
Aligator.jl – A Julia Package for Loop
Invariant Generation

Andreas Humenberger1(B), Maximilian Jaroschek1,2, and Laura Kovács1,3

1 TU Wien, Vienna, Austria
ahumenbe@forsyte.at

2 JKU Linz, Linz, Austria
3 Chalmers, Gothenburg, Sweden

Abstract. We describe the Aligator.jl software package for automat-
ically generating all polynomial invariants of the rich class of extended
P-solvable loops with nested conditionals. Aligator.jl is written in the
programming language Julia and is open-source. Aligator.jl transforms
program loops into a system of algebraic recurrences and implements
techniques from symbolic computation to solve recurrences, derive closed
form solutions of loop variables and infer the ideal of polynomial invari-
ants by variable elimination based on Gröbner basis computation.

1 Introduction

In [2] we described an automated approach for generating loop invariants as
a conjunction of polynomial equalities for a family of loops, called extended
P-solvable loops. For doing so, we abstract loops to a system of algebraic recur-
rences over the loop counter and program variables and compute polynomial
equalities among loop variables from the closed form solutions of the recurrences.

Why Julia? Our work was previously implemented in the Aligator software
package [4], within the Mathematica system [8]. While Mathematica provides
high-speed implementations of symbolic computation techniques, it is a propri-
etary software which is an obstacle for using Aligator in applications of invariant
generation. The fact that Mathematica provides no possibility to parse and mod-
ify program code was also a reason to move to another environment. To make
Aligator better suited for program analysis, we decided to redesign Aligator in
the Julia programming language [3]. Julia provides a simple and efficient interface
for calling C/C++ and Python code. This allows us to resort to already existing
computer algebra libraries, such as Singular [1] and SymPy [5]. Julia also pro-
vides a built-in package manager that eases the use of other packages and enables

All authors are supported by the ERC Starting Grant 2014 SYMCAR 639270. We
also acknowledge funding from the Wallenberg Academy Fellowship 2014 TheProSE,
the Swedish VR grant GenPro D0497701, and the Austrian FWF research projects
RiSE S11409-N23 and W1255-N23. Maximilian Jaroschek is also supported by the
FWF project Y464-N18.

c© Springer International Publishing AG, part of Springer Nature 2018
F. Rabe et al. (Eds.): CICM 2018, LNAI 11006, pp. 111–117, 2018.
https://doi.org/10.1007/978-3-319-96812-4_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96812-4_10&domain=pdf


112 A. Humenberger et al.

others to use Julia packages, including our Aligator.jl tool. Before committing
to Julia, we also considered the computer algebra system SageMath [7] and an
implementation directly in C/C++ as options for redesigning Aligator. The for-
mer hosts its own Python version which makes the installation of other Python
packages (e.g. for parsing source code) tedious and error-prone. While C/C++
is very efficient and provides a large ecosystem on existing libraries, developing
C/C++ projects requires more effort than Julia packages. We therefore believe
that Julia provides the perfect mix between efficiency, extensibility and conve-
nience in terms of programming and symbolic computations.

Aligator.jl. This paper overviews Aligator.jl and details its main components.
The code of Aligator.jl is available open-source at:

https://github.com/ahumenberger/Aligator.jl.

All together, Aligator.jl consists of about 1250 lines of Julia code. We evalu-
ated Aligator.jl on challenging benchmarks on invariant generation. Our exper-
imental results are available at the above mentioned link and demonstrate the
efficiency of Aligator.jl.

Contributions. Our new tool Aligator.jl significantly extends and improves
the existing software package Aligator as follows:

– Unlike Aligator, Aligator.jl is open-source and easy to integrate into other
software packages.

– Aligator.jl implements symbolic computation techniques directly in Julia
for extracting and solving recurrences and generates polynomial dependencies
among exponential sequences.

– Contrarily to Aligator, Aligator.jl handles not only linear recurrences with
constant coefficients, called C-finite recurrences. Rather, Aligator.jl also
supports hypergeometric sequences and sums and term-wise products of C-
finite and hypergeometric recurrences [2].

– Aligator.jl is complete. That is, a finite basis of the polynomial invariant
ideal is always computed.

2 Background and Notation

Aligator.jl computes polynomial invariants of so-called extended P-solvable
loops [2]. Loop guards and test conditions are ignored in such loops and denoted
by . . . or true, yielding non-deterministic loops with sequencing and conditionals.
Program variables V = {v1, . . . , vm} of extended P-solvable loops have numeric
values, abstracted to be rational numbers. The assignments of extended P-
solvable loops are of the form vi :=

∑m
j=0 civj+cm+1 with constants c0, . . . , cm+1,

or vi := r(n)vi, where r(n) is a rational function in the loop counter n. We give
an example of an extended P-solvable loops in Fig. 1.

https://github.com/ahumenberger/Aligator.jl


Aligator.jl - A Julia Package for Loop Invariant Generation 113

In correspondence to V, the initial values of the variables are given by the set
V0 := {v1(0), . . . , vm(0)}; that is, vi(0) is the initial value of vi. In what follows,
we consider V and V0 fixed and state all definitions relative to them. Given
an extended P-solvable loop as input, Aligator.jl generates all its polynomial
equality invariants. By a polynomial equality invariant, in the sequel simply
polynomial invariant, we mean the equality:

p(v1, . . . , vm, v1(0), . . . , vm(0)) = 0, (1)

where p is a polynomial in V ∪ V0 with rational number coefficients. In what
follows, we also refer to the polynomial p in (1) as a polynomial invariant. For
n ∈ N \ {0} and a loop variable vi, we write vi(n) to denote the value of vi after
the nth loop iteration. As (1) is a loop invariant, we have:

p(v1(n), . . . , vm(n), v1(0), . . . , vm(0)) = 0 for n > 0.

while . . . do
if . . . then

r := r − v; v := v + 2
else

r := r + u; u := u+ 2
end if

end while

Fig. 1. An extended P-solvable loop.

As shown in [2,6], the set of poly-
nomial invariants in V, w.r.t. the initial
values V0, forms a polynomial ideal,
called the polynomial invariant ideal.
Given an extended P-solvable loop,
Aligator.jl computes all its polyno-
mial invariants as it computes a basis
of the polynomial invariant ideal, a
finite set of polynomials {b1, . . . , bk}.
Any polynomial invariant can be writ-
ten as a linear combination p1b1+· · ·+
pkbk for some polynomials p1, . . . , pk.

3 System Description of Aligator.jl

Inputs to Aligator.jl are extended P-solvable loops and are fed to Aligator.jl

as String in the Julia syntax. We illustrate the use of Aligator.jl on our example
from Fig. 1:

Example 1. Fig. 1 is specified as a Julia string as follows:

julia> loopstr = """
while true

if true
r = r - v; v = v + 2

else
r = r + u; u = u + 2

end
end

"""

Polynomial loop invariants are inferred using Aligator.jl by calling the function
aligator(str::String) with a string input containing the loop as its argument.



114 A. Humenberger et al.

julia> aligator(loopstr)
Singular Ideal over Singular Polynomial Ring (QQ),(r_0,v_0,u_0,r,v,u)
with generators (v_0^2-u_0^2-v^2+u^2+4*r_0-2*v_0+2*u_0-4*r+2*v-2*u)

The result of Aligator.jl is a Gröbner basis of the polynomial invariant ideal.
It is represented as an object of type Singular.sideal that is defined in the
Singular package. For Fig. 1, Aligator.jl reports that the polynomial invariant
ideal is generated by the polynomial invariant {v20 − u2

0 − v2 + u2 + 4r0 − 2v0 +
2u0 − 4r + 2v − 2u = 0} in variables r0, v0, u0, r, v, u, where r0, v0, u0 denote
respectively the initial values of r, v, u.

We now overview the main parts of Aligator.jl: (i) extraction of recurrence
equations, (ii) recurrence solving and (iii) computing the polynomial invariant
ideal.

Extraction of Recurrences. Given an extended P-solvable loop as a Julia
string, Aligator.jl creates the abstract syntax tree of this loop. This tree is
then traversed in order to extract loop paths (in case of a multi-path loop) and
the corresponding loop assignments. The resulting structure is then flattened in
order to get a loop with just one layer of nested loops. Within Aligator.jl this is
obtained via the method extract_loop(str::String). As a result, the extracted
recurrences are represented in Aligator by an object of type Aligator.MultiLoop,
in case the input is a multi-path loop; otherwise, the returned object is of type
Aligator.SingleLoop.

Example 2. Using Example 1, Aligator.jl derives the loop and its corresponding
systems of recurrences:

julia> loop = extract_loop(loopstr)
2-element Aligator.MultiLoop:
[r(n1+1) = r(n1) - v(n1), v(n1+1) = v(n1) + 2, u(n1+1) = u(n1)]
[r(n2+1) = r(n2) + u(n2), u(n2+1) = u(n2) + 2, v(n2+1) = v(n2)]

As loop paths are translated into single-path loops, Aligator.jl introduces a
loop counter for each path and computes the recurrence equations of the loop
variables r, v, u with respect to the loop counters n1 and n2.

Recurrence Solving. For each single-path loop, its system of recurrences
is solved. Aligator.jl performs various simplifications on the extracted recur-
rences, for example by eliminating cyclic dependencies introduced by auxiliary
variables and uncoupling mutually dependent recurrences. The resulting, simpli-
fied recurrences represent sums and term-wise products of C-finite or hyperge-
ometric sequences. Aligator.jl computes closed forms solutions of such recur-
rences by calling the method closed_forms and using the symbolic manipulation
capabilities of SymPy.jl:

Example 3. For Example 2, we get the following systems of closed forms:



Aligator.jl - A Julia Package for Loop Invariant Generation 115

julia> cforms = closed_forms(loop)
2-element Array{Aligator.ClosedFormSystem,1}:
[v(n1) = 2*n1+v(0), u(n1) = u(0), r(n1) = -n1^2-n1*(v(0)-1)+r(0)]
[u(n2) = 2*n2+u(0), v(n2) = v(0), r(n2) = n2^2+n2*(u(0)-1)+r(0)]

The returned value is an array of type Aligator.ClosedFormSystem.

Invariant Ideal Computation. Using the closed form solutions for (each)
single-path loop, Aligator.jl next derives a basis of the polynomial invariant
ideal of the (multi-path) extended P-solvable loop. To this end, Aligator.jl uses
the Singular.jl package for Gröbner basis computations in order to eliminate
variables in the loop counter(s) from the system of closed forms. For multi-path
loops, Aligator.jl relies on iterative Gröbner basis computations until a fixed
point is derived representing a Gröbner basis of the polynomial invariant ideal
– see [2] for theoretical details.

Computing polynomial invariants within Aligator.jl is performed by
the function invariants(cforms::Array{ClosedFormSystem,1}). The result is an
object of type Singular.sideal and represents a Gröbner basis of the polynomial
invariant ideal in the loop variables.

Example 4. For Example 3, Aligator.jl generates the following Gröbner basis,
as already described on page 4:

julia> ideal = invariants(cforms)
Singular Ideal over Singular Polynomial Ring (QQ),(r_0,v_0,u_0,r,v,u)
with generators (v_0^2-u_0^2-v^2+u^2+4*r_0-2*v_0+2*u_0-4*r+2*v-2*u)

4 Experimental Evaluation

Our approach to invariant generation was shown to outperform state-of-the-
art tools on invariant generation for multi-path loops with polynomial arith-
metic [2]. In this section we focus on the performance of our new implementa-
tion in Aligator.jl and compare results to Aligator [4]. In our experiments, we
used benchmarks from [2]. Our experiments were performed on a machine with
a 2.9 GHz Intel Core i5 and 16 GB LPDDR3 RAM. When using Aligator.jl,
the invariant ideal computed by Aligator.jl was non-empty for each example;
that is, for each example we were able to find non-trivial invariants.

Tables 1(a) and (b) show the results for a set of single- and multi-path loops
respectively. In both tables the first column shows the name of the instance,
whereas columns two and three depict the running times (in seconds) of Aligator
and Aligator.jl, respectively.

By design, Aligator.jl is at least as strong as Aligator concerning the qual-
ity of the output. When it comes to efficiency though, we note that Aligator.jl

is slower than Aligator. We expected this result as Aligator uses the highly opti-
mized algorithms of Mathematica. When taking a closer look at how much time
is spent in the different parts of Aligator.jl, we observed that the most time in
Aligator.jl is consumed by symbolic manipulations. Experiments indicate that



116 A. Humenberger et al.

Table 1. Experimental evaluation of Aligator.jl.

(a)

Single-path Aligator Aligator.jl

cohencu 0.072 2.879
freire1 0.016 1.159
freire2 0.062 2.540
petter1 0.015 0.876
petter2 0.026 1.500
petter3 0.035 2.080
petter4 0.042 3.620

(b)

Multi-path Aligator Aligator.jl

divbin 0.134 1.760
euclidex 0.433 3.272
fermat 0.045 2.159
knuth 55.791 12.661
lcm 0.051 2.089
mannadiv 0.022 1.251
wensley 0.124 1.969

we can improve the performance of Aligator.jl considerably by using the Julia
package SymEngine.jl instead of SymPy.jl. We believe that our initial experi-
ments with Aligator.jl are promising and demonstrate the use of our efforts in
making our invariant generation open-source.

5 Conclusion

We introduced the new package Aligator.jl for loop invariant generation in the
programming language Julia. Our Aligator.jl tool is an open-source software
package for invariant generation using symbolic computation and can easily be
integrated with other libraries and tools.

References

1. Decker, W., Greuel, G.M., Pfister, G., Schönemann, H.: Singular 4-1-0—a com-
puter algebra system for polynomial computations (2016). http://www.singular.uni-
kl.de

2. Humenberger, A., Jaroschek, M., Kovács, L.: Invariant generation for multi-path
loops with polynomial assignments. In: Dillig, I., Palsberg, J. (eds.) VMCAI. LNCS,
vol. 10747, pp. 226–246. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
73721-8 11

3. Julia. https://julialang.org/
4. Kovács, L.: Aligator: a mathematica package for invariant generation (system

description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008.
LNCS (LNAI), vol. 5195, pp. 275–282. Springer, Heidelberg (2008). https://doi.
org/10.1007/978-3-540-71070-7 22

5. Meurer, A., Smith, C.P., Paprocki, M., Čert́ık, O., Kirpichev, S.B., Rocklin, M.,
Kumar, A., Ivanov, S., Moore, J.K., Singh, S., Rathnayake, T., Vig, S., Granger,
B.E., Muller, R.P., Bonazzi, F., Gupta, H., Vats, S., Johansson, F., Pedregosa, F.,
Curry, M.J., Terrel, A.R., Roučka, S., Saboo, A., Fernando, I., Kulal, S., Cimrman,
R., Scopatz, A.: SymPy: symbolic computing in Python. PeerJ Comput. Sci. 3, e103
(2017). https://doi.org/10.7717/peerj-cs.103

http://www.singular.uni-kl.de
http://www.singular.uni-kl.de
https://doi.org/10.1007/978-3-319-73721-8_11
https://doi.org/10.1007/978-3-319-73721-8_11
https://julialang.org/
https://doi.org/10.1007/978-3-540-71070-7_22
https://doi.org/10.1007/978-3-540-71070-7_22
https://doi.org/10.7717/peerj-cs.103


Aligator.jl - A Julia Package for Loop Invariant Generation 117

6. Rodŕıguez-Carbonell, E., Kapur, D.: Generating all polynomial invariants in simple
loops. J. Symb. Comput. 42(4), 443–476 (2007). https://doi.org/10.1016/j.jsc.2007.
01.002

7. SageMath. http://www.sagemath.org/
8. Wolfram, S.: An Elementary Introduction to the Wolfram Language. Wolfram Media

Inc. (2017). https://www.wolfram.com/language/elementary-introduction/2nd-ed/

https://doi.org/10.1016/j.jsc.2007.01.002
https://doi.org/10.1016/j.jsc.2007.01.002
http://www.sagemath.org/
https://www.wolfram.com/language/elementary-introduction/2nd-ed/

	Aligator.jl – A Julia Package for Loop Invariant Generation
	1 Introduction
	2 Background and Notation
	3 System Description of Aligator.jl
	4 Experimental Evaluation
	5 Conclusion
	References




