
Chapter 18
Uniform Strong Law of Large Numbers
for Random Signed Measures

O. I. Klesov and I. Molchanov

Abstract We prove a strong law of large numbers for random signed measures on
Euclidean space that holds uniformly over a family of arguments (sets) scaled by
diagonal matrices. Applications to random measures generated by sums of random
variables, marked point processes and stochastic integrals are also presented.

18.1 Introduction

Set-indexed stochastic processes naturally appear in many areas of probability
theory and mathematical statistics, e.g., as empirical measures [26], set-indexed
martingales [15], point processes [7, 8], and random measures [17].

Both empirical and partial sum processes are special cases of marked point
processes or random measures. They can be described via the pairs (xi , mi), where
xi are locations and mi is the mass located at xi , also called the mark of xi .

Empirical processes assign the same nonrandom mass to each random location.
More precisely, based on d-dimensional sample X1, . . . ,Xn the empirical measure
is defined for any Borel A ⊂ R

d by

Fn(A) = 1

n
#{j = 1, . . . , n : Xj ∈ A}.
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Partial-sum processes are defined by assigning i.i.d. random masses to fixed
locations on a grid in the space R

d . If Zd stands for the set of integer points in
R

d , then the partial-sum process is the normalized version of

S(A) =
∑

j∈A

Xj (18.1)

being the sum of i.i.d. random variables Xj, j ∈ Z
d , with j ∈ A. We set S(A) = 0 if

{j : j ∈ A} = ∅.
The partial sum processes in dimension one are extensively studied in the

classical probability theory as cumulative sums of random variables. We discuss
below the higher-dimensional setting and allow for a richer family of sets A than
in the classical case of multiple sums, see, e.g., [19]. There are three main types of
asymptotic results for partial-sum processes indexed by sets, namely,

• strong laws of large numbers,
• central limit theorems,
• laws of the iterated logarithms.

Perhaps the first strong law of large numbers appeared in the paper by Bass and Pyke
[3]. The central limit theorem for partial-sum processes is obtained by Kuelbs [22],
while the law of the iterated logarithm is due to Wichura [29]. Further references
can be found in the survey papers by Pyke [25] and Gaenssler and Ziegler [11].
From now on, we concentrate on the strong law of large numbers.

The paper is organised as follows. First, we recall the Bass–Pyke theorem (the
uniform strong law of large numbers) in Sect. 18.2. It is generalised for signed
measures in Sect. 18.3 and proved in the subsequent Sect. 18.4. The main feature is
the general scaling of the argument set using diagonal matrices with the determinant
converging to infinity. The case of stationary measures is considered in Sect. 18.5.
The most important special cases concern random measures generated by marked
point processes and by sums of random variables on a grid. Section 18.6 describes
an application to stochastic integrals. Section 18.7 concludes andmentions a number
of further related references.

18.2 The Bass–Pyke Theorem

Let N
d be the set of d-dimensional vectors with positive integer coordinates.

Consider a family of independent identically distributed random variables {Xj, j ∈
N

d}. If A is a Borel measurable subset of Rd define S(A) by (18.1). Let |A| denote
the Lebesgue measure of A and tA = {tx : x ∈ A} for t > 0, and let B be the open
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unit Euclidean ball centered at the origin. For r ≥ 0 and Borel A ⊂ R
d ,

Ar = {x ∈ R
d : x + rB ∩ A �= ∅}

denotes the outer r-parallel set of A and

A−r = {x : x + rB ⊂ A}

is the inner r-parallel set. Therefore,

A(r) = Ar \ A−r = {x : ρ(x, ∂A) < r},

where ρ is the Euclidean distance and ∂A is the boundary of A.

Theorem 18.1 (See [3, Th. 1]) Assume that the expectation μ = E
[
Xj

]
exists.

Let A be a collection of Borel measurable subsets of [0, 1]d . If

sup
A∈A

|A(δ)| → 0 as δ ↓ 0, (18.2)

then

lim
n→∞ sup

A∈A

∣∣∣∣
S(nA)

nd
− μ|A|

∣∣∣∣ = 0 a.s. (18.3)

To appreciate some peculiarities of this theorem we briefly discuss below its
simplest case, whereA consists of a single set A.

Example 18.1 If A = [0, 1]d , then nA is the cube in N
d with a side of length

n and thus mA ⊆ nA if m ≤ n. Therefore S(nA) is, in fact, a subsequence of
sums of independent identically distributed random variables with the expectation
μ. In this case, (18.3) follows from the Kolmogorov strong law of large numbers for
independent identically distributed random variables.

Example 18.2 Let A be the set of points with rational coordinates in [0, 1]d .
Clearly (18.2) fails. On the other hand, S(nA) is the same as in the case of [0, 1]d
but |A| = 0. Therefore, (18.3) holds if μ = 0 and it fails otherwise.

Example 18.3 Let A be the set of points of [0, 1]d with irrational coordinates.
Clearly (18.2) fails. Since S(nA) = 0, strong law of large numbers (18.3) fails
if μ �= 0. Otherwise (18.3) holds.

The situation is even more complicated if A becomes richer.
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18.3 Uniform Law of Large Numbers for Random Signed
Measures

Let ξ(A), A ∈ B, be a random signed measure defined on the family B of Borel
sets in R

d , see, e.g., [17]. Denote |t| = ∏d
i=1 ti and [t, s] = ×d

i=1[ti , si ] for t =
(t1, . . . , td ) and s = (s1, . . . , sd ) from R

d . For t ∈ R
d+ and A ⊂ R

d , write

t · A = {(t1x1, . . . , tdxd) : x = (x1, . . . , xd) ∈ A}.

Assume that ξ(A) is integrable for each bounded Borel A and let

Λ(A) = E [ξ(A)] , A ∈ B,

be the first moment measure of ξ .
The signed measure ξ is said to satisfy the multiparameter strong law of large

numbers if

lim|t|→∞
ξ(t · I) − E [ξ(t · I)]

|t| = 0 a.s., (18.4)

where I = (0, 1]. Note that t converges to infinity in a rather arbitrary manner, it is
only essential that the volume of the rectangle [0, t] converges to infinity.

Let A be a subfamily of Borel sets in I . For m ≥ 1, denote

Cm(k) = 1

m
(k − 1,k], k ∈ N

d .

Here 1 = (1, . . . , 1) and k − 1 = (k1 − 1, . . . , kd − 1) for k = (k1, . . . , kd) ∈ N
d .

For every A ∈ A ,

A =
⋃

Cm(k)⊆A

Cm(k), A′′
m =

⋃

Cm(k)∩A�=∅

Cm(k)

are discrete analogues of the inner and outer parallel sets to A.
The following result generalizes Theorem 18.1.

Theorem 18.2 Let ξ be a random signed measure that satisfies the multiparameter
strong law of large numbers. Assume that

lim
m→∞ lim sup

|t|→∞
sup
A∈A

∣∣∣∣∣
E

[
ξ(t · (A \ A′

m))
]

|t|

∣∣∣∣∣ = 0 (18.5)
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and |ξ(A)| ≤ η(A) for all Borel sets A and a random measure η that satisfies the
multiparameter strong law of large numbers and such that

lim
m→∞ lim sup

|t|→∞
sup
A∈A

E
[
η(t · (A′′

m \ A′
m))

]

|t| = 0. (18.6)

Then ξ satisfies the uniform strong law of large numbers, that is,

lim|t|→∞ sup
A∈A

∣∣∣∣
ξ(t · A) − E [ξ(t · A)]

|t|
∣∣∣∣ = 0 a.s. (18.7)

Corollary 18.1 Assume that ξ is a random (non-negative) measure that satisfies
the multiparameter strong law of large numbers. If

lim
m→∞ lim sup

|t|→∞
sup
A∈A

E
[
ξ(t · (A′′

m \ A′
m))

]

|t| = 0,

then (18.7) holds.

Even in the setting of partial sums, there are several differences with Theo-
rem 18.1. First, the growth parameter t is continuous. This allows one to treat the
cases where some of the coordinates of t approach the axes or are constant, while all
coordinates are separated from zero and grow in the setting of [3], so that the set nA

increases to the whole Rd+ in the limit if A contains a neighborhood of the origin.
Second, we deal with signed measures rather than with sums of random variables

over sets inRd . Even if we restrict our setting and consider a particular case where ξ

is constructed in the same manner as in [3], we still are in a more general situation,
since we do not impose the independence assumption on the auxiliary random
variables, e.g., it is applicable to orthogonal random variables. Of course, one should
be aware of appropriate conditions for the strong law of large numbers (18.4)
for every particular dependence scheme. Various examples are presented in [19].
Therefore, we provide a universal method for obtaining the uniform strong law of
large numbers (18.7) from (18.4).

18.4 Proof of Theorem 18.2

For x = (x1, . . . , xd) ∈ I , we have x · I = (0, x]. Then

lim|t|→∞
ξ(t · A) − E [ξ(t · A)]

|t| = 0 a.s. (18.8)
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holds with A = x · I for any fixed x ∈ I , since t · (x · I) = s · I for s = t · x =
(t1x1, . . . , tdxd) and |t| → ∞ is equivalent to |s| → ∞.

Since ξ is a signed measure, condition (18.8) also holds for every set A being a
difference of x1 · I and x2 · I . Thus, (18.8) holds for sets A being a finite union of
differences (x1 · I) \ (x2 · I).

Turning to the general set A ∈ A , fix m ≥ 1 and write

lim sup
|t|→∞

sup
A∈A

∣∣∣∣
ξ(t · A) − E [ξ(t · A)]

|t|
∣∣∣∣

≤ lim sup
|t|→∞

sup
A∈A

∣∣∣∣
ξ(t · A) − ξ(t · A′

m)

|t|
∣∣∣∣

+ lim sup
|t|→∞

sup
A∈A

∣∣∣∣∣
ξ(t · A′

m) − E
[
ξ(t · A′

m)
]

|t|

∣∣∣∣∣ (18.9)

+ lim sup
|t|→∞

sup
A∈A

∣∣∣∣∣
E

[
ξ(t · A′

m)
] − E [ξ(t · A)]

|t|

∣∣∣∣∣ .

Since ξ is a signed measure,E
[
ξ(t · A′

m)
] −E [ξ(t · A)] = −E

[
ξ(t · (A \ A′

m))
]
,

hence,

lim sup
|t|→∞

sup
A∈A

∣∣∣∣∣
E

[
ξ(t · A′

m)
] − E [ξ(t · A)]

|t|

∣∣∣∣∣ = lim sup
|t|→∞

sup
A∈A

∣∣∣∣∣
E

[
ξ(t · (A \ A′

m))
]

|t|

∣∣∣∣∣ .

Passing to the second term on the right hand side of (18.9), note that there is only
a finite number of possible combinations of the cubes Cm(k) belonging to I (this
number depends on m, of course). Since A′

m is constructed from the cubes Cm(k),
there is only a finite number of possible values for A′

m if A ∈ A . From the strong
law of large numbers (18.8) we conclude that

lim sup
|t|→∞

sup
A∈A

∣∣∣∣∣
ξ(t · A′

m) − E
[
ξ(t · A′

m)
]

|t|

∣∣∣∣∣ = 0 a.s.

Now we proceed with the first term on the right-hand side of (18.9). Since

|ξ(t · A) − ξ(t · A′
m)| = |ξ(t · (A \ A′

m))| ≤ η(t · (A \ A′
m)) ≤ η(t · (A′′

m \ A′
m)),
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we get

lim sup
|t|→∞

sup
A∈A

∣∣∣∣
ξ(t · A) − ξ(t · A′

m)

|t|
∣∣∣∣

≤ lim sup
|t|→∞

sup
A∈A

∣∣∣∣∣
η(t · (A′′

m \ A′
m)) − E

[
η(t · (A′′

m \ A′
m))

]

|t|

∣∣∣∣∣

+ lim sup
|t|→∞

sup
A∈A

E
[
η(t · (A′′

m \ A′
m))

]

|t| .

Since η is assumed to satisfy the multiparameter strong law of large numbers, (18.8)
holds for η instead of ξ and with A being a finite union of the cubes Cm(k). The set
A′′

m \A′
m belongs to (0, 1+ (1/m)]d . Since only a finite number of configurations of

the cubes Cm(k) ⊆ (0, 1 + (1/m)]d exists, the strong law of large numbers (18.8)
for η implies that

lim sup
|t|→∞

sup
A∈A

∣∣∣∣∣
η(t · (A′′

m \ A′
m)) − E

[
η(t · (A′′

m \ A′
m))

]

|t|

∣∣∣∣∣ = 0 a.s.

Therefore,

lim sup
|t|→∞

sup
A∈A

∣∣∣∣
ξ(t · A) − E [ξ(t · A)]

|t|
∣∣∣∣

≤ lim sup
|t|→∞

sup
A∈A

∣∣∣∣∣
E

[
ξ(t · (A \ A′

m))
]

|t|

∣∣∣∣∣

+ lim sup
|t|→∞

sup
A∈A

E
[
η(t · (A′′

m \ A′
m))

]

|t| .

Passing to the limit as m → ∞ and using assumptions (18.5) and (18.6), we
complete the proof of the uniform strong law of large numbers (18.7).

18.5 Homogeneous Random Fields and Stationary Measures

A random signed measure ξ in R
d is said to be stationary if ξ(·) shares the finite-

dimensional distributions with ξ(· + t) for each t ∈ R
d . If the first moment E [ξ(·)]

is finite, then the first moment measure Λ is proportional to the Lebesgue measure.
The ergodic theorem of Zygmund [31] implies that, if ξ is stationary with

E
[
|ξ(A)|(log+ |ξ(A)|)d−1

]
< ∞ (18.10)
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for all bounded Borel A, then

|t|−1
∫

[0,t]
ξ(A + x)dx

converges almost surely as t → ∞ to a finite random variable, being the
conditional expectation of ξ(A) with respect to the invariant σ -algebra. The limit
is deterministic and equals E [ξ(A)] if ξ is ergodic. Here log+ z = log(e + z) for
z ≥ 0. Note that all results of Sect. 18.3 can be amended for the convergence t → ∞
instead of |t| → ∞. The notation t → ∞ means that all coordinates of t tend to
infinity, while |t| → ∞ means that at least one of them tends to infinity.

Theorem 18.3 Let A be a family of Borel sets in I that satisfies (18.2). Assume
that ξ is a stationary ergodic random measure such that (18.10) holds for A = I .
Then ξ satisfies the uniform strong law of large numbers as t → ∞, that is, (18.7)
holds with t → ∞.

Proof Note that

∫

[0,t]
ξ(I + x)d x =

∫

[0,t]

∫

I+x
ξ(d u)d x =

∫

[0,t+1]
|(−I + u) ∩ [0, t]|ξ(d u).

Further, |(−I + u) ∩ [0, t]| is less than or equal to one for all u ∈ [0, t + 1] and is
exactly one if u ∈ [1, t], whence

ξ([1, t]) ≤
∫

[0,t]
ξ(I + x) dx ≤ ξ([0, t + 1]), (18.11)

since ξ is nonnegative. If d = 1, then

lim
t→∞

ξ([0, t]) − ξ([1, t])
|t| = 0 a.s. (18.12)

which together with (18.11) and ergodic theorem (Zygmund’s theorem [31] for d =
1) yields for d = 1

lim
t→∞

ξ(t · I)

|t| = E [ξ(I)] a.s. (18.13)

Now let d > 1 and assume that (18.13) holds for all dimensions less than d .
Then (18.12) holds for the dimension d . This together with (18.11) combined
with Zygmund’s theorem [31] yields (18.13) for the dimension d . Since ξ is
stationary, (18.5) and (18.6) follow from (18.2). The result follows from a variant of
Theorem 18.2 for the convergence t → ∞.

Let Xj, j ∈ N
d , be a homogeneous random field, that is, (Xj1, . . . , Xjm

)

coincides in distribution with (Xj1+s, . . . , Xjm+s) for allm ∈ N, and s, j1, . . . , jm ∈



18 Uniform Strong Law of Large Numbers 343

N
d . For n = (n1, . . . , nd) ∈ N

d , denote Sn = S([0,n]) from (18.1). In other words,

Sn =
∑

k�n

Xk

where � is a partial order in N
d defined by

k � n ⇐⇒ k1 ≤ n1, . . . , kd ≤ nd

for k = (k1, . . . , kd) ∈ N
d and n = (n1, . . . , nd) ∈ N

d .
Dunford [9] proved that if

E
[
|Xj|

(
log+ |Xj|

)d−1
]

< ∞, (18.14)

then the limit of the averages

Sn

|n| (18.15)

exists almost surely as |n| = n1 × · · · × nn → ∞. Smythe [27] provides
a probabilistic statement and proof of this result for independent identically
distributed random variables Xj. Etemadi [10] obtains the same result for pairwise
independent identically distributed random variables. The limit of Sn/|n| in the
latter case coincides with the expectation μ = E

[
Xj

]
. This property requires

the ergodicity if random variables are not necessarily pairwise independent and
identically distributed.

Note that S(A) given by (18.1) is not a stationary randommeasure and it may be
also signed, so Theorem 18.3 is not directly applicable. The following result follows
from Theorem 18.2.

Corollary 18.2 Let {Xj, j ∈ N
d } be a homogeneous random field and the moment

condition (18.14) holds. Further letA be a family of subsets of the unit cube I that
satisfies (18.2). If {Xj} is ergodic, then

lim|t|→∞ sup
A∈A

∣∣∣∣
S(t · A)

|t| − μ|A|
∣∣∣∣ = 0 a.s.

Proof Note that the expectations in (18.5) and (18.6) are dominated by a constant
times |A′′

m \ A′
m|.

Remark 18.1 Condition (18.14) is necessary for the almost sure convergence
of (18.15) in the case of independent identically distributed random variables.

Another particularly important family of random signed measures is generated
by marked point processes. Let N = {(xi , mi), i ≥ 1} be a point process in Rd ×R,
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where the second coordinate mi represents the mark of the point xi . Then

ξ(A) =
∑

xi∈A

mi (18.16)

is a random signed measure. The process is called independently marked if the
marks are i.i.d. random variables and independent of locations. The first order
moment measure

Λ(A × C) = E [#{i : (xi , mi) ∈ A × C}]

is the measure on Borel sets in R
d × R, and we assume that Λ(A × R) is finite for

each bounded Borel set A.
The marked point process is stationary if its distribution does not change if the

locations xi are all translated by any vector t; then Λ(A×C) = Λ((A+ t)×C) for
all t ∈ R

d .

Theorem 18.4 Assume that ξ is given by (18.16) for an ergodic independently
marked point process satisfying

E
[
|m1|(log+ |m1|)d−1

]
< ∞,

and the random variable N = card{i : xi ∈ I } is square integrable. Then (18.7)
holds for any family A satisfying (18.2).

The proof of Theorem 18.4 is based on the following elementary upper bound
for the function x(log x)r .

Lemma 18.1 Let r > 0, n ≥ 1 and a1, . . . , an ≥ er−1. Put An = a1 + · · · + an.
Then

An(logAn)
r ≤

n∑

i=1

ai(log ai)
r + r

n∑

i=1

(An − ai)(log ai)
r−1.

Proof It is clear that

An(logAn)
r =

n∑

i=1

ai(logAn)
r =

n∑

i=1

ai(log ai)
r +

n∑

i=1

ai

(
(logAn)

r − (log ai)
r
)
.

By the mean value theorem,

(logAn)
r − (log ai)

r = (An − ai) · r
(log ξ)r−1

ξ
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for some ai ≤ ξ ≤ An. Since the right hand side is a decreasing function in ξ ,

(logAn)
r − (log ai)

r ≤ (An − ai) · r
(log ai)

r−1

ai

.

Therefore,

An(logAn)
r ≤

n∑

i=1

ai(log ai)
r + r

n∑

i=1

(An − ai)(log ai)
r−1.

Proof (of Theorem 18.4) In order to apply Theorem 18.2, we only need to show that

ξ̄ (I ) =
∑

xi∈I

|mi |

satisfies (18.14). Without loss of generality, we assume that |mi | ≥ ed−2 almost
surely, since ξ̄ (I ) = ξ̄1(I) + ξ̄2(I), where ξ̄1(I) and ξ̄2(I) are constructed from
mi1I{|mi |<ed−2} and mi1I{|mi |≥ed−2}, respectively, with mi1I{|mi |<ed−2} being bounded.
By Lemma 18.1 with r = d − 1, and ai = |mi |

E
[
AN(logAN)d−1

]
≤ E

[
N∑

i=1

ai(log ai)
r

]
+ (d −1)E

[
N∑

i=1

(AN − ai)(log ai)
r−1

]
.

Since N and {mi} are independent, Wald’s equality implies

E

[
N∑

i=1

ai(log ai)
r

]
= E [N] · E [

ai(log ai)
r
]

.

The total expectation formula yields that

E

[
N∑

i=1

(AN − ai)(log ai)
r−1

]
=

∞∑

n=1

P(N = n)E

[
n∑

i=1

(An − ai)(log ai)
r−1

]

=
∞∑

n=1

P(N = n)

n∑

i=1

E
[
(An − ai)(log ai)

r−1
]

=
∞∑

n=1

P(N = n)

n∑

i=1

E [(An − ai)] · E
[
(log ai)

r−1
]
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=
∞∑

n=1

P(N = n)n(n − 1)E [|m1|] · E
[
(log |m1|)r−1

]

= E [|m1|] · E
[
(log |m1|)r−1

]
E [N(N − 1)] .

This together with the latter bound proves the desired result.

18.6 Stochastic Integrals

Stochastic integrals with respect to the Brownian sheet have been intensively studied
since the 70s. Treated as signed measures, stochastic integrals fit very well the
framework of Theorem 18.2. Although the construction of stochastic integrals can
be done for any dimension, we restrict ourselves to the case of d = 2 as in [6].

Let W be a white noise in the plane, that is a finitely additive set function
defined on the Borel subsets of R2+ such that W(A) is a normal random variable
with parameters 0 and |A| and W(A) and W(B) are independent for disjoint Borel
subsets A and B.

If Rst denotes the rectangle [0, s] × [0, t], then Wst = W(Rst ) is called the
Brownian sheet. By Fst , (s, t) ∈ R

2+, we denote the σ -algebra generated by the
random variables Wuv , (u, v) � (s, t).

Let A be a closed rectangle with the lower left-hand corner z0. Introduce the
function φz, z ∈ R

2+, as follows

φz = φ01IA(z), z ∈ R
2+, (18.17)

where φ0 is a Fz0 measurable random variable. Then, by definition,

∫

Rz

φ dW = φ0W(A ∩ Rz), z ∈ R
2+.

The integral is extended by linearity to simple φ, i.e. to finite linear combinations of
“step” functions of the form (18.17). In general, let φ be such that

(a) φz isFz-measurable,
(b) (z, ω) �→ φz(ω), z ∈ R

2+, ω ∈ Ω , isB ×F -measurable whereB is the family
of Borel subsets in the plane and F is the σ -algebra of the probability space
(Ω,F ,P), and

(c)
∫

Rz

E
[
φ2

ζ

]
dζ < ∞ for all z ∈ R

2+.

Then one can find a sequence of simple random functions {φn} for which

lim
n→∞

∫

Rz

E
[
(φn − φ)2

]
dζ = 0 for all z ∈ R

2+.
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The integrals
∫
Rz

φn dW converge in the mean square sense, the limit is denoted by∫
Rz

φ dW . The defined integral is

• continuous as a function of z,
• a two-parameter martingale, and
• for all z ∈ R

2+,

E

[(∫

Rz

φ dW

)2
]

=
∫

Rz

E
[
φ2

ζ

]
dζ. (18.18)

Recall the three defining properties for an arbitrary two-parameter martingale
Mz, z ∈ R

2+, with respect to the family of σ -algebrasFz, z ∈ R
2+ (see [5]):

(I) E [|Mz|] < ∞ for all z ∈ R
2+;

(II) Mz is Fz-measurable;
(III) if z � z′, then E

[
Mz′

∣∣Fz

] = Mz.

The final step in the construction of the integral is to pass to a general bounded Borel
set A by letting

∫

A

φ dW =
∫

R

1IA φ dW,

where R is a rectangle containing A. Then, for each fixed φ,

ξ(A) =
∫

A

φ dW

is a signed measure.
Now we define the two-parameter discrete time martingale associated with the

stochastic integral. For (m, n) ∈ N
2, define rmn = Rmn \ (Rm−1,n ∪ Rm,n−1) and

put

Xmn =
∫

rmn

φ dW, Smn =
m∑

i=1

n∑

j=1

Xij =
∫

Rmn

φ dW.

Then Smn is a two-parameter discrete time martingale with respect to the family of
σ -algebrasFmn. It follows from [20] that if

∞∑

m=1

∞∑

n=1

E
[
X2

mn

]

(mn)2
< ∞, (18.19)
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then the strong law of large numbers holds for {Smn},

lim
mn→∞

Smn

mn
= 0 a.s. (18.20)

In view of (18.18), condition (18.19) is equivalent to

∫ ∞

1

∫ ∞

1

E
[
φ2

st

]

(st)2
ds dt < ∞. (18.21)

The strong law of large numbers (18.20) is easily extended to the continuous
time limit result by using the Cairoli maximal inequality [5]. Thus (18.4) holds with
the signed measure ξ(A) = ∫

A
φ dW . Now Theorem 18.2 implies the following

corollary.

Corollary 18.3 Let φz, z ∈ R
2+, satisfy conditions (a)–(c). Let A be a family of

subsets of the square [0, 1] × [0, 1] such that conditions (18.5) and (18.6) hold.
Then (18.21) implies

lim
st→∞
s≥1, t≥1

sup
A∈A

∣∣∣∣
1

st

∫

st ·A
φ dW

∣∣∣∣ = 0 a.s.

18.7 Concluding Remarks

The assumptions for the uniform strong law of large numbers imposed on the family
A (either (18.2) in Theorem 18.1 or (18.5)–(18.6) in Theorem 18.2) do not involve
any entropy type restriction needed for both the central limit theorem [1] and law of
the iterated logarithm [2]. For the both latter results, one needs to assume that the
entropy is integrable, that is

∫ 1

0

√
H(u)

u
du < ∞,

where H(u) is the entropy of the familyA being the logarithm of the cardinality of
a minimal u-net.

Krengel and Pyke [21] provide the strong law of large numbers for multiparam-
eter subadditive processes rather than for signed measures as in our Theorem 18.2.
It is worthwhile mentioning that they do not get a uniform version. Liu, Rio, and
Rouault [23] treat the uniform strong law of large numbers for random measures,
which is a partial case of signedmeasures with a one-dimensional growth parameter.
A version of Theorem 18.1 for random product measures is considered by Kil and
Kwon [18]. Jang and Kwon [16] obtain a generalization of Theorem 18.1 for fuzzy
random variables. Bing [4] extends Theorem 18.1 for the α-mixing case. Note that
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this result follows from Theorem 18.2 by referring to the usual strong law of large
numbers available in this case. Ziegler [30] investigates the uniform law of large
numbers for triangular arrays extending Theorem 18.1 to the case of non-identically
distributed random variables.

Considering random sets as measurable mappings from a probability space into
the set of compact convex subsets of a Banach space, Jang and Kwon [16] prove a
uniform strong law of large numbers for sequences of independent and identically
distributed random sets, which is another direct generalization of Theorem 18.1.

Under a mild assumption, Giné and Zinn [12] show that condition (18.2) is
necessary and sufficient for the uniform strong law of large numbers (18.3) if μ = 0
(see also Hong and Kwon [13]). However, the case of μ �= 0 is different.

Ivanoff [14] discusses the uniform strong law of large numbers in connection to
possible generalizations of the definitions of a stochastic process indexed by R+ to
processes indexed by a multidimensional time parameter or a class of sets.

Müller and Song [24] apply the uniform strong law of large numbers for partial-
sum process to investigate the problem of edge estimation in a two-region image
in the setting of a fixed design regression model. Terán and López-Díaz [28] use
Theorem 18.1 to study some aspects of the approximation of mappings taking values
in a special class of upper semicontinuous functions and to obtain some Korovkin
type theorems for positive linear operators.
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