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Preface

This volume contains the formally reviewed papers presented at CICM 2018, the 11th
Conference on Intelligent Computer Mathematics, which was held during August 13–
17, 2018 at the Research Institute for Symbolic Computation (RISC) in Hagenberg,
Austria.

Mathematics is “the queen of the sciences” (Friedrich Gauss), and “the language
with which God has written the universe” (Galileo Galilei). But the collection of
mathematical knowledge is exploding— each year there are over 100,000 new articles.
Digital solutions are becoming the prevalent means for the generation, communication,
processing, storage, and curation of mathematical information. CICM brings together
the many separate communities that have developed theoretical and practical solutions
for these challenges including computation, deduction, narration, and data
management.

CICM is the result of merging three series of meetings that were previously held
independently: Calculemus (concerned with the integration of symbolic computation
and mechanized reasoning), Digital Mathematical Libraries (DML), and Mathematical
Knowledge Management (MKM). CICM has been held annually since 2008, with
previous meetings in Birmingham (UK, 2008), Grand Bend (Canada, 2009), Paris
(France, 2010), Bertinoro (Italy, 2011), Bremen (Germany, 2012), Bath (UK, 2013),
Coimbra (Portugal, 2014), Washington DC (USA, 2015), Białystok (Poland, 2016),
and Edinburgh (UK, 2017).

CICM 2018 solicited formal submissions in several track. The Calculemus, Digital
Mathematics Libraries, and Mathematical Knowledge Management tracks corre-
sponded to the subject areas of the predecessor meetings. Orthogonally, the Systems
and Projects track called for descriptions of digital resources, such as data and systems,
and of projects, whether old, current, or new, as well as survey papers covering any
topics of relevance to the CICM community.

This year, CICM received 36 submissions, of which 23 were accepted after formal
review. These submissions consisted of nine Calculemus (five accepted), two DML
(one accepted), and ten MKM papers (seven accepted), as well as ten system/dataset
descriptions (eight accepted), and five surveys and project descriptions (two accepted).
Each submission received at least three reviews. The reviewing included a response
period, in which authors could clarify points raised by the reviewers. This made for a
highly productive round of deliberations before the final decisions were taken. In three
cases an open-ended shepherding phase was used, during which the authors were
allowed to improve their papers under the guidance of a designated Program Com-
mittee (PC) member. All shepherded papers were improved sufficiently to be eventu-
ally accepted. The resulting set of papers forms the content of these proceedings.

The PC was chaired by the editors of this volume. Florian Rabe served as general
chair and as track chair of the DML track. Grant Passmore, William Farmer, and



Abdou Youssef served as track chairs of the Calculemus, MKM, and Systems and
Projects tracks, respectively.

The PC work was managed using the EasyChair system. This year CICM used a
single track with two submission categories for classifying papers into Calculemus,
DML, and MKM, as well as into regular papers, surveys/projects, and system/dataset
descriptions.

Submissions co-authored by PC members were allowed, and all conflicts of interest
were managed via EasyChair: After registering the conflicts, the submissions were
completely hidden from conflicted PC members. This procedure was also used for
submissions of PC chairs, in which case submissions were handled by one of the other
chairs.

In addition to presentations of the accepted papers, CICM 2018 had three invited
presentations by Akiko Aizawa, Bruno Buchberger, and Adri Olde Daalhuis. More-
over, six workshops were held as part of the conference:

– Workshop on Computer Algebra in the Age of Types (CAAT), featuring a tutorial
on the Idris programming language, and an introduction to the MMT system, while
inviting practicing researchers in computer algebra, formal methods, and pro-
gramming languages to present and discuss approaches and form a common vision
for the next generation of computer algebra

– Workshop on Computer Mathematics in Education— Enlightenment or Incantation
(CME-EI), considering recent developments in computer mathematics while dis-
cussing potential impact of respective tools and reconsidering developers’ respon-
sibility for such impact

– Workshop on Formal Mathematics for Mathematicians (FMM), allowing mathe-
maticians interested in computer assistance and researchers in formal and
computer-understandable mathematics to meet and exchange ideas

– Workshop on Formal Verification of Physical Systems (FVPS), focusing on formal
verification techniques for the modeling, analysis, and verification of safety and
security critical physical systems

– Workshop on Mathematical Models and Mathematical Software as Research Data
(M3SRD), presenting and discussing ideas, concepts, standardization, and service
development for important classes of mathematical research data, especially
mathematical models and mathematical software

– OpenMath Workshop, focusing on new research about and description of new
content dictionaries for OpenMath, a language for exchanging mathematical for-
mulas across systems

The workshop programs were managed independently by the respective organizers,
and the workshops were coordinated by Osman Hasan, who served as the workshop
chair.

Furthermore, CICM 2018 featured a Doctoral Program, which provided a dedicated
forum for PhD students to present their research and receive advice from senior
researchers serving as mentors. Diane Gallois-Wong served as doctoral program chair.

Finally, CICM recognizes that relevant research can be conducted and communi-
cated in various forms that are not always fitting for publication as a formal paper.

VI Preface



Therefore, CICM 2018 also solicited other contributions including work-in-progress
papers, system demos, posters, and tutorials.

The proceedings of these events are not part of this volume and are published
separately. The entire program and additional materials are available at http://cicm-
conference.org/2018/.

All local organizational aspects were managed by Wolfgang Windsteiger, who
served as the conference chair. Serge Autexier served as the publicity chair of the
conference.

The organizers want to thank the team of RISC, notably Tanja Gutenbrunner,
Ramona Öhme-Pöchinger, and Alexander Maletzky, for their valuable support in the
local organization of the meeting, as well as the team at the University of Applied
Sciences Hagenberg for providing lecture halls and workshop rooms including all the
equipment. The conference received financial support through the University of Linz
(JKU), the Doctoral Program “Computational Mathematic” (W1214) at JKU, the
Regional Government of Upper Austria, and the Raiffeisen Landesbank Oberösterreich
(RLB OÖ).

June 2018 Florian Rabe
William Farmer
Grant Passmore
Abdou Youssef
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System Description: XSL-Based
Translator of Mizar to LaTeX

Grzegorz Bancerek2, Adam Naumowicz1(B), and Josef Urban2

1 University of Bialystok, Bialystok, Poland
adamn@math.uwb.edu.pl

2 Czech Technical University in Prague, Prague, Czech Republic

Abstract. We describe a new version of the Mizar-to-LATEX transla-
tor. The system has been re-implemented as XSL stylesheets instead
of as Pascal programs, allowing greater flexibility. It can now be used
to generate both LATEX/PDF and HTML with MathJax code. We also
experimentally support generation of full proofs. Finally, the system is
now available online and through the Mizar Emacs interface.

1 Introduction

The Mizar project [4] has since its inception in 1973 focused on formal repre-
sentation of mathematics that would be as close possible to its representation
in natural language. After the Mizar language emerged and a larger number of
articles have been collected in the Mizar Mathematical Library (MML) [3,7],
the Mizar team started to experiment with translating the Mizar articles into
LATEX. This translation has been evolving for the last three decades [1,5,10].

Here we describe the most recent large re-implementation of the system which
switches from custom Pascal programs to more flexible XSL processing, done pri-
marily by the first author over the last eight years. This in turn builds on the
XML-ization of the Mizar processing, done over the past decade [9,11]. The
system can now produce both LATEX/PDF and HTML using MathJax for dis-
playing formulas and terms. We experimentally support also translation of full
proofs. The system is used for in-house production of the journal Formalized
Mathematics1 [8] and it is newly also available as a remote PDF/HTML service
for Mizar authors via the Emacs authoring environment for Mizar [12], similarly
to the MizAR [13] ATP service for Mizar.

G. Bancerek—Deceased.
A. Naumowicz—Partially supported by the project N◦ 2017/01/X/ST6/00012
financed by the National Science Center, Poland and the COST Action EUTypes
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University of Bialystok High Performance Computing Center.
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2 G. Bancerek et al.

2 Summary of the Old Mizar-to-LATEX Translation

The previous incarnation of the translator, as well as its history, are described
in detail in [1]. The complete process was carried out by a set of eight custom
programs (fmparse, newfmfrm, addfmfrm, fmfrm, resvar, fmnotats, fmanalyz
and jformath) run in succession after preparing the article with the standard
Mizar accommodator utility and before producing the final output with LATEX
using BibTEX metadata provided by the user/editor.

Let us only briefly recall that the translation of the non-formula text parts
was done as a static mapping of the keywords. For example the commutativity
property for functors was expressed by the sentence Let us observe that the
functor is commutative. The translation of atomic formulas, terms, and types was
done according to a database of LATEX translation patterns for the Mizar symbols
with arities (a format in the Mizar terminology). Each pattern consists of a
control header (deciding e.g. about using the math mode in LATEX, bracketing,
etc.) and one or more proper patterns that map the format with arguments to
LATEX in various contexts. Following is an example of such a pattern for a typical
PartUnion functor:2

O1 0 2
OPartUnion
mol@s#1#2; \bigcup_{\beta{<_{#2}}#1}\beta

This means that the Mizar term PartUnion(B,R) would be displayed as⋃
β<RB β. Note that in this case the translation is quite nontrivial and it reveals

information about how the symbol PartUnion is defined in Mizar.
All top-level elements of an article, i.e. theorems, definitions, schemes, reser-

vations and global shortcuts were presented in the rendering, but proofs were not
translated as a rule. Single letter variables occurring in an article were preserved
while others were abbreviated into single letters with indices.

3 Description of the New Technology

The new technology of automated translation currently used for Mizar texts pub-
lished in the Formalized Mathematics journal is based on XSL translation tem-
plates applied to the XML representation of the weakly-strict Mizar [9] encoding
of the original Mizar input file (*.wsx file). However, the semantic representa-
tion generated by the Mizar verifier (*.xml file) is also used to decode links
to external articles. All bibliographic metadata are first translated to special
XML format and merged with information extracted from the Mizar article.
Global (for the journal) LATEX translation patterns are also kept in the XML
pub.xml file. In the following sections we describe the basic functions of the
main XSL stylesheets. They have been designed to perform well-defined simple
iterative tasks within the process of generating the final LATEX rendering for
2 http://mizar.uwb.edu.pl/version/current/html/pcomps 2.html#K1, see also [6].

http://mizar.uwb.edu.pl/version/current/html/pcomps_2.html#K1
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PDF and MathJax-enabled HTML presentation. Let us note that the presented
XSL translation is not a 1-1 reimplementation of former Pascal-based code. The
current multi-pass method has been implemented from scratch to make use of
available XML representation formats, whereas the former was bound to the
internal structures of the Mizar verifier.

3.1 addformat.xsl

This is the main stylesheet responsible for selecting information to be translated
from the weakly-strict Mizar representation. Identified symbols are matched with
their format specification to be later replaced by concrete translations.

3.2 addtranslation.xsl

This script augments the processed file with available translation patterns. An
example of a concrete pattern (for the previously mentioned PartUnion functor)
as extracted from the pub.xml file looks as follows:
<Translation

voc="PCOMPS_2" kind="O" symbolnr="1" symbol="OPartUnion" argsnr="2"
leftargsnr="0" rightargsnr="4" format="O1 0 2" header="mol@s#1#2;"
priority="8" forcing="rqw" context1="l" context2="" TeX-mode="m">
<pattern>

\bigcup_{\beta{&lt;_{<X pos="lower" locus="2"/>}}<X locus="1"/>}\beta
</pattern>

</Translation>

The system also proposes formats for new definitions introduced in the current
article. The unknown patterns.xsl stylesheet handles unknown patterns.

3.3 varrepr.xsl

The task of this stylesheet is to replace any identifiers that contain names of
Greek letters into corresponding LATEX symbols. Longer variable identifiers are
given standardized representations with subscripts (e.g. AA becomes A1).

3.4 multipred.xsl

This procedure is technically split into several passes of multipred.xsl,
multipred2.xsl and multipred3.xsl run in succession together with
prune.xsl. The goal is to locate in the input text a list of constructs with
a qualifying format that can be printed together in a shortened form. For exam-
ple, in the PCOMPS 2 article, instead of the literal translation: “G9 is cover of
P6, and G9 is finer than F9” (cf. [6]) the script produces a shortened phrase “G9

is cover of P6 and finer than F9”.

3.5 transitive.xsl

This stylesheet improves the quality of the translation by generating output of
the form: “x < y < z” instead of “x < y and y < z”, i.e. it joins consecutive
predicates with shared arguments as is usually done in informal mathematics.
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3.6 compress.xsl

There are several independent stylesheets that compress and thus make more
natural for the reader the occurrences of particular constructs in a common con-
text. These are: compress let.xsl, compress for.xsl, compress assume.xsl,
brackets.xsl, compress func.xsl, and compressres.xsl for generalizations,
quantifiers, assumptions, brackets, functor definitions with common arguments,
and variable reservations, respectively.

3.7 recognize-programs.xsl

The set of templates recognize-programs.xsl, recognize-programs2.xsl
and recognize-programs3.xsl is used to generate custom encoding of specific
complex terms - representation of programs. For example, the LATEX translation
of the following Mizar theorem statement from the AOFA I00 article about an
algorithm defined in terms of a custom if-while algebra:

theorem
for n,s,i being Variable of g st ex d being Function st d.n = 1 & d.s
= 2 & d.i = 3 & d.b = 4 holds s:=1\;for-do(i:=2, i leq n, i+=1, s*=i)
is_terminating_wrt g

is rendered in PDF as follows (cf. [2]):

Now let Γ denotes the program
s:=1;
for i:=2 until i leqn step i+ =1 do

s∗ = i
done

Then we state the propositions:
(56) Let us consider variables n, s, i in g. Suppose there exists a func-
tion d such that d(n) = 1 and d(s) = 2 and d(i) = 3 and d(b) = 4.
Then Γ is terminating w.r.t. g.

3.8 article2latex.xsl and article2html.xsl

Depending on the output format, based on the preparatory tasks performed by
the previously mentioned stylesheets, one may choose to generate either LATEX
code for a self-contained PDF article, or code embedded in an HTML document
to be rendered by MathJax. If LATEX code is chosen, we finally run pdflatex
using several Mizar-specific headers.

3.9 Remote Service and Processing Times

Since the translation toolchain has many components and relies on a num-
ber of custom tools and their versions installed, we make it available as an
online service. This is similar to the solution taken for the MizAR [13] ATP
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service for Mizar. The Mizar users can now send their articles from Emacs
to the service for PDF and HTML translation of their current work indepen-
dently of the publication process of Formalized Mathematics. This is done by
selecting the Mizar→Remote solving→Produce PDF online and Mizar→Remote
solving→Produce MathJax online menu options, respectively.3 The remote pro-
cessing of a basic Mizar article such as XBOOLE 1 takes about 15s and the whole
MML can be processed locally on the server overnight. This is quite comparable
to the speed of the earlier Pascal-written version of the toolchain.

4 Conclusion and Future Work

The described re-implementation of the Mizar to LATEX translation system is
based on the flexible and easily extensible XML/XSL technology rather than
custom Pascal programs tied to the specific implementation of the core Mizar
system. Thanks to this approach, a set of shared scripts and stylesheets can be
used for the production of the printed editions of the journal Formalized Mathe-
matics but also as an on-demand remote PDF/HTML service for Mizar authors.
Users of the Emacs authoring environment for Mizar can now experiment with
the PDF and HTML presentation of their current work based on the shared
LATEX translation.

Future work on translation will focus on adding more natural language based
linguistic features to the generated mathematical text. In particular, the human-
friendly presentation of the structure of (nested with varying levels of impor-
tance) proofs will be investigated. It is now much easier to experiment with more
natural translation patterns as a step by step improvement of the translation by
just modifying the addformat.xsl stylesheet which controls filtering relevant
information from the original Mizar article and either the article2latex.xsl
or article2html.xsl templates that generate the final specific rendering in
LATEX or MathJax/HTML format.
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Abstract. The IMPS system by Farmer, Guttman and Thayer was an
influential automated reasoning system, pioneering mechanisations of
features like theory morphisms, partial functions with subsorts, and the
little theories approach to the axiomatic method. It comes with a large
library of formalised mathematical knowledge covering a broad spectrum
of different fields. Since IMPS is no longer under development, this library
is in danger of being lost. In its present form, it is also not compatible
for use with any other mathematical system.

To remedy that, we formalise the logic of IMPS (LUTINS), and draw
on both the original theory library source files as well as the internal
data structures of the system to generate a representation in a modern
knowledge management format. Using this approach, we translate the
library to OMDoc/MMT and verify the result using type-checking in the
MMT system against our implementation of LUTINS.

1 Introduction

There are many libraries of formal knowledge, but unfortunately, each one needs
a different mathematical software system to interpret it – the system it was
originally written for. This barrier of non-interoperability severely limits possi-
ble uses of any one mathematical software system as well as progress on that
system itself. Helpful tooling that was implemented for one system often can
not be used for developing another. Some translations between different systems
exist but they are often ad-hoc, only one-directional (although both systems
are in frequent use) or overly restricted by the logical frameworks or founda-
tions. Approaching the problem with only direct system-to-system translations
without common ground also means inviting scaling problems: for n systems we
would need O(n2) translations.

Most theorem proving systems today tend to fix (in what we will refer to
as the big theories approach) one particular logical foundation along with its
primitives (i.e. types, axioms, rules, . . . ) and only use conservative extensions to
model domain knowledge (i.e. theorems, definitions, . . . ). This goes against the
way that modern mathematics is usually done on chalkboard or paper, where the
foundation is often hidden and almost never directly referred to. It also makes it
harder for two systems with different logical frameworks to successfully interact.
c© Springer International Publishing AG, part of Springer Nature 2018
F. Rabe et al. (Eds.): CICM 2018, LNAI 11006, pp. 7–22, 2018.
https://doi.org/10.1007/978-3-319-96812-4_2
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Another danger to effective use of mathematical knowledge libraries across
software systems is that if one of these systems eventually falls out of use, the
library is in danger of being lost to bitrot as fewer and fewer machines are
actually capable of running the required software to interpret it.

In this paper we attempt to “rescue” one library in particular from this fate
and make it interoperable at the same time. IMPS is an Interactive M athematical
Proof System, originally developed at The MITRE Corporation by William M.
Farmer, Joshua Guttman, and Javier Thayer. Its library is home to a large
amount of well-developed formalised mathematics with over 180 different theo-
ries and over 1200 distinct theorems and their proofs.

The IMPS system itself [TMI] has not been in active development or regular
use for well over 20 years now and thus the library is in acute danger of being
lost. The system (and its library) is especially interesting because it was the
first theorem proving assistant to make heavy use of theory morphisms and with
emphasis on the little theories approach to mathematics.

Concretely, we present a translation of the IMPS library into OMDoc/
MMT [Koh06,RK13], a content markup scheme for (collections of) mathemati-
cal documents (including articles, textbooks, and theorem prover libraries) that
shares key design choices with the IMPS system, such as the focus on theory
morphisms and adherence to the little theories approach.

Contribution. We build on and complete the earlier and incomplete efforts
by [Li02] of translating the IMPS library to OMDoc. Our work differs from Li’s
previous attempt in that it does not try to translate from only the internal
IMPS data structures. Instead, our implementation also reads the corresponding
source files to extract additional structure from them. This allows us to compare
and corroborate data from one direction of inquiry with data from the other.

Concretely we extend and adapt Li’s export mechanism to create a JSON rep-
resentation of the internal IMPS data structures. Both this and the original source
files of the mathematical library are then parsed by our importer extension to
MMT to create a structured and typed representation of almost all mathematical
objects in the source files, with the only notable exception being proof scripts
and macetes (theory-aware tactics).

This representation can then easily be translated into the OMDoc/MMT lan-
guage, with a formalisation of the foundational logic of IMPS (called LUTINS,
see Sect. 2.1) serving as a formal basis for the translation. The generated output
is verified (i.e. type-checked wrt. the LF meta-logic [HHP93]) by the MMT sys-
tem against the implementation of the underlying logic LUTINS to establish a
certain, if partial, level of correctness of the translation progress.

This two-layered implementation has the benefit of future-proofing the
OMDoc export against potential changes in the format.

The OMDoc/MMT output of the translation not only offers a semantically
self-contained archive format, it could also be used in various ways by math-
ematical knowledge management systems or function as a reference point for
other knowledge in a (partially) shared meaning space.
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Related Work. There have been multiple attempts at translating libraries
from one theorem proving system to another in an ad-hoc manner. Examples
include translations from HOL Light to Coq [KW10], from Isabelle/HOL to
Isabelle/ZF [KS10] (benefiting from the shared logical framework), from HOL
to Isabelle/HOL [OS06] and from Mizar to Isabelle [KPU16].

The translation approach using OMDoc/MMT has been previously used (and
shown to be successful) in a number of importers for the MMT system for
different mathematical systems, such as PVS [Koh+17], Mizar [Ian+13] and
HOL Light [KR14], as part of the OAF (Open Archive of Formalisations)
project [OAF].

In all of these, the underlying logical foundation of the system has first been
formalised natively in OMDoc/MMT as part of the LATIN library – an OMDoc-
based atlas of formal logics, type theories, foundations and various translations
between them ([Cod+11,Rab14], available online at [LATIN]). The resulting
theory is then used as a meta-theory for importing the corresponding libraries.
These imports tend to focus on translating the statements of theorems only, and
pay less attention to the proofs, since proofs are often highly system-specific and
difficult to translate without also reproducing all of the machinery of the system
in question.

Li previously made an attempt to translate the IMPS math library to OMDoc
in [Li02]. This is incomplete in a number of ways: In particular, Li’s approach
did not handle quasi-constructors (a unique and important feature of IMPS, see
Sect. 3.2) and other important aspects (like theory morphisms with additional
assumptions, see Sect. 3.2), often because they are not represented in a useful
manner in the internal data structures. Furthermore, Li was only able to check
the syntactic validity of the generated XML, which makes the faithfulness of the
translation difficult to judge. Finally, there have been a number of substantial
representational changes from pure OMDoc to OMDoc/MMT, which renders this
translation unusable.

Overview. This paper is a refined and condensed version of [Bet18], to which
we refer for details and code. In Sect. 2, we recap all involved systems, including
MMT, IMPS and OMDoc. After that, we outline the general idea and some the-
oretical as well as implementation-related specifics of the translation process in
Sect. 3. Section 4 presents some applications for the OMDoc/MMT library and
Sect. 5 concludes the paper.

2 Preliminaries

2.1 Preliminaries: LUTINS

LUTINS (pronounced as in French, short for “Logic of Undefined Terms for
Inference in a Natural Style”) is the underlying logic of the IMPS system.

LUTINS is a variant of Church’s simple theory of types [Chu40]. It was
developed to allow computerised mathematical reasoning that closely follows
mathematical practise as performed by mathematicians “in the wild”. And since
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standard mathematical reasoning often focuses on functions, their properties and
operators on them, LUTINS allows for partial functions, and features a (partial)
definite description operator as well as a system of subtypes.

LUTINS is a classical logic in the sense that it allows non-constructive
reasoning, but non-classical in the sense that terms in LUTINS can be non-
denoting. It also supports λ-notation for functions, an infinite hierarchy of func-
tion types for higher-order functions, and full quantification (existential and
universal) over all function types.

Languages, Sorts, and Expressions. The notion of languages is central to
LUTINS. They contain two classes of objects: sorts and expressions. Sorts
denote (non-empty) domains of mathematical objects and expressions denote
members of these domains. Expressions can be used to directly reference math-
ematical objects and to make statements about them using a LUTINS lan-
guage given by a set of sort declarations and (sorted) constant declarations
(see [FGT98]).

We differentiate between atomic sorts (e.g. ind, zz, . . . ) and compound sorts,
the latter denoting the domain of n-ary functions for an arbitrary n (e.g. [zz, ind]
for n = 2). Sorts may overlap, but they cannot be empty. Every language includes
the base type � (sometimes also defined as ∗ and always denoted as such in the
implementation), denoting the set {T, F} of standard truth values.

Sorts are also divided into two kinds, � (read: star or prop) and ι (read: ind).
A given sort α is of kind � if either α = � or α is a compound sort into � (i.e.
a compound sort of the form [α1, . . . , αn, �], sometimes also called a predicate).
In all other cases α is of kind ι. This includes all atomic sorts except � itself.

LUTINS allows for sorts to be defined as subsorts of other sorts in multiple
ways. For instance, the natural numbers N form a subsort of the real numbers
R and the continuous (real) functions a subsort of the functions from R to R.

Each atomic sort is assigned a unique enclosing sort by the language that
defines it. This gives rise to a particular partial order on its sorts, which we
will denote with � and call “the subsort relation”. It is intended to denote set
inclusion. A sort that is maximal in relation to � is called a type. The type of a
given sort α has the notation τ(α).

Subsorting also applies to compound sorts. In particular, if σ0 � τ0 and
σ1 � τ1, then [σ0, σ1] � [τ0, τ1]. This makes subsorting in LUTINS covariant
in its arguments, not contravariant as in settings with only total functions. The
compound sort [σ0, σ1] contains exactly those partial functions that are never
defined outside of σ0 and never return values outside σ1. For example, you could
pass any real number to a function expecting a natural number (given that N

and R have the same type). If the number is indeed not a natural number, the
expression will be undefined (see below).

All of this is helpful for mechanised deduction because the subsort rela-
tion can give important information about the value of an expression, should
it be defined. Furthermore, many theorems have constraints that can easily be
expressed in terms of a subtype and the prover can be programmed to handle
these with special algorithms.
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Partial Functions, Undefined and Non-denoting Values. The stated goal
of IMPS (and therefore LUTINS) is to allow for reasoning that is very close to
mathematical practice. This means that there needs to be a way to deal with
partial functions and undefined values since these make frequent appearances in
chalk-and-whiteboard mathematics. For example, all of the terms 5

0 ,
√

−3, ln(−4)
are undefined in the standard theory of arithmetic over the real numbers.

Note that there is a subtle philosophical difference between a term that is
“undefined” and one that is “non-denoting”. According to Farmer, a term is
undefined if it is not assigned a “natural” meaning and non-denoting if it is
not to be assigned any meaning at all. Often, an undefined term is also non-
denoting, but it can still have a denotation. For example, the term 5

0 does not
have a “natural meaning” in standard real arithmetic, but is sometimes assigned
a value in practice anyway. In particular, IMPS follows the approach of partial
valuation for terms but total valuation for formulas (see [Far90] for more details).
This means a term of type � always has a denotation (if one of its constituents
is undefined, that denotation is F).

Definite Description. One of the more prominent features of LUTINS is the
possibility of reasoning with definite description via the ι (or iota) constructor.
Given a variable v of sort α of kind ι (not to be confused with the constructor
itself) and an unary predicate ϕ over α, the expression ι v : α . ϕ(v) denotes the
unique v, such that ϕ(v), if there exists such a v. If there is no or more than one
v that fulfils the predicate, the ι-expression is undefined.

For example, the expression ι x : R.(0 ≤ x) ∧ (x · x = 2) denotes
√

2 ∈ R,
while the expression ι x : R.x · x = 2 is undefined.

Definite description can be very useful for dealing with functions, especially
partial functions, which is why it is featured so prominently in IMPS.

2.2 Preliminaries: IMPS

IMPS is an interactive theorem prover developed by William Farmer, Joshua
Guttmann and Javier Thayer from 1990 to 1993 [TMI]. It was one of the influ-
ential systems in the era of automated reasoning.

One of the goals in developing IMPS was to create a mathematical system
that gave computational support to mathematical techniques common among
actual mathematicians.

The development of the IMPS system has been heavily influenced
(see [FGT98]) by three insights into real-life mathematics:

– Mathematics emphasises the axiomatic method. The characteristics of math-
ematical structures are captured in axioms. Theorems are then derived from
these axioms for all structures that satisfy the axioms.
Often, what is needed for a proof is a clever change of perspective to see that
one structure is indeed an instance of another theory, bringing additional
theorems to bear.
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– Many branches of mathematics emphasise functions, including partial func-
tions. Moreover, the classes of objects studied may be nested, as are the
integers and the real numbers; or overlapping, as are the bounded functions
and the continuous functions.

– Mathematical proofs usually employ a mixture of both formal inference and
computation.

Special attention is directed at the interplay of computation and proof.
Farmer, Guttman and Thayer emphasise that, for example, a mathematician
might devote considerable effort into proving lemmas that justify computational
procedures1 but are ultimately uninterested in the part of the derivation that is
the “implementation” of these procedures.

Therefore, IMPS also allows for inferences based on sound computation and
not merely formal inference. These are treated as atomic inferences, although
a full formalisation in – for example – a Gentzen-style system might require
hundreds or thousands of inference steps.

Little Theories. When following the axiomatic method to do mathematics –
that is, logically reasoning from a given set of sentences in a formal language –
there are two prominent approaches to chose from, which we will refer to as the
“little theories” and “big theories” approach.

In the “big theories” version of the axiomatic method, all reasoning is carried
out in one highly expressive axiomatic theory. The set of axioms selected is
powerful enough, such that any model of them will contain all the mathematical
objects that are of interest to us, and deduction from these powerful axioms will
be enough to prove the relevant theorems in the theory. Popular examples for a
“big” axiomatic theory would be ZFC or the Calculus of Inductive Constructions.

Contrasted with that, the “little theories” approach uses a number of different
theories with smaller, less powerful sets of axioms, to develop mathematics in.
For example, one theorem could be true for all semi-rings, while another is
only true in the theories of commutative rings. Theorems are proved by logical
derivation from the axioms of whatever theory supplies the necessary structure
for the proof.

Both IMPS and MMT subscribe to the “little theories” approach to formal
mathematics, a design choice that was informed by the fact that the little theories
approach lends itself well to the mechanism of theory interpretations [FGT92].

Theories are the basic unit of representing mathematical knowledge in IMPS.
In fact, Farmer (in [FGT98]) calls IMPS “a system for developing, exploring, and
relating theories”.

Theory Morphisms. A theory morphism (sometimes also called a theory inter-
pretation) is a translation between two theories that maps expression from the
one theory to expressions in the other, with the additional property that theo-
rems are always mapped to theorems [Far93,FGT98].
1 [FGT98] gives the example of the algorithm for differentiating polynomials for this.
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This is an integral part of the “little theories” approach as theory morphisms
are the tool to use to make results of one theory available in the other.

It is also close to mathematical practice, since seeing one structure as an
instance of another (and therefore bringing all theorems of the other structure
into play) is often the critical insight in non-trivial mathematical proofs.

2.3 Preliminaries: OMDoc/MMT

OMDoc (short for Open Mathematical Documents) is a semantics-oriented
markup format for STEM-related documents extending OpenMath developed by
the KWARC work group (see [Koh06]). OMDoc/MMT [RK13] re-conceptualises
the formal/modular fragment of OMDoc and greatly enhances its expressive
power. OMDoc/MMT retains OMDoc’s three distinct levels for expressions of
mathematical knowledge: Object Level Expressions (e.g. terms and formulae)
expressed in OpenMath, Declaration Level Constants (functions, types, judge-
ments) with an optional (object-level) type and/or definition and Module Level
Theories and Views; sets of declarations that inhabit a common name-space and
context.

Theories in OMDoc/MMT are structurally similar to theories in IMPS and
can include other theories. Hence MMT-theories allow for library development
in concordance to the little theories paradigm. Views in MMT behave (for all
purposes relevant in this paper) analogously to theory morphisms in IMPS.

The MMT System. The OMDoc/MMT language is implemented in the MMT
system [Rab18], which provides an API to handle OMDoc/MMT content and
services such as type checking, rewriting of expressions and computation, as well
as notation-based presentation of OMDoc/MMT content and a general infras-
tructure for inspecting and browsing libraries.

Since OMDoc/MMT avoids committing to a specific semantics or logical
foundation, foundation-dependent services and features (e.g. type checking, pre-
sentation) are implemented using (foundation-independent) generic algorithms
extensible by foundation-dependent calculus rules via plug-ins (e.g. for handling
content imported from external systems such as IMPS).

Theory Graphs. Theories and theory morphisms naturally lead to theory
graphs, with theories as vertices and morphisms as edges. In fact, OMDoc/MMT-
theories and morphisms form a category, which is exploited by the MMT-system
to induce and translate knowledge in/between theories analogously to IMPS.

The possible arrows in OMDoc/MMT are inclusions, which import all dec-
larations from the domain to the co-domain, views, which are judgement-
preserving maps from the declarations in the domain to expressions over the
co-domain, structures, which are omitted for this paper because they do not
occur in IMPS, and the meta-theory-relation, which behaves like an include for
most purposes2.
2 The meta-theory-relation connects theories that live on different meta-levels; e.g.

domain knowledge to its logical foundation and conversely the logical foundation to
the logical framework it is formalised in.
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Fig. 1. Meta-levels in OMDoc/MMT

An example graph is given in
Fig. 1. Dotted lines represent the
meta-theory-relation, hooked arrows
are includes, squiggly arrows repre-
sent views, and the normal (labelled)
arrows represent structures. The MMT
system also provides a theory graph
viewer (see [RKM17]), an example for
which is given in Fig. 9. For our pur-
poses, we fix as a foundation the logi-

cal framework LF (see [HHP93]), since it is particularly well supported by the
MMT system.

3 Implementation

The IMPS-to-OMDoc translator consists of two parts: the representation of
LUTINS in the meta-logic and the programs to translate the sources against
this.

3.1 The LUTINS Theory in LF

To formalise LUTINS in MMT, we use the logical framework LF, which provides
a dependently typed lambda calculus with (i) two universes type and kind
with type:kind and (ii) dependent function types

∏
x:A T (x) (in LF-syntax:

{x:A}T(x)). If T does not contain the variable x, this is the same as the function
type A → T . Dependent function types are inhabited by lambda expressions
λx : A.t(x) (in LF-syntax: [x:A]t(x)). The usual rules in a lambda calculus
(extensionality, beta-reduction, . . . ) hold.

To represent LUTINS, we created a LF meta-theory3 that, for every concept
in the logic itself (like quantifiers, logical constructors, the primitive sorts, . . . ),
has a corresponding constant (44 of them). Furthermore, we declare:

1. a new LF-type tp:type, which serves as the universe of maximal IMPS-sorts,
2. a function sort : tp → type, and
3. a function exp : {A : tp} sort A → type.

Given some maximal IMPS-sort A, the LF-type sort A then serves as the type
of all subsorts of that IMPS-type, and given a sort declaration a : sort A, the
type exp A a corresponds to the LF-type of all IMPS-expressions of sort a.

We use the principles of higher-order abstract syntax to specify binders in
IMPS. For example, consider an IMPS expression λx : A.t, where the λ-constructor
binds a new variable x : A. We formalise this behaviour by declaring the IMPS
lambda to be an LF function lambda, that takes an LF lambda expression as

3 This formalisation is part of the LATIN foundations see https://gl.mathhub.info/
MMT/LATIN/blob/master/source/foundations/imps/lutins.mmt.

https://gl.mathhub.info/MMT/LATIN/blob/master/source/foundations/imps/lutins.mmt
https://gl.mathhub.info/MMT/LATIN/blob/master/source/foundations/imps/lutins.mmt
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argument which binds the variable x. As a result we get the LF expression
lambda ([x:A] t) being the application of the function lambda to the LF func-
tion [x:A]t, effectively “embedding” an LF function on IMPS expressions as an
IMPS function. Application in IMPS, quantifiers and other binders are treated
analogously.

For propositional judgements (i.e. axioms and theorems) in IMPS, we use the
judgements-as-types paradigm by introducing an operator thm : exp bool →
type, assigning to each proposition a type which we can think of as the “type of
proofs” for that proposition. Correspondingly, we consider a proposition A to be
“true” if the type thm A is inhabited. Axioms correspond to undefined constants
of type thm A, whereas theorems correspond to defined constants of that type,
their definition being a proof (although proofs are omitted in this paper).

Fig. 2. Overview: dark : static files (sources and generated), medium: our contributions,
light : independent systems

3.2 Translation

We now present the actual transformation process. It starts with IMPS library files4

and uses several software systems over a number of different steps, which are out-
lined below. Figure 2 gives a high-level schematic view of all involved systems and
processes. The individual steps of the translation process are as follows:

– Generate JSON from IMPS data structures: For this, we modified Li’s
exporter to export (the relevant aspects of) the internal data structures in
IMPS directly to JSON, which is easy to read (for both human and machine)
and gives us direct access to the data in the internal data structures, instead
of an outdated OMDoc translation of those structures.

4 Which – like the original IMPS system – are written in the T language – a dialect of
Scheme – and are hence often referred to simply as “T-files” in the following sections.
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– Import and combine JSON and IMPS sources: Parsing from both IMPS
library source files and JSON generated from internal data structures, gives
the possibility of including more data in the translation, even data that is not
represented on a symbolic level within IMPS (e.g. macetes or proofs).

– Translate combined structures to MMT/OMDoc: The last step uses the
LF-implementation of LUTINS. In this form, they can also be type-checked
by MMT to verify their correctness. The final OMDoc output is also generated
by the MMT system, which always produces OMDoc in the current standard
of the format.

Fig. 3. IMPS source code: def-form defining the atomic sort nn via predicate

Def-Forms. IMPS source files contain information in so-called “def-forms”
(short for “definition forms”). Each def-form is essentially the specification of
one IMPS object, from constants, theories, languages to translations. Figure 3
shows an example.

Fig. 4. Survey results for usage of each def-form

To avoid unnec-
essary work in imple-
mentation, we sur-
veyed the library
to determine which
def-forms were used
how often. In Fig. 4
we consider a def-
form “unused”, if it

does not appear in the library, even if it is supported by IMPS. We classify a
def-form as “foundational” if it appears in the foundation sub-library. All other
def-forms (called “advanced” in this context) were initially given low priority.

S-Expressions. There are different ways of representation in which IMPS dis-
plays mathematical objects to the user. One of the most important features
of the JSON export mechanism is the export of mathematical expressions in s-
expression syntax (as popularised by LISP) instead of string syntax.

For example, consider the axiom commutative-law-for-addition of the
theory h-o-real-arithmetic. In string presentation, it is printed like this:

forall(y,x:rr,x+y=y+x)

In s-expression syntax, however, this axiom is printed as follows:
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(forall ((rr y x)) (= (apply-operator + x y)
(apply-operator + y x)))

While the string representation might be more familiar to the human eye,
s-expressions are considerably easier to parse mechanically and make dealing
with binding strength and operator precedence unnecessary. They also simplify
parsing function applications and quasi-constructors.

Quasi-Constructors. In addition to the LUTINS core logical constructors it is
also possible for a user of IMPS to define additional constructor-like forms called
“quasi-constructors”. These are implemented as “macros” or “abbreviations”.

For example, in IMPS, there exists the notion of quasi-equality: two expres-
sions are quasi-equal if and only if they are either both undefined or are both
defined with the same value. In mathematical notation, this would be captured
by the following biconditional (where x↓ means “x is defined”):

E1 
 E2 ≡ (E1↓ ∨ E2↓) ⊃ E1 = E2

More precisely, a quasi-constructor consists of three elements: a name (some-
thing like quasi-equals), a list of variables (E1 and E2) and a schema (the right
hand side above, see Fig. 5 for an example from the library).

In addition to the user-defined quasi-constructors, the IMPS system also has a
small number of so-called “system quasi-constructors” that are hard-wired into
the deductive machinery. Quasi-equality is one of them. Quasi-constructors are
polymorphic in their schema variables, even if this polymorphism is not made
explicit in the notation.

The translation of quasi-constructors turned out to be quite challenging. As
Li states in [Li02], the corresponding lambda expressions for quasi-constructors
are not represented as symbols in IMPS and can therefore not be translated into
JSON directly, like other expressions.

Fig. 5. The quasi-constructor i-in, as declared in
IMPS

However, user-defined quasi-
constructors are used exten-
sively throughout the source.
A survey of the T source files
and the JSON output of just
the foundation section identi-
fied 58 quasi-constructors used
hundreds of times within the

library-section imps-math-library. Thus any effort to translate this library
would be incomplete without a rigorous treatment of quasi-constructors.

Instead of manually adding each individual quasi-constructor to the theory
that defines it, or automatically resolving them immediately when parsed (which
would need a lot of typing information not easily available at that stage of the
translation) we decided to formulate one global LF-theory (called QuasiLutins)
for them. There, we implemented all quasi-constructors as an instance of the
same data type that also represents ordinary constructors (as seen in Fig. 6).
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Fig. 6. The same quasi-constructor, implemented in LF

This turned out to be the most effective and most faithful approach to the
original sources, since the separation of theories makes clear what is part of
the original LUTINS and what is not. It is also possible to stick to genuine
polymorphism this way, without having to re-derive too much typing information
during translation.

Theory Morphisms. IMPS translations (which are all interpretations in the
IMPS library, i.e. all the obligations of the translation are theorems in the target
theory) are translated as MMT views.

Fig. 7. Theory mor-
phisms with axioms

Some theory morphisms in IMPS (see Fig. 8 for an
example showing the translation of groups to subgroups)
have a collection of assumptions that need to be fulfilled
(i.e. need to be theorems in the target theory for the mor-
phism to be applicable). These assumptions can be used
to state that certain conditions must be met (e.g. in the
example from above, the target set (indicator function)
must not be empty).

Views in MMT, however, are not designed to have
assumptions. To circumvent this obstacle, we create a copy
of the target theory T2, called T ′

2 that includes T2, but
also has all the assumptions associated with the theory morphism as additional
axioms (see Fig. 7).

Fig. 8. IMPS source code (from “subgroups.t”): subgroup translation



Translating the IMPS Theory Library to MMT/OMDoc 19

4 Applications

Continued Theory Library Development. Translating the IMPS theory library
into OMDoc/MMT format allows us to use the theories contained therein in
future projects and enables the continuing development of other theories that
build upon them (without depending directly on the IMPS system itself). They
are now also available to other tools and automated methods (e.g. as data for
machine-learning approaches to auto-formalisation).

Alignments. Using flexible alignments (see [Mül+17]) between different libraries
(such as those of the PVS, HOL Light, and Mizar projects, for which there exist
similar translation efforts), we can guide library developers to corresponding
parts of other formalisations, give decent approximate translations of content
across libraries, or help users more familiar with IMPS towards content of other
systems by re-using notations that would otherwise be system specific.

OMDoc/MMT Services. With the OMDoc/MMT translation of the IMPS theory
library, IMPS also gains access to library management facilities implemented
at the OMDoc/MMT level. There are two ways to exploit this: publishing the
translated IMPS libraries on a dedicated server, like the MathHub system, or
running the OMDoc/MMT stack locally.

Browsing and Interaction. The transformed IMPS content can be browsed inter-
actively in the document-oriented MathHub presentation pages (theories as
active documents) and in the MMT web browser. Both allow interaction with
the IMPS content via a generic Javascript-based interface.

Graph Viewer. The MMT system includes a theory graph viewer [RKM17] that
allows interactive, web-based exploration of the OMDoc/MMT theory graphs. It
builds on the vis.js JavaScript visualisation library, which uses the HTML5
canvas to layout and interact with graphs client-side in the browser.

The IMPS theory library relies substantially on theories as a structuring mech-
anism (as a consequence of taking the little theories approach), which makes
a graph viewer particularly attractive. Figure 9 shows the full graph of the
foundation library section, generated from only the OMDoc translated from
IMPS5.

5 Note that the theories shown here are all part of the library; they are not duplicates
created by the process from Fig. 7.
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Fig. 9. Theory graph of the foundation section

5 Conclusion

We have developed a representation of the IMPS logic LUTINS and an auto-
mated translation of the IMPS mathematical theory library in the OMDoc/MMT
format. This saves the IMPS library from becoming inaccessible and allows con-
tinued development and cross-fertilisation.

This information architecture is essential for system interoperability. In our
case we have shown that we can use the language-independent MMT tool chain
for IMPS. In particular, with the library browser and the theory graph viewer,
we have instantiated two generic periphery systems for IMPS.

Future Work. Our results can also easily be extended to use LFX (LF + X, an
extension to the LF framework, see [LFX]) to give shallower (i.e. more structure-
preserving) encodings of IMPS features without having to sacrifice the advantages
of logical frameworks via the use of structural features (see [Ian17]).

Finally, in future efforts, we would like to extend the current export to also
include proofs and macetes of the IMPS system in a usable format. For this to be
possible, we would have to represent the IMPS proof calculus in LF, and develop
a LF representation for proof commands. In our experience, both tactic-level
proof scripts as well as full proofs are even harder to make interoperable than
the statement level of libraries and may thus be less useful.
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Software Sources. All software that is mentioned in this paper is available online:
(i) imps2json: https://gl.mathhub.info/IMPS/theories (ii) MMT extension:
https://github.com/UniFormal/MMT/tree/imps (iii) MMT archive: https://
gl.mathhub.info/IMPS/imps.

Acknowledgments. The authors gratefully acknowledge financial support from
DFG-funded project OAF: An Open Archive for Formalizations (KO 2428/13-1) and
fruitful discussions and clarifications from Bill Farmer, Dennis Müller, and Florian
Rabe.
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Abstract. While Isabelle is mostly known as part of Isabelle/HOL (an
interactive theorem prover), it actually provides a framework for develop-
ing a wide spectrum of applications. A particular strength of the Isabelle
framework is the combination of text editing, formal verification, and
code generation.

Up to now, Isabelle’s document preparation system lacks a mechanism
for ensuring the structure of different document types (as, e.g., required
in certification processes) in general and, in particular, mechanism for
linking informal and formal parts of a document.

In this paper, we present Isabelle/DOF, a novel Document Ontol-
ogy Framework on top of Isabelle. Isabelle/DOF allows for conventional
typesetting as well as formal development. We show how to model doc-
ument ontologies inside Isabelle/DOF, how to use the resulting meta-
information for enforcing a certain document structure, and discuss
ontology-specific IDE support.

Keywords: Ontology · Ontological modeling · Isabelle/DOF

1 Introduction

The linking of the formal to the informal is perhaps the most pervasive chal-
lenge in the digitization of knowledge and its propagation. This challenge incites
numerous research efforts summarized under the labels “semantic web”, “data
mining”, or any form of advanced “semantic” text processing. A key role in
structuring this linking play document ontologies (also called vocabulary in the
semantic web community [3]), i.e., a machine-readable form of the structure of
documents as well as the document discourse. Such ontologies can be used for
the scientific discourse within scholarly articles, mathematical libraries, and in
the engineering discourse of standardized software certification documents [9,10].
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Further applications are the domain-specific discourse in juridical texts or med-
ical reports. In general, an ontology is a formal explicit description of concepts
in a domain of discourse (called classes), properties of each concept describ-
ing attributes of the concept, as well as links between them. A particular link
between concepts is the is-a relation declaring the instances of a subclass to be
instances of the super-class.

The main objective of this paper is to present Isabelle/DOF, a novel frame-
work to model typed ontologies and to enforce them during document evolution.
Based on Isabelle, ontologies may refer to types, terms, proven theorems, code, or
established assertions. Based on a novel adaption of the Isabelle IDE, a document
is checked to be conform to a particular ontology—Isabelle/DOF is designed to
give fast user-feedback during the capture of content. This is particularly valu-
able in case of document changes, where the coherence between the formal and
the informal parts of the content can be mechanically checked.

To avoid any misunderstanding: Isabelle/DOF is not a theory in HOL on
ontologies and operations to track and trace links in texts, it is an environment
to write structured text which may contain Isabelle/HOL definitions and proofs
like mathematical articles, tech-reports and scientific papers—as the present
one, which is written in Isabelle/DOF itself. Isabelle/DOF is a plugin into the
Isabelle/Isar framework in the style of [14].

The plan of the paper is follows: we start by introducing the underlying
Isabelle system (Sect. 2) followed by presenting the essentials of Isabelle/DOF
and its ontology language (Sect. 3). It follows Sect. 4, where we present three
application scenarios from the point of view of the ontology modeling. In
Sect. 5 we discuss the user-interaction generated from the ontological definitions.
Finally, we draw conclusions and discuss related work in Sect. 6.

2 Background: The Isabelle System

While Isabelle is widely perceived as an interactive theorem prover for HOL
(Higher-order Logic) [11], we would like to emphasize the view that Isabelle
is far more than that: it is the Eclipse of Formal Methods Tools. This refers
to the “generic system framework of Isabelle/Isar underlying recent versions of
Isabelle. Among other things, Isar provides an infrastructure for Isabelle plug-
ins, comprising extensible state components and extensible syntax that can be
bound to ML programs. Thus, the Isabelle/Isar architecture may be understood
as an extension and refinement of the traditional ‘LCF approach’, with explicit
infrastructure for building derivative systems” [14] .

The current system framework offers moreover the following features:

– a build management grouping components into to pre-compiled sessions,
– a prover IDE (PIDE) framework [12] with various front-ends
– documentation - and code generators,
– an extensible front-end language Isabelle/Isar, and,
– last but not least, an LCF style, generic theorem prover kernel as the most

prominent and deeply integrated system component.
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Fig. 1. The system architecture of Isabelle (left-hand side) and the asynchronous com-
munication between the Isabelle system and the IDE (right-hand side).

The Isabelle system architecture shown in Fig. 1 comes with many layers,
with Standard ML (SML) at the bottom layer as implementation language. The
architecture actually foresees a Nano-Kernel (our terminology) which resides in
the SML structure Context. This structure provides a kind of container called
context providing an identity, an ancestor-list as well as typed, user-defined state
for components (plugins) such as Isabelle/DOF. On top of the latter, the LCF-
Kernel, tactics, automated proof procedures as well as specific support for higher
specification constructs were built.

We would like to detail the documentation generation of the architec-
ture, which is based on literate specification commands such as section . . . ,
subsection . . . , text . . . , etc. Thus, a user can add a simple text:

text〈This is a description.〉

These text-commands can be arbitrarily mixed with other commands stating
definitions, proofs, code, etc., and will result in the corresponding output in
generated LaTEX or HTML documents. Now, inside the textual content, it is
possible to embed a text-antiquotation:

text〈According to the reflexivity axiom @{thm refl}, we obtain in Γ
for @{term "fac 5"} the result @{value "fac 5"}.〉

which is represented in the generated output by:

According to the reflexivity axiom x = x, we obtain in Γ for fac 5
the result 120.

where refl is actually the reference to the axiom of reflexivity in HOL. For the
antiquotation @{value "fac 5"} we assume the usual definition for fac in HOL.
Thus, antiquotations can refer to formal content, can be type-checked before
being displayed and can be used for calculations before actually being typeset.



26 A. D. Brucker et al.

When editing, Isabelle’s PIDE offers auto-completion and error-messages while
typing the above semi-formal content.

3 Isabelle/DOF

An Isabelle/DOF document consists of three components:

– the ontology definition, which is an Isabelle theory file with definitions for
document-classes and all auxiliary datatypes.

– the core of the document itself which is an Isabelle theory importing the
ontology definition. Isabelle/DOF provides an own family of text-element
commands such as title*, section*, text*, etc., which can be annotated
with meta-information defined in the underlying ontology definition.

– the layout definition for the given ontology exploiting this meta-information.

Isabelle/DOF is a novel Isabelle system component providing specific support
for all these three parts. Note that the document core may, but must not use
Isabelle definitions or proofs for checking the formal content—the present paper
is actually an example of a document not containing any proof.

The document generation process of Isabelle/DOF is currently restricted to
LaTEX, which means that the layout is defined by a set of LaTEX style files. Several
layout definitions for one ontology are possible and pave the way that different
views for the same central document were generated, addressing the needs of
different purposes and/or target readers.

While the ontology and the layout definition will have to be developed by an
expert with knowledge over Isabelle and Isabelle/DOF and the back end tech-
nology depending on the layout definition, the core is intended to require only
minimal knowledge of these two. Document core authors can use LaTEX com-
mands in their source, but this limits the possibility of using different represen-
tation technologies, e.g., HTML, and increases the risk of arcane error-messages
in generated LaTEX.

The Isabelle/DOF ontology specification language consists basically on a
notation for document classes, where the attributes were typed with HOL-types
and can be instantiated by terms HOL-terms, i.e., the actual parsers and type-
checkers of the Isabelle system were reused. This has the particular advantage
that Isabelle/DOF commands can be arbitrarily mixed with Isabelle/HOL com-
mands providing the machinery for type declarations and term specifications
such as enumerations. In particular, document class definitions provide:

– a HOL-type for each document class as well as inheritance,
– support for attributes with HOL-types and optional default values,
– support for overriding of attribute defaults but not overloading, and
– text-elements annotated with document classes; they are mutable instances

of document classes.

Attributes referring to other ontological concepts are called links. The HOL-
types inside the document specification language support built-in types for
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Isabelle/HOL typ’s, term’s, and thm’s reflecting internal Isabelle’s internal types
for these entities; when denoted in HOL-terms to instantiate an attribute, for
example, there is a specific syntax (called inner syntax antiquotations) that is
checked by Isabelle/DOF for consistency.

Document classes can have a where-clause containing a regular expression
over class names. Classes with such a where are called monitor classes. While
document classes and their inheritance relation structure meta-data of text-
elements, monitor classes enforce structural organization of documents via the
language specified by the regular expression enforcing a sequence of text-elements
that must belong to the corresponding classes.

To start using Isabelle/DOF, one creates an Isabelle project (with the name
IsaDofApplications):

isabelle DOF_mkroot -o scholarly_paper -t lncs -d IsaDofApplications

where the -o scholarly_paper specifies the ontology for writing scientific arti-
cles and -t lncs specifies the use of Springer’s LaTEX-configuration for the Lec-
ture Notes in Computer Science series. The project can be formally checked,
including the generation of the article in PDF using the following command:

isabelle build -d . IsaDofApplications

4 Modeling Ontologies in Isabelle/DOF

In this section, we will use the Isabelle/DOF document ontology language for
three different application scenarios: for scholarly papers, for mathematical exam
sheets as well as standardization documents where the concepts of the standard
are captured in the ontology. For space reasons, we will concentrate in all three
cases on aspects of the modeling due to space limitations.

4.1 The Scholar Paper Scenario: Eating One’s Own Dog Food

The following ontology is a simple ontology modeling scientific papers. In this
Isabelle/DOF application scenario, we deliberately refrain from integrating refer-
ences to (Isabelle) formal content in order demonstrate that Isabelle/DOF is not
a framework from Isabelle users to Isabelle users only. Of course, such references
can be added easily and represent a particular strength of Isabelle/DOF.

The first part of the ontology scholarly_paper (see Fig. 2) contains the doc-
ument class definitions with the usual text-elements of a scientific paper. The
attributes short_title, abbrev etc. are introduced with their types as well as
their default values. Our model prescribes an optional main_author and a todo-
list attached to an arbitrary text section; since instances of this class are mutable
(meta)-objects of text-elements, they can be modified arbitrarily through sub-
sequent text and of course globally during text evolution. Since author is a
HOL-type internally generated by Isabelle/DOF framework and can therefore
appear in the main_author attribute of the text_section class; semantic links
between concepts can be modeled this way.
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Fig. 2. The core of the ontology definition for writing scholarly papers.

The translation of its content to, e.g., Springer’s LaTEX setup for the Lecture
Notes in Computer Science Series, as required by many scientific conferences, is
mostly straight-forward.

Figure 3 shows the corresponding view in the Isabelle/PIDE of the present
paper. Note that the text uses Isabelle/DOF’s own text-commands containing
the meta-information provided by the underlying ontology. We proceed by a
definition of introduction’s, which we define as the extension of text_section
which is intended to capture common infrastructure:

doc_class introduction = text_section +
comment :: string

As a consequence of the definition as extension, the introduction class
inherits the attributes main_author and todo_list together with the corre-
sponding default values.

As a variant of the introduction, we could add here an attribute that contains
the formal claims of the article—either here, or, for example, in the keyword
list of the abstract. As type, one could use either the built-in type term (for
syntactically correct, but not necessarily proven entity) or thm (for formally
proven entities). It suffices to add the line:

claims :: "thm list"

and to extent the LaTEX-style accordingly to handle the additional field. Note
that term and thm are types reflecting the core-types of the Isabelle kernel. In a
corresponding conclusion section, one could model analogously an achievement
section; by programming a specific compliance check in SML, the implemen-
tation of automated forms of validation check for specific categories of papers
is envisageable. Since this requires deeper knowledge in Isabelle programming,
however, we consider this out of the scope of this paper.
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Fig. 3. Ouroboros I: this paper from inside . . .

We proceed more or less conventionally by the subsequent sections (Fig. 4)
and finish with a monitor class definition that enforces a textual ordering in the
document core by a regular expression (Fig. 5).

Fig. 4. Various types of sections of a scholarly papers.

We might wish to add a component into our ontology that models figures
to be included into the document. This boils down to the exercise of modeling
structured data in the style of a functional programming language in HOL and
to reuse the implicit HOL-type inside a suitable document class figure:
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Fig. 5. A monitor for the scholarly paper ontology.

datatype placement = h | t | b | ht | hb
doc_class figure = text_section +

relative_width :: "string" (* percent of textwidth *)
src :: "string"
placement :: placement
spawn_columns :: bool <= True

Alternatively, by including the HOL-libraries for rationals, it is possible to use
fractions or even mathematical reals. This must be counterbalanced by syntactic
and semantic convenience. Choosing the mathematical reals, e.g., would have the
drawback that attribute evaluation could be substantially more complicated.

Fig. 6. Ouroboros II: figures . . .

The document class figure—supported by the Isabelle/DOF text command
figure*—makes it possible to express the pictures and diagrams in this paper
such as Fig. 6.

4.2 The Math-Exam Scenario

The Math-Exam Scenario is an application with mixed formal and semi-formal
content. It addresses applications where the author of the exam is not present
during the exam and the preparation requires a very rigorous process, as the
French baccalauréat and exams at The University of Sheffield.

We assume that the content has four different types of addressees, which have
a different view on the integrated document

– the setter, i.e., the author of the exam,
– the checker, i.e., an internal person that checks the exam for feasibility and

non-ambiguity,
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– the external examiner, i.e., an external person that checks the exam for fea-
sibility and non-ambiguity, and

– the student, i.e., the addressee of the exam.

The latter quality assurance mechanism is used in many universities, where for
organizational reasons the execution of an exam takes place in facilities where
the author of the exam is not expected to be physically present. Furthermore,
we assume a simple grade system (thus, some calculation is required).

Fig. 7. The core of the ontology modeling math exams.

The heart of this ontology (see Fig. 7) is an alternation of questions and
answers, where the answers can consist of simple yes-no answers (QCM style
check-boxes) or lists of formulas. Since we do not assume familiarity of the
students with Isabelle (term would assume that this is a parse-able and type-
checkable entity), we basically model a derivation as a sequence of strings (see
Fig. 8).

In many institutions, it makes sense to have a rigorous process of validation
for exam subjects: is the initial question correct? Is a proof in the sense of
the question possible? We model the possibility that the examiner validates a
question by a sample proof validated by Isabelle (see Fig. 9). In our scenario this
sample proofs are completely intern, i.e., not exposed to the students but just
additional material for the internal review process of the exam.

Using the LaTEX package hyperref, it is possible to conceive an interactive
exam-sheets with multiple-choice and/or free-response elements (see Fig. 10).
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Fig. 8. An exam can contain different types of questions.

Fig. 9. Validating exams.

With the help of the latter, it is possible that students write in a browser a
formal mathematical derivation—as part of an algebra exercise, for example—
which is submitted to the examiners electronically.
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Fig. 10. A generated QCM fragment . . .

4.3 The Certification Scenario Following CENELEC

Documents to be provided in formal certifications (such as CENELEC
50126/50128, the DO-178B/C, or Common Criteria) can much profit from the
control of ontological consistency: a lot of an evaluators work consists in trac-
ing down the links from requirements over assumptions down to elements of
evidence, be it in the models, the code, or the tests. In a certification process,
traceability becomes a major concern; and providing mechanisms to ensure com-
plete traceability already at the development of the global document will clearly
increase speed and reduce risk and cost of a certification process. Making the
link-structure machine-checkable, be it between requirements, assumptions, their
implementation and their discharge by evidence (be it tests, proofs, or authorita-
tive arguments), is therefore natural and has the potential to decrease the cost of
developments targeting certifications. Continuously checking the links between
the formal and the semi-formal parts of such documents is particularly valuable
during the (usually collaborative) development effort.

As in many other cases, formal certification documents come with an own
terminology and pragmatics of what has to be demonstrated and where, and
how the trace-ability of requirements through design-models over code to system
environment assumptions has to be assured.

In the sequel, we present a simplified version of an ontological model used
in a case-study [8]. We start with an introduction of the concept of requirement
(see Fig. 11). Such ontologies can be enriched by larger explanations and exam-
ples, which may help the team of engineers substantially when developing the
central document for a certification, like an explication what is precisely the
difference between an hypothesis and an assumption in the context of the eval-
uation standard. Since the PIDE makes for each document class its definition
available by a simple mouse-click, this kind on meta-knowledge can be made far
more accessible during the document evolution.



34 A. D. Brucker et al.

Fig. 11. Modeling requirements.

For example, the term of category assumption is used for domain-specific
assumptions. It has formal, semi-formal and informal sub-categories. They have
to be tracked and discharged by appropriate validation procedures within a
certification process, by it by test or proof. It is different from a hypothesis,
which is globally assumed and accepted.

In the sequel, the category exported constraint (or ec for short) is used for
formal assumptions, that arise during the analysis, design or implementation and
have to be tracked till the final evaluation target, and discharged by appropriate
validation procedures within the certification process, by it by test or proof. A
particular class of interest is the category safety related application condition
(or srac for short) which is used for ec’s that establish safety properties of the
evaluation target. Their track-ability throughout the certification is therefore
particularly critical. This is naturally modeled as follows:

doc_class ec = assumption +
assumption_kind :: ass_kind <= (*default *) formal

doc_class srac = ec +
assumption_kind :: ass_kind <= (*default *) formal

5 Ontology-Based IDE Support

We present a selection of interaction scenarios Sects. 4.1 and 4.3 with
Isabelle/PIDE instrumented by Isabelle/DOF.

5.1 A Scholarly Paper

In Fig. 12 we show how hovering over links permits to explore its meta-
information. Clicking on a document class identifier permits to hyperlink into
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Fig. 12. Exploring text element.

the corresponding class definition (Fig. 13a); hovering over an attribute-definition
(which is qualified in order to disambiguate; Fig. 13b).

An ontological reference application in Fig. 14: the ontology-dependant
antiquotation @{example ...} refers to the corresponding text-elements. Hov-
ering allows for inspection, clicking for jumping to the definition. If the link does
not exist or has a non-compatible type, the text is not validated.

Fig. 13. Hyperlinks.

5.2 CENELEC

The corresponding view in Fig. 15 shows core part of a document, coherent to
the Sect. 4.3. The first sample shows standard Isabelle antiquotations [13] into
formal entities of a theory. This way, the informal parts of a document get “formal
content” and become more robust under change.

The subsequent sample in Fig. 16 shows the definition of an safety-related
application condition, a side-condition of a theorem which has the consequence
that a certain calculation must be executed sufficiently fast on an embedded

Fig. 14. Exploring an attribute (hyperlinked to the class).
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Fig. 15. Standard antiquotations referring to theory elements.

Fig. 16. Defining a SRAC reference . . .

device. This condition can not be established inside the formal theory but has
to be checked by system integration tests.

Now we reference in Fig. 17 this safety-related condition; however, this hap-
pens in a context where general exported constraints are listed. Isabelle/DOF’s
checks establish that this is legal in the given ontology.

This example shows that ontological modeling is indeed adequate for large
technical, collaboratively developed documentations, where modifications can
lead easily to incoherence. The current checks help to systematically avoid this
type of incoherence between formal and informal parts.

Fig. 17. Using a SRAC as EC document reference.

6 Conclusion and Related Work

We have demonstrated the use of Isabelle/DOF, a novel ontology modeling and
enforcement IDE deeply integrated into the Isabelle/Isar Framework. The two
most distinguishing features are

– Isabelle/DOF and its ontology language are a strongly typed language that
allows for referring (albeit not reasoning) to entities of Isabelle/HOL, most
notably types, terms, and (formally proven) theorems, and
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– Isabelle/DOF is supported by the Isabelle/PIDE framework; thus, the advan-
tages of an IDE for text-exploration (which is the type of this link? To which
text element does this link refer? Which are the syntactic alternatives here?)
were available during editing instead of a post-hoc validation process.

Of course, a conventional batch-process also exists which can be used for the
validation of large document bases in a conventional continuous build process.
This combination of formal and semi-informal elements, as well as a systematic
enforcement of the coherence to a document ontology of the latter, is, as we
believe, novel and offers a unique potential for the semantic treatment of scientific
texts and technical documentations.

To our knowledge, this is the first ontology-driven framework for editing
mathematical and technical documents that focuses particularly on documents
mixing formal and informal content—a type of documents that is very common
in technical certification processes. We see mainly one area of related works:
IDEs and text editors that support editing and checking of documents based
on an ontology. There is a large group of ontology editors (e.g., Protégé [5],
Fluent Editor [1], NeOn [2], or OWLGrEd [4]). With them, we share the sup-
port for defining ontologies as well as auto-completion when editing documents
based on an ontology. While our ontology definitions are currently based on a
textual definition, widely used ontology editors (e.g., OWLGrEd [4]) also sup-
port graphical notations. This could be added to Isabelle/DOF in the future. A
unique feature of Isabelle/DOF is the deep integration of formal and informal
text parts. The only other work in this area we are aware of is rOntorium [6],
a plugin for Protégé that integrates R [7] into an ontology environment. Here,
the main motivation behind this integration is to allow for statistically analyze
ontological documents. Thus, this is complementary to our work.

Isabelle/DOF in its present form has a number of technical short-comings as
well as potentials not yet explored. On the long list of the short-comings is the
fact that strings inside HOL-terms do not support, for example, Unicode. For
the moment, Isabelle/DOF is conceived as an add-on for Isabelle/HOL; a much
deeper integration of Isabelle/DOF into Isabelle could increase both performance
and uniformity. Finally, different target presentation (such as HTML) would be
highly desirable in particular for the math exam scenarios. And last but not
least, it would be desirable that PIDE itself is “ontology-aware” and can, for
example, use meta-information to control read- and write accesses of parts of
documents.

Availability. The implementation of the framework, the discussed ontology
definitions, and examples are available at https://git.logicalhacking.com/HOL-
OCL/Isabelle_DOF/.
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temX, Paris-Saclay, France, and therefore granted with public funds within the scope
of the Program “Investissements d’Avenir”.
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Howard S. Cohl1(B), André Greiner-Petter2, and Moritz Schubotz2

1 Applied and Computational Mathematics Division,
National Institute of Standards and Technology, Mission Viejo, CA, USA

howard.cohl@nist.gov
2 Department of Computer and Information Science, University of Konstanz,

Konstanz, Germany
{andre.greiner-petter,moritz.schubotz}@uni-konstanz.de

Abstract. We have developed an automated procedure for symbolic
and numerical testing of formulae extracted from the National Institute
of Standards and Technology (NIST) Digital Library of Mathematical
Functions (DLMF). For the NIST Digital Repository of Mathematical
Formulae, we have developed conversion tools from semantic LaTEX to
the Computer Algebra System (CAS) MAPLE which relies on Youssef’s
part-of-math tagger. We convert a test data subset of 4,078 semantic
LaTEX DLMF formulae extracted from the DLMF to the native CAS
representation and then apply an automated scheme for symbolic and
numerical testing and verification. Our framework is implemented using
Java and MAPLE. We describe in detail the conversion process which
is required so that the CAS is able to correctly interpret the mathe-
matical representation of the formulae. We describe the improvement of
the effectiveness of our automated scheme through incremental enhance-
ment (making more precise) of the mathematical semantic markup for
the formulae.

1 Problem and Current State

The National Institute of Standards and Technology (NIST) Digital Library of
Mathematical Functions [1] (DLMF) is an online digital mathematics library
which focuses on special functions and orthogonal polynomials. The DLMF is
special in that it has been written like a book, but is published online as a digital
resource. The DLMF contains a table of contents which links to specific chapters
(See Table 1 for a summary of the 36 DLMF Chapters) each of which has been
written and edited by mathematicians who are experts in their specific field of
focus. Furthermore, the DLMF is constantly being maintained (edited, corrected,
updated) by a team of mathematicians, physicists and computer scientists who

This is a U.S. government work and its text is not subject to copyright protection
in the United States; however, its text may be subject to foreign copyright protection 2018
F. Rabe et al. (Eds.): CICM 2018, LNAI 11006, pp. 39–52, 2018.
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are determined to maintain and preserve the high standard of mathematical
accuracy and exposition.

The DLMF has been developed in such a way that mathematical metadata
is constantly being improved and restructured. For the organizational structure,
semantic metadata has been incorporated at the document, chapter, section,
subsection, and paragraph levels. An effort has been made to make more precise
the nature of the objects which appear in the DLMF. The DLMF’s semantic
realization of mathematical content, has very much in common with the way
mathematics is written using LaTEX, for the preparation of journal publications
and actual physical books. In fact, for the construction of the DLMF, Bruce
Miller has developed and actively maintains LATExml [2], a program which is
able to process a certain flavor of LaTEX and from it, generate a fully functional
website. We refer to this flavor of LaTEX as semantic LaTEX. The website is then
generated using LATExml, from a collection of semantic LaTEX source documents,
and from other documents including Cascading Style Sheets (CSS), WebGL
(Web Graphics Library) controls, Mathematical Markup Language (MathML),
LaTEX style files, LATExml binding files (LATExml analogue of a style or class file),
Java, Javascript, etc. (see for instance [3]). The outcome is a highly sophisticated
digital platform for accessing mathematical content on the web.

One main difference between LaTEX and semantic LaTEX, is the latter’s abil-
ity to encapsulate mathematical knowledge in such a way that it can then be
extracted by a computer program, namely LATExml, to generate correctly for-
matted MathML (and other programs [4]). LATExml is then able to interpret the
content written in semantic LaTEX in order to generate presentation (and con-
tent) MathML. This is then used to construct the DLMF website and to, for
instance, display metadata associated with the mathematical content. The math-
ematical semantic contents of the DLMF includes mathematics which appears
within the main body of the text, formulae (in various formulae environments),
tables (in which mathematics is displayed in a tabular environment), figures (in
which mathematics is visualized), operators, functions/symbols, variables (see
[5] for a nice description), etc.

Even though there currently exist software to convert LaTEX expressions into
Computer Algebra System (CAS) formats, these in practice are only really effec-
tive if one is dealing with elementary functions defined in terms of compositions
of powers-laws, sums, differences, products, quotients, trigonometric/hyperbolic
functions, and exponential/logarithmic functions. If one is dealing with more
complicated special functions like Bessel functions, hypergeometric functions,
Airy functions, elliptic integrals, elliptic functions, etc., then effective conver-
sion software from LaTEX to CAS really do not exist, and our implementa-
tion described below is the first to be able to handle situations such as these.
Also, several differences in CAS vs. DLMF implementations must be captured
in any effective translation, including: (1) the usage of m = k2 for elliptic
integrals/functions; (2) branch cuts for Legendre/Ferrers functions (and other
functions); and (3) differences in normalizations of special functions. If one is
unable to capture these subtleties in a translation process for the DLMF, which
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require careful and detailed mathematical knowledge and implementation, then
the translation will fail.

In a previous paper [6], we described the conversion process we have devel-
oped to input semantic LaTEX and output a corresponding MAPLE1 CAS repre-
sentation. Not surprisingly, this conversion is continually in development. New
ideas are being implemented in order to increase the semantic enhancement of
the original source (see for instance [7]), as well as to improve the effectiveness
of our conversion software. In order to do this, we are also contributing in order
to assist in the development of the part-of-math (POM) tagger [5], which our
conversion program relies upon.

In this paper, we describe the process of extracting mathematical formu-
lae from the DLMF, and then take advantage of the powerful mathematical
semantic coverage of semantic LaTEX used in the DLMF to convert to CAS rep-
resentations whose sole purpose is to drive an automated scheme for verification
of DLMF formulae. In order to improve the precision of our DLMF formulae
testing reported on in [6], we did the following: (1) updated our test formulae
dataset; (2) fixed numerous translation bugs; (3) implemented a new method for
handling constraints; and (4) added configuration files which make it easier to
change the setup of our symbolic and numerical testing.

2 Extraction of DLMF Formulae

2.1 First Extraction Scan

In the first extraction scan, we extract mathematical formulae from 36 LaTEX
source files which summarize the content of the 36 DLMF chapters. DLMF
formulae are extracted out of formula environments, which are (some custom)
{equation}, {equationmix}, {equationgroup}, {align}. Each formula
in the output text file, is represented in semantic LaTEX, as a single string on
one line of the output text file. In order to accomplish this, all lines of the
source LaTEX file are merged, except the following character strings are removed:
comments; space (and other) formatting commands (such as \, (used to insert
a small horizontal space), \! (used to remove horizontal space), \\[..] (used
to introduce line breaks), & (used for alignment purposes), \* (used to force
line breaking on multiplication), etc.); \MarkNotation, \origref, \note,
\lxRefDeclaration, \index, \source, \authorproof.

Along with the semantic LaTEX source for the formula, we also extract two
pieces of metadata associated with that formula, a \constraint environment,
and also a \label environment. The \constraint and \label environments

1 The mention of specific products, trademarks, or brand names is for purposes of iden-
tification only. Such mention is not to be interpreted in any way as an endorsement
or certification of such products or brands by the National Institute of Standards
and Technology, nor does it imply that the products so identified are necessarily
the best available for the purpose. All trademarks mentioned herein belong to their
respective owners.
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Table 1. Summary of DLMF chapters (Version 1.0.13, 2016-09-16, see Sect. 2.1) with
corresponding 2-letter codes (2C), chapters numbers (C#), chapter names of the DLMF
chapters, chapter formulas extracted from the first extraction scan (F1), and second
extraction scan (F2).

contain any constraints and LaTEX labels which have been directly associated
with the formula within the semantic LaTEX formula environment in which it was
extracted. If more than one formula is associated with a \label environment,
we inherit that \label to all of those formulae.

There are also certain LaTEX commands or replacement macros which
are specifically defined in the premable of certain chapter source files (e.g.,
\newcommand{\eptipm}[1]{\expê {\pm2 \pi i\#1}} which occur in 65
separate lines). These are replaced in order for our translator to be able to
correctly understand the corresponding derived semantic LaTEX (e.g., in Chap-
ters AI, CH the entity \gamma is replaced with the macro \EulerConstant
[1, (5.2.3)]2; in Chapters JA, MA, LA, EL, the entities K and are replaced
with the semantic macros \CompEllIntKk@@{k} and \CompEllIntKk@@{k}
respectively3, etc.). See Table 1 for a description of the DLMF chapter codes. An

2 The macro \EulerConstant is just one of many (currently unpublished) semantic
DLMF LaTEX semantic macros which have been developed by Bruce Miller for uti-
lization in the DLMF. In fact, the macro names used in this manuscript, have been
more recently updated. However, the macro set we are utilizing, is for those in usage
as of 9/16/2016.

3 These semantic macros represent the complete and complementary elliptic integrals
of the first kind [1, (19.2.8-9)].
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attempt is made to remove punctuation marks at the end of each formula since
these are really not a part of the formula itself. One final time consuming task is
the conversion, wherever required, for the replacement of the entities i, e, and
the LaTEX command \pi to the semantic macros \iunit, \expe, and \cpi4.
The result of this first round is to extract 9,919 formulae from the DLMF (see
the F1 entries in Table 1 for a chapter specific description of this).

2.2 Second Extraction Scan

In a second round of post processing, a subset of formulae are culled from the
first extraction scan (described in the previous section). The formulae which are
removed are those which contain the following LaTEX commands \sum, \int,
\prod, \lim, \dots (including all variants), \sim, or the semantic macros
\BigO, \littleo, \fDiff, \bDiff, \cDiff, \asymp, or the environm-
nents {cases}, {array}, {bmatrix}, {vmatrix}, {Bmatrix}, {pmatrix},
{Matrix}, {Lattice}. This is because either our CAS translator is unable to
translate these effectively, or the CAS is unable to verify mathematical objects
such as these. See Sect. 2.3 below, for ongoing strategies for handling formulae
which fall into these categories. Once these strategies are fully implemented,
then we will no longer need to cull formulae such as these.

We have also utilized a new semantically enhanced macro \Wron for 72,
two-argument Wronskian relations [1, (1.13.4)], so that the variable which is
differentiated against is precisely specified in an updated macro call. In fact,
we have continued to develop many new semantically enhanced LaTEX macros
(such as \Wron) which are not in use in the DLMF, but are in use for the NIST
Digital Repository of Mathematical Formulae (see [8] for more details about
this). We also split equations with multiple equal = signs (e.g., a = b = c is
split into two formulae a = b and a = c). Furthermore, we split environments
which contain \pm (plus or minus) and \mp (minus or plus) commands into two
separate formulae, each with their correct sign. We also remove mathematical
expressions, which do not contain any of the relation commands =, <, >, \ne,
\le, \ge, \to, \equiv, since their non-existence implies that there is no logical
component for the mathematical expression to be verified against. The result of
this second round is to extract 4,078 formulae from the DLMF (see the F2 entries
in Table 1 for a chapter specific description of this).

2.3 Ongoing Semantic Enhancement for Second Extraction Scan

As mentioned above, we are currently not able to convert LaTEX commands such
as \sum, \int, \prod, \lim, which represent sums, integrals, products and
limits, respectively. In this case, one draws (presentation) subscripts and super-
scripts in order to provide critical semantic information for these mathematical

4 These semantic macros represent the mathematical constants i, e and π [1, (1.9.1),
(4.2.11), (3.12.1)].
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operators. In this case, there is no certainty in the specificity of the mathematical
operation.

Another notation in which semantic capture is challenged, is with the prime
(e.g., f ′, double prime (e.g., f ′′), triple prime (e.g., f ′′′) or superscript paren-
thetical (e.g., f (iv)) notations for differentiation a given number of times. This is
the same issue that was encountered previously with the Wronskian relation. In
order for a CAS to be able to translate expressions such as these, we must pro-
vide the variable that one is differentiating with respect to. This is an example
where a human is often able to read a formula, and by knowing the context, be
able to surmise what the variable is that one is differentiating with respect to.
Sometimes there is more than one variable in an expression that one is differenti-
ating with respect to, and if one does not provide the variable, then a translator
is unable to disambiguate the expression. It is interesting to note that we were
able to enhance the semantics of 74 Wronskian relations by rewriting the macro
so that it included the variable that derivatives are taken with respect to as a
parameter. A similar semantic enhancement is possible for another 284 formulae
where the potentially ambiguous prime notation ‘’ is used for derivatives.

The powerful tool used by the DLMF, LATExml, is often able to guess a syntax
tree when the LaTEX commands \sum, \int, \prod, and \lim are used. This
is due to, for instance, the utilization of the semantic LaTEX \diff macro for
integrals. This is quite effective, since it makes available the variable that one is
integrating with respect to. For instance, one may mark up a definite integral
such as ∫ b

a

f(x, y)dx.

by using semantic LaTEX as follows \int {a}̂ {b} f(x,y) \diff{x}, which
provides the variable of integration x. This information is essential for disam-
biguation of the integration variable, and therefore for converting the definite
integral to a CAS representation. Such content is not always easily accessible.
For instance, one is still unable to easily guess the variable of differentiation
when prime (etc.) notations for derivatives are used. One is able to facilitate the
extraction of semantic content in formulae which contain mathematical LaTEX
such as described above, by making the semantic content more easily available.
We would like to see this type of semantic content made more fully available for
translators, and this is an ongoing effort.

It is possible to incrementally enhance mathematical semantic expressions
through optimization and broader usage and development of semantic LaTEX
macros. Take for instance the formula with the label {eq:OP.CP.SV.LR.1a}
[1, (18.8.21)], given by

\lim_{\beta\to\infty}\JacobiP{\alpha}{\beta}{n}@{1-(\ifrac{2x}\beta)}}
=\LaguerreL[\alpha]{n}@{x}.

In this example, our semantic enhancement process is made more effective by
developing and utilizing a new mathematical semantic LaTEX macro with sepa-
rate parameters and arguments (before and after the @ sign respectively) which
is described as



Automated Symbolic and Numerical Testing of DLMF Formulae 45

\Lim{#1}{#2}@{#3} := lim
#1→#2

#3.

Here the first parameter of the macro call #1 is the variable the limit is taken
over, the second parameter of the macro call #2 is the destination of the limit for
#1, and the argument #3, is the expression that the limit is taken over. Utilizing
this new macro, the above formula is then written with enhanced semantics as:

\Lim{\beta}{\infty}@{\JacobiP{\alpha}{\beta}{n}@{1-(\ifrac{2x}\beta)}}
=\LaguerreL[\alpha]{n}@{x}.

This new formula will have identical presentation to the previous formula, and
the semantics are more easily extracted (using for instance, the POM tagger). We
have also developed semantic macros for sums, products, definite (or indefinite)
integrals, as well as for antiderivatives, namely

\Sum{#1}{#2}{#3}@{#4} :=

#3∑

#1=#2

#4, \Prod{#1}{#2}{#3}@{#4} :=

#3∏

#1=#2

#4,

\Int{#1}{#2}@{#3}{#4} :=

∫ #2

#1
#4d#3, \Antider@{#1}{#2} :=

∫
#2d#1.

The incorporation of these semantic macros into semantic LaTEX facilitates the
translation of the mathematical LaTEX source expression to a CAS representa-
tion. It therefore improves ones ability to automate injection of the mathematical
content into CAS.

There often exists alternate usage of mathematical notations. For example,
one often writes for a sum, ∑

n∈A

f(n),

where A is some subset of the integers. It is not difficult to customize the macro
definitions to be capable of dealing with such notations, assuming that one has
a precise description of A.

3 CAS Verification Procedure for DLMF Formulae

We translate the semantic LaTEX for our test dataset of DLMF formulae to
MAPLE CAS representation, using the tool described in [6]. We use easily con-
figurable settings to control our verifications. Using the configuration files, we
can control and customize settings for the verification process. For instance, if
we want to perform numerical evaluations on differences or divisions, or even for
more complex expressions of the left-hand sides and right-hand sides of DLMF
formulae.
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3.1 Symbolic Verification of DLMF Formulae

Originally, we used the standalone MAPLE simplify function directly, to sym-
bolically simplify translated formulae. See [9–12] for other examples of where
MAPLE and other CAS simplification procedures have been used elsewhere in
the literature. Symbolic simplification is performed either on the difference or
the division of the left-hand sides and the right-hand sides of extracted formulae.
Thus the expected outcome should be respectively either a 0 or 1. Note that
other outcomes, such as other numerical outcomes, are particularly interesting,
since these may be an indication of errors in the formulae.

In MAPLE, symbolic simplifications are made using internally stored rela-
tions to other functions. If a simplification is available, then in practice, it
often has to be performed over multiple defined relevant relations. Often, this
process fails and MAPLE is unable to simplify the said expression. We have
adopted some techniques which assist MAPLE in this process. For example, by
forcing an expression to be converted into another specific representation, in
a pre-processing step, could potentially improve the odds that MAPLE is able
to recognize a possible simplification. By trial-and-error, we discovered (and
implemented) the following pre-processing steps which significantly improve the
simplification process:

– conversion to exponential representation;
– conversion to hypergeometric representation;
– expansion of expressions (for example (x+y)̂ 2); and
– combined expansion and conversion processes.

3.2 Constraint Handling

Correct assumptions about variable domains are essential for CAS systems, and
not surprisingly lead to significant improvements in the CAS ability to simplify.
The DLMF provides constraint (variable domain) metadata for formulae, and
as mentioned in Sect. 2.1, we have extracted this formula metadata. We have
incorporated these constraints as assumptions for the simplification process. Note
however, that a direct translation of the constraint metadata is usually not
sufficient for a CAS to be able to understand it. Furthermore, testing invalid
values for numerical tests returns incorrect results.

For instance different symbols must be interpreted differently depending on
the usage. One must be able to interpret correctly certain notations of this kind.
For example, one must be able to interpret the command a,b\in A, which
indicates that both variables a and b are elements of the set A (or more generally
a 1,\dots,a n\in A). Similar conventions are often used for variables being
elements of other sets such as the sets of rational, real or complex numbers, or
for subsets of those sets.

Also, one must be able to interpret the constraints as variables in sets defined
using an equals notation such as n=0,1,2,\dots, which indicates that the vari-
able n is a integer greater than or equal to zero, or together n,m=0,1,2,\dots,
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both the variables n and m are elements of this set. Since mathematicians
who write LaTEX are often casual about expressions such as these, one should
know that 0,1,2,\dots is the same as 0,1,\dots. Consistently, one must
also be able to correctly interpret infinite sets (represented as strings) such as
=1,2,\dots, =1,2,3,\dots, =-1,0,1,2,\dots, =0,2,4,\dots, or even
=3,7,11,\dots, or =5,9,13,\dots. One must also be able to interpret finite
sets such as =1,2, =1,2,3, or =1,2,\dots,N.

An entire language of translation of mathematical notation must be under-
stood in order for CAS to be able to understand constraints. In mathematics, the
syntax of constraints is often very compact and contains textual explanations.
Translating constraints from LaTEX to CAS is a complicated task because CAS
only allow precise and strict syntax formats. For example, the typical constraint
0 < x < 1 is invalid if directly translated to MAPLE, because it would need to
be translated to two separate constraints, namely x > 0 and x < 1.

We have improved the handling and translation of variable con-
straints/assumptions for simplification and numerical evaluation. Adding
assumptions about the constrained variables improves the effectiveness of
MAPLE’s simplify function. Our previous approach for constraint handling
for numerical tests was to extract a pre-defined set of test values and to fil-
ter invalid values according to the constraints. Because of this strategy, there
often was no longer any valid values remaining after the filtering. To overcome
this issue, instead, we chose a single numerical value for a variable that appears
in a pre-defined constraint. For example, if a test case contains the constraint
0 < x < 1, we chose x = 1

2 .
A naive approach for this strategy, is to apply regular expressions to identify a

match between a constraint and a rule. However, we believed that this approach
does not scale well when it comes to more and more pre-defined rules and more
complex constraints. Hence, we used the POM tagger to create blueprints of the
parse trees for pre-defined rules. For the example LaTEX constraint $0<x<1$,
rendered as 0 < x < 1, our textual rule is given by

0 < var < 1 ==> 1/2.

The parse tree for this blueprint constraint contains five tokens, where var is
an alphanumerical token that is considered to be a placeholder for a variable.

We can also distinguish multiple variables by adding an index to the
placeholder. For example, the rule we generated for the mathematical LaTEX
constraint $x,y \in \Real$, where \Real is the semantic macro which
represents the set of real numbers, and rendered as x, y ∈ R, is given by
var1, var2 \in \Real ==> 3/2,3/2.

A constraint will match one of the blueprints if the number, the ordering,
and the type of the tokens are equal. Allowed matching tokens for the variable
placeholders are Latin or Greek letters and alphanumerical tokens.
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3.3 Numerical Verification of DLMF Formulae

Due to the fact that CAS simplification verification is not extremely effective, we
also used our CAS translation to perform numerical testing as well. To perform
automated numerical evaluations, we extracted all variables from the expression.
Variables are extracted by identifying all names [13]5 from an expression. This
will also extract constants which need to be deleted from the list first. After-
wards, we set each variable to a specific numerical value and numerically evaluate
the expression. One is given the capability to choose the numerical values of the
given variables as either complex numbers, real numbers, or even as integers.
Given this typing of variables, we also check the values to ensure that they are
subject to the constraints (see Sect. 3.2 above). We allow for the definition of
a set of numerical values for variables that we want to verify, and for multiple
variable choices. The power-set of these choices is looped over (we evaluate all
combinations of variable-value pairs). We consider an evaluation to be successful
if the outcome is below a given threshold (currently set at 0.001) compared
with a certain precision (currently set at 10).

4 Summary

We have created a test dataset6 of 4,078 semantic LaTEX formulae, extracted from
the DLMF. We translated each test case to a representation in MAPLE and used
MAPLE’s simplify function on the formula difference to verify that the trans-
lated formulae remain valid. Our forward translation tool (Sect. 2) was able to
translate 2,405 (approx. 59%) test cases. Most likely, a translation failed because
it encountered a DLMF/DRMF semantic macro without a known translation to
MAPLE (1,021 of non-translated cases, approx. 61%). An example of such a
non-supported macros is the (basic) q-hypergeometric function [1, (17.4.1)]. In
other cases, translation of expressions failed because they contained insufficient
semantic information, such as when the prime and superscript notations for
derivatives are used (Sect. 2.3), or encountered assorted errors in the translation
engine. Such assorted errors include unimplemented grammar mappings from the
POM tagger such as handling subsuperscript outputs or overlining expressions
for complex conjugations.

We applied our symbolic verification techniques to the 2,405 translated
expressions. The proposed simplification was able to verify 481 of these expres-
sions (20%). Pre-conversion improved the effectiveness of simplify and was
used to convert the translated expression to a different form before simplification
of the formula difference. We used conversions to exponential and hypergeomet-
ric form and expanded the translated expression. Those pre-processed manipula-
tions increased the number of formulae verified from 481 to 660 (approx. 27.4%).

5 A name in MAPLE is a sequence of one or more characters that uniquely identifies
a command, file, variable, or other entity.

6 This dataset is available on request to the authors.
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The remaining 1,745 test cases were translated but not verified. Note that ver-
ification should also fail because either expression would not contain a logical
relation and therefore are unverifiable (Sect. 2.2), but these are filtered out in a
pre-processing step, or that the CAS is not yet sophisticated enough to verify
(such as in the case of asymptotic representations).

We have also applied several numerical tests to these remaining test cases
(Sect. 3.3). The results of the numerical tests strongly depend on the tested
values. Besides the defined numerical values for general tests, we applied special
values for certain constraints. This was realized by our new approach of applying
rules for blueprints of common constraints (Sect. 3.2). In automated evaluations,
we performed numerical tests by setting variables in test expressions to values
contained in the set {−0.5, 0.5, 1.5}. In the cases where the tested expression
is an equation, we tested the difference between the left- and the right-hand
sides of the equations. For other relations, we tested if the relation still remains
for the calculated numerical values. With this set of the three values and the
set of special values depending on additional constraints, 418 of the remaining
unverified test cases return a valid output (approx. 24%). Because they exceeded
our pre-defined time-limit of 300 seconds, 14 numerical tests stopped. In 892
cases (approx. 51.1%), the calculated values were above our given threshold of
0.001. Note that numerical verifications may fail because of one of four reasons:

1. the numerical engine tests invalid combinations of values;
2. the translation is incorrect;
3. there may be an error in the DLMF source; or
4. there may be an error in MAPLE.

Typical originations for reason 1 are errors produced in the translations of
constraints (Sect. 3.2), and may prevent the numerical test engine from using
valid numerical values for evaluation. Another typical problem is missing infor-
mation from context, such as if a variable was pre-defined by substitution, but
the test case misses this information. For example, [1, (9.6.1)] defines ζ = 2

3z3/2.
The following equations are only valid considering the pre-defined numerical
value for ζ. Furthermore, this equation is a definition of ζ. If we test this equa-
tion by simplifications or numerical evaluations, we get invalid results. We call
such failed numerical evaluations by reason 1, false positives, since they were
marked as particularly interesting cases (for reasons 2–4) but they were caused
by missing semantic information originating from the source. It seems that the
number of false positive results is very high and plan to reduce this in the future.

Table 2 gives an overview of the symbolic and numerical testing for each
DLMF chapter. The overview of translations (T) per chapter reveals the weak-
ness of our translation engine especially in the Chapters 17 (QH) and 34 (TJ). A
high ratio of symbolically verified and translated formulae indicates a large suc-
cess rate for translating macros into MAPLE functions. This is one explanation
for the fact that our best result comes from Chapter 4 EF.
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Table 2. Overview of symbolic and numerical testing for each DLMF chapter with
the corresponding DLMF chapter 2-letter codes (2C), chapters numbers (C#), num-
ber of extracted expressions of the second extraction scan (F2), number of translated
expressions (T) with approximated percentages, number of translated and symboli-
cally verified cases (TVs) with approximated percentages, and number of translated
cases where the numerical evaluations returned valid outputs for the set of test values
{−0.5, 0.5, 1.5} (TVn) with approximated percentages (excluding the number of sym-
bolically verified translations). The best results of each technique are highlighted in
bold.

Originally, the verification rules were developed to identify errors in the trans-
lation engine, see reason 2. However, further investigations of the 892 cases
reveals a sign error in the DLMF (reason 3), and this corresponded to [1,
(14.5.14)], namely

Q−1/2
ν (cos θ) =

( π

2 sin θ

)1/2 cos((ν + 1
2 )θ)

ν + 1
2

,

where Qμ
ν is the Ferrers function of the second kind. This error can be found on

[14, p. 359], and was reported in DLMF Version 1.0.16 on September 18, 2017.
Other cases where formulae seem to be unverified by numerical tests are for
DLMF formulas which are valid on Riemann surfaces, but fail because MAPLE
uses specific choices of branch values (reason 4). Using our constraint blueprints
we were able to identify when a constraint does not match the set of rules. In
fact, our constraint handling identified a missing comma after the −2 in the
constraint of [1, (10.16.7)], originally printed as 2ν = −1,−2 − 3, . . .. This error
can be found on [14, p. 228], and was repaired in the DLMF Version 1.0.19 of
2018-06-22.
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We are planning to extend the blueprint approach to solve the more general
problem of translating constraints to CAS. We continue to update our checking
procedure in search of more DLMF and MAPLE errors/inconsistencies, and are
constantly improving the translation engine.
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Abstract. The “Concrete Semantics” book gives an introduction to
imperative programming languages accompanied by an Isabelle/HOL
formalization. In this paper we discuss a re-formalization of the book
using the Coq proof assistant (version 8.7.2). In order to achieve a sim-
ilar brevity of the formal text we extensively use CoqHammer, as well
as Coq Ltac-level automation. We compare the formalization efficiency,
compactness, and the readability of the proof scripts originating from a
Coq re-formalization of two chapters from the book.

1 Introduction

Formal proofs allow today most precise descriptions and specifications of com-
puter systems and programs. Such precision is very important both for human
learning and for machine knowledge management. Formalization accompanied
courses allow students to investigate the topic to an arbitrary level of detail, and
naturally offer very precise exercises of the topic [7]. Formalization attached to
mathematical knowledge allows algorithms to the knowledge semantically and
permits learning machine translation to, from, and between datasets [5]. This
becomes even more important with multi-translation, where the availability of
the same text in multiple languages improves the computer-understanding and
ability to translate between each two [4].

In this short paper we translate parts of the Concrete Semantics book by
Nipkow and Klein to Coq. To do so, we improve the CoqHammer1 [9] automa-
tion to be able to handle the more advanced use-cases, improve the legibility of
the reconstructed proofs and compare the proof style and other differences in
between the two. The project is in some ways similar to the “Certified Program-
ming with Dependent Types” book [2], however we attempt to avoid dependent
types and more advanced constructions to build both an easier material for stu-
dents and a more precise dataset for bootstrapping an automated translation
between proof corpora in the style of [5].

1 Release: https://github.com/lukaszcz/coqhammer/releases/tag/v1.0.8-coq8.7

c© Springer International Publishing AG, part of Springer Nature 2018
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2 Concrete Semantics with Isabelle/HOL

The Concrete Semantics book [7] by Nipkow and Klein is made of two parts.
The first part introduces how to write functional programs, inductive definitions
and how to reason about their properties in Isabelle/HOL’s structured proof
language. While the second part is devoted to formal semantics of programming
languages using the “small” imperative IMP2 language as the instance. This part
more concretely examines several topics in a wide range varying from opera-
tional semantics, compiler correctness to Hoare Logic. The proofs presented in
this part are not given in Isabelle/HOL’s structured language. However, such a
formalization accompanies the paper proofs via the provided links usually given
in section beginnings.

In this work we attempt to reformalize in Coq some subset of the
Isabelle/HOL theories that accompanies the second part of the book. As illus-
trated in Sect. 4, we aim at catching the same level of automation in Coq thus
approximating the proof texts to the original ones in terms of length. To do so,
we use automated reasoning techniques discussed in Sect. 3.

3 Coq and Coq Automation

The Coq proof assistant is based on the Calculus of Inductive Constructions. The
main difference from proof assistants based on higher-order logic is the presence
of dependent types. Coq also features a rich tactic language Ltac, which allows
to write specialised proof automation tactics. Some standard automation tactics
already available in Coq are:

– intuition: implements a decision procedure for intuitionistic propositional
calculus based on the contraction-free sequent calculi LJT* of Roy Dyckhoff.

– firstorder: extends intuition to a proof search tactic for first-order intu-
itionistic logic.

– auto and eauto: implement a Prolog-like backward proof search procedure.

The CoqHammer [3,9] plugin extends Coq automation by a number of
other useful and generally more powerful tactics similarly to that available in
Isabelle [1]. Its main tactic hammer combines machine learning and automated
reasoning techniques to discharge goals automatically. It works in three phases:

1. Premise selection uses machine learning techniques to choose a subset of
the accessible lemmas that are likely useful for the goal.

2. Translation of the goal and the preselected lemmas to the input formats
of first-order automated theorem provers (ATPs) such as Vampire [6] or
Eprover [8], and running the ATPs on the translations.

2 IMP is a standard Turing complete imperative language involving the mutable global
state as a computational side effect. The reason why this language has been selected
is just that it has enough expressive power to be Turing complete.
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3. Reconstruction uses the information obtained from a successful ATP run to
re-prove the goal in the logic of Coq. Upon success the hammer tactic should
be replaced with the reconstruction tactic displayed in the response window.
The success of the reconstruction tactic does not depend on any time limits
nor external ATPs, therefore it is machine-independent.

The CoqHammer tool provides various reconstruction tactics. Among others,
the tactics hobvious and hsimple perform proof search via the yelles tactic
(see the last item below) using the information returned from the successful ATP
runs after a constant unfolding and hypothesis simplification. Also, CoqHammer
comes with tactics written entirely in Ltac. These tactics do not depend on any
external tool, and are not informed about available lemmas in the context:

– sauto – a “super” version of the standard Coq tactics auto and intuition.
It tries to simplify the goal and possibly solve it without performing much of
actual proof search beyond what intuition already does. It is designed in
such a way as to terminate in a short time in most circumstances. One can
customize it by adding rewrite hints to the yhints database.

– scrush – essentially a combination of sauto and ycrush. The ycrush tac-
tic tries various heuristics and performs some limited proof search. Usually
stronger than sauto, but may take a long time if it cannot find a proof. In
contrast to sauto, ycrush does not perform rewriting using the hints in the
yhints database. One commonly uses ycrush after sauto.

– yelles n – performs proof search up to depth n; slow for n larger than 3–4.

4 Case Studies

In this section, we illustrate a set of goals that are discharged using the Coq
automation techniques, presented in Sect. 3, together with a comparison to their
original versions, in an Isabelle/HOL formalization, as presented in the Concrete
Semantics book. Notice that the examples in this section are given broadly, with
no background details. The point to emphasize here is that we can actually
achieve a similar brevity of the formal text in terms of proof lengths using proof
automation in Coq. The examples are given in code snippets that have Coq text
on the left and Isabelle/HOL text on the right side of the minipages.

Note also that we translated thelemma statements into Coq directly from
Isabelle/HOL theory files, and proved them using mostly the standard tactics
coming with CoqHammer, with only minimal use of more sophisticated custom
Ltac tactics, and practically no hints from Coq hint databases. Therefore the
translation is not quite automatic but fairly straightforward.

The example given in the below code snippet comes from the Hoare Logic.
Leaving the technical details aside, it basically says that a precondition {P} of
some Hoare triple can be strengthened into {P’} if {P’} entails {P}. This is
actually one of the corollaries of the consequence (called conseq in our Coq
formalization) rule of Hoare Logic. Notice that, in this snippet, hoaret is the
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Coq inductive predicate representing Hoare triples which corresponds to the
notation “�t” on Isabelle/HOL side.

Upon a call, the CoqHammer tool gets a proof returned by one of the
employed ATPs, and discharges the goal using its reconstruction tactic hobvious
parametrized with the empty set of hypotheses from the goal context, the rule
conseq and the definition entails. Indeed, this is very similar to what happens
in Isabelle/HOL proof of the same fact. The proof is simply made of a call to
the metis tactic with the conseq rule as the argument.

Another but slightly more complicated example that stems from the Hoare
Logic (using the same notation as the previous one) is given in the below code
snippet. This lemma is a version of the partial correctness of the while rule
enriched with a measure function f which is supposed to decrease in each loop
iteration so as to guarantee the loop termination.

The Coq proof is found by the Ltac implemented tactic yelles which per-
forms a proof search until a user specified depth has been reached. In our concrete
example, we give it some guidance by using the primitive Coq tactic pose with
while and conseq rules as arguments, adding them to the context (or simply
generalizing them), together with unfolding the definition of entails. This way,
the tactic finds a proof at the proof search depth 3. Isabelle/HOL proof of the
same statement follows similar lines. It uses a simplification of the while rule
with the measure function being λs n. n = f s. Just notice that our Coq tactic
yelles is clever enough on this goal to find the measure function automatically.

A third example is about semantics of the IMP language. The lemma shown in
the below snippet states that one can deduce the big-step semantics of any termi-
nating IMP program from its small-step semantics. Observe that, in this snippet,
the Coq notations “=⇒” and “−→ *” respectively represent the inductive pred-
icates for the (transitive closure of) IMP big-step and small-step semantics. The
single difference on Isabelle/HOL side is that we have “⇒” standing for big-step
semantics.
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The Coq proof of this lemma proceeds by an induction on the (transitive clo-
sure of) small-step semantics after introducing an helper statement (asserted by
the pure Coq tactic enough and proven by the Ltac tactic scrush) into the goal
context. Then, it calls the Ltac tactic sauto to do some preprocessing for the
CoqHammer call. The base case p = (Skip, s) is trivially solved by sauto. For
the inductive case, namely ∀s, p′ = (Skip, s) → p′ ==> s, we call CoqHammer
and get the goal solved by an application of the reconstruction tactic hsimple
which uses all hypotheses in the goal context (that’s why we introduce a new
one at the beginning) and the helper lemma called lem small1 big continue
with no definitions unfolded. This is again very similar to the Isabelle/HOL
proof of the fact in hand. The proof uses the induction principle on the transi-
tive closure of the small-step IMP semantics and then applies the helper lemma
lem small1 big continue. Below we give three more examples that we think
interesting in the sense that all cases appear on Coq side are discharged fully
automatically. And the text size is fairly close to the one of Isabelle/HOL.

The main lemma exec eq exec n, using the other two above, is broadly about
the symbolic compilation of IMP programs into a low level language based on a
stack machine. It specifically says that one can speak about the n step instruction
executions instead of reflexive transitive closure of single step executions. Note
that the Coq predicates exec n and exec are respectively standing for n step
instruction, and transitive closure of single step instruction. These are denoted
as “ � → ∗ ” and “ � →∧ n ” in Isabelle/HOL text respectively. The Coq
proof from left to right (exec n exec) of the equivalence is based on an induction
over n and the other direction (exec exec n) is based on an induction over
transitive closure of single step executions. The base cases of both induction
steps are trivially solved by the tactic scrush. The inductive case of the former
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proof is a CoqHammer call which discharges the goal using the reconstruction
tactic hobvious. It uses two hypotheses (H and the induction hypothesis IHn)
from the goal context with the lemma called star step (coming from Star.v),
and the definition exec. The inductive case of the latter is just made of an
scrush application with a guide reminding that the goal is a variant of the
lemma exec Suc.

Again, these proofs follow very similar lines with those of Isabelle/HOL of
the same facts. The proof of exec n exec induces on n and uses the definition
star step to discarge the goal. Similarly, exec exec n is proven by an induction
on the transitive closure of single step executions followed by the application of
the exec Suc fact.

5 Conclusion

We have reproven 101 lemmas from the Isabelle/HOL theories Star, AExp, BExp,
ASM, Com, Big Step, Hoare, Small Step, Compiler and Compiler2 in Coq; heav-
ily using the automation techniques described in previous sections.

# of lines # of words # of tactics # of hammer calls Time(secs)

Isabelle/HOL 2806 11278 544 Not verifiable 31

Coq 3493 19292 1190 468 149

As shown in the above table, the number of Coq tactics we used to get the same
lemmas proven is almost twice in number, as opposed to Isabelle/HOL, but
about half of which benefits from the automation techniques that CoqHammer
comes with. This can be seen as an improvement given that the Isabelle/HOL
tactics are more compound than the “simple” Coq tactics.

The coqc 8.7.2 needs 149 s to compile the translated source and Isabelle
2017 needs 31 s to build the corresponding theories on an Intel Core i7-7600U
machine. We attribute the difference mostly to the fact that all used Isabelle
tactics are written in ML, while most Coq ones use Ltac.

We plan to build on this work by proving more lemmas coming from different
theories of the book and by improving the level of automation, thus decreasing
the number of words, in the already proven goals. Please see:

https://github.com/lukaszcz/COQ-IMP
for the proofs done so far.
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Abstract. We present two approaches to symbolically obtain isoptic
curves in the dynamic geometry software GeoGebra in an automated,
interactive process. Both methods are based on computing implicit locus
equations, by using algebraization of the geometric setup and elimina-
tion of the intermediate variables. These methods can be considered as
automatic discovery.

Our first approach uses pure computer algebra support of GeoGebra,
utilizing symbolic differentiation of the input formula. Due to computa-
tional challenges we limit here our observations to quartic curves. The
second approach hides all details in computer algebra from the user, that
is, the input problem can be defined by a purely geometric way, consider-
ing a conic, a circle being given by its center and radius, and a parabola
by the pair focus-directrix, for instance. The results are, however, not
new, the novelty being is the way we obtain them, as a handy method
for a new kind of man and machine communication. Both approaches
deliver an algebraic output, namely, a polynomial and its graphical rep-
resentation. The output is dynamically changed when using a slider bar.
In this sense, dynamic study of isoptics can be introduced in a new way.

The internal GeoGebra computations, partly programmed by the
authors, is an on-going work with various challenges in properly formu-
lating systems of equations, in particular, to optimize computations and
to avoid unnecessary extra curves in the output. Our paper highlights
some of these challenges as well.

1 Introduction

In this paper we study isoptic curves of conics and quartics, using the abilities
of GeoGebra, a free dynamic geometry software program (see http://geogebra.
org). In particular, we demonstrate its capabilities on obtaining isoptic curves
with two substantially different approaches. Both methods require advanced
computer algebra algorithms, namely, effective computation of an elimination
ideal. This feature is implemented by the embedded Computer Algebra System
(CAS) Giac [13].
c© Springer International Publishing AG, part of Springer Nature 2018
F. Rabe et al. (Eds.): CICM 2018, LNAI 11006, pp. 60–75, 2018.
https://doi.org/10.1007/978-3-319-96812-4_6
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The first method is a standard way to handle geometry problems by using
computer algebra. However, we define the problem by using implicit equations.
The second method harnesses some novel developments in the GeoGebra tool,
namely its implicit locus computation feature, discussed in detail in [1,2,10,12,
16].

The first applied method yields new results in obtaining the isoptic curve of
some quartic curves. The second method does not explicitly yield new results,
but it can help modeling the basic ideas of isoptic curves of conics by using
dynamic geometry in a very simple way, therefore it can introduce the topic to
a wider audience than previous works on isoptic curves, including high school
students.

In our contribution, both methods exploit automatic discovery, a formerly
unknown approach in studying isoptics. The implementation of the second
method is based on internal improvements of the GeoGebra tool. The program-
ming work, including optimization of geometric equations, was performed by the
authors.

We used the following software packages to compute various results:

– GeoGebra with a numerical and graphic approach is used in Subsect. 2.1.
– Maple 2017 was used in Subsubsect. 2.2 for plotting and in Sect. 3 for some

algebraic computations.
– Symbolic computations provided by GeoGebra were used in the rest of the

paper.

While Maple has no interface with GeoGebra for communication, we imported
some formulas from GeoGebra using “copy & paste” to perform more advanced
algebraic computations.

Section 2 gives a general overview on isoptic curves in the literature. Sec-
tions 3 and 4 demonstrate our approaches to compute isoptic curves with the
two methods. Finally, Sect. 5 summarizes our work.

2 Isoptic Curves

Let C be a plane curve. For a given angle θ such that 0 ≤ θ ≤ 180◦, a θ-isoptic
curve (or simply a θ-isoptic) of C is the geometric locus of points M through
which passes a pair of tangents with an angle of θ between them. If θ = 90◦,
i.e. if the tangents are perpendicular, then the isoptic curve is called an orthoptic
curve. Isoptic curves may either exist or not, depending on the given curve and
on the angle.

2.1 Orthoptics of Conics

Orthoptic curves of conics are well known since the ancient Greeks. They are
displayed in Fig. 1.
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(i) The orthoptic curve of a parabola is its directrix 1. If the parabola has equa-
tion y2 = 2px (for p a non-zero real), then its directrix has equation x = p/2.

(ii) The orthoptic curve of an ellipse is its director circle2. If the ellipse is given
by the canonical equation x2

a2 + y2

b2 = 1, then the director circle has the
equation x2 + y2 = a2 + b2.

(iii) The existence of an orthoptic curve for a hyperbola depends on the eccen-
tricity, i.e. on the ratio c/a, where c2 = a2 − b2, where a and b define the
respectively focal axis and the non-focal axis of the hyperbola. If it exists, the
orthoptic curve of the hyperbola with canonical equation x2

a2 − y2

b2 = 1 (i.e. the
focal axis is the x=axis) is the circle whose equation is x2 + y2 = a2 − b2,
also called the director circle3.

(a) Parabola (b) Ellipse (c) Hyperbola

Fig. 1. Orthoptics of conics

This can be verified in a numerical way by utilizing a Dynamic Geometry
System (DGS), without computing equations symbolically. Figure 2 is a screen
snapshot of an applet using GeoGebra for checking perpendicularity.

Isoptics of ellipses have been studied in [6], yielding a connection between
conic sections and toric sections. Isoptics of closed Fermat curves have been stud-
ied in [8]. Miernowski, Mozgawa and Sza�lkowski have studied isoptics for other
curves, such as rosettes which are open curves; see [14,15]. They use support
functions to represent the curves.

The study of isoptics of conic sections has been performed using pure alge-
braic methods. As the equation of a conic is a quadratic equation, the existence
of tangents to the conic is also expressed by a quadratic condition. It follows
that the existence of tangents is easy to prove, with an analysis of the sign of
a discriminant, and explicit equations can be derived for isoptics. Isoptics of
parabolas are branches of hyperbolas and isoptics of ellipses and of hyperbolas
(when they exist) are quartic curves called Spirics of Perseus. In all the cases,
solution to polynomial systems of equations had to be computed. For this pur-
pose, Gröbner packages were very useful.
1 See the GeoGebra applet at https://www.geogebra.org/m/pwrWy9dG.
2 See the GeoGebra applet at https://www.geogebra.org/m/SkQ5qxYr.
3 See the GeoGebra applet at https://www.geogebra.org/m/tZcGGrCm.

https://www.geogebra.org/m/pwrWy9dG
https://www.geogebra.org/m/SkQ5qxYr 
https://www.geogebra.org/m/tZcGGrCm
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Fig. 2. Checking perpendicularity in GeoGebra

2.2 Generalization to Other Curves

The above-mentioned algebraic methods used for conics cannot generally be
applied neither to algebraic curves of higher degree nor to non-algebraic curves.
We illustrate this with two examples: Fermat curves as in [8], and an astroid as
in [9].

Fermat Curves. We call Fermat curve a curve Fn in the affine plane whose
equation is of the form xn + yn = 1, where n is a non-negative integer. If
n = 2, the curve is a circle and, by elementary plane geometry, all its isoptics
are concentric circles. For even n, the curve Fn is closed, and for odd n, Fn is
open. Examples are displayed in Fig. 3.

(a) Two closed Fermat
curves

(b) An open Fermat curve

Fig. 3. Fermat curves
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For even exponents, Fermat curves are smooth and strictly convex loops.
Therefore, through every external point passes a pair of tangents. For odd
exponents, Fermat curves are open smooth curves, and the number of tangents
through a point in the plane can vary. Figure 4 shows three different situations:
0, 2 and 4 tangents.

(a) Two tangents (b) Four tangents and no tangent

Fig. 4. Multiplicity of tangents to the curve whose equation is x3 + y3 = 1

Because of Fermat’s Last Theorem, every point on F3 but the point of inter-
section with the axes has at least one irrational coordinate. It follows that writing
the same kind of systems of equations as for conics and trying to solve with a
Gröbner bases package, looking for Elimination Ideals is useless. These packages
do not work over the field R of real numbers, they work either over the field of
rational numbers or over finite fields. Both cases are irrelevant here. In [8], two
methods are generally used:

1. experimental work with GeoGebra, in particular the Locus command,
2. numerical methods for θ-isoptics when θ �= 90◦.

This allows one to find a graphical representation of the various θ-isoptics. The
orthoptic case is the easiest to deal with. Recall that the curve Fn is invariant by
a rotation of 90◦. Now, take a parametric presentation of a tangent L1 to Fn, then
substitute t+π/2 instead of t. This gives a parametric presentation of a tangent
L2, perpendicular to L1. The geometric locus of the points of intersection of L1

and L2 is the desired orthoptic of Fn. It has been obtained graphically using
the Locus command, and a parametric representation has also been computed.
Figure 5 shows the Fermat curve F16 and its orthoptic, plotted with Maple 2017,
using the parametric presentation.

Astroid. Isoptics of an astroid are studied in [9]. This may be viewed as a
generalization of Fermat curves for a non integer power, but the methods have
to be different, in particular because of the following remarks:
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Fig. 5. The orthoptic of a closed Fermat curve

(i) An astroid is not a Jordan curve: it is non-convex and it has four cusps.
(ii) There exist points through which more than two tangents pass. Experimen-

tation with GeoGebra shows that these are interior points. It seems that
they are all the interior points, but the experimentation is not a proof.

(iii) For some values of the angle θ, the θ-isoptic is circumscribed by the astroid,
and for other values the θ-isoptic has both internal and external points.

The study combined geometric experimentation with GeoGebra and alge-
braic computations with a Computer Algebra System (CAS). Two examples are
shown in Fig. 6.

(a) 45◦-isoptic of an astroid (b) 135◦-isoptic of an as-
troid

Fig. 6. Isoptics of an astroid

3 The First Approach

Our first approach is as follows. Let C be an algebraic curve given by an implicit
equation F (x, y) = 0. Compute the derivatives dx = F ′

x and dy = F ′
y. Consider
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points A(xA, yA) and B(xB, yB) that are assumed to be points of the curve, that
is,

F (xA, yA) = 0 (1)

and
F (xB , yB) = 0 (2)

hold.
Compute the partial derivatives px,A = F ′

x(xA, yA), px,B = F ′
x(xB , yB),

py,A = F ′
y(xA, yA) and py,B = F ′

y(xB , yB). Now, when speaking about orthoptic
curves, we can assume that

px,A · px,B + py,A · py,B = 0, (3)

otherwise, when speaking about θ-isoptics, the following equation holds:

(px,A · px,B + py,A · py,B)2 = cos2 θ · (p2x,A + p2y,A) · (p2x,B + p2y,B). (4)

When defining a point P (x, y) that is an element of both tangents t1 and t2
to c, it is clear that the points A, A′ = (xA+py,A, yA−px,A) and P are collinear;
on the other hand, B, B′ = (xB + py,B , yB − px,B) and P are collinear as well.
Therefore the following equations hold:

∣
∣
∣
∣
∣
∣

xA yA 1
xA + py,A yA − px,A 1

x y 1

∣
∣
∣
∣
∣
∣

= 0, (5)

∣
∣
∣
∣
∣
∣

xB yB 1
xB + py,B yB − px,B 1

x y 1

∣
∣
∣
∣
∣
∣

= 0. (6)

At this point we have 5 equations. By eliminating all variables but x and y
we are about to obtain an implicit equation whose graphical representation is,
at least partly, the θ-isoptic curve. This technique is discussed in detail in [4,
Chap. 3, §2] in the frames of elimination theory, and, from practical approach
also in [3, Chap. IV, Example 5.8], and from the point of view of the GeoGebra
implementation in [1] (where it is identified as automatic discovery). Theoreti-
cally, the obtained implicit equation is a multiple of the algebraic closure of the
geometrically expected set. In other words, some factors of the obtained implicit
equation will contain the expected curve.

Example 1. (See https://www.geogebra.org/m/JvhNwAzF in Fig. 7 for an on-
line applet.) Let F (x, y) = x4 − y, that is, we consider the graph of the function
y = x4. Let us compute the orthoptic of C, that is, θ = 90◦. Then the following
equations hold:

https://www.geogebra.org/m/JvhNwAzF
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Fig. 7. The orthoptic of the graph given by the quartic equation y = x4

x4
A − yA = 0, (7)

x4
B − yB = 0, (8)

4x3
A · 4x3

B + 1 = 0, (9)

−4x4
A + 4x3

Ax + yA − y = 0, (10)

−4x4
B + 4x3

Bx + yB − y = 0. (11)

After eliminating all variables but x and y from this system by using a CAS,
we obtain the equation
(

65536x6 + 196608x4y2 + 196608x2y4 − 41472x2y + 65536y6 + 13824y3 + 729
) ·

(16777216x6y3 + 50331648x4y5 + 5308416x4y2 + 50331648x2y7+

5308416x2y4 + 559872x2y + 16777216y9 − 1769472y6 − 186624y3 + 19683) = 0.

Denote the factors of the left-hand side by f1 and f2; both are irreducible over
the integers, but they are reducible over the complex numbers, namely:

f2 = 16777216

(
x2y + y3 − 3/8 y2 3

√
2 − 9 y 3

√
4

64
+

27

256

)
·

(
x2y + y3 − 3/8 y2

(
−1/2

3
√

2 − i/2
3
√

2
√

3
)

− 9 y
(−1/2 3

√
2 − i/2 3

√
2
√

3
)2

64
+

27

256

)
·

(
x2y + y3 − 3/8 y2

(
−1/2

3
√

2 + i/2
3
√

2
√

3
)

− 9 y
(−1/2 3
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2 + i/2 3

√
2
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3
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+

27

256

)
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and

f1 = 65536·
· (x + ar1(br41 + cr21 + d)y − er1(fr41 + gr1 + h))·
· (x − ar1(br41 + cr21 + d)y − er1(fr41 + gr1 + h))·
· (x − ar2(br42 + cr22 + d)y + er2(fr42 + gr2 + h))·
· (x + ar2(br42 + cr22 + d)y + er2(fr42 + gr2 + h))·
· (x + ar3(br43 + cr23 + d)y + er3(fr43 + gr3 + h))·
· (x + ar4(br44 + cr24 + d)y − er4(fr44 + gr4 + h)),

where a = 1/4301158990, b = 48, c = 163867, d = 251326464, e =
1/17204635960, f = 768, g = 2621872, h = 1870643929, and r1 is a root of
z6 +3072z4 +3135360z2 +1077283684, r2 is a root of 2150579495z2 +(2304r51 +
7865616r31 + 9913090777r1)z − 787728r41 − 2689221337r21 − 4124518600704, and
r3 = −j/m · r51 − k/m · r31 − l/m · r1 − r2, where j = 2304, k = 7865616,
l = 9913090777, m = 2150579495, and r4 = −r3. This output is provided by
Maple.

Now by plotting the result obtained by the elimination and the first factor of
f2 we obtain two overlapping curves, giving an experimental evidence4 that all
other factors appearing play no role in the geometry. Moreover, if we plot one
point on the curve and tangents through this point to the given quartic, moving
the point along the curve leaves the tangents perpendicular. That is, the implicit
equation of the orthoptic is

x2y + y3 − 3/8 y2 3
√

2 − 9 y 3
√

4
64

+
27
256

= 0,

namely, a cubic.
In the online applet it is also possible to change θ by dragging the slider.

However, for this quartic input polynomial other angles than 90 degrees may
request heavy computations.

Example 2. By using the same method we can obtain the orthoptic of a more
general open quartic, namely the curve whose equation is y = x4 − x (see Fig. 8
and https://www.geogebra.org/m/mfrwfGNc).

Example 3. Luckily, quadratic input polynomials can be visualized in a quick
enough way by using the slider. Figure 9 shows the 35◦-isoptic of a hyperbola,
for instance, in the web version of GeoGebra. An implicit equation of the curve,
computed by GeoGebra, in this case, is

4 Valid according to the numerical precision of GeoGebra.

https://www.geogebra.org/m/mfrwfGNc
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Fig. 8. Orthoptic of the graph given by the quartic equation y = x4 − x

2x14 − 2y14 − c2x12 − c2y12 − 10x2y12 − 18x4y10 − 10x6y8

+ 10x8y6 + 18x10y4 + 10x12y2 − 6c2x2y10 − 15c2x4y8

− 20c2x6y6 − 15c2x8y4 − 6c2x10y2 − 23x12 − 23y12 + 12c2x10

− 12c2y10 − 58x2y10 − 25x4y8 + 20x6y6 − 25x8y4 − 58x10y2

− 36c2x2y8 − 24c2x4y6 + 24c2x6y4 + 36c2x8y2 + 112x10

− 112y10 − 60c2x8 − 60c2y8 − 80x2y8 + 32x4y6 − 32x6y4

+ 80x8y2 − 48c2x2y6 + 24c2x4y4 − 48c2x6y2 − 300x8 − 300y8

+ 160c2x6 − 160c2y6 + 144x2y6 − 136x4y4 + 144x6y2 + 96c2x2y4

− 96c2x4y2 + 480x6 − 480y6 − 240c2x4 − 240c2y4 + 544x2y4

− 544x4y2 + 288c2x2y2 − 464x4 − 464y4 + 192c2x2

− 192c2y2 + 608x2y2 − 64c2 + 256x2 − 256y2 − 64 = 0,

where c = cos2
(

7
36π

)

. This can be simplified (after factorization over C with
Maple, and keeping just the real curve) to

cx4 + 2cx2y2 + cy4 − x4 − 2x2y2 − 4cx2 − y4 + 4cy2 + 4c = 0,

that is, the isoptic curve is a quartic. (We note that this curve contains also the
set of points for the 145◦-isoptic as well, namely, the points which are “close
enough” to the hyperbola, deliver the 145◦-isoptic, and the others, which are
“far enough”, produce the 35◦-isoptic. In our theoretical work, these two parts
of the curve cannot be separated, because of the squaring of the cosine.)
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Fig. 9. 35◦-isoptic of the function x2 − y2 = 1

4 The Second Approach

Dynamic geometry systems, including GeoGebra, deal with the notion of free
and dependent objects. Free points, given in a plane, for example, are objects
that are free to change by user interaction, mostly by dragging them with the
mouse. On the other hand, dependent objects cannot be changed directly—they
will change only when their parent objects are changed. In this way the layout
of a construction is completely determined by its free points.

Consider a given input point I, either as a free point, or on a dependent
line or circle path P. Moreover, assume some construction steps, describing the
connections between the free and dependent objects, are also given. The user
claims a Boolean condition B holds on some objects of the construction. The
task is to determine an equation E such that for all points I ′ of it, if I = I ′, then
B holds. Now E is called implicit locus equation, and its graphical representation
is the locus. We emphasize that this task is called automatic discovery in [1].

The GeoGebra syntax of the command is LocusEquation( <Boolean
Expression>, <Point> ).

In this way, the orthoptic of a given conic can be obtained in the following
way:

1. Construct a conic, for example a circle C, by using the appropriate tool from
the Toolbar.

2. Create an arbitrary point P which is outside the circle.
3. Create the tangents f and g from P to C.
4. Type the command LocusEquation(f ⊥ g,P).

Now the orthoptic of the circle C will be obtained by an algebraic equation
a and its graphical representation is shown in the Graphics View in GeoGebra
(Fig. 10, see also https://www.geogebra.org/m/z2uNpHCU).

In this way, by having a simple sequence of steps, orthoptics are easy to
introduce at high school level.

https://www.geogebra.org/m/z2uNpHCU
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Fig. 10. The orthoptic of a circle

4.1 Implementation Issues

As of April 2018 we successfully implemented tangent equations for circles and
parabolas in GeoGebra, and an on-going work is progressing for other conics.

In GeoGebra conics are defined with 6 coordinates: parabolas are, as men-
tioned above, described with the focus and the directrix (recall that a line is
defined by two points on it); and hyperbolas and ellipses are defined by two foci
and a point on the curve. Here we give a brief discussion of the implementation
of tangent equations for parabolas.

This idea is very natural and has already been introduced by [3,17] in
mechanical proofs in planar geometry. However, there are no examples men-
tioned on conics other than circles. Also, we highlight that in GeoGebra all alge-
braic translations are made automatically by the computer, that is, all equations
should be written in a general but minimal way—we want to avoid computa-
tional difficulties.

This system requires handling both the inputs and outputs of the objects to
be points. In this sense, the tangent of a parabola has 4 input points: The focus
F of the parabola, and two points D1 and D2 of the directrix, and some point
T1 on the tangent line. As an output in this case we require two points: T1 and
some other point T2 on the tangent line. Note that T1 could be the tangent point
T , or it could be some external point P . In the following, we consider the second
case, where T1 is some external point P (see Fig. 11).

Denote the coordinates of a given point A by (xA, yA). We have the following
constraints, by using elementary analytic geometry:

∣
∣
∣
∣
∣
∣

xD1 yD1 1
xD2 yD2 1
xF ′ yF ′ 1

∣
∣
∣
∣
∣
∣

= 0, (12)

xM =
xF + xF ′

2
, (13)

yM =
yF + yF ′

2
, (14)

(xP − xF )2 + (yP − yF )2 = (xP − xF ′)2 + (yP − yF ′)2, (15)
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Fig. 11. Tangent to a parabola from an external point P

which describe (12) that F ′ ∈ d, (13) and (14) that M is the midpoint of FF ′,
and (15) that PF = PF ′. Now by setting T1 = P and T2 = M as output, we
implicitly define the line T1T2, by using the 4 constraints above.

This approach is, however, not completely correct. In the case M = P the
output is not correctly defined. This case occurs when P lies on the tangent
that is parallel to the directrix. Therefore, we may have a better constraint by
considering the following equations as well:

(xD1 − xF ′) · (xT − xF ′) + (yD1 − yF ′) · (yT − yF ′) = 0, (16)

(xF − xF ′) · (xT − xP ) + (yF − yF ′) · (yT − yP ) = 0, (17)

which ensure that F ′T ⊥ d (16) and FF ′ ⊥ PT (17). Here we no longer use (13)
and (14), but the other equations are kept, that is, we still use 4 constraints, but
with the output T1 = P and T2 = T .

Unfortunately, we will still have two problems with the new approach. First,
we use two quadratic equations now instead of two linear ones and this will make
the computational complexity harder. Second, we still allow P = T . This will
result in getting the whole parabola as well in the locus, not just the tangent.
Therefore we need another constraint to force P �= T in the following way:

z · ((xP − xT )2 + (yP − yT )2) = 1, (18)

because we want (xP , yP ) to be different from (xT , yT ), so we require (xP −
xT )2 + (yP − yT )2 to be nonzero, i.e. invertible. At this stage, the constraints
(12), (15), (16), (17) and (18) describe the output tangent line as expected for
use in dynamic geometry.

4.2 Isoptics

It would be desirable to generalize the dynamic geometry approach to isoptics
as well. Unfortunately, in GeoGebra it is complicated to express the equality of
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angles in the condition of an implicit locus equation. The currently supported
syntax to check if α = β is AreCongruent(α,β).

In this way, it is already possible to study isoptic curves as well, in some basic
cases. Figure 12 demonstrates the idea. That is, by sketching up, say, a circle with
center A and circumpoint B, we can create external point P with tangents f
and g, similarly to Fig. 10. Now we designate two arbitrary points C and D on
tangents and construct two segments EF and FG, and define angles α = � EFG
and β = � CPD. Finally the command LocusEquation(AreCongruent(α, β),P)
is issued which means that we search for all points P such that α = β is ensured.
In our example this command yields a sextic implicit curve, containing two circles
and two lines—these latter ones should be ignored, because, due to technical
reasons, they belong to a larger set (including the points C and D). Also, the
inner circle is the 135◦-isoptic of the circle, since the angles 45◦ and 135◦ are not
distinguishable in the complex algebraic geometry setup.

Fig. 12. 45◦-isoptic of the circle with dynamic geometry

Anyway, the user can experiment further with this applet, in particular by
changing the angle α, in a way similar to Sect. 3, where a slider controlled the
animation. Here, however, moves are slower, due to the higher amount of com-
putations, handling every detail. In general, about 1.5 s are required to compute
each new frame.

Our final example, shown in Fig. 13, demonstrates the 135◦-isoptic of a
parabola. In fact, GeoGebra computes 45◦- and 135◦-isoptics at the same time
(the former is the “bottom” branch of the hyperbola, not shown in the Figure)5.
Again, two extra lines appear, that should be ignored.

This figure can be obtained, however, only in a much bigger amount of time
than for the circle. For one curve to be shown, the user has to wait at least 5 s
on a modern computer. This makes yet difficult to study a set of θ-isoptics in a
quick and convenient way at the moment.
5 For the same reason, with another CAS, the name bisoptic has been coined in [7].
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Fig. 13. 135◦-isoptic of the parabola with dynamic geometry

5 Conclusion

Isoptic curves are generally considered as a topic for researchers and advanced
students having taken at least a first course in Differential Geometry. Previous
works, mentioned in particular in Sect. 2, introduced algebraic methods. For
conic sections, methods from elementary algebra could be applied, but they
cannot be generalized to curves of higher degree.

By using both of our methods for a curve defined by a polynomial implicit
equation, we considered ideals generated by the involved polynomials. Comput-
ing elimination ideals was efficient, and therefore, it can be preferred to previous
works. Our methods, however, cannot work with non-polynomial data.

We highlight that the approaches which we propose may make the topic
manageable for students at an earlier stage. We do not intend to have a usage
of technology as a black box, but rather to provide tools and incitation to learn
more advanced mathematics, as in [5]. The interplay between Computer Algebra
and Dynamical Geometry on the one hand, and the switching between different
registers of representation (namely algebraic and graphical) on the other hand,
makes the study an experimental one. Nevertheless, the user should not forget
that behind the scene, the computer uses also a numerical register of represen-
tation, in particular, for the graphical representation.

Also, some ambiguous equations may require manual cancelling for the unnec-
essary curves which can appear within the automated process, as mentioned in
Sect. 4. Also, in Sect. 3 we found a curve which delivers solutions for two different
problems, and the results are not distinguishable in our theory. (See also [11] for
some other, simpler issues in complex algebraic geometry, that are unavoidable
in this approach.)
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Abstract. A biform theory is a combination of an axiomatic theory and
an algorithmic theory that supports the integration of reasoning and
computation. These are ideal for specifying and reasoning about algo-
rithms that manipulate mathematical expressions. However, formalizing
biform theories is challenging as it requires the means to express state-
ments about the interplay of what these algorithms do and what their
actions mean mathematically. This paper describes a project to develop
a methodology for expressing, manipulating, managing, and generating
mathematical knowledge as a network of biform theories. It is a sub-
project of MathScheme, a long-term project at McMaster University to
produce a framework for integrating formal deduction and symbolic com-
putation.

We present the Biform Theories project, a subproject of MathScheme [11] (a
long-term project to produce a framework integrating formal deduction and
symbolic computation).

1 Motivation

Type 2 * 3 into your favourite computer algebra system, press enter, and you
will receive (unsurprisingly) 6. But what if you want to go in the opposite direc-
tion? Easy: you ask ifactors(6) in Maple or FactorInteger[6] in Mathe-
matica.1 The Maple command ifactors returns a 2-element list, with the first
element the unit (1 or −1) and the second element a list of pairs (encoded as
two-element lists) with (distinct) primes in the first component and the prime’s
multiplicity in the second. Mathematica’s FactorInteger is similar, except that
it omits the unit (and thus does not document what happens for negative inte-
gers).

This simple example illustrates the difference between a simple computa-
tion 2 * 3 and a more complex symbolic query, factoring. The reason for using
lists-of-lists in both systems is that multiplication and powering are both func-
tions that evaluate immediately in these systems. So that factoring 6 cannot
just return 2^1 * 3^1, as that simply evaluates to 6. Thus it is inevitable that

This research is supported by NSERC.
1 Other computer algebra systems have similar commands.
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both systems must represent multiplication and powering in some other man-
ner. Because ifactors and FactorInteger are so old, they are unable to take
advantage of newer developments in both systems, in this case a feature to not
immediately evaluate an expression but leave it as a representation of a future
computation. Maple calls this feature an inert form, while in Mathematica it
is a hold form. Nevertheless, the need for representing future computations was
recognized early on: even in the earliest days of Maple, one could do 5 &^256
mod 379 to compute the answer without ever computing 5256 over the integers.
In summary, this example shows that in some cases we are interested in 2 * 3
for its value and in other cases we are interested in it for its syntactic structure.

A legitimate question would be: Is this an isolated occurrence, or a more
pervasive pattern? It is pervasive. It arises from the dichotomy of being able
to perform computations and being able to talk about (usually to prove the
correctness of) computations. For example, we could represent (in Haskell) a
tiny language of arithmetic as

data Arith =

Int Integer

| Plus Arith Arith

| Times Arith Arith

and an evaluator as

eval :: Arith -> Integer

eval (Int x) = x

eval (Plus a b) = eval a + eval b

eval (Times a b) = eval a * eval b

whose “correctness” seems self-evident. But what if we had instead written

data AA = TTT Integer | XXX AA AA | YYY AA AA

eval ’ :: AA -> Integer

eval ’ (TTT x) = x

eval ’ (XXX a b) = eval ’ a * eval ’ b

eval ’ (YYY a b) = eval ’ a + eval ’ b

how would we know if this implementation of eval’ is correct or not? The two
languages are readily seen to be isomorphic. In fact, there are clearly two dif-
ferent isomorphisms. As the symbols used are no longer mnemonic, we have no
means to (informally!) decide whether eval’ is correct. Nevertheless, Arith and
AA both represent (trivial) embedded domain specific languages (DSLs), which
are pervasively used in computing. Being able to know that a function defined
over a DSL is correct is an important problem.

In general, both computer algebra systems (CASs) and theorem proving sys-
tems (TPSs) manipulate syntactic representations of mathematical knowledge.
But they tackle the same problems in different ways. In a CAS, it is a natural
question to take a polynomial p (in some representation that the system recog-
nizes as being a polynomial) and ask to factor it into a product of irreducible
polynomials [46]. The algorithms to do this have gotten extremely sophisticated
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over the years [35]. In a TPS, it is more natural to prove that such a polynomial
p is equal to a particular factorization, and perhaps also prove that each such
factor is irreducible. Verifying that a given factorization is correct is, of course,
easy. Proving that factors are irreducible can be quite hard. And even though
CASs obtain information that would be helpful to a TPS towards such a proof,
that information is usually not part of the output. Thus while some algorithms
for factoring do produce irreducibility certificates, which makes proofs straight-
forward, these are usually not available. And the complexity of the algorithms
(from an engineering point of view) is sufficiently daunting that, as far as we
know, no TPS has re-implemented them.

Given that both CASs and TPSs “do mathematics”, why are they so differ-
ent? Basically because a CAS is based around algorithmic theories, which are col-
lections of symbolic computation algorithms whose correctness has been estab-
lished using pen-and-paper mathematics, while a TPS is based around axiomatic
theories, comprised of signatures and axioms, but nevertheless representing the
“same” mathematics. In a TPS, one typically proves theorems, formally. There
is some cross-over: some TPSs (notably Agda and Idris) are closer to program-
ming languages, and thus offer the real possibility of mixing computation and
deduction. Nevertheless, the problem still exists: how does one verify that a
particular function implemented over a representation language carries out the
desired computation?

What is needed is a means to link together axiomatic theories and algorithmic
theories such that one can state that some “symbol manipulation” corresponds to
a (semantic) function defined axiomatically? In other words, we want to know
that a symbolic computation performed on representations performs the same
computation as an abstract function defined on the denotation of those repre-
sentations. For example, if we ask to integrate a particular expression e, we would
like to know that the system’s response will in fact be an expression representing
an integral of e—even if the formal definition of integration uses an infinitary
process.

These kinds of problems are pervasive: not just closed-form symbolic manip-
ulations, but also SAT solving, SMT solving, model checking, type-checking of
programs, and most manipulations of DSL terms, are all of this sort. They all
involve a mixture of computation and deduction that entwine syntactic repre-
sentations with semantic conditions.

In the next section we will introduce the notion of a biform theory that is a
combination of an axiomatic theory and an algorithmic theory so that we can
define and reason about symbolic computation in the same setting.

2 Background Ideas

A transformer is an algorithm that implements a function En → E where E
is a set of expressions. The expressions serve as data that can be manipu-
lated. Different kinds of expressions correspond to different data representations.
Transformers can manipulate expressions in various ways. Simple transformers,
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for example, build bigger expressions from pieces, select components of expres-
sions, or check whether a given expression satisfies some syntactic property. More
sophisticated transformers manipulate expressions in mathematically meaningful
ways. We call these kinds of transformers syntax-based mathematical algorithms
(SBMAs) [27]. Examples include algorithms that apply arithmetic operations
to numerals, factor polynomials, transpose matrices, and symbolically differen-
tiate expressions with variables. The computational behavior of a transformer
is the relationship between its input and output expressions. When the trans-
former is an SBMA, its mathematical meaning2 is the relationship between the
mathematical meanings of its input and output expressions.

A biform theory T is a triple (L,Π, Γ ) where L is a language of some under-
lying logic, Π is a set of transformers that implement functions on expressions
of L, and Γ is a set of formulas of L [6,25,31]. L includes, for each transformer
π ∈ Π, a name for the function implemented by π that serves as a name for π.
The members of Γ are the axioms of T . They specify the meaning of the nonlog-
ical symbols in L including the names of the transformers of T . In particular, Γ
may contain specifications of the computational behavior of the transformers in
Π and of the mathematical meaning of the SBMAs in Π. A formula in Γ that
refers to the name of a transformer π ∈ Π is called a meaning formula for π. The
transformers in Π may be written in the underlying logic or in an programming
language external to the underlying logic. We say T is an axiomatic theory if Π
is empty and an algorithmic theory if Γ is empty.

Example 1. Let Rax = (L, Γ ) be a first-order axiomatic theory of a ring with
identity. The language L contains the usual constants (0 and 1), function sym-
bols (+ and ∗), and predicate symbols (=), and Γ contains the usual axioms.
The terms of L, which are built from 0, 1, and variables by applying + and
∗, have the form of multivariate polynomials. Thus algorithms that manipu-
late polynomials—that normalize a polynomial, factor a polynomial, find the
greatest common divisor of two polynomials, etc.—would naturally be useful for
reasoning about the expressions of Rax. Let Π be a set of such transformers
on the terms in L, L′ be an extension of L that includes vocabulary for nam-
ing and specifying the transformers in Π, and Γ ′ contain meaning formulas for
the transformers in Π expressed in L′. Then Rbt = (L′,Π, Γ ∪ Γ ′) is a biform
theory for rings with identity. It would be very challenging to express Rbt in
ordinary first-order logic; the meaning formulas in Γ ′ would be especially diffi-
cult to express. Notice that Ralg = (L′,Π) is algorithmic theory of multivariate
polynomials with constants 0 and 1.

Formalizing a biform theory in the underlying logic requires infrastructure
for reasoning about the expressions manipulated by the transformers as syntac-
tic entities. This infrastructure provides a basis for metareasoning with reflec-
tion [29]. There are two main approaches to build such an infrastructure [27].
The local approach is to produce a deep embedding of a sublanguage L′ of L that
2 Computer scientists would call this denotational semantics rather than mathematical
meaning.
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includes all the expressions manipulated by the transformers of Π. The global
approach is to replace the underlying logic of L with a logic such as cttqe [29]
that has an inductive type of syntactic values that represent the expressions in
L and global quotation and evaluation operators. A third approach, based on
“final tagless” embeddings [15], has not yet been attempted as most logics do
not have the necessary infrastructure to abstract over type constructors.

A complex body of mathematical knowledge can be represented in accordance
with the little theories method [30] (or even the tiny theories method [18]) as a
theory graph [36] consisting of axiomatic theories as nodes and theory morphisms
as directed edges. A theory morphism is a meaning-preserving mapping from the
formulas of one axiomatic theory to the formulas of another. The theories—which
may have different underlying logics—serve as abstract mathematical models,
and the morphisms serve as information conduits that enable theory components
such as definitions and theorems to be transported from one theory to another [2].
A theory graph enables mathematical knowledge to be formalized in the most
convenient underlying logic at the most convenient level of abstraction using the
most convenient vocabulary. The connections made by the theory morphisms in
a theory graph then provide the means to find this knowledge and apply it in
other contexts.

A biform theory graph is a theory graph whose nodes are biform theories.
Having the same benefits as theory graphs of axiomatic theories, biform theory
graphs are well suited for representing mathematical knowledge that is expressed
both axiomatically and algorithmically.

Our previous work on mechanized mathematics systems and on related tech-
nologies has taught us that such a graph of biform theories really should be
a central component of any future systems for mathematics. We will expand
on the objectives of the project and its current state. At the same time, addi-
tional pieces of the project beyond what is motivated above (but is motivated
by previous and related work) will be weaved in as appropriate.

3 Project Objectives

The primary objective of the Biform Theories project is:

Primary. Develop a methodology for expressing, manipulating, managing
and generating mathematical knowledge as a biform theory graph.

Our strategy for achieving this is to break down the problem into the following
subprojects:

Logic. Design a logic Log which is a version of simple type theory [26] with an
inductive type of syntactic values, a global quotation operator, and a global
evaluation operator. In addition to a syntax and semantics, define a proof
system for Log and a notion of a theory morphism from one axiomatic theory
of Log to another. Demonstrate that SBMAs can be defined in Log and that
their mathematical meanings can be stated, proved, and instantiated using
Log’s proof system.
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Implementation. Produce an implementation Impl of Log. Demonstrate that
SBMAs can be defined in Impl and that their mathematical meanings can be
stated and proved in Impl.
Transformers. Enable biform theories to be defined in Impl. Introduce a
mechanism for applying transformers defined outside of Impl to expressions
of Log. Ensure that we know how to write meaning formulas for such trans-
formers. Some transformers can be automatically generated—investigate the
scope of this, and implement those which are feasible.
Theory Graphs. Enable theory graphs of biform theories to be defined in
Impl. Use combinators to ease the construction of large, structured biform
theory graphs. Introduce mechanisms for transporting definitions, theorems,
and transformers from a biform theory T to an instance T ′ of T via a theory
morphism from T to T ′. Some theories (such as theories of homomorphisms
and term languages) can be and thus should be automatically generated.
Generic Transformers. Design and implement in Impl a scheme for defin-
ing generic transformers in a theory graph T that can be specialized, when
transported to an instance T ′ of T , using the properties exhibited in T ′.

4 Work Plan Status

The work plan is to pursue the five subprojects described above more or less in
the order of their presentation. Here we describe the parts of the work plan that
have been completed as well as the parts that remain to be done.

Logic with Quotation and Evaluation

This subproject is largely complete. We have developed cttqe [29], a version
of Church’s type theory [22] with global quotation and evaluation operators.
(Church’s type theory is a popular form of simple type theory with lambda
notation.) The syntax of cttqe has the machinery of Q0 [1], Andrews’ version
of Church’s type theory plus an inductive type ε of syntactic values, a partial
quotation operator, and a typed evaluation operator. The semantics of cttqe

is based on Henkin-style general models [34]. The proof system for cttqe is an
extension of the proof system for Q0.

We show in [29] that cttqe is suitable for defining SBMAs and stating,
proving, and instantiating their mathematical meanings. In particular, we prove
within the proof system for cttqe the mathematical meaning of a symbolic
differentiation algorithm for polynomials.

We have also defined cttuqe [28], a variant of cttqe in which undefined-
ness is incorporated in cttqe according to the traditional approach to unde-
finedness [24]. Better suited than cttqe as a logic for interconnecting axiomatic
theories, we have defined in cttuqe a notion of a theory morphism [28].
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Implementation of the Logic

We have produced an implementation of cttqe called HOL Light QE [10] by
modifying HOL Light [33], an implementation of the HOL proof assistant [32].
HOL Light QE provides a built-in global infrastructure for metareasoning with
reflection. Over the next couple years we plan to test this infrastructure by
formalizing a variety of SBMAs in HOL Light QE.

Building on the experience we gain in the development of HOL Light QE, we
would like to create an implementation of cttqe in Mmt [44] that is well suited
for general use and has strong support for building theory graphs. We will trans-
fer to this Mmt implementation the most successful of the ideas and mechanisms
we develop on the three subprojects that follow using HOL Light QE.

Biform Theories, Transformers, and Generation

Implementation of biform theories in HOL Light QE has not yet started, but
we expect that it will be straightforward, as will the application of external
transformers. External transformers implemented in OCaml (or in languages
reachable via OCaml’s foreign function interface) can be linked in as well.

The most difficult part of this subproject will be adequate renderings of
meaning formulas that express the mathematical meaning of transformers. We
do have some experience [7,12] creating biform theories. The exploration and
implementation of automatic generation of transformers has started.

Biform Theory Graphs

In [7], we developed a case study of a biform theory graph consisting of eight
biform theories encoding natural number arithmetic. We produced partial for-
malizations of this test case [7] in cttuqe [28] using the global approach for
metareasoning with reflection, and in Agda [42,43] using the local approach.
After we have finished with the previous two subprojects, we intend to formalize
this in HOL Light QE as well.

In [18], we developed combinators for combining theory presentations. There
is no significant difference between axiomatic and biform theories with respect
to the semantics of these combinators, and we expect that these will continue to
work as well as they did in [8]. There, we also experimented with some small-
scale theory generation, which worked well. This subproject will also encompass
the implementation of realms [9]. We also hope to make some inroads on high
level theories [6].

Generic, Specializable Transformers

Through substantial previous work [4,5,8,13–17,19,38,39,41] on code generation
and code manipulation, it has become quite clear that quite a lot of mathematical
code can be automatically generated. One of the most successful techniques
is instantiation, whereby a single, generic algorithm exposes a series of design
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choices that must be explicitly instantiated to produce specialized code. By
clever choices of design parameters, and through the use of partial evaluation,
one can thus produce highly optimized code without having to hand-write such
code.

5 Related Work

Directly related is [37] whose authors also work with biform theory graphs.
Michael Kohlhase and Florian Rabe and their students are actively working
on related topics. As a natural progression, we (the authors of this paper) have
started actively collaborating with them, under the name of the Tetrapod Project.

One of the crucial features for supporting the interplay between syntax and
semantics is reflection, which has a long history and a deep literature. The inter-
ested reader should read the thorough related work section in [29] for more
details.

There are substantial developments happening in some systems, most notably
Agda [42,43], Idris [3] and Lean [40] that we are paying particularly close
attention to. This includes quite a lot of work on making reflection practi-
cal [20,21,23,47].

On the more theoretical side, homotopy type theory [45] is rather promising.
However quite a bit of research still needs to be done to make these results
practical. Of particular note is the issue that theories that deal directly with
syntax seem to clash with the notion of a univalent universe, which is central to
homotopy type theory.

6 Conclusion

Building mechanized mathematics systems is a rather complex engineering
task. It involves creating new science—principally through the creation of log-
ics which can support reasoning about syntax. It also involves significant new
engineering—both on the systems side, where knowledge management is cru-
cial to reduce the information duplication inherent in a naive implementation
of mathematics, and on the usability front, where users do not, and should not,
care about all the infrastructure that developers need to create their system.
Current systems tend to expose this infrastructure, thus creating an additional
burden for casual users who may well have a simple task to perform.

The Biform Theories project is indeed about infrastructure that we believe is
essential to building large-scale mechanized mathematics systems. And yes, we
do believe that eventual success would imply that casual users of such a system
never hear of “biform theories”.

Acknowledgments. This research was supported by NSERC. The authors would like
to thank the referees for their comments and suggestions.
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Abstract. Digital filters are small iterative algorithms, used as basic
bricks in signal processing (filters) and control theory (controllers). They
receive as input a stream of values, and output another stream of val-
ues, computed from their internal state and from the previous inputs.
These systems can be found in communication, aeronautics, automotive,
robotics, etc. As the application domain may be critical, we aim at pro-
viding a formal guarantee of the good behavior of these algorithms in
time-domain. In particular, we formally proved in Coq some error analy-
sis theorems about digital filters, namely the Worst-Case Peak Gain the-
orem and the existence of a filter characterizing the difference between
the exact filter and the implemented one. Moreover, the digital signal
processing literature provides us with many equivalent algorithms, called
realizations. We formally defined and proved the equivalence of several
realizations (Direct Forms and State-Space).

1 Introduction

Most embedded systems, from planes to MP3 players, rely on numerical signal
processing filters. Such a filter takes as inputs an infinite sequence of values, such
as measurements of sensors, and returns an infinite sequence of values, such as a
sound to be played or a value to control a nuclear power plant (see also Sect. 2.2).
Applications of digital filters are therefore numerous, from trivial to life-critical,
and formal methods have already been applied to such systems.

Digital filters have previously been formalized in HOL [1]: Akbarpour and
Tahar define filters and somehow define the error filter as done in Sect. 5.1. But
they do not bound the output error, while we do it using the Worst-Case Peak
Gain (WCPG) Theorem of Sect. 5.2. We indeed benefit from the most recent
advances for filter error bounding [2]. Another recent work in HOL by Siddique
et al. focuses on the frequency-domain analysis and the z-Transform [3]. They
consider causal filters and difference equations with definitions similar to ours.
But their analysis is complementary to ours as we choose a time-domain analysis
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in order to next focus on finite-precision implementations. Akbarpour et al. pre-
viously compared floating-point and fixed-point implementations of digital filters
to ensure their similar behavior [4]. But they require many hypotheses, includ-
ing the absence of overflow in the computations. Park et al. aim at specifying
filters and then proving their correctness [5], assuming that all the computations
are exact. They then relax this assumption, but bound the floating-point error
for one iteration step only, while the difficult part is the propagation of these
errors [6]. Last, Feret developed a specific abstract domain for digital filters [7].
Finally, references in digital signal processing can be found in Sect. 2.

This paper presents a formalization of digital filters in the Coq proof assis-
tant [8,9].1 We rely on the s tandard library for defining reals and on the Coqueli-
cot library [10] for real analysis and for the Limited Principle of Omniscience
(LPO) which is derived from the axiomatization of reals. In addition, we use two
axioms. Firstly, Functional Extensionality states that two functions sharing the
same value on every input are equal. Secondly, Proof Irrelevance means that two
proofs of the same property are equal. These axioms are often used to handle
functions and proof objects in a more natural way and are considered safe.

The goals of this paper are a formal definition of a digital filter, its vari-
ous algorithms and their equivalences, and some formal definitions and proofs
about the error analysis to be used for fixed-point and floating-point imple-
mentations. This paper is organized as follows. Section 2 gives some background
on signal processing and numerical filters. Section 3 presents our formalization
choices. Section 4 defines some of the many (mathematically) equivalent algo-
rithms, called realizations, that are used to describe a filter in signal processing.
We also prove their equivalences, so that results established for one of them
also hold for the others. Section 5 proves the error filter decomposition and the
Worst-Case Peak-Gain theorem. Together, these two results allow to bound the
final impact of adding a bounded error term at each computation step, having
taken into account the propagation of these errors as each of them affects every
future step. We were able to formalize this using only real numbers as there is
no need to know where the error terms come from, but of course this is intended
to be applied to rounding errors in finite-precision arithmetic. Finally, Sect. 6
concludes and gives some perspectives.

Notation: Throughout the article, matrices are in uppercase boldface (e.g. A),
vectors are in lowercase boldface (e.g. a), scalars are in lowercase (e.g. a). The
matrix In is the identity matrix of size n.

2 Digital Filters

2.1 Signals and Operations

A discrete-time signal x is an ordered sequence of numbers denoted x(k), where
k is an integer. In a practical setting, such sequences often arise from periodic
sampling of continuous time signals xc(t) where t represents time.
1 Available at www.lri.fr/∼gallois/code/coq-digital-filters-CICM18.tgz.

www.lri.fr/{~}gallois/code/coq-digital-filters-CICM18.tgz
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The signal x can be defined for any integer k or for some finite contiguous set
of integers. We here restrict k to be in N, or more precisely k to be in Z, but with
x(k) = 0 for k < 0. A signal can be real (x(k) ∈ R) or vector (x(k) ∈ R

p×1).
The simplest signal is probably the impulse signal (also called Dirac signal),

denoted δ and defined as δ(k) =

{
1 if k = 0
0 elsewhere.

This signal is central in linear signal processing theory since any signal can
be expressed as an infinite sum of impulse signals (see Sect. 2.3).
Three elementary operations on signals can be defined:

– Addition: The sum of two signals x1 and x2 is their term-by-term sum, i.e.
y = x1 + x2 means ∀k, y(k) = x1(k) + x2(k).

– Scaling: y = αx is the sequence x scaled by α ∈ R, i.e. ∀k, y(k) = αx(k).
– Time shifting or delay: Let y be the sequence x shifted in time by an integer

K ≥ 0, then ∀k, y(k) =

{
x(k − K) if k ≥ K

0 elsewhere.

2.2 Linear Time Invariant Filters

A filter H is a mathematical transformation that maps an input signal u into an
output signal y = H {u}, as shown in Fig. 1. At each time k, the filter produces
an output y(k). But, contrary to usual mathematical functions, the output y(k)
depends not only on the input u(k), but also on the internal state of the filter
(i.e. on the initial condition of the filter and the previous inputs).

H
u(k) y(k)

Fig. 1. A discrete-time filter.

A linear time invariant (LTI) filter satisfies the two following properties:

– Linearity: The filter is linear with respect to its input, i.e.

H {αu1 + βu2} = αH {u1} + βH {u2} (1)

– Shift invariance: if the input of the filter is delayed by K ≥ 0 samples, then
the output is also delayed by K samples, i.e. if ∀k, u1(k) = u2(k − K), then

∀k, H {u1}(k) =

{
H {u2}(k − K) if k ≥ K

0 otherwise.
(2)
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The filter can have as inputs and outputs either scalars (Single-Input Single-
Output filter, aka SISO filter), or vectors (Multiple-Input Multiple-Output filter,
aka MIMO filter). Due to the linearity of LTI filters, a q-input p-output MIMO
filter can be seen as the assembly of p × q SISO filters, where the ijth element is
the filter that captures the effect of the jth input on the ith output.

LTI filters are compositions of the three elementary operations on signals
(addition/subtraction, multiplication by constant and delay, the last one being
classically denoted z−1 as in the z-transform [11,12]). Data-flow graphs using
these operations as blocks and signal as streams are widely used in signal and
control theory to describe the different realizations, as shown in Figs. 3a, b,
and 4a.

2.3 Impulse Response

The impulse response of a SISO filter H , denoted h, is the answer (output) of
the filter to an impulse input δ (i.e. h = H {δ}).

Since any input u can be written as an infinite sum of weighted shifted
impulses u(k) =

∑
l∈Z

u(l)δ(k − l), then, by linearity of the considered filter, the
output y of u through H can be obtained by

y(k) = H {u}(k) =
∑
l∈Z

u(l)h(k − l) (3)

The output y is obtained as a convolution of signals u and h. For that rea-
son, the impulse response of a filter fully defines it. From the impulse response
characterization, the LTI filters can be divided in two types: the Finite Impulse
Response (FIR) filters, where h is null above a certain time, and the Infinite
Impulse Response (IIR) filters, where h has infinite support [11].

2.4 Constant-Coefficient Difference Equation

An important subclass of LTI filters consists of those for which a n-order
constant-coefficient difference equation exists between inputs and outputs, i.e.
the last n inputs and outputs are linked by ∀k,

∑n
i=0 aiy(k−i) =

∑n
i=0 biu(k−i),

where the {ai}0≤i≤n and {bi}0≤i≤n are constant coefficients.
We also assume that a0 = 1, so that the equation is rearranged as

y(k) =
n∑

i=0

biu(k − i) −
n∑

i=1

aiy(k − i). (4)

This relationship describes an IIR filter as soon as the ai’s coefficients are not
all null, otherwise it describes an FIR filter. The value n is said to be the order
of the filter. These coefficients are also the coefficients of the transfer function
of the filter: this mathematical object describes its input-output relationship in
frequency domain (whereas (4) describes it in time domain). It has also been
formalized in Coq, but with few properties, and thus not presented here.
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3 Formalization

3.1 Signals and Filters

The first components required to work with digital filters are signals, presented
in Sect. 2.1. For now, we consider real signals (sequences of real numbers). We
define them as functions from Z to R that take the value 0 for every k < 0.

Definition causal (x : Z → R) := (forall k : Z, (k < 0)%Z → x k = 0%R).
Record signal := {signal_val :> Z → R ; signal_prop : causal signal_val}.

Axioms FunctionalExtensionality and ProofIrrelevance, discussed in the
introduction, ensure that signals are fully characterized by their values for k ≥ 0.

This definition of signals makes them easy to build recursively. Notably,
order-n recursion (when x(k) is built from x(k − 1), x(k − 2), ..., x(k − n)) is
very common when working with filters: for example, (4) is an order-n recur-
sive relation on y. For signals, the negative values are known (since they are
zero), so we may use an order-n recursion. See Sect. 3.2 for more on recursive
constructions.

We could have defined signals as functions from N to R. Ironically, working
with N instead of Z would bring back problems of initialization and saturation.
We have considered and discarded several solutions to work with N: they either
complicated proofs by requiring to handle additional non-trivial cases, or used
alternative notations that made theorems more difficult to read and compare to
their usual signal processing formulation. For example, in order to understand
some statements, one is required to know that 0–2 is equal to 0 when working
with N in Coq. Readability is very important to us as we want to spread formal
methods among the digital processing community. Ultimately, we felt that the
readability and the more intuitive subtraction offered by Z were worth adapting
a few libraries and recursive constructions.

We define the three elementary operations on signals described in Sect. 2.1,
namely addition, scaling by a real and time shift. We prove that the results are
still signals (they take the value 0 for k < 0). The only interesting point is in the
time shift by an integer K, which usually requires that K ≥ 0: we arbitrarily
choose that it returns the null signal when K < 0, so that the function is total.

Once we have signals, filters are simply defined as functions from signals
to signals: Definition filter := signal −> signal. From the three elementary
operations on signals defined above (addition, scaling by a real and time shifting),
we define compatibility of a filter with addition, compatibility with scalar mul-
tiplication and shift invariance. Finally, we define LTI_filter : filter −> Prop

(linear time invariant filter) as the conjunction of these properties.
As explained in Sect. 2.2, a filter can be SISO (Single-Input Single-Output)

when it handles real signals as in the definition above, or MIMO (Multiple-Input
Multiple-Output) with vector signals. A vector signal is defined as a function
from Z to R

p that returns the null vector for every k < 0. A MIMO filter is then:

Definition MIMO_filter {N_in N_out : Z} :=
@vect_signal N_in −> @vect_signal N_out.
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As in textbooks and for the sake of readability, most of our theorems are ded-
icated to SISO filters. Nevertheless, we define the State-Space characterization
of a filter, presented in Sect. 4.3, for MIMO filters, as we explicitly need this to
study error propagation in Sect. 5.1.

3.2 Recursion over Z

To define a filter given by its constant-coefficient difference Eq. (4), we need to
build the output signal y by order-n recursion. In practice, we find it easier to
use strong recursion which is more general. The standard library has a lemma
Coq.ZArith.Wf_Z.Zlt_0_rec that shows that a construction by strong recursion
is possible for positive indexes, whereas what we want is the actual function
resulting from this construction. Therefore, we define Z_strong_rec which builds
this function. It takes an initialization function f_lt_0 that will only be used
for k < 0, and a step function f_rec that computes the image of k for k ≥ 0,
depending on the image of j for any j < k. If we note f |<k the restriction of f
to (−∞, k), Z_strong_rec builds the function f : Z → T such that{

∀k < 0, f(k) = f_lt_0(k)
∀k ≥ 0, f(k) = f_rec(k)(f |<k)

(5)

Definition Z_strong_rec (f_lt_0 : Z −> T)
(f_rec : Z −> (Z −> T) −> T) (k : Z) : T := (...)

But, as we want to work with total functions, the second argument of f_rec

is total. When we write f |<k, we actually mean that it is equal to previously
computed values of f for j < k, and to default values for j ≥ k. As f_rec is
just an argument of Z_strong_rec, it could evaluate f |<k for j ≥ k, which would
make no sense from a recursion perspective. To have a proper recursive con-
struction, the argument f_rec needs to verify the property f_rec_well_formed,
which means that when we call f_rec (k : Z) (g : Z −> T) with k ≥ 0, the result
does not depend on the values of g for j ≥ k. Lemmas Z_strong_rec_lt_0 and
Z_strong_rec_ge_0 express (5), the second one needing the hypothesis that the
argument f_rec is well-formed. They serve as an interface so that outside of their
own proofs, the 13-line definition of Z_strong_rec is never expanded.

Definition f_rec_well_formed (f_rec : Z −> (Z −> T) −> T) : Prop :=
forall (k : Z) (g1 g2 : Z −> T), (k >= 0)%Z −>
(forall j : Z, (j < k)%Z −> g1 j = g2 j) −> f_rec k g1 = f_rec k g2.

Lemma Z_strong_rec_ge_0 f_lt_0 f_rec k :
(k >= 0)%Z −> f_rec_well_formed f_rec −>
Z_strong_rec f_lt_0 f_rec k = f_rec k (Z_strong_rec f_lt_0 f_rec).

For example, consider a signal x defined by the recursive relation x(k) =
x(k − 1) + x(k − 2). We define the function representing this relation:
f_rec := fun (k : Z) (g : Z −> R) => (g(k−1)%Z + g(k−2)%Z)%R, and we can
prove that it is well-formed. As a signal should be zero for k < 0, the
initialization function is f_lt_0 := fun (k : Z) => 0%R. Then, (Z_strong_rec

f_lt_0 f_rec) : Z −> R is the function that corresponds to our signal x.
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3.3 Adapting Existing Libraries to Relative Indexes

We build upon the Coquelicot library to obtain sums of consecutive terms of a
sequence and matrices that are compatible with relative indexes. Matrices with
relative indexes look strange, but there is no problem in practice, as relevant
indexes for a given matrix of size h × w are only subsets in any case: 1 ≤ i ≤ h

and 1 ≤ j ≤ w. We were careful to handle matrices without relying on the
particular Coquelicot definition, so that we can easily switch to other existing
libraries. In particular, we may use the Mathcomp library [13] and rely on its
linear algebra theorems to evaluate the WCPG defined in Sect. 5.2.

4 Filter Realizations

To implement a filter, one needs an explicit algorithm, which produces at each k
an output y(k) from the input u(k) and its internal state. In the literature, a lot
of algorithms exist to implement a linear filter [11]: Direct Forms, State-Space,
Second-Order Sections, cascade or parallel decomposition, Lattice Wave Digital
filters [14], δ- or ρ-operator based filters [15,16], etc. Each of them presents some
advantages with respect to the number of coefficients, the software or hardware
adequacy, the finite-precision behavior, etc. and the choice of the realization is
itself a research domain [17].

We present here three classical realizations: Direct Form I (that comes from
the constant-coefficients difference Eq. (4)), Direct Form II (that uses the same
coefficients in another algorithm) and State-Space. In practice, these realiza-
tions are explained by a data-flow graph, that describes how data (signals) are
processed by a filter in terms of inputs and outputs.

4.1 Direct Form I

Direct Form I (DFI) comes directly from the constant-coefficient difference equa-
tion presented in Sect. 2.4: y(k) =

∑n
i=0 biu(k − i) − ∑n

i=1 aiy(k − i). It depends
on the 2n + 1 transfer-function coefficients a1, a2, ..., an, b0, b1, ..., bn.

Fig. 2. Direct Form I and II algorithms.
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The corresponding algorithm is presented in Fig. 2a and the data flow graph
in Fig. 3a. The real program is slightly more complex: the n previous values of
u and y are stored in memory (the z−1 squares in the data flow graph in Fig. 3a
represent delay, each one is a memory element).

Fig. 3. Direct Form I and II data-flow graphs.

In Coq, we define a type TFCoeffs for the transfer function coefficients. They
are given as an order n and two sequences a, b : Z → R. In practice, n should be
positive, and we will only use the values a(i) for 1 ≤ i ≤ n and the values b(i)
for 0 ≤ i ≤ n. So far, we have not needed to enforce this in the definition.

Record TFCoeffs := {TFC_n : Z ; TFC_a : Z −> R ; TFC_b : Z −> R}.

The main component needed for our recursive construction of a sig-
nal x is a function, noted f_rec in our definition of strong recursion
(Sect. 3.2), that builds x(k) for k ≥ 0 given all previous values of x.
(DFI_f_rec tfc u) : Z −> (Z −> R) −> R is such a function: it expresses the recur-
sive relation characterizing the output signal for input u of the filter defined by
Direct Form I with the coefficients tfc.

From this, we define the function that builds a filter from its transfer function
coefficients using Direct Form I, called filter_from_TFC because Direct Form I
is the canonical way to build a filter from these coefficients.

Definition DFI_f_rec (tfc : TFCoeffs) (u : signal) :=
(fun (n : Z) (y_before_n : Z −> R) =>

(sum 0 (TFC_n tfc) (fun i => (TFC_b tfc i) ∗ u (n−i)%Z)%R)
− (sum 1 (TFC_n tfc) (fun i => (TFC_a tfc i) ∗ y_before_n (n−i)%Z)%R)).

Definition filter_from_TFC (tfc : TFCoeffs) : filter :=
fun (u : signal) => build_signal_rec (DFI_f_rec tfc u).
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Finally, we prove that a filter built this way is LTI. This proof presents no
real difficulty once we have adequate lemmas about sum of consecutive value of
a sequence and recursive building of a signal.

4.2 Direct Form II

Direct Form II is quite similar to Direct Form I. It uses the same coefficients,
those of the transfer function. The main difference is that it only requires n
delays (instead of 2n), so it is more efficient to implement. It can be described
by the data flow graph of Fig. 3b, or by the algorithm of Fig. 2b.

Where Direct Form I builds the output y from previous values of both y and
the input u, Direct Form II builds an intermediary signal e from previous values
of itself and only the current value of u, then it builds y from previous values
of e. The Coq definitions reflect this. As the construction of e is recursive, we
define DFII_u2e_f_rec tfc u, which is the main function allowing to build e given
the transfer function coefficients and an input signal.

Combining the constructions of the intermediary signal e and of the output
signal y, we define filter_by_DFII which builds a filter from transfer function
coefficients using Direct Form II.

Definition DFII_u2e_f_rec (tfc : TFCoeffs) (u : signal) :=
fun (n : Z) (e_before_n : Z −> R) =>
u n − sum 1 (TFC_n tfc) (fun i => (TFC_a tfc i) ∗ e_before_n (n−i)%Z).

Definition DFII_e2y (tfc : TFCoeffs) (e : signal) := Build_signal

(fun n => sum 0 (TFC_n tfc) (fun i => (TFC_b tfc i) ∗ e (n−i)%Z)%R)
(DFII_e2y_prop tfc e).

Definition filter_by_DFII (tfc : TFCoeffs) : filter :=
fun (u : signal) => DFII_e2y tfc (build_signal_rec (DFII_u2e_f_rec tfc u)).

Finally, as Direct Form I and Direct Form II use the same coefficients, which
are also the coefficients associated to the transfer function, implementing either
of these algorithms with the same set of coefficients should produce the same
filter, meaning the same output even if the algorithms are different.

Theorem DFI_DFII_same_filter (tfc : TFCoeffs) :
filter_from_TFC tfc = filter_by_DFII tfc.

Since a filter built using filter_from_TFC (which is by definition built using
Direct Form I) is LTI, so is a filter built using Direct Form II.

4.3 State-Space

We now consider MIMO filters, which are needed for the error analysis in
Sect. 5.1. For a q-input p-output MIMO filter H , the State-Space representation
is described by four matrices (A,B,C,D). The corresponding algorithm is:{

x(k + 1) = Ax(k) + Bu(k)
y(k) = Cx(k) + Du(k) (6)



96 D. Gallois-Wong et al.

where x(k) ∈ R
n×1, u(k) ∈ R

q×1 and y(k) ∈ R
p×1 are the state vector, input

vector and output vector, respectively. The matrices A ∈ R
n×n, B ∈ R

n×q,
C ∈ R

p×n and D ∈ R
p×q characterize the filter H . Figure 4a exhibits its data-

flow graph, and Algorithm 4b its algorithm (scalar rewriting of (6)).

Fig. 4. State-Space data-flow graph and algorithm.

In Coq, we define a State-Space as a record containing the size of the state
vector and the four matrices. Here @mtx R_Ring h w is the type of matrices of size
h × w with coefficients in the ring R.

Context {N_in N_out : Z}.
Record StateSpace := {StSp_n : Z ; (* size of the state vector *)

StSp_A : @mtx R_Ring StSp_n StSp_n ;
StSp_B : @mtx R_Ring StSp_n N_in ;
StSp_C : @mtx R_Ring N_out StSp_n ;
StSp_D : @mtx R_Ring N_out N_in}.

For a given State-Space and a given input vector signal u, we first define the
vector signal of state vectors x by recursion, then the input vector signal y from
u and x, following closely the relationship in (6). We obtain a function that
builds the MIMO filter corresponding to a State-Space. We also define a SISO
State-Space as a State-Space where the context variables N_in and N_out are
both 1. Then we define filter_from_StSp that associates a SISO filter to such a
State-Space. We also prove that a filter built from a State-Space is always LTI.

The impulse response h (introduced in Sect. 2.3) of a filter defined by a State-
Space is proved to be computable from the matrices of the State-Space with:

h(k) =

{
D if k = 0
CAk−1B if k > 0

(7)

Moreover, in SISO, a State-Space can also be built from the transfer function
coefficients. Below is one of many ways to build such a State-Space, requiring
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(n + 1)2 coefficients for the four matrices combined (note that C is a single-row
matrix, B single-column, and D single-row single-column):

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 . . . 0

0
. . . . . . . . .

...
...

. . . . . . 0
0 . . . . . . 0 1

−an . . . . . . −a2 −a1

⎞
⎟⎟⎟⎟⎟⎟⎠

, B =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
...
...
0
1

⎞
⎟⎟⎟⎟⎟⎟⎠

C =
(
bn − anb0 . . . . . . b1 − a1b0

)
, D =

(
b0

)
(8)

Notation n := (TFC_n tfc).
Definition SISO_StSp_from_TFC : SISO_StateSpace := @Build_StateSpace 1 1
(*StSp_n*) n

(*StSp_A*) (make_mtx n n (fun i j =>
if Z_eq_dec i n then (− (TFC_a tfc (n+1−j)))
else if Z_eq_dec (i+1) j then 1 else 0))

(*StSp_B*) (make_mtx n 1 (fun i j => if Z_eq_dec i n then 1 else 0))
(*StSp_C*) (make_mtx 1 n (fun i j =>

TFC_b tfc (n+1−j) − TFC_a tfc (n+1−j) ∗ TFC_b tfc 0))
(*StSp_D*) (mtx_of_K (TFC_b tfc 0)).

Theorem StSp_TFC_same_filter (tfc : TFCoeffs) : (TFC_n tfc >= 0)%Z −>
filter_from_StSp (SISO_StSp_from_TFC tfc) = filter_from_TFC tfc.

We define a Coq function that associates a (Single Input Single Output)
State-Space to transfer function coefficients, by simply constructing the matrices
as in (8). More importantly, we prove that the filter built from such a State-Space
is the same as the filter obtained directly from the transfer function coefficients.

As we have seen previously, there are at least two ways to build a filter
directly from these coefficients: Direct Form I and Direct Form II. Although
Direct Form I is the canonical one, it is much easier to use Direct Form II in this
proof. The main step is to prove that for any k, the state vector x(k) contains
e(k−n) as its first coefficient, e(k−(n−1)) as its second one, etc. up to e(k−1) as
its n-th coefficient, where e is the auxiliary signal that appears in Direct Form II
(Fig. 2b).

This is done by strong induction, with trivial initialization for k < 0 since
everything is zero. For k ≥ 0, the ones just above the diagonal in A and the
zeros in B mean that the coefficients 1 to n − 1 of x(k) are the coefficients 2
to n of x(k − 1), so the only point left to prove is that x(k)n = e(k − 1). This
is ensured by the last line of A and the last coefficient of B, which make the
matrix operations in (6) unfold into exactly the computation of e(k) in Fig. 2b.

Note that the matrices (A,B,C,D) are not uniquely defined for a given
filter: distinct State-Spaces describe distinct algorithms, but they may build
the same filter. So it is possible to search for the optimal State-Space when
considering the effect of the finite precision degradations [18].
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5 Error Analysis Tools

We now aim at giving tools for a future full error analysis of implemented fil-
ters. Using finite precision arithmetic (floating- or fixed-point arithmetic), some
arithmetic operations may introduce errors (mainly because the number of bits
to represent the values is finite, and may be not enough to represent the exact
result). These errors are then to be taken into account in the following computa-
tions as they may accumulate over time. To bound this accumulation, Sect. 5.1
shows that these errors may be extracted from the main computations. Their
values are then modified over time by to another filter. To bound this error,
we now only need to bound the maximal value of a filter (this may also help
us prevent overflows). This is done in Sect. 5.2 by the Worst-Case Peak Gain
Theorem.

5.1 Error Filter

Let us focus on the errors due to finite precision arithmetic, without more details
on this arithmetic. The corresponding quantization can be modeled as an extra
term, called roundoff error. We consider a State-Space (A,B,C,D), as this is
the most general of the realizations that we have presented. Indeed, we have
proven that from any other of these realizations, we can build a State-Space
that defines the same algorithm and thus the same filter.

At each step, the evaluation of the states and outputs (see Algorithm4b) is
composed of sum-of-products (SoP), one per state and output. Since they are not
exact, each may produce an error, compared to the exact SoP. So (6) becomes:

x∗(k + 1) ← Ax∗(k) + Bu(k) +εx(k)
y∗(k) ← Cx∗(k) + Du(k) +εy (k) (9)

where x∗(k) and y∗(k) are the computed values for the state vector and output
vector, and εx(k) and εy (k) are the vectors of roundoff errors due to the sum-
of-products evaluation. Denote ε(k) the column vector that aggregates those

errors: ε(k) =
(

εx(k)
εy (k)

)
∈ R

n+p, where n is the size of x(k) and p is the size of

y(k).
In order to capture the effects of the finite precision implementation we must

take into account the propagation of the roundoff errors through the data-flow.
The output error Δy(k) is defined as the difference between the outputs of the
implemented and the exact filters: Δy(k) = y∗(k) − y(k). Subtracting (6) to
(9), it follows that Δy(k) can be seen as the output of the vector signal of errors
ε(k) through the filter Hε defined by the State-Space (A,Bε,C,Dε), where
Bε =

(
In 0

)
and Dε =

(
0 Ip

)
. Equivalently (thanks to the linearity of the

considered filter), the implemented filter can be seen as the sum of the exact
filter H and the error filter Hε with ε(k) as input, as shown on Fig. 5.

The filter Hε expresses how the errors propagate through the filter, and
knowing some properties on the roundoff errors ε(k) will lead to properties
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Fig. 5. Equivalent filter, with errors separated.

on the output errors Δy(k), and hence on the accuracy of the implemented
algorithm.

In Coq, we assume we are given a State-Space stsp, a vector input signal u and
vector error signals err_x and err_y. We also assume the obviously reasonable
hypotheses that the implicit size of output vectors for stsp and the order of stsp
are non-negative ( (N_out >= 0)%Z and (StSp_n stsp >= 0)%Z ). We define x’

(recursively) then y’ (using x’) the vector signals corresponding to x∗ and y∗

in (9). We define B_err and D_err the matrices corresponding to Bε and Dε

and errors as the vertical concatenation of err_x and err_y. We prove that y’ is
indeed the sum of the outputs of the exact filter described by stsp for input u,
and of the error filter described by a new State-Space stsp_err for input errors.

5.2 Worst-Case Peak Gain Theorem

The Worst-Case Peak Gain Theorem provides the maximum possible value for
the outputs of a state-space filter. Applied on the filter Hε, it gives a bound on
the output error due to the finite precision computations.

We consider H a SISO LTI filter. Its Worst-Case Peak Gain (WCPG) [19,20],
noted 〈〈H 〉〉, is an element of R defined as:

〈〈H 〉〉 =
∞∑

k=0

|h(k)| (10)

where h is the impulse response of H (see Sect. 2.3). If an input signal u is
bounded by M (∀k, |u(k)| ≤ M), then the corresponding output signal y is
bounded by the value 〈〈H 〉〉M ∈ R. We can also write this as an inequality over
R:

∀u, sup
k∈Z

(H {u}(k)) ≤ 〈〈H 〉〉 sup
k∈Z

(u(k)) (11)

Moreover, the WCPG is optimal: it is the smallest number that verifies (11).
In Coq, we define the WCPG exactly as in (10) using Lim_seq from Coqueli-
cot [10].

Definition dirac : signal := (...) (* 0 -> 1, k <> 0 -> 0 *)

Definition impulse_response (H : filter) : signal := H dirac.
Definition sum_abs_IR (H : filter) (n : nat) :=
sum 0 (Z.of_nat n) (fun k : Z => Rabs ((impulse_response H) k)).

Definition wcpg (H : filter) : Rbar := Lim_seq (sum_abs_IR H).
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To prove (11), we rely on the fact that the image by a LTI filter of a signal
u can be obtained as the convolution of u and the impulse response of the filter:
H {u}(k) =

∑
l∈Z

u(l)h(k − l) (3). We also prove the optimality of the WCPG,
with two theorems depending on whether the WCPG is finite. For both of them,
from the definition of 〈〈H 〉〉 as an infinite sum, we can get an index N such that∑N

k=0 |h(k)| is sufficiently close to 〈〈H 〉〉. Then, we define a signal u such that
for 0 ≤ k ≤ N , u(k) is in {1,−1} and has the same sign as h(N − k). We obtain
H {u}(N) =

∑
l∈Z

u(l)h(N − l) =
∑

0≤l≤N |h(l)|.
Theorem wcpg_theorem (H : filter) (u : signal) (M : R) :
LTI_filter H −> (forall k : Z, Rabs (u k) <= M) −>

(forall k : Z, Rbar_le (Rabs (H u k)) (Rbar_mult wcpg M)).
Theorem wcpg_optimal (H : filter) : LTI_filter H −> is_finite (wcpg H) −>
forall epsilon : R, epsilon > 0 −> exists (u : signal) (N : Z),

( (forall k : Z, Rabs (u k) <= 1) /\ (H u) N > wcpg H − epsilon ).
Theorem infinite_wcpg_optimal (H : filter) : LTI_filter H −>
wcpg H = p_infty −> forall M : R, exists (u : signal) (N : Z),

( (forall k : Z, Rabs (u k) <= 1) /\ H u N > M ).

Another important property of a filter is that, for any bounded input
(∃M, ∀k, |u(k)| ≤ M), the output is bounded as well (by a number M ′). This
property is known as the Bounded Input Bounded Output (BIBO) stability [21],
and is shared by most filters that are of practical interest. We easily defined the
bounded property for signals, and the BIBO property for filters. An important
theorem is that the WCPG of a LTI filter verifying this property is always finite.

Theorem BIBO_wcpg_finite (H : filter) :
LTI_filter H −> BIBO H −> is_finite (wcpg H).

The principle is to prove the contrapositive: if the WCPG is infinite then we will
build an input u bounded by 1 such that the output is unbounded. As seen in
the proof of optimality of the WCPG, for any bound M , we can construct an
input u bounded by 1 and an index N such that |H {u}(N)| > M . Two facts
allow us to get from this construction, where u can be chosen after M , to a single
unbounded signal. Firstly, the property |H {u}(N)| > M only depends on values
of u for 0 ≤ k ≤ N . Secondly, we are able to adapt this construction to leave
an arbitrary number of preset input values unchanged: for any M ∈ R, K ∈ Z

and imposed values u(0), ..., u(K) that are bounded by 1, we can extend them
into a signal u still bounded by 1 such that |H {u}(N)| > M for some index N .
Iterating this construction, we build a signal such that its image has at least a
term exceeding 0, a term exceeding 1, and so on at least a term exceeding M for
any M ∈ Z. These repeated constructions are tricky to handle in Coq, and we
used the {...|...} strong existential construction rather than the existential
quantifier. We relied on the Limited Principle of Omniscience (LPO) to be able
to construct indices N as described above.
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6 Conclusions and Perspectives

We have formalized digital filters in the Coq proof assistant and provided sev-
eral realizations. For one of these realizations, namely the State-Space, we have
proved theorems about error analysis, that will be useful when finite-precision
arithmetic will come into play. A surprising difficulty was the induction on Z

as described in Sect. 3.2: it was to decide that the standard library results were
not exactly what we needed and to state the corresponding theorems and total
functions.

A part of the digital processing results we did not focus on is the transfer
function. We defined it but we have not yet linked it to the rest of the devel-
opment. The z-Transform has been formalized in HOL [3,12] and it will be
interesting to see if similar theorems may be proved with our Coq formalization.

The Worst-Case Peak Gain Theorem has been proved for the SISO filters,
including State-Space. The general formula 〈〈H 〉〉 = |D| +

∑∞
k=0

∣∣∣CAkB
∣∣∣ has

been proved with D and CAkB being 1×1 matrices, implicitly converted to real
numbers. To be applied on the error filter, the proof needs to be generalized to
MIMO filters, which is not difficult but cumbersome due to matrix manipulation.

To handle more realizations and develop proofs (such as error analysis proofs)
only once, we may use another realization called the Specialized Implicit Frame-
work (SIF) [22]. It was designed as a unifying tool to describe and encompass
all the possible realizations of a given transfer function (like the direct forms,
State-Spaces, cascade or parallel decomposition, etc.). SIF is an extension of the
State-Space realization, modified to allow chained Sum-of-Products operations.

A natural perspective is to handle floating-point and fixed-point computa-
tions. Indeed, digital filters are run on embedded software that cannot compute
with real numbers. As far as floating-point arithmetic is concerned, the Flocq
library [23] will suit our needs, but fixed-point will be more complicated. Even if
Flocq has a fixed-point format and the corresponding theorems, we want to take
overflow into account and this is hardly done within Flocq: only the IEEE-754
formalization of binary floating-point numbers assumes an upper bound on the
exponent. Moreover, we may want to have several handling of overflow as done
in [4]. We want at least three modes: (i) ensuring that no overflow happens; (ii)
two’s complement arithmetic, where a modulo operation is used when overflow
happens; (iii) saturation arithmetic, where the maximal value is used when over-
flow happens. Adding two’s complement and overflow modes to Flocq will be a
necessary step towards the formal proof of the behaviors of embedded digital
filters.

The final use of this work is to handle industrial applications, like the filters
and controllers used in telecommunication, automotive or aeronautic with the
following flow. Some filter specifications (like a transfer function) first gives an
algorithm to realize the filter (like the Direct Forms or the State-Space). Then
it is transformed in finite-precision code to be executed on a specific target. The
bound of the output error (due to the finite-precision arithmetic) will be then
deduced and proved.
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Abstract. Mathematical formulae carry complex and essential semantic
information in a variety of formats. Accessing this information with differ-
ent systems requires a standardized machine-readable format that is capa-
ble of encoding presentational and semantic information. Even though
MathML is an official recommendation by W3C and an ISO standard for
representing mathematical expressions, we could identify only very few
systems which use the full descriptiveness of MathML. MathML’s high
complexity results in a steep learning curve for novice users. We hypoth-
esize that this complexity is the reason why many community-driven
projects refrain from using MathML, and instead develop problem-
specific data formats for their purposes. We provide a user-friendly, open-
source application programming interface for controlling MathML data.
Our API allows one to create, manipulate, and efficiently access com-
monly needed information in presentation and content MathML. Our
interface also provides tools for calculating differences and similarities
between MathML expressions. The API also allows one to determine the
distance between expressions using different similarity measures. In addi-
tion, we provide adapters for numerous conversion tools and the canon-
icalization project. Our toolkit facilitates processing of mathematics for
digital libraries without the need to obtain XML expertise.

Keywords: MathML · API · Toolkit · Java

1 Introduction

MathML has the ability to represent presentational and content information.
Several optional features and markup options make MathML a highly versatile,
but complex format. MathML’s ability to mix presentation and content markup
for an expression (hereafter called fully descriptive MathML) makes MathML
increasingly important for mathematical digital libraries. For example, Listing 1
shows a simple example of a cross-referenced parallel markup MathML docu-
ment generated from the LATEX string \frac{a}{b}.
c© Springer International Publishing AG, part of Springer Nature 2018
F. Rabe et al. (Eds.): CICM 2018, LNAI 11006, pp. 104–110, 2018.
https://doi.org/10.1007/978-3-319-96812-4_9
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Listing 1. Parallel markup MathML with examples of cross-references.
<math><semantics>
<mfrac id=”p.2” xref=”c.1”>
<mi id=”p.1” xref=”c.2”>a</mi>
<mi id=”p.3” xref=”c.3”>b</mi></mfrac>

<annotation−xml encoding=”MathML−Content”><apply>
<divide id=”c.1” xref=”p.2”/>
<ci id=”c.2” xref=”p.1”>a</ci>
<ci id=”c.3” xref=”p.3”>b</ci></apply></annotation−xml>

<annotation encoding=”application/x−tex”>\frac{a}{b}</annotation>
</semantics></math>

Although MathML is an official recommendation of the World Wide Web
Consortium since 1998, has been an ISO standard (ISO/IEC 40314) since 2015,
and is also part of HTML5, it is still a rarely used format. For example, the
prominent browser Microsoft Internet Explorer does not support MathML.
Google Chrome supported MathML only in version 24 and dropped it again
in newer versions in favor of MathJax1. Furthermore, we were only able to
identify few databases that use fully descriptive MathML. Most databases use
basic MathML instead, such as the DLMF [4] which only provides presenta-
tional MathML. Numerous tools that process math allow for MathML as an
input or export format. Most of these tools avoid MathML as an internal data
representation. Instead, many systems create their own problem-specific data
representation and implement custom tools to parse MathML for internal pro-
cessing. We hypothesize that the complexity of MathML and the steep learn-
ing curve required to master MathML are the main reasons why community-
driven projects usually avoid the use of content MathML in their mathematical
databases. This workaround causes problems in regard to reusability, restricts
applicability, and decreases efficiency for processing mathematics.

During our research of a MathML benchmark [17], we realized that parsing
MathML data is an error-prone endeavor. Even small changes, such as missing
default namespaces, can cause the parsing process to fail.

With MathTools, we provide a collection of tools that overcome the issues of
complexity and simplifies access to MathML data. MathTools also contains an
open API for easy access to useful services that we used in several of our previous
projects, such as for similarity calculations or for LATEX to MathML conversion
tools [3,9,10,12,15–19]. The tools we have developed are able to parse fully
descriptive MathML and to a certain degree, invalid MathML. Furthermore, we
provide easy access to several useful features implemented in MathML related
projects. These features include similarity metrics, distance calculations, and
Java imports for state-of-the-art conversion tools.

2 Related Work

Many digital libraries avoid using MathML and process mathematics using
custom internal formats instead. The conversion tool LATExml [11] is able to
1 https://bugs.chromium.org/p/chromium/issues/detail?id=152430#c43.

https://www.w3.org/Math/
https://www.w3.org/Math/
https://bugs.chromium.org/p/chromium/issues/detail?id=152430#c43
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generate presentation and content MathML using LATEX input. Instead of pro-
cessing the input directly to MathML, LATExml uses a customized XML format,
and creates MathML in a post-processing step. The Speech Rule Engine (SRE)
implemented in MathJax [2] is able to translate presentation MathML expres-
sions to speech. Translations of the SRE use a set of rules that are applied
to a nonstandard tree representation of the original MathML input. Computer
Algebra Systems (CAS) allow for complex computations of mathematical expres-
sions. These systems usually create their own internal data format, but typically
allow for MathML export. For example, the CAS MAPLE2 parses inputs to a
directed acyclic graph (DAG) presentation [1, Chap. 2], whereas Mathematica
uses a custom tree representation [20, Chap. 33].

There are other tools that internally use MathML in combination with cus-
tomized implementations for parsing MathML. Examples such tools include
MathMLCan [5], a canonicalization tool for MathML data; the Visualization
of Mathematical Expression Trees (VMEXT) [19] for MathML data; and depen-
dency graphs [7] for analyzing relationships between math expressions.

3 MathTools

We provide MathTools, a collection of tools for convenient handling of MathML
data and an open Java API to access useful services related to MathML
data. MathTools allows one to parse, manipulate, and analyze fully descrip-
tive MathML data conveniently. We haven chosen Java to realize MathTools,
because the majority of related work is also implemented in Java. Java is also
the most frequently used programming language. The source of this project is
publicly available on GitHub3 and on maven-central under an Apache 2 license.

The project is organized in multiple modules, of which the core module pro-
vides the main functionality. Figure 1 illustrates possible workflows for processing
the input and shows the interaction of different modules. The core module is
designed for parsing, loading, storing, and manipulating presentation and con-
tent MathML data. The core also provides helper functions for easy access to
specific information. Examples of supported operations include splitting presen-
tation and content trees; accessing original TEX data if available; and extracting
all of the identifiers, e.g., mi or ci elements from the data. The core module also
allows one to ‘clean’ MathML of unwanted features. Such features include cross-
references or entire content subtrees. This functionality is particularly helpful for
obtaining simple MathML for testing and learning purposes.

2 The mention of specific products, trademarks, or brand names is for purposes of iden-
tification only. Such mention is not to be interpreted in any way as an endorsement
or certification of such products or brands by the National Institute of Standards
and Technology, nor does it imply that the products so identified are necessarily
the best available for the purpose. All trademarks mentioned herein belong to their
respective owners.

3 https://github.com/ag-gipp/MathMLTools.

https://github.com/ag-gipp/MathMLTools
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Fig. 1. The pipeline schema of MathTools and the modules. The orange arrow indicates
the general workflow for processing a MathML input to a valid MathML output.
The converters also allows for mathematical LATEX input, while the MathML feature
requires valid MathML input. The gold module provides valid MathML without the
core module. Distances and similarities can be calculated using the similarity module.
Single elements or subtrees from valid MathML can be accessed through the core
module. (Color figure online)

We equipped MathTools with several extra modules, which we consider useful
for typical use cases related to processing MathML data. MathTools contains
the following modules.

Gold: is part of the MathMLBen project [17], whose purpose is to provide a
comfortable interface to MathML gold standards within Java. The module uses
Plain Old Java Objects (POJOs) for representing entries of the gold standard.
The gold module can be used to implement benchmarks that use MathML.

Converters: is an outgrowth of the MathMLBen project and provides fast
access to state-of-the-art conversion tools. We implemented a Java interface for
each supported tool and the MathMLCan [5] that allows canocalization of the
tool’s outputs. The module allows one to: (1) embed uniform MathML data
into translation workflows; (2) conveniently change the translation engines; and
(3) add new conversion tools to the API.

Libraries: is a collection of reliable XPath and XQuery expressions for accessing
elements in MathML data. Due to the XML structure of MathML documents,
MathTools uses data query languages to access specific elements. The library
module can be used to reliably query data from MathML documents indepen-
dently of programming languages.

Similarity: implements several distance and similarity measures for MathML
documents. Comparing MathML data is a common task for many mathematical
information retrieval systems, e.g., for mathematical search engines and for pla-
giarism detection systems that analyze mathematical expressions, as well as for
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many evaluation and benchmark scenarios. All measures included in the mod-
ule, except the tree edit distance, produce histograms for MathML elements
using the names of the elements and their accumulated frequency of occurrence.
Frequency histograms of MathML elements have been successfully applied as
part of plagiarism detection methods to determine the similarity of mathemati-
cal expressions, see [9,10] for a more detailed explanation. We implemented the
following similarity measures.

• Histogram Distance: calculates the absolute and relative differences of his-
tograms formed from MathML data. A small histogram distance indicates
semantic similarity between MathML expressions.

• Tree Edit Distance: calculates the number of changes that must be per-
formed to transform one MathML tree into another. The user can control the
weights for insertions, deletions, and renaming of elements. We use an imple-
mentation of RTED [13] to perform these calculations. Tree edit distances are
helpful for detecting structural changes of MathML trees.

• Earth Mover Distance (EMD): is originally a distance measure for com-
paring probability distributions. The measure models a cost function for
changing one distribution to another. In our case, the probability distribution
is the histogram of the MathML data. Our calculations are performed using
a Java implementation of [14]. EMD is widely used in multimedia information
retrieval and for pattern recognition algorithms.

• Cosine Similarity: is a distance measure between two non-zero vectors. In
our case, the vectors are represented by the histogram of the MathML data.

Note that EMD and Cosine Similarity can be used for entire documents. In this
case, the histograms are an accumulation of all MathML expressions in the
document. In this scenario, EMD and Cosine Similarity metrics obtain semantic
similarities between documents.

4 Conclusion and Future Work

The MathTools project is a unified toolkit to facilitate working with MathML.
By using MathTools, other researchers will no longer need to develop their own
data representations, nor will they have to deal with the full complexity of
XML. The developed tools are actively being used in our own projects, such
as MathMLBen [17], VMEXT [19], the Mathematical Language Processing
(MLP) Project [12], and HyPlag [6,8,10] for mathematical plagiarism detection.
Our hope is that the tools presented in this paper will help others to realize
MathML related projects in the future.

Our goal is to actively maintain and extend MathTools. Plans for current and
future work include enlarging the libraries of XPath and XQuery expressions and
providing transformation tools for MathML trees. Furthermore, we are currently
working on semantic enhancements of MathML through the use of WikiData (as
proposed in the MathMLBen project). This semantic enhanced MathML data
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can be used to calculate semantic distances through the calculation of distances
between WikiData links. We plan to maintain the current API for the foreseeable
future.
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Abstract. We describe the Aligator.jl software package for automat-
ically generating all polynomial invariants of the rich class of extended
P-solvable loops with nested conditionals. Aligator.jl is written in the
programming language Julia and is open-source. Aligator.jl transforms
program loops into a system of algebraic recurrences and implements
techniques from symbolic computation to solve recurrences, derive closed
form solutions of loop variables and infer the ideal of polynomial invari-
ants by variable elimination based on Gröbner basis computation.

1 Introduction

In [2] we described an automated approach for generating loop invariants as
a conjunction of polynomial equalities for a family of loops, called extended
P-solvable loops. For doing so, we abstract loops to a system of algebraic recur-
rences over the loop counter and program variables and compute polynomial
equalities among loop variables from the closed form solutions of the recurrences.

Why Julia? Our work was previously implemented in the Aligator software
package [4], within the Mathematica system [8]. While Mathematica provides
high-speed implementations of symbolic computation techniques, it is a propri-
etary software which is an obstacle for using Aligator in applications of invariant
generation. The fact that Mathematica provides no possibility to parse and mod-
ify program code was also a reason to move to another environment. To make
Aligator better suited for program analysis, we decided to redesign Aligator in
the Julia programming language [3]. Julia provides a simple and efficient interface
for calling C/C++ and Python code. This allows us to resort to already existing
computer algebra libraries, such as Singular [1] and SymPy [5]. Julia also pro-
vides a built-in package manager that eases the use of other packages and enables
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others to use Julia packages, including our Aligator.jl tool. Before committing
to Julia, we also considered the computer algebra system SageMath [7] and an
implementation directly in C/C++ as options for redesigning Aligator. The for-
mer hosts its own Python version which makes the installation of other Python
packages (e.g. for parsing source code) tedious and error-prone. While C/C++
is very efficient and provides a large ecosystem on existing libraries, developing
C/C++ projects requires more effort than Julia packages. We therefore believe
that Julia provides the perfect mix between efficiency, extensibility and conve-
nience in terms of programming and symbolic computations.

Aligator.jl. This paper overviews Aligator.jl and details its main components.
The code of Aligator.jl is available open-source at:

https://github.com/ahumenberger/Aligator.jl.

All together, Aligator.jl consists of about 1250 lines of Julia code. We evalu-
ated Aligator.jl on challenging benchmarks on invariant generation. Our exper-
imental results are available at the above mentioned link and demonstrate the
efficiency of Aligator.jl.

Contributions. Our new tool Aligator.jl significantly extends and improves
the existing software package Aligator as follows:

– Unlike Aligator, Aligator.jl is open-source and easy to integrate into other
software packages.

– Aligator.jl implements symbolic computation techniques directly in Julia
for extracting and solving recurrences and generates polynomial dependencies
among exponential sequences.

– Contrarily to Aligator, Aligator.jl handles not only linear recurrences with
constant coefficients, called C-finite recurrences. Rather, Aligator.jl also
supports hypergeometric sequences and sums and term-wise products of C-
finite and hypergeometric recurrences [2].

– Aligator.jl is complete. That is, a finite basis of the polynomial invariant
ideal is always computed.

2 Background and Notation

Aligator.jl computes polynomial invariants of so-called extended P-solvable
loops [2]. Loop guards and test conditions are ignored in such loops and denoted
by . . . or true, yielding non-deterministic loops with sequencing and conditionals.
Program variables V = {v1, . . . , vm} of extended P-solvable loops have numeric
values, abstracted to be rational numbers. The assignments of extended P-
solvable loops are of the form vi :=

∑m
j=0 civj+cm+1 with constants c0, . . . , cm+1,

or vi := r(n)vi, where r(n) is a rational function in the loop counter n. We give
an example of an extended P-solvable loops in Fig. 1.

https://github.com/ahumenberger/Aligator.jl
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In correspondence to V, the initial values of the variables are given by the set
V0 := {v1(0), . . . , vm(0)}; that is, vi(0) is the initial value of vi. In what follows,
we consider V and V0 fixed and state all definitions relative to them. Given
an extended P-solvable loop as input, Aligator.jl generates all its polynomial
equality invariants. By a polynomial equality invariant, in the sequel simply
polynomial invariant, we mean the equality:

p(v1, . . . , vm, v1(0), . . . , vm(0)) = 0, (1)

where p is a polynomial in V ∪ V0 with rational number coefficients. In what
follows, we also refer to the polynomial p in (1) as a polynomial invariant. For
n ∈ N \ {0} and a loop variable vi, we write vi(n) to denote the value of vi after
the nth loop iteration. As (1) is a loop invariant, we have:

p(v1(n), . . . , vm(n), v1(0), . . . , vm(0)) = 0 for n > 0.

while . . . do
if . . . then

r := r − v; v := v + 2
else

r := r + u; u := u+ 2
end if

end while

Fig. 1. An extended P-solvable loop.

As shown in [2,6], the set of poly-
nomial invariants in V, w.r.t. the initial
values V0, forms a polynomial ideal,
called the polynomial invariant ideal.
Given an extended P-solvable loop,
Aligator.jl computes all its polyno-
mial invariants as it computes a basis
of the polynomial invariant ideal, a
finite set of polynomials {b1, . . . , bk}.
Any polynomial invariant can be writ-
ten as a linear combination p1b1+· · ·+
pkbk for some polynomials p1, . . . , pk.

3 System Description of Aligator.jl

Inputs to Aligator.jl are extended P-solvable loops and are fed to Aligator.jl

as String in the Julia syntax. We illustrate the use of Aligator.jl on our example
from Fig. 1:

Example 1. Fig. 1 is specified as a Julia string as follows:

julia> loopstr = """
while true

if true
r = r - v; v = v + 2

else
r = r + u; u = u + 2

end
end

"""

Polynomial loop invariants are inferred using Aligator.jl by calling the function
aligator(str::String) with a string input containing the loop as its argument.
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julia> aligator(loopstr)
Singular Ideal over Singular Polynomial Ring (QQ),(r_0,v_0,u_0,r,v,u)
with generators (v_0^2-u_0^2-v^2+u^2+4*r_0-2*v_0+2*u_0-4*r+2*v-2*u)

The result of Aligator.jl is a Gröbner basis of the polynomial invariant ideal.
It is represented as an object of type Singular.sideal that is defined in the
Singular package. For Fig. 1, Aligator.jl reports that the polynomial invariant
ideal is generated by the polynomial invariant {v20 − u2

0 − v2 + u2 + 4r0 − 2v0 +
2u0 − 4r + 2v − 2u = 0} in variables r0, v0, u0, r, v, u, where r0, v0, u0 denote
respectively the initial values of r, v, u.

We now overview the main parts of Aligator.jl: (i) extraction of recurrence
equations, (ii) recurrence solving and (iii) computing the polynomial invariant
ideal.

Extraction of Recurrences. Given an extended P-solvable loop as a Julia
string, Aligator.jl creates the abstract syntax tree of this loop. This tree is
then traversed in order to extract loop paths (in case of a multi-path loop) and
the corresponding loop assignments. The resulting structure is then flattened in
order to get a loop with just one layer of nested loops. Within Aligator.jl this is
obtained via the method extract_loop(str::String). As a result, the extracted
recurrences are represented in Aligator by an object of type Aligator.MultiLoop,
in case the input is a multi-path loop; otherwise, the returned object is of type
Aligator.SingleLoop.

Example 2. Using Example 1, Aligator.jl derives the loop and its corresponding
systems of recurrences:

julia> loop = extract_loop(loopstr)
2-element Aligator.MultiLoop:
[r(n1+1) = r(n1) - v(n1), v(n1+1) = v(n1) + 2, u(n1+1) = u(n1)]
[r(n2+1) = r(n2) + u(n2), u(n2+1) = u(n2) + 2, v(n2+1) = v(n2)]

As loop paths are translated into single-path loops, Aligator.jl introduces a
loop counter for each path and computes the recurrence equations of the loop
variables r, v, u with respect to the loop counters n1 and n2.

Recurrence Solving. For each single-path loop, its system of recurrences
is solved. Aligator.jl performs various simplifications on the extracted recur-
rences, for example by eliminating cyclic dependencies introduced by auxiliary
variables and uncoupling mutually dependent recurrences. The resulting, simpli-
fied recurrences represent sums and term-wise products of C-finite or hyperge-
ometric sequences. Aligator.jl computes closed forms solutions of such recur-
rences by calling the method closed_forms and using the symbolic manipulation
capabilities of SymPy.jl:

Example 3. For Example 2, we get the following systems of closed forms:
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julia> cforms = closed_forms(loop)
2-element Array{Aligator.ClosedFormSystem,1}:
[v(n1) = 2*n1+v(0), u(n1) = u(0), r(n1) = -n1^2-n1*(v(0)-1)+r(0)]
[u(n2) = 2*n2+u(0), v(n2) = v(0), r(n2) = n2^2+n2*(u(0)-1)+r(0)]

The returned value is an array of type Aligator.ClosedFormSystem.

Invariant Ideal Computation. Using the closed form solutions for (each)
single-path loop, Aligator.jl next derives a basis of the polynomial invariant
ideal of the (multi-path) extended P-solvable loop. To this end, Aligator.jl uses
the Singular.jl package for Gröbner basis computations in order to eliminate
variables in the loop counter(s) from the system of closed forms. For multi-path
loops, Aligator.jl relies on iterative Gröbner basis computations until a fixed
point is derived representing a Gröbner basis of the polynomial invariant ideal
– see [2] for theoretical details.

Computing polynomial invariants within Aligator.jl is performed by
the function invariants(cforms::Array{ClosedFormSystem,1}). The result is an
object of type Singular.sideal and represents a Gröbner basis of the polynomial
invariant ideal in the loop variables.

Example 4. For Example 3, Aligator.jl generates the following Gröbner basis,
as already described on page 4:

julia> ideal = invariants(cforms)
Singular Ideal over Singular Polynomial Ring (QQ),(r_0,v_0,u_0,r,v,u)
with generators (v_0^2-u_0^2-v^2+u^2+4*r_0-2*v_0+2*u_0-4*r+2*v-2*u)

4 Experimental Evaluation

Our approach to invariant generation was shown to outperform state-of-the-
art tools on invariant generation for multi-path loops with polynomial arith-
metic [2]. In this section we focus on the performance of our new implementa-
tion in Aligator.jl and compare results to Aligator [4]. In our experiments, we
used benchmarks from [2]. Our experiments were performed on a machine with
a 2.9 GHz Intel Core i5 and 16 GB LPDDR3 RAM. When using Aligator.jl,
the invariant ideal computed by Aligator.jl was non-empty for each example;
that is, for each example we were able to find non-trivial invariants.

Tables 1(a) and (b) show the results for a set of single- and multi-path loops
respectively. In both tables the first column shows the name of the instance,
whereas columns two and three depict the running times (in seconds) of Aligator
and Aligator.jl, respectively.

By design, Aligator.jl is at least as strong as Aligator concerning the qual-
ity of the output. When it comes to efficiency though, we note that Aligator.jl

is slower than Aligator. We expected this result as Aligator uses the highly opti-
mized algorithms of Mathematica. When taking a closer look at how much time
is spent in the different parts of Aligator.jl, we observed that the most time in
Aligator.jl is consumed by symbolic manipulations. Experiments indicate that
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Table 1. Experimental evaluation of Aligator.jl.

(a)

Single-path Aligator Aligator.jl

cohencu 0.072 2.879
freire1 0.016 1.159
freire2 0.062 2.540
petter1 0.015 0.876
petter2 0.026 1.500
petter3 0.035 2.080
petter4 0.042 3.620

(b)

Multi-path Aligator Aligator.jl

divbin 0.134 1.760
euclidex 0.433 3.272
fermat 0.045 2.159
knuth 55.791 12.661
lcm 0.051 2.089
mannadiv 0.022 1.251
wensley 0.124 1.969

we can improve the performance of Aligator.jl considerably by using the Julia
package SymEngine.jl instead of SymPy.jl. We believe that our initial experi-
ments with Aligator.jl are promising and demonstrate the use of our efforts in
making our invariant generation open-source.

5 Conclusion

We introduced the new package Aligator.jl for loop invariant generation in the
programming language Julia. Our Aligator.jl tool is an open-source software
package for invariant generation using symbolic computation and can easily be
integrated with other libraries and tools.
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Curry, M.J., Terrel, A.R., Roučka, S., Saboo, A., Fernando, I., Kulal, S., Cimrman,
R., Scopatz, A.: SymPy: symbolic computing in Python. PeerJ Comput. Sci. 3, e103
(2017). https://doi.org/10.7717/peerj-cs.103

http://www.singular.uni-kl.de
http://www.singular.uni-kl.de
https://doi.org/10.1007/978-3-319-73721-8_11
https://doi.org/10.1007/978-3-319-73721-8_11
https://julialang.org/
https://doi.org/10.1007/978-3-540-71070-7_22
https://doi.org/10.1007/978-3-540-71070-7_22
https://doi.org/10.7717/peerj-cs.103


Aligator.jl - A Julia Package for Loop Invariant Generation 117
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Abstract. ENIGMA is an efficient implementation of learning-based
guidance for given clause selection in saturation-based automated theo-
rem provers. In this work, we describe several additions to this method.
This includes better clause features, adding conjecture features as the
proof state characterization, better data pre-processing, and repeated
model learning. The enhanced ENIGMA is evaluated on the MPTP2078
dataset, showing significant improvements.

1 ENIGMA: Efficient Learning of Given Clause Guidance

State-of-the-art saturation-based automated theorem provers (ATPs) for first-
order logic (FOL), such as E [5], are today’s most advanced tools for general
reasoning across a variety of mathematical and scientific domains. Many ATPs
employ the given clause algorithm, translating the input FOL problem T ∪{¬C}
into a refutationally equivalent set of clauses. The search for a contradiction
is performed maintaining sets of processed (P ) and unprocessed (U) clauses.
The algorithm repeatedly selects a given clause g from U , extends U with all
clauses inferred with g and P , and moves g to P . This process continues until
a contradiction is found, U becomes empty, or a resource limit is reached. The
search space of this loop grows quickly and it is a well-known fact that the
selection of the right given clause is crucial for success.

ENIGMA [4] stands for Efficient learN ing-based Inference Guiding MAchine
that steers clause selection in saturation-based ATPs like E. ENIGMA is based
on a simple but fast logistic regression algorithm effectively implemented by
the LIBLINEAR open source library [2]. In order to employ logistic regression,
first-order clauses need to be translated to fixed-length numeric feature vec-
tors. ENIGMA uses (top-down-)oriented term-tree walks of length 3 as features.
For example, a unit clause “P (f(a, b))” contains only features “(P, f, a)” and
“(P, f, b)” (see [4, Sect. 3.2] for details). Features are enumerated and a clause
C is translated to the feature vector ϕC whose i-th member counts the number
of occurrences of the i-th feature in clause C. We also count top-level literal
symbols (positive or negative) and we unify variables and Skolem symbols.
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In order to train an ENIGMA predictor E , all the given clauses C from a
set of previous successful proof searches are collected. The given clauses used in
the proofs are classified as positive (C+ ⊆ C) and the remaining given clauses as
negative (C− ⊆ C). The clause sets (C+, C−) are turned into feature vector sets
(Φ+, Φ−) using a fixed feature enumeration π. Then a LIBLINEAR classifier w
(a weight vector) is trained on the classification (Φ+, Φ−), classifying each clause
as useful or un-useful for the proof search. The classifier w and enumeration
π give us a predictor E = (w, π) which is used to guide next proof searches
in combination with other E heuristics. Thanks to the fast feature extraction
mechanism and the fast (linear) evaluation of the features in a particular learned
model, there is no slowdown of the given clause loop. In fact, ENIGMA is faster
than some of the more advanced hand-programmed E evaluation heuristics [3].
The training speed allows fast MaLARea-style [8] iterative loop between ATP
proving and re-learning [4, Sect. 5.1].

2 Enhanced ENIGMA Features and Classifiers

This section briefly describes improvements from the previous ENIGMA ver-
sion [4].

Sparse Features Encoding. Previously, ENIGMA was tested only on the
CASC 2016 AIM benchmark [7] which contains only about 10 different sym-
bols. Using a straightforward dense encoding yielded feature vectors of size 103,
because ENIGMA features are triples of symbols. Such exhaustive enumeration
of feature vectors was too big for larger symbol signatures. The term-tree walks
features are, however, relatively sparse: symbols are typically applied only to a
small number of other symbols. Hence we switched to a sparse encoding, using
only the features which actually appear in the training data. This significantly
reduced the feature vector sizes while preserving the predicting accuracy. This
alone allows us to test ENIGMA on Interactive Theorem Proving (ITP) bench-
marks which tend to have much larger signatures.

Conjecture Features. Second, for AIM we initially did not consider conjectures
to be a part of the model. Hence the same clauses were being recommended in
every possible AIM proof search. This can work (similarly to the hint method [9])
on benchmarks of very related problems (such as AIM), but hardly on large
ITP-based formal libraries, which are much more heterogeneous. To overcome
this, we embed the conjecture features in the feature vectors. For a clause C,
instead of using the vector ϕC of length n (where n is the number of different
features appearing in the training data), we use a vector (ϕC , ϕG) of length 2n
where ϕG contains the features of the conjecture G. For a training clause C,
G corresponds to the conjecture of the proof search where C was selected as a
given clause. When classifying a clause C during a proof search, G corresponds
to the conjecture currently being proved.

Horizontal Features. The previously described term-tree walk features of
length 3, can be seen as vertical chains in the term-tree. In order to provide
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a more accurate representation of clauses by feature vectors, we additionally
introduce horizontal features. For every term f(t1, . . . , tn), we introduce the fea-
ture f(s1, . . . , sn) where si is the top-level symbol of the subterm ti. Our feature
enumeration π is extended with the horizontal features from the training data,
and the feature vectors again record the number of occurrences of each such
feature in a clause. For example, the unit clause “P (f(g(a), g(a)))” is character-
ized by one occurrence of horizontal features “P (f)” and “f(g, g)”, and by two
occurrences of “g(a)”.

Static Features. We have also introduced static clause features, based on exist-
ing E’s feature vectors used for subsumption indexing [6]. The first three fea-
tures are signature independent and consist of (1) the clause length, and (2–3)
the counts of positive/negative literals. For each signature symbol f , we also
use (4–5) the number of occurrences of f in positive/negative literals, (6–7) the
maximal depth of any occurrence of f in positive/negative literals.

E uses clause evaluation functions, which assign a numeric weight to every
clause, to select the next given clause. The weight is computed for every gener-
ated clause and the clause with the smallest weight is selected. The ENIGMA
weight function for predictor E assigns a smaller weight to clauses positively
classified by E . Previously, we had to combine this weight with the clause length
to prevent E from generating very long positively classified clauses. With the
new static features this is no longer necessary.

Accuracy-Balancing Boosting. The training data produced by previous proof
searches are typically unbalanced in the number of positive and negative samples.
Usually there are many more negatives and predictors trained directly on such
data usually mis-classify positive examples much more than the negative ones.
Previously, we used trivial boosting methods, like repeating positive samples
ten times, to correct this behavior. Now we use the following iterative boosting
method. Given training data (C+

0 , C−
0 ) we create an ENIGMA predictor E0, test

E0 on the training data, and collect the positives mis-classified by E0. We then
repeat (boost) the mis-classified positives in the training data, yielding updated
(C+

1 , C−
0 ) and an updated predictor E1. We iterate this process, and with every

iteration, the accuracy on the positive samples is increased, while the accuracy
on the negatives is typically decreased. We finish the boosting when the positive
accuracy exceeds the negative one.

Directed Looping. An E strategy S is a collection of E’s options that influence
the proof search. An important part of every strategy S is the collection of
clause evaluation functions used for given clause selection. Given an ENIGMA
predictor E trained on proofs done with S, we can either (1) use E alone to select
the given clause, or we can (2) combine E with other evaluation functions from
S. In (2) we by default select half of the given clauses by E , and the other half by
the original selection functions from S. This gives rise to two new E strategies,
denoted (1) S � E , and (2) S ⊕ E . In practice, there is usually no clear winner
between the two as there are problems solved by the first one but not the other,
and the other way round.
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Given a set of training problems P and a strategy S, we can run S for each
problem from P , extract training samples C0 = (C+

0 , C−
0 ), and create the predictor

E0. Then we can evaluate both ENIGMA strategies S � E0 and S ⊕ E0 on P and
obtain additional training samples. This yields new training samples C1 ⊇ C0

and a new predictor E1. The predictor E1 usually combines the strengths of both
ENIGMA strategies S � E0 and S ⊕ E0. This looping process can be iterated
and after several iterations, strategies S �Ei and S ⊕Ei start performing almost
equally, typically outperforming the initial strategy S on P . This way we produce
an enhanced single strategy. Currently we just iterate this process three times.
Future work includes adaptive termination criteria based, for instance, on a
respective performance of S � Ei and S ⊕ Ei.

3 Experimental Evaluation

The previous version of ENIGMA was evaluated with a single E strategy on the
CASC 2016 AIM benchmark [7]. Here we additionally evaluate on the Mizar
MPTP2078 [1] dataset (MZR) as an example ITP benchmark. This section
presents three experiments designed to (1) evaluate the effect of conjecture fea-
tures on prediction accuracies, (2) evaluate other enhancements on the training
data, and to (3) test the ability of ENIGMA to generalize to similar problems.

We use both the AIM and MZR benchmarks to evaluate the effect of con-
jecture features on predictor accuracy. We first evaluate 10 E strategies on the
benchmarks and construct 10 different ENIGMA predictors. We measure the 10-
fold cross-validation accuracy, where the data are divided into 10 subsets (folds)
with 9 folds used for training and one fold left aside for evaluation. As expected,
adding the conjecture features helps on the MZR data, improving an averaged
10-fold cross-validation accuracy from 88.8% to 91.5%. On AIM this improves
from 76.3% to 77.8%. We explain this by the AIM problems having more similar
conjectures. The feature vector sizes vary from 60 to 130 on AIM and from 2300
to 22000 on MZR.

Next we evaluate the effect of the other enhancements on MZR. The MZR
problems are naturally clustered into 26 categories, based on the original Mizar
article which was the source for the Mizar-to-FOL translation. Hence the prob-
lems within each category are typically related and use similar symbols. The
E auto mode contains more than 60 strategies and we select the ten best-
performing on MZR problems. This gives us a portfolio of 10 well-performing
strategies, denoted autos, and we attempt to further improve this portfolio using
the ENIGMA predictors.

We train a separate predictor ES,A for every strategy S from autos, and for
every article (category) A, using all the enhancements from Sect. 2. This gives us
10 ENIGMA strategies per article (currently, for predictor ES,A we simply take
S ⊕ E ′

S,A after 3 iterations of looping). Now, on each article A, we can compare
the portfolio of the ten autos with the portfolio of the ten ENIGMA strategies
trained on A. This tells us how ENIGMA strategies perform on the training data.
Table 1 summarizes the results for several articles. All the E runs were performed
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Table 1. Best-performing ENIGMA models for selected articles.

article total autos ENIG ENIG+
compts 23 7 7 +0.0%
enumset1 96 86 86 +0.0%
pre 37 21 22 +4.8%
relset 32 20 22 +10.0%
funct 235 160 185 +15.6%

article total autos ENIG ENIG+
filter 65 6 7 +16.7%

orders 61 28 36 +28.6%
wellord1 59 27 35 +29.6%
yellow19 38 12 18 +50.0%
waybel 174 42 74 +76.2%

with 10 s time limit per problem (precisely, each portfolio strategy runs for 1 s
on a problem). The total column shows the number of problems in the article
A, autos is the number of problems solved by autos, the ENIG column presents
the number of problems solved by the ENIGMA strategies, and finally ENIG+
summarizes the gain in percentage of the ENIGMA strategies on autos. On the
training data, ENIGMA strategies were able to solve all the problems solved by
autos and also additional problems. The gain in percentage varies from 0% to a
surprisingly high value of 76.2%, with 15.7% on average.

Table 2. Overall portfolio improvement.

portfolio Solved E% autos% autos+ autos−
E (auto-schedule) 1343 +0% −3.8% +25 −79

autos (10) 1397 +4.0% +0% +0 −0

ENIGMA (62) 1450 +7.9% +3.7% +103 −50

The next experiment is designed to test the ability of ENIGMA predictors
to generalize, and to enrich an already well-performing portfolio. From the pre-
vious experiment, we have altogether 26∗10 ENIGMA strategies. The strategies
trained on article A have been already evaluated on A, and thus we can compute
their greedy cover on A. To reduce the number of strategies, we take only the
strategies in the greedy cover of some article A. This reduction gives us a portfo-
lio of 62 ENIGMA strategies, which can now be compared with the performance
of the ten autos on the whole MZR benchmark. We use the time limit of 300 s
per problem, equally divided among the strategies in a portfolio.

The results are presented in Table 2. We additionally evaluate E in the auto-
schedule mode, which is a state-of-the-art general-purpose native strategy sched-
uler of E. The numbers in parentheses indicate the number of problems in a
given portfolio. The E% column measures the gain on auto-schedule in percents,
autos% measures the gain on autos, and autos+ and autos− state the difference
between the problems solved by the respective portfolio and by autos. The autos
portfolio outperforms auto-schedule even though auto-schedule contains all the
strategies from autos (and more). This is because we have constructed autos
from the ten strategies which perform (greedily) best on the MZR benchmark.
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We can see that the ENIGMA strategies solve 3.7% more problems than the
initial autos strategies, and 7.9% more than auto-schedule. This means that the
ENIGMA strategies are capable of generalizing to problems similar to the train-
ing problems with a measurable improvement. Without the enhancements from
Sect. 2, we had been able to improve single strategies, but we were much less
successful in enriching a well-performing portfolio of diverse strategies. The new
ENIGMA enhancements are instrumental for achieving this.

4 Software Distribution

We added support for ENIGMA to E Prover1 and we developed a simple Python
module atpy for construction of ENIGMA models and evaluation of E strate-
gies. The module is available at our web page2 and it contains an example
with instructions (see examples/README.ENIGMA.md) on how to use atpy for
ENIGMA experiments. The required binaries for LIBLINEAR and the extended
E Prover are provided (for x86) together with example benchmark problems and
E strategies.

The atpy module is capable of (1) evaluation of E strategies on custom bench-
mark problems, (2) extraction of training samples from E outputs, (3) construc-
tion of ENIGMA models with boosting and looping, and of (4) construction of E
strategies enhanced with ENIGMA predictors. The ENIGMA models are stored
in the directory Enigma in separate subdirectories. The model directory contains
files (1) model.lin with LIBLINEAR weight vector w and (2) enigma.map with
feature enumeration π. Horizontal features are represented by strings of the form
“f.s1. · · · .sn”, and vertical features by “s1 : s2 : s3”. The extended E supports
our clause evaluation function Enigma which takes a relative model directory
as an argument. Our E extension additionally includes a feature extraction tool
enigma-features required by atpy.

References

1. Alama, J., Heskes, T., Kühlwein, D., Tsivtsivadze, E., Urban, J.: Premise selection
for mathematics by corpus analysis and kernel methods. J. Autom. Reason. 52(2),
191–213 (2014). https://doi.org/10.1007/s10817-013-9286-5

2. Fan, R., Chang, K., Hsieh, C., Wang, X., Lin, C.: LIBLINEAR: a library for large
linear classification. J. Mach. Learn. Res. 9, 1871–1874 (2008)

3. Jakub̊uv, J., Urban, J.: Extending E prover with similarity based clause selection
strategies. In: Kohlhase, M., Johansson, M., Miller, B., de de Moura, L., Tompa, F.
(eds.) CICM 2016. LNCS (LNAI), vol. 9791, pp. 151–156. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-42547-4 11

4. Jakub̊uv, J., Urban, J.: ENIGMA: efficient learning-based inference guiding
machine. In: Geuvers, H., England, M., Hasan, O., Rabe, F., Teschke, O. (eds.)
CICM 2017. LNCS (LNAI), vol. 10383, pp. 292–302. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-62075-6 20

1 https://github.com/ai4reason/eprover/tree/ENIGMA.
2 https://github.com/ai4reason/atpy.

https://doi.org/10.1007/s10817-013-9286-5
https://doi.org/10.1007/978-3-319-42547-4_11
https://doi.org/10.1007/978-3-319-62075-6_20
https://github.com/ai4reason/eprover/tree/ENIGMA
https://github.com/ai4reason/atpy


124 J. Jakub̊uv and J. Urban

5. Schulz, S.: E - a brainiac theorem prover. AI Commun. 15(2–3), 111–126 (2002)
6. Schulz, S.: Simple and efficient clause subsumption with feature vector indexing.

In: Bonacina, M.P., Stickel, M.E. (eds.) Automated Reasoning and Mathematics.
LNCS (LNAI), vol. 7788, pp. 45–67. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-36675-8 3

7. Sutcliffe, G.: The 8th IJCAR automated theorem proving system competition
- CASC-J8. AI Commun. 29(5), 607–619 (2016). https://doi.org/10.3233/AIC-
160709

8. Urban, J., Sutcliffe, G., Pudlák, P., Vyskočil, J.: MaLARea SG1 - machine learner
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Abstract. We introduce an approach to include formalized mathemat-
ics in regular undergraduate mathematics courses. In order to enable
automatic parsing and checking, the LATEX code of our lecture notes
systematically uses strict syntax conventions for all definitions and theo-
rems, including in particular an unambiguous grammar for all formulas.
Resulting from several years of experience, we present a body of about
1000 pages of notes for a course on modelling and a sequence of three
courses on analysis and calculus which are a regular part in the under-
graduate mathematics curriculum at the University of Constance. We
explain the basic structure of the formalization and its syntax and dis-
cuss the practicability of the approach.

Keywords: Annotated lecture notes · Formalized mathematics
Mathematical meta language

1 Introduction

The project MATh as acronym for meta-language for models, a lgorithms and
theories [1] originated in an attempt to reduce the difficulties of first-year-
students in mathematics. These difficulties which are mainly related to the higher
level of rigor compared to school-mathematics, are normally alleviated by exem-
plary explanations of logic and proof concepts alongside the development of the
actual theory. This implicit learning-by-doing approach is also adopted in the
tutorials, where students learn the rules of mathematics in a trial and error
fashion while concentrating on the mathematical content.

In order to make the underlying mechanisms of mathematics more transpar-
ent, we tried to formulate and explicitly teach the rules in a way that can easily
be grasped by beginners.

Our considerations have been used in the redesign of a four-week prepara-
tory course (∼160 students) which is offered at Constance before the start of
the regular lectures. Subsequently, the approach has been adopted in the series
of analysis lectures from first to third semester (starting with ∼300 students).
Since 2014, the formalized approach is regularly used in the mandatory lecture
c© Springer International Publishing AG, part of Springer Nature 2018
F. Rabe et al. (Eds.): CICM 2018, LNAI 11006, pp. 125–130, 2018.
https://doi.org/10.1007/978-3-319-96812-4_12
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on mathematical modelling which focuses on the formulation and definition of
models for real-world-problems (∼40 students per year). Altogether, the lecture
notes of these courses form a collection of about 1000 pdf-pages where the formal
parts are structured with specific environments and macros in the corresponding
LATEX-files (the analysis-series [2] has ∼30,000 lines of LATEX).

The practical usage in lectures also led to continuous improvements of the
formalization due to the direct and indirect feedback from students in tutorials,
examinations or discussions and due to the need to formulate the quite general
lecture material concisely and consistently.

2 Examples of Formalizations

An important concept in MATh are so called frames which serve multiple pur-
poses and are organized hierarchically. In general, a frame consists of a list
of names which point to abstract mathematical objects. Their interrelation is
formulated in the frame’s condition-section by specifying a list of mathemat-
ical statements referring to the introduced names and to those of the parent
frames. Logical consequences resulting from the assumptions can be formulated
and proved in the optional conclusion-section of the frame. Defining abbrevia-
tions within a frame enriches its name-space and allows to construct associated
mappings and records (lists with named components).

In the following subsections, we present examples from the lecture series [2]
which covers real analysis in its first part, starting from an axiomatic introduc-
tion of the real numbers, followed by multivariate calculus in the second part,
including concepts like normed-, metric- and topological spaces. The third part
is devoted to ordinary differential equations and to abstract measure theory.

2.1 Conditions

About 31% of the 450 names defined in the analysis course refer to frames
without conclusion section which serve as notions like sequence, convergent, or
differentiable. To fix ideas we consider the simple notion

nonNegative := x with x ≥ 0 �

Here the keyword with separates the name x from the frame-condition which
ends at the � symbol. The infix-expression x ≥ 0 is used as abbreviation for
greaterOrEqual(x, 0) which requires its arguments to be elements of R. By type-
inference, the condition x ∈ R is therefore implicitly contained in x ≥ 0 and
need not be listed in the frame condition. Within the LATEX-code the definition
would look like this

\begin{mtext}
nonNegative $:= x$ \mwith $x\geq0$ \sq
\end{mtext}
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To express the statement that the object 1 ∈ R satisfies the frame-condition,
we write 1 : nonNegative which is casually pronounced as 1 is non-negative. It
means that all frame conditions are satisfied once the name x is replaced by 1
at all occurences.

2.2 Mappings

The largest portion (39%) of names is alloted to number-, set-, or function valued
mappings like limit for the limit of a sequence, union for the union of two sets, or
derivative for the derivative of a function. As example we consider the function
valued mapping

monomial(n with n ∈ N0) := x with x ∈ R �→ xn

which shows two possible forms of mapping definitions at once: In the nameless
form, the parameter condition and the resulting expression are separated by
the �→ symbol while in its named form, the parameter condition is provided in
a bracket behind the name and the resulting expression after the := symbol.
Evaluations are denoted with the usual bracket notation, i.e. monomial(2)(5) =
25 would be true. The LATEX-code is

\begin{mtext}
monomial($n$ \mwith $n\in\N_0$) $:= x$ \mwith $x\in\R \mapsto x^n$
\end{mtext}

If an abbreviation is introduced for the evaluation of a mapping, the declaration
is currently given in normal text mode right after the definition of the mapping.
Also the parsing of more intricate abbreviations would be explained here (e.g.∫ 1

−1
a · x2 dx is transformed into definiteIntegral(x �→ a · x2,−1, 1)).

2.3 Parametric Conditions

Notions depending on parameters, like zero of a function or neighborhood of a
point make up 27% of the defined names. They are realized as frame-valued
mappings. As example, we consider

root(x with x ∈ R) := r with r · r = x �

Here, (−2) : root(4) holds which would be pronounced as −2 is a root of 4.

2.4 Theorems

In the lecture notes, all lemmas and theorems (∼770) are denoted with the
forall-quantifier followed by the premise (a condition) which is separated from
the conclusions by the keyword hold and � as end mark. For example,

∀M with M ⊂ X hold int(M) : open; (∂M) : closed �

Since the majority of theorems has a single statement as conclusion, also the
following syntax is used: ∀x with x ∈ R holds x2 : nonNegative
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\begin{mtext}
$\forall x$ \mwith $x\in\R$ \mholds $x^2:$ nonNegative
\end{mtext}

2.5 Proofs

Proofs in the lecture notes (∼530) are not presented in a completely formal
style because reading such texts would be quite straining. Nevertheless, they are
carried out with a later formalization in mind. In particular, for each statement
type, proof steps are introduced for derivation and usage, respectively. Especially
in the proofs of the preparatory course and the initial parts of Analysis 1, exten-
sive referencing to these steps is typical. In the LATEX-code, proofs are always
embedded in the shaded-environment of the framed-package, for example

∀M,M with M : setFamily; M ∈ M holds M ⊂
⋃

M;

In a direct proof we assume that M,M are given and that M : setFamily
and M ∈ M hold. In a direct proof of M ⊂ ⋃ M we further assume that x is
given with x ∈ M . Hence M : (U with U ∈ M;x ∈ U �) can be compressed,
so that ∃U with U ∈ M;x ∈ U � holds. Application of (S36) to (M, x)
yields an equality which allows us to show x ∈ ⋃ M by replacement �

Application of (S24) to (M,
⋃ M) now gives the claimed result �

2.6 Spaces, Structures and Models

Conditions that give rise to several results and additional notions are formulated
as full-fledged frames. This covers usual algebraic structures like group or field,
analytic structures like Banach- or Hilbert-space, all models in the modelling
lecture but also the whole Analysis 1 content when viewed from Analysis 2. In
the following example, we can see how the keyword conclusions separates the
condition block from the results.

metricSpace := (X, d) with
X : set; d : X × X → R;
∀x, y, z with x ∈ X; y ∈ X; z ∈ X hold

d(x, y) = 0 ⇔ x = y; d(x, y) = d(y, x); d(x, y) ≤ d(x, z) + d(z, y) �
conclusions

B(x, r with x ∈ X; r > 0) := {y with d(y, x) < r};
innerPoint(M with M ⊂ X) := x with ∃r with B(x, r) ⊂ M � �;
open := M with ∀x with x ∈ M holds x : innerPoint(M) �;
. . .

�
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If d is defined as (x, y) �→ |x − y|, the pair (R, d) satisfies the frame-condition so
that M := metricSpace(R, d) denotes a record with field names corresponding
to the local names of the frame. In particular, K := M.B(0, 1) would be the unit
ball of the metric centered at 0 ∈ R and K : M.open would be true.

In the lecture notes, the conclusion section of a frame typically coincides with
a subsection of the LATEX-document because introducing local concepts and their
relationships requires substantial motivation and explanation which interrupts
the formal definition of the frame.

As far as the LATEX-code is concerned, indenting and formatting is limited
to the mtab-macro and double slash for new-line in order to alleviate automatic
parsing. For example, the above definition would start like

\begin{mtext}
metricSpace $:= (X,d)$ \mwith\\
\mtab $X:$ set; $d:X\times X\to\R$;\\
...

3 Conclusions

Using the MATh-syntax for definitions and theorems consistently throughout
the lecture notes, we obtain human readable documents that deliberately stress
the formal mathematical structure and which allow automatic parsing of the
mathematical content. Since emphasising the formal interrelation of mathemat-
ical structures, notions and theorems was our goal, there was no need to hide
formal structure from the reader so that hardly any extra cost during writing
appeared. However, restructuring the classical material in a formally consistent
way was not without effort.

Although the primary goal in the development of MATh was not the design
of a specific digital representation of mathematical content or a new proof assis-
tant, we needed ad hoc solutions for presenting the formal content and for check-
ing the consistency of our language rules which led to the LATEX-approach and
to the implementation of a prototypical MATh-interpreter which is currently
being tested (see [2] for the ANTLR-grammar files and some code snippets).
Ultimately, the idea is to obtain interpretable code from the LATEX-source by
focusing on the mtext blocks and stripping the $ and other LATEX-formatting
symbols.

To fully accomplish this task, the textual descriptions of abbreviations for
prefix forms of mappings should be replaced by more formal ones (e.g. using spe-
cialized LATEX-macros as in sTEX [3]). This would increase the workload during
writing only slightly.

Certainly a more drastic increase would result from providing formal proofs
invisibly (or hideably in a hypertext version) alongside the current vernacular
proofs. While we do introduce proof steps similar to those in proof assistants
(like Mizar [4]) we do not ask students to write down proofs completely formal.
In particular, we are satisfied when students indicate in their proofs that they use
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specific steps and that the conditions for applying the steps are satisfied. Nev-
ertheless, the extra information contained in formal proofs could be of interest
when the presented vernacular form is too sketchy for the students to appraise
all the details. In this most elaborate form, the extraction of MATh-code with
subsequent checking would be possible in the sense of literate programming [5].

Alternatively, a conversion of the formalized material to content-based rep-
resentation formats like OMDoc [6] would generate an interface to a variety of
other applications (the obvious connection between OMDoc-theories and MATh-
frames would be helpful here). This conversion could be accomplished, for exam-
ple, with an intermediate formulation in terms of sTEX [3].

Our practical experience with MATh-grammar in undergraduate lectures is
generally positive. In the preparatory course, time is abundant and the mate-
rial is easily conveyed. Nevertheless, students do have problems with observing
the presented rules of mathematics (which was the reason to start the project).
Here, a definite advantage is that difficulties with the rules can be much better
addressed once they are made explicit. During the semester, the standard cur-
riculum leads to much higher pressure and students tend to favor purely intuitive
understanding without fallback to formal procedures (although this is a poor
strategy when concepts are becoming more abstract). However, an attempt to
switch to the usual vernacular form of definitions and theorems at the end of the
first semester was not approved by the majority of the students. By that time,
they appreciated the formal way of writing as being unambiguous and easy to
use.
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Abstract. We present an infrastructure that allows importing an initial
part of the Mizar Mathematical Library into the Isabelle/Mizar object
logic. For this, we first combine the syntactic information provided by
the Mizar parser with the syntactic one originating from the Mizar ver-
ifier. The proof outlines are then imported by an Isabelle package, that
translates particular Mizar directives to appropriate Isabelle meta-logic
constructions. This includes processing of definitions, notations, typing
information, and the actual theorem statements, so far without proofs. To
show that the imported 100 articles give rise to a usable Isabelle environ-
ment, we use the environment to formalize proofs in the Isabelle/Mizar
environment using the imported types and their properties.

1 Introduction

The Mizar project [10] has developed a language allowing users to write formal
mathematics similar to the way it is done in informal mathematical practice [3].
This convenience for the users however means that the Mizar system is the only
tool able to parse the language. Many exports of the Mizar Mathematical Library
(MML) [1] to various formats and systems have been developed, including vari-
ants of XML [21,24], TPTP [6], and OMDoc [12], however they are all static.
They allow inspecting the information contained in the Mizar library, presenting
it [26], searching, and even give proof hints [20], but do not allow any further
development of the proof scripts.

One of the reasons for this state-of-art is the architecture of the Mizar verifier.
The verification of a Mizar proof script, called an article is performed by a series
of independent programs, that each check particular aspects of syntactic and
semantic correctness. Modules include derived information in the intermediate
representation and drop the data which the Checker will not need to certify the
proof. This final format, which is used by most of the exports, no longer contains
the original user input and it is usually not possible to completely restore it.
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Such lost information together with the processed script is necessary in our
project [17] aiming to certify the Mizar proofs in Isabelle and create an environ-
ment to further develop the Mizar Library in the Isabelle logical framework [29].
For this, we develop an application able to combine the syntactic and semantic
information available at the various stages of the Mizar processing. Such pro-
cessed information is suitable for importing it in Isabelle or other frameworks,
it could for example serve as a basis for a more complete import into OMDoc,
that would include user steps and notations.

We develop an Isabelle infrastructure able to import the processed Mizar
information into the Isabelle/Mizar object logic. Definitions of Mizar functions,
types, predicates, etc. are automatically processed giving rise to Isabelle/Mizar
constants together with their respective properties. Type inference information,
contained in Mizar registrations and clusters is transformed to Isabelle theo-
rems, that are furthermore put into special theorem lists that can be used by
Isabelle/Mizar type inference. Actual theorem (as well as lemma and theorem
scheme) statements give rise to corresponding statements in Isabelle with Mizar
notations transformed into similar Isabelle MixFix notations [28].

Contributions. This paper introduces an infrastructure for importing an initial
part of the Mizar Mathematical Library into the Isabelle/Mizar object logic.
The particular contributions are:

– We create a combined syntactic-semantic export of the Mizar proof data. As
part of this we propose ways to match the processed semantic information
with the original proof script.

– We develop an Isabelle infrastructure able to process and import the first 100
MML articles (out of 1318) into Isabelle/Mizar, so far mostly without proofs.
The transferred values are loaded into the LCF environment in the spirit of
Isabelle/Import [14].

– The imported environment allows users to work with Mizar data inside
Isabelle, with features including notations and type inference. We demon-
strate this by formalizing proofs depending on the imported parts of the
library, namely the beginning of the Mizar article NEWTON which defines fac-
torials and exponents and shows their basic properties.

Contents. In Sect. 2 we discuss existing Mizar exports. Section 3 introduces the
Isabelle/Mizar object logic. In Sect. 4 we discuss the Isabelle import infrastruc-
ture. Section 6 discusses combining the syntactic information. As this is mostly
technical and not necessary to understand the previous sections, we chose to
present it at this point. Finally in Sect. 5 we show an example formalization that
uses the imported definitions, theorems, and Mizar type inference rules.

2 Existing Mizar Exports

This section introduces the process how Mizar processes a formalization, and
discusses the existing exports from Mizar which use various parts of this process.
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The Mizar system processes each formalization in multiple stages. The stages
are independent processes, which communicate using external files. There are
more than 20 types of such files. This large number allows different stages and
data exports to import only minimal information, which was crucial given the
memory limits 40 years ago, when Mizar was conceived. In 2005, Urban [24]
has modified the representation used in the intermediate stages to a slightly
more accessible XML format. This has been done relatively late, as the larger
representation does slow down the verification of the MML 1.67 times, but at
the same time it allowed external access of some of the Mizar information.

Fig. 1. The statement of the theorem “Everything is a set” in Mizar XML together
with the information encoded in four other tarski XML files. These are necessary
to decode the information. In the statement, the <For pid="0"vid="2"> binds the
second occurrence of the symbol x, assigning it the type object, which corresponds
to pid="1". Similarly the <Is> node encodes the information that the variable bound
by the first x quantifier is of the type set pid="2".

The information processed by the first stages of Mizar is encoded in the
Mizar XML (an example statement presented in Fig. 1), with some of the origi-
nal syntactic information lost. All formulas are transformed to the Mizar normal
form (MNF), which uses only selected logical connectives (∧,¬,�, and ∀) [4].
Furthermore, Mizar XML also uniquely identifies the constructors correspond-
ing to particular notations, fixes their arities, and expands some abbreviations.
For example the Mizar type Function of A,B is exported as quasi_total
Function-like Relation-like Element of bool [:A,B:] in the XML
representation.
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Later versions of Mizar XML included pid attributes containing information
about the notation and normalization, which allowed the generation of HTML
and a system for semantic browsing of the Mizar Library [4]. This information
is passed by the Analyzer to the Checker, however the latter ignores it.

The notations are re-constructed based on this information heuristically, how-
ever in some cases it is not possible to guess the original representation.1 Such
small inconsistencies do not have a significant influence on the rendered HTML.

Urban has also developed the Mizar Problems for Theorem Proving (MPTP)
export [25]. It is also based on the semantic XML representation. It aims to pro-
vide problems for automated reasoning, cross-verification [27] of Mizar, and more
recently exploited for machine learning for theorem proving [13], and lemma
extraction [19]. The export uses an XSLT stylesheet to make all problems inde-
pendent from the Mizar environment, which allows consistent naming of symbols
across the whole corpus. The core of Mizar is based on first-order logic, however
the theorem and axiom schemes can also be exported to higher-order TPTP
problems based on the same information [6].

The MPTP translation closely represents the first-order top-level statements
of each article. Mizar types are represented as predicates. Definition blocks are
unfolded to separate axioms stating the return type, the parent type, and the
property of the introduced concepts. Similarly Mizar registrations (user-defined
type inference rules) become axioms about the types. Second-order objects can-
not be directly represented in the first-order format, therefore a fresh constant,
together with an axiomatization, is introduced for each instance. This is theo-
retically justified by the set theoretic axioms of replacement and comprehension.
This has been sufficient to translate the MML.

The MPTP representation was also used to import Mizar into OMDoc [12].
This means that the representation is semantically correct, but cannot reli-
ably represent the original syntax. In particular many notations and variable
names have been lost. Still this is enough to browse and search the Mizar library
together with other theorem proving libraries.

Rather than extracting the information from the XML representation pro-
cessed by the Checker, it is also possible to use the intermediate output of
the parser. This approach has been used by Weakly Strict Mizar (WSX) [21]
and More Strict Mizar (MSX) [7] which export subsequent syntactic layers. The
aim of WSX (presented in Fig. 2) is to provide a standalone parser for Mizar
articles, that can be used by external tools. MSX is an extension of WSX, where
the representation is additionally augmented by variable information: variables
are categorized as reserved, free, bound, or local constant together with unique
identifiers and implicit quantifiers are made explicit. Both syntactic exports have
complete information about the user input, but do not include any derived infor-
mation. In particular the disambiguation and hidden arguments are missing, and
are very hard to reconstruct for any external tool.

1 These rarely affect the HTMLization of the current Mizar library, see for exam-
ple http://mizar.uwb.edu.pl/version/current/html/funct 2.html#FC4 where the
expression K3(g,f) includes K3 rather than f * g. Note the reverse order or argu-
ments.

http://mizar.uwb.edu.pl/version/current/html/funct_2.html#FC4
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Fig. 2. The statement of the theorem “Everything is a set” in Weakly Strict Mizar.
WSX includes all user input, exactly as it was typed by the user and parsed in a
tree form. The proposition without a label states that the explicitly universally bound
variable x is of type set.

3 Isabelle and the Mizar Object Logic

Isabelle [29] is a logical framework, that is a proof assistant designed for the pur-
pose of defining logics and working in these logics. The foundations of Isabelle are
a variant of simple type theory with ML-style polymorphism. Isabelle’s imple-
mentation is based on a relatively small kernel implemented in Standard ML.
It includes functionality that makes it convenient to define constants present in
logics, basic inference rules, notations, and the procedures specific to particular
logics.

In our previous work we formally defined the semantics of Mizar as an Isabelle
object logic [18]. This included mechanisms that allowed for the definition and
use of Mizar types, introduction of meta-level constants and predicates, and the
use of Mizar quantifiers. The notations of the resulting Isabelle/Mizar object
logic have been optimized [16] allowing a combination of Mizar definitions with
Isabelle-style ones, some hidden arguments, re-definitions, as well as extended
constructions present in the Mizar library such as set comprehensions and struc-
tures. We finally defined a type inference mechanism for Isabelle/Mizar [15]. This
Isabelle/Mizar object logic, serves as the basis for the imported Mizar library.

4 Isabelle Import Infrastructure

In this section we discuss the import of an already pre-processed Mizar library
article. An outline of the procedure preparing an article for import will be dis-
cussed in Sect. 6.
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Isabelle already includes a package that allows importing proofs originating
from HOL Light and HOL4 [14,22] as well as one for importing the OpenTheory
library articles [11]. Both of these are restricted to higher-order logic and only
include higher-order logic kernel specific basic inference steps. The Mizar articles
do not include any basic inference steps, but rather specify the different kind of
Mizar language items: Mizar style definitions, actual proved statements or user
proved type inference rules. The existing package are therefore insufficient for
our purposes, in fact none of the Isabelle HOL/Import rules could be re-used.

We therefore propose a new format to represent Mizar article to import,
which will consist of (possibly nested) sequences of commands. In practice, we
will represent the article in XML with different tags corresponding to the possible
Mizar proof script items.

The architecture of the Mizar import will be influenced by the Isabelle com-
munity’s experience with HOL/Import. The first version of HOL/Import [22]
attempted to syntactically create Isabelle theory files corresponding to the
imported articles. It was soon realized, that the input syntax of Isabelle changes
significantly with successive versions and it was too much work to keep the output
of HOL/Import up to date with it. Therefore, the newer version of HOL/Import
does not attempt to generate an Isabelle theory file source, but rather processes
the values directly, giving rise to an environment with the definitions and the-
orems pre-loaded, together with documentation that a user can use instead of
a theory file, to further develop the formalizations. This approach came to be a
viable one, and did not need significant updates since its creation. In our current
work we imitate the latter approach.

A common part shared by the import of the various Mizar item types are
Mizar propositions, terms, and types all of which will be imported as Isabelle
terms. To simplify this process, the term representation exported from Mizar
will include all the necessary information to represent the knowledge in a log-
ical framework. All variables are guaranteed to be quantified and include their
meta-types (i.e., a Mizar type variable or a term variable or a propositional
variable), as well as the meta-types of their arguments in case of higher-order
variables (scheme variables). Applications and abstractions directly correspond
to the Isabelle application and abstraction (abstraction is present in Mizar in
case of constructions such as quantifiers, set comprehensions, or the choice oper-
ator). The seven constants corresponding to the basic predicate logic and five
constant corresponding to the foundations of Mizar are mapped explicitly to
their Isabelle counterparts. Finally, we also map manually the five constants
corresponding to the axiomatic Mizar article HIDDEN. All subsequent constants
will be defined by the imported Mizar articles.

Mizar definitions need to be presented in a format that can be accepted by
Isabelle. This means equations, where left-hand side consists of the newly intro-
duced concept possibly applied to some arguments. To fit the various kinds of
Mizar definitions (including definitions of types, functions, predicates, and struc-
tures, conditional definitions, definitions by means, synonyms, and antonyms) in
this format, we create a local theory context with assumptions, in that context
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define the constant, and apply definitional theorems. Such theorems give rise to
definition correctness obligations (such as for example existence and uniqueness
for functions defined by means). The proof obligations are currently assumed
– this will be discussed in future work. Finally, suitable derived theorems are
declared and exported to the global theory and attributes (such as its use in the
type inference mechanism) are applied.

Actual theorems and lemmas are straightforward to process, as we do not
import the proofs yet. The statement is fully transformed to an Isabelle corre-
sponding statement. There are two special cases of theorems. Mizar type infer-
ence rules (referred to as clusters in Mizar) need to be further processed and
added to specific type inference lists. Mizar schemes give rise to higher-order the-
orems, therefore Mizar variable declarations need to be transformed to Isabelle
assumptions.

The general methods for translating definitions will be discussed in Sect. 6.3.
Here we will only give an example of a definition that provides two types of
information, the meaning of the defined object ordinal2 def 10 and the Mizar
type inference rule ordinal2 def ty.

5 Mizar-Style Proof Development in Isabelle

In this section we present a case study, which shows the usability of the imported
part of the Mizar library in Isabelle. For this, we manually re-formalize selected
parts (1 reduction, 3 clusters, 6 theorems, and the definition proof obligations)
of the Mizar article NEWTON, which defines powers and factorials.

The article is not among the first 100 imported articles, and our export
infrastructure is not yet able to interpret the Mizar environments in order to
process it automatically. The NEWTON article depends (directly or indirectly) on
80 Mizar articles. All these are imported automatically, therefore the current for-
malization relies both on Mizar and on Isabelle when it comes to proof checking.
Importing the proofs will allow reducing the trust base to a single system.

In the paper we only present the statements, all the theorems have proofs in
the formalization, and so does the definition, as one needs to prove that the result
of the function is of the declared type. For correspondence, Isabelle theorem and
constant names include their absolute MML addresses [25], we however consider
using more canonical Isabelle-like names [2]. We first define the binary power
function, Mizar version presented on the left for comparison:
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definition
let x be Complex,

n be natural Number;
func x |ˆ n → number equals
Product (n |→ x);

mdef newton-def-1 (- - [90,0]91) where
mlet x is Complex,

n is natural|Number
func xn → number equals

Π (n �→ x)

where n �→ x denotes a constant sequence of length n, equal x everywhere.
Next, we prove a number of properties of the defined power operator. The

proofs make use of various concepts (including natural numbers, complex addi-
tion, finite products) from the imported articles. Furthermore, the declared user
type inference rules imported from previous articles are automatically used by
the Isabelle/Mizar type inference, which automatically handles a number of rea-
sonings about the soft types.

mtheorem newton-th-4:
z0 = 1

mtheorem newton-th-6:
zs +IN 1 = zs ∗C z

mtheorem newton-th-8:
xs +C t = xs ∗C xt

mtheorem newton-th-5:
z1 = z

mtheorem newton-th-7:
(x ∗C y)s = xs ∗C ys

mtheorem newton-th-9:
(xs)t = x(s ∗C t)

An example of the use of an imported statement is the induction on natural
numbers. It is used to show the user-level typing rule, that the power of a natural
number is also a natural number.

registration
let x, n be natural Number;
cluster x|ˆn → natural;
coherence proof

A0: n is Nat by TARSKI:1;
defpred P[Nat] means
x|ˆ$1 is natural;

A1: for a being Nat st P[a]
holds P[a+1]

proof
let a be Nat; assume P[a];
then reconsider b = x|ˆa as Nat;
x|ˆ(a+1) = b*x

by Th6;
hence thesis;

end;
A2: P[0] by RVSUM_1:94;

for a being Nat holds P[a]
from NAT_1:sch 2(A2,A1);

hence thesis by A0;
end;

end;

mtheorem
mlet x is natural|Number, n is natural|Number
cluster xn → natural

proof
have A0:n is Nat using tarski-th-1 by simp
let ?P =

λit. xit is natural
have A1: for a be Nat st ?P(a)

holds ?P(a +IN 1)
proof(rule ballI,rule impI)
fix a assume [ty]:a be Nat and ?P(a)
hence [ty]:xa is natural|Number by mauto
have xa +IN 1 = xa ∗C x
using newton-th-6[of a] by mauto

thus xa +IN 1 is natural by mauto
qed mauto
have A2:?P(0) using newton-th-4 by mauto
have for a be Nat holds ?P(a)
using nat-1-sch-2[of ?P] A2 A1 by simp

thus xn is natural using A0 by simp
qed
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The Isabelle/Isar environment with Mizar proofs imported is already usable,
albeit the level of automation is still weaker than that of Mizar. Some of the
Mizar abbreviations have been introduced as definitions, and are therefore not
automatically unfolded. By specifying our own notations and additional registra-
tions, the environment becomes well usable, where even some of the complicated
proofs are of similar length to those of Mizar. It is however currently slower,
especially when it comes to selecting the background information: in the above
proof at some reasoning steps 139 typing judgements are derived automatically
and stored in an Isabelle theorem list. This is possibly due to the highly opti-
mized Mizar implementation, which uses arrays for all indexing and contrary to
Isabelle does not need to rely on bi-resolution.

6 Combining the Syntactic and Semantic Representations
of Mizar

In order to re-verify the Mizar proofs, we would like to export the individual proof
steps faithfully. The semantic Mizar XML introduced in Sect. 2 is insufficient
for many cases. In particular the term abbreviations, reservations, and hidden
quantifiers, which are already supported by Isabelle/Mizar, are not preserved
in Mizar XML, and a modification of the Mizar Checker to preserve such
information would be a tremendous task, as the information would need to be
correctly processed by all parts of the large Mizar kernel. A simple example of
two formulas with exactly the same representation in XML is: α → (β → γ) and
(α ∧ β) → γ. Even with the Mizar XML hints, the two are identical. This is a
problem in Isabelle, as there the proof skeleton must precisely correspond to the
proof [30]. A further discussion of combining the proof steps is provided in [23].

6.1 Procedure Overview

The combination of the syntactic and semantic Mizar processing data consists
of two parts. First, we will match all the items from these both representations
filling the missing information, using a process similar to that of the Mizar
Analyser. Then we will ensure that the combined information corresponds
to our Isabelle meta-model of Mizar [15], matching the constants and lists of
arguments. In the following we present the process in more detail.

First, we match single items (both top-level items and individual proof items).
Then we perform a full identification of all objects present in the item. Construc-
tors for all ambiguous terms are determined, and argument lists are expanded
by the hidden arguments computed by the Mizar Analyser. To match this
with the transformed syntactic form, we modify the latter imitating some of
the Analyser processes, including logical formula normalization, simplification
of selected constructions (such as predicate and attribute negations). This also
needs to identify the types of variables bound by the quantifiers and matching
atomic propositions, and further their term and subterm arguments recursively.
Additionally Mizar local abbreviations (Mizar syntax: set), which have been
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Fig. 3. The formulation of the Mizar theorem “Everything is a set” with the combined
syntactic and semantic representation. All terms are expressed using applications and
abstractions of a meta-logic allowing an easy correspondence to the meta-model of
Mizar, in particular making it easy to express in a logical framework.

fully unfolded in the XML format, can be identified and folded, which is useful
to improve the legibility of proof texts. All Mizar constructions can be presented
as applications of meta-constants, which is unique and allows a uniform way
of processing the information, as was needed in the previous two sections. An
example of the combined information is presented in Fig. 3.

6.2 Background Information

The processing of a Mizar article requires a precisely defined environment. In
order to allow external processing, selected background information needs to
be transformed and exported. In Mizar these are of three kinds: clusters which
aid the computation of types in the presence of attributes, reductions which
denote rewrite rules, and identify, which resolves conflicts that arise when
identifying objects based on their arguments. Of course all of these are seman-
tically theorems, and could be exported as such (as is done for example by
MPTP [25]). Our import would however include its own type inference mech-
anisms, so we can export exactly the information Mizar has. In particular, we
include constants corresponding to each kind of background information (the
Isabelle/Mizar constructions are given in [16]). A limited use of this information
was shown in Sect. 5.

An example exported cluster and presented in Isabelle is:

registration
let f be one-to-one

Function;
cluster f" → one-to-one;

thm funct 1 cl 10
f is one-to-one =⇒
f is FunctionFUNCT-1M1 =⇒

(f −1) is one-to-one

which states that the inverse of a one-to-one function is also one-to-one.
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6.3 Definitions

We export each individual definition separately (rather than using Mizar def-
inition blocks) including all the available information for each definition. The
data that is again distributed between the different semantic processed files and
needs matching with the syntactic part to reconstruct the missing information.
For example a redefinition of a Mizar function, whose type has been expanded,
and the modification only concerns the right-hand side of the definition, the
folded type is only present in the correctness condition.

All kinds of defined objects (meta level functions, Mizar types and pred-
icates) require different information, however they share multiple common
parts: a unique binding allowing refering to the definition body (such as
newton_def_1), a unique constant definition, a notation, and the types of
all the arguments of the defined object including their dependent types (Mizar
allows term arguments in types), as well as the assumptions for conditional
definitions. To preserve the Mizar semantics and at the same time allow for
uniformity, Mizar attribute definitions need to have their last assumption trans-
formed to an argument. For example the definition of an empty set uses X as an
argument rather than an assumption to reflect the meta semantics:

definition let X be set;
attr X is empty means
not ex x st x in X;

mdef xboole-0-def-1 (empty) where
attr empty for set means

(λX. ¬ (∃ x : object. x in X))

The definition body can usually be expressed directly, however many Mizar
constructs allow definitions per cases. For those, specific abstractions need to
be introduced, for example the (somewhat non-standard) definition of an ele-
ment of a set in Mizar is formulated as follows, while its export includes all the
information necessary to transform the cases to multiple implications:

definition
let X be set;
mode Element of X → set means

it in X if X is non empty
otherwise it is empty;

mdef subset-1-def-1 (Element -) where
mlet X is set
mode Element X → set means

(λit. it inTARSKIR2 X if X is non empty
otherwise λit. it is empty)

The final exported information from definitions are the properties of the
defined concepts, which can be introduced in Mizar definition blocks. Similar
to registrations, they can be expressed as theorems. Mizar does not include a
formulation of the properties, and we recover this meaning along with the syntax
in the exported environment. The reason for this in Mizar, is that the concept
cannot be used in the definition block. Therefore we recover the folded form of
each property:
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definition
let X, Y be set;
func X \/ Y → set means

for x holds
x in it iff x in X or x in Y;

existence...
uniqueness...
commutativity;
idempotence;

thm XBOOLE 0 def 3
X is set =⇒ Y is set =⇒

x in X ∪ Y ←→ x in X ∨ x in Y

thm XBOOLE 0K2 commutativity
∀ X : set. ∀ Y : set. X ∪ Y = Y ∪ X

thm XBOOLE 0K2 idempotence
∀ Y : set. Y = Y ∪ Y

6.4 Redefinitions

Mizar redefinitions allow expanding and clarifying the information about already
existing objects. It is possible to modify any kind of object (function, predicate,
or Mizar type). There are four main categories of redefinitions, and we will need
to adapt the export process for each of the below categories:

1. Adding a notation to an object. The name and the visible arguments need to
be preserved, however the new notation can include more hidden arguments.

2. Changing the definition body of an object. This is particularly important, as
Mizar proofs must correspond to definitions, therefore showing the equiva-
lence of two definitions allows for different proof obligations when the defini-
tion is expanded.

3. Making the type more precise. The result types of functions can be refined,
as well as the mother type can be refined for Mizar types. For example the
exponential function could be defined with range type being the type of real
numbers. Later, the user can show that the result is also non-negative and
inform the type system about it.

4. Adding selected properties to defined objects.

Each redefinition introduces a notation, equivalent to the original constant,
with the additional arguments removed. Each modification of the definition body
is formulated as a theorem. These can later be processed in Isabelle by modifying
the default introduction and elimination rules, just like it is done for regular
definitions.

definition
let X, Y be set;
redefine pred X = Y means
X c= Y & Y c= X;

abbreviation
X =XBOOLE-0R4

Y ≡ X = Y

thm xboole 0 def 10
X is set =⇒ Y is set =⇒

X =XBOOLE-0R4
Y ←→ X ⊆ Y ∧ Y ⊆ X

Proving that the result of a function has a more precise type is semantically
close to a Mizar cluster (the two however require different syntax in Mizar). It
can of course be specified as a theorem, but we want to preserve both the syntax
and the semantics in our export, therefore we annotate the syntax and verify
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that the semantics are correct already in the imported setting and that such
rules can be used by the type inference mechanism:

definition
let p be FinSequence;
redefine func
dom p → Subset of NAT;

thm finseq 1 add 3
p is FinSequenceFINSEQ-1M1 =⇒
domRELAT-1K1 p is

SubsetSUBSET-1M2 NATNUMBERSK1

Redefinitions that include properties, can be exported in a similar way to
properties specified for original definitions. They give rise to uniquely identified
theorems about the exported constants and their property names:

definition
let X, Y be non empty set;
redefine pred X misses Y;
irreflexivity;

abbreviation
X missesSUBSET-1R1

Y ≡ X misses Y

thm SUBSET 1R1 irreflexivity
∀ Y : non empty | set.

¬ Y missesSUBSET-1R1
Y

The Mizar language is very rich when it comes to notations. Notations are
used for example for predicate synonyms and antonyms, function synonyms,
or type abbreviations. Adding notations is very cheap, since all components of
Mizar reason modulo a congruence closure algorithm. Rather than clarify these
in the export, we imitate the Mizar syntax and semantics, by introducing a
new constant along with its syntax for each such introduced notation. The new
constant is defined to be equal to the previous one, modulo arguments. For
example, the domain of a relation is the projection of the relation on its first
component.

notation
let R be Relation;
synonym dom R for proj1 R;

abbreviation
domRELAT-1K1 R ≡ proj1 R

Just like with attributes, to correctly preserve the Mizar semantics we would
need to separate the last argument. However, as can be seen in the follow-
ing example, that last argument can be removed in case of notations. To give
complete semantics to an introduced type constant new defined in terms of an
existing one old, rather than the Mizar x is new for x is old we need to
define new == old. A concrete example for the Mizar type of uncountable sets
is:

notation
let X be set;
antonym X is uncountable

for X is countable;

abbreviation
uncountableCARD-3V6 ≡ non countable
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Table 1. Facts available in the Isabelle/Mizar environment, subdivided into major fact
categories.

Theorems 5994

Lemmas 478

Definitions 1851

User typing rules 1517

Derived introduction and elimination rules 540

Object typing rules 448

Schemes 270

Definition uniqueness 226

. . .

Total imported facts 11920

7 Conclusion

We have proposed a combination of the syntactic and semantic Mizar infor-
mation, creating an export that includes all the information needed to import
Mizar into a logical framework. We imported the first 100 articles of the library
into the Isabelle/Mizar object logic, which gives rise to 11,920 Isabelle imported
facts of different kinds (see Table 1). The imported library is usable for further
development. The first articles from the exported Mizar, the import infrastruc-
ture, and our re-formalization are available at: http://cl-informatik.uibk.ac.at/
cek/cicm2018.tgz

The import process assumes a model of Mizar based on first order logic,
therefore by defining a similar model of Mizar in another logical framework the
import could be directly reproduced there. We have also exported most of the
proofs, but various transformations are necessary to import it in Isabelle. So far,
the import only verifies that the statements are consistent and type correct, only
importing the proofs would allow complete re-verification of the Mizar library.
This still poses a number of challenges. The Isabelle proof nested blocks are
weaker than the Mizar now construction [30]. The exported structures generate
a large number of selectors which we cannot process automatically yet. Finally,
even if Isabelle includes strong general purpose automation [5], it may not be as
powerful as the Mizar by tailored for the Mizar proofs.

The main future work that goes beyond importing and certifying the whole
Mizar library in Isabelle is to further develop the Isabelle/Mizar environment in
order to allow more convenient proof development. This includes more Mizar-like
infrastructure for notations that would allow overloading, disambiguation, and
hidden arguments. Furthermore, Mizar includes many tools that allow optimizing
complete proof scripts. We would like to generalize such tools to the level of a
logical framework. The presence of two libraries with dependencies can allow
improved proof automation [9]. Lastly, we also want to generate and provide

http://cl-informatik.uibk.ac.at/cek/cicm2018.tgz
http://cl-informatik.uibk.ac.at/cek/cicm2018.tgz
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documentation for the articles imported in Isabelle, which will allow browsing
multiple prover libraries with proofs within one system [8].
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based fact selector for Isabelle/HOL. J. Autom. Reason. 57(3), 219–244 (2016).
https://doi.org/10.1007/s10817-016-9362-8

6. Brown, C.E., Urban, J.: Extracting higher-order goals from the Mizar mathemat-
ical library. In: Kohlhase, M., Johansson, M., Miller, B., de de Moura, L., Tompa,
F. (eds.) CICM 2016. LNCS (LNAI), vol. 9791, pp. 99–114. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-42547-4 8

7. Bylinski, C., Alama, J.: New developments in parsing Mizar. In: Jeuring, J., et al.
(eds.) CICM 2012. LNCS (LNAI), vol. 7362, pp. 427–431. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-31374-5 30

8. Corbineau, P., Kaliszyk, C.: Cooperative repositories for formal proofs. In: Kauers,
M., Kerber, M., Miner, R., Windsteiger, W. (eds.) Calculemus/MKM -2007. LNCS
(LNAI), vol. 4573, pp. 221–234. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-73086-6 19

9. Gauthier, T., Kaliszyk, C.: Sharing HOL4 and HOL light proof knowledge. In:
Davis, M., Fehnker, A., McIver, A., Voronkov, A. (eds.) LPAR 2015. LNCS, vol.
9450, pp. 372–386. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-48899-7 26

10. Grabowski, A., Korni�lowicz, A., Naumowicz, A.: Four decades of Mizar. J. Autom.
Reason. 55(3), 191–198 (2015)

11. Hurd, J.: The OpenTheory standard theory library. In: Bobaru, M., Havelund,
K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp. 177–191.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20398-5 14

12. Iancu, M., Kohlhase, M., Rabe, F., Urban, J.: The Mizar mathematical library in
OMDoc: translation and applications. J. Autom. Reason. 50(2), 191–202 (2013)

13. Irving, G., Szegedy, C., Alemi, A.A., Eén, N., Chollet, F., Urban, J.: DeepMath
- deep sequence models for premise selection. In: Lee, D.D., Sugiyama, M., von
Luxburg, U., Guyon, I., Garnett, R. (eds.) NIPS, pp. 2235–2243 (2016)

14. Kaliszyk, C., Krauss, A.: Scalable LCF-style proof translation. In: Blazy, S., Paulin-
Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 51–66. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-39634-2 7

https://doi.org/10.1007/978-3-642-22673-1_11
https://doi.org/10.1007/978-3-319-43144-4_28
https://doi.org/10.1007/978-3-319-43144-4_28
https://doi.org/10.1007/978-3-319-20615-8_17
https://doi.org/10.1007/978-3-540-27818-4_4
https://doi.org/10.1007/s10817-016-9362-8
https://doi.org/10.1007/978-3-319-42547-4_8
https://doi.org/10.1007/978-3-642-31374-5_30
https://doi.org/10.1007/978-3-540-73086-6_19
https://doi.org/10.1007/978-3-540-73086-6_19
https://doi.org/10.1007/978-3-662-48899-7_26
https://doi.org/10.1007/978-3-662-48899-7_26
https://doi.org/10.1007/978-3-642-20398-5_14
https://doi.org/10.1007/978-3-642-39634-2_7


146 C. Kaliszyk and K. P ↪ak

15. Kaliszyk, C., P ↪ak, K.: Semantics of Mizar as an Isabelle object logic (submitted).
http://cl-informatik.uibk.ac.at/cek/submitted/ckkp-jar17.pdf

16. Kaliszyk, C., P ↪ak, K.: Presentation and manipulation of Mizar properties in an
Isabelle object logic. In: Geuvers, H., England, M., Hasan, O., Rabe, F., Teschke,
O. (eds.) CICM 2017. LNCS (LNAI), vol. 10383, pp. 193–207. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-62075-6 14

17. Kaliszyk, C., P ↪ak, K.: Progress in the independent certification of Mizar mathe-
matical library in Isabelle. In: Ganzha, M., Maciaszek, L.A., Paprzycki, M. (eds.)
Proceedings of the 2017 Federated Conference on Computer Science and Informa-
tion Systems, FedCSIS 2017, pp. 227–236 (2017)

18. Kaliszyk, C., P ↪ak, K., Urban, J.: Towards a Mizar environment for Isabelle: foun-
dations and language. In: Avigad, J., Chlipala, A. (eds.) Proceedings of the 5th
Conference on Certified Programs and Proofs (CPP 2016), pp. 58–65. ACM (2016)

19. Kaliszyk, C., Urban, J.: Learning-assisted theorem proving with millions of lemmas.
J. Symb. Comput. 69, 109–128 (2015)

20. Kaliszyk, C., Urban, J.: MizAR 40 for Mizar 40. J. Autom. Reason. 55(3), 245–256
(2015)

21. Naumowicz, A., Piliszek, R.: Accessing the Mizar library with a weakly strict Mizar
parser. In: Kohlhase, M., Johansson, M., Miller, B., de Moura, L., Tompa, F. (eds.)
CICM 2016. LNCS (LNAI), vol. 9791, pp. 77–82. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-42547-4 6

22. Obua, S., Skalberg, S.: Importing HOL into Isabelle/HOL. In: Furbach, U.,
Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 298–302. Springer,
Heidelberg (2006). https://doi.org/10.1007/11814771 27

23. P ↪ak, K.: Combining the syntactic and semantic representations of Mizar proofs
(submitted)

24. Urban, J.: XML-izing Mizar: making semantic processing and presentation of MML
easy. In: Kohlhase, M. (ed.) MKM 2005. LNCS (LNAI), vol. 3863, pp. 346–360.
Springer, Heidelberg (2006). https://doi.org/10.1007/11618027 23

25. Urban, J.: MPTP 0.2: design, implementation, and initial experiments. J. Autom.
Reason. 37(1–2), 21–43 (2006)

26. Urban, J., Bancerek, G.: Presenting and explaining Mizar. Electr. Notes Theor.
Comput. Sci. 174(2), 63–74 (2007)

27. Urban, J., Sutcliffe, G.: ATP-based cross-verification of Mizar proofs: method,
systems, and first experiments. Math. Comput. Sci. 2(2), 231–251 (2008)

28. Wenzel, M.: Isabelle as document-oriented proof assistant. In: Davenport, J.H.,
Farmer, W.M., Urban, J., Rabe, F. (eds.) CICM 2011. LNCS (LNAI), vol. 6824, pp.
244–259. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22673-
1 17

29. Wenzel, M., Paulson, L.C., Nipkow, T.: The Isabelle framework. In: Mohamed,
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Abstract. Much of the wealth of industrialized societies is based on
knowledge that is laid down and communicated in scientific/technical/
engineering/mathematical documents: highly structured documents that
contain diagrams, images, and – most daunting to many readers – math-
ematical formulae. It seems clear that digital, interactive documents have
the potential to improve reading these kind of documents, and thus learn-
ing and applying this kind of knowledge.

To understand how such improvements could be designed, we explore
how formula understanding interacts with the surrounding text in math-
ematical documents. We report on an eye-tracking experiment with 23
engineering students reading a “solved problem” based on a simple dif-
ferential equation. We observe for instance that – triggered by formu-
lae – readers backjump to previously identified semantic loci and that
this behavior is independent of depth of understanding in mathemati-
cally trained readers. Based on our observations, we propose novel in-
document interactions that could potentially enhance reading efficiency.

1 Introduction

Millions of people engage in reading and understanding scientific/technical/
engineering/mathematics (STEM) documents – Germany alone has about two
million scientists and engineers. So even a single-digit improvement of this read-
ing/understanding productivity will translate to considerable societal effects.

To raise the productivity we focus on the mathematical documents them-
selves. Currently, almost all documents are static – usually printed or in page
description formats like PDF. They are highly structured, contain diagrams,
images, and mathematical formulae, the last one being most daunting to many
readers. As reading behaviour does not depend on the medium according
to [ZC12], replacing these static documents by digital, interactive documents
has the obvious potential to make reading them, and thus learning and applying
STEM knowledge, more personal, efficient, effective, and fun. But first we need
a better grasp on how people read and understand STEM documents, especially
the mathematical parts.

c© Springer International Publishing AG, part of Springer Nature 2018
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In this paper we report on a design research study for establishing a nascent
theory based on the observed phenomena on the discourse-level of embedded
mathematics. That is, we were interested in the cognitive mechanisms of read-
ing STEM documents that allow us to systematically design interactive features
to improve the reading experience. Design Research is a rather young area
in Human Computer Interaction – see [ZSF10,HC10]. It includes the “Research
for Design” approach, which typically results in nascent theories: “propose ten-
tative answers to novel questions of how and why, often merely suggesting new
connections between phenomena” [EM07, p. 1158].

Concretely, we report on an eye-tracking study that focuses on the interplay
of text and formulae in the written communication of mathematical knowledge.
This is an interesting angle of attack, as there is a demonstrable correlation
between what a participant attends to and where she is looking at – see for
example [Ray98] for an overview. The “eye-mind hypothesis” [HWH99] even
claims a correlation between the cognitive processing of information and the
person’s gaze at the specific location of the information.

Related Work. Generally, a lot of studies were conducted to understand in which
way eBooks should be designed to improve the reading experience, a summary
is given in [Mar09]. When reading academic and scholarly materials, readers
triage1 documents by scanning. Studies like [BL07] have consistently found that
titles, section headings, and emphasized text have a high value for document
triage and facilitate reading this way. Marshall reports in [Mar09], that when
reading more intensely, readers move back and forth through the document.
Some authors assume that backjumps are “an implicit sign that the reader is
having difficulty understanding the material” [Cha+16].

In previous work the first two authors have studied how humans read and
understand mathematical formulae from their visual representations via eye-
tracking experiments. In [KF16] we show that the level of affinity towards math-
ematics distinguishes how readers process formulae and in [KKF17] we show
that mathematically trained readers process formulae by recursively identify-
ing content-oriented patterns (Gestalts) that build up the formula semantics
(Gestalt Tree Hypothesis). This first parsing phase is followed by a “formula
understanding phase” in which salient semantic loci are systematically re-visited,
e.g. for tracking bound variables in integrals.

Our literature search didn’t reveal any results concerning the discourse
level – i.e., the phenomena above the phrase and formula structures: sentences,
paragraphs, dialogue – in mathematics or even STEM documents.

Overview. After documenting the experimental setup in Sect. 2 we observe and
discuss conspicuous patterns in subjects’ gaze behaviors in Sect. 3. In Sect. 4 we
proceed with a quantitative analysis of gaze data on specifically selected doc-
ument fragments. Observations and explanations are summarized in a nascent

1 Document triage refers to readers’ practice of rapidly evaluating documents to
determine whether they contain wanted information or not.
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theory for reading mathematical documents in Sect. 5. Subsection 5.1 discusses
how these findings can lead to better interaction with STEM documents and
Sect. 6 concludes the paper.

2 The Eye-Tracking Study

Experimental Setup. This eye-tracking study was carried out with the students of
a one-week special course “Content and Form: How one manipulates the other”
at Srinakharinwirot University (SWU), Thailand. Most of the 23 participants
were students of the Biomechanical Engineering Program at SWU, the remaining
three were students of Electrical Engineering. The primary textbook of these
programs is “Advanced Engineering Mathematics” by Erwin Kreyszig [Kre06].
Reading Kreyszig’s book in English is a well-practiced part of the program, so
the English/Thai language barrier should be minimal for reading. We also note
that in the sense of [KF16] all participants are math-oriented and mathematically
trained.

In our study we used a solved problem called “Radioactive Decay” in [Kre06,
p. 13], which had been transliterated into HTML5 with MathML by the authors,
as mathematical document2. Here, Kreyszig uses the example of radiocarbon-
dating the Ötzi mummy to present standard methods for solving a boundary
value problem induced by the simple ordinary differential equation y′ = ky.
This example comes very early in Kreyszig’s book, therefore we assume that all
subjects were familiar with the content and able to understand the mathematics.

The 23 students (16 female, 7 male) were presented the example on a Tobii t60
Eye-Tracking Screen (17” and 4:3 ratio with 60 Hz) in a mobile setup. They were
asked to think aloud while reading/understanding the document3; audio/video
recordings were collected together with the eye-tracking data.

In a post-test, subjects were asked to write a from-memory summary of the
document they read in the study in Thai. This was announced beforehand to sub-
jects and was mainly intended to provide motivation for reading the document
in detail. This document was later evaluated to assess the level of understanding
of the participants. We believe that the “re-production” of results in Thai helped
break down the language barrier.

2 Figures 12 and 15 together show the full document content, see https://kwarc.info/
people/mkohlhase/data/DuStd-18/radiocarbon.html for the transcription.

3 This has been unsuccessful, it seems that the English/Thai language barrier com-
bined with a cultural reluctance to speak without preparation together with the
unfamiliar situation induced prohibitive cognitive load which prevented students
from speaking. When we realized this, we asked one student to “think aloud in
Thai”, but this largely only resulted in a translation of the document, in particular
not in the desired stream of cognition, so we dropped this idea.

https://kwarc.info/people/mkohlhase/data/DuStd-18/radiocarbon.html
https://kwarc.info/people/mkohlhase/data/DuStd-18/radiocarbon.html
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Classifying the Understanding-Level of Our Test Subjects. The Thai summary
documents were evaluated to classify the individual level of understanding at
various levels. In particular, the post-test results were assessed according to
whether the participants:

1. addressed the problem objective, i.e., determining the time of death of Ötzi;
2. addressed the physical background and/or solution methodology;
3. cite the eventual answer to the problem; and
4. correctly used formulae in the document.

We aggregated these to estimate the level of understanding by the students of
the problem setting and methodology (Up from 1. and 2.) and that of formu-
lae in the text (Uf ). For the former, we used a true/false scale, for the latter
a five-point Likert scale: “yes”, “maybe”, “cannot judge”, “no formulae”, and
“formulae catastrophically wrong”. Note that these judgements are not indepen-
dent: A problem in understanding the methodology renders subsequent aspects
not applicable: Indeed we had this in three cases, we found that subjects had
misunderstood the problem to be “Find the half-life of the mummy”, “Find the
half-life of 6C

14 or 6C
12 will occur after the death”, and “Prove the ratio of

Carbons is 52.66%”.

low 7
high 14
na 2
Total 23

Fig. 1. Participants

It turns out that values in the understanding aspects
Up and Uf are largely identical where applicable, if we
identify “yes” and “maybe” in Up with “yes” in Uf and
analogously “no formulae” and “formulae catastrophically
wrong” in Up with “no” in Uf . Therefore we used the “gen-
eral aptitude” (high/low on the combined score) for group-
ing the participants into the two groups low and high.
See Fig. 1 for the distribution, where “na” stands for non-
applicable as we couldn’t sort the respective participants into any of the groups.

3 Patterns in the Gaze Plots

We will now analyze the results of the eye-tracking experiment qualitatively.
Concretely, we will study gaze plots, i.e., visualizations of fixations4 over time,
generated by the eye-tracker and show typical patterns. In general we distin-
guish between text, inline-math, and display-math areas and observe discourse
phenomena as behavioural gaze patterns on these.

4 The eye moves discontinuously, making short stops (called fixations; we count any
stop that is longer than 60 ms) and separating by rapid jumps (called saccades).
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Fig. 2. Backjumping to equations

Jumps. The first
pattern, we observed
in the majority of
participants’ gazes,
is a jump from
a math expression
in a display-math
area back into a
related inline-math expression close-by and above, a “regression”. Figure 2 shows
an example: While the subject looks at the equation “dy

y = k dt”, he/she jumps
back to the ordinary differential equation “ODE y′ = ky” in the text above which
it was derived from. Afterwards he/she continues to the ensuing equations in the
same display-math line. Interestingly, we did not observe once a forward jump
from the display-math to an inline-math expression. That is quite natural at the
beginning when one doesn’t yet know what is about to come, but at the end,
when all content is already known, we could have expected a different behaviour.

This backjumping pattern also happens in a more complex way between
distinct display-math lines as in Fig. 3, where the participant looks at an equation
– here y0ekt = 0.5y0 – after fixating on the left hand side (fixations 1, 2) he jumps
back to the equation dy

y = k dt three lines above (fixations 3–5) and returns to
the right hand side (fixations 6, 7).

Fig. 3. Complex backjumping

In the next equation ekt =
0.5 something similar happens: after
examining the equation, the subject
jumps back to the equations ln |y| =
kt + c and y = y0e

kt, glances at them
without fully examining them again,
and returns to the first equation on the
lower line (glances at that and contin-
ues back to equation ekt = 0.5 that
was the origin of the detour).

Fig. 4. Processing justifications

Justification Pro-
cessing. In Fig. 4
we see a partici-
pant reading the
equation dy

y = k dt
and then jumping
back to the phrase
“By separation” and
dwelling on this
extensively before returning to the equation and moving on. Here
“By separation and integration” is the justification for the equations dy

y = k dt

(separation) and ln |y| = kt+c (integration); indeed it is the main method intro-
duced in the same chapter of [Kre06] that the document in our experiment was
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taken from. So the Justification Processing pattern describes backjumps to
justification keywords in the text that help to process the reasoning behind the
solution.

Fig. 5. Regression to a declaration

Declaration Lookup.
The next pattern
is somewhat less
frequent, but still
observed regularly.
Figure 5 shows a
situation, where
the test subject is
reading the equation y = y0e

kt and starts from the left with y (fixation 10), con-
tinues to y0 (fixation 11), jumps to the phrase “y0 is the initial ratio . . . ”, and
back to the equation, which is examined more closely before moving on. In this
declaration lookup pattern the backjumps are captured that are reaffirming
information. Humans keep information in short term memory only for 10–30 s,
so such jumps are necessary to keep the content available.

Fig. 6. Multiple declaration lookup

Figure 6 shows another
instance of this. The par-
ticipant reads the (expo-
nent of the left-hand side
in the) equation ekH =
0.5 and then glances at
the k in the line above
and then reads

“t = H half of the”, which reminds him of the description of the half-life H.

Re-check and Re-orientation. A very common pattern is that participants
read the explanatory text and the equations essentially sequentially or linewise

Fig. 7. Reading linewise

(see Fig. 7), with
the latter being
subject to the
jumps and dec-
laration lookups
described above.
But when they reach the answer at the end, about 2/3 of the subjects went
over large parts of the document again in a much more targeted fashion. We
call this pattern a re-check. Figure 8 shows two typical situations. Extended
re-checks also occurred before the final answer was reached, but this was much
less frequent. In this situation extended excursions focused on the background,
problem, and physical information sections – we call these re-orientations.
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(a) Text and Equations (b) Equations Only

Fig. 8. Final re-check after answer was read

Solution Pre-scan. Dually, we sometimes see a pre-scan that skips ahead to the
eventual solution glancing over salient features of the document until the answer
has been reached (see Fig. 9).

Fig. 9. Solution pre-scan

This is usu-
ally followed by
a linewise read-
ing of the solution
text, which is sup-
posedly informed
by the pre-scanned
text.

Multiple Ways of
Reading Equations.
We found differ-
ent patterns of
reading the equa-
tion k = ln 0.5

H =
0.693
5715 = 0.0001213:
Figure 10(a) e.g.
starts out with
the middle of the three equality symbols, moved to the first, and then to the
value 0.5 and then to the natural logarithm ln. From here the subject focuses
on the value 0.693 for three fixations (6–8) before he/she moves on to the final
value on the very right of the equation chain. Note that this sequence is con-
sistent with the Gestalt Tree hypothesis from [KKF17] if we assume the middle
= to be the main operator and the two others to be the main operators of its
arguments.
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(a) Equation Chain (b) Value Computation

Fig. 10. Different ways to read equations

The proband of Fig. 10(b) comes in from the phrase “determine k” and
focuses on the first fraction, directly moves to the final value, and then fixates
the middle right fraction, returns to the value, and then passes to the middle
left fraction before moving on. We can assume that this participant interpreted
the equation chain as an instance of the “value computation frame”: an equation
chain with a variable on the left and a scalar value on the right. As in [KKF17],
we assume that single identifiers can be interpreted without fixation, so the ini-
tial parse of the Gestalt identifies the “outer equation” k = 0.0001213, which is
indeed the relevant information. The middle fractions are checked as a secondary
objective.

Whitespace to Think With. Finally, we repeatedly found patterns like the ones
in Fig. 11. We interpret this as participants seeking a place without distracting
information to fixate while thinking about what they were reading. We also
frequently observed long fixations of the part headings – especially the heading
“Solution”, which seemed to serve a similar purpose.

Fig. 11. Times for reflection: whitespace to think with

One could think that the fixations on this area were due to mindless reading
times, that is reading at the same time as thinking about something else. But
in [RRS10] it was shown that mindless reading was always immediately preceded
by especially erratic eye movements, so we can refute this argument.

4 Patterns in the Elicited Data

To make use of the eye-trackers statistical data, one has to define Areas of
Interest (AOI). For each AOI eye-tracking specific metrics like “Time to First
Fixation” or “Visit Duration” are elicited from the gathered data. A visit is the
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Fig. 12. Structure-driven AOIs (Color figure online)

period of time from entering an AOI to leaving it, whereas a fixation occurs,
when the eye focuses on a position for a certain amount of time. A visit contains
at least one fixation otherwise it is not counted as a visit as the test subject
otherwise just jumped over the AOI without having time to perceive any infor-
mation.

To get a better understanding of the Gestalt Tree we distinguished between the
visual document structure and the visual structure of mathematical expressions,
so we defined structure-driven AOIs as in Fig. 12 and math-driven AOIs as
shown in Fig. 15. The colored areas in those figures represent such areas of interest.
For instance, we marked the heading of each subsection in Fig. 12 independently
from its content, so we have a Background-Title-AOI and a Background-Area-
AOI. These were then used for analyzing the eye-tracker’s data, predominantly
using the mean for comparing the eye-tracking specific metrics.

4.1 Structure-Driven Areas of Interest

Kreyszig’s example consists of four top-level text areas introduced by explicit
headings: the background information, the problem statement, the solution-
relevant physical background, and the solution. All these were given a clearly
marked title and provide an obvious visual text structure (see AOIs on x-axis in
Fig. 13).
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Fig. 13. Visits and fixations for S-AOIs

First, we were interested
how often our subjects visited
or fixated the text compo-
nents, respectively. In Fig. 13
we visualized the number of
visits and fixations of the
structural text components
depending on participants’
level of understanding.

An interesting observation
consists in the strong differ-
ence between fixations and
visits. Especially in the solution area the number of fixations is more than qua-
drupling the number of visits. That means that subjects jumped a lot between
sub-elements within the respective area during a visit. So the interactivity rate
for the solution area is highest, followed by the relevant physical information
area. The background information was more often fixated than the problem
description. Looking at the size of the areas, this is not surprising: the problem
statement is about half the size of the background area, almost doubled by the
physical information, which in turn is almost doubled by the solution. Therefore,
we could expect a linear growth in the number of fixations. But if we look closely,
we can see that it is more than linear.

At first glance surprisingly, there is neither a difference in terms of number of
fixations nor visits between students of high or low level document understand-
ing. [MGA14] already found a similar result with respect to text comprehension.
Our analysis suggests that this is true with respect to mathematical text as well.

Next, we looked at other metrics to (nevertheless) found our intuition about
existing differences among the participant groups high and low.

Figure 14 shows the relative total duration of visiting or fixating specific
areas, distinguishing the ones with a high level of understanding from the ones
with a low level. Note that the visit duration has always to be higher than
the fixation duration, as subjects’ fixations depend on their visit of this area.

Fig. 14. Relative total visit- and fixation-duration
for the structure-driven AOIs

Moreover, we used the stan-
dard threshold for fixation
length of 60 ms, so besides the
durations for non-classified
participants, all shorter fix-
ations are also summed up
in the general “*-ALL” vari-
ables.

Non-surprisingly, in gen-
eral the title areas were very
shortly looked at and the solu-
tion area the longest. The par-
ticipants of the high group
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spent less time fixating and less time visiting all areas. The length of fixations
and visits could therefore indicate aptitude to the task, that is, it could give us
a measure for personal complexity of information.

Fig. 15. Math-driven AOIs (Color figure online)

4.2 Math-Driven Areas of Interest

To get a better grasp about the discourse level when reading mathematics, we
had a closer look to the solution itself as it contains paragraphs and formula
areas. Except for the last text area all are of a comparable size, so that any
differences can be attributed to the content itself. We distinguish four nested
levels of formula areas (see Fig. 15):

– the display equation level containing the display math in a line represents the
highest level, e.g. “Eq-1”.

– Each equation area contains several subareas with individual equations like
“Eq-1-1” (separated by a comma), which we consider the intermediate
level,

– which in turn consists of the sub-expressions on the left and the right of
the equation sign of each subexpression on the lowest level, for instance
“Eq-1-1-1”.

– In the text areas in the solution there are several occurrences of inline math
like “inline-1-1”, that is math that is embedded in text.

We built the AOIs according to this structure, where Eq-1 – Eq-3 belong to the
highest level, Eq-1-1 – Eq-3-2 belong to the intermediate level etc.
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Fig. 16. Fixations and visits in the solution

One would expect the
number of the counts to equal
the number of the sum of
its parts. But this is not the
case. Instead we can see in
Fig. 16 that the sum of the
subarea visits is consistently
larger than the higher level
area, the sum of the subarea
fixations in contrast consis-
tently lower.

As we left out some areas
inside the higher level mathe-
matical expressions to be covered by lower level ones, the higher number of fix-
ations is explained by our subjects not always fixating on the sublevel areas but
somewhere in-between. They didn’t always fixate the formulae, only close-by -
maybe on a recheck-jump in-between or to perceive the higher-level Gestalt infor-
mation. The higher number of visits on the lower level areas means that the test
subjects left and entered sublevel areas without leaving the higher level mathe-
matical expression. Note that this inside-math-expression interactivity happened
on all higher-levels and in a 50-50 ratio on the intermediate levels.

4.3 What are Cognitive Units (Words) in Math?

Another point of interest is the distribution of gaze intensity over the document.
Typically, this is assessed visually by heatmaps. But the AOIs allow us to “do
the numbers” to see how intensity differs by type of content, here between text,
inline, and display math.

But how to define gaze intensity? Heat maps visualize fixations per space.
With AOIs, we can calculate the number of fixations per AOI visit, but we still
have to normalize for “space”. For text the natural cognitive unit is a word ,
which is usually read holistically, or alternatively word characters, if we want to
take word length into account. We can only compare gaze intensity on text and
math, when we understand what the equivalent to a word or a word character in
formulae is, but as we will see, that is not per se clear. To fortify our intuition,
let us look at the following sentence from our document:

Radioactive decay is governed by the ODE y′ = ky.

We can determine the number of words in the text part to be 7 and we count 34
letters ignoring the whitespaces. For the mathematical part it is indeed difficult:
Does the entire equation represent a word, does the left part of the equation equal
a word, or do we have to count the units explicitly spoken in the mathematical
expression like “y prime equals k (times) y”. Furthermore, we have to decide
whether the equality sign is comparable to punctuation or what else is.
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Fig. 17. Fixations per AOI size and word number (Color
figure online)

Figure 17 shows the
fixations per AOI and
various space normaliza-
tions. Here, we looked
only at the math-driven
AOIs of type text, inline-
math and display math
on the highest level.
Together these AOIs
cover all non-empty areas
in the solution section
and each fixation falls
into exactly one AOI.
For #Words in formulae
we counted the “equation

sides” whereas in #WordsInExplicitMath we counted operators and constants
which roughly corresponds to words in “spoken formulae”, but normalizes for
multi-word operators like “e to the power of k (times) t”. If we compare the
intensity columns for the various AOIs, we see that the values are significantly
higher on formulae than text (by factors ranging from 2 to 5 for #Letters and
#Words). Only for the intensity measure that normalizes with #WordsInExplic-
itMath we see comparable values.

The first (blue) column in Fig. 17 shows the fixations per visit, which is not
a “gaze intensity” as it is not normalized for (cognitive) space, but it is another
intensity measure. The more fixations there are per visit, the more complex the
information. We can interpret the results in terms of

(i) cognitive load – and therefore probably information content and relevance to
a STEM document: formulae are much more content-rich than text

(ii) a complexity measure of formulae: nodes in the operator tree representation
of formulae are an adequate size measure for formulae.

Note that these interpretations do not compete as they address different
aspects. The latter interpretation is consistent with the Gestalt Tree Hypothesis
from [KKF17] and the finding of [Bau99] that mathematical formulae (espe-
cially inline ones) have grammatical function in the surrounding text and are
best modeled by integration of the mathematical and sentence grammars.

5 A Nascent Theory for Mathematical Documents

We summarize the most relevant observations to be used for explorative design
in a first, admittedly very basic nascent theory.

NT1: The top level block structure of the experiment’s mathematical document
was noticed and used while reading – reconfirming previous results for
general text reading for mathematical document reading.
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NT2: Participants mostly read the text linewise in document order, starting
at the beginning. The more was read, the more regressions happened,
especially when starting the solution area which has a high intensity of
formulae. Here, we recognized several distinct patterns.

– Local Regressions to (i) identifier declarations, (ii) equations the current
one is derived from, and (iii) justifications of the current equation. Con-
trary to [Cha+16] – which admittedly was not focused computer science
papers, not on mathematics – we found that students with a high level
of understanding used regressions – probably to deepen their knowledge.

– Non-Local Regressions to the problem and background descriptions after
they have read the solution. Recaps are largely driven by the display for-
mulae in the derivation, whereas re-orientations are driven by terminology
coreference.

NT3: Participants spend significantly more time on formulae than on text. This
also holds for inline formulae, but only if they are more than one letter
long. As a rule of thumb, one operator or constant in a formula is worth
one word in a text.

NT4: There seems to be a lot of looking to the right margin and the section
title areas, which can be interpreted as a need for “spaces to think with”.

5.1 Design Application: Interactive Documents

We give some very first examples for explorative design ideas based on NT1–
NT4 to showcase the value of a nascent theory.

For instance, if structural elements are easily findable, then we strengthen the
effect of NT1: What about personalizing structural layout? That way everyone
loves and lives with her/his own recognition clues.

When reading/understanding formulae, people look for declarations (NT2–
i). With active documents – i.e., interactive documents that adapt themselves
to the user; see [Koh+11] – we can support this process.

Consider for instance a simple instrumentation like the one shown in Fig. 18,
where we have bound the hover event on the sub-formula T to highlight the dec-
laration text and other occurrences of the same identifier via two lines of jQuery.
Of course, we also systematically need label/ref annotations on corresponding
sub-formulae, which is the real bottleneck.

Fig. 18. Instrumenting documents

We have shown in [WG10] that
the vast majority of identifiers is
declared near where they are used.
[Kri+12,Sch16] present a simple
algorithm and framework for “decla-
ration spotting”, which could be used
to generate such annotations auto-
matically. Of course, this needs to be
improved substantially to be practi-
cal for document instrumentation.



Discourse Phenomena in Mathematical Documents 161

Similarly, we can instrument the document to support the re-check and re-
orientation phases diagnosed in (NT2–Non-Local Regressions). For re-checking,
we would instrument the formula dependency relation: for a formlula F focused
by the reader5 we could highlight all formulae (or alternatively their relevant
parts) that compute objects in F . For instance, if F is ekt on the left of the
last equation line, then we could highlight the dependency k = ln 0.5

H = 0.693
5715 =

0.0001213 and the declaration “t is time”. Again, we are presuming annotations
for the dependency relation in the document. Note that the recap/re-orientation
patterns discussed in Sect. 3 suggest that a highlighting instrumentation is more
effective than e.g. generated summary (at least when all recaps are on the same
page): the subjects seemed to have a very clear notion of where to find the
information they were looking for in the document.

Based on NT3 we could explore the effect of enlarging inline math or we use
the complexity measure based on mathematical words to assess the necessity of
assistance features.

Introducing explicit thinking space to a mathematical document layout seems
rather unusual, but might be helpful for the reflection process in individuals
according to NT4.

We have experimented with these and other instrumentations during the
course, but the eye-tracking studies on this were inconclusive, as the number
of tested students were too small and the participants untrained in the new
features. The latter was a main problem in all of the instrumentations: they
were not easily discoverable – we did not want to change the appearance of the
document too much – and subjects needed time for understanding what they
were seeing.

6 Conclusion

In this paper we report on an eye-tracking experiment, observing engineering
students reading a mathematical document. In contrast to other studies which
focus on text or formulae alone, we focus on the discourse-level interaction of
text and formulae. We have identified various conspicuous patterns in the data
from the experiment and shown how these could be used to improve the read-
ing and understanding experience of STEM practitioners. The nascent flavor of
our theory notwithstanding it is already useful; we can e.g. refute the assump-
tion that the occurrence of backjumps indicate a low level of understanding as
suggested in [Cha+16].

In the future we plan to systematically design interactive features for STEM
documents and evaluate the effectiveness and efficiency of reading and under-
standing STEM documents. On the other hand we plan eye-tracking studies that
further elucidate the cognitive processes behind perceiving mathematical docu-
ments, hopefully ending with a “mature” theory, which “present[s] well-developed
5 There is of course the practical problem of how to determine whether F is focused.

We could use in-place-and-time eye-tracking data instead of forcing the reader to
e.g. hover the mouse over F to “focus” it, as this might be too distracting.
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constructs and models that have been studied over time with increasing precision
[. . . ] resulting [. . . ] in points of broad agreement” [EM07, p. 1158].

Acknowledgements. The authors gratefully acknowledge the Erasmus+ Staff Mobil-
ity for Teaching program that provided the institutional setting of the design research,
and the students of the course for their participation in the eye-tracking study.
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The Private University College of Education of the Diocese of Linz,
Salesianumweg 3, 4020 Linz, Austria

zoltan@geogebra.org

Abstract. In 1993 Watkins and Zeitlin published a method [1] to simply
compute the minimal polynomial of cos(2π/n), based on the Chebyshev
polynomials of the first kind. For the work presented in this paper we
have implemented a small augmentation, based on Watkins an Zeitlin’s
work, to the dynamic mathematics tool GeoGebra. We show that this
improves GeoGebra’s capability to discover and automatically prove var-
ious non-trivial properties of regular n-gons.

Discovering and proving, in this context, means that the user can
sketch a conjecture by drawing the geometric figure with the tools pro-
vided by GeoGebra. Then, even if the construction is just approximate,
in the background a rigorous proof is computed, ensuring that the con-
jecture can be confirmed, or must be rejected.

In this paper the potential interest of automated reasoning tools will
be illustrated, by describing such new results in detail, obtained by some
recently implemented features in GeoGebra.

Besides confirming well known results, many interesting new theorems
can be found, including statements on a regular 11-gon that are impos-
sible to represent with classical means, for example, with a compass and
a straightedge, or with origami.

Keywords: Automated theorem proving · Computer algebra
Regular polygons · GeoGebra · Regular 11-gon
Chebyshev polynomials

1 Introduction

There are many well-known theorems on interesting properties in regular poly-
gons. Most results, however, deal with constructible polygons, whose vertices can
be constructed with traditional means including compass and straightedge, or
origami, for example. From the very start of the availability of computer algebra
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systems (CAS) and dynamic geometry software (DGS), namely, the 1990s, how-
ever, non-constructible polygons can also be better observed, either numerically
or symbolically.

In this paper we focus on the symbolic approach on proving facts on regular
polygons. In particular, we search for equally long segments, congruent triangles,
perpendicular or incident lines, that can appear in a regular polygon by drawing
the diagonals, intersecting them, and creating new points by the intersections,
then, by connecting the new points, we can obtain more and more new lines as
well, and so on.

The way we here highlight is well-known in mechanical geometry theorem
proving, and has been being used for about 30 years since the revolutionary
book [2] of Chou, that presents 512 mathematical statements with an automated
proof for each. In Chou’s approach—which is based on Wu’s algebraic geometry
method [3]—an equation system can describe a geometric construction, and by
performing some manipulations on the equation system, a mechanical proof can
be obtained. Wu’s work, and most contributions of his followers, focus mainly on
constructible setups, that is, mostly on such constructions that can be created
only by using the classic approach, namely by compass and straightedge. In this
paper we will call this well known approach algebraic geometry approach (AGA).

By contrast, this paper introduces some new equations which are able to
extend the AGA to work with regular n-gons as well. The roots of computing
the minimal polynomial of cos(2π/n) are already present in Lehmer’s work [4] in
1933, but a useful formula for CAS has just recently been highlighted by Watkins
and Zeitlin [1] in 1993, and recapitulated very recently by Gurtas [5] in 2017.

The paper consists of the following parts: In Sect. 2 the mathematical back-
ground is explained. Section 3 presents some new results. Finally, Sect. 4 depicts
some possible future steps.

2 Mathematical Background

In this section first we recall two classic theorems on constructibility. Then an
algebraic formula will be shown by using previous work.

2.1 Constructibility

In AGA the key step is algebraization of the setup of a planar geometry state-
ment. In most theorems in AGA the classic Euclidean construction steps are
translated into algebraic equations. There is, however, a proof on Morley’s tri-
sector theorem presented which assumes a non-Euclidean, cubic way to make it
constructed, but, in fact, the way of construction is successfully avoided in the
equations [2, p. 120].

It is well known (Gauß [19], see [6,7]) that a regular n-gon is constructible
by using compass and straightedge if and only if n is the product of a power of
2 and any number of distinct Fermat primes (including none). We recall that a
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Fermat prime is a prime number of the form 22
m

+ 1. By using this theorem the
list of the constructible regular n-gons are:

n = 3, 4, 5, 6, 8, 10, 12, 15, 16, 17, 20, . . .

A generalization of this result (Pierpont, see [8]) by allowing an angle tri-
sector as well (for example, origami folding steps), is that a regular n-gon is
constructible if and only if

n = 2r · 3s · p1 · p2 · · · pk,

where r, s, k ≥ 0 and the pi are distinct primes of form 2t · 3u + 1 [9]. The first
constructible regular n-gons of this kind are

n = 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, . . .

We note that the second list contains the first list.
From the second list the case n = 11 is missing, and, as a natural consequence,

there are many fewer scientific results known on regular 11-gons than for n-gons
appearing in the lists.

2.2 An Algebraic Formula for the Vertices

In this part of the paper we derive a formula for the coordinates of the vertices
of a regular n-gon.

From now on we assume that n ≥ 1. The cases n = 1, 2 have actually no
geometrical meaning, but they will be useful from the algebraic point of view.

In AGA the usual way to describe the points of a construction is to assign
coordinates (xi, yi) for a given point Pi (i = 0, 1, 2, . . .). When speaking about
a polygon, in many cases the first vertices are put into coordinates P0 = (0, 0)
and P1 = (1, 0), and the other coordinates are described either by using exact
rationals, or the coordinates are expressed as possible solutions of algebraic equa-
tions.

For example, when defining a square, P2 = (1, 1) and P3 = (0, 1) are appro-
priate, but for a regular triangle two equations for P2 = (x2, y2) are required,
namely x2

2 + y2
2 = 1 and (x2 − 1)2 + y2

2 = 1. It is easy to see that this equation
system has two solutions, namely x2 = 1

2 , y2 =
√
3
2 and x2 = 1

2 , y2 = −
√
3
2 .

It is well known that there is no way in AGA to avoid such duplicates, unless
the coordinates are rational. In other words, if both minimal polynomials of the
coordinates are linear (or constant), then the duplicates can be avoided, other-
wise not. Here, for x2 we have 2x2 − 1(= 0), but for y2 the minimal polynomial
is 4y2

2 −3(= 0). We remark that the minimal polynomials are irreducible over Z.
Clearly, minimal polynomials of a regular n-gon with vertices P0 = (0, 0) and

P1 = (1, 0) can play an important role here. The paper [1] suggests an algorithm
to obtain the minimal polynomial pc(x) of cos(2π/n), based on the Chebyshev
polynomials Tj(x) of the first kind (see Algorithm 1).
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Algorithm 1. Computing the minimal polynomial of cos(2π/n)
1: procedure cos2piOverNMinpoly(n)
2: pc ← Tn − 1
3: for all j | n ∧ j < n do
4: q ← Tj − 1
5: r ← gcd(pc, q)
6: pc ← pc/r

7: return SquarefreeFactorization(pc)

Table 1. List of minimal polynomials of cos(2π/n), n ≤ 17

n Minimal polynomial of cos(2π/n)

1 x − 1

2 x + 1

3 2x + 1

4 x

5 4x2 + 2x − 1

6 2x − 1

7 8x3 + 4x2 − 4x − 1

8 2x2 − 1

9 8x3 − 6x + 1

10 4x2 − 2x − 1

11 32x5 + 16x4 − 32x3 − 12x2 + 6x + 1

12 4x2 − 3

13 64x6 + 32x5 − 80x4 − 32x3 + 24x2 + 6x − 1

14 8x3 − 4x2 − 4x + 1

15 16x4 − 8x3 − 16x2 + 8x + 1

16 8x4 − 8x2 + 1

17 256x8 + 128x7 − 448x6 − 192x5 + 240x4 + 80x3 − 40x2 − 8x + 1

Also, adding the equation pc(x)2+ps(y)2 = 1 to the equation system, we have
managed to describe a polynomial ps(y) such that ps(sin(2π/n)) = 0. Table 1
shows the minimal polynomials for n ≤ 17.

It is clear, that—not considering the cases n = 1, 2, 3, 4, 6—the number of
roots of pc is more than one, therefore the solution of the equation system
{pc(x) = 0, ps(x) = 0} is not unique. The number of solutions for pc(x) = 0
depends on the degree of pc, and—not considering the cases n = 1, 2—the num-
ber of solutions for ps(x) = 0 is two for each root of pc(x), therefore the number
of solutions for {pc(x) = 0, ps(y) = 0} is usually 2 ·deg(pc). As a result, the point

P = (cos(2π/n), sin(2π/n))



168 Z. Kovács

can be exactly determined by an algebraic equation in AGA only in case n = 4,
as shown in Table 2.

Table 2. Degree of ambiguity for (cos(2π/n), sin(2π/n)), 3 ≤ n ≤ 13

n Degree

3 2

4 2

5 4

6 2

7 6

8 4

9 6

10 4

11 10

12 4

13 12

It seems to make sense that the degree of ambiguity (not considering the case
n = 4) can be computed with Euler’s totient function, that is, the degree equals
to ϕ(n). Later we will give a short proof on this.

Now we are ready to set up additional formulas to describe the coordinates
of the vertices of a regular n-gon, having its first vertices P0 = (0, 0) and P1 =
(1, 0), and the remaining vertices P2 = (x2, y2), . . . , Pn−1 = (xn−1, yn−1) are
to be found. By using consecutive rotations and assuming x = cos(2π/n), y =
sin(2π/n), we can claim that

(
xi

yi

)
−

(
xi−1

yi−1

)
=

(
x −y
y x

)
·
((

xi−1

yi−1

)
−

(
xi−2

yi−2

))

and therefore

xi = −xyi−1 + xi−1 + xxi−1 + yyi−2 − xxi−2, (1)
yi = yi−1 + xyi−1 + yxi−1 − xyi−2 − yxi−2 (2)

for all i = 2, 3, . . . , n − 1.

3 Example Statements

In this section we present some statements on regular polygons that can be
obtained by using the formulas from the previous section.
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3.1 Lengths in a Regular Pentagon

A basic example on how our computation works will be discussed first.

Theorem 1. Consider a regular pentagon (Fig. 1) with vertices P0, P1, . . . , P4.
Let A = P0, B = P2, C = P1, D = P3, E = P0, F = P2, G = P1, H = P4. Let
us define diagonals d = AB, e = CD, f = EF, g = GH and intersection points
R = d ∩ e, S = f ∩ g. Now, when the length of P0P1 is 1, then the length of RS

is 3−√
5

2 .

Fig. 1. A well-known theorem on a regular pentagon (for convenience we use only the
indices of the points in the figure, that is, 0, 1, . . . , n − 1 stand for P0, P1, . . . , Pn−1,
respectively)

This result is well-known from elementary geometry, but here we provide
a proof that uses the formulas developed in Sect. 2. We will use the variables
x0, x1, x2, x3, x4 for the x-coordinates of the vertices, y0, y1, y2, y3, y4 for the y-
coordinates, and x and y for the cosine and sine of 2π/5, respectively. Points P0

and P1 will be (0, 0) and (1, 0).
By using Table 1 and Eqs. (1) and (2), we have the following hypotheses (we

use the notion hypotheses here to describe the required geometric facts—such
equations will be generated automatically later by GeoGebra in Sect. 3.3):

h1 = 4x2 + 2x − 1 = 0,

h2 = x2 + y2 − 1 = 0,
h3 = x0 = 0,

h4 = y0 = 0,

h5 = x1 − 1 = 0,
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h6 = y1 = 0,

h7 = −x2 + −xy1 + x1 + xx1 + yy0 − xx0 = 0,

h8 = −y2 + y1 + xy1 + yx1 − xy0 − yx0 = 0,

h9 = −x3 + −xy2 + x2 + xx2 + yy1 − xx1 = 0,

h10 = −y3 + y2 + xy2 + yx2 − xy1 − yx1 = 0,

h11 = −x4 + −xy3 + x3 + xx3 + yy2 − xx2 = 0,

h12 = −y4 + y3 + xy3 + yx3 − xy2 − yx2 = 0.

Since R ∈ d and R ∈ e, we can claim that

h13 =

∣∣∣∣∣∣
x0 y0 1
x2 y2 1
xr yr 1

∣∣∣∣∣∣ = 0, h14 =

∣∣∣∣∣∣
x1 y1 1
x3 y3 1
xr yr 1

∣∣∣∣∣∣ = 0,

where R = (xr, yr). Similarly,

h15 =

∣∣∣∣∣∣
x0 y0 1
x2 y2 1
xs ys 1

∣∣∣∣∣∣ = 0, h16 =

∣∣∣∣∣∣
x1 y1 1
x4 y4 1
xs ys 1

∣∣∣∣∣∣ = 0,

where S = (xs, ys). Finally we can define the length |RS| by stating

h17 = |RS|2 −
(
(xr − xs)

2 + (yr − ys)
2
)

= 0.

From here we can go ahead with two methods:

1. We directly prove that |RS| = 3−√
5

2 . As we will see, this actually does not
follow from the hypotheses, because they describe a different case as well,
shown in Fig. 2. That is, we need to prove a weaker thesis, namely that |RS| =
3−√

5
2 or |RS| = 3+

√
5

2 , which is equivalent to
(

|RS| − 3 − √
5

2

)
·
(

|RS| − 3 +
√

5
2

)
= 0.

Unfortunately, this form is still not complete, because |RS| is defined implic-
itly by using |RS|2, that is, if |RS| is a root, also −|RS| will appear. The
correct form for a polynomial t that has a root |RS| is therefore

t =

(
|RS| − 3 − √

5
2

)
·
(

|RS| − 3 +
√

5
2

)
·

(
−|RS| − 3 − √

5
2

)
·
(

−|RS| − 3 +
√

5
2

)
= 0,

that is, after expansion,

t = (|RS|2 − 3|RS| + 1) · (|RS|2 + 3|RS| + 1) = |RS|4 − 7|RS|2 + 1 = 0.
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The proof the thesis is performed by showing the negation of t. This is accom-
plished by adding t · z − 1 = 0 to the equation system {h1, h2, . . . , h17} and
obtaining a contradiction. This approach is based on the Rabinowitsch trick,
introduced by Kapur in 1986 (see [10]).

2. We can also discover the exact value of |RS| by eliminating all variables from
the ideal 〈h1, h2, . . . , h17〉, except |RS|. This second method was suggested
by Recio and Vélez in 1999 (see [11]).

The first method can be used only after one has a conjecture already. In
contrast, the second method can be used before having a conjecture, namely, to
find a conjecture and its proof at the same time.

For the first method we must admit that in AGA there is no way to express
that the length of a segment is 3−√

5
2 . Instead, we need to use its minimal poly-

nomial, having integer (or rational) coefficients. Actually, |RS|2 − 3|RS| + 1 is a
minimal polynomial of both 3−√

5
2 and 3+

√
5

2 , and |RS|2 +3|RS|+1 is of − 3−√
5

2

and − 3+
√
5

2 . In fact, given a length |RS| in general, we need to prove that the
equation t = t1 · t2 = 0 is implied where t1 and t2 are the minimal polynomials of
the expected |RS| and −|RS|, respectively. Even if geometrically t1 is implied,
from the algebraic point of view t1 · t2 is to be proven.

When using the second method, by using elimination (here we utilize com-
puter algebra), we will indeed obtain that

〈h1, h2, . . . , h17〉 ∩ Q[|RS|] = 〈|RS|4 − 7|RS|2 + 1〉.

Star-Regular Polygons. Before going further, we need to explain the situa-
tion with the star-regular pentagon in Fig. 2. Here we need to mention that the
equation h1 = 4x2+2x−1 = 0 describes not only cos(2π/5) but also cos(2·2π/5),
cos(3 · 2π/5) and cos(4 · 2π/5), however, because of symmetry, the first and last,
and the second and third values are the same. (We can think of these values as
the projections of z1, z2, z3, z4 on the real axis, where

zj = (cos(2π/5) + i sin(2π/5))j = cos(j · 2π/5) + i sin(j · 2π/5),

j = 1, 2, 3, 4.)
That is, in this special case (for n = 5) h1 is a minimal polynomial of Re z1(=

Re z4) and Re z2(= Re z3). By considering the formulas (1) and (2) we can learn
that the rotation is controlled by the vector (x, y), where 2π/n is the external
angle of the regular n-gon. When changing the angle to a double, triple, . . ., value,
we obtain star-regular n-gons, unless the external angle describes a regular (or
star-regular) m-gon (m < n).

This fact is well-known in the theory of regular polytopes [12], but let us
illustrate this property by another example. When choosing n = 6, we have
h′
1 = 2x − 1 = 0 that describes cos(2π/6) = cos(5 · 2π/6). Now by considering

z′
1, z

′
2, z

′
3, z

′
4, z

′
5 where

z′
j = cos(j · 2π/6) + i sin(j · 2π/6),
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j = 1, 2, 3, 4, 5, we can see that z′
2 can also be considered as a generator for

cos(1 · 2π/3) (when projecting it on the x-axis) since 2 · 2π/6 = 1 · 2π/3. That is,
z′
2(= z′

4) is not used when generating the minimal polynomial of cos(2π/6) (it
occurs at the creation of the minimal polynomial of cos(2π/3)), and this is the
case also for z′

3 (because it is used for the minimal polynomial of cos(2π/2)).
An immediate consequence is that z′

j is used as a generator in the minimal
polynomial of cos(2π/6) if and only if j and 6 are coprimes, but since cos(2π/6) =
cos(5 · 2π/6), only the first half of the indices j play a technical role. In general,
when n is arbitrary, the number of technically used generators are ϕ(n)/2 (the
other ϕ(n)/2 ones produce the same projections).

Finally, when considering the equation x2 + y2 = 1 as well, if n ≥ 3, there
are two solutions in y, hence the hypotheses describe all cases when j and n
are coprimes (not just for the half of the cases, that is, for 1 ≤ j ≤ n/2).
Practically, the hypotheses depict not just the regular n-gon case, but also all
star-regular n-gons. It is clear, after this chain of thoughts, that the number of
cases is ϕ(n) (which is the number of positive coprimes to n, less than n). From
this immediately follows that the degree of ambiguity for (cos(2π/n), sin(2π/n))
is exactly ϕ(n).

Also, it is clear that there exists essentially only one regular 5-gon and one
star 5-gon (namely, {5/2}, when using the Schäfli symbol, see [12]). But these are
just two different cases. The other two ones, according to ϕ(5), are symmetrically
equivalent cases. The axis of symmetry is the x-axis in our case.

Fig. 2. A variant of the theorem in a star-regular pentagon
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On the other hand, by using our method, it is not always possible to distin-
guish between these ϕ(n) cases. In general we have multiple cases:

1. t = |RS|2 − c where c is a rational. In this case clearly |RS| =
√

c follows.
2. Otherwise, the resulting polynomial t is a product of two polynomials t1, t2 ∈

Q[|RS|], and the half of the union of their roots are positive, while the others
are negative. On the other hand, the positive roots can be placed in several
combinations in t1 and t2 in general:
(a) In our concrete example there are two positive roots in t1 and two negative

ones in t2. When considering similar cases, the positive roots can always
occur in, say t1, and the negative roots then in t2. Albeit the elimination
delivers the product t = t1 · t2, clearly t2 cannot play a geometrical role,
therefore t1 can be concluded.
However, if t1 contains more than one (positive) root, those roots cannot
be distinguished. This is the case in our concrete example as well.

(b) In general, t1 may contain a few positive solutions, but t2 may also contain
some other ones. In such cases the positive solutions in t1 and t2 cannot
be distinguished from each other.
Such an example is the polynomial t = t1 · t2 where t1 = |RS|2 −|RS|− 1
and t2 = |RS|2 + |RS| − 1. It describes the length of the diagonal of a
regular (star-) pentagon, namely both lengths

√
5±1
2 . Here t1 contains one

of the positive roots, namely
√
5+1
2 , while t2 the other one,

√
5−1
2 . At the

end of the day, only t can be concluded, none of its factors can be dropped
because both contain geometrically useful data.

Further investigation of the structure of several other statements on regular
polygons is still a work-in-progress. Here we refer to the papers [13,14] that
already introduced the basic notions for some future work.

3.2 Lengths in a Regular 11-gon

In Sect. 2 we mentioned that scientific results on a regular 11-gon are not very
well-known because it is not constructible by typical means. Here we show
some—for us, previously unknown—results that have been obtained by our
method.

Theorem 2. A regular 11-gon (having sides of length 1) is defined by points A,
B, C, . . ., J , K. Diagonals CE, CF , CG, CH, DF , DK and HK are drawn.
Then intersection points L, M , N and O are defined as shown in Fig. 3. The
following properties hold:

1. b = c,
2. d = e,
3. triangles CLM and CON are congruent,
4. a = l (that is, |AB| = |DL|).
5. Let P = BJ ∩ CD. Then |OP | =

√
3.
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Fig. 3. Some properties of a regular 11-gon

6. |BO| 	= 5
3 (but it is very close to it, |BO| ≈ 1, 66686 . . ., it is a root of the

polynomial x10 − 16x8 + 87x6 − 208x4 + 214x2 − 67 = 0).

Proof. By using the method described above, all of these statements can be
mechanically proved in a straightforward way.

3.3 Implementation in GeoGebra

The above mentioned theorems can also be proven with GeoGebra, a dynamic
mathematics tool, freely available for download or for on-line use. Practically, the
formulas derived in Sect. 2 have been programmed for GeoGebra by the author to
extend its dynamic geometry capabilities. Further results containing statements
on regular polygons can be found at https://www.geogebra.org/m/AXd5ByHX,
where some of the statements shown in this paper are visually demonstrated,
and a proof can also be obtained.

Here “proof” means that the computer symbolically proves the result, but
the steps of the derivation are not shown—the number of steps can be extremely
large, because the applied methods (here Gröbner basis computation) can consist
of millions of steps. Instead, a yes/no result is shown, and, if possible, non-
degeneracy conditions are also given.

https://www.geogebra.org/m/AXd5ByHX
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Here we are illustrating how a GeoGebra user would use the interface to build
a figure and then check whether a conjecture is true or false, by constructing the
figure in Theorem 2, statement 1.

1. The user creates a regular 11-gon by choosing the Regular Polygon tool from
the Toolbar, by defining two points A and B and entering the number of
vertices, 11. (It is important that points A and B are free, that is, they
should not lie on the axes.)

2. The user connects C and H, D and K, and H and K, by using the Segment
tool.

3. The intersection point L of segments CH and DK is to be created by using
the Intersect tool.

4. Again, by using the Segment tool, segment HL is to be created.
5. Now segments HL and HK can be compared by using the Relation tool.

GeoGebra reports numerical equality. Then, by clicking the “More. . .” button,
after some seconds the numerical check will be completed with a symbolical
check, namely, that HL has the same length as HK under the condition “the
construction is not degenerate”. (In general, degeneracy means that there is
a “small” set where the statement is not true. In many cases, that problem-
atic set can be defined in geometric terms, like “a triangle is degenerate”, or
“some given segments do not have intersections”. But in this particular case
GeoGebra did not find any simple geometric terms, so it leaves the informa-
tion in the form “the construction is not degenerate”. See [15, Chap. 6, Sect.
4] for more on degeneracy conditions.)

In addition, on the one hand, to prove statement 5 one needs to type the
command Relation(OP 2,3AB2) in the Input Bar, and—after getting promis-
ing results on the numerical check—the “More. . .” button will compute the sym-
bolic proof again.

n

t (s)

6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36
0

1

2

3

4

5

Fig. 4. Timings of proofs of a simple theorem for various n

On the other hand, disproving false statements is also possible in GeoGebra.
For example, the statement 6 can be checked by typing ProveDetails(5/3 ·
AB==BO) and GeoGebra reports in its Algebra View that the statement is
{false}. Here we cannot use the Relation command, because the numerical check
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compares several digits of the two segments, and its negative result is already
enough to lose interest to prove/disprove the statement in general. This behavior
in GeoGebra, can be, however, misleading sometimes. (See [16, p. 62, Fig. 18] for
an example.)

Here we highlight that our augmentation to GeoGebra consists of automati-
cally creating the hypotheses h1, . . . by using Algorithm 1 and Eqs. 1 and 2.

More details about GeoGebra’s Automated Reasoning Tools can be found
in [17].

4 Conclusion and Future Work

We presented a method that helps obtaining various new theorems on regular
polygons, based on the work of [1,3,11].

The obtained theorems were manually found, but systematic methods can
also be defined. One possible approach can be found in the software tool
RegularNGons [18] that looks for “nicely looking” statements by using elimi-
nation.

We admit that for large n our computations can be much slower than for
small numbers. That is, finding new theorems in regular n-gons may be com-
putationally infeasible if n becomes too large. As a particular example, Fig. 4
shows timings for the general

Theorem 3. Let n be an even positive number, and let us denote the vertices
of a regular n-gon by P0, P1, . . . , Pn−1. Let A = P0, B = P1, C = P2, D = Pn/2.
Moreover, let R = AB ∩ CD. If |AB| = 1, then |P1R| = 1.

We note that in GeoGebra, by default, the computations will be aborted after
5 seconds. However, for computing several theorems on regular polygons, this
timeout is not exceeded. Also, in Fig. 4, higher values for n do not necessarily
imply slower computations, for instance the case n = 30 is computed in 660 ms,
but for n = 28 the required time is 2800 ms.

Let us finally remark that finding new theorems on regular polygons may
open new horizons on detecting truth on parts—here we recall the papers [13,14].
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Appliquées 1, 366–372 (1837)

7. Sethuraman, B.: Rings, Fields, and Vector Spaces: An Introduction to Abstract
Algebra via Geometric Constructibility. Springer, New York (1997). https://doi.
org/10.1007/978-1-4757-2700-5

8. Pierpont, J.: On an undemonstrated theorem of the disquisitiones arithmeticæ.
Bull. Am. Math. Soc. 2, 77–83 (1895)

9. Gleason, A.M.: Angle trisection, the heptagon, and the triskaidecagon. Am. Math.
Mon. 95, 185–194 (1988)
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Abstract. We present an elegant, generic and extensive formalization
of Gröbner bases, an important mathematical theory in the field of com-
puter algebra, in Isabelle/HOL. The formalization covers all of the essen-
tials of the theory (polynomial reduction, S-polynomials, Buchberger’s
algorithm, Buchberger’s criteria for avoiding useless pairs), but also
includes more advanced features like reduced Gröbner bases. Particular
highlights are the first-time formalization of Faugère’s matrix-based F4

algorithm and the fact that the entire theory is formulated for modules
and submodules rather than rings and ideals. All formalized algorithms
can be translated into executable code operating on concrete data struc-
tures, enabling the certified computation of (reduced) Gröbner bases and
syzygy modules.

1 Introduction

Since their origins in Buchberger’s PhD thesis [3], Gröbner bases have become
one of the most powerful and most widely used tools in computer algebra. Their
importance stems from the fact that they generalize, at the same time, Gauss’
algorithm for solving systems of linear equations and Euclid’s algorithm for com-
puting the GCD of univariate polynomials. Gröbner bases enable the effective,
systematic solution of a variety of problems in polynomial ideal theory, ranging
from the decision of ideal/submodule membership and congruence, the solu-
tion of systems of algebraic equations, to as far as automatic theorem proving.
We refer the interested reader to any standard textbook about Gröbner bases,
like [15], for a more thorough account on the subject.

The main achievement we report on in this paper is the first-time formaliza-
tion of said theory in the proof assistant Isabelle/HOL [19]. Although Gröbner
bases have been formalized in other proof assistants already, our work features
the, to the best of our knowledge, first computer-certified implementation of
Faugère’s F4 algorithm [7] for computing Gröbner bases by matrix reductions,
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as well as the (again to the best of our knowledge) first-time formal treatment
of the theory in the more general setting of modules and submodules rather than
rings and ideals.

Summarizing, the highlights of our elaboration are:

– an abstract view of power-products that allows us to represent power-products
by functions of type nat ⇒ nat with finite support (Sect. 2.1);

– the proof of Buchberger’s theorem about the connection between Gröbner
bases and S-polynomials (Sect. 3.2);

– a generic algorithm schema for computing Gröbner bases, of which both Buch-
berger’s algorithm and Faugère’s F4 algorithm are instances (Sect. 3.3);

– the implementation of Buchberger’s criteria for increasing the efficiency of
said algorithm schema;

– the formally verified implementation of the F4 algorithm (Sect. 4);
– the definition and a constructive proof of existence and uniqueness of reduced

Gröbner bases (Sect. 5.1);
– a formally verified algorithm for computing Gröbner bases of syzygy modules

(Sect. 5.2);
– the proper set-up of Isabelle’s code generator to produce certified executable

code.

Because of the size constraints imposed on this exposition, it is impossible to
present all aspects of our formalization in detail. Therefore, an extended version
of the paper is available as a technical report [17].

An Isabelle2017-compatible version of the formalization presented in this
paper is available online [13]. Furthermore, a big portion of the formalization has
already been added to the development version of the Archive of Formal Proofs
(AFP). Note also that there is a Gröbner-bases entry in the release version of the
AFP [12] (which will be replaced by the one in the development version upon
the next release of Isabelle), but it lacks many features compared to [13]. For
the sake of clarity and readability, various technical details of the formalization
are omitted or presented in simplified form in this paper.

1.1 Related Work

Gröbner bases (without F4 and only for rings and ideals) have been formalized
in a couple of other proof assistants already, among them being Coq [14,20,24],
Mizar [21], ACL2 [18] and Theorema [4,6,16]. See [16,17] for a more thorough
comparison of the different formalizations.

Apart from that, Gröbner bases have been successfully employed by various
proof assistants (among them HOL [11] and Isabelle/HOL [5]) as a means for
proving universal propositions over rings. In a nutshell, this proceeds by showing
that the system of polynomial equalities and inequalities arising from refuting
the original formula is unsolvable, which in turn is accomplished by finding a
combination of these polynomials that yields a non-zero constant polynomial –
and this is exactly what Gröbner bases can do. The computation of Gröbner
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bases, however, is taken care of by a “black-box” ml program whose correct
behavior is irrelevant for the correctness of the overall proof step, since the
obtained witness is independently checked by the trusted inference kernel of the
system. The work described in this paper is orthogonal to [5] in the sense that it
formalizes the theory underlying Gröbner bases and proves the total correctness
of the algorithm, which is not needed in [5].

Our work builds upon existing formal developments of multivariate polyno-
mials [23] (to which we also contributed) and abstract rewrite systems [22], and
F4 in addition builds upon Gauss-Jordan normal forms of matrices [25].

2 Multivariate Polynomials

Gröbner bases are concerned with (vectors of) commutative multivariate polyno-
mials over fields; therefore, before presenting our formalization of Gröbner bases
theory, we first have to spend some words on the formalization of multivariate
polynomials we build upon.

The formal basis of multivariate polynomials are so-called polynomial map-
pings, originally formalized by Haftmann et al. [10], extended by Bentkamp [2],
and now part of the AFP-entry Polynomials [23] in the development version
of the Archive of Formal Proofs. A polynomial mapping is simply a function of
type α ⇒ β::zero with finite support, i. e., all but finitely many arguments are
mapped to 0 1. In Isabelle/HOL, as well as in the remainder of this paper, the
type of polynomial mappings is called poly mapping and written in infix form
as α ⇒0 β, where β is tacitly assumed to belong to type class zero. The impor-
tance of type poly mapping stems from the fact that not only polynomials,
but also power-products (i. e. products of indeterminates, like x3

0x
2
1) can best be

thought of as terms of this type: in power-products, indeterminates are mapped
to their exponents (with only finitely many being non-zero), and in polynomi-
als, power-products are mapped to their coefficients (again only finitely many
being non-zero). Hence, a (scalar) polynomial would typically have the type
(χ ⇒0 nat) ⇒0 β, where χ is the type of the indeterminates.

2.1 Power-Products

Instead of fixing the type of power-products to χ ⇒0 nat throughout the formal-
ization, we opted to develop the theory slightly more abstractly: power-products
are not fixed to type χ ⇒0 nat, but they can be of arbitrary type, as long as the
type belongs to a certain type class that allows us to prove all key results of the
theory. Said type class is called graded dickson powerprod and is defined
as

class graded dickson powerprod = cancel comm monoid mult + dvd +
fixes lcm :: "α ⇒ α ⇒ α"

1 β::zero is a type-class constraint on type β, stipulating that there must be a distin-
guished constant 0 of type β. See [9] for information on type classes in Isabelle/HOL.
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assumes dvd lcm: "s dvd (lcm s t)"
assumes lcm dvd: "s dvd u =⇒ t dvd u =⇒ (lcm s t) dvd u"
assumes lcm comm: "lcm s t = lcm t s"
assumes times eq one: "s * t = 1 =⇒ s = 1"

The base class of graded dickson powerprod is the class of cancella-
tive commutative multiplicative monoids which in addition feature a divisibility
relation (infix dvd). Furthermore, types belonging the class must also provide a
function called lcm that possesses the usual properties of least common multiple,
and obey the law that a product of two factors can only be 1 if both factors are
1, i.e. 1 is the only invertible element.

Under certain weak conditions on χ, the type χ ⇒0 nat belongs to type
class graded dickson powerprod. In particular, nat fulfills these conditions,
meaning that power-products can be represented conveniently as objects of type
nat ⇒0 nat (with an infinite supply of indeterminates) in actual computa-
tions, without having to a-priori introduce dedicated types for univariate/bi-
variate/trivariate/. . . polynomials2. There are, however, some intricacies when
allowing infinite sets of indeterminates in connection with Gröbner bases, espe-
cially regarding the termination of algorithms. How our formalization handles
these intricacies is described in [17].

In order to formalize Gröbner bases we need to fix an admissible order rela-
tion � on power-products: � is called admissible if and only if it is linear, 1 is the
least element and multiplication is monotonic in both arguments. Since there are
infinitely many admissible relations and we did not want to restrict the formaliza-
tion to a particular one, we parametrized all definitions, theorems and algorithms
over such a relation through the use of a locale [1], called gd powerprod.

2.2 Polynomials

Having described our formalization of power-products, we now turn to polyno-
mials. In fact, most definitions related to, and facts about, multivariate poly-
nomials that are required by our Gröbner bases formalization were already for-
malized [2,10]: addition, multiplication, coefficient-lookup (called lookup in
the formal theories but denoted by the more intuitive coeff in the remain-
der) and support (called keys). These things are all pretty much standard,
so we do not go into more detail here. We only emphasize that henceforth α
is the type of power-products, i.e. is tacitly assumed to belong to type-class
graded dickson powerprod.

What is certainly more interesting is the way how we represent vectors of
polynomials: since we formulate the theory of Gröbner bases in the context of
free modules over polynomial rings over fields, i.e. for structures of the form
K[x1, . . . , xn]k, we need to specify what the formal type of such structures is in
our formalization. Any f ∈ K[x1, . . . , xn]k can be written as a K-linear combi-
nation of terms of the form t ei, where t is a power-product and ei is the i-th
canonical basis vector of Kk (for 0 ≤ i < k). So, vector-polynomials are objects
2 This representation is also suggested in [10].
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of type (α × κ) ⇒0 β in the formalization, where κ is the type of component-
indices (e.g. nat). A term t ei, thus, is represented by the pair (t, i).

Example 1. Consider the two-dimensional vector of polynomials

p =
(

x2 − xy
2y + 3

)
= 1 · x2

(
1
0

)
︸ ︷︷ ︸
=e0

−1 · xy

(
1
0

)
+ 2 · y

(
0
1

)
︸ ︷︷ ︸
=e1

+3 · 1
(

0
1

)
.

Then p is represented by the polynomial mapping that maps (x2, 0) to 1, (xy, 0)
to −1, (y, 1) to 2, (1, 1) to 3, and all other pairs to 0.

As Example 1 shows, for representing a k-dimensional polynomial κ does not
need to have exactly k elements, but only at least k elements. This saves us
from introducing dedicated types for 1, 2, 3, . . . dimensions in computations,
as we can use nat throughout. Nonetheless, we do not fix κ to nat, because in
some situations it is still desirable to state definitions or theorems only for ordi-
nary scalar polynomials while reusing notions introduced for vector-polynomials,
which can be achieved easily by instantiating κ by the unit type unit3.

We now need to extend the order relation � on power-products to a term
order �t on terms of type α×κ: similar to admissible orders on power-products,
�t only needs to satisfy certain properties. And just as for admissible orders we
again employ a locale to parametrize all subsequent definitions and lemmas over
any such admissible relation:

locale gd term =
gd powerprod ord ord strict +
ord term lin: linorder ord term ord term strict

for ord :: "α ⇒ α::graded dickson powerprod ⇒ bool" (infix "�" 50)
and ord strict (infix "≺" 50)
and ord term :: "(α × κ) ⇒ (α × κ::wellorder) ⇒bool" (infix "�t" 50)
and ord term strict (infix "≺t" 50) +

assumes stimes mono: "v �t w =⇒ t � v �t t � w"
assumes ord termI: "fst v � fst w =⇒ snd v ≤ snd w =⇒ v �t w"

So, gd term extends gd powerprod by �t and ≺t, requires κ to be well-ordered
by ≤, and requires �t to be a linear ordering satisfying the two axioms stimes-
mono and ord-termI. � is defined as

definition stimes :: "α ⇒ (α × κ) ⇒ (α × κ)" (infixl "�" 75)
where "stimes t v = (t * fst v, snd v)"

i. e. it multiplies the power-product of its second argument with its first argu-
ment. fst and snd are built-in Isabelle/HOL functions that access the first and
second, respectively, component of a pair.

The two most important instances of �t are so-called position-over-term
(POT) and term-over-position (TOP) orders. In POT, when comparing two
pairs (s, i) and (t, j) one first compares the component-indices i and j w. r. t. the
ordering ≤ on κ, and if they are equal, the power-products s and t w. r. t. � on α;
3 unit contains only one single element, so α × unit is isomorphic to α.
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in TOP, one first compares power-products and afterward components. There-
fore, both POT and TOP are actually lexicographic orderings, and the reader
can easily convince himself that indeed both satisfy stimes-mono and ord-termI.
POT is particularly important for computing Gröbner bases of syzygy modules,
described in Sect. 5.2.

Based on � we introduce multiplication of a polynomial by a coefficient c :: β
and a power-product t :: α in the obvious way: all coefficients are multiplied
by c, and all terms are multiplied by t via �. The resulting function is called
monom mult and will feature a prominent role in polynomial reduction, defined
in Sect. 3.2.

Having �t fixed in the context, we can introduce the all-important concepts
of leading term (called lt), leading power-product (lp), leading coefficient (lc)
and tail (tail): lt(p)4 returns the greatest (w. r. t. �t) term appearing in
the polynomial p with non-zero coefficient, lp(p) returns the power-product of
lt(p), lc(p) returns the coefficient of lt(p) in p, and tail(p) returns the “tail”
of p, i. e. sets the leading coefficient of p to 0 and leaves all other coefficients
unchanged.

Example 2. Let p as in Example 1, and assume � is the lexicographic order
relation with y ≺ x. If �t is the POT-extension of �, then lt(p) = (y, 1) and
lc(p) = 2; if it is the TOP-extension, then lt(p) = (x2, 0) and lc(p) = 1.

Before we finish this section, we introduce two more notions related to poly-
nomials that we will need later. First, we extend divisibility of power-products
of type α to divisibility of terms of type α × κ:

definition dvd term :: "(α × κ) ⇒ (α × κ) ⇒ bool" (infix "dvdt" 50)
where "dvd term u v ←→ (snd u = snd v ∧ (fst u) dvd (fst v))"

Finally, we also introduce the notion of a submodule generated by a set B of
polynomials as the smallest set that contains B ∪ {0} and that is closed under
addition and under monom mult, denoted by pmdl(B).

3 Gröbner Bases and Buchberger’s Algorithm

From now on we tacitly assume, unless stated otherwise, that all definitions
and theorems are stated in context gd term (meaning that all parameters
and axioms of gd term are available for use, that κ belongs to type-class
wellorder, and that α belongs to type-class graded dickson powerprod),
and that the type of coefficients is β ::field. Readers familiar with Gröbner
bases in rings but not with Gröbner bases in modules will spot only few dif-
ferences to the ring-setting, as the module-setting parallels the other in many
respects.

4 We take the liberty to use standard mathematical notation here, because Isabelle
syntax does not integrate so well with informal text.
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3.1 Polynomial Reduction

The first crucial concept of Gröbner bases theory is polynomial reduction, i. e.
a binary relation red parametrized over sets of polynomials. In Isabelle/HOL,
the corresponding definitions look as follows:

definition red single::"((α × κ) ⇒0 β) ⇒ ((α × κ) ⇒0 β) ⇒ ((α × κ) ⇒0 β) ⇒ α ⇒
bool"

where "red single p q f t ←→ (f �= 0 ∧ coeff p (t � lt f) �= 0 ∧
q = p - monom mult ((coeff p (t � lt f)) / lc f) t f)"

definition red :: "((α × κ) ⇒0 β) set ⇒ ((α × κ) ⇒0 β) ⇒ ((α × κ) ⇒0 β) ⇒bool"
where "red F p q ←→ (∃f∈F. ∃t. red_single p q f t)"

red single(p, q, f, t) expresses that polynomial p reduces to q modulo the indi-
vidual polynomial f , multiplying f by power-product t. Likewise, red(F )(p, q)
expresses that p reduces to q modulo the set F in one step; hence, red(F ) is
the actual reduction relation modulo F , and (red(F ))∗∗ denotes its reflexive-
transitive closure. In in-line formulas we will use the conventional infix nota-
tions p →F q and p →∗

F q instead of the more clumsy red(F )(p, q)
and (red(F ))∗∗(p, q), respectively. is red(F )(p), finally, expresses that p is
reducible modulo F .

After introducing the above notions, we are able to prove, for instance, that
→F is well-founded. This justifies implementing a function trd, which totally
reduces a given polynomial p modulo a finite list fs of polynomials and, thus,
computes a normal form of p modulo fs:

lemma trd red rtrancl: "(red (set fs))∗∗ p (trd fs p)"

lemma trd irred: "¬ is red (set fs) (trd fs p)"

So, trd really computes some normal form of the given polynomial modulo the
given list of polynomials. But note that normal forms are in general not unique,
i. e. the reduction relation modulo an arbitrary set F is in general not confluent.

3.2 Gröbner Bases

The fact that →F is in general not confluent motivates the definition of a Gröbner
basis as a set F that does induce a confluent reduction relation:

definition is Groebner basis :: "((α × κ) ⇒0 β) set ⇒ bool"
where "is Groebner basis F ←→ is confluent (red F)"

where is confluent is the predicate-analogue of CR from Abstract-
Rewriting [22].

The definition of Gröbner bases cannot be used to decide whether a given
set is a Gröbner basis or not, since infinitely many polynomials and possible
reduction-paths would have to be investigated. Fortunately, however, Buchberger
proved an alternative characterization of Gröbner bases that indeed gives rise
to a decision algorithm. This alternative characterization is based on so-called
S-polynomials, defined as follows:
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definition spoly :: "((α × κ) ⇒0 β) ⇒ ((α × κ) ⇒0 β) ⇒ ((α × κ) ⇒0 β)"
where "spoly p q = (if snd (lt p) = snd (lt q) then

let l = lcm (lp p) (lp q) in
(monom_mult (1 / (lc p)) (l / (lp p)) p) -
(monom_mult (1 / (lc q)) (l / (lp q)) q)

else 0)"

The S-polynomial of p and q is precisely the difference of the critical pair of p
and q, so it roughly corresponds to the smallest element where reduction modulo
{p, q} might diverge. It first tests whether the component-indices of lt(p) and
lt(q) agree; if not, it gives 0, otherwise it returns a difference of multiples of p
and q where the leading terms cancel.

The Main Theorem of the theory of Gröbner bases states that a set F is a
Gröbner basis if the S-polynomials of all pairs of elements in F can be reduced
to 0 modulo F , i. e.

theorem Buchberger thm finite:
assumes "finite F"
assumes "

∧
p q. p ∈ F =⇒ q ∈ F =⇒ (red F)∗∗ (spoly p q) 0"

shows "is Groebner basis F"

Our proof of Theorem Buchberger-thm-finite exploits various results about well-
founded binary relations formalized in [22]. Thanks to that theorem, for deciding
whether a finite set is a Gröbner basis it suffices to compute normal forms of
finitely many S-polynomials and check whether they are 0. In fact, also the
converse of Buchberger-thm-finite holds, so whenever one finds a non-zero normal
form of an S-polynomial, the given set cannot be a Gröbner basis.

3.3 An Algorithm Schema for Computing Gröbner Bases

Theorem Buchberger-thm-finite not only yields an algorithm for deciding
whether a given finite set F is a Gröbner basis or not, but also an algorithm for
completing F to a Gröbner basis in case it is not. This algorithm, called Buch-
berger’s algorithm, is a classical critical-pair/completion algorithm that repeat-
edly checks whether all S-polynomials reduce to 0, and if not, adds their non-zero
normal forms to the basis to make them reducible to 0 (note that for every p 	= 0
we have p →{p} 0); the new elements that are added to the basis obviously do
not change the submodule generated by the basis, since reduction preserves sub-
module membership.

In our formalization, we did not directly implement Buchberger’s algorithm,
but instead considered a more general algorithm schema first, of which both
Buchberger’s algorithm and Faugère’s F4 algorithm (cf. Sect. 4) are particular
instances. This algorithm schema is called gb schema aux and implemented by
the following tail-recursive function:

function gb schema aux :: "((α × κ) ⇒0 β) list ⇒
(((α × κ) ⇒0 β) × ((α × κ) ⇒0 β)) list ⇒
((α × κ) ⇒0 β) list" where

"gb schema aux bs [] = bs"|
"gb schema aux bs ps =
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(let sps = sel bs ps; ps0 = ps -- sps; hs = compl bs ps0 sps in

gb schema aux (bs @ hs) (add pairs bs ps0 hs))"

The first argument of gb schema aux, bs, is the so-far computed basis, and
the second argument ps is the list of all pairs of polynomials from bs whose S-
polynomials might not yet reduce to 0 modulo bs. Hence, as soon as ps is empty
all S-polynomials reduce to 0, then by virtue of TheoremBuchberger-thm-finite
the list bs constitutes a Gröbner basis.

The auxiliary function add pairs, when applied to arguments bs, ps0 and
hs, returns a new list of pairs of polynomials which contains precisely (i) all
pairs from ps0, (ii) the pair (h, b) for all h ∈ hs and b ∈ bs5, and (iii) one of the
pairs (h1, h2) or (h2, h1) for all h1, h2 ∈ hs with h1 	= h2. The auxiliary function
diff list (infix “--”) is the analogue of set-difference for lists, i. e. it removes
all occurrences of all elements of its second argument from its first argument.

The two functions sel and compl are additional parameters of the algorithm;
they are not listed among the arguments of gb schema aux here merely for the
sake of better readability. Informally, they are expected to behave as follows:

– If ps is non-empty, sel(bs, ps) should return a non-empty sublist sps of ps.
– compl(bs, ps, sps) should return a (possibly empty) list hs of polynomials

such that (i) 0 /∈ hs, (ii) hs ⊆ pmdl(bs), (iii) spoly(p, q) →∗
bs∪hs 0 for all

(p, q) ∈ sps, and (iv) ¬lt(b) dvdt lt(h) for all b ∈ bs and h ∈ hs.

Typically, concrete instances of sel do not take bs into account, but in any case
it does not harm to pass it as an additional argument. Any instances of the two
parameters that satisfy the above requirements lead to a partially correct proce-
dure for computing Gröbner bases, since compl takes care that all S-polynomials
of the selected pairs sps reduce to 0. However, the procedure is not only par-
tially correct, but also terminates for every input. Readers interested in the (not
immediately obvious) proof of this claim are referred to any textbook on Gröbner
bases, e. g. to Theorem 2.5.5 in [15].

Function gb schema, finally, calls gb schema aux with the right initial
values:

definition gb schema :: "((α × κ) ⇒0 β) list ⇒ ((α × κ) ⇒0 β) list"
where "gb schema bs = gb schema aux bs (add pairs [] [] bs)"

Remark 1. The actual implementation of gb schema aux incorporates two
standard criteria, originally due to Buchberger, for detecting so-called useless
pairs (i. e. pairs which do not need to be considered in the algorithm) and hence
improving the efficiency of the algorithm: the product criterion and the chain
criterion. More information can be found in [17].

3.4 Buchberger’s Algorithm

The function implementing the usual Buchberger algorithm, called gb, can
immediately be obtained from gb schema by instantiating
5 Abusing notation, x ∈ xs, for a list xs, means that x appears in xs.
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– sel to a function that selects a single pair, i. e. returns a singleton list, and
– compl to a function that totally reduces spoly(p, q) to some normal form h

using trd, where (p, q) is the pair selected by the instance of sel, and returns
the singleton list [h] if h 	= 0 and the empty list otherwise.

These instances of sel and compl can easily be proved to meet the require-
ments listed above, so we can finally conclude that gb indeed always computes
a Gröbner basis of the submodule generated by its input:

theorem gb isGB: is Groebner basis (set (gb bs))

theorem gb pmdl: pmdl (set (gb bs)) = pmdl (set bs)

Gröbner bases have many interesting properties, one of them being as follows:
if G is a Gröbner basis, then a polynomial p is in the submodule generated by
G if and only if the unique normal form of p modulo G is 0. Together with
the two previous theorems this observation leads to an effective answer to the
membership problem for submodules represented by finite lists of generators:

theorem in pmdl gb: "p ∈ pmdl (set bs) ←→ (trd (gb bs) p) = 0"

Example 3 (Example 2.5.7. in [15]). Let f1 = x2, f2 = xy + y2 and � be the
lexicographic order with y ≺ x; we apply Buchberger’s algorithm to compute a
Gröbner basis of {f1, f2} ⊆ Q[x, y].
We start with the S-polynomial of f1 and f2:

spoly(f1, f2) = y f1 − x f2 = −xy2 →f2,y y3.

f3 = y3 is irreducible modulo {f1, f2}, so we must add it to the current basis.
This ensures that spoly(f1, f2) can be reduced to 0 modulo the enlarged basis,
but it also means that we have to consider spoly(f1, f3) and spoly(f2, f3),
too:

spoly(f1, f3) = y3 f1 − x2 f3 = 0.
spoly(f2, f3) = y2 f2 − x f3 = y4 →f3,y 0.

Since all S-polynomials can be reduced to 0 modulo G = {f1, f2, f3}, G is a
Gröbner basis of {f1, f2}.

4 Faugère’s F4 Algorithm

In Buchberger’s algorithm, in each iteration precisely one S-polynomial is
reduced modulo the current basis, giving rise to at most one new basis element.
However, as Faugère observed in [7], it is possible to reduce several S-polynomials
simultaneously with a considerable gain of efficiency (especially for large input).
To that end, one selects some pairs from the list ps, reduces them modulo the
current basis, and adds the resulting non-zero normal forms to the basis; in
short, several iterations of the usual Buchberger algorithm are combined into
one single iteration. This new algorithm is called F4.
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The crucial idea behind F4, and the reason why it can be much faster than
Buchberger’s algorithm, is the clever implementation of simultaneous reduction
by computing the reduced row echelon form of certain coefficient matrices. Before
we can explain how this works, we need a couple of definitions; let fs always be
a list of polynomials of length m, and vs be a list of terms of length �.

– Keys to list(fs) returns the list of all distinct terms appearing in fs, sorted
descending w. r. t. �t.

– polys to mat(vs, fs) returns a matrix A (as formalized in [25]) of dimension
m × �, satisfying Ai,j = coeff(fsi, vsj), for 0 ≤ i < m and 0 ≤ j < � 6.

– mat to polys(vs,A) is the “inverse” of polys to mat, i. e. if A is a
matrix of dimension m × � it returns the list gs of polynomials satisfying
coeff(gsi, vsj) = Ai,j and coeff(gsi, v) = 0 for all other terms v not con-
tained in vs.

– row echelon(A) returns the reduced row echelon form of matrix A; it is
defined in terms of gauss jordan from [25].

With these auxiliary functions at our disposal we can now give the formal defi-
nitions of two concepts whose importance will become clear below:
definition Macaulay mat :: "((α × κ) ⇒0 β) list ⇒ β :: field mat"

where "Macaulay mat fs = polys to mat (Keys to list fs) fs"

definition Macaulay red :: "((α × κ) ⇒0 β) list ⇒ ((α × κ) ⇒0 β:: field) list"
where "Macaulay red fs =

(let lts = map lt (filter (λf. f �= 0) fs) in
filter (λf. f �= 0 ∧ lt f /∈ set lts)

(mat to polys (Keys to list fs) (row echelon (Macaulay mat fs))))"

Macaulay mat(fs) is called the Macaulay matrix of fs. Macaulay red(fs)
constructs the Macaulay matrix of fs, transforms it into reduced row echelon
form, and converts the resulting matrix back to a list of polynomials, from which
it filters out those non-zero polynomials whose leading terms are not among the
leading terms of the original list fs.

Macaulay red is the key ingredient of the F4 algorithm, because the list
it returns is precisely the list hs that must be added to bs in an iteration of
gb schema aux. The only question that still remains open is which argument
list fs it needs to be applied to; this question is answered by an algorithm
called symbolic preprocessing, implemented by function sym preproc in our
formalization. sym preproc takes two arguments, namely the current basis bs
and the list of selected pairs sps, and informally behaves as follows:

1. For each (p, q) ∈ sps compute the two polynomials

monom mult(1/lc(p),lcm(lp(p),lp(q))/lp(p), p)
monom mult(1/lc(q),lcm(lp(p),lp(q))/lp(q), q)

whose difference is precisely spoly(p, q) (unless spoly(p, q) is 0). Collect all
these polynomials in an auxiliary list fs′.

6 We use 0-based indexing of lists, vectors and matrices, just as Isabelle/HOL.
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2. Collect all monomial multiples of each b ∈ bs that are needed to totally
reduce the elements of fs′ in a list fs′′. That means, for all b, f, g, h with
b ∈ bs, f ∈ fs′, f →∗

bs g and red single(g, h, b, t), the monomial multiple
monom mult(1, t, b) of b must be included in fs′′.

3. Return the concatenation fs′@fs′′ of fs′ and fs′′.

Explaining in detail how exactly symbolic preprocessing works is not in the
scope of this paper; see [7] instead. We only point out that Step 2 of the above
procedure can be accomplished without actually carrying out the reductions.

Putting everything together, the function f4 red is obtained as

definition f4 red :: "((α × κ) ⇒0 β:: field) list ⇒
((α × κ) ⇒0 β × (α × κ) ⇒0 β) list ⇒ ((α × κ) ⇒0 β) list"

where "f4 red bs sps = Macaulay red (sym preproc bs sps)"

and proved to be a feasible instance of parameter compl; in particular, the leading
terms of the polynomials in hs = f4 red(bs, sps) are not divisible by the leading
terms of the polynomials in bs, and indeed all S-polynomials originating from
pairs in sps are reducible to 0 modulo the enlarged basis bs@hs:

lemma f4 red not dvd:
assumes "h ∈ set (f4 red bs sps)" and "b ∈ set bs" and "b �= 0"
shows "¬ lt b dvdt lt h"

lemma f4 red spoly reducible:
assumes "set sps ⊆ set bs × set bs" and "(p, q) ∈ set sps"
shows "(red (set (bs @ (f4 red bs sps))))∗∗ (spoly p q) 0"

Eventually, the resulting instance of gb schema which implements Faugère’s
F4 algorithm is called f4.

Summarizing, the simultaneous reduction of several S-polynomials boils down
to the computation of the reduced row echelon form of Macaulay matrices over
the coefficient field K. These matrices are typically very big, very rectangular
(i.e. have much more columns than rows) and extremely sparse. Therefore, if F4

is to outperform Buchberger’s algorithm, such matrices must be stored efficiently,
and the computation of reduced row echelon forms must be highly optimized;
we again refer to [7] for details. Formalizing such efficient representations of
matrices in Isabelle/HOL is future work.

5 Further Features

5.1 Reduced Gröbner Bases

Gröbner bases are not unique, even if the ordering �t is fixed. For instance, if G
is a Gröbner basis and B ⊆ pmdl(G), then G ∪ B is still a Gröbner basis of the
same submodule. One can, however, impose stronger constraints on generating
sets of submodules than giving rise to a confluent reduction relation, which do
ensure uniqueness; the resulting concept is that of reduced Gröbner bases.
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The central idea behind reduced Gröbner bases is auto-reducedness: a set B
of polynomials is auto-reduced if and only if no b ∈ B can be reduced modulo
B\{b}. A reduced Gröbner basis, then, is simply an auto-reduced Gröbner basis
of non-zero monic7 polynomials:

definition is reduced GB :: "((α × κ) ⇒0 β) set ⇒ bool"
where "is reduced GB B ←→ is Groebner basis B ∧ is auto reduced B ∧

is monic set B ∧ 0 /∈ B"

After having defined reduced Gröbner bases as above, one can prove that
every finitely-generated submodule of K[x1, . . . , xn]k has a unique reduced
Gröbner basis (unique only modulo the implicitly fixed term order �t, of course):

theorem exists unique reduced GB finite:
assumes "finite F"
shows "∃!G. is reduced GB G ∧ pmdl G = pmdl F"

The proof of exists-unique-reduced-GB-finite we give in the formalization
is even constructive, in the sense that we formulate an algorithm which auto-
reduces and makes monic a given set (or, more precisely, list) of polynomials,
and, therefore, when applied to some Gröbner basis returns the reduced Gröbner
basis of the submodule it generates.

5.2 Gröbner Bases of Syzygy Modules

Given a list bs = [b0, . . . , bm−1] of m polynomials, one could ask oneself what the
polynomial relations among the elements of bs are. In other words, one wants to
find all m-dimensional vectors s = (s0, . . . , sm−1)T ∈ K[x1, . . . , xn]m such that∑m−1

i=0 si bi = 0. In the literature, such a vector s is called a syzygy of bs [15],
and as one can easily see the set of all syzygies of bs forms a submodule of
K[x1, . . . , xn]m.

Example 4. If m = 2 and b0, b1 ∈ K[x1, . . . , xn]\{0}, then a non-trivial syzygy

is obviously given by
(

b1
−b0

)
, because b1 b0 +(−b0) b1 = 0. More generally, each

list of scalar polynomials with at least two non-zero elements admits non-trivial
syzygies of the above kind.

As it turns out, it is not difficult to compute Gröbner bases of syzygy modules.
We briefly outline how it works in theory; so, assume that bs is the m-element
list [b0, . . . , bm−1] of scalar polynomials in K[x1, . . . , xn].

1. Turn each of the bi into a (m + 1)-dimensional vector of polynomials, such
that bi becomes (0, . . . , 0, 1, 0, . . . , 0, bi)T, where the 1 occurs precisely in the
i-th component (0 ≤ i < m). Call the resulting list bs′.

2. Compute a Gröbner basis gs of bs′ w. r. t. a POT-extension �t of some admis-
sible order � on power-products.

7 A polynomial is called monic if and only if its leading coefficient is 1.
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3. From gs extract those elements of the form (s0, . . . , sm−1, 0)T, and restrict
them to their first m components (s0, . . . , sm−1)T. These vectors constitute
a Gröbner basis w. r. t. �t of the syzygy module of bs.

In the formalization we prove that the above algorithm indeed computes a
Gröbner basis of the syzygy module in question; we leave out the details here but
refer to [17] instead. Only note that syzygy modules can also be computed if the
initial list bs contains vector-polynomial already, making it possible to compute
syzygy modules of syzygy modules, and therefore also exact sequences and free
resolutions. Obviously, this cannot be done with Gröbner bases in the ordinary
setting of rings.

6 Conclusion

We hope we could convince the reader that the work described in this paper is
an elegant and generic formalization of an interesting and important mathemat-
ical theory in commutative algebra. Moreover, the formalized algorithms can be
turned into executable Haskell/OCaml/Scala/SML code by means of Isabelle’s
Code Generator [8], to do certified computations of Gröbner bases; see [17] for
more information and a discussion of performance issues8. Even though other
formalizations of Gröbner bases in other proof assistants exist, ours is the first
featuring the F4 algorithm and Gröbner bases of modules. Besides, our work also
gives an affirmative answer to the question whether multivariate polynomials as
formalized in [10] can effectively be used for formalizing algorithms in computer
algebra.

Our own contributions to multivariate polynomials make up approximately
8600 lines of proof, and the Gröbner-bases related theories make up another
16700 lines of proof (3000 lines of which are about Macaulay matrices and the
F4 algorithm), summing up to a total of 25300 lines. Most proofs are intentionally
given in a quite verbose style for better readability. The formalization effort was
roughly eight person-months of full-time work, distributed over two years of part-
time work. This effort is comparable to what the authors of other formalizations
of Gröbner bases theory in other proof assistants report; see Sect. 1.1 for a list
thereof.

Acknowledgments. We thank the anonymous referees for their valuable comments.

8 The performance issues mainly concern the non-optimal representation of polynomi-
als by unordered associative lists. We are currently working on a much more efficient
representation by ordered associative lists.



192 A. Maletzky and F. Immler

References

1. Ballarin, C.: Tutorial to locales and locale interpretation. In: Lambán, L., Romero,
A., Rubio, J. (eds.) Contribuciones Cient́ıficas en Honor de Mirian Andrés Gómez,
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program for computing Gröbner bases. J. Symb. Comput. 44(5), 571–582 (2009).
https://doi.org/10.1016/j.jsc.2007.07.016

15. Kreuzer, M., Robbiano, L.: Computational Commutative Algebra 1. Springer, Hei-
delberg (2000). https://doi.org/10.1007/978-3-540-70628-1

16. Maletzky, A.: Computer-assisted exploration of Gröbner bases theory in Theorema.
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Abstract. The main question of this research is: How does a social
machine discover algorithmic mathematical knowledge? A social machine
is a system of humans and computers engaged in some purposeful activ-
ity. To address the main question, an empiric and theoretical framework
for algorithmic mathematical knowledge discovered by the social machine
is proposed. The framework is derived from findings in Distributed Cog-
nition documenting how collaborators evolve a mathematical algorithm.
By combining Distributed Cognition with the standard Message Passing
Model of Distributed Computing, a formalism is introduced to specify
the activities of the social machine and its algorithmic knowledge. Fur-
thermore, the software system MathChat is introduced which provides
an online environment for social machines engaged in mathematical com-
putations. An application of MathChat in network analysis education is
described which outlines a social machine covered by the proposed frame-
work.

Keywords: Collaborative computational mathematics
Collaborative chat · Mathematical social machines

1 Introduction

The main question of this research is: How does a social machine discover algo-
rithmic mathematical knowledge? The main contribution of this work is to pro-
vide an answer by an empiric and theoretical framework for algorithmic mathe-
matical knowledge discovered by a social machine. A social machine is broadly
defined as a “combination of people and computers as a single problem-solving
entity” and a mathematical social machine is one that engages in mathemat-
ics [12]. Accordingly, the current research studies social machines as a whole
while making mathematical algorithmic discoveries, and not how its human com-
ponents learn individually through collaborating. (As background information,
the relations among collaboration, social machines and individual learning are
reviewed in the following Sect. 2.) Note that for the purpose of this work the term
“computer” in the definition of social machine is interpreted broadly, including
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any type of computing device and also computational software not necessarily
bound to a specific hardware.

To address the main question of this work, the research answers three sub-
ordinated questions, which in combination provides an empiric and theoretical
framework addressing the main question:

1. How does a social machine discover a mathematical algorithm?
2. How may algorithmic mathematical knowledge stemming from this process

of knowledge discovery be formally specified?
3. How may the discovery process be reproduced?

To answer Question 1, Sect. 3 examines prior findings from the research litera-
ture [7] suggesting a hypothesis outlining a process for collaborative discovery of
mathematical algorithms. Answering Question 2, Sect. 4 proposes a formalization
of the notion of algorithmic knowledge of a mathematical social machine. This
formalization clarifies what can be understood as algorithmic knowledge and
therefore contributes towards answering the main research question. Together,
Sects. 3 and 4 formally explain how a social machine, as derived from the research
literature [7,12], discovers algorithmic mathematical knowledge. Then Sect. 5
presents the software system MathChat [14], which the author has developed
to create mathematical social machines in an online environment, and a pilot
investigation, eliciting algorithmic discoveries in the context of online education.
Some additional details of the design and implementation of the MathChat soft-
ware system for collaborative computing are described in the appendix. There-
fore, in combination, the Sects. 3, 4 and 5 propose a fundamental framework for
understanding, both empirically and theoretically, the discovery of algorithmic
knowledge by mathematical social machines. Section 6 discusses limitations and
future directions of this work. Finally, the appendix elaborates on additional
design and implementation details of the MathChat system.

2 Technical Background Information

Collaboration in mathematics [2] allows the individual workers in a team, incor-
porating state-of-the-art mathematical software systems [13], to transcend their
own limitations [7,10] and therefore make progress in mathematics [2,12]. For
example, the Polymath project, organized through an online blog, allows any-
body to join into efforts solving mathematical problems because the blog is
available to anybody with access to the Web [3]. Therefore, mathematicians with
diverse expertise are enabled to collaborate in the Polymath project. The diver-
sity of knowledge and skills of the participants benefits the research endeavor,
allowing the team of mathematicians to arrive at solutions to problems more
efficiently than any individual alone.

When viewed as a system engaged in mathematics, the collaborators together
with their tools are called a mathematical social machine [12]. In psychology, this
system view is powerful because it allows to explain cognitive processes, such
as memorization, learning, and computation, that occur when people interact
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with their surroundings. This is the goal of the Theory of Distributed Cognition
[6,7]. This theory is based on the important concept of Distribution of Cognitive
Processes, namely:

– Cognitive processes may be distributed across the members of a social group.
– Cognitive processes may involve coordination between internal and external

(material and environmental) structure.
– Processes may be distributed through time in such a way that the products

of earlier events can transform the nature of later events.

In mathematics, the cognitive power of teams has also been studied, namely, for
gaining mathematical knowledge. At the secondary education-level, the Virtual
Math Teams project investigates online environments and teams of learners solv-
ing mathematical problems [20]. The online environments include chat rooms,
online sketch pads and a computer algebra system. The project led to the devel-
opment of a theory of group cognition [19]. This theory aims at understanding
how a small team of online collaborators construct knowledge as a group in
an online environment, but not only as the sum of the team members learning
individually.

While the system view is necessary to explain cognitive abilities transcending
individuals, the aim of Computer Supported Collaborative Learning research
[20] is to understand how students learn individually from participating in online
teams and how collaboration software may be designed to support such learning.
In contrast, the current work focuses on social machines as systems that discover
mathematical algorithmic knowledge and not how the individual participants
learn through collaboration.

3 Collaboratively Discovering a Mathematical Algorithm

3.1 Example of Collaborative Algorithm Discovery

When developing the Theory of Distributed Cognition, Hutchins [7] investigated
an application of mathematical computing, namely, the navigation of naval ves-
sels, when GPS was not yet in use. In an emergency situation as the ship’s gyro-
compass fails, a team of sailors approximates the position of their ship incorpo-
rating various measurements available to them, such as direction of a landmark
relative to the ship’s head, direction of the ship with respect to the magnetic
north and difference between the true north and magnetic north. Hutchins shows
that during the course of a series of such calculations, the team corrects its ini-
tial faulty approach and eventually evolves an efficient distributed algorithm for
computing the ship’s position. That is, after 38 of 66 computations, the team of
sailors had evolved a stable scheme for efficiently computing the position, with-
out being individually aware of the distributed algorithm they were executing.

The team of sailors can be regarded as a social machine consisting of the
sailors and their computing tools, including calculators. Therefore Hutchin’s
example suggests that a mathematical social machine may be able to discover
an algorithm by computing examples. The remainder of this section is dedicated
to giving a more formal and exact statement of this hypothesis.
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3.2 Distributed Cognition Foundation

Distributed Cognition studies how information flows among the components of
systems of humans and their tools through communication channels [6]. Such
systems can be represented as graphs where the nodes are humans or their
tools and the edges are the communication channels among the connected edges,
where any types of tools or communication channels are permissible. For the case
of computational mathematics, tools may include calculators, whiteboards and
mathematical software systems. Moreover, the communication channels may be
varied, such as audio-visual, from human to human, textual, from human to
computer, through commands entered on a keyboard to initiate mathematical
computations, or digital and network-based, to connect remote computers.

There is an issue with the theory of Distributed Cognition. Being a general
theory on cognition, it does not provide any formal notation for specifying the
activities carried out or algorithms implemented inside the mathematical social
machine when performing mathematical computations. Therefore, the current
paper proposes to enhance Distributed Cognition with the formalism provided
by the Message Passing Model of Distributed Computing [1].

Distributed Cognition has been blended with other theories or descriptive
systems to support specific studies, for example with Activity Theory [16] and
Actor Network Theory [15]. However, it seems it has not yet been combined with
the message passing formalism of distributed computing, as proposed here.

3.3 Collaborative Computation Model (CCM)

To allow the formal specification of the activities of a system engaged in math-
ematical computing, the formalism from the Asynchronous Message Passing
Model (AMPM) [1] of Distributed Computation is adopted to Distributed Cog-
nition as follows.

Standard Asynchronous Message Passing Model. The AMPM considers
systems of nodes that communicate asynchronously. In such an asynchronous
message-passing system (AMPS), processors exchange information by sending
messages over bi-directional channels. The channels among the processors are
assumed to be fixed, and the pattern of connections is called the system’s com-
munication topology, usually represented as a graph. For example, Fig. 1 shows a
system with four nodes, the processor p0, p1, p2 and p3, where the connecting lines
among the nodes indicate the communication channels. The processors in the
AMPS are assumed to be finite state machines, each with a transition function
acting on the machine’s internal state and the messages it has received. Applying
the machine’s transition function results in potentially altering the internal state
of the machine and/or scheduling a produced output to be send as a message
through a specific communication channel. Then an execution segment of an
AMPS is defined as the sequence of the following form: C0, φ1, C1, φ2, C2, φ3, . . .,
where the configuration Ci is the list of the states of the processors pi and the
symbol φk represents an event in the system. There are two types of event,
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namely, either sending of a message from processor pi to processor pj or a com-
putation by processor pi through applying its transition function. Furthermore,
an execution of an AMPS is defined as an execution segment starting with a spe-
cific initial configuration C0. Additionally, an algorithm executed by the AMPS
is specified by describing the algorithms computing the transition functions of
the processors. When an AMPS executes an algorithm, some nodes are accord-
ingly designated as input and output nodes. The initial states of the input nodes
and the final states of the output nodes represent the input and respectively
output of the algorithm.

Fig. 1. Example for the communication topology of an AMPS [1]

Collaborative Computation Model Extension

Definition 1. The Collaborative Computation Model (CCM) extends the
AMPM by allowing humans to act as processors in addition to finite state
machines. Let such an extended message passing system be called Collabora-
tive Computation System (CCS).

For an example see Fig. 2 where the processors p1 and p2 of Fig. 1 have been
replaced with the humans h1 and h2.

Fig. 2. CCS including humans

By including humans, the CCS is a type of system that is subject of the theory
of Distributed Cognition. It is also a special instance in this theory because the
non-human nodes of the system are required to be finite state machines, whereas
Distributed Cognition allows any kind of nodes. Furthermore, communication
and messages sent among human nodes and the processors may be of various
formats, such as audio-visual or textual, depending on the channel and receiving
node, as already pointed out in Sect. 3.2.

The addition of humans in the CCS requires extending the definitions of con-
figuration Ci and event φk in execution segments, and redefining what it means



MathChat 199

that a system executes an algorithm. Since humans do not have an observ-
able state as processors, the configuration Ci shall not include any information
regarding the state of the human processors. Furthermore, since humans do not
have an observable transition function, the expression “applying the transition
function” of a human node shall stand for the human carrying out an inter-
nal cognitive process which potentially results in some statement by the human
which is scheduled to be transmitted through the communication channel.

As mentioned before, it cannot be assumed that humans have an observable
transition function, and consequently there is no algorithm computing the tran-
sition function. Therefore, the subsequent Definition 2 refers to an AMPS for
defining what it means that a CCS executes an algorithm.

For the following definition and the remaining sections, let L be the class of
algorithms [4] implementing the computable functions A → Z, for some appro-
priately representable sets A and Z.

Definition 2. The CCS S executes the algorithm l ∈ L iff there is the AMPS P
with the same communication topology as S executing l and, for all inputs a ∈ A
(with representations suitable for processing with S and P ), the CCS S produces
an execution that is also generated by P for input a, except that events that are
cognitive processes are replaced by the applications of the transition functions
of the finite state machines substituted for the corresponding human nodes in S.

Remark 1. Potentially, one can obtain P from S by consecutively replacing all
human nodes in S by finite state machines that carry out the same tasks as the
humans. To enable such a process, the above definition does not require that the
finite state machines occurring in S also exist in P . Replacing a human node
in S with a finite state machine may require changing the way messages are
communicated with the neighboring nodes originally connected to the human
node. Therefore, the neighboring nodes themselves will potentially be modified
to be able to use the new type of communication channel. For example, a human
may communicate with a finite state machine by typing on a keyboard, whereas
two finite state machines communicate by sending messages through a computer
network.

3.4 Formalized Hypothesis on Algorithm Discovery

Section 3.1 suggests that a social mathematical machine represented by a CCS
may be able to discover an algorithm by computing examples. In other words,
the CCS may know an algorithm after computing a series of examples. Thus,
to formalize this empirical hypothesis, it needs to be clarified what one should
understand by the statement that a CCS knows an algorithm. While a CCS in
general may not possess knowledge in the philosophical sense, as justified true
belief of a person [8], one may observe what it is capable of doing. Therefore, we
say a CCS is able to compute a function on a finite set of inputs if this behavior
can be observed.
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Definition 3. The CCS S is able to compute the function f : A → Z on the
finite subset B ⊆ A iff S executes an algorithm for computing f and computes
f(x) for any input x ∈ B.

Now we are ready to state the formalized hypothesis on algorithm discovery.

Hypothesis 1. Let S be the set of all CCS that are able to compute f on the
sequence B0 ⊆ B1 ⊆ · · · ⊆ Bj , for some function f : A → Z and sequence of
finite subsets B0 ⊆ B1 ⊆ · · · ⊆ Bj of A. Then for some f and some sequence of
Bi’s there is a CCS in S that is able to compute f on any finite subset B of A.

There is at least one CCS, namely, the one observed by Hutchins, that agrees
with the hypothesis. The pilot investigation of Sect. 5 elicits algorithmic discov-
eries from other systems.

Remark 2. Note that in Hypothesis 1, it is assumed that the CCS compute f on
a sequence of finite subsets Bi rather than on a sequence of elements bi ∈ A.
This equivalent and slightly redundant assumption has been made to maintain
a consistent presentation in the next section.

4 Formally Describing Learned Algorithmic Knowledge

This section describes how the formalism of the CCM from Sect. 3 may be applied
to formally describe the algorithmic knowledge learned by a system repeatedly
carrying out the same type of mathematical computation as in Hypothesis 1.
Since the usual CCS, like the team of sailors observed by Hutchins, neither is
able to tell us what it knows nor can we fully observe the internal states of its
components, the following definitions propose to represent the knowledge that
can be inferred from observing the CCS (as an inductive inference, but not a
mathematical induction), and therefore it may be assumed, if so desired, that the
CCS possesses this knowledge. It will be shown that such inducible algorithmic
knowledge may formally be viewed as the colimit (inductive limit) [11] of a
certain functor derived from the CCM and its observed computations.

Consider the arbitrary but fixed function f : A → Z. Observing that S
computes the function f : A → Z on the subset B ⊆ A implies that S executes
one of possibly many algorithms implementing some function that agrees with f
when restricted to B. Accordingly, the following definition proposes to formally
capture this conclusion about the knowledge of the CCS. The choice of name to
be defined (Inducible Knowledge How) is motivated by the philosophical concept
of Knowing How, which addresses knowledge for doing something [5].

Definition 4. For the following definitions, introducing some auxiliary notions
for Definition 5, suppose that the CCS S is able to compute the function f :
A → Z on the sequence of subsets B0 ⊆ B1 ⊆ B2 ⊆ · · · of A.

– Let F (l) be the function implemented by the algorithm l ∈ L and Mf (l) be
the maximal subset of A on which F (l) = f .
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– Define the equivalence relation l ∼ k such that l and k are equivalent iff
Mf (l) = Mf (k).

– Furthermore, l̃ denote the corresponding equivalence classes in L̃ = L/∼.
– Note that by these definitions the function Mf may naturally be extended to

the equivalence classes in L̃ through Mf (l̃) = Mf (l).
– Furthermore, let Lf = (L̃,→) be the category that has arrows k̃ → l̃ iff

Mf (k̃) ⊆ Mf (l̃).
– Let ω stand for the linear order category 0 → 1 → 2 → . . . [11].

Now, we are ready to define Inducible Knowledge How.

Definition 5 (Inducible Knowledge How). Let the CCS S be able to com-
pute f on the sequence of finite sets B0 ⊆ B1 ⊆ B2 ⊆ . . . Then, the Inducible
Knowledge How of S over the sequence Bi is defined as the colimit of the functor
K : ω → L̃, mapping any arrow j → (j + 1) to l̃j → l̃j+1, such that Mf (l̃i) = Bi

for all i.

For any finite set B there is an algorithm l with Mf (l) = B because B is finite,
which ensures that Inducible Knowledge How exists as defined. Furthermore,
the functor K and therefore the Inducible Knowledge How are uniquely defined
because Mf (l̃) = Mf (k̃) implies that l̃ = k̃.

Remark 3. Practically, one may observe the CCS S completing its computations
only for a finite number of times. That is, Bi is a finite sequence with B = Bj =
Bj+1 = · · · for some sufficiently large j. Then the Inducible Knowledge How of
S over the sequence Bi is represented by the equivalence class l̃ of algorithms
such that Mf (l̃) = B, which covers the CCS conforming with Hypothesis 1.

5 Implementing Mathematical Social Machines

5.1 MathChat Features for Realizing the Social Machines

For realizing the mathematical social machines, the author has designed and
implemented the MathChat software system. The MathChat system facilitates
collaborative command entry for mathematical computations in the scripting
language Python. The design of the MathChat software system integrates chat
with command entry in one user interface, thus enabling communication and
coordination among the collaborating users.

The MathChat system represents a CCS with an arbitrary number of human
participants hi and one processor p0 carrying out mathematical computations,
as illustrated by Fig. 3. The humans communicate among each other with textual
chat and with the processor with textual commands in the scripting language.
Therefore, there are chat communication channels among all the humans and
additional channels between the humans and the processor to transfer textual
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commands to and outputs of the commands from the processor. To avoid over-
plotting, Fig. 3 does not show the channels among the humans, but indicates
that all humans are connected with a dashed line surrounding the corresponding
nodes.

The humans interact with the kernel through user client software, called
ChatConsole, running on the users’ work stations. The ChatConsoles accept
commands for the processor and chat messages for the other users. Figure 4
shows an excerpt from a session where two users, Cindy and Fred, collaboratively
analyze some network. Both users run their individual ChatConsoles and see
the same output simultaneously on their own work stations. More details of
the design and implementation of the MathChat system are presented in the
appendix.

Fig. 3. Communication topology of the MathChat CCS

5.2 Application in Online Education and Pilot Investigation

While [7] gives an example of a basic mathematical social machine active on
a naval vessel, the pilot investigation of this section aims at creating social
machines in the context of online technology. Being a pilot investigation, it aims
at covering a limited aspect of algorithmic discovery, namely, distribution of tasks
among human nodes in the social machine. A more comprehensive approach goes
beyond the scope of the current work.

Since the author is not only a researcher but also an instructor for an online
course in data analytics, his students have been readily available as partici-
pants in mathematical social machines. That is, to increase the learners’ out-
comes at the instructor’s institution, the online students are encouraged to forge
connections among each others by collaborating on problems. Therefore, moti-
vated by the online course material, the students naturally form mathematical
social machines. It is important to point out that including active students lim-
its the data that can be shared from the application. That is, privacy laws and
ethical considerations prevent the author to present data on individual interac-
tions of students, unlike related human subject research which collects data from
controlled experiments [20]. Therefore, this section presents the application of
MathChat to enhance the educational experience of the online students, which
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Fig. 4. Users collaborating

also yields insights about mathematical social machines working on algorithmic
discoveries, as formalized in Sects. 3 and 4.

During the spring semester of 2018, the MathChat software system has been
used in an online course on data analytics taught by the author at Seton Hall
University. The online course includes 28 students (undergraduate and gradu-
ate) from a variety of backgrounds, including mathematics, computer science,
psychology and public administration. Most of the students have not had any
experience in data analytics nor Python coding.

After learning the basics of data and network analysis with Python, the
students work on group assignments in ChatConsole. The students are assigned
to teams of up to six students and solve a series of similar problems in network
analysis. The problems asked the students to determine characteristic properties
of a series of networks G1, G2, G3 and G4 (represented as multigraphs with
directed edges) to reveal how the networks are different. Earlier in the course they
had learned that important properties are determined through computing the
number of nodes and edges, identifying the central nodes in a network (according
to some appropriate measure) or finding the largest connected components for a
series of networks. The assignment was purposefully presented as open-ended to
allow the students to develop a way of distributing different tasks. To encourage
distributing the tasks among the team members and to avoid that the whole
assignment be solved by any single ambitious individual among the team, the
students were required to come up with a solution where each member enters at
most three Python commands.
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Among the six groups, four succeeded and two failed completing the assign-
ment. Note that Hypothesis 1 also allows for failures. After the due date, an
anonymous survey was given to collect feedback about the students’ learning
experience. In the survey, 75% of the students stated that they found it very
easy, easy, or neither easy nor difficult to collaborate, 25% found it difficult or
very difficult and the rest did not respond with a rating. Furthermore, it was
reported that some students did several practice runs for the collaborative effort
to come up with an effective task distribution, which corresponds to the obser-
vations from Sects. 3 and 4, thus matching the proposed theoretical framework.

6 Discussion, Limitations and Future Directions

This research studied how social machines discover algorithmic mathematical
knowledge. Motivated by some findings from the research literature, an empiric
and theoretical framework for algorithmic mathematical knowledge discovered
by a social machine has been proposed. The framework is founded on the insight
that social machines learn algorithms by repeatedly computing examples for the
algorithm. It is important to recall that this insight is empiric and therefore it is
conceivable that mathematical social machines still possess other capabilities for
discovering algorithms that are not covered by the proposed framework. If such
capabilities were revealed, the framework would have to be expanded which is
part of the natural life-cycle of scientific theories.

Definition 5 represents the algorithmic knowledge of a mathematical social
machine as an abstract colimit, which is of inherent theoretical interest. Addi-
tionally, the author plans to use this formalism for ongoing and future work.
The author is developing an inductive programming assistant [9] for the human
participants of the social machine. Eventually, the formalism of Definition 5 will
aid in proving the correctness of the inductive programming capability.

Section 5.2 describes instances of mathematical social machines that learn
task distribution among their team members in the context of online education.
To allow a more comprehensive study of mathematical social machines discover-
ing distributed algorithms, the author is designing human subject experiments
to collect and analyze interaction data.

Acknowledgments. The author thanks the anonymous reviewers for valuable sugges-
tions for improving the paper and Comcast Innovation Fund for financially supporting
the project.

Appendix

The author has developed the software system MathChat to realize mathematical
social machines in an online environment. For an introduction to its functionality
see Sect. 5. This appendix elaborates on key design and implementation issues.

The software system MathChat supports collaborative computational math-
ematics by tightly integrating mathematical command entry with chat for com-
munications among the collaborators. Its main software component ChatConsole
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is available at [14] as an open-source project. The software, written in the pro-
gramming language Python, is based on the Jupyter project [17] which defines a
protocol allowing user client software to communicate with computational ker-
nels (processor of Fig. 3), such as iPython [17] or the Sage system [18] which
runs under Python. In Fig. 4, the users enter commands in the scripting lan-
guage Python. The author’s software project [14] currently focuses on compu-
tational kernels accepting commands in Python, but the implementation tech-
niques described in this section are general enough to be used for kernels accept-
ing other languages.

To distinguish chat from commands, the chat messages are prefixed with a
pound sign, which is also the sign for a comment in Python. Furthermore, the
input lines show the names of the users who entered the commands or chat
messages. The users enter text in an input area, shown at the bottom of the
screen shot in Fig. 5. The users may switch the input area between chat- and
code-entry mode by clicking on the corresponding button in the lower left-hand
corner. Additionally, when in code mode, the ChatConsole automatically inter-
prets any entered line starting with a pound sign as a chat message. The chat
mode is more convenient when entering multi-line chat messages. By integrating
chat with the commands in the output shown in ChatConsole, the chat messages
serve the team’s communication and coordination during an ongoing collabora-
tion session and document the common work after it is completed. In addition
to enabling chat, the ChatConsole user clients keep track of users connecting to
and disconnecting to an ongoing session with the computational kernel.

The implementation of ChatConsole is driven by the Jupyter protocol [17],
which the software components use to communication with each other. To dis-
tribute chat messages and notifications about users connecting and disconnecting
in the system, ChatConsole uses an additional protocol embedded in messages
sent through the Jupyter protocol. This addition does not require modifying the
Jupyter protocol or kernel. In the Jupyter protocol, the kernel echos all received
lines of code to all the connected clients. This echo also includes commands that
have no computational effect, such as comments, prefixed with a pound sign in
Python. Using the echo, ChatConsole sends special messages, starting with a
pound sign and a secret string followed by some special textual data (Fig. 6), to
all the clients. Correspondingly, the clients filter and process messages received
according to the secret string. (If ChatConsole is connected to a kernel expect-
ing commands in a language other than Python, then the pound sign would be
replaced with the comment symbol of that language.) Messages that are iden-
tified with the secret strings are treated as chat communications relayed to all
the connected users or internal instructions for user management, such as “user
cindy has joined”, which allow the ChatConsoles to update their internal lists of
connected users. The secret string must be known to all connected clients. Since
each Jupyter session has a unique secret identifier determined by the kernel, the
secret string may be automatically generated from the session identifier, which
makes it available to the clients upon connecting to the kernel. The encoding
of the data, transporting the chat messages or user management instructions, is
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Fig. 5. Input area

#<secret string><data encoding chat or instructions for user management>

Fig. 6. Additional special data embedded in transmitted comments

documented in the software repository [14] and subject to change as new features
are added to ChatConsole requiring the expansion of the encoding.
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Abstract. We present a method for finding morphisms between formal
theories, both within as well as across libraries based on different logical
foundations. As they induce new theorems in the target theory for any of
the source theory, theory morphisms are high-value elements of a mod-
ular formal library. Usually, theory morphisms are manually encoded,
but this practice requires authors who are familiar with source and tar-
get theories at the same time, which limits the scalability of the manual
approach.

To remedy this problem, we have developed a morphism finder algo-
rithm that automates theory morphism discovery. In this paper we
present an implementation in the MMT system and show specific use
cases. We focus on an application of theory discovery, where a user can
check whether a (part of a) formal theory already exists in some library,
potentially avoiding duplication of work or suggesting an opportunity for
refactoring.

1 Introduction

Motivation. “Semantic Search” – a very suggestive term, which is alas seriously
under-defined – has often been touted as the “killer application” of semantic
technologies. With a view finder, we can add another possible interpretation:
searching mathematical ontologies (here modular theorem prover libraries) at
the level of theories – we call this theory classification.

The basic use case is the following: Jane, a mathematician, becomes inter-
ested in a class of mathematical objects, say – as a didactic example – something
she initially calls “beautiful subsets” of a base set B (or just “beautiful over B”).
These have the following properties Q:

1. the empty set is beautiful over B
2. every subset of a beautiful set is beautiful over B
3. If A and B are beautiful over B and A has more elements than B, then there

is an x ∈ A\B, such that B ∪ {x} is beautiful over B.

To see what is known about beautiful subsets, she types these three conditions
into a theory classifier, which computes any theories in a library L that match
c© Springer International Publishing AG, part of Springer Nature 2018
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these (after a suitable renaming). In our case, Jane learns that her “beautiful
sets” correspond to the well-known structure of matroids [MWP], so she can
directly apply matroid theory to her problems.

In extended use cases, a theory classifier find theories that share significant
structure with Q, so that Jane can formalize Q modularly with minimal effort.
Say Jane was interested in “dazzling subsets”, i.e. beautiful subsets that obey a
fourth condition, then she could just contribute a theory that extends matroid
by a formalization of the fourth condition – and maybe rethink the name.

In this paper we reduce the theory classification problem to the problem of
finding theory morphisms (views) between theories in a library L: given a query
theory Q, the algorithm computes all (total) views from Q into L and returns
presentations of target theories and the assignments made by the views.

Related Work. Existing systems have so far only worked with explicitly given
views, e.g., in IMPS [FGT93] or Isabelle [Pau94]. Automatically and systemati-
cally searching for new views was first undertaken in [NK07] in 2006. However,
at that time no large corpora of formalized mathematics were available in stan-
dardized formats that would have allowed easily testing the ideas in practice.

This situation has changed since then as multiple such exports have become
available. In particular, we have developed the MMT language [RK13] and the
concrete syntax of the OMDoc XML format [Koh06] as a uniform representa-
tion language for such corpora. And we have translated multiple proof assistant
libraries into this format, among others those of PVS in [Koh+17]. Building
on these developments, we are now able, for the first time, to apply generic
methods—i.e., methods that work at the MMT level—to search for views in
these libraries.

While inspired by the ideas of [NK07], our design and implementation are
completely novel. In particular, the theory makes use of the rigorous language-
independent definitions of theory and view provided by MMT, and the practical
implementation makes use of the MMT system, which provides high-level APIs
for these concepts.

[GK14] applies techniques related to ours to a related problem. Instead of
views inside a single corpus, they use machine learning to find similar constants
in two different corpora. Their results can roughly be seen as a single partial
view from one corpus to the other.

Approach and Contribution. Our contribution is twofold. Firstly, we present the
design and implementation of a generic view finder that works with arbitrary
corpora represented in MMT. The algorithm tries to match two symbols by
unifying their types. This is made efficient by separating the term into a hashed
representation of its abstract syntax tree (which serves as a fast plausibility check
for pre-selecting matching candidates) and the list of symbol occurrences in the
term, into which the algorithm recurses.

Secondly, we apply this view finder in two case studies: In the first, we start
with an abstract theory and try to figure out if it already exists in the same
library – the use case mention above. In the second example, we write down a
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simple theory of commutative operators in one language to find all commutative
operators in another library based on a different foundation.

Overview. In Sect. 2, we revise the basics of MMT and views. Section 3 presents
the view finding algorithm restricted to the intra-library case and showcases
it for the theory classification use case. In Sect. 4, we extend the algorithm to
inter-library view finding discuss results of applying it to the PVS/NASA library.
Section 5 concludes the paper and discusses additional applications.

A more extensive version of this paper with additional details can be found
at [MRK].

2 Preliminaries: MMT and Views

Intuitively, Mmt is a declarative language for theories and views over an arbi-
trary object language. Its treatment of object languages is abstract enough to
subsume most logics and type theories which are practically relevant.

Figure 1 gives an overview of the fundamental MMT concepts. In the simplest
case, theories Σ are lists of constant declarations c : E, where E is an
expression that may use the previously declared constants. Naturally, E must
be subject to some type system (which MMT is also parametric in), but the
details of this are not critical for our purposes here. We say that Σ′ includes Σ
if it contains every constant declaration of Σ.

meta-theory: a fixed theory M

Theory Σ View σ Σ Σ

set of typed constant declarations c E assignments c E
Σ-expressions E formed from M - and Σ-constants mapped to Σ expressions

Fig. 1. Overview of MMT concepts

Correspondingly, a view σ : Σ → Σ′ is a list of assignments c �→ e′ of
Σ′-expressions e′ to Σ-constants c. To be well-typed, σ must preserve typing,
i.e., we must have �Σ′ e′ : σ(E). Here σ is the homomorphic extension of σ, i.e.,
the map of Σ-expressions to Σ′-expressions that substitutes every occurrence
of a Σ′-constant with the Σ′-expression assigned by σ. We call σ simple if the
expressions e′ are always Σ′-constants rather than complex expressions. The
type-preservation condition for an assignment c �→ c′ reduces to σ(E) = E′

where E and E′ are the types of c and c′. We call σ partial if it does not
contain an assignment for every Σ-constant and total otherwise. A partial view
from Σ to Σ′ is the same as a total view from some theory included by Σ to Σ′.

Importantly, we can then show generally at the MMT-level that if σ is well-
typed, then σ preserves all typing and equality judgments over Σ. In particular,
if we represent proofs as typed terms, views preserve the theoremhood of propo-
sitions. This property makes views so valuable for structuring, refactoring, and
integrating large corpora.
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MMT achieves language-independence through the use of meta-theories:
every MMT-theory may designate a previously defined theory as its meta-theory.
For example, when we represent the HOL Light library in MMT, we first write a
theory L for the logical primitives of HOL Light. Then each theory in the HOL
Light library is represented as a theory with L as its meta-theory. In fact, we
usually go one step further: L itself is a theory, whose meta-theory is a logical
framework such as LF. That allows L to concisely define the syntax and inference
system of HOL Light.

However, for our purposes, it suffices to say that the meta-theory is some
fixed theory relative to which all concepts are defined. Thus, we assume that
Σ and Σ′ have the same meta-theory M , and that σ maps all M -constants to
themselves.

It remains to define the exact syntax of expressions. In the grammar on the
right c refers to constants (of the meta-theory or previously declared in the
current theory) and x refers to bound variables. Complex expressions are of the
form o [x1 : t1, . . . , xm : tm] (a1, . . . , an), where

Γ :: = (x : E)∗

E :: = c | x | E [Γ ] (E+)

– o is the operator that forms the complex expression,
– xi : ti declares variable of type ti that are bound by o in subsequent variable

declarations and in the arguments,
– ai is an argument of o.

The bound variable context may be empty, and we write o (a) instead of o [·] (a).
For example, the axiom ∀x : set, y : set. beautiful(x)∧y ⊆ x ⇒ beautiful(y)
would instead be written as

∀ [x : set, y : set] (⇒ (∧ (beautiful (x) ,⊆ (y, x)) , beautiful (y)))

Finally, we remark on a few additional features of the MMT language that
are important for large-scale case studies but not critical to understand the
basic intuitions of results. MMT provides a module system that allows theories
to instantiate and import each other. The module system is conservative: every
theory can be elaborated into one that only declares constants. MMT constants
may carry an optional definiens, in which case we write c : E = e. Defined
constants can be eliminated by definition expansion.

3 Intra-Library View Finding

Let C be a corpus of theories with the same fixed meta-theory M . We call
the problem of finding theory views between theories of C the view finding
problem and an algorithm that solves it a view finder. Note that a view finder
is sufficient to solve the theory classification use case from the introduction: Jane
provides a M -theory Q of beautiful sets, the view finder computes all (total)
views from Q into C.
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Efficiency Considerations. The cost of this problem quickly explodes. First of
all, it is advisable to restrict attention to simple views. Eventually we want to
search for arbitrary views as well. But that problem is massively harder because
it subsumes theorem proving: a view from Σ to Σ′ maps Σ-axioms to Σ′-proofs,
i.e., searching for a view requires searching for proofs.

Secondly, if C has n theories, we have n2 pairs of theories between which to
search. (It is exactly n2 because the direction matters, and even views from a
theory to itself are interesting.) Moreover, for two theories with m and n con-
stants, there are nm possible simple views. (It is exactly nm because views may
map different constants to the same one.) Thus, we can in principle enumerate
and check all possible simple views in C. But for large C, it quickly becomes
important to do so in an efficient way that eliminates ill-typed or uninteresting
views early on.

Thirdly, it is desirable to search for partial views as well. In fact, identifying
refactoring potential in libraries is only possible if we find partial views: then we
can refactor the involved theories in a way that yields a total view. Moreover,
many proof assistant libraries do not follow the little theories paradigm or do
not employ any theory-like structuring mechanism at all. These can only be
represented as a single huge theory, in which case we have to search for partial
views from this theory to itself. While partial views can be reduced to and then
checked like total ones, searching for partial views makes the number of possible
views that must be checked much larger.

Finally, even for a simple view, checking reduces to a set of equality con-
straints, namely the constraints �Σ′ σ(E) = E′ for the type-preservation condi-
tion. Depending on M , this equality judgment may be undecidable and require
theorem proving.

Algorithm Overview. A central motivation for our algorithm is that equality
in M can be soundly approximated very efficiently by using a normalization
function on M -expressions. This has the additional benefit that relatively little
meta-theory-specific knowledge is needed, and all such knowledge is encapsulated
in a single well-understood function. This way we can implement view–search
generically for arbitrary M .

Our algorithm consists of two steps. First, we preprocess all constant decla-
rations in C with the goal of moving as much intelligence as possible into a step
whose cost is linear in the size of C. Then, we perform the view search on the
optimized data structures produced by the first step.

3.1 Preprocessing

The preprocessing phase computes for every constant declaration c : E a normal
form E′ and then efficiently stores the abstract syntax tree of E′. Both steps are
described below.

Normalization involves two steps: MMT-level normalization performs
generic transformations that do not depend on the meta-theory M . These include
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elaboration of structured theories and definition expansion, which we mentioned
in Sect. 2. Importantly, we do not fully eliminate defined constant declarations
c : E = e from a theory Σ: instead, we replace them with primitive constants
c : E and replace every occurrence of c in other declarations with e. If Σ is the
domain theory, we can simply ignore c : E (because views do not have to provide
an assignment to defined constants). But if the Σ is the codomain theory, retain-
ing c : E increases the number of views we can find; in particular in situations
where E is a type of proofs, and hence c a theorem.

Meta-theory-level normalization applies an M -specific normalization
function. In general, we assume this normalization to be given as a black box.
However, because many practically important normalization steps are widely
reusable, we provide a few building blocks, from which specific normalization
functions can be composed. Skipping the details, these include:

1. Top-level universal quantifiers and implications are rewritten into the function
space of the logical framework using the Curry-Howard correspondence.

2. The order of curried domains of function types is normalized as follows: first
all dependent arguments types ordered by the first occurrence of the bound
variables; then all non-dependent argument types A ordered by the abstract
syntax tree of A.

3. Implicit arguments, whose value is determined by the values of the others
are dropped, e.g. the type argument of an equality. This has the additional
benefit or shrinking the abstract syntax trees and speeding up the search.

4. Equalities are normalized such that the left hand side has a smaller abstract
syntax tree.

Above multiple normalization steps make use of a total order on abstract syntax
trees. We omit the details and only remark that we try to avoid using the names
of constants in the definition of the order—otherwise, declarations that could
be matched by a view would be normalized differently. Even when breaking
ties between requires comparing two constants, we can first try to recursively
compare the syntax trees of their types.

Abstract Syntax Trees. We define abstract syntax trees as pairs (t, s) where
t is subject to the grammar

t :: = CNat | VNat | t
[
t+

] (
t+

)

(where Nat is a non-terminal for natural numbers) and s is a list of constant
names.

We obtain an abstract syntax tree from an MMT expression E by (i) switching
to de-Bruijn representation of bound variables and (ii) replacing all occurrences
of constants with Ci in such a way that every Ci refers to the i-th element of s.

Abstract syntax trees have the nice property that they commute with the
application of simple views σ: If (t, s) represents E, then σ(E) is represented by
(t, s′) where s′ arises from s by replacing every constant with its σ-assignment.

The above does not completely specify i and s yet, and there are several
possible canonical choices among the abstract syntax trees representing the same
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expression. The trade-off is subtle because we want to make it easy to both
identify and check views later on. We call (t, s) the long abstract syntax tree for
E if Ci replaces the i-th occurrence of a constant in E when E is read in left-
to-right order. In particular, the long tree does not merge duplicate occurrences
of the same constant into the same number. The short abstract syntax tree for
E arises from the long one by removing all duplicates from s and replacing the
Ci accordingly.

Example 1. Consider again the axiom ∀x : set, y : set. beautiful(x) ∧ y ⊆
x ⇒ beautiful(y) with internal representation

∀ [x : set, y : set] (⇒ (∧ (beautiful (x) ,⊆ (y, x)) , beautiful (y))) .

The short syntax tree and list of constants associated with this term would
be:

t = C1 [C2, C2] (C3 (C4 (C5 (V2) , C6 (V1, V2)) , C5 (V1)))

s = (∀, set,⇒,∧, beautiful,⊆)

The corresponding long syntax tree is:

t = C1 [C2, C3] (C4 (C5 (C6 (V2) , C7 (V1, V2)) , C8 (V1)))

s = (∀, set, set,⇒,∧, beautiful,⊆, beautiful)

For our algorithm, we pick the long abstract syntax tree, which may appear
surprising. The reason is that shortness is not preserved when applying a simple
view: whenever a view maps two different constants to the same constant, the
resulting tree is not short anymore. Length, on the other hand, is preserved.
The disadvantage that long trees take more time to traverse is outweighed by
the advantage that we never have to renormalize the trees.

3.2 Search

Consider two constants c : E and c′ : E′, where E and E′ are preprocessed into
long abstract syntax trees (t, s) and (t′, s′). It is now straightforward to show
the following Lemma:

Lemma 1. The assignment c �→ c′ is well-typed in a view σ if t = t′ (in which
case s and s′ must have the same length l) and σ also contains si �→ s′

i for
i = 1, . . . , l.

Of course, the condition about si �→ s′
i may be redundant if s contain duplicates;

but because s has to be traversed anyway, it is cheap to skip all duplicates. We
call the set of assignments si �→ s′

i the prerequisites of c �→ c′.
This lemma is the center of our search algorithm explained in

Lemma 2 (Core Algorithm). Consider two constant declarations c and c′ in
theories Σ and Σ′. We define a view by starting with σ = c �→ c′ and recursively
adding all prerequisites to σ until
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– either the recursion terminates
– or σ contains two different assignments for the same constant, in which case

we fail.

If the above algorithm succeeds, then σ is a well-typed partial simple view
from Σ to Σ′.

Example 2. Consider two constants c and c′ with types ∀x : set, y : set. beau-
tiful(x)∧y ⊆ x ⇒ beautiful(y) and ∀x : powerset, y : powerset. finite(x)∧
y ⊆ x ⇒ finite(y). Their syntax trees are

t = t′ = C1 [C2, C3] (C4 (C5 (C6 (V2) , C7 (V1, V2)) , C8 (V1)))

s = (∀, set, set,⇒,∧, beautiful,⊆, beautiful)

s′ = (∀, powerset, powerset,⇒,∧, finite,⊆, finite)

Since t = t′, we set c �→ c′ and compare s with s′, meaning we check (ignoring
duplicates) that ∀ �→ ∀, set �→ powerset, ⇒�→⇒, ∧ �→ ∧, beautiful �→ finite
and ⊆�→⊆ are all valid.

To find all views from Σ to Σ′, we first run the core algorithm on every pair
of Σ-constants and Σ′-constants. This usually does not yield big views yet. For
example, consider the typical case where theories contain some symbol declara-
tions and some axioms, in which the symbols occur. Then the core algorithm
will only find views that map at most one axiom.

Depending on what we intend to do with the results, we might prefer to
consider them individually (e.g. to yield alignments in the sense of [Kal+16]).
But we can also use these small views as building blocks to construct larger,
possibly total ones:

Lemma 3 (Amalgamating Views). We call two partial views compatible if
they agree on all constants for which both provide an assignment.

The union of compatible well-typed views is again well-typed.

Example 3. Consider the partial view from Example 2 and imagine a second
partial view for the axioms beautiful(∅) and finite(∅). The former has the
requirements

∀ �→ ∀, set �→ powerset ⇒�→⇒ ∧ �→ ∧ beautiful �→ finite ⊆�→⊆
The latter requires only set �→ powerset and ∅ �→ ∅. Since both views agree
on all assignments, we can merge all of them into a single view, mapping both
axioms and all requirements of both.

3.3 Optimizations

The above presentation is intentionally simple to convey the general idea. We
now describe a few advanced features of our implementation to enhance scala-
bility.
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Caching Preprocessing Results. Because the preprocessing performs normaliza-
tion, it can be time-consuming. Therefore, we allow for storing the preprocessing
results to disk and reloading them in a later run.

Fixing the Meta-Theory. We improve the preprocessing in a way that exploits
the common meta-theory, which is meant to be fixed by every view. All we have
to do is, when building the abstract syntax trees (t, s), to retain all references to
constants of the meta-theory in t instead of replacing them with numbers. With
this change, s will never contain meta-theory constants, and the core algorithm
will only find views that fix all meta-theory constants. Because s is much shorter
now, the view search is much faster.

It is worth pointing out that the meta-theory is not always as fixed as one
might think. Often we want to consider to be part of the meta-theory certain
constants that are defined early on in the library and then used widely. In PVS,
this makes sense, e.g., for all operations define in the Prelude library (the small
library shipped with PVS). Note that we still only have to cache one set of
preprocessing results for each library: changes to the meta-theory only require
minor adjustments to the abstract syntax trees without redoing the entire nor-
malization.

Biasing the Core Algorithm. The core algorithm starts with an assignment c �→ c′

and then recurses into constant that occur in the declarations of c and c′. This
occurs-in relation typically splits the constants into layers. A typical theory
declares types, which then occur in the declarations of function symbols, which
then occur in axioms. Because views that only map type and function sym-
bols are rarely interesting (because they do not allow transporting non-trivial
theorems), we always start with assignments where c is an axiom.

Exploiting Theory Structure. Libraries are usually highly structured using
imports between theories. If Σ is imported into Σ′, then the set of partial views
out of Σ′ is a superset of the set of partial views out of Σ. If implemented naively,
that would yield a quadratic blow-up in the number of views to consider.

Fig. 2. “Beautiful sets” in MMT surface syntax
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Instead, when running our algorithm on an entire library, we only consider
views between theories that are not imported into other theories. In an additional
postprocessing phase, the domain and codomain of each found partial view σ
are adjusted to the minimal theories that make σ well-typed.

3.4 Implementation

Fig. 3. Views found for “beautiful sets”

We have implemented our
view finder algorithm in the
MMT system. A screen-
shot of Jane’s theory of
beautiful sets is given in
Fig. 2. Right-clicking any-
where within the theory
allows Jane to select MMT
→ Find Views to... →
MitM/smglom. The latter
menu offers a choice of
known libraries in which the
view finder should look for codomain theories; MitM/smglom is the Math-in-the-
Middle library based that we have developed [Deh+16] to describe the common
knowledge used in various CICM systems.

Fig. 4. The theory of matroids in the MitM library

After choosing MitM/smglom,
the view finder finds two
views (within less than one
second) and shows them
(Fig. 3). The first of these
(View1) has a theory for
matroids as its codomain,
which is given in Fig. 4.
Inspecting that theory and
the assignments in the view,
we see that it indeed repre-
sents the well-known corre-
spondence between beautiful
sets and matroids.

4 Inter-Library View Finding

We now generalize to view finding to different libraries written in different logics.
Intuitively, the key idea is that we now have two fixed meta-theories M and M ′

and a fixed meta-view m : M → M ′. However, due to the various idiosyncrasies
of logics, tools’ library structuring features, individual library conventions, this
problem is significantly more difficult than intra-library view finding. For exam-
ple, unless the logics are closely related, meta-views usually do not even exist and
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must be approximated. Therefore, a lot of tweaking is typically necessary, and it
is possible that multiple runs with different trade-offs give different interesting
results.

As an example, we present a large case study where we find views from the
MitM library used in the running example so far into the PVS/NASA library.

4.1 The PVS/NASA Library

PVS [ORS92] is a proof assistant under active development based on a higher-
order logic with a number of advanced features. In addition to the Prelude
library, which contains the most common domains of mathematical discourse
and is shipped with PVS itself, there is a large library of formal mathemat-
ics developed and maintained by NASA [PVS]. In [Koh+17], we represent PVS
as a meta-theory in MMT and implemented a translator that transforms both
libraries into MMT format. We use a meta-view that embeds MitM’s higher-
order logic into PVS’s higher-order logic and make sure that we normalize PVS-
formulas in the same way as MitM-formulas.

Theory Structure Normalization. PVS’s complex and prevalently used paramet-
ric theories critically affect view finding because they affect the structure of
theories. For example, the theory of groups group def in the NASA library has
three theory parameters (T, ∗, one) for the signature of groups, and includes the
theory monoid def with the same parameters, and then declares the axioms for
a group in terms of these parameters. Without special treatment, we could only
find views from/into libraries that use the same theory structure.

We have investigated three approaches of handling parametric theories:

1. Simple treatment: We drop theory parameters and interpret references to
them as free variables that match anything. This is of course not sound so that
all found views must be double-checked. However, because practical search
problems often do not require exact results, even returning all potential views
can be useful.

2. Covariant elimination: We treat theory parameters as if they were constants
declared in the body. In the above mentioned theory group def, we would
hence add three new constants T, ∗ and one with their corresponding types.
This works well in the common case where a parametric theory is not used
with two different instantiations in the same context.

3. Contravariant elimination: The theory parameters are treated as if they
were bound separately for every constant in the body of the theory. In
the above mentioned theory group def, we would change e.g. the unary
predicate inverse exists? with type T → bool to a function with type
(T : pvstype) → (∗ : T → T → T ) → (one : T ) → (T → bool). This
is closest to the actual semantics of the PVS module system. But it makes
finding interesting views the least likely because it is the most sensitive to
the modular structure of individual theories.
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We have implemented the first two approaches. The first is the most straight-
forward but it leads to many false positives and false negatives. We have found
the second approach to be the most useful for inter-library search since it
most closely corresponds to simple formalizations of abstract theories in other
libraries. The third approach will be our method of choice when investigating
intra-library views of PVS/NASA in future work.

4.2 Implementation

As a first use case, we can write down a theory for a commutative binary operator
using the MitM foundation, while targeting the PVS Prelude library – allowing
us to find all commutative operators, as in Fig. 5 (using the simple approach to
theory parameters).

Fig. 5. Searching for commutative operators in PVS

This example also hints at a way to iteratively improve the results of the
view finder: since we can find properties like commutativity and associativity,
we can use the results to in turn inform a better normalization of the theory
by exploiting these properties. This in turn would potentially allow for finding
more views.

To evaluate the approaches to theory parameters we used a simple theory of
monoids in the MitM foundation and the theory of monoids in the NASA library
as domains for viewfinding with the whole NASA library as target using simple
and covariant approaches. The results are summarized in Fig. 6.
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Domain Normalization Simple Views Aggregated

NASA/monoid simple 388 154
MitM/monoid simple 32 17
NASA/monoid covariant 1026 566
MitM/monoid covariant 22 6

Fig. 6. Results of inter- and intra-library view finding in the PVS NASA library

Most of the results in the simple MitM→NASA case are artifacts of the
theory parameter treatment and view amalgamation – in fact only two of the 17
results are meaningful (to operations on sets and the theory of number fields). In
the covariant case, the additional requirements lead to fuller (one total) and less
spurious views. With a theory from the NASA library as domain, the results are
already too many to be properly evaluated by hand. With the simple approach to
theory parameters, most results can be considered artifacts; in the covariant case,
the most promising results yield (partial) views into the theories of semigroups,
rings (both the multiplicative and additive parts) and most extensions thereof
(due to the duplication of theory parameters as constants).

5 Conclusion

We present a general MKM utility that given a MMT theory and an MMT library
L finds partial and total views into L. Such a view finder can be used to drive
various MKM applications ranging from theory classification to library merging
and refactoring. The theory discovery use case described in Sect. 3.4 is mostly
desirable in a setting where a user is actively writing or editing a theory, so the
integration in jEdit is sensible. However, the inter-library view finding would
be a lot more useful in a theory exploration setting, such as when browsing
available archives on MathHub [Ian+14] or in the graph viewer integrated in
Mmt [RKM17].

Future Work. The current view finder is already efficient enough for the limited
libraries we used for testing. To increase efficiency, we plan to explore term
indexing techniques [Gra96] that support 1 : n and even n : m matching and
unification queries. The latter will be important for the library refactoring and
merging applications which look for all possible (partial and total) views in one
or between two libraries. As such library-scale operations will have to be run
together with theory flattening to a fixed point and re-run upon every addition
to the library, it will be important to integrate them with the MMT build system
and change management processes [AM10,Ian12].

Enabled Applications. Our work enables a number of advanced applications.
Maybe surprisingly, a major bottleneck here concerns less the algorithm or soft-
ware design challenges but user interfaces and determining the right application
context.
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– Model-/Countermodel Finding: If the codomain of a view is a theory
representing a specific model, it would tell Jane that those are examples of
her abstract theory. Furthermore, partial views – especially those that are
total on some included theory – could lead to insightful counterexamples.

– Library Refactoring: Given that the view finder looks for partial views, we
can use it to find natural extensions of a starting theory. Imagine Jane remov-
ing the last of her axioms for “beautiful sets” – the other axioms (disregarding
finiteness of her sets) would allow her to find e.g. both Matroids and Ideals,
which would suggest to her to possibly refactor her library such that both
extend her new theory. Additionally, surjective partial views would inform
her, that her theory would probably better be refactored as an extension
of the codomain, which would allow her to use all theorems and definitions
therein.

– Theory Generalization: If we additionally consider views into and out of
the theories found, this can make theory discovery even more attractive. For
example, a view from a theory of vector spaces intro matroids could inform
Jane additionally, that her beautiful sets, being matroids, form a generaliza-
tion of the notion of linear independence in linear algebra.

– Folklore-based Conjecturing: If we have theory T describing (the proper-
ties of) a class O of objects under consideration and a view v : S � T , then
we can use extensions of S′ in L with ι : S ↪→ S′ for making conjectures about
O: The v-images of the local axioms of S′ would make useful properties to
establish about O, since they allow pushing out v over ι to a view v′ : S′ � T ′

(where T ′ extends T by the newly imported properties) and gain v′(S′) as
properties of O. Note that we would need to keep book on our transforma-
tions during preprocessing and normalization, so that we could use the found
views for translating both into the codomain as well as back from there into
our starting theory. A useful interface might specifically prioritize views into
theories on top of which there are many theorems and definitions that have
been discovered.

Note that even though the algorithm is in principle symmetric, some aspects
often depend on the direction—e.g. how we preprocess the theories, which con-
stants we use as starting points or how we aggregate and evaluate the resulting
(partial) views (see Sects. 3.3, 3.1 and 4.1).
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Abstract. We present PGT, a Proof Goal Transformer for Isabelle/HOL.
Given a proof goal and its background context, PGT attempts to generate
conjectures from the original goal by transforming the original proof goal.
These conjectures should be weak enough to be provable by automation
but sufficiently strong to identify and prove the original goal. By incor-
porating PGT into the pre-existing PSL framework, we exploit Isabelle’s
strong automation to identify and prove such conjectures.

1 Introduction

Consider the following two reverse functions defined in literature [9]:

primrec itrev:: "’a list ’a list ’a list" where
"itrev [] ys = ys" | "itrev (x#xs) ys = itrev xs (x#ys)"

primrec rev :: "’a list ’a list" where
"rev [] = []" | "rev (x # xs) = rev xs @ [x]"

How would you prove their equivalence "itrev xs [] = rev xs"? Induction
comes to mind. However, it turns out that Isabelle’s default proof methods,
induct and induct tac, are unable to handle this proof goal effectively.

Previously, we developed PSL [8], a programmable, meta-tool framework for
Isabelle/HOL. With PSL one can write the following strategy for induction:

strategy DInd = Thens [Dynamic (Induct), Auto, IsSolved]

PSL’s Dynamic keyword creates variations of the induct method by specifying
different combinations of promising arguments found in the proof goal and its
background proof context. Then, DInd combines these induction methods with
the general purpose proof method, auto, and is solved, which checks if there is
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any proof goal left after applying auto. As shown in Fig. 1a, PSL keeps applying
the combination of a specialization of induct method and auto, until either
auto discharges all remaining sub-goals or DInd runs out of the variations of
induct methods as shown in Fig. 1a.

This approach works well only if the resulting sub-goals after applying some
induct are easy enough for Isabelle’s automated tools (such as auto in DInd) to
prove. When proof goals are presented in an automation-unfriendly way, how-
ever, it is not enough to set a certain combination of arguments to the induct
method. In such cases engineers have to investigate the original goal and come
up with auxiliary lemmas, from which they can derive the original goal.

In this paper, we present PGT, a novel design and prototype implementation1

of a conjecturing tool for Isabelle/HOL. We provide PGT as an extension to PSL
to facilitate the seamless integration with other Isabelle sub-tools. Given a proof
goal, PGT produces a series of conjectures that might be useful in discharging
the original goal, and PSL attempts to identify the right one while searching for
a proof of the original goal using those conjectures.

2 System Description

2.1 Identifying Valuable Conjectures via Proof Search

To automate conjecturing, we added the new language primitive, Conjecture to
PSL. Given a proof goal, Conjecture first produces a series of conjectures that
might be useful in proving the original theorem, following the process described
in Sect. 2.2. For each conjecture, PGT creates a subgoal tac method and inserts
the conjecture as the premise of the original goal. When applied to "itrev xs
[] = rev xs", for example, Conjecture generates the following proof method
along with 130 other variations of the subgoal tac method:

apply (subgoal_tac "!!Nil. itrev xs Nil = rev xs @ Nil")

where !! stands for the universal quantifier in Isabelle’s meta-logic. Namely,
Conjecture introduced a variable of name Nil for the constant []. Applying
this method to the goal results in the following two new sub-goals:

1. (!!Nil. itrev xs Nil = rev xs @ Nil) ==> itrev xs [] = rev xs
2. !!Nil. itrev xs Nil = rev xs @ Nil

Conjecture alone cannot determine which conjecture is useful for the original
goal. In fact, some of the generated statements are not even true or provable. To
discard these non-theorems and to reduce the size of PSL’s search space, we com-
bine Conjecture with Fastforce (corresponding to the fastforce method) and
Quickcheck (corresponding to Isabelle’s sub-tool quickcheck [3]) sequentially as
well as DInd as follows:
1 Available at Github https://github.com/data61/PSL/releases/tag/v0.1.1. The

example of this paper appears in PSL/PGT/Example.thy.

https://github.com/data61/PSL/releases/tag/v0.1.1
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strategy CDInd = Thens [Conjecture, Fastforce, Quickcheck, DInd]

Importantly, fastforce does not return an intermediate proof goal: it either
discharges the first sub-goal completely or fails by returning an empty sequence.
Therefore, whenever fastforce returns a new proof goal to a sub-goal resulting
from subgoal tac, it guarantees that the conjecture inserted as a premise is
strong enough for Isabelle to prove the original goal. In our example, the appli-
cation of fastforce to the aforementioned first sub-goal succeeds, changing the
remaining sub-goals to the following:

1. !!Nil. itrev xs Nil = rev xs @ Nil

However, PSL still has to deal with many non-theorems: non-theorems are
often strong enough to imply the original goal due to the principle of explosion.
Therefore, CDInd applies Quickcheck to discard easily refutable non-theorems.
The atomic strategy Quickcheck returns the same sub-goal only if Isabelle’s sub-
tool quickcheck does not find a counter example, but returns an empty sequence
otherwise.

Now we know that the remaining conjectured goals are strong enough to
imply the original goal and that they are not easily refutable. Therefore, CDInd
applies its sub-strategy DInd to the remaining sub-goals and it stops its proof
search as soon as it finds the following proof script, which will be printed in
Isabelle/jEdit’s output panel.

apply (subgoal_tac "!!Nil. itrev xs Nil = rev xs @ Nil")
apply fastforce apply (induct xs) apply auto done

Figure 1b shows how CDInd narrows its search space in a top-down manner. Note
that PSL lets you use other Isabelle sub-tools to prune conjectures. For example,
you can use both nitpick [1] and quickcheck: Thens [Quickcheck, Nitpick] in
CDInd. It also let you combine DInd and CDInd into one: Ors [DInd, CDInd].

2.2 Conjecturing

Section 2.1 has described how we identify useful conjectures. Now, we will focus
on how PGT creates conjectures in the first place. PGT introduced both auto-
matic conjecturing (Conjecture) and automatic generalization (Generalize).
Since the conjecturing functionality uses generalization, we will only describe
the former. We now walk through the main steps that lead from a user defined
goal to a set of potentially useful conjectures, as illustrated in Fig. 2. We start
with the extraction of constants and sub-terms, continue with generalization,
goal oriented conjecturing, and finally describe how the resulting terms are san-
itized.
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goal

Dynamic ( Induct )

Auto

IsSolved

(a) Search tree of DInd

goal

Conjecture

Fastforce

DInd DInd

Quickcheck

(b) Search tree of CDInd

Fig. 1. PSL’s proof search with/without PGT.

Extract constants and common sub-terms from the original goal T
Generalize T to produce C0, . . . , Cn

Call conjecture for goal oriented conjecturing (Fig. 3) for each T and C0, . . . , Cn
Clean & return

Fig. 2. The overall workflow of Conjecture.

Extraction of Constants and Common Sub-terms. Given a term representation
T of the original goal, PGT extracts the constants and sub-terms that appear
multiple times in T . In the example from Sect. 1, PGT collects the constants rev,
itrev, and [].

Generalization. Now, PGT tries to generalize the goal T . Here, PGT alone cannot
determine over which constant or sub-terms it should generalize T . Hence, it
creates a generalized version of T for each constant and sub-term collected in
the previous step. For [] in the running example, PGT creates the following
generalized version of T : !!Nil. itrev xs Nil = rev xs.

Goal Oriented Conjecturing. This step calls the function conjecture, illustrated
in Fig. 3, with the original goal T and each of the generalized versions of T
from the previous step (C0, . . . , Cn). The following code snippet shows part of
conjecture:

fun cnjcts t = flat (map (get_cnjct generalisedT t) consts)
fun conj (trm as Abs (_,_,subtrm)) = cnjcts trm @ conj subtrm
| conj (trm as App (t1,t2)) = cnjcts trm @ conj t1 @ conj t2
| conj trm = cnjcts trm

For each T and Ci for 0 ≤ i ≤ n, conjecture first calls conj, which tra-
verses the term structure of each T or Ci in a top-down manner. In the running
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Input: the original goal T and generalized versions of T (= C0, . . . , Cn)
Extract constants in T and C0, . . . , Cn

For each constant extracted above, find related constants from the corresponding simp rules

Traverse generalized conjectures and mutate their sub-terms in a top-down manner

Fig. 3. The workflow of the conjecture function.

   goal

generalize

goal oriented conjecturing

Fig. 4. PSL’s sequential generalization and goal oriented conjecturing.

example, PGT takes some Ck, say !!Nil. itrev xs Nil = rev xs, as an input
and applies conj to it.

For each sub-term the function get cnjct in cnjcts creates new conjectures
by replacing the sub-term (t in cnjcts) in T or Ci (generalisedT) with a new
term. This term is generated from the sub-term (t) and the constants (consts).
These are obtained from simplification rules that are automatically derived from
the definition of a constant that appears in the corresponding T or Ci.

In the example, PGT first finds the constant rev within Ck. Then, PGT finds
the simp-rule (rev.simps(2)) relevant to rev which states, rev (?x # ?xs)
= rev ?xs @ [?x], in the background context. Since rev.simps(2) uses the
constant @, PGT attempts to create new sub-terms using @ while traversing in
the syntax tree of !!Nil. itrev xs Nil = rev xs in a top-down manner.

When conj reaches the sub-term rev xs, get cnjct creates new sub-terms
using this sub-term, @ (an element in consts), and the universally quantified
variable Nil. One of these new sub-terms would be rev xs @ Nil2. Finally,
get cnjct replaces the original sub-term rev xs with this new sub-term in Ck,
producing the conjecture: !!Nil. itrev xs Nil = rev xs @ Nil.

Note that this conjecture is not the only conjecture produced in this step: PGT,
for example, also produces !!Nil. itrev xs Nil = Nil @ rev xs, by replac-
ing rev xs with Nil @ rev xs, even though this conjecture is a non-theorem.
Figure 4 illustrates the sequential application of generalization in the previous
paragraph and goal oriented conjecturing described in this paragraph.

2 Note that Nil is a universally quantified variable here.
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Clean and Return. Most produced conjectures do not even type check. This step
removes them as well as duplicates before passing the results to the following
sub-strategy (Then [Fastforce, Quickcheck, DInd] in the example).

3 Conclusion

We presented an automatic conjecturing tool PGT and its integration into PSL.
Currently, PGT tries to generate conjectures using previously derived simplifica-
tion rules as hints. We plan to include more heuristics to prioritize conjectures
before passing them to subsequent strategies.

Most conjecturing tools for Isabelle, such as IsaCoSy [6] and Hipster [7], are
based on the bottom-up approach called theory exploration [2]. The drawback
is that they tend to produce uninteresting conjectures. In the case of IsaCoSy
the user is tasked with pruning these by hand. Hipster uses the difficulty of
a conjecture’s proof to determine or measure its usefulness. Contrary to their
approach, PGT produces conjectures by mutating original goals. Even though
PGT also produces unusable conjectures internally, the integration with PSL’s
search framework ensures that PGT only presents conjectures that are indeed
useful in proving the original goal. Unlike Hipster, which is based on a Haskell
code base, PGT and PSL are an Isabelle theory file, which can easily be imported
to any Isabelle theory. Finally, unlike Hipster, PGT is not limited to equational
conjectures.

Gauthier and Kaliszyk described conjecturing across proof corpora [4]. While
PGT creates conjectures by mutating the original goal, Gauthier et al. produced
conjectures by using statistical analogies extracted from large formal libraries [5].
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Abstract. This paper addresses a knowledge gap that is commonly
encountered in computational science and engineering: To set up a simu-
lation, we need to combine domain knowledge (usually in terms of phys-
ical principles), model knowledge (e.g. about suitable partial differential
equations) with simulation (i.e. numerics/computing) knowledge. In cur-
rent practice, this is resolved by intense collaboration between experts,
which incurs non-trivial translation and communication overheads. We
propose an alternate solution, based on mathematical knowledge man-
agement (MKM) techniques, specifically theory graphs and active docu-
ments: Given a theory graph representation of the domain, model, and
background mathematics, we can derive a targeted knowledge acquisition
dialogue that supports the formalization of domain knowledge, combines
it with simulation knowledge and – in the end – drives a simulation run
– a process we call MoSIS (“Models-to-Simulations Interface System”).
We present the MoSIS prototype that implements this process based
on a custom Jupyter kernel for the user interface and the theory-graph-
based Mmt knowledge management system as an MKM backend.

1 Introduction and Motivation

Computational science and engineering (CSE) deals with the development and
application of computational models and simulations, often coupled with high-
performance computing, to solve complex physical problems arising in engineer-
ing analysis and design (computational engineering) as well as natural phenomena
(computational science). CSE has been described as the “third mode of discovery”
(next to theory and experimentation). Computer simulation provides the capa-
bility to enter fields that are either inaccessible to traditional experimentation or
where carrying out traditional empirical inquiries is prohibitively expensive.

However, CSE as an interdisciplinary field requires a mixture of three fields of
expertise, a skillset that is difficult to acquire and for which university programs
are only now being established [Rü+16]. Thus at the heart of CSE resides a
knowledge management problem where

1. domain knowledge – information and intuition about real-world processes
– has to be combined with

c© Springer International Publishing AG, part of Springer Nature 2018
F. Rabe et al. (Eds.): CICM 2018, LNAI 11006, pp. 232–247, 2018.
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2. model knowledge – i.e. how to express and describe the underlying relation-
ships and processes in the domain with mathematical constructs, e.g. partial
differential equations, and

3. simulations knowledge on how to get accurate and efficient numerical
approximations.

Application
Domain

Simulations
Expertise

Numerics
Research

Simulations
Practice

MoSIS

Fig. 1. Disciplines in simulations practice

The disciplinary boundaries in
CSE – see the clover leaf in Fig. 1 for
an illustration – do not fully align with
these knowledge categories. Indeed, for
many problems, CSE practicioners1

will act as interpreters for application
domain experts who usually know the
problem to be simulated well and are
mathematically literate. They coordi-
nate with the domain experts on and
via the models and provide the simu-
lations expertise needed for the partic-
ular application.

We address the mathematical knowledge management (MKM) problem
involved with “Mathematical Modeling and Simulation” (MMS) – a syn-
onym for CSE that puts more emphasis on the modeling part. Following the
MaMoReD (Math Models as Research Data) approach [KKMT17], we meta-
model CSE/MMS knowledge using logical constructions such as theory graphs
and CSE/MMS practices like knowledge application as actions (e.g. pushout
constructions).

Contribution. In this paper, we show how existing MaMoReD theory graphs (see
Sect. 2.1) can be utilized to solve the knowledge amalgamation problem inherent
in the collaboration of domain experts and computational engineers. We dis-
cuss how theory graph structure can be exploited to automate the application
knowledge acquisition processes (“Models-to-Simulations Interface System”) to
drive simulation tools directly – which is why MoSIS is situated at exactly the
intersection of Application and Simulations Expertise in Fig. 1. We distinguish
persistent background knowledge that can be collected and curated in knowl-
edge bases by the wider CSE community from ephemeral, application-specific
knowledge that does not transfer to other situations.

To show the feasibility of the MoSIS approach, we implemented MoSIS
1.0, a simple interactive interface to the domain-specific language ExaSlang for
the specification of PDEs and stencil-based algorithms. MoSIS 1.0 allows the
user to generate both a flexiformal representation of their PDE model as well
as its numerical solution. Furthermore, we explore other possible applications of
knowledge management tools in mathematical modeling.
1 For this paper we disregard numerics research, which is advancing the available meth-

ods, as this largely is an off-line process that is motivated by concrete applications,
but not invoked on a per-problem basis.
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Overview. This paper is a refined and condensed version of [Pol17], to which we
refer for details and code. Section 2 sets up the running example, introduces the
MaMoRed paradigm of “Mathematical Models as Research Data”, and discusses
the knowledge gap encountered with the solver ExaStencils. Section 3 presents a
theory graph for the knowledge of our running example discusses the MoSIS
prototype. Section 4 wraps up our findings and provides an outlook.

2 Meta-Modeling and Simulation

2.1 The MaMoReD Approach

We follow the MaMoReD approach – “Mathematical Models as Research Data”
[KKMT17,Kop+18] – of explicitly representing mathematical models to enable
computer support of CSE practices. Concretely, the model, all its assumptions,
and the mathematical background in whose terms the model is defined, are
represented as a flexiformal theory graph (see Sect. 2.3). This can serve as a
flexiformal documentation of the ideas and maths used in a project and can also
be processed and compared computationally. However, it is fair to ask whether
the benefits really outweigh the costs of creating the theory graph representation
in practice. We work towards an affirmative answer by showing that MaMoReD
theory graphs support added-value services for CSE: bridging the gap between
problems and simulations.

To fortify our intuition, consider the following problem, which we will use as
a running example throughout the paper:

a b

k1 k2

x

Fig. 2. Wall schematics

Running Example. (One-Dimensional Heat
Conduction Problem) Jen, an engineer, would
like to simulate the heat conduction through the
walls of her house. Jen knows basic physics, and
in particular that the heat distribution through-
out a heated wall with constant surrounding
temperatures is described by Poisson’s equation
when simplified to the static case. In the illustra-
tion, Fig. 2 , we see heating pipes going through
the wall – which is made from materials of vary-
ing thermal conductivity k1, k2 – as well as the
warm air on its side a, and cold on b. Jen has not
worked with (thermal) simulations so far, but is
aware of the pitfalls involved. Luckily she has
a friend James who is a computational engineer. They discuss the model (see
Sect. 2.2), James inquires about the specific parameters, and eventually uses
them to set up an ExaStencils script, runs the simulation, and together they
interpret the results.

The problem can be extended to include time or coupled systems later on,
but Jen restricts herself to the static problem for the moment.
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2.2 Poisson’s Equation

Poisson’s equation occurs in nature e.g. in electrostatics or in static heat conduc-
tion problems. Usually defining an unknown scalar function u : Ω �→ R and an
integrable source term f : Ω �→ R on the domain Ω ⊂ R

n, it can be represented
as

−Δu = f in Ω, (1)

where the second-order differential operator Δ, the Laplace operator, is
defined as the sum of the second order partial derivatives

Δ = ∂x1x1 + ∂x2x2 + · · · + ∂xdxd
(2)

in d dimensions. As we will visualize in the next paragraph, u is the unknown
temperature in our running example, and f is given as the heat transported into
the wall divided by the thermal conductivity.

To allow the Poisson equation to be a (uniquely) solvable boundary value
problem, we need to add boundary conditions imposed on u. For example,
u may need to be equal to some other function b

u = b in ∂Ω, (3)

as a Dirichlet boundary condition on all of the boundary ∂Ω. We can then
uniquely determine u as an element of the Sobolev space H1

b (Ω).

2.3 Theory Graphs

Theory graphs [RK13] are a conceptual format for representing mathematical
knowledge in a structured, modular form. They consist of theories, small units
of knowledge, and morphisms – truth-preserving mappings – between them.

The most important theory morphisms for this paper are the inclusion
( ) and view ( ) relations. Inclusions are equivalent to unnamed
imports in many programming languages, allowing to re-use symbols exactly
as they were defined. Views, however, map symbols to apply different concepts
of reasoning to the given situation, which in programming would be equivalent
to Python-style duck typing, a common example being the concept of “example”
itself.

For instance, in Fig. 3 the Wall cross-section over time can be viewed as
a Spatial Domain , as all necessary symbols are mapped in the view e, effec-
tively making Wall cross-section an example of a Spatial Domain . Subse-
quently, every item of knowledge that can be generally formulated in terms
of the one can then be applied to the other in particular, for example the
Differential Operator Δ. This mode of knowledge generation is called a pushout

and is ubiquitous in mathematical reasoning. In Fig. 3, we see the pushout for
Differential operators on wall cross-section denoted as a right angle with dot.

Pushouts are a convenient construction whenever they occur, as they can be
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Spatial Domain
Ω : type, n : N
Ω in Rn : � Ω ⊂ R

n

Ω sc : � Ω is connected

R
n

. . .
Topology
. . .

Differential Operators
Δ : {m : N}(Ω → R

m)
→ (Ω → R)

...

Calculus
...

Unknown
unknown type =

Ω → R
m

Source
f : Ω → R

Poisson’s Equation
PE = λu : unknown type.Δu

.= f

Cuboid
cuboid : R

n → R
n → type # [a; b] × . . . × [y; z]

. . .

Wall cross-section over time
W : type = [0; 1] × [0; 1]

e : ϕ

Differential operators
on wall cross-section
laplacian wall : . . .

f : ψ Temperature
t type = Ω → R

Thermal
Conductivity
k = 2

Volumetric
heat flow
g = λx. sin(x · π)

Heat equation

HE = λT : t type.( ∂
∂t − k · Δ)T .= g

Static heat equation

static : λT : t type. � ∂
∂tT

.= 0
g : χ

ϕ =

⎧⎪⎪⎨
⎪⎪⎩

n �→ 1
Ω �→ W
Ω in Rn �→ . . .
Ω sc �→ . . .

⎫⎪⎪⎬
⎪⎪⎭

χ =

⎧⎪⎪⎨
⎪⎪⎩

include f, e
unknown type �→t type
f −→� g

k
PE �→ HE

⎫⎪⎪⎬
⎪⎪⎭

Fig. 3. A theory graph example: the static heat equation (for Poisson’s equation)

automatically generated [CMR17]. This allows us to walk up the graph further,
such that finally a view g can be applied to see the Static heat equation as an
instance of Poisson’s Equation , which includes the views established earlier on.

To make theory graphs computationally usable, we express them in the Mmt
language (Meta Meta Toolset) [MMTa]. Concretely we base our formalizations
on the Math-in-the-Middle (MitM) foundation, a feature-rich higher-order
logic with dependent function and record types as well as predicate subtypes
and general subtyping. This choice of primitives is geared towards ease of rep-
resentation of mathematical knowledge without losing structure.

2.4 MoSIS: Creating ExaSlang Layer 0

Active
DocumentTheory Graph

Layer 1 : Continuous model

Layer 2 : Discretization

Layer 3: Solution algorithm

Layer 4: Application specification

Layer 0 flexiformal

Fig. 4. MoSIS as ExaSlang Layer 0

In the ExaStencils project [EXA],
the external, multi-layered domain-
specific language (DSL) ExaS-
lang [Len+14,Kös+17] is developed
in order to support automatic code
generation of scalable and efficient
numerical PDE solvers. The code
generator is implemented in Scala
and outputs e.g. parallel C++ or
CUDA code [KK16]. Algorithms
that can be expressed as stencils
include most finite difference meth-
ods (FDM), which can be used
to numerically solve e.g. Poisson’s
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equation on a structured grid – computational grids are restricted to structured
ones that lead to highly performant stencil codes.

ExaSlang is built from different layers, cf. Fig. 4, which represent a transfor-
mation starting from an abstract continuous mathematical model (in Layer 1)
down to the specifics of the application to be generated (in Layer 4). Especially
Layer 1 is aimed at providing an intuitive interface for the mathematically versed
user.

But there are two obstacles for ExaSlang to be an interface for MMS practi-
cioners. Firstly, there is no interactive feedback when entering the PDE model;
problems are only encountered once everything is set up and the user tries to
compile and run the configuration.

Secondly, there is no input checking to ensure that the model is consistent in
itself and neither under- nor over-specified as to allow for a unique solution of the
PDE in the weak sense – or whether the (non-)existence of a unique solution may
even be provable. This kind of consideration is part of the typical CSE/maths
knowledge and is not easily represented on a low level of abstraction, such as
C++ code.

The underlying problem in both cases is that the transformation process from
– explicit or tacit – knowledge in the experts to program code is not structure-
preserving and not easily reversible; a problem that the language hierarchy in
ExaSlang is designed to mitigate. But practical experience shows that (at least)
another stepping stone is needed.

3 MoSIS: Combining MaMoReD and ExaStencils

We propose a “Layer 0” for ExaSlang that uses an active document [Koh+11]
for user interaction. It can use the theory graph containing background knowl-
edge to guide the user through the model description process. The resulting pro-
gram can then translate the abstract model to ExaSlang Layer 1 code, which is
still human-readable and can be translated to highly performant solver code via
the ExaStencils tool chain. As a “by-product”, a high-level representation of the
mathematical model under consideration is generated.

In the following, we will call this idea MoSIS, the “Models-to-Simulations
Interface System”.

The implementation we report on in this paper uses a Mmt-based the-
ory graph and the Jupyter notebook [JN] as basic active document format.
Building on the MaMoReD approach, we meta-model the process of establishing
a mathematical model as an actual dialog carried out between a domain expert
and a simulations expert. The main prerequisites for this are as follows.

3.1 A Theory Graph for PDE Knowledge

To evaluate MoSIS in our running example we Mmt-formalized a simple meta-
model of PDEs into a theory graph, cf. Fig. 5.
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At the base we see the more general mathematical concepts, such as the
Euclidean space Rn, arithmetics, calculus, etc. The specifics of PDEs come above
that, answering questions like “What do we expect of a domain?” and “What
are the types of unknowns and the PDE itself?”. The lower right corner contains
theories about combinations of properties that make the PDE solvable2, here
only showing the parts needed to understand Poisson’s equation.

The knowledge encoded in the lower part of the graph is background knowl-
edge that can be used to generally describe a PDE model and acts as an
immutable common ground for multiple modeling/simulation tasks. For one par-
ticular such task (e.g. Jen’s Wall), we need to generate application-specific theo-
ries, which we call ephemeral, since they can be discarded after the simulation.
Ephemeral theories are not universally true– and as such need not become part
of the persistent (i. e. non-ephemeral) knowledge base – but they are true for
Jen’s model.

Shown as a “sandwiched” layer in the theory graph, the ephemeral theories
are always connected to their background counterpart by way of views. The
concrete ephemeral subgraph in Fig. 5 is chosen for our running example: the
static temperature distribution throughout the walls of a house, with fixed inside
and outside temperatures. This can be mapped (also in more dimensions) to
be an elliptic linear Dirichlet boundary value problem , and is therefore provably
uniquely solvable in the weak sense.

The domain theory layer above the ephemeral theories is persistent, but not
part of the meta-model; we assume this to be Jen’s knowledge about engineering
and physics, based on which she would like to set up the simulation.

Figure 5 only shows the part of the MitM Ontology [Mitb] that is relevant to
our – didactically chosen and thus relatively simple – running example. MitM
itself is under constant development and covers other modeling case studies as
well, e.g. the van Roosbroeck models discussed in [KKMT17,Kop+18]. It is our
experience that the general topology of the theory graph – which is the only
part that is actually used in MoSIS – does not fundamentally change for more
complex examples, e.g. in higher dimensions.

Finally, note that the possible notation “∂” to denote the boundary is the
same that is often used to describe the partial derivative. In practice, this only
rarely causes confusion; which one is meant usually becomes clear from both
the context and the type of object that the operator is applied to. The same is
true for the theory graph representation here. In addition, a production MoSIS
interface should allow for reformulation of notations – as long as no ambiguities
are introduced – in order to support various mathematical traditions (e.g. f ′

x,
fx, ∂xf, Dxf, D1f, ∂

∂xf, or ∂f
∂x as notations for the partial derivative used in

different communities).

2 A lot of mathematical insight about weak solutions is represented by the view labeled
“Lax-Milgram Lemma”.
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3.2 Automating Model Knowledge Amalgamation

The knowledge gap we discussed in the introduction is a tangible one: People –
that are competent in their own domain – set up numerical tool kits themselves
by diving into the technical documentation, just to end up with the wrong results
(possibly without noticing and understanding why).

Luckily, our engineer Jen knows about the pitfalls and decides to talk to
her friend James, a computational engineer. James asks her about the property
she wants to determine – the temperature curve in the wall – and the situation
at hand: concretely he needs the (i) coordinates of the wall cross-section, (ii)
materials and their thermal properties, (iii) the layout of heat sources in the wall,
(iv) physics of the wall (here given by the static heat equation), (v) boundary
conditions (inside and outside temperatures).

In the course of the discussion – we think of this as the knowledge acqui-
sition process to be solved by James – Jen writes down some assignments and
formulas. Only when everything is defined, and the meaning is perfectly clear
and plausible to both of them, James tells Jen that he thinks the PDE prob-
lem is solvable – in this case even uniquely – and starts a suitable simulation
(which may further be influenced by Jen’s requirement on accuracy and time)
and proudly presents Jen with the results: a nice visualization of the temper-
ature distribution. But not every domain specialist has a friend or colleague
who is a computational engineer; so automation of knowledge acquisition – and
more generally of knowledge amalgamation, like the interaction between Jen and
James – is desirable.

Fortunately, the sequence of interactions necessary to be able to fully specify
the simulation can be read off the theory graph in Fig. 5. Essentially, the shape
of the green part is a template to the (blue) subgraph of ephemeral theories that
forces the interview: We would require that at least one item is defined that can
be understood as a Domain. We can allow users to use all constants defined in the-
ories that can themselves be viewed as a Domain, such as the Interval construc-
tor. Establishing a (transitive) view between Domain and Wall cross-section as
a 1 st user input immediately returns knowledge about the domain boundary,
denoted by 1’ .

Next, we would like to know about (optional) Parameters and at least one
Unknown. Based on the dependencies given by the include structure, we notice
that the order between the inputs 2a and 2b is arbitrary. What is peculiar at
this point is that only the type but no concrete definition must be given for the
Unknown, as otherwise it would in fact be known!

The inputs 3 and 4 define the PDE and Boundary Conditions as the central
part of the model specification. If we now push out3 3 and 4 with theories PDE
and Elliptic Linear Dirichlet Boundary Value Problems, we get the output theory
mySolvability , which states that a solution u : Ω → R can be computed.

3 The category of Mmt theories and morphisms has co-limits – and thus pushouts,
which can be calculated canonically [CMR17] in the Mmt system.
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The theory graph in Fig. 5 stops at “mathematical solvability theory”, but
could be extended to include numerical solvability by discretization on a grid
and even solvability in particular simulation methods. Such extensions would
greatly enhance practical coverage, but are beyond the scope of this paper.

Note that the ephemeral theories (in blue in Fig. 5) necessarily combine infor-
mation about the background mathematical (in orange) with knowledge of the
physics of the problem (theories at the top in magenta). For specifics of this com-
bination we refer the reader to [KKMT17,Kop+18], where we have elaborated
on this in the case of the “van Roosbroeck Model” from quantum electronics.
Here we focus on the application of such models to a specific situation, which
we had previously only touched upon.

Note furthermore that we have abbreviated the ephemeral theories and their
provenance from physics; we give their constants concrete values by using full
Mmt declarations of the form by c : τ = δ, where c is the constant name, τ its
type, and δ its definition. Actually, in the pure MaMoReD approach we would
have divided them into a physical background theory with “undefined” constant
c : τ and only instantiating c to δ in the corresponding ephemeral theory. In
Fig. 5 we have not elaborated the physics layer, because we have a different –
but related – way of automating, which we discuss now.

The green theories (thick border) in the persistent part of the graph in Fig. 5,
e.g. Boundary in R

n and PDE are exactly the ones we want to map ephemerally
in order to get the simulation information in the steps 1 to 4 . We call them
placeholder theories. The placeholder theories can be determined by looking
for those constants in the persistent graph that do not have a definition (yet).

The order in which the placeholders needs to be filled in can be obtained
by the persistent theory morphisms. Consequently, the ephemeral theories can
be generated as fill-ins to the placeholder “form”, carrying the same mirrored
theory morphisms, and the exact same outer dependencies. This instantiation is
the heart of the knowledge acquisition process.

Now one might say that it would be possible to just generate all ephemeral
theories in the beginning and have all the constants assigned by the user. This
is true if we generate the dialogue from a known model template as given in the
application domain theory . The notable difference here is that we do not know

how often Jen is going to fill certain parts into the generalized “model”. For
instance, she may define arbitrarily many parameters – Thermal conductivity
and Volumetric heat flow in our running example – several unknowns and
exactly as many determining equations, here one, but we still need only one
solvability theory for the whole problem.

A slightly modified approach to generate interviews is offering a keyword
for each placeholder. For instance, Jen might want to define a new constant
by typing parameter my favourite room temperature = 25 at any given time. The
dependencies in the theory graph should then make sure that this happens only
when appropriate, i. e. after a domain for x was defined. This feature would
correspond to the user’s habit of introducing parameter functions e.g. to keep
equations more readable, or to extend the model to coupled physics, e.g. if Jen
wanted to find out how much the wall will expand when heated. To this end,
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there is a lot that can be done with simplifications such as in-situ computa-
tions [ODK17] that simplify the model in real time, and the visualization of
these changes. Adding keywords to the sequential interview effectively mimics
mathematical model amalgamation as a mixed-initiative dialogue.

3.3 Implementation: Realizing MoSIS via Jupyter and Mmt

Building on the ideas introduced in the last section, we have implemented MoSIS
1.0 in Jupyter [Jup]. This is an open-source web application that plays Jupyter
notebooks: interactive documents that contain live code: equations, visualiza-
tions and narrative text. The code is executed in a backend kernel process, here
running the Mmt system. In contrast to normal Jupyter notebooks that use a
fixed sequence of (documented) instructions in a read-eval-print-loop (REPL),
MoSIS implements an ephemeral dialogue using a simple state machine with
states for each part ( 1 - 4 ) of the theory graph to be set up. MoSIS uses a Mmt
kernel and communicates through the HTTP API of the Mmt server. We have
extended the Mmt server to support the creation (and if needed the storage) of
ephemeral theories (see [MMTb]).

Layer 0

Simulation

Q: What is the domain?
A: . . .
...
Q: What are the PDEs?
. . .

The solution according to
ExaStencils looks like this:
...

interview application

MMT system

Flexiformal and
formal background

knowledge

Model
description

MMT system

user

configuration
files

Layer 1 : Continuous model
Layer 2 : Discretization

Layer 3: Solution algorithm
Layer 4: Application specification

ExaStencils application simulation
results

query

OK
omdoc

generate

helps design

produce

Fig. 6. MoSIS system architecture

Figure 6 shows the MoSIS architecture. The left side is a concretization of
the “Layer-0-design” from Fig. 4, where the Mmt system takes the place of the
theory graph interface. The right hand side shows the interview – a Jupyter
notebook – as the active document and how it interacts with the kernel level.
In particular, the user only sees the notebook; answers the knowledge acqui-
sition questions presented by MoSIS, until MoSIS can generate a ExaStencils
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configuration file to be shipped to ExaStencils, which transforms it into efficient
code through the ExaSlang layers, computes the results and visualizations, that
MoSIS in turn incorporates into the notebook. Note that the user (in our exam-
ple the domain expert Jen) can run simulations without having to interact with
the simulation system and learn its peculiarities (or consulting James).

On the front end, MoSIS 1.0 inherits the communication and representation
capabilities from the Jupyter web application and notebook format. Questions
and state information required by MoSIS are presented as Markdown cells. The
user’s replies can be written as “maths” encoded in Mmt surface syntax employ-
ing Mmt notations that were defined in the background knowledge theory graph
beforehand. Following scientific practice, LATEX representation can be used for
non-standard Unicode characters. A side benefit of passing user inputs through
Mmt is that these are type-checked by the system. Already in our simple example
this eliminates a considerable source of errors before they ever reach ExaStencils.

Fig. 7. Beginning of a dialogue in MoSIS
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For the translation into ExaSlang Layer 1 code, we use the views into the
ephemeral theories, e.g. from Domain to Wall cross-section – theory graph mor-
phisms can be composed and transform into Domain syntax via Mmt notation
definitions. This is also where a central benefit of the theory graph represen-
tation comes into play: The theory graph always contains the same or more
information than any specific programming language representation of the same
model, and can therefore be used to translate to different changing formats
once a translation is available. This is especially interesting in the context of
the Math-in-the-Middle approach [Deh+16] of aligning mathematical open
source tools through a common flexiformal mathematical reference point: the
MitM Ontology [Koh+17].

MoSIS uses ExaStencils to generate the solver code for this particular prob-
lem and runs it – and the user is presented with a Bokeh [BO12] visualization
of the solution. But what is more, they now also have a re-usable representation
of how they got to the result, both as a Jupyter notebook (for narration) and
an OMDoc file (for further computation). Figure 7 shows (the beginning of) an
actual MoSIS dialogue for our running example; see [MoS] for a live demo.

In addition to the dialogue turns, the user can orient herself using special
MoSIS actions: getting a recap of all the ephemeral information stored so far,
undoing the last step(s) and having a theory graph or Model Pathway Diagram
(MPD) [KKMT17] of the current working state displayed back through the the-
ory graph viewer TGView [RKM17], cf. Fig. 8. Our user can discover, inspect
and “debug” the structure of the model captured. Given a Model/MPD graph
following [KKMT17,Kop+18], we can use the MPD view as a more intuitive
user interface for inspecting the PDE.

Fig. 8. The theory graph viewer TGView embedded into Jupyter

The code for MoSIS kernel can be found in [Pol]; see [Mita] for formaliza-
tions. In addition, the MoSIS 1.0 kernel is set up in a JupyterHub environment
under [MoS]. JupyterHub [JHub] is a Jupyter notebook server that is acces-
sible to many users who can independently work in their own notebooks in
the browser and execute code on the server, such that no software needs to be
installed locally.
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4 Conclusion and Future Work

This paper addresses the knowledge gap in modeling and simulations practice:
People who want to derive or work with new application models know that at
the end, a PDE has to be solved, but usually no background or interest in the
required computation process. But an efficient solver depends on the PDE and
thus detailed system knowledge or intense discussions with simulation experts
are necessary, or else errors are bound to occur.

In the ExaStencils project, this problem has so far been approached with
the development of a dedicated domain-specific language, ExaSlang, cf. Sect. 2.4.
The knowledge gap discussed above corresponds to the problem of specifying
the model on ExaSlang’s most abstract layer, Layer 1.

MoSIS fills the gap by providing an architecture and components for it by
combining represented knowledge with an active document that the user can
interact with. We established the feasibility of MoSIS by implementing MoSIS
1.0 based on existing components: Mmt for the representations of formal (and
flexiformal) knowledge as a theory graph (cf. Sect. 2.3) and an interactive Jupyter
kernel with a Mmt backend through which it can access PDE knowledge.

We currently have only developed the theory graph to the extent necessary
for our running example. For more realistic simulations we will need to extend it
to n-dimensional calculus and partial differential equations. For that we will need
to extend Mmt and the MitM foundation from a purely logical system to one
that can also “understand” equations as quotations. In our models, the names
of the unknowns and variables in the equation actually matter, such that e.g.
alpha-renaming these parts is not desirable (even though they are not formally
bound in the model). One possible approach of dealing with this could be the
internal enumeration of coordinates and variables.

To enhance the interactivity of the MoSIS front-end we are working on
integrating Jupyter widgets [IPyWid15] into MoSIS, e.g. for selection inputs.

The technical terms used in the Markdown content can come with hoverable
or clickable explanations as we already know them from the semantic glossary
SMGloM [Gin+16]. Co-highlighting the aforementioned terms together with all
the corresponding ephemeral and persistent mathematical symbols – in the best
case also in the theory graph viewer and other possible tools – would greatly
support the effect of visualizing what belongs together.
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Abstract. RISCAL is a language for describing mathematical algo-
rithms and formally specifying their behavior with respect to user-defined
theories in first-order logic. This language is based on a type system that
constrains the size of all types by formal parameters; thus a RISCAL
specification denotes an infinite class of models of which every instance
has finite size. This allows the RISCAL software to fully automatically
check in small instances the validity of theorems and the correctness of
algorithms. Our goal is to quickly detect errors respectively inadequa-
cies in the formalization by falsification in small model instances before
attempting actual correctness proofs for the whole model class.

Keywords: Formal specification · Falsification · Model checking

1 Introduction

The application of formal methods in computer science and computer mathe-
matics is hampered by the fact that typically most time and effort in proving
theorems (such as the verification conditions of a computer program) are wasted
in vain: because of errors in the formalizations, proof attempts are often a priori
doomed to fail (because the conditions do not hold) or pointless (because the
conditions do not express the required intentions).

The RISC Algorithm Language (RISCAL) [3,5] attempts to detect such
errors quickly by making algorithms and theorems fully checkable. For this pur-
pose, all (program and logical) variables are restricted to finite types whose
sizes are parameterized by formal parameters. For each assignment of concrete
values to these parameters, the state space in which algorithms execute and
the domain in which first-order formulas are interpreted are finite; this allows
to check the correctness of algorithms and the validity of formulas. In RISCAL
algorithms may be formulated in a very abstract way including non-deterministic
constructions (choices of values satisfying certain conditions). The RISCAL soft-
ware implements the denotational semantics of programs and formulas in order
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to perform the checks; in particular, formulas are proved/disproved by “brute-
force” evaluation to their truth values. We may thus quickly validate/falsify the
correctness of theorems and algorithms in small model instances before turning
to their proof-based verification for the full class of models. While [5] gives an
extensive overview on (an earlier version) of RISCAL, this paper focuses on its
practical use for the purpose of computer mathematics.

Various other modeling languages support checking respectively counterex-
ample generation [2], differing from RISCAL mainly in the application domain of
the language and/or the exhaustiveness of the analysis. For instance, the specifi-
cation language of Alloy is based on a relational logic designed for modeling the
states of abstract systems and the executions of such systems; given bounds for
state sizes and execution lengths, the Alloy Analyzer finds all executions leading
to states satisfying/violating given properties. On the other hand, the coun-
terexample generator Nitpick [1] for the proof assistant Isabelle/HOL supports
classical predicate logic but may (due to the presence of unbounded quantifiers)
fail to find counterexamples; in an “unsound mode” quantifiers are artificially
bounded, but then invalid counterexamples may be reported.

While Alloy and Nitpick are based on SAT-solving techniques, RISCAL’s
implementation is actually closer to that of the test case generator Smallcheck [4].
This system generates for the parameters of a Haskell function in an exhaustive
way argument values up to a certain bound; the results of the corresponding
function applications may be checked against properties expressed in first-order
logic (encoded as executable higher-order Haskell functions). However, unlike
RISCAL, the value generation bound is specified by global constants rather
than by the types of parameters and quantified variables such that separate
mechanisms have to be used to restrict searches for counterexamples.

RISCAL differs from these approaches in that it combines a rich lan-
guage that is suitable for specifying and implementing mathematical algorithms
(including implicitly specified functions and non-deterministic choices) with a
fully checkable semantics, all of which is integrated in a single easy to use spec-
ification and validation framework (see Fig. 1 for its GUI). RISCAL is intended
primarily for educational purposes [6]; it is open source and freely available [3]
with extensive documentation and examples.

2 Checking Theorems and Algorithms

We demonstrate the use of RISCAL by a small example adapted from [5].

A Theory. The following specification introduces a domain Formula of proposi-
tional formulas with n variables in conjunctive normal form:

val n: N;
type Literal = Z[-n,n] with value �= 0;
type Clause = Set[Literal] with ∀l∈value. ¬(-l∈value );
type Formula = Set[Clause ];
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Fig. 1. The RISCAL graphical user interface

A formula is represented as a set of clauses where a clause is a set of non-
conflicting literals; a literal is a non-zero integer in the interval [−n, n] (in a
type definition, value denotes the parameter of the predicate constraining the
values of the type). A formula valuation has the same representation as a clause:
positive literals in the clause receive the value “true” while negative literals
receive the value “false”. Based on this representation, we can define a predi-
cates satisfies(v,f) denoting the relation “valuation v satisfies formula f”,
satisfiable(f) denoting “f is satisfiable”, and valid(f) denoting “f is valid”:

type Valuation = Clause;

pred satisfies(v:Valuation , f:Formula) ⇔ ∀c∈f. ∃l∈c. l∈v;

pred satisfiable(f:Formula) ⇔ ∃v:Valuation. satisfies(v,f);

pred valid(f:Formula) ⇔ ∀v:Valuation. satisfies(v,f);

Then we introduce the negation not(f) of formula f and formulate a theorem
that states that f is valid if and only if its negation is not satisfiable:

fun not(f:Formula ): Formula = { c | c:Clause with ∀d∈f. ∃l∈d. -l∈c };

theorem notValid(f:Formula) ⇔ valid(f) ⇔ ¬satisfiable(not(f));

In RISCAL, a theorem is a predicate that shall be true for all possible argu-
ments. We can quickly check its validity for n = 2 by selecting in the RISCAL
user interface the operation notValid and pressing the “Start Execution” but-
ton:

Executing notValid(Set[Clause]) with all 512 inputs.

Execution completed for ALL inputs (103 ms, 512 checked , 0 inadmissible ).
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Since the number of formulas grows double-exponentially with the num-
ber of literals, we modify the definition of Clause (leaving all other definitions
unchanged) to consider only clauses with up to cn literals:

val cn: N;

type Clause = Set[Literal] with |value| ≤ cn ∧ ∀l∈value. ¬(-l∈value );

Using n = 3 and cn = 2 and selecting the “Multi-Threaded” option in the
user interface we can check the correctness of the theorem for a large number of
inputs in a still quite manageable amount of time:

Executing notValid(Set[Clause]) with all 524288 inputs.

PARALLEL execution with 4 threads (output disabled ).

...

Execution completed for ALL inputs (17445 ms, 524288 checked , 0 inadmissible ).

However, the checking of an invalid “theorem”

theorem notValidDual(f:Formula) ⇔ satisfiable(f) ⇔ ¬valid(not(f));

produces the expected failure:

ERROR in execution of notValidDual ({{ -3} ,{ -2} ,{ -1}}): evaluation of

notValidDual

at line 42 in file sat2.txt:

theorem is not true

In order to demonstrate the reason of failures, formulas may be annotated
such that the values of subexpressions are printed during evaluation/checking;
more elaborate explanation features are planned for the future.

An Algorithm. We now consider an algorithm for determining whether a for-
mula f is satisfiable. As a prerequisite, we introduce two operations to determine
the set of literals occurring in f and to give a literal l in f the value “true”:

fun literals(f:Formula ):Set[Literal] = { l | l:Literal with ∃c∈f. l∈c };

fun substitute(f:Formula ,l:Literal ): Formula = { c\{-l} | c∈f with ¬(l∈c) };

Now a simple recursive algorithm solving our problem can be defined as
follows:

multiple pred DPLL(f:Formula)
ensures result ⇔ satisfiable(f);
decreases |literals(f)|;

⇔
if f = ∅[Clause] then

�
else if ∅[Literal] ∈ f then

⊥
else

choose l∈literals(f) in
DPLL(substitute(f,l)) ∨ DPLL(substitute(f,-l));



252 W. Schreiner

This algorithm is annotated by the ensures clause with the postcondition
that the result of the algorithm has to satisfy: it must be “true” if and only if the
formula f is satisfiable. Indeed this condition will be checked in all executions
and any violations will be reported. Furthermore, the decreases clause indicates
a measure that is decreased in every recursive invocation but does not become
negative: the number of literals in f . Also these constraints will be checked in
all executions such that non-termination can be ruled out.

In the recursive case, the algorithm chooses an arbitrary literal l in f and
calls itself recursively twice, once with setting l to “true”, once with setting l to
“false”. The RISCAL language has generally a nondeterministic semantics: if in
the user interface the option “Nondeterminism” is chosen, the algorithm will be
executed with all possible choices of l. With n = 2, we thus get output:

Executing DPLL(Set[Clause]) with all 512 inputs.

Execution completed for ALL inputs (884 ms, 512 checked , 0 inadmissible ).

If this option is not selected, the algorithm will be only executed for one
choice, which increases for larger n the speed of the check considerably; e.g.,
using n = 3 and cn = 2, we get:
Executing DPLL(Set[Clause]) with all 524288 inputs.

PARALLEL execution with 4 threads (output disabled ).

...

Execution completed for ALL inputs (196219 ms, 524288 checked , 0 inadmissible ).

Not all nondeterministic branches may have been considered.

An algorithm may be also formulated in an imperative style as a state-based
procedure, again (by the use of a choose command) with a non-deterministic
semantics. In such procedures, loops may be annotated by invariants and termi-
nation measures; also these are checked by all executions of the algorithm. See [5]
for more details on the command language for writing state-based procedures.

Validating Specifications. As shown above, we may check that the application
of a RISCAL procedure p to every argument x that satisfies the procedure’s
precondition P (x) generates a result y that satisfies the postcondition Q(x, y).
However, this check is meaningless if the specification formalized by P and Q
does not really express our informal intentions. As a first possibility to validate
the adequacy of the formal specification, RISCAL generates from it an implicitly
defined function:

_pSpec(x) requires P(x) = choose y with Q(x,y);

This function can be executed for given x by enumerating all possible values
of y (in the result domain) and checking if Q(x, y) holds. Its execution in non-
deterministic mode thus produces for every input x constrained by P (x) every
value y allowed by Q(x, y); the results of this execution are displayed and may
be inspected to confirm the correspondence of the specification to our intentions.

Furthermore, RISCAL automatically generates from P and Q various the-
orems whose validity may be checked to ensure that the specification satisfies
various (usually) expected properties:
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– Is precondition satisfiable? (∃x. P (x))
– Is precondition not trivial? (∃x. ¬P (x))
– Is postcondition always satisfiable? (∀x. P (x) ⇒ ∃y. Q(x, y))
– Is postcondition always not trivial? (∀x. P (x) ⇒ ∃y. ¬Q(x, y))
– Is postcondition at least sometimes not trivial? (∃x. P (x) ∧ ∃y. ¬Q(x, y))
– Is result unique? (∀x, y1, y2. P (x) ∧ Q(x, y1) ∧ Q(x, y2) ⇒ y1 = y2)

RISCAL determines the validity of also these formulas by their evaluation.

3 Current and Further Work

For checking a procedure, a loop may be annotated with invariants whose validity
is checked before and after every iteration. However, while checking may reveal
that an invariant is too strong (it is violated by some loop iteration), it cannot
reveal that it is too weak to carry a proof-based verification of the procedure’s
correctness. Therefore, currently work is under way to generate in RISCAL also
verification conditions whose validity (with respect to the whole model class)
implies the general correctness of the procedure; these conditions can be falsified
by checks (in individual instances of the class). If we are not able to falsify these
conditions, our confidence in their validity is increased and we may subsequently
attempt their proof-based verification (for this we later plan to integrate RISCAL
with an external proof assistant).

As for its application in education, so far RISCAL has been used in a fourth
year’s master course on “Formal Methods in Software Development” in order to
make students familiar with the semantics and pragmatics of program specifica-
tions before exposing them to proof-based tools; this has indeed helped students
to develop adequate program specifications and annotations as a basis for general
verification. In the next year, we plan to use RISCAL also in a first semester’s
introductory course on “Logic” to train students by small exercises in the practi-
cal use of first-order logic and in an introductory course on “Formal Modeling” to
develop logic-based formal models of problem domains. Our long-term goal is to
develop (with the help of students) a collection of educational resources in vari-
ous areas of computer science and mathematics; we have started to cover selected
topics in discrete mathematics, computer algebra, and fundamental algorithms.
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Abstract. We report on our experiments to train deep neural networks
that automatically translate informalized LATEX-written Mizar texts into
the formal Mizar language. To the best of our knowledge, this is the
first time when neural networks have been adopted in the formaliza-
tion of mathematics. Using Luong et al.’s neural machine translation
model (NMT), we tested our aligned informal-formal corpora against
various hyperparameters and evaluated their results. Our experiments
show that our best performing model configurations are able to generate
correct Mizar statements on 65.73% of the inference data, with the union
of all models covering 79.17%. These results indicate that formalization
through artificial neural network is a promising approach for automated
formalization of mathematics. We present several case studies to illus-
trate our results.

1 Introduction: Autoformalization

In this paper we describe our experiments with training an end-to-end transla-
tion of LATEX-written mathematical texts to a formal and verifiable mathematical
language – in this case the Mizar language. This is the next step in our project to
automatically learn formal understanding [11–13] of mathematics and exact sci-
ences using large corpora of alignments between informal and formal statements.
Such machine learning and statistical translation methods can additionally inte-
grate strong semantic filtering methods such as type-checking and large-theory
Automated Theorem Proving (ATP) [4,23].

Since there are currently no large corpora that would align many pairs of
human-written informal LATEX formulas with their corresponding formalization,
we obtain the first corpus for the experiments presented here by informaliza-
tion [12]. This is in general a process in which a formal text is turned into
(more) informal one. In our previous work over Flyspeck and Mizar [11,12] the
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main informalization method was to forget which overloaded variants and types
of the mathematical symbols are used in the formal parses. Here, we additionally
use a nontrivial transformation of Mizar to LATEX that has been developed over
two decades by Bancerek [1,3] for presenting and publishing the Mizar articles
in the journal Formalized Mathematics.1

Previously [11,12], we have built and trained on the smaller aligned corpora
custom translation systems based on probabilistic grammars, enhanced with
semantic pruning methods such as type-checking. Here we experiment with state-
of-the-art artificial neural networks. It has been shown recently that given enough
data, neural architectures can learn to a high degree the syntactic correspondence
between two languages [20]. We are interested to see to what extent the neural
methods can achieve meaningful translation by training on aligned informal-
formal pairs of mathematical statements. The neural machine translation (NMT)
architecture that we use is Luong et al.’s implementation [15] of the sequence-
to-sequence (seq2seq) model.

We will start explaining our ideas by first providing a self-contained intro-
duction to neural translation and the seq2seq model in Sect. 2. Section 3 explains
how the large corpus of aligned Mizar-LATEX formulas is created. Section 4 dis-
cusses preprocessing steps and application of NMT to our data, and Sect. 5 pro-
vides an exhaustive evaluation of the neural methods available in NMT. Our main
result is that when trained on about 1 million aligned Mizar-LATEX pairs, the best
method achieves perfect translation on 65.73%of about 100 thousand testing pairs.
Section 7 concludes and discusses the research directions opened by this work.

2 Neural Translation

Function approximation through artificial neural network has existed in the lit-
erature since 1940s [7]. Theoretical results in late 80–90s have shown that it is
possible to approximate an arbitrary measurable function by layers of composi-
tions of linear and nonlinear mappings, with the nonlinear mappings satisfying
certain mild properties [6,10]. However, before 2010s due to limitation of com-
putational power and lack of large training datasets, neural networks generally
did not perform as well as alternative methods.

Situation changed in early 2010s when the first GPU-trained convolutional
neural network outperformed all rival methods in an image classification con-
test [14], in which a large labeled image dataset was used as training data. Since
then we have witnessed an enormous amount of successful applications of neural
networks, culminating in 2016 when a professional Go player was defeated by a
neural network-enabled Go-playing system [16].

Over the years many variants of neural network architectures have been
invented, and easy-to-use neural frameworks have been built. We are particularly
interested in the sequence-to-sequence (seq2seq) architectures [5,20] which have
achieved tremendous successes in natural language translation as well as related
tasks. In particular, we have chosen Luong’s NMT framework [15] that encap-
sulates the Tensorflow API gracefully and the hyperparameters of the seq2seq
1 https://www.degruyter.com/view/j/forma.

https://www.degruyter.com/view/j/forma
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model are clearly exposed at command-line level. This allows us to quickly and
systematically experiment with our data.

2.1 The Seq2seq Model

A seq2seq model is a network which consists of an encoder and a decoder (the
left and right part in Fig. 1). During training, the encoder takes in a sentence
one word at a time from the source language, and the decoder takes in the cor-
responding sentence from the target language. The network generates another
target sentence and a loss function is computed based on the input target sen-
tence and the generated target sentence. As each word in a sentence will be
embedded into the network as a real vector, the whole network can be consid-
ered as a complicated function from a finite-dimensional real vector space to the
reals. Training of the neural network amounts to conducting optimization based
on this function.

Fig. 1. Seq2seq model (adapted from Luong et al. [15])

When the training is complete, the neural network can be used to generate
translations by inferring from (translating of) unseen source sentences. During
inference, only the source sentence is provided. A target sentence is then gen-
erated word after word from the decoder by conducting greedy evaluation with
the probabilistic model represented by the trained neural network (Fig. 2).

2.2 RNN and the RNN Memory Cell

The architectures of the encoder and the decoder inside the seq2seq model are
similar, each of which consists of multiple layers of recurrent neural networks
(RNNs). A typical RNN consists of one memory cell, which takes input word
tokens (in vector format) and updates its parameters iteratively. An RNN cell
is typically presented in literature in the rolled-out format (Fig. 3), though the
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Fig. 2. Inference of seq2seq model (adapted from Luong et al. [15])

Fig. 3. RNN cell and its rolled-out format (adapted from Olah’s blog [18])

same memory cell is used and the same set of parameters are being updated
during training.

Inside each memory cell there is an intertwined combination of linear and
nonlinear transformations (Fig. 4). These transformations are carefully chosen
to mimic the cognitive process of keeping, retaining and forgetting information.

Only differentiable functions are used to compose the memory cell, so the
overall computation is also a differentiable function and gradient-based opti-
mization can be adopted. In addition, the computation is designed in so that
the derivative of the memory cell’s output with respect to its input is always
close to one. This ensures that the problem of vanishing or exploding gradients
is avoided when conducting differentiation using the chain rule. Several vari-
ants of memory cells exist. The most common are the long short-term memory
(LSTM) in Fig. 4 and the gated recurrent unit (GRU), in Fig. 5.

2.3 Attention Mechanism

The current seq2seq model has a limitation: in the first iteration the decoder
obtains all the information from the encoder, which is unnecessary as not all
parts of the source sentence contribute equally to particular parts of the target
sentence. The attention mechanism is used to overcome this limitation by adding
special layers in parallel to the decoder (Fig. 6). These special layers compute
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Fig. 4. Close-up look of an LSTM cell (adapted from Olah’s blog [18])

Fig. 5. Gated recurrent unit (adapted from Olah’s blog [18])

scores which can provide a weighting mechanism to let the decoder decide how
much emphasis should be put on certain parts of the source sentence when
translating a certain part of the target sentence. There are also several variants of
the attention mechanism, depending on how the scores are computed or how the
input and output are used. In our experiments, we will explore all the attention
mechanisms provided by the NMT framework and evaluate their performance
on the Mizar-LATEX dataset.

Fig. 6. Neural network with attention mechanism (adapted from Luong et al. [15])
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3 The Informalized Dataset

State-of-the-art neural translation methods generally require large corpora con-
sisting of many pairs of aligned sentences (e.g. in German and English). The
lack of aligned data in our case has been a bottleneck preventing experiments
with end-to-end neural translation from informal to formal mathematics. The
approach that we have used so far for experimenting with non-neural transla-
tion methods is to take a large formal corpus such as Flyspeck [9] or Mizar [2]
and apply various informalization (ambiguation) [11,12] transformations to the
formal sentences to obtain their less formal counterparts. Such transformations
include e.g. forgetting which overloaded variants and types of the mathemati-
cal symbols are used in the formal parses, forgetting of explicit casting functors,
bracketing, etc. These transformations result in more human-like and ambiguous
sentences that (in particular in the case of Mizar) resemble the natural language
style input to ITP systems, but the sentences typically do not include more
complicated symbol transformations that occur naturally in LATEX.

There are several formalizations such as Flyspeck, the Coq proof of the Odd-
Order theorem, the Mizar formalization of the Compendium of Continuous Lat-
tices (CCL) that come with a high-level alignment of the main theorems in the
corresponding (LATEX-written) books to the main formalized theorems. How-
ever, such mappings are so far quite sparse: e.g., there are about 500 alignments
between Flyspeck and its informal book [8]. Instead, we have decided to obtain
the first larger corpus of aligned LATEX/formal sentences again by informaliza-
tion. Our requirement is that the informalization should be nontrivial, i.e., it
should target a reasonably rich subset of LATEX and the transformations should
go beyond simple symbol replacements.

The choice that we eventually made is to use the Mizar translation to LATEX.
This translation has been developed for more than two decades by the Mizar
team [21] and specifically by Bancerek [1,3] for presenting and publishing the
Mizar articles in the journal Formal Mathematics. This translation is relatively
nontrivial [1]. It starts with user-defined translation patterns for different basic
objects of the Mizar logic: functors, predicates, and type constructors such as
adjectives, modes and structures. Quite complicated mechanisms are also used
to decide on the use of brackets, the uses of singular/plural cases, regrouping of
conjunctive formulas, etc. Tables 1 and 2 show examples of this translation for
theorems XBOOLE 1:12 and BHSP 2:33, together with their tokenized form used
for the neural training and translation.

Since Bancerek’s technology is only able to translate Mizar formal abstracts
into Latex, in order to obtain the maximum amount of data, we modified the
latest experimental Mizar-to-LATEX XSL stylesheets that include the option to
produce all the proof statements. During the translation of a Mizar article we
track for every proof-internal formula its starting position (line and column) in
the corresponding Mizar article, marking the formulas with these positions in

2 http://grid01.ciirc.cvut.cz/∼mptp/7.13.01 4.181.1147/html/xboole 1#T1.
3 http://grid01.ciirc.cvut.cz/∼mptp/7.13.01 4.181.1147/html/bhsp 2#T13.

http://grid01.ciirc.cvut.cz/~mptp/7.13.01_4.181.1147/html/xboole_1#T1
http://grid01.ciirc.cvut.cz/~mptp/7.13.01_4.181.1147/html/bhsp_2#T13
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Table 1. Theorem 1 in XBOOLE 1

Rendered LATEX If X ⊆ Y ⊆ Z, then X ⊆ Z.

Mizar X c= Y & Y c= Z implies X c= Z;

Tokenized Mizar X c= Y & Y c= Z implies X c= Z ;

LATEX If $X \subseteq Y \subseteq Z$, then $X \subseteq Z$.

Tokenized LATEX If $ X \subseteq Y \subseteq Z $ , then $ X \subseteq Z $ .

Table 2. Theorem 3 in BHSP 2

Rendered LATEX
Suppose s8 is convergent and s7 is convergent . Then lim(s8+s7) =
lim s8+ lim s7

Mizar seq1 is convergent & seq2 is convergent implies lim(seq1

+seq2)=(lim seq1)+(lim seq2);

Tokenized Mizar seq1 is convergent & seq2 is convergent implies lim (

seq1 + seq2 ) = ( lim seq1 ) + ( lim seq2 ) ;

LATEX

Suppose ${s_{8}}$ is convergent and ${s_{7}}$ is

convergent. Then $\mathop{\rm lim}({s_{8}}{+}{s_{7}})

\mathrel{=}\mathop{\rm lim}{s_{8}}{+}

\mathop{\rm lim}{s_{7}}$

Tokenized LATEX

Suppose $ { s _ { 8 } } $ is convergent and $ { s _ { 7

} } $ is convergent . Then $ \mathop { \rm lim } ( { s

_ { 8 } } { + } { s _ { 7 } } ) \mathrel { = } \mathop

{ \rm lim } { s _ { 8 } } { + } \mathop { \rm lim } { s

_ { 7 } } $

the generated LATEX file. We then extract each formula tagged with its position
P from the LATEX file, align it with the Mizar formulas starting at position P ,
and apply further data processing to them (Sect. 4.1). This results in about one
million aligned pairs of LATEX/Mizar sentences.

4 Applying Neural Translation to Mizar

4.1 Data Preprocessing

To adapt our data to NMT, the LATEX sentences and their corresponding Mizar
sentences must be properly tokenized (Tables 1 and 2). In addition, distinct word
tokens from both LATEX and Mizar must also be provided as vocabulary files.

In Mizar formulas, tokens can be and often are concatenated – as e.g. in n<m.
We used each article’s symbol and identifier files produced by the Mizar accom-
modator and parser to separate such tokens. For LATEX sentences, we decided
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to consider dollar signs, brackets, parentheses, carets and underscores as sepa-
rate tokens. We keep tags starting with backslash intact and leave all the font
information (e.g. romanization or emphasis). Cross-referencing tags, styles for
itemization as well as other typesetting information are removed.

4.2 Division of Data

Luong’s NMT model requires a small set of development data and test data
in addition to training data. To conduct the full training-inference process the
raw data needs to be divided into four parts. Our preprocessed data contains
1,056,478 pairs of Mizar-LATEX sentences. In order to achieve a 90:10 training-
to-inference ratio we randomly divide our data into the following:

– 947,231 pairs of sentences of training data.
– 2,000 pairs of development data (for NMT model selection).
– 2,000 pairs of test data (for NMT model evaluation).
– 105,247 pairs of inference (testing) data.
– 7,820 and 16,793 unique word tokens generated for the vocabulary files of

LATEX and Mizar sentences, respectively.

For our partition, there are 57,145 lines of common latex sentences in both
the training set and the inference set, making up to 54.3% of the inference set.
This is expected as mathematical proofs involve a lot of common basic proof
steps. Therefore, in addition to correct translations, we are also interested in
correct translations in the 48,102 non-overlapping sentences.

4.3 Choosing Hyperparameters

Luong’s NMT model provides around 70 configurable hyperparameters, many
of which can affect the architecture of the neural network and in turn affect
the training results. In our experiments, we decided to evaluate our model with
respect to the following 7 hyperparameters that are the most relevant to the
behavior of the seq2seq model (Table 4), while keeping other hyperparameters
(those that are more auxiliary, experimental or non-recommended for change)
at their default. Selected common hyperparameters are listed in Table 3.

Table 3. Common network hyperparameters across experiments

Name Default value

Number of training steps 12,000

Learning rate 1.0 (0.001 when using Adam optimizer)

Forget bias for LSTM cell 1.0

Dropout rate 0.2

Batch size 128

Decoding type Greedy
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Table 4. Hyperparameters for seq2seq model

Name Description Value

Unit type Type of the memory cell in RNN LSTM (default)
GRU
Layer-norm LSTM

Attention The attention mechanism No Attention (default)
(Normed) Bahdanau
(Scaled) Luong

Nr. of layers RNN layers in encoder and decoder 2 layers (default)
3/4/5/6 layers

Residual Enables residual layers (to overcome
exploding/vanishing gradients)

False (default)
True

Optimizer The gradient-based optimization method SGD (default)
Adam

Encoder type Type of encoding methods for input sentences Unidirectional
(default)
Bidirectional

Nr. of units The dimension of parameters in a memory cell 128 (default)
256/512/1024/2048

5 Evaluation

The results are evaluated by four different metrics: (1) perplexity; (2) the BLEU
rate of the final test data set; (3) the number and percentage of identical state-
ments within all the 105,247 inference sentences and (4) the number and per-
centage of identical statements within the 48,102 non-overlapping inference sen-
tences. Perplexity measures the difficulty of generating correct words in a sen-
tence, and the BLEU rate gives a score on the quality of the overall translation.
Details explaining perplexity and the BLEU rate can be found in [17] and [19],
respectively. Due to the abundance of hyperparameters, we decided to do our
experiments progressively, by first comparing a few basic hyperparameters, fix-
ing the best choices and then comparing the other hyperparameters. The basic
hyperparameters we chose are the type of memory cell and the attention mech-
anism.

5.1 Choosing the Best Memory Cell and Attention Mechanism

From Table 5 we can see that GRU and LSTM perform similarly and both per-
form better than Layer-normed LSTM. As LSTM performed slightly better than
GRU we fixed our memory cell to be LSTM for further experiments.4

Published NMT evaluations show that the attention mechanism results in
better performance in translation tasks. Our experiments confirm this fact and
4 Since training and inference involve randomness, the final results are not identical
across trials, though our experience showed that the variation of the inference metrics
are small.
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also show that the Normed Bahdanu attention, Luong attention and Scaled
Luong attention are better than Bahdanau attention (Table 6). Among them we
picked the best-performing Scaled Luong attention as our new default and used
this attention for our further experiments.

Table 5. Evaluation on type of memory cell (attention not enabled)

Parameter Final test
perplexity

Final test
BLEU

Identical
statements (%)

Identical
no-overlap (%)

LSTM 3.06 41.1 40121 (38.12%) 6458 (13.43%)

GRU 3.39 34.7 37758 (35.88%) 5566 (11.57%)

Layer-norm LSTM 11.35 0.4 11200 (10.64%) 1 (0%)

Table 6. Evaluation on type of attention mechanism (LSTM cell)

Parameter Final test
perplexity

Final test
BLEU

Identical
statements
(%)

Identical
no-overlap
(%)

No Attention 3.06 41.1 40121 (38.12%) 6458 (13.43%)

Bahdanau 3 40.9 44218 (42.01%) 8440 (17.55%)

Normed Bahdanau 1.92 63.5 60192 (57.19%) 18057 (37.54%)

Luong 1.89 64.8 60151 (57.15%) 18013 (37.45%)

Scaled Luong 2.13 65 60703 (57.68%) 18105 (37.64%)

5.2 The Effect of Optimizers, Residuals and Encodings with Respect
to Layers

After fixing the memory cell and the attention mechanism, we tried the effects
of the optimizer types and of the encoding mechanisms on our data with respect
to the number of the RNN layers. We also experiment with enabling the residual
layers. The results are shown in Table 7. We can observe that:

1. For RNN because of the vanishing gradient problem the result generally dete-
riorates when the number of layers becomes higher. Our experiments confirm
this: the best-performing architecture has 3-layers.

2. Residuals can be used to alleviate the effect of vanishing gradients. We see
from Table 7 that the results are generally better with residual layers enabled,
though there are cases when residuals produce failures in training.

3. The NaN values are caused by the overflow of the optimization metric (bleu
rate). For some hyperparameter combinations, it happens that the metric
will get worse as training progresses, which ultimately leads to overflow and
subsequent early stop of the training phase. Our experiments show that this
overflow reappears with respect to multiple times of trainings.
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4. It is interesting that the Adam optimizer, bidirectional encoding and combi-
nations of them can also alleviate the effect of vanishing gradients.

5. The Adam optimizer performs generally better than the SGD optimizer and
Bidirectional encoding performs better with less layers.5

6. The number of layers seems to matter less in our model than other parameters
such as optimizers and encoding mechanisms, though it is notable that the
more layers the longer the training time.

7. The number of identical non-overlapping statements is generally proportional
to the total number of identical statements.

5.3 The Effect of the Number of Units and the Final Result

We now train our models by fixing other hyperparameters and variating the
number of units. Our results in Table 8 show that performance generally gets
better until 1024 units. The performance decreases when the number of units
reaches 2048, which might indicate that the model starts to overfit. We have so
far only used CPU versions of Tensorflow. The training real times in hours of
our multi-core Xeon E5-2690 v4 2.60 GHz servers with 28 hyperthreading cores
are also included to illustrate the usage of computational resources with respect
to the number of units.

The best result achieved with 1024 units shows that after training for 11 h on
the corpus of the 947231 aligned Mizar-LATEX pairs, we can automatically trans-
late with perfect accuracy 69179 (65.73%) of the 105247 testing pairs. Given that
the translation includes quite nontrivial transformations, this is a surprisingly
good performance. Also, by manually inspecting the remaining misclassifications
we have found that many of those are actually semantically correct translations,
typically choosing different but synonymous expressions. A simple example of
such synonyms is the Mizar expression for x st P(x) holds Q(x), which can
be alternatively written as for x holds P(x) implies Q(x). Since there are
many such synonyms on various levels and they are often context-dependent,
the true semantic performance of the translator will have to be measured by
further applying the translation [22] from Mizar to MPTP/TPTP to the current
results, and calling ATP systems to establish equivalence with the original Mizar
formula as we do for Flyspeck in [11]. This is left as future work.

5.4 Greedy Covers and Edit Distances

We illustrate the combined performance of translation by comparing against
selected collections of models. In Table 9 “Top-n Greedy Cover” denotes a list of
n models such that each model in the list gives the maximum increase of correct
translations from the previous model. In addition, we also measure the percent-
age of sentences (both overlap and no-overlap part) that are nearly correct. The
metric of nearness we use is the word-level minimum editing distance (Leven-
shtein distance). We can see from Table 9 that reasonably correct translations
can be generated by just using a combination of a few models.
5 Bidirectional encoding only works on even number of layers.
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Table 7. Evaluation on various hyperparameters w.r.t. layers

Parameter Final test
perplexity

Final test
BLEU

Identical
statements (%)

Identical
no-overlap (%)

2-Layer 3.06 41.1 40121 (38.12%) 6458 (13.43%)

3-Layer 2.10 64.2 57413 (54.55% 16318 (33.92%)

4-Layer 2.39 45.2 49548 (47.08%) 11939 (24.82%)

5-Layer 5.92 12.8 29207 (27.75%) 2698 (5.61%)

6-Layer 4.96 20.5 29361 (27.9%) 2872 (5.97%)

2-Layer Residual 1.92 54.2 57843 (54.96%) 16511 (34.32%)

3-Layer Residual 1.94 62.6 59204 (56.25%) 17396 (36.16%)

4-Layer Residual 1.85 56.1 59773 (56.79%) 17626 (36.64%)

5-Layer Residual 2.01 63.1 59259 (56.30%) 17327 (36.02%)

6-Layer Residual NaN 0 0 (0%) 0 (0%)

2-Layer Adam 1.78 56.6 61524 (58.46%) 18635 (38.74%)

3-Layer Adam 1.91 60.8 59005 (56.06%) 17213 (35.78%)

4-Layer Adam 1.99 51.8 57479 (54.61%) 16288 (33.86%)

5-Layer Adam 2.16 54.3 54670 (51.94%) 14769 (30.70%)

6-Layer Adam 2.82 37.4 46555 (44.23%) 10196 (21.20%)

2-Layer Adam Res. 1.75 56.1 63242 (60.09%) 19716 (40.97%)

3-Layer Adam Res. 1.70 55.4 64512 (61.30%) 20534 (42.69%)

4-Layer Adam Res. 1.68 57.8 64399 (61.19%) 20353 (42.31%)

5-Layer Adam Res. 1.65 64.3 64722 (61.50%) 20627 (42.88%)

6-Layer Adam Res. 1.66 59.7 65143 (61.90%) 20854 (43.35%)

2-Layer Bidirectional 2.39 69.5 63075 (59.93%) 19553 (40.65%)

4-Layer Bidirectional 6.03 63.4 58603 (55.68%) 17222 (35.80%)

6-Layer Bidirectional 2 56.3 57896 (55.01%) 16817 (34.96%)

2-Layer Adam Bi. 1.84 56.9 64918 (61.68%) 20830 (43.30%)

4-Layer Adam Bi. 1.94 58.4 64054 (60.86%) 20310 (42.22%)

6-Layer Adam Bi. 2.15 55.4 60616 (57.59%) 18196 (37.83%)

2-Layer Bi. Res. 2.38 24.1 47531 (45.16%) 11282 (23.45%)

4-Layer Bi. Res. NaN 0 0 (0%) 0 (0%)

6-Layer Bi. Res. NaN 0 0 (0%) 0 (0%)

2-Layer Adam Bi. Res. 1.67 62.2 65944 (62.66%) 21342 (44.37%)

4-Layer Adam Bi. Res. 1.62 66.5 65992 (62.70%) 21366 (44.42%)

6-Layer Adam Bi. Res. 1.63 58.3 66237 (62.93%) 21404 (44.50%)

5.5 Translating from Mizar to LATEX

It is interesting to see how the seq2seq model performs on our data when we treat
Mizar as the source language and LATEX as the target language, thus emulating
Bancerek’s translation toolchain. The results in Table 10 show that the model
is still able to achieve meaningful translations from Mizar to LATEX, though the
translation quality is generally not yet as good as in the other direction.
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Table 8. Evaluation on number of units

Parameter Final test
perplexity

Final test
BLEU

Identical
statements (%)

Identical
no-overlap (%)

Training
time (hrs.)

128 Units 3.06 41.1 40121 (38.12%) 6458 (13.43%) 1

256 Units 1.59 64.2 63433 (60.27%) 19685 (40.92%) 3

512 Units 1.6 67.9 66361 (63.05%) 21506 (44.71%) 5

1024 Units 1.51 61.6 69179 (65.73%) 22978 (47.77%) 11

2048 Units 2.02 60 59637 (56.66%) 16284 (33.85%) 31

Table 9. Coverage w.r.t. a set of models and edit distances

Identical
Statements

0 ≤ 1 ≤ 2 ≤ 3

Best Model
- 1024 Units

69179 (total)
22978 (no-overlap)

65.73%
47.77%

74.58%
59.91%

86.07%
70.26%

88.73%
74.33%

Top-5 Greedy Cover
- 1024 Units
- 4-Layer Bi. Res.
- 512 Units
- 6-Layer Adam Bi. Res.
- 2048 Units

78411 (total)
28708 (no-overlap)

74.50%
59.68%

82.07%
70.85%

87.27%
78.84%

89.06%
81.76%

Top-10 Greedy Cover
- 1024 Units
- 4-Layer Bi. Res.
- 512 Units
- 6-Layer Adam Bi. Res.
- 2048 Units
- 2-Layer Adam Bi. Res.
- 256 Units
- 5-Layer Adam Res.
- 6-Layer Adam Res.
- 2-Layer Bi. Res.

80922 (total)
30426 (no-overlap)

76.89%
63.25%

83.91%
73.74%

88.60%
81.07%

90.24%
83.68%

Union of All 39 Models 83321 (total)
32083 (no-overlap)

79.17%
66.70%

85.57%
76.39%

89.73%
82.88%

91.25%
85.30%

Table 10. Evaluation on number of units

Parameter Final test
perplexity

Final test
BLEU

Identical
statements

Percentage

512 Units Bidirectional
Scaled Luong

2.91 57 54320 51.61%

6 A Translation Example

To illustrate the training of the neural network, we pick a specific example (again
BHSP 2:3 as in Sect. 3) and watch how the translation changes as the training
progresses. We can see from Table 11 that the model produces mostly gibberish
in the early phases of the training. As the training progresses, the generated
sentence starts to look more like the correct Mizar statement. It is interesting
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Table 11. Translation with respect to training steps

Rendered LATEX
Suppose s8 is convergent and s7 is convergent . Then lim(s8+s7) =
lim s8+ lim s7

Input LATEX

Suppose $ { s _ { 8 } } $ is convergent and $ { s _ { 7 } }

$ is convergent . Then $ \mathop { \rm lim } ( { s _ { 8 }

} { + } { s _ { 7 } } ) \mathrel { = } \mathop { \rm lim }

{ s _ { 8 } } { + } \mathop { \rm lim } { s _ { 7 } } $ .

Correct seq1 is convergent & seq2 is convergent implies lim ( seq1

+ seq2 ) = ( lim seq1 ) + ( lim seq2 ) ;

Snapshot-1000 x in dom f implies ( x * y ) * ( f | ( x | ( y | ( y | y )

) ) ) = ( x | ( y | ( y | ( y | y ) ) ) ) ) ;

Snapshot-3000 seq is convergent & lim seq = 0c implies seq = seq ;

Snapshot-5000 seq1 is convergent & lim seq2 = lim seq2 implies lim_inf

seq1 = lim_inf seq2 ;

Snapshot-7000 seq is convergent & seq9 is convergent implies

lim ( seq + seq9 ) = ( lim seq ) + ( lim seq9 ) ;

Snapshot-9000 seq1 is convergent & lim seq1 = lim seq2 implies ( seq1

+ seq2 ) + ( lim seq1 ) = ( lim seq1 ) + ( lim seq2 ) ;

Snapshot-12000 seq1 is convergent & seq2 is convergent implies

lim ( seq1 + seq2 ) = ( lim seq1 ) + ( lim seq2 ) ;

to see that the neural network is able to learn the matching of parentheses and
correct labeling of identifiers.

7 Conclusion and Future Work

We for the first time harnessed neural networks in the formalization of mathe-
matics. Due to the lack of aligned informal-formal corpora, we generated infor-
malized LATEX from Mizar by using and modifying the current translation done
for the journal Formalized Mathematics. Our results show that for a signifi-
cant proportion of the inference data, neural network is able to generate correct
Mizar statements from LATEX. In particular, when trained on the 947,231 aligned
Mizar-LATEX pairs, the best method achieves perfect translation on 65.73% of
the 105,247 test pairs, and the union of all methods produces perfect translations
on 79.17% of the test pairs.

Even though these are results on a synthetic dataset, such a good perfor-
mance is surprising to us and also very encouraging. It means that state-of-the-
art neural methods are capable of learning quite nontrivial informal-to-formal
transformations, and have a great potential to help with automating computer
understanding of mathematical and scientific writings.
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It is also clear that many of the translations that are currently classified by
us as imperfect (i.e., syntactically different from the aligned formal statement)
are semantically correct. This is due to a number of synonymous formulations
allowed by the Mizar language. Obvious future work thus includes a full semantic
evaluation, i.e., using translation to MPTP/TPTP and ATP systems to check if
the resulting formal statements are equivalent to their aligned counterparts. As
in [11,12], this will likely also show that the translator can produce semantically
different, but still provable statements and conjectures.

Another line of research opened by these results is an extension of the trans-
lation to full informalized Mizar proofs, then to the ProofWiki corpus aligned by
Bancerek recently to Mizar, and (using these as bridges) eventually to arbitrary
LATEX texts. The power and the limits of the current neural architectures in
automated formalization and reasoning is worth of further understanding, and
we are also open to the possibility of adapting existing formalized libraries to
tolerate the great variety of natural language proofs.
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Abstract. The vast and fast-growing STEM literature makes it imper-
ative to develop systems for automated math-semantics extraction from
technical content, and for semantically-enabled processing of such con-
tent. Grammar-based techniques alone are inadequate for the task. We
present a new project for using deep learning (DL) for that purpose. It
will explore a number of DL and representation-learning models, which
have shown superior performance in applications that involve sequences
of data. As math and science involve sequences of text, symbols and
equations, such as deep learning models are expected to deliver good
performance in math-semantics extraction and processing.

The project has several goals: (1) to apply different DL models to
math-semantics extraction and processing, designing more suitable mod-
els as needed, for such foundational tasks as accurate tagging and auto-
mated translation from LATEX to semantically-resolved machine under-
standable forms such as cMathML; (2) to create and make available to
the public labeled math-content datasets for model training and test-
ing, and Word2Vec/Math2Vec representations derived from large math
datasets; and (3) to conduct extensive comparative performance evalua-
tions gaining insights into which DL models, data representations, and
traditional machine learning models, are best for the above-stated goals.

1 Introduction

The amount of STEM knowledge is so vast and growing so rapidly that it is
impossible to keep current and take full advantage of that knowledge, caus-
ing many lost opportunities for advances, and wasted time reinventing wheels.
Therefore, automated math-semantic extraction from technical content, and
semantically-enabled processing of such content, which are here our overarch-
ing goals, are essential for future progress and for the synthesis of large and
exponentially growing volumes of technical text.

This is a U.S. government work and its text is not subject to copyright protection
in the United States; however, its text may be subject to foreign copyright protection 2018
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Much of the mathematical literature, old and new, is now online1,2,3,4,5,6,7

mostly in LATEX [25] and PDF formats, and to a lesser extent in presentation-
MathML8. The pressing needs and wide availability online have prompted ongo-
ing research in math content processing and math knowledge management [6].
Continuing progress in those areas and in applications thereof relies on being
able to determine the semantics of the technical/math literature in an auto-
mated way. Great strides have been made in doing this for natural language text
[22,35], such as word-sense disambiguation and semantics determination. The
technical literature, however, is not just natural language but is full of math
expressions. The latter makes it very challenging to determine the semantics
of technical content by machine for many reasons, such as the higher levels of
abstraction and the implicit knowledge that technical authors assume.

In [48], Youssef presented a parts-of-math (POM) tagging project which,
in its early stages, uses grammar-based and knowledge-based approaches for
parsing and for tagging math terms with a combination of definite tags and
tentative tags. In later stages, machine learning (ML) techniques [19,33] will be
used to disambiguate between the tags. Meanwhile, Miller, who has developed
the widely used LATExml conversion tool [31], has been creating and refining
techniques for preserving and sometimes inferring math semantics from LATEX
sources. The tool tries to balance faithful emulation of the TEX engine, while
preserving whatever semantics may be implied by the markup used. The DLMF
project [39] leverages that approach by developing and using semantic markup
which declares the intent of the symbols and structures being used. This is a
labor-intensive, and as yet, unfinished, task.

Other efforts [11,15,24,36,38,43,44,46,47] are developing approaches for
math language processing. Much like LATExml and the POM tagger, most rely on
grammar-based and other traditional NLP techniques [22]. Such techniques alone
are inadequate for semantics extraction from informal/LATEX-formatted techni-
cal content, and for translating from human readable forms to machine under-
standable, computable form. Fortunately, recent ML techniques, especially deep
neural networks (DNNs) [4], have shown great success in NLP [23,28,29,32,41]
and object recognition [27], suggesting potential for math-semantics extraction.

Therefore, this new project will use deep learning for automated math-
semantics inferencing from LATEX-formatted math documents. It will draw on
LATExml and the POM tagger for tentative semantic tagging, and then use
deep learning (DL) models and other machine learning (ML) techniques for

1 arXiv.org, https://arxiv.org/.
2 NIST Digital Library of Mathematical Functions (DLMF) https://dlmf.nist.gov/.
3 (World) Digital Mathematics Library, https://www.math.unibielefeld.de/

∼rehmann/DML/dml links.html.
4 The European Digital Mathematics Library, https://eudml.org/.
5 Göttinger Digitalisierungszentrum, http://gdz.sub.uni-goettingen.de/gdz/.
6 The database MathSciNet, http://www.ams.org/mathscinet/.
7 The database zbMATH, http://www.zentralblatt-math.org/zbmath/.
8 https://www.w3.org/Math/.

https://arxiv.org/
https://dlmf.nist.gov/
https://www.math.unibielefeld.de/~rehmann/DML/dml_links.html
https://www.math.unibielefeld.de/~rehmann/DML/dml_links.html
https://eudml.org/
http://gdz.sub.uni-goettingen.de/gdz/
http://www.ams.org/mathscinet/
http://www.zentralblatt-math.org/zbmath/
https://www.w3.org/Math/
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disambiguation. Another NIST project, namely the DLMF [39], will be a source
of reliably annotated training and testing data.

To achieve our overarching goals, we will explore certain DL models, including
unsupervised representation-learning models [2,3,9,28–30,32,40,41], and super-
vised learning models such as feedforward DNNs [4], Recurrent Neural Networks
(RNNs) [7,9], Long Short-Term Memory (LSTM) networks [21], and Convo-
lutional Neural Networks (CNNs) [23,27]. These learning models have shown
superior performance in NLP representations and classification, and the last 3
models in applications involving ordered sequences (e.g., sentences) [17,45], such
as automatic language translation [8,9,12]. Therefore, we expect that those mod-
els will be effective in similar math applications such as semantic extraction and
automated translation from LATEX to machine-computable forms.

2 Objectives of the Project

The project has the following major objectives:

1. To apply different DNNs, especially RNNs [7,9], LSTMs [21], and CNNs [23],
and different representation-learning word-embedding models (Word2Vec,
Doc2Vec) [29,30,32,41], for math-entity representation learning as well as
semantics extraction, and if needed, to design new and better suitable DL
models for these purposes. The resulting math-entity embedding networks
will be termed Math2Vec (embedding) models.
Math-semantics disambiguation methods, illustrated in Sect. 6, will be devel-
oped. Also, sequence-to-sequence DNNs will be trained and tested, for such
foundational tasks as automated translation from informal/LATEX form to
machine understandable forms such as computer programs and semantic math
markup (e.g., cMathML).
Towards this objective, extensive comparative performance evaluations will
be conducted to gain insight into which DNN models, designs, data represen-
tations, and such, are best for math-semantics extraction and processing.

2. To train traditional machine learning models, such as Support Vector
Machines [10] and Random Forests [5], using the Math2Vec-generated feature
vectors of mathematical entities, and to test these traditional ML models for
performing math-semantic extraction and disambiguation tasks.
Again, extensive performance evaluations of those traditional ML models,
and comparison between them and the DNN models identified in the first
objective, will be conducted to determine whether the more data-demanding
and more time-consuming DNNs deliver more performance than those less-
demanding, traditional ML techniques, in math-semantic extraction.

3. To create and make available to the public (a) sizable, labeled math-content
datasets for DL (and other ML) training and testing, (b) Math2Vec models
and representations (derived from large math-content datasets) along with
software APIs for accessing and interacting with those models and represen-
tations, and (c) trained, tested, and optimized DL and ML models (along
with API software) for ready use by the math processing community.
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3 Significance and Applications of the Project

The semantic extraction capabilities that will result from this project, and from
the related projects on which it builds, can have many applications, such as:

– Automated semantic enrichment and annotations of digital math libraries.
This leads to better math search and math UIs, as explained next.

– Search [18]: Semantically-enabled, ‘deeper’ math search finds hits based not
only on literal keyword matches but on semantic matches [16].

– Better math user interfaces: Semantic annotations of math symbols and
expressions provide on-demand explanations/reminders as well as hyperlink
connections between various math entities.

– Robust, reliable and accurate automated presentation-to-computation (P2C)
conversion of math expressions from natural forms like LATEX or presentation
MathML into machine-computable forms such as Content MathML, computer
algebra systems [11], automated reasoning systems and proof assistants. Such
ambitious applications become possible when the correct semantics of symbols
and expressions can be inferred.

– Math Question/Answer capabilities at both manuscript and collection levels.

In addition, the resulting R&D resources and capabilities (Goal 3 in Sect. 2)
can greatly aid the math-processing research community in developing consid-
erably more advanced math-processing tools and applications, for the benefit of
mathematicians, scientists, and end-users of mathematics.

4 Foundations and Related Work

Deep learning has emerged in recent years as the most powerful machine learning
paradigm for classification, object recognition, computer vision, machine trans-
lation, speech recognition, representation learning, and the like [13]. This was
attributed to availability of much larger datasets and more powerful computers
(e.g., GPUs) for training, and to advances in design and optimization methods
of deep (i.e., many-layer) neural networks [13].

Especially relevant to text processing are the recent advances in unsupervised
representation learning (RL), especially word embedding [2,3,9,28–30,32,40,41]
and more recent structured [42] and hierarchical [37] embeddings, and sequence-
to-sequence supervised learning models [17,45].

The RL models take as input a text collection, and generate a numerical
feature vector (typically 100D or 300D), called embedding, for each word (or
sentence/paragraph) in the collection. This vector captures latent semantics
of a word from the contexts of its occurrences in the collection; in particular,
words that co-occur often in close proximity tend to have similar feature vec-
tors (where similarity is measured by the cosine, the Euclidean distance, etc.).
Consider an example of semantic similarity captured by Word2Vec [32,40]. Let
V (w) denote the Word2Vec-derived feature vector of word w. It was found that
V (man)−V (woman) ≈ V (king)−V (queen). Thus to find the female form of king
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(knowing man and woman), one searches for the word whose vector is closest to
U = V (man) − V (king) + V (queen), and discovers the desired answer, queen.

This project will use Word2Vec and similar embedders (e.g., GloVe and
Doc2Vec [20]) to create a Math2Vec embedding model for generating feature
vectors for various math symbols, and then explore vector space operations on
such feature vectors to determine/disambiguate the meanings and roles of math
entities in their contexts. Examples of our novel use of Math2Vec embeddings are
provided in Sect. 6. Note that Math2Vec will subsume Word2Vec and Doc2Vec,
working on text and math content in an integrated way, thus helping to deter-
mine the semantics of math entities not just from the equations containing them,
but also for the text surrounding them.

Applications of embedding to math language processing have started to
emerge, such as equation embedding [26]. Equation embedding is useful for iden-
tifying similar equations and contextual descriptive keywords; the latter can be
used as tentative tags (much like the ones identified by our POM tagger), but
will need to be further disambiguated, which is one of the foci of this project, as
illustrated in Sect. 6.

With regard to DNNs, certain models such RNNs [7,9] and LSTMs [21] have
shown a great ability to learn sequence-to-sequence mappings [17,45]. For exam-
ple, they can be trained to map an arbitrary input sentence from one language
to another. When properly trained on two parallel corpora in two languages, the
trained model becomes a language translator. In this project, we will exploit this
potential to train similar DNNs to become LATEX-to-cMathML translators.

Note that for certain supervised learning tasks, such as disambiguating the
meaning of a math token, and classifying a math document (as to its math
area), traditional ML models such as Support Vector Machines and Random
Forests could be used. SVMs and RFs have the advantage of needing much less
training data and training time than DNNs because of the former’s much smaller
number of parameters to optimize, but DNNs have shown considerably higher
performance (e.g., accuracy) in complicated tasks [4]. However, one can combine
the benefits of both. Specifically, embedding models can be used to learn good
feature vectors of math entities, and then use those vectors as input to train
SVMs and RFs. This hybrid approach will be explored in this project.

Aside from deep learning and other ML models, this project will build upon
two other projects/tools by the authors, as explained in some detail in the next
two subsections.

4.1 The Parts-of-Math Tagger

In [48], a part-of-math (POM) tagger was described. In that project, which is
still ongoing, a tagset for math terms and expressions, as well as various relevant
features, were identified (see Table 1 for a brief summary), and algorithms and
software for the early stages of the tagger were developed. In those early stages,
the tagger takes as input a math document, and tags each math term and some
sub-expressions with two kinds of tags. The first kind consists of definite tags
(such as operation, relation, numerator, etc.) that the tagger is certain of. The
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Table 1. Features tentatively computed by the POM tagger, and to be disambiguated
in this deep learning project.

Feature Explanation

Category The grammatical role or part-of-math: operation, operator,
relation, function, variable, parameter, constant, quantifier,
separator, punctuation, abbreviation/acronym, delimiter,
left-delimiter, right-delimiter, constructor, accent, etc.

Subcategory Further specializes the category, e.g., for ‘<’, the category is
relation and the subcategory is order. Values can be order,
numerator, denominator, lower-limit (of an integral),
constraint/condition, definition, etc. For an accent, indicates the
accent position (e.g. pre-superscript)

Signature The data type, and, for functions and operators, the arity and
types of arguments. which arguments are variables and which
are parameters, May also include notational aspects such as
whether it has subscripts/superscripts/prescripts

Font The font characteristics: Typeface, Font-style, and Font-weight

Status Whether the notation is Generic, Standard (i.e. commonly
understood), or Defined (in the manuscript), and whether it is
implicitly or explicitly defined

second kind consists of alternative, tentative features (including alternative roles
and meanings) drawn from a knowledge base that was developed for that project.
Those tags, and especially the tentative features, will be heavily utilized in this
deep learning project in ways that are illustrated in Sect. 6. Also, in [48], a
number of math ambiguities were identified, a summary of which is provided
here in Table 2. It is those ambiguities that we will disambiguate using deep
learning (and new algorithms), again as illustrated in Sect. 6.

4.2 LATExml

LATExml is a LATEX to XML converter, whose internal XML format can be
converted to standard formats such as HTML, MathML (both content and pre-
sentation), among others. LATExml will play two critical roles in this project.
Firstly, to provide access to large corpora of scientific documents, such as those
in arXiv; Secondly, in conjunction with the DLMF, to deliver a more moderate
sized, but curated, collection of semantically tagged mathematical formula.

Since TEX documents are essentially programming markup embedded within
the document text, simple parsing techniques to extract the plain text for input
to DNN’s, let alone the mathematics, are destined for failure. One must execute,
rather than parse, a TEX document. LATExml therefore mimics the TEX engine
converting the documents to an internal XML format from which the plain text
will easily be extracted, including as much or as little of the styling and metadata
as is desired. It is also highly extensible, providing for declarative markup and
semantic macros which allow embedding the semantic tagging within the docu-
ments. Moreover, the mathematical portions can be converted to math lexemes
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Table 2. Math ambiguities identified in the POM project [48].

Ambiguity Explanation

Superscript Can indicate a power, an index, the order of differentiation, a
postfix unary operator, etc.

Juxtaposition Can imply multiplication, concatenation, or function application

Accent Can represent an applied operator, or be a morphological part
of the name. E.g. ‘y′’ can be the derivative of y or simply a
distinct variable

Part of math Different roles give rise to distinct parse trees, as well as
different semantics. E.g. ‘|’ and ‘‖’ can be punctuation,
operators, relations, or delimiters. Specific fencing delimiters can
imply very specific semantics. E.g. the bra/ket notations ‘〈·|’,
‘|·〉’, compared to the inner product ‘〈·, ·〉’

Scope Typically occurring when delimiters are omitted.
E.g. ‘sin 2πx + 5’ is likely intended to mean ‘sin(2πx) + 5’

Data type Necessary to completely resolve semantics; conversely, can help
disambiguate other ambiguities, e.g. Superscript

which uniquely capture each symbol and the markup-imposed structure (e.g.,
for fractions). Thus, a large subset of potentially complexly formatted scientific
documents in arXiv become available for feeding into a DNN.

In LATExml currently, we start from a fundamentally declarative and gram-
matical point of view: Namely the task is to represent mathematical expres-
sions as a correctly structured trees, with each node in the tree labeled with its
semantic intent. Correctly assigned grammatical roles, or part-of-math, for each
symbol, is sufficient to determine the correct tree, given a rich enough grammar
for mathematical expressions. Of course, many but far from all symbols used
in LATEX markup have universally agreed roles. The wrong choice, say between
a simple variable or a function, leads to different trees (again, see Table 2).
Thus, the first task in the DLMF was to specify declarative markup to specify
grammatical roles. This being largely accomplished, the attention turns to dis-
ambiguating the meanings of the symbols as well. Here, semantic macros for the
mathematical objects comes to aid. In its current form, the semantics of DLMF’s
mathematics are partly resolved, with much yet to be done. We will continue this
process, searching for the sweet-spot between impractical fully explicit markup
and the AI which the current project aims to achieve.

5 The Datasets to Be Collected, Created and Used

The data collected, created, and used in this project divide into several sets.

A– The term-labeled dataset: This dataset will consist of many math doc-
uments where (nearly) all the math terms are correctly labeled. It will be
initially derived from the DLMF, where thoroughly vetted annotations of
the math terms are available. More labeled documents will be added later.
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The labeled dataset will have a dual-purpose use: (1) for training and testing
supervised learning models, and (2) as a resource for disambiguating math
semantics of new math documents, as will be illustrated in Sect. 6.

B– The Doc-class-labeled Dataset: Math-term disambiguation will utilize
feature-based classifiers, and one feature to be used is the math field(s) of the
input document. This dataset will be used to train document-classifiers. It is
being collected from several sources, e.g., the ArXiV and the DLMF.

C– The Dataset for generating Math2Vec Embeddings: This dataset will
be used for (1) testing the effectiveness of a variety of Math2Vec embedding
algorithms, and (2) generating Math2Vec embeddings for a large vocabulary
of math text and math symbols. It will include the above datasets A and
B, and more, and will be quite large and cover many math areas so that the
embeddings can be used by the community as readily available feature vectors
of math terms.

D– Application-specific labeled datasets: Labeled datasets will be created
for specific sequence-to-sequence translations, e.g., LATEX-to-MathML trans-
lation. Such a dataset will consist of semantically tagged math expressions
in LATEX, and their corresponding MathML formats. They will be used for
training and testing supervised models specific to the selected applications.

6 Samples of Tagging and Disambiguation Algorithms

This section gives a few new algorithms and techniques which illustrate the deep
learning methods that will be developed in this project for semantic extrac-
tion/tagging, and for semantic disambiguation. Such algorithms will rely on a
fully term-labeled dataset (e.g., dataset A), which will be also referred to as the
reference document(s) or simply, Resources, and denoted R. We will assume that
Math2Vec is applied to R once offline to vectorize all its terms.

We will use the following notations and definitions in this section.

D a document in the dataset.
t ∈ D a term occurring in document D, where a term is a word or an artificial

lexeme representing a mathematical token.
‘xy . . . ’ ∈ D a sequence of terms occurring in document D.
y ∈ ‘xy . . . ’ ∈ D a term that is part of a sequence of terms occurring in document

D.
VD(t) The feature vector (i.e., embedding) of a term t ∈ D, derived by running

Math2Vec on D.
R The above-defined Resources, assumed to be fully term-labeled, and vectorized

offline by a Math2Vec so that VR(t) are available for all terms t ∈ R.
Tags(t ∈ R) The set of morphological/lexical/syntactic/semantic tags of a term

t ∈ R; they are the provided for all terms t in Resources R.
TTags(t ∈ D) The tentative tags of term t in D. Within each tag category, there

are several tags that t can have, tentatively, where the precise tag in that
category is yet to be determined. TTags(t ∈ D) can be derived by a basic
math tagger, like the first-stage of the POM tagger [48].
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Algorithm 1. math-Tag(D,R)
Require: Document D as input;
Require: Resources R, tagged, and pre-vectorized with Math2Vec;

{VD(t) | ∀ terms t ∈ D} ← Call Math2Vec on D;
{TTags(t ∈ D) | ∀ terms t ∈ D} ← Call the basic math tagger on D;
for all t ∈ D do //find closest tentative match in R to t

S ← {w ∈ R | Tags(w ∈ R) ⊆ TTags(t ∈ D)};
τ ← arg min

w∈S
‖VR(w) − VD(t)‖2 ; // The VR(w)’s are available in R

Tags(t ∈ D) ← Tags(τ ∈ R); //Tags(τ ∈ R) are available in R
end for
return Tags(t ∈ D) for all terms t ∈ D;

‖v − w‖2 A measure of the difference between two feature vectors; it can be one
of several different norms, e.g., ‖.‖2 or ‖.‖1.

ΔK(t, s) = VK(s) − VK(t) The difference between two feature vectors within a
given document; it captures some relationship between t and s.

matchR,D(t, y) Given a term y ∈ D, a term t ∈ R is called a close tentative
match of y if

Tags(t ∈ R) ⊆ TTags(y ∈ D) and ‖VR(t) − VD(y)‖2 < δ

for some preset small threshold δ. That is, the (definite) tags of t in R are
among the tentative (i.e., possible/likely) tags of y in D.

6.1 Tagging and Semantic Extraction

Algorithm 1 is an algorithm for tagging/semantic extraction. Note that the norm
used could be replaced by a similarity metric, such as the cosine similarity
between two vectors, in which case, arg min is replaced by arg max.

6.2 Disambiguation

Disambiguation of Primes. Primes (′) fall under accent ambiguities (see
Table 2). A prime after a math symbol, e.g., y′, in a document D, can denote
the derivative of y (as in the case where y is a differentiable function), or the
logical complement of y (as in the case where y is a Boolean variable/function),
or a morphological glyph where y′ is simply another identifier having at most an
abstract relation to y. In this subsection, we give an algorithm for disambiguat-
ing (′). It is assumed that the tokenizer initially treats every single prime as a
separate token. Algorithm 2 presents a prime-disambiguating algorithm:

Disambiguation of Superscripts. Superscripts present another major ambi-
guity in math. Given a math term/expression like ‘y∧z’, representing ‘yz’, in
document D, where z is a single term or an expression, the role of the super-
script z is ambiguous. It can be the power exponent of y, or simply an index
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Algorithm 2. disambiguate-prime(‘y′’;D,R)
Require: Document D as input;
Require: Term pair ‘y′’ as input, in document D;
Require: Resources R, tagged, and pre-vectorized with Math2Vec;

{TTags(t ∈ D) | ∀ terms t ∈ D} ← Call the basic math tagger on D;
{VD(t) | ∀ terms t ∈ D} ← Call Math2Vec on D;

//Find next in R all terms t that are closest tentative matches to y and occur as ‘t′’
E ← {t ∈ R | (‘t′’ ∈ R) & matchR,D(t, y)}
τ ← arg min

t∈E
‖ΔD(y, ′) − ΔR(t, ′)‖2 ; //‘τ ′’ most resembles ‘y′’ of all ‘t′’ ∈ R

//Find next the most frequent tag of ′ ∈ ‘τ ′’ ∈ R
tag ← arg max

ξ∈⋃
Tags(′∈‘τ ′’∈R)

count(ξ ∈ Tags(′ ∈ ‘τ ′’ ∈ R));

if tag = derivative then
‘y′’ is tagged as the derivative of y;

else if tag = booleancomplement then
‘y′’ is tagged as the Boolean complement of y;

else if tag designates a glyph then //as a morphological identifier name
‘y′’ is tagged as an identifier.

end if
return tag;

of y, or the order of the derivative of y (as for example, y(3) denotes the third
derivative of function y), or yet other alternatives. We give in Algorithm3 a
method for disambiguating the superscript.

Note that for more accuracy, where possible, one can increase the constraints
on t in the first step of the disambiguate-superscript algorithm. For example, if
z is enclosed between parentheses in ‘y∧z’, we can require the term after ‘∧’ in
(‘t∧’ ∈ R) to be also enclosed between parentheses.

Disambiguation of Juxtaposition. Another major math ambiguity is the
juxtaposition ambiguity (See Table 2). We focus in this subsection on a small
but important manifestation of this ambiguity. Given y(x . . .) in document D,
it is unclear what the ‘suppressed operation’ between y and (x . . .) is. It can
be the multiplication of y with (x . . .), or the application of the function y at
argument (x . . .). If y is definitely known to be a non-function numerical quantity,
then there is no ambiguity—it is multiplication. But if it is not certain to the
algorithm what y is, which oftentimes is the case, then the suppressed operation
is ambiguous. Even if y is known to be a function, there is still a (small) chance
that the suppressed operation can be either, and must therefore be resolved.
Algorithm 4 shows how to disambiguate the juxtaposition operator.

In this project, similar algorithms will be developed for as many ambiguities
as possible, and will be tested, and modified as necessary, to maximize their
disambiguation accuracy.
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Algorithm 3. disambiguate-superscript(y∧z; D,R)
Require: Document D as input;
Require: Term triple y∧z as input, in document D;
Require: Resources R, tagged, and pre-vectorized with Math2Vec;

{TTags(t ∈ D) | ∀ terms t ∈ D} ← Call the basic math tagger on D;
{VD(t) | ∀ terms t ∈ D} ← Call Math2Vec on D;

//Find in R all terms t that are closest tentative matches to y and occur as ‘t∧’
E ← {t ∈ R | (‘t∧’ ∈ R) & matchR,D(t, y)};

τ ← arg min
t∈E

‖ΔD(y, ∧) − ΔR(t, ∧)‖2 ; //‘τ∧’ most resembles ‘y∧’ of all ‘t∧’ ∈ R.

//Find next the most frequent tag of ∧ ∈ ‘τ∧’ ∈ R
tag ← arg max

ξ∈⋃
Tags(∧∈‘τ∧’∈R)

count(ξ ∈ Tags(∧ ∈ ‘τ∧’ ∈ R));

if tag = power then
‘y∧z’ is tagged as the expression ‘y to the power z’;

else if tag is an index then
‘y∧z’ is tagged as ‘yindexed by z’;

else if tag designates an order of a derivative then
‘y∧z’ is tagged as the ‘zth derivative of y’.

else
· · ·

end if
return tag;

6.3 Classification-Based Disambiguation of Math-Tagging

The taggers/disambiguators of the previous subsections relied mainly on math-
term embeddings, 1-nearest-neighbor (generizable to K-nearest-neighbor [1,14])
voting, and maximum likelihood. But math embeddings can be used as feature
vectors for supervised training of classifiers (e.g., feedforward DNNs, SVM, RF,
etc.) to disambiguate math tags. In this subsection, we illustrate briefly this
supervised approach, focusing on the disambiguation of ‘′’.

Using the training subset of dataset A, train a classifier to classify the mean-
ing/role of ‘′’ in an input ‘y′’ that is represented as the average (or concatenation)
of both the embedding vector of y and the embedding of ‘′’, using the term-labels
in A as training targets. Once the classifier is trained, to disambiguate the tag
of an input ‘y′’ in an input math document D, call Algorithm 5.

This classification approach will be applied in this project to all the math
ambiguities summarized in Table 2, testing a number of classifiers and a number
of embedding approaches.

7 DNN’s for Math Sequence-to-Sequence Translation

RNN models, such as LSTM networks, can be trained to map sequences to
sequences. We will train and test such models to map Latex-formatted math
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Algorithm 4. disambiguate-Mult-vs.-FunctionApply(‘y(x . . .)’; D,R)
Require: Document D as input;
Require: Term sequence y(x . . .) as input, in document D;
Require: Resources R, tagged, and pre-vectorized with Math2Vec;

{TTags(t ∈ D) | ∀ terms t ∈ D} ← Call the basic math tagger on D;
{VD(t) | ∀ terms t ∈ D} ← Call Math2Vec on D;

//Find in R all terms t that are closest tentative matches to y and occur as ‘t · (’
E ← {t ∈ R | (‘t · (’ ∈ R) & matchR,D(t, y)};

τ ← arg min
t∈E

‖ΔD(y, ‘(’) − ΔR(t, ‘(’)‖2 //‘τ(’ most resembles ‘y(’ of all ‘t · (’ ∈ R.

//Find next the most frequent tag of invisible operators · ∈ ‘τ · (’ ∈ R
tag ← arg max

ξ∈⋃
Tags(·∈‘τ ·(’∈R)

count(ξ ∈ Tags(· ∈ ‘τ · (’ ∈ R));

// Now resolve the invisible operator according to the value of tag.
· · ·
return tag;

Algorithm 5. supervised-disambiguate-prime((‘y′’;D,C)
Require: Document D as input;
Require: Term pair ‘y′’ as input, in document D;
Require: Classifer C, a pre-trained classifier of ‘′’;

{VD(t) | ∀ terms t ∈ D} ← Call Math2Vec on D;
VD(y′) ← Average or concatenate VD(y) and VD(′);
tag ← Call Classifier C on VD(y′);
return tag;

expressions to MathML counterpart, using Dataset D for the training and test-
ing. Each input in the training is a Latex-formatted math expression, and the
target is the corresponding MathML translation.

8 Testing and Performance Evaluation

The testing and evaluation methods will depend on the specific model, algo-
rithm or application being designed or considered. For example, for semantic
tagging/disambiguation, the term-labeled dataset (A) will be divided into two
subsets: (1) the 1st subset is for supervised-training of the tagger/disambiguator
if the latter is a feature-based classifier, or, if it is a K-nearest-neighbor based
tagger/disambiguator, the first subset will be used as the reference“memory” for
majority-voting-based selection of the most likely math tag for an input math
term being labeled; and (2) the 2nd subset is for testing. The performance met-
ric to be used is accuracy, i.e., percentage of correctly tagged math terms in the
test data subset of the labeled dataset A. For document classification, as another
example, the dataset B will be divided into training set and testing set, and used
for feature-based classifier training and testing, respectively, and accuracy will



Deep Learning for Math Knowledge Processing 283

be the performance metric used. Likewise, for sequence-to-sequence translation,
dataset D will be used for training and testing as explained in Sect. 7, and accu-
racy (i.e., percentage of correctly translated expressions) will be used as the
performance metric.

For Math2Vec embedding models, which are unsupervised, the datasets used
need not be labeled. As for testing and evaluation of those models, we will
use subjective and objective methods. The subjective evaluation will be in term-
similarities and term-relationships, e.g., is cos to arccos the same as exp is to log?
The objective evaluation will be somewhat indirect. For example, to compare two
competing embedders, we train a semantic tagger (as a classifier) using as feature
vectors the embeddings produced by one of the two embedders applied on the
dataset (A), resulting in one tagger, and, in parallel, train the same original
semantic tagger using the embeddings produced by the other embedder applied
on the dataset (A). Then compare the performance of the two taggers on the
test data subset of set (A), using term-label accuracy as metric. The embedder
that leads to higher tagger accuracy is taken to be the better embedder.

9 Stages of the Project

The project will be completed in stages, using deeplearning4j9 as the baseline
software for much of the development and testing. The stages can be summarized
as follows:

Stage 1: Dataset Collection/labeling. A large corpus of documents from
various areas of mathematics will be collected and used to compute embed-
dings (i.e. feature vectors). A subset of this corpus will be labeled by assigning,
semi-manually, the meanings/roles of their math entities.

Stage 2: Create Math2Vec embeddings, models, software. The embed-
dings of a large set of math entities will be computed, using this dataset. A
Math2Vec embedder will be developed and fine-tuned for this purpose.

Stage 3: Develop semantic extraction/disambiguation systems. DNNs
as well as Support Vector Machines and Random Forests will be trained
using the labeled dataset and Math2Vec embeddings to extract and/or disam-
biguate math semantics from documents. Considerable testing, optimization,
modifications, and fine-tuning of the various learning models will be carried
out, and conclusions will be drawn about best models and practices.

Stage 4: Develop math sequence-to-sequence models. Supervised learn-
ing models for math sequence-to-sequence translations of LATEX-to-cMathML
will be designed, trained, tested and optimized.

Stage 5: Put resources in the public domain. These will include the
datasets A, B, C, and D described in Sect. 5.

9 https://deeplearning4j.org/.

https://deeplearning4j.org/
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10 Current State of the Project

– A dataset of 6000 papers in LATEX format has been collected, spanning many
areas of mathematics. The DLMF pages, not yet part of this dataset, will be
used as well.

– Software for reading those papers, properly tokenizing the math terms as
well as the English text, and converting the math and text tokens into feature
vectors using Word2Vec, is nearly complete. Accordingly, the project is about
to convert the vocabulary in the 6000-paper dataset into numerical vectors,
and to begin the implementation and testing of the disambiguation algorithms
illustrated in Sect. 6.

– LATExml and the POM tagger are in a ready state to be used to read the
datasets, and provide a good amount of labeling of the math terms. Those
labels, though often tentative, will serve two purposes. First, for a fraction
of the dataset, we will manually look at those labels and correct them where
needed to create a validly labeled reference dataset. Second, the documents
with the tentative labels (specifically, alternative features) will serve as a
testing set for disambiguation algorithms, as illustrated in Sect. 6.
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