Chapter 21 Asymptotic Translation Uniform Integrability and Multivalued Dynamics of Solutions for Non-autonomous Reaction-Diffusion Equations

Michael Z. Zgurovsky, Pavlo O. Kasyanov, Nataliia V. Gorban, and Liliia S. Paliichuk

Abstract In this note we introduce asymptotic translation uniform integrability condition for a function acting from a positive semi-axes of time-line to a Banach space. We prove that this condition is equivalent to uniform integrability condition. As a result, we obtain the corollaries for the multivalued dynamics (as time $t \rightarrow +\infty$) of solutions for non-autonomous reaction-diffusion equations.

21.1 Introduction

Let $\mathbb{R} = [0, +\infty)$, $\gamma \geq 1$, and \mathscr{E} be a real separable Banach space. As $L_{\gamma}^{\text{loc}}(\mathbb{R}_+; \mathscr{E})$ we consider the Fréchet space of all locally integrable functions with values in \mathscr{E} , that is, $\varphi \in L_{\gamma}^{\text{loc}}(\mathbb{R}_+; \mathscr{E})$ if and only if for any finite interval $[\tau, T] \subset \mathbb{R}_+$ the restriction of φ on $[\tau, T]$ belongs to the space $L_{\gamma}(\tau, T; \mathscr{E})$. If $\mathscr{E} \subseteq L_1(\Omega)$, then any function φ from $L_{\gamma}^{\text{loc}}(\mathbb{R}_+; \mathscr{E})$ can be considered as a measurable mapping that acts from $\Omega \times \mathbb{R}_+$ into \mathbb{R} . Further, we write $\varphi(x, t)$, when we consider this mapping as a function from $\Omega \times \mathbb{R}_+$ into \mathbb{R} , and $\varphi(t)$, if this mapping is considered as an element from $L_{\gamma}^{\text{loc}}(\mathbb{R}_+; \mathscr{E})$; cf. Gajewski et al. [5, Chapter III]; Temam [10]; Babin and Vishik [1]; Chepyzhov and Vishik [3]; Zgurovsky et at. [12] and references therein.

M. Z. Zgurovsky

P. O. Kasyanov · N. V. Gorban · L. S. Paliichuk (⊠)
 Institute for Applied System Analysis, National Technical University of Ukraine, Igor Sikorsky Kyiv Politechnic Institute, Kyiv, Ukraine
 e-mail: kasyanov@i.ua; nata_gorban@i.ua

 © Springer International Publishing AG, part of Springer Nature 2019
 V. A. Sadovnichiy, M. Z. Zgurovsky (eds.), *Modern Mathematics and Mechanics*, Understanding Complex Systems, https://doi.org/10.1007/978-3-319-96755-4_21

National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Kyiv, Ukraine

A function $\varphi \in L_{\nu}^{\text{loc}}(\mathbb{R}_+; \mathscr{E})$ is called *translation bounded* in $L_{\nu}^{\text{loc}}(\mathbb{R}_+; \mathscr{E})$, if

$$\sup_{t\geq 0} \int_{t}^{t+1} \|\varphi(s)\|_{\mathscr{E}}^{\gamma} ds < +\infty;$$
(21.1)

Chepyzhov and Vishik [4, p. 105].

Let N = 1, 2, ... and $\Omega \subset \mathbb{R}^N$ be a bounded domain. A function $\varphi \in L_1^{\text{loc}}(\mathbb{R}_+; L_1(\Omega))$ is called *translation uniform integrable one* (*t.u.i.*) in $L_1^{\text{loc}}(\mathbb{R}_+; L_1(\Omega))$, if

$$\lim_{K \to +\infty} \sup_{t \ge 0} \int_{t}^{t+1} \int_{\Omega} |\varphi(x,s)| \chi_{\{|\varphi(x,s)| \ge K\}} dx ds = 0;$$
(21.2)

Gorban et al. [6–9]. Dunford-Pettis compactness criterion provides that a function $\varphi \in L_1^{\text{loc}}(\mathbb{R}_+; L_1(\Omega))$ is t.u.i. in $L_1^{\text{loc}}(\mathbb{R}_+; L_1(\Omega))$ if and only if for every sequence of elements $\{\tau_n\}_{n\geq 1} \subset \mathbb{R}_+$ the sequence $\{\varphi(\cdot + \tau_n)\}_{n\geq 1}$ contains a subsequence which converges weakly in $L_1^{\text{loc}}(\mathbb{R}_+; L_1(\Omega))$. We note that for any $\gamma > 1$ Hölder's and Chebyshev's inequalities imply that every translation bounded in $L_{\gamma}^{\text{loc}}(\mathbb{R}_+; L_{\gamma}(\Omega))$ function is t.u.i. in $L_1^{\text{loc}}(\mathbb{R}_+; L_1(\Omega))$, because

$$\int_{t}^{t+1} \int_{\Omega} |\varphi(x,s)| \chi_{\{|\varphi(x,s)| \ge K\}} dx ds \le \frac{1}{K^{\gamma-1}} \sup_{t \ge 0} \int_{t}^{t+1} \int_{\Omega} |\varphi(x,s)|^{\gamma} dx ds \to 0 \text{ as } K \to +\infty.$$

Let us introduce the definition of asymptotic translation uniform integrable function.

Definition 21.1 A function $\varphi \in L_1^{\text{loc}}(\mathbb{R}_+; L_1(\Omega))$ is called *asymptotic translation uniform integrable one* (*a.t.u.i.*) in $L_1^{\text{loc}}(\mathbb{R}_+; L_1(\Omega))$, if

$$\lim_{K \to +\infty} \lim_{t \to +\infty} \int_{t}^{t+1} \int_{\Omega} |\varphi(x,s)| \chi_{\{|\varphi(x,s)| \ge K\}} dx ds = 0.$$
(21.3)

Remark 21.1 The limit (as $K \to +\infty$) in (21.2) ((21.3)) exists because the function

$$K \mapsto \sup_{t \ge 0} \left(\overline{\lim_{t \to +\infty}} \right) \int_{t}^{t+1} \int_{\Omega} |\varphi(x,s)| \chi_{\{|\varphi(x,s)| \ge K\}} dx ds$$
(21.4)

is nonincreasing in K > 0.

The main result of this note has the following formulation.

Theorem 21.1 Let $\varphi \in L_1^{\text{loc}}(\mathbb{R}_+; L_1(\Omega))$. Then there exists $\tilde{T} \ge 0$ such that $\varphi(\cdot + \tilde{T})$ is t.u.i. in $L_1^{\text{loc}}(\mathbb{R}_+; L_1(\Omega))$ iff φ is a.t.u.i. in $L_1^{\text{loc}}(\mathbb{R}_+; L_1(\Omega))$.

In Sect. 21.3 we apply Theorem 21.1 to non-autonomous nonlinear reactiondiffusion system.

21.2 Proof of Theorem 21.1

Let us prove Theorem 21.1. The t.u.i. of $\varphi(\cdot + \tilde{T})$ for some $\tilde{T} \ge 0$ implies a.u.t.i. of $\varphi(\cdot)$ because for each sequence $\{a_n\}_{n=1,2,...} \subset \mathbb{R}$ its limit superior is no greater than its supremum, that is, (21.2) implies (21.3). Let us prove the converse statement: if $\varphi(\cdot)$ is a.t.u.i., then $\varphi(\cdot + \tilde{T})$ is t.u.i. for some $\tilde{T} \ge 0$. We provide the proof in several steps.

Step 1 The following equalities hold:

$$0 = \lim_{K \to +\infty} \lim_{t \to +\infty} \int_{t}^{t+1} \int_{\Omega} |\varphi(x,s)| \chi_{\{|\varphi(x,s)| \ge K\}} dx ds$$

$$= \inf_{K > 0} \inf_{T \ge 0} \sup_{t \ge T} \int_{t}^{t+1} \int_{\Omega} |\varphi(x,s)| \chi_{\{|\varphi(x,s)| \ge K\}} dx ds$$

$$= \inf_{T \ge 0} \inf_{K > 0} \sup_{t \ge T} \int_{t}^{t+1} \int_{\Omega} |\varphi(x,s)| \chi_{\{|\varphi(x,s)| \ge K\}} dx ds.$$

(21.5)

Indeed, the first equality follows from a.t.u.i. of $\varphi(\cdot)$, the second equality holds because the mapping

$$K \mapsto \lim_{t \to +\infty} \int_{t}^{t+1} \int_{\Omega} |\varphi(x,s)| \chi_{\{|\varphi(x,s)| \ge K\}} dx ds$$

is nonincreasing and for each $a : [0, +\infty) \mapsto \overline{\mathbb{R}}$ the equality

$$\overline{\lim}_{t \to +\infty} a(t) = \inf_{T \ge 0} \sup_{t \ge T} a(t)$$

holds, and the last equality follows from the basic properties of infimum.

Step 2 We set

$$\delta(T) := \inf_{K>0} \sup_{t \ge T} \int_{t}^{t+1} \int_{\Omega} |\varphi(x,s)| \chi_{\{|\varphi(x,s)| \ge K\}} dx ds,$$
(21.6)

 $T \ge 0$, and notice that (21.5) directly implies the existence of $\tilde{T} \ge 0$ such that

$$\delta(T) < +\infty \text{ for each } T \ge \tilde{T} \text{ and } \delta(T) \searrow 0 \text{ as } T \to \infty.$$
 (21.7)

Step 3 According to (21.6) and (21.7), for each $T \ge \tilde{T}$ there exists $K_T > 0$ such that

$$\sup_{t\geq T} \int_{t}^{t+1} \int_{\Omega} |\varphi(x,s)| \chi_{\{|\varphi(x,s)|\geq K\}} dx ds < \delta(T) + \frac{1}{T} < +\infty,$$
(21.8)

for each $K \geq K_T$.

Step 4 Since for each $n = 0, 1, \ldots$

$$\begin{split} \tilde{T}_{+n} & \int_{\Omega} \tilde{\varphi}(x,s) | dx ds = \int_{\tilde{T}+n}^{\tilde{T}+n+1} \int_{\Omega} |\varphi(x,s)| \chi_{\{|\varphi(x,s)| \le K_{\tilde{T}}\}} dx ds \\ &+ \int_{\tilde{T}+n}^{\tilde{T}+n+1} \int_{\Omega} |\varphi(x,s)| \chi_{\{|\varphi(x,s)| \ge K_{\tilde{T}}\}} dx ds \\ &\leq K_{\tilde{T}} \operatorname{meas}(\Omega) + \delta(\tilde{T}) + \frac{1}{\tilde{T}} < +\infty, \end{split}$$

where the first inequality follows from (21.8), and the second inequality holds because meas(Ω) < + ∞ , then absolute continuity of the Lebesgue integral implies that for each $T > \tilde{T}$ and $t \in [\tilde{T}, T]$ there exists $K(\tilde{T}, T) > 0$ such that

$$\int_{t}^{t+1} \int_{\Omega} |\varphi(x,s)| \chi_{\{|\varphi(x,s)| \ge K\}} dx ds \le \int_{\tilde{T}}^{T+1} \int_{\Omega} |\varphi(x,s)| \chi_{\{|\varphi(x,s)| \ge K\}} dx ds < \frac{1}{T}$$

for each $K \ge K(\tilde{T}, T)$, that is,

$$\sup_{t\in[\tilde{T},T]}\int_{t}^{t+1}\int_{\Omega}|\varphi(x,s)|\chi_{\{|\varphi(x,s)|\geq K\}}dxds\leq\frac{1}{N},$$
(21.9)

for each $T > \tilde{T}$ and $K \ge \tilde{K}_T^{\tilde{T}} := \sup_{t \in [\tilde{T}, T]} \{K_T; K(\tilde{T}, T)\}.$

Step 5 Inequalities (21.8) and (21.9) imply that

$$\sup_{t \ge \tilde{T}} \int_{t}^{t+1} \int_{\Omega} |\varphi(x,s)| \chi_{\{|\varphi(x,s)| \ge K\}} dx ds < \delta(T) + \frac{1}{T}$$

for each $T > \tilde{T}$ and $K \ge \tilde{K}_T^{\tilde{T}}$. Thus, according to (21.6),

$$\delta(\tilde{T}) = \inf_{K>0} \sup_{t \ge \tilde{T}} \int_{t}^{t+1} \int_{\Omega} |\varphi(x,s)| \chi_{\{|\varphi(x,s)| \ge K\}} dx ds < \delta(T) + \frac{1}{T},$$
(21.10)

for each $T > \tilde{T}$.

Step 6 Since the function

$$K \mapsto \sup_{t \ge \tilde{T}} \int_{t}^{t+1} \int_{\Omega} |\varphi(x,s)| \chi_{\{|\varphi(x,s)| \ge K\}} dx ds$$

is nonincreasing, we have that

$$\lim_{K \to +\infty} \sup_{t \ge \tilde{T}} \int_{t}^{t+1} \int_{\Omega} |\varphi(x,s)| \chi_{\{|\varphi(x,s)| \ge K\}} dx ds = \delta(\tilde{T}) < \delta(T) + \frac{1}{T}.$$
 (21.11)

for each $T > \tilde{T}$, where the inequality follows from (21.10). According to (21.7), $\delta(T) + \frac{1}{T} \searrow 0$ as $T \to +\infty$. Therefore, (21.11) implies that

$$\lim_{K \to +\infty} \sup_{t \ge \tilde{T}} \int_{t}^{t+1} \int_{\Omega} |\varphi(x,s)| \chi_{\{|\varphi(x,s)| \ge K\}} dx ds = 0.$$

that is, $\varphi(\cdot)$ is t.u.i.

21.3 Examples of Applications

Let $N, M = 1, 2, ..., \Omega \subset \mathbb{R}^N$ be a bounded domain with sufficiently smooth boundary $\partial \Omega$. We consider a problem of long-time behavior of all globally defined weak solutions for the non-autonomous parabolic problem (named RD-system)

$$\begin{cases} y_t = a \Delta y - f(x, t, y), & x \in \Omega, \ t > 0, \\ y|_{\partial \Omega} = 0, \end{cases}$$
(21.12)

as $t \to +\infty$, where $y = y(x, t) = (y^{(1)}(x, t), \dots, y^{(M)}(x, t))$ is unknown vectorfunction, $f = f(x, t, y) = (f^{(1)}(x, t, y), \dots, f^{(M)}(x, t, y))$ is given function, *a* is real $M \times M$ matrix with positive symmetric part.

We suppose that the listed below assumptions hold.

Assumption I Let $p_i \ge 2$ and $q_i > 1$ are such that $\frac{1}{p_i} + \frac{1}{q_i} = 1$, for any i = 1, 2, ..., M. Moreover, there exists a positive constant d such that $\frac{1}{2}(a+a^*) \ge dI$, where I is unit $M \times M$ matrix, a^* is a transposed matrix for a.

Assumption II The interaction function $f = (f^{(1)}, \ldots, f^{(M)}) : \Omega \times \mathbb{R}_+ \times \mathbb{R}^M \to \mathbb{R}^M$ satisfies the standard Carathéodory's conditions, i.e. the mapping $(x, t, u) \to f(x, t, u)$ is continuous in $u \in \mathbb{R}^M$ for a.e. $(x, t) \in \Omega \times \mathbb{R}_+$, and it is measurable in $(x, t) \in \Omega \times \mathbb{R}_+$ for any $u \in \mathbb{R}^M$.

Assumption III (Growth Condition) There exist an a.t.u.i. in $L_1^{\text{loc}}(\mathbb{R}_+; L_1(\Omega))$ function $c_1 : \Omega \times \mathbb{R}_+ \to \mathbb{R}_+$ and a constant $c_2 > 0$ such that

$$\sum_{i=1}^{M} \left| f^{(i)}(x,t,u) \right|^{q_i} \le c_1(x,t) + c_2 \sum_{i=1}^{M} \left| u^{(i)} \right|^{p_i}$$

for any $u = (u^{(1)}, \dots, u^{(M)}) \in \mathbb{R}^M$, and a.e. $(x, t) \in \Omega \times \mathbb{R}_+$.

Assumption IV (Sign Condition) There exists a constant $\alpha > 0$ and an a.t.u.i. in $L_1^{\text{loc}}(\mathbb{R}_+; L_1(\Omega))$ function $\beta : \Omega \times \mathbb{R}_+ \to \mathbb{R}_+$ such that

$$\sum_{i=1}^{M} f^{(i)}(x,t,u)u^{(i)} \ge \alpha \sum_{i=1}^{M} \left| u^{(i)} \right|^{p_i} - \beta(x,t)$$

for any $u = (u^{(1)}, \dots, u^{(M)}) \in \mathbb{R}^M$, and a.e. $(x, t) \in \Omega \times \mathbb{R}_+$.

In further arguments we will use standard functional Hilbert spaces $H = (L_2(\Omega))^M$, $V = (H_0^1(\Omega))^M$, and $V^* = (H^{-1}(\Omega))^M$ with standard respective inner products and norms $(\cdot, \cdot)_H$ and $\|\cdot\|_H$, $(\cdot, \cdot)_V$ and $\|\cdot\|_V$, and $(\cdot, \cdot)_{V^*}$ and $\|\cdot\|_{V^*}$,

vector notations $\mathbf{p} = (p_1, p_2, \dots, p_M)$ and $\mathbf{q} = (q_1, q_2, \dots, q_M)$, and the spaces

$$\begin{split} \mathbf{L}_{\mathbf{p}}(\Omega) &:= L_{p_1}(\Omega) \times \ldots \times L_{p_M}(\Omega), \quad \mathbf{L}_{\mathbf{q}}(\Omega) := L_{q_1}(\Omega) \times \ldots \times L_{q_M}(\Omega), \\ \mathbf{L}_{\mathbf{p}}(\tau, T; \mathbf{L}_{\mathbf{p}}(\Omega)) &:= L_{p_1}(\tau, T; L_{p_1}(\Omega)) \times \ldots \times L_{p_M}(\tau, T; L_{p_M}(\Omega)), \\ \mathbf{L}_{\mathbf{q}}(\tau, T; \mathbf{L}_{\mathbf{q}}(\Omega)) &:= L_{q_1}(\tau, T; L_{q_1}(\Omega)) \times \ldots \times L_{q_M}(\tau, T; L_{q_M}(\Omega)), \quad 0 \le \tau < T < +\infty. \end{split}$$

Let $0 \le \tau < T < +\infty$. A function $y = y(x, t) \in \mathbf{L}_2(\tau, T; V) \cap \mathbf{L}_{\mathbf{p}}(\tau, T; \mathbf{L}_{\mathbf{p}}(\Omega))$ is called a *weak solution* of Problem (21.12) on $[\tau, T]$, if for any function $\varphi = \varphi(x) \in (C_0^{\infty}(\Omega))^M$, the following identity holds

$$\frac{d}{dt} \int_{\Omega} y(x,t) \cdot \varphi(x) dx + \int_{\Omega} \{a \nabla y(x,t) \cdot \nabla \varphi(x) + f(x,t,y(x,t)) \cdot \varphi(x)\} dx = 0$$
(21.13)

in the sense of scalar distributions on (τ, T) .

In the general case Problem (21.12) on $[\tau, T]$ with initial condition $y(x, \tau) = y_{\tau}(x)$ in Ω has more than one weak solution with $y_{\tau} \in H$ (cf. Balibrea et al. [2] and references therein).

Assumptions I–IV and Chepyzhov and Vishik [4, pp. 283–284] (see also Zgurovsky et al. [11, Chapter 2] and references therein) provide the existence of a weak solution of Cauchy problem (21.12) with initial data $y(\tau) = y^{(\tau)}$ on the interval $[\tau, T]$, for any $y^{(\tau)} \in H$. The proof is provided by standard Faedo–Galerkin approximations and using local existence Carathéodory's theorem instead of classical Peano results. A priori estimates are similar. Formula (21.13) and definition of the derivative for an element from $\mathcal{D}([\tau, T]; V^* + \mathbf{L}_{\mathbf{q}}(\Omega))$ yield that each weak solution $y \in X_{\tau,T}$ of Problem (21.12) on $[\tau, T]$ belongs to the space $W_{\tau,T}$. Moreover, each weak solution of Problem (21.12) on $[\tau, T]$ satisfies the equality:

$$\int_{\tau}^{T} \int_{\Omega} \left[\frac{\partial y(x,t)}{\partial t} \cdot \psi(x,t) + a \nabla y(x,t) \cdot \nabla \psi(x,t) + f(x,t,y(x,t)) \cdot \psi(x,t) \right] dxdt = 0,$$
(21.14)

for any $\psi \in X_{\tau,T}$. For fixed τ and T, such that $0 \le \tau < T < +\infty$, we denote

$$\mathcal{D}_{\tau,T}(y^{(\tau)}) = \{y(\cdot) \mid y \text{ is a weak solution of } (21.12) \text{ on } [\tau, T], \ y(\tau) = y^{(\tau)}\}, \quad y^{(\tau)} \in H.$$

We remark that $\mathscr{D}_{\tau,T}(y^{(\tau)}) \neq \emptyset$ and $\mathscr{D}_{\tau,T}(y^{(\tau)}) \subset W_{\tau,T}$, if $0 \leq \tau < T < +\infty$ and $y^{(\tau)} \in H$. Moreover, the concatenation of Problem (21.12) weak solutions is a weak solutions too, i.e. if $0 \leq \tau < t < T$, $y^{(\tau)} \in H$, $y(\cdot) \in \mathscr{D}_{\tau,t}(y^{(\tau)})$, and $v(\cdot) \in \mathscr{D}_{t,T}(y(t))$, then

$$z(s) = \begin{cases} y(s), \ s \in [\tau, t], \\ v(s), \ s \in [t, T], \end{cases}$$

belongs to $\mathscr{D}_{\tau,T}(y^{(\tau)})$; cf. Zgurovsky et al. [12, pp. 55–56].

Each weak solution y of Problem (21.12) on a finite time interval $[\tau, T] \subset \mathbb{R}_+$ can be extended to a global one, defined on $[\tau, +\infty)$. For arbitrary $\tau \ge 0$ and $y^{(\tau)} \in H$ let $\mathscr{D}_{\tau}(y^{(\tau)})$ be the set of all weak solutions (defined on $[\tau, +\infty)$) of Problem (21.12) with initial data $y(\tau) = y^{(\tau)}$. Let us consider the family $\mathscr{K}_{\tau}^+ = \bigcup_{y^{(\tau)} \in H} \mathscr{D}_{\tau}(y^{(\tau)})$ of all weak solutions of Problem (21.12) defined on the semi-infinite time interval $[\tau, +\infty)$.

Consider the Fréchet space

$$C^{\text{loc}}(\mathbb{R}_+; H) := \{ y : \mathbb{R}_+ \to H : \Pi_{t_1, t_2} y \in C([t_1, t_2]; H) \text{ for any } [t_1, t_2] \subset \mathbb{R}_+ \},\$$

where Π_{t_1,t_2} is the restriction operator to the interval $[t_1, t_2]$; Chepyzhov and Vishik [3, p. 918]. We remark that the sequence $\{f_n\}_{n\geq 1}$ converges (converges weakly respectively) in $C^{\text{loc}}(\mathbb{R}_+; H)$ towards $f \in C^{\text{loc}}(\mathbb{R}_+; H)$ as $n \to +\infty$ if and only if the sequence $\{\Pi_{t_1,t_2}f_n\}_{n\geq 1}$ converges (converges weakly respectively) in $C([t_1, t_2]; H)$ towards $\Pi_{t_1,t_2}f$ as $n \to +\infty$ for any finite interval $[t_1, t_2] \subset \mathbb{R}_+$.

We denote $T(h)y(\cdot) = y_h(\cdot)$, where $y_h(t) = y(t+h)$ for any $y \in C^{\text{loc}}(\mathbb{R}_+; H)$ and $t, h \ge 0$.

In the non-autonomous case we notice that $T(h)\mathscr{K}_0^+ \not\subseteq \mathscr{K}_0^+$. Therefore (see Gorban et al. [8]), we need to consider *united trajectory space* that includes all globally defined on any $[\tau, +\infty) \subseteq \mathbb{R}_+$ weak solutions of Problem (21.12) shifted to $\tau = 0$:

$$\mathscr{K}_{\cup}^{+} := \bigcup_{\tau \ge 0} \left\{ y(\cdot + \tau) \in W^{\text{loc}}(\mathbb{R}_{+}) : y(\cdot) \in \mathscr{K}_{\tau}^{+} \right\}.$$
(21.15)

Note that $T(h)\{y(\cdot + \tau) : y \in \mathscr{K}^+_{\tau}\} \subseteq \{y(\cdot + \tau + h) : y \in \mathscr{K}^+_{\tau+h}\}$ for any $\tau, h \ge 0$. Therefore,

$$T(h)\mathscr{K}_{\cup}^{+}\subseteq\mathscr{K}_{\cup}^{+}$$

for any $h \ge 0$. Further we consider *extended united trajectory space* for Problem (21.12):

$$\mathscr{K}^+_{C^{\mathrm{loc}}(\mathbb{R}_+;H)} = \mathrm{cl}_{C^{\mathrm{loc}}(\mathbb{R}_+;H)} \left[\mathscr{K}^+_{\cup} \right], \qquad (21.16)$$

where $\operatorname{cl}_{C^{\operatorname{loc}}(\mathbb{R}_+;H)}[\cdot]$ is the closure in $C^{\operatorname{loc}}(\mathbb{R}_+;H)$. We note that

$$T(h)\mathscr{K}^+_{C^{\mathrm{loc}}(\mathbb{R}_+;H)} \subseteq \mathscr{K}^+_{C^{\mathrm{loc}}(\mathbb{R}_+;H)}$$

for each $h \ge 0$, because

$$\rho_{C^{\mathrm{loc}}(\mathbb{R}_+;H)}(T(h)u, T(h)v) \le \rho_{C^{\mathrm{loc}}(\mathbb{R}_+;H)}(u, v) \text{ for any } u, v \in C^{\mathrm{loc}}(\mathbb{R}_+; H),$$

where $\rho_{C^{\text{loc}}(\mathbb{R}_+;H)}$ is a standard metric on Fréchet space $C^{\text{loc}}(\mathbb{R}_+;H)$.

Let us provide the result characterizing the compactness properties of shifted solutions of Problem (21.12) in the induced topology from $C^{\text{loc}}(\mathbb{R}_+; H)$.

Theorem 21.2 Let Assumptions I–IV hold. If $\{y_n\}_{n\geq 1} \subset \mathscr{K}^+_{C^{\text{loc}}(\mathbb{R}_+;H)}$ is an arbitrary sequence, which is bounded in $L_{\infty}(\mathbb{R}_+;H)$, then there exist a subsequence $\{y_n\}_{k\geq 1} \subseteq \{y_n\}_{n\geq 1}$ and an element $y \in \mathscr{K}^+_{C^{\text{loc}}(\mathbb{R}_+;H)}$ such that

$$\|\Pi_{\tau,T} y_{n_k} - \Pi_{\tau,T} y\|_{C([\tau,T];H)} \to 0, \quad k \to +\infty,$$
 (21.17)

for any finite time interval $[\tau, T] \subset (0, +\infty)$. Moreover, for any $y \in \mathscr{K}^+_{C^{\text{loc}}(\mathbb{R}_+; H)}$ the estimate holds

$$\|y(t)\|_{H}^{2} \le \|y(0)\|_{H}^{2} e^{-c_{3}t} + c_{4}, \qquad (21.18)$$

for any $t \ge 0$, where positive constants c_3 and c_4 do not depend on $y \in \mathscr{K}^+_{C^{\text{loc}}(\mathbb{R}_+;H)}$ and $t \ge 0$.

Proof This statement directly follows from Gorban et al. [8, Theorem 4.1] and Theorem 21.1.

A set $\mathscr{P} \subset \mathscr{F}^{\text{loc}}(\mathbb{R}_+) \cap L_{\infty}(\mathbb{R}_+; H)$ is said to be a *uniformly attracting set* (cf. Chepyzhov and Vishik [3, p. 921]) for the extended united trajectory space $\mathscr{K}^+_{\mathscr{F}^{\text{loc}}(\mathbb{R}_+)}$ of Problem (21.12) in the topology of $\mathscr{F}^{\text{loc}}(\mathbb{R}_+)$, if for any bounded in $L_{\infty}(\mathbb{R}_+; H)$ set $\mathscr{B} \subseteq \mathscr{K}^+_{\mathscr{F}^{\text{loc}}(\mathbb{R}_+)}$ and any segment $[t_1, t_2] \subset \mathbb{R}_+$ the following relation holds:

$$\operatorname{dist}_{\mathscr{F}_{t_1,t_2}}(\Pi_{t_1,t_2}T(t)\mathscr{B},\Pi_{t_1,t_2}\mathscr{P})\to 0, \quad t\to+\infty,$$
(21.19)

where dist \mathcal{F}_{t_1,t_2} is the Hausdorff semi-metric.

A set $\mathscr{U} \subset \mathscr{K}^+_{\mathscr{F}^{loc}(\mathbb{R}_+)}$ is said to be a *uniform trajectory attractor* of the translation semigroup $\{T(t)\}_{t\geq 0}$ on $\mathscr{K}^+_{\mathscr{F}^{loc}(\mathbb{R}_+)}$ in the induced topology from $C^{loc}(\mathbb{R}_+; H)$, if

- 1. \mathscr{U} is a compact set in $C^{\text{loc}}(\mathbb{R}_+; H)$ and bounded in $L_{\infty}(\mathbb{R}_+; H)$;
- 2. \mathscr{U} is strictly invariant with respect to $\{T(h)\}_{h\geq 0}$, i.e. $T(h)\mathscr{U} = \mathscr{U} \forall h \geq 0$;
- *U* is a minimal uniformly attracting set for *H*⁺_{C^{loc}(ℝ₊;H)} in the topology of C^{loc}(ℝ₊; H), i.e. *U* belongs to any compact uniformly attracting set *P* of *H*⁺_{C^{loc}(ℝ₊;H)}: *U* ⊆ *P*.

Note that uniform trajectory attractor of the translation semigroup $\{T(t)\}_{t\geq 0}$ on $\mathscr{K}^+_{C^{\mathrm{loc}}(\mathbb{R}_+;H)}$ in the induced topology from $C^{\mathrm{loc}}(\mathbb{R}_+;H)$ coincides with the classical global attractor for the continuous semi-group $\{T(t)\}_{t\geq 0}$ defined on $\mathscr{K}^+_{C^{\mathrm{loc}}(\mathbb{R}_+;H)}$.

Assumptions I–IV are sufficient conditions for the existence of uniform trajectory attractor for weak solutions of Problem (21.12) in the topology of $C^{\text{loc}}(\mathbb{R}_+; H)$.

Theorem 21.3 Let Assumptions I–IV hold. Then there exists an uniform trajectory attractor $\mathscr{U} \subset \mathscr{K}^+_{C^{loc}(\mathbb{R}_+;H)}$ of the translation semigroup $\{T(t)\}_{t\geq 0}$ on $\mathscr{K}^+_{C^{loc}(\mathbb{R}_+;H)}$ in the induced topology from $C^{loc}(\mathbb{R}_+;H)$. Moreover, there exists a compact in $C^{loc}(\mathbb{R}_+;H)$ uniformly attracting set $\mathscr{P} \subset C^{loc}(\mathbb{R}_+;H) \cap L_{\infty}(\mathbb{R}_+;H)$ for the extended united trajectory space $\mathscr{K}^+_{C^{loc}(\mathbb{R}_+;H)}$ of Problem (21.12) in the topology of $C^{loc}(\mathbb{R}_+;H)$ such that \mathscr{U} coincides with ω -limit set of \mathscr{P} :

$$\mathscr{U} = \bigcap_{t \ge 0} \operatorname{cl}_{C^{\operatorname{loc}}(\mathbb{R}_+;H)} \left[\bigcup_{h \ge t} T(h) \mathscr{P} \right].$$
(21.20)

Proof This statement directly follows from Gorban et al. [8, Theorem 3.1] and Theorem 21.1.

21.4 Conclusions

Asymptotic translation uniform integrability condition for a function acting from positive semi-axe of time line to a Banach space is equivalent to uniform integrability condition. As a result, we claim only asymptotic (as time $t \to +\infty$) assumptions of translation compactness for parameters of non-autonomous reaction-diffusion equations.

References

- 1. Babin, A.V., Vishik, M.I.: Attractors of Evolution Equations (in Russian). Nauka, Moscow (1989)
- Balibrea, F., Caraballo, T., Kloeden, P.E., Valero, J.: Recent developments in dynamical systems: three perspectives. Int. J. Bifurcation Chaos (2010). https://doi.org/10.1142/ S0218127410027246
- 3. Chepyzhov, V.V., Vishik, M.I.: Evolution equations and their trajectory attractors. J. Math. Pures Appl. **76**, 913–964 (1997)
- 4. Chepyzhov, V.V., Vishik, M.I.: Attractors for Equations of Mathematical Physics. American Mathematical Society, Providence (2002)
- Gajewski, H., Gröger, K., Zacharias, K.: Nichtlineare operatorgleichungen und operatordifferentialgleichungen. Akademie-Verlag, Berlin (1978)
- Gluzman, M.O., Gorban, N.V., Kasyanov, P.O.: Lyapunov type functions for classes of autonomous parabolic feedback control problems and applications. Appl. Math. Lett. (2014). https://doi.org/10.1016/j.aml.2014.08.006
- Gorban, N.V., Kasyanov, P.O.: On regularity of all weak solutions and their attractors for reaction-diffusion inclusion in unbounded domain. Contin. Distrib. Syst. Theory Appl. Solid Mech. Appl. 211, (2014). https://doi.org/10.1007/978-3-319-03146-0\$_\$15
- Gorban, N.V., Kapustyan, O.V., Kasyanov, P.O.: Uniform trajectory attractor for nonautonomous reaction-diffusion equations with Caratheodory's nonlinearity. Nonlinear Anal. Theory Methods Appl. 98, 13–26 (2014). https://doi.org/10.1016/j.na.2013.12.004

- Gorban, N.V., Kapustyan, O.V., Kasyanov, P.O., Paliichuk, L.S.: On global attractors for autonomous damped wave equation with discontinuous nonlinearity. Contin. Distrib. Syst. Theory Appl. Solid Mech. Appl. 211 (2014). https://doi.org/10.1007/978-3-319-03146-0\$_ \$16
- Temam, R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Applied Mathematical Sciences, vol. 68. Springer, New York (1988)
- Zgurovsky, M.Z., Mel'nik, V.S., Kasyanov, P.O.: Evolution Inclusions and Variation Inequalities for Earth Data Processing II. Springer, Berlin (2011)
- Zgurovsky, M.Z., Kasyanov, P.O., Kapustyan, O.V., Valero, J., Zadoianchuk, N.V.: Evolution Inclusions and Variation Inequalities for Earth Data Processing III. Springer, Berlin (2012)