
Using the Isabelle Ontology Framework
Linking the Formal with the Informal

Achim D. Brucker1(B) , Idir Ait-Sadoune2, Paolo Crisafulli3,
and Burkhart Wolff4

1 The University of Sheffield, Sheffield, UK
a.brucker@sheffield.ac.uk

2 CentraleSupelec, Paris, France
idir.aitsadoune@centralesupelec.fr

3 IRT-SystemX, Paris, France
paolo.crisafulli@irt-systemx.fr
4 Université Paris-Sud, Paris, France

wolff@lri.fr

Abstract. While Isabelle is mostly known as part of Isabelle/HOL (an
interactive theorem prover), it actually provides a framework for develop-
ing a wide spectrum of applications. A particular strength of the Isabelle
framework is the combination of text editing, formal verification, and
code generation.

Up to now, Isabelle’s document preparation system lacks a mechanism
for ensuring the structure of different document types (as, e.g., required
in certification processes) in general and, in particular, mechanism for
linking informal and formal parts of a document.

In this paper, we present Isabelle/DOF, a novel Document Ontol-
ogy Framework on top of Isabelle. Isabelle/DOF allows for conventional
typesetting as well as formal development. We show how to model doc-
ument ontologies inside Isabelle/DOF, how to use the resulting meta-
information for enforcing a certain document structure, and discuss
ontology-specific IDE support.

Keywords: Ontology · Ontological modeling · Isabelle/DOF

1 Introduction

The linking of the formal to the informal is perhaps the most pervasive chal-
lenge in the digitization of knowledge and its propagation. This challenge incites
numerous research efforts summarized under the labels “semantic web”, “data
mining”, or any form of advanced “semantic” text processing. A key role in
structuring this linking play document ontologies (also called vocabulary in the
semantic web community [3]), i.e., a machine-readable form of the structure of
documents as well as the document discourse. Such ontologies can be used for
the scientific discourse within scholarly articles, mathematical libraries, and in
the engineering discourse of standardized software certification documents [9,10].
c© Springer International Publishing AG, part of Springer Nature 2018
F. Rabe et al. (Eds.): CICM 2018, LNAI 11006, pp. 23–38, 2018.
https://doi.org/10.1007/978-3-319-96812-4_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96812-4_3&domain=pdf
http://orcid.org/0000-0002-6355-1200

24 A. D. Brucker et al.

Further applications are the domain-specific discourse in juridical texts or med-
ical reports. In general, an ontology is a formal explicit description of concepts
in a domain of discourse (called classes), properties of each concept describ-
ing attributes of the concept, as well as links between them. A particular link
between concepts is the is-a relation declaring the instances of a subclass to be
instances of the super-class.

The main objective of this paper is to present Isabelle/DOF, a novel frame-
work to model typed ontologies and to enforce them during document evolution.
Based on Isabelle, ontologies may refer to types, terms, proven theorems, code, or
established assertions. Based on a novel adaption of the Isabelle IDE, a document
is checked to be conform to a particular ontology—Isabelle/DOF is designed to
give fast user-feedback during the capture of content. This is particularly valu-
able in case of document changes, where the coherence between the formal and
the informal parts of the content can be mechanically checked.

To avoid any misunderstanding: Isabelle/DOF is not a theory in HOL on
ontologies and operations to track and trace links in texts, it is an environment
to write structured text which may contain Isabelle/HOL definitions and proofs
like mathematical articles, tech-reports and scientific papers—as the present
one, which is written in Isabelle/DOF itself. Isabelle/DOF is a plugin into the
Isabelle/Isar framework in the style of [14].

The plan of the paper is follows: we start by introducing the underlying
Isabelle system (Sect. 2) followed by presenting the essentials of Isabelle/DOF
and its ontology language (Sect. 3). It follows Sect. 4, where we present three
application scenarios from the point of view of the ontology modeling. In
Sect. 5 we discuss the user-interaction generated from the ontological definitions.
Finally, we draw conclusions and discuss related work in Sect. 6.

2 Background: The Isabelle System

While Isabelle is widely perceived as an interactive theorem prover for HOL
(Higher-order Logic) [11], we would like to emphasize the view that Isabelle
is far more than that: it is the Eclipse of Formal Methods Tools. This refers
to the “generic system framework of Isabelle/Isar underlying recent versions of
Isabelle. Among other things, Isar provides an infrastructure for Isabelle plug-
ins, comprising extensible state components and extensible syntax that can be
bound to ML programs. Thus, the Isabelle/Isar architecture may be understood
as an extension and refinement of the traditional ‘LCF approach’, with explicit
infrastructure for building derivative systems” [14] .

The current system framework offers moreover the following features:

– a build management grouping components into to pre-compiled sessions,
– a prover IDE (PIDE) framework [12] with various front-ends
– documentation - and code generators,
– an extensible front-end language Isabelle/Isar, and,
– last but not least, an LCF style, generic theorem prover kernel as the most

prominent and deeply integrated system component.

Using the Isabelle Ontology Framework 25

Fig. 1. The system architecture of Isabelle (left-hand side) and the asynchronous com-
munication between the Isabelle system and the IDE (right-hand side).

The Isabelle system architecture shown in Fig. 1 comes with many layers,
with Standard ML (SML) at the bottom layer as implementation language. The
architecture actually foresees a Nano-Kernel (our terminology) which resides in
the SML structure Context. This structure provides a kind of container called
context providing an identity, an ancestor-list as well as typed, user-defined state
for components (plugins) such as Isabelle/DOF. On top of the latter, the LCF-
Kernel, tactics, automated proof procedures as well as specific support for higher
specification constructs were built.

We would like to detail the documentation generation of the architec-
ture, which is based on literate specification commands such as section . . . ,
subsection . . . , text . . . , etc. Thus, a user can add a simple text:

text〈This is a description.〉

These text-commands can be arbitrarily mixed with other commands stating
definitions, proofs, code, etc., and will result in the corresponding output in
generated LaTEX or HTML documents. Now, inside the textual content, it is
possible to embed a text-antiquotation:

text〈According to the reflexivity axiom @{thm refl}, we obtain in Γ
for @{term "fac 5"} the result @{value "fac 5"}.〉

which is represented in the generated output by:

According to the reflexivity axiom x = x, we obtain in Γ for fac 5
the result 120.

where refl is actually the reference to the axiom of reflexivity in HOL. For the
antiquotation @{value "fac 5"} we assume the usual definition for fac in HOL.
Thus, antiquotations can refer to formal content, can be type-checked before
being displayed and can be used for calculations before actually being typeset.

26 A. D. Brucker et al.

When editing, Isabelle’s PIDE offers auto-completion and error-messages while
typing the above semi-formal content.

3 Isabelle/DOF

An Isabelle/DOF document consists of three components:

– the ontology definition, which is an Isabelle theory file with definitions for
document-classes and all auxiliary datatypes.

– the core of the document itself which is an Isabelle theory importing the
ontology definition. Isabelle/DOF provides an own family of text-element
commands such as title*, section*, text*, etc., which can be annotated
with meta-information defined in the underlying ontology definition.

– the layout definition for the given ontology exploiting this meta-information.

Isabelle/DOF is a novel Isabelle system component providing specific support
for all these three parts. Note that the document core may, but must not use
Isabelle definitions or proofs for checking the formal content—the present paper
is actually an example of a document not containing any proof.

The document generation process of Isabelle/DOF is currently restricted to
LaTEX, which means that the layout is defined by a set of LaTEX style files. Several
layout definitions for one ontology are possible and pave the way that different
views for the same central document were generated, addressing the needs of
different purposes and/or target readers.

While the ontology and the layout definition will have to be developed by an
expert with knowledge over Isabelle and Isabelle/DOF and the back end tech-
nology depending on the layout definition, the core is intended to require only
minimal knowledge of these two. Document core authors can use LaTEX com-
mands in their source, but this limits the possibility of using different represen-
tation technologies, e.g., HTML, and increases the risk of arcane error-messages
in generated LaTEX.

The Isabelle/DOF ontology specification language consists basically on a
notation for document classes, where the attributes were typed with HOL-types
and can be instantiated by terms HOL-terms, i.e., the actual parsers and type-
checkers of the Isabelle system were reused. This has the particular advantage
that Isabelle/DOF commands can be arbitrarily mixed with Isabelle/HOL com-
mands providing the machinery for type declarations and term specifications
such as enumerations. In particular, document class definitions provide:

– a HOL-type for each document class as well as inheritance,
– support for attributes with HOL-types and optional default values,
– support for overriding of attribute defaults but not overloading, and
– text-elements annotated with document classes; they are mutable instances

of document classes.

Attributes referring to other ontological concepts are called links. The HOL-
types inside the document specification language support built-in types for

Using the Isabelle Ontology Framework 27

Isabelle/HOL typ’s, term’s, and thm’s reflecting internal Isabelle’s internal types
for these entities; when denoted in HOL-terms to instantiate an attribute, for
example, there is a specific syntax (called inner syntax antiquotations) that is
checked by Isabelle/DOF for consistency.

Document classes can have a where-clause containing a regular expression
over class names. Classes with such a where are called monitor classes. While
document classes and their inheritance relation structure meta-data of text-
elements, monitor classes enforce structural organization of documents via the
language specified by the regular expression enforcing a sequence of text-elements
that must belong to the corresponding classes.

To start using Isabelle/DOF, one creates an Isabelle project (with the name
IsaDofApplications):

isabelle DOF_mkroot -o scholarly_paper -t lncs -d IsaDofApplications

where the -o scholarly_paper specifies the ontology for writing scientific arti-
cles and -t lncs specifies the use of Springer’s LaTEX-configuration for the Lec-
ture Notes in Computer Science series. The project can be formally checked,
including the generation of the article in PDF using the following command:

isabelle build -d . IsaDofApplications

4 Modeling Ontologies in Isabelle/DOF

In this section, we will use the Isabelle/DOF document ontology language for
three different application scenarios: for scholarly papers, for mathematical exam
sheets as well as standardization documents where the concepts of the standard
are captured in the ontology. For space reasons, we will concentrate in all three
cases on aspects of the modeling due to space limitations.

4.1 The Scholar Paper Scenario: Eating One’s Own Dog Food

The following ontology is a simple ontology modeling scientific papers. In this
Isabelle/DOF application scenario, we deliberately refrain from integrating refer-
ences to (Isabelle) formal content in order demonstrate that Isabelle/DOF is not
a framework from Isabelle users to Isabelle users only. Of course, such references
can be added easily and represent a particular strength of Isabelle/DOF.

The first part of the ontology scholarly_paper (see Fig. 2) contains the doc-
ument class definitions with the usual text-elements of a scientific paper. The
attributes short_title, abbrev etc. are introduced with their types as well as
their default values. Our model prescribes an optional main_author and a todo-
list attached to an arbitrary text section; since instances of this class are mutable
(meta)-objects of text-elements, they can be modified arbitrarily through sub-
sequent text and of course globally during text evolution. Since author is a
HOL-type internally generated by Isabelle/DOF framework and can therefore
appear in the main_author attribute of the text_section class; semantic links
between concepts can be modeled this way.

28 A. D. Brucker et al.

Fig. 2. The core of the ontology definition for writing scholarly papers.

The translation of its content to, e.g., Springer’s LaTEX setup for the Lecture
Notes in Computer Science Series, as required by many scientific conferences, is
mostly straight-forward.

Figure 3 shows the corresponding view in the Isabelle/PIDE of the present
paper. Note that the text uses Isabelle/DOF’s own text-commands containing
the meta-information provided by the underlying ontology. We proceed by a
definition of introduction’s, which we define as the extension of text_section
which is intended to capture common infrastructure:

doc_class introduction = text_section +
comment :: string

As a consequence of the definition as extension, the introduction class
inherits the attributes main_author and todo_list together with the corre-
sponding default values.

As a variant of the introduction, we could add here an attribute that contains
the formal claims of the article—either here, or, for example, in the keyword
list of the abstract. As type, one could use either the built-in type term (for
syntactically correct, but not necessarily proven entity) or thm (for formally
proven entities). It suffices to add the line:

claims :: "thm list"

and to extent the LaTEX-style accordingly to handle the additional field. Note
that term and thm are types reflecting the core-types of the Isabelle kernel. In a
corresponding conclusion section, one could model analogously an achievement
section; by programming a specific compliance check in SML, the implemen-
tation of automated forms of validation check for specific categories of papers
is envisageable. Since this requires deeper knowledge in Isabelle programming,
however, we consider this out of the scope of this paper.

Using the Isabelle Ontology Framework 29

Fig. 3. Ouroboros I: this paper from inside . . .

We proceed more or less conventionally by the subsequent sections (Fig. 4)
and finish with a monitor class definition that enforces a textual ordering in the
document core by a regular expression (Fig. 5).

Fig. 4. Various types of sections of a scholarly papers.

We might wish to add a component into our ontology that models figures
to be included into the document. This boils down to the exercise of modeling
structured data in the style of a functional programming language in HOL and
to reuse the implicit HOL-type inside a suitable document class figure:

30 A. D. Brucker et al.

Fig. 5. A monitor for the scholarly paper ontology.

datatype placement = h | t | b | ht | hb
doc_class figure = text_section +

relative_width :: "string" (* percent of textwidth *)
src :: "string"
placement :: placement
spawn_columns :: bool <= True

Alternatively, by including the HOL-libraries for rationals, it is possible to use
fractions or even mathematical reals. This must be counterbalanced by syntactic
and semantic convenience. Choosing the mathematical reals, e.g., would have the
drawback that attribute evaluation could be substantially more complicated.

Fig. 6. Ouroboros II: figures . . .

The document class figure—supported by the Isabelle/DOF text command
figure*—makes it possible to express the pictures and diagrams in this paper
such as Fig. 6.

4.2 The Math-Exam Scenario

The Math-Exam Scenario is an application with mixed formal and semi-formal
content. It addresses applications where the author of the exam is not present
during the exam and the preparation requires a very rigorous process, as the
French baccalauréat and exams at The University of Sheffield.

We assume that the content has four different types of addressees, which have
a different view on the integrated document

– the setter, i.e., the author of the exam,
– the checker, i.e., an internal person that checks the exam for feasibility and

non-ambiguity,

Using the Isabelle Ontology Framework 31

– the external examiner, i.e., an external person that checks the exam for fea-
sibility and non-ambiguity, and

– the student, i.e., the addressee of the exam.

The latter quality assurance mechanism is used in many universities, where for
organizational reasons the execution of an exam takes place in facilities where
the author of the exam is not expected to be physically present. Furthermore,
we assume a simple grade system (thus, some calculation is required).

Fig. 7. The core of the ontology modeling math exams.

The heart of this ontology (see Fig. 7) is an alternation of questions and
answers, where the answers can consist of simple yes-no answers (QCM style
check-boxes) or lists of formulas. Since we do not assume familiarity of the
students with Isabelle (term would assume that this is a parse-able and type-
checkable entity), we basically model a derivation as a sequence of strings (see
Fig. 8).

In many institutions, it makes sense to have a rigorous process of validation
for exam subjects: is the initial question correct? Is a proof in the sense of
the question possible? We model the possibility that the examiner validates a
question by a sample proof validated by Isabelle (see Fig. 9). In our scenario this
sample proofs are completely intern, i.e., not exposed to the students but just
additional material for the internal review process of the exam.

Using the LaTEX package hyperref, it is possible to conceive an interactive
exam-sheets with multiple-choice and/or free-response elements (see Fig. 10).

32 A. D. Brucker et al.

Fig. 8. An exam can contain different types of questions.

Fig. 9. Validating exams.

With the help of the latter, it is possible that students write in a browser a
formal mathematical derivation—as part of an algebra exercise, for example—
which is submitted to the examiners electronically.

Using the Isabelle Ontology Framework 33

Fig. 10. A generated QCM fragment . . .

4.3 The Certification Scenario Following CENELEC

Documents to be provided in formal certifications (such as CENELEC
50126/50128, the DO-178B/C, or Common Criteria) can much profit from the
control of ontological consistency: a lot of an evaluators work consists in trac-
ing down the links from requirements over assumptions down to elements of
evidence, be it in the models, the code, or the tests. In a certification process,
traceability becomes a major concern; and providing mechanisms to ensure com-
plete traceability already at the development of the global document will clearly
increase speed and reduce risk and cost of a certification process. Making the
link-structure machine-checkable, be it between requirements, assumptions, their
implementation and their discharge by evidence (be it tests, proofs, or authorita-
tive arguments), is therefore natural and has the potential to decrease the cost of
developments targeting certifications. Continuously checking the links between
the formal and the semi-formal parts of such documents is particularly valuable
during the (usually collaborative) development effort.

As in many other cases, formal certification documents come with an own
terminology and pragmatics of what has to be demonstrated and where, and
how the trace-ability of requirements through design-models over code to system
environment assumptions has to be assured.

In the sequel, we present a simplified version of an ontological model used
in a case-study [8]. We start with an introduction of the concept of requirement
(see Fig. 11). Such ontologies can be enriched by larger explanations and exam-
ples, which may help the team of engineers substantially when developing the
central document for a certification, like an explication what is precisely the
difference between an hypothesis and an assumption in the context of the eval-
uation standard. Since the PIDE makes for each document class its definition
available by a simple mouse-click, this kind on meta-knowledge can be made far
more accessible during the document evolution.

34 A. D. Brucker et al.

Fig. 11. Modeling requirements.

For example, the term of category assumption is used for domain-specific
assumptions. It has formal, semi-formal and informal sub-categories. They have
to be tracked and discharged by appropriate validation procedures within a
certification process, by it by test or proof. It is different from a hypothesis,
which is globally assumed and accepted.

In the sequel, the category exported constraint (or ec for short) is used for
formal assumptions, that arise during the analysis, design or implementation and
have to be tracked till the final evaluation target, and discharged by appropriate
validation procedures within the certification process, by it by test or proof. A
particular class of interest is the category safety related application condition
(or srac for short) which is used for ec’s that establish safety properties of the
evaluation target. Their track-ability throughout the certification is therefore
particularly critical. This is naturally modeled as follows:

doc_class ec = assumption +
assumption_kind :: ass_kind <= (*default *) formal

doc_class srac = ec +
assumption_kind :: ass_kind <= (*default *) formal

5 Ontology-Based IDE Support

We present a selection of interaction scenarios Sects. 4.1 and 4.3 with
Isabelle/PIDE instrumented by Isabelle/DOF.

5.1 A Scholarly Paper

In Fig. 12 we show how hovering over links permits to explore its meta-
information. Clicking on a document class identifier permits to hyperlink into

Using the Isabelle Ontology Framework 35

Fig. 12. Exploring text element.

the corresponding class definition (Fig. 13a); hovering over an attribute-definition
(which is qualified in order to disambiguate; Fig. 13b).

An ontological reference application in Fig. 14: the ontology-dependant
antiquotation @{example ...} refers to the corresponding text-elements. Hov-
ering allows for inspection, clicking for jumping to the definition. If the link does
not exist or has a non-compatible type, the text is not validated.

Fig. 13. Hyperlinks.

5.2 CENELEC

The corresponding view in Fig. 15 shows core part of a document, coherent to
the Sect. 4.3. The first sample shows standard Isabelle antiquotations [13] into
formal entities of a theory. This way, the informal parts of a document get “formal
content” and become more robust under change.

The subsequent sample in Fig. 16 shows the definition of an safety-related
application condition, a side-condition of a theorem which has the consequence
that a certain calculation must be executed sufficiently fast on an embedded

Fig. 14. Exploring an attribute (hyperlinked to the class).

36 A. D. Brucker et al.

Fig. 15. Standard antiquotations referring to theory elements.

Fig. 16. Defining a SRAC reference . . .

device. This condition can not be established inside the formal theory but has
to be checked by system integration tests.

Now we reference in Fig. 17 this safety-related condition; however, this hap-
pens in a context where general exported constraints are listed. Isabelle/DOF’s
checks establish that this is legal in the given ontology.

This example shows that ontological modeling is indeed adequate for large
technical, collaboratively developed documentations, where modifications can
lead easily to incoherence. The current checks help to systematically avoid this
type of incoherence between formal and informal parts.

Fig. 17. Using a SRAC as EC document reference.

6 Conclusion and Related Work

We have demonstrated the use of Isabelle/DOF, a novel ontology modeling and
enforcement IDE deeply integrated into the Isabelle/Isar Framework. The two
most distinguishing features are

– Isabelle/DOF and its ontology language are a strongly typed language that
allows for referring (albeit not reasoning) to entities of Isabelle/HOL, most
notably types, terms, and (formally proven) theorems, and

Using the Isabelle Ontology Framework 37

– Isabelle/DOF is supported by the Isabelle/PIDE framework; thus, the advan-
tages of an IDE for text-exploration (which is the type of this link? To which
text element does this link refer? Which are the syntactic alternatives here?)
were available during editing instead of a post-hoc validation process.

Of course, a conventional batch-process also exists which can be used for the
validation of large document bases in a conventional continuous build process.
This combination of formal and semi-informal elements, as well as a systematic
enforcement of the coherence to a document ontology of the latter, is, as we
believe, novel and offers a unique potential for the semantic treatment of scientific
texts and technical documentations.

To our knowledge, this is the first ontology-driven framework for editing
mathematical and technical documents that focuses particularly on documents
mixing formal and informal content—a type of documents that is very common
in technical certification processes. We see mainly one area of related works:
IDEs and text editors that support editing and checking of documents based
on an ontology. There is a large group of ontology editors (e.g., Protégé [5],
Fluent Editor [1], NeOn [2], or OWLGrEd [4]). With them, we share the sup-
port for defining ontologies as well as auto-completion when editing documents
based on an ontology. While our ontology definitions are currently based on a
textual definition, widely used ontology editors (e.g., OWLGrEd [4]) also sup-
port graphical notations. This could be added to Isabelle/DOF in the future. A
unique feature of Isabelle/DOF is the deep integration of formal and informal
text parts. The only other work in this area we are aware of is rOntorium [6],
a plugin for Protégé that integrates R [7] into an ontology environment. Here,
the main motivation behind this integration is to allow for statistically analyze
ontological documents. Thus, this is complementary to our work.

Isabelle/DOF in its present form has a number of technical short-comings as
well as potentials not yet explored. On the long list of the short-comings is the
fact that strings inside HOL-terms do not support, for example, Unicode. For
the moment, Isabelle/DOF is conceived as an add-on for Isabelle/HOL; a much
deeper integration of Isabelle/DOF into Isabelle could increase both performance
and uniformity. Finally, different target presentation (such as HTML) would be
highly desirable in particular for the math exam scenarios. And last but not
least, it would be desirable that PIDE itself is “ontology-aware” and can, for
example, use meta-information to control read- and write accesses of parts of
documents.

Availability. The implementation of the framework, the discussed ontology
definitions, and examples are available at https://git.logicalhacking.com/HOL-
OCL/Isabelle_DOF/.

Acknowledgement. This work was partly supported by the framework of IRT Sys-
temX, Paris-Saclay, France, and therefore granted with public funds within the scope
of the Program “Investissements d’Avenir”.

https://git.logicalhacking.com/HOL-OCL/Isabelle_DOF/
https://git.logicalhacking.com/HOL-OCL/Isabelle_DOF/

38 A. D. Brucker et al.

References

1. Fluent editor (2018). http://www.cognitum.eu/Semantics/FluentEditor/
2. The neon toolkit (2018). http://neon-toolkit.org
3. Ontologies (2018). https://www.w3.org/standards/semanticweb/ontology
4. Owlgred (2018). http://owlgred.lumii.lv/
5. Protégé (2018). https://protege.stanford.edu
6. R language package for fluent editor (rontorion) (2018). http://www.cognitum.eu/

semantics/FluentEditor/rOntorionFE.aspx
7. Adler, J.: R in a Nutshell. O’Reilly, Sebastopol (2010)
8. Bezzecchi, S., Crisafulli, P., Pichot, C., Wolff, B.: Making agile development pro-

cesses fit for V-style certification procedures. In: ERTS Conference Proceedings,
ERTS 2018 (2018)

9. Boulanger, J.L.: CENELEC 50128 and IEC 62279 Standards. Wiley-ISTE, Boston
(2015). The reference on the standard

10. Common Criteria: Common criteria for information technology security evaluation
(version 3.1), part 3: security assurance components (2006). CCMB-2006-09-003

11. Nipkow, T., Wenzel, M., Paulson, L.C. (eds.): Isabelle/HOL: A Proof Assistant
for Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002). https://doi.
org/10.1007/3-540-45949-9

12. Wenzel, M.: Asynchronous user interaction and tool integration in Isabelle/PIDE.
In: Klein, G., Gamboa, R. (eds.) ITP 2014. LNCS, vol. 8558, pp. 515–530. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-08970-6_33

13. Wenzel, M.: The Isabelle/Isar reference manual (2017). Part of the Isabelle distri-
bution

14. Wenzel, M., Wolff, B.: Building formal method tools in the Isabelle/Isar framework.
In: Schneider, K., Brandt, J. (eds.) TPHOLs 2007. LNCS, vol. 4732, pp. 352–367.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74591-4_26

http://www.cognitum.eu/Semantics/FluentEditor/
http://neon-toolkit.org
https://www.w3.org/standards/semanticweb/ontology
http://owlgred.lumii.lv/
https://protege.stanford.edu
http://www.cognitum.eu/semantics/FluentEditor/rOntorionFE.aspx
http://www.cognitum.eu/semantics/FluentEditor/rOntorionFE.aspx
http://www.commoncriteriaportal.org/public/files/CCPART3V3.1R1.pdf
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/978-3-319-08970-6_33
https://doi.org/10.1007/978-3-540-74591-4_26

	Using the Isabelle Ontology Framework
	1 Introduction
	2 Background: The Isabelle System
	3 Isabelle/DOF
	4 Modeling Ontologies in Isabelle/DOF
	4.1 The Scholar Paper Scenario: Eating One's Own Dog Food
	4.2 The Math-Exam Scenario
	4.3 The Certification Scenario Following CENELEC

	5 Ontology-Based IDE Support
	5.1 A Scholarly Paper
	5.2 CENELEC

	6 Conclusion and Related Work
	References

