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Asymptotic Translation Uniform Shethie
Integrability and Multivalued Dynamics

of Solutions for Non-autonomous
Reaction-Diffusion Equations

Michael Z. Zgurovsky, Pavlo O. Kasyanov, Nataliia V. Gorban,
and Liliia S. Paliichuk

Abstract In this note we introduce asymptotic translation uniform integrability
condition for a function acting from a positive semi-axes of time-line to a Banach
space. We prove that this condition is equivalent to uniform integrability condition.
As a result, we obtain the corollaries for the multivalued dynamics (as time ¢ —
+00) of solutions for non-autonomous reaction-diffusion equations.

21.1 Introduction

Let R = [0, 400), y > 1, and & be a real separable Banach space. As L%ﬁ)C(R+; &)
we consider the Fréchet space of all locally integrable functions with values in &,
that is, ¢ € L%ﬁ)C(R+; &) if and only if for any finite interval [z, T] C R4 the
restriction of ¢ on [7, T'] belongs to the space L, (7, T; &).If & € L1(£2), then any
function ¢ from Lllj)c (R4; &) can be considered as a measurable mapping that acts
from £2 x R into R. Further, we write ¢(x, t), when we consider this mapping as a
function from £2 x Ry into R, and ¢(¢), if this mapping is considered as an element
from LI;C(]RJF; &); cf. Gajewski et al. [5, Chapter III]; Temam [10]; Babin and
Vishik [1]; Chepyzhov and Vishik [3]; Zgurovsky et at. [12] and references therein.
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A function ¢ € LY(Ry; &) is called translation bounded in LY°(Ry; &), if

t+1
supf l()ll%ds < +o0; (21.1)
t

t>0

Chepyzhov and Vishik [4, p. 105].

Let N = 1,2,... and 2 C RY be a bounded domain. A function
¢ € L11°°(R+; L1(82)) is called translation uniform integrable one (t.u.i.) in
LY (Ry; L1(£2)), if

t+1
lim sup//|(p(x,s)|x{|(p(x,s)|zK}dxds=0; (21.2)
K—+4o00 >0
r o2

Gorban et al. [6-9]. Dunford-Pettis compactness criterion provides that a function
@ € LPRy; Li(2)) is tui. in LP(Ry; L1(2)) if and only if for every
sequence of elements {7,},>1 C R4 the sequence {¢(- + 7,)},>1 contains a
subsequence which converges weakly in LllOC (R4; L1($2)). We note that for any
y > 1 Holder’s and Chebyshev’s inequalities imply that every translation bounded
in LI°(Ry; L, (£2)) function is t.u.i. in L (Ry; L1(£2)), because

41 | 141

/ /|<p(x,s)IxW(x,S)\zK}dxds < K1 sug / / lo(x, s)|Ydxds — 0 as K — +oo.
>

r 2 Tt Q2

Let us introduce the definition of asymptotic translation uniform integrable function.
Definition 21.1 A function ¢ € LllOC (R4; L1(£2)) is called asymptotic translation
uniform integrable one (a.t.u.i.) in LllOC R4; L1(£2)), if

t+1
lim lim //|(p(x,s)|x{‘¢(x,s)‘21(}dxds=O. (21.3)
t 2

K—+o00t—>+00

Remark 21.1 The limit (as K — +o00)in (21.2) ((21.3)) exists because the function

t+1
K = sup( lim ) f f lo(x, ) Xflpe 01> K 1dxds (21.4)
t 2

>0

is nonincreasing in K > 0.

The main result of this note has the following formulation.
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Theorem 21.1 Let ¢ € L\°(Ry; L1(£2)). Then there exists T > 0 such that
@(- + T)is tai. in L'°(Ry; L1 (2)) iff ¢ is a.tu.i. in LY°(Ry; L1(R2)).

In Sect.21.3 we apply Theorem 21.1 to non-autonomous nonlinear reaction-
diffusion system.

21.2 Proof of Theorem 21.1

Let us prove Theorem 21.1. The t.u.i. of (- + T) for some T > 0 implies a.u.t.i. of
@(-) because for each sequence {a,},=1,2,... C Rits limit superior is no greater than
its supremum, that is, (21.2) implies (21.3). Let us prove the converse statement: if
¢(-) is a.t.u.i., then (- + f‘) is t.u.i. for some T > 0. We provide the proof in
several steps.

Step 1 The following equalities hold:

t+1
0= lim lim //|(P(X,S)|X{\<p(x,s)\zK}dXdS
t Q2

K—+o00t—>+00

t+1

= inf inf , dxd 21.5
IleTlgotSBg//lf/’(x O X(lox,5)1=K)dxds (21.5)
=r s )

t+1

= inf inf s , dxds.
T1>01§>0,B¥//|¢(x O X(lox,5)1=K)dxds

t Q2

Indeed, the first equality follows from a.t.u.i. of ¢(-), the second equality holds
because the mapping

t+1
K'_)tiiglw//|(/)(xas)|X{\(p(x,S)\2K}dde
i Q2

is nonincreasing and for each a : [0, +00) — R the equality

lim a(t) = inf supa(?)
t——+400 > >T

holds, and the last equality follows from the basic properties of infimum.
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Step 2 We set

t+1
8(T) := infosup//|go(x,s)|x{|¢(x,s)|z,(}dxds, (21.6)

>Vi>T
=Ty 2

T > 0, and notice that (21.5) directly implies the existence of T > 0 such that
§(T) < +ooforeach T > T and §(T)\0Oas T — oo. 21.7)

Step 3 According to (21.6) and (21.7), for each T > T there exists K7 > 0 such
that

1+1
1
sup / / lo(x, ) Xfpx,s)=k)dxds < 6(T) + T < 400, (21.8)

t>T
t

foreach K > K.

Step 4 Since foreachn =0, 1, ...

T+n+1 T4n+1
/ /|(p(x,s)|dxds= / /|(p(x9S)lX{l(p(x,S)ISKT}dXdS
Fan £ T+n £
T4n+1
b [ [ ottt pidads
T+n £

~ 1
< Kjmeas(£2) +8(T) + 7 < +00,

where the first inequality follows from (21.8), and the second inequality holds
because meas(£2) < +00, then absolute continuity of the Lebesgue integral implies
that foreach T > T and t € [T, T] there exists K (T, T) > 0 such that

t+1 T+1

1
//|90(x,S)IX{|<p(x,s)|zK}ddeS / /|(p(x,s)|X{\(p(x,s)\ZK}dde <7
2 2

t

T
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foreach K > K(f’, T), that is,

t+1

1
sup //|(p(xeS)lX{|(p(x,s)|zK}ddeS N’ (21.9)
telT,T] Y

foreach T > T and K > IZTT = sup {Kr; K(f‘, T)}.
te[T,T]

Step 5 Inequalities (21.8) and (21.9) imply that

t+1
1
sup / / lo(x, ) X{px,n=kdxds < §(T) + T’

o7
t>T s

foreach T > T and K > IZTf Thus, according to (21.6),

t+1
. 1
8(T) = inf sup//|(p(x,s)|X{‘¢(x,S)‘ZK}dxds <8(T)+ ., (21.10)
K OIZTt T

foreach T > T.

Step 6 Since the function

t+1

K= Sup//|§0(x9S)lX{|(p(x,s)|2K}dde
t>T p
is nonincreasing, we have that
t+1 |
lim sup / lo(Cx, ) X{lpr,s)=K)dxds = 8(T) < 8(T) + . (21.11)
K—+oo 7 J T

for each T > T, where the inequality follows from (21.10). According to (21.7),
8(T) + } N\ 0as T — +o00. Therefore, (21.11) implies that

1+1
lim sup//|(p(x I Xilp@,0=kdxds =0,

K—+ OOt>T

that is, ¢(-) is t.u.i.
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21.3 Examples of Applications

Let NyM = 1,2,..., 2 C RY be a bounded domain with sufficiently smooth
boundary 2. We consider a problem of long-time behavior of all globally defined
weak solutions for the non-autonomous parabolic problem (named RD-system)

{y,:aAy—f(x,t,y), xef, t>0, (21.12)
ylae =0,
ast — +oo, where y = y(x,1) = (yV(x,1),..., y™(x, 1)) is unknown vector-

function, f = f(x,t,y) = (f(l)(x, LY, .., f(M)(x, t, y)) is given function, a is
real M x M matrix with positive symmetric part.
We suppose that the listed below assumptions hold.

1
qi
1,2, ..., M.Moreover, there exists a positive constant d such that ; (a+a™) > dlI,
where 7 is unit M x M matrix, a* is a transposed matrix for a.

Assumption I Let p; > 2 and g; > 1 are such that [} + = 1, forany i =

Assumption II The interaction function f = (f(V, ..., fM): 2 xR, xRM —
RM satisfies the standard Carathéodory’s conditions, i.e. the mapping (x, ¢, u) —
f(x,t,u) is continuous in u € RM for a.e. (x,1) € 2 x Ry, and it is measurable
in (x,7) € 2 x Ry foranyu € RM,

Assumption III (Growth Condition) There exist an a.t.u.i. in Lll"C (Ry; L1(£2))
function ¢1 : £2 x Ry — R and a constant ¢; > 0 such that

pi

M o M
S0 nwf camn+a ) [w
i=1 i=1

forany u = ™, ..., u™) e RM andae. (x,1) € 2 x Ry.

Assumption IV (Sign Condition) There exists a constant ¢ > 0 and an a.t.u.i. in
L**(Ry; L1(£2)) function B : 2 x Ry — R such that

M M »
> O Lwu® = a0 |u®|" - g
i=1 i=1

forany u = ™, ..., u™) e RM andae. (x,1) € 2 x Ry.

In further arguments we will use standard functional Hilbert spaces H =
(La(2)M, vV = (H}(£2))M, and V* = (H~'(£2))™ with standard respective inner
products and norms (-, ) and || - |z, (-, -)v and | - [lv, and (-, )v= and || - [ly=,
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vector notations p = (p1, p2, ..., py) and q = (g1, q2, - - -, gu), and the spaces

Lp(R2):=Lp (2) X ... x Lp,(82), Lq(£2):= Ly (£2) X ... X Ly, (£2),
Lp(t, T; Lp(82)) := Ly (v, T; L, (£2)) X ... X Lp, (v, T; Lp,, (£2)),
Lo(z, T Lq($2)) := Ly (t, T; Ly (2)) X ... X Lgy, (z,T; Ly, (£2)), 0 <7 < T < +o0.

Let0 <7 < T < +oo.Afunctiony = y(x,t) € Lo(zr, T; V)NLp(z, T; Lp(£2)) is
called a weak solution of Problem (21.12) on [z, T], if for any function ¢ = ¢(x) €
(CgO (.Q))M , the following identity holds

d
dt/Qy(x,t)'f/)(X)dx+/Q{aVy(x,t)'Vw(X)Jrf(x,t,y(x,t))'f/)(X)}dx=0
(21.13)

in the sense of scalar distributions on (z, T).

In the general case Problem (21.12) on [, T'] with initial condition y(x, t) =
yr(x) in £2 has more than one weak solution with y; € H (cf. Balibrea et al. [2]
and references therein).

Assumptions I-IV and Chepyzhov and Vishik [4, pp. 283-284] (see also
Zgurovsky et al. [11, Chapter 2] and references therein) provide the existence of
a weak solution of Cauchy problem (21.12) with initial data y(r) = y™ on
the interval [z, T], for any y() € H. The proof is provided by standard Faedo—
Galerkin approximations and using local existence Carathéodory’s theorem instead
of classical Peano results. A priori estimates are similar. Formula (21.13) and
definition of the derivative for an element from Z([t, T]; V* 4 Lq(£2)) yield that
each weak solution y € X; 7 of Problem (21.12) on [z, T] belongs to the space
Wz, 7. Moreover, each weak solution of Problem (21.12) on [z, T'] satisfies the
equality:

T dy(x, 1)
/ / 9t Y (x,t) +aVy(x,t) - Vir(x, t)+ f(x,t,y(x, 1)) - ¥(x,t) |dxdt =0,
T 2
(21.14)
forany € X, r.Forfixed r and T, such that 0 <t < T < 400, we denote
Zer (') = {y() | y is a weak solution of (21.12) on [, T1, y(z) =y}, »™ e H.

We remark that .@,,T(y(”) # ¢ and @T,T(y(’)) C Wer,if0 <t < T < 400
and y(f) € H. Moreover, the concatenation of Problem (21.12) weak solutions is
a weak solutions too, i.e.if 0 <t <t < T, y(’) e H,y() € .@m(y(f)), and
v(-) € Z;,1(y(1)), then

_ )y, s ez, 1],
2(s) = {v(s), s e[t T).

belongs to Z; (y(f)); cf. Zgurovsky et al. [12, pp. 55-56].
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Each weak solution y of Problem (21.12) on a finite time interval [z, T] C Ry
can be extended to a global one, defined on [t, +00). For arbitrary t > 0 and
vy e H let 2:(y™) be the set of all weak solutions (defined on [7, +00))
of Problem (21.12) with initial data y(r) = y®. Let us consider the family
HE = Uyoen 2. (y() of all weak solutions of Problem (21.12) defined on the
semi-infinite time interval [T, +00).

Consider the Fréchet space

C°(Ry; H) :={y: Ry — H : [T, 1,y € C(lt, ]; H) forany [11, 2] C Ry},

where I}, 1, is the restriction operator to the interval [#1, #2]; Chepyzhov and Vishik
[3, p. 918]. We remark that the sequence {f,},>1 converges (converges weakly
respectively) in C1°°(Ry; H) towards f € C'°(Ry; H) as n — 4oo if and
only if the sequence {I1;, 1, fu}n>1 converges (converges weakly respectively) in
C([t1, ]; H) towards I1;, s, f as n — 4-oc0 for any finite interval [#1, ] C Ry.

We denote T (h)y(-) = yu(-), where y,(t) = y(t + h) forany y € C'°°(R; H)
andr, h > 0.

In the non-autonomous case we notice that T(h)z}if)‘Ir Z %"’. Therefore (see
Gorban et al. [8]), we need to consider united trajectory space that includes all
globally defined on any [7, +00) € R4 weak solutions of Problem (21.12) shifted
tor =0:

x5 =U !y(- F1) e WR,) : y(-) € ;{j}. (21.15)

>0

Note that T(h){y(- +7) : y € AT} C{y(-+1+h) : ye€ f%/rih} for any
7, h > 0. Therefore,

T(hAS < A

for any h > 0. Further we consider extended united trajectory space for Prob-
lem (21.12):

+ _ +
A e, 1y = Sl a) [407]. (21.16)
where clciocm gyl - 1 is the closure in C lo¢(R, ; H). We note that
+ +
T(h)%'OC(R+;H) = %I°C(R+;H)
for each i > 0, because

Petoer, -y (T (W, T(h)v) < petocr, . pr) (1, v) forany u, v € C'*“(Ry; H),

where pcioe(g, . gy is @ standard metric on Fréchet space C loc(R 5 H).
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Let us provide the result characterizing the compactness properties of shifted
solutions of Problem (21.12) in the induced topology from C'°°(R; H).
Theorem 21.2 Let Assumptions 1-IV hold. If {yn}n>1 C f/”i/CJerC Ro:H)
trary sequence, which is bounded in Loo(R4; H), then there exist a subsequence

is an arbi-

{Vnehkz1 € {ynlnz1 and an element y € A, (&, 11y Stch that
M 1e7yn, — e 7yllcqe,m;H) —> 0, k — +o0, (21.17)
for any finite time interval [t, T] C (0, +00). Moreover, for any y € f%/goc(R+;H)
the estimate holds
YOI < 1y ©O)IFe™" + ca, (21.18)

foranyt > 0, where positive constants c3 and c4 do not dependon'y € ‘%/C—TUC(R H)
+3
andt > 0.

Proof This statement directly follows from Gorban et al. [8, Theorem 4.1] and
Theorem 21.1.

Aset Z C F°R,) N Lo(Ry; H) is said to be a uniformly attracting set
(cf. Chepyzhov and Vishik [3, p. 921]) for the extended united trajectory space
H of Problem (21.12) in the topology of .Z'°°(R.), if for any bounded

Floc (R+)
in Lo(Ry; H) set Z € %, (;k,c ®y) and any segment [#1, 1] C R, the following
relation holds:
diStfg;tl,tz (ntl,IzT(t)%s Ht],tzgz) — O, t — 400, (2119)

where dist#, , is the Hausdorff semi-metric.
Aset w C X, ;100 ®,) is said to be a uniform trajectory attractor of the
Frloc(R .

. . Jr
translation semigroup {7 (f)};>0 on Ji/y]oc(R”

Cl°(Ry; H), if
1. % is a compact set in C'°(R.; H) and bounded in Lo (Ry; H);

2. 9 is strictly invariant with respect to {7 (h)}n>0, i.e. T(h)% = % VYh > 0;
3. % is a minimal uniformly attracting set for .7 % in the topology of

in the induced topology from

Cloc(R4; H)
C°°(R,; H), i.e. % belongs to any compact uniformly attracting set & of
t}i/CJlr U S P,
C(Ry; H)

Note that uniform trajectory attractor of the translation semigroup {7'(¢)};>¢ on

%TUC (Ro: H) in the induced topology from C'°°(R ; H) coincides with the classical
+3

global attractor for the continuous semi-group {7 (¢)};>¢ defined on f%/CJ{OC Ro:H)'
> "
Assumptions [-1V are sufficient conditions for the existence of uniform trajectory

attractor for weak solutions of Problem (21.12) in the topology of C1°(R ; H).
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Theorem 21.3 Let Assumptions 1-IV hold. Then there exists an uniform trajectory

+ : : +
attractor % C %/cloc Ry H) of the translation semigroup {T (t)};>0 on f/”i/cloc Ry H)

in the induced topology from C'°(Ry; H). Moreover, there exists a compact in
C'°(Ry; H) uniformly attracting set & C C'(Ry; H) N Loo(Ry; H) for the

extended united trajectory space ‘%/JOC(R H) of Problem (21.12) in the topology of
+

C(R_; H) such that % coincides with w-limit set of P:

U =(\elewm,.m | JTWZ | (21.20)

t>0 h>t

Proof This statement directly follows from Gorban et al. [8, Theorem 3.1] and
Theorem 21.1.

21.4 Conclusions

Asymptotic translation uniform integrability condition for a function acting from
positive semi-axe of time line to a Banach space is equivalent to uniform integrabil-
ity condition. As a result, we claim only asymptotic (as time t — +00) assumptions
of translation compactness for parameters of non-autonomous reaction-diffusion
equations.
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