′ and maps
its T queries to a small interval of size O(T), obtaining a new algorithm A (for
which the error lower bound Ω(T−1) holds). We require that the query mapping
preserves the error probability of A′, thus proving that the error probability
lower bound Ω(T−1) above also applies to non-adaptive algorithms in general.
In order to preserve the error probability of A′, the mapping will ensure that
the joint input distribution of A′(σ; 1, x) and A′(σ; 1, x + 1) is equal to that
of A(σ; 1, x) and A(σ; 1, x + 1). In the generic group model, this means that
the mapping should preserve joint queries, namely, satisfy the condition that
query i of A′(σ; 1, x) and query j of A′(σ; 1, x + 1) evaluate the same group
element if and only if query i of A(σ; 1, x) and query j of A(σ; 1, x + 1) evaluate
the same group element.13 Based on this observation, it is possible to define
an appropriate query mapping and complete the proof, since for non-adaptive
algorithms we know in advance (independently of σ) if query i of A′(σ; 1, x) and
and query j of A′(σ; 1, x + 1) evaluate the same group element.

Additional Notation. We begin by defining additional notation. Given a query
(i, j), denote its evaluation on x as (i, j)[x] = ix + j. Thus, its oracle answer is
σ(ix+j). We denote by Q(A(σ; 1, x)) the query set of A(σ; 1, x), excluding queries
(i, j) for which i = 0 (which we call constant queries). Denote by QE(A(σ; 1, x))
the set of evaluations of all (non-constant) queries Q(A(σ; 1, x)).

We further denote by Q(A) the set containing all of the potential (non-
constant) queries of A on any input x and encoding σ. Note that for non-adaptive
algorithms, |Q(A)| ≤ T and any adaptive algorithm A′ can be simulated by a
non-adaptive algorithm that makes T ′ def== |Q(A′)| queries.

For the rest of this section, we focus on non-adaptive algorithms. For such
algorithms, we can write QE(A, x) (instead of QE(A(σ; 1, x))), as the query
evaluations are independent of σ.

Restricted Queries. We examine pairs of executions A(σ; 1, x) and A(σ; 1, x+
b) for some b ∈ [−M,M]. For such a pair, we define a (non-trivial) collision as
the event that two queries issued by these executions (i, j) and (i′, j′) with i �= i′

12 Our actual proof is slightly more general than outlined here and uses the notion of
query chains.

13 Our proof relaxes this strong condition, and requires that it holds unless a low-
probability event (called a collision) occurs.

240 I. Dinur et al.

have the same evaluation. The actual evaluations depend on which algorithm
issued the queries and there are 4 cases, e.g., ix + j mod N = i′x + j′ mod N if
A(σ; 1, x) issued both and ix+j mod N = i′(x+b)+j′ mod N if A(σ; 1, x) issued
(i, j) and A(σ; 1, x+b) issued (i′, j′), etc. In each of these 4 cases, both algorithms
can exploit the collision to jointly solve the discrete logarithm problem using at
most 2T queries (e.g., in the first case above, x = (j′ − j) · (i − i′)−1 mod N).
According to Theorem 3, the probability of this event is O(T 2/N) = o(1) (by
our assumption T = o(N1/2)), which is negligible. In the following we generally
denote collision events by COL.

Most of the analysis below will be conditioned on the event COL (whose
probability is 1−o(1)), but we will omit this explicit conditioning for simplicity,
while ignoring a negligible factor in the probability calculation.

Lemma 16. Assume that T = o(N1/2). Then, any non-adaptive algorithm A′

with Prerr(A′, σ, [−M,M], T) = δ can be transformed into a non-adaptive query-
restricted algorithm A with Prerr(A, σ, [−M,M], T) ≤ δ · (1 + o(1)) such that A
only issues restricted queries of the form (i, j) with i ∈ {0, 1}.

Query Disjoint Indices. We say that a non-adaptive DDL algorithm A has
a query disjoint index b if QE(A, x) ∩ QE(A, x + b) = ∅ for any x ∈ ZN . We
note that A can have many query disjoint indices. We prove the following error
probability lower bound on algorithms with a (small) query disjoint index.

Lemma 17. Any non-adaptive algorithm which is query disjoint on index b ≥ 1
satisfies Prerr(A, σ, [−1, 1], T) = Ω(1/b).

Query Chains. Given a query (1, j), we refer to the value j as a query offset.
For a non-adaptive algorithm A, we define a query chain of length c as a sequence
of c + 1 query offsets j, j + 1, j + 2, . . . , j + c such that for each k ∈ {0, 1, . . . , c},
(1, j + k) ∈ Q(A), while (1, j + c + 1) /∈ Q(A) and (1, j − 1) /∈ Q(A) (i.e., the
sequence is maximal).

Denote the length of the longest query chain of A by C(A).

Lemma 18. Any non-adaptive query-restricted algorithm A satisfies

Prerr(A, σ, [−1, 1], T) ≥ Ω(1/C(A)).

Proof (of Theorem 5). The theorem is a simple corollary of Lemmas 16 and 18.
Given a non-adaptive algorithm A, transform it into a query-restricted algo-
rithm A′ using Lemma 16, with a multiplicative loss of 1 + o(1) in error proba-
bility. Clearly, C(A′) ≤ T , hence by Lemma 18 we have Prerr(A, σ, [−1, 1], T) ≥
Prerr(A′, σ, [−1, 1], T) · 1/(1 + o(1)) = Ω(1/C(A′)) = Ω(1/T), concluding the
proof. �

A Generalization of Theorem 5. The theorem above does not completely ren-
der non-adaptive algorithms as inefficient since (for example) it does not rule out

An Optimal Distributed Discrete Log Protocol with Applications to HSS 241

the possibility that Prerr(A, σ, [−T, T], T) = O(1/T) (which is optimal accord-
ing to Theorem 4). However, the following theorem states the this is impossible
and non-adaptive algorithms have a linear query-error tradeoff at best.

Theorem 6. For all 1 ≤ M ≤ T , any non-adaptive generic DDL algorithm A
satisfies Prerr(A, σ, [−M,M], T) = Ω(M/T) given that T = o(N1/2) and N is
prime. In particular, for M = T , Prerr(A, σ, [−T, T], T) = Ω(1).

Note that Theorem 5 is a special case of the one above, obtained for M = 1.
The proof of Theorem6 uses Fourier analysis and is given in the extended version
of this paper.

Acknowledgements. The authors would like to thanks Elette Boyle, Niv Gilboa,
Yuval Ishai and Yehuda Lindell for discussions and helpful suggestions regarding this
work.

This research was supported by the European Research Council under the ERC
starting grant agreement no. 757731 (LightCrypt) and by the BIU Center for Research
in Applied Cryptography and Cyber Security in conjunction with the Israel National
Cyber Bureau in the Prime Minister’s Office.

The first author was additionally supported by the Israeli Science Foundation
through grant No. 573/16.

References

1. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In:
Simon [19], pp. 1–10 (1988)

2. Bernstein, D.J., Lange, T.: Computing small discrete logarithms faster. In: Gal-
braith, S., Nandi, M. (eds.) INDOCRYPT 2012. LNCS, vol. 7668, pp. 317–338.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34931-7 19

3. Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In:
Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg
(2005). https://doi.org/10.1007/978-3-540-30576-7 18

4. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Orrù, M.: Homomorphic secret shar-
ing: optimizations and applications. In: Thuraisingham, B.M., Evans, D., Malkin,
T., Xu, D. (eds.) Proceedings of the 2017 ACM SIGSAC Conference on Com-
puter and Communications Security, CCS 2017, Dallas, TX, USA, 30 October–03
November 2017, pp. 2105–2122. ACM (2017)

5. Boyle, E., Gilboa, N., Ishai, Y.: Breaking the circuit size barrier for secure compu-
tation under DDH. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part I. LNCS,
vol. 9814, pp. 509–539. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53018-4 19

6. Boyle, E., Gilboa, N., Ishai, Y.: Group-based secure computation: optimizing
rounds, communication, and computation. In: Coron, J.-S., Nielsen, J.B. (eds.)
EUROCRYPT 2017, Part II. LNCS, vol. 10211, pp. 163–193. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-56614-6 6

7. Boyle, E., Gilboa, N., Ishai, Y., Lin, H., Tessaro, S.: Foundations of homomorphic
secret sharing. In: Karlin, A.R. (ed.) 9th Innovations in Theoretical Computer Sci-
ence Conference, ITCS 2018, Cambridge, MA, USA, 11–14 January 2018. LIPIcs,
vol. 94, pp. 21:1–21:21. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2018)

https://doi.org/10.1007/978-3-642-34931-7_19
https://doi.org/10.1007/978-3-540-30576-7_18
https://doi.org/10.1007/978-3-662-53018-4_19
https://doi.org/10.1007/978-3-662-53018-4_19
https://doi.org/10.1007/978-3-319-56614-6_6

242 I. Dinur et al.

8. Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure protocols
(extended abstract). In: Simon [19], pp. 11–19 (1988)

9. Chor, B., Kushilevitz, E., Goldreich, O., Sudan, M.: Private information retrieval.
J. ACM 45(6), 965–981 (1998)

10. Fazio, N., Gennaro, R., Jafarikhah, T., Skeith III, W.E.: Homomorphic secret shar-
ing from Paillier encryption. In: Okamoto, T., Yu, Y., Au, M.H., Li, Y. (eds.)
ProvSec 2017. LNCS, vol. 10592, pp. 381–399. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-68637-0 23

11. Galbraith, S.D., Pollard, J.M., Ruprai, R.S.: Computing discrete logarithms in an
interval. Math. Comput. 82(282), 1181–1195 (2013)

12. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher,
M. (ed.) Proceedings of the 41st Annual ACM Symposium on Theory of Comput-
ing, STOC 2009, Bethesda, MD, USA, 31 May–2 June 2009, pp. 169–178. ACM
(2009)

13. Gordon, D.M.: Discrete logarithms in GF(P) using the number field sieve. SIAM
J. Discret. Math. 6(1), 124–138 (1993)

14. Lenstra, A.K., Lenstra, H.W. (eds.): The Development of the Number Field Sieve.
LNM, vol. 1554. Springer, Heidelberg (1993). https://doi.org/10.1007/BFb0091534

15. Pollard, J.M.: Monte Carlo methods for index computation (mod p). Math. Com-
put. 32(143), 918–924 (1978)

16. Pollard, J.M.: Kangaroos, monopoly and discrete logarithms. J. Cryptol. 13(4),
437–447 (2000)

17. Rivest, R.L., Adleman, L., Dertouzos, M.L.: On data banks and privacy homomor-
phisms. In: Foundations of Secure Computation, pp. 169–179 (1978)

18. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997). https://doi.org/10.1007/3-540-69053-0 18

19. Simon, J. (ed.): Proceedings of the 20th Annual ACM Symposium on Theory of
Computing, Chicago, Illinois, USA, 2–4 May 1988. ACM (1988)

20. Yao, A.C.: Protocols for secure computations (extended abstract). In: 23rd Annual
Symposium on Foundations of Computer Science, Chicago, Illinois, USA, 3–5
November 1982, pp. 160–164. IEEE Computer Society (1982)

https://doi.org/10.1007/978-3-319-68637-0_23
https://doi.org/10.1007/978-3-319-68637-0_23
https://doi.org/10.1007/BFb0091534
https://doi.org/10.1007/3-540-69053-0_18

Must the Communication Graph of MPC
Protocols be an Expander?

Elette Boyle1, Ran Cohen2,3(B), Deepesh Data4, and Pavel Hubáček5

1 IDC Herzliya, Herzliya, Israel
elette.boyle@idc.ac.il
2 MIT, Cambridge, USA

rancohen@mit.edu
3 Northeastern University, Boston, USA

4 UCLA, Los Angeles, USA
deepeshdata@ucla.edu

5 Computer Science Institute, Charles University, Prague, Czech Republic
hubacek@iuuk.mff.cuni.cz

Abstract. Secure multiparty computation (MPC) on incomplete com-
munication networks has been studied within two primary models: (1)
Where a partial network is fixed a priori, and thus corruptions can occur
dependent on its structure, and (2) Where edges in the communication
graph are determined dynamically as part of the protocol. Whereas a rich
literature has succeeded in mapping out the feasibility and limitations of
graph structures supporting secure computation in the fixed-graph model
(including strong classical lower bounds), these bounds do not apply in
the latter dynamic-graph setting, which has recently seen exciting new
results, but remains relatively unexplored.

In this work, we initiate a similar foundational study of MPC within
the dynamic-graph model. As a first step, we investigate the property
of graph expansion. All existing protocols (implicitly or explicitly) yield
communication graphs which are expanders, but it is not clear whether
this is inherent. Our results consist of two types:
– Upper bounds: We demonstrate secure protocols whose induced com-

munication graphs are not expanders, within a wide range of settings
(computational, information theoretic, with low locality, and adap-
tive security), each assuming some form of input-independent setup.

– Lower bounds: In the setting without setup and adaptive corrup-
tions, we demonstrate that for certain functionalities, no proto-
col can maintain a non-expanding communication graph against all

E. Boyle—Supported in part by ISF grant 1861/16, AFOSR Award FA9550-17-1-
0069, and ERC Grant no. 307952.
R. Cohen—Supported in part by Alfred P. Sloan Foundation Award 996698, ISF
grant 1861/16, ERC starting grant 638121, NEU Cybersecurity and Privacy Insti-
tute, and NSF TWC-1664445.
R. Cohen, D. Data and P. Hubáček—This work was done in part while visiting at
the FACT Center at IDC Herzliya.
P. Hubáček—Supported by the project 17-09142S of GA ČR, Charles University
project UNCE/SCI/004, and Charles University project PRIMUS/17/SCI/9. This
work was done under financial support of the Neuron Fund for the support of science.

c© International Association for Cryptologic Research 2018
H. Shacham and A. Boldyreva (Eds.): CRYPTO 2018, LNCS 10993, pp. 243–272, 2018.
https://doi.org/10.1007/978-3-319-96878-0_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96878-0_9&domain=pdf

244 E. Boyle et al.

adversarial strategies. Our lower bound relies only on protocol cor-
rectness (not privacy), and requires a surprisingly delicate argument.

1 Introduction

The field of secure multiparty computation (MPC), and more broadly fault-
tolerant distributed computation, constitutes a deep and rich literature, yielding
a vast assortment of protocols providing strong robustness and even seemingly
paradoxical privacy guarantees. A central setting is that of n parties who jointly
compute a function of their inputs while maintaining correctness (and possibly
privacy) facing adversarial behavior from a constant fraction of corruptions.

Since the original seminal results on secure multiparty computation [2,11,
25,36], the vast majority of MPC solutions to date assume that every party can
(and will) communicate with every other party. That is, the underlying point-
to-point communication network forms a complete graph. Indeed, many MPC
protocols begin directly with every party secret sharing his input across all other
parties (or simply sending his input, in the case of tasks without privacy such
as Byzantine agreement [17,34,35]).

There are two classes of exceptions to this rule, which consider MPC on
incomplete communication graphs.

Fixed-Graph Model. The first corresponds to an area of work investigating
achievable security guarantees in the setting of a fixed partial communication net-
work. In this model, communication is allowed only along edges of a fixed graph,
known a priori, and hence where corruptions can take place as a function of its
structure. This setting is commonly analyzed within the distributed computing
community. In addition to positive results, this is the setting of many fundamen-
tal lower bounds: For example, to achieve secure Byzantine agreement against t
corruptions, the graph must be (t+1)-connected [16,21].1 For graphs with lower
connectivity, the best one can hope for is a form of “almost-everywhere agree-
ment,” where some honest parties are not guaranteed to output correctly, as well
as restricted notions of privacy [10,19,23,26,27]. Note that because of this, one
cannot hope to achieve protocols with standard security in this model with o(n2)
communication, even for simple functionalities such as Byzantine agreement.

Dynamic-Graph Model. The second, more recent approach addresses a model
where all parties have the ability to initiate communication with one another,
but make use of only a subset of these edges as determined dynamically during
the protocol. We refer to this as the “dynamic-graph model.” When allowing for
negligible error (in the number of parties), the above lower bounds do not apply,
opening the door for dramatically different approaches and improvements in
complexity. Indeed, distributed protocols have been shown for Byzantine agree-
ment in this model with as low as Õ(n) bits of communication [6,33], and secure
MPC protocols have been constructed whose communication graphs have degree

1 If no setup assumptions are assumed, the connectivity bound increases to 2t + 1.

Must the Communication Graph of MPC Protocols be an Expander? 245

o(n)—and as low as polylog(n) [3,5,9,15].2 However, unlike the deep history of
the model above, the current status is a sprinkling of positive results. Little is
known about what types of communication graphs must be generated from a
secure MPC protocol execution.

Gaining a better understanding of this regime is motivated not only to
address fundamental questions, but also to provide guiding principles for future
protocol design. In this work, we take a foundational look at the dynamic-graph
model, asking:

What properties of induced communication graphs
are necessary to support secure computation?

On the necessity of graph expansion. Classical results tell us that the fully con-
nected graph suffices for secure computation. Protocols achieving low locality
indicate that a variety of significantly sparser graphs, with many low-weight
cuts, can also be used [3,5,9,15]. We thus consider a natural extension of con-
nectivity to the setting of low degree. Although the positive results in this setting
take different approaches and result in different communication graph structures,
we observe that in each case, the resulting sparse graph has high expansion.

Roughly, a graph is an expander if every subset of its nodes that is not “too
large” has a “large” boundary. Expander graphs have good mixing properties and
in a sense “mimic” a fully connected graph. There are various ways of formalizing
expansion; in this work we consider a version of edge expansion, pertaining to
the number of outgoing edges from any subset of nodes. We consider a variant of
the expansion definition which is naturally monotonic: that is, expansion cannot
decrease when extra edges are added (note that such monotonicity also holds for
the capacity of the graph to support secure computation).

Indeed, expander graphs appear explicitly in some works [9,33], and implic-
itly in others (e.g., using random graphs [31], pseudorandom graphs [5], and aver-
aging samplers [6], to convert from almost-everywhere to everywhere agreement).
High connectivity and good mixing intuitively go hand-in-hand with robustness
against corruptions, where adversarial entities may attempt to impede or misdi-
rect information flow.

This raises the natural question: Is this merely an artifact of a convenient
construction, or is high expansion inherent? That is, we investigate the question:
Must the communication graph of a generic MPC protocol, tolerating a linear
number of corruptions, be an expander graph?

1.1 Our Results

More explicitly, we consider the setting of secure multiparty computation with
n parties in the face of a linear number of active corruptions. As common in the
honest-majority setting, we consider protocols that guarantee output delivery.
Communication is modeled via the dynamic-graph setting, where all parties have

2 This metric is also called the communication locality of the protocol [5].

246 E. Boyle et al.

the ability to initiate communication with one another, and use a subset of edges
as dictated by the protocol. We focus on the synchronous setting.

Our contributions are of the following three kinds:

Formal definitional framework. As a first contribution, we provide a formal
framework for analyzing and studying the evolving communication graph of
MPC protocols. The framework abstracts and refines previous approaches con-
cerning specific properties of protocols implicitly related to the graph structure,
such as the degree [5]. This gives a starting point for studying the relation
between secure computation and further, more general, graph properties.

Upper bounds. We present secure protocols whose induced communication
graphs are decidedly not expander graphs, within a range of settings. This
includes with computational security, with information-theoretic security, with
low locality, even with low locality and adaptive security (in a hidden-channels
model [9]) — but all with the common assumption of some form of input-
independent setup information. The resulting communication graph has a low-
weight cut, splitting the n parties into two equal (linear) size sets with only
poly-logarithmic edges connecting them.

Theorem 1 (MPC with non-expanding communication graph, infor-
mal). For any efficient functionality f and any constant ε > 0, there exists
a protocol in the PKI model, assuming digital signatures, securely realizing f
against (1/4 − ε) · n static corruptions, such that with overwhelming probability
the induced communication graph is non-expanding.

Theorem 1 is stated in the computational setting with static corruptions;
however, this approach extends to various other settings, albeit at the expense
of a lower corruption threshold. (See Sect. 4 for more details.)

Theorem 2 (extensions of Theorem 1, informal). For any efficient func-
tionality f , there exists a protocol securely realizing f , in the settings listed below,
against a linear number of corruptions, such that with overwhelming probability
the induced communication graph is non-expanding:

– In the setting of Theorem1 with poly-logarithmic locality.
– Unconditionally, in the information-theoretic PKI model (with or without low

locality).
– Unconditionally, in the information-theoretic PKI model, facing adaptive

adversaries.
– Under standard cryptographic assumptions, in the PKI model, facing adaptive

adversaries, with poly-logarithmic locality.

As an interesting special case, since our protocols are over point-to-point
channels and do not require a broadcast channel, these results yield the first
Byzantine agreement protocols whose underlying communication graphs are not
expanders.

The results in Theorems 1 and 2 all follow from a central transformation
converting existing secure protocols into ones with low expansion. At a high

Must the Communication Graph of MPC Protocols be an Expander? 247

level, the first n/2 parties will run a secure computation to elect two repre-
sentative committees of poly-logarithmic size: one amongst themselves and the
other from the other n/2 parties. These committees will form a “communica-
tion bridge” across the two halves (see Fig. 1). The setup is used to certify the
identities of the members of both committees to the receiving parties, either
via public-key infrastructure for digital signatures (in the computational set-
ting) or correlated randomness for information-theoretic signatures [37,38] (in
the information-theoretic setting).

Interestingly, this committee-based approach can be extended to the adap-
tive setting (with setup), in the hidden-channels model considered by [9], where
the adversary is not aware which communication channels are utilized between
honest parties.3 Here, care must be taken to not reveal more information than
necessary about the identities of committee members to protect them from being
corrupted.

As a side contribution, we prove the first instantiation of a protocol with poly-
logarithmic locality and information-theoretic security (with setup), by adjusting
the protocol from [5] to the information-theoretic setting.

Theorem 3 (polylog-locality MPC with information-theoretic secu-
rity, informal). For any efficient functionality f and any constant ε > 0, there
exists a protocol with poly-logarithmic locality in the information-theoretic PKI
model, securely realizing f against computationally unbounded adversaries stat-
ically corrupting (1/6 − ε) · n parties.

Lower bounds. On the other hand, we show that in some settings a weak form of
expansion is a necessity. In fact, we prove a stronger statement, that in these set-
tings the graph must have high connectivity.4 Our lower bound is in the setting
of adaptive corruptions, computational (or information-theoretic) security, and
without setup assumptions. Our proof relies only on correctness of the protocol
and not on any privacy guarantees; namely, we consider the parallel broadcast
functionality (aka interactive consistency [35]), where every party distributes
its input to all other parties. We construct an adversarial strategy in this set-
ting such that no protocol can guarantee correctness against this adversary if
its induced communication graph at the end of the protocol has any cut with
sublinear many crossing edges (referred to as a “sublinear cut” from now on).

Theorem 4 (high connectivity is necessary for correct protocols, infor-
mal). Let t ∈ Θ(n). Any t(n)-resilient protocol for parallel broadcast in the com-
putational setting, tolerating an adaptive, malicious adversary cannot maintain
an induced communication graph with a sublinear cut.

Theorem 4 in particular implies that the resulting communication graph must
have a form of expansion. We note that in a weaker communication model, a
3 Sublinear locality is impossible in the adaptive setting if the adversary is aware of
honest-to-honest communication, since it can simply isolate an honest party from
the rest of the protocol.

4 More concretely, the graph should be at least α(n)-connected for every α(n) ∈ o(n).

248 E. Boyle et al.

weaker form of consensus, namely Byzantine agreement, can be computed in a
way that the underlying graph (while still an expander) has low-weight cuts [32].

It is indeed quite intuitive that if a sublinear cut exists in the communication
graph of the protocol, and the adversary can adaptively corrupt a linear number
of parties t(n), then he could corrupt the parties on the cut and block informa-
tion flow. The challenge, however, stems from the fact that the cut is not known
a priori but is only revealed over time, and by the point at which the cut is
identifiable, all necessary information may have already been transmitted across
the cut. In fact, even the identity of the cut and visible properties of the commu-
nication graph itself can convey information to honest parties about input values
without actual bits being communicated. This results in a surprisingly intricate
final attack, involving multiple indistinguishable adversaries, careful corruption
strategies, and precise analysis of information flow. See below for more detail.

1.2 Our Techniques

We focus on the technical aspects of the lower bound result.

Overview of the attack. Consider an execution of the parallel broadcast protocol
over random inputs. At a high level, our adversarial strategy, denoted Ahonest-i∗

n ,
will select a party Pi∗ at random and attempt to block its input from being
conveyed to honest parties. We are only guaranteed that somewhere in the graph
will remain a sublinear cut. Because the identity of the eventual cut is unknown,
it cannot be attacked directly. We take the following approach:

1. Phase I. Rather, our attack will first “buy time” by corrupting the neighbors
of Pi∗ , and blocking information flow of its input xi∗ to the remaining parties.
Note that this can only continue up to a certain point, since the degree of
Pi∗ will eventually surpass the corruption threshold (as we prove). But, the
benefit of this delay is that in the meantime, the communication graph starts
to fill in, which provides more information about the locations of the potential
cuts.
For this to be the case, it must be that the parties cannot identify that Pi∗ is
under attack (otherwise, the protocol may instruct many parties to quickly
communicate to/from Pi∗ , forcing the adversary to run out of his “corruption
budget” before the remaining graph fills in). The adversary thus needs to fool
all honest parties and make each honest party believe that he participates
in an honest execution of the protocol. This is done by maintaining two
simulated executions: one pretending to be Pi∗ running on a random input,
and another pretending (to Pi∗) to be all other parties running on random
inputs. Note that for this attack strategy to work it is essential that the
parties do not have pre-computed correlated randomness such as PKI.

2. Phase II. We show that with noticeable probability, by the time we run out
of the Phase I corruption threshold (which is a linear number of parties),
all parties in the protocol have high (linear) degree. In turn, we prove that
the current communication graph can have at most a constant number of
sublinear cuts.

Must the Communication Graph of MPC Protocols be an Expander? 249

In the remainder of the execution, the adversary will simultaneously attack
all of these cuts. Namely, he will block information flow from Pi∗ across any
of these cuts by corrupting the appropriate “bridge” party, giving up on each
cut one by one when a certain threshold of edges have already crossed it.

If the protocol is guaranteed to maintain a sublinear cut, then necessarily there
will remain at least one cut for which all Phase II communication across the
cut has been blocked by the adversary. Morally, parties on the side of this cut
opposite Pi∗ should not have learned xi∗ , and thus the correctness of the protocol
should be violated. Proving this, on the other hand, requires surmounting two
notable challenges.

1. We must prove that there still remains an uncorrupted party Pj∗ on the
opposite side of the cut. It is not hard to show that each side of the cut is of
linear size, that Pi∗ has a sublinear number of neighbors across the cut (all of
which are corrupted), and that a sublinear number of parties get corrupted in
Phase II. Hence, there exists parties across the cut that are not neighbors of
Pi∗ and that are not corrupted in Phase II. However, by the attack strategy,
all of the neighbors of the virtual Pi∗ are corrupted in Phase I as well, and
this is also a linear size set, which is independent of the real neighbors of Pi∗ .
Therefore, it is not clear that there will actually remain honest parties across
the cut by the end of the protocol execution.

2. More importantly, even though we are guaranteed that no bits of communi-
cation have been passed along any path from Pi∗ to Pj∗ , this does not imply
that no information about xi∗ has been conveyed. For example, since the
graph develops as a function of parties’ inputs, it might be the case that
this situation of Pj∗ being blocked from Pi∗ , only occurs when xi∗ equals a
certain value.

We now discuss how these two challenges are addressed.

Guaranteeing honest parties across the cut. Unexpectedly, we cannot guaran-
tee existence of honest parties across the cut. Instead, we introduce a different
adversarial strategy, which we prove must have honest parties blocked across a
cut from Pi∗ , and for which there exist honest parties who cannot distinguish
which of the two attacks is taking place. More explicitly, we consider the “dual”
version of the original attack, denoted Acorrupt-i∗

n , where party Pi∗ is corrupted
and instead pretends to be under attack as per Ahonest-i∗

n above.
Blocking honest parties from xi∗ in Acorrupt-i∗

n does not contradict correctness
explicitly on its own, as Pi∗ is corrupted in this case. It is the combination of
both of these attacks that will enable us to contradict correctness. Namely, we
prove that:

– Under the attack Acorrupt-i∗
n , there exists a “blocked cut” (S, S̄) with uncor-

rupted parties on both sides. By agreement, all uncorrupted parties output
the same value yi∗ as the i∗’th coordinate of the output vector.

– The view of some of the uncorrupted parties under the attack Acorrupt-i∗
n is

identically distributed as that of uncorrupted parties in the original attack

250 E. Boyle et al.

Ahonest-i∗
n . Thus, their output distribution must be the same across the two

attacks.
– Since under the attack Ahonest-i∗

n , the party Pi∗ is honest, by completeness, all
uncorrupted parties in Ahonest-i∗

n must output the correct value yi∗ = xi∗ .
– Thus, uncorrupted parties in Acorrupt-i∗

n (who have the same view) must output
the correct value xi∗ as well.

Altogether, this implies all honest parties in interaction with Acorrupt-i∗
n , in par-

ticular Pj∗ who is blocked across the cut from Pi∗ , must output yi∗ = xi∗ .

Bounding information transmission about xi∗ . The final step is to show that this
cannot be the case, since an uncorrupted party Pj∗ across the cut in Acorrupt-i∗

n

does not receive enough information about xi∗ to fully specify the input. This
demands delicate treatment of the specific attack strategy and analysis, as many
“side channel” signals within the protocol can leak information on xi∗ . Corrup-
tion patterns in Phase II, and their timing, can convey information “across” the
isolated cut. In fact, even the event of successfully reaching Phase II may be
correlated with the value of xi∗ .

For example, say the cut at the conclusion of the protocol is (S1, S̄1) with
i∗ ∈ S1 and j∗ ∈ S̄1, but at the beginning of Phase II there existed another cut
(S2, S̄2), for which S1 ∩ S2 �= ∅, S1 ∩ S̄2 �= ∅, S̄1 ∩ S2 �= ∅, and S̄1 ∩ S̄2 �= ∅. Since
any “bridge” party in S̄2 that receives a message from S2, gets corrupted and
discards the message, the view of honest parties in S̄1 might change as a result
of the corruption related to the cut (S2, S̄2), which in turn could depend on xi∗ .

Ultimately, we ensure that the final view of Pj∗ in the protocol can be simu-
lated given only “Phase I” information, which is independent of xi∗ , in addition
to the identity of the final cut in the graph, which reveals only a constant amount
of additional entropy.

Additional subtleties. The actual attack and its analysis are even more delicate.
E.g., it is important that the degree of the “simulated Pi∗ ,” by the adversarial
strategy Ahonest-i∗

n , will reach the threshold faster than the real Pi∗ . In addition,
in each of these cases, the threshold, and so the transition to the next phase,
could possibly be reached in a middle of a round, requiring detailed treatment.

1.3 Open Questions

This work leaves open many interesting lines of future study.

– Bridging the gap between upper and lower bounds. This equates to identify-
ing the core properties that necessitate graph expansion versus not. Natural
candidates suggested by our work are existence of setup information and
adaptive corruptions in the hidden or visible (yet private) channels model.

– What other graph properties are necessary (or not) to support secure com-
putation? Our new definitional framework may aid in this direction.

– Our work connects graph theory and secure protocols, giving rise to fur-
ther questions and design principles. For example, can good constructions
of expanders give rise to new communication-efficient MPC? On the other

Must the Communication Graph of MPC Protocols be an Expander? 251

hand, can necessity of expansion (in certain settings) be used to argue new
communication complexity lower bounds?

Paper Organization

Basic notations are presented in Sect. 2. In Sect. 3, we provide our formalization
of the communication graph induced by a MPC protocol and related properties.
In Sect. 4, we describe our upper bound results, constructing protocols with
non-expanding graphs. In Sect. 5, we prove our lower bound.

2 Preliminaries

Graph-theoretic notations. Let G = (V,E) be an undirected graph of size n, i.e.,
|V | = n. Given a set S ⊆ V , we denote its complement set by S̄, i.e., S̄ = V \ S.
Given two disjoint subsets U1, U2 ⊆ V define the set of all the edges in G for
which one end point is in U1 and the other end point is in U2 as

edgesG(U1, U2) := {(u1, u2) : u1 ∈ U1, u2 ∈ U2, and (u1, u2) ∈ E} .

We denote by |edgesG(U1, U2)| the total number of edges going across U1 and
U2. For simplicity, we denote edgesG(S) = edgesG(S, S̄). A cut in the graph G is
a partition of the vertices V into two non-empty, disjoint sets {S, S̄}. An α-cut
is a cut {S, S̄} such that |edgesG(S)| ≤ α.

Given a graph G = (V,E) and a node i ∈ V , denote by G \ {i} = (V ′, E′)
the graph obtained by removing node i and all its edges, i.e., V ′ = V \ {i} and
E′ = E \ {(i, j) | j ∈ V ′}.

MPC Model. We consider multiparty protocols in the stand-alone, synchronous
model, and require security with guaranteed output delivery. We refer the reader
to [7,24] for a precise definition of the model. Throughout the paper we assume
malicious adversaries that can deviate from the protocol in an arbitrary manner.
We will consider both static corruptions, where the set of corrupted parties is
fixed at the onset of the protocol, and adaptive corruptions, where the adversary
can dynamically corrupt parties during the protocol execution, In addition, we
will consider both PPT adversaries and computationally unbounded adversaries.

Recall that in the synchronous model protocols proceed in rounds, where
every round consists of a send phase followed by a receive phase. The adversary
is assumed to be rushing, meaning that he can determine the messages for cor-
rupted parties after seeing the messages sent by the honest parties. We assume a
complete network of point-to-point channels (broadcast is not assumed), where
every party has the ability to send a message to every other party. We will
normally consider secure (private) channels where the adversary learns that a
message has been sent between two honest parties, but not its content. If a
public-key encryption is assumed, this assumption can be relaxed to authenti-
cated channels, where the adversary can learn the content of all messages (but
not change them). For our upper bound in the adaptive setting (Sect. 4.2) we
consider hidden channels (as introduced in [9]), where the adversary does not
even know whether two honest parties have communicated or not.

252 E. Boyle et al.

3 Communication Graphs Induced by MPC Protocols

In this section, we present formal definitions of properties induced by the com-
munication graph of interactive protocols. These definitions are inspired by pre-
vious works in distributed computing [29,30,32,33] and multiparty computa-
tion [3,5,9] that constructed interactive protocols with low locality.

3.1 Ensembles of Protocols and Functionalities

In order to capture certain asymptotic properties of the communication graphs
of generic n-party protocols, such as edge expansion and locality, it is useful
to consider a family of protocols that are parametrized by the number of par-
ties n. This is implicit in many distributed protocols and in generic multiparty
protocols, for example [2,17,25,34,35]. We note that for many large-scale proto-
cols, e.g., protocols with low locality [3,5,29,30,32,33], the security guarantees
increase with the number of parties, and in fact, the number of parties is assumed
to be polynomially related to the security parameter.

Definition 1 (protocol ensemble). Let f = {fn}n∈N be an ensemble of func-
tionalities, where fn is an n-party functionality, let π = {πn}n∈N be an ensemble
of protocols, and let C = {Cn}n∈N be an ensemble of classes of adversaries (e.g.,
Cn is the class of PPT t(n)-adversaries). We say that π securely computes f tol-
erating adversaries in C if for every n that is polynomially related to the security
parameter κ, it holds that πn securely computes fn tolerating adversaries in Cn.

In Sect. 4, we will consider several classes of adversaries. We use the following
notation for clarity and brevity.

Definition 2. Let f = {fn}n∈N be an ensemble of functionalities and let
π = {πn}n∈N be an ensemble of protocols. We say that π securely computes f
tolerating adversaries of the form type (e.g., static PPT t(n)-adversaries, adap-
tive t(n)-adversaries, etc.), if π securely computes f tolerating adversaries in
C = {Cn}n∈N, where for every n, the set Cn is the class of adversaries of the
form type.

3.2 The Communication Graph of a Protocol’s Execution

Intuitively, the communication graph induced by a protocol should include an
edge (i, j) precisely if parties Pi and Pj exchange messages during the proto-
col execution. For instance, consider the property of locality, corresponding to
the maximum degree of the communication graph. When considering malicious
adversaries that can deviate from the protocol using an arbitrary strategy, it is
important to consider only messages that are sent by honest parties and mes-
sages that are received by honest parties. Otherwise, every corrupted party can
send a message to every other corrupted party, yielding a subgraph with degree
Θ(n). We note that restricting the analysis to only consider honest parties is
quite common in the analysis of protocols.

Must the Communication Graph of MPC Protocols be an Expander? 253

Another issue that must be taken under consideration is flooding by the
adversary. Indeed, there is no way to prevent the adversary from sending mes-
sages from all corrupted parties to all honest parties; however, we wish to only
count those message which are actually processed by honest parties. To model
this, the receive phase of every communication round5 is composed of two sub-
phases:

1. The filtering sub-phase: Each party inspects the list of messages received
in the previous round, according to specific filtering rules defined by the
protocol, and discards the messages that do not pass the filter. The resulting
list of messages is appended to the local transcript of the protocol.

2. The processing sub-phase: Based on its local transcript, each party computes
the next-message function and obtains the list of messages to be sent in the
current round along with the list of recipients, and sends them to the relevant
parties.

In practice, the filtering procedure should be “lightweight,” such as verifying
validity of a signature. However, we assume only an abstraction and defer the
actual choice of filtering procedure (as well as corresponding discussion) to spe-
cific protocol specifications.

We now turn to define the communication graph of a protocol’s execution,
by which we mean the deterministic instance of the protocol defined by fixing
the adversary and all input values and random coins of the parties and the
adversarial strategy. We consider protocols that are defined in the correlated-
randomness model (e.g., for establishing PKI). This is without loss of generality
since by defining the “empty distribution,” where every party is given an empty
string, we can model also protocols in the plain model. Initially, we focus on the
static setting, where the set of corrupted parties is determined at the onset of
the protocol. We discuss the adaptive setting in the full version [4].

Definition 3 (protocol execution instance). For n ∈ N, let πn be an n-party
protocol, let κ be the security parameter, let x = (x1, . . . , xn) be an input vector
for the parties, let ρ = (ρ1, . . . , ρn) be correlated randomness for the parties, let
A be an adversary, let z be the auxiliary information of A, let I ⊆ [n] be the set
of indices of corrupted parties controlled by A, and let r = (r1, . . . , rn, rA) be the
vector of random coins for the parties and for the adversary.

Denote by instance(πn) = (πn,A, I, κ,x,ρ, z, r) the list of parameters that
deterministically define an execution instance of the protocol πn.

Note that instance(πn) fully specifies the entire views and transcript of the
protocol execution, including all messages sent to/from honest parties.

Definition 4 (communication graph of protocol execution). For n ∈ N,
let instance(πn) = (πn,A, I, κ,x,ρ, z, r) be an execution instance of the protocol
πn. We now define the following communication graphs induced by this execution
instance. Each graph is defined over the set of n vertices [n].
5 Recall that in the synchronous model, every communication round is composed of a
send phase and a receive phase.

254 E. Boyle et al.

– Outgoing communication graph. The directed graph Gout(instance(πn)) =
([n], Eout) captures all the communication lines that are used by honest parties
to send messages. That is,

Eout(instance(πn)) = {(i, j) | Pi is honest and sent a message to Pj} .

– Incoming communication graph. The directed graph Gin(instance(πn)) =
([n], Ein) captures all the communication lines in which honest parties received
messages that were processed (i.e., excluding messages that were filtered out).
That is,

Ein(instance(πn))={(i, j) | Pj is honest and processed a message received from Pi} .

– Full communication graph. The undirected graph Gfull(instance(πn)) =
([n], Efull) captures all the communication lines in which honest parties
received messages that were processed, or used by honest parties to send mes-
sages.
That is,

Efull(instance(πn)) = {(i, j) | (i, j) ∈ Eout or (i, j) ∈ Ein} .

We will sometimes consider ensembles of protocol instances (for n ∈ N) and the
corresponding ensembles of graphs they induce.

Looking ahead, in subsequent sections we will consider the full communica-
tion graph Gfull. Apart from making the presentation clear, the graphs Gout and
Gin are used for defining Gfull above, and the locality of a protocol in Definition 5.
Note that Gout and Gin are interesting in their own right, and can be used for a
fine-grained analysis of the communication graph of protocols in various settings,
e.g., when transmitting messages is costly but receiving messages is cheap (or
vice versa). We leave it open as an interesting problem to study various graph
properties exhibited by these two graphs.

3.3 Locality of a Protocol

We now present a definition of communication locality, aligning with that of [5],
with respect to the terminology introduced above.

Definition 5 (locality of a protocol instance). Let instance(πn) =
(πn, κ,x,ρ,A, z, I ⊆ [n], r) be an execution instance as in Definition 4. For every
honest party Pi we define the locality of party Pi to be the number of parties from
which Pi received and processed messages, or sent message to; that is,

�i(instance(πn)) = |{j | (i, j) ∈ Gout} ∪ {j | (j, i) ∈ Gin}| .

The locality of instance(πn) is defined as the maximum locality of an honest party,
i.e.,

�(instance(πn)) = max
i∈[n]\I

{�i(instance(πn))} .

Must the Communication Graph of MPC Protocols be an Expander? 255

We proceed by defining locality as a property of a protocol ensemble. The
protocol ensemble is parametrized by the number of parties n. To align with
standard notions of security where asymptotic measurements are with respect
to the security parameter κ, we consider the situation where the growth of n
and κ are polynomially related.

Definition 6 (locality of a protocol). Let π = {πn}n∈N be a family of proto-
cols in the correlated-randomness model with distribution Dπ = {Dπn

}n∈N, and
let C = {Cn}n∈N be a family of adversary classes. We say that π has locality
�(n) facing adversaries in C if for every n that is polynomially related to κ it
holds that for every input vector x = (x1, . . . , xn), every auxiliary information
z, every adversary A ∈ Cn running with z, and every set of corrupted parties
I ⊆ [n], it holds that

Pr [�(πn,A, I, κ,x, z) > �(n)] ≤ negl(κ),

where �(πn,A, I, κ,x, z) is the random variable corresponding to �(πn,
A, I, κ,x,ρ, z, r) when ρ is distributed according to Dπn

and r is uniformly
distributed.

3.4 Edge Expansion of a Protocol

The measure of complexity we study for the communication graph of interactive
protocols will be that of edge expansion (see discussion below). We refer the
reader to [18,28] for more background on expanders. We consider a definition
of edge expansion which satisfies a natural monotonic property, where adding
more edges cannot decrease the graph’s measure of expansion.

Definition 7 (edge expansion of a graph). Given an undirected graph G =
(V,E), the edge expansion ratio of G, denoted h(G), is defined as

h(G) = min
{S⊆V :|S|≤ |V |

2 }

|edges(S)|
|S| , (1)

where edges(S) denotes the set of edges between S and its complement S̄ = V \S.

Definition 8 (family of expander graphs). A sequence {Gn}n∈N of graphs is a
family of expander graphs if there exists a constant ε > 0 such that h(Gn) ≥ ε for
all n.

We now consider the natural extension of graph expansion to the setting of
protocol-induced communication graph.

Definition 9 (bounds on edge expansion of a protocol). Let π = {πn}n∈N, Dπ =
{Dπn

}n∈N, and C = {Cn}n∈N be as in Definition 6.

– A function f(n) is a lower bound of the edge expansion of π facing adversaries
in C, denoted f(n) ≤ hπ,Dπ,C(n), if for every n that is polynomially related

256 E. Boyle et al.

to κ, for every x = (x1, . . . , xn), every A ∈ Cn running with z, and every
I ⊆ [n], it holds that

Pr [h(Gfull(πn,A, I, κ,x, z)) ≤ f(n)] ≤ negl(κ),

where Gfull(πn,A, I, κ,x, z) is the random variable Gfull(πn,A, I, κ,x,ρ, z, r),
when ρ is distributed according to Dπn

and r is uniformly distributed.
– A function f(n) is a upper bound of the edge expansion of π facing adver-

saries in C, denoted f(n) ≥ hπ,Dπ,C(n), if there exists a polynomial rela-
tion between n and κ such that for infinitely many n it holds that for every
x = (x1, . . . , xn), every A ∈ Cn running with z, and every I ⊆ [n], it holds
that

Pr [h(Gfull(πn,A, I, κ,x, z)) ≥ f(n)] ≤ negl(κ).

Definition 10 (expander protocol). Let π = {πn}n∈N, Dπ = {Dπn
}n∈N, and

C = {Cn}n∈N be as in Definition 6. We say that the communication graph of π is
an expander, facing adversaries in C, if there exists a constant function ε(n) > 0
such that ε(n) ≤ hπ,Dπ,C(n).

We note that most (if not all) secure protocols in the literature are expanders
according to Definition 10, both in the realm of distributed computing [17,20,22,
29,30,32,33] and in the realm of MPC [2,3,5,9,25]. Proving that a protocol is not
an expander according to this definition requires showing an adversary for which
the edge expansion is sub-constant. Looking ahead, both in our constructions of
protocols that are not expanders (Sect. 4) and in our lower bound, showing that
non-expander protocols can be attacked (Sect. 5), we use a stronger definition,
that requires that the edge expansion is sub-constant facing all adversaries, see
Definition 11 below. While it makes our positive results stronger, we leave it as
an interesting open question to attack protocols that do not satisfy Definition 10.

Definition 11 (strongly non-expander protocol). Let π = {πn}n∈N, Dπ =
{Dπn

}n∈N, and C = {Cn}n∈N be as in Definition 6. We say that the communica-
tion graph of π is strongly not an expander, facing adversaries in C, if there exists
a sub-constant function α(n) ∈ o(1) such that α(n) ≥ hπ,Dπ,C(n).

We next state a useful observation (proven in the full version [4]) that will
come into play in Sect. 5, stating that if the communication graph of π is strongly
not an expander, then there must exist a sublinear cut in the graph.

Lemma 1. Let π = {πn}n∈N be a family of protocols in the correlated-
randomness model with distribution Dπ = {Dπn

}n∈N, and let C = {Cn}n∈N

be such that Cn is the class of adversaries corrupting at most β · n parties, for a
constant 0 < β < 1.

Assuming the communication graph of π is strongly non-expanding facing
adversaries in C, there exists a sublinear function α(n) ∈ o(n) such that for
infinitely many n’s the full communication graph of πn has an α(n)-cut with
overwhelming probability.

Must the Communication Graph of MPC Protocols be an Expander? 257

4 MPC with Non-Expanding Communication Graph

In this section, we show that in various standard settings, the communication
graph of an MPC protocol is not required to be an expander graph, even when
the communication locality is poly-logarithmic. In Sect. 4.1, we focus on static
corruptions and computational security. In Sect. 4.2, we extend the construction
to the information-theoretic setting and to the adaptive-corruption setting. The
proof for these extensions can be found in the full version [4].

4.1 Computational Security with Static Corruptions

We start by considering the computational setting with static corruptions.

Theorem 5. Let f = {fn}n∈N be an ensemble of functionalities, let δ > 0, and
assume that one-way functions exist. Then, the following holds in the PKI-hybrid
model with secure channels:

1. Let β < 1/4 − δ and let t(n) = β · n. Then, f can be securely computed by
a protocol ensemble π tolerating static PPT t(n)-adversaries such that the
communication graph of π is strongly not an expander.

2. Let β < 1/6 − δ and let t(n) = β · n. Then, f can be securely computed by a
protocol ensemble π tolerating static PPT t(n)-adversaries such that (1) the
communication graph of π is strongly not an expander, and (2) the locality of
π is poly-logarithmic in n.

3. Let β < 1/4−δ, let t(n) = β ·n, and assume in addition the secret-key infras-
tructure (SKI) model6 and the existence of public-key encryption schemes.
Then, f can be securely computed by a protocol ensemble π tolerating static
PPT t(n)-adversaries such that (1) the communication graph of π is strongly
not an expander, and (2) the locality of π is poly-logarithmic in n.7

Proof. The theorem follows from Lemma 2 (below) by instantiating the hybrid
functionalities using existing MPC protocols from the literature.

– The first part follows using honest-majority MPC protocols that exist assum-
ing one-way functions in the secure-channels model, e.g., the protocol of
Beaver et al. [1] or of Damg̊ard and Ishai [14].

– The second part follows using the low-locality MPC protocol of Boyle et al.
[5] that exists assuming one-way functions in the PKI model with secure
channels and tolerates t = (1/3 − δ)n static corruptions.

– The third part follows using the low-locality MPC protocol of Chandran et al.
[9] that exists assuming public-key encryption in the PKI and SKI model with
authenticated channels and tolerates t < n/2 static corruptions.
�

6 In the SKI model every pair of parties has a secret random string that is unknown
to other parties.

7 This item hold in the authenticated-channels model, since we assume PKE.

258 E. Boyle et al.

Ideal Functionalities used in the Construction. The proof to Theorem 5
relies on Lemma 2 (below). We start by defining the notations and the ideal
functionalities that will be used in the protocol considered in Lemma2.

Signature notations. Given a signature scheme (Gen,Sign,Verify) and m pairs
of signing and verification keys (ski, vki) ← Gen(1κ) for i ∈ [m], we use the
following notations for signing and verifying with multiple keys:

– Given a message μ we denote by Signsk1,...,skm
(μ) the vector of m signatures

σ = (σ1, . . . , σm), where σi ← Signski
(μ).

– Given a message μ and a signature σ = (σ1, . . . , σm), we denote by
Verifyvkm+1,...,vk2m

(μ, σ) the verification algorithm that for every i ∈ [m]
computes bi ← Verifyvkm+i

(μ, σi), and accepts the signature σ if and only
if

∑m
i=1 bi ≥ m − t, i.e., even if up to t signatures are invalid.

We note that it is possible to use multi-signatures or aggregated signatures in
order to obtain better communication complexity, however, we use the nota-
tion above both for simplicity and as a step towards the information-theoretic
construction in the following section.

The Elect-and-Share functionality. In the Elect-and-Share m-party functionality,
f
(t′,n′)
elect-share, every party Pi has a pair of inputs (xi, ski), where xi ∈ {0, 1}∗ is

the “actual input” and ski is a private signing key. The functionality starts by
electing two random subsets C1, C2 ⊆ [m] of size n′, and signing each subset using
all signing keys. In addition, every input value xi is secret shared using a (t′, n′)
error-correcting secret-sharing scheme. Every party receives as output the subset
C1, whereas a party Pi, for i ∈ C1, receives an additional output consisting of a
signature on C1, the signed subset C2, along with one share for each one of the
m input values.

The Reconstruct-and-Compute functionality. The Reconstruct-and-Compute
functionality, f

(vk1,...,vkm)
recon-compute, is an m-party functionality. Denote the party-set by

{Pm+1, . . . , P2m}. Every party Pm+i has an input value xm+i ∈ {0, 1}∗, and a
potential additional input value consisting of a signed subset C2 ⊆ [m] and a
vector of m shares. The functionality starts by verifying the signatures, where
every invalid input is ignored. The signed inputs should define a single subset
C2 ⊆ [m] (otherwise the functionality aborts), and the functionality uses the
additional inputs of parties Pm+i, for every i ∈ C2, in order to reconstruct the
m-tuple (x1, . . . , xm). Finally, the functionality computes y = f(x1, . . . , x2m)
and hands y as the output for every party.

The Output-Distribution functionality. The m-party Output-Distribution func-
tionality is parametrized by a subset C1 ⊆ [m]. Every party Pi, with i ∈ C1,
hands in a value, and the functionality distributes the majority of these inputs
to all the parties.

Must the Communication Graph of MPC Protocols be an Expander? 259

Constructing Non-Expander Protocols.

High-level overview of the protocol. Having defined the ideal functionalities, we
are ready to present the main lemma. We start by describing the underlying idea
behind the non-expanding MPC protocol πne

n (Fig. 2). At the onset of the protocol,
the party-set is partitioned into two subsets of size m = n/2, a left subset and a
right subset (see Fig. 1). The left subset will invoke the Elect-and-Share function-
ality, that elects two subsets C1, C2 ⊆ [m] of size n′ = log2(n). The parties in the
left subset corresponding to C1 and the parties in the right subset corresponding to
C2 will form a “bridge”. The parties in C1 will receive shares of all inputs values of
parties in the left subset, and transfer them to C2. Next, the right subset of parties
will invoke the Reconstruct-and-Compute functionality, where each party hands
its input value, and parties in C2 additionally provide the shares they received from
C1. The functionality reconstructs the left-subset’s inputs, computes the function
f and hands the output to the right subset. Finally, C2 transfers the output value
to C1, and the left subset invoke the Output-Distribution functionality in order to
distribute the output value to all the parties.

= ,… , = ,… ,
Fig. 1. The non-expanding subsets in the protocol πne. The sets C1 and C2 are of poly-
logarithmic size and the sets P1 and P2 are of linear size. The number of edges between
P1 and P2 is poly-logarithmic.

Lemma 2. Let f = {fn}n∈2N,8 where fn is an n-party functionality for n = 2m,
let δ > 0, and assume that one-way functions exist. Then, in the PKI-hybrid
model with secure channels, where a trusted party additionally computes the
m-party functionality-ensembles (felect-share, frecon-compute, fout-dist) tolerating γ · m
corruptions, there exists a protocol ensemble π that securely computes f toler-
ating static PPT βn-adversaries, for β < min(1/4 − δ, γ/2), with the following
guarantees:

1. The communication graph of π is strongly not an expander.
8 For simplicity, we consider even n’s. Extending the statement to any n is straight-
forward, however, adds more details.

260 E. Boyle et al.

2. Denote by f1, f2, f3 the functionality-ensembles felect-share, frecon-compute, fout-dist
(resp.). If protocol-ensembles ρ1, ρ2, ρ3 securely compute f1, f2, f3 (resp.) with
locality �ρ = �ρ(m), then πfi→ρi (where every call to fi is replaced by an
execution of ρi) has locality � = 2 · �ρ + log2(n).

Proof. For m ∈ N and n = 2m, we construct the n-party protocol πne
n (see

Fig. 2) in the (felect-share, frecon-compute, fout-dist)-hybrid model. The parameters for
the protocol are n′ = log2(n) and t′ = (1/2 − δ) · n′. We start by proving
in Proposition 1 that the protocol πne

n securely computes fn. Next, in Propo-
sition 2 we prove that the communication graph of πne is strongly not an
expander. Finally, in Proposition 3 we prove that by instantiating the function-
alities (felect-share, frecon-compute, fout-dist) using low-locality protocols, the resulting
protocol has low locality.

Fig. 2. Non-expanding MPC in the (felect-share, frecon-compute, fout-dist)-hybrid model

Must the Communication Graph of MPC Protocols be an Expander? 261

Proposition 1. For sufficiently large n, the protocol πne
n securely com-

putes the function fn, tolerating static PPT βn-adversaries, in the
(felect-share, frecon-compute, fout-dist)-hybrid model.

The proof of Proposition 1 can be found in the full version [4].

Proposition 2. The communication graph of the Protocol πne is strongly not
an expander, facing static PPT βn-adversaries.

Proof. For n = 2m, consider the set P1 = {P1, . . . , Pm} and its complement
P2 = P \ P1. For any input vector and for every static PPT βn-adversary it
holds that with overwhelming probability that |P1| = n/2 and edges(P1,P2) =
log2(n) · log2(n). Therefore, considering the function

f(n) =
2 log4(n)

n
,

it holds that f(n) ∈ o(1) and f(n) is an upper bound of the edge expansion
of πne. We conclude that the communication graph of πne is strongly not an
expander.
�
Proposition 3. Let ρ1, ρ2, ρ3, and πfi→ρi be the protocols defined in Lemma 2,
and let �ρ = �ρ(m) be the upper bound of the locality of ρ1, ρ2, ρ3. Then πfi→ρi

has locality � = 2 · �ρ + log2(n).

Proof. Every party in P1 communicates with �ρ parties when executing ρ1, and
with at most another �ρ parties when executing ρ3. In addition, every party in
C1 communicates with all n′ = log2(n) parties in C2. Similarly, every party in P2

communicates with �ρ parties when executing ρ2, and parties in C2 communicates
with all n′ parties in C1. It follows that maximal number of parties that a party
communicates with during the protocol is 2 · �ρ + log2(n).
�
This concludes the proof of Lemma 2.
�

4.2 Additional Results

Information-Theoretic Security. The protocol in Sect. 4.1 relies on digital
signatures, hence, security is guaranteed only in the presence of computationally
bounded adversaries. Next, we gain security facing all-powerful adversaries by
using information-theoretic signatures. We prove the following theorem in the
full version [4].

Theorem 6. Let f = {fn}n∈N be an ensemble of functionalities and let δ > 0.
Then, the following holds in the IT-PKI-hybrid model with secure channels:

1. Let β < 1/4 − δ and let t = β · n. Then, f can be t-securely computed by a
protocol ensemble π tolerating static t(n)-adversaries such that the communi-
cation graph of π is strongly not an expander.

2. Let β < 1/12 − δ and let t = β · n. Then, f can be t-securely computed
by a protocol ensemble π tolerating static t(n)-adversaries such that (1) the
communication graph of π is strongly not an expander, and (2) the locality of
π is poly-logarithmic in n.

262 E. Boyle et al.

Adaptive Corruptions. In this section, we focus on the adaptive setting,
where the adversary can corrupt parties dynamically, based on information gath-
ered during the course of the protocol.

Adjusting Lemma 2 to the adaptive setting is not straightforward, since once
the subsets C1 and C2 are known to the adversary he can completely corrupt
them. A first attempt to get around this problem, is not to reveal the entire sub-
sets in the output of the Elect-and-Share functionality, but rather, let each party
in C1 learn the identity of a single party in C2 with which he will communicate.
This way, if a party in C1 (resp. C2) gets corrupted, only one additional party in
C2 (resp. C1) is revealed to the adversary. This solution comes with the price of
tolerating a smaller fraction of corrupted parties, namely, (1/8 − δ) fraction.

This solution, however, is still problematic in the adaptive setting if the
adversary can monitor the communication lines, even when they are completely
private (as in the secure-channels setting). The reason is that once the adversary
sees the communication that is sent between C1 and C2 he can completely corrupt
both subsets. This problem is inherent when the communication lines are visible
to the adversary, therefore, we turn to the hidden-channels setting that was used
by Chandran et al. [9], where the adversary does not learn whether a message is
sent between two honest parties.

Theorem 7. Let f = {fn}n∈N be an ensemble of functionalities, let δ > 0, let
β < 1/8 − δ, and let t = β · n. Then, the following holds in the hidden-channels
model:

1. Assuming the existence of one-way functions, f can be securely computed
by a protocol ensemble π in the PKI model tolerating adaptive PPT t(n)-
adversaries such that the communication graph of π is strongly not an
expander.

2. Assume in addition the SKI model and non-committing encryption. Then, f
can be securely computed by a protocol ensemble π in the PKI model tolerating
adaptive PPT t(n)-adversaries such that (1) the communication graph of π
is strongly not an expander, and (2) the locality of π is poly-logarithmic in n.

3. f can be securely computed by a protocol ensemble π in the IT-PKI model
tolerating adaptive t(n)-adversaries such that the communication graph of π
is strongly not an expander.

5 Expansion is Necessary for Correct Computation

In this section, we show that in certain natural settings there exist functionalities
such that the final communication graph of any MPC protocol that securely
computes them must be an expander. In fact, we prove a stronger statement,
that removing a sublinear number of edges from such graphs will not disconnect
them. We consider the plain model, in which parties do not have any trusted
setup assumptions, a PPT adaptive adversary, and focus on parallel multi-valued
broadcast (also known as interactive consistency [35]), where every party has an
input value, and all honest parties agree on a common output vector, such that

Must the Communication Graph of MPC Protocols be an Expander? 263

if Pi is honest then the i’th coordinate equals Pi’s input. In particular, our proof
does not rely on any privacy guarantees of the protocol, merely its correctness.

For simplicity, and without loss of generality, we assume the security param-
eter is the number of parties n.

Definition 12 (parallel broadcast). A protocol ensemble π = {πn}n∈N is a
t(n)-resilient, parallel broadcast protocol with respect to input space {{0, 1}n}n∈N,
if there exists a negligible function μ(n), such that for every n ∈ N, every party
Pi in πn has input xi ∈ {0, 1}n and outputs a vector of n values yi = (yi

1, . . . , y
i
n)

such that the following is satisfied, except for probability μ(n). Facing any adap-
tive, malicious PPT adversary that dynamically corrupts and controls a subset
of parties {Pj}j∈I , with I ⊆ [n] of size |I| ≤ t(n), it holds that:

– Agreement. There exists a vector y = (y1, . . . , yn) such that for every party
Pi that is honest at the conclusion of the protocol it holds that yi = y.

– Validity. For every party Pi that is honest at the conclusion of the protocol
it holds that the i’th coordinate of the common output equals his input value,
i.e., yi = xi.

Recall that a connected graph is k-edge-connected if it remains connected
whenever fewer than k edges are removed. We are now ready to state the main
result of this section. We note that as opposed to Sect. 4.2, where we considered
adaptive corruptions in the hidden-channels model, this section considers the
parallel secure message transmission (SMT) model, formally defined in Sect. 5.1,
where the adversary is aware of communication between honest parties, but not
of the message content.

Theorem 8. Let β > 0 be a fixed constant, let t(n) = β · n, and let π =
{πn}n∈N be a t(n)-resilient, parallel broadcast protocol with respect to input space
{{0, 1}n}n∈N, in the parallel SMT hybrid model (in the computational setting,
tolerating an adaptive, malicious PPT adversary). Then, the communication
graph of π must be α(n)-edge-connected, for every α(n) ∈ o(n).

From Theorem 8 and Lemma 1 (stating that if π is strongly not an expander
then there must exist a sublinear cut in the graph) we get the following corollary.

Corollary 1. Consider the setting of Theorem8. If the communication graph of
π is strongly not an expander (as per Definition 11), then π is not a t(n)-resilient
parallel broadcast protocol.

The remainder of this section goes towards proving Theorem8. We start
by presenting the communication model in Sect. 5.1. In Sect. 5.2, we prove a
graph-theoretic theorem that will be used in the core of our proof and may be
of independent interest. Then, in Sect. 5.3 we present the proof of Theorem 8.
Some of the proofs are deferred to the full version [4].

264 E. Boyle et al.

5.1 The Communication Model

We consider secure communication channels, where the adversary can see that
a message has been sent but not its content (in contrast to the hidden-
communication model, used in Sect. 4.2, where the communication between hon-
est parties was hidden from the eyes of the adversary). A standard assumption
when considering adaptive corruptions is that in addition to being notified that
an honest party sent a message, the adversary can corrupt the sender before the
receiver obtained the message, learn the content of the message, and replace it
with another message of its choice that will be delivered to the receiver. Although
the original modular composition framework [7] does not give the adversary such
power, this ability became standard after the introduction of the secure message
transmission (SMT) functionality in the UC framework [8]. As we consider syn-
chronous protocols, we use the parallel SMT functionality that was formalized
in [12,13].9

Definition 13 (parallel SMT). The parallel secure message transmission func-
tionality fpsmt is a two-phase functionality. For every i, j ∈ [n], the functionality
initializes a value xi

j to be the empty string ε (the value xi
j is the message to be

sent from Pi to Pj).

– The input phase. Every party Pi sends a vector of n messages (vi
1, . . . , v

i
n).

The functionality sets xi
j = vi

j, and provides the adversary with leakage infor-
mation on the input values. As we consider rushing adversaries, who can
determine the messages to be sent by the corrupted parties after receiving
the messages sent by the honest parties, the leakage function should leak the
messages that are to be delivered from honest parties to corrupted parties.
Therefore, the leakage function is

lpsmt

(
(x1

1, . . . , x
1
n), . . . , (xn

1 , . . . , xn
n)

)
=

(
y1
1 , y

1
2 , . . . , y

n
n−1, y

n
n

)
,

where yi
j = |xi

j | in case Pj is honest and yi
j = xi

j in case Pj is corrupted.
We consider adaptive corruptions, and so, the adversary can corrupt an hon-
est party during the input phase based on this leakage information, and send
a new input on behalf of the corrupted party (note that the message are not
delivered yet to the honest parties).

– The output phase. In the second phase, the messages are delivered to the
parties, i.e., party Pi receives the vector of messages (x1

i , . . . , x
n
i).

In addition, we assume that the parties do not have any trusted-setup assump-
tion.

9 We note that by considering secure channels, that hide the content of the messages
from the adversary, we obtain a stronger lower bound than, for example, authenti-
cated channels.

Must the Communication Graph of MPC Protocols be an Expander? 265

5.2 A Graph-Theoretic Theorem

Our lower-bound proof is based on the following graph-theoretic theorem, which
we believe may be of independent interest. We show that every graph in which
every node has a linear degree, can be partitioned into a constant number of
linear-size sets that are pairwise connected by sublinear many edges. These sub-
sets are “minimal cuts” in the sense that every sublinear cut in the graph is
a union of some of these subsets. The proof of the theorem given in the full
version [4].

Definition 14 ((α, d)-partition). Let G = (V,E) be a graph of size n. An
(α, d)-partition of G is a partition Γ = (U1, . . . , U�) of V that satisfies the fol-
lowing properties:

1. For every i ∈ [�] it holds that |Ui| ≥ d.
2. For every i �= j, there are at most α edges between Ui and Uj, i.e.,

|edgesG(Ui, Uj)| ≤ α.
3. For every S ⊆ V such that {S, S̄} is an α-cut, i.e., |edgesG(S)| ≤ α, it holds

that there exists a subset J � [�] for which S =
⋃

j∈J Uj and S̄ =
⋃

j∈[�]\J Uj.

In Theorem 9 we first show that if every node in the graph has a linear
degree d(n), and α(n) is sublinear, then for sufficiently large n there exists an
(α(n), d(n))-partition of the graph, and moreover, the partition can be found in
polynomial time.

Theorem 9. Let c > 1 be a constant integer, let α(n) ∈ o(n) be a fixed sublinear
function in n, and let {Gn}n∈N be a family of graphs, where Gn = ([n], En) is
defined on n vertices, and every vertex of Gn has degree at least n

c − 1. Then,
for sufficiently large n it holds that:

1. There exists a (α(n), n/c)-partition of Gn, denoted Γ ; it holds that |Γ | ≤ c.
2. A (α(n), n/c)-partition Γ of Gn can be found in (deterministic) polynomial

time, given the n × n adjacency matrix of Gn.

Note that if for every n there exists an α(n)-cut in Gn, then it immediately
follows that |Γ | > 1, i.e., the partition is not the trivial partition of the set of all
nodes.

5.3 Proof of Main Theorem (Theorem 8)

High-level overview of the attack. For n ∈ N, consider an execution of the alleged
parallel broadcast protocol πn over uniformly distributed n-bit input values for
the parties (x1, . . . , xn) ∈R ({0, 1}n)n. We define two ensembles of adversarial
strategies {Ahonest-i∗

n }n∈N and {Acorrupt-i∗
n }n∈N (described in full in Sect. 5.3).

The adversary Acorrupt-i∗
n corrupts a random party Pi∗ , and simulates an hon-

est execution on a random input x̃i∗ until Pi∗ has degree β/4. Next, Acorrupt-i∗
n

266 E. Boyle et al.

switches the internal state of Pi∗ with a view that is consistent with an hon-
est execution over the initial input xi∗ , where all other parties have ran-
dom inputs. The adversary Acorrupt-i∗

n continues by computing the (α(n), n/c)-
partition {U1, . . . , U�} of the communication graph, (where c is a constant
depending only on β – this is possible due to Theorem 9), and blocking every
message that is sent between every pair of Ui’s. In Lemma 3, we show that
there exist honest parties that at the conclusion of the protocol have received a
bounded amount of information on the initial input value xi∗ .

The second adversary, Ahonest-i∗
n , is used for showing that under the previous

attack, every honest party will eventually output the initial input value xi∗

(Lemma 4). This is done by having Ahonest-i∗
n corrupt all the neighbors of Pi∗ ,

while keeping Pi∗ honest, and simulate the previous attack to the remaining
honest parties.

We show that there exist honest parties whose view is identically distributed
under both attacks, and since they output xi∗ in the latter, they must also
output xi∗ in the former. By combining both of these lemmata, we then derive
a contradiction.

Proof (Proof of Theorem 8). First, since we consider the plain model, without
any trusted setup assumptions, known lower bounds [21,34,35] state that parallel
broadcast cannot be computed for t(n) ≥ n/3, therefore, we can focus on 0 <
β < 1/3, i.e., the case where t(n) = β · n < n/3.

Assume toward a contradiction that π is t(n)-resilient parallel broadcast pro-
tocol in the above setting, and that there exists a sublinear function α(n) ∈ o(n)
such that the communication graph of π is not α(n)-edge-connected, i.e., for
sufficiently large n there exists a cut {Sn, S̄n} of weight at most α(n).

Notations. We start by defining a few notations. For a fixed n,10 consider the
following independently distributed random variables

InputsAndCoins =
(
X1, . . . , Xn, R1, . . . , Rn, X̃1, . . . , X̃n, R̃1, . . . , R̃n, I∗

)
,

where for every i ∈ [n], each Xi and X̃i take values uniformly at random
in the input space {0, 1}n, each Ri and R̃i take values uniformly at random
in {0, 1}∗, and I∗ takes values uniformly at random in [n]. During the proof,
(Xi, Ri) represent the pair of input and private randomness of party Pi, whereas
(X̃1, . . . , X̃n, R̃1, . . . , R̃n, I∗) correspond to the random coins of the adversary
(used in simulating the two executions towards the honest parties). Unless stated
otherwise, all probabilities are taken over these random variables.

Let RedExec be a random variable defined as

RedExec :=
(
X−I∗ , X̃I∗ , R−I∗ , R̃I∗

)
.

That is, RedExec contains Xi and Ri for i ∈ [n]\{I∗}, along with X̃I∗ and R̃I∗ .
We denote by the “red execution” an honest protocol execution when the inputs
10 For clarity, we denote the random variables without the notation n.

Must the Communication Graph of MPC Protocols be an Expander? 267

and private randomness of the parties are (X−I∗ , X̃I∗ , R−I∗ , R̃I∗). We denote by
the “blue execution” an honest protocol execution when the inputs and private
randomness of the parties are (X̃−I∗ ,XI∗ , R̃−I∗ , RI∗). Note that such a sample
fully determines the view and transcript of all parties in an honest simulated
execution of πn.

Let FinalCut
corrupt be a random variable defined over 2[n] ∪ {⊥}. The dis-

tribution of FinalCut
corrupt is defined by running protocol π until its conclu-

sion with adversary Acorrupt-i∗
n (defined in Sect. 5.3) on inputs and coins sampled

according to InputsAndCoins. If at the conclusion of the protocol there is no
α(n)-cut in the graph, then set the value of FinalCut

corrupt to be ⊥; otherwise,
set the value to be the identity of the smallest α(n)-cut {S, S̄} in the commu-
nication graph according to some canonical ordering on the α(n)-cuts. We will
prove that conditioned on the value of RedExec, then FinalCut

corrupt can only
take one of a constant number of values depending only on β (and not on n).

Let E1 denote the event that PI∗ is the last among all the parties to reach
degree βn/4 in both the red and the blue honest executions of the protocol. More
precisely, the event that PI∗ reaches degree βn/4 in both executions, and if it
has reached this degree in round ρ in the red (blue) execution, then all parties
in the red (blue) execution have degree at least βn/4 in round ρ.

Let E2 denote the event that the degree of PI∗ reaches βn/4 in the red execu-
tion before, or at the same round as, in the blue execution. Note that E1 and E2

are events with respect to two honest executions of the protocol (the red execu-
tion and the blue execution) that are defined according to InputsAndCoins. In
the adversarial stategies that are used in the proof, the corrupted parties operate
in a way that indeed induces the red and blue executions, and so, the events E1

and E2 are well defined in an execution of the protocol with those adversarial
strategies.

In Sect. 5.3, we formally describe two adversarial strategies, Ahonest-i∗
n and

Acorrupt-i∗
n . We denote by Y corrupt

I∗ , respectively Y honest
I∗ , the random variable that

corresponds to the I∗’th coordinate of the common output of honest parties,
when running over random inputs with adversarial strategy Acorrupt-i∗

n , respec-
tively Ahonest-i∗

n .

Proof structure. Our proof follows from two main steps. In Lemma 3, stated in
Sect. 5.3, we show that in an execution of πn on random inputs with adversary
Acorrupt-i∗

n , it holds that (1) Pr [E1 ∩ E2] ≥ 1/2n2 − negl(n), and that (2) condi-
tioned on the event E1 ∩ E2, there exists an honest party Pj∗ such that XI∗ ,
conditioned on E1 ∩ E2 and on the view of Pj∗ at the conclusion of the protocol,
still retains at least n/4 bits of entropy. This means, in particular, that Pj∗ will
output the value XI∗ only with negligible probability. Hence, by agreement, the
probability for any of the honest parties to output XI∗ in an execution with
Acorrupt-i∗

n is negligible. In particular,

Pr
[
Y corrupt

I∗ = XI∗ | E1 ∩ E2

]
= negl(κ).

In Lemma 4, stated in Sect. 5.3, we show that in an execution of π on random
inputs with adversary Ahonest-i∗

n , it holds that (1) with overwhelming probability

268 E. Boyle et al.

all honest parties output Xi∗ (this holds by correctness, since PI∗ remains hon-
est), i.e.,

Pr
[
Y honest

I∗ = XI∗
] ≥ 1 − negl(κ),

and that (2) conditioned on the event E1∩E2, there exists an honest party whose
view is identically distributed as in an execution with Acorrupt-i∗

n , therefore,

Pr
[
Y corrupt

I∗ = Y honest
I∗ | E1 ∩ E2

] ≥ 1 − negl(κ).

From the combination of the two lemmata, we derive a contradiction.
�

Defining Adversarial Strategies. As discussed above, the main idea behind
the proof is to construct two dual adversarial strategies that will show that on
the one hand, the output of all honest parties must contain the initial value of a
randomly chosen corrupted party, and on the other hand, there exist parties that
only receive a bounded amount of information on this value during the coarse
of the protocol.

We use the following notation for defining the adversarial strategies. Virtual
parties that only exist in the head of the adversary are denoted with “tilde”. In
particular, for a random i∗ ∈ [n], we denote by P̃i∗ a virtual party that emulates
the role of Pi∗ playing with the real parties using a random input in the so-called
“red execution,” and by {Q̃i}i	=i∗ virtual parties that emulate an execution over
random inputs towards Pi∗ .11

The adversary Ahonest-i∗
n . At a high level, the adversary Ahonest-i∗

n chooses a random
i∗ ∈ [n] and isolates the honest party Pi∗ . The adversary Ahonest-i∗

n consists of three
phases. In Phase I, Ahonest-i∗

n induces two honestly distributed executions.

– The first (red) execution is set by simulating an honest execution of a virtual
party P̃i∗ over a random input x̃i∗ towards all other parties. The adversary
corrupts any party that sends a message to Pi∗ , blocks its message, and
simulates P̃i∗ receiving this message. Whenever P̃i∗ should send a message to
some Pj , the adversary corrupts the Pj , and instructs him to proceed as if he
received the intended message from P̃i∗ .

– For the second (blue) execution, Ahonest-i∗
n emulates a virtual execution with

virtual parties (Q̃1, . . . , Q̃n) \ {Q̃i∗} on random inputs towards the honest
party Pi∗ . To do so, whenever Pi∗ sends a message to Pj in the real execu-
tion, the adversary corrupts Pj , instructing him to ignore this message, and
simulates this message from Pi∗ to Q̃j in the virtual execution (that is run-
ning in the head of the adversary). Whenever a party Q̃j sends a message
to Pi∗ in the virtual execution, the adversary corrupts the real party Pj and
instructs him to send this message to Pi∗ in the real execution.

11 Following the red pill blue pill paradigm, in the adversarial strategy Ahonest-i∗
n , the

chosen party Pi∗ is participating (without knowing it) in the blue execution, which
is a fake execution that does not happen in the real world. The real honest parties
participate in the red execution, where the adversary simulates Pi∗ by running a
virtual party.

Must the Communication Graph of MPC Protocols be an Expander? 269

Phase II begins when the degree of Pi∗ in the red execution is at least (β/4)·n;
if Pi∗ reaches this threshold faster in the blue execution, the attack fails. Phase III
begins when the degree of Pi∗ in the real execution is at least (β/4) · n.

Ideally, Phase I will continue until all parties in the real execution have a
linear degree, and before the adversary will use half of his “corruption budget”,
i.e., (β/2) · n. This would be the case if we were to consider a single honest
execution of the protocol, since we show that there always exists a party that
will be the last to reach the linear-degree threshold with a noticeable probability.
However, as the attack induces two independent executions, in which the degree
of the parties can grow at different rates, care must be taken. We ensure that even
though Pi∗ runs in the blue execution, by the time Pi∗ will reach the threshold,
all other parties (that participate in the red execution) will already have reached
the threshold, and can be partitioned into “minimal” α(n)-cuts, as follows.

The adversary allocates (β/4)·n corruptions for the red execution and (β/4)·n
corruptions for the blue execution. We show that with a noticeable probability,
once P̃i∗ has degree (β/4) · n in the red execution, all other parties in the red
execution also have high degree. Consider the communication graph of the red
execution without the virtual party P̃i∗ (i.e., after removing the node i∗ and
its edges); by Theorem 9 there exists an (α(n), (β/4)n − 1) partition of this
graph into a constant number of linear-size subsets that are connected with
sublinear many edges, denoted Γ = {U1, . . . , U�} (in particular, this partition
is independent of xi∗). In Phase II, the adversary continues blocking outgoing
messages from Pi∗ towards the real honest parties, until the degree of Pi∗ in the
real execution is βn/4. In addition, Ahonest-i∗

n blocks any message that is sent
between two subsets in the partition, by corrupting the recipient and instructing
him to ignore messages from outside of his subset.

In Phase III, which begins when Pi∗ has high degree in the real execution,
the adversary adds Pi∗ to one of the subsets in the partition, in which Pi∗ has
many neighbors, and continues to block messages between different subsets in
the partition until the conclusion of the protocol.

We note that special care must be taken in the transition between the phases,
since such a transition can happen in a middle of a round, after processing some
of the messages, but not all. Indeed, if the transition to the next phase will
happen at the end of the round, the adversary may need to corrupt too many
parties. For this reason, in Phases I and II, we analyze the messages to and from
Pi∗ one by one, and check whether the threshold has been met after each such
message.

The adversary Acorrupt-i∗
n . The adversary Acorrupt-i∗

n corrupts the randomly chosen
party Pi∗ , and emulates the operations of an honest Pi∗ that is being attacked
by Ahonest-i∗

n .
In Phase I, the adversary Acorrupt-i∗

n induces two honestly distributed execu-
tions, by simulating an honest execution of a virtual party P̃i∗ over a random
input x̃i∗ towards all other honest parties (the red execution), and furthermore,
runs in its mind a virtual execution over the initial input xi∗ and random inputs
x̃i for i �= i∗ (the blue execution). This phase continues until P̃i∗ has degree

270 E. Boyle et al.

βn/4 in the red execution (no parties other than Pi∗ are being corrupted). If all
other parties in the red execution have high degree, then the adversary finds the
partition of the red graph as in the previous attack (the partition is guaranteed
by Theorem 9).

In Phase II, the adversary continues simulating the corrupted Pi∗ towards
the real honest parties until the degree of Pi∗ in the real execution is βn/4;
however, his communication is based on the view in the blue execution at the
end of Phase I (this is no longer an honest-looking execution). During this phase,
Acorrupt-i∗

n blocks any message that is sent between two subsets in the partition.
In Phase III, that begins when Pi∗ has high degree (in the real execution),

Acorrupt-i∗
n adds Pi∗ to one of the subsets in the partition, in which Pi∗ has many

neighbors, and continues to block messages between different subsets in the
partition until the conclusion of the protocol.

The Core Lemmata. In the full version [4] we prove the following core lemmata
that conclude the proof of the theorem.

Lemma 3. Consider an execution of πn on random inputs (X1, . . . , Xn) for the
parties with adversary Acorrupt-i∗

n , and the events E1 and E2 as defined in Sect. 5.3.
Then, it holds that:

1. Pr [E1 ∩ E2] ≥ 1/2n2 − negl(n).
2. Conditioned on the event E1 ∩ E2, there exists an honest party PJ∗ such that

H(XI∗ | E1 ∩ E2,view
corrupt
J∗) ≥ n/4,

where view
corrupt
J∗ is the random variable representing the view of PJ∗ at the

end of the protocol.

Lemma 4. Consider an execution of πn on random inputs (X1, . . . , Xn) for the
parties with adversary Ahonest-i∗

n . Then, conditioned on the event E1 ∩ E2 it holds
that:

1. The I∗’th coordinate of the common output Y honest
I∗ equals the initial input

XI∗ of PI∗ , except for negligible probability, i.e.,

Pr
[
Y honest

I∗ = XI∗ | E1 ∩ E2

] ≥ 1 − negl(n).

2. The I∗’th coordinate of the common output Y honest
I∗ in an execution with

Ahonest-i∗
n equals the I∗’th coordinate of the common output Y corrupt

I∗ in an
execution with Acorrupt-i∗

n , except for negligible probability, i.e.,

Pr
[
Y honest

I∗ = Y corrupt
I∗ | E1 ∩ E2

] ≥ 1 − negl(n).

Must the Communication Graph of MPC Protocols be an Expander? 271

References

1. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols
(extended abstract). In: STOC, pp. 503–513 (1990)

2. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In:
FOCS, pp. 1–10 (1988)

3. Boyle, E., Chung, K.-M., Pass, R.: Large-scale secure computation: multi-party
computation for (parallel) RAM programs. In: Gennaro, R., Robshaw, M. (eds.)
CRYPTO 2015, Part II. LNCS, vol. 9216, pp. 742–762. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48000-7 36

4. Boyle, E., Cohen, R., Data, D., Hubáček, P.: Must the communication graph of
MPC protocols be an expander? Cryptology ePrint Archive, Report 2018/540
(2018). https://eprint.iacr.org/2018/540

5. Boyle, E., Goldwasser, S., Tessaro, S.: Communication locality in secure multi-
party computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 356–376.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2 21

6. Braud-Santoni, N., Guerraoui, R., Huc, F.: Fast Byzantine agreement. In: PODC,
pp. 57–64 (2013)

7. Canetti, R.: Security and composition of multiparty cryptographic protocols.
JCRYPTOL 13(1), 143–202 (2000)

8. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: FOCS, pp. 136–145 (2001)

9. Chandran, N., Chongchitmate, W., Garay, J.A., Goldwasser, S., Ostrovsky, R.,
Zikas, V.: The hidden graph model: communication locality and optimal resiliency
with adaptive faults. In: ITCS, pp. 153–162 (2015)

10. Chandran, N., Garay, J.A., Ostrovsky, R.: Almost-everywhere secure computation
with edge corruptions. JCRYPTOL 28(4), 745–768 (2015)

11. Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure protocols
(extended abstract). In: STOC, pp. 11–19 (1988)

12. Cohen, R., Coretti, S., Garay, J.A., Zikas, V.: Round-preserving parallel compo-
sition of probabilistic-termination cryptographic protocols. In: ICALP, pp. 37:1–
37:15 (2017)

13. Cohen, R., Coretti, S., Garay, J.A., Zikas, V.: Probabilistic termination and com-
posability of cryptographic protocols. In: Robshaw, M., Katz, J. (eds.) CRYPTO
2016, Part III. LNCS, vol. 9816, pp. 240–269. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53015-3 9

14. Damg̊ard, I., Ishai, Y.: Constant-round multiparty computation using a black-box
pseudorandom generator. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp.
378–394. Springer, Heidelberg (2005). https://doi.org/10.1007/11535218 23

15. Dani, V., King, V., Movahedi, M., Saia, J., Zamani, M.: Secure multi-party com-
putation in large networks. Distrib. Comput. 30(3), 193–229 (2017)

16. Dolev, D.: The Byzantine generals strike again. J. Algorithms 3(1), 14–30 (1982)
17. Dolev, D., Strong, R.: Authenticated algorithms for Byzantine agreement.

SICOMP 12(4), 656–666 (1983)
18. Dvir, Z., Wigderson, A.: Monotone expanders: constructions and applications. The-

ory Comput. 6(1), 291–308 (2010)
19. Dwork, C., Peleg, D., Pippenger, N., Upfal, E.: Fault tolerance in networks of

bounded degree. SICOMP 17(5), 975–988 (1988)

https://doi.org/10.1007/978-3-662-48000-7_36
https://eprint.iacr.org/2018/540
https://doi.org/10.1007/978-3-642-36594-2_21
https://doi.org/10.1007/978-3-662-53015-3_9
https://doi.org/10.1007/978-3-662-53015-3_9
https://doi.org/10.1007/11535218_23

272 E. Boyle et al.

20. Feldman, P., Micali, S.: An optimal probabilistic protocol for synchronous Byzan-
tine agreement. SICOMP 26(4), 873–933 (1997)

21. Fischer, M.J., Lynch, N.A., Merritt, M.: Easy impossibility proofs for distributed
consensus problems. Distrib. Comput. 1(1), 26–39 (1986)

22. Garay, J.A., Moses, Y.: Fully polynomial Byzantine agreement in t+1 rounds. In:
STOC, pp. 31–41 (1993)

23. Garay, J.A., Ostrovsky, R.: Almost-everywhere secure computation. In: Smart, N.
(ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 307–323. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78967-3 18

24. Goldreich, O.: Foundations of Cryptography - Volume 2: Basic Applications. Cam-
bridge University Press, Cambridge (2004)

25. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a
completeness theorem for protocols with honest majority. In: STOC, pp. 218–229
(1987)

26. Halevi, S., Ishai, Y., Jain, A., Kushilevitz, E., Rabin, T.: Secure multiparty com-
putation with general interaction patterns. In: ITCS, pp. 157–168 (2016)

27. Halevi, S., Lindell, Y., Pinkas, B.: Secure computation on the web: computing
without simultaneous interaction. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 132–150. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22792-9 8

28. Hoory, S., Linial, N., Wigderson, A.: Expander graphs and their applications. Bull.
Am. Math. Soc. 43(4), 439–561 (2006)

29. Kapron, B.M., Kempe, D., King, V., Saia, J., Sanwalani, V.: Fast asynchronous
Byzantine agreement and leader election with full information. In: SODA, pp.
1038–1047 (2008)

30. King, V., Lonargan, S., Saia, J., Trehan, A.: Load balanced scalable Byzantine
agreement through quorum building, with full information. In: Aguilera, M.K.,
Yu, H., Vaidya, N.H., Srinivasan, V., Choudhury, R.R. (eds.) ICDCN 2011. LNCS,
vol. 6522, pp. 203–214. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-17679-1 18

31. King, V., Saia, J.: From almost everywhere to everywhere: Byzantine agreement
with Õ(n3/2) bits. In: Keidar, I. (ed.) DISC 2009. LNCS, vol. 5805, pp. 464–478.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04355-0 47

32. King, V., Saia, J.: Breaking the O(n2) bit barrier: scalable Byzantine agreement
with an adaptive adversary. In: PODC, pp. 420–429 (2010)

33. King, V., Saia, J., Sanwalani, V., Vee, E.: Scalable leader election. In: SODA, pp.
990–999 (2006)

34. Lamport, L., Shostak, R.E., Pease, M.C.: The Byzantine generals problem. ACM
Trans. Program. Lang. Syst. 4(3), 382–401 (1982)

35. Pease, M.C., Shostak, R.E., Lamport, L.: Reaching agreement in the presence of
faults. J. ACM 27(2), 228–234 (1980)

36. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with
honest majority (extended abstract). In: FOCS, pp. 73–85 (1989)

37. Seito, T., Aikawa, T., Shikata, J., Matsumoto, T.: Information-theoretically secure
key-insulated multireceiver authentication codes. In: Bernstein, D.J., Lange, T.
(eds.) AFRICACRYPT 2010. LNCS, vol. 6055, pp. 148–165. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-12678-9 10

38. Shikata, J., Hanaoka, G., Zheng, Y., Imai, H.: Security notions for unconditionally
secure signature schemes. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS,
vol. 2332, pp. 434–449. Springer, Heidelberg (2002). https://doi.org/10.1007/3-
540-46035-7 29

https://doi.org/10.1007/978-3-540-78967-3_18
https://doi.org/10.1007/978-3-642-22792-9_8
https://doi.org/10.1007/978-3-642-22792-9_8
https://doi.org/10.1007/978-3-642-17679-1_18
https://doi.org/10.1007/978-3-642-17679-1_18
https://doi.org/10.1007/978-3-642-04355-0_47
https://doi.org/10.1007/978-3-642-12678-9_10
https://doi.org/10.1007/3-540-46035-7_29
https://doi.org/10.1007/3-540-46035-7_29

Two-Round Multiparty Secure
Computation Minimizing Public

Key Operations

Sanjam Garg, Peihan Miao, and Akshayaram Srinivasan(B)

University of California, Berkeley, Berkeley, USA
{sanjamg,peihan,akshayaram}@berkeley.edu

Abstract. We show new constructions of semi-honest and malicious
two-round multiparty secure computation protocols using only (a fixed)
poly(n, λ) invocations of a two-round oblivious transfer protocol (which
use expensive public-key operations) and poly(λ, |C|) cheaper one-way
function calls, where λ is the security parameter, n is the number of
parties, and C is the circuit being computed. All previously known
two-round multiparty secure computation protocols required poly(λ, |C|)
expensive public-key operations.

1 Introduction

Secure multiparty computation (MPC) allows a set of mutually distrusting par-
ties to compute a joint function on their private inputs with the guarantee that
only the output of the function is revealed and everything else about the private
inputs of the parties is hidden. This is a classic problem in cryptography and
was originally studied by Yao [Yao82] for the case of two parties. Later, Goldre-
ich, Micali and Wigderson [GMW87] considered the multiparty case and gave
protocols for securely computing any multiparty functionality.

A key metric in determining the efficiency of a secure computation protocol
is its round complexity or in other words, the number of sequential messages
exchanged between the parties. Starting with the first constant round proto-
col by Beaver, Micali and Rogaway [BMR90], there has been a tremendous
amount of research to reduce the round complexity to its absolute minimum.
It was shown in [HLP11] that two rounds are necessary to securely compute
certain functionalities and a sequence of works have tried to realize this goal.
The first two-round construction was obtained by Garg, Gentry, Halevi and
Raykova based on indistinguishability obfuscation [GGHR14,GGH+13]. Sub-
sequently, a sequence of works improved the needed assumptions, first to wit-
ness encryption [GLS15,GGSW13], and then to learning with errors assumption

Research supported in part from DARPA/ARL SAFEWARE Award
W911NF15C0210, AFOSR Award FA9550-15-1-0274, AFOSR YIP Award,
DARPA and SPAWAR under contract N66001-15-C-4065, a Hellman Award and
research grants by the Okawa Foundation, Visa Inc., and Center for Long-Term
Cybersecurity (CLTC, UC Berkeley). The views expressed are those of the author
and do not reflect the official policy or position of the funding agencies.

c© International Association for Cryptologic Research 2018
H. Shacham and A. Boldyreva (Eds.): CRYPTO 2018, LNCS 10993, pp. 273–301, 2018.
https://doi.org/10.1007/978-3-319-96878-0_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96878-0_10&domain=pdf

274 S. Garg et al.

[MW16,BP16,PS16]. Improving these results, recent works obtained two-round
constructions based on the DDH assumption [BGI16,BGI17b] (for the case of
constant number of parties) or on bilinear maps [GS17] (in the general case).
Finally, very recent results have also yielded constructions based on the minimal
assumption of two-round oblivious transfer [BL18,GS18].

Apart from round complexity, another metric that is crucial for computa-
tional efficiency in MPC protocols is the number of public-key operations per-
formed by each party. Typically, public key operations are orders of magnitude
more expensive than symmetric key operations and minimizing them typically
leads to more efficient protocols. The question of minimizing public key oper-
ations in secure computation was first considered by Beaver [Bea96] for the
case of oblivious transfer. In particular, Beaver gave a construction for obtain-
ing a large number L � λ of oblivious transfers (OTs) using only a fixed
number λ public key operations along with the use of poly(L) cheaper one-
way function calls. This task of extending λ OTs to a larger L OTs using
only one-way functions is referred to as oblivious transfer extension. Follow-
ing Beaver’s result, a rich line of work [IKNP03,Nie07,HIKN08,KK13] gave
concretely efficient protocols for OT extension which have served as a crucial
ingredient in the design of several concretely efficient secure computation proto-
cols [HIK07,NNOB12,ALSZ17,KRS16].

In this work, we are interested in getting the best of both worlds, namely,
constructing two-round MPC protocols while minimizing the number of public-
key operations performed. Indeed, the number of public-key operations in the
prior two-round MPC protocols grows with the size of the circuit computed.
Given this state of affairs, we would like to address the following question.

Can we construct two-round, secure multiparty computation protocols where the
number of public key operations performed by each party is independent of the

size of the circuit being computed?

1.1 Our Results

We give a positive answer to the above question. We show new constructions of
semi-honest and malicious two-round, multiparty computation protocols where
the number of public key operations performed by each party is a fixed poly-
nomial (in the security parameter and the number of participants) and is inde-
pendent of the circuit size of the function being computed. Further, we prove
the security of these protocols under the minimal assumption that two-round
semi-honest/malicious oblivious transfer (OT) exists. More formally, our main
theorem is:

Theorem 1 (Informal). Let X ∈ {semi-honest in plain model, malicious in
common random/reference sting model}. Assuming the existence of a two-round
X secure OT protocol, there exists a two-round, X secure, n-party protocol com-
puting a function f (represented as a circuit Cf) where the number of public key
operations performed by each party is poly(n, λ). Here, poly(·) is a fixed polyno-
mial independent of |Cf | and λ is the security parameter.

Two-Round Multiparty Secure Computation 275

The focus of this work is theoretical feasibility rather than concrete opti-
mization of the polynomial. We leave the goal of obtaining concretely efficient
protocols for future work. Additionally, in the malicious case, this work focuses
on obtaining protocols in the common random/reference string model. Obtain-
ing round optimal MPC protocols in the plain model [GMPP16,ACJ17,BHP17,
COSV17,HHPV17,BGJ+17,BL18] has been a problem of significant interest and
we expect that our techniques will be useful in reducing the number of public-key
operations needed in these protocols. We leave this as an open problem.

2 Technical Overview

In this section, we give a high-level overview of the main challenges and the tech-
niques used to overcome them in our construction of two-round MPC protocols
minimizing the number of public key operations.

Starting Point. The starting point of our work is the recent results of Ben-
hamouda and Lin [BL18] and Garg and Srinivasan [GS18] that provide con-
structions of two-round, secure multiparty computation (MPC) protocol based
on two-round oblivious transfer. These works provide a method of squishing the
round complexity of an arbitrary round secure computation protocol to just two
rounds. The key idea behind this method is the concept of “talking garbled cir-
cuits,” i.e., garbled circuits that can interact with each other by sending and
receiving messages. Let us briefly explain how this primitive helps in squishing
the round complexity of a multi-round MPC protocol.

To squish the round complexity, each party generates “talking garbled cir-
cuits” that emulates its actions as per the specification of the multi-round MPC
protocol. The parties then broadcast these “talking garbled circuits” so that
every party has access to the “talking garbled circuits” of every other party.
Finally, all parties evaluate these “talking garbled circuits” that internally exe-
cutes the multi-round MPC protocol. This step does not involve any further
interactions between the parties. Thus, the only overhead in the round complex-
ity of this approach is the number of rounds needed for generating the “talking
garbled circuits.”

Let us give a very high level overview of how the “talking garbled circuits”
are generated. In these two works, the “talking garbled circuits” are generated
via a two-round protocol that makes use of (plain) garbled circuits and two-
round oblivious transfer (OT).1 At the end of the two rounds, every party has
access to every other party’s “talking garbled circuits” and can evaluate them
without any further interaction. The first round of this two-round protocol can
be visualized as setting up a channel for the garbled circuits to communicate.
Without going into the actual details on how this is achieved, we note that this
step involves generating several first round OT messages. Next, in the second

1 Recall that in a two-round oblivious transfer, the first message is generated by the
receiver and it encodes the receiver’s choice bit and the second message is generated
by the sender and it encodes its two messages.

276 S. Garg et al.

round, the actual garbled circuits are sent which interact with each other via
the channel set up in the first round. Again, without going into the details,
a message sent from one party (the sender) to another party (the receiver) is
communicated via the sender’s garbled circuit outputting the randomness used
in generating a subset of the first round OT messages and the receiver’s garbled
circuit outputting some second round OT messages.

Computational Overhead. One major source of inefficiency in the approaches
of [BL18,GS18] is the number of expensive OT instances needed. In particular,
these protocols use Ω(1) OTs in enabling the garbled circuits to communicate a
single bit. Hence, the number of OTs needed for compiling an arbitrary secure
computation protocol grows with the circuit size of the function being com-
puted.2 Our goal is to remove this dependency between the number of OTs
needed and the circuit size of the function being computed.

Can We Use OT Extension? A natural first attempt to minimize the number
of instances of oblivious transfer would to be use an OT extension protocol
[Bea96,IKNP03]. We need this OT extension protocol to run in two-rounds, as
otherwise the protocol for computing “talking garbled circuits” will run in more
rounds. Further, we need the OT extension protocol to satisfy the following three
properties for it to be useful in constructing “talking garbled circuits.” We also
explain why a general two-round OT satisfies each of these properties.

1. Delegatability. For every OT computed between a sender and a receiver,
the receiver should be able to delegate its decryption capabilities for that OT
to any party by revealing a decryption key. This key and the transcript could
then be used to compute the message that the receiver would have obtained in
the OT execution. A general two-round OT satisfies delegatability as revealing
the receiver’s random coins allows any party to obtain the receiver’s message.

2. Independence. We require independence between multiple parallel invoca-
tions of the underlying OT protocol. More specifically, revealing the receiver’s
delegation key for one of the instances of an OT execution does not affect the
receiver security for the other OTs. Again, a general two-round OT satisfies
independence as each OT instance is generated using an independent random
tape.

3. Availability of Delegation Keys. The keys for delegating the decryption
must be available at the end of the first round i.e., after the receiver sends
its message. This property is trivially satisfied by a two-round OT as the
delegation key is in fact the receiver’s random tape.

Let us first explain the intuition on why these three properties are required
for the construction of “talking garbled circuits.” The delegatability property is
required since the garbled circuits sent in the second round reveal the delegation
keys for a subset of the OT messages generated in the first round. Recall that
this is required for one garbled circuit to send a message to another. The key
2 In fact, the number of OTs grows with the computational complexity of the under-

lying multiparty protocol.

Two-Round Multiparty Secure Computation 277

availability property is needed since the delegation keys are to be hardwired in
the second round garbled circuits so that the appropriate delegation keys can
be output by these circuits during evaluation. The independence property is
needed since the second round garbled circuits reveal the delegation keys for
only a subset of the first round OT messages. We need the other OT messages
to still be secure.

We stress that even though the above three properties are trivially satisfied
by every two-round OT, a two-round OT extension protocol need not satisfy all
of them. To demonstrate this, let us first see why does the two-round version of
Beaver’s OT extension protocol [Bea96,GMMM17] not satisfy all the properties.

Why doesn’t beaver’s OT extension work? In order to understand why
this does not work, we first recall a two-round version [GMMM17] of the OT
extension protocol of Beaver that expands λ two-round, base OTs to L = poly(λ)
OTs. In the first round of the OT extension protocol, the receiver (having input
c ∈ {0, 1}L) samples a “short” seed s of a PRG : {0, 1}λ → {0, 1}L and computes
e = c ⊕ PRG(s). Additionally, it computes λ first round OT messages using s
as its choice bits. It sends these OT messages along with e to the sender. The
sender garbles a circuit C that has its messages {msgi,0,msgi,1}i∈[L] hardwired
along with the string e received in the first round. The circuit C takes as input
the λ-bit string s, expands it to L bits using the PRG and uses it to unmask e to
obtain c. Specifically, it computes c := e ⊕ PRG(s), and outputs {msgi,c[i]}i∈[L].
The sender sends this garbled circuit and uses the λ second round OT messages
to communicate the labels of the garbled circuit to the receiver. The receiver
decrypts the labels corresponding to the bits of its seed s and uses it to evaluate
the garbled circuit to obtain {msgi,c[i]}i∈[L].

The above OT extension protocol of Beaver is delegatable as revealing all
the randomness used by the receiver allows any party to decrypt all the mes-
sages. However, the protocol does not satisfy the independence requirement as
the randomness used for generating L different OTs is highly correlated. In fact,
revealing all the random coins for generating the first round OT messages com-
promises the security of all the L OTs.

Delegatable and Independent Two-Round OT Extension. Towards con-
structing an OT extension that satisfies all the properties, we first construct
a protocol that is both delegatable and independent. In the new protocol, the
receiver’s first round message is the same as before. However, the sender’s mes-
sage is generated differently. In particular, the sender samples a set of masks
M = {mi,0,mi,1}i∈[L] where each mask mi,b is a random string with the same
length as msgi,b. It constructs the circuit C (described above) with the set of
masks hardwired in place of the messages. It garbles this circuit. It additionally
computes cti,b = msgi,b ⊕ mi,b for each i ∈ [L] and b ∈ {0, 1} and sends the
garbled circuit, the set {cti,b}i∈[L],b∈{0,1} and λ second round OT messages to
communicate the labels of the garbled circuit to the receiver. The receiver then
recovers the labels corresponding to its seed s, evaluates the garbled circuit to
obtain {mi,c[i]}i∈[L], and computes msgi,c[i] = cti,c[i] ⊕ mi,c[i] for every i ∈ [L].

278 S. Garg et al.

This scheme is delegatable as the receiver can use mi,c[i] as the delegation
key. It is also independent, as revealing mi,c[i] does not leak any information of
c[k] for k �= i. However, this construction does not satisfy the third property,
namely key availability. This is because mi,c[i] can be computed by the receiver
only at the end of the second round and is not available at the end of the first
round.

Weakening the Key Availability Property. We first observe that we can
in fact, weaken the key availability property. Recall that the key availability
property requires the delegation keys to be available at the end of the first
round so that they can be hardwired inside the garbled circuits that performs
the communication. However, for the construction to work, we just need the
delegation keys to be given as inputs to these garbled circuits and need not be
hardwired. We will now construct a two-round, OT extension that satisfies the
weakened key availability property. For the ease of exposition, let us overload the
notation and call the these communicating garbled circuits (sent in the second
round) as “talking garbled circuits.”

Satisfying All Properties. Recall that the problem with the previous approach
was because the receiver could evaluate the sender’s garbled circuit only at the
end of the second round. Our solution to the key availability problem is in
having the receiver “offload” its evaluation of this garbled circuit. This solution
makes use of the fact that in the MPC setting the sender and the receiver
are connected via a simultaneous message exchange model. At a high level, we
require the sender to send its garbled circuit in the first round. The receiver now
garbles a wrap-circuit, which has the sender’s garbled circuit hardwired in it.
This wrap-circuit evaluates the sender’s circuit inside and translates its output to
the labels of the “talking garbled circuits.” In particular, the receiver “offloads”
the evaluation of the sender’s garbled circuit via the wrap-circuit which helps
in achieving the weakened key availability property. Let us explain our idea in
more detail.

Key Idea: “Offloading” Garbled Circuit Evaluation. We first give the
description of the protocol and then explain why it satisfies all the three prop-
erties. The key steps in the protocol are depicted in Fig. 1.

In the new protocol, the receiver’s first round message is unchanged. Addi-
tionally, in the first round, the sender samples the random set M as before and
constructs a circuit CB that has the set M hardwired in it. This circuit takes
as input a seed s, expands it using the PRG and outputs {mi,PRG(s)[i]}i∈[L]. The
sender garbles CB to obtain a garbled circuit ˜CB and sends this to the receiver.

In the second round, the sender computes cti,0 = msgi,0 ⊕ mi,e[i] and cti,1 =
msgi,1 ⊕ mi,1−e[i] (where e is obtained from the receiver’s first round message)
and sends {cti,b}i∈[L],b∈{0,1} to the receiver. The receiver constructs a wrap-
circuit Cwrap that has ˜CB and the input labels for the “talking garbled circuits”
hardwired in it. Cwrap takes as input the labels for evaluating ˜CB, evaluates
it using these labels to obtain {mi,PRG(s)[i]}i∈[L], and outputs a set of labels
corresponding to {mi,PRG(s)[i]}i∈[L]. The output will later be treated as the input

Two-Round Multiparty Secure Computation 279

Sender Receiver

Round-1: C̃B

Round-1: e

Round-2: {cti,0, cti,1}i∈[L]

2-Step Translation
C̃B labels s, C̃wrap labels

Round-2: C̃wrap[C̃B]

Input labels

Talking GC

Input labels

Fig. 1. Semi-honest OT extension satisfying delegatability, independence and weakened
key availability

labels for evaluating the “talking garbled circuits.” The receiver garbles Cwrap

and sends the garbled circuit ˜Cwrap to the sender.
Notice that mi,PRG(s)[i] can serve as the delegation keys as it can be used to

unmask cti,c[i] to obtain msgi,c[i], and the other message msgi,1−c[i] is hidden.
This approach inherits the delegatability and independence from the previous
approach. Now, this scheme also satisfies the weakened key availability property!
In particular, the delegation keys are passed to the “talking garbled circuits” via
the wrap circuit.

How to obtain labels for evaluating ˜Cwrap? However, there is one question
that we have not answered yet. In particular, how to obtain the labels for eval-
uating the garbled wrap-circuit ˜Cwrap? Recall that the warp-circuit Cwrap takes
as input the labels for evaluating ˜CB. Hence, to evaluate ˜Cwrap we need its input
labels that correspond to the labels for evaluating ˜CB. We therefore need a two-
step translation mechanism: one from the seed s to the labels for evaluating ˜CB

and then from these labels to the labels for evaluating ˜Cwrap.
For this purpose, we use the two-round MPC protocol from [BL18,GS18] to

securely compute the two-step translation functionality. This functionality takes
as input the seed s and the set of labels for ˜Cwrap from the receiver and the set of
labels for ˜CB from the sender. It first chooses the labels of ˜CB that correspond to
the string s. It then outputs the labels of ˜Cwrap that correspond to those chosen
labels of ˜CB. Given such a two-round MPC protocol, we can run this protocol
in parallel of the aforementioned protocol to obtain the labels for evaluating
˜Cwrap. We then evaluate ˜Cwrap to obtain the labels for evaluating the “talking
garbled circuits.” Note that the circuit size computing this two-step translation

280 S. Garg et al.

functionality is polynomially dependent on λ and is independent of L and hence
we can use these two-round MPC results to securely compute this functionality.
This helps in minimizing the number of public key operations.

Tackling Malicious Adversaries. Plugging the above OT extension protocol
into the compilers of [BL18,GS18] gives us the desired result in the semi-honest
setting. However, a couple of major challenges arise in the malicious setting.

1. Adaptive Security. The first issue arises because a malicious receiver might
wait until it receives the garbled circuit ˜CB before choosing its seed s. This
leads to adaptive security issues [BHR12] in garbling CB.

2. Input Dependent Abort. The second issue arises because a malicious
sender might generate an ill-formed ˜CB that may lead to an honest receiver to
abort on specific choices of the receiver’s input. This leaks information about
the receiver’s input to the sender. To give a concrete example, a corrupted
sender might generate ˜CB such that it outputs ⊥ if the first bit of PRG(s)
is 1 instead of outputting the valid mask. Thus, if the honest receiver aborts
then the sender can recover c[1] from e[1].

Solving these two issues requires development of new tools and techniques which
we now elaborate.

Solving Adaptive Security Issue. A tempting approach to solving this issue
is use the recent constructions of adaptively secure garbling [HJO+16,JW16,
JKK+17] to generate ˜CB. However, this does not work! Recall that the length
of the garbled input of an adaptively secure garbling scheme must at least grow
with the output length of the circuit [AIKW13]. In our case, the output length
of CB is L, hence the garbled input of ˜CB grows with L. Therefore, the circuit
size of the two-step translation functionality that first translates the seed s to
the garbled input of ˜CB must grow with L. This implies that the number of
public key operations in the two-round protocol that securely computes this
functionality grows with L. This kills the efficiency of the overall protocol.

On the one hand, we need our garbling scheme to satisfy the stronger notion
of adaptive security and on the other hand, we need to minimize the number of
public key operations. These two requirements seem contradictory to each other
and it seems that we need to trade one requirement in order to achieve the other.
We resolve this deadlock by observing that full blown adaptive security is not
needed in garbling CB. We note that it is sufficient for this garbling scheme to
be somewhere adaptive. Let us explain this in more detail.

To understand our approach, the first step is to break the circuit CB down to
L individual circuits C1, . . . , CL where Ci has {mi,0,mi,1} hardwired and outputs
mi,PRG(s)[i] on input s. The garbled circuit ˜CB comprises of garbled versions of
each Ci, i.e., ˜C1, . . . , ˜CL. The key trick we employ in garbling C1, . . . , CL is
that we use the same set of input labels in generating each ˜Ci. Notice that even
though we break CB down to L circuits, the garbled input for ˜CB only grows
with the input length of CB and is independent of L. To simulate ˜CB, we design
a sequence of carefully chosen hybrids where in each hybrid, it is sufficient to

Two-Round Multiparty Secure Computation 281

simulate a single ˜Ci. But things get complicated as the simulation of this ˜Ci

requires knowledge of the adaptively chosen s. It seems that we again run into
the adaptive security issue. However, notice that the output length of the circuit
Ci is independent of L and thus the length of the garbled input for ˜Ci (and hence
all other ˜Cj , j �= i) need not grow with L! Thus, we can now use the standard
tricks in the adaptive garbling circuits literature to “adaptively garble” Ci. We
now explain how this is done.

Instead of sending the garbled circuits { ˜Ci}i∈[L] in the clear, we encrypt
them using a somewhere equivocal encryption scheme [HJO+16] and send the
ciphertext as the garbled circuit ˜CB. The key for decrypting this ciphertext
is revealed in the garbled input along with the labels for evaluating each ˜Ci.
Recall that we use the same set of labels for evaluating each ˜Ci. Intuitively, a
somewhere equivocal encryption allows to equivocate a bunch of positions of a
ciphertext with arbitrary message values. What makes a somewhere equivocal
encryption different from a fully equivocal encryption is that the size of the
key only grows with the number of positions that are to be equivocated and
is otherwise independent of the message size. Somewhere equivocal encryption
allows us to solve the above adaptivity issue as we can equivocate the positions
that correspond to ˜Ci in the ciphertext to a simulated circuit (that can depend
on the adaptively chosen s) by deriving a suitable key. Further, the size of the
garbled input (that also includes the key) only grows with the size of ˜Ci and is
independent of L. This helps us in ensuring that the circuit size of the two-step
translation functionality is independent of L.

Solving Input Dependent Aborts. Suppose the sender sends a proof that
˜CB is correctly generated, then the problem of input dependent aborts does not
arise. We additionally require this proof to be zero-knowledge so that it does
not leak any information about the sender’s secrets to the receiver. A natural
approach would be to give a Non-Interactive Zero-Knowledge proof (NIZK).
However, we only know constructions of NIZK based on public key assumptions
such as trapdoor permutations or factoring. Furthermore, the number of public
key operations in computing a NIZK proof grows with the instance size. Here,
the instance size grows with the size of CB which is at least L. This again kills
the efficiency.

Our approach to solving this issue is to design a two-round, special purpose
zero-knowledge proof (in the CRS model) where the number of public key oper-
ations is independent of the instance size. Indeed, given such a zero-knowledge
proof, we can solve the problem of input dependent aborts and also ensure that
the number of public key operations is independent of L. We now explain the
main ideas behind this construction.

Let us first consider the simpler task of constructing a two-round, zero-
knowledge proof with constant soundness error where the number of public key
operations is independent of the instance size. We first observe that if we allow
one more round of interaction then we know constructions (e.g., Blum’s Hamil-
tonicity protocol) that completely avoid any public key operations. The main
idea behind our construction is a method of compressing the round complexity

282 S. Garg et al.

of these protocols (in the simultaneous message exchange model) using a small
number of public key operations (that is independent of the instance size). To
explain the idea, let us take the example of compressing the Blum’s Hamiltonicity
protocol to two rounds using a two-round oblivious transfer (used in the recent
works of [JKKR17,BGI+17a]). The Blum’s protocol can be abstractly described
using three messages: zk1 sent by the prover in the first round, a random bit b
sent by the verifier in the second round and zk3,b sent by the prover in the third
round.

To compress the protocol to two rounds, we require the verifier to send a
receiver OT message with b as its choice bit in the first round. In addition to
sending zk1 in the first round, the prover also sends commitment (c0, c1) to
zk3,0 and zk3,1 respectively. In the second round, the sender sends a sender OT
message with the randomness used to compute c0 and c1 as its messages.3 The
receiver obtains the randomness used in generating cb and then uses it to check
if (zk1, b, zk3,b) is a valid proof. Note that to minimize the number of public key
operations, the length of the random string used to generate the commitment
should be independent of the size of the message. This is indeed true when we
use a pseudorandom generator to expand the length of the randomness to any
desired length.

The above idea helps us in achieving constant soundness error but to be
useful in solving the problem of input dependent aborts, we need the protocol to
have negligible soundness error. One approach to achieve negligible soundness
is to do a parallel repetition of the constant soundness protocol but it is well-
known that parallel repetition is not guaranteed to preserve the zero-knowledge
property. Fiege and Shamir [FS90] showed that parallel repetition preserves the
weaker property of witness indistinguishability and we make use of this fact to
to achieve the stronger property of zero-knowledge. In our actual construction,
we incorporate a trapdoor (such as pre-image of a one-way function) in the CRS
and the simulator uses this trapdoor while generating the zero-knowledge proof.
Witness indistinguishability guarantees that no verifier can distinguish between
the prover’s messages that uses the real witness and the simulator’s messages
that uses the trapdoor witness. This helps us achieve zero-knowledge against
malicious verifiers and parallel repetition helps us achieve negligible soundness
error against cheating provers. Additionally, the number of public key operations
is a fixed polynomial in the security parameter and is independent of the instance
size. We believe that this primitive may be of independent interest.

3 Preliminaries

We recall some standard cryptographic definitions in this section. Let λ denote
the security parameter. A function μ(·) : N → R

+ is said to be negligible if
for any polynomial poly(·) there exists λ0 such that for all λ > λ0 we have
μ(λ) < 1

poly(λ) . We will use negl(·) to denote an unspecified negligible function
and poly(·) to denote an unspecified polynomial function.
3 We assume that given the randomness, we can obtain the message that is committed.

Two-Round Multiparty Secure Computation 283

For a probabilistic algorithm A, we denote A(x; r) to be the output of A on
input x with the content of the random tape being r. When r is omitted, A(x)
denotes a distribution. For a finite set S, we denote x ← S as the process of
sampling x uniformly from the set S. We will use PPT to denote Probabilistic
Polynomial Time algorithm.

For a binary string x ∈ {0, 1}n, we denote the ith bit of x by x[i]. Similarly,
we denote the substring of x from the ith to jth position for any i ≤ j by x[i, j].
For any lab := {labi,0, labi,1}i∈[L] where labi,b ∈ {0, 1}∗ and a string c ∈ {0, 1}L,
we define Projection(c, lab) = {labi,c[i]}i∈[L]. We treat the output of Projection as
a string. That is, we treat the output as ‖i∈[L](labi,c[i]).

3.1 Selective Garbled Circuits

We recall the definition of selectively secure garbled circuits [Yao82] (see Lin-
dell and Pinkas [LP09] and Bellare et al. [BHR12] for a detailed proof and
further discussion). A garbling scheme for circuits is a tuple of PPT algorithms
(Garble,Eval). Very roughly, Garble is the circuit garbling procedure and Eval the
corresponding evaluation procedure. We use a formulation where input labels
for a garbled circuit are provided as input to the garbling procedure rather
than generated as output. This simplifies the presentation of our construction.
We additionally model security wherein the simulator is provided with a set of
labels corresponding to the input. This helps in simplifying the security proofs.
More formally:

– ˜C ← Garble
(

1λ,C, {labw,b}w∈inp(C),b∈{0,1}
)

: Garble takes as input a security
parameter λ, a circuit C, and input labels labw,b where w ∈ inp(C) (inp(C) is
the set of input wires to the circuit C) and b ∈ {0, 1}. This procedure outputs
a garbled circuit ˜C. We assume that for each w, b, labw,b is chosen uniformly
from {0, 1}λ.

– y ← Eval
(

˜C, {labw,xw
}w∈inp(C)

)

: Given a garbled circuit ˜C and a sequence of
input labels {labw,xw

}w∈inp(C) (referred to as the garbled input), Eval outputs
a string y.

Correctness. For correctness, we require that for any circuit C, input x ∈
{0, 1}|inp(C)| and input labels {labw,b}w∈inp(C),b∈{0,1} we have that:

Pr
[

C(x) = Eval
(

˜C, {labw,xw
}w∈inp(C)

)]

= 1

where ˜C ← Garble
(

1λ,C, {labw,b}w∈inp(C),b∈{0,1}
)

.

Selective Security. For security, we require that there exists a PPT sim-
ulator Simckt such that for any circuit C, an input x ∈ {0, 1}|inp(C)| and
{labw,xw

}w∈inp(C), we have that
{
C̃, {labw,xw}w∈inp(C)

}
c≈

{
Simckt

(
1λ, 1|C|,C(x), {labw,xw}w∈inp(C)

)
, {labw,xw}w∈inp(C)

}

284 S. Garg et al.

where ˜C ← Garble
(

1λ,C, {labw,b}w∈inp(C),b∈{0,1}
)

and for each w ∈ inp(C) we

have labw,1−xw
← {0, 1}λ. Here

c≈ denotes that the two distributions are com-
putationally indistinguishable.

3.2 Somewhere Adaptive Garbled Circuits

In this section, we define and construct somewhere adaptive garbled circuits.
Intuitively, somewhere adaptive garbled circuits satisfy the stronger notion of
adaptive security in the computation of a particular block of the output. Before
we define this primitive, we give a notation to denote circuits.

Circuit Notation. We model a circuit C : {0, 1}n → {0, 1}mλ as a sequence
of m circuits C1, C2, . . . , Cm where Ci(x) = C(x)[(i − 1)λ + 1, iλ] for every
x ∈ {0, 1}n and i ∈ [m].

We now give the definition of somewhere adaptive garbled circuits.

Definition 1. A somewhere adaptive garbling scheme for circuits is a tuple of
PPT algorithms (SAdpGarbleCkt,SAdpGarbleInp,SAdpEvalCkt) such that:

– (˜C, state) ← SAdpGarbleCkt(1λ, C) : It is a PPT algorithm that takes as input
the security parameter 1λ (encoded in unary) and a circuit C : {0, 1}n →
{0, 1}mλ as input and outputs a garbled circuit ˜C and state information state.

– x̃ ← SAdpGarbleInp(state, x) : It is a PPT algorithm that takes as input the
state information state and an input x ∈ {0, 1}n and outputs the garbled input
x̃.

– y = SAdpEvalCkt(˜C, x̃) : Given a garbled circuit ˜C and a garbled input x̃, it
outputs a value y ∈ {0, 1}mλ.

Correctness. For every λ ∈ N, C : {0, 1}n → {0, 1}m and x ∈ {0, 1}n it holds
that:

Pr
[
(C̃, state) ← SAdpGarbleCkt(1λ

, C); x̃ ← SAdpGarbleInp(state, x) : C(x) = SAdpEvalCkt(C̃, x̃)
]
= 1.

Security. There exists a PPT simulator Sim such that for all non-uniform PPT
adversary A:

∣

∣ Pr[ExpAdpA (1λ, 0) = 1] − Pr[ExpAdpA (1λ, 1) = 1]
∣

∣ ≤ negl(λ)

where the experiment ExpAdpA (1λ, b) is defined as follows:

1. (C, j) ← A(1λ) where C : {0, 1}n → {0, 1}mλ and j ∈ [m]. We assume that
C is given as a sequence of m circuits C1, C2, . . . , Cm.

2. The adversary obtains ˜C where ˜C is created as follows:
– If b = 0: (˜C, state) ← SAdpGarbleCkt(1λ, C).
– If b = 1: (˜C, state) ← Sim(1λ, C1, . . . , Cj−1, 1|Cj |, Cj+1, . . . , Cm).

3. The adversary A specifies the input x and gets x̃ created as follows:
– If b = 0 : x̃ ← SAdpGarbleInp(state, x).
– If b = 1 : x̃ ← Sim(state, x, Cj(x)).

Two-Round Multiparty Secure Computation 285

4. Finally, the adversary outputs a bit b′, which is the output of the experiment.

Efficiency. We require that the running time of SAdpGarbleInp to be maxi |Ci| ·
poly(|x|, λ).

We give a construction of somewhere adaptive garbled circuits assuming the
existence of one-way functions.

Lemma 1. Assuming the existence of one-way functions, there exists a con-
struction of somewhere adaptive garbled circuits.

We give the proof of Lemma 1 in the full version [GMS18].

3.3 Universal Composability Framework

We work in the the Universal Composition (UC) framework [Can01] to formalize
and analyze the security of our protocols. (Our protocols can also be analyzed
in the stand-alone setting, using the composability framework of [Can00a]). We
provide a brief overview of the framework in the full version of our paper [GMS18]
and refer the reader to [Can00b] for details.

3.4 Prior MPC Results

We will use the two-round secure multiparty computation protocol from the
work of [GS18] computing special functionalities that have small circuit size in
our constructions. We could also use the protocol from [BL18] but their pro-
tocol against malicious adversaries additionally relies on non-interactive zero-
knowledge proofs. Below we restate the result from [GS18]. The ideal function-
ality Ff for the MPC is defined in Fig. 2.

Theorem 2 ([GS18]). For any polynomial-time function f computed by n
parties, there exists a two-round UC-secure semi-honest/malicious multiparty
computation protocol Πf that realizes the ideal functionality Ff , assuming the
existence of semi-honest/malicious, two-round oblivious transfer. The number of
total public key operations is bounded by poly(λ, |f |), where |f | is the size of the
Boolean circuit that computes f .

Ff parameterized by a function f , running with n parties P1, P2, . . . , Pn (of which
some may be corrupted) and an adversary S, proceeds as follows:
– Every party Pi sends (sid, i, xi) to the functionality.
– Upon receiving the inputs from all the parties, compute y := f(x1, . . . , xn),

and output (sid, y) to every party and S.

Fig. 2. Ideal functionality Ff

286 S. Garg et al.

4 Semi-Honest Protocol

In this section, we give a construction of two-round multiparty computation
protocol with security against semi-honest adversaries that performs poly(n, λ)
public key operations which is independent of the circuit size being computed.
We start with the definition of conforming protocols which was a notion intro-
duced in [GS18] in Subsect. 4.1 and then give our construction in Subsect. 4.2.

4.1 Conforming Protocols

This subsection is taken verbatim from [GS18]. Consider an n party determinis-
tic4 MPC protocol Φ between parties P1, . . . , Pn with inputs x1, . . . , xn, respec-
tively. For each i ∈ [n], we let xi ∈ {0, 1}m denote the input of party Pi. A
conforming protocol Φ is defined by functions pre, post, and computation steps
or what we call actions φ1, · · · φT . The protocol Φ proceeds in three stages: the
pre-processing stage, the computation stage and the output stage.

– Pre-processing phase: For each i ∈ [n], party Pi computes

(zi, vi) ← pre(1λ, i, xi)

where pre is a randomized algorithm. The algorithm pre takes as input the
index i of the party, its input xi and outputs zi ∈ {0, 1}�/n and vi ∈ {0, 1}�

(where � is a parameter of the protocol). Finally, Pi retains vi as the secret
information and broadcasts zi to every other party. We require that vi[k] = 0
for all k ∈ [�]\ {(i − 1)�/n + 1, . . . , i�/n}.

– Computation phase: For each i ∈ [n], party Pi sets

sti := (z1‖ · · · ‖zn) ⊕ vi.

Next, for each t ∈ {1 · · · T} parties proceed as follows:
1. Parse action φt as (i, f, g, h) where i ∈ [n] and f, g, h ∈ [�].
2. Party Pi computes one NAND gate as

sti[h] = NAND(sti[f], sti[g])

and broadcasts sti[h] ⊕ vi[h] to every other party.
3. Every party Pj for j �= i updates stj [h] to the bit value received from Pi.

We require that for all t, t′ ∈ [T] such that t �= t′, we have that if φt = (·, ·, ·, h)
and φt′ = (·, ·, ·, h′) then h �= h′. Also, we denote Ai ⊂ [T] to be the set of
rounds in which party Pi sends a bit. Namely, Ai = {t ∈ T | φt = (i, ·, ·, ·)} .

– Output phase: For each i ∈ [n], party Pi outputs post(i, sti).

The following lemma was shown in [GS18]

Lemma 2 ([GS18]). Any MPC protocol Π can be written as a conforming pro-
tocol Φ while inheriting the correctness and the security of the original protocol.
4 Randomized protocols can be handled by including the randomness used by a party

as part of its input.

Two-Round Multiparty Secure Computation 287

4.2 Construction

In this subsection, we describe our construction of two-round, n-party compu-
tation protocol computing a function f . Our construction uses the following
primitives.

1. An n-party semi-honest secure conforming protocol Φ computing the function
f .

2. (Garble,Eval) be a garbling scheme for circuits.
3. A pseudorandom generator PRG : {0, 1}λ → {0, 1}4T .
4. A UC-secure two-round MPC protocol computing the function g described

in Fig. 3.

Notations. For a bit string c, we use c[i] to denote the i-th bit of it. For
each t ∈ [T] and α, β ∈ {0, 1}, we use (t, α, β) to succinctly denote the integer
4t + 2α + β − 3. In particular, we use c[(t, α, β)] to denote c[4t + 2α + β − 3] for
any c ∈ {0, 1}4T . We use lab to denote the set of both labels per input wire of
a garbled circuit, and ˜lab denotes the set of one label per input wire. Recall the
definition of Projection from Sect. 3.

We give an overview of the construction below and describe the formal con-
struction later.

Parties: P1, P2, . . . , Pn.
Inputs:

– P1 (also called as the receiver) inputs s ∈ {0, 1}λ and rlab2, . . . , rlabn where
each rlabi is a collection of labels {rlabi→1

j,0 , rlabi→1
j,1 }j∈[λ2] with each label of

length λ.
– For each i ∈ [2, n], Pi (also called as the sender) inputs slabi, where slabi is a

collection of labels {slabi→1
j,0 , slabi→1

j,1 }j∈[λ] with each label having length λ.

Output: {Projection(Projection(s, slabi), rlabi)}i∈[2,n].

Fig. 3. The function g computed by the internal MPC where P1 acts as the receiver

Overview. As explained in Sect. 2, our construction combines a special purpose
OT extension protocol (which is delegatable, fine-grained secure and satisfies
key availability) along with the two-round MPC protocols of [BL18,GS18] to
obtain a protocol that minimizes the number of public key operations. Recall
that the protocols of [BL18,GS18] used the concept of “talking garbled circuits”
to squish the round complexity of a conforming protocol to two rounds. At a high
level, in the first round, every pair of parties sets up a channel to enable their
garbled circuits to interact, and then in the second round, they send “talking
garbled circuits” that emulate the interactions in the conforming protocol. The
interaction between the “talking garbled circuits” is done via oblivious transfer.
In our new construction, we use a special purpose OT extension protocol that

288 S. Garg et al.

allows the parties to set-up the channel for interaction while minimizing the
number of public key operations.

A major modification from the description given in Sect. 2 is in modeling the
special oblivious transfer as a protocol between a single receiver and n−1 senders.
We do this to ensure that the receiver uses the same choice bits in interactions
with every sender. Even though this is not an issue in the semi-honest case,
it causes issues in the malicious setting if the corrupted receiver uses different
choice bits in two different interactions. For uniformity of treatment, we adopt
an approach where the special oblivious transfer is a protocol between a single
receiver and n − 1 senders.

Description of the Protocol. We give a formal description of our protocol
below in the Fg-hybrid model.

Round-1: Each party Pi does the following:
1. Compute (zi, vi) ← pre(1λ, i, xi).
2. For each t ∈ [T] and for each α, β ∈ {0, 1}

ci[(t, α, β)] := vi[h] ⊕ NAND(vi[f] ⊕ α, vi[g] ⊕ β)

where φt = (
, f, g, h).
3. Sample si ← {0, 1}λ and compute ei := PRG(si) ⊕ ci.
4. For each j ∈ [n] \ {i}, sample

rlabj→i
k,b ← {0, 1}λ for all k ∈ [λ2], b ∈ {0, 1}

slabi→j
k,b ← {0, 1}λ for all k ∈ [λ], b ∈ {0, 1}

mi→j
k,b ← {0, 1}λ for all k ∈ [4T], b ∈ {0, 1}

5. For each j ∈ [n] \ {i}, compute

C̃i→j
B ← Garble

(
CB

[{
mi→j

k,0 ,mi→j
k,1

}
k∈[4T],b∈{0,1}

]
,
{
slabi→j

k,b

}
k∈[λ],b∈{0,1}

)

where CB is described in Fig. 4.
6. Send (ssid = i, si, {rlabj→i

k,b }j∈[n]\{i}) to Fg acting as the receiver.
7. For each j ∈ [n]\{i}, send (ssid = j, {slabi→j

k,b }) to Fg acting as the sender.

8. Send
(

zi, {˜Ci→j
B }j∈[n]\{i}, ei

)

to every other party.

CB

[
{mk,0,mk,1}k∈[4T]

]

Input: s ∈ {0, 1}λ.
1. d := PRG(s) where d ∈ {0, 1}4T .
2. Output

{
mk,d[k]

}
k∈[4T]

.

Fig. 4. Circuit CB

Two-Round Multiparty Secure Computation 289

Round-2: Each party Pi does the following:
1. Set sti := (z1‖ . . . ‖zn) ⊕ vi.
2. Set N = � + 4Tλ(n − 1).
3. Set lab

i,T+1
:= {labi,T+1

k,0 , labi,T+1
k,1 }k∈[N] where labi,T+1

k,b := 0λ for each
k ∈ [N], b ∈ {0, 1}.

4. for each t from T down to 1 do:
(a) Parse φt as (i∗, f, g, h).
(b) If i = i∗ then compute (where P is described in Fig. 6)

(

˜Pi,t, lab
i,t) ← Garble(1λ,P[i, φt, vi,⊥, lab

i,t+1
]).

(c) If i �= i∗ then for every α, β ∈ {0, 1}, set m′
α,β,0 = mi→i∗

(t,α,β),ei∗ [(t,α,β)]

and m′
α,β,1 = mi→i∗

(t,α,β),1⊕ei∗ [(t,α,β)].

Compute ctiα,β := (m′
α,β,0 ⊕ labi,t+1

h,0 ,m′
α,β,1 ⊕ labi,t+1

h,1) and compute

(

˜Pi,t, lab
i,t) ← Garble(1λ,P[i, φt, vi, {ctiα,β}, lab

i,t+1
]).

5. Compute

˜Ci
wrap ← Garble

(

Cwrap

[

{˜Cj→i
B }j∈[n]\{i}, sti, lab

i,1
]

, {rlabj→i
k,b }j∈[n]\{i},k∈[λ2],b∈{0,1}

)

where Cwrap is described in Fig. 5.

6. Send
(

{˜Pi,t}t∈[T], ˜C
i
wrap

)

to every other party.

Cwrap

[
{C̃j→i

B }j∈[n]\{i}, sti, lab
i,1

]

Input: {s̃labj→i}j∈[n]\{i}

1. For each j ∈ [n] \ {i}, compute
{
mj→i

k

}
k∈[4T]

← Eval
(
C̃j→i
B , s̃lab

j→i
)

.

2. Let m := ‖
j∈[n]\{i},k∈[4T]

(mj→i
k).

3. Output Projection(sti‖m, lab
i,1

).

Fig. 5. Circuit Cwrap

Evaluation: Every party Pi does the following:
1. For each j ∈ [n],

(a) Obtain (ssid = j, ˜rlab
j
) from Fg where party Pj acts as the receiver.

(b) ˜lab
j,1 ← Eval(˜Cj

wrap,
˜rlab

j
)

2. for each t from 1 to T do:
(a) Parse φt as (i∗, f, g, h).

290 S. Garg et al.

(b) Compute ((α, β, γ), {ωj}j∈[n]\{i∗}, ˜lab
i∗,t+1

) := Eval(˜Pi∗,t, ˜lab
i∗,t

).
(c) Set sti[h] := γ ⊕ vi[h].
(d) for each j �= i∗ do:

i. Compute (ct = (δ0, δ1), {labj,t+1
k }k∈[N]\{h}) := Eval(˜Pj,t, ˜lab

j,t
).

ii. Recover labj,t+1
h := δγ ⊕ ωj .

iii. Set ˜lab
j,t+1

:= {labj,t+1
k }k∈[N].

3. Compute the output as post(i, sti).

Correctness. In order to prove correctness, it is sufficient to show that the label
labj,t+1

h computed in Step 2(d)ii of the evaluation procedure corresponds to the
bit NAND(sti∗ [f], sti∗ [g])⊕vi∗ [h]. Notice that by the structure of vi∗ we have for
every j �= i∗, stj [f] = sti∗ [f] ⊕ vi∗ [f].

First, ωj is computed in Step 2b. Let k := (t, α, β), and we have ωj =
mj→i∗

k = mj→i∗

k,PRG(si∗)[k].

P
[
i, φt, vi, {ctα,β}α,β∈{0,1}, lab

]

Input. Z = sti, {mj→i
k }j∈[n]\{i},k∈[4T]

)
.

Hardcoded. The index i of the party, the action φt = (i∗, f, g, h), the secret value
vi, the strings {ctα,β}α,β∈{0,1}, and a set of labels lab = {labk,0, labk,1}k∈[N].
1. if i = i∗ then:

(a) Compute sti[h] := NAND(sti[f], sti[g]), and update Z[h] accordingly.
(b) α := sti[f] ⊕ vi[f], β := sti[g] ⊕ vi[g] and γ := sti[h] ⊕ vi[h].
(c) Output

(
(α, β, γ), {mj→i

(t,α,β)}j∈[n]\{i},Projection(Z, lab)
)
.

2. else:
(a) Output (ctsti[f],sti[g], {labk,Z[k]}k∈[N]\{h}).

Fig. 6. The program P

Second, ct = (δ0, δ1) is computed in Step 2(d)i. Note that α = sti∗ [f] ⊕
vi∗ [f] = stj [f], β = sti∗ [g] ⊕ vi∗ [g] = stj [g]. From the functionality of Pj,t we
know that ct = ctstj [f],stj [g] = ctjα,β = (m′

α,β,0 ⊕ labj,t+1
h,0 ,m′

α,β,1 ⊕ labj,t+1
h,1) =

(mj→i∗

k,ei∗ [k] ⊕ labj,t+1
h,0 ,mj→i∗

k,ei∗ [k]⊕1 ⊕ labj,t+1
h,1).

Therefore, δγ ⊕ωj = mj→i∗

k,ei∗ [k]⊕γ ⊕ labj,t+1
h,γ ⊕mj→i∗

k,PRG(si∗)[k]. Recall that ci∗ [k] =
NAND(sti∗ [f], sti∗ [g])⊕vi∗ [h] = γ, thus ei∗ [k]⊕γ = ei∗ [k]⊕ci∗ [k] = PRG(si∗)[k].
Hence δγ ⊕ ωj = labj,t+1

h,γ . This concludes the proof.
It is useful to keep in mind that for every i, j ∈ [n] and k ∈ [�], we have that

sti[k] ⊕ vi[k] = stj [k] ⊕ vj [k]. Let us denote this shared value by st∗. Also, we
denote the transcript of the interaction in the computation phase by Z.

Efficiency. Let the number of OT invocations in Φ be npkΦ and in one exe-
cution of Fg be npkg. Since we make non-black box use of the underlying con-
forming protocol Φ (but make black-box use of Fg), we augment the circuit

Two-Round Multiparty Secure Computation 291

computing Π and Fg to have OT gates (this is similar in spirit to the works
of [GMM17a,GMM17b]) to count the number of public-key operations. An OT
gate enables one execution of one of the algorithms provided by the OT protocol.
We choose the conforming protocol that performs OT extension between every
pair of parties so that npkΦ is bounded by O(n2λ). Thus, the total number of
public-key operations (including the non-black-box public-key operations) in our
two-round construction is O(npkΦ + n · npkg). It follows from Theorem 2 that
this number is bounded by poly(n, λ).

Security. The proof of security is given in the full version [GMS18].

5 Special Zero-Knowledge Protocol

In this section, we define and construct a special zero-knowledge protocol which
will later be used in our construction against malicious adversaries. We give the
formal definition below.

FZK parameterized by an NP relation R, running with n parties P1, P2, . . . , Pn (of
which some may be corrupted) and an adversary S, proceeds as follows:
– P1 sends (prover, sid, x, w) to the functionality. The functionality sends

(request, x, R(x, w)) to S. If S has corrupted P2, then S sends (response, μ) to
the ideal functionality, and the ideal functionality broadcasts (R(x, w), x, μ)
to every other party and goes offline. Else, P2 sends (verifier, sid, μ0, μ1) to the
functionality, where μb ∈ {0, 1}λ.

– Upon receiving the inputs from both P1 and P2, functionality checks if
R(x, w) = 1. If yes, it sends (1, x, μ1) to every party. Otherwise, it sends
(0, x, μ0) to all parties.

Fig. 7. Special zero-knowledge functionality FZK

Definition 2. A special zero-knowledge protocol is a two-round protocol that
securely realizes the FZK functionality given in Fig. 7. Further, we require the
number of pubic key operations performed in the protocol to be bounded by
poly(n, λ) independent of the size of x and w.

We give a proof of the following theorem.

Theorem 3. Assuming the existence of two-round UC secure oblivious transfer,
there exists a construction of special zero-knowledge protocol.

5.1 Construction

We first describe the tools used in the construction.

1. Special Non-interactive Statistically Binding Commitment. We
use a special non-interactive, statistically binding commitment scheme

292 S. Garg et al.

(com, decom) where the length of the randomness used to commit to arbi-
trary length messages is λ. We note that any standard commitment can be
made to satisfy this property by using a pseudorandom generator to expand
the random string to required length.

2. Blum’s Hamiltonicity Protocol. We use the three-round, constant sound-
ness zero-knowledge (zk1, zk2, zk3) protocol of Blum. We note that in Blum’s
protocol zk2 ∈ {0, 1} and we let zk3,b be the response when zk2 = b. We also
assume without loss of generality that zk1 includes the instance.

3. Two-Round Secure Computation Protocol. We make use of the two-
round secure computation protocol of [GS18] (that can be based on any two-
round UC secure oblivious transfer) computing the ideal functionality Ff

described in Fig. 10.
4. Length Doubling Pseudorandom Generator: We use a pseudorandom

generator PRG : {0, 1}λ → {0, 1}2λ.

Common Random String: Sample σ ← {0, 1}2λ and set σ as the CRS.
Message from P1: On input an instance x and a witness w, P1 does the follow-

ing:
1. If R(x, w) = 0, broadcast (NotInL, x, R(x, w)) to every other party.
2. Else, for each i ∈ [λ] do:

(a) Prepare zki
1 for the language L using the witness w where L is defined

below.

L := {(x, σ) : ∃ (w, s) s.t. R(x, w) = 1 ∨ PRG(s) = σ}
(b) Let zki

3,b be the third round message when zki
2 = b. Sample ri

b ←
{0, 1}λ for each b ∈ {0, 1} and compute ci

b := com(zki
3,b; r

i
b).

(c) Broadcast zki
1, c

i
0, c

i
1 to every other party.

Message from P2: On input the message from P1 :
1. If P1 has sent (NotInL, x, 0), broadcast μ0 to every other party and every

party outputs (0, x, μ0). Else, do:
(a) Sample ch ← {0, 1}λ.
(b) Sample labi

w,b ← {0, 1}λ for each i, w ∈ [λ] and b ∈ {0, 1}.
(c) Compute C̃ ← Garble(C[ch, {zki

1, c
i
0, c

i
1}i∈[λ], {μb}b∈{0,1}], {labi

w,b})
where the C is described in Figure 9.

(d) Broadcast C̃ to every party.
Internal MPC: The parties in parallel call Ff to jointly compute the function

f shown in Figure 10. More specifically, P1 sends {ri
0, r

i
1}i∈[λ] to Ff ; P2 sends

ch, {labi
w,b}i,w∈[λ],b∈{0,1} to Ff ; and P3, P4, . . . , Pn send nothing. Every party

then gets {labi
w}i,w∈[λ] back from Ff .

Evaluation: Every party does the following:
1. Compute (b, x, μ) ← Eval

(
C̃, {labi

w}i,w∈[λ]

)
2. Output (b, x, μ).

Fig. 8. Special zero-knowledge protocol ΠZK

Two-Round Multiparty Secure Computation 293

C
[
ch, {zki

1, c
i
0, c

i
1}i∈[λ], {μb}b∈{0,1}

]
Input: r1, r2, . . . , rλ.
Hardcoded parameters: ch, {zki

1, c
i
0, c

i
1}i∈[λ], {μb}b∈{0,1}

1. Use the randomness ri to obtain the message zki
3 committed in ci

ch[i] for each
i ∈ [λ].

2. For each i ∈ [λ], check if (zki
1, ch[i], zki

3) is a valid proof for the membership
in language L.

3. If any of the checks fails, output (0, x, μ0). Else, output (1, x, μ1).

Fig. 9. Circuit C

Parties: P1, P2, . . . , Pn.
Inputs:

– P1 inputs {ri
0, r

i
1}i∈[λ], where rb

i ∈ {0, 1}λ.
– P2 inputs ch, {labi

w,b}i,w∈[λ],b∈{0,1}, where labi
w,b ∈ {0, 1}λ.

– P3, P4, . . . , Pn input nothing.
Output: {labi

w,ri
ch[i][w]

}i,w∈[λ] (same for every party).

Fig. 10. The function f computed by the internal MPC

Overview. We present the formal construction in the Ff hybrid model in Fig. 8.

Correctness. To argue the correctness of the protocol, we only need to prove
that in the evaluation step, μ is either μ0 or μ1 based on whether R(x,w) = 0
or R(x,w) = 1. We know that the output of Ff is

{

labi
w

}

i,w∈[λ]
, where labi

w =

labi
w,ri

ch[i][w]. Notice that labi
w,b’s are the input keys of ˜C, hence labi

w is the label

corresponding to the w-th bit of ri
ch[i]. Using these input labels to evaluate ˜C

gives us Eval
(

˜C,
{

labi
w

}

i,w∈[λ]

)

= C

(

{

ri
ch[i]

}

i∈[λ]

)

.

In the circuit evaluation of C, ri
ch[i] is used to obtain zki

3,ch[i] from ci
ch[i]. It

now follows from the completeness of (zki
1, ch[i], zki

3,ch[i]) that μ is either μ0 or
μ1 based on R(x,w) = 0 or R(x,w) = 1.

Efficiency. The number of public key operations performed in the protocol is
poly(n, λ) which follows from Theorem 2 when applied to function f .

Security. We give the security proof in the full version [GMS18].

6 Malicious Secure Protocol

In this section, we give a construction of two-round, multiparty computation
that is secure against malicious adversaries and minimizes the number of public
key operations.

294 S. Garg et al.

6.1 Construction

Our two-round protocol computing a function f uses the following primitives.

1. An n-party malicious secure conforming protocol Φ computing the function
f .

2. A selective garbling scheme for circuits (Garble,Eval).
3. A pseudorandom generator PRGmal : {0, 1}λ → {0, 1}4T where each output

bit can be computed by a circuit of size poly(λ, log T).5
4. A somewhere adaptive garbling scheme for circuits (SAdpGarbleCkt,

SAdpGarbleInp,SAdpEvalCkt) (defined in Sect. 3.2). We assume that the length
of the garbled input when SAdpGarbleCkt is used to garbled CB (described in
Fig. 11) is M .

5. A maliciously secure two-round MPC protocol computing the function g
described in Fig. 12.

6. A non-interactive statistically binding commitment scheme (Com,Decom).
7. The special ZK protocol parameterized by an NP relation R described below.

R :=

{

(

x =
(

˜CB, cm
)

, w = (Ω,CB, state, ω)
)

:

(Decom(cm, state, ω) = 1) ∧
(

(˜CB, state) = SAdpGarbleCkt (CB;Ω)
)

}

.

Description of the Protocol. We now give a formal description of our con-
struction in below in the Fg and Fzk hybrid model.

Round-1: Each party Pi does the following:
1. Compute (zi, vi) ← pre(1λ, i, xi).
2. For each t ∈ [T] and for each α, β ∈ {0, 1}

ci[(t, α, β)] := vi[h] ⊕ NAND(vi[f] ⊕ α, vi[g] ⊕ β)

where φt = (
, f, g, h).
3. Sample si ← {0, 1}λ and compute ei := PRGmal(si) ⊕ ci.
4. For each j ∈ [n] \ {i}, sample

μj→i
0 , μj→i

1 ← {0, 1}λ

rlabj→i
k,b ← {0, 1}λ for all k ∈ [M], b ∈ {0, 1}

mi→j
k,b ← {0, 1}λ for all k ∈ [4T], b ∈ {0, 1}

5. Garbling CB: For each j ∈ [n] \ {i}, compute

(C̃i→j
B , statei→j) := SAdpGarbleCkt

(
CB

[{
mi→j

k,0 ,mi→j
k,1

}
k∈[4T],b∈{0,1}

]
; Ω

)

cmi→j := Com(statei→j ; ωi→j)

where CB is described in Fig. 11 and Ω,ωi→j are sampled randomly.
5 The GGM PRF [GGM86] can be easily modified to give such a PRG based on

one-way functions.

Two-Round Multiparty Secure Computation 295

6. Messages to Fg: Send (ssid = i, si, {rlabj→i
k,b }j∈[n]\{i},k∈[M],b∈{0,1}) to Fg

acting as the receiver and for each j ∈ [n] \ {i}, send (ssid = j, {cmi→j ,
statei→j , ωi→j}) to Fg acting as the sender.

7. Messages to Fzk: For each j ∈ [n]\{i}, send (ssid = (j → i), μj→i
0 , μj→i

1)
to Fzk acting as the verifier, and send (ssid = (i → j),Xi→j ,W i→j) to
Fzk acting as the prover where Xi→j =

(

˜Ci→j
B , cmi→j

)

and W i→j =
(

Ω,CB

[

{

mi→j
k,0 ,mi→j

k,1

}

k∈[4T],b∈{0,1}

]

, statei→j , ωi→j
)

.

8. Send
(

zi, {˜Ci→j
B }j∈[n]\{i}, ei, {cmi→j}j∈[n]\{i}

)

to every other party.

CB

[
{mk,0,mk,1}k∈[4T]

]

Input: s ∈ {0, 1}λ.
1. d := PRGmal(s) where d ∈ {0, 1}4T .
2. Output

{
mk,d[k]

}
k∈[4T]

.

Fig. 11. Circuit CB

Round-2: Each party Pi does the following:
1. Set sti := (z1‖ . . . ‖zn) ⊕ vi.
2. Set N = � + 4Tλ(n − 1).
3. Set lab

i,T+1
:= {labi,T+1

k,0 , labi,T+1
k,1 }k∈[N] where labi,T+1

k,b := 0λ for each
k ∈ [N], b ∈ {0, 1}.

4. for each t from T down to 1 do:
(a) Parse φt as (i∗, f, g, h).
(b) If i = i∗ then compute (where P is described in Fig. 6)

(

˜Pi,t, lab
i,t) ← Garble(1λ,P[i, φt, vi,⊥, lab

i,t+1
]).

(c) If i �= i∗ then for every α, β ∈ {0, 1}, set m′
α,β,0 = mi→i∗

(t,α,β),ei∗ [(t,α,β)]

and m′
α,β,1 = mi→i∗

(t,α,β),1⊕ei∗ [(t,α,β)].

Compute ctit,α,β := (m′
α,β,0 ⊕ labi,t+1

h,0 ,m′
α,β,1 ⊕ labi,t+1

h,1) and compute

(

˜Pi,t, lab
i,t) ← Garble(1λ,P[i, φt, vi, {ctit,α,β}, lab

i,t+1
]).

296 S. Garg et al.

Parties: P1, P2, . . . , Pn.
Inputs:

– P1 (also called as the receiver) inputs s ∈ {0, 1}λ and rlab2, . . . , rlabn where
each rlabi is a collection of labels {rlabi→1

j,0 , rlabi→1
j,1 }j∈[M] with each label of

length λ.
– For each i ∈ [2, n], Pi (also called as the sender) inputs

(cmi→1, statei→1, ωi→1), where cmi→1 is a commitment and is a public
input, statei→1 is the secret state of the somewhere adaptive garbling scheme,
and ωi→1 is a string.

Output: Check if for each i ∈ [2, n], Decom(cmi→1, statei→1, ωi→1) = 1. If all the
checks pass, output {Projection(SAdpGarbleInp(statei→1, s), rlabi)}i∈[2,n] to every
party.

Fig. 12. The function g computed by the internal MPC where P1 acts as the receiver

5. Garbling Cwrap: Compute

˜Ci
wrap ← Garble

(

Cwrap

[

{˜Cj→i
B }j∈[n]\{i}, sti, lab

i,1
]

,
{

{μj→i
b }j∈[n]\{i}, {rlabj→i

k,b }j∈[n]\{i},k∈[M],b∈{0,1}
})

where Cwrap is described in Fig. 13.

6. Send
(

{˜Pi,t}t∈[T], ˜C
i
wrap

)

to every other party.

Cwrap

[
{C̃j→i

B }j∈[n]\{i}, sti, lab
i,1

]

Input: {bj→i}j∈[n]\{i}, {s̃j→i}j∈[n]\{i}
1. If bj→i = 1 for all j ∈ [n] \ {i} do:

(a) For each j ∈ [n] \ {i}, compute
{
mj→i

k

}
k∈[4T]

←
SAdpEvalCkt

(
C̃j→i
B , s̃j→i

)
.

(b) Let m := ‖
j∈[n]\{i},k∈[4T]

(mj→i
k)

(c) Output Projection(sti‖m, lab
i,1

).
2. Else, output ⊥.

Fig. 13. Circuit Cwrap

Evaluation: Every party Pi does the following:
1. For each j ∈ [n],

(a) Obtain (ssid = j, {˜rlab
j}) from Fg where party Pj acts as the receiver.

Two-Round Multiparty Secure Computation 297

(b) For each k ∈ [n] \ {j}, obtain (ssid = (k → j), bk→j ,Xk→j , μk→j)
from Fzk. Set μ̃j = {μk→j}k∈[n]\{j}.

(c) ˜lab
j,1 ← Eval(˜Cj

wrap, μ̃
j‖˜rlab

j
).

2. for each t from 1 to T do:
(a) Parse φt as (i∗, f, g, h).

(b) Compute ((α, β, γ), {ωj}j∈[n]\{i}, ˜lab
i∗,t+1

) := Eval(˜Pi∗,t, ˜lab
i∗,t

).
(c) Set sti[h] := γ ⊕ vi[h].
(d) for each j �= i∗ do:

i. Compute (ct = (δ0, δ1), {labj,t+1
k }k∈[N]\{h}) := Eval(˜Pj,t, ˜lab

j,t
).

ii. Recover labj,t+1
h := δγ ⊕ ωj .

iii. Set ˜lab
j,t+1

:= {labj,t+1
k }k∈[N].

3. Compute the output as post(i, sti).

Correctness. The correctness follows via a similar argument to the semi-honest
case.

Efficiency. Let the number of public key operations in Φ be npkΦ, in one exe-
cution of Fzk be npkzk, and in one execution of Fg be npkg. We choose the
conforming protocol that performs OT extension between every pair of parties
so that npkΦ is bounded by O(n2λ). The total number of public key operations
in our two-round construction is O(npkΦ + n2 · npkzk + n · npkg). It follows from
Theorems 3, 2 that this number is bounded by poly(n, λ).

Security. The security proof will be given in the full version [GMS18].

References

[ACJ17] Ananth, P., Choudhuri, A.R., Jain, A.: A new approach to round-optimal
secure multiparty computation. In: Katz, J., Shacham, H. (eds.) CRYPTO
2017, Part I. LNCS, vol. 10401, pp. 468–499. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-63688-7 16

[AIKW13] Applebaum, B., Ishai, Y., Kushilevitz, E., Waters, B.: Encoding functions
with constant online rate or how to compress garbled circuits keys. In:
Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043,
pp. 166–184. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-40084-1 10

[ALSZ17] Asharov, G., Lindell, Y., Schneider, T., Zohner, M.: More efficient oblivi-
ous transfer extensions. J. Cryptol. 30(3), 805–858 (2017)

[Bea96] Beaver, D.: Correlated pseudorandomness and the complexity of private
computations. In: Proceedings of the Twenty-Eighth Annual ACM Sym-
posium on the Theory of Computing, Philadelphia, Pennsylvania, 22–24
May 1996, pp. 479–488 (1996)

[BGI16] Boyle, E., Gilboa, N., Ishai, Y.: Breaking the circuit size barrier for secure
computation under DDH. In: Robshaw, M., Katz, J. (eds.) CRYPTO
2016, Part I. LNCS, vol. 9814, pp. 509–539. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53018-4 19

https://doi.org/10.1007/978-3-319-63688-7_16
https://doi.org/10.1007/978-3-642-40084-1_10
https://doi.org/10.1007/978-3-642-40084-1_10
https://doi.org/10.1007/978-3-662-53018-4_19

298 S. Garg et al.

[BGI+17a] Badrinarayanan, S., Garg, S., Ishai, Y., Sahai, A., Wadia, A.: Two-
message witness indistinguishability and secure computation in the plain
model from new assumptions. In: Takagi, T., Peyrin, T. (eds.) ASI-
ACRYPT 2017, Part III. LNCS, vol. 10626, pp. 275–303. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-70700-6 10

[BGI17b] Boyle, E., Gilboa, N., Ishai, Y.: Group-based secure computation: optimiz-
ing rounds, communication, and computation. In: Coron, J.-S., Nielsen,
J.B. (eds.) EUROCRYPT 2017, Part II. LNCS, vol. 10211, pp. 163–193.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56614-6 6

[BGJ+17] Badrinarayanan, S., Goyal, V., Jain, A., Kalai, Y.T., Khurana, D., Sahai,
A.: Promise zero knowledge and its applications to round optimal MPC.
Cryptology ePrint Archive, Report 2017/1088 (2017). https://eprint.iacr.
org/2017/1088

[BHP17] Brakerski, Z., Halevi, S., Polychroniadou, A.: Four round secure compu-
tation without setup. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part I.
LNCS, vol. 10677, pp. 645–677. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-70500-2 22

[BHR12] Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits.
In: Yu, T., Danezis, G., Gligor, V.D., (eds.) ACM CCS 2012, pp. 784–796.
ACM Press, October 2012

[BL18] Benhamouda, F., Lin, H.: k-round MPC from k-round OT via garbled
interactive circuits. In: EUROCRYPT (2018, to appear). https://eprint.
iacr.org/2017/1125

[BMR90] Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure proto-
cols (extended abstract). In: 22nd ACM STOC, pp. 503–513. ACM Press,
May 1990

[BP16] Brakerski, Z., Perlman, R.: Lattice-based fully dynamic multi-key FHE
with short ciphertexts. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016,
Part I. LNCS, vol. 9814, pp. 190–213. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53018-4 8

[Can00a] Canetti, R.: Security and composition of multiparty cryptographic proto-
cols. J. Cryptol. 13(1), 143–202 (2000)

[Can00b] Canetti, R.: Universally composable security: a new paradigm for cryp-
tographic protocols. Cryptology ePrint Archive, Report 2000/067 (2000).
http://eprint.iacr.org/2000/067

[Can01] Canetti, R.: Universally composable security: a new paradigm for crypto-
graphic protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society
Press, October 2001

[COSV17] Ciampi, M., Ostrovsky, R., Siniscalchi, L., Visconti, I.: Round-optimal
secure two-party computation from trapdoor permutations. In: Kalai,
Y., Reyzin, L. (eds.) TCC 2017, Part I. LNCS, vol. 10677, pp. 678–710.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2 23

[FS90] Feige, U., Shamir, A.: Witness indistinguishable and witness hiding pro-
tocols. In: 22nd ACM STOC, pp. 416–426. ACM Press, May 1990

[GGH+13] Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Can-
didate indistinguishability obfuscation and functional encryption for all
circuits. In: 54th FOCS, pp. 40–49. IEEE Computer Society Press, Octo-
ber 2013

https://doi.org/10.1007/978-3-319-70700-6_10
https://doi.org/10.1007/978-3-319-56614-6_6
https://eprint.iacr.org/2017/1088
https://eprint.iacr.org/2017/1088
https://doi.org/10.1007/978-3-319-70500-2_22
https://doi.org/10.1007/978-3-319-70500-2_22
https://eprint.iacr.org/2017/1125
https://eprint.iacr.org/2017/1125
https://doi.org/10.1007/978-3-662-53018-4_8
http://eprint.iacr.org/2000/067
https://doi.org/10.1007/978-3-319-70500-2_23

Two-Round Multiparty Secure Computation 299

[GGHR14] Garg, S., Gentry, C., Halevi, S., Raykova, M.: Two-round secure MPC
from indistinguishability obfuscation. In: Lindell, Y. (ed.) TCC 2014.
LNCS, vol. 8349, pp. 74–94. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54242-8 4

[GGM86] Goldreich, O., Goldwasser, S., Micali, S.: How to construct random func-
tions. J. ACM 33(4), 792–807 (1986)

[GGSW13] Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its
applications. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th
ACM STOC, pp. 467–476. ACM Press, June 2013

[GLS15] Dov Gordon, S., Liu, F.-H., Shi, E.: Constant-round MPC with fairness
and guarantee of output delivery. In: Gennaro, R., Robshaw, M. (eds.)
CRYPTO 2015, Part II. LNCS, vol. 9216, pp. 63–82. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-48000-7 4

[GMM17a] Garg, S., Mahmoody, M., Mohammed, A.: Lower bounds on obfuscation
from all-or-nothing encryption primitives. In: Katz, J., Shacham, H. (eds.)
CRYPTO 2017, Part I. LNCS, vol. 10401, pp. 661–695. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-63688-7 22

[GMM17b] Garg, S., Mahmoody, M., Mohammed, A.: When does functional encryp-
tion imply obfuscation? In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part
I. LNCS, vol. 10677, pp. 82–115. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-70500-2 4

[GMMM17] Garg, S., Mahmoody, M., Masny, D., Meckler, I.: On the round complexity
of OT extension. Cryptology ePrint Archive, Report 2017/1187 (2017).
https://eprint.iacr.org/2017/1187

[GMPP16] Garg, S., Mukherjee, P., Pandey, O., Polychroniadou, A.: The exact round
complexity of secure computation. In: Fischlin, M., Coron, J.-S. (eds.)
EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 448–476. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5 16

[GMS18] Garg, S., Miao, P., Srinivasan, A.: Two-round multiparty secure computa-
tion minimizing public key operations. Cryptology ePrint Archive, Report
2018/180 (2018). https://eprint.iacr.org/2018/180

[GMW87] Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game
or a completeness theorem for protocols with honest majority. In: Aho,
A. (ed.) 19th ACM STOC, pp. 218–229. ACM Press, May 1987

[GS17] Garg, S., Srinivasan, A.: Garbled protocols and two-round MPC from
bilinear maps. In: 58th FOCS, pp. 588–599. IEEE Computer Society Press
(2017)

[GS18] Garg, S., Srinivasan, A.: Two-round multiparty secure computation from
minimal assumptions. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT
2018. LNCS, vol. 10821, pp. 468–499. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-78375-8 16. https://eprint.iacr.org/2017/1156

[HHPV17] Halevi, S., Hazay, C., Polychroniadou, A., Venkitasubramaniam, M.:
Round-optimal secure multi-party computation. Cryptology ePrint
Archive, Report 2017/1056 (2017). http://eprint.iacr.org/2017/1056

[HIK07] Harnik, D., Ishai, Y., Kushilevitz, E.: How many oblivious transfers
are needed for secure multiparty computation? In: Menezes, A. (ed.)
CRYPTO 2007. LNCS, vol. 4622, pp. 284–302. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-74143-5 16

https://doi.org/10.1007/978-3-642-54242-8_4
https://doi.org/10.1007/978-3-642-54242-8_4
https://doi.org/10.1007/978-3-662-48000-7_4
https://doi.org/10.1007/978-3-319-63688-7_22
https://doi.org/10.1007/978-3-319-70500-2_4
https://doi.org/10.1007/978-3-319-70500-2_4
https://eprint.iacr.org/2017/1187
https://doi.org/10.1007/978-3-662-49896-5_16
https://eprint.iacr.org/2018/180
https://doi.org/10.1007/978-3-319-78375-8_16
https://doi.org/10.1007/978-3-319-78375-8_16
https://eprint.iacr.org/2017/1156
http://eprint.iacr.org/2017/1056
https://doi.org/10.1007/978-3-540-74143-5_16

300 S. Garg et al.

[HIKN08] Harnik, D., Ishai, Y., Kushilevitz, E., Nielsen, J.B.: OT-combiners via
secure computation. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948,
pp. 393–411. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-78524-8 22

[HJO+16] Hemenway, B., Jafargholi, Z., Ostrovsky, R., Scafuro, A., Wichs, D.: Adap-
tively secure garbled circuits from one-way functions. In: Robshaw, M.,
Katz, J. (eds.) CRYPTO 2016, Part III. LNCS, vol. 9816, pp. 149–178.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53015-
3 6

[HLP11] Halevi, S., Lindell, Y., Pinkas, B.: Secure computation on the web: com-
puting without simultaneous interaction. In: Rogaway, P. (ed.) CRYPTO
2011. LNCS, vol. 6841, pp. 132–150. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-22792-9 8

[IKNP03] Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious trans-
fers efficiently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp.
145–161. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-
45146-4 9

[JKK+17] Jafargholi, Z., Kamath, C., Klein, K., Komargodski, I., Pietrzak, K.,
Wichs, D.: Be adaptive, avoid overcommitting. In: Katz, J., Shacham, H.
(eds.) CRYPTO 2017, Part I. LNCS, vol. 10401, pp. 133–163. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-63688-7 5

[JKKR17] Jain, A., Kalai, Y.T., Khurana, D., Rothblum, R.: Distinguisher-
dependent simulation in two rounds and its applications. In: Katz, J.,
Shacham, H. (eds.) CRYPTO 2017, Part II. LNCS, vol. 10402, pp. 158–
189. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63715-
0 6

[JW16] Jafargholi, Z., Wichs, D.: Adaptive security of Yao’s garbled circuits.
In: Hirt, M., Smith, A. (eds.) TCC 2016, Part I. LNCS, vol. 9985, pp.
433–458. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-
53641-4 17

[KK13] Kolesnikov, V., Kumaresan, R.: Improved OT extension for transferring
short secrets. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II.
LNCS, vol. 8043, pp. 54–70. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-40084-1 4

[KRS16] Kumaresan, R., Raghuraman, S., Sealfon, A.: Network oblivious transfer.
In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part II. LNCS, vol. 9815,
pp. 366–396. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-53008-5 13

[LP09] Lindell, Y., Pinkas, B.: A proof of security of Yao’s protocol for two-party
computation. J. Cryptol. 22(2), 161–188 (2009)

[MW16] Mukherjee, P., Wichs, D.: Two round multiparty computation via multi-
key FHE. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part
II. LNCS, vol. 9666, pp. 735–763. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49896-5 26

[Nie07] Nielsen, J.B.: Extending oblivious transfers efficiently - how to get robust-
ness almost for free. Cryptology ePrint Archive, Report 2007/215 (2007).
http://eprint.iacr.org/2007/215

[NNOB12] Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new approach
to practical active-secure two-party computation. In: Safavi-Naini, R.,
Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 681–700. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5 40

https://doi.org/10.1007/978-3-540-78524-8_22
https://doi.org/10.1007/978-3-540-78524-8_22
https://doi.org/10.1007/978-3-662-53015-3_6
https://doi.org/10.1007/978-3-662-53015-3_6
https://doi.org/10.1007/978-3-642-22792-9_8
https://doi.org/10.1007/978-3-642-22792-9_8
https://doi.org/10.1007/978-3-540-45146-4_9
https://doi.org/10.1007/978-3-540-45146-4_9
https://doi.org/10.1007/978-3-319-63688-7_5
https://doi.org/10.1007/978-3-319-63715-0_6
https://doi.org/10.1007/978-3-319-63715-0_6
https://doi.org/10.1007/978-3-662-53641-4_17
https://doi.org/10.1007/978-3-662-53641-4_17
https://doi.org/10.1007/978-3-642-40084-1_4
https://doi.org/10.1007/978-3-642-40084-1_4
https://doi.org/10.1007/978-3-662-53008-5_13
https://doi.org/10.1007/978-3-662-53008-5_13
https://doi.org/10.1007/978-3-662-49896-5_26
https://doi.org/10.1007/978-3-662-49896-5_26
http://eprint.iacr.org/2007/215
https://doi.org/10.1007/978-3-642-32009-5_40

Two-Round Multiparty Secure Computation 301

[PS16] Peikert, C., Shiehian, S.: Multi-key FHE from LWE, revisited. In: Hirt,
M., Smith, A. (eds.) TCC 2016, Part II. LNCS, vol. 9986, pp. 217–238.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53644-
5 9

[Yao82] Yao, A.C.-C.: Protocols for secure computations (extended abstract). In:
23rd FOCS, pp. 160–164. IEEE Computer Society Press, November 1982

https://doi.org/10.1007/978-3-662-53644-5_9
https://doi.org/10.1007/978-3-662-53644-5_9

Limits of Practical Sublinear Secure
Computation

Elette Boyle1, Yuval Ishai2, and Antigoni Polychroniadou3(B)

1 IDC Herzliya, Herzliya, Israel
eboyle@alum.mit.edu

2 Technion, Haifa, Israel
yuvali@cs.technion.ac.il

3 Cornell Tech and University of Rochester, New York, USA
antigoni@cornell.edu

Abstract. Secure computations on big data call for protocols that have
sublinear communication complexity in the input length. While fully
homomorphic encryption (FHE) provides a general solution to the prob-
lem, employing it on a large scale is currently quite far from being prac-
tical. This is also the case for secure computation tasks that reduce to
weaker forms of FHE such as “somewhat homomorphic encryption” or
single-server private information retrieval (PIR).

Quite unexpectedly, Aggarwal, Mishra, and Pinkas (Eurocrypt 2004),
Brickell and Shmatikov (Asiacrypt 2005), and Shelat and Venkitasubra-
maniam (Asiacrypt 2015) have shown that in several natural instances
of secure computation on big data, there are practical sublinear com-
munication protocols that only require sublinear local computation and
minimize the use of expensive public-key operations. This raises the ques-
tion of whether similar protocols exist for other natural problems.

In this paper we put forward a framework for separating “practical”
sublinear protocols from “impractical” ones, and establish a methodol-
ogy for identifying “provably hard” big-data problems that do not admit
practical protocols. This is akin to the use of NP-completeness to sepa-
rate hard algorithmic problems from easy ones. We show that while the
previous protocols of Aggarwal et al., Brickell and Shmatikov, and She-
lat and Venkitasubramaniam are indeed classified as being “practical”
in this framework, slight variations of the problems they solve and other
natural computational problems on big data are hard.

Our negative results are established by showing that the problem at
hand is “PIR-hard” in the sense that any secure protocol for the prob-
lem implies PIR on a large database. This imposes a barrier on the local
computational cost of secure protocols for the problem. We also identify
a new natural relaxation of PIR that we call semi-PIR, which is use-
ful for establishing “intermediate hardness” of several practically moti-
vated secure computation tasks. We show that semi-PIR implies slightly
sublinear PIR via an adaptive black-box reduction and that ruling out
a stronger black-box reduction would imply a major breakthrough in
complexity theory. We also establish information-theoretic separations
between semi-PIR and PIR, showing that some problems that we prove
to be semi-PIR-hard are not PIR-hard.

c© International Association for Cryptologic Research 2018
H. Shacham and A. Boldyreva (Eds.): CRYPTO 2018, LNCS 10993, pp. 302–332, 2018.
https://doi.org/10.1007/978-3-319-96878-0_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96878-0_11&domain=pdf

Limits of Practical Sublinear Secure Computation 303

Keywords: Secure computation · Private information retrieval
Sublinear communication · Locally decodable codes

1 Introduction

Protocols for secure multi-party computation (MPC) enable mutually distrust-
ing parties to jointly evaluate a function on their private inputs, without reveal-
ing any information beyond the prescribed function outputs [Yao82,GMW87,
BGW88,CCD88].

An important efficiency metric of MPC protocols is the required communi-
cation between parties. A great deal of research focus has gone towards mini-
mizing the asymptotic communication complexity of MPC, as well as improving
the practical efficiency of MPC. Our work proposes a theoretical framework
for capturing the intersection. This framework can be used to provide a crude
distinction between tasks that admit “practical” sublinear-communication pro-
tocols and ones that do not, akin to the use of NP-completeness to separate hard
algorithmic problems from easy ones.

Secure computation on big data calls for MPC protocols that have sublinear
communication complexity in the input size. The line of work on sublinear-
communication MPC started with works on private information retrieval (PIR)
[CKGS98,KO97] and related primitives, and culminated in the constructions
of fully homomorphic encryption (FHE) [Gen09] schemes. FHE gives a general
solution to the problem in that it essentially closes the gap between secure and
insecure communication complexity.

The main concrete bottleneck of current FHE schemes, which makes them
slow in practice, is their computational complexity. Even in the case of PIR,
which can be viewed as the simplest instance of “somewhat-homomorphic
encryption,” local computation on the server side is by far the most significant
cost. Indeed, PIR protocols without preprocessing provably require linear com-
putational complexity, and all known PIR protocols on a database of length N
require at least N “public-key operations” (comparable to the amortized cost of
encrypting a bit in an underlying public-key encryption scheme). Consequently,
the computational cost of such protocols is significantly higher than that of
protocols that process a similar amount of information using only symmetric
encryption. Moreover, unlike the case of OT-based protocols, little can be done
for amortizing the cost of PIR or for pushing it to an input-independent prepro-
cessing phase. Despite recent advances on the concrete cost of PIR [MBFK16]
and the asymptotic cost of PIR with preprocessing [BIPW17,CHR17], perform-
ing a single instance of PIR on an N -bit database is more expensive in terms of
local computation than, say, securely evaluating a boolean circuit of size N by
relying on efficient OT extension techniques.

Notable exceptions to the above state of affairs are the work of Aggarwal
et al. [AMP10] on medians, the work of Brickell and Shmatikov [BS05] on cer-
tain graph problems, and the work of Shelat and Venkitasubramaniam [SV15]
that vastly generalizes them. These works show that for certain natural and

304 E. Boyle et al.

practically motivated problems, including several central combinatorial opti-
mization problems, one can enjoy the best of both worlds: sublinear commu-
nication complexity with low computational overhead, both asymptotically and
concretely. These works leave several interesting open questions. In particular,
it is not clear how robust the positive results are to natural variations of the
functionality and whether they extend to other optimization problems.

1.1 Our Results

Towards addressing the above open questions in a systematic way, we pro-
pose a clean formal framework to capture the feature of the protocols of
[AMP10,BS05,SV15] that distinguishes them from more generic alternatives
based on FHE or PIR. Concretely, we consider a model of secure two-party
computation with input-independent preprocessing in the form of correlated
randomness. (The latter can be used to implement oblivious transfer uncondi-
tionally.) We distinguish between:

– “Easy” problems, namely ones admitting sublinear-communication secure
protocols that may rely on input-independent correlated randomness and
oblivious transfer, and

– “PIR-hard” problems, for which any sublinear-communication protocol
implies a nontrivial PIR protocol on a large database.

Given the current state of the art, PIR-hard problems are unlikely to be shown
“easy,” and any protocol for such problems is likely to have poor concrete effi-
ciency.

PIR-Hardness of Combinatorial Problems. We then revisit a class of combi-
natorial optimization problems for which “easy” protocols have been demon-
strated. (In particular, all of the protocols from [AMP10,BS05,SV15] are easy
in the above sense.) We show that, while the original formulation of the prob-
lem yields lightweight protocols, certain natural and useful variants of the same
problems are in fact PIR-hard. We first demonstrate this for the case of one-sided
variants—in which only one party learns the function output—for an assortment
of combinatorial problems with different structures:

– Median. The median functionality accepts a list of numerical inputs from
each party and outputs the median of the combined list.

– Convex Hull. The 2-dimensional convex hull functionality accepts a set of
points in 2-space from each party and outputs the subset of those points on
the convex hull of the combined set.

– Single-Source Shortest Distance. The SSSD functionality accepts a set
of weighted edges from each party (on n fixed vertices) with distinguished
vertex v∗ and outputs the lengths of n − 1 shortest paths from v∗ to each
v �= v∗ in the combined graph (taking parallel edges).

Limits of Practical Sublinear Secure Computation 305

– Approximate Set Cover. The approx set cover functionality refers to the
output of the polynomial-time greedy algorithm for polynomial time approx-
imation of set cover (which iteratively selects the set that contains the largest
number of uncovered elements).

We prove that the one-sided variant of each of the above problems is PIR-hard.
This further implies that any secret-shared variant of the problems, in which
the parties compute secret shares of the corresponding functionality output, is
additionally PIR-hard. (Indeed, existence of an “easy” protocol for the latter
directly yields an analogous protocol for the former, by having party 2 send his
secret share to party 1). This may indicate that lightweight protocols for these
problems cannot be effectively used “within” other larger MPC computations.

We remark that the previous “easy” protocol constructions for the above
combinatorial problems frequently provide security within a promise setting,
where certain restrictions are assumed to hold on parties’ inputs (e.g., that
parties’ inputs are disjoint). Our negative results are each within the respective
promise settings.

Our PIR-hardness results can be interpreted as imposing a barrier on the
local computational cost of secure protocols for the problem. This barrier applies
both asymptotically (linear computation is necessary without preprocessing) and
concretely (achieving sublinear communication comes at a high computational
cost given the current state of the art on PIR).

Semi-PIR-Hardness. We then identify a new natural relaxation of PIR that we
call semi-PIR, which is useful for establishing “intermediate hardness” of several
practically motivated secure computation tasks. Semi-PIR is defined analogously
to PIR, except that the privacy requirement is relaxed to guarantee privacy of
the client’s query index i ∈ [n] only if it holds that the corresponding database
value zi is equal to 1. This notion may be independently motivated by settings
where there is natural asymmetry in privacy concerns for 0 versus 1 values (e.g.,
database of patients with and without some disease).

We show that semi-PIR with polylogarithmic communication complexity
implies slightly sublinear PIR via an adaptive black-box reduction. Thus, semi-
PIR-hardness can have a similar interpretation as PIR-hardness from a crude
asymptotic perspective. Our reduction from PIR to semi-PIR makes use of query-
efficient locally decodable codes (LDC). Correspondingly, ruling out a stronger
black-box reduction would imply a major breakthrough in complexity theory,
concerning existence of LDCs with polynomial rate and low query complexity.

Theorem 1 (Informal). Suppose there is an efficient q-query LDC C :
{0, 1}n → {0, 1}N . Then, there exists a protocol that implements PIR on a
database z ∈ {0, 1}n by using an expected O(2q) (adaptive) calls to semi-PIR
on a database z′ ∈ {0, 1}N and no additional interaction.

The reduction effectively attempts to reconstruct the desired database value
zi, i ∈ [n] by accessing positions j1, . . . , jq in the encoded database j� ∈ [N],
each time to either the direct bit value or a negated version (so that the read

306 E. Boyle et al.

value will be 0 with probability 1/2). At any point in which the queried location
stores a 0, this query index is no longer hidden, and the reduction will restart
with a freshly sampled set of q-queries. The smoothness of the LDC guarantees
that revealing any single query index reveals nothing about the ultimate desired
index i. Note the inherent adaptivity of this approach.

We also establish information-theoretic separations between semi-PIR and
PIR. These imply that some problems that we prove to be semi-PIR-hard are
provably not PIR-hard in a strong sense, suggesting that semi-PIR captures the
true complexity of some natural secure computation tasks rather than being an
artifact of our proof techniques.

Our semi-PIR-hardness results apply to natural two-sided functions, whose
output is revealed to both parties. A broad class of such examples is “opti-
mal selection from a short-list”, where a Receiver has a small list of candidate
indices, and both parties learn the identity of the candidate with the maxi-
mum/minimum/most desired value. Situations of secure computation of such
problems can be motivated by real-life scenarios in which the identity of the
winning candidate (selected job applicant, purchased item, travel destination)
is public information that cannot be hidden, yet one is interested in hiding the
runner-ups or the choice criteria.

One such concrete problem is the Two-Sided Nearest Neighbor problem. Here
a server holds a large database of points (xi, yi) in the Euclidean plane, say a
list of restaurant locations, and a client holds a point (x, y), say representing its
own location. The output of both parties is the point (xi, yi) which is closest
to (x, y). As discussed above, the reason we consider here a two-sided output
is that the selected restaurant can be publicly observed. And while this output
may reveal a lot of partial information about the client’s input, it is easy to
imagine situations in which the client may wish to hide the exact location (x, y)
from which the search has been conducted.

Two-sided versus one-sided functionalities. Unlike secure protocols realizing two-
sided functionalities, secure protocols for one-sided functionalities must reveal
no information about the output to one of the parties. This rules out iterative
approaches in which partial information about the output is gradually revealed to
both parties, allowing them to minimize the local computation by accessing only
relevant portions of the input. However, as we show in this work, some natural
two-sided functionalities exhibit an intermediate form of hardness captured by
Semi-PIR. In such cases, both parties get the output, but one of the parties
receives additional information only if some condition on the output is met
(Table 1).

Local Compressibility. On the positive side, we identify a generic local compress-
ibility property of combinatorial problems that directly permits efficient secure
protocols for the problem, as well as any sufficiently “close” variant.

Loosely speaking, we say that a functionality F : {0, 1}N × {0, 1}N →
{0, 1}m × {0, 1}m is locally compressible if there exists a preprocessing func-
tion Pre : {0, 1}N → {0, 1}n for some n � N , for which it holds that

Limits of Practical Sublinear Secure Computation 307

Table 1. Sample of our hardness results for combinatorial problems

Hardness Combinatorial Problems

Easy Two-Sided Locally Compressible Minimum Spanning Tree

Two-Sided Locally Compressible High-Order Median Predicates

Protocols from [AMP10,BS05,SV15]

Semi-PIR Hard Two-Sided Single Source Single Destination Shortest Path

Two-Sided Nearest Neighbor

Two-Sided Closest Destination Problem

Two-Sided Short-List Selection

PIR Hard One-Sided Median

One-Sided Approximate Set Cover

One-Sided Convex Hull

One-Sided Single Source Shortest Distances

Two-sided Median Predicate

F (X,Y) = F (Pre(X),Pre(Y)). In such a case, an “easy” sublinear protocol
for securely computing F can be achieved by first performing the local prepro-
cessing, and then executing an arbitrary MPC for the circuit/program on the
compressed inputs. This generality allows us to extend beyond the core function-
ality F itself, to provide an “easy” sublinear protocol for any composed function
G ◦ F for which the circuit size of G is not too complex. This includes, for
example, one-sided variants.

We demonstrate this local compressibility property in two example settings:

– Minimum Spanning Tree. The MST functionality accepts a set of weighted
edges from each party (on n fixed vertices) and outputs the minimum span-
ning tree of the combined graph.
A lightweight protocol for MST was given by [SV15] for the promise setting
where all edge weights are distinct, as the corresponding MST promise prob-
lem falls within their “greedy-compatible” protocol framework. We observe
that, within a similar promise setting, the MST of the combined graph is
preserved when parties compute the MST of their local graphs first and
then submit the resulting tree as their input to the MST functionality (i.e.,
Pre(X) = MST (X)). Our approach thus yields “easy” protocols with sublin-
ear communication for MST and related variants.

– “High-Order” Median Predicates. For any predicate function P that
depends only on the highest-order bits of its input, we show that the median
predicate functionality P ◦ Med is locally compressible. More specifically,
consider the median problem for n inputs, and suppose P depends only on
the � ∈ o(log n) most-significant bits of its input. Then a party’s list of n
input values can be compressed to a succinct 2� ∈ o(n)-size count vector
corresponding to the number of occurrences of each length-� prefix within
the list. Since the high-order prefix of the median is equal to the median of

308 E. Boyle et al.

the corresponding high-order prefixes, this short count vector carries sufficient
information to evaluate the desired functionality.

1.2 Organization of the Paper

Section 2 contains useful preliminaries. In Sect. 3 we present our formal notion
of PIR-hardness, and PIR-hardness results for various combinatorial problem
variants. Section 4 contains the definition and results pertaining to the notion of
semi-PIR. Section 5 contains our positive local-compressibility results.

2 Preliminaries

Notation. We denote the security parameter by κ. We say that a function
μ : N → N is negligible if for every positive polynomial p(·) and all sufficiently
large κ’s it holds that μ(κ) < 1

p(κ) . We often use [n] to denote the set {1, . . . , n}.
Moreover, we use d ← D to denote the process of sampling d from the dis-
tribution D or, if D is a set, a uniform choice from it. If D1 and D2 are two
distributions, then we denote that they are statistically close by D1 ≈s D2; we
denote that they are computationally indistinguishable by D1 ≈c D2; and we
denote that they are identical by D1 ≡ D2.

Two-Party Computation. We assume familiarity with standard crypto-
graphic primitives. For notational purposes, we recall here the basic working
definitions. We refer to e.g. [Can01] for the formal definitions. A two-party pro-
tocol is cast by specifying a random process that maps pairs of inputs to pairs
of outputs (one for each party). We refer to such a process as a functionality
and denote it by F : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗ where F = (F1, F2).
That is, for every pair of inputs (x, y), the output-pair is a random variable
(F1(x, y), F2(x, y)) ranging over pairs of strings. The first party (with input x)
wishes to obtain F1(x, y) and the second party (with input y) wishes to obtain
F2(x, y). The aim of a secure two-party protocol is to protect an honest party
against dishonest behavior by the other party. In this paper, we consider semi-
honest static adversaries which strengthens our impossibility results.

The security of a protocol is analyzed by comparing what an adversary can do
in the protocol to what it can do in an ideal scenario that is secure by definition.
This is formalized by considering an ideal computation involving an incorruptible
trusted third party to whom the parties send their inputs. The trusted party
computes the functionality on the inputs and returns to each party its respective
output. Loosely speaking, a protocol is secure if any adversary interacting in the
real protocol (where no trusted third party exists) can do no more harm than if
it was involved in the above-described ideal computation.

Protocols in the Preprocessing or Correlated Randomness Model. We
will also consider protocols for the preprocessing model. In the preprocessing
model, the specification of a protocol also includes a joint distribution PR1···Rn

Limits of Practical Sublinear Secure Computation 309

over R1 × . . . × Rn, where the Ri’s are finite randomness domains. This dis-
tribution is used for sampling correlated random inputs (r1, . . . , rn) ← PR1···Rn

received by the parties before the execution of the protocol. Therefore, the pre-
processing is independent of the inputs. The actions of a party Pi in a given
round may in this case depend on the private random input ri received by Pi

from the distribution PR1···Rn
and on its input xi and the messages received in

previous rounds. In addition, the action might depend on the statistical security
paramenter κ which is given as input to all parties along with xi and ri. Using
the standard terminology of secure computation, the preprocessing model can be
thought of as a hybrid model where the parties have one-time access to an ideal
randomized functionality P (with no inputs) providing them with correlated,
private random inputs ri.

2.1 Private Information Retrieval

A (single-server) Private Information Retrieval (PIR) [CKGS98,KO97] protocol
allows a client to retrieve a data item from a database held by a server while
hiding which item it is after. More specifically, the database is modeled as an
n-bit string z out of which the client retrieves the i-th bit zi, while giving the
server no information about the index i. The communication complexity of such
a protocol is denoted by c(n). A trivial PIR protocol would have the server
sending the entire data string to the client (i.e. c(n) = n), thus satisfying the
PIR privacy requirement in an information-theoretic way. We assume by default
that any PIR protocol should be nontrivial in the sense that c(n) < n, and
only consider computational security against semi-honest (passive) servers. We
denote by ViewS(z, i)) the view of the PIR server in its interaction with the
client on local inputs z, i and public input n = |z|, and by OutC(z, i) the output
of the client. Our definition treats the database size n as a public parameter that
is also used as a security parameter.

Definition 1 (PIR). Let (S,C) be an interactive protocol between a server S
and a client C, where both S and C are PPT algorithms. We say that (S,C) is
a private information retrieval (PIR) protocol if there exists a negligible function
ν(n) such that:

– Correctness: For every n ∈ N, i ∈ [n], and z = (z1, . . . , zn) ∈ {0, 1}n,

Pr [OutC(z, i) = zi] ≥ 1 − ν(n).

– Security: For every non-uniform polynomial time distinguisher D, n ∈ N,
i, j ∈ [n], and z = (z1, . . . , zn) ∈ {0, 1}n, it holds that |pi − pj | ≤ ν(n), where

pi := Pr [D(1n,ViewS(z, i)) = 1] ,
pj := Pr [D(1n,ViewS(z, j)) = 1] .

– Efficiency: The communication complexity c(n) on a database z ∈ {0, 1}n

is always required to be at most n − 1. We say that PIR protocol is slightly
sublinear if c(n) = O(n/ logγ n) for every positive integer γ, and that it is
polylogarithmic if c(n) = O(logγ n) for some positive integer γ.

310 E. Boyle et al.

We note that polylogarithmic single-server PIR protocols exist under (subex-
ponential versions of) standard cryptographic assumptions [CMS99,Lip05,
BV14]. On the other hand, PIR provably requires linear server computation
in the database size [BIM04], and all known protocols make an intensive use
of public key cryptography. Even in the fastest existing implementations of
PIR [MBFK16], maximizing the speed of server (which is still at least an order
of magnitude slower than a symmetric encryption of the entire database) has a
high cost in communication.

Additional evidence for the hardness of PIR comes from the impossibil-
ity of realizing PIR information-theoretically in the OT-hybrid model or even
using general correlated randomness [IKM+13]. This gives evidence against the
possibility of using input-independent preprocessing or fast OT extension tech-
niques [IKNP03] for amortizing the cost of PIR-based protocols, and should be
contrasted with the fact that without the sublinear communication requirement,
information-theoretic protocols exist in these models.

3 The PIR-Hardness Framework

We put forth a framework for separating “practical” sublinear computation pro-
tocols from “impractical” ones, by means of a notion of PIR hardness. PIR
serves as an appealing benchmark metric for measuring protocol computation
complexity in the sublinear communication regime: The functionality is natural
and convenient to reduce to. And, since all known constructions make use of
heavy public-key computations, this gives an indication that for any functional-
ity which reduces to it, an analogous level of computation may be required. The
high-level interpretation is thus that (given the current state of the art on PIR)
saying that f is PIR-hard implies that evaluating f with a low communication
complexity has a high computational cost. Even further, this computational cost
cannot be amortized or moved to an input-independent preprocessing phase.

Definition 2 (PIR Hardness). Let f : {0, 1}N × {0, 1}N → {0, 1}m(N) ×
{0, 1}m(N) be a two-party functionality.

– We say that f is (n(N), τ(N))-PIR-hard if there is a single-server PIR proto-
col that makes τ(N) (expected) oracle calls to f on inputs of length N , where
the PIR database size is n(N) and, in addition to the oracle calls there is no
additional communication.

– We say that f is non-interactively n(N)-PIR-hard if it is (n(N), 1)-PIR-
hard, and that f is PIR-hard if it is non-interactively n(N)-PIR-hard for
some n(N) = Ω̃(N) = N/polylog(N).

Most (but not all) of the PIR hardness results obtained in this paper are of
the simpler non-interactive type, namely the PIR protocol only applies a local
mapping to the input of each party and then makes a single invocation of f with
no additional interaction. The parameter n(N) and τ(N) should be interpreted

Limits of Practical Sublinear Secure Computation 311

as a lower bound on the amount of expensive computation (which cannot be
amortized or moved to a preprocessing phase) that is required for a sublinear-
communication secure computation of f .

More concretely, we have the following easy corollary of PIR-hardness.

Claim. Suppose f : {0, 1}N × {0, 1}N → {0, 1}m(N) × {0, 1}m(N) is PIR-hard
and has a protocol Π with O(Nβ) bits of communication for some β < 1. Then
there is a nontrivial PIR protocol which on a database of size n makes a single
invocation of Π on inputs of length N = O(n) and uses no further interaction
or assumptions.

The following remarks on our notion of PIR-hardness are in place:

Remark 1.

1. The above definition can be extended to allow extra sublinear communication
beyond the f -oracle calls; however, our PIR-hardness results do not use this
extension.

2. In the case of combinatorial problems involving graphs or other natural
objects, the parameter N denotes the bit-length of a binary representation of
the input for f . For example, in the case of a graph on � nodes with polyno-
mially bounded edge weights, we have N = O(�2 log �). The polylogarithmic
slackness in our default notion of PIR-hardness is meant to reduce the sensi-
tivity of this notion to the way inputs are represented.

In the remainder of this section, we explore a general condition on functional-
ities which imply PIR hardness. We first consider functionalities f with one-sided
output, i.e. where f : {0, 1}N ×{0, 1}N → {⊥}×{0, 1}m(N) delivers output only
to one of the two parties. We observe that in this setting, PIR hardness is tightly
related to a combinatorial VC-dimension-style measure of complexity. We then
extend this to demonstrate a sufficient condition for PIR-hardness of two-sided
predicate functionalities.

3.1 VC-Dimension and Non-Interactive PIR-Hardness

In the case of one-sided output functionalities, where only one of the two par-
ties receives output, the privacy property of PIR can be obtained immediately
(namely, the server will play the role of the party who receives no output).
PIR hardness of such a functionality then translates to a sufficient “combinato-
rial richness”, capturing that the input-output behavior of the functionality is
enough to encode the information of an entire database. We draw a connection
between this property and a form of “efficient VC-dimension”.

VC Dimension. We next define the Vapnik Chervonenkis (VC) dimension of
a class of functions F . The VC dimension gives a measure for the ‘richness’ of
F , which is useful in learning theory and computational complexity. We assume
in the following that all functions in F are defined over the same input domain.

312 E. Boyle et al.

Definition 3 (VC-Dimension [VC71]). Let F be a class of functions from
some input domain D to {0, 1}. We say that F shatters a point set I ⊂ D, if for
every function g : I → {0, 1}, there is a function f ∈ F which agrees with g on
I. The VC-dimension of F , denoted by VC(F), is the size of the largest point
set I, that is shattered by F .

The VC-dimension can be extended to a class F of non-boolean functions
from D to E. In this case, the set I is shattered if there exists a universal boolean
(single-bit output) decoder γ : E → {0, 1} such that I is shattered in the above
sense by F ′ = {γ(f(·)) : f ∈ F}.

For the generalization of VC dimension to functions with multi-bit out-
puts, a number of notions have been considered in the literature (e.g., [NAT89,
BIKO12]). In this work, we handle multi-bit outputs applying a universal boolean
decoder on the output of non-boolean functions, as was previously suggested
in [BIKO12]. The work of [BIKO12] uses the relation between PIR and VC
dimension to construct PIR protocols. We further develop this relation and use
it to establish PIR-harndess.

Essentially, the VC-dimension of a multi-bit output function class is the
maximum VC-dimension of the boolean function class γ ◦ F over the choice of
the boolean “decoder” function γ.

We observe that for a one-sided functionality f : {0, 1}N × {0, 1}N →
{⊥} × {0, 1}m(N), non-interactive PIR hardness of f coincides directly with the
following notion of efficiently computable VC-dimension of the induced function
class F = {f(x, ·)}x∈{0,1}N . Explicitly, a non-interactive construction of PIR of
database size n from f corresponds directly to efficient procedures for: identify-
ing a shattering set I ⊆ {0, 1}N for F (dictating how the client maps his query
index i to an input y to f), finding the appropriate function f(x, ·) to yield the
desired output string on the n inputs in I (dictating how the server maps his
n-size database to an input x to f), and determining and evaluating the univer-
sal decoder γ (for converting the output of f to an output of the PIR query).
Privacy of the resulting PIR scheme follows immediately, since the functionality
does not output anything to the first party (server). Correctness of the PIR holds
because this gives a mapping from x ∈ {0, 1}N to a function f(x, ·) and i ∈ [N]
to an input y for which f(x, y) = xi.

Below is a proof of equivalence for non-interactive reductions for the case of
boolean functionalities.

Theorem 2. Let f : {0, 1}N × {0, 1}N → {⊥} × {0, 1} be a one-sided func-
tionality with inputs x, y ∈ {0, 1}κ and a bit output. Let Fκ = {fκ(x, ·)} for
x ∈ {0, 1}κ. Then the set S = {Fκ}κ∈N has efficiently computable VC-dimension
h, where h(κ) = κ, if and only if fκ is (κ, 1)-PIR-hard.

Proof. If VC(Fκ) ≥ h(κ) then for every κ both parties in the PIR protocol
have access to shattered set I.1 Then, the server given the database, which is an

1 The shattered set must be exactly the same between the client and the server of the
PIR protocol.

Limits of Practical Sublinear Secure Computation 313

assignment of I, computes x for the function fκ that satisfies the assignment.
More specifically, if VC(Fκ) ≥ h(κ) then ∃y = (y1, . . . , yκ) such that for every
assignment (b1, . . . , bκ) of y, ∃ x such that for every i, fκ(x, yi) = bi. It is easy
to see that both parties can run the PIR protocol on input x and yi from the
server and the client, respectively, such that only the client receives the i-th bit
of the database bi.

For the other direction, we need to show that given a PIR-hard function
fκ then VC(Fκ) ≥ h(κ). Based on the fact that the deterministic reduction of
PIR on a κ-bit database is non-interactive and that the client has no information
about the database the claim follows. In particular, since the client has no access
to the database then for the i-th bit of the database the client will use the same
yi and the server will use the same x based on the database acting as the assign-
ment. Therefore, VC(Fκ) ≥ h(κ) since PIR holds for all databases/assignments.

Two-Sided Predicates. The above additionally gives an approach for showing
PIR-hardness of two-sided predicate functionalities, as we now describe.

Theorem 3. Suppose the one-sided functionality f : {0, 1}N ×{0, 1}N → {⊥}×
{0, 1} is (n(N), 1)-PIR-hard. Then the corresponding two-sided functionality f ′ :
{0, 1}N × {0, 1}N → {0, 1} × {0, 1} that delivers the same output predicate f to
both parties is (�n(N)/2�, 1)-PIR-hard.

Proof. By definition of (n(N), 1)-PIR-hardness, there exists an efficient non-
interactive construction of single-server PIR on a n(N)-size database using a
single execution of f . This corresponds to three efficient algorithms: (1) a map-
ping C : [n] → {0, 1}N taking the client’s index i ∈ [n] to some input x ∈ {0, 1}N

to submit to f , (2) a mapping S : {0, 1}n → {0, 1}N taking the server’s database
z ∈ {0, 1}n to some input y ∈ {0, 1}N to submit to f , and (3) a reconstruction
procedure R (which may depend on state from the execution of C) translating
the output bit of f to the queried value zi.

Note that by the correctness of the existing PIR scheme for any database z
(in particular, for a randomly chosen z), it must be that the output bit of f on
inputs (C(i), S(z)) provides a full bit of entropy of information about the value
of zi. That is, the output bit of f must be either the value zi or its negation, and
the choice of which cannot be dependent on x (as this is unknown to the client).

We provide a construction of PIR on a �n(N)/2�-size database using a single
execution of f ′, corresponding to (C ′, S′, R′). For notational simplicity, assume
�n/2� = n/2.

The transformation is as follows:

– C ′: The client encodes his input i ∈ [n/2] as follows. First, sample a random
bit b ← {0, 1}. Then execute C(i + b · n/2).

– S′: The server encodes his database z ∈ {0, 1}n/2 by executing S(z||z̄); i.e.,
on the n-bit value formed by concatenating z with the bitwise negation of z.

– R′: Given output w from the execution of f ′, output b ⊕ w.

314 E. Boyle et al.

Correctness follows directly from the correctness of the underlying PIR
(C,S,R). Security holds because the output bit w is distributed uniformly given
the view of the server (i.e., given x).

A general version of Theorem 3 that applies to functionalities f with very
short (sub-logarithmic length) outputs appears in the full version.

3.2 PIR-Hardness of Natural Combinatorial Problems

We demonstrate that in many cases even close variants of problems which admit
practical sublinear protocols can be PIR-hard. In the following subsections, we
consider variants of the Median, Convex Hull, Single-Source Shortest Path, and
Approximate Set Cover problems.

Each of our reductions follows the approach and notation of the “efficient”
VC-dimension connection described above, including the identification of shat-
tered set I of the client’s input space, and a universal decoder γ for converting
the (possibly multi-bit) output of f to the output of the PIR. For each case, the
corresponding mappings will indeed be efficiently computable, as required.

Revisiting the Median Protocol. For a subset S ⊂ U of a totally ordered
universe set U , the ρth-ranked element is the value x ∈ S that is ranked ρ
when the set S is sorted in increasing order. The median is the element with
rank ρ = �|S|/2�. Given two parties A and B with input sets XA, YB ⊂ U ,
respectively, we consider the problem of privately computing the ρth-ranked
element of XA ∪ YB . Aggarwal et al. [AMP10] described protocols for the median
function with sublinear communication and computation overhead. Specifically,
in the two-party case, let the size of U be polynomial in N (so that elements are
described by polylog(N) bits), and let |XA|, |YB | = N be the total number of
the input elements. Then, the protocol of Aggarwal et al. [AMP10] for securely
evaluating the median entails a communication cost of Õ(log N). We remark
that the protocol of Aggarwal et al. [AMP10] finds the median on simplified
input instances XA and YB where XA ∩ YB = ∅ and |XA| = |YB |.

The median two-party and multi-party protocols of [AMP10] are in the two-
sided model, where both parties receive an output. Moreover, the security of
their protocols relies on the fact that partial information is only leaked via the
function output. We now show that secure protocols for the one-sided setting
cannot enjoy such efficient sublinear-communication properties: namely, the one-
sided median functionality is PIR-hard.

One-sided Median Functionality. In this one-sided model, given two parties A
and B, only the first party A receives the output of the function while party B
should not learn any information about the input of party A.

Definition 4 (One-sided Med functionality). Let N ∈ N. We define the
two-party functionality Med : {0, 1}Õ(N) × {0, 1}Õ(N) → {⊥} × {0, 1}Õ(log N) by
(X,Y) �→ (⊥,median(X ∪ Y)) which on input two sets X,Y ⊂ Zpoly(N), from

Limits of Practical Sublinear Secure Computation 315

the sender and the receiver, respectively, outputs ⊥ to the sender and the median
of X ∪ Y to the receiver.

Theorem 4. The one-sided functionality Med : {0, 1}Õ(N) × {0, 1}Õ(N) →
{⊥} × {0, 1}Õ(log N) is PIR-hard.

Proof. We define a universal encoder γ that on input a bit-string outputs its
Least-Significant Bit (LSB). We are going to find the point set I of size N , that
is shattered by F ′

Med = {γ(Med(X, ·))}X∈Zpoly(N) .
Let (max,min) denote the maximum and the minimum element of Zpoly(N),

respectively. Moreover, for each i ∈ [N] let MINi (respectively, MAXi) denote
the multiset of size |MINi| = i (resp, |MAXi| = i) where each entry is
equal to min (resp., max), respectively. Define I = {Y1, . . . , YN} such that
Yi = {MINN−i ∪ MAXi} for all i ∈ [N]. We will show that F ′

Med shatters I.
In particular, for each g : I → {0, 1} we will show that ∃X such that for every
Yi ∈ I, γ(Med(X,Yi)) = g(Yi).

Let g : I → {0, 1}. Define X = {x1, . . . , xN} such that xi =
(i)2||10 · · · 0||g(Yi) ∈ Zpoly(N) where (i)2 denotes the bit representation of i.
More specifically, xi is defined by concatenating a unique log N -length prefix to
each bit of g(Yi) to ensure that the resulting elements are sorted, and appending
the binary representation of N + 1 (i.e., log N + 1 bits) to ensure the existence
of N distinct integers smaller than all the resulting values.2

It holds that ∀i ∈ [N], γ(Med(X,Yi)) = g(Yi) since Med(X,Yi) = xi and
γ(Med(X,Yi)) = LSB(xi) = g(Yi). That said, it follows that V C(F ′

Med) ≥ N .
Since all mappings are efficiently computable, it follows that Med is PIR-hard.

Revisiting the Convex Hull Protocol. In the convex hull algorithm, two
parties securely compute the convex hull M of the union of their input sets of
points GA and GB in an euclidean plane. Each element consists of two integers
that represent the X and Y coordinates of the point. We are interested in cases
where the convex hull has description size that is sublinear in the input size
(as otherwise sublinear communication protocols are unachievable). We thus
consider a promise problem variant of the functionality CH, defined as follows:

Definition 5 (One-sided CH functionality). Let N ∈ N. Define the
two-party (promise problem) convex hull functionality CH : {0, 1}Õ(N) ×
{0, 1}Õ(N) → {⊥}×{0, 1}o(log N) by CH(GA, GB) = (⊥, convexhull(GA ∪GB)),
which on input two sets GA, GB of N points on the 2-dimensional euclidean
plane, from party A and party B, respectively, outputs ⊥ to party A and the
convex hull of GA ∪ GB to party B.

An efficient sublinear-communication protocol for the two-sided convex hull
promise problem was given by [SV15] (as it fits into their “greedy compati-
ble” framework), assuming slight additional promise restrictions on the inputs
2 For the case where the set Y has to be distinct then MINj = {min,min +

1, . . . ,minj−1}, MAXj = {max,max + 1, . . . ,maxj−1}. Furthermore, in such a
case ∀I ∈ [N] compute xi = (i)2||min||10 · · · 0||g(Yi) ∈ Z2� .

316 E. Boyle et al.

(namely, no two points have the same X or Y coordinate and no three-points are
collinear). We prove that the one-sided convex hull problem is PIR-hard.

Theorem 5. The one-sided functionality CH : {0, 1}Õ(N)×{0, 1}Õ(N) → {⊥}×
{0, 1}Õ(log N) is PIR-hard.

Proof. We define a universal encoder γ that on input a convex hull of four nodes
identifies the longest edge and rotates it such that: (1) the longest edge is parallel
to the X axes and (2) the shortest edge is above the longest edge. The encoder
outputs 0 if the node of the shortest edge, which is closer to the longest edge, is
the left one, otherwise output 1. We are going to find the point set I of size N ,
that is shattered by F ′

CH = {γ(CH(G, ·))}G⊂S .
Let Cr be a circle with center the origin of the axes (with arbitrary radius)

on the euclidean plane. Set ψ = 2π/2N = π/N . Let us define I = {Y1, . . . , YN}
for all i ∈ [N]. Consider the two points on the circle with angle φi = (2i) · ψ
and angle φi = (2i + 1) · ψ. Then, define by τ1 and τ2 the tangents of these two
points, respectively. Tangents τ1 and τ2 intersect at point Pi. Consider the line ei

passing through the center of the circle and the point Pi. Denote the intersection
points of the line ei with the circle by Qi, Q

′
i such that point Qi is closer to point

Pi. Next, consider the tangent τ3 of the point Q′
i and define by Ri, Si the points

created by the intersection of τ1, τ3 and τ2, τ3, respectively. The set Yi includes
points Qi, Ri, Si.

We will show that F ′
CH shatters I. In particular, for each g : I → {0, 1}

we will show that ∃G such that for every Yi ∈ I, γ(CH(G,Yi)) = g(Yi). Let
g : I → {0, 1} then for all i ∈ {0, . . . , N − 1}, assign each g(Yi) to the point Ti

with angle φi = (2i+g(Yi)) ·ψ. Then, G consists for all points assigned to g(Yi).
It holds that ∀i ∈ [N], γ(CH(G,Yi)) = g(Yi). In particular, the convex hull

in each case contains the points (Qi, Ri, Si, Ti). By construction, the longest edge
is drawn by nodes Ri, Si and the shortest edge by nodes Ti, Qi and point Qi is
closer to the longest edge. If g(Yi) is 0 then Qi is closer to Ri and γ outputs 0.
Thus, since each of the above mappings is efficiently computable, it follows that
CH is PIR-hard. ��

Revisiting the Single-Source Shortest Distance Protocol. In the Single
Source Shortest Distance (SSSD) protocol, two parties securely compute the
shortest path distances from a source vertex s to all other vertices in a joint
weighted graph. More specifically, let GA and GB be the two parties’ respective
weighted graphs. Assume that GA = (VA, EA, wA) and GB = (VB , EB , wB) are
complete graphs on the same set of vertices. Let wA(e) and wB(e) represent the
weight of edge e in GA and GB , respectively.3 The goal is to output the list M
which contains the shortest path distances from the source vertex s to all other
vertices. If the input graphs (which may have quadratically many edges) are

3 Note that we can also consider incomplete graphs and graphs that include disjoint
edges by setting appropriate special values of w(e) for the given edges e.

Limits of Practical Sublinear Secure Computation 317

describable in Õ(N) bits, the output (which must have at most linearly many
items) can be described by Õ(

√
N) bits.

Definition 6 (One-sided SSSP functionality). Define the two-party func-
tionality SSSP : {0, 1}Õ(N)×{0, 1}Õ(N) → {⊥}×{0, 1}Õ(

√
N) by SSSP(GA, GB)

= (⊥, shortestpaths(GA, GB)) which takes as input from A and B two complete,
weighted graphs GA, GB respectively, on the same set of vertices. Then, it out-
puts ⊥ to A and the list of shortest path distances from a source vertex s to all
other vertices in the joint weighted directed graph to B.

An efficient sublinear-communication protocol was given by [SV15] for the
two-sided version of a related problem, of single-source all-destinations (SSAD),
which outputs the list of shortest paths from s to each other node, as opposed
to just the distance of these paths. (This follows from their “greedy compatible”
framework, via Dijkstra’s algorithm.)

We prove the one-sided SSSP problem is PIR-hard. As the information of
one-sided SSSP can be directly inferred from the information of one-sided SSAD,
this further implies PIR-hardness of the one-sided SSAD problem.

Theorem 6. The one-sided functionality SSSP : {0, 1}Õ(N) × {0, 1}Õ(N) →
{⊥} × {0, 1}Õ(

√
N) is PIR-hard.

Proof. We define a universal encoder γ that on input N integers and an index i
outputs 0 if the ith integer is even, or 1 otherwise. We are going to define a set
I of size N(N − 1)/2, that is shattered by F ′

SSSP = {γ(SSSP(G, ·))}G.
Let us define I = {Y1, . . . , YN} for all i ∈ [N]. For each edge i = (u, v) in the

graph Yi proceed as follows. The edge between the starting note s to u is set to
the minimum weight i.e. wYi

(
(s, u)

)
= 0 and there is no weight assignment for

(s, v). For every other edge w �= {u, v} connected to s, the weight on the edge
(s, w) is assigned to N2 i.e. wYi

(
(s, w)

)
= N2.

We will show that F ′
SSSP shatters I. In particular, for each g : I → {0, 1}

we will show that ∃G such that for every Yi ∈ I, γ(SSSP(G,Yi)) = g(Yi). Let
g : I → {0, 1} then enumerate all the nodes from 1 up to N and for every edge
j ∈ (

N
2

)
in the graph G assign each weight to 2N2 + 2j + g(Yi) (For the special

case where the edge includes the starting point s there is no weight assignment).
It holds that ∀i ∈ [N], γ(SSSP(G,Yi)) = g(Yi). By construction the distance

from the starting point s to v for i = (u, v) is equal to wYi

(
u, v

)
which is equal

to 2N2 + 2j + g(Yi). If g(Yi) = 0 then wYi
is even. ��

Revisiting the Approximate Set Cover Protocol. Given a collection S of
sets over a universe U , a set cover C ⊆ S is a subcollection of the sets whose
union is U . The set cover problem allows two parties A and B to securely find a
minimum-cardinality set cover given SA and SB . While this problem is NP hard
to solve exactly, it yields a natural greedy approximation algorithm. Namely, in
each iteration, the algorithm takes the set of those remaining which contains the
largest number of uncovered elements.

318 E. Boyle et al.

In what follows, the “Approximate Set Cover” functionality will refer to the
output generated by running this greedy algorithm. As with previous problems,
we will restrict our attention to a promise version of the problem, where the
description size of the output set cover is sublinear in the input description size
(as otherwise sublinear-communication protocols will not be possible).

Definition 7 (One-sided Approximate Set Cover SC functionality).
Let N ∈ N. Given a universe U , we define the two-party functionality SC :

{0, 1}Õ(N) × {0, 1}Õ(N) → {⊥} × {0, 1}o(N) by SC(SA, SB) = (⊥, C) which on
input finite sets SA ⊆ U and SB ⊆ U from party A and party B, respectively,
outputs the result C ⊆ SA ∪ SB of the greedy set cover algorithm to party B.

An efficient sublinear-communication protocol for the two-sided greedy
approximate set cover promise problem was given by [SV15], following their
“greedy compatible” framework. We prove the corresponding one-sided problem
is PIR-hard.

Theorem 7. The one-sided functionality SC : {0, 1}Õ(N)×{0, 1}Õ(N) → {⊥}×
{0, 1}o(N) is PIR-hard.

Proof. We define a universal encoder γ that on input two sets outputs the min-
imum element that resides in both sets. We are going to define a set I of size
Θ(N), that is shattered by F ′

SC = {γ(SC(S, ·))}S .
Let |U | = �+2 where

(
�

�/2

) ≥ N . In particular, let U = {0, 1, u1, . . . , u�}. Let
V = {{0, 1}�}N be a vector with all bit-strings of length � with hamming weight
1/2 in lexicographical order. Denote by Vi,j the bit of the j-th position of the i-th
element of V . Define I = {Y1, . . . , YN} such that Yi = {0, 1} ∪j∈� {uj |Vi,j = 0}
for all i ∈ [N].

We will show that F ′
SC shatters I. In particular, for each g : I → {0, 1} we will

show that ∃S = {S1, . . . , SN} such that for every Yi ∈ I, γ(SC(S, Yi)) = g(Yi).
Let g : I → {0, 1} then for all i ∈ [N], set Si = {g(Yi)} ∪j∈� {uj |Vi,j = 1}.

It holds that ∀i ∈ [N], γ(SC(S, Yi)) = g(Yi). By construction the output
collection consists of two sets, i.e., Si and Yi. If g(Yi) = 0 then the common
minimum element in both sets is 0. ��

4 Intermediate Hardness via Semi-PIR

There are natural two-sided functionalities that are provably not PIR-hard, but
which instead imply the following notion of semi-PIR. Intuitively, semi-PIR is
a relaxed version of PIR where the server is allowed to learn the output zi and
can furthermore learn the client’s actual selection i only if zi = 0. Note that
a semi-PIR protocol with only two messages is necessarily a PIR protocol, but
it is easy to convert any 2-message PIR protocol into (an artificial) 3-message
semi-PIR protocol which is not a PIR protocol by having the client send i to the
server if and only if zi = 0.

Limits of Practical Sublinear Secure Computation 319

The semi-PIR primitive is formally defined by making the following small
change in the security requirement of PIR from Definition 1: instead of requiring
indistinguishability between any i, j ∈ [n], the requirement is only made for i, j
such that zi = zj = 1.

One can roughly think of a semi-PIR protocol as a low-communication (pas-
sively) secure protocol for the functionality 1

2PIR that maps (z, i) to (y, zi), where
y = i if zi = 0 and y = ⊥ otherwise. Indeed, any semi-PIR protocol as above
can be converted into a protocol for this functionality by having the client send
y to the server in the end of the protocol.

4.1 Does Semi-PIR Imply PIR?

In this section we study the relation between semi-PIR and PIR. We show that
a strong form of semi-PIR implies a weak form of PIR. Interestingly, this result
is shown via an inherently adaptive reduction, which also exhibits some unusual
tradeoffs between communication and computation. We then show that the semi-
PIR functionality does not satisfy the default notion of PIR-hardness from Def-
inition 2. In other words, one cannot construct a PIR protocol via a single non-
interactive call to 1

2PIR. While we leave open the possibility of constructing
polylogarithmic PIR from polylogarithmic semi-PIR, we show that ruling out
such a construction would imply a breakthrough in the achievable complexity of
locally decodable codes.

Obtaining weak PIR from semi-PIR. We start by showing how to use a
single invocation of semi-PIR to build a probabilistic PIR functionality that (on
every selection i) leaks i to the server with probability 1/2 (and lets the client
know that leakage occurred), but otherwise reveals nothing to the server. We
denote this probabilistic functionality by Rand 1

2PIR.

Lemma 1. There exists a protocol for Rand 1
2PIR that, on a database z ∈ {0, 1}n,

uses a single invocation of 1
2PIR on a database z′ ∈ {0, 1}2n and no additional

interaction.

Proof. The Rand 1
2PIR protocol proceeds as follows. The server maps z to z′ =

(z, z̄). The client picks a random mask r ∈ {0, 1} and maps i to i′ = i + rn. The
parties then invoke the 1

2PIR oracle on inputs (z′, i′). The client’s output in the
Rand 1

2PIR protocol is z′
i′ ⊕ r, where z′

i′ is the output of the 1
2PIR. It is easy to

check that the output is correct, and that the server learns nothing about i if
z′
i′ = 0, which happens with probability 1/2 and is detectable by the client. ��

Given Lemma 1, it suffices to reduce PIR to Rand 1
2PIR. Our reduction relies

on the following strong form of locally decodable codes (LDCs), which can be
viewed as 1-round multi-server PIR protocols with uniform queries of logarithmic
size and a single answer bit. Using a general transformation of LDC to multi-
server PIR from [KT00], such codes are implied by standard LDCs by allowing a
small decoding error probability. For simplicity, we define here only the perfect
notion which is satisfied by the best known LDC constructions.

320 E. Boyle et al.

Definition 8 (Perfect LDC). We say that an encoding function C : {0, 1}n →
{0, 1}N is a q-query perfect LDC, if there exists a probabilistic decoder algorithm
D(i) which probes q bits of the encoding such that the following properties hold:

– Correctness: For every z ∈ {0, 1}n and i ∈ [n], we have Pr[DC(z)(i) = zi] =
1.

– Uniform queries: Letting (i1, . . . , iq) ∈ [N]q be the sequence of indices read
by D(i), it holds that for every j ∈ [q] the index ij is uniformly distributed
over [N].

Our construction of PIR from 1
2PIR encodes the PIR database using a perfect

LDC, and applies a “cautious” decoding strategy by repeatedly (and adaptively)
using Rand 1

2PIR to simulate the LDC decoder while ensuring that at most one
query from each decoding attempt is leaked. This strategy yields the following
theorem.

Theorem 8. Let n(N) and q(N) be functions such that there is a q(N)-query
perfect LDC C : {0, 1}n(N) → {0, 1}N in which both the encoder and the decoder
can be implemented in time poly(N). Then, there exists a protocol that, given
a parameter N , implements in time poly(N) PIR on a database z ∈ {0, 1}n(N)

by using an expected O(q(N) · 2q(N)) (adaptive) calls to 1
2PIR on a database

z′ ∈ {0, 1}N and no additional interaction.

Proof. Let q = q(N). The PIR protocol will make at most q · 2q expected calls
to Rand 1

2PIR, which using Lemma 1 can be implemented using q · 2q+1 expected
calls to 1

2PIR. The protocol starts with the server encoding the PIR database z ∈
{0, 1}n into a codeword Z ∈ {0, 1}N . The client and the server then repeatedly
apply the following procedure until zi is successfully recovered.

1. The client invokes the LDC decoder D(i) to generate query indices (i1, . . . , iq).
2. For j = 1, . . . , q (sequentially), the client and the server invoke Rand 1

2PIR
with client input ij and server input Z. The protocol restarts at Step 1 if ij
leaks (which occurs with probability 1/2), otherwise it continues to the next
j. If all indices Zij

have been successfully retrieved, the client invokes D to
recover zi.

Since the leakage events in different invocations of Rand 1
2PIR are independent,

the expected number of attempts until decoding is fully successful is 2q, and so
the expected number of Rand 1

2PIR invocations is q · 2q. The (perfect) security of
the protocol follows from the fact that in any invocation of D, at most a single
index ij is leaked. By the definition of perfect LDC, this index is uniformly
distributed independently of i. ��

Alternatively, one can implement a worst-case variant of the above reduction
that runs σ copies in parallel, each with a constant failure probability. This
results in a PIR to semi-PIR reduction that has 2−Ω(σ) error probability and
makes O(q(N) ·2q(N)) rounds of calls to 1

2PIR with a total number of O(σ ·q(N) ·
2q(N)) of 1

2PIR calls.

Limits of Practical Sublinear Secure Computation 321

One can instantiate Theorem 8 by using known LDC constructions in sev-
eral ways. In particular, using Reed-Muller LDCs with q(N) = Θ(log N), one
gets PIR with good communication complexity but super-polynomial computa-
tional complexity. To get slightly sublinear PIR with polynomial computational
complexity, we rely on best constant-query LDC constructions from [Efr09].

Corollary 1 (polylogarithmic semi-PIR ⇒ slightly sublinear PIR). The
existence of a polylogarithmic semi-PIR protocol implies the existence of a slightly
sublinear PIR protocol. Moreover, if the semi-PIR protocol has constant round
complexity then so does the PIR protocol.

Proof. The LDC construction from [Efr09] is in fact a perfect LDC according
to our definition, with the following parameters. For any positive integer α,
there is a constant q = q(α), such that there is a q-query perfect LDC with
N(n) = exp(exp(log1/α n)), or n(N) = exp((log log N)α)). Note that n(N)
is bigger than any polylogarithmic function in N . A slightly sublinear PIR is
obtained by chopping a database of size N into blocks of size n(N) and running
the protocol guaranteed by Theorem8 on each block. ��

We note that the existence of “dream LDC” with q = O(1) queries and poly-
nomial length N(n) would imply a stronger reduction that constructs polyloga-
rithmic PIR from polylogarithmic semi-PIR. Thus, ruling out such a reduction
would imply ruling out such dream LDC, which would be considered a break-
through in complexity theory.

Separating semi-PIR from PIR. On the other hand, we show that semi-PIR
is not PIR hard. More broadly, we demonstrate limitations in the possibility of
non-adaptive reductions from PIR to semi-PIR.

We begin by showing that with a single call to semi-PIR one cannot achieve
secure PIR even with small non-trivial correctness.

Theorem 9. There cannot exist any reduction from n-bit PIR to 1
2PIR with

correctness better than 0.6 which makes a single call to 1
2PIR.

Proof. Suppose towards a contradiction that there exists a reduction from PIR
to 1

2PIR via a single call with correctness 0.6. This corresponds to a (randomized)
encoding EDB from x ∈ {0, 1}n to x̂ ∈ {0, 1}n̂ and Eindex from i ∈ [n] to j ∈ [n̂],
where the client learns x̂j and the server learns j iff x̂j = 1 via 1

2PIR. Since
correctness is 0.6, there must exist i �= i′ ∈ [n] for which the distributions {J ←
Eindex(i)} and {J ′ ← Eindex(i′)} are statistically far. By the privacy requirement,
this means the resulting index j or j′ cannot be revealed except with negligible
probability. In turn, this implies x̂j = 0 except with negligible probability over
EDB, Eindex. However, this implies that on a random database x the client has a
negligible advantage in guessing xi, yielding a contradiction. ��

We next build atop this result to further rule out the possibility of a reduction
making two non-adaptive calls.

322 E. Boyle et al.

Theorem 10. There cannot exist any reduction from PIR to 1
2PIR which makes

two parallel calls to 1
2PIR.

Proof. Consider any reduction achieving n-bit PIR, making 2 parallel calls to
1
2PIR. This corresponds to a (randomized) encoding EDB from x ∈ {0, 1}n to
x̂ ∈ {0, 1}n̂ and Eindex from i ∈ [n] to (i1, i2) ∈ [n̂]2. By correctness, for every
i ∈ [n] there exists i′ ∈ [n] for which the distributions {(i1, i2) ← Eindex(i)}
and {(i′1, i

′
2) ← Eindex(i′)} are statistically far. Because of this, for each index

i, it must be that the read values (x̂I1 , x̂i2) take value (1, 1) with negligible
probability over EDB, Eindex. Correctness of the final scheme implies that the
values of (x̂I1 , x̂i2) must have a full bit of entropy over a random database x; in
particular, the value (0, 0) can occur with probability at most 1/2. Then either
x̂i1 or x̂i2 must equal 1 with probability at least 1/4, without loss of generality
say x̂i1 .

Consider, then, the following reduction which makes a single call to 1
2PIR

and achieves correctness 1/2 + 1/8 − negl(n).

1. The server samples x̂ ← EDB(x) and submits x̂ to 1
2PIR.

2. The client samples (i1, i2) ← Eindex(i) and submits i1 to 1
2PIR.

3. The 1
2PIR execution outputs x̂i1 to the client and i1 or ⊥ to the server

(depending on x̂i1).
4. If x̂i1 = 1 then the client executes the decoding procedure for the original

reduction on input (1, 0). Otherwise, he outputs a random bit.

Privacy of this construction follows from privacy of the original reduction.
In the case that x̂i1 = 1, then with overwhelming probability we know that
x̂i2 = 0, and thus the client computes the correct output. This means correctness
of the overall scheme will hold with probability at least 1/4+3/4 ·1/2−negl(n),
contradicting Theorem 9. ��

Because of the degradation in parameters, extending this separation to addi-
tional parallel queries will seem to require new ideas (e.g., for three queries ruling
out (1, 1, 1) gives a smaller boost in correctness when reducing to the two query
case, which is insufficient to directly derive a contradiction). However, as a final
note, we return to the Rand 1

2PIR functionality (used as an intermediate step in
the earlier construction of PIR from 1

2PIR), in which the input index is revealed
with probability 1/2. This setting yields a direct analysis, and we observe that
even O(log n) parallel calls to Rand 1

2PIR cannot yield PIR.

Proposition 1. There cannot exist any reduction from PIR to Rand 1
2PIR mak-

ing c ∈ O(log n) parallel calls to Rand 1
2PIR with negligible correctness error.

Proof. Consider any reduction achieving n-bit PIR, making c ∈ O(log n) parallel
calls to Rand 1

2PIR. This corresponds to a (randomized) encoding EDB from x ∈
{0, 1}n to x̂ ∈ {0, 1}n̂ and Eindex from i ∈ [n] to (i1, . . . , ic) ∈ [n̂]c. By correctness,
there exists i �= i′ ∈ [n] for which the distributions {(i1, . . . , ic) ← Eindex(i)}
and {(i′1, . . . , i

′
c) ← Eindex(i′)} are statistically far. However, with noticeable

probability 2−c ∈ n−O(1), all executions of Rand 1
2PIR will reveal the queried

index, thus revealing the entire vector query (i1, . . . , ic), violating privacy of the
scheme. ��

Limits of Practical Sublinear Secure Computation 323

4.2 Examples of Semi-PIR-Hard Problems

In this section we provide several natural examples for (two-sided) semi-PIR
hard functionalities. The results of the previous section imply that any poly-
logarithmic protocol for these functionalities would imply a slightly sublinear
PIR.

Definition 9 (Two-sided Single Source Single Destination Shortest
Path). Let N ∈ N. Define the two-party functionality SSSDs,t : {0, 1} ˜O(N2) ×
{0, 1} ˜O(N2) → {0, 1}log N ×{0, 1}log N by SSSDs,t(GA, GB) = (shortestpath(GA,
GB)) that expects as input from A and B two directed, complete, weighted graphs
GA, GB respectively, on the same set of N vertices where each weight is in N. The
functionality outputs the shortest path from the source vertex s to the destination
vertex t in the joint weighted directed graph to both A and B.

Theorem 11. Let N ∈ N. The two-sided Single Source Single Destination sho-
rtest Path function SSSDs,t : {0, 1} ˜O(N2)×{0, 1} ˜O(N2) → {0, 1}log N ×{0, 1}log N

is semi-PIR hard.

Proof. We construct a semi-PIR protocol ΠSSSD, by calling functionality SSSD.
Let Z be the server’s input set of size Õ(N2) where each element is a bit, and let
i be the client’s index. Moreover, let (GA, GB) be the two weighted input graphs
provided to the SSSD functionality by the server and the client, respectively.
Protocol ΠSSSD(Z, i) proceeds as follows:

Input Phase:
1. We split the nodes of GA into two sets and the weight of each edge within

each set is equal to infinity. Essentially, we form a complete bipartite
graph with two extra vertices s, t. The source vertex s is connected to the
vertices on the left side and a target vertex t connected to the vertices on
the right side of the bipartite graph. We also consider an edge connecting s
and t. The Server encodes the database Z on O(N2) edges of the bipartite
graph in GA. In particular, the server assigns to edge j the weight 2Zj .
The weight of the edge connecting s and t is set to 1.

2. The client sets up his graph GB such that for the edge of interest i = (u, v)
the weight is set to wB

(
i) = 2 and wB

(
(s, u)) = 0 and wB

(
(v, t)) = 0.

The weights of all other edges are set to infinity.
Evaluation and Output Phase:

Invoke the two-sided SSSD functionality ΠSSSD(GA, GB) that outputs the
shortest path. If the shortest path contains the edge connecting s and t then
Zi = 1, otherwise Zi = 0.
If Zi = 1 then the i’th edge weight is 2, and shortest path will consist of
the single edge connecting s and t, hiding the identity of i. If Zi = 0, the
shortest path contains edge i revealing the index i to the Server.

324 E. Boyle et al.

Definition 10 (Two-sided Closest Destination Problem). Let N ∈ N.
Define the two-party functionality CDP : {0, 1} ˜O(N)×{0, 1} ˜O(log N) → {0, 1}log N

×{0, 1}log N by CDP(G, (s, t1, t2)) = (ClosestDest(G, (s, t1, t2))) that expects as
input a (sparse) graph GA with size Õ(N) description from party A and a source
vertex s along with two target vertices t1, t2 with description size Õ(log N) from
party B. Then, it outputs the identity of the closest destination from s to the
one-out-of-two target vertices dist(s, tb) ≤ dist(s, t1−b) to both A and B while
t1−b remains hidden.

Theorem 12. The two-sided Closest Destination Problem function CDP :
{0, 1} ˜O(N) × {0, 1} ˜O(log N) → {0, 1}log N × {0, 1}log N is semi-PIR hard.

Proof. We construct a semi-PIR protocol ΠCDP, calling functionality
fGA,(s,t1,t2)B

. Let Z be the server’s input set of size Õ(N) where each element is
a bit, and let i be the client’s index. Moreover, let GA, (s, t1, t2)B be the inputs to
the CDP functionality by the server and the client, respectively. ΠCDP proceeds
as follows:

Input Phase:
1. Without loss of generality the Server encodes the database Z on O(N)

edges of a star graph GA with N+2 vertices where the node s is connected
to the other N +1 vertices. The server enumerates all these N +1 vertices
from 1 up to N + 1 and for j ∈ [N] assigns the weight of the edge
connecting s and j to 2Zj and the edge connecting s to N + 1 to 1.

2. The client chooses vertices s, i and N + 1.
Evaluation and Output Phase:

Invoke the two-sided protocol ΠCDP that outputs a target destination. If the
target is vertex i then Zi = 0 and if the target is vertex N + 1 then Zi = 1.
If Zi = 1 then the output is independent of the index i and thus the identity
of i is hidden.

Definition 11 (Two-sided Nearest Neighbor Problem). Define the
two-party functionality NN : {0, 1} ˜O(N) × {0, 1} ˜O(log N) → {0, 1}O(log N) ×
{0, 1}O(log N) by NN(D, loc) that expects as input a list D (of size N) of locations
on the 2-dimensional euclidean plane from party A and a single location loc on
the same plane from party B. Then, it outputs to both parties the location (x, y)
in D that is nearest to location locA.

Theorem 13. The two-sided Nearest Neighbor function NN : {0, 1} ˜O(N) ×
{0, 1} ˜O(log N) → {0, 1}O(log N) × {0, 1}O(log N) is semi-PIR hard.

Proof. We construct a semi-PIR protocol ΠNN, calling functionality NN. Let
Z ∈ {0, 1}N be the server’s input database, and let i be the client’s index.
Moreover, let (D, loc) be the inputs to the NN functionality by the server and
the client, respectively. Protocol ΠNN proceeds as follows:

Limits of Practical Sublinear Secure Computation 325

Input Phase:
1. For j ∈ [N], let (a, b)j be evenly spaced points on a circle with center c

and radius r in the Euclidean plane. The Server generates his input D
to NN with respect to these points in the following way. If Zj = 0 then
set the jth location (x, y)j = (a, b)j . If Zj = 1 set the location (x, y)j

arbitrary outside the circle. In addition, he includes the center point c.
2. The client outputs the location loc that intersects the line crossing from

the centre c and location (a, b)i and the circle with center c and radius
r/2.

Evaluation and Output Phase: Invoke the two-sided protocol ΠNN that
outputs the nearest location to loc. If Zi = 0 then the output is (a, b)i. If Zi = 1
then the output is the centre c which is independent of the index i. That said,
in this case the identity of i is not leaked.

Definition 12 (Two-sided Short-List Selection). Define the two-party
functionality SLS : {0, 1} ˜O(N) × {0, 1} ˜O(log N) → {0, 1}2 log N × {0, 1}2 log N by
SLS(L, (idx0, idx1)) that expects as input a list L of size N and input domain
[N] from party A and two indices (idx0, idx1) from party B. The output is idx0
if Lidx0 < Lidx1 , idx1 if Lidx0 > Lidx1 or both idx0, idx1 if Lidx0 = Lidx1 .

Theorem 14. The two-sided Short-List Selection function SLS : {0, 1} ˜O(N) ×
{0, 1} ˜O(log N) → {0, 1}2 log N × {0, 1}2 log N is semi-PIR hard.

Proof. We construct a semi-PIR protocol ΠSLS, calling functionality SLS. Let
Z be the server’s input set of size N where each element is a bit, and let i be the
client’s index. Moreover, let (L, idx0, idx1) be the inputs to the SLS functionality.
Protocol ΠSLS proceeds as follows:

Input Phase:
1. The Server generates the list L of size N + 1 as follows. For j ∈ [N],

Lj = Zj and LN+1 = 0.
2. The client chooses indices i and N + 1.

Evaluation and Output Phase:
Invoke ΠSLS that outputs the index of the smallest entry or both indices in
case of ties. If Zi = 0 then the indices i and N + 1 are revealed. If Zi = 1
only the N + 1 index is revealed which is independent of i.

Next, we observe that this problem is not PIR-hard by demonstrating it is
implied by 1

2PIR (which is separated from PIR in the above results).

Theorem 15. If there exists a Semi-PIR protocol for a database of size O(N)
that runs in k-rounds, then for every constant c > 0 there exists a protocol for the
two-sided Short-List Selection function SLS : {0, . . . , c} ˜O(N) × {0, 1} ˜O(log N) →
{0, 1}2 log N × {0, 1}2 log N that runs in O(c · k) rounds.

326 E. Boyle et al.

Proof. Let Π be the Semi-PIR protocol. Let L be the input list of fSLS. Modify L
such that each element is in its unary representation with c+1 bits. In particular,
a number n < c in the database is represented in unary by n ones. The rest of the
c + 1 − n most significant bits are set to 0. Construct the semi-PIR database D
by storing all N(c+1) bits of L in such a way that the element with index (idx, �)
is the �-th bit of the element of L with index idx. Let (idx0, idx1) be the input
indices of party B to SLS. Then party A and party B run at most c sequential
rounds, each one consisting of two parallel calls to Π. In the �-th round, where
� ∈ [1, c], party B makes the following two parallel queries for every b ∈ {0, 1}.

Π
(
D, (idxb, �)

)
=

⎧
⎨

⎩

(
⊥,

(
(idxb, �),Didxb,�

))
, if Didxb,� = 1

((
idxb, �

)
,
(
(idxb, �),Didxb,�

))
, if Didxb,� = 0

⎫
⎬

⎭

If for some �, b, Didxb,� = 0 the protocol completes and there are no
more adaptive calls. For the case where Didxb,� �= Didx1−b,� and Didxb,� = 0
then Lidx1−b

> Lidxb
and both parties receive idxb. If Didxb,� = Didx1−b,� then

Lidx1−b
= Lidxb

and both parties receive (idxb, idx1−b).

Combining Theorem 14 with Theorem 15, we obtain the following corollary:

Corollary 2 (Short-List Selection is not PIR-hard). The two-sided Short-
List Selection function SLS : {0, 1} ˜O(N) × {0, 1} ˜O(log N) → {0, 1}2 log N ×
{0, 1}2 log N is not PIR-hard.

5 Low Communication Locally Compressible Problems

In this section, we show that it is actually possible to achieve semi-honest security
for one-sided problems and beyond if the problem satisfies the following notion
of input compressibility.

Definition 13 (Locally Compressible Inputs). We say that a functionality
F : {0, 1}N ×{0, 1}N → {0, 1}m×{0, 1}m has locally compressible inputs if there
exists a preprocessing function Pre : {0, 1}N → {0, 1}Nα

with α < 1 for which
F (X,Y) = F (Pre(X),Pre(Y)).

Local compressibility of the inputs can yield semi-honest secure non PIR-hard
(“easy”) protocols with reduced communication complexity by first executing
the local preprocessing and then calling a generic two-party protocol on the
preprocessed input data.

In the following section we show that two optimization problems that satisfy
the above property admit low communication complexity and are not PIR-hard.
The first problem is the minimum spanning tree and the second one is the median
protocol for a certain predicate on the output specified in Sect. 5.2.

Limits of Practical Sublinear Secure Computation 327

5.1 Revisiting the Minimum Spanning Tree Protocol

A Minimum Spanning Tree (MST) of an edge-weighted graph is a spanning tree
whose weight is no larger than the weight of any other spanning tree. More
formally, given a connected, undirected graph G = (V,E), a spanning tree is an
acyclic subset of edges T ⊆ E that connects all the vertices together. Assuming
that each edge e=(u,v) of G has a numeric weight or cost, w(e), we define the
cost of a spanning tree T to be the sum of edges in the spanning tree

w(T) =
∑

(u,v)∈T

w(u, v).

MST is a spanning tree of minimum weight. Note that the MST may not in
general be unique, but it is true that if all the edge weights are distinct, then
the MST will be unique.

Definition 14 (MST functionality). Let N ∈ N. We define the two-party
functionality fMSTN

(GA, GB) = (T, T) which on input two connected, unidirected
graphs GA = (VA, EA, wA) and GB = (VB , EB , wB) of size N with distinct edges
where VA = VB and wA(e), wB(e) represent the weight of edge e in GA and GB,
outputs a subset of edges T ⊆ EA ∪EB that connect all the vertices together with
the minimum weight w(T) =

∑
(e)∈T w(e).

An efficient sublinear-communication protocol for two-sided MST was given
in [SV15].

Two-Sided Locally Compressible MST. In the sequel, we show that the
MST protocol has locally compressible inputs and admits “easy” low communi-
cation secure protocols. Beyond the results of [SV15], this approach enables such
protocols for secure computation of functions of the MST (whereas the [SV15]
protocol only supports MST itself).

Theorem 16. Let n ∈ N, and let {0, 1}� be the input domain of edge weights.
Then for any function g : {0, 1}2�·n → {0, 1}n′

with circuit size o(N), there
exists a secure two-party computation protocol ΠMST for the functionality g ◦
fMSTn2 : {0, 1}�·n2 × {0, 1}�·n2 → {0, 1}n′

which achieves statistical security in
the preprocessing model, with communication complexity Õ(n) ∈ o(N) (where
N = � · n2).

Proof. We proceed by constructing an MST protocol ΠMST, as per Definition 14,
calling the preprocessing function Pre : {0, 1}n2 → {0, 1}n as per Definition 13.
Let (GA, GB) be the connected, unidirected graphs provided to the ΠMST pro-
tocol by party A and party B, respectively.

328 E. Boyle et al.

Protocol ΠMST(GA, GB):

Input Phase:
The preprocessing function Pre on input a graph G outputs its MST, denoted

by MST(G). In this phase each party locally computes Pre(GA) and Pre(GB)
to obtain MST(GA) and MST(GB), respectively.

Evaluation and Output Phase:
Given two graphs G1 = (V1, E1, w1) and G2 = (V2, E2, w2) we denote by
G1 & G2 the graph G = (V,E,w) with V = V1, E = E1 ∪ E2 and for each
edge e ∈ E, w(e) = min(w1(e), w2(e)).
Let Π denote a generic two-party protocol in the is run in order to compute
and output MST((MST(GA) & MST(GB)) to both parties.

In order to prove correctness of the above protocol ΠMST, we need to
prove that the local compressibility does not alter the final output. More
specifically, we need to show that ∀e ∈ MST(GA & GB) it is implied that
e ∈ MST((MST(GA) & MST(GB)).

Suppose for contradiction that there is an edge e in GB that is in the
MST(GA & GB) but not in MST(GB). Consider the cut C of vertices (cre-
ated by drawing a line that intersects the middle of the edge e), that contains
only the edge e of MST(GA & GB) (it exists since by definition there no cycles
in the MST). It must be the case that e is the lightest edge of GA & GB in
this cut C, otherwise we can swap it out with a lighter edge and contradict the
minimality of MST(GA & GB). A swap is defined by adding in e, forming a cycle
in the graph, therefore removing the other edge in this cut and cycle, which is
by assumption strictly heavier.

However, all edge weights in GA & GB are smaller or equal to the weights in
GB , since we take the minimum weight at every edge. This means that e must
also be the lightest edge of GB in this cut. But this contradicts minimality of
MST(GB) since we could always swap some edge of MST(GB) in this cut with
e to get a strictly cheaper MST. Finally, since without loss of generality we can
consider disjoint edges and connected graphs the edge e must also be included
in the final tree MST((MST(GA) & MST(GB)). This concludes the proof.

Security of the protocol ΠMST follows immediately from the security of the
Π protocol. Furthermore, it is clear that the communication complexity of the
ΠMST(GA, GB) in the RAM model is Õ(n) since after the local compressibility
the input size to the generic two-party protocol Π is reduced to O(n), making
use of a generic statistically secure ORAM-based protocol. ��

5.2 Revisiting the Two-Sided Median Predicates Protocol

In the sequel, we focus on the case of predicates on the output of the median
protocol and in particular on the high-order bits of their input.

Theorem 17. Let N ∈ N and let {0, 1}� be the input domain. For any predicate
P : {0, 1}� → {0, 1} which depends only on the o(log N) most significant bits

Limits of Practical Sublinear Secure Computation 329

of the input, there exists a secure two-party computation protocol Π
pMEDP�

N
for

the functionality pMedP
N which achieves statistical security in the preprocessing

model, with communication complexity o(N).

Proof. We proceed by constructing the Π
pMEDP�

N
protocol, calling the prepro-

cessing function Pre : {0, 1}N → {0, 1}o(N) as per Definition 13. Let X,Y ⊂
({0, 1}�)N be two input sets from party A and party B, respectively, sorted in
increasing order such that |X ∪ Y | = 2N . Protocol Π

pMEDP�
N

(X,Y) proceeds as
follows:

Input Phase:
The preprocessing function Pre on input a set S outputs a compressed output

Pre(S) of 2� ∈ o(N)-size, denoted by �′-size, count vector corresponding
to the number of occurrences of each length-�′ prefix within the elements
of the set. More specifically, since there are 2�′

different representations
for the �′ most significant bits, party A computes a counter vector cA =
(cA

1 , . . . cA
2�′) counting the appearance of each possible representation in the

most significant bits of each element in the set X. Respectively, party B
computes his counter vector cB = (cB

1 , . . . cB
2�′).

Evaluation and Output Phase:
Let Π denote a generic two-party protocol Π(cA, cB) which on input the
sets cA, cB , outputs to both parties the predicate result. For our purposes,
protocol Π is computing the median of the prefixes as encoded by the counter
vectors cA, cB .

Correctness of the above protocol Π
pMEDP�

N
follows from the correctness of the

Π, which does output the correct output predicate guaranteed by the structure of
cA, cB . More specifically, since the high-order prefix of the median is equal to the
median of the corresponding high-order prefixes, this short count vector carries
sufficient information to evaluate the desired output predicate. Security follows
immediately from the security of the protocol Π. The communication complexity
of the Π

pMEDP�
N

(X,Y) protocol is o(N) since after the local compressibility the
input size to the generic two-party protocol Π is set to o(N). ��

6 Concluding Remarks and Open Problems

Our work initiates an effort to design a rigorous complexity framework for iden-
tifying “hard” tasks, to which previous techniques for low-complexity sublinear
MPC cannot possibly apply, making the first broad strokes of classifying natural
problems as “hard” or “potentially easy.” The framework we propose is not per-
fect, and indeed, problems that are “potentially easy” are not necessarily easy.
This is also the case for the theory of NP-completeness, where some problems
that are conjectured not to be NP-hard (such as integer factorization) are also
conjectured to be not easy. However, again like NP-completeness, our framework

330 E. Boyle et al.

does provide meaningful and useful separations between different flavors of nat-
ural problems that would otherwise look very similar. This can help understand
and guide MPC solutions over big data.

There are many questions left to be studied. Whereas for one-sided func-
tionalities, VC-dimension gives a good combinatorial characterization for PIR-
hardness (restricted to deterministic, non-interactive reductions), the situation
for two-sided functionalities is not as well understood unless the output is very
short. Is there a natural analogue of VC-dimension that captures PIR-hardness
and semi-PIR-hardness of two-sided functionalities? What about multi-party
functionalities, or two-party functionalities that deliver different outputs to the
two parties? What about extending our framework to the setting of security
against malicious parties?

The relation between semi-PIR to PIR is also only partially understood.
While we show that strong semi-PIR implies weak (but nontrivial) PIR, it is
not clear that our reduction is the best possible. In particular, our reduction
makes use of non-trivial machinery of locally decodable codes, it requires mul-
tiple rounds of calls to the semi-PIR oracle, and exhibits a tradeoff between
communication and local computation. Are these nonstandard features inher-
ent? For instance, can we rule out parallel reductions of this type, or prove that
any reduction that makes few (sequential) calls to the semi-PIR oracle implies
a locally decodable code with related parameters?

As discussed above, problems that escape our notions of hardness are not
necessarily easy. It would be interesting to identify natural candidate problems
of this kind and try to refine our hardness notions to capture them.

Finally, is there a useful hierarchy of hardness classes beyond PIR-hardness
and Semi-PIR-hardness? For instance, one could try to capture different levels
of “somewhat homomorphic encryption” that are more expensive to implement
than PIR, say, corresponding to the circuit depth or algebraic degree.

Acknowledgements. The first author was supported by ISF grant 1861/16, AFOSR
Award FA9550-17-1-0069, and ERC grants 307952, 742754. The second author was
supported in part by ERC grant 742754, ISF grant 1709/14, NSF-BSF grant 2015782,
and a grant from the Ministry of Science and Technology, Israel and Department of
Science and Technology, Government of India. The third author was supported by
NSF grants 1617676, 1526377 and 1618884, IBM under Agreement 4915013672 and
the Packard Foundation under Grant 2015-63124.

References

[AMP10] Aggarwal, G., Mishra, N., Pinkas, B.: Secure computation of the median
(and other elements of specified ranks). J. Cryptol. 23(3), 373–401 (2010)

[BGW88] Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract),
pp. 1–10 (1988)

Limits of Practical Sublinear Secure Computation 331

[BIKO12] Beimel, A., Ishai, Y., Kushilevitz, E., Orlov, I.: Share conversion and pri-
vate information retrieval. In: Proceedings of the 27th Conference on Com-
putational Complexity, CCC 2012, Porto, Portugal, 26–29 June 2012, pp.
258–268 (2012)

[BIM04] Beimel, A., Ishai, Y., Malkin, T.: Reducing the servers’ computation in
private information retrieval: PIR with preprocessing. J. Cryptol. 17(2),
125–151 (2004)

[BIPW17] Boyle, E., Ishai, Y., Pass, R., Wootters, M.: Can we access a database both
locally and privately? In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part II.
LNCS, vol. 10678, pp. 662–693. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-70503-3 22

[BS05] Brickell, J., Shmatikov, V.: Privacy-preserving graph algorithms in the semi-
honest model. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp.
236–252. Springer, Heidelberg (2005). https://doi.org/10.1007/11593447 13

[BV14] Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption
from (standard) LWE. SIAM J. Comput. 43(2), 831–871 (2014)

[Can01] Canetti, R.: Universally composable security: a new paradigm for crypto-
graphic protocols. In: 42nd Annual Symposium on Foundations of Com-
puter Science, FOCS 2001, Las Vegas, Nevada, USA, 14–17 October 2001,
pp. 136–145 (2001)

[CCD88] Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure
protocols (extended abstract). In: Proceedings of the 20th Annual ACM
Symposium on Theory of Computing, Chicago, Illinois, USA, 2–4 May 1988,
pp. 11–19 (1988)

[CHR17] Canetti, R., Holmgren, J., Richelson, S.: Towards doubly efficient private
information retrieval. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part II.
LNCS, vol. 10678, pp. 694–726. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-70503-3 23

[CKGS98] Chor, B., Kushilevitz, E., Goldreich, O., Sudan, M.: Private information
retrieval. J. ACM 45(6), 965–981 (1998)

[CMS99] Cachin, C., Micali, S., Stadler, M.: Computationally private information
retrieval with polylogarithmic communication. In: Stern, J. (ed.) EURO-
CRYPT 1999. LNCS, vol. 1592, pp. 402–414. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48910-X 28

[Efr09] Efremenko, K.: 3-query locally decodable codes of subexponential length.
In: Proceedings of the 41st Annual ACM Symposium on Theory of Com-
puting, STOC 2009, Bethesda, MD, USA, 31 May–2 June 2009, pp. 39–44
(2009)

[Gen09] Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceed-
ings of the 41st Annual ACM Symposium on Theory of Computing, STOC
2009, Bethesda, MD, USA, 31 May–2 June 2009, pp. 169–178 (2009)

[GMW87] Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or
a completeness theorem for protocols with honest majority. In: Proceedings
of the 19th Annual ACM Symposium on Theory of Computing, New York,
USA, pp. 218–229 (1987)

[IKM+13] Ishai, Y., Kushilevitz, E., Meldgaard, S., Orlandi, C., Paskin-Cherniavsky,
A.: On the power of correlated randomness in secure computation. In: Sahai,
A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 600–620. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-36594-2 34

https://doi.org/10.1007/978-3-319-70503-3_22
https://doi.org/10.1007/978-3-319-70503-3_22
https://doi.org/10.1007/11593447_13
https://doi.org/10.1007/978-3-319-70503-3_23
https://doi.org/10.1007/978-3-319-70503-3_23
https://doi.org/10.1007/3-540-48910-X_28
https://doi.org/10.1007/978-3-642-36594-2_34

332 E. Boyle et al.

[IKNP03] Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious trans-
fers efficiently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp.
145–161. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-
45146-4 9

[KO97] Kushilevitz, E., Ostrovsky, R.: Replication is NOT needed: SINGLE
database, computationally-private information retrieval. In: 38th Annual
Symposium on Foundations of Computer Science, FOCS 1997, Miami
Beach, Florida, USA, 19–22 October 1997, pp. 364–373 (1997)

[KT00] Katz, J., Trevisan, L.: On the efficiency of local decoding procedures for
error-correcting codes. In: Proceedings of the Thirty-Second Annual ACM
Symposium on Theory of Computing, Portland, OR, USA, 21–23 May 2000,
pp. 80–86 (2000)

[Lip05] Lipmaa, H.: An oblivious transfer protocol with log-squared communica-
tion. In: Zhou, J., Lopez, J., Deng, R.H., Bao, F. (eds.) ISC 2005. LNCS, vol.
3650, pp. 314–328. Springer, Heidelberg (2005). https://doi.org/10.1007/
11556992 23

[MBFK16] Aguilar Melchor, C., Barrier, J., Fousse, L., Killijian, M.-O.: XPIR: private
information retrieval for everyone. PoPETs 2016(2), 155–174 (2016)

[NAT89] Natarajan, B.K.: On learning sets and functions. Mach. Learn. 4, 67–97
(1989)

[SV15] Shelat, A., Venkitasubramaniam, M.: Secure computation from millionaire.
In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015, Part I. LNCS, vol.
9452, pp. 736–757. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-48797-6 30

[VC71] Vapnik, V.N., Chervonenkis, A.Y.: On the uniform convergence of relative
frequencies of events to their probabilities. Theory Probab. Appl. 16(2),
264–280 (1971)

[Yao82] Yao, A.C.-C.: Protocols for secure computations (extended abstract). In:
FOCS, pp. 160–164 (1982)

https://doi.org/10.1007/978-3-540-45146-4_9
https://doi.org/10.1007/978-3-540-45146-4_9
https://doi.org/10.1007/11556992_23
https://doi.org/10.1007/11556992_23
https://doi.org/10.1007/978-3-662-48797-6_30
https://doi.org/10.1007/978-3-662-48797-6_30

Garbling

Limits on the Power of Garbling
Techniques for Public-Key Encryption

Sanjam Garg1, Mohammad Hajiabadi1,2, Mohammad Mahmoody2(B),
and Ameer Mohammed2

1 University of California, Berkeley, Berkeley, USA
2 University of Virginia, Charlottesville, USA

mohammad@virginia.edu

Abstract. Understanding whether public-key encryption can be based
on one-way functions is a fundamental open problem in cryptography.
The seminal work of Impagliazzo and Rudich [STOC’89] shows that
black-box constructions of public-key encryption from one-way functions
are impossible. However, this impossibility result leaves open the possi-
bility of using non-black-box techniques for achieving this goal.

One of the most powerful classes of non-black-box techniques, which
can be based on one-way functions (OWFs) alone, is Yao’s garbled circuit
technique [FOCS’86]. As for the non-black-box power of this technique,
the recent work of Döttling and Garg [CRYPTO’17] shows that the use
of garbling allows us to circumvent known black-box barriers in the con-
text of identity-based encryption.

We prove that garbling of circuits that have OWF (or even random
oracle) gates in them are insufficient for obtaining public-key encryption.
Additionally, we show that this model also captures (non-interactive)
zero-knowledge proofs for relations with OWF gates. This indicates
that currently known OWF-based non-black-box techniques are perhaps
insufficient for realizing public-key encryption.

1 Introduction

Public-key encryption (PKE) [15,33] is a fundamental primitive in cryptog-
raphy and understanding what assumptions are sufficient for realizing it is a

S. Garg—Research supported in part from DARPA/ARL SAFEWARE Award
W911NF15C0210, AFOSR Award FA9550-15-1-0274, AFOSR YIP Award, DARPA
and SPAWAR under contract N66001-15-C-4065, a Hellman Award and research
grants by the Okawa Foundation, Visa Inc., and Center for Long-Term Cybersecu-
rity (CLTC, UC Berkeley). The views expressed are those of the author and do not
reflect the official policy or position of the funding agencies.
M. Hajiabadi—Supported by NSF award CCF-1350939 and AFOSR Award FA9550-
15-1-0274.
M. Mahmoody—Supported by NSF CAREER award CCF-1350939, a subcontract
on AFOSR Award FA9550-15-1-0274, and University of Virginia’s SEAS Research
Innovation Award.
A. Mohammed—Supported by Kuwait University and the Kuwait Foundation for
the Advancement of Science. Work done while at University of Virginia and visiting
University of California, Berkeley.

c© International Association for Cryptologic Research 2018
H. Shacham and A. Boldyreva (Eds.): CRYPTO 2018, LNCS 10993, pp. 335–364, 2018.
https://doi.org/10.1007/978-3-319-96878-0_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96878-0_12&domain=pdf

336 S. Garg et al.

foundational goal. Decades of research have provided us with numerous construc-
tions of PKE from a variety of assumptions; see a recent survey by Barak [5].
However, all known constructions of PKE require computational assumptions
that rely on rich structure and are stronger than what is necessary and suffi-
cient for private-key cryptography, namely the mere existence of one-way func-
tions (OWF). The seminal work of Impagliazzo and Rudich [23] provides some
evidence that this gap between the assumption complexity of private-key and
public-key encryption may be inherent. In particular, the work of [23] shows that
there is no black-box construction of PKE from OWFs.1

When studying the impossibility of basing PKE on OWFs, focusing on a class
of constructions (e.g., black-box constructions as in [23]) is indeed necessary. The
reason is that to rule out “OWFs implying PKE” in a logical sense, we have to
first prove the existence of OWFs unconditionally (thus, proving P �= NP) and
then rule out the existence of PKE altogether (thus breaking all assumptions
under which PKE exists). That is why this line of separation results focuses on
ruling out the possibility of using certain techniques or generic proof methods
(here black-box techniques) as possible natural paths from OWFs to PKE.

Garbled circuits. Over the past few decades, garbling techniques [1,9,25,
35] (or randomized encodings [24] more generally) have been extensively used
to build many cryptographic schemes. Roughly speaking, in a circuit garbling
mechanism, a PPT encoder Garb(C) takes a circuit C as input, and outputs a
garbled circuit ˜C and a set of input labels {labeli,b}i∈[m],b∈{0,1} where m is the
number of input wires of C. Using another algorithm Eval(·), one can use the
garbled circuit ˜C and input labels {labeli,xi

}i∈[m] for an input x = (x1, . . . , xm),
to compute C(x) without learning any other information. Note that if the original
circuit C needs to run a cryptographic primitive f internally (e.g., a circuit C
for a pseudorandom generator built from a OWF f), this use of garbling leads
to a non-black-box construction. This is because the algorithm Garb needs to
work with an actual circuit description of C, whose circuit description is in turn
obtained by the circuit description of f , hence making non-black-box use of f .

Garbling, as a primitive, may itself be realized using one-way functions
[25,35]. This puts forward the intriguing possibility of basing PKE solely on
OWFs by making black-box use of garbling mechanisms over circuits that can
run the one-way function. As stated above, such constructions will make non-
black-box use of the underlying OWF (caused by garbling circuits that run the
OWF internally) and hence the impossibility result of Impagliazzo and Rudich
[23] has no bearing on such potential constructions. In fact, such non-black-box
garbling techniques, combined with the Computational Diffie-Hellman assump-
tion, have recently been used by Döttling and Garg [16] to circumvent black-box
impossibility results [11,29] in the context of identity-based encryption (IBE).
Thus, it is natural to ask:

Can non-black-box garbling techniques be used to realize PKE from OWFs?
1 A (fully) black-box construction is one that treats the OWF as an oracle, and the

security proof uses the OWF and the adversary both as oracles; see the surveys of
[4,32] for formal definitions.

Limits on the Power of Garbling Techniques for Public-Key Encryption 337

Our model. We study the above question in the model of Brakerski et al. [12]
(see also follow up works [2,3,10]) which gives a general way of capturing non-
black-box techniques via circuits with cryptographic gates (e.g., OWF gates).
More formally, we will model the above-stated garbling-based non-black-box use
of one-way functions as black-box use of garbling mechanisms that can take as
input circuits C with one-way function (or even random oracle) gates planted in
them. Such constructions are indeed non-black-box according to the taxonomy
of [32] if viewed as standalone constructions solely based on the OWF itself. We
stress that the allowed access to the garbling mechanism itself is black-box; the
non-black-box feature arises from the fact that circuits with OWF gates may
now be garbled.

A more sophisticated scenario is when the circuits being garbled have garbling
gates, in addition to OWF gates, planted in them. We do not, however, consider
such a recursive scenario and we leave it to future work. It is crucial to note that,
to the best of our knowledge, all known constructions that make use of garbling
schemes together with one-way functions (e.g., [8,17,26]) fall into our model,
and thus, understanding the limitations of such techniques towards obtaining
PKE is impactful.

1.1 Our Result

In this work, we show that black-box use of garbling mechanisms that allow
circuits with OWF gates to be garbled is not sufficient for constructing PKE.
More precisely, we prove the following.

Theorem 1 (Main result – informally stated). There exists no black-box
construction of public-key encryption schemes from any one-way function (or
even a random oracle) f together with a garbling mechanism that can garble
oracle-aided circuits with f-gates embedded in them.

Comparison with prior work: impossibility from weaker garbling. The
work of Asharov and Segev [2] showed that secret-key functional encryption
with one-way function gates cannot be used (as a black-box) to obtain public-
key encryption (or even key agreement). This result implies that for the special
case of such weaker garbling schemes, called non-decomposable garbling, where
the entire input is considered as a single unit (rather that as bit-by-bit input
labels) is insufficient for realizing PKE.

On the other hand, throughout this work we use garbling to refer to a notion
that supports bit-by-bit input labels, a notion that Bellare, Hoang and Rogaway
[9] refer to as projective garbling (a.k.a. decomposable garbling). Under projec-
tive garbling, for a circuit C of input size m, one generates two garbled label
{labeli,b}i∈[m],b∈{0,1} for the ith input wire of the circuit. An important property
enabled by this bit-by-bit garbling is the decomposability property: one can pick
a garbled label for each input wire to form a garbled input for a long string. In

338 S. Garg et al.

contrast, under non-decomposable garbling, for each input X to the circuit, one
independently generates a corresponding garbled input ˜X. As a result, different
strings have independent garbled inputs.

We note that projective garbling is crucial for many applications of garbling.
For example, even the most basic application of garbling in two party secure
computation based on oblivious transfer uses the projective property. We refer
the reader to [9, Fig. 3] for a detailed list of applications that require projective
garbling. As a recent example, we note that the IBE construction of Döttling and
Garg [16] (that circumvents a black-box impossibility result of Papakonstantinou
et al. [29] using garbling) uses projective garbling crucially. Specifically, in [DG17]
the encryptor provides a sequence of garbled circuits with no knowledge of what
input each of those garbled circuits are later evaluated on by the decryptor.
This input-obliviousness property is enabled by the encryptor sending all the
bit-by-bit garbled labels in some encrypted form to the decryptor. Later, the
decryptor can open exactly one garbled label for each input wire, hence obtaining
a garbled input for the whole string. This input-obliviousness technique cannot
be enabled using non-decomposable garbling. This is because a whole garbled
input cannot be formed there by putting together smaller pieces. As a result,
the party who generates a garbled circuit must be aware of the input on which
this garbled circuit is to be evaluated on, in order for him to be able to provide
the corresponding garbled input.

1.2 Extensions

Extension to key agreements. Our proof extends to rule out any black-box
construction of constant-round key-agreement protocols from OWFs and gar-
bling schemes for oracle-aided circuits. However, the proof of the separation for
key-agreement beyond the case of two message protocols (which are equivalent
to PKE) becomes much more involved. Therefore, for clarity of the presentation,
and because the most interesting special case of constant-round key-agreement
protocols happens to be PKE itself, in this presentation, we focus on the case of
separation for PKE. See Section the full version for more details.

Resolving an open question of [12]. The work of [12] proved non-black-
box limitations for one-way functions when used as part of zero knowledge
(ZK) proofs for relations with one-way function gates. They showed that key-
agreement protocols with perfect completeness cannot be realized in a ‘black-box’
way from oracles that provide a one-way function f together with ZK proofs of
satisfiability for f -aided circuits. They left ruling out the possibility of proto-
cols with imperfect (e.g., negligible) completeness as an open problem, as their
techniques indeed crucially relied on the perfect completeness assumption. We
demonstrate the power of our new techniques in this work by resolving the open
problem of [12] along the way, for the case of PKE schemes (or even constant-
round key-agreement schemes). In particular, in the full version of the paper,
we observe that the oracles we use for proving ourseparations for the case of

Limits on the Power of Garbling Techniques for Public-Key Encryption 339

garbling, indeed imply the existence of NIZK proofs for satisfiability of circuits
with OWF-gates. The extension of the result of [12] explained above then follows
from the above observation.

1.3 Related Work and Future Directions

There are quite a few results that prove limitations for a broad class of non-
black-box techniques [20,30,31], so long as the security reduction is black-box.
In other words, these results are proved against basing certain primitives on
any falsifiable assumption. However, when it comes to the case of non-black-box
constructions of PKE from OWFs, no such general separations are known (and
proving such results might in fact be impossible).

As described earlier, the works of [2,12] proved limitations of certain non-
black-box constructions of PKE from OWFs. This is indeed the direction pursued
in this work. The work of Dachman-Soled [14] takes yet another path, showing
that certain non-black-box uses of one-way functions in the security proof are
incapable of obtaining PKE from OWFs.

We note that we only consider a setting in which circuits with random oracle
gates are garbled. We do not allow garbling of circuits which themselves include
garbling gates. Such techniques are captured by the so called monolithic model
of Garg, Mahmoody, and Mohammed [18,19]. We leave open the problem of
ruling out such constructions.

Finally, as noted above, the extension of our results to the key-agreement
setting (discussed in the full version) only cover the constant-round case. The
reason is that, during the proof of our main result, we modify the protocol
iteratively, once for each round, which increases the parameters of the protocol
by a polynomial factor each time. We leave the extension to general polynomial-
round protocols as an interesting future direction.

Organization. In Sect. 2 we give an overview of our approach and techniques.
In Sect. 3 we give some definitions and basic lemmas. In Sect. 4 we will go over
the proof steps of our main impossibility result. See the full version of the paper
for full proofs of the main result and the extensions.

2 Technical Overview

For brevity, we refer to the primitive of a one-way function f and garbling circuits
with f gates as GC-OWF. As usual in black-box separation results, we will prove
our main theorem by providing an oracle O relative to which secure GC-OWF
exists, but secure PKE does not.

2.1 Big Picture: Reducing the Problem to the Result of [23]

At a very high level, our approach is to reduce our problem to the result of [23].
Namely, we aim to show that one can always modify the PKE construction that

340 S. Garg et al.

is based on the GC-OWF oracle O into a new one that is almost as secure, but
which no longer uses the garbling part of the oracle O. In other words, we modify
the construction so that it becomes a construction from an OWF oracle alone.
Our main result, then, follows from the impossibility result of [23] which rules
out the possibility of getting PKE from one-way (or even random) functions. We
call this process ‘compiling out the garbling part’ from the PKE construction.

As a technical remark, our transformation does not result in a normal black-
box construction of PKE from OWFs, but rather results in an inefficient one
which nonetheless makes a polynomial number of queries to the OWF oracle.
The key point is that the proof of the work of Impagliazzo and Rudich [23] allows
us to break any such (even inefficient, but still polynomial-query) constructions
of PKE in the random oracle model using a polynomial number of queries during
the attack. Our actual result follows by combining our compilation result with
the result of [23], to get a polynomial query attack against the security of the
original PKE. This will be sufficient for a black-box separation.

At a high level, our approach also bears similarities to recent impossibility
results for indistinguishability obfuscation [18] as we also compile out the more
powerful (and structured) parts of the oracle, ending up with a scheme that uses
a much simpler oracle, for which an impossibility is known. However, there is
a subtle distinction here. Unlike the results of [13,18,27,28], when we compile
out the garbling-related queries from the PKE construction, we end up with
an inefficient scheme that potentially runs in exponential time but nevertheless
makes a polynomial number of queries. However, as mentioned above, this is fine
for deriving our separation, because we can still rely on the fact that the result
of [23] does something stronger and handles inefficient constructions as well.

2.2 Our Separating Idealized GC-OWF Oracle

In this subsection, we will first describe our oracle O that gives an intuitive way
of obtaining GC-OWFs. The natural first version of this oracle is too strong as
it also implies virtual black-box (VBB) obfuscation. We will then add a careful
weakening subroutine to this oracle O to prevent it from implying obfuscation.
In the next subsection we describe the ideas behind how to compile out the
garbling-related subroutines of O from the PKE construction, while keeping the
PKE construction “secure”.

Our 1st oracle for GC-OWF. Our first version of the separating oracle
O = (f, Lf) will consist of a random oracle f (giving the OWF part) as well
a garbling part Lf = (gc, evalf) with two subroutines. The encoding/garbling
subroutine gc(s,C) is simply a random (injective) function that takes a seed
s and a circuit C and maps them into a garbled circuit ˜C as well as labels
{labeli,b}i∈[n],b∈{0,1} for the input wires of C where n is the number of input
wires in C.2 The evaluation subroutine evalf takes as input a garbled circuit ˜C

2 In the main body, we will use two separate subroutines gc, gi for encoding circuits
vs input labels, but for brevity here we combine them into one subroutine.

Limits on the Power of Garbling Techniques for Public-Key Encryption 341

as well as a vector of input labels ˜X = (x̃1 · · · x̃n) and only if they were all
encoded using the same seed s, evalf returns the right output Cf (x1, . . . , xn).
Note that we include f in the representation of evalf but not in that of gc; the
reason is gc is simply a random oracle (independent of f), while evalf needs to
call f in order to compute Cf (x1, . . . , xn).

Adding the weakening subroutine rev. It is easy to see that this first version
of the oracle O as described above can realize a secure GC-OWF, but it can do
much more than that! In fact this oracle implies even VBB obfuscation of circuits
with f gates (which in turn does imply PKE [34]). We will, therefore, weaken
the power of the oracle O later on by adding an extra subroutine to it (which we
will call rev), which roughly speaking allows an attacker to break the garbling
scheme if she has access to two labels for the same wire. We will describe this
subroutine after it becomes clear how it will be useful for our main goal of
compiling out the garbling aspect of O. Also note that, since we are defining
our oracle after the (supposed) construction of PKE from GC-OWF is fixed,
without loss of generality, the PKE construction from GC-OWF does not call
the extra subroutine rev. This separation technique was also used before in the
work of [21] and is reminiscent of the “two-oracle” approach of [22].

2.3 Compiling Out the Garbling Power of O from the Construction

Suppose EO = (GO, EO,DO) is a fully black-box construction of PKE using the
oracle O described above. Our goal here is to ‘reduce’ our problem (of breaking
EO using a polynomial number of queries) to the result of [23] by compiling out
the ‘garbling power’ of the oracle O from the scheme EO. But what subroutines
do we have to compile out from E? As it turns out, we do not have to eliminate
both gc and evalf subroutines; removing only evalf queries will suffice.

Compiling out evalf queries from PKE constructions EO. If we make sure
that (the modified but “equally”-secure version of) E does not make any calls
to the evalf subroutine of the oracle O, it would be sufficient for our purposes,
because the oracle O′ = (f, gc) is just a random oracle, and by the result of
[23] we know that such oracle is not enough for getting PKE in a black-box way.
Therefore, in what follows, our goal reduces to (solely) removing the evalf queries
from PKE constructions EO in a way that we can argue the new construction is
‘as secure’ as the original one.

In order to make our proof more modular, we compile out evalf queries from
the different components (i.e., key-generation G, encryption E, and decryption
D) of the construction EO = (GO, EO,DO) one at a time. First, we may easily
see that GO does not need to call evalf at all. This is because GO is the first
algorithm to get executed in the system, and so GO knows all the generated
garbled circuits/labels. Therefore, GO can, instead of calling evalf queries, simply

342 S. Garg et al.

run Cf (X) on its own by further calls to f .3 Now, we proceed to compile out
evalf queries from the remaining two subroutines E and D in two steps. In
each step, we assume that we are starting off with a construction that has no
evalf queries in some of its subroutines, and then we modify the construction to
remove evalf queries from the next subroutine.

– Step 1: Starting with E = (Gf,gc, EO,DO), we will compile E into a new
scheme Ė = (Ġf,gc, Ėf,gc,DO), removing evalf queries asked by EO. We have
to make sure Ė is ‘almost as secure’ as the original scheme E . This step is
detailed in Sect. 4.1.

– Step 2: Given E = (Gf,gc, Ef,gc,DO), we compile E into a new scheme Ë =
(G̈f,gc, Ëf,gc, D̈f,gc), removing evalf queries asked by DO. Again, we have to
make sure Ë is ‘almost as secure’ as the original one. This step is detailed in
Sect. 4.2.

Once we accomplish both of the steps above, we will combine them into
a single compiler that removes evalf queries from EO, obtaining another PKE
construction that is secure in the random oracle model (which we already know
is impossible by the result of [23]).

Overview of Step 1. Let us start by looking at eval queries of the encryption
algorithm EO(pk, b). Since the subroutine gc of oracle O is just a random map-
ping, for any eval query on inputs (˜C, ˜X), denoted qu = ((˜C, ˜X) −−→

eval
?), made

by EO and whose answer is not trivially ⊥, we must have either of the following
cases. Either (a) ˜C was produced as a result of a gc query during the execution
of E itself or (b) ˜C was produced during the execution of G which has led to the
generation of the public key pk. If case (a) holds, then E does not need to make
that particular eval query at all. If case (b) holds, then in order to allow Ėf,gc to
simulate EO without calling evalf , the algorithm Ėf,gc will resort to some ‘hint
list’ H attached to pk by Ġf,gc. That is, a compiled public key ṗk produced by
Ġf,gc will now contain the original pk as well as a hint list H. Below, we further
explain how the hint H is formed.

How Ġf,gc forms the hint list H. A naive idea is to let H contain all the
query/response pairs made by Gf,gc to generate pk. This method hurts security.
A better idea is to provide in H answers to individual eval queries like eval(˜C, ˜X)
that are likely to be asked by EO(pk, b), and where ˜C was generated by Gf,gc.
That is, Ġf,gc would run EO(pk, b) many times and would let H contain all
encountered eval queries as well as their answers. Note that Ġf,gc could simulate
almost perfectly a random execution of EO(pk, b) without calling eval since Ġ
knows the randomness seeds of all the garbled circuits so far. However, this
approach also fails! To see the difficulty, recall that a whole garbled input ˜X =
3 More formally, because of the huge output space of gc, calling evalf on a garbled

circuit ˜C that is produced on the fly is bound to be responded with ⊥ with over-
whelming probability as ˜C will not be an encoding of any circuit.

Limits on the Power of Garbling Techniques for Public-Key Encryption 343

(x̃1, . . . , x̃m) is made up of a sequence of garbled labels x̃i, one for each input
wire. Now imagine that for a garbled circuit ˜C that was generated by Ġ, any new
execution of EO(pk, b) calls the oracle eval on ˜C and on a new garbled input ˜X
that is formed by picking each of the garbled labels uniformly at random from
the set of two labels for that corresponding input wire. labels. If E behaves this
way, then no matter how many (polynomial) times we sample from EO(pk, b),
we cannot hope to predict the garbled-input part of the eval query of the next
execution of EO(pk, b). We refer to this as the garbled-input unperdictability
problem, which stems from the decomposability nature of our garbling oracle.
This is what makes our results different from those of [2], which dealt with
non-decomposable garbling, for which such a complication is absent.

In short, we could only hope to predict the garbled circuit part of an eval
query of EO(pk, b), and not necessarily the garbled-input part. To fix this
garbled-input unpredictability problem, Ġf,gc will do the following trick: while
sampling many executions of EO(pk, b), if Ġf,gc comes across two different eval

queries eval(˜C, ˜X1), eval(˜C, ˜X2) that are both answered with a value that is not
⊥ (i.e., both are valid garbled circuits and inputs), then Ġf,gc releases the corre-
sponding seed s and the plain circuit C of ˜C. That is, if gc(s,C) = (˜C, · · ·), then
˜Gf,gc puts the tuple (s,C, ˜C) into the hint list H. If, however, during these sam-
pling, ˜C is evaluated upon at most one matching ˜X, then Ġf,gc simply provides
the answer to the query eval(˜C, ˜X) in H.

Looking ahead, the algorithm Ėf,gc((pk,H), b), when facing an eval query
qu = eval(˜C, ˜X), will check whether qu is already answered in H, or whether the
corresponding seed s and plain-circuit C of ˜C could be retrieved from H. If so,
Ėf,gc will reply to qu accordingly; otherwise, it will reply to qu with ⊥.

Using the weakening subroutine rev to reduce the security of Ė to
E. Note that Ġf,gc does not query any oracle subroutines beyond f and gc
in order to form the hint list H attached to pk. This is because Ġf,gc has all
the (otherwise-hidden) query-answer pairs used to produce pk, and thus for any
encountered valid garbled circuit ˜C during those sampled executions of E, Ġf,gc

already knows the corresponding seed s and plain circuit C. Now we are left to
show that this additional information H attached to pk does not degrade the
security of the compiled scheme significantly. To this end, we will use the new
weakening oracle intended to capture the natural use of garbling: the security of
a garbled circuit ˜C is guaranteed to hold so long as ˜C is evaluated only on one
garbled input. Capturing this, our new oracle rev takes as input a garbled circuit
˜C and two garbled inputs ˜X1 and ˜X2, and if all of ˜C, ˜X1 and ˜X2 are encoded
using the same seed s, then rev simply outputs (s,C), where gc(s,C) = ˜C. For
security, we will show that any adversary against the semantic security of Ė
may be used in a black-box way, along with oracle access to (f, gc, eval, rev),
to mount an attack against the original scheme E . This shows that the leakage
caused by revealing H was also attainable in the original scheme (in which all
parties including the attacker do have access to eval) if, in addition, access to

344 S. Garg et al.

the oracle rev — which reflects the intuitive way in which garbled circuits are
supposed to be used — was also granted to the adversary. In our security proof
we will crucially make use of the rev subroutine in order to construct tuples
(s,C, ˜C) to store in the simulated hint list whenever ˜C should be evaluated on
two different inputs. Tuples of the form (˜C, ˜X, y) can in turn be simulated using
oracle access to eval.

Overview of Step 2. The main idea is similar to Step (1): Ëf,gc(pk, b) would
first run Ef,gc(pk, b) to get the ciphertext c and then appropriately attach a hint
H to c. The idea is that H should allow the eval-free algorithm D̈f,gc((sk,H), c)
to simulate Df,gc,eval(sk, c) well enough. Again, since we cannot simply copy the
entire private view of Ëf,gc(pk, b) into H (as that cannot be simulated by the
security reduction, and therefore would hurt security) we should instead ensure
that w.h.p. all eval queries during the execution of DO(sk, c), whose garbled
circuits were generated by Ëf,gc(pk, b), can be answered using H. Let us call
these eval queries Ë-tied queries. Unfortunately, when implementing this idea,
we run into the following problem: Ëf,gc(pk, b) cannot simply run DO(sk, c) to
get a sense of eval queries because sk is private; this was absent in Step (1).

In order to resolve this new challenge, the algorithm Ëf,gc(pk, b) needs to do
some more offline work in order to get an idea of Ë-tied eval queries that come
up during DO(sk, c). The main idea is that although the true secret key sk is
unknown to Ëf,gc(pk, b), in the eyes of Ëf,gc(pk, b), the value of sk is equally likely
to be any sk′ that agrees with the entire view of Ëf,gc(pk, b). Put differently,
the probability that an Ë-tied garbled circuit comes up during DO(sk, c) is close
to the probability that it comes up during the execution of DO′

(sk′, c), where
O′ is an offline oracle that agrees with all the private information of Ë, and
also relative to which (pk, sk′) is valid public-key/secret-key. As a result, such a
fake sk′ that is consistent with the view of Ëf,gc(pk, b) will be used to learn the
answers of the evaluation queries asked by DO′

(sk′, c)4.

Putting things together. Taken together, Steps (1) and (2) in conjunction
with the result of Imagliazzo and Rudich [23] imply the following.

Lemma 2 (Informal). The (claimed) semantic security of any candidate PKE
construction Ef,gc,eval can be broken by a poly-query adversary Af,gc,eval,rev.

Moreover, we can show that the oracle rev does not break the one-wayness
or the garbling-security aspects of (f, gc, eval).

Lemma 3 (Informal). The function f is one way against all poly-query adver-
saries with oracle access (f, gc, eval, rev). Moreover, there exists a garbling
scheme Lf,gc,eval for garbling circuits with f gates that remains secure against
all poly-query adversaries Bf,gc,eval,rev.

Now Lemmas 2 and 3 imply our main theorem, Theorem 1.

4 The process of discovering such an sk′ is what makes Ė an inefficient algorithm.

Limits on the Power of Garbling Techniques for Public-Key Encryption 345

3 Preliminaries

We use κ for the security parameter. By PPT we mean a probabilistic polynomial
time algorithm. By an oracle PPT/algorithm we mean a PPT that may make
oracle calls. For any oracle algorithm A that has access to some oracle O, we
denote a query qu asked by A to a subroutine T of O as (qu −→

T
?). If the returned

answer is β, then we denote the resulting query-answer pair as (qu −→
T

β). For a

set S of query/answer pairs, we will use intuitive notation such as (∗ −→
T

β) ∈ S

to mean that there exists a query qu such that (qu −→
T

β) ∈ S. We use || to

concatenate strings and we use “,” for attaching strings in a way they could be
retrieved. Namely, one can uniquely identify x and y from (x, y). For example
(00||11) = (0011), but (0, 011) �= (001, 1). For any given string x, we denote xi to
be the i’th string of x. For (family of) random variables {Xκ, Yκ}κ, by X

c≈ Y we
denote that they are computationally indistinguishable; namely, for any poly(κ)-
time adversary A there is a negligible function negl(κ) such that |Pr[A(Xκ) =
1] − Pr[A(Yκ) = 1]| ≤ negl(κ). When writing the probabilities, by putting an
algorithm A in the subscript of the probability (e.g., PrA[·]) we emphasize that
the probability is over A’s randomness. For any given probability distribution D,
we denote x ← D as sampling from this distribution and obtaining a sample x
from the support of D. We may also use x ∈ D to mean that x is in the support of
D. For any two random variables X,Y , we denote Δ(X,Y) to be the statistical
distance between the two random variables. Throughout the paper, whenever
we write f1(κ) ≤ f2(κ) we mean that this inequality holds asymptotically; i.e.,
there exists κ0 such that for all κ ≥ κ0, f1(κ) ≤ f2(κ).

3.1 Some Useful Lemmas

The following lemma shows that hitting the image of a sparse injective ran-
dom function without having called the function on the corresponding preimage
happens with negligible probability.

Lemma 4 (Hitting the image of random injective function). Let A be
an arbitrary polynomial-query algorithm with access to an oracle O : {0, 1}κ →
{0, 1}2κ chosen uniformly at random from the set of all injective functions from
{0, 1}κ to {0, 1}2κ. We have

Pr[y ← AO(1κ) | for some x : y = O(x) ∧ (∗ −→
O

y) /∈ QA] ≤ 2−κ/2,

where the probability is taken over the random choice of O as well as A’s random
coins, and where QA is the set of all A’s query-answer pairs.

We will also use the following standard information theoretic lemma fre-
quently in the paper.

Lemma 5. Let X1, . . . , Xt+1 be independent, Bernoulli random variables, where
Pr[Xi = 1] = p, for all i ≤ t + 1. Then

Pr[X1 = 0 ∧ · · · ∧ Xt = 0 ∧ Xt+1 = 1] ≤ 1
t
.

346 S. Garg et al.

3.2 Standard Primitives

The definition of a single-bit public key encryption scheme (G,E,D) with
(12 + δ)-correctness is standard. For γ = γ(κ) we say that an adversary A γ-
breaks (G,E,D) if the advantage of the adversary in the standard semantic-
security game is at least γ. See the full version for formal definitions.

Oracle aided circuits. A binary-output oracle-aided circuit C is a circuit with
Boolean gates as well as oracle gates, and where the output of the circuit is a
single bit. The input size, inpsize(C), is the number of input wires. The circuit
size, denoted |C|, denotes the number of gates and input wires of the circuit.
For a fixed function f we write Cf to denote the circuit C when the underlying
oracle is fixed to f .

Definition 6 (Garbling schemes for oracle-aided circuits). Fix a function
f . A circuit garbling scheme for oracle-aided circuits relative to f (or with f
gates) is a triple of algorithms (Garb,Eval,Sim) defined as follows:

– Garb (1κ,C): takes as input a security parameter κ, an oracle-aided circuit
C and outputs a garbled circuit ˜C with a set of labels {labeli,b}i∈[m],b∈{0,1},
where m = inpsize(C).

– Evalf
(

˜C, {labeli,bi
}i∈[m]

)

: takes as input a garbled circuit ˜C and a sequence
of garbled input labels {labeli,bi

}i∈[m] and outputs y ∈ {0, 1}∗ ∪ {⊥}.
We define the following notions.

– Correctness. For any oracle-aided circuit C and input x ∈ {0, 1}m, where
m = inpsize(C):

Pr
[

Cf (x) = Evalf
(

˜C, {labeli,xi
}i∈[m]

)]

= 1

where the probability is taken over Garb (1κ,C) → (˜C, {labeli,b}i∈[m],b∈{0,1}).
– Security. For any polynomial m = m(κ), any poly-size oracle circuit C with

input size m, and any input x ∈ {0, 1}m:
(

˜C, {labeli,xi
}i∈[m]

)

c≈ Sim
(

1|C|,m,Cf (x)
)

where (˜C, {labeli,b}i∈[m],b∈{0,1}) ← Garb (1κ,C).

3.3 Black-Box Constructions

Now, we recall the standard notion of black-box constructions [4,23,32]. We do
so in the context of building PKE from one-way functions and garbling.

Definition 7 (Black-box constructions of PKE from GC-OWF). A fully
black-box construction of a PKE scheme from a one-way function and a garbling
scheme for circuits with one-way function gates (shortly, from GC-OWF) con-
sists of a triple of PPT oracle algorithms (G,E,D) and a PPT oracle security-
reduction S = (S1, S2) such that for any function f and any correct garbling
scheme L = (Garb,Eval,Sim) relative to f , both the following hold:

Limits on the Power of Garbling Techniques for Public-Key Encryption 347

– Correctness: Ef,L = (Gf,L, Ef,L,Df,L) is a (1 − 1
2κ)-correct PKE scheme.

(See the remark after this definition.)
– Security: For any adversary any A that breaks the semantic security of the

PKE scheme Ef,L, either
• Sf,L,A

1 breaks the one-wayness of f ; or
• Sf,L,A

2 breaks the security of the scheme L = (Garb,Eval,Sim) relative to
f . That is, for some oracle-aided circuit C and input x, Sf,L,A

2 can dis-
tinguish between the tuple

(

˜C, {labeli,xi
}i∈[m]

)

and Sim
(

1|C|, 1|x|,Cf (x)
)

,

where m = inpsize(C) and (˜C, {labeli,b}i∈[m],b∈{0,1}) ← Garb (1κ,C).

Remark about the correctness condition in Definition 7. In Definition 7,
for correctness we require that the constructed PKE be (1 − 1

2κ) correct. This is
without loss of generality since one may easily boost correctness using standard
techniques; i.e., let the new public key be a tuple of public keys under the
original scheme. Encrypt a given plaintext bit under each individual public key.
For decryption, we decrypt all the ciphertexts and go with the majority bit. The
semantic security of this expanded scheme reduces to that of the base scheme
using a hybrid argument, which is a fully-black-box reduction.

Calling the base primitives on the same security parameter. For simplic-
ity of exposition, for any given black-box construction Ef,L we assume that Ef,L

on the security parameter 1κ always calls f and L on the same security param-
eter 1κ. There are standard techniques for doing away with this restriction, but
those extensions will only complicate the proofs further. Looking ahead, when
we define our oracles (O′, rev)κ,n in Definition 10, which are parameterized over
a security parameter κ and a circuit size n = n(κ), the above restriction means
that EO′

on the security parameter 1κ always calls O′ on parameters such as
(κ, n1), (κ, n2), etc. That is, the value of κ will be the same across all queries,
but each query may use a different value for n.

4 Separating Public-Key Encryption from OWF-Based
Garbling

In this section, we state our main impossibility result and describe at a high-level
the steps that we will take in order to prove our main theorem.

Theorem 8 (Main theorem). There exists no fully black-box construction of
a public-key encryption scheme from GC-OWFs; namely garbling schemes that
garble circuits with one-way function gates in them (see Definition 7).

Our theorem above follows from the following lemma.

Lemma 9. There exists an oracle O = (f, gc, gi, eval, rev) for which the follow-
ing holds (in what follows, let O′ = (f, gc, gi, eval)):

348 S. Garg et al.

1. f is one-way relative to (O′, rev). That is, f is one-way against all polynomial
query (and even sub-exponential query) adversaries AO′,rev.

2. There exists a PPT GC-OWF construction (GarbO′
,EvalO

′
,SimO′

) for f-
aided circuits that is secure against any poly-query adversary AO′,rev.

3. For any PKE construction EO′
with access to the oracle O′, there exists an

attacker AO′,rev that breaks the semantic security of EO′
using a polynomial

number of queries.

Note that Lemma 9 immediately implies Theorem 8.

Roadmap: Proof of Lemma 9. As common in black-box impossibility results,
we will show the existence of the oracles required by Lemma 9 by proving results
with respect to oracles chosen randomly according to a distribution. We will
describe our oracle distribution below and will then outline the main steps we
will take in order to prove Lemma 9.

Definition 10 (The ideal model/oracle). Let O = (f, gc, gi, eval, rev)κ,n be
an ensemble of oracles parameterized by (κ, n), where κ denotes the security
parameter and n denotes the size of a circuit which we want to garble. We
describe the distribution O from which these oracles are sampled for fixed (κ, n).

– f : {0, 1}κ → {0, 1}κ: a uniformly chosen random function.
– gc(s, F) : {0, 1}κ ×{0, 1}n → {0, 1}2(κ+n): an injective random function that,

given a key s ∈ {0, 1}κ and a single-bit-output oracle-aided circuit F , outputs
an encoding ˜F .

– gi(s, i, xi) : {0, 1}κ ×{0, 1}log n×{0, 1} → {0, 1}2(κ+log n): an injective random
function that, given a key s ∈ {0, 1}κ, an index i ∈ {0, 1}log n, an input-wire
bit value xi ∈ {0, 1}, outputs an encoding x̃i. As notation, for any X =
(x1, . . . , xn), we denote gi(s,X) := (gi(s, i, xi))i∈[n] = ˜X.

– eval(˜F , ˜X): given as input ˜F and ˜X = (x̃1, . . . , x̃m), if there is a string s ∈
{0, 1}κ and circuit F such that gc(s, F) = ˜F , that m = inpsize(F) and that
for every i ∈ [m] there exists xi ∈ {0, 1} such that gi(s, i, xi) = x̃i, then it
outputs F f (x1|| · · · ||xm). Otherwise, it outputs ⊥.

– rev(˜F , ˜X, ˜X ′): if there exists s ∈ {0, 1}κ and circuit F such that gc(s, F) = ˜F

and that there exists X,X ′ ∈ {0, 1}inpsize(F) such that X �= X ′, gi(s,X) = ˜X

and gi(s,X ′) = ˜X ′, then it outputs (s, F). Otherwise, it outputs ⊥.

Remark 11. The size of a garbled circuit outputted by the gc oracle is roughly
twice the size of the corresponding input circuit. Current garbled circuits con-
structions are not capable of achieving such a short expansion factor. We are able
to do this as we model the garbling mechanism as a totally random function.
Nonetheless, working with such a short size expansion is without loss of general-
ity, because a general black-box PKE construction out of GC-OWF should work
with respect to any oracle that implements the GC-OWF securely. We should
also mention that all our results hold (without having to make any changes) if
the output of gc is bigger than the one specified in Definition 10.

Limits on the Power of Garbling Techniques for Public-Key Encryption 349

First, we show that a random oracle O = (f, gc, gi, eval, rev) chosen according
to the distribution O allows us to implement an ideal version of garbling for
circuits with f gates. This is not surprising as O is indeed an idealized form of
implementing this primitive.

Lemma 12 (Secure OWF and garbling exists relative to O). Let O =
(f, gc, gi, eval, rev) be as in Definition 10 and let O′ = (f, gc, gi, eval). Then, with
probability (measure) one over the choice of O, the function f is one-way relative
to O—i.e., f is one-way against any PPT oracle adversary with access to the
oracle O. Moreover, there exists a PPT GC-OWF construction (GarbO′

,EvalO
′
)

for f-aided circuits which is secure relative to O with probability one over the
choice of O ← O.

Proof. The fact that f is one-way relative to O with probability one over the
choice of O is now standard (see [23]). Given any oracle O = (O′, eval), we now
show how to construct a PPT garbling scheme LO′

= (GarbO′
,EvalO

′
,SimO′

) for
f -aided circuits. The algorithm GarbO′

on input (1κ, C) samples s ← {0, 1}κ,
sets m = inpsize(C) and outputs the garbled circuit ˜C = gc(s, C) as well as
a sequence of garbled inputs (x̃1,0, x̃1,1, . . . , x̃m,0, x̃m,1), where for i ∈ m and
b ∈ {0, 1} we have x̃i,b = gi(s, i, b).

The algorithm EvalO
′
(˜C, x̃1|| · · · ||x̃m) simply outputs eval(˜C, x̃1|| · · · ||x̃m).

Correctness holds by definition of the oracle.
For security, we will define SimO′

as follows: on input (1κ, n,m, y ∈ {0, 1}),
where n denotes the size of the circuit, m denotes the number of input wires and
y denotes the output value, we set C0 to be a canonical circuit of size n and with
m input wires that always outputs y. Sample s ← {0, 1}κ and let ˜C = gc(s, C)
and ˜X = gi(s, 0m). Output (˜C, ˜X). Simulation security follows from the random
nature of the oracles. That is, for any polynomial-query distinguisher AO′,rev,
for any n, m and any circuit C of size n and of input size m and any input
X ∈ {0, 1}m, we have

∣

∣

∣Pr[AO′,rev(˜C, ˜X) = 1] − Pr[AO′,rev(˜C ′, ˜X ′) = 1]
∣

∣

∣ = negl(κ), (1)

where s ← {0, 1}κ, ˜C = gc(s, C), ˜X = gi(s,X), (˜C ′, ˜X ′) ← SimO′
(1κ, n,m,

Cf (X)). We omit the details of the proof of Eq. 1 as it can be obtained through
a simple information theoretic argument.

We are left with proving Part 3 of Lemma 9. Proving this part is the main
technical contribution of our paper, and is done via an oracle reducibility tech-
nique. In order to state this reducibility statement formally, we first need to
define the notions of correctness and attack advantage in the ideal model.

Definition 13 (Correctness in the ideal model). For a polynomial p = p(κ)
we say that a single-bit PKE scheme EO = (GO, EO,DO) is 1

2 + 1
p correct in the

ideal model if for both b ∈ {0, 1}:

Pr[DO(sk, c) = b] ≥ 1
2

+
1
p
, (2)

350 S. Garg et al.

where the probability is over O ← O, (pk, sk) ← GO(1κ), c ← EO(pk, b).

Definition 14 (Ideal model attack advantage). We say that an adversary
A breaks the semantic security of a single-bit PKE (GO, EO,DO) in the ideal
model with probability γ (or with advantage γ) if Pr[A(pk, c) = b] ≥ γ, where the
probability is taken over O ← O, (pk, sk) ← GO(1κ), b ← {0, 1}, c ← EO(pk, b)
and over A’s random coins.

We are now ready to describe our oracle reducibility lemma.

Lemma 15 (Reducibility to the random oracle model). Let E be a given
PKE construction possibly making use of all the oracles O′ = (f, gc, gi, eval).
There exists a compilation procedure and a polynomial-query security-reduction
Red such that the compilation transforms EO′

into a new polynomial-query PKE
construction Ëf,gc,gi, where Ë makes no eval queries and for which both the fol-
lowing hold:

– Correctness: If EO′
is (1 − 1

2κ) correct in the ideal model, the compiled
scheme Ëf,gc,gi has at least (1 − 1

κ7) correctness in the ideal model.
– Security reduction. For any constant c the following holds: if there exists

an adversary A that breaks the semantic security of Ëf,gc,gi in the ideal model
with probability η, the algorithm RedO′,rev,A breaks the semantic security of
EO′

in the ideal model with probability η − 1
κc .

Let us first show how to use Lemmas 12 and 15 to establish Lemma 9.

Completing proof of Lemma 9 and Theorem 8. Let E = (G,E,D) be a can-
didate PKE construction. We will show that with probability one over the choice
of (O′, rev) ← O, the PKE construction EO′

can be broken by a polynomial num-
ber of queries to (O′, rev). Let us first show how to use this claim to complete the
proof of Theorem 8, and we will then prove this claim. By Lemma 12, we know
that with probability one over the choice of O we have (a) f is one-way relative to
(O′, rev) and (b) (GarbO′

,EvalO
′
,SimO′

) is a secure GC-OWF construction for f -
aided circuits against all polynomial-query adversaries with access to the oracles
(O′, rev). Thus, the foregoing claim coupled with Lemma12 implies Lemma 9. In
what follows we prove the foregoing claim.

By Definition 7 we know that EO′
has (1− 1

2κ)-correctness in the ideal model.
Thus, by Lemma 15 there exists a compiled scheme Ëf,gc,gi that has at least
(1 − 1

κ7)-correctness in the ideal model. Note that the oracles f, gc and gi are
nothing but three independent random oracles. By the results of [7,23] there
exists a polynomial query adversary Af,gc,gi which breaks the semantic security
of Ëf,gc,gi in the ideal model with probability (1− 1

κ6).5 (See Definition 14 for the
notion of “break in the ideal model”.) Invoking Lemma15 again and choosing
the constant c appropriately, we will obtain a polynomial query adversary BO′,rev

5 The results of [7,23] show how to break the semantic security of any key exchange
(and hence PKE) construction in the random oracle model with a probability that is
at most 1

κc′ less than the correctness probability, for any arbitrary constant c′ > 0.

Limits on the Power of Garbling Techniques for Public-Key Encryption 351

which breaks the semantic security of EO′
in the ideal model with probability

(1 − 1
κ5). That is,

Pr
O=(O′,rev),pk,b,c

[

BO′,rev(pk, c) = b
]

≥ 1 − 1
κ5

, (3)

where (pk, sk) ← GO′
(1κ), b ← {0, 1} and c ← EO′

(pk, b).
Using a simple averaging argument we have

Pr
O=(O′,rev)

[

Pr
pk,b,c

[

BO′,rev(pk, c) = b
]

≥ 1 − 1
κ3

]

≥ 1 − 1
κ2

. (4)

Equation 4 implies that for at most 1
κ2 fraction of the oracles O = (O′, rev), the

adversary BO′,rev(pk, c), on security parameter κ, recovers b with probability less
than 1− 1

κ3 . Since
∑∞

i=1
1
i2 converges, by the Borel-Cantelli Lemma we have that

for a measure-one fraction of oracles O = (O′, rev) ← O, the adversary BO′,rev

breaks the semantic security of EO′
. The proof is now complete. ��

Roadmap for the proof of Lemma 15. Finally, all that remains is proving
Lemma 15 which shows that we can compile out eval queries from any PKE
scheme without significantly hurting correctness or security. In the remainder
of this paper, we show that such a compilation procedure exists. We obtain
the compiled eval-free scheme (G̈f,gc,gi, Ëf,gc,gi, D̈f,gc,gi) in two steps. First, in
Sect. 4.1, we show how to compile out eval queries from EO′

only. In particular,
we will prove the following lemma.

Lemma 16 (Compiling out eval from E). Let δ be an arbitrary polynomial
and parse O = (O′, rev). There exists a compilation procedure that achieves the
following for any constant c. Given any (12 + δ)-ideally-correct PKE scheme
E = (GO′

, EO′
,DO′

), the compiled PKE scheme Ė = (Ġf,gc,gi, Ėf,gc,gi,DO′
) is

(12 + δ − 1
κc)-ideally-correct. Moreover, there exists a polynomial-query algorithm

SecRed that satisfies the following: for any adversary A that breaks the semantic
security of Ė in the ideal model with advantage η, the adversary SecRedA,O breaks
the semantic security of E in the ideal model with advantage at least η − 1

κc .

Then, in Sect. 4.2 we show how to compile out eval from DO′
, assuming

neither of the algorithms G and E call eval. That is, we prove the following.

Lemma 17 (Compiling out eval from D). Let δ be an arbitrary polynomial.
There exists a compilation procedure that achieves the following for any con-
stant c. Given any (12 + δ)-ideally-correct PKE scheme E = (Gf,gc,gi, Ef,gc,gi,

Df,gc,gi,eval), the compiled PKE scheme Ë = (G̈f,gc,gi, Ëf,gc,gi, D̈f,gc,gi) is (12 + δ −
1
κc)-ideally-correct. Moreover, there exists a polynomial-query algorithm SecRed
that satisfies the following: for any adversary A that breaks the semantic security
of Ë in the ideal model with advantage η, the adversary SecRedA,O breaks the
semantic security of E in the ideal model with advantage at least η − 1

κc .

Th proof of Lemma 15 immediately follows from Lemmas 16 and 17.

352 S. Garg et al.

4.1 Removing Garbling Evaluation Queries from Encryption

In this section, we will prove Lemma 16. Namely, we will show how to compile
the PKE scheme E = (Gf,gc,gi,eval, Ef,gc,gi,eval,Df,gc,gi,eval) into a new PKE scheme
Ė = (Ġf,gc,gi, Ėf,gc,gi,Df,gc,gi,eval) with correctness and security comparable to
the original scheme E , but where Ė will not ask any eval queries. First, we may
assume without loss of generality that G does not make queries to eval—it can
predict the answer itself. Thus, we will focus on removing eval queries from E
assuming that G does not make any eval queries.

Before describing the compilation process, we need to give some definitions.

Definition 18 (Valid outputs). For any oracle O = (f, gc, gi, eval, rev), we
say that ˜F is a valid garbled circuit with respect to O if there exists (s, F) such
that gc(s, F) = ˜F . Similarly, we say that ˜X is a valid garbled input with respect
to O if there exists (s,X) such that gi(s,X) = ˜X.

We also define the notion of normal form with respect to oracle-aided algo-
rithms. At a high-level, a normal form algorithm avoids asking any redundant
queries if it already knows the answer to such queries.

Definition 19 (Normal form). Let A be an oracle algorithm that accepts as
input a query-answer set QS and let QA be the query-answer pairs that A has
asked so far. We say that A is in normal-form if it satisfies these conditions:

1. A never asks duplicate queries.
2. Before it asks an ((˜F , ˜X) −−→

eval
?) query qu, A first checks if there exists a

query-answer pair ((s, F) −→
gc

˜F) in QA ∪QS. If that is the case then it would

not issue qu to the oracle but would instead run F f (X) on its own where
X can be obtained bit-by-bit by searching gi(s, i, xi) for every index position
i ∈ n and every bit xi ∈ {0, 1}.
Recall that our goal is to remove eval queries from E to obtain an eval-free

algorithm Ė. To make this transformation possible, the new algorithm Ė needs
some help from its associated key generation algorithm Ġ so as to make up for
its lack of access to eval. This help is sent to Ė as part of a hint list H, attached
to the public key, by the key generation algorithm Ġ. The following definition
describes how Ġ forms the hint list H based on its inside information Aux and
based on information Q that G has collected about random executions of E.

Definition 20 (Building helper tuples). We define a function ConstHelp
that takes as input a query-answer set Q along with some query-answer set Aux
and outputs a set H as follows:

– If there exists ((˜F , ˜X) −−→
eval

y �= ⊥) ∈ Q such that for no ˜X ′ �= ˜X do we have

((˜F , ˜X ′) −−→
eval

y′ �= ⊥) ∈ Q, then add ((˜F , ˜X) −−→
eval

y) to H.

Limits on the Power of Garbling Techniques for Public-Key Encryption 353

– If for two distinct ˜X1 and ˜X2 we have ((˜F , ˜X1) −−→
eval

y1 �= ⊥) ∈ Q and

((˜F , ˜X2) −−→
eval

y2 �= ⊥) ∈ Q, then if for some (s, F) we have ((s, F) −→
gc

˜F) ∈
Aux, add ((s, F) −→

gc
˜F) to H.

Having a hint list H, we give the following definition that describes the idea
of how the receiving algorithm Ė may use it to avoid making eval queries. In the
following definition one may think of Q as a hint list.

Definition 21 (Emulating eval queries). For O = (f, gc, gi, eval, rev), we
define the function HandleEvalf,gi to be a subroutine that takes as input a set
Q of query-answer pairs to O and a query qu of the form ((˜F , ˜X) −−→

eval
?) then

performs the following steps to answer qu:

– If there exists a tuple ((˜F , ˜X) −−→
eval

y) in Q, then output y.

– If there exists ((s, F) −→
gc

˜F) ∈ Q, then find X such that gi(s,X) = ˜X and

output y = F f (X).
– If neither of the above cases happen, then return ⊥ as the answer to qu.

We will also define the notion of a mixed oracle that uses O on non-eval
queries but uses HandleEval to answer eval queries without resorting to O. This
oracle is constructed and used in the newly compiled algorithms when we want
to avoid asking eval queries to O.

Definition 22 (Mixed oracle). For an oracle O = (f, gc, gi, eval) and a
set of query-answer pairs S, we denote O[S] to be an Eval-mixed oracle that
answers all f, gc, and gi queries by forwarding them to the real oracle O,
but for any eval query qu it will emulate the answer by calling and returning
y = HandleEvalf,gi(S, qu).

Compilation procedure. Let E = (Gf,gc,gi, Ef,gc,gi,eval,Df,gc,gi,eval) be the give
construction for which we want to remove eval queries from E. Without loss
of generality, we assume that all the algorithms of E are in normal form (see
Definition 19). For simplicity, we keep O as a superscript to all the algorithms
of E , but it is understood that the actual oracle access is of the form above.

We need the following definition as we will need to choose parameters in the
compilation construction based on the query complexity of the construction.

Definition 23 (Parameter q = q(κ): size-upperbound). Throughout this
section, fix q = q(κ) to be an arbitrary polynomial that satisfies the following.

1. q ≥ κ;
2. q is greater than the total number of queries that each of the algorithms

(GO, EO,DO) make on inputs corresponding to the security parameter 1κ

and on O ← O; and

354 S. Garg et al.

3. q is greater than the size of any query made by any of (GO, EO,DO) on inputs
corresponding to the security parameter 1κ and on O ← O.

Construction 24 (compiled scheme Ė). The compiled scheme (Ġ, Ė,D) is
parameterized over a function t = t(κ), which we will instantiate later.

– Ġ(1κ): Perform the following steps:
1. Run (pk, sk) ← GO(1κ). Add all query-answer pairs generated in this step

to OrigG.
2. Generating helper set H for Ė: Set LocalE = ∅.

(a) Do the following t times: Run EO[OrigG](pk, 0) and EO[OrigG](pk, 1) and
keep adding all the resulting query-answer pairs to LocalE.

(b) Set H := ConstHelp(LocalE,OrigG ∪ LocalE).
3. Output ṗk = (pk,H) and ṡk = sk.

– Ė(ṗk, b): Parse ṗk = (pk,H). Run ċ ← EO[H](pk, b) and add all the query-
response pairs to OrigE. Return ċ.

Remark about Ė. We note that, by the definition of O[H], all the eval queries
of EO[H](pk, b) will be emulated using H. Thus, Ė will not issue any eval queries.

Query complexity of Ė. It is immediate to see that the query complexity of
each of the compiled algorithms is polynomial in q and t, where q the query
complexity of (G,E,D). Thus, we have the following lemma.

Lemma 25. Let q be the size-upperbound of (G,E,D) as given in Definition 23.
The query complexity of Ė = (Ġ, Ė,D) is at most q + (2q2)t ≤ 3tq2.

Correctness and security. We now give the correctness and security state-
ments regarding the compiled scheme Ė = (Ġ, Ė,D) and prove them. By doing
so, we complete the proof of Lemma 16.

Lemma 26 (Correctness of Ė). Suppose the original scheme (G,E,D) is (12+
δ) correct in the ideal model. The compiled scheme (ĠO, ĖO,DO) has at least
(12 + δ − 2q

t − negl(κ)) correctness in the ideal model, where t is the number of
iterations performed in Ġ.

In particular, for any constant c > 0 by taking t = qc+2, the compiled scheme
(ĠO, ĖO,DO) has at least (12 + δ − 1

κc) correctness.

Lemma 27 (Security of Ė). There exists a polynomial-query algorithm
SecRed that satisfies the following. For any adversary A that breaks the semantic
security of (ĠO, ĖO, ḊO) in the ideal model with probability at least γ, the algo-
rithm SecRedA,O breaks the semantic security of (GO, EO,DO) with probability
at least γ − 1

2κ/4 − 1
κc for any constant c > 0.

Limits on the Power of Garbling Techniques for Public-Key Encryption 355

Proof of correctness for Ė. We first prove Lemma 26, which states that Ė =
(Ġ, Ė,D) is still a correct PKE after removing the eval queries from E.

Parsing ṗk = (pk,H), recall that ĖO(ṗk, b) simply runs EO[H](pk, b). With
this in mind, to prove Lemma26, we give the following lemma, which shows that
the distribution of outputs of EO[H](pk, b) and EO(pk, b) are close.

Lemma 28. For b ∈ {0, 1} we have

Pr
O,r,pk,H

[EO(pk, b; r) �= EO[H](pk, b; r)] ≤ 2q

t
+

1
2κ/3

where O ← O, ((pk,H), sk) ← ĠO(1κ) and r ← {0, 1}∗.

We first show how to derive Lemma 26 from Lemma 28.

Proof (of Lemma 26). Parse ṗk = (pk,H). All the probabilities below are taken
over the random choices of ṗk, O and r. We have

Pr[DO(sk, ĖO(ṗk, b; r)) �= b] = Pr[DO(sk,EO[H](pk, b; r)) �= b]

≤ Pr[DO(sk,EO(pk, b; r)) �= b] + 2q/t + negl(κ)

≤ 1
2

− δ + 2q/t + negl(κ)

where the first inequality follows from Lemma 28. ��
We now focus on proving Lemma 28. Fix b ∈ {0, 1}. For compactness, we

define the following experiment that outputs some random variables that will be
later used to define some events.

Experiment Expr(1κ) for fixed b ∈ {0, 1}: Output the tuple of variables
Vars = (pk,OrigG, LocalE,H, r), where pk,OrigG, LocalE and H are sampled as in
Ġ(1κ) and r ← {0, 1}∗ is the randomness to Ė(pk, b).

We define the following bad events. Note that all these bad events as well as
those that appear later are defined based on the output of Vars, and so we make
this dependence implicit henceforth.

– Bad1: The event that EO(pk, b; r) makes a query qu = ((˜F , ˜X) −−→
eval

?), where

((∗, ∗) −→
gc

˜F) /∈ OrigG and eval(˜F , ˜X) �= ⊥.

– Bad2: The event that the execution of EO(pk, b; r) queries qu = ((˜F , ˜X) −−→
eval

?) for which we have ((∗, ∗) −→
gc

˜F) ∈ OrigG, eval(˜F , ˜X) �= ⊥ and O[H](qu) =

HandleEval(H, qu) = ⊥.

Roadmap for the proof of Lemma 28. The proof of Lemma 28 now follows
from the following lemmas.

356 S. Garg et al.

Lemma 29. PrO,Vars[EO(pk, b; r) �= EO[H](pk, b; r)] ≤ Pr[Bad1 ∨ Bad2] where
O ← O and Vars = (pk,OrigG, LocalE,H, r) ← Expr(1κ).

Lemma 30. PrO,Vars[Bad1] ≤ 1
2κ/3 where O ← O and Vars ← Expr(1κ).

Lemma 31. PrO,Vars[Bad2 ∧ Bad1] ≤ 2q
t where O ← O and Vars ← Expr(1κ)

The proof of Lemma 28 follows immediately from Lemmas 29, 30, and 31. We
now prove all these lemmas below.

Proof (of Lemma 29). Let Bad be the event EO(pk, b; r) �= EO[H](pk, b; r). We
show that whenever Bad holds, then either Bad1 happens or Bad2 happens, hence
proving the lemma. Notice that the only difference between the executions of
EO(pk, b; r) and EO[H](pk, b; r) is how eval queries are handled. Specifically, in
EO[H](pk, b; r), the eval queries are simulated with respect to the set H whereas
in EO(pk, b; r), the real oracle O is used to reply to these queries. All of f, gc, and
gi queries will be handled identically in both experiments by forwarding them
to O. Thus, we only need to consider what happens in either execution when a
new query qu = ((˜F , ˜X) −−→

eval
?) is asked.

Suppose Bad holds and let qu = ((˜F , ˜X) −−→
eval

?) be the first eval query that

will be answered differently between the two executions. That is, qu will be
replied to with ⊥ under O[H], but receives an answer y �= ⊥ from the real oracle
O. We will now show that either Bad1 or Bad2 must hold. Consider two cases:

1. ((∗, ∗) −→
gc

˜F) /∈ OrigG: In this case, the fact that eval(˜F , ˜X) �= ⊥ implies that

Bad1 holds.
2. ((∗, ∗) −→

gc
˜F) ∈ OrigG: In this case the facts that eval(˜F , ˜X) �= ⊥, that qu is

a query during the execution of EO(pk, b; r), and that O[H](qu) = ⊥ imply
that Bad2 holds. ��

Proof (of Lemma 30). The proof of this lemma follows by a simple reduction
to Lemma 4. Letting α = Pr[Bad1], we will show how to build an adversary
Af,gc,gi(1κ) in the sense of Lemma 4 that will win with probability α · 1

poly(κ) .
Let i be the index of the first query qu during the execution of EO(pk, b; r)

for which the event Bad1 holds. Note that up to the query index i, the executions
of EO(pk, b; r) and EO[OrigG](pk, b; r) are identical. With this in mind, we build
the adversary Af,gc,gi(1κ) as follows.

The adversary Af,gc,gi(1κ) samples (pk, sk) ← Gf,gc,gi(1κ), forming the
set of query/response pairs OrigG. Then Af,gc,gi guesses i ← [q] and runs
EO[OrigG](pk, b; r) for a random r. Notice that A makes no queries to eval what-
soever, as it handles eval queries using OrigG. If the ith query of this execution
is ((˜F , ∗) −−→

eval
?) for some ˜F , then Af,gc,gi returns ˜F ; otherwise, A returns ⊥.

Af,gc,gi(1κ) wins with probability at least α · 1
q . On the other hand, by

Lemma 4 we know A’s success probability is at most 1
2κ/2 . Thus, we have

α ≤ 1
2κ/3 , and the proof is complete. ��

Limits on the Power of Garbling Techniques for Public-Key Encryption 357

Proof (of Lemma 31). We claim that whenever the event Bad2 ∧Bad1 holds then
the event Miss, defined as follows, also holds. Miss is the event that during the
execution of EO[OrigG](pk, b; r) there is a query qu = ((˜F , ˜X) −−→

eval
?), such that

1. ((∗, ∗) −→
gc

˜F) ∈ OrigG;

2. eval(˜F , ˜X) �= ⊥;
3. ((∗, ∗) −→

gc
˜F) /∈ H and ((˜F , ˜X) −−→

eval
∗) /∈ H.

The reason for the above claim is that if Bad2 ∧Bad1 holds, then Bad1 must
necessarily hold, and thus the two executions EO(pk, b; r) and EO[OrigG](pk, b; r)
are identical. The rest follows by the definition of the event Bad2. We will prove

Pr[Miss] ≤ 2q

t
, (5)

which yields the proof of this lemma. Thus, we focus on proving Eq. 5.
We break Miss into smaller events. We give some notation first. Let i ∈ [n],

d ∈ {0, 1}, F be circuit with input size n and let ˜F = gc(s, F), for some s. We say
a garbled input ˜X = (x̃1, . . . , x̃n) is an (i, d)-match for ˜F if ˜X is a valid garbled
input of ˜F and the ith garbled bit of ˜X corresponds to the bit d. Formally,

– for all j ∈ [n] and j �= i: x̃j = gi(s, j, 0) or x̃j = gi(s, j, 1);
– x̃i = gi(s, i, d).

We say that a set of query/response pairs U contains an (i, d)-match for ˜F

if there exists ((˜F , ˜X) −−→
eval

∗) ∈ U such that ˜X is an (i, d)-match for ˜F .

We also give the following notation. Recalling the way in which LocalE is
constructed in Ġ through t iterations, for i ∈ [t] let LocalEi be the set formed
after the i-th iteration. Also, let OrigE∗ be the set of all query/response pairs
during the execution of EO[OrigG](pk, b; r).

We now define a series of events, Missi,d, for i ∈ [q] and d ∈ {0, 1}, and will
show that if Miss holds then for some i and d the event Missi,d must hold.

Event Missi,d is the event that for some ˜F that ((∗, ∗) −→
gc

˜F) ∈ OrigG, both

the following hold:

1. OrigE∗ contains an (i, d)-match for ˜F ;
2. none of the sets LocalE1, · · · , LocalEt do contain an (i, d)-match for ˜F .

We claim that if Miss holds then Missi,d must hold, for some i ∈ [q] and
d ∈ {0, 1}. Suppose the event Miss holds for the query qu = ((˜F , ˜X) −−→

eval
?) (see

above for the definition of Miss). We consider all possible cases:

– For no (i, d) does the set LocalE = LocalE1 ∪ · · · ∪ LocalEt contain an (i, d)-
match for ˜F . Since the set OrigE∗ contains ((˜F , ˜X) −−→

eval
∗), there would be

an (i, d)-match for ˜F for all i ∈ [q], so Missi,d holds for some d and all i ∈ [q].

358 S. Garg et al.

– There is one and only one garbled input ˜X1 which is valid for ˜F and for
which we have ((˜F , ˜X1) −−→

eval
?) ∈ LocalE. In this case, we must have ˜X1 �= ˜X,

because otherwise we would have ((˜F , ˜X) −−→
eval

∗) ∈ H, a contradiction to the

fact that Miss holds. Thus, for some (i, d) both the following must hold: (A)
˜X is an (i, d)-match for ˜F and (B) ˜X1 is not an (i, d)-match for ˜F . Thus, for
some i and d, the event Missi,d must hold.

– There are at least two different garbled inputs ˜X1 and ˜X2 which both are valid
for ˜F and which ((˜F , ˜X1) −−→

eval
?) ∈ LocalE and ((˜F , ˜X2) −−→

eval
?) ∈ LocalE:

This case cannot happen because otherwise we would have (∗, ∗ −→
gc

˜F) ∈ H,

a contradiction to the fact that Miss holds.

Having proved Pr[Miss] ≤ ∑

i,d Pr[Missi,d], we bound the probability of each
individual Missi,d. To bound the probability of the event Missi,d, note that since
all of LocalE1, . . . , LocalEt and OrigE∗ are obtained via independent and identical
processes, by Lemma 5 we have

Pr[Missi,d] ≤ 1
t
.

Using a union bound, Pr[Miss] ≤ 2q
t , and Eq. 5 is now proved. This completes

the proof. ��

Proof of security for Ė. We now give the proof of security.

Proof (of Lemma 27). To define the reduction algorithm SecRed we need to intro-
duce the following procedure, overloading the definition of ConstHelp (Defini-
tion 20). In Definition 20 the procedure ConstHelp was given as input an aux-
iliary information set Aux which helps the procedure in finding answers to the
eval queries provided in the given set Q. In the definition below, however, there
is no auxiliary information set, but the procedure could use the oracle rev.

Definition 32. Procedure ConstHelp:

– Input: A set of query/answer pairs Q.
– Oracle: O = (f, gc, gi, eval, rev).
– Output: A “hint” set H formed as follows:

• If there exists ((˜F , ˜X) −−→
eval

y �= ⊥) ∈ Q such that for no ˜X ′ �= ˜X do we

have ((˜F , ˜X ′) −−→
eval

y′ �= ⊥) ∈ Q, then add ((˜F , ˜X) −−→
eval

y) to H.

• If for two distinct ˜X1 and ˜X2 we have ((˜F , ˜X1) −−→
eval

y1 �= ⊥) ∈ Q and

((˜F , ˜X2) −−→
eval

y2 �= ⊥) ∈ Q, then add (((s, F)) −→
gc

˜F) to H, where (s, F) =

rev(˜F , ˜X1, ˜X2).

Limits on the Power of Garbling Techniques for Public-Key Encryption 359

We will now describe the attack oracle-aided algorithm SecRed against the
semantic security of (GO, EO,DO). The input to SecRed is pair of challenge
(pk, c) sampled under EO. Moreover, SecRed has oracle access to O as well as
an adversary against ĖO.

Description of SecRedA,O(pk, c):

1. Initialize LocalE∗ = ∅. For i = [1, t], do the following: Run EO(pk, 0) and
EO(pk, 1) and add all the resulting query-answer pairs to LocalE∗.

2. Set H∗ ← ConstHelpO(LocalE∗).
3. Return b′ ← A(pk,H∗, c).

We will now show that the following holds for both b = 0 and b = 1:
The distribution Dist1 = (pk,H∗, c) is statistically close to Dist2 = (ṗk, ċ),
where (pk, sk) ← GO(1κ), c ← EO(pk, b), and (ṗk, ∗) ← ĠO(1κ) and ċ ←
ĖO(ṗk, b). Also, H∗ is sampled as in the execution of the security reduction
SecRedA,O(pk, c). Let all the variables that appear below be sampled as in the
above. First, it is easy to show that

Δ((pk,H∗), ṗk) ≤ poly(κ) × 1
2κ/2

≤ 1
2κ/3

.

Moreover, by Lemma 29 we have

Δ(c, ċ) ≤ 2q

t
+

1
2κ/3

. (6)

Thus, SecRedA,O(pk, c) breaks the semantic security of (GO, EO,DO) with prob-
ability at least γ − 2q

t − 1
2κ/4 . ��

4.2 Removing Garbling Evaluation Queries from Decryption

In this section, we will prove Lemma 17. Namely, we will present a procedure
that compiles a PKE scheme E = (Gf,gc,gi, Ef,gc,gi,Df,gc,gi,eval) into a new PKE
scheme Ë = (G̈f,gc,gi, Ëf,gc,gi, D̈f,gc,gi) with correctness and security comparable
to the original scheme E , but where D̈ will not ask any eval queries.

Again, for simplicity we use the following convention where we keep the
entire oracle O as a superscript to all the algorithms (GO, EO,DO) as well as
(G̈O, ËO, D̈O) with the understanding that the actual oracle access is of the form
given above. We also make the following assumption without loss of generality.

Assumption 33. We assume that all the algorithms (G,E,D) are in normal
form (Definition 19). Also, we assume w.l.o.g. that the secret key outputted by G
contains all the query-response pairs made by G.

Definition 34 (Query set). For an oracle algorithm AO, Query(AO(x; r))
denotes the set of all queries asked during the execution of AO on input x and
randomness r. We write Query(AO(x)) to indicate the random variable formed
by returning Query(AO(x; r)) for r ← {0, 1}∗.

360 S. Garg et al.

Definition 35 (Valid partial oracles). We say that a partial oracle O1 is
valid if for some O2 ∈ Supp(O): O1 ⊆ O2.

Definition 36 (Oracle consistency/sampling notation). We say a partial
oracle O1 is consistent with a set of query/response pairs S if O1 ∪ S is valid.

For a partial oracle O1 and randomness r we say that (O1, r) agrees with a
public key pk if (1) GO1(r) = (pk, ∗) and (2) all the queries in Query(GO1(r))
are defined in O1. We say that (O1, r) minimally agrees with pk if (1) (O1, r)
agrees with pk and (2) O1 is defined only on the queries that occur during the
execution and nothing more: namely, O1(qu) is defined iff qu ∈ Query(GO1(r)).

We let Partial(pk,S) denote the set of all (O1, r) where (1) (O1, r) mini-
mally agrees with pk and (2) O1 agrees with S. We sometimes abuse notation
and write (O1, sk) ← Partial(pk,S) to mean the following sampling: (O1, r) ←
Partial(pk,S) and (pk, sk) = GO1(r).

Definition 37 (Composed oracle). Given a partial oracle Op and full oracle
O (an oracle that is defined on all points in its domain) we define Op♦O to be
the composed oracle that uses Op to reply if the corresponding query is defined
there, and uses O otherwise. Note that Op♦O is not necessarily in Supp(O).

Compilation Procedure

Construction 38. The scheme Ë = (G̈, Ë, D̈) is parameterized over two func-
tions ε = ε(κ) and t = t(κ), which we will instantiate later.

– G̈(1κ): Do the following steps:
1. Set OrigG = ∅. Run (pk, sk) ← GO(1κ), and add all query-answer pairs

that are encountered during this execution to OrigG.
2. Set LearnG = ∅. While there exists a query qu /∈ LearnG such that

Pr
O′←O

[qu ∈ Query(GO′
(1κ)) | pk, LearnG] ≥ ε,

then choose the lexicographically first such qu and add (qu −→
T

O′(qu)) to

LearnG. Note that T ∈ {f, gc, gi}.
3. Output p̈k = (pk, LearnG) and s̈k = sk. (By Assumption 33, s̈k contains

OrigG.)
– Ë(p̈k, b): Given p̈k = (pk, LearnG) and b ∈ {0, 1} do the following:

1. Set OrigE = ∅. Run c ← EO(pk, b) and add all the query-answer pairs
that are observed during this execution to OrigE.

2. Generating helper set H for D̈: Sample t′ ← [1, t]. Set S = OrigE ∪
LearnG. For i ∈ [1, t′], do the following:
(a) Offline phase: Sample (̂Oi, ̂ski) ← Partial(pk, S).
(b) Semi-online phase: Run D

̂Oi♦O[S](̂ski, c) and add all query/
response pairs made to the oracle O to the set S. Let ÔrigDi be the
set of all query-answer pairs made by this execution.

Limits on the Power of Garbling Techniques for Public-Key Encryption 361

After all iterations, set H := ConstHelp(ÔrigD,S), where we define
ÔrigD = ÔrigD1 ∪ · · · ∪ ÔrigDt′ .

3. Output c̈ = (c,H).
– D̈(p̈k, s̈k, c̈): Given p̈k = (pk, LearnG), s̈k, and c̈ = (c,H), output the value of

˜b ← DO[H∪LearnG](s̈k, c).

Query Complexity of Ë. The following lemma follows from the description of
the compilation procedure of Construction 38.

Lemma 39. Let q be as in Definition 23. Assuming ε = 1
poly(κ) and t = poly(κ),

all the algorithms of ËO make qO(1) queries. Concretely, the algorithm Ë makes
at most ν := 4tq2 queries.

We note that by taking ε = 1
poly(κ) the learning process of G̈ (i.e., for sampling

LearnG) could be done by making a polynomial number of queries [6].
We give the correctness and security statements regarding the compiled

scheme Ë = (G̈, Ë, D̈). See the full version for the proofs.

Lemma 40 (Correctness of Ë). Suppose the original PKE scheme (G,E,D)
is (12 + δ)-correct in the ideal model. The compiled PKE scheme (G̈, Ë, D̈) has
at least (12 + δ − η) correctness in the ideal model, where

η =
1

2κ/5
+

2q

t
+ 3ενt.

That is,

Pr[D̈O(sk, c̈) �= b] ≤ 1
2 − δ + η (7)

where the probability is taken over O ← O, (p̈k, sk) ← G̈O(1κ), b ← {0, 1}
and c̈ = (c,H) ← ËO(p̈k, b). Here t and ε are the underlying parameters of
the compilation procedure, and ν is defined in Lemma 39. In particular, for any
constant c > 0 by taking t = 2qc+2 and ε = 1

q3c+8 , the compiled scheme (G̈, Ë, D̈)
has at least (12 + δ − 1/κc) correctness in the ideal model.

Lemma 41 (Security of Ë). Let p be an arbitrary polynomial which satisfies

8tq2ε + 1
2κ/2−1 ≤ 1

p .

There exists a polynomial-query algorithm SecRed that satisfies the following.
For any adversary A that breaks the semantic security of (G̈O, ËO, D̈O) in the
ideal model O with probability at least γ, the adversary SecRedA,O breaks the
semantic security of (GO, EO,DO) with probability at least γ − β where

β = t · (1
p−1 + 4tq2ε + 1

q2c+4 + 1
2κ/2−1).

In particular, for any constant c by taking t = 2qc+2 and ε = 1
q3c+8 we have the

following: For any A breaking the semantic security of (G̈O, ËO, D̈O) in the ideal
model with probability at least γ, the (polynomial-query) adversary SecRedA,O

breaks the semantic security of (GO, EO,DO) with probability at least γ − 22
κ2+c .

362 S. Garg et al.

References

1. Applebaum, B.: Garbled circuits as randomized encodings of functions: a primer.
In: Lindell, Y. (ed.) Tutorials on the Foundations of Cryptography: Dedicated to
Oded Goldreich. ISC, pp. 1–44. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-57048-8 1. 336

2. Asharov, G., Segev, G.: Limits on the power of indistinguishability obfuscation and
functional encryption. In: 2015 IEEE 56th Annual Symposium on Foundations of
Computer Science (FOCS), pp. 191–209. IEEE (2015). 337, 339, 343

3. Asharov, G., Segev, G.: On constructing one-way permutations from indistin-
guishability obfuscation. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016, Part
II. LNCS, vol. 9563, pp. 512–541. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-49099-0 19. 337

4. Baecher, P., Brzuska, C., Fischlin, M.: Notions of black-box reductions, revisited.
In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8269, pp. 296–315.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42033-7 16. 336,
346

5. Barak, B.: The complexity of public-key cryptography. In: Lindell, Y. (ed.) Tuto-
rials on the Foundations of Cryptography, pp. 45–77. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-57048-8 2. 336

6. Barak, B., Mahmoody-Ghidary, M.: Lower bounds on signatures from symmet-
ric primitives. In: 48th Annual Symposium on Foundations of Computer Science,
Providence, RI, USA, 20–23 October 2007, pp. 680–688. IEEE Computer Society
Press (2007). 361

7. Barak, B., Mahmoody-Ghidary, M.: Merkle puzzles are optimal—an O(n2)-query
attack on any key exchange from a random oracle. In: Halevi, S. (ed.) CRYPTO
2009. LNCS, vol. 5677, pp. 374–390. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-03356-8 22. 350

8. Beaver, D.: Correlated pseudorandomness and the complexity of private computa-
tions. In: 28th Annual ACM Symposium on Theory of Computing, pp. 479–488,
Philadelphia, PA, USA, 22–24 May 1996. ACM Press (1996). 337

9. Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. In: Yu, T.,
Danezis, G., Gligor, V.D. (eds.) ACM CCS 12: 19th Conference on Computer and
Communications Security, Raleigh, NC, USA, 16–18 October 2012, pp. 784–796.
ACM Press (2012). 336, 337, 338

10. Bitansky, N., Degwekar, A., Vaikuntanathan, V.: Structure vs. hardness through
the obfuscation lens. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol.
10401, pp. 696–723. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63688-7 23. 337

11. Boneh, D., Papakonstantinou, P.A., Rackoff, C., Vahlis, Y., Waters, B.: On the
impossibility of basing identity based encryption on trapdoor permutations. In:
49th Annual Symposium on Foundations of Computer Science, Philadelphia, PA,
USA, 25–28 October 2008, pp. 283–292. IEEE Computer Society Press (2008). 336

12. Brakerski, Z., Katz, J., Segev, G., Yerukhimovich, A.: Limits on the power of zero-
knowledge proofs in cryptographic constructions. In: Ishai, Y. (ed.) TCC 2011.
LNCS, vol. 6597, pp. 559–578. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-19571-6 34. 337, 338, 339

13. Canetti, R., Kalai, Y.T., Paneth, O.: On obfuscation with random oracles. In:
Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015, pp. 456–467.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7 18. 340

https://doi.org/10.1007/978-3-319-57048-8_1
https://doi.org/10.1007/978-3-319-57048-8_1
https://doi.org/10.1007/978-3-662-49099-0_19
https://doi.org/10.1007/978-3-662-49099-0_19
https://doi.org/10.1007/978-3-642-42033-7_16
https://doi.org/10.1007/978-3-319-57048-8_2
https://doi.org/10.1007/978-3-642-03356-8_22
https://doi.org/10.1007/978-3-642-03356-8_22
https://doi.org/10.1007/978-3-319-63688-7_23
https://doi.org/10.1007/978-3-319-63688-7_23
https://doi.org/10.1007/978-3-642-19571-6_34
https://doi.org/10.1007/978-3-642-19571-6_34
https://doi.org/10.1007/978-3-662-46497-7_18

Limits on the Power of Garbling Techniques for Public-Key Encryption 363

14. Dachman-Soled, D.: Towards non-black-box separations of public key encryption
and one way function. In: Hirt, M., Smith, A. (eds.) TCC 2016, Part II. LNCS,
vol. 9986, pp. 169–191. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53644-5 7. 339

15. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf. The-
ory 22(6), 644–654 (1976). 335

16. Döttling, N., Garg, S.: Identity-based encryption from the Diffie-Hellman assump-
tion. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS, vol. 10401, pp.
537–569. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7 18.
336, 338

17. Garg, S., Lu, S., Ostrovsky, R., Scafuro, A.: Garbled RAM from one-way functions.
In: Servedio, R.A., Rubinfeld, R. (eds.) 47th Annual ACM Symposium on Theory
of Computing, Portland, OR, USA, 14–17 June 2015, pp. 449–458. ACM Press
(2015). 337

18. Garg, S., Mahmoody, M., Mohammed, A.: Lower bounds on obfuscation from all-
or-nothing encryption primitives. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017,
Part I. LNCS, vol. 10401, pp. 661–695. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-63688-7 22. 339, 340

19. Garg, S., Mahmoody, M., Mohammed, A.: When does functional encryption imply
obfuscation? In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part I. LNCS, vol. 10677,
pp. 82–115. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2 4.
339

20. Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all fal-
sifiable assumptions. In: Fortnow, L., Vadhan, S.P. (eds.) 43rd Annual ACM Sym-
posium on Theory of Computing, San Jose, CA, USA, 6–8 June 2011, pp. 99–108.
ACM Press (2011). 339

21. Gertner, Y., Malkin, T., Reingold, O.: On the impossibility of basing trapdoor
functions on trapdoor predicates. In: 42nd Annual Symposium on Foundations of
Computer Science, Las Vegas, NV, USA, 14–17 October 2001, pp. 126–135. IEEE
Computer Society Press (2001). 341

22. Hsiao, C.-Y., Reyzin, L.: Finding collisions on a public road, or do secure hash
functions need secret coins? In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol.
3152, pp. 92–105. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-
28628-8 6. 341

23. Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way per-
mutations. In: 21st Annual ACM Symposium on Theory of Computing, Seattle,
WA, USA, 15–17 May 1989, pp. 44–61. ACM Press (1989). 336, 339, 340, 341, 342,
344, 346, 349, 350

24. Ishai, Y., Kushilevitz, E.: Randomizing polynomials: a new representation with
applications to round-efficient secure computation. In: 41st Annual Symposium on
Foundations of Computer Science, Redondo Beach, CA, USA, 12–14 November
2000, pp. 294–304. IEEE Computer Society Press (2000). 336

25. Lindell, Y., Pinkas, B.: A proof of security of Yao’s protocol for two-party compu-
tation. J. Cryptol. 22(2), 161–188 (2009). 336

26. Lu, S., Ostrovsky, R.: How to garble RAM programs? In: Johansson, T., Nguyen,
P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 719–734. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-38348-9 42. 337

27. Mahmoody, M., Mohammed, A., Nematihaji, S.: On the impossibility of virtual
black-box obfuscation in idealized models. In: Kushilevitz, E., Malkin, T. (eds.)
TCC 2016, Part I. LNCS, vol. 9562, pp. 18–48. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49096-9 2. 340

https://doi.org/10.1007/978-3-662-53644-5_7
https://doi.org/10.1007/978-3-662-53644-5_7
https://doi.org/10.1007/978-3-319-63688-7_18
https://doi.org/10.1007/978-3-319-63688-7_22
https://doi.org/10.1007/978-3-319-63688-7_22
https://doi.org/10.1007/978-3-319-70500-2_4
https://doi.org/10.1007/978-3-540-28628-8_6
https://doi.org/10.1007/978-3-540-28628-8_6
https://doi.org/10.1007/978-3-642-38348-9_42
https://doi.org/10.1007/978-3-662-49096-9_2

364 S. Garg et al.

28. Mahmoody, M., Mohammed, A., Nematihaji, S., Pass, R., Shelat, A.: Lower
bounds on assumptions behind indistinguishability obfuscation. In: Kushilevitz,
E., Malkin, T. (eds.) TCC 2016, Part I. LNCS, vol. 9562, pp. 49–66. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49096-9 3. 340

29. Papakonstantinou, P.A., Rackoff, C.W., Vahlis, Y.: How powerful are the DDH
hard groups? Cryptology ePrint Archive, Report 2012/653 (2012). http://eprint.
iacr.org/2012/653. 336, 338

30. Pass, R.: Limits of provable security from standard assumptions. In: Fortnow, L.,
Vadhan, S.P. (eds.) 43rd Annual ACM Symposium on Theory of Computing, San
Jose, CA, USA, 6–8 June 2011, pp. 109–118. ACM Press (2011), 339

31. Pass, R., Tseng, W.-L.D., Venkitasubramaniam, M.: Towards non-black-box lower
bounds in cryptography. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 579–
596. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19571-6 35.
339

32. Reingold, O., Trevisan, L., Vadhan, S.: Notions of reducibility between crypto-
graphic primitives. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 1–20.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24638-1 1. 336,
337, 346

33. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signature
and public-key cryptosystems. Commun. Assoc. Comput. Mach. 21(2), 120–126
(1978). 335

34. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In: Shmoys, D.B. (ed.) 46th Annual ACM Symposium on Theory
of Computing, New York, NY, USA, 31 May–3 June 2014, pp. 475–484. ACM Press
(2014). 341

35. Yao, A.C.-C.: How to generate and exchange secrets (extended abstract). In:
27th Annual Symposium on Foundations of Computer Science, Toronto, Ontario,
Canada, 27–29 October 1986, pp. 162–167. IEEE Computer Society Press (1986).
336

https://doi.org/10.1007/978-3-662-49096-9_3
http://eprint.iacr.org/2012/653
http://eprint.iacr.org/2012/653
https://doi.org/10.1007/978-3-642-19571-6_35
https://doi.org/10.1007/978-3-540-24638-1_1

Optimizing Authenticated Garbling
for Faster Secure Two-Party Computation

Jonathan Katz1, Samuel Ranellucci1,2, Mike Rosulek3, and Xiao Wang1(B)

1 University of Maryland, College Park, USA
{jkatz,wangxiao}@cs.umd.edu,samuel@umd.edu

2 George Mason University, Fairfax, USA
3 Oregon State University, Corvallis, USA

rosulekm@eecs.oregonstate.edu

Abstract. Wang et al. (CCS 2017) recently proposed a protocol for
malicious secure two-party computation that represents the state-of-the-
art with regard to concrete efficiency in both the single-execution and
amortized settings, with or without preprocessing. We show here several
optimizations of their protocol that result in a significant improvement
in the overall communication and running time. Specifically:

– We show how to make the “authenticated garbling” at the heart of
their protocol compatible with the half-gate optimization of Zahur
et al. (Eurocrypt 2015). We also show how to avoid sending an
information-theoretic MAC for each garbled row. These two opti-
mizations give up to a 2.6× improvement in communication, and
make the communication of the online phase essentially equivalent
to that of state-of-the-art semi-honest secure computation.

– We show various optimizations to their protocol for generating AND
triples that, overall, result in a 1.5× improvement in the communi-
cation and a 2× improvement in the computation for that step.

1 Introduction

In recent years, we have witnessed amazing progress in secure two-party com-
putation, in both the semi-honest and malicious settings. In the semi-honest
case, there has been an orders-of-magnitude improvement in protocols based
on Yao’s garbled circuit [39] since the initial implementation by Malkhi et
al. [26]. This has resulted from several important techniques, including oblivious-
transfer extension [16], pipelining [13], hardware acceleration [6], free-XOR [19]
and other improved garbling techniques [17,32], etc. Similarly, the concrete effi-
ciency of secure two-party computation in the malicious case has also improved
tremendously in both the single-execution [1,8,10,14,18,20–23,28,30,34–37,41]
and amortized [15,24,25,31,33] settings. Whereas initial implementations in the
malicious case could evaluate up to 1,000 gates at the rate of 1 gate/second [32],
the current state-of-the-art protocol by Wang et al. [37] (the WRK protocol)
can compute tens of millions of gates at a rate up to 700,000× faster. With
this steady stream of improvements, it has become more and more difficult to
c© International Association for Cryptologic Research 2018
H. Shacham and A. Boldyreva (Eds.): CRYPTO 2018, LNCS 10993, pp. 365–391, 2018.
https://doi.org/10.1007/978-3-319-96878-0_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96878-0_13&domain=pdf

366 J. Katz et al.

Table 1. Communication complexity of different protocols (in MB) for eval-
uating an AES circuit. One-way communication refers to the maximum communi-
cation one party sends to the other; two-way communication refers to the sum of both
parties’ communication. The best prior number in each column is bolded for reference.

One-way comm. Two-way comm.

Dep. + online Total Dep. + online Total

semi-honest 0.22 0.22 0.22 0.22

Single-execution setting

[28] 0.22 15 0.22 15
[37] 0.57 3.43 0.57 6.29
[12] 3.39 3.39 3.39 3.39

This work, v. 1 0.33 2.24 0.33 4.15
This work, v. 2 0.22 2.67 0.22 5.12

Amortized setting (1024 executions)

[33] 1.60 1.60 3.20 3.20
[28] 0.22 6.6 0.22 6.6
[37] 0.57 2.57 0.57 4.57
[18] 1.59 1.59 1.59 1.59

This work, v. 1 0.33 1.70 0.33 3.07
This work, v. 2 0.22 2.13 0.22 4.04

squeeze out additional performance gains; as an illustrative example, Zahur et
al. [40] introduced a highly non-trivial optimization (“half-gates”) just to reduce
communication by 33%.

We show several improvements to the WRK protocol that, overall, improve
its performance by 2–3×. Recall their protocol can be divided into three phases:
a function-independent phase (Ind.) in which the parties know an upper bound
on the number of gates in the circuit to be evaluated and the lengths of their
inputs; a function-dependent phase (Dep.) in which the parties know the circuit,
but not their inputs; and an online phase in which the parties evaluate the circuit
on their respective inputs. Our results can be summarized as follows:

– We show how to make the “authenticated garbling” at the heart of the online
phase of the WRK protocol compatible with the half-gate optimization of
Zahur et al. We also show that it is possible to avoid sending an information-
theoretic MAC for each garbled row. These two optimizations result in up to
a 2.6× improvement in communication and, somewhat surprisingly, result in
a protocol for malicious secure two-party computation in which the commu-
nication complexity of the online phase is essentially equivalent to that of
state-of-the-art semi-honest secure computation.

– The function-dependent phase of the WRK protocol involves the computation
of (shared) “AND triples” between the parties. We show various optimizations

Optimizing Authenticated Garbling 367

of that step that result in a 1.5× improvement in the communication and
a 2× improvement in the computation. Our optimizations also simplify the
protocol significantly.

We can combine these improvements in various ways, and suggest in particular
two instantiations of protocols with malicious security: one that minimizes the
total communication across all phases, and one that trades off increased com-
munication in the function-independent phase for reduced communication in the
function-dependent phase. These protocols improve upon the state-of-the-art by
a significant margin, as summarized in Table 1. For example, compared to the
protocol of Nielsen et al. [28] we achieve the same communication across the
function-dependent and online phases, but improve the total communication by
more than 6×; compared to the prior work with the best total communica-
tion [12], we achieve a 1.5× improvement overall and, at the same time, push
almost all communication to the function-independent preprocessing phase. (Our
protocol also appears to be significantly better than that of Hazay et al. [12] in
terms of computation. See Sect. 6 for a more detailed discussion.)

The multi-party case. It is natural to wonder whether we can extend our
improved technique for authenticated garbling to the multi-party case, i.e., to
improve upon [38]. Unfortunately, we have not yet been able to do so. In Sect. 7,
we discuss some of the difficulties that arise.

1.1 Outline

In Sect. 2 we provide some background about the WRK protocol. We provide the
high-level intuition behind our improvements in Sect. 3. In Sect. 4, we describe in
detail our optimizations of the online phase of the WRK protocol, and in Sect. 5
we discuss our optimizations of the preprocessing phase. In Sect. 6, we compare
our resulting protocols to prior work.

2 Background

We begin by describing some general background, followed by an in-depth review
of the authenticated-garbling technique introduced in [37]. In the section that
follows, we give a high-level overview of our optimizations and improvements.

We use κ and ρ to denote the computational and statistical security param-
eters, respectively. We sometimes use “:=” to denote assignment.

Information-theoretic MACs. As in prior work, we authenticate bits using
a particular information-theoretic MAC. Let ΔB ∈ {0, 1}ρ be a value known to
PB that is chosen at the outset of the protocol. We say a bit b known to PA is
authenticated to PB if PB holds a key K[b] and PA holds the corresponding tag
M[b] = K[b] ⊕ bΔB. We abstractly denote such a bit by [b]A; i.e., for some fixed
ΔB, when we say the parties hold [b]A we mean that PA holds (b,M[b]) and PB

holds K[b] such that M[b] = K[b] ⊕ bΔB. We analogously let [b]B denote a bit b
known to PB and authenticated to PA.

368 J. Katz et al.

Functionality Fabit

Honest case:

1. Upon receiving init from both parties, choose uniform ΔA, ΔB ∈ {0, 1}ρ; send
ΔA to PA and ΔB to PB.

2. Upon receiving (random,A) from both parties, choose uniform x ∈ {0, 1} and
K[x] ∈ {0, 1}ρ, set M[x] := K[x] ⊕ xΔB, and send (x,M[x]) to PA and K[x]
to PB.

3. Upon receiving (random,B) from both parties, generate an authenticated bit
for PB in a manner symmetric to the above.

Corrupted parties: A corrupted party can specify the randomness used on its
behalf by the functionality.

Global-key queries: A corrupted PA (resp., PB) can, at any time, send Δ, and
is told whether Δ = ΔB (resp., Δ = ΔA).

Fig. 1. The authenticated-bits functionality.

A pair of authenticated bits [b1]A, [b2]B, each known to a different party, form
an authenticated share of b1 ⊕ b2. We denote this by 〈b1 | b2〉, where the value in
the left slot is known to PA, and the value in the right slot is known to PB. Both
authenticated bits and authenticated shares are XOR-homomorphic.

Authenticated bits can be computed efficiently based on oblivious trans-
fer [28,29]. We abstract away the particular protocol used to generate authen-
ticated bits, and design our protocols in the Fabit-hybrid model (cf. Fig. 1) in
which there is an ideal functionality that provides them.

Opening authenticated values. An authenticated bit [b]A known to PA

can be opened by having PA send b and M[b] to PB, who then verifies that
M[b] = K[b]⊕bΔB. As observed in prior work [9], it is possible to open n authen-
ticated bits with less than n times the communication. Specifically, PA can open
[b1]A, . . . , [bn]A by sending b1, . . . , bn along with h := H(M[b1], . . . ,M[bn]), where
H is a hash function modeled as a random oracle. PA then simply checks whether
h = H(K[b1] ⊕ b1ΔB, . . . ,K[bn] ⊕ bnΔB).

We let Open([b1]A, . . .) denote the process of opening one or more authenti-
cated bits in this way, and overload this notation so that Open(〈b1 | b2〉) denotes
the process of having each party open its portion of an authenticated share.

Circuit-dependent preprocessing. We consider boolean circuits with gates
represented as a tuple (α, β, γ, T), where α and β are (the indices of) the input
wires of the gate, γ is the output wire of the gate, and T ∈ {⊕,∧} is the type
of the gate. We use W to denote the output wires of all AND gates, I1, I2 to
denote the input wires for each party, and O to denote the output wires.

Optimizing Authenticated Garbling 369

Functionality Fpre

1. Choose uniform ΔA, ΔB ∈ {0, 1}ρ. Send ΔA to PA and ΔB to PB.
2. For each wire w ∈ W ∪ I, generate a random authenticated share 〈rw | sw〉.
3. For each gate G = (α, β, γ, T), in topological order:

– If T = ⊕, generate a random authenticated share 〈rγ | sγ〉 for which rγ ⊕
sγ = rα ⊕ sα ⊕ rβ ⊕ sβ .

– If T = ∧, generate a random authenticated share 〈r∗
γ | s∗

γ〉 for which r∗
γ ⊕

s∗
γ = (rα ⊕ sα) ∧ (rβ ⊕ sβ).

Fig. 2. Preprocessing functionality for some fixed circuit.

Wang et al. [37] introduced an ideal functionality called Fpre (cf. Fig. 2) that is
used by the parties in a circuit-dependent, but input-independent, preprocessing
phase. This functionality sets up information for the parties as follows:

1. For each wire w that is either an input wire of the circuit or an output wire
of an AND gate, generate a random authenticated share 〈rw | sw〉. We refer
to the value λw

def= rw ⊕ sw as the mask on wire w.
2. For the output wire γ of each XOR gate (α, β, γ,⊕), generate a random

authenticated share 〈rγ | sγ〉 whose value rγ ⊕ sγ is the XOR of the masks on
the input wires α, β.

3. For each AND gate (α, β, γ,∧), generate a random authenticated share
〈r∗

γ | s∗
γ〉 such that

r∗
γ ⊕ s∗

γ = (rα ⊕ sα) ∧ (rβ ∧ sβ).

We refer to a triple of authenticated shares (〈rα | sα〉 , 〈rβ | sβ〉 , 〈r∗
γ | s∗

γ〉) for which
r∗
γ ⊕ s∗

γ = (rα ⊕ sα) ∧ (rβ ⊕ sβ) as an authenticated AND triple. These are just
(authenticated) Beaver triples [4] over the field F2.

Authenticated garbling. We now describe the idea behind the authenticated
garbling technique from the WRK protocol. We assume the reader is famil-
iar with basic concepts of garbled circuits, e.g., point-and-permute [5], free-
XOR [19], etc.

Following the preprocessing phase described above, every wire w is associated
with a secret mask λw, unknown to either party. If the actual value on that wire
(when the circuit is evaluated on the parties’ inputs) is zw, then the masked
value on that wire is defined to be ẑw = zw ⊕ λw. We focus on garbling a single
AND gate (α, β, γ,∧). Assume PA is the circuit garbler and PB is the circuit
evaluator. Say the garbled wire labels are (Lα,0, Lα,1) and (Lβ,0, Lβ,1) for wires α
and β, respectively. Since we apply the free-XOR optimization, PA also holds Δ
such that Lw,0 ⊕Lw,1 = Δ for any wire w. The protocol inductively ensures that
the evaluator PB knows the wire labels Lα,ẑα

, Lα,ẑβ
and masked values ẑα, ẑβ for

both input wires. Note that the correct masked value for the output wire is then

ẑγ = (λα ⊕ ẑα) ∧ (λβ ⊕ ẑβ) ⊕ λγ ,

370 J. Katz et al.

and we need to ensure that PB learns this value.
To achieve this, PA generates a garbled gate consisting of 4 rows (one for

each u, v ∈ {0, 1})

Gu,v = H(Lα,u, Lβ,v) ⊕ (ru,v,M[ru,v], [Lγ,ẑu,v
]),

with bit ẑu,v defined as

ẑu,v = (λα ⊕ u) ∧ (λβ ⊕ v) ⊕ λγ .

Here, [Lγ,ẑu,v
] is PA’s share of the garbled label; ru,v is PA’s share of the bit ẑu,v;

and PB holds the corresponding share su,v such that ru,v ⊕su,v = ẑu,v. The value
M[ru,v] is the MAC authenticating the underlying bit to PB. Also note that the
definition of ẑu,v indicates that when u = ẑα and v = ẑβ then ẑu,v = ẑγ .

Suppose the evaluator PB holds (u, Lα,u) and (v, Lβ,v), where u = ẑα and
v = ẑβ . Then PB can evaluate this AND gate by decrypting Gu,v to obtain
ru,v and PA’s share of Lγ,ẑu,v

. After verifying the MAC on ru,v, party PB can
combine these values with its own shares to reconstruct the masked output value
ẑu,v (that is, ẑγ) and its corresponding label Lγ,ẑu,v

(that is, Lγ,ẑγ
).

Assuming that the authenticated bits and shares of the labels can be com-
puted securely, the above protocol is secure against malicious adversaries. In
particular, even if PA cheats and causes PB to abort during evaluation, any
such abort depends only on the masked values on the wires. Since the masks
are random and unknown to either party, this means that any abort is input-
independent. The MACs checked by PB ensure correctness, namely that evalua-
tion has resulted in the correct (masked) output-wire value.

From authenticated shares to shared labels. Another important optimiza-
tion in the WRK protocol is to compute shares of labels efficiently using authen-
ticated shares. Assume the parties hold an authenticated share 〈r | s〉 of some
mask λ = s ⊕ r. It is then easy to compute a share of λΔA, since

λΔA = (r ⊕ s)ΔA =
(
rΔA ⊕ K[s]

)
⊕

(
M[s]

)
.

Since PA has r, ΔA, and K[s] while PB has M[s], the two parties can locally
compute shares of λΔA (namely, [λΔA]) given only 〈r | s〉.

We can use this fact to compute shares of labels for a secret masked bit
efficiently. Assuming the global authentication key (i.e., ΔA) is also used as the
free-XOR shift, then it holds that Lγ,ẑu,v

= Lγ,0 ⊕ ẑu,vΔA. Therefore, the task of
computing shares of labels reduces to the task of computing shares of ẑu,vΔA,
since Lγ,0 is known to PA.

Notice that

ẑu,vΔA = ((λα ⊕ u) ∧ (λβ ⊕ v) ⊕ λγ) ΔA

= λαλβΔA ⊕ uλαΔA ⊕ vλβΔA ⊕ uvΔA ⊕ λγΔA.

If the parties hold an authenticated AND triple (〈rα | sα〉 , 〈rβ | sβ〉 , 〈r∗
γ | s∗

γ〉) and
a random authenticated share 〈rγ | sγ〉 such that λα = rα ⊕ sα, λβ = rβ ⊕ sβ ,

Optimizing Authenticated Garbling 371

λα ∧λβ = r∗
γ ⊕s∗

γ , and λγ = rγ ⊕sγ . The parties can then locally compute shares
of λαΔA, λβΔA, λγΔA, and (λα ∧ λβ)ΔA, and finally compute shares of ẑu,vΔA

by linearly combining the above shares.

3 Overview of Our Optimizations

We separately discuss our optimizations for the authenticated garbling and the
preprocessing phases. Details and proofs can be found in Sects. 4 and 5.

3.1 Improving Authenticated Garbling

As a high level, the key ideas behind authenticated garbling are that (1) it is
possible to share garbled circuits such that neither party knows how rows in
the garbled tables are permuted (since no party knows the masks on the wires);
moreover, (2) information-theoretic MACs can be used to ensure correctness of
the garbled tables. In the original protocol by Wang et al., these two aspects are
tightly integrated: each garbled row includes an encryption of the corresponding
MAC tag, so the evaluator only learns one such tag for each gate.

Here, we take a slightly different perspective on how authenticated garbling
works. In particular, we (conceptually) divide the protocol into two parts:

– In the first part, the parties compute a shared garbled circuit, without any
authentication, and let the evaluator reconstruct and evaluate that garbled
circuit. We stress here that, even though there is no authentication, corrupting
one or more garbled rows does not allow a selective-failure attack for the same
reason as in the WRK protocol: any failure depends only on the masked wire
values, but neither party knows those masks.
This part is achieved by the encrypted wire labels alone, which have the form
H(Lα,u, Lβ,v) ⊕ [Lγ,ẑu,v

]. These require 4κ bits of communication per gate.
– In the second part, the evaluator holds masked wire values for every wire of

the circuit. It then checks correctness of all these masked values. For example,
it will ensure that for every AND gate, the underlying (real) values on the
wires form an AND relationship. Such verification is needed for masked values
that PB obtains during the evaluation of the garbled circuit.
The WRK protocol achieves this by encrypting authenticated shares of the
form H(Lα,u, Lβ,v)⊕(ru,v,M[ru,v]) in each row of a garbled table. The evalua-
tor decrypts one of the rows and checks the appropriate tag. These encrypted
tags contribute 4ρ bits of communication per gate.

With this new way of viewing authenticated garbling, we can optimize each part
independently. By doing so, we are able to reduce the communication of the
first part to 2κ + 1 bits per gate, and reduce the communication of the second
part to 1 bit per gate. In the process, we also reduce the computation (in terms
of hash evaluations) by about half. In the following, we discuss intuitively how
these optimizations work.

372 J. Katz et al.

Applying row-reduction techniques. In garbled circuits, row reduction refers
to techniques that use fewer than four garbled rows per garbled gate [11,27,32,
40]. We review the simplest row-reduction technique here, describe the challenge
of applying the technique to authenticated garbling, and then show how we
overcome the challenge. This will serve as a warm-up to our final protocol that
is compatible with the half-gate technique.

In classical garbling, a garbled AND gate can be written as (in our notation):

G0,0 = H(Lα,0, Lβ,0) ⊕ Lγ,ẑ0,0 = H(Lα,0, Lβ,0) ⊕ Lγ,0 ⊕ ẑ0,0ΔA

G0,1 = H(Lα,0, Lβ,1) ⊕ Lγ,ẑ0,1 = H(Lα,0, Lβ,1) ⊕ Lγ,0 ⊕ ẑ0,1ΔA

G1,0 = H(Lα,1, Lβ,0) ⊕ Lγ,ẑ1,0 = H(Lα,1, Lβ,0) ⊕ Lγ,0 ⊕ ẑ1,0ΔA

G1,1 = H(Lα,1, Lβ,1) ⊕ Lγ,ẑ1,1 = H(Lα,1, Lβ,1) ⊕ Lγ,0 ⊕ ẑ1,1ΔA.

The idea behind GRR3 row reduction [27] is to choose wire labels so G0,0 = 0κ.
That is, the garbler chooses

Lγ,0 := H(Lα,0, Lβ,0) ⊕ ẑ0,0ΔA.

The garbler now needs to send only (G0,1, G1,0, G1,1), reducing the communi-
cation from 4κ to 3κ bits. If the evaluator has input wires with masked values
(0, 0), it can simply set G0,0 = 0κ and then proceed as before.

In authenticated garbling, the preprocessing results in shares of {ẑu,vΔA}.
Hence, if PA could compute Lγ,0 then the parties could locally compute shares
of the {Gu,v} (since PA knows all the Lα,u, Lβ,v values and their hashes). PA

could then send its shares to PB to allow PB to recover the entire garbled gate.
Unfortunately, PA cannot compute Lγ,0 because PA does not know ẑ0,0! Indeed,
that value depends on the secret wire masks, unknown to either party.

Summarizing, row-reduction techniques in general compute one (or both)
of the output-wire labels as a function of the input-wire labels and the secret
masks, making them a challenge for authenticated garbling.

Our observation is that although PA does not know ẑ0,0, the garbling requires
only ẑ0,0ΔA for which the parties do have shares. Let SA and SB denote the
parties’ shares of this value, so that SA ⊕ SB = ẑ0,0ΔA. Our main idea is for the
parties to “shift” the entire garbling process by the value SB , as follows:

1. PA computes Lγ,0 := H(Lα,0, Lβ,0) ⊕ SA. Note this value differs from the
standard garbling value by a shift of SB . Intuitively, instead of choosing Lγ,0

so that G0,0 = 0κ, we set implicitly set G0,0 = SB . Although PA does not
know SB , it only matters that the evaluator PB knows it.

2. Based on this value of Lγ,0, the parties locally compute shares of the garbled
gate G0,1, G1,0, G1,1 defined above, and open them to PB.

3. When PB evaluates the gate on input Lα,u, Lβ,v, if (u, v) �= (0, 0) then evalu-
ation is the same as usual. If (u, v) = (0, 0) then PB sets G0,0 = SB . This is
equivalent to PB doing the usual evaluation but shifting the result by SB.

Using the half-gate technique. The state-of-the-art in semi-honest garbling
is the half-gate construction of Zahur et al. [40]. It requires 2κ bits of communi-
cation per AND gate, while being compatible with free-XOR. We describe this

Optimizing Authenticated Garbling 373

idea, translated from the original work [40] to be written in terms of masks and
masked wire values so as to match our notation.

The circuit garbler computes a garbled gate as:

G0 := H(Lα,0) ⊕ H(Lα,1) ⊕ λβΔA

G1 := H(Lβ,0) ⊕ H(Lβ,1) ⊕ Lα,0 ⊕ λαΔA,

and computes the 0-label for that gate’s output wire as:

Lγ,0 := H(Lα,0) ⊕ H(Lβ,0) ⊕ (λαλβ ⊕ λγ)ΔA.

If the evaluator PB holds masked values u, v and corresponding labels Lα,u, Lβ,v,
it computes:

Eval(u, v, Lα,u, Lβ,v) := H(Lα,u) ⊕ H(Lβ,v) ⊕ uG0 ⊕ v(G1 ⊕ Lα,u).

This results in the value

Eval(u, v, Lα,u, Lβ,v) = H(Lα,0) ⊕ H(Lβ,0) ⊕ (uv ⊕ vλα ⊕ uλβ)ΔA

= H(Lα,0) ⊕ H(Lβ,0) ⊕
(
(u ⊕ λα)(v ⊕ λβ) ⊕ λαλβ

)
ΔA

= H(Lα,0) ⊕ H(Lβ,0) ⊕ (ẑu,v ⊕ λαλβ ⊕ λγ)ΔA,

which is the correct output Lγ,ẑu,v
= Lγ,0 ⊕ ẑu,vΔA.

As before, this garbling technique is problematic for authenticated garbling,
because the garbler PA cannot compute Lγ,0 as specified. (PA does not know the
wire masks, so cannot compute the term (λαλβ ⊕ λγ)ΔA.)

However, the parties hold1 shares of this value; say, SA⊕SB = (λαλβ⊕λγ)ΔA.
We can thus conceptually “shift” the entire garbling procedure by SB to obtain
the following interactive variant of half-gates:

1. PA computes the output wire label as

Lγ,0 := H(Lα,0) ⊕ H(Lβ,0) ⊕ SA,

which is “shifted” by SB from what the half-gates technique specifies.
2. The parties locally compute shares of G0, G1 as per the half-gates technique

described above. These shares are opened to PB, so PB learns (G0, G1).
3. To evaluate the gate on inputs Lα,u, Lβ,v, the evaluator PB performs standard

half-gates evaluation and then adds SB as a correction value. This results in
the correct output-wire label, since:

Eval(Lα,u, Lβ,v) ⊕ SB = Eval(Lα,u, Lβ,v) ⊕ (λαλβ ⊕ λγ)ΔA ⊕ SA

= H(Lα,0) ⊕ H(Lβ,0) ⊕ ẑu,vΔA ⊕ SA

= Lγ,0 ⊕ ẑu,vΔA

= Lγ,ẑu,v
.

1 Note that (λαλβ ⊕ λγ) = ẑ0,0, the same secret value as in the previous example.

374 J. Katz et al.

Authentication almost for free. In the WRK scheme, suppose the actual
values on the wires of an AND gate are zα, zβ , zγ with zα ∧ zβ = zγ . During
evaluation, PB learn masked values ẑα = zα⊕λα, ẑβ = zβ ⊕λβ , and ẑγ = zγ ⊕λγ .
For correctness it suffices to show that

zα ∧ zβ = zγ ⇐⇒ (ẑα ⊕ λα) ∧ (ẑβ ⊕ λβ) = (ẑγ ⊕ λγ)
⇐⇒ (ẑα ⊕ λα) ∧ (ẑβ ⊕ λβ) ⊕ λγ︸ ︷︷ ︸

ẑα,β

= ẑγ .

Note the parties already have authenticated shares of λα, λβ , λγ , and (λα ∧ λβ),
so they can also derive authenticated shares of related values.

In the WRK scheme the garbler PA prepares an authenticated share (MAC)
of ẑα,β corresponding to each of the 4 possible values of ẑα, ẑβ . It encrypts this
share so that it can only be opened using the corresponding wire labels. PB can
then decrypt and verify the relevant ẑα,β value (and take it to be the masked
output value ẑγ).

Our approach is to apply a technique suggested for the SPDZ protocol [9]:
evaluate the circuit without authentication and then perform batch authentica-
tion at the end. Thus, in our new protocol authentication works as follows:

1. PB evaluates the circuit, obtaining (unauthenticated) masked values ẑα for
every wire α.

2. PB reveals the masked values of every wire (1 bit per wire). Revealing these
to PA does not affect privacy because the masks are hidden from both parties
(except for certain input/output wires where one or both of the parties already
know the underlying values).

3. PA generates authenticated shares of only the relevant ẑα,β values and sends
them. PB verifies the authenticity of each share. This is equivalent to sending
a MAC of PA’s shares. As described in Sect. 2, this can be done by sending
only a hash of the MACs.

This technique for authentication adds an extra round, but it makes the authen-
tication almost free in terms of communication. PB sends 1 bit per wire and PA

sends only a single hash value to authenticate.
Details of the optimizations described above can be found in Sect. 4.

3.2 Improving the Preprocessing Phase

We also improve the efficiency of preprocessing in the WRK protocol signifi-
cantly; specifically: (1) we design a new protocol for generating so-called leaky-
AND triples. Compared to the best previous protocol by Wang et al., it reduces
the number of hash calls by 2.5× and reduces communication by κ bits. (2) we
propose a new function-dependent preprocessing protocol that can be computed
much more efficiently. We remark that the second optimization is particularly
suitable for RAM-model secure computation, where CPU circuits are fixed ahead
of time.

Optimizing Authenticated Garbling 375

To enable the above optimizations, we set lsb(ΔA) := 1 and lsb(ΔB) := 0,
where lsb(x) denotes the least significant bit of x.

A new leaky-AND protocol. The output of a leaky-AND protocol is a ran-
dom authenticated AND triple (〈rα | sα〉 , 〈rβ | sβ〉 , 〈r∗

γ | s∗
γ〉) with one caveat: the

adversary can choose to guess the value of rα⊕sα. A correct guess remains unde-
tected while an incorrect guess will be caught. (See Fig. 4 for a formal definition.)
The leaky-AND protocol by Wang et al. works in two steps. Two parties first
run a protocol whose outputs are triples that are leaky without any correctness
guarantee; then a checking procedure is run to ensure correctness. The leakage
is later eliminated by bucketing. In our new protocol, we observe that these two
steps can be computed at the same time, reducing the number of rounds as well
as the amount of computation (i.e., H-evaluations). Moreover, computing and
checking can be further improved by adopting ideas from the half-gate technique.
Details are below.

Recall that in the half-gate approach, if a wire is associated with wire labels
(L0, L1 = L0 ⊕ ΔA), the first row of the gate computed by the garbler has the
form

G = H(L0) ⊕ H(L1) ⊕ C,

for some C. An evaluator holding (b, Lb) can evaluate it as

E = bG ⊕ H(Lb)
= b(H(L0) ⊕ H(L1) ⊕ C) ⊕ H(Lb)
= b(H(L0) ⊕ H(L1)) ⊕ H(Lb) ⊕ bC

= H(L0) ⊕ bC.

(1)

Correctness ensures that E⊕H(L0) = bC, which means that after the evaluation
the two parties hold shares of bC. Note that when free-XOR is used with shift ΔA,
then a pair of garbled labels (L0, L1) and the IT-MAC for a bit (i.e., (K[b],M[b]))
have the same structure. Therefore the above can be reformulated and extended
as follows:

G = H(K[b]) ⊕ H(M[b]) ⊕ C1

E = bG ⊕ H(M[b]) ⊕ bC2.

Assuming the two parties have an authenticated bit [b]B, then E ⊕ H(K[b]) =
b(C1 ⊕C2). If we view C1 and C2 as shares of some value C = C1 ⊕C2, then this
can be interpreted as a way to select on a shared value such that the selection
bit b is known only to one party and at the same time the output (namely,
bC = H(K[b]) ⊕ E) is still shared.

Now we are ready to present our protocol. We will start with a set of ran-
dom authenticated bits (〈x1 |x2〉 , 〈y1 | y2〉 , 〈z1 | r〉). We want the two parties to
directly compute shares of

376 J. Katz et al.

S = ((x1 ⊕ x2) ∧ (y1 ⊕ y2) ⊕ z1 ⊕ r) (ΔA ⊕ ΔB).

Assuming lsb(ΔA⊕ΔB) = 1, revealing d = lsb(S) allows the parties to “fix” these
random authenticated shares to a valid triple (by computing [z2]B = [r]B ⊕ d).
Once the parties hold shares of S (for example, PA holds S1 and PB holds S2 =
S ⊕ S1), checking the correctness of d also becomes easy: d is valid if and only if
S1 ⊕dΔA from PA equals to S2 ⊕dΔB from PB. A wrong d can pass the equality
check only if the adversary guesses the other party’s Δ value. Now the task is
to compute shares of S, where S can be rewritten as

S = x1(y1 ⊕ y2)(ΔA ⊕ ΔB) ⊕ x2(y1 ⊕ y2)(ΔA ⊕ ΔB) ⊕ (z1 ⊕ r)(ΔA ⊕ ΔB).

Here, we will focus on how to compute shares of

x2(y1ΔA ⊕ y1ΔB ⊕ y2ΔA ⊕ y2ΔB).

Now we apply the half-gate observation: PA has C1 = y1ΔA ⊕ K[y2] ⊕ M[y1] and
PB has C2 = y2ΔB ⊕ K[y1] ⊕ M[y2], and we have

x2(C1 ⊕ C2) = x2(y1ΔA ⊕ y1ΔB ⊕ y2ΔA ⊕ y1ΔB).

Therefore, this value can be computed by PA sending one ciphertext to PB. Given
the above observations, the final protocol can be derived in a straightforward
way. Overall this new approach improves communication by 1.2× and improves
computation by 2×.

For details and a security proof corresponding to the above, see Sect. 5.1.

New function-dependent preprocessing. Here we show how to further
improve the efficiency of function-dependent preprocessing. Recall that in the
WRK protocol, each AND triple is derived from B leaky-AND triples, for
B ≈ ρ

log C ; these triples are then used to multiply authenticated masked val-
ues for each AND gate of the circuit. Our observation is that we can reduce the
number of authenticated shares needed per gate from 3B+2 to 3B−1. This idea
was initially used by Araki et al. [3] in the setting of honest-majority three-party
computation. See Sect. 5.2 for details.

4 Technical Details: Improved Authenticated Garbling

Since we already discussed the main intuition of the protocol in the previous
section, we will present our main protocol in the Fpre-hybrid model. Detailed
protocol description is shown in Fig. 3. Each step in the protocol can be sum-
marized as follows:

1. Parties generate circuit preprocessing information using Fpre.
2. PA computes its own share of the garbled circuit and sends to PB.

3–4. Parties process PA and PB’s input and let PB learn the corresponding
masked input wire values and garbled labels.

5. PB locally reconstructs the garbled circuit and evaluates it.

Optimizing Authenticated Garbling 377

Protocol Π2pc

Inputs: PA holds x ∈ {0, 1}I1 and PA holds y ∈ {0, 1}I2 . Parties agree on a circuit
for a function f : {0, 1}I1 × {0, 1}I2 → {0, 1}O.

1. PA and PB call Fpre, which sends ΔA to PA, ΔB to PB, and sends
{〈rw | sw〉}w∈I∪W , {〈r∗

w | s∗
w〉}w∈W to PA and PB. For each w ∈ I1 ∪ I2, PA

also picks a uniform κ-bit string Lw,0.
2. Following the topological order of the circuit, for each gate G = (α, β, γ, T),

– If T = ⊕, PA computes Lγ,0 := Lα,0 ⊕ Lβ,0

– If T = ∧, PA computes Lα,1 := Lα,0 ⊕ ΔA, Lβ,1 := Lβ,0 ⊕ ΔA, and
Gγ,0 := H(Lα,0, γ) ⊕ H(Lα,1, γ) ⊕ K[sβ] ⊕ rβΔA

Gγ,1 := H(Lβ,0, γ) ⊕ H(Lβ,1, γ) ⊕ K[sα] ⊕ rαΔA ⊕ Lα,0

Lγ,0 := H(Lα,0, γ) ⊕ H(Lβ,0, γ) ⊕ K[sγ] ⊕ rγΔA ⊕ K[s∗
γ] ⊕ r∗

γΔA

bγ := lsb(Lγ,0)
PA sends Gγ,0, Gγ,1, bγ to PB.

3. For each w ∈ I2, two parties compute rw := Open([rw]A). PB then sends
yw ⊕ λw := yw ⊕ sw ⊕ rw to PA. Finally, PA sends Lw,yw⊕λw to PB.

4. For each w ∈ I1, two parties compute sw := Open([sw]B). PA then sends
xw ⊕ λw := xw ⊕ sw ⊕ rw and Lw,xw⊕λw to PB.

5. PB evaluates the circuit in topological order. For each gate G = (α, β, γ, T),
PB initially holds (zα ⊕ λα, Lα,zα⊕λα) and (zβ ⊕ λβ , Lβ,zβ⊕λβ), where zα, zβ

are the underlying values of the wires.
(a) If T = ⊕, PB computes zγ ⊕ λγ := (zα ⊕ λα)⊕ (zβ ⊕ λβ) and Lγ,zγ⊕λγ :=

Lα,zα⊕λα ⊕ Lβ,zβ⊕λβ .
(b) If T = ∧, PB computes G0 := Gγ,0 ⊕ M[sβ], and G1 := Gγ,1 ⊕ M[sα]. PB

evaluates the garbled table (G0, G1) to obtain the output label

Lγ,zγ⊕λγ := H(Lα,zα⊕λα , γ) ⊕ H(Lβ,zβ⊕λβ , γ) ⊕ M[sγ] ⊕ M[s∗
γ]

⊕ (zα ⊕ λα)G0 ⊕ (zβ ⊕ λβ)(G1 ⊕ Lα,zα⊕λα)

and zγ ⊕ λγ := bγ ⊕ lsb(Lγ,zγ⊕λγ)
6. For each w ∈ W, PB sends ẑw := zw ⊕ λw to PA.
7. For each AND gates (α, β, γ, ∧), both parties know ẑα = zα⊕λα, ẑβ = zβ ⊕λβ ,

and ẑγ = zγ ⊕ λγ . Two parties compute authenticated share of bit cγ defined
as

cγ = (ẑα ⊕ λα) ∧ (ẑβ ⊕ λβ) ⊕ (ẑγ ⊕ λγ).

Note that cγ is a linear combination of λα, λβ , λγ and λ∗
γ = λα ∧λβ , therefore

authenticated share of cγ can be computed locally.
8. Two parties use Open to check that cγ is 0 for all gates γ, and abort if any

check fails.
9. For each w ∈ O, two parties compute rw := Open([rw]A). PB computes zw :=

(λw ⊕ zw) ⊕ rw ⊕ sw.

Fig. 3. The main protocol in the Fpre hybrid model

378 J. Katz et al.

6–8. PB sends all masked wire values (including all input, output, and internal
wires) to PA; two parties check the correctness of all masked wire values.

9. PA reveals the masks of output wires to PB, who can recover the output.

Note that steps 2 through 9 are performed in the online phase, with 2κ + 2 bits
of communication per AND gate, κ+1 bits of communication per input bit, and
1 bit of communication per output bit.

4.1 Proof of Security

We start by stating our main theorem.

Theorem 1. If H is modeled as a random oracle, the protocol in Fig. 3 securely
computes f against malicious adversaries in the Fpre-hybrid model.

Before proceeding to the formal proof, we first introduce two important lem-
mas. The first lemma addresses correctness of our distributed garbling scheme
in the semi-honest case; the second lemma addresses correctness of the whole
protocol when PA is corrupted.

Lemma 1. When both parties follow the protocol honestly then, after step 5, for
each wire w in the circuit PB holds (zw ⊕ λw, Lw,zw⊕λw

).

Proof. We prove this by induction on the gates in the circuit.

Base case. It is easy to verify from step 3 and step 4 that the lemma holds for
input wires.

Induction step. XOR-gates are trivial and so focus on an AND gate (α, β, γ,∧).
First, the garbled tables are computed distributively, therefore we first write
down the table after PB merged its own share as follows. Note that we ignore
the gate id (γ) for simplicity.

G0 = H(Lα,0) ⊕ H(Lα,1) ⊕ K[sβ] ⊕ rβΔA ⊕ M[sβ]
= H(Lα,0) ⊕ H(Lα,1) ⊕ λβΔA

G1 = H(Lβ,0) ⊕ H(Lβ,1) ⊕ K[sα] ⊕ raΔA ⊕ M[sα] ⊕ Lα,0

= H(Lβ,0) ⊕ H(Lβ,1) ⊕ λαΔA ⊕ Lα,0.

PA locally computes the output garbled label for 0 values, namely Lγ,0 as:

Lγ,0 := H(Lα,0) ⊕ H(Lβ,0) ⊕ K[sγ] ⊕ rγΔA ⊕ K[s∗
γ] ⊕ r∗

γΔA.

PB, who holds (zα ⊕ λα, Lα,zα⊕λα
) and (zβ ⊕ λβ , Lβ,zβ⊕λβ

) by the induction
hypothesis, evaluates the circuit as follows:

Lγ,zγ⊕λγ
:= H(Lα,zα⊕λα

) ⊕ H(Lβ,zβ⊕λβ
) ⊕ (zα ⊕ λα)G0

⊕ (zβ ⊕ λβ)(G1 ⊕ Lα,zα⊕λα
) ⊕ M[sγ] ⊕ M[s∗

γ].

Optimizing Authenticated Garbling 379

Observe that

(zα ⊕ λα)G0 ⊕ H(Lα,zα⊕λα)

= (zα ⊕ λα) (H(Lα,0) ⊕ H(Lα,1) ⊕ λβΔA) ⊕ H(Lα,zα⊕λα)

= (zα ⊕ λα) (H(Lα,0) ⊕ H(Lα,1) ⊕ λβΔA) ⊕ (zα ⊕ λα) (H(Lα,0) ⊕ H(Lα,1)) ⊕ H(Lα,0)

= H(Lα,0) ⊕ λβ(zα ⊕ λα)ΔA,

and

(zβ ⊕ λβ)(G1 ⊕ Lα,zα⊕λα) ⊕ H(Lβ,zβ⊕λβ)

= (zβ ⊕ λβ) (H(Lβ,0) ⊕ H(Lβ,1) ⊕ λαΔA ⊕ (zα ⊕ λα)ΔA) ⊕ H(Lβ,zβ⊕λβ)

= (zβ ⊕ λβ) (H(Lβ,0) ⊕ H(Lβ,1) ⊕ zαΔA) ⊕ (zβ ⊕ λβ) (H(Lβ,0) ⊕ H(Lβ,1)) ⊕ H(Lβ,0)

= H(Lβ,0) ⊕ (λβ ⊕ zβ)zαΔA.

Therefore, we conclude that

Lγ,0 ⊕ Lγ,zγ⊕λγ

= H(Lα,0) ⊕ H(Lβ,0) ⊕ H(Lα,zα⊕λα
) ⊕ H(Lβ,zβ⊕λβ

) ⊕ (zα ⊕ λα)G0

⊕ (zβ ⊕ λβ)(G1 ⊕ Lα,zα⊕λα
) ⊕ λγΔA ⊕ (λα ∧ λβ)ΔA

= (λα ⊕ zα)λβΔA ⊕ (λβ ⊕ zβ)zαΔA ⊕ λγΔA ⊕ (λα ∧ λβ)ΔA

= ((zα ∧ zβ) ⊕ λγ)ΔA = (zγ ⊕ λγ)ΔA.

This means that, with respect to PA’s definition of Lγ,zγ⊕λγ
, PB’s label is always

correct. The masked value is correct because the least-significant bit of ΔA is 1;
thus,

bγ ⊕ lsb(Lγ,zγ⊕λγ
) = lsb(Lγ,0) ⊕ lsb(Lγ,zγ⊕λγ

)
= lsb(Lγ,0 ⊕ Lγ,zγ⊕λγ

)
= lsb((zγ ⊕ λγ)ΔA) = zγ ⊕ λγ .

Lemma 2. Let x
def= x̂w ⊕ λw and y

def= ŷw ⊕ λw, where x̂w is what PB sends
in step 3, ŷw is what PA sends in step 4, and λw is defined by Fpre. If PA is
malicious, then PB either aborts or outputs f(x, y).

Proof. After step 5, PB obtains a set of masked values zw ⊕ λw for all wires w
in the circuit. In the following, we will show that if these masked values are not
correct, then PB will abort with all but negligible probability.

Again we will prove by induction. Note that the lemma holds for all wires
w ∈ I1 ∪ I2, according to how x, y are defined, as well as for XOR-gates. In the
following, we will focus on an AND gate (α, β, γ,∧). Now, according to induction
hypothesis, we already know that PB hold correct values of (zα ⊕ λα, zβ ⊕ λβ).

Recall that the checking is done by computing

c = (ẑα ⊕ λα) ∧ (ẑβ ⊕ λβ) ⊕ (ẑγ ⊕ λγ).

380 J. Katz et al.

The correctness of input masked values means that

c = zα ∧ zβ ⊕ ẑγ ⊕ λγ .

Since Open does not abort, c = 0, which means that ẑγ = zα ∧zβ ⊕λγ = zγ ⊕λγ .
This means that the output masked wire value is also correct.

Given the above two lemmas, the proof of security of our main protocol is
relatively easy. We provide all details below.

Proof. We consider separately a malicious PA and PB.

Malicious PA. Let A be an adversary corrupting PA. We construct a simulator S
that runs A as a subroutine and plays the role of PA in the ideal world involving
an ideal functionality F evaluating f . S is defined as follows.

1. S plays the role of Fpre and records all values that Fpre sends to two parties.
2. S receives all values that A sends.
3. S acts as an honest PB using input y := 0.
4. For each wire w ∈ I1, S receives x̂w and computes xw := x̂w ⊕ rw ⊕ sw,

where rw, sw are the values used by Fpre in the previous steps.
6. S picks random bits for all ẑw and send them to A.

7–9. S acts as an honest PB If an honest PB would abort, S aborts; otherwise S
computes the input x of A. from the output of Fpre and the values A sent.
S then sends x to F .

We show that the joint distribution of the outputs of A and the honest PB in the
real world is indistinguishable from the joint distribution of the outputs of S and
PB in the ideal world. We prove this by considering a sequence of experiments,
the first of which corresponds to the execution of our protocol and the last of
which corresponds to execution in the ideal world, and showing that successive
experiments are computationally indistinguishable.

Hybrid1. This is the hybrid-world protocol, where we imagine S playing the
role of an honest PB using PB’s actual input y, while also playing the role
of Fpre.

Hybrid2. Same as Hybrid1, except that in step 6, for each wire w ∈ I1 the
simulator S receives x̂w and computes xw := x̂w ⊕ rw ⊕ sw, where rw, sw are
the values used by Fpre. If an honest PB would abort in any later step, S sends
abort to F ; otherwise it sends x = {xw}w∈I1 to F .
The distributions on the view of A in Hybrid1 and Hybrid2 are identical.
The output PB gets are the same due to Lemma 1 and Lemma 2.

Hybrid3. Same as Hybrid2, except that S uses y′ = 0 in step 3 and ignore
what A sends back. Then in step 6, S sends random bits instead of the value
for zw ⊕ λw.
The distributions on the view of A in Hybrid3 and Hybrid2 are again
identical (since the {sw}w∈I2 are uniform).

Optimizing Authenticated Garbling 381

Note that Hybrid3 corresponds to the ideal-world execution described earlier.
This completes the proof for a malicious PA.

Malicious PB. Let A be an adversary corrupting PB. We construct a simulator S
that runs A as a subroutine and plays the role of PB in the ideal world involving
an ideal functionality F evaluating f . S is defined as follows.

1. S plays the role of Fpre and records all values sent to both parties.
2. S acts as an honest PA and send the shared garbled tables to PB.
3. For each wire w ∈ I2, S receives ŷw and computes yw := ŷw ⊕ rw ⊕ sw,

where rw, sw are the values used by Fpre in the previous steps.
4. S acts as an honest PA using input x = 0.

6–8. S acts as an honest PA. If an honest PA would abort, S abort.
9. S sends y computed in step 3 to F , which returns z = f(x, y). S then

computes z′ := f(0, y) and defines r′
w = zw ⊕ z′

w ⊕ rw for each w ∈ O. S
then acts as an honest PA and opens values r′

w to A. If an honest PA would
abort, S S outputs whatever A outputs.

We now show that the distribution on the view of A in the real world is indis-
tinguishable from the distribution on the view of A in the ideal world. (Note PA

has no output.)

Hybrid1. This is the hybrid-world protocol, where S acts as an honest PA using
PA’s actual input x, while playing the role of Fpre.

Hybrid2. Same as Hybrid1, except that in step 3, S receives ŷw and computes
yw := ŷw ⊕ rw ⊕ sw, where rw, sw are the values used by Fpre. If an honest
PA abort in any step, send abort to F .

Hybrid3. Same as Hybrid2, except that in step 4, S acts as an honest PA with
input x = 0. S sends x computed in step 3 to F , which returns z = f(x, y). S
then computes z′ := f(0, y) and defines r′

w = zw ⊕ z′
w ⊕ rw for each w ∈ O. S

then acts as an honest PA and opens values r′
w to A. If an honest PA would

abort, S S outputs whatever A outputs.
The distributions on the view of A in Hybrid3 and Hybrid2 are identical.

Note that Hybrid3 is identical to the ideal-world execution.

5 Technical Details: Improved Preprocessing

In this section, we provide details for our two optimizations of the preprocessing
phase. The first optimization improves the efficiency to compute a leaky AND
gate. Leaky AND gate is a key component towards a preprocessing with full secu-
rity. This functionality (FLand) outputs triples with guaranteed correctness but
the adversary can choose to guess the x value from the honest party: an incorrect
guess will be caught immediately; while a correct guess remain undetected.

The second optimization focuses on how to combine leaky triples in a more
efficient way. In particular, we observe that a recent optimization in the honest-
majority secret sharing protocol by Araki et al. [3], can be applied to our setting
too. As a result, we can roughly reduce the bucket size by one.

382 J. Katz et al.

Functionality FLand

Honest case:

1. Generate uniform 〈x1 | x2〉, 〈y1 | y2〉, 〈z1 | z2〉 such that z1 ⊕ z2 = (x1 ⊕ x2) ∧
(y1 ⊕ y2), and send the respective shares to the two parties.

2. PA can choose to send (P1, p2, P3) ∈ {0, 1}κ×{0, 1}×{0, 1}κ. The functionality
checks

P3 ⊕ x2P1 = (p2 ⊕ x2lsb(P1))ΔB.

If the check fails, the functionality sends fail to both parties and abort. (PB

can do the same symmetrically.)

Corrupted parties: A corrupted party gets to specify the randomness used on
its behalf by the functionality.

Fig. 4. Functionality FLand for computing a leaky AND triple.

5.1 Improved Leaky AND

Before giving the details, we point out a minor difference in the leaky-AND
functionality (FLand) as compared to [37]. As shown in Fig. 4, instead of letting
A directly learn the value of x, the functionality allows A to send a query in a
form of (P1, p2, P3) and return if P3 ⊕x2P1 = (p2 ⊕x2lsb(P1))ΔB. It can be seen
that this special way is no more than a query on x and two queries on Δ, and
the A cannot learn any information on y or z.

The main intuition of the protocol is already discussed in Sect. 3.2. We will
proceed to present the protocol, in Fig. 5.

Theorem 2. The protocol in Fig. 5 securely realizes FLand in the (Fabit,Feq)-
hybrid model.

Proof. As the first step, we will show that the protocol is correct if both parties
are honest. We recall that

1. G1 := H(K[x2] ⊕ ΔA) ⊕ H(K[x2]) ⊕ CA

2. G2 := H(K[x1] ⊕ ΔB) ⊕ H(K[x1]) ⊕ CB

3. CA := y1ΔA ⊕ K[y2] ⊕ M[y1]
4. CB := y2ΔB ⊕ M[y2] ⊕ K[y1]

Note that

E1 ⊕ H(K[x2]) = x2G1 ⊕ H(M[x2]) ⊕ x2CB ⊕ H(K[x2]).

When x2 = 0, we have

E1 ⊕ H(K[x2]) = x2G1 ⊕ H(M[x2]) ⊕ x2CB ⊕ H(K[x2])
= H(M[x2]) ⊕ H(K[x2])
= 0 = x2(CA ⊕ CB).

Optimizing Authenticated Garbling 383

Protocol ΠLand

Protocol:

1. PA and PB obtain random authenticated shares (〈x1 | x2〉 , 〈y1 | y2〉 , 〈z1 | r〉).
PA locally computes CA := y1ΔA ⊕ K[y2] ⊕ M[y1], and
PB locally computes CB := y2ΔB ⊕ M[y2] ⊕ K[y1].

2. PA sends G1 := H(K[x2] ⊕ ΔA) ⊕ H(K[x2]) ⊕ CA to PB.
PB computes E1 := x2G1 ⊕ H(M[x2]) ⊕ x2CB.

3. PB sends G2 := H(K[x1] ⊕ ΔB) ⊕ H(K[x1]) ⊕ CB to PA.
PA computes E2 := x1G2 ⊕ H(M[x1]) ⊕ x1CA.

4. PA computes S1 := H(K[x2]) ⊕ E2 ⊕ (z1ΔA ⊕ K[r] ⊕ M[z1]), PB computes
S2 := H(K[x1])⊕ E1 ⊕ (rΔB ⊕M[r]⊕K[z1]). PA sends lsb(S1) to PB; PB sends
lsb(S2) to PA. Both parties computes d := lsb(S1) ⊕ lsb(S2).

5. PA sends L1 := S1 ⊕ dΔA to Feq, PB sends L2 := S2 ⊕ dΔB to Feq. If Feq

returns 0, parties abort, otherwise, they compute [z2]B := [r]B ⊕ d.

Fig. 5. Our improved leaky-AND protocol.

When x2 = 1, we have

E1 ⊕ H(K[x2]) = x2G1 ⊕ H(M[x2]) ⊕ x2CB ⊕ H(K[x2])
= x2(G1 ⊕ CB) ⊕ H(M[x2]) ⊕ H(K[x2])
= x2(G1 ⊕ CB) ⊕ H(K[x2] ⊕ ΔA)) ⊕ H(K[x2])
= x2(CA ⊕ CB).

Therefore,

E1 ⊕ H(K[x2]) = x2(CA ⊕ CB)
= x2(y1ΔA ⊕ K[y2] ⊕ M[y1] ⊕ y2ΔB ⊕ M[y2] ⊕ K[y1]))
= x2(y1ΔA ⊕ y2ΔA ⊕ y1ΔB ⊕ y2ΔB)
= x2(y1 ⊕ y2)(ΔA ⊕ ΔB).

Similarly,
E2 ⊕ H(K[x1]) = x1(y1 ⊕ y2)(ΔA ⊕ ΔB).

Taking these two equations, we know that

S1 ⊕ S2 = (E1 ⊕ H(K[x2])) ⊕ (E2 ⊕ H(K[x1]))
⊕ (z1ΔA ⊕ K[r] ⊕ M[z1] ⊕ rΔB ⊕ M[r] ⊕ K[z1])

= (x1 ⊕ x2)(y1 ⊕ y2)(ΔA ⊕ ΔB)
⊕ (z1ΔA ⊕ K[z1] ⊕ M[z1] ⊕ rΔB ⊕ K[r] ⊕ M[r])

= (x1 ⊕ x2)(y1 ⊕ y2)(ΔA ⊕ ΔB)
⊕ (z1ΔA ⊕ z1ΔB ⊕ rΔB ⊕ rΔA)

384 J. Katz et al.

= (x1 ⊕ x2)(y1 ⊕ y2)(ΔA ⊕ ΔB) ⊕ (z1 ⊕ r)(ΔA ⊕ ΔB)
= ((x1 ⊕ x2) ∧ (y1 ⊕ y2) ⊕ z1 ⊕ r)(ΔA ⊕ ΔB).

Since lsb(ΔA ⊕ ΔB) = 1, it holds that

d = lsb(S1 ⊕ S2) = (x1 ⊕ x2) ∧ (y1 ⊕ y2) ⊕ z1 ⊕ r.

Therefore, (x1 ⊕ x2) ∧ (y1 ⊕ y2) = d ⊕ z1 ⊕ r = z1 ⊕ z2.
Now we will focus on the security of the protocol in the malicious setting.

First note that the protocol is symmetric, therefore we only need to focus on the
case of a malicious PA. The local computation of both parties is deterministic,
with all inputs sent from Fabit. Therefore, all messages sent during the protocol
can be anticipated (emulated) by S after S sending out the shares. This is not
always possible if A uses local random coins or if A has private inputs. This
fact significantly reduces the difficulty of the proof. Intuitively, S will be able to
immediately catch A cheating by comparing what it sends with what it would
have sent (which S knows by locally emulating). The majority of the work then
is to extract A’s attempt to perform a selective failure attack.

Define a simulator S as follows.

0a. S interacts with FLand and obtains PA’s share of (〈x1 |x2〉 , 〈y1 | y2〉 , 〈z1 | z2〉).
S also gets ΔA from Fabit. S randomly picks ΔB and PB’s share of
(〈x1 |x2〉 , 〈y1 | y2〉 , 〈z1 | z2〉) in a way that makes it consistent with PA’s
share. S now randomly picks d and computes [r]B := [z2]B ⊕ d.

0b. Using values (〈x1 |x2〉 , 〈y1 | y2〉 , 〈z1 | r〉) from both parties, S locally emu-
lates all messages sent by each party, namely (G1, d1, L1) sent by an honest
PA and (G2, d2, L2) sent by an honest PB.

1. S plays the role of Fabit and sends out (〈x1 |x2〉 , 〈y1 | y2〉 , 〈z1 | r〉) as defined
above.

2. S acts as an honest PB and receive G′
1 sent by A. S computes P1 = G′

1⊕G1.
3. S randomly picks a G2 and send it to A.
4. S acts as an honest PB and receives d′

1. S computes p2 := d′
1 ⊕ d1.

5. S plays the role of Feq and obtain L1. S computes P3 = L′
1 ⊕ L1. S sends

(P1, p2, P3) to FLand as the selective failure attack query. If FLand abort, S
plays the role of Feq and aborts. If the value d in the protocol equals to r
defined in step 0a, Feq returns 0; otherwise Feq returns 1.

6. S sends (P1, p2, P3) to FLand as the selective failure query. If FLand returns
fail, S sends 0 to A as the output of Feq.

Note that messages that S sends to A in the protocol are changed from
(G2, d2, L2) to (G2, d2⊕x2lsb(P1), L2⊕x2P1⊕d′ΔB), where d′ = p2⊕x2 · lsb(P1)
and the equality checking in step 5 changed from comparing L1 = L2 to

L1 ⊕ P3 = L2 ⊕ x2P1 ⊕ (p2 ⊕ x2lsb(P1)) ΔB,

that is

P3 ⊕ x2P1 = (p2 ⊕ x2lsb(P1)) ΔB.

This is the same form as the selective failure query in FLand.

Optimizing Authenticated Garbling 385

Protocol Πpre

Inputs: Two parties agree on a circuit for a function f : {0, 1}I1 × {0, 1}I2 →
{0, 1}O.
Protocol:

1. Two parties initialize Fabit, which sends ΔA to PA and ΔB to PB.
2. For each wire w ∈ I1 ∪ I2 ∪ W, two parties obtain an authenticated share

〈rw | sw〉 from Fabit.
3. For each gate G = (α, β, γ, ⊕), two parties compute 〈rγ | sγ〉 := 〈sα | rα〉 ⊕

〈rβ | sβ〉.
4. For each gate G = (α, β, γ, ∧), two parties have (〈rα | sα〉 , 〈rβ | sβ〉), and run

step 2 to step 5 in ΠLand to obtain 〈r∗
γ | s∗

γ〉, such that r∗
γ ⊕ s∗

γ = (rα ⊕ sα) ∧
(rβ ⊕ sβ)

5. PA and PB call FLand to obtain (B − 1)|C| number of leaky AND triples
(〈x1 | x2〉 , 〈y1 | y2〉 , 〈z1 | z2〉).

6. Two parties perform secure coin-flipping to determine a random permutation
and permute the triples obtained in step 4. For each AND gate G = (α, β, γ, ∧)
in the circuit, perform secure merging for B − 1 times.
(a) Obtain the next triple in the permuted list, namely

(〈x1 | x2〉 , 〈y1 | y2〉 , 〈z1 | z2〉)
(b) Compute 〈d1 | d2〉 := 〈y1 | y2〉 ⊕ 〈rβ | sβ〉, and d := Open(〈d1 | d2〉).
(c) Update triple: 〈rα | sα〉 := 〈rα | sα〉 ⊕ 〈x1 | x2〉, 〈r∗

γ | s∗
γ〉 := 〈r∗

γ | s∗
γ〉 ⊕

〈z1 | z2〉 ⊕ d 〈x1 | x2〉.

Fig. 6. Protocol Πpre instantiating Fpre in the (Fabit, FLand)-hybrid model.

5.2 Improved Function-Dependent Preprocessing

In this section, we will focus on improving the preprocessing in the Leaky AND
triple generation (FLand) hybrid model. The main observation is that in the
protocol of WRK, each wire is associated with a mask (in the authenticated
share format). Then the AND of input masks are computed using one AND
triple. This is a waste of randomness, since we also directly construct all triples
in place for all wires. Note that the idea is similar to Araki et al. [3]. The detailed
protocol is presented in Fig. 6.

Note that although the above optimization aims to reduce the overall cost
of the protocol, but it turns out that even in this case, most of the computation
and communication (including computation of all authenticated bits as well as
all leaky-AND triples in step 5) can be still done in the function-independent
phase. The function-dependent cost is increased by only κ bits per AND gate
only. Therefore, here we have an option to trade-off between total communication
and communication in the offline stage. By increasing the function-dependent
cost by κ bits per gate, we reduce bucket size by 1. We believe both versions can
be useful depending on the application, and the concrete cost of both versions
of the protocol are presented in the performance section.

386 J. Katz et al.

Table 2. Communication complexity of different protocols for evaluating
AES, rounded to two significant figures. As in Table 1, one-way communication
refers to the maximum communication one party sends to the other; two-way commu-
nication refers to the sum of both parties’ communication. The best prior number in
each column is bolded for reference.

One-way Communication (Max) Two-way Communication

Ind. Dep. Online Total Ind. Dep. Online Total
(MB) (MB) (KB) (MB) (MB) (MB) (KB) (MB)

Single execution

[28] 15 0.22 16 15 15 0.22 16 15
[37] 2.9 0.57 4.9 3.4 5.7 0.57 6.0 6.3
[12] - 3.4 ≥ 4.9 3.4 - 3.4 ≥ 4.9 3.4

This work, v. 1 1.9 0.33 5.0 2.2 3.8 0.33 5.0 4.2
This work, v. 2 2.5 0.22 5.0 2.7 4.9 0.22 5.0 5.1

Amortized cost over 1024 executions

[33] - 1.6 17 1.6 - 3.2 17 3.2
[28] 6.4 0.22 16 6.6 6.4 0.22 16 6.6
[18] - 1.6 19 1.6 - 1.6 19 1.6
[37] 2.0 0.57 4.9 2.6 4.0 0.57 6.0 4.6

This work, v. 1 1.4 0.33 5.0 1.7 2.7 0.33 5.0 3.1
This work, v. 2 1.9 0.22 5.0 2.1 3.8 0.22 5.0 4.0

6 Performance

In this section, we discuss the concrete efficiency of our protocol. We consider
two variants of our protocol that optimize the cost of different phases: The first
version of our protocol is optimized to minimize the total communication; the
second version is optimized to minimize the communication in the function-
dependent phase. (The cost of the online phase is identical in both versions.)

6.1 Communication Complexity

Table 2 shows the communication complexity of recent two-party computation
protocols in the malicious setting. Numbers for these protocols are obtained from
the respective papers, while numbers for our protocol are calculated. We tabulate
both one-way communication and total communication. If parties’ data can be
sent at the same time over a full-duplex network, then one-way communication
is a better reflection of the running time. In general, for a circuit that requires
a bucket size of B, we can obtain an estimation of the concrete communication
cost: our first version has function dependent cost of 3κ per gate, and function
independent cost of (4B − 2)κ + (3B − 1)ρ per gate; our second version has
a function dependent cost of 2κ per gate, and a function independent cost of
(4B + 2)κ + (3B + 2)ρ per gate.

Optimizing Authenticated Garbling 387

We see that our protocol and the protocol by Nielsen et al. [28] are the only
ones that, considering the function-dependent phase and the online phase, have
cost similar to that of the state-of-the-art semi-honest garbled-circuit protocol.
In other words, the overhead induced by malicious security can be completely
pushed to the preprocessing stage. Compared to the protocol by Nielsen et al.,
we are able to reduce the communication in the preprocessing stage by 6× in
the single-execution setting, and by 3.4× in the amortized setting. Our protocol
also has the best total communication complexity in both settings, excepting the
work of [18,33] which are 6% better but do not support function-independent
preprocessing.

6.2 Computational Complexity

Since the WRK protocol represents the state-of-the-art as far as implementations
are concerned, we compare the computational complexity of our protocol to
theirs. We also include a comparison to the more recent protocol by Hazay et
al. [12] (the HIV protocol), which has not yet been implemented.

Comparing to the WRK protocol. Our protocol follows the same high-level
approach as the WRK protocol. Almost all H-evaluations in our protocol can
be accelerated using fixed-key AES, as done in [6]. We tabulate the number of
H-evaluations for both protocols in Table 3. Due to our improved FLand, we are
able to achieve a 2–2.5× improvement.

Table 3. Number of H -evaluations. We align the security parameters in both
protocols and set B = ρ/ log C + 1 for a fair comparison.

Ind. Dep. Online Total

WRK 10B 8 2 10B + 10
This work, v. 1 4B − 4 8 2 4B + 6
This work, v. 2 4B 4 2 4B + 6

Comparing to the HIV protocol. As noted by the authors, the HIV protocol
has polylogarithmic computational overhead compared to semi-honest garbled
circuits. This is due to their use of the MPC-based zero-knowledge proof by
Ames et al. [2]. On the other hand, in our protocol, the computation is linear in
the circuit size. Furthermore, almost all cryptographic operations in our protocol
can be accelerated using hardware AES instructions.

Taking an AES circuit as example, the ZK protocol by Ames et al. for a circuit
of that size has a prover running time of around 70 ms and a verifier running
time of around 30 ms. Therefore, even if we ignore the cost of computing and
sending the garbled circuit, the oblivious transfers, and other operations, the
end-to-end running time of the HIV protocol will still be at least 100 ms. On the
other hand, the entire WRK protocol runs within 17 ms for the same circuit. As
our protocol results in at least a 2× improvement, our protocol will be at least
an order of magnitude faster than the HIV protocol.

388 J. Katz et al.

7 Challenges in Extending to the Multi-Party Case

Wang et al. [38] have also shown how to extend their authenticated-garbling pro-
tocol to the multi-party case. In this section, we discuss the challenges involved in
applying our new techniques to that setting. Note that Ben-Efraim [7] recently
proposed new techniques for multi-party garbling, making it compatible with
some of the half-gate optimizations. Despite being based on half-gates, they still
require 4 garbled rows per AND gate, and thus their work still leaves open the
question of reducing the communication complexity of the online phase in the
multi-party case.

In the multi-party WRK protocol, there are n − 1 garbling parties and one
evaluating party. For each wire, each garbler chooses their own set of wire labels
(called “subkeys”). As in the 2-party case, the preprocessing defines some authen-
ticated bits, and as a result all parties can locally compute additive shares of
any garbler’s subkey corresponding to any authenticated value.

In each gate, each garbler Pi generates standard Yao garbled gate consisting
of 4 rows. Each row of Pi’s gate is encrypted by only Pi’s subkeys, and the
payload of the row is Pi’s shares of all garblers’ subkeys. That way, the evaluator
can decrypt the correct row of everyone’s garbled gates, obtain everyone’s shares
of everyone’s subkeys, and combine them to get everyone’s appropriate subkey
for the output wire.

Now suppose we modify things so each garbler generates a half-gates-style
garbled gate instead of a standard Yao garbled gate. The half-gate uses gar-
bler Pi’s subkeys as its “keys” and encodes Pi’s shares of all subkeys as its
“payloads”. Now the protocol may not be secure against an adversary cor-
rupting the evaluator and a garbler. In particular, half-gates garbling defines
G0 = H(Lα,0) ⊕ H(Lα,1) ⊕ λβΔ. When Pi is acting as garbler, these Lα,u values
correspond to Pi’s subkeys. Now suppose Pi colludes with the evaluator. If the
evaluator comes to learn G0 (which is necessary to evaluate the gate in half of
the cases), then the adversary can learn the secret mask λβ since it is the only
unknown term in G0. Clearly revealing the secret wire mask breaks the privacy
of the protocol. This is not a problem with Yao garbled gates, where each row
can be written as Gu,v = H(Lα,u, Lβ,v) ⊕ [payload already known to garbler].
The secret masks do not appear in the garbled table, except indirectly through
the payloads (subkey shares).

It is even unclear if row-reduction can be made possible. In the multi-party
setting, the garbler has no control over the “payload” (i.e., output wire label) of
the garbled gate when using row-reduction. Indeed, this is what makes it possible
to reduce the size of a garbled gate. This is not a problem in the two-party case,
where there is only one garbler who has control over all garbled gates and all
wire labels. He generates a garbled table, and then computes his output wire
label (subkey) as a function of the payload in the table. However, in the multi-
party case, Pi generates a half-gate whose payloads include Pi’s shares of Pj ’s
subkeys! We would need Pj ’s choice of subkeys to depend on the payloads of
Pi’s garbling (for all i and j!). It is not clear how this can be done, and even if it
were possible it would apparently require additional rounds proportional to the
depth of the circuit.

Optimizing Authenticated Garbling 389

Acknowledgments. This material is based on work supported by NSF awards
#1111599, #1563722, #1564088, and #1617197. Portions of this work were also sup-
ported by DARPA and SPAWAR under contract N66001-15-C-4065. The U.S. Gov-
ernment is authorized to reproduce and distribute reprints for Governmental purposes
not withstanding any copyright notation thereon. The views, opinions, and/or findings
expressed are those of the authors and should not be interpreted as representing the
official views or policies of the Department of Defense or the U.S. Government.

References

1. Afshar, A., Mohassel, P., Pinkas, B., Riva, B.: Non-interactive secure computation
based on cut-and-choose. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 387–404. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-642-55220-5 22

2. Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero: lightweight sub-
linear arguments without a trusted setup. In: ACM CCS 2017, pp. 2087–2104.
ACM Press (2017)

3. Araki, T., Barak, A., Furukawa, J., Lichter, T., Lindell, Y., Nof, A., Ohara, K.,
Watzman, A., Weinstein, O.: Optimized honest-majority MPC for malicious adver-
saries - breaking the 1 billion-gate per second barrier. In: 2017 IEEE Symposium
on Security and Privacy, San Jose, CA, USA, 22–26 May 2017, pp. 843–862. IEEE
Computer Society Press (2017)

4. Beaver, D.: Efficient multiparty protocols using circuit randomization. In: Feigen-
baum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432. Springer, Heidelberg
(1992). https://doi.org/10.1007/3-540-46766-1 34

5. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols.
In: Proceedings of the Twenty-Second Annual ACM Symposium on Theory of
Computing, pp. 503–513. ACM (1990)

6. Bellare, M., Hoang, V.T., Keelveedhi, S., Rogaway, P.: Efficient garbling from a
fixed-key blockcipher. In: 2013 IEEE Symposium on Security and Privacy, Berkeley,
CA, USA, 19–22 May 2013, pp. 478–492. IEEE Computer Society Press (2013)

7. Ben-Efraim, A.: On multiparty garbling of arithmetic circuits. Cryptology ePrint
Archive, Report 2017/1186 (2017). https://eprint.iacr.org/2017/1186

8. Brandão, L.T.A.N.: Secure two-party computation with reusable bit-commitments,
via a cut-and-choose with forge-and-lose technique. In: Sako, K., Sarkar, P. (eds.)
ASIACRYPT 2013, Part II. LNCS, vol. 8270, pp. 441–463. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-42045-0 23

9. Damg̊ard, I., Pastro, V., Smart, N.P., Zakarias, S.: Multiparty computation
from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 38

10. Frederiksen, T.K., Jakobsen, T.P., Nielsen, J.B., Nordholt, P.S., Orlandi, C.:
MiniLEGO: efficient secure two-party computation from general assumptions. In:
Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 537–
556. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9 32

11. Gueron, S., Lindell, Y., Nof, A., Pinkas, B.: Fast garbling of circuits under standard
assumptions. In: Ray, I., Li, N., Kruegel: C. (eds.) ACM CCS 2015, Denver, CO,
USA, 12–16 October 2015, pp. 567–578. ACM Press (2015)

https://doi.org/10.1007/978-3-642-55220-5_22
https://doi.org/10.1007/978-3-642-55220-5_22
https://doi.org/10.1007/3-540-46766-1_34
https://eprint.iacr.org/2017/1186
https://doi.org/10.1007/978-3-642-42045-0_23
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/978-3-642-38348-9_32

390 J. Katz et al.

12. Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Actively secure garbled circuits
with constant communication overhead in the plain model. In: Kalai, Y., Reyzin,
L. (eds.) TCC 2017, Part II. LNCS, vol. 10678, pp. 3–39. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-70503-3 1

13. Huang, Y., Evans, D., Katz, J., Malka, L.: Faster secure two-party computation
using garbled circuits. In: USENIX Security 2011 (2011)

14. Huang, Y., Katz, J., Evans, D.: Efficient secure two-party computation using sym-
metric cut-and-choose. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II.
LNCS, vol. 8043, pp. 18–35. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-40084-1 2

15. Huang, Y., Katz, J., Kolesnikov, V., Kumaresan, R., Malozemoff, A.J.: Amortizing
garbled circuits. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS,
vol. 8617, pp. 458–475. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-44381-1 26

16. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers effi-
ciently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4 9

17. Kolesnikov, V., Mohassel, P., Rosulek, M.: FleXOR: flexible garbling for XOR
gates that beats free-XOR. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014,
Part II. LNCS, vol. 8617, pp. 440–457. Springer, Heidelberg (2014). https://doi.
org/10.1007/978-3-662-44381-1 25

18. Kolesnikov, V., Nielsen, J.B., Rosulek, M., Trieu, N., Trifiletti, R.: DUPLO: unify-
ing cut-and-choose for garbled circuits. In: ACM CCS 2017, pp. 3–20. ACM Press
(2017)

19. Kolesnikov, V., Schneider, T.: Improved garbled circuit: free XOR gates and
applications. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp.
486–498. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70583-
3 40

20. Kreuter, B., Shelat, A., Shen, C.H.: Billion-gate secure computation with malicious
adversaries. In: USENIX Security 2012 (2012)

21. Lindell, Y.: Fast cut-and-choose based protocols for malicious and covert adver-
saries. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043,
pp. 1–17. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-
1 1

22. Lindell, Y., Pinkas, B.: An efficient protocol for secure two-party computation
in the presence of malicious adversaries. In: Naor, M. (ed.) EUROCRYPT 2007.
LNCS, vol. 4515, pp. 52–78. Springer, Heidelberg (2007). https://doi.org/10.1007/
978-3-540-72540-4 4

23. Lindell, Y., Pinkas, B.: Secure two-party computation via cut-and-choose oblivious
transfer. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 329–346. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-19571-6 20

24. Lindell, Y., Riva, B.: Cut-and-choose Yao-based secure computation in the
online/offline and batch settings. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO
2014, Part II. LNCS, vol. 8617, pp. 476–494. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-662-44381-1 27

25. Lindell, Y., Riva, B.: Blazing fast 2PC in the offline/online setting with security
for malicious adversaries. In: Ray, I., Li, N., Kruegel, C. (eds.) ACM CCS 2015,
Denver, CO, USA, 12–16 October 2015, pp. 579–590. ACM Press (2015)

26. Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay—a secure two-party compu-
tation system. In: USENIX Security 2004 (2004)

https://doi.org/10.1007/978-3-319-70503-3_1
https://doi.org/10.1007/978-3-642-40084-1_2
https://doi.org/10.1007/978-3-642-40084-1_2
https://doi.org/10.1007/978-3-662-44381-1_26
https://doi.org/10.1007/978-3-662-44381-1_26
https://doi.org/10.1007/978-3-540-45146-4_9
https://doi.org/10.1007/978-3-662-44381-1_25
https://doi.org/10.1007/978-3-662-44381-1_25
https://doi.org/10.1007/978-3-540-70583-3_40
https://doi.org/10.1007/978-3-540-70583-3_40
https://doi.org/10.1007/978-3-642-40084-1_1
https://doi.org/10.1007/978-3-642-40084-1_1
https://doi.org/10.1007/978-3-540-72540-4_4
https://doi.org/10.1007/978-3-540-72540-4_4
https://doi.org/10.1007/978-3-642-19571-6_20
https://doi.org/10.1007/978-3-662-44381-1_27
https://doi.org/10.1007/978-3-662-44381-1_27

Optimizing Authenticated Garbling 391

27. Naor, M., Pinkas, B., Sumner, R.: Privacy preserving auctions and mechanism
design. In: 1st ACM Conference on Electronic Commerce (1999)

28. Nielsen, J., Schneider, T., Trifiletti, R.: Constant-round maliciously secure 2PC
with function-independent preprocessing using LEGO. In: Network and Dis-
tributed System Security Symposium (NDSS) (2017)

29. Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new approach to practi-
cal active-secure two-party computation. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 681–700. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 40

30. Nielsen, J.B., Orlandi, C.: LEGO for two-party secure computation. In: Reingold,
O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 368–386. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-00457-5 22

31. Nielsen, J.B., Orlandi, C.: Cross and clean: amortized garbled circuits with constant
overhead. In: Hirt, M., Smith, A.D. (eds.) TCC 2016, Part I. LNCS, vol. 9985, pp.
582–603. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53641-
4 22

32. Pinkas, B., Schneider, T., Smart, N.P., Williams, S.C.: Secure two-party compu-
tation is practical. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
250–267. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-
7 15

33. Rindal, P., Rosulek, M.: Faster malicious 2-party secure computation with
online/offline dual execution. In: USENIX Security 2016 (2016)

34. Shelat, A., Shen, C.H.: Two-output secure computation with malicious adver-
saries. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 386–405.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4 22

35. Shelat, A., Shen, C.H.: Fast two-party secure computation with minimal assump-
tions. In: Sadeghi, A.R., Gligor, V.D., Yung, M. (eds.) ACM CCS 2013, Berlin,
Germany, 4–8 November 2013, pp. 523–534. ACM Press (2013)

36. Wang, X., Malozemoff, A.J., Katz, J.: Faster secure two-party computation in the
single-execution setting. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017,
Part II. LNCS, vol. 10212, pp. 399–424. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-56617-7 14

37. Wang, X., Ranellucci, S., Katz, J.: Authenticated garbling and efficient maliciously
secure two-party computation. In: ACM CCS 2017, pp. 21–37. ACM Press (2017)

38. Wang, X., Ranellucci, S., Katz, J.: Global-scale secure multiparty computation. In:
ACM CCS 2017, pp. 39–56. ACM Press (2017)

39. Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: 27th
FOCS, Toronto, Ontario, Canada, 27–29 October 1986, pp. 162–167. IEEE Com-
puter Society Press (1986)

40. Zahur, S., Rosulek, M., Evans, D.: Two halves make a whole - Reducing Data
Transfer in Garbled Circuits Using Half Gates. In: Oswald, E., Fischlin, M. (eds.)
EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp. 220–250. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46803-6 8

41. Zhu, R., Huang, Y.: JIMU: faster LEGO-based secure computation using additive
homomorphic hashes. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Part II.
LNCS, vol. 10625, pp. 529–572. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-70697-9 19

https://doi.org/10.1007/978-3-642-32009-5_40
https://doi.org/10.1007/978-3-642-00457-5_22
https://doi.org/10.1007/978-3-662-53641-4_22
https://doi.org/10.1007/978-3-662-53641-4_22
https://doi.org/10.1007/978-3-642-10366-7_15
https://doi.org/10.1007/978-3-642-10366-7_15
https://doi.org/10.1007/978-3-642-20465-4_22
https://doi.org/10.1007/978-3-319-56617-7_14
https://doi.org/10.1007/978-3-319-56617-7_14
https://doi.org/10.1007/978-3-662-46803-6_8
https://doi.org/10.1007/978-3-319-70697-9_19
https://doi.org/10.1007/978-3-319-70697-9_19

Information-Theoretic MPC

Amortized Complexity of
Information-Theoretically Secure MPC

Revisited

Ignacio Cascudo1(B), Ronald Cramer2,3, Chaoping Xing4, and Chen Yuan2

1 Aalborg University, Aalborg, Denmark
ignacio@math.aau.dk

2 CWI Amsterdam, Amsterdam, The Netherlands
{cramer,Chen.Yuan}@cwi.nl

3 Leiden University, Leiden, The Netherlands
cramer@math.leidenuniv.nl

4 Nanyang Technological University, Singapore, Singapore
xingcp@ntu.edu.sg

Abstract. A fundamental and widely-applied paradigm due to Franklin
and Yung (STOC 1992) on Shamir-secret-sharing based general n-player
MPC shows how one may trade the adversary threshold t against amor-
tized communication complexity, by using a so-called packed version of
Shamir’s scheme. For e.g. the BGW-protocol (with active security), this
trade-off means that if t + 2k − 2 < n/3, then k parallel evaluations of
the same arithmetic circuit on different inputs can be performed at the
overall cost corresponding to a single BGW-execution.

In this paper we propose a novel paradigm for amortized MPC that
offers a different trade-off, namely with the size of the field of the circuit
which is securely computed, instead of the adversary threshold. Thus,
unlike the Franklin-Yung paradigm, this leaves the adversary threshold
unchanged. Therefore, for instance, this paradigm may yield construc-
tions enjoying the maximal adversary threshold �(n−1)/3� in the BGW-
model (secure channels, perfect security, active adversary, synchronous
communication).

Our idea is to compile an MPC for a circuit over an extension field
to a parallel MPC of the same circuit but with inputs defined over its
base field and with the same adversary threshold. Key technical handles
are our notion of reverse multiplication-friendly embeddings (RMFE) and
our proof, by algebraic-geometric means, that these are constant-rate, as
well as efficient auxiliary protocols for creating “subspace-randomness”
with good amortized complexity. In the BGW-model, we show that the
latter can be constructed by combining our tensored-up linear secret
sharing with protocols based on hyper-invertible matrices á la Beerliova-
Hirt (or variations thereof). Along the way, we suggest alternatives for
hyper-invertible matrices with the same functionality but which can be
defined over a large enough constant size field, which we believe is of
independent interest.

As a demonstration of the merits of the novel paradigm, we show that,
in the BGW-model and with an optimal adversary threshold �(n − 1)/3�,

c© International Association for Cryptologic Research 2018
H. Shacham and A. Boldyreva (Eds.): CRYPTO 2018, LNCS 10993, pp. 395–426, 2018.
https://doi.org/10.1007/978-3-319-96878-0_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96878-0_14&domain=pdf

396 I. Cascudo et al.

it is possible to securely compute a binary circuit with amortized complex-
ity O(n) of bits per gate per instance. Known results would give n log n bits
instead. By combining our result with the Franklin-Yung paradigm, and
assuming a sub-optimal adversary (i.e., an arbitrarily small ε > 0 fraction
below 1/3), this is improved to O(1) bits instead of O(n).

1 Introduction

A fundamental and widely-applied paradigm due to Franklin and Yung [FY92] on
Shamir-secret-sharing based general n-player MPC shows how one may trade the
adversary threshold t against amortized communication complexity, by using a so-
called packed version of Shamir’s scheme. For e.g. the BGW-protocol [BGW88]
(with active security), this trade-off means that if t+2k−2 < n/3, then k parallel
evaluations of the same arithmetic circuit on different inputs can be performed
at the overall cost corresponding to a single BGW-execution. In this paper we
propose a novel paradigm for amortized MPC that offers a different trade-off,
namely with the size of the field of the circuit which is securely computed, instead
of the adversary threshold. In particular, unlike the Franklin-Yung paradigm,
this leaves the adversary threshold unchanged.

We apply our paradigm in the BGW-model: secure channels, perfect security
(privacy and correctness), active adversary, synchronous communication. Our
aim is to achieve MPC that is efficient (in the amortized sense as discussed
above), tolerates an adversary satisfying the maximal threshold (or close) and
that evaluates binary circuits.

We motivate the latter choice as follows. Besides the fact that this is natural
in applications to begin with, we note that many of the protocols in this model
(such as [BGW88]) represent the target function to be computed as an arith-
metic circuit over some finite field, and then process this circuit by distributed
computing of each gate, using secret sharing. However, many of those protocols
require that the size of the underlying finite field is larger the number of parties
n (because of their use of Shamir’s secret sharing scheme [Sha79] of some vari-
ant thereof). This means that applying those protocols to functions which are
already naturally represented as a binary circuit requires to lift this circuit to a
large enough extension field, wherewith the communication complexity incurs a
multiplicative overhead of log n. It is in these cases that our paradigm pays off
by twisting this overhead into a vehicle for parallel evaluations.

Concretely, we get:

Theorem 1. In the BGW-model, there is an efficient MPC protocol for n par-
ties secure against the maximal number of active corruptions �(n − 1)/3� that
computes Ω(log n) evaluations of a single binary circuit in parallel with an amor-
tized communication complexity (per instance) of O(n) bits per gate.

The best known previous result of this kind and in this model is obtained from
the MPC protocol by Beerliová-Trub́ıniová and Hirt [BH08] which communicates
O(n) field elements per gate, but requires the field size over which the arithmetic

Amortized Complexity of Information-Theoretically Secure MPC Revisited 397

circuit is defined to be at least 2n, and hence the computation of a binary
circuit with that protocol requires O(n log n) bits of communication per gate.
Our result will be proved by applying our paradigm to Beerliova-Hirt. Note that
the Franklin-Yung paradigm does not apply here as we achieve security against
a maximal adversary. Combining our result with the Franklin-Yung paradigm,
however, we get the following:

Theorem 2. In the BGW-model, for every ε > 0, there is an efficient MPC
protocol for n parties secure against a submaximal number of active corruptions
t < (1 − ε)n/3 that computes Ω(n log n) evaluations of a single binary circuit in
parallel with an amortized communication complexity (per instance) of O(1) bits
per gate.

We note that, as opposed to Theorem 1, this theorem may plausibly and
alternatively be argued without recourse to our novel paradigm: indeed, we
could deploy the asymptotically good arithmetic secret sharing schemes from
[CCCX09] (over a suitably large constant extension of F2 so as to get the desired
adversary rate), combined with an overhaul of the complete (say) Beerliova-Hirt
protocols so as to make them work over these schemes instead of Shamir’s. In
addition, this would use some of our present techniques to overcome the aris-
ing issue that the protocol tricks from Beerliova-Hirt involving hyper-invertible
matrices (or an alternative that we discuss later on) are defined over an extension
of the field of definition of the arithmetic secret sharing. Our present approach,
however, in fact uses Beerliova-Hirt essentially as a black-box. Moreover, our
approach covers both theorems with the same method.

As noted in [IKOS09], a complexity of O(1) bits per gate can also be obtained
in the non-amortized setting as long as the number of parties which provide
inputs is constant, by combining the protocol from [DI06] with the aforemen-
tioned arithmetic secret sharing schemes from [CCCX09]. This would be secure
against an active adversary corrupting t = Ω(n) parties, where the constant is in
principle small, but this can be brought up to t < (1− ε)n/3, for any ε, by using
Bracha’s committees technique [Bra85] as described in [DIK10]. If we remove
the assumption on the number of input-providing parties, then the best result in
the non-amortized setting for suboptimal adversaries is given by [DIK10], where
the communication complexity per gate is O(polylog(n)) bits. It is an interesting
question to determine if the communication complexities obtained in Theorems 1
and 2 are optimal in this model1.

We now give a brief preview of our paradigm and its technical challenges.
First we introduce the notion of reverse multiplication friendly embeddings,
which provide a way to embed the ring F

k
2 into a field F2m so that coordi-

natewise products “map” to multiplications in the extension field in a certain
manner that we will explain. Furthermore we will need to construct RMFEs with
m = O(k), so that the degree of the extension field does not explode.

1 Some results on lower bounds for communication complexity of gate-by-gate proto-
cols for arithmetic circuits like ours were obtained by [DNPR16] but they do not
seem to be enough to claim such optimality.

398 I. Cascudo et al.

Second, using such a map as a stepping stone, we construct a compiler that
transforms a secure secret-sharing based computation protocol that evaluates
an arithmetic circuit over a F2m (for example the one by [BH08]) into a secure
protocol for the same number of parties and adversary that allows for parallel
evaluation of k = Θ(m) of a related boolean circuit. Several obstacles appear
when constructing this compiler, as a consequence of moving back and forth
between the algebraic structures and we need to solve these issues with the
introduction of several subprotocols. At the same time we need to ensure that
these subprotocols do not require too much communication, so that this does
not offset the gains from our embedding strategy.

It turns out that these subprotocols rely on a crucial step: we need to find
a way to construct sharings of random elements in prescribed F2-subspaces of
(F2m)v. Our third contribution is a communication-efficient protocol to accom-
plish that. This in turn consists of the following ideas: first, we introduce a
definition of generalized linear secret sharing scheme (GLSSS), where the secret
and shares belong to vector spaces over the same field; then, we cast the strategy
of random generation of sharings based on hyper-invertible matrices, introduced
in [BH08] (and used in [DIK10]), in this language of GLSSS. This is still not
good enough for our purposes, since our GLSSS is only linear over F2, while
the hyper-invertible matrix is defined over F2m . So the last idea we need con-
sists in tensoring-up our scheme, that suitably transforms our F2-GLSSS into a
F2m -GLSSS. Along the way, we suggest alternatives for hyper-invertible matri-
ces with the same functionality but which can be defined over a large enough
constant size field, see Remarks 3 and 4. Although there is no overall advantage
to our work (quantitatively), it does mean that, in the subprotocols where it is
used, “amortization kicks in faster”. Moreover, we believe it is of independent
interest.

1.1 Main Ideas

We describe the general idea and the technical challenges we encounter more in
detail.

Reverse multiplication friendly embeddings. As mentioned above, we want to
embed several instances of the computation of a binary circuit into a single
computation of an arithmetic circuit over an extension field. Ideally, we would
wish that the ring F

k
2 , where the sum and product are defined coordinatewise,

was isomorphic (as an F2-algebra) to the field F2k , with the usual finite field
sum and product; or said in a different way, that there would be a map η : Fk

2 →
F2k satisfying both η(x + y) = η(x) + η(y) and η(x ∗ y) = η(x) · η(y) for all
x,y ∈ F

k
2 (where ∗ denotes the coordinatewise product and · denotes the field

product). If such a η existed, then embedding k evaluations of a boolean circuit
into an evaluation of a circuit over F2k would be trivial: just define the arithmetic
circuit C ′ to be the same as the boolean circuit, but substituting the sum and
multiplication gates in F2 by gates performing the same operations in F2k ; then
apply η to the vectors of boolean inputs, evaluate C ′ and map the result back to

Amortized Complexity of Information-Theoretically Secure MPC Revisited 399

F2 with η−1. Furthermore, computing C securely would not be a problem, since
the parties holding the inputs would secret-share them after applying η, and the
result of the secure computation of C ′ would be opened prior to applying η−1.

Unfortunately such an η does not exist: while F
k
2 and F2k are isomorphic as

F2-vector spaces, and hence the additive homomorphic condition can be satisfied,
the multiplicative structures of Fk

2 and F2k are however different for every k ≥ 2
(e.g. the former structure has zero divisors, while the latter does not).

We then need to find some alternative weaker notion that allows us to travel
back and forth between these two algebraic structures in a manner that it is still
amenable to the secure computation protocols we want to adapt. In order to do
this we introduce the notion of reverse multiplicative friendly embedding2.

Definition 1. Let q be a power of a prime and Fq a field of q elements, let
k, n ≥ 1 be integers. A pair (φ, ψ) is called an (k,m)q-reverse multiplication
friendly embedding (RMFE for short) if φ : Fk

q → Fqm and ψ : Fqm → F
k
q are

two Fq-linear maps satisfying

x ∗ y = ψ(φ(x) · φ(y))

for all x,y ∈ F
k
q .

While this notion has not been explicitely defined3 in the literature to the
best of our knowledge, a construction for RMFEs was introduced in another work
on secure multiparty computation, more precisely on the problem of correlation
extraction [BMN17], where it is used to embed a number of instances of oblivious
linear evaluation over a small field into one instance of OLE over the extension
field. They obtain, for every prime power q and every integer � ≥ 1, a (2�, 3�)q.
This implies that we can take m = O(klog 3/ log 2) = O(k1.58...). This construction
is unfortunately not enough for our purposes, so in this paper, we show the
existence of RMFEs with constant rate.

Theorem 3. For every finite prime power q, there exists a family of (k,m)q-
RMFE where m = Θ(k).

We show this result using techniques from algebraic geometry. We emphasize
that this is the only point where algebraic geometry is used in our protocol.

As an aside, we also show, by some elementary results on polynomial interpo-
lation, quite practical RMFE’s for moderate values of m and with a reasonable
rate m/k, indicating our main results may also have some practical value.

2 The term “reverse” refers to the fact that multiplicative friendly embeddings where
defined in [CCCX09]. The notions are similar but with the roles of the ring F

k
q

and the field Fqm swapped. Multiplicative friendly embeddings have been stud-
ied more extensively than their reverse counterpart, as they are a special case of
bilinear multiplication algorithms [CC88]. They are also special cases of arithmetic
codices [CCX12] (see also [CDN15]).

3 Our original motivation for considering this notion (unpublished work, 2014) was to
improve our result on arithmetic secret sharing [CCX11] from CRYPTO 2011.

400 I. Cascudo et al.

The compiler. Given a (k,m)2-RMFE (φ, ψ), we construct an information-
theoretically secure protocol compiler that transforms a secure secret-sharing
based computation protocol that evaluates an arithmetic circuit over a large
enough finite field F2m into a secure protocol for the same number of parties
and adversary that allows for the simultaneous evaluation of k instances of a
related boolean circuit. The compiler introduces an overhead in the communi-
cation complexity of O(nk) bits per multiplication gate of the circuit (hence
O(n) bits per multiplication). Our compiler requires that the MPC protocol for
the arithmetic circuit over the extension field satisfies a number of properties,
which are quite common and are fulfilled by most Shamir-secret-sharing based
protocols in this model.

The first step of the compiler is to encode the input vectors as elements in
F2m with the map φ. Now one could think that we proceed by evaluating the
arithmetic circuit C ′ over F2m on the encoded inputs, and then decode the result
with ψ. Unfortunately this idea does not work, for several reasons; even setting
aside security considerations, note that this does not ensure correct computation:
it is not even true that ψ(φ(x)) = x for all x, hence it does not compute the
identity circuit correctly. Moreover x1 ∗x2 ∗ . . .∗x� = ψ(φ(x1) ·φ(x2) · . . . ·φ(x�))
does not necessarily hold when � > 2 either.

The way to correctly compute the result is instead as follows: encode the input
vectors with φ and evaluate the arithmetic circuit C ′ over F2m on the encoded
inputs, but with the additional step that, every time a multiplication gate its
processed, we apply the composition φ◦ψ to the output of the gate. We also need
to slightly adjust the gates corresponding to a NOT gate in C: in C ′ these gates
add the vector φ(1, 1, . . . , 1); moreover if we have random gates in C (gates that
produce a random bit), we will need to create random elements φ(r) ∈ F2m ; we
explain later how we can do this. By doing these transformations, we have the
following invariant: at each wire of the F2m -circuit C ′, the corresponding value
is φ(w), where w = (w1, . . . , wk) is the vector containing, for i = 1, . . . , k, the
bit wi that would sit in the corresponding wire of the boolean circuit C on its
i-th evaluation. Indeed note that

(φ ◦ ψ)(φ(w) · φ(w′)) = φ(ψ(φ(w) · φ(w′))) = φ(w ∗ w′)

so multiplying two encoded vectors and then applying φ ◦ ψ yields an encoding
of the coordinatewise product. The rest of the gates obviously preserve this
invariant.

At the last step, we decode the output by applying the inverse φ−1 of φ (which
we insist, does not coincide with ψ). It is easy to derive from the definition of
RMFE that φ is injective and hence φ−1 indeed exists.

Additional auxiliary protocols. However, several roadblocks are introduced when
we want to transform a secret-sharing based secure computation protocol π′ for
C ′ into a secure computation protocol π that computes (k instances of) C: first,
we want each of the input-holding parties to secret share a value φ(xi) with
the secret sharing scheme used in π′, but given that as we will see the image of

Amortized Complexity of Information-Theoretically Secure MPC Revisited 401

φ is not the full F2m , the question is: how do we ensure that a party has not
shared a value outside Im φ instead? Note such problem will not be detected
by π′, as this protocol will “accept” any sharing of a value in F2m as long as
the sharing itself is correct, so we will need to add some type of zero-knowledge
proof that ensures that the shared value is in Imφ. The second problem is that
we need some protocol that transforms a sharing of an element a into a sharing
of (φ ◦ ψ)(a). The composition of φ and ψ is a F2-linear map, but this does
not mean that it is F2m -linear, and therefore it is not necessarily true that the
parties can locally compute sharings for the output of this function by using the
F2m -linearity of the scheme4.

We will show that we can reduce these two issues to the following problem:
construct a secure multiparty protocol that outputs a sharing of a random ele-
ment in a prescribed F2-subspace of (F2m)v. That is, given an F2-vector space
V ⊆ F

v
2m the protocol should output ([r1], . . . , [rv]) where (r1, . . . , rv) is uni-

formly random in V , and [x] denotes a sharing of x with the secret sharing
scheme used in the protocol for C ′.

GLSSS, tensoring-up and hyper-invertible matrices. In order to generate shar-
ings of random elements of the given subspaces, we want to use a technique
introduced in [BH08], based on so-called hyper-invertible matrices. In a nutshell
this technique consist in the following. Suppose we want to create sharings of
one of more random elements satisfying certain relation (we specify below what
kind of relations are allowed). Then each party generates a sharing of random
elements of their choice satisfying the said relation. Next the hyper-invertible
matrix is applied (locally by each party) to the vector containing these n shar-
ings. This creates n new sharings, which will obbey the same relation, if the
parties have been honest. Next, some of these are opened to different parties,
who check that relation indeed holds. The properties of the matrix will guaran-
tee that if all honest parties declare themselves happy with this process, then
the unopened sharings are guaranteed to satisfy the same relation.

However, the type of relations that are preserved by the hyper-invertible
matrices are K-linear relations, where K is a field over which the matrix is
defined. Unfortunately, the construction of hyper-invertible matrices from [BH08]
is based on interpolation techniques, and it requires a field K which contains at
least 2n elements. This clearly does not fit well with the F2-linear relations we are
dealing with. Applying an F2m -hyper-invertible matrix to a vector of elements
in V will not necessarily output a vector of elements in V .

In order to solve this, we introduce several ideas. First, we formalize the
idea of “sharing secrets which are bound by K-linear relations” by the notion of
K-generalized linear secret sharing scheme (GLSSS), where the space of secrets

4 To explain this further: we can think of the elements in F2m as polynomials in F2[X]
modulo a degree-m irreducible polynomial. Now consider for example the map that
sends u = a0 + a1X + · · · + am−1X

m−1 to F (u) := a0. This is a F2-linear map (it
satisfies F (u + v) = F (u) + F (v)), but not F2m -linear (otherwise there would exist
λ ∈ F2m such that F (u) = λ · u, and it is easy to see that this can not happen).

402 I. Cascudo et al.

and the spaces of shares are (possibly different) K-vector spaces and the secret
is determined by qualified sets of shares by means of a K-linear map. Our def-
inition has the additional advantage that we do not need to worry about how
encoding of the secret is done. We also show that the hyper-invertible-matrix
technique fits naturally with the notion of GLSSS, since by means of this notion
we can state one lemma that captures different instances of this technique in
the literature [BH08,DIK10]. However, this is still not enough for our purposes,
because this lemma only works if the hyper-invertible matrix is defined over the
field K.

Then we introduce the concept of interleaved secret sharing scheme. Given
a GLSSS Σ, the m-fold interleaved GLSSS Σ×m is simply the n-player scheme
naturally corresponding to m independent Σ-sharings of m secrets. The reason
this is useful for our problem comes from the following observation, based on
arguments from multilinear algebra (which we call tensoring-up lemma): if we
start by a F2-GLSSS Σ with space of secrets V , there is a natural way in which
we can see the interleaved GLSSS Σ×m as a F2m -GLSSS. Moreover, even though
the space of secrets of the new scheme will be V m, we can crucially access the
individual Σ-sharings of each secret in V , since these are just the components of
the sharing from Σ×m. This means that the hyper-invertible matrix methodology
can be applied to Σ×m, where each party will bundle together m sharings of
random elements in V as a sharing of a random element in V m, apply the matrix
to the resulting sharings using the F

m
2 -linear structure given by the tensoring up

lemma, and “unzip” the result again into sharings of elements in V .

Putting things together. We will show that if we are using Shamir’s scheme (or
any secret sharing scheme where the size of the shares is the same as that of the
secret) then our subprotocols require the communication of O(n) field elements
per gate. Because of our results on reverse multiplication friendly embeddings,
this field will have 2m elements where m = Θ(k).

On the other hand, to compute securely the arithmetic circuit over the exten-
sion field, we can use the protocol in [BH08], which also has communication
complexity of O(n) field elements per gate. Altogether we communicate O(nk)
bits per gate of the circuit to compute securely k evaluations of the circuit, an
amortized cost of O(n) bits per gate. In order for this amortization to work,
we need that 2m is at least n, hence we need to compute at least k = Ω(log n)
evaluations.

Remark 1 (On the Passive Case). One may possibly be inclined to believe that
the case of passive security admits a much simpler solution that only involves the
RFME’s on top of standard protocols. Indeed, after the secure computation of
the product of two φ-encodings, the secure computation of its (φ◦ψ)-image is lin-
ear. However, this is an F2-linear map defined on the extension field, not a linear
combination of elements in this extension field. Therefore, the usual “secure com-
putation of linear maps is for free” rule does not hold here. In particular, we still
need the same auxiliary protocols with good amortized complexity (including the
tensoring-up) as in the active case. That said, the hyper-invertible matrices can

Amortized Complexity of Information-Theoretically Secure MPC Revisited 403

be replaced by standard privacy amplification based on error correcting codes
over large enough extension fields so as to be able to handle t < n/2 with t
maximal or arbitrarily close.

2 Abstract GLSSS and Hyper-Invertible Matrices

In our protocol application, we will have a linear secret sharing scheme Σ defined
over some “small” finite field K that we wish to deploy in secure computations
involving very useful randomization protocols for secret-sharings (i.e., based on
hyper-invertible matrices) that, unfortunately, require their field of definition to
be a larger extension field L. Below we explain how to treat a number of Σ-
sharings as a single sharing according to a scheme Σ′ that is defined over the
extension field L and that has the same privacy and reconstruction properties
as Σ. The rate does not change either. Furthermore, “constituent” Σ-sharings
remain readily “accessible” from Σ′-sharings for our use in our protocol. Finally,
L-linear operations on Σ′-sharings are easily emulated in terms of K-linear oper-
ations on constituent Σ-sharings. The way to achieve this is by exploiting basic
properties of the tensor product from abstract multilinear algebra.

Another technical aspect of our protocol application is that our Σ is not
explicitly constructed as a K-linear scheme in the most standard way (e.g., from
a given K-linear error correcting code C ⊂ Kn with convenient properties) but
rather implicitly. Namely, Σ will turn out to be a K-linear “subscheme” of a
standard L-linear scheme. Concretely, Σ will correspond to several, independent
instances of Shamir’s scheme over L, where the secrets satisfy K-linear relations.
The resulting scheme is, by all means, K-linear. But instead of complicating
matters by “forcing” this into a standard formulation where the secret (and
the shares) are typically encoded “systematically,” we will capture it formally
by giving an equivalent but “coordinate-free” version of the usual definition of
(general) linear secret sharing.

2.1 An Abstract Definition of GLSSS

For nonempty sets U and I, we let UI denote the indexed Cartesian product
Πi∈IU . For a nonempty subset A ⊂ I, the natural projection πA maps a tuple
u = (ui)i∈I ∈ UI to the tuple (ui)i∈A ∈ UA. Let K be a field.

Definition 2. (Abstract K-GLSSS) A general K-linear secret sharing scheme
Σ consists of the following data.

– A player set I = {1, . . . , n}.
– A finite-dimensional K-vectorspace Z, the secret-space, and a finite-

dimensional K-vectorspace U , the share-space.
– A K-linear subspace C ⊂ UI , where the latter is considered a K-vector space

in the usual way (i.e., direct sum).
– A surjective K-linear map Φ : C −→ Z, its defining map.

404 I. Cascudo et al.

Definition 3. Suppose A ⊂ I is nonempty. Then A is a privacy set if the K-
linear map

(Φ, πA) : C −→ Z × πA(C), x �→ (Φ(x), πA(x))

is surjective. Finally, A is a reconstruction set if, for all x ∈ C, it holds that

πA(x) = 0 ⇒ Φ(x) = 0.

Remark 2. The following observations follow directly from the definition.

– (Privacy) Suppose K is finite. If we fix an arbitrary secret z ∈ Z and select
x ∈ C uniformly random such that Φ(x) = z, then for each privacy set A,
it holds that the distribution of the joint shares πA(x) ∈ UA for A does not
depend on the secret z.
We denote such a random sharing of a secret z as [z], as usual.

– (Reconstruction) For each reconstruction set A, there are K-linear reconstruc-
tion maps {ρi : U → Z}i∈A, depending on A, such that for all x ∈ C, it holds
that ∑

i∈A

ρi(xi) = Φ(x).

By definition, I is a reconstruction set.

2.2 Randomization Based on Hyper-Invertible Matrices

Hyper-invertible matrices were introduced in [BH08]. Hyper-invertible matrices
provide a way for several parties to jointly generate sharings of uniformly random
secrets satisfying certain relations. In [BH08], this relation consists in the fact
that the uniformly random element is shared with two different sharings (Shamir
sharings of different thresholds). However, different uses have been found in
other protocols: in [DIK10], the parties generate sharings of uniformly random
elements together with a permutation of their coordinates.

In this section, we show that those two applications of hyper-invertible matri-
ces can both be captured under a common framework through the notion of
generalized linear secret sharing schemes. Moreover, this framework will also
encompass other two applications of this strategy in our protocol.

Definition 4 ([BH08]). A matrix M ∈ K�×�′
is hyper-invertible over K if every

s-by-s submatrix of M is invertible in K, for every 1 ≤ s ≤ min{�, �′}.
As in [BH08], we are only interested in this work in square hyper-invertible

matrices, even though the results can be generalized easily to non-square ones.
If K has at least 2� elements, there is the following construction of an � by �
hyper-invertible matrix.

Lemma 1 ([BH08]). Let K be a finite field with |K| ≥ 2�. Fix α1, . . . , α�, β1,
. . . , β� distinct elements in K. Let M = (mi,j) where mi,j =

∏
k �=j

βi−αk

αj−αk
. Then

M is a � by � hyper-invertible matrix over K.

Amortized Complexity of Information-Theoretically Secure MPC Revisited 405

The interest of square hyper-invertible matrices for secure multiparty
computation protocols arises from the property that any combination of �
inputs/outputs of the K-linear map induced by M are uniquely determined
by, and can be written as a linear function of, the other � inputs/outputs. More
formally we have the following.

Lemma 2 ([BH08]). Let M ∈ K�×� be a square hyper-invertible matrix over
K. Consider two subsets A,B ⊆ {1, . . . , �} such that |A| + |B| = �. Then
there is a linear map fA,B : K� → K� such that for every x ∈ K�, we have
fA,B({xi}i∈A, {yi}i∈B) = ({xi}i/∈A, {yi}i/∈B), where y = Mx.

An important observation is that, given an K-vector space Z, we can define
the action of M on vectors from Z�. Moreover, it is trivial to see that the property
above still holds.

Proposition 1. Let M ∈ K�×� be a square hyper-invertible matrix over K and
let Z be a K-linear vector space. Consider two subsets A,B ⊆ {1, . . . , �} such
that |A|+ |B| = �. Then there is a linear map fA,B : Z� → Z� such that for every
x ∈ Z�, we have fA,B({xi}i∈A, {yi}i∈B) = ({xi}i/∈A, {yi}i/∈B), where y = Mx.

Consider now a K-GLSSS Σ with secret space Z, share space U and player
set I. Denote a sharing of an element z ∈ Z by [z]. The goal of the following
protocol is to generate random sharings of a set of uniformly random elements
from Z.

Protocol RandEl

Protocol for a set of parties I = {1, . . . , n′}. Let M be a n′ × n′-hyper-
invertible matrix over K. Let T be an integer with 1 ≤ T ≤ n′.

Output: Sharings [r1], . . . , [rT] of uniformly random elements in Z.

– For i ∈ I, player i selects a uniformly random element si ∈ Z and shares
it among I with Σ.

– The players locally compute ([r1], . . . , [r|I|])T = M ·([s1], . . . , [s|I|])T (i.e.,
each party applies M to the vector of shares and interprets the resulting
vector as containing shares to unknown elements s1, . . . , s|I|).

– For i = T + 1, . . . , |I| open ri to party i. Party i checks that this is
indeed a correct sharing to an element from Z and otherwise declares
itself unhappy.

– Output the remaining unopened sharings [r1], . . . , [rT].

Proposition 2. Suppose the active adversary has corrupted at most t′ ≤ (n′ −
1)/3 parties from I. Furthermore suppose Σ has t-privacy with t ≥ t′, u-
reconstruction with u ≤ n′ − t′, and assume that T ≤ n′ − 2t′.

In these conditions if all honest players are happy after the execution of
RandEl, then [r1], . . . , [rT] are correct sharings of uniformly random elements

406 I. Cascudo et al.

r1, . . . , rT ∈ Z and the adversary has no information about these values, other
than the fact that they belong to Z.

Proof. The proof essentially follows the steps of [BH08, Lemma 5].
We first consider robustness. First of all, by u-reconstruction, the shares of

the (at least) n′ − t′ honest parties uniquely determine the secrets, so cheating
by the adversary by changing the shares corresponding to the corrupted parties
will either be detected or not change the computation of the opened ri. Assume
that all honest players remain happy. Then all sharings opened to honest parties
are valid sharings of elements ri belong to Z. These are at least n′ − T − t′. On
the other hand the n′ − t′ input sharings [si] inputted by the honest parties are
correct sharings of elements in Z. Note these are at least n′ input/output values.
By the properties of the hyper-invertible matrix the rest of inputs/outputs are
a K-linear function of these values; a bit more precisely, for every honest party,
her shares of the remaining inputs/outputs are a K-linear function of her shares
of the honest inputs and the outputs opened by honest parties, and since the
shares of honest parties fix the secrets (and Z is a K-linear vector space), the
unopened secrets must be in Z.

We now consider privacy. First, by t-privacy, the shares of the adversary
provide no information about the inputs provided by and the outputs opened
to honest parties. The adversary does know the inputs si provided by corrupt
parties and the outputs ri opened to corrupt parties. But these are at most 2t′

values. By Proposition 1, it is easy to see that these are completely independent
of any set of n′ − 2t′ other inputs/outputs, in particular the T outputted values.

This protocol generalizes the “double-sharing generation” strategy from
[BH08] as well as the “generation of sharings of a random vector and a per-
mutation of its coordinates” strategy from [DIK10]. In the first case, we can
define a GLSSS that has K as space of secrets, K2 as space of shares and
where sharing in that scheme consists on independently sharing the secret with
two standard Shamir secret sharing schemes of degrees d and d′. As long as
t′ ≤ min d, d′ < n − t′, the conditions of the proposition are satisfied. In
the second case, the secret space would be the �-dimensional K-vector space
{(x, π(x)) : x ∈ K�} where π is some known permutation of the coordinates
of x and sharing means to share each coordinate individually with a K-linear
scheme, and the proposition holds as long as this secret sharing scheme satisfies
the privacy and reconstruction properties there.

2.3 Extending the Field of Definition of a GLSSS

Later on, we will encounter situations where our secret space is a F2-linear space,
but not a F2k -linear space, and hence the corresponding GLSSS is only linear
over F2. This does not fit well with the fact that the hyper-invertible matrix
will be defined over F2m . Therefore we detail an strategy to extend the field of
definition of a GLSSS.

To achieve the desired extension of the field of definition of a GLSSS, it
is convenient to define interleaved GLSSS. Informally, the m-fold interleaved

Amortized Complexity of Information-Theoretically Secure MPC Revisited 407

GLSSS Σ×m is the n-player scheme naturally corresponding to m Σ-sharings.
In other words, with the notation of Sect. 2.1, a sharing in this scheme can be
seen as an m×n matrix whose m rows each represent an element of C and whose
n columns each represent an element of the K-vector space Um, the share-space.
We denote the K-linear subspace of ×i∈IUm collecting these matrices as C×m.
The defining K-linear map Φ×m is just the “row-wise” application of Φ and the
secret-space is the K-vector space Zm. Note that the privacy sets as well as the
reconstruction sets coincide with those of Σ.

A Tensoring-Up Lemma. Let L be an extension field of K of degree m. We
will explain later on how Σ×m is in fact an L-linear GLSSS in a natural and
convenient way, compatible with its K-linearity as already defined. To this end
we need a brief intermezzo derived from basic multilinear algebra, specifically a
special case of base change in tensor products.5 We will give an explicit lemma
that defers the use of tensor products and their relevant properties to the proof.

Definition 5. For our purposes, a K-algebra is a ring having the field K as a
subring. Suppose R,S are K-algebras. A K-algebra morphism R −→ S is a ring
morphism that fixes K, i.e., it is, in particular, a K-vector space morphism.

Lemma 3. Let L be an extension field of degree r over K and let V be a K-
vector space. Then the following hold:

1. Let Km,m denote the matrix algebra over K consisting of all m x m matrices
with entries in K, with the usual addition and (K-scalar-) multiplication.
Then there is a (non-unique) injective K-algebra morphism

Φ : L −→ Km,m; λ �→ Φ(λ).

In particular, the image of L is a field isomorphic to it.
2. Each such Φ induces an L-vector space structure on V m by defining L-scalar

multiplication, for each λ ∈ L, as

λ· : V m −→ V m; w �→ Φ(λ)(w),

where the action of Km,m on V m is the natural one, i.e., multiplication of an
m x m matrix with an m-(column)vector.

If λ ∈ K, it restricts to

λ· : V m −→ V m; w �→ λ · w,

since Φ fixes K. Hence, this structure is compatible with the standard K-vector
space structure on V m, i.e., as a direct sum over V ,

5 For a treatment of abstract tensor-products aimed at a cryptographic audience, we
refer to Ch. 10.9 (pp. 229–235) in [CDN15].

408 I. Cascudo et al.

Proof. As to the first claim for each λ ∈ L, the multiplication-by-λ map on L is
a K-vector space endomorphism on L (i.e., a morphism from L to L). The map
Φ that sends λ ∈ L to this associated morphism is clearly a K-algebra morphism
from L to the K-algebra End of K-vector space endomorphisms of L. Note that
Φ is injective as its domain is a field; the only possibility for its kernel is the
trivial ideal (0) of L. Since L is a vector space of dimension r over K, it is clear
that, once a basis is fixed, End may be given as Km,m.

As to the second claim, an R-module M consists of an abelian group M , a
ring R (with 1), together with a ring morphism mapping R to the ring of group
endomorphisms of M . It is called a vector space if R is a field. In the present
case, M is the direct sum V m and R is L. By construction, (L, V m, Φ) satisfies
this condition. Finally, note that Φ maps λ ∈ K to λ · I, where I is the identity
matrix.

As the lemma reflects one of the basic merits of tensor products, we verify
it below in such terms and in more generality. By the very definition of tensor
product, if M is an R-module (M and R take the role of V and K, resp.), where
R is a commutative ring with 1, and if S is an extension ring (S takes the role of
L), then the tensor product S ⊗R M is an R-module. By base change, we may,
in fact, naturally view S ⊗R M as an S-module, compatible with the R-module
structure already mentioned. Namely, for each s ∈ S, for each r ∈ R and for each
m ∈ M , define s ·(r⊗m) = (sr⊗m) and extend this linearly to all of S⊗R M . If,
in addition, S is free of rank r over R, then, as an R-module, the tensor product
S ⊗R M is isomorphic to Mm. Since S-multiplication by a constant as defined
above is, in particular, an endomorphism of R-modules, it is clear that such a
map can be represented by an element of Km,m.

Linearity over the Extension Field of the Interleaved Scheme. With
the tensoring-up lemma in hand, we now explain how the m-fold interleaved
GLSSS Σ×m is L-linear, compatible with the K-linearity already pointed out.
It is convenient, once again, to think of the elements of C×m as matrices where
each row is an element of C and where each column i collects the corresponding
m shares for player i.

Take an arbitrary such matrix representing an element in C×m and take an
arbitrary λ ∈ L. Write the matrix map Φ(λ) as (Φ1, . . . , Φm) such that the image
of w ∈ Um equals (Φ1(w), . . . , Φm(w)).

Then we simply replace each “column of shares” w = (w1, . . . , wm) ∈ Um by
the column λ · w = (Φ1(w), ..., Φm(w)). Since, the Φi are K-linear, it is immedi-
ate that application of the K-linear map Φ×m commutes with λ-multiplication.
Thus, Ψ×m is L-linear, compatible with its earlier mention K-linearity. Note
that, for given Σ, this extension depends implicitly on the choice of a K-basis
of L.

In summary:

Proposition 3. Let L be a degree-m extension field of K and let Σ be a K-
GLSSS. Then the m-fold interleaved K-GLSSS Σ×m is naturally viewed as an
L-GLSSS, compatible with its K-linearity.

Amortized Complexity of Information-Theoretically Secure MPC Revisited 409

Use in Protocols. We work with this proposition as follows. Suppose we have
a sharing in Σ×m, i.e., m Σ-sharings

([z1], . . . , [zm]), with z1, . . . , zm ∈ Z.

If λ ∈ L, then

λ · ([z1], . . . , [zm]) = (Φ1([z1], . . . , [zm]), . . . , Φr([z1], . . . , [zm])),

which is λ times the given Σ×m-sharing, which, is, again, a Σ×m-sharing.

2.4 Alternatives for Hyper-Invertible Matrices: Same Functionality,
but Constant-Size Field

We make two remarks about alternative approaches.

Remark 3. From known constructions, hyper-invertible matrices and their utility
in MPC protocols appear tightly connected with polynomial evaluation codes
(MDS codes) and therefore may seem to require a field of definition that grows
as a linear function of n. However, we note that we found that there is an
alternative coding-theoretic construction with essentially the same utility as that
of hyper-invertible matrices but that allows constant-size finite fields, where the
size should be large enough so as to make adversary rate 1/3 possible. In a
nutshell, the argument goes as follows: given a linear code C of length 2n′,
minimum distance d and minimum distance of its dual d⊥ it is not difficult
to see that every coordinate can be written as a linear function of any set of
2n′ − d + 1 coordinates, and that any set of d⊥ − 1 coordinates of a random
codeword are uniformly distributed. Suppose in addition the code has dimension
n′, wlog assume its in systematic form and its generator matrix is G = (In′ |M).
If we can take d, d⊥ ≥ (2/3 + ε)n′ ≥ 2t′ + εn′, then Proposition 2 still holds
for T ≤ εn′. Taking random linear codes over F64 of rate 1/2 should suffice for
this purpose according to the Gilbert-Varshamov bound (and the secret sharing
scheme should then be tensored-up to this field). Although there is no overall
advantage to our work (quantitatively), it does mean that, in the subprotocols
where it is used, “amortization kicks in faster.”

Remark 4. Instead of tensoring-up the secret sharing scheme, we may have taken
hyper-invertible matrices (or the alternative above) and have re-worked them
to be defined over the base field, using the same technique as in tensoring-up
(i.e., viewing the extension field as a matrix algebra over the base field) and
making substitutions accordingly. This leads to a “block-wise” version of hyper-
invertibility which is sufficient for our purposes. However, we feel that the present
approach we took is more natural and leads to cleaner protocols.

3 The Protocol

In this section we detail our protocol π, that securely evaluates k instances
of a binary circuit C in parallel by using a secure computation protocol π′ that
computes securely essentially the same arithmetic circuit defined over a extension
field F2m .

410 I. Cascudo et al.

3.1 Framework

We consider a network of n parties who communicate via pairwise secure chan-
nels. Up to t of these parties are corrupted by an active adversary, where will
require that t < n/3.

Let C be a boolean circuit consisting of input gates; computation gates which
will be (unbounded fan-in) addition (XOR) gates, fan-in 2 multiplication (AND)
gates and NOT gates (which we can think of as addition with the constant 1);
random gates that output a uniformly random bit and an output gate. We
assume that there is a single output gate for simplicity of notation only, as the
generalization of our results to the case where there are more output gates is
straightforward. Let cI , cR, cM be the number of input, random and multiplica-
tion gates respectively.

Given a (k,m)2-RMFE (φ, ψ), we define the following arithmetic circuit Cφ

over the extension field F2m : We replace the XOR and AND gates in C by gates
implementing addition and multiplication in F2m and we replace the NOT gates
by addition with the field element φ((1, 1, . . . , 1)) ∈ F2m (which may not coincide
with the element 1 in F2m). For consistency we replace the boolean random gates
by gates which create random elements in F2m ; this does not really have too
much importance, since we will entirely replace the computation of this gate by
a subprotocol.

Preprocessing and player elimination. Our protocol π will have a pre-processing
phase, which is independent of the inputs, and a computation phase.

In addition, π will use the player elimination framework. Player elimination,
introduced in [HMP00], is a technique by which the computation (or part of it) is
first divided in segments and in each segment, if at least one party has deviated
from the protocol, a set of two parties is identified out of which at least one
is a corrupt. The protocol then proceeds by eliminating these two parties and
recompute the segment. This protocol works exactly as described in [BH08], so
we refer the reader to that work for its detailed description. At every step of the
protocol, we will denote by n′ the number of active (not eliminated) parties, and
by t′, the number of active corrupted parties. Note that the invariant t < n′ −2t′

always holds.
It is important to mention that, as it occurs in other protocols such as [BH08],

we will use player elimination in the preprocessing phase only.

Conditions on π′. We now describe the conditions that π′ needs to satisfy so
that we can apply our compiler and construct π. First of all, π′ will be a secret-
sharing based protocol and we need to make some assumptions on the underlying
secret sharing scheme.

Given a secret sharing scheme with player set I, by puncturing the scheme
at a subset A ⊆ I we mean that we consider the secret sharing scheme where we
remove the set A of parties (so the new player set is I \ A and sharing happens
in the same way as in the original scheme, except that the shares that would
correspond to the subset A are erased).

Amortized Complexity of Information-Theoretically Secure MPC Revisited 411

Definition 6. We say that a secret sharing scheme is t-robust if there exists a
polynomial-time algorithm that, when given as input all shares in a sharing [x],
among which at most t are erroneous, outputs x.

We say that a secret sharing scheme on n parties is elimination-compatible
t-robust, if for every 0 ≤ u ≤ t, and any set of 2u parties, puncturing the scheme
at those 2u parties results in a scheme on the other n′ = n − 2u parties which is
t′-robust, where t′ = t − u.

Remark 5. Note that a degree-t Shamir’s secret sharing scheme for n parties
is elimination-compatible t-robust as long as 3t + 1 ≤ n. Indeed, after player
elimination, the set of possible sharings forms a Reed-Solomon code of length n′

and dimension t + 1, and therefore minimum distance n′ − t. There exist well
known efficient algorithms that can correct any e < (n′ − t)/2 errors. But the
number of errors that can be introduced by the adversary is at most t′, and as
we noted above t < n′ − 2t′ which implies t′ < (n − t)/2.

We assume that the secure multiparty computation protocol π′ to compute
Cφ has the following features:

Assumptions on π′

– π′ may have a preprocessing phase, which is independent of the inputs,
and a computation phase. We allow the protocol to use player elimination
in the preprocessing phase.

– π′ is secure against an active adversary corrupting t parties.
– π′ is a secret-sharing based secure multiparty computation protocol π′

which uses a F2m -secret sharing scheme with t-privacy and which is
elimination-compatible t-robust (the sharing of an element x is denoted
[x])

– In the computation phase every input and intermediate computed value
remain secret shared among the parties with this secret sharing scheme;
the protocol creates these sharings as follows: at every addition gate,
parties locally compute a sharing of the output of the gate from the
sharings of the inputs using the linearity of the scheme; the same holds
for addition and multiplication by known constants; multiplication gates
are processed by a subprotocol Mult that on input [a], [b] produces [ab].

3.2 Result

In the rest of the section we prove the following theorem.

Theorem 4. Assume there exists a (k,m)2-reverse multiplication friendly
embedding (φ, ψ), where 2m ≥ 2n and let π′ be a secure multiparty compu-
tation protocol for the arithmetic circuit Cφ over F2m satisfying the assump-
tions above. Then there exists a multiparty computation protocol secure against

412 I. Cascudo et al.

an active adversary who corrupts at most t parties and which allows to com-
pute k instances of the circuit C with communication complexity cc(π) =
cc(π′) + (cI + cM + cR) · O(n) elements of F2m .

3.3 The General Structure of π

The general idea of the construction has been explained in the introduction:
in the first step, for i = 1, . . . , n, the i-th party, who has an input xi =
(x(1)

i , ..., x
(k)
i) ∈ F

k
2 , creates a sharing of [φ(xi)] ∈ F2m . A subprotocol CorrInput

will ensure that this sharing is well constructed (in particular, it hides an ele-
ment from Im φ). Then the parties execute π′ on inputs [φ(x1)], . . . , [φ(xn)], but
every time that there is a multiplication gate, the output of that gate, say [a],
will be re-encoded by applying a sub-protocol ReEncode that creates [φ(ψ(a))]
from [a]. Therefore, at the end of the computation with π′, the parties obtain
φ(y), for y = (y(1), ..., y(k)). Here each y(j) is the output of the evaluation of C

on (x(j)
1 , ..., x

(j)
N). Every party can now apply φ−1 to recover y.

An additional detail is that for random gates we need to create sharings of
uniformly random elements in Im φ. As we will see, this is exactly the main step
in CorrInput too.

We explain the subprotocols in the following lines.

3.4 Auxiliary Protocols

We will now describe the subprotocols needed in π. We recall that since we use
player elimination, at a given point of the protocol there will be n′ active parties
out of which t′ are corrupted, where n′ = n−2u and t′ = t−u for some 0 ≤ u ≤ t,
and that t < n′ − 2t′ always holds. So we describe our protocols taking that into
account (for the sake of notation the active parties are indexed by 1, . . . , n′). In
particular, it will be understood that the secret sharing scheme at a given point
of the protocol is the original secret sharing scheme punctured on 2u parties.

We start with the public reconstruction protocol ReconsPubl. One possibility
could of course be simply to have every party send their share to each other,
after which every party clearly can reconstruct, since the scheme is t′-robust.
However, this incurs in a communication complexity of Θ(n2) elements of the
field. The following idea comes originally from [DN07] and allows to amortize the
reconstruction, so that the communication complexity is still Θ(n2) but Ω(n)
sharings are simultaneously reconstructed.

Protocol ReconsPubl (from [DN07])
Input: [a1], [a2], . . . , [an′−2t′].
Output: All parties obtain a1, a2, . . . , an′−2t′ .
Fix β1, . . . , βn′ ∈ F2m pairwise distinct.

– Call uj :=
∑n′−2t′

i=1 aiβ
i
j . For all j, parties locally compute [uj] =

∑n′−2t′

i=1 [ai]βi
j .

Amortized Complexity of Information-Theoretically Secure MPC Revisited 413

– For all i, all parties send their shares of ui to Pi.
– For all i, Pi applies the robust reconstruction algorithm of the secret

sharing scheme to obtain ui.
– For all i, j, Pi sends ui to Pj .
– For all j, Pj applies an standard error decoding algorithm for Reed-

Solomon codes to recover a1, . . . , an′−2t′ from the values ũ1, . . . , ũn′

received in the previous step (using that ũi �= ui for at most t′ values).

Remark 6. ReconsPubl allows to perfectly reconstruct n′ − 2t′ = Ω(n) sharings
by communicating 2n′(n′−1) = O(n2) elements of the field in total, an amortized
cost of O(n) elements of the field per reconstructed sharing.

As it has been mentioned before, both the subprotocols CorrInput and
ReEncode need to use sharings of uniformly random elements in certain F2-
subspaces. These will be generated in the preprocessing phase with the help of
hyper-invertible matrices, by using the techniques introduced in Sect. 2.

We describe more explicitely how this works. Let V ⊆ F
v
2m be a F2-subspace

(in our protocols we will only encounter the cases v = 1, v = 2, but here
we treat the problem more generally). The protocol RandElSub(V) generates
sharings of uniformly random elements in V . Here, by a sharing of an element
u = (u1, . . . , uv) ∈ V we refer to the generalized linear secret sharing scheme that
consists in that each coordinate uj is shared with the secret sharing scheme used
in the protocol. This is an F2-generalized linear secret sharing scheme where the
secret space is V and the share spaces are F

v
2m . We will call this secret sharing

scheme Σ, but by abuse of notation we write [u] = ([u1], . . . , [uv]).
We need a n′ × n′-hyper-invertible matrix M over some finite field. Since

|F2m | ≥ 2n′ by assumption, we know how to construct such matrices over F2m ,
by Lemma 1. However, the GLSSS described above is only linear over F2, so in
order to apply the hyper-invertible matrix we need to tensor-up this GLSSS to
a F2m -linear one, using the techniques from Sect. 2. Recall that this will create
the interleaved F2m -GLSSS Σ×m where the secrets are in V m and each share is
in (F2m)m, to which we apply the hyper-invertible matrix technique. However,
note that the interleaved scheme still allows to access easily the sharings of
the individual elements in V . Namely the scheme has secrets u = (u1, · · · , um)
where uj = (uj,1, . . . , uj,v) ∈ V for j = 1, . . . ,m and the sharing of u consists
of independent sharings of all uj,� ∈ F2m with the scheme used by π′. We abuse
once more notation and denote [u] := ([u1], · · · , [um]) where in turn [ui] =
([ui,1], . . . , [ui,v]).

414 I. Cascudo et al.

The protocol is as follows.

Protocol RandElSub(V)

Parameter: Let T be an integer with 1 ≤ T ≤ n′ − 2t′.
Output: Sharings [ri

j,�] of elements ri
j,� ∈ F2m , i = 1, . . . , T , j = 1, . . . ,m,

� = 1, . . . , v, where ri
j = (ri

j,1, . . . , r
i
j,v) are uniformly random elements from

V .

Let M ∈ F
n′×n′
2m be a hyper-invertible matrix.

– For i = 1, . . . , n′, Pi selects m uniformly random elements si
1, · · · , si

m ∈ V
and creates a sharing [si] := ([si

1], · · · , [si
m]) with the interleaved secret

sharing scheme Σ×m, where in turn [si
j] := ([si

j,1], [s
i
j,2], ..., [s

i
j,v]).

– Players locally compute ([r1], . . . , [rn′
]) = M([s1], . . . , [sn′

]). Note that
the entries of M are in F2m and that M acts on [si] as explained in
Section 2, using the fact that Σ×m is a F2m − GLSSS.

– For i = T + 1, . . . , n′, every party Pj sends its share of [ri] to Pi. Note
that [ri] can always be parsed as ([ri

1], · · · , [ri
m]), so what Pj sends is her

shares of m values shared with Σ. Pi verifies that the values received
indeed are valid sharings of values (ri

1, · · · , ri
m), and that ri

1, . . . , r
i
m ∈ V .

If any check fails, Pi gets unhappy.
– The remaining T sharings [r1], . . . , [rT] are outputted. Note that [ri] =

([ri
1], [r

i
2], . . . , [r

i
m]) where ri

j = (ri
j,1, r

i
j,2, . . . , r

i
j,v) ∈ V and ri

j =
([ri

j,1], [r
i
j,2], . . . , [r

i
j,v])

Proposition 4. If all honest players are happy after the execution of
RandElSub, then [r1], . . . , [rT] are Σ×m-sharings of uniformly random vectors
r1, . . . , rT ∈ V m, i.e., RandElSub produces Σ-sharings of mT uniformly ran-
dom values ri

j ∈ V , j = 1, . . . ,m, i = 1, . . . , T , about which the adversary learns
no information (other than the fact that they are elements from V). The total
communication complexity of RandElSub is (2n′ − T)(n′ − 1)mv field elements,
which if T = n′ − 2t′ = Θ(n) yields an amortized cost of O(nv) field elements
per sharing of an element in V .

The proof of this result consists in noticing that this protocol is RandEl from
Sect. 2 applied to the F2m -GLSSS Σ×m.

We will handle the case where parties declare themselves unhappy by means
of the player elimination technique. For the moment we assume that enough
sharings of random elements in the appropriate subspaces have been generated.

Next, we describe the protocol CorrInput which takes as input [a] (where
a ∈ F2m) and whose goal is verifying that a ∈ Im φ. For this the parties take a
sharing [r] of a uniformly random element r ∈ Im φ, that have been generated by
the protocol RandElSub(Im φ). Then they can use it to locally compute [a + r],

Amortized Complexity of Information-Theoretically Secure MPC Revisited 415

open this sharing and verify that a + r ∈ Im φ, and since Im φ is a F2-vector
subspace, r, a + r ∈ Im φ imply that a ∈ Im φ. Moreover, since r is uniformly
random in Im φ, the opened value a + r gives no additional information on a.

Protocol CorrInput

Input: [a].
Output: Accept if a ∈ Im φ. Reject otherwise.

– Take the next unused sharing [r] produced by RandElSub(Im φ).
– Compute [a + r] = [a] + [r] locally.
– Use ReconsPubl to open [a + r]. Let b be the opened value.
– Accept if b ∈ Im φ. Reject otherwise.

It is quite straightforward that this protocol is secure. Note that all hon-
est parties will receive the same output, because ReconsPubl will output the
same value to all of them. Moreover, notice that if [a] is a correct sharing, then
ReconsPubl will succeed reconstructing a + r even if malicious parties commu-
nicate false shares because ReconsPubl is robust.

Finally, we consider the protocol ReEncode, whose goal is to construct
[φ(ψ(a))] from [a], where a ∈ F2m . We remark first that the composition
φ ◦ ψ : F2m → F2m is an F2-linear map, but not an F2m -linear map. There-
fore we cannot use the F2m -linearity of the secret sharing scheme to have parties
locally compute [φ(ψ(a))] given [a]. Instead, we use a randomization technique,
as in the case of CorrInput. Define the set

W = {(x, φ(ψ(x))) : x ∈ F2m} ⊆ (F2m)2.

This is an F2-subspace of (F2m)2. The parties will have called RandElSub on W
in the preprocessing phase in order to create (at least) cM sharings of random
elements in W . They take a unused such sharing [r] = ([r], [φ(ψ(r))]). Then
they can use it to locally compute [a + r], open this value and then compute
[φ(ψ(a))] = [φ(ψ(a+ r))]− [φ(ψ(r))], where [φ(ψ(a+ r))] is some default sharing
of the public element φ(ψ(a + r)), which can be computed from the opened
information a + r. Note that this opened value a + r gives no information about
a, since r is uniform in F2m .

Protocol ReEncode

Input: [a].
Output: [φ(ψ(a))].
Let W := {(x, φ(ψ(x))) : x ∈ F2m} ⊆ (F2m)2.

– Take the next unused sharing [r] produced by RandElSub(W). Parse [r]
as ([r], [s]), where s = φ(ψ(r)).

416 I. Cascudo et al.

– Compute [a + r] = [a] + [r] locally.
– Use ReconsPubl to open [a + r]. Let m be the opened value.
– Compute [w] = φ(ψ(m)) − [s].
– Output [w].

3.5 Final Protocol

We describe our final protocol. The preprocessing phase will generate sharings
of at least cI + cR uniformly random values in Im φ, and at least cM uniformly
random values in W . In order to incorporate player elimination, we split the
computation of these values in (cI +cM +cR)/t segments. After the computation
of each segment, if some party is unhappy, then all values generated in that
segment are discarded and player elimination is used to identify a set of two
parties containing one malicious party. These two parties are eliminated and the
computation of the segment is restarted with the updated values for n′ and t′

and all parties resetting their status to happy.

Protocol π
Inputs: xi = (x(1)

i , ..., x
(k)
i) ∈ F

k
2 , i = 1, . . . , N , where each xi is known

to some party.
Output: All parties learn y = (y(1), . . . , y(k)) where y(j) is the evaluation

of circuit C on input (x(j)
1 , ..., x

(j)
N).

(Input-independent) preprocessing phase:

– Generation of random elements in F2-subspaces. The following computa-
tion is splitted in (cI + cM + cR)/t segments. After each segment, if some
party is unhappy, discard that computation, execute player elimination
and restart the segment with the new set of parties.

• The parties run RandElSub(Im φ) enough number of times to create
sharings of at least cI + cR random elements in Im φ.

• The parties run RandElSub(W) enough number of times to create
sharings of at least cM random elements in Imφ.

– The parties execute the preprocessing phase of π′, if there is any.

Computation phase:

– For i = 1, . . . , N , the party holding input xi computes φ(xi) execute the
subprotocol from π′ to create [φ(xi)]. The parties execute CorrInput,
using the next unused sharing produced by RandElSub(Im φ).

– Parties execute the rest of the computation phase of π′ on inputs
([φ(x1)], . . . , [φ(xN)]) with the following changes:

Amortized Complexity of Information-Theoretically Secure MPC Revisited 417

At every multiplication gate of C ′, after the parties execute Mult on
inputs ([a], [b]) and obtain [ab], they apply subprotocol ReEncode to [ab]
and produce [φ(ψ(ab))]. Each time ReEncode is called the next unused
sharing produced by RandElSub(W) is used.
At every random gate of C ′ the computation of the gate by π′ is ignored
and instead the next unused sharing [φ(r)] produced by RandElSub(Im φ)
is used.

– Let z be the output of π′ in the execution of the protocol. The output of
π is y = φ−1(z).

We consider the communication complexity of π. It executes one instance of
π′, one instance of CorrInput per input gate and one instance of ReEncode per
multiplication gate of the circuit. In turn, both CorrInput and ReEncode execute
the public reconstruction protocol of the secret sharing scheme and both sub-
protocols require one fresh sharing of a random element produced by RandElSub
(invoked on V = Im φ in the case of CorrInput and on V = W in the case of
ReEncode). Note that we can use RandElSub to create these sharings of random
elements in batches of size n log n with a communication complexity O(n2 log n),
which gives an amortized complexity of O(n) field elements per output sharing.

Therefore the communication complexity of the protocol π is cc(π) = cc(π′)+
(cI + cM + cR) · O(n) field elements.

4 Reverse Multiplicative Friendly Embeddings

In this section, we show, by algebraic geometric means, effective (k,m)q-RMFE’s
with m = O(k) for every finite field Fq. The hidden constant is actually quite
small.

But first show that if the size of the base field q is larger than k − 1 we
can construct a (k, 2k − 1)q-RMFE’s based on some elementary results on poly-
nomial interpolation. Chaining these together by concatenation, we then show
quite practical RMFE’s for moderate values of m and reasonable rate m/k. This
indicates that our main results may also have some practical value.

Lemma 4. For all 1 ≤ k ≤ q + 1, there exists a (k, 2k − 1)q-RMFE.

Proof. Let Fq[X]≤m denote the set of polynomials in Fq[X] of degree at most m
and let ∞m+1 be a formal symbol such that f(∞m+1) is the coefficient of Xm

in f ∈ Fq[X]≤m. Let x1, . . . , xk be pairwise distinct elements in Fq ∪ {∞k} and
let α ∈ Fq2k−1 be such that Fq2k−1 = Fq(α).

By [CDN15, Theorems 11.13, 11.96] the maps

E1 : Fq[X]≤k−1 → F
k
q ; f �→ (f(x1), f(x2), . . . , f(xk))

and

418 I. Cascudo et al.

E2 : Fq[X]≤2k−2 → Fq2k−1 ; f �→ f(α)

are isomorphisms of Fq-vector spaces.
Define also

E ′
1 : Fq[X]≤2k−2 → F

k
q ; f �→ (f(x′

1), f(x′
2), . . . , f(x′

k))

where x′
i := xi if xi ∈ Fq, and x′

i := ∞2k−1 if xi = ∞k.
Now we define φ = E2 ◦ E−1

1 and ψ = E ′
1 ◦ E−1

2 (where in the case of φ
the composition makes sense because Fq[X]≤k−1 ⊆ Fq[X]≤2k−2). Then using
that fg(α) = f(α)g(α) and fg(x′

i) = f(xi)g(xi) for all f, g ∈ Fq[X]≤k−1, it is
immediate that (φ, ψ) is a (k, 2k − 1)q-RMFE.

Next, we show how to concatenate RMFEs over different finite fields.

Lemma 5. Assume that (φ1, ψ1) is an (k1,m1)qm2 -RMFE and (φ2, ψ2) is an
(k2,m2)q-RMFE. Then

φ : F
k1k2
q → Fqm1m2 ,

(x1, . . . ,xk1) �→ (φ2(x1), . . . , φ2(xn1)) ∈ F
k1
qm2 �→ φ1(φ2(x1), . . . , φ2(xk1))

and
ψ : Fqm1m2 → F

k1k2
q ,

α �→ ψ1(α) = (u1, . . . ,uk1) ∈ F
k1
qm2 �→ (ψ2(u1), . . . , ψ2(uk1))

give an (k1k2,m1m2)q-RMFE.

Proof. It is clear that both φ and ψ are Fq-linear. For any x,y ∈ F
k1k2
q , we have

ψ(φ(x) · φ(y)) = ψ2 ◦ ψ1(φ1(φ2(x1), . . . , φ2(xk1)) · φ1(φ2(y1), . . . , φ2(yk1)))
= ψ2((φ2(x1), . . . , φ2(xk1)) ∗ (φ2(y1), . . . , φ2(yk1)))
= (ψ2(φ2(x1) · φ2(y1)), . . . , ψ2(φ2(xk1) · φ2(yk1)))
= (x1 ∗ y1, . . . ,xk1 ∗ yk1) = x ∗ y

This completes the proof.

Remark 7 (“On practical parameters”). As a consequence of applying the above
two results we have the following embeddings of F

k
2 into extensions of degree

up to 325.

1. For all r ≤ 9, there exists a (2r, 6r − 3)2-RMFE (obtained by concatenation
of (2, 3)2 and (r, 2r − 1)8-RMFEs, both promised by Lemma 4).

2. For all r ≤ 33, there exists a (3r, 10r−5)2-RMFE (obtained by concatenation
of (3, 5)2 and (r, 2r − 1)32-RMFEs, both promised by Lemma 4).

We now move to the asymptotic results, for which we need the methods from
the theory of algebraic function fields. We will not give a detailed explanation of
this area here, and refer the reader to the book by Stichtenoth [Sti09]. However,
we sum up the facts that we need, ignoring some technical details.

Amortized Complexity of Information-Theoretically Secure MPC Revisited 419

A function field F/Fq is an algebraic extension of the rational function field
Fq(x), that contains all fractions of polynomials in Fq[x]. Associated to a function
field, there is a non-negative integer g called the genus, and an infinite set of
“places” P , each having a degree deg P ∈ N. The number of places of a given
degree is finite. The places of degree 1 are called rational places. Given a function
f ∈ F and a place P , two things can happen: either f has a pole in P , or f
can be evaluated in P and the evaluation f(P) can be seen as an element of
the field Fqdeg P . If f and g do not have a pole in P then the evaluations satisfy
the rules λ(f(P)) = (λf)(P) (for every λ ∈ Fq), f(P) + g(P) = (f + g)(P) and
f(P) · g(P) = (f · g)(P). Note that if P is a rational place (and f does not have
a pole in P) then f(P) ∈ Fq. The functions in F always have the same zeros
and poles up to multiplicity (called order). An important fact of the theory of
algebraic function fields is as follows: call N1(F) the number of rational places of
F . Then over every finite field Fq, there exists an infinite family of function fields
{Fn} such that their genus gn grow with n and lim N1(Fn)/gn = cq with cq ∈ R,
cq > 0. The largest constant cq satisfying the property above is called Ihara’s
constant A(q) of Fq. It is known that 0 < A(q) ≤ √

q −1 for every finite field Fq.
Moreover, A(q) =

√
q − 1 for q square and that for a prime p and any integer

a ≥ 1, A(p2a+1) ≥ 2(pa+1−1)
p+1+ε where ε = p−1

pa−1 . These two results are constructive,
since explicit families of function fields attaining these values are known, given
in the first case by [GS95,GS96] and in the second case by [BBGS15].

A divisor G is a formal sum of places, G =
∑

cP P , such that cP ∈ Z and
cP = 0 except for a finite number of P . We call this set of places where cP �= 0
the support of G, denoted supp(G). The degree of G is deg G :=

∑
cP deg P ∈ Z.

The Riemann-Roch space L(G) is the set of all functions in F with certain
prescribed poles and zeros depending on G (together with the zero function).
More precisely if G =

∑
cP P , every function f ∈ L(G) must have a zero of

order at least |cP | in the places P with cP < 0, and f can have a pole of order
at most cP in the places with cP > 0. The space L(G) is a vector space over Fq.
Its dimension is governed by certain laws (given by the so-called Riemann-Roch
theorem). A weaker version of that theorem called Riemann’s theorem states
that if deg G ≥ 2g − 1 then dimL(G) = deg(G) − g + 1. On the other hand, if
deg G < 0, then dimL(G) = 0.

Given f, g ∈ L(G) its product f · g is in the space L(2G).
The following is a generalization of Lemma 4.

Lemma 6. Let F/Fq be a function field of genus g with k distinct rational
places P1, P2, . . . , Pk. Let G be a divisor of F such that supp(G)∩{P1, . . . , Pk} =
∅ and dimFq

L(G) − dimFq
L(G − ∑k

i=1 Pi) = k. If there is a place R of degree
m with m > 2 deg(G), then there exists an (k,m)q-RMFE.

Proof. Consider the map

π : L(G) → F
k
q ; f �→ (f(P1), . . . , f(Pk)).

420 I. Cascudo et al.

Then the kernel of π is L(G − ∑k
i=1 Pi). Since dimFq

Im(π) = dimFq
L(G) −

dimFq
L(G − ∑k

i=1 Pi) = k, π is surjective. Choose a subspace W of L(G) of
dimension k such that π induces an isomorphism between W and F

k
q .

We write by cf the vector (f(P1), . . . , f(Pk)), and by f(R) the evaluation of
f in the higher degree place R, for a function f ∈ L(2G). We now define

φ : π(V) = F
k
q → Fqm ; cf �→ f(R) ∈ Fqm .

Note that the above f ∈ W is uniquely determined by cf . Moreover φ is Fq-linear
and injective since deg(R) > deg(G).

Define
τ : L(2G) → Fqm ; f �→ f(R) ∈ Fqm .

Then τ is Fq-linear and injective since m = deg(R) > deg(2G).
Define the map

ψ′ : Im(τ) ⊆ Fqm → F
k
q ; f(R) �→ (f(P1), . . . , f(Pk)) ∈ F

k
q .

Note that the above f ∈ L(2G) is uniquely determined by f(R). ψ is Fq-linear
and surjective (but not injective). We extend ψ′ from Im(τ) to all of Fqm linearly
and call the resulting map ψ. We obtain thus the pair (φ, ψ).

For any cf , cg ∈ F
k
q we have

ψ(φ(cf) · φ(cg)) = ψ(f(R) · g(R)) = ψ((f · g)(R)) = cfg = cf ∗ cg,

where f, g ∈ W are uniquely determined from cf , cg as explained above.
Note that (fg)(R) belongs to Im(τ) since fg ∈ L(2G). We conclude that (φ, ψ)
defined above is an (k,m)q-RMFE.

Corollary 1. Let F/Fq be a function field of genus g with k distinct rational
places and a place of degree m ≥ 2k+4g−1. Then there exists an (k,m)q-RMFE.

Proof. We take G a divisor of degree k + 2g − 1 whose support is disjoint with
the promised set of k rational places. Then, since both deg G ≥ 2g − 1 and
deg(G−∑k

i=1 Pi) ≥ 2g−1 we can apply the Riemann Theorem to conclude that
dimFq

L(G)−dimFq
L(G−∑k

i=1 Pi) = deg(G)−g+1− (deg(G)−g+1−k) = k.
We are then in the conditions of Lemma6.

Proposition 5 ([Sti09], Theorem 5.2.10 (c)). For every function field F/Fq,
and all m ∈ N with 2g+1 ≤ q(m−1)/2(

√
q−1), there exists a place in F of degree

m. In particular this holds for every m ≥ 4g + 3, regardless of q.

This implies that the condition about the existence of the high degree place in
Corollary 1 is in fact always satisfied as soon as k ≥ 2, since any m ≥ 2k+4g−1
satisfies the inequality in the proposition above.

Now we can show the main theorem of this section

Amortized Complexity of Information-Theoretically Secure MPC Revisited 421

Theorem 5. There exists a family of (k,m)q-RMFE with k → ∞ and m =
O(k). More concretely

m

k
→ 2 +

4
A(q)

.

Proof. Take a family {F�} of function fields over Fq of growing genus g� → ∞
with N1(F�)/g� → A(q). Since N1(F�) is the number of distinct rational places
of F�, we can take k = N1(F�). Moreover we take m = 2k + 4g� − 1. These
parameters satisfy all conditions in Corollary 1 and therefore the construction
above yields a (k,m)q-RMFE.

For q = 2 a direct application of this result, together with the bound A(2) ≥
97/376 from [XY07] yields a family of (k,m)2-RMFEs with

m

k
→ 2 +

4
A(2)

≤ 2 +
4 × 376

97
≈ 15.51.

4.1 An Explicit Construction over F2

The result above for q = 2 is not explicit, since the bound for A(2) was attained
by a non-explicit of function fields. In this section we will show an explicit
construction of a family of RMFEs over F2 with a constant asymptotic ratio.
This example also shows that, fortunately, as was the case for practical values
of k, the expansion expressed by the asymptotic ratio m/k can be quite small.

Proposition 6. There exists a constructive family of (k,m)32-RMFE with k →
∞ and m

k → 62/21.

Proof. This comes from applying Theorem5, that implies the existence of a
family of (k,m)32-RMFE with k → ∞ and m

k → 2 + 4
A(32) .

Now we use that for every prime p and every a ≥ 1, we have A(p2a+1) ≥
2(pa+1−1)

p+1+ε (where ε = p−1
pa−1) and that this is achieved for the explicit construction

in [BBGS15]. In particular p = 2, a = 2 gives A(32) ≥ 21/5. This means 2 +
4

A(32) ≤ 62/21 and concludes the proof.

Corollary 2. There exists a constructive family of (k,m)2-RMFE with k → ∞
and

m

k
→ 4.92...

Proof. Applying the concatenation in Lemma5 to the (3, 5)2-RMFE (from
Lemma 4) and the family of (k1,m1)32-RMFE with m1

k1
→ 62/21 provides a

family of (3k1, 5m1)2-RMFE. Note that 5m1
3k1

→ 5/3 × 62/21 = 4.92...

422 I. Cascudo et al.

5 Proof of Theorem1

The last step towards proving Theorem 1 is how to instantiate the protocol π′

that securely computes the arithmetic circuit over F2m . We use the protocol by
Beerliová-Trub́ıniová and Hirt [BH08].

Theorem 6 ([BH08]). There is a protocol π′ which computes an arithmetic
circuit over a field F2m , where |F2m | > 2n, with a communication complexity of
O((cI +cM +cR) ·n+DM ·n2+n3) field elements, where DM is the multiplicative
depth of the circuit.

The protocol π′ satisfies all conditions in Sect. 3. In particular it is a secret-
sharing based protocol where the secret sharing scheme used is degree t-Shamir’s
secret sharing scheme over F2m .

Proof (of Theorem 2). We use Theorem 4 with a (φ, ψ) from the family of (k,m)-
RMFEs with m = Θ(k) constructed in Sect. 4 and the protocol π′ from Theo-
rem 6. The total communication complexity is O((cI +cM +cR)·n+DM ·n2+n3)
elements of F2m , and therefore O(nm) bits per gate of the circuit. Note that this
allows to compute k = Θ(m) evaluations of the circuit and therefore the amor-
tized complexity is O(n) bits per gate.

We point out one optimization that it is possible when we combine our com-
piler with [BH08]. Indeed the input phase in [BH08] consists in selecting a sharing
[r] of a random element in F2m which has been generated in their preprocessing
phase and opening this privately to the party Pi holding the input ai ∈ F2m ,
who broadcasts the difference of the random element and ai so that the rest
of the parties update their shares. If we use our compiler as described, in the
next step Pi would prove ai ∈ Im φ. Rather than executing these two phases, we
can merge these two processes in one step: instead of using [r] for a uniformly
random r ∈ F2m , we can have parties take [r′] for a uniformly random r′ ∈ Im φ,
generated in our preprocessing phase by RandElSub(Im φ), then open this to Pi,
and have Pi broadcast the difference of r′ − ai. The other parties can now verify
that r′ − ai ∈ Im φ and if so, update their shares accordingly.

6 Proof of Theorem2

We combine our amortization technique with the packed secret sharing paradigm
to further decrease the communication complexity in the case where the adver-
sary is suboptimal.

The result is based on the observation that one can replace Shamir’s secret
sharing scheme by packed Shamir’s secret sharing in the protocol from [BH08].

Theorem 7. There is a multiparty computation protocol for n parties that eval-
uates � = Θ(n) instances of an arithmetic circuit over Fq (where q ≥ 2n)
with cI input, cR random and cM multiplication gates, by communicating
O(cIn + cRn + cMn + DMn2 + n3) field elements, where DM denotes the multi-
plicative depth of the circuit. The protocol is secure against an active adversary
corrupting t < (n − 2� + 2)/3 players.

Amortized Complexity of Information-Theoretically Secure MPC Revisited 423

In order to sketch an argument for this result, we briefly describe how [BH08]
works. This protocol has a preprocessing phase and a computation phase. In
the computation phase, all inputs and intermediate values are shared among
the network of parties using Shamir’s secret sharing of degree t, denoted by
[·]t. In order to process multiplication gates, the protocol uses the well known
randomization technique due to Beaver [Bea91], which relies on auxiliary shared
triplets ([a]t, [b]t, [c]t), where a, b are random field elements and c = ab; these
have been computed in the preprocessing phase.

The preprocessing phase uses player elimination and its goal is to generate
the aforementioned triplets as well as “individual” sharings of random elements
that are used in input and random gates. The crucial step in order to obtain
these triplets is to be able to generate “double sharings” of random elements,
more specifically one needs to generate pairs [r]t, [r]t′ and [r]t, [r]2t′ (where t′

as always is the updated corruption tolerance after player elimination). This is
done by means of hyper-invertible matrices in a way we have already sketched
in Sect. 2. Here an important point underlying the protocol is that the product
of two degree-t polynomials is a degree-2t polynomial. A small detail is that at
some points of the computation the parties need to generate, from a publicly
known value x, the 0-degree sharing [x]0. This is simply that each party defines
as share the value x.

Finally, the other important point to notice regards reconstruction of secrets:
throughout the protocol two reconstruction protocols are used for the secret
sharing scheme: ReconsPriv reconstructs the secret privately towards a party,
and consists on all other parties sending their shares to her. The protocol
ReconsPubl, which we have already detailed in this paper, reconstructs a batch
of secrets publicly, with amortized communication. Given a sharing [·]d, the
secret can be reconstructed (with either protocol) t′-robustly if d < n′ − 2t′

and t′-detectably (meaning that either the correct secret is reconstructed or the
party detects the sharing is erroneous) if d < n′ − t′. Hence t and t′-degree shar-
ings can be robustly reconstructed and 2t′-degree sharings can be detectably
reconstructed. This is enough for the purposes of [BH08].

We describe how this would be adapted so that packed Shamir secret sharing
is used instead. We recall how packed Shamir secret sharing for n parties and with
secrets in F

�
q (where � < n), is defined; by assumption Fq has at least n+ � < 2n

elements. Fix ω1, . . . , ω�, α1, . . . , αn pairwise distinct points in Fq. Then, for a
degree d ≥ � − 1, degree d-packed Shamir secret sharing works as follows: given
s = (s1, . . . , s�) ∈ F

�
q, a polynomial f ∈ Fq[X] is chosen uniformly at random

among all polynomials of degree ≤ d with f(ωj) = sj for j = 1, . . . , �. Then [s]�d is
the vector (f(α1), . . . , f(αn)) where f(αi) is sent to the i-th player. This packed
scheme has (d−�+1)-privacy: any set of d−�+1 shares gives no information about
the secret. On the other hand, it has exactly the same reconstruction properties
(even in the presence of errors) as degree d-standard Shamir. In particular, it
has d+1-reconstruction (d+1 honest shares determine the secret), it is t-robust
as long as d < n − 2t and it has t-detectable reconstruction as long as d < n − t.

424 I. Cascudo et al.

We can turn [BH08] into a protocol that computes � parallel evaluations of
an arithmetic circuit over Fq with O(1) field elements communicated per gate
by doing the following modifications. The standard Shamir sharings [·]t, [·]t′ , [·]0
and [·]2t′ in [BH08] are substituted by packed Shamir sharings [·]�t+�−1, [·]�t′+�−1,
[·]��−1 and [·]�2t′+2�−2, respectively. Multiplication of secrets in Fq becomes now
componentwise multiplication in F

�
q.

One can then verify that all properties we need are still preserved: first, we
have that 2t′ + 2� − 2 = 2(t′ + � − 1), which is needed in the shared triplets
generation; moreover, the main scheme is now [·]�t+�−1, which is still t-private;
furthermore, under the assumption that t < (n−2�+2)/3, we have 2t′ +2�−2 <
n′ − t′ and t′ + �− 1 ≤ t+ �− 1 < n′ − 2t′, so [·]�t+�−1, [·]�t′+�−1 are have t′-robust
reconstruction and [·]�2t′+2�−2 has t′-detectable reconstruction; finally [·]��−1 is a
degenerate secret sharing scheme that takes the unique polynomial of degree
� − 1 that interpolates the secret and generates the corresponding shares, i.e.,
every party can compute her share given the secret, so it plays exactly the role
which is needed from [·]0 in the original protocol. The double sharing generation
via hyper-invertible matrices still works, because it can be still captured with
our notion of GLSSS. Indeed we will have a Fq-GLSSS where the secret is now
in F

�
q but each of the shares in F

2
q and consists of a share with [·]�d, and another

with [·]′�d (the protocol will need to invoke this with d = t + � − 1, d′ = t′ + � − 1
and with d = t + � − 1, d′ = 2t′ + 2� − 2).

This establishes Theorem 7 given that the communication complexity of this
modified protocol is the same as that of [BH08], but it computes � evaluations
of the arithmetic circuit under the weaker assumption that t < (n − 2� + 2)/3.

Now we show Theorem 2.

Proof (of Theorem 2). We describe a secure multiparty computation protocol for
n parties with perfect security against an adversary corrupting t < (n−2�+2)/3
parties that computes simultaneously k� evaluations of the binary circuit C with
communication O(k�) bits per gate of the circuit, and hence O(1) bits per gate
per instance. We recover the theorem by taking � = εn/2.

We briefly describe how to modify our compiler from Sect. 3 so that it works
with packed Shamir secret sharing.

Take (φ, ψ) from a family of (k,m)2-RMFE with m = Θ(k) and such that
2m > 2n. Define Φ : F

k�
2 → (F2m)� and Ψ : (F2m)� → F

k�
2 that respectively

consist in applying φ to each block of k coordinates of the input and ψ to each
coordinate of the input. Parties now encode their vectors of inputs with Φ and
provide these to the protocol π′ (for example the vers and they need to prove that
their inputs are in Φ. In order to do this the parties need to apply RandElSub to
Im Φ = (Im φ)� in the preprocessing phase. At multiplication gates, the parties
need to compute [Φ(Ψ(a))] from [a] which can be done in similar fashion as in
Sect. 3 but using random sharings generated by applying RandElSub to the F2-
subspace W = {(x, Φ(Ψ(x))) : x ∈ F

�
2m} in the preprocessing phase. We also

need to use that ReconsPubl is t′-robust as explained above.
Because the secret sharing scheme is now the packed version of Shamir’s,

we attain the same complexity as in our protocol, but now we are computing

Amortized Complexity of Information-Theoretically Secure MPC Revisited 425

k� = Θ(kn) evaluations of the circuit. The amortized complexity per gate per
instance of the compiler is therefore O(1) bits. Using this in combination with
the packed version of [BH08] described above as protocol π′ proves the theorem.

Acknowledgements. The work of Ronald Cramer and Chen Yuan was supported
in part by ERC Advanced Grant No. 74079 (ALGSTRONGCRYPTO). Part of Chen
Yuan’s work was performed while he was employed at NTU in Singapore. The authors
thank Martin Hirt, Ivan Damg̊ard, Yuval Ishai, and Jesper Buus Nielsen for helpful
discussions and the anonymous reviewers for their valuable comments.

References

[BBGS15] Bassa, A., Beelen, P., Garcia, A., Stichtenoth, H.: Towers of function fields
over non-prime finite fields. Moscow Math. J. 15(1), 1–29 (2015)

[Bea91] Beaver, D.: Efficient multiparty protocols using circuit randomization.
In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1 34

[BGW88] Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems
for non-cryptographic fault-tolerant distributed computation (extended
abstract). In: Proceedings of the 20th Annual ACM Symposium on Theory
of Computing, Chicago, Illinois, USA, 2–4 May 1988, pp. 1–10 (1988)

[BH08] Beerliová-Trub́ıniová, Z., Hirt, M.: Perfectly-secure MPC with linear com-
munication complexity. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948,
pp. 213–230. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-78524-8 13

[BMN17] Block, A.R., Maji, H.K., Nguyen, H.H.: Secure computation based on
leaky correlations: high resilience setting. In: Katz, J., Shacham, H. (eds.)
CRYPTO 2017, Part II. LNCS, vol. 10402, pp. 3–32. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-63715-0 1

[Bra85] Bracha, G.: An o(log n) expected rounds randomized byzantine generals
protocol. In: Proceedings of the 17th Annual ACM Symposium on Theory
of Computing, Providence, Rhode Island, USA, 6–8 May 1985, pp. 316–326
(1985)

[CC88] Chudnovsky, D., Chudnovsky, G.: Algebraic complexities and algebraic
curves over finite fields. J. Complex. 4, 285–316 (1988)

[CCCX09] Cascudo, I., Chen, H., Cramer, R., Xing, C.: Asymptotically good ideal
linear secret sharing with strong multiplication over Any fixed finite field.
In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 466–486. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8 28

[CCX11] Cascudo, I., Cramer, R., Xing, C.: The torsion-limit for algebraic function
fields and its application to arithmetic secret sharing. In: Rogaway, P. (ed.)
CRYPTO 2011. LNCS, vol. 6841, pp. 685–705. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-22792-9 39

[CCX12] Cascudo, I., Cramer, R., Xing, C.: The arithmetic codex. In: 2012 IEEE
Information Theory Workshop, Lausanne, Switzerland, 3–7 September
2012, pp. 75–79 (2012)

[CDN15] Cramer, R., Damg̊ard, I., Nielsen, J.B.: Secure Multiparty Computation
and Secret Sharing. Cambridge University Press, Cambridge (2015)

https://doi.org/10.1007/3-540-46766-1_34
https://doi.org/10.1007/978-3-540-78524-8_13
https://doi.org/10.1007/978-3-540-78524-8_13
https://doi.org/10.1007/978-3-319-63715-0_1
https://doi.org/10.1007/978-3-642-03356-8_28
https://doi.org/10.1007/978-3-642-22792-9_39

426 I. Cascudo et al.

[DI06] Damg̊ard, I., Ishai, Y.: Scalable secure multiparty computation. In: Dwork,
C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 501–520. Springer, Heidelberg
(2006). https://doi.org/10.1007/11818175 30

[DIK10] Damg̊ard, I., Ishai, Y., Krøigaard, M.: Perfectly secure multiparty computa-
tion and the computational overhead of cryptography. In: Gilbert, H. (ed.)
EUROCRYPT 2010. LNCS, vol. 6110, pp. 445–465. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-13190-5 23

[DN07] Damg̊ard, I., Nielsen, J.B.: Scalable and unconditionally secure multiparty
computation. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp.
572–590. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-
74143-5 32

[DNPR16] Damg̊ard, I., Nielsen, J.B., Polychroniadou, A., Raskin, M.: On the com-
munication required for unconditionally secure multiplication. In: Rob-
shaw, M., Katz, J. (eds.) CRYPTO 2016, Part II. LNCS, vol. 9815, pp.
459–488. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-
53008-5 16

[FY92] Franklin, M.K., Yung, M.: Communication complexity of secure computa-
tion (extended abstract). In: Proceedings of the 24th Annual ACM Sym-
posium on Theory of Computing, Victoria, British Columbia, Canada, 4–6
May 1992, pp. 699–710 (1992)

[GS95] Garćıa, A., Stichtenoth, H.: A tower of Artin-Schreier extensions of function
fields attaining the Drinfeld-Vlăduţ bound. Invent. Math. 121(1), 211–222
(1995)

[GS96] Garcia, A., Stichtenoth, H.: On the asymptotic behaviour of some towers of
function fields over finite fields. J. Number Theory 61(2), 248–273 (1996)

[HMP00] Hirt, M., Maurer, U.M., Przydatek, B.: Efficient secure multi-party com-
putation. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976,
pp. 143–161. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-
44448-3 12

[IKOS09] Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge proofs
from secure multiparty computation. SIAM J. Comput. 39(3), 1121–1152
(2009)

[Sha79] Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
[Sti09] Stichtenoth, H.: Algebraic Function Fields and Codes. Graduate Texts in

Mathematics, vol. 254, 2nd edn. Springer, Berlin (2009). https://doi.org/
10.1007/978-3-540-76878-4

[XY07] Xing, C., Yeo, S.L.: Algebraic curves with many points over the binary
field. J. Algebra 311(2), 775–780 (2007)

https://doi.org/10.1007/11818175_30
https://doi.org/10.1007/978-3-642-13190-5_23
https://doi.org/10.1007/978-3-540-74143-5_32
https://doi.org/10.1007/978-3-540-74143-5_32
https://doi.org/10.1007/978-3-662-53008-5_16
https://doi.org/10.1007/978-3-662-53008-5_16
https://doi.org/10.1007/3-540-44448-3_12
https://doi.org/10.1007/3-540-44448-3_12
https://doi.org/10.1007/978-3-540-76878-4
https://doi.org/10.1007/978-3-540-76878-4

Private Circuits: A Modular Approach

Prabhanjan Ananth1(B), Yuval Ishai2, and Amit Sahai3

1 CSAIL, MIT, Cambridge, USA
prabhanjan@csail.mit.edu

2 Technion, Haifa, Israel
yuvali@cs.technion.ac.il
3 UCLA, Los Angeles, USA

sahai@cs.ucla.edu

Abstract. We consider the problem of protecting general computations
against constant-rate random leakage. That is, the computation is per-
formed by a randomized boolean circuit that maps a randomly encoded
input to a randomly encoded output, such that even if the value of every
wire is independently leaked with some constant probability p > 0, the
leakage reveals essentially nothing about the input.

In this work we provide a conceptually simple, modular approach for
solving the above problem, providing a simpler and self-contained alter-
native to previous constructions of Ajtai (STOC 2011) and Andrychow-
icz et al. (Eurocrypt 2016). We also obtain several extensions and gen-
eralizations of this result. In particular, we show that for every leakage
probability p < 1, there is a finite basis B such that leakage-resilient com-
putation with leakage probability p can be realized using circuits over
the basis B. We obtain similar positive results for the stronger notion
of leakage tolerance, where the input is not encoded, but the leakage
from the entire computation can be simulated given random p′-leakage
of input values alone, for any p < p′ < 1. Finally, we complement this by
a negative result, showing that for every basis B there is some leakage
probability p < 1 such that for any p′ < 1, leakage tolerance as above
cannot be achieved in general.

We show that our modular approach is also useful for protecting com-
putations against worst case leakage. In this model, we require that leak-
age of any t (adversarially chosen) wires reveal nothing about the input.
By combining our construction with a previous derandomization tech-
nique of Ishai et al. (ICALP 2013), we show that security in this setting
can be achieved with O(t1+ε) random bits, for every constant ε > 0. This
(near-optimal) bound significantly improves upon previous constructions
that required more than t3 random bits.

1 Introduction

Ishai, Sahai, and Wagner [ISW03] introduced the fundamental notion of a
leakage-resilient circuit compiler, which in its simplest form is defined as fol-
lows. The compiler consists of a triple of algorithms (Compile,Encode,Decode).
Given any circuit C, the compiled version of the circuit Ĉ = Compile(C) takes a

c© International Association for Cryptologic Research 2018
H. Shacham and A. Boldyreva (Eds.): CRYPTO 2018, LNCS 10993, pp. 427–455, 2018.
https://doi.org/10.1007/978-3-319-96878-0_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96878-0_15&domain=pdf

428 P. Ananth et al.

randomly encoded input x̂ = Encode(x) and (using additional fresh randomness)
produces an encoded output ŷ such that C(x) = Decode(ŷ). Furthermore, sup-
pose each wire in the compiled circuit Ĉ leaks its value1 with some probability
p > 0, independently for each wire. Then, informally speaking, we require that
the leaked wire values reveal essentially nothing about the input x to the circuit.

The above notion of resilience to random leakage can be seen as a natural
cryptographic analogue of the classical notion of fault-tolerant computation due
to von Neumann [vN56] and Pippenger [Pip85], where every gate in a circuit can
fail with some constant probability. In addition to being of theoretical interest,
the random leakage model is motivated by the fact that resilience to a notion of
“noisy leakage”, which captures many instances of real-life side channel attacks,
can be reduced to resilience to random leakage [DDF14]. The random leakage
model is also motivated by its application to “oblivious zero-knowledge PCPs”,
where every proof symbol is queried independently with probability p, which in
turn are useful for constructing zero-knowledge proofs that only involve unidi-
rectional communication over noisy channels [GIK+15].

We turn to discuss the state of the art on constructing leakage-resilient circuit
compilers with respect to leakage probability p. The original work of [ISW03]
only achieved security for values of p that vanish both with the circuit size
and the level of security. Ajtai [Ajt11] achieved the first leakage-resilient circuit
compiler that tolerated some (unspecified) constant probability of leakage p.
However, to say the least, Ajtai’s result is quite intricate and poorly understood.
A more recent work of Andrychowicz, Dziembowski, and Faust [ADF16] obtained
a simpler derivation of Ajtai’s result. However, their construction is still quite
involved and relies on heavy tools such as expander graphs (also used in Ajtai’s
construction) and algebraic geometric codes. The present work is motivated by
the following, informally stated, question:

Is there a “simple” method of building leakage-resilient circuit compilers that
can tolerate some constant probability of leakage p > 0?

1.1 Our Contribution

Our main contribution is an affirmative answer to the above question. We
present a conceptually simple, modular approach for solving the above prob-
lem, providing a simpler and self-contained alternative to the constructions
from [Ajt11,ADF16]. In particular, our construction avoids the use of explicit
constant-degree expanders or algebraic geometric codes.

Roughly speaking, our construction uses a recursive amplification technique
that starts with a constant-size gadget, which only achieves a weak level of secu-
rity, and amplifies security by a careful composition of the gadget with itself. The
existence of the finite gadget, in turn, follows readily from results on information-
theoretic secure multiparty computation (MPC), such as the initial feasibility
1 The original model of [ISW03] considers the worst-case notion of t-private circuits,

where the leakage consists of an adversarially chosen set of t wires. We will discuss
this alternative model later.

Private Circuits: A Modular Approach 429

results from [BOGW88,CCD88]. We refer the reader to Sect. 1.2 for a more
detailed overview of our technique.

We then extend the above result and generalize it in several directions, and
also present some negative results. Concretely, we obtain the following results
regarding constant-rate random leakage:

– For every leakage probability p < 1, there is a finite basis B such that leakage-
resilient computation with leakage probability p can be realized using circuits
over the basis B.

– We obtain a similar positive result for the stronger2 notion of leakage toler-
ance, where the input is not encoded, but the leakage from the entire com-
putation can be simulated given random p′-leakage of input values alone, for
any p < p′ < 1.

– Finally, we complement this by a negative result, showing that for every
basis B there is some leakage probability p = pB < 1 such that for any
p′ < 1, leakage tolerance as above cannot be achieved in general, where pB
tends to 1 as B grows. The negative result is based on impossibility results
for information-theoretic MPC without an honest majority [CK91].

Our work leaves open two natural open questions. First, in the case of binary
circuits, there is a huge gap between the tiny leakage probability guaranteed
by the analysis of our construction (roughly p = 2−14) and the best one could
hope for. This is the case even in the stronger model of leakage tolerance, where
our negative result only rules out constructions that tolerate p > 0.8 leakage
probability.

A second question is the possibility of tolerating higher leakage probability
(arbitrarily close to 1) for the weaker notion of leakage-resilient circuits with
input encoder. A partial explanation for the difficulty of this question is the
possibility of using the input encoder to generate correlated randomness that
enables information-theoretic MPC with no honest majority.3

Private Circuits with Near-Optimal Randomness. As an unexpected
application of our technique, we show that the modular approach is also useful
for protecting computations in the more standard model of worst case leakage.
Indeed, we show that essentially the same construction that is secure in the ran-
dom probing model is also secure in the worst case leakage model with threshold
t. Using this observation and a certain “randomness locality” feature of our con-
struction, and building on robust local pseudo-random generators [IKL+13], we
2 Note that leakage-tolerance can be easily used to achieve leakage-resilience by letting

the encoder apply to the input a secret sharing scheme that tolerates a p′-fraction
of leakage, where the compiler is applied to an augmented circuit that starts by
reconstructing the input from its shares.

3 Indeed, the technique of Beaver [Bea91] can be used to obtain resilience to an arbi-
trary leakage probability p < 1, but at the cost of allowing the output of the input
encoder to be bigger than the circuit size. In contrast, our definition of leakage-
resilient circuit compiler requires the output of the input encoder to be a fixed
polynomial in the input length, independently of the size of the circuit.

430 P. Ananth et al.

obtain leakage tolerant circuit compilers with leakage parameter t that use only
O(t1+ε) random bits, for any constant ε > 0. We show that this bound is nearly
tight by observing that at least t random bits are required to protect compu-
tations against worst case leakage. Our upper bound on the randomness com-
plexity is a major improvement over the best previous upper bound of O(t3+ε)
from [IKL+13].

We present our results formally in Sect. 3.3.

1.2 Technical Overview

In this section, we give a high level overview of the composition-based approach
that we utilize to get our main result. We use the composition-based approach to
achieve constructions of leakage-resilient and leakage tolerant circuit compilers
in both the worst-case probing and random probing settings. For the most part
of the current discussion, we focus on achieving leakage resilient circuit compilers
in the random probing setting.

In the composition-based approach, we start with a leakage-resilient circuit
compiler CC0 secure against p-random probing attacks and has constant sim-
ulation error ε. By p-random probing attacks, we mean that every wire in the
compiled circuit is leaked with probability p. We refer to this leakage-resilient
circuit compiler as a base gadget. The goal is to recursively compose this base
gadget to obtain a leakage-resilient circuit compiler also secure against p-random
probing attacks but the failure probability is negligible (in the size of the circuit
being compiled).

First Attempt. A naive approach to compose is as follows: to compile a circuit
C, compute CC0.Compile(· · ·CC0.Compile(C) · · ·). In the kth step, CC0.Compile
is executed for k levels of recursion. Its easy to see that leakage on the resulting
compiled circuit cannot be simulated only if it holds that the simulation of
CC0.Compile fails for every level of recursion. That is, the failure probability of
the resulting circuit compiler is εk for k levels of recursion. If we set k to be
the size of C then we obtain negligible simulation error, as desired. However, as
the simulation error reduces with every recursion step, the size of the compiled
circuit increases with every recursion step. Even if the compiled circuit in the
base gadget had constant overhead, the size of the compiled circuit obtained after
k steps grows exponential in k. This means that we need to devise a composition
mechanism where the error probability degrades much faster than the size growth
of the compiled circuit.

Our Approach: In a Nutshell. Our idea is to cleverly compose n gadgets, each
with simulation error ε, in such a way that the composed gadget fails only if at
least t of the gadgets fail, for some parameters t, n with t < n. Our composi-
tion mechanism ensures that the size of the composed gadget incurs a constant
blowup whereas the simulation error degrades exponentially in 1

ε .
To realize such a composition mechanism, we employ techniques from Cohen

et al. [CDI+13]. Cohen et al. showed how to employ player emulation strat-
egy [HM00] to achieve a conceptually simpler construction of secure MPC in the

Private Circuits: A Modular Approach 431

honest majority setting. While the goal of Cohen et al. is seemingly unrelated to
the problem we are trying to solve, we show that the player emulation strategy
employed by their work can be adapted to our context.

We first recall their approach. They showed how to transform a threshold
formula, composed solely of threshold gates, into a secure MPC protocol. In
more detail, they start with a T -out-N threshold formula composed of t-out-n
threshold gates. They then show how to transform a secure MPC protocol for n
parties tolerating t corruptions into a MPC protocol for N parties tolerating at
most T corruptions (also written as T -out-N secure MPC). At a high level, their
transformation proceeds as follows: they replace the topmost t-out-n threshold
gate with a T -out-N secure MPC. That is, every input wire of the topmost gate
corresponds to a party in the secure MPC protocol. Every party in this MPC is
emulated by a T -out-N secure MPC. In other words, for every gate input to the
topmost gate, the corresponding player is replaced with a t-out-n secure MPC.
For instance, if the topmost gate had exactly N gates as its children then the
resulting MPC has n2 number of parties and can tolerate at most t2 number of
corruptions. This process can be continued as long as the secure MPC protocol
still satisfies polynomial efficiency.

Armed with their methodology, we show how to construct a leakage-resilient
circuit compiler. We start with a t-out-n secure MPC protocol Π in the passive
security model. The functionality associated with this protocol takes as input
n shares of two bits (a, b) and outputs n shares of NAND(a, b)4. This secure
MPC protocol will be our base gadget for NAND with respect to some constant
probability of wire leakage and constant simulation error. We then compose
this base gadget as follows: in the kth level of recursion, we start with Π and
emulate the computation of every gate in Π with an inner gadget computed from
(k − 1)th level of recursion. Why is this secure? the hope is that the resulting
gadget can be simulated by simulating all the inner gadgets. Unfortunately, this
doesn’t work since some of the inner gadgets can fail. However, we can map the
inner gadgets that fail to corrupting the corresponding parties in Π. And thus,
as long as at most t inner gadgets fail, we can invoke the simulator of Π to
simulate the composed gadget. We can show that the probability that at most t
inner gadgets fail degrades exponentially in 1

εk−1
, where εk−1 is the simulation

error of the inner gadget. On the other hand, the size of the composed gadget
grows only by a constant factor. Expanding this out, we can conclude that after
k steps the size grows exponential in k whereas the simulation error degrades
doubly exponential in k. Substituting k to be logarithmic in the size of C, we
attain the desired result. While the current discussion focusses on the analysis
for the random probing setting, similar (and a much simpler) analysis can also
be done for the worst-case probing setting. Specifically, we can show that after
k levels of recursion, the circuit compiler is secure against worst case probing
attacks with leakage parameter tk.

4 We consider NAND gates because they are universal gates. In fact we can substitute
NAND with any other universal basis.

432 P. Ananth et al.

Security Issues. Recall that the simulation of the composed gadget requires sim-
ulating all the inner gadgets. Since the inner gadgets are connected to each other,
we need to ensure that these different simulations are consistent with each other.
To give an example, suppose there are two inner gadgets connected by a wire
w. The simulators for these two different inner gadgets could assign conflicting
values to w. At its core, we handle this problem by keeping a budget of wires
“in reserve”, and define a notion of composable simulation that can make use of
this flexibility to resolve conflicts between simulators for components that share
wires. For example, if two simulators S1 and S2 “want to disagree” about a wire
w, we will break the tie by allowing simulator S1 to decide the value in wire w,
and asking the other simulator S2 to use one of the reserve wires to make up
for the fact that S2 did not get its wish for the value of wire w. This is possi-
ble because of the flexibility inherent in the secret sharing schemes underlying
the MPC protocols of the base gadget. Similar notions of composable leakage-
resilient circuit compliers were considered in [BBD+16,BBP+16,BBP+17].

From NAND to arbitrary circuits. So far the above approach shows how to
design a gadget for NAND tolerating constant wire leakage probability and with
negligible simulation error. The fact that we design gadgets just for NAND gates
is crucially used to argue that the size of the composed gadget blows up only
by a constant factor in each step. We show how to use this gadget to design a
gadget for any circuit over NAND basis: to compile C, we replace every gate in
C with a gadget for NAND. We then show how to stitch these different gadgets
together to obtain a gadget for C.

Final Template. We now lay out our template. We first define a special case
of leakage-resilient circuit compilers, called composable circuit compilers. This
notion will incorporate the composition simulation mechanism mentioned earlier.

– The first step is to design a composable circuit compiler for NAND tolerating
constant wire leakage probability and has constant simulation error.

– We then apply our composition approach to obtain a composable circuit com-
piler for NAND tolerating constant wire leakage probability and has negligible
simulation error.

– Finally, we show how to bootstrap a composable circuit compiler for NAND
to obtain a composable circuit compiler for any circuit. The resulting compiler
still tolerates constant wire leakage probability and has negligible simulation
error.

A leakage tolerant circuit compiler can be constructed by additionally designing
a leakage resilient input encoder.

Randomness Complexity. As discussed above, an unexpected feature of our con-
struction is that it allows us to obtain leakage tolerant circuit compilers in the
worst case probing setting with near-optimal randomness complexity. This appli-
cation relies on the fact that after k levels of recursion, the compiled circuit has
randomness locality of O(k). (The randomness locality of a circuit compiler is

Private Circuits: A Modular Approach 433

said to be d if the value assigned to every wire during the evaluation of a compiled
circuit depends on the inputs and at most d randomness gates.) In particular,
we can construct a compiler with randomness locality O(log(t)) that is secure
against t-worst case probing attacks. This can be argued by observing that the
initial compiled circuit has constant randomness locality and in every recur-
sion step, the randomness locality increases by a constant. Combining this with
a result from [IKL+13], we obtain a circuit compiler secure in the worst case
probing model with threshold t and randomness complexity t1+ε. This improves
upon the bound of t3+ε in [IKL+13].

Organization. We first present the necessary preliminaries in Sect. 2. We then
define the notion of circuit compilers in Sect. 3. We define leakage resilience and
leakage tolerance in the same section. The notion of composable circuit compil-
ers, that will be a building block for both leakage tolerant and leakage resilient
circuit compilers, is presented in Sect. 4.1. We present the starting step (base
case) in the composition step in Sect. 4.2. The composition step itself is pre-
sented in Sect. 4.3. The result of the composition step doesn’t quite meet our
efficiency requirements and so we present the exponential-to-polynomial trans-
formation in Sect. 4.4. Finally, we combine all these steps to present the main
construction of a composable circuit compiler in Sect. 4.5.

Armed with a construction of composable circuit compiler, we present a con-
struction of leakage tolerant circuit compilers in Sect. 5. We also present negative
results that upper bounds the leakage rate in the random probing model in the
same section. We show that the construction of leakage tolerant circuit com-
piler can be transformed to have small randomness complexity. This is shown in
Sect. 7. In the same section, we show a lower bound on randomness complexity
of leakage tolerant circuit compilers.

We show implication of composable circuit compilers to leakage resilient cir-
cuit compilers in Sect. 6.

2 Preliminaries

We use the abbreviation PPT for probabilistic polynomial time. Some notational
conventions are presented below.

– Suppose A is a probabilistic algorithm. We use the notation y ← A(x) to
denote that the output of an execution of A on input x is y.

– Suppose D is a probability distribution with support V. We denote the sam-
pling algorithm associated with D to be Sampler. We denote by x

$←− Sampler
if the output of an execution of Sampler is x. For every x ∈ V, Sampler outputs
x with probability px, as specified by D. Unless specified otherwise, we only
consider efficiently sampleable distributions. We also consider parameterized
distributions of the form D = {Daux}. In this case, there is a sampling algo-
rithm Sampler defined for all these distributions. Sampler takes as input aux
and outputs an element in the support of Daux.

434 P. Ananth et al.

– Consider two probability distributions D0 and D1 with discrete support V
and let their associated sampling algorithms be Sampler1 and Sampler2. We
denote D0 ≈s,ε D1 if the distributions D0 and D1 are ε-statistically close.
That is,

∑
v∈V |Pr[v ← Sampler1] − Pr[v ← Sampler2]| ≤ 2ε.

Circuits. A deterministic boolean circuit C is a directed acyclic graph whose
vertices are boolean gates and whose edges are wires. The boolean gates belong
to a basis B. An example of a basis is B = {AND,OR,NOT}. We will assume
without loss of generality that every gate has fan-in (the number of input wires)
at most 2 and fan-out5 (the number of output wires) at most 2. A randomized
circuit is a circuit augmented with random-bit gates. A random-bit gate, denoted
by RAND, is a gate with fan-in 0 that produces a random bit and sends it along
its output wire; the bit is selected uniformly and independently of everything
else afresh for each invocation of the circuit. We also consider basis consisting of
functions (possibly randomized) on finite domains (as opposed to just boolean
gates). The size of a circuit is defined to be the number of gates in the circuit.

2.1 Information Theoretic Secure MPC

We now provide the necessary background of secure multiparty computation. In
this work, we focus on information theoretic security. We first present the syntax
and then the security definitions.

Syntax. We define a secure multiparty computation protocol Π for n parties
P1, . . . , Pn associated with an n-party functionality F : {0, 1}�1 ×· · ·×{0, 1}�n ×
{0, 1}�r → {0, 1}�y1 × · · · × {0, 1}�yn . We denote �i to be the length of the
ith party’s input, �yi

to be the length of the ith party’s output and �r is the
length of the randomness input to F . In any given execution of the protocol,
the ith party receives as input xi ∈ {0, 1}�i and all the parties jointly compute
the functionality F (x1, . . . , xn; r), where r ∈ {0, 1}�r is sampled uniformly at
random. In the end, party Pi outputs yi, where (y1, . . . , yn) = F (x1, . . . , xn; r).

We defined such n-party functionalities that additionally receive the random-
ness as input to be randomized functionalities. In this work we only consider
randomized n-party functionalities and henceforth, the input randomness will
be implicit in the description of the functionality.

Semi-honest Adversaries. We consider the adversarial model where the adver-
saries follow the instructions of the protocol. That is, they receive their inputs
from the environment, behave as prescribed by the protocol and finally output
their view of the protocol. Such type of adversaries are referred to as semi-honest
adversaries.

We define semi-honest security below. Denote RealΠF,S(x1, . . . , xn) to be the
joint distribution over the outputs of all the parties along with the views of the
parties indexed by the set S.
5 If a circuit has arbitrary fan-out, then this can be transformed into another circuit

of fan-out 2 with a loss of logarithmic factor in the depth.

Private Circuits: A Modular Approach 435

Definition 1 (Semi-Honest Security). Consider a n-party functionality F
as defined above. Fix a set of inputs (x1, . . . , xn), where xi ∈ {0, 1}�i and let ri be
the randomness of the ith party. Let Π be a n-party protocol implementing F . We
say that Π satisfies ε-statistical security against semi-honest adversaries
if for every subset of parties S, there exists a PPT simulator Sim such that:

{ ({yi}i/∈S ,Sim ({yi}i∈S , {xi}i∈S)) } ≈s,ε

{
RealΠF,S(x1, . . . , xn)

}
,

where yi is the ith output of F (x1, . . . , xn). If the above two distributions are
identical, then we say that Π satisfies perfect security against semi-honest
adversaries.

Starting with the work of [BOGW88,CCD88], several constructions con-
struct semi-honest secure multi-party computation protocol in the information-
theoretic setting assuming that a majority of the parties are honest.

We consider the notion of randomness locality of a secure MPC protocol.

Definition 2 (Randomness Locality). A semi-honest secure multiparty com-
putation protocol for a functionality F is said to have randomness locality d if
every value computed in the protocol is determined by the inputs of all parties
and at most d random bits (either as input to the functionality or to the parties).

3 Circuit Compilers

We define the notion of circuit compilers. This notion allows for transforming
an input x, a circuit C (See Sect. 2 for a definition of circuits) into an encoded
input x̂ and a randomized circuit Ĉ such that evaluation of Ĉ on x̂ yields an
encoding Ĉ(x). The decode algorithm then decodes Ĉ(x) to yield C(x).

Definition 3 (Circuit Compilers). A circuit compiler CC defined for a class
of circuits C comprises of the following algorithms (Compile,Encode,Decode)
defined below:

– Circuit Compilation, Compile(C): It is a deterministic algorithm that takes
as input circuit C and outputs a randomized circuit Ĉ.

– Input Encoding, Encode(x): This is a probabilistic algorithm that takes as
input x and outputs an encoded input x̂.

– Output Decoding, Decode(ŷ): This is a deterministic algorithm that takes
as input an encoding ŷ and outputs the plain text string y.

The algorithms defined above satisfies the following properties:

– Correctness of Evaluation: For every circuit C ∈ C of input length �, every
x ∈ {0, 1}�, it always holds that y = C(x), where:

• Ĉ ← Compile(C).
• x̂ ← Encode(x).
• ŷ ← Ĉ(x̂).

436 P. Ananth et al.

• y ← Decode(ŷ).
– Efficiency: Consider a parameter k ∈ N. We require that the running time of

Compile(C) to be poly(k, |C|), the running time of Encode(x) to be poly(k, |x|)
and the running time of Decode(Ĉ(x)) to be poly(k, |C(x)|). We emphasize
that the encoding complexity only grow poly-logarithmically in terms of the
size of C. Typically, k will be set to poly(log(|C|)).

Few remarks are in order.

Remark 1. The standard basis we consider in this work is {AND,XOR}. Unless
otherwise specified, all the circuits considered in this work will be defined over
the standard basis. Also unless otherwise specified, the compiled circuit is over
the same basis as the original circuit.

Remark 2. Later, we also consider circuit compilers with relaxed efficiency guar-
antees, where we allow for the running time of the algorithms to be exponential
in the parameter k.

Additional Properties. We are interested in circuit compilers that have (i) low
randomness locality: every value in the execution of the compiled circuit depends
only on few random bits and, (ii) low randomness complexity: only a small
amount of randomness should be used in the evaluation of the compiled circuit.

We capture these two properties formally below.

Definition 4 (Randomness Locality). Consider a circuit compiler CC
defined for a class of circuits C comprising of the following algorithms (Compile,
Encode,Decode). CC has d-randomness locality if for every circuit C ∈ C, input
x, the value of every wire in the computation of Ĉ on x̂ is determined by at
most d random-bit gates in Ĉ and x̂, where (i) Ĉ ← Compile(C) and, (ii)
x̂ ← Encode(x).

Definition 5 (Randomness Complexity). Consider a circuit compiler CC
defined for a class of circuits C comprising of the following algorithms (Compile,
Encode,Decode). CC has randomness complexity r if the number of random-bit
gates in the compiled circuit is at most r.

Non-Boolean Basis. In this work, we also consider a setting where the compiled
circuit is defined over a basis that is different from the basis of the original circuit
(before compilation). We define this formally below.

Definition 6. Consider two collections of finite functions B
′ and B. A circuit

compiler CC = (Compile,Encode,Decode) is defined over B
′ (written CC over B

′)
for a class of circuits C over B if it holds that for every C ∈ C over basis B, the
compiled circuit Ĉ, generated as Ĉ ← Compile(C), is defined over basis B

′.

We next define the security guarantees associated with circuit compilers.

Private Circuits: A Modular Approach 437

3.1 Leakage Resilience

We adopt the definition of leakage resilient circuit compilers from [GIM+16].

Definition 7. A circuit compiler CC = (Compile,Encode,Decode) for a class of
circuits C is said to be ε-leakage resilient against a class of randomized leakage
functions L if the following holds:

There exists a PPT simulator Sim such that for every circuit C : {0, 1}� →
{0, 1} and C ∈ C, input x ∈ {0, 1}�, leakage function Lcomp ∈ L, the distribution
Lcomp(Ĉ, x̂) is ε-statistically close to Sim (C), where Ĉ ← Compile(C) and x̂ ←
Encode(x).

Informally, the above definition states that the leakage Lcomp on the computation
of the compiled circuit Ĉ on encoded input x̂ reveals no information about the
input x.

Remark 3. While the above notion considers leakage only on a single computa-
tion, this notion already implies the stronger multi-leakage setting where there
are multiple encoded inputs and a leakage function is computed on every com-
putation of Ĉ. This follows from a standard hybrid argument6.

p-Random Probing Attacks [ISW03,Ajt11,ADF16]. In this work, we are inter-
ested in the following probabilistic leakage function: every wire in the computa-
tion of the compiled circuit Ĉ on the encoded input x̂ is leaked independently
with probability p.

More formally, denote the leakage function Lp = {Lcomp}, where the proba-
bilistic function Lcomp is defined below.

Lcomp

(
Ĉ, x̂

)
: construct the set of leaked values SC

leak as follows. For every wire w

(input wires included) in Ĉ and value vw assigned to w during the computation
of Ĉ on x̂, include (w, vw) with probability p in SC

leak. Also, include (w′, vw) in
SC
leak, if w′ and w are two output wires of the same gate. Output SC

leak.
We define leakage resilient circuit compilers with respect to the leakage function
defined above.

Definition 8 (Leakage Resilience Against Random Probing Attacks).
A circuit compiler CC = (Compile,Encode,Decode) for a family of circuits C

is said to be (p, ε)-leakage resilient against random probing attacks if CC is ε-
leakage resilient against Lp. Moreover, we define the leakage rate of CC to be
p.

t-Probing (Worst Case Probing) Attacks. We also consider t-probing attacks,
where the adversary is allowed to observe any t wires in the computation of the
compiled circuit. We define the class of leakage functions Lt = {LS

comp}|S|≤t,
where LS

comp is defined below.

6 Here we use the fact that the circuit compilation algorithm is deterministic.

438 P. Ananth et al.

LS
comp

(
Ĉ, x̂

)
: construct the set of leaked values SC

leak as follows. For every wire

w ∈ S and vw assigned to w during the computation of Ĉ on x̂, include (w, vw)
in SC

leak. Also, include (w′, vw) in SC
leak, if w′ and w are two output wires of the

same gate. Output SC
leak.

Definition 9 (Leakage Resilience Against Worst Case Probing
Attacks). A circuit compiler CC = (Compile,Encode,Decode) for a family of
circuits C is said to be leakage resilient against t-probing attacks if CC is leakage
resilient against Lt. Moreover, we define the leakage parameter of CC to be t.

3.2 Leakage Tolerance

Another notion we study is leakage tolerant circuit compilers. In this notion,
unlike leakage resilient circuit compilers, Encode is an identity function. Conse-
quently, we need to formalize the security definition so that the leakage on the
computation of Ĉ on x can be simulated with bounded leakage on the input x.

Definition 10. A circuit compiler CC = (Compile,Encode,Decode) for a class
of circuits C is said to be ε-leakage tolerant against a class of leakage functions
L if the following two conditions hold:

– Encode is an identity function.
– There exists a simulator Sim such that for every circuit C : {0, 1}� → {0, 1}

and C ∈ C, input x ∈ {0, 1}�, leakage function L = (Lcomp, Linp) ∈ L,
the distribution Lcomp(Ĉ, x̂) is ε-statistically close to Sim (C,Linp(x)), where
Ĉ ← Compile(C) and x̂ ← Encode(x).

Henceforth, we omit Encode algorithm and denote a leakage tolerant circuit com-
piler to consist of (Compile,Decode).

(p,p′)-Random Probing Attacks. As before, we are interested in the following
probabilistic leakage function: every wire in the computation of the compiled
circuit Ĉ on the encoded input x̂ is leaked independently with probability p.

More formally, denote the leakage function Lp,p′ = {(Lcomp, Linp)}, where
the probabilistic functions Lcomp is as defined in Sect. 3.1 and Linp is defined
below.

Linp(x): construct the set of leaked values SI
leak as follows. For every input wire w

carrying the ith bit of x, include (w, xi) in SI
leak with probability p′. If (w, xi) is

included, also include (w′, xi) in SI
leak, where w′ is the other input wire carrying

xi. Output SI
leak.

We define leakage tolerance against random probing attacks below.

Definition 11 (Leakage Tolerance Against Random Probing Attacks).
A circuit compiler CC = (Compile,Decode) for a family of circuits C is said to
be (p,p′, ε)-leakage tolerant against random probing attacks if CC is ε-leakage
tolerant against Lp,p′ . Moreover, we define the leakage rate of CC to be p.

Private Circuits: A Modular Approach 439

t-Probing (Worst Case Probing) Attacks. As before, we are interested in the
class of leakage functions where the adversary is allowed to query a t-sized
subset of wire values in the circuit. We consider the class of leakage functions
Lt = {(LS

comp, L
S′
inp)}|S′|≤t, where LS

comp is as defined in Sect. 3.1 and LS′
inp is

defined below.

LS′
inp

(
Ĉ, x̂

)
: construct the set of leaked values SI

leak as follows. include (w, xi) in

SI
leak if and only if w ∈ S′ and wire w carries the ith bit of x. If w′ also carries

the ith bit of x, include (w′, xi) in SI
leak. Output the set SI

leak.

Definition 12 (Leakage Tolerance Against Worst Case Probing
Attacks). A circuit compiler CC = (Compile,Encode,Decode) for a family of
circuits C is said to be leakage tolerant against t-probing attacks if CC is leakage
tolerant against Lt. Moreover, we define the leakage parameter of CC to be t.

3.3 Our Results

We state our results below.

Worst Case Probing:

Randomness Complexity. We prove positive and negative results on the ran-
domness complexity of leakage tolerant circuit compilers. We prove this is in the
worst case probing regime. The proofs for both the theorems can be found in
Sect. 7.

Theorem 1 (Randomness Complexity: Positive Result). There is a leak-
age tolerant circuit compiler such that given a circuit of size s and worst-case
leakage bound t, the compiler outputs a circuit of size s·poly(t) which is perfectly
secure against t (worst-case) probing attacks and uses only t1+ε random bits.

Theorem 2 (Randomness Complexity: Negative Result). The number of
random bits used in any leakage tolerant circuit compiler secure against t-probing
attacks is at least t.

En route to proving the above positive result, we prove that there is a construc-
tion of leakage tolerant circuit compiler that has randomness locality log(t). This
is shown in Sect. 5.2.

Lemma 1 (Randomness Locality). There is a leakage tolerant circuit com-
piler secure against t-probing attacks satisfying O(log(t))-randomness locality.

Random Probing:

Leakage Tolerance: Positive Results. We show the following results in Sect. 3.2.

Theorem 3 (Boolean Basis). There exist constants 0 < p < p′ < 1 such that
there is a (p,p′, ε)-leakage tolerant circuit compiler, where ε is negligible in the
circuit size.

Theorem 4 (Finite Basis). For any 0 < p′ < p < 1 there is a basis B over
which there is a (p,p′, ε)-leakage tolerant circuit compiler, where ε is negligible
in the circuit size.

440 P. Ananth et al.

Leakage Tolerance: Negative Result. The following theorem upper bounds the
rate of a leakage tolerant circuit compiler in the random probing model. We
prove this theorem in the full version.

Theorem 5. For any basis B there is 0 < p < 1, such that for any 0 < p′ < 1,
there is no (p,p′, 0.1)-leakage tolerant circuit compiler over B.

Leakage Resilience: Positive Results. We demonstrate a construction of leakage
resilient circuit compiler over boolean basis. Both the theorems below are shown
in Sect. 6.

Theorem 6 (Boolean Basis). There is a constant 0 < p < 1 such that there
is a (p, ε)-leakage resilient circuit compiler and ε is negligible in the circuit size.

We prove a result about finite basis in the full version.

Theorem 7 (Finite Basis). For any 0 < p < 1 there is a basis B over which
there is a (p, ε)-leakage resilient circuit compiler, where ε is negligible in the
circuit size.

4 Composition Theorem: Intermediate Step

We present a composition theorem, a key step in our constructions of leakage
tolerant and leakage resilient circuit compilers. We identify a type of circuit
compilers satisfying some properties, that we call composable circuit compilers.
This notion will be associated with ‘composition-friendly’ properties.

Before we formally define the properties, we motivate the use of composable
circuit compilers.

– In our composition theorem, we need to ‘attach’ different composable circuit
compiler gadgets. For instance, the output wires of composable compiler CC1

will be the input wires of another compiler CC2. In order to ensure correctness,
we need to make sure that the output encoding of CC1 is the same as the input
encoding of CC2. We guarantee this by introducing XOR encoding property
that states that the input encoding and output encoding are additive secret
shares.

– While the above bullet resolves the issue of correctness, this raises some secu-
rity concerns. In particular, when we simulate CC1 and CC2 separately, con-
flicting values could be assigned to the wires that join CC1 and CC2. These
issues have been studied in the prior works, mainly in the context of worst
case leakage [BBD+16,BBP+16,BBP+17]. And largely, this was not formally
studied for the random probing setting. We formulate the following simula-
tion definition to handle this issue in the probabilistic setting: the simulator
Sim = (Sim1,Sim2) (termed as partial simulator) will work in two main steps:

• In the first step, the simulator first determines the wires to be leaked.
Then, Sim1 determines a ‘shadow’ of input and output wires that addi-
tionally need to be simulated.

Private Circuits: A Modular Approach 441

• In the second step, the values for the input and output wires selected in
the above step is assigned values. Then Sim2 is executed to assign the
internal wire values.

At a high level Sim works as follows: first CC1.Sim1 and CC2.Sim1 is executed
to obtain the shadow of input and output wires that need to be simulated.
At this point, we take the union of the output wires of CC1 and input wires
of CC1 that need to be simulated. Then, we assign the values to all the wires.
Once this is done, we independently execute CC1.Sim2 and CC2.Sim2 to obtain
the simulated wire values in both CC1 and CC2, as desired.

4.1 Composable Circuit Compilers

The syntax of composable circuit compilers is the same as that of circuit com-
pilers (Definition 3). In addition, it is required to satisfy the properties stated
next.

XOR Encoding Property. We start with XOR encoding property. This property
states that the input encoding (resp., output encoding) is an additive secret
sharing of the inputs (resp., outputs).

Definition 13 (N -XOR Encoding). A circuit compiler (Compile,Encode,
Decode) for a family of circuits C is said to have N-XOR encoding prop-
erty if the following always holds: for every circuit C ∈ C, x ∈ {0, 1}�,

– Encode(x) computes XOR secret sharing of xi for every i ∈ [�], where xi is
the ith input bit of x. It then outputs the concatenation of the XOR secret
shares of all the bits of x.
It outputs x̂ = (x̂1, . . . , x̂�) ∈ {0, 1}�N , where xi = ⊕N

j=1x̂
i
j. That is, xi is a

XOR secret sharing of {x̂i
j}j∈[N].

– Let x̂ ← Encode(x) and Ĉ ← Compile(C). Upon evaluation, denote the output
encoding to be ŷ ← Ĉ(x̂). Suppose C(x) = y ∈ {0, 1}�′

and ŷ = (ŷ1, . . . , ŷ�′
) ∈

{0, 1}�′N . We require that {ŷi
j} is a XOR secret sharing of yi, i.e., yi =

⊕N
j=1ŷ

j
i .

When N is clear from the context, we drop it from the notation.

Composable Security (Random Probing Setting). Next, we define the composable
security property. We first deal with the random probing setting. There are two
parts associated with this security property.

– Partial simulation: This states that, conditioned on the simulator not
aborting, the leakage of all the wires in the compiled circuit can be per-
fectly simulated by the leakage of a fraction of values assigned to the input
and output wires alone.

– Simulation with Abort: We require that the simulator aborts with small
probability.

442 P. Ananth et al.

Before stating the formal definition of composable security, we first set up some
notation. We formalize the leakage function Lcomp defined in the previous section
in terms of the following sampler algorithm, RPDistrwp (·, ·)7.
Sampler RPDistrwp (Ĉ, x̂): Denote the set of wires in Ĉ as W. Consider the

computation of Ĉ on input encoding x̂. For every wire w ∈ W, denote val(w) to
be the value assigned to w during the evaluation of Ĉ on x̂.

We construct the set Sleak as follows: initially Sleak is assigned to be {}.
For every w ∈ W, with probability p, include (w,val(w)) in Sleak (i.e., with
probability (1 − p), the pair (w,val(w)) is not included). Output Sleak.

We define the notion of partial simulator below.

Definition 14 (Partial Simulator: Random Probing). A partial simulator
Sim defined by a deterministic polynomial time algorithm Sim1 and probabilistic
polynomial time algorithm Sim2 executes as follows: On input a circuit Ĉ,

– Denote W to be the set of wires in Ĉ. Construct a set Wlk as follows: include
every wire w ∈ W in the set Wlk with probability p.

– Sim1(Ĉ,Wlk) outputs (Winp,Wout, I). Winp is a subset of input wires, Wout

is a subset of output wires and I denotes a set of indices.
– For every wire w ∈ Winp, include (w, vw) ∈ Sinp such that vw is a bit sampled

uniformly at random. Similarly, construct the set Sout.
– Sim2

(
Ĉ,Wlk,Winp, Sinp,Wout, Sout, I

)
outputs Slk.

Finally, Sim outputs Slk.

We now define the notion of composable security in the random probing model.

Definition 15 (Composable Security: Random Probing). A circuit com-
piler CC = (Compile,Encode,Decode) for C, consisting of circuits of input length
�, is said to be (p, ε)-composable secure against random probing attacks if
there exists a probabilistic polynomial time partial simulator Sim = (Sim1,Sim2)
such that the following holds:

– p-Partial Simulation: for every circuit C ∈ C, input x ∈ {0, 1}�,
{
RPDistrwp

(
Ĉ, x̂

)}
≡

{
Sim(Ĉ)

∣
∣L←Sim(̂C)∧L�=⊥

}
,

where, Ĉ ← Compile(C) and x̂ ← Encode(x). That is, conditioned on the
simulator not aborting, its output distribution is identical to RPDistrwp (Ĉ, x̂).

– ε-Simulation with Abort: For every C ∈ C, Sim(Ĉ) aborts with probability
ε.

7 The superscript w is used to signify leakage of wire values.

Private Circuits: A Modular Approach 443

Composable Security (Worst Case Probing). We define the composable security
in the worst case probing setting. This will be defined along the same lines as in
the random probing setting.

Intuitively, we want to capture the following guarantee: simulation of a subset
of wires in the circuit can be carried out given a subset of input wire values and
a subset of output wire values. We formalize this in terms of partial simulator
below.

Definition 16 (Partial Simulator: Worst Case Probing). A partial simu-
lator Sim, associated with a parameter t, defined by a deterministic polynomial
time algorithm Sim1 and probabilistic polynomial time algorithm Sim2 executes
as follows: On input a circuit Ĉ and a set of wires Wlk of size at most t,

– Sim1(Ĉ,Wlk) outputs (Winp,Wout). The sets Winp and Wout (of size at most
t) respectively denote the subset of input and output wires whose values are
necessary to simulate the values of the wires in Wlk.

– For every wire w ∈ Winp, include (w, vw) ∈ Sinp such that vw is a bit sampled
uniformly at random. Similarly, construct the set Sout.

– Sim2

(
Ĉ,Wlk,Winp, Sinp,Wout, Sout

)
outputs Slk.

Finally, Sim outputs Slk.

We now define the notion of composable security in the context of worst case
probing. Before that, we formalize the leakage function Lcomp defined in the
previous section in terms of the following algorithm WCDistrwS , parameterized
by a t-sized set S.

Sampler WCDistrwS(Ĉ, x̂): On input circuit Ĉ, input encoding x̂, construct the

set Sleak as follows: For every wire w ∈ Ĉ, let vw be the value assigned to the
wire w during the execution of Ĉ on x̂. Include (w, vw) in Sleak for every w ∈ S.
Output Sleak.

Definition 17 (Composable Security: Worst Case Probing). A circuit
compiler CC = (Compile,Encode,Decode) for a class of circuits C is said to be
t-composable secure against t-probing attacks if there exists a probabilistic
polynomial time partial simulator Sim = (Sim1,Sim2), associated with a param-
eter t, such that the following holds:

– t-Partial Simulation: for every circuit C ∈ C, input x ∈ {0, 1}�,
{
WCDistrwWlk

(
Ĉ, x̂

)}
≡

{
Sim(Ĉ,Wlk)

}
,

where Ĉ ← Compile(C), x̂ ← Encode(x) and Wlk is any subset of wires in Ĉ
of size at most t.

444 P. Ananth et al.

Main Definition. We now give definitions of composable circuit compilers for
the random probing and the worst case probing models.

Definition 18 (Composable Circuit Compilers: Random Probing). A
circuit compiler CC = (Compile,Encode,Decode) is said to be a (p, ε)-secure
composable circuit compiler in the random probing model if CC satisfies:

– XOR encoding property.
– (p, ε)-composable security.

We refer to CC as a secure composable circuit compiler and in particular, omit
(p, ε) if this is clear from the context.

Definition 19 (Composable Circuit Compilers: Worst Case Probing).
A circuit compiler CC = (Compile,Encode,Decode) is said to be a t-secure com-
posable circuit compiler in the worst case probing model if CC satisfies:

– XOR encoding property.
– t-composable security.

We refer to CC as a secure composable circuit compiler and in particular, omit
t if this is clear from the context.

L-efficient Composable CC. En route to constructing composable circuit com-
piler, we construct an intermediate composable circuit compiler that produces
exponentially sized compiled circuits. We define the following notion to capture
this step.

Definition 20 (L-efficient Composable CC). A circuit compiler CC =
(Compile,Encode,Decode) is an L-efficient composable circuit compiler for a
class of circuits C if for every C ∈ C, we have |Ĉ| ≤ L(|C|), where Ĉ ←
Compile(C).

In particular, CC is a composable circuit compiler if L is a polynomial.

4.2 Base Case: Constant Simulation Error

We construct a composable circuit compiler CC = (Compile,Encode,Decode) for
a class of circuits C. Let Π be a perfectly semi-honest secure n-party computation
protocol for an n-party randomized8 functionality F = F [C] (defined in Fig. 1)
tolerating t number of corruptions.

8 Recall that a randomized n-party functionality is one that in addition to taking n
inputs, also takes as input randomness.

Private Circuits: A Modular Approach 445

n-party functionality, F [C]

Input: (x̂1
1|| · · · ||x̂�

1 ; · · · ; x̂1
n|| · · · ||x̂�

n), where � is the input length of C.

– It then computes xi = ⊕n
j=1x̂

i
j for every i ∈ [�]. Denote x to be a bit string, where

the ith bit of x is xi.
– It then computes C(x) to obtain y. Let yi be the ith output bit of y. Let the

length of y be �y.
– Sample bits ŷi

j uniformly at random such that yi = ⊕n
j=1ŷ

i
j for every i ∈ [�y]. Set

yi = (yi
1, . . . , y

i
n), for every i ∈ [n]. Output (y1, . . . ,y�y).

Fig. 1. Functionality F [C], parameterized by a circuit C.

We describe the scheme below.

Circuit Compilation, Compile(C): This algorithm takes as input circuit C ∈
C. We associate a boolean circuit CktΠ with Π such that the following holds:

– Protocol Π on input (x̂1; . . . ; x̂n), where x̂i is ith party’s input, outputs
(ŷ1; . . . ; ŷn) if and only if CktΠ on input x̂1|| · · · ||x̂n outputs (ŷ1; . . . ; ŷn).

– Furthermore, the gates of CktΠ can be partitioned into n sub-circuits such
that the ith sub-circuit implements the ith party in Π. Denote the ith sub-
circuit to be Ckti. Also, denote the number of gates in CktΠ to be Ng.

– The wires between the sub-circuits are analogous to the communication chan-
nels between the corresponding parties.

Output Ĉ = CktΠ .

Input encoding, Encode(x): On input x ∈ {0, 1}�, it outputs the encoding
x̂ = ((x1

1, . . . , x
1
�), . . . , (x

n
1 , . . . , xn

�)), where xi = ⊕n
j=1x

j
i .

Output decoding, Decode(ŷ): It takes as input encoding ŷ = ((y1
1 , . . . , y

1
�′), . . . ,

(yn
1 , . . . , yn

�′)). It then outputs y, where the ith bit of y is yi = ⊕n
j=1y

j
i .

We prove the following two propositions in the full version.

Proposition 1 (Worst Case Probing). Let Π be a perfectly semi-honest
secure n-party computation protocol for n-party functionality F (defined in
Fig. 1) tolerating t corruptions and having randomness locality d. Then, CC is a
t-secure composable circuit compiler secure against t-probing attacks. Moreover,
the randomness locality of CC is d.

Proposition 2 (Random Probing). Let Π be a perfectly semi-honest secure
n-party computation protocol for n-party functionality F (defined in Fig. 1)

446 P. Ananth et al.

tolerating t corruptions and having randomness locality d. Then there is a con-
stant p > 0 such that CC is a (p, ε0)-secure composable circuit compiler, where

ε0 = e
− (1+t)2

12Ng
· 1
p . Moreover, the randomness locality of CC is d.

4.3 Composition Step

We present the main composition step in this section. It allows for transforming
a composable circuit compiler CCK satisfying (p, εK)-composable security in
the random probing setting (resp., tK-composable security in the worst case)
into CCK+1 satisfying (p, εK+1)-composable security (resp., t · tK-composable
security in the worst case), where εK+1 is (exponentially) smaller than εK . In
terms of efficiency, the efficiency of CCK+1 degrades by a constant factor. The
main tool we use to prove the composition theorem is a perfectly secure MPC
protocol that tolerates at most t corruptions.

We first present the transformation of CCK into CCK+1. Let CCK =
(CompileK ,EncodeK ,DecodeK) be a composable circuit compiler. We now build
CCK+1 as follows:

Circuit Compilation, CCK+1.Compile(C): It takes as input a circuit C and

outputs a compiled circuit Ĉ. There are two steps involved in the construction of
Ĉ. In Step I, we first consider a MPC protocol Π9 for a randomized functionality
F and using this we construct a circuit CktΠ . In Step II, we convert CktΠ into
another circuit Ckt∗Π . In this step, we make use of the compiler CCK . The output
of this algorithm is Ĉ = Ckt∗Π .

Step I: Constructing CktΠ . Consider a n-party functionality F = F [C]; see
Fig. 1.

Let Π denote a n-party information theoretically secure computation proto-
col for F . Construct CktΠ as done in Sect. 4.2.

Step II: Transforming CktΠ into Ckt∗Π . Replace every gate in CktΠ with
the CCK gadgets and then show how to “stitch” all these gadgets together.

– Replacing Gate by CCK gadget: For every gate G in the circuit CktΠ , we
execute the compiler CCK .Compile(G) to obtain Ĝ.

– “Stitching” Gadgets: We created CCK gadgets for every gate in the circuit.
Now we show how to connect these gadgets with each other.

Let Gk be a gate in CktΠ . Let G′
k and G′′

k be two gates such that the output
wires from these two gates are inputs to Gk. Let Ĝk ← CCK .Compile(Gk), Ĝ′

k ←
CCK .Compile(G′

k) and Ĝ′′
k ← CCK .Compile(G′′

k). We connect the output of Ĝ′
k

and Ĝ′′
k with the input of Ĝk. That is, the output encodings of Ĝ′

k and Ĝ′′
k form

9 The parties in this protocol are equipped with randomness gates.

Private Circuits: A Modular Approach 447

the input encoding to Ĝk. Here, we use the fact that the output encoding and
the input encoding are computed using the same secret sharing scheme, and in
particular we use the XOR secret sharing scheme.

We perform the above operation for every gate in CktΠ .
We denote the result of applying Step I and II to CktΠ to be the circuit Ckt∗Π .
Furthermore, we denote Ckt∗i to be the circuit obtained by applying Steps I and
II to sub-circuits Ckti. Note that Ckt∗i is a sub-circuit of CktΠ . Moreover, Ckt∗i
takes as input XOR secret sharing of the ith party’s input and outputs XOR
secret sharing of the ith party’s output.

Output Ĉ = Ckt∗Π .

Input Encoding, CCK+1.Encode(x): On input x, compute (x1,1, . . . , x�,1),
. . . , (x1,n, . . . , x�,n)), where xi = ⊕n

j=1xi,j . Compute x̂i,j ← CCK .Encode(xi,j),

for every i ∈ [�] and j ∈ [n]. Output
(
{x̂i,j}i∈[�],j∈[n]

)
.

Output Encoding, CCK+1.Decode(ŷ): On input
(
{ŷi,j}i∈[�′],j∈[n]

)
, first com-

pute CCK .Decode(ŷi,j) to obtain yi,j , for every i ∈ [�′], j ∈ [n]. It computes
y, where the the ith bit of the output is computed as yi = ⊕n

j=1ŷ
i
j . Output

y = y1|| · · · ||yn.

We prove the following two propositions in the full version.

Proposition 3 (Worst Case Probing). Suppose CCK is tK-composable
secure against tK-probing attacks and Π is perfectly secure tolerating t num-
ber of corruptions. Then, CCK+1 is t · tK-composable secure against t-probing
attacks. If CCK has randomness locality dK and Π has randomness locality d
then CCK+1 has randomness locality 2d + dK .

Proposition 4 (Random Probing). Let CCK satisfy (p, εK)-composable
security property. Then, CCK+1 satisfies (p, εK+1)-composable security prop-

erty, where εK+1 = e
− (1+t)2

12Ng
· 1

εK . If CCK has randomness locality dK and Π
has randomness locality d then CCK+1 has randomness locality 2d + dK .

4.4 Stitching Transformation: Exp to Poly Efficiency

Consider a Lexp-efficient composable circuit compiler CCexp for a basis of gates B,
where Lexp is a exponential function. We construct a Lpoly-efficient composable
circuit compiler CCpoly for a class of all circuits C over the basis B, where Lpoly

is a polynomial.
We describe the construction below.

Circuit compilation, CCpoly.Compile(C): It takes as input circuit C ∈ C. For

every gate G in C, it computes Ĝ ← CCexp.Compile(G) to obtain the gadget Ĝ.

448 P. Ananth et al.

Once it computes all the gadgets, it then ‘stitches’ all the gadgets together. The
stitching operation is performed as follows: let Gk be a gate in C. Let G′

k and G′′
k

be two gates such that the output wires from these two gates are inputs to Gk.
We connect the output of Ĝ′

k and Ĝ′′
k with the input of Ĝk. That is, the output

encodings of Ĝ′
k and Ĝ′′

k form the input encoding to Ĝk. Here, we use the fact
that the output encoding and the input encoding are computed using the same
secret sharing scheme, i.e., the XOR secret sharing scheme. Denote the resulting
circuit obtained after stitching all the gadgets together to be Ĉ. Output Ĉ.

Input Encoding, CCpoly.Encode(x): It takes as input x and then computes the
XOR secret sharing of every bit of x. Output the concatenation of the XOR
secret shares of all the bits of x, denoted by x̂.

Output Decoding, CCpoly.Decode(ŷ): On input ŷ, parse it as ((ŷ1
1 , . . . ,

ŷ1
n), . . . , (ŷ�′

1 , . . . , ŷ�′
n)). Reconstruct the ith bit of the output as yi = ⊕n

j=1ŷ
i
j .

Output y = y1|| · · · ||yn.

We prove the following two propositions in the full version.

Proposition 5 (Worst Case Probing). Suppose CCexp satisfies t-composable
security. Then CCpoly satisfies t-composable security. If CCexp has randomness
locality d then CCpoly has randomness locality d.

Proposition 6 (Random Probing). Let CCexp satisfies (p, εexp)-composable
security. CCpoly, associated with circuits of size s, satisfies (p, s·εexp)-composable
security. If CCexp has randomness locality d then CCpoly has randomness
locality d.

4.5 Main Construction: Formal Description

We now combine all the components we developed in the previous sections to
obtain a construction of composable circuit compiler. In particular, the main
construction consists of the following main steps:

– Start with a secure MPC protocol Π for a constant number of parties.
– Apply the base case compiler to obtain a composable circuit compiler, which

has constant simulation error in the case of random probing model and tol-
erates constant threshold in the case of worst case probing model.

– Recursively apply the composition step on the base compiler obtain from
the above bullet. The resulting compiler, after sufficiently many iterations,
satisfies negligible error in the random probing setting and satisfies a large
threshold in the case of worst case probing model.

– The disadvantage with the compiler resulting from the previous step is that
the size of the compiled circuit could be exponentially larger than the original
circuit. To improve the efficiency from exponential to polynomial, we apply
the exponential-to-polynomial transformation.

Private Circuits: A Modular Approach 449

Proof: Worst Case Probing
We sketch the construction in Fig. 2.

Construction of CCmain

– Circuit compilation, CCmain.Compile(C): On input a circuit C, it executes the
following steps:

• It transforms Π into a composable circuit compiler CCbase satisfying t-
composable security, where t = t and L1-efficiency.

• Set CC1 = CCbase with t0 = t. Repeat the following process for i =
1, . . . , K: Using the composition theorem, satisfying ti-composable security,
it transforms CCi into a composable circuit compiler CCi+1 satisfying ti+1-
composable security. Moreover, tK = tK .

• It transforms CCK into a composable circuit compiler CC∗ satisfying f ·
LK

1 (k)-efficiency and tK-composable security property, where f is a linear
function.

• It finally executes CC∗(C) to obtain the compiled circuit ̂C.

• Output ̂C.

– Input encoding, CCmain.Encode(x): It computes the XOR secret sharing of ev-
ery bit of x. Output the concatenation of the XOR secret shares of all the bits of
x, denoted by x̂.

– Output encoding, CCmain.Decode(ŷ): It reconstructs the XOR secret sharing
of every bit of y. Output y.

Fig. 2. Construction of CCmain

Proposition 7. Let K ∈ N. Consider a MPC protocol Π for a n-party func-
tionality F (Fig. 1) and tolerating at most t with randomness locality d. Then,
CCmain is a tK-composable secure composable circuit compiler secure against
worst case probing attacks for all circuits satisfying (L1(k))K ·f-efficiency, where:

– L1(k) is a constant and f is a linear function,
– c is a constant,
– Moreover, the randomness locality of CCmain is O(K).

Instantiation. By instantiating the tools in the above proposition, we get the
following proposition.

450 P. Ananth et al.

Proposition 8. Consider a parameter t > 0. There is a composable circuit
compiler satisfying t-composable security against worst case probing attacks sat-
isfying randomness locality O(log(t)).

Proof. Suppose we have a MPC protocol Π for the n-party functional-
ity F (Fig. 1) tolerating at most t corruptions, for some constant n (for
instance, [BOGW88,CCD88]). We then obtain a circuit compiler CCmain, which
is tK-composable secure and satisfy cK ·f -efficiency, where c is a constant and f

is a linear function. Setting K = 	 log(t)
log(t)
, we have that CCmain is t-composable

secure and satisfying polynomial efficiency, as desired. Moreover, the randomness
locality of CCmain is O(K) = O(log(t)). This completes the proof.

We present the constructions in the worst case and random probing models
below. The proofs are deferred to the full version.

Proof: Random Probing. We now present a construction (Fig. 3) of com-
posable circuit compiler for a class of circuits C over basis B starting from a
MPC protocol Π for the n-party functionality F that can tolerate t semi-honest
adversaries. We denote this construction by CCmain.

Proposition 9. Let K ∈ N. Consider a MPC protocol Π for a n-party func-
tionality F and tolerating at most t corruptions with randomness locality d sat-

isfying the property that e
12Ng

(1+t)2 ≥
(

12Ng

(1+t)2

)4

, where Ng is the number of gates in
the implementation of Π.

Then, CCmain is a (p, ccK

)-secure composable circuit compiler for all circuits
satisfying (L1(k))K · f-efficiency, where:

– p = (1+t)2

48Ngln(
12Ng

(1+t)2
)

– L1(k) is a constant and f is a linear function,
– c is a constant,
– Ng is the number of gates in the circuit CktΠ

Moreover, the randomness complexity of CCmain is O(K).

Instantiation. We use a specific instantiation of the MPC protocol in the above
proposition to get the following result.

Proposition 10. There is a construction of a composable circuit compiler for
C satisfying (p, negl)-composable security, where p = 6.5 × 10−5.

5 Leakage Tolerant Circuit Compilers

In this section, we present a construction of leakage tolerant circuit compiler
with constant leakage rate. Later, we present a negative result on the leakage
rate of a leakage tolerant circuit compiler.

Private Circuits: A Modular Approach 451

Construction of CCmain

– Circuit compilation, CCmain.Compile(C): On input a circuit C, it executes the
following steps:

• It transforms Π into a composable circuit compiler CCbase satisfying (p, ε1)-

composable security, where ε1 = e
− (1+t)2

12Ng
· 1
p and L1-efficiency.

• Set CC1 = CCbase. Repeat the following process for i = 1, . . . , K: Using the
composition step, it transforms CCi into a composable circuit compiler CCi+1

satisfying (p, εi+1)-security.

• Using the exponential-to-polynomial transformation, it transforms CCK into
a composable circuit compiler CC∗ satisfying f · LK

1 (k)-efficiency and (p, s ·
εK)-composable security property, where f is a linear function.

• It finally executes CC∗(C) to obtain the compiled circuit ̂C.

• Output ̂C.

– Input encoding, CCmain.Encode(x): It computes the XOR secret sharing of ev-
ery bit of x. Output the concatenation of the XOR secret shares of all the bits of
x, denoted by x̂.

– Output encoding, CCmain.Decode(ŷ): It reconstructs the XOR secret sharing
of every bit of y. Output y.

Fig. 3. Construction of CCmain

5.1 Construction: Random Probing

We prove the following proposition.

Proposition 11. Let CCcomp be a composable compiler for a class of circuits C
satisfying (p, ε)-composable security. Then, CCLT is a (p,p′, ε′)-leakage tolerant
circuit compiler for C secure against random probing attacks, where p′ = (1 +
η)2

(
1 − (1 − p)6

)
and ε′ = ε + 1

ec·n , for arbitrarily small constant η > 0.

To prove the above theorem, we start with a composable secure circuit compiler
and then attach a leakage tolerant circuit that computes the additive shares of
input. In particular, we need to prove that the leakage of values in the sharing
circuit can be simulated with leakage on the input bits.
Combining with Proposition 10 obtain the following proposition.

Proposition 12. Consider a basis B. There is a construction of (p,p′, negl)-
leakage tolerant circuit compiler against random probing attacks for all circuits
over B of size s, where p = 6.5 × 10−5 and p′ = 3.9 × 10−4.

452 P. Ananth et al.

Non-Boolean Basis. We show how to achieve a leakage tolerant compiler with
leakage rate arbitrarily close to 1 with the compiled circuit defined over a non-
boolean basis. The starting point is a composable circuit compiler where the
compiled circuit with leakage rate arbitrarily close to 1 and over a large basis.

Proposition 13. Let δ > 0. Consider a basis B
′ consisting of all randomized

functions mapping n bits to n bits. Suppose there is a construction of a com-
posable circuit compiler CCNB over B

′ for C over B satisfying (p, ε)-composable
security. Then there is a construction of (p,p′, ε′)-secure leakage tolerant cir-
cuit compiler over B

′ for C over B, where p′ = 1 − ((1 − p)2) · (1 − pn)2) and
ε′ = ε + 1

ec·n , for some constant c.

5.2 Construction: Worst Case Probing

We present the construction of a leakage tolerant circuit compiler in the worst
case probing model.

Proposition 14. For any basis B and any t > 0, there is a construction of
leakage tolerant circuit compiler secure against t-probing attacks. Moreover, this
compiler has randomness locality O(log(t)).

Proof. From Proposition 8, there is a construction of t-secure composable cir-
cuit compiler CCcomp. We construct a leakage tolerant circuit compiler CCLT as
follows:

– Compile(C): On input C, it does the following:
• Compute CCcomp.Compile(C) to obtain the compiled circuit CCcomp.Ĉ.
• Constructs a circuit Ĉ that takes as input x,

∗ Computes N shares of every bit of x, where N is determined the
input length of CCcomp.Ĉ. In particular, for every i, it computes shares
of xi as follows: (xi ⊕ r1, r1 ⊕ r2, . . . , rN−2 ⊕ rN−1, rN−1), where ri

is sampled freshly at random. For every ith bit, since there are two
input wires carrying xi, we perform the sharing process twice.
∗ Compute CCcomp.Ĉ on the shares of x as computed in the bullet
above.

– Decode(ŷ): It parses ŷ as (ŷ1, . . . , ŷ�) and reconstructs the shares in ŷi to
obtain the value yi.

We claim that CCcomp is a t-secure leakage tolerant circuit compiler. The correct-
ness and efficiency properties of CCcomp follow from the respective properties of
CCLT . To argue security, we first note that any t wires of leakage in the sharing
circuit can be simulated with t input and output wires of leakage of the sharing
circuit (this follows from the fact that every wire in the sharing circuit is either
an input or an output wire). The t-composable security of CCcomp then implies
the security of CCLT .

Next, we show that CCcomp has randomness locality O(log(t)). We first note
that the sharing circuit has constant randomness locality. This combined with
the fact that CC has O(log(t)) randomness locality proves the result.

Private Circuits: A Modular Approach 453

6 Leakage Resilient Circuit Compilers

In this section, we give upper bounds for leakage resilient circuit compilers. Note
that any structural circuit compiler for circuit class C is also a leakage resilient
circuit compiler for C. Using this fact, we state the following theorem.

Theorem 8. There is a construction of (p, exp(−s))-leakage resilient circuit
compiler for all circuits over B of size s, secure against random probing attacks,
where p = 6.5 × 10−5.

The proof of the above theorem follows from Proposition 10.

7 Randomness Complexity

We present a construction of leakage tolerant circuit compiler with near optimal
randomness complexity. To show this, we use two lemmas from [IKL+13]. We
first state a lemma about the existence of explicit robust r-wise PRGs. We refer
the reader to [IKL+13] for the definition of strong (t, q) robust r-wise PRGs.

Lemma 2 ([IKL+13]). For any η > 0, there exists δ, c > 0, such that for any
m ≤ exp nδ, there is an explicit d-strong (n1−η, 21)-robust r-wise independent
PRG G : {0, 1}n → {0, 1}m for r = n1−η and d ≤ logc(m).

The following theorem10 states that any t-leakage tolerant circuit compiler estab-
lishes the connection between randomness locality and randomness complexity.

Lemma 3 ([IKL+13]). Consider a q · t-leakage tolerant circuit compiler. Sup-
pose the compiled circuit uses m random bits and makes an d-local use of its
randomness. Let G : {0, 1}n → {0, 1}m be a strong (t, q)-robust r-wise PRG
with r ≥ t · max (d, q). Then there is a leakage tolerant circuit compiler secure
against t-probing attacks which uses n random bits.

Recall that the leakage tolerant compiler in Theorem 14 has randomness local-
ity O(log(t)). This fact along with the above two lemmas yields the following
theorem.

Theorem 9. For any t > 0, there is a construction of leakage tolerant circuit
compiler secure against t-probing attacks using t1+ε · polylog(|C|) random bits.

Acknowledgements. We thank Jean-Sébastien Coron, Stefan Dziembowski, and
Sebastian Faust for helpful discussions. The second author was supported in part by
ERC grant 742754, ISF grant 1709/14, NSF-BSF grant 2015782, and a grant from
the Ministry of Science and Technology, Israel and Department of Science and Tech-
nology, Government of India. The third author’s research is supported in part from
a DARPA/ARL SAFEWARE award, NSF Frontier Award 1413955, and NSF grant
1619348, BSF grant 2012378, a Xerox Faculty Research Award, a Google Faculty

10 They phrase this in the language of private circuits and so we rephrase their theorem
in our language.

454 P. Ananth et al.

Research Award, an equipment grant from Intel, and an Okawa Foundation Research
Grant. This material is based upon work supported by the Defense Advanced Research
Projects Agency through the ARL under Contract W911NF-15-C-0205. The views
expressed are those of the authors and do not reflect the official policy or position of
the Department of Defense, the National Science Foundation, or the U.S. Government.

References

[ADF16] Andrychowicz, M., Dziembowski, S., Faust, S.: Circuit compilers with
O(1/ log(n)) leakage rate. In: Fischlin, M., Coron, J.-S. (eds.) EURO-
CRYPT 2016. LNCS, vol. 9666, pp. 586–615. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49896-5 21

[Ajt11] Ajtai, M.: Secure computation with information leaking to an adversary.
In: Proceedings of the Forty-Third Annual ACM Symposium on Theory
of Computing, pp. 715–724. ACM (2011)

[BBD+16] Barthe, G., Beläıd, S., Dupressoir, F., Fouque, P.-A., Grégoire, B., Strub,
P.-Y., Zucchini, R.: Strong non-interference and type-directed higher-order
masking. In: Proceedings of the 2016 ACM SIGSAC Conference on Com-
puter and Communications Security, pp. 116–129. ACM (2016)

[BBP+16] Beläıd, S., Benhamouda, F., Passelègue, A., Prouff, E., Thillard, A.,
Vergnaud, D.: Randomness complexity of private circuits for multiplica-
tion. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol.
9666, pp. 616–648. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-49896-5 22

[BBP+17] Beläıd, S., Benhamouda, F., Passelègue, A., Prouff, E., Thillard, A.,
Vergnaud, D.: Private multiplication over finite fields. In: Katz, J.,
Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10403, pp. 397–426.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63697-9 14

[Bea91] Beaver, D.: Efficient multiparty protocols using circuit randomization.
In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1 34

[BOGW88] Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for
non-cryptographic fault-tolerant distributed computation. In: Proceedings
of the Twentieth Annual ACM Symposium on Theory of Computing, pp.
1–10. ACM (1988)

[CCD88] Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure
protocols. In: Proceedings of the Twentieth Annual ACM Symposium on
Theory of Computing, pp. 11–19. ACM (1988)

[CDI+13] Cohen, G., et al.: Efficient multiparty protocols via log-depth threshold
formulae. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol.
8043, pp. 185–202. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-40084-1 11

[CK91] Chor, B., Kushilevitz, E.: A zero-one law for boolean privacy. SIAM J.
Discret. Math. 4(1), 36–47 (1991)

[DDF14] Duc, A., Dziembowski, S., Faust, S.: Unifying leakage models: from prob-
ing attacks to noisy leakage. In: Nguyen, P.Q., Oswald, E. (eds.) EURO-
CRYPT 2014. LNCS, vol. 8441, pp. 423–440. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-642-55220-5 24

https://doi.org/10.1007/978-3-662-49896-5_21
https://doi.org/10.1007/978-3-662-49896-5_22
https://doi.org/10.1007/978-3-662-49896-5_22
https://doi.org/10.1007/978-3-319-63697-9_14
https://doi.org/10.1007/3-540-46766-1_34
https://doi.org/10.1007/978-3-642-40084-1_11
https://doi.org/10.1007/978-3-642-40084-1_11
https://doi.org/10.1007/978-3-642-55220-5_24

Private Circuits: A Modular Approach 455

[GIK+15] Garg, S., Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Cryptogra-
phy with one-way communication. In: Gennaro, R., Robshaw, M. (eds.)
CRYPTO 2015, Part II. LNCS, vol. 9216, pp. 191–208. Springer, Heidel-
berg (2015). https://doi.org/10.1007/978-3-662-48000-7 10

[GIM+16] Goyal, V., Ishai, Y., Maji, H.K, Sahai, A., Sherstov, A.A.: Bounded-
communication leakage resilience via parity-resilient circuits. In: 2016
IEEE 57th Annual Symposium on Foundations of Computer Science
(FOCS), pp. 1–10. IEEE (2016)

[HM00] Hirt, M., Maurer, U.: Player simulation and general adversary structures
in perfect multiparty computation. J. Cryptol. 13(1), 31–60 (2000)

[IKL+13] Ishai, Y., et al.: Robust pseudorandom generators. In: Fomin, F.V.,
Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013. LNCS, vol.
7965, pp. 576–588. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-39206-1 49

[ISW03] Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against
probing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp.
463–481. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-
45146-4 27

[Pip85] Pippenger, N.: On networks of noisy gates. In: FOCS, pp. 30–38 (1985)
[vN56] von Neumann, J.: Probabilistic logics and synthesis of reliable organisms

from unreliable components. Autom. Stud. 34, 43–98 (1956)

https://doi.org/10.1007/978-3-662-48000-7_10
https://doi.org/10.1007/978-3-642-39206-1_49
https://doi.org/10.1007/978-3-642-39206-1_49
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/978-3-540-45146-4_27

Various Topics

A New Public-Key Cryptosystem
via Mersenne Numbers

Divesh Aggarwal1(B), Antoine Joux2, Anupam Prakash3,4,
and Miklos Santha4,5

1 School of Computing and Centre for Quantum Technologies,
National University of Singapore, Singapore, Singapore

divesh.aggarwal@gmail.com
2 Chaire de Cryptologie de la Fondation SU, Sorbonne Université,
Institut de Mathématiques de Jussieu-Paris Rive Gauche, Inria,

CNRS, Univ Paris Diderot, Paris, France
3 School of Physical and Mathematical Sciences,

Nanyang Technological University, Singapore, Singapore
4 Centre for Quantum Technologies,

National University of Singapore, Singapore, Singapore
5 IRIF, Université Paris Diderot, CNRS, Paris, France

Abstract. In this work, we propose a new public-key cryptosystem
whose security is based on the computational intractability of the fol-
lowing problem: Given a Mersenne number p = 2n − 1, where n is a
prime, a positive integer h, and two n-bit integers T,R, decide whether
their exist n-bit integers F,G each of Hamming weight less than h such
that T = F ·R + G modulo p.

1 Introduction

1.1 Motivation

Since the seminal work of Diffie and Hellman [DH76] which presented the funda-
mentals of public-key cryptography, one of the most important goal of cryp-
tographers has been to construct secure and practically efficient public-key
cryptosystems. Rivest, Shamir, and Adleman [RSA78] came up with the first
practical public-key cryptosystem based on the hardness of factoring integers,
and it remains the most popular scheme till date.

Shor [Sho97] gave a quantum algorithm that solves the abelian hidden sub-
group problem and as a result solves both discrete logarithms and factoring.
Back in 1994, this was not considered a real threat to the practical crypto-
graphic schemes since quantum computers were far from being a reality. How-
ever, given the recent advances in quantum computing, there is serious effort
in both the industry and the scientific community to make information secu-
rity systems resistant to quantum computing. In fact, the National Institute of
Standards and Technology (NIST) is now beginning to prepare for the transi-
tion into quantum-resistant cryptography and has announced a project where
they are accepting submissions for quantum-resistant public-key cryptographic
algorithms [NIS17].
c© International Association for Cryptologic Research 2018
H. Shacham and A. Boldyreva (Eds.): CRYPTO 2018, LNCS 10993, pp. 459–482, 2018.
https://doi.org/10.1007/978-3-319-96878-0_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96878-0_16&domain=pdf

460 D. Aggarwal et al.

In the recent years, some presumably quantum-safe public-key cryptosystems
have been proposed in the literature. Perhaps the most promising among these
are those based on the hardness of lattice problems like Learning with Errors
(LWE) based cryptosystems [Reg09], Ring-LWE based cryptosystems [LPR10]
and NTRU [HPS98]. While these cryptosystems have so far resisted any classical
or quantum attacks, it cannot be excluded that such attacks are possible in the
future. In fact, there have been some, albeit unsuccessful, attempts at a quantum
algorithm solving the LWE problem [ES16]. In particular, there is no unifying
complexity-theoretic assumption (like NP-hardness) that relates the difficulty of
breaking all these cryptosystems. Thus, it is desirable to come up with promising
new proposals for public-key cryptosystems.

It is worthwhile to note that even though the concept of public-key cryp-
tography was introduced four decades ago, the number of existing public-key
cryptographic schemes whose hardness does not depend on the hardness of fac-
toring or finding short vectors in lattices is not very large [KLC+00,McE78,
LvTMW09,GWO+13,NS97]. This is not an exhaustive list but it illustrates the
various approaches that have been tried. The rarity of proposals for potentially
quantum safe public key cryptosystems further motivates the problem of con-
structing such cryptosystems.

1.2 Our Cryptosystem

Our cryptosystem is based on arithmetic modulo so called Mersenne numbers,
i.e., numbers of the form p = 2n − 1, where n is a prime. These numbers have
an extremely useful property: For any number x modulo p, and y = 2z, where
z is a positive integer, x · y is a cyclic shift of x by z positions and thus the
Hamming weight of x is unchanged under multiplication by powers of 2. Our
encryption scheme is based on the simple observation that, given a uniformly
random n-bit string R, when we consider T = F · R + G (mod p), where the
binary representation of F and G modulo p has low Hamming weight, then T
looks pseudorandom, i.e., it is hard to obtain any non-trivial information about
F,G from R, T .

The public-key is chosen to be the pair (R, T), and the secret key is the string
F . The encryption scheme also requires an efficient error correcting code with
encoding function E : {0, 1}k → {0, 1}n and decoding function D : {0, 1}n →
{0, 1}k. In order to encrypt a message m ∈ {0, 1}k, the encryption algorithm
chooses three random numbers A,B1, B2 of low Hamming weight modulo p and
then outputs

C := (C1, C2),

where C1 = A · R + B1, and C2 = (A · T + B2) ⊕ E(m) where ⊕ denotes the
bitwise XOR operation. Given the private key, one can compute

C∗
2 := C1 · F = (A · T + B2) − A · G − B2 + B1 · F.

A New Public-Key Cryptosystem via Mersenne Numbers 461

Since A,B1, B2, F,G have low Hamming weight, the Hamming distance between
A · T + B2 and C∗

2 is expected to be low, and so we get that D(C2 ⊕ C∗
2) is

equal to to m with high probability. For more details on our scheme and the
underlying security assumption, we refer the reader to Sects. 4 and 5.

1.3 Related Work

The Mersenne cryptosystem can be seen as belonging to a family that started
with the Ntru cryptosystem and as been instantiated in many ways [HPS98,
Reg09,LPR10,MTSB13]. The common idea behind all these cryptosystems is
to work with elements in a ring which are hidden by adding some small noise.
This notion of smallest needs to be somewhat preserved under the arithmetic
operation. At the same time, it should be somewhat unnatural and not fully
compatible with the ring structure in order to lead to hard problems.

Our goal in designing the Mersenne cryptosystem was to find a very simple
instantiation of this paradigm based on the least complicated ring we could find.
This led us to consider numbers modulo a prime together with the Hamming
weight to measure smallest. In this context, it is natural to restrict ourselves to
Mersenne primes, since reduction modulo such a prime cannot increase Ham-
ming weights. Moreover, our cryptosystem relies on a conceptually simpler ring
of numbers modulo a prime and its description only requires very elementary
mathematics.

Our first proposal using this structure [AJPS17] only allowed us to encrypt
a single bit at a time. The security parameters in [AJPS17] were based on the
assumption that there is no attack on the cryptosystem that runs faster than
the trivial attack that runs in time

(
n
h

)
. Subsequent works showed that this

assumption was incorrect. In particular, [BCGN17] showed a non-trivial guess-
and-determine attack based on a low-dimension lattice reduction subroutine that
runs in time (2+ ε+ o(1))2h for some small constant ε, and [dBDJdW17] gave a
meet-in-the-middle attack that runs in time O

((
n−1
h−1

)1/2
)

on classical computers

and O
((

n−1
h−1

)1/3
)

on quantum machines. While these attacks could be circum-
vented by choosing the parameter h to be as large as the security parameter,
this would make our cryptosystem inefficient.

Fortunately, in the present proposal, we are able to overcome this difficulty.
We describe a variant that allows us to encrypt many bits at a time. This allows
in turn to choose much larger parameters which resist the attacks in [BCGN17,
dBDJdW17], even in their Groverized quantum form while still maintaining the
efficiency of our cryptosystem. Such quantum attacks would have complexity
larger than 2h where h is the Hamming weight we allow for low Hamming weight
numbers. This explains our choice of h to be equal to the desired quantum
security level.

Since it is well-known that a cryptosystem of this type can be easily vulnera-
ble to chosen-ciphertext attack, it is extremely important to bind them together

462 D. Aggarwal et al.

with a CCA-secure wrapper. We chose to present the system as a key encap-
sulation mechanism because this makes the design of the CCA wrapper very
simple.

1.4 Organization of the Paper

In Sect. 2 we introduce some preliminaries about Mersenne primes and security
definitions. In Sect. 3 we provide a semantically secure basic bit by bit encryption
scheme. In Sect. 4 we give a semantically secure blockwise encryption scheme.
In Sect. 5, we prove the semantic security for the scheme presented in Sect. 4. In
Sect. 6 we discuss the known cryptanalytic attacks against this scheme. In Sect. 7
we give the final key encapsulation scheme secure against chosen ciphertext
attacks in the random oracle model. In Sects. 8 and 9 we provide an instantiation
for the error correcting codes used in our encryption/key encapsulation schemes.

2 Preliminaries

Notations. For any distinguisher D that outputs a bit b ∈ {0, 1}, the distinguish-
ing advantage to distinguish between two random variables X and Y is defined
as:

ΔD(X ; Y) := |Pr[D(X) = 1] − Pr[D(Y) = 1]|.
The following lemma is well known and easy to see.

Lemma 1. Given a probabilistic polynomial time computable function f on two
random variables X and Y , if there is a probabilistic polynomial time distin-
guisher D that distinguishes between f(X) and f(Y) with advantage δ, then there
is a probabilistic polynomial time distinguisher D′ that distinguishes between X,
and Y with advantage δ.

2.1 Mersenne Numbers and Mersenne Primes

Let n be a positive integer, and let p = 2n − 1. When n is a prime, p is called
a Mersenne number, and if 2n − 1 is itself a prime number, then it is called a
Mersenne prime. Note that if n is a composite number of the form n = k�, then
2k − 1 and 2� − 1 divide p, and hence p is not a prime. The smallest Mersenne
primes are

22 − 1, 23 − 1, 25 − 1, 27 − 1, 213 − 1, 217 − 1, . . .

We denote by Zp the ring of integers modulo p. We index binary strings
from right to left, that is for x ∈ {0, 1}n we write x as xn . . . x1. The Hamming
weight of an n-bit string y is the total number of 1’s in y and is denoted by
Ham(y). Let seq : Zp → {0, 1}n be the map which to x ∈ Zp associates the

A New Public-Key Cryptosystem via Mersenne Numbers 463

binary string seq(x) representing x. The map int : {0, 1}n → Zp sends a string
y into the integer represented by y modulo p. Clearly seq and int are inverse
functions between Zp and {0, 1}n \ {1n}, and int(1n) = 0. We use this bijection
between Zp and {0, 1}n \ {1n} to define addition and multiplication over {0, 1}n

in the natural way: for y, y′ ∈ {0, 1}n, let y + y′ = seq(int(y) + int(y′)), and
let y · y′ = seq(int(y) · int(y′)). It is easy to see that both operations remain
associative and commutative, and the distributivity of the multiplication over
the addition also holds. We also set (−1) ·y = −y = seq(−(int(y)). Observe that
addition is invariant by rotation, that is if rotk(y) denotes the circular rotation
of y by k positions to the left, then rotk(y + y′) = rotk(y) + rotk(y′).

Lemma 2. Let p = 2n − 1. For all A,B ∈ {0, 1}n, we have

1. Ham(A + B) ≤ Ham(A) + Ham(B).
2. Ham(A · B) ≤ Ham(A) · Ham(B).
3. If A �= 0n then Ham(−A) = n − Ham(A).

Proof.

1. If A = 1n the result is obviously true. When A �= 1n, we prove the result by
induction on the Hamming weight of B. If B = 0n the statement is obviously
true.
For the induction step we first prove the claim when Ham(B) = 1. Let
i be the index on which B takes the value 1. Since addition is invariant
by rotation, we may assume that i = 1 and thus B = 0n−11. A can be
written as C01j for some 0 ≤ j ≤ n − 1, and A + B = C10j . Thus
Ham(A + B) = Ham(A) − j + 1 ≤ Ham(A) + 1.
Let Ham(B) = k > 1. Then we can decompose B as B1 + B2, where
Ham(B1) = k−1 and Ham(B2) = 1. By the previous claim and the induction
hypothesis we get:

Ham(A+B) = Ham((A+B1)+B2) ≤ Ham(A+B1)+1 ≤ Ham(A)+(k−1)+1,

and the result follows.
2. If B = 0n the statement is obviously true. Otherwise, for some k ≥ 1, we can

decompose B as B1 + · · · + Bk, where each Bi has Hamming weight 1, for
1 ≤ i ≤ k. Let ji be the index of the position where Bi takes the value 1.
Then A ·Bi = rotji−1(A). Thus Ham(A ·Bi) = Ham(A), and by distributivity
we get A · B = A · B1 + · · · + A · Bk. The result then follows from part (1).

3. If A �= 0n then −A is the binary string obtained from A by replacing 0’s by
1’s and 1’s by 0’s.

�	

2.2 Security Definitions

Public-Key Encryption. A public key encryption scheme comprises three
algorithms: the key generation algorithm KeyGen, the encryption algorithm Enc,

464 D. Aggarwal et al.

and the decryption algorithm Dec. The KeyGen algorithm outputs a public-
key pk, and a secret key sk. The encryption algorithm Enc takes as input a
message m, and pk, and outputs a ciphertext C. The decryption algorithm takes
as input a ciphertext C and sk, and outputs a message m′ or a special symbol
⊥ indicating rejection. We say that the encryption scheme is 1 − δ correct if for
all m, Pr[Dec(sk,Enc(pk,m)) = m] ≥ 1 − δ, where the probability is over the
randomness of pk, sk and the encryption algorithm.

We denote the security parameter by λ. All other parameters including key
lengths and ciphertext size are polynomial functions of λ.

Definition 1. The public-key encryption scheme

PKE = (KeyGen,Enc,Dec)

is said to be semantically secure if for any probabilistic polynomial time distin-
guisher and any pair of messages m0,m1 of equal length, given the public key
pk, the advantage for distinguishing C0 = Enc(pk,m0) and C1 = Enc(pk,m1) is
at most poly(|Ci|)

2λ for some polynomial poly.

Definition 2. The public-key encryption scheme

PKE = (KeyGen,Enc,Dec)

is said to be secure under chosen ciphertext attacks if for any probabilistic
polynomial time distinguisher that is given access to an oracle that decrypts
any given ciphertext, the following holds: For any pair of messages m0,m1 of
equal length, given the public key pk, the advantage for distinguishing C0 =
Enc(pk,m0) and C1 = Enc(pk,m1) is at most poly(|Ci|)

2λ for some polynomial
poly under the assumption that the distinguisher does not query the oracle with
C0 or C1.

Key Encapsulation Mechanism. A key-encapsulation mechanism (KEM)
comprises three algorithms: the key generation algorithm KeyGen, the encap-
sulation algorithm Encaps, and the decapsulation algorithm Decaps, and a key
space K. The KeyGen algorithm outputs a public-key pk, and a secret key sk.
The encapsulation algorithm Encaps takes as input a public key pk to produce
a ciphertext C and a key K ∈ K. The decapsulation algorithm Decaps takes
as input a ciphertext C and sk, and outputs a key K ′ or a special symbol ⊥
indicating rejection. We say that the KEM is (1 − δ)-correct if

Pr[Decaps(sk, C) = K : (C,K) ← Encaps(pk)] ≥ 1 − δ,

where the probability is over the randomness of pk, sk and the encapsulation
algorithm.

We denote the security parameter by λ. All other parameters including key
lengths and ciphertext size are polynomial functions of λ.

A New Public-Key Cryptosystem via Mersenne Numbers 465

Definition 3. The key-encapsulation mechanism

KEM = (KeyGen,Encaps,Decaps)

is said to be semantically secure if for any probabilistic polynomial time distin-
guisher, given the public key pk, the advantage for distinguishing (C,K0) and
(C,K1), where (C,K0) ← Encaps(pk) and K1 is uniform and independent of C

is at most poly(|C|,|K0|)
2λ for some polynomial poly.

Definition 4. The key-encapsulation mechanism

KEM = (KeyGen,Encaps,Decaps)

is said to be secure under chosen ciphertext attacks if for any probabilistic poly-
nomial time distinguisher that is given access to the decapsulation oracle and
the public key pk, the advantage for distinguishing (C,K0) and (C,K1), where
(C,K0) ← Encaps(pk) and K1 is uniform and independent of C is at most
poly(|C|,|K0|)

2λ for some polynomial poly under the assumption that the distin-
guisher does not query the oracle with C.

2.3 Security Assumptions

The semantic security of our encryption scheme is based on the following assump-
tion.

Definition 5. The Mersenne Low Hamming Combination Assumption states
that given an n-bit Mersenne prime p = 2n − 1, and an integer h, the advan-
tage of any probabilistic polynomial time adversary running in time poly(n) in
attempting to distinguish between

([
R1

R2

]
,

[
R1

R2

]
· A +

[
B1

B2

])
and

([
R1

R2

]
,

[
R3

R4

])

is at most poly(n)
2λ , where R1, R2, R3, R4 are independent and uniformly random

n-bit strings, and A,B1, B2, are independently chosen n-bit strings each having
Hamming weight h.

We note that the assumption has some striking similarity to the learning with
errors assumption by Regev [Reg09], where A corresponds to the secret, and
B1, B2 correspond to the small error. The Mersenne Low Hamming Combination
Assumption, in particular implies that one cannot obtain any useful information
about A,B from the pair (R1, A·R1+B). Notice that if the pair (R1, A·R1+B) is
assumed to be pseudorandom, then so is the pair (R1, A ·(−R1)+B), and so one
cannot obtain any useful information about A,B from the pair (R1,−A·R1+B).
The Mersenne Low Hamming Ratio Assumption is a homogeneous version of this
assumption in the sense that we state that no useful information about A,B can
be obtained from (R1,−A · R1 + B) given that −A · R1 + B = 0. It is required
for the semantic security of the bit-by-bit encryption scheme that we describe
in the next section, and was introduced in a previous version of this paper.

466 D. Aggarwal et al.

Definition 6. The Mersenne Low Hamming Ratio Assumption states that given
an n-bit Mersenne prime p = 2n − 1, and an integer h, the advantage of any
probabilistic polynomial time adversary running in time poly(n) in attempting to
distinguish between seq(int(A)

int(B)) and R is at most poly(n)
2λ , where R is a uniformly

random n-bit string, and A,B, are independently chosen n-bit strings each having
Hamming weight h.

3 Basic Bit-by-Bit Encryption

In the following, we describe a basic encryption scheme to encrypt a single bit
b ∈ {0, 1}.

Key Generation.

– Given the security parameter λ, choose a Mersenne prime p = 2n − 1 and an
integer h such that

(
n
h

) ≥ 2λ and 4h2 < n.
– Choose F,G to be two independent n-bit strings chosen uniformly at random

from all n-bit strings of Hamming weight h.
– Set pk := H = seq(int(F)

int(G)), and sk := G.

Encryption. The encryption algorithm chooses two independent strings A,B uni-
formly at random from all strings with Hamming weight h. A bit b is encrypted
as

C = Enc(pk, b) := (−1)b (A · H + B) .

Decryption. The decryption algorithm computes d = Ham(C · G). If d ≤ 2h2,
then output 0; if d ≥ n − 2h2, then output 1. Else output ⊥.

For the correctness of the decryption note that C ·G = (−1)b · (A ·F +B ·G)
which, by Lemma 2, has Hamming weight at most 2h2 if b = 0, and at least
n − 2h2 if b = 1.

The basic bit-by-bit encryption scheme can be viewed as a simple proposal
for a cryptosystem based on arithmetic modulo the Mersenne primes, however
it is not efficient with respect to ciphertext size. Since this is not our final pro-
posed encryption scheme, we do not analyze its security although it will easily
follow from the Mersenne Low Hamming Ratio and the Mersenne Low Hamming
Combination Assumption and appeared in a previous version of this paper. In
the next section, we describe a scheme for encrypting longer message blocks.

4 Our Main Semantically Secure Public-Key
Cryptosystem

It is reasonable to choose the message block length to be the same as the security
parameter in practice. For this reason, we describe below a scheme for encrypting
a message block m ∈ {0, 1}λ.

A New Public-Key Cryptosystem via Mersenne Numbers 467

Key Generation.

– Given the security parameter λ, choose a Mersenne prime p = 2n − 1 such
that h = λ and n > 10h2.

– Let F,G to be two independent n-bit strings chosen uniformly at random
from all n-bit strings of Hamming weight h. Let R be a uniformly random
n-bit string.

– Set pk := (R,F · R + G) := (R, T), and sk := F .

Encryption. The encryption algorithm chooses three strings A,B1, B2 indepen-
dently and uniformly at random from all strings with Hamming weight h. Let
(E ,D) be the encoding and decoding algorithms of an error correcting code that
we choose later. The message m ∈ {0, 1}λ is encrypted as,

Enc(pk,m) := (C1, C2) := (A · R + B1, (A · T + B2) ⊕ E(m)).

Here E : {0, 1}λ → {0, 1}n is a suitably chosen error correcting code and ⊕
denotes the bitwise XOR operation.

Decryption. The decryption algorithm computes D((F · C1) ⊕ C2).
In order to say that the scheme is (1−δ)-correct, we need to choose the error

correcting code such that Pr(C1,C2)←Enc(pk,m)[D((F · C1) ⊕ C2) = m] ≥ 1 − δ,
where the probability is over the randomness of the encryption algorithm and
the choice of pk, sk. For concrete instantiations of error correcting codes that
satisfy this for a small enough δ, see Sect. 8.

5 Semantic Security of the Cryptosystem

In this section, we prove the semantic security of the PKE scheme in Sect. 4.

Theorem 1. The encrpytion scheme (Enc,Dec) described in Sect. 4 is semanti-
cally secure under the Mersenne Low Hamming Combination Assumption.

Proof. In the following, let A,B1, B2, F,G,R,R′, R′′, R′′′ be independently cho-
sen such that A,B1, B2, F,G are chosen uniformly from all strings of Hamming
weight h, and R,R′, R′′, R′′′ are uniformly random strings. Let T = F · R + G.
By the Mersenne Low Hamming Combination Assumption, for any probabilistic
polynomial time distinguisher D running in time poly(n),

ΔD(R, T ; R,R′) ≤ poly(n)
2λ

.

Now, from Lemma 1, we have that for any probabilistic polynomial time distin-
guisher D′ running in time poly(n),

ΔD′
(R, T,A · R + B1, A · T + B2;R,R′, A · R + B1, A · R′ + B2) ≤ poly(n)

2λ
.

468 D. Aggarwal et al.

Again, by the Mersenne Low Hamming Combination Assumption, we have that

ΔD′
(R,R′, A · R + B1, A · R′ + B2 ; R,R′, R′′, R′′′) ≤ poly(n)

2λ
.

Using the triangle inequality, we get that

ΔD′
(R, T,A · R + B1, A · T + B2 ; R,R′, R′′, R′′′) ≤ 2 poly(n)

2λ
.

This implies that for any message m,

ΔD′
(R, T,A · R + B1, A · T + B2 ⊕ E(m) ; R,R′, R′′, R′′′) ≤ 2 poly(n)

2λ
,

since R,R′, R′′, R′′′ and R,R′, R′′, R′′′ ⊕ E(m) are identically distributed. This
implies the required semantic security. �	

6 Analysis of Our Security Assumption

6.1 Attempts at Cryptanalysis

In this section, we mention the known approaches to break our security assump-
tion and thereby mention the conjectured security guarantee for our scheme.
For cryptanalysis, it is often more convenient to talk about search problems. We
introduce the following search problem whose solution would imply an attack on
our cryptosystem.

Definition 7 (Mersenne Low Hamming Combination Search Prob-
lem). For an n-bit Mersenne number p = 2n − 1 and an integer h, given tuple
(R,FR+G (mod p)) where R is a uniformly random n-bit string and F,G have
Hamming weight h, find F,G.

For the remainder of the paper, we call this problem P. It is easy to see that if
one can efficiently solve the problem P, then one can break the assumption in
Definition 5, and hence the security of our cryptosystem. It is therefore important
to study the hardness of this problem.

Hamming Distance Distribution. Let R be a uniformly random n bit string and
Y = FR+G where F,G are chosen uniformly at random from n bit strings with
Hamming weight h. A basic test for the assumption that Y is pseudorandom
given R is to check that the distribution of Ham(R,R′) is close to the distribution
of Ham(R, T) where T is a uniformly random n bit string.

If R is a fixed string and X is a uniformly random n bit string, the random
variable fR(X) = Ham(X,R)−n/2√

n/4
is approximated by the standard normal random

variable N(0, 1). We generated R at random and then obtained samples Y =

A New Public-Key Cryptosystem via Mersenne Numbers 469

FR + G where F,G are uniformly distributed over strings of Hamming weight√
n. A quantile-quantile plot of fR(Yi) against samples from N(0, 1) is close to

a straight line and does not show significant deviations from normality.
One could also perform more advanced statistical tests, such as the NIST

suite [RSN+01] to verify the pseudorandomness of Y given R. However, in the
context of cryptographic schemes, such tests only serve as sanity checks and it
is preferable to focus on dedicated cryptanalysis.

Weak key attack. Following the appearance of a preliminary version of this paper,
[BCGN17] found a weak key attack on the Mersenne Low Hamming Ratio search
problem where given H = seq(int(F)

int(G)) mod P with F,G having low Hamming
weight, the goal is to find F and G.

The weak key attack of [BCGN17] is based on rational reconstruction. If all
the bits of F and G are in the right half of the bits, then both F and G are
smaller than

√
P and they can easily be recovered using a continued fraction

expansion of H/P . The weak key attack also extends to the Mersenne Low
Hamming Combination search problem, we choose parameters such that the
success probability for this attack is negligible.

Generalization using LLL. The authors of the above weak attack also proposed
in [BCGN17] a generalization based on guessing a decomposition of F and G
into windows of bits such that in any window all the ‘1’s are on the right.
Using such a decompostion and replacing the use of continued fraction by LLL
in relatively small dimension they can recover F and G from any compatible
window decomposition.

A careful analysis of this method and its cost is presented in [dBDJdW17]
and concludes that its running time is 2(2+ε)h for some small constant h. For
simplicity, we assume that the cost of this attack is 22h on a classical computer.

Even if this attack was developed for the homogeneous Mersenne Low Ham-
ming Ratio assumption, it is likely that it generalizes to the Mersenne Low
Hamming Combination Assumption. We thus assume that it is the case. To the
best of our knowledge, this is the most efficient known attack on our security
assumption and the security parameters proposed in Sect. 8 have been revised
to withstand it.

Quantum Speedup via Grover’s Algorithm. With access to a quantum computer,
one could use Grover’s algorithm [Gro96] to obtain a quadratic speedup over the
above attack.

Note that the attack performs a lattice reduction step for each guess of win-
dow decomposition and concludes that they are correct if the lattice reduction
step succeeds. The Groverized version of the algorithm would prepare a super-
position over possible guesses of window decompositions, use a unitary operator
that performs lattice reduction to mark the good guesses for window decomposi-
tion and then amplify the success probability using Grover’s search. This would

470 D. Aggarwal et al.

certainly need very sophisticated universal quantum computers and it may well
be infeasible for near term quantum devices. However, in view of this potential
quantum attack and potential cryptananalytic improvements, we take this attack
into account. With this constraint, our cryptosystem can only be secure if we
make sure that h is at least equal to the desired security level. For simplicity, we
just set h = λ and assume that the best possible attack on the Mersenne Low
Hamming Combination problem has complexity at least 2h to derive security
estimates in Sect. 8.

Meet in the middle attack. A recent work [dBDJdW17] gave a non-trivial meet-
in-the-middle attack that makes use of locality-sensitive hash functions. Its com-
plexity is O

((
n−1
h−1

)1/2
)

on classical computers and O
((

n−1
h−1

)1/3
)

on quantum
machines.

For our choice of parameters, this is much bigger than 2h and thus doesn’t
affect the security level.

Attacking the system if n is not a prime. We mention here that it seems quite
important to choose 2n − 1 to be a prime for our cryptosystem. There is at least
a partial attack when n is not prime. Indeed if n0 divides n, then q = 2n0 − 1
divides p = 2n − 1, and also F,G have Hamming weight at most h modulo q.
Thus, given Y = FR+G mod q, one can try to guess the secret key G modulo q,

which can be done in
√(

n0
h

)
time using a quantum algorithm. This also reveals

F modulo q and we can likely use it to guess F,G modulo p much faster than
the attacks that work in the prime case.

6.2 Active Attacks

Active attacks and/or decryption errors attacks are powerful tools that can be
used to attack our bit-by-bit encryption. We recall that the basic idea of such
attacks is to ask for the decryption of incorrectly formed ciphertext and use the
answers to recover information about the key.

For example, incorrect ciphertexts can be obtained by picking a random
bitstring, by modifying a valid one or encrypting in a non conformant way.
Here, we review the attack in the context of a single bit, but it is important to
note that the encryption of many bits remain vulnerable to such attacks, even if
plaintext redundancy in the style of OAEP paddings [Sho02] is added. We show
in Sect. 7 how to withstand such attacks using appropriate checks of ciphertext
validity.

For simplicity, assume that we have access to a decryption oracle. Forming
pseudo ciphertexts of the form A∗H + B∗ with A∗ and B∗ with low but not
conformant Hamming weights can leak information about the private key. In
particular, one might incrementally add ‘1’ bits into B∗ (or A∗) until decryption
transitions from 0 to ⊥. We did not concretely write down a full working attack
along this line, but it is clear that our encryption scheme would be vulnerable
to such attacks.

A New Public-Key Cryptosystem via Mersenne Numbers 471

7 Mersenne Key Encapsulation Mechanism

Since we have seen in Sect. 6.2 that the semantically secure cryptosystem
described in Sect. 4 cannot offer resistance to chosen-ciphertext attack, we need
to integrate it into a more complex scheme with this ability. A first approach
would be to use an existing generic transformation for this purpose. However,
this is not a simple matter, indeed, systems such as OAEP or REACT [OP01]
perform checks at the plaintext level and thus cannot protect against the attack
strategy of Sect. 6.2. The Naor-Yung paradigm [NY90,CHK10] would be more
suitable but the introduction of dual-encryption and non-interactive proofs is
too costly for our purpose.

In this section, we specify a full cryptosystem that achieves this level of
resistance using a transformation specifically designed for our encryption scheme.
We present our cryptosystem as a key encapsulation mechanism. It can be turned
into an public key encryption scheme using a standard transformation.

Let Enc,Dec be the encryption and decryption algorithms as defined in
Sect. 4. In addition to this, our transformation uses a random oracle H that
takes as input λ-bit strings, and outputs a uniformly random string that is long
enough to compute a λ-bit string, and three n-bit strings, each chosen uniformly
over all strings of Hamming weight h, and such that all four strings are indepen-
dent. Let H0(k),H1(k),H2(k),H3(k) be the four such outputs obtained from the
random oracle on input k. As usual, every output is randomly selected whenever
a fresh query is asked.

Key Generation. The key generation is identical to the semantically secure cryp-
tosystem and produces pk := R, T := F · R + G, and sk := F where R is a
uniformly random n-bit string, and F,G are chosen uniformly at random from
n-bit strings of Hamming weight h.

Key Encapsulation. Given the public key pk = (R, T), the algorithm Encaps
proceeds as follows:

1. Pick a uniformly random λ-bit string K.
2. Let S = H0(K).
3. Let A = H1(K), B1 = H2(K), and B2 = H3(K).
4. Let C = (C1, C2), where C1 = A · R + B1, and C2 = E(K) ⊕ (A · T + B2).
5. Output C,S.

Decapsulation. Given a ciphertext C = (C1, C2), and sk = F , the decapsulation
algorithm Decaps algorithm proceeds as follows:

1. Compute K ′ = D((F · C1) ⊕ C2).
2. Let A′ = H1(K ′), B′

1 = H2(K ′), and B2 = H3(K ′).
3. Let C ′ = (C ′

1, C
′
2), where C ′

1 = A′ · R + B′
1, and C ′

2 = E(K ′) ⊕ (A′ · T + B′
2).

472 D. Aggarwal et al.

4. If C = C ′, output H0(K ′), else output ⊥.

A proof of the CCA security of our transformation is nearly identical to that
of [HHK17]. We include the proof below for completeness.

Theorem 2. Assume that H is a random oracle and that the scheme from
Sect. 4 is semantically secure. Then the above mentioned key encapsulation mech-
anism is secure against chosen-ciphertext attacks.

Proof. We need to show that chosen-ciphertext queries are not helping the adver-
sary, i.e. that they can be simulated without significantly degrading the adver-
sary’s advantage. Once this is done, the semantic security suffices to conclude
our result.

For this, we consider the behavior of the decapsulation oracle when receiving
a ciphertext C� = (C�

1 , C�
2). We want to conclude, that unless the ciphertext

was produced by a procedure functionally equivalent to the encapsulation spec-
ification, the decapsulation oracle outputs ⊥ with overwhelming probability.

The decapsulation oracle, on input C� = (C�
1 , C�

2) computes K� = D((F ·
C�

1) ⊕ C�
2), and then calls the encapsulation algorithm with input K̃ to obtain

C̃ = (C̃1, C̃2). If C̃ = C�, then the oracle outputs H0(K̃), and the oracle outputs
⊥ otherwise.

If the random oracle was previously queried with the seed K̃ by the adversary,
then since the encapsulation procedure is a deterministic function of K̃, the
output of the decapsulation oracle could be efficiently simulated by the adversary.
On the other hand, if the random oracle was never queried with the key K̃, then
we have that C̃1 = A ·R+B1, where A = H1(K̃) and B1 = H2(K̃). Since H1,H2

are random oracles, A,B are assumed to be independent of everything else, and
hence the probability that the decapsulation oracle does not output ⊥ is at most

Pr[A · R + B1 = C�
1] = Pr[B1 = C�

1 − A · R] ≤ 1
(
n
h

) .

�	

8 Instantiating Error Correcting Code in Our Scheme

In this section, we give a concrete choice of parameters, instantiate error cor-
recting codes in our scheme, and analyze the probability of decryption error.

We will set the security parameter to λ = 256. This is the one of the most
acceptable choices in the cryptographic community given the current computa-
tional powers.

As we discussed in Sect. 6, the best known efficient attack on our cryptosys-
tem succeeds runs in time O(22h). We assume, somewhat conservatively, that

A New Public-Key Cryptosystem via Mersenne Numbers 473

even with future advancements in cryptanalysis of our scheme, the running time
cannot be improved beyond O(2h). Under this assumption, we set h to be the
security parameter λ. Thus, λ = h = 256. Also, in order to prevent against
unforeseen attacks that exploit the factorization of p, we choose p = 2n − 1 to
be a Mersenne prime.

8.1 Instantiation Based on Deterministic Error-Correction Codes

We will need the following result. We prove this in Sect. 9.

Theorem 3. Let U be a random variable having uniform distribution on strings
of length n. For every n-bit string x of Hamming weight Δ and for every ε > 0,

Pr[Ham(U,U + x) ≥ 2(1 + ε)Δ] ≤ 2−2Δ(ε−ln(1+ε)).

We now bound the Hamming distance between F · (A · R + B1) and A · (F ·
R + G) + B2. Using Theorem 3, and Lemma 2, we get that for any ε ∈ (0, 1),

Pr[Ham(F · (A · R + B1), F · (A · R)) ≥ 2h2(1 + ε)] ≤ 2−2h2(ε−ln(1+ε)),

and

Pr[Ham(A ·(F ·R+G)+B2, F ·(A ·R)) ≥ 2(h2+h)(1+ε)] ≤ 2−(2h2+h)(ε−ln(1+ε)).

Using union bound, and triangle inequality, we get that

Pr[Ham(F · (A · R + B1), A · (F · R + G) + B2) ≥ (4h2 + 2h)(1 + ε)]

is at most

2−(2h2−1)(ε−ln(1+ε)) ≤ 2−(2h2−1)(ε2/2−ε3/3) ≤ 2−(2h2−1)(ε2/6),

where the second to last inequality follows from the Taylor series expansion of
ln(1 + ε).

This our scheme is 1 − δ-correct if the error correction code (E ,D) corrects
up to (4h2 + 2h)(1 + ε) errors where ε is chosen such that 2−(2h2−1)(ε2/6) < δ.

This implies that by choosing an appropriate error-correction code, we get
that for any δ > 0, and for n = ch2, for a large enough constant c, our scheme
is 1 − δ-correct. In particular, we can instantiate our scheme with n ≥ 2� − 1 =
221−1 = 32h2−1, and using Dual-BCH Codes [MS77], we can encode a message
of length k = 256, such that the parameter where t = k/�� = 13, and the scheme
corrects up to at least

n

4
− (t − 1) · 2�/2

2
− 1 ≥ 8h2 − 40h

474 D. Aggarwal et al.

errors. Thus, choosing ε = 8h2−40h
4h2+2h −1 gives an instantiation of our scheme with

decryption error as low as 2−h2/4.
Notice that the bound on the Hamming weight of F · B1, A · G, and also

the bound on the Hamming distance in Theorem3 is not tight, and perhaps it
will be difficult to prove much tighter bounds. Moreover, the error distribution is
randomized, and exploiting this fact could perhaps lead to better error correction
as we discuss in the next section.

8.2 Instantiation Based on Repetition Codes

In the previous section we considered dual-BCH codes which correct a certain
fraction of errors no matter how these errors are distributed. On the other hand
we observe that for our particular application, the error is “quite” random,
and even though this distribution is difficult to mathematically analyze, it is
reasonable to conjecture that the error pattern is somewhat similar to the model
where each bit is flipped with probability q < (4h2+2h)(1+ε)

n . As we stated in the
previous section, the bounds on the Hamming weight of F ·B1 and A·G, and also
the bound in Theorem3 are not tight, which means q will likely be sufficiently
smaller than 4h2+2h

n .
Thus if we choose n > 10h2, and we encode each bit b of the message m ∈

{0, 1}k using a repetition code of length ρ (where k ·ρ < n) as bb · · · b ∈ {0ρ, 1ρ},
then we expect the number of bits flipped to be smaller than ρ/2 with very high
probability. Thus, we could decrypt correctly by looking at blocks of length ρ,
and decode 1 if the number of 1s in this block of length ρ is more than ρ/2, and
is 0, otherwise.

We analyzed the error probability when we choose n = 756839, k = 256,
and ρ = 2048. At the present time, we are unable to provide a tight rigorous
analysis of the decryption error probability. In order to give a satisfactory bound,
we would need either to enlarge the parameters (as discussed in the previous
section) of the scheme again or to replace the very simple repetition encoding
that we are using by a more complex one. One very simple option would be
to combine the repetition encoding with a random permutation of the bits of
C2 which are used to mask the encoded value at encryption time. This random
permutation could be built from C1 using the XOF provided by NIST. However,
this would make the cryptosystem too slow and add an extra layer of complexity
that is really undesirable.

Thus, we propose a heuristic analysis of the decryption error probability.
This analysis is based on the distribution of the Hamming weights that are
encountered in the decryption blocks corresponding to a single bit. Since, with
our choice of parameters every bit is encoded into ρ = 2048 bits, we want to see
how often a bit might cross the Hamming weight 1024 boundary. It is easy to
equip the code and count the Hamming weights encountered during decryption.
We performed experiments involving 10000 of each key generation, encapsulation

A New Public-Key Cryptosystem via Mersenne Numbers 475

and decapsulation in order to collect the distribution shown in Fig. 1. We see
that the distribution looks like a superposition of two Gaussian distributions
one corresponding to encryptions of a 0 and one to encryptions of a 1. Our
heuristic assumption is that the probability of decryption failure is very close to
the one corresponding to these Gaussian distributions. More precisely, we fitted
a Gaussian G0 corresponding to zeroes by searching for best fitting values of p
and σ in:

G0(x) =
1

2σ
√

2π
e− (x−p)2

2σ2 .

Note the extra 1/2 compared to a usual normal distribution. This is due to the
fact that half of the encrypted bits are zeroes and half are ones. By symmetry,
the Gaussian distribution corresponding to ones is simply G1(x) = G0(ρ−x). We
found that taking p = 499.6 and σ = 28.64 yields the very good approximation
shown on Fig. 2 where the two Gaussian are superposed with the measured data.

Fig. 1. Density distribution of Hamming Weights during decryption

As a consequence, the probability that a single bit crosses the 1024 boundary
is approximated by:

0.5 erfc(
1024 − p

σ
√

2
) < 2−247.

476 D. Aggarwal et al.

Fig. 2. Density distribution with fitted Gaussians

Since the encrypted value is formed of 256-bits, the overall probability of decryp-
tion failure can be heuristically upper bounded by 2−239.

8.3 Further Efficiency Improvements

If we need to use repetition codes, we need n to be sufficiently large, say larger
than 10h2, in order for the decryption error to be small. If we choose a smaller
n (say n ≈ 4h2), and then use repetition codes and majority decoding as in the
previous section, we expect that the Hamming distance between the message
after decoding and the original message is small (but maybe non-zero). To get
around this issue, we propose to modify our encoding procedure as follows. We
encode a message m ∈ {0, 1}k to a codeword c1 ∈ {0, 1}n1 using some efficient
error correcting codes like BCH codes [MS77], and then encode c1 to obtain a
codeword c2 ∈ {0, 1}n2 with n2 ≤ n, using repetition codes, then the errors
remaining after majority decoding can be corrected by decoding the modified
BCH code. Notice that the choice of a smaller n does not alter the security of
the scheme, since the security of the scheme depends on the parameter h.

Again we cannot rigorously analyse the decryption error probability, but
we can obtain a heuristic analysis similar to the one in the previous section.
Concretely, we obtain the following parameters.

A New Public-Key Cryptosystem via Mersenne Numbers 477

Encoding k = 256 bits, with n = 216091. We can choose the next smaller
Mersenne prime p = 2216091 − 1. In this case, we use a BCH code that encodes
k-bit messages to n1 = 29 − 1 = 511 bit messages. Each of these n1 bits is
encoded using a repetition code which repeats each bit 422 times. We again
performed an experiment with 10000 key generation, encapsulation, and decap-
sulation and observed that the distribution of the Hamming weight for each 422
bits looks like a superposition of two Gaussian distributions one corresponding
to encryptions of a 0 and one to encryptions of a 1. In particular, the Gaussian-
like distribution corresponding to encryption of 1 has mean μ = 234.65, and
variance σ2 = 132.47, and hence the probability of decoding a bit incorrectly
under the heuristic assumption is

0.5 erfc(
234.65 − 211

σ
√

2
) < 0.02.

The BCH code corrects up to � 511−256
9 � = 28 errors [MS77]. Thus, assuming

that the Hamming weight of each block of 422 bits is distributed independently,
the probability that there is a decapsulation error is at most

511∑

i=29

(
511
i

)
· 0.02i · 0.98511−i,

which can be estimated to be at most 2−25.

Encoding k = 256 bits, with n = 86243, and h = 128. We cannot choose n =
86243 if h = 256, since n must be significantly larger than h2 for the scheme
to work. However, if we are willing to relax the security requirement to 128-bit
security, then we can choose a much smaller Mersenne prime, and the scheme
is extremely efficient. In particular, we can choose the Mersenne prime p =
286243−1. Again, the BCH code encodes k-bit messages to n1 = 29−1 = 511 bit
messages. Each of these n1 bits is encoded using a repetition code which repeats
each bit 168 times. We again performed experiment with 10000 key generation,
encapsulation, and decapsulation and again observed that the distribution of the
Hamming weight for each 168 bits looks like a superposition of two Gaussian
distributions one corresponding to encryptions of a 0 and one to encryptions of
a 1. The mean and variance of this distribution are μ = 104.55, and σ2 = 68.91,
respectively, and hence the probability of decoding a bit incorrectly under the
heuristic assumption is

0.5 erfc(
234.65 − 211

σ
√

2
) < 0.005.

Thus, assuming that the Hamming weight of each block of 168 bits is distributed
independently, the probability that there is a decapsulation error is at most

511∑

i=29

(
511
i

)
· 0.005i · 0.995511−i,

which can be estimated to be at most 2−60.

478 D. Aggarwal et al.

9 Proof of Theorem 3

Let x be an arbitrary n-bit string of Hamming weight Δ, for some positive integer
Δ. We can decompose x as x1 + . . . xΔ where for all 1 ≤ i ≤ Δ, the string xi has
Hamming distance 1 whose single 1 bit is in position ji, and j1 < . . . < jΔ. Let
U = U0 be the random variable which takes an n-bit binary string with uniform
distribution. For 1 ≤ i ≤ Δ, we define the random variables U i = U i−1 + xi and
Yi = Ham(U,U i) − Ham(U,U i−1). The main result in this section is an upper
bound the tail of the random variable measuring the Hamming distance of U
and U + x, that is U and UΔ.

Theorem 4. Let U be a random variable having uniform distribution on strings
of length n. For every n-bit string x of Hamming weight Δ and for every ε > 0,

Pr[Ham(U,U + x) ≥ 2(1 + ε)Δ] ≤ 2−2Δ(ε−ln(1+ε)).

Observe from the Taylor series ln(1 + ε) = ε − ε2

2 + ε3

3 − . . . that, for small ε, we
can well approximate the right hand side of the above inequality by 2−Δε2

.

Proof. The string Uh is constructed from U in Δ steps, where in every step we
add a new string of Hamming weight 1 to the string obtained in the previous
steps. Our first lemma bounds the tail of the random variable measuring the
increase in the Hamming distance in one step.

Lemma 3. For every n-bit string x of Hamming weight Δ, and for all integers
s, y1, . . . , yΔ−1, we have

Pr[YΔ ≥ s|Y1 = y1, . . . , YΔ−1 = yΔ−1] ≤ min{1, 2−(s−1)}.

Proof. Observe that for s ≤ 1 the statement is trivial, therefore we only con-
sider s ≥ 2. For every r ≥ s, and for every Δ, we well determine Pr[YΔ =
r|Y1, . . . , YΔ−1|Y1 = y1, . . . , YΔ−1 = yΔ−1], and then we will sum up these val-
ues. Let ZΔ−1 denote the event Y1 = y1, . . . , YΔ−1 = yΔ−1.

Since addition, Hamming distance and the uniform distribution are invariant
under rotation, we can suppose without generality that x1 = 1. Under the con-
dition that U and x don’t have a 1 in the same position, YΔ = 1 with probability
1, and the statement follows. Therefore we can work under the condition that U
and x have a common 1, and we can suppose, again without loss of generality,
that U1 = 1.

First we consider the case Δ = 1. For 2 ≤ r ≤ n, the random variable Y1 is
r when Ur = 0 and Ur−1 = . . . = U2 = 1. Thus Pr[Y1 = r] = 2−r+1.

We suppose now that Δ ≥ 2. We say that i ≤ Δ is a wrap-around step if
U i−1

n = 1 and U i
n = 0. Observe that in that case U i−1

1 and U i
1 are different.

We define the random variable tΔ as n + 1 if i is a wrap-around step for some

A New Public-Key Cryptosystem via Mersenne Numbers 479

1 ≤ i ≤ Δ − 1. Otherwise, let tΔ be the smallest integer such that all but the
first (from right) tΔ bits are the same in U and UΔ−1. Since the single 1 bit in
xΔ−1 is in position jΔ−1, it follows from the definition that tΔ ≥ jΔ−1, and that
UΔ−1

tΔ−1 = . . . = UΔ−1
jΔ−1

= 0. In addition, if tΔ ≤ n then UΔ−1
tΔ

= 1.

Case 1: jΔ ≤ tΔ − 1. Since jΔ > jΔ−1, we have then UΔ−1
jΔ

= 0. Therefore
UΔ−1 and UΔ differ only in one position, implying YΔ is never more than 1.

Case 2: jΔ ≥ tΔ. Then tΔ ≤ n and therefore none of the previous steps was a
wrap-around step. Thus UΔ−1

1 = . . . = U1
1 = UtΔ

= 0 and UΔ−1
tΔ

= 1.
Step Δ is a wrap-around step when UΔ−1

jΔ
= . . . = UΔ−1

n = 1. When jΔ >
tΔ, this is equivalent to UjΔ

= . . . = Un = 1, and happens with probability
2−(n−jΔ+1). In that case UΔ−1 and UΔ differ in positions 1, jΔ . . . , n. Among
these positions UΔ and U differ at jΔ, . . . , n but UΔ

1 = U1 = 1, and therefore
YΔ = n − jΔ. When jΔ = tΔ, this is equivalent to UjΔ+1 = . . . = Un = 1,
and happens with probability 2−(n−jΔ). In that case UΔ−1 and UΔ differ in
positions 1, jΔ . . . , n. Among these positions UΔ and U differ at jΔ + 1, . . . , n
but UΔ

1 = U1 = 1, and therefore YΔ = n − jΔ − 1.
Step Δ is not a wrap-around step when UΔ−1

� = 0 and UΔ−1
jΔ

= . . . = UΔ−1
�−1 =

1, for some jΔ ≤ � ≤ n. This never happens when jΔ = n. When tΔ < jΔ < n,
this is equivalent to U� = 0 and UΔ−1

jΔ
= . . . = UΔ−1

�−1 = 1, which happens with
probability 2−(�−jΔ+1). In that case UΔ−1 and UΔ differ in positions jΔ, . . . , �,
where UΔ−1 coincides with U and UΔ differs from U , implying YΔ = �− jΔ +1.
When jΔ = tΔ, � must be at least jΔ + 1, and the condition is equivalent to
U� = 0 and UΔ−1

jΔ+1 = . . . = UΔ−1
�−1 = 1, which happens with probability 2−(�−jΔ).

In that case UΔ−1 and UΔ differ in positions jΔ+1, . . . , �, where UΔ−1 coincides
with U and UΔ differs from U , implying YΔ = � − jΔ.

All together, Pr[YΔ = r|ZΔ−1] �= 0 in the following cases. When jΔ > tΔ,
we have Pr[YΔ = r|ZΔ−1] = 2−r for r ∈ {2, . . . n − jΔ − 1, n − jΔ + 1} and
Pr[YΔ = n − jΔ] = 2−(n−jΔ+1) + 2−(n−jΔ). When jΔ = tΔ, we have Pr[YΔ =
r|ZΔ−1] = 2−r for r ∈ {2, . . . n−jΔ−2, n−jΔ} and Pr[YΔ = n−jΔ−1|ZΔ−1] =
2−(n−jΔ)+2−(n−jΔ−1). The statement follows by summing up these probabilities
for r ≥ s. �	

Observe that Ham(U,U + x) = Y1 + . . . + YΔ. In order to bound the tail
of Y1 + . . . + YΔ, we introduce the independent random variables X1, . . . XΔ,
where Xi is a geometric random variable with success probability 1

2 , for each
1 ≤ i ≤ Δ. This means that by definition, for every positive integer r, we have
Pr[Xi = r] = 2−r. The definition immediately implies that for every integer s,
we also have Pr[Xi ≥ s] = min{1, 2−(s−1)}. Our next lemma states that the tail
of Y1 + . . . + YΔ can be upper bounded by the tail of X1 + . . . + XΔ.

Lemma 4. For every n-bit string x of Hamming weight Δ, for every integer s,

Pr[Y1 + . . . + YΔ ≥ s] ≤ Pr[X1 + . . . + XΔ ≥ s].

480 D. Aggarwal et al.

Proof. We prove it by induction on Δ. When Δ = 1, from Lemma 3 we have

Pr[Y1 ≥ s] ≤ min{1, 2−(s−1)} = Pr[X1 ≥ s].

When Δ ≥ 2, we have the following series of (in)equalities:

Pr[
Δ∑

i=1

Yi ≥ s] ≤
∑

y1,...,yΔ−1

Pr[Y1 = y1, . . . , YΔ−1 = yΔ−1] Pr[XΔ ≥ s −
Δ−1∑

i=1

yi]

= Pr[
Δ−1∑

i=1

Yi + XΔ ≥ s]

=
∑

y

Pr[
Δ−1∑

i=1

Yi ≥ y] Pr[XΔ = s − y]

≤
∑

y

Pr[
Δ−1∑

i=1

Xi ≥ y] Pr[XΔ = s − y]

= Pr[
Δ∑

i=1

Xi ≥ s].

The first inequality follows from Lemma 3 and the second inequality from the
inductive hypothesis. For the third equality we have used that XΔ is independent
from the random variables Yi. �	
Our final lemma is a special case of Theorem 2.3 in the artice [Jan17] on tail
bounds for sums of geometric and exponential variables.

Lemma 5 [Jan17]. Let X1, . . . XΔ be independent geometric random variables
with success probability 1

2 , and let ε > 0. Then

Pr[
Δ∑

i=1

Xi ≥ 2(1 + ε)Δ] ≤ 2−2Δ(ε−ln(1+ε)).

Putting together Lemmas 4 and 5, we immediately obtain our bound on the
Hamming distance of U and UΔ, which concludes the proof. �	

10 Conclusion

In this paper, we propose a simple new public-key encryption scheme. As
with other public-key cryptosystems, the security of our cryptosystem relies on
unproven assumptions mentioned in Definition 5. In Sect. 6.1, we summarized the
known cryptanalytic attacks against this scheme. The proposed cryptosystem is
based on a relatively new assumption, and it will require more cryptanalytic
effort before one can be reasonably confident about the security assumption.

A New Public-Key Cryptosystem via Mersenne Numbers 481

Acknowledgments. This research was partially funded by the Singapore Ministry
of Education and the National Research Foundation, also through the Tier 3 Grant
“Random numbers from quantum processes”, MOE2012-T3-1-009. This work has been
supported in part by the European Union’s H2020 Programme under grant agreement
number ERC-669891 and the French ANR Blanc program under contract ANR-12-
BS02-005 (RDAM project). The second author is grateful to CQT where the work has
started during his visit.

References

[AJPS17] Aggarwal, D., Joux, A., Prakash, A., Santha, M.: A new public-key
cryptosystem via mersenne numbers. Cryptology ePrint Archive, Report
2017/481, version:20170530.072202 (2017)

[BCGN17] Beunardeau, M., Connolly, A., Géraud, R., Naccache, D.: On the hard-
ness of the Mersenne Low Hamming Ratio assumption. Technical report,
Cryptology ePrint Archive, 2017/522 (2017)

[CHK10] Cramer, R., Hofheinz, D., Kiltz, E.: A twist on the Naor-Yung paradigm
and its application to efficient CCA-secure encryption from hard search
problems. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp.
146–164. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-11799-2 10

[dBDJdW17] de Boer, K., Ducas, L., Jeffery, S., de Wolf, R.: Attacks on the AJPS
mersenne-based cryptosystem. Technical report, Cryptology ePrint
Archive, Report 2017/1171 (2017). https://eprint.iacr.org/2017/1171

[DH76] Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans.
Inf. Theory 22(6), 644–654 (1976)

[ES16] Eldar, L., Shor, P.W.: An efficient quantum algorithm for a variant of the
closest lattice-vector problem. arXiv preprint arXiv:1611.06999 (2016)

[Gro96] Grover, L.K.: A fast quantum mechanical algorithm for database search.
In: Proceedings of the Twenty-Eighth Annual ACM Symposium on The-
ory of Computing, pp. 212–219 (1996)

[GWO+13] Lize, G., Wang, L., Ota, K., Dong, M., Cao, Z., Yang, Y.: New public
key cryptosystems based on non-abelian factorization problems. Secur.
Commun. Netw. 6(7), 912–922 (2013)

[HHK17] Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the
Fujisaki-Okamoto transformation. In: Kalai, Y., Reyzin, L. (eds.) TCC
2017. LNCS, vol. 10677, pp. 341–371. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-70500-2 12

[HPS98] Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based pub-
lic key cryptosystem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol.
1423, pp. 267–288. Springer, Heidelberg (1998). https://doi.org/10.1007/
BFb0054868

[Jan17] Janson, S.: Tail bounds for sums of geometric and exponential variables.
arXiv preprint arXiv:1709.08157 (2017)

[KLC+00] Ko, K.H., Lee, S.J., Cheon, J.H., Han, J.W., Kang, J., Park, C.:
New public-key cryptosystem using braid groups. In: Bellare, M. (ed.)
CRYPTO 2000. LNCS, vol. 1880, pp. 166–183. Springer, Heidelberg
(2000). https://doi.org/10.1007/3-540-44598-6 10

https://doi.org/10.1007/978-3-642-11799-2_10
https://doi.org/10.1007/978-3-642-11799-2_10
https://eprint.iacr.org/2017/1171
http://arxiv.org/abs/1611.06999
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/BFb0054868
https://doi.org/10.1007/BFb0054868
http://arxiv.org/abs/1709.08157
https://doi.org/10.1007/3-540-44598-6_10

482 D. Aggarwal et al.

[LPR10] Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learn-
ing with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010.
LNCS, vol. 6110, pp. 1–23. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-13190-5 1

[LvTMW09] Lempken, W., van Tran, T., Magliveras, S.S., Wei, W.: A public key
cryptosystem based on non-abelian finite groups. J. Cryptol. 22(2), 62–
74 (2009)

[McE78] McEliece, R.J.: A public-key cryptosystem based on algebraic coding
theory. Coding Thv 4244, 114–116 (1978)

[MS77] MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting
Codes. Elsevier, New York (1977)

[MTSB13] Misoczki, R., Tillich, J.-P., Sendrier, N., Barreto, P.S.: MDPC-McEliece:
new McEliece variants from moderate density parity-check codes. In:
2013 IEEE International Symposium on Information Theory Proceedings
(ISIT), pp. 2069–2073. IEEE (2013)

[NIS17] NIST. Post quantum crypto project (2017). http://csrc.nist.gov/groups/
ST/post-quantum-crypto/. Accessed 19 May 2017

[NS97] Naccache, D., Stern, J.: A new public-key cryptosystem. In: Fumy, W.
(ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 27–36. Springer, Heidel-
berg (1997). https://doi.org/10.1007/3-540-69053-0 3

[NY90] Naor, M., Yung, M.: Public-key cryptosystems provably secure against
chosen ciphertext attacks. In: Proceedings of the Twenty-Second Annual
ACM Symposium on Theory of Computing, STOC 1990, pp. 427–437.
ACM, New York (1990)

[OP01] Okamoto, T., Pointcheval, D.: REACT: rapid enhanced-security asym-
metric cryptosystem transform. In: Naccache, D. (ed.) CT-RSA 2001.
LNCS, vol. 2020, pp. 159–174. Springer, Heidelberg (2000). https://doi.
org/10.1007/3-540-45353-9 13

[Reg09] Regev, O.: On lattices, learning with errors, random linear codes, and
cryptography. J. ACM 56(6), 34, 40 (2009)

[RSA78] Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital
signatures and public-key cryptosystems. Commun. ACM 21(2), 120–
126 (1978)

[RSN+01] Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Barker, E.: A statistical
test suite for random and pseudorandom number generators for crypto-
graphic applications. Technical report, DTIC Document (2001)

[Sho97] Shor, P.W.: Polynomial-time algorithms for prime factorization and dis-
crete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–
1509 (1997)

[Sho02] Shoup, V.: OAEP reconsidered. J. Cryptol. 15(4), 223–249 (2002)

https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-642-13190-5_1
http://csrc.nist.gov/groups/ST/post-quantum-crypto/
http://csrc.nist.gov/groups/ST/post-quantum-crypto/
https://doi.org/10.1007/3-540-69053-0_3
https://doi.org/10.1007/3-540-45353-9_13
https://doi.org/10.1007/3-540-45353-9_13

Fast Homomorphic Evaluation of Deep
Discretized Neural Networks

Florian Bourse1, Michele Minelli2,3(B),
Matthias Minihold4, and Pascal Paillier5

1 Orange Labs, Applied Crypto Group, Cesson-Sévigné, France
2 DIENS, École normale supérieure, CNRS, PSL Research University, Paris, France

michele.minelli@ens.fr
3 Inria, Paris, France

4 Horst Görtz Institut für IT-Security, Ruhr-Universität Bochum, Bochum, Germany
5 CryptoExperts, Paris, France

Abstract. The rise of machine learning as a service multiplies scenar-
ios where one faces a privacy dilemma: either sensitive user data must
be revealed to the entity that evaluates the cognitive model (e.g., in
the Cloud), or the model itself must be revealed to the user so that
the evaluation can take place locally. Fully Homomorphic Encryption
(FHE) offers an elegant way to reconcile these conflicting interests in the
Cloud-based scenario and also preserve non-interactivity. However, due
to the inefficiency of existing FHE schemes, most applications prefer to
use Somewhat Homomorphic Encryption (SHE), where the complexity
of the computation to be performed has to be known in advance, and
the efficiency of the scheme depends on this global complexity.

In this paper, we present a new framework for homomorphic evalu-
ation of neural networks, that we call FHE–DiNN, whose complexity is
strictly linear in the depth of the network and whose parameters can be
set beforehand. To obtain this scale-invariance property, we rely heavily
on the bootstrapping procedure. We refine the recent FHE construction
by Chillotti et al. (ASIACRYPT 2016) in order to increase the message
space and apply the sign function (that we use to activate the neurons in
the network) during the bootstrapping. We derive some empirical results,
using TFHE library as a starting point, and classify encrypted images
from the MNIST dataset with more than 96% accuracy in less than 1.7 s.

Finally, as a side contribution, we analyze and introduce some vari-
ations to the bootstrapping technique of Chillotti et al. that offer an
improvement in efficiency at the cost of increasing the storage require-
ments.

Keywords: Fully homomorphic encryption · Neural networks
Bootstrapping · MNIST

c© International Association for Cryptologic Research 2018
H. Shacham and A. Boldyreva (Eds.): CRYPTO 2018, LNCS 10993, pp. 483–512, 2018.
https://doi.org/10.1007/978-3-319-96878-0_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96878-0_17&domain=pdf

484 F. Bourse et al.

1 Introduction

Fully Homomorphic Encryption (FHE). An FHE scheme provides a way
to encrypt data while supporting computations through the encryption envelope.
Given an encryption of a plaintext x, one can compute an encryption of f(x)
for any computable function f . This operation does not require intermediate
decryption or knowledge of the decryption key and therefore can be performed
based on public information only. Applications of FHE are numerous but one
particular use of interest is the privacy-preserving delegation of computations to
a remote service. The first construction of FHE dates back to 2009 and is due
to Gentry [Gen09]. A number of improvements have followed [vDGHV10,SS10,
SV10,BV11a,BV11b,BGV12,GHS12,GSW13,BV14], leading to a biodiversity
of techniques, features and complexity assumptions.

All known FHE schemes are obtained by first building a leveled Somewhat
Homomorphic Encryption (SHE) scheme, which can evaluate circuits of a-priori
bounded depth (usually, only the multiplicative depth is considered, because the
noise growth introduced by additions is negligible compared to that introduced
by multiplications). In order to obtain unbounded computation capabilities on
encrypted values, an FHE scheme can be built from an SHE scheme with a
technique called bootstrapping, which intuitively means using the homomorphic
properties of the scheme to decrypt and then re-encrypt, refreshing the ciphertext
to enable further computation. However, this process is very costly. Hence, there
have been numerous works on trying to obtain more efficient bootstrappings
[AP13,AP14,DM15,CGGI16b,CGGI17], and on trying to minimize the num-
ber of bootstrappings required for evaluating a circuit [LP13,PV16,BLMZ17].
Another approach is to simply avoid bootstrapping altogether and use an SHE
scheme, adjusting the parameters to be able to carry out the desired computa-
tion.

In practice, there are now two main freely available libraries for fully homo-
morphic encryption. The first one, HElib [HS14,HS15], which implements the
BGV scheme [BGV12], is the most widely used in applications. It allows for
packing of ciphertexts and SIMD computations, amortizing the cost for certain
tasks. It is able to perform additions and multiplications in an efficient way, but
the bootstrapping operation is significantly slow. In practice, it is often used as a
somewhat homomorphic scheme. The second one, TFHE [CGGI16a], features a
very efficient bootstrapping operation but, as a downside, this has to be applied
after every gate computation. This library is more efficient than HElib when used
for realizing an FHE. However, for simple tasks requiring small computational
depth, HElib used as an SHE will perform better. Moreover, TFHE is currently
not capable of amortizing large SIMD computations as well as HElib does.

The quest for privacy-preserving machine learning. Machine Learning
As a Service (MLAS) is becoming popular because of its versatility. These appli-
cations typically have high computation and data-storage requirements, which

Fast Homomorphic Evaluation of Deep Discretized Neural Networks 485

make them less suitable as client-side technologies. Moreover, since the process
of training a cognitive model is time and resource-consuming, the trained pre-
diction algorithm is often considered critical intellectual property by its owner,
who is typically not willing to share its technology or proprietary tools, resulting
in that machine learning algorithms are most conveniently cloud-based.

However, this setting raises new issues concerning the privacy of the uploaded
input data. Users want to send their encrypted data to a cloud service that
offers privacy-preserving predictions, and fulfills this task using its powerful yet
undisclosed, state-of-the-art predictive models. In this paper, we put forward a
new and versatile FHE framework that makes it efficient for the cloud to operate
a neural network dedicated to some specific machine learning task. The network,
previously trained on plaintext dataset, does not have access to the input data in
the clear, but is only given user-provided encrypted inputs and returns encrypted
predictions.

Obviously, encrypting the user’s data ensures its confidentiality, since the pri-
vate key under which the data is encrypted is assumed never to leave the owner’s
controlled domain. In this setting, only the legitimate owner of the secret key can
decrypt the result returned by the delegated computation that has been homo-
morphically performed in the cloud. The cloud service only learns superficial
information, but can still charge the user for using the service.

Neural networks (NNs) are often built from medical, financial or otherwise
sensitive data. They are usually trained to solve a classification problem: all
possible observations are categorized into classes and, given a training dataset
of observation/class pairs, the network should be able to assign the correct class
to new observations. Such framework can be easily applied to problems like
establishing a diagnosis from medical observations.

In this work we do not consider the problem of privacy-preserving data-
mining, intended as training a neural network over encrypted data, which can
be addressed, e.g., with the approach of [AS00]. Instead, we assume that the
neural network is trained with data in the clear and we focus on the evaluation
part.

Another potential concern for the service provider is that users might be
sending malicious requests in order to either learn what is considered a company
secret (the neural network itself), or specific sensitive information encoded in
the weights (which could be a breach into the privacy of the training dataset).
In this latter case, a statistical database can be used in the training phase, as is
discussed in the differential privacy literature [Dwo06].

Prior works. Cryptonets [DGBL+16] was the first initiative to address the
challenge of achieving blind, non-interactive classification. The main idea con-
sists in applying a leveled SHE scheme such as BGV [BGV12] to the network
inputs and propagating the signals across the network homomorphically, thereby
consuming levels of homomorphic evaluation whenever non-linearities are met.

486 F. Bourse et al.

In NNs, non-linearities come from activation functions which are usually picked
from a small set of non-linear functions of reference (logistic sigmoid, hyperbolic
tangent, . . .) chosen for their mathematical convenience. To optimally accommo-
date the underlying SHE scheme, Cryptonets replace their standard activation
by the (depth 1) square function, which only consumes one level but does not
resemble the typical sigmoidal shape. A number of subsequent works have fol-
lowed the same approach and improved it, typically by adopting higher degree
polynomials as activation functions for more training stability [ZYC16], or by
renormalizing weighted sums prior to applying the approximate function, so that
its degree can be kept as low as possible [CdWM+17]. Practical experiments have
shown that training can accommodate approximated activations and generate
NNs with very good accuracy.

However, this approach suffers from an inherent limitation: the homomor-
phic computation, local to a single neuron, depends on the total number of
levels required to implement the network, which is itself roughly proportional
to the number of its activated layers. Therefore, the overall performance of the
homomorphic classification heavily depends on the total multiplicative depth of
the circuit and rapidly becomes prohibitive as the number of layers increases.
This approach does not scale well and is not adapted to deep learning, where
neural networks can contain tens, hundreds or sometimes thousands of layers
[HZRS15,ZK16].

Finally, we note that other approaches based on multiparty computation
(MPC) have been proposed, e.g., [BPTG15,MZ17,MRSV17], but they require
interactivity between the party that holds the data and the party that performs
the blind classification. Even though practical performances of MPC-based solu-
tions have been impressive compared to FHE-based solutions, they incur other
issues like network latency and high bandwidth usage. Because of these down-
sides, FHE-based solutions seem more scalable for real-life applications. In this
work, we focus on a non-interactive, blind evaluation, and we rely on FHE.

Our contributions. We adopt a scale-invariant approach to the problem. In
our framework, called FHE–DiNN, each neuron’s output is refreshed through
bootstrapping, resulting in that arbitrarily deep networks can be homomorphi-
cally evaluated. Of course, the entire homomorphic evaluation of the network will
take time proportional to the number of its neurons or, if parallelism is involved,
to the number of its layers. Evaluating one neuron is now essentially independent
of the dimensions of the network: it just relies on system-wide parameters.

In FHE–DiNN, unlike in standard neural networks, the weights and biases,
as well as the domain and range of the activation function cannot be real-valued
and must be discretized. We call such networks Discretized Neural Networks or
DiNNs. This particular form of neural networks is somehow inspired by a more
restrictive one, referred to in the literature as Binarized Neural Networks (BNNs)
[CB16] where signals and weights are restricted to the set {−1, 1} instead of Z

Fast Homomorphic Evaluation of Deep Discretized Neural Networks 487

as in the case of DiNNs (so BNNs are a special case of DiNNs). Interestingly,
it has been empirically observed by [CB16] that BNNs can achieve accuracies
close to the ones obtained with state-of-the-art classical NNs, at the price of an
overhead in the total network size, which is largely compensated by the obtained
performance gains. For the sake of scale-invariance, we decided to choose as
activation function the sign, so the signal which is propagated has values in
{−1, 1}, and cannot grow out of control. So the evaluation of DiNNs boils down
to repeatedly computing the sign of a weighted sum of ±1 inputs.

In order to perform this classification on encrypted data, we adapt the recent
construction by Chillotti et al., known as TFHE [CGGI16b] to support sign and
weighted sum as the two basic operations of the scheme, the sign being computed
during a bootstrapping procedure in order to refresh the ciphertext.

As a side contribution, we also present a few techniques to optimize the
usage of TFHE in applications: how to reduce the required bandwidth, how to
reduce the overall noises in the ciphertexts, and a slightly faster alternative to
the bootstrapping procedure that also produces ciphertexts with less noise, at
the expense of a bigger bootstrapping key.

Finally, we conducted experiments on the MNIST dataset [LBBH98]. We
used the library keras [C+15] to train two simple neural networks with one
hidden layer containing 30 (respectively, 100) neurons and we converted them
into DiNNs by simply discretizing the weights and using the sign as activation
function. Of course, this introduced a loss in accuracy, and although much bet-
ter accuracies could certainly be obtained through various optimizations or by
directly training a DiNN (rather than converting a canonical neural network),
this was not the goal of this work. Our aim was conducting experiments to mea-
sure the accuracy of the homomorphic classification and comparing it to that
in the clear. We found that, for a security level of 80 bits, our implementa-
tion takes about 0.49 s (respectively, 1.65 s) seconds per classification (with no
underlying parallelism whatsoever) and achieves 93.71% (respectively, 96.35%)
accuracy when evaluated homomorphically.

Comparison with cryptonets [DGBL+16]. In Cryptonets, propagated sig-
nals are reals properly encoded into compatible plaintexts and a single encrypted
input (i.e., an image pixel) takes 2 · 382 · 8192 bits (=766 kB). Therefore, an entire
image takes 28 · 28 · 766 kB ≈ 586MB. However, with the same storage require-
ments, Cryptonets can batch 8192 images together, so that the amortized size
of an encrypted image is reduced to 73.3 kB. In the case of FHE–DiNN, we are
able to exploit the batching technique on a single image, resulting in that each
encrypted image takes ≈8.2 kB. In the case of Cryptonets, the complete homo-
morphic evaluation of the network takes 570 s, whereas in our case it takes 0.49 s
(or 1.6 s in the case of a slightly larger network). However, it should be noted
that (a) the networks that we use for our experiments are considerably smaller
than that used in Cryptonets, so we also compare the time-per-neuron and, in

488 F. Bourse et al.

this case, our solution is faster by roughly a factor 36; moreover (b) once again
Cryptonets support image batching, so 8192 images can be classified in 570 s,
resulting in only 0.07 s per image. Cryptonets’ ability to batch images together
can be useful in some applications where the same user wants to classify a large
number of samples together. In the simplest case where the user only wants a
single image to be classified, this feature does not help.

Regarding classification accuracy, the NN used by Cryptonets achieves
98.95% of correctly classified samples, when evaluated on the MNIST dataset.
In our case, a loss of accuracy occurs due to the preliminary simplification of
the MNIST images, and especially because of the discretization of the network.
We stress however that our prime goal was not accuracy but to achieve a quali-
tatively better homomorphic evaluation at the neuron level.

Finally, we also achieve scale-invariance, meaning that we can keep on com-
puting over the encrypted outputs of our network, whereas Cryptonets are
bounded by the initial choice of parameters. In Table 1 we present a detailed
comparison with Cryptonets.

Table 1. Comparison with Cryptonets and its amortized version (denoted by
Cryptonets�). FHE–DiNN30 and FHE–DiNN100 refer to neural networks with one hid-
den layer composed of 30 and 100 neurons, respectively.

Neurons Size of ct. Accuracy Time enc Time eval Time dec
Cryptonets 945 586 MB 98.95% 122 s 570 s 5 s
Cryptonets� 945 73.3 kB 98.95% 0.015 s 0.07 s 0.0006 s
FHE–DiNN30 30 ≈8.2 kB 93.71% 0.000168 s 0.49 s 0.0000106 s
FHE–DiNN100 100 ≈8.2 kB 96.35% 0.000168 s 1.65 s 0.0000106 s

Outline of the paper. The paper is organized as follows: in Sect. 2 we define
our notation and we introduce notions about fully homomorphic encryption and
artificial neural networks; in Sect. 3 we present our Discretized Neural Networks
and show a simple technique to build these models; in Sect. 4 we explain how
to homomorphically evaluate a DiNN and present our main result; in Sect. 5 we
present some technical refinements that allow us to improve the efficiency of the
evaluation and that can be useful also for other FHE-based solutions; finally,
in Sect. 6 we give experimental results on data in the clear and on encrypted
inputs, draw some conclusions and identify several open problems.

2 Preliminaries

In this section we clarify our notation and recall some definitions and construc-
tions that are going to be useful in the rest of the paper.

Fast Homomorphic Evaluation of Deep Discretized Neural Networks 489

2.1 Notation

We denote the real numbers by R, the integers by Z and use T to indicate R/Z,
i.e., the torus of real numbers modulo 1. We use B to denote the set {0, 1},
and we use R [X] for polynomials in the variable X with coefficients in R, for
any ring R. We use RN [X] to denote R [X] /

(
XN + 1

)
and ZN [X] to denote

Z [X] /
(
XN + 1

)
and we write their quotient as TN [X] = RN [X] /ZN [X], i.e.,

the ring of polynomials in X quotiented by
(
XN + 1

)
, with real coefficients

modulo 1. Vectors are denoted by lower-case bold letters, and we use ‖·‖1 and
‖·‖2 to denote the L1 and the L2 norm of a vector, respectively. Given a vector
a, we denote its i-th entry by ai. We use 〈a,b〉 to denote the inner product
between vectors a and b.

Given a set A, we write a
$← A to indicate that a is sampled uniformly at

random from A. If D is a probability distribution, we will write d ← D to denote
that d is sampled according to D.

2.2 Fully Homomorphic Encryption over the Torus

Learning with errors. The Learning with Errors (LWE) problem was intro-
duced by Regev in [Reg05]. Let n be a positive integer and χ be a probability
distribution over R for the noise. For any vector s ∈ {0, 1}n, we define the LWE
distribution lwen,s,χ as (a, b), where a $← T

n and b = 〈s,a〉 + e ∈ T, with e ← χ.
Then the LWE assumption states that, for s $← {0, 1}n, it is hard to distin-

guish between (a, b) and (u, v), for (a, b) ← lwen,s,χ and (u, v) $← T
n+1.

Sub-Gaussians. Let σ > 0 be a real Gaussian parameter. We define the Gaus-
sian function with parameter σ as ρσ (x) = exp

(
−π |x|2 /σ2

)
for any x ∈ R.

Then we say that a distribution D is sub-Gaussian with parameter σ if there
exists M > 0 such that for all x ∈ R,

D (x) ≤ M · ρσ (x) .

Lemma 2.1 (Pythagorean additivity of sub-Gaussians). Let D1 and D2

be sub-Gaussian distributions with parameters σ1 and σ2, respectively. Then D+,
obtained by sampling D1 and D2 and summing the results, is a sub-Gaussian with
parameter

√
σ2
1 + σ2

2.

LWE-based private-key encryption scheme. We recall the Regev encryp-
tion scheme from [Reg05]. Let μ ∈ {0, 1} be a message and λ the security param-
eter; we encrypt and decrypt as follows:

Setup (λ): for a security parameter λ, fix n = n (λ) and return s $← {0, 1}n

Enc (s, μ): return (a, b), with a $← T
n and b = 〈s,a〉 + e + μ

2 , where e ← χ
Dec (s, (a, b)): return 	2 (b − 〈s,a〉)

490 F. Bourse et al.

We usually refer to e as the noise of the ciphertext, and say that a ciphertext is
a valid encryption of μ if it decrypts to μ with overwhelming probability.

We now give some notions on the formulation of FHE over the torus and the
bootstrapping procedure. The following part is based on [CGGI16b].

TLWE. TLWE is a generalization of LWE and Ring-LWE [LPR10]. Let k ≥ 1
be an integer, N be a power of 2 and χ be an error distribution over RN [X].
A TLWE secret key s̄ ∈ BN [X]k is a vector of k polynomials over ZN [X] with
binary coefficients. Given a message encoded as a polynomial μ ∈ TN [X], a fresh
TLWE encryption of μ under the key s̄ is a sample (a, b) ∈ TN [X]k × TN [X],
with a $← TN [X]k and b = s̄ · a + μ + e, where e ← χ.

From a TLWE encryption c̄ of a polynomial μ ∈ TN [X] under a TLWE key
s̄ we can extract a LWE encryption c′ = Extract (c̄) of the constant term of μ
under an extracted key s′ = ExtractKey (s̄). For the details of the algorithms
Extract and ExtractKey, we refer the reader to [CGGI16b, Definition 4.1].

TGSW. TGSW is a generalized version of the GSW FHE scheme [GSW13]. The
key concept here is that TGSW can be seen as the matrix equivalent of TLWE,
just like GSW can be seen as the matrix equivalent of LWE. More details can
be found in [CGGI16b].

As in previous works, our average-case noise analysis relies on the following
heuristic. This assumption matches empirical results [DM15,CGGI16b]. Note
that the worst-case bounds do not require this heuristic.

Assumption 1. We assume that all the error coefficients of TLWE or TGSW
samples of the linear combinations we consider are independent and concen-
trated. In particular, we assume that they are sub-Gaussian where σ is the square-
root of their variance.

Overview of the bootstrapping procedure. The core idea for the efficiency
of the new bootstrapping procedure is the so-called external product �, that
performs the following mapping

� : TGSW × TLWE → TLWE.

Roughly speaking, the external product of a TGSW encryption of a polynomial
μ1 ∈ TN [X] and a TLWE encryption of a polynomial μ2 ∈ TN [X] is a TLWE
encryption of (μ1 · μ2) ∈ TN [X].

Now the bootstrapping procedure of an n-LWE sample (here, n denotes the
dimension) consists of the 3 following functions:

Fast Homomorphic Evaluation of Deep Discretized Neural Networks 491

BlindRotate: TGSWn × TLWE × n-LWE → TLWE
On input TGSW encryptions of (si)i∈[n], a (possibly noiseless) TLWE encryp-
tion of testVector and an n-LWE sample (a, b), computes a TLWE encryption
of Xφ· testVector, where φ = b − 〈s,a〉;

Extract: TLWE → N -LWE
On input a TLWE encryption of polynomial μ ∈ TN [X], computes an N -
LWE encryption of the constant term μ(0);

KeySwitch: n-LWEN × N -LWE → n-LWE
On input n-LWE encryptions of (s′

i)i∈[N], and an N -LWE sample (a, b) com-
putes an n-LWE encryption of b − 〈s′,a〉.
Then we can define a function Bootstrap (·, ·, ·) that takes as input a boot-

strapping key bk, a keyswitching key ksk, and a ciphertext and outputs a new
ciphertext. Roughly speaking,

Bootstrap = KeySwitch ◦ Extract ◦ BlindRotate.

We note that BlindRotate works on LWE samples with values in [2N] instead
of T, thus the first step is to map T to [2N] by multiplying and rounding.

When studying the noise distribution during this operation, and to measure
the impact of our changes on this procedure, we note that there are actually
two different relevant noises: the overhead noise which is added to the input
ciphertext before its virtual decryption and the output noise, which is the one
in the final output ciphertext.

2.3 Artificial Neural Networks

An artificial neural network is a computing system inspired by biological brains.
Here, we consider a neural network (NN) that is composed of a population of
artificial neurons arranged in layers. Each neuron of a dense layer accepts nI real-
valued inputs x = (x1, . . . , xnI

) and performs the following two computations:

1. It computes a real value y =
∑nI

i=1 wixi + β, which is a weighted sum of the
inputs with real values called weights: wi is the weight associated to the input
xi, and β, also real-valued, is referred to as the bias of the neuron.

2. It applies a non-linear function f , the activation function, and returns f(y).

The neuron’s output can be written as f (〈w,x〉) = f (
∑nI

i=0 wixi) if
one extends the inputs and the neuron’s weights vector by setting w =
(β,w1, . . . , wnI

) and x = (1, x1, . . . , xnI
). The neurons of a neural network are

organized in successive layers, which are categorized according to their activa-
tion function. Neurons of one layer are connected to the neurons of the next

492 F. Bourse et al.

layer by paths that are associated to weights. An input layer composed of the
network’s inputs as well as an output layer made of the network’s output values
are also added to the network. Internal layers are called hidden, since they are
not directly accessible from the external world.

NNs are usually composed of layers of various types: fully connected (every
neuron of the layer takes all incoming signals as inputs), convolutional (it applies
a convolution to its input), pooling, and so forth. Neural networks could in
principle be recurrent systems, as opposed to the purely feed-forward ones, where
each neuron is only evaluated once. The universal approximation theorem (see,
e.g., [Hor91,Cyb89]) states that a neural network with a single hidden layer that
contains a finite amount of neurons, can approximate any continuous function.
Despite this, the number of neurons in that layer can grow exponentially. Instead,
a deep neural network has several layers of non-linearities, which allow to extract
increasingly complex features of the input and can lead to a better ability to
generalize, especially in the case of more complex tasks.

The FHE–DiNN framework presented in this work is able to evaluate NNs of
arbitrary depth, comprising possibly many hidden layers.

2.4 The MNIST Dataset

The MNIST database (Modified National Institute of Standards and Technology
database) is a dataset of images representing digits handwritten by more than
500 different writers, and is commonly used as a benchmark for machine learning
systems [LBBH98]. The MNIST database contains 60 000 training images and
10 000 testing images. The format of the images is 28 × 28 and the value of each
pixel represents a level of gray. Moreover, each image is labeled with the digit it
depicts.

A typical neural network for the MNIST dataset has 28·28 = 784 input nodes
(one per pixel), an arbitrary number of hidden layers with an arbitrary number
of neurons per layer, and finally 10 output nodes (one per possible digit). The
output values can be interpreted as “scores” given by the NN: the classification
is then given by the digit that achieves the highest score.

Over the years, the MNIST dataset has been a typical benchmark for classi-
fiers, and many approaches have been applied: linear classifiers, principal com-
ponent analysis, support vector machines, neural networks, convolutional neural
networks, etc. For a more complete review on these approaches, we refer the
reader to, e.g., [LBBH98]. Neural networks are known to perform well on this
dataset. For example, [LBBH98] proposes different architectures for neural net-
works and obtains more than 97% of correct classifications. More recent works
even surpassed 99% of accuracy [CMS12]. For a nice overview on the results
obtained on this dataset and on the techniques that were used, we refer the
reader to [LCB98].

Fast Homomorphic Evaluation of Deep Discretized Neural Networks 493

3 Discretized Neural Networks (DiNN)

In this section we formally define DiNNs and we explain how they differ from a
traditional neural network and how to simply convert a NN into a DiNN.

3.1 Definition of a Discretized Neural Network

First of all, we recall that state-of-the-art fully homomorphic encryption schemes
cannot support operations over real messages. Traditional neural networks have
real-valued weights, and this incompatibility motivates investigating alternative
architectures.

Definition 3.1. A Discretized Neural Network (DiNN) is a feed-forward arti-
ficial neural network whose inputs are integer values in {−I, . . . , I} and whose
weights are integer values in {−W, . . . ,W}, for some I,W ∈ N. For every neuron
of the network, the activation function maps the inner product between the incom-
ing inputs vector and the corresponding weights to integer values in {−I, . . . , I}.

In particular, for this paper we chose {−1, 1} as the input space and sign (·)
as the activation function for the hidden layers:

sign (x) =

{
−1, x < 0,

+1, x ≥ 0.
(3.1)

These choices are inspired by the fact that we designed the model with the idea
of performing homomorphic evaluations over encrypted input. As a consequence,
we wanted the message space to be as small as possible, which, in turn, would
allow us to increase the efficiency of the overall evaluation.

We also note that using an activation function whose output is in the same
range as the network’s input allows us to maintain the same semantics across
different layers. In our case, what enters a neuron is always a weighted sum of
values in {−1, 1}. In order to make the evaluation of the network compatible
with FHE schemes, discretizing the input space is not sufficient: we also need to
have discrete values for the weights of the network1.

3.2 Simple Conversion from a Traditional Neural Network
to a DiNN

In this subsection we show a very simple method to convert an already-trained
canonical neural network (i.e., with real weights) into a DiNN. This method is
not guaranteed to be the best way to obtain such a conversion; it indeed intro-

1 As all the computations are done over the torus (i.e., modulo 1), scaling a cipher-
text by any integer factor preserves the relations that make the decryption correct.
However, this does not hold for non-integer factors.

494 F. Bourse et al.

duces a visible loss in the classification accuracy and would probably be best
used as a first step in the conversion procedure. However, we remind the reader
that this work is aimed at the homomorphic evaluation of a network, thus we
decided not to put too much effort in the construction of a sophisticated cleart-
ext model. This procedure allows us to obtain a network which respects our con-
straints and that can be evaluated over encrypted inputs, so it is sufficient for our
purposes.

It turns out that the only thing that we need to do is discretizing the weights
and biases of the network. To this purpose, we define the function

processWeight (w, τ) = τ ·
⌊w

τ

⌉
(3.2)

where τ ∈ N is a parameter that controls the precision of the discretization.
In the following, we implicitly take all the weights as discretized after being
processed through the formula in Eq. 3.2. After fixing a value τ , the network
obtained by applying processWeight (·, τ) to all the weights and biases is a DiNN.
The parameter τ has to be chosen carefully, since it defines the message space
that our encryption scheme must support. Thus, we want the bound on 〈w,x〉
to be small for all neurons, where w and x are the discretized weights and the
inputs associated to the neuron, respectively. In Fig. 1, we show the evaluation
of a single neuron: we first compute 〈w,x〉, which we refer to as a multisum, and
then apply the sign function to the result.

x1

x2

...
...

w1

w2

y

Σ

Fig. 1. Evaluation of a single neuron. The output value is y = sign (〈w,x〉), where wi

are the discretized weights associated to the incoming wires and xi are the correspond-
ing input values.

4 Homomorphic Evaluation of a DiNN

We now give a high level description of our procedure to homomorphically eval-
uate a DiNN, called FHE–DiNN. We basically need two ingredients: we need to
be able to compute the multisum between the encrypted inputs and the weights

Fast Homomorphic Evaluation of Deep Discretized Neural Networks 495

and we need to homomorphically extract the sign of the result. In order to main-
tain the scalability of our scheme across the layers of a given DiNN, we perform
a bootstrapping operation for every neuron in hidden layers. This ensures that
the ciphertext encrypting the sign of the result after applying one layer of the
DiNN can be used for further computations without an initially fixed limit on
the number of layers that the network can contain. Hence we can choose param-
eters that are independent of the number of layers and evaluate arbitrarily deep
neural networks.

4.1 Evaluating the Multisum

In our framework, the weights of the network are available in clear, so we can
evaluate the multisum just by using homomorphic additions. The only things
that need our attention are the message space of our encryption scheme, which
has to be large enough to accommodate for all possible values of the multisums,
and the noise level that might grow too much and lead to incorrect results.

Extending the message space. In order for our FHE scheme to be able to
correctly evaluate the multisum, we need all the possible values of the multisum
to be inside our message space. To this end, we extend our LWE encryption
scheme as follows. This idea was already used in previous works such as [PW08,
KTX08,ABDP15,ALS16].

Construction 1 (Extended LWE-based private-key encryption sch-
eme). Let B be a positive integer and let m ∈ [−B,B] be a message. Then
we split the torus into 2B + 1 slices, one for each possible message, and we
encrypt and decrypt as follows:

Setup (λ): for a security parameter λ, fix n = n (λ) , σ = σ (λ); return s $← T
n

Enc (s,m): return (a, b), with a $← T
n and b = 〈s,a〉+e+ m

2B+1 , where e ← χσ

Dec (s, (a, b)): return 	(b − 〈s,a〉) · (2B + 1)

An input message is mapped to the center of its corresponding torus slice by

scaling it by 1/ (2B + 1) during encryption, and decoded by scaling it by 2B +1
during decryption.

Correctness of homomorphically evaluating the multisum. Note that
ciphertexts can be homomorphically added and scaled by a known integer
constant: for any two messages m1,m2 ∈ [−B,B], any secret key s, any
c1 = (a1, b1) ← Enc (s,m1), c2 = (a2, b2) ← Enc (s,m2), and constant w ∈ Z, we
have that

Dec (s, c1 + w · c2) = Dec (s, (a1 + w · a2, b1 + w · b2)) = m1 + w · m2

as long as (1) m1 + w · m2 ∈ [−B,B], and (2) the noise did not grow too much.
The first condition is easily met by choosing B ≥ ‖w‖1 for all weight vectors

w in the network (e.g., we can take the max).

496 F. Bourse et al.

Fixing the noise. Increasing the message space has an impact on the choice of
parameters. Evaluating the multisum with a given weight vector w means that,
if the standard deviation of the initial noise is σ, then the standard deviation of
the output noise can be as high as ‖w‖2 ·σ (see Lemma 2.1), which in turn means
that our initial standard deviation must be smaller than the one in [CGGI16b]
by a factor maxw ‖w‖2. Moreover, for correctness to hold, we need the noise to
remain smaller than half a slice of the torus. As we are splitting the torus into
2B + 1 slices rather than 2, we need to further decrease the noise by a factor
B. Special attention must be paid to security: taking a smaller noise might in
fact compromise the security of the scheme. In order to mitigate this problem,
we can increase the dimension of the LWE problem n, but this in turn induces
more noise overhead in the bootstrapping procedure due to rounding errors.

4.2 Homomorphic Computation of the Sign Function

We take advantage of the flexibility of the bootstrapping technique introduced
by Chillotti et al. [CGGI16b] in order to perform the sign extraction and the
bootstrapping at the same time. Concretely, in the call to BlindRotate, we change
the value of testVector to

−1
2B + 1

N−1∑

i=0

Xi.

Then, if the value of the phase b−〈s,a〉 is between 1 and N (positive), the output
will be an encryption of 1, otherwise if it is between N + 1 and 2N (negative),
the output will be an encryption of −1.

In order to give more intuition, we present an illustration of the bootstrap-
ping technique in Fig. 2. The first step of the bootstrapping basically consists
in mapping the torus T to an object that we will refer to as the wheel. This
wheel is split into 2N “ticks” that are associated to the possible values that are
encrypted in the bootstrapped ciphertext. The bootstrapping procedure then
consists in choosing a value for each tick, rotating the wheel by b − 〈s,a〉 ticks
counter-clockwise, and picking the value of the rightmost tick. We note that the
values on the wheel are encoded in the testVector variable, which contains values
for the ticks on the top part of the wheel. The bottom values are then fixed by
the anticyclic property of TN [X] (the value at tick N + i is minus the value at
tick i).

From now on, we say that a bootstrapping is correct if, given a valid encryp-
tion of a message μ, its output is a valid encryption of sign (μ) with overwhelming
probability.

4.3 Scale-Invariance

If the parameters are set correctly then, by using the two operations described
above, we can homomorphically evaluate neural networks of any depth. In partic-
ular, the choice of parameters is independent of the depth of the neural network.

Fast Homomorphic Evaluation of Deep Discretized Neural Networks 497

-4

-3 -2

-1

0

1

23

4

+1

−1

Fig. 2. On the left, we show the first step of the bootstrapping, which consists in
mapping the torus (the continuous circle) to the wheel (the 2N ticks on it) by rounding
to the closest tick. Each slice corresponds to one of the possible results of the multisum
operation. On the right we show the final result of the bootstrapping: each tick of the
top part of the wheel is mapped to its sign which is +1 and each tick of the bottom
part to −1. This can roughly be seen as embedding the wheel back to the torus.

This result cannot be achieved with previous techniques relying on somewhat
homomorphic evaluations of the network. In fact, they have to choose param-
eters that accommodate for the whole computation, whereas our method only
requires the parameters to accommodate for the evaluation of a single neuron.
The rest of the computation follows by induction. More precisely, our choice of
parameters only depends on bounds on the norms (‖·‖1 and ‖·‖2) of the input
weights of a neuron. In the following, we denote these bounds by M1 and M2,
respectively.

We say that the homomorphic evaluation of the neural network is correct if
the decryptions of its output scores are equal to the scores given by its evaluation
in the clear with overwhelming probability. Then, the scale-invariance is formally
defined by the following theorem:

Theorem 4.1 (Scale-invariance of our homomorphic evaluation). For
any DiNN of any depth, any correctly generated bootstrapping key bk and
keyswitching key ksk, and any ciphertext c, let σ be a Gaussian parameter such
that the noise of Bootstrap (bk, ksk, c) is sub-Gaussian with parameter σ. Then,
if the bootstrapping is correct on input ciphertexts with sub-Gaussian noise of
parameter σ

M2
and message space larger than 2M1 + 1, the result of the homo-

morphic evaluation of the DiNN is correct.

Proof. The proof is a simple induction on the structure of the neural network.
First, the correctness of the evaluation of the first layer is implied by the choice
of parameters for the encryption2.

2 If it is not, we can bootstrap all input ciphertexts in order to ensure this holds.

498 F. Bourse et al.

If the evaluation is correct for all neurons of the
-th layer, then the correct-
ness for all neurons of the (
+1)-th layer follows from the two observations made
in the previous subsections:

– The result of the homomorphic evaluation of the multisum is a valid encryp-
tion of the multisum;

– The result of the bootstrapping is a valid encryption of the sign of the mul-
tisum.

The first fact is implied by the choice of the message space, since the multi-
sum value is contained in [−M1,M1]. The second one comes directly from the
correctness of the bootstrapping, because the homomorphic computation of the
multisum on ciphertexts with sub-Gaussian noise of parameter σ yields a cipher-
text with sub-Gaussian noise of parameter at most σM2 (cf. Lemma 2.1).

Then, the correctness of the encryption scheme ensures that the final cipher-
texts are valid encryptions of the scores. ��

5 Refinements of TFHE

In this section, we present several improvements that helped us achieving better
efficiency for the actual FHE–DiNN implementation. These various techniques
can without any doubt be applied in other FHE-based applications.

5.1 Reducing Bandwidth Usage

One of the drawbacks of our evaluation process is that encrypting individual
values for each input neuron yields a very large ciphertext, which is inconve-
nient from a user perspective, as a high bandwidth requirement is the direct
consequence. In order to mitigate this issue, we “pack” multiple values into one
ciphertext. We use the standard technique of encrypting a polynomial (using the
TLWE scheme instead of LWE) whose coefficients correspond to the different
values we want to encrypt:

ct = TLWE.Encrypt

(
∑

i

xiX
i

)

,

where the xi’s represent the values of the input neurons to be encrypted3. This
packing technique is what made Ring-LWE an attractive variant to the standard
LWE problem, as was already presented in [LPR10], and is widely used in FHE
applications to amortize the cost of operations [HS14,HS15].

3 If the number of input neurons is bigger than the maximal degree of the polynomials
N , we can pack the ciphertext by groups of N , compute partial multisums with our
technique, and aggregate them afterwards.

Fast Homomorphic Evaluation of Deep Discretized Neural Networks 499

Then, we observe that for each neuron in the first hidden layer, we can
compute the multisum with coefficients wi by scaling the input TLWE ciphertext
by a factor ∑

i

wiX
−i.

Indeed, it is easy to verify that the constant term of
(∑

i xiX
i
) ·(∑i wiX

−i
)

is
∑

i wixi, and we can obtain an LWE encryption of this value by invoking
Extract.

Remark 1. We note that this computation is actually equivalent to doing the
multisum directly on LWE ciphertexts, so the resulting noise growth of this
approach is exactly the same as before. We end up saving bandwidth usage (by
a factor up to N , the degree of the polynomials) basically for free. Furthermore,
as the weights of the neural network never change, we can precompute and store
the FFT representation of the polynomials

∑
wiX

−i, thus saving time during
the online classification.

In a nutshell, we reduce the size of the ciphertexts for N elements from N
LWE ciphertexts to 1 TLWE ciphertext. In terms of numbers of elements in T,
the cost dropped from N(n + 1) to N(k + 1).

We remark that the resulting ciphertext is an LWE ciphertext in dimension
N , and not the original n, thus requiring key-switching to become a legitimate
ciphertext. However, this is not a problem thanks to the trick presented in the
following subsection.

5.2 Moving KeySwitch Around

The main goal of key-switching here is to reduce the LWE dimension. The ben-
efits in memory usage and efficiency of this reduction are extremely important,
since the size of the bootstrapping key, the final noise level, and the number of
external products (the most costly operation) all depend linearly on this param-
eter. However, we noticed that reducing this dimension in the beginning of the
bootstrapping procedure instead of the end gave much better results, hence the
new bootstrapping function:

Bootstrap = Extract ◦ BlindRotate ◦ KeySwitch.

The intuition is that, with this technique, the noise produced by KeySwitch
will not be multiplied by ‖w‖2 when performing the computation of the mul-
tisum, but will only be added at the end. Basically, we moved the noise of the
output ciphertext produced by KeySwitch to an overhead noise.

Doing this, we reverse the usage of the two underlying LWE schemes: every-
thing is now done on high dimensional N -LWE, whereas the low dimensional
n-LWE scheme is only used during the bootstrapping operation. Since the noise
in the key-switching key is not used for any computation anymore, we can allow

500 F. Bourse et al.

it to be bigger, thus reducing the dimension we need for the same security to
hold and, in turn, gaining in time per bootstrapping.

The only downside is that working with higher dimensional N -LWE samples
means slightly more memory usage for the server, bigger output ciphertext4,
and slightly slower addition of ciphertexts. However, as this operation is instan-
taneous when compared to other operations such as bootstrapping, this is not
an issue.

5.3 Dynamically Changing the Message Space

In Sect. 4, we showed how to evaluate the whole neural network by induction,
using a message space of 2B + 1 slices, where B is a bound on the values of the
multisums across the whole evaluation. However, in order to be able to reduce
the probability of errors along the way, we are able to use different message
spaces for each layer of the DiNN, and adapt the number of slots to the values
given by the local computations, depending on the values of the weights w. In
order to do so, we change the value of testVector to

−1
2B� + 1

N−1∑

i=0

Xi,

where B� is now indexed by the current layer
, and is a bound on the values
of the multisums for the next layer
 + 1. The point of this manoeuvre is that
if the number of slots is smaller, the slices are bigger, and the noise would have
to be bigger in order to change the plaintext message. This trick might seem
superfluous, because it decreases a probability that is already negligible. However
sometimes, in practical scenarios, the correctness of the scheme is relaxed, and
this trick allows us to obtain results closer to the expected values without costing
any extra computation or storage.

5.4 Alternative BlindRotate Implementations

Following the technique of [ZYL+17], we try to gain efficiency in the bootstrap-
ping by reducing the number of external products that we have to compute. In
order to do so, they slightly unfold the loop computing X〈s,a〉 in the BlindRotate
algorithm. They group the terms of the sum two by two, using the following
formula for each of the new terms:

Xas+a′s′
= ss′Xa+a′

+ s(1 − s′)Xa + (1 − s)s′Xa′
+ (1 − s)(1 − s′).

In order to compute this new function, they change the bootstrapping key to
contain encryptions of the values ss′, s(1 − s′), (1 − s)s′, and (1 − s)(1 − s′),

4 This can be circumvented by applying one last round of KeySwitch at the end of the
protocol, if needed.

Fast Homomorphic Evaluation of Deep Discretized Neural Networks 501

Algorithm 1. Alternative BlindRotate algorithm.
Input: an n-LWE ciphertext (a, b) with coefficients in Z2N , a (possibly noise-
less) TLWE encryption C of testVector, the bootstrapping key bk such that for
all i in [n/2], bk3i, bk3i+1, and bk3i+2 are respectively TGSW encryptions of
s2is2i+1, s2i(1 − s2i+1), and s2i+1(1 − s2i)
Output: a TLWE encryption of Xb−〈s,a〉 · testVector

1: ACC ← Xb · C
2: for i = 1 . . . n/2 do
3: ACC ← ((Xa2i+a2i+1 −1)bk3i +(Xa2i −1)bk3i+1 +(Xa2i+1 −1)bk3i+2)�ACC
4: end for
5: return ACC

thus expanding the size of the bootstrapping key by a factor 2. Using this idea,
they cut the number of iterations of the loop by half, thus computing only
half the amount of external products, which is the most costly operation of
the bootstrapping. However, by doing so, they introduce the computation of 4
scalings of TGSW ciphertexts (which are matrices) by constant polynomials, and
3 TGSW additions, when TFHE’s BlindRotate only needed 1 scaling of a TLWE
ciphertext, and 1 TLWE addition. Another benefit is that the homomorphic
computation of 〈s,a〉 induces rounding errors on only n/2 terms instead of n.
The noise of the output ciphertext is also different. On the bright side, the
technique of [ZYL+17] reduces the noise induced by the precision errors during
the gadget decomposition by a factor 2. On the other hand, it increases the noise
coming from the bootstrapping key by a factor 2.

In this work, we suggest to use another formula in order to compute each
term of the slightly unfolded sum. Observing that ss′ + s(1 − s′) + (1 − s)s′ +
(1 − s)(1 − s′) = 1, we can save 1 element in the bootstrapping key:

Xas+a′s′
= ss′(Xa+a′ − 1) + s(1 − s′)(Xa − 1) + (1 − s)s′(Xa′ − 1) + 1.

The resulting BlindRotate algorithm is described in Algorithm 1. Having a 1 in
the decomposition is a valuable advantage, because it means that we can move
it out of the external product and instead add the previous value of the accu-
mulator to the result. Thus, efficiency-wise, we halved the number of external
products at the cost of only 3 scalings of TGSW ciphertexts by constant polyno-
mials, 2 TGSW additions, and 1 TLWE addition. We note that while multiplying
naively by a monomial might be faster than multiplying by a degree 2 polyno-
mial, the implementation pre-computes and stores the FFT representation of
the bootstrapping keys in order to speed up polynomial multiplication. Thus,
multiplying by a polynomial of any degree has the same cost. The size of the
bootstrapping key is now 3/2 times larger than the size of the one in TFHE,
which is a compromise between the two previous methods. As in [ZYL+17], the
noise induced by precision errors and roundings is halved compared to TFHE.
On the other hand, now we increase the noise coming from the bootstrapping

502 F. Bourse et al.

Table 2. Comparison of the three alternative BlindRotate algorithms. n denotes the
LWE dimension after keyswitching; δ refers to the noise introduced by rounding the
LWE samples into [2N] before we can BlindRotate; N is the degree of the polynomials
in the TLWE scheme; k is the dimension of the TLWE ciphertexts; ε is the precision
(1/2β)�/2 of the gadget matrix (tensor product between the identity Idk+1 and the
powers of 1/2β arranged as �-dimensional vector (1/2β, . . . , (1/2β)�)); σbk is the stan-
dard deviation of the noise of the TGSW encryptions in the bootstrapping key, and
Abk is a bound on this noise. These values were derived using the theorems for noise
analysis in [CGGI17]

TFHE ZYLZD17 FHE–DiNN

Efficiency

External products n n/2 n/2

Scaled TGSW add. 0 4 3
Scaled TLWE add. 1 0 1

Noise overhead δ δ/2 δ/2

Out noise
(average)

roundings n(1 + kN)ε2 n
2
(1 + kN)ε2 n

2
(1 + kN)ε2

from BK n(k + 1)�Nβ2σ2
bk 2n(k + 1)�Nβ2σ2

bk 3n(k + 1)�Nβ2σ2
bk

Out noise
(worst)

roundings n(1 + kN)ε n
2
(1 + kN)ε n

2
(1 + kN)ε

from BK n(k + 1)�NβAbk 2n(k + 1)�NβAbk 3n(k + 1)�NβAbk

Storage TGSW in the BK n 2n 3n/2

key by a factor 3 instead. However, we note that it is possible to reduce this
noise without impacting efficiency by reducing the noise in the bootstrapping
key, trading off security (depending on what the bottleneck for security of the
scheme is, this could come for free), whereas in order to reduce the noise induced
by the precision errors, efficiency will be impacted. We recapitulate these num-
bers on Table 2.

We note that this idea could be generalized to unfoldings consisting of more
than two terms, yielding more possible trade-offs, but we did not explore further
because of the dissuasive exponential growth in the number of operands in the
general formula.

6 Experimental Results and Conclusions

We implemented the proposed approach to test its accuracy and efficiency. This
section is divided into two main parts: the first one describes the training of
the neural network over data in the clear and the second one details the results
obtained when evaluating the network over encrypted inputs.

6.1 Pre-processing the MNIST Database

In order to respect the constraint of having inputs in {−1, 1}, we binarized all
the images with a threshold value equal to 128: any pixel whose value is smaller
than the threshold is mapped to −1; the others are mapped to +1. This actually
reduces the amount of information available, as each 8-bit grayscale value is
clamped to a single bit, and one could wonder if this could impact the accuracy
of the classification. Although this is possible, a quick visual inspection of the
result shows that the digits depicted in the images are still clearly recognizable.

Fast Homomorphic Evaluation of Deep Discretized Neural Networks 503

6.2 Building a DiNN from Data in the Clear

In order to train the neural network, we first chose its topology, i.e., the number
of hidden layers and neurons per hidden layer. We experimented with several
values, always keeping in mind that a smaller number of neurons per layer is
preferable: having more neurons means that the value of the multisum will be
potentially higher, thus requiring a larger message space in the homomorphic
evaluation, which in turn forces to choose bigger parameters for the scheme.
After some tries, we decided to show the feasibility of our approach through the
homomorphic evaluation of two neural networks. Both have 784 neurons in the
input layer (one per pixel), a single hidden layer, and an output layer composed
of 10 neurons (one per class). The difference between the two models is the size
of the hidden layer: the first network has 30 neurons, while the second has 100.

In order to build a DiNN, we use the simple approach described in Sub-
sect. 3.2: we (1) train a traditional neural network (i.e., with real weights and
biases), and then we (2) discretize all the values by applying the function in
Eq. 3.2. For step (1) we take advantage of the library keras [C+15] with Ten-
sorflow [AAB+15], which offers a simple and highly customizable framework
for defining, training and evaluating even complex models of neural networks.
Through a farly simple Python script and in little time, we are able to define
and train our models as desired. Given its similarity with (a scaled and shifted
version of) the sign function, as an activation function we used the version of
hard sigmoid defined in Tensorflow. The reason behind this choice is that we know
we will substitute this activation function with the true sign (x). Thus, using a
function which is already similar to it helps reducing the errors introduced by
this switch.

Once we obtain the trained model, we proceed to choose a value τ ∈ N

and discretize the weights and the biases of the network, as per Eq. 3.2, thus
finally obtaining a DiNN that we can later evaluate over encrypted inputs. The
choice of τ is an important part of the process: on one hand, picking a very
small value will give little resolution to the network5, potentially degrading the
accuracy largely; on the other hand, picking a very large value will minimize the
loss in accuracy but increase the message space that we will need to support
for homomorphic evaluation, thus forcing us to choose larger parameters and
making the overall evaluation less efficient. Also, note that it is possible to choose
different values of the parameter τ for different layers of the network. Although
there might be better choices, we did not invest too much efforts in optimizing the
cleartext model and simply chose the value τ = 10 for both layers of each model.
Finally, we switched all the activation functions from hard sigmoid (·) to sign (·).
In order to assess the results of the training and how the accuracy varies because
of these changes, in Table 3 we report the accuracies obtained on the MNIST
test set. Note that these values are referred to the evaluation over cleartext
inputs.

5 This means that the number of values that the weights will be able to take will be
fairly limited.

504 F. Bourse et al.

Table 3. Accuracy obtained when evaluating the models in the clear on the MNIST
test set. The first value refers to the evaluation of the model as output by the training;
the second refers to the model where all the values for weights and biases have been
discretized; the third refers to the same model, but with sign (·) as the activation
function for all the neurons in the hidden layer.

Original NN DiNN + hard sigmoid DiNN + sign
30 neurons 94.76% 93.76% (−1%) 93.55% (−1.21%)
100 neurons 96.75% 96.62% (−0.13%) 96.43% (−0.32%)

6.3 Classifying Encrypted Inputs

Implementing the homomorphic evaluation of the neural network over encrypted
input was more than a mere coding exercise, but allowed us to discover several
interesting properties of our DiNNs.

The starting point was the TFHE library by Chillotti et al., which is freely
available on GitHub [CGGI16a] and which was used to efficiently perform the
bootstrapping operation. The library takes advantage of FFT processors for
fast polynomial multiplication and, although not parallelized, achieves excellent
timing results. We extended the code to apply this fast bootstrapping procedure
to our use case.

Parameters. We now present our setting of the parameters, following the nota-
tion of [CGGI16b], to which we refer the reader for extra details. In Table 4 we
highlight the main security parameters regarding our ciphertexts, together with
an estimate of the security level that this setting achieves. Other additional
parameters, related to the various operations we need to perform, are the fol-
lowing:

Table 4. The security parameters we use for the different kinds of ciphertexts. The
estimated security has been extracted from the plot in [CGGI16b] and later verified
with the estimator from Albrecht et al. [APS15].

Ciphertext Dimension α Estimated security

input 1024 2−30 >150 bits
keyswitching key 450 2−17 >80 bits
bootstrapping key 1024 2−36 >100 bits

– Degree of the polynomials in the ring: N = 1024;
– Dimension of the TLWE problem: k = 1;
– Basis for the decomposition of TGSW ciphertexts: Bg = 1024;
– Length of the decomposition of TGSW ciphertexts:
 = 3;
– Basis for the decomposition during key switching: 8;
– Length of the decomposition during key switching: t = 5;

Fast Homomorphic Evaluation of Deep Discretized Neural Networks 505

With this choice of parameters, we achieve a minimum security level of 80 bits
and a single bootstrapping operation takes roughly 15 ms on a single core of an
Intel Core i7-4720HQ CPU @ 2.60 GHz. Also, we note that by exploiting the
packing technique presented in Subsect. 5.1, we save a factor 172 in the size of the
input ciphertext: instead of having 784 · (450 + 1) torus elements (corresponding
to a 450-LWE ciphertext for each of the 784 pixels in an image), we now have
only 2 · 1024 torus elements (corresponding to the two polynomials that form a
TLWE sample).

Finally, we calculated the maximum value of the norms of the weight vectors
associated to each neuron, both for the first and the second layer. These values,
which can be computed at setup time (since the weights are available in the
clear), define the theoretical bounds on the message space that our scheme should
be able to support. In practice, we evaluated the actual values of the multisums
on the training set, and took a message space slightly larger6 than what we
computed. We note that with this method, it is possible that some input could
make the multisum go out of bounds, but this was not observed when evaluating
the network on the test set. Moreover, this allows us to take a considerably
smaller message space in some cases, and thus reduce the probability of errors.
In Table 5 we report the theoretical message space we would need to support
and the message space we actually used for our implementation.

In order to pinpoint our noise parameters, we also calculated the maximum
L2-norms of the weight vectors in each layer: for the network with 30 hidden
neurons, we have maxw ‖w‖2 ≈ 119 for the first layer and ≈85 for the second
layer; for the network with 100 hidden neurons, we have maxw ‖w‖2 ≈ 69 for
the first layer and ≈60 for the second layer.

Table 5. Message space: theoretically required values and how we set them in our
experiments with FHE–DiNN.

FHE–DiNN30 FHE–DiNN100
maxw ‖w‖1 theor. exp. maxw ‖w‖1 theor. exp.

1st layer 2338 4676 2500 1372 2744 1800

2nd layer 399 798 800 488 976 1000

Evaluation. Our homomorphic evaluation follows the outline presented in Fig. 3
in order to classify an encrypted image,

1. Encrypt the image as a TLWE ciphertext;
2. Multiply the TLWE ciphertext by the polynomial which encodes the weights

associated to the hidden layer. This operation takes advantage of FFT for
speeding up the calculations;

3. From each of the so-computed ciphertexts, extract a 1024-LWE ciphertext,
which encrypts the constant term of the result;

6 As we do not achieve perfect correctness with our parameters, the message can be
shifted. This fact has to be taken into account when choosing the number of slots.

506 F. Bourse et al.

4. Perform a key switching in order to move from a 1024-LWE ciphertext to a
450-LWE one;

5. Bootstrap to decrease the noise level. By setting the testVector, this operation
also applies the sign function and changes the message space of our encryption
scheme for free.

6. Perform the multisum of the resulting ciphertext and the weights leading to
the output layer, through the technique showed in Subsect. 4.1.7

7. Return the 10 ciphertexts corresponding to the 10 scores assigned by the
neural network. These ciphertext can be decrypted and the argmax can be
computed to obtain the classification given by the network.

1 TLWE 30 TLWE

30 N -LWE

30 n-LWE

30 N -LWE

10 N -LWE10 scores7

Enc(
∑

i piX
i) ·∑i wiX

−i

Extract

Key Switching

Sign Bootstrapping

weighted sums
Decargmax

User Server

Fig. 3. Refined homomorphic evaluation of a 784:30:10 neural network with activation
function sign. The whole image (784 pixels) is packed into 1 TLWE ciphertext to mini-
mize bandwidth usage. After evaluation, the user recovers 10 ciphertexts corresponding
to the scores assigned by the network to each digit.

In Table 6 we present the complete results of our experiments, both when
using the original BlindRotate algorithm from [CGGI16b] (denoted by or) and
when using the modified algorithm presented in Subsect. 5.4 (denoted by un,
unfolded).

The homomorphic evaluation of the network on the entire test set was com-
pared to its classification in the clear and we observed the following facts:

Observation 1. The accuracy achieved when classifying encrypted images is
close to that obtained when classifying images in the clear.

In the case of the network with 30 hidden neurons, we obtain a classification
accuracy of 93.55% in the clear (cf. Table 3) and of 93.71% homomorphically.
In the case of the network with 100 hidden neurons, we have 96.43% accuracy
7 Note that we do not apply any activation function to the output neurons: we are

only interested in being able to retrieve the scores and sorting them to recover the
classification given by the network.

Fast Homomorphic Evaluation of Deep Discretized Neural Networks 507

in the clear and 96.35% on encrypted inputs. These gaps are explained by the
following observations.

Observation 2. During the evaluation, some signs are flipped during the boot-
strapping but this does not significantly harm the accuracy of the network.

We use aggressive internal parameters (e.g., N and, in general, all the parameters
that control the precision) for the homomorphic evaluation, knowing that this
could sometimes lead the bootstrapping procedure to return an incorrect result
when extracting the sign of a message. In fact, we conjectured that the neural
network would be resilient to perturbations and experimental results proved
that this is indeed the case: when running our experiment over the full test
set, we noticed that the number of wrong bootstrappings is 3383 (respectively,
9088) but this did not change the outcome of the classification in more than 196
(respectively, 105) cases (cf. Table 6).

Table 6. Results of homomorphic evaluation of two DiNNs on the full test set. The
second column gives the number of disagreements (images classified differently) between
the evaluation in the clear and the homomorphic one; the numbers in parentheses
give the disagreements in favor of the cleartext evaluation and those in favor of the
homomorphic evaluation, respectively. The third column gives the number of wrong
bootstrapping, i.e., when the sign is flipped. The fourth value gives the number of
disagreements in which at least one bootstrapping was wrong. Finally, the last column
gives the time required to classify a single image.

Accur. Disag. Wrong BS Disag. (wrong BS) Time
30 or 93.71% 273 (105–121) 3383/300000 196/273 0.515 s
30 un 93.46% 270 (119–110) 2912/300000 164/270 0.491 s
100 or 96.26% 127 (61–44) 9088/1000000 105/127 1.679 s
100 un 96.35% 150 (66–58) 7452/1000000 99/150 1.64 s

Observation 3. The classification of an encrypted image might disagree with
the classification of the same image in the clear but this does not significantly
worsen the overall accuracy.

This is a property that we expected during the implementation phase and our
intuition to explain this fact is the following: the network is assigning 10 scores
to each image, one per digit, and when two scores are close (i.e., the network is
hesitating between two classes), it can happen that the classification in the clear
is correct and the one over the encrypted image is wrong. But the opposite can
also be true, thus leading to classifying correctly an encrypted sample that was
misclassified in the clear. We experimentally verified that disagreements between
the evaluations do not automatically imply that the homomorphic classification
is worse than the one in the clear: out of 273 (respectively, 127) disagreements,
the classification in the clear was correct 105 (respectively, 61) times, against
121 (respectively, 44) times in favor of the homomorphic one8 (cf. Table 6).
8 In the remaining cases, the classifications were different but they were both wrong.

508 F. Bourse et al.

Observation 4. Using the modified version of the BlindRotate algorithm pre-
sented in Subsect. 5.4 decreases the number of wrong bootstrappings.

Before stating some open problems, we conclude with the following note:
using a bigger neural network generally leads to a better classification accuracy,
at the cost of performing more calculations and, above all, more bootstrap-
ping operations. However, the evaluation time will always grow linearly with
the number of neurons. Although it is true that evaluating a bigger network is
computationally more expensive, we stress that the bootstrapping operations
are independent of each other and can thus be performed in parallel. Ideally,
parallelizing the execution across a number of cores equal to the number of neu-
rons in a layer (30 or 100 in our work) would result in that the evaluation of the
layer would take roughly the time of a bootstrapping (i.e., around 15 ms).

Future directions and open problems. This work opens a number of possi-
bilities and, thus, raises several interesting open problems. The first one is about
the construction of our DiNNs. In this work, we did not pay too much atten-
tion to this step and, as a consequence, we considerably worsened the accuracy
when moving from a canonical neural network to a DiNN. In order to improve
the classification given by these discretized networks, it would be interesting to
train a DiNN, rather than simply discretizing an already-trained model. Using
discrete values and the sign function for the activation makes some calculations
(e.g., some derivatives) impossible. Techniques to overcome these limitations
have already been proposed in the literature (e.g., [CB16]) and they can be
applied to our DiNNs as well. Also, another potentially interesting approach
would be mixing these two ways of constructing a DiNN, for example by first
discretizing a given model and then training the resulting network to refine
it. Another natural question is whether we can batch several bootstrappings
together, in order to improve the overall efficiency of the evaluation. Moreover,
the speed of the evaluation would benefit from taking advantage of multi-core
processing units, like GPUs.

Most interestingly, our FHE–DiNN framework is flexible and can be adapted
to more generic cognitive architectures: we leave this as an interesting open prob-
lem. In particular, excellent results have been obtained by using Convolutional
Neural Networks (see e.g., [LBBH98]), and we believe that trying to apply FHE–
DiNN to these models would be an interesting line of research. Achieving this
goal would require extending the current capabilities of FHE. For example, we
would need to be able to homomorphically evaluate the max function, which is
required to construct the widely-used max pooling layers. To the best of our
knowledge, a technique for an efficient homomorphic evaluation of the max func-
tion is currently not known. Finally, the methodology presented in this work is
by no means limited to image recognition, but can be applied to other machine
learning problems as well.

Fast Homomorphic Evaluation of Deep Discretized Neural Networks 509

Acknowledgments. Florian Bourse was supported by the European Research Coun-
cil under the European Community’s Seventh Framework Programme (FP7/2007-2013
Grant Agreement no. 339563 – CryptoCloud), and by the French ANR Project ANR-16-
CE39-0014 PERSOCLOUD. Part of this work was done while the author was employed
by CNRS and visiting CryptoExperts.

Michele Minelli and Matthias Minihold were supported by European Union’s Hori-
zon 2020 research and innovation programme under grant agreement No H2020-MSCA-
ITN-2014-643161 ECRYPT-NET. This work was done while the authors were visiting
CryptoExperts. The authors would like to thank CRYPTO’s anonymous reviewers for
providing useful suggestions and helping improve the paper.

References

[AAB+15] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C.,
Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow,
I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L.,
Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray,
D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar,
K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O.,
Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow:
large-scale machine learning on heterogeneous systems (2015). Software:
tensorflow.org

[ABDP15] Abdalla, M., Bourse, F., De Caro, A., Pointcheval, D.: Simple functional
encryption schemes for inner products. In: Katz, J. (ed.) PKC 2015.
LNCS, vol. 9020, pp. 733–751. Springer, Heidelberg (2015). https://doi.
org/10.1007/978-3-662-46447-2 33

[ALS16] Agrawal, S., Libert, B., Stehlé, D.: Fully secure functional encryption for
inner products, from standard assumptions. In: Robshaw, M., Katz, J.
(eds.) CRYPTO 2016, Part III. LNCS, vol. 9816, pp. 333–362. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53015-3 12

[AP13] Alperin-Sheriff, J., Peikert, C.: Practical bootstrapping in quasilinear
time. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS,
vol. 8042, pp. 1–20. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40041-4 1

[AP14] Alperin-Sheriff, J., Peikert, C.: Faster bootstrapping with polynomial
error. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS,
vol. 8616, pp. 297–314. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-662-44371-2 17

[APS15] Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning
with errors. Cryptology ePrint Archive, Report 2015/046 (2015). http://
eprint.iacr.org/2015/046

[AS00] Agrawal, R., Srikant, R.: Privacy-preserving data mining. SIGMOD Rec.
29(2), 439–450 (2000)

[BGV12] Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homo-
morphic encryption without bootstrapping. In: ITCS 2012, pp. 309–325.
ACM, January 2012

[BLMZ17] Benhamouda, F., Lepoint, T., Mathieu, C., Zhou, H.: Optimization of
bootstrapping in circuits. In: Proceedings of the Twenty-Eighth Annual

http://tensorflow.org
https://doi.org/10.1007/978-3-662-46447-2_33
https://doi.org/10.1007/978-3-662-46447-2_33
https://doi.org/10.1007/978-3-662-53015-3_12
https://doi.org/10.1007/978-3-642-40041-4_1
https://doi.org/10.1007/978-3-642-40041-4_1
https://doi.org/10.1007/978-3-662-44371-2_17
https://doi.org/10.1007/978-3-662-44371-2_17
http://eprint.iacr.org/2015/046
http://eprint.iacr.org/2015/046

510 F. Bourse et al.

ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, Philadel-
phia, PA, USA, pp. 2423–2433. Society for Industrial and Applied Math-
ematics (2017)

[BPTG15] Bost, R., Popa, R.A., Tu, S., Goldwasser, S.: Machine learning classifica-
tion over encrypted data. In: NDSS 2015. The Internet Society, February
2015

[BV11a] Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryp-
tion from (standard) LWE. In: 52nd FOCS, pp. 97–106. IEEE Computer
Society Press, October 2011

[BV11b] Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from
ring-LWE and security for key dependent messages. In: Rogaway, P.
(ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 505–524. Springer, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-22792-9 29

[BV14] Brakerski, Z., Vaikuntanathan, V.: Lattice-based FHE as secure as PKE.
In: ITCS 2014, pp. 1–12. ACM, January 2014

[C+15] Chollet, F., et al.: Keras (2015). https://github.com/keras-team/keras
[CB16] Courbariaux, M., Bengio, Y.: Binarynet: training deep neural net-

works with weights and activations constrained to +1 or −1. CoRR,
abs/1602.02830 (2016)

[CdWM+17] Chabanne, H., de Wargny, A., Milgram, J., Morel, C., Prouff, E.:
Privacy-preserving classification on deep neural network. IACR Cryp-
tology ePrint Archive 2017:35 (2017)

[CGGI16a] Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: TFHE: Fast Fully
Homomorphic Encryption Library over the Torus (2016). https://github.
com/tfhe/tfhe

[CGGI16b] Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster fully homo-
morphic encryption: bootstrapping in less than 0.1 seconds. In: Cheon,
J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part I. LNCS, vol. 10031,
pp. 3–33. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-53887-6 1

[CGGI17] Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster packed
homomorphic operations and efficient circuit bootstrapping for TFHE.
In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Part I. LNCS, vol.
10624, pp. 377–408. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-70694-8 14

[CMS12] Cireşan, D., Meier, U., Schmidhuber, J.: Multi-column deep neural net-
works for image classification. ArXiv e-prints, February 2012

[Cyb89] Cybenko, G.: Approximation by superpositions of a sigmoidal function.
Math. Control Sig. Syst. 2(4), 303–314 (1989)

[DGBL+16] Dowlin, N., Gilad-Bachrach, R., Laine, K., Lauter, K., Naehrig, M.,
Wernsing, J.: CryptoNets: applying neural networks to encrypted data
with high throughput and accuracy. Technical report, February 2016

[DM15] Ducas, L., Micciancio, D.: FHEW: bootstrapping homomorphic encryp-
tion in less than a second. In: Oswald, E., Fischlin, M. (eds.) EURO-
CRYPT 2015, Part I. LNCS, vol. 9056, pp. 617–640. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46800-5 24

[Dwo06] Dwork, C.: Differential privacy (invited paper). In: Bugliesi, M., Preneel,
B., Sassone, V., Wegener, I. (eds.) ICALP 2006, Part II. LNCS, vol.
4052, pp. 1–12. Springer, Heidelberg (2006). https://doi.org/10.1007/
11787006 1

https://doi.org/10.1007/978-3-642-22792-9_29
https://github.com/keras-team/keras
https://github.com/tfhe/tfhe
https://github.com/tfhe/tfhe
https://doi.org/10.1007/978-3-662-53887-6_1
https://doi.org/10.1007/978-3-662-53887-6_1
https://doi.org/10.1007/978-3-319-70694-8_14
https://doi.org/10.1007/978-3-319-70694-8_14
https://doi.org/10.1007/978-3-662-46800-5_24
https://doi.org/10.1007/11787006_1
https://doi.org/10.1007/11787006_1

Fast Homomorphic Evaluation of Deep Discretized Neural Networks 511

[Gen09] Gentry, C.: A fully homomorphic encryption scheme. Ph.D. thesis, Stan-
ford University (2009). crypto.stanford.edu/craig

[GHS12] Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES
circuit. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 850–867. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-32009-5 49

[GSW13] Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning
with errors: conceptually-simpler, asymptotically-faster, attribute-based.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol.
8042, pp. 75–92. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-40041-4 5

[Hor91] Hornik, K.: Approximation capabilities of multilayer feedforward net-
works. Neural Netw. 4(2), 251–257 (1991)

[HS14] Halevi, S., Shoup, V.: Algorithms in HElib. In: Garay, J.A., Gennaro, R.
(eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 554–571. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2 31

[HS15] Halevi, S., Shoup, V.: Bootstrapping for HElib. In: Oswald, E., Fischlin,
M. (eds.) EUROCRYPT 2015, Part I. LNCS, vol. 9056, pp. 641–670.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-
5 25

[HZRS15] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image
recognition. CoRR, abs/1512.03385 (2015)

[KTX08] Kawachi, A., Tanaka, K., Xagawa, K.: Concurrently secure identifica-
tion schemes based on the worst-case hardness of lattice problems. In:
Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 372–389.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89255-
7 23

[LBBH98] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning
applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

[LCB98] LeCun, Y., Cortes, C., Burges, C.: The MNIST database of handwritten
digits (1998). http://yann.lecun.com/exdb/mnist/

[LP13] Lepoint, T., Paillier, P.: On the minimal number of bootstrappings in
homomorphic circuits. In: Adams, A.A., Brenner, M., Smith, M. (eds.)
FC 2013 Workshops. LNCS, vol. 7862, pp. 189–200. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-41320-9 13

[LPR10] Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learn-
ing with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010.
LNCS, vol. 6110, pp. 1–23. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-13190-5 1

[MRSV17] Makri, E., Rotaru, D., Smart, N.P., Vercauteren, F.: PICS: private image
classification with SVM. Cryptology ePrint Archive, Report 2017/1190
(2017). https://eprint.iacr.org/2017/1190

[MZ17] Mohassel, P., Zhang, Y.: SecureML: a system for scalable privacy-
preserving machine learning. In: 2017 IEEE Symposium on Security and
Privacy, pp. 19–38. IEEE Computer Society Press, May 2017

[PV16] Paindavoine, M., Vialla, B.: Minimizing the number of bootstrappings
in fully homomorphic encryption. In: Dunkelman, O., Keliher, L. (eds.)
SAC 2015. LNCS, vol. 9566, pp. 25–43. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-31301-6 2

[PW08] Peikert, C., Waters, B.: Lossy trapdoor functions and their applications.
In 40th ACM STOC, pp. 187–196. ACM Press, May 2008

http://crypto.stanford.edu/craig
https://doi.org/10.1007/978-3-642-32009-5_49
https://doi.org/10.1007/978-3-642-32009-5_49
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1007/978-3-662-44371-2_31
https://doi.org/10.1007/978-3-662-46800-5_25
https://doi.org/10.1007/978-3-662-46800-5_25
https://doi.org/10.1007/978-3-540-89255-7_23
https://doi.org/10.1007/978-3-540-89255-7_23
http://yann.lecun.com/exdb/mnist/
https://doi.org/10.1007/978-3-642-41320-9_13
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-642-13190-5_1
https://eprint.iacr.org/2017/1190
https://doi.org/10.1007/978-3-319-31301-6_2
https://doi.org/10.1007/978-3-319-31301-6_2

512 F. Bourse et al.

[Reg05] Regev, O.: On lattices, learning with errors, random linear codes, and
cryptography. In: 37th ACM STOC, pp. 84–93. ACM Press, May 2005

[SS10] Stehlé, D., Steinfeld, R.: Faster fully homomorphic encryption. In: Abe,
M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 377–394. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8 22

[SV10] Smart, N.P., Vercauteren, F.: Fully homomorphic encryption with rela-
tively small key and ciphertext sizes. In: Nguyen, P.Q., Pointcheval, D.
(eds.) PKC 2010. LNCS, vol. 6056, pp. 420–443. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-13013-7 25

[vDGHV10] van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homo-
morphic encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT
2010. LNCS, vol. 6110, pp. 24–43. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-13190-5 2

[ZK16] Zagoruyko, S., Komodakis, N.: Wide residual networks. CoRR,
abs/1605.07146 (2016)

[ZYC16] Zhang, Q., Yang, L.T., Chen, Z.: Privacy preserving deep computation
model on cloud for big data feature learning. IEEE Trans. Comput.
65(5), 1351–1362 (2016)

[ZYL+17] Zhou, T., Yang, X., Liu, L., Zhang, W., Ding, Y.: Faster bootstrap-
ping with multiple addends. Cryptology ePrint Archive, Report 2017/735
(2017). http://eprint.iacr.org/2017/735

https://doi.org/10.1007/978-3-642-17373-8_22
https://doi.org/10.1007/978-3-642-13013-7_25
https://doi.org/10.1007/978-3-642-13190-5_2
https://doi.org/10.1007/978-3-642-13190-5_2
http://eprint.iacr.org/2017/735

Oblivious Transfer

Adaptive Garbled RAM from Laconic
Oblivious Transfer

Sanjam Garg1, Rafail Ostrovsky2, and Akshayaram Srinivasan1(B)

1 University of California, Berkeley, Berkeley, USA
{sanjamg,akshayaram}@berkeley.edu

2 UCLA, Los Angeles, USA
rafail@cs.ucla.edu

Abstract. We give a construction of an adaptive garbled RAM scheme.
In the adaptive setting, a client first garbles a “large” persistent database
which is stored on a server. Next, the client can provide garbling of mul-
tiple adaptively and adversarially chosen RAM programs that execute
and modify the stored database arbitrarily. The garbled database and
the garbled program should reveal nothing more than the running time
and the output of the computation. Furthermore, the sizes of the garbled
database and the garbled program grow only linearly in the size of the
database and the running time of the executed program respectively (up
to poly logarithmic factors). The security of our construction is based
on the assumption that laconic oblivious transfer (Cho et al., CRYPTO
2017) exists. Previously, such adaptive garbled RAM constructions were
only known using indistinguishability obfuscation or in random oracle
model. As an additional application, we note that this work yields the
first constant round secure computation protocol for persistent RAM pro-
grams in the malicious setting from standard assumptions. Prior works
did not support persistence in the malicious setting.

1 Introduction

Over the years, garbling methods [Yao86,LP09,AIK04,BHR12b,App17] have
been extremely influential and have engendered an enormous number of appli-
cations in cryptography. Informally, garbling a function f and an input x, yields

S. Garg—Research supported in part from DARPA/ARL SAFEWARE Award W911
NF15C0210, AFOSR Award FA9550-15-1-0274, AFOSR YIP Award, DARPA and
SPAWAR under contract N66001-15-C-4065, a Hellman Award and research grants
by the Okawa Foundation, Visa Inc., and Center for Long-Term Cybersecurity
(CLTC, UC Berkeley). The views expressed are those of the author and do not
reflect the official policy or position of the funding agencies.
R. Ostrovsky—Research supported in part by NSF grant 1619348, DARPA SPAWAR
contract N66001-15-1C-4065, US-Israel BSF grant 2012366, OKAWA Foundation
Research Award, IBM Faculty Research Award, Xerox Faculty Research Award, B.
John Garrick Foundation Award, Teradata Research Award, and Lockheed-Martin
Corporation Research Award. The views expressed are those of the authors and do
not reflect position of the Department of Defense or the U.S. Government.

c© International Association for Cryptologic Research 2018
H. Shacham and A. Boldyreva (Eds.): CRYPTO 2018, LNCS 10993, pp. 515–544, 2018.
https://doi.org/10.1007/978-3-319-96878-0_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96878-0_18&domain=pdf

516 S. Garg et al.

the function encoding ̂f and the input encoding x̂. Given ̂f and x̂, there exists an
efficient decoding algorithm that recovers f(x). The security property requires
that ̂f and x̂ do not reveal anything about f or x except f(x). By now, it is well
established that realizing garbling schemes [BHR12b,App17] is an important
cryptographic goal.

One shortcoming of standard garbling techniques has been that the size of
the function encoding grows linearly in the size of the circuit computing the
function and thus leads to large communication costs. Several methods have
been devised to overcome this constraint.

– Lu and Ostrovsky [LO13] addressed the question of garbling RAM program
execution on a persistent garbled database. Here, the efficiency requirement
is that the size of the function encoding grows only with the running time of
the RAM program. This work has lead to fruitful line of research [GHL+14,
GLOS15,GLO15,LO17] that reduces the communication cost to grow linearly
with running times of the programs executed, rather that the corresponding
circuit sizes. A key benefit of this approach is that it has led to constructions
based on one-way functions.

– Goldwasser, Kalai, Popa, Vaikuntanathan, and Zeldovich [GKP+13]
addressed the question of reducing the communication cost by reusing the
encodings. Specifically, they provided a construction of reusable garbled cir-
cuits based on standard assumptions (namely learning-with-errors). However,
their construction needs input encoding to grow with the depth of the circuit
being garbled.

– Finally, starting with Gentry, Halevi, Raykova, and Wichs [GHRW14], a col-
lection of works [CHJV15,BGL+15,KLW15,CH16,CCHR16,ACC+16] have
attempted to obtain garbling schemes where the size of the function encoding
only grows with its description size and is otherwise independent of its run-
ning time on various inputs. However, these constructions are proven secure
only assuming indistinguishability obfuscation [BGI+01,GGH+13].

A recurring theme in all the above research efforts has been the issue of adap-
tivity : Can the adversary adaptively choose the input after seeing the function
encoding?

This task is trivial if one reveals both the function encoding and the input
encoding together after the input is specified. However, this task becomes highly
non-trivial if we require the size of the input encoding to only grow with the size
of the input and independent of the complexity of computing f . The first solution
to this problem was provided by Bellare, Hoang and Rogaway [BHR12a] for the
case of circuits in the random oracle model [BR93]. Subsequently, several adap-
tive circuit garbling schemes have been obtained in the standard model from (i)
one-way functions [HJO+16,JW16,JKK+17],1 or (ii) using laconic OT [GS18a]
which relies on public-key assumptions [CDG+17,DG17,DGHM18,BLSV18].

However, constructing adaptively secure schemes for more communication
constrained settings has proved much harder. In this paper, we focus on the
1 A drawback of these works is that the size of the input encoding grows with the

width/depth of the circuit computing f .

Adaptive Garbled RAM from Laconic Oblivious Transfer 517

case of RAM programs. More specifically, adaptively secure garbled RAM is
known only using random oracles (e.g. [LO13,GLOS15]) or under very strong
assumptions such as indistinguishability obfuscation [CCHR16,ACC+16]. In this
work, we ask:

Can we realize adaptively secure garbled RAM from standard assumptions?

Further motivating the above question, is the tightly related application of
constructing constant round secure RAM computation over a persistent database
in the malicious setting. More specifically, as shown by Beaver, Micali and
Rogaway [BMR90] garbling techniques can be used to realize constant round
secure computation [Yao82,GMW87] constructions. Similarly, above-mentioned
garbling schemes for RAM programs also yield constant round, communication
efficient secure computation solutions [HY16,Mia16,GGMP16,KY18]. However,
preserving persistence of RAM programs in the malicious setting requires the
underlying garbling techniques to provide adaptive security.2

1.1 Our Results

In this work, we obtain a construction of adaptively secure garbled RAM based
on the assumption that laconic oblivious transfer [CDG+17] exists. Laconic
oblivious transfer can be based on a variety of public-key assumptions such
as (i) Computation Diffie-Hellman Assumption [DG17], (ii) Factoring Assump-
tion [DG17], or (iii) Learning-With-Errors Assumption [BLSV18,DGHM18]. In
our construction, the size of the garbled database and the garbled program grow
only linearly in the size of the database and the running time of the executed
program respectively (up to poly logarithmic factors). The main result in our
paper is:

Theorem 1 (Informal). Assuming either the Computational Diffie-Hellman
assumption or the Factoring assumption or the Learning-with-Errors assump-
tion, there exists a construction of adaptive garbled RAM scheme where the time
required to garble a database, a program and an input grows linearly (upto poly
logarithmic factors) with the size of the database, running time of the program
and length of the input respectively.3

Additionally, plugging our adaptively secure garbled RAM scheme into a
malicious secure constant round secure computation protocol yields a mali-
ciously secure constant round secure RAM computation protocol [IKO+11,
ORS15,BL18,GS18b] for a persistent database. Again, this construction is based
on the assumption that laconic OT exists and the underlying assumptions needed
for the constant round protocol.
2 We note that adaptive security is not essential for obtaining protocols with round

complexity that grows with the running time of the executed programs [OS97,
GKK+12,WHC+14].

3 As in the case of adaptively secure garbled circuits, the size of the input encoding
must also grow with the output length of the program. Here, we implicitly assume
that the input and the outputs have the same length.

518 S. Garg et al.

2 Our Techniques

In this section, we outline the main challenges and the techniques used in our
construction of adaptive garbled RAM.

Starting Point. In a recent result, Garg and Srinivasan [GS18a] gave a con-
struction of adaptively secure garbled circuit transfer where the size of the input
encoding grows only with the input and the output length. The main idea behind
their construction is a technique to “linearize” a garbled circuit. Informally, a
garbled circuit is said to be linearized if the simulation of particular garbled gate
depends only on simulating one other gate (or in other words, the simulation
dependency graph is a line). In order to linearize a garbled circuit, their work
transforms a circuit into a sequence of CPU step circuits that can make read
and write accesses at fixed locations in an external memory. The individual step
circuits are garbled using a (plain) garbling scheme and the access to the mem-
ory is mediated using a laconic OT.4 The use of laconic OT enables the above
mentioned garbling scheme to have “linear” structure wherein the simulation of
a particular CPU step depends only on simulating the previous step circuit.

A Generalization. Though the approach of Garg and Srinivasan shares some
similarities with a garbling a RAM program (like garbling a sequence of CPU
step circuits), there are some crucial differences.

1. The first difference is that unlike a circuit, the locations that are accessed by
a RAM program are dynamically chosen depending on the program’s input.

2. The second difference is that the locations that are accessed might leak infor-
mation about the program and the input and a garbled RAM scheme must
protect against such leakages.

The first step we take in constructing an adaptive garbled RAM scheme is to
generalize the above approach of Garg and Srinivasan [GS18a] to construct an
adaptively secure garbled RAM scheme with weaker security guarantees. The
security that we achieve is that of unprotected memory access [GHL+14]. Infor-
mally, a garbled RAM scheme is said to have unprotected memory access if both
the contents of the database and the memory locations that are accessed are
revealed in the clear. This generalization is given in Sect. 4.

In the non-adaptive setting, there are standard transformations (outlined in
[GHL+14]) from a garbled RAM with unprotected memory access to a standard
garbled RAM scheme where both the memory contents and the access patterns
are hidden. This transformation involves the additional use of an ORAM scheme.
Somewhat surprisingly, these transformations fail in the adaptive setting! The
details follow.

4 A laconic OT scheme allows to compress a large database/memory to a small digest.
The digest in some sense binds the entire database. In particular, given the digest
there exists efficient algorithms that can read/update particular memory locations.
The time taken by these algorithms grow only logarithmically with the size of the
database.

Adaptive Garbled RAM from Laconic Oblivious Transfer 519

Challenges. To understand the main challenges, let us briefly explain how the
security proof goes through in the work of Garg and Srinivasan [GS18a]. In a
typical construction of a garbled RAM program, using a sequence of garbled
circuits, one would expect that the simulation of garbled circuits would be done
from the first CPU step to the last CPU step. However, in [GS18a] proof, the
simulation is done in a rather unusual manner, from the last CPU step to the first
CPU step. Of course, it is not possible to simulate the last CPU step directly.
Thus, the process of simulating the last CPU step itself involves a sequence of
hybrids that simulate and “un-simulate” the garbling of the previous CPU steps.
Extending this approach so that the memory contents and the access patterns
are both hidden faces the following two main challenges.

– Challenge 1: In the Garg and Srinivasan construction [GS18a], memory
contents were encrypted using one-time pads. Since the locations that each
CPU step (for a circuit) reads from and write to are fixed, the one-time pad
corresponding to that location could be hardwired to those CPU steps. On
the other hand, in the case of RAM programs the locations being accessed
are dynamically chosen and thus it is not possible to hard-wire the entire
one-time pad into each CPU step as this would blow up the size of these
CPU steps.
It is instructive to note that encrypting the memory using an encryption
scheme and decrypting the read memory contents does not suffice. See more
on this in preliminary attempt below.

– Challenge 2: In the non-adaptive setting, it is easy to amplify unprotected
memory access security to the setting where memory accesses are hidden using
an oblivious RAM scheme [Gol87,Ost90,GO96]. However, in the adaptive
setting this transformation turns out to be tricky. In a bit more detail, the
Garg and Srinivasan [GS18a] approach of simulating CPU step circuits from
the last to the first ends up in conflict with the security of the ORAM scheme
where the simulation is typically done from the first to the last CPU steps. We
note here that the techniques of Canetti et al. [CCHR16] and Ananth et al.
[ACC+16], though useful, do not apply directly to our setting. In particular,
in the Canetti et al. [CCHR16] and Ananth et al. [ACC+16] constructions,
CPU steps where obfuscated using an indistinguishability obfuscation scheme.
Thus, in their scheme the obfuscation for any individual CPU step could be
changed independently. For example, the PRF key used in any CPU step
could be punctured independent of the other CPU steps. On the other hand,
in our construction, inspite of each CPU step being garbled separately, its
input labels are hardwired in the previous garbled circuit. Therefore, a change
in hardwired secret value (like a puncturing a key) in a CPU step needs an
intricate sequence of hybrids for making this change. For instance, in the case
of the example above, it is not possible to puncture the PRF key hardwired in
a particular CPU step in one simple hybrid step. Instead any change in this
CPU step must change the CPU step before it and so on. In summary, in our
case, any such change would involve a new and intricate hybrid argument.

520 S. Garg et al.

2.1 Solving Challenge 1

In this subsection, we describe our techniques to solve challenge 1.

Preliminary Attempt. A very natural approach to encrypting external mem-
ory would be to use a pseudorandom function to encrypt memory content in
each location. More precisely, a data value d in location L is encrypted using the
key PRFK(L) where K is the PRF key. The key K for this pseudorandom func-
tion is hardwired in each CPU step so that it first decrypts the ciphertext that
is read from the memory and uses the underlying data for further processing.
This approach to solving Challenge 1 was in fact used in the works of Canetti
et al. [CCHR16] and Ananth et al. [ACC+16] (and several other prior works) in
a similar context. However, in order to use the security of this PRF, we must first
remove the hardwired key from each of the CPU steps. This is easily achieved
if we rely on indistinguishability obfuscation. Indeed, a single hybrid change is
sufficient to have the punctured key to be hardwired in each of the CPU steps.
However, in our setting this does not work! In particular, we need to puncture
the PRF key in each of the CPU step circuits by simulating them individually
and the delicate dependencies involved in garbling each CPU step blows up the
size of the garbled input to grow with the running time of the program.5 Due
to the same reason, the approaches of encrypting the memory by maintaining a
tree of secret keys [GLOS15,GLO15] do not work.

Our New Idea: A Careful Timed Encryption Mechanism. From the
above attempts, the following aspect of secure garbled RAM arise. Prior
approaches for garbling RAM programs use PRF keys that in some sense
“decrease in power”6 as hybrids steps involve sequential simulation of the CPU
steps starting with the first CPU step and ending in the last CPU step. How-
ever, in the approach of [GS18a], the hybrids do a backward pass, from the last
CPU step circuit to the first CPU step circuit. Therefore, we need a mechanism
wherein the hardwired key for encryption in some sense “strengthens” along the
first to the last CPU step.

Location vs. Time. In almost all garbled RAM constructions, the data stored at a
particular location is encrypted using a location dependent key (e.g. [GLOS15]).
This was not a problem when the keys are being weakened across CPU steps.
However, in our case we need the key to be strengthened in power across CPU
steps. Thus, we need a special purpose encryption scheme where the keys are
derived based on time rather than the locations. Towards this goal, we construct

5 For the readers who are familiar with [GS18a], the number of CPU steps that have
to be maintained in the input dependent simulation for puncturing the PRF key
grows with the number of CPU steps that last wrote to this location and this could
be as large as the running time of the program.

6 The tree-based approaches of storing the secret keys use the mechanism wherein the
hardwired secret keys decrease in power in subsequent CPU steps. In particular, the
secret key corresponding to the root can decrypt all the locations, the secret keys
corresponding to its children can only decrypt a part of the database and so on.

Adaptive Garbled RAM from Laconic Oblivious Transfer 521

a special purpose encryption scheme called as a timed encryption scheme. Let
us explain this in more detail.

Timed Encryption. A timed encryption scheme is just like any (plain) sym-
metric key encryption except that every message is encrypted with respect to
a timestamp. Additionally, there is a special key constrain algorithm that con-
strains a key to only decrypt ciphertexts that are encrypted within a specific
timestamp. The security requirement is that the constrained key does not help
in distinguishing ciphertexts of two messages that are encrypted with respect
to some future timestamp. We additionally require the encryption using a key
constrained with respect to a timestamp time to have the same distribution as an
encryption using an unconstrained key as long as the timestamp to which we are
encrypting is less than or equal to time. For efficiency, we require that the size
of the constrained key to grow only with the length of the binary representation
of the timestamp.

Solving Challenge 1. Timed encryption provides a natural approach to solving
challenge 1. In every CPU step, we hardwire a time constrained key that allows
that CPU step to decrypt all the memory updates done by the prior CPU steps.
The last CPU step in some sense has the most powerful key hardwired, i.e., it can
decrypt all the updates made by all the prior CPU steps and the first CPU step
has the least powerful key hardwired. Thus, the hardwired secret key strengthens
from the first CPU step to the last CPU step. In the security proof, a backward
pass of simulating the last CPU step to the first CPU step conforms well with the
semantics and security properties of a timed encryption scheme. This is because
we remove the most powerful keys first and the rest of the hardwired secret keys
in the previous CPU steps do not help in distinguishing between encryptions of
the actual value that is written and some junk value. We believe that the notion
timed encryption might have other applications and be of independent interest.

Constructing Timed Encryption. We give a construction of a timed encryption
scheme from any one-way function. Towards this goal, we introduce a notion
called as range constrained PRF. A range constrained PRF is a special con-
strained PRF [BW13] where the PRF key can be constrained to evaluate input
points that fall within a particular range. The ranges that we will be interested
in are of the form [0, x]. That is, the constrained key can be used to evaluate the
PRF on any y ∈ [0, x]. For efficiency, we require that the size of the constrained
key to only grow with the binary representation of x. Given such a PRF, we can
construct a timed encryption scheme as follows. The key generation samples a
range constrained PRF key. The encryption of a message m with respect to a
timestamp time proceeds by evaluating the PRF on time to derive sk and then
using sk as a key for symmetric encryption scheme to encrypt the message m.
The time constraining algorithm just constrains the PRF key with respect to the
range [0, time]. Thus, the goal of constructing a timed encryption scheme reduces
to the goal of constructing a range constrained PRF. In this work, we give a

522 S. Garg et al.

construction of range constrained PRF by adding a range constrain algorithm
to the tree-based PRF scheme of Goldreich, Goldwasser and Micali [GGM86].

2.2 Solving Challenge 2

Challenge 1 involves protecting the contents of the memory whereas challenge 2
involves protecting the access pattern. As mentioned before, in the non-adaptive
setting, this problem is easily solved using an oblivious RAM scheme. However,
in our setting we need an oblivious RAM scheme with some special properties.

The works of Canetti et al. [CCHR16] and Ananth et al. [ACC+16] define a
property of an ORAM scheme as strong localized randomness property and then
use this property to hide their access patterns. Informally, an ORAM scheme is
said to have a strong localized randomness property if the locations of the random
tape accessed by an oblivious program in simulating each memory access are
disjoint. Further, the number of locations touched for simulating each memory
access must be poly logarithmic in the size of the database. These works further
proved that the Chung-Pass ORAM scheme [CP13] satisfies the strong localized
randomness property. Unfortunately, this strong localized randomness property
alone is not sufficient for our purposes. Let us give the details.

To understand why the strong localized randomness property alone is not suf-
ficient, we first recall the details of the Chung-Pass ORAM (henceforth, denoted
as CP ORAM) scheme. The CP ORAM is a tree-based ORAM scheme where
the leaves of this tree are associated with the actual memory. A position map
associates each data block in the memory with a random leaf node. Accessing a
memory location involves first reading the position map to get the address of the
leaf where this data block resides. Then, the path from the root to this particular
leaf is traversed and the content of the this data block is read. It is guaranteed
that the data block is located somewhere along the path from the root to leaf
node. The read data block is then placed in the root and the position map is
updated so that another random leaf node is associated with this data block.
To balance the memory, an additional flush is performed but for the sake of this
introduction we ignore this step. The CP ORAM scheme has strong localized
randomness as the randomness used in each memory accesses involves choosing
a random leaf to update the position map. Let us now explain why this property
alone is not sufficient for our purpose.

Recall that in the security proof of [GS18a], the CPU steps are simulated
from the last step to the first. A simulation of a CPU step involves changing
the bit written by the step to some junk value and the changing the location
accessed to a random location. We can change the bit to be written to a junk
value using the security of the timed encryption scheme, however changing the
location accessed to random is problematic. Note that the location that is being
accessed in the CP ORAM is a random root to leaf path. However, the address of
this leaf is stored in the memory via the position map. Therefore, to simulate a
particular CPU step, we must first change the contents of the position map. This
change must be performed in those CPU steps that last updated this memory
location. Unfortunately, timed encryption is not useful in this setting as we can

Adaptive Garbled RAM from Laconic Oblivious Transfer 523

use its security only after removing all the secret keys that are hardwired in
the future time steps. However, in our case, the CPU steps that last updated
this particular location might be so far into the past that removing all the
intermediate encryption keys might blow up the cost of the input encoding to
be as large as the program running time.

To solve this issue, we modify the Chung-Pass ORAM to additionally have
the CPU steps to encrypt the data block that is written using a puncturable
PRF. Unlike the previous approaches of encrypting the data block with respect
to the location, we encrypt it with respect to the time step that modifies the
location. This helps in circumventing the above problem as we can first puncture
the PRF key (which in turn involves a careful set of hybrids) and use its security
to change the position map to contain an encryption of the junk value instead
of the actual address of the leaf node.7 Once this change is done, the locations
that the concerned CPU step is accessing is a random root to leaf path.

3 Preliminaries

Let λ denote the security parameter. A function μ(·) : N → R
+ is said to be

negligible if for any polynomial poly(·) there exists λ0 ∈ N such that for all λ > λ0

we have μ(λ) < 1
poly(λ) . For a probabilistic algorithm A, we denote A(x; r) to

be the output of A on input x with the content of the random tape being r.
When r is omitted, A(x) denotes a distribution. For a finite set S, we denote
x ← S as the process of sampling x uniformly from the set S. We will use PPT
to denote Probabilistic Polynomial Time. We denote [a] to be the set {1, . . . , a}
and [a, b] to be the set {a, a + 1, . . . , b} for a ≤ b and a, b ∈ Z. For a binary
string x ∈ {0, 1}n, we will denote the ith bit of x by xi. We assume without
loss of generality that the length of the random tape used by all cryptographic
algorithms is λ. We will use negl(·) to denote an unspecified negligible function
and poly(·) to denote an unspecified polynomial function.

We assume reader’s familiarity with the notions of a puncturable PRF and
selectively secure garbled circuits and omit the formal definitions here for the
lack of space.

3.1 Updatable Laconic Oblivious Transfer

In this subsection, we recall the definition of updatable laconic oblivious transfer
from [CDG+17].

We give the formal definition below from [CDG+17]. We generalize their
definition to work for blocks of data instead of bits. More precisely, the reads
and the updates happen at the block-level rather than at the bit-level.

Definition 1 ([CDG+17]). An updatable laconic oblivious transfer consists of
the following algorithms:
7 Unlike in the location based encryption scheme, it is sufficient to change the encryp-

tion only in the CPU steps that last modified this location.

524 S. Garg et al.

– crs ← crsGen(1λ, 1N): It takes as input the security parameter 1λ (encoded in
unary) and a block size N and outputs a common reference string crs.

– (d, ̂D) ← Hash(crs,D): It takes as input the common reference string crs and
database D ∈ {{0, 1}N}∗ as input and outputs a digest d and a state ̂D. We
assume that the state ̂D also includes the database D.

– e ← Send(crs, d, L, {mi,0,mi,1}i∈[N]): It takes as input the common reference
string crs, a digest d, and a location L ∈ N and set of messages mi,0,mi,1 ∈
{0, 1}p(λ) for every i ∈ [N] and outputs a ciphertext e.

– (m1, . . . ,mN) ← Receive
̂D(crs, e, L): This is a RAM algorithm with random

read access to ̂D. It takes as input a common reference string crs, a ciphertext
e, and a location L ∈ N and outputs a set of messages m1, . . . ,mN .

– ew ← SendWrite(crs, d, L, {bi}i∈[N], {mj,0,mj,1}|d|
j=1): It takes as input the

common reference string crs, a digest d, and a location L ∈ N, bits bi ∈ {0, 1}
for each i ∈ [N] to be written, and |d| pairs of messages {mj,0,mj,1}|d|

j=1,
where each mj,c is of length p(λ) and outputs a ciphertext ew.

– {mj}|d|
j=1 ← ReceiveWrite

̂D(crs, L, {bi}i∈[N], ew): This is a RAM algorithm
with random read/write access to ̂D. It takes as input the common refer-
ence string crs, a location L, a set of bits b1, . . . , bN ∈ {0, 1} and a ciphertext
ew. It updates the state ̂D (such that D[L] = b1 . . . bN) and outputs messages
{mj}|d|

j=1.

We require an updatable laconic oblivious transfer to satisfy the following prop-
erties.

Correctness: We require that for any database D of size at most M = poly(λ),
any memory location L ∈ [M], any set of messages (mi,0,mi,1) ∈ {0, 1}p(λ)

for each i ∈ [N] where p(·) is a polynomial that

Pr

⎡
⎢⎢⎣ ∀i ∈ [N], mi = mi,D[L,i]

crs ← crsGen(1λ)

(d, D̂) ← Hash(crs, D)

e ← Send(crs, d, L, {mi,0,mi,1}i∈[N])

(m1, . . . ,mN) ← Receive
̂D(crs, e, L)

⎤
⎥⎥⎦ = 1,

where D[L, i] denotes the ith bit in the Lth block of D.
Correctness of Writes: Let database D be of size at most M = poly(λ) and let

L ∈ [M] be any two memory locations. Let D∗ be a database that is identical
to D except that D∗[L, i] = bi for all i ∈ [N] some sequence of {bj} ∈ {0, 1}.
For any sequence of messages {mj,0,mj,1}j∈[λ] ∈ {0, 1}p(λ) we require that

Pr

⎡
⎢⎢⎢⎢⎢⎣

m′
j = mj,d∗

j

∀j ∈ [|d|]

crs ← crsGen(1λ, 1N)

(d, D̂) ← Hash(crs, D)

(d∗, D̂∗) ← Hash(crs, D∗)
ew ← SendWrite(crs, d, L, {bi}i∈[N], {mj,0, mj,1}|d|

j=1)

{m′
j}|d|

j=1 ← ReceiveWrite ̂D(crs, L, {bi}i∈[N], ew)

⎤
⎥⎥⎥⎥⎥⎦

= 1,

Adaptive Garbled RAM from Laconic Oblivious Transfer 525

Sender Privacy: There exists a PPT simulator Sim�OT such that the for any
non-uniform PPT adversary A = (A1,A2) there exists a negligible function
negl(·) s.t.,

∣

∣ Pr[Exptreal(1λ,A) = 1] − Pr[Exptideal(1λ,A) = 1]
∣

∣ ≤ negl(λ)

where Exptreal and Exptideal are described in Fig. 1.

Exptreal[1λ, A]

1. crs ← crsGen(1λ, 1N).
2. (D, L, {mi,0, mi,1}i∈[N], st) ←

A1(crs).
3. (d, D̂) ← Hash(crs, D).
4. Output

A2(st, Send(crs, d, L, {mi,0, mi,1}i∈[N])).

Exptideal[1λ, A]

1. crs ← crsGen(1λ).
2. (D, L, {mi,0, mi,1}i∈[N], st) ←

A1(crs).
3. (d, D̂) ← Hash(crs, D).
4. Output

A2(st, Sim�OT(crs, D, L, {mi,D[L,i]}i∈[N])).

Fig. 1. Sender privacy security game

Sender Privacy for Writes: There exists a PPT simulator Sim�OTW such that
the for any non-uniform PPT adversary A = (A1,A2) there exists a negligible
function negl(·) s.t.,
∣∣ Pr[WriSenPrivExptreal(1λ, A) = 1] − Pr[WriSenPrivExptideal(1λ, A) = 1]

∣∣ ≤ negl(λ)

where WriSenPrivExptreal and WriSenPrivExptideal are described in Fig. 2.

WriSenPrivExptreal[1λ, A]

1. crs ← crsGen(1λ, 1N).
2. (D, L, {bi}i∈[N], {mj,0, mj,1}j∈[λ], st)

← A1(crs).
3. (d, D̂) ← Hash(crs, D).

4. ew ← SendWrite(crs, d, L, {bi}i∈[N],

{mj,0, mj,1}|d|
j=1)

5. Output A2(st, ew).

WriSenPrivExptideal[1λ, A]

1. crs ← crsGen(1λ, 1N).
2. (D, L, {bi}i∈[N], {mj,0, mj,1}j∈[λ], st)

← A1(crs).
3. (d, D̂) ← Hash(crs, D).
4. (d∗, D̂∗) ← Hash(crs, D∗) where D∗

be a database that is identical to D
except that D∗[L, i] = bi for each i ∈
[N].

5. ew ← Sim�OTW(crs, D, L, {bi}i∈[N],
{mj,d∗

j
}j∈[λ])

6. Output A2(st, ew).

Fig. 2. Sender privacy for writes security game

526 S. Garg et al.

Efficiency: The algorithm Hash runs in time |D|poly(log |D|, λ). The algorithms
Send, SendWrite, Receive, ReceiveWrite run in time N · poly(log |D|, λ).

Theorem 2 ([CDG+17,DG17,BLSV18,DGHM18]). Assuming either the
Computational Diffie-Hellman assumption or the Factoring assumption or the
Learning with Errors assumption, there exists a construction of updatable laconic
oblivious transfer.

Remark 1. We note that the security requirements given in Definition 1 is
stronger than the one in [CDG+17] as we require the crs to be generated before
the adversary provides the database D and the location L. However, the con-
struction in [CDG+17] already satisfies this definition since in the proof, we can
guess the location by incurring a 1/|D| loss in the security reduction.

3.2 Somewhere Equivocal Encryption

We now recall the definition of Somewhere Equivocal Encryption from the work
of [HJO+16]. Informally, a somewhere equivocal encryption allows to create
a simulated ciphertext encrypting a message m with certain positions of the
message being “fixed” and the other positions having a “hole”. The simulator
can later fill these “holes” with arbitrary message values by deriving a suitable
decryption key. The main efficiency requirement is that the size of the decryption
key grows only with the number of “holes” and is otherwise independent of the
message size. We give the formal definition below.

Definition 2 ([HJO+16]). A somewhere equivocal encryption scheme with
block-length s, message length n (in blocks) and equivocation parameter t (all
polynomials in the security parameter) is a tuple of probabilistic polynomial algo-
rithms Π = (KeyGen,Enc,Dec,SimEnc,SimKey) such that:

– key ← KeyGen(1λ): It is a PPT algorithm that takes as input the security
parameter (encoded in unary) and outputs a key key.

– c ← Enc(key,m1 . . . mn): It is a PPT algorithm that takes as input a key key
and a vector of messages m = m1 . . . mn with each mi ∈ {0, 1}s and outputs
a ciphertext c.

– m ← Dec(key, c): It is a deterministic algorithm that takes as input a key key
and a ciphertext c and outputs a vector of messages m = m1 . . . mn.

– (st, c) ← SimEnc((mi)i/∈I , I): It is a PPT algorithm that takes as input a set
of indices I ⊆ [n] and a vector of messages (mi)i/∈I and outputs a ciphertext
c and a state st.

– key′ ← SimKey(st, (mi)i∈I): It is a PPT algorithm that takes as input the
state information st and a vector of messages (mi)i∈I and outputs a key key′.

and satisfies the following properties:

Correctness. For every key ← KeyGen(1λ), for every m ∈ {0, 1}s×n it holds
that:

Dec(key,Enc(key,m)) = m

Adaptive Garbled RAM from Laconic Oblivious Transfer 527

Simulation with No Holes. We require that the distribution of (c, key) com-
puted via (st, c) ← SimEnc(m, ∅) and key ← SimKey(st, ∅) to be identical to
key ← KeyGen(1λ) and c ← Enc(key,m1 . . . mn). In other words, simulation
when there are no holes (i.e., I = ∅) is identical to honest key generation and
encryption.

Security. For any PPT adversary A, there exists a negligible function ν = ν(λ)
such that:

∣

∣ Pr[Expsimenc
A,Π (1λ, 0) = 1] − Pr[Expsimenc

A,Π (1λ, 1) = 1]
∣

∣ ≤ ν(λ)

where the experiment Expsimenc
A,Π is defined as follows:

Experiment Expsimenc
A,Π

1. The adversary A on input 1λ outputs a set I ⊆ [n] s.t. |I| < t, a vector
(mi)i�∈I , and a challenge j ∈ [n] \ I. Let I ′ = I ∪ {j}.

2. – If b = 0, compute c as follows: (st, c) ← SimEnc((mi)i�∈I , I).
– If b = 1, compute c as follows: (st, c) ← SimEnc((mi)i�∈I′ , I ′).

3. Send c to the adversary A.
4. The adversary A outputs the set of remaining messages (mi)i∈I .

– If b = 0, compute key as follows: key ← SimKey(st, (mi)i∈I).
– If b = 1, compute key as follows: key ← SimKey(st, (mi)i∈I′)

5. Send key to the adversary.
6. A outputs b′ which is the output of the experiment.

Theorem 3 ([HJO+16]). Assuming the existence of one-way functions, there
exists a somewhere equivocal encryption scheme for any polynomial message-
length n, black-length s and equivocation parameter t, having key size t·s·poly(λ)
and ciphertext of size n · s · poly(λ) bits.

3.3 Random Access Machine (RAM) Model of Computation

We start by describing the Random Access Machine (RAM) model of computa-
tion in Sect. 3.3. Most of this subsection is taken verbatim from [CDG+17].

Notation for the RAM Model of Computation. The RAM model consists
of a CPU and a memory storage of M blocks where each block has length N .
The CPU executes a program that can access the memory by using read/write
operations. In particular, for a program P with memory of size M , we denote
the initial contents of the memory data by D ∈ {{0, 1}N}M . Additionally, the
program gets a “short” input x ∈ {0, 1}n, which we alternatively think of as the
initial state of the program. We use |P | to denote the running time of program
P . We use the notation PD(x) to denote the execution of program P with initial
memory contents D and input x. The program P can read from and write to
various locations in memory D throughout its execution.8

8 In general, the distinction between what to include in the program P , the memory
data D and the short input x can be somewhat arbitrary. However as motivated by
our applications we will typically be interested in a setting where the data D is large
while the size of the program |P | and input length x is small.

528 S. Garg et al.

We will also consider the case where several different programs are executed
sequentially and the memory persists between executions. We denote this process
as (y1, . . . , y�) = (P1(x1), . . . , P�(x�))D to indicate that first PD

1 (x1) is executed,
resulting in some memory contents D1 and output y1, then PD1

2 (x2) is executed
resulting in some memory contents D2 and output y2 etc. As an example, imagine
that D is a huge database and the programs Pi are database queries that can
read and possibly write to the database and are parameterized by some values
xi.

CPU-Step Circuit. Consider an execution of a RAM program which involves
at most T CPU steps. We represent a RAM program P via T small CPU-Step
Circuits each of which executes one CPU step. In this work we will denote one
CPU step by:9

CP
CPU(state, rData) = (state′,R/W, L,wData)

This circuit takes as input the current CPU state state and rData ∈ {0, 1}N .
Looking ahead the data rData will be read from the memory location that was
requested by the previous CPU step. The circuit outputs an updated state state′,
a read or write R/W, the next location to read/write from L ∈ [M], and data
wData to write into that location (wData = ⊥ when reading). The sequence of
locations accessed during the execution of the program collectively form what is
known as the access pattern, namely MemAccess = {(R/Wτ

, Lτ) : τ = 1, . . . , T}.
We assume that the CPU state state contains information about the location that
the previous CPU step requested to read from. In particular, lastLocation(state)
outputs the location that the previous CPU step requested to read and it is ⊥
if the previous CPU step was a write.

Note that in the description above without loss of generality we have made
some simplifying assumptions. We assume that each CPU-step circuit always
reads from or writes to some location in memory. This is easy to implement via
a dummy read and write step. Moreover, we assume that the instructions of the
program itself are hardwired into the CPU-step circuits.

Representing RAM computation by CPU-Step Circuits. The compu-
tation PD(x) starts with the initial state set as state1 = x. In each step
τ ∈ {1, . . . T}, the computation proceeds as follows: If τ = 1 or R/Wτ−1 = write,
then rDataτ := ⊥; otherwise rDataτ := D[Lτ−1]. Next it executes the CPU-Step
Circuit CP,τ

CPU(stateτ , rDataτ) = (stateτ+1,R/Wτ
, Lτ ,wDataτ). If R/Wτ = write,

then set D[Lτ] = wDataτ . Finally, when τ = T , then stateτ+1 is the output of
the program.

3.4 Oblivious RAM

In this subsection, we recall the definition of oblivious RAM [Gol87,Ost90,
GO96].
9 In the definition below, we model each CCPU as a deterministic circuit. Later, we

extend the definition to allow each CCPU to have access to random coins.

Adaptive Garbled RAM from Laconic Oblivious Transfer 529

Definition 3 (Oblivious RAM). An Oblivious RAM scheme consists of two
procedures (OProg,OData) with the following syntax:

– P ∗ ← OProg(1λ, 1log M , 1T , P): Given a security parameter λ, a memory size
M , a program P that runs in time T , OProg outputs an probabilistic oblivi-
ous program P ∗ that can access D∗ as RAM. A probabilistic RAM program
is modeled exactly as a deterministic program except that each step circuit
additionally take random coins as input.

– D∗ ← OData(1λ,D): Given the security parameter λ, the contents of the
database D ∈ {{0, 1}N}M , outputs the oblivious database D∗. For conve-
nience, we assume that OData works by compiling a program P that writes
D to the memory using OProg to obtain P ∗. It then evaluates the program
P ∗ by using uniform random tape and outputs the contents of the memory as
D∗.

Efficiency. We require that the run-time of OData should be M · N ·
poly(log(MN)) · poly(λ), and the run-time of OProg should be T · poly(λ) ·
poly(log(MN)). Finally, the oblivious program P ∗ itself should run in time
T ′ = T · poly(λ) · poly(log(MN)). Both the new memory size M ′ = |D∗| and
the running time T ′ should be efficiently computable from M,N, T, and λ.

Correctness. Let P1, . . . , P� be programs running in polynomial times t1, . . . , t�
on memory D of size M . Let x1, . . . , x� be the inputs and λ be a security param-
eter. Then we require that:

Pr[(P ∗
1 (x1), . . . , P ∗

� (x�))
D∗

= (P1(x1), . . . , P�(x�))D] = 1

where D∗ ← OData(1λ,D), P ∗
i ← OProg(1λ, 1log M , 1T , Pi) and (P ∗

1 (x1), . . . ,
P ∗

� (x�))D∗
indicates running the ORAM programs on D∗ sequentially using an

uniform random tape.

Security. For security, we require that there exists a PPT simulator Sim such
that for any sequence of programs P1, . . . , P� (running in time t1, . . . , t� respec-
tively), initial memory data D ∈ {{0, 1}N}M , and inputs x1, . . . , x� we have
that:

MemAccess
s≈ Sim(1λ, {1ti}�

i=1)

where (y1, . . . , y�) = (P1(x1), . . . , P�(x�))D, D∗ ← OData(1λ, 1N ,D), P ∗
i ←

OProg(1λ, 1log M , 1T , Pi) and MemAccess corresponds to the access pattern of
the CPU-step circuits during the sequential execution of the oblivious programs
(P ∗

1 (x1), . . . , P ∗
� (x�))D∗

using an uniform random tape.

3.4.1 Strong Localized Randomness For our construction of adaptively
secure garbled RAM, we need an additional property called as strong localized
randomness property [CCHR16] from an ORAM scheme. We need a slightly
stronger formalization than the one given in [CCHR16] (refer to footnote 10).

Strong Localized Randomness. Let D ∈ {{0, 1}N}M be any database and
(P, x) be any program/input pair. Let D∗ ← OData(1λ, 1N ,D) and P ∗ ←

530 S. Garg et al.

OProg(1λ, 1log M , 1T , P). Further, let the step circuits of P ∗ be indicated by
{CP ∗,τ

CPU }τ∈[T ′]. Let R be the contents of the random tape used in the execution
of P ∗.

Definition 4 ([CCHR16]). We say that an ORAM scheme has strong localized
randomness property if there there exists a sequence of efficiently computable
values τ1 < τ2 < . . . < τm where τ1 = 1, τm = T ′ and τt − τt−1 ≤ poly(log MN)
for all t ∈ [2,m] such that:

1. For every j ∈ [m − 1] there exists an interval Ij (efficiently computable from
j) of size poly(log MN,λ) s.t. for any τ ∈ [τj , τj+1), the random tape accessed
by CP ∗,τ

CPU is given by RIj (here, RIj denotes the random tape restricted to the
interval Ij).

2. For every j, j′ ∈ [m − 1] and j �= j′, Ij ∩ Ij′ = ∅.
3. Further, for every j ∈ [m], there exists an k < j such that given R\{Ik∪Ij}

(where R\{Ik∪Ij} denotes the content of the random tape except in positions
Ij ∪ Ik) and the output of step circuits CP ∗,τ

CPU for τ ∈ [τk, τk+1), the memory
access made by step circuits CP ∗,τ

CPU for τ ∈ [τj , τj+1) is computationally indis-
tinguishable to random. This k is efficiently computable given the program P
and the input x.10

We argue in the full version of our paper that the Chung-Pass ORAM scheme
[CP13] where the contents of the database are encrypted using a special encryp-
tion scheme satisfies the above definition of strong localized randomness. We
now give details on this special encryption scheme. The key generation sam-
ples a puncturable PRF key K ← PP.KeyGen(1λ). If the τ th step-circuit has to
write a value wData to a location L, it first samples r ← {0, 1}λ and computes
c = (τ‖r,PP.Eval(K, τ‖r) ⊕ wData). It writes c to location L. The decryption
algorithm uses K to first compute PP.Eval(K, τ‖r) and uses it compute wData.

Remark 2. For the syntax of the ORAM scheme to be consistent with this special
encryption scheme, we will use a puncturable PRF to generate the random tape
of P ∗. This key will also be used implicitly used to derive the key for this special
encryption scheme.

3.5 Adaptive Garbled RAM

We now give the definition of adaptive garbled RAM.

Definition 5. An adaptive garbled RAM scheme GRAM consists of the follow-
ing PPT algorithms satisfying the correctness, efficiency and security properties
(Fig. 3).

10 Here, we require that the memory access to be indistinguishable to random even
given the outputs of the step circuits CP ∗,τ

CPU for τ ∈ [τk, τk+1). This is where we
differ from the definition of [CCHR16].

Adaptive Garbled RAM from Laconic Oblivious Transfer 531

– GRAM.Memory(1λ,D): It is a PPT algorithm that takes the security param-
eter 1λ and a database D ∈ {0, 1}M as input and outputs a garbled database
˜D and a secret key SK.

– GRAM.Program(SK, i, P): It is a PPT algorithm that takes as input a secret
key SK, a sequence number i, and a program P as input (represented as a
sequence of CPU steps) and outputs a garbled program ˜P .

– GRAM.Input(SK, i, x): It is a PPT algorithm that takes as input a secret key
SK, a sequence number i and a string x as input and outputs the garbled
input x̃.

– GRAM.Eval
˜D(st, ˜P , x̃): It is a RAM program with random read write access to

˜D. It takes the state information st, garbled program ˜P and the garbled input
x̃ as input and outputs a string y and updated database ˜D′.

Correctness. We say that a garbled RAM GRAM is correct if for every
database D, t = poly(λ) and every sequence of program and input pair
{(P1, x1), . . . , (Pt, xt)} we have that

Pr[Exptcorrectness(1
λ,UGRAM) = 1] ≤ negl(λ)

where Exptcorrectness is defined in Fig. 5.

Adaptive Security. We say that GRAM satisfies adaptive security if there exists
(stateful) simulators (SimD,SimP,SimIn) such that for all t that is polynomial
in the security parameter λ and for all polynomial time (stateful) adversaries A,
we have that

∣

∣Pr[Exptreal(1
λ,GRAM,A) = 1] − Pr[Exptideal(1

λ,Sim,A) = 1]
∣

∣ ≤ negl

where Exptreal,Exptideal are defined in Fig. 4.

Efficiency. We require the following efficiency properties from a UGRAM
scheme.

– (D̃, SK) ← GRAM.Memory(1λ, D).
– Set D1 := D, D̃1 := D̃ and st = ⊥.
– for every i from 1 to t

• P̃i ← GRAM.Program(SK, i, Pi) .
• x̃i ← GRAM.Input(SK, i, xi).
• Compute (yi, Di+1) := P Di

i (xi) and (ỹi, D̃i+1, st) :=
UGRAM.Eval ˜Di(i, st, P̃i, x̃i).

– Output 1 if there exists an i ∈ [t] such that ỹi �= yi.

Fig. 3. Correctness experiment for GRAM

532 S. Garg et al.

Exptreal[1
λ,GRAM, A]

– D ← A(1λ) where D ∈ {0, 1}M

– (D̃, SK) ← GRAM.Memory(1λ, D).
– for every i from 1 to t

• Pi ← A(D̃, {(P̃1, x̃1), . . . ,
(P̃i−1, x̃i−1)}).

• P̃i ← GRAM.Program(SK, i, Pi).
• xi ← A(D̃, {(P̃1, x̃1), . . . ,

(P̃i−1, x̃i−1)}, P̃i).
• x̃i ← GRAM.Input(SK, i, xi).

– Output A({(P̃1, x̃1), . . . , (P̃t, x̃t)}).

Exptideal[1
λ, Sim, A]

– D ← A(1λ) where D ∈ {0, 1}M .
– (D̃, st) ← SimD(1λ, 1M).
– for every i from 1 to t

• Pi ← A(D̃, {(P̃1, x̃1), . . . ,
(P̃i−1, x̃i−1)}).

• (P̃i, st) ← SimP(1|Pi|, st) .
• xi ← A(D̃, {(P̃1, x̃1), . . . ,

(P̃i−1, x̃i−1)}, P̃i).
• (yi, Di+1) := P Di

i (xi) where
D1 := D.

• x̃i ← SimIn(st, yi).
– Output A({(P̃1, x̃1), . . . , (P̃t, x̃t)}).

Fig. 4. Adaptive security experiment for GRAM

– The running time of GRAM.Memory should be bounded by M · poly(log M) ·
poly(λ).

– The running time of GRAM.Program should be bounded by T · poly(log M) ·
poly(λ) where T is the number of CPU steps in the description of the program
P .

– The running time of GRAM.Input should be bounded by |x| ·poly(log M, log T) ·
poly(λ).

– The running time of GRAM.Eval should be bounded by T ·poly(log M) ·poly(λ)
where T is the number of CPU steps in the description of the program P .

4 Adaptive Garbled RAM with Unprotected Memory
Access

Towards our goal of constructing an adaptive garbled RAM, we first construct
an intermediate primitive with weaker security guarantees. We call this primitive
as adaptive garbled RAM with unprotected memory access. Informally, a garbled
RAM scheme has unprotected memory access if both the contents of the database
and the access to the database are revealed in the clear to the adversary. We
differ from the security definition given in [GHL+14] in three aspects. Firstly, we
give an indistinguishability style definition for security whereas [GHL+14] give
a simulation style definition. The indistinguishability based definition makes it
easier to get full-fledged adaptive security later. Secondly and most importantly,
we allow the adversary to adaptively choose the inputs based on the garbled
program. Thirdly, we also require the garbled RAM scheme to satisfy a special
property called as equivocability. Informally, equivocability requires that the real

Adaptive Garbled RAM from Laconic Oblivious Transfer 533

garbling of a program P is indistinguishable to a simulated garbling where the
simulator is not provided with the description of the step circuits for a certain
number of time steps (this number is given by the equivocation parameter).
Later, when the input is specified, the simulator is given the output of these
step circuits and must come-up with an appropriate garbled input.

We now give the formal definition of this primitive.

Definition 6. An adaptive garbled RAM scheme with unprotected memory
access UGRAM consists of the following PPT algorithms satisfying the correct-
ness, efficiency and security properties.

– UGRAM.Memory(1λ, 1n,D): It is a PPT algorithm that takes the security
parameter 1λ, an equivocation parameter n and a database D ∈ {{0, 1}N}M

as input and outputs a garbled database ˜D and a secret key SK.
– UGRAM.Program(SK, i, P): It is a PPT algorithm that takes as input a secret

key SK, a sequence number i, and a program P as input (represented as a
sequence of CPU steps) and outputs a garbled program ˜P .

– UGRAM.Input(SK, i, x): It is a PPT algorithm that takes as input a secret
key SK, a sequence number i and a string x as input and outputs the garbled
input x̃.

– UGRAM.Eval
˜D(st, ˜P , x̃): It is a RAM program with random read write access

to ˜D. It takes the state information st, garbled program ˜P and the garbled
input x̃ as input and outputs a string y and updated database ˜D′.

Correctness. We say that a garbled RAM UGRAM is correct if for every
database D, t = poly(λ) and every sequence of program and input pair
{(P1, x1), . . . , (Pt, xt)} we have that

Pr[Exptcorrectness(1
λ,UGRAM) = 1] ≤ negl(λ)

where Exptcorrectness is defined in Fig. 5.

– (D̃, SK) ← UGRAM.Memory(1λ, 1n, D).
– Set D1 := D, D̃1 := D̃ and st = ⊥.
– for every i from 1 to t

• P̃i ← UGRAM.Program(SK, i, Pi) .
• x̃i ← UGRAM.Input(SK, i, xi).
• Compute (yi, Di+1) := P Di

i (xi) and (ỹi, D̃i+1, st) :=
UGRAM.Eval ˜Di(i, st, P̃i, x̃i).

– Output 1 if there exists an i ∈ [t] such that ỹi �= yi.

Fig. 5. Correctness experiment for UGRAM

534 S. Garg et al.

Security. We require the following two properties to hold.

– Equivocability. There exists a simulator Sim such that for any non-uniform
PPT stateful adversary A and t = poly(λ) we require that:

∣

∣Pr[Exptequiv(1
λ,A, 0) = 1] − Pr[Exptequiv(1

λ,A, 1) = 1]
∣

∣ ≤ negl(λ)

where Exptequiv(1λ,A, b) is described in Fig. 6.
– Adaptive Security. For any non-uniform PPT stateful adversary A and

t = poly(λ) we require that:
∣

∣Pr[ExptUGRAM(1λ,A, 0) = 1] − Pr[ExptUGRAM(1λ,A, 1) = 1]
∣

∣ ≤ negl(λ)

where ExptUGRAM(1λ,A, b) is described in Fig. 7.

1. D ← A(1λ, 1n).
2. D̃ is computed as follows:

(a) If b = 0 : (D̃, SK) ← UGRAM.Memory(1λ, 1n, D).
(b) If b = 1 : D̃ ← Sim(1λ, 1n, D).

3. for each i from t:
(a) (Pi, I) ← A(D̃, {P̃j , x̃j}j∈[i−1]) where I ⊂ [|Pi|] and |I| ≤ n.
(b) P̃i is computed as follows:

i. If b = 0 : P̃i ← UGRAM.Program(SK, i, Pi).
ii. If b = 1 : P̃i ← Sim({CPi,t

CPU }t�∈I)
(c) xi ← A({P̃j , x̃j}j∈[i−1], P̃i).
(d) x̃i is computed as follows:

i. If b = 0 : x̃i ← UGRAM.Input(SK, i, xi)
ii. If b = 1 : x̃i ← Sim(xi, {yt}t∈I) where yt is the o/p of CPi,t

CPU when Pi

is executed with xi.
4. b′ ← A({P̃j , x̃j}j∈[t]).
5. Output b′.

Fig. 6. Exptequiv(1
λ, A, b)

Efficiency. We require the following efficiency properties from a UGRAM
scheme.

– The running time of UGRAM.Memory should be bounded by MN ·
poly(log MN) · poly(λ).

– The running time of UGRAM.Program should be bounded by T ·poly(log MN) ·
poly(λ) where T is the number of CPU steps in the description of the program
P .

– The running time of UGRAM.Input should be bounded by n · |x| ·
poly(log MN, log T) · poly(λ).

Adaptive Garbled RAM from Laconic Oblivious Transfer 535

1. D ← A(1λ, 1n).
2. (D̃, SK) ← UGRAM.Memory(1λ, 1n, D).
3. for x each i from t:

(a) (Pi,0, Pi,1) ← A(D̃, {P̃j , x̃j}j∈[i−1]).
(b) P̃i is computed as follows:

i. If b = 0 : P̃i ← UGRAM.Program(SK, i, Pi,0).
ii. If b = 1 : P̃i ← UGRAM.Program(SK, i, Pi,1)

(c) xi ← A({P̃j , x̃j}j∈[i−1], P̃i).
(d) x̃i ← UGRAM.Input(i, SK, xi)

4. b′ ← A({P̃j , x̃j}j∈[t]).
5. Output b′ if the output of each step circuit in P D

i,0(xi) is same as P D
i,1(xi) for

every i ∈ [t].

Fig. 7. ExptUGRAM(1λ, A, b)

– The running time of UGRAM.Eval should be bounded by
T · poly(log MN, log T) · poly(λ) where T is the number of CPU steps in the
description of the program P .

4.1 Construction

In this subsection, we give a construction of adaptive garbled RAM with unpro-
tected memory access from updatable laconic oblivious transfer, somewhere
equivocal encryption and garbling scheme for circuits with selective security
using the techniques developed in the construction of adaptive garbled circuits
[GS18a]. Our main theorem is:

Theorem 4. Assuming the existence of updatable laconic oblivious transfer,
somewhere equivocal encryption, a pseudorandom function and garbling scheme
for circuits with selective security, there exists a construction of adaptive garbled
RAM with unprotected memory access.

Construction. We give the formal description of the construction in Fig. 8. We
use a somewhere equivocal encryption with block length set to |˜SCτ | where ˜SCτ

denotes the garbled version of the step circuit SC described in Fig. 9, the message
length to be T (which is the running time of the program P) and the equivocation
parameter to be t + log T where t is the actual equivocation parameter for the
UGRAM scheme.

Correctness. The correctness of the above construction follows from a simple
inductive argument that for each step τ ∈ [|P |], the state and the database are
updated correctly at the end of the execution of ˜SCτ . The base case is τ = 0. In
order to prove the inductive step for a step τ , observe that if the step τ outputs
a read then labels recovered in Step 4.(c).(ii) of SS-EvalCkt correspond to data

536 S. Garg et al.

UGRAM.Memory(1λ, 1t, D): On input a database D ∈ {{0, 1}N}M do:
1. Sample crs ← crsGen(1λ, 1N) and K ← PRFKeyGen(1λ) defining PRFK :

{0, 1}2λ+1 → {0, 1}λ.
2. For each k ∈ [λ] and b ∈ {0, 1}, compute lab1k,b := PRFK(1‖k‖b).
3. Compute (d, D̂) = Hash(crs, D).
4. Output D̂, {lab1k,dk

}k∈[λ] as the garbled memory and (K, crs) as the secret
key.

UGRAM.Program(SK, i, P): On input SK = (K, crs), sequence number i, and a
program P (with T step-circuits) do:
1. For each step τ ∈ [2, T], k ∈ [λ + n + N] and b ∈ {0, 1},

(a) Sample labτ
k,b ← {0, 1}λ.

(b) Set lab1k,b := PRFK(i‖k‖b) and labT+1
k,b := PRFK((i + 1)‖k‖b).

We use {labτ
k,b} to denote {labτ

k,b}k∈[λ+n+N],b∈{0,1}.
2. for each τ from T down to 1 do:

(a) Compute S̃Cτ ← GarbleCkt
(
1λ, SC[crs, τ, {labτ+1

k,b }], {labτ
k,b}

)
where

the step-circuit SC is described in Figure 9.
3. Compute key = KeyGen(1λ;PRFK(i‖0λ‖0))
4. Compute c ← Enc(key, {S̃Cτ}τ∈[T]) and output P̃ := c.

UGRAM.Input(SK, i, x) : On input the secret key SK = (K, crs), sequence number
i and a string x ∈ {0, 1}n do:
1. For each k ∈ [λ + n + N] and b ∈ {0, 1}, compute lab1k,b := PRFK(i‖k‖b).
2. Compute key = KeyGen(1λ;PRFK(i‖0λ‖0)).
3. Output x̃ := key, {lab1k,xk

}k∈[λ+1,λ+n], {lab1k,0}k∈[n+λ+1,n+λ+N]

)
.

UGRAM.Eval ˜D(i, st, P̃ , x̃) : On input i, state st, the garbled program P̃ , and gar-
bled input x̃ do:
1. Parse x̃ as key, {labk}k∈[λ+1,n+λ+N]

)
and P̃ as c.

2. If i = 1, obtain {labk}k∈[λ] from garbled memory; else, parse st as
{labk}k∈[λ].

3. Compute {S̃Cτ}τ∈[T] := Dec(key, c) and set lab := {labk}k∈[n+λ+N].
4. for each τ from 1 to T do:

(a) Compute (R/W, L, A, {labk}k∈[λ+1,λ+n], B) := EvalCkt(S̃Cτ , lab).
(b) If R/W = write,

i. Parse A as (ew,wData) and B as {labk}k∈[λ+1,n+λ+N].
ii. {labk}k∈[λ] ← ReceiveWrite ̂D(crs, L,wData, ew)

(c) else,
i. Parse A as {labk}k∈[n+λ] and B as e.
ii. {labk}k∈[n+λ+1,n+λ+N] ← Receive ̂D(crs, L, e)

(d) Set lab := {labk}k∈[n+λ+N].
5. Parse lab as {labk}k∈[n+λ+N]. Output {labk}k∈[λ+1,n+λ] and st :=

{labk}k∈[λ].

Fig. 8. Adaptive garbled RAM with unprotected memory access

Adaptive Garbled RAM from Laconic Oblivious Transfer 537

Step Circuit SC

Input: A digest d, state state and a block rData.
Hardcoded: The common reference string crs, the step number τ and a set of
labels {labk,b}.
1. Compute (state′,R/W, L,wData) := CP,τ

CPU(state, rData).
2. If τ = T , reset labk,b = b for all k ∈ [λ + 1, λ + n] and b ∈ {0, 1}.
3. if R/W = write do:

(a) Compute ew ← SendWrite(crs, d, L,wData, {labk,b}k∈[λ],b∈{0,1}).
(b) Output (R/W, L, ew,wData, {labk,state′

k−λ
}k∈[λ+1,λ+n], {labk,0}k∈[n+λ+1,n+λ+N]).

4. else,
(a) Compute e ← Send(crs, d, L, {labk,b}k∈[n+λ+1,n+λ+N],b∈{0,1}).
(b) (R/W, L, {labk,dk}k∈[λ], {labk,state′

k−λ
}k∈[λ+1,λ+n], e).

Fig. 9. Description of the step circuit

block in the location requested. Otherwise, the labels recovered in Step 4(b).(ii)
of SS-EvalCkt corresponds to the updated value of the digest with the corre-
sponding block written to the database.

Efficiency. The efficiency of our construction directly follows from the efficiency
of updatable laconic oblivious transfer and the parameters set for the somewhere
equivocal encryption. In particular, the running time of UGRAM.Memory is D ·
poly(λ), UGRAM.Program is T ·poly(log MN,λ) and that of UGRAM.Input is n|x|·
poly(log M, log T, λ). The running time of UGRAM.Eval is T ·poly(log M, log T, λ).

Security. We prove the security of this construction in the full version of our
paper.

5 Timed Encryption

In this section, we give the definition and construction of a timed encryption
scheme. We will use a timed encryption scheme in the construction of adaptive
garbled RAM in the next section.

A timed encryption scheme is a symmetric key encryption scheme with some
special properties. In this encryption scheme, every message is encrypted with
respect to a timestamp time. Additionally, there is a special algorithm called as
constrain that takes an encryption key K and a timestamp time′ as input and
outputs a time constrained key K[time′]. A time constrained key K[time′] can
be used to decrypt any ciphertext that is encrypted with respect to timestamp
time < time′. For security, we require that knowledge of a time constrained key
does not help an adversary to distinguish between encryptions of two messages
that are encrypted with respect to some future timestamp.

538 S. Garg et al.

Definition 7. A timed encryption scheme is a tuple of algorithms
(TE.KeyGen,TE.Enc,TE.Dec,TE.Constrain) with the following syntax.

– TE.KeyGen(1λ): It is a randomized algorithm that takes the security parameter
1λ and outputs a key K.

– TE.Constrain(K, time): It is a deterministic algorithm that takes a key K and
a timestamp time ∈ [0, 2λ − 1] and outputs a time-constrained key K[time].

– TE.Enc(K, time,m): It is a randomized algorithm that takes a key K, a times-
tamp time and a message m as input and outputs a ciphertext c or ⊥.

– TE.Dec(K, c): It is a deterministic algorithm that takes a key K and a cipher-
text c as input and outputs a message m.

We require a timed encryption scheme to follow the following properties.

Correctness. We require that for all messages m and for all timestamps time1 ≤
time2:

Pr[TE.Dec(K[time2], c) = m] = 1

where K ← TE.KeyGen(1λ), K[time2] := TE.Constrain(K, time2) and c ←
TE.Enc(K, time1,m).

Encrypting with Constrained Key. For any message m and timestamps
time1 ≤ time2, we require that:

{TE.Enc(K, time1,m)} ≈ {TE.Enc(K[time2], time1,m)}

where K ← TE.KeyGen(1λ), K[time2] := TE.Constrain(K, time2) and ≈ denotes
that the two distributions are identical.

Security. For any two messages m0,m1 and timestamps (time, {timei}i∈[t])
where timei < time for all i ∈ [t], we require that:

{{K[timei]}i∈[t],TE.Enc(K, time,m0)} c≈ {{K[timei]}i∈[t],TE.Enc(K, time,m1)}

where K ← TE.KeyGen(1λ) and K[timei] := TE.Constrain(K, timei) for every
i ∈ [t].

We prove the following theorem in the full version of our paper.

Theorem 5. Assuming the existence of one-way functions, there exists a con-
struction of timed encryption.

6 Construction of Adaptive Garbled RAM

In this section, we give a construction of adaptive garbled RAM. We make use
of the following primitives.

– A timed encryption scheme (TE.KeyGen,TE.Enc,TE.Dec,TE.Constrain). Let
N be the output length of TE.Enc when encrypting single bit messages.

Adaptive Garbled RAM from Laconic Oblivious Transfer 539

GRAM.Memory(1λ, D): On input the database D ∈ {0, 1}M :
1. Sample K ← TE.KeyGen(1λ) and S ← PRFKeyGen(1λ) defining PRFS :

{0, 1}λ → {0, 1}n (where n is the input length of each program).
2. Initialize an empty array D̂ of M blocks with block length N .
3. for each i from 1 to M do:

(a) Set D̂[i] ← TE.Enc(K, 0λ, D[i]).
4. D∗ ← OData(1λ, 1N , D̂).
5. (D̃, SK) ← UGRAM.Memory(1λ, 1t, D∗) where t = poly(logMN).
6. Output D̃ as the garbled memory and (K, S, SK) as the secret key.

GRAM.Program(SK′, i, P): On input SK′ = (K, S, SK), sequence number i, and
a program P :
1. Sample K′ ← PP.KeyGen(1λ)
2. P ∗ ← OProg(1λ, 1log M , 1T , P) where P ∗ runs in time T ′.
3. For each τ ∈ [T ′], compute K[(i‖τ)] ← TE.Constrain(K, (i‖τ)) where (i‖τ)

is expressed as a λ-bit string.
4. Compute r := PRFS(i).
5. Let τ1, . . . , τm be the sequence of values guaranteed by strong localized

randomness.
6. for each τ ∈ [T ′] do:

(a) Let j ∈ [m − 1] be such that τ ∈ [τj , τj+1).
(b) Let Cτ

CPU := SCτ [i, τ, K[(i‖τ)], Ij , K
′, r′] where r′ = r if τ = T ′, else

r′ = ⊥. The step circuit SC is described in Figure 11
7. Construct a RAM program P ′ with step-circuits given by {Cτ

CPU}.
8. P̃ ← UGRAM.Program(SK, i, P ′).
9. Output P̃ .

GRAM.Input(SK′, i, P): On input SK′ = (K, S, SK), i and x:
1. Compute r = PRFS(i)
2. Compute x̂ ← UGRAM.Input(SK, i, x)
3. Output x̃ = (x̂, r).

GRAM.Eval ˜D(i, st, P̃ , x̃): On input state st, the garbled program P̃ , and garbled
input x̃:
1. Compute (y, st′) ← UGRAM.Eval ˜D(st, P̃ , x̂) and update st to st′. Output

y ⊕ r.

Fig. 10. Construction of adaptive GRAM

– A puncturable pseudorandom function (PP.KeyGen,PP.Eval,PP.Punc).
– An oblivious RAM scheme (OData,OProg) with strong localized randomness.
– An adaptive garbled RAM scheme UGRAM with unprotected memory access.

The formal description of our construction appears in Fig. 10.

Correctness. We give an informal argument for correctness. The only difference
between UGRAM and the construction we give in Fig. 10 is that we encrypt the
database using a timed encryption scheme and encode it using a ORAM scheme.
To argue the correctness of our construction, it is sufficient to argue that each

540 S. Garg et al.

Step Circuit SCτ

Input: A ciphertext cCPU and a data block X ∈ {0, 1}N .
Hardcoded: The sequence number i, step number τ , the constrained key K[(i‖τ)],
the interval Ij , the key K′ and a string r′.

1. Compute rData := TE.Dec(K[(i‖τ)], X) and state = TE.Dec(K[(i‖τ)], cCPU).
2. Compute RIj = PP.Eval(K′, Ij).
3. Compute (R/W, L, state′,wData) := CP ∗,τ

CPU (state, rData, RIj).
4. if τ = T ′, then output c′

CPU = state′ ⊕ r′; else c′
CPU = TE.Enc(K[(i‖τ)], state′).

5. else if R/W = write do:
(a) Compute X ′ ← TE.Enc(K[i‖τ], (i, τ),wData).
(b) Output (c′

CPU,R/W, L, X ′).
6. else if R/W = read, output (c′

CPU,R/W, L, ⊥).

Fig. 11. Description of the step circuit

step circuit SC faithfully emulates the corresponding step circuit of P ∗. Let
SCi,τ be the step circuit that corresponds to the τ th step of the ith program
Pi. We observe that any point in time the Lth location of the database ̂D is an
encryption of the actual data bit with respect to timestamp time := (i′‖τ ′) where
SCi′,τ ′

last wrote at the Lth location. It now follows from this invariant and the
correctness of the timed encryption scheme that the hardwired constrained key
K[i‖τ] in SCi,τ can be used to decrypt the read block X as the step that last
modified this block has a timestamp that is less than (i‖τ).

Efficiency. We note that setting the equivocation parameter n = poly(log MN),
we obtain that the running time of GRAM.Input is |x| ·poly(λ, log MN). The rest
of the efficiency criterion follow directly from the efficiency of adaptive garbled
RAM with unprotected memory access.

Security. We give the proof of security in the full version of our paper.

References

[ACC+16] Ananth, P., Chen, Y.-C., Chung, K.-M., Lin, H., Lin, W.-K.: Delegat-
ing RAM computations with adaptive soundness and privacy. In: Hirt,
M., Smith, A.D. (eds.) TCC 2016-B, Part II. LNCS, vol. 9986, pp. 3–30.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53644-5 1

[AIK04] Applebaum, B., Ishai, Y., Kushilevitz, E.: Cryptography in NC0. In: 45th
FOCS, pp. 166–175. IEEE Computer Society Press, October 2004

[App17] Applebaum, B.: Garbled circuits as randomized encodings of functions: a
primer. IACR Cryptology ePrint Archive, 2017:385 (2017)

[BGI+01] Barak, B., et al.: On the (im)possibility of obfuscating programs. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-44647-8 1

https://doi.org/10.1007/978-3-662-53644-5_1
https://doi.org/10.1007/3-540-44647-8_1

Adaptive Garbled RAM from Laconic Oblivious Transfer 541

[BGL+15] Bitansky, N., Garg, S., Lin, H., Pass, R., Telang, S.: Succinct randomized
encodings and their applications. In: Servedio, R.A., Rubinfeld, R. (eds.)
47th ACM STOC, pp. 439–448. ACM Press, June 2015

[BHR12a] Bellare, M., Hoang, V.T., Rogaway, P.: Adaptively secure garbling with
applications to one-time programs and secure outsourcing. In: Wang, X.,
Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 134–153. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-4 10

[BHR12b] Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits.
In: Yu, T., Danezis, G., Gligor, V.D. (eds.) ACM CCS 2012, pp. 784–796.
ACM Press, October 2012

[BL18] Benhamouda, F., Lin, H.: k -round multiparty computation from k -round
oblivious transfer via garbled interactive circuits. In: Nielsen, J.B., Rijmen,
V. (eds.) EUROCRYPT 2018, Part II. LNCS, vol. 10821, pp. 500–532.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8 17

[BLSV18] Brakerski, Z., Lombardi, A., Segev, G., Vaikuntanathan, V.: Anonymous
IBE, leakage resilience and circular security from new assumptions. In:
Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820,
pp. 535–564. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
78381-9 20. https://eprint.iacr.org/2017/967

[BMR90] Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure proto-
cols (extended abstract). In: 22nd ACM STOC, pp. 503–513. ACM Press,
May 1990

[BR93] Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for
designing efficient protocols. In: Ashby, V. (ed.) ACM CCS 1993, pp. 62–
73. ACM Press, November 1993

[BW13] Boneh, D., Waters, B.: Constrained pseudorandom functions and their
applications. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II.
LNCS, vol. 8270, pp. 280–300. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-42045-0 15

[CCHR16] Canetti, R., Chen, Y., Holmgren, J., Raykova, M.: Adaptive succinct gar-
bled RAM or: how to delegate your database. In: Hirt, M., Smith, A. (eds.)
TCC 2016-B, Part II. LNCS, vol. 9986, pp. 61–90. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53644-5 3

[CDG+17] Cho, C., Döttling, N., Garg, S., Gupta, D., Miao, P., Polychroniadou,
A.: Laconic oblivious transfer and its applications. In: Katz, J., Shacham,
H. (eds.) CRYPTO 2017. LNCS, vol. 10402, pp. 33–65. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-63715-0 2

[CH16] Canetti, R., Holmgren, J.: Fully succinct garbled RAM. In: Sudan, M.
(ed.) ITCS 2016, pp. 169–178. ACM, January 2016

[CHJV15] Canetti, R., Holmgren, J., Jain, A., Vaikuntanathan, V.: Succinct garbling
and indistinguishability obfuscation for RAM programs. In: Servedio, R.A.,
Rubinfeld, R. (eds.) 47th ACM STOC, pp. 429–437. ACM Press, June 2015

[CP13] Chung, K.-M., Pass, R.: A simple ORAM. Cryptology ePrint Archive,
Report 2013/243 (2013). https://eprint.iacr.org/2013/243

[DG17] Döttling, N., Garg, S.: Identity-based encryption from the Diffie-Hellman
assumption. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol.
10401, pp. 537–569. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-63688-7 18

https://doi.org/10.1007/978-3-642-34961-4_10
https://doi.org/10.1007/978-3-319-78375-8_17
https://doi.org/10.1007/978-3-319-78381-9_20
https://doi.org/10.1007/978-3-319-78381-9_20
https://eprint.iacr.org/2017/967
https://doi.org/10.1007/978-3-642-42045-0_15
https://doi.org/10.1007/978-3-642-42045-0_15
https://doi.org/10.1007/978-3-662-53644-5_3
https://doi.org/10.1007/978-3-319-63715-0_2
https://eprint.iacr.org/2013/243
https://doi.org/10.1007/978-3-319-63688-7_18
https://doi.org/10.1007/978-3-319-63688-7_18

542 S. Garg et al.

[DGHM18] Döttling, N., Garg, S., Hajiabadi, M., Masny, D.: New constructions of
identity-based and key-dependent message secure encryption schemes. In:
Abdalla, M., Dahab, R. (eds.) PKC 2018. LNCS, vol. 10769, pp. 3–
31. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76578-5 1.
https://eprint.iacr.org/2017/978

[GGH+13] Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Can-
didate indistinguishability obfuscation and functional encryption for all
circuits. In: 54th FOCS, pp. 40–49. IEEE Computer Society Press, Octo-
ber 2013

[GGM86] Goldreich, O., Goldwasser, S., Micali, S.: How to construct random func-
tions. J. ACM 33(4), 792–807 (1986)

[GGMP16] Garg, S., Gupta, D., Miao, P., Pandey, O.: Secure multiparty RAM com-
putation in constant rounds. In: Hirt, M., Smith, A. (eds.) TCC 2016-B,
Part I. LNCS, vol. 9985, pp. 491–520. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53641-4 19

[GHL+14] Gentry, C., Halevi, S., Lu, S., Ostrovsky, R., Raykova, M., Wichs, D.: Gar-
bled RAM revisited. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT
2014. LNCS, vol. 8441, pp. 405–422. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-642-55220-5 23

[GHRW14] Gentry, C., Halevi, S., Raykova, M., Wichs, D.: Outsourcing private RAM
computation. In: 55th FOCS, pp. 404–413. IEEE Computer Society Press,
October 2014

[GKK+12] Gordon, S.D., Katz, J., Kolesnikov, V., Krell, F., Malkin, T., Raykova, M.,
Vahlis, Y.: Secure two-party computation in sublinear (amortized) time.
In: Yu, T., Danezis, G., Gligor, V.D. (eds.) ACM CCS 2012, pp. 513–524.
ACM Press, October 2012

[GKP+13] Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich,
N.: Reusable garbled circuits and succinct functional encryption. In:
Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th ACM STOC,
pp. 555–564. ACM Press, June 2013

[GLO15] Garg, S., Lu, S., Ostrovsky, R.: Black-box garbled RAM. In: Guruswami,
V. (ed.) 56th FOCS, pp. 210–229. IEEE Computer Society Press, October
2015

[GLOS15] Garg, S., Lu, S., Ostrovsky, R., Scafuro, A.: Garbled RAM from one-way
functions. In: Servedio, R.A., Rubinfeld, R. (eds.) 47th ACM STOC, pp.
449–458. ACM Press, June 2015

[GMW87] Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game
or a completeness theorem for protocols with honest majority. In: Aho, A.
(ed.) 19th ACM STOC, pp. 218–229. ACM Press, May 1987

[GO96] Goldreich, O., Ostrovsky, R.: Software protection and simulation on obliv-
ious rams. J. ACM 43(3), 431–473 (1996)

[Gol87] Goldreich, O.: Towards a theory of software protection and simulation by
oblivious RAMs. In: Aho, A. (ed.) 19th ACM STOC, pp. 182–194. ACM
Press, May 1987

[GS18a] Garg, S., Srinivasan, A.: Adaptively secure garbling with near optimal
online complexity. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018.
LNCS, vol. 10821, pp. 535–565. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-78375-8 18

https://doi.org/10.1007/978-3-319-76578-5_1
https://eprint.iacr.org/2017/978
https://doi.org/10.1007/978-3-662-53641-4_19
https://doi.org/10.1007/978-3-662-53641-4_19
https://doi.org/10.1007/978-3-642-55220-5_23
https://doi.org/10.1007/978-3-642-55220-5_23
https://doi.org/10.1007/978-3-319-78375-8_18
https://doi.org/10.1007/978-3-319-78375-8_18

Adaptive Garbled RAM from Laconic Oblivious Transfer 543

[GS18b] Garg, S., Srinivasan, A.: Two-round multiparty secure computation from
minimal assumptions. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT
2018, Part II. LNCS, vol. 10821, pp. 468–499. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-78375-8 16

[HJO+16] Hemenway, B., Jafargholi, Z., Ostrovsky, R., Scafuro, A., Wichs, D.: Adap-
tively secure garbled circuits from one-way functions. In: Robshaw, M.,
Katz, J. (eds.) CRYPTO 2016, Part III. LNCS, vol. 9816, pp. 149–178.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53015-3 6

[HY16] Hazay, C., Yanai, A.: Constant-round maliciously secure two-party compu-
tation in the RAM Model. In: Hirt, M., Smith, A. (eds.) TCC 2016-B, Part
I. LNCS, vol. 9985, pp. 521–553. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-53641-4 20

[IKO+11] Ishai, Y., Kushilevitz, E., Ostrovsky, R., Prabhakaran, M., Sahai, A.: Effi-
cient non-interactive secure computation. In: Paterson, K.G. (ed.) EURO-
CRYPT 2011. LNCS, vol. 6632, pp. 406–425. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-20465-4 23

[JKK+17] Jafargholi, Z., Kamath, C., Klein, K., Komargodski, I., Pietrzak, K.,
Wichs, D.: Be adaptive, avoid overcommitting. In: Katz, J., Shacham,
H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 133–163. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-63688-7 5

[JW16] Jafargholi, Z., Wichs, D.: Adaptive security of yao’s garbled circuits. In:
Hirt, M., Smith, A. (eds.) TCC 2016-B, Part I. LNCS, vol. 9985, pp.
433–458. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-
53641-4 17

[KLW15] Koppula, V., Lewko, A.B., Waters, B.: Indistinguishability obfuscation for
turing machines with unbounded memory. In: Servedio, R.A., Rubinfeld,
R. (eds.) 47th ACM STOC, pp. 419–428. ACM Press, June 2015

[KY18] Keller, M., Yanai, A.: Efficient maliciously secure multiparty computation
for RAM. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS,
vol. 10822, pp. 91–124. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-78372-7 4. https://eprint.iacr.org/2017/981

[LO13] Lu, S., Ostrovsky, R.: How to garble RAM programs? In: Johans-
son, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
719–734. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
38348-9 42

[LO17] Lu, S., Ostrovsky, R.: Black-box parallel garbled RAM. In: Katz, J.,
Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10402, pp. 66–92. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-63715-0 3

[LP09] Lindell, Y., Pinkas, B.: A proof of security of Yao’s protocol for two-party
computation. J. Cryptol. 22(2), 161–188 (2009)

[Mia16] Miao, P.: Cut-and-choose for garbled RAM. Cryptology ePrint Archive,
Report 2016/907 (2016). http://eprint.iacr.org/2016/907

[ORS15] Ostrovsky, R., Richelson, S., Scafuro, A.: Round-optimal black-box two-
party computation. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015,
Part II. LNCS, vol. 9216, pp. 339–358. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48000-7 17

[OS97] Ostrovsky, R., Shoup, V.: Private information storage (extended abstract).
In: 29th ACM STOC, pp. 294–303. ACM Press, May 1997

[Ost90] Ostrovsky, R.: Efficient computation on oblivious RAMs. In: 22nd ACM
STOC, pp. 514–523. ACM Press, May 1990

https://doi.org/10.1007/978-3-319-78375-8_16
https://doi.org/10.1007/978-3-662-53015-3_6
https://doi.org/10.1007/978-3-662-53641-4_20
https://doi.org/10.1007/978-3-662-53641-4_20
https://doi.org/10.1007/978-3-642-20465-4_23
https://doi.org/10.1007/978-3-319-63688-7_5
https://doi.org/10.1007/978-3-662-53641-4_17
https://doi.org/10.1007/978-3-662-53641-4_17
https://doi.org/10.1007/978-3-319-78372-7_4
https://doi.org/10.1007/978-3-319-78372-7_4
https://eprint.iacr.org/2017/981
https://doi.org/10.1007/978-3-642-38348-9_42
https://doi.org/10.1007/978-3-642-38348-9_42
https://doi.org/10.1007/978-3-319-63715-0_3
http://eprint.iacr.org/2016/907
https://doi.org/10.1007/978-3-662-48000-7_17

544 S. Garg et al.

[WHC+14] Wang, X.S., Huang, Y., Chan, T.H.H., Shelat, A., Shi, E.: SCORAM:
oblivious RAM for secure computation. In: Ahn, G.-J., Yung, M., Li, N.
(eds.) ACM CCS 2014, pp. 191–202. ACM Press, November 2014

[Yao82] Yao, A.C.-C.: Protocols for secure computations (extended abstract). In:
23rd FOCS, pp. 160–164. IEEE Computer Society Press, November 1982

[Yao86] Yao, A.C.-C.: How to generate and exchange secrets (extended abstract).
In: 27th FOCS, pp. 162–167. IEEE Computer Society Press, October 1986

On the Round Complexity of OT
Extension

Sanjam Garg1(B), Mohammad Mahmoody2, Daniel Masny1,
and Izaak Meckler1

1 University of California, Berkeley, Berkeley, USA
sanjamg@berkeley.edu

2 University of Virginia, Charlottesville, USA

Abstract. We show that any OT extension protocol based on one-way
functions (or more generally any symmetric-key primitive) either requires
an additional round compared to the base OTs or must make a non-black-
box use of one-way functions. This result also holds in the semi-honest
setting or in the case of certain setup models such as the common random
string model. This implies that OT extension in any secure computation
protocol must come at the price of an additional round of communica-
tion or the non-black-box use of symmetric key primitives. Moreover,
we observe that our result is tight in the sense that positive results can
indeed be obtained using non-black-box techniques or at the cost of one
additional round of communication.

1 Introduction

Multiparty secure computation (MPC) [Yao82,GMW87] allows mutually dis-
trustful parties to compute a joint function on their inputs, from which the
parties learn their corresponding outputs but nothing more. Oblivious transfer
(OT) [Rab81,EGL85,BCR87,Kil88,IPS08] is the fundamental building block for
two and multiparty secure computation.

An OT protocol is a two-party protocol between a sender with inputs x0, x1

and a receiver with input bit b. An OT protocol allows the receiver to only learn
xb while b remains hidden from the sender. OT is a very powerful tool and is

S. Garg—Research supported in part from DARPA/ARL SAFEWARE Award
W911NF15C0210, AFOSR Award FA9550-15-1-0274, AFOSR YIP Award, DARPA
and SPAWAR under contract N66001-15-C-4065, a Hellman Award and research
grants by the Okawa Foundation, Visa Inc., and Center for Long-Term Cybersecu-
rity (CLTC, UC Berkeley). The views expressed are those of the author and do not
reflect the official policy or position of the funding agencies.
M. Mahmoody—Supported by NSF CAREER award CCF-1350939, a subcontract
on AFOSR Award FA9550-15-1-0274, and University of Virginia’s SEAS Research
Innovation Award.
D. Masny—Supported by the Center for Long-Term Cybersecurity (CLTC, UC
Berkeley).

c© International Association for Cryptologic Research 2018
H. Shacham and A. Boldyreva (Eds.): CRYPTO 2018, LNCS 10993, pp. 545–574, 2018.
https://doi.org/10.1007/978-3-319-96878-0_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96878-0_19&domain=pdf

546 S. Garg et al.

sufficient to realize any secure computation functionality [Kil88,IPS08]. Never-
theless, all known constructions of OT have the drawback of being significantly
less efficient than “symmetric-key primitives” like block ciphers or hash func-
tions. This comparatively low efficiency seems to be unavoidable as black-box
constructions of OT from one-way functions are known to be impossible [IR89].
Overcoming this difficulty, one promising approach is to use OT extension. OT
extension allows a sender and a receiver to extend a relatively small number
of base OTs to a much larger number of OTs using only symmetric-key primi-
tives (e.g., one-way functions, pseudorandom generators, collision-resistant hash
functions, etc.), which are indeed much cheaper.

Beaver first proposed the idea of such an OT extension protocol [Bea96].
Beaver’s protocol solely relied on a security parameter number of base OTs and,
perhaps surprisingly, only on a pseudorandom generator (PRG). This insight
– that a small number of inefficient base OTs could be efficiently extended to
a large number of OTs – has been a crucial step in overcoming the efficiency
limitation of OT in particular and multiparty computation in general. Beaver’s
construction, however, made an expensive non-black-box use of the underlying
PRG leading to inefficient protocols.

In an influential work, Ishai, Kilian, Nissim and Pentrank [IKNP03] obtained
an OT extension (referred to as IKNP) which made only black-box use of the
underlying cryptographic primitive, which could be realized using a random ora-
cle. This yielded a significantly more efficient protocol in comparison to Beaver’s
protocol. They also observed that the random oracle in their construction can be
relaxed to the notion of a correlation robust hash function. Follow up works on
OT extension achieve security against stronger adversaries [NNOB12,ALSZ15]
or reduce communication and computation costs [KK13].

The practical impact of the OT extension protocols has been enormous. OT
extension can be used to improve the computational efficiency of virtually any
implementation of secure MPC. In particular, the standard recipe for realizing
efficient secure computation protocols is as follows. We start with the OT-hybrid
model where everyone has access to an ideal OT functionality called OT-hybrid.
Then instantiate an OT extension using the OT-hybrid, which implies that only
black-box access to the OTs is used. An efficient secure computation proto-
col is then realized using OT extension to minimize the number of public-key
operations. Use of OT extension yields remarkable efficiency gains for many
implemented protocols (e.g. see [ALSZ13]).

In addition to the computational efficiency, round complexity is another
parameter of concern in the construction of efficient secure computation pro-
tocols. Significant research effort has been made toward realizing round effi-
cient OT [NP01,AIR01,HK12,PVW08] and round efficient two-party [KO04,
ORS15] and multiparty [BMR90,AJL+12,GGHR14,MW16,GMPP16,GS17a,
BL17,GS17b] secure computation protocols. Several of these protocols are also
black-box in the use of the underlying cryptographic primitives. However, all
these works only yield protocols (with a given round complexity) using a large
number public-key operations. Ideally, we would like to construct OT exten-
sion protocols that can be used to reduce the number of public-key operations

On the Round Complexity of OT Extension 547

needed in these protocols while preserving the round complexity and the black-
box nature of the underlying protocol. This brings us to our following main
question:

Can we realize a round-preserving OT extension protocol which
makes only black-box use of “symmetric-key” cryptographic primitives?

The random oracle model (ROM) accurately captures the black-box use of
such symmetric-key primitives, as it directly provides us with ideally strong
hash functions as well as block-ciphers or even ideal ciphers [CPS08,HKT11].
Therefore, in order to answer the above question, we study the possibility of OT
extension protocols in the ROM that preserve the round complexity.1

1.1 Our Results

We provide a negative answer to the above main question. In other words, we
show that any OT extension protocol based on so called symmetric-key prim-
itives, requires either an additional round compared to the base OTs or must
make a non-black-box use of symmetric-key primitives. We capture black-box
use of one-way functions, or even correlation-robust hash functions, as well as
common random string setup2 by proving our impossibility result under the
idealized notion of these primitives which is provided by a random oracle. In
particular, we prove the following theorem.

Theorem 1 (Impossibility of round-preserving OT extension in ROM–
Informally Stated). Suppose a sender S and a receiver R want to perform m
OTs in r rounds using a random oracle, and they both have access to n, r-round
OTs (i.e. the receiver obtains its outputs at the end of round r) where n < m.
Then, if S and R can ask polynomially many more queries to the random oracle,
one of them could always break security of the m OTs.

Theorem 1 holds even for an extension from n string OTs to m = n + 1 bit
OTs, and even for the setting of semi-honest security. It also gives an alternative,
and arguably simpler, proof to Beaver’s impossibility result that information-
theoretically secure OT extension does not exist in the plain model [Bea96]. We
sketch the main ideas in Sect. 1.2 and provide the details in Sect. 3.

Additionally, we observe that our results are tight in two different ways.
First, the IKNP protocol [IKNP03] realizes black-box OT extension using one
additional round. Second, our result is also tight with respect to the black-
box use of the symmetric-key primitives captured by random oracles. Beaver’s
original protocol provided OT extension in which the receiver has no control over
which input he receives (it will be chosen at random). This notion of OT is often
referred to as “random” OT. The known generic way of going from “random”
1 The only symmetric-key primitive not directly implied by a random oracle is one-way

permutations. However, most negative results in the random oracle model, including
our work, extend to one-way permutations using standard techniques [IR89].

2 Note that a random oracle also provides a common random string for free.

548 S. Garg et al.

OTs to “chosen” OTs will add another round [EGL85]. We observe (see the full
version [GMMM17]) that Beaver’s original non-black-box OT extension protocol
[Bea96], which only relies on a PRG, can be modified to provide round-preserving
“chosen-input” OTs, but this result will require non-black-box use of the PRG.

We remark that our results have implications in several other settings, for
example, in the plain model under malicious security. In this setting, an OT
protocol takes at least 4 rounds [KO04,ORS15]. Therefore, our results imply that
in this setting, black-box OT extension protocols must be at least five rounds
while a non-black-box construction with four rounds can be realized. Another
example is the correlated setup model [FKN94,IKM+13,BGI+14] where our
results imply that there is no non-interactive OT extension even in the presence
of a random oracle. Interestingly, this setting behaves very differently from a
setting of shared randomness, where the amount of shared randomness can be
easily increased by using the random oracle as a PRG. On the contrary, in case
of a single communication round, the IKNP protocol [IKNP03] can be used to
increase the amount of correlated randomness in this setting.

Finally, we note that our impossibility result of Theorem1 also holds for
the case of random permutation oracle model. The proof of Theorem 1 directly
extends to this setting using the standard trick introduced in [IR89]. Namely,
the attacker can always ask all the oracle queries of input lengths at most c · log κ
for sufficiently large constant c, in which case, the probability of the honest par-
ties, the simulator, or the attacker (of the random oracle model) itself getting
a collision while accessing the random oracle on input of length > c log κ is suf-
ficiently small. However, without collisions, (length preserving) random oracles
and random permutation oracles are the same.

1.2 Technical Overview

In this section, we explain the key ideas behind the proof of our main impos-
sibility result of Theorem 1. For a formal treatment, see Sect. 3. In a nutshell,
we first present an entropy-based information-theoretic argument for the plain
model, where there are no oracles involved beyond the hybrid OTs. We then
extend our attack to the random oracle model, by making use of the ‘dependency
learner’ of [IR89,BMG09,HOZ16,BM17], which is a algorithms that allows us to
‘approximate’ certain plain-model arguments also in the random oracle model.
As we will see, the combination of these two steps will make crucial use of the
round-preserving property of the (presumed) OT-extension construction.

To explain the core ideas behind our proofs, it is instructive to even define a
2-round-preserving OT extension protocol, to see how the definition accurately
models the concept of round-preserving OT extension, and because we are partic-
ularly interested in ruling out black-box 2-round OT extension protocols. Below,
we first describe the notation and the simplifying assumptions for this special
case (of 2-round extensions), before going over the ideas behind the proof.

Notation and the simplified setting. Here we define some basic notations
and also state some simplifying assumptions, some of which are without loss of

On the Round Complexity of OT Extension 549

generality when we focus on 2-round-preserving OT extensions, and the rest are
relaxed when proving the formal attack in Sect. 3. Here we focus on the case of
extending n instances of OT, into m instances for some m � n. (This is without
loss of generality as even “one-more” OT extension, i.e., m = n+1, can be used
to get polynomially many more OTs – e.g., see [LZ13].)

Inputs and outputs: Let [m] := {1, . . . , m}. Suppose �b = (b1, . . . , bm) ∈ {0, 1}m

are the choice bits of the receiver R and x = (x0
i , x

1
i)i∈[m] ∈ {0, 1}2m are the

pairs of bits that the sender holds as its input. (Our main negative result holds
even if the hybrid OTn provides string OTs, but in this simplified exposition,
we work with bit OTs.) The receiver R wishes to get output (xbi

i)i∈[m].

The oracle and OT hybrid: The two parties have access to a random oracle H as
well as n instances of a OT-hybrid functionality for bit inputs which we denote
with OTn. When using OTn, R and S will not reverse their roles such that
R always receives the output from OTn. This is without loss of generality for
a round preserving OT extension for the following reason. First note that the
last message of the constructed OT should be from the sender to the receiver,
as otherwise it could be dropped. Moreover, we use a hybrid OTn that requires
(here) two rounds to deliver its output. Therefore, if both the used hybrid OTs
and constructed OTs have the same (here two) rounds, the last messages of the
hybrid and the constructed OTs should both go from the sender to the receiver.
Thus, we model the 2-round-preserving OT extension in the ROM as follows.

1. R sends a single message t1 to S, and it also chooses and submits the input
�c = (c1, . . . , cn) to the hybrid OTn.

2. S sends a single message t2 to R, and it also chooses and submits inputs
(y0

i , y1
i)i∈[n] to the hybrid OTn.

3. R also receives γ = (yci
i)i∈[n] from OTn.

4. R outputs what is supposed to be (xbi
i)i∈[m].

We assume in this simplified exhibition that the protocol has perfect com-
pleteness, namely the receiver obtains the correct answer with probability one.

An information theoretic attack for the no-oracle setting. Our starting
point is an inefficient (information theoretic) attack on OT extension when there
are no oracles involved. The fact that OT extension protocols, regardless of
their round complexity, can not be information theoretically secure was already
shown by Beaver [Bea96], and the work of Lindell and Zarosim [LZ13] improved
that result to derive one-way functions from OT extensions. As we will see, our
information theoretic attack has the main feature that in the round-preserving
OT extension setting, it can be adapted to the random oracle model by also
using tools and ideas from [IR89,BMG09,HOZ16] where new challenges arise.

Now we describe an attack for the sender and an attack for the receiver in
the case that they pick their inputs �b, x uniformly at random, and will show that
at least one of these attacks will succeed with non-negligible probability. Ruling
out the possibility of secure OT for the random-inputs case is stronger and it
rules out the general (selected-input) case as well. Also note that when we refer

550 S. Garg et al.

to attacking parties here, what we formally mean, is a semi-honest execution
of the protocol, followed by a distinguisher (as part of the attack) who is able
to use the view of the honest execution to make distinguishing predictions that
shall not be possible in case of semi-honest security. For simplicity, we combine
these two steps and simply refer to them as the attacker.

– Attacking sender ̂S. Since ̂S gets no output, in a secure protocol the
random input �b ∈ {0, 1}m of the receiver shall remain indistinguishable from
a uniform Um in eyes of the receiver who knows the transcript T = (t1, t2).
(See Lemma 19 for a formalization.) Therefore, a natural attacking strategy
for the sender ̂S is to look at the transcript T at the end, and based on that
information, try to distinguish the true �b (in case it is revealed to him) from
a random uniform string Um of length m.3 Thus, if the distribution of (�b, T),
is ε-far from (Um, T) for non-negligible ε, the protocol is not secure, because
given the transcript T an efficient sender can distinguish �b from Um.

– Attacking receiver ̂R. After running the protocol honestly to get the actual
output for the honestly chosen input �b, the cheating receiver ̂R tries to also
find another input �b′ �= �b together with its corresponding correct output
{x

b′
i

i }i∈[m]. If ̂R could indeed do so, it would be a successful attack since in at
least one of the locations i ∈ [m], the receiver will read both of (x0

i , x
1
i), though

that shall not be possible for semi-honest secure protocols. (See Lemma 20 for
a formalization.) By the perfect completeness of the protocol,4 all ̂R needs to
do is to find another fake view V ′

R for the receiver such that: (1) V ′
R contains

�b′ �= �b as its input, and that (2) V ′
R is consistent with the transcript T , the

input c given to OTn, as well as the output γ obtained from it. Finding such
V ′

R efficiently, violates sender’s security.

One of ̂S, ̂R succeeds: an entropy-based argument. If the attacking sender
̂S described above does not succeed with a non-negligible advantage, it means
that (�b, T), as a random variable, is statistically close to (Um, T), which in turn
implies that (with high probability over T) conditioned on the transcript T , the
receiver’s input �b has close to (full) m bits of entropy.5 (See Lemma 14 for a
formalization of this argument.) Therefore, if the malicious receiver ̂R, after fin-
ishing the honest execution encoded in the view VR, “re-samples” a fake view
V ′

R from the distribution of its view conditioned on T , denoted (VR | T), then
it will get a different �b′ �= �b, as part of V ′

R with some noticeable probability.
(See Lemma 15 for a formalization of this argument.) However, as described
above, the attacking receiver ̂R also needs to condition its sampled view

3 Technically, the true input �b or independent random input Un are not given to the
sender in an actual execution of the protocol, but for a secure protocol, these two
shall remain indistinguishable even if revealed (see Lemma 19).

4 Our formal proof of Sect. 3 does not assume perfect completeness.
5 This is why we choose to work with Shannon entropy, as we want distributions close

to Um to have almost full entropy; this does not hold e.g., for min-entropy.

On the Round Complexity of OT Extension 551

V ′
R ← (V′

R | T,�c, γ) on its input c given to OTn and the output γ obtained
from it to get a correct output {x

b′
i

i }i∈[m] for the new fake input �b′ �= �b. It can
be shown that if m > |�c| + |γ| = 2n, then there is still enough entropy left in
the sampled �b′, even after further conditioning on �c, γ (and transcript T). There-
fore, if m � 2n, then at least one of the attacks succeeds with non-negligible
probability.

Polynomial-query attacks in the random oracle model. The above infor-
mation theoretic argument for the no-oracle case no longer works when we move
to the ROM for the following simple reason. A fresh fake sample V ′

R for the
receiver’s view that is consistent with the transcript T and OT-hybrid inputs c
and output γ might be inconsistent with oracle query-answer pairs that already
exist in sender’s view, because the fake view V ′

R might make up some answers
to some oracle queries that are also asked by the sender but received a different
answer from the actual oracle. Therefore, we will not have any guarantee that
the faked sampled view of the sender leads to correct outputs for the new fake
input �b′. In fact, because we already know that OT extension in the random
oracle model is possible [IKNP03], the above issue is inherent when we try to
extend our attack to the ROM. However, we have not yet used the fact that we
are aiming at attacks that succeed for round-preserving OT extensions. Below,
we first describe a natural (yet insufficient) idea for extending our information-
theoretic attack to the ROM, and then will extend this idea further by also
relying on the round-preserving aspect of the construction.

1st try: using “dependency learner” of [IR89,BMG09,HOZ16,BM17]. As
described above, when we move to the oracle setting, the random oracle H creates
further correlation between the views of S and R beyond what the transcript (or
OTn) does. One natural idea for removing the correlation made by a random ora-
cle between the views of two parties is to use the so-called ‘dependency learner’
Eve algorithm of [BMG09,BMG09,HOZ16,BM17] (see Theorem 17). The Eve
algorithm is a deterministic algorithm such that for any inputless, two-party, pro-
tocol A,B in the ROM, given the public transcript T of the interaction between
A,B, Eve asks polynomially-many oracle queries from the random oracle H
in a way that conditioned on the view of Eve (that includes T and its oracle
query-answer pairs PE) the views of A,B become close to independent random
variables.6 The magic of the algorithm Eve is that, because both parties can run
it at the end, the parties can pretend that PE is also part of the transcript, and
thus we get an augmented transcript VE = (T, PE) that includes (almost) all of
the correlation between the views of the two parties.

The above simple idea fails, however, because of the additional involvement
of OTn in the protocol, which creates further correlation between the views of
the parties. Consequently, this seemingly simple issue prevents us from being
able to run the Eve algorithm to (almost) eliminate the correlation between
S,R views, as the Eve algorithm only applies to inputless protocols in the ROM
that have no other source of communication other than the transcript.
6 In the plain model, the views of two interacting parties are independent given the

transcript, and this enables the information theoretic attack against OT extension.

552 S. Garg et al.

2nd try: using the dependency learner over a shortened protocol. Recall
that we are dealing with round-preserving OT extensions, and have not used this
property yet! One consequence of this assumption is that we can now assume
that the OT-hybrid output γ is sent to the receiver after the last message t2
is sent. Now, if we stop the execution of R right after t2 is sent and call this
modified variant of R the algorithm R1, even though the input �c is submitted
to OTn by R1, no output is received by R1 from OTn yet, therefore we would
not have any correlated randomness distributed between the parties through
OTn hybrid. Therefore, our new modified two party protocol S,R1 would be a
simple inputless protocol in the ROM over which we can execute the dependency
learner Eve over its transcript T = (t1, t2). Indeed, if we run Eve with respect to
S,R1, Eve will gather enough information about the oracle encoded in its oracle
query-answer set (PE) so that the views of S and R1, conditioned on Eve’s view
(T, PE), would be close to a product distribution. Therefore, we can hope to
again use an approximate version of our information theoretic argument in the
no-oracle setting by interpreting T ′ = (T, PE) as the new ‘transcript’.

Finishing receiver’s execution. The above argument (of applying the dependency
learner Eve over a shortened variant R1 of R) still does not lead to an actual
attack, because we need to finish the execution of R1, which is only a partial
execution of the receiver, to obtain the actual output corresponding to the fake
input �b′. Only then, we can call ̂R a successful attack. With this goal in mind,
let us call R2 to be the rest of the execution of the cheating receiver which starts
right after finishing the first part R1. Namely, R2 takes over the computation of
R1 to finish it, and the first thing it receives is the output γ of OTn. However,
to obtain the actual output, there might be further necessary oracle calls to the
random oracle H. Since ̂R is interested to know the output �b′ planted in the fake
view V ′

R, the execution of R2 using V ′
R needs to pretend that V ′

R is the actual
view of the receiver, which in turn implies pretending that the original honest
view VR does not exist.

Leveraging on the lack of intersection queries. Interestingly, it turns out that
another crucial property of the dependency learner algorithm Eve (i.e. Part 2 of
Theorem 17) allows us to get a consistent execution of R2 using the fake view
V ′

R while pretending that the original honest (non-fake) execution of the receiver
(encoded in view VR) does not exist. Namely, Eve’s algorithm guarantees that,
with high probability over T ′ = (T, PE), there will be no ‘intersection queries’
between the set of queries asked by the honest sender and the original (i.e.,
honest) partial execution of the receiver that obtains the first output (of input
�b) for the attacker ̂R. In a nutshell, what we do to finish the execution of R2 is
to answer with fresh random strings, any query q that is not learned by Eve but
is in the view of the original honest receiver’s execution. In Sect. 3 we show that
a careful case analysis proves this strategy to lead to a correct continuation of
the fake view V ′

R obtaining the right output for the fake input �b′.

Organization. In Sect. 2 we describe the basic notation, main definitions, and
some useful lemmas. In Sect. 3 we formalize and prove our main impossibility

On the Round Complexity of OT Extension 553

result of Theorem 1. In the full version [GMMM17] we observe that Beaver’s
non-black-box round-preserving OT extension [Bea96] could be “chosen input”.

2 Preliminaries

Logarithms in this work are taken base 2. For a bit b, we denote bit 1 − b by b.
We use PPT to denote a probabilistic, polynomial-time Turing machine.

Notation on random variables. All the distributions and random variables
in this paper are finite. We use bold font to denote random variables. We
usually use the same non-bold letter for samples form the random variables, so
by Q ← Q we indicate that Q is sampled from the distribution of the random
variable Q. By (X,Y) we denote a joint distribution over random variables
X and Y. By X ≡ Y we denote that X and Y are identically distributed.
For jointly distributed (X,Y,Z), when random variable Z is clear from the
context, by ((X,Y) | Z) we denote the distribution of (X,Y) conditioned on
Z = Z. By (X × Y) we denote a product distribution in which X and Y are
sampled independently from their marginal distributions. For jointly distributed
(X,Y,Z) and any Z ← Z, we denote ((X|Z) × (Y|Z)) by (X × Y)|Z. For a
finite set S, by x ← S we denote that x is sampled from S uniformly at random.
By Supp(X) we denote the support set of the random variable X, defined as
Supp(X) := {x | Pr[X = x] > 0}. Un is the uniform distribution over {0, 1}n.

Notation on events. An event B is simply a set, so for any random variable X,
the probability Pr[X ∈ B] := Pr[X ∈ B∩Supp(X)] is well defined. More formally,
we assume B ⊆ U is a subset of the ‘universe’ set U where Supp(X) ⊆ U for any
‘relevant’ random variable X (in our analyses). In particular, we could refer to
the same event B across different random variables. For any particular sample
X ← X, we say that the event B holds over X iff X ∈ B.7 For an event B by
B we denote to the complement (with respect to the underlying universe U).
Therefore, Pr[X ∈ B] = 1 − Pr[X ∈ B] is always well defined. By PrD[B] or
Pr[B;D] we mean the probability of B for sampling process described by D.

2.1 Lemmas About Statistical Distance and Mutual Dependency

Definition 2 ((Conditional) statistical distance). By SD(X,Y) we denote
the statistical distance between random variables X,Y defined as

SD(X,Y) = max
B

Pr[X ∈ B] − Pr[Y ∈ B] =
1
2

·
∑

Z

|Pr[X = Z] − Pr[Y = Z]|.

We call X and Y ε-close, denoted by X ≈ε Y, if SD(X,Y) ≤ ε.

7 In this terminology, B is seen as a property that holds for all X ∈ B, but not for the
rest. In fact, we define our events B using properties over objects in the universe.

554 S. Garg et al.

For an event A, we let SDA(X,Y) = SD((X | A), (Y | A)), denote the con-
ditional statistical distance of X,Y, and for correlated random variable Z, by
SDZ(X,Y) we denote SD((X | Z = Z), (Y | Z = Z)), and we also let

SDZ(X,Y) = E
Z←Z

SDZ(X,Y).

In the following lemma, is a well-known8 fact stating that statistical distance
is the maximum advantage of distinguishing two distributions.

Lemma 3. Let D be any potentially randomized (distinguishing) algorithm.
Then: Pr[D(X) = 1] − Pr[D(Y) = 1] ≤ SD(X,Y) and the equality can be
achieved by any ‘canonical’ distinguisher such that: C(Z) = 1 if Pr[X = Z] >
Pr[Y = Z], and C(Z) = 0 if Pr[X = Z] < Pr[Y = Z].

The following well-known lemma9 states that statistically close distributions
could be sampled jointly while they are equal with high probability.

Lemma 4 (Coupling vs. statistical distance). SD(X,Y) ≤ ε iff there is a
way to jointly sample (X,Y) such that Pr[X = Y] ≥ 1 − ε.

The following lemma says that if X ≡ X′ in two pairs of jointly distributed
random variables (X,Y), (X′,Y′), then the statistical distance of the two pairs
could be written as a linear combination of conditional probabilities.

Proposition 5. SD((X,Y), (X,Y′)) = EX←X SD((Y | X), (Y′ | X)). More-
over, if SD((X,Y), (X,Y′)) = ε, any canonical distinguisher D of the following
form ε-distinguishes (X,Y) from (X,Y′):

– If Pr[Y = Y | X] > Pr[Y′ = Y | X], then D(X,Y) = 1.
– If Pr[Y = Y | X] < Pr[Y′ = Y | X], then D(X,Y) = 0.
– If Pr[Y = Y | X] = Pr[Y′ = Y | X], then D(X,Y) ∈ {0, 1} arbitrarily.

Proof. We prove both parts using Lemma 3. By Lemma 3, SD((X,Y), (X,Y′))
equals the maximum advantage by which a distinguisher D can distinguish the
two distributions (X,Y), (X,Y′). Now, such D is always given a sample X ← X
from X ≡ X′ first, conditioned on which it has to maximize Pr[D(Y | X) =
1] − Pr[D(Y′ | X) = 1]. However, for each X, the maximum of Pr[D(Y |
X) = 1] − Pr[D(Y′ | X) = 1] is again described by Lemma 3 to be equal
to SD((Y | X), (Y′ | X)). Furthermore, the canonical distinguisher described
above works due to the canonical distinguisher of Lemma 3 �

The following definition from [BM17] is a measure of correlation between
jointly distributed pairs of random variables.

8 For example, see Exercise 8.61 from [Sho09].
9 For example, see Lemma 3.6 of [Ald83] for a proof.

On the Round Complexity of OT Extension 555

Definition 6 ((Conditional) mutual dependency [BM17]). For a joint
distribution (X,Y), we define their mutual-dependency as MutDep(X,Y) =
SD((X,Y), (X × Y)). For correlated (X,Y,Z), and for Z ← Z, we define

MutDepZ(X,Y) = SDZ((X,Y), (X × Y)) = SD(((X,Y)|Z), (X|Z × Y|Z))

to be the mutual dependency of X,Y conditioned on the given Z, and we let

MutDepZ(X,Y) = E
Z←Z

MutDepZ(X,Y).

The following proposition follows from Proposition 5 and Definition 6.

Proposition 7. It holds that MutDep(X,Y) = EX←X SD((Y | X),Y).

Lemma 8. For a joint distribution (X,Y), the statistical distance between the
following distributions is at most 2 ·MutDep(X,Y). (Note how Y, Y ′ are flipped.)

1. Sample (X,Y) ← (X,Y), independently sample Y ′ ← Y, output (X,Y, Y ′).
2. Sample (X,Y) ← (X,Y), independently sample Y ′ ← Y, output (X,Y ′, Y).

Proof. The following hybrid distribution is MutDep(X,Y)-far from either of the
distributions in Lemma8. Sample X ← X, Y1, Y2 ← Y all independently and
output (X,Y1, Y2). Therefore, the claim follows from the triangle inequality. �
Lemma 9. Let X = (A,B,C) be correlated random variables. Let another joint
distribution X′ = (A′,B′,C′) be defined as follows.

– Sample A′ ← A, then C ′ ← (C | A = A′), then B′ ← (B | C = C ′), and
output the sample X ′ = (A′, B′, C ′).

Then SD(X,X′) = MutDepC(A,B). Furthermore, if C = f(B) is a function of
only B (in the joint distribution X) then SD(X,X′) ≤ 2 · MutDep(A,B).

Remark 10. Before proving Lemma 9, note that the second conclusion would be
false if C could also depend on A. For example, consider the case where A,B,C
are all random bits conditioned on A ⊕ B ⊕ C = 0. In that case, without
conditioning on C, MutDep(A,B) = 0 as A,B are independent. However, given
any specific bit C ← C, the distributions of A,B would be correlated, and their
conditional mutual-dependency would be 1/2, so MutDepC(A,B) = 1/2.

Proof (of Lemma 9). First, we show SD(X,X′) = MutDepC(A,B). Note that
C ≡ C′, so we can apply Proposition 7. For a given C ← C ≡ C′, for (X | C) we
will sample (A,B) jointly, while in (X′ | C′ = C) we will sample from (A | C) ≡
(A′ | C′ = C) and (B | C) = (B′ | C′ = C) independently from their marginal
distributions. Now, we show that SD(X,X′) ≤ 2 · MutDep(X,Y), if we further
know that C is only a function of B. Consider a third joint distribution X′′ =
(A′′,B′′,C′′) ≡ (A × (B,C)); namely, (B′′,C′′) ≡ (B,C), and A′′ is sampled
from the marginal distribution of A. Firstly, note that for every A ← A, B ← B,
it holds that (C′′ | A′′ = A,B′′ = B) ≡ (C | B = B) ≡ (C | A = A,B = B),

556 S. Garg et al.

because A′′ is independently sampled from (B′′,C′′), and that C = f(B) is only
a function of B. Therefore, because the conditional distribution of C ≡ C′′ is
the same given (A′′ = A,B′′ = B) or (A = A,B = B), by Lemma 12,

SD(X,X′′) = SD((A,B), (A′′,B′′)) = MutDep(A,B). (1)

Secondly, for all A ← A, C ← C, it holds that (B′′ | A′′ = A,C′′ = C) ≡
(B | C = C) ≡ (B′ | A′ = A,C′ = C), so by Lemma 12, it holds that

SD(X′,X′′) = MutDep(A,C) ≤ SD(X,X′′) = MutDep(A,B). (2)

Therefore, by the triangle inequality and Eqs. (1) and (2), it holds that
SD(X,X′) ≤ SD(X,X′′) + SD(X′,X′′) ≤ 2 · MutDep(A,B). �

Variations of the following lemma are used in previous works.10 It states an
intuitive way to bound the statistical distance of sequences of random variables
in systems where there exist some low-probability ‘bad’ events, and conditioned
on those bad events not happening the two systems proceed statistically closely.
Here we only need this specific variant for random systems with two blocks.

Lemma 11 (Bounding statistical distance of pairs). Let X = (X1,X2)
and X′ = (X′

1,X
′
2) be two jointly distributed pairs of random variables where

SD(X1,X′
1) ≤ α. Let B be an event (i.e. an arbitrary set) such that for every

X1 ∈ Supp(X1) ∩ Supp(X′
1) \ B it holds that SD((X2 | X1 = X1), (X′

2 | X′
1 =

X1)) ≤ β. Then, it holds that

SD(X,X′) ≤ α + β + Pr[X1 ∈ B].

Proof. Using two direct applications of Lemma 4, we show how to sample (X,X′)
jointly in a way that Pr[X = X′] ≥ 1 − (α + β + ρ) where Pr[X1 ∈ B] = ρ. Then
Lemma 11 follows (again by an application of Lemma 4).

Firstly, by Lemma 4 we can sample (X1,X′
1) jointly, while Pr[X1 = X′

1] ≥
1 − α. Now, we expand the joint sampling of (X1,X′

1) to a full joint sampling
of (X,X′) ≡ (X1,X2,X′

1,X
′
2) as follows. We first sample (X1,X

′
1) ← (X1,X′

1)
from their joint distribution. Then, for each sampled (X1,X

′
1), we sample the

distributions (X2,X′
2 | X1,X

′
1) also jointly such that Pr[X2 = X′

2 | X1,X
′
1] =

1 − SD((X2 | X1), (X′
2 | X ′

1)). We can indeed do such joint sampling, again
by applying Lemma 4, but this time we apply that lemma to the conditional
distributions (X2 | X1,X

′
1) ≡ (X2 | X1) and (X′

2 | X1,X
′
1) ≡ (X′

2 | X ′
1).

Now, we lower bound Pr[X1 = X′
1∧X2 = X′

2] when we sample all the blocks
through the joint distribution (X1,X2,X′

1,X
′
2) defined above. First, we know

that Pr[X1 = X′
1] ≥ 1 − α and Pr[X1 �∈ B] ≥ 1 − ρ, therefore Pr[X1 = X′

1 �∈
B] ≥ 1 − α − ρ. Moreover, for any such X1 ∈ Supp(X1) ∩ Supp(X′

1) \B, we have

Pr[X2 = X′
2 | X1 = X′

1 = X1] ≥ 1 − SD((X2 | X1), (X′
2 | X′

1 = X1)) ≥ 1 − β.

Therefore, the lemma follows by a union bound. �
10 For example see Lemma 2.2 of [GKLM12].

On the Round Complexity of OT Extension 557

The following useful lemma could be derived as a special case of Lemma 11
above by letting B = Supp(X1) ∪ Supp(X′

1) and β = 0.

Lemma 12. If (X,Y), (X′,Y′) are joint distributions and (Y | X) ≡ (Y′ |
X′ = X) for all X ∈ Supp(X) ∩ Supp(X′), then SD((X,Y), (X′,Y′′)) =
SD(X,X′).

2.2 Lemmas About Shannon Entropy

Definition 13 ((Conditional) Shannon entropy). For a random variable
X, its Shannon entropy is defined as H(X) = EX←X log(1/Pr[X = X]). The
conditional (Shannon) entropy is defined as H(X | Y) = EY ←Y H(X | Y). The
binary (Shannon) entropy function H(ε) = −p log p − (1 − p) log(1 − p) is equal
to the entropy of a Bernoulli process with probability ε.11

Jensen’s inequality implies that we always have H(X) ≥ H(X | Y) ≥ 0.

Lemma 14 (Lower bounding entropy using statistical distance). Sup-
pose SD(X,Un) ≤ ε. Then H(X) ≥ (1 − ε) · n − H(ε).

Proof. Since SD(X,Un) ≤ ε, using Lemma 4 we can sample (X,Un) jointly such
that Pr[X �= Un] ≤ ε. In this case, we have

n = H(Un) ≤ H(Xn,Un) = H(X) + H(Un | X) ≤ H(X) + H(ε) + ε · log(2n − 1)

where the last inequality follows from Fano’s lemma [Fan68]. Therefore, we get
H(X) ≥ (1 − ε) · n − H(ε). �
Lemma 15 (Upper-bounding collision probability using (conditional)
Shannon entropy). Suppose Supp(X) ⊆ {0, 1}n.

1. If H(X) ≥ 2/3, then it holds that

Pr
X1,X2←X

[X1 �= X2] ≥ 1
10n

.

2. If H(X | Y) ≥ 5/6 for a jointly distributed (X,Y), then it holds that

Pr
Y ←Y,X1,X2←(X|Y)

[X1 �= X2] ≥ 1
60 · n2

.

Proof. First, we prove Part 1. In the following let ε = 1/(10n) ≤ 1/10. Our first
goal is to show that PrX1,X2←X[X1 �= X2] ≥ ε. There are two cases to consider:

11 The notation is well defined: If the input ε is a real number, by H(ε) we mean the
binary entropy, and otherwise we mean the entropy of a random variable.

558 S. Garg et al.

1. Case (1): Suppose first that there is some A ⊆ Supp(X) with ε ≤ pA =
PrX←X[X ∈ A] ≤ 1 − ε. Then, letting B = Supp(X) \ A, we also have
ε ≤ PrX←X[X ∈ B] ≤ 1 − ε. Since A and B are disjoint, we have

Pr
X1,X2←X

[X1 �= X2] ≥ Pr
X1,X2←X

[X1 ∈ A,X2 ∈ B or X1 ∈ B,X2 ∈ A]

= 2 · pA · (1 − pA) ≥ 2 · ε · (1 − ε) = 2 · ε − 2 · ε2 ≥ ε.

The last inequality follows from ε ≤ 1/10, which implies ε ≥ 2ε2.
2. If we are not in Case (1) above, then for every A ⊆ Supp(X), PrX←X[X ∈

A] < ε or PrX←X[X ∈ A] > 1 − ε. In particular, for every X ∈ Supp(X), we
have Pr[X = X] < ε or Pr[X = X] > 1 − ε. Now there are two cases:
(a) For all X ∈ Supp(X), Pr[X = X] < ε. In this case, because ε < 1/10,

we can build a set A ⊆ Supp(X) that implies being in Case (1). Namely,
let A0,A1, . . . ,Am be a sequence of sets where Ai = {1, . . . , i} ⊆ [m] =
Supp(X). Suppose i is the smallest number for which Pr[X ∈ Ai] ≥ ε,
which means Pr[X ∈ Ai−1] < ε. In this case we have:

Pr[X ∈ Ai] ≤ Pr[X ∈ Ai−1] + Pr[X = i] < 2ε < 1 − ε

where the last inequality follows from ε < 1/10.
(b) There is some X ∈ Supp(X) where Pr[X = x] > 1 − ε. Now suppose we

sample X jointly with a Boolean B where B = 0 iff X = X. So, we get:

2/3 ≤ H(X) ≤ H(B) + H(X | B)

= H(B) + Pr[B = 0] · H(X | B = 0) + Pr[B = 1] · H(X | B = 1)

< H(ε) + Pr[B = 0] · 0 + ε · n

≤ H(1/10) + 1/10

< 1/2 + 1/10 (because H(1/10) < 1/2)

which is a contradiction.

Now we prove Part 2. Because we have H(X | Y) ≥ 5/6, and because H(X |
Y) ≤ n for any Y ← Y, by an averaging argument it holds that PrY ←Y[H(X |
Y) > 2/3] ≥ 1/(6n). That is because otherwise, H(X | Y) would be at most
(2/3) · (1 − 1/(6n)) + n · (1/(6n)) < 5/6. Therefore, with probability at least
1/(6n) we get Y ← Y for which we have

Pr[X1 �= X2;Y ← Y,X1,X2 ← (X | Y)] ≥ 1/(10n).

The claim then follows by using the chain rule. �

2.3 Lemmas About the Random Oracle Model

Definition 16 (Random Oracles). A random oracle H(·) is a randomized
function such that for all x ∈ {0, 1}∗, H(x) is independently mapped to a random
string of the same length |x|.

On the Round Complexity of OT Extension 559

Even though the above definition is for infinite random oracles, in this work
we are only interested and only use finite random oracles, as there is always an
upper bound (based on the security parameter) on the maximum length of the
queries asked by a polynomial time algorithm.

Notation on oracle-aided algorithms. For any view VA of a party A with
access to some oracle O, by Q(VA) we refer to the set of queries to O in the view
VA, and by P(VA) we denote the set of oracle query-answer pairs in VA. So,
Q(·),P(·) are operators that extract the queries or query-answer pairs. When it
is clear from the context, we might simply use QA = Q(VA) and by PA = P(VA).
When A is an interactive algorithm, if A has no inputs and uses randomness rA,
and if T is the transcript of the interaction, then VA = (rA, T, PA).

Variants of the following lemma were implicit in [IR89,BMG09] and stated
in [DLMM11]. See the works of [HOZ16,BM17] for formal proofs.

Theorem 17 (Dependency learner [IR89,BMG09,HOZ16,BM17]). Let
(A,B) be an interactive protocol between Alice and Bob in which they might
use private randomness (but no inputs otherwise) and they each ask at most
m queries to a random oracle H. Then, there is a deterministic eavesdropping
algorithm Eve (whose algorithm might depend on Alice and Bob and) who gets
as input δ ∈ [0, 1] and the transcript T of the messages exchanged between Alice
and Bob, asks at most poly(m/δ) queries to the random oracle H, and we have:

1. The average of the statistical distance between (VA,VB) and (VA × VB)
conditioned on VE is at most δ. Namely,

MutDepVE (VA,VB) = E
VE←VE

MutDep((VA | VE), (VB | VE)) ≤ δ.

2. The probability that Alice and Bob have an ‘intersection query’ outside of the
queries asked by Eve to the random oracle is bounded as follows:

Pr[Q(VA) ∩ Q(VB) �⊆ Q(VE)] ≤ δ.

The two parts of Theorem 17 could be derived from each other, but doing
that is not trivial and involves asking more oracle queries from the oracle. We
will use both of the properties in our formal proof of our main result in Sect. 3.

Notation for indistinguishability in the ROM. For families of random vari-
ables {Xκ}, {Yκ} by Xκ ≡c Yκ we mean that {Xκ}, {Yκ} are indistinguishable
against nonuniform PPT algorithms. When we are in the random oracle model,
we use the same notation Xκ ≡c Yκ when the distinguishers are poly(κ)-query
algorithms. Namely, for any poly(κ)-query oracle-aided algorithm D there is a
negligible function ε, such that Pr[D(Xκ) = 1] − Pr[D(Yκ) = 1] ≤ ε(κ), where
the probabilities are over the inputs Xκ,Yκ and the randomness of D and the
oracle H. When κ is clear from the context, we write X ≡c Y for simplicity.

560 S. Garg et al.

2.4 OT and its Multi-Input Variant k-OT in the ROM

In this subsection, we recall the notions of OT and its multi-input version on k
inputs, denoted k-OT. We will also prove basic lemmas that allows us to prove
the existence of attacks against semi-honest security of k-OT.

We start by defining (multi-) oblivious transfer (OT) formally.

Definition 18 (k-OT). A k-parallel 1-out-of-2 oblivious transfer (OT). func-
tionality (k-OT) is a two-party functionality between a sender S and a receiver
R as follows. The sender has input {x0

i , x
1
i }i∈[k] which are arbitrary strings, and

the receiver has the input �b ∈ {0, 1}k. The sender receives no output at the end,
while the receiver receives {xbi

i }i∈[k].

Semi-honest security of k-OT. We use standard definition of simulation-
based security, see e.g. [Lin16]. In particular, for any semi-honest secure OT
protocol between S and R, there are two PPT simulator SimS ,SimR such that
for any input �b of R and any input x = {x0

i , x
1
i }i∈[k] for S, it holds that:

SimS(x) ≡c VS(x,�b) and SimR(�b, {xbi
i }i∈[k]) ≡c VR(x,�b).

Plain model security vs. the ROM security. In the plain model all the
parties (including the simulator and the adversary and the distinguishers) are
PPT algorithms. In the random random oracle model we, the honest parties
and the simulators are oracle-aided PPTs, while the distinguishers are poly(κ)-
query (computationally unbounded) algorithms accessing the random oracle
H.12 Recall that by the notation defined at the end of Sect. 2 we can use the same
notation ≡c for indistinguishably against poly(κ) distinguishers in the ROM.

Sufficient conditions for breaking the semi-honest security of k-OT.
We now state and prove two simple lemmas showing that the attacks that we
construct in Sect. 3 are indeed attacks according to the standard definition of
simulation-based security, see e.g. [Lin16]. The following lemma, states the intu-
itive fact that in any OT protocol, the input of the sender should remain indis-
tinguishable from a random string, if the receiver chooses its input randomly.

Lemma 19. Let (S,R) be a semi-honest secure m-OT protocol in the plain
model (resp., in the ROM) in which the receiver’s inputs are chosen uniformly
at random from {0, 1}m, and in which S,R are PPTs (resp., oracle-aided PPTs).
Fix any input x for the sender. Let �b ≡ Um be the uniformly random inputs of
the receiver and VS(x, �b) the random variable denoting the view of the sender
(for inputs x, �b being used by the sender and the receiver). Then we have

(VS(x, �b), �b) ≡c (VS(x, �b) × Um).

(Recall that in the ROM, the distinguisher is an poly(κ)-query, computationally
unbounded, algorithm for security parameter κ.)
12 Note that this definition is for a setting where the random oracle is the sole source of

hardness. E.g., this is how the security of the protocol in [IKNP03] could be proved.

On the Round Complexity of OT Extension 561

Proof. We prove the lemma for the computational setting in the plain model
where the distinguishers are PPT algorithms. The same proof holds for the
random oracle model in which the distinguishers are poly(κ)-query oracle-aided
algorithms accessing a random oracle H, where κ is the security parameter.

By the security definition of OT, there is a PPT simulator SimS such that
for any input �b of R it simulates the view of S:

SimS(x) ≡c VS(x,�b).

Hence, by averaging over �b ← �b, we have (VS(x, �b), �b) ≡c (SimS(x), �b) for
uniform �b. (In other words, if the latter two were distinguishable, one could
distinguish SimS(x) from VS(x,�b) by the same advantage for some �b.) Since
SimS(x) is independent of the receiver’s input �b, we conclude

(VS(x, �b), �b) ≡c (SimS(x), �b) ≡ SimS(x) × Um ≡c VS(x, �b) × Um. �
Lemma 20. Let (S,R) be a semi-honest secure m-OT protocol in which the
sender’s inputs are chosen uniformly at random and in which S,R are PPTs
(resp., oracle-aided PPTs). Fix any input vector �b for the receiver. Let x =
{x0

i ,x
1
i }i∈[m] be uniformly random inputs for the sender, and let VR(x,�b) be the

random variable denoting the view of the receiver (when the inputs x,�b are used
by the two parties). Then, it holds that

(VR(x,�b), {xbi
i }i∈[m]) ≡c (VR(x,�b) × {x′

i}i∈[m])

where x′
i’s are independent uniformly random strings of the appropriate length.

Proof. As in the proof of Lemma19, we only prove the lemma for the computa-
tional setting in the plain model where the distinguishers are PPT algorithms.
The same proof holds for random oracle model in which the distinguishers are
poly(κ)-query algorithms in the random oracle model, for security parameter κ.

By the security definition of m-OT, there is a PPT simulator SimR such that
for any input {x0

i , x
1
i }i∈[m] of S it simulates the view of R:

SimR(�b, {xbi
i }i∈[m]) ≡c VR(x,�b).

Hence (VR(x,�b), {xbi
i }i∈[m]) ≡c (SimR(�b, {xbi

i }i∈[m]), {xbi
i }i∈[m]) holds for uni-

form x. Since SimR(�b, {xbi
i }i∈[m]) is independent of {xbi

i }i∈[m] (i.e., the sender’s
input that is not learned by receiver), similarly to Lemma19, we conclude that

(VR(x,�b), {xbi
i }i∈[m]) ≡c VR(x,�b) × {x′

i}i∈[m]. �
Remark 21. In Sect. 3, we will use Lemma 19 for getting a (computationally
unbounded) poly(κ)-query attacking sender. Namely, instead of directly breaking
the semi-honest security definition of k-OT, our attacking semi-honest sender
(or more accurately, the distinguisher), will pursue a different goal based on

562 S. Garg et al.

Lemma 19. Namely, based on his own view, the attacking sender will try to
distinguish the receiver’s actual input �b from an independently uniform string.

Similarly, we will use Lemma 20 to get a (computationally unbounded)
poly(κ)-query attacking receiver. Namely, our attacking semi-honest receiver
(i.e., the distinguisher) will find another input �b′ �= �b and read sender’s inputs
according to �b′. Doing so would be a successful attack by Lemma 20.

3 Impossibility of Round-preserving OT Extension in the
Random Oracle Model

In this section we formally state and prove our main impossibility result, Theo-
rem 1. We start by formalizing the model for round-preserving OT extension.

OT extension is the task of using a limited number of “base OTs” to generate
an increased number of OTs. The weakest possible form of OT extension is
using n base OTs to construct n + 1 OTs, but doing so is also sufficient as
this can be repeated to get further extension (e.g., see [LZ13]). In our definition
of OT extension, we model base OTs with an OT-hybrid functionality. This
functionality can be seen as a trusted third party that receives the inputs of
sender and receiver over a perfectly secure channel and sends to the receiver the
output of the base OTs. The presence of an OT-hybrid functionality is often
referred to as the OT-hybrid model [IKNP03].

Here, we are particularly interested in the notion of a round-preserving OT
extension protocol. Intuitively, this is an OT extension which uses the same
number of rounds as the base OTs that implement the OT-hybrid functionality.
Given an r-round-preserving OT extension protocol E from n-OTs to (n + 1)-
OTs, one may then instantiate OTn with a concrete r-round OT to obtain (n+1)-
OT that also works in r rounds.

The following definition formalizes the hybrid model using which we model
OT extension protocols that preserve the round complexity of the base OTs. We
first describe the model, and then we will discuss some subtle aspects of it.

Definition 22 (Round-preserving OT extension). A round-preserving OT
extension protocol is a 2-party protocol with the following form.

1. S has input {x0
i , x

1
i }i∈[n+1] and R has input �b = (b1, . . . , bn+1).

2. Both of S,R can query the random oracle H at any time.
3. R and S exchange r = poly(κ) number of messages t1, . . . , tr.
4. By the time S sends the final message tr to R, S has submitted its inputs

{y0
i , y1

i }i∈[n] and R has submitted its input �c = (c1, . . . , cn) to OTn.
5. Right after S sends the final message to R, R receives {yci

i }i∈[n] from OTn.
6. R outputs, perhaps after more queries to H, what is supposed to be

{xbi
i }i∈[n+1].

On the Round Complexity of OT Extension 563

The completeness and semi-honest security of OT extension is defined based on
the semi-honest security of k-OT (Definition 18) for k = n + 1.

When to submit inputs to hybrid OTn. We emphasize that the output
from the OT-hybrid functionality is received only after the final message has
been sent. This is the case because the OT-hybrid functionality in an r-round
OT extension protocol is implemented using an r-round base OT protocol, which
produces its output after receiving the final message. In this definition, the par-
ties choose their inputs for OTn at some points before the last message. Note
that, “naturally” the inputs to a r-round OT functionality should be submitted
at the beginning, but allowing the parties to choose their inputs to OTn more
flexibly only makes our impossibility result stronger.

In Definition 22, messages exchanged in an extension protocol are not allowed
to depend on the intermediate messages of the base OT protocol. This is justified
since these messages are simulatable. Moreover, without loss of generality, we
assume that OTn is never used in the “opposite” direction (with the sender
acting as the receiver and the receiver as the sender), because then there would
be not enough rounds for the output of OTn affecting any message sent to
the receiver, who is the only party with an output. Indeed, not surprisingly,
the known protocols [WW06] for switching the sender/receiver roles of the OT
require additional rounds. This role-switching is used in the OT extension of
the IKNP protocol [IKNP03], which also requires one more round. In fact, our
impossibility result shows that the result of [IKNP03] is round-optimal (though
it is not round-preserving) among all black-box protocols for OT extension using
symmetric-key primitives.

Based on Definition 22 above, we can now state Theorem 1 formally.

Theorem 23. Let (S,R) be a round-preserving OT extension protocol (accord-
ing to Definition 22) with security parameter κ using random oracle H as follows.

1. The n ≤ poly(κ) OTs modeled by OTn are allowed to be string OTs.
2. (S,R) implement bit (n + 1)-OT with λ = negl(κ) completeness error.
3. Either of (S,R) ask at most m = poly(κ) queries to the random oracle H.

Then the constructed (n + 1)-OT cannot be (even semi-honest) secure for both
of S or R against adversaries who can ask poly(m · n) ≤ poly(κ) queries to H.

In particular, either of S or R can execute the protocol honestly, then ask
poly(κ) more queries, and then break the (semi-honest) security of the con-
structed bit (n + 1)-OT by advantage 1

poly(n) ≥ 1
poly(κ) according to either of

the attacks described in Lemma 19 or Lemma 20.

The above theorem proves that for any round-preserving OT extension protocol,
there is always a poly(κ)-query attack by one of the parties that succeeds in
breaking the semi-honest security of the protocol with non-negligible advantage
1/poly(κ). In fact, we show how to break the security of such protocols even
when the main inputs (but not those of the hybrid OTn) are chosen at random.

564 S. Garg et al.

3.1 Proving Theorem 23

In the rest of this section, we prove Theorem 23 above.

Notation. First we clarify our notation used.

– �b = (b1, . . . , bn+1) ∈ {0, 1}n+1 is R’s own input, and it submits �c =
(c1, . . . , cn) ∈ {0, 1}n as its input to OTn during the execution of the protocol.

– (x0
i , x

1
i)i∈[n+1] is S’s input, and it submits {y0

i , y1
i }i∈[n] as its input to OTn.

– For r ∈ N, T = (t1, . . . , tr) is the transcript of the protocol.
– γ is the output of OTn that R receives after tr is sent to R.
– VS and VR denote, in order, the views of S and R, where VR only includes

the receiver’s view before receiving γ from OTn.

We will show that by asking poly(κ) queries after executing the protocol
honestly: either the sender can distinguish the receiver’s uniformly random input
from an actual independent random string, which is an attack by Lemma 19, or
the receiver can read both of sender’s inputs for an index i with non-negligible
probability13), which is an attack by Lemma 20.

We first define each party’s attack and then will prove that one of them will
succeed with non-negligible probability. Both attacks will make heavy use of the
‘dependency learning’ attack of Theorem 17. We will use that lemma for some
sufficiently small parameter δ that will be chosen when we analyze the attacks.

Construction 24 (Sender’s attack ̂S). Here ̂S tries to distinguish between
an independently sampled random string from {0, 1}n+1 and the actual input �b
(chosen at random and then) used by the receiver, based on the transcript T of
the (honestly executed protocol) and its knowledge about the random oracle H.

1. ̂S chooses its own input x = (x0
i , x

1
i)i∈[n+1] uniformly at random.

2. After the last message tr is sent, ̂S runs the Eve algorithm of Theorem 17
over the full transcript T = (t1, . . . , tr) for sufficiently small δ (to be chosen
later) over the following modified version (S,R1) of the original protocol, to
learn a set of oracle query-answer pairs PE .
– S and R choose their inputs uniformly at random.
– R1 stops right after the last message is sent (right before γ is delivered).

Note that even though S,R1 submit some inputs to OTn, because no outputs
are received by R1 and because all inputs are chosen at random, this is a
randomized “inputless” protocol between S,R1 for which we can indeed run
the attacker Eve of Theorem 17.

3. ̂S then considers the distribution (VR | VE = VE) conditioned on the obtained
Eve view VE = (T, PE), where T is the transcript and PE are the oracle query-
answer pairs learned by Eve.14 Then, given an input from {0, 1}n+1, ̂S tries

13 One can always guess a bit with probability 1/2, however, if the receiver specifies
explicitly that she has found both inputs of the sender correctly with non-negligible
probability, this is a violation of security and cannot be simulated efficiently in the
ideal world. Our attacking receiver will indeed specify when she succeeds.

14 More formally, the distinguishing task is done by the distinguisher, and thus ̂S tries
to obtain a view that is not simulatable. However, for simplicity of the exposition,
we combine the semi-honest attacker and the distinguisher.

On the Round Complexity of OT Extension 565

to use the maximum-likelihood method to distinguish receiver’s input �b from
a random string. Namely, given a string β, ̂S outputs 1 if Pr[�b = β | VE] >

2−(n+1), where �b is the random variable denoting the receiver’s input �b, and it
outputs 0 otherwise. In other words, ̂S, outputs 1 if the given β, from the eyes
of Eve, is more likely to be the actual receiver’s input �b than being sampled
from Un+1 independently.

An interesting thing about the above attack is that here the sender somehow
chooses to ‘forget’ about its own view and only considers Eve’s view (which still
includes the transcript), but doing this is always possible since Eve’s view is part
of the attacking sender’s view.

Construction 25 (Receiver’s attack ̂R). ̂R follows the protocol honestly,
denoted by the honest execution R, but its goal is to obtain also another output
not corresponding to its original input �b. (Doing this would establish an attack
by Lemma 20.) In order to get to this goal, in addition to executing R honestly
to obtain the ‘default’ output (xbi

i)i∈[n+1] with respect to �b, the cheating receiver
̂R also runs the following algorithm, denoted by R′, that tries to find the output
with respect to some other input �b′ �= �b. R′ will try to pick �b′ �= �b in a way that it
remains consistent with the transcript T as well as the received OT-hybrid output
γ (by enforcing the consistency with the OT-hybrid input �c), so that the obtained
output is correct with respect to �b′. Formally, the algorithm R′ is equal to R until
the last message tr is sent from S (i.e., we refer to this partial execution as R1),
but then R′ (as part of the attack ̂R) diverges from R’s execution as follows.

1. After the last message tr is sent by the sender S, the cheating receiver ̂R runs
the Eve algorithm of Theorem 17 over the same input-less protocol (S,R1)
used by ̂S in Construction 24 (where inputs are chosen at random and the
protocol ends when tr is sent) to obtain Eve’s view VE = (T, PE) for the same
δ used by ̂S in Construction 24.

2. ̂R then samples from the distribution V ′
R ← (VR | VE = VE ,�c = �c) where

VR denotes the random variable encoding the view of the inputless protocol
(S,R1) over which the Eve algorithm is executed. Now, ̂R interprets V ′

R as
the (partial) execution of R′ till tr is sent (i.e., only reflecting the R1 part),
and it continues executing R′ to a full execution of the receiver as follows.

3. Upon receiving γ from OTn, R′ continues the protocol (as the receiver) using
the partial view V ′

R and γ as follows. Note that in order to finish the execu-
tion, all we have to do is to describe how each oracle query q made by the
(remaining execution of) R′ is answered. Let L be an empty set and then
update it inductively, whenever a new query q is asked by R′, as follows.
(a) If q ∈ Q(V ′

R), then use the corresponding answer specified in V ′
R.

(b) Otherwise, if (q, a) ∈ L for some a, use a as answer to q.
(c) Otherwise, if q ∈ Q(VR) \ (Q(VE) ∪ Q(V ′

R)),15 pick a random answer a
for query q, and also add (q, a) to L for the future.

15 To have q ∈ Q(VR) \ (Q(VE) ∪ Q(V ′
R)) means that q is not asked by Eve and it is

not in the fake receiver’s view V ′
R (for partial execution R1), but q is in the honest

original execution of R1.

566 S. Garg et al.

(d) Otherwise, ask q from the real random oracle H.
When the emulation of R′ is completed, output whatever is obtained as the
output of R′ corresponding to the input �b′ described in V ′

R.

Now we show that at least one of the attacks ̂S, ̂R above succeeds.

Claim 1. Either the attacking sender ̂S of Construction 24 will distinguish �b
from Un+1 with advantage at least Ω(1/n), or the attacking receiver ̂R of Con-
struction 25 can obtain correct outputs corresponding to its random �b as well
as some �b′ �= �b with probability at least Ω(1/n2) − O(λ + δ), where λ is the
completeness error of the protocol and δ is the selected Eve parameter.

Proving Theorem 23 using Claim 1. Because λ = negl(κ) < o(1/n2), by
choosing δ = o(1/n2) in Claim 1, either the attacking sender of Construction 24
will break the security by Lemma 19, or the attacking receiver of Construction 25
succeeds in breaking the security with advantage Ω(1/n2) (by asking poly(κ)
oracle queries) by Lemma 20. In the following, we will prove Claim 1.

3.2 Proof of Claim 1

In this subsection, we will prove Claim 1. Let ε = 1/(1000n + 1000).

When ̂S succeeds. If it holds that SDVE (�b,Un+1) ≥ ε, then because the
attacking ̂S of Construction 24 is indeed using the canonical distinguisher of
Proposition 5 (i.e., the maximum likelihood predicate), by Lemma 3 and Propo-
sition 5, ̂S will be able to ε-distinguish the true randomly chosen input �b of the
receiver R from a uniform string Un+1 by advantage at least ε. Therefore, by
Lemma 19, ̂R succeeds in breaking the security with non-negligible advantage ε.

So, in what follows we assume that ̂S does not succeed, and based on this
we show that ̂R does indeed succeed in its attack.

When ̂R succeeds. In what follows we always assume

E
VE←VE

SD((�b | VE),Un+1) = SDVE (�b,Un+1) < ε =
1

1000n + 1000
(3)

and we will show, using Inequality (3) and Lemma 20, that the receiver’s attacker
̂R will succeed with the non-negligible probability. First note that by just con-
tinuing the protocol honestly, the receiver will indeed find the right output for
its sampled �b with probability at least 1 − λ where λ is the completeness error.
So all we have to prove is that with probability Ω(1/n2) − O(δ) − λ, it will
simultaneously hold that (1) �b′ �= �b and (2) the receiver R′ gets the output cor-
responding to �b′ (and sender’s actual input x). To prove this, it will suffice to
prove the following two statements:

– Pr[�b′ �= �b] ≥ Ω(1/n2) where �b and �b′ are the random variables denoting the
original and the fake inputs of ̂R.

– The receiver will get the right answer for �b′ with probability 1 − O(δ) − λ.

On the Round Complexity of OT Extension 567

Then, by a union bound, we can conclude that the ̂R will indeed manage to
launch a successful attack with probability Ω(1/n2)−O(δ +λ). In the following
we will formalize and prove the above two claims in forms of Claims 2 and 3.

Claim 2. If Inequality (3) holds, then Pr[�b′ �= �b] ≥ Ω(1/n2) where the proba-
bility is over the randomness of the sender S, cheating receiver ̂R, and H.

Proof. By sampling the components of the system ‘in reverse’, we can imagine
that first (T, PE) = VE ← VE is sampled from its corresponding marginal distri-
bution, then �c ← (�c | VE) is sampled, then (VS , VR) ← ((VS ,VR) | VE ,�c), and
finally V ′

R ← (VR | VE ,�c) are sampled, each conditioned on previously sampled
components of the system. We will rely on this order of sampling in our argu-
ments below. However, we can ignore the sampling of VS , when we want to com-
pare the components VR, V ′

R and the relation between �b,�b′. Thus, we can think
of VR, V ′

R as two independent samples from the same distribution (VR | VE ,�c).
Consequently, �b,�b′ are also two independent samples from (�b | VE ,�c).

By Inequality (3) and an averaging argument over the sampled VE ← VE ,
with probability at least 1 − 1/10 over the choice of VE ← VE , it holds that
SDVE (�b,Un+1) < ε′ = 1

100n+100 . We call such VE a ‘good’ sample. For any good
VE , using Lemma 14 it holds that H(�b | VE) ≥ (1− ε′) · (n+1)−H(ε′), and since
the length of �c is n, by further conditioning on random variable �c we have:

H(�b | VE ,�c) ≥ (1 − ε′) · (n + 1) − n − H(ε′) = 1 − ε′ · (n + 1) − H(ε′) ≥ 9/10

where the last inequality follows from ε′ ≤ 1/200, and H(1/200) < 1/20. There-
fore, by Lemma 15 (using X = �b,Y = (VE ,�c)) we conclude that the event �b �= �b′

happens with probability at least Ω(1/n2). Finally, since VE is a good sample
with probability Ω(1), we can still conclude that �b �= �b′ happens with probability
at least Ω(1/n2), finishing the proof of Claim 2. �
Claim 3. If Inequality (3) holds, then with probability 1 − λ − O(δ) (over the
randomness of the honest sender S, the cheating receiver ̂R, and the oracle H)

the cheating receiver R′ obtains the correct answer for �b′ (i.e., x
b′
1

1 , . . . , x
b′
n+1

n+1).

Proof. We want to argue that the full sampled view of the fake receiver R′

(including V ′
E followed by the computation as described in the fake execution

R′ as part of ̂R) will be statistically close to an actual honest execution of the
protocol (i.e., a full execution of R over random input). For this goal, we define
and compare the outcomes of the following experiments. For clarity, and because
we use the same names for random variables in different experiments, we might
use 〈X〉Z to emphasize that we are referring to X in the experiment Z.

Outputs of experiments. The output of the experiments below are vectors
with six components. Therefore, the order of the elements in these vectors is very
important, and e.g., if we change their order, that changes the actual output.

– Real experiment. This experiment outputs 〈VE ,�c, VS , VR, V ′
R, P ′〉Real where

VE is Eve’s view, VS is sender’s view, VR is receiver’s honestly generated view

568 S. Garg et al.

(till last message is sent), V ′
R is the sampled fake view of R′ only till last

message is sent (VR, V ′
R are both part of the view of ̂R), and P ′ is the set of

query-answer pairs that R′ generates after γ (i.e., the message coming from
OTn after the last message is sent) is sent (some of which are answered using
real oracle H and the rest are emulated using random coin tosses).

– Ideal experiment. In this experiment, we also sample a fake receiver’s view
V ′

R the same as in the Real experiment, but then there is no real attack
happening and we use the real oracle H to obtain the query-answer pairs P
to finish the computation of R (which is the original honest execution) using
the honest partial view VR. At the end we output 〈VE ,�c, VS , V ′

R, VR, P 〉Ideal.
Other the change from P ′ to P , note the crucial that we are switching the
locations of the real and fake receiver views VR, V ′

R in the output vector.

Remark 26 (Why not containing γ explicitly in outputs of experiments?). Note
that even though γ is not included explicitly in the output of the experiment, it is
implicitly there, because γ is a deterministic function of VS and �c. In particular,
because both VR, V ′

R are consistent with �c, they can both lead to correct answers
for sender inputs �b,�b′. In addition, if we did include γ in the outputs of the
experiments, it would not change their statistical distance.

Remark 27 (Why outputting VR, V ′
Rboth?). Note that our final goal is to show

that the fake view V ′
R in the Real experiment ‘behaves closely’ to the actual

honest view VR in the Ideal experiment. So, one might wonder why we include
both in the analysis of the experiments. The reason is that the honest and fake
views VR, V ′

R in the Real experiment are not independent of each other, so if we
want to continue the execution of V ′

R in the Real experiment to finish the view of
R′ (to get the output corresponding to the fake input �b′) we need to be aware of
the oracle queries whose answers are already fixed as part of the view of VR. The
reason is that we have to answer (some of them) intentionally at random, because
corresponding queries in the Ideal experiment are being asked for the first time.
In order to answer such queries the same way that they are answered in the Ideal
experiment, we need to keep track of them in both experiments and avoid some
‘bad’ events that prevent us from answering from the right distribution.

To prove Claim 3, it is enough to prove O(δ)-closeness of experiments.
If we show that the outputs of the two experiments are O(δ) (statistically) close,
then by the completeness error in the ideal word, which is at most λ, we could
conclude that the completeness error in the real world over the randomness of
〈VE ,VS ,VR,P〉Ideal is at most λ + O(δ), where the completeness now means
that the fake view of the attacking receiver is obtaining the right answer!

To prove that the two experiments’ outputs are O(δ) close, we do the
following:

1. We first prove that 〈VE ,�c,VS ,VR,V′
R〉Real ≈O(δ) 〈VE ,�c,VS ,V′

R,VR〉Ideal.
2. Then we show that Pr[〈VE ,�c,VS ,VR,V′

R〉Real ∈ B] ≤ δ for some ‘bad’ event
B. (Recall that an event in this work is simply a set, and the same set can be
used as an event for different random variables, as long as their samples are

On the Round Complexity of OT Extension 569

inside a universe where B is also defined.) Intuitively, the bad event captures
the event fact that an ‘intersection’ query exists between the views of the
sender and the receiver that is missed by Eve. Indeed, we could also bound
the probability of the same event B in the Ideal experiment, however we simply
bound it in Real and that turns out to be enough.

3. Finally, we show that as long as the event B does not happen over the sampled
α = 〈VE ,�c, VS , VR, V ′

R〉Real ← 〈VE ,�c,VS ,VR,V′
R〉Real (i.e., α �∈ B) and if

the sampled prefixes of the outputs are equal α = 〈VE ,�c, VS , V ′
R, VR〉Ideal =

〈VE ,�c, VS , VR, V ′
R〉Real, then the corresponding distributions

(〈P〉Ideal | 〈VE ,�c, VS , V ′
R, VR〉Ideal) ≡ (〈P′〉Real | 〈VE ,�c, VS , VR, V ′

R〉Real)

will be identically distributed.

If we prove the above 3 claims, the O(δ) closeness of the experiments’ out-
puts will follow from Lemma 11, which will finish the proof of Claim 3. To
apply Lemma 11, we let X1 = 〈VE ,�c,VS ,VR,V′

R〉Real,X2 = 〈P′〉Real,X′
1 =

〈VE ,�c,VS ,V′
R,VR〉Ideal,X′

2 = 〈P〉Ideal. We will prove the above 3 items through
Claims 4, 5 and 6 below.

Claim 4. 〈VE ,�c,VS ,VR,V′
R〉Real ≈O(δ) 〈VE ,�c,VS ,V′

R,VR〉Ideal.
Proof. By Part 1 of Theorem 17 it holds that in the real world:

E
(VE)←(VE ,�c)

MutDep((VS ,VR)Real | VE) ≤ δ.

By averaging over VE ← VE and then using Lemma 9 (and letting C :=
�c,B := VR,A := VS) and noting that �c is only a function of VR, it holds that

E
(VE ,�c)←(VE ,�c)

MutDep((VS ,VR)Real | VE ,�c) ≤ 2δ.

For a fixed (VE ,�c) ← (VE ,�c), we can use Lemma 8 (by letting X ≡ (VS | VE ,�c)
and Y ≡ (VR | VE ,�c)) and then average over (VE ,�c) ← (VE ,�c) to conclude

E
(VE ,�c)←(VE ,�c)

SD((〈VS ,VR,V′
R〉Real | VE ,�c), (〈VS ,V′

R,VR〉Ideal | VE ,�c)) ≤ 4δ.

Finally, by Proposition 5, the left side of the above inequality is the same as
SD(〈VE ,�c,VS ,VR,V′

R〉Real, 〈VE ,�c,VS ,V′
R,VR〉Ideal), finishing the proof. �

In the definition below, roughly speaking, the ‘bad’ event B contains possible
outputs of the experiments for which some intersection queries exist between the
views of the sender S and the receiver R that are missed by the Eve algorithm.

Definition 28 (The bad event B). Let U be a ‘universe’ containing all possi-
ble outputs of the two experiments (and maybe more elements) defined as follows:

{〈z1, . . . z5〉 | z1 ∈ Supp(VE), z2 ∈ Supp(�c), z3 ∈ Supp(VS), z4, z5 ∈ Supp(VR)}.

570 S. Garg et al.

Let the ‘bad’ event B ⊆ U be the set that:

B = {α = 〈z1, z2, z3, z4, z5〉 | α ∈ U,Q(z4) ∩ Q(z3) �⊆ Q(z1)}

Namely, if we interpret z1, z3, z4 as views of oracle-aided algorithms and extract
their queries, it holds that Q(z4) ∩ Q(z3) �⊆ Q(z1).

The following claim implies that with high probability, a sample from the
output of the Real experiment does not fall into B. (In other words, the property
by which B is defined, does not hold over the sampled output).

Claim 5. Pr[〈VE ,�c,VS ,VR,V′
R〉Real ∈ B] ≤ δ.

Proof. The claim directly follows from the second property of Eve’s algorithm
(i.e., Part 2 in Theorem 17). Namely, a sample

α = 〈z1, z2, z3, z4, z5〉 ← 〈VE ,�c,VS ,VR,V′
R〉Real

will have components corresponding to z1 = VE , z3 = VS , z4 = VR, and so by
Part 2 of Theorem 17 we know that with probability at least 1 − δ it holds that
Q(VS) ∩ Q(VR) ⊆ Q(VE). Therefore, α ∈ B would happen in Real experiment
with probability at most δ. �
Remark 29 (Other possible choices for defining bad event B and stating Claim 5).
One can also define an alternative version B′ of the bad event B based on the
modified condition Q(z5) ∩ Q(z3) �⊆ Q(z1) (i.e., using z5 instead of z4), and one
can also choose either of Real or Ideal experiments for bounding the probability
of the bad event (B or B′) by O(δ). This gives rise to four possible ways of
defining the bad event and bounding it in an experiment. We note that all four
cases above (i.e., both variations of the bad event B or B′ in both of the Real
and the Ideal) experiments can be proved to happen with probability at most
O(δ). Furthermore, all of these four possible choices could be used (together with
Lemma 11) for bounding the statistical distance of the output of experiments
Real and Ideal by O(δ). In fact, once we show that statistical distance of the
output of experiments Real and Ideal is O(δ), we can go back and derive all four
combinations (of choosing the bad event from B or B′ and stating Claim 5 in
either of Real or Ideal experiments) to be true. Thus, basically all of these four
choices are “equivalent” up to constant factors in the bound we get in Claim 5.
Nonetheless, among these four choices, we found the choice of the bad event B
according to Definition 28 and stating Claim 5 in the Real experiment to be the
simplest choice to prove (using Theorem 17) and use for proving Claim 3 (by
bounding the statistical distance of the outputs of experiments using Lemma 11).

Claim 6. If samples α = 〈VE ,�c, VS , V ′
R, VR〉Ideal = 〈VE ,�c, VS , VR, V ′

R〉Real are
equal, and if event B does not happen over the sample α (i.e., α �∈ B), then

(〈P〉Ideal | 〈VE ,�c, VS , V ′
R, VR〉Ideal) ≡ (〈P′〉Real | 〈VE ,�c, VS , VR, V ′

R〉Real).

On the Round Complexity of OT Extension 571

Proof. We show that conditioned on the same sample α being the prefix of the
outputs of the two experiments, the random process that generates the last com-
ponents 〈P′〉Real and 〈P〉Ideal are identically distributed in the two experiments.

After sampling α = 〈VE ,�c, VS , V ′
R, VR〉Ideal, every new query q will be

answered as follows in Ideal: If q is already in Q(VE) ∪ Q(VS) ∪ Q(VR) then
the answer is already fixed and that answer will be used, otherwise q will
be answered at random (by the random oracle H). Since we are assuming
〈VE ,�c, VS , V ′

R, VR〉Ideal = 〈VE ,�c, VS , VR, V ′
R〉Real, we would like to prove that

in the Real experiment, q is answered similarly. Indeed, we will prove that
in the Real experiment, if q is already in 〈Q(VE) ∪ Q(VS) ∪ Q(V ′

R)〉Real then
the fixed answer will be used, and otherwise q will be answered at random.
We make the following case study in the Real experiment based on the algo-
rithm of ̂R from Construction 25. (In the second case below we make a crucial
use of the fact that the event B has not happened over the current sample
〈VE ,�c, VS , V ′

R, VR〉Ideal = 〈VE ,�c, VS , VR, V ′
R〉Real.)

1. If q ∈ 〈Q(V ′
R)〉Real, then ̂R uses the answer stated in V ′

R. Otherwise:
2. if q ∈ 〈Q(VR) \ (Q(VE) ∪ Q(V ′

R))〉Real, ̂R answers q at random (and keeps its
answer in a list L to reuse in case of being asked again). In the ideal world,
this query q would be part of the fake view 〈V ′

R〉Ideal (recall the fake and real
views are switched across the Real vs. Ideal experiments) which is ignored in
the Ideal world when we generate 〈P 〉Ideal, and so we have two cases:
(a) If q is already in 〈Q(VS)〉Real, it means that α ∈ B for α =

〈VE ,�c, VS , V ′
R, VR〉Ideal = 〈VE ,�c, VS , VR, V ′

R〉Real which is not true.
(b) Otherwise, q �∈ 〈Q(VS)〉Real = 〈Q(V ′

S)〉Ideal, which means that q is a new
query in the ideal world, and so it is answered at random, just like how
it is answered in the real world by the attacker ̂R.

3. If above cases do not happen, but q is still part of 〈Q(VE) ∪ Q(VS)〉Real, ̂R
would forward this query to be asked from the actual random oracle H which
would also get the correct answer (i.e., the same answer stated in VE or VS).

Therefore, in all cases q will be answered from the same distribution across the
Real and Ideal experiments. This shows that the process of generating the last
component of the output of these experiments is identically distributed. �

This finishes the proof of Claim 3. �

References

[AIR01] Aiello, W., Ishai, Y., Reingold, O.: Priced oblivious transfer: how to sell
digital goods. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol.
2045, pp. 119–135. Springer, Heidelberg (2001). https://doi.org/10.1007/
3-540-44987-6 8

[AJL+12] Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V.,
Wichs, D.: Multiparty computation with low communication, computa-
tion and interaction via threshold FHE. In: Pointcheval, D., Johansson,
T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 483–501. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4 29

https://doi.org/10.1007/3-540-44987-6_8
https://doi.org/10.1007/3-540-44987-6_8
https://doi.org/10.1007/978-3-642-29011-4_29

572 S. Garg et al.

[Ald83] Aldous, D.: Random walks on finite groups and rapidly mixing Markov
chains. In: Azéma, J., Yor, M. (eds.) Séminaire de Probabilités XVII
1981/82. LNM, vol. 986, pp. 243–297. Springer, Heidelberg (1983).
https://doi.org/10.1007/BFb0068322

[ALSZ13] Asharov, G., Lindell, Y., Schneider, T., Zohner, M.: More efficient obliv-
ious transfer and extensions for faster secure computation. In: Sadeghi,
A.-R., Gligor, V.D., Yung, M. (eds.) ACM CCS 2013, Berlin, Germany,
4–8 November 2013, pp. 535–548. ACM Press (2013)

[ALSZ15] Asharov, G., Lindell, Y., Schneider, T., Zohner, M.: More efficient oblivi-
ous transfer extensions with security for malicious adversaries. In: Oswald,
E., Fischlin, M. (eds.) EUROCRYPT 2015, Part I. LNCS, vol. 9056, pp.
673–701. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-
46800-5 26

[BCR87] Brassard, G., Crepeau, C., Robert, J.-M.: All-or-nothing disclosure of
secrets. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 234–
238. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-
7 17

[Bea96] Beaver, D.: Correlated pseudorandomness and the complexity of private
computations. In: 28th ACM STOC, Philadephia, PA, USA, 22–24 May
1996, pp. 479–488. ACM Press (1996)

[BGI+14] Beimel, A., Gabizon, A., Ishai, Y., Kushilevitz, E., Meldgaard, S., Paskin-
Cherniavsky, A.: Non-interactive secure multiparty computation. In:
Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol. 8617,
pp. 387–404. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-44381-1 22

[BL17] Benhamouda, F., Lin, H.: k -round multiparty computation from k -round
oblivious transfer via garbled interactive circuits. Cryptology ePrint
Archive, Report 2017/1125 (2017). EUROCRYPT 2018

[BM17] Barak, B., Mahmoody, M.: Merkle’s key agreement protocol is optimal:
an O(n2) attack on any key agreement from random oracles. J. Cryptol.
30(3), 699–734 (2017)

[BMG09] Barak, B., Mahmoody-Ghidary, M.: Merkle puzzles are optimal — an
O(n2)-query attack on any key exchange from a random oracle. In: Halevi,
S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 374–390. Springer, Heidel-
berg (2009). https://doi.org/10.1007/978-3-642-03356-8 22

[BMR90] Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure pro-
tocols (extended abstract). In: 22nd ACM STOC, Baltimore, MD, USA,
14–16 May 1990, pp. 503–513. ACM Press (1990)

[CPS08] Coron, J.-S., Patarin, J., Seurin, Y.: The random oracle model and the
ideal cipher model are equivalent. In: Wagner, D. (ed.) CRYPTO 2008.
LNCS, vol. 5157, pp. 1–20. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-85174-5 1

[DLMM11] Dachman-Soled, D., Lindell, Y., Mahmoody, M., Malkin, T.: On the black-
box complexity of optimally-fair coin tossing. In: Ishai, Y. (ed.) TCC 2011.
LNCS, vol. 6597, pp. 450–467. Springer, Heidelberg (2011). https://doi.
org/10.1007/978-3-642-19571-6 27

[EGL85] Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing
contracts. Commun. ACM 28(6), 637–647 (1985)

[Fan68] Fano, R.M.: Transmission of Information. A Ststistical Theory of Com-
munications. MIT Press, Cambridge (1968)

https://doi.org/10.1007/BFb0068322
https://doi.org/10.1007/978-3-662-46800-5_26
https://doi.org/10.1007/978-3-662-46800-5_26
https://doi.org/10.1007/3-540-47721-7_17
https://doi.org/10.1007/3-540-47721-7_17
https://doi.org/10.1007/978-3-662-44381-1_22
https://doi.org/10.1007/978-3-662-44381-1_22
https://doi.org/10.1007/978-3-642-03356-8_22
https://doi.org/10.1007/978-3-540-85174-5_1
https://doi.org/10.1007/978-3-540-85174-5_1
https://doi.org/10.1007/978-3-642-19571-6_27
https://doi.org/10.1007/978-3-642-19571-6_27

On the Round Complexity of OT Extension 573

[FKN94] Feige, U., Kilian, J., Naor, M.: A minimal model for secure computation
(extended abstract). In: 26th ACM STOC, Montréal, Québec, Canada,
23–25 May 1994, pp. 554–563. ACM Press (1994)

[GGHR14] Garg, S., Gentry, C., Halevi, S., Raykova, M.: Two-round secure MPC
from indistinguishability obfuscation. In: Lindell, Y. (ed.) TCC 2014.
LNCS, vol. 8349, pp. 74–94. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54242-8 4

[GKLM12] Goyal, V., Kumar, V., Lokam, S., Mahmoody, M.: On black-box reduc-
tions between predicate encryption schemes. In: Cramer, R. (ed.) TCC
2012. LNCS, vol. 7194, pp. 440–457. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-28914-9 25

[GMMM17] Garg, S., Mahmoody, M., Masny, D., Meckler, I.: On the round complexity
of OT extension. Cryptology ePrint Archive, Report 2017/1187 (2017).
https://eprint.iacr.org/2017/1187

[GMPP16] Garg, S., Mukherjee, P., Pandey, O., Polychroniadou, A.: The exact round
complexity of secure computation. In: Fischlin, M., Coron, J.-S. (eds.)
EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 448–476. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5 16

[GMW87] Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or
a completeness theorem for protocols with honest majority. In: Aho, A.
(ed.) 19th ACM STOC, New York City, NY, USA, 25–27 May 1987, pp.
218–229. ACM Press (1987)

[GS17a] Garg, S., Srinivasan, A.: Garbled protocols and two-round MPC from
bilinear maps. In: 58th FOCS, pp. 588–599. IEEE Computer Society Press
(2017)

[GS17b] Garg, S., Srinivasan, A.: Two-round multiparty secure computation from
minimal assumptions. Cryptology ePrint Archive, Report 2017/1156
(2017). EUROCRYPT 2018

[HK12] Halevi, S., Kalai, Y.T.: Smooth projective hashing and two-message obliv-
ious transfer. J. Cryptol. 25(1), 158–193 (2012)

[HKT11] Holenstein, T., Künzler, R., Tessaro, S.: The equivalence of the random
oracle model and the ideal cipher model, revisited. In: Fortnow, L., Vad-
han, S.P. (eds.) 43rd ACM STOC, San Jose, CA, USA, 6–8 June 2011,
pp. 89–98. ACM Press (2011)

[HOZ16] Haitner, I., Omri, E., Zarosim, H.: Limits on the usefulness of random
oracles. J. Cryptol. 29(2), 283–335 (2016)

[IKM+13] Ishai, Y., Kushilevitz, E., Meldgaard, S., Orlandi, C., Paskin-Cherniavsky,
A.: On the power of correlated randomness in secure computation. In:
Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 600–620. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-36594-2 34

[IKNP03] Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious trans-
fers efficiently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp.
145–161. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-
45146-4 9

[IPS08] Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious
transfer – efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol.
5157, pp. 572–591. Springer, Heidelberg (2008). https://doi.org/10.1007/
978-3-540-85174-5 32

[IR89] Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-
way permutations. In: Proceedings of the 21st Annual ACM Symposium
on Theory of Computing (STOC), pp. 44–61. ACM Press (1989)

https://doi.org/10.1007/978-3-642-54242-8_4
https://doi.org/10.1007/978-3-642-54242-8_4
https://doi.org/10.1007/978-3-642-28914-9_25
https://doi.org/10.1007/978-3-642-28914-9_25
https://eprint.iacr.org/2017/1187
https://doi.org/10.1007/978-3-662-49896-5_16
https://doi.org/10.1007/978-3-642-36594-2_34
https://doi.org/10.1007/978-3-540-45146-4_9
https://doi.org/10.1007/978-3-540-45146-4_9
https://doi.org/10.1007/978-3-540-85174-5_32
https://doi.org/10.1007/978-3-540-85174-5_32

574 S. Garg et al.

[Kil88] Kilian, J.: Founding cryptography on oblivious transfer. In: Proceedings
of the 20th Annual ACM Symposium on Theory of Computing (STOC),
pp. 20–31 (1988)

[KK13] Kolesnikov, V., Kumaresan, R.: Improved OT extension for transferring
short secrets. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II.
LNCS, vol. 8043, pp. 54–70. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-40084-1 4

[KO04] Katz, J., Ostrovsky, R.: Round-optimal secure two-party computation. In:
Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 335–354. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8 21

[Lin16] Lindell, Y.: How to simulate it - a tutorial on the simulation proof tech-
nique. Cryptology ePrint Archive, Report 2016/046 (2016)

[LZ13] Lindell, Y., Zarosim, H.: On the feasibility of extending oblivious transfer.
In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 519–538. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2 29

[MW16] Mukherjee, P., Wichs, D.: Two round multiparty computation via multi-
key FHE. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part
II. LNCS, vol. 9666, pp. 735–763. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49896-5 26

[NNOB12] Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new approach
to practical active-secure two-party computation. In: Safavi-Naini, R.,
Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 681–700. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5 40

[NP01] Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: Kosaraju,
S.R. (ed.) 12th SODA, Washington, DC, USA, 7–9 January 2001, pp.
448–457. ACM-SIAM (2001)

[ORS15] Ostrovsky, R., Richelson, S., Scafuro, A.: Round-optimal black-box two-
party computation. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015,
Part II. LNCS, vol. 9216, pp. 339–358. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48000-7 17

[PVW08] Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient
and composable oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008.
LNCS, vol. 5157, pp. 554–571. Springer, Heidelberg (2008). https://doi.
org/10.1007/978-3-540-85174-5 31

[Rab81] Rabin, M.: How to exchange secrets by oblivious transfer. Technical report
TR-81, Harvard Aiken Computation Laboratory (1981)

[Sho09] Shoup, V.: A Computational Introduction to Number Theory and Alge-
bra. Cambridge University Press, Cambridge (2009)

[WW06] Wolf, S., Wullschleger, J.: Oblivious transfer is symmetric. In: Vaudenay,
S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 222–232. Springer,
Heidelberg (2006). https://doi.org/10.1007/11761679 14

[Yao82] Yao, A.C.-C.: Protocols for secure computations (extended abstract). In:
23rd FOCS, Chicago, Illinois, 3–5 November 1982, pp. 160–164. IEEE
Computer Society Press (1982)

https://doi.org/10.1007/978-3-642-40084-1_4
https://doi.org/10.1007/978-3-642-40084-1_4
https://doi.org/10.1007/978-3-540-28628-8_21
https://doi.org/10.1007/978-3-642-36594-2_29
https://doi.org/10.1007/978-3-662-49896-5_26
https://doi.org/10.1007/978-3-662-49896-5_26
https://doi.org/10.1007/978-3-642-32009-5_40
https://doi.org/10.1007/978-3-662-48000-7_17
https://doi.org/10.1007/978-3-540-85174-5_31
https://doi.org/10.1007/978-3-540-85174-5_31
https://doi.org/10.1007/11761679_14

Non-malleable Codes

Non-Malleable Codes for Partial
Functions with Manipulation Detection

Aggelos Kiayias1, Feng-Hao Liu2, and Yiannis Tselekounis1(B)

1 University of Edinburgh, Edinburgh, UK
akiayias@inf.ed.ac.uk, ytselekounis@ed.ac.uk
2 Florida Atlantic University, Boca Raton, USA

fenghao.liu@fau.edu

Abstract. Non-malleable codes were introduced by Dziembowski,
Pietrzak and Wichs (ICS ’10) and its main application is the protec-
tion of cryptographic devices against tampering attacks on memory. In
this work, we initiate a comprehensive study on non-malleable codes for
the class of partial functions, that read/write on an arbitrary subset of
codeword bits with specific cardinality. Our constructions are efficient in
terms of information rate, while allowing the attacker to access asymp-
totically almost the entire codeword. In addition, they satisfy a notion
which is stronger than non-malleability, that we call non-malleability
with manipulation detection, guaranteeing that any modified codeword
decodes to either the original message or to ⊥. Finally, our primitive
implies All-Or-Nothing Transforms (AONTs) and as a result our con-
structions yield efficient AONTs under standard assumptions (only one-
way functions), which, to the best of our knowledge, was an open ques-
tion until now. In addition to this, we present a number of additional
applications of our primitive in tamper resilience.

1 Introduction

Non-malleable codes (NMC) were introduced by Dziembowski, Pietrzak and
Wichs [27] as a relaxation of error correction and error detection codes, aiming
to provide strong privacy but relaxed correctness. Informally, non-malleability
guarantees that any modified codeword decodes either to the original message or
to a completely unrelated one, with overwhelming probability. The definition of
non-malleability is simulation-based, stating that for any tampering function f ,
there exists a simulator that simulates the tampering effect by only accessing f ,
i.e., without making any assumptions on the distribution of the encoded message.

The main application of non-malleable codes that motivated the seminal work
by Dziembowski et al. [27] is the protection of cryptographic implementations

A. Kiayias—Research partly supported by the H2020 project FENTEC (# 780108).
F.-H. Liu—Research supported by the NSF Award #CNS-1657040.
Y. Tselekounis—Research partly supported by the H2020 project PANORAMIX
(# 653497).

c© International Association for Cryptologic Research 2018
H. Shacham and A. Boldyreva (Eds.): CRYPTO 2018, LNCS 10993, pp. 577–607, 2018.
https://doi.org/10.1007/978-3-319-96878-0_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96878-0_20&domain=pdf

578 A. Kiayias et al.

from active physical attacks against memory, known as tampering attacks. In this
setting, the adversary modifies the memory of the cryptographic device, receives
the output of the computation, and tries to extract sensitive information related
to the private memory. Security against such types of attacks can be achieved by
encoding the private memory of the device using non-malleable codes. Besides
that, various applications of non-malleable codes have been proposed in subse-
quent works, such as CCA secure encryption schemes [20] and non-malleable
commitments [4].

Due to their important applications, constructing non-malleable codes has
received a lot of attention over recent years. As non-malleability against gen-
eral functions is impossible [27], various subclasses of tampering functions have
been considered, such as split-state functions [1–3,26,27,36,37], bit-wise tam-
pering and permutations [4,5,27], bounded-size function classes [32], bounded
depth/fan-in circuits [6], space-bounded tampering [29], and others (cf. Sect. 1.4).
One characteristic shared by those function classes is that they allow full access
to the codeword, while imposing structural or computational restrictions to the
way the function computes over the input. In this work we initiate a comprehen-
sive study on non-malleability for functions that receive partial access over the
codeword, which is an important yet overlooked class, as we elaborate below.

The class of partial functions. The class of partial functions contains all
functions that read/write on an arbitrary subset of codeword bits with specific
cardinality. Concretely, let c be a codeword with length ν. For α ∈ [0, 1), the
function class Fαν (or Fα for brevity) consists of all functions that operate over
any subset of bits of c with cardinality at most αν, while leaving the remaining
bits intact. The work of Cheraghchi and Guruswami [18] explicitly defines this
class and uses a subclass (the one containing functions that always touch the
first αν bits of the codeword) in a negative way, namely as the tool for deriv-
ing capacity lower bounds for information-theoretic non-malleable codes against
split-state functions. Partial functions were also studied implicitly by Faust
et al. [32], while aiming for non-malleability against bounded-size circuits.1

Even though capacity lower bounds for partial functions have been derived
(cf. [18]), our understanding about explicit constructions is still limited. Exis-
tential results can be derived by the probabilistic method, as shown in prior
works [18,27]2, but they do not yield explicit constructions. On the other hand,
the capacity bounds do not apply to the computational setting, which could
potentially allow more practical solutions. We believe that this is a direction
that needs to be explored, as besides the theoretical interest, partial functions is

1 Specifically, in [32], the authors consider a model where a common reference string
(CRS) is available, with length roughly logarithmic in the size of the tampering
function class; as a consequence, the tampering function is allowed to read/write the
whole codeword while having only partial information over the CRS.

2 Informally, prior works [18,27] showed existence of non-malleable codes for classes
of certain bounded cardinalities. The results cover the class of partial functions.

Non-Malleable Codes for Partial Functions with Manipulation Detection 579

a natural model that complies with existing attacks that require partial access
to the registers of the cryptographic implementation [8,10–12,44].3

Besides the importance of partial functions in the active setting, i.e., when the
function is allowed to partially read/write the codeword, the passive analogue
of the class, i.e., when the function is only given read access over the codeword,
matches the model considered by All-Or-Nothing Transforms (AONTs), which
is a notion originally introduced by Rivest [41], providing security guarantees
similar to those of leakage resilience: reading an arbitrary subset (up to some
bounded cardinality) of locations of the codeword does not reveal the underly-
ing message. As non-malleable codes provide privacy, non-malleability for par-
tial functions is the active analogue of (and in fact implies) AONTs, that find
numerous applications [13,14,40,41,43].

Plausibility. At a first glance one might think that partial functions better
comply with the framework of error-correction/detection codes (ECC/EDC),
as they do not touch the whole codeword. However, if we allow the adversary
to access asymptotically almost the entire codeword, it is conceivable it can
use this generous access rate, i.e., the fraction of the codeword that can be
accessed (see below), to create correlated encodings, thus we believe solving non-
malleability in this setting is a natural question. Additionally, non-malleability
provides simulation based security, which is not considered by ECC/EDC.

We illustrate the separation between the notions using the following example.
Consider the set of partial functions that operate either on the right or on the left
half of the codeword (the function chooses if it is going to be left or right), and the
trivial encoding scheme that on input message s outputs (s, s). The decoder, on
input (s, s′), checks if s = s′, in which case it outputs s, otherwise it outputs ⊥.
This scheme is clearly an EDC against the aforementioned function class,4 as the
output of the decoder is in {s,⊥}, with probability 1; however, it is malleable
since the tampering function can create encodings whose validity depends on
the message. On the other hand, an ECC would provide a trivial solution in
this setting, however it requires restriction of the adversarial access fraction to
1/2 (of the codeword); by accessing more than this fraction, the attacker can
possibly create invalid encodings depending on the message, as general ECCs
do not provide privacy. Thus, the ECC/EDC setting is inapt when aiming for
simulation based security in the presence of attackers that access almost the
entire codeword. Later in this section, we provide an extensive discussion on
challenges of non-malleability for partial functions.

Besides the plausibility and the lack of a comprehensive study, partial
functions can potentially allow stronger primitives, as constant functions are
excluded from the class. This is similar to the path followed by Jafargholi and
Wichs [34], aiming to achieve tamper detection (cf. Sect. 1.4) against a class of

3 The attacks by [8,11,12] require the modification of a single (random) memory bit,
while in [10] a single error per each round of the computation suffices. In [44], the
attack requires a single faulty byte.

4 It is not an ECC as the decoder does not know which side has been modified by the
tampering function.

580 A. Kiayias et al.

functions that implicitly excludes constant functions and the identity function. In
this work we prove that this intuition holds, by showing that partial functions
allow a stronger primitive that we define as non-malleability with manipula-
tion detection (MD-NMC), which in addition to simulation based security, it
also guarantees that any tampered codeword will either decode to the original
message or to ⊥. Again, and as in the case of ECC/EDC, we stress out that
manipulation/tamper-detection codes do not imply MD-NMC, as they do not
provide simulation based security (cf. Sect. 1.4).5

Given the above, we believe that partial functions is an interesting and well-
motivated model. The goal of this work is to answer the following (informally
stated) question:

Is it possible to construct efficient (high information rate) non-malleable
codes for partial functions, while allowing the attacker to access almost the
entire codeword?

We answer the above question in the affirmative. Before presenting our results
(cf. Sect. 1.1) and the high level ideas behind our techniques (cf. Sect. 1.2), we
identify the several challenges that are involved in tackling the problem.

Challenges. We first define some useful notions used throughout the paper.

– Information rate: the ratio of message to codeword length, as the message
length goes to infinity.

– Access rate: the fraction of the number of bits that the attacker is allowed to
access over the total codeword length, as the message length goes to infinity.

The access rate measures the effectiveness of a non-malleable code in the par-
tial function setting and reflects the level of adversarial access to the codeword.
In this work, we aim at constructing non-malleable codes for partial functions
with high information rate and high access rate, i.e., both rates should app-
roach 1 simultaneously. Before discussing the challenges posed by this require-
ment, we first review some known impossibility results. First, non-malleability
for partial functions with concrete access rate 1 is impossible, as the function can
fully decode the codeword and then re-encode a related message [27]. Second,
information-theoretic non-malleable codes with constant information rate (e.g.,
0.5) are not possible against partial functions with constant access rate [18]6,
and consequently, solutions in the information-theoretic settings such as ECC
and Robust Secret Sharing (RSS) do not solve our problem. Based on these
facts, in order to achieve our goal, the only path is to explore the computational
setting, aiming for access rate at most 1 − ε, for some ε > 0.

At a first glance one might think that non-malleability for partial functions
is easier to achieve, compared to other function classes, as partial functions

5 Clearly, MD-NMC imply manipulation/error-detection codes.
6 Informally, in [18] (Theorem 5.3) the authors showed that any information-theoretic

non-malleable code with a constant access rate and a constant information rate must
have a constant distinguishing probability.

Non-Malleable Codes for Partial Functions with Manipulation Detection 581

cannot touch the whole codeword. Having that in mind, it would be tempting to
conclude that existing designs/techniques with minor modifications are sufficient
to achieve our goal. However, we will show that this intuition is misleading,
by pointing out why prior approaches fail to provide security against partial
functions with high access rate.

The current state of the art in the computational setting considers tools
such as (Authenticated) Encryption [1,22,24,28,36,37], non-interactive zero-
knowledge (NIZK) proofs [22,28,30,37], and �-more extractable collision resis-
tant hashes (ECRH) [36], where others use KEM/DEM techniques [1,24]. Those
constructions share a common structure, incorporating a short secret key sk (or
a short encoding of it), as well as a long ciphertext, e, and a proof π (or a hash
value). Now, consider the partial function f that gets full access to the secret key
sk and a constant number of bits of the ciphertext e, partially decrypts e and
modifies the codeword depending on those bits. Then, it is not hard to see that
non-malleability falls apart as the security of the encryption no longer holds.
The attack requires access rate only O((|sk|)/(|sk| + |e| + |π|)), for [22,28,37]
and O(poly(k)/|s|) for [1,24,36]. A similar attack applies to [30], which is in the
continual setting.

One possible route to tackle the above challenges, is to use an encoding
scheme over the ciphertext, such that partial access over it does not reveal
the underlying message.7 The guarantees that we need from such a primitive
resemble the properties of AONTs, however this primitive does not provide
security against active, i.e., tampering, attacks. Another approach would be to
use Reconstructable Probabilistic Encodings [6], which provide error-correcting
guarantees, yet still it is unknown whether we can achieve information rate 1 for
such a primitive. In addition, the techniques and tools for protecting the secret
key can be used to achieve optimal information rate as they are independent of
the underlying message, yet at the same time, they become the weakest point
against partial functions with high access rate. Thus, the question is how to
overcome the above challenges, allowing access to almost the entire codeword.

In this paper we solve the challenges presented above based on the following
observation: in existing solutions the structure of the codeword is fixed and
known to the attacker, and independently of the primitives that we use, the only
way to resolve the above issues is by hiding the structure via randomization.
This requires a structure recovering mechanism that can either be implemented
by an “external” source, or otherwise the structure needs to be reflected in the
codeword in some way that the attacker cannot exploit. In the present work we
implement this mechanism in both ways, by first proposing a construction in the
common reference string (CRS) model, and then we show how to remove the
CRS using slightly bigger alphabets. Refer to Sect. 1.2 for a technical overview.

7 In the presence of NIZKs we can have attacks with low access rate that read sk, e,
and constant number of bits from the proof.

582 A. Kiayias et al.

1.1 Our Results

We initiate the study of non-malleable codes with manipulation-detection (MD-
NMC), and we present the first (to our knowledge) construction for this type
of codes. We focus on achieving simultaneously high information rate and high
access rate, in the partial functions setting, which by the results of [18], it can
be achieved only in the computational setting.

Our contribution is threefold. First, we construct an information rate 1
non-malleable code in the CRS model, with access rate 1 − 1/Ω(log k), where
k denotes the security parameter. Our construction combines Authenticated
Encryption together with an inner code that protects the key of the encryp-
tion scheme (cf. Sect. 1.2). The result is informally summarized in the following
theorem.

Theorem 1.1 (Informal). Assuming one-way functions, there exists an explicit
computationally secure MD-NMC in the CRS model, with information rate 1
and access rate 1 − 1/Ω(log k), where k is the security parameter.

Our scheme, in order to achieve security with error 2−Ω(k), produces code-
words of length |s| + O(k2 log k), where |s| denotes the length of the message,
and uses a CRS of length O(k2 log k log(|s|+k)). We note that our construction
does not require the CRS to be fully tamper-proof and we refer the reader to
Sect. 1.2 for a discussion on the topic.

In our second result we show how to remove the CRS by slightly increas-
ing the size of the alphabet. Our result is a computationally secure MD-NMC
in the standard model, achieving information and access rate 1 − 1/Ω(log k).
Our construction is proven secure by a reduction to the security of the scheme
presented in Theorem 1.1. Below, we informally state our result.

Theorem 1.2 (Informal). Assuming one-way functions, there exists an explicit,
computationally secure MD-NMC in the standard model, with alphabet length
O(log k), information rate 1 − 1/Ω(log k) and access rate 1 − 1/Ω(log k), where
k is the security parameter.

Our scheme produces codewords of length |s|(1 + 1/O(log k)) + O(k2 log2 k).
In Sect. 1.2, we consider security against continuous attacks. We show how

to achieve a weaker notion of continuous security, while avoiding the use of
a self-destruct mechanism, which was originally achieved by [28]. Our notion
is weaker than full continuous security [30], since the codewords need to be
updated. Nevertheless, our update operation is deterministic and avoids the
full re-encoding process [27,37]; it uses only shuffling and refreshing operations,
i.e., we avoid cryptographic computations such as group operations and NIZKs.
We call such an update mechanism a “light update.” Informally, we prove the
following result.

Theorem 1.3 (Informal). One-way functions imply continuous non-malleable
codes with deterministic light updates and without self-destruct, in the standard
model, with alphabet length O(log k), information rate 1−1/Ω(log k) and access
rate 1 − 1/Ω(log k), where k is the security parameter.

Non-Malleable Codes for Partial Functions with Manipulation Detection 583

As we have already stated, non-malleable codes against partial functions
imply AONTs [41]. The first AONT was presented by Boyko [13] in the random
oracle model, and then Canetti et al. [14] consider AONTs with public/private
parts as well as a secret-only part, which is the full notion. Canetti et al. [14]
provide efficient constructions for both settings, yet the fully secure AONT
(called “secret-only” in that paper) is based on non-standard assumptions.8

Assuming one-way functions, our results yield efficient, fully secure AONTs,
in the standard model. This resolves, the open question left in [14], where the
problem of constructing AONT under standard assumptions was posed. Our
result is presented in the following theorem.

Theorem 1.4 (Informal). Assuming one-way functions, there exists an explicit
secret-only AONT in the standard model, with information rate 1 and access
rate 1 − 1/Ω(log k), where k is the security parameter.

The above theorem is derived by the Informal Theorem1.1 yielding an
AONT whose output consists of both the CRS and the codeword produced
by the NMC scheme in the CRS model. A similar theorem can be derived with
respect to the Informal Theorem 1.2. Finally, and in connection to AONTs that
provide leakage resilience, our results imply leakage-resilient codes [37] for partial
functions.

In the full version of the paper we provide concrete instantiations of our con-
structions, using textbook instantiations [35] for the underlying authenticated
encryption scheme. For completeness, we also provide information theoretic vari-
ants of our constructions that maintain high access rate and thus necessarily
sacrifice information rate.

1.2 Technical Overview

On the manipulation detection property. In the present work we exploit
the fact that the class of partial functions does not include constant functions
and we achieve a notion that is stronger than non-malleability, which we call
non-malleability with manipulation detection. We formalize this notion as a
strengthening of non-malleability and we show that our constructions achieve
this stronger notion. Informally, manipulation detection ensures that any tam-
pered codeword will either decode to the original message or to ⊥.

A MD-NMC in the CRS model. For the exposition of our ideas, we start
with a naive scheme (which does not work), and then show how we resolve all the
challenges. Let (KGen,E,D) be a (symmetric) authenticated encryption scheme
and consider the following encoding scheme: to encode a message s, the encoder
computes (sk||e), where e ← Esk(s) is the ciphertext and sk ← KGen(1k), is
the secret key. We observe that the scheme is secure if the tampering function
can only read/write on the ciphertext, e, assuming the authenticity property

8 In [43] the authors present a deterministic AONT construction that provides weaker
security.

584 A. Kiayias et al.

(Bits)

z

e← Encryptsk(s)

← SecretShare sk||sk3)

Secret key: sk

Message: s

Locations defined by the CRS

Fig. 1. Description of the scheme in the CRS model.

of the encryption scheme, however, restricting access to sk, which is short, is
unnatural and makes the problem trivial. On the other hand, even partial access
to sk, compromises the authenticity property of the scheme, and even if there
is no explicit attack against the non-malleability property, there is no hope for
proving security based on the properties of (KGen,E,D), in black-box way.

A solution to the above problems would be to protect the secret key using
an inner encoding, yet the amount of tampering is now restricted by the capa-
bilities of the inner scheme, as the attacker knows the exact locations of the
“sensitive” codeword bits, i.e., the non-ciphertext bits. In our construction, we
manage to protect the secret key while avoiding the bottleneck on the access
rate by designing an inner encoding scheme that provides limited security guar-
antees when used standalone, still when it is used in conjunction with a shuffling
technique that permutes the inner encoding and ciphertext bit locations, it guar-
antees that any attack against the secret key will create an invalid encoding with
overwhelming probability, even when allowing access to almost the entire code-
word.

Our scheme is depicted in Fig. 1 and works as follows: on input message s, the
encoder (i) encrypts the message by computing sk ← KGen(1k) and e ← Esk(s),
(ii) computes an m-out-of-m secret sharing z of (sk||sk3) (interpreting both
sk and sk3 as elements in some finite field),9 and outputs a random shuffling
of (z||e), denoted as PΣ(z||e), according to the common reference string Σ.
Decoding proceeds as follows: on input c, the decoder (i) inverts the shuffling
operation by computing (z||e) ← P−1

Σ (c), (ii) reconstructs (sk||sk′), and (iii) if
sk3 = sk′, outputs Dsk(e), otherwise, it outputs ⊥.

In Sect. 3 we present the intuition behind our construction and a formal
security analysis. Our instantiation yields a rate 1 computationally secure MD-
NMC in the CRS model, with access rate 1 − 1/Ω(log k) and codewords of
length |s| + O(k2 log k), under mild assumptions (e.g., one way functions).

On the CRS. In our work, the tampering function, and consequently the code-
word locations that the function is given access to, are fixed before sampling the

9 In general, any polynomial of small degree, e.g., skc, would suffice, depending on the
choice of the underlying finite field. Using sk3 suffices when working over fields of
characteristic 2. We could also use sk2 over fields of characteristic 3.

Non-Malleable Codes for Partial Functions with Manipulation Detection 585

CRS and this is critical for achieving security. However, proving security in this
setting is non-trivial. In addition, the tampering function receives full access to
the CRS when tampering with the codeword. This is in contrast to the work
by Faust et al. [32] in the information-theoretic setting, where the (internal)
tampering function receives partial information over the CRS.

In addition, our results tolerate adaptive selection of the codeword locations,
with respect to the CRS, in the following way: each time the attacker requests
access to a location, he also learns if it corresponds to a bit of z or e, together
with the index of that bit in the original string. In this way, the CRS is gradually
disclosed to the adversary while picking codeword locations.

Finally, our CRS sustains a substantial amount of tampering that depends
on the codeword locations chosen by the attacker: an attacker that gets
access to a sensitive codeword bit is allowed to modify the part of the
CRS that defines the location of that bit in the codeword. The attacker is
allowed to modify all but O(k log(|s| + k)) bits of the CRS, that is of length
O(k2 log k log(|s| + k)). To our knowledge, this is the first construction that tol-
erates, even partial modification of the CRS. In contrast, existing constructions
in the CRS model are either using NIZKs [22,28,30,37], or they are based on
the knowledge of exponent assumption [36], thus tampering access to the CRS
might compromise security.

Removing the CRS. A first approach would be to store the CRS inside the
codeword together with PΣ(z||e), and give to the attacker read/write access to
it. However, the tampering function, besides getting direct (partial) access to
the encoding of sk, it also gets indirect access to it by (partially) controlling the
CRS. Then, it can modify the CRS in way such that, during decoding, ciphertext
locations of its choice will be treated as bits of the inner encoding, z, increasing
the tampering rate against z significantly. This makes the task of protecting sk
hard, if not impossible (unless we restrict the access rate significantly).

To handle this challenge, we embed the structure recovering mechanism inside
the codeword and we emulate the CRS effect by increasing the size of the alpha-
bet, giving rise to a block-wise structure.10 Notice that, non-malleable codes
with large alphabet size (i.e., poly(k) + |s| bits) might be easy to construct, as
we can embed in each codeword block the verification key of a signature scheme
together with a secret share of the message, as well as a signature over the share.
In this way, partial access over the codeword does not compromise the security
of the signature scheme while the message remains private, and the simulation is
straightforward. This approach however, comes with a large overhead, decreasing
the information rate and access rate of the scheme significantly. In general, and
similar to error correcting codes, we prefer smaller alphabet sizes – the larger
the size is, the more coarse access structure is required, i.e., in order to access
individual bits we need to access the blocks that contain them. In this work,
we aim at minimizing this restriction by using small alphabets, as we describe
below.
10 Bigger alphabets have been also considered in the context of error-correcting codes,

in which the codeword consists of symbols.

586 A. Kiayias et al.

z

e← Encryptsk(s)

← SecretShare sk||sk3)

Secret key: sk

Message: s

1||index||z[index]

Randomly chosen blocks

0||epart
(Blocks) (Contents)

Fig. 2. Description of the scheme in the standard model.

Our approach on the problem is the following. We increase the alphabet size
to O(log k) bits, and we consider two types of blocks: (i) sensitive blocks, in
which we store the inner encoding, z, of the secret key, sk, and (ii) non-sensitive
blocks, in which we store the ciphertext, e, that is fragmented into blocks of
size O(log k). The first bit of each block indicates whether it is a sensitive block,
i.e., we set it to 1 for sensitive blocks and to 0, otherwise. Our encoder works
as follows: on input message s, it computes z, e, as in the previous scheme and
then uses rejection sampling to sample the indices, ρ1, . . . , ρ|z|, for the sensitive
blocks. Then, for every i ∈ {1, . . . , |z|}, ρi is a sensitive block, with contents
(1||i||z[i]), while the remaining blocks keep ciphertext pieces of size O(log k).
Decoding proceeds as follows: on input codeword C = (C1, . . . , Cbn), for each
i ∈ [bn], if Ci is a non-sensitive block, its data will be part of e, otherwise, the
last bit of Ci will be part of z, as it is dictated by the index stored in Ci. If the
number of sensitive blocks is not the expected, the decoder outputs ⊥, otherwise,
z, e, have been fully recovered and decoding proceeds as in the previous scheme.
Our scheme is depicted in Fig. 2.

The security of our construction is based on the fact that, due to our shuf-
fling technique, the position mapping will not be completely overwritten by the
attacker, and as we prove in Sect. 4, this suffices for protecting the inner encod-
ing over sk. We prove security of the current scheme (cf. Theorem4.4) by a
reduction to the security of the scheme in the CRS model. Our instantiation
yields a rate 1 − 1/Ω(log k) MD-NMC in the standard model, with access rate
1−1/Ω(log k) and codewords of length |s|(1+1/O(log k))+O(k2 log2 k), assum-
ing one-way functions.

It is worth pointing out that the idea of permuting blocks containing sensitive
and non-sensitive data was also considered by [42] in the context of list-decodable
codes, however the similarity is only in the fact that a permutation is being used
at some point in the encoding process, and our objective, construction and proof
are different.

Continuously non-malleable codes with light updates. We observe that
the codewords of the block-wise scheme can be updated efficiently, using shuffling
and refreshing operations. Based on this observation, we prove that our code is

Non-Malleable Codes for Partial Functions with Manipulation Detection 587

secure against continuous attacks, for a notion of security that is weaker than
the original one [30], as we need to update our codeword. However, our update
mechanism is using cheap operations, avoiding the full decoding and re-encoding
of the message, which is the standard way to achieve continuous security [27,37].
In addition, our solution avoids the usage of a self-destruction mechanism that
produces ⊥ in all subsequent rounds after the first round in which the attacker
creates an invalid codeword, which was originally achieved by [28], and makes
an important step towards practicality.

The update mechanism works as follows: in each round, it randomly shuffles
the blocks and refreshes the randomness of the inner encoding of sk. The idea
here is that, due to the continual shuffling and refreshing of the inner encoding
scheme, in each round the attacker learns nothing about the secret key, and
every attempt to modify the inner encoding, results to an invalid key, with
overwhelming probability. Our update mechanism can be made deterministic if
we further encode a seed of a PRG together with the secret key, which is similar
to the technique presented in [37].

Our results are presented in Sect. 5 (cf. Theorem 5.3), and the rates for the
current scheme match those of the one-time secure, block-wise code.

1.3 Applications

Security against passive attackers - AONTs. Regarding the passive set-
ting, our model and constructions find useful application in all settings where
AONTs are useful (cf. [13,14,40,41]), e.g., for increasing the security of encryp-
tion without increasing the key-size, for improving the efficiency of block ciphers
and constructing remotely keyed encryption [13,41], and also for constructing
computationally secure secret sharing [40]. Other uses of AONTs are related to
optimal asymmetric encryption padding [13].

Security against memory tampering - (Binary alphabets, Logarith-
mic length CRS). As with every NMC, the most notable application of the
proposed model and constructions is when aiming for protecting cryptographic
devices against memory tampering. Using our CRS based construction we can
protect a large tamperable memory with a small (logarithmic in the message
length) tamperproof memory, that holds the CRS.

The construction is as follows. Consider any device performing cryptographic
operations, e.g., a smart card, whose memory is initialized when the card is being
issued. Each card is initialized with an independent CRS, which is stored in a
tamper-proof memory, while the codeword is stored in a tamperable memory.
Due to the independency of the CRS values, it is plausible to assume that the
adversary is not given access to the CRS prior to tampering with the card; the
full CRS is given to the tampering function while it tampers with the codeword
during computation. This idea is along the lines of the only computation leaks
information model [38], where data can only be leaked during computation,
i.e., the attacker learns the CRS when the devices performs computations that
depend on it. We note that in this work we allow the tampering function to read

588 A. Kiayias et al.

the full CRS, in contrast to [32], in which the tampering function receives partial
information over it (our CRS can also be tampered, cf. the above discussion). In
subsequent rounds the CRS and the codeword are being updated by the device,
which is the standard way to achieve security in multiple rounds while using a
one-time NMC [27].

Security against memory tampering - (Logarithmic length alphabets,
no CRS). In modern architectures data is stored and transmitted in chunks,
thus our block-wise encoding scheme can provide tamper-resilience in all these
settings. For instance, consider the case of arithmetic circuits, having memory
consisting of consecutive blocks storing integers. Considering adversaries that
access the memory of such circuits in a block-wise manner, is a plausible sce-
nario. In terms of modeling, this is similar to tamper-resilience for arithmetic
circuits [33], in which the attacker, instead of accessing individual circuit wires
carrying bits, it accesses wires carrying integers. The case is similar for RAM
computation where the CPU operates over 32 or 64 bit registers (securing RAM
programs using NMC was also considered by [22–24,31]). We note that the
memory segments in which the codeword blocks are stored do not have to be
physically separated, as partial functions output values that depend on the whole
input in which they receive access to. This is in contrast to the split-state set-
ting in which the tampering function tampers with each state independently,
and thus the states need to be physically separated.

Security against adversarial channels. In Wiretap Channels [9,39,45] the
goal is to communicate data privately against eavesdroppers, under the assump-
tion that the channel between the sender and the adversary is “noisier” than
the channel between the sender and the receiver. The model that we propose
and our block-wise construction can be applied in this setting to provide privacy
against a wiretap adversary under the assumption that due to the gap of noise
there is a small (of rate o(1)) fraction of symbols that are delivered intact to the
receiver and dropped from the transmission to the adversary. This enables pri-
vate, key-less communication between the parties, guaranteeing that the receiver
will either receive the original message, or ⊥. In this way, the communication
will be non-malleable in the sense that the receiver cannot be lead to output
⊥ depending on any property of the plaintext. Our model allows the noise in
the receiver side to depend on the transmission to the wiretap adversary, that
tampers with a large (of rate 1−o(1)) fraction of symbols, leading to an “active”
variant of the wiretap model.

1.4 Related Work

Manipulation detection has been considered independently of the notion of non-
malleability, in the seminal paper by Cramer et al. [21], who introduced the
notion of algebraic manipulation detection (AMD) codes, providing security
against additive attacks over the codeword. A similar notion was considered
by Jafargholi and Wichs [34], called tamper detection, aiming to detect mali-
cious modifications over the codeword, independently of how those affect the

Non-Malleable Codes for Partial Functions with Manipulation Detection 589

output of the decoder. Tamper detection ensures that the application of any
(admissible) function to the codeword leads to an invalid decoding.

Non-malleable codes for other function classes have been extensively stud-
ied, such as constant split-state functions [17,25], block-wise tampering [15,19],
while the work of [2] develops beautiful connections among various function
classes. In addition, other variants of non-malleable codes have been pro-
posed, such as continuous non-malleable codes [30], augmented non-malleable
codes [1], locally decodable/updatable non-malleable codes [16,22–24,31], and
non-malleable codes with split-state refresh [28]. In [7] the authors consider
AC0 circuits, bounded-depth decision trees and streaming, space-bounded adver-
saries. Leakage resilience was also considered as an additional feature, e.g.,
by [16,24,28,37].

2 Preliminaries

In this section we present basic definitions and notation that will be used
throughout the paper.

Definition 2.1 (Notation). Let t, i, j, be non-negative integers. Then, [t] is the
set {1, . . . , t}. For bit-strings x, y, x||y, is the concatenation of x, y, |x| denotes
the length of x, for i ∈ [|x|], x[i] is the i-th bit of x,

�t
j=1 xj := x1|| . . . ||xt, and

for i ≤ j, x[i : j] = x[i]|| . . . ||x[j]. For a set I, |I|, P(I), are the cardinality and
power set of I, respectively, and for I ⊆ [|x|], x|I is the projection of the bits
of x with respect to I. For a string variable c and value v, c ← v denotes the
assignment of v to c, and c[I] ← v, denotes an assignment such that c|I equals v.
For a distribution D over a set X , x ← D, denotes sampling an element x ∈ X ,
according to D, x ← X denotes sampling a uniform element x from X , UX
denotes the uniform distribution over X and x1, . . . , xt

rs← X denotes sampling a
uniform subset of X with t distinct elements, using rejection sampling. The sta-
tistical distance between two random variables X, Y , is denoted by Δ(X,Y), “≈”
and “≈c”, denote statistical and computational indistinguishability, respectively,
and negl(k) denotes an unspecified, negligible function, in k.

Below, we define coding schemes, based on the definitions of [27,37].

Definition 2.2 (Coding scheme [27]). A (κ, ν)-coding scheme, κ, ν ∈ N, is a
pair of algorithms (Enc,Dec) such that: Enc : {0, 1}κ → {0, 1}ν is an encod-
ing algorithm, Dec : {0, 1}ν → {0, 1}κ ∪ {⊥} is a decoding algorithm, and for
every s ∈ {0, 1}κ, Pr[Dec(Enc(s)) = s] = 1, where the probability runs over the
randomness used by (Enc,Dec).

We can easily generalize the above definition for larger alphabets, i.e., by
considering Enc : {0, 1}κ → Γ ν and Dec : Γ ν → {0, 1}κ ∪ {⊥}, for some alpha-
bet Γ .

Definition 2.3 (Coding scheme in the Common Reference String
(CRS) Model [37]). A (κ, ν)-coding scheme in the CRS model, κ, ν ∈ N,

590 A. Kiayias et al.

is a triple of algorithms (Init,Enc,Dec) such that: Init is a randomized algo-
rithm which receives 1k, where k denotes the security parameter, and produces a
common reference string Σ ∈ {0, 1}poly(k), and (Enc(1k, Σ, ·),Dec(1k, Σ, ·)) is a
(κ, ν)-coding scheme, κ, ν = poly(k).

For brevity, 1k will be omitted from the inputs of Enc and Dec.
Below we define non-malleable codes with manipulation detection, which is a

stronger notion than the one presented in [27], in the sense that the tampered
codeword will always decode to the original message or to ⊥. Our definition is
with respect to alphabets, as in Sect. 4 we consider alphabets of size O(log k).

Definition 2.4 (Non-Malleability with Manipulation Detection (MD-NMC)).
Let Γ be an alphabet, let (Init,Enc,Dec) be a (κ, ν)-coding scheme in the common
reference string model, and F be a family of functions f : Γ ν → Γ ν . For any
f ∈ F and s ∈ {0, 1}κ, define the tampering experiment

Tamperfs :=
{

Σ ← Init(1k), c ← Enc(Σ, s), c̃ ← fΣ(c), s̃ ← Dec(Σ, c̃)
Output : s̃.

}

which is a random variable over the randomness of Enc, Dec and Init. The coding
scheme (Init,Enc,Dec) is non-malleable with manipulation detection with respect
to the function family F , if for all, sufficiently large k and for all f ∈ F , there
exists a distribution D(Σ,f) over {0, 1}κ ∪ {⊥, same∗}, such that for all s ∈
{0, 1}κ, we have:

{
Tamperfs

}
k∈N

≈
{

s̃ ← D(Σ,f)

Output s if s̃ = same∗, and ⊥ otherwise

}
k∈N

where Σ ← Init(1k) and D(Σ,f) is efficiently samplable given access to f , Σ.
Here, “≈” may refer to statistical, or computational, indistinguishability.

In the above definition, f is parameterized by Σ to differentiate tamper-proof
input, i.e., Σ, from tamperable input, i.e., c.

Below we define the tampering function class that will be used throughout
the paper.

Definition 2.5 (The class of partial functions Fαν
Γ (or Fα)). Let Γ be an alpha-

bet, α ∈ [0, 1) and ν ∈ N. Any f ∈ Fαν
Γ , f : Γ ν → Γ ν , is indexed by a set

I ⊆ [ν], |I| ≤ αν, and a function f ′ : Γαν → Γαν , such that for any x ∈ Γ ν ,
(f(x))|I = f ′ (x|I

)
and (f(x))|Ic = x|Ic , where Ic := [ν]\I.

For simplicity, in the rest of the text we will use the notation f(x) and f(x|I)
(instead of f ′ (x|I

)
). Also, the length of the codeword, ν, according to Γ , will be

omitted from the notation and whenever Γ is omitted we assume that Γ = {0, 1}.
In Sect. 3, we consider Γ = {0, 1}, while in Sect. 4, Γ = {0, 1}O(log k), i.e., the
tampering function operates over blocks of size O(log k). When considering the
CRS model, the functions are parameterized by the common reference string.

The following lemma is useful for proving security throughout the paper.

Non-Malleable Codes for Partial Functions with Manipulation Detection 591

Lemma 2.6. Let (Enc,Dec) be a (κ, ν)-coding scheme and F be a family of
functions. For every f ∈ F and s ∈ {0, 1}κ, define the tampering experiment

Tamperfs :=
{

c ← Enc(s), c̃ ← f(c), s̃ ← Dec(c̃)
Output same∗ if s̃ = s, and s̃ otherwise.

}

which is a random variable over the randomness of Enc and Dec. (Enc,Dec) is
an MD-NMC with respect to F , if for any f ∈ F and all sufficiently large k: (i)
for any pair of messages s0, s1 ∈ {0, 1}κ,

{
Tamperfs0

}
k∈N

≈
{
Tamperfs1

}
k∈N

,

and (ii) for any s, Pr
[
Tamperfs /∈ {⊥, s}

]
≤ negl(k). Here, “≈” may refer to

statistical, or computational, indistinguishability.

The proof of the above lemma is provided in the full version of the paper.
For coding schemes in the CRS model the above lemma is similar, and Tamperfs
internally samples Σ ← Init(1k).

3 An MD-NMC for Partial Functions, in the CRS Model

In this section we consider Γ = {0, 1} and we construct a rate 1 MD-NMC for
Fα, with access rate α = 1 − 1/Ω(log k). Our construction is defined below and
depicted in Fig. 1.

Construction 3.1. Let k, m ∈ N, let (KGen,E,D) be a symmetric encryp-
tion scheme, (SSm,Recm) be an m-out-of-m secret sharing scheme, and let
l ← 2m|sk|, where sk follows KGen(1k). We define an encoding scheme
(Init,Enc,Dec), that outputs ν = l + |e| bits, e ← Esk(s), as follows:

– Init(1k): Sample r1, . . . , rl
rs← {0, 1}log(ν), and output Σ = (r1, . . . , rl).

– Enc(Σ, ·): for input message s, sample sk ← KGen(1k), e ← Esk(s).
• (Secret share) Sample z ← SSm(sk||sk3), where z =

�2|sk|
i=1 zi, z ∈

{0, 1}2m|sk|, and for i ∈ [|sk|], zi (resp. z|sk|+i) is an m-out-of-m secret
sharing of sk[i] (resp. sk3[i]).

• (Shuffle) Compute c ← PΣ(z||e) as follows:
1. (Sensitive bits): Set c ← 0ν . For i ∈ [l], c[ri] ← z[i].
2. (Ciphertext bits): Set i ← 1. For j ∈ [l + |e|], if j /∈ {rp | p ∈ [l]},

c[j] ← e[i], i++.
Output c.

– Dec(Σ, ·): on input c, compute (z||e) ← P−1
Σ (c), (sk||sk′) ← Recm(z), and if

sk3 = sk′, output Dsk(e), otherwise output ⊥.

The set of indices of zi in the codeword will be denoted by Zi.

In the above we consider all values as elements over GF(2poly(k)).
Our construction combines authenticated encryption with an inner encoding

that works as follows. It interprets sk as an element in the finite field GF(2|sk|)
and computes sk3 as a field element. Then, for each bit of (sk||sk3), it computes

592 A. Kiayias et al.

an m-out-of-m secret sharing of the bit, for some parameter m (we note that
elements in GF(2|sk|) can be interpreted as bit strings). Then, by combining the
inner encoding with the shuffling technique, we get a encoding scheme whose
security follows from the observations that we briefly present below:

– For any tampering function which does not have access to all m shares of a
single bit of (sk||sk3), the tampering effect on the secret key can be expressed
essentially as a linear shift, i.e., as ((sk + δ)||(sk3 + η)) for some (δ, η) ∈
GF(2|sk|) × GF(2|sk|), independent of sk.

– By permuting the locations of the inner encoding and the ciphertext bits,
we have that with overwhelming probability any tampering function who
reads/writes on a (1 − o(1)) fraction of codeword bits, will not learn any
single bit of (sk||sk3).

– With overwhelming probability over the randomness of sk and CRS, for
non-zero η and δ, (sk + δ)3
= sk3 + η, and this property enables us to
design a consistency check mechanism whose output is simulatable, without
accessing sk.

– The security of the final encoding scheme follows by composing the security
of the inner encoding scheme with the authenticity property of the encryption
scheme.

Below we present the formal security proof of the above intuitions.

Theorem 3.2. Let k, m ∈ N and α ∈ [0, 1). Assuming (SSm,Recm) is an
m-out-of-m secret sharing scheme and (KGen,E,D) is 1-IND-CPA11 secure,
authenticated encryption scheme, the code of Construction 3.1 is a MD-NMC
against Fα, for any α, m, such that (1 − α)m = ω(log(k)).

Proof. Let I be the set of indices chosen by the attacker and Ic = [ν]\I, where
ν = 2m|sk| + |e|. The tampered components of the codeword will be denoted
using the character “˜” on top of the original symbol, i.e., we have c̃ ← f(c), the
tampered secret key sk (resp. sk3) that we get after executing Recm(z̃) will be
denoted by s̃k (resp. s̃k

′
). Also the tampered ciphertext will be ẽ. We prove the

needed using a series of hybrid experiments that are depicted in Fig. 3. Below,
we describe the hybrids.

– ExpΣ,f,s
0 : We prove security of our code using Lemma 2.6, i.e., by showing that

(i) for any s0, s1, Tamperfs0
≈ Tamperfs1

, and (ii) for any s, Pr
[
Tamperfs /∈

{⊥, s}] ≤ negl(k), where Tamperfs is defined in Lemma 2.6. For any f , s,
Σ ← Init(1k), the first experiment, ExpΣ,f,s

0 , matches the experiment Tamperfs
in the CRS model, i.e., Σ is sampled inside Tamperfs .

11 This is an abbreviations for indistinguishability under chosen plaintext attack, for a
single pre-challenge query to the encryption oracle.

Non-Malleable Codes for Partial Functions with Manipulation Detection 593

ExpΣ,f,s
0 :

c ← Enc(Σ, s), c̃ ← 0ν

c̃[I] ← fΣ(c|I), c̃[I
c] ← c|Ic

s̃ ← Dec(c̃)

Output same∗ if s̃ = s and s̃ otherwise.

ExpΣ,f,s
1 :

c ← Enc(Σ, s), c̃ ← 0ν

c̃[I] ← fΣ(c|I), c̃[I
c] ← c|Ic

If ∃i : |(I ∩ Zi)| = m:

s̃ ← ⊥
Else:

s̃ ← Dec(c̃)

Output same∗ if s̃ = s and s̃ otherwise.

ExpΣ,f,s
2 :

sk ← KGen(1k), e ← Esk(s)

z∗ ← S̄Sf
m(Σ, sk), c ← PΣ(z∗||e)

c̃ ← 0ν , c̃[I] ← fΣ(c|I), c̃[I
c] ← c|Ic

If ∃i : |(I ∩ Zi)| = m:
s̃ ← ⊥

Else:
If ∃i :

⊕
j∈(I∩Zi)

c[j] �= ⊕
j∈(I∩Zi)

c̃[j]:

s̃ ← ⊥
Else:

s̃ ← Dsk(ẽ)

Output same∗ if s̃ = s and s̃ otherwise.

ExpΣ,f,s
3 :

sk ← KGen(1k), e ← Esk(s)
z∗ ← S̄Sf

m(Σ, sk), c ← PΣ(z∗||e)

c̃ ← 0ν , c̃[I] ← fΣ(c|I)

If ∃i : |(I ∩ Zi)| = m:
s̃ ← ⊥

Else:

If ∃i :
⊕

j∈(I∩Zi)
c[j] �= ⊕

i∈(I∩Zi)
c̃[j]:

s̃ ← ⊥
Else: s̃ ← ⊥

If ẽ = e:
s̃ ← same∗

Output s̃.

Fig. 3. The hybrid experiments for the proof of Theorem 3.2.

– ExpΣ,f,s
1 : In the second experiment we define Zi, i ∈ [2|sk|], to be the set of

codeword indices in which the secret sharing zi is stored, |Zi| = m. The main
difference from the previous experiment is that the current one outputs ⊥, if
there exists a bit of sk or sk3 for which the tampering function reads all the
shares of it, while accessing at most αν bits of the codeword. Intuitively, and
as we prove in Claim 3.3, by permuting the location indices of z||e, this event
happens with probability negligible in k, and the attacker does not learn any
bit of sk and sk3, even if he is given access to (1−o(1))ν bits of the codeword.

– ExpΣ,f,s
2 : By the previous hybrid we have that for all i ∈ [2|sk|], the tampering

function will not access all bits of zi, with overwhelming probability. In the
third experiment we unfold the encoding procedure, and in addition, we sub-
stitute the secret sharing procedure SSm with S̄S

f
m that computes shares z∗

i

that reveal no information about sk||sk3; for each i, S̄Sf
m simply “drops” the

bit of zi with the largest index that is not being accessed by f . We formally
define S̄S

f
m below.

594 A. Kiayias et al.

S̄S
f
m(Σ, sk):

1. Sample
(
z1, . . . , z2|sk|

) ← SSm

(
sk||sk3

)
and set z∗

i ← zi, i ∈ [2|sk|].
2. For i ∈ [2|sk|], let li := maxd {d ∈ [m] ∧ Ind (zi[d]) /∈ I)}, where Ind

returns the index of zi[d] in c, i.e., li is the largest index in [m] such
that zi[li] is not accessed by f .

3. (Output): For all i set z∗
i [li] = ∗, and output z∗ :=‖2|sk|

i=1 z∗
i .

In ExpΣ,f,s
1 , z =

�2|sk|
i=1 zi, and each zi is an m-out-of-m secret sharing for a

bit of sk or sk3. From Claim 3.3, we have that for all i, |I ∩ Zi| < m with
overwhelming probability, and we can observe that the current experiment is
identical to the previous one up to the point of computing f(c|I), as c|I and
f(c|I) depend only on z∗, that carries no information about sk and sk3.

Another difference between the two experiments is in the external “Else”
branch: ExpΣ,f,s

1 makes a call on the decoder while ExpΣ,f,s
2 , before calling

Dsk(ẽ), checks if the tampering function has modified the shares in a way such
that the reconstruction procedure ((s̃k, s̃k

′
) ← Recm(z̃)) will give s̃k
= sk

or s̃k
′
= sk′. This check is done by the statement “If ∃i :

⊕
j∈(I∩Zi)

c[j]
=⊕
j∈(I∩Zi)

c̃[j]”, without touching sk or sk3.12 In case modification is detected
the current experiments outputs ⊥. The intuition is that an attacker that
partially modifies the shares of sk and sk3, creates shares of s̃k and s̃k

′
,

such that s̃k
3

= s̃k
′
, with negligible probability in k. We prove this by a

reduction to the 1-IND-CPA security of the encryption scheme: any valid
modification over the inner encoding of the secret key gives us method to
compute the original secret key sk, with non-negligible probability. The ideas
are presented formally in Claim 3.4.

– ExpΣ,f,s
3 : The difference between the current experiment and the previous one

is that instead of calling the decryption Dsk(ẽ), we first check if the attacker
has modified the ciphertext, in which case the current experiment outputs
⊥, otherwise it outputs same∗. By the previous hybrid, we reach this newly
introduced “Else” branch of ExpΣ,f,s

3 , only if the tampering function didn’t
modify the secret key. Thus, the indistinguishability between the two experi-
ments follows from the authenticity property of the encryption scheme in the
presence of z∗: given that s̃k = sk and s̃k

′
= sk′, we have that if the attacker

modifies the ciphertext, then with overwhelming probability Dsk(ẽ) = ⊥, oth-
erwise, Dsk(ẽ) = s, and the current experiment correctly outputs same∗ or ⊥
(cf. Claim 3.5).

– Finally, we prove that for any f ∈ Fα, and message s, ExpΣ,f,s
3 is indistin-

guishable from ExpΣ,f,0
3 , where 0 denotes the zero-message. This follows by

the semantic security of the encryption scheme, and gives us the indistin-
guishability property of Lemma2.6. The manipulation detection property is
derived by the indistinguishability between the hybrids and the fact that the
output of ExpΣ,f,s

3 is in the set {same∗,⊥}.

12 Recall that our operations are over GF(2poly(k)).

Non-Malleable Codes for Partial Functions with Manipulation Detection 595

In what follows, we prove indistinguishability between the hybrids using a series
of claims.

Claim 3.3. For k, m ∈ N, assume (1−α)m = ω(log(k)). Then, for any f ∈ Fα

and any message s, we have ExpΣ,f,s
0 ≈ ExpΣ,f,s

1 , where the probability runs over
the randomness used by Init, Enc.

Proof. The difference between the two experiments is that ExpΣ,f,s
1 outputs

⊥ when the attacker learns all shares of some bit of sk or sk3, otherwise it
produces output as ExpΣ,f,s

0 does. Let E the event “∃i : |(I ∩ Zi)| = m”.
Clearly, ExpΣ,f,s

0 = ExpΣ,f,s
1 conditioned on ¬E, thus the statistical distance

between the two experiments is bounded by Pr[E]. In the following we show
that Pr[E] ≤ negl(k). We define by Ei the event in which f learns the entire
zi. Assuming the attacker reads n bits of the codeword, we have that for all
i ∈ [2|sk|],

Pr
Σ

[Ei] = Pr
Σ

[|I ∩ Zi| = m] =
m−1∏
j=0

n − j

ν − j
≤

(n

ν

)m

.

We have n = αν and assuming α = 1 − ε for ε ∈ (0, 1], we have Pr[Ei] ≤
(1 − ε)m ≤ 1/emε and Pr[E] = PrΣ

[⋃2|sk|
i=1 Ei

]
≤ 2|sk|

emε , which is negligible when
(1 − α)m = ω(log(k)), and the proof of the claim is complete. �

Claim 3.4. Assuming (KGen,E,D) is 1-IND-CPA secure, for any f ∈ Fα and
any message s, ExpΣ,f,s

1 ≈ ExpΣ,f,s
2 , where the probability runs over the random-

ness used by Init, Enc.

Proof. In ExpΣ,f,s
2 we unfold the encoding procedure, however instead of calling

SSm, we make a call to S̄S
f
m. As we have already stated above, this modification

does not induce any difference between the output of ExpΣ,f,s
2 and ExpΣ,f,s

1 ,
with overwhelming probability, as z∗ is indistinguishable from z in the eyes
of f . Another difference between the two experiments is in the external “Else”
branch: ExpΣ,f,s

1 makes a call on the decoder while ExpΣ,f,s
2 , before calling Dsk(ẽ),

checks if the tampering function has modified the shares in a way such that the
reconstruction procedure will give s̃k
= sk or s̃k

′
= sk′. This check is done by
the statement “If ∃i :

⊕
j∈(I∩Zi)

c[j]
= ⊕
j∈(I∩Zi)

c̃[j]”, without touching sk or
sk3 (cf. Claim 3.3).13 We define the events E, E′ as follows

E : Dec(c̃)
= ⊥, E′ : ∃i :
⊕

j∈(I∩Zi)
c[j]
=

⊕
j∈(I∩Zi)

c̃[j].

Clearly, conditioned on ¬E′ the two experiments are identical, since we have
s̃k = sk and s̃k

′
= sk′, and the decoding process will output Dsk(ẽ) in both

experiments. Thus, the statistical distance is bounded by Pr[E′]. Now, con-
ditioned on E′ ∧ ¬E, both experiments output ⊥. Thus, we need to bound
13 Recall that our operations are over GF(2poly(k)).

596 A. Kiayias et al.

Pr[E ∧ E′]. Assuming Pr[E ∧ E′] > p, for p = 1/poly(k), we define an attacker
A that simulates ExpΣ,f,s

2 , and uses f , s to break the 1-IND-CPA security
of (KGen,E,D) in the presence of z∗, with probability at least 1/2 + p′′/2, for
p′′ = 1/poly(k).

First we prove that any 1-IND-CPA secure encryption scheme, remains
secure even if the attacker receives z∗ ← S̄S

f
m(Σ, sk), as z∗ consists of

m − 1 shares of each bit of sk and sk3, i.e., for the entropy of sk we have
H(sk|z∗) = H(sk). Towards contradiction, assume there exists A that breaks the
1-IND-CPA security of (KGen,E,D) in the presence of z∗, i.e., there
exist s, s0, s1 such that A distinguishes between (z∗,Esk(s),Esk(s0)) and
(z∗,Esk(s),Esk(s1)), with non-negligible probability p. We define an attacker
A′ that breaks the 1-IND-CPA security of (KGen,E,D) as follows: A′, given
(Esk(s),Esk(sb)), for some b ∈ {0, 1}, samples ŝk ← KGen(1k), ẑ∗ ← S̄S

f
m(Σ, ŝk)

and outputs b′ ← A(z∗,Esk(s),Esk(sb)). Since (z∗,Esk(s),Esk(sb)) ≈ (ẑ∗,Esk(s),
Esk(sb)) the advantage of A′ in breaking the 1-IND-CPA security of the scheme
is the advantage of A in breaking the 1-IND-CPA security of the scheme in the
presence of z∗, which by assumption is non-negligible, and this completes the
current proof. We note that the proof idea presented in the current paragraph
also applies for proving that other properties that will be used in the rest of the
proof, such as semantic security and authenticity, of the encryption scheme, are
retained in the presence of z∗.

Now we prove our claim. Assuming Pr[E ∧ E′] > p, for p = 1/poly(k), we
define an attacker A that breaks the 1-IND-CPA security of (KGen,E,D) in the
presence of z∗, with non-negligible probability. A receives the encryption of s,
which corresponds to the oracle query right before receiving the challenge cipher-
text, the challenge ciphertext e ← Esk(sb), for uniform b ∈ {0, 1} and uniform
messages s0, s1, as well as z∗. A is defined below.

A
(
z∗ ← S̄S

f
m(Σ, sk), e′ ← Esk(s), e ← Esk(sb)

)
:

1. (Define the shares that will be accessed by f): For i ∈ [2|sk|],
define wi := (z∗

i)|[m]\{li} and for i ∈ [m − 1] define Ci =
�|sk|
j=1 wj [i],

Di =
�2|sk|
j=|sk|+1 wj [i].

2. (Apply f) Set c ← PΣ(z∗||e), compute c̃[I] ← fΣ(c|I) and let C̃i, D̃i, i ∈ [m],
be the tampered shares resulting after the application of f to c|I .

3. (Guessing the secret key) Let U =
∑m−1

i=1 Ci, V =
∑m−1

i=1 Di, i.e., U , V
denote the sum of the shares that are being accessed by the attacker (maybe
partially), and Ũ =

∑m−1
i=1 C̃i, Ṽ =

∑m−1
i=1 D̃i, are the corresponding tam-

pered values after applying f on U , V . Define

p(X) := (U − Ũ)X2 + (U2 − Ũ2)X + (U3 − Ũ3 − V + Ṽ),

and compute the set of roots of p(X), denoted as X , which are at most two.
Then set

ŜK := {x + U |x ∈ X} . (1)

Non-Malleable Codes for Partial Functions with Manipulation Detection 597

4. (Output) Execute the following steps,
(a) For ŝk ∈ ŜK, compute s′ ← Dŝk(e′), and if s′ = s, compute s′′ ← Dŝk(e).

Output b′ such that sb′ = s′′.
(b) Otherwise, output b′ ← {0, 1}.

In the first step A removes the dummy symbol “∗” and computes the shares
that will be partially accessed by f , denoted as Ci for sk and as Di for sk3. In
the second step, it defines the tampered shares, C̃i, D̃i. Conditioned on E′, it is
not hard to see that A simulates perfectly ExpΣ,f,s

2 . In particular, it simulates
perfectly the input to f as it receives e ← Esk(s) and all but 2|sk| of the actual
bit-shares of sk, sk3. Part of those shares will be accessed by f . Since for all i,
|I ∩Zi| < m, the attacker is not accessing any single bit of sk, sk3. Let Cm, Dm,
be the shares (not provided by the encryption oracle) that completely define sk
and sk3, respectively. By the definition of the encoding scheme and the fact that
sk, sk3 ∈ GF(2poly(k)), we have

∑m
i=1 Ci = sk,

∑m
i=1 Di = sk3, and

(U + Cm)3 = V + Dm. (2)

In order for the decoder to output a non-bottom value, the shares created by
the attacker must decode to s̃k, s̃k

′
, such that s̃k

3
= s̃k

′
, or in other words, if

(
Ũ + Cm

)3

= Ṽ + Dm. (3)

From2 and 3 we receive

(U − Ũ)C2
m + (U2 − Ũ2)Cm + (U3 − Ũ3) = V − Ṽ . (4)

Clearly, Pr[E ∧ E′ ∧ (U = Ũ)] = 0. Thus, assuming Pr[E ∧ E′] > p, for
p > 1/poly(k), we receive

p < Pr
[
E ∧ E′ ∧ (U
= Ũ)

]
≤ Pr

[
Dec(c̃)
= ⊥ ∧ E′ ∧ U
= Ũ

]

≤ Pr
[
s̃k

3
= s̃k

′ ∧ E′ ∧ (U
= Ũ)
]

(4,1)
= Pr [Cm ∈ X]

(1)

≤ Pr
[
sk ∈ ŜK

]
, (5)

and A manages to recover Cm, and thus sk, with non-negligible probability
p′ ≥ p. Let W be the event of breaking 1-IND-CPA security. Then,

Pr[W] = Pr[W |sk ∈ ŜK] · Pr[sk ∈ ŜK]
+ Pr[W |sk /∈ ŜK] · Pr[sk /∈ ŜK]
(5)
= p′ +

1
2
(1 − p′) =

1
2

+
p′

2
, (6)

and the attacker breaks the IND-CPA security of (KGen,E,D). Thus, we have
Pr[E ∧ E′] ≤ negl(k), and both experiments output ⊥ with overwhelming prob-
ability. �

598 A. Kiayias et al.

Claim 3.5. Assuming the authenticity property of (KGen,E,D), for any f ∈ Fα

and any message s, ExpΣ,f,s
2 ≈ ExpΣ,f,s

3 , where the probability runs over the
randomness used by Init, KGen and E.

Proof. Before proving the claim, recall that the authenticity property of the
encryption scheme is preserved under the presence of z∗ (cf. Claim 3.4). Let E

be the event s̃k = sk ∧ s̃k
′
= sk3 and E′ be the event ẽ
= e. Conditioned on ¬E,

the two experiments are identical, as they both output ⊥. Also, conditioned on
E ∧¬E′, both experiments output same∗. Thus, the statistical distance between
the two experiments is bounded by Pr[E ∧ E′]. Let B be the event Dsk(ẽ)
= ⊥.
Conditioned on E∧E′∧¬B both experiments output ⊥. Thus, we need to bound
Pr[E ∧ E′ ∧ B].

Assuming there exist s, f , for which Pr[E∧E′∧B] > p, where p = 1/poly(k),
we define an attacker A = (A1,A2) that simulates ExpΣ,f,s

3 and breaks the
authenticity property of the encryption scheme in the presence of z∗, with non-
negligible probability. A is defined as follows: sample (s, st) ← A1(1k), and then,
on input (z∗, e, st), where e ← Esk(s), A2, samples Σ ← Init(1k), sets c̃ ← 0ν ,
c ← PΣ(z∗||e), computes c̃[I] ← f(c|I), c̃[Ic] ← c|Ic , (z̃∗||ẽ) ← P−1

Σ (c̃), and
outputs ẽ. Assuming Pr[E ∧ E′ ∧ B] > p, we have that Dsk(ẽ)
= ⊥ and ẽ
= e,
with non-negligible probability and the authenticity property of (KGen,E,D)
breaks. �
Claim 3.6. Assuming (KGen,E,D) is semantically secure, for any f ∈ Fα and
any message s, ExpΣ,f,s

3 ≈ ExpΣ,f,0
3 , where the probability runs over the ran-

domness used by Init, KGen, E. “≈” may refer to statistical or computational
indistinguishability, and 0 is the zero-message.

Proof. Recall that (KGen,E,D) is semantically secure even in the presence of
z∗ ← S̄S

f
m(Σ, sk) (cf. Claim 3.4), and towards contradiction, assume there exist

f ∈ Fα, message s, and PPT distinguisher D such that∣∣∣Pr
[
D

(
Σ,ExpΣ,f,s

3

)
= 1

]
− Pr

[
D

(
Σ,ExpΣ,f,0

3

)]
= 1

∣∣∣ > p,

for p = 1/poly(k). We are going to define an attacker A that breaks the semantic
security of (KGen,E,D) in the presence of z∗, using s0 := s, s1 := 0. A, given
z∗, e, executes Program.

Program(z∗, e) :
c ← PΣ(z∗||e), c̃ ← 0ν , c̃[I] ← f(c|I)
If ∃i : |(I ∩ Zi)| = m: s̃ ← ⊥
Else:

If ∃i :
⊕

j∈(I∩Zi)
c[j] �= ⊕

j∈(I∩Zi)
c̃[j]: s̃ ← ⊥

Else: s̃ ← ⊥and If ẽ = e: s̃ ← same∗

Output s̃.

It is not hard to see that A simulates ExpΣ,f,sb

3 , thus the advantage of A against
the semantic security of (KGen,E,D) is the same with the advantage of D in dis-
tinguishing between ExpΣ,f,s0

3 , ExpΣ,f,s1
3 , which by assumption is non-negligible.

We have reached a contradiction and the proof of the claim is complete. �

Non-Malleable Codes for Partial Functions with Manipulation Detection 599

From the above claims we have that for any f ∈ Fα and any s, ExpΣ,f,s
0 ≈

ExpΣ,f,0
3 , thus for any f ∈ Fα and any s0, s1, ExpΣ,f,s0

0 ≈ ExpΣ,f,s1
0 . Also,

by the indistinguishability between ExpΣ,f,s
0 and ExpΣ,f,0

3 , the second prop-
erty of Lemma 2.6 has been proven as the output of ExpΣ,f,0

3 is in {s,⊥},
with overwhelming probability, and non-malleability with manipulation detec-
tion of our code follows by Lemma2.6, since ExpΣ,f,s

0 is identical to Tamperfs of
Lemma 2.6. �

4 Removing the CRS

In this section we increase the alphabet size to O(log(k)) and we provide a
computationally secure, rate 1 encoding scheme in the standard model, tolerating
modification of (1 − o(1))ν blocks, where ν is the total number of blocks in the
codeword. Our construction is defined below and the intuition behind it has
already been presented in the Introduction (cf. Sect. 1, Fig. 2). In the following,
the projection operation will be also used with respect to bigger alphabets,
enabling the projection of blocks.

Construction 4.1. Let k, m ∈ N, let (KGen,E,D) be a symmetric encryption
scheme and (SSm,Recm) be an m-out-of-m secret sharing scheme. We define an
encoding scheme (Enc∗,Dec∗), as follows:

– Enc∗(1k, ·): for input message s, sample sk ← KGen
(
1k

)
, e ← Esk(s).

• (Secret share) Sample z ← SSm(sk||sk3), where z =
�2|sk|
i=1 zi, z ∈

{0, 1}2m|sk|, and for i ∈ [|sk|], zi (resp. z|sk|+i) is an m-out-of-m secret
sharing of sk[i] (resp. sk3[i]).

• (Construct blocks & permute) Set l ← 2m|sk|, bs ← log l + 2,
d ← |e|/bs, bn ← l + d, sample ρ := (ρ1, . . . , ρl)

rs← {0, 1}log(bn) and
compute C ← Πρ(z||e) as follows:
1. Set t ← 1, Ci ← 0bs, i ∈ [bn].
2. (Sensitive blocks) For i ∈ [l], set Cri

← (1||i||z[i]).
3. (Ciphertext blocks) For i ∈ [bn], if i
= rj, j ∈ [l], Ci ← (0||e[t :

t + (bs − 1)]), t ← t + (bs − 1).14

Output C := (C1|| . . . ||Cbn).
– Dec∗(1k, ·): on input C, parse it as (C1|| . . . ||Cbn), set t ← 1, l ← 2m|sk|,

z ← 0l, e ← 0, L = ∅ and compute (z||e) ← Π−1(C) as follows:
• For i ∈ [bn],

∗ (Sensitive block) If Ci[1] = 1, set j ← Ci[2 : bs− 1], z [j] ← Ci[bs],
L ← L ∪ {j}.

∗ (Ciphertext block) Otherwise, set e[t : t + bs − 1] = Ci[2 : bs],
t ← t + bs − 1.

• If |L|
= l, output ⊥, otherwise output (z||e).

14 Here we assume that bs − 1, divides the length of the ciphertext e. We can always
achieve this property by padding the message s with zeros, if necessary.

600 A. Kiayias et al.

If Π−1(C) = ⊥, output ⊥, otherwise, compute (sk||sk′) ← Recm(z), and if
sk3 = sk′, output Dsk(e), otherwise output ⊥.

The set of indices of the blocks in which zi is stored will be denoted by Zi.

We prove security for the above construction by a reduction to the security of
Construction 3.1. We note that that our reduction is non-black box with respect
to the coding scheme in which security is reduced to; a generic reduction, i.e.,
non-malleable reduction [2], from the standard model to the CRS model is an
interesting open problem and thus out of the scope of this work.

In the following, we consider Γ = {0, 1}O(log(k)). The straightforward way
to prove that (Enc∗,Dec∗) is secure against Fα

Γ by a reduction to the security
of the bit-wise code of Sect. 3, would be as follows: for any α ∈ {0, 1}, f ∈ Fα

Γ

and any message s, we have to define α′, g ∈ Fα′
, such that the output of

the tampered execution with respect to (Enc∗,Dec∗), f , s, is indistinguishable
from the tampered execution with respect to (Init,Enc,Dec), g, s, and g is an
admissible function for (Init,Enc,Dec). However, this approach might be tricky
as it requires the establishment of a relation between α and α′ such that the
sensitive blocks that f will receive access to, will be simulated using the sensitive
bits accessed by g. Our approach is cleaner: for the needs of the current proof
we leverage the power of Construction 3.1, by allowing the attacker to choose
adaptively the codeword locations, as long as it does not request to read all
shares of the secret key. Then, for every block that is accessed by the block-wise
attacker f , the bit-wise attacker g requests access to the locations of the bit-
wise code that enable him to fully simulate the input to g. We formally present
our ideas in the following sections. In Sect. 4.1 we introduce the function class
Fad that considers adaptive adversaries with respect to the CRS and we prove
security of Construction 3.1 in Corollary 4.3 against a subclass of Fad, and then,
we reduce the security of the block-wise code (Enc∗,Dec∗) against Fα

Γ to the
security of Construction 3.1 against Fad (cf. Sect. 4.2).

4.1 Security Against Adaptive Adversaries

In the current section we prove that Construction 3.1 is secure against the class
of functions that request access to the codeword adaptively, i.e., depending on
the CRS, as long as they access a bounded number of sensitive bits. Below, we
formally define the function class Fad, in which the tampering function picks up
the codeword locations depending on the CRS, and we consider Γ = {0, 1}.

Definition 4.2 (The function class Fν
ad). Let (Init,Enc,Dec) be an (κ, ν)-coding

scheme and let ˚ be the range of Init(1k). For any g = (g1, g2) ∈ Fν
ad, we have

g1 : ˚ → P ([ν]), gΣ
2 : {0, 1}|range(g1)| → {0, 1}|range(g1)| ∪ {⊥}, and for any

c ∈ {0, 1}ν , gΣ (c) = g2

(
c|g1(Σ)

)
. For brevity, the function class will be denoted

as Fad.

Construction 3.1 remains secure against functions that receive full access to the
ciphertext, as well as they request to read all but one shares for each bit of

Non-Malleable Codes for Partial Functions with Manipulation Detection 601

sk and sk3. The result is formally presented in the following corollary and its
proof, which is along the lines of the proof of Theorem3.2, is given in the full
version of the paper.

Corollary 4.3. Let k, m ∈ N. Assuming (SSm,Recm) is an m-out-of-m secret
sharing scheme and (KGen,E,D) is 1-IND-CPA secure authenticated encryption
scheme, the code of Construction 4.1 is a MD-NMC against any g = (g1, g2) ∈
Fad, assuming that for all i ∈ [2|sk|], (Zi ∩ g1(Σ)) < m, where sk ← KGen(1k)
and Σ ← Init(1k).

4.2 MD-NM Security of the Block-Wise Code

In the current section we prove security of Construction 4.1 against Fα
Γ , for

Γ = {0, 1}O(log(k)).

Theorem 4.4. Let k, m ∈ N, Γ = {0, 1}O(log(k)) and α ∈ [0, 1). Assum-
ing (SSm,Recm) is an m-out-of-m secret sharing scheme and (KGen,E,D) is a
1-IND-CPA secure authenticated encryption scheme, the code of Construc-
tion 4.1 is a MD-NMC against Fα

Γ , for any α, m, such that (1 − α)m =
ω(log(k)).

g1(Σ = (r1, . . . , rl)) :
• (Simulate block shuffling):

Sample ρ := (ρ1, . . . , ρl)
rs← {0, 1}log(bn)

• (Construct I): Set I = ∅,
∗ (Add ciphertext locations to I):

For j ∈ [|e| + l], if j /∈ {ri|i ∈ [l]}, I ← (I ∪ j).
∗ (Add sensitive bit locations to I according to Ib):

For j ∈ [bn], if j ∈ Ib and ∃i ∈ [l] such that j = ρi, I ← (I ∪ ri).
• Output: Output I.

Fig. 4. The function g1 that appears in the hybrid experiments of Fig. 7.

gΣ
2 (c|I):

t ← 1, C∗
i ← 0bs, i ∈ [bn].

• (Reconstruct I): Compute I ← g1(Σ).
• (Simulate ciphertext blocks):

For i ∈ [bn], if i �= ρj , j ∈ [l], C∗
i ← (0||e[t : t + (bs − 1)]), t ← t + (bs − 1).

• (Simulate sensitive blocks):

∗ For i ∈ [|I|], if ∃j ∈ [l], such that Ind(c|I [i]) = rj , set C∗
ρj

←
(
1||j||c|I [i]

)
.

∗ Set C∗ := (C∗
1 || . . . ||C∗

bn) and C̃∗ := C∗.
• (Apply f): compute C̃∗[Ib] ← f(C∗

|Ib
).

• (Output): Output C̃∗
|Ib

.

Fig. 5. The function g2 that appears in the hybrid experiments of Fig. 7.

602 A. Kiayias et al.

Proof. Following Lemma 2.6, we prove that for any f ∈ Fα
Γ , and any pair of

messages s0, s1, Tamperfs0
≈ Tamperfs1

, and for any s, Pr
[
Tamperfs /∈ {⊥, s}

]
≤

negl(k), where Tamper denotes the experiment defined in Lemma 2.6 with respect
to the encoding scheme of Construction 4.1, (Enc∗,Dec∗). Our proof is given by
a series of hybrids depicted in Fig. 7. We reduce the security (Enc∗,Dec∗), to
the security of Construction 3.1, (Init,Enc,Dec), against Fad (cf. Corollary 4.3).
The idea is to move from the tampered execution with respect to (Enc∗,Dec∗),
f , to a tampered execution with respect to (Init,Enc,Dec), g, such that the two
executions are indistinguishable and (Init,Enc,Dec) is secure against g.

Let Ib be the set of indices of the blocks that f chooses to tamper with,
where |Ib| ≤ αν, and let l ← 2m|sk|, bs ← log l + 2, bn ← l + |e|/bs. Below we
describe the hybrids of Fig. 7.

– Expf,s
0 : The current experiment is the experiment Tamperfs , of Lemma 2.6,

with respect to (Enc∗,Dec∗), f , s.
– Exp

(g1,g2),s
1 : The main difference between Expf,s

0 and Exp
(g1,g2),s
1 , is that in

the latter one, we introduce the tampering function (g1, g2), that operates
over codewords of (Init,Enc,Dec) and we modify the encoding steps so that
the experiment creates codewords of the bit-wise code (Init,Enc,Dec). (g1, g2)
simulates partially the block-wise codeword C, while given partial access to
the bit-wise codeword c ← Enc(s). As we prove in the full version, it simulates
perfectly the tampering effect of f against C ← Enc∗(s).
g1 operates as follows (cf. Fig. 4): it simulates perfectly the randomness for
the permutation of the block-wise code, denoted as ρ, and constructs a set
of indices I, such that g2 will receive access to, and tamper with, c|I . The
set I is constructed with respect to the set of blocks Ib, that f chooses to
read, as well as Σ, that reveals the original bit positions, i.e., the ones before
permuting (z||e). g2 receives c|I , reconstructs I, simulates partially the blocks
of the block-wise codeword, C, and applies f on the simulated codeword. The
code of g2 is given in Fig. 5. In the full version we show that g2, given c|I ,
simulates perfectly C|Ib , which implies that gΣ

2 (c|I) = f(C|Ib), and the two
executions are identical.

– Exp
(g1,g3),s
2 : In the current experiment, we substitute the function g2 with

g3, and Dec∗ with Dec, respectively. By inspecting the code of g2 and g3
(cf. Figs. 5 and 6, respectively), we observe that latter function executes the
code of the former, plus the “Check labels and simulate c̃[I]” step. Thus
the two experiments are identical up to the point of computing f(C|Ib). The
main idea here is that we want the current execution to be with respect to
(Init,Enc,Dec) against (g1, g3). Thus, we substitute Dec∗ with Dec, and we
expand the function g2 with some extra instructions/checks that are missing
from Dec. We name the resulting function as g3 and we prove that the two
executions are identical.

– Finally, we prove that for any f and any s, Exp
(g1,g3),s
2 ≈ Exp

(g1,g3),0
2 and

Pr
[
Exp

(g1,g3),s
2 /∈ {⊥, s}

]
≤ negl(k). We do so by proving that (g1, g3) is

Non-Malleable Codes for Partial Functions with Manipulation Detection 603

admissible for (Init,Enc,Dec,), i.e., (g1, g3) ∈ Fad, and g3 will not request
to access more that m − 1 shares for each bit of sk, sk3 (cf. Corollary 4.3).
This implies security according to Lemma 2.6.

gΣ
3 (c|I):

t ← 1, C∗
i ← 0bs, i ∈ [bn].

• (Reconstruct I): Compute I ← g1(Σ).
• (Simulate ciphertext blocks):

For i ∈ [bn], if i �= ρj , j ∈ [l], C∗
i ← (0||e[t : t + (bs − 1)]), t ← t + (bs − 1).

• (Simulate sensitive blocks):

∗ For i ∈ [|I|], if ∃j ∈ [l], such that Ind(c|I [i]) = rj , set C∗
ρj

←
(
1||j||c|I [i]

)
.

∗ Set C∗ := (C∗
1 || . . . ||C∗

bn) and C̃∗ := C∗.
• (Apply f): compute C̃∗[Ib] ← f(C∗

|Ib
).

• (Check labels and simulate c̃[I]): If Π−1(C̃∗) = ⊥, set d ← 1, otherwise set (z̃∗||ẽ) ←
Π−1(C̃∗), c̃∗ ← PΣ(z̃∗||ẽ).

• (Output): If d = 1 output ⊥, otherwise output c̃∗
|I .

Fig. 6. The function g3 that appears in the hybrid experiments of Fig. 7.

Expf,s
0 :

sk ← KGen 1k
)
, e ← Esk(s)

z ← SSm(sk||sk3)

ρ := (ρ1, . . . , ρl)
rs← {0, 1}log(bn)

C ← Πρ(z||e), C̃ ← C

C̃[Ib] ← f(C|Ib)

s̃ ← Dec∗(C̃)

Output same∗ if s̃ = s and s̃ otherwise.

Exp(g1,g2),s
1 :

sk ← KGen 1k
)
, e ← Esk(s)

z ← SSm(sk||sk3)

Σ ← Init∗(1k), c ← PΣ(z||e)
I ← g1(Σ)

C ← Πρ(z||e), C̃ ← C

C̃[Ib] ← gΣ
2 (c|I)

s̃ ← Dec∗(C̃)

Output same∗ if s̃ = s and s̃ otherwise.

Exp(g1,g3),s
2 :

Σ ← Init∗(1k)
sk ← KGen 1k

)
, e ← Esk(s)

z ← SSm(sk||sk3)

c ← PΣ(z||e), c̃ ← c
I ← g1(Σ)

c̃[I] ← gΣ
3 (c|I)

s̃ ← Dec(Σ, c̃)

Output same∗ if s̃ = s and s̃ otherwise.

Fig. 7. The hybrid experiments for the proof of Theorem 4.4.

The indistinguishability between the hybrids is given in the full version of the
paper. �

5 Continuous MD-NMC with Light Updates

In this section we enhance the block-wise scheme of Sect. 4 with an update
mechanism, that uses only shuffling and refreshing operations. The resulting
code is secure against continuous attacks, for a notion of security that is weaker
than the original one [30], as we need to update our codeword. Below we define
the update mechanism, which is denoted as Update∗.

Construction 5.1. Let k, m ∈ N, (KGen,E,D), (SSm,Recm) be as in Construc-
tion 4.1. We define the update procedure, Update∗, for the encoding scheme of
Construction 4.1, as follows:

604 A. Kiayias et al.

– Update∗(1k, ·): on input C, parse it as (C1|| . . . ||Cbn), set l ← 2m|sk|, L̂ = ∅,
and set Ĉ := (Ĉ1|| . . . ||Ĉbn) to 0.

• (Secret share 02|sk|): Sample z ← SSm

(
02|sk|), where z =

�2|sk|
i=1 zi,

z ∈ {0, 1}2m|sk|, and for i ∈ [2|sk|], zi is an m-out-of-m secret sharing of
the 0 bit.

• (Shuffle & Refresh): Sample ρ := (ρ1, . . . , ρl)
rs← {0, 1}log(bn). For

i ∈ [bn],
∗ (Sensitive block) If Ci[1] = 1,

· (Shuffle): Set j ← Ci[2 : bs − 1], Ĉρj
← Ci.

· (Refresh): Set Ĉρj
[bs] ← Ĉρj

[bs] ⊕ z[j].
∗ (Ciphertext block)

If Ci[1] = 0, set j ← minn

{
n ∈ [bn]

∣∣n /∈ L̂, n
= ρi, i ∈ [l]
}
, and

Ĉj ← Ci, L̂ ← L̂ ∪ {j}.
Output Ĉ.

The following definition of security is along the lines of the one given in [30],
adapted to the notion of non-malleability with manipulation detection. Also,
after each invocation the codewords are updated, where in our case the update
mechanism is only using shuffling and refreshing operations. In addition, there
is no need for self-destruct after detecting an invalid codeword [28].

Definition 5.2 (Continuously MD-NMC with light updates). Let CS =
(Enc,Dec) be an encoding scheme, F be a functions class and k, q ∈ N. Then, CS
is a q-continuously non-malleable (q-CNM) code, if for every, sufficiently large
k ∈ N, any pair of messages s0, s1 ∈ {0, 1}poly(k), and any PPT algorithm A,{
TamperAs0

(k)
}

k∈N
≈

{
TamperAs1

(k)
}

k∈N
, where,

TamperAs (k) :
C ← Enc(s), s̃ ← 0
For τ ∈ [q] :

f ← A(s̃), C̃ ← f(C), s̃ ← Dec(C̃)
If s̃ = s : s̃ ← same∗

C ← Update∗(1k, C)
out ← A(s̃)
Return : out

and for each round the output of the decoder is not in {s,⊥} with negligible
probability in k, over the randomness of TamperAs .

In the full version of the paper we prove the following statement.

Theorem 5.3. Let q, k, m, ∈ N, Γ = {0, 1}O(log(k)) and α ∈ [0, 1). Assum-
ing (SSm,Recm) is an m-out-of-m secret sharing scheme and (KGen,E,D) is a
1-IND-CPA, authenticated encryption scheme, the scheme of Construction 5.1
is a continuously MD-NMC with light updates, against Fα

Γ , for any α, m, such
that (1 − α)m = ω(log(k)).

Non-Malleable Codes for Partial Functions with Manipulation Detection 605

In the above theorem, q can be polynomial (resp. exponential) in k, assum-
ing the underlying encryption scheme is computationally (resp. unconditionally)
secure.

References

1. Aggarwal, D., Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran, M.:
Optimal computational split-state non-malleable codes. In: Kushilevitz, E., Malkin,
T. (eds.) TCC 2016. LNCS, vol. 9563, pp. 393–417. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49099-0 15

2. Aggarwal, D., Dodis, Y., Kazana, T., Obremski, M.: Non-malleable reductions and
applications. In: STOC, pp. 459–468 (2015)

3. Aggarwal, D., Dodis, Y., Lovett, S.: Non-malleable codes from additive combina-
torics. In: STOC, pp. 774–783 (2014)

4. Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran, M.: Explicit non-
malleable codes against bit-wise tampering and permutations. In: Gennaro, R.,
Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 538–557. Springer, Hei-
delberg (2015). https://doi.org/10.1007/978-3-662-47989-6 26

5. Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran, M.: A rate-
optimizing compiler for non-malleable codes against bit-wise tampering and per-
mutations. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp.
375–397. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46494-
6 16

6. Ball, M., Dachman-Soled, D., Kulkarni, M., Malkin, T.: Non-malleable codes for
bounded depth, bounded fan-in circuits. In: Fischlin, M., Coron, J.-S. (eds.) EURO-
CRYPT 2016. LNCS, vol. 9666, pp. 881–908. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49896-5 31

7. Ball, M., Dachman-Soled, D., Kulkarni, M., Malkin, T.: Non-malleable codes from
average-case hardness: AC0, decision trees, and streaming space-bounded tamper-
ing. Cryptology ePrint Archive, Report 2017/1061 (2017)

8. Bao, F., Deng, R.H., Han, Y., Jeng, A., Narasimhalu, A.D., Ngair, T.: Breaking
public key cryptosystems on tamper resistant devices in the presence of transient
faults. In: Christianson, B., Crispo, B., Lomas, M., Roe, M. (eds.) Security Proto-
cols 1997. LNCS, vol. 1361, pp. 115–124. Springer, Heidelberg (1998). https://doi.
org/10.1007/BFb0028164

9. Bellare, M., Tessaro, S., Vardy, A.: Semantic security for the wiretap channel. In:
Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 294–311.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5 18

10. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems.
In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer,
Heidelberg (1997). https://doi.org/10.1007/BFb0052259

11. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking cryp-
tographic protocols for faults. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS,
vol. 1233, pp. 37–51. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-
69053-0 4

12. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of eliminating errors
in cryptographic computations. J. Cryptol. 14(2), 101–119 (2001)

13. Boyko, V.: On the security properties of OAEP as an all-or-nothing transform.
In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 503–518. Springer,
Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1 32

https://doi.org/10.1007/978-3-662-49099-0_15
https://doi.org/10.1007/978-3-662-47989-6_26
https://doi.org/10.1007/978-3-662-46494-6_16
https://doi.org/10.1007/978-3-662-46494-6_16
https://doi.org/10.1007/978-3-662-49896-5_31
https://doi.org/10.1007/978-3-662-49896-5_31
https://doi.org/10.1007/BFb0028164
https://doi.org/10.1007/BFb0028164
https://doi.org/10.1007/978-3-642-32009-5_18
https://doi.org/10.1007/BFb0052259
https://doi.org/10.1007/3-540-69053-0_4
https://doi.org/10.1007/3-540-69053-0_4
https://doi.org/10.1007/3-540-48405-1_32

606 A. Kiayias et al.

14. Canetti, R., Dodis, Y., Halevi, S., Kushilevitz, E., Sahai, A.: Exposure-resilient
functions and all-or-nothing transforms. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, pp. 453–469. Springer, Heidelberg (2000). https://doi.org/10.
1007/3-540-45539-6 33

15. Chandran, N., Goyal, V., Mukherjee, P., Pandey, O., Upadhyay, J.: Block-wise
non-malleable codes. IACR Cryptology ePrint Archive, p. 129 (2015)

16. Chandran, N., Kanukurthi, B., Raghuraman, S.: Information-theoretic local non-
malleable codes and their applications. In: Kushilevitz, E., Malkin, T. (eds.) TCC
2016-A. LNCS, vol. 9563, pp. 367–392. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-49099-0 14

17. Chattopadhyay, E., Zuckerman, D.: Non-malleable codes against constant split-
state tampering. In: FOCS, pp. 306–315 (2014)

18. Cheraghchi, M., Guruswami, V.: Capacity of non-malleable codes. In: ITCS 2014
(2014)

19. Choi, S.G., Kiayias, A., Malkin, T.: BiTR: built-in tamper resilience. In: Lee,
D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 740–758. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0 40

20. Coretti, S., Maurer, U., Tackmann, B., Venturi, D.: From single-bit to multi-bit
public-key encryption via non-malleable codes. In: Dodis, Y., Nielsen, J.B. (eds.)
TCC 2015. LNCS, vol. 9014, pp. 532–560. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46494-6 22

21. Cramer, R., Dodis, Y., Fehr, S., Padró, C., Wichs, D.: Detection of algebraic manip-
ulation with applications to robust secret sharing and fuzzy extractors. In: Smart,
N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 471–488. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78967-3 27

22. Dachman-Soled, D., Kulkarni, M., Shahverdi, A.: Locally decodable and updatable
non-malleable codes in the bounded retrieval model. Cryptology ePrint Archive,
Report 2017/303 (2017). http://eprint.iacr.org/2017/303

23. Dachman-Soled, D., Kulkarni, M., Shahverdi, A.: Tight upper and lower bounds for
leakage-resilient, locally decodable and updatable non-malleable codes. In: Fehr,
S. (ed.) PKC 2017. LNCS, vol. 10174, pp. 310–332. Springer, Heidelberg (2017).
https://doi.org/10.1007/978-3-662-54365-8 13

24. Dachman-Soled, D., Liu, F.-H., Shi, E., Zhou, H.-S.: Locally decodable and updat-
able non-malleable codes and their applications. In: Dodis, Y., Nielsen, J.B. (eds.)
TCC 2015. LNCS, vol. 9014, pp. 427–450. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46494-6 18

25. Döttling, N., Nielsen, J.B., Obremski, M.: Information theoretic continuously non-
malleable codes in the constant split-state model. Cryptology ePrint Archive,
Report 2017/357 (2017). http://eprint.iacr.org/2017/357

26. Dziembowski, S., Kazana, T., Obremski, M.: Non-malleable codes from two-source
extractors. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp.
239–257. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-
1 14

27. Dziembowski, S., Pietrzak, K., Wichs, D.: Non-malleable codes. In: ICS (2010)
28. Faonio, A., Nielsen, J.B.: Non-malleable codes with split-state refresh. In: Fehr,

S. (ed.) PKC 2017. LNCS, vol. 10174, pp. 279–309. Springer, Heidelberg (2017).
https://doi.org/10.1007/978-3-662-54365-8 12

29. Faust, S., Hostáková, K., Mukherjee, P., Venturi, D.: Non-malleable codes for
space-bounded tampering. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS,
vol. 10402, pp. 95–126. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63715-0 4

https://doi.org/10.1007/3-540-45539-6_33
https://doi.org/10.1007/3-540-45539-6_33
https://doi.org/10.1007/978-3-662-49099-0_14
https://doi.org/10.1007/978-3-662-49099-0_14
https://doi.org/10.1007/978-3-642-25385-0_40
https://doi.org/10.1007/978-3-662-46494-6_22
https://doi.org/10.1007/978-3-662-46494-6_22
https://doi.org/10.1007/978-3-540-78967-3_27
http://eprint.iacr.org/2017/303
https://doi.org/10.1007/978-3-662-54365-8_13
https://doi.org/10.1007/978-3-662-46494-6_18
https://doi.org/10.1007/978-3-662-46494-6_18
http://eprint.iacr.org/2017/357
https://doi.org/10.1007/978-3-642-40084-1_14
https://doi.org/10.1007/978-3-642-40084-1_14
https://doi.org/10.1007/978-3-662-54365-8_12
https://doi.org/10.1007/978-3-319-63715-0_4
https://doi.org/10.1007/978-3-319-63715-0_4

Non-Malleable Codes for Partial Functions with Manipulation Detection 607

30. Faust, S., Mukherjee, P., Nielsen, J.B., Venturi, D.: Continuous non-malleable
codes. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 465–488. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8 20

31. Faust, S., Mukherjee, P., Nielsen, J.B., Venturi, D.: A tamper and leakage resilient
von neumann architecture. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 579–
603. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2 26

32. Faust, S., Mukherjee, P., Venturi, D., Wichs, D.: Efficient non-malleable codes and
key-derivation for poly-size tampering circuits. In: Nguyen, P.Q., Oswald, E. (eds.)
EUROCRYPT 2014. LNCS, vol. 8441, pp. 111–128. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-642-55220-5 7

33. Genkin, D., Ishai, Y., Prabhakaran, M.M., Sahai, A., Tromer, E.: Circuits resilient
to additive attacks with applications to secure computation. In: STOC 2014, pp.
495–504 (2014)

34. Jafargholi, Z., Wichs, D.: Tamper detection and continuous non-malleable codes.
In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp. 451–480.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46494-6 19

35. Katz, J., Lindell, Y.: Introduction to Modern Cryptography (2007)
36. Kiayias, A., Liu, F.-H., Tselekounis, Y.: Practical non-malleable codes from l-more

extractable hash functions. In: Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, CCS 2016, pp. 1317–1328. ACM, New
York (2016)

37. Liu, F.-H., Lysyanskaya, A.: Tamper and leakage resilience in the split-state model.
In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 517–
532. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5 30

38. Micali, S., Reyzin, L.: Physically observable cryptography. In: Naor, M. (ed.) TCC
2004. LNCS, vol. 2951, pp. 278–296. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-24638-1 16

39. Ozarow, L.H., Wyner, A.D.: Wire-tap channel II. AT&T Bell Lab. Tech. J. 63(10),
2135–2157 (1984)

40. Resch, J.K., Plank, J.S.: AONT-RS: blending security and performance in dis-
persed storage systems. In: FAST 2011 (2011)

41. Rivest, R.L.: All-or-nothing encryption and the package transform. In: Biham,
E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 210–218. Springer, Heidelberg (1997).
https://doi.org/10.1007/BFb0052348

42. Shaltiel, R., Silbak, J.: Explicit list-decodable codes with optimal rate for compu-
tationally bounded channels. In: APPROX/RANDOM 2016 (2016)

43. Stinson, D.R.: Something about all or nothing (transforms). Des. Codes Crypt.
22(2), 133–138 (2001)

44. Tunstall, M., Mukhopadhyay, D., Ali, S.: Differential fault analysis of the advanced
encryption standard using a single fault. In: Ardagna, C.A., Zhou, J. (eds.) WISTP
2011. LNCS, vol. 6633, pp. 224–233. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-21040-2 15

45. Wyner, A.D.: The wire-tap channel. Bell Syst. Tech. J. 54(8), 1355–1387 (1975)

https://doi.org/10.1007/978-3-642-54242-8_20
https://doi.org/10.1007/978-3-662-46447-2_26
https://doi.org/10.1007/978-3-642-55220-5_7
https://doi.org/10.1007/978-3-662-46494-6_19
https://doi.org/10.1007/978-3-642-32009-5_30
https://doi.org/10.1007/978-3-540-24638-1_16
https://doi.org/10.1007/978-3-540-24638-1_16
https://doi.org/10.1007/BFb0052348
https://doi.org/10.1007/978-3-642-21040-2_15
https://doi.org/10.1007/978-3-642-21040-2_15

Continuously Non-Malleable Codes
in the Split-State Model from Minimal

Assumptions

Rafail Ostrovsky1, Giuseppe Persiano2, Daniele Venturi3(B),
and Ivan Visconti4

1 Computer Science Department, University of California Los Angeles,
Los Angeles, USA

2 DISA-MIS, University of Salerno, Fisciano, Italy
3 Computer Science Department, Sapienza University of Rome, Rome, Italy

venturi@di.uniroma1.it
4 DIEM, University of Salerno, Fisciano, Italy

Abstract. At ICS 2010, Dziembowski, Pietrzak and Wichs introduced
the notion of non-malleable codes, a weaker form of error-correcting codes
guaranteeing that the decoding of a tampered codeword either corre-
sponds to the original message or to an unrelated value. The last few
years established non-malleable codes as one of the recently invented
cryptographic primitives with the highest impact and potential, with
very challenging open problems and applications.

In this work, we focus on so-called continuously non-malleable codes
in the split-state model, as proposed by Faust et al. (TCC 2014), where
a codeword is made of two shares and an adaptive adversary makes
a polynomial number of attempts in order to tamper the target code-
word, where each attempt is allowed to modify the two shares inde-
pendently (yet arbitrarily). Achieving continuous non-malleability in the
split-state model has been so far very hard. Indeed, the only known
constructions require strong setup assumptions (i.e., the existence of a
common reference string) and strong complexity-theoretic assumptions
(i.e., the existence of non-interactive zero-knowledge proofs and collision-
resistant hash functions).

As our main result, we construct a continuously non-malleable code in
the split-state model without setup assumptions, requiring only one-to-
one one-way functions (i.e., essentially optimal computational assump-
tions). Our result introduces several new ideas that make progress

Research supported in part by “GNCS - INdAM”, FARB 300392FRB15VISCO, NSF
grant 1619348, DARPA SafeWare subcontract to Galois Inc., DARPA SPAWAR
contract N66001-15-1C-4065, US-Israel BSF grant 2012366, OKAWA Foundation
Research Award, IBM Faculty Research Award, Xerox Faculty Research Award, B.
John Garrick Foundation Award, Teradata Research Award, and Lockheed-Martin
Corporation Research Award. The views expressed are those of the authors and do
not reflect position of the Department of Defense or the U.S. Government. Work
partially done while the second and fourth authors were visiting UCLA.

c© International Association for Cryptologic Research 2018
H. Shacham and A. Boldyreva (Eds.): CRYPTO 2018, LNCS 10993, pp. 608–639, 2018.
https://doi.org/10.1007/978-3-319-96878-0_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96878-0_21&domain=pdf

Continuously Non-Malleable Codes in the Split-State Model 609

towards understanding continuous non-malleability, and shows interest-
ing connections with protocol-design and proof-approach techniques used
in other contexts (e.g., look-ahead simulation in zero-knowledge proofs,
non-malleable commitments, and leakage resilience).

Keywords: Continuously non-malleable codes · Split-state model
Minimal assumptions

1 Introduction

Dziembowski, Pietrzak and Wichs introduced the notion of a non-malleable code
(NMC) in [27]. Their new notion generated tremendous interest in recent years
both for the challenging theoretical questions raised by such codes, and for their
interesting applications in cryptography. An NMC is a key-less procedure that
allows to encode a message m in such a way that, upon input the encoding of
m, it is not possible (or it is hard in the computational case) to produce an
encoding of a value related to m.1

Obviously an NMC requires some restrictions on the view of the adversary.
Indeed, as the encoding/decoding are key-less procedures, an adversary could
always decode a codeword, change the underlying message to a related value, and
encode the result. For this reason, non-malleability is typically parameterized by
the set of allowed modifications Φ that can be applied by the adversary to a target
encoding, and previous work on NMCs focused on constructing non-malleable
codes for restricted (yet meaningful) classes Φ.

The split-state model. One of the most natural and investigated models is to
assume that a codeword c consists of two shares c = (c0, c1), and that each
tampering attempt φ = (φ0, φ1) ∈ Φ is characterized by two arbitrary functions
that can be applied to each share independently. Note that the two tampering
functions cannot run the decoding procedure, because both shares are needed in
order to decode a codeword, whereas each of the functions φ0, φ1 can access only
one share. This setting is often called the split-state model and is the focus of this
paper; we often use the terminology split-state code to denote a code in the split-
state model. We refer the reader to Sect. 1.5 for an overview of known construc-
tions of non-malleable codes for different classes Φ. Previous work showed how
to construct split-state non-malleable codes, both for the information-theoretic
setting [3,4,6,7,13,18,25,27,37] and the computational setting [2,22,30,38].

1.1 Continuous Non-Malleability

The original notion of NMCs provides a security guarantee only against adver-
saries that try to tamper the codeword once. The more general case of continuous

1 In this paper, we will only focus on efficient NMCs where both the encoding and
decoding procedures run in polynomial time.

610 R. Ostrovsky et al.

non-malleability was introduced by Faust et al. [30], with the goal of guarantee-
ing non-malleability even after multiple (adaptively chosen) tampering attempts;
that is, the adversary is allowed to choose the tampering functions to apply in the
next round based on the answers obtained in the previous rounds. As pointed out
also in [30], continuously non-malleable codes (CNMCs) are arguably the most
natural generalization of standard NMCs, and allow to significantly strengthen
their applications [19,20,31].

Different flavors of non-malleability. The work of [27] considered a default and a
strong flavor of non-malleability. In both cases, the adversary is allowed to see the
decoding m̃ of the modified codeword c̃ = φ(c). However, the default notion only
guarantees non-malleability as long as the decoded message is different from the
original message, i.e. it might be possible for the attacker to create an encoding
c̃ �= c such that c̃ still decodes to the original message m. In contrast, this is not
allowed in the case of strong non-malleability which guarantees that whenever
c̃ �= c the decoded value m̃ will be unrelated to m. An even stronger flavor,
known as super non-malleability [30,32,36], ensures that c̃ is independent of c
whenever c̃ �= c is a valid codeword. This is modeled by allowing the adversary
to actually see c̃ (as long as c̃ �= c and c̃ is valid).

Clearly, the above flavors of non-malleability can also be considered in the
continuous setting. In this paper, we focus only on the “default flavor” of con-
tinuous non-malleability. This in contrast to previous work on continuously non-
malleable codes (except [19,20,28]), which instead by default considered con-
tinuous super non-malleability. While the notion we consider is strictly weaker
than continuous strong or super non-malleability, to the best of our knowledge,
it is sufficient for all known applications of continuously non-malleable codes, in
particular [19,20,28,30,31].

Depending on the tampering functions being applied always to the initial
encoding c, or to the result of the previous tampering attempt, one can also
have notions called non-persistent and persistent tampering. In this paper we
focus on the setting of non-persistent tampering, which is the strongest2 flavor
of continuous non-malleability (and also the variant most useful for applications).

Self destruction. Unfortunately, even for very simple classes Φ, continuous non-
malleability as hinted above is actually impossible to achieve. Indeed, a simple
attack—proposed for the first time by Gennaro et al. [33] in the context of
“Algorithmic Tamper-Proof Security”—allows to completely recover a target
encoding by simply trying to guess each of its bits individually: the output
of the decoding corresponding to each tampering attempt will yield either the
original message or the special symbol ⊥ (denoting an invalid codeword), thus
revealing the entire codeword (and thus the underlying message) in a bit-wise
fashion. Remarkably, such an attack can be performed by looking at each bit of
the encoding independently, which is a special case of split-state tampering.
2 In fact, note that a persistent continuous attack specified as a sequence of (determin-

istic) tampering functions φ, φ′, φ′′, · · · , can always be emulated by a non-persistent
continuous attack specified as φ(·), φ′(φ(·)), φ′′(φ′(φ(·))), · · · .

Continuously Non-Malleable Codes in the Split-State Model 611

The standard way out is to relax continuous non-malleability, therefore cir-
cumventing the above impossibility result, assuming a special “self-destruct”
feature: After the first invalid encoding is processed, the system “blows-up” and
stops processing further queries.3

Message uniqueness. It is not hard to show that any code achieving continuous
non-malleability in the split-state model must satisfy a property called message
uniqueness. Informally, message uniqueness means that if we fix the left share
c0 of an encoding, it should be hard to come up with two distinct right shares
c1, c̄1 such that both (c0, c1) and (c0, c̄1) are valid codewords decoding to two
distinct messages, say m and m̄ respectively.4 (An analogous guarantee must
hold in case we fix the right share.)

To see why uniqueness is needed, assume it is possible to efficiently find two
encodings (c0, c1) and (c0, c̄1) violating message uniqueness, and let (c∗

0, c
∗
1) be

the target encoding that we want to maul via a split-state attack. Then, in a
continuous attack, we can simply consider the tampering functions (φ(i)

0 , φ
(i)
1)

that always fix the left share to c0 (regardless of c∗
0) and, depending on the i-th

bit of c∗
1 either overwrite c∗

1 with c1 or with c̄1. The sequence of decoded messages
produced by such an attack allows an adversary to recover c∗

1 without the risk
of incurring a self-destruct. After c∗

1 is available, an additional tampering query
easily allows to encode a related value.5

The state of the art: trusted setup and strong computational assumptions. The
attack based on uniqueness implies that information-theoretic continuous non-
malleability in the split-state model is impossible. This is because message
uniqueness in the information-theoretic setting means that each share of a split-
state encoding must completely determine the message. So, an unbounded tam-
pering function accessing a single share of the codeword could just recover the
underlying message by simply brute forcing all possible values for the missing
share, and running the decoding algorithm until a valid message is found. After-
wards, it can complete the attack by setting (along with the other tampering
function that hardwires correlated randomness and performs the same steps) an
encoding of a related message.

The only known constructions of a CNMC in the split-state model (therefore
also achieving message uniqueness) are the codes of [28,30], but unfortunately

3 In practice self-destruct could be implemented using a single (untamperable) bit of
public state, or by having the device overwrite its own memory in case of an invalid
encoding.

4 Since [30] by default considered continuous super non-malleability, they require an
even stronger form of uniqueness called codeword uniqueness, which intuitively says
that it should be hard to find (c0, c1, c̄1) such that both (c0, c1) and (c0, c̄1) are
valid, and c1 �= c̄1, even if the two codewords encode the same message. This flavor
of uniqueness is not needed in this paper.

5 Message uniqueness is, instead, not necessary for the simpler case of continuous non-
malleability against persistent tampering. Split-state codes achieving such a weaker
security guarantee were recently constructed unconditionally in [7].

612 R. Ostrovsky et al.

these constructions rely on both trusted setup and strong computational assump-
tions. Indeed such codes require: (i) a “common reference string”, i.e., the
existence of a honestly generated string (with some given distribution) that is
assumed to be untamperable, and that is available to the encoding and decod-
ing functions, and to the adversary; (ii) the existence of non-interactive zero-
knowledge proofs and either collision-resistant hash functions [30] or public-key
encryption resilient to continual leakage [24,28] (which we only know how to
obtain under concrete number-theoretic assumptions over bi-linear groups).

The open problem. Unfortunately, in practical situations, trusted setup is very
difficult to come by (and also expensive to implement). Moreover, one should
always try to get the best possible security, limiting or avoiding the trust on
other parties, on some setup, and on strong computational assumptions. This
leads to the following major open question:

Q1: Can we construct a split-state CNMC under minimal complexity-
theoretic assumptions in the plain model (i.e., without trusted setup)?

Towards the above main question, one might also be interested in the follow-
ing natural question:

Q2: Is any split-state code satisfying both message uniqueness and one-
time non-malleability also continuously non-malleable?

1.2 Our Contribution

In this paper we give definitive answers to the above questions. Our main contri-
bution is a positive answer to question Q1, therefore providing the first construc-
tion of a split-state CNMC (for non-persistent tampering) without assuming any
trusted third party, or strong computational assumption. Indeed, we will show
that the sole existence of one-to-one one-way functions already suffices for our
purpose.

Theorem 1 (Informal). If one-to-one one-way functions exists, there is a con-
struction of a split-state code that satisfies continuous non-malleability in the
plain model.

In addition, we also give a negative answer to question Q2. In particular,
we show that there exist (albeit contrived) split-state codes that are one-time
non-malleable and satisfy message uniqueness, but can be broken by a simple
continuous attack.

Theorem 2 (Informal). If one-to-one one-way function exists, then there is a
construction of a split-state code that satisfies both (perfect) message uniqueness
and one-time non-malleability in the plain model, but that is insecure for two
tampering queries.

Continuously Non-Malleable Codes in the Split-State Model 613

We notice that the computational assumption that we use is essentially opti-
mal. In fact, each of the two shares of an encoding of a split-state non-malleable
code satisfying message uniqueness implicitly defines a non-interactive com-
mitment, and, as shown in [39], there is no black-box construction of a non-
interactive commitment scheme from general one-way functions.

1.3 Positive Result

Our positive result introduces new ideas that make progress towards understand-
ing continuous non-malleability, and shows interesting connections with protocol-
design and proof-approach techniques used in other contexts (e.g., look-ahead
simulation in zero-knowledge proofs [46], non-malleable commitments [43], and
leakage resilience [26]). We highlight some of the challenges below.

Hardness of constructing one-time NMCs with message uniqueness. Before
describing our encoding scheme, let us give some intuition why the problem
of obtaining both non-malleability and message uniqueness in the plain model
might be hard to tackle (even using non-standard assumptions). Let c = (c0, c1)
be a split-state codeword. Since we want to achieve message uniqueness, the left
share must completely determine the encoded message; an analogous property
must also hold for the right share. We can thus interpret each of the two shares
produced by the encoding as a non-interactive perfectly6 binding commitment.
On the other hand, c = (c0, c1) must also be non-malleable.

Now, consider the following natural candidate inspired by the recent con-
struction of [12]. We let c0 = (γ0, r1) and c1 = (γ1, r0), where γ0 and γ1 are
perfectly binding non-interactive non-malleable commitments of a message m,
using randomness r0 and r1 (respectively). In the plain model, such commitments
can be based on adaptive one-way functions [41], and, as shown by Pass [42], they
cannot be constructed under falsifiable assumptions (in a black-box sense).

Although, at least intuitively, the above scheme should satisfy both proper-
ties of non-malleability and message uniqueness, we now argue that this might be
very hard to prove. Recall that the experiment defining one-time non-malleability
in the split-state model proceeds as follows: First the adversary chooses two mes-
sages m0,m1, and then it is allowed to specify a single pair of tampering functions
φ = (φ0, φ1) that is applied to an encoding c = (c0, c1) of mb, for hidden bit b
that the adversary needs to guess, upon which the attacker receives the decoded
value corresponding to the tampered codeword. (Unless such value equals one of
m0,m1, in which case the adversary obtains a special output same∗.) Consider
the following pair of split-state functions φ = (φ0, φ1).

– Function φ0, by looking at γ0 recovers some of the bits of r0; function φ1 acts
similarly, i.e. it recovers some of the bits of r1 by looking at γ1.7

6 It is easy to see that, in the plain model, computational uniqueness implies perfect
uniqueness.

7 The assumption that the tampering functions can recover some bits of the random-
ness, is justified by the fact that we do not know of any (even non-adaptive) one-way
function that hides all the bits of its input.

614 R. Ostrovsky et al.

– As a consequence, φ0 and φ1 have some shared randomness ρ (coming from
the coins of the commitments). Let us now be generous, and further assume
that functions φ0, φ1 can recover the encoded value mb by looking at γ0 and
γ1 (respectively).8 Clearly, any reduction basing one-time non-malleability of
the above scheme on the assumption that the commitments are non-malleable
must in particular work for such a strong split-state attack.

– Finally, the functions (φ0, φ1) use the shared randomness ρ to coordinate
as follows: with probability 1/2 (with common coins derived from ρ) they
replace (c0, c1) with an encoding (c̃0, c̃1) of a value m̃ related to mb (com-
puted using common randomness derived from ρ), and with probability 1/2
(again with common coins derived from ρ) they replace (c0, c1) with uncorre-
lated encodings (therefore decoding to ⊥) of a value m̃ related to m1−b. The
decoded message will be related to mb with probability 1/2, and to m1−b

with probability 1/2.

The above attack is clearly successful. Consider now the reduction that, given
a target commitment γ, samples a random string r, runs (γ̃, r̃) = φ0(γ, r), and
returns γ̃ as mauled commitment. The advantage of such a reduction is zero,
as both φ0 and φ1 return either a commitment to a message related to mb

(with probability 1/2) or a commitment to a message related to m1−b (still with
probability 1/2). It is, thus, not clear how such functions could help in breaking
the non-malleability of the commitment scheme.

Message uniqueness and one-time non-malleability via commitments and leakage
resilience. Our first idea is to circumvent the problem that the adversary might
be able to coordinate φ0 and φ1 using common randomness coming from the com-
mitment, by hiding such randomness. To this end, we make use of a (non-unique)
primitive: an auxiliary split-state non-malleable code which encodes the message
m concatenated with the randomness r used to compute the commitment. The
reason why we can count on this non-unique tool is that in the security proof
we can have a first hybrid experiment where we disconnect the randomness r of
the commitment from the input of the auxiliary non-malleable code. Next, non-
malleability follows by a reduction to the hiding property of the commitment
scheme.

Remarkably, our proof works even if the underlying commitment is malleable;
hence, we can instantiate our construction based on standard cryptographic
assumptions, such as the existence of one-to-one one-way functions (which imply
standard perfectly binding and computationally hiding non-interactive commit-
ments [34]). Intuitively, the reason is that mauling the commitment does not
help, since the message is also input to the auxiliary non-malleable code. The
above trick is inspired by a beautiful idea of Pass and Rosen [44,45]. Indeed, they
constructed non-malleable commitments by composing regular (i.e., potentially
malleable) commitment schemes and non-malleable zero-knowledge arguments of
knowledge. One can see our technique as one more (though completely different)
8 Note that both functions recover the same value mb, because the commitments are

perfectly binding.

Continuously Non-Malleable Codes in the Split-State Model 615

application of the Pass-Rosen trick. We stress that despite the common spirit
of their and our technique, our construction has to deal with several difficulties
that go much beyond the simple use of the above trick.

In order to reduce a successful attack to our code to the security of the inner
auxiliary NMC, we need to use the tampering functions (φ0, φ1) chosen by the
adversary to define the tampering functions (φ′

0, φ
′
1) against the underlying code.

This requires two adjustments: (i) the input to the functions (φ′
0, φ

′
1) must be

enriched adding a commitment; (ii) the output of the functions (φ0, φ1) must
be shrunk removing the commitment. While the former adjustment is pretty
straightforward (indeed it can be accomplished by just hardwiring a commit-
ment and a description of φ0, φ1 in the description of φ′

0, φ
′
1), the latter is more

complicated since we can’t simply remove the commitment. In fact, the commit-
ments produced by the tampering functions could play an important role for the
success of the adversary! This issue will be resolved by additionally assuming
that the inner NMC be a leakage-resilient NMC,9 which allows us to obtain (via
a leakage query) the modified commitment as generated by the tampering func-
tions (φ0, φ1) chosen by the adversary. As we show, this leakage can be used by
the distinguisher of the inner auxiliary NMC to simulate consistently the view
of the distinguisher attacking the full code, thus reaching a contradiction.

The tough continuous case: we are short on leakage queries! The above technique
consisting of using a leakage query to adjust the output of the distinguisher
can be applied because the leaked information (i.e., a commitment) is small
compared to the size of the codewords, and such a small leakage is tolerated by
known constructions.

Consider now a continuous attack, where the adversary picks several tam-
pering functions adaptively. A naive adaptation of the above trick would clearly
result in too much leakage, since there is no a-priori fixed bound on the number
of tampering queries made by the adversary, and each query requires to leak the
corresponding modified commitment. Hence, the proof approach discussed so far
fails in the case of a continuous attack.

We overcome this obstacle using two additional ideas: (i) A new proof strat-
egy based on optimistic answers and rewinding simulation exploiting look-ahead
threads, and (ii) a special leakage-resilient NMC with unconditional security.

Optimistic answers and simulation through look-ahead threads. Our proof strat-
egy borrows the rewinding simulation used in zero-knowledge proofs, and com-
bines it with optimistic answers in order to save on the overall amount of leakage
queries. Recall that the main reason to use a leakage query is to obtain the mod-
ified commitments that are part of the tampered codewords produced by the
tampering functions chosen by the adversary. Note that, once the commitments
are leaked, they can also be decommitted via brute force search, since the goal

9 Roughly, this means that the code remains non-malleable even given some bounded,
independent (yet arbitrary), leakage on the two shares of a target encoding. See
Sect. 3 for a precise definition. Suitable codes were recently constructed in [6].

616 R. Ostrovsky et al.

is now to break unconditional security of the underlying leakage-resilient NMC,
and therefore the reduction is allowed to run in exponential time.

In order to save on leakage queries, we simulate the answers to the adver-
sary’s tampering queries by using an optimistic approach, essentially returning
the value that had more chances to be encoded by the tampering functions.
Such a value can be computed through brute-force search, by applying the tam-
pering functions to all possible encodings and returning the decoded message
that appears more often. This sequence of “simulated” answers can be seen as
a look-ahead thread [46], where the reduction tries to understand the correct
answers to be played in the main thread of the interaction with the adversary.
Indeed, when the adversary stops, the reduction will run a special leakage query
in order to learn the first point j of the simulation where the optimistic answer
was wrong, and the commitment γ that should have been considered instead.
This information implies that all answers up to the j-th query were correct,
therefore the reduction can complete the current lookahead thread, return to
the main thread, simulate the answer to the first j queries as before, and decom-
mit γ through brute-force search in order to answer the (j + 1)-th query. Next,
the reduction starts another look-ahead thread, and so on, until all queries have
been answered correctly. Through an induction argument, we will show that
the reduction can successfully break the underlying one-time NMC by carefully
adjusting the last pair of tampering functions chosen by the adversary.

The tricky bit is the following: How do we bound the number of look-ahead
threads? Indeed, there is a leakage query for each look-ahead thread, and there-
fore without bounding the number of threads we can not contradict security of
the underlying leakage-resilient NMC.

The small mutual information of [6]. The number of leakage queries is propor-
tional to the number of look-ahead threads, and thus to the number of errors
done by the reduction when giving optimistic answers. Hence, it is crucial to
study the consequences of a wrong optimistic answer.

Whenever an optimistic answer is wrong, we have that the two tampering
functions sent by the adversary modify the target codeword yielding a value
that is not the most likely outcome. Intuitively, this means that for each look-
ahead thread the adversary risks as decoding the special value ⊥ (leading to
self-destruct) with probability at least 1/2. In fact, notice that if one tampering
function sets a value that is not the most likely one, then with probability at
least 1/2 the other tampering function will set a different value, and therefore
the decoding will return ⊥. Clearly, if the adversary is risking ⊥ with probability
at least 1/2, the number of such look-ahead threads is at most poly-logarithmic.

While the above argument is intuitively appealing, the difficulty is that the
two tampering functions could coordinate their outputs using some correlated
information encoded in their inputs. In such a case, they could produce two
valid shares that encode a message which is different from the most likely out-
come, and still the probability of self-destruct is less than 1/2. We circumvent
this complication by assuming two additional properties of the underlying one-
time NMC, namely that the mutual information between the two shares of an

Continuously Non-Malleable Codes in the Split-State Model 617

encoding is not too high, and further that codewords are uniform over a subset of
all possible encodings. Hence, we argue that any such tampering query (yielding
a message that is different from the optimistic answer and incurring in a prob-
ability of self-destruct less than 1/2) will cost one bit of correlated information,
and thus, after a small number of such queries, the mutual information becomes
zero and the probability of ⊥ for each additional query is at least 1/2. The latter
allows our reduction to succeed.

Finally, we show that the code of [6] satisfies all the properties we need, and
moreover, by carefully selecting the parameters, it tolerates enough leakage in
order to apply our reduction.

1.4 Negative Result

Since in the split-state model continuous non-malleability implies message
uniqueness, a natural question is whether the two properties are actually equiv-
alent. We show that they are not equivalent in a very strong sense, indeed in
Sect. 5 we describe a code that is one-time non-malleable and satisfies message
uniqueness, but that is already insecure for 2 tampering queries. The scheme
makes black-box use of any one-time non-malleable code in the split-state model
additionally satisfying message uniqueness (such as our scheme from Sect. 4).
The idea is to encode both the message m and some random pad κ using the
underlying non-malleable code. Let us write (c10, c

1
1) and (c20, c

2
1) for the corre-

sponding encodings. The obtained codeword has c∗
0 := (c10, c

2
0, δ) as left share,

and c∗
1 := (c11, c

2
1, δ) as right share, where δ = m⊕κ is a one-time pad encryption

of the message m using pad κ. The decoding simply decodes the first compo-
nent of each share (i.e., the pair (c10, c

1
1)) using the decoding procedure of the

underlying non-malleable code (completely ignoring all other elements).
On the one hand, one can show that the modified scheme inherits both mes-

sage uniqueness and one-time non-malleability from the underlying auxiliary
code. Intuitively, this is because successfully mauling a codeword (c∗

0, c
∗
1) still

requires to maul (c10, c
1
1), which is hard by the one-time non-malleability of the

underlying NMC. (We refer the reader to Sect. 5 for a detailed proof sketch.) On
the other hand, using a first tampering query, a split-state adversary can swap
c10 with c20 on the left, and c11 with c21 on the right, thus obtaining the random
pad κ in the clear as a response. Once the pad is known, the second tampering
query can hard-wire the value κ, recover the message m = δ ⊕ κ in the clear
(both from the left and the right share), and finally encode a related value.

1.5 Additional Related Work

Non-malleable codes. Only a few constructions of continuously non-malleable
codes are known (besides the already mentioned constructions of [28,30]). In par-
ticular, continuous non-malleability is known to be achievable in the information-
theoretic setting, for the simpler cases of bit-wise independent tampering [19,20]
(where each bit of the codeword is tampered independently), and constant-state
tampering [5]. Jafargholi and Wichs [36] obtain different flavors of continuous

618 R. Ostrovsky et al.

non-malleability for the case of tampering functions with high min-entropy or few
fixed points. Aggarwal et al. [7] show that split-state continuous non-malleability
is achievable in the information-theoretic setting, when tampering is persistent.
Finally, Chattopadhyay et al. [14] construct one-many non-malleable codes that
are secure with respect to an adversary that can specify many tampering func-
tions to be applied to the one target codeword; the adversary succeeds if at least
one of the tampering functions produces a valid encoding of a related message.
Importantly, this notion does not rely on the self-destruct mechanism, but the
total number of tampering attempts must be a-priori bounded.

Several other constructions of (one-time) non-malleable codes exist in the
literature, achieving security for a plethora of tampering models, including: bit-
wise independent tampering and permutations [8,9,18], circuits of polynomial
size [17,27,32], constant-state tampering [16], block-wise tampering [12], space-
bounded algorithms [11,29], and bounded-depth circuits [10,15].

Applications. The typical application of non-malleable codes is the protection of
cryptographic algorithms from tampering attacks against the memory [27,30,38].
Non-malleable codes were also used to protect arbitrary computations (and not
only storage) against tampering [13,22,31].

A recent line of work shows interesting connections between the notions
of non-malleable codes and non-malleable commitments. In particular, [12]
proves that block-wise non-malleable codes (for two blocks) are equivalent to
non-interactive non-malleable commitments (w.r.t. opening). Recently Goyal
et al. [35] showed how to construct 3-round non-malleable commitments from
standard assumptions when the adversary plays left and right sessions in parallel.
Their scheme crucially relies on the power of split-state non-malleable codes.

Non-malleable codes can also be used to tackle the question of domain exten-
sion for non-malleable public-key encryption [19,20,40] and non-malleable com-
mitments [8].

2 Overview of Techniques

2.1 Description of Our Code

Our code Π = (Enc,Dec) is formally depicted in Fig. 1 on page 21, and it is based
on a non-interactive commitment scheme with message space M := {0, 1}k,
randomness space R := {0, 1}ρ and commitment space Γ ⊆ {0, 1}�, and on an
auxiliary split-state code Π ′ = (Enc′,Dec′) mapping bitstrings of length (k + ρ)
into bitstrings of length 2n′; the length of a codeword will be 2n = 2n′ + 2
. We
denote by Commit the commitment function. (We refer the reader to Sect. 3 for
the standard definitions of continuously non-malleable codes and non-interactive
commitments.)

Intuitively, the encoding algorithm Enc constructs a commitment γ ∈ {0, 1}�

of the message m ∈ {0, 1}k using randomness r ∈ {0, 1}ρ. Then it encodes the
string m||r via Enc′, obtaining (c′

0, c
′
1). Finally, it outputs the split-state encoding

((γ, c′
0), (γ, c′

1)), of length 2n = 2n′+2
. The decoding algorithm first checks that

Continuously Non-Malleable Codes in the Split-State Model 619

the commitment γ on the left and right shares is equal, in which case it decodes
(c′

0, c
′
1) obtaining a value m||r, and outputs m if and only if (m, r) is a valid

opening of the commitment.
For the security proof, we need the commitment scheme to be computa-

tionally hiding, and the underlying code Π ′ to be a split-state non-malleable
code with unconditional security (under a single tampering query), and that
additionally Π ′ satisfies leakage resilience, and two additional properties on the
distribution of the codewords. The first property, which we call codewords unifor-
mity, intuitively says that the two shares of an encoding under Π ′ are uniform
over the set of all possible shares when considered in isolation, whereas their
joint distribution is uniform over a smaller subset of the codewords space. The
second property, which we call conditional independence, intuitively says that
the mutual information between the left and right share is bounded. We show
how to instantiate our construction in Sect. 4.

2.2 Proof Intuition

We next give an overview of the proof of non-malleability. Note that we do
not make any assumption on the malleability of the commitment scheme. Let us
write T(b, q) for the random variable corresponding to the tampering experiment
defining continuous non-malleability of the above defined encoding scheme Π,
with hidden bit b, and where the adversary asks q tampering queries. In this
experiment, the adversary can adaptively choose up to q split-state tampering
queries that are applied to a target encoding c = ((γ, c′

0), (γ, c′
1)) of message

mb; after each tampering query, the adversary learns the outcome corresponding
to decoding the modified codeword. Importantly, both T(0, q) and T(1, q) are
additionally parameterized by messages m0,m1, and moreover the output of the
experiments is defined to be same∗ in case the tampered codeword decodes to
either of m0,m1; furthermore, in case the answer to a tampering query is equal
to ⊥ (i.e., the modified codeword is invalid), all future queries are answered with
⊥ (i.e., the experiment self-destructs).

Our goal is to show T(0, q) ≈c T(1, q), for all polynomials q(λ). The main
idea is to consider a hybrid experiment H(b, q) where we decouple the random-
ness used to define the commitment in the target codeword from the input
of the inner encoding scheme Π ′. Namely, in experiment H(b, q) the target
codeword has the form c := ((γ, c′

0), (γ, c′
1)) where γ is a commitment to mb

using randomness r (as before), and (c′
0, c

′
1) is an encoding of a random uncor-

related value s′ ←$ {0, 1}k+ρ (instead of the string mb||r). We then argue that
T(0, q) ≈s H(0, q) ≈c H(1, q) ≈s T(1, q), as outlined in the following subsec-
tions.

2.3 First Step

We start by showing that T(b, q) ≈s H(b, q), for all b ∈ {0, 1} and for all
q ∈ poly(λ), down to the non-malleability of the underlying encoding scheme
Π ′. This part of the proof is completely information-theoretic, and moreover it

620 R. Ostrovsky et al.

relies on the two additional properties of codewords uniformity and conditional
independence discussed above. Fix b = 0 (the proof for the other case is analo-
gous). We use induction on the number of tampering queries q(λ), as explained
below.

Induction Basis. The base case of the induction requires to show that
T(0, 1) ≈s H(0, 1). We consider a reduction having access to a target encoding
c′ = (c′

0, c
′
1) that is either an encoding of s′

0 := m0||r or an encoding of a random
string s′

1 := s′. Note that, since the reduction knows both m0 and r, it can
perfectly simulate the distribution of the target codeword c = ((γ, c′

0), (γ, c′
1))

for experiments T(0, 1) and H(0, 1) inside the tampering oracle; this is done by
computing offline γ = Commit(m0; r), and by hard-wiring this value into the
tampering function.

Thus, the reduction can perfectly simulate the input for a tampering query as
it would be done in T(0, 1) and H(0, 1). The difficulty, however, is that the reduc-
tion only gets to see the decoding of the value s̃ corresponding to the tampered
codeword c̃′ = (c̃′

0, c̃
′
1), which is not directly the same as the output of the exper-

iment in T(0, 1) and H(0, 1). For instance, in case s̃ �∈ {same∗,⊥,m0||r̃,m1||r̃},
for any r̃ ∈ {0, 1}ρ, the reduction knows that c̃′ is a valid encoding of some string
s̃ := m̃||r̃ ∈ {0, 1}k+ρ, but the output of experiment T(0, 1) and H(0, 1) is either
equal to m̃ or ⊥ depending on whether m̃ and r̃ are consistent with the modified
commitment γ̃.

In order to overcome this obstacle, we exploit the leakage resilience property
of Π ′; in particular, we let the reduction leak the value γ̃ (as defined above).
Our analysis shows that this is all one needs in order to complete the simulation
in a perfect manner (with all but a negligible probability).

Inductive Step. Next, we assume that T(0, i) ≈s H(0, i) for some i ∈ [q − 1],
and we show that this implies T(0, i + 1) ≈s H(0, i + 1). This is achieved once
again via a reduction to the underlying one-time non-malleable code. Notice
that, as before, the reduction can perfectly simulate the distribution of the target
codeword c = ((γ, c′

0), (γ, c′
1)) for experiments T(0, i + 1) and H(0, i + 1) inside

the tampering oracle. However two new problems arise. First, in the experiments
T(0, i + 1) and H(0, i + 1) the adversary can ask up to i + 1 tampering queries,
whereas the reduction can play only one query, and so it needs to simulate the
answer to all other i tampering queries on its own (and in a consistent manner).
Second, even if the reduction were able to answer all other queries, it is a priori
unclear how to choose which of the i + 1 tampering functions the reduction
should use in order to break one-time non-malleability of the code Π ′.

The solution to the second problem comes immediately from the induction
hypothesis. In fact, we know that, with overwhelming probability, the adversary
cannot be successful after just i queries, as this would contradict our assumption
that T(0, i) ≈s H(0, i). Using this observation, our strategy will be to simulate
the answer to the first i tampering queries in a consistent manner, and later rely
on the (i + 1)-th query in order to violate security of the code Π ′.

Continuously Non-Malleable Codes in the Split-State Model 621

The solution to the first problem, instead, is more complicated. Essentially
our reduction plays the following strategy:

1. At setup, compute all possible encodings ĉ := (ĉ0, ĉ1) of the challenge mes-
sages s′

0 = m0||r and s′
1 = s′, and store ĉ in an initially empty array

Ŝ(1) := Ŝ(1)
0 ×Ŝ(1)

1 , where Ŝ(1)
0 and Ŝ(1)

1 are the sub-arrays containing, respec-
tively, all the left shares ĉ0 and all the right shares ĉ1.

2. Upon input a tampering query (φ(j)
0 , φ

(j)
1) from the adversary, for any j ≤ i,

answer as follows:
– For all codewords ĉ = (ĉ0, ĉ1) ∈ Ŝ(j)

0 × Ŝ(j)
1 , decode the corresponding

tampered codeword (φ(j)
0 (γ, ĉ0)), φ

(j)
1 (γ, ĉ1)).

– Let m∗ be the most likely outcome, and answer the query with m̃(j) = m∗.
– Define Ŝ(j+1)

0 , Ŝ(j+1)
1 to be the sub-arrays of Ŝ(j)

0 , Ŝ(j)
1 containing all pos-

sible codewords which are compatible with the answer to the j-th query
being m∗.

3. Make sure all answers m̃(1), . . . , m̃(i) are correct whenever the corresponding
codewords produced by the tampering functions are valid. This is achieved
as follows:

– Define a leakage query that hardwires all answers (m̃(1), . . . , m̃(i)), as well
as the tampering queries (φ(1)

0 , . . . , φ
(i)
0) and the arrays Ŝ(1)

0 , . . . , Ŝ(i)
0 , and

returns the first index j (if any) such that the target left share (γ, c′
0)

is contained in the j-th array, but is not contained in the (j + 1)-th
array. (An analogous check is performed on the target right share (γ, c′

1),
using φ

(1)
1 , . . . , φ

(i)
1 and Ŝ(1)

1 , . . . , Ŝ(i)
1 .) In case such an index is found, the

leakage query additionally returns the correct answer m̂.10

– Rewind the adversary to step 2, at the iteration where it asked the j-
th query, and modify the answer using the leaked value. Additionally,
update the arrays Ŝ(j+1)

0 , Ŝ(j+1)
1 consistently11 with the answer of the j-

th tampering query being m̂, and go back to step 2 continuing from the
(j + 1)-th tampering query.

4. Upon input the final tampering query (φ(i)
0 , φ

(i)
1) from the adversary, use

this query to define the tampering query (φ′
0, φ

′
1) to be applied to the target

encoding; this is done in exactly the same way as discussed above for the base
case of the induction.

In order to conclude the proof, we need to show two things. First, we need to
argue that the total number of rewinds performed by the reduction is some-
what limited, so that the reduction does not exceed the total leakage bound
supported by the underlying non-malleable code. Second, we need to ensure
that the simulation performed by the reduction generates a distribution that is

10 This is achieved by leaking the commitment γ̃ corresponding to the tampering query
(φ

(j)
0 , φ

(j)
1), and by having the reduction find the corresponding (unique) message via

brute force.
11 The new Ŝ(j+1)

0 , Ŝ(j+1)
1 are obtained from Ŝ(j)

0 , Ŝ(j)
1 by removing the encodings that

are not compatible with the answer of the j-th tampering query being m̂.

622 R. Ostrovsky et al.

indistinguishable from what the adversary would expect in a real execution of
experiments T(0, i + 1) and H(0, i + 1). We deal with these issues as follows.

Challenge #1: Bounding the Leakage. Let (φ(j)
0 , φ

(j)
1) be a tampering query pro-

voking one of the rewinds. Denote by c̃0 := (γ̃, c̃′
0) = φ

(j)
0 (γ, c′

0) the corresponding
modified left share. By message uniqueness, which for our code easily follows by
the perfect binding property of the commitment, c̃0 is a valid left share of at
most one message m̃ ∈ {0, 1}k. A counting argument shows that the probability
associated to the output of the decoding being m̃ is p̃ ≤ 1/2. Hence, intuitively,
we would like to argue that since m̃ is not the most likely outcome, there is a
probability of at least 1/2 that the modified right share c̃1 := (γ̃, c̃′

1) = φ
(j)
1 (γ, c′

1)
will correspond to a message different from m̃, and thus every such query yields
a self-destruct with probability at least 1/2.

Unfortunately, it is unclear how to complete the above argument using any
one-time unconditionally secure non-malleable code. In fact, the left and right
shares of the inner encoding c′ = (c′

0, c
′
1) are correlated, and a tampering query

could exploit such correlation in order to generate an output which is not the
most likely outcome, and yet the probability of self-destruct is smaller than 1/2.
We solve this problem by relying on the two additional properties of codewords
uniformity and conditional independence. In particular, by a careful information-
theoretic argument, we can show that codewords uniformity implies that every
tampering query evading the above argument decreases the mutual information
between the left and right share of c′ by at least one bit. By conditional indepen-
dence, the maximum number of such queries is bounded, after which the mutual
information between c′

0 and c′
1 is zero, and any further tampering query causing

a rewind will incur a probability of self-destruct of at least 1/2.

Challenge #2: Arguing indistinguishability. As for indistinguishability, note that
the corrected answers m̃(1), . . . , m̃(i) might still be inconsistent, due to the fact
that the tampered inner codeword (c̃′

0, c̃
′
1) decodes to ⊥ for some of the queries.

Indeed, such an invalid codeword can not be detected using the above leakage
queries since they allow only to read the commitments computed by the tamper-
ing function in the two shares. The adversary might notice this inconsistency,
and could for instance instruct the distinguisher to flip its output in order to
make the reduction fail.

We circumvent this obstacle as follows. First off, let us assume w.l.o.g. that
the distinguisher satisfies the following invariant: it outputs 0 (resp. 1) whenever
it believes the target codeword is an encoding of m0 (resp. m1). Hence, we let the
reduction ask an additional leakage query, leaking a single bit, that hard-wires a
description of the distinguisher and of the final tampering query (φ(i+1)

0 , φ
(i+1)
1),

together with all the answers m̃(1), . . . , m̃(i) to the first i queries, the commit-
ment γ, and the final arrays Ŝ(i+1)

0 , Ŝ(i+1)
1 . The goal of the leakage query is to

allow the reduction to check that the output of the distinguisher on the sim-
ulated view satisfies the above invariant. This is achieved as follows. For each

Continuously Non-Malleable Codes in the Split-State Model 623

ĉ1 ∈ Ŝ(i+1)
1 ,12 let b̂ ∈ {0, 1} be such that (c′

0, ĉ
′
1) is an encoding of mb̂; the leakage

query computes the answer m̃∗ to the (i + 1)-th tampering query by applying
(φ(i+1)

0 , φ
(i+1)
1) to ((γ, c′

0), (γ, ĉ′
1)), and then it returns δ̂ = 1 iff the output of the

distinguisher upon (m̃(1), . . . , m̃(i), m̃∗) is more often equal to b̂.
Finally, in case δ̂ = 0, the reduction returns a random guess, whereas if

δ̂ = 1, it uses the output of the distinguisher on the simulated view, the intuition
being that the outcome of the distinguisher is used only if no inconsistency was
introduced during the simulation of each tampering query. The proof shows that
this allows us to keep the non-negligible advantage of the distinguisher, thus
contradicting one-time unconditional non-malleability of the code Π ′.

2.4 Second Step

In a second step we show that H(0, q) ≈c H(1, q), down to the hiding property
of the commitment scheme. This step is significantly easier, because in both
experiments H(0, q) and H(1, q) the input of the commitment and of the inner
encoding algorithm are completely independent. Hence, in the reduction we can
embed a target commitment γ (which is either a commitment to m0 or a com-
mitment to m1) and complete the codeword by sampling a fresh encoding (c′

0, c
′
1)

of a random value s′ ∈ {0, 1}k+ρ. This way, we can easily turn a distinguisher
between the two hybrids into an adversary breaking the hiding property of the
commitment scheme.

Note that in this case the reduction can perfectly simulate the view of the
distinguisher, as it has a perfectly distributed target codeword (either w.r.t.
H(0, q) or w.r.t. H(1, q)) “in its hands”.

3 Preliminaries

3.1 Notation

For a string x, we denote its length by |x|; if X is a set, |X | represents the
number of elements in X . When x is chosen randomly in X , we write x ←$ X .
When A is a randomized algorithm, we write y ←$ A(x) to denote a run of A on
input x and output y; in this case, the value y is a random variable and A(x; r)
denotes a run of A on input x and randomness r. An algorithm A is probabilistic
polynomial-time (PPT) if A is randomized and for any input x, r ∈ {0, 1}∗ the
computation of A(x; r) terminates in at most poly(|x|) steps.

We denote with λ ∈ N the security parameter. A function ν : N → [0, 1] is
negligible in the security parameter (or simply negligible) if it vanishes faster
than the inverse of any polynomial in λ, i.e. ν(λ) = λ−ω(1). We sometimes
write negl(λ) (resp., poly(λ)) to denote all negligible functions (resp., polynomial
functions) in the security parameter. All algorithms are implicitly assumed to
take the security parameter as input.
12 Without loss of generality we describe the leakage function as a leakage query on

the left share.

624 R. Ostrovsky et al.

For a random variable X, we write P [X = x] for the probability that X takes
on a particular value x ∈ X (with X the set where X is defined). The statistical
distance between two random variables X and X′ defined over the same set X is
defined as Δ (X;X′) = 1

2

∑
x∈X |P [X = x]−P [X′ = x]|. The mutual information

between X and Y is a measure of their mutual dependence, and it is defined as
I(X;Y) = H(X) − H(X|Y), where H(·) denotes the Shannon’s entropy.

Given two ensembles of random variables X = {Xλ}λ∈N and Y = {Yλ}λ∈N,
we write X ≡ Y to denote that the two ensembles are identically distributed,
X ≈s Y to denote that the two ensembles are statistically close (i.e., Δ (Xλ;Yλ)
∈ negl(λ)), and X ≈c Y to denote that the two ensembles are computationally
indistinguishable (i.e., |P [D(Xλ) = 1] − P [D(Yλ) = 1]| ∈ negl(λ) for all PPT
distinguishers D).

3.2 Non-Malleable Codes

Introduced by Dziembowski, Pietrzak, and Wichs [27], non-malleable codes allow
to encode a message in such a way that the decoding of a tampered codeword
(according to a restricted class of modifications) either yields the original message
or an unrelated value.

Definition 1 (Encoding scheme). A (k, n)-code Π = (Enc,Dec) consists of a
pair of algorithms specified as follows: (i) The (randomized) encoding algorithm
Enc takes as input a string s ∈ {0, 1}k and returns a codeword c ∈ {0, 1}n; (ii)
The (deterministic) decoding algorithm Dec takes as input a codeword c ∈ {0, 1}n

and outputs a value in {0, 1}k ∪ {⊥}, where ⊥ denotes an invalid codeword. A
codeword c ∈ {0, 1}n such that Dec(c) �= ⊥ is called a valid codeword.

The code Π satisfies correctness if, for all s ∈ {0, 1}k, we have that
Dec(Enc(s)) = s with overwhelming probability over the randomness of the encod-
ing algorithm.

Standard non-malleability, as defined in [27], allows an adversary to maul a
target encoding only once. Continuous non-malleability [30] extends the basic
non-malleability requirement by allowing the adversary to tamper multiple
times, where tampering might either be non-persistent (i.e., the adversary always
mauls the same target encoding) or persistent (i.e., the current tampering func-
tion is applied to the encoding resulting from the previous mauling attempt).
Throughout this paper, we always assume that tampering is non-persistent
(which is the more challenging scenario).

Split-state model. Below we recall the definition of continuous non-malleability in
the so-called split-state model. Here a codeword c ∈ {0, 1}2n consists of two shares
c0 ∈ {0, 1}n and c1 ∈ {0, 1}n.13 We call such codes split-state (k, 2n)-codes. In
the split-state model, the tampering functions φ : {0, 1}2n → {0, 1}2n can be
13 More generally, the encoding might not be symmetric in which case c0 ∈ {0, 1}n0

and c1 ∈ {0, 1}n1 , for arbitrary values n0, n1 ∈ N such that n0 + n1 = n; while this
generalization is immediate, it is not needed in this paper.

Continuously Non-Malleable Codes in the Split-State Model 625

described as pairs φ := (φ0, φ1) of functions with φ0, φ1 : {0, 1}n → {0, 1}n.
Tampering function φ, when applied to codeword c modifies it into c̃ := φ(c)
defined as

c̃ := (φ0(c0), φ1(c1)).

To define the notion of continuous non-malleability, we introduce experiment
TamperΠ,A

s0,s1
that is parameterized by a split-state code Π, by a PPT adversary

A, and by two messages s0 and s1, and takes as inputs the security parameter
λ, a bit b, and a value q ∈ N. In this experiment the adversary has access to two
leakage oracles O�, and one tampering oracle Ocnm.

Definition 2 (Leakage oracle). A leakage oracle O� is a stateful oracle that
maintains a counter ct that is initially set to 0. When O� is invoked for a string
c and a leakage function ψ, value ψ(c) is computed, its length is added to ct and
if ct ≤
 then ψ(c) is returned; otherwise, ⊥ is returned.

Definition 3 (Tampering oracle). A tampering oracle Os0,s1
cnm is a stateful

oracle (implicitly) parameterized by a split-state code Π = (Enc,Dec) and two
strings s0 and s1, with state st initialized to st = Active. The oracle takes as
input a codeword c = (c0, c1) and a split-state tampering function φ = (φ0, φ1)
and its output is defined as follows.

Oracle Os0,s1
cnm ((c0, c1), (φ0, φ1)):

If state = SelfDestruct, return ⊥
Let (c̃0, c̃1) := (φ0(c0), φ1(c1))
If s̃ = Dec(c̃0, c̃1) ∈ {s0, s1}, return same∗

If Dec(c̃0, c̃1) = ⊥, set state = SelfDestruct and return ⊥
Else, return s̃

Definition 4 (Continuous non-malleability). Let Π = (Enc,Dec) be a split-
state (k, 2n)-code. We say that Π is
-leakage-resilient q-time non-malleable in
the split-state model if for all s0, s1 ∈ {0, 1}k and for all PPT adversaries A
asking at most q tampering queries, we have that

{
TamperΠ,A

s0,s1
(λ, 0, q)

}

λ∈N

≈c

{
TamperΠ,A

s0,s1
(λ, 1, q)

}

λ∈N

, (1)

where, for b ∈ {0, 1},

TamperΠ,A
s0,s1

(λ, b, q) :=
{

(c0, c1) ←$ Enc(sb);
outA ← AO�(c0,·),O�(c1,·),Os0,s1

cnm ((c0,c1),(·,·))(1λ)

}

.

Without loss of generality, we can assume that the value outA consists of the
adversary’s view. In case Eq. (1) only holds for q = 1, we write that the encod-
ing scheme is one-time non-malleable, whereas if Eq. (1) holds for an arbitrary
polynomial q(·), we say that encoding scheme is continuously non-malleable; it
is also worth noting that for q = 0 (i.e., no tampering allowed) the above notion
collapses to the definition of leakage-resilient codes [23], which have turned use-
ful in several constructions o non-malleable codes [30,32]. Also note that we

626 R. Ostrovsky et al.

can cast information-theoretic security by simply requiring that Eq. (1) holds
for the statistical distance, for all possibly unbounded distinguishers, where now
also the tampering functions φ specified by the adversary, as well as the leakage
functions ψ, need not be polynomial-time computable.

As explained in the introduction, our definition of continuous non-
malleability is strictly weaker than the one originally considered in [30] (and
afterwards also in [32,36]), in that the adversary at the end of each tampering
query only obtains the decoding of the tampered codeword (unless this happens
to be equal to one of s0, s1), and not the tampered codeword itself (as long as
c̃ �= c is valid). We further observe that (continuous) non-malleability can also
be stated through the existence of an efficient simulator, however the two for-
mulations are equivalent for messages of super-polynomial size [27]. (This fact
was proven for the case of one-time non-malleability, but it holds more generally
for the case of continuous non-malleability and when considering leakage.)

Message uniqueness. As shown in [30] continuous non-malleability in the split-
state model is impossible to achieve in the information-theoretic setting.14 In the
computational setting, in order to be continuously non-malleable, a split-state
code must15 satisfy a special property called message uniqueness. Informally,
message uniqueness says that it should be hard to fix one part of an encoding,
say c0 ∈ {0, 1}n, and compute two distinct other parts c1, c̄1 ∈ {0, 1}n such that
both (c0, c1) and (c0, c̄1) are valid encodings of two different messages.

Definition 5 (Message uniqueness). Let Π = (Enc,Dec) be a split-state
code. We say that Π satisfies perfect message uniqueness if, for all β ∈ {0, 1},
there do not exist values (cβ , c1−β , c̄1−β) such that c1−β �= c̄1−β and, at the same
time,

⊥ �= Dec(cβ , c1−β) �= Dec(cβ , c̄1−β) �= ⊥.

Remark 1 (On perfect uniqueness). One could define a computational or statis-
tical variant of the uniqueness property, where tuples of values violating message
uniqueness exist but are hard to find. We note, however, that in the plain model
assuming perfect message uniqueness is w.l.o.g. In fact, if a tuple (cβ , c1−β , c̄1−β)
violating message uniqueness exists (i.e., uniqueness is not perfect), we can
always consider the specific PPT adversary that has such a tuple hard-wired
in its code (and that thus contradicts computational and statistical message
uniqueness).

Remark 2 (On message versus codeword uniqueness). An even stronger flavor of
uniqueness, not needed in this paper and known as codeword uniqueness, requires
that, for all β ∈ {0, 1}, there do not exist values (cβ , c1−β , c̄1−β) such that
c1−β �= c̄1−β and, at the same time, Dec(cβ , c1−β) �= ⊥ and Dec(cβ , c̄1−β) �= ⊥,

14 Information-theoretic security is, instead, possible in other settings, such as bit-
wise independent tampering [19,20], constant-state tampering [5], and split-state
persistent tampering [7].

15 Otherwise a generic attack is possible; see Sect. 1 for an informal description.

Continuously Non-Malleable Codes in the Split-State Model 627

but eventually Dec(cβ , c1−β) = Dec(cβ , c̄1−β). Codeword uniqueness is a strictly
stronger property than message uniqueness, and is known to be necessary for
achieving the stronger flavor of continuous super non-malleability [30].

3.3 Non-Interactive Commitments

A non-interactive commitment scheme is a randomized efficient algorithm
Commit taking as input a message m ∈ M and random coins r ∈ R, and out-
putting a commitment γ ∈ Γ . A decommitment of γ consists simply of revealing
m and r. The sets M, R and Γ are called (respectively) the message space, the
randomness space, and the commitment space. A commitment scheme satisfies
two properties called hiding and binding. We recall such properties below.

The binding property says that it is hard to open a given commitment γ ∈ Γ
in two different ways. Exactly as for the case of uniqueness, the assumption of
perfect binding is w.l.o.g. in the plain model.

Definition 6 (Binding). We say that a non-interactive commitment Commit is
perfectly binding if there do not exist pairs (m0, r0), (m1, r1) such that m0 �= m1

and, at the same time, Commit(m0; r0) = Commit(m1; r1).

The hiding property says that for any pair of messages m0,m1 it is hard to
tell whether a given commitment γ is for m0 or for m1.

Definition 7 (Hiding). We say that a non-interactive commitment Commit is
computationally hiding if for all messages m0,m1 ∈ M the following holds:

{
γ : γ ←$ Commit(1λ,m0)

}
λ∈N

≈c

{
γ : γ ←$ Commit(1λ,m1)

}
λ∈N

.

4 Code Construction

In this section we present a construction of a split-state code that achieves
continuous non-malleability. The scheme is in the plain model, and can be based
on any (possibly malleable) non-interactive commitment scheme (cf. Sect. 3.3),
and on an information-theoretic one-time non-malleable and leakage-resilient
split-state code (cf. Sect. 3.2) satisfying a few additional properties (see below).

Note that the first assumption is necessary, meaning that a continuously non-
malleable code in the split-state model implies a non-interactive commitment
scheme. In fact, recall that any continuously non-malleable code must satisfy
message uniqueness. Given a non-malleable split-state code Π = (Enc,Dec) with
message uniqueness, consider the non-interactive commitment scheme where, in
order to commit to message m, the committer computes a split-state encoding
(c0, c1) of m using algorithm Enc. The left part c0 constitutes the commitment,
and the right part c1 is the decommitment. The receiver verifies that c1 is the
correct opening of c0 as m, by running Dec on input (c0, c1) and verifying that
the output is indeed m. Binding follows by the fact that Π satisfies message
uniqueness, and hiding follows by the non-malleability of Π.

628 R. Ostrovsky et al.

4.1 Additional Properties

For our construction, we will rely on a split-state code meeting two non-standard
requirements that we formally define below. The first property intuitively says
that, for any message, the encoder outputs codewords that are uniformly random
over some subset of all possible codewords.

Definition 8 (Codewords uniformity). Let Π = (Enc,Dec) be a split-state
(k, 2n)-code, and denote by C = (C0,C1) the random variable corresponding to
the output of the encoding algorithm upon input some value s ∈ {0, 1}k. We say
that Π satisfies codewords uniformity if, for all values s ∈ {0, 1}k, we have that
each of C0 and C1 in isolation is uniform, respectively, over subsets C0 ⊆ {0, 1}n

and C1 ⊆ {0, 1}n, whereas (C0,C1) is uniformly distributed over some subset
C := C0 × C1 ⊂ C0 × C1.

Let Commit be a non-interactive commitment scheme with message space M :=
{0, 1}k, randomness space R := {0, 1}ρ, and commitment space Γ ⊆ {0, 1}�. Let
Π ′ = (Enc′,Dec′) be a split-state (k + ρ, 2n′)-code. Define the following split-state
(k, 2n)-code, where n := n′ + �.

Encoding: Upon input a value m ∈ {0, 1}k, sample random coins r ←$ {0, 1}ρ and
compute γ := Commit(m; r) and (c′

0, c
′
1) ←$ Enc(m||r). Return the codeword c =

(c0, c1) := ((γ, c′
0), (γ, c′

1)).
Decoding: Upon input a codeword c ∈ {0, 1}2n, parse c := (c0, c1) :=

((γ0, c
′
0), (γ1, c

′
1)). Hence, proceed as follows:

(a) If γ0 �= γ1, return ⊥; else, let γ = γ0 = γ1.
(b) Run s = Dec′(c′

0, c
′
1); if s = ⊥ return ⊥.

(c) Parse s := m||r; if γ = Commit(m; r) return m, else return ⊥.

Fig. 1. Description of our code.

The second property captures the fact that, for any message, the distribution
of the left and right share of a codeword have limited dependence (in terms of
their mutual information).

Definition 9 (Conditional independence). Let Π = (Enc,Dec) be a split-
state (k, 2n)-code, and denote by C = (C0,C1) the random variable correspond-
ing to the output of the encoding algorithm upon input some value s ∈ {0, 1}k.
We say that Π satisfies α-conditional independence if, for all values s ∈ {0, 1}k,
we have that I(C0;C1) ≤ α.

4.2 Theorem Statement

Consider the split-state (k, 2n)-code Π = (Enc,Dec) depicted in Fig. 1, based on
a non-interactive commitment scheme Commit with message space M := {0, 1}k,

Continuously Non-Malleable Codes in the Split-State Model 629

randomness space R := {0, 1}ρ and commitment space Γ ⊆ {0, 1}�, and on an
auxiliary split-state (k+ρ, 2n′)-code Π ′ = (Enc′,Dec′). The properties we require
from each building block are directly stated in Theorem 3 below.

Intuitively, the encoding algorithm Enc constructs a commitment γ ∈ {0, 1}�

of the message m ∈ {0, 1}k using randomness r ∈ {0, 1}ρ. Then it encodes the
string m||r via Enc′, obtaining (c′

0, c
′
1). Finally, it outputs the split-state encoding

((γ, c′
0), (γ, c′

1)).

Theorem 3 (Theorem 1, restated). Assume that Commit is a non-interactive
perfectly binding and computationally hiding commitment scheme, with message
space M := {0, 1}k, randomness space R := {0, 1}ρ and commitment space
Γ ⊆ {0, 1}�. Let Π ′ be a split-state (k + ρ, 2n′)-code that is unconditionally
′-
leakage-resilient one-time non-malleable, for
′ = (2
+O(log λ)) · (α+O(log λ)),
and that additionally satisfies the properties of codewords uniformity and α-
conditional independence. Then, the encoding scheme Π described in Fig. 1 is a
split-state (k, 2(n′ +
))-code satisfying continuous non-malleability.

Instantiating the scheme. For the commitment scheme we can rely on the stan-
dard construction based on one-to-one one-way functions [34]. If the message m
is k-bit long, the resulting commitment will have
 ∈ O(k2) bits.

For the underlying non-malleable code we use a scheme constructed in [6],
which we briefly recall below. Let F be a finite field. The encoder first encodes
the underlying message m′ ∈ {0, 1}k using an auxiliary one-time split-state non-
malleable code with unconditional security, obtaining shares (c′′

0 , c′′
1) ∈ [N]× [N],

where [N] is a sparse subset of F with size N � |F|. Hence, each share c′′
0 , c′′

1

is processed using a slight variant of the inner-product extractor, i.e. c′′
0 (resp.

c′′
1) is encoded via two additional shares (c′′

0,0, c
′′
0,1) ∈ F

2t (resp. (c′′
1,0, c

′′
1,1) ∈ F

2t)
such that ξ(〈c′′

0,0, c
′′
0,1〉) = c′′

0 (resp. ξ(〈c′′
1,0, c

′′
1,1〉) = c′′

1), where ξ : F → [N] is
an arbitrary bijection. The final encoding is then defined to be c′ = (c′

0, c
′
1) =

((c′′
0,0, c

′′
1,0), (c

′′
0,1, c

′′
1,1)) ∈ F

2t × F
2t.

By plugging in the above construction the split-state non-malleable code
of [1,4], which has log N ∈ O(k7), and choosing statistical error ε := 2−k2

, we
obtain a leakage-resilient one-time split-state non-malleable code with uncondi-
tional security and with leakage parameter
′ ≈ k14/12 (cf. [6, Corollary 4.2]).
It is important to note that the definition of leakage-resilient non-malleability
considered in [6] is simulation based, and not indistinguishability based as our
Definition 4. However, the former implies the latter: This was originally proven
in [27] without considering leakage, but the same statement holds true, with
basically the same proof, for the case of leakage, as long as the indistinguishabil-
ity between the real and simulated experiment holds for the joint distribution of
the leakage and the decoding of the tampered codeword. The latter requirement
is fulfilled by the construction in [6], as the outer layer of their encoding is a
split-state leakage-resilient code [23].

The above code is also easily seen to satisfy codewords uniformity (as c′
0

and c′
1 are uniform over the entire space of valid codewords when taken in iso-

lation, whereas (c′
0, c

′
1) is jointly uniform over a subset of the space of all valid

630 R. Ostrovsky et al.

codewords), and α-conditional independence, for α ∈ O(k7) (as both (c′′
0,0, c

′′
0,1)

and (c′′
1,0, c

′′
1,1) are uniform subject to their inner product being, respectively,

c′′
0 and c′′

1 , and moreover |c′′
0 |, |c′′

1 | ∈ O(k7)). Hence, the leakage bound in Theo-
rem 3 is satisfied too, as the required leakage is roughly 4k9+2k7+2k2 � k14/12
(neglecting constant and logarithmic terms).

4.3 Security Analysis

For simplicity, let us define Tm0,m1(λ, b, q) ≡ TamperΠ,A
m0,m1

(λ, b, q). We need to
show that for all messages m0,m1 ∈ {0, 1}k and for all PPT adversaries A asking
q(λ) ∈ poly(λ) tampering queries, there exists a negligible function ν : N → [0, 1]
such that for all PPT distinguishers D:

|P [D(Tm0,m1(λ, 0, q)) = 1] − P [D(Tm0,m1(λ, 1, q)) = 1]| ≤ ν(λ).

Message Uniqueness. We start by showing that our code meets perfect mes-
sage uniqueness.

Lemma 1. The code of Fig. 1 satisfies perfect message uniqueness.

Proof. Since our code is symmetric, it suffices to prove message uniqueness for
the case β = 0. Assume there exist values (c0, c1, c̄1) such that both (c0, c1) and
(c0, c̄1) are valid codewords satisfying

Dec(c0, c1) = m0 �= m1 = Dec(c0, c̄1).

Write c0 = (γ, c′
0), c1 = (γ, c′

1), and c̄1 = (γ̄, c̄′
1). By the fact that (c0, c̄1) is

valid, it follows that γ̄ = γ. Let s0 := m0||r0 = Dec′(c′
0, c

′
1) and s1 := m1||r1 =

Dec′(c′
0, c̄

′
1) be obtained, respectively, by decoding (c′

0, c
′
1) and (c′

0, c̄
′
1). Note that

both s0 and s1 are different from ⊥, as (c0, c1) and (c0, c̄1) are valid codewords.
We conclude that

Commit(m0; r0) = γ = Commit(m1; r1)

with m0 �= m1, which contradicts the fact that Commit is perfectly binding.

First Hybrid Step. Consider the hybrid experiment Hm0,m1(λ, b, q) that is
identical to Tm0,m1(λ, b, q), except that we let the auxiliary code (Enc′,Dec′)
encode a random string s′ ∈ {0, 1}k+ρ (instead of the string m||r). The experi-
ment is described formally in Fig. 2.

We will now prove that, as long as the number of tampering queries is polyno-
mial, the above hybrid experiment is statistically close to the original experiment.
The proof is by induction on the number of tampering queries q(λ) ∈ poly(λ).
The lemma below constitutes the induction basis.

Continuously Non-Malleable Codes in the Split-State Model 631

Hybrid Hm0,m1(λ, b, q):

The experiment is parameterized by messages m0, m1 ∈ {0, 1}k, security parameter
λ ∈ N, a secret bit b ∈ {0, 1}, and the number of tampering queries q(λ) ∈ poly(λ). It
proceeds as follows:

– It first computes γ := Commit(mb; r), for random coins r ←$ {0, 1}ρ, and then it
sets (c′

0, c
′
1) ←$ Enc′(s′) for random s′ ←$ {0, 1}k+ρ.

– The target encoding is defined to be (c0, c1) := ((γ, c′
0), (γ, c′

1).
– Upon input the i-th tampering query (φ(i)

0 , φ
(i)
1), let (c̃0, c̃1) = (φ(i)

0 (c0), φ
(i)
1 (c1))

be such that c̃0 := (γ̃0, c̃
′
0) and c̃1 := (γ̃1, c̃

′
1). Thus:

(a) If γ̃0 �= γ̃1, return ⊥; else let γ̃ = γ̃0 = γ̃1 and run s̃ = Dec′(c̃′
0, c̃

′
1).

(b) If s̃ = ⊥, return ⊥.
(c) If s̃ = s′ return same∗ in case γ̃ = γ, and ⊥ otherwise.
(d) Else, parse s̃ := m̃||r̃. If γ̃ �= Commit(m̃; r̃), return ⊥; otherwise, return same∗

if m̃ ∈ {m0, m1}, and else return m̃.

Fig. 2. Hybrid experiment in the proof of Theorem 3.

Lemma 2. For all messages m0,m1 ∈ {0, 1}k, for all values b ∈ {0, 1}, and for
all unbounded adversaries A, we have that

{Tm0,m1(λ, b, 1)}λ∈N ≈s {Hm0,m1(λ, b, 1)}λ∈N.

Proof. We show the proof for the case b = 0, the proof for the other case being
analogous. Assume that there exist a pair of messages m0,m1 ∈ {0, 1}k, an
unbounded adversary A, an unbounded distinguisher D, and a polynomial p(·)
such that, for infinitely many values of λ ∈ N, we have

|P [D(Tm0,m1(λ, 0, 1)) = 1] − P [D(Hm0,m1(λ, 0, 1)) = 1]| ≥ 1/p(λ).

Note that the probabilities in the above equation are taken over the random
coin tosses of (A,D), over the choice of r ←$ {0, 1}ρ and s′ ←$ {0, 1}k+ρ, and
over the randomness of algorithm Enc′. By an averaging argument, this means
that there must exist at least two values r ∈ {0, 1}ρ and s′ ∈ {0, 1}k+ρ such that
the above equation holds when we fix these particular values of r and s′. We
build an unbounded adversary A′ and an unbounded distinguisher D′ such that

∣
∣
∣P

[
D′(T′

s′
0,s′

1
(λ, 0, 1)) = 1

]
− P

[
D′(T′

s′
0,s′

1
(λ, 1, 1)) = 1

]∣
∣
∣ ≥ 1/p(λ) − ν(λ),

where s′
0 := m0||r and s′

1 := s′, ν(λ) ∈ negl(λ) is a negligible function, and
where we wrote T′

s′
0,s′

1
(λ, b, 1) as a shorthand for TamperΠ′,A′

s′
0,s′

1
(λ, b, 1). This will

contradict the one-time unconditional non-malleability of (Enc′,Dec′), and thus
will conclude the proof of the lemma.

Let c′ := (c′
0, c

′
1) be the target encoding in the tampering experiment relative

to (Enc′,Dec′). Here, c′ is either an encoding of s′
0 or an encoding of s′

1. Adversary
A′, on input (1λ,m0, s

′
0, s

′
1), proceeds as follows:

632 R. Ostrovsky et al.

– Parse s′
0 := m0||r and compute γ := Commit(m0; r).

– Run A(1λ), obtaining a pair of polynomial-time computable functions
(φ0, φ1), where φ0, φ1 : {0, 1}n′+� → {0, 1}n′+�.

– Define the polynomial-time computable leakage function ψ′
0 (resp. ψ′

1) that
hardwires γ and φ0 (resp. φ1), and, upon input c′

0 (resp. c′
1) returns the value

γ̃0 (resp. γ̃1) defined by φ0(γ, c′
0) := (γ̃0, c̃′

0) (resp. φ1(γ, c′
1) := (γ̃1, c̃′

1)).
– Forward ψ′

0 to O�(c′
0) and ψ′

1 to O�(c′
1), obtaining values γ̃0, γ̃1.

– Define the polynomial-time computable tampering function φ′
0 (resp. φ′

1) that
hardwires γ and φ0 (resp. φ1), and, upon input c′

0 (resp. c′
1), returns the value

c̃′
0 (resp. c̃′

1) defined by φ′
0(γ, c′

0) := (γ̃0, c̃′
0) (resp. φ′

1(γ, c′
1) := (γ̃1, c̃′

1)).
– Forward (φ0, φ1) to Os′

0,s′
1

cnm , obtaining a value s̃ ∈ {0, 1}k ∪ {⊥, same∗}.

Notice that attacker A′ asks a single (split-state) leakage query yielding exactly
2
 bits, and a single (split-state) tampering query, as required. Distinguisher D′,
upon input (1λ,m0,m1, r, s

′), and upon receiving a pair (γ̃0, γ̃1) in response of
A’s leakage query, and a value s̃ ∈ {0, 1}k+ρ ∪ {same∗,⊥} in response of A’s
tampering query, proceeds as follows.

– If s̃ = ⊥, return D(⊥).
– If s̃ = same∗:

• In case γ̃0 = γ̃1 = Commit(m0; r), return D(same∗);
• Else return D(⊥).

– If s̃ �∈ {same∗,⊥}:
• Parse s̃ := m̃||r̃;
• In case γ̃0 �= Commit(m̃; r̃) or γ̃1 �= Commit(m̃; r̃), return D(⊥);
• In case m̃ ∈ {m0,m1} return D(same∗);
• Else return D(m̃).

For the analysis, we next prove that the simulation performed by (A′,D′) is
perfect with overwhelming probability. First, depending on the target encoding
(c′

0, c
′
1) being either an encoding of s′

0 or an encoding of s′
1, the view of A’s

tampering functions is identical to the distribution of the target codeword in
either experiment Tm0,m1(λ, 0, 1) or Hm0,m1(λ, 0, 1), with our fixed choice of r
and s′. Second, the view of D is simulated correctly, with all but a negligible
probability. Indeed:

– If (c̃′
0, c̃

′
1) yields ⊥, both Tm0,m1(λ, 0, 1) and Hm0,m1(λ, 0, 1) would return ⊥,

which is perfectly emulated by the reduction.
– If (c̃′

0, c̃
′
1) yields same∗, it means that the inner codeword decodes to either

s′
0 = m0||r or to s′

1 = s′ := m′||r′. Without loss of generality, assume further
that the commitments in the tampered share satisfy γ̃0 = γ̃1 := γ̃. (In fact, if
this is not the case, both experiments return ⊥, which is once again perfectly
emulated by the reduction.) There are 4 possible cases: either both experi-
ments output s′

0, or both experiments output s′
1, or one experiment outputs

s′
0 while the other outputs s′

1. However, since the view in the real experiment
is independent of the value m′, we can condition on the event that the real
experiment does not output s′. Thus, there are only two cases to consider:

Continuously Non-Malleable Codes in the Split-State Model 633

(i) Experiment Tm0,m1(λ, 0, 1) and Hm0,m1(λ, 0, 1) both return s′
0 = m0||r.

(ii) Experiment Tm0,m1(λ, 0, 1) returns s′
0 = m0||r, but Hm0,m1(λ, 0, 1)

returns s′
1 = m′||r′.

In both cases, the output of experiments Tm0,m1(λ, 0, 1) and Hm0,m1(λ, 0, 1)
is equal to same∗ if γ̃ = γ, and else both experiments return ⊥. This is exactly
what the reduction does. So, depending on the target codeword being either
an encoding of s′

0 or an encoding of s′
1, the reduction simulates, except with

negligible probability 2−k, the outcome of either experiment Tm0,m1(λ, 0, 1)
or Hm0,m1(λ, 0, 1).

– If (c̃′
0, c̃

′
1) yields some value s̃ = m̃||r̃ �∈ {same∗,⊥}, it means in particu-

lar that s̃ �∈ {s′
0, s

′
1}. In such a case both experiments Tm0,m1(λ, 0, 1) and

Hm0,m1(λ, 0, 1) would return ⊥ in case the modified commitments γ̃0, γ̃1 do
not match the opening m̃, r̃. Otherwise, it means that the modified codeword
produced by A leads to a valid encoding of some message m̃ ∈ {0, 1}k. Hence,
the output of both experiments would either be same∗ or m̃ (depending on
m̃ being equal to one of the two messages m0,m1 or not).

To summarize, depending on the target encoding (c′
0, c

′
1) being either an

encoding of s′
0 := m0||r or an encoding of s′

1 := s′, the view of (A,D) is
identical, except with negligible probability, to the view in either experiment
Tm0,m1(λ, 0, 1) or Hm0,m1(λ, 0, 1), for our fixed choice of r and s′. Thus, the
advantage of (A′,D′) is negligibly close to that of (A,D). This concludes the
proof of the lemma.

The next lemma constitutes the inductive step. The proof appears in the full
version.

Lemma 3. Assume that for all messages m0,m1 ∈ {0, 1}k, for all b ∈ {0, 1},
and for all unbounded adversaries A, it holds that

{Tm0,m1(λ, b, i)}λ∈N ≈s {Hm0,m1(λ, b, i)}λ∈N,

where i ∈ [q − 1] and q ∈ poly(λ). Then, for all messages m0,m1 ∈ {0, 1}k, for
all b ∈ {0, 1}, and for all unbounded adversaries A, we have that

{Tm0,m1(λ, b, i + 1)}λ∈N ≈s {Hm0,m1(λ, b, i + 1)}λ∈N,

By combining Lemma 2 and Lemma 3, we have shown that the hybrid experi-
ment of Fig. 2 is statistically indistinguishable from the original tampering exper-
iment:

Lemma 4. For all messages m0,m1 ∈ {0, 1}k, for all values b ∈ {0, 1}, for all
q(λ) ∈ poly(λ), and for all unbounded adversaries A, we have that

{Tm0,m1(λ, b, q)}λ∈N ≈s {Hm0,m1(λ, b, q)}λ∈N.

Second Hybrid Step. Finally, we show that the view in experiment Hm0,m1(λ,
b, q) is (computationally) independent of the hidden bit b ∈ {0, 1}. The proof
appears in the full version.

634 R. Ostrovsky et al.

Lemma 5. For all messages m0,m1 ∈ {0, 1}k, for all q(λ) ∈ poly(λ), and for
all PPT adversaries A, we have that

{Hm0,m1(λ, 0, q)}λ∈N ≈c {Hm0,m1(λ, 1, q)}λ∈N.

Putting it Together. By combining Lemma 4 and Lemma 5, we obtain that
for all m0,m1 ∈ {0, 1}k, for all q(λ) ∈ poly(λ), and for all PPT adversaries A:

{Tm0,m1(λ, 0, q)}λ∈N
≈s {Hm0,m1(λ, 0, q)}λ∈N

≈c {Hm0,m1(λ, 1, q)}λ∈N
≈s {Tm0,m1(λ, 1, q)}λ∈N

,

which concludes the proof of the theorem.

5 Uniqueness �⇒ Continuous Non-Malleability

As mentioned earlier, the property of message uniqueness is necessary for con-
structing continuously non-malleable codes in the split-state model. It is a natu-
ral question whether message uniqueness is also sufficient, namely any split-state
code that satisfies message uniqueness and one-time non-malleability is also con-
tinuously non-malleable.

Here, we give a negative answer to the above question, by exhibiting a
contrived split-state code that satisfies both message uniqueness and one-time
non-malleability, but can be broken with a simple continuous attack. The con-
structed code makes black-box use of any split-state code satisfying both (per-
fect) message uniqueness and computational one-time non-malleability (as, e.g.,
our encoding scheme from Sect. 4). Our counter-example is “tight”, in the sense
that the attack breaking continuous non-malleability requires only two tamper-
ing queries.

The code. Consider the following split-state (k, 4n+2k)-code Π∗ = (Enc∗,Dec∗),
based on an auxiliary split-state (k, n)-code Π = (Enc,Dec). The properties we
require from each building block are directly stated in Theorem 4 below.

Encoding: Upon input a value m ∈ {0, 1}k, sample a random string
κ ←$ {0, 1}k, compute δ := m ⊕ κ, and return the codeword

c∗ = (c∗
0, c

∗
1) := ((c10, c

2
0, δ), (c

1
1, c

2
1, δ)), (2)

where (c10, c
1
1) ←$ Enc(m) and (c20, c

2
1) ←$ Enc(κ).

Decoding: Upon input a codeword c∗ ∈ {0, 1}4n+2k, parse c∗ := (c∗
0, c

∗
1) as

defined in Eq. (2) and return the same as Dec(c10, c
1
1).

Note that the decoding process simply decodes the first encoding (c10, c
1
1)

contained in c∗, completely ignoring the rest of the codeword.

Continuously Non-Malleable Codes in the Split-State Model 635

Theorem 4 (Theorem 2, restated). Assume that Π = (Enc,Dec) is a
split-state (k, n)-code satisfying (perfect) message uniqueness and (computa-
tional) one-time non-malleability. Then the encoding scheme Π∗ = (Enc∗,Dec∗)
described above is a split-state (k, 4n+2k)-code meeting the following conditions:

(i) Π∗ satisfies (perfect) message uniqueness;
(ii) Π∗ satisfies (computational) one-time non-malleability;
(iii) Π∗ is not 2-non-malleable.

Proof overview. Before coming to the proof, let us discuss some intuition. The
proof of Theorem 4 can be found in the full version. Here, we give the main
intuition. The proof of property (i) follows almost directly by message uniqueness
of Π. As for the proof of property (iii), it is sufficient to consider the tampering
function that simply swaps c10 with c20 and c11 with c21. Note that the decoded
message corresponding to such a query is equal to the value κ; hence, we can
hard-wire κ in the second tampering query which allows to unmask the message
computing m = δ ⊕ κ and thus encode a related value.

To prove property (ii) we consider two hybrid experiments H∗
1 and H∗

2, and
show that T∗

0 ≈c H∗
1 ≈c H∗

2 ≈c T∗
1 where T∗

b denotes the random variable
corresponding to the non-malleability experiment with Π∗ using hidden bit b ∈
{0, 1}. Here, the difference between T∗

0 and H∗
1 is that in the latter we replace

the codeword (c10, c
1
1) with an encoding of m1 (instead of m0); in H∗

2, instead, we
change the distribution of δ to δ := m1 ⊕ κ and additionally we now let (c20, c

2
1)

be an encoding of κ′ := κ ⊕ m0 ⊕ m1. To argue the indistinguishability of the
hybrids, we then proceed as follows:

– In a first step we show that T∗
0 ≈c H∗

1, down to the non-malleability of the
underlying encoding scheme Π. The reduction has access to a target codeword
c1 = (c10, c

1
1) that is either an encoding of m0 or an encoding of m1, and, given

m0, it can perfectly simulate the distribution of a target codeword for either
experiment T∗

0 or H∗
1 inside the tampering oracle Om0,m1

cnm (c1, ·). To do so,
the reduction can sample offline a random κ, define δ = m0 ⊕ κ, and set
c2 := (c20, c

2
1) to be an encoding of κ.

Notice that the reduction gets to see the output of the decoding corresponding
to the modified pair (c̃10, c̃

1
1), which is a perfect simulation for the output of

either experiment T∗
0 or H∗

1.
– In a second step we show that H∗

1 ≡ H∗
2; this is because if κ is random so is

κ′, and moreover κ′ ⊕ m0 = m1 ⊕ κ; thus the two distributions are identical.
– In a third step we show that H∗

2 ≈c T∗
1, down to the non-malleability of

the underlying encoding scheme Π. The reduction has access to a target
codeword c2 = (c20, c

2
1) that is either an encoding of κ′ := κ ⊕ m0 ⊕ m1 or

an encoding of κ, and, as before, it can perfectly simulate the distribution
of the target codeword in either experiment H∗

2 or T∗
1 inside the tampering

oracle Oκ,κ′
cnm(c2, ·). After computing the codeword ((c̃10, c̃

2
0, δ̃0), (c̃

1
1, c̃

2
1, δ̃1)), the

tampering function defined by the reduction swaps c̃10 with c̃20 and c̃11 with c̃21;
this way it obtains the decoding of (c̃10, c̃

1
1), which is what one needs in order

to simulate the output of the two experiments.

636 R. Ostrovsky et al.

An additional difficulty is that the experiment in which the reduction runs
is parameterized by messages (κ, κ′), whereas the emulated experiments H∗

2

or T∗
1 are parameterized by (m0,m1). This means, for instance, that if the

reduction obtains same∗ it cannot directly conclude that the simulated output
should also be same∗, but it needs to carefully adjust the received output in
order to make the simulation go through.

6 Conclusion and Open Problems

We have shown a construction of a split-state continuously non-malleable code in
the plain model. Our construction can be instantiated under the assumption that
one-to-one one-way functions exist. Additionally, we have clarified that message
uniqueness, albeit being necessary for obtaining continuous non-malleability in
the split-state model, is not sufficient for constructing such codes.

Interesting open questions related to our work are, for instance, whether con-
tinuous non-malleability can be achieved, under minimal assumptions, together
with additional properties, such as strong non-malleability [27], super-non-
malleability [32], augmented non-malleability [2], and locality [13,21,22], or
whether the rate of our code construction can be improved.

References

1. Aggarwal, D.: Affine-evasive sets modulo a prime. Inf. Process. Lett. 115(2), 382–
385 (2015)

2. Aggarwal, D., Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran, M.:
Optimal computational split-state non-malleable codes. In: Kushilevitz, E., Malkin,
T. (eds.) TCC 2016. LNCS, vol. 9563, pp. 393–417. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49099-0 15

3. Aggarwal, D., Dodis, Y., Kazana, T., Obremski, M.: Non-malleable reductions and
applications. In: ACM STOC, pp. 459–468 (2015)

4. Aggarwal, D., Dodis, Y., Lovett, S.: Non-malleable codes from additive combina-
torics. In: ACM STOC, pp. 774–783 (2014)

5. Aggarwal, D., Dottling, N., Nielsen, J.B., Obremski, M., Purwanto, E.: Continuous
non-malleable codes in the 8-split-state model. Cryptology ePrint Archive, Report
2017/357 (2017). https://eprint.iacr.org/2017/357

6. Aggarwal, D., Dziembowski, S., Kazana, T., Obremski, M.: Leakage-resilient non-
malleable codes. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp.
398–426. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46494-
6 17

7. Aggarwal, D., Kazana, T., Obremski, M.: Inception makes non-malleable codes
stronger. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10678, pp. 319–
343. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70503-3 10

8. Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran, M.: Explicit non-
malleable codes against bit-wise tampering and permutations. In: Gennaro, R.,
Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 538–557. Springer, Hei-
delberg (2015). https://doi.org/10.1007/978-3-662-47989-6 26

https://doi.org/10.1007/978-3-662-49099-0_15
https://eprint.iacr.org/2017/357
https://doi.org/10.1007/978-3-662-46494-6_17
https://doi.org/10.1007/978-3-662-46494-6_17
https://doi.org/10.1007/978-3-319-70503-3_10
https://doi.org/10.1007/978-3-662-47989-6_26

Continuously Non-Malleable Codes in the Split-State Model 637

9. Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran, M.: A rate-
optimizing compiler for non-malleable codes against bit-wise tampering and per-
mutations. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp.
375–397. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46494-
6 16

10. Ball, M., Dachman-Soled, D., Kulkarni, M., Malkin, T.: Non-malleable codes for
bounded depth, bounded fan-in circuits. In: Fischlin, M., Coron, J.-S. (eds.) EURO-
CRYPT 2016. LNCS, vol. 9666, pp. 881–908. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49896-5 31

11. Ball, M., Dachman-Soled, D., Kulkarni, M., Malkin, T.: Non-malleable codes from
average-case hardness: AC0, decision trees, and streaming space-bounded tamper-
ing. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp.
618–650. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7 20

12. Chandran, N., Goyal, V., Mukherjee, P., Pandey, O., Upadhyay, J.: Block-wise
non-malleable codes. In: ICALP, pp. 31:1–31:14 (2016)

13. Chandran, N., Kanukurthi, B., Raghuraman, S.: Information-theoretic local non-
malleable codes and their applications. In: Kushilevitz, E., Malkin, T. (eds.) TCC
2016. LNCS, vol. 9563, pp. 367–392. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49099-0 14

14. Chattopadhyay, E., Goyal, V., Li, X.: Non-malleable extractors and codes, with
their many tampered extensions. In: ACM STOC, pp. 285–298 (2016)

15. Chattopadhyay, E., Li, X.: Non-malleable codes and extractors for small-depth
circuits, and affine functions. In: ACM STOC, pp. 1171–1184 (2017)

16. Chattopadhyay, E., Zuckerman, D.: Non-malleable codes against constant split-
state tampering. In: IEEE FOCS, pp. 306–315 (2014)

17. Cheraghchi, M., Guruswami, V.: Capacity of non-malleable codes. In: Innovations
in Theoretical Computer Science, pp. 155–168 (2014)

18. Cheraghchi, M., Guruswami, V.: Non-malleable coding against bit-wise and split-
state tampering. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 440–464.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8 19

19. Coretti, S., Dodis, Y., Tackmann, B., Venturi, D.: Non-malleable encryption: sim-
pler, shorter, stronger. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS,
vol. 9562, pp. 306–335. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-49096-9 13

20. Coretti, S., Maurer, U., Tackmann, B., Venturi, D.: From single-bit to multi-bit
public-key encryption via non-malleable codes. In: Dodis, Y., Nielsen, J.B. (eds.)
TCC 2015. LNCS, vol. 9014, pp. 532–560. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46494-6 22

21. Dachman-Soled, D., Kulkarni, M., Shahverdi, A.: Tight upper and lower bounds for
leakage-resilient, locally decodable and updatable non-malleable codes. In: Fehr,
S. (ed.) PKC 2017. LNCS, vol. 10174, pp. 310–332. Springer, Heidelberg (2017).
https://doi.org/10.1007/978-3-662-54365-8 13

22. Dachman-Soled, D., Liu, F.-H., Shi, E., Zhou, H.-S.: Locally decodable and updat-
able non-malleable codes and their applications. In: Dodis, Y., Nielsen, J.B. (eds.)
TCC 2015. LNCS, vol. 9014, pp. 427–450. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46494-6 18

23. Dav̀ı, F., Dziembowski, S., Venturi, D.: Leakage-resilient storage. In: Garay, J.A.,
De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 121–137. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-15317-4 9

24. Dodis, Y., Lewko, A.B., Waters, B., Wichs, D.: Storing secrets on continually leaky
devices. In: IEEE FOCS, pp. 688–697 (2011)

https://doi.org/10.1007/978-3-662-46494-6_16
https://doi.org/10.1007/978-3-662-46494-6_16
https://doi.org/10.1007/978-3-662-49896-5_31
https://doi.org/10.1007/978-3-662-49896-5_31
https://doi.org/10.1007/978-3-319-78372-7_20
https://doi.org/10.1007/978-3-662-49099-0_14
https://doi.org/10.1007/978-3-662-49099-0_14
https://doi.org/10.1007/978-3-642-54242-8_19
https://doi.org/10.1007/978-3-662-49096-9_13
https://doi.org/10.1007/978-3-662-49096-9_13
https://doi.org/10.1007/978-3-662-46494-6_22
https://doi.org/10.1007/978-3-662-46494-6_22
https://doi.org/10.1007/978-3-662-54365-8_13
https://doi.org/10.1007/978-3-662-46494-6_18
https://doi.org/10.1007/978-3-662-46494-6_18
https://doi.org/10.1007/978-3-642-15317-4_9

638 R. Ostrovsky et al.

25. Dziembowski, S., Kazana, T., Obremski, M.: Non-malleable codes from two-source
extractors. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp.
239–257. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-
1 14

26. Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography. In: IEEE FOCS,
pp. 293–302 (2008)

27. Dziembowski, S., Pietrzak, K., Wichs, D.: Non-malleable codes. In: Innovations in
Computer Science, pp. 434–452 (2010)

28. Faonio, A., Nielsen, J.B., Simkin, M., Venturi, D.: Continuously non-malleable
codes with split-state refresh. In: Preneel, B., Vercauteren, F. (eds.) ACNS 2018.
LNCS, vol. 10892, pp. 1–19. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-93387-0 7

29. Faust, S., Hostáková, K., Mukherjee, P., Venturi, D.: Non-malleable codes for
space-bounded tampering. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS,
vol. 10402, pp. 95–126. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63715-0 4

30. Faust, S., Mukherjee, P., Nielsen, J.B., Venturi, D.: Continuous non-malleable
codes. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 465–488. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8 20

31. Faust, S., Mukherjee, P., Nielsen, J.B., Venturi, D.: A tamper and leakage resilient
von neumann architecture. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 579–
603. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2 26

32. Faust, S., Mukherjee, P., Venturi, D., Wichs, D.: Efficient non-malleable codes and
key-derivation for poly-size tampering circuits. In: Nguyen, P.Q., Oswald, E. (eds.)
EUROCRYPT 2014. LNCS, vol. 8441, pp. 111–128. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-642-55220-5 7

33. Gennaro, R., Lysyanskaya, A., Malkin, T., Micali, S., Rabin, T.: Algorithmic
tamper-proof (ATP) security: theoretical foundations for security against hard-
ware tampering. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 258–277.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24638-1 15

34. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity
for all languages in NP have zero-knowledge proof systems. J. ACM 38(3), 691–729
(1991)

35. Goyal, V., Pandey, O., Richelson, S.: Textbook non-malleable commitments. In:
ACM STOC, pp. 1128–1141 (2016)

36. Jafargholi, Z., Wichs, D.: Tamper detection and continuous non-malleable codes.
In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp. 451–480.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46494-6 19

37. Li, X.: Improved non-malleable extractors, non-malleable codes and independent
source extractors. In: ACM STOC, pp. 1144–1156 (2017)

38. Liu, F.-H., Lysyanskaya, A.: Tamper and leakage resilience in the split-state model.
In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 517–
532. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5 30

39. Mahmoody, M., Pass, R.: The curious case of non-interactive commitments – on
the power of black-box vs. non-black-box use of primitives. In: Safavi-Naini, R.,
Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 701–718. Springer, Hei-
delberg (2012). https://doi.org/10.1007/978-3-642-32009-5 41

40. Matsuda, T., Hanaoka, G.: An asymptotically optimal method for converting bit
encryption to multi-bit encryption. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT
2015. LNCS, vol. 9452, pp. 415–442. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-48797-6 18

https://doi.org/10.1007/978-3-642-40084-1_14
https://doi.org/10.1007/978-3-642-40084-1_14
https://doi.org/10.1007/978-3-319-93387-0_7
https://doi.org/10.1007/978-3-319-93387-0_7
https://doi.org/10.1007/978-3-319-63715-0_4
https://doi.org/10.1007/978-3-319-63715-0_4
https://doi.org/10.1007/978-3-642-54242-8_20
https://doi.org/10.1007/978-3-662-46447-2_26
https://doi.org/10.1007/978-3-642-55220-5_7
https://doi.org/10.1007/978-3-540-24638-1_15
https://doi.org/10.1007/978-3-662-46494-6_19
https://doi.org/10.1007/978-3-642-32009-5_30
https://doi.org/10.1007/978-3-642-32009-5_41
https://doi.org/10.1007/978-3-662-48797-6_18
https://doi.org/10.1007/978-3-662-48797-6_18

Continuously Non-Malleable Codes in the Split-State Model 639

41. Pandey, O., Pass, R., Vaikuntanathan, V.: Adaptive one-way functions and appli-
cations. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 57–74. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5 4

42. Pass, R.: Unprovable security of perfect NIZK and non-interactive non-malleable
commitments. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 334–354.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2 19

43. Pass, R., Rosen, A.: Concurrent non-malleable commitments. In: IEEE FOCS, pp.
563–572 (2005)

44. Pass, R., Rosen, A.: Concurrent nonmalleable commitments. SIAM J. Comput.
37(6), 1891–1925 (2008)

45. Pass, R., Rosen, A.: New and improved constructions of nonmalleable crypto-
graphic protocols. SIAM J. Comput. 38(2), 702–752 (2008)

46. Richardson, R., Kilian, J.: On the concurrent composition of zero-knowledge proofs.
In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 415–431. Springer,
Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 29

https://doi.org/10.1007/978-3-540-85174-5_4
https://doi.org/10.1007/978-3-642-36594-2_19
https://doi.org/10.1007/3-540-48910-X_29

Zero Knowledge

Non-Interactive Zero-Knowledge Proofs
for Composite Statements

Shashank Agrawal1(B), Chaya Ganesh2, and Payman Mohassel1

1 Visa Research, Palo Alto, USA
{shaagraw,pmohasse}@visa.com

2 Aarhus University, Aarhus, Denmark
ganesh@cs.au.dk

Abstract. The two most common ways to design non-interactive zero-
knowledge (NIZK) proofs are based on Sigma protocols and QAP-based
SNARKs. The former is highly efficient for proving algebraic statements
while the latter is superior for arithmetic representations.

Motivated by applications such as privacy-preserving credentials
and privacy-preserving audits in cryptocurrencies, we study the design
of NIZKs for composite statements that compose algebraic and arith-
metic statements in arbitrary ways. Specifically, we provide a framework
for proving statements that consist of ANDs, ORs and function com-
positions of a mix of algebraic and arithmetic components. This allows
us to explore the full spectrum of trade-offs between proof size, prover
cost, and CRS size/generation cost. This leads to proofs for statements
of the form: knowledge of x such that SHA(gx) = y for some public y
where the prover’s work is 500 times fewer exponentiations compared to
a QAP-based SNARK at the cost of increasing the proof size to 2404
group and field elements. In application to anonymous credentials, our
techniques result in 8 times fewer exponentiations for the prover at the
cost of increasing the proof size to 298 elements.

1 Introduction

Zero-knowledge proofs provide the ability to convince a verifier that a statement
is true without revealing the secrets involved. Since their conception in the mid
1980s, zero-knowledge proofs have emerged as a fundamental object in modern
cryptography, with connections to the theory of computation [7,36,41,61]. Zero-
knowledge proofs (ZKPs) have found numerous applications as a building block
in other cryptographic constructions such as identification schemes [32], group
signature schemes [19], public-key encryption [55], anonymous credentials [17],
voting [23], and secure multi-party computation [42]. Most recently, ZKPs have
been used as a core component in digital cryptocurrencies such as ZCash and
Monero to make the transactions private and anonymous [8,56].

Zero-knowledge proofs exist for all languages in NP [41], but not all such
constructions are efficiently implementable. Indeed, a large body of work has

C. Ganesh—Work done as an intern at Visa Research.

c© International Association for Cryptologic Research 2018
H. Shacham and A. Boldyreva (Eds.): CRYPTO 2018, LNCS 10993, pp. 643–673, 2018.
https://doi.org/10.1007/978-3-319-96878-0_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96878-0_22&domain=pdf

644 S. Agrawal et al.

been devoted to the design and implementation of efficient ZKPs for a variety
of statements. In case of Non-Interactive Zero-Knowledge (NIZK) proofs, which
is the focus of this paper, the most practical approaches are based on (i) Sigma
protocols (with the Fiat-Shamir transform), (ii) zk-SNARKs and (iii) “MPC-in-
the-head” techniques, each with their own efficiency properties, advantages and
shortcomings. While the MPC-in-the-head technique [48] has led to (Boolean)
circuit-friendly NIZKs [6,20,40], this line of work produces large proofs. In this
paper we focus on Sigma protocols and zk-SNARKs, and elaborate on these
next.

Sigma Protocols. Many of the statements we prove in cryptographic construc-
tions are efficiently representable as algebraic functions over some group G, such
as an elliptic-curve group where the discrete-logarithm problem is hard. For
example, Alice may want to convince Bob that she knows an x such that gx = y
for publicly known values g, y ∈ G (knowledge of discrete log), or she may like
to show that x lies between two public integers a and b (range proof).

Sigma protocol-based ZKPs are extremely efficient for such statements. They
yield short proof sizes, require a constant number of public-key operations, and
do not impose trusted common reference string (CRS) generation [26,38,45,46,
59,60]. Moreover, they can be made non-interactive, i.e. only a single message
from prover to verifier, using the efficient Fiat-Shamir transformation [34].

While Sigma protocols are efficient for algebraic statements, they are sig-
nificantly slower when it comes to non-algebraic ones. Consider a cryptographic
hash function or a block cipher represented by a Boolean or arithmetic circuit C,
and suppose Alice wants to show that she knows an input x such that C(x) = y
for some public y. Alice can treat each gate of C as an algebraic function and
provide a proof that the input and output wires of each gate satisfy the asso-
ciated algebraic relation, to show that she indeed knows x, but this would be
prohibitively expensive. In particular, both the proving/verification time and the
proof size would grow linearly with the size of circuit which in case of hash func-
tions and block-ciphers can be tens of thousands of exponentiations and group
elements.

zk-SNARKS. There has been a series of works on constructing zero-knowledge
Succinct Non-interactive ARguments of Knowledge (zk-SNARKs) [9,10,12,39,
44,51,52,57]. Starting with the construction of Kilian [50] based on probabilis-
tically checkable proofs (PCPs), made non-interactive by Micali [53], there has
been further works [11,29,43] that construct succinct arguments by remov-
ing interaction in Kilian’s PCP-based protocol. Despite these advances, PCPs
remain concretely expensive and current implementations along this line are not
yet efficient. A more effective approach for proving statements about functions
represented as Boolean or arithmetic circuits is based on Quadratic Arithmetic
Programs (QAPs) [39] and throughout the paper, we will be concerned with
QAP-based zk-SNARK proofs. Such proofs are very short and have fast veri-
fication time. More precisely, the proofs have constant size and can be verified
in time that is linear in the length of the input x, rather than the length of

Non-Interactive Zero-Knowledge Proofs for Composite Statements 645

the circuit C. Thus, zk-SNARKs are better suited for proving statements about
hash functions or block ciphers than (non-interactive) Sigma protocols.

In principle, zk-SNARKs could also be used to prove algebraic statements,
such as knowledge of discrete-log in a cyclic group by representing the expo-
nentiation circuit as a QAP. The circuit for computing a single exponentiation
is in the order of thousands or millions of gates depending on the group size.
In zk-SNARKs based on QAP, the prover cost is linear in the size of circuit
and an honestly generated common reference string (CRS) is needed, whose size
also grows proportional to the circuit size. This makes them extremely ineffi-
cient for algebraic statements. In contrast, Sigma protocols can be used to prove
knowledge of discrete-log with a constant number of exponentiations.

Another disadvantage of zk-SNARKs is that the CRS is generated with
respect to a particular circuit C and, in the most efficient instantiations, needs
to be regenerated when proving a new statement represented with a different cir-
cuit C ′. This is not desirable since in current applications such as ZCash, where
CRS is generated using an expensive secure multi-party computation (MPC)
protocol in order to guarantee soundness of the proof system [4]. In contrast,
Sigma protocols have constant-size untrusted CRSs that can be used to prove
arbitrary statements and can be generated inexpensively (without an MPC).

1.1 Composite Statements and Applications

Composite statements that include multiple algebraic and arithmetic compo-
nents appear in various applications. We discuss three important cases here.

Proof of Solvency. Consider privacy-preserving proofs of solvency for Bitcoin
exchanges [27,62]. Here an exchange wants to prove to its customers that it has
enough reserves to cover its liabilities, or, in simple words, that it is solvent. A
proof of reserves in the Bitcoin network amounts to showing that the exchange
has control over certain Bitcoin addresses. A Bitcoin address is a 160-bit hash
of the public portion of a public/private ECDSA keypair [2], where the public
portion is derived from the private key by doing an exponentiation operation on
the secp256k1 curve [1]1. Thus the exchange wants to show that it knows the pri-
vate keys corresponding to some hashed public keys available on the blockchain.
Furthermore, the proof should not reveal the public keys themselves otherwise
an adversary would be able to track the movement of exchange’s funds.

In particular, the exchange wants to show that it knows a secret x such that
H(gx) = y where H is a hash function such as SHA-256. The statement has
both algebraic (gx) and Boolean (hash function H) parts. One can express the
composite function (exponentiate then hash) as a purely algebraic or Boolean
function and then use a Sigma protocol or zk-SNARK respectively, but, in the
former case, the proof size and verification time will be quite large, while in the

1 Most cryptocurrencies generate public/private keys and define an address in a sim-
ilar manner. Apart from Bitcoin and its fork Bitcoin Cash, Ethereum is another
prominent example.

646 S. Agrawal et al.

latter, the proof generation time will increase substantially and a much larger
CRS is needed. Ideally, one would like to use a Sigma protocol for the algebraic
part and a zk-SNARK for the Boolean part, and then combine the two proofs so
that no extra information about x is revealed (beyond the fact that H(gx) = y).

Thus any proof of solvency for a Bitcoin exchange must deal with a zero-
knowledge proof that combines both Boolean and algebraic statements. Exist-
ing proposals for proofs of solvency get around this problem by assuming (incor-
rectly) that public keys themselves are available on the blockchain so that Sigma
protocols alone suffice [27]. As we will see later, our efficient techniques allow
designing NIZKs for proving knowledge of x given H(gx) that require roughly
500 times fewer exponentiations for the prover compared to proving the same
statement using a QAP-based SNARK.

Privacy-Preserving Credentials. Digital certificates (X.509) are commonly used
to identify entities over the Internet. They include a message m that may contain
various identifying information about a user or a machine, and a digital signa-
ture (by a certificate authority) on the message attesting to its authenticity. The
signature can then be verified by anyone who holds the public verification key.
Typically, certificates reveal the message m and hence the identity of their owner.
Anonymous credentials [22] provide the same authentication guarantees without
revealing the identifying message, and are widely studied due to their strong
privacy guarantees. A main ingredient for making digital certificates anonymous
is a ZKP of knowledge of a message m and a signature σ, where σ is a valid
signature on message m with respect to the verification key vk. The ZKP ensures
that we do not leak any information about m beyond the knowledge of a valid
signature. A large body of work has studied anonymous credentials, but only
a handful of techniques can turn commonly used X.509 certificates into anony-
mous credentials. The main challenge is that the ZKP statement being proven is
a hybrid statement containing both algebraic (RSA or elliptic-curve operations)
and Boolean functions (hashing), since the message is hashed before being alge-
braically signed. The work of Delignat-Lavaud et al. [30] constructs a proof for
such a hybrid statement using only zk-SNARKs which, as discussed earlier, is
inefficient for the algebraic component, while the work of Chase et al. [21] design
such ZKP proofs in the interactive setting where the prover and verifier exchange
multiple messages. Efficient NIZK for composite statements based on both zk-
SNARKs and Sigma protocols would yield more efficient anonymous credential
systems. Using our techniques for RSA signature results in prover’s work that is
about 8 times fewer group exponentiations compared to Cinderella [30].

zk-SNARKs with composable CRSs. Anonymous decentralized digital crypto-
currencies such as ZCash use zk-SNARKs to prove a massive statement contain-
ing many different smaller components. For example, at a high level, one of the
statement being proven in ZCash is of the form: I have knowledge of xi’s such
that H(x1||H(x2|| . . . H(xn))) = y for a large value of n. The CRS generated
for proving this statement is extremely large (about a gigabyte for ZCash [3])
and cannot be reused to prove any other statement. A better alternative is to

Non-Interactive Zero-Knowledge Proofs for Composite Statements 647

generate a much smaller CRS for proving a statement of the form: I have knowl-
edge of x, y such that H(x||H(y)), combined with a technique for composing
many such proofs. More generally, one can envision a general system with CRSs
for small size statements C1, . . . , Cn that enables NIZKs for arbitrary compo-
sition of these statements without having to generate new CRSs for each new
composition. This yields a trade-off between proof size and the CRS size (and
its reusability).

1.2 Contributions

Motivated by the above applications, we study the design of NIZKs for composite
statements that compose algebraic and arithmetic statements in arbitrary ways.
Specifically, we provide new protocols for statements that consist of ANDs, ORs
and function compositions of a mix of algebraic and arithmetic components. In
doing so, our goal is to maintain the invariant that algebraic components are
proven using Sigma protocols, and arithmetic statements using QAP-based zk-
SNARKs. This allows us to explore the full spectrum of trade-offs between proof
size (verification cost), prover cost, and CRS size (and cost of generation) for
composite statements.

More precisely, we propose new NIZKs for proof of knowledge of
x, x1, x2, y1, y2 such that
– f1(x1, f2(x2)) = z,
– f1(x, y1) = z1 AND f2(x, y2) = z2,
– f1(x, y1) = z1 OR f2(x, y2) = z2,

for public values z, z1, z2, and where f1 and f2 can be either algebraic or arith-
metic. Given our NIZKs for these compositions, it is easy to handle arbitrary
composite statements. This is the first work that directly addresses the question
of non-interactive proofs for composite statements and how disparate techniques
can be used to prove them in zero-knowledge efficiently. We note that in this
paper we primarily focus on elliptic curves as our algebraic group, as they are
the most efficient for instantiating both zk-SNARKs and Sigma protocols.

2 Preliminaries

Notation. Throughout the paper, we use κ to denote the security parameter or
level. A function is negligible if for all large enough values of the input, it is
smaller than the inverse of any polynomial. We use negl to denote a negligible
function. We write Xκ ≡ Yκ to mean that distributions Xκ and Yκ are identical.
We use [1, n] to represent the set of numbers {1, 2, . . . , n}. If Alg is a randomized
algorithm, we use y ← Alg(x) to denote that y is the output of Alg on x. We
write x

R← X to mean sampling a value x uniformly from the set X .
We denote an interactive protocol between two parties A and B by 〈A,B〉.

〈A(x),B(y)〉 (z) denotes a protocol where A has input x, B has input y and z is
a common input. Also, viewA denotes the “view” of A in an interaction with B,
which consists of the input to A, its random coins, and the messages sent by B
(viewB is defined in a similar manner).

648 S. Agrawal et al.

Bilinear groups. Let GroupGen be an asymmetric pairing group generator that
on input 1κ, outputs description of three cyclic groups G, ˜G, GT of prime order
p = Θ(2κ) equipped with a non-degenerate efficiently computable bilinear map
e : G × ˜G → GT , and generators g and g̃ for G and ˜G respectively. The discrete
logarithm assumption is said to hold in G relative to GroupGen if for all PPT

algorithms A, Pr[x ← A(G, p, g, h) | (G, ˜G,GT) ← GroupGen;x R← Zp;h := gx] is
negl(κ).

In this paper, we primarily consider elliptic curves as our algebraic group.
Let E be an elliptic curve defined over a field Ft. The set of points on the curve
form a group under the point addition operation, and we denote the group by
E(Ft). For an element P ∈ E(Ft) of prime order p, Px and Py represent the x
and y co-ordinates of the point P respectively. In some constructions, we use
additive notation and write Q = αP for a scalar α ∈ Fp. The discrete logarithm
assumption is believed to hold in well chosen elliptic curve groups where group
elements are represented with O(κ) bits. In our constructions, we use asymmetric
bilinear groups where G �= ˜G, and discrete logarithm is hard in G. We also rely
on q-type assumptions similar to Parno et al. [57] (but in asymmetric groups).

Zero-knowledge Proofs. Let R be an efficiently computable binary relation which
consists of pairs of the form (s, w) where s is a statement and w is a witness.
Let L be the language associated with R, i.e., L = {s | ∃w s.t. R(s, w) = 1}.

A zero-knowledge proof for L lets a prover P convince a verifier V that
s ∈ L for a common input s without revealing w. A proof of knowledge captures
not only the truth of a statement s ∈ L, but also that the prover “possesses”
a witness w to this fact. We are concerned with non-interactive proofs in this
paper where P sends only one message to V , and V decides whether to accept
or not based on its input, the message, and any public parameters. We define
them formally below.

2.1 Non-interactive Zero-knowledge Proofs

Non-interactive zero-knowledge (NIZK) proofs are usually studied in the com-
mon reference string (CRS) model, wherein a string of a special structure is
generated in a setup phase, and made available to everyone to prove/verify
statements.

Definition 2.1 (Non-interactive Zero-knowledge Argument [13,33]). A
NIZK argument for an NP relation R consists of a triple of polynomial time
algorithms (Setup,Prove,Verify) defined as follows.

– Setup(1κ) takes a security parameter κ and outputs a CRS Σ.
– Prove(Σ, s, w) takes as input the CRS Σ, a statement s, and a witness w,

and outputs an argument π.
– Verify(Σ, s, π) takes as input the CRS Σ, a statement s, and a proof π, and

outputs either 1 accepting the argument or 0 rejecting it.

The algorithms above should satisfy the following properties.

Non-Interactive Zero-Knowledge Proofs for Composite Statements 649

1. Completeness. For all κ ∈ N, (s, w) ∈ R,

Pr
(

Verify(Σ, s, π) = 1 :
Σ ← Setup(1κ)

π ← Prove(Σ, s, w)

)

= 1.

2. Computational soundness. For all PPT adversaries A, the following proba-
bility is negligible in κ:

Pr
(

Verify(Σ, s̃, π̃) = 1
∧ s̃ �∈ L

:
Σ ← Setup(1κ)

(s̃, π̃) ← A(1κ, Σ)

)

.

3. Zero-knowledge. There exists a PPT simulator (S1,S2) such that S1 outputs
a simulated CRS Σ and trapdoor τ ; S2 takes as input Σ, a statement s and
τ , and outputs a simulated proof π; and, for all PPT adversaries (A1,A2),
the following probability is negligible in κ:

∣

∣

∣

∣

∣

∣

Pr

⎛

⎝

(s, w) ∈ R ∧
A2(π, st) = 1 :

Σ ← Setup(1κ)
(s, w, st) ← A1(1κ, Σ)
π ← Prove(Σ, s, w)

⎞

⎠

−Pr

⎛

⎝

(s, w) ∈ R ∧
A2(π, st) = 1 :

(Σ, τ) ← S1(1κ)
(s, w, st) ← A1(1κ, Σ)

π ← S2(Σ, τ, s)

⎞

⎠

∣

∣

∣

∣

∣

∣

.

Definition 2.2 (Non-interactive Zero-knowledge Argument of Knowl-
edge). A NIZK argument of knowledge for a relation R is a NIZK argument
for R with the following additional extractability property:

– Extraction. For any PPT adversary A, random string r
R← {0, 1}∗, there

exists a PPT algorithm Ext such that the following probability is negligible
in κ:

Pr

⎛

⎝

Verify(Σ, s̃, π̃) = 1
∧ R(s̃, w′) = 0 :

Σ ← Setup(1κ)
(s̃, π̃) ← A(1κ, Σ; r)
w′ = Ext(Σ, s̃, π̃; r)

⎞

⎠ .

Definition 2.3 (zero-knowledge Succinct Non-interactive ARgument
of Knowledge (zk-SNARK)). A zk-SNARK for a relation R is a non-
interactive zero-knowledge argument of knowledge for R with the following addi-
tional property:

– Succinctness. For any s and w, the length of the proof π is given by |π| =
poly(κ) · polylog(|s| + |w|).

2.2 Sigma Protocols

Sigma protocols are two-party interactive protocols of a specific structure. Let
P (the prover) and V (the verifier) be two parties with common input s and a

650 S. Agrawal et al.

private input w for P . In a Sigma protocol, P sends a message a, V replies with
a random κ-bit string r, P then sends a message e, and V decides to accept
or reject based on the transcript (a, r, e). If V accepts (outputs 1), then the
transcript is called accepting.

Definition 2.4 (Sigma protocol [28]). An interactive protocol between a
prover P and a verifier V is a Σ protocol for a relation R if the following
properties are satisfied:

1. It is a three move public coin protocol.
2. Completeness: If P and V follow the protocol then Pr[〈P (w), V 〉 (s) = 1] = 1

whenever (s, w) ∈ R.
3. Special soundness: There exists a polynomial time algorithm called the extrac-

tor which when given s and two transcripts (a, r, e) and (a, r′, e′) that are
accepting for s, with r �= r′, outputs w′ such that (s, w′) ∈ R.

4. Special honest verifier zero knowledge: There exists a polynomial time sim-
ulator which on input s and a random r outputs a transcript (a, r, e) with
the same probability distribution as that generated by an honest interaction
between P and V on (common) input s.

Fiat-Shamir transform. A Σ protocol can be efficiently compiled into a non-
interactive zero-knowledge proof of knowledge (in the random oracle model)
through the Fiat-Shamir transform [34]. Not only the transformation removes
interaction from the protocol, but also makes it zero-knowledge against malicious
verifiers. At a high level, the transform works by having the prover compute
the verifier’s message by applying an appropriate hash function, modeled as a
random oracle in the security proof, to the prover’s first message to obtain a
random challenge.

OR composition of Σ-protocols. In Cramer et al. [26], the authors devise an OR
composition technique for Sigma protocols. Essentially, a prover can efficiently
show ((x0 ∈ L) ∨ (x1 ∈ L)) without revealing which xi is in the language. More
generally, the OR transform can handle two different relations R0 and R1.

Theorem 2.5 (OR-composition [26]). If Π0 is a Σ-protocol for R0 and Π1

a Σ-protocol for R1, then there is a Σ-protocol ΠOR for the relation ROR given
by {((x0, x1), w) : ((x0, w) ∈ R0) ∨ ((x1, w) ∈ R1)}.

Pedersen commitment. Throughout the paper, we use algebraic commitment
schemes that allow proving linear relationships among committed values. The
Pedersen commitment scheme [58] is one such example which gives uncondi-
tional hiding and computational binding properties based on the hardness of
computing discrete logarithm in a group G, say of order q. Given two random
generators g, h ∈ G such that logg h is unknown, a value x ∈ Zq is committed
to by choosing r randomly from Zq, and computing gxhr. We write Comq(x) to
denote a Pedersen commitment to x in a group of order q.

Sigma protocols are known in literature to prove knowledge of a committed
value, equality of two committed values, and so on, and these protocols can

Non-Interactive Zero-Knowledge Proofs for Composite Statements 651

be combined in natural ways. In particular, linear relationships between Peder-
sen commitments can be shown through existing techniques [18,19,37,60]. For
example, one could show that y = ax + b for some public values a and b, given
Comq(x) and Comq(y).

We use PK{(x, y, . . .) : statements about x, y, . . .} to denote a proof of knowl-
edge of x, y, . . . that satisfies statements [19]. Other values in statements are
public.

2.3 SNARK Construction from QAP

The work of Gennaro et al. [39] showed how to encode computations as quadratic
programs. They show how to convert any Boolean circuit into a Quadratic Span
Program (QSP) and any arithmetic circuit into a Quadratic Arithmetic Pro-
gram (QAP). In this work, we will only use the latter definition. Even though
QSPs are designed for Boolean circuits, arithmetic split gates defined in Parno
et al. [57] translate an arithmetic wire into binary output wires, and Boolean
functions may be computed using arithmetic gates. Parno et al. also note that
such an arithmetic embedding results in a smaller QAP compared to the QSP
of the original Boolean circuit. In the rest of the paper, we assume that Boolean
functions are computed by a QAP defined over an arithmetic field, and hence
will only be concerned with QAP.

Definition 2.6 (Quadratic Arithmetic Program [39]). A quadratic arith-
metic program (QAP) Q over a field F consists of three sets of polynomials
V = {vk(x) : k ∈ {0, . . . , m}},W = {wk(x) : k ∈ {0, . . . , m}}, Y = {yk(x) : k ∈
{0, . . . , m}} and a target polynomial t(x), all in F[X].

Let f : F
n → F

n′
be a function with input variables labeled 1, . . . , n and

output variables labeled m − n′ + 1, . . . , m. A QAP Q is said to compute f if
the following holds: a1, . . . , an, am−n′+1, . . . , am ∈ F

n+n′
is a valid assignment

to the input and output variables of f (i.e., f(a1, . . . , an) = (am−n′+1, . . . , am))
iff there exist (an+1, · · · , am−n′) ∈ F

m−n−n′
such that t(x) divides p(x), where

p(x)=

(

v0(x)+
m

∑

k=1

akvk(x)

)

.

(

w0(x)+
m

∑

k=1

akwk(x)

)

−
(

y0(x)+
m

∑

k=1

akyk(x)

)

.

The size of the QAP Q is m, and degree is deg(t(x)).

The polynomials vk(x), wk(x), yk(x) have degree at most deg(t(x))− 1, since
they can be reduced modulo t(x) without affecting the divisibility check.

3 NIZK on Committed IO for Algebraic Statements

In this section, we design Sigma protocols for knowledge of inputs and outputs
of algebraic statements where the inputs and outputs are committed to. In other
words, we enable proof of knowledge of xi given commitments Com(xi) to inputs

652 S. Agrawal et al.

and a commitment Com(Πg
Pi(xi)
i) to the output of an algebraic function where

gis are public generators in an elliptic curve group and Pis are public single-
variable polynomials. An important ingredient in this is a proof of knowledge of
double discrete log which we elaborate on next.

3.1 Proof of Knowledge of Double Discrete Logarithm

Our goal is to prove the equality of a committed value and the discrete logarithm
of another committed value. When the commitments are in elliptic curve groups,
the known techniques for double discrete logarithm proofs will not work [19,
54]. This is because a group element cannot be naturally interpreted as a field
element, as can be done in integer groups. Towards this end, we first describe a
protocol to prove that the sum of two elliptic curve points that are committed
to, is another public point on the curve.

In this section, we consider the family of curves E given by

y2 = x3 + ax + b, (1)

where a, b ∈ Ft, but the techniques we describe below would extend to other
curve families like Edwards [31]. The curve sec256k1 used by Bitcoin has the
form of Eq. 1 with a = 0, b = 7.

The point addition relation is defined by the point addition equation specific
to the curve family. Let P = (x1, y1), Q = (x2, y2), P,Q ∈ E(Ft) for the family
E above. For distinct P,Q, P �= −Q, (x3, y3) = P + Q is given by

x3 =
(

y2 − y1
x2 − x1

)2

− x1 − x2, (2)

y3 =
y2 − y1
x2 − x1

(x1 − x3) − y1. (3)

We use addFormula(P,Q) to denote (x3, y3) computed in this way. When P = Q,
the operation is doubling of the point P , denoted by doubleFormula(P). In this
case, (x3, y3) is given by

x3 =
(

3x2
1 + a

2y1

)2

− 2x1, (4)

y3 =
3x2

1 + a

2y1
(x1 − x3) − y1. (5)

We could prove the above relations for committed x1, x2, y1, y2 using known
Sigma protocol techniques. But since the point addition computation is over Ft,
the commitments to the coordinates have to be in a group of order t, which
is not necessarily the same as p, the order of the group E(Ft). The Complex
Multiplication (CM) method could be used to find elliptic curve groups of a
specific order. However, it is quite inefficient for large orders and would make
our protocols impractical. We avoid the CM method by proposing a protocol
that does not need to find a group of a given order.

Non-Interactive Zero-Knowledge Proofs for Composite Statements 653

We rewrite the point addition formula (Eqs. 2 and 3) as

x3x
2
2 + x3x

2
1 + x3

1 + x3
2 + 2y1y2 = y2

2 + y2
1 + x2

1x2 + x1x
2
2 + 2x1x2x3, (6)

x2y3 + x3y2 + x2y1 = x1y2 + x3y1 + x1y3. (7)

Let Lx and Rx denote the left-hand side and right-hand side respectively of
Eq. 6, and Ly and Ry of Eq. 7. That is:

Lx(x1, y1, x2, y2) = x3x
2
2 + x3x

2
1 + x3

1 + x3
2 + 2y1y2,

Rx(x1, y1, x2, y2) = y2
2 + y2

1 + x2
1x2 + x1x

2
2 + 2x1x2x3,

Ly(x1, y1, x2, y2) = x2y3 + x3y2 + x2y1,

Ry(x1, y1, x2, y2) = x1y2 + x3y1 + x1y3.

We use Sigma protocols to prove that Lx, Rx, Ly and Ry satisfy the above
relations using committed intermediate values. To do so, in addition to linear
relationships, our protocol needs to prove that a committed value is the prod-
uct of two committed values: given C1 = Com(a) = gahr1 , C2 = Com(b) =
gbhr2 , C3 = Com(c) = gchr3 , prove c = ab. This can be done by proving knowl-
edge of b such that the discrete logarithm of C4 with respect to C1 is equal
to the committed value in C2, and the equality of committed values in C4 and
C3, where C4 = Cb

1. The prover computes and sends C4 = Cb
1 with the fol-

lowing proof: PK{(a, b, c, b′, c′, r1, r2, r3, r4) : C1 = gahr1 ∧ C2 = gbhr2 ∧ C3 =
gchr3 ∧ C4 = Cb′

1 ∧ C4 = gc′
hr4 ∧ b′ = b ∧ c′ = c}. In general, Sigma protocols

for polynomial relationships among committed values were given by Camenisch
and Michels [18].

Let G2 be an elliptic-curve group of order q such that q > 2t3, and P ′, Q′ be
points in G2. We commit to the coordinates and the intermediate values neces-
sary for the proof in G2, and since the largest intermediate value in Eqs. 6 and 7
is cubic, the choice of q ensures there is no wrap around when the computation
is modulo q. Since all computation on committed values will now be modulo q,
and the addition equations are to be computed modulo t, we use division with
remainder. We prove equality of Lx and Rx modulo q, divide them by t tak-
ing away multiples of t, and prove that the remainders are equal. When used
together with appropriate range proofs to prove that the remainder does not
exceed the divisor, and that the committed coordinates are in the desired range,
we get equality modulo t. (There are several known techniques to build range
proofs [14,16], that is, to prove that x ∈ [0, S] for a public S and committed x,
including the recent, very efficient technique called Bulletproof [15].)

The protocol addition given in Fig. 1 proves that the addition formula holds
for committed points P,Q and their sum T . We show that addition is secure in
the full version. The protocol’s cost is dominated by the range proofs in steps
4, 5, 6 and the proof for polynomial relationships in steps 2 and 3. addition
roughly has a proof size of 75 + log log t elements, and prover’s work 60 + log t
exponentiations.

Let CP = Comq(P) = (Comq(Px),Comq(Py)) denote a commitment to a
point P = (Px, Py).

654 S. Agrawal et al.

Given T = (Tx, Ty),
C1 = Comq(Px),C2 = Comq(Py),C3 = Comq(Qx),C4 = Comq(Qy), prove that

T = P + Q, where P = (Px, Py), Q = (Qx, Qy), T ∈ E(Ft) and q > 2t3.

1. Let Lx(Px, Py, Qx, Qy) = k1t + r1, Rx(Px, Py, Qx, Qy) = k′
1t +

r′
1, Ly(Px, Py, Qx, Qy) = k2t + r2, Ry(Px, Py, Qx, Qy) = k′

2t + r′
2, for

k1, k
′
1, k2, k

′
2 < q

t
and r1, r

′
1, r2, r

′
2 < t.

Compute and send commitments C4 = Comq(Lx),C5 = Comq(Rx),C6 =
Comq(Ly),C7 = Comq(Ry),C8 = Comq(k1),C9 = Comq(r1),C10 =
Comq(k′

1),C11 = Comq(r′
1),C12 = Comq(k2),C13 = Comq(r2),C14 =

Comq(k′
2),C15 = Comq(r′

2).
2. Prove that (Px, Py), (Qx, Qy) and (Tx, Ty) satisfy the addition equation for

the x-coordinate.
π1 : PK{(Px, Py, Qx, Qy, Lx, Rx) : C1 = Comq(Px) ∧ C2 = Comq(Py) ∧ C3 =
Comq(Qx) ∧ C4 = Comq(Qy) ∧ C4 = Comq(Lx) ∧ C5 = Comq(Rx) ∧ Lx =
TxQ2

x +TxP 2
x +P 3

x +P 3
y +2PyQy ∧Rx = Q2

y +P 2
y +P 2

x Qx +PxQ2
x +2PxQxTx}

3. Prove that (Px, Py), (Qx, Qy) and (Tx, Ty) satisfy the addition equation for
the y-coordinate.
π2 : PK{(Px, Py, Qx, Qy, Ly, Ry) : C1 = Comq(Px) ∧ C2 = Comq(Py) ∧ C3 =
Comq(Qx) ∧ C4 = Comq(Qy) ∧ C6 = Comq(Ly) ∧ C7 = Comq(Ry) ∧ Ly =
QxTy + TxQy + QxPy ∧ Ry = PxQy + TxPy + PxTy}

4. Prove that the coordinates are in the correct range.
π3 : PK{(Px, Py, Qx, Qy) : C1 = Comq(Px) ∧ C2 = Comq(Py) ∧ C3 =
Comq(Qx) ∧ C4 = Comq(Qy) ∧ Qx < t ∧ Qy < t ∧ Px < t ∧ Py < t}

5. Prove that Lx and Rx are equal modulo t, by dividing each side by t, showing
correct range for the quotients and the remainders, and proving the remain-
ders are equal.
π4 : PK{(Lx, Rx, k1, k

′
1, r1, r

′
1) : C4 = Comq(Lx) ∧ C5 = Comq(Rx) ∧ C8 =

Comq(k1) ∧ C9 = Comq(r1) ∧ C10 = Comq(k′
1) ∧ C11 = Comq(r′

1) ∧ Lx =
k1t + r1 ∧ Rx = k′

1t + r′
1 ∧ r1 < t ∧ r′

1 < t ∧ k1 < q
t

∧ k′
1 < q

t
∧ r1 − r′

1 = 0}
6. Prove that Ly and Ry are equal modulo t, by dividing each side by t, showing

correct range for the quotients and the remainders, and proving the remain-
ders are equal.
π5 : PK{(Ly, Ry, k2, k

′
2, r2, r

′
2) : C6 = Comq(Ly) ∧ C7 = Comq(Ry) ∧ C12 =

Comq(k2) ∧ C13 = Comq(r2) ∧ C14 = Comq(k′
2) ∧ C15 = Comq(r′

2) ∧ Ly =
k2t + r2 ∧ Ry = k′

2t + r′
2 ∧ r2 < t ∧ r′

2 < t ∧ k2 < q
t

∧ k′
2 < q

t
∧ r2 − r′

2 = 0}

Fig. 1. addition : PK{(P = (Px, Py), Q = (Qx, Qy)) : T = (Tx, Ty) =
addFormula(P, Q) ∧ C1 = Comq(Px) ∧ C2 = Comq(Py) ∧ C3 = Comq(Qx) ∧ C4 =
Comq(Qy)}

Theorem 3.1 Let E(Ft) be an elliptic curve given by Eq. 1, T ∈ E
and q > 2t3. Then, addition in Fig. 1 is a Σ-protocol for the relation
R = {((T,CP ,CQ), (P,Q)) : CP = Comq(P) ∧ CQ = Comq(Q) ∧ T =
addFormula(P,Q) ∧ P,Q ∈ E}.

Non-Interactive Zero-Knowledge Proofs for Composite Statements 655

Using techniques similar to the above protocol addition, we obtain a protocol
double to prove that doubling formula holds, i.e. T = doubleFormula(P). Now,
we can handle all cases of point addition through the following statement:

(P �= Q ∧ P �= −Q ∧ T = addFormula(P,Q)) ∨
(P = Q ∧ T = doubleFormula(P)) ∨ (P = −Q ∧ T = 0) .

This statement can be proved using OR composition of Sigma protocols: protocol
addition for the first part of the OR statement, protocol double for the second,
and simple Sigma protocols for the last component. We denote the proof of point
addition of two committed points by pointAddition.

pointAddition : PK{(P,Q) : CP = Comq(P) ∧ CQ = Comq(Q) ∧ P,Q ∈ E∧
((P �= Q ∧ P �= −Q ∧ T = addFormula(P,Q))∨

(P = Q ∧ T = doubleFormula(P)) ∨ (P = −Q ∧ T = 0))}
For curves with a complete formula like Edwards, a point addition proof will not
have different cases based on the relationship between P and Q.

Theorem 3.2. Let E(Ft) be an elliptic curve given by Eq. 1, T ∈ E and q > 2t3.
Then, pointAddition is a Σ-protocol for the relation R = {((T,CP ,CQ), (P,Q)) :
CP = Comq(P) ∧ CQ = Comq(Q) ∧ T = P + Q ∧ P,Q ∈ E}.

We note that the protocol addition may be modified to prove point addition
for a committed point T in the following way. The proofs π1 and π2 are on
committed coordinates (Tx, Ty), and the range proof π3 also includes proving
the range of coordinates of T . We denote the point addition proof PK{(P,Q, T) :
CP = Comq(P) ∧ CQ = Comq(Q) ∧ CT = Comq(T) ∧ T = P + Q ∧ P,Q, T ∈ E}
on all committed inputs by comPointAddition.

We now construct a protocol to prove the equality of a committed value
and the discrete logarithm of another committed value using the point addi-
tion proof. The double discrete logarithm proof is given in Fig. 2. (See the full
version for a proof of security.) While the prover’s work is dominated by the
protocol pointAddition, we note that the range proofs for each challenge bit may
be batched [15]. For soundness 2−60, the protocol ddlog incurs proof size of about
2370 + log log t elements and prover’s work of 1800 + 30 log t exponentiations.

Theorem 3.3. Let E(Ft) be an elliptic curve given by Eq. 1, and P ∈ E be
an element of prime order p. Then, ddlog is a Σ-protocol for the relation R =
{(P,C,Ch, (λ, h)) : C = Com(λ) ∧ Ch = Com(h) ∧ h = λP, 0 < λ < p} with
soundness 1/2.

3.2 Sigma Protocols on Committed Outputs

In this section, we construct Sigma protocols for committed output. First, we
note a simpler construction when the output is a single bit. (This simpler variant
is used in our OR compositions.) In particular, given an algebraic commitment to

656 S. Agrawal et al.

Given C1 = Comp(λ),C2 = Comq(x),C3 = Comq(y), for q > 2t3, prove that
(x, y) = λP , where P ∈ E is an element of prime order p, 0 < λ < p, P ′, Q′,

points in G2 of order q.

1. The prover computes the following values: a1 = Comp(α) = αP + β1Q, a2 =
Comq(γ1) = γ1P

′ + β2Q
′, a3 = Comq(γ2) = γ2P

′ + β3Q
′ where α ∈ Fp is

chosen at random, and (γ1, γ2) = αP .
and sends a1, a2, a3 to the verifier.

2. The verifier chooses a random challenge bit c and sends it to the prover.
3. For challenge c,

– If c = 0, compute z1 = α, z2 = β1, z3 = β2, z4 = β3. Send the tuple
(z1, z2, z3, z4)

– If c = 1, compute z1 = α − λ. Let T = z1P = (t1, t2). The prover uses
pointAddition (Figure 1) to prove that T = (γ1, γ2) − (x, y).
π : PK{(x, y, γ1, γ2) : T = (γ1, γ2) − (x, y)}. Send (z1, π)

4. Verification: Compute (t1, t2) = z1P . If c = 0, check if a1 = z1P + z2Q, a2 =
t1P

′ + z3Q
′, a3 = t2P

′ + z4Q
′. If c = 1, verify proof π.

Fig. 2. ddlog : PK{(λ, x, y, r, r1, r2) : Comp(λ) = λP + rQ ∧ Comq(x) = xP ′ + r1Q
′ ∧

Comq(y) = yP ′ + r2Q
′ ∧ (x, y) = λP}

private input x, public y and an efficient Sigma protocol to prove that f(x, y) = 1,
we show how to construct an efficient Sigma protocol to prove f(x, y) = b, for
a committed bit b. Let f : Z

n+m
q → {0, 1}, and let C be a commitment to

the input x. Let fcom be the relation, fcom = {(y, (x, b)) : ((x, y) ∈ Lf ∧ b =
1) ∨ (b = 0)}. The Sigma protocol for the relation fcom is given by the proof
PK{(b, x) : f(x, y) = b ∧ Db = gbhr1 ∧ C = gxhr}. Let G be a group of order q, g
a generator of G, and h a random element of G such that the discrete logarithm
of h with respect to g is unknown to the prover. Let Π be a Σ-protocol for the
relation f . The Σ-protocol for fcom is shown in Fig. 3.

Given y, C = Com(x), Db = Com(b), prove that f(x, y) = b.

– The prover uses the protocol Π for f , Σ-protocol for proving knowledge of
committed values, and the OR-transform to prove the following statement:

PK
{
(b, x) : f(x, y) = 1 ∧ b = 1 ∧ Db = gbhr1 ∧ C = gxhr)

∨ b = 0 ∧ Db = gbhr1 ∧ C = gxhr)}

Fig. 3. comBitSigma : PK{(b, x) : f(x, y) = b ∧ Db = gbhr1 ∧ C = gxhr}

Non-Interactive Zero-Knowledge Proofs for Composite Statements 657

Theorem 3.4. If Π is a Σ-protocol for f , then comBitSigma is a Σ-protocol
for fcom.

To generalize the above to the case where output is a group element and not
a single bit, we need one more building block.

Proof of Point Addition and Discrete Log on Committed Points. Suppose we
want to prove that a committed point is the sum of two group elements. But
the challenge is that the input group elements are secret and are committed to,
hence the prover also needs to prove knowledge of discrete logarithms of the
input points with respect to a public base. Specifically, our goal is to design a
protocol to prove knowledge of discrete logarithms of two committed points such
that their sum is another committed point which we do using comPointAddition.
Let E be an elliptic curve defined over Ft, and let P ∈ E be an element of prime
order p. Let q > 2t3 be a prime. The protocol comSum : PK{(γ, α, β, x1, x2) :
γ = α + β ∧ α = x1P ∧ β = x2P} for 0 < x1, x2 < p is shown in Fig. 4.

– The prover computes commitments c1 = Comp(x1), c2 = Comp(x2), c3 =
Comq(α), c4 = Comq(β), c5 = Comq(γ)

– The prover uses ddlog to give the following proof.
PK{(x1, α) : α = x1P ∧ c3 = Comq(α) ∧ c1 = Comp(x1)}

– The prover uses ddlog to give the following proof.
PK{(x2, β) : β = x2P ∧ c4 = Comq(β) ∧ c2 = Comp(x2)}

– The prover uses comPointAddition to give the following proof, given the
commitments c3 = (Comq(αx),Comq(αy)), c4 = (Comq(βx),Comq(βy)), c5 =
(Comq(γx),Comq(γy)) and the point addition formula for the elliptic curve
that defines the group (Equations 6,7).
PK{(γ, α, β) : γ = α + β ∧ c3 = Comq(α) ∧ c4 = Comq(β) ∧ c5 = Comq(γ)}

Fig. 4. comSum : PK{(γ, α, β, x1, x2) : γ = α + β ∧ α = x1P ∧ β = x2P}

When Committed Output is a Group Element. In the following discussion, sim-
ilar to before, for a group element α = (αx, αy), where αx, αy are the two
coordinates of the elliptic curve point, the commitment to the point is per-
formed by committing to its two coordinates in the proper group, i.e. Com(α) =
(Com(αx),Com(αy)).

We observe that given the above-mentioned building blocks i.e. ddlog and
comSum, we can construct Sigma protocol on a committed output group element
for algebraic statements of the form f(x1, . . . , xn) = Πg

Pi(xi)
i . We sketch the

ideas at a high-level for some simple functions. Let f : Zn
p → G, where G is a

group E(Ft) of order p. When f(x) = gx, then this reduces to the ddlog proof.
For f(x1, x2) = gx1

1 gx2
2 , it suffices to commit to gx1

1 and gx2
2 separately and

call the comSum proof. To consider higher degree polynomials in the exponent

658 S. Agrawal et al.

let us consider f(x) = gx2
. To construct a proof PK{(x, y) : gx2

= y ∧ C1 =
Com(x) ∧C2 = Com(y)}, the prover computes the commitments C1 = Comp(x),
C2 = Comp(x2) and C3 = Comq(k) = (Comq(kx),Comq(ky)), where k = gx2

=
(kx, ky), for the choice of q as discussed in Sect. 3.1. Now, the prover gives the
following proofs. PK{(x2, k) : k = gx2 ∧ C2 = Comp(x2) ∧ C3 = Comq(k)} using
ddlog, and a Sigma protocol for PK{(x1, x2) : x2 = x2

1 ∧ C1 = Comp(x1) ∧ C2 =
Comp(x2)}. Given the above building blocks, it is easy to see that we can extend
the techniques to devise proofs comSigma for f(x1, . . . xn) = Πg

Pi(xi)
i .

4 NIZK on Committed IO for Non-Algebraic Statements

In this section we instantiate the following two building blocks which are critical
for our NIZKs for composite statements.

– zk-SNARK on committed input. Given an algebraic commitment C = gxhr,
and a circuit f , a zk-SNARK proof that f(x, z) = b.

– zk-SNARK on committed input and output. Given algebraic commitments
C1 = gxhr, C2 = gbhr, and a circuit f , a zk-SNARK proof that f(x, z) = b.

We first give a brief high-level description of our central ideas. Our starting
point is a SNARK where the proof consists of multi-exponentiation that resem-
bles a Pedersen commitment. We identify what part of the proof allows commit-
ments to a private input (witness) and private output (for hiding intermediate
values of a larger computation) by suitably separating the input/output wires so
there are corresponding distinct proof elements in the SNARK. We then commit
to the private input and output of the SNARK proof independently using Ped-
ersen commitment, and show equality of the committed values and the values
in the multi-exponentiation proof element. While this observation has been used
in prior works in verifiable computation [24,35], it has been in different contexts
and for different purposes. We briefly discuss how our ideas relate to two such
ideas.

In [24], the authors present a verifiable computation scheme called Geppetto
where the prover can share state across proofs. They generalize QAPs to create
MultiQAPs which allow one to commit to data, and use it in many proofs. But
crucially, all the proofs are for statements still represented as circuits while we
also utilize the commitment to switch to sigma protocol proofs.

In [35], certain proof elements of a SNARK act as “accumulated” value of
inputs in the context of large data size. The multi-exponentiations computed
by the verifier in [35] act as a hash on data and different computations may be
performed (verifiably) on it. The verifier computes the hash, and the proof veri-
fication involves checking the proof is consistent with the hash along with checks
that the computation was performed correctly on the data using only the hash
that was computed. On the other hand, in our setting, the multi-exponentiation
is part of the proof, and computed by the prover, whose consistency across
proofs must be shown. Additionally, these proofs could be different sigma proto-
cols proving a variety of algebraic relations among some subset of the input used

Non-Interactive Zero-Knowledge Proofs for Composite Statements 659

in the SNARK. Though our idea of exploiting a proof element with a certain
structure is similar to the above works, we use it towards a different end.

For concreteness, we describe our protocol using the verifiable computation
protocol Pinocchio [57] as a starting point. But our techniques carry over to other
SNARK constructions as well. The key property we need from a SNARK con-
struction is that the proof contains a multi-exponentiation of the input/output.
Given this, we separate the circuit wires and obtain in a non-blackbox way,
commitments as part of the SNARK proof.

Before giving the description of the above building blocks, we intro-
duce an important ingredient: a protocol for proving equality of the dis-
crete logarithms (a1, . . . , an) in y =

∏n
i=1 Gai

i and individual algebraic com-
mitments to them. Using the standard notation, we denote the protocol by
PK{(a1, . . . , an, r1, . . . , rn) : y =

∏n
i=1 Gai

i ∧ C1 = ga1hr1 ∧ · · · ∧ Cn = ganhrn}.
We include the steps of the protocol in the full version.

4.1 zk-SNARK on Committed Inputs

Recall that at a high level, each polynomial of the quadratic program (Defini-
tion 2.6), say, vk(x) ∈ F[x] is mapped to an element in a bilinear group, gvk(s),
where s is a secret value chosen during CRS generation. Given these group ele-
ments and the values ai on the circuit wires which are the coefficients of the
quadratic program, the prover can compute “in the exponent” to obtain gv(s),
where v(s) =

∑

aivk(s). The verifier uses the bilinear map to verify that the
divisibility check of the QAP holds. We assume the computations are over large
fields, that is, the QAP is defined over Fp for a large p. The size of the field is
exponential in the security parameter. We omit p in all further descriptions of
the field.

Let f : F
N → F

n′
be a function with input/output values from F, com-

puted by an arithmetic circuit C with input wires labeled 1, . . . , N , output
wires labeled m − n′ + 1, . . . , m. Let Q be a QAP of size m and degree d
corresponding to C. We separate the circuit wires I into private input, pub-
lic input, intermediate values, and output wires. Let Icom ⊆ {1, . . . , N} be the
set of indices corresponding to the private inputs a1, . . . , an, Ipub the indices
for the public input wires, and Iout the indices for the public output. Then let
Imid = {1, . . . , m} \ (Ipub ∪ Icom ∪ Iout) be the indices of the intermediate wires.
This way there are separate CRS elements corresponding to the private input
and public input allowing the prover to compute corresponding proof elements.
The divisibility check can still proceed, and we include additional span checks for
the new proof elements. Now, we bind the multi-exponentiation corresponding
to the private input in the proof to the value committed to in a Pedersen com-
mitment using the protocol comEq. Let Ci = gaihri be a Pedersen commitment
to the ith input ai. The construction comInSnark : PK{(a1, . . . , an, r1, . . . , rn) :
f(a1, . . . an, z1, . . . , zN−n) = (b1, . . . , bn′) ∧ C1 = ga1hr1 ∧ · · · ∧ Cn = ganhrn} is
given in Fig. 5.

660 S. Agrawal et al.

Given commitments to private inputs Ci = gaihri for i ∈ [n], public inputs
z1, . . . , zN−n, and public outputs b1, . . . , bn′ .

1. CRS generation: Run GroupGen(1κ) to get (p,G, G̃,GT , g, g̃, e). Choose
rv, rw, αv, αw, αy, s, β, γ

R← F. Set ry = rvrw, gv = grv , gw = grw , g̃w =
g̃rw , gy = gry .
Set the CRS to be:

crs =
(
{gvk(s)

v }k∈Icom , {gvk(s)
v }k∈Imid , {g̃wk(s)

w }k∈Icom ,

{g̃wk(s)
w }k∈Imid , {gyk(s)

y }k∈Icom , {gyk(s)
y }k∈Imid , {gαvvk(s)

v }k∈Icom ,

{gαvvk(s)
v }k∈Imid , {g̃αwwk(s)

w }k∈Icom , {g̃αwwk(s)
w }k∈Imid ,

{g
αyyk(s)
y }k∈Icom , {g

αyyk(s)
y }k∈Imid , {gsi}i∈[d], {g̃si}i∈[d],

{gαvsi}i∈[d], {g̃αvsi}i∈[d], {gαwsi}i∈[d], {g̃αwsi}i∈[d], {gαysi}i∈[d],

{g̃αysi}i∈[d], {gβvk(s)
v gβwk(s)

w gβyk(s)
y }k∈Icom , {gβvk(s)

v gβwk(s)
w gβyk(s)

y }k∈Imid

)

Set the short verification CRS to be:

shortcrs =
(
g, g̃, g̃αv , gαw , g̃αy , g̃γ , gβγ , g̃βγ , gt(s),

{gvk(s)
v }k∈Icom , {gvk(s)

v }k∈Ipub∪Iout , {g̃wk(s)
w }k∈Ipub∪Iout , {gyk(s)

y }k∈Ipub∪Iout

)

2. Prove: On input z1, . . . , zN−n, witness a1, . . . , an, and crs, the prover evaluates
the QAP to obtain {ai}i∈[m]. (Equivalently, evaluates the circuit to obtain the
values on the circuit wires). The prover solves for the quotient polynomial
h such that p(x) = h(x)t(x). Let vcom(x) =

∑
k∈Icom

akvk(x), vmid(x) =∑
k∈Imid

akvk(x) and similarly define wcom(x), wmid(x), ycom(x) and ymid(x).
– The prover computes the proof π:

(
gvcom(s)

v , gvmid(s)
v , g̃wcom(s)

w , g̃wmid(s)
w , gycom(s)

y , gymid(s)
y , g̃h(s),

g̃αvvcom(s)
v , g̃αvvmid(s)

v , gαwwcom(s)
w , gαwwmid(s)

w , g̃
αyycom(s)
y , g̃

αyymid(s)
y

gβvcom(s)
v gβwcom(s)

w gβycom(s)
y , gβvmid(s)

v gβwmid(s)
w gβymid(s)

y

)

– Prove input consistency with commitment: The prover uses the Sigma
protocol comEq to compute πin: PK{(a1, . . . , an, r1, . . . , rn) : y =∏n

i=1 Gai
i ∧ C1 = ga1hr1 ∧ · · · ∧ Cn = ganhrn}, for Gi = g

vi(s)
v , i ∈ Icom,

and y = g
vcom(s)
v .

3. Verify:
– On input shortcrs, z, and proofs π, πin parse π as

π =
(
gVcom , gVmid , g̃Wcom , g̃Wmid , gYcom , gYmid , g̃H ,

g̃V ′
com , g̃V ′

mid , gW ′
com , gW ′

mid , g̃Y ′
com , g̃Y ′

mid , gZcom , gZmid

)

Fig. 5. comInSnark : PK{(a1, . . . , an, r1, . . . , rn) : f(a1, . . . an, z1, . . . , zN−n) =
(b1, . . . , bn′) ∧ C1 = ga1hr1 ∧ . . . ∧ Cn = ganhrn}

Non-Interactive Zero-Knowledge Proofs for Composite Statements 661

– Divisibility check. Compute g
vio(s)
v =

∏
k∈Ipub∪Iout

(gvk(s)
v)ak . Similarly,

compute g̃
wio(s)
w and g

yio(s)
y . Verify that

e
(
gv0(s)

v gvio(s)
v gVcomgVmid , g̃w0(s)

w g̃wio(s)
w g̃Wcom g̃Wmid

)

= e
(
gt(s), g̃H

)
· e

(
gy0(s)

y gyio(s)
y gYcomgYmid , g̃

)
.

– Verify that the linear combinations are in correct spans.
e gVcom , g̃αv

)
= e

(
g, g̃V ′

com

)
, e gVmid , g̃αv

)
= e

(
g, g̃V ′

mid

)
,

e
(
gW ′

com , g̃
)

= e gαw , g̃Wcom
)
, e

(
gW ′

mid , g̃
)

= e gαw , g̃Wmid
)
,

e gYcom , g̃αy
)

= e
(
g, g̃Y ′

com

)
, e gYmid , g̃αy

)
= e

(
g, g̃Y ′

mid

)
.

– Verify same coefficients in all linear combinations.
(a) e gZcom , g̃γ

)
= e gVcomgYcom , g̃βγ

) · e gβγ , g̃Wcom
)

(b) e gZmid , g̃γ
)

= e gVmidgYmid , g̃βγ
) · e gβγ , g̃Wmid

)
– Verify input consistency with commitment: Set Gi = g

vi(s)
v , i ∈ Icom,

and y = gVcom . Verify the proof πin.

Fig. 5. (continued)

Zero-knowledge. We make our construction zero-knowledge, and obtain
zkcomInSnark, by randomizing the elements in the proof π such that the checks
verify and the proof is statistically indistinguishable from random group ele-
ments. Specifically, the prover chooses random δv, δw, δy ← F, and adds δvt(s)
in the exponent to vcom(s), vmid(s); δwt(s) to wcom(s), wmid(s); and δyt(s) to
ycom(s), ymid(s). It is easy to see that the modified value of p(x) remains divis-
ible by t(x). The following terms are added to crs: g

t(s)
v , g̃

t(s)
w , g

t(s)
y , g

αvt(s)
v ,

g
αwt(s)
w , g

αyt(s)
y , g

βt(s)
v , g

βt(s)
w , g

βt(s)
y (gt(s)

v is also added to shortcrs). Prover
can now compute the new values in π from crs, and they are verified in the
same manner as before. The proof πin now proves a slightly different statement:
PK{(a1, . . . , an, δ, r1, . . . , rn) : y = Hδ

∏n
i=1 Gai

i ∧ C1 = ga1hr1 ∧ . . . ∧ Cn =
ganhrn}. To verify it, the verifier uses g

t(s)
v from shortcrs.

Theorem 4.1. If q-PDH, 2q-SDH and d-PKE assumptions hold for GroupGen
for q ≥ 4d+4, then zk-comInSnark instantiated with a QAP of degree d is secure
under Definition 2.2.

A proof of Theorem 4.1 can be found in the full version. Similarly, by separating
the circuit wires into private input, public input, intermediate values and private
output, we obtain zk-SNARK on committed input and output. We state the
theorem below.

Theorem 4.2. If q-PDH, 2q-SDH and d-PKE assumptions hold for GroupGen
for q ≥ 4d+4, and discrete logarithm assumption holds in G, then zk-comIOSnark
instantiated with a QAP of degree d is secure under Definition 2.2.

662 S. Agrawal et al.

5 Constructions for Compound Statements

In this section we use the building blocks we constructed in Sects. 4 and 3, to
devise proofs for compound statements. In the following, we distinguish between
functions that have an efficient algebraic representation versus functions that
are efficiently represented as an arithmetic circuit over a field. Of course, any
algebraic function can be written as a circuit over some field. But certain func-
tions, modular exponentiation for instance, have a large circuit size and hence it
is more desirable to not use a circuit in computing them. Therefore, when we say
algebraic or arithmetic for functions below, we really mean the efficient repre-
sentation of the function for computation. We say a function f is arithmetic if an
arithmetic circuit is used to compute f , and say f is algebraic if it is represented
algebraically. In this section, we show how to prove compound statements involv-
ing function compositions, OR, and AND. In our compositions, the SNARK used
for the circuit could use a group whose order does not match with the group of
the sigma protocol for the algebraic part. We construct a building block Eq to
prove equality of committed values in different groups, given in the full version,
which we use in our compositions.

5.1 Function Composition

We assume that the commitments we use in the following are in groups of cor-
rect order for the computation, so as to focus on the ideas for the composition.
Wlog., our compositions hold even when the scalar field of the elliptic curve
group, the field the curve is defined over and the field of the arithmetic circuit
are all different, since we can prove equality of committed values in different
groups using the protocol Eq. We present the interactive variant for ease of
presentation but note that all our constructions can be made non-interactive
by running all the proofs in parallel and invoking the standard Fiat-Shamir
transform (see Sect. 2.1). The constructions below also easily generalize to func-
tions that have more input/output elements than shown, i.e. we can obtain con-
structions for statements of the form PK{(x1, . . . , xn, y1, . . . , ym) : f1(x1, . . . , xn,
f2(y1, . . . , ym)) = z} where f1, f2 may each be arithmetic or algebraic. We give
constructions composition by elaborating on the four possible compositions next:

1. f1 and f2 are functions represented as arithmetic circuits. Let f1 : F2
p → Fp,

and f2 : Fp → Fp, and we want to prove knowledge of secrets x1, x2 such
that f1(x1, f2(x2)) = z for a public z. An example is proof of knowledge of
x1 and x2 such that H(x1||H(x2)) = z where H is a collision resistant hash
function such as SHA256. Such a composition can help reduce the size of CRS
by composing the same or a few SNARK systems multiple times to obtain
more complex statements without an increase in CRS size.

– The prover commits to x1, x2 and x3 = f2(x2) by computing c1 =
Comp(x1), c2 = Comp(x2), c3 = Comp(x3). The prover sends c1, c2, c3 to the
verifier.

Non-Interactive Zero-Knowledge Proofs for Composite Statements 663

– The prover uses zk-comIOSnark to give a proof that f2(x2) = x3, given c2 and
c3. PK{(x2, x3, r2, r3) : f2(x2) = x3 ∧ c2 = Comp(x2) ∧ c3 = Comp(x3)}.

– The prover uses zk-comInSnark to give a proof that f1(x1, x3) = z given c1, c3
and z. PK{(x1, x3, r1, r3) : f1(x1, x3) = z ∧ c1 = Comp(x1) ∧ c3 = Comp(x3)}.

2. f1 is an arithmetic circuit and f2 is algebraic. Let f1 : F3
p → Fp, f2 : Zq → G

and T : G → F
2
p. In this proof, we assume the algebraic function is over an

elliptic curve group and assume the natural transformation for mapping an
elliptic curve point to a tuple of field elements, i.e. its coordinates. Let G be
an elliptic curve group of prime order q, and let T (k) = (kx, ky) for k ∈ G,
where (kx, ky) are the coordinates of the elliptic curve point. The following
is a protocol for PK{(x1, x2) : f1(x1, T (f2(x2))) = z}. An example is proving
knowledge of x such that H(gx) = z.

– The prover commits to x1, x2 and k = f2(x2) by computing c1 =
Comp(x1), c2 = Comq(x2), c3 = Comp(k) = (Comp(kx),Comp(ky)), and sends
c1, c2, c3 to the verifier.

– The prover uses the protocols ddlog and the sigma protocol on commit-
ted group element comSigma to give the following proof: PK{(x2, k, r2, r3) :
f2(x2) = k ∧ c2 = Comq(x2) ∧ c3 = Comp(k)}.

– The prover uses zk-comInSnark to prove f1(x1, T (k)) = z given c1, c3, c4.
PK{(x1, k, r1, r3) : f1(x1, T (k)) = z ∧ c1 = Comp(x1) ∧ c3 = Comp(k)}.

3. f1 is algebraic, and f2 is an arithmetic circuit. Let f1 : Z2
q → G, f2 : Fp → Fp.

Let Π be a Σ-protocol for f1. The following is a protocol for PK{(x1, x2) :
f1(x1, f2(x2)) = z}. An example is proving knowledge of x such that gH(x) =
z where H is a hash function. This composition commonly appears when
proving knowledge of a digitally signed message.

– The prover commits to x1, x2, x3 = f2(x2) by computing c1 = Comq(x1), c2 =
Comp(x2), c3 = Comq(x3), c

′
3 = Comp(x3). c3 is committed to twice, in groups

of order p and q. The prover sends c1, c2, c3, c
′
3 to the verifier.

– The prover uses zk-comIOSnark to give a proof that f2(x2) = x3, given c2 and
c′
3. PK{(x2, x

′
3, r2, r

′
3) : f2(x2) = x′

3 ∧ c2 = Comp(x2) ∧ c′
3 = Comp(x

′
3)}.

– The prover uses the sigma protocol Π to give the following proof.
PK{(x1, x3, r1, r3) : f1(x1, x3) = z ∧ c1 = Comq(x1) ∧ c3 = Comq(x3)}.

– The prover uses the protocol Eq to prove that c′
3 and c3 are commitments to

the same value. PK{(x3, x
′
3, r3, r

′
3) : x3 ≡ x′

3 (mod q) ∧ c3 = Comq(x3) ∧ c′
3 =

Comp(x
′
3)}

4. f1 and f2 are algebraic. Let f1 : Z3
p → G1, f2 : Zq → G2, where G1 and G2

are elliptic curve groups of prime order p and q respectively. Let T (k) =
(kx, ky) for k ∈ G2, where (kx, ky) are the coordinates of the elliptic curve

664 S. Agrawal et al.

point. Let Π1 be a Σ-protocol for f1. Let x1 ∈ Zp, x2 ∈ Zq. An example
is proving knowledge of x such that g

T (gx
2)

1 for generators g1 and g2 for two
different groups and a valid transformation T for mapping from one group to
another. These statements often occur in anonymous credential constructions
or proving statements about accumulators but the only previous constructions
are for RSA groups.

– The prover commits to x1, x2 and k = f2(x2) by computing c1 =
Comp(x1), c2 = Comq(x2), c3 = Comp(k) = (Comp(kx),Comp(ky)), and sends
c1, c2, c3 to the verifier.

– The prover uses the protocols ddlog and the sigma protocol on committed
group element comSigma for f2 to give the following proof: PK{(x2, k, r2, r3) :
f2(x2) = k ∧ c2 = Comq(x2) ∧ c3 = Comp(k)}.

– The prover uses the sigma protocol Π1 to give the following proof.
PK{(x1, k, r1, r3) : f1(x1, T (k)) = z ∧ c1 = Comp(x1) ∧ c3 = Comp(k)}.

Theorem 5.1 (Function Composition). The constructions composition
are non-interactive zero-knowledge arguments PK{(x1, . . . , xn, y1, . . . , ym) :
f1(x1, . . . , xn, f2(y1, . . . , ym)) = z}, as per Definition 2.2, for any f1, f2 ∈
{algebraic, arithmetic} assuming the security of zk-comInSnark, zk-comIOSnark,
ddlog, Eq.

5.2 OR Composition

Consider the OR composition where a prover wants to show that f1(x1, x2) = 1
or f2(x1, x3) = 1 but without revealing which one is true. We give constructions
compoundOR : PK{(x1, x2, x3) : f1(x1, x2) ∨ f2(x1, x3) = 1}, where the fis could
have either an arithmetic or algebraic representation, and could have shared
secret inputs.

1. f1 and f2 are functions represented as arithmetic circuits. Let f1 : F
2
p →

{0, 1}, and f2 : F2
q → {0, 1}, q < p. An example is composing proofs for two

SNARK systems that work over different elliptic curve groups.

– The prover commits to the inputs by computing, c1 = Comp(x1), c
′
1 =

Comq(x1), c2 = Comp(x2), c3 = Comq(x3), and to the output bits b1 =
f1(x1, x2), b2 = f1(x1, x3), c4 = Comp(b1), c5 = Comq(b2), c

′
5 = Comp(b2).

x1 and b2 are committed to in both groups of order p and q.
– The prover uses zk-comIOSnark to give proofs.

PK{(x1, x2, b1, r1, r2, r4) : f1(x1, x2) = b1 ∧ c1 = Comp(x1) ∧ c2 = Comp(x2) ∧
c4 = Comp(b1)}.
PK{(x′

1, x3, b2, r
′
1, r3, r5) : f2(x

′
1, x3) = b2 ∧ c′

1 = Comq(x
′
1) ∧ c3 = Comq(x3) ∧

c5 = Comq(b2)}.

Non-Interactive Zero-Knowledge Proofs for Composite Statements 665

– The prover uses the protocol Eq to prove that c′
1 and c1 are commitments to

the same value.
PK{(x1, x

′
1r1, r

′
1) : x1 ≡ x′

1 (mod q) ∧ c1 = Comp(x1) ∧ c′
1 = Comq(x1)}

– The prover uses the protocol Eq to prove that c′
5 and c5 are commitments to

the same value.
PK{(b2, b

′
2, r5, r

′
5) : b2 ≡ b′

2 (mod q) ∧ c5 = Comq(b2) ∧ c′
5 = Comp(b

′
2)}

– The prover uses the Sigma protocol OR-transform to give the following proof.
PK{(b1, b2, r4, r5) : (b1 = 1 ∧ c4 = Comp(b1)) ∨ (b2 = 1 ∧ c′

5 = Comp(b2))}

2. One of them is an arithmetic circuit and the other is an algebraic relation.
Wlog., f1 is represented as an arithmetic circuit and f2 is an algebraic state-
ment. Let f1 : F2

p → {0, 1}, f2 : Z2
q → {0, 1}, q < p. Let Π be a Σ-protocol for

f2. An example is proving knowledge of x such that H(x) = y OR gx = z.

– The prover commits to the inputs, c1 = Comq(x1), c
′
1 = Comp(x1), c2 =

Comp(x2), c3 = Comq(x3). The prover computes the outputs b1 =
f1(x1, x2), b2 = f1(x1, x3) and commits to them by computing c4 =
Comp(b1), c5 = Comq(b2), c

′
5 = Comp(b2).

– The prover uses comIOSnark to give the following proof.
PK{(x′

1, x2, b1, r
′
1, r2, r4) : f1(x

′
1, x2) = b ∧ c′

1 = Comp(x1) ∧ c2 = Comp(x2) ∧
c4 = Comp(b1)}.

– The prover uses the protocol Π and protocol comBitSigma (Fig. 3) to prove
the following.
PK{(x1, x3, b2, r1, r3, r5) : f2(x1, x3) = b2 ∧ c1 = Comq(x1) ∧ c3 = Comq(x3) ∧
c5 = Comq(b2)}

– The prover uses the protocol Eq to prove that c′
1 and c1 are commitments to

the same value.
PK{(x1, x

′
1r1, r

′
1) : x1 ≡ x′

1 (mod q) ∧ c1 = Comq(x1) ∧ c′
1 = Comp(x1)}

– The prover uses the protocol Eq to prove that c′
5 and c5 are commitments to

the same value.
PK{(b2, b

′
2, r5, r

′
5) : b2 ≡ b′

2 (mod q) ∧ c5 = Comq(b2) ∧ c′
5 = Comp(b

′
2)}

– The prover uses the Sigma protocol OR-transform to prove the following.
PK{(b1, b2, r4, r5) : (b1 = 1 ∧ c4 = Comq(b1)) ∨ (b2 = 1 ∧ c5 = Comq(b2))}.

Let fOR be the relation given by fOR = {((f1, f2), (x1, x2, x3)) :
((x1, x2) ∈ Rf1) ∨ ((x1, x3) ∈ Rf2)}.

Theorem 5.2 (OR Composition). The constructions compoundOR are
non-interactive zero-knowledge arguments PK{(x1, x2, x3) : f1(x1, x2) ∨
f2(x1, x3) = 1}, as per Definition 2.2, for the relation fOR, for any f1, f2 ∈
{algebraic, arithmetic}, assuming the security of zk-comInSnark, zk-comIOSnark,
comBitSigma, Eq.

5.3 AND Composition

Techniques shown in Sect. 5.2 extend for proofs of the form, PK{(x1, x2, x3) :
f1(x1, x2) ∧ f2(x1, x3) = 1} for all combinations of f1 and f2 being arithmetic

666 S. Agrawal et al.

and algebraic. In particular, to prove the AND of multiple statements, we use our
building blocks comInSnark for the arithmetic part, Σ-protocol for the algebraic
part, and Eq to switch between groups.

6 Applications

6.1 Privacy-preserving Audits of Bitcoin Exchanges

In this section, we show how to use our constructions for proving composite
statements in zero-knowledge to build a privacy-preserving proof of solvency for
Bitcoin exchanges. A proof of solvency demonstrates that an exchange controls
sufficient reserves to settle each customer’s account. If the exchange loses a large
amount of money in an attack, it would not be able to provide such a proof. Thus
customers will find out about the attack very soon and take necessary actions.

A proof of solvency consists of three components:

– A proof of liabilities that allows customers to verify that their accounts are
included in the total.

– A proof of assets which shows that the exchange has a certain amount of
reserves.

– A proof that the reserves cover the liabilities to an acceptable degree.

Let g, h be fixed public generators of a group G of order q. For a Bitcoin
public key y, x ∈ Zq is the corresponding secret key such that y = gx. In the
proof of assets below, for a group element k = (kx, ky), we write Com(k) to mean
a commitment to the coordinates of k, i.e. Com(k) = (Com(kx),Com(ky)). The
Bitcoin address corresponding to a key y is given by h = H(y), where H hashes
y to a more compact representation. We denote the balance associated with an
address h by bal(h).

Proof of assets. We give the proof of assets in Fig. 6, which allows an exchange
to generate a commitment to its total assets along with a zero-knowledge proof
that the exchange knows the private keys for a set of Bitcoin addresses whose
total value is equal to the committed value. The exchange creates a set of hashes
PK to serve as an anonymity set: PK = {h1, · · · , hn} from the public data
available on the blockchain. Let x1, · · · , xn be the corresponding secret keys, so
that hi = H(gxi), si indicates whether the exchange knows the ith secret key.
The total assets can now be expressed as Assets =

∑n
i=1 si · bal(hi). The public

data available on the blockchain is hi = H(yi), pi = gbal(hi) for all i ∈ [1, n].
Zero-knowledge and soundness of the proof of assets follow from properties

of our constructions for compound statements (Theorems 5.1 and 5.2) and prop-
erties of the Sigma protocols used. Proofs of liabilities and solvency have been
moved to the full version because they are very similar to Provisions. We com-
pare the trade-off between proof size and prover’s work in our approach versus
Provisions and a full SNARK solution in Table 1 in Appendix A.

Non-Interactive Zero-Knowledge Proofs for Composite Statements 667

– The exchange computes the commitments. For i ∈ [1, n], commit to xi by
publishing αi = Comq(xi) = gxihri , and commit to yi by publishing βi =
Comq(yi).

– The exchange commits to the balance in each address for the public keys
he controls and to 0 otherwise, by publishing ui = Comq(si · bal(hi)) =
gsi·bal(hi)hti , si ∈ {0, 1}, where si = 1 if the exchange knows xi such that
yi = gxi .

– The exchange uses protocols ddlog, comIOSnark and the constructions for
function composition and OR composition, composition and compoundOR re-
spectively, to prove the following for each i,

πi : PK{(xi, yi, si, ri, ai, bi, ti) : αi = Comq(xi) ∧ βi = Comq(yi)∧
ui = Comq(si · bal(hi)) ∧ f1(f2(xi), hi) = si ∧ si = 1

) ∨ si = 0
)}

where f2(x) = gx and f1(y, h) = 1 if H(y) = h and 0 otherwise.
– Compute and publish ZAssets =

∏n
i=1 ui.

Fig. 6. Proof of assets

6.2 Privacy-Preserving Credentials

Another application of our compositions for compound statements is in privacy-
preserving verification of credentials. A credential system allows a user to obtain
credentials from an organization or a Certificate Authority, and later prove to a
verifier that she has been given appropriate credentials. Typically, the user’s cre-
dentials will contain a set of attributes, and the verifier will require that the user
prove that the attributes in his credential satisfy certain policy. Many different
constructions have been proposed for anonymous credential systems built around
sigma protocols. The signatures used, therefore, are specially designed so that a
sigma protocol can be used to prove knowledge of the signature on a committed
message. If we want to base anonymous credentials on standard signatures, like
RSA signatures, we will need to prove a compound statement involving an alge-
braic relation (for the exponentiation), and a circuit-based statement (for the
hash function). The recent work of [30] achieves privacy-preserving verification
of X.509 certificates by using zk-SNARKs, and this involves representing the
exponentiation in an RSA group as a circuit. Here, we use our composition con-
structions to build an efficient proof avoiding expensive circuit representation of
algebraic statements.

Given a SHA hash digest of a message m, a candidate RSA signature σ,
and an RSA modulus N , verification involves checking whether σe mod n = h,
where h = padding(SHA(m)). The construction given in Fig. 7 achieves privacy-
preserving verification for credentials based on RSA signatures. We compare the
trade off between the proof size and prover’s work in our approach versus other
methods in Table 2 in Appendix A. Our compositions and similar techniques

668 S. Agrawal et al.

extend to yield efficient privacy-preserving verification for credentials based on
existing infrastructure like standard RSA-PSS, RSA-PKCS etc.

– The prover commits to the message m, the digest h, and the signature σ by
computing c1 = Comp(m), c2 = Comp(h), c3 = Comn(σ), c4 = Comn(h) for
p < n.

– The prover uses zk-comIOSnark to give a proof that the hash digest is correct,
given c1 and c2.
PK{(m, h, r1, r2) : padding(SHA(m)) = h ∧ c1 = Comp(m) ∧ c2 = Comp(h)}.

– The prover uses a sigma protocol to prove knowledge of e-th root of a com-
mitted value [19].
PK{(h, σ, r2, r3) : σe mod n = h ∧ c2 = Comn(h) ∧ c3 = Comn(σ)}.

– The prover uses the protocol Eq to prove that the commitments c2 and c4 are
to the same value: PK{(h, h′, r2, r4) : c2 = Comp(h) ∧ c4 = Comn(h′) ∧ h ≡ h′

mod p}.

Fig. 7. RSA signature verification

References

1. Secp256k1. https://en.bitcoin.it/wiki/Secp256k1
2. Technical background of version 1 bitcoin addresses. https://en.bitcoin.it/wiki/

Technical background of version 1 Bitcoin addresses
3. Zcash 1.0 “Sprout” Guide. https://github.com/zcash/zcash/wiki/1.0-User-Guide
4. Zcash Parameter Generation. https://z.cash/technology/paramgen.html
5. Aho, A. (ed.): 19th ACM STOC. ACM Press, May 1987
6. Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero: lightweight sub-

linear arguments without a trusted setup. In: Thuraisingham, B.M., Evans, D.,
Malkin, T., Xu, D. (eds.) ACM CCS 17, pp. 2087–2104. ACM Press, Octo-
ber/November 2017

7. Ben-Or, M., Goldreich, O., Goldwasser, S., H̊astad, J., Kilian, J., Micali, S., Rog-
away, P.: Everything provable is provable in zero-knowledge. In: Goldwasser, S.
(ed.) CRYPTO 1988. LNCS, vol. 403, pp. 37–56. Springer, New York (1990).
https://doi.org/10.1007/0-387-34799-2 4

8. Ben-Sasson, E., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E., Virza,
M.: Zerocash: decentralized anonymous payments from bitcoin. In: 2014 IEEE
Symposium on Security and Privacy, pp. 459–474. IEEE Computer Society Press,
May 2014

9. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: SNARKs for C:
verifying program executions succinctly and in zero knowledge. In: Canetti, R.,
Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 90–108. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1 6

10. Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Succinct non-interactive zero
knowledge for a von Neumann architecture. In: 23rd USENIX Security Symposium
(USENIX Security 14), pp. 781–796. USENIX Association, San Diego, CA (2014)

https://en.bitcoin.it/wiki/Secp256k1
https://en.bitcoin.it/wiki/Technical_background_of_version_1_Bitcoin_addresses
https://en.bitcoin.it/wiki/Technical_background_of_version_1_Bitcoin_addresses
https://github.com/zcash/zcash/wiki/1.0-User-Guide
https://z.cash/technology/paramgen.html
https://doi.org/10.1007/0-387-34799-2_4
https://doi.org/10.1007/978-3-642-40084-1_6

Non-Interactive Zero-Knowledge Proofs for Composite Statements 669

11. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: From extractable collision resis-
tance to succinct non-interactive arguments of knowledge, and back again. In:
Goldwasser, S. (ed.) ITCS 2012, pp. 326–349. ACM, January 2012

12. Bitansky, N., Chiesa, A., Ishai, Y., Paneth, O., Ostrovsky, R.: Succinct non-
interactive arguments via linear interactive proofs. In: Sahai, A. (ed.) TCC 2013.
LNCS, vol. 7785, pp. 315–333. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-36594-2 18

13. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its appli-
cations (extended abstract). In: 20th ACM STOC, pp. 103–112. ACM Press, May
1988

14. Boudot, F.: Efficient proofs that a committed number lies in an interval. In: Pre-
neel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 431–444. Springer, Hei-
delberg (2000). https://doi.org/10.1007/3-540-45539-6 31

15. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs:
efficient range proofs for confidential transactions. Cryptology ePrint Archive,
Report 2017/1066 (2017). https://eprint.iacr.org/2017/1066

16. Camenisch, J., Chaabouni, R., Shelat, A.: Efficient protocols for set membership
and range proofs. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp.
234–252. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89255-
7 15

17. Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anony-
mous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.)
EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44987-6 7

18. Camenisch, J., Michels, M.: Proving in zero-knowledge that a number is the prod-
uct of two safe primes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp.
107–122. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 8

19. Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups
(extended abstract). In: Kaliski Jr. [49], pp. 410–424

20. Chase, M., Derler, D., Goldfeder, S., Orlandi, C., Ramacher, S., Rechberger, C.,
Slamanig, D., Zaverucha, G.: Post-quantum zero-knowledge and signatures from
symmetric-key primitives. In: Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, pp. 1825–1842. ACM (2017)

21. Chase, M., Ganesh, C., Mohassel, P.: Efficient zero-knowledge proof of algebraic
and non-algebraic statements with applications to privacy preserving credentials.
In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part III. LNCS, vol. 9816, pp.
499–530. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53015-
3 18

22. Chaum, D.: Blind signatures for untraceable payments. In: Chaum, D., Rivest,
R.L., Sherman, A.T. (eds.) CRYPTO 1982, pp. 199–203. Plenum Press, New York
(1982). https://doi.org/10.1007/978-1-4757-0602-4 18

23. Cohen, J.D., Fischer, M.J.: A robust and verifiable cryptographically secure elec-
tion scheme (extended abstract). In: 26th FOCS, pp. 372–382. IEEE Computer
Society Press, October 1985

24. Costello, C., Fournet, C., Howell, J., Kohlweiss, M., Kreuter, B., Naehrig, M.,
Parno, B., Zahur, S.: Geppetto: versatile verifiable computation. In: 2015 IEEE
Symposium on Security and Privacy, pp. 253–270. IEEE Computer Society Press,
May 2015

25. Cramer, R. (ed.): TCC 2012. LNCS, vol. 7194. Springer, Heidelberg (2012)

https://doi.org/10.1007/978-3-642-36594-2_18
https://doi.org/10.1007/978-3-642-36594-2_18
https://doi.org/10.1007/3-540-45539-6_31
https://eprint.iacr.org/2017/1066
https://doi.org/10.1007/978-3-540-89255-7_15
https://doi.org/10.1007/978-3-540-89255-7_15
https://doi.org/10.1007/3-540-44987-6_7
https://doi.org/10.1007/3-540-48910-X_8
https://doi.org/10.1007/978-3-662-53015-3_18
https://doi.org/10.1007/978-3-662-53015-3_18
https://doi.org/10.1007/978-1-4757-0602-4_18

670 S. Agrawal et al.

26. Cramer, R., Damg̊ard, I., Schoenmakers, B.: Proofs of partial knowledge and sim-
plified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994.
LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994). https://doi.org/10.1007/
3-540-48658-5 19

27. Dagher, G.G., Bünz, B., Bonneau, J., Clark, J., Boneh, D.: Provisions: privacy-
preserving proofs of solvency for bitcoin exchanges. In: Ray, I., Li, N., Kruegel, C.
(eds.) ACM CCS 2015, pp. 720–731. ACM Press, October 2015

28. D̊amgard, I.: On Sigma Protocols. http://www.cs.au.dk/∼ivan/Sigma.pdf
29. Damg̊ard, I., Faust, S., Hazay, C.: Secure two-party computation with low com-

munication. In: Cramer [25], pp. 54–74
30. Delignat-Lavaud, A., Fournet, C., Kohlweiss, M., Parno, B.: Cinderella: turning

shabby X.509 certificates into elegant anonymous credentials with the magic of
verifiable computation. In: 2016 IEEE Symposium on Security and Privacy, pp.
235–254. IEEE Computer Society Press, May 2016

31. Edwards, H.: A normal form for elliptic curves. Bull. Am. Math. Soc. 44(3), 393–
422 (2007)

32. Feige, U., Fiat, A., Shamir, A.: Zero knowledge proofs of identity. In: Aho [5], pp.
210–217

33. Feige, U., Lapidot, D., Shamir, A.: Multiple non-interactive zero knowledge proofs
based on a single random string (extended abstract). In: 31st FOCS, pp. 308–317.
IEEE Computer Society Press, October 1990

34. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

35. Fiore, D., Fournet, C., Ghosh, E., Kohlweiss, M., Ohrimenko, O., Parno, B.: Hash
first, argue later: adaptive verifiable computations on outsourced data. In: Weippl,
E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016,
pp. 1304–1316. ACM Press, October 2016

36. Fortnow, L.: The complexity of perfect zero-knowledge (extended abstract). In:
Aho [5], pp. 204–209

37. Fujisaki, E., Okamoto, T.: Statistical zero knowledge protocols to prove modular
polynomial relations. In: Kaliski Jr. [49], pp. 16–30

38. Garay, J.A., MacKenzie, P.D., Yang, K.: Strengthening zero-knowledge protocols
using signatures. J. Cryptol. 19(2), 169–209 (2006)

39. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-38348-9 37

40. Giacomelli, I., Madsen, J., Orlandi, C.: Zkboo: faster zero-knowledge for boolean
circuits. In: 25th USENIX Security Symposium, USENIX Security 2016, Austin,
TX, USA, 10–12 August 2016 (2016)

41. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity
and a methodology of cryptographic protocol design (extended abstract). In: 27th
FOCS, pp. 174–187. IEEE Computer Society Press, October 1986

42. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: Aho [5], pp. 218–229

43. Goldwasser, S., Lin, H., Rubinstein, A.: Delegation of computation without rejec-
tion problem from designated verifier CS-Proofs. Cryptology ePrint Archive,
Report 2011/456 (2011). http://eprint.iacr.org/2011/456

https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/3-540-48658-5_19
http://www.cs.au.dk/~ivan/Sigma.pdf
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-38348-9_37
http://eprint.iacr.org/2011/456

Non-Interactive Zero-Knowledge Proofs for Composite Statements 671

44. Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Abe,
M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17373-8 19

45. Groth, J., Kohlweiss, M.: One-out-of-many proofs: or how to leak a secret and
spend a coin. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part II.
LNCS, vol. 9057, pp. 253–280. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46803-6 9

46. Guillou, L.C., Quisquater, J.-J.: A practical zero-knowledge protocol fitted to secu-
rity microprocessor minimizing both transmission and memory. In: Barstow, D.,
et al. (eds.) EUROCRYPT 1988. LNCS, vol. 330, pp. 123–128. Springer, Heidelberg
(1988). https://doi.org/10.1007/3-540-45961-8 11

47. 2013 IEEE Symposium on Security and Privacy. IEEE Computer Society Press,
May 2013

48. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure
multiparty computation. In: Johnson, D.S., Feige, U. (eds.) 39th ACM STOC, pp.
21–30. ACM Press, June 2007

49. Kaliski Jr., B.S. (ed.): CRYPTO 1997. LNCS, vol. 1294. Springer, Heidelberg
(1997)

50. Kilian, J.: A note on efficient zero-knowledge proofs and arguments. In: Proceedings
of the Twenty-fourth Annual ACM Symposium on Theory of Computing, pp. 723–
732. ACM (1992)

51. Lipmaa, H.: Progression-free sets and sublinear pairing-based non-interactive zero-
knowledge arguments. In: Cramer [25], pp. 169–189

52. Lipmaa, H.: Succinct non-interactive zero knowledge arguments from span pro-
grams and linear error-correcting codes. In: Sako, K., Sarkar, P. (eds.) ASI-
ACRYPT 2013, Part I. LNCS, vol. 8269, pp. 41–60. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-42033-7 3

53. Micali, S.: Computationally sound proofs. SIAM J. Comput. 30(4), 1253–1298
(2000)

54. Miers, I., Garman, C., Green, M., Rubin, A.D.: Zerocoin: anonymous distributed
E-cash from Bitcoin. In: IEEE S&P 2013 [47], pp. 397–411

55. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen
ciphertext attacks. In: 22nd ACM STOC, pp. 427–437. ACM Press, May 1990

56. Noether, S., Mackenzie, A., Team, M.C.: Ring confidential transactions. https://
lab.getmonero.org/pubs/MRL-0005.pdf

57. Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: nearly practical verifi-
able computation. In: IEEE S&P 2013 [47], pp. 238–252

58. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1 9

59. Pointcheval, D., Stern, J.: Security proofs for signature schemes. In: Maurer, U.
(ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 387–398. Springer, Heidelberg
(1996). https://doi.org/10.1007/3-540-68339-9 33

60. Schnorr, C.P.: Efficient signature generation by smart cards. J. Cryptol. 4(3), 161–
174 (1991)

61. Vadhan, S.P.: A study of statistical zero-knowledge proofs. Ph.D. thesis, Mas-
sachusetts Institute of Technology (1999)

62. Wilcox, Z.: Proving bitcoin reserves. https://iwilcox.me.uk/2014/proving-bitcoin-
reserves

https://doi.org/10.1007/978-3-642-17373-8_19
https://doi.org/10.1007/978-3-662-46803-6_9
https://doi.org/10.1007/978-3-662-46803-6_9
https://doi.org/10.1007/3-540-45961-8_11
https://doi.org/10.1007/978-3-642-42033-7_3
https://lab.getmonero.org/pubs/MRL-0005.pdf
https://lab.getmonero.org/pubs/MRL-0005.pdf
https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1007/3-540-68339-9_33
https://iwilcox.me.uk/2014/proving-bitcoin-reserves
https://iwilcox.me.uk/2014/proving-bitcoin-reserves

672 S. Agrawal et al.

A Efficiency

We briefly discuss the estimated cost of some of the building blocks. The ddlog
proof is dominated by the cost of the range proofs in steps 4, 5, 6 of pointAddition
protocol in Fig. 1. In a recent work [15], it was shown how to prove that a
committed value is in a range using only a number of field elements that is
logarithmic in the bit length of the range. Using these proofs to instantiate all the
necessary range proofs in protocol pointAddition, the prover’s work is 30 log t +
1800 group exponentiations, the verifier’s work is 10 log t exponentiations, and
the proof size is 2370 + log log t elements where the proof is for a curve defined
over Ft. The cost of comInSnark is the cost of the comEq in addition to the cost
incurred by separating the wires in the underlying SNARK construction. The
proof size of comInSnark is 15 group elements, and 2 field elements for every
committed value (input/output). In the case of our following applications, the
proof size is 17 elements. The prover’s work is the number of exponentiations
for computing the SNARK proof and an additional 2 exponentiations for the
comEq proof. The verifier’s work is 2 exponentiations and 21 pairings. Similarly,
comIOSnark has proof size 26 elements, the prover’s work, in addition to the
exponentiations for the SNARK proof is 4 exponentiations and the verifier’s
work is 4 exponentiations and 30 pairings.

Proof of solvency. In Table 1, we compare the proof size and prover’s work of
Provisions with our protocol and a solution that uses zk-SNARK for the entire
statement. The proof size and prover’s work are dominated by the range proofs;
the numbers below give only the dominating terms ignoring small constants and
are assuming that the range proofs are realized using Bulletproofs.

Table 1. Comparison of prover work and proof sizes for proof of solvency using different
methods. n is the size of the anonymity set, c is the number of customer accounts, m is
�logMax� = 51, p is the bit length of the modulus for exponentiation (size of the field
over which the curve is defined). For n = 500, 000 and c = 2 million, the proof size and
prover’s work in Provisions is 5∗106 and 4∗107 respectively. For the same parameters,
our approach gives proof size of 109 and prover’s work 1010, while also achieving the
additional pay-to-hash functionality. A fully zk-SNARK solution requires prover’s work
roughly 1013. (Exp. stands for exponentiations.)

zk technique Functionality Proof size (in
elements)

Prover

Provisions pay-to-pub 10n+log m+log c 5n + 4mc exp.

SNARK pay-to-pub,
pay-to-hash

7 (|H| + p3)n + c
exp.

Our composition
techniques

pay-to-pub,
pay-to-hash

2396n + log p +
log n

(|H| + 30p +
1800)n + c exp.

Non-Interactive Zero-Knowledge Proofs for Composite Statements 673

Privacy preserving credentials. In Table 2, we compare the proof size and prover’s
work in privacy-preserving credentials for Cinderella, the interactive protocol
of [21], and our composition.

Table 2. Comparison of prover work and proof sizes for credential verification using
different methods. p is the order of the group in which commitments are computed,
|m| is the bit length of the message. For e = 65537, log p = 256, |H| = 23785, we note
an 87% decrease in prover’s work compared to Cinderella at the cost of increasing the
proof size to 298 from 7 group elements. (Exp. stands for exponentiations.)

zk technique Feature Proof size Prover

Cinderella non-interactive 7 |H|+ additional 164,826
equations for RSA (as
optimized in Cinderella)

GC + Sigma [21] interactive |H| |m| + |h| exp. + |H|
symmetric-key operations

Our composition
techniques

non-interactive 42 + log p |H| + log p + 16 exp.

From Laconic Zero-Knowledge
to Public-Key Cryptography

Extended Abstract

Itay Berman1, Akshay Degwekar1, Ron D. Rothblum1,2(B),
and Prashant Nalini Vasudevan1

1 MIT, Cambridge, USA
{itayberm,akshayd,prashvas,ronr}@mit.edu

2 Northeastern University, Boston, USA

Abstract. Since its inception, public-key encryption (PKE) has been
one of the main cornerstones of cryptography. A central goal in
cryptographic research is to understand the foundations of public-
key encryption and in particular, base its existence on a natural and
generic complexity-theoretic assumption. An intriguing candidate for
such an assumption is the existence of a cryptographically hard language
L ∈ NP ∩ SZK.

In this work we prove that public-key encryption can be based on
the foregoing assumption, as long as the (honest) prover in the zero-
knowledge protocol is efficient and laconic. That is, messages that the
prover sends should be efficiently computable (given the NP witness) and
short (i.e., of sufficiently sub-logarithmic length). Actually, our result
is stronger and only requires the protocol to be zero-knowledge for
an honest-verifier and sound against computationally bounded cheat-
ing provers.

Languages in NP with such laconic zero-knowledge protocols are
known from a variety of computational assumptions (e.g., Quadratic
Residuocity, Decisional Diffie-Hellman, Learning with Errors, etc.).
Thus, our main result can also be viewed as giving a unifying frame-
work for constructing PKE which, in particular, captures many of the
assumptions that were already known to yield PKE.

We also show several extensions of our result. First, that a certain
weakening of our assumption on laconic zero-knowledge is actually equiv-
alent to PKE, thereby giving a complexity-theoretic characterization
of PKE. Second, a mild strengthening of our assumption also yields a
(2-message) oblivious transfer protocol.

1 Introduction

Underlying symmetric key encryption is a centuries-old idea: shared secrets
enable secure communication. This idea takes many forms: the Caeser cipher,
the unconditionally secure one-time pads, fast heuristic constructions like AES,

Full version available at: https://eccc.weizmann.ac.il/report/2017/172.

c© International Association for Cryptologic Research 2018
H. Shacham and A. Boldyreva (Eds.): CRYPTO 2018, LNCS 10993, pp. 674–697, 2018.
https://doi.org/10.1007/978-3-319-96878-0_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96878-0_23&domain=pdf
https://eccc.weizmann.ac.il/report/2017/172

From Laconic Zero-Knowledge to Public-Key Cryptography 675

and a multitude of candidates based on the hardness of a variety of problems.
The discovery of public-key encryption, by Diffie and Hellman [DH76] and Rivest,
Shamir and Adleman [RSA78], was revolutionary as it gave us the ability to com-
municate securely without any shared secrets. Needless to say, this capability is
one of the cornerstones of secure communication in today’s online world.

As is typically the case in cryptography, we are currently very far from
establishing the security of public-key cryptography unconditionally. Rather, to
establish security, we rely on certain computational intractability assumptions.
Despite four decades of extensive research, we currently only know constructions
of public-key encryption from a handful of assumptions, most notably assump-
tions related to the hardness of factoring, finding discrete logarithms and compu-
tational problems related to lattices (as well as a few more exotic assumptions).

One of the central open problems in cryptography is to place public-key
encryption on firmer complexity-theoretic grounding, ideally by constructing
public-key encryption from the minimal assumption that one-way functions exist.
Such a result seems well beyond current techniques, and by the celebrated result
of Impagliazzo and Rudich [IR89] requires a non-blackbox approach. Given that,
a basic question that we would like to resolve is the following:

From what general complexity-theoretic assumptions can we construct

public-key cryptography?

Our motivation for asking this question is twofold. First, we seek to under-
stand: Why is it the case that so few assumptions give us public-key encryption?
What kind of “structured hardness” is required? Secondly, we hope that this
understanding can guide the search for new concrete problems that yield public-
key encryption.

1.1 Our Results

Our main result is a construction of a public-key encryption scheme from a gen-
eral complexity-theoretic assumption: namely, the existence of a cryptographi-
cally hard language L ∈ NP that has a laconic (honest-verifier) statistical zero-
knowledge argument-system. We first discuss the notions mentioned above, and
then proceed to state the main result more precisely (yet still informally).

By a cryptographically hard language we mean an NP language that is average-
case hard to decide with a solved instance generator. Namely, that there are two
distributions Y and N, over YES and NO instances of the language respectively,
such that (1) Y and N are computationally indistinguishable; and (2) there
exists an efficient solved instance generator for the YES distribution.1 A proof-
system is laconic [GH98,GVW02] if the number of bits sent from the prover
1 Loosely speaking, a solved-instance generator for the YES distribution Y of an

average-case hard language L ∈ NP is an algorithm that generates samples
(x,w) ∈ RL (where RL is the NP relation) and where x is distributed according
to Y.

676 I. Berman et al.

to the verifier is very small.2 An argument-system is similar to an interactive
proof, except that soundness is only required to hold against computationally
bounded (i.e., polynomial time) cheating provers. Honest verifier zero-knowledge
means that the honest verifier learns no more in the interaction than the fact
that x ∈ L (i.e., the verifier can simulate the honest interaction by itself). Thus,
our main result can be stated as follows:

Theorem 1.1 (Informally Stated, see Theorem 2.6). Assume that there
exists a cryptographically hard language L ∈ NP with an r-round statistical
honest-verifier zero-knowledge argument-system, with constant soundness, that
satisfies the following two requirements:

– Efficient Prover: The strategy of the honest prover can be implemented in
polynomial-time, given the NP witness.3

– Laconic Prover: The prover sends at most q bits in each of the r rounds,
such that r2 · q3 = O(log n), where n is the input length.

Then, there exists a public-key encryption (PKE) scheme.

We emphasize that requiring only honest-verifier zero-knowledge (as opposed
to full-fledged zero-knowledge) and computational soundness (i.e., an argument-
system) weakens our assumption, and therefore only strengthens our main result.
We also comment that we can handle provers that are less laconic (i.e., send
longer messages) by assuming that the language L is sub-exponentially hard.
Lastly, we remark the assumption in Theorem 1.1 may be viewed as a gener-
alization of the notion of hash proof systems [CS02].4 We discuss this point in
more detail in Sect. 1.2.

1.1.1 Instantiations
Many concrete assumptions (which are already known to yield public-key encryp-
tion schemes) imply the conditions of Theorem 1.1. First, number-theoretic
assumptions such as Quadratic Residuosity (QR) and Decisional Diffie-Hellman
(DDH) can be shown to imply the existence of a cryptographically hard NP lan-
guage with a laconic and efficient SZK argument-system and therefore satisfy the
conditions of Theorem1.1 (these and the other implications mentioned below are
proven in the full version of this paper).
2 Laconic proof-systems with constant soundness and very short communication (e.g.,

just a single bit) are indeed known. As a matter of fact, many of the known hard
problems that are known to yield public-key encryption schemes have such laconic
SZK proof-systems (see Sect. 1.1.1).

3 In the context of argument-systems (in contrast to general interactive proofs), the
assumption that the honest prover is efficient goes without saying. Nevertheless, we
wish to emphasize this point here.

4 As a matter of fact, hash proof systems can be viewed as a special case of our
assumption in which the (honest) prover is deterministic or, equivalently, sends only
a single bit. In contrast, we handle arbitrary randomized provers (that are sufficiently
laconic) and indeed most of the technical difficulty arises from handling this more
general setting. See additional details in Sect. 1.2.

From Laconic Zero-Knowledge to Public-Key Cryptography 677

We can also capture assumptions related to lattices and random linear codes
by slightly relaxing the conditions of Theorem1.1. Specifically, Theorem1.1 holds
even if we relax the completeness, soundness and zero-knowledge conditions
of the argument-system to hold only for most (but not necessarily all) of the
instances (chosen from the average-case hard distribution). We call arguments
with these weaker properties average-case SZK arguments.

It is not hard to see that lossy encryption [PVW08,BHY09] yields such an
average-case laconic and efficient zero-knowledge argument-system. Recall that a
PKE scheme is lossy if its public-keys are indistinguishable from so-called “lossy
keys” such that a ciphertext generated using such a lossy key does not contain
information about the underlying plaintext. Consider the following proof-system
for the language consisting of all valid public-keys: given an allegedly valid public-
key, the verifier sends to the prover an encryption of a random bit b and expects
to get in response the value b. It is not hard to see that this protocol is a laconic
and efficient average-case SZK argument-system.

Several concrete assumptions yield cryptographically hard languages with
average-case laconic and efficient SZK arguments (whether via lossy encryption
or directly). Most notably, Learning With Errors (LWE) [Reg05], Learning Parity
with Noise (LPN) with small errors [Ale03] and most of the assumptions used
by Applebaum et al. [ABW10] to construct PKE, all imply the existence of such
languages.

Thus, Theorem 1.1 gives a common framework for constructing public-key
encryption based on a variety of different intractability assumptions (all of which
were already known to yield public-key encryption via a variety of somewhat ad
hoc techniques), see also Fig. 1.

One notable hardness assumption that we do not know to imply our assump-
tion (even the average-case variant) is integer factorization (and the related RSA
assumption). We consider a further weakening of our assumption that captures
also the factoring and RSA assumptions. As a matter of fact, we show that this
further relaxed assumption is actually equivalent to the existence of a public-key
encryption scheme. We discuss this in more detail in Sect. 1.1.3.

1.1.2 Perspective — From SZK-Hardness to Public-Key Encryption
As noted above, one of the central goals in cryptography is to base public-key
encryption on a general notion of structured hardness. A natural candidate for
such structure is the class SZK of statistical zero-knowledge proofs, since many
of the assumptions that are known to yield public-key encryption have SZK
proof-systems. Indeed, it is enticing to believe that the following dream version
of Theorem 1.1 holds:

Open Problem 1.1. Assume that there exists a cryptographically-hard
language L ∈ NP ∩ SZK. Then, there exists a public-key encryption scheme.

678 I. Berman et al.

Our Assumption:
Laconic SZK Argument-System for

Cryptographically Hard NP Language
LWE

DDH

QR

LPN

[ABW10]*

Public-Key
Encryption

Theorem 1.1

Fig. 1. Instantiations of our assumption. Dashed arrows means that we only obtain
average-case completeness, soundness and zero-knowledge. The (*) sign means that
most, but not all, assumptions from [ABW10] imply our assumption.

(Here by SZK we refer to the class of languages having statistical zero-knowledge
proof-systems rather than argument-systems as in Theorem 1.1. Assuming this
additional structure only makes the statement of Open Problem1.1 weaker and
therefore easier to prove.)

Solving Open Problem1.1 would be an outstanding breakthrough in cryp-
tography. For instance, it would allow us to base public-key cryptography on the
intractability of the discrete logarithm (DLOG) problem,5 since (a decision prob-
lem equivalent to) DLOG has a perfect zero-knowledge proof-system6 [GK93], or
under the plausible quasi-polynomial average-case7 hardness of the graph iso-
morphism problem (via the perfect zero-knowledge protocol of [GMW87]).

We view Theorem 1.1 as an initial step toward solving Open Problem1.1.
At first glance, it seems that Theorem 1.1 must be strengthened in two ways in
order to solve Open Problem1.1. Namely, we need to get rid of the requirements
that the (honest) prover is (1) efficient and (2) laconic. However, it turns out
that it suffices to remove only one of these restrictions, no matter which one, in
order to solve Open Problem1.1. We discuss this next.

Handling Inefficient Provers. Sahai and Vadhan [SV03] showed a problem, called
statistical distance, which is both (1) complete for SZK, and (2) has an extremely
laconic honest-verifier statistical zero-knowledge proof in which the prover only
sends a single bit (with constant soundness error). The immediate implication
5 Public-key schemes based on assumptions related to discrete log such as the deci-

sional (or even computational) Diffie Hellman assumption are known to exist. Never-
theless, basing public-key encryption solely on the hardness of discrete log has been
open since the original work of Diffie and Hellman [DH76].

6 That proof-system is actually laconic but it is unclear how to implement the prover
efficiently.

7 Graph isomorphism is in fact known to be solvable in polynomial-time for many
natural distributions, and the recent breakthrough result of Babai [Bab16] gives
a quasi-polynomial worst-case algorithm. Nevertheless, it is still conceivable that
Graph Isomorphism is average-case quasi-polynomially hard (for some efficiently
samplable distribution).

From Laconic Zero-Knowledge to Public-Key Cryptography 679

is that any SZK protocol can be compressed to one in which the prover sends
only a single bit.

Unfortunately, the foregoing transformation does not seem to maintain the
computational efficiency of the prover. Thus, removing the requirement that the
prover is efficient from Theorem 1.1 (while maintaining the laconism require-
ment) would solve Open Problem 1.1.

Handling Non-Laconic Provers. Suppose that we managed to remove the lacon-
ism requirement from Theorem 1.1 and only required the prover to be efficient.
It turns out that the latter would actually imply an even stronger result than
that stated in Open Problem1.1. Specifically, assuming only the existence of
one-way functions, Haitner et al. [HNO+09] construct (non-laconic) statistical
zero-knowledge arguments for any NP language, with an efficient prover. Thus,
removing the laconism requirement from Theorem1.1 would yield public-key
encryption based merely on the existence of one-way functions.

In fact, even a weaker result would solve Open Problem1.1. Suppose we
could remove the laconism requirement from Theorem1.1 while insisting that
the proof-system has statistical soundness (rather than computational). Such a
result would solve Open Problem1.1 since Nguyen and Vadhan [NV06] showed
that every language in NP ∩ SZK has an SZK protocol in which the prover is
efficient (given the NP witness).

To summarize, removing the laconism requirement from Theorem 1.1, while
still considering an argument-system, would yield public-key encryption from
one-way functions (via [HNO+09]). On the other hand, removing the lacon-
ism requirement while insisting on statistical soundness would solve Open Prob-
lem 1.1 (via [NV06]). (Note that neither the [NV06] nor [HNO+09] proof-systems
are laconic, so they too cannot be used directly together with Theorem 1.1 to
solve Open Problem 1.1.)

1.1.3 Extensions
We also explore the effect of strengthening and weakening our assumption. A nat-
ural strengthening gives us oblivious transfer, and as mentioned above, a certain
weakening yields a complete complexity-theoretic characterization of public-key
encryption.

A Complexity-Theoretic Characterization. The assumption from which we con-
struct public-key encryption (see Theorem 1.1) requires some underlying hard
decision problem. In many cryptographic settings, however, it seems more nat-
ural to consider hardness of search problems (e.g., integer factorization). Thus,
we wish to explore the setting of laconic SZK arguments when only assuming the
hardness of computing a witness for an instance sampled from a solved instance
generator. Namely, an NP relation for which it is hard, given a random instance,
to find a corresponding witness.

680 I. Berman et al.

We introduce a notion of (computationally sound) proof-systems for such NP
search problems, which we call arguments of weak knowledge (AoWK). Loosely
speaking, this argument-system convinces the verifier that the prover with which
it is interacting has at least some partial knowledge of some witness. Or in other
words, no efficient cheating prover can convince the verifier to accept given only
the input. We further say that an AoWK is zero-knowledge if the verifier learns
nothing beyond the fact that the prover has the witness.

We show that Theorem 1.1 still holds under the weaker assumption that
there is an efficient and laconic SZK-AoWK (with respect to some hard solved
instance generator). Namely, the latter assumption implies the existence of PKE.
Furthermore, we also show that the same assumption is also implied by any PKE
scheme, thus establishing an equivalence between the two notions which also
yields a certain complexity-theoretic characterization of public-key encryption.

Oblivious Transfer. Oblivious Transfer (OT) is a fundamental cryptographic
primitive, which is complete for the construction of general secure multiparty
computation (MPC) protocols [GMW87,Kil88]. We show that by making a
slightly stronger assumption, Theorem1.1 can extended to yield a (two-message)
semi-honest OT protocol.

For our OT protocol, in addition to the conditions of Theorem1.1, we need
to further assume that there is a way to sample instances x such that it is hard
to tell whether x ∈ L or x �∈ L even given the coins of the sampling algorithm.8

We refer to this property as enhanced cryptographic hardness in analogy to the
notion of enhanced trapdoor permutations.

1.2 Related Works

Cryptography and Hardness of SZK. Ostrovsky [Ost91] showed that the existence
of a language in SZK with average-case hardness implies the existence of one-
way functions. Our result can be interpreted as an extension of Ostrovsky’s
result: By assuming additional structure on the underlying SZK protocol, we
construct a public-key encryption scheme. In fact, some of the ideas underlying
our construction are inspired by Ostrovsky’s one-way function.

Average-case SZK hardness also implies constant-round statistically hiding
commitments [OV08], a primitive not implied by one-way functions in a black-
box way [HHRS15]. Assuming the existence of an average-case hard language
in a subclass of SZK (i.e., of languages having perfect randomized encodings),
Applebaum and Raykov [AR16] construct Collision Resistant Hash functions.

In the other direction, some cryptographic primitives like homomorphic
encryption [BL13], lossy encryption, witness encryption and indistinguishabil-
ity obfuscators [KMN+14,PPS15], and PIR (computational private information

8 In particular, the sampling algorithm that tosses a coin b ∈ {0, 1} and outputs x ∈ L
if b = 0 and x �∈ L otherwise does not satisfy the requirement (since the value of b
reveals whether x ∈ L).

From Laconic Zero-Knowledge to Public-Key Cryptography 681

retrieval) [LV16] imply the existence of average-case hard problems in SZK.9 We
also mention that many other primitives, such as one-way functions, public-key
encryption and oblivious transfer do not imply the existence of average-case hard
problems in SZK (under black-box reductions) [BDV16].

Hash Proof-Systems. Hash Proof-Systems, introduced by Cramer and Shoup
[CS02], are a cryptographic primitive which, in a nutshell, can be described as a
cryptographically hard language in NP with a one-round SZK protocol in which
the honest prover is efficient given the NP witness and deterministic (and without
loss of generality sends only a single bit). This is precisely what we assume for
our main result except that we can handle randomized provers that send more
bits of information (and the protocol can be multi-round). This special case
of deterministic provers is significantly simpler to handle (and will serve as a
warmup when describing our techniques). Our main technical contribution is
handling arbitrary randomized provers.

Public-key encryption schemes have been shown to imply the existence of cer-
tain weak hash proof-systems [HLWW16]. Hash proof-systems were also shown
in [GOVW12] to yield resettable statistical zero-knowledge proof-systems.

Laconic Provers. A study of interactive proofs in which the prover is laconic (i.e.,
transmits few bits to the verifier) was initiated by Goldreich and H̊astad [GH98]
and was further explored by Goldreich, Vadhan and Wigderson [GVW02]. These
focus in these works is on general interactive proofs (that are not necessarily zero-
knowledge) and their main results are that laconic interactive proofs are much
weaker than general (i.e., non-laconic) interactive proofs.

1.3 Techniques

To illustrate the techniques used, we sketch the proof of a slightly simplified ver-
sion of Theorem 1.1. Specifically, we construct a PKE given a cryptographically
hard language L with a single-round efficient-prover and laconic SZK argument-
system (we shall briefly mention the effect of more rounds where it is most
relevant). For simplicity, we also assume that the SZK protocol has perfect com-
pleteness and zero-knowledge. In the actual construction, given in the technical
sections, we handle constant completeness error, negligible simulation error, and
more rounds of interaction. Lastly, since we find the presentation more appeal-
ing, rather than presenting a public-key scheme, we construct a single-round
key-agreement protocol.10 Any such protocol can be easily transformed into a
public-key encryption scheme.

9 On a somewhat related note, we mention that combining [BL13] with our result gives
a construction of public-key encryption from symmetric-key additively homomorphic
encryption. This was already shown in [Rot11] via a direct construction.

10 Loosely speaking, a key agreement protocol allows Alice and Bob to agree on a
common key that is unpredictable to an external observer that has wire tapped their
communication lines.

682 I. Berman et al.

Let L ∈ NP be a cryptographically hard language with an SZK argument-
system with prover P, verifier V and simulator S. We assume that the argument-
system has perfect completeness, no simulation error and soundness error s, for
some s > 0. Let YL be a solved-instance generator for L producing samples of
the form (x,w), where x ∈ L and w is a valid witness for x. The fact that L
is cryptographically hard means that there exists a sampler NL that generates
NO instances for L that are computationally indistinguishable from the YES
instances generated by YL.

Deterministic Prover. As a warmup, we assume first that the honest prover in
the SZK argument-system is deterministic. As will be shown below, this case is
significantly easier to handle than the general case, but it is a useful step toward
our eventual protocol.

We construct a key-agreement protocol between Alice and Bob as follows.
First Alice generates a solved instance-witness pair (x,w) ← YL. Alice then sends
x across to Bob. Bob runs the simulator S(x) to generate a transcript (a′, b′, r′),
where a′ corresponds to the verifier’s message, b′ corresponds to the prover’s
message and r′ correspond to the simulated random string for the verifier.11

Bob sends the first message a′ across to Alice. Bob then outputs the simulated
second message b′. Alice uses the witness w to generate the prover’s response b
(i.e., the prover P’s actual response given the message a′ from the verifier) and
outputs b. The protocol is also depicted in Fig. 2.

Alice Bob

(x,w) ← YL x (a′, b′, r′) ← S(x)

Output b = P(x,w, a′) a′
Output b′

Fig. 2. Key agreement from deterministic provers

To argue that Fig. 2 constitutes a key-agreement protocol, we need to show
that Alice and Bob output the same value, and that no efficient eavesdropper
Eve (who only sees their messages) can predict this output with good probability.

That they agree on the same value follows from the fact that the prover is
deterministic and the simulation is perfect. More specifically, since the simulation
is perfect, the distribution of the simulated verifier’s message a′ is the same as
that of the actual verifier’s message; and now since the prover is deterministic,
given (x,w, a′), the prover’s response b, which is also Alice’s output, is fixed.

11 Throughout this paper, we use the convention that primed symbols are for objects
associated with a simulated (rather than real) execution of the protocol.

From Laconic Zero-Knowledge to Public-Key Cryptography 683

Since the simulation is perfect and x ∈ L, if the simulator outputs (a′, b′, r′),
then b′, which is Bob’s output, is necessarily equal to b.

Next, we show that any eavesdropper Eve who is able to guess Bob’s output
in the protocol can be used to break the cryptographic hardness of L. Suppose
Eve is able to guess Bob’s output in the protocol with probability p. This means
that given only x and a′, where (a′, b′, r′) is produced by the simulator S(x),
Eve is able to find the message b′:

Pr
(x,·)←YL

(a′,b′,r′)←S(x)

[b′ = b′′ where b′′ ← Eve(x, a′)] = p.

As the SZK argument has perfect completeness, and the simulation is also
perfect, the transcripts produced by the simulator (on YES instances) are always
accepted by the verifier. As Eve is able to produce the same prover messages as
the simulator, her messages will also be accepted by the verifier. Namely,

Pr
(x,·)←YL

(a′,b′,r′)←S(x)

[V(x, a′, b′′; r′) = 1 where b′′ ← Eve(x, a′)] ≥ p.

Again using the fact that the simulation is perfect, we can replace the simu-
lated message a′ and simulated coin tosses r′ with a verifier message a and coins
r generated by a real execution of the protocol:

Pr
(x,·)←YL
a←V(x;r)

[V(x, a, b′′; r) = 1 where b′′ ← Eve(x, a)] ≥ p.

Recall that NL samples no-instances that are computationally indistinguish-
able from the YES instances generated by YL. If x had been a NO instance
sampled using NL, then the (computational) soundness of the SZK argument
implies that the verifier would reject with probability 1 − s:

Pr
x←NL

a←V(x;r)

[V(x, a, b′′; r) = 1 where b′′ ← Eve(x, a)] < s,

where s is the soundness error. If p is larger than s by a non-negligible amount,
then we have a distinguisher, contradicting the cryptographic hardness of L. So,
no efficient eavesdropper can recover the agreed output value with probability
noticeably more than s, the soundness error of the SZK argument.

Notice that so far we have only guaranteed that the probability of success
of the eavesdropper is s, which may be as large as a constant (rather than
negligible).12 Nevertheless, using standard amplification techniques (specifically
those of Holenstein and Renner [HR05]) we can compile the latter to a full-
fledged key-agreement protocol.
12 This error can be made negligible by parallel repetition [BIN97] (recall that parallel

repetition preserves honest-verifier zero-knowledge). Doing so however makes the
prover’s messages longer. While this is not an issue when dealing with deterministic
provers, it will prove to be problematic in the general case of a randomized prover.

684 I. Berman et al.

Randomized Prover. So far we have handled deterministic provers. But what
happens if the prover were randomized? Agreement is now in jeopardy as the
prover’s message b is no longer completely determined by the instance x and
the verifier’s message a. Specifically, after Alice receives the simulated verifier
message a′ from Bob, she still does not know the value of b′ that Bob obtained
from the simulator – if she ran P(x,w, a′), she could get one of several possible
b’s, any of which could be the correct b′. Roughly speaking, Alice only has access
to the distribution from which b′ was sampled (but not to the specific value that
was sampled).

Eve, however, has even less to work with than Alice; we can show, by an
approach similar to (but more complex than) the one we used to show that no
polynomial-time eavesdropper can guess b′ in the deterministic prover case, that
no polynomial-time algorithm can sample from any distribution that is close to
the true distribution of b′ for most x’s and a′’s.

We make use of this asymmetry between Alice and Eve in the knowledge
of the distribution of b′ (given x and a) to perform key agreement. We do so
by going through an intermediate useful technical abstraction, which we call
a Trapdoor Pseudoentropy Generator, that captures this asymmetry. We first
construct such a generator, and then show how to use any such generator to do
key agreement.

Trapdoor Pseudoentropy Generator. A distribution is said to possess pseudoen-
tropy [HILL99] if it is computationally indistinguishable from another distribu-
tion that has higher entropy13. We will later claim that in the protocol in Fig. 2
(when used with a randomized prover), the distribution of b′ has some pseudoen-
tropy for the eavesdropper who sees only x and a′. In contrast, Alice, who knows
the witness w, can sample from the distribution that b′ was drawn from. This
set of properties is what is captured by our notion of a trapdoor pseudoentropy
generator.

A trapdoor pseudoentropy generator consists of three algorithms. The key
generation algorithm KeyGen outputs a public and secret key pair (pk, sk). The
encoding, given a public key pk, outputs a pair of strings (u, v), where we call
u the public message and v the private message.14 The decoding algorithm Dec,
given as input the corresponding secret key and the public message u, outputs
a value v′. These algorithms are required to satisfy the following properties
(simplified here for convenience):

– Correctness: The distributions of v and v′ are identical, given pk, sk,
and u.

– Pseudoentropy: The distribution of v has some pseudoentropy given pk
and u.

13 By default, the measure of entropy employed is that of Shannon entropy.
The Shannon entropy of a variable X given Y is defined as: H(X|Y) =
Ey

[− ∑
x Pr[X = x|y] · log(Pr[X = x|y])].

14 We refer to this procedure as an encoding algorithm because we think of the public
message as an encoding of the private message.

From Laconic Zero-Knowledge to Public-Key Cryptography 685

Correctness here only means that the secret key can be used to sample from
the distribution of the private message v corresponding to the given public mes-
sage u. This captures the weaker notion of agreement observed in the protocol
earlier when Alice had sampling access to the distribution of Bob’s output.

The pseudoentropy requirement says that without knowledge of the secret
key, the private message v seems to have more entropy – it looks “more random”
than it actually is. This is meant to capture the asymmetry of knowledge between
Alice and Eve mentioned earlier.

Constructing a Trapdoor Pseudoentropy Generator. Our construction of a trap-
door pseudoentropy generator is described in Fig. 3. It is an adaptation of the
earlier key exchange protocol for deterministic provers (from Fig. 2). The pub-
lic key is an instance x in the language L and the corresponding secret key is
a witness w for x – these are sampled using the solved-instance generator. To
encode with public key x, the simulator from the SZK argument for L is run on
x and the simulated verifier message a′ is set to be the public message, while the
simulated prover message b′ is the private message. To decode given x, w and
a′, the actual prover is run with this instance, witness and verifier message, and
the response it generates is output.

KeyGen

1. Sample (x,w) ← YL
2. Output (pk = x, sk = w)

Enc(pk = x)

1. Sample (a′, b′, r) ← S(x)
2. Output (u = a′, v = b′)

Dec(pk = x, sk = w, u = a′)

1. Sample v′ ← P(x,w, a′)
2. Output v′

Fig. 3. Trapdoor pseudoentropy generator

Now we argue that this is a valid pseudoentropy generator. Since we will need
to be somewhat precise, for the rest of this section, we introduce the jointly-
distributed random variables X, A and B, where X represents the instance
(sampled from YL), A represents the verifier’s message (with respect to X), and
B represents the prover’s response (with respect to X and A). Note that since the
simulation in the SZK argument is perfect, A and B represent the distributions
of the messages output by the simulator as well.

The correctness of our construction follows from the perfect zero knowledge
of the underlying SZK argument – the private message v produced by Enc here is
the simulated prover’s message b′, while the output of Dec is the actual prover’s

686 I. Berman et al.

response b with the same instance and verifier’s message. Both of these have the
same distribution, which corresponds to that of B conditioned on X = x and
A = a′.

In order to satisfy the pseudoentropy condition, the variable B needs to have
some pseudoentropy given X and A. What we know, as mentioned earlier, is that
B is unpredictable given X and A – that no polynomial-time algorithm, given x
and a′, can sample from a distribution close to that of the corresponding prover’s
message b. Towards this end, we will use a result of Vadhan and Zheng [VZ12],
who give a tight equivalence between unpredictability and pseudoentropy. Applied
to our case, their results say what we want – that the variable B has additional
pseudoentropy log(1/s) given X and A, where s is the soundness error from the
SZK argument. More precisely, there exists a variable C such that:

(X,A,B) ≈c (X,A,C) and H(C|X,A) > H(B|X,A) + log(1/s), (1)

where the above expressions refer to Shannon entropy. The result of Vadhan and
Zheng applies only when the variable B has a polynomial-sized domain, which
holds since the proof-system is laconic (this is the first out of several places in
which we use the laconism of the proof-system). The above shows that the con-
struction in Fig. 3 is indeed a trapdoor pseudoentropy generator. Finally, and this
will be crucial ahead, note that the private message produced by Enc is short (i.e.,
the same length as the prover’s message in the SZK argument we started with).

In the case of an SZK protocol with r rounds, the above construction would
be modified as follows. The encoder Enc samples a transcript from S(x), picks
i ∈ [r] at random, sets the public message u to be all the messages in the
transcript upto the verifier’s message in the ith round, and the private message
v to be the prover’s message in the ith of the transcript. The decoder Dec samples
v′ by running the prover on the partial transcript u to get the actual prover’s
response in the ith round.15 Zero knowledge ensures that v′ and v are distributed
identically, and unpredictability arguments similar to the ones above tell us that
v′ has pseudoentropy at least log(1/s)/r.

From Laconic Trapdoor Pseudoentropy Generator to Key Agreement. Next, given
a trapdoor pseudoentropy generator, such as the one in Fig. 3, we show how to
construct a single-round key agreement protocol. We start with a pseudoentropy
generator in which the public key is pk, the private key is sk, the public message
is u, the private message is v, and the output of Dec is v′. The random variables
corresponding to these are the same symbols in upper case. v and v′ come from
the distribution Vpk,u (V conditioned on PK = pk and U = u), and V has
additional pseudo-Shannon-entropy η given PK and U , where η can be thought
of as a constant (η was log(1/s) in the foregoing construction).

In the key agreement protocol, first Alice samples a key pair (pk, sk) for
the pseudoentropy generator and sends the public key pk to Bob. Bob runs
(u, v) ← Enc(pk), keeps the private message v and sends the public message u

15 For simplicity, assume that the prover is stateless so it can be run on a partial
transcript. In the actual proof we handle stateful provers as well.

From Laconic Zero-Knowledge to Public-Key Cryptography 687

to Alice. We would like for Alice and Bob to agree on the string v. In order for
this to be possible, Bob needs to send more information to Alice so as to specify
the specific v that was sampled from Vpk,u. A natural idea is for Bob to send,
along with the message u, a hash h(v) of v, where h is a sampled from a pairwise
independent hash function family H.

Alice, on receiving the hash function h and the hash value h(v), uses rejection
sampling to find v. She can sample freely from the distribution Vpk,u by running
Dec(sk, u) because she knows the secret key sk of the pseudoentropy generator
and the public message u. She keeps drawing samples v′ from Vpk,u, until she
finds one that hashes to h(v). Note that this brute force search is only feasible
if the number of strings in the support of V is small, which is the case if the
number of bits in v is small – considering the big picture, this is one of the
reasons we want the prover from the SZK argument to be laconic.

The main question now is how to set the length of the hash function. On the
one hand, having a long hash helps agreement, as more information is revealed
to Alice about v. On the other hand, security demands a short hash that does
not leak “too much” information about v.

For agreement, roughly speaking, if the hash length were more than the max-
entropy16 of V given PK and U , which we denote by Hmax(V |PK,U), then the
set of possible prover responses is being hashed to a set of comparable size, so
with good probability, the hash value h(v) will have a unique pre-image, which
Alice can identify.

For security we would like to argue, using the Leftover Hash Lemma, that to
any eavesdropper h(v) looks uniformly random given (pk, u, h). This would be
true if the hash length were less than the min-entropy17 of V given PK and U ,
which we denote by Hmin(V |PK,U). Unfortunately, both of the above conditions
cannot hold simultaneously because the min-entropy is upper-bounded by the
max-entropy.

At this point we use the fact that Eve is computationally bounded. Hence,
a computational analogue of high min-entropy, which we will call pseudo-min-
entropy, would suffice for security. Concretely, consider a random variable C such
that (PK,U,C) is computationally indistinguishable from (PK,U, V). Further-
more, suppose that the min-entropy of C given PK and U is considerably larger
than the hash length. We can then use the Leftover Hash Lemma to argue that
h(V) looks uniform to efficient eavesdroppers:

(PK,U, h, h(V)) ≈c (PK,U, h, h(C)) ≈s (PK,U, h,R)

where R is the uniform distribution over the range of h.
The benefit of this observation is that, since C is only required to be com-

putationally close and not statistically close to V , the min-entropy of C given

16 The max entropy corresponds to the logarithm of the support size. The condi-
tional max entropy of a random variable X given Y is defined as: Hmax(X|Y) =
maxy log(|Supp(X|Y = y)|).

17 The min-entropy of a variable X given Y is defined as: Hmin(X|Y) =
− log(maxx,y Pr[X = x|Y = y]).

688 I. Berman et al.

PK and U could be much larger than that of V given PK and U . And if we can
find a C such that Hmin(C|PK,U) is sufficiently larger than Hmax(V |PK,U),
then we will indeed be able to choose a hash length that is both large enough
for agreement and small enough for security.

Also notice that for the agreement to work, it is not necessary for the hash
length to be larger than the max-entropy of V (given PK and U) itself – instead,
if there was another variable D such that (PK,U,D) is statistically close to
(PK,U, V), and also Alice is somehow able to sample from D given PK = pk
and U = u, then it is sufficient for the hash to be longer than Hmax(D|PK,U).
Given such a variable, Bob will operate as he did earlier, but Alice can assume
that he is actually sampling from Dpk,u instead of Vpk,u, and since these two
distributions are close most of the time, the probability of Alice’s subsequent
computation going wrong is small. This helps us because now we might be able
to find such a D that has lower max-entropy given PK and U than V , and then
Hmin(C|PK,U) would only have to be larger than this.

Following these observations, we set ourselves the following objective: find
variables C and D such that:

(PK,U,D) ≈s (PK,U, V) ≈c (PK,U,C)
and (2)

Hmax(D|PK,U) < Hmin(C|PK,U)

What we do know about V is that it has some pseudo-Shannon-entropy given
PK and U . That is, there is a variable C such that:

(PK,U, V) ≈c (PK,U,C) and H(C|PK,U) > H(V |PK,U) + η (3)

The rest of our construction deals with using this pseudo-Shannon-entropy
to achieve the objectives above. This we do using a technique from Information
Theory dating back to Shannon [Sha48] which is often referred to in the cryptog-
raphy literature as flattening of distributions, which we describe next. We note
that this technique has found use in cryptography before [HILL99,GV99,SV03].

Flattening and Typical Sets. The central idea here is that repetition essentially
reduces the general case to the case where the distribution is “almost flat”.
Namely, if we start with a distribution that has Shannon entropy ξ and repeat
it k times, then the new distribution is close to being uniform on a set whose
size is roughly 2kξ. This set is called the typical set ; it consists of all elements
whose probability is close to 2−kξ.

In our case, consider the distribution (PKk, Uk, V k), which is the k-fold
product repetition of (PK,U, V). Roughly speaking, we define the typical set of
V k conditioned on any (pk,u) in the support18 of (PKk, Uk) as follows19:

18 The support of (PKk, Uk) consists of vectors with k elements. We represent vectors
by bold symbols, e.g., v.

19 The actual definition quantifies how different from 2−kH the probability is allowed
to be.

From Laconic Zero-Knowledge to Public-Key Cryptography 689

TV k|pk,u =
{

v : Pr
[
V k = v

∣∣(PKk, Uk) = (pk,u)
]

≈ 2−kH(V |PK,U)
}

Considering the typical set is useful for several reasons. On the one hand, the
typical set is quite small (roughly 2kH(V |PK,U)) in size, which means that any
distribution supported within it has somewhat low max-entropy. On the other
hand, there is an upper bound on the probability of any element that occurs in
it, which could be useful in lower bounding min-entropy, which is what we want
to do.

The most important property of the typical set it that it contains most of
the probability mass of the conditional repeated distribution. That is, for most
(pk,u,v) sampled from (PKk, Uk, V k), it holds that v lies in the typical set
conditioned on (pk,u); quantitatively, Holenstein and Renner [HR11] show the
following:

Pr
(pk,u,v)←(PKk,Uk,V k)

[
v �∈ TV k|pk,u

]
< 2−Ω(k/q2) (4)

where q is the number of bits in each sample from V . Recall that in our earlier
construction of the trapdoor pseudoentropy generator, this corresponds to the
length of the prover’s message in the SZK argument we started with. We want
the above quantity to be quite small, which requires that k � q2. This is one of
the considerations in our ultimate choice of parameters, and is another reason
we want the prover’s messages to not be too long.

Back to PKE Construction. We shall use the above facts to now show that V k has
pseudo-min-entropy given PKk and Uk. Let C be the random variable from the
expression (3) above that we used to show that V has pseudo-Shannon-entropy.
After repetition, we have that:

(PKk, Uk, V k) ≈c (PKk, Uk, Ck) and

H(Ck|PKk, Uk) = k · H(C|PK,U) > k · (H(V |PK,U) + η).

Next, consider the variable C ′ that is obtained by restricting, for each pk and u,
the variable Ck to its typical set conditioned on (pk,u). By applying the bound
of Holenstein and Renner (4) with an appropriate choice of k, we infer that:

(PKk, Uk, Ck) ≈s (PKk, Uk, C ′).

Further, the upper bound on the probabilities of elements in the typical set
tells us that C ′ has high min-entropy20 given PKk and Uk:

20 Hmin(C
′|PKk, Uk) could actually be slightly less than the approximate lower bound

presented here because there is some slack allowed in the definition of the typical set
– it can contain elements whose probabilities are slightly larger than 2−kH(C|PK,U).
We need to pick this slack carefully – if it is too large, C′ loses its min-entropy, and
if it is too small the typical set also becomes too small and the bound in (4), which
actually depends on this slack, becomes meaningless. This is another constraint on
our choice of parameters.

690 I. Berman et al.

Hmin(C ′|PKk, Uk) ≈ H(Ck|PKk, Uk) ≥ k · (H(V |PK,U) + η).

Putting the above few expressions together tells us that V k has some pseudo-
min-entropy given PKk and Uk, which is in fact somewhat more than its Shan-
non entropy:

(PKk, Uk, V k) ≈c (PKk, Uk, C ′)
and (5)

Hmin(C ′|PKk, Uk) � H(V k|PKk, Uk) + k · η.

This satisfies our objective of getting a variable – V k here – that has high
pseudo-min-entropy (given PKk and Uk). Our goal is now to find another vari-
able that is statistically close to V k given PKk and Uk, and also has small
max-entropy given PKk and Uk. We do this using the same approach as above.
Consider the variable V ′ that is constructed from V k in the same way C ′ was
from Ck – for each (pk,u), restrict V k to its typical set conditioned on (pk,u).
Again, bound (4) tells us that the new distribution is close to the old one. And
also, because of the upper bound on the size of the typical set, we have an upper
bound on the max-entropy21 of V ′ given PKk and Uk.

(PKk, Uk, V k) ≈s (PKk, Uk, V ′)
and (6)

Hmax(V ′|PKk, Uk) � H(V k|PKk, Uk).

Putting together expressions (5) and (6), we find that the relationship we
want between these entropies of C ′ and V ′ is indeed satisfied:

Hmin(C ′|PKk, Uk) � Hmax(V ′|PKk, Uk) + k · η.

To summarize, we manage to meet the conditions of expression (2) with respect
to (PKk, Uk, V k) (instead of (PK,U, V)) with C ′ taking the role of C and V ′

taking the role of D. We can now finally fix the length of our hash – call it �
– to be between Hmax(V ′|PKk, Uk) and Hmin(C ′|PKk, Uk), which can be done
by setting it to a value between H(V k|PKk, Uk) and H(V k|PKk, Uk) + kη for
an appropriate k, and emulate the earlier protocol. We will be able to use the
Leftover Hash Lemma as desired to argue security and use the low max-entropy
of V ′ to argue agreement.

The final key agreement protocol from a trapdoor pseudoentropy generator
is presented in Fig. 4.

21 The same caveats as in Footnote 20 regarding the min-entropy of C′ apply here as
well.

From Laconic Zero-Knowledge to Public-Key Cryptography 691

Alice Bob

{(pki, ski) ← KeyGen}i∈[k]
pk = (pk1, pk2 . . . pkk) {(ui, vi) ← Enc(pki)}i∈[k]

Use the samplers {Dec(pki, ski, ui)} to recover

the distribution of V k conditioned on (pk,u).

Find v′ such that:

1. v′ is in the typical set of this distribution

2. h(v′) = h(v)

u, h, h(v) h ← H�

Output v′ Output v

Fig. 4. Key agreement from trapdoor pseudoentropy generator

How Laconic? To examine how long the prover’s message can be, lets recall the
restrictions of our construction. First, we need both parties to be efficient. While
Bob is clearly efficient, Alice performs an exhaustive search over the domain
of possible prover messages. The size of this domain is 2q·k because the parties
repeat the underlying protocol k times and the length of each prover’s message is
q bits. For Alice to be efficient, this domain has to be polynomial-sized, requiring
that q · k = O(log n), where n is the input length. Second, we need that the
concentration bound for the typical set (Eq. (4)) to be meaningful; that is, we
need k/q2 to be at least a constant. Together, these imply that q3 needs to be
O(log n). Lastly, this setting of parameters also suffices for the [VZ12] result that
we used in Eq. (1).

2 The Assumption and Main Theorem

In this section, we specify our assumption on the existence of laconic zero-
knowledge proof-systems, and state our main theorem regarding its implication
for public-key encryption. Due to space limitations, the formal descriptions of
our constructions and the proof of our theorem are deferred to the full version
of this paper.

We first introduce some necessary definitions and notations. Throughout this
section, we use L to denote an NP language with witness relation RL. We use
YL and NL to denote probabilistic polynomial-time algorithms that are to be
seen as sampling algorithms for YES and NO instances of L. More specifically,
the sampler YL(1λ) outputs samples of the form (x,w) such that with all but
negligible probability (in λ), it holds that (x,w) ∈ RL. We call YL a solved
instance generator. On the other hand, NL(1λ) outputs samples x such that with
all but negligible probability, x /∈ L. We shall not rely on the fact that the NO
sampler NL is an efficient algorithm. Still we find it easier to present it as such
for symmetry with YL (which must be efficient).

We shall be concerned with properties of the tuple (L,YL,NL) – the language
L equipped with (efficiently sampleable) distributions over its YES and NO
instances (where YES instances come with corresponding witnesses). Since the

692 I. Berman et al.

choice of YES and NO distributions is always clear from the context, we often
simply refer to the above tuple as the language (although we actually mean
the language L with these specific distributions over its instances). We start by
defining what we mean when we say that such a language is cryptographically
hard.

Definition 2.1 (Cryptographic Hardness). Let t = t(λ) ∈ N and ε = ε(λ) ∈
[0, 1]. The language (L,YL,NL) is (t, ε)-cryptographically hard if YL is a solved
instance generator, and for every probabilistic algorithm A that on input (1λ, x)
runs in time t(λ) and for all sufficiently large λ ∈ N it holds that:

∣∣∣∣ Pr
(x,·)←YL(1λ)

[
A(1λ, x) = 1

]
− Pr

x←NL(1λ)

[
A(1λ, x) = 1

]∣∣∣∣ ≤ ε(λ),

where the above probabilities are also over the random coins of A. We say that
(L,YL,NL) is cryptographically hard if it is (λc, 1/λc)-hard for every constant
c > 0.

Being cryptographically hard is a stronger requirement than the usual notion
of average-case hardness (the latter means that it is hard to distinguish a random
YES instance from a random NO instance). Specifically, cryptographic hardness
requires both (1) average-case hardness and (2) the existence of a solved instance
generator (wrt the average-case hard distribution). In particular, the existence
of a cryptographically hard language is equivalent to the existence of one-way
functions.22 As noted above, when we say that the language L is cryptograph-
ically hard we are actually implicitly referring to the sampling algorithms YL
and NL.

Next we define honest-verifier statistical zero-knowledge (SZK) arguments,
which are similar to statistical honest-verifier zero-knowledge proofs but the
soundness condition is only required to hold against malicious provers that run
in polynomial-time. We remark that since we will be using the existence of
SZK arguments to construct other objects, both the relaxations that we employ
(namely requiring only computational soundness and honest verifier zero knowl-
edge) only strengthen our results.

Below, we use (P,V)(1λ, x) to refer to the transcript of an execution of an
interactive protocol with prover P and verifier V on input (1λ, x). We also use
(P(w),V)(1λ, x) to denote a similar execution where the prover is additionally
given a witness w as an auxiliary input. In both cases, we sometimes also use the
22 That YES instances are indistinguishable from NO instances implies that it is hard

to compute a witness for a YES instance. Given this, a function that takes coins for
YL and outputs the instance (but not the witness) generated by YL is one-way (c.f.,
[Gol08, Proposition 7.2]). For the other direction, assuming that one-way functions
exist implies the existence of a linear-stretch pseudorandom generators (PRG) G
[HILL99]. The language that is cryptographically hard contains those strings that
are in the range of G. The solved instance generator samples a random string r and
outputs G(r) as the input and r as the witness. The corresponding NO distribution
is that of a random string in the range of the PRG.

From Laconic Zero-Knowledge to Public-Key Cryptography 693

same notation to refer to the result (i.e., verifier’s output) of such an execution
– the appropriate interpretation will be clear from context.

Definition 2.2 (SZK Arguments). Let c = c(λ) ∈ [0, 1] and s = s(λ) ∈
[0, 1]. An interactive protocol (P,V) is an Honest Verifier SZK Argument with
completeness error c and soundness error s for a language L ∈ NP, with witness
relation RL, if the following properties hold:

– Efficiency: Both P and V are probabilistic polynomial-time algorithms.
– Completeness: For any (x,w) ∈ RL, and all large enough λ:

Pr
[
(P(w),V)(1λ, x) accepts

]
≥ 1 − c(λ),

where the parameter c is called the completeness error.
– Soundness: For any probabilistic polynomial-time cheating prover P�, any

x /∈ L, and large enough λ:

Pr
[
(P∗,V)(1λ, x) accepts

]
≤ s(λ),

where the parameter s is called the soundness error.
– Honest Verifier Statistical Zero Knowledge: There is a probabilistic

polynomial-time algorithm S (called the simulator) that when given any x ∈ L
simulates the transcript of the interactive proof on input x. That is, for any
(x,w) ∈ RL and for all sufficiently large λ:

SD
(
(P(w),V)(1λ, x),S(1λ, x)

)
≤ negl(λ).

Note that our definition only deals with NP languages and requires that the
prover is efficient. Typically, when defining an SZK proof (rather than argu-
ment) this is not done, and the honest prover is allowed to be computationally
unbounded. However, this is the natural choice since we focus on argument sys-
tems (where the soundness requirement is only against malicious provers that
are also efficient).

Remark 2.3 (Restricted-view Simulation). For our main result, it suffices that
the simulator only simulates the transcript of the interactive proof and not the
random-coins of the verifier. The standard definition of simulation is stronger – it
also requires that the simulator output random-coins for the verifier that are con-
sistent with the transcript. Ostrovsky [Ost91] called the weaker notion restricted-
view simulation, and showed that average-case hard languages with honest-
verifier SZK proofs with restricted-view simulation (without efficient provers)
imply the existence of one-way functions.

We will be dealing with SZK arguments that have additional properties cap-
tured by the next definition. Recall that a round in an interactive proof is a pair
of messages, the first one (possibly empty) from V to P, and the next the other
way.

694 I. Berman et al.

Definition 2.4 (Laconism). Let q = q(λ) ∈ N and r = r(λ) ∈ N. An inter-
active protocol (P,V) is said to be r-round and q-laconic if it has at most r(λ)
rounds, and each message from P to V is at most q(λ) bits long when run on
any input (1λ, x), for large enough λ.

We can now state our main assumption as follows.

Assumption 2.5. There exists a cryptographically hard language (L,YL,NL)
for which there is an r-round and q-laconic honest-verifier SZK argument with
completeness error c and soundness error s such that:

– There is a constant β > 0 such that 1 − c(λ) > s(λ) + β, for large enough
λ ∈ N.

– q and r are such that r2 · q3 = O(log(λ)).

Our main result is given in the next theorem.

Theorem 2.6. (PKE from Laconic SZK). If Assumption 2.5 holds, then there
exists a public-key encryption scheme.

The construction of our public-key encryption scheme from Assumption 2.5,
and the proof of Theorem2.6, are presented in the full version of this paper.
There, in addition, we consider two relaxations of Assumption 2.5, each of which
still suffices for our construction. We also present a comparison of our assump-
tions to concrete assumptions that have been used in the past to construct
public-key encryption.

Acknowledgments. We thank Vinod Vaikuntanathan for his encouragement and for
helpful discussions. We thank the anonymous reviewers for very useful comments and
in particular for suggesting the abstraction of trapdoor pseudoentropy generator.

Research supported in part by NSF Grants CNS-1413920 and CNS-1350619, and
by the Defense Advanced Research Projects Agency (DARPA) and the U.S. Army
Research Office under contracts W911NF-15-C-0226 and W911NF-15-C-0236. The
third author was also supported by the SIMONS Investigator award agreement dated
6-5-12 and the Cybersecurity and Privacy Institute at Northeastern University.

References

[ABW10] Applebaum, B., Barak, B., Wigderson, A.: Public-key cryptography from
different assumptions. In: Proceedings of the 42nd ACM Symposium on
Theory of Computing, STOC 2010, Cambridge, Massachusetts, USA, 5–8
June 2010, pp. 171–180 (2010)

[Ale03] Alekhnovich, M.: More on average case vs approximation complexity. In:
Proceedings of the 44th Symposium on Foundations of Computer Science
(FOCS 2003), Cambridge, MA, USA, 11–14 October 2003, pp. 298–307.
IEEE Computer Society (2003)

[AR16] Applebaum, B., Raykov, P.: On the relationship between statistical zero-
knowledge and statistical randomized encodings. In: Robshaw, M., Katz, J.
(eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 449–477. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53015-3 16

https://doi.org/10.1007/978-3-662-53015-3_16

From Laconic Zero-Knowledge to Public-Key Cryptography 695

[Bab16] Babai, L.: Graph isomorphism in quasipolynomial time [extended
abstract]. In Proceedings of the 48th Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2016, Cambridge, MA, USA, 18–21 June
2016, pp. 684–697 (2016)

[BDV16] Bitansky, N., Degwekar, A., Vaikuntanathan, V.: Structure vs hardness
through the obfuscation lens. IACR Cryptology ePrint Archive 2016:574
(2016)

[BHY09] Bellare, M., Hofheinz, D., Yilek, S.: Possibility and impossibility results for
encryption and commitment secure under selective opening. In: Joux, A.
(ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 1–35. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-01001-9 1

[BIN97] Bellare, M., Impagliazzo, R., Naor, M.: Does parallel repetition lower the
error in computationally sound protocols? In: 38th Annual Symposium
on Foundations of Computer Science, FOCS 1997, Miami Beach, Florida,
USA, 19–22 October 1997, pp. 374–383 (1997)

[BL13] Bogdanov, A., Lee, C.H.: Limits of Provable Security for Homomorphic
Encryption. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I.
LNCS, vol. 8042, pp. 111–128. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-40041-4 7

[CS02] Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive
chosen ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.)
EUROCRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-46035-7 4

[DH76] Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans.
Inf. Theory 22(6), 644–654 (1976)

[GH98] Goldreich, O., H̊astad, J.: On the complexity of interactive proofs with
bounded communication. Inf. Process. Lett. 67(4), 205–214 (1998)

[GK93] Goldreich, O., Kushilevitz, E.: A perfect zero-knowledge proof system for
a problem equivalent to the discrete logarithm. J. Cryptol. 6(2), 97–116
(1993)

[GMW87] Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a
completeness theorem for protocols with honest majority. In: Proceedings
of the 19th Annual ACM Symposium on Theory of Computing, New York,
New York, USA, pp. 218–229 (1987)

[Gol08] Goldreich, O.: Computational Complexity - A Conceptual Perspective.
Cambridge University Press, Cambridge (2008)

[GOVW12] Garg, S., Ostrovsky, R., Visconti, I., Wadia, A.: Resettable statistical
zero knowledge. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp.
494–511. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
28914-9 28

[GV99] Goldreich, O., Vadhan, S.P.: Comparing entropies in statistical zero knowl-
edge with applications to the structure of SZK. In: Proceedings of the 14th
Annual IEEE Conference on Computational Complexity, Atlanta, Georgia,
USA, 4–6 May 1999, p. 54 (1999)

[GVW02] Goldreich, O., Vadhan, S., Wigderson, A.: On interactive proofs with a
laconic prover. Comput. Complex. 11(1–2), 1–53 (2002)

[HHRS15] Haitner, I., Hoch, J.J., Reingold, O., Segev, G.: Finding collisions in inter-
active protocols–tight lower bounds on the round and communication com-
plexities of statistically hiding commitments. SIAM J. Comput. 44(1),
193–242 (2015)

https://doi.org/10.1007/978-3-642-01001-9_1
https://doi.org/10.1007/978-3-642-40041-4_7
https://doi.org/10.1007/978-3-642-40041-4_7
https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/978-3-642-28914-9_28
https://doi.org/10.1007/978-3-642-28914-9_28

696 I. Berman et al.

[HILL99] H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom gen-
erator from any one-way function. SIAM J. Comput. 28(4), 1364–1396
(1999)

[HLWW16] Hazay, C., López-Alt, A., Wee, H., Wichs, D.: Leakage-resilient cryptog-
raphy from minimal assumptions. J. Cryptol. 29(3), 514–551 (2016)

[HNO+09] Haitner, I., Nguyen, M.-H., Ong, S.H., Reingold, O., Vadhan, S.P.: Statis-
tically hiding commitments and statistical zero-knowledge arguments from
any one-way function. SIAM J. Comput. 39(3), 1153–1218 (2009)

[HR05] Holenstein, T., Renner, R.: One-way secret-key agreement and applica-
tions to circuit polarization and immunization of public-key encryption. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 478–493. Springer,
Heidelberg (2005). https://doi.org/10.1007/11535218 29

[HR11] Holenstein, T., Renner, R.: On the randomness of independent experi-
ments. IEEE Trans. Inf. Theory 57(4), 1865–1871 (2011)

[IR89] Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-
way permutations. In: Proceedings of the Twenty-First Annual ACM Sym-
posium on Theory of Computing, pp. 44–61. ACM (1989)

[Kil88] Kilian, J.: Founding crytpography on oblivious transfer. In: Proceedings
of the Twentieth Annual ACM Symposium on Theory of Computing, pp.
20–31. ACM (1988)

[KMN+14] Komargodski, I., Moran, T., Naor, M., Pass, R., Rosen, A., Yogev, E.:
One-way functions and (im)perfect obfuscation. In: 55th IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2014, Philadel-
phia, PA, USA, 18–21 October 2014, pp. 374–383. IEEE Computer Society
(2014)

[LV16] Liu, T., Vaikuntanathan, V.: On basing private information retrieval on
NP-hardness. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016, Part I.
LNCS, vol. 9562, pp. 372–386. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-49096-9 16

[NV06] Nguyen, M.-H., Vadhan, S.P.: Zero knowledge with efficient provers. In:
Proceedings of the 38th Annual ACM Symposium on Theory of Comput-
ing, Seattle, WA, USA, 21–23 May 2006, pp. 287–295 (2006)

[Ost91] Ostrovsky, R.: One-way functions, hard on average problems, and statisti-
cal zero-knowledge proofs. In: Proceedings of the Sixth Annual Structure
in Complexity Theory Conference, Chicago, Illinois, USA, 30 June - 3 July
1991, pp. 133–138 (1991)

[OV08] Ong, S.J., Vadhan, S.: An equivalence between zero knowledge and
commitments. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp.
482–500. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
78524-8 27

[PPS15] Pandey, O., Prabhakaran, M., Sahai, A.: Obfuscation-based non-black-
box simulation and four message concurrent zero knowledge for NP. In:
Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015, pp.
638–667. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-
46497-7 25

[PVW08] Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient
and composable oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008.
LNCS, vol. 5157, pp. 554–571. Springer, Heidelberg (2008). https://doi.
org/10.1007/978-3-540-85174-5 31

https://doi.org/10.1007/11535218_29
https://doi.org/10.1007/978-3-662-49096-9_16
https://doi.org/10.1007/978-3-662-49096-9_16
https://doi.org/10.1007/978-3-540-78524-8_27
https://doi.org/10.1007/978-3-540-78524-8_27
https://doi.org/10.1007/978-3-662-46497-7_25
https://doi.org/10.1007/978-3-662-46497-7_25
https://doi.org/10.1007/978-3-540-85174-5_31
https://doi.org/10.1007/978-3-540-85174-5_31

From Laconic Zero-Knowledge to Public-Key Cryptography 697

[Reg05] Regev, O.: On lattices, learning with errors, random linear codes, and
cryptography. In: Gabow, H.N., Fagin, R. (eds.) Proceedings of the 37th
Annual ACM Symposium on Theory of Computing, Baltimore, MD, USA,
22–24 May 2005, pp. 84–93. ACM (2005)

[Rot11] Rothblum, R.: Homomorphic encryption: from private-key to public-key.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 219–234. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-19571-6 14

[RSA78] Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital
signatures and public-key cryptosystems. Commun. ACM 21(2), 120–126
(1978)

[Sha48] Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech.
J. 27(3), 379–423 (1948)

[SV03] Sahai, A., Vadhan, S.: A complete problem for statistical zero knowledge.
J. ACM (JACM) 50(2), 196–249 (2003)

[VZ12] Vadhan, S., Zheng, C.J.: Characterizing pseudoentropy and simplify-
ing pseudorandom generator constructions. In: Proceedings of the Forty-
Fourth Annual ACM Symposium on Theory of Computing, pp. 817–836.
ACM (2012)

https://doi.org/10.1007/978-3-642-19571-6_14

Updatable and Universal Common
Reference Strings with Applications

to zk-SNARKs

Jens Groth1, Markulf Kohlweiss2,3, Mary Maller1,2(B), Sarah Meiklejohn1,
and Ian Miers2,4

1 University College London, London, UK
{j.groth,mary.maller.15,s.meiklejohn}@ucl.ac.uk

2 Microsoft Research Cambridge, Cambridge, UK
3 University of Edinburgh, Edinburgh, UK

markulf.kohlweiss@ed.ac.uk
4 Cornell Tech, New York, USA

imiers@cs.jhu.edu

Abstract. By design, existing (pre-processing) zk-SNARKs embed a
secret trapdoor in a relation-dependent common reference strings (CRS).
The trapdoor is exploited by a (hypothetical) simulator to prove the
scheme is zero knowledge, and the secret-dependent structure facilitates
a linear-size CRS and linear-time prover computation. If known by a
real party, however, the trapdoor can be used to subvert the security of
the system. The structured CRS that makes zk-SNARKs practical also
makes deploying zk-SNARKS problematic, as it is difficult to argue why
the trapdoor would not be available to the entity responsible for gener-
ating the CRS. Moreover, for pre-processing zk-SNARKs a new trusted
CRS needs to be computed every time the relation is changed.

In this paper, we address both issues by proposing a model where a
number of users can update a universal CRS. The updatable CRS model
guarantees security if at least one of the users updating the CRS is hon-
est. We provide both a negative result, by showing that zk-SNARKs
with private secret-dependent polynomials in the CRS cannot be updat-
able, and a positive result by constructing a zk-SNARK based on a CRS
consisting only of secret-dependent monomials. The CRS is of quadratic
size, is updatable, and is universal in the sense that it can be specialized
into one or more relation-dependent CRS of linear size with linear-time
prover computation.

J. Groth—The research leading to these results has received funding from the Euro-
pean Research Council under the European Union’s Seventh Framework Programme
(FP/2007-2013)/ERC Grant Agreement no. 307937.
This work was done in part while Mary Maller was an intern at Microsoft Research
Cambridge, and she is funded by Microsoft Research Cambridge.
S. Meiklejohn—Supported in part by EPSRC Grant EP/N028104/1.
This work was done in part while Ian Miers was visiting Microsoft Research Cam-
bridge.

c© International Association for Cryptologic Research 2018
H. Shacham and A. Boldyreva (Eds.): CRYPTO 2018, LNCS 10993, pp. 698–728, 2018.
https://doi.org/10.1007/978-3-319-96878-0_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96878-0_24&domain=pdf

Updatable and Universal Common Reference Strings with Applications 699

1 Introduction

Since their introduction three decades ago, zero-knowledge proofs have been
constructed in a variety of different models. Arguably the simplest setting
is the Uniform Random String (URS) model, introduced by Blum, Feldman,
and Micali [BFM88] and used heavily since [FLS99,Dam92,SP92,KP98,SCP00,
GO14,Gro10a,GGI+15]. In the URS model both the prover and verifier have
access to a string sampled uniformly at random and it enables the prover to send
a single non-interactive zero-knowledge (NIZK) proof that convinces the verifier.
This model is limited, however, so many newer NIZK proof systems are instead in
the Common Reference String (CRS) model [CF01,Dam00,FF00,GOS12,GS12].
Here, the reference string must have some structure based on secret random coins
(e.g., be of the form Gs, Gs2

, Gs3
, . . .) and the secret (e.g., the value s) must be

discarded after generation. This makes CRS generation an inherently trusted
process.

Until recently, little consideration had been given to how to generate com-
mon reference strings in practice, and it was simply assumed that a trusted
party could be found. The introduction of zk-SNARKs (zero-knowledge Suc-
cinct Non-interactive ARguments of Knowledge) in the CRS model [Gro10b],
however, and subsequent academic and commercial usage has brought this issue
front and center. In particular, zk-SNARKs are of considerable interest for cryp-
tocurrencies given their usage in both Zcash [BCG+14], which relies on them in
order to preserve privacy, and Ethereum, which recently integrated support for
them [Buc17]. In these decentralized settings in which real monetary value is at
stake, finding a party who can be widely accepted as trusted is nearly impossible.

Ben-Sasson et al. [BCG+15] and subsequently Bowe et al. [BGG17] examined
the use of multi-party computation to generate a CRS, where only one out of n
parties needs to be honest but the participants must be selected in advance. In
concurrent work, Bowe et al. [BGM17] propose a protocol that avoids the pre-
selection requirement and as a result scales to more participants. Both protocols,
however, result in a CRS for a fixed circuit with a fixed set of participants.
This raises issues about who the participants are and how they were selected,
which are compounded by the fact that upgrades for increased performance or
functionality require a new circuit and thus a new invocation of the protocol.
This offers both renewed opportunities for adversarial subversion and loss of
faith in the integrity of the parameters. Despite multi-party CRS generation,
CRS setup (and particularly the cost it imposes on upgrading protocols), is thus
a major obstacle to the practical deployment and usage of zk-SNARKs.

Motivated by this issue of trusted setup, several works have recently exam-
ined alternatives to CRS-based pre-processing SNARKS in the URS and ran-
dom oracle model, despite the associated performance disadvantages. Cur-
rent proposed alternatives [BSBHR18,WTas+17,AHIV17,BCG+17,BCC+16,
BBB+18], either have proofs that even for modest circuit sizes, range into the
hundreds of kilobytes or have verification times that are linear in the size of
the circuit and make verification of large statements impractical for many appli-
cations. In contrast, (Quadratic Arithmetic Program) QAP-based zk-SNARKs

700 J. Groth et al.

offer quasi-constant-size proofs and verification times in the tens of millisec-
onds. Thus, modulo the barrier of having a trusted CRS setup, they are ideally
suited to applications such as blockchains where space and bandwidth are highly
constrained and proofs are expected to be verified many times in a performance-
critical process.

Our contributions. To provide a middle ground between the fully trusted and
fully subverted CRS models, we introduce and explore a new setup model for
NIZK proofs: the updatable CRS model. In the updatable CRS model, any user
can at any point choose to update the common reference string, provided that
they also prove they have done the update correctly. If the proof of correctness
verifies, then the new CRS resulting from the update can be considered trust-
worthy (i.e., uncorrupted) as long as either the old CRS or the updater was
honest. If multiple users participate in this process, then it is possible to get a
sequence of updates by different people over a period of time. If any one update
is honest at any point in the sequence, then the scheme is sound.

We introduce our model for updatable zero-knowledge proofs in Sect. 3, where
we also relate it to the classical CRS model (which we can think of as weaker)
and the models for subversion-resistant proofs [BFS16,ABLZ17] (which we can
think of as stronger).

Since Bellare et al. showed that it was impossible to achieve both subversion
soundness and even standard zero-knowledge, it follows that it is also impossible
to achieve subversion soundness and updatable zero-knowledge. With this in
mind, we next explore the space of NIZK proofs that achieve subversion zero-
knowledge (and thus updatable zero-knowledge) and updatable soundness.

We first observe that the original pairing-based zk-SNARK construction due
to Groth [Gro10b] can be made updatably sound. His construction, however, has
a quadratic-sized reference string, resulting in quadratic prover complexity. Our
positive result in Sect. 5 provides a construction of an updatable QAP-based zk-
SNARK that uses a quadratic-sized universal CRS, but allows for the derivation
of linear-sized relation-dependent CRSs (and thus linear prover complexity).
Because our universal CRS consists solely of monomials, our construction gets
around our negative result in Sect. 6, which demonstrates that it is impossible
to achieve updatable soundness for any pairing-based NIZK proof that relies
on embedding non-monomials in the reference string (e.g., uses terms Gs2+s). In
particular, this shows that QAP-based zk-SNARKs such as Pinocchio [PHGR13]
do not satisfy updatable soundness.

Applications. Updatable common reference strings are a natural model for
parameter generation in a cryptocurrency, or other blockchain-based settings.
Informally, in a blockchain, blocks of data are agreed upon by peers in a global
network according to some consensus protocol, with different blocks of data being
contributed by different users.

If each block (or one out of every n blocks) contains an update to the CRS
performed by the creator of the block, then assuming the blockchain as a whole
is correct, the CRS is sound. Indeed, we achieve a stronger property than the

Updatable and Universal Common Reference Strings with Applications 701

blockchain itself: assuming one single block was honestly generated, then the
CRS is sound even if all other blocks are generated by dishonest parties.

While updatable security thus seems to be a natural fit for blockchain-based
settings, there would be considerable work involved in making the construction
presented in this paper truly practical. As our construction is compatible with
several techniques designed to achieve efficiency (e.g., pruning of the blockchain)
and does not require replication of the entire sequence of updated CRSs in order
to perform verification, we believe this is a promising avenue for future research.

Knowledge assumptions. Our approach to proving that the updates are car-
ried out correctly is to prove the existence of a correct CRS update under a
knowledge extractor assumption. Knowledge assumptions define conditions under
which extractors can retrieve the internal ‘knowledge’ of the adversary, in this
case secret randomness used to update the CRS correctly. While less reassuring
than standard model assumptions, the security of zk-SNARKs typically rely on
knowledge assumptions anyway (and must be based on non-falsifiable assump-
tions [GW11]), and our construction is proven updatably sound under the same
assumptions as those that are used to prove standard soundness. We assume that
an adversary does not subvert our scheme by hiding a trapdoor in the groups.
Choosing such elliptic curve groups is a contentious affair [BCC+14] and outside
the scope of this paper, but one option for guaranteeing the adversary does not
implant a trapdoor is to use a deterministic group generation algorithm.

Updatable CRS vs. URS model. The updatable CRS model is closer to the URS
model than the CRS model, but it is important to acknowledge the differences.
In the URS model, given a valid proof and a URS, a verifier only needs to be
convinced that the URS was sampled at random (e.g. via a hash function in the
random oracle model). An updatable CRS, in contrast, allows a skeptical verifier
to trust proofs made with respect to a CRS that they themselves updated (or
contributed to via a previous update). This is a weaker property than the URS
model, as it cannot help with proofs formed before this update. On the other
hand, updatable CRS schemes inherit the efficiency and expressiveness of the
CRS model, without fully inheriting its reliance on a trusted setup.

2 Related Work

In addition to the works referenced in the introduction, we compare here with
the research most closely related to our own.

In terms of acknowledging the potential for an adversary to compromise the
CRS, Bellare, Fuchsbauer and Scafuro [BFS16] ask what security can be main-
tained for NIZK proofs when the CRS is subverted. They formalise the different
notions of subversion resistance and then investigate their possibility. Using sim-
ilar techniques to Goldreich et al. [GOP94], they show that soundness in this set-
ting cannot be achieved at the same time as (standard) zero-knowledge. Building
on the notions of Bellare et al., two recent papers [ABLZ17,Fuc17] discuss how to

702 J. Groth et al.

Table 1. Comparison for pairing-based zk-SNARKs for boolean and arithmetic circuit
satisfiability with �-element known circuit inputs, m wires, and n gates, of which n×
are multiplication gates. G means group elements in either source group, Ex means
group exponentiations, MG means group multiplications, and P means pairings.

Scheme Universal CRS Circuit CRS Size Prover comp Verifier comp

[Gro10b] (F2) O(n2) G — 42 G O(n2) Ex 36P + nMG
[PHGR13] (Fq) — O(n× + m − �) G 8 G O(n× + m − �) Ex 12P + � Ex
[Gro16] (Fq) — O(n× + m) G 3 G O(n× + m − �) Ex 3P + � Ex

This work (Fq) O(n2
×) G O(n× + m − �) G 3 G O(n× + m − �) Ex 5P + � Ex

achieve subversion zero-knowledge for zk-SNARKs. None of these schemes, how-
ever, can avoid the impossibility result and they do not simultaneously preserve
soundness and zero-knowledge under subversion.

The multi-string model by Groth and Ostrovsky [GO14] addresses the prob-
lem of subversion by designing protocols that require only the majority of the
parties contributing multiple reference strings to be honest. Their construction
gives statistically sound proofs but they are of linear size in both the number of
reference strings and the size of the instance.

In terms of zk-SNARKs, some of the most efficient constructions in the liter-
ature [Lip13,PHGR13,BCTV14,DFGK14,Gro16,GM17] use the quadratic span
program (QSP) or quadratic arithmetic program (QAP) approach of Gennaro
et al. [GGPR13]. The issue with this approach when it comes to updatability
is that it requires embedding arbitrary polynomials in the exponents of group
elements in the common reference string. However, we show in Sect. 6 that if it is
possible to update these polynomial embeddings, then it is possible to compute
all the constituent monomials in the polynomials. Uncovering the underlying
monomials, however, would completely break those zk-SNARKs, so QSP-based
and QAP-based updatable zk-SNARKs require a fundamentally new technique.

Two early zk-SNARKs by Groth [Gro10b] and Lipmaa [Lip12] do, however,
use only monomials. The main drawback of [Gro10b] is that it has a quadratic-
sized CRS and quadratic prover computation, but it has a CRS that consists
solely of monomials, and thus is updatable. Lipmaa still has quadratic prover
computation, however he suggested the use of progression-free sets to construct
NIZK arguments with a CRS consisting of n(1+o(1)) group elements. It uses
progression-free sets to give an elegant product argument and a permutation
argument, which are then combined to give a circuit satisfiability argument.

We give a performance comparison of pairing-based zk-SNARKs in Table 1,
comparing the relative size of the CRS and the proof, and the computation
required for the prover and verifier. We compare Groth’s original zk-SNARK,
two representative QAP-based zk-SNARKs, and our updatable and specializable
QAP-based zk-SNARK. As can be seen, our efficiency is comparable to the QAP-
based schemes, but our universal reference string is not restricted to proving
a pre-specified circuit. For the QAP-based SNARKs one could use Valiant’s

Updatable and Universal Common Reference Strings with Applications 703

universal circuit construction [Val76,LMS16] to achieve universality but this
would introduce a log n multiplicative overhead.We pose as an interesting open
question whether updatable zk-SNARKs with a shorter universal CRS exist.

In concurrent work, Bowe et al. [BGM17] propose a two-phase protocol for the
generation of a zk-SNARK reference string that is player-replaceable [GHM+17].
Like our protocol, the first phase of their protocol also computes monomials with
parties operating in a similar one-shot fashion. However, there are several differ-
ences. First, their protocol does so under the stronger assumption of a random
oracle, whereas we prove the security of our updatable zk-SNARK directly under
the same assumptions as a trusted setup zk-SNARK. More significantly, to cre-
ate a full CRS which does not have quadratic prover time, Bowe et al. require a
second phase. As one party in each phase must be honest and the second phase
depends on the first, the final CRS is not updatable. There is no way to increase
the number of parties in the first phase after the second phase has started and,
restarting the first phase means discarding the participants in the second phase.
As a result, the protocol is still a multi-party computation to produce a fixed
CRS with a fixed set of participants, albeit with the set of participants fixed
midway through the protocol instead of at the start. In contrast, we produce a
CRS with linear overhead from a quadratic-sized universal updatable CRS via
an untrusted specialization process. Thus our CRS can be continuously updated
without discarding past participation.

3 Defining Updatable and Universal CRS Schemes

In this section, we begin by presenting some notation and revisiting the basic def-
initions of non-interactive zero-knowledge proofs in the common reference string
model, in which the reference string must be run by a trusted third party. We
then present our new definitions for an updatable CRS scheme, which relaxes the
CRS model by allowing the adversary to either fully generate the reference string
itself, or at least contribute to its computation as one of the parties perform-
ing updates. In this our model is related to subversion-resistant proofs [BFS16],
which we also present and compare to our own model.

3.1 Notation

If x is a binary string then |x| denotes its bit length. If S is a finite set then

|S| denotes its size and x
$←− S denotes sampling a member uniformly from S

and assigning it to x. We use λ ∈ N to denote the security parameter and 1λ to
denote its unary representation. We use ε to denote the empty string.

Algorithms are randomized unless explicitly noted otherwise. “PPT” stands
for “probabilistic polynomial time” and “DPT” stands for “deterministic poly-
nomial time.” We use y ← A(x; r) to denote running algorithm A on inputs

x and random coins r and assigning its output to y. We write y
$←− A(x) or

y
r←− A(x) (when we want to refer to r later on) to denote y ← A(x; r) for r

sampled uniformly at random. A.rt(λ), and sample r
$←− {0, 1}A.rl(λ).

704 J. Groth et al.

We use code-based games in security definitions and proofs [BR06]. A game
SecA(λ), played with respect to a security notion Sec and adversary A, has
a main procedure whose output is the output of the game. The notation
Pr[SecA(λ)] is used to denote the probability that this output is 1.

3.2 NIZK Proofs in the CRS Model

Let Setup be a setup algorithm that takes as input a security parameter 1λ

and outputs a common reference string crs sampled from some distribution
D. Let R be a polynomial time decidable relation with triples (crs, φ, w). We
say w is a witness to the instance φ being in the relation defined by crs when
(crs, φ, w) ∈ R.

Non-interactive zero-knowledge (NIZK) proofs and arguments in the CRS
model are comprised of three algorithms (Setup,Prove,Verify), and satisfy com-
pleteness, zero-knowledge, and (knowledge) soundness. Perfect completeness

requires that for all reference strings output by setup crs
$←− Setup(1λ), when-

ever (crs, φ, w) ∈ R we have that Verify(crs, φ,Prove(crs, φ, w)) = 1. Soundness
requires that an adversary cannot output a proof that verifies with respect to
an instance not in the language, and knowledge soundness goes a step further
and for any prover producing a valid proof there is an extractor X that can
extract a valid witness. Finally, zero knowledge requires that there exists a pair
(SimSetup,SimProve) such that an adversary cannot tell if it is given an honest
CRS and honest proofs, or a simulated CRS and simulated proofs (in which
the simulator does not have access to the witness, but does have a simulation
trapdoor). We present these notions more formally below.

3.3 Updating Common Reference Strings

In our definitions we relax the CRS model by allowing the adversary to either
fully generate the reference string itself, or at least contribute to its computation
as one of the parties performing updates. Informally, we can think of this as
having the adversary interact with the Setup algorithm. More formally, we can
define an updatable CRS scheme that consists of PPT algorithms Setup,Update
and a DPT algorithm VerifyCRS that behave as follows:

– (crs, ρ) $←− Setup(1λ) takes as input the security parameter and returns a
common reference string and a proof of correctness.

– (crs′, ρ′) $←− Update(1λ, crs, (ρi)n
i=1) takes as input the security parameter, a

common reference string, and a list of update proofs for the common reference
string. It outputs an updated common reference string and a proof of the
correctness of the update.

– b ← VerifyCRS(1λ, crs, (ρi)n
i=1) takes as input the security parameter, a com-

mon reference string, and a list of proofs. It outputs a bit indicating accep-
tance, b = 1, or rejection b = 0.

Updatable and Universal Common Reference Strings with Applications 705

Definition 1. An updatable CRS scheme is perfectly correct if

– for all (crs, ρ) $←− Setup(1λ) we have VerifyCRS(1λ, crs, ρ) = 1;
– for all (λ, crs, (ρi)n

i=1) such that VerifyCRS(1λ, crs, (ρ)n
i=1) = 1 we have for

(crs′, ρn+1)
$←− Update(1λ, crs, (ρi)n

i=1) that VerifyCRS(1λ, crs′, (ρ)n+1
i=1) = 1.

Please observe that a standard trusted setup is a special case of an updatable
setup with ρ = ε as the update proof where the verification algorithm accepts
anything. For a subversion-resistant setup the proof ρ can be considered as extra
elements included in the CRS solely to make the CRS verifiable.

3.4 Security Properties

We recall the notions of zero-knowledge, soundness, and knowledge soundness
associated with NIZK proof systems. In addition to considering the standard
setting with a trusted reference string, we also capture the subversion-resistant
setting, in which the adversary generates the reference string [BFS16,ABLZ17,
Fuc17], and introduce our new updatable reference string setting.

For each security property, the game in the left column of Fig. 1 resembles the
usual security game for zero-knowledge, soundness, and knowledge soundness.
The difference is in the creation of the CRS crs, which is initially set to ⊥. We
then model the process of generating the CRS as an interaction between the
adversary and a setup oracle Os, at the end of which the oracle sets this value
crs and returns it to the adversary.

In principle, this process of creating the CRS can look like anything: it could
be trusted, or even a more general MPC protocol. For the sake of this paper,
however, we focus on three types of setup: (1) a trusted setup (T) where the
setup generator ignores the adversary when generating crs; (2) a subvertible
setup (S) where the setup generator gets crs from the adversary and uses it
after checking that it is well formed; and (3) a model in between that we call an
updatable setup (U). In this new model, an adversary can adaptively generate
sequences of CRSs and arbitrarily interleave its own malicious updates into them.
The only constraints on the final CRS are that it is well formed and that at least
one honest participant has contributed to it by providing an update.

In the definition of zero-knowledge, we require the existence of a PPT simu-
lator consisting of algorithms (SimSetup,SimUpdate,SimProve) that share state
with each other. The idea is that it can be used to simulate the generation of
common reference strings and simulate proofs without knowing the correspond-
ing witnesses.

Definition 2. Let P = (Setup,Update,VerifyCRS,Prove,Verify) be a non-
interactive argument for the relation R. Then the argument is X-secure, for
X ∈ {T,U,S}, if it satisfies each of the following:

– P is complete, if for all PPT algorithms A the advantage |1−Pr[COMPA(λ)]|
is negligible in λ.

706 J. Groth et al.

main COMPA(λ)
(crs, (ρi)n

i=1, φ, w) ← A(1λ)
b ← VerifyCRS(1λ, crs, (ρi)n

i=1)
if b = 0 or (crs, φ, w) /∈ R return 1

π
$←− Prove(crs, φ, w)

return Verify(crs, φ, π)

main X-ZKA,SimA(λ)

b
$←− {0, 1}

if b = 0
Setup ← SimSetup
Update ← SimUpdate

crs ← ⊥; Q ← ∅
state ← r←− AX-Os(1λ)

b′ $←− AOpf (state)
return 1 if b′ = b else return 0

Opf(φ, w)
if (crs, φ, w) �∈ R return ⊥
if b = 0 return SimProveA(crs, r, φ)
else return Prove(crs, φ, w)

main X-SNDA(λ)
crs ← ⊥; Q ← ∅
(φ, π) $←− AX-Os(1λ)
return Verify(crs, φ, π) ∧ φ �∈ LR

main X-KSNDA,XA(λ)
crs ← ⊥, Q ← ∅
(φ, π) r←− AX-Os(1λ)

w
$←− XA(crs, r)

return Verify(crs, φ, π) ∧ (φ, w) �∈ R

T-Os(x)
if crs �= ⊥ return ⊥
(crs, ρ) $←− Setup(1λ)
return (crs, ρ)

U-Os(intent, crsn, (ρi)n
i=1)

if crs �= ⊥ return ⊥
if intent = setup

(crs1, ρ1)
$←− Setup(1λ)

Q ← {ρ1}
return (crs1, ρ1)

if intent = update
b ← VerifyCRS(1λ, crsn, (ρi)n

i=1) = 0
if b = 0 return ⊥
(crs′, ρ′) $←− Update(1λ, crsn, (ρi)n

i=1)
Q ← Q ∪ { ρ′}
return (crs′, ρ′)

if intent = final
b ← VerifyCRS(1λ, crsn, (ρi)n

i=1)
if b = 0 or Q ∩ { ρi}i = ∅ return ⊥
set crs ← crsn and return crs

else return ⊥

S-Os(crsn, (ρi)n
i=1)

if crs �= ⊥ return ⊥
b ← VerifyCRS(1λ, crsn, (ρi)n

i=1) = 0
if b = 0 return ⊥
set crs ← crsn and return crs

Fig. 1. The left games define completeness, zero-knowledge (X-ZK), soundness
(X-SND), and knowledge soundness (X-KSND). The right oracles define the notions
X ∈ {T,U, S}; i.e., trusted, updatable, and subvertible CRS setups. A complete game
is constructed by using an oracle from the right side in the game on the left side.

Updatable and Universal Common Reference Strings with Applications 707

– P is X-zero-knowledge, if for all PPT algorithms A there exists a sim-
ulator SimA = (SimSetup,SimUpdate,SimProveA) where the advantage
|2Pr[X-ZKA,SimA(1λ) = 1] − 1| is negligible in λ.

– P is X-sound if for all PPT algorithms A the probability Pr[X-SNDA(1λ) = 1]
is negligible in λ.

– P is X-knowledge-sound if for all PPT algorithms A there exists a PPT extrac-
tor XA such that the probability |Pr[X-KSNDA,XA(1λ)| is negligible in λ.

Moreover, if a definition holds with respect to an adversary with unbounded com-
putation, we say it holds statistically, and if the advantage is exactly 0, we say
it holds perfectly.

One of the main benefits of our model is its flexibility. For example, a slightly
weaker but still trusted setup could be defined that would allow the adversary
to pick some parameters (e.g., the number of gates in an arithmetic circuit or a
specific finite field) and then run the setup on those. In addition to different types
of setup assumptions, it also would be easy to incorporate additional security
notions into this framework, such as simulation soundness.

Our definition of subversion-resistant security is adapted from that of Abdol-
maleki et al. [ABLZ17], and our definition of update security is itself adapted
from this definition. We stress that this new notion of setup security is nec-
essary: while we prove that our construction in Sect. 5 satisfies subversion
zero-knowledge, this is known to be mutually exclusive with subversion sound-
ness [BFS16], so update security provides the middle ground in which we can
obtain positive results. In terms of relating these notions, it is fairly straight-
forward that updatable security implies trusted security, and that subversion-
resistant security implies updatable security (for all security notions).

The proofs for the following lemmas are included in the full version of the
paper [GKM+18].

Lemma 1. A proof system that satisfies a security notion with updatable setup
also satisfies the security notion with trusted setup.

Lemma 2. A proof system that satisfies a security notion with subvertible setup
also satisfies the security notion with updatable setup.

3.5 Specializing Common Reference Strings

Consider a CRS for a universal relation that can be used to prove any arith-
metic circuit is satisfiable. Instances of the relation specify both wiring and
inputs freely. For a specific arithmetic circuit it is desirable to use the large CRS
to derive a smaller circuit-specific CRS for a relation with fixed wiring but flex-
ible inputs, as this might lead to more efficient prover and verifier algorithms.
This can be seen as a form of pre-computation on the large CRS to get better
efficiency, but there are conceptual advantages in giving the notion a name so in
the following we formalize the idea of specializing a universal CRS.

708 J. Groth et al.

Let Φ be a DPT decidable set of relations, with each relation Rφ ∈ Φ being
itself DPT decidable. The universal relation R for Φ defines a language with
instances φ = (Rφ, u) such that ((Rφ, u), w) ∈ R if and only if Rφ ∈ Φ and
(u,w) ∈ Rφ. We say that a setup generates specializable universal reference
strings crs for R if there exists a DPT algorithm crsRφ

← Derive�(crs, Rφ)
and algorithms Prove and Verify can be defined in terms of algorithms π ←
Prove�(crsRφ

, u, w) and b ← Verify�(crsRφ
, u, π) as follows:

– Prove(crs, φ, w) parses φ = (Rφ, u), asserts Rφ ∈ Φ, derives crsRφ
←

Derive�(crs, Rφ), and returns the proof generated by Prove�(crsRφ
, u, w).

– Verify(crs, φ, π) first parses φ = (Rφ, u), checks Rφ ∈ Φ, derives crsRφ
←

Derive�(crs, Rφ), and returns Verify�(crsRφ
, u, π).

Existing zk-SNARKs for boolean and arithmetic circuit verification have dif-
ferent degrees of universality. Groth [Gro10b] is universal and works for any
boolean circuit, i.e., the wiring of the circuit can be specified in the instance,
while subsequent SNARKs such as [GGPR13] and descendants have reference
strings that are for circuits with fixed wiring.

Schemes with specializable CRS derivation aim to achieve the generality of
the former and the performance of the latter. As the Derive algorithm operates
only on public information, it can be executed by protocol participants whenever
necessary. This has two advantages. First, one can transform any attack against
a prover and verifier employing a specialized CRS into an attack on the universal
CRS and we thus do not need any special security notions. Second, it makes it
easier to design efficient updatable schemes as being able to update the universal
CRS that does not yet have a relation-dependent structure and publicly derive
an efficient circuit-specific CRS after the update. We will exploit this in the
second half of the paper, where we present an updatable zk-SNARK that avoids
our own impossibility result in Sect. 6. We will employ a quadratic-size CRS that
is universal for all QAPs, but then specialize it to obtain a linear-size CRS and
linear-time prover computation.

4 Background

Let G(1λ) be a DPT1 bilinear group generator that given the security parameter
1λ produces bilinear group parameters bp = (p,G1,G2,GT , e,G,H). G1,G2,GT

are groups of prime order p with generators G ∈ G1, H ∈ G2 and e : G1 ×G2 →
GT is a non-degenerative bilinear map, which means e(Ga,Hb) = e(G,H)ab and
e(G,H) generates GT .

1 Often the cryptographic literature allows for probabilistic bilinear group generation,
but for our purpose it is useful to have deterministic parameter generation that
cannot be influenced by the adversary.

Updatable and Universal Common Reference Strings with Applications 709

4.1 Knowledge and Computational Assumptions

The knowledge-of-exponent assumption (KEA) introduced by Damg̊ard [Dam91]
says that given G, Ĝ = Gα it is infeasible to create C, Ĉ such that Ĉ = Cα

without knowing an exponent c such that C = Gc and Ĉ = Ĝc. Bellare and
Palacio [BP04] extended this to the KEA3 assumption, which says that given
G,Gα, Gs, Gαs it is infeasible to create C,Cα without knowing c0, c1 such that
C = Gc0(Gs)c1 . This assumption has been used also in symmetric bilinear groups
by Abe and Fehr [AF07], who called it the extended knowledge-of-exponent
assumption.

The bilinear knowledge of exponent assumption (B-KEA), which Abdolmaleki
et al. [ABLZ17] refer to as the BDH-KE assumption, generalizes further to
asymmetric groups. It states that it is infeasible to compute C, Ĉ such that
e(C, Ĝ) = e(G, Ĉ) without knowing s such that (C, Ĉ) = (Gs, Ĝs). It corre-
sponds to the special case of q = 0 of the q-power knowledge of exponent (q-PKE)
assumption in asymmetric bilinear groups introduced by Groth [Gro10b].

We introduce the q-monomial knowledge assumption, as a generalization of q-
PKE to multi-variate monomials. We note that our construction in Sect. 5 could
be made uni-variate by employing higher powers which would allow the use of
the ungeneralised q-PKE assumption.

Assumption 1 (The q(λ)-Monomial Knowledge Assumption (q(λ)-
MK)). Let a = {ai(X)}na

i=1 and b = {ai(X)}nb
i=1 be sets of n-variate mono-

mials with the degree, the number of monomials na, nb, and the number of
variables n all bounded by q(λ). Let A be an adversary and XA be an extrac-
tor. Define the advantage AdvMK

G,q(λ),a,b,A,XA(λ) = Pr[MKG,q(λ),a,b,A,XA(λ)] where
MKG,q(λ),a,b,A,XA is defined as

main MKG,q(λ),a,b,A,XA(λ)
bp = (p,G1,G2,GT , e,G,H) ← G(1λ)

x
$←− F

s
p

(Ga,Hb) r←− A(bp, {Gai(x)}n1
i=1, {Hbi(x)}n2

i=1)
(c0, c1, . . . , cnb

) ← XA(bp, {Gai(x)}n1
i=1, {Hbi(x)}n2

i=1; r)
return a = b and b �= c0 +

∑
i ci · bi(x)

The MK assumption holds relative to G if for all PPT adversaries A there exists
a PPT extractor XA such that AdvMK

G,q(λ),a,b,A,XA(λ) is negligible in λ.

The following multi-variate computational assumption is closely related
to the uni-variate q-bilinear gap assumption of Ghadafi and Groth [GG17]
and is implied by the computational polynomial assumption of Groth and
Maller [GM17].

Assumption 2 (The q(λ)-Monomial Computational Assumption (q(λ)-
MC)). Let a = {ai(X)}na

i=1 and b = {ai(X)}nb
i=1 be sets of n variate monomials

with the degree, the number of monomials na, nb, and the number of variables
n all bounded by q(λ). Let A be a PPT algorithm, and define the advantage
AdvMC

G,q(λ),a,b,A(λ) = Pr[MCG,q(λ),a,b,A(λ)] where MCG,q(λ),a,b,A is defined as

710 J. Groth et al.

main MCG,q(λ),a,b,A(λ)
bp = (p,G1,G2,GT , e,G,H) ← G(1λ)
x ← F

n
p

(A, a(X)) ← A(bp, {Gai(x)}n1
i=1, {Hbi(x}n2

i=1)
return 1 if A = Ga(x) and a(X) /∈ span{1, a1(X), . . . , an1(X)}
else return 0

The MC assumption holds relative to G if for all PPT adversaries A we have
AdvMC

G,q(λ),a,b,A(λ) is negligible in λ.

4.2 A QAP-Based zk-SNARK Recipe

Here we describe a generalised approach for using Quadratic Arithmetic Pro-
grams (QAPs) to construct a SNARK scheme for arithmetic circuit satisfiability.
A similar approach can be used with Quadratic Span Programs (QSPs). In both
cases, zero-knowledge is obtained by ensuring that all of the commitments are
randomised. We show in Sect. 6 that the recipe is unlikely to directly lead to
updatable zk-SNARKs. However, by modifying the recipe in Sect. 5 we are able
to construct updatable zk-SNARKs.

Arithmetic Circuits: Arithmetic circuits are a means to describe compu-
tations that consist solely of field additions and multiplications. We will now
describe an arithmetic circuit over a field F with n multiplication gates and m
wires. Such a circuit consists of gates connected together by wires. The gates
specify an operation (either addition or multiplication) and the wires contain
values in F. Each gate has a left input wire and a right input wire leading into
it, and an output wire leading from it. The circuit can have split wires i.e. the
same wire leads into multiple gates. The circuit is satisfied if for every gate, the
operation applied to the input wires is equal to the output wire.

Any NP relation can be described with a family of arithmetic circuits that
decide which statement and witness pairs are included. In a relation described
by an arithmetic circuit, an instance is defined by a value assignment to � fixed
input wires. The witness is the values of the remaining m − � wires such that
the arithmetic circuit is satisfied.

Fix the circuit: We label the n gates with unique distinct values r1, . . . , rn ∈ F.
We will convert the arithmetic circuit into equations over polynomials, and these
values will serve as points on which formal polynomials representing the circuit
will be evaluated.

Describe all m wires using three sets of m polynomials with degree at most
n − 1. These polynomials determine for which gates each wire behaves as a left
input wire, a right input wire, and an output wire. They also determine whether
the wires have been split, and whether there are any additions before a wire is
fed into a multiplication gate. The three sets of polynomials are: U = {ui(X)}m

i=0

describes the left input wires; V = {vi(X)}m
i=0 describes the right input wires;

Updatable and Universal Common Reference Strings with Applications 711

and W = {wi(X)}m
i=0 describes the output wires. We will throughout the paper

fix u0(X) = v0(X) = w0(X) = 1. The polynomials are designed such that they
are equal to 1 at each of the values of the multiplication gates which they lead
into/ out of and 0 at all other gate values.

Commit to wire values: Suppose there are m wires with values (a1, . . . , am)
and that the witness wires run from {�+1, . . . , m}. The common reference string
includes the values

{Gui(x), Gvi(x), Gwi(x)}m
i=�+1

for some x chosen at random. The commitment to the left input, right, and
output wires will include the values

CL = G
∑m

i=�+1 aiui(x), CR = G
∑m

i=�+1 aivi(x), CO = G
∑m

i=�+1 aiwi(x).

Prove that repeated wires are consistent: If a wire is split into two left
inputs, there is no need to do anything because of the design of the wire poly-
nomials. However, it is necessary to check that split wires that split into at least
one left input wire and at least one right input wire are consistent. This is done
by including terms in the common reference string of the form

{
Gαuui(x)+αvvi(x)

}m

i=�+1

for some unknown αu, αv, and then requiring the prover to provide an element
Y such that αuCL + αvCR = Y . For some schemes α0 = α1.

Prove that output wires are consistent with input wires: This can be
done together with proving consistency of repeated wires. The common reference
string includes terms of the form

{
Gαuui(x)+αvvi(x)+αwwi(x)

}m

i=�+1

for some unknown αu, αv, αw. The prover is required to provide an element Y
such that αuCL + αvCR + αwCO = Y .

Prove the commitments are well formed: There are values in the common
reference string that should not be included in the commitments generated by
the prover, such as the {aiui(x)}�

i=1 values related to the instance. This can be
checked using the same approach as descried above for the consistency proof.

Prove that gates are evaluated correctly: Determine a quadratic poly-
nomial equation that checks that the gates are evaluated correctly. There is a
unique degree n polynomial t(X) which is equal to 0 at each of the gate values
(r1, . . . , rn). Suppose that a1, . . . , am are the wire values. Then

712 J. Groth et al.

(
m∑

i=0

aiui(X)

)

·
(

m∑

i=0

aivi(X)

)

−
m∑

i=0

aiwi(X)

is equal to 0 when evaluated at the gate values if and only if the multiplication
gates are evaluated correctly. This polynomial expressions shares its zeros with
t(X), which means that t(X) divides it. Hence the prover is required to show
that at the unknown point x,

(
G

∑�
i=0 aiui(x)CL

)
⊗

(
G

∑�
i=0 aivi(x)CR

)
= Gt(x)+

∑�
i=0 aiwi(x)CO

for ⊗ a function that finds the product of the values inside the two encodings.

5 An Updatable QAP-Based zk-SNARK

In this section we give a construction for an updatable QAP-based zk-SNARK
that makes use of a universal reference string. We then prove it satisfies subver-
sion zero knowledge and updatable knowledge soundness under the knowledge-
of-exponent assumptions introduced in Sect. 4.

We let the security parameter 1λ (deterministically) determine parameters
(d,m, �, bp), where bp = (p,G1,G2,GT , e,G,H), with G1,G2,GT groups of prime
order p with generators G ∈ G1, H ∈ G2 and e : G1 × G2 → GT a non-
degenerative bilinear map. Here d is the degree of the QAP, m is number of
input variables, out of which � are part of the instance formed of public field
elements to a QAP.

Recall from Sect. 4.2, a QAP for the given parameters is defined by polynomi-
als {ui(x), vi(x), wi(x)}m

i=0 of degree less than d, and t(x) of degree d. The QAP
defines a relation RQAP containing pairs of instances and witnesses (a1, . . . , a�)
and (a�+1, . . . , am) such that, with a0 = 1,
(

u0(x) +
m∑

i=1

aiui(x)

)

·
(

v0(x) +
m∑

i=1

aivi(x)

)

≡ w0(x) +
m∑

i=1

aiwi(x) mod t(x).

The sequence of parameters indexed by the security parameter define a uni-
versal relation R consisting of all pairs of QAPs and instances as described above
that have a matching witness. In the notation from Sect. 3.5 let Φ be all possible
QAPs for the parameters, then the universal relation R for Φ contains instances
φ = (RQAP, u = (a1, . . . , a�)), with matching witnesses w = (a�+1, . . . , am).

5.1 Reworking the QAP Recipe

Our final scheme is formally given in Figs. 2 and 3. In this section we describe
some of the technical ideas behind it. Due to our impossibility result in Sect. 6,
many of the usual tricks behind the QAP-based approach are not available to
us, which means we need something new. To obtain this we first switch to a
multi-variate scheme, where the proof elements need to satisfy equations in the

Updatable and Universal Common Reference Strings with Applications 713

indeterminates X, Y , Z. We can then prove the well-formedness of our proof
elements using a subspace argument for our chosen sums of witness QAP poly-
nomials. Once we have that the proof elements are well formed, we show that
the exponents of two of them multiply to get an exponent in the third proof
element such that (1) the sum of all the terms where Y has given power j is
equal to the QAP expression in the X indeterminate, and (2) the value Y j is
not given in the universal CRS. For our final scheme, we use j = 7.

Fix the circuit: The circuit need only be fixed upon running the CRS derivation
algorithm. At this point, the circuit is described as a QAP like that described
in Sect. 4; i.e., for a0 = 1, the field elements (a1, . . . , am) ∈ RQAP if and only if

(
m∑

i=0

aiui(X)

)

·
(

m∑

i=0

aivi(X)

)

=
m∑

i=0

aiwi(X) + q(X)t(X)

for some degree (d − 2) polynomial q(X).

Prove the commitments are well formed: In our scheme an honest prover outputs
group elements (A,B,C) such that

log(A) = log(B) = q(x)y +
m∑

i=0

ai(wi(x)y2 + ui(x)y3 + vi(x)y4) − y5 − t(x)y6.

Ensuring that log(A) = log(B) can be achieved with a pairing equation of the
form e(A,H) = e(G,B). Thus we need to show only that A is of the correct
form.

Usually, as described in Sect. 4, this is done by encoding only certain polyno-
mials in the CRS and forcing computation to use linear combinations of elements
in the CRS. Since we cannot do this and allow updates, we instead construct
a new subspace argument. First we subtract out the known elements in the
instance using a group element S which the verifier computes in order to obtain
a new group element with the exponent

q(x)y +
m∑

i=�+1

ai(wi(x)y2 + ui(x)y3 + vi(x)y4).

Set M be the (m + d − �) × 4d matrix that contains the coefficients of
{(wi(x)y2 + ui(x)y3 + vi(x)y4)}m

i=�+1, {xiy}d−1
i=0 with respect to monomials

{xiyj}(d−1,4)
(i,j)=(0,1). We denote these coefficients by ml(x, y) =

∑
i,j Ml,(i,j) · xiyj ,

e.g., m1(x, y) =
(
w�+1(x)y2 + u�+1(x)y3 + v�+1(x)y4

)
. Then we set the corre-

sponding null-matrix be N such that MN = 0. We address the rows of N
by the corresponding monomial degrees in M . The columns of this matrix
defines polynomials nk(x, y) =

∑
i,j N(i,j),k · xd−iy4−j , such that in the con-

volution of ml(x, y) · nk(x, y) the (d, 4) degree terms disappear. If we introduce
the variable z, and set N̂ = H

∑
k nk(x,y)zk

, then the pairing e(AS, N̂) yields

714 J. Groth et al.

a target group element with 0 coefficients for all xdy4zk terms exactly when
A is chosen from the right subspace. Thus, given a CRS that does not con-
tain any xdy4zk terms for k > 1, and a verification equation that checks that,
(log A+ log S) · log(N̂) = log C1 the prover can only compute the component C1

if A is correctly formed.

Prove that the QAP is satisfied: Assuming that A and B are of the correct form,
we have that log(A) · log(B) is equal to

(

q(x)y +
m∑

i=0

ai(wi(x)y2 + ui(x)y3 + vi(x)y4) − y5 − t(x)y6

)2

.

which, for terms involving y7, yields

t(x)q(x) −
m∑

i=0

aiwi(x) +

(
m∑

i=0

aiui(X)

)

·
(

m∑

i=0

aivi(X)

)

.

The terms in other powers of y can be considered as computable garbage and
are cancelled out in other proof components. The equation above is satisfied for
some polynomial q(X) if and only if the QAP is satisfied. Thus, given a CRS
that does not contain any y7 terms, and a verification equation that checks that,
log A · log B = log C2 we ensure that the proof element C2 is computable if and
only if the QAP is satisfied.

Remark 1. It is always possible to make everything univariate in x by choosing
y, z as suitable powers of x, but we find it conceptually easier and more readable
to give them different names.

Derivation of a Linear Common Reference String: Astute readers may
note that these techniques require the CRS to have quadratic set of monominals
in order to compute the null matrix. We resolve this by providing an untrusted
derive function which can be seen as a form of precomputation in order to find
the linear common reference string for a fixed relation. Using the linear common
reference string, our prover also makes a linear number of group exponentiations
in the circuit size.

5.2 Updatability of the Universal Common Reference String

In this section we describe the universal common reference string and how to
update it. We then prove that for any adversary that computes a valid common
reference string, either through setup or through updates, we can extract the
randomness it used. In Sect. 5.3, we show that – for our construction – proving
security for an adversary that makes one update to a freshly generated CRS is
equivalent to proving the full version of updatable security, in which an adversary
makes all but one update in the sequence.

Updatable and Universal Common Reference Strings with Applications 715

Setup(1λ)

x, y, z
$←− F

∗
p; ρ ← (Gx, Gy, Gz, Gx, Gy, Gz, Hx, Hy, Hz)

crs ←
(

G, Gx, Gz, {Gxiyj }2d,12
i=0,j=1,j �=7, {Gxiyjzk}2d,6,3d

i=0,j=1,k=1,(i,j) �=(d,4),

{Gxiyjz6d}d,4
i=0,j=1 H, Hx,{Hxiyj }d,6

i=0,j=1,{Hxiyjzk}d,2,3d
i=0,j=0,k=1, Hz6d

)

Update(1λ, crs, {ρi}n
i=1)

parse

⎛
⎜⎝

G, G1,0,0, G0,0,1, {Gi,j,0}2d,12
i=0,j=1,j �=7,

{Gi,j,k}2d,6,3d
i=0,j=1,k=1,(i,j) �=(d,4), {Gi,j,6d}d,4

i=0,j=1

H, H1,0,0,{Hi,j,0}d,6
i=0,j=1,{Hi,j,k}d,2,3d

i=0,j=0,k=1, H0,0,6d

⎞
⎟⎠ ← crs

α, β, γ
$←− F

∗
p

crs′ ←

⎛
⎜⎜⎝

G, Gα
1,0,0, Gγ

0,0,1, {Gαiβj

i,j,0 }2d,12
i=0,j=1,j �=7, {Gαiβjγk

i,j,k }2d,6,3d
i=0,j=1,k=1,(i,j) �=(d,4),

{Gαiβjγ6d

i,j,6d }d,4
i=0,j=1, H, Hα

1,0,0,{Hαiβj

i,j,0 }d,6
i=0,j=1,{Hαiβjγk

i,j,k }d,2,3d
i=0,j=0,k=1,

Hγ6d

0,0,6d

⎞
⎟⎟⎠

ρ ← (Gα
1,0,0, G

β
0,1,0, G

γ
0,0,1, G

α, Gβ , Gγ , Hα, Hβ , Hγ)

VerifyCRS(1λ, crs, {ρi}n
i=1)

parse

⎛
⎜⎝

G, G1,0,0, G0,0,1, {Gi,j,0}2d,12
i=0,j=1,j �=7,

{Gi,j,k}2d,6,3d
i=0,j=1,k=1,(i,j) �=(d,4), {Gi,j,6d}d,4

i=0,j=1 H,

H1,0,0,{Hi,j,0}d,6
i=0,j=1,{Hi,j,k}d,2,3d

i=0,j=0,k=1 ,H0,0,6d

⎞
⎟⎠ ← crs

parse {(Ai, Bi, Ci, Āi, B̄i, C̄i, Âi, B̂i, Ĉi)}n
i=1 ← {ρ}n

i=1

assert the proofs are correct:
A1 = Ā1, B1 = B̄1, C1 = C̄1

for 2 ≤ i ≤ n : e(Ai, H) = e(Ai−1, Âi)
∧ e(Bi, H) = e(Bi−1, B̂i) ∧ e(Ci, H) = e(Ci−1, Ĉi)

e(Ān, H) = e(G, Ân) ∧ e(B̄n, H) = e(G, B̂n) ∧ e(C̄n, H) = e(G, Ĉn)
An = G1,0,0 �= 1 ∧ Bn = G0,1,0 �= 1 ∧ Cn = G0,0,1 �= 1

assert the exponents supposed to be yj are correct:
for 1 ≤ j ≤ 6 : e(G0,j,0, H) = e(G, H0,j,0)
for 1 ≤ j ≤ 5 : e(G, H0,j+1,0) = e(G0,1,0, H0,j,0)
for 8 ≤ j ≤ 12 : e(G0,j,0, H) = e(G0,6,0, H0,j−6,0)

assert the exponents supposed to be xiyj are correct:
e(G1,0,0, H) = e(G, H1,0,0)
for 1 ≤ i ≤ d, 1 ≤ j ≤ 6, 8 ≤ j ≤ 12 : e(Gi,j,0, H) = e(Gi−1,j,0, H1,0,0)
for 1 ≤ i ≤ d, 1 ≤ j ≤ 6 : e(Gi,j,0, H) = e(G, Hi,j,0)

assert the exponents supposed to be xiyjzk are correct:
e(G0,0,1, H) = e(G, H0,0,1)
for 1 ≤ k ≤ 3d : e(G0,1,k, H) = e(G0,1,0, H0,0,k)
for 0 ≤ i ≤ d, j = 0, 1, 2, k = 1 ≤ k ≤ 3d : e(Gi,j,0, H0,0,k) = e(G, Hi,j,k)
for 0 ≤ i ≤ d, 1 ≤ j ≤ 6, 1 ≤ k ≤ 3d, (i, j) �= (d, 4) :

e(Gi,j,k, H) = e(Gi,j,0, H0,0,k)
for d + 1 ≤ i ≤ 2d, 1 ≤ j ≤ 6, 1 ≤ k ≤ 3d : e(Gi,j,k, H) = e(Gi−d,0,k, Hd,j,0)
e(G0,1,3d, H0,0,3d) = e(G0,1,0, H0,0,6d)
for 0 ≤ i ≤ d, 1 ≤ j ≤ 4 : e(Gi,j,0, H0,0,6d) = e(Gi,j,6d, H)

Fig. 2. The setup process, along with the algorithms to create updates, and verify the
setups and updates.

716 J. Groth et al.

The universal CRS contains base G exponents {xiyjzk}(i,j,k)∈S1 where

S1 =

⎛

⎜
⎜
⎝

{(1, 0, 0), (0, 1, 0), (0, 0, 1)}
∪{(i, j, 0) : i ∈ [0, 2d], j ∈ [1, 12], j �= 7}

∪{(i, j, k) : i ∈ [0, 2d], j ∈ [1, 6], k ∈ [1, 3d], (i, j) �= (d, 4)}
∪{(i, j, 6d) : i ∈ [0, d], j ∈ [1, 4]}

⎞

⎟
⎟
⎠

and base H exponents {xiyjzk}(i,j,k)∈S2 where

S2 =

⎛

⎝
{(1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 6d)}

∪{(i, j, 0) : i ∈ [0, d], j ∈ [1, 6]}
∪{(i, j, k) : i ∈ [0, d], j ∈ [0, 2], k ∈ [1, 3d]}

⎞

⎠ .

We begin with two lemmas about completeness, proofs of which can be found
in the full version of the paper.

Lemma 3 (Correctness of the CRS generation). The scheme is perfectly
correct in the sense that

Pr[(crs, ρ) ← Setup(1λ) : VerifyCRS(1λ, crs, ρ) = 1] = 1;

Pr
[

(crs′, ρn+1) ← Update(1λ, crs, {ρi}n
i=1) :

VerifyCRS(1λ, crs, {ρi}n
i=1) = 1 ∧ VerifyCRS(1λ, crs′, {ρi}n+1

i=1) �= 1

]

= 1
.

We now give two lemmas used to prove the full security of our construction
and the update security of each component. These lemmas prove that even a
dishonest updater needs to know their contribution to the trapdoor. Again,
proofs can be found in the full version of the paper.

Lemma 4 (Trapdoor extraction for subvertible CRSs). Suppose
that there exists a PPT adversary A that outputs a crs, ρ such that
VerifyCRS(1λ, crs, ρ) = 1 with non-negligible probability. Then, by the 0-MK
assumption (equivalent to the B-KEA assumption) there exists a PPT extrac-
tor X that, given the random tape of A as input, outputs (x, y, z) such that
(crs, ρ) = Setup(1λ; (x, y, z)).

This lemma proves that even when given an honestly generated CRS as input,
updaters need to know their contribution to the trapdoor. In this way security
against the updater is linked to an honest CRS.

Lemma 5 (Trapdoor extraction for updatable CRSs). Suppose that there

exists a PPT adversary A such that given (crs, ρ1)
$←− Setup(1λ), A queries

U-Os on (final, crs′, {ρ1, ρ2}) where VerifyCRS(R, crs′, {ρ1, ρ2}) = 1 with non-
negligible probability. Then, with a = {XiY jZk : (i, j, k) ∈ S1} and b =
{XiY jZk : (i, j, k) ∈ S2}, the q-MK and the q-MC assumptions imply that there
exists a PPT extractor X that, given the randomness of A as input, outputs
(α, β, γ) such that Ā2 = Gα, B̄2 = Gβ, and C̄2 = Gγ .

Updatable and Universal Common Reference Strings with Applications 717

5.3 Single Adversarial Updates Imply Updatable Security

The following lemma relates updatable security to a model in which the adver-
sary can make only a single update after an honest setup. This is because it is
much cleaner to prove the security of our construction in this latter model (as
we do in Theorem 4), but we would still like to capture the generality of the
former.

We already know from Lemma 4 that it is possible to extract the adversary’s
contribution to the trapdoor when the adversary generates the CRS itself, and
from Lemma 5 that it is possible to extract it when the adversary updates an
honest CRS. To collapse chains of honest updates into an honest setup it is
convenient that the trapdoor contributions of Setup and Update commute in our
scheme. As the trapdoor in our scheme consists of all the randomness used by
these algorithms, we will from now on refer to chains of honest updates and
(single) honest setups interchangeably.

Trapdoor contributions cannot just be commuted but also combined; that is,
for τ , τ ′ and τ ′′, Update′(1λ,Update′(1λ,Setup′(1λ; τ); τ ′); τ ′′) = Setup′(1λ; τ ⊗
τ ′ ⊗ τ ′′) = Update′(1λ,Update′(1λ,Setup′(1λ; τ ′′); r′); r). Moreover, in our con-
struction the proof ρ depends only on the relation and the randomness of the
update algorithm. In particular it is independent of the reference string being
updated. This enables the following simulation: Given the trapdoor τ̃ = (x, y, z)
of crs, and the elements (G1,0,0, G0,1,0, G0,0,1,H1,0,0,H0,1,0,H0,0,1) of crs′ we
can simulate a proof ρ2 = (A2, B2, C2, Ā2, B̄2, C̄2, Â2, B̂2, Ĉ2) of crs′ being an
update of crs using A2 ← G1,0,0, B2 ← G0,1,0, C2 ← G0,0,1, Ā2 ← Gx−1

1,0,0,

B̄2 ← Gy−1

0,1,0, C̄2 ← Gz−1

0,0,1, Â2 ← Hx−1

1,0,0, B̂2 ← Hy−1

0,1,0, Ĉ2 ← Hz−1

0,0,1. We refer to
this as ρ(crs′)τ−1

in our reduction.
These properties together allow us to prove the result. We here give a detailed

proof for knowledge soundness, as this is the most involved notion. Moreover,
given that knowledge soundness implies soundness and we prove subversion zero-
knowledge directly, it is the only notion we need.

Lemma 6 (Single adversarial updates imply full updatable knowledge
soundness). If our construction is U-KSND secure for adversaries that can
query on (Setup, ∅) only once and then on (final, S) for a set S such that |S| ≤ 2,
then under the assumptions of Lemma 4 and Lemma 5 it is (fully) U-KSND-
secure.

Proof. We need to show that when the advantage is negligible for all PPT adver-
saries B with knowledge extractors XB in the restricted game, then the advan-
tage is negligible for all adversaries A with knowledge extractors XA in the
unrestricted game.

In our representation we split A into two stages A1 and A2, where the first
stage ends with the successful query with intent final (i.e., the query that sets
crs). Let A1,A2 be an adversary against the U-KSND game. Let B be the
following adversary against the restricted U-KSND game.

718 J. Groth et al.

BU-Os (1λ)

(crsh, ρh)
$←− U-Os(Setup, ∅)

st
r←− AOsim

s
1 (1λ)

{ρi, crsi}n
i=1 ← Sfinal

find largest � such that (ρ�, τ�) ∈ Qc

for all i ∈ [� + 1, n]
τi ← XDi

(1λ, r‖t)
S ← {(crsh, ρh),Update(1

λ, crsh, {ρh};∏n
i=� τi)}

crs
$←− U-Os(final, S)

return A2(st)

Osim
s ((intent, S))

if crs �= ⊥ return ⊥
if intent = setup // initialise a CRS sequence

(crs′, ρ′) τ←− Update(1λ, crsh, {ρh})
t ← t‖τ ; Qc ← Qc ∪ {(ρ′, τ)}
return (crs′, ρ′)

if intent = update // update a sequence

τ̃ ← XC(1λ, r‖t)

crs′ τ←− Update(1λ, crsh, {ρh})
ρ′ ← ρ(crsh)

τ/τ̃

t ← t‖τ ; Qc ← Qc ∪ {(ρ′, τ)}
return (crs′, ρ′)

// intent = final finalise sequence

b ← VerifyCRS(1λ, S) ∧
Qc ∩ {(ρi, ∗)}i �= ∅

if b: crs ← crsn

Sfinal ← S; return crsn

return ⊥

Our adversary B can query its own oracle U-Os only once on the empty set,
so it does this upfront to receive an honest reference string crsh. It then picks
randomness r and runs A in a simulated environment in which B itself answers
oracle queries. We keep track of the randomness B uses in the simulation in t.

B embeds the honest reference string in every query with intent �= final. For
this we exploit the fact that CRSs in our scheme are fully re-randomizable. On
setup queries (i.e., when S = ∅), we simply return a randomized crsh.

On general update queries, B additionally needs to compute a valid update
proof ρ. To do this, let C be the algorithm that, given crsh, runs A and the sim-
ulated oracles up to the update query and returns crsn. To extract the trapdoor
for the set S, we use either the subversion trapdoor extractor XC for adversary C
that is guaranteed to exist by Lemma 4 (if S does not contain randomized honest
reference strings), or the update trapdoor extractor that is guaranteed to exist
by Lemma 5 (if it does). This latter extractor provides the update trapdoor, with
respect to crsh, of the reference string crsn provided by the adversary. While A
can make use of values returned in prior queries, the randomness used by these
queries is contained in t and thus also available to XC .

Next, A finalizes n reference strings. Now, the goal of B is to return a sin-
gle update of crsh, so it needs to compress the entire sequence of updates
{ρi}n

i=�+1 into one. To extract the randomness that went into each individ-
ual update, B builds adversaries Di, i ∈ [� + 1, n], from A that return only
(crsi, ρi). By Lemma 5 there exist extractors XDi

that extract only the ran-
domness that went into these individual updates; i.e., δi = (xi, yi, zi) such
that ρi−1, crsi = Update(1λ, crsi−1; δi). Using these extractors, B computes
(crs′

h, ρ′
h) ← Update(1λ, crsh, {ρh};

∏n
i=�+1 δi), sets S ← {crs′

h, {ρh, ρ′
h})}, and

calls Os(final, S) to finalize its own CRS. By construction, crs′
h = crsn. In the

rest of the game B behaves like A.
We build extractor XA from the extractor XB which is guaranteed to exist.

In our definitions, knowledge extractors share state with setup algorithms. Here

Updatable and Universal Common Reference Strings with Applications 719

the main implication of this is that the extractor has access to the challenger’s
randomness, and thus can re-execute the challenger to retrieve its internal state.
XA(r, t‖τ) runs XB(r‖t, τ). Thus the construction of XA simply uses XB but
shifts the randomness of the simulation into the randomness of the challenger.
As the simulation is perfect, A will behave identically. Furthermore, r‖t is a
valid randomness string for B and XB receives input that is consistent with a
restricted game with B. From this point onward B behaves exactly like A2. As B
has negligible success probability against XB in the restricted U-KSNDB,XB(1λ)
game, A thus has negligible success probability against XA in the unrestricted
U-KSNDA,XA(1λ) game. ��

5.4 The zk-SNARK Scheme

In this section we construct a zk-SNARK for QAP satisfiability given the uni-
versal common reference string in Sect. 5.2. First we derive a QAP specific CRS
from the universal CRS with which we can construct efficient prove and verify
algorithms.

Lemma 7. The derive algorithm is computable in polynomial time and the proof
system has perfect completeness if QAP is such that t(x) �= y−1.

A proof of this lemma can be found in the full version of the paper [GKM+18].

Theorem 3. The proof system has perfect subversion zero-knowledge if QAP is
such that t(x) �= y−1.

Proof. To prove subversion zero-knowledge, we need to both show the exis-
tence of an extractor XA, and describe a SimProve algorithm that produces
indistinguishable proofs when provided the extracted trapdoor (which it can
compute given the randomness of both A and the honest algorithms). The
simulator knows x, y, z and picks r ← Fp and sets A = Gr, B = Hr

and C = Gr2+(r+y5+t(x)y6−∑�
i=0 ai(wi(x)y

2+ui(x)y
3+vi(x)y

4))·n(x,y,z). The simulated
proof has the same distribution as a real proof, since y �= 0 and t(x) �= y−1 and
thus the randomisation of A given in r(y − t(x)y2) makes A uniformly random.
Given A the verification equations uniquely determine B,C. So both real and
simulated proofs have uniformly random A and satisfy the equations. Conse-
quently, subversion zero-knowledge follows from the extraction of the trapdoor,
which can be extracted by Lemma 4. ��
Theorem 4. The proof system has update knowledge soundness assuming the
q-MK and the q-MC assumptions hold with a = {XiY jZk : (i, j, k) ∈ S1} and
b = {XiY jZk : (i, j, k) ∈ S2}.

Proof. To prove this it suffices, by the results in Sect. 5.3, to prove security in
the setting in which the adversary makes only one update to the CRS. Imagine
we have a PPT adversary AU-Os that after querying U-Os on (Setup, ∅) to get
crs, then queries on (final, crs′, {ρ, ρ′})), and outputs u, π that gets accepted;

720 J. Groth et al.

Derive(crs,QAP)
parse (, {ui(X), vi(X), wi(X)}m

i=0, t(X)) ← QAP
assert Gy−t(x)y2 �= 1
let si(X, Y) = wi(X)Y 2 + ui(X)Y 3 + vi(X)Y 4 for i = 0, . . . , m
let sm+j(X, Y) = t(X)Y j+1 for j = 1, 2, 3
compute polynomials n1(X, Y), . . . , n3d−m+�(X, Y) such that

for all i = {	 + 1, . . . , m + 3}, k ∈ {1, . . . , 3d − m + 	} the product
si(X, Y) · nk(X, Y) has coefficient 0 for the term XdY 4

for all p(X, Y) · Y 2 /∈ span{si(X, Y)}m+3
i=�+1 there exists k ∈ {1, . . . , 3d − m + 	}

such that the product p(X, Y) · Y 2 · nk(X, Y) has non-zero coefficient for the
term XdY 4

let n(X, Y, Z) = Z6d +
∑3d−m+�

k=1 nk(X, Y)Zk

crsQAP ←

⎛
⎜⎜⎜⎜⎜⎜⎝

QAP, G, {Gxiyj }2d,12
i=0,j=1,j �=7, Gy−t(x)y2

,

{Gwi(x)y
2+ui(x)y

3+vi(x)y
4}m

i=0, G
y5

, Gt(x)y6
, {Gxiy·n(x,y,z)}d

i=0,

G(y−t(x)y2)·n(x,y,z), {G(wi(x)y
2+ui(x)y

3+vi(x)y
4)·n(x,y,z)}m

i=�+1 H,

{Hxiy}d
i=0, Hy−t(x)y2

, {Hwi(x)y
2+ui(x)y

3+vi(x)y
4}m

i=0, H
y5

,

Ht(x)y6
, Hn(x,y,z)

⎞
⎟⎟⎟⎟⎟⎟⎠

Prove(crsQAP, u, w)
assert Hy5 �= Ht(x)y6

set a0 = 1 and parse (a1, . . . , a�) ← u and (a�+1, . . . , am) ← w

let q(X) =
∑m

i=0 aiui(X)·∑m
i=0 aivi(X)−∑m

i=0 aiwi(X)

t(X)

pick r
$←− Fp and compute A ← Ga(x,y), B ← Hb(x,y), C ← Gc(x,y,z), where

a(x, y) = b(x, y)
= q(x)y + r(y − t(x)y2) +

∑m
i=0 ai(wi(x)y2 + ui(x)y3 + vi(x)y4) − y5 − t(x)y6,

c(x, y, z) =
a(x, y) · b(x, y)+
q(x) · y + r · (y − t(x)y2) +

∑m
i=�+1 ai(wi(x)y2 + ui(x)y3 + vi(x)y4)

) · n(x, y, z).
return π = (A, B, C)

Verify(crsQAP, u, π)
set a0 = 1 and parse (a1, . . . , a�) ← u and (A, B, C) ← π
assert e(A, H) = e(G, B)
assert e(A, B) · e(AGy5+t(x)y6−∑�

i=0 ai(wi(x)y
2+ui(x)y

3+vi(x)y
4), Hn(x,y,z))

= e(C, H)

Fig. 3. An updatable and specializable zk-SNARK for QAP

i.e., such that VerifyCRS(R, crs′, {ρ, ρ′}) = 1, crsQAP ← Derive(crs′,QAP),
and Verify(crsQAP, u, π) = 1. Set a0 = 1 and parse the instance as u =
(a1, . . . , a�) and the proof as (A,B,C). By Lemma 5, because the updated CRS
verifies, there exists an extractor XA that outputs τ = (α, β, γ) such that
Update(1λ, crs, {ρ}; τ) = (crs′, ρ′).

From the first verification equation we have e(A,H) = e(G,B), which
means there is an a ∈ Fp such that A = Ga and B = Ha. From the q-MK
assumption there exists a PPT extractor XA for A that outputs field elements

Updatable and Universal Common Reference Strings with Applications 721

{ai,j,k}(i,j,k)∈{(0,0,0)}∪S1 defining a formal polynomial a(X,Y,Z) equal to

a0,0,0 + a1,0,0X +
d,6∑

i=0,j=1

ai,j,0X
iY j +

2d,3,3d∑

i=0,j=0,k=1

ai,j,kXiY jZk + a0,0,6dZ
6d

such that B = Ha(x,y,z).
Taking the adversary and extractor together, we can see them as a combined

algorithm that outputs A,B,C and the formal polynomial a(X,Y,Z) such that
A = Ga(x,y,z). By the q-MC assumption this has negligible probability of hap-
pening unless a(X,Y,Z) is in the span of {0, 0, 0} ∪ S1 ∩ S2

{
1, X, Z, {XiY j}2d,12

i=0,j=1,j �=7, {XiY jZk}2d,6,3d
i=0,j=1,k=1,(i,j) �=(d,4), {XiY jZ6d}d,4

i=0,j=1

}
.

This means

a(X,Y,Z) = a0,0,0 + a1,0,0X +
d,6∑

i=0,j=1

ai,j,0X
iY j +

d,3,3d∑

i=0,j=1,k=1

ai,j,kXiY jZk.

From the second verification equation we get C = Gf(x,y,z) where f(x, y, z)
is given by

a(x, y, z)2 +
(
a(x, y, z) + β5y5 + t(αx)β6y6

−
�∑

i=0

ai(wi(αx)β2y2 + ui(αx)β3y3 + vi(αx)β4y4)
)

· n(αx, βy, γz).

By the q-MC assumption this means

a(X, Y, Z)
2
+

(
a(X, Y, Z) + β

5
Y

5
+ t(αX)β

6
Y

6

−
�∑

i=0

ai(wi(αX)β
2
Y

2
+ ui(αX)β

3
Y

3
+ vi(αX)β

4
Y

4
)
)

· (γ6d
Z

6d
+

3d−m+�∑

k=1

nk(αX, βY)γ
k
Z

k
)

also belongs to the span of
{

1, X, Z, {XiY j}2d,12
i=0,j=1,j �=7, {XiY jZk}2d,6,3d

i=0,j=1,k=1,(i,j) �=(d,4), {XiY jZ6d}d,4
i=0,j=1

}
.

Set a′
i,j,k = ai,j,0

αiβjγk and observe that

a(X,Y,Z) =
∑

i,j,k

ai,j,kXiY jZk =
∑

i,j,k

a′
i,j,k(αX)i(βY)j(γZ)k = a′(αX, βY, γZ).

W.l.o.g. we can then rename the variables αX, βY , γZ by X,Y,Z to get that

a′(X,Y,Z)2 +
(
a′(X,Y,Z) + Y 5 + t(X)Y 6

−
�∑

i=0

ai(wi(X)Y 2 + ui(X)Y 3 + vi(X)Y 4)
)

· (Z6d +
3d−m+�∑

k=1

nk(X,Y)Zk)

722 J. Groth et al.

The span has no monomials of the form XiY jZk for k > 6d. Looking at the
sub-part a′(X,Y,Z)Z6d we deduce that a′

i,j,k = 0 for all k �= 0, which means

a′(X,Y,Z) = a′
0,0,0 + a1,0,0X

′ +
d,6∑

i=0,j=1

a′
i,j,0X

iY j .

There is also no Z6d or XZ6d monimials in the span, so we get a′
0,0,0 = 0 and

a′
1,0,0 = 0. We are now left with

a′(X,Y,Z) =
d,6∑

i=0,j=1

a′
i,j,0X

iY j .

Define q(X), p(X,Y) such that

q(X) · Y + p(X,Y) · Y 2 =
d,6∑

i=0,j=1

a′
i,j,0X

iY j + Y 5 + t(X)Y 6

−
�∑

i=0

ai(wi(X)Y 2 + ui(X)Y 3 + vi(X)Y 4).

Looking at the remaining terms of the form XiY jZk we see that for k =
0, . . . , 3d − m + �

(
q(X) · Y + p(X,Y) · Y 2

) · nk(X,Y) ∈ span{XiY j}2d,6
i=0,j=1,(i,j) �=(d,4).

Since nk(X,Y) has at most degree 2 in Y this implies p(X,Y) ·Y 2 ·nk(X,Y)
has coefficient 0 for the term XdY 4. Recall the nk(X,Y) polynomials had been
constructed such that this is only possible if p(X,Y) · Y 2 can be written as

m∑

i=�+1

ai(wi(X)Y 2 + ui(X)Y 3 + vi(X)Y 4) + r1t(X)Y 2 + r2t(X)Y 3 + r3t(X)Y 4.

Finally, we look at terms of the form XiY 7. These do not exist in the span,
so all the terms of that form in a(X,Y,Z)2 should sum to zero. This implies

(
q(X) · Y +

∑m
i=0 ai(wi(X)Y 2 + ui(X)Y 3 + vi(X)Y 4)

+r1t(X)Y 2 + r2t(X)Y 3 + r3t(X)Y 4 − Y 5 − t(X)Y 6

)2

should have no xiY 7 terms. This in turn implies

2
(

(r3
∑m

i=0 aiui(X) + r2
∑m

i=0 aivi(X) − r1 − q(X)) · t(X)
−∑m

i=0 aiwi(X) +
∑m

i=0 aiui(X) · ∑m
i=0 aivi(X)

)

= 0

By definition of QAP we now have that (a�+1, . . . , am) is a witness for the instance
(a1, . . . , a�). ��

Updatable and Universal Common Reference Strings with Applications 723

6 Updating a Reference String Reveals the Monomials

In this section we show a negative result; namely, that for any updatable pairing-
based NIZK with polynomials encoded into the common reference string, it must
also be allowed (which often it is not) for an adversary to know encodings of the
monomials that make up the polynomials. The reason for this is that from the
encodings of the polynomials, we can construct an adversary that uses the update
algorithm in order to extract the monomials. After describing our monomial
extractor, we give one example (for the sake of brevity) of how to use our mono-
mial extractor to break a QAP-based zk-SNARK, namely Pinocchio [PHGR13].
Due to the similarity in the approaches, however, we believe that the same tech-
niques could be used to show that most other QSP/QAP-based zk-SNARKs in
the literature also cannot be made updatable. As our universal CRS does consist
of monomials, we can avoid this impossibility result yet still achieve linear-size
specialized CRSs for proving specific relations.

Due to space constraints, we present our monomial extractor in the full ver-
sion of the paper, which shows that if a NIZK scheme has an update algorithm,
it can be used to extract all monomials from the common reference string. Intu-
itively, the existence of this monomial extractor would break most pairing-based
NIZK proofs using QAPs or QSPs. This is because these arguments typically
depend on the instance polynomials and the witness polynomials being linearly
independent from each other. Here we give an example by demonstrating how
to break the knowledge soundness of Pinocchio [PHGR13].

Example 1 (We cannot update the common reference string for Pinocchio). Con-
sider the zk-SNARK in Pinocchio [PHGR13]. The scheme runs over a QAP
relation described by

R = {(p,G,GT , e), {vk(X), wk(X), yk(X)}m
k=0, t(X)}

where t(X) is a degree n polynomial, uk(X), vk(X), wk(X) are degree n − 1
polynomials and (p,G,GT , e) is a bilinear group. The instance (c1, . . . , c�) is in
the language if and only if there is a witness of the form (c�+1, . . . , cm) such that,
where c0 is set to 1,

(
m∑

i=0

ckuk(X)

)

·
(

m∑

i=0

ckvk(X)

)

=
m∑

i=0

ckwk(X) + h(X)t(X)

for h(X) some degree n − 1 polynomial.
Here we switch to symmetric pairings, as Pinocchio was originally described

in the symmetric setting (i.e. where G1 = G2.
The common reference string is given by

⎛

⎝
G,GαwGγ , Gβγ , Grurvt(s), {Gsi}n

i=1

{
Gruuk(s), Grvvk(s), Grurvwk(s)

}m

k=0
,

{
Gruαuuk(s), Grvαvvk(s), Grurvαwwk(s), Gβ(ruuk(s)+rvvk(s)+rurvwk(s))

}m

k=�+1

⎞

⎠

724 J. Groth et al.

where ru, rv, s, αu, αv, αw, β, γ are random field elements and G ∈ G. Hence, for
Ec(x) = Gx, there exists a matrix X̂ such that crs = X̂Ec(τ) for

τ =

(
αw, γ, βγ,

{
rurvsi, si

}n

i=0
,

{
rusi, rvsi, ruαusi, rvαvsi, rurvαwsi, ruβsi, rvβsi, rurvβsi

}n−1

i=0

)

. (1)

Lemma 8. For crs = Gτ where τ is as in (1), there exists an adversary that
can find a verifying proof for any instance (c1, . . . , c�) ∈ Fp.

Proof. The verifier in Pinocchio

0/1 ← Verify(crs; c1, . . . , c�;A1, A2, A3, B1, B2, B3,H, Z)

returns 1 if and only the following equations are satisfied

e(Gru
∑�

k=0 ckuk(s)A1, G
rv

∑�
k=0 ckvk(s)A2) = e(Grurvt(s), H)e(Grurv

∑�
k=0 ckwk(s)A3, G)

e(B1, G) = e(A1, G
αu)

e(B2, G) = e(A2, G
αv)

e(B3, G) = e(A1, G
αw)

e(Z,Gγ) = e(A1A2A3, G
βγ).

Suppose the adversary sets the degree n − 1 polynomials ν(X), ω(X), ξ(X) as

ν(X) ← ∑�
k=0 ckvk(X)

ω(X) ← ∑�
k=0 ckwkX

ξ(X) ← ∑�
k=0 ckyk(X)

It then sets the components H, A1, A2, A3 by

H = G, A1 = GrusG−ruν(s), A2 = Grvsn−1
G−rvω(si),

A3 = G−rurv(t(s)−sn)−rurvξ(s)

Direct verification shows that A1, A2, A3 satisfy the first verification equation.
Note that τ does not include the value αwrurvsn, so the final coefficient of
t(s) cannot be included in A3, else the algorithm could not satisfy the fifth
verification equation. Instead we include rus in A1 and rv in A2, so that the
LHS of the first verification equation returns the sole component not cancelled
on the RHS: e(G,G)rurvsn

.
To satisfy verification equations 2–4 the algorithm sets

B1 = GαurusG−αuruν(s), B2 = Gαvrvsn−1
G−αvrvω(s),

B3 = G−αwrurv(t(s)−sn)−αwrurvξ(s)

and to satisfy the fifth and final verification equation the algorithm sets

Z = GβrusGβrvsn−1
G−βruν(s)G−βrvω(s)G−βrurv(t(s)−sn)−βrurvξ(s).

We then have that Verify(crs; c1, . . . , c�;A1, A2, A3, B1, B2, B3,H, Z) = 1. ��

Updatable and Universal Common Reference Strings with Applications 725

Theorem 5. If there exists an update algorithm for Pinocchio, then either the
relation is easy or the scheme is not knowledge-sound.

Proof. Suppose that crs ← Setup(1λ); i.e., crs = X̂Gτ for τ as in Eq. 1. Suppose
that (c1, . . . , c�) ∈ Fp.

The polynomials uk(X), vk(X), wk(X) are Lagrange polynomials, meaning
that each and every one of the components τ are used in the crs. This means
that the RREF of X̂, which we shall call R̂, is such that for 1 ≤ i ≤ length(R̂),
there exists some j such that R̂[i][j] �= 0. Hence by running MonoExtract, an
adversary A can calculate Gτ . By Lemma 8, the adversary A can continue, and
calculate a verifying proof for (c1, . . . , c�). Hence either there is a PPT extractor
that can output a valid witness for any instance (meaning the language is easy),
or there is no extractor and A breaks knowledge-soundness. ��

References

[ABLZ17] Abdolmaleki, B., Baghery, K., Lipmaa, H., Zaj ↪ac, M.: A subversion-
resistant SNARK. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017.
LNCS, vol. 10626, pp. 3–33. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-70700-6 1

[AF07] Abe, M., Fehr, S.: Perfect NIZK with adaptive soundness. In: TCC (2007)
[AHIV17] Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero:

lightweight sublinear arguments without a trusted setup. In: Proceedings
of ACM CCS (2017)

[BBB+18] Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Maxwell, G.: Bulletproofs:
short proofs for confidential transactions and more. In: Proceedings of the
IEEE Symposium on Security & Privacy (2018)

[BCC+14] Bernstein, D.J., Chou, T., Chuengsatiansup, C., Hülsing, A., Lange, T.,
Niederhagen, R., van Vredendaal, C.: How to manipulate curve stan-
dards: a white paper for the black hat. Cryptology ePrint Archive, Report
2014/571 (2014). http://eprint.iacr.org/2014/571

[BCC+16] Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-
knowledge arguments for arithmetic circuits in the discrete log setting. In:
Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666,
pp. 327–357. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-49896-5 12

[BCG+14] Ben-Sasson, E., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E.,
Virza, M.: Zerocash: decentralized anonymous payments from Bitcoin. In:
Proceedings of the IEEE Symposium on Security & Privacy (2014)

[BCG+15] Ben-Sasson, E., Chiesa, A., Green, M., Tromer, E., Virza, M.: Secure sam-
pling of public parameters for succinct zero knowledge proofs. In: Proceed-
ings of the IEEE Symposium on Security & Privacy (2015)

[BCG+17] Bootle, J., Cerulli, A., Ghadafi, E., Groth, J., Hajiabadi, M., Jakobsen,
S.K.: Linear-time zero-knowledge proofs for arithmetic circuit satisfiabil-
ity. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10626,
pp. 336–365. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70700-6 12

https://doi.org/10.1007/978-3-319-70700-6_1
https://doi.org/10.1007/978-3-319-70700-6_1
http://eprint.iacr.org/2014/571
https://doi.org/10.1007/978-3-662-49896-5_12
https://doi.org/10.1007/978-3-662-49896-5_12
https://doi.org/10.1007/978-3-319-70700-6_12
https://doi.org/10.1007/978-3-319-70700-6_12

726 J. Groth et al.

[BCTV14] Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Scalable zero knowledge
via cycles of elliptic curves. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO
2014. LNCS, vol. 8617, pp. 276–294. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-662-44381-1 16

[BFM88] Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its
applications (extended abstract). In: STOC, pp. 103–112 (1988)

[BFS16] Bellare, M., Fuchsbauer, G., Scafuro, A.: NIZKs with an untrusted CRS:
security in the face of parameter subversion. In: Cheon, J.H., Takagi, T.
(eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 777–804. Springer, Hei-
delberg (2016). https://doi.org/10.1007/978-3-662-53890-6 26

[BGG17] Bowe, S., Gabizon, A., Green, M.: A multi-party protocol for constructing
the public parameters of the Pinocchio zk-SNARK. Cryptology ePrint
Archive, Report 2017/602 (2017)

[BGM17] Bowe, S., Gabizon, A., Miers, I.: Scalable multi-party computation for
zk-SNARK parameters in the random beacon model. Cryptology ePrint
Archive, Report 2017/1050 (2017). https://eprint.iacr.org/2017/1050

[BP04] Bellare, M., Palacio, A.: Towards plaintext-aware public-key encryption
without random oracles. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol.
3329, pp. 48–62. Springer, Heidelberg (2004). https://doi.org/10.1007/
978-3-540-30539-2 4

[BR06] Bellare, M., Rogaway, P.: The security of triple encryption and a frame-
work for code-based game-playing proofs. In: Vaudenay, S. (ed.) EURO-
CRYPT 2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006).
https://doi.org/10.1007/11761679 25

[BSBHR18] Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable, transpar-
ent, and post-quantum secure computational integrity. Cryptology ePrint
Archive, Report 2018/046 (2018). https://eprint.iacr.org/2018/046

[Buc17] Buck, J.: Ethereum upgrade Byzantium is live, verifies first ZK-Snark
proof. https://cointelegraph.com/news/ethereum-upgrade-byzantium-is-
live-verifies-first-zk-snark-proof. Accessed Sept 2017

[CF01] Canetti, R., Fischlin, M.: Universally composable commitments. Cryptol-
ogy ePrint Archive, Report 2001/055 (2001). http://eprint.iacr.org/2001/
055

[Dam91] Damg̊ard, I.: Towards practical public key systems secure against chosen
ciphertext attacks. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol.
576, pp. 445–456. Springer, Heidelberg (1992). https://doi.org/10.1007/3-
540-46766-1 36

[Dam92] Damg̊ard, I.: Non-interactive circuit based proofs and non-interactive per-
fect zero-knowledge with preprocessing. In: Rueppel, R.A. (ed.) EURO-
CRYPT 1992. LNCS, vol. 658, pp. 341–355. Springer, Heidelberg (1993).
https://doi.org/10.1007/3-540-47555-9 28

[Dam00] Damg̊ard, I.: Efficient concurrent zero-knowledge in the auxiliary string
model. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807,
pp. 418–430. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-
45539-6 30

[DFGK14] Danezis, G., Fournet, C., Groth, J., Kohlweiss, M.: Square span programs
with applications to succinct NIZK arguments. In: Sarkar, P., Iwata, T.
(eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 532–550. Springer, Hei-
delberg (2014). https://doi.org/10.1007/978-3-662-45611-8 28

https://doi.org/10.1007/978-3-662-44381-1_16
https://doi.org/10.1007/978-3-662-44381-1_16
https://doi.org/10.1007/978-3-662-53890-6_26
https://eprint.iacr.org/2017/1050
https://doi.org/10.1007/978-3-540-30539-2_4
https://doi.org/10.1007/978-3-540-30539-2_4
https://doi.org/10.1007/11761679_25
https://eprint.iacr.org/2018/046
https://cointelegraph.com/news/ethereum-upgrade-byzantium-is-live-verifies-first-zk-snark-proof
https://cointelegraph.com/news/ethereum-upgrade-byzantium-is-live-verifies-first-zk-snark-proof
http://eprint.iacr.org/2001/055
http://eprint.iacr.org/2001/055
https://doi.org/10.1007/3-540-46766-1_36
https://doi.org/10.1007/3-540-46766-1_36
https://doi.org/10.1007/3-540-47555-9_28
https://doi.org/10.1007/3-540-45539-6_30
https://doi.org/10.1007/3-540-45539-6_30
https://doi.org/10.1007/978-3-662-45611-8_28

Updatable and Universal Common Reference Strings with Applications 727

[FF00] Fischlin, M., Fischlin, R.: Efficient non-malleable commitment schemes.
In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 413–431.
Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44598-6 26

[FLS99] Feige, U., Lapidot, D., Shamir, A.: Multiple noninteractive zero knowledge
proofs under general assumptions. SIAM J. Comput. 29(1), 1–28 (1999)

[Fuc17] Fuchsbauer, G.: Subversion-zero-knowledge SNARKs. Cryptology ePrint
Archive, Report 2017/587 (2017)

[GG17] Ghadafi, E., Groth, J.: Towards a classification of non-interactive com-
putational assumptions in cyclic groups. In: Takagi, T., Peyrin, T. (eds.)
ASIACRYPT 2017, Part II. LNCS, vol. 10625, pp. 66–96. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-70697-9 3

[GGI+15] Gentry, C., Groth, J., Ishai, Y., Peikert, C., Sahai, A., Smith, A.D.: Using
fully homomorphic hybrid encryption to minimize non-interative zero-
knowledge proofs. J. Cryptol. 28(4), 820–843 (2015)

[GGPR13] Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span pro-
grams and succinct NIZKs without PCPs. In: Johansson, T., Nguyen,
P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9 37

[GHM+17] Gilad, Y., Hemo, R., Micali, S., Vlachos, G., Zeldovich, N.: Algorand:
scaling Byzantine agreements for cryptocurrencies. In: SOSP (2017)

[GKM+18] Groth, J., Kohlweiss, M., Maller, M., Meiklejohn, S., Miers, I.: Updatable
and universal common reference strings with applications to zk-SNARKS.
Cryptology ePrint Archive, Report 2018/280 (2018). https://eprint.iacr.
org/2018/280

[GM17] Groth, J., Maller, M.: Snarky signatures: minimal signatures of knowledge
from simulation-extractable SNARKs. In: Katz, J., Shacham, H. (eds.)
CRYPTO 2017. LNCS, vol. 10402, pp. 581–612. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-63715-0 20

[GO14] Groth, J., Ostrovsky, R.: Cryptography in the multi-string model. J. Cryp-
tol. 27(3), 506–543 (2014)

[GOP94] Goldreich, O., Ostrovsky, R., Petrank, E.: Computational complexity and
knowledge complexity. In: Electronic Colloquium on Computational Com-
plexity (ECCC), vol. 1, no. 7 (1994)

[GOS12] Groth, J., Ostrovsky, R., Sahai, A.: New techniques for noninteractive
zero-knowledge. J. ACM 59(3), 11:1–11:35 (2012)

[Gro10a] Groth, J.: Short non-interactive zero-knowledge proofs. In: Abe, M. (ed.)
ASIACRYPT 2010. LNCS, vol. 6477, pp. 341–358. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17373-8 20

[Gro10b] Groth, J.: Short pairing-based non-interactive zero-knowledge arguments.
In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-
8 19

[Gro16] Groth, J.: On the size of pairing-based non-interactive arguments. In: Fis-
chlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp.
305–326. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-
49896-5 11

[GS12] Groth, J., Sahai, A.: Efficient noninteractive proof systems for bilinear
groups. SIAM J. Comput. 41(5), 1193–1232 (2012)

[GW11] Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from
all falsifiable assumptions. In: STOC, pp. 99–108 (2011)

https://doi.org/10.1007/3-540-44598-6_26
https://doi.org/10.1007/978-3-319-70697-9_3
https://doi.org/10.1007/978-3-642-38348-9_37
https://eprint.iacr.org/2018/280
https://eprint.iacr.org/2018/280
https://doi.org/10.1007/978-3-319-63715-0_20
https://doi.org/10.1007/978-3-642-17373-8_20
https://doi.org/10.1007/978-3-642-17373-8_19
https://doi.org/10.1007/978-3-642-17373-8_19
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-662-49896-5_11

728 J. Groth et al.

[KP98] Kilian, J., Petrank, E.: An efficient noninteractive zero-knowledge proof
system for NP with general assumptions. J. Cryptol. 11(1), 1–27 (1998)

[Lip12] Lipmaa, H.: Progression-free sets and sublinear pairing-based non-
interactive zero-knowledge arguments. In: TCC, pp. 169–189 (2012)

[Lip13] Lipmaa, H.: Succinct non-interactive zero knowledge arguments from span
programs and linear error-correcting codes. In: Sako, K., Sarkar, P. (eds.)
ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 41–60. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-42033-7 3

[LMS16] Lipmaa, H., Mohassel, P., Sadeghian, S.S.: Valiant’s universal cir-
cuit: improvements, implementation, and applications. IACR Cryptology
ePrint Archive 2016:17 (2016)

[PHGR13] Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: nearly prac-
tical verifiable computation. In: Proceedings of the IEEE Symposium on
Security & Privacy (2013)

[SCP00] De Santis, A., Di Crescenzo, G., Persiano, G.: Necessary and sufficient
assumptions for non-iterative zero-knowledge proofs of knowledge for all
NP relations. In: 27th International Colloquium on Automata, Languages
and Programming (ICALP), pp. 451–462 (2000)

[SP92] De Santis, A., Persiano, G.: Zero-knowledge proofs of knowledge without
interaction (extended abstract). In: 33rd Annual Symposium on Founda-
tions of Computer Science, pp. 427–436 (1992)

[Val76] Valiant, L.G.: Universal circuits (preliminary report). In: Proceedings of
the 8th Annual ACM Symposium on Theory of Computing, pp. 196–203
(1976)

[WTas+17] Wahby, R.S., Tzialla, I., Shelat, A., Thaler, J., Walfish, M.: Doubly-
efficient zk-SNARKs without trusted setup. Cryptology ePrint Archive,
Report 2017/1132 (2017). https://eprint.iacr.org/2017/1132

https://doi.org/10.1007/978-3-642-42033-7_3
https://eprint.iacr.org/2017/1132

Obfuscation

A Simple Obfuscation Scheme
for Pattern-Matching with Wildcards

Allison Bishop1,2(B), Lucas Kowalczyk2, Tal Malkin2, Valerio Pastro2,3,
Mariana Raykova3, and Kevin Shi2

1 IEX, New York, USA
2 Columbia University, New York, USA

{allison,luke,tal,valerio,kshi}@cs.columbia.edu
3 Yale University, New Haven, USA

mariana.raykova@yale.edu

Abstract. We give a simple and efficient method for obfuscating pat-
tern matching with wildcards. In other words, we construct a way to
check an input against a secret pattern, which is described in terms of
prescribed values interspersed with unconstrained “wildcard” slots. As
long as the support of the pattern is sufficiently sparse and the pat-
tern itself is chosen from an appropriate distribution, we prove that a
polynomial-time adversary cannot find a matching input, except with
negligible probability. We rely upon the generic group heuristic (in a
regular group, with no multilinearity). Previous work [9,10,32] provided
less efficient constructions based on multilinear maps or LWE.

1 Introduction

The discipline of cryptography is fundamentally about the separation of seem-
ingly intertwined information and abilities: how do we separate the ability the
compute a function from the ability to invert a function? How do we separate
the ability to encrypt from the ability to decrypt? How do we separate partial
knowledge of a key through a side-channel attack from the ability to compro-
mise a cryptographic scheme? The study of cryptographic obfuscation is born
from the question: how do we separate the ability to run code from the ability
to read code? Since the seminal work of [7] that placed this question firmly on
a rigorous theoretical foundation, it has been clear that this kind of separation
would be powerful, both inside and outside the typical reach of the discipline of
cryptography.

If we can hide secrets inside functioning software, we can protect crypto-
graphic keys, and many of cryptography’s disparate and hard won achievements
follow as a consequence. We can also protect intellectual property, and the
inner workings of critical code like software patches, which in their unprotected
form might leak information that could be used to attack remaining vulnerable

V. Pastro—Work done while the author was a postdoc at Columbia University and
Yale University.

c© International Association for Cryptologic Research 2018
H. Shacham and A. Boldyreva (Eds.): CRYPTO 2018, LNCS 10993, pp. 731–752, 2018.
https://doi.org/10.1007/978-3-319-96878-0_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96878-0_25&domain=pdf

732 A. Bishop et al.

machines. But as with any cryptographic primitive, the suitability of program
obfuscation for any particular task depends on three main axes by which we must
evaluate proposed constructions: (1) efficiency, (2) the underlying computational
and architectural assumptions, and (3) the derived security guarantees.

Two possibilities for (3), defined in [7], are the notion of virtual black box
obfuscation (VBB) and the notion of indistinguishability obfuscation (IO). Vir-
tual black box obfuscation is a very powerful and intuitive notion, which requires
that anything that can be done by an attacker in possession of the obfuscated
code can also be done by a simulator who can only run the software in a “black
box”, with no access to intermediary values or other properties of the compu-
tation between input ingestion and output production. This notion would be
suitable for virtually1 all possible applications of obfuscation, but it is shown
in [7] that it is impossible to achieve for general functionalities. The notion of
IO requires something weaker, merely that an attacker in possession of two dif-
ferent obfuscations of the same functionality cannot tell them apart. In other
words, we only enforce indistinguishability for program descriptions that may
differ internally but whose external input/output behavior is identical.

At the time of its introduction by [7], IO was neither shown to be impos-
sible, nor shown to be particularly useful. Progress instead was made for VBB
obfuscation of very basic functionalities, such as point obfuscation [27,31] and
hyperplane membership [12], which lie below the reach of the impossibility result
for VBB. But following the unprecedented construction of cryptographic mul-
tilinear maps in [17], two breakthroughs occurred in quick succession. A first
candidate construction for indistinguishability obfuscation of general functions
was proposed in [18], and the flexible technique of “punctured programming”
was developed for deriving meaningful cryptographic results from the IO secu-
rity guarantee [30].

Since then, the cryptographic research community has been riding out wave
of positive and negative results: increasingly powerful constructions employing
idealized models on multilinear maps or new, complex assumptions [2,4–6,18–
20,23–26,33], attacks on the underlying multilinear maps [3,13–16,28], and a
steady stream of works deriving applications and consequences from various
forms of obfuscation(e.g., [1,21,22], and many more).

Our work is focused on the goal of obfuscating a modest but well-motivated
functionality, one that does not require the use of multilinear maps, and hence
does not inherit the risks of their still volatile security assumptions or the ineffi-
ciency that currently comes with using such a general-purpose tool. We consider
the problem of pattern matching with wildcards: suppose there is an input binary
string S of length n, and a pattern specification P also of length n, where for
each bit P either dictates a particular bit value, or has a wildcard ∗, indicating
that either value is allowed. For example, with n = 5, a pattern P would look
like: 00 ∗ 11, and there would be two “matching” input strings S in this case,
00011 and 00111. The function we will obfuscate is the final “yes” or “no” out-
come: for each P , we define the associated function fP (S) that outputs 1 when
S matches P and outputs 0 otherwise.

1 Pun intended.

A Simple Obfuscation Scheme for Pattern-Matching with Wildcards 733

This kind of functionality might appear, for instance, in a context like soft-
ware patching. If a pattern P represents a problematic type of user input, say,
that needs to be filtered out, we can obfuscate this function fP to reject bad
inputs without unnecessarily revealing P in full and helping attackers learn how
to design such bad inputs. If the input length n is reasonably long and the number
of matches to the pattern is not too dense in the space of inputs, we can hope that
an attacker who queries a polynomial number of input strings will never manage
to find a “bad” input that matches the pattern. We find these situations (where
the adversary does not have enough information to identify the function being
obfuscated) to be the most compelling subset of the standard VBB obfuscation
security guarantee (as opposed to the subset involving simulating an adversary
that already knows the function being obfuscated). Accordingly, we demonstrate
that our construction satisfies a distributional security notion from [9,10,32]: if
the pattern P is chosen from a suitable random distribution (and the number of
wildcards w ≤ 0.75n), then a PPT attacker will not be able to distinguish our
obfuscation of fP from an obfuscation of a function that always outputs 0.

Our construction uses only the basic tools of group operations and polyno-
mial interpolation, and so is quite efficient. Our security analysis will be in the
generic group model, for a regular cyclic group, with no multilinearity required.
It remains an interesting open problem to obtain a security analysis in the stan-
dard model, using standard assumptions like DDH, for instance. [29] showed
that the easier problem of bounded Hamming distance decoding is at least as
hard as the DDH problem. While the result is not applicable to the obfuscation
construction, the intermediary problem of finding nontrivial representations of
the identity element first described by [11] is potentially applicable.

The functionality of pattern matching with wildcards has been previously
obfuscated in [9,10]. These constructions rely on multiplicative encoding schemes
that enable multiplication of the encoded values and also zero-testing, i.e. check-
ing whether an encoded value is zero. Unlike multilinear maps, these encoding
schemes do not need to have additive properties. This functionality has been
realized either through the use of general multilinear maps [9] or through lattice-
based encodings relying on a new instance dependent assumption called entropic
LWE [10]. A recent work by Wichs and Zirdelis [32] provides an obfuscation
construction for a more general high entropy class, called compute-and-compare
functions, from LWE. This class includes our pattern matching with wildcards.
We view our construction as a simple and highly efficient alternative to such an
LWE-based construction, and this is in line with the long tradition of analogous
functionalities being achieved in the discrete-logarithm and LWE regimes.

To keep our scheme as intuitive and as efficient as possible, we start from
additive basics. Let’s first consider a pattern P with no wildcards. In this case,
our function fP is just a point function, since there is only one input string that
matches the fully prescriptive pattern. Here we can work over Zp and choose
uniformly random values a1, . . . , an−1 ∈ Zp and set an = −(a1 + · · · + an−1).
We can choose additional random values r1, . . . , rn ∈ Zp. Now our obfuscated
program can be comprised of 2n elements of Zp, which we will label as xi,b where

734 A. Bishop et al.

i ∈ [n] and b ∈ [0, 1]. For each input bit position i, if the pattern value P is b, we
set xi,b := ai and xi,1−b = ri. To evaluate the obfuscated program on an input
string, the evaluator simply selects the value corresponding to each input bit,
and takes the sum modulo p. If it is 0, the output is 1. Otherwise the output
is 0. Given these 2n values, if an attacker wants to find the pattern P , they
are essentially trying to solve the subset sum problem (this is a slight variant
since we have this kind of pair structure on the elements, but still the security
intuition is the same).

Now if we want to introduce wildcards, it is clear we cannot simply give out
ai for both values for input bit i, since this will be noticed. The next thing we
might try is to choose a random polynomial F of degree n over Zp whose constant
term is 0. Now we can set xi,b = F (2i + b) for positions that match the pattern,
including both values of b in a wildcard position i. Our desired functionality can
now be evaluated through polynomial interpolation. However, we quickly start
to run into attacks based on list-decoding or regular decoding of Reed-Solomon
codes, which can enable an attacker to recover the polynomial F once there are
enough valid evaluations due to the wild cards.

A key observation at this point is that these decoding-style attacks rely
upon non-linear functions of the given values, while the honest evaluation of
the intended program needs only linear operations. This allows us to place the
values xi,b in the exponent of a group G = 〈g〉 where discrete-log is difficult, and
give out gxi,b instead. This stops the decoding attacks without preventing hon-
est evaluations. In the generic group model, the attacker is essentially limited to
linear functions of the given exponents, so we can indeed formalize this intuition
and obtain a security proof.

The hardness of noisy polynomial interpolation in the exponent was previ-
ously analyzed by [29], who gave a generic group argument concerning the prob-
lem of interpolating a polynomial with a slightly different error distribution. Our
work follows a similar idea, but the specific wildcard structure we employ for our
application creates some subtle differences, so we give a full argument here for
completeness. We also provide a more rigorous exposition of the generic group
proof argument.

It is an interesting problem to prove security for such a scheme without resort-
ing to a generic group analysis. It seems that we should need a computational
assumption like subset sum to assert that even though the group operations allow
a discovery of the hidden structure, it is too sparse inside a combinatorially large
space of possible input evaluations to be efficiently found. It also seems that we
should need a computational assumption like DDH to explain exactly how the
group blocks non-linear attacks. However, assumptions like DDH allow us to hide
structure that is already non-linear, but requires us to preserve any structure
that is linear, since linear structure on any small number of group elements can
be discovered by brute force by an attacker. We could try to formulate some new
assumption that is a strengthening of the subset sum assumption to the kind
of intertwined linear structures that arise from polynomial evaluation, but this
doesn’t yet seem to yield insight beyond asserting security of the scheme itself.

A Simple Obfuscation Scheme for Pattern-Matching with Wildcards 735

We would ideally like to see a hybrid argument that combined simple subset-sum
like steps with simple DDH-like steps, but designing such a reduction remains an
intriguing challenge. Given that LWE-based approaches in the standard model
are known, this represents a new test case on the boundary of the analogies we
know between DDH-hard groups and the LWE setting. We expect that further
study of this disconnect in proof technology between the LWE setting and the
DDH setting may yield general insights into the inherent relationships (or lack
thereof) between these different mathematical underpinnings.

2 Preliminaries

2.1 The Generic Group Model

We will prove the security of our construction against generic adversaries, which
interact with group elements via the generic group model as defined in [8]. In
this model, an adversary can only interact with the group via oracle calls to
its group operation and zero test functionality. Group elements are represented
by “handles”, which are uniformly random strings long enough that the small
probability of collision between handles representing different group elements can
be ignored. A generic group operation oracle takes as input two group handles
and returns a new handle representing the group element that is the result of the
group operation on the two inputs (and is consistent with all handles previously
used). Note that such an oracle can be efficiently simulated using a lookup table.

We use G to denote such a generic group operation oracle that answers adver-
sary calls. AG will denote an adversary given access to this oracle and OG will
denote the set of handles generated by G corresponding to the group elements
in the construction O.

2.2 Distributional Virtual Black-Box Obfuscation in the Generic
Group Model

We will use a definition of distributional virtual black-box (VBB) obfuscation in
the generic group model which is essentially the definition of [9], except using
the generic group model instead of the random graded encoding model:

Definition 1 (Distributional VBB Obfuscator). Let C = {Cn}n∈N be a
family of polynomial-size circuits, where Cn is a set of boolean circuits operating
on inputs of length n, and let O be a ppt algorithm which takes as input an
input length n ∈ N and a circuit C ∈ C and outputs a boolean circuit O(C) (not
necessarily in C). Let D = {Dn}n∈N be an ensemble of distribution families Dn

where each D ∈ Dn is a distribution over Cn.
O is a distributional VBB obfuscator for the distribution class D over the

circuit family C if it has the following properties:

1. Functionality-Preserving: For every n ∈ N, C ∈ Cn, and x ∈ {0, 1}n, with all
but negl(n) probability over the coins of O:

(O(C, 1n)(x) = C(x)

736 A. Bishop et al.

2. Polynomial Slowdown: For every n ∈ N and C ∈ Cn, the evaluation of
O(C, 1n) can be performed in time poly(|C|, n).

3. Distributional Virtual Black-Box in Generic Group Model: For every polyno-
mial (in n) time generic adversary A, there exists a polynomial time simulator
S, such that for every n ∈ N, every distribution D ∈ Dn (a distribution over
Cn, and every predicate P : Cn → {0, 1}:
| Pr

C←Dn,G,OG ,A
[AG(OG(C, 1n)) = P (C)] − Pr

C←Dn,S
[SC(1|C|, 1n) = P (C)]| = negl(n)

Remark 1. As in [9], we remark that a stronger notion of functionality-preserving
exists in the literature, where the obfuscated program must agree with C(x) on
all inputs x simultaneously. We use the relaxed requirement that for every input
(individually), the obfuscated circuit is correct except for negligible probability.
We also note that our construction can be modified to achieve the stronger
property by using a group of sufficiently large size (22n) and the union bound
over each of the 2n inputs.

2.3 Schwartz-Zippel Lemma

A key step in our hybrid proof of security relies on the Schwartz-Zippel Lemma,
which we will reproduce here:

Lemma 1. Let Zp be a finite field of size p and let P ∈ Zp[x1, . . . , xn] be a non-
zero polynomial of degree ≤ d. Let r1, . . . , rn be selected at random independently
and uniformly from Zp. Then: Pr[P (r1, . . . , rn) = 0] ≤ d

p .

3 Obfuscating Pattern Matching with Wildcards

The class of functions for pattern matching with wildcards is parametrized by
(n,y,W), where W ⊂ [n] is an index set and fy : {0, 1}n−|W| −→ {0, 1} is a
point function over n − |W| input variables that outputs 1 on the single input
y ∈ {0, 1}n−|W|. The function ΠWc : {0, 1}n −→ {0, 1}n−|W| projects a boolean
vector of length n onto only the entries not in the index set W. fy ,W , the function
for pattern y with wildcard slots W, is defined to be fy ,W(x) := fy (ΠWc(x)).
Our obfuscation scheme for the class of functions for pattern matching with
wildcards is as follows:

Setup(n): sample a1, · · · , an−1 ∼ Zp uniformly at random and construct the
fixed polynomial F (x) := a1x + a2x

2 + · · · + an−1x
n−1. Let G be a group with

generator g of prime order p > 2n.

Construction(n,y,W): the obfuscator outputs 2n elements arranged in a 2×n
table of n columns corresponding to the n input variables with two entries each
corresponding to the two possible boolean values of each input. For each slot hij

where (i, j) ∈ {0, 1}n × {0, 1}, if either i ∈ W or yi = j, then the obfuscator
releases the element hij = gF (2i+j). Otherwise, the obfuscator releases hij as a
uniformly random element of G.

A Simple Obfuscation Scheme for Pattern-Matching with Wildcards 737

Evaluation(x): to evaluate fy ,W(x), for each i = 1, · · · , n, compute:

Ci :=
∏

j �=i

−2j − xj

2i − xi − xj + 2j

choose the elements hixi
, and compute:

T :=
n−1∏

i=0

(hixi
)Ci

Output 1 if T = g0 and 0 otherwise.

Functionality-Preserving: The fact that this obfuscation scheme is
functionality-preserving follows from the fact that, if x is an accepting input
of f (f(x) = 1), then the chosen handles form n proper evaluations of the poly-
nomial F (x) on distinct elements. Further, the Ci scalars used in evaluation
are Lagrange coefficients, making the evaluation a polynomial interpolation that
returns F (0) = 0 in this case, causing T = g0 and the evaluation to output 1
(with probability 1).

n−1∏

i=0

(hixi
)Ci =

n−1∏

i=0

gCiF (2i+xi)

= g
∑n−1

i=0 CiF (2i+xi)

= gF (0)

= g0

On the other hand, if even one input bit was not accepting (so f(x) = 0),
then at least one of the hixi

’s used in interpolation would be a uniformly random
group element (not gF (2i+j)). Thus, the evaluation product would be a product
that includes a uniformly random group element raised to some power, which
would result in T = g0 with negligible probability 1

p .

Polynomial Slowdown: Given a the set of 2n group elements, assuming group
operations can be performed in poly(n) time, the computation of Ci and T
described in the Evaluation procedure can be performed in polynomial time.

Distributional Virtual Black-Box: We give a proof of our construction’s
distributional VBB security in the generic group model in Sect. 4 in Theorem 1.

4 Distributional VBB Security in the Generic Group
Model

This section will prove Theorem 1, which establishes the distributional virtual
black box security of our construction in the generic group model over the class

738 A. Bishop et al.

of uniform distributions for point functions with wildcards. Our framework for
reasoning in the generic group setting draws from [8].

In a generic group proof, there are many closely related but technically dis-
tinct kinds of objects that are often conflated. There are the underlying group
elements, which can be associated with their exponents in Zp relative to the
common base. There are the handles that the group oracle associates to these
elements. There are formal polynomials which may track known or unknown
relationships between group elements. There are subsets of handles which the
adversary has previously seen, and other handles whose distribution remains
independent of the adversary’s view so far. In order to make our proof as rig-
orous and precise as possible, we will keep explicit track of all of these various
objects, and the maps between them.

We define an equivalent security game where an adversary calls two oracles
simultaneously, one of whose behavior is already completely known. The purpose
of incorporating a known oracle into the security game is to rigorously define
when the unknown oracle deviates from expected behavior, and thus, when the
adversary has distinguishing power. Given that a low probability failure event
does not occur, any algorithm’s behavior when interacting with either of these
oracles should be identical. The actual calculation of the probability of such
a failure event is conceptually simple and done by many previous works for
different noise distributions. On the other hand, in order to properly describe
the notion of “identical behavior” we introduce some basic technical machinery
from category theory.

We establish some notation before proceeding. Let bold letters denote sym-
bolic variables and non-bold letters denote the sampled random values for the
corresponding variable. Let f ∈ Zp[a1, · · · ,an,x] be a fixed polynomial of degree
n−1 in x which is linear in each ai individually. Let HS and HM be two identical
copies of the same space of strings corresponding to handles in the generic group
model.

Since our proof takes place in the generic group model, and our obfuscated
program consists of a set of group elements, we will use the notation GS ,GM ,GE

to denote three different ways that an adversary can be supplied with handles
representing an obfuscated program and how requests to the generic group oper-
ation oracle are answered. GS will implement faithful interaction with the true
construction in the generic group model. GM implements a hybrid setting that
we will show is indistinguishable from GS to the adversary. Finally, GE imple-
ments a setting that can be simulated without knowledge of the function drawn
from the distribution (and is indistinguishable from GM).

The high level structure of our proof is pretty typical for a generic group
argument. The group oracle GM will behave similarly to GS , but instead of
sampling random exponents according to the proscribed polynomial structure,
it will work with formal polynomials representing this structure, hence ignoring
any spurious relationship arises from a particular choice at the sampling stage.
Arguing that GS and GM are indistinguishable is where we use the Schwartz-
Zippel Lemma. An adversary will only receive a different distribution of handles

A Simple Obfuscation Scheme for Pattern-Matching with Wildcards 739

if it manages to find a spurious relationship while interacting with GS , which
must mean that the sampling happened to choose a root of a non-trivial, low
degree formal polynomial. The Schwartz-Zippel Lemma allows us to conclude
that this will occur with only negligible probability over the sampling employed
by GS .

To argue that GM and GE are indistinguishable, we will need to argue that
the adversary cannot (except with negligible probability), detect the remaining
formal polynomial structure in GM , since doing so requires referencing many
correctly structured elements and avoiding the random elements completely. As
long as the wildcards are not too dense, this is an intractable combinatorial
problem for the adversary.

Definition 2 (GS: Oracle Start).
First, sample the following uniformly at random:

– W = {i1, · · · , iw} ⊂ [n]
– yi ∈ {0, 1} for each i
∈ W
– a1, · · · , an ∈ Zp

– Random embedding ΦS : G ↪→ HS

For the initial set of handles representing the 2n group elements in the obfusca-
tion of fy ,W , for each entry (i, j) ∈ [n] × {0, 1}:
– If i ∈ W or yi = j (i.e. the input bit is part of an accepting string), output

ΦS

(
gF (a1,··· ,an,2i+j)

)

– Otherwise sample a uniformly random exponent ρij and output ΦS(gρij)

Given a group operation query on (h1, h2):

– Find g1 = Φ−1
S (h1) and g2 = Φ−1

S (h2). If either does not exist, ignore the
query.

– Return ΦS(g1 · g2)

Note that GS faithfully instantiates our construction described in Sect. 3 in
the generic group model. We will now describe an alternative oracle implemen-
tation that uses symbolic variables instead of group elements to produce the
generic group functionality:

Definition 3 (GM : Oracle Middle).
First, sample the following uniformly at random:

– W = {i1, · · · , iw} ⊂ [n]
– yi ∈ {0, 1} for each i
∈ W
– Random embedding ΦM : Zp[a1, · · · ,an, b1, · · · , bn−w] ↪→ HM .

Let σ : {0, 1}n × {0, 1} → [n − w] be an arbitrary ordering of the (n − w)
coordinate pairs (i, j) where i
∈ W and j
= yi, and which is not defined on the
other coordinate pairs.

For the initial set of handles representing the 2n group elements in the obfus-
cation of fy ,W , for each entry (i, j) ∈ [n] × {0, 1}:

740 A. Bishop et al.

– If i ∈ W or yi = j (i.e. the input bit is part of an accepting string), output
ΦM (F (a1, · · · ,an, 2i + j))

– Otherwise output the label ΦM (bσ(ij))

Given a group operation query on (h1, h2):

– Find p1 = Φ−1
M (h1) and p2 = Φ−1

M (h2). If either does not exist, ignore the
query.

– Return ΦM (p1 + p2)

The two oracles are related by the existence of the following evaluation map in
the exponent :

φ : Z[a1, · · · ,an,b1, · · · ,bn−w] −→ G

F (a1, · · · ,an,an,b1, · · · ,bn−w) �−→ gF (a1,··· ,an,b1,··· ,bn−w)

where bk = ρσ−1(k) are the values of the random exponents sampled by Oracle S
for the non-accepting slots. Only the existence of this evaluation map is necessary
for the proof, so its dependence on unknown random values is not an issue.

In particular φ is a surjective group homomorphism of (Zp[a1, · · · ,an,
b1, · · · ,bn−w],+) into (G,×), since it is a composition of an evaluation map
with an exponential map, which are both surjective group homomorphisms.

The idea behind defining such an evaluation map is to define the failure event
as a substructure of a larger structure which may then be used to formalize
when the behavior is identical. In particular, we will see that the failure event
corresponds to the kernel of this evaluation map that we just defined.

Simultaneous Oracle Game. Rather than proving that the difference in any
adversary’s output probabilities when interacting with (GS vs. GM) or (GM vs.
GE) is small directly, we will define another security game and exhibit a reduction
to the desired statements. In this new security game, the adversary simultane-
ously queries two oracles for operations on group elements: one oracle GM is
known and serves as a convenience for formalizing the generic group oracle, and
the second G∗ is the unknown that the adversary wishes to identify. We define
the game with oracles (GS ,GM) below and note that the game and reduction for
oracles (GM ,GE) is symmetric.

Definition 4 (Simultaneous Oracle Game). An adversary is given access
to a pair of oracles (GM ,G∗), where G∗ is GM with probability 1/2 and GS with
probability 1/2. In each round, the adversary asks the same query to both oracles.
The adversary wins the game if he guesses correctly the identity of G∗.

To make precise the notion of an adversary playing both oracles simultane-
ously and asking the same queries, the adversary maintains two sets Ht

S and
Ht

M which are the sets of handles returned by the oracles after t query rounds.
The adversary then maintains a function Ψ : Ht

M → Ht
S . Initially, the adversary

A Simple Obfuscation Scheme for Pattern-Matching with Wildcards 741

sets Ψ(hb
ij) = ha

ij for each initial slot location (i, j) ∈ {1, n} × {0, 1}, where ha
ij

is the handle corresponding to the slot (i, j) in oracles S and hb
ij the handle in

oracles M . After each query hm = GM (hb
1, h

b
2) and hs = GS(Ψ(hb

1), Ψ(hb
2)) the

adversary updates the function with the definition Ψ(hs) = hm.

Lemma 2. Suppose there exists an algorithm A such that
∣∣Pr[AGM (OGM) = 1] − Pr[AGS (OGS) = 1]

∣∣ ≥ δ

Then an adversary can win the simultaneous oracle game with probability at least
1
2 + δ

2 for any pair of oracles (GM ,G∗ = GM/GS).

Proof. Let p = Pr[AGM (OGM) = 1] and q = Pr[AGS (OGS) = 1]. The adver-
sary can estimate these parameters to within a bounded polynomial of the true
parameter by simulating each oracle and A’s behavior on each.

Without loss of generality, we can assume that p ≥ q. Otherwise, we can
define p, q to be the inverse quantities Pr[AGM (OGM) = 0],Pr[AGS (OGS) = 0]
respectively.

The adversary will guess G∗ = GM if AG∗(OG∗) = 1 and G∗ = GS if
AG∗(OG∗) = 0. The probability of success is given by

Pr[AG∗(OG∗) = G∗] = Pr[G∗ = GM] Pr[AGM (OGM) = 1]

+ Pr[G∗ = GS] Pr[AGS (OGS) = 0]

=
1
2

+
1
2
(p − q)

≥ 1
2

+
δ

2

Indistinguishability between Start and Middle. The following gives a cri-
teria for overall indistinguishability of the output handle distributions.

Definition 5. The pair (hs, hm) of answers returned by (GS ,GM) after query
number t is called identical if it satisfies one of the following:

1. hs
∈ Ht
S and hm
∈ Ht

M

2. The oracles return handles hs ∈ HS , hm ∈ HM respectively such that Ψ(hm)
= hs

Note that in case (1), hs and hm are both freshly sampled uniformly random
strings and their distributions are equal.

Lemma 3. In the simultaneous oracle game with G∗ = GS, suppose for every
query (hm

1 , hm
2) to oracle M and corresponding query (Ψ(hm

1), Ψ(hm
2)) to oracle

S, the answers returned are identical. Then for any algorithm A, we have

Pr[AGS (OGS) = 1] = Pr[AGM (OGM) = 1]

742 A. Bishop et al.

Proof (Proof of Lemma 3). If we had swapped the oracles GS and GM and the
adversary had used Ψ−1 instead of Ψ , the answer distributions would have been
identical and A would have to produce the same output distribution.

Remark 2. Note that this argument does not depend on the particular imple-
mentations of GS ,GM , and therefore the lemma also holds for the pair of oracles
GM ,GE (to be defined later in Definition 6).

Thus it suffices to show that

Lemma 4. Suppose an adversary makes an arbitrary sequence of queries and
receives answers

{hs
t = GS(Ψ(hm

t1), Ψ(hm
t2))}Q

t=1

{hm
t = GM (hm

t1, h
m
t2)}Q

t=1

Then with overall probability at least 1 − (Q + 2n)2

p
, for every t, hs

t and hm
t are

identical as defined in Definition 5.

Proof. Initially each set of 2n handles given by each oracle are uniformly random
strings and hence indistinguishable. The proof is by induction under the following
hypothesis:

Suppose the adversary has made t queries so far and has Ht
S ,Ht

M satisfying
the following:

1. For each query made so far, the answer distributions have been identical.
2. For every hs ∈ Ht

S , there exists a unique f ∈ Zp[a1, · · · ,an] such that ΦS ◦
φ(f) = Φ−1

M (f).

We can state this inductive hypothesis this in the following commutative dia-
gram:

Zp[a,b] Im(ΦM) Ht
M

G Im(ΦS) Ht
S

ΦM ,�

φ ∃!

iM

Ψ,=

ΦS ,� iS

Here Im(ΦM), Im(ΦS) are the relevant handles in the handle spaces. Commuta-
tivity of the lower triangle under the unique lift means that for all hs ∈ Ht

S ,∃!f ∈
Zp[x] such that iS(hs) = ΦS ◦ φ(f). Note that the upper triangle trivially com-
mutes because the unique lift is defined by the composition ΦM ◦ iM ◦ Ψ−1. To
ease the notation a little, we’ll omit the inclusion maps from here on when it is
obvious the handle is in Ht

∗.
Now assuming the inductive hypothesis, suppose the (t + 1)th query is the

group operation of h1, h2 ∈ Ht
M and Ψ(h1), Ψ(h2) ∈ Ht

S . Oracle M will output

A Simple Obfuscation Scheme for Pattern-Matching with Wildcards 743

the handle hm = ΦM

(
Φ−1

M (h1) + Φ−1
M (h2)

)
=: h1 · h2, and Oracle S will out-

put the handle hs = ΦS

(
Φ−1

S (Ψ(h1)) × Φ−1
S (Ψ(h2))

)
=: Ψ(h1) · Ψ(h2). The (·)

notation on handles is justified by the fact that Im(ΦM) ⊂ HM is trivially iso-
momorphic as a group to Zp[a1, · · · ,an], where its group operation is obtained
by pulling back by ΦM , and likewise for Im(ΦS) ⊂ HS .

We have the following two cases:

1. hm ∈ Ht
M (i.e. this handle was seen previously). Then

Ψ(h1) · Ψ(h2) = (ΦS ◦ φ ◦ Φ−1
M)(h1) · (ΦS ◦ φ ◦ Φ−1

M)(h2)

= (ΦS ◦ φ ◦ Φ−1
M)(h1 · h2)

= (ΦS ◦ φ ◦ Φ−1
M)(hm)

= Ψ(hm)

where we use commutativity of the diagram on each factor handle, the homo-
morphism property of the maps, the definition of oracle M ’s output, and
commutativity of the diagram on the output handle (which we can do since
the handle was previously defined).
Thus the handles in the output pair have the same distribution, and since no
new handles are created, the inductive hypothesis trivially remains satisfied.

2. hm
∈ Ht
M (i.e. this is a new handle).

(a) If hs
∈ Ht
S is also a new handle, then the unique lift simply extends to

map hs to Φ−1
M (hm), and both Ht

M and Ht
S are augmented by one element.

The handles in the output pair are new and uniformly distributed, and
the inductive hypothesis is satisfied.

(b) If hs ∈ Ht
S , then by the inductive hypothesis, hs lifts to some fs ∈

Zp[x] which maps to some h̃b = Ψ−1(hs). However we also have fm =
Φ−1

M (hm)
= fs, since hm
∈ Ht
M . Thus both fs and fm are lifts of hs which

make the diagram commute, so after this query the inductive hypothesis
is no longer satisfied for the next query.
This event only happens if fs − fm ∈ ker φ and fs − fm is nontrivial.
Thus the proof is complete as long as we show this event happens with
low probability.

Now consider the following sequential variant of the game. The adversary plays
the game using the real Oracle M and his own simulation of Oracle S obtained
by outputting a uniformly random string when GM does and using the Ψ map
when GM outputs an existing string. He then plays the exact same sequence to
the real Oracle S and compares these answers to the ones produced by the real
Oracle M . As long as the bad event does not occur, the sequence of queries asked
in this sequential game is identical to the sequence of queries asked playing the
real pair of oracles.

Note that the occurrence of the bad event is decided by the initial random
sampling of a1, · · · , an ∈ Zp, and thus the bad event either occurs in both the
sequential and parallel variants or in neither. So it suffices to just bound the
probability of the bad event occurring at any time in the sequential game.

744 A. Bishop et al.

For each pair (fs, fm), fs − fm is a degree-1 polynomial in n variables over
Zp. Thus the bad event happens with probability at most 1

p by Lemma 1, the
Schwartz-Zippel lemma. Thus by a union bound, after Q queries of either type,
there are at most (Q + 2n)2 pairs of symbolic polynomials, so with probability
at most (Q+2n)2

p the two distributions of handles are distinguishable.

We remark that everything in the proof only relied on diagram arguments
and did not care about the actual structure of the underlying objects, except
for analyzing when fs − fm ∈ ker φ occurred. Thus in the proceeding reductions
between other oracles, all this automatically follows provided we can define an
appropriate evaluation map φ, and we only need to analyze the kernel of the
corresponding evaluation map.

Lemma 5. For an adversary A in the generic group model which makes Q
queries to the generic group oracle,

| Pr
C←Dn,
GS,O,A

[AGS (OGS (C, 1n)) = P (C)] − Pr
C←Dn,
GM,O,A

[AGM (OGM (C, 1n)) = P (C)]| ≤ (Q + 2n)2

2n

Proof. From Lemma 3 we have that:

Pr[AGS (OGS) = 1] = Pr[AGM (OGM) = 1]

as long as all queries to the generic group oracles are identical as defined in
Definition 5.

Lemma 4 tells us that the probabilities of all queries not being identical during

the simultaneous oracle game between (GS ,GM) is at most
(Q + 2n)2

p
, where Q

is the number of the adversary’s queries to the generic group oracle and p > 2n

is the order of the group.
Therefore, the difference Pr[AGM (OGM) = 1] − Pr[AGS (OGS) = 1] is at most

(Q + 2n)2

2n
, and so an adversary’s advantage in the simultaneous oracle game

between (GM ,GS) and (GM ,GM) is:

Pr[AG∗(OG∗) = G∗] = Pr[G∗ = GM] Pr[AGM (OGM) = 1]

+ Pr[G∗ = GS] Pr[AGS (OGS) = 0]

=
1
2

+
1
2
(Pr[AGM (OGM) = 1] − Pr[AGS (OGS) = 1])

≤ 1
2

+
(Q + 2n)2

2 · 2n

This, plugged into the reduction from Lemma 2, tells us that for all adver-
saries:

∣∣Pr[AGM (OGM) = 1] − Pr[AGS (OGS) = 1]
∣∣ ≤ (Q + 2n)2

2n

Game between Middle and End

A Simple Obfuscation Scheme for Pattern-Matching with Wildcards 745

Definition 6 (GE: Oracle End).
First, sample the following uniformly at random:

– Random embedding ΦE : Zp[c1, · · · , c2n] ↪→ HE.

For the initial set of handles representing the 2n group elements in the obfus-
cation of fy ,W , for each entry (i, j) ∈ [n] × {0, 1}:
– Output ΦE(c2i+j)

Given a group operation query on (h1, h2):

– Find p1 = Φ−1
E (h1) and p2 = Φ−1

E (h2). If either does not exist, ignore the
query.

– Return ΦE(p1 + p2)

Oracle M and Oracle E are related by the following evaluation map which is
defined on the generators of Zp[c1, · · · , c2n] and extended by linearity.

φ : Zp[c1, · · · , c2n] −→ Zp[a1, · · · ,an,b1, · · · ,bn−w]
ck �−→ bσ(�k/2	,k mod 2) if σ is defined here
ck �−→ F (a1, · · · ,an, k) otherwise

In other words the monomial ck is mapped to the same symbolic polyno-
mial that Oracle Middle assigned to the slot (�k/2�, k mod 2), which is either
a symbolic variable b or a symbolic polynomial F (a1, · · · ,an, k). Since the ck’s
generate the entire additive group Zp[c1, · · · , c2n], this extends to a group homo-
morphism of (Zp[c1, · · · , c2n],+) into (Zp[a1, · · · ,an,b1, · · · ,bn−w],+).

Lemma 6. Suppose an adversary makes an arbitrary sequence of queries and
receives answers

{hm
t = GS(Ψ(he

t1), Ψ(he
t2))}Q

t=1

{he
t = GM (he

t1, h
e
t2)}Q

t=1

If w/n ≤ 3/4, then with overall probability at least 1 − 2
20.0613n for every t, hs

t

and hm
t are identical as defined in Definition 5.

The proof of this lemma starts with the same setup as the proof of 4. The
adversary maintains a function Ψ : HE → HM and two sets of handles Ht

E ,Ht
M .

Proof. Inductively, after t queries, assume the following commutative diagram
is true:

Zp[c1, · · · , · · · , c2n] Im(ΦE) Ht
E

Zp[a1, · · · ,an,b1, · · · ,bn−w] Im(ΦM) Ht
M

ΦE ,�

φ ∃!

iE

Ψ,=

ΦM ,� iM

746 A. Bishop et al.

The same diagram chase from the proof of (4) tells us that the next pair
of query answers (he, hm) only fails to satisfy the inductive hypothesis if hm

lifts to fm ∈ Zp[c] by the inductive hypothesis, butfm
= Φ−1
E (he) =: fe, so

fm −fe ∈ ker φ and fm −fe is nontrivial. Necessary but not sufficient conditions
for fm − fe to be in the kernel of φ are:

1. fm − fe must have a zero coefficient in front of any ck that is defined under
the σ map, since each free variable bj has a unique preimage.

2. fm − fe must have at least n − 1 nonzero coefficients

As with the proof of (4), we analyze the sequential variant where the adversary
plays a sequence of queries to GE and then plays the exact same sequence of
queries to GM . After Q queries the adversary has at most Q + 2n symbolic
polynomials in Zp[c]. For each pair of polynomials fm, fe in this set, the variables
ck are mapped by the initial random sampling of the wildcard slots by Oracle M .

Now suppose the adversary fixes a polynomial containing n−1 nonzero coef-
ficients of the ck’s such that m columns in the original table of 2n entries have
nonzero coefficients for both entries in the column. This means that the oracle
must necessarily choose those m columns to be wildcard slots, since otherwise
one of the two entries in the column will not be in the kernel of the φ map.

This means that the probability over the initialization of the oracle that

these m columns are all chosen to be wildcard slots is (n−m
w−m)
(n
w) . The remaining

n − 1 − 2m columns each must either match the entry chosen by the adversary
or be a wildcard slot. There are (n − 1 − 2m) − (w − m) = (n − 1 − w) − m
slots that cannot be wildcard slots and thus have at most probability 1/2 each
of matching the entry chosen by the adversary. Thus the probability that this
polynomial is in the kernel of φ is

(
n − m

w − m

)

(
n

w

)
(

1
2

)n−1−w−m

(1)

An upper bound for this can be computed by maximizing the expression with
respect to the adversary’s choice of m. If we increment m by 1, the first factor
is multiplied by w−m

n−m while the second factor is multiplied by 2. Note that w−m
n−m

is monotonically decreasing in m; thus, this quantity is maximized when m is
the largest possible integer such that w−m

n−m > 1/2 is still true. Note that when
w < n/2, then the optimal choice is m = 0. Assuming w > n/2 and solving for
this inequality we obtain that m = 2w −n. Now the problem also has a physical
constraint that m ≤ n/2 since the adversary can choose at most n/2 slots. Thus
there are three parameter regimes based on α:

A Simple Obfuscation Scheme for Pattern-Matching with Wildcards 747

1. α ≤ n/2: the optimal choice is m = 0
2. n/2 ≤ α ≤ 3n/4: the optimal choice is m = 2w − n
3. n > 3n/4: the optimal choice is m = n/2

In case 1, the probability is then clearly bounded by (1/2)n−1−w.
In case 2, making the substitution m = 2w − n and w = αn where α ∈ [0, 1)

in the expression (1), we obtain
(

2(1 − α)n
(1 − α)n

)

(
n

αn

) 2(3α−2)n =
[2(1 − α)n]!

[(1 − α)n]![(1 − α)n]!
[αn]![(1 − α)n]!

n!
2(3α−2)n

=
[2(1 − α)n]![αn]!

[(1 − α)n]!n!
2(3α−2)n

Recall that for all integers k the following is true by Sterling’s formula:

√
2π

√
k

(
k

e

)k

≤ k! ≤ e
√

k

(
k

e

)k

We can absorb the factors of
√

2π and e in front into a small constant term less
than 2. Note that since each factorial is a constant multiple of n, then the

√
k

term also yields a constant term, so we only need to compute the (k/e)k terms.
This gives

[2(1 − α)n/e]2(1−α)n[αn/e]αn

[(1 − α)n/e](1−α)n[n/e]n
2(3α−2)n =

(
[2(1 − α)n/e]2(1−α)[αn/e]α

[(1 − α)n/e](1−α)[n/e]1
2(3α−2)

)n

We just need to show that the base is a constant bounded away from 1. Collecting
terms in this, we obtain

22(1−α)[1 − α]2(1−α)[n/e]2(1−α)αα[n/e]α[1 − α]−(1−α)[n/e]−(1−α)[n/e]−123α−2

= [n/e]2(1−α)n−(1−α)+α−1[1 − α]2(1−α)−(1−α)αα22(1−α)+3α−2

= (1 − α)1−ααα2α

Taking log2 we obtain (1−α) log2(1−α)+α log2 α+α ≤ −0.0613 when α ≤ 3/4,
so the probability of success is bounded by 2

20.0613n .
Finally in case 3, substituting m = n/2 in the expression (1) gives

(
n/2

(α − 1/2)n

)

(
n

αn

) 2(α−1/2)n =
[n/2]!

[(1 − α)n]![(α − 1/2)n]!
[αn]![(1 − α)n]!

n!
2(α−1/2)n

=
[n/2]![αn]!

n![(α − 1/2)n]!
2(α−1/2)n

748 A. Bishop et al.

Applying the Sterling approximation, we obtain

[n/e]n/22−n/2[αn/e]αn

[n/e]n[(α − 1/2)n/e](α−1/2)n
2(α−1/2)n =

(
[n/e]1/22−1/2[αn/e]α

[n/e]1[(α − 1/2)n/e](α−1/2)
2(α−1/2)

)n

The base of the exponent is

[n/e]1/2+α−1−(α−1/2)[α]α[α − 1/2](1/2−α)2α−1 = αα(α − 1/2)1/2−α2α−1

Again taking log2 we obtain the condition (1/2−α) log2(α−1/2)+α log α+
α − 1 < 0, which is satisfied when α < 0.774. This does not give much of an
improvement over the previous constraint of α ≤ 3/4, so we state our final result
just in that regime.

Apply a union bound of this probability over all (Q + 2n)2 pairs of symbolic
polynomials to get the statement in the theorem.

Lemma 7. For an adversary A in the generic group model which makes Q
queries to the generic group oracle,

| Pr
C←Dn,
GM,O,A

[AGM (OGM (C, 1n)) = P (C)] − Pr
C←Dn,
GEO,A

[AGE (OGE (C, 1n)) = P (C)]| ≤ 1

20.0613n

Proof. Uses Lemmas 3 (recalling that the statement also holds for the pair
GM ,GE) and 6 plugged into the reduction from Lemma 2.

From Lemma 3 (recalling that the statement also holds for the pair GM ,GS)
we have that:

Pr[AGM (OGM) = 1] = Pr[AGE (OGE) = 1]

as long as all queries to the generic group oracles are identical as defined in
Definition 5.

Lemma 4 tells us that the probabilities of all queries not being identical during
the simultaneous oracle game between (GM ,GE) is at most 2

20.0613n .
Therefore, the difference Pr[AGE (OGE) = 1] − Pr[AGM (OGM) = 1] is at

most 2
20.0613n , and so an adversary’s advantage in the simultaneous oracle game

between (GM ,GE) and (GM ,GM) is:

Pr[AG∗(OG∗) = G∗] = Pr[G∗ = GE] Pr[AGE (OGE) = 1]

+ Pr[G∗ = GM] Pr[AGM (OGM) = 0]

=
1
2

+
1
2
(Pr[AGE (OGE) = 1] − Pr[AGM (OGM) = 1])

≤ 1
2

+
2

20.0613n

This, plugged into the reduction from Lemma 2, tells us that for all adversaries:

∣∣Pr[AGM (OGM) = 1] − Pr[AGE (OGE) = 1]
∣∣ ≤ 1

20.0613n

Theorem 1. The obfuscator for pattern matching with wildcards defined in
Sect. 3 satisfies distributional VBB security for the ensemble of uniform dis-
tributions over {0, 1}n.

A Simple Obfuscation Scheme for Pattern-Matching with Wildcards 749

Proof. For any adversary A in the Distributional VBB game (in the generic
group model), consider the following Simulator S which simply runs A on input
produced by and interacted with like in Oracle End and outputs the same. Note
that none of the behavior in Oracle End is dependent on the actual function
fy ,W obfuscated. Therefore a simulator with no access to the function fy ,W
drawn from the distribution is able to simulate A as described.

S then perfectly simulates the behavior of A interacting with oracle OE :

Pr
C←Dn,S

[SC(1|C|, 1n) = P (C)] = Pr
C←Dn,GE ,O,A

[AGE (OGE (C, 1n)) = P (C)]

From Lemma 7, we have that the difference in output probabilities between
AGE (OGE) and AGM (OGM) in the distributional VBB game in the generic group
model is at most 1

20.0613n :

| Pr
C←Dn,
GE,O,A

[AGE (OGE (C, 1n)) = P (C)] − Pr
C←Dn,
GM,O,A

[AGM (OGM (C, 1n)) = P (C)]| ≤ 1

20.0613n

From Lemma 5, we have that the difference in output probabilities between
AGM (OGM) and AGS (OGS) in the distributional VBB game in the generic group

model is at most
(Q + 2n)2

2n
:

| Pr
C←Dn,
GM,O,A

[AGM (OGM (C, 1n)) = P (C)] − Pr
C←Dn,
GS,O,A

[AGS (OGS (C, 1n)) = P (C)]| ≤ (Q+ 2n)2

2n

Now, recall that GS faithfully instantiates O in the generic group model.
Therefore, using the triangle inquality we have:

| Pr
C←Dn,
G,O,A

[AG(OG(C, 1n)) = P (C)] − Pr
C←Dn,

S
[SC(1|C|, 1n) = P (C)]| ≤ (Q+ 2n)2

2n
+

1

20.0613n

which is a negligible function of n since the number of an adversary’s generic
group queries Q is a polynomial function of n, and so O satisfies distributional
VBB security in the generic group model.

Acknowledgments. The second, third, fourth, and fifth authors are supported in
part by the Defense Advanced Research Project Agency (DARPA) and Army Research
Office (ARO) under Contract W911NF-15-C-0236.

The second and third authors are supported in part by NSF grants CNS-1445424
and CCF1423306, and the Leona M. & Harry B. Helmsley Charitable Trust.

The fourth and fifth authors are supported in part by NSF grants CNS-1633282,
1562888, 1565208, and DARPA SafeWare W911NF-16-1-0389.

The first and second authors are supported in part by NSF grant CNS-1552932.
The second author is supported in part by an NSF Graduate Research Fellowship

DGE-16-44869.

750 A. Bishop et al.

Any opinions, findings and conclusions or recommendations expressed are those of
the authors and do not necessarily reflect the views of the Defense Advanced Research
Projects Agency, Army Research Office, the National Science Foundation, or the U.S.
Government.

The authors wish to thank Cong Zhang for discussions in preliminary stages of this
work.

References

1. Ananth, P., Jain, A., Sahai, A.: Patchable indistinguishability obfuscation: iO for
evolving software. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part
III. LNCS, vol. 10212, pp. 127–155. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-56617-7 5

2. Ananth, P., Sahai, A.: Projective arithmetic functional encryption and indistin-
guishability obfuscation from degree-5 multilinear maps. In: Coron, J.-S., Nielsen,
J.B. (eds.) EUROCRYPT 2017, Part I. LNCS, vol. 10210, pp. 152–181. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-56620-7 6

3. Apon, D., Döttling, N., Garg, S., Mukherjee, P.: Cryptanalysis of indistinguisha-
bility obfuscations of circuits over GGH13. In: 44th International Colloquium on
Automata, Languages, and Programming, ICALP 2017, Warsaw, Poland, 10–14
July 2017, pp. 38:1–38:16 (2017)

4. Applebaum, B., Brakerski, Z.: Obfuscating circuits via composite-order graded
encoding. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol.
9015, pp. 528–556. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-46497-7 21

5. Badrinarayanan, S., Miles, E., Sahai, A., Zhandry, M.: Post-zeroizing obfuscation:
new mathematical tools, and the case of evasive circuits. In: Fischlin, M., Coron,
J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 764–791. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5 27

6. Barak, B., Garg, S., Kalai, Y.T., Paneth, O., Sahai, A.: Protecting obfuscation
against algebraic attacks. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 221–238. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-642-55220-5 13

7. Barak, B., et al.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-44647-8 1

8. Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with con-
stant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494,
pp. 440–456. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639 26

9. Brakerski, Z., Rothblum, G.N.: Obfuscating conjunctions. In: Canetti, R., Garay,
J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 416–434. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-40084-1 24

10. Brakerski, Z., Vaikuntanathan, V., Wee, H., Wichs, D.: Obfuscating conjunctions
under entropic ring LWE. In: Proceedings of the 2016 ACM Conference on Inno-
vations in Theoretical Computer Science, Cambridge, MA, USA, 14–16 January
2016, pp. 147–156 (2016)

11. Brands, S.: Untraceable off-line cash in wallet with observers. In: Stinson, D.R.
(ed.) CRYPTO 1993. LNCS, vol. 773, pp. 302–318. Springer, Heidelberg (1994).
https://doi.org/10.1007/3-540-48329-2 26

https://doi.org/10.1007/978-3-319-56617-7_5
https://doi.org/10.1007/978-3-319-56617-7_5
https://doi.org/10.1007/978-3-319-56620-7_6
https://doi.org/10.1007/978-3-662-46497-7_21
https://doi.org/10.1007/978-3-662-46497-7_21
https://doi.org/10.1007/978-3-662-49896-5_27
https://doi.org/10.1007/978-3-642-55220-5_13
https://doi.org/10.1007/978-3-642-55220-5_13
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/11426639_26
https://doi.org/10.1007/978-3-642-40084-1_24
https://doi.org/10.1007/3-540-48329-2_26

A Simple Obfuscation Scheme for Pattern-Matching with Wildcards 751

12. Canetti, R., Rothblum, G.N., Varia, M.: Obfuscation of hyperplane membership.
In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 72–89. Springer, Heidel-
berg (2010). https://doi.org/10.1007/978-3-642-11799-2 5

13. Chen, Y., Gentry, C., Halevi, S.: Cryptanalyses of candidate branching program
obfuscators. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part III.
LNCS, vol. 10212, pp. 278–307. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56617-7 10

14. Cheon, J.H., Han, K., Lee, C., Ryu, H., Stehlé, D.: Cryptanalysis of the multilinear
map over the integers. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part
I. LNCS, vol. 9056, pp. 3–12. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-46800-5 1

15. Coron, J.-S., et al.: Zeroizing without low-level zeroes: new MMAP attacks and
their limitations. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part I.
LNCS, vol. 9215, pp. 247–266. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-47989-6 12

16. Coron, J.-S., Lee, M.S., Lepoint, T., Tibouchi, M.: Zeroizing attacks on indistin-
guishability obfuscation over CLT13. In: Fehr, S. (ed.) PKC 2017, Part I. LNCS,
vol. 10174, pp. 41–58. Springer, Heidelberg (2017). https://doi.org/10.1007/978-
3-662-54365-8 3

17. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
1–17. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9 1

18. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: FOCS
(2013)

19. Garg, S., Miles, E., Mukherjee, P., Sahai, A., Srinivasan, A., Zhandry, M.: Secure
obfuscation in a weak multilinear map model. In: Hirt, M., Smith, A. (eds.) TCC
2016. LNCS, vol. 9986, pp. 241–268. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-53644-5 10

20. Gentry, C., Lewko, A.B., Sahai, A., Waters, B.: Indistinguishability obfuscation
from the multilinear subgroup elimination assumption. In: IEEE 56th Annual Sym-
posium on Foundations of Computer Science, FOCS 2015, Berkeley, CA, USA,
17–20 October 2015, pp. 151–170 (2015)

21. Goyal, R., Koppula, V., Waters, B.: Lockable obfuscation. In: 58th IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA,
15–17 October 2017, pp. 612–621 (2017)

22. Hofheinz, D., Jager, T., Khurana, D., Sahai, A., Waters, B., Zhandry, M.: How
to generate and use universal samplers. In: Cheon, J.H., Takagi, T. (eds.) ASI-
ACRYPT 2016, Part II. LNCS, vol. 10032, pp. 715–744. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53890-6 24

23. Lin, H.: Indistinguishability obfuscation from constant-degree graded encoding
schemes. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part I. LNCS,
vol. 9665, pp. 28–57. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-49890-3 2

24. Lin, H.: Indistinguishability obfuscation from SXDH on 5-linear maps and locality-
5 PRGs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS, vol.
10401, pp. 599–629. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63688-7 20

https://doi.org/10.1007/978-3-642-11799-2_5
https://doi.org/10.1007/978-3-319-56617-7_10
https://doi.org/10.1007/978-3-319-56617-7_10
https://doi.org/10.1007/978-3-662-46800-5_1
https://doi.org/10.1007/978-3-662-46800-5_1
https://doi.org/10.1007/978-3-662-47989-6_12
https://doi.org/10.1007/978-3-662-47989-6_12
https://doi.org/10.1007/978-3-662-54365-8_3
https://doi.org/10.1007/978-3-662-54365-8_3
https://doi.org/10.1007/978-3-642-38348-9_1
https://doi.org/10.1007/978-3-662-53644-5_10
https://doi.org/10.1007/978-3-662-53644-5_10
https://doi.org/10.1007/978-3-662-53890-6_24
https://doi.org/10.1007/978-3-662-49890-3_2
https://doi.org/10.1007/978-3-662-49890-3_2
https://doi.org/10.1007/978-3-319-63688-7_20
https://doi.org/10.1007/978-3-319-63688-7_20

752 A. Bishop et al.

25. Lin, H., Tessaro, S.: Indistinguishability obfuscation from trilinear maps and block-
wise local PRGs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS,
vol. 10401, pp. 630–660. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63688-7 21

26. Lin, H., Vaikuntanathan, V.: Indistinguishability obfuscation from DDH-like
assumptions on constant-degree graded encodings. In: IEEE 57th Annual Sym-
posium on Foundations of Computer Science, FOCS 2016, Hyatt Regency, New
Brunswick, New Jersey, USA, 9–11 October 2016, pp. 11–20 (2016)

27. Lynn, B., Prabhakaran, M., Sahai, A.: Positive results and techniques for obfusca-
tion. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027,
pp. 20–39. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-
3 2

28. Miles, E., Sahai, A., Zhandry, M.: Annihilation attacks for multilinear maps: crypt-
analysis of indistinguishability obfuscation over GGH13. In: Robshaw, M., Katz, J.
(eds.) CRYPTO 2016, Part II. LNCS, vol. 9815, pp. 629–658. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53008-5 22

29. Peikert, C.: On error correction in the exponent. In: Halevi, S., Rabin, T. (eds.)
TCC 2006. LNCS, vol. 3876, pp. 167–183. Springer, Heidelberg (2006). https://
doi.org/10.1007/11681878 9

30. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In: STOC (2014)

31. Wee, H.: On obfuscating point functions. In: Proceedings of the 37th Annual ACM
Symposium on Theory of Computing, Baltimore, MD, USA, 22–24 May 2005, pp.
523–532 (2005)

32. Wichs, D., Zirdelis, G.: Obfuscating compute-and-compare programs under LWE.
IACR Cryptology ePrint Archive 2017:276 (2017)

33. Zimmerman, J.: How to obfuscate programs directly. In: Oswald, E., Fischlin,
M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp. 439–467. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6 15

https://doi.org/10.1007/978-3-319-63688-7_21
https://doi.org/10.1007/978-3-319-63688-7_21
https://doi.org/10.1007/978-3-540-24676-3_2
https://doi.org/10.1007/978-3-540-24676-3_2
https://doi.org/10.1007/978-3-662-53008-5_22
https://doi.org/10.1007/11681878_9
https://doi.org/10.1007/11681878_9
https://doi.org/10.1007/978-3-662-46803-6_15

On the Complexity of Compressing
Obfuscation

Gilad Asharov1, Naomi Ephraim2(B), Ilan Komargodski1, and Rafael Pass1

1 Cornell Tech, New York, NY 10044, USA
{asharov,komargodski}@cornell.edu, rafael@cs.cornell.edu

2 Cornell University, Ithaca, NY 14853, USA
nephraim@cs.cornell.edu

Abstract. Indistinguishability obfuscation has become one of the most
exciting cryptographic primitives due to its far reaching applications in
cryptography and other fields. However, to date, obtaining a plausibly
secure construction has been an illusive task, thus motivating the study
of seemingly weaker primitives that imply it, with the possibility that
they will be easier to construct.

In this work, we provide a systematic study of compressing obfusca-
tion, one of the most natural and simple to describe primitives that is
known to imply indistinguishability obfuscation when combined with
other standard assumptions. A compressing obfuscator is roughly an
indistinguishability obfuscator that outputs just a slightly compressed
encoding of the truth table. This generalizes notions introduced by Lin
et al. (PKC 2016) and Bitansky et al. (TCC 2016) by allowing for a
broader regime of parameters.

We view compressing obfuscation as an independent cryptographic
primitive and show various positive and negative results concerning its
power and plausibility of existence, demonstrating significant differences
from full-fledged indistinguishability obfuscation.

First, we show that as a cryptographic building block, compressing
obfuscation is weak. In particular, when combined with one-way func-
tions, it cannot be used (in a black-box way) to achieve public-key
encryption, even under (sub-)exponential security assumptions. This is
in sharp contrast to indistinguishability obfuscation, which together with
one-way functions implies almost all cryptographic primitives.

Second, we show that to construct compressing obfuscation with per-
fect correctness, one only needs to assume its existence with a very
weak correctness guarantee and polynomial hardness. Namely, we show
a correctness amplification transformation with optimal parameters that

G. Asharov—Supported by a Junior Fellow award from the Simons Foundation.
N. Ephraim—Supported by an AFOSR grant FA9550-15-1-0262.
I. Komargodski—Supported in part by a Packard Foundation Fellowship and by an
AFOSR grant FA9550-15-1-0262.
R. Pass—Supported in part by NSF Award CNS-1561209, NSF Award CNS-1217821,
NSF Award CNS-1704788, AFOSR Award FA9550-15-1-0262, a Microsoft Faculty
Fellowship, and a Google Faculty Research Award.

c© International Association for Cryptologic Research 2018
H. Shacham and A. Boldyreva (Eds.): CRYPTO 2018, LNCS 10993, pp. 753–783, 2018.
https://doi.org/10.1007/978-3-319-96878-0_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96878-0_26&domain=pdf

754 G. Asharov et al.

relies only on polynomial hardness assumptions. This implies a univer-
sal construction assuming only polynomially secure compressing obfus-
cation with approximate correctness. In the context of indistinguisha-
bility obfuscation, we know how to achieve such a result only under
sub-exponential security assumptions together with derandomization
assumptions.

Lastly, we characterize the existence of compressing obfuscation with
statistical security. We show that in some range of parameters and for
some classes of circuits such an obfuscator exists, whereas it is unlikely
to exist with better parameters or for larger classes of circuits. These
positive and negative results reveal a deep connection between compress-
ing obfuscation and various concepts in complexity theory and learning
theory.

1 Introduction

Program obfuscation is an intriguing and powerful concept in modern cryp-
tography. A program obfuscator is a compiler that “scrambles” programs into
ones that are hard to reverse engineer, while preserving their functionality. The
predominant notion that captures the above concept is indistinguishability obfus-
cation, introduced in the seminal work of Barak et al. [14], which has inspired a
vibrant area of research in recent years. Informally, indistinguishability obfusca-
tion (iO) guarantees that the obfuscations of two functionally equivalent circuits
of the same size are computationally indistinguishable.

There are two main reasons why iO has become such a central primitive—
its potential to exist and its power. As opposed to stronger notions of obfus-
cation that are known not to exist for all circuits (such as virtual black-
box obfuscation [14]), general purpose iO might be realizable, and in fact,
since the work of Garg et al. [38] many candidate constructions of iO have
emerged [5,8,13,27,38,42,44,68,73]. As for its power, iO serves as a hub for
an impressive number of cryptographic primitives, ranging from classical con-
cepts such as one-way functions [53], public-key encryption [70], trapdoor per-
mutations [19], ZAPs and non-interactive witness-indistinguishable proofs [18],
to ones that are still far beyond the reach of any other assumption, such as
deniable encryption [70], fully-secure multi-input functional encryption [45], and
many others.

Despite immense efforts to construct iO from concrete assumptions, all cur-
rently known candidate constructions have been shown to be vulnerable to
attacks [7,12,23,32,33,43,62,66].1 Another line of work shows how to con-
struct iO from some seemingly “simpler” or “weaker” generic cryptographic
primitives (together with more standard assumptions). These include prim-
itives such as low-degree multilinear maps [4,55,56,59], compact functional
encryption schemes [3,20], compact randomized encodings [58], and variants of
1 Some of the attacks apply directly to the candidate construction while some only

apply to the underlying graded encoding scheme [34,35,42]. See Ananth et al. [1,
Appendix A] for an overview.

On the Complexity of Compressing Obfuscation 755

exponentially-efficient indistinguishability obfuscation [17,57], all of which have
no known instantiations from standard assumptions.

The difficulty of constructing iO motivates the study of such seemingly
weaker cryptographic primitives, with the hope that such a study could elu-
cidate the foundations of iO. In this paper, we focus on the primitive which
is arguably the simplest to define and the closest in its nature to iO: indistin-
guishability obfuscation with nontrivial compression, or in short, compressing
obfuscation.

Compressing obfuscation. For functions t(s, n) and �(s, n), we say that an
obfuscator O is (t, �)-compressing if, when given a circuit C of size s on n inputs,
the obfuscator O(C) runs in time t(s, n) and has output length �(s, n). In the
case of iO, both t and � are polynomial in s and n, but in general, we allow them
to be super-polynomial, or even (sub-)exponential. This definition generalizes
existing relaxations of iO (such as XiO and SXiO which we discuss below) and
allows us to characterize the extent to which efficiency impacts the existence,
applications, and limitations of obfuscation. Throughout this work, we mostly
focus on the following two settings of parameters, which intuitively, are relaxed
versions of iO that only allow obfuscating circuits with logarithmic input size:

– XiO. The first (and weaker) setting of parameters is that of exponentially-
efficient iO (XiO), introduced by Lin et al. [57]. XiO allows the running
time of the obfuscator to be as large as the truth table of the circuit to
be obfuscated, but requires the size of the obfuscated circuit to be slightly
smaller than its truth table. More formally, for a function c (which denotes
the compression of XiO), we say that c-XiO is a (t, �)-compressing obfuscator
with t(s, n) = poly(2n, s) and �(s, n) = c(n) · poly(s). When there exists a
constant ε > 0 such that c(n) = 2n(1−ε), we denote c-XiO simply by XiO. Lin
et al. [57] showed that XiO for all circuits and Learning With Errors (LWE),
both with sub-exponential security, imply iO.

– SXiO. The second (and stronger) setting of parameters is that of strong XiO
(SXiO), introduced by Bitansky et al. [17]. SXiO requires that the time to
obfuscate a circuit is slightly smaller than the truth table of the circuit. More
formally, for a function c, we say that c-SXiO is a (t, �)-compressing obfuscator
with t(s, n) = �(s, n) = c(n) · poly(s). Similar to the above case, when there
exists some constant ε > 0 such that c(n) = 2n(1−ε), we denote this simply by
SXiO. Bitansky et al. [17] showed that SXiO and any public-key encryption,
both with sub-exponential security, imply iO.

These two settings of parameters have seemingly minor differences, but nev-
ertheless, are not known to be equivalent. Moreover, as mentioned above, their
known implications illustrate the richness of the world of compressing obfusca-
tion, and indicate that efficiency is a fundamental property of obfuscation. Since
the regime of parameters for compressing obfuscation is somewhat non-standard
(especially, the distinction between time and output length in XiO), it has not
received adequate attention, and as a result we know very little about it.

756 G. Asharov et al.

In this work, we provide a systematic study of compressing obfuscation as an
independent cryptographic primitive, and thus characterize the extent to which
efficiency plays a role in obfuscation.

1.1 Our Results

Our results span a wide range of topics concerning compressing obfuscation,
including limitations of its power, existence in an information-theoretic setting,
constructions for limited classes of functions, and correctness amplification.

XiO vs. PKE. We start by exploring the power of XiO as an independent
cryptographic primitive. One the one hand, we know that when combined with
LWE it implies full-fledged iO (which in turn implies almost all cryptographic
primitives). On the other hand, as opposed to iO [53], we do not even know
whether XiO by itself2 implies one-way functions — the most basic cryptographic
primitive.

One of the original applications of obfuscation, which was proposed by Diffie
and Hellman back in 1976 [36], is to transform private-key encryption into public-
key encryption. When combined with one-way functions, iO can be used to per-
form such a transformation, as shown by [38,70]. This raises the same question
regarding XiO: Can it bridge the gap between the world of private-key cryptog-
raphy and that of public-key cryptography? We provide evidence that it cannot,
and thus show a concrete lower bound on its potential power.

Theorem 1.1 (informal). There is no fully black-box construction of a per-
fectly correct key-agreement protocol from one-way functions and perfectly correct
2(1−ε)n-XiO for any constant ε > 0, even with sub-exponential security.

The result is obtained by following the black-box framework of [9,10,15],
where they consider obfuscation for oracle-aided circuits. This captures exactly
the flavor of constructions which give public-key encryption from one-way func-
tions and iO [70]. We make various modifications to this framework to capture
the notion of XiO for oracle-aided circuits.

Previously, by combining [9,17], the above result follows for the case of
2(1−ε)n-XiO where 0 < ε ≤ 1/2 (i.e., the obfuscator has only somewhat weak
compression).3 In contrast, our separation works even when given access to an
obfuscator with very strong compression (i.e. any constant ε > 0) and even if
the obfuscator satisfies perfect correctness.

The frameworks that this result is based on are rooted in the ideas of Impagli-
azzo and Rudich [51], who show a separation between one-way permutations and
key-agreement. Their result holds both for the case of key-agreement with per-
fect or imperfect completeness. Nevertheless, we note that our separation does
not hold for imperfect key-agreement, and we leave the extension to future work.
2 Assuming any average- or worst-case hardness assumption. This is necessary as XiO

exists unconditionally if P = NP.
3 Indeed, [9] showed a separation of perfect key-agreement from imperfect private-key

FE, and [17] showed a black-box construction of 2n/2-XiO from private-key FE.

On the Complexity of Compressing Obfuscation 757

Statistical security. Our result that it is unlikely that key-agreement can be
constructed from XiO and one-way functions can be viewed as “good news”,
as it hints that XiO is a somewhat “weak” primitive, and therefore it might
be possible to base its existence on well-studied assumptions. In fact, it might
even be possible that compressing obfuscation exists unconditionally (even if
P �= NP). Toward this end, we show almost matching upper and lower bounds
for the existence of compressing obfuscation with statistical security, both for
the case of perfect correctness and that of approximate correctness. Our results
show tight connections between compressing obfuscation and various concepts
in complexity theory and learning and thus we view this as one of the central
takeaways of this work.

For the case of approximate correctness, we show a 2nε

-SXiO for ε > 0 for
small classes of circuits (such as AC0). On the other hand, we show that such an
obfuscator cannot exist for larger classes of circuits that contain a (puncturable)
PRF, unless SAT ∈ AM[2nε

], where SAT is the problem of deciding whether a
formula is unsatisfiable and AM[t(n)] is the class of all languages on instances of
size n that have an AM protocol in which the running time of the verifier and
the message sizes are at most t(n).

Theorem 1.2 (informal). There exists a statistically secure and approximately
correct 2nε

-SXiO for AC0 and ε > 0. On the contrary, unless SAT ∈ AM[2nε

],
there is no such obfuscator for any class that contains a (puncturable) PRF.

This result naturally leads to the question of whether we can get a similar
statement for the case of perfect correctness. We are unable to get such a result
for SXiO, but we do get it for XiO, albeit with worse compression.4

Theorem 1.3 (informal). There exists a 2n(1−ε)-XiO for ε ∈ 1/poly log(n) with
statistical security and perfect correctness for AC0.

Ruling out statistically secure XiO with any compression is left as an open
problem. We do show that unless SAT ∈ AM[2c(1−ε)n] for a universal constant
c ∈ N, there is no statistically secure and perfectly correct 2n(1−ε)-SXiO for
AC0 (see Theorem 5.2). It is known, by the recent result of Williams [72], that
SAT ∈ AM[Õ(2n/2)]. However, it might be that for larger values of ε (such as
ε = 1 − (0.1/c) or even ε = 1 − o(1)) it holds that SAT /∈ AM[2c(1−ε)n].

The positive results are based on classical (PAC) learning algorithms [60,71]
and the circuit compression algorithm of [31]. Both negative results above rely
on and (carefully) extend analogous arguments from the iO literature [24,47,53].
Goldwasser and Rothblum [47] showed that statistical iO with perfect correctness
cannot exist unless NP ⊆ SZK. Brakerski, Brzuska, and Fleischhacker [24] extend
the result to handle statistical iO with approximate correctness by showing that
(assuming additionally one-way functions) unless coNP ⊆ AM, it cannot exist.
4 The obfuscator we get is weak due to two reasons. First, the class for which we obtain

XiO does not contain (puncturable) PRFs and thus is not sufficient for known trans-
formations to iO. Second, the compression we achieve is not enough for cryptographic
applications.

758 G. Asharov et al.

Correctness amplification. Our results above suggest that approximate cor-
rectness might be easier to achieve than perfect correctness, in an information
theoretic setting. Is this the case also in the computational setting? To address
this question, we show a transformation from approximately correct XiO to per-
fectly correct XiO, assuming the original XiO applies to a large enough class
of circuits. This transformation achieves optimal parameters and only incurs
polynomial security loss, indicating that correctness is not the bottleneck in
constructing XiO from standard assumptions.

Theorem 1.4 (informal). If there exists an XiO scheme for all polynomial
size circuits which is correct with probability (1/2 + 1/poly) over the the inputs
and the obfuscation, then there exists a perfectly correct XiO scheme, assuming
polynomially-secure LWE and NIZKs.

Prior to this result, there were no correctness amplification procedures for
XiO which required only polynomial security or achieved optimal parameters.
Correctness amplifications for related primitives, such as those of [2,21] for iO,
do not apply to XiO, since they involve a random self-reducibility step which
inherently requires running the obfuscator on polynomial-size inputs. The trans-
formation of Bitansky et al. [16] shows how to transform an XiO which is correct
with probability 0.99 over the inputs and the obfuscation to a weak notion of
functional encryption. This notion of functional encryption was known to imply a
relaxed notion of XiO, namely, XiO with preprocessing [57]. Our transformation
works for a much weaker notion of correctness (as opposed to .99) and results in
full-fledged, perfectly correct XiO (as opposed to XiO with preprocessing).

Technically, our regime of parameters introduces many difficulties which
require us to tailor a construction that is based on a delicate combination of
various types of error-correcting codes together with cryptographic primitives
(inspired by [65]).

While we show this transformation for the case of XiO, our result extends
naturally to the case of SXiO. In particular, we can obtain perfectly correct XiO
from the transformation, or SXiO which is correct on all but a negligible fraction
of obfuscations.

Universal construction. Using our correctness amplification procedure, we
obtain a universal construction of an XiO (resp. SXiO), assuming only the mere
existence of XiO (resp. SXiO) with polynomial security and only (very weak)
approximate correctness. For XiO, the resulting universal construction satisfies
perfect correctness. Note that in the context of iO, perfect correctness is known
to be achievable using only derandomization assumptions [22]. Our result is
obtained by adapting the robust combiner of Ananth et al. [1] to the setting of
XiO (resp. SXiO) and then using our correctness amplification transformation.

On the Complexity of Compressing Obfuscation 759

1.2 Related Work

Universal construction and robust combiners. It was shown in [48] that,
in general, a robust combiner implies the existence of a universal construction.
A robust combiner for a cryptographic primitive takes several candidate con-
structions of the primitive and outputs one construction that is as good as any
of the input constructions (see also [49,50]). A combiner for encryption appears
already in [11], and perhaps the most known universal construction is that of
one-way functions, due to [54].

Combiners for obfuscation were given in [1,2,37]. The work of [1] shows a
robust combiner for indistinguishability obfuscation with sub-exponential secu-
rity loss, and assuming either LWE or DDH. The work of [2] removes the sub-
exponential assumption, but does not go all the way to iO—it shows a trans-
forming combiner from candidates for indistinguishability obfuscation of which
one of them is polynomially secure to a secure functional encryption scheme.

Existence of iO. Mahmoody et al. [63] showed that iO cannot be based on ran-
dom oracles or on constant degree multilinear maps (in a black-box way). Garg
et al. [40] showed that iO cannot be constructed from any type of encryption
that has an “all-or-nothing” type of security (as in PKE or Witness Encryp-
tion). Lastly, Garg et al. [41] studied the minimal compactness needed from a
functional encryption scheme to imply iO, and giving matching constructions,
following [3,20].

Limitations on the power of iO were studied by Asharov and Segev [9,10] and
by Bitansky, Degwekar and Vaikuntanathan [15]. So far, we know that iO and
one-way functions do not imply collision-resistant hash functions [9], domain-
invariant one-way permutations [10], and hardness in NP ∩ coNP [15]. Also, iO
and one-way permutations do not imply hardness in SZK [15].

Relaxations of iO. In addition to (S)XiO, another relaxation of iO is decompos-
able obfuscation (dO), which was recently introduced by Liu and Zhandry [61].
Decomposable obfuscation relaxes the security requirement of iO by requiring
that obfuscations of circuits which satisfy a new notion of functional equivalence
are indistinguishable. In particular, it is efficient to verify if two circuits satisfy
their notion of functional equivalence, unlike traditional functional equivalence.
This is similar to the case of XiO, because it is applied on circuits with only
logarithmic input size for polynomial time applications. In [61], they question
whether iO with efficiently verifiable functional equivalence implies public-key
encryption. In fact, they have to assume the existence of public-key encryption
for all the applications of dO that they show which imply public-key encryption.
As mentioned above, we show a separation from XiO and OWFs to public key
encryption. Therefore, our result serves as further evidence to the hypothesis
that (non) efficiently checkable functional equivalence is one of the key factors
which distinguishes iO from notions like XiO and dO.

760 G. Asharov et al.

Compressing primitives. Recently, compressing witness encryption (WE)
was studied by Brakerski et al. [25]. Witness encryption, introduced by Garg
et al. [39], allows encrypting a message relative to a statement x ∈ L for a lan-
guage L ∈ NP such that anyone holding a witness to the statement can decrypt
the message, but if x /∈ L, then it is computationally hard to decrypt. A com-
pressing WE is such that the encryption time (and thus size) is less than the
time it takes to solve the NP instance. Brakerski et al. showed that such a WE
scheme can be constructed under “standard” assumptions (such as LWE or bilin-
ear maps with sub-exponential security). This is in sharp contrast to SXiO (or
even XiO).

Paper organization. We proceed with a technical overview of our results. We
refer the reader to the full version of the paper for important preliminaries and
definitions. In Sect. 3 we show our correctness amplification transformation, and
in Sect. 4 we prove our impossibility result on constructing key-agreement from
XiO and OWFs. In Sect. 5 we present our positive and negative results regarding
statistically secure compressing obfuscation. Most of the technical material is
omitted and appears in the full version.

2 Technical Overview

In this section we provide a high level overview of our results. We start with
the correctness amplification (and its application to universal constructions) in
Sect. 2.1. We proceed with the limitations on the power of XiO in Sect. 2.2, and
conclude with our constructions and impossibilities of statistically secure XiO
in Sect. 2.3.

2.1 Correctness Amplification

Our correctness amplification for XiO is a transformation from an approxi-
mately correct XiO scheme to an XiO scheme that is perfectly correct. Here,
by approximately correct, we mean an XiO scheme which is correct with prob-
ability (1/2 + 1/poly) over the inputs and the obfuscation, and by perfectly
correct, we mean an XiO scheme which is correct on all inputs and all obfus-
cations with probability 1. The starting point for our correctness amplification
is the transformation of Bitansky et al. [16], which transforms an XiO scheme
which is correct with probability .99 over the obfuscation and the inputs to a
functional encryption (FE) scheme which is correct on all inputs (with all but
negligible probability). At a high level, FE is a type of encryption which enables
generating functional keys, such that decryption of a ciphertext corresponding
to a message m with a functional key for a circuit C results in C(m). The hope
is that if we can adapt the [16] transformation to our case, then we can attempt
to transform the correct FE back to XiO.

On the Complexity of Compressing Obfuscation 761

From approximately correct XiO to correct FE. In [16], they first observe
that by averaging and standard BPP-type amplification, their XiO scheme can
be amplified to one which is correct with probability .9 only over the inputs.
Then, they transform this XiO to a correct FE using an error-correcting code,
as follows. To encrypt a message m, they obfuscate a circuit Gm which, on input
i, outputs an encryption of (m, i) using a succinct functional encryption scheme
sFE, that exists based on LWE [46]. Call the resulting obfuscated circuit ˜Gm.
To generate a secret key for a circuit C, they generate an sFE secret key for a
circuit C ′ that on input (m, i) outputs the ith bit of ECC(C(m)), where ECC is
an error-correcting code. To decrypt, they first evaluate the obfuscated circuit
˜Gm on every input i to obtain a list of encryptions of (m, i) for all i. Then, they
use the sFE secret key to decrypt each of these encryptions and finally, decode
the result.

The reason why this is enough for [16] is that, first, by the BPP amplification,
they obtain correct encryptions of (m, i) for a .9 fraction of i’s, with all but
negligible probability over the obfuscation. This lets them calculate (ECC(C(m))i

for a large (� 3/4) fraction of the i’s. Second, they rely on the error-correcting
code which, given (ECC(C(m))i for many (� 3/4) i’s, can recover C(m).

In our case, a natural attempt would be to replicate their first step and
then use an error-correcting code with better parameters for the second step.
However, this approach fails: we are only guaranteed correctness with probability
(1/2 + 1/poly(λ)) over the obfuscation and the inputs, which is not enough for
averaging and BPP-type amplification. Nevertheless, the framework of [16] is
still a convenient starting point for us.

Our first challenge is to obtain every bit of the encryption of (m, i) for suffi-
ciently many i’s. One idea is to apply an error-correcting code to the output of
Gm, so that for any index i for which Gm correctly outputs enough of the bits
of the encryption of (m, i), we can decode successfully. While this is not possible
for our regime of parameters using classical binary error-correcting codes, this
is achievable with binary list-decodable codes, which output a list of possibilities
upon decoding a codeword, rather than a unique decoding. Therefore, we modify
the circuit Gm to output a list-decodable encoding of the encryption of (m, i),
one bit at a time, which will be decoded at decryption time. This introduces
the complication that list-decoding gives many possibilities for the encryption
of (m, i) for each i. To address this, we employ a combination of NIZK proofs
and commitments which enable us to uniquely decode from the decoded list.
At a high level, we impose the requirement that in addition to the ciphertext
of (m, i), the circuit Gm on input i must output a NIZK proof certifying that
the ciphertext is correct. This ensures that we obtain sFE encryptions of (m, i)
for a noticeable fraction of the inputs i. Thus, we have replaced the BPP-type
amplification of [16] with list-decodable codes, NIZK proofs, and commitment
schemes.

After this change, we have that for a noticeable (but small, say 1%) fraction
of the i’s, we obtain a correct encryption of (m, i). If we decrypt this with
the sFE secret key of [16], we would hope to obtain (ECC(C(m)))i for enough

762 G. Asharov et al.

i’s such that ECC can successfully decode to C(m), but this does not quite
work because we only have a very small fraction of correct encryptions. Indeed,
no (binary) error-correcting code can recover from more than 50% error! To
overcome this, we notice that we have additional information (thanks to the
NIZK) – we know exactly for which i’s we obtained correct sFE encryptions of
(m, i). Therefore, we replace the error-correcting code in the [16] construction
with a code that can recover from a high fraction (say 99%) of erasures. To obtain
optimal parameters, this requires us to have sFE output alphabet symbols rather
than bits, but this does not impact the correctness of the scheme. Combining
these two steps, we obtain an FE scheme with amplified correctness. As far as
we know, this combination of list-decodable codes and erasure-correcting codes
is novel to this work.

These techniques nearly work, with the caveat that our first step only gives us
the correct encryptions of enough (m, i) when the obfuscator uses “good” random
coins. Nevertheless, this can be remedied by using BPP-type amplification and
leveraging the fact that our FE scheme always decrypts to ⊥ or to the correct
output, C(m). Therefore, this results in an FE scheme which is correct for all
inputs with all but negligible probability.

From correct FE to correct XiO. The only remaining step is to transform
the FE back to XiO. The FE scheme we obtain from the above transformations
is weakly sublinear compact, a weak notion of compactness which does not suffice
for known transformations to XiO without assuming sub-exponential security.
FE with weak sublinear compactness has the property that while the encryption
time is proportional to the circuit size of circuits supported by the scheme,
the ciphertext lengths are compact. We take advantage of this by having an
obfuscation consist of many “short” encryptions, which exactly captures the
requirement that the obfuscator has a long running time but a nontrivial output
length.

To obfuscate a circuit C, we encrypt a circuit Cx for each x ∈ {0, 1}n/2,
where Cx(·) = C(x‖·). Then, we generate a functional key sk for a circuit T ,
which, given a circuit on n/2 bits, outputs its truth table. The ciphertexts and
functional key serve as our obfuscation, which gives the desired efficiency for XiO
exactly because of the weak compactness of FE. To evaluate the obfuscation on
an input x = x1‖x2, we use FE to decrypt Cx1 with sk, and select the element
of the truth table corresponding to x2. This transformation yields a correct and
secure XiO scheme, in which for any circuit C and every input x, it holds that
the obfuscation of C at the point x agrees with C(x) with all but negligible
probability.

In the technical section, we present the full construction in a more stream-
lined manner. In particular, we compose the XiO to FE transformation with
the FE to XiO transformation described above, which yields a transformation
from approximately correct XiO to XiO that is correct on any input with all but
negligible probability over the randomness of the obfuscator.

On the Complexity of Compressing Obfuscation 763

Given an XiO which is correct on any input with all but negligible probability,
we can then apply another BPP-style transformation (this time we apply parallel
repetitions and then take the majority vote) to get an obfuscator that for all but
negligible fraction of the obfuscations the obfuscated circuit completely agrees
with the input circuit. To conclude our correctness amplification, we observe
that the running time for XiO allows the obfuscator to compute the truth table
of the circuit it obfuscates. Therefore, we modify the obfuscator to check if an
obfuscation ˜C of a circuit C is correct by running over all inputs. If ˜C agrees
with C, then ˜C is used as the obfuscation, and if not, we simply output C in
the clear. This takes advantage of the running time of XiO, and incurs only a
negligible loss in security, thus resulting in a perfectly correct XiO.

A universal construction. An important application of correctness amplifica-
tion is a universal construction. We show a universal construction for XiO (resp.
SXiO) by combining our correctness amplification with the results of [1].

A universal construction for a primitive can be obtained via a robust com-
biner for that primitive, which is a transformation that takes several candidate
constructions of the primitive and outputs one construction that is as good as
any of the input constructions. It is robust in the sense that it should work even
if some of the candidates have weak correctness guarantees, have bad running
times, etc. A universal construction is then acquired by enumerating over all
possible candidates while making sure not to be “fooled” by bad faulty candi-
dates so that we end up with a correct candidate. Thus, it is guaranteed that
the resulting candidate is correct and secure.

We observe that a combiner (i.e., a secure candidate assuming one exists) for
XiO (resp. SXiO) can be obtained by adapting the construction for iO of Ananth
et al. [1] which further relied on LWE. In the case of iO, their construction, on
input circuit C, obfuscates a variant of C that has the same input domain as
C. In the security proof, they go “input-by-input” over this obfuscated circuit
which results in a sub-exponential security loss. We notice that, in the case
of XiO (resp. SXiO), the number of inputs in the above obfuscated circuit is
at most logarithmic, so the very same proof can be carried out, losing only a
polynomial term. Then, to make the combiner robust we use our correctness
amplification procedure. This results in a universal construction of perfect XiO
(resp. imperfect SXiO), assuming the existence of XiO (resp. SXiO) with very
weak correctness.

2.2 Impossibility of Key-Agreement

To illustrate the difference between the power of compressing obfuscation and
iO, we revisit one of the primary applications of iO—transforming a private-
key scheme into a public-key one. In the context of iO, this transformation
is performed by obfuscating the encryption circuit of a private-key encryption
scheme, while embedding the symmetric secret key into the circuit. The public
key is then simply the obfuscated circuit. In order to encrypt a message m, one

764 G. Asharov et al.

has to choose randomness r and run the obfuscated circuit on (m, r) to obtain
the ciphertext c. An important property of this construction is the ability to
obfuscate circuits with “hardwired cryptography”, e.g., the evaluation circuit of
a pseudorandom function with a hardwired PRF key.

Since XiO is efficient only when obfuscating circuits with logarithmic size
input, one cannot use the above approach with XiO even when the message
space is limited to a single bit. Given the public key, the adversary can learn
the entire truth table of the obfuscated circuit by enumerating over all inputs,
thereby breaking the secrecy of the underlying message. Our proof formalizes
this intuition, and shows that other attempts to make such a transformation
cannot succeed. We formalize this using a black-box separation, showing that
no perfectly complete bit-agreement protocol can be constructed from perfectly
correct XiO and one-way functions.

Modeling non-black-box constructions. Constructions that are based on
indistinguishability obfuscation are almost always non-black-box in the underly-
ing primitives. In the example above, the circuit being obfuscated is the encryp-
tion algorithm of a private-key encryption scheme and thus contains a specific
circuit representation of the underlying one-way function as a sub-circuit. We
follow the framework of Asharov and Segev [9,10] that captures such construc-
tions by enabling the obfuscator to run on oracle-aided circuits, i.e., circuits that
might contain oracle gates. We refer to [9,10] for details regarding this model
(see also [15]), and for examples of how it capture common techniques such as
the punctured programming technique of Sahai and Waters [70] and its variants.

The oracle. Our result is obtained by presenting an oracle Γ relative to which
the following properties hold: (1) there exists a one-way function f ; (2) there
exists a perfectly-correct, exponentially-secure XiO scheme for all oracle-aided
circuits Cf ; (3) for any perfectly complete bit-agreement protocol between two
parties, there exists an eavesdropping adversary that makes polynomially many
queries to the oracle Γ and succeeds to recover the bit from the transcript of
the interaction. Our oracle consists of three functions, similar to that of [10]:
(1) a random function f that will serve as the one-way function; (2) a random
length-increasing function O that will serve as the obfuscator (an obfuscation
of an oracle-aided circuit C is a “handle” ̂C = O(C, r) for a random string r),
and (3) a function E that enables evaluations of obfuscated circuits: given some
obfuscated circuit ̂C and an input x, the function E looks for the lexicographically
first pair (C, r) for which O(C, r) = ̂C and returns Cf (x).

The main difference between our oracle and the oracle of [10] is the expansion
factor of the oracle O. In order to capture compressing obfuscation, the expansion
factor that we use is (sub-)exponential in the input size of the circuit C. While
this modification is somewhat minor in syntax, it has a major effect – if the
expansion factor is “small” then it is possible to construct a polynomial time
key-agreement protocol relative to such an oracle (following the construction
of Sahai and Waters [70]), whereas for a larger expansion factor this becomes

On the Complexity of Compressing Obfuscation 765

impossible. As for the existence of one-way functions and indistinguishability of
obfuscated circuits, we derive these almost for free from [10].

In what follows, we first discuss how to break a perfectly complete key-
agreement protocol relative to a random oracle as a warmup. We then discuss
the challenges when dealing with our (more structured) oracle, and discuss why
our approach does not work for iO.

Separating key-agreement from a random oracle. As a warmup, we
first present an overview of the result of Impagliazzo and Rudich [51] and
Brakerski et al. [26], who show that for any two polynomial time oracle-aided
algorithms A and B, if 〈Af ,Bf 〉 implements a perfectly-correct bit-agreement
protocol for all functions f , then there exists an oracle-aided algorithm E such
that for any function f learns the agreed bit with probability 1 by making only a
polynomial number of oracle queries to f . The adversary E is given a transcript
T which is a result of an interaction of A and B relative to some oracle f , and is
required to find the key k� that A and B agreed on. Denote by r�

A (resp. r�
B) the

randomness used by A (resp. B) in the real interaction that produced T . The
adversary E initializes a set of queries/answers Q, which will contain the actual
queries made by E to the true oracle f . It also initializes a multiset K = ∅, and
repeats the following polynomially many times:

– Simulation: E simulates an oracle f ′ that is consistent with Q (i.e., f ′(w) =
f(w) for every w ∈ Q), and randomness r′

A, r′
B such that the interaction

〈Af ′
(r′

A),Bf ′
(r′

B)〉 (i.e., running the protocol with respect to the function f ′

with randomness r′
A for A and r′

B for B) results in the transcript T and key
k′. E adds k′ to K.

– Update: E asks f for all queries in f ′ that are not in Q, and updates the
set Q.

At the end of the attack, E outputs the majority value in K. The proof then
relies on the following observation: In each iteration, either (1) in the update
phase, E finds at least one new query that is also made by either A or B during
the real interaction with the function f that produced the transcript T ; or (2)
E adds the real key k� to K.

Intuitively, if (1) does not hold, then the perfect correctness of the bit-
agreement protocol guarantees that (2) holds. In particular, in that case it is
possible to construct a “hybrid” oracle ˜f that behaves like f in the real execu-
tion of A, i.e., Af (r�

A), and behaves like f ′ in the simulated evaluation of B, i.e.,
Bf ′

(r′
B). According to this hybrid oracle, an execution of A with randomness

r�
A and an execution of B with randomness r′

B would result in the transcript T ,
A would output k� (as in the real execution) and B would output k′ (as in the
simulation). Perfect correctness then tells us that k� = k′. This hybrid oracle
can be constructed since the simulated execution and the real execution have
no intersection queries in addition to the queries which are already in Q, and
therefore there are no contradicting queries (i.e., queries w that appear in both
executions for which f(w) �= f ′(w)). As the number of oracle queries A and B

766 G. Asharov et al.

make during the execution of the protocol is some polynomial q, the majority
value in K is guaranteed to be the correct key after 2q + 1 iterations.

Attacking key-agreement relative to our oracle. We extend the attack
described above relative to our oracle Γ , which is a significantly more structured
than a random oracle and therefore raises several challenges. Recall that our
oracle Γ consists of a three functions f , O, and E , that are dependent. Following
the above template, we construct an adversary that simulates an execution that
produces the transcript T with some simulated oracle Γ ′ = (f ′,O′, E ′). There are
two main challenges with this approach. The first is to show that A and B cannot
gain “extra” information from oracle queries that are not in the intersection
of their query sets. In particular, in the case of a random oracle, the shared
information between A and B can be recovered completely from their shared
oracle queries and the transcript T . In our setting, since the oracles f , O, and
E have dependence, this may not be the case.

The second challenge is to show that a hybrid oracle ˜Γ = (˜f, ˜O, ˜E) can be
constructed from the two sets of queries, i.e., from the simulated execution and
the real execution.

As an example, suppose there is a query E(̂C, x) that is performed in the real
execution and a different query E ′(̂C, y) that appears in the simulated execution.
Such two queries raise a challenge for constructing a hybrid oracle ˜E which is con-
sistent with these two queries simultaneously. In order to see this, suppose that
in the real execution, the lexicographically first pair (C, r) for which O(C, r) = ̂C
is some pair (C1, r1), and in the simulated execution the lexicographically first
pair (C, r) for which O′(C, r) = ̂C is some pair (C2, r2) �= (C1, r1). As a result,
E(̂C, x) in the real execution is mapped to Cf

1 (x), whereas E ′(̂C, y) is mapped
to Cf ′

2 (y), but C1 �= C2.
We solve the first challenge by adding additional oracle queries to the set

of real queries that the parties make, which makes the dependence between
the oracles more explicit. As for the second challenge, interestingly, our proof
does not completely solve it, and we do not fully control to which one of the
two circuits C1 or C2 the hybrid oracle ˜E maps ̂C. Nevertheless, we design the
adversary such that, whenever there is such a contradicting scenario between
the real execution and the simulated execution, it must hold that C1 and C2

are functionally equivalent with respect to the hybrid oracle ˜Γ . Otherwise, i.e.,
when there is some input for which C1 and C2 do not agree, we claim that the
adversary learns a new query that is associated with the real execution. As a
consequence, E learns the entire truth table of any obfuscated circuit ̂C that is
associated in the real execution, which is possible due to the fact that querying
the oracle Γ on all inputs of ̂C results in polynomially many queries. Notably, for
a different expansion factor of the oracle O (which results in iO and not XiO),
this becomes an exponential number of queries, and the above attack fails.

On the Complexity of Compressing Obfuscation 767

2.3 Statistically Secure Compressing Obfuscation

This set of results is composed of two main parts. One is positive results showing
that for small classes of circuits compressing obfuscation exists unconditionally.
The other complements the constructions and shows that improvements in the
above obfuscator, either in the compression factor or in the circuit class, will
imply some nontrivial speedup for protocols solving SAT or UNSAT. We have
positive and negative results both for the case of perfect correctness and for the
case of approximate correctness.

Negative results. First, we show that approximately correct and statistically
secure 2nε

-SXiO cannot exist unless coNP ⊆ AM[2nε

] for ε > 0. Here, we follow
on the approach of [24] from the world of iO. There, they show how to use iO
and puncturable PRFs to create two circuits that differ at a single point but
their obfuscations (as random variables) are statistically far. Then, they use
an algorithm that can distinguish these two distributions to solve Unique-SAT
which then implies that coNP ⊆ AM by a result of Mahmoody and Xiao [64]. We
modify the argument to work with compressing obfuscation by making the two
circuits receive only short inputs, and observe that the proof still goes through,
but then solving Unique-SAT on short inputs (say of poly-logarithmic size). We
then apply the result of Mahmoody and Xiao and finally obtain our result by
scaling the parameters.

Second, we show that perfectly correct and statistically secure 2n(1−ε)-SXiO
cannot exist unless coNP ⊆ AM[2(1−ε)n] (with large enough 0 < ε < 1). For this,
we construct an SZK[2(1−ε)n] protocol for all NP. In this protocol, the verifier,
given x ∈ L for a language L, chooses a bit b uniformly at random and obfuscates
a circuit that gets a witness w as input, checks whether it is a valid witness for
x and if so, it outputs b (otherwise it outputs ⊥). This protocol can be shown
to be honest-verifier statistical zero-knowledge with a verifier that runs in time
2(1−ε)n for L. This argument is reminiscent to the argument of [47,53] in the
context of iO. We then carefully apply the transformation of Okamoto [67] to
translate this protocol into an (honest-verifier) SZK protocol for every language
in coNP. This implies that coNP ⊆ AM[2(1−ε)n].

Positive results. We show that compressing obfuscators exists uncondition-
ally for restricted classes of circuits such as AC0 (the class of all constant-depth
circuits) and Mon (the class of all monotone functions). We again construct
compressing obfuscators with perfect correctness and approximate correctness.
The approximately correct obfuscators are obtained by running a classical (PAC)
learning algorithm [71] on the given circuit and outputting the hypothesis. Using
the most efficient learning algorithms for AC0 and Mon, we obtain compressing
obfuscators for these classes. This construction is aligned with the above impos-
sibility that says that we are unlikely to be able to get such an obfuscator for
classes that contain a (puncturable) PRF.

In the perfect correctness case, we use a different tool called a circuit com-
pression algorithm [31]. In circuit compression one is given the truth table of a

768 G. Asharov et al.

Boolean function f computable by some unknown circuit from a known class of
circuits, and the goal is to find in time poly(2n) a circuit C (not necessarily from
the aforementioned family) computing f so that the size of C is less than the
trivial circuit size ≈2n. We apply such an algorithm on circuits in AC0 and get
an obfuscator with small compression.

3 Correctness Amplification

In this section, we present a correctness amplification procedure for XiO. We
show that assuming the existence of an XiO scheme with very weak correctness,
there exists an XiO construction with a very strong correctness guarantee.

Theorem 3.1. Let p(·) be any polynomial. Let xiO be an XiO scheme for Plog

that is
(

1
2 + 1

p(λ)

)

-approximately correct. Assuming LWE and the existence of

NIZKs, there exists a perfectly correct XiO scheme for Plog.

The correctness amplification proceeds in three phases. First, we transform an
approximately-correct XiO scheme to a (1/poly(λ) − negl(λ))-worst-case correct
XiO scheme. Then, we transform the resulting scheme to a (1 − negl(λ))-worst-
case correct XiO scheme. Then, we transform the resulting scheme to a perfectly
correct XiO scheme.

The main technical contribution of this section is the first step, transform-
ing an approximately-correct XiO scheme to a 1/poly(λ)-worst-case correct XiO
scheme. Therefore, in Sect. 3.1, we present the construction for this step. The
full proof of Theorem 3.1 appears in the full version.

3.1 From Approximately-Correct XiO to Worst-Case Correct XiO

Fix any class of circuits Cs,n ∈ Plog. Throughout this section, we let s = s(λ)
and n = n(λ). Our transformation relies on the following primitives as building
blocks:

– xiO = (xiO.Obf, xiO.Eval) is a (1/2 + γ)-approximately correct XiO scheme
for Plog, where γ = 1/p(λ) for some polynomial p.

– ECC is a Reed-Solomon
(

8·2n
d

γλ , 2
n
d

λ , 8·2n
d

γλ − 2
n
d

λ + 1
)

2λ
erasure correcting code

that can correct up to a (1 − γ
8)-fraction of erasures using the algorithm

ECC.Dec, where |ECC| is a polynomial of degree d − 1 in its input length.
We assume that all inputs to ECC are padded to size 2

n
d bits. We let �1 =

O(log(λ)) + n
d be the length of the output of ECC.

– LDC is a binary error-correcting code that is (12 − γ
4 , poly)-list decodable using

the algorithm LDC.Dec. We let �2 = O(log(λ)+log(s)+log(n)) be the output
length of LDC when run on inputs of size poly(λ, s, n).

– lFE = (lFE.Setup, lFE.Enc, lFE.Keygen, lFE.Dec) is a λ-output succinct FE
scheme for the class Cs′,n′ ∈ P where s′ =

(

s · 2
n
d

)d−1 · poly(λ) and n′ =
s · poly(λ, n).

On the Complexity of Compressing Obfuscation 769

– PRF = (PRF.Key,PRF.Punc,PRF.Eval) is a puncturable PRF.
– C = (C.Commit,C.Open) is a commitment scheme.
– NIZK = (NIZK.Gen,NIZK.P,NIZK.V) is a Multi-NIZK proof system for the

NP language L given by L =
{

(ct, i, comC , com0, pk) : either
1. ∃r0, r1, C such that ct encrypts (C, i) and comC is a commitment to C,

that is, ct = lFE.Enc(pk, (C, i); r0) ∧ comC = C.Commit(C, r1), or
2. ∃r s.t. com0 = C.Commit(1, r)

}

,
We let t = t(λ) = poly(λ, s, n) denote the upper bound on the length of
statements and witnesses in L when instantiated with security parameter λ
(with parameters as used in the following scheme).

In what follows, we denote by Cx1···xk
the circuit C with the first k bits

hardwired to x1 · · · xk. We let T denote a circuit in Cs·2n
d ,s that receives as input

a circuit and outputs its truth table. The transformation is as follows.

Worst-case correct XiO scheme xiO′:

• ˜C ← xiO′.Obf(1λ, C):
1. Sample (msk, pk) ← lFE.Setup(1λ).
2. Generate a key skU ← lFE.Keygen(msk,U) for the circuit U such that

U(D, i) = ECC(T (D))[i],

for any input circuit D, where ECC(T (D))[i] denotes the ith block of
length λ of ECC(T (D)).

3. For every x ∈ {0, 1}n− n
d :

(a) Sample Kx
0 ,Kx

1 ← PRF.Key(1λ), and σx ← NIZK.Gen(1λ, 1t).
(b) Create commitments comx

Cx
= C.Commit(Cx, rx

0) to Cx and comx
0 =

C.Commit(0, rx
1) to 0 using randomness rx

0 ← {0, 1}λ and rx
1 ←

{0, 1}λ.
(c) Generate the circuit Gx = Gx[Cx, pk,Kx

0 ,Kx
1 , comx

Cx
, comx

0 , r
x
0 , σx]

such that on input (i, j) does the following:
i. Let ct ← lFE.Enc(pk, (Cx, i); PRF.Eval(Kx

0 , i)).
ii. Construct a NIZK proof π = NIZK.P(σx, v, w;PRF.Eval(K1, i))

for the statement v = (ct, i, comx
Cx

, comx
0 , pk) using the witness

w = (Cx,PRF.Eval(Kx
0 , i), rx

0).
iii. Output the jth bit of LDC(ct, π), denoted by (LDC(ct, π))j .

(d) Let ˜Gx ← xiO.Obf(1λ, Gx) and let ˜Cx = (˜Gx, σx, comx
Cx

, comx
0).

4. Output ˜C =
(

{

˜Cx
}

x∈{0,1}n− n
d

, skU , pk

)

.

• y′ ← xiO′.Eval(˜C, x):
1. Let x = x1||x2 where |x1| = n − n

d .
2. For every i ∈ [2�1]:

(a) For every j ∈ [2�2], let cij = xiO.Eval(˜Gx1 , (i, j)).
(b) Run LDC.Dec(ci1ci2 · · · ci2�2) to obtain a list of possible decodings,

where the kth element of the list is (ctki , πk
i).

770 G. Asharov et al.

(c) Let k� be the first index k such that NIZK.V(σ, vk
i , πk

i) = 1 where vk
i =

(ctki , i, comx1
Cx1

, comx1
0 , pk). Set cti = ctk

�

i if k� exists and otherwise set
cti = ⊥.

(d) Run yi ← lFE.Dec(skU , cti).
3. If there are at least γ

8 ·2�1 indices i for which cti �= ⊥, let y = y1y2 · · · y2�1

and run ECC.Dec(y) and output the element corresponding to x2. Other-
wise, output ⊥.

Theorem 3.2. Assume that PRF is a puncturable PRF, lFE is a selectively-
secure λ-output succinct FE scheme for Cs′,n′

, C is a commitment scheme, and
NIZK is a Multi-NIZK for L. Fix any class of circuits Cs,n ∈ Plog. Let p(·) be any
polynomial. Then, if xiO is a (1/2 + 1/p(λ))-approximately-correct XiO scheme
for Plog, then xiO′ is a

(

γ
16 − negl(λ)

)

-worst-case correct XiO scheme for Cs,n,
for a negligible function negl.

The proof of this theorem appears in the full version.

4 On Key-Agreement from XIO and OWFs

In this section, we show a separation from compressing obfuscation and one-way
functions to key-agreement. This separation is largely based on [9,10], and in
particular follows the framework of black-box separations presented in [51].

We refer to the full version for important preliminaries, including the class of
reductions that our proof captures. Throughout this section, for ease of notation,
we denote both the security parameter and the size of circuits by s. While these
could be distinguished, it is natural to combine them in this way, as everything
can be thought of as a function of the circuit size in question. Hereafter, we
say that an oracle-aided algorithm M(1s) with oracle access to Γ is a q-query
algorithm if for every s ∈ N, the algorithm M(1s) makes at most q(s) queries,
and each of its queries have size at most q(s).

We show the separation by presenting a distribution over oracles Γ relative
to which the following properties hold: (1) there does not exist a perfectly cor-
rect key-agreement protocol, (2) there exists an (exponentially) secure one-way
function, and (3) there exists an (exponentially) secure XiO.

Let � be a 2-ary function with �(s, n) > s. The distribution S� over oracles
Γ = (f,O, E) is defined as follows:

• The function f = {fs}s∈N. For every s ∈ N, the function fs : {0, 1}s →
{0, 1}s is a uniformly chosen function. We will use f to implement a one-way
function.

• The function O = {Os,n}s,n∈N. For every s, n ∈ N, the function Os,n :
{0, 1}2s → {0, 1}10�(s,n) is a uniformly chosen function. Intuitively, Os,n will
receive a description of a circuit with size s and input length n, as well as a
string of length s (which represents the randomness of the obfuscator), and
will increase this to a uniformly chosen string of length 10�(s, n). This will be
used to implement the obfuscator for xiO. Note that �(s, n) > s, and therefore
the output of Os,n is at least 10sn.

On the Complexity of Compressing Obfuscation 771

• The function Ef,O = {Ef,O
s,n }s∈N,n∈N. For every s, n ∈ N, the function

Ef,O
s,n : {0, 1}10�(s,n) × {0, 1}n → {0, 1}∗ is defined as follows. On input

(y, x) ∈ {0, 1}10�(s,n) × {0, 1}n, the function Ef,O
s,n finds the lexicographically

first oracle-aided circuit C of size s and input size n, and a string r ∈ {0, 1}s

such that Os,n(C, r) = y, and outputs Cf (x). If no such (C, r) exists, it
outputs ⊥. Looking ahead, the oracle Ef,O will be used to implement the
evaluator for xiO.

When �(s, n) = 2n(1−ε) · poly(s) for a constant ε > 0 and a polynomial poly,
relative to this oracle there exists a one-way function f and perfectly correct
XiO scheme. The construction of XiO is natural: Given some circuit C of size s
and input length n, the obfuscator chooses a random r ← {0, 1}s and evaluates
̂C = Os,n(C, r). Then, it checks that the resulting handle ̂C agrees with the input
circuit C: it runs over all inputs x ∈ {0, 1}n and checks that Es,n(̂C, x) = Cf (x).
If this holds for every input, it outputs (0, ̂C). Otherwise, it outputs (1, C). The
evaluator on input circuit (0, ̂C) and input x returns Es,n(̂C, x) = Cf (x), whereas
on input circuit (1, C) and input x evaluates Cf (x).5 The following holds, and
is discussed in the full version:

Theorem 4.1. Let �(s, n) = 2nε · poly(s) for some constant 0 ≤ ε < 1 and
polynomial poly and let Γ ← S� with Γ = (f,O, E). Then, for any oracle-aided
q-query algorithm A with q(s) < 2s/4, it holds that

Pr
x←{0,1}s,Γ

[AΓ (fs(x)) ∈ f−1
s (fs(x))

] ≤ 2−s/2.

Moreover, for any class of circuits C with f-gates, there exists an XiO scheme
xiO relative to Γ for the circuit class C such that

∣

∣

∣

∣

Pr
r,Γ

[

ExpXiO
Γ,xiO,D,C(λ; r) = 1

]

− 1
2

∣

∣

∣

∣

< 2−s/4,

for any q-query distinguisher D that makes at most q(s) < 2s/4 queries.6

The main technical difficulty is showing that there is no key-agreement protocol
relative to Γ .

Theorem 4.2. Let �(s, n) = 2nε · poly(s) for a constant 0 ≤ ε < 1 and a poly-
nomial poly. Then, for any perfectly correct oracle-aided bit agreement protocol

5 We note that the technique of enumerating over all inputs is similar to that used in
our correctness amplification, and takes advantage of the ability of XiO to compute
the truth table of the obfuscated circuit.

6 The game ExpXiO
Γ,xiO,D,C(λ; r) is the indistinguishability experiment for XiO, defined

as follows: (1) b ← {0, 1}; (2) (C0, C1, state) ← DΓ
1 (1s) where |C0| = |C1| = s and

CΓ
0 ≡ CΓ

1 . (3) ̂C ← ObfΓ (1s, Cb). (4) b′ ← DΓ
2 (state, ̂C). (5) If b′ = b then output

1. Otherwise, output 0.

772 G. Asharov et al.

〈A(1s),B(1s)〉 in which A and B run in time at most q(s), there exists an oracle-
aided adversary E that makes q(s)O(1)+1/ε oracle queries such that

∣

∣

∣

∣

Pr
[

ExpKAΓ,(A,B),E(λ) = 1
]

− 1
2

∣

∣

∣

∣

≥ 7
16

,

where the probability is over Γ ← S�, and the randomness of A, B, and E.7

Moreover, the algorithm E can be implemented in polynomial time given access
to a PSPACE-complete oracle.

The full proof of this theorem appears in the full version. Here, we give a
high level overview. We start by defining some notation.

Notation. Let QA, QB, and QE denote the set of oracle queries made by A,
B, and E, respectively. Let [O(x) = y] ∈ Qp denote that a party p queried an
oracle O on x and received y. For example, to denote that A queried O on C
and received ˜C, we write [O(C) = ˜C] ∈ QA. Let QAB = QA ∪ QB be the set of
oracle queries in the real protocol.

For a PPT oracle-aided key-agreement protocol 〈AΓ (1s),BΓ (1s)〉, we let q =
q(s) denote an upper bound on the running time of A and B for any oracle Γ .
Since A and B are run in time at most q, this also bounds the space that the
algorithms consume and their number of oracle queries. As a result, all Os,n and
Es,n queries satisfy s ≤ q and 2εn · poly(s) ≤ q. This implies that n ≤ 1

ε log q.
We will use this bound on n to show that A and B can only query O on circuits
with logarithmic size input, and thus the adversary can learn the truth table of
any circuit queried this way by only making a polynomial number of queries.

We now define an extended set of queries for any query/answer set Q. Intu-
itively, this captures queries that are “known” to an algorithm that makes the
queries in Q. For example, suppose an algorithm M queries Os,n on some (C, r)
and obtains ˜C, and queries f on all queries in the evaluation of Cf (x). Then,
intuitively M knows that Es,n(˜C, x) = Cf (x) (up to the probability of O being
injective), even without making any E query. The following definition captures
this dependence between the oracles, and will be helpful in our separation.

Definition 4.3. Given a set of queries Q and an oracle Γ , the augmented set
of queries Aug(Q) with respect to Γ is defined as follows:

1. Every query and answer in Q is also in Aug(Q).
2. For every query [Os,n(C, r) = ˜C] ∈ Aug(Q), the set Aug(Q) contains queries

Es,n(˜C, x) for all x ∈ {0, 1}n.
3. For every query [Es,n(˜C, x) = y] ∈ Aug(Q) with y �= ⊥, the set Aug(Q)

contains the query Os,n(C, r) = ˜C, and all f-queries made in the evaluation
of Cf (x) = y. where (C, r) is the lexicographically first pre-image of ˜C under
Os,n.

7 The game ExpKAΓ,Π,E(λ) is defined as follows: (1) (kA, kB, T) ← 〈AΓ (1s), BΓ (1s)〉, (2)

k′ ← EΓ (1s, T), (3) If k′ = kA then output 1, otherwise output 0.

On the Complexity of Compressing Obfuscation 773

For a given set Q with |Q| < q, we bound the size of the set |Aug(Q)|, and
recall that this implies that s < q and n < 1

ε log q. For every query to Os,n in Q,
there are at most 2n corresponding Es,n queries in Aug(Q), each implies at most
s queries to f in Aug(Q). Likewise for any Es,n query in Q might imply at most
2n · s queries in Aug(Q). Therefore, we have

|Aug(Q)| ≤ q · s · 2n ≤ q2 · q1/ε.

We are now ready to define the adversary E.

The adversary E.

• Input: A transcript T of an execution 〈AΓ (1s; r�
A),BΓ (1s; r�

B)〉.
• Oracle Access: Γ = (f,O, E).
• Algorithm:

1. Initialize QE = ∅ and K = ∅.
2. Repeat the following 2q + 1 times:

(a) Simulation phase: Find a valid oracle Γ ′ = (f ′,O′, E ′) and random
strings r′

A, r′
B such that the following holds:

i. Every query in QE is answered the same way in Γ ′ as in QE .
ii. O′

s,n is injective for all s, n ∈ N.
iii. The transcript T ′ outputted by 〈AΓ ′

(1s; r′
A),BΓ ′

(1s, r′
B)〉 is the

same as T .
Abort if no such Γ ′, r′

A, r′
B exist. Let k′

A be the key outputted by A
in this simulation, and add k′

A to K.
(b) Update phase: Let QSim be the queries made by A and B in the

execution 〈AΓ ′
(1s; r′

A),BΓ ′
(1s, r′

B)〉, and consider the set Aug(QSim)
with respect to Γ ′. Query Γ with all queries in Aug(QSim) \ QE and
update QE with these queries.

• Output: The majority key k in K.

Observe that in each iteration, |QSim| < q and E makes at most |Aug(QSim)|
queries to Γ . Therefore, the total number of queries that E makes is bounded
by (2q + 1) · q2 · q1/ε ∈ qO(1)+1/ε.

To complete the proof of Theorem 4.2, the main technical difficulty is in
showing that the adversary E always succeeds to find the key computed in the
real key agreement protocol, assuming that O is an injective function. We denote
this event by injectiveΓ,� and in the full version, we show that the probability
that ¬injectiveΓ,� occurs is bounded by 2−4. We then show the following lemma.

Lemma 4.4. Let k� denote the key computed by A and B in the real execution
of the protocol. If injectiveΓ,� holds, then E does not abort, and in each iteration
either (1) E adds a query in Aug(QAB) to QE, or (2) E adds k� to K.

Proof Sketch. At a high level, the proof is as follows. First, assuming
injectiveΓ,� holds, we show that E does not abort. This follows from the fact
that the real oracle Γ and random strings r�

A and r�
B satisfy the properties

774 G. Asharov et al.

needed to form the simulated oracle Γ ′ and random strings r′
A and r′

B. Thus,
there exists at least one valid oracle and pair of random strings and therefore E
does not abort.

Then, we show that in each iteration, either (1) E adds a query in Aug(QAB)
to QE , or (2) E adds k� to K. Consider some iteration in which (1) does not hold.
Let Γ ′, r′

A, r′
B be the oracle and random strings chosen by E in this iteration. By

definition, the transcript of this execution is T . Let k′ be the key outputted by
〈AΓ ′

(1s; r′
A),BΓ ′

(1s; r′
B)〉. Assuming that (1) does not hold, we show that there

exists a hybrid oracle ˜Γ for which (k′, k�, T) ← 〈A˜Γ (1s; r′
A),B ˜Γ (1s; r�

B)〉. That
is, we show an oracle ˜Γ such that when A uses the randomness of the simulation
and B uses the randomness of the real protocol and both run with respect to
˜Γ , A outputs k′ (as in the simulation) while B outputs k� (as in the real),
and the execution produces the transcript T (as in both the real and simulated
protocols). We form this oracle by incorporating all queries in Aug(QAB) and
Aug(QSim) into ˜Γ . Because (1) does not hold, E does not learn any new query in
Aug(QAB), and thus Aug(QAB) and Aug(QSim) agree on all queries and answers.
In the full version, we show that this implies that ˜Γ agrees with all queries in
Aug(QAB)∪Aug(QSim), and that this suffices for the result. Given the existence
of such an oracle, by the perfect correctness, it must hold that k′ = k�, and
therefore, since E adds k′ = k� to K, the claim follows. ��

5 On Statistical Security

In this section we study the possibility for compressing obfuscation with per-
fect (information-theoretic) security. We will distinguish between approximately
correct and perfectly correct compressing obfuscators and show almost tight
results.

For approximately correct obfuscators, one the one hand, we show that there
exists a statistically secure compressing obfuscator for the class of bounded
depth circuits. On the other hand, we show that this is almost tight as any
class that contains a (puncturable) PRF cannot be obfuscated with statistical
secure (under complexity theoretic conjectures). See Theorems 5.4 and 5.5 for
the precise parameters.

For perfectly correct obfuscators, on the one hand, we show that there exists
a statistically secure compressing obfuscator for the class of bounded depth cir-
cuits, but the compression factor will be very weak (the obfuscation time is
poly(2n)). On the other hand, we show that even for depth two circuits, better
compression with better running time is implausible. See Theorems 5.2 and 5.7
for the precise parameters. Due to lack of space, all proofs from this section
appear in the full version.

5.1 Negative Results

We show that it is unlikely that there is a statistically secure compressing obfus-
cator with good enough compression.

On the Complexity of Compressing Obfuscation 775

Our first result says that if such an obfuscator exists with strong enough
compression, namely a (2εn, 2εn)-compressing obfuscator with statistical secu-
rity and perfect correctness, then SAT (the problem of deciding whether a SAT
formula is unsatisfiable) has an AM protocol in which the verifier’s running time
is bounded by 2εn. This is not believed to be likely for small enough values of
ε > 0, according to the best of our knowledge. Note that for this result we only
need an obfuscator for depth-2 circuits. This argument relies on ideas from [53]
and can be seen as an extension of an argument from [47].

Definition 5.1. We denote by AM[t, �] the class of all languages on instances
of size n that have an AM protocol in which the running time of the verifier
is at most t(n) and its messages size is at most �(n). The class coAM[t, �] is
defined, analogously, to be the class that contains all the complement languages.
In case that t = �, we will write AM[t] to denote AM[t, t] and coAM[t] to denote
coAM[t, t].

Theorem 5.2. There exists a universal constant c > 0 such that the follow-
ing holds. If there is 0 < ε < 1 and a statistically secure and perfectly correct
(2εn, 2εn)-compressing obfuscation for depth-2 circuits, then SAT ∈ AM[2cεn].

The conclusion in Theorem 5.2 can be stated more generally as a conjecture
that is interesting on its own right. This conjecture is parametrized by an 0 <
ε < 1 and it says that SAT is not in AM[2εn].

Definition 5.3 (Conjecture). There exist ε > 0 for which SAT /∈ AM[2εn].

It is known that the conjecture is false for ε = 1/2 by the recent result of
Williams [72] who showed that SAT ∈ AM[Õ(2n/2)]. However, for smaller values
of ε it is still unknown. The conjecture is particularly appealing in the case that
ε is sub-constant (some o(1)).

Additionally, we give evidence that a compressing obfuscator with statistical
security and only approximate correctness cannot exist for classes of functions
that contain a (puncturable) PRF. This argument relies on and extends the
proof of [24].

Theorem 5.4 [Restatement of Theorem1.2, part II]. There exists a universal
constant c > 0 such that the following holds. If there is 0 < ε < 1 and a statisti-
cally secure and approximately correct (2nε

, 2nε

)-compressing obfuscation for all
circuits, then SAT ∈ AM[2nε

].

5.2 Positive Results

We show that for small classes of circuits there is a compressing obfuscation
with perfect security. We start with the constructions that give approximate
correctness.

776 G. Asharov et al.

Theorem 5.5 [Restatement of Theorem1.2, part I]. There exist constants 0 <

α < 1 and 0 < β < 1 such that there exists a (1 − s/2nβ

)-approximately
correct (2nα

, 2nα

)-compressing obfuscator with perfect security for the class of
polynomial-size constant-depth n-input Boolean circuits.

Theorem 5.6. There exists a polynomial p(·) and a constant α > 0 such that
there exists a (1 − 1/p(n))-approximately correct (2(1−α)n, 2(1−α)n)-compressing
obfuscator with perfect security for the class of monotone n-input Boolean func-
tions.

We show that the class of bounded-depth circuits above can also be obfus-
cated with perfect correctness, while still resulting with a compressing obfusca-
tor. However, the resulting compression is very weak (in particular, such com-
pression, even for compressing obfuscation for all circuits is not known to imply
full-fledged obfuscation).

Theorem 5.7 [Restatement of Theorem1.3]. There exists a perfectly correct
(poly(2n), 2n−n/O(log s)d−1

)-obfuscator with perfect security for the class of size s
depth d, n-input Boolean circuits.

All of the obfuscators above treat their input circuit as a black box and run
a classical learning or compression algorithm on it. We introduce these tasks
next.

Preliminaries on PAC learning. We begin by introducing the concept of
PAC learning. The Probably Approximately Correct (PAC) learning model,
introduced by Valiant [71], is one of the most central definitions in the learning
community and in computer science in general. We focus on PAC learning over
the uniform distribution with membership queries. In this setting the learner
may query the oracle at any point x and get back the value of the oracle at that
point.

Definition 5.8 (PAC learning over the uniform distribution with membership
queries). Let F be a class of Boolean functions over n inputs. The class F is
(ε, δ)-PAC learnable if there exists an algorithm A that gets as input two param-
eters ε, δ > 0, has membership query access to a function f ∈ F , and outputs
with probability 1− δ (over its internal randomness) a circuit C that agrees with
f on all but an ε-fraction of the inputs. That is,

Pr
A

[

C ← Af (ε, δ); Pr
x←{0,1}n

[C(x) �= f(x)] ≤ ε

]

≥ 1 − δ.

The running time of A is measures as a function of n, 1/ε, 1/δ, and the circuit
size of f .

There has been a tremendous amount of work on obtaining efficient algo-
rithms for PAC learning various classes of functions. It is known that no poly(n)-
time algorithm can learn arbitrary Boolean functions f : {0, 1}n → {0, 1} to

On the Complexity of Compressing Obfuscation 777

accuracy non-negligibly better than 1/2, but many positive results are known
for restricted classes of functions. We fix δ = 2/3, and note that this choice is
somewhat arbitrary and enough for all of our applications. We thus say that a
class is ε-PAC learnable if it is (ε, 2/3)-PAC learnable.

One well known example is the quasi-polynomial time algorithm of Linial,
Mansour, and Nisan [60] for the class of functions computed by AC0 circuits
(constant depth circuits with AND, OR, and NOT gates of unbounded fan-in
and fan-out).

Theorem 5.9 (Learning bounded-depth circuits [60]). The class of size-s depth-
d circuits is ε-PAC learnable within nO(logd−1(s/ε)) queries.8

Another notable example that is relevant for us is the algorithm of Bshouty
and Tamon [28] for learning arbitrary monotone functions.

Theorem 5.10 (Learning monotone functions [28]). The class of monotone
functions is ε-PAC learnable within nO(

√
n/ε) queries.

A more recent result of Carmosino et al. [29] showed a (quasi-polynomial-
time) learner for AC0[p], the class of Boolean constant depth circuits with
unbounded fan-in and fan-out with AND, OR, NOT, and MOD-p gates.9 Their
result follows by a generic implication from natural properties to (randomized)
algorithms for learning. More elaborately, [29] showed that any circuit lower
bound proved through the very general natural proofs paradigm of Razborov
and Rudich [69] yields algorithms for learning and compression. They then apply
this result with the natural lower bound of Razborovand Smolenskyfor the class
AC0[p]. Informally, a “natural” lower bound for a circuit class C consists of an
efficient algorithm that recognized some property that distinguishes between the
truth tables functions in C and those of random Boolean functions.

Theorem 5.11 (Learning bounded-depth circuits with mod gates [29]). For
every prime p > 1, the class of AC0[p] circuits of size s is ε-PAC learnable
within 2poly log(ns/ε) queries.

Tightness of the Approach. The approach of constructing obfuscators via
learning algorithms is inherently limited. As observed by Valiant [71], any class
that contains a pseudorandom function cannot be learned with nontrivial sav-
ings. Moreover, this approach, as shown above, gives the very strong notion of
perfect security, which does not exist for all functions (even the computational
version, known as virtual black-box, does not exist for circuits that contain a
PRF [14]). Thus, to get an obfuscator (that satisfies only indistinguishability
obfuscation) for a larger class of functions, one has to use the fact that the
obfuscator has access to a circuit rather than treating it as a black-box.
8 In Theorems 5.9 and 5.10 it is enough that the labels are for uniformly random inputs

(i.e., random examples).
9 We note that recently Carmosino et al. [30] generalized their result to get an impli-

cation from “tolerant” natural proofs to agnostic learning [52]. In agnostic learning,
is the same as in PAC learning except that the learner is only guaranteed that f is
close to the concept class C (rather than assuming it belongs to it).

778 G. Asharov et al.

Preliminaries on Circuit Compression. In the problem of circuit compres-
sion, studied by Chen et al. [31], one is given the truth table of a Boolean function
f computable by some unknown circuit from a known class of circuits, and the
goal is to find in time poly(2n) a circuit C (not necessarily from the aforemen-
tioned family) computing f so that the size of C is less than the trivial circuit
size ≈2n. For general functions this is impossible as there are functions that
require this size, so the focus is on restricted classes.

Definition 5.12 (C-compression). Given the truth table of an n-variate Boolean
function f ∈ C, find a Boolean circuit of size < 2n/n that is functionally equiv-
alent to f .

As mentioned in [31], compression of Boolean functions is related to the
setting of exact learning with membership and equivalence queries [6]. In this
learning setting, the size of the hypothesis produced by the learning algorithm is
upper-bounded by the running time of the algorithm. In the circuit compression
setting, the hypothesis (compressed image) size and the running time of the
learning (compression) algorithm are decoupled: we allow more running time,
but ask for a small-size compression. This may enable improvements in the class
of circuits that we can handle. Concretely, exact learning is strictly stronger as
any result in exact learning yields a compression algorithm for the corresponding
class of functions, but the opposite direction is not known.

We notice that in general good enough compression implies compressing
obfuscation where the output size is nontrivial but the running time can be
large enough to read the truth table of the function (i.e., as in XiO). However,
the other direction is not known since in XO one is given a witness (i.e., a circuit
rather than the truth table). The most relevant circuit compression result that
is relevant for us is stated next.

Theorem 5.13 ([31]). If a Boolean n-variate function is computed by an AC0

circuit of size s and depth d, then it is compressible to a circuit of size at most
2n−n/O(log s)d−1

.

As in the case of learning algorithms, the above compression algorithms
directly imply perfectly correct compressing obfuscators satisfying perfect secu-
rity.

We note that, as in the case of learning, it is impossible to compress a class of
circuits that contains a PRF. For this, consider a PRF with key size n2 and input
size n which is exponentially secure (namely, secure for adversaries running in
time 2Ω(n2)).10 In this case, the PRF-or-Random adversary is allowed to query
the oracle at all 2n inputs and yet it still cannot distinguish PRF from random.
The impossibility of compression for such a family of circuits now follows from
the fact that random functions cannot be compressed.

Acknowledgments. We thank Zvika Brakerski for discussions about the possibility
of SXiO and XiO with statistical security.

10 The argument works even with sub-exponential security by increasing the size of the
key.

On the Complexity of Compressing Obfuscation 779

References

1. Ananth, P., Jain, A., Naor, M., Sahai, A., Yogev, E.: Universal constructions
and robust combiners for indistinguishability obfuscation and witness encryption.
In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 491–520.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-5 17

2. Ananth, P., Jain, A., Sahai, A.: Robust transforming combiners from indistin-
guishability obfuscation to functional encryption. In: Coron, J.-S., Nielsen, J.B.
(eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp. 91–121. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-56620-7 4

3. Ananth, P., Jain, A.: Indistinguishability obfuscation from compact functional
encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol.
9215, pp. 308–326. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-47989-6 15

4. Ananth, P., Sahai, A.: Projective arithmetic functional encryption and indistin-
guishability obfuscation from degree-5 multilinear maps. In: Coron, J.-S., Nielsen,
J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp. 152–181. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-56620-7 6

5. Ananth, P.V., Gupta, D., Ishai, Y., Sahai, A.: Optimizing obfuscation: avoiding
Barrington’s theorem. In: Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, pp. 646–658 (2014)

6. Angluin, D.: Queries and concept learning. Mach. Learn. 2(4), 319–342 (1987)
7. Apon, D., Döttling, N., Garg, S., Mukherjee, P.: Cryptanalysis of indistinguisha-

bility obfuscations of circuits over GGH13. In: 44th International Colloquium on
Automata, Languages, and Programming, ICALP 2017, pp. 38:1–38:16 (2017)

8. Applebaum, B., Brakerski, Z.: Obfuscating circuits via composite-order graded
encoding. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 528–
556. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7 21

9. Asharov, G., Segev, G.: Limits on the power of indistinguishability obfuscation
and functional encryption. SIAM J. Comput. 45(6), 2117–2176 (2016)

10. Asharov, G., Segev, G.: On constructing one-way permutations from indistin-
guishability obfuscation. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS,
vol. 9563, pp. 512–541. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-49099-0 19

11. Asmuth, C., Blakley, G.: An efficient algorithm for constructing a cryptosystem
which is harder to break than two other cryptosystems. Comput. Math. Appl. 7(6),
447–450 (1981)

12. Barak, B., Brakerski, Z., Komargodski, I., Kothari, P.K.: Limits on low-degree
pseudorandom generators (or: sum-of-squares meets program obfuscation). IACR
Cryptology ePrint Archive 2017, 312 (2017)

13. Barak, B., Garg, S., Kalai, Y.T., Paneth, O., Sahai, A.: Protecting obfuscation
against algebraic attacks. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 221–238. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-642-55220-5 13

14. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P.,
Yang, K.: On the (im)possibility of obfuscating programs. J. ACM 59(2), 6:1–6:48
(2012)

15. Bitansky, N., Degwekar, A., Vaikuntanathan, V.: Structure vs. hardness through
the obfuscation lens. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol.
10401, pp. 696–723. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63688-7 23

https://doi.org/10.1007/978-3-662-53008-5_17
https://doi.org/10.1007/978-3-319-56620-7_4
https://doi.org/10.1007/978-3-662-47989-6_15
https://doi.org/10.1007/978-3-662-47989-6_15
https://doi.org/10.1007/978-3-319-56620-7_6
https://doi.org/10.1007/978-3-662-46497-7_21
https://doi.org/10.1007/978-3-662-49099-0_19
https://doi.org/10.1007/978-3-662-49099-0_19
https://doi.org/10.1007/978-3-642-55220-5_13
https://doi.org/10.1007/978-3-642-55220-5_13
https://doi.org/10.1007/978-3-319-63688-7_23
https://doi.org/10.1007/978-3-319-63688-7_23

780 G. Asharov et al.

16. Bitansky, N., Lin, H., Paneth, O.: On removing graded encodings from functional
encryption. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Proceedings,
Part II. LNCS, vol. 10211, pp. 3–29. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-56614-6 1

17. Bitansky, N., Nishimaki, R., Passelègue, A., Wichs, D.: From cryptomania to
obfustopia through secret-key functional encryption. In: Theory of Cryptography
Conference, pp. 391–418 (2016)

18. Bitansky, N., Paneth, O.: ZAPs and non-interactive witness indistinguishability
from indistinguishability obfuscation. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015.
LNCS, vol. 9015, pp. 401–427. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46497-7 16

19. Bitansky, N., Paneth, O., Wichs, D.: Perfect structure on the edge of chaos -
trapdoor permutations from indistinguishability obfuscation. In: Kushilevitz, E.,
Malkin, T. (eds.) TCC 2016. LNCS, vol. 9562, pp. 474–502. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-49096-9 20

20. Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation from functional
encryption. In: IEEE 56th Annual Symposium on Foundations of Computer Sci-
ence, FOCS 2015, pp. 171–190 (2015)

21. Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation: from approxi-
mate to exact. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9562,
pp. 67–95. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49096-
9 4

22. Bitansky, N., Vaikuntanathan, V.: A note on perfect correctness by derandom-
ization. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol.
10211, pp. 592–606. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
56614-6 20

23. Boneh, D., Wu, D.J., Zimmerman, J.: Immunizing multilinear maps against zeroiz-
ing attacks. IACR Cryptology ePrint Archive 2014, 930 (2014)

24. Brakerski, Z., Brzuska, C., Fleischhacker, N.: On statistically secure obfuscation
with approximate correctness. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016.
LNCS, vol. 9815, pp. 551–578. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-53008-5 19

25. Brakerski, Z., Jain, A., Komargodski, I., Passelègue, A., Wichs, D.: Non-trivial wit-
ness encryption and null-iO from standard assumptions. IACR Cryptology ePrint
Archive 2017, 874 (2017)

26. Brakerski, Z., Katz, J., Segev, G., Yerukhimovich, A.: Limits on the power of zero-
knowledge proofs in cryptographic constructions. In: Ishai, Y. (ed.) TCC 2011.
LNCS, vol. 6597, pp. 559–578. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-19571-6 34

27. Brakerski, Z., Rothblum, G.N.: Virtual black-box obfuscation for all circuits via
generic graded encoding. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp.
1–25. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8 1

28. Bshouty, N.H., Tamon, C.: On the fourier spectrum of monotone functions. J. ACM
43(4), 747–770 (1996)

29. Carmosino, M.L., Impagliazzo, R., Kabanets, V., Kolokolova, A.: Learning algo-
rithms from natural proofs. In: 31st Conference on Computational Complexity,
CCC 2016, vol. 50, pp. 10:1–10:24 (2016)

30. Carmosino, M.L., Impagliazzo, R., Kabanets, V., Kolokolova, A.: Agnostic learning
from tolerant natural proofs. In: Approximation, Randomization, and Combina-
torial Optimization. Algorithms and Techniques, APPROX/RANDOM 2017, vol.
81, pp. 35:1–35:19 (2017)

https://doi.org/10.1007/978-3-319-56614-6_1
https://doi.org/10.1007/978-3-319-56614-6_1
https://doi.org/10.1007/978-3-662-46497-7_16
https://doi.org/10.1007/978-3-662-46497-7_16
https://doi.org/10.1007/978-3-662-49096-9_20
https://doi.org/10.1007/978-3-662-49096-9_4
https://doi.org/10.1007/978-3-662-49096-9_4
https://doi.org/10.1007/978-3-319-56614-6_20
https://doi.org/10.1007/978-3-319-56614-6_20
https://doi.org/10.1007/978-3-662-53008-5_19
https://doi.org/10.1007/978-3-662-53008-5_19
https://doi.org/10.1007/978-3-642-19571-6_34
https://doi.org/10.1007/978-3-642-19571-6_34
https://doi.org/10.1007/978-3-642-54242-8_1

On the Complexity of Compressing Obfuscation 781

31. Chen, R., Kabanets, V., Kolokolova, A., Shaltiel, R., Zuckerman, D.: Mining circuit
lower bound proofs for meta-algorithms. Comput. Complex. 24(2), 333–392 (2015)

32. Chen, Y., Gentry, C., Halevi, S.: Cryptanalyses of candidate branching program
obfuscators. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol.
10212, pp. 278–307. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
56617-7 10

33. Cheon, J.H., Han, K., Lee, C., Ryu, H., Stehlé, D.: Cryptanalysis of the multilinear
map over the integers. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015.
LNCS, vol. 9056, pp. 3–12. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-46800-5 1

34. Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over the inte-
gers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp.
476–493. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-
4 26

35. Coron, J.-S., Lepoint, T., Tibouchi, M.: New multilinear maps over the integers. In:
Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 267–286.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-6 13

36. Diffie, W., Hellman, M.E.: Multiuser cryptographic techniques. In: American Fed-
eration of Information Processing Societies, pp. 109–112 (1976)

37. Fischlin, M., Herzberg, A., Bin-Noon, H., Shulman, H.: Obfuscation combiners.
In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 521–550.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-5 18

38. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: 54th
Annual IEEE Symposium on Foundations of Computer Science, FOCS 2013, pp.
40–49. IEEE Computer Society (2013)

39. Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its applications.
In: Symposium on Theory of Computing Conference, STOC 2013, pp. 467–476
(2013)

40. Garg, S., Mahmoody, M., Mohammed, A.: Lower bounds on obfuscation from all-
or-nothing encryption primitives. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017.
LNCS, vol. 10401, pp. 661–695. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63688-7 22

41. Garg, S., Mahmoody, M., Mohammed, A.: When does functional encryption imply
obfuscation? In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp.
82–115. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2 4

42. Gentry, C., Gorbunov, S., Halevi, S.: Graph-induced multilinear maps from lat-
tices. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 498–527.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7 20

43. Gentry, C., Halevi, S., Maji, H.K., Sahai, A.: Zeroizing without zeroes: cryptanalyz-
ing multilinear maps without encodings of zero. IACR Cryptology ePrint Archive
2014, 929 (2014)

44. Gentry, C., Lewko, A.B., Sahai, A., Waters, B.: Indistinguishability obfuscation
from the multilinear subgroup elimination assumption. In: IEEE 56th Annual Sym-
posium on Foundations of Computer Science, FOCS 2015, pp. 151–170 (2015)

45. Goldwasser, S., et al.: Multi-input functional encryption. In: Nguyen, P.Q., Oswald,
E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 578–602. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-642-55220-5 32

46. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.:
Reusable garbled circuits and succinct functional encryption. In: Symposium on
Theory of Computing Conference, STOC 2013, pp. 555–564 (2013)

https://doi.org/10.1007/978-3-319-56617-7_10
https://doi.org/10.1007/978-3-319-56617-7_10
https://doi.org/10.1007/978-3-662-46800-5_1
https://doi.org/10.1007/978-3-662-46800-5_1
https://doi.org/10.1007/978-3-642-40041-4_26
https://doi.org/10.1007/978-3-642-40041-4_26
https://doi.org/10.1007/978-3-662-47989-6_13
https://doi.org/10.1007/978-3-662-53008-5_18
https://doi.org/10.1007/978-3-319-63688-7_22
https://doi.org/10.1007/978-3-319-63688-7_22
https://doi.org/10.1007/978-3-319-70500-2_4
https://doi.org/10.1007/978-3-662-46497-7_20
https://doi.org/10.1007/978-3-642-55220-5_32

782 G. Asharov et al.

47. Goldwasser, S., Rothblum, G.N.: On best-possible obfuscation. In: Vadhan, S.P.
(ed.) TCC 2007. LNCS, vol. 4392, pp. 194–213. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-70936-7 11

48. Harnik, D., Kilian, J., Naor, M., Reingold, O., Rosen, A.: On robust combiners
for oblivious transfer and other primitives. In: Cramer, R. (ed.) EUROCRYPT
2005. LNCS, vol. 3494, pp. 96–113. Springer, Heidelberg (2005). https://doi.org/
10.1007/11426639 6

49. Herzberg, A.: On tolerant cryptographic constructions. In: Menezes, A. (ed.) CT-
RSA 2005. LNCS, vol. 3376, pp. 172–190. Springer, Heidelberg (2005). https://
doi.org/10.1007/978-3-540-30574-3 13

50. Herzberg, A.: Folklore, practice and theory of robust combiners. J. Comput. Secur.
17(2), 159–189 (2009)

51. Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way per-
mutations. In: Proceedings of the Twenty-First Annual ACM Symposium on The-
ory of Computing, pp. 44–61. ACM (1989)

52. Kearns, M.J., Schapire, R.E., Sellie, L.: Toward efficient agnostic learning. Mach.
Learn. 17(2–3), 115–141 (1994)

53. Komargodski, I., Moran, T., Naor, M., Pass, R., Rosen, A., Yogev, E.: One-way
functions and (im)perfect obfuscation. In: 55th IEEE Annual Symposium on Foun-
dations of Computer Science, FOCS 2014, pp. 374–383 (2014)

54. Levin, L.A.: One-way functions and pseudorandom generators. Combinatorica
7(4), 357–363 (1987)

55. Lin, H.: Indistinguishability obfuscation from constant-degree graded encoding
schemes. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665,
pp. 28–57. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-
3 2

56. Lin, H.: Indistinguishability obfuscation from SXDH on 5-linear maps and locality-
5 PRGs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp.
599–629. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7 20

57. Lin, H., Pass, R., Seth, K., Telang, S.: Indistinguishability obfuscation with non-
trivial efficiency. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.)
PKC 2016. LNCS, vol. 9615, pp. 447–462. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49387-8 17

58. Lin, H., Pass, R., Seth, K., Telang, S.: Output-compressing randomized encodings
and applications. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016-A. LNCS, vol.
9562, pp. 96–124. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-
49096-9 5

59. Lin, H., Vaikuntanathan, V.: Indistinguishability obfuscation from DDH-like
assumptions on constant-degree graded encodings. In: IEEE 57th Annual Sym-
posium on Foundations of Computer Science, FOCS 2016, pp. 11–20 (2016)

60. Linial, N., Mansour, Y., Nisan, N.: Constant depth circuits, Fourier transform, and
learnability. In: 30th Annual Symposium on Foundations of Computer Science, pp.
574–579 (1989)

61. Liu, Q., Zhandry, M.: Decomposable obfuscation: a framework for building appli-
cations of obfuscation from polynomial hardness. In: Kalai, Y., Reyzin, L. (eds.)
TCC 2017. LNCS, vol. 10677, pp. 138–169. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-70500-2 6

62. Lombardi, A., Vaikuntanathan, V.: Limits on the locality of pseudorandom gener-
ators and applications to indistinguishability obfuscation. In: Kalai, Y., Reyzin, L.
(eds.) TCC 2017. LNCS, vol. 10677, pp. 119–137. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-70500-2 5

https://doi.org/10.1007/978-3-540-70936-7_11
https://doi.org/10.1007/11426639_6
https://doi.org/10.1007/11426639_6
https://doi.org/10.1007/978-3-540-30574-3_13
https://doi.org/10.1007/978-3-540-30574-3_13
https://doi.org/10.1007/978-3-662-49890-3_2
https://doi.org/10.1007/978-3-662-49890-3_2
https://doi.org/10.1007/978-3-319-63688-7_20
https://doi.org/10.1007/978-3-662-49387-8_17
https://doi.org/10.1007/978-3-662-49387-8_17
https://doi.org/10.1007/978-3-662-49096-9_5
https://doi.org/10.1007/978-3-662-49096-9_5
https://doi.org/10.1007/978-3-319-70500-2_6
https://doi.org/10.1007/978-3-319-70500-2_6
https://doi.org/10.1007/978-3-319-70500-2_5
https://doi.org/10.1007/978-3-319-70500-2_5

On the Complexity of Compressing Obfuscation 783

63. Mahmoody, M., Mohammed, A., Nematihaji, S., Pass, R., Shelat, A.: Lower
bounds on assumptions behind indistinguishability obfuscation. In: Kushilevitz,
E., Malkin, T. (eds.) TCC 2016-A. LNCS, vol. 9562, pp. 49–66. Springer, Heidel-
berg (2016). https://doi.org/10.1007/978-3-662-49096-9 3

64. Mahmoody, M., Xiao, D.: On the power of randomized reductions and the check-
ability of SAT. In: CCC 2010, pp. 64–75. IEEE Computer Society (2010)

65. Micali, S., Peikert, C., Sudan, M., Wilson, D.A.: Optimal error correction against
computationally bounded noise. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378,
pp. 1–16. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30576-
7 1

66. Miles, E., Sahai, A., Zhandry, M.: Annihilation attacks for multilinear maps: crypt-
analysis of indistinguishability obfuscation over GGH13. In: Robshaw, M., Katz, J.
(eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 629–658. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53008-5 22

67. Okamoto, T.: On relationships between statistical zero-knowledge proofs. J. Com-
put. Syst. Sci. 60(1), 47–108 (2000)

68. Pass, R., Seth, K., Telang, S.: Indistinguishability obfuscation from semantically-
secure multilinear encodings. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014.
LNCS, vol. 8616, pp. 500–517. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-662-44371-2 28

69. Razborov, A.A., Rudich, S.: Natural proofs. J. Comput. Syst. Sci. 55(1), 24–35
(1997)

70. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In: Symposium on Theory of Computing, STOC 2014, pp. 475–484
(2014)

71. Valiant, L.G.: A theory of the learnable. Commun. ACM 27(11), 1134–1142 (1984)
72. Williams, R.R.: Strong ETH breaks with Merlin and Arthur: short non-interactive

proofs of batch evaluation. In: CCC, vol. 50, pp. 2:1–2:17 (2016)
73. Zimmerman, J.: How to obfuscate programs directly. In: Oswald, E., Fischlin, M.

(eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 439–467. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46803-6 15

https://doi.org/10.1007/978-3-662-49096-9_3
https://doi.org/10.1007/978-3-540-30576-7_1
https://doi.org/10.1007/978-3-540-30576-7_1
https://doi.org/10.1007/978-3-662-53008-5_22
https://doi.org/10.1007/978-3-662-44371-2_28
https://doi.org/10.1007/978-3-662-44371-2_28
https://doi.org/10.1007/978-3-662-46803-6_15

Author Index

Abdalla, Michel I-597
Aggarwal, Divesh III-459
Agrawal, Shashank III-643
Ananth, Prabhanjan II-395, III-427
Aoki, Kazumaro II-129
Aono, Yoshinori II-608
Arribas, Victor I-121
Asharov, Gilad I-407, III-753
Attrapadung, Nuttapong II-543

Badrinarayanan, Saikrishna II-459
Ball, Marshall I-789
Barbosa, Manuel I-187
Bar-On, Achiya II-185
Bauer, Balthazar II-272
Baum, Carsten II-669
Benhamouda, Fabrice I-531
Ben-Zvi, Adi I-255
Berman, Itay III-674
Bilgin, Begül I-121
Bishop, Allison III-731
Boneh, Dan I-565, I-757
Bonneau, Joseph I-757
Bootle, Jonathan II-669
Bourse, Florian III-483
Boyle, Elette III-243, III-302
Brakerski, Zvika III-67
Bünz, Benedikt I-757

Cascudo, Ignacio III-395
Catalano, Dario I-597
Cerulli, Andrea II-669
Chen, Long III-96
Chen, Yilei II-577
Cheon, Jung Hee III-184
Chida, Koji III-34
Choudhuri, Arka Rai II-395
Cogliati, Benoît I-722
Cohen, Ran III-243
Coretti, Sandro I-693
Cramer, Ronald II-769, III-395

Damgård, Ivan II-769, II-799
Data, Deepesh III-243

Datta, Nilanjan I-631
De Meyer, Lauren I-121
Degwekar, Akshay I-531, III-674
del Pino, Rafael II-669
Demertzis, Ioannis I-371
Dinur, Itai III-213
Dobraunig, Christoph I-662
Dodis, Yevgeniy I-155, I-693, I-722
Dong, Xiaoyang II-160
Dunkelman, Orr II-185
Dutta, Avijit I-631

Eichlseder, Maria I-662
Ephraim, Naomi III-753
Escudero, Daniel II-769
Esser, Andre II-638

Farshim, Pooya I-187, II-272
Fiore, Dario I-597
Fisch, Ben I-757
Frederiksen, Tore Kasper II-331
Fu, Ximing II-160
Fuchsbauer, Georg II-33

Ganesh, Chaya III-643
Garg, Sanjam II-362, III-273, III-335,

III-515, III-545
Gay, Romain I-597
Genkin, Daniel III-34
Gennaro, Rosario I-565
Gjøsteen, Kristian II-95
Goel, Aarushi II-395
Goldfeder, Steven I-565
Goyal, Rishab I-467
Goyal, Vipul I-501, II-459
Grassi, Lorenzo I-662
Groth, Jens II-669, III-698
Grubbs, Paul I-155
Guo, Siyao I-693

Hajiabadi, Mohammad II-362, III-335
Halevi, Shai I-93, II-488
Hamada, Koki III-34

Hao, Yonglin I-275
Hazay, Carmit II-488, III-3
Hesse, Julia II-65
Heuer, Felix II-638
Hhan, Minki III-184
Hoang, Viet Tung I-221
Hofheinz, Dennis II-65
Hubáček, Pavel III-243

Ikarashi, Dai III-34
Ishai, Yuval I-531, III-302, III-427
Isobe, Takanori I-275, II-129

Jaeger, Joseph I-33
Jager, Tibor II-95
Jain, Aayush I-565
Jain, Abhishek II-395, II-459
Ji, Zhengfeng III-126
Jiang, Haodong III-96
Joux, Antoine III-459

Kalai, Yael Tauman II-459
Kalka, Arkadius I-255
Kamara, Seny I-339
Katz, Jonathan I-722, III-365
Keller, Nathan II-185, III-213
Khurana, Dakshita II-459
Kiayias, Aggelos III-577
Kikuchi, Ryo III-34
Kiltz, Eike II-33
Kim, Jiseung III-184
Kim, Sam I-565, II-733
Klein, Ohad III-213
Kohl, Lisa II-65
Kohlweiss, Markulf III-698
Komargodski, Ilan II-303, III-753
Koppula, Venkata I-467
Kowalczyk, Lucas I-437, III-731
Kübler, Robert II-638
Kumar, Ashutosh I-501

Lallemand, Virginie I-662
Larsen, Kasper Green II-523
Leander, Gregor I-662
Lee, Changmin III-184
Lee, Jooyoung I-722
Leurent, Gaëtan I-306
Li, Chaoyun I-275
Libert, Benoît II-700
Lindell, Yehuda II-331, III-34

Ling, San II-700
List, Eik I-662
Liu, Feng-Hao III-577
Liu, Yi-Kai III-126
Loss, Julian II-33
Lyubashevsky, Vadim II-669

Ma, Zhi III-96
Mahmoody, Mohammad III-335, III-545
Malkin, Tal I-437, III-731
Maller, Mary III-698
Masny, Daniel III-545
Matsuda, Takahiro II-543
May, Alexander II-638
Mazaheri, Sogol II-272
Meckler, Izaak III-545
Meier, Willi I-275, II-129, II-160
Meiklejohn, Sarah III-698
Mendel, Florian I-662
Miao, Peihan III-273
Miers, Ian III-698
Minelli, Michele III-483
Minihold, Matthias III-483
Moataz, Tarik I-339
Mohammed, Ameer III-335
Mohassel, Payman III-643

Nandi, Mridul I-306, I-631, II-213
Nguyen, Khoa II-700
Nguyen, Phong Q. II-608
Nielsen, Jesper Buus II-523
Nikov, Ventzislav I-121
Nikova, Svetla I-121
Nishimaki, Ryo II-543
Nof, Ariel III-34

Ohrimenko, Olya I-339
Orlandi, Claudio II-799
Orsini, Emmanuela III-3
Osheter, Valery II-331
Ostrovsky, Rafail III-515, III-608

Paillier, Pascal III-483
Papadopoulos, Dimitrios I-371
Papamanthou, Charalampos I-371
Pass, Rafael III-753
Pastro, Valerio III-731
Patra, Arpita II-425
Pellet-Mary, Alice III-153
Persiano, Giuseppe III-608

786 Author Index

Pinkas, Benny II-331
Poettering, Bertram I-3
Polychroniadou, Antigoni II-488, III-302
Prakash, Anupam III-459

Rabin, Tal I-531
Ranellucci, Samuel III-365
Rasmussen, Peter M. R. I-565
Ravi, Divya II-425
Raykova, Mariana III-731
Rechberger, Christian I-662
Reparaz, Oscar I-121
Ristenpart, Thomas I-155
Rogaway, Phillip II-3
Ronen, Eyal II-185
Rosen, Alon I-789
Rösler, Paul I-3
Rosulek, Mike III-365
Rotem, Lior I-63
Rothblum, Ron D. III-674
Russell, Alexander II-241
Russell, Andrew I-467

Sabin, Manuel I-789
Sahai, Amit I-565, II-459, III-427
Santha, Miklos III-459
Scholl, Peter II-769, III-3
Segev, Gil I-63, I-407
Seito, Takenobu II-608
Shahaf, Ido I-407
Shamir, Adi II-185
Shi, Kevin III-731
Shikata, Junji II-608
Shoup, Victor I-93
Sibleyras, Ferdinand I-306
Simkin, Mark II-799
Smart, Nigel I-121
Sohler, Christian II-638
Song, Fang III-126
Soria-Vazquez, Eduardo III-3
Srinivasan, Akshayaram III-273, III-515
Steinberger, John I-722
Stepanovs, Igors I-33

Tang, Qiang II-241
Tessaro, Stefano I-221
Thiruvengadam, Aishwarya I-722
Todo, Yosuke I-275, II-129
Trieu, Ni I-221
Tsaban, Boaz I-255
Tselekounis, Yiannis III-577

Ullman, Jonathan I-437
Ursu, Bogdan I-597

Vaikuntanathan, Vinod II-577
Vasudevan, Prashant Nalini I-789, III-674
Venkitasubramaniam, Muthuramakrishnan

II-488
Venturi, Daniele III-608
Visconti, Ivan III-608

Wang, Hong III-96
Wang, Huaxiong II-700
Wang, Qingju I-275
Wang, Xiao III-365
Wang, Xiaoyun II-160
Waters, Brent I-467
Wee, Hoeteck II-577
Wichs, Daniel I-437
Woodage, Joanne I-155
Wu, David J. II-733

Xing, Chaoping II-769, III-395

Yamada, Shota II-543
Yamakawa, Takashi II-543
Yasuda, Kan I-631
Yogev, Eylon II-303
Yuan, Chen III-395
Yung, Moti II-241

Zhang, Bin II-129
Zhang, Yusi II-3
Zhang, Zhe I-722
Zhang, Zhenfeng III-96
Zhou, Hong-Sheng II-241

Author Index 787

	Preface
	Crypto 2018 The 38th IACR International Cryptology Conference
	Contents – Part III
	Efficient MPC
	TinyKeys: A New Approach to Efficient Multi-Party Computation
	1 Introduction
	1.1 Our Contribution
	1.2 Technical Overview

	2 Preliminaries
	2.1 Regular Syndrome Decoding Problem

	3 GMW-Style MPC with Short Keys
	3.1 Leaky Two-Party Secret-Shared Multiplication
	3.2 MPC for Binary Circuits From Leaky OT

	4 Multi-Party Garbled Circuits with Short Keys
	4.1 The Multi-Party Garbling Scheme
	4.2 Protocol and Functionalities for Bit and Bit/String Multiplication
	4.3 The Preprocessing Protocol
	4.4 Security and Complexity
	4.5 The Online Phase

	5 Complexity Analysis and Implementation Results
	5.1 Threshold Variants of Full-Threshold Protocols
	5.2 GMW-Style Protocol
	5.3 BMR-Style Protocol

	References

	Fast Large-Scale Honest-Majority MPC for Malicious Adversaries
	1 Introduction
	1.1 Background
	1.2 Our Contributions
	1.3 Experimental Results
	1.4 Related Work

	2 Preliminaries and Definitions
	2.1 Threshold Secret Sharing
	2.2 Security Definition

	3 Building Blocks and Sub-Protocols
	3.1 Generating Random Shares
	3.2 Generating Random Coins
	3.3 Finput – Secure Sharing of Inputs
	3.4 Secure Multiplication up to Additive Attacks GIPST14,GIP15
	3.5 Checking Equality to 0

	4 The Protocol for Large Fields
	5 A Protocol for Small Fields
	6 Instantiations and Experimental Results
	6.1 Securely Realizing Functionality 5.1 – Fproduct
	6.2 Instantiations from LN17 and their Cost
	6.3 Experimental Results

	References

	Quantum Cryptography
	Quantum FHE (Almost) As Secure As Classical
	1 Introduction
	1.1 Technical Overview
	1.2 Paper Organization

	2 Preliminaries
	2.1 Quantum One Time Pad
	2.2 Discrete and Periodic Gaussians
	2.3 Lattices
	2.4 The Class of q-Ary Lattices
	2.5 Learning with Errors
	2.6 The q-Ary Fourier Transform
	2.7 Generating Gaussian Superpositions over Lattices

	3 Homomorphic Encryption Tools and Techniques
	3.1 Classical Homomorphic Encryption and Bootstrapping
	3.2 Quantum Fully Homomorphic Encryption
	3.3 GSW-Style Classical FHE with Polynomial Modulus
	3.4 A Randomness Propagating Classical FHE Scheme

	4 Our Quantum FHE Scheme
	5 Evaluating a Classically Controlled CNOT
	5.1 The Algorithm
	5.2 Parameters and Definitions
	5.3 Analysis

	References

	IND-CCA-Secure Key Encapsulation Mechanism in the Quantum Random Oracle Model, Revisited
	1 Introduction
	1.1 Our Contributions
	1.2 Techniques
	1.3 Discussion

	2 Preliminaries
	2.1 Quantum Random Oracle Model
	2.2 Cryptographic Primitives

	3 Security Proofs for Two Generic KEM Constructions in the QROM
	4 Modular Analysis of FO Transformation in the QROM
	4.1 T: from OW-CPA to OW-qPCA in the QROM
	4.2 U-8.5-.25ex: from OW-qPCA to IND-CCA in the QROM
	4.3 U: from OW-qPVCA to IND-CCA in the QROM
	4.4 Um-8.5-.25ex/Um: from OW-CPA/OW-VA to IND-CCA for Deterministic Encryption in the QROM

	References

	Pseudorandom Quantum States
	1 Introduction
	2 Preliminaries
	2.1 Notions
	2.2 Cryptography

	3 Pseudorandom Quantum States
	3.1 Definition of Pseudorandom States
	3.2 Constructions and Analysis
	3.3 Comparison with Related Work

	4 Cryptographic No-cloning Theorem and Quantum Money
	4.1 A Strong Notion of PRS and Equivalence to PRS
	4.2 Quantum Money from PRS

	5 Entanglement of Pseudorandom Quantum States
	6 Pseudorandom Unitary Operators (PRUs)
	6.1 Definitions
	6.2 Candidate Constructions

	References

	Quantum Attacks Against Indistinguishablility Obfuscators Proved Secure in the Weak Multilinear Map Model
	1 Introduction
	2 Preliminaries
	2.1 Mathematical Background
	2.2 The GGH13 Multilinear Map
	2.3 Matrix Branching Programs
	2.4 The Short Principal Ideal Problem

	3 An Abstract Obfuscator
	4 The Main Attack
	4.1 Creating a New Zero-Testing Parameter in Quantum Polynomial Time
	4.2 The Mixed-Input Attack
	4.3 A Concrete Example of Branching Programs
	4.4 Other Branching Program Obfuscators

	5 Adapting the Attack to the Obfuscator of DGGMM16
	5.1 The Obfuscator
	5.2 The Mixed-Input Attack

	References

	Cryptanalyses of Branching Program Obfuscations over GGH13 Multilinear Map from the NTRU Problem
	1 Introduction
	1.1 Technical Overview

	2 Preliminaries
	2.1 Matrix Branching Program
	2.2 Indistinguishability Obfuscation
	2.3 GGH13 Multilinear Map

	3 Main Theorem
	4 Attackable BP Obfuscations
	4.1 Randomization for Attackable Obfuscation Model
	4.2 Encoding by Multilinear Map
	4.3 Linear Relationally Inequivalent Branching Programs

	5 Program Converting Technique
	5.1 Converting to R Program
	5.2 Recovering "426830A G "526930B and Converting to R/ "426830A g"526930B Program
	5.3 Analysis of the Converting Technique

	6 Matrix Zeroizing Attack
	6.1 Existing BP Obfuscations
	6.2 Attackable BP Obfuscation, General Case

	References
	A Extended Attackable BP Obfuscation Model
	B Examples of Matrix Zeroizing Attack
	C Examples of Linear Relationally Inequivalent BPs
	C.1 Read-Once BPs from NFA
	C.2 Input-Unpartionable BPs from Barrington's Theorem

	MPC
	An Optimal Distributed Discrete Log Protocol with Applications to Homomorphic Secret Sharing
	1 Introduction
	2 Preliminaries
	2.1 Notation for the Distributed Discrete Log Problem
	2.2 The Basic DDL Algorithm
	2.3 Analysis of the Basic DDL Algorithm

	3 Overview of Our New Protocol and Related Work
	3.1 The New DDL Protocol
	3.2 Related Work

	4 The New Distributed Discrete Log Protocol
	4.1 A Single Iteration of Our DDL Protocol – The Random Walk DDL Algorithm
	4.2 The Iterated Random Walk DDL Algorithm
	4.3 Experimental Verification

	5 Error Probability Lower Bounds in Concrete Group Families
	5.1 Overview of the Lower Bound Proof
	5.2 The Single Algorithm Distributed Discrete Log Problem
	5.3 Limitation on Randomness
	5.4 Symmetry
	5.5 Distance Extension
	5.6 Reduction from Discrete Log in an Interval to Distributed Discrete Log

	6 Error Probability Lower Bounds for Non-Adaptive Algorithms in the Generic Group Model
	6.1 Distributed Discrete Log in the Generic Group Model
	6.2 An Error Probability Lower Bound for Arbitrary Generic Algorithms
	6.3 An Error Probability Lower Bound for Non-Adaptive Generic Algorithms

	References

	Must the Communication Graph of MPC Protocols be an Expander?
	1 Introduction
	1.1 Our Results
	1.2 Our Techniques
	1.3 Open Questions

	2 Preliminaries
	3 Communication Graphs Induced by MPC Protocols
	3.1 Ensembles of Protocols and Functionalities
	3.2 The Communication Graph of a Protocol's Execution
	3.3 Locality of a Protocol
	3.4 Edge Expansion of a Protocol

	4 MPC with Non-Expanding Communication Graph
	4.1 Computational Security with Static Corruptions
	4.2 Additional Results

	5 Expansion is Necessary for Correct Computation
	5.1 The Communication Model
	5.2 A Graph-Theoretic Theorem
	5.3 Proof of Main Theorem (Theorem8)

	References

	Two-Round Multiparty Secure Computation Minimizing Public Key Operations
	1 Introduction
	1.1 Our Results

	2 Technical Overview
	3 Preliminaries
	3.1 Selective Garbled Circuits
	3.2 Somewhere Adaptive Garbled Circuits
	3.3 Universal Composability Framework
	3.4 Prior MPC Results

	4 Semi-Honest Protocol
	4.1 Conforming Protocols
	4.2 Construction

	5 Special Zero-Knowledge Protocol
	5.1 Construction

	6 Malicious Secure Protocol
	6.1 Construction

	References

	Limits of Practical Sublinear Secure Computation
	1 Introduction
	1.1 Our Results
	1.2 Organization of the Paper

	2 Preliminaries
	2.1 Private Information Retrieval

	3 The PIR-Hardness Framework
	3.1 VC-Dimension and Non-Interactive PIR-Hardness
	3.2 PIR-Hardness of Natural Combinatorial Problems

	4 Intermediate Hardness via Semi-PIR
	4.1 Does Semi-PIR Imply PIR?
	4.2 Examples of Semi-PIR-Hard Problems

	5 Low Communication Locally Compressible Problems
	5.1 Revisiting the Minimum Spanning Tree Protocol
	5.2 Revisiting the Two-Sided Median Predicates Protocol

	6 Concluding Remarks and Open Problems
	References

	Garbling
	Limits on the Power of Garbling Techniques for Public-Key Encryption
	1 Introduction
	1.1 Our Result
	1.2 Extensions
	1.3 Related Work and Future Directions

	2 Technical Overview
	2.1 Big Picture: Reducing the Problem to the Result of [23]
	2.2 Our Separating Idealized GC-OWF Oracle
	2.3 Compiling Out the Garbling Power of O from the Construction

	3 Preliminaries
	3.1 Some Useful Lemmas
	3.2 Standard Primitives
	3.3 Black-Box Constructions

	4 Separating Public-Key Encryption from OWF-Based Garbling
	4.1 Removing Garbling Evaluation Queries from Encryption
	4.2 Removing Garbling Evaluation Queries from Decryption

	References

	Optimizing Authenticated Garbling for Faster Secure Two-Party Computation
	1 Introduction
	1.1 Outline

	2 Background
	3 Overview of Our Optimizations
	3.1 Improving Authenticated Garbling
	3.2 Improving the Preprocessing Phase

	4 Technical Details: Improved Authenticated Garbling
	4.1 Proof of Security

	5 Technical Details: Improved Preprocessing
	5.1 Improved Leaky AND
	5.2 Improved Function-Dependent Preprocessing

	6 Performance
	6.1 Communication Complexity
	6.2 Computational Complexity

	7 Challenges in Extending to the Multi-Party Case
	References

	Information-Theoretic MPC
	Amortized Complexity of Information-Theoretically Secure MPC Revisited
	1 Introduction
	1.1 Main Ideas

	2 Abstract GLSSS and Hyper-Invertible Matrices
	2.1 An Abstract Definition of GLSSS
	2.2 Randomization Based on Hyper-Invertible Matrices
	2.3 Extending the Field of Definition of a GLSSS
	2.4 Alternatives for Hyper-Invertible Matrices: Same Functionality, but Constant-Size Field

	3 The Protocol
	3.1 Framework
	3.2 Result
	3.3 The General Structure of
	3.4 Auxiliary Protocols
	3.5 Final Protocol

	4 Reverse Multiplicative Friendly Embeddings
	4.1 An Explicit Construction over F2

	5 Proof of Theorem1
	6 Proof of Theorem2
	References

	Private Circuits: A Modular Approach
	1 Introduction
	1.1 Our Contribution
	1.2 Technical Overview

	2 Preliminaries
	2.1 Information Theoretic Secure MPC

	3 Circuit Compilers
	3.1 Leakage Resilience
	3.2 Leakage Tolerance
	3.3 Our Results

	4 Composition Theorem: Intermediate Step
	4.1 Composable Circuit Compilers
	4.2 Base Case: Constant Simulation Error
	4.3 Composition Step
	4.4 Stitching Transformation: Exp to Poly Efficiency
	4.5 Main Construction: Formal Description

	5 Leakage Tolerant Circuit Compilers
	5.1 Construction: Random Probing
	5.2 Construction: Worst Case Probing

	6 Leakage Resilient Circuit Compilers
	7 Randomness Complexity
	References

	Various Topics
	A New Public-Key Cryptosystem via Mersenne Numbers
	1 Introduction
	1.1 Motivation
	1.2 Our Cryptosystem
	1.3 Related Work
	1.4 Organization of the Paper

	2 Preliminaries
	2.1 Mersenne Numbers and Mersenne Primes
	2.2 Security Definitions
	2.3 Security Assumptions

	3 Basic Bit-by-Bit Encryption
	4 Our Main Semantically Secure Public-Key Cryptosystem
	5 Semantic Security of the Cryptosystem
	6 Analysis of Our Security Assumption
	6.1 Attempts at Cryptanalysis
	6.2 Active Attacks

	7 Mersenne Key Encapsulation Mechanism
	8 Instantiating Error Correcting Code in Our Scheme
	8.1 Instantiation Based on Deterministic Error-Correction Codes
	8.2 Instantiation Based on Repetition Codes
	8.3 Further Efficiency Improvements

	9 Proof of Theorem 3
	10 Conclusion
	References

	Fast Homomorphic Evaluation of Deep Discretized Neural Networks
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 Fully Homomorphic Encryption over the Torus
	2.3 Artificial Neural Networks
	2.4 The MNIST Dataset

	3 Discretized Neural Networks (DiNN)
	3.1 Definition of a Discretized Neural Network
	3.2 Simple Conversion from a Traditional Neural Network to a DiNN

	4 Homomorphic Evaluation of a DiNN
	4.1 Evaluating the Multisum
	4.2 Homomorphic Computation of the Sign Function
	4.3 Scale-Invariance

	5 Refinements of TFHE
	5.1 Reducing Bandwidth Usage
	5.2 Moving KeySwitch Around
	5.3 Dynamically Changing the Message Space
	5.4 Alternative BlindRotate Implementations

	6 Experimental Results and Conclusions
	6.1 Pre-processing the MNIST Database
	6.2 Building a DiNN from Data in the Clear
	6.3 Classifying Encrypted Inputs

	References

	Oblivious Transfer
	Adaptive Garbled RAM from Laconic Oblivious Transfer
	1 Introduction
	1.1 Our Results

	2 Our Techniques
	2.1 Solving Challenge 1
	2.2 Solving Challenge 2

	3 Preliminaries
	3.1 Updatable Laconic Oblivious Transfer
	3.2 Somewhere Equivocal Encryption
	3.3 Random Access Machine (RAM) Model of Computation
	3.4 Oblivious RAM
	3.5 Adaptive Garbled RAM

	4 Adaptive Garbled RAM with Unprotected Memory Access
	4.1 Construction

	5 Timed Encryption
	6 Construction of Adaptive Garbled RAM
	References

	On the Round Complexity of OT Extension
	1 Introduction
	1.1 Our Results
	1.2 Technical Overview

	2 Preliminaries
	2.1 Lemmas About Statistical Distance and Mutual Dependency
	2.2 Lemmas About Shannon Entropy
	2.3 Lemmas About the Random Oracle Model
	2.4 OT and its Multi-Input Variant k-OT in the ROM

	3 Impossibility of Round-preserving OT Extension in the Random Oracle Model
	3.1 Proving Theorem 23
	3.2 Proof of Claim 1

	References

	Non-malleable Codes
	Non-Malleable Codes for Partial Functions with Manipulation Detection
	1 Introduction
	1.1 Our Results
	1.2 Technical Overview
	1.3 Applications
	1.4 Related Work

	2 Preliminaries
	3 An MD-NMC for Partial Functions, in the CRS Model
	4 Removing the CRS
	4.1 Security Against Adaptive Adversaries
	4.2 MD-NM Security of the Block-Wise Code

	5 Continuous MD-NMC with Light Updates
	References

	Continuously Non-Malleable Codes in the Split-State Model from Minimal Assumptions
	1 Introduction
	1.1 Continuous Non-Malleability
	1.2 Our Contribution
	1.3 Positive Result
	1.4 Negative Result
	1.5 Additional Related Work

	2 Overview of Techniques
	2.1 Description of Our Code
	2.2 Proof Intuition
	2.3 First Step
	2.4 Second Step

	3 Preliminaries
	3.1 Notation
	3.2 Non-Malleable Codes
	3.3 Non-Interactive Commitments

	4 Code Construction
	4.1 Additional Properties
	4.2 Theorem Statement
	4.3 Security Analysis

	5 Uniqueness Continuous Non-Malleability
	6 Conclusion and Open Problems
	References

	Zero Knowledge
	Non-Interactive Zero-Knowledge Proofs for Composite Statements
	1 Introduction
	1.1 Composite Statements and Applications
	1.2 Contributions

	2 Preliminaries
	2.1 Non-interactive Zero-knowledge Proofs
	2.2 Sigma Protocols
	2.3 SNARK Construction from QAP

	3 NIZK on Committed IO for Algebraic Statements
	3.1 Proof of Knowledge of Double Discrete Logarithm
	3.2 Sigma Protocols on Committed Outputs

	4 NIZK on Committed IO for Non-Algebraic Statements
	4.1 zk-SNARK on Committed Inputs

	5 Constructions for Compound Statements
	5.1 Function Composition
	5.2 OR Composition
	5.3 AND Composition

	6 Applications
	6.1 Privacy-preserving Audits of Bitcoin Exchanges
	6.2 Privacy-Preserving Credentials

	References
	A Efficiency

	From Laconic Zero-Knowledge to Public-Key Cryptography
	1 Introduction
	1.1 Our Results
	1.2 Related Works
	1.3 Techniques

	2 The Assumption and Main Theorem
	References

	Updatable and Universal Common Reference Strings with Applications to zk-SNARKs
	1 Introduction
	2 Related Work
	3 Defining Updatable and Universal CRS Schemes
	3.1 Notation
	3.2 NIZK Proofs in the CRS Model
	3.3 Updating Common Reference Strings
	3.4 Security Properties
	3.5 Specializing Common Reference Strings

	4 Background
	4.1 Knowledge and Computational Assumptions
	4.2 A QAP-Based zk-SNARK Recipe

	5 An Updatable QAP-Based zk-SNARK
	5.1 Reworking the QAP Recipe
	5.2 Updatability of the Universal Common Reference String
	5.3 Single Adversarial Updates Imply Updatable Security
	5.4 The zk-SNARK Scheme

	6 Updating a Reference String Reveals the Monomials
	References

	Obfuscation
	A Simple Obfuscation Scheme for Pattern-Matching with Wildcards
	1 Introduction
	2 Preliminaries
	2.1 The Generic Group Model
	2.2 Distributional Virtual Black-Box Obfuscation in the Generic Group Model
	2.3 Schwartz-Zippel Lemma

	3 Obfuscating Pattern Matching with Wildcards
	4 Distributional VBB Security in the Generic Group Model
	References

	On the Complexity of Compressing Obfuscation
	1 Introduction
	1.1 Our Results
	1.2 Related Work

	2 Technical Overview
	2.1 Correctness Amplification
	2.2 Impossibility of Key-Agreement
	2.3 Statistically Secure Compressing Obfuscation

	3 Correctness Amplification
	3.1 From Approximately-Correct XiO to Worst-Case Correct XiO

	4 On Key-Agreement from XIO and OWFs
	5 On Statistical Security
	5.1 Negative Results
	5.2 Positive Results

	References

	Author Index

