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Abstract Numerous paleomagnetic studies were performed in the western Saharan
basins, particularly during the last decades. Primary magnetization of the sedi-
mentary formations older than Bashkirian appeared as totally overprinted. By
contrast, 23 new coherent paleomagnetic poles, mainly from Bashkirian to
Autunian age and from Middle Triassic to Lias age, were determined. These new
data greatly improved the Apparent Polar Wander Path (APWP) for Africa, and
consequently for the whole Gondwana, especially for the Upper Carboniferous. The
corresponding paleoreconstruction strongly argued for an A2 Pangea during this
last period. By its comparison with paleomagnetic data from undated geological
units, this new APWP provided dating of these units. Paleomagnetic data high-
lighted also the existence of a post-Liassic regional tectonic event having affected
the Paleozoic cover in the Sahara platform. Finally, several magnetic overprints,
pointed out in these studies, are of chemical origin, with likely a significant role of
ground-fluids. Indeed, fluids migration phenomena often favored chemical changes
and remagnetization process. Upper Carboniferous, Permian and Upper
Cretaceous–Cenozoic overprinting ages were thus probably linked to regional
geochemical events that occurred in the Saharan Platform.
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1 Introduction

The geodynamical evolution of the Hoggar shield since the Precambrian is highly
linked to that of the surrounding Saharan basins. It has conditioned the formation
and the evolution of these basins during the Phanerozoic (Fabre 2005 and refer-
ences herein). The paleomagnetism can be considered as one of the best tools for
studying such evolution. Since post-Hercynian tectonic events in the Saharan
Platform are still considered as a matter of debate (e.g., Haddoum et al. 2001), it
could point out such movements, which should be related to reactivation of the deep
mega-shear zones of the Hoggar (Bertrand and Caby 1978; Black et al. 1994;
Liégeois et al. 1994). Then, it could specify the Phanerozoic evolution of the
Hoggar basement.

On one hand, it is well known that the paleomagnetism is also a powerful tool to
determine drift of the main tectonic plates and to provide paleocontinental recon-
structions (e.g., Van der Voo 1993; McElhinny et al. 2003; Derder et al. 2006;
Torsvik et al. 2012; Henry et al. 2017). Thus, it could give a global vision of the
Paleozoic drift patterns of whole Gondwana and of the African plate after the
opening of the Atlantic Ocean. The migration of these continents could also have an
impact on the Hoggar tectonic evolution (e.g., Liégeois et al. 2005).

At the end of the 1980’s, very few paleomagnetic data were available from the
Hoggar surroundings (Morel et al. 1981; Daly and Irving 1983; Kent et al. 1984;
Aifa et al. 1990), and the Apparent Polar Wander Path (APWP) of the African plate
was poorly defined, especially for the Paleozoic times. The Gondwana APWP was
also doubtful for this period, leading to the existence of very different APWPs for
this supercontinent (e.g., Smith and Hallam 1970; Van der Voo and French 1974;
Morel and Irving 1981; Smith et al. 1981; Bachtadse and Briden 1991; Schmidt and
Clark 2000). From a geodynamical point of view, the convergence model of
Gondwana and Laurussia plates during the Upper Paleozoic interval remained
hypothetical. The evolution pattern of the Pangea supercontinent from
Carboniferous to Triassic was still controverted (e.g., Torcq et al. 1997).

To improve, by a better constraint of APWP, the knowledge of the geodynamical
evolution of the Pangea, Gondwana, and Africa plates, numerous paleomagnetic
studies were performed in the stable Saharan Platform during the last decades.
Many areas were thus investigated, i.e., Tindouf, Bechar–Abadla, Mezarif,
Timimoun, Reggane, Ahnet-Mouydir, Illizi, Murzuq, Tin Serririne, and Taoudeni
basins surrounding the Hoggar shield (see Fig. 1; Tables 1 and 2). In this chapter,
we present an overview of the paleomagnetic studies conducted in these basins of
the Saharan Platform and highlight their different geodynamical, structural, geo-
chemical, and chronological implications.
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2 Geological Setting

The Saharan Platform is a Precambrian basement unconformably overlain by
transgressive Phanerozoic thick deposits. Various tectonic events delineated sedi-
mentary basins having their own more or less complete stratigraphic sedimentary
column (Fabre 2005; Haddoum et al. 2001). The stratigraphic correlations between
the basins highlight lateral facies changes and discontinuities. These basins contain
mainly Paleozoic deposits, Mesozoic and Cenozoic sediments being scarce (Conrad
and Le Mosquet 1984). The Paleozoic sediments reach thicknesses of over 8000 m
in the Tindouf Basin, 6000 m in Reggane one and up to 8000 m in the Bechar
Basin. From lithological point of view, the Cambrian formations consist of sand-
stones, quartzites, and conglomerates, deposited over the infra-Cambrian crystalline
basement. The overlying formations up to the Upper Carboniferous are represented
by various facies (shales, sandstones, limestones, etc), mainly marine and with
some sedimentary gaps. The Stephano–Autunian formations essentially consist of
red beds. There is a large pre-Mesozoic sedimentation gap. The Triassic is repre-
sented by sandy shales and lacustrian–continental deposits unconformably over-
laying the Paleozoic formations. When present, the Jurassic formations are present
in the form of marine and lacustrian to continental deposits. The transgressive

Fig. 1 Geological map of the studied Saharan basins; paleomagnetic sites yielding primary
magnetization are in red (full) dots, whereas those giving remagnetizations or unstable remanences
are in blue (open) dots. Locations for two studies (Kent et al. 1984; Boudzoumou et al. 2011),
evidencing remagnetizations, far on the western and southern borders of the Taoudeni basin are out
of the limits of the map
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Table 2 Paleomagnetic data from Saharan platform (a) associated with “published” remagne-
tizations data, (symbol “?” means that age remains doubtful or undetermined, possibly related to
composite magnetizations), or (b) with “unpublished” remagnetizations or unstable magnetization
data (Merabet Nacer Eddine, Pers. com. for all basins except Tin Serririne; and Derder Mohamed
El Messaoud, Pers. com for Tin Serririne Basin)

Basin Rock unit Coordinates Age of main
remagnetizations

References

(a)

Tindouf Djebel Reouiana 28.9°N,
8.0°W

Permian Merabet et al.
(1999)

Merkala 28.5°N,
8.5°W

Permian Henry et al.
(1999)

Dolerites dykes 27.1°N,
7.0°W

Cenozoic Boussada et al.
(2015)

Bechar–
Abadla

Famenian 31.9°N,
0.8°E

Tournaisian + Permian Aifa et al.
(1990); Aifa
(1993)Lower Devonian 29.7°N,

2.1°W

Ougarta Magmatic complexes 29.8°N,
2.7°E

Tournaisian + Visean Lamali et al.
(2013)

30.2°N,
3.2°W

29.2°N,
1.2°W

Timimoun Up. Visean 29.3°N, 02°
E

Cenozoic Kherroubi
(2003)

Ahnet Givetian Hazzel Matti 24.9°N,
2.2°E

Cenozoic + ? Smith et al.
(1994)

Famennian–
Tournaisian

26.8°N,
0.4°E

Bayou et al.
(2000)

Frasnian 26.7°N,
0.7°E

Cenozoic

Liassic Dogger?

Carboniferous + ?

Givetian 26.7°N,
1.0°E

Cenozoic

Carboniferous? + ?

Emsian 26.7°N,
0.9°E

Cenozoic

Liassic Dogger?

Carboniferous? + ?

Hassi Bachir 26.7°N,
1.8°E

Permian Daly and Irving
(1983)

Mesozoic Derder et al.
(2009)

(continued)
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Table 2 (continued)

Basin Rock unit Coordinates Age of main
remagnetizations

References

Illizi Albian sandstone and
clay

28.7°N,
9.2°E

Cenozoic Henry et al.
(2004b)

Liassic limestone and
clay

27.9°N,
9.3°E

Up. Triassic-Rhaetian
sandstone

27.8°N,
9.3°E

Stephano–Autunian
clays

27.8°N,
9.0°E

Moscovian limestone
and clay

27.6°N,
9.8°E

Bashkirian limestone
and clay

27.3°N,
8.8°E

Namurian limestone 27.2°N,
8.7°E

Visean sandstone 27.0°N,
8.7°E

Tournaisian sandstone 26.8°N,
8.8°E

Tournaisian red beds 26.7°N,
8.9°E

Strunian sandstone 26.6°N,
9.0°E

Strunian shelled
limestone

26.4°E,
8.5°E

Givetian limestone 26.3°N,
8.5°E

Emsian sandstone 26.4°N,
8.4°E

Silurian sandstone 26.2°N,
9.1°E

Low. Devonian 26.3°N,
8.2°E

Lamali et al.
(2014)

Silurian 25.7°N,
7.9°E

Murzuq Low. Silurian 24.0°N,
10.5°S

Cenozoic Amenna et al.
(2017)Up. Ordovician

(continued)
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Table 2 (continued)

Basin Rock unit Coordinates Age of main
remagnetizations

References

Tin
Serririne

Givetian 20.0°N,
6.0°E

Cenozoic Amenna (2009)

Jurassic? Bayou et al.
(2004).Carboniferous?

Emsian Cenozoic Amenna (2009)

Low. Devonian 20.0°N,
6.0°E

Liassic?

21.1°N,
7.4°E

Carboniferous? Bayou et al.
(2004)

Cambrian Ignimbrites 19.9°N,
6.0°E

Jurassic? + ?

Taoudeni Devonian Gneiguira 18.0°N,
12.3 W

? Kent et al.
(1984)

Up. Proterozoic–
Cambrian Mejeira

17.9°N,
12.3°W

?

Neoproterozoic 11.2°N,
4.3°W

? Boudzoumou
et al. (2011)

Basin Rock unit Coordinates Age of main remagnetizations

(b)

Tindouf Westphalian 28.5°N, 8.5°W Permian

Up. Visean 28.6°N, 8.6°W

Low. Visean
Strunian
Silurian

29.1°N, 7.3°W Cenozoic

Strunian
Tournaisian
Visean

26.7°N, 7.5°W Cenozoic

Bechar
Abadla

Bashkirian
Namurian
Visean

31.6°N, 2.2°W Cenozoic

Permian

Bashkirian
Moscovian

31.6°N, 2.4°W Cenozoic

Moscovian 31.0°N, 2.7°W

Visean
Namurian

30.9°N, 2.0°W

Ougarta Up. Visean 30.4°N, 2.3°W Cenozoic

Up. Visean 30.4°N, 2.3°W Cenozoic

Strunian 30.0°N, 2.1°W

Famenian 30.2°N, 2.2°W Permian

Emsian 29.9°N, 2.1°W Jurassic

Timimoun Up. Visean
Tournaisian

29.4°N, 0.2°E Cenozoic

(continued)
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Upper Cretaceous shaly sandstone and carbonate sequence are found over the
Saharan Platform. The Cenozoic formations are represented by clastic continental
sediments from Oligocene to Pliocene and Quaternary.

The Bechar Basin is bounded to the north by the High Atlas and to the south by
the Ougarta mountain range. Tindouf and Reggane basins are asymmetrically
located on the N and NE of the Reguibat shield. The basement has been encoun-
tered in some deep wells in the Illizi and Ahnet area. This basement, structured as
several crustal blocks by major faults under the Paleozoic sedimentary cover, would
be (Freulon 1964; Beuf et al. 1971; Fabre 2005) the follwoing:

• The Western Neoproterozoic of the Hoggar, under the Ahnet-Timimoun basins.
• The Central Hoggar, Polycyclic Paleoproterozoic, under the Amguid-El Biod

Ridge.
• The Eastern Hoggar, Precambrian, under the Illizi Bassin.
• The West African Craton under the Tindouf and Reggane basins.

In the Saharan Platform, basin inversion, uplift and reactivation of regional to
local structures are documented as mainly related to the Hercynian collisional event
(Haddoum et al. 2001). Recent observations highlight evidence of permanent
mobility of this platform (Nedjari et al. 2011). Many tectonic events during different
periods are linked to the basin’s location, particularly for those of the western ones.
During the Hercynian period, the configuration, evidenced by new structural ele-
ments, shows the platform as a foreland regarding the Variscan chain, which was
edified and later eroded. The Saharan Platform is structured into synclyses. In the
northwestern Sahara, the Bechar–Abadla basin is considered as atypical because of
extreme mobility due to location close to the suture zone of the Variscan orogeny.
This basin represents an appropriate model of foredeep basin (Nedjari et al. 2011).

Table 2 (continued)

Basin Rock unit Coordinates Age of main remagnetizations

Strunian

Adrar “Gothlandian”
Low. Devonian
Mid. Devonian

29.0°N, 0.3°W Cenozoic
Carboniferous + Permian
Permian + Jurassic

Visean
Namurian

27.2°N, 0.1°W Permian

Illizi Cambro–Ordovician 24.5°N, 9.5°E Cenozoic

Tin Serririne Silurian 19.7°N, 5.8°E Cenozoic

20.9°N, 7.4°E

Ordovician 19.9°N, 5.8°E
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It is highly subsident with very thick sedimentary filling. The deformations within
the platform have been explained by distal effects of stresses generated by collision
and mechanical coupling between the Gondwana and Laurussia plates. Basin
exhumation and compressional reactivation of structures also occurred during the
Tertiary collision between the African and European plates (Liégeois et al. 2005;
Galeazzi et al. 2010).

3 Sampling and Analysis Procedure

Depending on outcropping conditions and on facies features, different stratigraphic
levels of the studied geological formations were mostly sampled. To have signifi-
cant and reliable data, at least seven sites were generally selected (Table 1). In
favorable cases, more than 300 cores distributed on up to 33 independent sites have
been drilled in the same rock unit. In most cases, the sampling was made by a
portable gasoline-powered drill. Large hand samples (precisely oriented using a
plaster cap) were also collected when the facies was too friable and cores were
drilled in the laboratory. All samples were oriented with magnetic and sun com-
passes. One to three specimens of standard size (cylinders of 11 cm3) were cut from
each core, allowing demagnetization treatments and additional rock magnetic
studies to be performed. Prior to any demagnetization analysis, the specimens were
put in a zero field for at least 1 month, in order to reduce possible viscous
magnetization.

The Remanent Magnetization was mostly measured using JR4 or JR5 spinner
magnetometer (AGICO, Brno, Czech Republic). In each study, whatever the kind
of the rocks (sedimentary or volcanic) both thermal and Alternating Field
(AF) demagnetization were performed on pilot specimens, and, when needed, by
combined AF-thermal procedure. In order to correctly isolate and identify the
magnetization components, numerous demagnetization steps were used (10 °C, and
until 5 °C increment in high temperatures when necessary).

The results of demagnetization analysis were carried out using classical meth-
ods: they were presented on orthogonal vector plots (As and Zijderveld 1958;
Zijderveld 1967). The remaining vectors after each step and the difference vectors
removed between two consecutive demagnetization steps were plotted on equal
area projections. When applicable, the remagnetization circles methods (Halls 1976,
1978; McFadden and McElhinny 1988), were also used. The direction of the
magnetization components was calculated by principal component analysis
(Kirschvink 1980). Fisher (1953) statistics were used to determine the mean
characteristic directions. When appropriate, progressive unfolding was performed,
allowing fold test (e.g., McElhinny 1964; McFadden 1990; Tauxe and Watson
1994). “Synfolding” magnetizations were analyzed using small circles method
(Shipunov 1997; Henry et al. 2004a; Waldhör and Appel 2006). When applicable,
reversal (McFadden and McElhinny 1990) and contact tests were also performed.
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4 Rock magnetism

Rock magnetism analyses were carried out on all the studied geological formations.
Representative samples from each formation were chosen to determine their
magnetic mineralogy from different magnetic approaches, based on thermal
demagnetization curves, thermomagnetic K(T) curves (magnetic susceptibility as a
function of temperature), and hysteresis loops. Mean susceptibility and K(T) curves
were determined on AGICO KLY2 (or KLY3), CSL and CS2 (or CS3) equipments
and hysteresis loops on a laboratory-made translation inductometer for small
samples (about 3 cm3) within an electromagnet.

The results showed that, generally, for sedimentary formations, the main mag-
netic mineral carriers were hematite (Fig. 2a, b), magnetite (Fig. 3a, b) or a mixture
of these two minerals (Fig. 4a, b). For the magmatic formations, rock experiments
result suggested that Ti-poor titanomagnetites of pseudo-single-domain grain size
(Derder et al. 2016), or a mixing of Ti-rich titanomaghemite and magnetite are the
main carriers (Derder et al. 2006).

5 Paleomagnetic Results

During the demagnetization process, the analysis of the natural remanent magne-
tization gave different kinds of evolution on the Zijderveld plot, after elimination of
a viscous component. The first one (i) is illustrated by a stable magnetic direction
characteristic of a single component (Fig. 5a). The second type (ii) shows the

Fig. 2 a Typical thermomagnetic (variation of the normalized magnetic susceptibility K/K0

during a cycle of progressive heating and cooling in air in low magnetic field) curve for ZE23
sample pointing out presence of hematite (from Fig. 3a of Derder et al. 2001d, modified).
b Hysteresis loop for Mo219 sample (H: magnetic field; Hc: coercive force; Hcr: remanent
coercive force; all in Tesla; J: Magnetization) suggesting presence of hematite (from Fig. 2b of
Derder et al. 2001c, modified)
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isolation of several components distributed over the unblocking temperature spectra
(Fig. 5b). The third one (iii) points out magnetic directions evolving along a great
circle and reaching a ‘‘stable endpoint’’ direction for the highest demagnetization
steps (Fig. 5c). The fourth one (iv) is characterized by directions evolving along a
great circle (superimposition of unblocking spectra for at least two components),
but no stable component was reached even for the highest demagnetization steps
(Fig. 5d). Finally, the last kind (v) is characterized by an erratic behavior of the
magnetization.

According to the sites, the percentage of usable data (i, ii, iii, and sometimes iv)
is very variable from one study to another (e.g. Table 1). Reliability criteria (Van
der Voo 1990; Henry et al. 2017) and paleomagnetic tests yielded separation of

Fig. 3 a Thermomagnetic curve (see Fig. 2a caption) for La26 sample pointing out presence of
magnetite (from Fig. 3a of Henry et al. 1992, modified). b Typical thermal demagnetization curve
for La26 sample pointing out existence of magnetite (from Fig. 3b of Henry et al. 1992, modified)

Fig. 4 a Typical thermomagnetic curve (see Fig. 2a caption) for Mo42 sample showing, in
addition to an “Hopkinson” peak related to magnetite, the presence of hematite (from Fig. 3 of
Derder et al. 2001c, modified). b Hysteresis loop (see Fig. 2b caption) for Hb4 sample showing
wasp-waisted shape suggesting existence of magnetite and hematite (from Fig. 3b of Derder et al.
2009, modified)
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primary (Fig. 1; Table 1) and secondary (Table 2) magnetizations. Used tests (see
Table 1) were fold test (Aifa et al. 1990; Derder et al. 2001a, c, 2009; Merabet et al.
2005; Smith et al. 2006; Amenna et al. 2014) (Fig. 6), reversal test (Derder et al.
2001a) (Fig. 7) and contact test (Derder et al. 2016) (Fig. 8). Significant variability
of the paleomagnetic direction pointed out in different stratigraphic levels within a
same formation was also used as a criterion to highlight primary magnetization
(e.g., Henry et al. 2014). Several examples (e.g., Bayou et al. 2000; Bouabdallah
et al. 2003) of data of type i appeared to be composite (i.e., resulting from
superimposition of different magnetization components with similar blocking
characteristic spectra). In some favorable cases, separation of these components was
possible (Merabet et al. 1999; Henry et al. 1999; Derder et al. 2001d). In all, 93
geological formations or intrusions were studied, giving 23 new paleomagnetic
poles related to primary magnetizations.

Fig. 5 Orthogonal vector plots (filled circles: horizontal plane, crosses: vertical plane), in
stratigraphic coordinates for a samples IZ312A (from Fig. 6a of Amenna et al. 2014, modified);
b sample: IZ088A (from Fig. 6a of Henry et al. 2014, modified); c sample D332 (from Fig. 6 of
Derder et al. 2006, modified) and d sample TG019A (from Fig. 6e of Derder et al. 1994, modified)
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Fig. 5 (continued)

Fig. 6 Variation of k parameter (Fisher 1953) during progressive unfolding for the Moscovian
Formation at Edjeleh in Illizi basin (Derder et al. 2001c), Jurassic dolerites in Reggane basin
(Smith et al. 2006) and lower Serpukhovian—lower Moscovian Ain Ech Chebbi formation in
Ahnet basin (Derder et al. 2009)
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Fig. 7 Equal area plot (crosses: positive inclinations, open circles: negative inclinations) of
paleomagnetic directions of middle–upper Carboniferous formations from Reggane basin. The
reversal test (McFadden and McElhinny 1990) is positive after dip correction, with angular
difference c (5.0°) between mean directions for normal and reversed data lower than the critical
value cc (9.2°), but this test is negative (c = 17.8°; cc = 10.7°) before dip correction (from Fig. 9a
of Derder et al. 2001a, modified)

Fig. 8 Equal area plot (open circles: negative inclinations) of paleomagnetic directions obtained
from the sill, after dip correction, from the sedimentary Silurian site affected by contact
metamorphism and that of the expected direction of the Silurian levels (calculated from the APWP
for 430 Ma), showing positive contact test
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6 Discussion

6.1 Apparent Polar Wander Path (APWP)
for the Gondwana and Its Implications

Unfortunately, all studies from dated geological units older than the Bashkirian did
not yield primary magnetization, except for the Lower Carboniferous dolerites of
the Tin Serririne basin (Derder et al. 2006). In addition, because of the lack of
existing geological formations during several periods, the paleomagnetic poles
obtained in dated formations correspond thus to two age windows, from the
Bashkirian to the Autunian (19 poles) and from the Middle Triassic to the Lias (4
poles). For the first window, the poles were obtained in different basins, widespread
between the far western Tindouf and far eastern Murzuq ones, i.e., along a distance
of about 2000 km. That gives an important significance to each of the data, which
represent independent areas of the Saharan Platform. These poles were integrated in
the classical paleomagnetic pole selection of McElhinny et al. (2003), Derder et al.
(2006) and Torsvik et al. (2012) to determine (Le Goff et al. 1992) an improved
APWP for the Gondwana (Amenna 2015).

However, a detailed comparison of the African paleomagnetic poles obtained in
the Saharan basins with the Gondwana APWP highlighted an incoherency in the
used selection. This incoherency appeared as due to the selected poles for South
America (Tomezzoli et al. 2013). In fact, poles positions obtained from areas close
to the eastern border of the Andean Cordillera are different from those obtained
from the cratonic eastern part of this continent. This discrepancy pointed out tec-
tonic disturbances not previously suspected in this border (Henry et al. 2017). The
pole selection for the Gondwana, and therefore the Gondwana APWP, were then
reevaluated and improved (Fig. 9).

Mainly due to the reliable paleomagnetic data from the Saharan basins, this
APWP is very precise for the Upper Carboniferous, yielding a well-defined location
of the Gondwana at this period (Fig. 10). By contrast, for the Laurussia, the limited
number of available paleomagnetic data yields large uncertainty in its APWP
(Domeier et al. 2012) and then of its location in the reconstruction. Because of the
uncertainty in longitude in such reconstructions, other relative positions of the two
supercontinents remain possible, and this reconstruction strongly argues for an A2
Pangea (Van der Voo and French 1974), as presented on the Fig. 10.

This APWP yielded also dating by comparison with the paleomagnetic data
obtained in undated geological units (Fig. 11).

– K/Ar age of the dolerites studied in the Tin Serririne basin (Djellit et al. 2006)
has been confirmed by this method (Derder et al. 2006).

– The Zarzaïtine Formation, well dated in the Illizi basin (Lehman 1971; Bourquin
et al. 2010; Aït Ouali et al. 2011), was studied in the Murzuq basin at Anaï area.
Because of lack of paleontological arguments in this last basin, the age of this
formation, at the base of the post-Hercynian deposits, was of particular interest.
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The obtained Late Permian age evidenced a very large diachronism (40 Ma)
within the Zarzaïtine Formation (Henry et al. 2014). This strong diachronism, as
well as the local character of the Stephano–Autunian Tiguentourine deposits in
newly formed basins in Libya (Hallett 2002), clearly indicates that the
post-Hercynian structural evolution of the Saharan Platform included vertical
movements, which gave differential uplifts. The latter was at the origin of
erosion, hiatus or sediments deposition according to areas and likely according
to time for a same area.

– The Lower Devonian age (415–400 Ma—Derder et al. 2016) of the very large
sill discovered in the Murzuq basin shows that this magmatic event corresponds
also to that (407 ± 8 Ma—Moreau et al. 1994) of the Aïr intrusives (Liégeois
et al. 1994) and could be also at the origin of sand injections in different borders
of the Murzuq basin (Moreau et al. 2012). In Niger, large sills in the same
stratigraphical position (Menchikoff 1962) are probably of the same age. These

Fig. 9 Gondwana APWP (from Henry et al. 2017) for the period 500–250 Ma, with associated
uncertainty zone at 95% A95 (Fisher 1953)
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different results imply a regional magmatic event affecting a very large area of
the Saharan Platform. On the other hand, the loop of the Gondwana APWP
(Fig. 9) between the Late Ordovician (pole 450 Ma) and Late Devonian
(370 Ma) was not generally deemed as very reliable. The Aïr (Hargraves et al.
1987) and Arrikine (Derder et al. 2016) coherent mean paleomagnetic datum is
“unique” and supports the existence of this loop, which has to be considered for
the future paleocontinental reconstructions for this period.

Fig. 10 Paleogeographic reconstruction for the Moscovian (310 Ma) using the data in north west
African coordinates of Laurussia (Domeier et al. 2012) and Gondwana (Henry et al. 2017) to
restore the landmasses independently. This reconstruction is in favor a Pangea A2 type, suggesting
that such a reconstruction had existed since the Upper Carboniferous
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6.2 Structural Implications

The study, in the Reggane basin, of a Jurassic sill emplaced within folded Paleozoic
series, highlighted that actually part of this folding occurred after dolerites intrusion
(Smith et al. 2006). The dip of the Paleozoic formations during intrusion has been
determined by a small circles approach (see Henry et al. 2004a and references
herein). It was interesting to notice that this dip had in some sites higher values than

Fig. 11 Comparison of the Zarzaitine Illizi (Kies et al. 1995; Derder et al. 2001d), Anaï (Henry
et al. 2014), Arrikine (Derder et al. 2016), Aïr (Hargraves et al. 1987) and Tin Serririne (Derder
et al. 2006) paleomagnetic poles with the Gondwana and Africa APWP (500–250 Ma—Henry
et al. 2017; 240–210 Ma—Domeier et al. 2012 and 200–0 Ma—Besse and Courtillot 2002). K/Ar
age of the Tin Serririne dolerites (Djellit et al. 2006). “Cenozoic” remagnetizations poles from the
Saharan basins are in green dots
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the present dip (Fig. 12), implying locally tilting in opposite direction during the
Hercynian and post-intrusion foldings. This proves the validity of the assumption of
post-Hercynian tectonics in the Saharan Platform (Conrad 1972, 1981).

At Hassi Bachir area, Daly and Irving (1983) evidenced superimposition of
paleomagnetic components. A new analysis (Derder et al. 2009) allowed isolation
of the primary magnetization C and of another B component (possibly composite—
see above). A statistical approach (Tauxe and Watson 1994), based on 10,000
bootstrap resamplings for progressive unfolding (Fig. 13), indicates that the B
component is “syntectonic” (i.e., for paleomagnetists acquired either after the
beginning of the first deformation and before the end of the last one, or during the
folding in case of single tectonic event). This means that B component acquisition
is related to the Hercynian folding or to existence of a second folding event, as
shown with the Reggane dolerites.

Fig. 12 a Sketch map of the Jurassic Reggane sill (pink color) area with the sites location and
b dip values related to the two tilting events having occurred, respectively before (Hercynian dips,
blue arrows) and after (red arrows) the dolerite emplacement for the different sites (from Fig. 11 of
Smith et al. 2006)
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Paleomagnetic data had also structural important implications in the “Ougarta”
range, by pointing out two different tectonic phases affecting the magmatic com-
plexes (Lamali et al. 2013).

6.3 Geochemical Implications

Remagnetizations phenomena, either partial or total, have been evidenced in many
basins (e.g. Aifa 1993; Henry et al. 2004b). Only one Silurian site, metamorphized
during the Arrikine sill intrusion (Murzuq basin), shows magnetic overprint related
to heating (Derder et al. 2016). For the other studied geological units, the thickness
of the overlying series at the time of remagnetization was insufficient to produce
significant heating effects due to simple burial. In many areas, presence of high
temperatures components of normal and reversed polarities during demagnetization
process shows that remagnetizations are not related to effects of the recent field
(Viscous Remanent Magnetization). Chemical phenomena represent, therefore, the
main origin of the magnetic overprints of these different geological formations.

These overprints were acquired during two principal periods: the Permian and
Cenozoic (Fig. 11). These two ages correspond in the Saharan Platform to erosion
and continental environment. However, the presence of both magnetic polarities for
the most recent remagnetizations in the different geological formations of the Illizi
and Murzuq basins (Henry et al. 2004b; Lamali et al. 2014; Amenna et al. 2017)
shows that they were not due to a simple superficial surface weathering. In addition,
in the Illizi basin, a relation between the magnetic polarity and subhorizontal

Fig. 13 Frequency (in percentage) of optimal untilting value (by window of 5°) obtained by the
bootstrap method of Tauxe and Watson (1994) for B component (blue) and ChRM C (red), with
confidence areas at 95% (thin line) and 63% (thick line), (from Fig. 7 of Derder et al. 2009)
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stratigraphic levels (giving a pseudo-magnetostratigraphy) suggests a significant
role of ground-fluids (Henry et al. 2004b). Both periods of remagnetization also
correspond to differential uplifts in the Saharan Platform after the Hercynian main
tectonics (Henry et al. 2014) or to the Cenozoic Hoggar uplift (Rougier et al. 2013).
Fluids migration resulting from such vertical movements often favored chemical
changes and remagnetization process (e.g., Oliver 1986; McCabe and Elmore 1989;
Symons et al. 1996; Rouvier et al. 2001).

Paleomagnetic data yielded another geochemical implication. As mentioned
above, the primary magnetization was not obtained in the studied sedimentary sites
older than the Bashkirian of the Saharan basins. Indeed, all these rocks did not give
stable remanent magnetization or were totally remagnetized. This Bashkirian age
precisely corresponds to that obtained in the Arrikine sill by K/Ar (325.6 ± 7.7 Ma
—Derder et al. 2016), age attributed to rejuvenation related to cryptocirculations of
fluids, suggesting a significant regional geochemical event at this period.

7 Conclusion

More than a quarter century of paleomagnetic studies in Saharan basins surrounding
the Hoggar Shield have largely contributed to a better knowledge of the Saharan
Platform. These investigations demonstrated that the paleomagnetism is a strong
tool for different geological and geodynamical purposes, being even in some cases
the unique possible approach. Some applications, such as dating or tectonic anal-
yses, used successfully in Algeria, could be applied in other countries of the
Saharan Platform, thus opening other perspectives. As pointed out in this overview,
analyses of rocks remagnetization and of their acquisition processes could have
major geochemical implications. The remagnetizations, previously neglected by
most paleomagnetists, could then become a new geochemical indicator. Finally, the
example of the structural implications of the improvement of the South
American APWP, mentioned in this overview, underlines that for tectonic purposes,
it will be interesting to extend paleomagnetic investigations to the craton border
zones, as around the south Atlasic flexure, which separates the Alpine domain from
the Saharan craton in North Africa.
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