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Preface

The English philosopher George Henry Lewes once stated, “A cell is regarded as
the true biological atom.” While it is true that biological cells are most often part of
a whole, they are also extraordinary entities whose individual roles allow the whole
multicellular organism to function. Many individual cellular functions are based on
the ability of the cell to move, either from one part of the multicellular organism
to another or by changing shape. Several canonical examples of cell movement
include remodeling of damaged tissue by fibroblasts in wound healing, neutrophil
and macrophage localization to an infection in immune response, and in more dire
situations, the detachment of a tumor cell from a primary tumor and its relocalization
to another portion of the body in cancer metastasis. These few examples illustrate
the importance of understanding the process of cellular motility.

The movement of individual cells is a very complex process. In order to move, a
cell must be able to locally deform itself by reorganizing its cytoskeleton, attach to
its surrounding microenvironment, sense the biochemical and mechanical properties
of this microenvironment, and adjust intracellular processes accordingly. The ability
to perform these steps requires the coordination of many intracellular components
and processes, and despite huge advances in experimental methods, mathematical
modeling has continued to be essential in understanding how the coordination
is achieved. The advances in experimental techniques over the last decade have
provided modelers with new information that has been incorporated into models,
and as a result, mathematical models have grown increasing complex. In addition,
new experiments have allowed models to focus more on specific cell types and more
detailed processes within cells.

In this special volume, we focus on highlighting recently developed modeling
approaches and applications of models to better understand the coordination of
intracellular processes. The intended audience of this special volume are graduate
students and researchers that have a familiarity with some areas of modeling in
cell motility and wish to expand their level of understanding of other modeling
approaches. We have organized the book according to a flow of topics that we felt
was appropriate and describe below. However, the chapters do not have to be read
in any particular order.
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viii Preface

We aim to present a breadth of models applied to a variety of cell types. One
of the most widely studied applications of cell motility is cancer, and two of the
chapters in this book discuss modeling cell motility in cancer. Shuttleworth and
Trucu describe a model in which a continuum approach with a free boundary is used
to track tumor progression on an extracellular matrix (ECM) of varying density.
It has been established that heterogeneity in tumor cell types can play a critical
role in tumor growth and persistence; Shuttleworth and Trucu address heterogeneity
in their continuum model. Kim et al. discuss multiple modeling approaches that
can be used to better understand mechano-chemical interactions in glioblastoma
multiforme, a highly aggressive brain cancer. One novel methodology described in
Kim et al. is the hybrid model, in which individual cells are modeled as deformable
ellipses, while a continuum approach is used to model the evolution of critical
biochemical components. The mechanical interaction of individual cells with their
microenvironment has been shown to play a critical role in signaling in cancer and
other cell types, and He and Jiang write about a general method that can be used to
model the interaction of individual deformable cells with a rigid three-dimensional
ECM.

Statistical methods play a critical role in modeling cell movements. From
comparison with experimental data, researchers often know what the output of a
model should be. However, it is often difficult to determine the input parameters that
are needed to obtain a given output. Furthermore, if input parameters are available, it
is not always clear how accurate these inputs are. Bowman and coworkers describe
a highly parallelizable transitional Markov chain Monte Carlo method that helps
address these questions. How is the movement of an individual (particle, cell, or
animal) related to the movement of the collective (membrane, tissue, population)
is another question of interest. Painter and Hillen provide an introduction of how
position-jump and velocity-jump processes, which describe the random motion
of individuals, can lead to a continuum description at the population level. Xue
adds to this introduction by describing a model in which the velocity-jump process
integrates intracellular signaling in the context of bacterial cell movement.

While much of the modeling work focuses on eukaryotic cell motility and cell
crawling, cells can also translocate via flagellar movement. A canonical example
of this is the sperm cell. Simons and Olson provide a review of various modeling
frameworks used to understand sperm motility. Also, while some researchers focus
on modeling whole cell movement, modeling subcellular components that are
required for a cell to move is also necessary. Holz et al. review models of the most
fundamental component of eukaryotic cell motion, actin in the lamellipodium. This
chapter focuses on continuum models that describe the transport and reaction of
actin and its regulatory proteins within a single cell. Cell movement encompasses
more than cell crawling. A cell’s motile machinery is highly involved in other
processes such as membrane trafficking. Vasan and coworkers review models that
shed light on the interaction of cytoskeletal movements and protein machinery
during endocytosis. They focus on models that describe a portion of the cell
membrane that is undergoing an endocytic event.



Preface ix

In the nine chapters included in this special volume, we describe stochastic,
deterministic, continuum, and discrete modeling approaches. We include models
of a variety of individual cell types as well as collective cell motion. Our hope is
that the reader can get a sense of the different techniques used to understand various
aspects of cell movement, as well as the appropriate uses, benefits, and limitations
of a given methodology. At the same time, we recognize that the work on modeling
cell movement is extensive, and our aim in this special volume is to provide only
a small subset of the recent methodology in modeling of cell motility and of the
application of these models.

We would like to acknowledge the various people that over the years have helped
us cultivate our desire to understand the processes involved in cell movements, most
notably Hans Othmer, who has served as a very influential mentor to both of us. We
also thank the authors for working with us in making this volume possible and the
reviewers for their thoughtful comments. The creation of this volume was partially
supported by a grant from the Simons Foundation (#429449 to Nicoleta E. Tarfulea).

Saint Paul, MN, USA Magdalena A. Stolarska
Hammond, IN, USA Nicoleta E. Tarfulea
June 2018
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Two-Scale Moving Boundary Dynamics
of Cancer Invasion: Heterotypic Cell
Populations’ Evolution in Heterogeneous
ECM

Robyn Shuttleworth and Dumitru Trucu

Abstract Cancer cell invasion, recognised as one of the hallmarks of cancer, is
a complex process involving the secretion of matrix-degrading enzymes that have
the ability to degrade the surrounding extracellular matrix (ECM). Combined with
cell proliferation and migration, and changes in cell-cell and cell-matrix adhesion,
the tumour is able to spread into the surrounding tissue. The multiscale character
of this process is highlighted here through the double feedback link between
the cell-scale molecular processes and those occurring at the tissue level. In this
chapter, we build on the multiscale moving boundary framework proposed in Trucu
et al. (Multiscale Model Simul 11(1):309–335, 2013) by developing the modelling
of the tissue-scale dynamics to include cell-cell and cell-matrix adhesion in a
heterogeneous cancer cell population. To that end, we consider here two cancer
cell sub-populations, namely a primary tumour cell distribution and a second cancer
cell sub-population that arises due to mutations from the primary tumour cells and
exhibits higher malignancy. We explore the multiscale moving boundary dynamics
of this heterogeneous tumour cell population in the presence of cell-adhesion at the
tissue-scale and matrix degrading enzyme molecular processes considered at cell-
scale. Using computational simulations we examine the effect of different levels of
adhesion and matrix remodelling on the invasion of cancer cells.

1 Introduction

Cancer invasion of tissue is a complicated, multiscale process which plays an
essential role in tumour progression. Through a combination of adhesion, secretion
of various matrix degrading enzymes, right from the early stages, cancer cells
acquire the ability to spread locally and invade the surrounding tissue; this is further
exacerbated by later secretion of growth factors that lead to the angiogenesis process

R. Shuttleworth (�) · D. Trucu
Division of Mathematics, University of Dundee, DD1 4HN Dundee, Scotland, UK
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2 R. Shuttleworth and D. Trucu

that paves the way for metastatic spread, leading to the creation of secondary
tumours at different locations in the human body [17]. These new colonies are
known as metastases, or secondary tumours, and are the cause of 90% of human
cancer deaths [10]. The most common site for breast cancer metastasis, for example,
is the bone, followed by the liver and lungs [31]. Once a tumour has invaded the bone
or any of these other vital organs, it is fatal and cannot be cured, and only treated
by various forms of cancer therapy such as surgical intervention, chemotherapy and
radiation [28].

1.1 Biological Background

Recognised as one of the hallmarks of cancer [17], cancer invasion is a key process
in tumour development that uses a combination of cell-cell and cell-matrix adhesion,
alongside the secretion of proteolytic enzymes to degrade the surrounding tissue
and this way expand on the affected area. This enables the cells at the invasive
edge of the tumour to colonise new, initially healthy regions of the peritumoural
tissue, where in the first instance there is no restriction in nutrients or changes in
tissue structure. The ultimate success of invasion relies heavily on the capabilities
of the other hallmarks of cancer [17], namely the ability to sustain proliferative
signalling, to evade growth suppressors, to enable limitless replicative potential, to
induce angiogenesis and to resist cell death. After a decade of further research on
cancer, a wider understanding of its processes sparked the addition of another four
hallmarks [18] to the original six, namely the ability to avoid immune destruction,
the ability to deregulate cellular energetics, tumour-promoting inflammation, along
with genetic instability and mutation.

A malignant tumour is comprised of a complex community of cells (fibroblasts,
endothelial cells, stromal cells), all of which are mixed in with the extra-cellular
matrix (ECM). The extra-cellular matrix is a key biological structure that not
only provides support to surrounding cells and tissues [21], but also acts as a
framework in which the cells can communicate and exercise spatial movement.
The formation of the ECM is an essential process, particularly in wound healing
and tumour invasion. The ECM is comprised of a variety of secreted proteins
which can vary depending on the type of tissue or the location in which we are
investigating. Such components include collagen fibres and elastin which provide
necessary structure and elasticity of the ECM, glycoproteins such as fibronectin,
laminins and proteoglycans which bind to the collagens and to receptors on the cell
surface.

Cells bind to the ECM through cell-matrix adhesion [23]. This process is regu-
lated by a family of specific molecules on the cell surface known as cell adhesion
molecules (CAM) that enable the binding process to various ECM components.
These give rise to conditions in which the tumour microenvironment contributes
towards cell migration within the surrounding tissue. The migratory character of
the invading cells is further strengthened through the loss of cell-cell adhesion that
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causes these particular tumour cells to become even more motile and spread further
in the tissue [9]. An important role in cell-cell adhesion is played by the cell-cell
signalling pathways based on the interactions between the distribution of calcium-
sensing receptors and Ca2+ ions from the extracellular matrix [20]. In normal,
healthy cells, this calcium-dependent cell-cell adhesion process is mediated by a
large family of transmembrane glycoproteins known as cadherins. Cadherins are
split into many groups, the most relevant being known as E-cadherins. In order for
normal cellular adhesion to take place, E-cadherin will form binds with proteins
found inside the cell known as catenins, most typically the β-catenin, forming an
E-cadherin/catenin complex. Any alteration to the function of β-catenin will result
in the loss of ability of the E-cadherin to initiate cell-cell adhesion [32]. The direct
correlation between this calcium-based cell signalling mechanism and the regulation
of E-cadherin and β-catenin was first discovered in colon carcinoma [7]. This loss of
cell-cell adhesion paired with a quick spread of the cells due to enhanced cell-matrix
adhesion [6] enables these cancerous cells to invade the surrounding tissue [12].

Finally, a key player in the invasion process is the over-production and secretion
of proteolytic enzymes. These enzymes can be categorised as matrix-degrading
enzymes (MDEs) with such sub-groups as matrix metalloproteinases (MMPs)
[26] and the urokinase-type plasminogen activator (uPA). The interaction of these
enzymes with the ECM components results in the degradation and remodelling of
the ECM. MDEs have the ability to open migratory pathways and alter cell-cell and
cell-matrix adhesion properties. One of the first MMPs to interact with the ECM
is the membrane-tethered MT1-MMP. Once in the stroma, MT1-MMP will begin
to cleave collagen type I into smaller pieces. As well as cleaving, MT1-MMP has
another role in that it can activate pro-MMP-2. Molecules of pro-MMP-2 present
in the extra-cellular matrix are recruited by the cancer cells and cleaved by MT1-
MMP to promote MMP-2 activation. Once activated, MMP-2 is then available to
breakdown the previously cleaved smaller pieces of collagen type I, as well as
degrade the surrounding fibres in order to create a path in which the cancer cells
can advance.

1.2 Mathematical Models of Cancer Invasion

The past few decades have witnessed great interest in the mathematical modelling
of cancer invasion [5, 8, 11, 34]. There are many models which investigate different
aspects of cancer invasion, particularly using in vitro models; however, the in vivo
process is much more complicated and less understood. In vivo models capture the
complexity of tumour spread; however, it is very difficult to visualise the individual
steps of invasion. On the other hand, in vitro models are easier to construct and
they allow us to control a lot of the experimental values we obtain and this allows
for easier quantitative analysis. One disadvantage to in vitro models however is the
inability to see the global effect of invasion, i.e., in vitro models only contain a
partial expression of the interactions between the cancer cells and the ECM [22].
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Great effort has been made to understand the interactions that are occurring during
the invasion process, and the experiments, both in vivo and in vitro, have helped to
advance this knowledge. Links between cell migration processes and MMPs that are
produced by the cancer cells have been discovered [24], as well as links between cell
migration and the structure of the extracellular matrix [33]. There has been many
attempts to model these interactions, using both continuum and discrete models;
however, these are “one-scale” based models and do not consider the overall aspects
of a multiscale invasion model.

The model proposed in [3] describes the invasion of tissue by cancer cells whilst
considering the tumour cells, tissue (extracellular matrix) and matrix-degrading
enzymes. There are two models proposed, the first a continuum model which
considers the tumour mass as a whole, and a second individual-based model to
investigate the invasive effects on the level of individual cells. The continuum model
here describes how the tumour cells respond to haptotactic effects produced within
the ECM. It has been shown that the tumour cells will split into two groups, one
driven by random migration and the other spurred by haptotaxis. The individual-
cell based model confirms this and it is concluded that haptotaxis is important for
cancer cell invasion.

The first continuum approach for modelling cell-cell adhesion was proposed in
[4] which considers the directed movement of cells in response to the adhesive
forces made through binding. The PDE model in [3] was used as a basis for the
models in [16] where a continuum model of cancer cell invasion was derived
which accounts for both cell-cell and cell-matrix adhesion. These models used
non-local terms for both cell-cell and cell-matrix adhesion and they introduced the
notion of adhesive flux and cell sensing radius, which was to detect the immediate
spatial environment. Analytical results of these models were proved by [12] using
a system of nonlinear, non-local partial integro-differential equations describing the
spatio-temporal dynamics of cancer invasion. The behaviours of cancer cells under
different adhesion coefficients were stated.

A model describing the mesenchymal motion of cells in a fibre network was
developed by [19]. Mesenchymal migration involves significant matrix remodelling,
where the cell will leave a trail of aligned fibres along its path. Both mesoscopic
(individual based) and macroscopic (population based) models were described
and these both form a good foundation for modelling on heterogenous orientated
environments. This approach was continued by [25] using an individual-cell based
model where two different forms of cell migration were investigated. Here it is
shown that in terms of mesenchymal migration, the actions of both contact-guidance
and ECM remodelling are sufficient processes for invasion to occur.

All of these models have been proposed at a single scale level and do not
incorporate a multiscale approach. Multiscale modelling of cancer invasion has only
recently become an area of interest, where the first instance can be seen in [2].
Here, three scales were identified; extracellular, cellular and subcellular, and the
effect of the microenvironment on tumour development was explored. It is shown
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how the three different biological scales can overlap and work together to form a
more concise model of tumour invasion. Multiscale modelling was then utilised in
[27] where focus lay on the interactions between E-cadherin and β-catenin and how
cell migration may control cell adhesion was investigated. Both intracellular and
extracellular dynamics were considered, with the conclusion that the tumour cells
themselves are facilitating progression.

More recently, a multiscale moving boundary method of tumour invasion was
proposed in [29] using three scale modelling; macroscale occurring at the tissue
level, microscale occurring at a cellular level and a naturally arising third scale
which is used to characterise the invasive boundary of the tumour. We propose a
model which builds on this original framework [29] in order to incorporate the
adhesive nature of cancer cells [15] with both themselves and the surrounding
microenvironment. This multiscale modelling will focus on exploring the evolution
of tumour morphology whose importance is justified by clinical considerations,
namely that it is not necessarily the overall size but the morphology of the tumour
that creates huge surgical challenges. This is mainly due to the deficiencies in all
current imaging techniques, which are only able to capture between 65% and 90%
of the tumour, enabling the real possibility of not resecting the true extent of the
tumour during the surgical process by leaving behind small but complicated leading-
edge tumour morphological patterns that are not captured by the imaging, which
subsequently lead to an aggressive tumour relapse.

2 The Multiscale Modelling Approach

We will now briefly describe the multiscale framework initially introduced in [29]
for modelling cancer cell invasion and then develop the macroscopic dynamics
incorporating cell-adhesion. Cancer invasion occurs at many spatial and temporal
scales. The multiscale framework introduced in [29] was developed to consider
detailed interactions taking place at the cellular- and tissue-scales alongside the
linking between these different scales.

Within a maximal environmental tissue cube Y , at initial time t0,Ω(t0) represents
the snapshot of the tumour domain where the combined distributions of cancer cells
c1(t, x) and c2(t, x) exercise their dynamics, with c1 and c2 representing the sub-
populations 1 (primary tumour cells) and 2 (representing mutated cells), and their
combined vector being denoted by c(t, x) = [c1(t, x), c2(t, x)] (as illustrated in
Figure 1). The tumour cell population exercise their activity within a supporting
density of ECM that is denoted here with v(t, x), and for compact notation, we will
consider the combined vector of cancer cells, c and ECM, v, defined as

u(t, x) := (c(t, x)T , v(t, x))T .
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Fig. 1 Schematic diagram
showing the spatial cubic
region Y centred at the origin
in R

3. The solid green lines
represent the family of
macroscopic εY cubes placed
on the boundary of the
tumour ∂Ω(t0), and the pale
pink region represents the
initial mass of cancer cells
Ω(t0).

The spatial considerations play an important role in this model. We assume that
the concentration of MDEs occupy a negligible amount of space within the tissue
scale tumour, and similar to the approach in [15], we shall define the volume fraction
of occupied space as

ρ(t, x) ≡ ρ(u(t, x)) := ϑvv(t, x)+ ϑc
2∑

n=1

cn(t, x)

where ϑv represents the fraction of physical space occupied by the ECM and ϑc is
the fraction of physical space occupied by cn.

However, while for the purpose of this work, at the tissue scales (macroscale)
we consider only cancer cells and ECM, the crucial activity of the MDEs and their
dynamics is described at cell-scale (microscale) by accounting for spatial dynamics
of proteolytic processes that occur along the invasive edge of the tumour.

2.1 Macroscale Dynamics

The dynamics of the two cell populations are similar in flavour. In the presence
of a logistic proliferation law, per unit time, the primary tumour cells c1(t, x) are
assumed to exercise spatial movement that is a combined effect of local Brownian
movement (approximated here through diffusion) and cell adhesion, and lose some
of the cell population through certain level of mutation towards a second more
motile and aggressive population c2(t, x). Once mutations have started occurring,
under the presence of a logistic proliferation law, population c2 begin its own
dynamics, and so per unit time, this is also experiencing a spatial redistribution
dictated by a local Brownian movement (approximated again through diffusion) and
cell adhesion. Therefore, mathematically, the dynamics can be re-casted as
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∂c1

∂t
= ∇ · [D1∇c1 − c1A1(t, x,u(t, ·))] + μ1c1(1 − ρ(u))−M1(t,u)c1,

∂c2

∂t
= ∇ · [D2∇c2 − c2A2(t, x,u(t, ·))] + μ2c2(1 − ρ(u))+M1(t,u)c1.

(1)

where: Dn, n = 1, 2 are the non-negative diffusion coefficients; An(t, x,u(t, ·))
is the non-local term accounting for cell adhesion incorporating both cell-cell and
cell-matrix adhesion; μn describes the proliferation coefficient, here; and M1 the
final term describes the mutation from c1(t, x). To account for the physical space
available and avoid overcrowding, we adopt here the proliferation term 1 − ρ(u)
introduced in [16]. Furthermore, the non-local term An(t, x,u(t, ·)), known as the
adhesive flux, has a form of the type proposed in [15, 16], and is given as

An(t, x,u(t, ·))

= 1

R

∫

B(0,R)

n(y) · K (||y||2) · gn(t,u(t, x + y))χ
Ω(t)
(x + y) dy, n = 1, 2.

(2)
This describes the motion of cells due to both cell-cell and cell matrix adhesion,
which occurs as a result of the forces produced when adhesion bonds are both
produced and broken. Here R > 0 is the sensing radius of cell-cell and cell matrix
interactions, B(0, R) ⊂ R

2 denotes the usual ball centred at zero and of radius R,
and χ

Ω(t)
(·) represents the characteristic function of Ω(t). At any time instance t ,

for any x ∈ Ω(t), the set x + B(0, R) is known as the sensing region on which all
the cells distributed at x, interact and form or break adhesion bonds with the cells
located at y ∈ B(x, R)∩Ω(t). Further, n(y) denote the unit vector pointing from x
to x + y, which is given by

n(y) :=
{
y/||y||2 if y ∈ B(0, R) \ {(0, 0)},
(0, 0) otherwise.

(3)

The radially dependent spatial kernel K (·) enable us to account for spatial
distribution of the cells for both cell-cell and cell matrix adhesion within the
sensing region B(x, R), and in the simulations we specifically use the form of K (·)
proposed in [16], namely

K (r) := 1 − r

R
, (4)

where r is the radial distance between the centre point x and y ∈ B(x, R).
This implies that for points in the sensing region B(x, R), as the distance r from
x increases, the influence on adhesion-driven migration decreases. The adhesion
function g(t,u(t, x+ y)) describes the local cell-cell and cell matrix adhesion. This
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explores the adhesion velocity of the cells at x is in the direction at which the cells
can form the most bonds both among themselves and with components of the ECM
within the sensing region around x. Here, gi(t,u(t, x + y)), i = 1, 2 denotes the
i-th component of

g(t,u) = [Sccc + Scvv] · (1 − ρ(u))+, (5)

and represents the cell-cell and cell matrix adhesion properties for population i,
which are explicitly enable via the associated cell-cell and cell-matrix adhesion
matrices, Scc, Scv ∈ R

2,2, given by

Scc =
[
Sc1,c1 Sc1,c2

Sc2,c1 Sc2,c2

]
and Scv =

[
Sc1,v 0

0 Sc2,v

]
.

Furthermore, the overcrowding of the cell population and ECM is avoided
through the term (1 − ρ(u))+ := max{(1 − ρ(u)), 0}, which ensures that if a point
in the domain is already overcrowded (with cells and/or ECM), then that space point
does not contribute towards biasing the tumour cells migration due to adhesion.

As a tumour becomes increasingly malignant, it can obtain the ability to mutate
to a more aggressive form of cancer cell. For this reason, M1(t,u) represents the
mutation rate from population 1 to population 2. This mutation term is modelled as
in [1, 15], namely

M1(t,u) = δH(t − t1,2) ·H(v(t, x)− vmin),

whereH(·) denotes the usual Heaviside function and explore the fact that mutations
from the primary tumour occur at a rate δ > 0 after a certain time t1,2 and in the
presence of a minimal level vmin of ECM.

Within the tissue level, we must account the activity of the surrounding envi-
ronment of the tumour, the extra-cellular matrix. Per unit time, the ECM exhibits
degradation in the presence of cancer cells, along with a general remodelling of
itself. Thus, this dynamics can be described mathematically as

∂v

∂t
= −γ c + ω(1 − ρ(u)), (6)

where γ is the degradation coefficient multiplied by the current cancer cell
distributions, and ω is the remodelling constant; here the matrix remodelling is
controlled by the volume filling factor (1 − ρ(u)). Biological evidence suggests
that the remodelling of the ECM is not only an essential role of development and
wound healing, but also in the development of cancer, contributing to processes such
as metastasis and tumour cell invasion [14].
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Fig. 2 Schematic of macro-micro interactions.

2.2 Top-Down Tissue- to Cell-Scale Link and the Resulting
Microscopic Dynamics

As discussed previously, cancer cell invasion is a multiscale process in which the
micro-dynamics of the matrix-degrading enzymes (MDEs) are responsible for the
degradation of the ECM. The macroscopic processes defined by the equations (1)
and (6) give rise to a microscale dynamics occurring along the invasive edge of the
tumour, which, in turn, causes the macroscale boundary of the tumour to advance
further into the healthy tissue, as schematically illustrated in Figure 2.

The MDEs, such as matrix metalloproteinases (MMPs) of type 2, are produced
within the cancer cells and distributed on the outer proliferating rim of the tumour,
with their activity occurring within the area directly surrounding the tumour.
Specifically, during a time interval [t0, t0 + Δt], the cancer cells arriving within
the outer proliferating rim of the tumour secrete these MDEs giving rise to a source
of such proteolytic enzymes that then exercise a cross-interface transport process
within a cell-scale (microscale) size neighbourhood of ∂Ω(t0), this way getting to
interact directly and as a consequence significantly alter the ECM density that it
meets in the peritumoural region. Hence, proceeding as described in [29], we denote
by ε > 0 the size of the microscale and we explore this MDEs micro-dynamics
on an appropriate ε−size neighbourhood of ∂Ω(t0) given as the complete cover
enabled by a union of half-way overlapping micro-cubes εY centred at the tumour
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interface. Thus, while assuming that we have no source for the cell-scale dynamics
being formed outsideΩ(t0), at each instance τ ∈ [0,Δt] of the microdynamics and
at each given microscale point y ∈ εY ∩ Ω(t0) the source of MDEs is arising as
a collective contribution of the cells from the outer proliferating rim that is located
within a given distance δ > 0 with respect to y. Therefore, denoting the source by
fεY (y, τ ), this is mathematically formulated as

1. fεY (y, τ ) = 1

λ(B(y, δ) ∩Ω(t0))
∫

B(y,δ)∩Ω(t0)
α1c1(x, t0 + τ)

+ α2c2(x, t0 + τ)dx, y ∈ εY ∩Ω(t0),

2. fεY (y, τ ) = 0, y ∈ εY \ (
Ω(t0)+ {z ∈ Y | ||z||2 < γ }),

(7)

where λ(·) is the standard Lebesgue measure on R
2, B(y, δ) := {x ∈ Y | ||y −

x||∞ ≤ δ}, αi , i = 1, 2 are MDEs secretion rates by each of the two cell sub-
populations, and γ is a small parameter enabling us to capture a sharp but smooth
decay to 0 of the MDEs source immediately outside the tumour boundary.

Finally, as the ε-size neighbourhood of ∂Ω(t0) given by the bundle of half-
way overlapping micro-cubes εY enables a decoupling of the micro-dynamics on
individual εY s, in the presence of the source (7), we assume in this work that
the MDEs are simply locally diffusing. Hence, denoting the density for MDEs by
m(y, τ), in each εY the micro-dynamics exercised by the MDEs is described by:

∂m

∂τ
= Δm+ fεY (y, τ ), y ∈ εY, τ ∈ [0,Δt]. (8)

Macroscopic boundary movement induced by microscale. During their
micro-dynamics, the MDEs interact with the ECM components in the peritumoural
region captured by each εY . As described in [29], according to the spatial
distribution of their advancing front on εY \ Ω(t0), the MDE cause specific
spatial patterns of degradation of the ECM components that determine completely
a direction of movement η

εY
and displacement magnitude ξ

εY
for the tumour

boundary progression within each εY . As illustrated schematically in Figure 3,
this choreographic movement of the tumour boundary captured by the micro-
domain εY is represented back at macroscale through the relocation of the tumour
boundary midpoint x∗

εY , which is located at the intersection of ∂Ω(t0)∩ εY with the
median of εY perpendicular to the side of εY inside the cancer region, this being
chosen as the inner most point in this intersection with respect to the cancer
region. Thus, following the derivation in [29], using an appropriately chosen
dyadic decomposition of εY in a union of small dyadic cubes {Dl}i=1,p

εY
, with

p
εY

:= 2kεY , that ensure uniformity of the approach across all the boundary
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Fig. 3 Schematic of one macro-micro stage in the multiscale process. The projected εY cube from
macro- to microscale with boundary point reallocation occurring through the micro dynamics and
the new relocated boundary position projected back into the macroscopic scale at the tissue level.

micro-domains εY , the direction of movement η
εY

and displacement magnitude ξ
εY

for the point x∗
εY are determined mathematically, and are given by

ηεY = x∗
εY + ν

∑

l∈I ∗
εY

(∫

Dl

m(y, τf ) dy

)
(y∗
l − x∗

εY ),

ξεY =
∑

l∈I ∗
εY

∫
Dl
m(y, τf ) dy

∑
l∈I ∗

εY

∫
Dl
m(y, τf ) dy

|−−−→
x∗
εY yl |.

where, I ∗
εY are the family of indices of the dyadic cubes that track the tip of the

advancing MDEs front in εY , and yl represents the barycentre of Dl for any l ∈
I ∗
εY .
Although a movement direction and displacement have been derived for each

x∗
εY , movement will only occur if the ECM degradation is of a certain local strength.

The strength of this local ECM degradation is explored through the transitional
probability q∗ defined in [29] and it is a quantification of the amount of MDE
in εY \ Ω(t0) relative to the total amount of MDE in the micro domain εY .
Therefore the midpoint x∗

εY will only move to a new spatial position if and only
if q∗(x∗

εY ) := q∗(εY \ Ω(t0)) exceeds a certain threshold ωεY ∈ (0, 1) that
captures local peritumoural tissue characteristics. Hence, we find that the new
invasive boundary ∂Ω(t0 + Δt) will be an interpolation of the new locations for
the points that exercised the movement and those boundary points x∗

εY that did not
move. The invasion process will continue on the newly expanded domainΩ(t0+Δt)
with a new set of macro-micro stage dynamics on the next multiscale time step
[t0 +Δt, t0 + 2Δt]. The initial conditions on the expanded domainΩ(t0 +Δt) are
determined by the solution at the final time of the previous invasion step, as detailed
in [29].
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2.3 Summary of the Global Multiscale Model

At each stage of the invasion process, the macroscale dynamics govern the spatial
distributions of both cancer cell populations and the ECM density. The initial
distribution of cancer cells Ω(t0) induces a source of MDEs (7) on the boundary at
each microdomain εY . The microscopic dynamics induce a change in the boundary
position as illustrated in Figure 3. This movement is then translated back into the
macroscale, where the new spatial positions of the boundary x̃∗

εY are interpolated
with the spatial positions that could not be moved and a new invading edge is
obtained as illustrated in Figures 2 and 3. The next macro-micro stage will then
proceed using the solution from the previous step as the new initial conditions
and invasion will continue. Once the invasion process has advanced, mutations will
begin to occur between cell populations. The mutated population c2 carries a higher
malignancy than population c1, thus it secretes a higher volume of MDEs, which in
turn will allow the second population to advance quicker.

3 Numerical Approaches and Simulations

The numerical scheme developed for the multiscale model described above is
structured on two big components corresponding to the macro- and microscales pro-
cesses involved, namely: (1) a finite differences based macro-solver that addresses
the macro-dynamics; and (2) a finite element micro-solver exploring the micro-
dynamics that is based on a standard approach involving bilinear shape functions
on a squared mesh for each micro-domain. As the macro-solver involves a special
treatment for the adhesion terms An, in the following we will highlight the main
features that this involves.

3.1 Brief Description of Scheme Developed for the Macroscale
Solver

As already mentioned above, an important aspect within the macroscopic part of
our solver is the numerical approach for the adhesive fluxes An (that explores the
effects of cell-cell and cell-matrix adhesion of population cn), which involves off-
grid computations and we address these as follows. We decompose the sensing
region B(x, R) in s2m annulus radial sectors S1, . . . ,S2m (obtained by intersecting
s annuli with 2m uniform radial sectors of B(x, R), as shown in Figure 4, with
the radius of the central circle taken small enough so that this is neglected in the
subsequent computation steps). Then, for each Sl , we evaluate the total population
c1, total population c2 and the total ECM mass distributed on Sl that are given by
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Fig. 4 Sensing region B(x, R) approximated by the annulus radial sectors with the barycentre bSl
associated with each sector Sl highlighted with a blue dot.

ωSl ,c1(t) := 1
λ(Sl )

∫

Sl

c1(t, x)dx, ωSl ,c2(t) := 1
λ(Sl )

∫

Sl

c2(t, x)dx,

and ωSl ,v(t) := 1
λ(Sl )

∫

Sl

v(t, x)dx,

respectively. Finally, denoting by bSl
the barycentre of Sl , ∀l = 1, . . . , s2m and

evaluating the unit vector n(bSl
) := b

Sl
−x

‖b
Sl

−x‖2
, the adhesion flux An, n = 1, 2, is

approximated by

An(t, x,u(t, ·)) =
s2m∑

l=1
b
Sl

∩Ω(t0) 
=∅

λ(Sl )

R
n(bSl

) · K (bSl
)gn(ũ(t,bSl

))
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where

ũ(t,bSl
) := [ωSl ,c1(t), ωSl ,c2(t), ωSl ,v(t)]T

and
gn(ũ(t,bSl

))=[Scc[ωSl ,c1(t), ωSl ,c2(t)]T +ScvωSl ,v(t)] · (1−ρ(ũ(t,bSl
)))+

For the actual implementation, we discretise the entire domain Y by considering a
uniform spatial mesh of size h, i.e., Δx = Δy = h as well as the time interval
[t0, t0 + Δt] into k uniformly distributed time steps, i.e., δτ = Δt

k
. In order to

approximate the reaction-diffusion equations (1), we develop a predictor-corrector
in time scheme; whilst the term ∇ · [∇cn−cnAn(t, x,u(t, ·))] will be approximated
by a second-order mid-point rule.

In brief, for any time step of index p = 0, . . . , k and for the spatial nodes (i, j),
where i = 1, . . . , q, j = 1, . . . , q are the indices for the x− and y-direction,
respectively, we introduce the midpoint approximations as:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

c
p

n,i,j+ 1
2

:= c
p
n,i,j+cpn,i,j+1

2

c
p

n,i,j− 1
2

:= c
p
n,i,j+cpn,i,j−1

2

c
p

n,i+ 1
2 ,j

:= c
p
n,i,j+cpn,i+1,j

2

c
p

n,i− 1
2 ,j

:= c
p
n,i,j+cpn,i−1,j

2

and

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

A
p

n,i,j+ 1
2

:= A
p
n,i,j+A

p
n,i,j+1

2

A
p

n,i,j− 1
2

:= A
p
n,i,j+A

p
n,i,j−1

2

A
p

n,i+ 1
2 ,j

:= A
p
n,i,j+A

p
n,i+1,j

2

A
p

n,i− 1
2 ,j

:= A
p
n,i,j+A

p
n,i−1,j

2

We also have the following notation for the central differences:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

[cn,y]p
i,j+ 1

2
= c

p
n,i,j+1−cpn,i,j

Δy

[cn,y]p
i,j− 1

2
:= c

p
n,i,j−cpn,i,j−1

Δy

[cn,x]p
i+ 1

2 ,j
= c

p
n,i+1,j−cpn,i,j

Δx

[cn,x]p
i− 1

2 ,j
:= c

p
n,i,j−cpn,i−1,j

Δx

Using this notation, the approximation for (ignoring the constant parameters at the
moment) ∇ · [∇cn − cnAn(t, x,u(t, ·))] in (1) is as follows:

∇ · [∇cn − cnAn(t, x,u(t, ·))]
= div[∇cn − cnAn(t, x,u(t, ·))]pi,j

�
[cn,x]p

i+ 1
2 ,j

− [cn,x]p
i− 1

2 ,j
− cp

n,i+ 1
2 ,j

· A p

n,i+ 1
2 ,j

+ cp
n,i− 1

2 ,j
· A p

n,i− 1
2 ,j

Δx

+
[cn,y]p

i,j+ 1
2
− [cn,y]p

i,j− 1
2
− cp

n,i,j+ 1
2
· A p

n,i,j+ 1
2
+ cp

n,i,j− 1
2
· A p

n,i,j− 1
2

Δy

(9)



Two-Scale Moving Boundary Dynamics of Cancer Invasion 15

For the time discretisation of equation (6), following [29], we have used a predictor-
corrector method, where the predictor is given by a second-order Adams-Bashforth
scheme and the corrector uses a second-order trapezoidal approximation.

3.2 Simulations in Two Spatial Dimensions

To explore numerically multiscale model of cancer invasion given in (1)–(8), we
consider region Y := [0, 4] × [0, 4] discretised uniformly with macroscopic spatial
step size h = 0.03125, while the time step is taken here as δτ = 10−3. Assuming
that initially population c2 has no distribution and population c1 occupies a region
Ω(0) := B((2, 2), 0.5) positioned at the centre of the domain Y . The initial
condition for cancer cell population c1 is taken as in [29] and is given by

c1(0, x) = 0.5

(
exp

(
−||x − (2, 2)||22

0.03

)
− exp(−28.125)

)
(
χB((2,2),0.5−γ ) ∗ ψγ

)
,

where ψγ is the mollifier defined in [29] with γ << Δx
3 . Population c2 initially has

zero density, so c2(0, x) = 0 and we assume a heterogeneous distribution for the
initial ECM density based on the initial condition proposed in [15] and given by

v(0, x) = min

{
h(x1, x2),

1 − ϑcc(0, x)
ϑv

}
, (10)

where

h(x1, x2) = 1

2
+ 1

2
sin(ζx1x2)

3 · sin(ζ
x2

x1
), (11)

with

(x1, x2) = 1

3
(x + 1.5) ∈ [0, 1]2 for x ∈ D, ζ = 7π.

Here we consider the volume fraction of cells and ECM to be ϑc ∈ [π6 , 1] and
ϑv ∈ [0, 5π

6 ]. The initial condition for MDEs is m(0, x) = 0.5c1(0, x); however,
since this closely resembles the profile of the cancer cell distribution, we shall not
present the simulation results of MDE concentration. The initial conditions of the
combined cell populations and ECM density can be seen in Figure 5.

Throughout these simulations, unless otherwise stated, we use the following
parameter set for the non-dimensionalised system of equations (1) and (6), which
were estimated based on those used in [15], namely:

P : D1 = 10−3, D2 = 10−3, γ = 2, t1,2 = 10, δ = 0.3,

μ1 = 0.25, μ2 = 0.25, ω = 0, vmin = 0.3
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Fig. 5 Initial conditions of the density of ECM (a) and the distribution of cancer cells (b) with the
invasive boundary of the tumour represented by the white contour.

We also have here the adhesive strengths matrices Scc and Scv given by

Scc =
(

0.5 0
0 0.3

)
and Scv =

(
0.3 0
0 0.6

)
. (12)

Initially, we have no cross-adhesion occurring, so Sc1,c2 = 0 = Sc2,c1 .
Figure 7 gives simulations using the initial conditions and parameter set P as

stated above. They are shown at stages 25Δt, 50Δt and 75Δt . Here, we also show
the simulations at stage 10Δt , Figure 6, the stage at which mutations occur. By this
stage, population c1 has degraded and lowered the density of the ECM in which the
initial cancer distribution was placed. The threshold on which mutations can occur,
δ, is higher than the resulting density of ECM; thus when mutations occur, they
only take place on the outer edge of the tumour, where δ > 0, as the ECM density is
too low inside to support the mutations. The white contour shows the proliferating
boundary of the tumour, which at this stage has consistently expanded outwards into
the ECM. Due to the initial conditions of the ECM, there are patches of high and low
density areas throughout the domain. These patches vary in distance and size from
one another, which reflects a non-symmetric microenvironment for the cells. The
pattern of the advancing front of the tumour loosely follows this pattern of ECM.
Where there are dense patches of low density we see slower cancer progression; this
is because there is a lower overall density of matrix for the cells to adhere.

After 25 macro-micro stages, 25Δt , population c1 and c2 are both increasing in
density, with population c1 changing shape as the cells continue to mutate. As the
tumour spreads, a larger region of ECM is degraded, which is shown in the plot for
ECM.
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Fig. 6 Simulation results of model at stage 10Δt when the mutations from population c1 start to
occur.

As the cancer continues to invade, a wider region of the ECM is destroyed and
the proliferating edge of the tumour continues to reach outwards, see stages 50Δt
and 75Δt in Figure 7. The invasive edge of the tumour loosely follows the pattern
of ECM at each stage, and small islands start to appear over low density patches
of ECM. These islands have zero ECM density and hence cause the cancer cells to
be slow to invade as there is an insufficient level of ECM for which the cells can
adhere. This pattern of the boundary is due to the multiscale nature of the invasion
process, where the macro-dynamics govern the source of the MDEs on the invading
edge and then movement of the boundary is determined in each boundary cube εY
by the resulting micro-dynamics. The MDEs produced by the cancer cells can only
degrade locally; this becoming apparent from the resulting ECM plots.

We now want to consider the effect of matrix remodelling on the progression
of cancer. Figure 8 shows simulations again using the parameter set P , but this
time with the ECM remodelling rate ω being increased from 0 to 0.04. Here we
see that the spread of cancer is ultimately covering a larger area than in the absence
of remodelling (Figure 7). Population c2 displays a much larger spread of density
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Fig. 7 Simulation results of model using the parameter set P and adhesion matrices (12). Plots
of both cancer populations c1 and c2, as well as the combined cancer distributions and the ECM
densities at stages 25Δt , 50Δt and 75Δt .

surrounding population c1 than in the absence of ECM remodelling. The increased
density of ECM surrounding the cells gives more opportunity for adherence and
opens a greater number of pathways in which the cells can invade. The boundary of
the cancer is following the pattern of the ECM more consistently than in Figure 7,
this is due to the higher density of the remodelled ECM allowing for stronger
adhesive qualities between the cancer cells and ECM. We can again see the invasion
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Fig. 8 Simulation results of model with ECM remodelling introduced, ω = 0.04, with the same
parameter set P and adhesion matrices as in Figure 7.

briefly halted at patches of lower density, but this is for a shorter period than before,
with the islands being fully invaded by the later stages.

Figure 9 gives simulations where the cell-matrix adhesion between cancer cell
population c1 and the ECM, Sc1,v , has been increased from 0.3 to 0.5 and the cell-
matrix adhesion between cell population c2 and the ECM, Sc2,v , has been decreased
from 0.6 to 0.5, i.e., the adhesion rate between the cells and matrix are equal for both
populations. The proliferating edge of the tumour is lobular in the way it follows the
pattern of the ECM, much like the simulations in Figure 7, with protrusions pushing
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Fig. 9 Simulation results of model with parameter set P and Sc1,v = 0.5 = Sc2,v .

out in the direction of high density areas of the matrix. Although the cell-matrix
adhesion term is now equal for both populations, the Sc1,c1 and Sc2,c2 have remained
the same, thus we do not see a great change in the profile of the levels of cancer cell
densities of the main body of the tumour itself, but we instead see a difference in
the pattern of the invading edge of the tumour, due to the further spread of the lower
levels of these densities closer to the invasive edge of the tumour. The increase in
adhesion between population c1 and the matrix sees the invading boundary stick
closer to the main body of the tumour, particularly to population c2.
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Finally, we investigate the effects of cell-cell adhesion and in particular cross-
adhesion. Cross-adhesion is when different cancer cell populations adhere to one
another. Here we set Sc1,c2 = Sc2,c1 as both populations will have the same rate of
adherence to each other. We look at the case using parameter set P and the adhesion
matrices

Scc =
(

0.5 0.5
0.5 0.3

)
and Scv =

(
0.3 0
0 0.6

)
, (13)

Our simulations in this case, shown in Figure 10, exhibit the same general
morphology of the tumour boundary as in results with no cross-adhesion present,
mainly due to the fact that in this work both cancer cell population are assumed
to degrade the ECM at the same rate. However, the difference with respect to
the no cross-adhesion case is emphasised by the spatial distribution of the two
cancer cell populations within the main body of the tumour. Population c1 remains
consistent with results computed in Figure 7; however, population c2 exhibits
different behaviour. We can distinguish now two higher density patches of c2
densities which do not spread away from the significantly high levels of c1 cell
density and rather build up in their immediate proximity. Combining the cell
populations now gives an increasingly contained spread of the tumour. This result is
to be expected because the cells are now more inclined to stick together, rather
than invade outwards, and although the adherence between cell populations has
increased, their adhesion towards the matrix has stayed the same; hence we observe
no difference in the movement of the boundary. This difference is also consistent
with the other no cross-adhesion cases considered in Figures 8 and 9.

3.3 Sensitivity to Initial Conditions

To address sensitivity with respect to initial data, we present and discuss here the
results of four different sets of initial conditions for the ECM that are induced (10)
with (11) by function h given in (14), which are gradually convergent towards the
case of homogeneous ECM. Figure 11(a) illustrates a homogenous ECM induced
in (10) by the limit case for h that we obtain as n → ∞, namely h(x1, x2) =
1
2 . Figures 11(b) and 11(c) use the initial condition (10), where the equation for
h(x1, x2) is changed to

h(x1, x2) = 1

2
+ 1

2n
sin(ζx1x2)

3 · sin(ζ
x2

x1
), (14)

with n = 3, 5 for Figures 11(b) and 11(c), respectively. Using this form effectively
flattens down the high density regions of the heterogeneous ECM, making it pro-
gressively closer to a homogeneous case, who exhibits a symmetric growth. Finally,
Figure 11(d) shows the simulations using the initial conditions (10) with (11), as in
Figure 7. The main body of the tumour remains similar from each initial condition
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Fig. 10 Simulation results of model with parameter set P with cross-adhesion coefficient
Sc1,c2 = 0.5 = Sc2,c1 .

of ECM as all coefficients remain the same as in the no cross-adhesion case shown
in Figure 7. The differences between the invading boundaries are clearly visible,
ranging from a symmetric expansion of the boundary for homogeneous initial
conditions to a fingering leading edge for heterogeneous conditions. We conclude
that as the initial condition for the ECM becomes increasingly heterogeneous,
the proliferating edge of the tumour becomes consistently more lobular in its
invasion.
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Fig. 11 Simulation results showing different initial conditions for the ECM. Plots showing ECM
and the combined cancer distribution at their initial stage Δt , and the tumour at final stage 75Δt .

4 Conclusions

We have presented a multiscale moving boundary model which builds on previous
framework proposed by [29] by exploring adhesive dynamics [15] between a
heterogeneous cancer cell population and the surrounding microenvironment. This
considers both the macroscale dynamics of two cancer cell sub-populations within
the ECM and their influence on the microscale MDEs molecular dynamics occurring
at the cell-scale along the invasive edge of the tumour. This macro-micro top-down
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link is given here via the source of MDEs that are secreted by the cancer cells
from both c1 and c2 sub-populations arriving within the outer proliferating rim
of the tumour. In turn, the micro-dynamics occurring on the cell-scale enables a
micro-macro feedback in the form of a bottom-up link by providing the movement
direction and displacement magnitude of the tumour boundary.

Comparing with results from the previous framework proposed in [29], we have
shown that the inclusion of cell-cell and cell-matrix adhesion changes the way in
which the cancer progresses. The computational results presented in this chapter
have shown that the initial tumour region exercises greater movement than in the
absence of adhesive qualities. We then incorporate another cell population and
further explore the interactions between both cancer cell populations and their
microenvironment. We have shown that in the presence of ECM remodelling, there
is a greater spread of cancer cells as there is more opportunity for adherence which
allows the cells to move. Increased cell-matrix adhesion, in particular between c1
and v, has shown that a change in cell-matrix adhesion will not necessarily change
the main body of the tumour, but it induces a change in the invading boundary,
becoming very lobular when following the pattern of the ECM. Adding cross-
adhesion to these models has shown how the different cell populations mix with
one another and exhibits a denser region of population c2 which remain in the
proximity of highest regions of c1 density. Finally, we investigated the effects of
varying initial conditions of ECM, starting with a homogeneous distribution and
becoming increasingly heterogenous. We have concluded that as the initial ECM
distribution increases in heterogeneity, the proliferating boundary of the tumour
becomes more lobular.

To gain further understanding of how cancer cells invade, focus must be placed
on the surrounding microenvironment. The extracellular matrix is made from many
different components, most of which play a vital role in cancer invasion. The main
component of the ECM is collagen, particularly collagen type I which provides
the matrix with its structure and flexibility. Investigations into the mesenchymal
motion of tumour cells [13, 19, 25] shows that the difference between undirected
and directed fibres is of high importance. Undirected fibres are symmetrical along
their axes and their direction is identical at both ends, an example of this type of
fibre would be collagen in the human body. Unlike undirected fibres, directed fibres
are unsymmetrical and can be distinguished at both ends. Recent work considering
fibres by [30], focussed on directed fibres, has highlighted differences between
directed and undirected fibres using a one-dimensional model. The addition of
fibres, directed or undirected, into the multiscale model would greatly change the
pattern of invasion. Several other components of the ECM such as fibronectin,
laminin and a variety of different MMPs are also vital in tumour invasion and
a greater mathematical understanding of these would allow for an overall better
understanding of cancer progression.
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Abstract Glioblastoma multiforme (GBM) is one of the deadliest human cancers
and is characterized by fast growth and aggressive invasion. GBM also commu-
nicates with microglia and macrophages which are recruited by tumor cells to
facilitate growth and invasion. In this study we investigate the biochemical and
cell-mechanical interactions between the glioma cells and the microenvironment
including resident glial cells and M1/M2 microglia that enhance tumor invasion.
We develop various types of mathematical models that involve reaction-diffusion
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equations or multi-scale hybrid models for the important components in this mutual
interaction. In particular, we investigate the dynamics of intracellular signaling
including miR-451 and AMPK, biochemical interaction of a glioma with M1/M2
microglia via CSF-1-EGF-TGF-β signaling, and glioma cell infiltration through
the narrow intercellular space via the regulation of myosin II. We show that these
models can replicate the key features of the experimental findings and make novel
predictions to guide future experiments aimed at the development of new anti-
invasive strategies.

1 Introduction

Cancer invasion is a complex evolutionary process controlled by mutual interactions
between a tumor and selective pressures from the tumor microenvironment (TME).
(See Figure 1). Glioblastoma multiforme (GBM) is the most aggressive form of
primary brain tumors with a very poor survival rate [11]. Diffuse infiltration of
glioma cells into normal surrounding brain tissue is one of the major obstacles for
the treatment failure because these cells escape surgery and can lead to recurrence.
There is little understanding of how the bio-chemical and -mechanical signal
pathways from the TME interact to affect tumor invasion. Here we review recent
developments in mathematical models of anti-invasion strategies in order to address
several aspects of this question in the context of brain tumors.

Fig. 1 Glioma cell infiltration in a complex brain microenvironment (A) Invasive Human
glioma xenografts. Glioma cells have spread across the corpus callosum (CC) to the contralateral
white matter located between cortex (CX) and striatum (Str) in a rat. Green = staining for human
nuclear antigen for the location of human tumor cells. White arrow = the location of the site of
tumor inoculation. Reprinted from Beadle C, Assanah M, Monzo P, Vallee R, Rosenfield S, et
al. (2008) The role of myosin II in glioma invasion of the brain. Mol Biol Cell 19: 3357–3368
[5] under a CC BY license, with permission from American Society for Cell Biology, original
copyright 2008. (B) A schematic diagram of diffuse infiltration of tumor cells in brain. Red circle
= blood vessels (BVs), green star = active tumor growth, arrow = glioma cells migrating along
white matter tracts.
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Fig. 2 Warburg effect in glioma Schematics of oxidative phosphorylation and anaerobic (or
aerobic) glycolysis [32, 37, 45, 99].

2 Glioma Invasion

Differentiated cells favor the energy efficient tricarboxylic acid (TCA) cycle
(Figure 2A), whereas tumor cells favor the less energy efficient process of glycolysis
[32] (Figure 2B). This switch allows tumor cells to direct their metabolism towards
biosynthetic processes needed for rapid cell growth, rather than generation of ATP
[37]. Because glycolysis consumes less oxygen than the TCA cycle, cancer cells do
not have to depend so much on oxygen for energy in the hostile (hypoxic) intra-
tumoral microenvironment [25, 37]. One of the most important cellular pathways
regulating responses to energy status is the AMP-activated protein kinase (AMPK)
cascade which is turned on in times of low glucose enabling cell survival under
these conditions [60]. Godlewski et al. [28] found that normal (high) glucose levels
increase expression of the microRNA miR-451 and decrease AMPK activities,
resulting in active proliferation while low glucose levels down-regulate miR-451
and enhance AMPK activities, which in turn induces cell motility [26, 27, 65]. See
Figure 3.
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Fig. 3 (A) Signaling network of miR451-AMPK signaling pathways in cell migration and
proliferation [26, 28]. (B) Schematic of a mathematical model [45]: miR-451 level and activity of
AMPK complex (CAB39/LKB1/AMPK) are represented by “M” and “A,” respectively. (C) High
and low glucose levels (G) provide an on-off switch of the miR-451 expression level, determining
cell proliferation or migration [45]. The intermediate G level induces a window of bi-stability
(Wσ = [σ †

w, σ
‡
w]) where the initial status of miR-451 and AMPK complex determines cell fate.

(D) A diagram of proliferative (M > thM, A < thA) and migratory (M < thM, A > thA)
phase in the M-A plane based on up- and down-regulation of miR-451 and AMPK complex [44].
(E) Simulation and experiments [28]: The relative quantification of miR-451 expression levels in
response to high (+, 4.5 g/l) and low (−, 0.3 g/l) glucose injections.

2.1 Control of Glioma Infiltration via a
miR-451-AMPK-mTOR

The signaling pathway of miR-451-AMPK can be simplified from the complex
network as in Figure 3A and it can be further simplified as a system of differential
equations with two variables corresponding to miR-451 and the AMPK complex,
see Figure 3B. Governing equations of the miR-451-AMPK signaling in a nondi-
mensional form are as follows:

dM

dt
= G+ k1k

2
2

k2
2 + αA2

−M, (1)

ε
dA

dt
= S + k3k

2
4

k2
4 + βM2

− A, (2)
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Table 1 Parameters that are used in the core control model (miR-451-AMPK system).

Parameter Description Valuea Refs

k1 miR-451 autocatalytic production rate 4.0 [44, 45]

k2 Hill-type coefficient 1.0 [44, 45]

α Inhibition strength of miR-451 by AMPK complex 1.6 [44, 45]

k3 AMPK autocatalytic production rate 4.0 [44, 45]

k4 Hill-type coefficient 1.0 [44, 45]

β Inhibition strength of AMPK complex by miR-451 1.0 [44, 45]

S Signaling source of AMPK 0.2 [44, 45]

ε Scaling factor (slow dynamics) 0.02 [2, 16, 24, 44, 45]

thM Threshold of miR-451 for invasion/growth switch 2.0 [44, 45]
aDimensionless value

where parameters are given in Table 1. When the miR-451-AMPK system (1)–
(2) is in equilibrium, we can find the steady state of the miR-451 level (M) as a
function of glucose amounts (G) where G is a bifurcation parameter as shown in
Figure 3C. By observing the dynamic structure of the model, one can find that high
levels of miR-451 (and low AMPK activity) in the stable upper branch induce cell
proliferation in response to the high glucose level while the low miR-451 levels
(and high AMPK activities) in the stable lower branch lead to cell migration in
response to low glucose injection. However, the intermediate level of glucose may
lead to a bi-stability region where microenvironmental factors may induce either
proliferation or migration based on the history of the condition. In Figure 3D, we
define two distinctive regions (the migratory region Tm (dotted pink box and the
proliferative region Tp (blue solid box)) based on activities of those molecules:

Tm = {(M,A) ∈ R
2 : M < thM, A > thA} (3)

Tp = {(M,A) ∈ R
2 : M > thM, A < thA}. (4)

Our model predicts a significant reduction in miR-451 levels in response to high
(4.5 g/l; blue in Figure 3E) and low (0.3 g/l; gray in Figure 3E) glucose injection
doses, which are in good agreement with experimental results in LN229 and U251
glioma cell lines [28].

2.2 PDE Model

The simple model in the previous section can be extended to incorporate more
components and diffusion process in time and space. Governing equations for
the tumor density (n(x, t)), concentrations of the ECM (ρ(x, t)), MMP (P(x, t)),
glucose (G(x, t)), miR-451 (M(x, t)), and AMPK (A(x, t)) are given by [45]
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∂n

∂t
=
[
DnΔn− ∇ ·

(
χn

n∇G√
1 + λG|∇G|2

)
− ∇ ·

(
χ1
n

n∇ρ√
1 + λρ |∇ρ|2

)]
IM<thM

+ λ11n(1 − n/n0)IM>thM , (5)

∂ρ

∂t
= −λ21Pρ + λ22ρ(1 − ρ/ρ0), (6)

∂P

∂t
= DPΔP + λ31nρ − λ32P, (7)

∂G

∂t
= DGΔG− λ41 nG+

N−1∑

j=0

λ42Ij , (8)

∂M

∂t
= (G+ k1k

2
2

k2
2 + αA2

−M) n
n0
, (9)

ε
∂A

∂t
= (S + k3k

2
4

k2
4 + βM2

− A) n
n0
, (10)

where I{·}(x) is the indicator function, giving 1 under the condition {·}, and
0 otherwise. Parameter values are given in Table 2. The first three terms in
Equation (5) represent random motility, chemotaxis, and haptotaxis, respectively,
for the tumor cell in Tm.

The mathematical model can be used to make hypotheses regarding overall
growth patterns of a tumor spheroid under the periodic (Figure 4A) and steady-state
glucose supply conditions with the same amount of glucose [45]. While a cycle of
high and low glucose levels induce high (or low AMPK) and low (or high AMPK)
miR-451 activities, leading to a cycle of growth and invasion of the tumor cells, the
steady supply of glucose leads to slow but constant growth (Figure 4). The model
predicted that the oscillations in glucose levels increase the overall growth of the
tumor through the core control system.

2.3 Hybrid Model

Our multi-scale hybrid model includes several aspects: (1) intracellular pathways,
(2) a lattice-free cell-based mechanical model, (3) a reaction-diffusion model of
extracellular biochemical players such as oxygen and glucose. A schematic of the
hybrid model is shown in Figure 5.

The growth and movement of individual cells is based on the models developed
by Dallon and Othmer [17] (DO model) and Kim et al. [46, 47]. The model
essentially takes into account the following forces: (i) the active forces Ti exerted
on the substrate or neighboring cells and the reaction force (Mj,i), (ii) the dynamic
drag forces from adhesion with cells in the neighborhood, (iii) static friction force
Sj,i for rigid attachment between involved cells or between a cell and the substrate.
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Table 2 Parameters that are used in the PDE model [45].

Parameter Description Dimensional value Refs

Dn Random motility of tumor cells 10−11 cm2/s [41]

DP Diffusion coefficient of MMPs 5 × 10−11 cm2/s [41, 81, 86]

DG Diffusion coefficient of glucose 2.31 × 10−7 cm2/s [41, 80], Estimated

λ11 Tumor cell growth rate 1.112 × 10−4 s−1 [64, 83], Estimated

n0 Carrying capacity of tumor cells 1.0 × 10−3 g/cm3 Estimated

λ21 ECM degradation rate 1.41 × 103 cm3g−1s−1 [41],TW

λ22 ECM release/reconstruction rate 5.0 × 10−5s−1 [41],TW

ρ0 ECM carrying capacity 1.0 × 10−3 g/cm3 [35, 41, 89]

λ31 MMP production rate 6.95×10−5 cm3g−1s−1 Estimated

λ32 MMP decay rate 5.0 × 10−5 s−1 [41], Estimated

λ41 Glucose consumption rate 0.3 cm3/(g.s). [57, 83], TW

λ42 Glucose injection rate 1.25 × 10−6 g/(cm3.s) Estimated

χn Chemotactic sensitivity parameter 1.86×10−7 cm5g−1s−1 Estimated

χ1
n Haptotactic parameter 4.17 × 10−5 cm5/(g.s) [41], Estimated

Fig. 4 Theoretical glucose-induced “go”-“grow” hypothesis. (A) the cycles of invasion and
growth in response to periodic glucose injection. (B) Monotonic growth induced by steady glucose
supply. Our mathematical model predicts that fluctuating glucose leads to faster growth of the
tumor through miR-451-AMPK regulation [45].

(See DO for a more detailed discussion of all forces involved.) The total force on
the ith cell is then governed by

Fi =
∑

j∈N a
i

Mj,i +
∑

j∈N a
i

Ti +
∑

j∈N d
i

μij (vj − vi )+
∑

j∈N s
i

Sj,i (11)
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Microenvironment

BV

Fig. 5 A schematic of hybrid models in gliomas [38, 43, 44]. (A, Top) Intracellular dynamics
(such as miR451, AMPK, mTOR, and cell cycle) in response to diffusible molecules (oxygen,
glucose, and chemoattractant) at a cell site. Up- or down-regulation of these intracellular variables
determines the cell fate, such as proliferation or migration. (A, Bottom, Left) Domain of the
mathematical model: Tumor cells have either proliferating (green) or migratory phase (blue) based
on status of intracellular molecules. Migratory cells may secrete MMPs for degradation of thick
ECM in response to biochemical or mechanical signals from the surrounding microenvironment
including BVs. (A, Bottom, Right) Changes in the length of the a-axis of a glioma cell (the
ellipsoid) under a given force (fa ; arrow) consist of two modules: (i) the passive change in the
first module (a Maxwell element in parallel with a non-linear spring) (ii) the change due to
the active growth (uga ). (B) The mechanical growth function f (σ) in submodule of the growth
rate ((ugi )

′ = f (σ)P (c1, c2, · · · , cn)) is defined so that tumor cells can grow under sufficiently
small compressive and tensile forces in a nonlinear fashion [46] (C) Proliferation function (P )
as a function of intracellular variables (c1, c2, · · · , cn) which gives 1 (c1, c2, · · · , cn ∈ Tp) or 0
(c1, c2, · · · , cn ∈ Tm) for activation and suppression of the biochemical growth control switch.

where N a
i denotes the neighbors of i, including the substrate, upon which it can

exert traction, N d
i is the set of cells (which includes solid substrate and extracellular

matrix) that interact with i via a frictional force, and N s
i represents the set of cells

that statically bind to cell i. These force balance equations allow us to calculate
all forces involved and track down locations of all cells in addition to biophysical
response of the cells. These forces are expressed in terms of cell velocity (vi) which
can be used for displacement of the cells for comparison with the experimental data.
The governing equations of the length of the i-th axis, i = a,b, c, of a cell are

ui = u0
i + ugi , (12)

du0
i

dt
=

(
ki

μi
[fi(t)+ p̄ − f2(u

0
i )] + dfi

dt

)
×

(
f ′

2(u
0
i )+ ki

)−1

, (13)

where ui is the change in the length of the ith axis, u0
i and ugi are the changes in the

length of the ith axis due to a change in the passive and growth element, respectively,
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fi is the magnitude of the force applied at each end, f2 is the nonlinear spring force
from the spring in parallel, ki is the spring constant for the spring in the Maxwell
element, μi is the viscous coefficient of the dashpot, p̄ is the force due to pressure.
The specific form and details of the function f2 are given in [17]. It is assumed that
the passive response is incompressible [46, 47], leading to the volume constraint for

u0
a, u

0
b, and u0

c ,

(
du0
a

dt

)
(u0
b + b∗0)(u0

c + c∗0) + (u0
a + a∗0)

(
du0
b

dt

)
(u0
c + c∗0) + (u0

a +

a∗0)(u
0
b + b∗0)

(
du0
c

dt

)
= 0, where a∗0 = a0 + uga, b∗0 = b0 + ugb, c∗0 = c0 + ugc , and

a0, b0, and c0 are the initial lengths of three axes.
We consider two kinds of glioma cells involved: proliferative and migratory.

The cells are treated as oriented ellipsoids with cytoplasm considered as an
incompressible, viscoelastic solid [17, 46]. We take the multiplicative form of the
growth rate function for the i-th axis of a cell given by

(u
g
i )

′ = f (σ)P (c1, c2, · · · , cn)

where σ is the mechanical force acting on the cell and P is a function of intracellular
variables ci , i = 1, . . . , n (Figure 5C) such as RAS and sMAD in breast cancer
models [42, 47], miR451 (M), AMPK (A), mTOR (R), and other molecules
involved in the cell cycle in glioma models [38, 43, 44]. The growth function f (σ)
is defined so that tumor cells can grow under sufficiently small compressive and
tensile forces in a nonlinear fashion [46] (Figure 5B). Here, we assume that the
glioma cell proliferation is determined by the core control module: P(M,A) = 1
in Tp-phase in Equation (4), and 0 in Tm-phase in Equation (3) [38, 44]. (This was
generalized to include mTOR regulation in [43]). The active traction force Tai for
migratory cell i is given by

Tai = φ(M,A)
(
ψ1dr + ψ2

∇G√
KG + |∇G|2 + ψ3

∇C√
KC + |∇C|2

)
≡ φ(M,A)Ti,g

(14)

where dr is a unit vector of the random moving direction,G,C are the concentration
of glucose and a chemoattractant, and ψ1, ψ2, ψ3 are scaling factors of weight
distribution (ψ1, ψ2, ψ3 ∈ [0, 1]; ψ1 + ψ2 + ψ3 = 1). Here, the indicator function
φ(M,A) is given by

φ(M,A) =
{
rnF0 if cell ∈ Tm without physical constraints,

0 otherwise,
(15)

where F0 is the basal magnitude of the active force (0 ≤ |Ti | ≤ F0) and rn is
a random number in [0.8, 1.2]. Therefore, the active force is completely turned
off for proliferative cells (Tp), cells under physical constraints (a cell completely
surrounded by neighboring cells), or in the absence of chemotactic signal (∇C = 0).
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Fig. 6 Spatial dynamics of a hybrid model [44] (A,C) Spatial growth-invasion patterns of tumor
spheroid shown in response to normal (A) and low (C) glucose levels at t = 32h. Initial condition
of the tumor spheroid was given the left-middle panel. (B) The area of the migratory zone in
response to various glucose levels (G0 = 0.1-0.5) at t = 6, 20 h, respectively. (D) A distribution
(frequency) of average cell speeds from the model.

A system of PDEs are coupled to this lattice-free cell-based model by taking
into account diffusion, reaction, consumption, intravenous injection, and natural
decay of oxygen and glucose, transport of a chemoattractant after injection, ECM
degradation by proteolytic activities of MMPs [38, 43, 44].

We first investigated the invasion dynamics of a glioma spheroid in response to
high and low glucose levels. Figures 6A, C shows spatial growth-invasion patterns
of glioma cells at final time t = 32 h in response to high (G0 = 0.6) and low
(G0 = 0.2) glucose levels, respectively, through the regulation of the corresponding
miR-451-AMPK activities at each cell site. While the high glucose level induces a
growth-dominated pattern (Figure 6A), glucose withdrawal leads to active invasion
from the surface of the growing tumor spheroid (Figure 6C), which is in good
agreement with experimental results [28]. However, one should note that some cells
inside the tumor core did not migrate due to the surrounding physical constraints
(neighboring cells) despite the down-regulation of miR-451 and increased AMPK
activities and have to be free from the physical constraints for shedding [44]. This
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reduction of cell motility in response to the down-regulated miR-451 level from
glucose withdrawal was also observed in [28]. Various cell speeds of tumor cells
were reported in the literature depending on many factors such as growth factors
and cell culture conditions [44]. In glioma cell lines, the speed was measured to be
in the range of 15–20 μm/h in 3D glioblastoma culture and 39–45 μm/h in 2D free
culture [36], 15–48 μm/h in collagen I ECM [35], and 15–25 μm/h in glioblastoma
with/without α-actinin isoforms [85]. Calculated speeds in the mathematical model
are in good agreement with these experimental data (Figure 6D).

We first applied a localization strategy to eradicate invasive glioma cells.
Figures 7A–D shows spatial profiles of the invasive glioma cells at t =
0, 100, 200, 240 h, respectively, after first surgery at t = 0 followed by injection
of a chemoattractant near the resected area (circle). Figures 7E–H shows spatial
profiles of glucose (Figure 7E), chemoattractant (Figure 7F), ECM (Figure 7G),
and MMP (Figure 7H) at the corresponding time frames. While migratory glioma
cells migrate back to the brain tissue near the original resection site, some of
those cells are attracted to BVs due to high glucose-induced chemotaxis and
switch from the migratory phase (Tm) to the proliferative phase (Tp) due to
overexpression of miR-451 and mTOR activation. Figure 7I shows time courses
of the concentrations of core control module (miR-451, AMPK, and mTOR) at
a cell site (cell id=33; arrowhead in Figure 7J) in response to fluctuating (but
high) glucose levels due to its proximity to BVs. Overexpression of miR-451 and
active proliferation of glioma cells near BVs were observed in experiments [28].
Figures 7J–K shows close-up patterns of growth-invasion of glioma cells in smaller
subframes ([0.05, 0.2] × [0.55, 0.65] in (E-F); [0.14, 0.16] × [0.58, 0.61] in (K)).
This trapped cell (blue cell in the blue box in Figure 7J) near a BV (Figure 7K)
settles in a comfortable environment and grows while some other invasive cells (red
cells in Figure 7J) migrate toward (black arrows) the resection site. While invasive
tumor cells after surgery may not be detected by conventional devices such as MRI
at a clinic due to its low image resolution, a localized mass of tumor cells may
be detected, suggesting a possible second surgery and increasing the possibility of
glioma eradication. However, one would have to handle those growing cells near
BV sites. Therefore, in order to improve the localization strategies, a combination
therapy is necessary, i.e., by using S-phase-targeting chemo-drugs in addition to
localization of the cells, one may be able to eradicate growing cancer cells near
BVs [43]. The study also found that the random motility of glioma cells and the
distance of dispersed cells from the resection sites also affect the anti-tumor efficacy
of the localization strategies [43]. Figure 8 shows saltatory movement patterns of
a migratory cell, cell speed (Figure 8A), and direction change (Figure 8B), in the
presence of random motility. These fluctuating speeds [21, 35, 36, 85] and saltatory
patterns in the movement direction are observed in the experimental scenarios [21].
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Fig. 7 A proposed anti-invasive therapeutic strategy: localization of invisible invasive cells
after a conventional surgery [43]. A combination of chemoattractants are injected on the
periphery of the resection site (circle in (A)) after a conventional surgery to localize the invasive
cells in the microenvironment. (A-D) Spatial profiles of tumor cells at t = 0 (A), 100 (B), 200
(C), 240 (D) h after a surgery at t = 0h. Some of the responsive migratory glioma cells form a
cellular mass near the original resection site for another surgery after 10 days. However, some of
the migratory cells attracted to BVs can still grow. Domain size = [0, 1]2. (E-H) Spatial profiles
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3 Role of M1/M2 Microglia in Regulation of Glioma Invasion

3.1 Introduction

Transforming growth factor beta (TGF-β) with its receptor is one of the signaling
factors involved in maintenance of tissue homeostasis and also mediates tumor
growth [3] via phosphorylation of transcription factors in the SMAD family [63].
TGF-β also stimulates glioma cell migration [100] in a co-culture with M1/M2
microglia, leading to the development of a stem-cell-like glioma sub-population
[102]. Glioma infiltrating macrophages/microglia require colony stimulating factor-
1 (CSF-1) for survival, and mediate the phenotypic M1→ M2 switch [76].
Epidermal growth factor (EGF) is also known to induce tumor cell proliferation
via RAS/MAP kinase signaling [39, 48, 52, 62, 104]. This is but one step in
a signaling feedback loop in which CSF-1 secreted by glioma cells induces
microglia/macrophages to express EGF and infiltrate the tumor, and the EGF and
TGF-β in turn induce tumor cell invasion. Blocking the CSF receptor [15, 50]
or MMP-2 [61] on microglia can suppress active dispersal of GBM cells. Many
mechanical and biochemical processes underlie the complex mutual interaction
between a tumor and other cells in microenvironment but we focus on the interaction
of a glioma with M1/M2 microglia via CSF-1, EGF, TGF-β, and MMPs (Figure 9).

3.2 Mathematical Model

The mathematical model involves the densities of tumor cells (n(x, t)) and microglia
(M1 type (m1(x, t) and M2 type m2(x, t)), and concentrations of the extracellular
matrix (ρ(x, t)), CSF-1 (C(x, t)), EGF (E(x, t)), TGF-β (G(x, t)), and MMPs
(P(x, t)). In Figure 10A, we show the geometries of the experimental setting
(Boyden transwell invasion assay [100]). Glioma cells suspended in the upper
chamber interact with microglia or medium alone (control) in the lower chamber.
A semi-permeable membrane coated with thick extracellular matrix (Matrigel) was
placed in the filter between upper and lower chamber. In response to microglia-
induced TGF-β, tumor cells invade the lower chamber through the holes of 12 μm
diameter by proteolytic degradation of the ECM. The number of these invasive cells
on the lower surface of the membrane was counted after 36 h with and without

�
Fig. 7 (continued) of glucose (E),chemoattractant (F), ECM (G), and MMP (H) that correspond
to (A-D). (I) A time course of the core control system (miR-451, AMPK, mTOR) in response to
fluctuating glucose levels (dotted red) at a cell site (arrow in (J)) near a BV. (J-K) Spatial profiles
of a subset of migratory cells at t = 100, 240 h, which transited from the migratory phase (Tm)
to a growth phase (Tp) due to high glucose levels from BVs. Red circles=migratory cells, blue
circles=growing cells, @=BV.
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Fig. 8 saltatory migratory patterns in glioma cells [43]. (A,B) Time courses of cell speed (A)
and direction changes (angle in (B)) of a migratory glioma cell over sub-time interval [140, 160] in
the presence of random motility (ψ1 = 0.2). Black arrows = the location and corresponding times
at which the cell changed the migration direction.
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Fig. 9 Interaction of a glioma cell with M1/M2 microglia via CSF-1, EGF, and TGF-β
signaling pathways in the control of tumor invasion in glioblastoma. In normal cells, these
signaling levels are balanced to maintain homeostasis, but in glioma microenvironment increased
secretion of CSF-1 by glioma cells induces the phenotypic changes in microglia (M1→M2
type) and promotes their secretion of EGF. This disrupts the control mechanism of proliferation
and inhibition by partially interfering the TGF-β-Smad intracellular pathway, leading to active
proliferation and aggressive invasion.
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Computational domain

Fig. 10 (A) Illustration of Boyden transwell invasion assay [100]. (B) A schematic of the
representation of the computational assay chamber.

microglia in the lower chamber. Figure 10B shows a schematic of the representation
of the computational assay chamber (Ω = Ω+ ∪Ω−) with two kinds of boundaries
(Γ = Γ1 ∪ Γ2; outer boundary (Γ1) and interface boundary (Γ2)) and ECM coating
(Ωε) near the interface. EGF, TGF-β , CSF-1, MMP, and glioma cells can cross the
membrane (Γ2), but neither type of microglia (M1 & M2) can cross it. Initially the
tumor cells and both types of microglia reside in the upper (Ω+) and lower (Ω−)
chamber, respectively.

The governing equations are as follows [40]:

∂n

∂t
= ∇ · (Dn∇n

) − ∇ ·
(
χn n

∇G
σG + λG|∇G|

)
− ∇ ·

(
χ1
n n

∇ρ
σρ + λρ |∇ρ|

)

+
(
a1 + aE El

klE + El
)
n

(
1 − n

κ

)
, (16)

∂m1

∂t
= ∇ · (D1∇m1

) + a2m1 − a3 C m1, (17)

∂m2

∂t
= ∇ · (D2∇m2

) − ∇ ·
(
χm m2

∇C
σC + λC |∇C|

)
+ a3 C m1 + a4 m2, (18)

∂ρ

∂t
= −dρP n, (19)

∂C

∂t
= ∇ · (DC∇C) + a5 n− dCC, (20)

∂E

∂t
= ∇ · (DE∇E) + (a6 m1 + B1a6 m2)− dEE, (21)

∂G

∂t
= ∇ · (DG∇G) + (a7m1 + B2a7m2)− dGG, (22)
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Table 3 Parameters used in the model [40].

Par Description Dimensional Value Reference

Random motility/diffusion coefficients (cm2s−1)

Dn Random motility of glioma cells 1.0×10−9 [7, 23, 73]

D1 Random motility of M1 cells 1.7×10−10 [7, 23, 73], Estimated

D2 Random motility of GIM M2
cells

1.7×10−9 [7, 23, 73], Estimated

DC Diffusion coefficient of CSF-1 2.0×10−6 [9, 12, 69, 70, 92]

DE Diffusion coefficient of EGF 1.66×10−6 [94]

DG Diffusion coefficient of TGF-β 1.0×10−6 [8, 49, 101]

DP Diffusion coefficient of MMP 5.0×10−10 [81, 86], Estimated

Decay/degradation rates

dC Natural decay rate of CSF-1 4.8 ×10−5 s−1 [4, 30, 93]

dE Natural decay rate of EGF 8.02×10−6 s−1 [53]

dG Natural decay rate of TGF-β 8.02×10−6 s−1 [48], Estimated

dρ ECM degradation by cells via
MMP

2.25×105cm3g−1s−1 [39], Estimated

dP Natural decay rate of MMP 5.0×10−5 s−1 [41]

Production rates

a1 Proliferation rate of glioma cells 3.1×10−5 s−1 Estimated

aE EGF-mediated proliferation rate 3.0×10−6 s−1 Estimated

kE Tumor cell proliferation parame-
ter

3.319×10−9 gcm−3 Estimated

κ Tumor cell carrying capacity 4.0×104 cells/cm3 Estimated

a2 Proliferation rate of M1 type 4.38 × 10−6 s−1 [54], Estimated

a3 Transform rate from M1 type to
M2 type

9.0 ×102 cm3g−1s−1 Estimated

a4 Proliferation rate of GAM M2
type

1.26 × 10−6 s−1 [54], Estimated

a5 Proliferation rate of CSF-1 by
glioma cells

1.4 × 10−6 s−1 [68, 96]

a6 Production rate of EGF from M1
type

8.7×10−9 s−1 [10, 86, 90], Estimated

B1 Production rate of EGF from M2
type

1≤ B1 ≤10 Estimated

a7 Production rate of TGF-β from
M1 type

3.1×10−8 s−1 [97, 98]

B2 Production rate of TGF-β from
M2 type

2≤ B2 ≤3 (B2 = 3) [100]

a9 Production rate of MMPs by
tumor cells

5.61×10−5 cm3g−1s−1 Estimated

(continued)
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Table 3 (continued)

Par Description Dimensional Value Reference

Movement parameters (chemotaxis, haptotaxis)

χn Chemotactic sensitivity of glioma
cells to EGF

2.83 ×10−9 cm2s−1 [73, 90]

σG Chemotactic parameter of glioma
cells

5.0 ×10−8 g/cm4 Estimated

λG Chemotactic parameter of glioma
cells

1.0 Estimated

χ1
n Haptotactic sensitivity 3.5×10−7 cm2s−1 [20, 66, 71], Estimated

σρ Haptotactic parameter of glioma
cells

1.0×10−2g/cm4 Estimated

λρ Haptotactic parameter of glioma
cells

1.0 Estimated

χm Chemotactic sensitivity of GAM
to TGF-β

1.1 ×10−9 cm2s−1 [1], Estimated

σC Chemotactic parameter of M2
cells

5.0 ×10−7 g/cm4 Estimated

λC Chemotactic parameter of M2
cells

1.0 Estimated

Membrane parameters

γi Permeability of cells (i = 1, 2, 3) 5–200 [48], Estimated

γi Permeability of chemicals (CSF-
1, EGF, TGF-β, MMP)

50–900 [48], Estimated

μ ECM width 0.6 Estimated

∂P

∂t
= ∇ · (DP∇P ) + a9n(1 + B3I{G>thG})ρ − dPP, (23)

where I{G>thG} = 0 ifG > thG, and = 0 otherwise, and parameter values are given
in Table 3. We have Neumann boundary conditions (flux J = 0) on the exterior
boundary Γ1

(
Dn∇n− χn n ∇G

σG + λG|∇G| − χ1
n n

∇ρ
σρ + λρ |∇ρ|

) · ν = 0, (24)

(
D1∇m1

) · ν = 0,

(
D2∇m2 − χm m2

∇C
σC + λC |∇C|

)
· ν = 0, (25)

(
DC∇C) · ν = 0,

(
DE∇E) · ν = 0,

(
DG∇G) · ν = 0,

(
DP∇P ) · ν = 0,

where ν is the unit outer normal vector. The membrane is permeable to all variables
(n,m1,m2, C,E,G,P ), but not freely so. We describe the flux (J ) at Γ2 for these
variables u = (n,m1,m2, C,E,G,P ) as J+ = J−, J++γi(u+−u−) = 0 where

u(x) =
{
u+(x) if x > 0

u−(x) if x < 0
(26)
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and the parameter γi (i = 1, · · · , 8) is determined by the size and density of
the membrane holes (see [22] for the derivation of these boundary conditions
by homogenization). If the size of the holes in the membrane is increased (or
decreased), the membrane becomes more (or less) permeable, and γi increases (or
decreases).

3.3 Application of the Model

In Figure 11, we investigate the effect of M1/M2 microglia and a TGF-β neutraliz-
ing antibody on tumor invasion in Boyden invasion chamber. In the experiments,
Wesolowska et al. [100] found that (i) the presence of microglial cells in the
lower chamber (Neg/9+microglia) increased the number of migratory glioma cells
(>2-fold) compared to the control (Neg/9). (ii) the neutralizing antibody (Ab)
against TGF-β by a knockdown of TGF-β type II receptor (TβIIR) by plasmid-
transcribed shRNA abrogated the migration-promoting effect of microglia by
inhibiting transcriptional responses from TGF-β signaling. The simulation results
are in good agreement with these experimental results. In the simulations, the
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Fig. 11 Effect of MG and TGF-β on tumor cell invasion. Plot shows the relative number of
migrating glioma cells in the absence (Ctrl) or presence (MG) of microglia after introducing anti-
TGF-β mAb at final time from simulation (blue solid box) and experimental data from the invasion
assay in [100] (yellow dashed box). In the absence of antibody, the number of invading tumor cells
in the presence of microglia (MG-Ab) in the lower chamber more than doubled relative to controls
(Ctrl-Ab). However, in the presence of TGF-β antibody (MG+Ab), fewer tumor cells invade the
lower chamber, bringing the invasive tumor population back to control levels (Ctrl-Ab). Therefore,
a neutralizing antibody against TGF-β can abrogate the migration-boosting effects of microglia as
shown experimentally [100].
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Fig. 12 Effect of MMP inhibitor (TIMP) and combined therapy (TIMP+Ab). (A) Relative
population of migratory tumor cells when MMP secretion was suppressed by TIMP in the absence
(+MG+TIMP-Ab) and presence (+MG+TIMP+Ab) of antibody against TGF-β antibody relative
to the control (+MG; no MMP inhibitor). When proteolytic activity of tumor cells near the ECM
boundary is inhibited (a9 =0), the number of invasive tumor cells is decreased (69% reduction)
in the absence of TGF-β antibody and further introduction of TGF-β antibody leads to almost
complete blocking of invasion toward the lower chamber (> 99% reduction). (B) Experimental
data illustrating the number of invasive cells for a cancer cell line (C-100), in the absence and
presence of TIMP (MMP inhibitor) on various fibronectin levels (0, 10, 20 μg/ml) (figure from
Bemis et al. [6] with permission).

number of migrating glioma cells doubled in the presence of microglia in the lower
chamber (MG-Ab in Figure 11) relative to the control (Ctrl-Ab in Figure 11) but
the tumor invasion was inhibited in the presence of TGF-β antibody (MG+Ab in
Figure 11) relative to controls (MG-Ab in Figure 11). However, one should note that
TGF-β blocking is not sufficient to completely suppress the aggressive invasion of
glioma cells, since they invade the lower chamber even in the absence of microglia
[59, 100].

In Figure 12A, we investigated the effect of MMP blocking on tumor invasion
by reducing the MMP production rate (a9). The model predicted a significant
reduction in the population of invasive tumor cells in the lower chamber (∼70%;
+MG+TIMP-Ab) relative to controls (+MG). This is in good agreement with the
classical experimental results by Bemis and Schedin [6] (Figure 12B) where an
MMP inhibitor called TIMP inhibited the tumor cell invasion by more than 50%
in a Boyden invasion assay. Since TIMP is only able to partially block the tumor
cell invasion and the TGF-β antibody was suggested to block microglia-induced
invasion [74, 100] (also see Figure 11), we tested the effect of combination of TIMP
and TGF-β antibody on tumor invasion. The model predicts that the combination
therapy with TIMP and TGF-β antibody almost completely blocked (> 99%) the
glioma cell invasion (+MG+TIMP+Ab in Figure 12A). These in silico experiments
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suggest that the combination therapy may be used as a new therapeutic strategy for
preventing glioma cell infiltration in the tumor microenvironment where stromal
cells such as microglia and macrophages interact with glioma cells.

4 The Role of Myosin II in Glioma Infiltration Through
Narrow Intercellular Spaces

Migratory glioma cells in a complex microenvironment have to execute many
cellular and biomechanical processes including branching at its distal leading end,
the dilatation of the centrosome and its associated microtubules [95], nucleus
deformation [5], and the contraction of acto-myosin II at the rear, resulting in the
saltatory net movement (Figure 13). In this study, we consider myosin II-mediated
cell migration through intercellular spaces between resident glial cells in the tumor
microenvironment.

4.1 Mathematical Model of Cell-Mechanics

The immersed boundary (IB) method [72] allows one to model and simulate the
interaction between the fluid and elastic structures. Using the IB method here, we
consider two types of cells, a glioma cell and normal resident cells, which are

(B)(A)

Fig. 13 Nucleus deformation during cell infiltration in a complex brain microenvironment
(A) Experimental data showing simultaneous deformation of both nucleus and cell body during
glioma cell infiltration through normal glial cells in a PDGF-driven glioma model [5]. Plot
shows a human glioma cell with staining of nuclear DAPI in (1st panel, blue), GFP (2nd panel,
green), myosin IIB (3rd panel, red), and the merged image (4th). In particular, it shows strong
red immunostaining for myosin IIB, illustrating upregulation of myosin II in the course of the
nucleus deformation. White arrows = focal deformation of the nucleus and cell body. Reprinted
from Beadle C, Assanah M, Monzo P, Vallee R, Rosenfield S, et al. (2008) The role of myosin II
in glioma invasion of the brain. Mol Biol Cell 19: 3357–3368 [5] under a CC BY license, with
permission from American Society for Cell Biology, original copyright 2008. (B) A schematic of
glioma cell (blue curves with nucleus) migration through the narrow intercellular space between
normal cells in the brain in response to chemotactic signal (green star; ‘S’) [5].
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assumed to be immersed in a viscous fluid. This migratory glioma cell is represented
by nodes and double elastic closed loops: an inner and outer loop for the nucleus and
the cell basal membrane, respectively. Each resident cell is represented by a single
elastic curve that is tethered to the tissue. See Figure 14A.

Let X(s, t) = XGm(s, t)
⋃

XGn(s, t)
⋃

XN(s, t) be the configuration of tumor
cells and glial cells at time t , where s represents a moving curvilinear coordinate.
Here, XGm,XGn,XN represent the membrane of a glioma cell, the nucleus of the
glioma cell, and the membrane of resident cells, respectively. The coupled system
of equations of motion is given as follows:

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p + μΔu + f , (27)

∇ · u = 0, (28)

f (x, t) =
∫

F (s, t)δ(x − X(s, t))ds, (29)

∂X(s, t)

∂t
=

∫
u(x, t) δ(x − X(s, t))dx, (30)

F = FGme + FGne + FNe + FGmt + FNt + FGma , (31)

FGme = ∂E
Gm

∂XGm
, FGne = ∂E

Gn

∂XGn
, FNe = ∂E

N

∂XN
, FNt =cNt (ZN − XN), (32)

FGmt =
{
cGmt (ZGmr − XGmr ), during elongation step

cGmt (ZGmf − XGmf ), during retraction step
(33)

FGma =
{
cad, during elongation step

0 during retraction step
(34)

Fluid Equations (27)–(28) are the incompressible Navier-Stokes equations,
where u(x, t) is the fluid velocity, p(x, t) is the fluid pressure, and f (x, t) is the
applied fluid force density defined on a fixed Cartesian coordinate system, where
x = (x1, x2). Here F (s, t) is the force density which acts on the fluid by the
immersed boundary. There are six contributions to F : the elastic force densities
FGme ,FGne ,FNe from the glioma cell membrane, the nucleus inside the glioma
cell, and the normal cell membrane, respectively, the tethered force density FGmt
acting on the part of the glioma cell membrane, the tethered force density FNt
from the normal cell membrane, and the active force density FGma of the glioma
cell membrane for migration. EGm, EGn, and EN are the elastic stretching energy
functionals with respect to the configurations XGm, XGn, and XN , respectively.
The constant parameters ρ and μ are the fluid density and the fluid viscosity,
respectively.
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Fig. 14 Schematics of the mathematical model. (A,B) A schematic of glioma cell infiltration
through narrow intercellular space between resident cells through elongation (A) and retraction (B)
steps in response to chemotactic stimulus (green star (S)). The shape of a glioma cell is represented
by two closed curves (the outer cell boundary and the nucleus boundary (‘N’)), consisting of elastic
springs connected by nodes. Resident glial cells (black lines) are treated in a similar way but
without the nucleus. Normal cells are tethered in the tissue (red box). In the elongation step, the
rear of the glioma cell is attached to the substrate by strong adhesion and active force is generated
at the leading edge. During the retraction step, the cell pulls both the nucleus and the cell body
forward by generating attachment onto the substrate at the front and releasing the adhesion of the
rear of the cell body. (C) Schematics of changes in the cell length (L(t)) and the rate of change in
cell length (L′(t)) during the cycle of the elongation and retraction steps [56].
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During the elongation step, the leading edge of the glioma cell protrudes while
attaching the rear to the substrate, and infiltrate the intercellular gap by deforming
both the nucleus and cell membrane via the myosin II dynamics. Then, in the
followed retraction step, the fully elongated cell releases the attachment at the
rear and forms new adhesion sites at the front, pulling the back of the cell and

finishing a movement cycle. We consider a chemical reaction [mf ] + [a] k1�
k−1

[mb]
for concentrations of actin ([a]), the free ([mf ]) and bound ([mb]) myosin II with
a total concentration [mT ] = [mf ] + [mb] ≡ constant. These governing equations
of mechanics (27)–(34) are coupled with the following equations for dynamics of
myosin II and chemoattractant

d[mb]
dt

= k1[mf ][a] − k−1[mb] = k1[mT ][a] − (k1[a] + k−1)[mb], (35)

∂C

∂t
= DCΔC + λCinIΩε − μCC. (36)

Here, actin concentration is proportional to the microenvironmental pressure
(p) in the intercellular space and the stiffening rate of nucleus (r[mb]) is

inversely proportional to the bound myosin II level: r[mb] = ks
(1/[mb])n

(Kmb)
n+(1/[mb])n +

ksmin, (ks,Kmb, kmin ∈ R
+, n ∈ Z

+). Parameter values are given in Table 4.

4.2 Effect of Myosin II on Deformation of Nucleus for Cell
Infiltration

In Figure 15, we investigate the biomechanical dynamics of a glioma cell and its
nucleus in wild type and myosin II knockdown (MYOII-KD). Figures 15A and B
shows the movement profiles of a migratory tumor cell (blue double circles) through
two resident glial cells (black dashed circles) in the wild type (Figure 15A) and
MYOII-KD (Figure 15B) at four different times t = 0, 20, 60, 80 min. While the
glioma cell squeezes through the resident glial cells by deforming nucleus and
cell membrane in response to a chemotactic source (red star) in the wild type
(Figure 15A), the cell is unable to migrate between two normal brain cells in
the MYOII-KD case due to stiff nucleus. Figures 15C and D shows the length
of cell body (solid blue curves) and nucleus (dotted red curves) in the wild type
and MYOII-KD, respectively. It is evident that myosin II is crucial for efficient
infiltration between normal cells as shown experimentally [5].
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Table 4 Parameters used in this work [56].

Par Description Value References

IB method

l × l Fluid domain 0.1 mm×0.1 mm

N ×N Grid size 512×512

μ Fluid viscosity 2.7 g/(cm·s) [44]

ρ Fluid density 1.35 g/cm3 [19, 78]

�t Time step 0.004 s

rG Radius of a glioma cell 5 μm [38, 43, 44]

rN Radius of a normal cell 8 μm [38, 43, 44]

cGme Elastic stiffness of a glioma cell 3.8 × 10−5 g·cm/s2 Estimated

c
Gn,b
e Basal elastic stiffness of the

nucleus
3.8 × 10−5 g·cm/s2 Estimated

cNe Elastic stiffness of a normal cell 0.0023 g·cm/s2 Estimated

cGmt Tethered stiffness of a glioma cell
membrane

1500 g/cm·s2 Estimated

cNt Tethered stiffness of a normal cell 400 g/cm·s2 Estimated

χ The basal active force strength 0.7 Estimated

λs Chemotactic parameter 20 (s2/g)2 Estimated

Myosin II model

Rs Sensing radius for (mechanical
pressure)

4.69 μm [41]

Rcs Sensing radius (chemotaxis) 0.4 μm [41]

k1 Association rate (bound myosin II) 0.002 μM−1s−1 [82], Estimated

k−1 Dissociation rate (bound myosin II) 0.0001 s−1 [82], Estimated

[mT ] Total myosin II concentration 1 μM [31]

kp Myosin-pressure sensitivity (wild
type)

0.9 μM·s2/(g·cm) Estimated

Myosin-pressure sensitivity
(MYOII-KD)

0.045 μM·s2/(g·cm) Estimated

n Hill coefficient (myosin reaction) 10 Estimated

Kmb Reciprocal of the critical threshold 1.8 μM−1 Estimated

ks Nucleus-myosin constant 5 Estimated

kmins Nucleus-myosin constant 0.1 Estimated

Reaction-diffusion (chemoattractant)

DC Diffusion coefficient 2.15×10−6 cm2/s [39, 48, 94],
Estimated

λCin Chemoattractant source 8.2 ×10−1 g/(cm3.s) [48]

μC Decay rate 1.0 ×10−6 s−1 [39, 48, 53],
Estimated

Therapeutic drugs

IB Injection rate of blebbistatin 5 ×10−2 μM/s Estimated

μB Decay rate of blebbistatin 5.13 ×10−4 s−1 [29, 43, 75]

α Degradation rate of the bound
myosin II by blebbistatin

1.0 ×10−4 s−1 (μM)−1 Estimated

μD Decay rate of drugs targeting actin-
myosin association

5.13 ×10−4 s−1 [29, 43, 75]
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Fig. 15 Dynamics of cell infiltration in wild type and MYOII-KD tumor cells. (A,B) Time
evolution of profiles of infiltrating glioma cells (blue circles) between two normal glial cells
(black circle) in the wild type (A) and myosin II knock-down case (MYOII-KD; (B)) at t =
0, 20, 60, 80 min. (C,D) Time courses of the length of cell body (blue solid) and nucleus (red
dotted), respectively in the wild type (C) and MYOII-KD (D).

4.3 Application of the Model

Glioma cells have to adapt to the harsh biophysical conditions such as narrow inter-
cellular paths between resident normal cells prescribed in a zig-zag fashion(black
dashed circles in Figure 16A). In Figure 16A we show a time profile of a migratory
glioma cell (solid double circles) at t =0 (red solid), 1 (blue solid), 6 (purple solid),
16 (green solid) h. The cell determines its migration direction effectively based on
the chemical gradient from the chemotactic signal (red star) located in the top of
the domain. Figure 16C shows the change in the migration direction of the cell (the
angles from the vertical axis) in the presence of normal cells shown in Figure 16A.
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Fig. 16 Glioma cell infiltration through narrow intercellular spaces in a complex microen-
vironment. (A) A profile of the migratory tumor cell through normal cells (dashed filled circles)
at t =0 (red solid), 1 (blue solid), 6 (purple solid), 16 (green solid) h [56]. The normal glial cells
were placed in a zig-zag fashion and a chemotactic source was located at the top of the domain
(red star). (B) Time courses of the averaged speed of the glioma cell in (A). (C) Time courses
of direction change (angle from the vertical axis) of the migratory glioma cell (A) [56]. Positive
(negative) values indicate that the cell moves in the north-east (north-west) direction. The cell
is attracted toward the chemotactic source (red star in (A)) through chemotaxis and changes its
moving direction at three time points (black arrows and arrowhead). (D) A distribution of the
average speeds of migratory rat glioma cells in experiments [5].

This illustrates a constant, periodic deformation of the cell body and nucleus in
response to the gradient of the chemoattractant. In our simulations, the glioma cell
needs to deform its nucleus as well as cell membrane for the infiltration process
through the narrow gaps and cell speed was in the low range, 3–9 μm/h (Figure 16B)
among observed experimental data. Indeed, these low values are in good agreement
with experimental speed of rat glioma cells under the same biophysical conditions
[5] (Figure 16D).
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Fig. 17 Anti-invasion strategies by using blebbistatin. (A) Time courses of the concentrations
of blebbistatin and bound myosin II ([mb]), and stiffening rate of nucleus (r[mb]) in response
to injected blebbistatin at high (τB = 3, IB = 20) and low (τB = 3, IB = 5) doses. In
response to the relatively low blebbistatin concentration (IB = 5; blue solid curve), the bound
myosin II level is still high, resulting in lowered stiffening rate of the nucleus and tumor cell
infiltration through the narrow intercellular space. On the other hand, a high level of blebbistatin
(IB = 20; red dotted curve) keeps nucleus stiff enough to prevent deformation of nucleus, blocking
cell infiltration through the narrow gap. (B) Passing time of the cell through the intercellular gap
between two normal cells for various injection strength (IB = 1, 5, 10, 20, 30) and dose schedules
(τB = 1, 2, 3, 4, 5 h) [56]. *Blue= non-invasive tumor cell, red = the tumor cell in the process of
migration through the gap, yellow = complete infiltration of the tumor cell.

In Figure 17, we investigate the effect of blebbistatin, a cell-permeable suppres-
sor of class-II myosins, on glioma infiltration. While blocking of ligands such as
EGF and PDGF has been inefficient due to redundancy of its downstream signal
transduction pathways [18, 77], blebbistatin emerged as an anti-invasion target
[34, 67] due to its high selectivity and affinity toward myosin II [51] at a point of
convergence of many upstream signaling networks. A new equation for blebbistatin
dynamics (B(t)) and bound myosin II [mb] is

dB

dt
=

NB∑

j=1

IB(Htj −H
tj+ 1

3
)− μBB, (37)

d[mb]
dt

= k1[mT ][a] − (k1[a] + k−1)[mb] − αB[mb], (38)

where IB is the injection strength and H is a Heaviside function, in which the
injection is given for the first 1

3 h of every cycle τB = tj+1 − tj (≥ 1
3 h), j =

0, . . . , NB − 1, where NB is the total number of blebbistatin injections and t0 = 0.
μB is the natural decay rate of blebbistatin, and α is the consumption rate of the
bound myosin isoform by blebbistatin. The initial condition was set to be 150 μM
[51]. Figure 17A shows the dynamics of the acto-myosin system in response to two
different doses of blebbistatin (IB = 5, 20) with a fixed dose schedule (τB = 3 h).
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In response to the relatively low dose (IB = 5), the high level of bound myosin II
is maintained and the stiffening rate of the nucleus is lowered (blue solid curves),
resulting in glioma cell invasion. On the other hand, the increased dose (IB = 20)
suppresses activities of the bound myosin II but keeps the strong stiffening rate (red
dotted curves), blocking glioma cell infiltration. Figure 17B shows passing time of
a glioma cell through a narrow gap between two glial cells for various injection
strength (IB = 1, 5, 10, 20, 30) and schedules (τB = 1, 2, 3, 4, 5) of blebbistatin.
The model predicts that the larger (or smaller) injection interval and low (or
high) dose would lead to cell invasion (or block invasiveness of the tumor cells).
Despite relatively small side effects and toxicity of blebbistatin, administration of
blebbistatin need to be taken with precautions [91]. Therefore, an optimal dose
schedule is necessary to achieve maximal blocking of glioma infiltration but with
minimal dose amount and feasible administration schedule at a clinic. In our
simulations, the optimal treatment would be obtained when τB = 2, IB = 5.

5 Discussion

Tumor cell migration and proliferation depend on the type and origin of tumor cells
and on the tumor microenvironment. In this review, we focused on the dynamics of
highly invasive glioma cells. One of the major challenges in treatment of GBM is
that by the time the disease is diagnosed these cancerous cells have already invaded
the surrounding brain tissue, resulting in critical recurrence and the poor survival
rate. Infiltrating glioma cells like the guerilla warriors with specific characteristics
[14] were shown to be cultured from biopsies up to 4cm away from the main
tumor [87]. Therefore, it is critical to understand the fundamental mechanism of
invasion. As a first step, we first developed an intracellular model of the miR-
451-AMPK core control system which controls the migration and proliferation of
glioma cells. Based on biological observations, we developed a PDE model [45] and
analyzed the invasion-growth patterns of glioma cells and verified a major prediction
of the model experimentally [28]. The model also suggested that anti-invasion
drugs which either upregulate miR-451 expression or inhibit other components
of the CAB39/AMPK pathway, will slow down cell invasion. The miR-451 and
the downstream signaling molecules (AMPK [103], mTOR) were experimentally
identified as an anti-tumor target in colorectal carcinoma [13, 58]. The hybrid
model was able to predict detailed specific migration patterns at the cellular level
and microscale quantification such as cell speeds and saltatory patterns that are in
good agreement with the experiments [21, 35, 36, 85]. The model suggested anti-
invasion therapeutic strategies such as localization [38, 44] and combination therapy
(localization+chemodrugs) in the presence of dense BV networks [43]. Multiple
microsurgical resections of GBM have been shown to be useful and effective [33].
In order to optimize the schedule of glucose dose and drugs in the strategies, optimal
control theories have been applied to the problem [79, 84].
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In Section 3, we investigated the role of M1/M2 microglia in regulation of glioma
cell invasion through the paracrine signaling including CSF-1, EGF, TGF-β, and
MMP [40]. Although the details of theM1→M2 transition in gliomas are not fully
understood, our model predicts the role of these stromal cells in promoting glioma
invasion in vitro and suggested several hypotheses on anti-invasion strategies. Cell–
cell signaling is an integral but complex process in tumor growth and invasion,
since many mutations and chromosomal changes affect these signaling pathways
involving growth factors or cytokines. The presence of astrocytes was shown both
experimentally [88] and theoretically [55] to work as a secondary wall against
glioma infiltration, and further studies need to investigate the role of the continuous
spectrum of the M1→M2 transition and interactions among those stromal cells in
the regulation of glioma invasion.

In Section 4, we investigated glioma cell infiltration through a narrow intercellu-
lar gap between resident brain cells [56], which is a complex process that involves
deformation of nucleus and membrane of the cell via the tight regulation of acto-
myosin dynamics [5]. In the same vein of localization strategies in Section 2, we
developed the detailed multi-scale biomechanical mathematical model to study the
role of myosin II in regulation of cell infiltration in response to a chemotactic source
in the presence of resident cells. A better understanding of fundamental cell motility
in tumor microenvironment may lead to the development of new anti-invasion drugs
that target these myosin II bundles.

Currently, there are limited resources of experimentation and understanding
of the mutual interactions between the glioma cells and the stromal cells in the
microenvironment. Thus, mathematical studies on the effects of these complex
interactions on glioma invasion, and on the sensitivity of the model predictions to
kinetic key parameters, may provide insights to guide real experiments aimed at the
development of new anti-tumor therapeutic strategies.
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A Multiscale Model of Cell Migration
in Three-Dimensional Extracellular
Matrix

Xiuxiu He and Yi Jiang

Abstract Cell migration in a three-dimensional (3D) extracellular matrix (ECM)
is one of the key biological processes. Yet many fundamental questions remain
unanswered. In this chapter, we introduce a modeling framework for a 3D,
element-based, multiscale cell migration model. This model takes into account the
mechanosensing signaling pathway, cell morphological dynamics, and cell-ECM
interactions. To integrate the mechanochemical dynamics, we developed an implicit
integration method to calculate forces for the elements and a moving boundary
reaction-diffusion solver. The model is partially tested for cell migration on a curved
substrate. Further development is needed to couple the cell model with a mechanical
ECM model. This model can be used to test hypotheses of cell-ECM interactions
and cell migration in tissue environment.

1 Introduction

Cell migration through 3D ECM is one of the most fundamental processes of
living systems that underlies tissue formation, maintenance and regeneration, as
well as pathological conditions including cancer invasion. Cells can change their
behavior and switch their migration pattern depending on the local ECM. The
critical questions: “What are the key ECM and cell characteristics that determine the
migration pattern?” and, “Can we predict and manipulate the patterns of migration
and resulting ECM remodeling by manipulating the ECM architecture?” are still
unanswered.

Most of our understanding of cell migration is cell-centered, coming from assays
of cell migration on a two-dimensional (2D) flat substrate. Cell migration is a cyclic
multi-step process consisting of (1) actin polymerization-dependent protrusion at
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the leading edge; (2) integrin-mediated adhesion to ECM; (3) actomyosin-mediated
contraction of the cell body increasing longitudinal tension that leads to rear
retraction and translocation of the cell body, and (4) contact-dependent ECM
cleavage by cell surface proteases [1]. Cell migration through a dense 3D ECM, in
contrast to 2D migration, is possible only when the cell generates sufficient tractions
to overcome the steric hindrance of the surroundings [2].

Many recent technological advances in super-resolution microscopies [7–9]
to visualize the cytoskeleton, the cell, the ECM structures, 3D traction force
microscopies to quantify the cell-substrate interactions [10, 11], as well as in
engineered substrate geometry [2–5] have offered new tools to investigate 3D
migration mechanisms. A mathematical and computational model of 3D cell-ECM
interaction is needed to integrate all the new experimental observations to help
mechanistically dissect cell migration strategies in 3D. Cell 3D migration also is
physicochemical variable and “tunable” [6]. The actin cytoskeleton adapts its 3D
organization in response to changes in the ECM, differences in cell mechanics,
and the extent to which focal adhesions are present. Cells migrate through an
ECM barrier either by changing their shape or by altering the ECM structure
through proteolysis. There has been a growing need for a model that can capture
the essential processes and interactions of 3D migration, such that the different
migration patterns, e.g., the mesenchymal to amoeboid transition, are emergent from
the cell interacting with the local ECM environment.

Many mathematical models of cell migration exist in the literature, but very few
have considered realistic biomechanics. Most mathematical models of cell migra-
tion have been in 2D. Mogliner et al. [14] have modeled the integration of the spatial
and temporal organization of multiple forces, including actin-driven protrusion
of the cell membrane, membrane tension, cell-substrate adhesion, and myosin-
mediated contraction of the actin network to understand the shape and movement
of keratocyte [14] . Levine et al. [15] further described the cell’s cytoskeleton as
a viscous, compressible fluid driven by active stresses from actin polymerization
and myosin contraction, which reproduced the long time scales of keratocyte and
fibroblast migration on which the cytoskeleton can rearrange [16]. These 2D models
did not consider the interaction with the ECM environment. Several models of cell-
ECM coupling also exist. Most notable is probably the anisotropic biphasic theory
of tissue equivalent mechanics [17], where cell seeded collagen gel was modeled as
two continuous phases that interpenetrate each other: the viscoelastic fiber network
phase and fluid phase. The model accounted for the biomechanical feedback
between cell behavior and evolving network alignment. The continuous mechanics
however does not treat the nonaffine local deformations. The model was extended
to compare cell migration and cell traction through quantifying cell traction [18].
At the tissue scale, Bauer et al. [19] studied ECM topography as the contact
guidance for endothelial cell migration during angiogenesis, but did not consider
biomechanics. Zaman et al. [20] have developed a model of cell migration in ECM
environment with different ligand, cell integrin receptor levels, and pore size, but
did not consider ECM remodeling. Tozluoglu et al. [21] developed a cell blebbing
model that took into account actin protrusion, actomyosin contraction, membrane
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tension, and substrate adhesion. The model emphasized that the geometry of ECM
determines cell migration pattern, but considered neither ECM mechanics nor
remodeling. Also Lepzelter et al. [37] modeled 3D environment with explicit fibers,
focusing on how the overall stiffness and ligand concentration influence the cell
motility persistence, again did not consider ECM remodeling. He et al. [38] studied
how substrate curvature regulates cell migration morphology and motility through
developing 3D element-based cell model. A recent review [39] summarized the
recent advances in the modeling of ECM biomechanics, cell migration, and cell-
ECM interactions in the context of cancer invasion.

Our grand goal is to develop a cell migration model that can interact mechan-
ically and chemically with the 3D ECM, and can adapt its migration pattern
realistically as a function of the local ECM structure and mechanics. While it has
been well accepted that 3D cell migration is in many ways different from 2D,
and that physical properties of the ECM such as stiffness, crosslinking, and pore
size affect 3D migration [22–26], how cells detect the mechanical properties of
the matrix and switch their migration mode accordingly is still unresolved [27].
Furthermore, as cells move along, around, and through the network of ECM fibers,
they remodel the structure of the fiber network, which also changes the mechanical
property and in turn modulate the cell migration patterns. Many mathematical
models for ECM biomechanics exist, thanks to its importance in connective tissue
and tissue engineering. These models range from molecular dynamics of collagen
molecules to bulk properties of fiber networks [28–34]. Because our goal is to
understand how cells interact with collagen networks with different ECM archi-
tectures, neither atomic molecular dynamics nor continuous models will work. We
have developed a 3D elastic computational fiber network model and parameterized it
with in vitro collagen experiments [35]. Using this model, we simulated mechanical
testing of fiber networks and examine the mechanical properties of fiber networks
with varying density, alignment, and crosslinking.

In this chapter, we present a 3D multiscale cell migration model framework with
a cell signaling cascade that is coupled to the 3D ECM biomechanical model.

2 Three-Dimensional Multiscale Cell Migration Model

At the cellular scale, the element-based cell model specifies the cell membrane,
cytoskeleton, and nucleus (Figure 1). We model cell membrane using membrane
elements similar to those in Newman’s subcellular element model [12], where a
pair-wise Morse potential between elements describes their interactions. The Morse
potential

V (r) = D(1 − e(−a(r−re)))2 (1)
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where r is the distance between elements, re is the equilibrium distance, and D
is the potential well depth, is a better approximation than elastic springs as it
explicitly includes the effect of bond breaking, which is necessary for simulating
the cell membrane dynamics that could have large deformations. Each membrane
element is connected to the nucleus through an elastic cytoskeleton string, and the
nucleus is a semi-rigid sphere that can deform slightly when pushed and pulled by
the cytoskeletal strings (Figure 1).

At the molecular scale, each membrane element carries integrins. Integrin can
bind to nearby ECM to form focal adhesion and initiate cell polarity, which
leads to the signaling cascade down the mechanosensing pathway to regulate
the actin cytoskeleton dynamics. We use a highly simplified mechanosensing
signaling network (low right corner of Figure 1), which includes integrin binding
activated Rho1, Rac/Arp2/3 pathways. Activation of Rho1 leads to actomyosin
bundle formation, while activation of Rac/Arp2/3 leads to actin polymerization. The
spatiotemporal dynamics of these molecules are described using a set of reaction-
diffusion equations. The resulting spatial distributions of filament actin (F-actin)
and actomyosin drive the dynamics of the cytoskeletal strings: high concentration
of F-actin leads to fiber elongation and high concentration of actomyosin leads
to fiber shortening. At the same time, the high density of actomyosin also leads
to integrin clustering, which in turn strengthens focal adhesion by stabilizing the
nascent integrin bindings. Each membrane element then integrates the forces from
the string (cytoskeleton force), from its neighboring elements (membrane tension),
and the integrin-ECM binding (focal adhesion), to determine its motion. The motion
of the elements determines cell shape as well as the migration dynamics.

At the tissue scale, this cell model can be embedded in a 3D ECM model. The
mechanical binding between integrin and ECM ligand and the signaling cascade
is described above. This model framework and the following implicit integration
method can also easily allow for proteolytic interaction between the cell and the
ECM in this rather flexible model framework.

2.1 Mechanical Element-Based Cell Model

The equations of motion for membrane elements αi is:

ẏαi = μαi − ∇αi
∑

βi 
=αi
V (|yαi − yβi |)− ∇αi

∑

j∈Nαi
Pj + ρα, (2)

where μ is Gaussian-distributed random noise that reflects the underlying fluctua-
tions of cytoskeleton, V is the Morse potential (Equation 1), P is the elastic energy
in cytoskeletal structure connected to αi , and ρ is the protrusion or contraction force
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Fig. 1 Schematic of the 3D multiscale cell-ECM model: a cell consists of membrane elements that
interact through a Morse potential, a deformable nucleus, and cytoskeletal strings that can protrude
and contract as regulated by local F-actin and Actomyosin concentrations. The viscoelastic ECM
model (black fibers with red crosslinker treated as bead-and-springs) provides not only the binding
sites for cells, but also the mechanical coupling for cell membrane elements. The cell-ECM
mechanical coupling initiates the maturation steps of Integrin (ITG)-Ligand (ECM) binding. Stable
Integrin-ligand binding leads to the signaling cascade through Rac and Rho (lower right corner)
that determines the actin and myosin dynamics. F-actin and Actomyosin activities dictate the time-
dependent elongation and contraction of cytoskeletal strings.

associated with local concentration of molecules in the signaling cascade (low right
corner of Figure 1). As the cell membrane is represented as membrane element, the
model is capable of capturing complicated morphological dynamics with multiscale
interactions and geometric constrains.

We assume that inertial effects can be ignored in the over-damped environment of
a live cell. Part of the mechanics at molecular scale, e.g. mediated by motor proteins
or initiation of actin polymerization, are dominated by Brownian motion, which has
been modeled using the Langevin equation [36]. The motion of membrane element
also experiences a frictional drag. Hence the velocity of the membrane element v is

vαi = κ ẏαi (3)

= F(y,L, ρ,μ) (4)

= f1(y)+ f2(L)+ f3(ρ)+ f4(μ), (5)
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where κ is the drag coefficient, y is the positions of all elements in 3D, and L
represents the elastic deformation of cytoskeletal string. The Langevin Equation (2)
can incorporate other signaling cascade or intracellular interactions associated with
migration, for example chemotaxis and durotaxis. To avoid the potential stability
issues with explicit integration methods, we introduce the following implicit
numerical integration method, in which we simplify the complex interactions.

yt+Δt = yt +Δt · Ft+Δt (6)

Ft+Δt = Ft + (yt+Δt − yt ) · F′
yt . (7)

F′
yt = f′1(yt )+ f′2(yt )+ f′3(ρt )+ f′4(μt ) (8)

Therefore we have

yt+Δt − yt = Δt · Ft
I −Δt · F′

yt
(9)

= ( I
Δt

− F′
yt )

−1Ft , (10)

where F = ∑
k=1,...4

f, Ft = F(yt ), F′
yt is derivative of F with respect to y.

The first force arises from the inter-elemental potential and can be rewritten as

f1(yt ) = ∇αi
∑

βi 
=αi
V (|yαi − yβi |). (11)

Let rαi ,βi = |yαi −yβi |. We consider the gradient of f1(yt ) with respect to xyt where
yt = (xyt , yyt , zyt ) is 3D position of the membrane element.

f′1(yt )xyt
= (∇αi

∑

βi 
=αi
V (|yαi − yβi |)xyt

(12)

=
∑

βi 
=αi
(∇αi (V (|yαi − yβi |))rαi ,βi · (rαi ,βi )xyt

(13)

Equivalently, because (rαi ,βi )xyt
= r−

1
2

αi ,βi
(xyαi t

− xyβi t
), we have

f′1(yt )yt =
∑

βi 
=αi
r
− 1

2
αi ,βi

(∇αi (V (|yαi − yβi |))rαi ,βi · (yαi − yβi ) (14)
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Similarly, the force from the elastic cytoskeletal strings is

f2(yt ) = − k(yt − yeq) (15)

f′2(yt )xyt
= − k · xyt

|xyt |
, (16)

which leads to

f′2(yt )yt = −k · yt
||yt ||2 (17)

Moreover, f4(μ) is motion from Gaussian-distributed random variate with zero
mean and is independent of the positions of elements yαi , therefore f′4(μ)yt = 0,
which is the same for f′3(ρ)yt .

Taken together, F′
yt for each membrane element in Equation (7) is

F′(yt , ρ, μ)yt = −
∑

βi 
=αi
r
− 1

2
αi ,βi

(∇αi (V (|yαi − yβi |))rαi ,βi · (yαi − yβi )− k · yt
||yt ||2 .

(18)

This method has been tested and implemented in parallel for simulating 3D
cell migration on curved substrate [38]. We used this 3D cell migration model to
simulate cell migration on both convex and concave substrates. We showed that cell
spreads out more on a more convex surface, while cell migration is more persistent
on the more concave surfaces (Figure 2).

2.2 Mechanochemical Cytoskeletal Dynamics

As illustrated in Figure 1, we integrate the mechanics of integrin-ECM binding
and cytoskeletal with the actin cytoskeletal dynamics through the combination of
reaction-diffusion equations and element-based modeling. The number, status, and
duration of integrin binding determines the strength of a focal adhesion [13]. The
local concentrations of F-actin and actomyosin prescribe the elongation and con-
traction of cytoskeletal fibers. Both focal adhesion and the elongation/contraction
of cytoskeletal fibers then contribute to the equation of motion of the MEs.
Motion of the MEs then determines cell shape dynamics and migration behavior
(Figure 3).
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Fig. 2 Schematic of the 3D cell model (A) and single cell migration on substrate with (B) negative
(lower left) and positive (lower right) curvature. (Adapted from [38] with permission.)

Diffusion
Reaction

Protrusion

ECM

Integrin

Focal Adhesion

Activation
Clustering

Cell Motility Pathway

Integrin
Transportation

Fig. 3 Schematic of mechanochemical integration. Integrin binding with ECM forms focal
adhesion, which activates mechanosensing signaling pathway. The spatiotemporal concentration
dynamics of the molecules in the mechanosensing pathway, modeled as a reaction-diffusion
system, determine the protrusion and contraction of the cytoskeletal fibers as well as integrin
clustering.

For each node in our simplified signaling network, the concentration follows a
general diffusion-reaction equation:

∂C
∂t

= ∇(D∇C)+ R (19)
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where C is the concentration and D is the diffusion coefficient. The reaction
kinetics R includes:

∂N

∂t
= kaNLI − kdNN + kdSS − kasN (20)

∂S

∂t
= kaSN − kdNS (21)

∂R

∂t
= IR + αSRS

1 + ( ρ
βρ
)n1
(
Ri

Rtot
)− δRR (22)

∂ρ

∂t
= Iρ + αSρS

1 + ( R
βR
)n2
(
ρi

ρtot
)− δρρ (23)

∂AcM

∂t
= (IAcM + αρρ) AcMi

AcMtot
− δAcMAcM (24)

∂Fa

∂t
= (IFa + αRR) Fai

Fatot
− δFaFa (25)

∂I

∂t
= k1I0

k2 + AcM + k3L0

k4 + L − k5I, (26)

where L is ECM ligand, I is integrin, N is nascent integrin binding, and S is stable
integrin binding. The first two equations describe the stabilization or maturation of
focal adhesion:

Ligand(L) + Integrin(I)
kaN�
ddN

Nascent – binding (N)
kaS�
ddS

Stable – binding(S)

(27)

In the rest of the equations, ρ is Rho1, R is Rac/Arp2/3, AcM is actomyosin, and
Fa is F-actin, with their respective kinetic rates k and decay constants δ.

The challenge for solving the reaction diffusion equations is that as cell migrates,
the domain to solve the equations changes constantly, i.e., a moving boundary
problem. However, there has not been a reaction-diffusion solver with moving
boundary conditions with mechanics. StochSS [40, 43] is a stochastic biochemical
network simulator without spatial temporal biochemical aspect. Simmune [41]
uses a non-deformable cube volume element to simulate cell-cell and cell-ECM
interactions based on Cellular Potts model. Vcell [42] and Simmune are able to
build 3D mesh from microscopic images; however, without a fast 3D moving
boundary reaction-diffusion solver, they are currently not capable of simulating cell
morphology and ECM deformation.

We introduce a novel 3D moving boundary reaction-diffusion solver, where the
volume discretization and volume adaption are designed to take advantage of the
discrete cell MEs and the cytoskeletal string structure. The volume discretization
takes place in two steps. First we triangulate the cell surface formed by MEs; as
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Fig. 4 Schematic diagram of volume discretization. The membrane elements of a cell surface
triangle and the cytoskeletal strings connecting them to the nucleus define a tetrahedron. To
discretize the tetrahedron further, fixed number of points are added along each cytoskeletal string.

the cell nucleus and MEs are connected through the cytoskeletal fibers, the three
MEs of a triangle and the fibers and the nucleus surface define the tetrahedrons that
discretize the 3D cell (Figure 4 left). Second we define discretization points along
each cytoskeletal string. The points are further apart closer to the nucleus than to
the cell surface, such that the discretized tetrahedra have roughly equal volumes.
Vertices of tetrahedron are either MEs or points along cytoskeleton strings. As the
cell moves, positions of the vertices move with membrane and string deformation
(Figure 2A). When the tetrahedra are small enough and the time step of integration
is small enough, we can assume that within the tetrahedron the amount of molecules
involved in the volume adaption remains homogeneous within each step.

The diffusion term can be discretized using the 3D analog of Crank-Nicholson
scheme, based on the Locally One-Dimensional (LOD) method:

∂C

∂t
= D[∂

2C

∂x2 + ∂2C

∂y2 + ∂2C

∂z2 ]. (28)

Let vx ≡ D Δt
Δx2 , vy ≡ D Δt

Δy2 , and vz ≡ D Δt
Δz2 .

(1 − vx

2
δ2
x − vy

2
δ2
y − vz

2
δ2
z )C

n+1 = (1 + vx

2
δ2
x + vy

2
δ2
y + vz

2
δ2
z )C

n (29)

The factorization of the scheme is

(1−vx
2
δ2
x)(1−

vy

2
δ2
y)(1−

vz

2
δ2
z )C

n+1 = (1+vx
2
δ2
x)(1+

vy

2
δ2
y)(1+

vz

2
δ2
z )C

n (30)



A Multiscale 3D Cell-ECM Model 71

Fig. 5 Schematic of volume
adaption. V −

1 (before) and V +
1

(after). 1– 1+

The truncation error of this method is T = O(Δt2)+O(Δx2)+O(Δy2)+O(Δz2).
The method is always stable. We implement this scheme by breaking it down to three
steps:

⎧
⎪⎨

⎪⎩

(1 − Ax
2 )C

n∗ = (1 + Ax
2 + Ay + Az)Cn

(1 − Ay
2 )C

n∗∗ = Cn∗ − Ay
2 C

n

(1 − Az
2 )C

n+1 = Cn∗∗ − Az
2 C

n

(31)

Each time step, the system is solved for all tetrahedra by combining the reaction
and diffusion calculations. Then as the MEs and fibers adapt mechanically, the
concentrations for the next time step depend on the new locations of the tetrahedra:

C+
i = 1

V+
{Ci ‖ V +

i ∩ V −
i ‖ +

∑

j∈N(i)
Cj ‖ V +

i ∩ V −
j ‖} (32)

When the time step is small enough, the new tetrahedron V +
i overlaps significantly

with the old V −
i (Figure 5). We need to calculate the intersection between two

convex tetrahedra. Therefore the problem becomes solving the following system
for V + ∩ V −, where V + has vertices P+

1 , P
+
2 , P

+
3 , P

+
4 and V − has vertices

P−
1 , P

−
2 , P

−
3 , P

−
4 .

The procedures are the following:

• Find the vertex set S = {P−
i : i = 1, . . . , 4}.

• If S has 4 elements, V − ⊂ V +. V + ∩ V − = V − .

• If S has 3 elements, S = {P1, P2, P3}. Let S = {P }. Compute PPi intersects
any face of V + that does not contain vertex ∈ S. That is, computing three lines
intersect with one plane and get the split point to add to S.

• If S has 2 elements, S = {P1, P2}. Let S = {P3, P4}. Compute PiPj , i ∈
{1, 2}, j ∈ {3, 4} intersect with the opposite face of corner Pi . That is, computing
line-face intersection for four times. Add new split points to S.

• If S has one elements, S = {P }. Let S = {P1, P2, P3}. Compute PPi intersect
with the opposite face of P , then add the split points to S.

• If S has 0 elements,
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a
j

m1x + ajm2y + ajm3z = bjm (33)

aip1x + aip2y + aip3z = bip (34)

aiq1x + aiq2y + aiq3z = biq (35)

where m is the face index of tetrahedron j and {p, q} is a pair of faces of
tetrahedron i. With the solution of both cases, we have all vertices of the intersection
V + ∩ V −. It is then trivial to solve for the volume because it is convex.

⎡

⎢⎢⎣

1
x

y

z

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

1 1 1 1
x1 x2 x3 x4

y1 y2 y3 y4

z1 z2 z3 z4

⎤

⎥⎥⎦

⎡

⎢⎢⎣

ζ1

ζ2

ζ3

ζ4

⎤

⎥⎥⎦ (36)

ζ1 + ζ2 + ζ3 + ζ4 = 1,∀(x, y, z) ∈ Ωe (37)

ζi is the volume of the sub-tetrahedron spanned by the point (x, y, z) and the face
opposite the i-th corner. The above 4 × 4 matrix is called Jacobian matrix of the
tetrahedron. Explicit inversion gives

⎡

⎢⎢⎣

ζ1

ζ2

ζ3

ζ4

⎤

⎥⎥⎦ = 1

6V

⎡

⎢⎢⎣

6V01 y42z32 − y32y42 x32z42 − x42z32 x42y32 − x32y42

6V02 y31z43 − y34z13 x43z31 − x13z34 x31y43 − x34y13

6V03 y24z14 − y14z24 x14z24 − x24z14 x24y14 − x14y24

6V04 y13z21 − y12z31 x12z13 − x31z12 x13y21 − x12y31

⎤

⎥⎥⎦

⎡

⎢⎢⎣

1
x

y

z

⎤

⎥⎥⎦

(38)

where xij = xi − xj , yij = yi − yj , and zij = zi − zj . The first column entries are
explicitly given by

6V01 = x2(y3z4 − y4z3)+ x3(y4z2 − y2z4)+ x4(y2z3 − y3z2). (39)

6V02 = x1(y4z3 − y3z4)+ x3(y1z4 − y4z1)+ x4(y3z1 − y1z3). (40)

6V03 = x1(y2z4 − y4z2)+ x2(y4z1 − y1z4)+ x4(y1z2 − y2z1). (41)

6V04 = x1(y3z2 − y2z3)+ x2(y1z3 − y3z1)+ x3(y2z1 − y1z2). (42)

This novel design for solving the reaction-diffusion equations with moving
boundary conditions is motivated by the discrete nature of our element-based model.
The movement of cell membrane elements is updated by solving Equation (2),
which is based on the solution of Equations (19). The two are integrated using the
moving boundary reaction-diffusion interface (as shown in Figure 3). Within our
model design, this method is more efficient than other finite volume methods, e.g.,
a finite volume procedure [45] that treats mechanical-chemical responses such as
load-velocity relations, because the volume elements can be calculated and updated
analytically.
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Alternatively, we could use a moving grid finite element method [46, 47]. Contin-
uously changing boundaries can be readily handled by moving grid implementations
with few changes to the finite element methodology, at least when grid motion
is prescribed. In many biological contexts, however, the grid motion cannot be
prescribed. A novel moving grid finite element method [44], where solution and
the grid movement are both unknown that have to be solved for simultaneously. In
most cases the solution of the partial differential equation and the grid movement
are expanded in a piecewise linear finite element approximation space and then
the least squares residual is minimized with respect to the time derivatives of the
two unknowns. This method thus yields both the solution and the grid movement
simultaneously. This method was applied to solve a reaction-diffusion system where
the boundary is deformed continuously in some prescribed fashion (in most cases to
mimic biological experiments) [44] in 2D.

3 Discussion

Cell migration requires coordination of processes across multiscales: the molecular
regulation of the cytoskeleton dynamics, the membrane biophysical properties, and
the interaction with the extracellular environment. We have developed a multiscale
element-based 3D single cell model, which integrates biomechanics and cell
singling, as well as biomechanics and biochemical interactions with the 3D ECM.
Mechanical interactions between integrin and ligand, within the actin cytoskeletal
structure, between the membrane elements and the cytoskeleton, are coupled to the
kinetics of the mechanosensing pathway. We in addition propose a set of numerical
treatments for the mechanochemical coupling at both the molecular and cellular
scales.

This model necessarily contains a large number of parameters, many of which
are available either from either direct experimental measurements (e.g., kinetic
rates) or estimates (e.g., diffusion coefficients). The key parameters in our model
are the simplified mechanochemical integration, i.e., the elongation and shortening
of cytoskeletal fibers as a function of the local concentration of F-actin and
actomyosin. The parameters for these rules could be fitted from experimental data
with high resolution spatiotemporal actin cytoskeleton dynamics, e.g., using the
lattice light sheet super-resolution microscopy [48]. Alternatively, these parameters
could be derived from finer resolution molecular dynamics simulations, for example
using a computational model for mechanochemical simulations of active networks
(MEDYAN) [49].

Among the key processes of cell migration, ECM degradation by matrix metal-
loproteinase (MMP) is not always active. Processes related to MMP degradation
are highly complex, e.g., degradation in the form of actin-rich invadopodia is
found to be regulated by secretion of exosomes containing ECM [50]. Such
proteolytic processes can be included either as rules or as kinetic equations when
rate parameters are available. In addition, intracellular fluid dynamics has been
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proposed to be important in regulating migration for cells in confined geometries
[5]. Our modeling framework has the capability of further extending the reaction-
diffusion equations to reaction-diffusion-advection equations.

Our flexible modeling framework has only been implemented for single cell
migration on curved substrates [38]. Further research is needed to couple our cell
migration model with mechanically realistic ECM model [35]. Many questions
regarding cell migration in 3D ECM could be addressed, and experimentally testable
hypotheses generated, using such a modeling framework.
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Bayesian Uncertainty Quantification
for Particle-Based Simulation of Lipid
Bilayer Membranes

Clark Bowman, Karen Larson, Alexander Roitershtein, Derek Stein,
and Anastasios Matzavinos

Abstract A number of problems of interest in applied mathematics and biology
involve the quantification of uncertainty in computational and real-world models.
A recent approach to Bayesian uncertainty quantification using transitional Markov
chain Monte Carlo (TMCMC) is extremely parallelizable and has opened the door to
a variety of applications which were previously too computationally intensive to be
practical. In this chapter, we first explore the machinery required to understand and
implement Bayesian uncertainty quantification using TMCMC. We then describe
dissipative particle dynamics, a computational particle simulation method which is
suitable for modeling biological structures on the subcellular level, and develop an
example simulation of a lipid membrane in fluid. Finally, we apply the algorithm to
a basic model of uncertainty in our lipid simulation, effectively recovering a target
set of parameters (along with distributions corresponding to the uncertainty) and
demonstrating the practicality of Bayesian uncertainty quantification for complex
particle simulations.
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1 Introduction

Mathematical models are vital to the study of complex systems such as biological
cells [22, 26, 33, 35]. The ground truth is often unknown, and the sheer number
of components may prove computational and analytic approaches to be infeasible,
even when the underlying mechanics are well understood. In these scenarios, the
comparative simplicity of models affords tractability at the cost of introducing
uncertainty.

The most basic question that can be asked of a model is the forward problem:
given a particular input, what output will be produced from the system? Supposing
the model is deterministic, this question may seem straightforward – the model
must simply be applied and the output observed. Yet there are many potential
sources of uncertainty: the output may be subject to measurement error, or the
model may depend on parameters which are themselves uncertain (see, e.g., [2, 40]),
thereby propagating uncertainty forward. In the case where the model is itself
stochastic (e.g., a branching process model of a disease), uncertainty may be a
fundamental aspect of the system dynamics [1, 41]. The broad field which describes
the mathematical treatment of models in the presence of uncertainty is often referred
to as uncertainty quantification (UQ) [14, 21, 32].

The mathematical treatment of uncertainty in this context may be trivial –
for example, accounting for a measurement error in the output (e.g., a Gaussian
noise term) may be as simple as executing the forward problem, then adding a
Gaussian random variable. In this case, the forward problem is solved only once,
so the resulting distribution is easily sampled from, even when the model itself has
considerable complexity.

Conversely, many other problems become significantly more difficult when
uncertainty is introduced [41]. The classical inverse problem is one such example:
what input (or set of inputs) yields a particular output? Especially if the model
is complex, the model itself is unlikely to be invertible; moreover, depending on
the form of the uncertainty, the set of inputs which must be considered can be
prohibitively large [36]. To illustrate, consider that in the previous example of
additive Gaussian noise, which is among the simplest models of measurement
uncertainty, the entire input space could feasibly have produced any particular
output, so long as the Gaussian noise chanced to be exactly the difference between
the true output and the target output. Even if the input space is finite, the number
of times the model must be applied makes this “solution” impractical for all but the
simplest and most efficient models.

The Bayesian approach to this parameter estimation problem, i.e., Bayesian
uncertainty quantification, attempts to leverage tools from Bayesian statistics to
make the problem more tractable [4, 40]. As will be explored in Section 2, there are a
variety of approaches to sampling from high-dimensional and complex distributions
in the Bayesian setting [7]. As the goal of parameter estimation is the probability
distribution corresponding to the relative likelihood of particular parameter values
generating the observed output, this machinery is readily applied.
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The main goal of this chapter is to introduce a particular recent approach to
Bayesian parameter estimation which is practical even for comparatively expensive
models, such as those necessary to study the dynamics of biological cells in
atomistic detail. Rather than running the forward problem for a prohibitively large
set of parameters, the algorithm uses a Markov chain Monte Carlo approach which
evaluates the problem only at a discrete set of points. More importantly, the specific
algorithm used, known as transitional Markov chain Monte Carlo (TMCMC), is
massively parallelizable, and so the high cost of the model can be offset by the
ability to execute many copies of the model simultaneously [3, 6, 8, 14].

To demonstrate the effectiveness of this approach, we introduce in Section 3
an example simulation of a lipid bilayer membrane, which plays a sizeable role
in the motility of, e.g., eukaryotic organisms. Using a particular type of particle
simulation known as dissipative particle dynamics [18, 24], we model both the
lipids and fluid directly, and the membrane is held together only by the inter-
molecular forces between the tails of the lipids and the surrounding water. Two
free parameters are selected as input and are passed to the model on initialization,
while the simulation output is calculated directly from the particle positions via a
time-averaging procedure. The resulting model has considerable complexity and
is moderately expensive – by standard Markov chain Monte Carlo approaches,
Bayesian uncertainty quantification in such a setting is not feasible.

In Section 4, the parallelized TMCMC approach is applied to the membrane
particle simulation in the context of a simple error prediction model which corrupts
the output with additive Gaussian noise. To check that the resulting samples are
reasonable, they are compared with a known set of parameters which was used to
generate the target output. In all cases tested, the reference parameter values are
assigned reasonably high probability under the sampled posterior. Namely, Bayesian
parameter estimation is feasible for an example particle simulation with tens of
thousands of particles, and so may have applications to a wide range of problems in
mathematical and cellular biology, whose models are often too expensive to apply
naïve methods.

2 Bayesian Uncertainty Quantification and Sampling
Methods

2.1 Bayesian Uncertainty Quantification

To approach the parameter estimation problem using a Bayesian methodology
such as TMCMC, we must first formally introduce the Bayesian formulation of
uncertainty quantification [4]. The hallmark of Bayesian statistics is the assumption
of prior distributions for unknown parameters – in other words, probabilities are
a representation of degrees of belief; any knowledge of the unknowns a priori,
whether from previous experience or from physical limitations, informs belief in
the parameter values even before a statistical model is applied [36].
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In the context of parameter estimation, the unknown parameters are the inputs
to some mathematical model M (including not only model parameters, but also
initial conditions, boundary conditions, etc.), which then produces a set of output
quantities governed by the form of the model. A simple bacterial growth model,
for example, might be parametrized by the probability p that a particular bacterium
divides in a certain time period, but would also take as input the number X0 of
bacteria present at time 0. The Bayesian assumption is that the n inputs, jointly
parametrized by θ ∈ R

n, are random variables with joint prior density π(θ |M).
Given a particular set of inputs θ , the modelM produces a set ofm data, referred

to jointly as D ∈ R
m, according to some likelihood p(D|θ,M) – this is the content

of the model itself, i.e., the mapping from inputs to outputs, which is probabilistic
owing to uncertainties and stochasticity in the model M . The parameter estimation
problem instead targets the posterior p(θ |D,M), i.e., the mapping from the outputs
back to the inputs, which is also informed by the prior beliefs π(θ |M). In this
setting, D is known and θ is unknown, and so it should be stressed that p(D|θ ,M)
is purposefully referred to as a likelihood since it is not a distribution in θ .

Using Bayes’ theorem, the posterior distribution can be computed as

p(θ |D,M) = p(D|θ ,M)π(θ |M)
ρ(D|M) , (1)

which additionally introduces the evidence ρ(D|M) of the model class, given by the
multi-dimensional integral

ρ(D|M) =
∫

Rn

p(D|θ,M)π(θ |M)dθ .

In the case where the model M is one particular model in a parametrized class of
models, the evidence ρ(D|M) functions as a measure of the degree to which the
model matches the observed data, thereby playing a critical role in model selection
[5, 37]. For the parameter estimation problem, however, it should be noted that ρ
does not depend on θ , and so its role in this chapter is simply to function as a
normalization constant for the posterior.

To proceed further, assumptions must be made about the specific form of the
likelihood p(D|θ,M). Here, we will assume that the measured data D are generated
according to the following model prediction equation:

D = g(θ |M)+ e, (2)

where g(θ |M) is the predicted output for a specific set of parameters θ and e is
a prediction error due to, e.g., measurement, computational, or modeling errors.
Specifically, we will make the simplifying assumption that the error e is normally
distributed with zero mean and covariance matrix Σ , which may involve additional
unknown parameters. Since g is assumed deterministic, it follows that D is also
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normally distributed, and so the likelihood p(D|θ ,M) of the observed data can be
written as

p(D|θ ,M) = |Σ(θ)|−1/2

(2π)m/2
exp

[
− 1

2
J (θ ,D|M)

]
, (3)

where

J (θ ,D|M) = [D − g(θ |M)]TΣ−1(θ)[D − g(θ |M)]

is the weighted measure of fit between the model predictions and the measured
data, | · | denotes determinant, and the parameter set θ is augmented to include
any unknown parameters in the covariance matrix Σ [5, 38]. It follows that sets of
parameters θ which reduce J (θ ,D|M), which is often called the “fitness” of the
parameter set θ to the data D, generally increase the likelihood; thus, the most likely
sets of parameters (before consideration of the prior π(θ |M)) can be intuitively
recognized as those whose output most closely matches the observed data.

While this explicit form of the likelihood can be straightforwardly calculated
for any chosen set of parameters θ , each evaluation must reference the model
prediction function g, which may be computationally intensive (e.g., a particle
simulation). Since the parameters are assumed to be real-valued and the noise e
spans the entire output space, computing the complete posterior p(θ |D,M) would
then require an infinite number of evaluations of g. By formulating the problem in
a Bayesian context, however, we gain access to the Bayesian statistician’s toolkit,
which contains a number of methods for approximately sampling such distributions:
in particular, the class of Monte Carlo algorithms known as Markov chain Monte
Carlo (MCMC).

2.2 Markov Chain Monte Carlo (MCMC)

As we have defined it, the major goal of parameter estimation is the recovery of the
posterior distribution p(θ |D,M). Via (1), there are two distributions which must
be known in order to achieve this goal (the evidence ρ does not depend on θ and
so, in this context, simply functions as a normalizing constant). The first is the prior
π(θ |M) associated with the parameters θ in a given model class – tautologically, this
is “easy,” since it is (by definition) prior knowledge. The second component is more
difficult: the likelihood p(D|θ ,M) must also be known. As has been mentioned,
the explicit form of the likelihood can only be poked at by observing specific
realizations of the forward problem.

Given infinite time, it would be possible to recover the likelihood by evaluating
the model prediction function g for every valid set of parameters θ . To approach
the problem in a feasible, finite time, we instead turn to a set of stochastic sampling
methods which have become omnipresent as computers have become more efficient:
Markov chain Monte Carlo, often referred to as MCMC [4, 36]. Such methods rely
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on constructing Markov chains which have as their invariant distribution a specific
distribution of interest (in the context of the parameter estimation problem, the
posterior p(θ |D,M)). There are a number of practical issues which surround the
application of MCMC to parameter estimation: to understand the nature of these
difficulties, and the ways in which they are addressed in the context of Bayesian
UQ, we briefly review a subset of relevant MCMC algorithms.

The most fundamental such algorithm is the Metropolis algorithm [4]. Let p(·)
be a target distribution defined on a state space S, and suppose a function f ∝ p is
known (this is not as absurd an assumption as it might sound at first glance – in the
Bayesian framework, if p is a posterior distribution, then a likelihood function can
serve the role of f ). Begin with any initial guess X0 ∈ S. The Metropolis algorithm
functions by iteratively calculating a new value Xk+1 given the current value Xk in
such a way that, as k → ∞, the distribution ofXk approaches p. In this way, simply
calculating the valuesXk up to some large k produces approximate samples from p.

The specific method for updating the guesses Xk is to make a proposal Y ,
chosen at random according to a symmetric proposal distribution q(·, Xk) (e.g.,
a multivariate Gaussian centered at Xk). The algorithm then chooses whether
to accept the proposal (in which case Xk+1 = Y ) or reject it (in which case
Xk+1 = Xk). By choosing the acceptance probability to be the ratio f (Y )/f (Xk),
the invariant distribution of the chain becomes the target distribution p. Convergence
to the stationary distribution can be proven easily if q is chosen carefully – in the
case of a Gaussian, its infinite support makes possible the transition to any state x
with p(x) > 0 (irreducibility), while the possibility of rejecting a proposal ensures
aperiodicity [34].

Even this basic algorithm appears to have ready applications to the parameter
estimation problem. Choosing the invariant distribution p to be the posterior
p(θ |D,M), along with a standard proposal distribution q (a multivariate Gaussian
will work for real-valued parameters), the only difficulty seems to be the calculation
of some f ∝ p – this is the same problem as was encountered initially, where the
likelihood function is not known, and it is not computationally feasible to estimate
the likelihood over the entire parameter space. The key is that the Metropolis
algorithm does not rely on the general form of f , but instead only relies on the
calculation of f at various points chosen according to the proposal distribution q.
Supposing the algorithm provides a guess Y for the set of parameters, the likelihood
f (Y ) = p(D|Y,M) can be estimated as in (3), assuming output is generated
according to the model prediction equation (2).

The main difficulty of this approach has been alluded to already – the conver-
gence to the stationary distribution is asymptotic, and the time to convergence can
vary greatly (depending on q, the dimensionality, and the form of the likelihood).
Specifically, the algorithm may get “stuck” sampling from a region where the fit
appears to be locally optimal for long times, as the probability of transitioning to
other regions of high density may be extremely low (this is known as a probabilistic
bottleneck). This problem can be seen in Figure 1, which uses the Metropolis
algorithm to approach a simple toy problem in one dimension. The result is that
approximate sampling from the posterior p(θ |D,M) may require running the chain
for longer than is computationally feasible.
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Fig. 1 The Metropolis algorithm applied to the density p(x) ∝ 0.3e−0.2(x+5)2 + 0.7e−0.2(x−15)2

(solid curve). The proposal distribution used is a Gaussian with σ = 4. Shown are the most recent
10% of samples after the specific number of steps. (a) For short times, the chain gets “stuck” in the
smaller peak, unable to cross the bottleneck to explore the full distribution. (b) For intermediate
times, although the distribution is explored fully, the chain does not spend the correct proportion
of time in each peak. (c) For large times, convergence to the invariant distribution is guaranteed via
irreducibility and aperiodicity of the chain.

Naïvely, one way to address this problem would be to choose an extremely broad
proposal distribution q, thereby allowing the chain to jump across bottlenecks in
a single step. Unfortunately, this has the second effect of greatly increasing the
number of proposals which are rejected. Instead, we borrow ideas from a second
MCMC method which is more robust to the problem of probabilistic bottlenecks.
Simulated annealing is an approach to nonconvex optimization which introduces a
cooling schedule to ensure that, in the short term, the chain can transition across
regions where the likelihood may be extremely low [15, 16, 30, 34].

Simulated annealing bears a strong resemblance to the Metropolis algorithm;
it functions by making iterative proposals with a carefully chosen probability
of acceptance. Unlike the Metropolis algorithm, the probability depends on the
iteration k, such that the probability of transitioning to a region of low probability is
much higher when k is small. The acceptance probability is often stated in terms
of a temperature T (k) which is monotonically decreasing, owing to its connec-
tions to the role of temperature in statistical mechanics (and begetting the term
“cooling schedule”). The common explicit acceptance probability exp((log f (Y )−
log f (Xk))/T (k)) coincides with the Metropolis algorithm in the case that T (k) =
1, and so simulated annealing can be thought of as a generalization of Metropolis
[15, 30, 36].

Since the transition probability depends on k, the chain {Xk} no longer has an
invariant distribution. Instead, each step of the chain has its own unique “invariant
distribution” pk . As k increases, T (k) decreases, and if T falls to zero, the weak limit
of the pk should put its entire mass at the global maximum value of f (this is why
simulated annealing is effective at optimization). Conversely, for small k, a large
temperature greatly increases the probability of accepting a transition to a region
where f is much smaller. If the cooling schedule is chosen to scale appropriately,
it can thus be very effective at facilitating transitions across bottlenecks like that of
Figure 1. A simple application of simulated annealing to the toy sampling problem
can be seen in Figure 2.

The specific MCMC algorithm which will be applied to the Bayesian parameter
estimation problem, known as transitional Markov chain Monte Carlo (TMCMC),
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Fig. 2 Simulated annealing with cooling schedule T (k) = 5(1 − 10−7k) for the toy problem of
Figure 1. Again, the proposal distribution used is a zero-mean Gaussian with σ = 4. Shown are
the most recent 10% of samples after the specific number of steps. (a, b) Even for short times, the
high temperature smooths the target distribution, allowing sampling from both peaks. (c) As the
temperature falls to zero, the distribution clusters around the global maximum.

makes use of the ideas central to both of these algorithms [14, 40]. Each step
of the chain uses the Metropolis algorithm to draw approximate samples from a
target intermediate distribution, while the parent chain uses a cooling schedule to
transition from the prior to the posterior, much as simulated annealing transitions
from smoothed to peaked. The specifics of TMCMC, as well as its explicit
implementation in the UQ framework, are detailed in Section 2.3.

2.3 Transitional Markov Chain Monte Carlo (TMCMC)

As mentioned in the previous section, MCMC algorithms are often used to generate
approximate samples from high-dimensional and complex posterior distributions.
While basic algorithms like Metropolis and simulated annealing will function in
this regard, more efficient algorithms which improve the convergence rate are more
useful in practice, since the convergence times of MCMC algorithms for some
distributions (especially those with bottlenecks) can be quite long. Although there
do exist more efficient methods with proven convergence results (in particular,
delayed rejection adaptive Metropolis (DRAM) [13] and differential evolution
random sampling MC (DREAM) [39] are commonly used), we will use here the
TMCMC algorithm, which has the computational advantage of being massively
parallelizable due to its use of a large number of independent Markov chains
[8, 14, 40].

Like simulated annealing, TMCMC attempts to avoid probabilistic bottlenecks
by transitioning to the target distribution from a broad initial distribution (in this
case, the prior π(θ |M)) that allows the chain to explore regions of low probability.
To accomplish this, a series of intermediate probability densities are constructed
iteratively:

fj (θ) ∼ [p(D|θ,M)]qj · π(θ |M), j = 0, . . . , λ

0 = q0 < q1 < . . . < qλ = 1.
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Note that f0 is simply the prior distribution, while fλ is the posterior distribution
(i.e., the product of the prior and likelihood, as in (1), up to the normalization
constant ρ(D|M)).

The basic idea of TMCMC is as follows: begin with a collection of samples from
the prior distribution (which is easy, so long as the prior has a simple form such
as a Gaussian or uniform distribution). Then, iteratively resample in such a way
that the samples at each step j correspond to the intermediate density fj . At the
conclusion of the algorithm, the samples will be asymptotically distributed as fλ (the
posterior), with greater accuracy for small step sizes and large numbers of samples.
During each iteration, the resampling procedure involves the use of a large number
of independent Markov chains which are evolved using the Metropolis algorithm;
since the chains are independent, the algorithm is easily parallelizable, and so the
potentially expensive cost of evaluating the likelihood p(D|θ ,M) is offset by the
ability to run multiple evaluations concurrently.

The algorithm (Algorithm 1, below) begins by taking N0 samples θ0,k (indexed
first by generation, then by sample number) from the prior distribution f0(θ) =
π(θ |M). For each stage j of the algorithm, it uses the current set of samples to
evaluate the plausibility weights w(θ j,k) as

w(θ j,k) = fj+1(θ j,k)

fj (θ j,k)
= [p(D|M, θ j,k)]qj+1−qj .

Note that since the plausibility weights are calculated as the likelihood raised to a
nonnegative power, the observed data D is more likely to have come from sampled
parameters θj,k with higher plausibility weights (thus begetting the term). qj+1
has not yet been defined; the choice of qj+1 is what determines how smoothly the

Algorithm 1 TMCMC
1: procedure TMCMC Ref. [14]
2: BEGIN, SET j = 0, q0 = 0
3: Generate {θ0,k, k = 1, . . . , N0} from prior f0(θ) = π(θ |M) and compute likelihood
p(D|θ0,k,M) for each sample.

4: loop:
5: WHILE qj+1 ≤ 1 DO:
6: Analyze samples {θj,k, k = 1, . . . , Nj } to determine qj+1, weights w(θ j,k), covariance

Σj , and estimator Sj of E[w(θ j,k)].
7: Resample based on samples available in stage j in order to generate samples for stage
j + 1 and compute likelihood p(D|θ j+1,k,M) for each.

8: if qj+1 > 1 then
9: BREAK,

10: else
11: j = j + 1
12: goto loop.
13: end
14: END
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prior distribution transitions to the posterior distribution (with a smoother transition
coming at the cost of increased computational requirements). Recent literature
suggests that qj+1 be chosen to make the covariance of the plausibility weights
at stage j smaller than a tolerance covariance, recommending the specific value 1.0
[8, 14].

The algorithm then calculates the average Sj of the plausibility weights, the
normalized plausibility weights w(θ j,k), and the scaled covariance Σj of the θ j,k ,
which will be used to generate the next generation of samples θ j+1,k:

Sj = 1

Nj

Nj∑

k=1

w(θ j,k),

w(θ j,k) = w(θ j,k)/
Nj∑

k=1

w(θ j,k) = w(θ j,k)/(NjSj ),

Σj = β2
Nj∑

k=1

w(θ j,k)[θ j,k − μj ][θ j,k − μj ]T .

Here, Σj is calculated using the sample mean μj of the θ j,k and a scaling factor β.
As an aside, it is worth noting that the product of the Sj , i.e.,

S =
λ−1∏

j=0

Sj ,

is an asymptotically unbiased estimator of the evidence ρ(D|M) [8], and so
TMCMC is especially efficient for model selection (see Section 2.1).

The algorithm then independently generates Nj+1 samples θ̂ j+1,k by choosing

randomly among the current set of samples {θ j,k} such that θ̂ j+1,� = θ j,k with
probability w(θ j,k). Since the samples are chosen independently, there is the
possibility of selecting the same sample from the current generation multiple times
– call nj+1,k the number of times that θ j,k is chosen (which could range from
0 to Nj+1). Each unique sample is used as the starting point of an independent
Markov chain whose behavior is governed by the Metropolis algorithm with target
distribution fj and a proposal distribution normally distributed with covariance Σj

and centered at the current value. The scaling parameter β thus plays the role of
controlling the rejection rate and jump size; recent literature recommends β = 0.2
[2, 8].

Finally, the samples θ j+1,k are drawn from the Markov chains, with each sample
being the value obtained by stepping a chain forward once. nj+1,k samples are
drawn from the chain which started at θ j,k , yielding Nj+1 samples total. At this
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point, the iteration j is complete, and the algorithm either moves forward to
generation j + 1 or terminates if qj+1 > 1.

With the approach established, it remains only to apply the TMCMC approach
to the Bayesian UQ setting in the context of a sample problem. In what follows,
we describe a particle simulation method with broad applications to cell biology,
along with a specific implementation which models a lipid membrane and fluid.
The results of applying the TMCMC algorithm to this model appear in Section 4.

3 A Biological Model: 2D Lipid Bilayer Membrane

Bayesian uncertainty quantification is agnostic to its forward problem: it functions
exclusively with respect to the parameter space and the problem output. Historically,
the high-dimensional optimization literature has largely focused on the particular
forward problem of a (usually very complicated) function evaluation via, e.g.,
convex optimization methods or simulated annealing. In this chapter, we show that
the general Bayesian framework (and its ability to discern distributions, rather than
just critical points) can be applied to a much more complicated system, namely, the
output of a comparatively expensive particle simulation. It follows that Bayesian
uncertainty quantification has a number of applications in molecular biology, where
particle simulations are both feasible and revealing of dynamics which are difficult
to study experimentally or with simpler models.

The simplest and most widely used class of particle simulations is molecular
dynamics, i.e., the direct simulation of atoms or molecules via Newton’s laws
[18, 23]. Molecular dynamics simulations operate by writing a large coupled
system of ordinary differential equations which track the locations of particles, then
stepping time forward in discrete steps (usually via a finite difference scheme). Since
all particles are modeled explicitly and all pairwise forces (e.g., the Lennard-Jones
potential between neutral particles or Coulomb potential between charged particles)
are included, molecular dynamics is often considered a ground truth for systems
where such simulations are computationally feasible. Conversely, since each atom
or molecule is tracked individually, the cost of such simulations grows massively
with the scale of the system. For many systems on the order of biological cells,
where the number of molecules may be in the billions, current computing power is
not sufficient for practical simulation via molecular dynamics [18].

There are a number of approaches for bridging the basic idea of particle
simulation to the so-called “mesoscale,” the spatial scale between the realms of
molecular dynamics and continuum methods. One common approach, referred to
as Brownian dynamics, does not explicitly model fluid particles, instead modeling
only the solute, which is usually the material of interest. Forces which would be
exerted on the solute by the solvent are incorporated via Gaussian force terms.
As fluid usually composes the bulk of such simulations, Brownian dynamics
simulations are orders of magnitude cheaper than comparable simulations using
molecular dynamics. However, since the fluid particles are not modeled explicitly,
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nonequilibrium phenomena in the fluid, e.g., microflows, may be lost. In systems
where such flows may dictate important properties of the mechanics, Brownian
dynamics simulations may not be appropriate.

We utilize here the method of dissipative particle dynamics (DPD), a second
mesoscale approach which continues to explicitly model the fluid [18, 24]. Instead,
the improvement in computational efficiency is derived from rescaling the particles
themselves: rather than modeling individual atoms or molecules, the DPD method
tracks the movement of “dissipative particles,” which correspond to clumps of many
atoms or molecules. This coarse-graining introduces a number of physical problems.
Most notably, clumps of particles, which comprise mostly empty space, should be
able to pass through each other, but should experience varying forces depending
on the degree to which they overlap. To address these difficulties, the dissipative
particles interact via artificial forces, chosen to achieve target physical properties
and to obey the correct hydrodynamic behavior on aggregate [9, 31]. Comparisons
with Navier-Stokes and molecular dynamics simulations have shown the dissipative
particle dynamics method to produce accurate results for a variety of simple- and
complex-geometry flows [19].

Dissipative particle dynamics excels at modeling mesoscopic biological systems,
as both solute and solvent can be modeled with dissipative particles with varying
forces and coefficients. In addition, the reduced number of particles due to the
coarseness of the method make DPD feasible for many applications. In this section,
we describe explicitly the DPD formulation and the forces it comprises, then use the
DPD method to implement an example of a biological application: a simulation of
a lipid bilayer membrane immersed in water.

3.1 The Dissipative Particle Dynamics (DPD) Method

In general, since DPD forces are defined on a pairwise basis between particles, they
can be used in conjunction with other sets of forces by selectively applying each
force only to the desired interactions. Here, for the sake of notational simplicity,
we will analyze a system consisting of dissipative particles alone. Let the mass and
velocity of particle i be given by mi and vi , respectively. The equation of motion
for particle i can be written as

mi
dvi
dt

=
∑

j 
=i
FCij +

∑

j 
=i
FDij +

∑

j 
=i
FFij , (4)

where FCij is a conservative force deriving from a potential exerted on particle i by

the j -th particle, FDij is a dissipative force due to the exchange of momentum, and

FRij is a random force inducing the random motion of particles.
Intuitively, the three forces of the DPD interaction follow from the nature of the

dissipative particles as “clumps” of atoms and molecules. When two particles are
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Fig. 3 Schematic of DPD particles and their degree of interaction. Moving from (a) to (c), the
dissipative particles move together until completely overlapping. Despite occupying the same
location in space, their component atoms need not overlap, and so the repulsive potential should
not diverge.

moved closer together, more of their components become close enough to interact,
and so the particles should increasingly repulse each other. However, since the
dissipative particles are mostly empty space, this repulsion should not diverge as
they are forced together, since the component molecules could avoid overlap even
if their parent dissipative particles occupy the exact same location. This justifies a
soft conservative force – pairwise repulsion that does not diverge as the interparticle
separation rij = ri − rj → 0 (Figure 3).

In addition to center-to-center repulsion due to the degree of overlap, particles
should also exhibit drag when passing through each other at nonzero velocity. The
component atoms and molecules of each particle would be driven together, and the
resulting collisions would impart a greater force than if the parent particles were
simply held at a fixed distance. This “drag” between particles should thus scale with
two different factors: the velocity (affecting the energy imparted when components
collide) and the degree of overlap (affecting the number of collisions). This justifies
a dissipative force which depends on both the relative velocity vij = vi − vj of
particle i with respect to particle j and on the interparticle separation rij .

Finally, there should be some correction for the positions and velocities of the
components, which are not tracked. Atoms and molecules within the dissipative
particles interact in Brownian-like fashion, and so the interaction between particles
should have a random component to account for the ensemble of component
velocities. This justifies a random force which scales with the temperature T of
the system, since higher temperatures increase the magnitude of the Brownian-style
interaction between the molecules in each dissipative particle. Note that, like the
other two forces, the random force FRij is a force between two particles, and does
not affect individual particles in isolation – though the atoms and molecules within a
single dissipative particle also interact, any exchange of momentum does not affect
the momentum of the dissipative particle which contains them.

Defined in this fashion, the forces are consistent with Galilean invariance, as they
depend only on the relative positions and velocities of the particles. On physical
grounds, it is also assumed that the dissipative force FDij depends linearly on the

momentum and the random force FRij is independent of the momentum (see, e.g.,
[9] or [18] for a more detailed discussion of these assumptions). The following
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functional forms for FDij and FRij satisfy these assumptions and are usually adopted
in the context of the DPD methodology:

{
FDij = −γ wD

(|rij |
)
(eij · vij )eij ,

FRij = σ wR
(|rij |

)
eij ξij ,

(5)

where eij = rij /|rij | is the center-to-center unit vector, wD( · ) and wR( · )
are arbitrary weighting functions describing the scaling of each force with the
interparticle distance |rij |, γ and σ are adjustable coefficients of interaction, and
ξij is a Gaussian white-noise term with

E ξij (t) = 0 and E
(
ξij (t)ξk�(τ )

) = (δikδj� + δi�δjk)δ(t − τ),

where the δ terms are defined as usual, i.e., δik is equal to one if i = k and zero
otherwise, and δ(t − τ) is the Dirac distribution. In order to ensure that the total
momentum is conserved, it is assumed that ξij (t) = ξji(t) for all t > 0.

By substituting (5) into (4) we obtain a system of stochastic differential equations
that form the core of the DPD approach:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dri = vidt

dvi = 1

mi

⎛

⎝
∑

j 
=i
FCij (rij )−

∑

j 
=i
γ wD

(|rij |
)
(eij · vij )eij

⎞

⎠ dt

+ 1

mi

∑

j 
=i
σ wR

(|rij |
)
eij dWij

(6)

where for each i, j, Wij is a Wiener process andWij = Wji .
To ensure the system is properly thermostatted, it should be checked that

the long-time asymptotics converge to the Gibbs canonical ensemble of particles
interacting via the conservative force alone at a target temperature T – in other
words, the dissipative force (which removes energy from the system) and random
force (which can influence the energy in either direction) should be balanced such
that, on average, the behavior is what would be predicted for particles bouncing
around at the specified temperature. Español and Warren [9] proved this result for
any conservative force field FCij given that the following two conditions, which
relate the dissipative and random forces (and are thus referred to as the fluctuation-
dissipation conditions), are satisfied:

{
wD

(|rij |
) = w2

R

(|rij |
)

σ 2 = 2γ kBT .
(7)
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The process of implementing the DPD method, in net, thus consists of numer-
ically approximating the solution of (6) while ensuring that the conditions in (7)
are satisfied. There are a number of free parameters which can be tuned to yield
desired physical properties and types of interaction. The conservative force between
i and j is most commonly taken to decay linearly from a specified value aij to
zero at a distance of rcij , making aij the conservative coefficient (i.e., coefficient of
repulsion) and rcij a cutoff radius. The weighting function wD( · ) (and thus wR( · )
via fluctuation-dissipation) are also usually taken to fall to zero at the cutoff radius
rcij . A final important parameter is the coefficient γij of dissipative interaction, which
can influence physical properties such as viscosity. Many physical observables have
been derived in terms of these free parameters (see, e.g., [27]), and so a fluid with
certain desired properties such as compressibility or viscosity can be simulated
accurately.

Actual simulation by the DPD method usually utilizes a finite difference scheme
(in particular, the velocity-Verlet method). Various explicit numerical implementa-
tions of the DPD method are detailed in [18]. Here, we chose to code the DPD
membrane simulation using the LAMMPS molecular dynamics package, an open-
source C++ framework for particle simulations [28].

3.2 Simulation Setup and Parameters

The sample simulation proposed here is the modeling of a finite patch of lipid bilayer
membrane composed of lipids with hydrophobic and hydrophilic parts. One of the
chief advantages of modeling such a system with dissipative particle dynamics is the
difference in spatial scale between solute and solvent: a typical lipid is many times
larger than a single water molecule, and so their interaction may be challenging
to model by conventional means. In a coarse-grained method such as DPD, the
lipid might be modeled as a bead-spring chain, with the beads (i.e., DPD particles)
corresponding to different sections of the lipid. Conversely, a DPD particle modeling
the solvent, depending on choice of scale, might model several water molecules. In
this way, the actual particles which interact via DPD potentials are of similar scale,
and their interactions can be easily adjusted via the DPD force coefficients, e.g., the
conservative coefficient aij or dissipative coefficient γij between particles i and j .

The principle (and easiest to conceptualize) mode of interaction between par-
ticles is via the conservative force, which dictates the repulsion between coarse-
grained clumps as a function of their degree of overlap. We define three types of
DPD particle: the fluid, the hydrophilic lipid head particles, and the hydrophobic
lipid tail particles. Achieving hydrophobicity in the lipid tails is possible by
adjusting the strength of conservative interactions such that the repulsion between
two tail particles is less than that between one tail and one fluid particle. Similarly,
hydrophilicity can be achieved by choosing the repulsion between one head and one
fluid particle to be less than that between one head and one tail particle.
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Table 1 Pairwise coefficients for DPD membrane

aij Head Tail Water

Head 15.0 50.0 35.0

Tail 50.0 15.0 75.0

Water 35.0 75.0 25.0

γij Head Tail Water

Head 4.5 9.0 4.5

Tail 9.0 4.5 20.0

Water 4.5 20.0 4.5

rcij Head Tail Water

Head 2.5 1.75 1.75

Tail 1.75 1.0 1.0

Water 1.75 1.0 1.0

Fig. 4 Schematic of a lipid
with one head particle (red)
and two tails comprising six
tail particles each (gray).
Bonds are shown as thin rods.
The angle between tails,
labeled φ, minimizes energy
at a specified neutral
angle φ0.

The specific values chosen for this simulation, which appear in Table 1, are
adapted from existing literature on DPD membranes [11] as well as the compress-
ibility argument for water in [12]. Values are given in nondimensionalized units, as
is common in DPD literature: see [29] for a description of the Lennard-Jones units
used. If desired, all measurable quantities can be scaled to real units by physical
arguments.

Each lipid is composed of a single lipid head connected to two lipid tails of six
particles each via harmonic bonds, each of which uses the spring potential Eij =
64(rij − 0.5)2 so that the neutral length of a bond is 0.5. Three-body potentials
Eijk = 50(1 − cos

(
φijk − φ0

)
) are imposed along consecutive bonds to provide

stiffness, where φijk is the angle between bonds ij and jk and φ0 is the resting
angle. This facilitates specification of the neutral angle between the membrane tails,
i.e., the angle preferentially formed between the line segments connecting the head
particle to the first particle in each tail, labeled as φ in Figure 4. The neutral angle
between tail bonds is fixed at 180◦.

The membrane of [11] uses multiple head particles to account for the relative
size of the hydrophilic head as compared to the hydrophobic tails. Here, we instead
adjust the effective size of the head particle by changing the cutoff radius between
different types of particles. The pairwise potential radii can be seen in Table 1. The
masses are adjusted accordingly, so that a particle effectively 2.5 times larger in one
dimension has a mass 2.53 = 15.625 times greater, with the fluid particles having
unit mass.

Lipids are placed in a two-dimensional 96 × 64 periodic simulation box in two
adjacent rows with the head particles toward the outside, as in Figure 5(a). The
separation between lipids, spacing between tail particles within a lipid, and total
length of the membrane patch are free parameters, here chosen to be 0.8, 0.5, and
64, respectively. The remainder of the simulation box is filled with fluid particles,
placed on the vertices of a square lattice with edge length 2.0. The system is
then evolved in time using a velocity-Verlet scheme (see, e.g., [27]) with timestep
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Fig. 5 (a) Membrane initialization. Head particles (red) line the outside; each has two lipid tails
of six tail particles (gray) directed inward. (b) Fluid initialization. Water particles are placed on the
vertices of a square lattice outside the membrane. (c) Membrane after 2500 steps.

Fig. 6 Schematic of tracked lipids and method for determination of curvature. Angles are with
respect to a fixed reference angle (here shown as vertical lines) and can thus be negative. The
derivation for approximate curvature κ relies only on the absolute difference |θ2 − θ1| and tail-to-
tail distance d.

0.03 and nondimensional temperature 0.1. The phases of initialization and resulting
membrane at time t = 75 appear in Figure 5.

To be used as a forward problem where Bayesian uncertainty quantification can
be applied, the input and output spaces must be specified. Here, we choose the
output to be the equilibrium curvature of the membrane, as measured from the
particle simulation. Within the upper layer, two lipids, five molecules from the
membrane edge on either side, are chosen to be tracked (see Figure 6). In each
timestep and for each of the two tracked lipids, the position of the head particle and
the average position of the furthermost tail particles are used to compute the angle
(relative to vertical; denoted θ1 and θ2 for first and second tracked lipid, resp.) and
location along the bilayer interface.
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The radius of the circle which passes through the given points and subtends the
difference in angles |θ2 − θ1| over that span is given in terms of the distance d
between the points as

R = 2

d
sin

∣∣∣∣
θ2 − θ1

2

∣∣∣∣,

and the curvature (assuming it is constant along the membrane) is approximated as

κ ≈ 1

R
= d

2 sin
∣∣∣ θ2−θ12

∣∣∣
.

After an equilibration period of 20000 steps, the curvature is measured at each
timestep for the following 30000 steps, with the average curvature over this period
used as the one-dimensional output of the simulation. A single serial run of the
simulation, which tracks ∼ 15000 dissipative particles, requires five to ten minutes
on an Intel Xeon E5–2670.

There are a number of different biological phenomena which affect the curvature
of lipid membranes in eukaryotic phyla; one such mechanism is differences in lipid
structure (e.g., tail length or angle) between monolayers [10, 17, 25]. As these
structural differences are easily incorporated into the bead-spring model lipids,
we choose a set of parameter values describing the lipid shape – specifically, the
set of possible neutral angles between lipid tails (φ0 in Figure 4) on the top and
bottom layers of the membrane, specified separately – as the parameter space for
the forward model. Increasing φ0 in one lipid layer causes the layer to lengthen as
the tails are forced further apart, altering the net curvature of the membrane. Given a
target curvature, Bayesian statistics can be used to find the probability distribution in
the parameter space which describes the set of parameters which, when accounting
for noise in measurement and in the stochasticity of the simulation, could yield the
target output. The specific application of Bayesian uncertainty quantification to the
model membrane system is described in Section 4.

4 Uncertainty Quantification for Particle Simulations

In the previous section, we developed a computational model for a lipid membrane
using dissipative particle dynamics. We additionally described a target observable,
namely, the curvature κ of the membrane, and detailed a method of measurement.
Although a variety of free parameters may affect the membrane curvature, we
isolated two parameters to examine: the resting angle between lipid tails in the top
and bottom layers, denoted φt and φb, respectively. (Since there is no meaningful
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notion of direction as might be imposed by, e.g., gravity, top and bottom are defined
with respect to the y axis at initialization, where the top layer is in the −y direction.)

In Section 2.1, we described a framework for Bayesian uncertainty quantification
in the context of the model prediction equation (2), reproduced below:

D = g(θ |M)+ e

Namely, we assume there exists a function g which, given a particular modelM ,
deterministically maps the parameter space to the output space, and that observable
measurement of the output is corrupted by additive Gaussian noise e, which has zero
mean and covariance matrix Σ . In the context of the membrane model, it may be
useful intuitively to think of g as the mapping from the parameter space to the mean
curvature, while the noise e corresponds to a hypothetical measurement or modeling
error which might have a Gaussian form. We are specifically interested in the subset
of Bayesian UQ known as parameter estimation: given a reference curvature κ∗ (and
assuming, as an example, uniform priors on the lipid tail angles φt and φb over some
reasonable range), what is the form of the posterior p(θ |κ∗,M)?

It is worth noting that we make no assumptions about the covariance Σ of the
additive noise. Moreover, it is clear that Σ should have a significant effect on the
posterior distribution. Consider the following example: with a reference curvature
κ∗ = 0.1, running the simulation with a particular set of angles θ1 yielded a mean
curvature κ1 = 0.11, while a simulation with a second set of angles θ2 yielded a
mean curvature κ2 = 0.105. If |Σ | were known to be very small, e.g., |Σ | = 10−9,
then the likelihood of the parameters θ2 should be much greater – being hundreds
of standard deviations further from the reference value κ∗ is comparatively unlikely.
Conversely, if |Σ | were known to be very large, e.g., |Σ | = 1, then the likelihoods
of both sets of parameters should be nearly equal – given such a large measurement
error in the reference curvature and the proximity of θ1 and θ2, either is similarly
plausible. A natural way of incorporating this effect is to augment the input space
with a parametrization of Σ , as detailed in Section 2.1. In the context of the
membrane simulation, the result is a parameter space of dimensionality n = 3 which
incorporates the two model parameters (φt and φb) as well as the standard deviation
s of the measurement error e (since the output – curvature – is one dimensional, Σ

is scalar, and so we will hereafter refer only to the estimated standard deviation s
and reference standard deviation σ = √

Σ of the noise).
The following sets of results were sampled using a particular high-performance

parallel version of TMCMC known asΠ4U [14]. In each case, the prior distribution
π(θ |M) is taken to be uniform over [0, 120] × [0, 120] × [0, 0.001] ∈ R

3 (the
first two parameters, φt and φb, are specified in degrees; the third parameter, s, is
specified in units of curvature).

Targeting arbitrarily chosen reference curvatures, it would be difficult to evaluate
the effectiveness of the algorithm in recovering a meaningful distribution, since we
would not a priori have any notion of whether the approximate posterior actually
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generated curvatures close to the specified value. For this reason, we instead use
target curvatures derived from arbitrarily chosen angles φ∗

t and φ∗
b . In order that

the generated curvature be consistent with (2), a sample from the Gaussian noise
term e (with reference standard deviation σ , here chosen arbitrarily as σ ≈ 10−5)
is added to κ∗. In this way, it is possible to check that the recovered approximate
posterior contains (and ideally is centered near) the set of values which originally
generated the reference curvature κ∗ via (2). For each of the following sets of results,
we specify the reference angles φ∗

t and φ∗
b which were used to generate the target

curvature via one run of the particle simulation. It should be noted that the uniform
prior, which assigns equal mass to a wide range of potential parameter values, is
fixed before the generation of κ∗ – the Bayesian framework does not have any
information a priori about which parameter values are more or less likely.

4.1 Parameter Estimation Results

The first set of UQ results used reference angles φ∗
t = 100 and φ∗

b = 20, which
yielded a curvature of κ∗ = 0.03834 via the model prediction equation with noise
level σ ≈ 10−5. Results from the algorithm appear in Figure 7 (see caption for
a description of the various subfigures). Since curvature does not have a notion of
direction, the resulting joint posterior of (φt , φb) (center left subfigure) is symmetric
about the diagonal. Note that, when one neutral angle is small, changing said angle
has little effect on the curvature; the left flank of the upper curve is nearly flat, as is
the lower flank of the bottom curve. Conversely, when the magnitudes of both angles
are large, the distribution pulls away from the diagonal – once the smaller angle
becomes sufficiently similar in magnitude to the larger, the membrane curvature
begins to decrease, and so achieving a target positive curvature requires the larger
angle to increase further. Since φ∗

b and φ∗
t are both assigned high probability (up to

symmetry), the algorithm was effective at recovering the reference angles.
Unsurprisingly, the parameter s corresponding to the noise term e was not recov-

ered to great accuracy. The model prediction equation (2) makes the assumption of
a deterministic prediction function g; the dissipative particle dynamics simulation,
which is inherently stochastic, fails this assumption, although the issue is somewhat
circumvented by the time-averaging approach taken to the measurement of the
curvature. Conversely, this means that the recovered distribution of s corresponds in
some sense to the underlying noise of the DPD approach, which may be of interest
in its own right (for a more rigorous treatment of the modeling uncertainty inherent
to particle simulations, see [2]).

A second set of results, shown in Figure 8, used φ∗
t = 80 and φ∗

b = 20,
yielding a target curvature of κ∗ = 0.02087. Again, the reference angles were
assigned high probability under the posterior, and so the algorithm was effective
at parameter recovery. As in the previous set of results, the leftmost region of
the joint posterior is close to horizontal, suggesting that small neutral angles are
comparatively unimportant in determining the curvature. There are two factors
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Fig. 7 5000 samples from approximate posterior with φ∗
t = 100, φ∗

b = 20 (κ∗ = 0.03834).
Histograms on the major diagonal are the empirical marginal distributions of φt , φb, s, from left
to right. Plots in the upper right are the empirical joint distributions of pairs of parameters; the
specific parameters and values appear in the margin. Shaded plots in the lower left are smoothed
representations of the joint posterior, color-coded by probability – blue (low) to yellow (high).

which contribute to this behavior: first, the lipid tails do have some repulsion to
each other, and so (even in the absence of fluid) a lipid with neutral angle 0
would not actually have overlapping tails at equilibrium. In this way, the energy
of extremely small angles may be dominated by the short-scale repulsion between
tails. Second, the potential imposed is harmonic, and so scales with (φ − φ0)

2. As
a result, when already close to equilibrium, small perturbations in the lipid angle
yield correspondingly small changes in the energy.

The shape of the posterior is markedly different in the case where the reference
curvature is very small (i.e., the desired membrane is nearly flat). Figure 9 shows
the results of the UQ algorithm for identical reference angles φ∗

t = φ∗
b = 20. (Due

to thermal fluctuations, along with the fact that curvature is nonnegative, the time-
averaged reference curvature obtained was actually nonzero: κ∗ = 0.001480.) The
joint distribution of (φt , φb) loosely follows the diagonal, as should be the case
by symmetry. Interestingly, the distribution becomes considerably narrower as the
neutral angles increase in magnitude. Namely, to achieve a very small reference
curvature using large angles, the angles must be extremely close to each other. This
is a direct result of the quadratic scaling of the harmonic energy: since the lipids in
a flat membrane are restricted to relatively small angles, each lipid angle is far from
equilibrium, and so even small perturbations in the neutral angle on one side would
significantly upset the balance between the lipid layers.
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Fig. 8 5000 samples from approximate posterior with φ∗
t = 80, φ∗

b = 20 (κ∗ = 0.02087). See
Figure 7 for description of subfigures.

Fig. 9 5000 samples from approximate posterior with φ∗
t = 20, φ∗

b = 20 (κ∗ = 0.001480). See
Figure 7 for description of subfigures.
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Fig. 10 5000 samples from approximate posterior with κ∗ = 0. See Figure 7 for description of
subfigures.

For small angles, the distribution is more broad; for extremely small values,
the fact that the reference curvature was nonzero is evident (specifically, the joint
distribution of (φt , φb) splits away from the diagonal as the angles approach zero).
The smaller angles result in lipids being closer to equilibrium, thereby reducing
the magnitude of the energy shift when the neutral angle on one side is perturbed.
Although it peaks elsewhere, the posterior does put significant mass on the reference
angles φ∗

t = φ∗
b = 20.

As a point of comparison, Figure 10 presents the results of a second run directly
setting the target curvature κ∗ to zero. Unlike Figure 9, the joint of (φt , φb) here
does contain the diagonal (top middle). Because the flat membrane becomes very
unstable as the angles are increased on both sides, the posterior appears borderline
invisible in that region.

5 Discussion

In the three cases presented here, Bayesian UQ via TMCMC was found to
be effective at recovering the reference parameters, along with classifying the
uncertainty via approximate sampling from the posterior. It is worth restating, in
somewhat broader terms, why this result is significant and how it may be applied to
general computational models in cellular biology.



100 C. Bowman et al.

The cell membrane is a central structure in many forms of cell motility, and the
simulation method described in Section 3.2 has significant complexity and nontrivial
dynamics. Nonetheless, it should be thought of as a stand-in for an even more com-
plex problem, whose input and output may be very high dimensional. For example,
a computational model of a prokaryote might consider a broad range of parameters
such as the oscillation rate, flexibility, and length of the flagella, the rigidity and size
of the cell body, and the temperature and viscosity of the surrounding fluid; a model
of a eukaryote might include the density, (de-)polymerization rate, and aspects of the
structure of the actin cytoskeleton. Both models may be interested in output such as
the speed and trajectory of cell motion, or the robustness of motility to external
influences such as fluid flow or obstacles.

Parameter estimation as we have presented it is simply a generalization of the
inverse problem: suppose in these examples that we know the comparable output
of experiment, or are targeting a specific behavior that is known to have biological
relevance. What can be inferred about the input space, i.e., what parameters would
generate such behavior? Moreover, what is the degree of uncertainty in these
inferences? For extremely complex models as in these examples, many questions
in this vein are intractable through naïve methods. The distribution of parameters
cannot be sampled exactly, and approximate sampling methods such as Metropolis
may require too many evaluations of an already expensive model, or may introduce
other problems such as probabilistic bottlenecks.

The most important aspect of the TMCMC approach to Bayesian uncertainty
quantification described in Section 2.3 is its parallelizability. Because each gen-
eration of the algorithm generates many approximate samples from the target
intermediate distribution, the chains can be run simultaneously; with modern
parallel architectures growing increasingly more powerful and efficient, this marks
an improvement in the computational tractability of uncertainty quantification of
many orders of magnitude. As shown in the previous section, this allows for
practical uncertainty quantification even for complex particle simulations.

Since this efficient parallel implementation of TMCMC can be applied to an
effective black box, this method is accessible to a broad range of existing models
in mathematical and cellular biology. In particular, the DPD method described
in Section 3.1 has already been applied to a number of complicated mesoscopic
systems [20] which could be examined under the lens of uncertainty quantification.

Computational Details

High-performance uncertainty quantification results from Section 4.1 were obtained
from parallel runs on 184 Intel Xeon E5-2670 cores (2.6 GHz). TMCMC in
Figures 7 and 8 converged after six generations, with total runtimes of 47.22 and
47.38 h (34.00 and 34.11 s per sample), respectively. TMCMC in Figures 9 and 10
converged after five generations, with total runtimes of 36.98 and 37.02 h (26.63
and 26.65 s per sample), respectively.
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From Random Walks to Fully
Anisotropic Diffusion Models for Cell
and Animal Movement

Kevin J. Painter and Thomas Hillen

Abstract This chapter provides an introduction on how anisotropic diffusion mod-
els can be derived from position-jump and velocity-jump random walks. We show
how the availability of measurement data can guide the choice of the appropriate
model. We further present two new applications, respectively to cell movement on
micro-fabricated surfaces and magnetic compass orientation by sea turtle hatchlings.

1 Introduction

Getting from point A to point B is a daily challenge, although for the most part
our movement patterns are routine – staggering from bedroom to bathroom, from
home to work, from office to coffee pot – and we switch into autopilot, following
the course hard-wired into our conscious. Sometimes we may find ourselves in an
unusual place attempting to reach an unfamiliar goal, yet even then navigation is
straightforward when armed with a smartphone and network connection.

Cells and animals do not have the technological aids at our disposal yet
frequently need to migrate through their environment, sometimes independently,
sometimes collectively: the solo navigations of recently fledged albatrosses across
thousands of kilometres of southern oceans, or the collective movements of cells
as they move into developing tissues and organs offer particularly astonishing
examples. Given the myriad of potential factors – chemicals, electric, magnetic
and gravitational fields, topography and physical structure of the environment,
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etc. – a key question, whether posed by ecologists, cell biologists, microbiologists
or oncologists, is exactly what cues signal to the cells or organisms along their paths.

Mathematical and computational modelling offer the means to address such
questions, via encapsulating a biological process into its essentials. Yet choosing an
approach and setting up a model to begin with is far from a trivial task. Inevitably
this will come down to the knowledge and data we have and the nature of the
problem we are trying to address. One major determinant in the modelling choice
will be the biological scale of the problem. Consider a population-scale problem
such as predicting the spatial spread of a cancer to aid diagnosis and treatment.
While we may have some understanding of the underlying biological processes at a
cellular level (e.g. enhanced proliferation and invasion of cells into healthy tissue),
the primary scale of interest is typically a macroscopic one at the time of treatment:
the scale of the cancer (centimetres) is significantly greater than the microscopic
cells from which it is formed. In such instances, an efficient and oft-used solution is
to blur the population into a convenient density distribution and propose a suitable
evolution equation (such as a partial differential equation) for its change over space
and time [36, 37, 48].

Macroscopic approaches such as these have formed a bedrock for mathematical
modelling over many years, providing insight into a wide variety of fundamental
processes. When the only data we have is similarly macroscopic, such as an
MRI (magnetic resonance imaging) scan indicating the spatial extent of a cancer’s
growth, a macroscopic model makes sense: fitting the model to approximated
densities determined from the scan offers a method of validation and parameter
estimation [56]. But what if the available data is at the level of the individual?
Can we relate a model posed at a macroscopic level to an individual’s movement?
These questions are clearly crucial when we consider technological advances in
our capacity to track molecules, cells or organisms: individual molecules can
be tagged and followed via single particle tracking (SPT) as they skate across
the cell membrane [52]; labelled cells can be followed via sophisticated imaging
while migrating through a complicated tissue environment [59]; attaching a global
positioning system (GPS) to an animal can allow it to be followed even if it travels
across oceans and continents [7]. Clearly, the data provided by such methods can
shed significant light on the fundamental mechanisms of movement. For modellers,
a significant challenge is raised: how can we best exploit all forms of available data
to obtain better models, both at the level of individuals and populations?

To motivate the rest of this chapter, we consider two very different applications,
respectively, in cell movement and turtle hatchling navigation. Both applications
have a similar fundamental question (what are the guidance cues that determine
navigation?), but offer distinct examples for the type of data that may be at
hand for model parametrisation/formulation. In the case of cell movement we
have a tabulated summary of population-averaged behaviour. For turtles we have
individual-level data, an orientation for each tested hatchling in a sample. The
analytical models we proceed to describe can be fitted to each of the datasets, in
each case shedding light on the problem.
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1.1 Dataset A: Cell Movement on Microfabricated Substrates

The development, maintenance and repair of our bodies requires that various
cells migrate through complex tissue environments; in tumour invasion, these
same mechanisms can facilitate the rapid dispersal and spread of malignant cells
into neighbouring healthy tissue [19]. Various extracellular factors contribute to
cell guidance, ranging from extracellular molecules (e.g. chemoattractants and
repellents), direct signals from other cells (e.g. contact inhibition of locomotion) and
the oriented movement of cells along aligned structures [20, 42]. This latter form of
oriented movement is generally termed contact guidance [14] and, while principally
described in the context of movement along the long bundles of collagen fibres
characteristic of connective tissue, can also occur during the movement of cells
along axonal tracts of the central nervous system or crawling along blood capillaries
[17]. Contact guidance has been identified in various cell populations, including
fibroblasts [13], immune cells [59] and various cancerous populations [16, 49].

The capacity of environmental anisotropy to influence cell orientation/movement
can be studied by tracing cell paths when plated on micro-fabricated structures. To
illustrate the data available from such experiments we analyse those in Jeon et al.
[25], where a two-dimensional substratum is formed with a rectangular array of
orthogonal micro-ridges, see Figure 1 (left). Inter-ridge lengths in the x- and y-
directions are, respectively, denoted W and L, with the former set at 12, 24 or 48
μm and the latter set to generate W : L ratios of 1 : 2, 1 : 4 or 1 : ∞ (the last case
corresponding to an absence of ridges in the x−direction). Ridge heights were set at
3 μm, with further tests conducted at 10 μm and a control case without any ridges.
NIH373 fibroblast cells were plated on these substrates: a population characterised
by its mesenchymal movement with cells extending long protrusions to probe
the environment. Cells clearly align to the micro-ridges, generating anisotropic
movement (see Figure 1, top right and bottom row) under anisotropic arrangements.
Data from individual tracking was summarised at a macroscopic level (averaged
over the population) in terms of mean speeds and directional bias, reproduced in
Table 1. In Section 4.1 we will use this data to parametrise an anisotropic diffusion
model that describes cell spread for different anisotropies in the substratum.

1.2 Dataset B: Magnetic Navigation in Loggerhead Hatchlings

Maritime navigation is undeniably hazardous. The frequent lack of visible landmass,
turbulent currents and dramatic meteorological conditions resulted in frequent posi-
tional misreckoning (and shipwrecking) during the early ages of maritime traffic,
stimulating governments of the time to propose prizes for a method of accurately
establishing longitudinal coordinates. John Harrison’s marine chronometer marked
a pivotal moment in the transition towards (relatively) safe navigation [53]. Marine
animals, of course, do not rely on such aids but many species routinely undertake
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Fig. 1 Top Left: schematic of the micro-ridge substrate. Top Right: typical observation of cell
movement on an anisotropic substrate, where the micro-ridges are in different aspect ratios.
Bottom: cell tracks observed for different environmental anisotropies. Horizontal and vertical axes
represent microns. Figures reprinted from Biomaterials, volume 31, Jeon, H., Hidai, H., Hwang,
D.J., Healy, K.E. and Grigoropoulos, C.P., “The effect of micronscale anisotropic cross patterns on
fibroblast migration”, pp. 4286–4295 (2010), with permission from Elsevier.

Table 1 Reproduction of the movement data from Jeon et al. [25] for fibroblast cells migrating on
a micro-ridged substratum.

Case Ridge height x-velocity vx±error y-velocity vy± error Speed ± error

(μm×μm) (μm) (μm/min) (μm/min) (μm/min)

12 x 24 3 0.38±0.015 0.58±0.025 0.78±0.027

12 x 48 3 0.28±0.014 0.9±0.045 1.01±0.045

12 x ∞ 3 0.08±0.005 0.56±0.029 0.59±0.029

16 x 32 3 0.48±0.021 0.65±0.026 0.9±0.03

16 x 64 3 0.31±0.015 0.87±0.038 1.0±0.039

16 x ∞ 3 0.12±0.007 0.8±0.036 0.84±0.036

24 x 48 3 0.26±0.015 0.42±0.024 0.55±0.027

24 x 96 3 0.2±0.012 0.49±0.02 0.58±0.022

24 x ∞ 3 0.12±0.007 0.48±0.027 0.52±0.028

12 x 24 10 0.33±0.016 0.46±0.024 0.65±0.026

12 x 48 10 0.18±0.013 0.76±0.044 0.83±0.046

12 x ∞ 10 0.04±0.003 0.60±0.032 0.61±0.032

Control 0 0.38±0.019 0.41±0.033 0.63±0.025
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long marine journeys [29], with one of the most phenomenal belonging to the
loggerhead turtle (Caretta caretta). North Atlantic loggerhead hatchlings dash to
the ocean from eggs laid at various nesting beaches and undergo a period of
“frantic” swimming that transports them from the dangerous coastal waters to ocean
circulatory currents such as the Gulf Stream. They subsequently embark on a years
to decades long period of open ocean migration, remaining within the warmer waters
of the Sargasso Sea and the North Atlantic Subtropical Gyre, the circular current
system that surrounds it (Figure 2). As adults, they continue to navigate between
feeding grounds or back to nesting beaches.

Considering the small size of hatchlings and juveniles, sustained swimming is
energetically demanding and there is clear benefit to simply drifting within the
convenient conveyor belt of the North Atlantic Gyre. Yet, such simplistic behaviour
could come with a risk if the stream branches, such as in the North Atlantic where it
splits into separate streams heading south (towards the warmer waters of the Azores)
or north (into the colder waters of Ireland and the North Atlantic), Figure 2; drifting
into the latter could transport turtles into perilously cold waters. Consequently, it is
likely that some degree of positional awareness and navigation is employed and an
increasing volume of evidence has emerged on the potential for turtles to follow a
magnetic compass [28], exploiting the information provided by the Earth’s magnetic
field. Such a capacity would clearly be advantageous: despite its diurnal and secular
variation, magnetic field information is always available (unlike, say, celestial cues).

To investigate this hypothesis, Lohmann and colleagues (see [28] for a review)
devised a laboratory experiment that monitors how hatchling orientation changes
when exposed to distinct magnetic fields. Briefly, a turtle is placed in a large
water-tank while harnessed and tethered to an electronic monitor that computes its
swimming direction. The tank is surrounded by a coil system capable of replicating
specific geomagnetic fields, such as those found at distinct points along a turtle’s
typical migratory route. Following an acclimatisation period, the mean swimming
direction over a 5-min period is recorded for each turtle, generating orientation data
at an individual level. In Figure 2 we reproduce the data summarised in [28] (itself
summarising the collection of studies found in [15, 27, 50]). Specifically, magnetic
fields were reproduced for different points along the North Atlantic Gyre and, for
each location, the (mean) orientation of each tested turtle is binned into a circular
histogram. The key inference from these studies is that hatchlings indeed show
subtle changes to their preferred swimming direction, consistent with an orientation
that optimises remaining within the Gyre. In Section 4.2 we will use this data to
parametrise stochastic and continuous models, assessing the capacity for oriented
swimming to maintain successful circulation of hatchlings.

1.3 Outline

In the next section (Section 2) we introduce advection-diffusion equations and
the fully anistotropic advection-diffusion framework. We introduce position-jump
and velocity-jump random walks as two alternative stochastic models for oriented
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Fig. 2 The North Atlantic Gyre (Black arrows) is a circular system of currents, formed by the
Gulf Stream, the North Atlantic Current, the Canary Current and the North Equatorial Current.
For North Atlantic loggerhead turtles, such as those hatching along Florida beaches, remaining
inside the region enclosed by the Gyre is optimal for access to suitable feeding grounds (e.g. the
Sargasso Sea, the Azores) and to avoid straying into perilously cold waters (e.g. far North Atlantic)
or unfamiliar geographic regions (far from traditional nesting/feeding sites). Two potentially
hazardous points are indicated by the North Easterly point (3) and the South Westerly point (7):
here, currents split into northerly/southerly streams for (3) and northerly/westerly streams for (7).
Circular histograms reproduce the hatchling orientation data from [28], where (1–8) correspond
to the locations where the magnetic field was reproduced in an experimental arena. When this
data is fitted to the von Mises distribution, equation (11), a clear bias emerges, with the dominant
direction and concentration strength reflected by the arrow direction and length (concentration
parameters κ range from 0.67 for dataset 5 to 0.91 for dataset 1). Clearly, the unimodal von
Mises distribution may not always be an “optimal” distribution: for example, datasets 2 and 8
may be more convincingly fitted by a multimodal form, such as linear combinations of von Mises
distributions. Given the present study aims and the limited sample sizes, we restrict our fitting to
the unimodal von Mises distribution.

movement, and show how these models can be parametrised by translating between
individual-level and population-level measurements via circular statistics. In
Section 3 we give detailed derivations of the fully anistotropic advection-diffusion
model, starting from either a position-jump or velocity-jump process. In Section 4
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we return to the two applications/datasets described above. While each dataset
offers a rather distinct set of summary statistics, we show how they can both be
incorporated within our framework to parametrise models.

2 Basic Tools

Here we outline the basic set of tools that we employ to model and analyse popula-
tion spread in an anisotropic/oriented environment: advection-diffusion equations,
scaling limits for random walks, position-jump and velocity-jump random walks
and directional statistics. We note that the derivations of the following sections
require a copious notation, spanning scalar, vector and tensor/matrix quantities.
To help the reader keep track, we use normal face fonts for scalar quantities (e.g.
t, p, u . . .), bold faces for vectors (e.g. a,n, v . . .) and double struck (D,V . . .) for
tensors and matrices. Much of the material here is of an elementary textbook nature,
and we limit references as follows: for more information on the use of advection-
diffusion equations in biology, see, for example, [35, 37]; for more information and
perspectives on random walks and their continuous approximations in biological
systems, see, for example, [9, 22, 38, 39, 41, 46, 47]; for more information on the
theory and use of directional statistics in biology, see [2, 31].

2.1 Advection-Diffusion Equations

Advection-diffusion equations (AD equations) occupy a prominent position in
biological movement modelling [35, 37]. Firstly, AD equations have a relatively
straightforward and intuitive form and their long history has generated numerous
methods for their analysis. Secondly, AD equations can arise as a limiting form from
more realistic/detailed models: they can be derived from discrete and continuous
random walks [38], from stochastic differential equations [18] and from individual
based models [12]. Thirdly, they have shown to be powerful models capable of
describing a wide range of applications in areas as diverse as microbiology [11],
ecology [30, 34], physiology [26] and medicine [45]. In short, AD equations
describe the basic elements of a movement process.

In the simplest case we restrict to a one-dimensional line and consider a constant
drift velocity a and constant diffusion coefficient d > 0. The AD equation for some
population density u(x, t), where x denotes position along the line and t describes
time, is given by

ut + aux = duxx (1)

where the index notation denotes partial derivatives.
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Fig. 3 Typical solutions of the basic diffusion-advection equation (1). Initial conditions are
u(x, 0) = e−x2

and solutions shown for (left to right): pure advection; pure diffusion; diffusion-
advection.

In the absence of diffusion (d = 0), we have ut + aux = 0 and solutions are
of the form u(x − at), describing movement with constant speed a. If a > 0 this
movement is to the right and if a < 0 to the left (see Figure 3 left). In the absence
of advection (a = 0) we obtain a pure heat (or diffusion) equation ut = duxx :
solutions disperse (Figure 3 middle) and (for x ∈ R) the fundamental solution is

u(x, t) = 1√
4πdt

e−x2/4dt .

Taking both terms together (a 
= 0, d > 0) the population is transported with
velocity a while simultaneously spreading due to diffusion (Figure 3 right).

While the basic elements of directed movement (via a) and spatial spread (via d)
are already contained in (1), questions arise concerning their specific choices related
to biological observations/properties: How does the direction and thickness of nano-
grooves translate to advection/diffusion terms? How can we link datasets on turtle
headings to these parameters? To answer questions like these we need to generalise
the above AD equations (1) in a number of ways:

• advection and diffusion coefficients will more generally depend on space and
time;

• we need to explore AD equations in higher space dimensions, in particular two
dimensions for the examples studied here;

• as we shall see, any underlying anisotropy or oriented information in the
environment can affect both advection and diffusion, necessitating usage of an
anisotropic formulation with n× n diffusion tensor D(x, t).

Instead of (1) we will therefore consider the fully anisotropic advection-diffusion
equation (FAAD equation):

ut + ∇ · (a(x, t)u) = ∇∇ : (D(x, t)u) . (2)
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Note that because the advective velocity a(x, t) now depends on space, it appears
inside the divergence such that ut+∇·(a(x, t)u) = 0 is a conservation law. The new
anisotropic diffusion term in (2) demands special attention. The colon notation (:)
used here denotes the contraction of two tensors, and generates a summation across
the full suite (i.e. including mixed) of second order derivatives:

∇∇ : (D(x, t)u) =
n∑

i,j=1

∂

∂xi

∂

∂xj
(Dij (x, t)u(x, t)) . (3)

Note moreover that this term can be expanded into

∇∇ : (Du) = ∇ · (D∇u)+ ∇ · ((∇ · D)u) ,

which reveals a standard (Fickian-type) anisotropic diffusion term along with an
advection term with velocity ∇ · D. As we will show below, the term (3) arises
naturally from a detailed random walk description for moving biological agents.
We also note that this term can confer some advantages over the standard Fickian
anisotropic diffusion form (∇ · (D∇u)): in particular, (3) can allow local maxima
and minima to form in the population density steady state distribution, consistent
with certain biological observations. Before we move on to this we first show how
explicit expressions can be obtained for drift and diffusion terms, correlating to the
inputs into an individual-level random walk, and introduce scaling methods in the
process.

2.2 Scaling Limits for a Simple Random Walk

Consider an unfortunate hare confined to a life of consecutive and equispaced
hops left or right along an infinite one-dimensional road. This animal’s convenient
movement path can be characterised by a probability density function p(x, t),
denoting the probability of the hare being at position x at time t . We set δ to be
the hop length, q and 1 − q as the probabilities of a jump to the right or left and
introduce τ as the (assumed constant) time between consecutive hops. To determine
an equation for p(x, t + τ) we need to calculate the probability of finding the
individual at x at time = t + τ . Clearly this will only be possible if the individual
has jumped right from position x − δ, or left from x + δ, at time t . As a result, we
have the discrete Master equation

p(x, t + τ) = qp(x − δ, t)+ (1 − q)p(x + δ, t) . (4)

How can we determine a continuous limit for this discrete equation? The first step
is to reinterpret p as a continuous probability distribution and then expand the
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left-hand side about (x, t) as a function of t in powers of τ , and the right-hand
side terms as functions of x in powers of δ. After removing the arguments (x, t) for
clarity, we find

p + τpt + τ 2

2
ptt + . . . = q

(
p − δpx + δ2

2
pxx − . . .

)

+ (1 − q)
(
p + δpx + δ2

2
pxx + . . .

)
,

where the subscripts denote partial derivatives. Simplifying, we obtain

pt (x, t) = δ

τ
(1 − 2q)px(x, t)+ δ2

2τ
pxx(x, t)+O(τ, δ

3

2τ
) . (5)

Glancing at Equation (5) hints at the continuous model, where we see that the
leading terms form an advection-diffusion equation,

pt (x, t) = −apx(x, t)+ dpxx(x, t) (6)

with

a = δ

τ
(2q − 1) and d = δ2

2τ
.

However, to do this more formally we must think carefully about different scalings,
corresponding to distinct limiting scenarios as δ, τ → 0 and q → 1/2. We will
present three choices: others certainly exist, yet the majority do not lead to a useful
limit equation. In other words, if δ, τ and q do not scale as indicated below, then
the above does not provide an appropriate method for deriving a useful continuous
model. Note that for each of these scalings, all of the hidden lower order terms of
equation (5) limit to zero and are henceforth excluded from consideration.

(a) Suppose δ, τ → 0 such that δ
τ

→ α = constant. This describes a hyperbolic

scaling. Hence, δ
2

τ
→ 0, and the diffusive term vanishes. Thus, we are left with

a simple transport equation

pt + apx = 0 ,

where the advective velocity is a = α(2q − 1). We can see from this that the
advective speed reaches a maximum of α when q = 0 or 1, which corresponds
to always choosing left or always choosing right: i.e., there will be no doubling
back.

(b) Suppose δ, τ → 0 such that δ
2

τ
→ 2d = constant. This describes a parabolic

scaling. Here we can consider two cases:

(b.1) If q = 1
2 . Here we have a = 0 and we hence obtain a pure diffusion

equation

pt = dpxx.
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(b.2) If q → 1
2 in such a way that δ

τ
(2q − 1) → a, and δ2

2τ → d, then the
scaling results in the advection-diffusion equation

pt + apx = dpxx . (7)

Summarising:

• When δ and τ scale in the same way, then we obtain a pure transport equation.
This case is called drift dominated.

• When δ2 ∼ τ , we have the diffusion dominated case.
• Only if q− 1

2 ∼ δ do we get both terms, an advection and a diffusion term (mixed
case). In this case we exactly derive our simple one-dimensional AD equation (1),
but now we have a connection from the macroscopic parameters a and d to the
statistical inputs of the underlying random walk process (q, δ, τ ).

The question of which scaling to apply will typically come down to the appropriate
relationship between the macroscopic and the individual spatial and temporal scales:
i.e. between the scales of the individual movement process and the scale of the
problem. For example, for the hops of a hare their frequency may take place
on a timescale of seconds, over a distance of several centimetres. For modelling
purposes, we may be interested in the dynamics of the system over observational
scales ranging from minutes and metres to years and kilometres. The comparison
between these scales provides the key to the appropriate scaling.

It is important to note that we have, in fact, only derived a continuous limiting
equation for the probability distribution of finding an individual at position x at time
t . Can we directly relate p to a density function u that describes the distribution of
a population? Formally, this would require that the jumpers are stochastically inde-
pendent, i.e. that any interactions between population members can be (reasonably)
ignored. This would, quite obviously, be a strong assumption if applied generally
and its validity demands careful assessment [46, 54]. Accounting for population
interactions will significantly complicate the proceedings (often to the point of
intractability) and we shall therefore restrict to stochastically independent jumpers
in the context of this chapter: effectively, we directly interchange the probability
distribution p with the population density distribution u.

2.3 Classes of Biological Random Walks

In the above example we considered an uncorrelated position-jump random walk
on a discrete and regular one-dimensional lattice for our underlying movement
process: moves were uncorrelated, in that the decision of which direction to take
did not depend on the previous decision(s), movement occurred through positional
jumps in space that ignored explicit description of passage between successive
points, and were of fixed length, so that the path was localised to equally spaced
points along a one-dimensional line.
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Fig. 4 Schematic illustrating position-jump and velocity-jump random walks. (Left) In the
position-jump process, the particle makes instantaneous jumps through space at discrete times
t0, t1, t2, . . .. (Right) In the velocity-jump process, the particle makes instantaneous velocity-
changes at discrete times t0, t1, t2, . . . (red circles), but subsequently moves continuously through
space with a fixed velocity in the intervening times (white circles).

More generally, two popular random walk descriptions for biological movement
are the position-jump and velocity-jump random walk processes. These descriptions
have been introduced to biological modelling by Othmer, Dunbar and Alt [38] and
subsequently proven to be powerful and popular approaches. In the simpler position-
jump process, the random walker jumps discretely from point to point according
to certain jump probabilities (Figure 4 left); the one-dimensional random walk
discussed above provides a particularly simple example. The more sophisticated
velocity-jump process assumes piecewise continuous movement through space,
with random walkers changing their velocity (or heading) during turns (Figure 4
right). Choosing an appropriate random walk description involves a balancing of
their respective advantages: for example, while the velocity-jump approach benefits
from its more natural representation of biological movement, the subsequent
derivation of a continuous limiting equation is somewhat more complicated.

2.3.1 Position-Jump Processes

Moving beyond our simple random walk above, a more general position-jump
random walk assumes movement proceeds through a sequence of positional jumps
in space, interspersed according to some characteristic mean waiting time. Such
instantaneous transitions are clearly somewhat unrealistic in the context of biologi-
cal movement, yet given the discrete nature of many datasets (for example, satellite
tracking of an animal in which its path is recorded through its spatial coordinate
at discrete times) a position-jump model can often be justified as a reasonable
approximation [5, 57].

Position-jump random walks can be alternatively stated via a discrete or contin-
uous time master equation [38], and here we consider the former form. Specifically,
we consider a population of stochastically independent jumpers performing a dis-
crete time random walk, starting at t = 0 and making jumps at fixed times separated



From Random Walks to Fully Anisotropic Diffusion Models for Cell. . . 115

by time step τ . We introduce a redistribution kernelK(y, x, t), a probability density
function for a jump from position x to y at time t . Note that, as a probability, we
have K ≥ 0.

The difference in the population density at x between times t and t + τ will be
determined by summing all jumps into position x and subtracting all those away
from position x, i.e. by the equation

u(x, t + τ)− u(x, t) =
∫

Dx
K(x, y, t)u(y, t)−K(y, x, t)u(x, t)dμ(y) . (8)

In the above, (Dx, μ(y)) is a measure space. The above is general for random
walks including jumps of various step lengths, or cases where movement occurs in
continuous space or is restricted to discrete jumps between regularly or irregularly
arranged nodes. The set Dx determines the set of destination/incoming sites for
position x, i.e. the set of points y ∈ Dx from which jumps into or out of x can
be made, with μ(y) its associated measure. For example, if jumps can be made in
any direction and any distance up to length h, then Dx becomes the ball centred
on x of radius h and the associated measure is the standard Lebesgue measure. If
jumps can be made in any direction, but are restricted to a fixed length h, then
Dx will be the sphere of radius h centred on x and the associated measure is the
surface Lebesgue measure. When movements become restricted to a set of nodes,
Dx becomes a finite or infinite set of discrete positions with a corresponding discrete
measure.

The choice of redistribution kernel K is a key modelling decision, and allows
various potential factors to be incorporated: for example, K could incorporate
an impact due to environmental anisotropy or navigating cues that bias jumps
into particular headings. The redistribution kernel is taken to be a probability
measure, i.e.

∫

Dx
K(y, x, t)dμ(y) = 1 .

The above excludes spatio-temporal variation in the rate that jumps are made.
However, it is noted that this is distinct from variation in staying at the same site,
since Dx could include x and remaining would correspond to K(x, x, t) > 0.

2.3.2 Velocity-Jump Processes

In velocity-jump random walks, movement consists of smooth runs with constant
velocity interspersed by (instantaneous) reorientations [38]. For stochastically inde-
pendent walkers, the individual-scale velocity-jump random walk can be formulated
as an individual-scale continuous transport equation. Transport models form a
powerful and relatively new tool in the modelling and analysis of animal and
cell movement [21, 37, 40, 47], although they have a long history in continuum
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mechanics (where they are usually referred to as kinetic equations) [3, 8]. As a
result, various tools and techniques have been developed and in particular the scaling
techniques that allow their approximation to a reduced (and hopefully simpler)
macroscopic model [22, 47]. Consequently, the transport equation can be thought
of as a bridge that connects the individual random walk to a fully continuous
macroscopic model.

The reapplication of transport equations to biological processes has grown from
seminal work of the 1980s (see [1, 38]) as an approach for modelling biological
movement, whether by cells or organisms. Transport equations typically refer to
mathematical models in which the particles of interest are structured by their
position in space, time and velocity. In words, the transport equation for animal/cell
movement takes the intuitively simple form:

Rate of change of population Change due to Change due to
moving with velocity v = movement through + turning into or out

at position x time t space of velocity v

Formally, if we define by p(v, x, t) to be the density of the population moving with
velocity v ∈ V at position x and time t , then

pt(v, x, t)+ v · ∇p(v, x, t) = L p(v, x, t) , (9)

where L denotes a turning operator that describes the process of velocity switch-
ing1. For the velocity space V ⊂ R

n we take V = [s1, s2] × Sn−1, where
0 ≤ s1 ≤ s2 < ∞, s1 and s2 define the lower and upper bounds for organism
movement speed2 and Sn−1 defines the unit sphere.

The choice of L forms a key modelling decision, and an oft-used form is the
integral operator representation [38]:

L p(v, x, t) = −μp(v, x, t)+ μ
∫

V

T (v, v′, x, t)p(v, x, t)dv′ , (10)

where the first term on the right-hand side gives the rate at which particles switch
away from velocity v and the second term denotes the switching into velocity v
from all other velocities. The parameter μ is the turning rate, with 1/μ the mean
run time between individual turns. The turning kernel T (v, v′, x, t) ≥ 0 denotes
the switching into velocity v for a turn made at position x and time t , given some
previous velocity v′. Mass conservation demands

1We note that this particular form assumes there is no net force on the particles, and thus no inertia
on them.
2It is worth noting that this is a key distinction from the kinetic theory of gas molecules, where
V = R

n permits (at least theoretically) individual molecules to acquire infinite momentum [8].
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∫

V

T (v, v′, x, t)dv = 1

and consequently T denotes a probability measure over V . As for the redistribution
kernel in the position-jump process, its choice is a major consideration: for example,
orientation signals from the environment at x and time t , or the inclusion of
persistence in the previous direction v′.

2.4 Directional Statistics

Each of the position-jump and velocity-jump processes above relies on various
biological inputs: mean waiting times, speeds, turning rates and redistribution
kernels. It is through these inputs that the random walk can be linked to biological
datasets, and not least significant are the kernels K and T , which, respectively,
describe probability distribution functions for either the redistribution kernel for a
positional jump from some position x to a position y or a change of velocity from
v′ to v. Fundamentally, each distribution encapsulates an orientating “choice” of the
animal or cell and we now turn to consider some suitable representations.

Typical datasets for cell movement and animal navigation problems relate to
orientations/headings in space and handling such data demands a review of some
concepts from directional statistics [31]. In two dimensions, directional (or circular)
statistics involves consideration of data on orientations that can be expressed with
respect to some angle α relative to a given x-direction. The problem of directly
transposing the definitions of regular (linear) statistics to circular statistics becomes
immediately apparent with even its simplest concepts: for a set of angles uniformly
distributed across the circle, what meaning would the (linear) mean angle of this
dataset have?

In general we consider the set of directions on the n-dimensional sphere, i.e.
the set of unit vectors n ∈ Sn−1. A directional distribution is then a probability
distribution q(n) defined over Sn−1, i.e. one satisfying

q(n) ≥ 0 and
∫

Sn−1
q(n)dn = 1 .

Of particular importance for our work are the first and second moments of q,
respectively the expectation Eq and variance–covariance matrix Vq (which we will
often refer to simply as the variance):

Eq =
∫

Sn−1
nq(n)dn,

Vq =
∫

Sn−1
(n − Eq)(n − Eq)T q(n)dn.
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Fig. 5 Left: The unimodal von Mises distribution as a function of n = (n1, n2)
T ∈ S1 with a peak

at ν = (1, 0)T . Right: The bimodal von Mises distribution qvM as a function of n ∈ S1 with peaks
at ν = ±(1, 0)T . In these plots we set κ = 10.

In two dimensions, distributions will be defined on the unit circle, i.e. n ∈ S1.
The simplest example is the uniform distribution, q(n) = 1

2π , although this has
obviously limited usage in cases where data shows clear clustering/structure.

Given the enormous importance of the normal distribution in linear statistics, it is
clearly desirable to define a similar concept for circular statistics. While the wrapped
normal distribution offers the most direct analogue, the normal distribution’s
prominent position in circular statistics is filled instead by its sibling, the von Mises
distribution [2, 31], which benefits from its more analytically tractable form; the
subtle differences between the wrapped normal and von Mises distribution are
unlikely to be differentiated within the context of typical (noisy) biological datasets.
Suppose we have some dominant/preferred direction ν ∈ S1, then the von Mises
distribution is given by

qvM(n, ν, κ) = 1

2πI0(κ)
eκn·ν (11)

for n ∈ S1. Here κ denotes the concentration parameter and I0(κ) (Ij (κ)) denotes
the modified Bessel function of first kind of order 0 (order j ). The von Mises
distribution is illustrated in Figure 5 on the left.

It is, of course, equally possible to write down the von Mises distribution in terms
of polar angles. Denoting α to be the angle of n and φ to be the angle of ν (i.e. the
dominant angle), then we can write

qvM(α, φ, κ) = 1

2πI0(κ)
eκ cos(α−φ) .

The above form is more common, particularly in the biological literature [32], but
it is less useful for computations and can be notationally more cumbersome. Hence
we work with the coordinate free form (11) when possible.
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As for the normal distribution on the line, the von Mises distribution on the
circle is the workhorse of planar directional statistics [2, 31]. It can be derived from
random walks, diffusion equations and energy principles, and has applications in
earth sciences, physics, biology, medicine, and elsewhere. It is used for data fitting
and hypothesis testing of directional data, and we will use it here for our modelling
of biological movement. The first and second moments of (11) have been computed
in [23] (amongst elsewhere) and are given by

EqvM = I1(κ)

I0(κ)
ν ; (12)

VqvM = 1

2

(
1 − I2(κ)

I0(κ)

)
I2 +

(
I2(κ)

I0(κ)
−

(
I1(κ)

I0(κ)

)2
)

ννT . (13)

Note that I2 denotes the 2 × 2 identity matrix, and ννT denotes the dyadic product
of two vectors (in tensor notation ν ⊗ ν).

Many biological datasets possess multimodal structure and we note that the
von Mises distribution can be extended to describe such instances, for example
through simple linear combinations of (11); the moments correspondingly follow
from linear combinations of (12–13). A particularly useful case emerges for axially
symmetric directional information, such as the spreading of cells along nanogrooves
or animal movement along linear environment structures such as seismic lines [33].
In such cases we can define a bimodal von Mises distributions with equal sized local
maxima at ±ν. As shown in [23], we find that for given ν ∈ S1 the bimodal von
Mises distribution

qbvM(n, ν, κ) = 1

4πI0(κ)

(
eκn·ν + e−κn·ν) , (14)

has moments

EqbvM = 0 , (15)

VqbvM = 1

2

(
1 − I2(κ)

I0(κ)

)
I2 + I2(κ)

I0(κ)
ννT . (16)

An illustration of the bimodal von Mises distribution is shown in Figure 5 on the
right.

For the present chapter we exclusively concentrate on two-dimensional appli-
cations, however it is worth remarking that extensions can be made to three
dimensions. The equivalent of the von Mises distribution in three dimensions is
called the Fisher distribution and is given by

qF (n, ν, κ) = κ

4π sinh(κ)
eκn·ν, n ∈ S2. (17)
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Again, first and second moments have been previously calculated for this distribu-
tion (see [23]), given by

EqF =
(

coth κ − 1

κ

)
ν , (18)

VqF =
(

coth κ

κ
− 1

κ2

)
I +

(
1 − coth κ

κ
+ 2

κ2 − coth2 κ

)
ννT . (19)

3 Derivation of Fully Anisotropic Advection-Diffusion
Equations

Here we present two derivations of the FAAD model (2), respectively, from a
position-jump and velocity-jump process. We will find that both the macroscopic
drift velocity a and the diffusion tensor D depend on statistical properties of the
parameters in the corresponding random walk model. Hence, the choice of an
appropriate model can be linked to the available data: if we can compute mean and
variance of species locations, then the position-jump framework applies (see our cell
movement example); if the data allow estimates for mean speeds, mean directions
and their variances, then the velocity-jump process is perhaps a better choice (see
the sea-turtle example).

3.1 Position-Jump Derivation

For the position-jump derivation we will make a number of convenient restric-
tions:

1. we assume random walks in which the jumps can occur in any direction (i.e.
lattice-free), but are restricted to fixed length δ.

2. we assume the jump is myopic (or short-sighted).

The first restriction determines that the set D in equation (8) simply becomes the
sphere of radius δ. The myopic nature of the jump implies that the heading is
based only on environmental information obtained at the present site, i.e. at (x, t)
for a walker at position x at time t ; alternatives could involve, as an example, a
dependence on information at the destination site, or a comparison between the
current and destination site [55].

The consequence of these assumptions is that our redistribution kernels can be
written in terms of a directional distribution for choosing direction n ∈ Sn−1, i.e.
K(y, x, t) = k(n, x, t) where n is in the direction y−x

|y−x| and the Master equation
becomes
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u(x, t + τ)− u(x, t) =
∫

Sn−1
k(n, x − δn, t)u(x − δn, t)− k(n, x, t)u(x, t)dn .

(20)
At this point it is interesting to quickly consider the connection to the one-
dimensional case (4) that was studied earlier. In the one-dimensional case we have
only two headings, n ∈ {−1, 1}. Hence we define

k(n, x, t) = qδ0(−1 − n)+ (1 − q)δ0(1 − n),

where δ0 denotes the Dirac-delta distribution. Then (20) becomes

u(x, t + τ) = qu(x − δ, t)+ (1 − q)u(x + δ, t),

which is exactly (4).
For small values of δ and τ we expand the right-hand side of equation (20) about

x and the left-hand side about t to obtain

∂u

∂t
+O(τ) = δ

τ

∫

Sn−1
−n · ∇ (ku)+ δ

2
(n · ∇)2 (ku)+O(δ2)dn ,

= − δ
τ

(
∇·

∫

Sn−1
n (ku) dn

)
+ δ2

2τ

(
∇∇:

∫

Sn−1

nnT kdn
)
u+O(δ3/τ) ,

where we use the colon notation (:) which denotes the contraction of two tensors as

A : B =
n∑

i,j=1

aij bij , A,B ∈ R
n×n.

As discussed in Section 2.2, distinct scalings generate different continuous limits
and we again consider both the drift and diffusion dominated scenarios.

• (drift dominated) if δ, τ → 0 such that limδ,τ→0
δ
τ

= c (constant) we have the
hyperbolic model

∂u

∂t
+ ∇ · (a(x, t)u) = 0 ,

where a(x, t) = c
∫
Sn−1 nk(n, x, t)dn (i.e. the advection is proportional to the

first moment of k).
• if δ, τ → 0 such that limδ,τ→0

δ2

2τ = d then we have two cases

– (diffusion dominated) if
∫
Sn−1 nkdn = 0 then we have

∂u

∂t
= ∇∇ : (D(x, t)u) ,

where D(x, t) is the n×nmatrix defined by D(x, t) = d ∫
Sn−1 nnT k(n, x, t)dn.
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– (drift-diffusion). If limδ,τ→0
δ2

2τ = d and limδ,τ→0
δ
τ

∫
Sn−1 nkdn ∼ cδ, we

have

∂u

∂t
+ ∇ · (a(x, t)u) = ∇∇ : (D(x, t)u) ,

with

a(x, t) = c

∫

Sn−1
nk(n, x, t)dn ,

D(x, t) = d

∫

Sn−1
(n − a(x, t))(n − a(x, t))T k(n, x, t)dn .

The final form is particularly relevant, as it is exactly the FAAD model we
introduced earlier. In this case, we now have a connection to the advection velocity
and diffusion tensor terms from the underlying statistical inputs k(n, x, t) of a
random walk process.

3.2 Velocity-Jump Derivation

To facilitate the derivation we consider a simplified form of transport equation.
Specifically, we assume that the turning kernel does not depend on the previous
velocity v′, i.e.

T (v, v′, x, t) = T (v, x, t) .

Using this choice in (10) for (9) we have the considerably simpler form

pt (v, x, t)+ v · ∇p(v, x, t) = −μp(v, x, t)+ T (v, x, t)u(x, t) , (21)

where we have defined the macroscopic density

u(x, t) =
∫

V

p(v, x, t)dv. (22)

The process from here is to derive an evolution equation for the macroscopic density
u(x, t), which can be achieved through a variety of scaling techniques, including
parabolic scaling, hyperbolic scaling and moment closure. For a detailed treatment
for model (21) we refer to our earlier paper [22] and we summarise one such choice
here: moment closure.
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3.2.1 Moment Closure Method

In a moment closure approach, the idea is to identify statistically meaningful
quantities related to p and T , such as expectations and variances. We remind
ourselves that the formulation demands that the turning distribution T (v, x, t) is
a probability measure, i.e.

T (v, x, t) ≥ 0,
∫

V

T (v, x, t)dv = 1,

and we consider its expectation ET and variance VT ,

ET (x, t) =
∫

V

vT (v, x, t)dv,

VT (x, t) :=
∫

V

(v − ET (x, t))(v − ET (x, t))T T (v, x, t)dv . (23)

ET (x, t) describes the mean new velocity vector for the turning kernel, while
VT (x, t) is its variance–covariance matrix.

We now introduce the same quantities for p(v, x, t), although we note that p in
itself is not a probability measure, since

∫
V
p(v, x, t)dv = u(x, t) is not necessarily

equal to one. But we can normalise, introducing p̂ via the equation

u(x, t)p̂(v, x, t) = p(v, x, t)

and noting that
∫
V
p̂(v, x, t)dv = 1. We subsequently introduce the expectation and

variances

Ep̂(x, t) =
∫

V

vp̂(v, x, t)dv,

Vp̂(x, t) =
∫

V

(v − Ep̂(x, t))(v − Ep̂(x, t))
T p̂(v, x, t)dv.

Then, Ep̂ defines the mean velocity of the normalised population while Vp̂ is its
variance–covariance matrix. In terms of the original population density p, we can
write

∫

V

vp(v, x, t)dv = Ep̂(x, t)u(x, t) , (24)

∫

V

(v − Ep̂(x, t))(v − Ep̂(x, t))
T p(v, x, t)dv = Vp̂(x, t)u(x, t) . (25)

Next we explain the moment closure method itself. We can derive equations for
the expectation and variance introduced above, and it turns out that the equation
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for the expectation (first moment) depends on the variance (second moment) while
the equation for the variance depends on a third moment, etc. Effectively we obtain
an infinite hierarchy of moment equations, where each new equation depends on
a next higher moment. To obtain a usable model, the sequence of equations must
be cut somewhere, a process termed moment closure. Generally, choosing the right
closure condition is a work of art and many plausible approaches are available in the
literature [8, 20]. Here we will choose a standard method that uses the equilibrium
distribution and cut at the second moment to obtain a single equation of type (2) for
the mass density u(x, t).

Let us start by integrating equation (21) over V and express each term with
respect to the corresponding moments. Note that hereon we omit the arguments
for readability.

∫

V

ptdv +
∫

V

∇ · vp dv = −μ
∫

V

p dv + μ
∫

V

T dv u,

which can equivalently be written as

ut + ∇ · (Ep̂u) = −μu+ μu = 0.

Hence our first equation is a conservation law

ut + ∇ · (Ep̂u) = 0 . (26)

As a next step we multiply (21) by v and again integrate over V . We obtain

∫

V

vutdv +
∫

v(∇ · vp)dv = −μ
∫

V

vp dv + μ
∫

V

vT dv u ,

which can be equivalently written as

(Ep̂u)t + ∇ ·
∫

V

vvT p dv = μ(ET − Ep̂)u . (27)

We write the second moment
∫

vvT pdv in terms of the variance of p̂, i.e.

Vp̂u =
∫

V

(v − Ep̂)(v − Ep̂)
T pdv ,

=
∫

V

vvT pdv − 2
∫

V

vET
p̂
pdv + Ep̂ET

p̂
u.

Hence
∫

V

vvT pdv = Vp̂u+ Ep̂ET
p̂
u.
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We use this expression in (27) and obtain the equation for the expectation:

(Ep̂u)t + ∇ · (Ep̂ET
p̂
u) = −∇ · (Vp̂u)+ μ(ET − Ep̂)u . (28)

So far we have simply integrated and introduced a few fancy variables for Ep̂,Vp̂,
etc. The next step is to present two critical assumptions that allow us to close the
system:

(a1) Moment closure – the variance Vp̂ is computed from the equilibrium
distribution pe: Vp̂ ≈ Vp̂e .

(a2) Fast flux relaxation – the equation (28) for the expectation Ep̂ is in quasi-
equilibrium.

It is noted that the above assumptions were originally conceived in a physical
context, namely the kinetic theory of dilute gases [8]. The extent to which these
can be directly translated to biological particles, such as cells and organisms, is
uncertain and a goal for further investigations: within the present article we simply
take them as stated. The first assumption has proven to be useful in a number of
studies. The second assumption effectively stipulates that, at the space/time scales
of the macroscopic model, the particle instantaneously respond to local information:
reasonable, say, for an organism switching direction multiple times a day but studied
over a macroscopic scale of months to years.

The equilibrium distribution pe can be computed from the condition L pe = 0
where L is the integral operator from (10). In our case

L p = μ(T u− p) = 0

is solved by the equilibrium distribution ,

pe(v, x, t) = u(x, t)T (v, x, t).

This equilibrium distribution has the expectation

Ep̂eu =
∫

V

vpedv =
∫

V

vuT dv = ET u . (29)

Now we approximate the highest order term, the variance as

Vp̂ ≈ Vp̂e =
∫

V

(v − Ep̂e )(v − Ep̂e )
T uT dv = VT u . (30)

In assumption (a2) we postulate that the equation (28) is in quasi-steady state, i.e.

0 ≈ −∇ · (Vp̂u)+ μ(ET − Ep̂)u ,



126 K. J. Painter and T. Hillen

and, substituting the moment closure (30), we find the approximation

Ep̂u ≈ − 1

μ
∇ · (VT u)+ ET u . (31)

Finally, we substitute (31) into the conservation law (26) and we assume that the
approximation is good (i.e. we replace ≈ with =) to obtain a closed system

ut + ∇ · (ET u) = 1

μ
∇∇ : (VT u) . (32)

This closed equation is exactly the fully anisotropic advection-diffusion equation
(FAAD) in (2) with

a(x, t) = ET (x, t) and D(x, t) = 1

μ
VT (x, t). (33)

Let us consider two special cases of this derivation.

Example 1 (Directional Distributions) Some further simplifications can be used to
relate turning directly to a directional distribution. Let us restrict movement to a
single speed, i.e. V = sSn−1, where s is the mean speed and Sn−1 is the n-
dimensional sphere. Hence, v = sn where n ∈ Sn−1 defines the directional heading.
We can therefore simply define T in terms of a directional distribution, say q, for
choosing some heading n ∈ Sn−1. Specifically,

T (v, x, t) := q(n, x, t)
sn−1 , (34)

where the sn−1 factor results from moving between a distribution over V to one over
Sn−1. Subsequently, advection and diffusion tensors for (2) will be given by

a(x, t) = sEq(x, t) = s
∫

Sn−1
nq(n, x, t)dn , (35)

D(x, t) = s2

μ
Vq(x, t) = s2

μ

∫

Sn−1
(n − Eq)(n − Eq)T qdn . (36)

Notice that for the von-Mises and Fisher distributions discussed earlier, we have
already computed expectation and variances: i.e., they are ready to be used.

Example 2 (including external drift) The above derivation can also be applied to
the case of particles that are drifting in an external velocity field b(x, t) ∈ R

n,
for example turtles transported in ocean currents or insects blown by the wind. If
particles are inactive, their heading is exactly the direction of the external flow field
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b(x, t), in which case the directional distribution used for the turning kernel would
be a point measure

T (v, x, t) = δb(x,t)(v) .

Then, expectation and variances can be calculated as

ET (x, t) = b(x, t) and VT (x, t) = 0 .

The above macroscopic limit is a pure drift equation

ut + ∇ · (b(x, t)u) = 0. (37)

Note that the same equation arises if we simply assume that a force proportional
to b acts on cells, where the cells have no inertia. In that case we also get a
drift of the form b(x, t). For situations in which we have a population of actively
navigating/moving particles immersed in an external velocity field we can simply
combine the two cases of (35), (36) and (37) to obtain

ut + ∇ · ((a(x, t)+ b(x, t))u) = ∇∇ : (D(x, t)u). (38)

Indeed, this case was used to analyse sea turtle data in [43].

4 Applications to Cell/Animal Orientation Datasets

We illustrate the methodology through our two motivating applications. In each case
we take as a starting point an individual-based description for oriented movement:
an underlying velocity-jump process for the random walk. This initial description
arises naturally, given our fundamental knowledge of particle behaviours: cells on
fabricated substrates reveal alignment and orientation according to the substrate
anisotropy (Figure 1); datasets for turtles are based according to their mean swim-
ming orientation when subjected to specific magnetic fields (Figure 2). We remark
that in each application a two-dimensional approximation (n = 2) is reasonable:
cells migrate across the two-dimensional substrate and the diving capabilities of
young turtles restrict their movements to the ocean surface [10]. Simulation methods
are provided in the Appendix.

The two applications differ not only in their field of study but also with respect to
the “usable data”. For cell movement we consider a tabulated summary of responses
for distinct micro-ridge substrates, Table 1. This is data at a population-averaged
level, and we do not have explicit data on each individual cell’s orientating response.
Nevertheless, we can still use this data to directly parametrise our model, which
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is done directly at the FAAD level that arises as a continuous approximation of
the individual model. In the case of hatchling movements, a circular dataset is
available for the mean heading of each tested turtle in samples exposed to distinct
navigation fields. In this case, we can directly parametrise the von Mises distribution
that describes an individual’s orientation response, and subsequently scale to a
macroscopic FAAD equation in order to collect population-level measurements.

4.1 Application A: Cell Movement on Microfabricated
Structures

The data of Jeon et al. [25] in Table 1 are at a population level: the mean x-
velocity (vx±vx,error ), mean y-velocity (vy±vy,error ) and mean speed (s±serror ),
where velocity components are measured according to absolute values. To relate
these to the parametrisation of (2), we first remark on some particulars induced by
the anisotropic arrangement. Firstly, the dominant drift velocity a = 0, since the
environment is essentially bidirectional and, on average, equal numbers of cells will
be found travelling up or down (left or right). Secondly, the substratum is anisotropic
but spatially homogeneous, and hence the diffusion tensor D is constant in space.
Finally, anisotropies coincide with the coordinate axes, so D becomes a diagonal
matrix

D =
(
λx 0
0 λy

)
, (39)

with two eigenvalues λx and λy .
Given that D is constant in space, the fully anisotropic diffusion model becomes

identical to the standard anisotropic diffusion equation:

ut = ∇ · D∇u . (40)

Hence we can exploit results relating to the above. Firstly, the fundamental solution
of (40) is the Gaussian distribution with covariance matrix D:

u(x, t) = 1

2πt
√

DetD
exp

(
− 1

4t
xTD−1x

)
(41)

(in two spatial dimensions), where the set

Ec := {x : xTD−1x = c}

gives the set of locations for which there is an equal probability of finding a random
mover that started at the origin. This set defines a diffusion ellipse, with semi-axes of
lengths

√
λx and

√
λy , respectively, and provides one way to graphically visualise
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the anisotropy of D. A second method is the diffusion peanut, which is the image of
the map w �→ wTDw for w ∈ S1, and relates to the mean-squared displacement in
direction w, σ 2

w, via σ 2
w = 2twTDw [45]. This gives rise to the apparent diffusion

coefficient in direction w,

ADCw := σ 2
w

2t
= wTDw .

In particular, given coordinate directions (1, 0)T and (0, 1)T , we find that the mean
squared displacements in x- and y-directions will be 2tλx and 2tλy respectively.
This provides the key for using the data in Table 1: given the mean velocities in x and
y directions and taking a unit time step of 1 min, we convert to mean displacements
for the x and y directions and in turn estimate the λ’s in (39), the values of which are
listed in Table 2 for each experimental setting. To illustrate some of the anisotropies
graphically, we plot diffusion ellipses and peanuts for the three cases 16 × 32, 16 ×
64 and 16 × ∞ in Figure 6. As the structure is stretched along the y− direction
we observe progressively thinned-out ellipses/pinched peanuts, reflecting restricted
movement along this axis.

For turning rates of the order of 2.5/min and a tracking timeframe of 400 min,
each cell turns on average 1000 times across its track. Given an average speed of
0.5 μm/min, each particle travels about 200 μm in this timeframe, suggesting this
to be a suitably macroscopic scale. We subsequently plot solutions to the FAAD
model on this spatial and temporal scale, plotting the evolving distribution for 10
individuals presumed to have started at the origin. Exploiting the spatially uniform
nature of the environment, solutions will simply be governed by the fundamental
solution (41), which we plot in Figure 7 at t = 100 and t = 400 for the same
three cases 16 × 32, 16 × 64 and 16 × ∞. Consistent with the diffusion ellipses,
the highest degree of environmental anisotropy generates a quasi-one-dimensional
spread of the cells along the y-axis. We note that there is no direct information in
[25] that allows us to directly compare these plots to their data, and therefore this
represents a prediction of the expected population distribution.

We can turn the argument full circle and use the measured data to estimate
cell movement parameters that would be required in the underlying velocity-jump
process: speed s, turning rate μ, and concentration parameter κ of the bimodal von-
Mises distribution (14). We should note that this is predicated on an assumption
of the individual-level behaviour: i.e., that cells orient according to a bimodal von-
Mises distribution. In the absence of specific individual-level data, this is of course
impossible to state with certainty, yet it is nevertheless instructive to show how we
can “reverse the process”.

Recall that, given the symmetric/bidirectional scenario, the drift velocity
a = 0 and the macroscopic model becomes the pure fully anisotropic diffusion
equation

ut = ∇∇ : (Du) ,
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Table 2 Speed and diffusion coefficients λx and λy from the data from Jeon et al. [25]. We also
list the values for the turning rateμ, and the concentration parameter κ of a corresponding bi-modal
von-Mises distribution.

Case Ridge height Speed ± error λx± error λy± error Turning rate Anisotropy

(μm× μm) (μm) (μm/min) (μm2/min) (μm2/min) (/min) parameter

12 x 24 3 0.78±0.027 0.072±0.0057 0.17±0.015 2.53 2.57

12 x 48 3 1.01±0.045 0.039±0.0039 0.41±0.041 2.29 10.79

12 x ∞ 3 0.59±0.029 0.0032±0.00040 0.16±0.016 2.17 49.49

16 x 32 3 0.9±0.03 0.12±0.010 0.21±0.017 2.48 1.96

16 x 64 3 1.0±0.039 0.048±0.0047 0.38±0.033 2.34 8.32

16 x ∞ 3 0.84±0.0072 0.0072±0.00080 0.32±0.029 2.15 44.84

24 x 48 3 0.55±0.027 0.034±0.0039 0.088±0.010 2.47 2.89

24 x 96 3 0.58±0.022 0.020±0.0024 0.12±0.0098 2.40 6.42

24 x ∞ 3 0.52±0.028 0.0072±0.00084 0.12±0.013 2.20 16.47

12 x 24 10 0.65±0.026 0.055±0.0053 0.11±0.011 2.63 2.10

12 x 48 10 0.83±0.046 0.016±0.0023 0.29±0.033 2.25 18.28

12 x ∞ 10 0.61±0.032 0.00081±0.00012 0.18±0.019 2.05 224.22

Control 0 0.63±0.025 0.072±0.0072 0.085±0.014 2.53 0.83

Fig. 6 Diffusion ellipses (black solid line) and peanuts (red-dashed line) representing the
anisotropic cell migration for the 16 × 32, 16 × 64 and 16 × ∞ micro-ridge arrangements, see
Table 2. Note that we renormalise the longer axes to aid comparison between their respective
shapes.

with diffusion tensor from (36)

D = s2

μ
Vq = s2

2μ

(
1 − I2(κ)

I0(κ)

)
I2 + s2

μ

I2(κ)

I0(κ)
ννT . (42)

For now let us write the diffusion tensor in (42) as

D = k1I2 + k2ννT , k1 = s2

2μ

(
1 − I2(κ)

I0(κ)

)
, k2 = s2

μ

I2(κ)

I0(κ)
. (43)
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Fig. 7 Population distributions u(x, t) plotted at (top row) t = 100 and (bottom row) t = 400 for
10 cells initiated at x = 0.

Since the primary direction of anisotropy is in the y-direction, we have ν = (0, 1)T
and can explicitly compute

D =
(
k1 0
0 k1 + k2

)
=

(
λx 0
0 λy

)
,

where we employed (39) for the second equality. Therefore, we obtain two equations
relating k1, k2 and λx, λy :

k1 = λx k1 + k2 = λy.

Using the expressions for k1 and k2 in (43) we find trD = λx + λy = s2

μ
, which

gives

μ = s2

λx + λy . (44)

The corresponding values for the turning rate μ are listed in Table 2. Furthermore
we can use the previous relations to compute

I2(κ)

I0(κ)
= μ(λy − λx)

s2 . (45)
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Fig. 8 Bimodal von Mises distributions for the turning distributions of stochastic velocity-jump
random walks corresponding to the macroscopic cases in Figure 7.

Determining concentration (or anisotropy) parameter κ demands inverting the ratio
of modified Bessel functions I2(κ)/I0(κ), a monotonically increasing function from
0 to 1 for κ ∈ [0,∞). We use Wolfram Alpha to invert this function for our data
and list the corresponding values in Table 2.

The turning rate μ is surprisingly consistent between the different experiments,
which may reflect that this parameter is (relatively) independent of the form of
the substratum (for example, determined mainly by intracellular factors). The
anisotropy parameter κ , however, varies over several orders of magnitude with the
most anisotropic cases corresponding to those without ridges in the x-direction, as
expected. Graphical illustrations of the bimodal von Mises distribution for the three
cases 16 × 32, 16 × 64 and 16 × ∞ are provided in Figure 8. Higher ridges (10
μm) offer even more guidance and, consequently, larger anisotropy: including an
extreme of κ = 224. This upper value effectively reduces the bimodal von Mises
distribution to a pair of Delta functions in opposite directions, so that movement is
almost completely confined to the one-dimensional y-direction.

4.2 Application B: Magnetic Navigation in Loggerhead
Hatchlings

Our second application considers hatchling loggerhead turtle navigation, investigat-
ing the extent to which oriented swimming keeps them within the relative safety of
the North Atlantic Gyre. Specifically, we extend the agent-based simulation study
of [51], exploiting the computational advantages of the FAAD model to investigate
how different amounts of oriented swimming help to maintain turtle trajectories. We
specifically focus on two critical regions of the Gyre as follows.

• (NE) a north east Gyre location corresponding to a “corridor” along its north-
eastern sector, the region where it breaks into northerly (perilous) and southerly
moving streams. We centre this region on the point marked 3 in Figure 2, with its
corresponding dataset providing the parameters for orientation.



From Random Walks to Fully Anisotropic Diffusion Models for Cell. . . 133

• (SW) a south west Gyre location corresponding to a region of the Carribean,
where the Gyre branches into a more northerly stream that remains within the
Gyre, or continues west into the Gulf of Mexico. We centre this region on
point 7 in Figure 2, with its corresponding dataset providing the parameters for
orientation.

In each case we quantitatively assess the extent to which hatchling turtles that
are continuously immersed at some point inside (NE) or (SW) tend to maintain
a trajectory within the Gyre. Specifically, for each region (NE) and (SW) we
numerically solve the FAAD equation, as extended to incorporate both an additional
drift (as derived above, see equation (38)) due to currents and a constant (in time)
source representing hatchlings entering the region under investigation. Specifically,
defining u(x, t) to be the hatchling turtle density, we solve

u(x, t)t+∇·((a(x, t)+b(x, t))u(x, t)) = ∇∇ : (D(x, t)u(x, t))+γ δx0(x) , (46)

where, in addition to previous definitions, γ represents the rate at which new
hatchlings enter the system and δx0 is the 2D Dirac delta function. The point
x0 defines the “immersion site” and we set x0 = (25◦W, 44.5◦N) for (NE) and
x0 = (56.5◦W, 8◦N) for (SW), respectively denoting points upwards of the general
current direction for the regions. Encountered currents b(x, t) can vary considerably
over time, and we therefore inject hatchlings continuously into the corridor across a
full calender year (taken to be 2016). Our restriction to the two-dimensional ocean
surface follows from the poor diving abilities of young marine turtles: a maximum
dive of the order of 1–2 metres for loggerhead hatchlings [10].

We define a “success” and a “failure” boundary for each region, removing turtles
if they hit either of these boundaries and tracking over time the total numbers that
have done so. In the context of the continuous model, this corresponds to setting
absorbing boundary conditions along two boundaries. For the (NE) region we define
the success boundary along the 42.5◦N line and the failure boundary along 46.5◦N
line; the more northerly line represents turtles moving towards cooler waters and
straying from the southerly shifting Gyre. For (SW) the success boundary is set
along 18◦N line and the failure boundary marked by 64.5◦W; success is implied by
a northerly shift with the Gyre, while failure is marked by a westward shift towards
the Gulf of Mexico. Of course, the lack of any data makes any such notion of success
or failure moot and we cannot equate these boundaries with survival probabilities:
they simply provide a proxy to track the tendency to remain within the Gyre.

To close the computational regions we consider two further boundaries with
reflective boundary conditions associated with them, so that there is no net loss
across these boundaries. For (NE) we consider the lines 28◦W/12◦W, and for (SW)
the lines 54.5◦W/8◦N. Note that these lines are all reasonably far from the initial
injection site such that, in practice, the vast majority of turtles end up becoming
absorbed by one of the success/failure boundaries before hitting one of the reflective
boundaries.
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4.2.1 Data and Parametrisation

The model demands two specific components that can be drawn from biological
data: the ocean currents b(x, t) for the passive drift vector field and naviga-
tion/movement parameters for hatchling active movement. Velocity fields for ocean
currents are obtained from HYCOM (the global HYbrid Coordinate Ocean Model,
[6]), an ocean forecasting model forced by wind speed, heat flux and numerous
other factors that has been subsequently assimilated with field measurements
(from satellites, floats, moored buoys, etc.) to generate post-validated output. The
resolution of HYCOM data (1/12◦ and day to day) allows it to reproduce both the
large scale persistent currents and localised phenomena such as eddies. Note that
the surface/near-surface swimming behaviour of young turtles allows us to restrict
to the (2D) upper-most layer of HYCOM datasets. HYCOM data for each of regions
(NE) and (SW) was downloaded from http://pdrc.soest.hawaii.edu/data/data.php,
accessed during June/July 2017. Note that for computations, HYCOM data has been
interpolated from its native resolutions (1/12◦ and day-day) to the spatial/temporal
resolution required by the numerical code via standard linear interpolation
schemes.

Defining the active movement component to motion requires specifying the
speed/turning rate (s, λ) parameters and the concentration/dominant direction (κ, ν)
parameters demanded by the von Mises distribution. Hatchlings are capable of
sustaining speeds of 0.72 km/h (see [51] and references therein) and, based on this,
we suppose the average daily swim length varies from 0–10 km/day, corresponding
to between 0 and ∼14 h per day of active swimming. Of course, whether a hatchling
would be capable of maintaining active swimming at the upper end of this spectrum
is somewhat debatable. For the turning rate, we assume a value of 50 per day,
although it is noted that modifying this parameter has very little bearing on the
overall results. Given this turning rate and assuming each turtle remains in the
simulated region for the order of 100 days, we obtain an average of 5000 turns
per trajectory. For average swimming speeds ranging between 0–10 km/day, turtles
swim up to 1000 km over the simulation timecourse, implying spatial scales of
the order 100–1000 km as suitably macroscopic. We remark that the comparisons
between the individual and continuous simulations suggest the veracity of the
continuous limit as a suitable approximation.

Concentration parameters/dominant directions can be drawn directly from the
hatchling orientation datasets illustrated in Figure 2. For region (NE) we utilise
the dataset indicated by position 3: fitting a von Mises distribution via standard
methods (e.g., see, [2]) allows us to obtain estimates κNE ≈ 0.874 and νNE ≈
(0.307,−0.952), the latter representing a true bearing of 162◦. The region (SW)
employs position 7 and yields κSW ≈ 0.797 and νSW ≈ (0.070, 0.998), represent-
ing a true bearing of 4◦. We assume these values are constant in space and time over
the respective regions.

http://pdrc.soest.hawaii.edu/data/data.php
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Fig. 9 Comparison between the FAAD model (46) and individual-based stochastic simulations
of the velocity-jump model for the problem of North Atlantic turtle hatchling movement. In each
frame we plot both the continuous population density distribution u(x, t) (reflected by the colour
map, where grey indicates negligible density and blue to yellow reflects increasing density) and
the individual dots generated by the velocity-jump simulations. Here, top and bottom boundaries,
respectively, define the “failure” and “success” boundaries, and the individual particles are colour
coded according to whether they are still moving (white dots) or have hit either the failure (black
crosses) or success (green crosses) boundary. Underlying ocean currents are indicated by the red
arrows. For this simulation we use region (NE) and release particles continuously from position
x0 = (25◦W, 44.5◦N) with γ = 5/day. The total daily swim is set at s = 2 km/day, with λ =
50/day, κNE ≈ 0.874 and νNE ≈ (0.307,−0.952). Note that the von Mises distribution for these
values is visualised by the dashed red line in the inset figure to the left-hand frame of Figure 11.
Simulations (in terms of ocean currents utilised) start on 01/01/2016 (midnight) with solutions
displayed on the days following as indicated.

4.2.2 Results

In Figure 9 we compare the density distribution predicted by the parametrised
FAAD model (46) with a particle distribution obtained through individual-based
simulations of the stochastic velocity-jump process. The close correlation between
the continuous density distribution (as reflected by the colourmap) and the distri-
bution of individual particles (white dots) indicates that the FAAD model provides
a highly acceptable approximation for the turtle distribution. Further simulations
(not shown) confirm this close correspondence, and we therefore exploit the FAAD
model for its computational advantages in the subsequent simulations.

Figure 10 compares density distributions for the same region at the same time
points under three choices for the amount of active swimming: 0 km/day (i.e. only
passive drifting occurs), 2 km/day and 10 km/day. A shift towards a greater amount
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Fig. 10 Comparison of population density distributions under varying amounts of active swim-
ming per day. In each frame we plot the turtle density distribution (colour density map, as described
in Figure 9) at the two separate times (left) +100 days and (right) +300 days for (top row) s = 0
km/day, (middle row) s = 2 km/day and (bottom row) s = 10 km/day. The strength and direction
of ocean currents is indicated by the red arrows. All other parameters and details as in Figure 9.

of active swimming has a clear impact on the density distribution, pushing it in an
expected southerly direction such that a greater density becomes absorbed by the
“success” boundary.

Finally, we plot the results from a more extended analysis, following a parameter
sweep for each of the two regions, classifying the data obtained in terms of the
following simple “success measure”:

Success at time T= Total density hitting success boundary by time T

Total density hitting success and failure boundaries by time T
.

The above clearly approaches 1 for a successful population and 0 for an unsuccessful
population. In the simulations here we set T = 500 for a population continuously
released at x0 from t = 0 (midnight, 01/01/2016) to the end of 2016 (t = 366);
the continuation until T = 500 ensures that by the end of the simulation only a
negligible fraction of the released population has failed to hit one of the absorbing
boundaries. Simulations are plotted in Figure 11 for each of the two regions,
under a range of daily active swimming distances and for three values of the
concentration parameter: the value obtained by the data fitting and perturbations
of ×2 and ×1/2 these values. The simulations clearly show that increasing the
amount of active swimming, or increasing the certainty of orientation, nudges a
greater proportion of the population towards the successful boundary, supporting the
hypothesis that oriented responses can help maintain hatchling movement within the
Gyre (e.g. [28, 51]). Extensions of the study to consider movement throughout the
full circulatory path would allow more detailed evaluations into the extent to which
oriented swims aid route maintenance: we remark that this would be a focus for a
future study and refer to [28] for such an analysis for an individual-based model.
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Fig. 11 Success is plotted as a function of daily swimming distance for the two regions and for
different concentration parameters. All other parameters and details as in Figure 9. Red dashed
line indicates a choice of κ as taken directly from the data fitting, with blue solid and black dot-
dashed respectively showing choices of ×2 and ×1/2 these values. Insets plot the corresponding
von Mises distributions used for each simulation set.

5 Conclusions

In this chapter we have described the use of fully anisotropic advection-diffusion
models as a way of modelling animal and cell movement behaviour. We have
described the derivation of these models from two fundamental stochastic random
walks, position-jump and velocity-jump processes, thereby connecting the macro-
scopic parameters and terms to the statistical inputs at the individual level. Utilising
two distinct datasets, we have shown how the models can be parametrised either
directly at the population level or by starting at the individual/stochastic random
walk model. Beyond the applications presented here, we note that similar methods
have been applied in a number of other applications in ecology and cell movement,
including seismic-line following behaviour of wolves and caribou populations
[22, 33], butterfly hilltopping [44] and anisotropic glioma growth [45, 56].
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6 Appendix: Numerical methods

Stochastic Velocity-Jump Process

The stochastic random walk simulations assume each individual performs a
velocity-jump random walk in either a static (cell movement) or flowing (turtles)
medium. Particle motion therefore derives from an oriented and active movement
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component that describes the individual’s self-motility (crawling, swimming, flying,
etc.), the details of which are encoded in the velocity-jump random walk, and a
passive drift due to movement of the medium (e.g. air or water flow). The passive
drift is described by a velocity vector field b(x, t) (x is position and t is time) that
could be either imposed (e.g. obtained from public-domain datasets) or separately
modelled (e.g. Navier-Stokes equation). Note that we implicitly assume that the
individuals have negligible impact on the flow of the surrounding medium.

For an individual i at position xi (t) and time t , travelling with active velocity
vi (t) = s(cosαi(t), sinαi(t)) where angle αi(t) denotes the active heading, then at
time t +Δt (where Δt is small) we have:

xi (t +Δt) = xi (t)+Δt(vi (t)+ b(xi , t)) ;
vi (t +Δt) =

{
v′
i (t +Δt) with probability λΔt ,

vi (t) otherwise .
(47)

where v′
i (t + Δt) is the new velocity chosen at time t + Δt if a reorientation has

occurred, randomly chosen according to the given probability distribution for the
turning kernel of the velocity jump random walk.

The time discretisation Δt used in simulation is suitably small, in the sense that
simulations conducted with smaller timesteps generate near identical results. For
the selection of new active headings via the von Mises distribution we employ
code (circ_vmrnd.m) from the circular statistics toolbox [4]. Currents and the
inputs required for the active heading choice are interpolated from the native
spatial/temporal resolutions in the saved variables to the individual particle’s
continuous position x and time t via a simple linear interpolation scheme.

Continuous Model

As described earlier, moment closure analysis for the velocity-jump random walk
generates a continuous model of FAAD form

u(x, t)t + ∇ · ((a(x, t)+ b(x, t))u(t, x)) = ∇∇ : (D(x, t)u(x, t)) . (48)

where a(x, t) and D(x, t) depend on the statistical inputs of the random walk (mean
speed, turning rates, moments of the turning distribution).

Numerical methods for solving (48) are adapted from our previous studies (e.g.
see [43]). We adopt a simple Method of Lines (MOL) approach, first discretising
in space (using a fixed lattice of space Δx) to create a large system of ordinary
differential equations (ODEs) which are subsequently integrated over time. The
“fully anisotropic” diffusion term is expanded into an advective and standard
anisotropic-diffusion component. This advective component, along with advection
terms arising from ocean currents and active directional swimming, is solved via
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a third-order upwinding scheme, augmented by flux-limiting to ensure positivity
of solutions (e.g., see [24]). The choice of finite-difference discretisation for
the anisotropic diffusion term is more specific: naive discretisations can lead to
numerical instability for sufficiently anisotropic scenarios (high κ values). The
method of [58] allows greater flexibility in the choice of κ: in this scheme, finite
difference derivatives are calculated and combined along distinct axial directions:
the axes of the discretisation lattice and the major and minor axes of the ellipse
corresponding to the anisotropic diffusion tensor. Under the moderate levels of
anisotropy encountered here we obtain a stable scheme. Time discretisation here
is performed via a simple forward Euler method with a suitably small time step.
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Bacterial Chemotaxis: A Classic Example
of Multiscale Modeling in Biology

Chuan Xue

Abstract Both individual-based models and PDE models have been developed to
describe the active movement of cell populations in various contexts. Individual-
based models can faithfully replicate the detailed mechanisms of cell signaling and
movement but are computationally intensive. PDE models are amenable for fast
computation and mathematical analysis but are often based on phenomenological
descriptions of macroscopic cell fluxes. Multiscale methods must be developed to
elucidate the connections between individual-based models and PDE models in
order to combine the strengths of these approaches. This chapter summarizes recent
progress in connecting individual-based models and PDE models for chemotaxis of
bacterial populations, which is a classic example for multiscale modeling in biology.
The application scope and limitations of the Keller-Segel chemotaxis equation are
also discussed.

1 Introduction

Active cell movement plays a crucial role in the life of living organisms, and in
many situations the movement is guided by extracellular chemical signals. Sperm
cells swim long distances to fertilize an egg, and this process is directed by chemical
substances released from the outer surface of the egg [1]. Neutrophils and fibroblasts
move into a wound to stop infection and rebuild the tissue, and this process is
orchestrated by a number of chemical signals [2]. Cancer cells can migrate away
from a primary tumor to invade other tissues and cause cancer metastasis [3]. In
bioremediation, bacteria are used to clean waste water because they migrate towards
certain toxins and degrade them [4]. The directed movement of cells or organisms
in response to extracellular chemical signals is called “chemotaxis.”
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To understand the role of chemotaxis in multicellular processes, it is crucial to
develop quantitative and predictive mathematical models to describe chemotaxis
of cell populations. Detailed individual-based models have been developed to
incorporate data in cell signaling, movement, as well as cell-cell interaction. This
approach can faithfully replicate the biology, but due to the large number of cells
involved and the complexity of the intracellular dynamics, they are computationally
intensive and frequently become intractable. Alternatively, simplified PDE models
have also been used to describe the spatial-temporal dynamics of the cell densities.
This approach is appealing and convenient because of the variety of mathematical
tools available in simulation and analysis of PDE models. However, these models
often rely on phenomenological assumptions of cell fluxes which cannot be easily
justified experimentally. Multiscale methods to embed data at the cellular and
subcellular processes into PDE models of the cell population dynamics must be
developed to combine the strengths of these two approaches.

Significant progress has been made along this line for bacterial chemotaxis,
which is the most basic and best understood form of chemotaxis. In this chapter,
I review results that focus on the derivation of PDE models for bacterial chemotaxis
from individual-based models that describe single cell movement as a velocity jump
process and integrates intracellular signaling as an internal ODE system. Through
numerical examples, I illustrate the application scope and limitations of the well-
known Patlak-Keller-Segel chemotaxis equation in modeling the bacteria population
dynamics. The mathematical framework developed for bacterial chemotaxis can be
extended to similar biological systems and serve as a classic example for multiscale
modeling in biology.

2 Biological Background

Chemotaxis of run-and-tumble bacteria has been extensively studied over the past
50 years. Examples of such bacteria include Escherichia, Salmonella, Bacillus,
Rhodobacter, and Pseudomonas [5–8]. Among them the best understood is the
model system Escherichia coli [8–10], which is described below in detail. Chemo-
taxis of other bacteria is similar but not identical to that of E. coli.

2.1 Single Cell Movement

E. coli has a cylindrical cell body that is 1–2 μm long and several helical flagella
that project away from the cell body in all directions. Each flagellum can be
rotated by a flagellar motor embedded in the cell membrane either clockwise or
counterclockwise. If all the flagella are rotated counterclockwise (CCW), they form
a single bundle and push the cell forward in a long smooth “run” at a speed s =
10–30 μm/s; if some flagella are rotated clockwise (CW), these flagella disengage
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from the bundle causing the cell to stop and “tumble” in place. The cell moves
by randomly alternating smooth runs and reorienting tumbles. In the absence of a
chemical signal gradient, the mean run time is 1 s and mean tumble time is 0.1 s.
However, if the cell is exposed to a signal gradient, it alters the rotation pattern of
each flagellar motor so that the run time is extended when the cell moves up (down)
the gradient of a chemoattractant (chemorepellent).

2.2 Intracellular Signaling

The rotation of a flagellar motor is controlled by the intracellular chemotaxis
pathway shown in Figure 1. The transmembrane chemoreceptors form stable ternary
complexes with the signaling proteins CheA and CheW, and cluster at one pole

Fig. 1 The chemotaxis signaling pathway for the model bacterium E. coli. Transmembrane
chemoreceptors function as trimers of dimers with ligand-binding domains on the peri-plasmic
side and signaling domains on the cytoplasmic side. Methylation sites of receptors appear as white
dots on the receptors. The cytoplasmic signaling proteins are represented by single letters, e.g., A
= CheA. Red (blue) components promote CCW (CW) rotation of flagellar motors. Reprinted from
[11] with permission.
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of the cell body. CheA is an auto-kinase, and its activity is reduced if attractant
molecules bind to the associated receptor but can be restored if the methylation level
of the receptor increases. CheA is also a kinase for the response regulators CheY and
CheB. The phosphorylated form CheYp binds to the flagella motor, which increases
the probability of CW rotation and triggers tumbling. CheBp and CheR change the
methylation state of the receptor at a slower rate: CheR methylates it and CheBp
demethylates it.

Upon ligand binding, the kinase activity of CheA is reduced, thus CheYp
decreases rapidly, and the cell tends to run for longer. This process, called excitation,
occurs within fractions of seconds. Simultaneously, CheBp is reduced but CheR
is not affected, thus the receptor methylation level increases, until the activity of
CheA is restored to its pre-stimulus level. This process, called adaptation, takes
seconds to minutes, depending on the nature of the signal. We note that excitation
and adaptation are two concurrent processes that affect each other, specifically,
adaptation acts as a negative feedback to excitation and allows the cell to subtract
away background signal and respond to further signal changes.

Bacterial chemotaxis involves multiple time scales. Ligand binding to chemore-
ceptors on the cell membrane, change of kinase activity, and phosphorylation
reactions inside a cell occur within fractions of seconds. Methylation and demethy-
lation of the receptors that cause adaptation of a cell occur on a time scale
of seconds. The adaptation time scale is the slowest time scale for intracellular
dynamics. It is intrinsically determined by the intracellular signaling network and
reflects the time scale of methylation and demethylation.

3 Individual-Based Models

Chemotaxis plays a critical role in self-organization patterns formed in bacterial
colonies, e.g., traveling bands, aggregates, swarm rings [12–16]. To understand
the interplay of different mechanisms in the pattern formation process, individual-
based models have been developed to couple descriptions of single cell movement
(Section 3.1) and cell signaling (Section 3.2), as well as cell growth and the
dynamics of extracellular signals [17–19].

When the cell density is sufficiently low, cell-cell mechanical interactions can be
neglected and cell movement can be modeled as velocity jump processes without
collisions. This situation may still involve a large population of cells. For example,
in case that the cell volume fraction is 0.1% and the medium has dimension 1cm
× 1cm × 1mm, assume that the volume of a single cell is approximately 1μm3,
then the number of cells is approximately 108. When the cell density becomes high,
cells can also interact with each other through the surrounding fluid. Individual-
based models have been developed for such situations by treating cells as particles
without intracellular dynamics [20–27]. Our review focuses on the low cell density
situation.
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3.1 Single Cell Movement Modeled as a Velocity Jump Process

The run-and-tumble movement of a single cell is frequently modeled as a velocity-
jump process [17, 28, 29]. A velocity jump process is a stochastic process in which
the velocity of an individual jumps instantaneously at random time points. The
velocity jumps can be characterized by two quantities: a turning rate function which
specifies when the next velocity jump occurs and a turning kernel which specifies
the probability density of the new velocity given the velocity prior to the jump.

3.1.1 A Base Model

For bacterial chemotaxis, the mean tumble time is much smaller than the mean run
time, thus the tumbling phase of the cell movement is usually ignored. The speed of
the cell is usually assumed to be constant, and thus the velocity space is a sphere

V = s0∂B1
0 , (1)

where s0 is the typical speed of the cell and ∂B1
0 is the unit sphere centered at the

origin.
Under this simplification, the cell movement can be modeled as a sequence of

runs connected by instantaneous reorientations. Because CheYp binding suppresses
CCW rotation of the flagella which in turn induce tumbling, the turning rate λ is an
increasing function of intracellular CheYp concentration yp, i.e.,

λ = λ(yp). (2)

The turning kernel is usually assumed to only depend on the angle between v and
v′, denoted as θ ,

T (v, v′) = h(θ). (3)

Recordings of cell trajectories in free space shows that E. coli has a slight directional
persistence towards the previous direction after a tumble [30, 31], thus h(θ) is a
decreasing function. To conserve probability, one must have

∫

V

T (v, v′)dv = 1. (4)

Under the above assumptions, the movement of a single cell is described by the
following SDE system

{
dx = vdt,

dv = (ζ − v)dY (t, λ),
(5)
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where ζ is a random variable with probability density given by T (·, v) and Y (t, λ)
is an inhomogeneous Poisson process with intensity given by λ(yp). The system is
coupled with equations for cell signaling through the variable yp.

3.1.2 Inclusion of Cell Tumbling

More detailed models have been developed to incorporate a finite tumbling phase
explicitly. This was achieved by describing the cell movement as a velocity jump
process with a moving state and a resting state. Denote the rate for a running cell to
stop and tumble by λ and the rate for a tumbling cell to start running by μ, i.e.,

Run
λ−−⇀↽−−
μ

Tumble.

The transition rates λ and μ depend on the rotation state of all the flagella around
the cell body, which in turn depends on intracellular CheYp concentration yp. Thus
one has

λ = λ(yp), μ = μ(yp).

The switching behavior of a single flagellum between CW and CCW rotations
has been measured under different CheYp concentrations in [32]. Specifically,
experimental data was collected on the CW bias (PCW ) and the switching frequency
(F ) of a single flagellar motor (Figure 2A-B, dots), which revealed the ultrasensi-
tivity of the motor to CheYp.

Assume the direction switches between CCW and CW are first order reactions
with rates λf and μf , i.e.,

CCW
λf−−−⇀↽−−−
μf

CW.

The Cluzel data on PCW and F can then be transformed into data for λf and μf
(Figure 2C-D, dots). The transformation is based on the relations

λf (1 − PCW) = μf PCW , F = 2λf μf
λf + μf .

or equivalently,

λf = F

2(1 − PCW), μf = F

2PCW
.
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This data can be fitted by requiring λf to be an increasing function of yp and μf
a decreasing function of yp (Figure 2). The fitting in [33] leads to

λf = a1 exp(b1Yp),

μf = a2 exp
( − (b2 − Yp)4/c

)
,

(6)

where a1, b1, a2, b2, and c are constants given in the caption of Figure 2. Please
note that these fitting results (solid curves) are much better than the original fitting
method suggested in [32], which fits PCW by a Hill function with hill coefficient
10.3 and Km = 3.1 μM and the derivative of the function for F (dashed curves).
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Fig. 2 Parameter fitting for the transition rates λf and μf as a function of CheYp (yp). The
dots are from experimental data extracted from Figure 2 in [32]. The solid lines are calculated
using the formula (6). Parameters: a1 = 0.0174001 s−1, b1 = 1.32887 μ M−1, a2 = 12.0809 s−1,
b2 = −5.83762 μM, c = 2892.12. The dotted lines are calculated using the original fitting method
suggested in [32].
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To calculate the cell-level rates λ and μ, one way is to use a voting process:
assume that all the flagella of a cell rotate independently and if the majority of them
rotate CCW simultaneously then the cell runs forward, otherwise it tumbles in place
[19]. In reality different flagella can interact with each other through the surrounding
fluid, and the significance of the hydrodynamic interaction needs to be investigated
in the future.

Assume that each cell has nf flagella and in order for a cell to “run” at least w
flagella are needed to rotate CCW simultaneously. The probability of having exactly
i flagella rotating CCW is

P iCCW =
(
nf

i

)(
μf

λf + μf
)i ( λf

λf + μf
)nf−i

. (7)

The probability for the cell to be in the run and tumble states are given by

Prun =
nf∑

i=w
P iCCW , Ptumble = 1 − Prun. (8)

The probability for multiple flagella switching rotation simultaneously at a specific
time is much smaller than that for a single one. Hence, the transition from run to
tumble primarily occurs when the cell has exactly w flagella rotating CCW and one
of them switches to CW, i.e.,

λ = wλf · P
w
CCW

Prun
. (9)

Similar argument leads to

μ = (nf − w + 1)μf · P
w−1
CCW

Ptumble
. (10)

Figure 3 plots these rates determined with nf = 8 and w = 5 and the time fraction
that a cell spent running. It shows that the multi-flagella voting process help increase
the sensitivity of the cell movement to intracellular CheYp level. It also showed that
if the internal CheYp is perturbed far away from its baseline level (∼ 3 μM), then
the cell can be locked in the run or tumble state.
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Fig. 3 A. The transition rates λ and μ as a function of CheYp determined by the voting process.
B. Time fraction of cell running and flagella CCW rotation. Parameters: nf = 8, w = 5.

3.2 Intracellular Signaling Modeled by an Internal ODE
System

Extensive effort has been put into modeling the intracellular chemotactic signaling
of E. coli in the past 50 years, and the hand-in-hand interplay between experiments
and modeling has led to profound quantitative understanding of the signaling
dynamics (see reviews [34, 35]). These models usually adopt a system of ODEs
to track the concentrations of intracellular proteins over time.

dy

dt
= f

(
y, S(x, t)

)
, (11)

Here x ∈ R
N is the cell position, and S(x, t) is the extracellular signal along the

cell trajectory. To simulate a large population of cells, often a simplified ODE model
was used for intracellular signaling instead. A key requirement of the model is that it
must contain one variable that demonstrates the fast excitation and slow adaptation
behavior as of CheYp. The intracellular CheYp concentration yp is either an explicit
equation in the system or represented as a function of the variable y. In either case,
one has

yp = yp(y). (12)



152 C. Xue

3.2.1 A Cartoon Model

The simplest dynamical system of this kind is the linear cartoon model used in
[36, 37],

dy1

dt
= S − y1 − y2

te
,

dy2

dt
= S − y2

ta
,

(13)

where te � ta are the excitation and adaptation time constants. Here y1 is the
variable that excites and fully adapts to its steady state 0 after a step signal change,
and yp can be identified as −y1. This cartoon model has facilitated the development
of multiscale methods to derive PDE models for cell population dynamics, which
will be discussed in Section 4.

3.2.2 A Coarse-Grained Model

A conceptual model that incorporates the main structure of the excitation-adaptation
network was introduced in [38]. The wiring diagram is given in Figure 4A. S is the
external signal measured by the fraction of receptor occupancy. E is the excitation
process representing the phosphorylation of CheY by CheAp. A is the adaptation
process representing the phosphorylation of CheB by CheAp. The reaction between
E and A can be identified as the regulation of CheA activity by CheBp through
demethylation.

Denote the concentrations of E and A by y1 and y2. Using mass action kinetics,
one has

dy1

dt
= k0 + ksS − μey1y2,

dy2

dt
= k0 + ksS − μay2.

(14)

Given a step signal change, y1 changes rapidly and adapts slowly to its pre-stimulus
level (Figure 4B). In this model, yp can be identified as −y1.

3.2.3 A Detailed Model for E. coli Chemotaxis

A comprehensive model for E. coli intracellular signaling was introduced to study
cell population dynamics in [38]. The model is based on the full signaling network in
Figure 1 and a simplified version of trimers-of-dimers model proposed in [11] using
quasi-steady state approximations of fast reactions and mean field approximations
of the methylation level of the receptors.
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Fig. 4 The coarse-grained model. (A) The wiring diagram. (B) Solution of the model given step
changes of the signal from 0 to 1 at t = 10 and from 1 to 0 at t = 50. Parameters used are
nondimensional: k0 = 1, ks = 1, μa = 0.2, μe = 2. Reproduced from [38] with permission.

Denote the mean methylation level of the chemoreceptors by m and the external
signal concentration by S. The equation of m is governed by the methylation and
demethylation reactions mediated by CheR (R) and CheBp (Bp),

dm

dt
= kRR

(
1 − A(m, S)

)
− kBpBpA(m, S). (15)

Here A(m, S) is the mean receptor activity

A(m, S) = 1

1 + exp [Nrf (m, S)] , (16)

with

f (m, S) = α(m0 −m)+ log(1 + S/Ki)− log(1 + S/Ka). (17)

CheR concentration R is given by

R = Rt

1 +KRTt (1 − A(m, S)) . (18)

CheBp concentration Bp is implicitly given by a system of algebraic equations
of Bp, Yp (concentration of CheYp), and Tp (concentration of CheAp-associated
receptors) obtained by assuming quasi-steady states of these proteins,

kA

(
TtA(m, S)− Tp

)
− kY YTp − kBBTp = 0,

kY YTp − μYYp − kZZYp = 0, (19)

kBBTp − μBBp = 0,
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Fig. 5 The detailed model for E. coli chemotaxis. A: the function A(m, S). B and C: solution of
Yp and m given step changes of the signal from 0 to 1 μM at t = 10 s and from 1 μM to 0 at
t = 50 s. Parameter used: m0 = 1, α = 1.7, Ki = 18, Ka = 3, Nr = 6, Yt = 18 μM, Bt = 2 μM,
Rt = 0.3 μM, Zt = 1.1 μM, Tt = 5/3 μM, kR = 3.82× 10−2s−1, kBp = 3.25s−1, kA = 100s−1,
kY = 130 μM−1s−1, kB = 7.5 μM−1s−1, kZ = 8.45 μM−1s−1, μY = 0.1s−1, μB = 1s−1,
KZ = 1 μM−1, KY = 0.65μM−1, KBp = 6.5 μM−1, KB = 0.25 μM−1, KR = 0.15 μM−1.
Reproduced from [38] with permission.

where

Y = Yt − (1 +KZZ)Yp
1 +KYTp ,

Z = z

1 +KZYp ,

B = Bt − (1 +KBpTtA(m))Bp
1 +KBTp .

(20)

In this model yp is simply given by the CheYp concentration Yp. The function
A(m, S) and the solution subject to a step signal change are plotted in Figure 5. A
sample code of this model can be obtained online at [39].

4 From Individual-Based Models to PDE Models

PDE models have been used extensively to describe chemotactic movement of cell
populations in biological and biomedical applications [40–45]. A fundamental chal-
lenge faced by modelers is to determine under what conditions these models provide
a good approximation to the underlying biological process and how to accurately
estimate the parameters in the PDEs. To address this problem, mathematical analysis
must be developed to elucidate the connections of PDE models and individual-based
models.
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Significant progress has been made along this line in the context of bacterial
chemotaxis, the simplest form of chemotaxis among all cell types. Macroscopic
PDEs have been derived from the individual-based models described in Section 3.

4.1 The Patlak-Keller-Segel Equation for Chemotaxis in Small
Signal Gradients

When the cell density is low, the most popular PDE approach for chemotaxis is to
use the classical Patlak-Keller-Segel (PKS) equation (or a variation of it) to describe
the evolution of the cell density

∂n

∂t
= ∇ ·

(
Dn∇n− χn∇S

)
, (21)

where n = n(x, t) is the cell density, S = S(x, t) is the signal concentration, Dn
is the effective diffusion coefficient, and χ = χ(S,∇S, n, . . .) is the chemotactic
sensitivity. Similar equations have also been used to describe cell movement towards
other signals, e.g., mechanical signals, light, and heat.

Equation (21) has been formally derived for bacterial chemotaxis. The underly-
ing assumption is that the external signal S(x, t) changes slow enough along cell
trajectories such that intracellular signaling is close to equilibrium. A primitive
form of this condition was first introduced in [36, 37] as the “shallow gradient
assumption” and later elaborated in [38] as the “small signal variation assumption.”
This assumption leads to time scale separation of intracellular signaling and external
signal variation, which justifies the application of perturbation method with the
small parameter being the ratio of different time scales.

The derivation in early works [46–49] does not incorporate intracellular signaling
explicitly; instead, the turning rates of the velocity jump processes depend directly
on the external signal. Built upon these methods, the derivation in more recent works
incorporated intracellular signaling by ODE systems described in Section 3.2 [36–
38, 50].

4.1.1 Derivation with Intracellular Dynamics Given by the Cartoon
Model (13)

In [36, 37], Equation (21) was derived from the individual-based model with the
linear cartoon model (13) for intracellular signaling and the linear turning rate

λ = λ0 − a1y1

for cell movement. The key ideas of the derivation is presented below.
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Consider cell movement in 1D and assume that the external signal does not
change over time, i.e., S = S(x). Let z = y2 − S and pass y1 to its quasi-steady
state, then

dz

dt
= − z

ta
∓ s0Sx,

λ = λ0 + a1z,

(22)

where minus should be used for right-moving cells and plus should be used for
left-moving cells.

Let p± = p±(x, z, t) be the density of cells at position x with internal state z and
velocity ±s0 at time t . Assume that cells are unbiased in choosing new directions of
movement after tumbling, then one has

∂p+

∂t
+ s0 ∂p

+

∂x
+ ∂

∂z

[(
− z
ta

− s0Sx(x)
)
p+

]
= 1

2
(λ0 + a1z)

(−p+ + p−) ,

∂p−

∂t
− s0 ∂p

−

∂x
+ ∂

∂z

[(
− z
ta

+ s0Sx(x)
)
p−

]
= 1

2
(λ0 + a1z)

(
p+ − p−) .

(23)
The macroscopic cell density is given by

n(x, t) =
∫

R

(p+ + p−)dz.

To obtain approximating equations for n(x, t), one needs to integrate the system (23)
over the internal variable z. Denote

j (x, t) =
∫

R

s0(p
+ − p−)dz,

nk(x, t) =
∫

R

zk(p+ + p−)dz,

jk(x, t) =
∫

R

zks0(p
+ − p−)dz, k ≥ 1,

where n(x, t) and j (x, t) are the macroscopic cell density and flux.
Taking the sum and difference of the two components of (23) and integrating

over z, one obtains

∂n

∂t
+ ∂j

∂x
= 0,

∂j

∂t
+ s2

0
∂n

∂x
= −λ0j − a1j1,

(24)



Multiscale Modeling of Bacterial Chemotaxis 157

Multiplying (23) by z and then performing the same calculations, one obtains

∂n1

∂t
+ ∂j1

∂x
= −Sx(x)j − 1

ta
n1,

∂j1

∂t
+ s2

0
∂n1

∂x
= −s2

0Sx(x)n−
(
λ0 + 1

ta

)
j1 − a1j2,

(25)

The moment-flux system (24) and (25) is not closed because the 2nd-order
moment j2 in (25) is unknown. To obtain a closed moment-flux system, j2 must
be estimated as a function of lower-order moments. If we approximate y2 by its
quasi-steady state in Equation (13), then z = y2 − S(x) ≈ 0, leading to the moment
closure assumption

j2 =
∫

R

z2s0(p
+ − p−)dz ≈ 0. (26)

This estimation is justified if the external signal changes slowly along the cell
trajectory, in which case the internal states of the cells are only slightly perturbed
away from equilibrium. The closed moment-flux system (24)–(26) represents a
macroscopic model for the bacterial population dynamics.

Using the diffusion space and time scale, the system (24)–(26) can be rewritten as

ε2 ∂n

∂t
+ ε ∂j

∂x
= 0,

ε2 ∂j

∂t
+ εs2

0
∂n

∂x
= −λ0j − a1j1,

ε2 ∂n1

∂t
+ ε ∂j1

∂x
= −εSx(x)j − 1

ta
n1,

ε2 ∂j1

∂t
+ εs2

0
∂n1

∂x
= −εs2

0Sx(x)n−
(
λ0 + 1

ta

)
j1,

(27)

Here the small parameter ε can be regarded as the ratio of the time scale for
intracellular adaptation ta and the time scale for detected external signal variation
Ts = a1s0Sx/λ0.

Using the Hilbert expansion u(x, t) = ∑∞
j=0 ε

juj (x, t) for each variable and
matching terms with the same order of ε, the 1D form of Equation (21) was derived
from (27) for n0(x, t) = n(x, t)+ O(ε):

∂tn
0 = ∂x

(
Dn∂xn

0 − χn0∂xS
)
, (28)

where

Dn = s2
0/λ0, χ = a1s

2
0 ta

λ0(1 + λ0ta)
. (29)



158 C. Xue

Alternative moment closure methods were also suggested in [36] based on quasi-
steady state approximations of z. Replacing one or both z in the definition of j2 by
its quasi-steady state zqss = ∓s0Sx(x)ta , “−” for right-moving cells (p+) and “+”
for left-moving cells (p−), one obtains

j2 ≈ −s2
0Sx(x)tan1, (30)

or

j2 ≈ s2
0Sx(x)

2t2a j. (31)

Under these closure assumptions, the system (24), (25) reduces to the same PKS
equation.

In [50], a new method was developed to accommodate a nonlinear turning
frequency given by the expansion

λ(z) = λ0 +
∞∑

i=1

aiz
i . (32)

The derivation did not involve any moment closure step, but instead employed
regular perturbation to the infinite moment system for n, j , nk , and jk with k ≥ 1
on the diffusion space and time scale. Perturbation of an infinite moment system
involves the inversion of an infinite matrix operator that is not feasible in general. In
this case, a special technique was developed utilizing the structure of the equations.
With these extensions, the resulting PKS model has the following parameters

Dn = s2
0

Nλ0
, χ = a1s

2
0 ta

Nλ0(1 + λ0ta)
, (33)

where N = 3 is the space dimension.

4.1.2 Derivation with the General ODE Model (11) for Cell Signaling

In [38], mathematical analysis was developed to derive the PKS equation from
individual-based models with cell signaling given by the general ODE system (11).

Given the base model for cell movement, Equation (21) was derived with the
following formula for Dn and χ

Dn = s2
0

Nλ0(1 − ψd) ,

χ = s2
0

Nλ0

[
(∇yλ)|y=ȳ(S) ·

(
λ0(1 − ψd)Iq − (∇yf

)|y=ȳ(S)

)−1 dȳ(S)

dS

]
.

(34)
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Here N is the space dimension, λ = λ(yp(y)), λ0 = λ(ȳ), ȳ(S) is the adapted state
satisfying f(ȳ, S) = 0, Iq is the q × q identity matrix, q is the dimension of the
internal variable, and ψd is the index of directional persistence given by

ψd =
(

v′ ·
∫

V

T (v, v′)vdv
)/
s2

0 . (35)

The derivation was based on a small signal variation assumption, which essen-
tially assumes ta � Ts , where ta is the adaptation time scale intrinsically determined
by the intracellular signaling network, and Ts is the time scale for the external
signal variation interpreted by a cell. For the general ODE model, ta and Ts can
be approximated as

ta ∼ 1
/

min
0≤S≤Smax

∣∣∣σm
((∇yf

)|y=ȳ(S)

)∣∣∣, (36)

Ts ∼ 1
/

max
0≤S≤Smax

v∈V
λ−1

0

∥∥∥∇yλ|y=ȳ(S)

∥∥∥ ·
∥∥∥∥

dȳ(S)

dS
Ṡ

∥∥∥∥ , (37)

where σm takes the maximum real part of the eigenvalues of a matrix.
The formula (34) provides a means to embed the detailed biochemistry of

intracellular signaling into macroscopic PDEs for the population. It is the first set
of general formulas that represent the quantities Dn and χ in terms of the structure
and kinetics of the intracellular signaling network. When applied to the cartoon
model (13), it reduces to the same formula as in previous works. When applied to
the coarse-grained model (14), it leads to a logarithmic chemotactic sensitivity that
depends on the signal S

χ = χ0

S + α0
. (38)

In other words, the macroscopic drift of the population is proportional to the gradient
of the logarithm of the signal

us ≡ χ∇S = ∇ log(S + α0). (39)

The logarithmic sensing mechanism was observed experimentally in [51]. These
analyses suggest that the origin of the logarithmic sensing mechanism is the
structure of the intracellular network [38].

When applied to the detailed model (15)–(20), the general formula predicted
a logarithmic sensitivity with χ0 = 9.50 × 10−2mm/s and α0 = 17.67 μM,
comparable with experimental measurements. Due to the complicated form of
the intracellular dynamics, the formula (34) was evaluated numerically with the
derivatives approximated using a fourth-order accurate scheme and then fitted using
the function (38) (Figure 6).
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Fig. 6 Logarithmic sensitivity of E. coli predicted by the individual-based model with (15)–(20).
The blue crosses are calculated using numerical approximations of the formula (34). The red line
is the best fitting to the function (38). Parameters used: χ0 = 9.50 × 10−2mm/s, α0 = 17.67 μM.

4.1.3 Limitations of PKS Models

The PKS equation (21) provides an accurate approximation of the individual-
based model when the external signal changes slowly along cell trajectories, but
breaks down when the external signal changes fast, regardless of the form of the
intracellular dynamics. This was shown by extensive numerical comparisons of
the cell density dynamics predicted by the PKS equation and the corresponding
individual-based model using different kinds of signal functions [38, 52]. PDE
models derived in [53] have similar limitations as the PKS model.

Consider cell movement in a domain x ∈ [0, 8] mm with a static exponential
ramp signal

S =
{
ea(x−1) 0 ≤ x ≤ 4,

e3a 4 < x ≤ 8.
(40)
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Assume that initially cells form an aggregate in the region x ∈ [1, 2], and set the
initial cell distribution to be

n(x, 0) = 3π

4

∣∣ sin(πx)
∣∣3χ1<x<2 , (41)

where χ1<x<2 is the characteristic function. Let

λ = λ0 + tanh
(
b(Yp(m)− Ȳp)

)
, T (v, v′) = 1

|V | , V = s0∂B1
0 . (42)

where λ0 = 1s−1, b = 5s−1 μM−1 and s0 = 20 μm/s.
Figure 7 plots the cell density dynamics predicted by the individual-based model

with (15)–(20) and the corresponding PKS model. If the signal gradient is small
(a = 0.2mm−1), the two approaches match tightly (Figure 7A); but if the signal
gradient becomes large (a = 0.5 mm−1), the two approaches deviate significantly
(Figure 7B). The latter situation often occurs in self-organized population dynamics
[54]. A key feature when the PKS approximation breaks down is the fat distribution
of the intracellular states as shown in Figure 8.

A

0 2 4 6 8
x (mm)

0

0.2

0.4

0.6

0.8

1

1.2

n(
x,

t)

t = 2 min 

stochastic
PDE

0 2 4 6 8
x (mm)

0

0.2

0.4

0.6

0.8

1

n(
x,

t)

t = 4 min 

stochastic
PDE

0 2 4 6 8
x (mm)

0

0.1

0.2

0.3

0.4

0.5

n(
x,

t)

t = 20 min 

stochastic
PDE

B

0 2 4 6 8
x (mm)

0

0.2

0.4

0.6

0.8

1

1.2

n(
x,

t)

t = 2 min 

stochastic
PDE

0 2 4 6 8
x (mm)

0

0.2

0.4

0.6

0.8

1

n(
x,

t)

t = 4 min 

stochastic
PDE

0 2 4 6 8
x (mm)

0

0.5

1

1.5

2

n(
x,

t)

t = 6 min 

stochastic
PDE

Fig. 7 Comparison of the PKS equation with the underlying individual-based model for bacterial
chemotaxis in small signal gradient with a = 0.2 mm−1 (A) and large signal gradient with a = 0.5
mm−1 (B). Bars: stochastic simulations of the individual-based model with (15)–(20). Curves:
solutions of the corresponding PKS model.
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Fig. 8 Statistics of intracellular CheYp given small signal gradient with a = 0.2 mm−1 (A) and
large signal gradient with a = 0.5 mm−1 (B). Left: mean and standard deviation of yp over the
whole population as a function of time. Right: distribution of yp at t = 4 min.

4.2 Moment-Flux Models for Chemotaxis in Large Signal
Gradients

When cells are exposed to large signal gradient, their intracellular state can be
far from steady state and broadly distributed. Macroscopic PDE models for such
situations must include information on the distribution of the intracellular states in
order to accurately describe the population dynamics.

In [52], a hierarchy of moment-flux models that are suitable for bacterial
chemotaxis in large gradient was derived from the individual-based model with the
cartoon intracellular dynamics (13) and nonlinear turning rate (32). The models
consist of a system of hyperbolic equations for n, j and several internal-state
moments nk and jk with k ≤ K . The moments nk and jk enclose the distribution of
the internal state and its deviation from equilibrium.
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Consider the example with cell signaling described by the simplified cartoon
model (22) and cell movement subject to a time-independent signal. Multiply-
ing (23) by 1 and zk/k for all k ≥ 1, integrating over z, and taking the sum
and difference of the two components, we obtain (24) and the following moment
equations

1

k

∂nk

∂t
+ 1

k

∂jk

∂x
=

[
−Sxjk−1 − 1

ta
nk

]
, k ≥ 1

1

k

∂jk

∂t
+ s2

0

k

∂nk

∂x
=

[
−s2

0Sx(x)nk−1 − 1

ta
jk

]
− 1

k
(λ0jk + a1jk+1) , k ≥ 1.

(43)

The system for k = 1 is identical to (25).
The k-th order moment equations (43) have the factor 1/k in all terms except

the terms in the square brackets, which suggests that high-order moments in z
equilibrate relatively fast. The moment closure method in [52] is to pick an integer
K large enough such that 1/(K + 1)� 1 and set

− Sx(x)jk−1 − 1

ta
nk = 0 ∀k > K,

− s2
0Sx(x)nk−1 − 1

ta
jk = 0 ∀k > K.

(44)

This assumption is equivalent to setting

jK+1 = −s2
0Sx(x)tanK. (45)

With this approximation, the infinite system (24) and (43) reduces to a closed
moment system of moment equations for (n, j, n1, j1, · · · , nK, jK)T .

Numerical simulations showed that as K increases, the moment-flux models
become more accurate in approximating the population dynamics governed by the
individual-based model (Figure 9). The models with K = 3 and 4 show a tight
match to the individual-based model, while the PKS equation and the moment-flux
models withK = 1 deviate from the individual-based model significantly. Note that
the moment closure (45) withK = 1 reduces to the moment closure (30) which was
used for the case with small signal gradient. Because the number of equations of the
model (2K + 2) increases with K , it is desirable to use K as small as possible to
reduce computational cost.

4.3 Open Problems

There are several open problems raised by previous multiscale analysis. The
moment-flux models in [52] were derived using the linear cartoon model for
intracellular signaling. The method needs to be extended to include intrinsic
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Fig. 9 Comparison of the moment-flux model, the PKS model, and the underlying individual-
based model with (22). The signal is given by S(x) = μL/2 − μ|x − L/2| with L = 5 mm and
μ = 4.5, which does not satisfy the small signal variation assumption. The gray bar plot is a single
realization of the individual-based model with 104 cells. The blue, red, green, and black curves are
the numerical solutions of the moment-flux models with order K = 1, 2, 3, 4. The cyan curve is
the solution of the PKS model.

nonlinearities of the intracellular dynamics, e.g., as in (14) or (15)–(20). For cases in
which the signal gradient only becomes large in part of the domain, hybrid methods
that bridge individual-based models and PDE models can be developed. This is
desirable especially in 3D, in which case simulations of the hyperbolic moment-
flux models become very time-consuming.

5 Summary

This chapter summarizes the multiscale modeling framework used for bacterial
chemotaxis and the major breakthroughs in deriving PDE models from individual-
based models in this context. Analyses and simulations revealed that the PKS
equation is accurate in approximating the population dynamics when cell movement
is subject to small signal gradients, but it breaks down if the signal gradient becomes
large. For the former case, detailed formulas were derived for the macroscopic
parameters in the PKS equation in terms of measurable parameters that describe
single cell signaling and movement. For the latter case, a hallmark is the broad
distribution of the intracellular state over the whole population and alternative
moment-flux PDE models could be used instead. This review is not to reiterate all
relevant results in the literature, but written with enough detail so that it can be
easily understood by researchers and graduate students with a diverse background.
The hope is that the modeling methods developed for bacterial chemotaxis can be
used or extended to address other multiscale problems in biology.
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Sperm Motility: Models for Dynamic
Behavior in Complex Environments

Julie E. Simons and Sarah D. Olson

Abstract Sperm–often considered the most diverse cell type known–present
unique challenges for modeling frameworks. Responsible for fertilizing the egg,
sperm are not only necessary for sexual reproduction, but also increasingly
important to study given rising rates of infertility. In this review, we summarize
aspects of sperm motility and interactions, which make it unique in comparison
to other cells. The journey of a sperm involves swimming in different fluid
environments, where emergent trajectories and waveforms are coupled to the fluid
properties such as viscosity, the mechanics of the flagellum, as well as the relevant
biochemistry. We emphasize that there is a range of modeling frameworks, each of
which can bring an understanding to fundamental aspects of sperm motility, such
as how a particular fluid or interaction with another swimmer can alter swimming
speeds and trajectories. In order to study the emergent flagellar waveforms of sperm
and compare to experiments, it is important to have accurate models of the relevant
surfaces and interactions to capture the correct and relevant hydrodynamics. We
discuss current challenges and describe aspects of sperm motility that models can
elucidate in the future, ultimately to help solve the puzzle of how the sperm is able
to reach and fertilize the egg.

1 Introduction

Cellular movement is a ubiquitous and dynamic process that takes on many different
modes, depending on the particular cell type and the surrounding environment
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[183]. In the context of spermatozoon (the sperm cell), motility is vital for sexual
reproduction and a strong indicator of fertility [58]. Using a single flagellum, sperm
must navigate a wide range of environments and their motility patterns must change
in response to various chemical and physical cues, as shown in Figure 1. These
changing motility patterns are required not only to successfully reach the egg, but
also to break through the surface of the egg to begin the process of fertilization.
This process is necessary for the survival of sexually reproducing species, and is
therefore subject to strong evolutionary pressures [15].

This can be contrasted with other cellular motility behaviors. While sperm swim,
other cell types may exhibit a complex gliding or crawling motion, possibly along
confining tracks in the tissue [137, 149]. This gliding or crawling motion is vital in
processes such as morphogenesis (development of an organism) and wound healing,
where cells migrate over a long distance and are able to sense the microenvironment
through chemical signals and physical communication [5, 129, 202]. Some cells
must change their shape during cell division as well as during navigation in confined
spaces. For example, Amoebae are able to move along a substrate by extending
structures called pseudopodia [183]. In many animal cells, such shape changes

Fig. 1 Examples of experimental observations of sperm motility patterns, demonstrating how
motility behaviors change depending on the environment the sperm encounters. Not only does
the sperm modulate its waveform, as demonstrated in panel (a), but such changes can also result
in changes in trajectories (as in panel (b)) and thus can affect the ability of the sperm to effectively
migrate.
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are driven by internal forces generated by polymerization of actin, along with
the movement of microtubules and intermediate filaments within the cytoplasm
[5, 19, 69].

While these descriptions highlight differences in motility behaviors, all cells are
subject to similar physical laws that dictate what motility patterns are possible.
Locomotion at the cellular scale is unique: as E.M. Purcell explained in his now
famous paper, Life at Low Reynolds Number [156], cells require novel mechanisms
(notably, asymmetry in motion) in order to successfully move in a world that lacks
inertial forces. This means that if a cell stops moving or exerting forces, there
is no acceleration and the cell body would immediately cease moving due to the
external forces, including a viscous or resistive force from the surrounding fluid or
the substrate they are moving on. The successful and efficient migration of a single
cell or group of cells is a direct result of the generation of internal forces coupled
with chemical signaling [69, 129].

Flagellated cells contain one or more flagella, specialized whip-like structures
that are able to aid in the movement of the cell. In the photosensitive green algae
known as Chlamydomonas, two anterior flagella beat in a coordinated fashion to
move or swim away from light. Bacteria can have one or more flagella attached to
the cell body. Due to a motor at the base of each bacterial flagellum, the flagella are
able to rotate, sometimes forming coordinated bundles, thereby propelling the cell
body forward [13, 14]. This allows bacteria to swim towards higher concentrations
of food sources [1, 178, 179] and efficiently move in different conditions such as
the mucus layer that coats the stomach and in biofilms containing extracellular
polymeric substances [23, 34, 68]. Sperm cells have a single elastic flagellum
that propagates bending along its length, propelling the sperm forward through
different fluid environments that include swimming through or around mucus, cells,
hormones, and other large proteins [63, 166, 193]. In contrast to animal cells where
actin dynamics control the changing cell shape, the bending of the sperm flagellum
is driven by dynein, a molecular motor protein that is moving along microtubules
within the flagellum [120, 207].

Sperm are unique in that their one and only function is to reach and fertilize
the ovum (egg), which often involves swimming a distance greater than 1000 times
their own length [76, 193]. Of the millions that start the journey, only a few will
reach the site of fertilization [189]; it is thought that the various chemical and
physical cues could act as a filter, allowing the forward progression of only healthy
sperm [124, 171, 193]. Along the way, mammalian sperm undergo the process of
maturation called capacitation [38, 204]. This includes the ability of the sperm to
exhibit hyperactive motility, corresponding to highly asymmetric flagellar bending
and increased intracellular calcium [157, 188, 189, 193], which is known to be
necessary for the sperm to reach the egg. In the female reproductive tract, sperm
respond to changes in the fluid viscosity, chemical cues, and geometry of the
channels as they navigate through different regions by modulating their motility
patterns. Figure 1 shows several examples of how sea urchin and mouse sperm may
change their motility behavior depending on their physical environment. Another
example is when sperm enter the oviduct; initially, sperm are thought to be held in
a reservoir until chemical cues around the time of ovulation initiate capacitation
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[188, 193]. Sperm can then change their waveform to the hyperactive motility
pattern, as well as shed proteins along the sperm head, both of which are thought to
assist the sperm in pulling off of the epithelial wall and swimming towards the egg
[189].

How exactly does the sperm find the egg? There are still many questions
related to the steering and guidance of sperm, in terms of the relevance of
different factors at different locations. Hypothesized mechanisms involve different
types of taxes–motion in response to a stimulus–and there is considerable debate
about whether these are long or short range guidance mechanisms for sperm. For
example, chemotaxis (chemically mediated motion, see Figure 1b) [22, 36, 59, 180]
and thermotaxis (temperature-mediated motion) [8–10] are potential short range
mechanisms whereas rheotaxis (fluid flow-mediated motion) [108, 131] is thought
to be a long range mechanism. The biased motion towards or away from stimuli
is due to a change in flagellar beating. Thus, the beat pattern may be modulated
by chemical, temporal, and background fluid flow properties of the surroundings.
However, changes in flagellar bending can also be caused by responses to variations
in the confined geometry of their local environment, fluid properties such as
viscosity, and interactions with other sperm [63, 110, 176, 206, 208, 209].

Frameworks to model different aspects of sperm motility continue to evolve as
new experimental data becomes available. On one end of the modeling spectrum,
continuum frameworks describing systems of differential equations are used to
describe evolving densities of sperm populations. These models are useful for
studying the macroscopic effects of preferential motion towards or away from
chemical signals or other environmental cues. Some models have focused on
accurately modeling force generation and movement of the flagellum and its
elements, while others have used minimal models of the structure with more detailed
and accurate models of the fluid environment. These models can provide a method
to investigate situations where biological experimental capabilities are limited–for
example, force measurements along the cell body over time–but also scenarios
where cellular motility does not occur properly.

The power of modeling is to identify and understand potential targets to increase
motility in sperm that are deficient, or to identify targets that would prevent sperm
from reaching the egg. These targets are vital for developing fertility solutions. As
observed from the complex coupling of chemical and physical cues, systematically
understanding sperm motility, on multiple scales, will provide insight into the
complicated movements we observe. Modeling approaches can test experimental
hypotheses as well as propose future experimental studies. But there are many
other outcomes from these studies that extend beyond the world of fertility. In
understanding sperm motility, we not only gain insight into the general process of
cellular motility, but these insights can be harnessed to model surfaces covered with
cilia (which are structurally similar to flagella) such as the lungs [54, 126], as well
as inform the development of devices such as artificial microswimmers that can be
used in applications as varied as drug delivery and bio-sensing [66].
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2 Historical Context for Modeling Frameworks

Mathematical models for sperm motility date back to early twentieth century
investigations of viscous flows near rigid bodies. While sperm are not rigid bodies,
portions of the sperm body may be modeled as rigid, and the environment sperm
encounter is characterized as viscous, with almost no inertial effects. Sperm flagella
are the source of the motion of sperm, and these are slender tubular structures that
tend to beat with a primarily planar waveform, though helical waveforms have
been observed as well (see Figure 1a) [203, 209]. Due to the planar nature of
their waveforms, sperm are an ideal cell type for studying flagellar motility from
a mathematical modeling perspective and sperm have been the inspiration for many
studies of the hydrodynamics of viscous fluids near waving boundaries, since the
sperm flagellum could be viewed as a finite waving boundary in a fluid.

Mathematical investigations of sperm motility started with the studies of G.I.
Taylor in the early 1950s [194, 195]. These studies modeled the flagellum of
organisms like sperm as oscillating infinite sheets or cylinders and were used to
investigate the energetics and phase-locking mechanisms from a hydrodynamical
perspective. Shortly after this, theories were developed to measure forces and
velocities in viscous fluid flow around slender bodies like flagella [80, 82]. These
studies idealized the flagellum as a slender body (narrow in width compared to its
length), which could be approximated as a series of rigid cylinders connected end
to end. In this way, the motion of either finite or infinite filaments was modeled by
considering the motion of each cylinder separately. The goal of these models was
to construct solutions that are consistent with the fluid equations and result in small
cross sections of the slender body that are moving with the same velocity.

Results from the early work in [80] is now known as resistive force theory
(or local drag theory), in which coefficients that give a proportional relationship
between force and velocity can be calculated based on parameters given by
the geometry of the body and its waveform. Resistive force theory is a simple
mathematical approach to modeling sperm motility, because it provides a direct
link between velocities and forces without any other computations. However, it is a
coarse approximation that relies upon the assumption that if the body is divided into
cylindrical elements, each element does not interact with any other.

In response to this, slender body theory was developed. As first described in [82],
distributions of forces and torques along the centerline of the slender body were
considered instead of focusing on the motion of the surface of elements or pieces
of the flagellum. Slender body theory was refined over the next several decades to
more accurately incorporate interactions between elements of the flagellum and to
deal with singularity issues with solutions near the ends of the flagellum [12, 45, 85,
104, 105, 109, 117, 118]. For reviews of these theories, see [105, 112].

Ultimately, these mathematical theories have shed light upon idealized behavior
of oscillating filaments and sheets, but computational models and simulations
are necessary to understand the more complicated waveforms observed in sperm,
interactions with surfaces and between sperm, effects of biologically realistic
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fluid models that incorporate elasticity and obstacles, and how morphology affects
sperm motility. In order to accomplish this, methods that are robust to changes
in waveform, incorporating surfaces and other boundaries, and complex fluids–
which often have no closed-form solutions and must be computationally simulated
themselves–are now at the forefront of sperm motility models. While these more
recent computational approaches still rely upon the concepts developed in resistive
force theory or slender body theory to model the flagellar hydrodynamics, current
work seeks to elucidate the diverse sperm motility behavior observed in physiolog-
ically relevant biological settings, where motion is not fixed but rather a dynamic,
emergent behavior with many feedback mechanisms.

3 Modeling Motion in Viscous Fluids

When studying sperm motility in a viscous fluid, a critical nondimensional ratio
characterizing the relative importance of inertial to viscous effects is the Reynolds
number, Re = ρUL/μ. Here, ρ is the fluid density, μ is the dynamic viscosity,
and U and V are characteristic length and velocity scales, respectively. When using
the viscosity of water and characteristic scales for human sperm, we have Re ∼
10−3. Thus, we consider their environment as viscosity-dominated and inertia can
be neglected. Many studies have used the incompressible Stokes Equations,

0 = μΔu − ∇p + f, (1a)

0 = ∇ · u, (1b)

to study swimmers in viscous, incompressible fluids at zero Reynolds number. Here,
f is the force density that the swimmer exerts on the fluid, which will be further
described below and in Section 5. The fluid velocity is u, μ is the dynamic viscosity,
and p is the pressure. The classical Navier-Stokes equations for incompressible
fluids would have an inertial term, ρDu/Dt with material derivative D/Dt on
the left-hand side of (1a). However, in a zero Reynolds number Stokesian regime,
the left-hand side is zero since inertial terms are assumed to be negligible. The
incompressibility condition or conservation of mass is given in (1b).

We have a governing equation for the fluid, but the study of moving objects in
fluids requires a formulation for how we represent the object and how the object
interacts with the fluid. Is the fluid pushing on the object? Is the object pushing
on the fluid? What happens at the interface between the object and the fluid? The
answers to these questions lie in both the experimental setting and the modeling
framework.

From Newton’s third law of motion, we know that for every action, there is an
equal and opposite reaction. Thus, when there is fluid flow resulting from external
properties (for instance, flux of fluid through a channel due to a pumping mechanism
upstream or downstream, or peristaltic flow due to boundary contractions), the fluid
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will move and so will any free object surrounded by the fluid in motion. On the other
hand, nonpassive objects like motile cells will exert forces upon the fluid in order
to navigate through their environment. In most biologically realistic scenarios, both
of these effects are present. In the case of reproduction, the egg is a passive object
whereas sperm are actively generating forces to navigate and swim towards the egg
[190, 193].

One significant modeling consideration for objects in fluids is how to connect
two effects: how the fluid acts upon the object and how the object acts upon the
fluid. Alternatively, this can be framed as how the fluid reacts to the object and
how the object reacts to the fluid. The general framework used is to assume that
at the surface of any object in a fluid, a no-slip condition must be satisfied [92].
This effectively means that, due to frictional forces, the velocity of the fluid at the
surface of an object must match the velocity of the surface itself, and no fluid can
pass through the surface nor move along the surface tangentially. For a moving cell
like a sperm body, this means that at the interface between the surface and the fluid,
both the fluid and the surface must move with the same velocity. If these conditions
were violated, fluid might flow through an object like the sperm body. While it is
true that the membrane surfaces of cells are not entirely impermeable, such effects
are minute and would have a negligible contribution to the motility of the entire cell.

There are several models for connecting the forces the sperm is exerting with
the fluid motion itself. In an Eulerian approach, one could assume the fluid lies in
a particular domain, which could be discretized as necessary for computations (for
instance, in a Cartesian grid). The sperm body is viewed as an immersed boundary
or structure in that domain. Because this boundary is freely moving, it will not
lie on the exact grid of the fluid domain. Therefore, any forces exerted along the
length of the boundary will be distributed on the discretized domain (grid elements)
surrounding the boundary. Once these forces are distributed onto the fluid domain,
a numerical fluid solver can be used to calculate the fluid velocities at all points in
the domain. After these velocities are found, one can interpolate the flow field to
find the approximate velocity of the immersed boundary. The immersed boundary
can then be moved according to these interpolated velocities along its length and
the process can be repeated. This is called the immersed boundary method and was
pioneered by Charles Peskin [152, 153].

Direct Lagrangian approaches to relate the motion of the sperm and the sur-
rounding fluid are possible if analytical solutions to the fluid equations are known.
While this is not possible in the Navier-Stokes equations, the incompressible Stokes
equations given in (1a)-(1b) do have known analytical solutions in a variety of
domains. For instance, suppose there is a point force F at position X0 in an infinite
3D domain. If the force density at a point x in the fluid is f(x) = Fδ(‖x − X0‖)
where δ is the Dirac delta function, then the solution to the incompressible Stokes
equations is known as a Stokeslet:

u(x) = 1

8πμ

(
F
r

+ (F · (x − X0))(x − X0)

r3

)
, (2)
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where r = ‖x − X0‖. The Stokeslet is an exact fundamental solution that is
everywhere incompressible for a given force density f. It is important to note that
there is a singularity at r = 0, the location of the point force, which makes evaluation
of the Stokeslet at r = 0 impossible. Other fundamental solutions can be derived
[18]; for example, the rotlet is the fundamental solution to a point torque in Stokes
flow. Solutions can also be derived for other physical fluid domains such as the half
space near a plane wall or fluid near the surface of a sphere [17, 18, 138].

Equation (2) gives a direct relationship between the velocity field u(x) and a
point force F located at X0. This means that if one specifies the point force, the
velocity field may be calculated directly. Conversely, if one specifies the velocity
at a position, one can recover the force required to generate that velocity. It is this
relationship in the Stokeslet approach that enables a Lagrangian framework to be
used to model motion in a viscous fluid. Due to linearity of the Stokes equations
in (1a)–(1b), if there are multiple forces, one can simply add solutions together to
obtain a solution for a distribution of point forces or torques. Moreover, solutions
such as the Stokeslet and rotlet provide a way to connect velocity with forces
and torques directly. In the case of the Stokeslet, for instance, one can either find
the velocity field u(x) given a distribution of point forces, or conversely, find the
forces that would be required to give rise to a given distribution of velocities at
specific points. Depending on the application or modeling framework, one of these
approaches may be more appropriate than the other.

Ultimately, one must decide how to connect the underlying flagellar motility
model with the physical concepts of velocities and forces and torques in the system.
In this context, motility arises from the beating of the sperm flagellum. As discussed
in Section 2, mathematical treatments of flagellar motion often rely upon resistive
force theory or slender body theory. From a computational perspective, resistive
force theory provides a straightforward way to calculate forces from velocities
and vice versa, but is limited in that it assumes that elements (or pieces) of the
flagellum do not affect the rest of the flagellum. On the other hand, if one uses the
more accurate slender body theory, which relies upon singularity solutions to the
incompressible Stokes Equations in (1a)–(1b), the singular nature of the solutions
is problematic for computational methods. Using nonlocal slender body theory to
overcome these issues has also been shown to be computationally intractable, as
shown in [198], where the authors introduced a regularization parameter to the
singular solution to address this issue.

If, instead, one regularizes the force distribution from the beginning, using a
regularized delta function instead of the singular Dirac delta function, one can derive
what is known as a regularized Stokeslet [40, 42]. There are many possible choices
for a regularized Dirac delta function, but the resulting regularized Stokelet will take
a form such as:

u(x) = F(r2 + 2ε2)+ (F · (x − X0))(x − X0)

8π(r2 + ε2)3/2
(3)
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where ε > 0 is a regularization parameter, assumed to be small. This approach
provides a non-singular solution to the incompressible Stokes equations given
in (1a)–(1b); by simply taking the regularization parameter ε → 0, the singular
Stokeslet solution is recovered. This method has also been shown to be consistent
with the slender body theories of Lighthill and Keller-Rubinow in the limit as ε → 0
[44].

Through the use of regularized fundamental solutions, we can now view the
problem in a completely Lagrangian framework because there is no need for a
fluid grid or interpolation. We will have an exact solution for velocity and pressure
given regularized forces (and regularized torques or other quantities, if necessary)
that can be evaluated on the structure as well as anywhere in the fluid domain.
Additionally, regularized fundamental solutions for different fluid domains have
been derived using the method of images (see [2, 211] for further details) as well
as for triply and doubly periodic domains [43, 113, 114]. Crucially, the regularized
fundamental solutions to solve the Stokes equation are a good choice for slender
bodies as they have been shown to match well with experiments [21, 107, 163] and
swimming speeds for a flagellum compare well with small amplitude theoretical
results [141, 144, 194, 195].

4 Representing the Sperm

In Section 3, we gave an overview of how we view a sperm as an immersed structure
in a fluid. As the sperm swims, it exerts forces upon the fluid, and the fluid moves.
The sperm body can also be moved by the fluid itself and react to its environment.
This description provides a context for the interaction between the sperm and the
fluid. In this section, we will focus on models for the sperm body itself, which is
depicted in Figure 2. Any model of sperm motility must allow for the flagellum to
beat or otherwise generate propulsive forces to move the sperm body through the
fluid.

The simplest representation is to think of the sperm as a single point where
systems of differential equations or an agent-based model are then used to update
the location of each sperm body. These types of models have been used in other
cellular motility contexts as well. In the differential equation modeling framework,
the curvature of the trajectory can be coupled to a chemoattractant concentration
[70, 96], and such chemotactic behavior has been shown to be a robust navigation
strategy for a large range of parameters [70]. Other models have coupled the
differential equations to a background fluid flow [29, 108] and hypothesized that
reorientation in the flow, due to a transverse velocity component, is related to a
preferred handedness in the flagellar beat [108]. Agent-based models have explored
sperm motility within a realistic 3D geometry based on medical imaging of the
female reproductive tract [30, 31]. These models can be validated or compared
to experimental data that is able to track the trajectories of sperm under different
experimental conditions (e.g., Figure 1b) [35, 184, 185].
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Other studies have focused on the long range fluid flow and interactions of many
swimmers where they are represented as a “pusher,” meaning the swimmers push
fluid away from their bodies. Note that this representation can also be used more
generally–beyond sperm–for microswimmers such as bacteria and the flow induced
by a pusher can be accounted for in terms of a simplified fundamental solution cor-
responding to a dipole. The interactions of many can be easily simulated, possibly
accounting for interactions with walls or other boundaries [112, 127, 167, 168]. As
an extension of the “pusher” model, swimmers such as sperm have been studied
using a “two-sphere model” or a “dumb bell” model where the sperm is represented
as two points, one for the head and one for the flagellum [2, 4, 84]. Again, the point
of these models is to simulate the large scale flow structure to understand at what
concentration of swimmers certain patterns such as local vortices occur [167, 168].
These studies have also been used to demonstrate that swimmers will aggregate near
a wall or surface, simply due to hydrodynamic effects, which can help to explain
similar experimental observations [50, 127, 165].

Perhaps the largest class of models for sperm motility rely upon modeling the
beating flagellum itself. The elastic flagellum is on average 30–200 microns [47],
and has a cylindrical shape that tapers in radius towards the flagellum tip (end).
As depicted in Figure 2, within the flagellum there are nine sets of microtubule
doublets (inextensible and stiff rods) on the outer part of the structure that run
along the length of the flagellum [120, 203, 207]. Many species of sperm exhibit
mainly planar motion, which is attributed to the fusing of microtubules 5 and 6,
which defines the beat plane as perpendicular to the central pair. There is also a
central pair of microtubules, giving the 9+2 structure characteristic of the axoneme,
which is also found in cilia. The bending of the flagellum is propagated along the
length by the coordinated turning on and off of dynein motors, which are active force
generators [81, 203]. Dyneins reach across and grab the adjacent microtubule; this
causes the microtubule doublets to slide relative to one another, generating bending.
The exact mechanism of how dyneins work in a coordinated fashion to create a
propagating waveform is not completely understood [207]. However, it is known
that coordinated activation of dyneins on doublets 1–4 bend the axoneme in one
direction, which in turn allows the dyneins on doublets 6–9 to initiate activation and
start to bend the axoneme in the other direction while the dyneins on doublets 1–4
are deactivating.

To model the flagellum, one can focus on the structural components that comprise
the flagellum or just the waveform of the flagellum itself. For instance, one can
consider the flagellum as an oscillating thin filament whose centerline is used as the
location of forces or velocities of interest. While this may be considered a coarse
approximation to model the flagellum, it can be used to effectively model motility.
Moreover, even though many models have used a centerline approach to represent
the flagellum, there are still ways to account for the flagellar structure in such a
simplified framework. For example, since the flagellum tapers in radius towards
the end, the stiffness decreases along the length [170]. To account for this, models
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Fig. 2 Depiction of a typical sperm cell structure (top), with cross section showing the internal
structure of the axoneme of the flagellum in the box. Dynein motors are the active force generators
and the nexin links are elastic linkages or accessory structures. The flexural rigidity of the axoneme
is imparted by the 9 sets of microtubule doublets that run along the length of the flagellum. The
image in the box is reproduced with permission from Journal of Cell Science [120].

have incorporated a variable stiffness along the length, which leads to different
trajectories in model simulations [146]. Other models have coupled movement of
the centerline to the evolving calcium concentration [145, 146, 174], known to be
important for hyperactivated motility, which consists of highly asymmetrical and
high amplitude bending of the flagellum. In Section 5, we will discuss different
types of models that account for the bending of the flagellum in more detail.

Many models for sperm motility focus on the flagellar motion alone, but the
sperm head can also be incorporated. This is a passive cell body containing the
DNA, which is attached to the base of the flagellum. The cell body varies in both
shape and size depending on the particular species. Bull sperm are known for a
paddle or oar shaped head with a length of around 8 microns, whereas mouse sperm
have an additional apical hook and sea urchin sperm have an ellipsoidal head [11,
47]. Accounting for the cell body will certainly have an effect on the resulting fluid
flow and trajectories, but this definitely has an associated computational cost. The
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cell body is often discretized as a number of points that are connected via a network
of stiff springs [64] or the cell body could be represented with the method of images
if it is assumed spherical [211].

In laboratory settings, headless sperm are still able to swim since the cell body
does not contribute to propulsion [131]. In [101], there is a detailed description
of how neglecting the sperm head will result in a swimming speed with an error
of approximately 20%. Additionally, the torque of the head is three orders of
magnitude lower than the flagellum [101]. Thus, if one is interested in precise
speeds and angular velocities, the cell body should be accounted for. However, if the
modeling question lends itself to understanding fundamental interactions of many
swimmers or accounting for detailed biochemistry, the results for “headless” models
will be of the right order of magnitude.

5 Modeling Flagellar Bending

For sperm to effectively swim, their flagellum must undulate or bend. As mentioned
in Section 4, bending is known to come from the action of dynein motors along
the length of the axoneme. There are several models that have been proposed to
account for the activation of dynein and bending of the flagellum, these include
sliding filament models [25–28] and the Geometric Clutch Hypothesis [120–123].
A simplified model of the axoneme with a curvature threshold model for planar
bending has been developed in 2D, where the simulations account for the relevant
fluid dynamics and the flagella were able to exhibit coordinated flagellar bending
[51–53, 214]. Since the detailed axonemal structure of dyneins, microtubules, and
other accessory structures shown in Figure 2 is not always computationally feasible,
many studies have approximated the flagellum with a series of cylinders or a
centerline, as depicted in Figure 3. Such simplified representations of the flagellum
have been shown to agree well with experiments in terms of swimming speeds and
the trajectory of a single sperm [77, 146].

These cylinder or centerline representations of the flagellum can actuate flagellar
bending using two main approaches. One uses prescribed flagellar motion and
the other is an elastohydrodynamic model where the flagellum is elastic and its
waveform is an emergent or developing property of the coupled system. The former
is an idealized model of swimming where we can prescribe flagellar motion and
understand how swimming speeds vary for different assumed parameters such as
the amplitude or frequency. The latter approach has an emergent waveform that will
vary based on the type of fluid, elastic properties of the swimmer, and interactions
with a wall or other neighboring swimmers. Emergent flagellar bending is important
because experimental observations have illustrated that sperm waveforms and
trajectories are an emergent property of the nonlinear system coupling the fluid,
biochemistry, surface interactions, and the mechanics of bending [63, 76, 209]. In
particular, flagellar waveforms have been observed to range from planar to helical
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as viscosity varies (shown in Figure 1a), and trajectories can vary based on chemical
stimuli in the fluid (shown in Figure 1b) [56, 160, 184, 185, 206, 209].

5.1 Prescribed Waveforms

For prescribed motion with a centerline representation, one option is to extract the
motion directly from experimental data, as done recently in [99]. A more typical
setup is to consider an undulating flagellum of length L given as

x(s, t) = s, y(s, t) = a sin(ks − ωt), z(s, t) = b cos(ks − ωt), (4)

for 0 < s < L where s is a parameter initialized as arclength, the wavenumber
is k = 2π/λ for wavelength λ, the bending amplitudes in y and z are given by a
and b, and ω is the constant angular frequency. A planar waveform can be studied
simply by letting b = 0. At any given time t ≥ 0, the velocity of the flagellum is
calculated by

ub(s, t) = 0, vb(s, t) = −aω cos(ks − ωt), wb(s, t) = bω sin(ks − ωt), (5)

where ub, vb, and wb are the velocity components of x, y, and z, respectively.
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Using the waveform in Equation (4), studies have considered infinite-length
swimmers with small amplitude using asymptotic analysis. For swimmers with
either planar or helical bending in a Newtonian flow, analysis has shown that
swimming speed scales quadratically with amplitude [169, 194, 195]. When mod-
eling finite-length swimmers, the total velocity V includes the velocity from the
prescribed flagellar beat ub(x) = (ub, vb, wb), translation U0 = (Ux0 , Uy0 , Uz0 ), and
rotation Ω0 = (Ωx0 ,Ωy0 ,Ωz0) as:

V = ub(x)+ U0 + Ω0 × x. (6)

When prescribing the velocity of the flagellar beat with ub, one can solve for
the velocities with additional conservation laws, which are generally a force-free
and torque-free condition when modeling a zero-thrust swimmer in a viscous,
incompressible flow.

Using this type of an approach, swimming speeds of finite-length filaments with
planar waveforms [77, 79, 85, 86, 91] and with helical waveforms [39, 86] have
been examined using various approximations to understand the “optimal” waveform
that maximizes speed and minimizes power. Simulations have shown that for a
variety of wavenumbers, a smaller normalized head radius (ratio of head radius and
swimmer length) results in an increased swimming speed and a decrease in inverse
hydrodynamic efficiency [77, 85]. Other computational models have been used to
study the trajectory of a finite-length swimmer over a longer period of time using a
prescribed waveform. Since the rotational and translational velocity of the flagellum
in space can depend on other factors, several studies have used this method and also
accounted for a wall to understand how trajectories vary in the presence of a wall
[77, 100, 101, 147, 175].

5.2 Emergent Waveforms

The other type of model is one where the dynamics of the elastic flagellum are
not prescribed but are an emergent property of the fluid-structure interaction. One
approach is to use the sliding filament model [25, 27, 161] and to simplify the
hydrodynamic interactions using resistive force theory [71, 80]. In this type of
model, the flagellum is idealized as a pair of elastic filaments that slide relative
to one another and a governing equation can be derived for the location of the
flagellar centerline [32, 87]. The movement of the sliding filaments is controlled
by the choice of internal shear stress (or force); one study chose a simple traveling
wave where it was determined that interesting buckling instabilities can occur in the
elastic flagellum when nonlinearities were accounted for [75].

Instead of using resistive force theory, one can use a computational method
to solve for the resulting fluid flow when the emergent flagellar bending of the
swimmer is determined in terms of bending and tensile forces. As shown in Figure 3,
one can discretize the flagellar centerline as a series of points. Most immersed
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boundary approaches idealize the elastic flagellum as a series of interconnected
springs [64, 153]. As the flagellum is bending, this will give rise to local bending
forces fbend due to changes in curvature and local tensile forces ftens as the
springs comprising the inextensible flagellum are being stretched. One could derive
functional forms for these forces based on phenomenological models accounting
for the detailed structure of the axoneme, including the active force generation of
the dyneins that leads to bending [51–53]. A more simplified version of this type
of model would be to prescribe sinusoidal forcings–that are not dependent upon the
current configuration–along the length of the flagellum, as in [125].

An alternate approach to determine bending and tensile forces is to propose an
energy functional where in general, the swimmer will tend to minimize this elastic
energy. The variational derivative of the energy functional would then determine the
forces that the swimmer exerts on the surrounding fluid [153]. Modeling the elastic
flagellum as an Euler elastica is a common approach [64, 65, 196], consisting of two
energy functionals (conditions) where one corresponds to a tensile energy (stiffness
or effective inextensibility of the swimmer) and the other is a bending energy related
to the preferred curvature. The Euler elastica energy E is given as

E = εT + εB =
∫

Γ

(
ST

[∣∣∣∣

∣∣∣∣
∂X
∂s

∣∣∣∣

∣∣∣∣ − 1

]2
)
ds +

∫

Γ

(
SB

[
∂Θ

∂s
− ζ(s, t)

]2
)
ds.

(7)
Here, Γ is the curve corresponding to the centerline of the swimmer, s is a parameter
initialized as arclength, t is time, X(s, t) is the centerline of the swimmer, and Θ is
the shear angle with respect to the first point of the centerline (towards the head or
basal end). The preferred curvature is ζ(s, t) and is generally chosen to be some type
of a propagating sinusoidal waveform (planar), similar to the curvature observed
in experiments of human sperm [176]. The coefficients ST and SB are the tensile
and bending stiffness coefficients. For larger values of the coefficients ST and SB ,
the conditions are more strictly enforced. In addition, the stiffness coefficients can
be matched to experimental values obtained for the stiffness of a flagellum [146,
151, 170]. In this model, deviations between the preferred curvature and the current
curvature generate force (fbend = −∂εB/∂X); the flagellum will tend to maintain
the preferred curvature but due to energy dissipation in the fluid or interactions with
other nearby swimmers or boundaries, the achieved flagellar beat may differ from
the preferred one.

Many models have used an energy functional with a preferred curvature or
bending component to study emergent trajectories and waveforms of sperm in
different fluid environments [61, 64, 142, 144, 146, 173, 174, 214]. For example,
in [142], it was observed that even though two swimmers may have two different
preferred waveforms, when they have attracted, the beats will synchronize and
conform to each other due to hydrodynamic interactions (see Figure 8a and
Section 7). This approach has been used to study the emergent flagellar beating of
swimmers when near a plane wall [61, 174] as well as when coupling the preferred
curvature to a dynamic intracellular calcium concentration [140, 146, 173].
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In order to capture phenomena such as rolling and out of plane rotations due
to wall interactions and background flow, a sperm representation must be used that
allows for nonplanar movements. Recently, the planar waveform preferred curvature
model using the Euler elastica energy formulation has been extended to be fully
3D where deviations from a planar waveform are penalized, and helical trajectories
are observed [173]. Another approach is to model the swimmer’s centerline as a
Kirchhoff rod given as X(s, t) where a corresponding orthonormal director basis
{D1,D2,D3} at each point on the swimmer is accounted for in order to capture
twist, and hence rolling [119, 141, 144]. A Darboux vector for the orthonormal
basis is used, which is a rotation of the Frenet frame such that D3 is aligned with the
tangent vector while D1 and D2 are perpendicular to the axis of the rod, capturing
the twist. The elastic energy E for the rod given by Γ = X(s, t) and {D1,D2,D3} is

E=
∫

Γ

a1

(
∂D2

∂s
· D3−κ1

)2

ds

︸ ︷︷ ︸
εbend,1

+
∫

Γ

a2

(
∂D3

∂s
· D1−κ2

)2

ds
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εbend,2

+
∫

Γ

a3

(
∂D1

∂s
· D2−κ3

)2

ds
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εtwist

(8)

+
∫

Γ

b1

(
D1 · ∂X

∂s

)2

ds

︸ ︷︷ ︸
εshear,1

+
∫

Γ

b2

(
D2 · ∂X

∂s

)2

ds
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εshear,2

+
∫

Γ

b3

(
D3 · ∂X

∂s
−1

)2

ds

︸ ︷︷ ︸
εstretch

.

The energy components (εbend,1, etc.) are divided up between bending, stretching,
twisting, and shear in the different axes along the rod. The parameters of the curve
are defined as follows: κ1 is the geodesic curvature, κ2 is the normal curvature, and
κ3 is twist. In order to have a temporal and spatially dependent preferred curvature,
we determine a preferred curvature κ1 and κ2 that correspond to a propagating wave
[33, 89].

Recently, the computational method solving for the Stokes flow due to forces and
torque from a Kirchhoff rod using regularized fundamental solutions was developed
[144]. The swimming speeds of the Kirchhoff rod with a propagating wave of
curvature matched well with asymptotic swimming speeds for infinite-length, small
amplitude planar, and helical waveforms [141, 144]. This model is now being used to
study interactions of swimmers with a wall [94, 97] as well as to further investigate
emergent trajectories for planar, quasi-planar, and helical preferred flagellar beats
that are coupled to an evolving cytosolic calcium concentration [33]. In Figure 4,
the swimmers are initialized at the same location at t = 0 and results are shown
for the time interval of t = 14–15 s. We assume a preferred helical beatform as
in Equation (4), and calculate the corresponding preferred curvature and twist (κi
for i = 1, 2, 3 in Equation (8)) for two cases. The first case assumes a constant
amplitude (no calcium coupling) as shown in Figure 4(a)–(b) and the second case
shown in Figure 4(c)–(d) corresponds to a nonconstant amplitude that is coupled
to the calcium concentration within the flagellum, representative of hyperactivated
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Fig. 4 Emergent waveforms and trajectories from a computational model using a Kirchhoff rod
framework that was developed in [33]. In the top row, (a)–(b), the preferred curvature corresponds
to a propagating wave of constant amplitude whereas (c)–(d) has curvature coupled to an evolving
calcium concentration allowing for a nonconstant amplitude. The color bar corresponds to time
and displays the 3D trajectory of the head in (a) and (b), where (c) and (d) give the zoomed in 2D
trajectory in the y-z plane. In (a) and (c), the snapshots of the flagellum are superimposed at the
same point.

sperm motility. In Figure 4, we note that the calcium coupling to the beatform in (c)–
(d) has a swimmer that is able to swim further in the 15 s time interval. In addition,
3D and 2D emergent trajectories shown in Figure 4 resemble 3D experimental
observations of helical trajectories and chiral ribbons [184, 185] and 2D trajectories
projected on the y-z plane are hypotrochoid curves similar to previous experimental
observations [206].

6 Interaction with Surfaces

Like many other cells, sperm must navigate complex environments in order to
perform their function. What makes this cell type unique is that they traverse such a
broad range of environments, as shown in Figure 5, and must dramatically change
the way their flagella beat in order to successfully fertilize the egg and pass on
their genetic material. One important aspect of this navigation is how to negotiate
boundaries, such as the oviductal epithelium or the outer layers of the oocyte.
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Fig. 5 Experimental images illustrating the different types of surfaces that sperm interact with,
which include the oviductal epithelial surfaces in (a), the complex geometry of the cervix in (b),
and the outer surface of the egg in (c).

Biologically, interactions with these types of boundaries have been observed or
hypothesized to serve one of several purposes:

1. Storage until ovulation,
2. Detachment around the time of ovulation, and
3. Penetration of the oocyte.

Sperm storage happens within the oviduct, either through binding to cilia lining
the oviductal epithelium or in what are called oviductal crypts [37, 78, 177, 187].
Figure 5a shows sperm bound to cilia along the oviductal epithelium and Figure 5b
shows crypt structures that have been observed with sperm inside them. In some
species, sperm may be “stored” in this manner for extended periods of time:
from days to weeks to months, depending on the species and mating habits [16].
Detachment from the oviductal epithelium or release from oviductal crypts has been
observed around the time of ovulation [193]. In many species, detachment has been
shown to require the flagellum to beat hyperactively, meaning asymmetrically with
high amplitudes [88, 213]. Penetration of the oocyte (shown in Figure 5c) is one of
the most significant steps in sexual reproduction, but requires a complex interaction
between the components of what is known as the cumulus-oocyte complex (COC)
and the sperm body, which must exhibit hyperactive motility and go through a
cascade of biochemical reactions. It is hypothesized that the hyperactive waveform
aids in penetration of the layers of the COC [3, 158, 182, 188, 191, 192].

The earliest models of sperm interactions with boundaries involve 2D fluids. For
instance, in [64], the authors use the immersed boundary method in a 2D fluid
to model the interaction of sperm with boundaries. The results of this work show
attraction to boundaries, as has been observed experimentally for quite some time
[165]. Later on, slender body theory was used in [175] to show that sperm may
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Fig. 6 Interactions with a planar surface, from various mathematical models. In panel (a), a bond
to the epithelial surface is modeled. In panel (b) and (c), surface “accumulation” is observed only
for particular wavenumbers and angles of approach.

accumulate a certain distance away from a surface depending on the wavenumber
of the flagellum (see Figure 6b). This model also showed that sperm may adhere to
surfaces depending on their angle of approach when swimming near a surface, as
shown in Figure 6c. The authors in [61] used mesoscale hydrodynamics to also
show attraction of sperm towards surfaces, with a more robust flagellum model
that can interact dynamically with a surface. More recently, in [100], the authors
study accumulation heights (where sperm tend to aggregate) near a surface using
prescribed kinematics and the boundary element method. They found accumulation
heights to be fairly insensitive to morphological effects, and extended previous
results on sensitivities to wave numbers.

Important in any interactions of sperm with boundaries or surfaces are binding
and unbinding between receptors on the sperm head and either cilia of the
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epithelium or the surface of the egg. Additionally, because it has been observed
that this binding and unbinding accompanies hyperactive motility [37], models have
been used to investigate how hyperactive waveforms are affected when a sperm is
near a surface or bound to a surface or point.

In [48], the authors considered a model that calculated the total force generated
by a filament with specified kinematics, clamped or freely hinged at the head, and
resistive force theory. In this model, the motion of the flagellum was given with
the head remaining stationary, as if bound. Their studies showed that hyperactive
waveforms enable both pushing and pulling forces at the head, which might give
a physical argument for why sperm would swim hyperactively if they are trying
to pull away from an epithelial wall instead of swim towards it. These results also
suggested that if sperm are bound to a wall via cilia, such bonds might be broken if
the sperm can pull away. The effects of a nearby wall was modeled with the wall set
a fixed distance from the sperm body, which had only small effects. These minimal
effects were likely because the sperm body was not allowed to get close to the wall,
a restriction of the modeling framework.

In [174], a freely swimming flagellum with an emergent waveform was placed
near a wall modeled by the method of images. The effects of binding to cilia lining
the epithelium were modeled as well. In these simulations, without any binding, the
flagellum will get stuck along the wall unless it has a sufficiently asymmetric or high
amplitude waveform. Moreover, if a bond is modeled, the bond can actually enable
the sperm body to overcome surface effects and break free of a surface more freely,
though asymmetry and amplitude of the waveform are still important. Figure 6a
shows an example of the flagellar behavior over time of a sperm bound to the
epithelium, with an elastic bond mimicking the cilia. This model is able to capture a
fully dynamic interaction between a surface and a freely swimming flagellum, with
the flagellum flattening and unable to swim away when it is too close to a surface,
but the model is restricted to particular geometries due to the modeling framework.

The authors in [102] added to this body of work by using the boundary element
method to model the sperm, with varying morphologies, to consider adhesion
dynamics near surfaces. The authors used a similar bond model to [174], but were
able to explore a large range of geometries with respect to the surface. In this setting,
hyperactivation did enable detachment from a surface but increased viscosity or
elasticity of the fluid weakens this effect. This suggests that sperm must overcome
not only surface dynamics, but also fluid properties that are known to vary in
different regions of the oviduct. The authors propose that the increased elasticity
in the COC would help a hyperactive sperm to actively penetrate the egg instead of
pull away from the surface.

Very few models of sperm-egg interactions have been proposed with regards to
understanding the role of sperm motility in the fertilization process. Clearly this is
an important part of fertilization, but most studies have focused on simple planar
surfaces. However, in [98], the authors find that, unlike the attraction observed
near planar surfaces, spherical surfaces like the egg do not induce the same
hydrodynamic attraction. This would indicate that further mechanisms (such as
binding to the surface of the egg) must exist for the sperm to stay near the egg and
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eventually penetrate the outer layers. While a complex process of modulating the
flagellar waveform, breaking through the outer layers of the COC and binding with
the surface of the egg must happen [155], the precise roles of all of these dynamics
in egg fertilization have yet to be fully explained.

7 Sperm-Sperm Interactions

Sperm are generally not solitary cells swimming towards an egg. Figure 7 shows
several examples of experimental observations of sperm swimming in populations
or groups. While sperm counts dwindle as one approaches the egg [186, 205],
interactions between sperm can have a significant effect upon their trajectories and
ability to reach the egg at all. For instance, in mice, sperm have been observed to
form “trains” which travel at faster speeds than individuals [67]. Similar cooperative
swimming behavior has been observed in species as diverse as fishflies, echidnas,
and possums and may enable groups of sperm to move efficiently towards the egg
[83, 106, 134, 135].

Models for understanding the interactions between swimming sperm date back to
G.I. Taylor’s work in [194], which demonstrated that two parallel sheets will oscil-
late in-phase to minimize work. These results indicate that, at least in 2D fluids, there
may be an energetic argument for swimming in a coordinated fashion. In [64], the

Fig. 7 Examples of experimental observations of sperm swimming in groups or populations.
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interaction between two sperm was modeled with flagella of finite length in 2D and
phase-locking was also observed. Another model using a 2D fluid found oscillating
filaments that synchronize and attract, minimizing energy consumption [214].

In 3D, energy dissipation was found to be minimized when infinite cylindrical
filaments oscillate in phase [130]. The authors in [125] modeled two semi-flexible
filaments in 3D separated over a range of distances with either coplanar orientations
or “transverse” (parallel) orientations. The authors concluded that speeds can
increase when two sperm are either coplanar and out of phase or parallel to
each other and in phase. Furthermore, power output can increase if two sperm
are coplanar and in phase, or parallel and out of phase. This model was limited
to short-term simulations where the filaments would not interact too strongly, so
that their relative geometrical configuration remained roughly unchanged. Similar
results were found for coplanar swimmers, but for simulations that allowed for
longer simulations and dynamic interactions between the flagella using a preferred
curvature formulation [46].

To compare 2D and 3D fluid models for the interaction of nearby sperm, the
authors in [142] showed that coplanar flagella will attract (see Figure 8a) and
increase their efficiency in both 2D and 3D. Synchrony occurs faster in 2D, but one
observes greater enhancements in velocity and efficiency in 3D. These conclusions
give some support for hydrodynamic arguments behind sperm swimming in groups.

A model proposed in [46] investigated how an active bond between two sperm
heads might affect velocities, efficiencies, and power. This model mimics that of
possum sperm, which fuse at the head and swim as a pair towards the egg. The model
reproduced experimental work demonstrating that greater speeds were achieved
when sperm paired in this fashion, and the model suggested optimal ranges in the
angles of fusion between the sperm heads as well as the phase shift between the
two sperm. These optimal ranges coincide with observed configurations in possum
sperm.

Long-term dynamic simulations of finite length flagella in a range of 3D
configurations are lacking, primarily due to modeling frameworks. The model
proposed in [173], derived based on the preferred curvature model of [65, 146],
is able to place sperm in any configuration in a fully 3D fluid domain and run
long-term simulations. In this work, the authors reproduce the attraction observed in
other models when sperm are coplanar, but find that any deviation from a coplanar
configuration would, at best, result in only a transient attraction before ultimately
swimming apart, as shown in Figure 8b.

This suggests that the cooperative or group swimming behavior observed
biologically may not be the result of purely hydrodynamic effects, but also perhaps
specific sperm morphology designed to overcome the tendency to swim apart. One
example is the possum sperm pairs mentioned above, but there are other examples.
For instance, in many rodent species, sperm heads have apical hooks on their heads
which have been observed to hook along other sperm tails to create the sperm “train”
[95]. The diversity of sperm morphologies and complexity of these interactions for
specific species has been widely ignored in the modeling work so far, due to model
limitations, but is an active area of study.
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Fig. 8 Example of models for interactions of sperm swimming near each other. Panel (a) shows
attraction of coplanar swimmers. Panel (b) shows two non-coplanar sperm attracting initially (at
t = 5.1) and then repelling (at t = 10.1).

8 Background Fluid Flow

As described in Section 3, from Newton’s third law of motion, when a fluid moves,
so will any free object surrounded by the fluid. Therefore, it is not surprising
that the relative magnitude of the flow will effect fertilization success rates. If the
background flow was too large, fertilization of the egg would become more difficult
since the egg would be rotating and moving, a chemoattractant gradient might not
be sensed, and a sperm might be unable to effectively swim against the flow [217].
However, lower to moderate background flows are hypothesized to be a long range
guidance mechanism, helping bring the sperm and egg together [131, 216]. These
flows are generated by muscle contractions, cilia in the fallopian tubes, and fluid
secretion from the oviductal epithelial cells [131, 189, 190, 193]. Uterine flow due
to a wave of muscle contractions (peristalsis) helps bring the egg to the uterus
and several modeling studies have quantified embryo transport in flows induced
by peristalsis [6, 62, 215]. In the female reproductive tract, sperm are swimming
in flows as large as one-fifth of their own swimming speed [131, 176]. Similarly,
external fertilizers living in coastal ocean environments also experience laminar
shear flows [217].

A natural question is whether there is an “optimal” flow rate. Experimental and
computational studies can be utilized to study and characterize sperm motility,
as well as sperm-egg encounters, at different flow rates. For red abalone sperm,
a marine invertebrate, it was observed that the swimming speed, encounter rate,
and fertilization success all were highest at the lowest shear tested (0.1 Hz),
and decayed as shear increased beyond 0.1 Hz [162, 217]. These experimental
results are highlighted in Figure 9a, where assays were done with and without the
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Fig. 9 Experiments illustrating how sperm swimming speeds, swimming direction, and encoun-
ters with the egg can change in the presence of a background flow.

presence of a known chemoattractant for red abalone, tryptophan, with background
flow. Similarly, experiments with bull, human, and mouse sperm have investigated
swimming at different flow rates. In Figure 9b, one can observe how mouse
sperm are able to reorient and swim in the direction opposite or against the
flow, called positive rheotaxis [108, 131]. Additional experiments have shown that
mammalian sperm exhibit positive rheotaxis over a range of fluid viscosities and
flows [108, 128], and the time to reorient against the flow is proportional to the flow
velocity [60].

As already highlighted in Section 6, mammalian sperm are navigating complex
environments and interacting with the surfaces of the oviductal walls. Previous
models, without a background flow, have studied sperm accumulation near walls,
showing sensitivity to the wavenumber [100]. Hence, recent studies have been
focusing on identifying the conditions and particular flagellar beats that allow for
positive rheotaxis in the presence of a wall. With the use of microfluidic devices,
experiments have shown that fluid flow and microgrooves facilitated migration in
the direction opposite of the flow [60, 128, 199].

An earlier study hypothesized that helical flagellar bending is necessary for
rheotaxis [131]. Computational models have varied a chirality parameter, which
corresponds to having a flagellar beat that ranges from planar to helical, showing
that positive rheotaxis does not require a helical beat [101, 147]. Emergent sperm
trajectories and flagellar beats are highlighted in Figure 10a where the sperm
exhibits positive rheotaxis after reorienting in the flow over time. Since fluid flow
may induce rolling or rotation of the sperm flagellum [131], this was investigated
with a 3D analysis of flagellar waveforms where it was determined that the cell
turning direction is not defined by the rolling direction [29]. The emergent behavior
was further studied in a computational model by systematically varying the shear
rate and the chirality parameter to understand under what conditions positive
rheotaxis would occur. In Figure 10b, each symbol represents a different observed
swimming pattern. This phase diagram highlights the interplay of fluid shear, steric
surface interactions, and the chirality of the flagellar beat, which has been described
in several studies [101, 108, 147].

Even though studies have started to identify the conditions under which a
mammalian sperm will exhibit positive rheotaxis, there is still some debate as to
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Fig. 10 Simulations illustrating how sperm motility changes in the presence of a background flow.
In panel (a), a time series shows a model sperm reorienting to swim against the background fluid
flow. In panel (b), swimming is a function of γ̇ /f (ratio of the shear rate and beat frequency) and
chirality parameter (measuring how planar versus helical a flagellar beat is) on the y-axis where
squares=upward swimming (against flow), diamonds=periodic tumbling, circles=negative relative
velocity, and triangles=downward swimming. The figures are reproduced with permission from the
American Physical Society.

whether this is a passive response or an active response. A passive response would
correspond to flagellar waveforms or swimming direction changes solely based on
hydrodynamic interactions [131]. An active response would include sensing the
flow via mechanosensitive channels, which would then initiate a signaling pathway
that would result in changes in flagellar waveform causing the sperm to reorient
against the flow [60]. An interesting fact is that sea urchin sperm are not biased by
fluid flow, nor are CatSper mutant mouse sperm, which possess defective calcium
signal transduction [131]. Additional modeling studies where flagellar bending is
an emergent property, possibly coupled to evolving chemical concentrations, are
necessary to further illuminate how reorientation in a flow occurs.

9 Modeling the Flow: From Viscosity to Elasticity

While sperm reside in a viscous fluid environment, most biological fluids are not
homogeneous, and contain varying amounts of polymers and proteins that can be
thought of as obstacles that may add elastic effects to the fluid. In the mammalian
female reproductive tract, the fluid environment varies with the estrous or menstrual
cycle; around ovulation the isthmus epithelium is covered by a dense mucus that
then disappears after ovulation [103, 131]. The role of fluid viscosity is also
important to consider since mammalian sperm swim in cervical mucus, which can
range from 200 to 680 cP in humans [110, 176]. Emergent flagellar waveforms
observed when swimming in a gel also depend on whether the sperm is fresh
(exhibiting low amplitude, symmetrical beating in control medium) or if the sperm
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Fig. 11 Bull sperm in
vaginal fluid, reproduced
from [166] with the
permission of John Wiley and
Sons.

is hyperactivated (having high internal calcium concentration and large amplitude,
asymmetrical beating in control medium) [191]. Additionally, in polyacrylamide
gels, relative to the control medium, swimming speed is enhanced for hyperactive
sperm and in general, attraction and clustering of sperm are enhanced [191, 200].

All of these observations suggest that both viscosity and fluid elasticity play roles
in sperm progression, but precisely what these roles are is a complex question. In
[110], the authors suggest that viscosity is a control mechanism along the oviduct
for sperm selection. Thus, different fluid environments could act to control, aid, or
hinder sperm progression. We note that experimental studies which track emergent
flagellar waveforms and swimming speeds are both costly and time intensive.
Hence, in order to advance our understanding of sperm motility in a variety of fluid
environments, models have moved from Stokesian flows to more advanced fluid
models to systematically probe a range of model parameters and identify swimming
speeds and emergent flagellar waveforms.

As shown in Figure 11, vaginal and cervical fluids contain a network of proteins
such as mucin. These networks can act as barriers and/or add elasticity to the fluid.
If one wants to account for the additional drag or resistance in the fluid due to a
network of polymers, we could use a two-phase fluid model or use the Brinkman
equation. In a two-phase fluid model, the volume fractions of the fluid and polymer
phase are accounted for at each region in space, where viscous stress tensors account
for friction between the phases. Through analysis and simulations, for most cases,
it has been shown that swimming speeds in a gel represented as a two phase fluid
(elastic polymer network and viscous fluid) decrease in comparison to a single fluid
model [57, 72]. However, an enhancement in propulsion was observed when the
polymer network was stationary [72].

The other approach is to think of the homogenized fluid flow through a sparse
array of fibers or polymers that are stationary [7, 24, 93, 181]. This can be modeled
using a Brinkman flow equation, which is the Stokes equation in (1a) with an
additional term on the right-hand side. This term is a flow dependent resistance
term, −μαu, where α is the resistance parameter and is inversely proportional to
the permeability. When taking the limit as α → 0, we recover the Stokes equation,
which is the case of no obstacles and infinite permeability. The Brinkman equation
is effectively a two-phase fluid with a sparse and stationary solid volume fraction.
With asymptotics, for a prescribed waveform, it has been shown in 2D and 3D
that an infinite-length swimmer has an increased swimming speed in a Brinkman
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Fig. 12 Simulations of sperm swimming in a Brinkman fluid with varying resistance parameter,
which characterizes how the presence of fibers effect the flow.

fluid in comparison to the Stokes case (with no resistance) [90, 116]. The idea of
enhanced swimming with additional fibers (higher α) seemed counterintuitive until
the formula for work was derived [89]. In order to attain the prescribed amplitude
and see this enhancement in swimming speed, the amount of work increases
dramatically with α. Thus, most microorganisms and artificial microswimmers may
not be able to demonstrate this enhancement over this range of α because there is a
finite amount of energy available.

New numerical methods utilizing regularized fundamental solutions have been
developed to study swimmers with a preferred curvature model and emergent
waveforms in Brinkman fluids [41, 89, 115]. In Figure 12a, for the same preferred
waveform, there is a non-monotonic change in emergent flagellar amplitude and
swimming speed with respect to the resistance parameter α. The enhanced swim-
ming for 0 < α < 1 is in a biologically relevant range of fiber volume fractions,
showing that the presence of a small to moderate amount of fibers can give a boost
in swimming speed. For α > 1, the fibers are preventing the swimmer from moving
and achieving the preferred waveform. The authors also determined that stiffer
swimmers representative of mammalian sperm are able to see an enhancement
whereas less stiff swimmers such as marine invertebrate sperm do not see this
enhancement, leading to the hypothesis that mammalian sperm have adapted to their
fluid environment [89, 115, 143].

One may also wonder how the presence of fibers might change the dynamics
of interactions of pairs of swimmers. In Figure 12b, for nondimensional resistance
parameter ᾱ = L/

√
γ with swimmer length L and fluid permeability γ , attraction

of two coplanar swimmers is observed for ᾱ = 1 (left panel) and repulsion is
observed for ᾱ = 10 (right panel). These results also demonstrate that the presence
of the fibers, without additional fluid elasticity, could enhance swimming speed and
attraction for low to moderate resistance parameter ᾱ.

When mucus has a high density of proteins, rheological testing has shown
that there is no longer a linear relation between stress and strain, making it non-
Newtonian [63, 166, 193]. There are several different modeling approaches that can



196 J. E. Simons and S. D. Olson

be used to simulate these types of flows. One approach has been to assume that the
polymer network has an effective viscosity that varies as a function of the shear rate
and a popular choice is the Carreau model for a shear thinning fluid, where low shear
rates capture a Newtonian fluid and higher shear rates correspond to a power-law
fluid. For the Carreau fluid model, asymptotic analysis of infinite-length swimming
exhibits a decrease in swimming speed relative to the Stokes case [49] whereas
swimming was enhanced relative to the Stokes case in numerical simulations for
finite-length swimmers [133]. Thus, results suggest that a boost in swimming speed
is observed due to shear thinning at the head of the swimmer. The Carreau model
works well at moderate shear rates, but it is not able to fully capture and describe
the non-Newtonian flow at higher shear rates.

Instead of modifying the viscosity, one can model the polymers or proteins
explicitly. The advantage of doing this is that known behaviors of polymers can
be incorporated. Importantly, it is known that viscoelastic fluids are characterized
by a Newtonian fluid behavior in steady shear, but at higher shears, deformations
can cause proteins or polymer chains to exhibit a nonlinear strain response that
could be frequency-dependent. One approach to capture this behavior is to model a
dynamic network of elastic links immersed in a viscous fluid. Such a network will
result in additional forcing terms in the governing equations for the fluid. Depending
on the rules governing the links, the elastic link network may be able to account
for viscosity and shear thinning [20, 55, 210]. The complex rules governing such
polymer dynamics can be computationally expensive, but this method can be used to
understand the types of dynamic networks that enhance flagellar swimming. It was
found that stiffer networks enhance swimming speeds when the motion is prescribed
and swimming efficiency depends heavily on the evolution of the links (whether and
how the links can break and reform) as the swimmer progresses through the network
[212].

Another approach to model a viscoelastic fluid is to modify the stress term in the
governing equations for the fluid so that it accounts for the polymers. The governing
equations of zero Reynolds number flow can be expressed as:

∇ · σ + f = 0, (9a)

∇ · u = 0, (9b)

where σ is the stress (force per area). The Stokes equations have a linear relation
between viscous stress and the local strain:

σ = −pI + μ(∇u + ∇uT ) (10)

where T denotes transpose and I is the identity matrix. Plugging this form of
the stress into (9a) gives (1a). Now, to arrive at non-Newtonian flows, the fluid is
idealized as a solvent of given constant density ρ and viscosity μ, which has a dilute
suspension of polymers immersed in it. The effective extra stress contribution is
derived from the transport and distension of these dilute polymers. In the Oldroyd-
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Fig. 13 Simulations results for sperm swimming in a viscoelastic fluid governed by the Oldroyd-B
equation.

B model [139], the total stress σ now becomes a sum of the Newtonian fluid stress
given in (10) and the stress from the polymers σP . The polymeric stress is found by
solving the Oldroyd-B constitutive model, containing an upper convected derivative
of the viscoelastic stress tensor. Note that most viscoelastic fluids have several
polymer relaxation times and the Oldroyd-B model assumes a single, constant
relaxation time rt . When working with the Oldroyd-B model, the nondimensional
parameter De = rT L/U is the Deborah number, which describes the relaxation
time of the fluid for characteristic length and velocity scales L and U , respectively.

Swimming speeds of infinite-length swimmers in viscoelastic fluids governed
by the Oldroyd-B equations exhibit a decrease in swimming speed relative to the
speed in a purely viscous fluid [73, 74, 111]. In contrast, simulations of finite-
length swimmers using a preferred curvature model revealed that enhancement
in swimming speeds are observed for larger amplitude undulations at De ∼ 1
[196, 197]. In Figure 13a, the emergent swimming speed is normalized with respect
to the swimming speed in a Newtonian fluid and plotted as a function of the Deborah
number. Since sperm propel themselves by “kicking” their tails, they are classified
as a “kicker,” where an enhancement in swimming speed is observed for a certain
range of stiffness parameters. This enhancement in swimming speed is due to an
accumulation of stress at the end of the tail, as shown in Figure 13b, where the
ellipses represent the symmetric portion of the polymeric stress tensor σP . Note
that in Figure 13a, the “burrower” corresponds to an undulation representative of
nematodes such as C. elegans and does not have an enhancement in swimming
speed in this non-Newtonian flow.

In summary, elasticity can have a range of outcomes. Since stress accumulation at
the tips or end of the swimmer can cause an enhancement in swimming speed, anal-
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ysis with infinite-length swimmers are not able to capture such effects. Additionally,
conflicting experimental results in terms of swimming speed enhancement or slow
down have now been unified since the outcome depends on the Deborah number
De, the stiffness of the swimmer, and the particular undulating waveform of the
swimmer [197]. Recent experimental results have observed that sperm interactions
and collective swimming are enhanced in viscoelastic fluids [200]; this still remains
an open avenue for computational models to understand hydrodynamic efficiency of
interactions in these fluids. We point out that most computational studies with non-
Newtonian flows are often completed in 2D for ease of computation. However, one
must be cautious when interpreting results since the derivatives of the flow could
vary greatly when comparing 2D and 3D [132]. Thus, further studies in 3D, as well
as additional experiments to identify and verify the correct rheological properties of
vaginal and oviductal fluids at multiple time points are needed in order to elucidate
the true role that fluid elasticity plays in sperm motility.

Many of these models for viscoelasticity, particularly in the study of finite-
length filaments, are recent. As noted earlier, interactions with the egg have not
been studied in great detail and part of this is due to the nature of the cumulus
oophorus complex surrounding the egg, which consists of cells and a viscoelastic
extracellular matrix [159]. It has been shown that removing the cumulus reduces
fertility and it is postulated that the cumulus might entrap the sperm [201]. The work
in [211] demonstrates how the method of images can be used to model the surface
of an egg surrounded by a viscoelastic mesh. While only a preliminary investigation
was done into how the viscoelastic mesh would respond to a force applied by a
sperm head, future work will certainly help elucidate how sperm motility, interaction
with surfaces, and fluid rheology all play concerted roles in fertilization of the
egg.

10 Current Challenges and Future Directions

Fertility is one of the most important fields of study in our changing world. As we
face uncertainties with population decline of species in some regions and grapple
with population control in other areas, an understanding of sexual reproduction
and its underlying mechanisms is paramount. Despite a long history of biological
investigations and mathematical modeling in male fertility, it has long been an area
with limited clinical possibilities beyond observational diagnoses. With advances in
both models and experimental capabilities, this is changing.

While this chapter has summarized a great deal of research dating back over 60
years, there are still many open questions and challenges. As mentioned earlier,
computational approaches are necessary to meet these challenges and begin to
answer these questions. Like any modeling context, there are significant tradeoffs in
the level of detail one chooses to use to capture the dynamics of sperm motility. A
detailed description of the sperm body itself would certainly lead to a more accurate
simulation, but it is often associated with a large computational cost as well as many



Dynamic Models of Sperm Motility 199

parameters and model equations to describe the motion, which might not be fully
known. With our ever increasing computational capabilities, models will be able
to incorporate more and more detail and simulations will be larger in scale, both
spatially and temporally. Beyond computation and the topics discussed in detail in
this chapter, there are several areas that warrant future modeling consideration for
sperm motility and its role in fertility.

Though basic interactions between sperm and rigid surfaces, or interactions
between pairs of sperm in particular geometries have been studied fairly extensively,
little has been done to understand sperm motility in more complicated scenarios that
include flexible boundaries. This includes interactions within populations–where
each sperm may act as a moving boundary for other nearby sperm–or interactions
with flexible surfaces mimicking the oviductal epithelium. Flexible boundaries were
explored in a 2D fluid channel [64], where results suggested that flexible surfaces
might decrease speeds. It is thought that peristalsis caused by oviductal contractions
may also aid in sperm progress towards the egg [164], though dynamic 3D models
to investigate the oviductal role in sperm transport are lacking. Additionally, more
biologically realistic models for the interaction between cilia lining the oviduct and
sperm, beyond the work in [102, 174], could be of interest in understanding sperm
transport.

Sperm are the most diverse cell type known [154] and sperm morphology, in
particular, is extremely varied and has been shown to have significant effects on
hydrodynamics [56]. While many models have focused on the sperm flagellum and
ignored the sperm head and other structures like the midpiece (the more rigid piece
of the flagellum near the head, depicted in Figure 2), there is a growing body of
work exploring these features. In [56], the authors consider the effects of adding
spherical heads on a flagellum model and varying parameters controlling sizes of the
head and tail waveform to find strong effects on the hydrodynamics. More recently,
work to move beyond spherical or ellipsoidal heads has been done (for instance,
see [175], where the authors use a deformed sphere that captures the principle
features of a human sperm head). The exact effects of varying head morphologies
remains unclear and if one wants to consider sperm across a broad range of taxa,
morphology–as well as species-specific reproductive strategies–will be important to
consider.

Most modeling frameworks have relied upon planar waveforms, which is a
simplification of the actual waveforms observed. Sperm may have primarily planar
waveforms, but sometimes their beat patterns are more helical or have a so-called
figure-eight deviation from the plane. And even if the waveform is primarily planar,
the environments sperm live in are simply not fully captured by planar models.
Thus, models that can react dynamically to the local environment and are robust to
fully 3D interactions deserve increasing attention to develop more realistic models
of sperm motility [81].

Biochemistry mediates much of the behavior we observe in sperm motility.
It is known that calcium and pH levels can modulate motility, as well as more
complex biochemical cascades such as the acrosome reaction, which must occur
before fertilization. While some work has been done to model biochemical reaction
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pathways and their impact upon motility (for instance, see [146, 172]), incorporating
more biochemistry and biologically realistic models for reactions happening within
the sperm and between sperm and their environment is vital. This includes studying
biochemical changes as sperm progress through the oviduct and ultimately modeling
interactions with the egg and the cumulus–oophorus complex surrounding the egg,
which are generally viewed as gate-keeping mechanisms for successful fertilization.

All models for cellular motility have been developed to explore biological
questions which the laboratory setting may not be able to answer. That being said,
many recent advances–in microscopy, microfluidic devices, and other techniques–
now make it possible to not only observe cellular motility and dynamics in more
detail, but also test hypotheses arising from model results and vice versa. Sperm
motility is not just an ideal model system for studying cellular motility, but truly
a system that can elucidate some of the most complex dynamics we face in the
study of cellular locomotion, due to the direct evolutionary outcomes of successful
fertilization and the implications for species survival.
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Lamellipodia in Stationary
and Fluctuating States

Danielle Holz, Laura M. McMillen, Gillian L. Ryan, and Dimitrios Vavylonis

Abstract We review recent mathematical models describing the diffusive transport,
reaction, and turnover of actin and regulators at the leading edge of motile cells.
These models are motivated by experimental results using cells with flat, steady
lamellipodia studied by Single Molecule Speckle microscopy. The same cells can
also be made to exhibit protruding and retracting lamellipodia, which demonstrate
how changes in actin polymerization lead to changes in the rate of protrusion. The
second part of this chapter provides a description of these fluctuations as an excitable
actin system pushing against the cell membrane by polymerization.

1 Introduction

Lamellipodia are thin and flat protrusions at the leading edge that allow cells
to attach, and move across on flat surfaces. Lamellipodial protrusions have been
studied extensively, both due to their importance in cell motility and as model
systems of cytoskeletal dynamics [10, 20, 68, 81, 101]. Actin filaments in the
lamellipodium form a dynamic network that polymerizes primarily close to the
leading edge of the cell, with the filament barbed ends pointing toward the cell
membrane. In the dendritic nucleation model, many of these filaments are created
as branches off pre-existing filaments [80]. Pushing of the cell front forward is due
to the addition of monomers to free barbed ends of the lamellipodial actin network
near the cell membrane. The concentration of free barbed ends is regulated by
capping proteins. The whole actin network undergoes retrograde flow towards the
cell center due to polymerization at the leading edge combined with adhesion and
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myosin contraction at the rear of the lamellipodium [77, 81, 85, 101]. The difference
between the rates of polymerization and retrograde flow results in net lamellipodial
protrusion or retraction. The actin subunits in the filament that move towards the
back of the network break off from the network due to cofilin-induced severing into
oligomers. The disassembled pieces further depolymerize and are recycled close to
the leading edge.

Many actin regulatory proteins have been characterized in vitro, but precisely
how they control actin polymerization and depolymerization across the lamel-
lipodium has not been completely resolved. The majority of actin polymerization in
lamellipodia occurs near the leading edge. As the network moves toward the body of
the cell by retrograde flow, F-actin is depolymerized and recycled to be used again.

1.1 Lamellipodium in Homeostasis

Since all lamellipodial components have to be recycled, the transport of disassem-
bled proteins through the cytoplasm back towards the leading edge is an important
component of the kinetics in lamellipodia. Some studies suggested that diffusion is
fast enough to deliver actin subunits to the leading edge [49, 99] while others have
proposed a role for active transport mechanisms such as myosin-based transport [26]
or hydrodynamic flow [108]. Previous theoretical work has shown how diffusion
may become limiting, depending on both the value of the diffusion coefficient in
the cytoplasm and the spatial distribution of sources and sinks of actin subunits in
the cytoplasm [72, 92]. One of the difficulties in directly measuring the existence
of gradients of diffuse actin experimentally is that the diffuse population is a
small fraction of the actin in filaments. Further, the dynamics in photoactivation
or photobleaching experiments reflect a combination of reaction and diffusion that
can be hard to disentangle [61, 92].

In the first part of this chapter we discuss recent studies that show how
mathematical models based on data obtained by single molecule speckle (SiMS)
microscopy can be combined with fluorescence recovery after photobleaching
(FRAP) or photoactivation (PA) studies to model the dynamics of the diffuse actin
pool [92, 92, 99], capping protein, and Arp2/3 complex. In SiMS, cells contain
fluorescently labeled proteins at a concentration sufficiently low to resolve single
molecules [102]. If a fluorescent protein is diffusing freely in the lamellipodium, it
will appear as a diffuse background or localized cloud, depending on its diffusion
coefficient and the exposure time of the camera. When the tagged protein binds
to the actin network it appears as a speckle undergoing retrograde flow while it
remains bound to the network. Speckle disappearance reflects dissociation of the
tagged protein to the diffuse pool. By contrast, cells in FRAP or PA experiments
typically contain a large fraction of labeled protein that leads to spatially extended
intensity fields, the redistribution of which around an area of interest reflects the
combined dynamics of reaction, retrograde flow, and diffusion [92].
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1.2 Lamellipodia in Fluctuating States of Protrusion
and Retraction

In many cells, usually soon after they spread on a surface and before the onset of
directed cell motion, the protrusion of the lamellipodium is followed by retraction
[88]. This leads to cycles of protrusion and retraction that are periodic and in some
cells organize into traveling waves of protrusion along the cell front and sides [4, 8,
22, 29, 55, 58, 59, 84, 87, 88]. This regular behavior involving fluctuations around
a steady state can be used to study how the dynamics of actin polymerization are
converted into cell motion [88].

Patterns of protrusions and retractions have been observed in XTC cells from
Xenopus, which usually adopt a circular shape after introduction to the poly-L-lysine
substrate (Figure 4A,B) [88]. The flat lamellipodia within these cells are ideal for
quantitative analysis, allowing accurate averaging and calculations of correlations
among different components. The retrograde flow rate was approximately constant
during protrusion and retraction, suggesting that the changing F-actin localization
in these cells stems from variations in the assembly and disassembly of the actin
network near the leading edge, as opposed to stemming from changing retrograde
flow rates [87].

The observed dynamics are suggestive of excitations driven by noise (i.e.,
stochastic concentration fluctuations): experimental results of XTC cells from Ryan
et al. [87] show cycles of bursts of actin polymerization in a random pattern around
the cell, lateral propagation, followed by disassembly. In the second part of this
chapter we describe recent models that successfully described these experimental
observations.

2 Model of Actin Turnover and FRAP Kinetics in XTC Cells

Numerous experiments provide evidence that actin polymerization and depolymer-
ization occur not just at the leading edge but also throughout the lamellipodium
[7, 15, 56, 66, 82, 96, 98, 101]. Most directly, Single Molecule Speckle (SiMS)
Microscopy on XTC cells demonstrates single molecules of actin polymerizing
throughout the lamellipodium [102] (Figure 1A & D).

In apparent contradiction to the studies above, which indicate an extended
distribution of barbed ends across the lamellipodia, fluorescent recovery after
photobleaching (FRAP) experiments show that significant fluorescence recovery
occurs fast near or at the leading edge, while recovery away from the leading edge
occurs with a delay followed by a more rapid increase [38, 52, 73]. This suggests that
actin polymerization occurs only very close to the leading edge and that recovery
at the back relies on retrograde flow of unbleached monomers from the very front
of the leading edge [52, 53]. However, reassociation of the bleached actin within
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the bleached area in FRAP experiments may slow down recovery [101] as shown
for reaction diffusion models of actin turnover in a spatially homogeneous system
without retrograde flow [14, 61, 95].

To address this apparent discrepancy between SiMS and FRAP data, Smith et al.
[92] compared models with actin turnover distributed throughout the lamellipodium
to FRAP experiments of XTC cells, the same cell type for which SiMS experiments
had already been performed. They studied XTC cells that have negligible leading
edge protrusion or retraction. While the FRAP recovery in XTC lamellipodia is
qualitatively similar to that in other cells [38, 52, 73], these models demonstrated
that SiMS and FRAP data do not contradict one another.

Smith et al. developed two models to show that turnover can occur without
causing rapid FRAP recovery away from the leading edge. The first model uses
diffuse actin that polymerizes and depolymerizes as monomers. FRAP curves
simulated with this model are good fits to experiments, but have some different
qualitative features. The second model considers two species of diffuse actin that can
polymerize and depolymerize throughout the lamellipodium, monomers (G-actin),
and oligomers (O-actin). Oligomers are slowly diffusing actin that can anneal to the
F-actin network. The presence of a small amount of oligomers further reduces the
amount of recovery away from the leading edge in simulated FRAP. The results of
this model are in better agreement with both FRAP and SiMS microscopy.

2.1 Model of Actin Profile Based on SiMS Speckle Statistics

In the model by Smith et al. [92], SiMS microscopy data are used to compute the
steady-state F-actin concentration profile. This profile is then used to calculate the
steady-state G- and O-actin profiles and the corresponding polymerization rates as
a function of distance from the leading edge. These reaction rates are then used in a
numerical simulation of FRAP.

2.1.1 Calculation of F-Actin Profile

The statistics of single molecules of labeled actin obtained in previous studies of
XTC cells (Figure 1A) [91, 102] are an input to the model. The location of speckle
appearance events correspond to polymerization and yield an appearance rate, a(x),
as a function of distance from leading edge x (Figure 1D) [102]. The units of a(x)
in the model are μM/s. To obtain an analytical form for a(x), the appearance curve
is approximated with a double exponential:

a(x) = G∞K
[
A1e

−x/λ1 + A2e
−x/λ2

]
. (1)

The shorter length, λ1, corresponds to polymerization at the leading edge while the
longer length scale, λ2, corresponds to basal polymerization that occurs throughout
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Fig. 1 SiMS experimental data and simulated FRAP. (A) Tracking EGFP-actin speckles in
experimental SiMS in XTC cells (reproduced with permission from [91]). (B) Model with F-actin
and one species of diffuse G-actin. (C) Model for two-species of diffuse actin (G, oligomeric) and
F-actin. (D) Appearance profile for EGFP-actin speckles in XTC cells. (E) Lifetime distribution
for EGFP-actin speckles in XTC cells. (F) Simulated concentration profiles for F, G, and O actin
as a function of distance from the leading edge. (G) Simulated rates of binding for G → F and
O → F . (H) Simulated FRAP curves using a model that includes oligomers. (I) Simulated FRAP
using a model that includes oligomers. Panels B-H reproduced with permission from [92].

the lamellipodium. This equation is a phenomenological fit chosen for two reasons:
it captures the experimental data, and it yields analytical results in later calculations.
The biophysical mechanism that gives rise to the appearance distribution a(x) is not
yet fully established. The total rate of appearance is scaled in proportion to the
cytoplasmic concentration of labeled actin monomers far from the leading edge,
G∞. For convenience, A1 + A2 = 1 so K can be used as a parameter that adjusts
the total rate of polymerization and the resulting F-actin/G-actin (F/G) ratio. The fit
gives A1 = 0.84, A2 = 0.16, λ1 = 0.5 μm, λ2 = 4 μm (Figure 1C). While the bin
size for appearance data is comparable to λ1, the distribution of appearance events
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within the first 0.5 μm of the leading edge was not crucial for this study. What is
more important is the total number of speckles in the first bin.

Measurements of the speckle lifetime distribution in Figure 1E, p(tl), give the
probability distribution of the amount of time tl that each actin subunit spends as
F-actin. The lifetime distribution is approximately constant within the first 3 μm
from the leading edge [91, 102]. The lifetime distribution is adequately described
by a double exponential:

p(tl)/p(0) = C1e
−tl/τ1 + C2e

−tl/τ2 , (2)

where C1 = 0.741, C2 = 0.259, τ1= 16 s, τ2 = 60 s. Exponentials were chosen
because they capture the lifetime distribution well. They are also mathematically
convenient since they allow use of exponential statistics in simulations and enable
obtaining analytical results.

The velocity of retrograde flow vr provides the remaining parameter necessary
to construct an F-actin profile represented by the speckle statistics. Using the
appearance rate a(x) as a source of F-actin yields the steady-state concentration
profile F(x):

F(x) =
∞∫

0

Y (x, x′)a(x′)dx′. (3)

The profile Y (x, x′) generated by a point source at x′ is obtained by considering the
amount of subunits that have a longer lifetime than the time it took to travel from x′
to x via retrograde flow:

Y (x, x′) = Θ(x − x′) 1

vr

∞∫

x−x′
vr

p(tl)dtl, (4)

where the prefactor is found by balancing retrograde flow out of x′ with amount
created by the point source and Θ is the step function. Retrograde flow rate can be
considered approximately constant within the first 4 μm from the leading edge of
XTC cells [87].

2.1.2 Model with Monomers as Only Diffuse Actin Species

The first model considers actin in two states: F-actin that undergoes retrograde flow,
and G-actin with diffusion coefficient D = 4 μm2/s [25, 49, 61, 108]. G-actin
diffuses freely, polymerizing to become F-actin with rate a(x). A diagram of this
model is shown in Figure 1B where F and G are the only two species in the model.
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At steady state, both retrograde flux of F-actin and diffusive flux of G-actin balance
the local exchange between F- and G-actin:

vr
∂F (x)

∂x
= −D∂

2G(x)

∂x2 = a(x)− d(x), (5)

whereG(x) is the G-actin concentration and d(x) the rate of speckle disappearance.
Knowing F(x) from Equation (3), we can solve Equation (5) for the G-actin profile:

G(x) = G∞ − vr

D

∞∫

x

F (x′)dx′. (6)

The value of parameter K determines the F/G ratio since it changes the magnitude
(but not the shape) of the F-actin profile. To obtain the steady-state F-actin profile
based on SiMs data, we substituted Equations (1) and (2) into (3) and (4). The result
of the total amount of F-actin:

∞∫

0

F(x)dx = G∞K
2∑

i=1

2∑

j=1

AiCjτ
2
j λi, (7)

demonstrating that the F-actin concentration is directly proportional to parameter
K . By substituting Equation (7) into Equation (6) we can calculate the G-actin
profile analytically. By increasing K , the G-actin depletion near the leading edge
is increased. Increasing the value of the retrograde flow velocity causes a greater
depletion of G-actin.

2.1.3 Model with Both Monomers and Oligomers

Actin oligomers could be present in the lamellipodium through cofilin-mediated
severing of actin filaments [9, 16, 34, 50] or Arp2/3 complex debranching [12, 60].
The short lifetimes of capping protein speckles in lamellipodia indicate severing of
capped filaments [66]. Reassociation of these oligomers to the actin network could
be a mechanism for structural reorganization of actin filaments in the lamellipodium
[66, 97]. Oligomers with diffusion coefficient DO ≈ 0.5 μm2/s and a fluorescent
subunit would appear as background noise during exposure in SiMS experiments
[91]. If they anneal to the network, they would contribute to speckle appearance
events in SiMS experiments. When they dissociate from the network (via severing or
debranching) they would contribute to speckle disappearances. Since the diffusion
coefficient in the cytoplasm decreases with increasing molecular weight of protein
complex [75], such DO values may represent fragments of order ∼10 actin
subunits.
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In the model shown in Figure 1C, G-actin monomers can associate into F-
actin and F-actin subunits depolymerize into O-actin. Subunits of O-actin can
become F-actin or disassemble to G-actin with an average lifetime τO . The total
appearance rate is separated into oligomers, aO(x), and monomers, aG(x), with
a(x) = aO(x) + aG(x). It is then assumed that O-actin accounts for a majority
of appearance events away from the leading edge (corresponding to structural
reorganization of actin filaments away from the leading edge through severing and
reannealing) while G-actin polymerization contributes to most events close to the
leading edge (see [92] for other possibilities). At steady state, similar to Equation (5)

vr
∂F (x)

∂x
= aO(x)+ aG(x)− d(x), (8)

DG
∂2G(x)

∂x2
= aG(x)− 1

τO
O(x), (9)

DO
∂2O(x)

∂x2 = aO(x)− d(x)+ 1

τO
O(x), (10)

where DG = 4 μm2/s and DO are the G- and O-actin diffusion coefficients.
The F-actin profile is given by the same expression as in Equation (3), so we
can substitute in Equation (8) to solve for d(x), which leads to O(x) through
Equation (10) to:

O(x) = τO cosh
(

x√
DOτO

) ∞∫

0
f (x′) exp

( −x′√
DOτO

)
dx′

−τO
x∫

0
f (x′) sinh

(
x−x′√
DOτO

)
dx′, (11)

where f (x) = aG(x)− vr∂F/∂x. The G-actin profile can then be solved similar to
the model with monomers only, using Equation (9):

G(x) = G∞ − DO

DG
O(x)− vr

DG

∞∫

x

F (x′)dx′. (12)

An example of calculated profile is shown in Figure 1F, whereDO = 0.5 μm2/s and
τO = 20 s. The profile in Figure 1F is consistent with values of the F/G ratio in the
range 2–10 [1, 19, 51, 101]. The total amount of O-actin can be quite low compared
to the amount of F and G-actin, while still making a contribution to the total speckle
appearance rate. O-actin is generated by F-actin disassembly so it peaks close to the
leading edge where the F-actin concentration is larger.
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2.2 Particle Simulations

To simulate FRAP recovery, Smith et al. [92] assumed the appearance rate is
proportional to the local G-actin or O-actin concentration. In the model with just
monomers, the rate at which monomers convert to F-actin is:

rG→F (x) = a(x)/G(x). (13)

The O- and G-actin binding rates of the model with oligomers are correspondingly:

rG→F (x) = aG(x)/G(x), rO→F (x) = aO(x)/O(x). (14)

Figure 1G shows an example of calculated transition rates for the model with both
monomers and oligomers. Estimated values for the concentration of barbed ends
are [B] ≈ 1 μM [101]. We expect the transition rate to be proportional to the local
concentration of free barbed ends. Using rG→F = k+[B], the rate constant close to
the leading edge is k+ ≈ 0.6 μM−1s−1, consistent with previous estimates [101].

The transition rates in Equations (13) and (14) were used in [92] in an off-lattice
2D Monte Carlo simulation with reaction and diffusion of individual subunits. Each
subunit was either diffusing (G-actin, O-actin) or undergoing retrograde flow (F-
actin). Every time step,Δt (1 ms or smaller), diffuse particles were moved according
to the 2D Gaussian diffusion propagator and checked for association to the F-actin.
When a monomer transitions to F-actin, its lifetime is picked from the lifetime
distribution p(tl). After an F-actin subunit is moved, its lifetime is compared to the
time elapsed since polymerization to check if it should depolymerize and become
G-actin. To simulate images, the particles are treated as diffraction-limited spots
that diffuse during camera exposure [91]. Bleached particles are removed from the
simulation and do not contribute to intensity.

2.3 FRAP Recovery: Comparison of Model Results to
Experiments

A simulated FRAP image is shown in Figure 1I where a region of size 5x20 μm is
bleached near the leading edge. Figure 1H shows the recovery of intensity at two
strips between 0–0.5 μm and 2.5–3 μm (“Front” and “Back”) from the leading edge
using the model with both monomer and oligomers, plotted against experimental
data. The simulated recovery curves are very similar to the experiments, with fast
recovery at the front and slower recovery at the back. Good fits were obtained for
K = 0.4–0.9 s−1, DO < 1 μm2/s, and τO < 60 s The model with oligomers
captured two features of the experiment that the monomer-only model does not:

1. Recovery at the back (Figure 1I) is slower in the model with oligomers compared
to the monomer-only model. In Figure 1I, the FRAP curve at the back does



220 D. Holz et al.

not show significant recovery until retrograde flow carries monomers from the
leading edge into the back region. For the chosen parameters, oligomers do
not diffuse into the bleached region before retrograde flow transports monomers
from the leading edge into the region. Two factors contribute: The time required
to travel distance of order 3 μ by free oligomer diffusion is 10 s, but this is
slowed down by rebinding of O-actin within the bleached region [95] since√

4DO/rO→F = 3.2 μm; and generation of a new O-actin subunit, from
unbleached monomers that polymerize at the leading edge, requires times of
order the average speckle lifetime.

2. Unlike in the monomer-only model, the recovery at the front (Figure 1I) does
not have a tail at long times. A tail in the front recovery curve occurs in the
monomers-only model due to hindered diffusion through the lamellipodium [95].
In the model with oligomers, the region of G-actin polymerization is narrow, and
this effect is reduced in magnitude.

The above results support models that include annealing and severing in the
lamellipodium [42, 64]. For a more detailed study of the dependence of the FRAP
curves on model parameters, we refer the reader to [92]. The above models did not
explicitly account for the fact that G-actin monomers can carry different types of
nucleotide (ADP or ATP), or that monomers can be bound to profilin, thymosin,
or cofilin. It is assumed that the reactions among these different states occur fast
enough to be considered quasi-static and also do not modify the diffusion coefficient
of bound G-actin [72].

We note that a recent modeling study of lamellipodial actin turnover in keratocyte
fragments by Aroush et al. [6] reached different conclusions compared to Smith et
al. [92]. These authors concluded that while the actin network disassembles and
reassembles throughout the lamellipodium, actin subunits typically diffuse across
the entire lamellipodium before reassembling into the network. Aroush et al. also
argue that about two-thirds of the lamellipodial actin diffuses in the cytoplasm
with nearly uniform density, a much higher fraction of diffuse actin compared to
Figure 1F. Future work should address the origin of these discrepancies. A model
with the features stated by Aroush et al. (very high concentration of diffuse actin,
no local reassembly) would not capture the slow FRAP recovery at the back of the
lamellipodium of XTC cells (Figure 1H) or the increase of F-actin intensity starting
from the leading edge after photoactivation of actin in the cell middle (Figure 2G
below).

3 Model of Actin Turnover and Photoactivation Kinetics in
Neuronal Cells

Photoactivation (PA) of fluorescently labeled actin is another way to study sub-
cellular actin transport and reaction. In this section we review an extension of the
model of [92] of Section 2, developed in [99], to model PA of neuronal CAD (Cath.a



Lamellipodia in Stationary and Fluctuating States 221

differentiated) cells. For these cells, the study in [54] suggested an enhancement of
G-actin at the leading edge. To account for this enhancement, which could arise
from actin monomers bound to the plasma membrane through a profilin-Tβ4-actin
complex [99], a membrane-bound G-actin component close to the leading was
added to the model (otherwise the G-actin is depleted rather than enhanced near the
leading edge, see Figure 1F). In addition to modeling PA kinetics, another aim of
the study in [99] was to examine the effect of G-actin sequestering protein thymosin
β4 (Tβ4) in facilitating diffusing actin transport (uninterrupted by polymerization)
across the cell.

3.1 Model Description

This model includes 3 pools of diffuse protein instead of 2 (Figure 2A). The three
pools are: R, which is a recycling component that represents all actin which has
been recently depolymerized (which may include oligomers or actin bound to
other protein complexes); GC , which binds reversibly to Tβ4 in the cytoplasm;
and GM , which represents actin diffusing along the membrane, e.g., as membrane-
bound profilin-Tβ4-actin. The GC pool groups together free and Tβ4-bound actin,
assuming they are in rapid equilibrium, given the estimated off rate of 2.5 s−1 for the
Tβ4-actin complex [67].GC andGM also group together actin monomers free or in
complex with profilin and does not distinguish between ATP- and ADP-actin. All 3
diffuse pools are able to associate with F-actin; however, F-actin only depolymerizes
to the recycled actin in this model.

The appearance rate in this model is split between the three actin pools,

a(x) = aR(x)+ aC(x)+ aM(x). (15)

Given the similarities between XTC and neuronal CAD cell lamellipodia, it was
assumed that a(x) is given by Equation (1) and the lifetime distribution by
Equation (2). The appearances are defined as follows:

aC(x) = KG∞ACe−x/λ1 , aM(x) = KG∞AMe−x/λ1 , aR(x) = KG∞ARe−x/λ2 .

(16)

Here G∞ is the concentration of GC far from the leading edge, K determines the
fraction of F to G-actin, and AC + AM + AR = 1.

The concentration of actin at steady state, F(x), can be calculated as in
Equation (3). The equations that describe the steady-state concentrations of the
diffuse components are as follows:

DR
d2R(x)

dx2
= aR(x)+ 1

τR
R(x)− d(x), (17)
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DC
d2GC(x)

dx2
= aC(x)+ k(x)GC(x)− 1

τGM
GM(x)− 1

τR
R(x), (18)

DM
D2GM(x)

dx2
= aM(x)− k(x)GC(x)+ 1

τGM
GM(x). (19)

In these equationsDR ,DC , andDM are the diffusion coefficients for recycled actin,
cytoplasmic actin, and membrane bound actin, respectively. In all these equations,
x is the distance from the leading edge. The lifetimes τGM and τR are the times that
GM and R remain in their respective states until they become GC . The rate k(x) is
a spatially dependent rate that GC becomes GM .

The binding rate for the recycled actin, R, to become F-actin is aR(x)/R(x) and
similarly for GM and GC . These rates were then used in a 2D Monte Carlo particle
simulation as in Section 2.2. The system is initialized so that the concentrations
matched those found after solving Equations (17)–(19). Simulated concentration
profiles are shown in Figure 2B and the parameters used to find these profiles are
listed in Table 1. To perform photoactivation on a region, all particles outside of that
region are deleted and the remaining particles allowed to move and react.

Table 1 Parameter table for simulated photoactivation of PA-GFP actin.

Parameter Value Reference/Justification

DR 0.5 μm2/s Smith et al. 2013 [92]

DC 3.0 μm2/s Measured in [99]

DM 0.001 μm2/s Small value to represent slow diffusion

of membrane-bound component GM
vr 70 nm/s Measured in [99]

K 0.25 s−1 Estimated to give a ratio of F-actin to

diffuse components as in Figure 2B.

τR 20 s Smith et al. 2013 [92]

τM 0.5 s Smaller than 1 s

AR 0.16 Smith et al. 2013 [92]

AC 0.21 Smith et al. 2013 [92], assuming 25 % of polymerization

events from the non-recycling pools at the leading edge

are due to GC
AM 0.63 Smith et al. 2013 [92], assuming 75% of polymerization

events from the non-recycling pools at the leading edge

are due to GM
λ1 0.5 μm Smith et al. 2013 [92]

λ2 4 μm Smith et al. 2013 [92]

k(x) 20 s−1e−x/0.5 μm Selected to occur within a narrow region

close to the leading edge and with amplitude giving GM
concentration higher than GC
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3.2 Comparison to Photoactivation Experiments

An example of experimental photoactivation of PA-GFP actin from [99] is shown
in Figure 2C. This photoactivation is over a 5 by 10 μm region at the leading
edge showing the retrograde flow of the actin network and the local recycling of
the photoactivated actin in nearby regions (clearer in inverted grayscale image in
Figure 2C, bottom panel). The decay of fluorescence in the photoactivated region
as it moves inwards by retrograde flow is shown in Figure 2D. Simulations of actin
photoactivation over the same size and position as that in the experiment capture the
behavior seen in experiments (Figure 2E,F) with rebinding near the photoactivated
region as well as similar decay in fluorescence.

Simulations were also used to model photoactivation experiments of actin in
the cell center (Figure 2G), which demonstrate the transport dynamics of actin
across the lamellipodium. Figure 2H shows the normalized fluorescence response
within 1 μm of the leading edge as well as at the center. The fast recovery at the
leading edge of the cell brings up the question of whether diffusion is sufficiently
fast to transport actin from the cell center to the leading edge in this amount of
time. Simulations mimicking cell center photoactivation reproduce the observed
dynamics (Figure 2I,J), demonstrating that diffusion is likely sufficient for fast
delivery of actin from the cell center to the leading edge.

Another photoactivation experiment involved activating PA-GFP actin in the
whole lamellipodium [99]. The fluorescence at the leading edge decayed to about
50% of its original value after 120 s. The authors of [99] suggest that this points
to a pool of actin that is recycled within the lamellipodium. Simulations of whole
lamellipodium activation using the model of this section reproduce the experimental
trace [99]; however, the plateau occurs at the level of total amount of actin
photoactivated in the simulation box. Further modeling studies that account for the
diffusion through the whole 3D cell volume are needed to better interpret these
experimental results.

3.3 Simulations of Cells Without Actin Sequestration by Tβ4

Tβ4 binds to actin monomers, not allowing polymerization. Vitriol et al. [99]
performed PA experiments after knocking down (KD) Tβ4, using shRNA. In
experiments in which the cell center was photoactivated, a lag in recovery at
the leading edge was observed compared to the control case. After varying all
parameters in the model that would affect this recovery, the authors found that the
model matches experiment after: (1) an increase in the binding rate ofGC at the back
of the lamellipodium, and (2) reduction of the diffusion coefficient of GC by 50%,
compared to the control case. From this, the model predicted a less sharp sigmoidal
recovery at the back of the lamellipodium (2–3 μm away from the leading edge),
which agreed with experimental measurements [99].
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Fig. 2 Experiments and Simulations of Actin Photoactivation (reproduced from [99]). (A) Model
with three diffuse species of actin: recycled, cytoplasmic, membrane bound as well as F-actin.
The rates depend on distance from leading edge, with membrane binding, k(x), occurring close
to the leading edge. (B) Simulated steady-state concentration profile using the model in A. (C)
Photoactivation in ROI at cell leading edge. (D) Fluorescence decay in ROI of panel C. (E)
Simulated photoactivation of 5 by 10 μm box at the leading edge. (F) Simulated fluorescence decay
in activation box of panel E. (G) Cell center actin photoactivation. (H) Fluorescence in cell center
and close to leading edge after photoactivation of cell center. (I) Simulated photoactivation of cell
center. (J) Simulated fluorescence in cell center and close to the leading edge after photoactivation
of cell center. Image scale bars, panels C,E,G: 10 μm; panel I: 8 μm.
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The results of the PA simulations and experiments suggested actin within the
lamellipodium exists within two pools, one which is bound to Tβ4 and allows for
fast diffusion through the lamellipodium and another pool which diffuses slowly and
is not bound to Tβ4 [99]. Actin bound to Tβ4 is prevented from binding to actin
at the back of the lamellipodium and can diffuse fast through the lamellipodium
to the leading edge of the cell where it may associate in a complex with profilin
and allow the actin to incorporate into the actin network, perhaps through the aid
of formins. Tβ4 aids in this diffusion by sequestering the actin monomers and not
allowing them to bind promiscuously to other actin binding proteins throughout the
lamellipodial network [99]. The actin that is not bound to Tβ4 (recycling actin,
likely actin oligomers) is incorporated into the actin network away from the leading
edge. This study showed that a large portion of the actin in the lamellipodium is
recycled actin and that it plays an important role in the kinetics of turnover of the
network.

4 Model of Capping Protein and Arp2/3 Complex Turnover

Capping protein and the Arp2/3 complex are two of the most important regulators
of actin dynamics in cells and in in vitro reconstitution experiments [47]. This
section summarizes the work in [62] that extends the approach of Smith et al.
to capping protein and Arp2/3 complex. For both of these proteins, SiMS and
FRAP data have been performed in lamellipodia (albeit by different groups on
different cell systems). Similar to the case of diffuse actin, it is possible that
both exhibit significant concentration gradients in their diffuse pool. For example,
slowly diffusing capping proteins have indeed been observed by SiMS [91], which
may reflect capping protein bound to slowly diffusing actin oligomers or to the
membrane. The Arp2/3 complex has also been observed to form a slowly diffusing
complex with its activators prior to attachment to the actin network [65]. The study
by McMillen and Vavylonis [62] addressed these issues.

4.1 Method to Calculate Concentration Profiles

Since proteins in the lamellipodium are frequently associating to larger complexes
or binding to the membrane, the simplest model to account for this behavior with
two distinct cytoplasmic populations was considered: a fast diffusing cytoplasmic
population, Cfast, and a slow diffusing cytoplasmic population, Cslow. Bound protein
(B), which is protein bound to filaments in the actin network, can depolymerize into
either Cfast with probability s1 or Cslow with probability s2, where s2 = 1 − s1.
The diffuse protein Cfast can become bound protein with spatially dependent rate
rCfast(x), and Cslow can become bound with spatially dependent rate rCslow(x), where
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x is the distance from the leading edge. The diffuse component Cfast can become
Cslow with a lifetime of τC fast, and the component Cslow can become Cfast with a
lifetime of τCslow .

The appearance profile measured by SiMS was assumed to be the sum of two
separate profiles, aCfast(x) and aCslow(x), due to the fast and slow cytoplasmic pools
as follows:

a(x) = aCfast(x)+ aCslow(x). (20)

How the profile is split into two components is an assumption of the model.
Generally, the speckle appearance profile can be fitted by a double exponential
with two length-scales λshort and λlong. We define Cfast,∞ and Cslow,∞ to be the
concentrations of Cfast and Cslow respectively at distances far from the leading edge
of the cell. Using C∞ = Cfast,∞+Cslow,∞ to normalize concentrations, the constant
K defines the magnitude of the association reactions:

aCfast(x) = KC∞
(
A

Cfast
1 e−x/λshort + ACfast

2 e−x/λlong
)

(21)

aCslow(x) = KC∞
(
A

Cslow
1 e−x/λshort + ACslow

2 e−x/λlong
)
, (22)

where the dimensionless coefficients in Equations (21) and (22) satisfy ACfast
1 +

ACfast
2 + ACslow

1 + ACslow
2 = 1.

In the examples we consider in this section, the lifetime distribution for protein
speckles p(t) has weak dependence upon distance from the leading edge, within
a range of a few μm [66, 91, 102]. It can be fitted with a single exponential as in
Equation (2) where C2 = 0.

The bound protein profile,B(x) , can be calculated analytically using the function
Y (x, x′) of Equation (4) to find the profile of bound protein B1(x) and B2(x) due to
each of the diffuse species, Cfast and Cslow, respectively, such that B(x) = B1(x)+
B2(x), where:

B1(x) =
∫ ∞

0
Y (x, x′)aCfast(x

′)dx′, B2(x) =
∫ ∞

0
Y (x, x′)aCslow(x

′)dx′.
(23)

The steady-state reaction diffusion equations that describe the system are as follows:

vr
∂B(x)

∂x
= a(x)− d(x), (24)

DCfast

∂2Cfast

∂x2
= aCfast(x)− s1d(x)+

1

τCfast

Cfast(x)− 1

τCslow

Cslow(x), (25)
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DCslow

∂2Cslow

∂x2
= aCslow(x)−(1−s1)d(x)+ 1

τCslow

Cslow(x)− 1

τCfast

Cfast(x). (26)

Parameters DCfast and DCslow are the diffusion coefficients for Cfast and Cslow
respectively and d(x) is the detachment rate of bound proteins to the cytoplasm,
which is found by solving Equation (24), given a(x) and B(x) from Equations (20)
and (23). The parameter s1 is the probability for the bound protein to dissociate
into Cfast. The concentrations far from the leading edge obey: Cslow,∞/Cfast,∞ =
τCslow/τCfast . Equations (20)–(26) can be solved numerically to find Cfast(x)/Cfast,∞
and Cslow(x)/Cslow,∞ given vr , τCfast , τCslow , DCfast , DCslow , s1, and the parameters
that define aCfast(x), aCslow(x), and p(t). The method used involves adding time
dependence to Equations (25) and (26) and allowing them to relax for a sufficiently
long time:

∂Cfast

∂t
= DCfast

∂2Cfast

∂x2 − aCfast(x)+ s1d(x)−
1

τCfast

Cfast(x)+ 1

τCslow

Cslow(x),

(27)
∂Cfast

∂t
= DCslow

∂2Cslow

∂x2 −aCslow(x)+(1−s1)d(x)− 1

τCslow

Cslow(x)+ 1

τCfast

Cfast(x).

(28)
A no-flux boundary condition is imposed at the leading edge.

4.2 Calculation of Rate Constants and Simulation

The local rates with which the cytoplasmic protein binds to the network from the
fast and slow diffusing states (to be used in Monte Carlo particle simulations) can
be found using the appearance profiles and the cytoplasmic protein profiles:

rCfast = aCfast(x)/Cfast(x), rCslow = aCslow(x)/Cslow(x). (29)

These are the reaction rates for Cfast to convert into B1 and for Cslow into B2. 2D
Monte Carlo simulations of independent particles were performed using the method
of Smith et al. [92] described previously. The simulation was initialized using the
steady-state concentrations evaluated by Equations (27) and (28).

4.3 Application to Capping Protein Dynamics

In [62], the model of Section 4.1 was applied to capping protein, the lamellipodial
dynamics of which had been studied in prior studies with both FRAP and SiMS,
though in different cell systems. Kapustina et al. [46] analyzed FRAP data of
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fibroblast cells expressing EGFP-CapZ in a circular region of diameter 5 μm
centered at 5 μm from the leading edge of the cell [100]. They fitted the recovery to
a model that used Virtual Cell [70] with various components to find values for the
diffusion coefficient of capping protein in the cytoplasm, D=5–10 μm2/s, and for
its lifetime when bound to the actin network, τ = 10 s. These values are different
to those measured with SiMS microscopy of XTC cells [66, 91] where capping
protein was found to associate over an extended area of the lamellipodium, to have
a slowly diffusing cytoplasmic pool withD ≈ 0.5 μm2/s and to have a shorter bound
lifetime, τ ≈ 2s [66, 91]. While both studies show a short lifetime of bound capping
protein compared to the lifetime of polymerized actin (Figure 1E), they indicate
quantitatively different transport modes in the lamellipodia. One goal in [62] was
finding out if the measured SiMS microscopy parameters from Miyoshi et al. can
be used to fit the FRAP data from Kapustina et al. and to study the implications for
the concentration profile of capping protein across the lamellipodia.

Two previously proposed possibilities for the reasons behind slow capping
protein diffusion were considered: one being that capping protein is bound to
severed actin oligomers, the other being that capping protein binds to the membrane.
Monte Carlo simulations with bleaching of a 5 μm by 5 μm square region centered
5 μm from the leading edge were compared to the data of Kapustina et al.
using a circular bleach region (this difference in shape has only a small effect on
the recovery curve). In the simulations for capping protein below, the value for
retrograde flow used was vr= 0.03 μm/s [105].

4.3.1 Model Including Oligomers

The model with oligomers shown in Figure 3A,B is a specific case of the general
model of Section 4.1. The motivation for this model is the suggested existence of
short actin oligomers in the lamellipodium. If severed actin filaments are capped by
capping protein, this could explain why 50% of capping protein has been observed
in a slowly diffusing state with diffusion coefficient ≈ 0.5 μm2/s [91]. In this model
Cfast represents capping protein heterodimers diffusing in the cytoplasm and Cslow
represents capping protein heterodimers attached to the barbed end of an actin
oligomer diffusing in the cytoplasm. The bound protein can only dissociate into
capped oligomers, Cslow, that can either rebind to the network or become uncapped
and convert to Cfast.

Both fast and slow diffusing species were assumed to be able to bind to the
network, representing capping of free barbed ends and re-binding of oligomers
to the lamellipodial network, respectively (Figure 3A,B,E,F). Since SiMS only
measures the total appearance profile, an additional assumption in the model was
how a(x) is split into aCfast(x) and aCslow(x). Since the total appearance profile of
capping protein can be fit to a double exponential [62], the appearance rates were
broken up such that aCfast(x) corresponds to the short length scale and aCslow(x) to
the long length scale:
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Fig. 3 Modeling FRAP for Capping Protein and Arp2/3 Complex in lamellipodium (reproduced
with permission from [62]). (A) Diagram for model of capping protein including oligomers. (B)
Cartoon for model of panel A. (C) Simulated steady-state concentration profiles for capping protein
model for model in panel A. (D) Simulated FRAP curve of capping protein after bleaching a
5 μm×5 μm box situated 2.5 μm from the leading edge for model of panel A, compared to
experimental data in [46]. (E) Diagram for model of capping protein with membrane binding. (F)
Cartoon for model of panel B. (G) Simulated steady-state concentration profiles for capping protein
model of panel E. (H) Same as panel D but for model of panel E. (I) Diagram for model of Arp2/3
complex with membrane binding. (J) Cartoon for model of panel I. (K) Simulated steady-state
concentration profiles for model of panel I. (L) Simulated FRAP curve of Arp2/3 complex after
bleaching a 2 μm×4 μm box at the leading edge and monitored 0–1 μm and 1–2 μm from the
leading edge, compared to experimental data in [52].

aCfast(x) = KC∞A1e
−x/λshort , aCslow(x) = KC∞A2e

−x/λlong , (30)

with A1 = 0.74, A2 = 0.26, λshort = 2.0 μm, and λlong = 8.65 μm. The function
aCfast(x) accounts for the appearances due to Cfast close to the leading edge, whereas
aCslow(x) accounts for the appearances due to Cslow that are distributed throughout
the lamellipodium. Thus, the behavior of capping protein was assumed to follow
the behavior of actin oligomer rebinding that contributes to a large fraction of actin
speckle appearances at the back of the lamellipodium (Section 2.3).
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Parameters in the model were calculated from prior experiments or their range
estimated. The lifetime distribution of capping protein bound to the network can be
fit with a single exponential with τ = 2.0 s [66]. The lifetime of the capping protein
bound to the actin oligomer (τCslow ) is likely in the range of the lifetime of an actin
oligomer, 5–30 s [92]. The diffusion coefficient of the slow component is DCslow

= 0.5 μm2/s [91], and DCfast =2–5 μm2/s is expected which is comparable to the
diffusion coefficient of actin monomers [61, 99]. The value of K that influences the
ratio of cytoplasmic to bound protein was calculated to give an estimated ratio of
cytoplasmic protein to bound protein 2.3 to 1 [62].

Scanning the model parameters within the range described in the preceding
paragraph fits to FRAP data were obtained. The simulated FRAP was applied to
a steady state initialized with the concentrations found after relaxing Equations (27)
and (28) in time. Figure 3C shows the steady-state concentration profiles using K
= 0.5 s−1, DCfast = 2.0 μm2/s , DCslow = 0.2 μm2/s, vr= 0.03 μm/s, τ = 2.0 s,
and τCslow = 13.0 s. In order to obtain good fits to the experimental FRAP data
for capping protein, the lifetime τCslow needs to be maximized, and the diffusion
coefficient DCfast needs to be minimized, within the range of values described
above and the range that gives nonnegative concentration profiles in the model
equations. Figure 3D shows the recovery of the intensity in the bleached region
along with the recovery in Kapustina et al. The recovery curve for DCslow = 0.5
μm2/s is an overall good fit to the experimental curve; however, the initial recovery
is more rapid compared to experiment. The fit can be improved using DCslow = 0.2
μm2/s [62].

The above results show that parameters measured with SiMS can be used to
model the FRAP data in [46], using a smaller diffusion coefficient DCslow and faster
dissociation time τ compared to [46]. The diffusion of long-lived oligomers out of
the bleached region contributes to making the recovery slower initially and a value
τCslow ≈ 13 s is needed for a good fit. This is in agreement with the fact that slowly
diffusing speckles can be tracked for a few seconds and thus the lifetime of the
slowly diffusing capping protein is likely in the range of 5–30 s [91]. Even though
the dissociation time τ = 2 s is small compared to the measured FRAP half-time,
the bound species is a small fraction of the total amount.

4.3.2 Model with Membrane Binding

Another way of accounting for slowly diffusing capping protein is considering that
capping protein binds and diffuses along the membrane [91]. Membrane binding
can occur through a fast-diffusing state in the cytoplasm or by membrane-induced
uncapping of capped barbed ends. The model shown in Figure 3E,F is another
possible mechanism of why capping protein dissociates so frequently from the actin
network and diffuses slowly. CARMIL is a membrane bound protein complex that
also binds capping protein and may account for the very short lifetime of capping
protein bound to the actin filament [23, 27, 28]. In this model only fast diffusing
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cytoplasmic protein is able to become bound (representing capping of barbed ends)
so that the appearance rate is:

a(x) = aCfast(x) = KC∞
(
A1e

−x/λshort + A2e
−x/λlong

)
, (31)

with A1 = 0.74, A2 = 0.26, λshort = 2.0 μm, and λlong = 8.65 μm. The bound protein
can dissociate into either Cfast or Cslow and the parameter s1 is the probability of
dissociating into Cfast. The fast diffusing capping protein can convert to slow with
lifetime τCfast and slow can become fast with lifetime τCslow . The model in Figure 3E,
F is another specific case of the general model.

The model with membrane binding (Figure 3E) has more parameters compared
to the model with oligomers (Figure 3A).

The new parameters are the lifetimes τCfast , τCslow , and the dissociation probability
s1. As mentioned in Section 4.3.1, the lifetime of the slowly diffusing capping
protein is likely in the range of 5–30 s. It was assumed that τCfast = τCslow so that
Cfast and Cslow each correspond to 50% of the concentration far from the leading
edge [91]. Figure 3G shows a concentration profile generated with K = 0.435 s−1,
DCfast = 2.0 μm2/s,DCslow = 0.5 μm2/s, vr = 0.03 μm/s, τ= 2.0 s, τCfast = 5.0 s, τCslow

= 5.0 s, s1=0.1.
Parameters could be adjusted for the second model to fit the experimental

FRAP data. The simulated recovery curves are shown in Figure 3H, along with
the experimental data. Both simulated curves with DCslow = 0.1 μm2/s and DCslow=
0.5 μm2/s fit the data; however, the smaller diffusion coefficient allows for a better
fit. Similar to the model with oligomers,DCfast needs to be on the lower range of the
physically plausible values 2–5 μm2/s . Parameter s1 needs to be small compared
to unity, otherwise the bleached region recovers too quickly and none of the other
parameters are able to slow the recovery down enough to capture what occurs in
the experiment. Keeping τCfast = τCslow , variation of these two parameters together
showed that they also need to be in the range of a few seconds [62].

In conclusion, obtaining a good fit drives this model to a similar kinetic scheme
as the model with oligomers, with the majority of the bound protein dissociating
into slowly diffusing protein.

4.3.3 Comparison of Two Models for Capping Protein Turnover

The pool of slowly diffusing protein is important to fit FRAP recovery with half-
time on the order of 10 s, using a bound lifetime of 2 s. Retrograde flow contributes
little to FRAP since the distance traveled by retrograde flow during recovery is small
compared to the size of the bleached region. Since both models are driven to similar
kinetic transition rates, it is hard to distinguish between them using further FRAP
data of either the back or front of the lamellipodium. A clearer difference between
the two models can be seen in lamellipodium photoactivation simulations with the
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same parameters as for the FRAP data [62]. Both models demonstrate significant
concentration gradients of the two diffuse species across the lamellipodium. This
prediction of concentration gradients could be tested in future experiments. The
origin of this gradient is mainly the local production of slowly diffusing capping
protein close to the leading edge. The inward flux of the slowly diffusing population
plus the retrograde flow of the bound species must be balanced by the diffusive flux
of the fast species at steady state.

4.4 Application to Arp2/3 Complex Dynamics

Both FRAP and SiMS microscopy experiments have been performed to study the
kinetics of Arp2/3 complex in the lamellipodium. In FRAP studies by Lai et al. [52],
the bleached region was a 2 μm by 4 μm box positioned at the leading edge of a
B16-F1 melanoma cell. Recovery was faster at the leading edge of the cell than it
was away from the leading edge. While this has been interpreted to suggest that
Arp2/3 complex forms branches within a very narrow region close to the leading
edge, SiMS experiments using XTC cells (tagging the p40 and p21 subunits) by
Miyoshi et al. [66] show distributed speckle appearances 1 μm away from the
leading edge and further, and an exponential distribution of speckle lifetimes with
τ = 18 s.

McMillen and Vavylonis [62] used modeling to (i) check if the FRAP recovery
observed in Lai et al. [52] is consistent with the distributed appearances in Miyoshi
et al. [66], and (ii) explore the implications for the concentration profiles of the
diffuse species. FRAP of lamellipodia of B16-F1 melanoma cells [52] has similar
qualitative features to FRAP of XTC cells (Figure 1) as well as PA of neuronal
cells (Figure 2). The simulations below used a profile with distributed appearances
that is narrower compared to the profile measured in XTC cells, which have wider
lamellipodia compared to the B16-F1 melanoma cells. This appearance profile
was calculated to give an Arp2/3 complex concentration profile that matches the
concentration profile of the B16-F1 melanoma cells [62].

Using SiMS microscopy, Millius et al. [65] suggested that some Arp2/3 com-
plexes bind to the WAVE complex on the cell membrane of XTC cells and perform
a slow diffusion prior to incorporation of the actin network, while other Arp2/3
complexes are recruited directly from the cytosol. Millius et al. observed slowly
diffusing speckles of Arp2/3 complex components within a few μm from the leading
edge.

The study in [62] thus considered a model with membrane binding of the
Arp2/3 complex (Figure 3I,J). The two diffuse species in this model represent
Arp2/3 complex in the cytoplasm, Cfast , and bound to the membrane, Cslow.
The bound Arp2/3 complex dissociates into Cfast only, representing debranching
and dissociation of the Arp2/3 complex from the pointed end. This occurs with
the detachment rate d(x) corresponding to bound lifetime τ . This lifetime may
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include Arp2/3 complex attachment without branch formation, as observed in single
molecule in vitro experiments where bound Arp2/3 complex has bound lifetimes in
the range 2–200 s [90].

Binding to the membrane was assumed to occur close to the leading edge with a
spatially dependent rate k(x) = kme

−x/λm defined by parameters λm and km. This
was achieved in the simulations by using a spatially dependent τCfast . Spontaneous
unbinding occurs with lifetime τCslow . The appearance profile describing association
of membrane-bound Arp2/3 complex to the actin network is given by

a(x) = A1e
−x/λshort + A2e

−x/λlong (32)

with A1 = 0.49, A2 = 0.51, λshort = 0.08 μm, and λlong = 0.43 μm. Using an
estimated retrograde flow rate vr = 0.04 μm/s in [52], DCslow = 0.6 μm/s2 (the
estimate in Millius et al. [65]) and assuming membrane binding occurs close to
the leading edge, λm = 0.2 μm, leaves DCfast , K , τCslow and km as undetermined
parameters. Knowing the larger size of the Arp2/3 complex as compared to actin
monomers and capping protein, a diffusion coefficient of 2–6 μm2/s is anticipated.

In the steady-state profile in Figure 3K , DC = 3 μm2/s , K = 6.0 s−1, τCslow =
20 s, and km = 40 s−1. With these parameters, the bound protein is sharply peaked
close to the leading edge while the fast diffusing protein is small compared to the
bound species and slightly depleted at the leading edge.

The model fit the experimental FRAP data by Lai et al. [52], which shows
faster recovery at the lamellipodium front as compared to the back. The recovery of
simulated FRAP is quantified in Figure 3L where the front recovery curve is taken
0–1 μm from the leading edge, and the back recovery curve is taken 1–2 μm from
the leading edge as in Lai et al. [52]. The recovery at the back has a small initial
increase due to the diffusion of the cytoplasmic component, followed by a slower
recovery. This slower recovery is driven by binding at the back of the lamellipodium
and retrograde flow that brings labeled subunits from the cell front. In order to fit
the experimental FRAP data the value of K has to be sufficiently high to keep the
bound to cytoplasmic ratio sufficiently smaller than unity; otherwise the back of the
lamellipodium recovers faster than in experiments. Similarly, decreasing coefficient
km to a value where the concentration of slowly diffusing species becomes a small
fraction of the bound concentration gives a better fit to the FRAP curve at the back.
The recovery is also affected by the diffusion coefficient of the fast diffusing species.
Values above DCfast = 2 μm2/s give a good fit to the experimental FRAP data.

The results of Figure 3K,L suggest that the diffusing population is a small
fraction of the bound. Lewalle et al. [56] also performed FRAP of Arp2/3 complex
in lamellipodia and found recovery throughout the lamellipodia pronounced close
to the leading edge, consistent with the assumptions in [62]. The fact that the
concentration of Arp2/3 complex increases by about 8-fold after stimulation in XTC
cells [87] is consistent with the existence of a small fraction of fast-diffusing Arp2/3
complex (presumably the only species present prior to lamellipodia stimulation).
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Inspection of the movies in Millius et al. [65] indicates however that the number of
slowly diffusing speckles is comparable to the bound population. While the slowly
diffusing Arp2/3 complex speckles may also represent Arp2/3 complex bound to
debranched actin oligomers (not considered here as a separate species), such a
pool would also need to be as small for the model to reproduce the FRAP data.
This motivates further studies to investigate if the fraction of diffusible Arp2/3
complex varies by a large factor among cell systems and/or during different stages
of stimulation of the same cell.

4.5 Discussion

In this section we described how modeling was used to calculate concentration
profiles of capping protein (Figure 3C,G) and Arp2/3 complex (Figure 3K) based
on prior SiMS and FRAP data. The predicted gradients in the diffuse pool will
have implications on the behavior of the lamellipodium when perturbed from steady
state, for example during the stimulation of a protrusion by increase of free barbed
end concentration close to the leading edge [62]. Diffusion limitations of capping
protein or Arp2/3 complex towards the leading edge could become important upon
protrusion initiation.

In the results of Figure 3, the capping protein distribution is broader than that of
Arp2/3 complex but both are narrower than F-actin (Figure 1). Other studies using
fluorescence speckle microscopy however suggest different length scales for each
component with capping protein, Arp2/3 complex, and F-actin having increasingly
broader concentration profiles [44]. Future work should examine if these differences
are cell-type specific.

Hu and Papoian [39, 40] used a stochastic simulation model that includes
physical and chemical interactions for actin, Arp2/3 complex, and capping protein
in the lamellipodium to model protrusions. They only allow Arp2/3 complex-
mediated activation branching very close to the membrane with diffusion coefficient
20 μm2/s for all species, larger than what we used here for the fast and slow
diffusing pools. One of the findings in Hu and Papoian is a significant dependence
of protrusion dynamics on the concentrations of capping protein and Arp2/3
complex. Since cytoplasmic concentration gradients result for slower values of the
diffusion coefficients, this effect would provide an additional influence on protrusion
dynamics.

The method presented in this section could be generalized to study the diffusive
dynamics of other lamellipodia regulators that have been studied with SiMS,
including cofilin and AIP1 [97], which collaborate in actin filament severing, VASP
[66], and WAVE [65].
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5 Model of Lamellipodium Protrusion and Retraction
Driven by Fluctuations in Actin Polymerization

5.1 Motivation from Experiment

We now return to the topic of lamellipodial protrusion and retraction of XTC cells
mentioned in Section 1.2. In these cells waves of protrusion were accompanied
by waves of LifeAct-labeled F-actin accumulation along the lamellipodium [87]
(Figure 4B,C,D). This phenomenon belongs to the general class of cellular actin
waves [43] and the regularity of protrusions and retractions during cell spreading
indicates a process that can be described by a coarse-grained mathematical model.

The magnitude of protrusions and retractions is shown by the distribution of the
standard deviation in Figure 4C. The standard deviation was measured along the
radial direction in 1-degree intervals along the entire arc-length of the cell. The
protrusion velocity was anti-correlated with the total local F-actin concentration
measured by integrating LifeAct intensity over a 5 μm distance into the cell
(Figure 4E). The time-dependent cross-correlation function (Figure 4E) showed
that, on average, the fastest protrusion (retraction) speeds occurred just 10 s after
a minimum (maximum) of integrated F-actin intensity at a given position along the
arc-length of the cell.

The constant retrograde flow and fluctuating actin polymerization near the
membrane in XTC cell lamellipodia is evident in the kymograph of Figure 4B,
in which LifeAct forms diagonal lines of high intensity starting at the cell edge.
These indicate an F-actin network that forms near the edge of the cell and processes
into the cell as time increases to the right. Alternating high and low intensity over
time in Figure 4B points to changing actin polymerization. Net actin polymerization
near the membrane, as evidenced by increasing intensity, occurs during protrusion,
although the total intensity within the lamellipodium is greatest during retraction,
consistent with the anti-correlation of Figure 4E [87]. The notion that fluctuations
in actin polymerization can drive such dynamics is further supported by the
experimental evidence that other cell types treated with blebbistatin continue to
protrude and retract periodically, although the period of oscillations may change
[11, 30, 106].

5.2 One-Dimensional Model with Excitable Actin Dynamics

The observed dynamics are suggestive of excitations driven by noise. Excitability
typically involves the interaction between an activator and an inhibitor: in an
excitation, an activator species self-recruits rapidly; this activator in turn recruits
an inhibitor that causes the activator to slowly dissipate [63]. Ryan et al. [87]
speculate that the anticorrelation of leading-edge velocity with total actin intensity
suggests that F-actin acts as an inhibitor. Likely mechanisms for this inhibition
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Fig. 4 Experimental observations of leading edge protrusion and retraction (reproduced with
permission from [87] and panel C from [86]). (A) An XTC cell expressing actin marker LifeAct-
mCherry. (B) Kymograph of segment at leading edge of cell in panel A. F-actin polymerized near
the leading edge into the cell via retrograde flow, resulting in diagonal striping of kymograph. (C)
Distribution of the standard deviation of the radial membrane position at a fixed angular position for
three cells. (D) Leading-edge velocity (with respect to fixed substrate) versus angle and time for cell
in Figure 1G of [87]. Positive (negative) velocities indicate protrusion (retraction). The retrograde
flow speed for this cell was 74 ± 3 nm/s. (E) Average correlation coefficients for leading-edge
velocity autocorrelation, LifeAct-mCherry autocorrelation, and LifeAct-mCherry-velocity cross
correlation, versus time at a fixed angular position.

include the formation of actomyosin bundles [5] and adhesions [3] and accumulation
of mechanical tension [45, 77]. Many molecules are activator candidates: actin
polymerization can be triggered by the Scar/WAVE and WASp proteins that self-
recruit on the cell membrane to activate the Arp2/3 complex [36, 76, 79]. Once
activated, the Arp2/3 complex generates new barbed ends by nucleating branches off
preexisting filaments, thought to lead to autocatalytic dendritic nucleation [71, 93].
Severing of growing filaments could also contribute to diffusive autocatalytic
generation of barbed ends [66, 74] through transient association of diffuse cofilin
and AIP1 with F-actin [97]. Formin-mediated nucleation of new filaments is another
possible activation mechanism [35, 107].
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Fig. 5 One-dimensional model for an XTC cell leading edge (panels A, B reproduced with
permission from [86] and C, D from [87]). (A) The model includes F-actin, F, activator, A,
and free barbed ends, B, along the arc-length of the membrane. (B) Reaction network diagram.
Assembly of F is promoted by the autocatalytic activator A which generates free barbed ends.
Accumulation of F inhibits A. (C) Simulation results, F-actin concentration vs arc-length and time.
(D) Correlation coefficients vs time for free barbed end autocorrelation, F-actin autocorrelation,
and cross-correlation between B and F-actin at a given arc-length.

5.2.1 Model that Reproduces Wavelike Propagation

In the one-dimensional model of Ryan et al. [87], the concentrations of a diffusible
activator, A(x, t), free barbed ends, B(x, t), and F-actin, F(x, t), are calculated
at different positions x along the leading edge over time (Figure 5A). The
lamellipodium is modeled in one dimension, each coordinate representing a slice
along the arc-length of the leading edge. In this model it is assumed that protrusions
and retractions stem from underlying concentration fluctuations in the local actin
network and cell membrane displacement is not explicitly considered. Denoting rate
constants by k and ρ, the equations governing the concentrations are:

∂A

∂t
= (ρ0 + ρ2A

2)e−F/FS − k−AA+DA∇2A+ σ(x, t), (33)

∂B

∂t
= k+BA− k−BB, (34)

∂F

∂t
= k+F B − k−F F. (35)
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The first term on the right-hand side (rhs) of Equation (33) allows for spon-
taneous accumulation as well as nonlinear self-recruitment of the activator. A
simple quadratic dependence on A is chosen (see Section 5.2.2 below). When
F-actin exceeds saturation concentration, Fs , the activator on-rate is reduced.
This is the negative feedback in Figure 5B. The second term on the rhs in
Equation (33) represents deactivation. Diffusion of the activator (third term on the
rhs) along the membrane couples neighboring sites and allows propagation of actin
dynamics along the leading edge. The last term in Equation (33) is white noise,
< σ(x, t)σ (x′, t ′) >= σ 2

0 δ(t−t ′)δ(x−x′) and represents concentration fluctuations
[32, 104] that generate excitations by perturbing the system out of its stable state (see
Section 5.2.3). Equation (34) describes accumulation of free barbed ends as a result
of the activation process. Rate constant k+B describes how fast the activator generates
new barbed ends. Rate constant k−B ≈ 0.4–8 s−1 is the rate of free barbed end loss
through capping by capping protein [79]. Equation (35) describes change of F-actin
as a result of polymerization at free barbed ends and spontaneous disassembly.

Since the capping rate k−B is much faster than the frequency of the protrusion
and retraction events, generation of barbed ends must be fast enough such that
B responds to changes in A quickly. This leads to B ≈ k+BA/k

−
B and allows

Equation (33) to be rewritten as follows:

∂B

∂t
= (r0 + r2B2)e−F/FS − k−AB +DA∇2B + s(x, t). (36)

Here, unknown rate constant k+B is absorbed into the new rate constants r0 and r2
and into the amplitude of the noise that is now s0. Equations (35) and (36) form a
closed system in terms of B and F . Details on selecting model parameters are given
in Section 5.2.4.

Numerical integration of the model produces spikes of free barbed end concen-
tration, followed by spikes in local F-actin concentration. Figure 5C shows that the
model captures the wave-like propagation across sections of the membranes arc-
length as well as the magnitude and timescale of the actin fluctuations of Figure 4D.

The F-actin autocorrelation function calculated using the model, shown in
Figure 5D, matches the experimental result of Figure 4E. A characteristic feature
of the cross-correlation function between B and F is that spikes of B precede
those of F, demonstrated by the positive shift of the cross-correlation peak to the
right of the origin by approximately 25 s. Without the noise term in Equation (36),
for the reference parameter values, point excitations propagate laterally along the
membrane before returning to a uniform stationary state (Figure 6A,B). Addition of
noise to this steady-state system excites actin randomly along the membrane, so that
excitations combine into structures similar to those seen in experiment.
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Fig. 6 Model response to point excitation and stability analysis predicts characteristics of model
solutions (reproduced from [87]). (A) Free barbed end concentration, generated by localizing noise,
s(t) = 0.1 μM s−1, at a single point (at 20 μm) along the membrane for 1.5 s. Simulations were run
with the same parameters as Figure 5, except the noise term was zero outside the region described
above. Excitations spread from the region at which noise was applied with a speed ∼ 0.17 μm/s.
This is similar to the speed of protrusion propagation in Figure 4D. In the presence of multiple
sources of noise, excitations combine into transient wave-like patterns. (B) F-Actin concentration
corresponding to the free barbed end concentration shown in A. (C) Results of linear stability
analysis as function of r0 and r2 for wave number q = 0. The black star indicates the exact
parameters used in Figure 5. Case II (dark gray): unstable oscillatory solutions; Case III (light
gray): stable oscillatory solutions. (D) Damping ratio, calculated for regions of parameter space
within Case III of panel C (Case II region shown in dark gray). (E) Similar to panel D but displaying
period τ for both Case II and Case III solutions.

5.2.2 Choice of Nonlinear Terms

The negative feedback in Equations (33) and (36) uses an exponential cutoff,
e−F/Fs that prevents F-actin from accumulating in amounts that far exceeds Fs .
Excitations away from steady state are driven by the autocatalytic term ρ(B) =
r0 + r2B

2 in Equation (36). A quadratic was chosen for the following reason.
During an excitation, the concentration of actin near the leading edge approximately
doubles (see Figure 4 and 5). A change of similar magnitude is anticipated in
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the concentration of free barbed ends. Now the term ρ(B)e−F/Fs should have
approximately the same value at both steady state, B = B∗ and F = F ∗, and
at the instant in time when the free barbed end concentration is at a maximum,
B ≈ 2B∗ and F = αF ∗. Since B and F are out of phase leads one to estimate
1.1 < α < 1.5. Assuming a power law, ρ(B) ∼ Bn, this would require 2 ≤ n ≤ 5.
Ryan et al. [87] chose the smallest integer exponent consistent with this requirement.
The constant term r0 in ρ(B) prevents unphysical fixed points with very small
concentrations of free barbed ends. This term accounts for filaments created by
spontaneous nucleation rather than through autocatalytic feedback.

5.2.3 Linear Stability Analysis

Linear stability analysis can be performed on the model described by Equations (35)
and (36) without the noise term in Equation (36). Parameters can be chosen such that
the system is in a stable steady-state region, close to the boundary of an unstable
region. The addition of a noise term then transiently perturbs the stable state of the
system, generating spontaneous excitations.

Stability analysis is performed around a homogeneous steady state B = B∗ and
F = F ∗. Fixed points B∗ and F ∗ are defined by the nullclines of a homogeneous
system (i.e., no dependence on arc-length distance) u(B∗, F ∗) = v(B∗, F ∗) = 0
where

u(B, F ) = (r0 + r2B2)e−F/Fs − k−AB, (37)

v(B, F ) = k+F B − k−F F. (38)

The fixed points can be found numerically. While Equations (37) and (38) can
have up to 3 fixed points, for parameter values in [87], there is a single fixed
point. Defining b(x, t) = B(x, t) − B∗ and f (x, t) = F(x, t) − F ∗, considering
sufficiently small deviations from the fixed point, and Fourier transforming x → q,
it is obtained from Equations (35) and (36) (without the noise term):

(
ḃq

ḟq

)
=J

(
bq

fq

)
, where J =

[
2r2B∗e−F ∗/Fx − (k−A +DAq2)

r0+r2B∗2

FS
e−F ∗/FS

k+F −k−F

]
.

(39)

The characteristic equation is λ2−TrJλ+detJ = 0. Solving this for λ one finds two
wave-number dependent eigenvalues. These eigenvalues can be used to distinguish
between parameter sets based on the type of behaviors they elicit within the model.
These behaviors can be separated into three distinct cases (note: the remaining
of this subsection below corrects a mislabeling in the Supplementary Material of
[87]): (I) both eigenvalues real, (II) both eigenvalues complex with positive real
components that give unstable solutions to the linearized equation, and (III) both
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eigenvalues complex with negative real part that generate stable solutions. Whether
eigenvalues are real or complex is determined by the sign of Tr(J )2–4det(J ).

Case I. Two real eigenvalues occur when Tr(J )2 − 4det(J ) > 0. Real λ indicate
stable or unstable fixed points, depending on the sign of λ.

Case II. Complex eigenvalues with positive real components result from param-
eter sets in which Tr(J )2 − 4det(J ) < 0 and Tr(J ) > 0. In this case the system
has an unstable solution fixed point. However, because Equations (35) and (36)
give bounded solutions, the solution would evolve into a limit cycle, in which the
system exhibits oscillatory behavior. The period of these oscillations, estimated
from the linear stability analysis is τ = 2π/Im(λ).

Case III. Complex eigenvalues with negative real components. These solutions
fulfill Tr(J )2 − 4det(J ) < 0 and TrJ < 0. Small q more easily satisfy this
condition compared to larger q. If perturbed, such a system will relax back
to the stable solution in an oscillatory manner with period τ = 2π/Im(λ).
The relaxation rate is described by the dimensionless damping ratio ζ =
TrJ/2

√
det(J ).

5.2.4 Selection of Parameters

In [87], the values of k+F and k−F were taken from experiment. Five constraints were
used to determine the values of r2, r0, FS , k−A , and DA (Table 2). The first two
constraints required fixed points with B∗ ≈ 0.4 μM and F ∗ ≈ 1500 μM. The value
of B∗ was chosen because within a band of width d ∼ 2 μm near the leading edge
the concentration of free barbed ends is approximately 1 μM [81]. In this model,
which does not distinguish distance from the leading edge, this corresponds to a
barbed end concentration 1μM ×d/w = 0.4 μM, where w ∼ 5 μm is the width
of the lamellipodium. The third condition required that the system is in a region
of parameter space in which relaxation to steady state occurs with underdamped
oscillations, such that the q = 0 case of the linear stability analysis lies in a Case III
region, but not far from a Case II region. The fourth condition was that the period of
oscillation is ∼ 130 s, as observed experimentally. Finally, the diffusion coefficient
of the activator was selected to match the width of the spatial correlation function
found in experiment.

Figure 6C shows linear stability diagrams for q = 0 as a function of two
model parameters, r0 and r2. These two parameters that are important in controlling
the response of the system to stimulation of polymerization (last paragraph in
this section) need to be adjusted as they are not directly determined from prior
experiments. The star indicates the reference parameter set. Figure 6D displays the
damping ratio, ζ as a function of the same parameters as in Figure 6C for q = 0.
The damping ratio approaches zero close to the region of Case II. Larger values of
r2 increase the strength of the nonlinear positive feedback and bring the system from
a stable (Case III) towards an unstable (Case II) region (Figure 6C). Increase of r0
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Table 2 Parameter table for one-dimensional model of lamellipodium protrusion and retraction.

Parameter Value Reference/Justification

Fs 200 μM Chosen to match the constraints of Section 5.2.4.

k+F 66 s−1 Estimated in [66].

k−F 0.01 s−1 Close to inverse of time required for actin

to traverse lamellipodium by retrograde flow.

k−A 0.03 s−1 Chosen to match the constraints of Section 5.2.4.

DA 0.1 μm2s−1 Typical of membrane proteins, also matches

width of spatial correlation function in [87].

r0 5 μMs−1 Chosen to match the constraints of Section 5.2.4.

r2 600 μM−1s−1 Chosen to match the constraints of Section 5.2.4.

s0 0.02 μMμm−1/2s−1/2 Reproduces noise-induced excitations

with rate similar to experiments [87].

results in increased damping ζ , thus the value of r2 must exceed an r0-dependent
threshold for ζ to become sufficiently low. Figure 6E displays the period τ as a
function of the same parameters as in Figure 6C for q = 0, which is less sensitive
to changes in r2 compared to r0.

Selecting the value of the diffusion coefficient of the activator, DA, required that
the damping ratio ζ(q) increases to ∼ 1 at a wavenumber q ≈ 1 μm−1. Activator
diffusion coefficient of 0.1 μm2/s fulfills this and reproduces a width for the spatial
correlation function similar to experiment (full-width-half maximum approximately
5.2 μm). A decrease to DA = 0.05 μm2/s results in a full-width-half-maximum of
3.4 μm, while an increase to DA = 0.4 μm2/s results in a full-width-half-maximum
of 8.8 μm.

Short wavelengths are more strongly damped compared to longer wavelengths.
For the reference parameters values, the system switches from an underdamped
regime (Case III) to an overdamped case (Case I) at a wavenumber q = 0.97 μm−1.

5.2.5 Arp2/3 Complex as Activator and Cell Response to Stimulus

Arp2/3-complex-mediated dendritic growth is autocatalytic: nucleated branches act
as nuclei for further branches. Could the Arp2/3 complex be the activator species
of the model? Experiments with fluorescently labeled components of the Arp2/3
complex in [87] showed that it accumulates in bursts along the leading edge. These
bursts precede maxima of total F-actin amount, indicating a possible role for Arp2/3
complex in the activation process. However, Ryan et al. [87] argued that it is unlikely
for it to be the only activator because lateral spreading of Arp2/3 complex-mediated
branching would be too slow to cause the observed traveling waves of protrusion:
the effective diffusion coefficient calculated by a branching mechanism is 10 times
smaller (D = 0.01 μm2/s) than the estimated D value for the activator species.
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These numbers support the additional involvement of diffuse proteins such as small
GTPases, Scar/WAVE and WASp, and PIP3.

A general feature of the model with excitable dynamics is the synchronized
response to a sudden global perturbation. In [87], this was tested by exploring
the ability of the model to capture response to chemical stimulants. After hours of
remaining on slides, protrusions and retractions subside in XTC cells. Introduction
of fetal calf serum (FCS) restores the protrusions and retractions similar to the early
stages after introduction to the slide. Figure 7A shows the leading edge of a cell
expressing p21-EGFP (a protein in the Arp2/3 complex) and LifeAct-mCherry that
is stimulated with FCS at 200 s. The increase in p21-EGFP and LifeAct-Cherry
intensity after the addition of FCS is quantified in Figure 7B. The model can
capture the FCS response through a sudden increase in rate r0 and r2 (Figure 7C).
This change reproduces the experimental behavior, most notably the out-of-phase
transient oscillations in Arp2/3 complex and F-actin at late times after stimulation.
We note other studies in Dictyostelium response to cAMP have also been interpreted
as an indication of excitability [104].
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Fig. 7 XTC cell response to FCS and comparison to the model (reproduced with permission
from [87]). (A) Montages of leading edge of cell expressing p21-EGFP and LifeAct-mCherry
stimulated by FCS at 200 s. The cell had been plated for 4 h. Intensity increases are evident
after stimulation. Bar: 5 μm. (B) Intensities of p21-EGFP and LifeAct-mCherry averaged over
all angles vs time. (C) Results of model showing concentrations of the free barbed end and F-
actin concentrations, averaged over arc-length. Rate constants were functions of time: ro(t) =
1 μMs−1 + 24 μMs−1H(t), r2(t) = 1 μMs−1 + 624 μMs−1H(t). Here H(t) = Θ(t −
250s)t3/(T 3 + t3), where T = 220 s and Θ is the step function.
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5.3 Two-Dimensional Model of Lamelipodial Protrusions
and Retractions

The one-dimensional model of actin accumulation along the arc-length of the cell
described above did not address the movement of the cell membrane. In [86] the
model was extended into two dimensions. This enabled two-dimensional aspects of
XTC lamellipodia to be captured such as the extent and profile of XTC protrusions
as well as F-actin concentration versus distance from the leading edge.

As mentioned in Section 2, F-actin assembly is distributed throughout the lamel-
lipodium, and does not occur solely where actin filaments touch the cell membrane.
A 2D model of fluctuations in actin polymerization would have to account for the
time-variation of appearance rate a(y) = A1e

−y/λ1 + A2e
−y/λ2 (measuring the

rate of new speckle appearance as function of distance from the leading edge),
as well as the variations in speckle lifetime (note: unlike Equation (1), y is the
direction into the cell). Ryan et al. [86] made a few simplifying approximations.
First, they assumed that all the basal speckle appearance events are due to recycling
oligomeric actin that break off and reassemble at the back of the lamellipodium
[92]. Second, the effective lifetime of F-actin in lamellipodia was approximated
by a single exponential with a characteristic time 1/k−F = 100 s. This lifetime
is longer than the speckle lifetime due to several dissociation and local recycling
events. In this model, fluctuations in actin polymerization arose from fluctuations in
the polymerization rate very close to the membrane of the leading edge (i.e., they
represent fluctuations of the amplitude of the λ1 term in Equation (1)). This would
be consistent with the assumption of a slowly diffusing membrane-bound activator.

5.3.1 The Model

The leading edge is along the x-axis, with the negative y-axis directed into the
cell (neglecting the curvature associated with the shape of the whole cell). The
displacement of the membrane along the y-axis is h(s, t), where s is arc-length
across the membrane, and, approximately, s ≈ x. Periodic boundary conditions
are applied along the x-axis after a total width 20 μm. The F-actin network in the
lamellipodium is assumed to be a rigid network with sufficiently large modulus to be
practically incompressible, consistent with the retrograde flow in the lamellipodium
of XTC cells being approximately constant through protrusion and retraction cycles
[87]. Computer simulations of the model were implemented on a 40 μm wide
and 20 to 40 μm tall system. Concentrations were calculated on a lattice grid
with membrane movement allowed on a continuum. Results were obtained after
an equilibration period.
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Barbed-End and F-Actin Concentrations

Free barbed ends of concentration B(x, t) are generated by an autocatalytic
membrane-bound activator with concentration A(x, t). The accumulation of the
activator is damped as a result of F-actin polymerization at the lamellipodium near
the given arc-length position, similar to the 1D model. Random fluctuations in
activator concentration can generate excitations by perturbing the system out of its
stable state [32, 63, 87, 104]. Denoting rate constants by symbols k and r , and σ ′ as
noise obeying Gaussian statistics with zero mean, the equations are:

∂A(x, t)

∂t
=

[
r ′0 + r ′2A(x, t)2

]
e−

∫ h(x,t)
−∞ F(x,y,t)/Fsat dy − k−AA(x, t)

+DA∂
2A(x, t)

∂x2
+ σ ′(x, t), (40)

∂B(x, t)

∂t
= k+BA(x, t)− k−BB(x, t), (41)

∂F (x, y, t)

∂t
= γpol(x, t)k+F B(x, t)δ[y − h(x, t)] − k−F F (x, y, t)+ vR

∂F (x, y, t)

∂y
.

(42)

Equations (40) and (42) are the two-dimensional extension of (33) and (35).
The negative feedback in the first term on the rhs of Equation (40) is now the
concentration measured by a line integral from the cell membrane towards the
cell middle. The first term on the rhs of Equation (42) describes accumulation of
F-actin as a result of polymerization at free barbed ends at the membrane. The
polymerization rate is reduced compared to the polymerization rate in the absence
of load by unitless reduction factor γpol(x) with values between 0 and 1 that we
describe in more detail below (γpol = 1 corresponds to polymerization under no
load, while γpol = 0 corresponds to stalling of polymerization). The second term in
the rhs of Equation (42) is the uniform F-actin disassembly rate. The last term in
Equation (42) describes constant retrograde flow (vR is a positive number). Similar
to the one-dimensional model, Equations (40) and (41) can be replaced by:

∂B(x, t)

∂t
=

[
r0 + r2B(x, t)2

]
e−

∫ h(x,t)
−∞ F(x,y,t)/Fsat dy − k−AB(x, t)

+DA∂
2B(x, t)

∂x2 + σ(x, t). (43)

Here, unknown rate constant k+B is absorbed into the new rate constants r0 and r2
and into the amplitude of the noise that is now σ0.
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Membrane Motion

The motion of the membrane at the leading edge was assumed to result from
the balance of forces due to actin polymerization, fpol , membrane forces due
to membrane tension and conserved cell surface area, fmem and frictional forces,
ff r , that result from the breaking of links between the cell membrane and the F-
actin network [13]. Applying force balance in the y-direction (assuming variation
of stresses in the x-direction can be neglected), and using units for fpol , fmem
and ff r of force per unit membrane length, one has for a given point on the cell
membrane:

fpol + fmem + ff r = 0. (44)

The viscous resistance of the surrounding medium to the movement of the cell
membrane is negligible compared to the forces of actin polymerization and
membrane load [24] so it is neglected in Equation (44).

Given a local concentration of free barbed ends, B(x, t), that push against the
membrane, the actin filament polymerization rate must adjust to satisfy Equa-
tion (44). Assuming that a constant fraction of the actin filament elongation is
converted into F-actin network expansion along the y direction, which occurs with
rate ∂h(x, t)/∂t+vR , there exists a force-velocity curve fpol[B(x, t), ∂h(x, t)/∂t+
vR]. The frictional force ff r is also a function of the network expansion rate and
the concentration of actin network links with the membrane [13]. The concentration
of these links can be assumed to be approximately constant. Alternatively, ff r
could be negligible compared to the membrane force fmem. In both cases, solving
Equation (44) for the membrane extension rate gives

∂h(x, t)

∂t
= γpol [B(x, t), fmem(x, t)] v0 − vR, (45)

where v0 is the network expansion rate at the leading edge in the absence of
resisting force, and function γpol(B, fmem), which can be evaluated at any point
along the leading edge as a function of time, is the parameter that appeared in
Equation (42). Observed maximum protrusion speeds for XTC cells are similar in
magnitude to retrograde flow speeds [87] so v0 ≈ 2vR . Forward membrane motion
requires a polymerization rate greater than the retrograde flow rate, γpol > 1

2 .
When γpol = 1

2 , the system is balanced and the membrane does not move, while
γpol <

1
2 leads to membrane retraction. In the remainder of this subsection we

provide expressions for the restorative membrane force, fmem(x) , which depends
on the shape and extension of the leading edge, and consider two possible functional
forms of γpol(B, fmem). Equations (42), (43), and (45), together with the following
definitions of fmem(x) and γpol(B, fmem), provide the complete model.

The membrane force includes two components: a global area-conserving force
and a component due to membrane curvature, fmem = farea + fcurv . Component
farea is directed towards the cell center and is the same for all x at any given time;
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it depends only on the average extension of the lamellipodium 〈h〉x measured from
a reference extension href :

farea = −kmem
(〈h〉x − href

)
. (46)

The constant kmem describes the stiffness associated with uniform increase of the
adhered cell radius. The curvature component of the membrane force depends on
the membrane curvature κ(x) = ∂2h(x, t)/∂x2 at position x:

fcurv(x) = Sκ(x), (47)

where S is a constant. As both positive and negative membrane curvatures are
possible, this force may point inwards or outwards with respect to the center of the
cell. The dependence of fcurv on the second derivative of h represents the effects of
membrane tension [31]. More complex dependencies such as 4th order derivatives
that represent elastic bending contributions are not included in Equation (47).

For a large enough lamellipodium segment, fluctuations in 〈h〉x at steady state are
very small. Thus farea settles down to an approximately constant value independent
of kmem and href such that there is no net lamellipodial extension, 〈γpol〉t ≈
〈γpol〉x ≈ 1

2 . The values of kmem and S are related to one another since they both
include the effects of membrane tension. However, since only changes in S will have
a significant impact in the results, kmem and S are treated as independent variables
for convenience.

Two functional forms of γpol were examined, corresponding to exponential
(Brownian-ratchet-like) and switch-like force-velocity relationships, respectively.
Both models assume that the membrane force is distributed equally among the free
barbed ends at the leading edge.

Ratchet Model. In this model each filament end grows with an exponential force-
velocity curve as would be expected by a Brownian ratchet mechanism [24, 69, 78],

γ ratchetpol [fmem(x, t), B(x, t)] = e−αfmem(x,t)/B(x,t). (48)

In Equation (48) the polymerization rate decreases exponentially with the force per
filament, with a scaling factor α = δ/kBT = 0.66 pN−1, where δ = 2.7 nm
is the filament elongation length per actin monomer. The ratchet model dictates
a gradual change in the actin polymerization rate in response to changes in the
ratio of the concentration of free barbed ends and the membrane load. When fmem
is approximately constant, a large change in B is required to transition between
maximum protrusion rates (γpol = 1) and maximum retraction rates (γpol = 0).

Switch-like Model. Interactions among filaments and attachment to the mem-
brane [24] may give rise to nonlinearities in the force-velocity curve leading to
concave-down force-velocity curves as observed during gliding motility of kerato-
cytes [33, 48, 83], as well as stick-slip behavior (multiple branches in force-velocity
relationship) [17, 21, 103]. Ryan et al. [86] did not consider the more-complex
possibility of stick-slip behavior, but investigated a concave dependence given by
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a Hill function. In a phenomenological description, filament polymerization shifts
rapidly from being unencumbered to being stalled upon increasing load:

γ switchpol [fmem(x, t), B(x, t)] = 1 − [αfmem(x, t)/B(x, t)]n

Kn0 + [αfmem(x, t)/B(x, t)]n
. (49)

The value n = 10 was chosen to produce a steep curve and facilitate rapid switching
between protrusion and retraction. The constant K0 determines the location of the
inflection point of the Hill function, and was chosen to preserve the fixed point
of the model from the ratchet polymerization case (γpol = 1

2 at the same href
and fmem/B). This step-like change allows a small change in B to influence a
transition between near-maximum protrusion rates and near-maximum retraction
rates. Similar dependencies were also assumed in models of actin network growth
during protrusion of nerve growth cones [18] and keratocytes [2, 8].

5.3.2 Model Reproduces Features of Protrusion and Retraction Observed
in Cells

Both the ratchet and switch-like model produce results that are in qualitative
agreement with experiments, with the switch-like model exhibiting a sharper
behavior (using parameters in Table 3). This model of force dependence of actin
polymerization on membrane load, given by Equation (49), coupled with our
model of excitable actin dynamics leads to periodic protrusion and retraction
of the model membrane, accompanied by periodic increases in the amount of
F-actin (Figure 8A,B). The noise term in Equation (43) generates local spikes
of free barbed end concentration that spread across the leading edge, causing

Table 3 Parameters for two-dimensional model of lamellipodium protrusion and retraction.
Values for k−F , k−A , DA, same as Table 2.

Parameter Value Reference/Justification

Fsat 1000 μMμm Corresponds to 200 μM one-dimensional model in
Table 2.

k+F 0.224 μMs−1 Corresponds to one-dimensional model with γpol =
1/2

r0 240 μm−1s−1 Reproduces period comparable to experiment for
switch-like model.

r2 0.1 μms−1 Corresponds to 60 μMs−1 of Table 2.

vr 0.05 μms−1 Typical retrograde flow rate in XTC cells [87].

n 10 Chosen for concave-down curve.

σ0 9.5 μm−1/2s−1/2 Same as the one-dimensional model.

αkmem 12 μm−2 Chosen for computational efficiency,

Results are not sensitive to this value.

αS 1 Corresponds to membrane tension S = 1.5 pN.
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membrane protrusion. Actin polymerization rates peak during protrusion, leading to
increases in F-actin at the membrane during those events. Accumulation of F-actin
subsequently causes a reduction of the barbed end concentration, leading to retrac-
tion. Retrograde flow of the actin network distributes the F-actin throughout the
lamellipodium over time. Combined with the periodic nature of the polymerization
rate, this flow causes striping in the kymographs of Figure 8B.

Since the average value of B corresponds to γpol = 1
2 , fluctuations in B cause

the system to switch between 0 (stall, resulting in retraction the speed of retrograde
flow) and 1 (maximum polymerization rate, which is about twice the retrograde flow
rate). The nonlinearity of the switch-like model around γpol = 1

2 leads to a sharper
change from protrusion to retraction as B fluctuates. Due to the weaker dependence
of γpol on the barbed end concentration B and membrane force fmem near γpol = 1

2 ,
the ratchet model produces smaller membrane distortions and membrane speeds
compared to the switch-like model.

The standard deviation of membrane position depends on the magnitude of the
membrane curvature force (Figure 8C). Membrane extension becomes small at the
highest value of αS, indicating the increasing resistance of membrane tension to the
formation of protrusions and retractions. The membrane shape and kymograph in
Figure 8A,B are very similar to those observed experimentally (Figure 4A,B) with
a value αS = 1.

Similar to the one-dimensional model, the two-dimensional model produces
short-range traveling waves of F-actin along the arc-length of the cell, which travel
along both directions similar to experiment. For both the switch-like and ratchet
models of actin polymerization, the cross-correlation of the total actin concentration
and the leading edge velocity is similar to that calculated for experimental measure-
ments of LifeAct-mCherry intensity and leading edge velocity in Figure 4E. The
model also reproduces the same sequence of peaks in the cross-correlation, velocity
autocorrelation, and LifeAct-mCherry intensity autocorrelation as in Figure 4E at
around 100 s, which indicates the period of these signals.

5.3.3 Response of Leading Edge to Membrane Force Perturbation

The two-dimensional model generates predictions for the response of lamellipodia
to changes in membrane forces. Circularly shaped XTC cells spread on a substrate
transition from a state of stable non-oscillating lamellipodia to a transient state of
large protrusions and retractions after treatment with blebbistatin [105]. During this
response, the adhered cell surface area increases while no change in the retrograde
flow rate within the lamellipodium can be detected. Ryan et al. [86] suggested that
the transient reduction in membrane tension after blebbistatin [57] arising from the
loss of contraction in the medial cell region, contributes to this behavior, in addition
to other changes in biochemical reaction rates.
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Fig. 8 Results of the 2D lamellipodium (switch-like case). Reproduced with permission from [86]
(A) Snapshot for αS = 1 with intensity representing F-actin. (B) Kymographs of the F-actin for
the same simulation in A. (C) Average standard deviation of membrane position (average over
all positions in simulation at steady state, over 500 s) vs membrane curvature force amplitude
αS. (D) Simulation of lamellipodium response to global perturbation of membrane forces. Initial
conditions same as panel A. At t = 0 the membrane force is reduced globally and αS reduced
to 0.01. Simulations show the membrane expanding upwards, generating large protrusions and
retractions after the perturbation. (E) Average position of leading edge over a 5-μm-wide region
of panel D. (F) Linear stability analysis results for switch-like model. Top, real components of the
eigenvalues vs wavenumber q. Bottom, imaginary components of eigenvalues. Units of vertical
axes in 1/s.

A simulation of a lamellipodium undergoing a perturbation in membrane forces
is shown in Figure 8D. Initial conditions were chosen such that the lamellipodium
does not exhibit large protrusions and retractions (some fluctuations still remain).
When the membrane curvature force and membrane area-conserving force are
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reduced simultaneously, the leading edge extends by a few μm and large protrusions
and retractions develop, similar to the experiment in [105] (Figure 8E).

In conclusion, both the one- and two- dimensional models predict that the
lamellipodium can alternate between non-oscillating and oscillating states through
perturbations that influence biochemical rates (Figure 7C) or membrane forces
(Figure 8D).

5.3.4 Linear Stability Analysis

To interpret the numerical results, linear stability analysis was performed on
Equations (42), (43), and (45) without noise, to study the stability of homogeneous
sates in parameter space. The addition of noise during simulation then generates
spontaneous excitations by perturbing the stable system. Defining Ftot (x, t) =∫ h(x,t)
−∞ F(x, y, t)dy, Equation (42) becomes

∂Ftot (x, t)

∂t
= γpol(x, t)k+F B(x, t)− k−F Ftot (x, t). (50)

Assuming a homogeneous steady state (at which γpol = 1
2 and using href = 0

μm as the reference point) we find fixed points, B(x, t) = B∗, Ftot (x, t) = F ∗,
and h(x, t) = h∗. These values can be calculated numerically after setting the
time derivatives in Equations (43) (without noise), (45) and (50) equal to zero.
Considering sufficiently small perturbations around the fixed points and Fourier
transforming x → q, one has:

⎛

⎝
Ftot

B

h

⎞

⎠ =
⎛

⎝
F ∗
B∗
h∗

⎞

⎠ + J
⎛

⎝
δF

δB

δh

⎞

⎠ . (51)

The Jacobian J for the switch-like model is:

J =

⎛

⎜⎜⎝

k+F (n+ 2) /4 −k−F nk+F (αkmem−αSq2)

4K0

2B∗r2e−F
∗/Fsat − k−ADAq2 −(

r0+r2B∗2
)

Fsat
e−F ∗/Fsat 0

vRn/(2B∗) 0
vRn

(−αkmem−αSq2
)

2B∗K0

⎞

⎟⎟⎠ ,

(52)

where K0 = αkmemh∗/B∗ and was chosen to preserve the fixed point between both
force-velocity models, so that γ switchpol = γ ratchetpol = 1

2 occurs at the same fixed point
(B∗, F ∗, h∗) in both models. The Jacobian for the ratchet model can be calculated
similarly.

Solving for the eigenvalues of J , one finds now three instead of two wave-number
dependent eigenvalue. Similar to the one-dimensional model, the signs of their real
and imaginary parts result in three Cases: (I) non-oscillatory behavior, (II) unstable
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oscillatory behavior, and (III) a stable oscillatory behavior. Because the system gives
bounded solutions, both cases II and III produce oscillatory behavior with a period
given approximately by τ = 2π/Im[λ(q)]. Similar to the one-dimensional model,
this analysis showed that parameters can be chosen that result in the system being
close to the boundary between linearly stable and unstable fixed points.

The stability of the homogeneous state depends on the wavenumber. The real and
complex components of the eigenvalues as a function of wavenumber for the switch-
like model (for the reference model parameter values) are shown in Figure 8F.
For small wavenumbers, the eigenvalues correspond to Case III. With increasing
wavenumber, the system progresses into Case I.

5.4 Discussion

This section highlighted how the mechanical and biochemical interactions combine
nonlinearly to generate fluctuations in actin polymerization that drive lamellipodial
protrusions. The near-constancy of retrograde flow in XTC cells allowed focusing
on the kinetics of actin polymerization and force balance at the membrane.

Fluctuations in actin polymerization rate was also the basis of a model of waves
in keratocytes [8]; however, these authors did not model explicitly the process
of local membrane protrusion. The changing density of free barbed ends in the
model of [8] is due to VASP which localizes on barbed ends, in the cytosol
or in mature adhesions. A cooperative force-velocity curve similar to the switch
model was implemented; however, unlike the model discussed in this chapter, a
global constraint on membrane tension allowed only one protrusion to occur in
the membrane at a time. Another related model where protrusions are driven by
nucleation of new filaments is the one-dimensional model in [109, 110]. The actin
network in this model consists of a semiflexible region close to the membrane and
a gel like region consisting of cross-linked filaments further away.

Membrane protrusions coupled to an excitable biochemical network have also
been studied in the context of Dictyostelium morphodynamics [41, 94]. These stud-
ies used versions of the phase field method to track movements of cell boundaries.
In [94], the positive and negative feedbacks were due to PIP2 phosphorylation
and PIP3 dephosphorylation while actin was not explicitly modeled. The model
in [41] included a slow excitable system, reflecting the behavior of the signal
transduction excitable network and a fast oscillatory system, reflecting the behavior
of the cytoskeletal oscillatory network. Future modeling work could investigate in
more detail the similarities between Dictyostelium and animal cells, combining
the models of signal networks with models of cytoskeletal flows, moving cell
boundaries and models of biophysical regulation of actin polymerization [37, 89].
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Intracellular Membrane Trafficking:
Modeling Local Movements in Cells

Ritvik Vasan, Matthew Akamatsu, Johannes Schöneberg,
and Padmini Rangamani

Abstract Cells constantly exchange material and information with their environ-
ment through a variety of trafficking mechanisms. Membrane trafficking encom-
passes a broad range of biological processes, all of which are characterized by
the local deformation and movement of the plasma membrane. These movements
are orchestrated by a complex protein machinery and cytoskeletal rearrangements.
While different membrane trafficking pathways use different sets of proteins,
mathematical and computational models have been used with great success to
identify some of the governing physical principles. Here, we review the different
theoretical and computational models of local movements in cells and the insights
obtained from them. We will also highlight the challenges in the field and discuss
future directions.

1 Introduction

Cell movement can be understood at many different length scales. The obvious
large length scale movement is that of cell motility, crawling, or other behaviors
where the length scales of the movements are of the order of the length scale of
the cell itself and the velocity of the movement is rapid, often tens of microns
per minute [128]. These movements are categorized by the dynamic remodeling of
the actin cytoskeleton and the generation of a pushing velocity against the plasma

R. Vasan · P. Rangamani (�)
University of California, San Diego, 9500 Gilman Dr, 92093 La Jolla, CA, USA
e-mail: rvasan@eng.ucsd.edu; prangamani@eng.ucsd.edu

M. Akamatsu · J. Schöneberg
Department of Molecular and Cell Biology, University of California, 94720 Berkeley, CA, USA
e-mail: matt.akamatsu@berkeley.edu; joh.schoeneberg@berkeley.edu

© Springer Nature Switzerland AG 2018
M. Stolarska, N. Tarfulea (eds.), Cell Movement, Modeling
and Simulation in Science, Engineering and Technology,
https://doi.org/10.1007/978-3-319-96842-1_9

259

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96842-1_9&domain=pdf
mailto:rvasan@eng.ucsd.edu
mailto:prangamani@eng.ucsd.edu
mailto:matt.akamatsu@berkeley.edu
mailto:joh.schoeneberg@berkeley.edu
https://doi.org/10.1007/978-3-319-96842-1_9


260 R. Vasan et al.

membrane on the leading edge and the contraction of the rear end due to actomyosin
contractility (Table 1). However, even in a nonmotile cell, there are plenty of local
movements that take place at much smaller length scales and allow for the regulating
intake and egress of cargo into and out of the cell (Figure 1).

Table 1 List of abbreviations.

Notation Description

BAR Bin-amphiphysin-rvs

BDP BAR domain proteins

CME Clathrin-mediated endocytosis

CPP Cell penetrating peptides

CLIC Clathrin-independent carriers

GEEC GPI-enriched early endosomal compartments

GEF Guanine nucleotide exchange factor

GTP Guanosine-5’-triphosphate

GDP Guanosine diphosphate

ATP Adenosine triphosphate

ADP Adenosine diphosphate

NPF Nucleation promoting factor

Sla2 Src-like-adaptor 2

CDC42 Cell division control protein 42 homolog

Arp2/3 Actin-related proteins 2/3

Hip1R Huntingtin-interacting protein 1-related protein

ADF Actin depolymerizing factor

COPII Coat protein II

N-WASP Neuronal Wiskott-Aldrich syndrome protein

WASP Wiskott-Aldrich syndrome protein

AP-2 Adaptor protein 2

SNX-9 Sorting nexin 9

AA All-atom

MD Molecular dynamics

CGMD Coarse-grained molecular dynamics

MS-CG Multiscale-coarse graining

SBCG Shape based coarse-graining

POPC Phosphatidylcholine

POPS Phosphatidylserine

MWCNT-FITC Multi-walled carbon nanotube functionalized with fluorescein isothiocyanate

cEND Cerebral endothelial

HMMM Highly mobile membrane mimetic
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Fig. 1 Schematic of clathrin-mediated endocytosis in (A) yeast and (B) mammalian cells.
Dimensions are in nanometer (nm). (A) Yeast endocytic buds have tubular necks that are generated
by actin-mediated forces [63]. BAR (bin-amphiphysin-rvs)-domain proteins (BDPs) deform the
membrane through protein-protein and lipid-protein binding [89]. (B) Mammalian endocytic buds
have “U” or “Ω” shaped necks generated by clathrin and other proteins [123, 148]. Dynamin is
required for scission in mammalian cells [49].

1.1 Membrane Trafficking as Local Movement

Membrane trafficking or vesicle trafficking refers to the movement of cargo, which
can include proteins, lipids, and pathogens, across the plasma membrane from
outside-in or inside-out. Vesicle trafficking has been a focus of intense study for
the last four decades and multiple reviews [11, 123] and books [90, 121] have been
dedicated to these processes. More recently James Rothman, Randy Schekman, and
Thomas Südof received the Nobel Prize in 2013 for identifying the molecular com-
ponents involved in cargo delivery, revealing an evolutionary relationship between
the transport systems in yeast and mammalian cells [18, 143, 149]. Importantly, they
also unraveled the precision and timing of the proteins involved in trafficking, which
is critical to understanding many physiological disorders.

There are many different modes of trafficking, and protein-coated vesicles and
the actin cytoskeleton play an important role in the movement of proteins and lipids
[18, 64, 69, 99]. Irrespective of the pathway involved, the formation of these vesicles
involves budding from one membrane followed by fusion with another membrane
– movement of cargo into the cell is broadly termed endocytosis [84, 205] and
movement of cargo towards the extracellular space is broadly termed exocytosis
[92, 208]. Despite the complexity of timing, protein machinery, and lipid composi-
tion, these processes share common biophysical features – generation of membrane
curvature [170], a morphological change, and fission/fusion, a topological change
[48] – resulting in local movements within the cell (Figure 1).
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1.2 Endocytosis

Endocytosis refers to the uptake of cargo from the extracellular milieu and can be
broadly classified into two categories – clathrin-dependent and clathrin-independent
endocytosis [90]. Clathrin-dependent endocytosis is the most widely studied form
and has been characterized by five stages – endocytic patch nucleation, cargo
selection, coat assembly, scission, and vesicle uncoating [123]. A range of proteins
is involved in each stage from clathrin being central to coat assembly [148] to
dynamin playing an important role during scission [49]. Curvature-inducing pro-
teins, including BAR (bin-amphiphysin-rvs)-domain proteins (BDPs), are thought
to sense and generate curvature, and couple the formation of the clathrin coat to
the actin cytoskeleton through protein-protein binding [89]. Clathrin-independent
endocytosis can be mediated through BAR-domain proteins through caveolins
[103], macropinocytosis [74], and the CLIC/GEEC [76] (clathrin-independent
carriers/GPI-enriched early endosomal compartments) pathways [79, 122]. Despite
the diversity of mechanisms of endocytosis, it remains unclear how cargo selection
proceeds and if the biophysical mechanisms are common to these different modes.

In addition to membrane curvature generation, actin polymerization is important
for the progress of endocytosis. Actin remodeling at the endocytic patch provides the
force required for the formation of tubular necks in endocytosis in yeast [63, 207]
and for constriction of the neck [126, 230]. The particular role of actin in these
two different cell types is still under investigation but we now know that in yeast
cells, endocytosis will not occur in the absence of F-actin, while mammalian
cells can be more flexible [11]. F-actin linkages are typically regulated through
the Arp2/3 complex at the membrane and Huntingtin-interacting protein 1-related
protein (Hip1R) at the clathrin coat [161]. Additionally, actin-associated motor
proteins such as class I myosins also play a critical role in vesicle trafficking
[96, 142]. Currently, there are three well-accepted models for force generation by
myosin – i) membrane-bound myosin moves along existing F-actin [57], ii) myosin
controls the organization of new F-actin [187], and iii) myosin leads to nucleation
of new F-actin [11, 207]. Myosin is also known to respond to changes in membrane
tension, thereby playing a critical role in communicating membrane tension to
actin polymerization [108]. Thus, there is a mechanochemical feedback between
the actomyosin machinery and the membrane during endocytosis.

Over the years there has been immense progress in our understanding of the
molecular machinery underlying endocytosis [27, 51, 170], actin-membrane interac-
tions [63, 73, 135, 221, 230], and the robust progression of endocytosis [79, 90, 122,
123]. However, there remain some fundamental gaps in our understanding of these
processes. For instance, we still don’t understand the role of lipid composition, acto-
myosin interactions, bulk fluid interactions with the membrane, and biochemical
signaling in the progression of endocytosis. These open questions give rise to
opportunities both in modeling and in experimental biology of trafficking. These
are discussed in the perspectives section (Section 4).
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1.3 Biophysical Modeling of Trafficking

Despite the particulars associated with each type of trafficking pathway, some
common biophysical principles emerge as critical steps in their progression –
membrane curvature sensing and generation by coat proteins, membrane bending,
formation of a neck, and scission [51, 124]. Many of these steps lend themselves
to mathematical and computational modeling to provide insight into the physical
principles underlying each process and to generate experimentally testable hypothe-
ses. The field of membrane modeling is a rich one and was pioneered by some of the
early contributions by Helfrich and Canham more than four decades ago [33, 56, 83].
Since then, the advances in experiments and computational power have led to the
development of detailed simulations of membrane trafficking. In this review, we
focus on the role of mathematical and computational models in endocytosis and the
insights gained from modeling, followed by a discussion on how these ideas can be
extended to other trafficking processes.

2 Membrane Models of Endocytosis

Among all the participants in endocytosis, lipid bilayers and biological membranes
have perhaps been the best-studied both theoretically and computationally. These
models range from atomistic models of individual lipid rearrangements to large-
scale bending models of the bilayer. It is easy to see why: lipids are amphiphilic
molecules, are about 25 Å in length, and self-assemble to form a variety of mind-
boggling structures geometrically and mechanically. But more than that, lipids are
active participants in endocytosis. So how do the biophysical properties of lipid
membranes and their interaction with membrane proteins regulate the endocytic
pathway? We discuss the different modeling approaches, their advantages and
disadvantages, and applicability in detail below (summarized in Table 2).

2.1 Atomistic Molecular Dynamics

At the atomistic scale, modeling the lipid bilayer requires a study of the proteins
and lipids that constitute the cell membrane. Although experimental techniques such
as grazing incidence and small angle X-ray scattering provide information on how
lipid bilayers function at small length scale [127, 210, 226], obtaining complete
information on lipid-lipid and lipid-protein interactions in situ remains a challenge.
All-atom (AA) models can give insight into the detailed interactions between
different conformations of atoms and can extract quantities such as solvation
energy, heats of vaporization, spectroscopy data, and X-ray diffraction structures,
to name a few. These models have also been used to extract the values of bending
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Table 2 Membrane models in endocytosis.

Membrane

model Atomistic MD Coarse-grained MD Continuum

Advantages Computes detailed
interactions between
atoms. Extracts values
and quantities like
bending rigidity,
lipid-bond orders, lipid-
protein interactions,
etc.

Simulates large
systems of protein-lipid
interactions by mapping
individual atoms to
coarse-grained beads.
Achieves biologically
relevant timescales.

Computationally
inexpensive. Simulates
large length scales of
membrane deformation
by approximating the
lipid bilayer as a thin
elastic shell.

Limitations Computationally inten-
sive. Cannot capture cel-
lular length and time
scales.

Choosing the nonessen-
tial degrees of freedom
that can reduce compu-
tation time. Force fields
may not be accurate
enough.

Cannot capture
smaller length scale
deformations. Difficult
to account for lipid and
protein structures that
alter the continuum
properties of the
membrane.

Biological
example

A 250 ns AA simula-
tion of membrane bend-
ing by single F-BAR
domain proteins using
the CHARMM27 force
field [232].

A 200 micro CGMD
simulation of membrane
tubulation by multiple
amphiphysin N-BAR
domains, where
each N-BAR dimer
is represented by 50 CG
beads [231].

A spontaneous curvature
based Helfrich energy
model of membrane
bud formation during
clathrin-mediated
endocytosis [80].

rigidity [100, 112, 233] and to study phase transitions in the bilayer [141, 213]. In
recent years, atomistic simulations have been extended for studying more complex
interactions such as protein-ligand interaction, protein folding, enzyme-binding, and
protein-DNA interactions [29] and have successfully calculated realistic values for
lipid bond orders, lipid-protein, and peptide-protein interactions [235] (Table 3).

2.1.1 The General Approach

The basis of atomistic models, similar to general molecular models, is to treat
individual atoms in a classical sense, by integrating Newton’s laws of motion in
terms of potential energy functions. The governing equations for each particle can
be written as

mi
∂2ri

∂t2
= Fi, (1)

Fi = −∂U
∂ri
, i = 1 . . . N, (2)
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Table 3 Notation used in all atom bilayer models.

Notation Description Units

U Potential energy pN · nm

K Kinetic energy pN · nm

N Number of atoms

Ndf Number of degrees of freedom

r Distance between atoms nm

b Bond length nm

θ Angle

φ Dihedral angle

b0 Equilibrium value of bond length nm

θ0 Equilibrium value of angle

φ0 Equilibrium value of dihedral angle

kθ Force constant for bonds pNnm

kb Force constant for angles pN/nm

kφ Force constant for dihedrals pN · nm

u Potential field pNnm

T Temperature K

where m is the mass of an individual atom, N is the number of atoms, F is
the force, and U is the potential energy of the system. An analytical solution is
prohibitive since N atoms have 3N position coordinates (each atom is described by
a set of Cartesian coordinates x, y, and z). To solve these equations numerically,
an iterative scheme (finite-difference) is used such that the discrete time steps
involved are typically no more than a few femtoseconds (10−15 s). Each time
step updates the position and velocity of each atom and calculates a new force
field. Since lipid molecules interact with water, including the solvent molecules is
crucial to meaningful simulations. They are generally incorporated as either explicit
or implicit boundary conditions. Explicit solvents can be incorporated as periodic
boundary conditions while implicit solvents approximate the average effect of the
solvent using mathematical models, which in turn reduces the number of degrees of
freedom [55] (Figure 2).

Potential energy includes terms from bonded (atoms connected by a chemical
bond) and nonbonded (atoms within a certain radius that experience van der Waals
forces or electrostatic forces) interactions between any pair of atoms. Bonded
interactions include terms for the angle, bond, and dihedral [212], while nonbonded
interactions include pairwise interactions up to 2 body terms (three body interactions
and higher are generally neglected) [7], simple examples of which are Lennard Jones
potential and electrostatic interactions. Still, the number of pairwise interactions per
atom is N(N − 1)/2, which requires large computation time. Mathematically, the
potential energy due to both kinds of interactions can be written as
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Fig. 2 Summary of basic
equations in atomistic
modeling.

U(R)bonded =
∑

angles

1

2
kθijk(θijk − θ0

ijk)
2 +

∑

bonds

1

2
kbij (rij − b0

ij )
2

+
∑

dihedrals

kφ(1 + cos(n(φ − φ0))) (3)

U(R)non−bonded =
∑

i

u(ri)+
∑

i

∑

j>i

v(rij )+ . . . , (4)

where R ∈ [1, 2, 3. . . N], rij is the distance between atoms i and j, kθ , kb, and kφ

are force constants for bonds, angles, and dihedrals, b0, θ0, and φ0 are equilibrium
values for bond lengths, angles, and dihedral angles and u(r) is an externally applied
potential field or effects due to the boundary wall [7, 29, 212]. These potential
energy functions can be plugged into Equation (2) to calculate the force field. Some
examples of force fields in the simulation of lipid bilayers are CHARMM [119]
and GROMOS [179]. Kinetic energy for the system can be written as a function of
temperature using

Ndf kT

2
= 1

2

N∑

i

m
∂ri

∂t

∂ri

∂t
= K(R), (5)

where Ndf is the number of degrees of freedom, T is temperature, and K is kinetic
energy [29]. The total energy, which is sum of potential and kinetic energy, is
conserved.

With the tremendous increase in computational capability, atomistic simulations
are proving to be more impressive and realistic. Some of the most commonly
used MD software packages are CHARMM [102], AMBER [220], GROMACS
[216], Desmond [28], and NAMD [152]. Visual molecular dynamics (VMD) [87] is
widely used for visualizing results from MD simulations. While the fundamental
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physics behind MD is identical between the various packages, the choice of
software package depends on the particular simulation or problem at hand. Some
of the factors that need to be considered are the software features, computational
efficiency, and the ability to reproduce the requisite protein-lipid interactions. For
example, NAMD and GROMACS are generally computationally more efficient and
thus faster [152, 216]. Often, atomistic systems are used as inputs to coarse-grained
(CG) models, where the position of each CG bead is determined by taking the
average of its constitutive atoms [118].

2.1.2 Applications to Endocytosis

Multiple groups have worked on using AA simulations to model complex biological
processes such as membrane trafficking. Annex V trimer, a membrane-binding
protein that is known to play an important role in trafficking, was modeled
to bind to a POPC/POPS lipid bilayer using AA simulations incorporating the
CHARMM27 force field [43]. From this work, the calcium bridge, hydrophobic
interactions, and H-bond were found to be the main factors that control the
protein-lipid binding. The same force field was also used to perform 250 ns AA
simulations of membrane bending by single F-BAR domain proteins [232]. F-BAR
domains are crucial to tubulation (the generation of a long cylindrical deformation)
from an endocytic patch (Figure 1) and were found to curve membranes by a
scaffolding mechanism [232]. Another member of the BAR domain family that
has an N-terminal amphiphathic helix (N-BAR) was shown to curve membranes
by binding completely to its concave surface [26, 151]. It was also shown to
have a “curvature-sensing” ability – preferentially binding at angles that match
the intrinsic curvature of the membrane [26]. This feature was experimentally
shown in the Drosophilia amphyphysin BAR domain [151]. These results clarify the
interdependence of proteins and membrane curvature during endocytosis at atomic
length scales. More recently, 1,000 ps AA simulations using the Merck molecular
force field tested the ability of multi-walled carbon nanotube functionalized with
fluorescein isothiocyanate (MWCNT-FITC) to be a central nervous system targeted
drug delivery system by directly releasing therapeutic or diagnostic cargo into the
cytoplasm [186]. The study found that these carbon nanotubes were permeable to
transport across microvascular cerebral endothelial (cEND) monolayers, providing
evidence for a drug delivery mechanism.

While the length scales achievable in AA simulations are impressive, the time-
scales are less so. This is especially evident when trying to capture the flow of
membrane lipids using MD simulations, which are known to exhibit slow dynamics
[16, 75, 145], requiring timescales of an order of magnitude more than the typical
hundreds of nanoseconds. As we discuss later, the flow of lipids is closely coupled
with membrane bending and deformations. An alternative approach called the
highly mobile membrane mimetic (HMMM) model uses a combination of short-
tailed lipids and biphasic solvents (selective fragmentation) [13, 145] to increase
lipid diffusion within the bilayer by 1–2 orders of magnitude while maintaining
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the precise description of protein-lipid interactions. The robustness of this method
was demonstrated by capturing the insertion and binding of peripheral proteins
into the membrane [145]. However, the limitation of the model is that mechanical
parameters such as bending rigidity and area compressibility are only partially
captured [145]. Despite these challenges, the potential to incorporate lipid diffusion
into membrane models of endocytosis presents an exciting opportunity.

2.2 Coarse-Grained Molecular Dynamics

Interactions between different protein and lipid chains occur over a wide range
of time and length scales, making all-atom simulations impractical for studying
problems at the cellular length and time scales. Coarse-grained molecular dynamics
(CGMD) models allow for simulating large systems of protein-lipid interactions at
biologically relevant timescales by approximating the energetics of these interac-
tions [200].

2.2.1 The General Approach

The general approach involves mapping individual atoms to coarse-grained/ meso-
scopic “beads,” which redefines the length scale of the system, makes computation
faster, and achieves impressive levels of complexity. An example of this com-
plexity can be seen in a recent work that simulates a cell membrane with nearly
20,000 lipids and 63 lipid species [88]. This idealized model of the mammalian
plasma membrane showed a larger distribution of cholesterol on the outer leaflet
while also detailing the diffusion rates and ordering of the lipids. Interestingly,
they identify that the lipids are heterogeneously mixed without any clear phase
separation, potentially providing some insight into the much-debated lipid raft
hypothesis [31, 88, 188, 189]. Lipid rafts are dynamic, fluctuating nanodomains
in cellular membranes that are thought to serve as signaling platforms [113, 190].
Recent reviews such as [29, 82] have focused on coarse-grained models and
their application to protein-membrane and lipid-protein interactions. At the core
of the CG model is the length scale, degrees of freedom being considered, and
the property that is sought to be reproduced. Broadly, they can be divided into
structure-based [136], force-based [223], and energy-based [120] (MARTINI) force
fields that aim to reproduce the geometry, force distribution, and thermodynamics,
respectively [29].

A major challenge with coarse-graining is choosing the important degrees of
freedom that can reduce computation time without losing other important degrees
of freedom. To tackle this, multiscale [91] and mixed-resolution [185] models have
been developed. The multiscale-coarse graining method (MS-CG) combines an
atomistic approach with coarse-grained simulations. It uses the atomistic trajectory
from an atomistic simulation as an input to calculate the coarse-grained force field
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in a force matching approach. Subsequently, this model was used to develop mixed
all-atom and coarse-grained (AA-CG) [185] models that favorably compared to all-
atom simulation results.

Models that bridge the gap between the quantum scale and other larger length
scales have also been developed. In 2013, the Nobel Prize in chemistry was awarded
to Michael Levitt, Ariel Warshel, and Martin Karplus for their work on developing
multiscale models for complex chemical systems by combining a quantum chemical
model at the core region with a classical model at the larger surroundings.

2.2.2 Applications to Endocytosis

The MARTINI force field is one of the most widely used explicit solvent coarse-
grained models. It is based on a four-to-one mapping, where four heavy atoms are
represented by one interaction center [120]. Nonbonded interactions are represented
by a shifted Lennard Jones potential. The MARTINI model has been extended to
include proteins [133] and has been used to study complex biological systems that
simulate vesicle fusion and fission. For example, polyunsaturated phospholipids
were shown to aid endocytosis by increasing the ability of dynamin and endophilin
to deform the membrane [155]. In another study, the internalization of polyarginine
peptides (R8) was shown to be affected by membrane tension [81]. R8 peptides
are a class of cell-penetrating peptides (CCPs) known to penetrate the membrane
through endocytic and non-endocytic means [68]. More recently, MARTINI-based
MD combined with Monte Carlo simulations were used to study the metastability
of lipid nanotubes, commonly seen in the endoplasmic reticulum [17]. A force-
field based on a ten-to-one mapping instead of the four-to-one mapping seen in
MARTINI named as the shape based coarse-grained (SBCG) method was developed
in [15]. Figure 3 shows a SBCG simulation of membrane tubulation by N-BAR
domains [231].

Another popular CG force field is GROMOS [146], where aliphatic CHn groups
are represented as a united atom. A recent model using a 50 ns MD simulation
incorporating the GROMOS96 force field parameter set could track Rab21 and
guanine nucleotide exchange factor (GEF) exchanges [183]. Rab21 belongs to the
Rab family of proteins and plays an important role in vesicle trafficking [206].
The study found that GTP-bound Rab21 is more stable than the GDP-bound
form and attributed it to the activation of the protein, potentially aiding in the
development of anti-cancer therapeutics [183]. Another study of the influenza virus
fusion peptide (FP), which is known to insert into the host membrane during fusion,
adopted a CGMD simulation employing the GROMOS54A7 force field to show
that the influenza FP has a substantial effect on the model bilayer and that it can
adopt two configurations – a membrane-spanning configuration and an interfacial
configuration [218].

Using the multiscale approach, a study of the effect of N-BAR domain proteins
on membrane curvature found that the N-BAR domain proteins assemble into linear
aggregates resulting in large endocytic bud-like formations [192]. The same group



270 R. Vasan et al.

Fig. 3 Coarse-grained molecular dynamics (CGMD) simulations of tubulation of a 200 nm planar
sheet of membrane induced by multiple amphiphysin N-BAR domains; figure from [231] (pending
permission). Each N-BAR dimer is represented by 50 CG beads [15] and is colored as blue, green,
yellow, and red. The membrane begins to bend from the edge at 0.5 μs and achieves complete
tubulation between 30 and 200 μs [231]. Here, (A) and (B) are two independent simulations of 43
and 24 BAR domain proteins, respectively [231].

of researchers also analyzed the role of membrane tension in the recruitment of N-
BAR domain proteins, finding that high tension inhibits protein interactions [191].
Direct experimental validation of the predictions from these simulations remains
a challenge because of experimental resolution; a detailed review of the issues
associated with experimental validation can be found in [78].

2.3 Continuum Treatment of the Lipid Bilayer

Continuum models treat the lipid bilayer as a thin elastic shell by assuming that
the membrane curvature is much larger than the thickness of the bilayer [137]. This
field traces its history back to a set of papers written in the 1970s – three main
papers by Helfrich [83], Canham [33], and Jenkins [95] and the impact of this line
of modeling is evident simply from a PubMed or Google scholar search for Helfrich
energy. The most widely used continuum model is the Helfrich-Canham energy
model [83], which proposes the free energy of a membrane as a function of its
principal curvatures.
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2.3.1 The General Approach

In its most basic form, for a homogenous membrane, the Helfrich energy can be
written as

W = κH 2 + κGK, (6)

where W is the free energy density (per unit area), κ is the bending modulus, H is
the mean curvature, κG is the Gaussian modulus, and K is the Gaussian curvature.
We note here that Equation (6) differs from the standard Helfrich energy equation
by a factor of 2, accounted for by using a κ that is twice the standard value. The
typical value for κ is ∼ 20 kBT while the Gaussian modulus is a matter of significant
debate [55, 105]. This is because the use of the Gauss Bonet theorem states that the
term with Gaussian curvature in Equation (6) is a topological constant and appears
only in boundary conditions [41, 55], so that the energy is invariant to the Gaussian
modulus except in the boundary condition. Despite this, the Gaussian term is known
to play an important role in phase separation, as shown in [19]. Here, the researchers
calculated a ratio of bending moduli between lipid ordered and disordered phases of
a GUV as κLo/κLd ∼ 5 and a difference in Gaussian moduli as (κLdG − κLoG )/κLd∼ 3.6.

The energy functional (Equation 6) can be plugged into the equilibrium equations
obtained using elastic Kirchoff Love theory through variational principles [95, 137,
201, 202]. These equilibrium equations are first written out as a local force balance,
given by (see Table 4 for notation)

∇ · σ + pn = f, (7)

where ∇· is the surface divergence, σ is the stress tensor, p is the pressure difference
between the inside and outside of the volume bounded by the membrane, and f is any
externally applied force per unit area on the membrane [201]. The surface stresses
in Equation (7) can be decomposed into normal and tangential components as

σα = T α + Sαn, (8)

where

Tα = T αβaβ, T αβ = σαβ + bβμMμα, Sα = −Mαβ

;β . (9)

The two tensors σαβ (stress resultants) and Mαβ (couple resultants) can be
expressed by the derivative of F , the energy per unit mass, with respect to the
coefficients of the first and second fundamental forms, aαβ , bαβ , respectively
[165, 201] as
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Table 4 Notation used in continuum models of lipid membranes.

Notation Description Units

E Strain energy pN · nm

γ Lagrange multiplier for incompressibility constraint pN/nm

p Pressure difference across the membrane pN/nm2

σ Surface stress tensor pN/nm

C Spontaneous curvature nm−1

D Lipid bilayer thickness nm

A Mean area of the lipid monolayers nm2

ΔA Global area difference between the monolayers nm2

ΔA0 Area difference for the unstressed monolayers nm2

θα Coordinates describing the surface

W Local energy per unit area pN/nm

r Position vector

n Normal to the membrane surface unit vector

ν Tangent to the membrane surface in direction of increasing arc length unit vector

τ Rightward normal in direction of revolution unit vector

aα Basis vectors describing the tangent plane

aαβ First fundamental form

bαβ Second fundamental form

β Degree of ordering parameter

λ Membrane tension, −(W + γ ) pN/nm

H Mean curvature of the membrane nm−1

K Gaussian curvature of the membrane nm−2

κ Bending modulus (rigidity) pN · nm

κG Gaussian modulus pN · nm

s Arc length nm

θ Azimuthal angle

ψ Angle between er and as
r Radial distance nm

z Elevation from base plane nm

er (θ) Radial basis vector unit vector

eθ Azimuthal basis vector unit vector

k Altitudinal basis vector unit vector

f Applied force per unit area pN/nm2

τ Surface twist nm−1

M Bending couple pN · nm
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Fig. 4 Summary of basic equations in continuum modeling.

σαβ = ρ(∂F (ρ,H,K; xα)
∂aαβ

+ ∂F (ρ,H,K; xα)
∂aβα

), (10)

Mαβ = ρ

2
(
∂F (ρ,H,K; xα)

∂bαβ
+ ∂F (ρ,H,K; xα)

∂bβα
). (11)

Here, ρ is the density of the membrane. The lipid bilayer has a high stretch
modulus [86] and can be treated as effectively incompressible. Applying area
incompressibility (requiring that the Jacobian J = 1) constraint using a Lagrange
multiplier field [201], Equations (11, 7, 8, and 9) can be simplified to give the
equations in normal (shape equation) and tangential direction as

p + f · n = Δ1

2
WH + (WK);αβ b̃αβ +WH(2H 2 −K)+ 2H(KWK −W)− 2λH,

(12)

and

N
βα

;α − Sαbβα = −(γ,α +WKk,α +WHH,α)aβα = ( ∂W
∂xα|exp

+ λ,α)aβα = −f · as .

(13)

Here (); denotes the covariant derivative, b̃αβ denotes the contravariant cofactor
of the curvature, Δ(·) is the surface Laplacian (the Laplace-Beltrami operator),
()|exp denotes the explicit derivative respect to coordinate θα , and f · as denotes
the dot product of f with the tangent. For a more detailed derivation, see [95, 137,
201, 202] (Figure 4).

Equations (12 and 13) together constitute a boundary value problem that
can be solved using an appropriate choice of surface parameterization (Monge,
axisymmetry, etc.). To fully define the system, boundary conditions need to be
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determined. However, these boundary terms only play an important role when the
system under consideration is not a closed system as the energy required to maintain
the edge is large [95]. Otherwise, edge conditions can simply be derived from
a mechanical power balance between the energy of the film and the forces and
moments at the surface boundary [165, 202] and are given by

f̄ = Tανα − (Mαβτανβn)
′ (distributed force on the edge), (14)

M = Mαβνανβ (distributed bending couple on the edge), (15)

where

ν = ναaα is the unit normal with the exterior, (16)

τ = n× ν is the unit tangent . (17)

Since 1975, the model has been further expanded to account for membrane
heterogeneity through spontaneous curvature, lateral stretching, and lipid tilt.
Spontaneous curvature represents the intrinsic membrane curvature and asymmetry
across the leaflets of the bilayer. It can be incorporated into the Helfrich energy as
[167, 201]

W = κ(H − C(θα))2 + κGK, (18)

where C is the spontaneous curvature field along θα , the position coordinates.
Effectively, spontaneous curvature captures the curvature at which the bending
energy is minimized and is now used to represent the asymmetry between the lipid
bilayers either due to the shape of the lipid [211, 236] or due to protein-induced
bilayer asymmetry [167, 169].

The lateral stretching/area difference elasticity (ADE) [181] model incorporates
the relative stretching and compression of the monolayers against each other and the
energy functional for this is written as

E = κ
∫
(H − C(θα))2dA+ κG π

AD2 (ΔA−ΔA0)
2, (19)

where E is the free energy (not to be confused with W , which is the free energy
density or free energy per unit area), D is bilayer thickness, ΔA is the global area
difference between the monolayers, ΔA0 is the area difference for the unstressed
monolayers, and A is the mean area of the monolayers [60, 181]. The second term
in Equation (19) accounts for the area difference with respect to the relaxed state.

The lipid tilt model integrates two tilt director fields corresponding to each
monolayer [182] and is an important outcome of lipid packing and frustration in
biological processes such as vesicle fusion and scission. The notion of lipid tilt as
an important physical variable for regulating membrane mechanics is supported by
experiments in DPPC bilayers that determine a tilt angle of 32 ± 0.5 at 19◦C [214].
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Studies such as [138] argue for the need to include a secondary term for the tilt
modulus in addition to the bending modulus. They do this by obtaining comparable
values of bending moduli using theory, experiments, and simulation. The effect of
monolayer tilt is to add an anisotropic curvature term to the energy density

W± = βbαβmα±mβ±, (20)

where “+” and “−” are the two monolayers (chosen such that the normal points from
“−” to “+” side), m+ and m− are tangent vector fields to each monolayer surface
(describing the tilt), bαβ is the curvature tensor, and β is a new parameter depending
on the degree of ordering [182]. Each monolayer has its own spontaneous curvature,
stretch, and bending modulus [182]. The mathematics of such an implementation
gets significantly more complex as discussed in [163, 166, 203].

2.3.2 Applications to Endocytosis

Continuum models have been applied to the study of various trafficking processes.
The basic form of the Helfrich formulation (Equation 19) has widely been applied
to the simulation and modeling of membrane tubules, which are commonly seen as
long-lived connections between a vesicle and the membrane [42, 61, 180] during
endocytosis. These membrane tethers are modeled by applying a point force to a
flat membrane patch, mimicking the function of cellular motor proteins [173]. An
important study by Derenyi [54] first showed the dependence of this point force on
the membrane tension and bending rigidity. By plotting the equilibrium shapes of
these tubes under an applied point force, they were also able to identify a neck region
– now an area of active research both theoretically and experimentally. An analysis
of a bilayer lipid membrane tubule stretched between two coaxial end rings as a
model for the connection between a vesicle and the membrane during endocytosis
further showed the existence of a bistability or a sudden breakage of the membrane
connection [66]. This instability was shown by modeling the membrane tubule as a
catenoid or a cylinder, an accepted model shape of the membrane neck [125].

The spontaneous curvature model (Equation 18) is another widely used contin-
uum description of membrane remodeling in cellular processes. The versatility of
this model is evident from the broad range of applications ranging from vesicle
behaviors to endocytosis in cells. Early works dating back to the 1970s have
successfully and extensively been used to study vesicle shapes [56, 104, 181].
Famously, the spontaneous curvature model explained the biconcave disc shape of
red blood cells [56]. A few papers have also evaluated externally applied forces and
line tensions of membranes in different biological contexts [6, 19, 109]. More recent
studies have focussed on the effect of membrane tension, actin forces, and bending
rigidity on vesiculation during endocytosis in a multivariate framework [80]. Actin
forces specifically have been shown to induce instabilities during endocytosis and
these instabilities can be stabilized to a finite extent by BAR proteins [219].
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The area difference between the monolayers of a lipid membrane has also been
used to study various aspects of endocytosis. A study of nanoparticle trafficking
through asymmetric model membranes was recently performed in the context of
both receptor-mediated and clathrin-mediated endocytosis [3]. This study derives
relationships between nanoparticle size and membrane properties such as adhesion
strength and spontaneous curvature. An understanding of these parameters can be
crucial for applications such as drug delivery and intracellular sensing. The effect
of shape and size of nanoparticles in endocytosis was further analyzed in [234].
Here, nanodiamonds (NDs) were classified into prickly (sharp edges) and round
(smooth). Smooth NDs were found to internalize more in experiments. Continuum
models suggested that factors like energy penalty of anchoring and surface area
of contact could be responsible for the increased internalization of round NDs
[234]. Nonspherical nanoparticle trafficking during the drug delivery of natural
(viruses) and artificial (biomimetic) particles in receptor-mediated endocytosis has
also been modeled [53]. This study identifies three distinct endocytic phases –
no wrapping, partial wrapping or frustrated endocytosis, and complete wrapping
(leading to endocytosis) based on the aspect ratio of the particle being engulfed
[53].

Lipid tilt models are useful for the calculation of parameters such as line tension
[107]. Studies such as [107] have also used the tilt model to predict domains of
lipid raft formation, a debatable region of the lipid membrane that is thicker than
its surroundings [31, 188, 189]. A 1D form of the lipid tilt model was applied
to protein adsorption onto membranes in order to capture dynamics at the length
scale of the bilayer thickness [166]. The results obtained using this model were
favorably compared to CG simulations showing that the effect of lipid tilt due to
protein insertion is of the same order of magnitude as the thickness of the bilayer. A
more complex tilt model based on 3D liquid crystal theory has also been developed
[203] and applied to the analysis of ripple phases and small deviations from the
plane [163].

3 Modeling Membrane-Cytoskeleton Interactions in
Endocytosis

Actin is one of the most abundant proteins in eukaryotic cells and actin filaments
play an important role in coordinating functions such as intracellular membrane
trafficking and cell motility [32, 158]. The directional polymerization of actin,
coupled with severing, branching, and capping, gives rise to a multitude of actin
structures that are implicated in a variety of cellular processes (Figure 5). Indeed,
actin-membrane interaction is a workhorse of intracellular force generation [65].
Multiple reviews have focussed on the function of actin polymerization in endocytic
vesicle formation [40, 73, 99, 115]. Actin is known to play important roles during
internalization of the protein coat and subsequently in constriction and scission
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Fig. 5 Schematic of key actin remodeling events for single filaments. Actin is a directional
polymer; monomeric actin or G-actin is shaped like an arrowhead and the polymerization rates
are higher for the addition of monomers at the barbed end rather than the pointed end. Filaments
can undergo capping, severing, or branching depending on the particular actin modulator.

events [97–99]. In mammalian cells, the actin cytoskeleton is necessary to maintain
membrane tension during many cellular functions [47, 58]. Recent experimental
evidence suggests that actin-generated forces during CME can function as a
constricting force in a collar at the base (in yeast) [44, 80] or as an inward force
with the actin network attached to the coat [80, 153]. In yeast endocytosis, branched
actin structures exist as a cortical patch around the membrane invagination and are
essential for endocytosis [171]. Membrane-cytoskeleton adhesion is also known to
affect this force generation capacity [184].

One way to model the effect of actin and myosin is to consider it as an active force
f in a Helfrich based continuum model, as described previously in Equation (7). The
free energy of the system is then given by Equations (12 and 13). Early studies used
an axial point force as a proxy for the actin polymerization force to model membrane
tubulation or tether formation [54]. In cells with turgor pressure, a closer match
between simulation profiles and experimentally observed shapes of tether formation
was obtained by incorporating the effect of pressure in addition to the axial point
load [59]. More recently, studies have also emphasized the role of actin forces (both
axial and radial) in mediating snap-through instabilities during CME [80]. A snap-
through instability occurs when the membrane that is in one equilibrium state must
jump to another equilibrium state as a control parameter changes because the first
equilibrium state either becomes unstable or ceases to exist [72]. Figure 6 shows
the orientations of these actin forces in a schematic and Figure 7 shows a few
example shapes obtained from a simulation of CME in the presence of these forces.
Figure 7(A) shows the formation of a U-shaped invagination with increasing area
of the protein coat. Figure 7(B) shows the response of this U shaped membrane to
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Fig. 6 Schematic of actin force orientation along a yeast cell membrane [80, 97, 153]. Dimensions
are in nanometer (nm). (A) Actin network is attached to protein coat and forms a cone-shaped
structure of interlinked filaments. Actin polymerization at the membrane assembles in the shape of
a ring. It exerts a net inward force [153]. (B) Actin network exerts a constricting force at the neck
by forming a collar [97].

applied axial forces (orientation shown in Figure 6(A)) and Figure 7(C) shows the
response of the U-shaped membrane to radial forces (orientation in Figure 6(B)).
Interestingly, increasing coat rigidity drastically reduced the actin force required
to invaginate the membrane [80], suggesting a close relationship between bending
rigidity, actin forces, and phase separation. We note here that all membrane shapes
obtained using the continuum model are at mechanical equilibrium and are thus
snapshots of “pseudo” time, which we discuss in the perspectives section (Sec-
tion 4). The phase separation can be incorporated as a line tension at the interface
that reduces the energy of the phase boundary [114]. Indeed, this approach has
been used to compute equilibrium membrane shapes of vesicle formation in yeast
endocytosis generated by the coordinated action of actin surface forces and protein-
induced lipid phase separation [114]. The study found that this concerted action
is sufficient for scission. However, there still remain many unanswered questions
with respect to actin dynamics at endocytic sites – how does actin assemble and
disassemble at endocytic sites? How do we specifically model actin-membrane
interactions? How is the actin network organized? To answer these questions, we
need to consider the dynamics of individual actin filaments and review some of the
basics steps in actin remodeling.

Actin exists in two forms – G-actin (globular), and F-actin (filamentous). Each
actin filament has a barbed (+ve) and pointed (−ve) end [224] with different critical
concentrations (actin concentration that balances polymerization and depolymer-
ization rates at one end), leading to addition of monomers at the barbed end and
removal of monomers from the pointed end, a process known as actin treadmilling
[209] (Figure 5). This treadmilling is traditionally characterized by 3 steps –
nucleation, elongation, and steady state [225]. For polymerization to occur, the
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Fig. 7 Equilibrium shapes obtained from solving Equations (13 and 12) in an axisymmetric coor-
dinate system for a spontaneous curvature based Helfrich energy (Equation 18) [80]. Spontaneous
curvature c = 0.02 nm−1. a0 is the dimensional protein coat area (nm2). Total membrane area is
502650 nm2. Membrane tension is 0.002 pN/nm (low tension). Coat and membrane rigidity are
both set at 320 pNnm. (A) Equilibrium membrane shapes obtained for a0 = 0 nm2, 5027 nm2,
12566 nm2, and 20100 nm2 (increasing coat area). (B) Equilibrium membrane shape obtained by
applying an axial force of 4 pN acting over an area equal to the coat area of 20100 nm2. An upward
force acts at the base of the bud. (C) Equilibrium membrane shape obtained by applying a radial
force of 4 pN at the edge of the coat (a0 = 20100 nm2). Orientations of the axial and radial force
are shown in Figure 6 [80, 97, 153].

concentration of actin must be greater than the monomeric critical concentration
[158]. The difference in critical concentration between the two ends reflects the fact
that the system operates out of equilibrium [39], made possible by a reservoir of
ATP, which is replenished in the cell and made available for actin polymerization
by actin-binding proteins that catalyze the exchange of ADP to ATP [158]. This
sequence of events is a remarkable explanation for the organization and coordinated
dynamics of networks of actin filaments observed in cells. Polymerizing actin is
responsible for force generation at the plasma membrane since the filaments are
anchored at the membrane through actin-binding proteins [158].
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Recent reviews such as [157] highlight the progress made in actin research
and serve as an excellent summary of actin filament dynamics. At physiological
concentrations, ATP-bound actin monomers associate rapidly with the barbed ends
of actin filaments. ATP hydrolyzes over time, leaving “older” subunits in the
filament bound to ADP. ADP-bound actin has a high dissociation rate from the
pointed end. Filaments treadmill when ADP-actin depolymerization at the pointed
end coincides with polymerization of ATP-actin from the barbed end. Higher
concentrations of ATP-actin monomers increase the rate of polymerization.

Actin filaments in solution are disorganized and polymerize without control, but
in cells actin-binding proteins can nucleate, crosslink, cap, and sever the filaments.
For example, profilin and thymosin-β4 are the most prevalent actin monomer-
binding proteins and can affect polymerization rates through steric hindrance.
Profilin binds to the barbed end of monomers, which prevents those monomers from
associating with an actin filament’s pointed end but not barbed end. Once bound
to filaments it rapidly dissociates [159]. Profilin exchanges ADP- for ATP-actin
monomers in the solution, which increases the concentration of ATP-actin available
for polymerization [129]. It was later shown to compete with severing proteins like
cofilin to bind to actin monomers and to counter severing at high concentration
[24]. In the last decade, profilin has been shown to have a high affinity for ADP-
actin filament barbed ends [46] and to accelerate depolymerization at the barbed
end [94].

While profilin plays a crucial role in elongation, it also inhibits nucleation,
the first stage of polymerization. Spontaneous nucleation of actin filaments from
monomers is energetically unfavorable in cells, but is sped up by filament nucleation
proteins such as the Arp2/3 complex. Arp2/3 is a seven-protein complex [160] that
binds to the sides of actin filaments and catalyzes the nucleation of a new filament
at an angle of 70◦ from the side of the existing “mother” filament [134]. This was
proposed as the “dendritic nucleation model” with 4 stages - (i) inactive Arp2/3
complex is recruited to the plasma membrane by membrane-bound activators, (ii)
activated Arp2/3 complex nucleates the growth of new actin filaments at a defined
angle from the sides of existing filaments, creating networks of branched filaments,
(iii) growing filaments are rapidly capped, and (iv) phosphate hydrolysis and release
promote disassembly of the pointed end of the branched network [134, 160].
Activators of the Arp2/3 complex, known as nucleation-promoting factors, include
WASP family proteins such as SCAR and N-WASP [172]. WASP-family proteins
bind membranes and are themselves activated by their membrane association and
binding to GTP-binding proteins of the Rho-family such as Cdc42. ADF/Cofilin
severs ADP-actin filaments, a critical step for replenishing the actin monomer pool
[158, 160].

Incorporating all these biological features into a mathematical model requires
a significant amount of parameter estimation. Elongation rate constants of single
actin filaments were measured under electron microscopy and determined to be 10
μM−1 s−1 for ATP-actin association and 1 s−1 for ATP-actin dissociation at the
barbed end [156]. This explains the critical concentration of 0.1 μM ATP-actin
at the barbed end [39, 45]. ADP-actin, on the other hand, dissociates faster at the
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barbed end and slower at the pointed end while the association rate was found to be
slow at both ends, leading to a critical concentration 20x higher than for ATP-actin
[156]. An impressive number of rate constants have been measured for many of the
reactions described above [20, 67, 106] as well as their concentrations and numbers
of molecules per structure, particularly in yeast [27, 154, 194, 227], which makes
the system especially well suited for quantitative comparison between model and
experiments.

3.1 Ratchet Models

Actin polymerization rates decrease when pushing against a membrane. One of the
early models for load-dependent actin polymerization is the “Brownian ratchet”
model [131] (Table 5).

Table 5 Notation used in the actin models.

Notation Description Units

v Velocity nm/s

δ Actin monomer width nm

M Actin concentration μM

β Depolymerization rate s−1

α Polymerization rate s−1

kon Polymerization rate constant μM−1s−1

koff Depolymerization rate constant s−1

kcap Capping rate constant s−1

kbranch Branching rate constant μM−1s−1

ksever Severing rate constant μM−1s−1

θ Angle of actin filament impingement s−1

p Probability of actin monomer addition

G Free actin monomer concentration μM

a Number of filaments attached to the surface

w Number of polymerizing filaments

n Nucleation rate of attached filaments s−1

κ Filament capping rate s−1

ε1 Dimensionless work done in breaking filaments

ε2 Dimensionless polymerization velocity

ε3 Dimensionless depolymerization velocity

ε4 Dimensionless work done by working filament against load
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3.1.1 The General Approach

The “Brownian ratchet” model assumed that individual actin filaments were rigid
[150]. This model also assumed thermal fluctuations didn’t affect the polymer-
izing filaments, which means that the gap width between the monomer and
membrane could be determined by taking into account only the diffusion of
the membrane. Using this model, the force-velocity relationship was determined
to be

v = δ[αe−ω − β]. (21)

Here, δ is actin monomer width, α = kon M is the polymerization rate of
actin concentration M weighted by the probability that the dimensionless load ω
will allow the addition of a monomer unit, and β is the depolymerization rate.
This formula is a simplified version, valid for ideal ratchet velocity much larger
than polymerization and depolymerization rates [150]. Correspondingly, the force
needed to stop the ratchet is

f0 = −kBT
δ

log(
β

α
). (22)

This model was further modified to include elasticity and thermal fluctuations
[131]. In the revised “elastic Brownian ratchet” model, the actin filament was
assumed to behave like a one-dimensional spring with a spring constant equiv-
alent to the bending elasticity of a filament. The force-velocity relationship was
obtained as

v ≈ δ cos(θ)[konMp(θ, f )− koff ], (23)

where f is the load, θ is the angle at which the actin filament impinges on the load,
δ is the monomer width, and p(θ , f) is the steady-state probability that there exists
a gap between the actin filament and the impinging force so as to allow monomer
addition. A further update to the model was developed in [132] to incorporate the
effects of both attaching and detaching/working filaments, known as the “tethered
ratchet model.” The dynamics of these filaments are given by

da

dt
= n− δ.a for attached filaments, (24)

dw

dt
= δ.a − κ.w for working filaments. (25)

a(t) is the number of filaments attached to the surface, w(t) is the number of
polymerizing filaments or working filaments, n is nucleation rate of attached
filaments, δ is filament dissociation rate, and κ is filament capping rate [132].
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Fig. 8 Summary of the basic
equations in the ratchet
models.

Brownian ratchet model
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Incorporating these actin dynamics into Equation (23) results in a force-velocity
relationship given by

v = ε2[e−ε1vω(v)2−ε4 ] − ε3, (26)

where εi is a dimensionless quantity, ε1 is the dimensionless work done in breaking
the attachment between filaments, ε2 is the dimensionless polymerization velocity,
ε3 is the dimensionless depolymerization velocity, and ε4 is the dimensionless work
done by the working filament against the load. This “tethered ratchet” model was
used in an in silico reconstruction of Listeria propulsion for cell motility, taking into
account both actin recycling and hydrolysis [5, 130] (Figure 8).

3.1.2 Applications to Endocytosis

A ratchet-based model for the role of clathrin in CME was proposed in [85],
where the researchers suggested that instead of driving curvature generation, the
clathrin coat forms a cage around the membrane invagination and stabilizes or
traps any transient fluctuations [85]. In this case, the curvature is driven by
thermal fluctuations with clathrin polymerization leading to the stability of more
curved geometries. An earlier model for the endocytosis of proteins across the
mitochondrial membrane in the presence of protein translocases TOM and TOM23
suggested that a targeted Brownian ratchet mechanism, with no backward motion,
leads to spontaneous unfolding of these proteins and subsequently pushes them
unidirectionally toward the mitochondrial matrix [140]. This counteracts another
popular theory that the movement of proteins across the mitochondrial matrix is
driven by a mechanical power stroke. A similar targeted ratchet mechanism labeled
as the “Burnt bridge model” [12] based on probabilistic or biased diffusion of
molecular motors provided an explanation for bacterial endospore engulfment [30].
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3.2 Population-Based Stochastic Models of Actin

One of the drawbacks of ratchet models is that they do not account for the variation
of a population of actin filaments in space and time. In fact, they assume that the
loss of energy with actin growth is the same at every point along the membrane
[131, 168]. However, the three-dimensional evolution of the actin network around
the endocytic site is governed by spatial and temporal stochasticity of actin
remodeling events [222]. How can we incorporate the stochastic behavior of actin
polymerization into models of actin filament interactions while also including the
membrane?

Figure 9 shows the available modeling approaches for a stochastic modeling of
a reaction-diffusion system such as actin polymerization. If proteins are involved
in high copy numbers, an individual molecule’s contribution is less important to
resolve and the species might be treated as a concentration evolution over time
(left column). However, when the involved copy numbers are low, as in the case of
endocytosis, individual molecules have to be resolved to account for stochasticity
(right column). The next dimension to take into account for modeling is the spatial
embedding: Is the entire reaction container well mixed (top row)? Are there spatial
inhomogeneities on a large scale but small subvolumes can still be treated as well
mixed (middle row)? Is there no spatial dimension in which well mixedness can
be assumed and every particle has to be resolved explicitly in space (bottom row)?
These considerations are not only important for reaching high modeling accuracy
but also have computational cost and attainable simulation timescale implications.
Naturally, models that incorporate more detail are computationally more expensive
and differences in wall-clock time for a simulation on different detail levels can
reach orders of magnitude. In most cases, a balance has to be found between desired
modeling detail and the timescales of the studied process.

3.2.1 The General Approach

In stochastic models, the actin filament grows by monomer addition with a rate
constant kon at the barbed end and depolymerization with a rate constant koff at
the pointed end [38]. kcap is the capping rate constant, which determines when a
filament will stop growing. “Daughter” filaments are added to the side of existing
branches with a rate constant kbranch. Severing of filaments through ADF/Cofilin is
specified by rate constant ksever . These rate constants are determined experimentally
(biochemical assays). Branching can be either “end branching” or “side branching,”
depending on where Arp2/3 is located. A 3D stochastic simulation was performed
in [38, 164, 229] and compared favorably to lamellipodium ultrastructure studies.

An “autocatalytic branching” theory was developed in [34], which stated that
new branches of actin filaments are dependent on the number of existing branches.
Contrary to this theory was the “nucleation” model, where new branch formation
was independent of existing filaments. The “autocatalytic branching” model was
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Fig. 9 Stochastic models in reference to different reaction-diffusion modeling approaches.
Reaction-diffusion models can be differentiated into concentration based/deterministic (left
column) and particle based/stochastic (right column). Depending on the system at hand, the
spatial representation can be chosen to be well mixed (top row), well mixed in lattice based
sub-volumes (middle row), or spatially fully resolved into individual particles. The underlying
models are ordinary differential equations (ODEs) and partial differential equations (PDEs) for
the concentration case and chemical master equation (ME), spatio-temporal chemical master
equation (ST-ME), and particle-based reaction diffusion dynamics (iPRD) also known as agent
based modeling.

found to be in better agreement with experimental measurements of force-velocity
relationships [34]. In theory, this model would lead to a steep increase in actin
density if not for the presence of capping protein. The effect of capping protein
in end- versus side-branching by Arp2/3 was then modeled [37]. In side-branching,
capping protein slows down growth while in end-branching, capping protein stops
growth. The branching is described as

kbr = kbr,0[Arp2/3]([G] −GBc )2, (27)

where [Arp2/3] is the concentration of activated Arp2/3, [G] is free actin monomer
concentration, GBC is critical actin concentration at the barbed end, and kbr,0 is a
rate parameter. The results in [37] showed that side-branching is a better fit to
experiments, assuming that branching is dominated by either branching mode alone.
Additionally, monomers with a decaying branching ability showed a better fit [37]
(Figure 10).
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Fig. 10 Summary of basic
equations in population based
stochastic models.

Math box:
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Severing or disassembly of actin filaments is equally important to free up
actin and drive propulsion. Severing of filaments by cofilin has been shown to
increase actin polymerization by freeing up barbed ends [71]. A model incorporating
severing and capping rates in addition to branching effects was developed in [35].
An analytic expression for severing, given by

ΔG = (0.1μM)√ksev/[CP ], (28)

matched the stochastic growth simulations for high concentrations of [CP ] well.
Here, [CP ] is the concentration of capping protein, ksev is the rate of severing,
andΔG is the difference between treadmilling actin concentration and critical actin
concentration [35]. However, the same match was not obtained for lower values
of [CP ], indicating that severing enhances polymerization only in the presence of
barbed end capping [35].

The effects of annealing and disassembly for square/cubic geometries have also
been studied [36]. Here, different segments of filaments were characterized by nodes
that specify branch points. Random severing occurs when this link was broken and
annealing occurs when the links were stochastically restored. In the absence of
annealing, network density was found to decay inversely to severing rate [36]. In
the presence of a critical value of annealing, network density remained constant.

3.2.2 Agent-Based Actin Modeling

Another method to model actin dynamics is through agent-based models. Within
cell and developmental biology, agent-based models, also known as rule-based
or particle-based models, have mostly focused on collective cell migration and
behavior, treating individual cells as agents [8, 62, 117]. Recently, agent-based
models have been adopted to study cell biology at the “mesoscale” to model the
behavior of proteins or multi-protein complexes interacting within cells [4, 139,
217] providing mechanistic insight to cellular processes such as endocytosis and
cytokinesis [144, 178, 199].

Interacting particle-based reaction-diffusion (iPRD) simulations are the most
detailed of such models. Here, each protein or protein complex is treated as an object
with properties (e.g., position, size, excluded volume, diffusion coefficient, binding
status, membrane association) and rules (e.g., diffuse, react with another particle,
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bind to a membrane, etc.) executed over successive time steps within a defined
space. These models have many parameters and in order to be predictive, they
must be minimal or have many of the relevant parameters measured, particularly
reaction rate constants, positions, and numbers of molecules over time. The
great advantage of these models is their ability to bridge first principle physics
(microscopic diffusion constants, membrane viscosity, membrane bending rigidity,
spatial constraints of the cell, etc.) with biological parameters that are accessible
for experiments (e.g., fluorescent tagging of proteins can reveal macroscopic, i.e.
crowded, diffusion constants, protein numbers, the systems overall time evolution,
and reaction rates). Different approaches and software packages exist for iPRD that
allow different levels of modeling detail, excluded volume incorporation, reactions
between particles, membrane treatment, and 3D geometry embedding (see review
[177]).

The structure of these models makes them well suited for studying actin
dynamics, since the stochasticity of the model reflects the stochastic nature of
molecular motion and interactions in the cell. This is particularly the case for a
small number of discrete interacting structures, which is true for many cytoskeletal
processes relative to the size of the cell [139].

Because each relevant entity (molecule or multiprotein structure) is explicitly
represented in these models, the outputs of these simulations can be directly
compared to experimental data and guide new measurements that will constrain
or test model predictions. The modular nature of these models allows them to be
modified by specialists and nonspecialists alike, and permits increases in model
complexity as more parameter values become available from experiments. Their
construction and use are complementary to the theory-driven mathematical models
described above, and their increasing popularity promises to drive the identification
and characterization of emergent behavior and self-organization in subcellular
processes such as the cytoskeleton, particularly as more quantitative measurements
are made in cells.

3.2.3 Applications to Endocytosis

Recent studies such as [221] use a Master Equation (ME) method to model 3D
growth (using cylindrical coordinates) of F-actin filaments to deform a membrane
in the context of yeast CME. This model incorporates branching induced by the
nucleation-promoting factor (NPF Las17) that accumulates as a ring around the
endocytic patch [135], spontaneous nucleation, and cofilin-driven severing [221].
Filament branching leads to a pushing force along the ring [221]. The yeast Hip1R
homologue Sla2 is assumed to play a role in the pulling force which acts at the
center of the ring [221]. This pulling force also requires spontaneous nucleation of
actin filaments, an assumption made in the model. Filament dynamics incorporate
a negative feedback loop of actin on Las17 – there is a probability that Las17
detaches from the membrane because of polymerizing actin [222]. The results
obtained for the number of F-actin and Las17 matched well with experimentally
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determined values [222] and other stochastic results [221]. This study provides
strong evidence for the use of a statistically averaged actin network in order to
reduce the computational load on calculating branching.

Studies such as [22] perform temporal simulations that support the “dendritic
nucleation” model [99] of endocytic patch formation. Time course data was obtained
from quantitative confocal microscopy measurements of purified protein in a dilute
solution [195]. Simulation results show a good match to live cell experimental
data only when (i) the ternary complex of actin monomer-WASP-Arp2/3 binds to
actin filaments 400 times faster than the rate constant measured in vitro [21], (ii)
cofilin-induced severing and fragmentation of actin filaments speeds up actin patch
disassembly, and (iii) capping protein reaction rates are faster in cells. This work
performed a large parameter sweep of reaction rates to determine the best fit to live
cell measurements, besides identifying the crucial reactions that differentiate in vitro
and in vivo endocytic patch formation.

Agent-based models have also been used to model actin filament growth,
mechanics, and branching [111, 147, 197] with varying levels of sophistication.
Agent-based models have contributed to the mechanistic understanding of several
cytoskeletal cellular processes, including (microtubules) formation of bipolar micro-
tubule bundles, mitotic spindle assembly, nuclear and division plane positioning,
and (actin) bacterial actin-based motility [52, 93, 116, 144]. Popular modular
implementations of agent-based modeling include Smoldyn [9, 10], which models
diffusing and interacting particles; and Cytosim [139], which models dynamics,
interactions, and forces of cytoskeletal filaments and their binding partners using
Brownian dynamics. Several platforms combined agent-based models with ODE,
stochastic, or spatial models on different length scales to make multiscale models
[25, 62].

Schöneberg [23, 175] developed an iPRD software framework named ReaDDy,
which includes interaction potentials to model space exclusion, particle interactions
(e.g., binding and clustering), membrane interactions, and a particle-particle reac-
tion framework. Most applicable to highly crowded systems, ReaDDy has been used
to simulate Rhodopsin-G-protein interaction in the visual cascade [77, 176], SNARE
clustering in the presynaptic active zone [215], and HIV maturation [174]. Recently,
ReaDDy was combined with a spatio-temporal master equation (ST-ME) reaction-
diffusion model [178] to investigate how endocytic proteins become partitioned into
different regions of endocytic buds. The authors used this framework to model
the diffusion of a BAR-domain protein named SNX9 in the context of clathrin-
coated buds crowded by endocytic proteins [178]. Using realistic copy numbers and
sizes of endocytic proteins positioned underneath a clathrin cage, their Brownian
dynamics simulations revealed that a membrane lipid composition change in the
highly competitive lipid binding environment of the clathrin coat can specifically
recruit SNX9 to the membrane and that protein crowding excluded SNX9 from the
bud in favor of the neck of the endocytic pit. This restriction of SNX9 to the edge of
the clathrin lattice was confirmed experimentally [178, 198]. Including a weak end-
to-end interaction potential between SNX9 molecules (found in many BAR-domain
proteins) led to SNX9 oligomerizing in rings at the bud neck, at various stages
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Fig. 11 Simulations of endocytic proteins diffusing and partitioning during clathrin-coated pit
maturation. Underneath the clathrin coat (red), the clathrin-binding Adaptor Protein 2 (AP-2,
black) the BAR-protein SNX9 (green) and all other present endocytosis proteins (white) are
explicitly simulated using experimentally determined numbers and sizes. Newly recruited SNX9 is
spatially excluded from underneath the coat due to crowding and partitions to the endocytic neck.
A tip-to-tip interaction potential for SNX9 molecules induces their oligomerization into rings at
the bud neck. Shown are snapshots of different simulations with different curvatures of the vesicle
neck from [178]. Permission pending.

of neck constriction (Figure 11). The spatial patterning of SNX9 allows it to bind
membranes of a particular curvature while recruiting dynamin and activating the
nucleation-promoting factor NWASP [50]. This serves as a mechanism to coordinate
membrane curvature, force generation via actin polymerization, and membrane
scission via dynamin constriction.

4 Future Perspectives/Challenges

It is now evident that biophysical modeling of endocytosis has made great progress
and we are able to glean insights into these complex biological processes and gen-
erate experimentally testable hypotheses. However, there remain many challenges
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that require advances in mathematical and computational modeling of endocytosis.
We highlight a few here:

• How can a continuum model incorporate the effects of any new molecules made
over a given timescale? Recent works have highlighted the role of lipid structures
in protein activation [70], which would, in turn, alter the continuum properties of
the membrane. Since continuum models incorporate proteins using spontaneous
curvature fields and variable elastic moduli, we need a framework that can
account for nonlinear lipid-protein interactions such as the one shown in [110].

• Hybrid continuum-atomistic models can help bridge the gap between accuracy
of MD and speed of continuum modeling [14]. Where continuum fails, MD
simulations give insight into the nature of the lipid-protein interactions at a
length scale smaller than that of the lipid bilayer, as shown in works like [75].
However, there remain computational challenges associated with a hybrid model.
Whereas continuum simulations can easily compute energies over large systems,
MD simulations require large computation time and storage and are practical
only over small spatial domains. Mesoscale reaction-diffusion modeling such as
iPRD is a promising approach in the right direction.

• Coupling mechanics with biochemistry in a model remains a continued chal-
lenge. Although some efforts have been made to couple the lipid composition
to membrane mechanics [114], a complete mechanochemical model that couples
signaling to membrane dynamics is still missing. Furthermore, the newly devel-
oped models should take the multiple time scales that govern the progression of
endocytosis into account rather than assume mechanical equilibrium.

• Another major challenge is the relationship between actin and the membrane.
A recent review on membrane bending by actin polymerization [40] discusses
this issue in detail; identifying the relationship between actin dynamics and
membrane deformation remains a continued challenge for mathematical and
computational model development.

• Capturing in-plane diffusion of proteins and lipids is another emerging area of
research. Recently, there has been a slew of models [2, 162, 165, 167, 204]
that account for in-plane transport. However, despite recent evidence that inter-
monolayer friction affects scission due to BAR domain proteins [193], these
models are not the norm.

• Last, but not least, theory and computation need to work closely with exper-
iments, so that the models can push closer towards experimentally accessible
parameters and outputs. This will allow experimentalists to test predictions of
the model and identify the key quantitative approaches that need to be developed
in cellular experiments (measuring numbers of molecules at endocytic sites,
cytoplasmic concentrations, membrane and coat rigidity, membrane tension,
actin dimensions, and organization). While some of these methods have been
developed in yeast [1, 101, 195, 196, 228], these methods emerge [178] but are
less well established for mammalian cells.

Many of these issues can be addressed by strong interdisciplinary teams and
cross-pollination of ideas from different fields. With advances in imaging and
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computational tools, the time is right for us to make progress in leaps and bounds in
the study of small-scale cellular movements.
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