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Abstract We review recent mathematical models describing the diffusive transport,
reaction, and turnover of actin and regulators at the leading edge of motile cells.
These models are motivated by experimental results using cells with flat, steady
lamellipodia studied by Single Molecule Speckle microscopy. The same cells can
also be made to exhibit protruding and retracting lamellipodia, which demonstrate
how changes in actin polymerization lead to changes in the rate of protrusion. The
second part of this chapter provides a description of these fluctuations as an excitable
actin system pushing against the cell membrane by polymerization.

1 Introduction

Lamellipodia are thin and flat protrusions at the leading edge that allow cells
to attach, and move across on flat surfaces. Lamellipodial protrusions have been
studied extensively, both due to their importance in cell motility and as model
systems of cytoskeletal dynamics [10, 20, 68, 81, 101]. Actin filaments in the
lamellipodium form a dynamic network that polymerizes primarily close to the
leading edge of the cell, with the filament barbed ends pointing toward the cell
membrane. In the dendritic nucleation model, many of these filaments are created
as branches off pre-existing filaments [80]. Pushing of the cell front forward is due
to the addition of monomers to free barbed ends of the lamellipodial actin network
near the cell membrane. The concentration of free barbed ends is regulated by
capping proteins. The whole actin network undergoes retrograde flow towards the
cell center due to polymerization at the leading edge combined with adhesion and
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myosin contraction at the rear of the lamellipodium [77, 81, 85, 101]. The difference
between the rates of polymerization and retrograde flow results in net lamellipodial
protrusion or retraction. The actin subunits in the filament that move towards the
back of the network break off from the network due to cofilin-induced severing into
oligomers. The disassembled pieces further depolymerize and are recycled close to
the leading edge.

Many actin regulatory proteins have been characterized in vitro, but precisely
how they control actin polymerization and depolymerization across the lamel-
lipodium has not been completely resolved. The majority of actin polymerization in
lamellipodia occurs near the leading edge. As the network moves toward the body of
the cell by retrograde flow, F-actin is depolymerized and recycled to be used again.

1.1 Lamellipodium in Homeostasis

Since all lamellipodial components have to be recycled, the transport of disassem-
bled proteins through the cytoplasm back towards the leading edge is an important
component of the kinetics in lamellipodia. Some studies suggested that diffusion is
fast enough to deliver actin subunits to the leading edge [49, 99] while others have
proposed a role for active transport mechanisms such as myosin-based transport [26]
or hydrodynamic flow [108]. Previous theoretical work has shown how diffusion
may become limiting, depending on both the value of the diffusion coefficient in
the cytoplasm and the spatial distribution of sources and sinks of actin subunits in
the cytoplasm [72, 92]. One of the difficulties in directly measuring the existence
of gradients of diffuse actin experimentally is that the diffuse population is a
small fraction of the actin in filaments. Further, the dynamics in photoactivation
or photobleaching experiments reflect a combination of reaction and diffusion that
can be hard to disentangle [61, 92].

In the first part of this chapter we discuss recent studies that show how
mathematical models based on data obtained by single molecule speckle (SiMS)
microscopy can be combined with fluorescence recovery after photobleaching
(FRAP) or photoactivation (PA) studies to model the dynamics of the diffuse actin
pool [92, 92, 99], capping protein, and Arp2/3 complex. In SiMS, cells contain
fluorescently labeled proteins at a concentration sufficiently low to resolve single
molecules [102]. If a fluorescent protein is diffusing freely in the lamellipodium, it
will appear as a diffuse background or localized cloud, depending on its diffusion
coefficient and the exposure time of the camera. When the tagged protein binds
to the actin network it appears as a speckle undergoing retrograde flow while it
remains bound to the network. Speckle disappearance reflects dissociation of the
tagged protein to the diffuse pool. By contrast, cells in FRAP or PA experiments
typically contain a large fraction of labeled protein that leads to spatially extended
intensity fields, the redistribution of which around an area of interest reflects the
combined dynamics of reaction, retrograde flow, and diffusion [92].
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1.2 Lamellipodia in Fluctuating States of Protrusion
and Retraction

In many cells, usually soon after they spread on a surface and before the onset of
directed cell motion, the protrusion of the lamellipodium is followed by retraction
[88]. This leads to cycles of protrusion and retraction that are periodic and in some
cells organize into traveling waves of protrusion along the cell front and sides [4, 8,
22, 29, 55, 58, 59, 84, 87, 88]. This regular behavior involving fluctuations around
a steady state can be used to study how the dynamics of actin polymerization are
converted into cell motion [88].

Patterns of protrusions and retractions have been observed in XTC cells from
Xenopus, which usually adopt a circular shape after introduction to the poly-L-lysine
substrate (Figure 4A,B) [88]. The flat lamellipodia within these cells are ideal for
quantitative analysis, allowing accurate averaging and calculations of correlations
among different components. The retrograde flow rate was approximately constant
during protrusion and retraction, suggesting that the changing F-actin localization
in these cells stems from variations in the assembly and disassembly of the actin
network near the leading edge, as opposed to stemming from changing retrograde
flow rates [87].

The observed dynamics are suggestive of excitations driven by noise (i.e.,
stochastic concentration fluctuations): experimental results of XTC cells from Ryan
et al. [87] show cycles of bursts of actin polymerization in a random pattern around
the cell, lateral propagation, followed by disassembly. In the second part of this
chapter we describe recent models that successfully described these experimental
observations.

2 Model of Actin Turnover and FRAP Kinetics in XTC Cells

Numerous experiments provide evidence that actin polymerization and depolymer-
ization occur not just at the leading edge but also throughout the lamellipodium
[7, 15, 56, 66, 82, 96, 98, 101]. Most directly, Single Molecule Speckle (SiMS)
Microscopy on XTC cells demonstrates single molecules of actin polymerizing
throughout the lamellipodium [102] (Figure 1A & D).

In apparent contradiction to the studies above, which indicate an extended
distribution of barbed ends across the lamellipodia, fluorescent recovery after
photobleaching (FRAP) experiments show that significant fluorescence recovery
occurs fast near or at the leading edge, while recovery away from the leading edge
occurs with a delay followed by a more rapid increase [38, 52, 73]. This suggests that
actin polymerization occurs only very close to the leading edge and that recovery
at the back relies on retrograde flow of unbleached monomers from the very front
of the leading edge [52, 53]. However, reassociation of the bleached actin within



214 D. Holz et al.

the bleached area in FRAP experiments may slow down recovery [101] as shown
for reaction diffusion models of actin turnover in a spatially homogeneous system
without retrograde flow [14, 61, 95].

To address this apparent discrepancy between SiMS and FRAP data, Smith et al.
[92] compared models with actin turnover distributed throughout the lamellipodium
to FRAP experiments of XTC cells, the same cell type for which SiMS experiments
had already been performed. They studied XTC cells that have negligible leading
edge protrusion or retraction. While the FRAP recovery in XTC lamellipodia is
qualitatively similar to that in other cells [38, 52, 73], these models demonstrated
that SiMS and FRAP data do not contradict one another.

Smith et al. developed two models to show that turnover can occur without
causing rapid FRAP recovery away from the leading edge. The first model uses
diffuse actin that polymerizes and depolymerizes as monomers. FRAP curves
simulated with this model are good fits to experiments, but have some different
qualitative features. The second model considers two species of diffuse actin that can
polymerize and depolymerize throughout the lamellipodium, monomers (G-actin),
and oligomers (O-actin). Oligomers are slowly diffusing actin that can anneal to the
F-actin network. The presence of a small amount of oligomers further reduces the
amount of recovery away from the leading edge in simulated FRAP. The results of
this model are in better agreement with both FRAP and SiMS microscopy.

2.1 Model of Actin Profile Based on SiMS Speckle Statistics

In the model by Smith et al. [92], SiMS microscopy data are used to compute the
steady-state F-actin concentration profile. This profile is then used to calculate the
steady-state G- and O-actin profiles and the corresponding polymerization rates as
a function of distance from the leading edge. These reaction rates are then used in a
numerical simulation of FRAP.

2.1.1 Calculation of F-Actin Profile

The statistics of single molecules of labeled actin obtained in previous studies of
XTC cells (Figure 1A) [91, 102] are an input to the model. The location of speckle
appearance events correspond to polymerization and yield an appearance rate, a(x),
as a function of distance from leading edge x (Figure 1D) [102]. The units of a(x)

in the model are μM/s. To obtain an analytical form for a(x), the appearance curve
is approximated with a double exponential:

a(x) = G∞K
[
A1e

−x/λ1 + A2e
−x/λ2

]
. (1)

The shorter length, λ1, corresponds to polymerization at the leading edge while the
longer length scale, λ2, corresponds to basal polymerization that occurs throughout
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Fig. 1 SiMS experimental data and simulated FRAP. (A) Tracking EGFP-actin speckles in
experimental SiMS in XTC cells (reproduced with permission from [91]). (B) Model with F-actin
and one species of diffuse G-actin. (C) Model for two-species of diffuse actin (G, oligomeric) and
F-actin. (D) Appearance profile for EGFP-actin speckles in XTC cells. (E) Lifetime distribution
for EGFP-actin speckles in XTC cells. (F) Simulated concentration profiles for F, G, and O actin
as a function of distance from the leading edge. (G) Simulated rates of binding for G → F and
O → F . (H) Simulated FRAP curves using a model that includes oligomers. (I) Simulated FRAP
using a model that includes oligomers. Panels B-H reproduced with permission from [92].

the lamellipodium. This equation is a phenomenological fit chosen for two reasons:
it captures the experimental data, and it yields analytical results in later calculations.
The biophysical mechanism that gives rise to the appearance distribution a(x) is not
yet fully established. The total rate of appearance is scaled in proportion to the
cytoplasmic concentration of labeled actin monomers far from the leading edge,
G∞. For convenience, A1 + A2 = 1 so K can be used as a parameter that adjusts
the total rate of polymerization and the resulting F-actin/G-actin (F/G) ratio. The fit
gives A1 = 0.84, A2 = 0.16, λ1 = 0.5 μm, λ2 = 4 μm (Figure 1C). While the bin
size for appearance data is comparable to λ1, the distribution of appearance events
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within the first 0.5 μm of the leading edge was not crucial for this study. What is
more important is the total number of speckles in the first bin.

Measurements of the speckle lifetime distribution in Figure 1E, p(tl), give the
probability distribution of the amount of time tl that each actin subunit spends as
F-actin. The lifetime distribution is approximately constant within the first 3 μm
from the leading edge [91, 102]. The lifetime distribution is adequately described
by a double exponential:

p(tl)/p(0) = C1e
−tl/τ1 + C2e

−tl/τ2 , (2)

where C1 = 0.741, C2 = 0.259, τ1= 16 s, τ2 = 60 s. Exponentials were chosen
because they capture the lifetime distribution well. They are also mathematically
convenient since they allow use of exponential statistics in simulations and enable
obtaining analytical results.

The velocity of retrograde flow vr provides the remaining parameter necessary
to construct an F-actin profile represented by the speckle statistics. Using the
appearance rate a(x) as a source of F-actin yields the steady-state concentration
profile F(x):

F(x) =
∞∫

0

Y (x, x′)a(x′)dx′. (3)

The profile Y (x, x′) generated by a point source at x′ is obtained by considering the
amount of subunits that have a longer lifetime than the time it took to travel from x′
to x via retrograde flow:

Y (x, x′) = Θ(x − x′) 1

vr

∞∫

x−x′
vr

p(tl)dtl, (4)

where the prefactor is found by balancing retrograde flow out of x′ with amount
created by the point source and Θ is the step function. Retrograde flow rate can be
considered approximately constant within the first 4 μm from the leading edge of
XTC cells [87].

2.1.2 Model with Monomers as Only Diffuse Actin Species

The first model considers actin in two states: F-actin that undergoes retrograde flow,
and G-actin with diffusion coefficient D = 4 μm2/s [25, 49, 61, 108]. G-actin
diffuses freely, polymerizing to become F-actin with rate a(x). A diagram of this
model is shown in Figure 1B where F and G are the only two species in the model.
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At steady state, both retrograde flux of F-actin and diffusive flux of G-actin balance
the local exchange between F- and G-actin:

vr

∂F (x)

∂x
= −D

∂2G(x)

∂x2 = a(x) − d(x), (5)

where G(x) is the G-actin concentration and d(x) the rate of speckle disappearance.
Knowing F(x) from Equation (3), we can solve Equation (5) for the G-actin profile:

G(x) = G∞ − vr

D

∞∫

x

F (x′)dx′. (6)

The value of parameter K determines the F/G ratio since it changes the magnitude
(but not the shape) of the F-actin profile. To obtain the steady-state F-actin profile
based on SiMs data, we substituted Equations (1) and (2) into (3) and (4). The result
of the total amount of F-actin:

∞∫

0

F(x)dx = G∞K

2∑

i=1

2∑

j=1

AiCjτ
2
j λi, (7)

demonstrating that the F-actin concentration is directly proportional to parameter
K . By substituting Equation (7) into Equation (6) we can calculate the G-actin
profile analytically. By increasing K , the G-actin depletion near the leading edge
is increased. Increasing the value of the retrograde flow velocity causes a greater
depletion of G-actin.

2.1.3 Model with Both Monomers and Oligomers

Actin oligomers could be present in the lamellipodium through cofilin-mediated
severing of actin filaments [9, 16, 34, 50] or Arp2/3 complex debranching [12, 60].
The short lifetimes of capping protein speckles in lamellipodia indicate severing of
capped filaments [66]. Reassociation of these oligomers to the actin network could
be a mechanism for structural reorganization of actin filaments in the lamellipodium
[66, 97]. Oligomers with diffusion coefficient DO ≈ 0.5 μm2/s and a fluorescent
subunit would appear as background noise during exposure in SiMS experiments
[91]. If they anneal to the network, they would contribute to speckle appearance
events in SiMS experiments. When they dissociate from the network (via severing or
debranching) they would contribute to speckle disappearances. Since the diffusion
coefficient in the cytoplasm decreases with increasing molecular weight of protein
complex [75], such DO values may represent fragments of order ∼10 actin
subunits.
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In the model shown in Figure 1C, G-actin monomers can associate into F-
actin and F-actin subunits depolymerize into O-actin. Subunits of O-actin can
become F-actin or disassemble to G-actin with an average lifetime τO . The total
appearance rate is separated into oligomers, aO(x), and monomers, aG(x), with
a(x) = aO(x) + aG(x). It is then assumed that O-actin accounts for a majority
of appearance events away from the leading edge (corresponding to structural
reorganization of actin filaments away from the leading edge through severing and
reannealing) while G-actin polymerization contributes to most events close to the
leading edge (see [92] for other possibilities). At steady state, similar to Equation (5)

vr

∂F (x)

∂x
= aO(x) + aG(x) − d(x), (8)

DG

∂2G(x)

∂x2
= aG(x) − 1

τO

O(x), (9)

DO

∂2O(x)

∂x2 = aO(x) − d(x) + 1

τO

O(x), (10)

where DG = 4 μm2/s and DO are the G- and O-actin diffusion coefficients.
The F-actin profile is given by the same expression as in Equation (3), so we
can substitute in Equation (8) to solve for d(x), which leads to O(x) through
Equation (10) to:

O(x) = τO cosh
(

x√
DOτO

) ∞∫

0
f (x′) exp

( −x′√
DOτO

)
dx′

−τO

x∫

0
f (x′) sinh

(
x−x′√
DOτO

)
dx′, (11)

where f (x) = aG(x) − vr∂F/∂x. The G-actin profile can then be solved similar to
the model with monomers only, using Equation (9):

G(x) = G∞ − DO

DG

O(x) − vr

DG

∞∫

x

F (x′)dx′. (12)

An example of calculated profile is shown in Figure 1F, where DO = 0.5 μm2/s and
τO = 20 s. The profile in Figure 1F is consistent with values of the F/G ratio in the
range 2–10 [1, 19, 51, 101]. The total amount of O-actin can be quite low compared
to the amount of F and G-actin, while still making a contribution to the total speckle
appearance rate. O-actin is generated by F-actin disassembly so it peaks close to the
leading edge where the F-actin concentration is larger.
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2.2 Particle Simulations

To simulate FRAP recovery, Smith et al. [92] assumed the appearance rate is
proportional to the local G-actin or O-actin concentration. In the model with just
monomers, the rate at which monomers convert to F-actin is:

rG→F (x) = a(x)/G(x). (13)

The O- and G-actin binding rates of the model with oligomers are correspondingly:

rG→F (x) = aG(x)/G(x), rO→F (x) = aO(x)/O(x). (14)

Figure 1G shows an example of calculated transition rates for the model with both
monomers and oligomers. Estimated values for the concentration of barbed ends
are [B] ≈ 1 μM [101]. We expect the transition rate to be proportional to the local
concentration of free barbed ends. Using rG→F = k+[B], the rate constant close to
the leading edge is k+ ≈ 0.6 μM−1s−1, consistent with previous estimates [101].

The transition rates in Equations (13) and (14) were used in [92] in an off-lattice
2D Monte Carlo simulation with reaction and diffusion of individual subunits. Each
subunit was either diffusing (G-actin, O-actin) or undergoing retrograde flow (F-
actin). Every time step, Δt (1 ms or smaller), diffuse particles were moved according
to the 2D Gaussian diffusion propagator and checked for association to the F-actin.
When a monomer transitions to F-actin, its lifetime is picked from the lifetime
distribution p(tl). After an F-actin subunit is moved, its lifetime is compared to the
time elapsed since polymerization to check if it should depolymerize and become
G-actin. To simulate images, the particles are treated as diffraction-limited spots
that diffuse during camera exposure [91]. Bleached particles are removed from the
simulation and do not contribute to intensity.

2.3 FRAP Recovery: Comparison of Model Results to
Experiments

A simulated FRAP image is shown in Figure 1I where a region of size 5x20 μm is
bleached near the leading edge. Figure 1H shows the recovery of intensity at two
strips between 0–0.5 μm and 2.5–3 μm (“Front” and “Back”) from the leading edge
using the model with both monomer and oligomers, plotted against experimental
data. The simulated recovery curves are very similar to the experiments, with fast
recovery at the front and slower recovery at the back. Good fits were obtained for
K = 0.4–0.9 s−1, DO < 1 μm2/s, and τO < 60 s The model with oligomers
captured two features of the experiment that the monomer-only model does not:

1. Recovery at the back (Figure 1I) is slower in the model with oligomers compared
to the monomer-only model. In Figure 1I, the FRAP curve at the back does
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not show significant recovery until retrograde flow carries monomers from the
leading edge into the back region. For the chosen parameters, oligomers do
not diffuse into the bleached region before retrograde flow transports monomers
from the leading edge into the region. Two factors contribute: The time required
to travel distance of order 3 μ by free oligomer diffusion is 10 s, but this is
slowed down by rebinding of O-actin within the bleached region [95] since√

4DO/rO→F = 3.2 μm; and generation of a new O-actin subunit, from
unbleached monomers that polymerize at the leading edge, requires times of
order the average speckle lifetime.

2. Unlike in the monomer-only model, the recovery at the front (Figure 1I) does
not have a tail at long times. A tail in the front recovery curve occurs in the
monomers-only model due to hindered diffusion through the lamellipodium [95].
In the model with oligomers, the region of G-actin polymerization is narrow, and
this effect is reduced in magnitude.

The above results support models that include annealing and severing in the
lamellipodium [42, 64]. For a more detailed study of the dependence of the FRAP
curves on model parameters, we refer the reader to [92]. The above models did not
explicitly account for the fact that G-actin monomers can carry different types of
nucleotide (ADP or ATP), or that monomers can be bound to profilin, thymosin,
or cofilin. It is assumed that the reactions among these different states occur fast
enough to be considered quasi-static and also do not modify the diffusion coefficient
of bound G-actin [72].

We note that a recent modeling study of lamellipodial actin turnover in keratocyte
fragments by Aroush et al. [6] reached different conclusions compared to Smith et
al. [92]. These authors concluded that while the actin network disassembles and
reassembles throughout the lamellipodium, actin subunits typically diffuse across
the entire lamellipodium before reassembling into the network. Aroush et al. also
argue that about two-thirds of the lamellipodial actin diffuses in the cytoplasm
with nearly uniform density, a much higher fraction of diffuse actin compared to
Figure 1F. Future work should address the origin of these discrepancies. A model
with the features stated by Aroush et al. (very high concentration of diffuse actin,
no local reassembly) would not capture the slow FRAP recovery at the back of the
lamellipodium of XTC cells (Figure 1H) or the increase of F-actin intensity starting
from the leading edge after photoactivation of actin in the cell middle (Figure 2G
below).

3 Model of Actin Turnover and Photoactivation Kinetics in
Neuronal Cells

Photoactivation (PA) of fluorescently labeled actin is another way to study sub-
cellular actin transport and reaction. In this section we review an extension of the
model of [92] of Section 2, developed in [99], to model PA of neuronal CAD (Cath.a



Lamellipodia in Stationary and Fluctuating States 221

differentiated) cells. For these cells, the study in [54] suggested an enhancement of
G-actin at the leading edge. To account for this enhancement, which could arise
from actin monomers bound to the plasma membrane through a profilin-Tβ4-actin
complex [99], a membrane-bound G-actin component close to the leading was
added to the model (otherwise the G-actin is depleted rather than enhanced near the
leading edge, see Figure 1F). In addition to modeling PA kinetics, another aim of
the study in [99] was to examine the effect of G-actin sequestering protein thymosin
β4 (Tβ4) in facilitating diffusing actin transport (uninterrupted by polymerization)
across the cell.

3.1 Model Description

This model includes 3 pools of diffuse protein instead of 2 (Figure 2A). The three
pools are: R, which is a recycling component that represents all actin which has
been recently depolymerized (which may include oligomers or actin bound to
other protein complexes); GC , which binds reversibly to Tβ4 in the cytoplasm;
and GM , which represents actin diffusing along the membrane, e.g., as membrane-
bound profilin-Tβ4-actin. The GC pool groups together free and Tβ4-bound actin,
assuming they are in rapid equilibrium, given the estimated off rate of 2.5 s−1 for the
Tβ4-actin complex [67]. GC and GM also group together actin monomers free or in
complex with profilin and does not distinguish between ATP- and ADP-actin. All 3
diffuse pools are able to associate with F-actin; however, F-actin only depolymerizes
to the recycled actin in this model.

The appearance rate in this model is split between the three actin pools,

a(x) = aR(x) + aC(x) + aM(x). (15)

Given the similarities between XTC and neuronal CAD cell lamellipodia, it was
assumed that a(x) is given by Equation (1) and the lifetime distribution by
Equation (2). The appearances are defined as follows:

aC(x) = KG∞ACe−x/λ1 , aM(x) = KG∞AMe−x/λ1 , aR(x) = KG∞ARe−x/λ2 .

(16)

Here G∞ is the concentration of GC far from the leading edge, K determines the
fraction of F to G-actin, and AC + AM + AR = 1.

The concentration of actin at steady state, F(x), can be calculated as in
Equation (3). The equations that describe the steady-state concentrations of the
diffuse components are as follows:

DR

d2R(x)

dx2
= aR(x) + 1

τR

R(x) − d(x), (17)
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DC

d2GC(x)

dx2
= aC(x) + k(x)GC(x) − 1

τGM

GM(x) − 1

τR

R(x), (18)

DM

D2GM(x)

dx2
= aM(x) − k(x)GC(x) + 1

τGM

GM(x). (19)

In these equations DR , DC , and DM are the diffusion coefficients for recycled actin,
cytoplasmic actin, and membrane bound actin, respectively. In all these equations,
x is the distance from the leading edge. The lifetimes τGM and τR are the times that
GM and R remain in their respective states until they become GC . The rate k(x) is
a spatially dependent rate that GC becomes GM .

The binding rate for the recycled actin, R, to become F-actin is aR(x)/R(x) and
similarly for GM and GC . These rates were then used in a 2D Monte Carlo particle
simulation as in Section 2.2. The system is initialized so that the concentrations
matched those found after solving Equations (17)–(19). Simulated concentration
profiles are shown in Figure 2B and the parameters used to find these profiles are
listed in Table 1. To perform photoactivation on a region, all particles outside of that
region are deleted and the remaining particles allowed to move and react.

Table 1 Parameter table for simulated photoactivation of PA-GFP actin.

Parameter Value Reference/Justification

DR 0.5 μm2/s Smith et al. 2013 [92]

DC 3.0 μm2/s Measured in [99]

DM 0.001 μm2/s Small value to represent slow diffusion

of membrane-bound component GM

vr 70 nm/s Measured in [99]

K 0.25 s−1 Estimated to give a ratio of F-actin to

diffuse components as in Figure 2B.

τR 20 s Smith et al. 2013 [92]

τM 0.5 s Smaller than 1 s

AR 0.16 Smith et al. 2013 [92]

AC 0.21 Smith et al. 2013 [92], assuming 25 % of polymerization

events from the non-recycling pools at the leading edge

are due to GC

AM 0.63 Smith et al. 2013 [92], assuming 75% of polymerization

events from the non-recycling pools at the leading edge

are due to GM

λ1 0.5 μm Smith et al. 2013 [92]

λ2 4 μm Smith et al. 2013 [92]

k(x) 20 s−1e−x/0.5 μm Selected to occur within a narrow region

close to the leading edge and with amplitude giving GM

concentration higher than GC
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3.2 Comparison to Photoactivation Experiments

An example of experimental photoactivation of PA-GFP actin from [99] is shown
in Figure 2C. This photoactivation is over a 5 by 10 μm region at the leading
edge showing the retrograde flow of the actin network and the local recycling of
the photoactivated actin in nearby regions (clearer in inverted grayscale image in
Figure 2C, bottom panel). The decay of fluorescence in the photoactivated region
as it moves inwards by retrograde flow is shown in Figure 2D. Simulations of actin
photoactivation over the same size and position as that in the experiment capture the
behavior seen in experiments (Figure 2E,F) with rebinding near the photoactivated
region as well as similar decay in fluorescence.

Simulations were also used to model photoactivation experiments of actin in
the cell center (Figure 2G), which demonstrate the transport dynamics of actin
across the lamellipodium. Figure 2H shows the normalized fluorescence response
within 1 μm of the leading edge as well as at the center. The fast recovery at the
leading edge of the cell brings up the question of whether diffusion is sufficiently
fast to transport actin from the cell center to the leading edge in this amount of
time. Simulations mimicking cell center photoactivation reproduce the observed
dynamics (Figure 2I,J), demonstrating that diffusion is likely sufficient for fast
delivery of actin from the cell center to the leading edge.

Another photoactivation experiment involved activating PA-GFP actin in the
whole lamellipodium [99]. The fluorescence at the leading edge decayed to about
50% of its original value after 120 s. The authors of [99] suggest that this points
to a pool of actin that is recycled within the lamellipodium. Simulations of whole
lamellipodium activation using the model of this section reproduce the experimental
trace [99]; however, the plateau occurs at the level of total amount of actin
photoactivated in the simulation box. Further modeling studies that account for the
diffusion through the whole 3D cell volume are needed to better interpret these
experimental results.

3.3 Simulations of Cells Without Actin Sequestration by Tβ4

Tβ4 binds to actin monomers, not allowing polymerization. Vitriol et al. [99]
performed PA experiments after knocking down (KD) Tβ4, using shRNA. In
experiments in which the cell center was photoactivated, a lag in recovery at
the leading edge was observed compared to the control case. After varying all
parameters in the model that would affect this recovery, the authors found that the
model matches experiment after: (1) an increase in the binding rate of GC at the back
of the lamellipodium, and (2) reduction of the diffusion coefficient of GC by 50%,
compared to the control case. From this, the model predicted a less sharp sigmoidal
recovery at the back of the lamellipodium (2–3 μm away from the leading edge),
which agreed with experimental measurements [99].
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Fig. 2 Experiments and Simulations of Actin Photoactivation (reproduced from [99]). (A) Model
with three diffuse species of actin: recycled, cytoplasmic, membrane bound as well as F-actin.
The rates depend on distance from leading edge, with membrane binding, k(x), occurring close
to the leading edge. (B) Simulated steady-state concentration profile using the model in A. (C)
Photoactivation in ROI at cell leading edge. (D) Fluorescence decay in ROI of panel C. (E)
Simulated photoactivation of 5 by 10 μm box at the leading edge. (F) Simulated fluorescence decay
in activation box of panel E. (G) Cell center actin photoactivation. (H) Fluorescence in cell center
and close to leading edge after photoactivation of cell center. (I) Simulated photoactivation of cell
center. (J) Simulated fluorescence in cell center and close to the leading edge after photoactivation
of cell center. Image scale bars, panels C,E,G: 10 μm; panel I: 8 μm.
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The results of the PA simulations and experiments suggested actin within the
lamellipodium exists within two pools, one which is bound to Tβ4 and allows for
fast diffusion through the lamellipodium and another pool which diffuses slowly and
is not bound to Tβ4 [99]. Actin bound to Tβ4 is prevented from binding to actin
at the back of the lamellipodium and can diffuse fast through the lamellipodium
to the leading edge of the cell where it may associate in a complex with profilin
and allow the actin to incorporate into the actin network, perhaps through the aid
of formins. Tβ4 aids in this diffusion by sequestering the actin monomers and not
allowing them to bind promiscuously to other actin binding proteins throughout the
lamellipodial network [99]. The actin that is not bound to Tβ4 (recycling actin,
likely actin oligomers) is incorporated into the actin network away from the leading
edge. This study showed that a large portion of the actin in the lamellipodium is
recycled actin and that it plays an important role in the kinetics of turnover of the
network.

4 Model of Capping Protein and Arp2/3 Complex Turnover

Capping protein and the Arp2/3 complex are two of the most important regulators
of actin dynamics in cells and in in vitro reconstitution experiments [47]. This
section summarizes the work in [62] that extends the approach of Smith et al.
to capping protein and Arp2/3 complex. For both of these proteins, SiMS and
FRAP data have been performed in lamellipodia (albeit by different groups on
different cell systems). Similar to the case of diffuse actin, it is possible that
both exhibit significant concentration gradients in their diffuse pool. For example,
slowly diffusing capping proteins have indeed been observed by SiMS [91], which
may reflect capping protein bound to slowly diffusing actin oligomers or to the
membrane. The Arp2/3 complex has also been observed to form a slowly diffusing
complex with its activators prior to attachment to the actin network [65]. The study
by McMillen and Vavylonis [62] addressed these issues.

4.1 Method to Calculate Concentration Profiles

Since proteins in the lamellipodium are frequently associating to larger complexes
or binding to the membrane, the simplest model to account for this behavior with
two distinct cytoplasmic populations was considered: a fast diffusing cytoplasmic
population, Cfast, and a slow diffusing cytoplasmic population, Cslow. Bound protein
(B), which is protein bound to filaments in the actin network, can depolymerize into
either Cfast with probability s1 or Cslow with probability s2, where s2 = 1 − s1.
The diffuse protein Cfast can become bound protein with spatially dependent rate
rCfast(x), and Cslow can become bound with spatially dependent rate rCslow(x), where



226 D. Holz et al.

x is the distance from the leading edge. The diffuse component Cfast can become
Cslow with a lifetime of τC fast, and the component Cslow can become Cfast with a
lifetime of τCslow .

The appearance profile measured by SiMS was assumed to be the sum of two
separate profiles, aCfast(x) and aCslow(x), due to the fast and slow cytoplasmic pools
as follows:

a(x) = aCfast(x) + aCslow(x). (20)

How the profile is split into two components is an assumption of the model.
Generally, the speckle appearance profile can be fitted by a double exponential
with two length-scales λshort and λlong. We define Cfast,∞ and Cslow,∞ to be the
concentrations of Cfast and Cslow respectively at distances far from the leading edge
of the cell. Using C∞ = Cfast,∞+Cslow,∞ to normalize concentrations, the constant
K defines the magnitude of the association reactions:

aCfast(x) = KC∞
(
A

Cfast
1 e−x/λshort + A

Cfast
2 e−x/λlong

)
(21)

aCslow(x) = KC∞
(
A

Cslow
1 e−x/λshort + A

Cslow
2 e−x/λlong

)
, (22)

where the dimensionless coefficients in Equations (21) and (22) satisfy ACfast
1 +

ACfast
2 + ACslow

1 + ACslow
2 = 1.

In the examples we consider in this section, the lifetime distribution for protein
speckles p(t) has weak dependence upon distance from the leading edge, within
a range of a few μm [66, 91, 102]. It can be fitted with a single exponential as in
Equation (2) where C2 = 0.

The bound protein profile, B(x) , can be calculated analytically using the function
Y (x, x′) of Equation (4) to find the profile of bound protein B1(x) and B2(x) due to
each of the diffuse species, Cfast and Cslow, respectively, such that B(x) = B1(x) +
B2(x), where:

B1(x) =
∫ ∞

0
Y (x, x′)aCfast(x

′)dx′, B2(x) =
∫ ∞

0
Y (x, x′)aCslow(x′)dx′.

(23)
The steady-state reaction diffusion equations that describe the system are as follows:

vr

∂B(x)

∂x
= a(x) − d(x), (24)

DCfast

∂2Cfast

∂x2
= aCfast(x) − s1d(x) + 1

τCfast

Cfast(x) − 1

τCslow

Cslow(x), (25)
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DCslow

∂2Cslow

∂x2
= aCslow(x)−(1−s1)d(x)+ 1

τCslow

Cslow(x)− 1

τCfast

Cfast(x). (26)

Parameters DCfast and DCslow are the diffusion coefficients for Cfast and Cslow
respectively and d(x) is the detachment rate of bound proteins to the cytoplasm,
which is found by solving Equation (24), given a(x) and B(x) from Equations (20)
and (23). The parameter s1 is the probability for the bound protein to dissociate
into Cfast. The concentrations far from the leading edge obey: Cslow,∞/Cfast,∞ =
τCslow/τCfast . Equations (20)–(26) can be solved numerically to find Cfast(x)/Cfast,∞
and Cslow(x)/Cslow,∞ given vr , τCfast , τCslow , DCfast , DCslow , s1, and the parameters
that define aCfast(x), aCslow(x), and p(t). The method used involves adding time
dependence to Equations (25) and (26) and allowing them to relax for a sufficiently
long time:

∂Cfast

∂t
= DCfast

∂2Cfast

∂x2 − aCfast(x) + s1d(x) − 1

τCfast

Cfast(x) + 1

τCslow

Cslow(x),

(27)
∂Cfast

∂t
= DCslow

∂2Cslow

∂x2 −aCslow(x)+(1−s1)d(x)− 1

τCslow

Cslow(x)+ 1

τCfast

Cfast(x).

(28)
A no-flux boundary condition is imposed at the leading edge.

4.2 Calculation of Rate Constants and Simulation

The local rates with which the cytoplasmic protein binds to the network from the
fast and slow diffusing states (to be used in Monte Carlo particle simulations) can
be found using the appearance profiles and the cytoplasmic protein profiles:

rCfast = aCfast(x)/Cfast(x), rCslow = aCslow(x)/Cslow(x). (29)

These are the reaction rates for Cfast to convert into B1 and for Cslow into B2. 2D
Monte Carlo simulations of independent particles were performed using the method
of Smith et al. [92] described previously. The simulation was initialized using the
steady-state concentrations evaluated by Equations (27) and (28).

4.3 Application to Capping Protein Dynamics

In [62], the model of Section 4.1 was applied to capping protein, the lamellipodial
dynamics of which had been studied in prior studies with both FRAP and SiMS,
though in different cell systems. Kapustina et al. [46] analyzed FRAP data of
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fibroblast cells expressing EGFP-CapZ in a circular region of diameter 5 μm
centered at 5 μm from the leading edge of the cell [100]. They fitted the recovery to
a model that used Virtual Cell [70] with various components to find values for the
diffusion coefficient of capping protein in the cytoplasm, D=5–10 μm2/s, and for
its lifetime when bound to the actin network, τ = 10 s. These values are different
to those measured with SiMS microscopy of XTC cells [66, 91] where capping
protein was found to associate over an extended area of the lamellipodium, to have
a slowly diffusing cytoplasmic pool with D ≈ 0.5 μm2/s and to have a shorter bound
lifetime, τ ≈ 2s [66, 91]. While both studies show a short lifetime of bound capping
protein compared to the lifetime of polymerized actin (Figure 1E), they indicate
quantitatively different transport modes in the lamellipodia. One goal in [62] was
finding out if the measured SiMS microscopy parameters from Miyoshi et al. can
be used to fit the FRAP data from Kapustina et al. and to study the implications for
the concentration profile of capping protein across the lamellipodia.

Two previously proposed possibilities for the reasons behind slow capping
protein diffusion were considered: one being that capping protein is bound to
severed actin oligomers, the other being that capping protein binds to the membrane.
Monte Carlo simulations with bleaching of a 5 μm by 5 μm square region centered
5 μm from the leading edge were compared to the data of Kapustina et al.
using a circular bleach region (this difference in shape has only a small effect on
the recovery curve). In the simulations for capping protein below, the value for
retrograde flow used was vr= 0.03 μm/s [105].

4.3.1 Model Including Oligomers

The model with oligomers shown in Figure 3A,B is a specific case of the general
model of Section 4.1. The motivation for this model is the suggested existence of
short actin oligomers in the lamellipodium. If severed actin filaments are capped by
capping protein, this could explain why 50% of capping protein has been observed
in a slowly diffusing state with diffusion coefficient ≈ 0.5 μm2/s [91]. In this model
Cfast represents capping protein heterodimers diffusing in the cytoplasm and Cslow
represents capping protein heterodimers attached to the barbed end of an actin
oligomer diffusing in the cytoplasm. The bound protein can only dissociate into
capped oligomers, Cslow, that can either rebind to the network or become uncapped
and convert to Cfast.

Both fast and slow diffusing species were assumed to be able to bind to the
network, representing capping of free barbed ends and re-binding of oligomers
to the lamellipodial network, respectively (Figure 3A,B,E,F). Since SiMS only
measures the total appearance profile, an additional assumption in the model was
how a(x) is split into aCfast(x) and aCslow(x). Since the total appearance profile of
capping protein can be fit to a double exponential [62], the appearance rates were
broken up such that aCfast(x) corresponds to the short length scale and aCslow(x) to
the long length scale:



Lamellipodia in Stationary and Fluctuating States 229

Fig. 3 Modeling FRAP for Capping Protein and Arp2/3 Complex in lamellipodium (reproduced
with permission from [62]). (A) Diagram for model of capping protein including oligomers. (B)
Cartoon for model of panel A. (C) Simulated steady-state concentration profiles for capping protein
model for model in panel A. (D) Simulated FRAP curve of capping protein after bleaching a
5 μm×5 μm box situated 2.5 μm from the leading edge for model of panel A, compared to
experimental data in [46]. (E) Diagram for model of capping protein with membrane binding. (F)
Cartoon for model of panel B. (G) Simulated steady-state concentration profiles for capping protein
model of panel E. (H) Same as panel D but for model of panel E. (I) Diagram for model of Arp2/3
complex with membrane binding. (J) Cartoon for model of panel I. (K) Simulated steady-state
concentration profiles for model of panel I. (L) Simulated FRAP curve of Arp2/3 complex after
bleaching a 2 μm×4 μm box at the leading edge and monitored 0–1 μm and 1–2 μm from the
leading edge, compared to experimental data in [52].

aCfast(x) = KC∞A1e
−x/λshort , aCslow(x) = KC∞A2e

−x/λlong , (30)

with A1 = 0.74, A2 = 0.26, λshort = 2.0 μm, and λlong = 8.65 μm. The function
aCfast(x) accounts for the appearances due to Cfast close to the leading edge, whereas
aCslow(x) accounts for the appearances due to Cslow that are distributed throughout
the lamellipodium. Thus, the behavior of capping protein was assumed to follow
the behavior of actin oligomer rebinding that contributes to a large fraction of actin
speckle appearances at the back of the lamellipodium (Section 2.3).
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Parameters in the model were calculated from prior experiments or their range
estimated. The lifetime distribution of capping protein bound to the network can be
fit with a single exponential with τ = 2.0 s [66]. The lifetime of the capping protein
bound to the actin oligomer (τCslow ) is likely in the range of the lifetime of an actin
oligomer, 5–30 s [92]. The diffusion coefficient of the slow component is DCslow

= 0.5 μm2/s [91], and DCfast =2–5 μm2/s is expected which is comparable to the
diffusion coefficient of actin monomers [61, 99]. The value of K that influences the
ratio of cytoplasmic to bound protein was calculated to give an estimated ratio of
cytoplasmic protein to bound protein 2.3 to 1 [62].

Scanning the model parameters within the range described in the preceding
paragraph fits to FRAP data were obtained. The simulated FRAP was applied to
a steady state initialized with the concentrations found after relaxing Equations (27)
and (28) in time. Figure 3C shows the steady-state concentration profiles using K

= 0.5 s−1, DCfast = 2.0 μm2/s , DCslow = 0.2 μm2/s, vr= 0.03 μm/s, τ = 2.0 s,
and τCslow = 13.0 s. In order to obtain good fits to the experimental FRAP data
for capping protein, the lifetime τCslow needs to be maximized, and the diffusion
coefficient DCfast needs to be minimized, within the range of values described
above and the range that gives nonnegative concentration profiles in the model
equations. Figure 3D shows the recovery of the intensity in the bleached region
along with the recovery in Kapustina et al. The recovery curve for DCslow = 0.5
μm2/s is an overall good fit to the experimental curve; however, the initial recovery
is more rapid compared to experiment. The fit can be improved using DCslow = 0.2
μm2/s [62].

The above results show that parameters measured with SiMS can be used to
model the FRAP data in [46], using a smaller diffusion coefficient DCslow and faster
dissociation time τ compared to [46]. The diffusion of long-lived oligomers out of
the bleached region contributes to making the recovery slower initially and a value
τCslow ≈ 13 s is needed for a good fit. This is in agreement with the fact that slowly
diffusing speckles can be tracked for a few seconds and thus the lifetime of the
slowly diffusing capping protein is likely in the range of 5–30 s [91]. Even though
the dissociation time τ = 2 s is small compared to the measured FRAP half-time,
the bound species is a small fraction of the total amount.

4.3.2 Model with Membrane Binding

Another way of accounting for slowly diffusing capping protein is considering that
capping protein binds and diffuses along the membrane [91]. Membrane binding
can occur through a fast-diffusing state in the cytoplasm or by membrane-induced
uncapping of capped barbed ends. The model shown in Figure 3E,F is another
possible mechanism of why capping protein dissociates so frequently from the actin
network and diffuses slowly. CARMIL is a membrane bound protein complex that
also binds capping protein and may account for the very short lifetime of capping
protein bound to the actin filament [23, 27, 28]. In this model only fast diffusing
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cytoplasmic protein is able to become bound (representing capping of barbed ends)
so that the appearance rate is:

a(x) = aCfast(x) = KC∞
(
A1e

−x/λshort + A2e
−x/λlong

)
, (31)

with A1 = 0.74, A2 = 0.26, λshort = 2.0 μm, and λlong = 8.65 μm. The bound protein
can dissociate into either Cfast or Cslow and the parameter s1 is the probability of
dissociating into Cfast. The fast diffusing capping protein can convert to slow with
lifetime τCfast and slow can become fast with lifetime τCslow . The model in Figure 3E,
F is another specific case of the general model.

The model with membrane binding (Figure 3E) has more parameters compared
to the model with oligomers (Figure 3A).

The new parameters are the lifetimes τCfast , τCslow , and the dissociation probability
s1. As mentioned in Section 4.3.1, the lifetime of the slowly diffusing capping
protein is likely in the range of 5–30 s. It was assumed that τCfast = τCslow so that
Cfast and Cslow each correspond to 50% of the concentration far from the leading
edge [91]. Figure 3G shows a concentration profile generated with K = 0.435 s−1,
DCfast = 2.0 μm2/s, DCslow = 0.5 μm2/s, vr = 0.03 μm/s, τ= 2.0 s, τCfast = 5.0 s, τCslow

= 5.0 s, s1=0.1.
Parameters could be adjusted for the second model to fit the experimental

FRAP data. The simulated recovery curves are shown in Figure 3H, along with
the experimental data. Both simulated curves with DCslow = 0.1 μm2/s and DCslow=
0.5 μm2/s fit the data; however, the smaller diffusion coefficient allows for a better
fit. Similar to the model with oligomers, DCfast needs to be on the lower range of the
physically plausible values 2–5 μm2/s . Parameter s1 needs to be small compared
to unity, otherwise the bleached region recovers too quickly and none of the other
parameters are able to slow the recovery down enough to capture what occurs in
the experiment. Keeping τCfast = τCslow , variation of these two parameters together
showed that they also need to be in the range of a few seconds [62].

In conclusion, obtaining a good fit drives this model to a similar kinetic scheme
as the model with oligomers, with the majority of the bound protein dissociating
into slowly diffusing protein.

4.3.3 Comparison of Two Models for Capping Protein Turnover

The pool of slowly diffusing protein is important to fit FRAP recovery with half-
time on the order of 10 s, using a bound lifetime of 2 s. Retrograde flow contributes
little to FRAP since the distance traveled by retrograde flow during recovery is small
compared to the size of the bleached region. Since both models are driven to similar
kinetic transition rates, it is hard to distinguish between them using further FRAP
data of either the back or front of the lamellipodium. A clearer difference between
the two models can be seen in lamellipodium photoactivation simulations with the
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same parameters as for the FRAP data [62]. Both models demonstrate significant
concentration gradients of the two diffuse species across the lamellipodium. This
prediction of concentration gradients could be tested in future experiments. The
origin of this gradient is mainly the local production of slowly diffusing capping
protein close to the leading edge. The inward flux of the slowly diffusing population
plus the retrograde flow of the bound species must be balanced by the diffusive flux
of the fast species at steady state.

4.4 Application to Arp2/3 Complex Dynamics

Both FRAP and SiMS microscopy experiments have been performed to study the
kinetics of Arp2/3 complex in the lamellipodium. In FRAP studies by Lai et al. [52],
the bleached region was a 2 μm by 4 μm box positioned at the leading edge of a
B16-F1 melanoma cell. Recovery was faster at the leading edge of the cell than it
was away from the leading edge. While this has been interpreted to suggest that
Arp2/3 complex forms branches within a very narrow region close to the leading
edge, SiMS experiments using XTC cells (tagging the p40 and p21 subunits) by
Miyoshi et al. [66] show distributed speckle appearances 1 μm away from the
leading edge and further, and an exponential distribution of speckle lifetimes with
τ = 18 s.

McMillen and Vavylonis [62] used modeling to (i) check if the FRAP recovery
observed in Lai et al. [52] is consistent with the distributed appearances in Miyoshi
et al. [66], and (ii) explore the implications for the concentration profiles of the
diffuse species. FRAP of lamellipodia of B16-F1 melanoma cells [52] has similar
qualitative features to FRAP of XTC cells (Figure 1) as well as PA of neuronal
cells (Figure 2). The simulations below used a profile with distributed appearances
that is narrower compared to the profile measured in XTC cells, which have wider
lamellipodia compared to the B16-F1 melanoma cells. This appearance profile
was calculated to give an Arp2/3 complex concentration profile that matches the
concentration profile of the B16-F1 melanoma cells [62].

Using SiMS microscopy, Millius et al. [65] suggested that some Arp2/3 com-
plexes bind to the WAVE complex on the cell membrane of XTC cells and perform
a slow diffusion prior to incorporation of the actin network, while other Arp2/3
complexes are recruited directly from the cytosol. Millius et al. observed slowly
diffusing speckles of Arp2/3 complex components within a few μm from the leading
edge.

The study in [62] thus considered a model with membrane binding of the
Arp2/3 complex (Figure 3I,J). The two diffuse species in this model represent
Arp2/3 complex in the cytoplasm, Cf ast , and bound to the membrane, Cslow.
The bound Arp2/3 complex dissociates into Cf ast only, representing debranching
and dissociation of the Arp2/3 complex from the pointed end. This occurs with
the detachment rate d(x) corresponding to bound lifetime τ . This lifetime may
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include Arp2/3 complex attachment without branch formation, as observed in single
molecule in vitro experiments where bound Arp2/3 complex has bound lifetimes in
the range 2–200 s [90].

Binding to the membrane was assumed to occur close to the leading edge with a
spatially dependent rate k(x) = kme−x/λm defined by parameters λm and km. This
was achieved in the simulations by using a spatially dependent τCf ast

. Spontaneous
unbinding occurs with lifetime τCslow . The appearance profile describing association
of membrane-bound Arp2/3 complex to the actin network is given by

a(x) = A1e
−x/λshort + A2e

−x/λlong (32)

with A1 = 0.49, A2 = 0.51, λshort = 0.08 μm, and λlong = 0.43 μm. Using an
estimated retrograde flow rate vr = 0.04 μm/s in [52], DCslow = 0.6 μm/s2 (the
estimate in Millius et al. [65]) and assuming membrane binding occurs close to
the leading edge, λm = 0.2 μm, leaves DCfast , K , τCslow and km as undetermined
parameters. Knowing the larger size of the Arp2/3 complex as compared to actin
monomers and capping protein, a diffusion coefficient of 2–6 μm2/s is anticipated.

In the steady-state profile in Figure 3K , DC = 3 μm2/s , K = 6.0 s−1, τCslow =
20 s, and km = 40 s−1. With these parameters, the bound protein is sharply peaked
close to the leading edge while the fast diffusing protein is small compared to the
bound species and slightly depleted at the leading edge.

The model fit the experimental FRAP data by Lai et al. [52], which shows
faster recovery at the lamellipodium front as compared to the back. The recovery of
simulated FRAP is quantified in Figure 3L where the front recovery curve is taken
0–1 μm from the leading edge, and the back recovery curve is taken 1–2 μm from
the leading edge as in Lai et al. [52]. The recovery at the back has a small initial
increase due to the diffusion of the cytoplasmic component, followed by a slower
recovery. This slower recovery is driven by binding at the back of the lamellipodium
and retrograde flow that brings labeled subunits from the cell front. In order to fit
the experimental FRAP data the value of K has to be sufficiently high to keep the
bound to cytoplasmic ratio sufficiently smaller than unity; otherwise the back of the
lamellipodium recovers faster than in experiments. Similarly, decreasing coefficient
km to a value where the concentration of slowly diffusing species becomes a small
fraction of the bound concentration gives a better fit to the FRAP curve at the back.
The recovery is also affected by the diffusion coefficient of the fast diffusing species.
Values above DCfast = 2 μm2/s give a good fit to the experimental FRAP data.

The results of Figure 3K,L suggest that the diffusing population is a small
fraction of the bound. Lewalle et al. [56] also performed FRAP of Arp2/3 complex
in lamellipodia and found recovery throughout the lamellipodia pronounced close
to the leading edge, consistent with the assumptions in [62]. The fact that the
concentration of Arp2/3 complex increases by about 8-fold after stimulation in XTC
cells [87] is consistent with the existence of a small fraction of fast-diffusing Arp2/3
complex (presumably the only species present prior to lamellipodia stimulation).
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Inspection of the movies in Millius et al. [65] indicates however that the number of
slowly diffusing speckles is comparable to the bound population. While the slowly
diffusing Arp2/3 complex speckles may also represent Arp2/3 complex bound to
debranched actin oligomers (not considered here as a separate species), such a
pool would also need to be as small for the model to reproduce the FRAP data.
This motivates further studies to investigate if the fraction of diffusible Arp2/3
complex varies by a large factor among cell systems and/or during different stages
of stimulation of the same cell.

4.5 Discussion

In this section we described how modeling was used to calculate concentration
profiles of capping protein (Figure 3C,G) and Arp2/3 complex (Figure 3K) based
on prior SiMS and FRAP data. The predicted gradients in the diffuse pool will
have implications on the behavior of the lamellipodium when perturbed from steady
state, for example during the stimulation of a protrusion by increase of free barbed
end concentration close to the leading edge [62]. Diffusion limitations of capping
protein or Arp2/3 complex towards the leading edge could become important upon
protrusion initiation.

In the results of Figure 3, the capping protein distribution is broader than that of
Arp2/3 complex but both are narrower than F-actin (Figure 1). Other studies using
fluorescence speckle microscopy however suggest different length scales for each
component with capping protein, Arp2/3 complex, and F-actin having increasingly
broader concentration profiles [44]. Future work should examine if these differences
are cell-type specific.

Hu and Papoian [39, 40] used a stochastic simulation model that includes
physical and chemical interactions for actin, Arp2/3 complex, and capping protein
in the lamellipodium to model protrusions. They only allow Arp2/3 complex-
mediated activation branching very close to the membrane with diffusion coefficient
20 μm2/s for all species, larger than what we used here for the fast and slow
diffusing pools. One of the findings in Hu and Papoian is a significant dependence
of protrusion dynamics on the concentrations of capping protein and Arp2/3
complex. Since cytoplasmic concentration gradients result for slower values of the
diffusion coefficients, this effect would provide an additional influence on protrusion
dynamics.

The method presented in this section could be generalized to study the diffusive
dynamics of other lamellipodia regulators that have been studied with SiMS,
including cofilin and AIP1 [97], which collaborate in actin filament severing, VASP
[66], and WAVE [65].
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5 Model of Lamellipodium Protrusion and Retraction
Driven by Fluctuations in Actin Polymerization

5.1 Motivation from Experiment

We now return to the topic of lamellipodial protrusion and retraction of XTC cells
mentioned in Section 1.2. In these cells waves of protrusion were accompanied
by waves of LifeAct-labeled F-actin accumulation along the lamellipodium [87]
(Figure 4B,C,D). This phenomenon belongs to the general class of cellular actin
waves [43] and the regularity of protrusions and retractions during cell spreading
indicates a process that can be described by a coarse-grained mathematical model.

The magnitude of protrusions and retractions is shown by the distribution of the
standard deviation in Figure 4C. The standard deviation was measured along the
radial direction in 1-degree intervals along the entire arc-length of the cell. The
protrusion velocity was anti-correlated with the total local F-actin concentration
measured by integrating LifeAct intensity over a 5 μm distance into the cell
(Figure 4E). The time-dependent cross-correlation function (Figure 4E) showed
that, on average, the fastest protrusion (retraction) speeds occurred just 10 s after
a minimum (maximum) of integrated F-actin intensity at a given position along the
arc-length of the cell.

The constant retrograde flow and fluctuating actin polymerization near the
membrane in XTC cell lamellipodia is evident in the kymograph of Figure 4B,
in which LifeAct forms diagonal lines of high intensity starting at the cell edge.
These indicate an F-actin network that forms near the edge of the cell and processes
into the cell as time increases to the right. Alternating high and low intensity over
time in Figure 4B points to changing actin polymerization. Net actin polymerization
near the membrane, as evidenced by increasing intensity, occurs during protrusion,
although the total intensity within the lamellipodium is greatest during retraction,
consistent with the anti-correlation of Figure 4E [87]. The notion that fluctuations
in actin polymerization can drive such dynamics is further supported by the
experimental evidence that other cell types treated with blebbistatin continue to
protrude and retract periodically, although the period of oscillations may change
[11, 30, 106].

5.2 One-Dimensional Model with Excitable Actin Dynamics

The observed dynamics are suggestive of excitations driven by noise. Excitability
typically involves the interaction between an activator and an inhibitor: in an
excitation, an activator species self-recruits rapidly; this activator in turn recruits
an inhibitor that causes the activator to slowly dissipate [63]. Ryan et al. [87]
speculate that the anticorrelation of leading-edge velocity with total actin intensity
suggests that F-actin acts as an inhibitor. Likely mechanisms for this inhibition
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Fig. 4 Experimental observations of leading edge protrusion and retraction (reproduced with
permission from [87] and panel C from [86]). (A) An XTC cell expressing actin marker LifeAct-
mCherry. (B) Kymograph of segment at leading edge of cell in panel A. F-actin polymerized near
the leading edge into the cell via retrograde flow, resulting in diagonal striping of kymograph. (C)
Distribution of the standard deviation of the radial membrane position at a fixed angular position for
three cells. (D) Leading-edge velocity (with respect to fixed substrate) versus angle and time for cell
in Figure 1G of [87]. Positive (negative) velocities indicate protrusion (retraction). The retrograde
flow speed for this cell was 74 ± 3 nm/s. (E) Average correlation coefficients for leading-edge
velocity autocorrelation, LifeAct-mCherry autocorrelation, and LifeAct-mCherry-velocity cross
correlation, versus time at a fixed angular position.

include the formation of actomyosin bundles [5] and adhesions [3] and accumulation
of mechanical tension [45, 77]. Many molecules are activator candidates: actin
polymerization can be triggered by the Scar/WAVE and WASp proteins that self-
recruit on the cell membrane to activate the Arp2/3 complex [36, 76, 79]. Once
activated, the Arp2/3 complex generates new barbed ends by nucleating branches off
preexisting filaments, thought to lead to autocatalytic dendritic nucleation [71, 93].
Severing of growing filaments could also contribute to diffusive autocatalytic
generation of barbed ends [66, 74] through transient association of diffuse cofilin
and AIP1 with F-actin [97]. Formin-mediated nucleation of new filaments is another
possible activation mechanism [35, 107].
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Fig. 5 One-dimensional model for an XTC cell leading edge (panels A, B reproduced with
permission from [86] and C, D from [87]). (A) The model includes F-actin, F, activator, A,
and free barbed ends, B, along the arc-length of the membrane. (B) Reaction network diagram.
Assembly of F is promoted by the autocatalytic activator A which generates free barbed ends.
Accumulation of F inhibits A. (C) Simulation results, F-actin concentration vs arc-length and time.
(D) Correlation coefficients vs time for free barbed end autocorrelation, F-actin autocorrelation,
and cross-correlation between B and F-actin at a given arc-length.

5.2.1 Model that Reproduces Wavelike Propagation

In the one-dimensional model of Ryan et al. [87], the concentrations of a diffusible
activator, A(x, t), free barbed ends, B(x, t), and F-actin, F(x, t), are calculated
at different positions x along the leading edge over time (Figure 5A). The
lamellipodium is modeled in one dimension, each coordinate representing a slice
along the arc-length of the leading edge. In this model it is assumed that protrusions
and retractions stem from underlying concentration fluctuations in the local actin
network and cell membrane displacement is not explicitly considered. Denoting rate
constants by k and ρ, the equations governing the concentrations are:

∂A

∂t
= (ρ0 + ρ2A

2)e−F/FS − k−
AA + DA∇2A + σ(x, t), (33)

∂B

∂t
= k+

B A − k−
B B, (34)

∂F

∂t
= k+

F B − k−
F F. (35)
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The first term on the right-hand side (rhs) of Equation (33) allows for spon-
taneous accumulation as well as nonlinear self-recruitment of the activator. A
simple quadratic dependence on A is chosen (see Section 5.2.2 below). When
F-actin exceeds saturation concentration, Fs , the activator on-rate is reduced.
This is the negative feedback in Figure 5B. The second term on the rhs in
Equation (33) represents deactivation. Diffusion of the activator (third term on the
rhs) along the membrane couples neighboring sites and allows propagation of actin
dynamics along the leading edge. The last term in Equation (33) is white noise,
< σ(x, t)σ (x′, t ′) >= σ 2

0 δ(t−t ′)δ(x−x′) and represents concentration fluctuations
[32, 104] that generate excitations by perturbing the system out of its stable state (see
Section 5.2.3). Equation (34) describes accumulation of free barbed ends as a result
of the activation process. Rate constant k+

B describes how fast the activator generates
new barbed ends. Rate constant k−

B ≈ 0.4–8 s−1 is the rate of free barbed end loss
through capping by capping protein [79]. Equation (35) describes change of F-actin
as a result of polymerization at free barbed ends and spontaneous disassembly.

Since the capping rate k−
B is much faster than the frequency of the protrusion

and retraction events, generation of barbed ends must be fast enough such that
B responds to changes in A quickly. This leads to B ≈ k+

B A/k−
B and allows

Equation (33) to be rewritten as follows:

∂B

∂t
= (r0 + r2B

2)e−F/FS − k−
AB + DA∇2B + s(x, t). (36)

Here, unknown rate constant k+
B is absorbed into the new rate constants r0 and r2

and into the amplitude of the noise that is now s0. Equations (35) and (36) form a
closed system in terms of B and F . Details on selecting model parameters are given
in Section 5.2.4.

Numerical integration of the model produces spikes of free barbed end concen-
tration, followed by spikes in local F-actin concentration. Figure 5C shows that the
model captures the wave-like propagation across sections of the membranes arc-
length as well as the magnitude and timescale of the actin fluctuations of Figure 4D.

The F-actin autocorrelation function calculated using the model, shown in
Figure 5D, matches the experimental result of Figure 4E. A characteristic feature
of the cross-correlation function between B and F is that spikes of B precede
those of F, demonstrated by the positive shift of the cross-correlation peak to the
right of the origin by approximately 25 s. Without the noise term in Equation (36),
for the reference parameter values, point excitations propagate laterally along the
membrane before returning to a uniform stationary state (Figure 6A,B). Addition of
noise to this steady-state system excites actin randomly along the membrane, so that
excitations combine into structures similar to those seen in experiment.
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Fig. 6 Model response to point excitation and stability analysis predicts characteristics of model
solutions (reproduced from [87]). (A) Free barbed end concentration, generated by localizing noise,
s(t) = 0.1 μM s−1, at a single point (at 20 μm) along the membrane for 1.5 s. Simulations were run
with the same parameters as Figure 5, except the noise term was zero outside the region described
above. Excitations spread from the region at which noise was applied with a speed ∼ 0.17 μm/s.
This is similar to the speed of protrusion propagation in Figure 4D. In the presence of multiple
sources of noise, excitations combine into transient wave-like patterns. (B) F-Actin concentration
corresponding to the free barbed end concentration shown in A. (C) Results of linear stability
analysis as function of r0 and r2 for wave number q = 0. The black star indicates the exact
parameters used in Figure 5. Case II (dark gray): unstable oscillatory solutions; Case III (light
gray): stable oscillatory solutions. (D) Damping ratio, calculated for regions of parameter space
within Case III of panel C (Case II region shown in dark gray). (E) Similar to panel D but displaying
period τ for both Case II and Case III solutions.

5.2.2 Choice of Nonlinear Terms

The negative feedback in Equations (33) and (36) uses an exponential cutoff,
e−F/Fs that prevents F-actin from accumulating in amounts that far exceeds Fs .
Excitations away from steady state are driven by the autocatalytic term ρ(B) =
r0 + r2B

2 in Equation (36). A quadratic was chosen for the following reason.
During an excitation, the concentration of actin near the leading edge approximately
doubles (see Figure 4 and 5). A change of similar magnitude is anticipated in
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the concentration of free barbed ends. Now the term ρ(B)e−F/Fs should have
approximately the same value at both steady state, B = B∗ and F = F ∗, and
at the instant in time when the free barbed end concentration is at a maximum,
B ≈ 2B∗ and F = αF ∗. Since B and F are out of phase leads one to estimate
1.1 < α < 1.5. Assuming a power law, ρ(B) ∼ Bn, this would require 2 ≤ n ≤ 5.
Ryan et al. [87] chose the smallest integer exponent consistent with this requirement.
The constant term r0 in ρ(B) prevents unphysical fixed points with very small
concentrations of free barbed ends. This term accounts for filaments created by
spontaneous nucleation rather than through autocatalytic feedback.

5.2.3 Linear Stability Analysis

Linear stability analysis can be performed on the model described by Equations (35)
and (36) without the noise term in Equation (36). Parameters can be chosen such that
the system is in a stable steady-state region, close to the boundary of an unstable
region. The addition of a noise term then transiently perturbs the stable state of the
system, generating spontaneous excitations.

Stability analysis is performed around a homogeneous steady state B = B∗ and
F = F ∗. Fixed points B∗ and F ∗ are defined by the nullclines of a homogeneous
system (i.e., no dependence on arc-length distance) u(B∗, F ∗) = v(B∗, F ∗) = 0
where

u(B, F ) = (r0 + r2B
2)e−F/Fs − k−

AB, (37)

v(B, F ) = k+
F B − k−

F F. (38)

The fixed points can be found numerically. While Equations (37) and (38) can
have up to 3 fixed points, for parameter values in [87], there is a single fixed
point. Defining b(x, t) = B(x, t) − B∗ and f (x, t) = F(x, t) − F ∗, considering
sufficiently small deviations from the fixed point, and Fourier transforming x → q,
it is obtained from Equations (35) and (36) (without the noise term):

(
ḃq

ḟq

)
=J

(
bq

fq

)
, where J =

[
2r2B

∗e−F ∗/Fx − (k−
A + DAq2)

r0+r2B
∗2

FS
e−F ∗/FS

k+
F −k−

F

]

.

(39)

The characteristic equation is λ2−TrJλ+detJ = 0. Solving this for λ one finds two
wave-number dependent eigenvalues. These eigenvalues can be used to distinguish
between parameter sets based on the type of behaviors they elicit within the model.
These behaviors can be separated into three distinct cases (note: the remaining
of this subsection below corrects a mislabeling in the Supplementary Material of
[87]): (I) both eigenvalues real, (II) both eigenvalues complex with positive real
components that give unstable solutions to the linearized equation, and (III) both
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eigenvalues complex with negative real part that generate stable solutions. Whether
eigenvalues are real or complex is determined by the sign of Tr(J )2–4det(J ).

Case I. Two real eigenvalues occur when Tr(J )2 − 4det(J ) > 0. Real λ indicate
stable or unstable fixed points, depending on the sign of λ.

Case II. Complex eigenvalues with positive real components result from param-
eter sets in which Tr(J )2 − 4det(J ) < 0 and Tr(J ) > 0. In this case the system
has an unstable solution fixed point. However, because Equations (35) and (36)
give bounded solutions, the solution would evolve into a limit cycle, in which the
system exhibits oscillatory behavior. The period of these oscillations, estimated
from the linear stability analysis is τ = 2π/Im(λ).

Case III. Complex eigenvalues with negative real components. These solutions
fulfill Tr(J )2 − 4det(J ) < 0 and TrJ < 0. Small q more easily satisfy this
condition compared to larger q. If perturbed, such a system will relax back
to the stable solution in an oscillatory manner with period τ = 2π/Im(λ).
The relaxation rate is described by the dimensionless damping ratio ζ =
TrJ/2

√
det(J ).

5.2.4 Selection of Parameters

In [87], the values of k+
F and k−

F were taken from experiment. Five constraints were
used to determine the values of r2, r0, FS , k−

A , and DA (Table 2). The first two
constraints required fixed points with B∗ ≈ 0.4 μM and F ∗ ≈ 1500 μM. The value
of B∗ was chosen because within a band of width d ∼ 2 μm near the leading edge
the concentration of free barbed ends is approximately 1 μM [81]. In this model,
which does not distinguish distance from the leading edge, this corresponds to a
barbed end concentration 1μM ×d/w = 0.4 μM, where w ∼ 5 μm is the width
of the lamellipodium. The third condition required that the system is in a region
of parameter space in which relaxation to steady state occurs with underdamped
oscillations, such that the q = 0 case of the linear stability analysis lies in a Case III
region, but not far from a Case II region. The fourth condition was that the period of
oscillation is ∼ 130 s, as observed experimentally. Finally, the diffusion coefficient
of the activator was selected to match the width of the spatial correlation function
found in experiment.

Figure 6C shows linear stability diagrams for q = 0 as a function of two
model parameters, r0 and r2. These two parameters that are important in controlling
the response of the system to stimulation of polymerization (last paragraph in
this section) need to be adjusted as they are not directly determined from prior
experiments. The star indicates the reference parameter set. Figure 6D displays the
damping ratio, ζ as a function of the same parameters as in Figure 6C for q = 0.
The damping ratio approaches zero close to the region of Case II. Larger values of
r2 increase the strength of the nonlinear positive feedback and bring the system from
a stable (Case III) towards an unstable (Case II) region (Figure 6C). Increase of r0
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Table 2 Parameter table for one-dimensional model of lamellipodium protrusion and retraction.

Parameter Value Reference/Justification

Fs 200 μM Chosen to match the constraints of Section 5.2.4.

k+
F 66 s−1 Estimated in [66].

k−
F 0.01 s−1 Close to inverse of time required for actin

to traverse lamellipodium by retrograde flow.

k−
A 0.03 s−1 Chosen to match the constraints of Section 5.2.4.

DA 0.1 μm2s−1 Typical of membrane proteins, also matches

width of spatial correlation function in [87].

r0 5 μMs−1 Chosen to match the constraints of Section 5.2.4.

r2 600 μM−1s−1 Chosen to match the constraints of Section 5.2.4.

s0 0.02 μMμm−1/2s−1/2 Reproduces noise-induced excitations

with rate similar to experiments [87].

results in increased damping ζ , thus the value of r2 must exceed an r0-dependent
threshold for ζ to become sufficiently low. Figure 6E displays the period τ as a
function of the same parameters as in Figure 6C for q = 0, which is less sensitive
to changes in r2 compared to r0.

Selecting the value of the diffusion coefficient of the activator, DA, required that
the damping ratio ζ(q) increases to ∼ 1 at a wavenumber q ≈ 1 μm−1. Activator
diffusion coefficient of 0.1 μm2/s fulfills this and reproduces a width for the spatial
correlation function similar to experiment (full-width-half maximum approximately
5.2 μm). A decrease to DA = 0.05 μm2/s results in a full-width-half-maximum of
3.4 μm, while an increase to DA = 0.4 μm2/s results in a full-width-half-maximum
of 8.8 μm.

Short wavelengths are more strongly damped compared to longer wavelengths.
For the reference parameters values, the system switches from an underdamped
regime (Case III) to an overdamped case (Case I) at a wavenumber q = 0.97 μm−1.

5.2.5 Arp2/3 Complex as Activator and Cell Response to Stimulus

Arp2/3-complex-mediated dendritic growth is autocatalytic: nucleated branches act
as nuclei for further branches. Could the Arp2/3 complex be the activator species
of the model? Experiments with fluorescently labeled components of the Arp2/3
complex in [87] showed that it accumulates in bursts along the leading edge. These
bursts precede maxima of total F-actin amount, indicating a possible role for Arp2/3
complex in the activation process. However, Ryan et al. [87] argued that it is unlikely
for it to be the only activator because lateral spreading of Arp2/3 complex-mediated
branching would be too slow to cause the observed traveling waves of protrusion:
the effective diffusion coefficient calculated by a branching mechanism is 10 times
smaller (D = 0.01 μm2/s) than the estimated D value for the activator species.
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These numbers support the additional involvement of diffuse proteins such as small
GTPases, Scar/WAVE and WASp, and PIP3.

A general feature of the model with excitable dynamics is the synchronized
response to a sudden global perturbation. In [87], this was tested by exploring
the ability of the model to capture response to chemical stimulants. After hours of
remaining on slides, protrusions and retractions subside in XTC cells. Introduction
of fetal calf serum (FCS) restores the protrusions and retractions similar to the early
stages after introduction to the slide. Figure 7A shows the leading edge of a cell
expressing p21-EGFP (a protein in the Arp2/3 complex) and LifeAct-mCherry that
is stimulated with FCS at 200 s. The increase in p21-EGFP and LifeAct-Cherry
intensity after the addition of FCS is quantified in Figure 7B. The model can
capture the FCS response through a sudden increase in rate r0 and r2 (Figure 7C).
This change reproduces the experimental behavior, most notably the out-of-phase
transient oscillations in Arp2/3 complex and F-actin at late times after stimulation.
We note other studies in Dictyostelium response to cAMP have also been interpreted
as an indication of excitability [104].
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Fig. 7 XTC cell response to FCS and comparison to the model (reproduced with permission
from [87]). (A) Montages of leading edge of cell expressing p21-EGFP and LifeAct-mCherry
stimulated by FCS at 200 s. The cell had been plated for 4 h. Intensity increases are evident
after stimulation. Bar: 5 μm. (B) Intensities of p21-EGFP and LifeAct-mCherry averaged over
all angles vs time. (C) Results of model showing concentrations of the free barbed end and F-
actin concentrations, averaged over arc-length. Rate constants were functions of time: ro(t) =
1 μMs−1 + 24 μMs−1H(t), r2(t) = 1 μMs−1 + 624 μMs−1H(t). Here H(t) = Θ(t −
250s)t3/(T 3 + t3), where T = 220 s and Θ is the step function.
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5.3 Two-Dimensional Model of Lamelipodial Protrusions
and Retractions

The one-dimensional model of actin accumulation along the arc-length of the cell
described above did not address the movement of the cell membrane. In [86] the
model was extended into two dimensions. This enabled two-dimensional aspects of
XTC lamellipodia to be captured such as the extent and profile of XTC protrusions
as well as F-actin concentration versus distance from the leading edge.

As mentioned in Section 2, F-actin assembly is distributed throughout the lamel-
lipodium, and does not occur solely where actin filaments touch the cell membrane.
A 2D model of fluctuations in actin polymerization would have to account for the
time-variation of appearance rate a(y) = A1e

−y/λ1 + A2e
−y/λ2 (measuring the

rate of new speckle appearance as function of distance from the leading edge),
as well as the variations in speckle lifetime (note: unlike Equation (1), y is the
direction into the cell). Ryan et al. [86] made a few simplifying approximations.
First, they assumed that all the basal speckle appearance events are due to recycling
oligomeric actin that break off and reassemble at the back of the lamellipodium
[92]. Second, the effective lifetime of F-actin in lamellipodia was approximated
by a single exponential with a characteristic time 1/k−

F = 100 s. This lifetime
is longer than the speckle lifetime due to several dissociation and local recycling
events. In this model, fluctuations in actin polymerization arose from fluctuations in
the polymerization rate very close to the membrane of the leading edge (i.e., they
represent fluctuations of the amplitude of the λ1 term in Equation (1)). This would
be consistent with the assumption of a slowly diffusing membrane-bound activator.

5.3.1 The Model

The leading edge is along the x-axis, with the negative y-axis directed into the
cell (neglecting the curvature associated with the shape of the whole cell). The
displacement of the membrane along the y-axis is h(s, t), where s is arc-length
across the membrane, and, approximately, s ≈ x. Periodic boundary conditions
are applied along the x-axis after a total width 20 μm. The F-actin network in the
lamellipodium is assumed to be a rigid network with sufficiently large modulus to be
practically incompressible, consistent with the retrograde flow in the lamellipodium
of XTC cells being approximately constant through protrusion and retraction cycles
[87]. Computer simulations of the model were implemented on a 40 μm wide
and 20 to 40 μm tall system. Concentrations were calculated on a lattice grid
with membrane movement allowed on a continuum. Results were obtained after
an equilibration period.
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Barbed-End and F-Actin Concentrations

Free barbed ends of concentration B(x, t) are generated by an autocatalytic
membrane-bound activator with concentration A(x, t). The accumulation of the
activator is damped as a result of F-actin polymerization at the lamellipodium near
the given arc-length position, similar to the 1D model. Random fluctuations in
activator concentration can generate excitations by perturbing the system out of its
stable state [32, 63, 87, 104]. Denoting rate constants by symbols k and r , and σ ′ as
noise obeying Gaussian statistics with zero mean, the equations are:

∂A(x, t)

∂t
=

[
r ′

0 + r ′
2A(x, t)2

]
e− ∫ h(x,t)

−∞ F(x,y,t)/Fsat dy − k−
AA(x, t)

+DA

∂2A(x, t)

∂x2
+ σ ′(x, t), (40)

∂B(x, t)

∂t
= k+

B A(x, t) − k−
B B(x, t), (41)

∂F (x, y, t)

∂t
= γpol(x, t)k+

F B(x, t)δ[y − h(x, t)] − k−
F F (x, y, t) + vR

∂F (x, y, t)

∂y
.

(42)

Equations (40) and (42) are the two-dimensional extension of (33) and (35).
The negative feedback in the first term on the rhs of Equation (40) is now the
concentration measured by a line integral from the cell membrane towards the
cell middle. The first term on the rhs of Equation (42) describes accumulation of
F-actin as a result of polymerization at free barbed ends at the membrane. The
polymerization rate is reduced compared to the polymerization rate in the absence
of load by unitless reduction factor γpol(x) with values between 0 and 1 that we
describe in more detail below (γpol = 1 corresponds to polymerization under no
load, while γpol = 0 corresponds to stalling of polymerization). The second term in
the rhs of Equation (42) is the uniform F-actin disassembly rate. The last term in
Equation (42) describes constant retrograde flow (vR is a positive number). Similar
to the one-dimensional model, Equations (40) and (41) can be replaced by:

∂B(x, t)

∂t
=

[
r0 + r2B(x, t)2

]
e− ∫ h(x,t)

−∞ F(x,y,t)/Fsat dy − k−
AB(x, t)

+DA

∂2B(x, t)

∂x2 + σ(x, t). (43)

Here, unknown rate constant k+
B is absorbed into the new rate constants r0 and r2

and into the amplitude of the noise that is now σ0.
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Membrane Motion

The motion of the membrane at the leading edge was assumed to result from
the balance of forces due to actin polymerization, fpol , membrane forces due
to membrane tension and conserved cell surface area, fmem and frictional forces,
ff r , that result from the breaking of links between the cell membrane and the F-
actin network [13]. Applying force balance in the y-direction (assuming variation
of stresses in the x-direction can be neglected), and using units for fpol , fmem

and ff r of force per unit membrane length, one has for a given point on the cell
membrane:

fpol + fmem + ff r = 0. (44)

The viscous resistance of the surrounding medium to the movement of the cell
membrane is negligible compared to the forces of actin polymerization and
membrane load [24] so it is neglected in Equation (44).

Given a local concentration of free barbed ends, B(x, t), that push against the
membrane, the actin filament polymerization rate must adjust to satisfy Equa-
tion (44). Assuming that a constant fraction of the actin filament elongation is
converted into F-actin network expansion along the y direction, which occurs with
rate ∂h(x, t)/∂t+vR , there exists a force-velocity curve fpol[B(x, t), ∂h(x, t)/∂t+
vR]. The frictional force ff r is also a function of the network expansion rate and
the concentration of actin network links with the membrane [13]. The concentration
of these links can be assumed to be approximately constant. Alternatively, ff r

could be negligible compared to the membrane force fmem. In both cases, solving
Equation (44) for the membrane extension rate gives

∂h(x, t)

∂t
= γpol [B(x, t), fmem(x, t)] v0 − vR, (45)

where v0 is the network expansion rate at the leading edge in the absence of
resisting force, and function γpol(B, fmem), which can be evaluated at any point
along the leading edge as a function of time, is the parameter that appeared in
Equation (42). Observed maximum protrusion speeds for XTC cells are similar in
magnitude to retrograde flow speeds [87] so v0 ≈ 2vR . Forward membrane motion
requires a polymerization rate greater than the retrograde flow rate, γpol > 1

2 .
When γpol = 1

2 , the system is balanced and the membrane does not move, while
γpol < 1

2 leads to membrane retraction. In the remainder of this subsection we
provide expressions for the restorative membrane force, fmem(x) , which depends
on the shape and extension of the leading edge, and consider two possible functional
forms of γpol(B, fmem). Equations (42), (43), and (45), together with the following
definitions of fmem(x) and γpol(B, fmem), provide the complete model.

The membrane force includes two components: a global area-conserving force
and a component due to membrane curvature, fmem = farea + fcurv . Component
farea is directed towards the cell center and is the same for all x at any given time;
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it depends only on the average extension of the lamellipodium 〈h〉x measured from
a reference extension href :

farea = −kmem

(〈h〉x − href

)
. (46)

The constant kmem describes the stiffness associated with uniform increase of the
adhered cell radius. The curvature component of the membrane force depends on
the membrane curvature κ(x) = ∂2h(x, t)/∂x2 at position x:

fcurv(x) = Sκ(x), (47)

where S is a constant. As both positive and negative membrane curvatures are
possible, this force may point inwards or outwards with respect to the center of the
cell. The dependence of fcurv on the second derivative of h represents the effects of
membrane tension [31]. More complex dependencies such as 4th order derivatives
that represent elastic bending contributions are not included in Equation (47).

For a large enough lamellipodium segment, fluctuations in 〈h〉x at steady state are
very small. Thus farea settles down to an approximately constant value independent
of kmem and href such that there is no net lamellipodial extension, 〈γpol〉t ≈
〈γpol〉x ≈ 1

2 . The values of kmem and S are related to one another since they both
include the effects of membrane tension. However, since only changes in S will have
a significant impact in the results, kmem and S are treated as independent variables
for convenience.

Two functional forms of γpol were examined, corresponding to exponential
(Brownian-ratchet-like) and switch-like force-velocity relationships, respectively.
Both models assume that the membrane force is distributed equally among the free
barbed ends at the leading edge.

Ratchet Model. In this model each filament end grows with an exponential force-
velocity curve as would be expected by a Brownian ratchet mechanism [24, 69, 78],

γ ratchet
pol [fmem(x, t), B(x, t)] = e−αfmem(x,t)/B(x,t). (48)

In Equation (48) the polymerization rate decreases exponentially with the force per
filament, with a scaling factor α = δ/kBT = 0.66 pN−1, where δ = 2.7 nm
is the filament elongation length per actin monomer. The ratchet model dictates
a gradual change in the actin polymerization rate in response to changes in the
ratio of the concentration of free barbed ends and the membrane load. When fmem

is approximately constant, a large change in B is required to transition between
maximum protrusion rates (γpol = 1) and maximum retraction rates (γpol = 0).

Switch-like Model. Interactions among filaments and attachment to the mem-
brane [24] may give rise to nonlinearities in the force-velocity curve leading to
concave-down force-velocity curves as observed during gliding motility of kerato-
cytes [33, 48, 83], as well as stick-slip behavior (multiple branches in force-velocity
relationship) [17, 21, 103]. Ryan et al. [86] did not consider the more-complex
possibility of stick-slip behavior, but investigated a concave dependence given by
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a Hill function. In a phenomenological description, filament polymerization shifts
rapidly from being unencumbered to being stalled upon increasing load:

γ switch
pol [fmem(x, t), B(x, t)] = 1 − [αfmem(x, t)/B(x, t)]n

Kn
0 + [αfmem(x, t)/B(x, t)]n

. (49)

The value n = 10 was chosen to produce a steep curve and facilitate rapid switching
between protrusion and retraction. The constant K0 determines the location of the
inflection point of the Hill function, and was chosen to preserve the fixed point
of the model from the ratchet polymerization case (γpol = 1

2 at the same href

and fmem/B). This step-like change allows a small change in B to influence a
transition between near-maximum protrusion rates and near-maximum retraction
rates. Similar dependencies were also assumed in models of actin network growth
during protrusion of nerve growth cones [18] and keratocytes [2, 8].

5.3.2 Model Reproduces Features of Protrusion and Retraction Observed
in Cells

Both the ratchet and switch-like model produce results that are in qualitative
agreement with experiments, with the switch-like model exhibiting a sharper
behavior (using parameters in Table 3). This model of force dependence of actin
polymerization on membrane load, given by Equation (49), coupled with our
model of excitable actin dynamics leads to periodic protrusion and retraction
of the model membrane, accompanied by periodic increases in the amount of
F-actin (Figure 8A,B). The noise term in Equation (43) generates local spikes
of free barbed end concentration that spread across the leading edge, causing

Table 3 Parameters for two-dimensional model of lamellipodium protrusion and retraction.
Values for k−

F , k−
A , DA, same as Table 2.

Parameter Value Reference/Justification

Fsat 1000 μMμm Corresponds to 200 μM one-dimensional model in
Table 2.

k+
F 0.224 μMs−1 Corresponds to one-dimensional model with γpol =

1/2

r0 240 μm−1s−1 Reproduces period comparable to experiment for
switch-like model.

r2 0.1 μms−1 Corresponds to 60 μMs−1 of Table 2.

vr 0.05 μms−1 Typical retrograde flow rate in XTC cells [87].

n 10 Chosen for concave-down curve.

σ0 9.5 μm−1/2s−1/2 Same as the one-dimensional model.

αkmem 12 μm−2 Chosen for computational efficiency,

Results are not sensitive to this value.

αS 1 Corresponds to membrane tension S = 1.5 pN.
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membrane protrusion. Actin polymerization rates peak during protrusion, leading to
increases in F-actin at the membrane during those events. Accumulation of F-actin
subsequently causes a reduction of the barbed end concentration, leading to retrac-
tion. Retrograde flow of the actin network distributes the F-actin throughout the
lamellipodium over time. Combined with the periodic nature of the polymerization
rate, this flow causes striping in the kymographs of Figure 8B.

Since the average value of B corresponds to γpol = 1
2 , fluctuations in B cause

the system to switch between 0 (stall, resulting in retraction the speed of retrograde
flow) and 1 (maximum polymerization rate, which is about twice the retrograde flow
rate). The nonlinearity of the switch-like model around γpol = 1

2 leads to a sharper
change from protrusion to retraction as B fluctuates. Due to the weaker dependence
of γpol on the barbed end concentration B and membrane force fmem near γpol = 1

2 ,
the ratchet model produces smaller membrane distortions and membrane speeds
compared to the switch-like model.

The standard deviation of membrane position depends on the magnitude of the
membrane curvature force (Figure 8C). Membrane extension becomes small at the
highest value of αS, indicating the increasing resistance of membrane tension to the
formation of protrusions and retractions. The membrane shape and kymograph in
Figure 8A,B are very similar to those observed experimentally (Figure 4A,B) with
a value αS = 1.

Similar to the one-dimensional model, the two-dimensional model produces
short-range traveling waves of F-actin along the arc-length of the cell, which travel
along both directions similar to experiment. For both the switch-like and ratchet
models of actin polymerization, the cross-correlation of the total actin concentration
and the leading edge velocity is similar to that calculated for experimental measure-
ments of LifeAct-mCherry intensity and leading edge velocity in Figure 4E. The
model also reproduces the same sequence of peaks in the cross-correlation, velocity
autocorrelation, and LifeAct-mCherry intensity autocorrelation as in Figure 4E at
around 100 s, which indicates the period of these signals.

5.3.3 Response of Leading Edge to Membrane Force Perturbation

The two-dimensional model generates predictions for the response of lamellipodia
to changes in membrane forces. Circularly shaped XTC cells spread on a substrate
transition from a state of stable non-oscillating lamellipodia to a transient state of
large protrusions and retractions after treatment with blebbistatin [105]. During this
response, the adhered cell surface area increases while no change in the retrograde
flow rate within the lamellipodium can be detected. Ryan et al. [86] suggested that
the transient reduction in membrane tension after blebbistatin [57] arising from the
loss of contraction in the medial cell region, contributes to this behavior, in addition
to other changes in biochemical reaction rates.



250 D. Holz et al.

Time (s)

e f

c d

a b
M

em
br

an
e 

P
os

iti
on

 (
μm

)
<

σ h>
x 

(μ
m

)

αS

-250
0

1

2

3

4

5

6

7

8

0

10-50

0.5

1

1.5

2

2.5

10-4 10-3 10-2 10-1 100 101 102

250 500 750

–0.10

–0.5
Imaginary Comonents of the Eigenvalues

Real Comonents of the Eigenvalues

1000 s

30 mm

–0.4

–0.3

–0.2

–0.1

–0.05

0.05

1 2 3 4 5

1 2 3 4 5

q(mm–1)

q(mm–1)

0.10

Fig. 8 Results of the 2D lamellipodium (switch-like case). Reproduced with permission from [86]
(A) Snapshot for αS = 1 with intensity representing F-actin. (B) Kymographs of the F-actin for
the same simulation in A. (C) Average standard deviation of membrane position (average over
all positions in simulation at steady state, over 500 s) vs membrane curvature force amplitude
αS. (D) Simulation of lamellipodium response to global perturbation of membrane forces. Initial
conditions same as panel A. At t = 0 the membrane force is reduced globally and αS reduced
to 0.01. Simulations show the membrane expanding upwards, generating large protrusions and
retractions after the perturbation. (E) Average position of leading edge over a 5-μm-wide region
of panel D. (F) Linear stability analysis results for switch-like model. Top, real components of the
eigenvalues vs wavenumber q. Bottom, imaginary components of eigenvalues. Units of vertical
axes in 1/s.

A simulation of a lamellipodium undergoing a perturbation in membrane forces
is shown in Figure 8D. Initial conditions were chosen such that the lamellipodium
does not exhibit large protrusions and retractions (some fluctuations still remain).
When the membrane curvature force and membrane area-conserving force are
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reduced simultaneously, the leading edge extends by a few μm and large protrusions
and retractions develop, similar to the experiment in [105] (Figure 8E).

In conclusion, both the one- and two- dimensional models predict that the
lamellipodium can alternate between non-oscillating and oscillating states through
perturbations that influence biochemical rates (Figure 7C) or membrane forces
(Figure 8D).

5.3.4 Linear Stability Analysis

To interpret the numerical results, linear stability analysis was performed on
Equations (42), (43), and (45) without noise, to study the stability of homogeneous
sates in parameter space. The addition of noise during simulation then generates
spontaneous excitations by perturbing the stable system. Defining Ftot (x, t) =∫ h(x,t)

−∞ F(x, y, t)dy, Equation (42) becomes

∂Ftot (x, t)

∂t
= γpol(x, t)k+

F B(x, t) − k−
F Ftot (x, t). (50)

Assuming a homogeneous steady state (at which γpol = 1
2 and using href = 0

μm as the reference point) we find fixed points, B(x, t) = B∗, Ftot (x, t) = F ∗,
and h(x, t) = h∗. These values can be calculated numerically after setting the
time derivatives in Equations (43) (without noise), (45) and (50) equal to zero.
Considering sufficiently small perturbations around the fixed points and Fourier
transforming x → q, one has:

⎛

⎝
Ftot

B

h

⎞

⎠ =
⎛

⎝
F ∗
B∗
h∗

⎞

⎠ + J

⎛

⎝
δF

δB

δh

⎞

⎠ . (51)

The Jacobian J for the switch-like model is:

J =

⎛

⎜⎜
⎝

k+
F (n + 2) /4 −k−

F

nk+
F (αkmem−αSq2)

4K0

2B∗r2e
−F ∗/Fsat − k−

ADAq2 −(
r0+r2B

∗2
)

Fsat
e−F ∗/Fsat 0

vRn/(2B∗) 0
vRn

(−αkmem−αSq2
)

2B∗K0

⎞

⎟⎟
⎠ ,

(52)

where K0 = αkmemh∗/B∗ and was chosen to preserve the fixed point between both
force-velocity models, so that γ switch

pol = γ ratchet
pol = 1

2 occurs at the same fixed point
(B∗, F ∗, h∗) in both models. The Jacobian for the ratchet model can be calculated
similarly.

Solving for the eigenvalues of J , one finds now three instead of two wave-number
dependent eigenvalue. Similar to the one-dimensional model, the signs of their real
and imaginary parts result in three Cases: (I) non-oscillatory behavior, (II) unstable
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oscillatory behavior, and (III) a stable oscillatory behavior. Because the system gives
bounded solutions, both cases II and III produce oscillatory behavior with a period
given approximately by τ = 2π/Im[λ(q)]. Similar to the one-dimensional model,
this analysis showed that parameters can be chosen that result in the system being
close to the boundary between linearly stable and unstable fixed points.

The stability of the homogeneous state depends on the wavenumber. The real and
complex components of the eigenvalues as a function of wavenumber for the switch-
like model (for the reference model parameter values) are shown in Figure 8F.
For small wavenumbers, the eigenvalues correspond to Case III. With increasing
wavenumber, the system progresses into Case I.

5.4 Discussion

This section highlighted how the mechanical and biochemical interactions combine
nonlinearly to generate fluctuations in actin polymerization that drive lamellipodial
protrusions. The near-constancy of retrograde flow in XTC cells allowed focusing
on the kinetics of actin polymerization and force balance at the membrane.

Fluctuations in actin polymerization rate was also the basis of a model of waves
in keratocytes [8]; however, these authors did not model explicitly the process
of local membrane protrusion. The changing density of free barbed ends in the
model of [8] is due to VASP which localizes on barbed ends, in the cytosol
or in mature adhesions. A cooperative force-velocity curve similar to the switch
model was implemented; however, unlike the model discussed in this chapter, a
global constraint on membrane tension allowed only one protrusion to occur in
the membrane at a time. Another related model where protrusions are driven by
nucleation of new filaments is the one-dimensional model in [109, 110]. The actin
network in this model consists of a semiflexible region close to the membrane and
a gel like region consisting of cross-linked filaments further away.

Membrane protrusions coupled to an excitable biochemical network have also
been studied in the context of Dictyostelium morphodynamics [41, 94]. These stud-
ies used versions of the phase field method to track movements of cell boundaries.
In [94], the positive and negative feedbacks were due to PIP2 phosphorylation
and PIP3 dephosphorylation while actin was not explicitly modeled. The model
in [41] included a slow excitable system, reflecting the behavior of the signal
transduction excitable network and a fast oscillatory system, reflecting the behavior
of the cytoskeletal oscillatory network. Future modeling work could investigate in
more detail the similarities between Dictyostelium and animal cells, combining
the models of signal networks with models of cytoskeletal flows, moving cell
boundaries and models of biophysical regulation of actin polymerization [37, 89].
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