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Preface

The given collection of papers has been organized as a result of regular open
joint academic panels of research workers from the Faculty of Mechanics and
Mathematics of Lomonosov Moscow State University and Institute for Applied
Systems Analysis of the National Technical University of Ukraine “Igor Sikorsky
Kyiv Polytechnic Institute.” This volume is devoted to the fundamentals of modern
mathematics and mechanics. It attracted attention of researchers from leading
scientific schools of Brazil, France, Germany, Poland, Russian Federation, Spain,
Mexico, Ukraine, the USA, and other countries.

Modern technological applications require development and synthesis of fun-
damental and applied scientific areas, with a view to reducing the gap that
may still exist between theoretical basis used for solving complicated technical
problems and implementation of obtained innovations. To solve these problems,
mathematicians, mechanics, and engineers from wide research and scientific centers
have been working together. Results of their joint efforts, including differential
geometry, dynamics of differential and difference equations and applications, solid
mechanics, and modern methods of optimization and control, are partially presented
here. In fact, serial publication of such collected papers to similar seminars is
planned.

This is the sequel of earlier volumes:

• Zgurovsky, Michael Z.; Sadovnichiy, Victor A. (Eds.) Continuous and Dis-
tributed Systems: Theory and Applications Series: Solid Mechanics and Its
Applications, Vol. 211, 2014, XIX, 333 p. 33 illus., 14 illus. in color.

• Victor A. Sadovnichiy and Michael Z. Zgurovsky (Eds.), Continuous and
Distributed Systems: Theory and Applications, Volume II, Studies in Systems,
Decision and Control, Volume 30, 2015, Springer, Heidelberg xxiv+375pp

• Victor A. Sadovnichiy and Michael Z. Zgurovsky (Eds.), Advances in Dynamical
Systems and Control, Studies in Systems, Decision and Control, Volume 69,
2016, Springer, Heidelberg xxii+471pp
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vi Preface

In this volume, we are planning to focus on the fundamentals of modern mathemat-
ics and mechanics :

(1) We provide the solutions to modern fundamental problems including the
complexity of computing of critical points for set-valued mappings, the
behavior of solutions (stability, existence, and long-time behavior of solutions,
attractors and repellers, numerical approximations, chaos, entropy, and many
other features characterizing the dynamics of solutions) of ordinary differ-
ential equations, partial differential equations, and difference equations, the
development of abstract theory of global attractors for multi-valued impulsive
dynamical systems, etc.;

(2) The abstract mathematical approaches, such as differential geometry, differ-
ential equations, and difference equations, are applied to the practical appli-
cations in solid mechanics, hydro-, aerodynamics, optimization, decision-
making theory, and control theory. In particular, in mechanics: classes of
Hamiltonian systems can be studied in terms of Fomenko-Zieschang invari-
ants; in solid mechanics: an algorithm for splitting an equilibrium displace-
ment equation system with bulk forces for a transversely isotropic linearly
elastic medium that leads to three uncoupled equations with certain canonical
fourth-order differential operators in the three components of the displacement
vector is described; in hydrodynamics: a simplified model of the trapped
vortex is applied to determine the optimal parameters of the control device
and dynamical system analysis is used to explore the performance of this
control strategy; in aerodynamics: the effects of airfoil thickness and angle-
of-attack on nonlinear wake and wing dynamic characteristics are examined;
in optimization: an optimal boundary control problem for the system of non-
linear integro-differential evolution equation (cp. Burgers-Sivansky equation)
describing the behavior of the flame front interface under some physical
assumptions is solved; in control: the methods of automation of impulse
processes control in cognitive maps with multirate sampling of measured
vertices coordinates are developed.

(3) We hope that these compilations will be of interest to mathematicians and
engineers working at the interface of these fields.

The book is addressed to a wide circle of mathematical, mechanical, and
engineering readers.

Moscow, Russian Federation Victor A. Sadovnichiy
Kyiv, Ukraine Michael Z. Zgurovsky
May 2018
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Chapter 1
Convergence Almost Everywhere
of Orthorecursive Expansions in Systems
of Translates and Dilates

Vladimir V. Galatenko, Taras P. Lukashenko, and Victor A. Sadovnichiy

Abstract Systems of translates and dilates have been widely studied in the
last decades. In particular, V.I. Filippov and P. Oswald obtained conditions
on a generating function which guarantee that dyadic translates and dilates of
this function form a representation system in Lp[0, 1]. A.Yu. Kudryavtsev and
A.V. Politov showed that under a slightly harder condition on a generating function
each element f ∈ L2[0, 1] is represented by its orthorecursive expansion in this
system. Here we continue studying orthorecursive expansions in systems of dyadic
translates and dilates and present results on convergence almost everywhere of these
expansions.

1.1 Introduction

Systems of translates and dilates have been widely studied in the last decades, in
particular, in theoretical and applied research related to discrete wavelets [1, 2]. For a
case of [0, 1] segment and dyadic translates and dilates these systems can be defined
as follows. Let ϕ be a function defined on [0, 1]. We extend this function to R by
setting its values to zero outside [0, 1], and for all k ∈ Z

+ and j ∈ {0, 1, . . . , 2k−1}
define

ϕk,j (x) = ϕ2k+j (x) = Ckϕ
(

2kx − j
)
.

Here Ck are positive norming constants which can be either set to 1, or selected in
such a way that norms of all functions ϕn (n ∈ {1, 2, 3, . . .}) in the resulting system
of translates and dilates of ϕ equal one.

Wavelet theory generally considers systems of translates and dilates with certain
special properties, e.g., orthogonal systems. But it has been shown by V.I. Filippov
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and P. Oswald [3] that for an arbitrary function ϕ ∈ Lp[0, 1] (1 ≤ p < ∞) with
1∫

0
ϕ dμ �= 0 the system of its translates and dilates is a representation system in

Lp, i.e., for every function f ∈ Lp[0, 1] there exists a sequence of coefficients

{cn(f )}∞n=1 such that the series
∞∑
n=1

cn(f )ϕn converges to f in Lp-norm.

A.Yu. Kudryavtsev and A.V. Politov showed that at least for p = 2 under

an additional soft condition on ϕ, namely, the convergence of
∞∑
k=1

ω2
2

(
ϕ, 2−k),

where ω2 is the integral modulus of continuity in L2[0, 1], coefficients for such
representation can be found by orthorecursive expansion [4]. This expansion
generalizes classical orthogonal expansions preserving such properties as Bessel’s
identity, Bessel’s inequality, and the equivalence of convergence to an expanded
element and Parseval’s identity [5]. The scheme of orthorecursive expansion is also
utilized in greedy expansions in Hilbert spaces [6, 7], known in signal processing
and statistics as Matching Pursuit [8] and Projection Pursuit [9], respectively.
However, greedy expansions include the selection of an expanding element from
a given dictionary at each step, while in the considered settings the set and the order
of elements in the orthorecursive expansion is fixed.

Let us recall the definition of an orthorecursive expansion of an element f from

a Hilbert space
(
H, ( · , · )

)
in a system of non-zero elements {ϕn}∞n=1 ⊂ H . We set

r0 = f , and then inductively define coefficients as remainders as follows:

f̂n = (rn−1, ϕn)

(ϕn, ϕn)
, rn = rn−1 − f̂nϕn (n = 1, 2, 3, . . . ).

The series
∞∑
n=1

f̂nϕn is called an orthorecursive expansion of f in the system

{ϕn}∞n=1.
As noted in [10], the majority of known results for orthorecursive expansions deal

with the convergence with respect to the norm induced by a scalar product (L2-norm
for the case of functional systems), and results related to pointwise convergence
are scarce. In this paper we show that under certain conditions orthorecursive
expansions in systems of translates and dilates converge to an expanded function
not only in L2-norm, but also almost everywhere.

In order to focus on main ideas, but not on technical details, here we present the
result in a simple form, with excessive conditions on a function ϕ which generates
a system of translates and dilates and on an expanded function f . A strengthening
of the presented result with essentially weaker conditions imposed on ϕ and f will
be presented in subsequent publications.

The result presented in this publication has been previously announced at a
conference level, but its proof has not been published.
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1.2 Expansion in a System of Functions with Dyadic
Supports

We do not limited the analysis to systems of dyadic translates and dilates, but
consider systems {ϕn}∞n=1 ⊂ L2[0, 1] of real-valued functions with suppϕn ⊂ Δn,
where Δn is the n-th dyadic segment:

Δk,j = Δ2k+j =
[
j

2k
,
j + 1

2k

]
(k ∈ Z

+, j ∈ {0, 1, . . . , 2k − 1}).

In order to simplify formulas we assume that ‖ϕn‖2 = 1 for all n (here ‖ · ‖2 is the
L2-norm). For every dyadic-irrational point x ∈ [0, 1] and every k ∈ Z

+ we define
nk(x) as an index lying in [2k, 2k+1 −1] such that x ∈ Δnk(x). In other words, nk(x)
is an index of a dyadic segment of scale k (or, equivalently, with length 2−k) that
covers x.

For the subsequent analysis of convergence almost everywhere, the following
lemma turns out to be useful.

Lemma 1.1 Let {cn}∞n=1 be a sequence of real numbers with
∞∑
n=1

c2
n < ∞. Then

∞∑
k=0

2kc2
nk(x)

converges almost everywhere on [0, 1].

As coefficients {f̂n}∞n=1 of an orthorecursive expansion of an element f from
a Hilbert space in a normed system belong to �2 due to Bessel’s inequality, this
lemma is applicable to orthorecursive expansions. Note that for the considered class

of systems for a dyadic-irrational point x all terms of the expansion
∞∑
n=1

f̂nϕn(x)

with n /∈ {nk(x)}∞k=0 equal zero in x. Thus each dyadic-irrational point x is
naturally associated with a subset of coefficients

{
f̂nk(x)

}∞
k=0, and the series in

dyadic-irrational points is reduced to
∞∑
k=0

f̂nk(x)ϕnk(x)(x).

The proof of the lemma is quite simple. Let χn(x) denote the indicator function
of Δn. Let us consider L1-norm of series terms:

∥∥∥2kc2
nk(x)

∥∥∥
1

=
∥∥∥∥∥∥

2k−1∑
j=0

2kc2
2k+jχ2k+j (x)

∥∥∥∥∥∥
1

=
2k−1∑
j=0

c2
2k+j =

2k+1−1∑

n=2k

c2
n.

Thus,

∞∑
k=0

1∫

0

2kc2
nk(x)

dμ(x) < ∞,

and it remains to use Levi’s theorem [11, Ch.8, Sect. 30] to complete the proof.
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Having this lemma, we can proceed to the following theorem.

Theorem 1.1 Let all functions of a system {ϕn(x)}∞n=1 satisfy the following condi-
tions: ϕn ≥ 0; suppϕ ⊂ Δn and ϕn is continuous on Δn; ‖ϕn‖2 = 1. Additionally,
let the condition

sup
K∈Z+

K∑
k=0

2−kω2
nk(x)

(
2−K)

< ∞

(where ωnk(x)( · ) is the modulus of continuity of ϕnk(x) on Δnk(x)) hold for almost
all dyadic-irrational points x ∈ [0, 1]. Then for every function f (x) ∈ L2[0, 1] its
orthorecursive expansion in {ϕn(x)}∞n=1 converges to f (x) in almost all continuity
points of f .

In order to prove the theorem, we first note that for all n ∈ {1, 2, 3, . . .} and all
x ∈ Δo

n the following estimate holds:

|rn(x)| ≤ osc
(
rn,Δ

o
n

)
.

Here rn is the n-th remainder of the orthorecursive expansion of f in {ϕn(x)}∞n=1,

Δo
n = intΔn (i.e., Δo

2k+j =
(
j

2k
,
j+1
2k

)
, k ∈ Z

+, j ∈ {0, 1, . . . , 2k − 1}), and osc

denotes oscillation of a function:

osc (g,A) = sup
x1,x2∈A

(g(x1)− g(x2)).

Indeed, due to the definition of orthorecursive expansion rn is orthogonal to ϕn, and
suppϕn ⊂ Δn, so

∫

Δo
n

rn(x)ϕn(x) dμ(x) = 0.

Furthermore, ϕn is non-negative on Δo
n and is strictly positive on a positive measure

subset ofΔo
n, thus, rn can not be strictly positive everywhere onΔo

n as well as strictly
negative everywhere on Δo

n, i.e., values of rn on Δo
n include both non-negative and

non-positive numbers. The estimate directly follows from this fact.
In particular, for every dyadic-irrational x ∈ [0, 1] and every k ∈ Z

+ the estimate
implies the inequality

∣∣rnk(x)(x)
∣∣ ≤ osc

(
rnk(x),Δ

o
nk(x)

)
.
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As for a dyadic-irrational x

f (x)−
N∑
n=1

f̂nϕn(x) = rN(x) = rnK(x)(x),

where K = max {k : nk(x) ≤ N}, the convergence of the orthorecursive expansion
in x to f (x) is equivalent to the convergence of

{
rnK(x)(x)

}∞
K=0 to zero. Due to the

above inequality, in order to prove this convergence it is sufficient to show that

osc
(
rnK(x),Δ

o
nK(x)

)
→ 0 (K → ∞).

The oscillations can be trivially estimated as follows:

osc
(
rnK(x),Δ

o
nK(x)

)
= osc

⎛
⎝f −

nK(x)∑
n=1

f̂nϕn(x),Δ
o
nK(x)

⎞
⎠

= osc

(
f −

K∑
k=0

f̂nk (x)ϕnk(x)(x),Δ
o
nK(x)

)

≤ osc
(
f,ΔnK(x)

) +
K∑
k=0

∣∣f̂nk(x)
∣∣ osc

(
ϕnk(x),ΔnK(x)

)

≤ osc
(
f,ΔnK(x)

) +
K∑
k=0

∣∣f̂nk(x)
∣∣ωnk(x)

(
2−K)

.

Let us consider an arbitrary continuity point x of f which satisfies the following
conditions:

(i) x is dyadic-irrational;

(ii)
∞∑
k=0

2kf̂ 2
nk(x)

< ∞;

(iii) C(x) := sup
K∈Z+

K∑
k=0

2−kω2
nk(x)

(
2−K)

< ∞.

Due to Lemma 1.1 and the conditions of the theorem conditions (i)–(iii) hold for
almost all continuity points of f . The term osc

(
f,ΔnK(x)

)
goes to zero as K → ∞

due to continuity. Hence, to complete the proof of the theorem it is sufficient to show
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that

K∑
k=0

∣∣f̂nk(x)
∣∣ωnk(x)

(
2−K)

also goes to zero.
To show it, let us take an arbitrary positive ε and find K0 ∈ N such that

∞∑
k=K0+1

2k f̂ 2
nk(x)

<
ε2

4C(x)
.

Next, as for a fixed k due to continuity ωnk(x)
(
2−K) → 0 (K → ∞), we find

K1 > K0 such that the inequality

K0∑
k=0

∣∣f̂nk(x)
∣∣ωnk(x)

(
2−K)

<
ε

2

holds for all K > K1. In order to estimate the remaining part of the sum we apply
Cauchy’s inequality and conditions (iii):

K∑
k=K0+1

∣∣f̂nk(x)
∣∣ωnk(x)

(
2−K)

≤
⎛
⎝

∞∑
k=K0+1

2k f̂ 2
nk(x)

⎞
⎠

1
2 (

K∑
k=0

2−kω2
nk(x)

(
2−K)) 1

2

<
ε

2
√
C(x)

· √
C(x) = ε

2
.

So overall for all K > K1 the inequality

K∑
k=0

∣∣f̂nk (x)
∣∣ωnk(x)

(
2−K)

< ε

holds, and the proof of the theorem is complete.

The condition imposed on moduli of continuity in Theorem 1.1 looks technical,
but it can be replaced by weaker conditions which have more natural form. E.g., the
condition holds if for all n ∈ {1, 2, 3, . . .} function ϕn is Lipschitz with constantAn,
and An = O

(
n3/2

)
(or, equivalently, An = O

(|Δn|−3/2
) = O

(
23k(n)/2

)
, where

k(n) = �log2 n� is the scale of Δn). Indeed, in this case there exists a constant A
such that An ≤ A · 23k(n)/2 for all n, and for all K ∈ Z

+ and all dyadic-irrational
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points x we have

K∑
k=0

2−kω2
nk(x)

(
2−K)

≤
K∑
k=0

2−k · A2
nk(x)

2−2K ≤ A2
K∑
k=0

2−k−2K · 23k

= A2
K∑
k=0

4k−K <
4A2

3
.

Lipshitz condition can be extended to Hölder condition with the same exponent α
(0 < α ≤ 1) for all functions ϕn and constants An = O

(
nα+1/2

)
.

Clearly Theorem 1.1 can be generalized from a system of dyadic segments to
a much wider setting, such as a system of segments {Δn}∞n=1 which forms a Vitali
covering of [0, 1] (i.e., for every δ > 0 and every x ∈ [0, 1] there exists a segment
Δn such that |Δn| < δ, Δn  x) and satisfies the following additional condition:
if n1 < n2 and segments Δn1 , Δn2 overlap, then Δn1 ⊃ Δn2 (see [5, Theorem 3]
and [12, Cond. (�1), (�2)]). In this case points excluded from the analysis (similarly
to dyadic-rational points) are ends of the segments Δn, {nk(x)}∞k=0 is an increasing
sequence of all indexes n for which Δn  x, and the condition on continuity takes
the form

sup
K∈Z+

K∑
k=0

∣∣Δnk(x)

∣∣ osc2 (
ϕnk(x),ΔnK(x)

)
< ∞ for almost all dyadic-irrational x.

1.3 Result for Systems of Translates and Dilates

The result on convergence almost everywhere of orthorecursive expansions in sys-
tems of dyadic translates and dilates can be obtained as a corollary of Theorem 1.1.
It can be formulated as follows.

Theorem 1.2 Let ϕ be a continuous non-negative non-zero function on [0, 1]which
satisfies the following condition:

∞∑
k=0

ω2
ϕ(2

−k) < ∞

(here ωϕ( · ) is the modulus of continuity of ϕ on [0, 1]). Then for every function
f (x) ∈ L2[0, 1] its orthorecursive expansion in the system of dyadic translates and
dilates of ϕ converges to f (x) in almost all continuity points of f .

Corollary 1.1 Let ϕ satisfy the conditions of Theorem 1.2, and f ∈ L2[0, 1] be
continuous almost everywhere on [0, 1]. Then the orthorecursive expansion of f in
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the system of dyadic translates and dilates of ϕ converges to f (x) almost everywhere
on [0, 1].

Let us derive Theorem 1.2 from Theorem 1.1. Without loss of generality we
consider the case ‖ϕ‖2 = 1 and scaling constants Ck = 2k/2. In this case all
functions ϕn in the system of dyadic translates and dilates of ϕ also have a unit L2-
norm. Non-negativeness of ϕn, continuity of ϕn on Δn and inclusion suppϕn ⊂ Δn

immediately follow from the conditions imposed on ϕ and the definition of a
system of dyadic translates and dilates. Thus, it remains to check the condition of
Theorem 1.1 on moduli of continuity. Note that for all n ∈ {1, 2, 3, . . .}

ωn(δ) = 2k(n)/2ωϕ

(
2k(n)δ

)
,

where ωn( · ) is the modulus of continuity of ϕn on Δn, k(n) is the scale of Δn (i.e.,
k(n) = �log2(n)�), and 0 < δ ≤ |Δn| = 2−k(n). Hence,

K∑
k=0

2−kω2
nk(x)

(
2−K)

=
K∑
k=0

2−k · 2kω2
ϕ

(
2k−K

)
≤

∞∑
k=0

ω2
ϕ

(
2−k) < ∞.

The proof of Theorem 1.2 is complete.

Obviously, the condition on the modulus of continuity in Theorem 1.2 holds for
Lipshitz functions and, more generally, Hölder functions with positive exponent.
Moreover, the condition holds for functions ϕ with ωϕ(δ) = O

(| ln δ|−(1/2+ε))
(ε > 0).

As one can see, the form of the condition on the modulus of continuity in
Theorem 1.2 is similar to the form of the condition imposed by A.Yu. Kudryavtsev
and A.V. Politov in their result on convergence in L2-norm [4].

Clearly, Theorem 1.2 can be generalized to systems of translates and dilates
generated simultaneously by a set of functions, e.g., systems in which subsystems
of different scales are generated by different generating functions. In this case the
condition on the modulus of continuity is formulated is terms of the majorant of
continuity moduli of generating functions.

1.4 Concluding Remarks

In this publication we showed that a result on pointwise convergence of orthore-
cursive expansion in a system of translates and dilates can be obtained using a
simple technique based on estimation of local oscillations. However, the simplicity
of technique led to excessively hard conditions both on a function ϕ that generates a
system of translates and dilates and on a function f being expended. As noted above,
in the subsequent publications we will present results with much softer conditions.
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Namely, we are going to relax the condition on non-negativeness of ϕ and continuity
almost everywhere of f .
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Chapter 2
Three-Dimensional Manifolds
of Constant Energy and Invariants
of Integrable Hamiltonian Systems

Anatoly T. Fomenko and Kirill I. Solodskih

Abstract This paper is algebraic and topology study of the manifolds of constant
energy of integrable Hamiltonian systems with two degrees of freedom. The
Liouville foliation defines the topology of isoenergy manifold, but on any isoenergy
manifold there are many non-equivalent Hamiltonian systems. We give some review
of recent papers on homotopy invariants and their relation with Fomenko-Zieschang
invariants. Also, we discuss relatively new results about Reidemeister torsion and
applications in the theory of Hamiltonian systems. The last section is efficiency
demonstration of Fomenko-Zieschang invariants in concrete mechanic system. Let
us note that many known Hamiltonian systems have been investigated in terms of
Fomenko-Zieschang invariants.

2.1 Integrable Hamiltonian Systems with Two Degrees
of Freedom

2.1.1 Hamiltonian Vector Fields

Let (M4, ω) be a symplectic manifold with symplectic structure ω. The smooth
function H : M4 → R induces the Hamiltonian vector field sgradH as follows

(sgradH)i = ∂H

∂xj
ωij ,

where (x1, x2, x3, x4)—the local coordinates on M4, ωij—elements of the inverse
matrix of the form ω. Also, the form ω induces the Poisson structure on M4. For
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any two smooth functions f , g on M4 we have

{f, g} = ω(sgrad f, sgrad g).

Let the smooth function F : M4 → R be the functionally independent with H
on M4 and {F,H } = 0, and the vector fields sgradH, sgradF are complete.

Definition 2.1 The decomposition of the manifold M4 into the union of connected
components of common level surfaces of the integrals F,H is called the Liouville
foliation corresponding to the Hamiltonian system sgradH .

Consider a common regular level Tc = {
x ∈ M4

∣∣H(x) = c1, F (x) = c2
}
, where

c = (c1, c2). By Liouville theorem if Tc is connected and compact, then Tc is
diffeomorphic to the 2-dimensional torus T 2 (this torus is called the Liouville torus).

Definition 2.2 A Liouville torus T 2 is called non-resonant (irrational) if and only
if the closure of every integral trajectory lying on it coincide with the whole torus.

2.1.2 Liouville Equivalence of Hamiltonian Integrable Systems

Consider the regular isoenergy surface Q3
h = {

x ∈ M4
∣∣H(x) = h

}
, and

corresponding Liouville foliation on Q3
h. We will assume further that Q3

h is compact
and regular. Let us denote the restriction of F on Q3

h by the same letter F .

Definition 2.3 Two integrable Hamiltonian systems v1 and v2 on symplectic
manifolds M4

1 and M4
2 (resp. on isoenergy surfaces Q3

1 and Q3
2) are called Liouville

equivalent iff there exists a diffeomorphism M4
1 → M4

2 (resp. Q3
1 → Q3

2)
transforming the Liouville foliation of the first system to that of the second one.

Remark 2.1 In non-degenerate case of general position the Liouville equivalent
integrable systems have the same closures of their integral trajectories for almost all
trajectories. In this case almost all Liouville tori represent the closures of integral
trajectories of the system.

Assume that F is a Bott function, that is non-degenerate (see [1]), on Q3
h. And let

all critical submanifolds of F on Q3
h are the circles. We will define the equivalence

relation ∼ on Q3
h. We say that two points x1, x2 ∈ Q3

h are equivalent if and only
if x1 and x2 lie on the same connected component of level surface of F . As Q3

h is
compact, so F ∈ [Fmin, Fmax] on Q3

h. The quotient space G = Q3
h/ ∼ is a some

graph. If we consider the standard projection p : Q3
h → G, then we see that the

one-parametric set of Liouville tori is projected to some edge of the graph G. Then
the preimage of critical value of the map F is projected to some vertex of G (see
Fig. 2.1). Let c ∈ [Fmin, Fmax] be a critical value of F on Q3

h.
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Fig. 2.1 Simple example of
quotient space G = Q3

h/ ∼

Definition 2.4 The class of Liouville equivalence of the preimage F−1([c − ε,

c + ε]), for sufficiently small ε, is called a 3-atom.

The 3-atoms were described by Fomenko in terms of Seifert manifolds. To define
the Seifert manifold we need to define standard fibered solid torus corresponding to
a pair of coprime integers (a, b).

Definition 2.5 The standard fibered solid torus of the type (a, b) is the fibration
over the circle with the disc-fibers determined by surface bundle of the diffeomor-
phism of a disk given by rotation by an angle of 2πb

a
. Consequently we obtain

the foliation of the solid torus over 2-dimensional disc with the fibers, which are
homeomorphic to the circle. If a > 1 the middle fiber is called exceptional. The pair
(a, b) also is called the type of the exceptional fiber.

Definition 2.6 A Seifert manifold is a closed 3-manifold together with a decom-
position into a disjoint union of a circles (called fibers) such that each fiber has a
tubular neighborhood that forms a standard fibered solid torus.

Theorem 2.1 (A.T. Fomenko) Any 3-atom V for integrable nondegenerateHamil-
tonian system is a Seifert manifold with boundary consisting of tori. Every excep-
tional fiber of V has type (2, 1).

Let us mark every vertex of the graph G by a symbol of the corresponding 3-
atom. This atom describes the corresponding bifurcation of the Liouville tori on
this critical level of the integral. This new graph W with vertices-atoms is called
a molecule (rough molecule) of the integrable Hamiltonian system sgradH on Q3

h.
The graph W can be oriented. The orientation of any edge corresponds to integral
F increase.

2.1.3 Fomenko-Zieschang Invariants

Consider the edge (V1, V2) ∈ W, where V1 and V2 are two atoms. This edge
describes the continuous one-parametric family T 2

t , t ∈ [t1, t2] of Liouville tori.
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The parameter t on the edge is simply the value of the integral F . The torus T 2
ti

is
a boundary torus of the atom Vi for i = 1, 2. Let us fix the basis bi = (λi, μi) in
the fundamental group π1(T

2
ti
), i = 1, 2. The basis in π1(T

2
ti
) determine the basis b′

i

in fundamental group π1(T
2
t ), where t ∈ (t1, t2). Let us consider the transformation

matrix C

(λ′
2, μ

′
2) =

(
α β

γ δ

)(
λ′

1
μ′

1

)
, C =

(
α β

γ δ

)
.

Definition 2.7 The transformation matrix C is called a gluing matrix.

Remark 2.2 The determinant of the matrix C is equal to −1.

To describe the Liouville foliation on Q3
h in terms of gluing matrices we have to

define the specific set of bases in fundamental groups of boundary tori. Now we
will define the admissible basis for fundamental group of boundary torus.

2.1.3.1 The Case of Atom A

Atom A is a neighborhood of a stable periodic trajectory S1 (stable means that F
has a local maximum or minimum on S1). Atom A is homeomorphic to a solid
torus. The first basis element λ of π1(T

2) is the homotopy class of the loop, which
is presented by a loop contracting to a point on S1. The second basis element μ
can be chosen as arbitrary independent homotopy class of a loop in π1(T

2) (see
Fig. 2.2). The orientations of these loops are compatible with orientation of Q3

h and
with Hamiltonian flow sgradH .

Fig. 2.2 Atom A with
admissible basis on boundary
torus
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Fig. 2.3 A section of an atom V

2.1.3.2 Case of Saddle Atoms

Definition 2.8 All atoms different from the atom A are called a saddle atoms.

We will consider only saddle atoms without exceptional fibers. In this case saddle
atom V of genius g and complexitym is homeomorphic to S2

g,m×S1, where S2
g,m is

a 2-sphere with g handles and m holes. The first loop λV on the boundary torus T 2
k

for k = 1, . . . ,m realizes the homotopy class of ∗ × S1 in π1(V ) under inclusion
T 2 ↪→ V . This loop is oriented by flow the sgradH . The second loop μk is chosen
in a cross-section S2

g,m × ∗ of the atom V (see Fig. 2.3). Here the star ∗ denotes a
point.

2.1.3.3 The Numerical Marks r and ε

Let us consider arbitrary edge (V1, V2) ∈ W . We fix admissible bases (λVi , μVi ) i =
1, 2 in the fundamental groups of the boundary tori. Then we obtain the gluing
matrix C corresponding to the edge (V1, V2), namely:

(λV2, μV2) =
(
α β

γ δ

)(
λV1

μV1

)
.

The numerical marks r and ε for the edge (V1, V2) are defined as follows

r = α

β
mod 1, ε =

{
sign(β), if β �= 0;

sign(α), if β = 0.

Lemma 2.1 (See [1]) The numerical marks r and ε are invariant under admissible
bases transformations.
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2.1.3.4 Family Mark n

Definition 2.9 The edge (V1, V2) ∈ W is called infinite if r-mark on the edge is
equal to ∞. Otherwise the edge is called finite.

By deleting all finite edges from the molecule W we obtain some set of subgraphs.

Definition 2.10 Those subgraphs which do not contain vertices A are called the
families.

Assume that molecule W has a family Wf . The edges of the molecule W which
belong to family Wf or are incident to some vertices of Wf are divided into three
classes. We denote this set of edges by N(Wf ). Let us consider arbitrary edge e ∈
N(Wf ).

Definition 2.11 The edge e is called inner if e ∈ Wf . By definition both vertices of
the edge e belong to the family Wf . The edge e from N(Wf ) is called incoming if
and only if it’s terminal vertex belongs to Wf . If the only initial vertex of e belongs
to Wf , then e is called outgoing.

For any edge e ∈ N(Wf ) we define an integer number Θe

Θe =

⎧⎪⎪⎨
⎪⎪⎩

[
α
β

]
, if e is outgoing;[ − δ
β

]
, if e is incoming;[ − γ

α

]
, if e is inner.

Let us define n-mark for the family Wf as follows

n =
∑

e∈N(Wf )

Θe.

Lemma 2.2 (See [1]) The mark n is invariant under admissible bases transforma-
tions.

2.1.3.5 Fomenko-Zieschang Theorem and Realization Problem

We have defined the marks r and ε for any edge of the molecule W . Also we have
defined the marks n for any family of W .

Definition 2.12 The molecule W with the marks r , ε and n is called a marked
molecule or a Fomenko-Zieschang invariant of integrable system sgradH on Q3

h.
We denote it as follows

W∗ = (W, r, ε, n).
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Let us consider two different integrable Hamiltonian systems sgradH1 and sgradH2
on Q3

h1
and Q3

h2
respectively. Let W∗

1 and W∗
2 be the marked molecules of these

systems.

Theorem 2.2 (A.T. Fomenko, H. Zieschang) The systems sgradH1 and sgradH2
are Liouville equivalent if and only if the marked molecules W∗

1 and W∗
2 are

coincide.

Let us formulate the important question. Let G be an oriented graph. Let us
mark all vertices of G by a symbols corresponding to some 3-atoms. Then we
mark all edges by various r-marks and by ε ∈ {1,−1}. At last we mark all
families by various integer numbers n. Denote the graph G with this marks by G∗.
The realization problem: Is there an integrable Hamiltonian system such that its
Fomenko-Zieschang invariant is G∗?

It turns out, the answer is affirmative.

Theorem 2.3 (A.V. Bolsinov, A.T. Fomenko) For any marked graph G∗ always
exists the smooth integrable Hamiltonian system (with Bott integral) with marked
moleculeG∗.

2.1.4 Simple Examples of Molecules

Let us consider the moleculeA–A. The manifold Q3 corresponding to this molecule
consists of two solid tori which are glued together along the boundary. The following
proposition determines a topological type of Q3 depending on r-mark.

Proposition 2.1

1) If r = 0, then Q3 is homeomorphic to sphere the S3.
2) If r = ∞, then Q3 is homeomorphic to the direct product S1 × S2.
3) If r = q

p
, then Q3 is homeomorphic to the lens space Lp,q .

This proposition demonstrates that Fomenko-Zieschang invariants determine the
topological type of Q3. In case of the concrete mechanical systems the topological
type of Q3 can be often calculated. That is why the study of topology of Q3 is
very important and perspective. Let us denote the class of isoenergy manifolds of
integrable Hamiltonian systems by (H). For the details of the theory of Liuoville
classification of integrable Hamiltonian systems and its different applications to
concrete problems of mechanics, physics and symplectic geometry see the following
publications [2–19].
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2.2 Homotopy Invariants of Q3

2.2.1 Fundamental Group π1(Q3)

As Liouville foliation defines the topological type of Q3, any homotopy and
topological invariants can be computed in terms of the marked molecules. The
fundamental group π1(Q3) has been computed in [20] by A.T. Fomenko and
H. Zieschang. In this section we describe the main results of [20]. The idea of the
computation is recursive application of Seifert-van Kampen theorem. Let us remind
this theorem, its proof can be found in [21].

Theorem 2.4 (Seifert-van Kampen Theorem) Let X be the path-connected
topological space and path-connected open subsets X1,X2 ⊂ X such that X =
X1 ∪X2, Y = X1 ∩X2 is also path-connected. Then π1(X, x0) is a free product with
amalgamation of the groups π1(X1, x0) and π1(X2, x0), with respect to induced
inclusion homomorphisms i1∗ and i2∗, that is

π1(X, x0) = π1(X1, x0) ∗π1(Y,x0) π1(X2, x0), ik : Y ↪→ Xk, k = 1, 2,

where x0 ∈ Y .

Also, we give some important property of the class (H).

Definition 2.13 The manifold Q3 ∈ (H) is called sufficiently large iff there is a
torus T 2 ∈ Q3 such that the homomorphism i∗ : π1(T

2) → π1(Q3) induced by
a standard inclusion is a monomorphism.

Theorem 2.5 (A.T. Fomenko, H. Zieschang) Any two sufficiently large manifolds
Q3

1, Q3
2 ∈ (H) are homeomorphic iff π1(Q3

1) is isomorphic to π1(Q3
2).

Let us consider Q3 with some Liouville foliation and corresponding molecule W∗.
To compute π1(Q3) we need to calculate the fundamental groups of all atoms from
the molecule W∗. Then we apply the Theorem 2.4. If necessary we move the base
point along suitable path.

2.2.1.1 Fundamental Groups of the Atoms

As atom A has homotopy type of the circle S1, then π1(A) ∼= Z. The generator of
π1(A) is the image of μ (see Sect. 2.1.3.1) under the inclusion map i : ∂A ↪→ A.
We do not specify base point in A because the π1(A) is commutative.

Let us consider arbitrary saddle atom V (let us note that now we consider only
saddle atoms without exceptional fibers). The atom V is homeomorphic to S2

g,m×S1,
then

π1(V ) ∼= π1(S
2
g,m)× π1(S

1).
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Fig. 2.4 Generators of π1(S
2
g,m, x)

To calculate the presentation of the group π1(S
2
g,m, x) let us fix the following

curves:

1. ξ1, ζ1, . . . , ξg, ζg—the standard loops on the 2-handles;
2. μ1, . . . , μm—the loops corresponding to admissible basis (Sect. 2.1.3.2)
3. ωξ1ζ1, . . . , ωξgζg , ωμ1 , . . . , ωμm—the paths from the fix point x to the fixed

points on corresponding curves, shown on the Fig. 2.4.

The paths from item (3) determine the tree T on S2
g,m. Let us contract the surface

S2
g,m (with boundary) along the tree T by contracting all edges to the base point x

(see Fig. 2.4). Let us denote its image by Y . Then we construct CW decomposition
of Y with single zero-dimensional cell x. We can see that

π1(S
2
g,m, x) = 〈

ξ1, ζ1, . . . , ξg, ζg, μ1, . . . , μm
∣∣

g∏
k=1

[ξk, ζk]μ1 . . . μm
〉
.

We do not rename the generators of fundamental group after isomorphism along
some path. Finally, we conclude that

π1(V , x) = π1(S
2
g,m × S1, x)

= 〈
λV , ξ1, ζ1, . . . , ξg, ζg, μ1, . . . , μm

∣∣[λV , ξ ], [λV , ζ ],

[λV ,μ],
g∏
k=1

[ξk, ζk]μ1 . . . μm
〉
, (2.1)

where [λV , ξ ] are the commutators for all generators ξ1, . . . , ξg (similarly for all ζ
and all μ). The generators of π1(Q3) are all generators of fundamental groups
of saddle atoms plus some special generators {ω} corresponding to the edges of
the molecule. Now we can compute an additional relations which follow from the
gluings of two atoms.
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2.2.1.2 Gluing of Atoms

At first we glue the atom A with saddle atom V . In this case we obtain only one
additional relation, namely λαV μ

β , where (α, β) is the first row of the gluing matrix.
In the case when we glue together two saddle atoms V1 and V2, we obtain two

additional relations:

ω−1
(V1,V2)

μV2ω(V1,V2) = λαV1
μ
β
V1
,

ω−1
(V1,V2)

λV2ω(V1,V2) = λ
γ

V1
μδV1

,

and the one additional generator ω(V1,V2). Let us consider in molecule W∗ arbitrary
maximal tree T . If (V1, V2) ∈ T , then we add the new relation, namelyω(V1,V2) = 1.
We see that if W∗ is not a tree, then any cycle in W∗ corresponds to a non-trivial
homotopy class in π1(Q3).

2.2.1.3 Example: Seifert Manifolds

In terms of a marked molecules the Seifert manifold is determined by a molecule
with single saddle atom V which is homeomorphic to S2

0,m × S1. We will the
molecules of this class as a simple molecules (see Fig. 2.5).

The fundamental group π1(Q3) of manifold the Q3 corresponding to a simple
molecule, can be easily calculated by the Sects. 2.2.1.1 and 2.2.1.2, described above.
We obtain:

π1(Q3) =〈
λV ,μ1, . . . μm

∣∣ [λV ,μi], λαiV μβii , μ1 . . . μm, i = 1, . . . ,m
〉
.

(2.2)

Generally, this group is not commutative and has non-trivial center which is
generated by the regular fiber λV . We will return to Seifert manifolds later to
compute Reidemeister-Franz torsion.

Fig. 2.5 Simple molecule.
Here Ai—atom A,
Ci—gluing matrix
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2.2.2 Homology Group H1(Q3,Z)

This subsection is devoted to the computation of the first homology group of Q3

using Mayer-Vietoris technique which has been described by P. Topalov in [22]. It
is easy to see that H1(Q3,Z) depends on the topology of the graphW∗ (i.e. molecule
corresponding to Q3) using Mayer-Vietoris exact sequence. Similarly to Sect. 2.2.1,
let us present the main ideas of [22]. Let us remind the Mayer-Vietoris theorem. For
simplest we formulate this theorem for the case of simplicial homology groups.

Theorem 2.6 (Mayer-Vietoris) Let X be a simplicial complex and X1,X2 ∈ X

are subcomplexes such thatX = X1 ∪X2. DenoteX1 ∩X2 by Y . Then the following
sequence is exact

· · · → Hn+1(X)
∂∗−→ Hn(Y )

(i1∗, i2∗)−−−−→ Hn(X1)⊕ Hn(X2)
j1∗−j2∗−−−−→ Hn(X)

∂∗−→ . . . ,

ik : Y ↪→ Xk, jk : Xk ↪→ Y, k = 1, 2,

where ik∗, jk∗ are the homomorphisms, induced by corresponding inclusion maps
ik, jk , and ∂∗ is the homomorphism induced by the boundary homomorphism ∂ .

2.2.2.1 Computation of H1(Q3,Z)

In the case of atom A, the basis in the H1(A,Z) is the homology class of the loop
μ. In the case of the saddle atom V , the basis in H1(V ,Z) is the homology classes
of the loops λV ,μ1, . . . , μm−1, ξ1, ζ1, . . . , ξg, ζg (see Fig. 2.4). Let us denote the
i-homology group of X, namely, Hi (X,Z) with group the coefficients Z simply by
Hi (X).

Definition 2.14 The edge e of the marked molecule W∗ is called external if e is
incident to some atom A. Otherwise, e is called inner edge.

Let us add to each inner edge the new vertex K . This vertex K corresponds to the
small tubular neighborhood T 2×I of some torus T 2 on edge e. Here I is an interval.
Now, we separate Q3 into the union of two subsets X1 and X2, namely:

X1 = The union of all saddle atoms of the molecule W ∗,

X2 = The union of all atoms A of the molecule W ∗ plus all new vertices K (see above).

Let us denote

Y = X1 ∩X2.

Then we have:

H0(X1) ∼= Z
n, H0(X2) ∼= Z

m, H0(Y ) ∼= Z
p,
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where n is the number of vertices of the graph W∗ (taking into account the vertices
K), which have degree more than 1. Then m is the number of edges of the graph
W∗, taking into account the new edges which have appeared under splitting by the
vertices K . Then p is the number of edges W∗ plus the number of inner edges of
W∗, taking into account the new edges. Using Theorem 2.6 we have:

Z ∼= H0(Q3) ∼= (H0(X1)⊕ H0(X2))/Im(i∗), i∗ = (i1∗, i2∗), (2.3)

H1(Q3) ∼= [
(H1(X1)⊕ H1(X2))/Im(i∗)

] ⊕ Im(∂∗). (2.4)

Comparing the ranks of the groups listed in (2.3), and using the relation (2.4) we
conclude that:

Im(∂∗) ∼= Z
b1(W

∗), H1(Q3) ∼= [
(H1(X1)⊕ H1(X2))/Im(i∗)

] ⊕ Z
b1(W

∗),

where b1(W
∗) is the first Betti number of the graph W∗. We see that any cycle

of W∗ corresponds to some non-trivial element of H1(Q3). The final part of the
computation is the calculation of the homomorphism i∗. It is possible to present the
matrix of the homomorphism i∗ in terms of the gluing matrix (see [22]).

2.2.2.2 Example: Poincare Sphere

Poincare sphere can be realized as marked molecule which is shown on
Fig. 2.6 (see [23]). The homology group H1(Q3) of the manifold Q3 (Poincare
sphere) corresponding to the molecule on Fig. 2.6 is isomorphic to the cokernel of
the following homomorphism

h : Z4 → Z
4, Mh =

⎛
⎜⎜⎝

2 0 0 −1
0 3 0 1
0 0 5 1
1 1 1 0

⎞
⎟⎟⎠ ,

where Mh is the matrix of homomorphism h. It is easy to see that detMh is equal
to 1, i.e. H1(Q3) is trivial. But the fundamental group π1(Q3) is non-trivial. Let us

Fig. 2.6 Simple molecule
W ∗ corresponding to
Poincare sphere
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note that the group π1(Q3) has the presentation in the form given by (2.2). Using
Tietze transformations we can obtain the following presentation of the same group

π1(Q3) =〈
μ2, μ3

∣∣ μ−1
3 μ−1

2 μ−1
3 μ2

2, μ
−1
2 μ−1

3 μ−1
2 μ4

3

〉
. (2.5)

It is easy to see that group (2.5) is non-trivial. Indeed, assume that group (2.5) is
trivial. Then it is obvious that we can add any relations to its presentation. If we add
the relation μ−1

3 μ−1
2 = 1, then we obtain the group isomorphic to Z7. We see the

contradiction to assumption.

2.3 Reidemeister-Franz Torsion

In this section we will consider an arbitrary field F and torsion τh(Q3) which
corresponds to some ring homomorphism h : Z[π1(Q3)] → F. Thereafter, the
torsion τh(Q3) is the element of F∗/± h(π1(Q3)). In case when the torsion τh(Q3)

for the homomorphism h is not defined correctly, then we assume that τh(Q3) is
equal to 0.

2.3.1 The Torsion of a Simple Molecule

We have considered a simple molecules in Sect. 2.2.1.3. These molecules have only
one saddle atom of genus 0. We can compute Reidemeister torsion of a simple
molecule for some special class of the ring homomorphisms using torsion of the
atoms.

Theorem 2.7 (Solodskikh [24]) Let ring homomorphism h

h : Z[π1(Q3)] → F

be such that h(λV )γkh(μk)δk �= 1, k = 1, . . . ,m. Then the torsion of the manifold
Q3 is not equal to 0 iff h(λV ) �= 1. In case when h(λV ) �= 1, we have:

τh(Q3) = (h(λV )− 1)m−2
m∏
k=1

(h(λ
γk
V μ

δk
k )− 1)−1 ∈ F

∗/± h(π1(Q3)).

2.3.1.1 The Torsion of Atoms

The 3-atom A has the same simple homotopy type as well as the circle S1 (see for
example [25]).
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Proposition 2.2 For any ring homomorphism h

h : Z[π1(S
1)] → F,

the torsion τh(S1) �= 0 iff h(λ) �= 1, where λ is the generator of π1(S
1). If h(λ) �= 1,

then

τh(S
1) = (h(λ)− 1)−1 ∈ F

∗/± h(π1(S
1)).

In the case of saddle atom V of genus 0 and complexity m it is easy to see that
atom V has the same simple homotopy type as direct product of the wedge sum
of m− 1 circles and the circle S1.

Lemma 2.3 ([24]) Let V be the saddle atom of genus 0 and complexity m. Then

π1(V ) =〈
λV ,μ1, . . . , μm

∣∣ [λV ,μk], μ1 . . . μm, k = 1, . . . ,m
〉
.

For any ring homomorphism h

h : Z[π1(V )] → F,

the torsion τh(V ) �= 0 iff h(λV ) �= 1. If h(λV ) �= 1, then

τh(V ) = (h(λV )− 1)m−2 ∈ F
∗/± h(π1(V )).

2.3.2 Corollaries

Using Theorem 2.7 we can establish homeomorphisms between the manifolds
corresponding to simple molecules in some special cases. Let us demonstrate some
examples.

2.3.2.1 The Case of Zero r-Marks

Assume that all r-marks of the simple molecule are equal to 0, and n-mark is not
equal to 0, 1,−1. Without loss of generality, the gluing matrices are as follows:

Cm =
(
n εm

εm 0

)
, Ci =

(
0 εi

εi 0

)
, i = 1, . . . ,m− 1.

As the fundamental group of the manifold Q3 is cyclic of the order n:

π1(Q3) =〈
λV

∣∣ λnV
〉
,
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then the manifold Q3 is homeomorphic to some lens space L(n, q) (see [26]).

Corollary 2.1 The manifold Q3 described above is homeomorphic to L(n, 1).

2.3.2.2 General Case of Lens Spaces

Let us consider a simple molecule such that only two r-marks are not equal to 0.
Without loss of generality, the gluing matrices are as follows

C1 =
(
α1 β1

γ1 δ1

)
, C2 =

(
α2 β2

γ2 δ2

)
, Ci =

(
0 εi

εi 0

)
, i = 3, . . . ,m.

The fundamental group of the manifold Q3 which corresponds to this molecule has
the following presentation

π1(Q3) =〈
λV ,μ2

∣∣ [λV ,μ2], λα1
V μ

−β1
2 , λ

α2
V μ

β2
2

〉
.

Corollary 2.2 The manifold Q3 described above is homeomorphic to lens space
L(p, q), where

p = α1β2 + α2β1, q = α1γ2 + β1δ2.

2.4 Integrable Geodesic Flows in a Potential Field
on the Torus of Revolution

2.4.1 Introduction

In this section we give a short review of the results by D.S. Timonina work (see
[27]). This results develop the interesting recent works by Kantonistova (see [28,
29]).

Definition 2.15 A 2-manifoldM with a metric g is called a manifold of revolution,
if it is invariant under the effective and smooth action of a circle S1 on M by
isometries.

Let us consider the 2-manifold M diffeomorphic to a torus T 2 with the following
invariant metric g:

ds2 = dθ2 + f 2(θ)dφ2,

where θ , φ are the standard angular coordinates on T 2, and f (θ) is a smooth positive
function. The differential form ω = dp ∧ dq defines a symplectic structure on the
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cotangent bundle T ∗M , where q = (θ, φ), p = (pθ , pφ) are the local coordinates
on T ∗

q M . A geodesic flow with potential V (q) on the torus M is generated by the
following Hamiltonian H

H = 1

2
gij (q)pipj + V (q), (2.6)

where gij is the inverse matrix of the matrix of the metric g.
Let V (q) = V (θ) then we have the following proposition.

Proposition 2.3 (D.S. Timonina) The Hamiltonian system with the Hamiltonian
in the form (2.6) on the torus T 2 is Liouville integrable for all pairs of functions
(f (θ), V (θ)).

The smooth function K = pφ is an additional independent integral of this system.

2.4.2 Main Results

The main results of the work [27] are formulated in terms of effective potential

Uh(θ) = 2f 2(θ)(h− V (θ)),

on the fixed isoenergy surface Q3
h.

Lemma 2.4 (D.S. Timonina) The function K is a Bott function on Q3
h iff Uh(θ) is

a Morse function on the circle.

Lemma 2.5 (D.S. Timonina) The molecule of Liouville foliation on Q3
h consists

of the atoms of the following three types only. An atom A, then an atom Pm
(see Fig. 2.8) which has two incoming (outgoing) edges and m > 0 outgoing
(incoming) edges, then atom Vs (see Fig. 2.7), which has one incoming (outgoing)
edge and s > 1 outgoing (incoming) edges.

The main result by Timonina is the topological classification of the geodesic flows in
a invariant potential field on the torus of revolution in terms of Fomenko-Zieschang
invariants (Fig. 2.8).

Fig. 2.7 Example: atom V3
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Fig. 2.8 Example: atom P4

Theorem 2.8 (D.S. Timonina) If the function Uh(θ) is positive for all θ then the
corresponding molecule has the formW–Pm–Pm–W . The number m is equal to the
number of global minima of the function Uh(θ).

If the function Uh(θ) takes negative values then the corresponding molecule of
the system on Q3 takes the formW–W .

Here each graph W is either an atom A or a tree or a forest (the disjoint
union of several trees). All the inner vertices of this tree (forest) are the atoms Vs
(see Fig. 2.7).

Theorem 2.9 (D.S. Timonina) The marks on the edges of the type A–(saddle)
of the molecule are as follows r = 0 and ε = 1. The marks on edges of the
types: (saddle–saddle) or A–A are as follows r = ∞ and ε = ±1. Here ε = 1 in
case Pm–Pm or in case Vs–Vs , else −1. If the molecule contains some family, then
n-mark of this family is equal to 0.

Recently D.S. Timonina obtain the Liouville classification of the geodesic flows
with linear integral in invariant potential field on the two dimensional surfaces of
revolution, diffeomorphic to Klein bottle and projective plane.
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Chapter 3
Applying Circulant Matrices Properties
to Synchronization Problems

Jose S. Cánovas

Abstract In this chapter, we use circulant matrices to study discrete dynamical
systems of higher dimension than one. We show how these matrices are a common
framework which is useful to investigate some dynamical properties of some models
provided by natural and social sciences. In particular, discrete models from Biology,
Economy and Chemistry are considered and analyzed with tools coming from the
properties of circulant matrices. More precisely, the special shape of eigenvalues
and eigenvectors of circulant matrices is very useful to check whether the dynamics
of systems on phase spaces with dimension greater than two can be reduced to that
of one dimensional systems.

3.1 Introduction

Discrete dynamics of one dimensional maps has been studied intensively in the past
decades and, for smooth enough maps with finite number of extrema, it is well
understood. In fact, there are efficient tools to understand the behavior of families
of maps, depending on parameters, that commonly appears in models provided by
natural and social sciences. We must highlight the existence of finite points that
characterize the dynamical behavior of almost every point up to a set of full one
dimensional Lebesgue measure.

However, natural and social sciences are providing models depending on several
variables, that is, discrete dynamical systems of dimension higher than one, whose
dynamics is quite far to be understood. Often, these models have been studied
checking the stability of fixed points and simulating some orbits that apparently
exhibits a complicated dynamical behavior.

It is also common that the dynamics is analyzed on a one-dimensional invariant
set Δ in which the dynamics is known. However, this set Δ has zero two-
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dimensional Lebesgue measure and therefore the dynamics is far to be understood
on a set of positive Lebesgue measure. The natural question on whether the orbits
starting outside Δ converges to an orbit in Δ is quite natural as a first step to
understand these systems.

The aim of this paper is to show how circulant matrices can help in solving
the above question. Namely, we will show that circulant matrices appears as the
Jacobian matrix in several models provided by economy, chemistry and biology, and
how the properties of circulant matrices can be used to compute efficiently normal
Lyapunov exponents which measures the average distance between orbits outside Δ
and this set.

This paper is organized as follows. The next section will be devoted to recall
some well-known notions on circulant matrices. Then, we will introduce some basic
results on discrete dynamical systems on one and several dimensions. Then, we
will introduce the models and analyze them by using both Lyapunov exponents and
topological entropy.

3.2 Circulant Matrices: Definitions and Basic Results

Let A be an n × n matrix with real coefficients. We denote its rows by Aj =
(aj0, aj1, . . . , ajn−1), 0 ≤ j ≤ n − 1. This matrix is said to be circulant if Aj =
σj (A0) where σ is the cyclic permutation of length n that carries (0, 1, .., n − 1)
into (1, 2, . . . , n− 1, 0). In other words,

A =

⎛
⎜⎜⎜⎜⎜⎝

a0 a1 a2 . . . an−1

an−1 a0 a1 . . . an−2

an−2 an−1 a0 . . . an−3
...

...
...

...

a1 a2 a3 . . . a0

⎞
⎟⎟⎟⎟⎟⎠

We denote a circulant matrix by

A = circ(a0, a1, a2, . . . , an−1).

Given λ, an eigenvalue of A, we denote its associated eigenspace byVλ. Circulant
matrices have a diagonal form. In particular, it is possible to find all the eigenvalues

and eigenvectors. Namely, for any 0 ≤ j ≤ n − 1, let φj = ei
2πj
n be a n-th root of

unity and put vj = (1, φj , φ2
j , . . . , φ

n−1
j ). Then, applying [22, Th. 3.2.2, p. 72], we

obtain easily that vj is an eigenvector of A and

λj =
n∑
k=1

akφ
k−1
j , j = 1, 2, . . . , n.
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is the eigenvalue associated to vj for any 0 ≤ j ≤ n− 1.
The first eigenvalue

λ0 =
n∑
k=1

ak

has an associate eigenvalue v1 = (1, 1, . . . , 1), which generates the eigenspace

Δ = Vλ0 = {(x1, . . . , xn) ∈ R
n : x1 = x2 = . . . = xn}.

In addition, the orthogonal subspace is

Δ⊥ = {(x1, . . . , xn) ∈ R
n : x1 + x2 + . . .+ xn = 0}.

Note that the set of vectors

B = {(1,−1, 0, . . . , 0), (0, 1,−1, 0, . . . , 0), . . . , (0, . . . 0, 1,−1)}

is a basis of Δ⊥. It is worth to point out that the eigenvalues depend of the matrix
coefficients, but the eigenvectors are completely independent of the chosen circulant
matrix. This will be important along the chapter.

3.3 Basic Notions on Discrete Dynamical Systems

The models considered in this chapter are given by difference equations, which are
expressions with the form

{
x(t + 1) = f (x(t)),

x(0) = x0,

where f : X → X, is a continuous map on a metric space (X, d) into itself and
x0 ∈ X. The solution of the above difference equation is called orbit or trajectory
of x0 under f . The pair (X, f ) is a discrete dynamical system. Then, the orbit of
x0 under f , denoted by Orb(x0, f ), is given by the sequence f t (x0), t ≥ 0, where
f t = f ◦ f t−1, t > 1, f 1 = f , and f 0 is the identity on X.

Although one can study topological properties of dynamical systems, in this
chapter we are interested in the case X = R

n≥, where R≥ represents the set of
non negative real numbers. There is a huge literature on discrete dynamical systems
either for the one dimensional case, when n = 1 (see e.g. [4, 13] or [23]) or for
higher dimensions and even general topological (metric) spaces (see e.g. [5, 24]).
Here, we introduce some basic results and notation on dynamical systems on general
metric spaces which can be easily carried to real maps.
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3.3.1 Periodic Orbits and Topological Dynamics

To understand the dynamics of f , we have to introduce some definitions which have
topological roots (see e.g. [13] or [50]). A point x ∈ X is periodic when f t (x) = x

for some t ≥ 1. The smallest positive integer satisfying this condition is called the
period of x. Periodic points of period 1 are called fixed points. Denote by F(f ),
P(f ) and Per(f ) the sets of fixed and periodic points and periods of f , respectively.

Periodic orbits are the simplest orbits that a discrete dynamical system can
generate. However, there can exist many other different orbits that may produce
a richer dynamics. For x ∈ X, define its ω-limit set, ω(x, f ), as the set of limit
points of its orbit Orb(x, f ). If ω(x, f ) is finite, then it is a periodic orbit, but often,
the dynamical behavior of a single orbit can be very complicated or unpredictable,
and usually the word chaos is used to refer to dynamical systems which are able to
produce such complicated orbits as we discuss below.

Previously, note that to understand the dynamics it is enough to do it on small
subsets of X called attractors, which are non-empty compact sets A that attract all
the trajectories starting in some neighborhood U of A, that is, for all x ∈ U we
have that

lim
t→∞ dist (f t (x),A) = 0,

where dist (x,A) = min{d(x, y) : y ∈ A}. When U is the whole space X the
set A is a global attractor. The existence and approximate location of attractors are
usually given by the absorbing sets, namely, a subset B ⊂ X is an absorbing set if
for any bounded set D of X there is t0 = t0(D) such that f t (D) ⊂ B for all t ≥ t0.

There are many definitions of chaos, but we will focus our interest in the
following well-known ones. The map f is chaotic in the sense of Li and Yorke
(LY-chaotic) [40] if there is an uncountable set S ⊂ X (called scrambled set of f )
such that for any x, y ∈ S, x �= y, we have that

lim inf
t→∞ d(f t (x), f t (y)) = 0,

lim sup
t→∞

d(f t (x), f t (y)) > 0.

Li and Yorke’s definition of chaos became famous because of the result period
three implies chaos which linked periodic orbits and unpredictable dynamical
behavior for continuous interval maps. Note that the definition requires the com-
parison between two orbits or limit points of orbits. Another well-known definition
of chaos, inspired by the notion of sensitivity with respect to the initial conditions
[30], was given by Devaney [24] as follows. The map f is said to be chaotic in the
sense of Devaney (D-chaotic) if it fulfills the following properties:

• The map f is transitive, which in absence of isolated points means that there is
a x ∈ X such that ω(x, f ) = X.
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• The set of periodic points P(f ) is dense on X.
• It has sensitive dependence on initial conditions, that is, there is ε > 0 such

that for any x ∈ X there is an arbitrarily close y ∈ X and t ∈ N such that
d(f t (x), f t (y)) > ε.1

Both, Li–Yorke chaos and sensitivity to initial conditions are in the dynamical
systems folklore.

It is interesting to explain what we understand by simple dynamics. In fact,
sometimes, the chaotic behavior can be also taken as the opposite of simple (or
ordered) behavior. We say that f is strongly simple (ST-simple) if any ω-limit set
is a periodic orbit of f . We say that an orbit Orb(x, f ), x ∈ X, is approximated
by periodic orbits if for any ε > 0 there is y ∈ P(f ) and t0 ∈ N such that
d(f t (x), f t (y)) < ε for all t ≥ t0. The map f is LY-simple [53] if any orbit is
approximated by periodic orbits. Finally f is Lyapunov stable (L-simple) [27] if it
has equicontinuous powers.

The above definitions are quite difficult to verify and, specially when we are
working with models which may depend on several parameters, we need some
practical methods to try to measure the dynamical complexity of the system. One
of them is given by topological entropy, which was introduced in the setting of
continuous maps on compact topological spaces by Adler et al. [1] and by Bowen
[16]2 for uniformly continuous maps on metric spaces. It is remarkable that both
definitions agree when the set X is metric and compact. It is a conjugacy invariant3

which is usually taken as a criterion to decide whether the dynamic is complicated
or not according to the topological entropy h(f ), which will be defined below, is
greater than zero or not. Here we introduce the equivalent definitions by Bowen
[16] when (X, d) is a compact metric space. Given ε > 0, we say that a set E ⊂ X

is (t, ε, f )-separated if for any x, y ∈ E, x �= y, there exists k ∈ {0, 1, . . . , t − 1}
such that d(f k(x), f k(y)) > ε. Denote by s (t, ε, f ) the biggest cardinality of any
maximal (t, ε, f )-separated set in X. Then the topological entropy of f is

h (f ) = lim
ε→0

lim sup
t→∞

1

t
log s (t, ε, f ) .

The definition does not depend on the metric d , and gives us a nice interpretation
of topological entropy (see [4, p. 188]) as follows. Imagine that we have a
magnifying glass through which we can distinguish two points if and only if they

1It is proved in [9] that the first two conditions in Devaney’s definition implies the third one.
The definitions are presented in the original form because of the dynamical meaning of sensitive
dependence on initial conditions.
2Dinaburg [25] gave simultaneously a Bowen like definition for continuous maps on a compact
metric space.
3Two continuous maps f : X → X and g : Y → Y are said to be topologically conjugate if there
is an homeomorphism ϕ : X → Y such that g ◦ϕ = ϕ ◦f . In general, conjugate maps share many
dynamical properties.
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are more than ε-apart. If we know t points of two orbits given by x and y, that
is, (x, f (x), . . . , f t−1(x)) and (y, f (y), . . . , f t−1(y)), then we can distinguish
between x and y iff max0≤i≤t−1 d(f

i(x), f i(y)) > ε. Hence, s (t, ε, f ) gives us
how many points of the spaceX we can see if we know the pieces of orbits of length
t . Then we take the exponential growth rate with t of this quantity, and finally the
limit of this as we take better and better magnifying glasses. Then we obtain the
topological entropy.

In general, the above chaos definitions are not equivalent and their relations
with topological entropy are not homogeneous. For instance, it has been proved
that D-chaotic maps are LY-chaotic [32], but the converse is false [53]. On the
other hand, positive topological entropy implies LY-chaos [12]4 and the converse
is also false [53]. In [7] and [39] it is studied the relationship between topological
entropy and D-chaos. ST-simple maps are LY-simple maps but the converse is false
[53].

More popular than topological entropy are the so-called Lyapunov exponents
(see [45]), which are defined when differentiable structures are considered. Namely,
assume that X is a smooth finite dimensional manifold and f : X → X is a C1+α
map. Denote, as usual, by TxX the tangent space at x and the derivative dxf :
TxX → Tf (x)X. The Lyapunov exponent at x ∈ X in the direction of v ∈ TxX \ {0}
is given by

lyex(x, v) = lim
t→∞

1

t
log ||dxf t (v)||

if this limit exists. An invariant measure μ is a probability measure on the Borel
sets of X such that μ(f−1(A)) = μ(A) for any Borel set A ⊆ X. This invariant
measure μ is ergodic if the equality f−1(A) = A implies that μ(A) is either 0 or 1.
The multiplicative ergodic Theorem states that the above limit exists for μ-almost
all point in X. We use Lyapunov exponents in particular cases where the existence
of chaos is linked to the property of having positive Lyapunov exponents.

Next, we study the particular case of real maps, starting by the one dimensional
case. We will see how the above results are sharpened in this setting. In addition, we
will give some notions on the dynamics of real maps on phase spaces with dimension
higher than one.

3.3.2 Dynamics of Continuous Interval Maps

In general, for one dimensional maps, the relevant results are given when X =
[a, b] ⊂ R is a compact interval, which by conjugacy can be taken to be [0, 1]. In

4See also [54] which almost simultaneously states the same result for C2 diffeomorphisms on
compact manifolds of dimension greater than one.
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this setting, Sharkovsky’s Theorem is a remarkable result which helps to distinguish
between simple and complicated dynamics. Recall Sharkovsky’s order of natural
numbers

3 >s 5 >s 7 >s . . . >s 2 · 3 >s 2 · 5 >s . . . >s 22 · 3 >s 22 · 5 >s . . .

. . . >s 2k · 3 >s 2k · 5 >s . . . >s 23 >s 22 >s 2 >s 1.

Applying Sharkovsky’s Theorem (see [50] or [4]. Also [26] for an “easy” proof)
one can see that for any continuous map f : R → R with one periodic point it is
held that either Per(f ) = S(m) = {k : m >s k} ∪ {m}, with m ∈ N, or Per(f ) =
S(2∞) = {2n : n ∈ N ∪ {0}}. A map is of type m ∈ N ∪ {2∞} if Per(f ) = S(m).
A map f is called S-chaotic if Per(f ) = S(m), m = 2rq , r ≥ 0 and q > 1
odd.

On the other hand, for one dimensional dynamics the topological entropy is
an useful tool to check the dynamical complexity of a map because it is strongly
connected with the notion of horseshoe (see [4, p. 205]). We say that the map
f : [0, 1] → [0, 1] has a k-horseshoe, k ∈ N, k ≥ 2, if there are k

disjoint subintervals Ji , i = 1, . . . , k, such that J1 ∪ . . . ∪ Jk ⊆ f (Ji), i =
1, . . . , k.5

The following result shows some equivalences among the above definitions of
chaos and order (see [13, 50, 53]). Note that the situation is simpler than in the
general case.

Theorem 3.1 Let f : [0, 1] → [0, 1] be a continuous map. Then

(a) The map f has positive topological entropy if and only if the map f is S-chaotic.
(b) If f is D-chaotic, then h(f ) > 0.
(c) If f is either ST-simple or L-simple, then h(f ) = 0.
(d) If h(f ) > 0, then f is LY-chaotic, but the converse is false in general. If f is

LY-simple, then h(f ) = 0. The union of LY-chaotic and LY-simple continuous
maps is the set of continuous interval maps.

We remark the topological nature of the above result. If we consider another
points of view, we can obtain more information giving rise to apparently strange
paradoxes. For instance, there exist maps with positive entropy, and therefore
chaotic in some sense, such that the orbit of almost all points in [0, 1] (with respect
to the Lebesgue measure) converges to a periodic orbit.

Although we will come back to this point later, let us show how to get such
example. Consider f a C3 unimodal map such that f (0) = f (1) = 0. Recall that
a map f is said to be unimodal if there is c ∈ [0, 1], called turning point such
that f |[0,c) is strictly increasing and f |[c,1] is strictly decreasing. The Schwarzian

5Since Smale’s work (see [52]), horseshoes have been in the core of chaotic dynamics, describing
what we could call random deterministic systems.
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derivative (see [51] or [55]) is then given by

S(f )(x) = f
′′′
(x)

f ′(x)
− 3

2

(
f

′′
(x)

f ′(x)

)2

,

at those points whose first derivative does not vanish. Assume that S(f )(x) < 0
and that there is a locally attracting periodic orbit, that is, a periodic orbit P =
{x1, . . . , xp} for which there exists a neighborhood V of P such that for any x ∈
V the distance d(f t (x), P ) = min1≤i≤p d(f t (x), xi) tends to zero as t tends to
infinity. The logistic map f (x) = 3.83 x(1−x) is a good example of such behavior;
almost all trajectory converges to a periodic orbit of period 3, while the topological
entropy is positive (see e.g. [15]). This example, and many others in the literature,
shows that it is important to study the dynamics from several points of view.

3.3.3 Piecewise Monotone Maps: Entropy and Attractors

Usually, one dimensional difference equations models in science are given by
piecewise monotone maps. A continuous interval map is piecewise monotone if
there is a finite partition of [0, 1], 0 = x0 < x1 < . . . < xk = 1, such that f |[xi ,xi+1]
is monotone for 0 ≤ i < k. Note that a piecewise monotone map may have constant
pieces. The extreme points of f , which can be isolated or contained in a subinterval
of extreme points, will be called turning points (turning intervals if the extreme
points form a subinterval). For a piecewise monotone map f , let c(f ) denote the
number of pieces of monotonicity of f . If g is another piecewise monotone map,
it is easy to see that c(f ◦ g) ≤ c(f )c(g). Hence, the sequence c(f t ) gives the
number of monotonicity pieces of f t and the following result due to Misiurewicz
and Szlenk (see [44]), shows that for piecewise monotone maps topological entropy
can be easily understood.

Theorem 3.2 Let f : [0, 1] → [0, 1] be a continuous and piecewise monotone
map. Then

h(f ) = lim
t→∞

1

t
log c(f t ).

Note that c(f t ) ≤ c(f )t , and so h(f ) ≤ log c(f ). Hence, a consequence of
Misiurewicz–Szlenk Theorem is that homeomorphisms on the interval have zero
topological entropy. On the other hand, following Theorem 3.2, we can easily see
that the logistic map f (x) = 4x(1 − x) and the tent map g(x) = 1 − |2x − 1|
have topological entropy log 2, since c(f t ) = c(gt ) = 2t for all t ∈ N. However,
computing topological entropy can be a very complicated task, but we will see how
to make these computations for a suitable class of maps.
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The dynamics of smooth enough piecewise monotone maps are well-known in
the following sense. Following [43], a metric attractor is a subset A ⊂ [0, 1] such
that f (A) ⊆ A, O(A) = {x : ω(x, f ) ⊂ A} has positive Lebesgue measure, and
there is no proper subset A′

� A with the same properties. The set O(A) is called
the basin of the attractor.

By van Strien and Vargas [56], the regularity properties of f imply that there are
three possibilities for its metric attractors for a class of piecewise monotone maps,
called multimodal maps, fulfilling the following assumptions. There are c1 < c2 <

. . . < ck , creating a partition on [0, 1], such that f is strictly monotone on each
element of the partition. f is C3 and f is non flat on the turning points c1, . . . , ck ,
that is, for x close to ci , i = 1, 2, . . . , k,

f (x) = ±|φi(x)|βi + f (ci),

where φi is C3, φi(ci) = 0 and βi > 0. Then, the metric attractors of such
multimodal maps can be of one of the following types:

(A1) A periodic orbit.
(A2) A solenoidal attractor, which is basically a Cantor set in which the dynamic

is quasi periodic. More precisely, the dynamic on the attractor is conjugated
to a minimal translation, in which each orbit is dense on the attractor. The
dynamic of f restricted to the attractor is simple, neither positive topological
entropy nor Li–Yorke chaos can be obtained. Its dynamic is often known as
quasi-periodic.

(A3) A union of periodic intervals J1, . . . , Jk , such that f k(Ji) = Ji and f k(Ji) =
Jj , 1 ≤ i < j ≤ k, and such that f k is topologically mixing. Topologically
mixing property implies the existence of dense orbits on each periodic interval
(under the iteration of f k).

Moreover, if f has an attractor of type (A2) and (A3), then they must contain the
orbit of a turning point, and therefore its number is bounded by the turning points. In
addition, if Sf (x) < 0, then the total number of attractors is bounded by k. From a
practical point of view, in a computer simulation we are able to show the existence of
attractors of type (A1) and (A3), and only attractors of type (A3) are able to exhibit
unpredictable dynamics. As a conclusion of this, if all the turning points of f are
attracted by periodic orbits, then the map f will not exhibit physically observable
chaos, although it can be topologically chaotic.

The Lyapunov exponents on the image of the turning points can be computed by

lyex(ci) = lim
t→∞

1

t
log |(f t )′(f (ci))| = lim

t→∞
1

t

t∑
j=1

log |f ′(f j (ci))|,

for i = 1, 2, . . . , k, and all of them are negative when the map f is free of attractors
of type (A3). So, positive Lyapunov exponents imply the existence of observable
chaos.
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3.3.4 Computing Topological Entropy

The above definition of topological entropy is not useful in practice, and counting
monotone pieces of an iterated map f t is not easy. In addition, an exact computation
of topological entropy for continuous interval maps cannot be done in general,
but there are several papers devoted to compute it approximately for unimodal
maps (see [15]) bimodal maps, that is, with three monotone pieces (see [14]) and
four monotone pieces (see [18]). In general, it is possible to make computations
for arbitrarily large monotone pieces whenever the number of different kneading
sequences of turning points is smaller than 4 (see [18, 19]).

Now, we introduce the unimodal case where the topological entropy can be
computed by using kneading sequences as follows. Let f be an unimodal map with
maximum (turning point) at c. Let k(f ) = (k1, k2, k3, . . .) be its kneading sequence
given by the rule

ki =
⎧
⎨
⎩
R if f i(c) > c,

C if f i(c) = c,

L if f i(c) < c.

We fix that L < C < R. For two different unimodal maps f1 and f2, we fix their
kneading sequences k(f1) = (k1

n) and k(f2) = (k2
n). We say that k(f1) ≤ k(f2)

provided there is m ∈ N such that k1
i = k2

i for i < m and either an even number
of k1′

i s are equal to R and k1
m < k2

m or an odd number of k1′
i s are equal to R and

k2
m < k1

m. Then it is proved in [15] that if k(f1) ≤ k(f2), then h(f1) ≤ h(f2). In
addition, if km(f ) denotes the first m symbols of k(f ), then if km(f1) < km(f2),
then h(f1) ≤ h(f2).

The algorithm for computing the topological entropy is based on the fact that the
tent family

gk(x) =
{
kx if x ∈ [0, 1/2],
−kx + k if x ∈ [1/2, 1],

with k ∈ [1, 2], holds that h(gk) = log k. The idea of the algorithm is to bound the
topological entropy of an unimodal maps between the topological entropies of two
tent maps. The algorithm is divided in four steps:

Step 1. Fix ε > 0 (fixed accuracy) and an integer n such that δ = 1/n < ε.
Step 2. Find the least positive integerm such that km(g1+iδ), 0 ≤ i ≤ n, are distinct

kneading sequences.
Step 3. Compute km(f ) for a fixed unimodal map f .
Step 4. Find r the largest integer such that km(g1+rδ) < km(f ). Hence log(1 +

rδ) ≤ h(f ) ≤ log(1 + (r + 2)δ).
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The algorithm is easily programmed. We usually use Mathematica, which has
the advantage of computing the kneading invariants of tent maps without round off
errors, improving in practice the accuracy of the method.

3.3.5 Dynamics in Higher Dimension

Things are more complicated when n > 1, and discrete dynamical systems are far to
be understood in an analytic way. The common agreement among researchers is that
in general one dimensional results cannot be extended to general higher dimension
dynamical systems. As a keynote example, one can easily check that Sharkovsky’s
Theorem does not hold for two dimensional maps: rational rotations on the plane
are a good example of that. Although there are some results on limit sets (see [2]
or [3]) and good results for some types of two dimensional maps like triangular
or skew product ones (see [35, 36] or [37]) and antitriangular ones (see [17] or
[8]), the dynamics on two dimensional maps is still quite unexplored and usually
papers dealing with models constructed on higher dimensional spaces have to show
numerical experiments and simulations.

In this paper we are going to analyze the models trying to reduce the dimension.
This can be done if the system has a global attractor with dimension smaller than that
of the whole space. Another way is to work with models that have some symmetry
properties. The problem can be stated as follows. Assume that f : X → X is a
C1+α map on a manifold X with dimension n and there is a submanifold Y ⊂ X

with dimension m such that f (Y ) ⊆ Y , due to symmetric properties. Hence, any
orbit starting with an initial condition x ∈ Y will remain in Y along the trajectory.
Sincem < n, it is possible that the dynamics of f on Y can be understood, and from
this knowledge, we can derive some properties on the dynamics of f on the whole
space X.

For instance, assume that f |Y is chaotic in the sense of Li and Yorke, that is,
there exists an uncountable scrambled subset S ⊂ Y ⊂ X. It is clear that f itself
is also chaotic in the sense of Li and Yorke. The same happens if f |Y has positive
topological entropy, but it is not true in general if f |Y is Devaney chaotic. Moreover,
it may happen that f |Y is Li–Yorke chaotic, but for any neighborhood N of Y one
has that the trajectory of any x ∈ N \ Y converges to a periodic orbit, which
will make unobserved the existence of Li–Yorke chaos. So, we are interested in
analyzing not only the dynamics of f |Y but also when the trajectories outside Y
may converge or synchronize with trajectories inside Y .

This can be easily done if the attractor inside Y is a periodic orbit, because at least
locally, Jacobian matrices along the periodic orbit give you the key: the spectral
radius of the product of such Jacobian matrices has modulus smaller than one.6

6A periodic orbit can be an attractor when spectral radius has modulus one, but in general the
converse is not true.



42 J. S. Cánovas

The problem arises when the attractor is chaotic. This paper mainly considers one-
dimensional chaotic attractors of piecewise monotone maps.

Following [6, §2.1], for a given v ∈ R
n, we define the tangential Lyapunov

exponent at x ∈ Y in the direction of v to be

lyex(f, x, v) = lim
n→∞

1

n
log ‖ΠTf t (x)Y

◦ df nx ◦ΠTxY (v)‖,

whereΠV means the projection of a vector of Rn in the subspace V and df tx denotes
the differential of f t at x.

On the other hand, again following [6, §2.1], we define the normal Lyapunov
exponent at x ∈ Y in the direction of v to be

tyex(f, x, v) = lim
n→∞

1

n
log ‖ΠTf t (x)Y

⊥ ◦ df nx ◦ΠTxY⊥(v)‖.

In the spirit of [6], our simulations will show that the system locally synchronizes
to the set Y , that is, the system is locally attracted by the attractor of f |Y , whenever
the normal Lyapunov exponent is negative. If in addition the Lyapunov exponent
(tangential) is positive (and hence topological entropy is also positive), then the
system produces a chaotic synchronization.

3.4 Application to Oligopoly Dynamics

In oligopoly models, a number of firms compete in a market in such a way that the
interaction between them plays a crucial role in the market evolution. The rules are
usually given by economic assumptions on e.g. demand functions, cost functions or
decisions on future productions. For a wide range of different scenarios the reader
can see [11]. The basic idea is that, if we have n firms and Πi is the profit for the
ith-firm, which will be assumed to be smooth enough, the optimization of profits
can be the key for describing ways of how firms organize their future productions.
At the end of the process, we have a system of difference equations

xi(t + 1) = fi(x1(t), . . . , xn(t)), i = 1, . . . , n,

where xi is the variable that firm i wants to control, basically quantities or price, and
fi are called reaction functions, which give you the evolution of variables xi with
time.

Of course, the reaction functions need not be linear maps and then, the analysis
of the dynamics of the systems, that is, the evolution with time of all the possible
initial states is quite hard to be analyzed in general. However, there are several ideas
that can be used to give some partial results on the dynamics, as it is shown below.
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To fix ideas, we will always assume that qi are the quantities of goods produced
by each firm.7 The reaction functions can have different forms according to the
way that firms will organize their future productions. To obtain them, we have to
maximize the concave profit function solving the equation

∂Πi

∂qi
(q1, . . . , qn) = 0,

to obtain the reaction function for firm i, which will have the general form

fi(q1, . . . , qn) = gCi
(Q− qi),

where Q = ∑n
i=1 qi is the total market supply, and gCi

: R+ → R
+, R+ = [0,∞),

is a one-dimensional map depending on parameter Ci ∈ R
m. In addition, the closure

of the support of the map gCi
is given by

Cl{q ∈ R
+ : gCi

(q) > 0} = [0, qCi
],

and therefore the map gCi
has an absolute maximum value qMi .

Perhaps the simplest case of planning productions is the naive expectations on
future productions in which firms produces at time t + 1 the maximum obtained
for time t . There are more sophisticated ways of generating the functions fi , i =
1, 2, . . . , n. For instance, under adaptive expectations we may assume that

fi(q1, . . . , qn) = (1 − λi)qi + λigCi
(Q− qi),

where λi ∈ [0, 1]. Notice that λi = 1 gives us the case of naive expectations.8

Here, we assume that we are working with maps f : R+ → R
+ smooth enough

and such that the following hypothesis are fulfilled:

h0. There is a map g : R
+ → R

+ such that there is qM ∈ (0, q0) such that
g|(0,qM) is strictly increasing, g|(qM,q0) is strictly decreasing and g(q0) = 0.
The maximum qM is called the turning point of g.

h1. g−1(0) = {0, q0}, q0 ∈ R
+.

7From now on, we denote the production with the letter “q” instead of “x” because this is the usual
notation for that.
8Another alternatives which do not imply a optimization process can be see e.g. [10] as for instance

fi(q1, . . . , qn) = qi + λiΠi(q1, . . . , qn),

or

fi(q1, . . . , qn) = qi + λi
∂Πi

∂qi
(q1, . . . , qn).
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h2. g(q) > 0 for q ∈ (0, q0).
h3. f (q) = max{0, g(q)}.

If Q(t) is the total output at time t and Qi(t) = Q(t)− qi(t) for i = 1, 2, . . . , n,
the oligopoly is defined under naive expectations by

qi(t + 1) = f (Qi(t)), i = 1, . . . , n,

and under adaptive expectations by

qi(t + 1) = max{0, (1 − λ)qi(t)+ λg(Qi(t))}, i = 1, . . . , n.

In [20], Puu’s oligopoly [46] and Kopel’s oligopoly [38] were analyzed. In this
work, we consider the Puu–Norin’s oligopoly (see [47]) which is a modification of
that from [46]. Before writing the reaction functions, we give a general framework
for analyzing these models. If all the firms are homogeneous, the space

Δ = {(q, q, . . . , q) ∈ R
n : q ≥ 0}

is invariant by the model. On Δ the model reads as

q(t + 1) = f ((n− 1)q(t)) = max{0, g((n− 1)q(t))}

under naive expectations and

q(t + 1) = max{0, (1 − λ)q(t)+ λg((n− 1)q(t))}

for adaptive expectations. Let q0 > 0 be such that g(q0) = 0. Then, under naive
expectations we get positive productions when q ∈ (0, q0

n−1 ). Since g is unimodal,
let qM be the turning point of g, and note that g(qM) is the maximum output
given by the system. When g(qM) ≥ q0

n−1 , we have that g has a 2-horseshoe,
and therefore we prove that the dynamics on Δ is topologically chaotic because
its topological entropy is equal to log 2. In addition, if g(qM) >

q0
n−1 , then

there is an interval J containing the turning point such that f (J ) = {0} and
numerical simulations will show that all the orbits go eventually to zero. One could
expect that the set ∪n≥0f

−n(J ) have full one dimensional Lebesgue measure on
(0, q0

n−1 ) and therefore the chaotic dynamics lies in a set of zero one dimensional
Lebesgue measure. Moreover, when we take initial conditions outside Δ, numerical
simulations show that all the orbits go eventually to zero.

When adaptive expectations are assumed, the linear part (1 −λ)q goes to infinite
as q tends to infinite, while the nonlinear part λg((n− 1)q) tends to minus infinite,
and so the existence of q0 for the map (1 − λ)q + λg((n − 1)q) is not guaranteed.
If such number q0 exists, that is, there is q0 = q0(n) such that (1 − λ)q0 + λg((n−
1)q0) = 0, then there is qM ∈ (0, q0) such that (1 − λ)q + λg((n − 1)q) attains its
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maximum value at qM , and the above reasoning made for naive expectations makes
sense in the adaptive expectations case.

On Δ, the Jacobian matrix is

J = circ
(
1 − λ, λg′((n− 1)q), λg′((n− 1)q), . . . , λg′((n− 1)q)

)

under adaptive expectations. Naive expectations are obtained by putting λ = 1. Then
(1 − λ + λ(n− 1)g′((n − 1)q)) is an eigenvalue of J associated to the eigenvector
(1, 1, . . . , 1). On the other hand, the subspace Δ⊥ is generated by

B = {(1,−1, 0, 0, . . . , 0), (0, 1,−1, 0, . . . , 0), . . . , (0, 0, . . . 0, 1,−1)}}

and each vector of B is a eigenvector of the eigenvalue (1 − λ − λg′((n − 1)q)).
Hence, it is easy to see that, on Δ, the tangential Lyapunov exponent is given by

lyex(q) = lim
m→∞

1

m

m−1∑
i=0

log |1 − λ+ λ(n − 1)g′((n− 1)q(i))|

while the normal Lyapunov exponent is

tyex(q) = lim
m→∞

1

m

m−1∑
i=0

log |1 − λ− λg′((n− 1)q(i))|

where q(i) ranges the orbit of (q, q, . . . , q) for some q ≥ 0. Fixing an invariant
measure μ on Δ, note that lyex(q) and tyex(q) are well defined for almost all q
related to μ. In addition, lyex(q)will provide us information on the dynamics onΔ,
while tyex(q) informs us on when initial conditions outsideΔ converge to attractors
on Δ, that is, when firms locally synchronize (see [6] for more information). The
fact that firms do synchronize is very important because it is a commonly accepted
fact, although we will show in our example that sometimes they fail to synchronize.

3.4.1 Puu–Norin’s Oligopoly

The reaction function of Puu–Norin’s oligopoly [47] is given by

gu(q) = 1

2

√
4uq + 5q2 − 3

2
q

which implies that the system evolves under the difference equations

qi(t + 1) = (1 − λ)qi(t)+ λgu(Qi(t)), i = 1, . . . , n.
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Note that for λ = 1 we have naive expectations model and adaptative expectations
otherwise. The parameter u > 0 is related to the cost functions. To make more
significative the optimization process in the model, we will consider that λ ranges
the interval [0.5, 1]. In addition, the map ϕ : Rn → R

n given by

ϕ(q1, . . . , qn) = u(q1, . . . , qn), (q1, . . . , qn) ∈ R
n

is a conjugacy that allows us to normalize u = 1, and then we make g1 = g and the
model reads as

qi(t + 1) = (1 − λ)qi(t)+ λg(Qi(t)), i = 1, . . . , n,

and therefore, the model restricted to the invariant set Δ is given by the difference
equation

q(t + 1) = (1 − λ)q(t)+ λg((n − 1)q(t)).

For naive expectations it is easy to see that q0 = 1 and qM = 1/5. Then, the
inequality

g(qM) ≥ q0

n− 1

gives us the condition n ≥ 6. The equality is obtained for n = 6. So, the system
becomes chaotic when the number of firms is greater or equal than 6, but such
chaotic behavior cannot be observed when it is strictly greater than 6. For adaptative
expectations, the existence of

q0 = λ2(n− 1)

1 + λ(λ(n− 1)(n+ 2)− 3n− 5)

is not guaranteed (notice that q0 can be negative for some values of λ and n, which
is not allowed since outputs must be non-negative) and therefore the model can be
given by a strictly increasing map, providing a non chaotic model, or by unimodal
maps, which are able to produce chaotic phenomena.

We concentrate our attention on the dynamics on Δ and when the dynamics on
it attracts the dynamics outside this set. Figures 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, and 3.7
show the computation of topological entropy with accuracy 10−6 and estimations of
Lyapunov exponents when the number of firms increases. The topological entropy
can be positive when the number of firms is greater or equal than 6. For n ≥ 8, there
is a parameter value λ0 such that if λ > λ0, then the topological entropy is equal
to log 2 but the chaotic behavior cannot be observed in numerical simulations, as in
the bifurcation diagrams. For n = 5 the fixed point can be destabilized to get a two
periodic point attractor.
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Fig. 3.1 For n=6 we show the computation of topological entropy, Lyapunov exponent and
transversal Lyapunov exponent on Δ

Fig. 3.2 For n=7 we show the computation of topological entropy, Lyapunov exponent and
transversal Lyapunov exponent on Δ

Fig. 3.3 For n=8 we show the computation of topological entropy, Lyapunov exponent and
transversal Lyapunov exponent on Δ

Fig. 3.4 For n=9 we show the computation of topological entropy, Lyapunov exponent and
transversal Lyapunov exponent on Δ
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Fig. 3.5 For n=10 we show the computation of topological entropy, Lyapunov exponent and
transversal Lyapunov exponent on Δ

Fig. 3.6 For n=11 we show the computation of topological entropy, Lyapunov exponent and
transversal Lyapunov exponent on Δ

Fig. 3.7 For n=12 we show the computation of topological entropy, Lyapunov exponent and
transversal Lyapunov exponent on Δ

Figure 3.8 shows the bifurcation diagrams. We construct them by iterating
100,000 times and drawing the last 250 points. Our study reveals that complicated
dynamics appears when n ≥ 6. When the number of firms increases has the effect
that complicated dynamics can be obtained for smaller values of the parameter λ.
It is interesting to point out that our computations reveal that the normal Lyapunov
exponent cannot be negative if the tangential Lyapunov exponent is positive. Hence,
firms synchronization is detected only in the non-chaotic case. This situation is
completely different for the case analyzed in [20].
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Fig. 3.8 We show the bifurcation diagrams on Δ when the number of firms changes from 5 (top-
left) to 12 (bottom-right). We realize that we have more complexity when the number of firms
increases, but this complexity is more difficult to be observed in a numerical simulation. Note that
for some values of λ, only the fixed point 0 is observed
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3.5 Coupled Maps Lattice Models

3.5.1 Chemical Reactions: Belushov–Zhabotinsky Chemical
Reaction

The main aim of this section is to analyze the system of difference equations
given by

xmt+1 = (1 − ε)f (xmt )+ ε

2

(
f (xm−1

t )+ f (xm+1
t )

)
, (3.1)

where (x1
t , . . . , x

n
t ) ∈ R

n for each t ≥ 0, and it satisfies the boundary condition
xn+1
t = x1

t . The parameter ε ∈ [0, 1] is called the coupling constant and f :
[0, 1] → [0, 1] is a continuous map, which is usually unimodal.

The model (3.1) is related with the Belushov–Zhabotinsky chemical reaction [57]
and the Kaneko’s works [33, 34].

Our model (3.1) is similar to these given by Kaneko. When studying its
dynamical behavior, we can focus our attention in the notion of chaos. It is worth
mentioning that several authors have investigated the existence of chaos in this
model (see e.g. [28, 29, 41, 42, 58] or [59]).

To find chaotic dynamics in the system (3.1) is not really complicated for all
the coupling parameters ε: just restrict the phase space to the invariant set Δ and
consider an unimodal map f such that the associated first order difference equation
xt+1 = f (xt ) has positive topological entropy.

On Δ, the Jacobian matrix reads as

J = circ (a, b, 0, 0, . . . , b) (3.2)

where a := (1 − ε)f ′(x) and b := ε
2f

′(x). Then f ′(x) is an eigenvalue on the
direction of Δ. On the other hand, for 0 ≤ j ≤ n− 1, let

φj = ei
2πj
n , vj = (1, φj , φ2

j , . . . , φ
M−1
j ), αj = a + 2b cos

(
2πj

n

)
. (3.3)

Then, applying [22, Th. 3.2.2, p. 72], we obtain easily that vj is an eigenvector of J
and αj is an eigenvalue associated to vj for any 0 ≤ j ≤ n − 1. Proceeding as in
[21], we easily check that, if we denote by F the map defining the whole system,
the tangential Lyapunov exponent at Δ is given by

lyex(F, x, v) = lim
t→∞

1

t
log ‖ΠΔ ◦ dF t

x̄ ◦ΠΔ(v)‖ (3.4)

= lim
n→∞

1

t

t−1∑
i=0

log |f ′(f i(x))| (3.5)
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which agrees with the Lyapunov exponent of f at x. On the other hand, the normal
Lyapunov exponent is computed as

tyex(F, x, v) = lim
t→∞

1

t
log ‖ΠΔ⊥ ◦ dF t

x̄ ◦ΠΔ⊥(v)‖

= lim
t→∞ max

1≤j≤n−1

1

t

t−1∑
k=0

log

∣∣∣∣
[

1 − ε + ε cos

(
2πj

n

)]
f ′(f k(x))

∣∣∣∣

= max
1≤j≤t−1

log

∣∣∣∣1 − ε + ε cos

(
2πj

n

)∣∣∣∣ + lim
t→∞

1

t

t−1∑
k=0

log
∣∣∣f ′(f k(x))

∣∣∣

= max
1≤j≤n−1

log

∣∣∣∣1 − ε

[
1 − cos

(
2πj

n

)]∣∣∣∣ + lyex(F, x, v)

Before computing the tangential and normal Lyapunov exponents for a suitable
model, we will introduce an application from biology which is strongly connected
with this model, and whose mathematical analysis is completely similar.

3.5.2 Application to Biological Systems

The growth of species under dispersal on smaller regions has been modeled by a
difference equation with the form

xmt+1 =
n∑

j=1

dmjf (x
j
t ), m = 1, 2, . . . , n, (3.6)

where xmt is a population of a species in a region with dispersal rates dmj ≥ 0, 1 ≤
m, j ≤ n. We will assume that population does not decrease because of dispersal,
that is,

n∑
j=1

dmj = 1, m = 1, 2, . . . , n.

In addition, the evolution of local populations, that is, when dmm = 1, is given by

xmt+1 = f (xmt ), m = 1, 2, . . . , n.

For more information on this kind of models see [31] or [49].
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In this chapter, we choose the well-known Ricker model [48], given by

f (x) = xer−x, (3.7)

which depends on a parameter r > 0. Additionally, to simplify our computa-
tions, we will consider that conditions on coupling parameters dij such that the
system (3.6) can be written as the system (3.1).

3.5.3 Mathematical Analysis of the Models

It is important to point out that both, chemical and biological models can be
analyzed with the same mathematical tools. As in the oligopoly case, we concentrate
our analysis in studying the dynamics on the invariant set Δ and whether the
dynamics outside this set can converge to the dynamics on Δ. Firstly, note that the
dynamics onΔ is given by the Ricker model (3.7). Figure 3.9 shows the computation
of topological entropy with accuracy 10−6, estimations of Lyapunov exponents and
bifurcation diagrams.

On the other hand, Fig. 3.10 shows the evolution when n increases of the
parameter region (r, ε) such that the normal Lyapunov exponent is negative, that is,
when the dynamics outside of Δ can synchronize, and when such synchronization
can be made in a chaotic way. As we can see, the parameters region allowing this
synchronization is reduced when n increases.

Fig. 3.9 We show the computation of topological entropy, Lyapunov exponent and bifurcation
diagram for the Ricker family



3 Applying Circulant Matrices Properties to Synchronization Problems 53

Fig. 3.10 We show the set on the parameter space (ε, r) on which the model synchronizes (left)
and chaotically synchronizes (right) for n = 3, 4, 5, 10, 20 from top to down. We see that
synchronization is more difficult when the number n increases. In particular, for n = 26 our
simulations show that chaotic synchronization is not possible
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Chapter 4
Existence and Invariance of Global
Attractors for Impulsive Parabolic
System Without Uniqueness

Sergey Dashkovskiy, Petro Feketa, Oleksiy V. Kapustyan,
and Iryna V. Romaniuk

Abstract In this paper, we apply the abstract theory of global attractors for multi-
valued impulsive dynamical systems to weakly-nonlinear impulsively perturbed
parabolic system without uniqueness of a solution to the Cauchy problem. We prove
that for a sufficiently wide class of impulsive perturbations (including multi-valued
ones) the global attractor of the corresponding multi-valued impulsive dynamical
system has an invariant non-impulsive part.

4.1 Introduction

The paper studies qualitative behavior of solutions to impulsive dynamical systems
(DS), i.e. autonomous systems whose trajectories undergo impulsive perturbations
at the moments of intersection of the trajectories with a certain surface in the phase
space. For finite-dimensional systems we refer the reader to the works [1, 3, 8, 9,
13, 14, 24–26, 29, 30, 33–35] in which stability properties and long-time behavior
of solutions have been studied. Stability of infinite dimensional impulsive systems
with external perturbations was studied in [10].

For infinite-dimensional dissipative dynamical systems the theory of global
attractors [7, 36] proved to be an effective tool to describe qualitative behavior of
solutions. For multi-valued dynamical systems in the case of non-uniqueness of a
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solution to the Cauchy problem this theory has been further developed in [2, 15, 17–
21, 23, 27, 28, 37].

A lack of continuous dependence on initial data in impulsive dynamical systems
requires a new concept of global attractor for such systems. One approach has been
proposed in [4–6]. The core idea of those papers is to keep the invariance property
in the definition of attractor. However, this approach sets very strong constraints
(so-called “tube condition”) on the behavior of trajectories of the given nonlinear
system in a neighborhood of the impulsive set. This does not allow to apply this
approach effectively and extend it on wider classes of infinite-dimensional nonlinear
evolution problems. Another approach based on the notion of global attractor for
non-autonomous systems [7, 20] has been developed in [11, 12, 22, 32]. In particular,
it exploits the notion of global attractor for the systems with impulsive effects
at fixed moments of time [16, 31]. This notion requires minimality property of
the global attractor instead of the invariance. It allows to obtain results on the
existence and study properties of global attractors for impulsive dynamical systems
with infinite number of impulsive points under natural assumptions on systems’
parameters.

In the present paper, we extend the mentioned results on the following problem:

du

dt
= F(u), u �∈ M, (4.1)

u|t=0 = u0 ∈ X, (4.2)

�u|u∈M ∈ Iu− u, (4.3)

where (4.1), (4.2) is an infinite-dimensional evolution system (in fact, two-
dimensional parabolic system) in the phase space X for which the uniqueness
of solutions is not assumed, �u(t) = u(t + 0)− u(t − 0) denotes the instantaneous
increment of the state variable u, and M is some subset of the phase space X.

The solution u = u(t) to the problem (4.1)–(4.3) is right-continuous function
satisfying (4.1) ∀t �= τ , where τ is defined by the equation u(τ − 0) ∈ M , and
jumps to the state u(τ) ∈ Iu(τ − 0) at the moment of time τ , where I : M �→ X is
a given (maybe, multi-valued) map. The set M is called impulsive set. The map I is
called impulsive map, points from the set IM are called impulsive points.

We will show that the problem (4.1)–(4.3) generates multi-valued dynamical
system G : R+ ×X → P(X) under some natural assumptions (see Definition 4.1).
In this paper, we study the existence and invariance properties of global attractor
of dynamical system G. A lack of continuous dependence on initial data for the
problem (4.1)–(4.3) leads to the discontinuity of the map G(t, ·). This requires a
reformulation of the classical definition of the global attractor [27]. Therefore, we
consider the global attractor as a compact minimal uniformly attracting set Θ ⊂ X

(see Definition 4.2). Under natural assumptions on the impulsive parametersM and
I , we prove the existence of Θ and invariance of the set Θ \M for two-dimensional
impulsively perturbed weakly-nonlinear parabolic system without uniqueness of
solutions to the Cauchy problem.
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4.2 Global Attractors of Abstract Multi-Valued Impulsive
Dynamical Systems

In this section, we present basic concepts and results of global attractor theory
for abstract multi-valued impulsive DS. This presentation is based on the recently
obtained results [11, 12].

Let (X, ρ) be a complete metric space, P(X) (β(X)) be a set of all non-empty
(non-empty bounded) subsets of X, and for any A,B ∈ P(X) we denote

dist (A,B) = sup
x∈A

inf
y∈B ρ(x, y).

Definition 4.1 A multi-valued map G : R+ ×X → P(X) is called a multi-valued
DS (MDS), if

1) ∀x ∈ X G(0, x) = x;
2) ∀x ∈ X ∀t, s ≥ 0 G(t + s, x) ⊆ G(t,G(s, x)).

The MDS is called strict if in 2) the equality takes place.

Remark 4.1 IfG is a single-valued map, Definition 4.1 coincides with the definition
of classical semigroup.

Definition 4.2 A non-empty subset Θ ⊂ X is called a global attractor of the MDS
G if

1) Θ is compact;
2) Θ is uniformly attracting, i.e.,

∀ B ∈ β(X) dist (G(t, B),Θ) → 0, t → ∞;

3) Θ is minimal among all closed uniformly attracting sets.

Remark 4.2 If global attractor exists then it is unique.

Note that we do not assume any continuity properties for the map G(t, ·).
Therefore it seems to be natural to change classical definition of the global attractor
and require minimality condition 3) instead of the invariance property. On the other
hand, if the MDS G has global attractor in classical sense, i.e., if there exists a
set Θ1 ⊂ X which satisfies 1), 2) and Θ1 ⊂ G(t,Θ1) ∀t ≥ 0 then, clearly, Θ1
satisfies 3).

Next, we recall the existence criterion of the global attractor for the dissipative
MDS from [11]:

Lemma 4.1 Assume that the MDS G satisfies the dissipativity condition:

∃B0 ∈ β(X) ∀B ∈ β(X) ∃T = T (B) ≥ 0 ∀t ≥ T G(t, B) ⊂ B0. (4.4)
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Then the following conditions are equivalent:

1) MDS G has the global attractor Θ;
2) MDS G is asymptotically compact, i.e., ∀tn ↗ ∞ ∀B ∈ β(X)

every sequence {ξn ∈ G(tn, B)} is precompact in X. (4.5)

Moreover, under condition (4.4) it holds that

Θ = ω(B0) :=
⋂
τ>0

⋃
t≥τ

G(t, B0). (4.6)

Now we introduce a special subclass of MDS called impulsive MDS. To this
purpose, we impose additional structural properties on MDS.

Let K be some family of continuous maps ϕ : [0,+∞) → X and the following
properties hold:

K1) ∀x ∈ X ∃ϕ ∈ K : ϕ(0) = x;
K2) ∀ϕ ∈ K ∀s ≥ 0 ϕ(· + s) ∈ K .

We denote

Kx = {ϕ ∈ K | ϕ(0) = x}.

In most applications,K is some set of solutions to a particular autonomous problem.

Remark 4.3 If in assumption K1) for every x ∈ X there exists a unique ϕ ∈ K such
that ϕ(0) = x, then Kx consists of a single trajectory ϕ and the equality V (t, x) =
ϕ(t) defines a classical semigroup V : R+ ×X �→ X.

In all further arguments we will understand impulsive MDS as an MDS G

consisting of a given family of maps K with properties K1), K2), a given set
M ⊂ X, and a given map I : M → P(X). We denote it by G = (K,M, I).
Such impulsive MDS describes the following behavior: a phase point moves along
trajectories of K and jumps onto a new position from the set IM when it meets the
set M .

For the “well-posedness” of impulsive problem we assume the following condi-
tions:

M ⊂ X is a closed set, I : M �→ P(X) is a compact-valued map; (4.7)

M ∩ IM = ∅; (4.8)

∀x ∈ M ∀ϕ ∈ Kx ∃τ = τ (ϕ) > 0 ∀t ∈ (0, τ ) ϕ(t) /∈ M. (4.9)
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Also, we introduce the following notation:

for x ∈ M x+ means some element from Ix;
for ϕ ∈ K M+(ϕ) =

⋃
t>0

ϕ(t) ∩M.

The following result is crucial for construction of impulsive DS [3, 24].

Lemma 4.2 ([12]) If conditions (4.7)–(4.9) hold then for every ϕ ∈ K either
M+(ϕ) = ∅ or ∃s = s(ϕ) > 0 such that

ϕ(s) ∈ M and ϕ(t) /∈ M ∀t ∈ (0, s). (4.10)

According to (4.10) we can define function s : K → (0,+∞] as

s(ϕ) =
{
s, if M+(ϕ) �= ∅,
+∞, if M+(ϕ) = ∅. (4.11)

Now, we construct an impulsive trajectory ϕ̃ starting from x0 ∈ X. Let ϕ0 ∈ Kx0 .
If M+(ϕ0) = ∅ then we define ϕ̃ on [0,+∞) by the equality

ϕ̃(t) = ϕ0(t) ∀t ≥ 0.

If M+(ϕ0) �= ∅, then for s0 = s(ϕ0) > 0, x1 = ϕ0(s0) ∈ M and for x+
1 ∈ Ix1 we

define ϕ̃ on [0, s0] by the equality

ϕ̃(t) =
{
ϕ0(t), t ∈ [0, s0),
x+

1 , t = s0.

Let ϕ1 ∈ Kx+
1

. If M+(ϕ1) = ∅ then

ϕ̃(t) = ϕ1(t − s0) ∀t ≥ s0.

If M+(ϕ1) �= ∅, then for s1 = s(ϕ1) > 0, x2 = ϕ1(s1) ∈ M and x+
2 ∈ Ix2 we

define ϕ̃ on [s0, s0 + s1] by the equality

ϕ̃(t) =
{
ϕ1(t − s0), t ∈ [s0, s0 + s1),

x+
2 , t = s0 + s1.

Continuing this process we obtain impulsive trajectory ϕ̃ with finite or infinite
number of impulsive points {x+

n }n≥1 ⊂ IM , corresponding durations between
impulses {sn}n≥0 ⊂ (0,∞) and functions {ϕn}n≥0 ⊂ K .
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We denote impulsive trajectory ϕ̃ by

ϕ̃ = ϕ̃({x+
n }, {sn}, {ϕn}).

and define

t0 = 0, tn+1 :=
n∑
k=0

sk.

If ϕ̃ has infinite number of jumps, then it is defined by the formula

∀n ≥ 0 ∀t ≥ 0 ϕ̃(t) =
{
ϕn(t − tn), t ∈ [tn, tn+1),

x+
n+1, t = tn+1.

(4.12)

Let K̃x denote the set of all impulsive trajectories starting from x ∈ X. We assume
that every impulsive trajectory is defined on [0,+∞), i.e.,

∀x ∈ X every ϕ̃ ∈ K̃x is defined on [0,+∞). (4.13)

Remark 4.4 Assumption (4.13) means that for every impulsive trajectory

ϕ̃ = ϕ̃({x+
n }, {sn}, {ϕn})

either the number of its impulsive points is finite and the continuous dynamics

does not lead to finite escape time or
∞∑
n=0

sn = ∞ i.e., there is no accumulation

of impulses on a finite time interval.

Remark 4.5 There are some trivial situations when assumption (4.13) is satisfied.
For example, if conditions (4.7)–(4.9), K1), and K2) hold, the set IM is compact and
the family K satisfies some additional assumption (see (4.25)) then condition (4.13)
is satisfied. In the single-valued case it was discussed in [5].

Remark 4.6 From (4.8) and (4.12) we have

∀x ∈ X ∀ϕ̃ ∈ K̃x ∀t > 0 ϕ̃(t) /∈ M. (4.14)

Now we are ready to present a rigorous definition of impulsive MDS.

Definition 4.3 A multi-valued map G : R+ ×X → P(X) defined by the formula

G(t, x) = {ϕ̃(t) | ϕ̃ ∈ K̃x}, (4.15)

where K̃x denotes the set of all impulsive trajectories starting from x ∈ X, is called
impulsive MDS, which will be denoted by G = (K,M, I).
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Remark 4.7 If in assumption K1), for every x ∈ X there exists a unique ϕ ∈ K

such that ϕ(0) = x, and the impulsive map I : M �→ X is single-valued, then (4.15)
defines single-valued impulsive DS [24] by the formula

∀n ≥ 0 ∀t ≥ 0 G(t, x) =
{
V (t − tn, x

+
n ), t ∈ [tn, tn+1),

x+
n+1, t = tn+1,

(4.16)

where x+
n+1 = IV (tn+1 − tn, x

+
n ), and V : R+ ×X �→ X is a semigroup generated

by K .

Lemma 4.3 ([11]) Let conditions K1),K2), (4.7)–(4.9), and (4.13) hold. Then

∀t, s ≥ 0 ∀x ∈ X G(t + s, x) ⊂ G(t,G(s, x)),

i.e., formula (4.15) defines an MDS.
If, additionally, ∀ϕ,ψ ∈ K , ∀s > 0 such that ϕ(0) = ψ(s) it holds that

θ(p) =
{
ψ(p), p ∈ [0, s),
ϕ(p − s), p ≥ s

∈ K, (4.17)

then G is strict.

Remark 4.8 Property (4.17) obviously holds if for every x ∈ X there exists a unique
ϕ ∈ K such that ϕ(0) = x.

Remark 4.9 We are also able to prove the following property:

∀x ∈ X ∀ϕ ∈ K̃x ∀s ≥ 0 ϕ(· + s) ∈ K̃ϕ(s).

Definition 4.4 We will say that the problem (4.1), (4.3) generates an impulsive
MDS (by formula (4.15)) if solutions to (4.1) generate a set K of maps ϕ :
[0,+∞) �→ X satisfying K1), K2) and for a given set M ⊂ X and for a given
map I : M �→ P(X) conditions (4.7)–(4.9), (4.13) are satisfied.

The following examples show that we cannot expect invariance of global attractor
for impulsive DS.

In bounded domain Ω ⊂ R
n, n ≥ 1 we consider the problem

{
∂y
∂t

= Δy, (t, x) ∈ (0,∞)×Ω,

y|∂Ω = 0,
(4.18)

which generates DS with phase space X = L2(Ω) and semigroup V :

for y0 =
∞∑
i=1

ciψi V (t, y0) = y(t) =
∞∑
i=1

cie
−λi tψi. (4.19)
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Here and after, {ψi}∞i=1 is orthonormal basis in L2(Ω) such that

−Δψi = λiψi, ψi ∈ H 1
0 (Ω), (4.20)

‖ · ‖ and (·, ·) are norm and scalar product in L2(Ω).
Let us consider the following impulsive problem with fixed numbers a > 0 and

μ > 0

M = {y ∈ X| (y,ψ1) = a} , (4.21)

M ′ = {y ∈ X| (y,ψ1) = a(1 + μ)} ,

I : M �→ M ′ such that for y =
∞∑
i=1

ciψi

Iy = (μ+ 1)c1ψ1 +
∞∑
i=2

ciψi. (4.22)

Lemma 4.4 ([32]) For every a > 0, μ > 0 impulsive problem (4.18), (4.21), (4.22)
generates an impulsive DS G, which has global attractor Θ in the phase space
X = L2(Ω) and

Θ =
⋃

t∈[0,ln(1+μ)]

{
(1 + μ)ae−tψ1

} ∪ {0}. (4.23)

It is easy to see thatΘ is not invariant with respect to the impulsive flow G, i.e. both
statements

∀ t ≥ 0 Θ ⊂ G(t,Θ),

∀ t ≥ 0 G(t,Θ) ⊂ Θ

are not true. The reason is that every impulsive trajectory has infinite number of
impulsive points and, therefore,Θ ∩M �= ∅.

On the other hand, it is easy to verify that

∀ t ≥ 0 Θ \M = G(t,Θ \M). (4.24)

The aim of the paper is to prove such an equality for general weakly-nonlinear
two-dimensional impulsive-perturbed parabolic system which will be considered in
the next section. For this purpose we need some additional restrictions on K , which
we will formulate with the help of function (4.11).
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Let Θ be a global attractor of G.

∀xn → x ∀ϕn ∈ Kxn ∃ϕ ∈ Kx such that on some subsequence

ϕn → ϕ uniformly on every [a, b] ⊂ [0,∞).

(4.25)

If for xn → x ∈ Θ \M, ϕn ∈ Kxn and ϕ ∈ Kx we have

s(ϕn) < ∞ and ϕn(t) → ϕ(t) ∀t ≥ 0,

then

s(ϕ) < ∞ and s(ϕn) → s(ϕ). (4.26)

The following Lemma will play a crucial role in proving of (4.24) for particular
impulsive problem, considered in the next section. This result firstly has appeared
in [5] for single-valued case and under restrictive “tube conditions” on impulsive
semiflow in the neighborhood of impulsive set M .

Lemma 4.5 ([12]) Assume that impulsive MDS G = (K,M, I) satisfies K1),
K2), (4.7)–(4.9), (4.13), (4.25), (4.26) and impulsive map I : M → P(X) is upper-
semicontinuous.

Let Θ be a global attractor of G. Then if xn → x ∈ Θ \ M and ϕ̃n ∈ K̃xn has
infinite number of impulsive points, then

∀ t ≥ 0 ∃ ϕ̃ ∈ K̃x ∃ ηn → 0 + such that ϕ̃n(t + ηn) → ϕ̃(t). (4.27)

Moreover, for αn → 0+

ϕ̃n(αn) → x. (4.28)

Proof The proof follows directly from the proofs of Lemmas 5, 7 in [12].

4.3 Application to Impulsive Parabolic System

In this section, we apply the obtained abstract results to a weakly-nonlinear two-
dimensional parabolic systems whose trajectories have jumps when they reach a
certain subset of the phase space. The main result of this paper is to prove the
existence, asymptotically precise formula and invariance of non-impulsive part
for global attractor of the system. The existence result for another type of two-
dimensional parabolic impulsive system was recently obtained in [22].
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Let Ω ⊂ R
n, n ≥ 1 be a bounded domain. For unknown functions

u(t, x), v(t, x) in (0,+∞)×Ω we consider the following problem:

⎧
⎪⎪⎨
⎪⎪⎩

∂u
∂t

= a1Δu+ εf1(u, v),

∂v
∂t

= a2Δv + εf2(u, v),

u|∂Ω = v|∂Ω = 0,

(4.29)

where ε > 0 is a small parameter, a2 ≥ a1 > 0. Nonlinear functions fi : R2 �→
R, i = 1, 2 are continuous and satisfy the following condition:

∃C > 0 ∀u, v ∈ R |f1(u, v)| + |f2(u, v)| ≤ C. (4.30)

The phase space of the problem (4.29) is the space H = L2(Ω)× L2(Ω) with the
norm ‖z‖ = √‖u‖2 + ‖v‖2. It is known [7] that for every ε > 0, z0 ∈ H there

exists at least one solution z =
(
u

v

)
∈ C([0,+∞);H) to the problem (4.29) with

z(0) = z0.
Thus, problem (4.29) generates a family of continuous maps

Kε = {z : [0,+∞) → H | z is a solution of (4.29)},

which satisfies K1) and K2). Moreover, the condition (4.25) holds.
As a direct generalization of (4.21) on two-dimensional case we consider the

following impulsive problem for fixed numbers α > 0, β > 0, μ > 0, γ ∈ (0, 1+μ
α+β )

M =
{
z =

(
u

v

)
∈ H | (u,ψ1) ≥ 0, (v, ψ) ≥ 0, α(u,ψ1)+ β(v,ψ1) = 1

}

(4.31)

M ′ =
{
z =

(
u

v

)
∈ H | (u,ψ1) ≥ 0, (v, ψ) ≥ 0, α(u,ψ1)+ β(v,ψ1) = 1 + μ

}

I : M �→ P(M ′) is closed-valued impulsive map, such that

for z =
∞∑
i=1

(
ci

di

)
ψi ∈ M

Iz ⊆ I0z =
{(

c′1
d ′

1

)
ψ1 +

∞∑
i=2

(
ci

di

)
ψi | c′1 ≥ γ, d ′

1 ≥ γ, αc′1 + βd ′
1 = 1 + μ

}
.

(4.32)

Remark 4.10 For every z ∈ M the set Iz from (4.32) is compact, i.e. impulsive map
I is compact-valued. In particular, conditions (4.7) are satisfied.
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As a particular example we can consider the following continuous single-valued
map I : M �→ M ′ defined by

I

( ∞∑
i=1

(
ci

di

)
ψi

)
=

(
c1 + μ

2α
d1 + μ

2β

)
ψ1 +

∞∑
i=2

(
ci

di

)
ψi.

Another example is upper-semicontinuous compact-valued map I ≡ I0.

Theorem 4.1 Under conditions (4.30) for sufficiently small ε the problem (4.29)–
(4.32) generates an impulsive MDS Gε : R+ × H → P(H), which has global
attractor Θε and

dist (Θε,Θ) → 0, ε → 0, (4.33)

where

Θ =
⋃

t∈[0,τ ], c1≥γ,d1≥γ

{(
c1e

−a1λ1tψ1

d1e
−a2λ1tψ1

)
|αc1 + βd1 = 1 + μ,

αc1e
−a1λ1τ + βd1e

−a2λ1τ = 1
}

∪
(

0
0

)

is global attractor of the unperturbed (ε = 0) impulsive problem (4.29)–(4.32).
If, additionally, the impulsive map I : M �→ P(M ′) is upper-semicontinuous,

then

∀t ≥ 0 Θε \M = Gε(t,Θε \M). (4.34)

Remark 4.11 In all further arguments the phrase “for sufficiently small ε” means
that there exists ε1 > 0 that depends only on the parameters of the problem (4.29)–
(4.32) such that some property holds for every ε ∈ [0, ε1].
Proof Under conditions (4.30) and Poincare inequality for an arbitrary solution z ∈
Kε to the problem (4.29) and for a.a. t > 0 the following inequality holds:

1

2

d

dt
‖z(t)‖2

H + a1λ1‖z(t)‖2
H ≤ ε

√
2C‖z(t)‖H . (4.35)

Then, there exists δ > 0 such that for a sufficiently small ε we obtain

∀ z ∈ Kε ∀ t ≥ 0 ‖z(t)‖2
H ≤ ‖z(0)‖2

He
−δt + 1. (4.36)
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Moreover, for every z =
(
u

v

)
∈ Kε and ∀i ≥ 1 we get the following equalities:

(u(t), ψi ) = (u(0), ψi)e−a1λi t +ε

∫ t

0
e−a1λi(t−s)(f1(u(s), v(s)), ψi )ds, (4.37)

(v(t), ψi ) = (v(0), ψi)e−a2λi t + ε

∫ t

0
e−a2λi(t−s)(f2(u(s), v(s)), ψi )ds. (4.38)

Further, in order to simplify the relations we denote

ψ := ψ1, λ := λ1,

F 1
ε (t) =

∫ t

0
e−a1λ(t−s)(f1(u(s), v(s)), ψ)ds,

F 2
ε (t) =

∫ t

0
e−a2λ(t−s)(f2(u(s), v(s)), ψ)ds,

Fε(t) = αF 1
ε (t)+ βF 2

ε (t),

where F 1
ε , F

2
ε , Fε ∈ C1([0,∞)), F 1

ε (0) = F 2
ε (0) = Fε(0) = 0. These functions

depend on z ∈ Kε , but ∃ C1 > 0 ∀ ε ∈ (0, 1)

sup
t≥0

(
|F 1
ε (t)| + |(F 1

ε )
′(t)| + |F 2

ε (t)| + |(F 2
ε )

′(t)| + |Fε(t)| + |F ′
ε(t)|

)
≤ C1.

(4.39)

For z ∈ Kε we consider the function

gε(t) = α(u(t), ψ) + β(v(t), ψ) (4.40)

= αe−a1λt (u(0), ψ)+ βe−a2λt(v(0), ψ) + εFε(t).

Let us verify condition (4.9). For z(0) ∈ M we deduce

g′
ε(0) ≤ −a1λ+ εF ′

ε(0). (4.41)

From the last inequality and (4.39) we deduce that for a sufficiently small ε there
exists τ = τ (z(0), ε) > 0 such that ∀t ∈ (0, τ ) gε(t) < 1, which means that (4.9)
is satisfied.

Let us verify condition (4.13). This condition directly follows from the esti-
mate (4.36) if z does not intersect the set M . Let us consider other situation. We
take z ∈ Kε with ‖z(0)‖ ≤ R such that s = s(z) < ∞, where function s(·) is
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defined by (4.11). Then from the equality gε(s) = 1 for sufficiently small ε we
deduce

s ≤ T = T (R) := 1

a1λ
ln2(α + β)R. (4.42)

So, without loss of generality we can consider z ∈ Kε with z(0) = z0 ∈ IM . Then

gε(0) = 1 + μ, (u0, ψ) ≥ γ, (v0, ψ) ≥ γ.

Therefore, ∃ sε > 0 such that

∀ t ∈ (0, sε) gε(t) > 1, gε(sε) = 1.

Then for sufficiently small ε we have the next inequality

(
1 + μ

2

)
ea2λsε ≥ 1 + μ. (4.43)

From (4.43) we obtain

sε ≥ s̄ = 1

a2λ
ln

1 + μ

1 + μ
2
, (4.44)

which implies (4.13).
Let us prove that z(sε) ∈ M , i.e.

(u(sε), ψ) ≥ 0, (v(sε), ψ) ≥ 0.

Indeed, for t ≥ 0

(u(t), ψ) ≥ γ e−a1λt − εC1, (v(t), ψ) ≥ γ e−a2λt − εC1.

Hence, ∀ t ∈ [0, 1
a2λ

ln γ
εC1

]

(u(t), ψ) ≥ 0, (v(t), ψ) ≥ 0. (4.45)

On the other hand, from the equality gε(sε) = 1 we deduce that

α(u0, ψ)e
−a1λsε + β(v0, ψ)e

−a2λsε ≥ 1

2
.
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Hence,

1

2
ea1λsε ≤ 1 + μ,

sε ≤ ŝ = 1

a1λ
ln2(1 + μ). (4.46)

So, for a sufficiently small ε we get z(sε) ∈ M . These arguments show that
in our impulsive problem (4.29)–(4.32) we have only two possibilities: either
impulsive trajectory has no impulsive points or it has infinitely many ones and
inequalities (4.44), (4.46) hold.

Finally, combining the estimate (4.36) with the following one

∀z ∈ H ∀z+ ∈ I (z) ‖z+‖2
H ≤ (1 + μ)2

(
1

α2 + 1

β2

)
+ ‖z‖2

H , (4.47)

we can apply standard arguments [16, 31] for differential equations with impulses at
fixed moments of time and obtain dissipativity property (4.4) with the set B0, which
does not depend on ε.

Let us prove that Gε is asymptotically compact. The most arguments with slight
changes are the same as in [22], so we give only the sketch of the proof. For an

arbitrary solution z =
(
u

v

)
of the problem (4.29) we consider every equation

in (4.29) as a linear parabolic equation with right-hand side hi(t) = εfi(u(t), v(t)),
i = 1, 2. Then, from [36] we deduce, that there exists constant C2 > 0 that depends
only on the parameters of the problem (4.29) and does not depends on ε such that
for almost all t > 0

d

dt

(
‖u(t)‖2

H 1
0

+ ‖v(t)‖2
H 1

0

)
+ a1

(
‖Δu(t)‖2 + ‖Δv(t)‖2

)
≤ C2, (4.48)

d

dt

(
‖u(t)‖2 + ‖v(t)‖2

)
+ a1

(
‖u(t)‖2

H 1
0

+ ‖v(t)‖2
H 1

0

)
≤ C2. (4.49)

From (4.48), (4.49) and Uniform Gronwall Lemma [36] we obtain

∀ t > 0
(
‖u(t)‖2

H 1
0

+ ‖v(t)‖2
H 1

0

)
≤ C2t + ‖u(0)‖2 + ‖v(0)‖2

a1t
+ 2C2

a1
. (4.50)

Now, let z(n)0 = ∑∞
i=1

(
c
(n)
i

d
(n)
i

)
·ψi, ‖z(n)0 ‖H ≤ R be an arbitrary bounded sequence

of initial data, ξn ∈ Gε(tn, z
(n)
0 ), tn ↗ +∞. Then, ξn = zn(tn), zn ∈ K̃ε

z
(n)
0

. If zn

does not have impulsive points, then for function yn(t) = zn(t + tn − 1), t ≥ 0 we
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obtain the following:

yn ∈ K̃ε
zn(tn−1), ξn = zn(tn) = yn(1).

From (4.36) we obtain that

‖zn(tn − 1)‖ ≤ √
2 ∀n ≥ N(R).

Therefore, combining with estimate (4.50), the sequence {yn(1) = ξn} is bounded
in H 1

0 (Ω)×H 1
0 (Ω), so it is precompact in H .

Otherwise, without loss of generality, we can assume that z(n)0 ∈ IM , ‖z(n)0 ‖H ≤
R and zn =

(
un(·)
vn(·)

)
∈ K̃ε

z
(n)
0

has infinite number of jumps. Let {T (n)i+1 =
i∑

k=0
s
(n)
k }∞i=0 be the moments of impulsive perturbation for zn(·) and

{η(n)+i = zn(T
(n)
i )}∞i=1 ⊂ IM

be the corresponding impulsive points. Let us prove the precompactness of the
sequence {η(n)+i }. From the dissipativity condition (4.4), the estimate

s̄ ≤ s
(n)
k ≤ ŝ, (4.51)

and the estimate (4.50) we obtain the existence of constant C(R), which does not
depend on ε, such that

∀ i ≥ 1 ∀ n ≥ 1 ‖un(T (n)i − 0)‖2
H 1

0
+ ‖vn(T (n)i − 0)‖2

H 1
0

≤ C(R). (4.52)

Then, from (4.32) for all i ≥ 1, n ≥ 1 we deduce that

‖un(T (n)i )‖2
H 1

0
+ ‖vn(T (n)i )‖2

H 1
0

≤ C(R) + λ(1 + μ)2
(

1

α2 + 1

β2

)
. (4.53)

The estimate (4.53) and compact embedding H 1
0 (Ω) ⊂ L2(Ω) imply precom-

pactness of the sequence {η(n)+i | i ≥ 1, n ≥ 1} in H . Then, for the sequence

ξn ∈ Gε(tn, z
(n)
0 ) for every n ≥ 1 there exists a number i = i(n), i(n) → ∞,

n → ∞ such that

tn ∈ [T (n)i(n), T
(n)
i(n)+1).
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Hence, from the inclusion

ξn = zn(tn) ∈ Gε(tn − T
(n)
i(n), η

(n)+
i(n) ) (4.54)

we get that ξn = yn(τn), where τn := tn−T
(n)
i(n)

, yn ∈ Kε is a sequence of solutions

to the (non-perturbed) problem (4.29), where yn(0) = η
(n)+
i(n) . From the previous

arguments on some subsequence

η
(n)+
i(n)

→ η in H, τn → τ ∈ [0, ŝ]. (4.55)

Hence, from regularity property (4.25) of solutions of the problem (4.29) we deduce
the following result:

yn(τn) → y(τ) in H, where y ∈ Kε, y(0) = η. (4.56)

Therefore, sequence {ξn} is precompact in H and from Lemma 4.1 we deduce the
existence of global attractor

Θε =
⋂
s>0

⋃
t≥s

Gε(t, B0), (4.57)

where B0 = {z ∈ H | ‖z‖ ≤ R0} is dissipative set, which does not depend on ε.
Let us prove the convergence (4.33). For this purpose it is sufficient to show that

for εk → 0, ξ(k) ∈ Θεk on subsequence

ξ(k) → ξ ∈ Θ in H, k → ∞. (4.58)

From (4.57) there exist sequences {tk ↗ ∞}, {z0
k} ⊂ B0, zk ∈ K̃

εk

z0
k

such that

∀ k ≥ 1 ‖ξ(k) − zk(tk)‖ ≤ 1

k
.

If zk do not have impulsive perturbations, then using (4.35) we obtain the estimate

∀ t ≥ 0 ‖zk(t)‖2
H ≤ ‖z0

k‖2
H e

−δt + 2ε2
kC

2

δ2
, (4.59)

from which it follows that ξ(k) → 0 in H . Now, let us consider the case when
every zk has infinite number of impulsive perturbations. Then, from the previous
arguments, for ξk = zk(tk) we obtain

ξk = yk(τk), yk ∈ K
εk

η+
k

, τk = tk − T
(k)
i(k) ∈ [0, s(k)i(k)],

τk → τ, η+
k := η

(k)+
i(k) → η, i(k) → ∞, k → ∞.
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Let us denote sk := s
(k)
i(k). Then

αe−a1λsk (uk0, ψ) + βe−a2λsk (vk0, ψ) + εkFεk (sk) = 1, (4.60)

where uk0, v
k
0 are components of the vector η+

k ∈ IM . So, for k → ∞ we obtain
that on subsequence sk → s, where τ ∈ [0, s] and

αe−a1λs(u0, ψ)+ βe−a2λs(v0, ψ) = 1, (4.61)

(u0, ψ1) ≥ γ, (v0, ψ1) ≥ γ, α(u0, ψ1)+ β(v0, ψ1) = 1 + μ. (4.62)

Using (4.25) we obtain

ξk =
(
uk(τk)

vk(τk)

)
→ ξ = y(τ) =

(
u(τ)

v(τ )

)
in H, where y ∈ Kε, y(0) = η.

Due to (4.37), (4.38) as k → ∞ we obtain

(u(τ ), ψ1) = (u0, ψ1)e
−a1λ1τ , (v(τ ), ψ1) = (v0, ψ1)e

−a2λ1τ , (4.63)

where τ ∈ [0, s], s is a unique root of Eq. (4.61) under fixed u0, v0 from (4.62).
Using (4.37), (4.38) and taking into account the “non-impulsive” character of

coordinates j ≥ 2 along each impulsive trajectory, we have:

∀j ≥ 2 |(uk0, ψj )| + |(vk0 , ψj )| ≤ 2e−λjT
(k)
i(k) + 2C1εk

1 − e−λj s̄
→ 0, k → ∞.

(4.64)

Then, from (4.63), (4.64) we obtain that ξ ∈ Θε and (4.33) hold.
Before proving (4.34) according to Lemma 4.5 we need to verify property (4.26).

We consider z0
n → z0 �∈ M , zn ∈ Kz0

n
with sn := s(zn) < ∞. From (4.25) we can

assume that zn(t) → z(t) in H uniformly on compacts from [0,+∞). From (4.42)
we also can assume that sn → s. The inclusion zn(sn) ∈ M means that for

gnε (t) := α(un(t), ψ) + β(vn(t), ψ)

we have

gnε (sn) = αe−a1λsn(un(0), ψ)+ βe−a2λsn(vn(0), ψ)+ εF (n)
ε (sn) = 1,

e−a1λsn(un(0), ψ)+ εF (1n)
ε (sn) ≥ 0, (4.65)

e−a2λsn(vn(0), ψ)+ εF (2n)
ε (sn) ≥ 0.
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Passing to the limits we obtain the same relationships for function z. It means that
z(s) ∈ M . Since z0 �∈ M so s > 0. Let us prove that s = s(z), i.e. let us prove that
for trajectory z moment s is the first moment of reaching the impulsive set M . If it
is not true then there exists s1 ∈ (0, s) such that

z(s1) ∈ M and ∀ t ∈ (s1, s) z(t) �∈ M.

On the other hand, for function gε(t) := α(u(t), ψ) + β(v(t), ψ) we have

g′
ε(s) = −a1λ(1 − εFε(s))+ (a1 − a2)λβ(v(0), ψ)e−a2λs + εF ′

ε(s).

Therefore, from the third inequality in (4.65) for sufficiently small ε

g′
ε(s) ≤ −a1λ

2
. (4.66)

In the same way

g′
ε(s1) ≤ −a1λ

2
. (4.67)

So there exists s2 ∈ (s1, s) such that gε(s2) = 1, g′
ε(s2) ≥ 0. On the other hand, for

sufficiently small ε

g′
ε(s2) = −a1λ(1 − εFε(s2))

+(a1 − a2)λβ(v(0), ψ)e
−a2λs1e−a2λ(s2−s1) + εF ′

ε(s2) ≤ −a1λ

2

and we obtain a contradiction.
Now let us prove (4.34). Let ξ ∈ Θε \M , t > 0 be fixed. Then ξ = lim ξn, where

ξn = ϕn(tn), tn ↗ ∞, ϕn ∈ K̃xn , {xn} ⊂ B0. We will assume that tn ≥ T (R0),
where number T (R0) is taken from (4.42). For sufficiently large n we can consider
functions

ψn(p) = ϕn(p + tn − t), p ≥ 0.

From Lemma 4.1 G is asymptotically compact. Therefore, up to subsequence

yn := ϕn(tn − t) → y ∈ Θε.

Hence

ψn ∈ K̃yn, yn �∈ M, yn → y, ξn = ψn(t).
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If ϕn has no impulsive points then ϕn ∈ Kxn and from estimate (4.59) for sufficiently
small ε

‖yn‖ ≤ 1

2(α + β)
, ‖y‖ ≤ 1

2(α + β)
.

In particular, yn, y �∈ M and every trajectory starting from yn and y is non-
impulsive. Therefore,

ξn = ψn(t) → ξ = ψ(t) ∈ Gε(t, y) ⊂ Gε(t,Θε \M).

In other case we have two cases: y �∈ M and y ∈ M .
If y �∈ M , then from Lemma 4.5 ∃ψ ∈ K̃y , ∃ηn → 0+ such that

ψn(t + ηn) → ψ(t).

On the other hand, for θn(p) = ψn(p + t), p ≥ 0 we have

θn ∈ K̃ξn, ξn → ξ �∈ M, ηn → 0 + .

Therefore, from Lemma 4.5

θn(ηn) = ψn(t + ηn) → ξ.

So,

ξ = ψ(t) ∈ Gε(t,Θε \M).

Let y ∈ M . For further arguments we need to verify the following condition:

If for xn → x ∈ Θε ∩M, ϕn ∈ Kxn we have s(ϕn) < ∞

then up to subsequence

s(ϕn) → 0. (4.68)

So let us consider z0
n → z0 ∈ M , zn ∈ Kz0

n
with sn := s(zn) < ∞. From (4.25) we

have that zn(t) → z(t) in H uniformly on compacts from [0,+∞). From (4.42) we
also have that sn → s ≥ 0. Let us prove that s = 0. Indeed, if s > 0 then passing to
the limit in (4.65) and take into account that z0 ∈ M we obtain

gε(s) = αe−a1λs(u(0), ψ)+ βe−a2λs(v(0), ψ)+ εFε(s) = 1,

gε(0) = α(u(0), ψ) + β(v(0), ψ) = 1, (u(0), ψ) ≥ 0, (v(0), ψ) ≥ 0.
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Then for sufficiently small ε

s ≤ T := 1

a1λ
ln 2.

On the other hand, for t ∈ [0, s]

g′
ε(t) = −a1λαe

−a1λt (u(0), ψ)− a1λβe
−a2λt(v(0), ψ) + εF ′

ε(t)

≤ −a1λαe
−a2λt + εF ′

ε(t).

Therefore, for sufficiently small ε for t ∈ [0, s] g′
ε(t) < 0 and we have a

contradiction.
So, for ψ(n)

0 —the first component of ψn, we have that up to subsequence

τn := s(ψ
(n)
0 ) → 0, zn := ψ

(n)
0 (τn) → y.

Then semi-continuity of impulsive map I follows

ψn(τn) = z+n ∈ Izn, z
+
n → z+ ∈ Iy.

But ψn(τn) = ϕn(τn + tn − t), therefore z+ ∈ Θε \M .
Now we consider functions βn(p) = ψn(p + τn), p ≥ 0. Then

βn ∈ K̃(zn)+, (zn)
+ → z+ �∈ M,

so from Lemma 4.5 ∃β ∈ K̃z+ ∃ηn → 0+ such that on some subsequence:

βn(t + ηn) = ψn(t + ηn + τn) → β(t) ∈ G(t,Θε \M).

But ηn + τn → 0+, so

β(t) = ξ ∈ Gε(t,Θε \M).

Thus we obtain

∀t ≥ 0 Θε \M ⊆ Gε(t,Θε \M).

Let us prove equality. From the strictness of Gε we have that ∀s ≥ 0

Gε(s,Θε \M) ⊂ Gε(t + s,Θε \M) ⊂ Oδ(Θε)
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for arbitrary small δ > 0 if t is large enough. So,

Gε(s,Θε \M) ⊂ Θε \M,

which implies the required result.
Theorem is proved. #$
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Chapter 5
Fraktal and Differential Properties
of the Inversor of Digits of
Qs-Representation of Real Number

Oleg Barabash, Oleg Kopiika, Iryna Zamrii, Valentyn Sobchuk,
and Andrey Musienko

Abstract This paper aims at introducing and studying a continuous function I (x)
that depends on the s − 1 parameters, I (x) is called inversor of digits of Qs -
representation of real number. This representation is determined by stochastic vector
(q0, q1, . . . , qs−1) with positive entries and for an arbitrary x ∈ [0; 1] there exists a
sequence (αn), αn ∈ {0, 1, . . . , s − 1} ≡ As , such that

x = βα1 +
∞∑
k=2

⎡
⎣βαk

k−1∏
j=1

qαj

⎤
⎦ = ΔQs

α1α2...αn...
,

where β0 = 0, βk =
k−1∑
i=0

qi , it is generalization of the classical s-adic representation

(because it coincides with the last-mentioned if qi = 1
s
, i ∈ As).

The differential and fractal properties of the inversor of digits of Qs -
representation of real number are described.
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5.1 Introduction

Metric space C[0;1] of continuous functions with a uniform metric rich in functions
with a complex local structure and “massive” sets of various features. These include
continuous nonmonotonous, twisting, non-differential functions (in particular, the
Banakh-Mazurkevych’s (1931) and Kozyriev’s (1983) theorems), which determine
the topological wealth of their families (which are sets of the second category of
Ber), as well as singular functions (a continuous function, which is different from
the constant, is called singular if it is equal to zero practically everywhere according
to Lebesgue measure). The set of all singular functions is topologically massive, as
evidenced by Zamfirescu’s (1981) theorem: singular functions in the metric space
of all continuous monotone functions with a supremummetric form the sets of the
second category of Ber.

A well-known theorem of Lebesgue asserts that every real function of a real
variable with limited variation is either a jump function, or an absolutely continuous
function, or a singular or nontrivial combination of the preceding three pure types of
Lebesgue. In addition, each continuous function is either completely continuous, or
singular, or summation. Among the pure types of Lebesgue, the singular functions
are the least studied class, although this has been a separate topic of research
for more than 100 years. The first researchers who have introduced the singular
functions: G. Cantor, E. Hellinger, W. Sierpinski, H. Minkowski and others. The
proposed constructions concern monotonic and even strictly increasing functions
(with the exception of the Cantor function is the non-decreasing function of the
“uniform” probability distribution on the Cantor sets, which grows exclusively at
the points of this set). There were other very interesting examples of singularly
strictly increasing functions, for example, proposed by the authors of Freilich [4],
Gelbaum and Olmsted [5, pp. 96–98], Hewitt and Stromberg [6, pp. 278–282], Riesz
and Nagy [21, pp. 48–49], Takacs [23]. In recent years, the desire to study singular
functions and to apply them in various fields of science also has not disappeared, in
support of this work [1–3, 8–10, 13, 17, 19, 20, 24, 25, 28]. But the impression is that
for a long time there was an unpublished competition for constructing the simplest
example of a singular function. Once thought that this is an example of Salem [22].
But, in our opinion, a more simple examples are the inversor of digits for Q2-
representation of real number [16], and the inversor of digits for Q3-representation
of real number [27], which we are generalizing in this paper.

Monotone singular functions are closely related to singular probability distribu-
tions (these distributions are concentrated on zero sets of Lebesgue). Domination of
such distributions is convincingly proved in different classes of random variables,
whose images in one or another numerical encoding system are independent.

There are a number of problems associated with singular functions, one of which
is the problem of effective methods for their definition and research. Recently,
various systems of representation of real numbers are used for this purpose, both
with a finite, and with an infinite alphabet, one of which is the Q-representation of
numbers first introduced in 1986 by M.V. Pratsiovytyi. It was used to study singular
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distribution functions. We use Q-representation of numbers to study monotonic
singular functions, too, but we participate in the fractal part of the study.

The fractal geometry from a group point of view is a theory of invariants of
a group of transformations of the metric space, which retain fractal dimension, in
particular, Hausdorff-Besicovitch. Its useful ideas are the ideas of self-similarity,
self-affinity, and so on. Graphs of functions with complex local structure as plural
of space R2 potentially have fractal properties.

5.2 Qs-Representation of Real Number

The encoding of numbers with [0, 1] means of the alphabet A (finite or infinite) is
called surjective transformation

ϕ : A×A× . . .× A× . . . ≡ L → [0, 1].

In this case, the symbolic entry of the number x = ϕ((an)), which is an direct
image of the sequence (an), in the form Δ

ϕ
a1a2...an... is called its ϕ-representation (or

ϕ-code).
One of the easiest ways to encode numbers x ∈ [0, 1] by the means of the

alphabet As , 2 ≤ s ∈ N is the s-adic representation of number:

x = α1

s
+ α2

s2
+ . . .+ αn

sn
+ . . . ≡ Δs

α1α2...αn...
.

In the traditional sense, the geometry of numbers involves the solution of
theoretical numerical problems using geometric means. In recent years, a new
field of research has shown itself that is the geometry of various representation of
real numbers, which describes the geometric change of numbers, metric relations,
topological-metric properties number sets, determined by conditions on their repre-
sentation, etc. and applications to the construction of different mathematical objects
and complex (non-homogeneous) local structure [12].

Definition 5.1 Let (c1, c2, . . . , cm) be a fixed ordered set of elements of the
alphabetA. The cylinder of rankm with the basis of c1c2 . . . cm in encoding ϕ is the
set Δϕ

c1c2...cm of all numbers x ∈ [0, 1], which have the following ϕ-representation

x = Δϕ
c1c2...cmαm+1...αm+k..., αm+i ∈ A.

The segment [0, 1] itself is called the cylinder of zero rank and denoted by Δ.
Directly from this definition, the following properties of the cylinders follow:

1. Δϕ
c1c2...cm = ⋃

i∈A
Δ
ϕ
c1c2...cmi

;

2. Δ = ⋃
i1∈A

⋃
i2∈A

. . .
⋃
in∈A

Δ
ϕ
i1i2...in

for every n.
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For the s-adic representation of real numbers of cylinders there are segments,
namely:

Δs
c1c2...cm

=
[

m∑
i=1

ci

si
; 1

sm
+

∞∑
n=m+1

cn

sn

]
.

It is said that the coding system has zero redundancy if all numbers or the
overwhelming majority of numbers have a single representation and only a small
part of them has two representation.

Examples of encoding numbers by means of an infinite alphabet are L-, E-, and
S-representation, which are based on the expanding numbers in the series of positive
terms of Luroth [7, 11, 29], Engel [15], Silvester [18], respectively. As with s-adic
representation, they all have zero redundancy, since each number with (0, 1] has a
single L-, E-, and S-representation.

Coding is called continuous if the cylinder is an open interval (a segment, a half-
interval, or a half-open interval), and for any sequence (an), an ∈ A, intersection
∞⋂
m=1

Δ
ϕ
a1a2...am ≡ Δ

ϕ
a1a2...am... is a number (point), and moreover

Δϕ
a1a2...am...

= x → x ′ = Δ
ϕ

a′
1a

′
2...a

′
m...

≡ m → ∞,

where am �= a′
m, but ai = a′

i for i < m.
Continuous ϕ-representation is called Q-representation if the alphabetA is finite

and for every i ∈ A ≡ As performed supΔQ
c1c2...cmi

= infΔQ
c1c2...cm[i+1], and metric

relationship

|Δϕ
c1c2...cmi

|
|Δϕ

c1c2...cm | ≡ qi = const,

which is called the main (most important in the metric theory).
A meaningful introduction of a Qs -representation gives the following state-

ment [14]: for any x ∈ [0, 1] there is a sequence (αn), αn ∈ As , such that

x = βα1 +
∞∑
k=2

⎡
⎣βαk

k−1∏
j=1

qαj

⎤
⎦ = ΔQ

α1α2...αn...
, (5.1)

where β0 = 0, βi = q0 + q1 + . . .+ qi−1, 0 < i ≤ s.
For Qs -representation have the following relationship:

3. q0 + q1 + . . .+ qs−1 = 1;

4. |ΔQ
c1c2...cm | =

m∏
i=1

qci → 0 (m → ∞).
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The classic s-adic representation is a Qs -representation if q0 = q1 = . . . =
qs−1 = 1

s
.

The period in Qs -representation of the number (if it exists) is denoted by the
parentheses. There are numbers that have twoQs -representation. These are numbers
with period (0) or (s − 1), moreover ΔQs

c1...cm−1cm(0)
= Δ

Qs

c1...cm−1[cm−1](s−1). These
numbers are called Qs-rational, set of Qs -rational numbers is countable. The rest of
the numbers are called Qs -irrational.

5.3 Inversor of Digits of Qs-Representation for Fractional
Part of Real Number

Definition 5.2 Function defined [0, 1] by equality

I (ΔQs
α1α2...αn...

) = Δ
Qs

[s−1−α1][s−1−α2]...[s−1−αn]... (5.2)

is called an inversor I of digits the Qs -representation of a real number x =
Δ
Qs
α1α2...αn... (or simply inversor).

The function is correctly defined in each Qs-rational points, and hence at each
point of the segment [0, 1].
Theorem 5.1 For inversor I of digits the Qs -representation of a real number x ∈
[0, 1] there is equality

ΔQs
α1α2...αn...

+Δ
Q′
s[s−1−α1][s−1−α2]...[s−1−αn]... = 1,

whereQ′
s = {q ′

0 = qs−1; q ′
1 = qs−2; . . . ; q ′

s−1 = q0}.
Proof For the numbers 0 = Δ

Qs

(0) and 1 = Δ
Qs

(s−1), the assertion is obvious.

Let x = Δ
Qs
α1α2...αn... be some number belongs to (0; 1) and 1 − x ≡ x ′.

Let ΔQs
c1c2...cm ≡ Δ

Q′
s

c′1c′2...c′m
, where c′i = s − 1 − ci .

Since x belongs to the system of embedded cylinders ΔQs
α1 ,Δ

Qs
α1α2, . . . ,Δ

Qs
α1α2...

αn, . . . , then x ′ = 1 − x belongs to the system of embedded cylinders

Δ
Q′
s

α′
1
,Δ

Q′
s

α′
1α

′
2
, . . . ,Δ

Q′
s

α′
1α

′
2...α

′
n
, . . ..

Then

x′ =
∞⋂
n=1

Δ
Q′
s

α′
1α

′
2...α

′
n

=
∞⋂
n=1

Δ
Q′
s

[s−1−α1][s−1−α2]...[s−1−αn] = Δ
Q′
s

[s−1−α1][s−1−α2]...[s−1−αn]...,

which was required to prove.
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Corollary 5.1 I (Δ
Qs
α1α2...αn...) = 1 −Δ

Q′
s

α1α2...αn....

Corollary 5.2 I (x) = 1 − x for all x ∈ [0, 1], when qi = qs−1−i .

Proof If qi = qs−1−i then Qs = Q′
s and Δ

Q′
s

α1α2...αn... = Δ
Qs
α1α2...αn.... So

I (Δ
Qs

α1(x)α2(x)...αn(x)...
) = 1 −Δ

Q′
s

α1(x)α2(x)...αn(x)...
= 1 − x.

Let qi �= qs−1−i and x = Δ
Qs

2(s−1) then

I (x) = I (Δ
Qs

2(s−1)) = βs−3 + β0qs−3 + β0qs−3q0 + . . .

= βs−3 = q0 + q1 + . . .+ qs−4,

1 − x = 1 −Δ
Qs

2(s−1) = 1 − β2 − βs−1q2 − βs−1q2qs−1 − . . .

= 1 − β2 − βs−1q2

1 − qs−1
�= I (x).

5.4 Differential Properties of the Inversor

The property Φ of the element x in the set K is called normal if the overwhelming
majority of the elements of this set (almost all) have it.

Such concepts as potency, measure, Hausdorff-Besicovitch’s dimension, the
category of Ber and so others [14], allow to interpret unambiguously the words
“almost all”.

LetNi(x, k) be the number of digits i in theQs -representation x to the k-th place

inclusive. Then the lim (if it exists) lim
k→∞

Ni(x, k)

k
≡ νi(x) ≡ ν

Qs

i (x) is called the

frequency (asymptotic frequency) of the numbers i in the Qs -representation of the
number x.

The number x = Δ
Qs
α1...αk... for which the equations are valid

ν
Qs

0 (x) = q0, ν
Qs

1 (x) = q1, . . . , ν
Qs

s−1(x) = qs−1

calledQs -normal. It is known that the Lebesgue measure of the set of allQs -normal
numbers is [0, 1] equal to 1.
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Lemma 5.1 If I ′(x) exists then:

1) if s is an even number, the derivative equals

I ′(x)= lim
n→∞

⎛
⎝
(
q0

qs−1

)νs−1(x)−ν0(x)

·
(
q1

qs−2

)νs−2(x)−ν1(x)

· . . . ·
(
q s

2−1

q s
2

)ν s
2
(x)−ν s

2−1(x)
⎞
⎠
n

;

(5.3)

2) if s is an odd number, then the derivative equals

I ′(x)= lim
n→∞

⎛
⎝

(
q0

qs−1

)νs−1(x)−ν0(x)

·
(
q1

qs−2

)νs−2(x)−ν1(x)

· . . . ·
(
q s−3

2

q s+1
2

)ν s+1
2
(x)−ν s−3

2
(x)

⎞
⎠
n

.

(5.4)

Proof Obviously, the derivative equals I ′(x) = lim
n→∞

μI

(
Δ
Qs

α1(x)α2(x)...αn(x)

)

|ΔQs

α1(x)α2(x)...αn(x)
| .

I ′(x) = lim
n→∞

μI

(
Δ
Qs

α1(x)α2(x)...αn(x)

)

|ΔQs

α1(x)α2(x)...αn(x)
|

= lim
n→∞

n∏
i=1

q[s−1−αi]
n∏
i=1

qαi

= lim
n→∞

q
Ns−1(x,n)

0 q
Ns−2(x,n)

1 . . . q
N0(x,n)
s−1

q
N0(x,n)
0 q

N1(x,n)
1 . . . q

Ns−1(x,n)

s−1

= lim
n→∞

⎛
⎝

(
q0

qs−1

)Ns−1(x,n)−N0(x,n)
n ·

(
q1

qs−2

)Ns−2(x,n)−N1(x,n)
n · . . .

⎞
⎠
n

.

From the definition of the frequency of the numbers i in the Qs -representation
for an even number s, we obtain

I ′(x)= lim
n→∞

⎛
⎝
(
q0

qs−1

)νs−1(x)−ν0(x)

·
(
q1

qs−2

)νs−2(x)−ν1(x)

· . . . ·
(
q s

2−1

q s
2

)ν s
2
(x)−ν s

2−1(x)
⎞
⎠
n

;

for an odd number s, we obtain

I ′(x)= lim
n→∞

⎛
⎝

(
q0

qs−1

)νs−1(x)−ν0(x)

·
(
q1

qs−2

)νs−2(x)−ν1(x)

· . . . ·
(
q s−3

2

q s+1
2

)ν s+1
2
(x)−ν s−3

2
(x)

⎞
⎠
n

.
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What should have been proved.

Theorem 5.2 The derivative I ′(x0) does not exist if:

1) x0 is aQs -rational points and q0 �= qs−1;
2) x0 = Δ

Qs

α1α2...αn(j)
, where 0 �= j �= s − 1 and qi �= q[s−1−i] to all i ∈ As ;

3) there exists frequencies ν0(x0), ν1(x0), . . . , νs−1(x0) of digits 0, 1, . . . , s − 1 in
theQs -representation of the number x0 and

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎣

(νs−1(x0)− ν0(x0))(q0 − qs−1) < 0,

(νs−2(x0)− ν1(x0))(q1 − qs−2) < 0,

. . . ,

(ν s
2
(x0)− ν s

2 −1(x0))(q s
2 −1 − q s

2
) < 0,

if s is an even number;

⎡
⎢⎢⎢⎢⎢⎣

(νs−1(x0)− ν0(x0))(q0 − qs−1) < 0,

(νs−2(x0)− ν1(x0))(q1 − qs−2) < 0,

. . . ,

(ν s+1
2
(x0)− ν s−3

2
(x0))(q s−3

2
− q s+1

2
) < 0,

if s is an odd number.

Proof

1) Let x0 ∈ [0; 1] be some Qs -rational number

x0 = Δ
Qs

α1α2...αn[αn+1−1](s−1) ≡ Δ
Qs

α1α2...αnαn+1(0)
= x ′

0,

where is the digit αn+1 �= 0.

Choose the sequence (xm) such that xm = Δ
Qs

α1α2...[αn+1−1] s − 1 . . . s − 1︸ ︷︷ ︸
m

(0)
.

Obviously, xm → x0 for m → ∞. Then

lim
m→∞

I (x0)− I (xm)

x0 − xm

= lim
m→∞

Δ
Qs

[s−1−α1]...[s−1−αn][s−1−αn+1+1](0)−ΔQs

[s−1−α1]...[s−1−αn][s−1−αn+1+1] 0 . . . 0︸ ︷︷ ︸
m

(s−1)

q[αn+1−1]qms−1

n∏
i=1

qαi (βs−1+βs−1qs−1+βs−1q
2
s−1+. . .−β0−β0q0−β0q

2
0 −. . .)

= lim
m→∞

qm0 q[s−αn+1]
n∏
i=1

q[s−1−αi ](0 − βs−1 − βs−1qs−1 − βs−1q
2
s−1 − . . .)

q[αn+1−1]qms−1

n∏
i=1

qαi
βs−1

1 − qs−1
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= − lim
m→∞

q[s−αn+1]
q[αn+1−1]

(
q0

qs−1

)m n∏
i=1

q[s−1−αi]
qαi

= w1.

Choose the sequence (x ′
m) such that x ′

m = Δ
Qs

α1α2...αnαn+1 0 . . .0︸ ︷︷ ︸
m

(s−1)
. Obviously,

x ′
m → x ′

0 for m → ∞ and

lim
m→∞

I (x ′
0)− I (x ′

m)

x ′
0 − x ′

m

= lim
m→∞

Δ
Qs

[s−1−α1]...[s−1−αn+1+1](s−1)−ΔQs

[s−1−α1]...[s−1−αn+1+1] s−1 . . . s−1︸ ︷︷ ︸
m

(0)

q[αn+1−1]qm0
n∏
i=1

qαi (β0+β0q0+β0q
2
0 +. . .−βs−1−βs−1qs−1−βs−1q

2
s−1−. . .)

= lim
m→∞

q[s−αn+1]qms−1(
βs−1

1−qs−1
)

n∏
i=1

q[s−1−αi ]

− βs−1
1−qs−1

q[αn+1−1]qm0
n∏
i=1

qαi

= − lim
m→∞

q[s−αn+1]
q[αn+1−1]

(
qs−1

q0

)m n∏
i=1

q[s−1−αi]
qαi

= w2.

The derivative I ′(x0) exists at Qs -rational points, if w1 = w2. Then

w1 = w2 ⇔ lim
m→∞

(
q0

qs−1

)m
= lim

m→∞

(
qs−1

q0

)m
.

If
q0

qs−1
< 1, then w1 = 0 and w2 = ∞. If

qs−1

q0
< 1, then w1 = ∞ and w2 = 0.

Since x ′
0 = x0, then does not exist derivative I ′(x0). So, the function I does not

have a derivative in any Qs -rational point for q0 �= qs−1.

2) Let x0 = Δ
Qs

α1α2...αn(j)
and 0 �= j �= s − 1.

Let x1 = Δ
Qs

α1α2...αn j . . . j︸ ︷︷ ︸
m

(0)
, x2 = Δ

Qs

α1α2...αn j . . . j︸ ︷︷ ︸
m

(s−1)
. So

lim
k→∞

I (x0)− I (x1)

x0 − x1
= lim

k→∞

qm[s−1−j ]
(

β[s−1−j]
1−q[s−1−j] − βs−1

1−qs−1

) n∏
i=1

q[s−1−αi]

qmj

(
βj

1−qj
) n∏
i=1

qαi

= w3.
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On the other hand

lim
k→∞

I (x0)− I (x2)

x0 − x2
= lim

k→∞

qm[s−1−j ]
(

β[s−1−j]
1−q[s−1−j]

) n∏
i=1

q[s−1−αi]

qmj

(
βj

1−qj − βs−1
1−qs−1

) n∏
i=1

qαi

= w4.

It is obvious that w3 = w4 for

β[s−1−j ]
1 − q[s−1−j ]

− βs−1

1 − qs−1

βj

1 − qj

=
β[s−1−j ]

1 − q[s−1−j ]
βj

1 − qj
− βs−1

1 − qs−1

.

Having simplified the last equality, we obtain

(
β[s−1−j ]

1 − q[s−1−j ]
− 1

)
·
(

βj

1 − qj
− 1

)
= β[s−1−j ]

1 − q[s−1−j ]
· βj

1 − qj
,

β[s−1−j ]
1 − q[s−1−j ]

+ βj

1 − qj
= 1.

Taking into account (5.1), the equality
β[s−1−j ]

1 − q[s−1−j ]
+ βj

1 − qj
= 1 will exist

when qi = q[s−1−i] for any i ∈ As .
Then, the derivative I ′(x0) does not exist at the points x0 = Δ

Qs

α1α2...αn(j)
, 0 �=

j �= s − 1 for qi �= q[s−1−i] for all i ∈ As .

3) Let the frequencies ν0(x0), ν1(x0), . . . , νs−1(x0) of digits 0, 1, . . . , s − 1 exist
in the Qs -representation of the number x0.

Suppose that the derivative I ′(x0) exists at the point x0 = Δ
Qs
α1α2...αn....

Consider the case when s is an even number. Suppose that for formula (5.3) is
executed

I ′(x)= lim
n→∞

⎛
⎝
(
q0

qs−1

)νs−1(x)−ν0(x)

·
(
q1

qs−2

)νs−2(x)−ν1(x)

· . . . ·
(
q s

2−1

q s
2

)ν s
2
(x)−ν s

2−1(x)
⎞
⎠
n

= ∞.

Then from the condition (νs−1(x0)− ν0(x0))(q0 − qs−1) < 0 it follows that the(
q0

qs−1

)νs−1(x0)−ν0(x0)

> 1. From the condition (νs−2(x0)−ν1(x0))(q1 −qs−2) < 0

it follows that the

(
q1

qs−2

)νs−2(x0)−ν1(x0)

> 1.

Analogously, from the condition (ν s
2
(x0) − ν s

2 −1(x0))(q s
2 −1 − q s

2
) < 0 it follows

that the

(
q s

2 −1

q s
2

)ν s
2
(x0)−ν s

2 −1(x0)

> 1.
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So, if there exist frequency ν0(x0), ν1(x0), . . . , νs−1(x0) of digits 0, 1, . . . , s − 1
in the Qs -representation of the number x0, s is an even number, and

⎡
⎢⎢⎢⎢⎢⎣

(νs−1(x0)− ν0(x0))(q0 − qs−1) < 0,

(νs−2(x0)− ν1(x0))(q1 − qs−2) < 0,

. . . ,

(ν s
2
(x0)− ν s

2 −1(x0))(q s
2 −1 − q s

2
) < 0,

then the finite derivative I ′(x0) does not exist at the point x0.
Let s be an odd number, then Eq. (5.4) holds. Then

I ′(x)= lim
n→∞

⎛
⎝

(
q0

qs−1

)νs−1(x)−ν0(x)

·
(
q1

qs−2

)νs−2(x)−ν1(x)

· . . . ·
(
q s−3

2

q s+1
2

)ν s+1
2
(x)−ν s−3

2
(x)

⎞
⎠
n

= ∞.

Using analogous considerations, it can be argued that the finite derivative I ′(x0)

does not exist at the point x0, with odd s if

⎡
⎢⎢⎢⎢⎢⎣

(νs−1(x0)− ν0(x0))(q0 − qs−1) < 0,

(νs−2(x0)− ν1(x0))(q1 − qs−2) < 0,

. . . ,

(ν s+1
2
(x0)− ν s−3

2
(x0))(q s−3

2
− q s+1

2
) < 0.

The theorem is proved.

Corollary 5.3 If s is odd number, then the digit
s − 1

2
retains its frequency ν s−1

2
(x)

in theQs -representation. That is, the frequency ν s−1
2
(x) of the digit

s − 1

2
in theQs -

representation of the argument is equal to the frequency ν s−1
2
(y) of the digit

s − 1

2
in the value of the function y = I (x).

It was proved in [26] that in the case qi �= qs−1−i , where i ∈ As , the inversor
I is a purely singular function (different from the constant continuous function of
bounded variation, which is almost everywhere (in difference Lebesgue’s measure)
is zero.)
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5.5 Fractal Properties of the Inversor

Let (M, ρ) be a metric space, E is some limited subset of it, d(E) is the diameter
E, h(t) is a continuous increasing function given on a real semiaxis t ≥ 0 such
that h(0) = 0 (the class of such functions is denoted by H0), FM is a subset of the
space M such that ∀ E ⊂ M and ∀ ε > 0 there exists no-more-than countable ε-
covering {Gi}, Gi ∈ FM , the set E (that is, there exists {Gi}, Gi ∈ FM , E ⊂ ⋃

i

Gi ,

d(Gi) ≤ ε). For given E, h and any ε, we define the function

mε
h(E) = inf

d(Gi)≤ε

{∑
i

h[d(Gi)] : E ⊂
⋃
i

Gi

}
,

where the lower bound is taken for all possible, no-more-than countable ε-coverings
{Gi}, Gi ∈ FM of the set E.

Definition 5.3 ([14]) The number

Hh(E) = lim
ε↓0

mε
h(E) = sup

ε>0
mε
h(E)

is called the exterior Hausdorff’s h-measure of the set E. In this case, the function h
is called the measuring, and the exterior measure mε

h(E) is an approximate exterior
of the order ε.

The function h ∈ H0 is called the Hausdorff’s dimensionally function of the set

E if 0 < Hh(E) < ∞. For all convex function h ∈ H0 such that
h(t)

t
→ ∞, if

t → 0, there exists a set E ⊂ R1 for which h is a dimensionally function.
If 0 < Hα(E) < ∞, then the number α is called the Hausdorff dimension of the

set E.

Definition 5.4 ([14]) The number α0 = α0(E), determined by the equation

α0(E) = sup{α : Hα(E) �= 0} = inf{α : Hα(E) = 0}

called the Hausdorff-Besicovitch dimension of the set E.

The Hausdorff-Besicovitch dimension of the set E ⊂ M is determined by the
behavior of Hα(E) not as a function of a dependentE, but as functions of α.

Theorem 5.3 The inversor I saves the Hausdorff-Besicovitch dimension, that is,
the set and its image have the same dimension then and only if qi = qs−1−i for all
i ∈ As .
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If qi �= qs−1−i and H is the set of points x in which there is no finite derivative
I ′(x), then its Hausdorff-Besicovitch dimension satisfies the inequality

α0(H) ≥ ln 1
s

ln q0q1 . . . q[s−1]
, s is an even number,

α0(H) ≥ ln 1
s

ln q0q1 . . . q[ s−3
2 ]q[ s+1

2 ] . . . q[s−1]
, s is an odd number.

Proof Let us now prove the first part of the theorem.
For qi = qs−1−i has the place I (x) = 1−x, then in this case the inversor I saves

the Hausdorff-Besicovitch dimension.
Let’s consider the Besicovitch-Egglestone set [14]

E[ν0, ν1, . . . , νs−1] = {x : νQs

0 (x) = ν0, ν
Qs

1 (x) = ν1, . . . , ν
Qs

s−1(x) = νs−1}

for νi �= νs−1−i . It was proved in [14] that Hausdorff-Besicovitch dimension is
equal to

α0(E) = ln νν0
0 ν

ν1
1 . . . ν

νs−1
s−1

ln qν0
0 q

ν1
1 . . . q

νs−1
s−1

.

The image E[ν0, ν1, . . . , νs−1] under the action of the inversor I is the set
E′[νs−1, νs−2, . . . , ν0], whose dimension

α0(E
′) = ln ννs−1

s−1 ν
νs−2
s−2 . . . ν

ν0
0

ln qνs−1
0 q

νs−2
1 . . . q

ν0
s−1

.

α0(E) = α0(E
′), when ln qν0

0 q
ν1
1 . . . q

νs−1
s−1 = ln qνs−1

0 q
νs−2
1 . . . q

ν0
s−1, the last

equivalently

1 = q
ν0
0 q

ν1
1 . . . q

νs−1
s−1

q
νs−1
0 q

νs−2
1 . . . q

ν0
s−1

=
(

q0

qs−1

)ν0−νs−1

·
(

q1

qs−2

)ν1−νs−2

· . . .
(
q s

2 −1

q s
2

)ν s
2 −1−ν s2

,

where s = 2t;

1 = q
ν0
0 q

ν1
1 . . . q

νs−1
s−1

q
νs−1
0 q

νs−2
1 . . . q

ν0
s−1

=
(

q0

qs−1

)ν0−νs−1

·
(

q1

qs−2

)ν1−νs−2

·. . .
(
q s−3

2

q s+1
2

)ν s−3
2

−ν s+1
2
,

where s = 2t + 1.
From the last equations implies that the inversor I saves the Hausdorff-

Besicovitch dimension then and only if qi = qs−1−i for all i ∈ As .
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Let qi > qs−1−i . According to Theorem 5.2, the Besicovitch-Egglestone set

E
[

1
s

− ε; 1
s

− ε; . . . ; 1
s

+ ε; 1
s

+ ε
]

belongs to set H of non-differentiable of the

function I for all 0 < ε < 1
s
. Then, in accordance with the properties of the

monotonity and stable countable of Hausdorff-Besicovitch dimension [14], we have

α0(H) ≥ sup
ε
α0

(
E

[
1

s
− ε; 1

s
− ε; . . . ; 1

s
+ ε; 1

s
+ ε

])

= sup
ε

ln
(

1
s

− ε
)( 1

s
−ε) · . . . ·

(
1
s

+ ε
)( 1

s
+ε)

ln q
( 1
s
−ε)

0 . . . q
( 1
s
+ε)

s−1

,

α0(H) ≥ ln 1
s

ln q0q1 . . . qs−1
, s = 2t,

α0(H) ≥ ln 1
s

ln q0q1 . . . q[ s−3
2 ]q[ s+1

2 ] . . . q[s−1]
, s = 2t + 1.

If qi < qs−1−i , then, according to Theorem 5.2, the Besicovitch-Egglestone set

E
[

1
s

+ ε; 1
s

+ ε; . . . ; 1
s

− ε; 1
s

− ε
]

belongs to the set H , where the function I is

non-differentiable for all 0 < ε < 1
s

and

α0(H) ≥ sup
ε
α0

(
E

[
1

s
+ ε; 1

s
+ ε; . . . ; 1

s
− ε; 1

s
− ε

])

= sup
ε

ln
(

1
s

+ ε
)( 1

s +ε) · . . . ·
(

1
s

− ε
)( 1

s −ε)

ln q
( 1
s +ε)

0 . . . q
( 1
s −ε)
s−1

,

α0(H) ≥ ln 1
s

ln q0q1 . . . qs−1
, s = 2t,

α0(H) ≥ ln 1
s

ln q0q1 . . . q[ s−3
2 ]q[ s+1

2 ] . . . q[s−1]
, s = 2t + 1.

What it had to prove.
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Lemma 5.2 The graph ΓI = {(x, I (x)) : x ∈ [0, 1]} of the function I is a self-
affine set, namely

ΓI =
s−1⋃
i=0

φi(ΓI ) ≡ φ(ΓI ),

where φi are affine transformations, such that

φi :
{
x ′ = qix + βi,

y ′ = −q[s−1−i]y + β[s−i],

i ∈ As , βs = 1.

Proof Let Γ ≡ φ0(ΓI ) ∪ φ1(ΓI ) ∪ . . . ∪ φs−1(ΓI ). Let’s show Γ ⊂ ΓI . For an
arbitrary point M(x ′

M, y
′
M) ∈ Γ there is an i such that M ∈ φi(ΓI ), that is φi :{

x ′ = qix + βi,

y ′ = −q[s−1−i]y + β[s−i].
It’s easy to see that y ′

M = I (x ′
M).

Let’s show ΓI ⊂ Γ . Let M(x, f (x)) ∈ ΓI , then xM = Δ
Qs
α1α2...αn... = qix + βi ,

that is, f (x) = y and M ∈ Γ .
Then Γ = ΓI and the graph ΓI of the function I is a self-affine set.

Corollary 5.4 All the levels (the set of level y0 of the function f is called the set
f−1(y0) = {x : f (x) = y0}) functions of I are finite.

5.6 Conclusion

Functions with complex local structure and fractal properties, in particular singular
and “piecewise singular” functions, are an actual object of modern research. But
their general theory is poorly developed, its development is realized mainly through
individual theories (individual functions and family of functions that depends on the
parameters). This problem, first of all, is related to the search for effective means of
their assignment and study. In recent years, different systems of real-time encoding
with the finite and infinite, constant and changing alphabets are increasingly used
to solve this problem. These include the classical s-adic representation of real
numbers, and its generalization is the polybase Qs -representation of numbers. This
is the representation we used to determining (construct) a function depends on s− 1
parameters, with a non-trivial a set of features of a differentiated nature. Conditions
for non-differentiability and singularity were found for her, and self-similar and
fractal properties were investigated.
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Chapter 6
Almost Sure Asymptotic Properties
of Solutions of a Class of
Non-homogeneous Stochastic
Differential Equations

Oleg I. Klesov and Olena A. Tymoshenko

Abstract We study non-homogeneous stochastic differential equation with separa-
tion of stochastic and deterministic variables. We express the asymptotic behavior
of solutions of such equations in terms of that for the corresponding ordinary dif-
ferential equation. The general results are discussed for some particular equations,
mainly in the field of mathematics of finance.

6.1 Introduction

Stochastic differential equations are one of the effective models of stochastic
processes that are used in many fields of science including of insurance and
financial mathematics, economics, control theory and many others. Linear stochastic
differential equations

dX(t) = a(t,X(t))dt + b(t,X(t))dw(t), t ≥ 0, (6.1)

describe quite well various natural and engineering phenomena. Here a and b are
two nonrandom functions and w is a Wiener process. A partial case of Eq. (6.1)
is presented by the homogeneous stochastic differential equation perturbed by a
Wiener process

dX(t) = g (X(t)) dt + σ (X(t)) dw(t). (6.2)

Stochastic differential equations often have an economic interpretation that really
makes research on its solutions particularly interesting for economists. The Vašiček
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equation [33]

dX(t) = α (β −X(t)) dt + σ dw(t). (6.3)

is used in finance for the valuation of interest rate derivatives, and has also been
adapted for credit markets. Obviously it is a member of the class of homogeneous
stochastic differential equations. In Eq. (6.3), w(·) is a standard Wiener process; β
is a long term mean level, α characterizes the velocity at which such trajectories
will regroup in time, and σ determines the volatility of the interest rate. Many
other stochastic differential equations of this type are widely used in mathematics
of finance (see, for example [4, 5, 14, 15, 26]).

The following stochastic differential equation

dX(t) = g(X(t))φ(t)dt + σ(X(t))θ(t)dw(t) (6.4)

is studied in the current paper. Regarding the generality, this equation occupies a
place between homogeneous equation (6.2) and general linear equation (6.1).

Among other popular models of type (6.4) are the Rendleman–Bartter model [27]

dX(t) = X(t)φ(t)dt + X(t)θ(t)dw(t) (6.5)

and the Hull–White model [18]

dX(t) = (α(t) + β(t)X(t)) dt + θ(t)dw(t). (6.6)

Model (6.5) is considered in finance to investigate the evolution of interest rates.
Model (6.6) is still popular in the financial markets today, since it is possible to value
many derivatives dependent solely on a single bond analytically when working in
the Hull–White model.

We are mainly interested in studying the asymptotic behavior of solutions of
stochastic differential equations. Close problems are studied in [7, 32]. In doing
so, we follow an idea due to Gihman and Skorohod [17] to describe this behavior
in terms of the behavior of a solution of the corresponding ordinary differential
equation.

Gihman and Skorohod [17] dealt with the asymptotic behavior of solutions of
homogeneous stochastic differential equation (6.2).

Another approach to solving this problem is presented in the paper Keller,
Kersting, and Rösler [19]. The same problem was later investigated by Kersting [20]
for multidimensional stochastic differential equations. Sufficient conditions for the
so-called ψ-asymptotic behaviour of solutions stochastic differential equation (6.2)
are presented in [12]. Closer investigations are done by Samoı̆lenko and Stanzhit-
skiı̆ [28].
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Asymptotic behavior of solutions of differential equation with state-independent
perturbation

dX(t) = g (X(t)) dt + θ (t) dw(t) (6.7)

being a particular case of Eq. (6.4) was investigated in [1, 2].
Asymptotic properties of solutions of stochastic differential equations have also

been studied by D’Anna et al. [16], Mitsui [25], Strauss and Yorke [30] to mention
a few. Properties of solutions of stochastic differential equations are described by
these authors in terms of properties of the corresponding deterministic differential
equation.

6.2 Setting of the Problem

We consider the following Cauchy problem for non-homogeneous stochastic differ-
ential equation (6.4)

dX(t) = g(X(t))φ(t)dt + σ(X(t))θ(t)dw(t), t ≥ 0, (6.8)

X(0) = b > 0.

Here w(·) is a standard Wiener process, θ(·) is a continuous function, g(·), φ(·) and
σ(·) are continuous positive functions such that a unique and continuous solution
X(·) of Eq. (6.1) exists. Clearly (6.1) generalizes the homogeneous equation (6.2).
The corresponding ordinary differential equation

dμ(t) = g(μ(t))φ(t) dt (6.9)

separates the variables, so that Eq. (6.1) is called a stochastic differential equation
with separated variables. Another name for (6.1) is stochastic differential equation
with time-dependent coefficients. Applications for some particular equations arising
in the field of mathematics of finance are also discussed. The same problem for
Eq. (6.2) has been solved in [17]. Another set of sufficient conditions is proposed
in [19].

Suppose that a continuous stochastic process X(t) = (X(ω, t), ω ∈ Ω, t ≥ 0) is
defined on a complete probability space {Ω,F ,P}.

The following two functions

Φ(t) =
∫ t

0
φ(u)du, t ≥ 0, (6.10)
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and

Θ(t) =
∫ t

0
θ2(s) ds, t > 0, (6.11)

are involved in the statement of the main result below. A crucial role in our approach
is played by the following condition

lim
t→∞ Φ(t) = ∞. (6.12)

The results obtained in this paper are valid only for those solutions X(t) for
which

lim
t→∞X(t) = ∞ a.s. (6.13)

Some sufficient conditions for (6.13) are obtained in [17] in the case of homo-
geneous equation (6.2). Our conditions guarantee that there is no explosion of a
solution during a finite time. This problem, in general, is studied by Taniguchi [31].

6.3 Main Result

The main result of the paper is the following one. A preliminary version has been
obtained in [23].

Theorem 6.1 Assume that w(·) is a Wiener process and σ(·) is a continuous
positive bounded function with

sup
x∈R

σ(x) < ∞. (6.14)

Further let g(·), φ(·), and θ(·) be continuous positive functions. In addition, let g(·)
be such that, for each T > 0, there exists a positive constantK for which

|g(x)− g(y)| ≤ K|x − y| (6.15)

and

g2(x) ≤ K2(1 + x2) (6.16)

for all t ∈ [0, T ] and for all x, y ∈ R. Moreover let conditions (6.12) and (6.13). If

∞∑
k=0

Θ(2k+1)

Φ2(2k)
< ∞, (6.17)
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then

lim
t→∞

1

Φ(t)

∫ t

0
σ(X(s))θ(s)dw(s) = 0 a.s. (6.18)

Remark 6.1 Using the technique developed in [21] and bounds on the moments of
solutions of stochastic differential equations one can treat the case of an unbounded
coefficient of diffusion σ(·) as well.

Remark 6.2 In the case of homogeneous equation (6.2),

φ(t) ≡ 1, θ(t) ≡ 1,

whence

Φ(t) = t, Θ(t) = t .

and condition (6.17) follows.

Proof First, note that conditions (6.15) and (6.16) imply that, for every T > 0,
a continuous solution of equation (6.1) exists in the interval [0, T ]. Indeed the
following conditions

|a(t, x)− a(t, y)| ≤ K|x − y|, |b(t, x)− b(t, y)| ≤ K|x − y|

for some constant K > 0 and all t ∈ [0, T ] and x, y ∈ R; and

a2(t, x)+ b2(t, x) ≤ K(1 + x2)

for some constant K > 0 and all t ∈ [0, T ] and x, y ∈ R are sufficient
for the problem (6.1) to have a continuous solution in the interval [0, T ]. Since
a(t, x) = g(x)φ(t) and b(t, x) = θ(t)σ (x) in our case, the above conditions
simplify. Moreover,φ(·) and θ(·) are bounded in every interval [0, T ], since they are
continuous. As σ(·) is bounded in view of (6.14), these conditions reduce to (6.15)
and (6.16).

Next, we introduce, for all k ≥ 0 and ε > 0, the following two events:

Bk =
{

sup
2k≤t≤2k+1

1

Φ(t)

∣∣∣∣
∫ t

0
σ(X(s))θ(s)dw(s)

∣∣∣∣ > ε

}

and

Ck =
{

sup
2k≤t≤2k+1

1

Φ(2k)

∣∣∣∣
∫ t

0
σ(X(s))θ(s)dw(s)

∣∣∣∣ > ε

}
.
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Since σ(·) is bounded and continuous, X(·) is continuous almost surely, and θ(·) is
continuous, the integral

∫ t

0
σ 2(X(s))θ2(s) ds

exists and is finite almost surely for all t > 0. Moreover

∫ t

0
E

[
σ 2(X(s))θ2(s)

]
ds < ∞.

By the Chebyshev–Markov inequality, for all ε > 0

P(Ck) = P

{
sup

2k≤t≤2k+1

∣∣∣∣
∫ t

0
σ(X(s))θ(s) dw(s)

∣∣∣∣ > εΦ(2k)

}

≤ 1

Φ2(2k)ε2 E

[
sup

2k≤t≤2k+1

∣∣∣∣
∫ t

0
σ(X(s))θ(s) dw(s)

∣∣∣∣
2
]

≤ 1

Φ2(2k)ε2 E

[
sup

t≤2k+1

∣∣∣∣
∫ t

0
σ(X(s))θ(s) dw(s)

∣∣∣∣
2
]
.

According to Theorem 1 of §3 in [17], for all k ≥ 0

E

[
sup

t≤2k+1

∣∣∣∣
∫ t

0
σ(X(s))θ(s) dw(s)

∣∣∣∣
2
]

≤ 4
∫ 2k+1

0
(E [σ(X(s))θ(s)])2 ds

≤ 4M2
∫ 2k+1

0
θ2(s) ds,

where

M = sup
x∈R

|σ(x)|.

Note that Φ(·) is an increasing function, whence Bk ⊂ Ck , k ≥ 0. Therefore

P(Bk) ≤ P(Ck) ≤ 4M2

Φ2(2k)ε2 ·
(∫ 2k+1

0
θ2(s) ds

)
= 4M2

ε2 · Θ(2
k+1)

Φ2(2k)
.

Now, by condition (6.17),

∞∑
k=0

P(Bk) < ∞,
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whence the Borel–Cantelli lemma implies

P(Bk i.o.) = 0

for any ε > 0. Here “i.o.” abbreviates “infinitely often”. This means that if ε > 0 is
given, then almost surely a number k0 exists such that

sup
2k≤t≤2k+1

1

Φ(t)

∣∣∣∣
∫ t

0
σ(X(s))θ(s) dw(s)

∣∣∣∣ ≤ ε, k ≥ k0.

Moreover,

1

Φ(t)

∣∣∣∣
∫ t

0
σ(X(s))θ(s) dw(s)

∣∣∣∣ ≤ ε, t ≥ k0.

This completes the proof, since ε > 0 is arbitrary. #$

6.3.1 Some Sufficient Conditions for (6.17)

Below we discuss some simple sufficient conditions for assumption (6.17). These
conditions are expressed in terms of growth conditions imposed on the functions
φ(·) and θ(·). First, we prove a result where we use growth conditions imposed on
the integrals of functions φ(·) and θ2(·), namely

lim inf
t→∞

Φ(t)

tα
> 0 (6.19)

and

lim sup
t→∞

Θ(t)

tβ
< ∞ (6.20)

Lemma 6.1 If conditions (6.19) and (6.20) are satisfied with β < 2α, then
condition (6.17) holds.

Proof By conditions (6.19) and (6.20), there exists a constant M > 0 such that

tα

Φ(t)
< M for all t > 0,

Θ(t)

tβ
< M for all t > 0.
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Now we estimate the general term of series (6.17):

Θ(2k+1)

Φ2(2k)
≤ M · 2(k+1)β

Φ2(2k)
≤ M3 · 2(k+1)β

22kα = M32β

2k(2α−β) .

This means that

∞∑
k=0

Θ(2k+1)

Φ2(2k)
≤ M32β

∞∑
k=0

2−k(2α−β).

The series on the right-hand side converges if α > β/2.

Remark 6.3 If

lim
u→∞ inf φ(u)uγ > 0 (6.21)

for some γ < 1, then condition (6.19) holds for α = 1 − γ . Indeed, according to
condition (6.21), there exist two numbers ε > 0 and u0 ≥ 0 such that

φ(u) > εu−γ , u > u0.

Without loss of generality, we will assume that u0 = 0. So for t ≥ 1 we have

∫ t

0
φ(u) du ≥ ε

∫ t

0
u−γ du = ε

1 − α
· t1−γ

if γ < 1. Therefore condition (6.19) follows for α = 1 − γ .

Remark 6.4 Similarly to Remark 6.3, if

lim sup
t→∞

θ(t)

tδ
< ∞, (6.22)

then condition (6.20) holds with β = 1 + δ.

Now Remarks 6.3 and 6.4 together with Lemma 6.1 imply the following result.

Proposition 6.1 Condition (6.17) holds if (6.21) and (6.22) are satisfied with

γ < min

{
1,

1 − δ

2

}
.

6.3.1.1 The Case of Regularly Varying Coefficients

Let RVγ denote the set of regularly varying functions of index γ (see [3] or [29] for
definitions and properties of regularly varying functions). Assume that φ(·) ∈ RVα
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and θ(·) ∈ RVβ . According to Karamata’s Theorem

Φ(·) ∈ RVα+1 , Θ(·) ∈ RV2β+1 .

Therefore condition (6.17) holds if α > β. The case of α = β is more involved but
condition (6.17) still holds. Indeed, let φ(t) = tα�1(t) and θ(t) = tα�2(t), where
�1(·) and �2(·) are some slowly varying functions. Then, by Karamata’s theorem,

Φ(t) = tα+1�′1(t), Θ(t) = t2α+1�′2(t),

where

�′1(t) = 1

tα+1

∫ t

0
φ(s) ds and �′2(t) = 1

t2α+1

∫ t

0
θ2(s) ds

are slowly varying functions, that is �′1(·), �′2(·) ∈ SV . Here SV = RV0 denotes
the set of all slowly varying functions. Hence

Θ(2k+1)

Φ2(2k)
= �3(2k)

2k
with �3(t) = 22α+1 �′2(2t)

(�′1(t))2
∈ SV .

Since �3(t) = o(t1/2) as t → ∞, we obtain (6.17). However (6.17) fails if α < β.
One can generalize the case of regularly varying functions discussed above. One

possible extension is related to the so-called functions with non-degenerate groups
of regular points (see [13] or [9] for the origin of the notion). A measurable positive
function f (·) is said to have a regular scale point λ > 0 if the limit

lim
t→∞

f (λt)

f (t)

exists. Any function has at least one regular scale point, namely λ = 1. The
set of regular scale points Gf (·) of any function f (·) is always a multiplicative
group. We say that Gf (·) is non-degenerate if there are at least two elements in it.
In such a case, the corresponding function f (·) is said to have a non-degenerate
group of regular scale points. Note that every positive real number is a regular scale
point for every regularly varying function. However there are many other functions
whose groups of regular scale points are non-degenerate but “thinner” than the
whole positive semi-axes. In fact, for every multiplicative semigroup, there exists
a function f (·) for which this group coincides with the set of regular scale points
for f (·) (see [9]). Of course, there are functions whose group of regular scale points
is degenerate.

For the current paper, it is important that some classes of functions with non-
degenerate group of regular scale points allow a nice asymptotic of integrals, similar
to that given by the Karamata Theorem (see [6]). The asymptotic expression for the
integral in such a case involves some periodic components as well as power and
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slowly varying functions. Therefore, one can easily check condition (6.17) in such
a case.

6.3.2 Sharpness of Theorem 6.1

Just for the sake of demonstration, we provide below a corollary of Theorem 6.1.
This result also follows from the law of the logarithm for the Wiener process. Our
aim in stating Corollary 6.1 is to show how close Theorem 6.1 is to an optimal result
for the Wiener process.

Corollary 6.1 Assume that w(·) is a Wiener processes, then for any ε > 0

lim
t→∞

w(t)
√
t(log t)

1
2 +ε = 0 a.s.

Proof Consider the equation

dX(t) = φ(t) dt + dw(t), (6.23)

which coincides with Eq. (6.1) if g(x) = 1 for all x ∈ R and σ(t) = 1 and θ(t) = 1
for all t > 0. Note that X(t) = X(0)+Φ(t) +w(t) and the result follows if

lim
t→∞

w(t)

Φ(t)
= 0 a.s.

For φ(·) defined by

φ(t) = (log t)ε+(1/2) + (1 + 2ε)(log t)ε−(1/2)

2
√
t

, t > 0,

for some ε > 0 the latter result follows from the law of the iterated logarithm.
However we want to prove it independently via Theorem 6.1.

First we prove condition (6.13) in the case under consideration. The function

g̃(t, x) = −
∫ t

0

b′
t (t, x)

b2(t, y)
dy + a(t, x)

b(t, x)
− 1

2
b′
x(t, x)

defined for the general linear stochastic differential equation (6.1) reduces to φ(t)
for all t and x in the case of equation (6.23). Thus

u(t) = sup
x∈R

g̃(t, x) = φ(t).
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Note that

Φ(t) = √
t(log t)

1
2 +ε, t > 0.

Since

∫ T

0
u(t) dt = Φ(T ) ' T 1/2(log T )(1/2)+ε, T → ∞,

by Karamata’s theorem,

lim
T→∞

1√
2T log log T

∫ T

0
u(t) dt = ∞.

Therefore Theorem 2.1 of [22] implies condition (6.13).
Condition (6.17) in our case reads as follows

∞∑
k=0

2k+1

Φ2(2k)
< ∞.

Since

∞∑
k=0

2k+1

Φ2(2k)
' 2

∞∑
k=1

1

k1+2ε

and ε > 0, the series on the right hand side converges. Hence condition (6.17) holds
and Corollary 6.1 follows from Theorem 6.1. #$
Remark 6.5 The same reasoning but with

Φ(t) = (t log t)1/2(log log t)(1/2)+ε, t > 1,

proves that

lim
t→∞

w(t)

(t log t)1/2(log log t)
1
2 +ε = 0 a.s.

6.4 Some Examples

Below are some examples of applications of Theorem 6.1 to several particular
stochastic differential equations.
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6.4.1 Population Growth Model

Consider the Cauchy problem

dX(t) = φ(t)X(t)dt + βX(t)dw(t), t ≥ 0; (6.24)

X(0) = 1.

A solution of problem (6.24) describes the growth of a population with unit initial
size (see [26]), whereX(·) is the size of population at time t; φ(·) is relative growth
rate of the population that depends on time;w(·) is a Wiener process; β ∈ (0; +∞).
Let φ(·) be a positive continuous function.

Clearly, this is a particular case of problem (6.8) corresponding to g(x) = x,
θ(t) ≡ β, and σ(x) = x, however Theorem 6.1 is not applied directly here, since
σ(x) = x in problem (6.24) and condition (6.14) does not hold. So one needs a way
around this problem.

Theorem 6.2 Let X(·) be a solution of problem (6.24). Assume that

lim
t→∞

Φ(t)

t
>

1

2
β2 (6.25)

where Φ(·) is defined by (6.10) and denote the left-hand side of (6.25) by K . Then

lim
t→∞

lnX(t)

Φ(t)
= 1 − β2

2K
a. s.

The right-hand side equals 1 if K = ∞.

Proof First we check whether condition (6.13) holds. The solution of prob-
lem (6.24) is given by

X(t) = exp

{(
Φ(t)− 1

2
β2t

)
+ βw(t)

}
.

Now we obtain from the strong law of large numbers, w(t) = o(t) a.s., that

lim
t→∞ X(t) = lim

t→∞ exp

{(
Φ(t)− 1

2
β2t

)
+ βw(t)

}

= lim
t→∞ exp

{
t

(
Φ(t)

t
− 1

2
β2 + β

w(t)

t

)}
= ∞

almost surely.
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Next we apply the Itô formula for lnX(t) and arrive at the equation

d lnX(t) =
(
φ(t) − 1

2
β2

)
dt + βdw(t). (6.26)

Clearly, all assumptions of Theorem 6.1 are satisfied for Eq. (6.26) and thus we have

lim
t→∞

1

Φ(t)

∫ t

0
σ(X(s))θ(s) dw(s) = lim

t→∞
1

Φ(t)

∫ t

0
β dw(s) = 0 a.s.

Finally, using the closed form of a solution of equation (6.26) and condition (6.25),
we get

lim
t→∞

lnX(t)

Φ(t)
= lim

t→∞
1

Φ(t)

(∫ t

0
(φ(s)− 1

2
β2) ds +

∫ t

0
β dw(s)

)
=

= lim
t→∞

1

Φ(t)

(
Φ(t) − 1

2
β2t

)
+ lim

t→∞
1

Φ(t)

∫ t

0
β dw(s) = 1 − β2

2K

almost surely. #$
Remark 6.6 The result of Theorem 6.2 is typical in the following sense. Consider
the Cauchy problem of the ordinary differential equation corresponding to (6.24):

dμ(t) = φ(t)μ(t)dt, t ≥ 0; (6.27)

μ(0) = 1.

Then its solution μ(·) is such that

lnμ(t) = Φ(t).

Therefore the result of Theorem 6.2 is equivalent to

lim
t→∞

lnX(t)

lnμ(t)
= 1 − β2

2K
a.s.

In other words, denoting ψ(·) = log(·), the solution of stochastic problem (6.24)
is ψ-equivalent almost surely to the solution of deterministic problem (6.27). This
kind of asymptotic equivalence is studied in [12] in more detail (also see [13]).
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6.4.2 Rendleman–Bartter Model

Consider the Cauchy problem for the Rendleman–Bartter Model (6.5)

dX(t) = X(t)φ(t) dt +X(t)θ(t) dw(t), t ≥ 0; (6.28)

X(0) = b > 0.

This is a particular case of problem (6.8) with g(x) = x and σ(x) = x. Here φ(·)
represents an expected instantaneous rate of change in the interest rate, θ(·) is a
volatility parameter, and w(·) is a Wiener process.

Like the population growth model discussed in Sect. 6.4.1 the function σ(·) is
unbounded in the Rendleman–Bartter model, as well. To overcome this difficulty
we use again the Itô formula for lnX(t) in (6.28) and obtain the following equation

d lnX(t) =
(
φ(t)− 1

2
θ2(t)

)
dt + θ(t) dw(t)

which can be treated with the help of Theorem 6.1.

Theorem 6.3 Let φ(·) and θ(·) be continuous functions and let X(·) be a solution
of Cauchy problem (6.28). Assume that

lim
t→∞

1

Φ(t)

∫ t

0
θ2(s) ds = K, K ∈ [0; ∞), (6.29)

and

∞∑
k=0

Φ(2k+1)

Φ2(2k)
< ∞. (6.30)

If conditions (6.12) and (6.13) are satisfied, then

lim
t→∞

lnX(t)

Φ(t)
= 1 − 1

2
K.

Proof Note that (6.17) follows from (6.29) and (6.30). Thus all assumptions of
Theorem 6.1 hold, hence

lim
t→∞

1

Φ(t)

∫ t

0
σθ(s) dw(s) = 0 a.s.



6 Almost Sure Asymptotic Properties of Solutions of Stochastic Differential. . . 111

Therefore

lim
t→∞

lnX(t)

Φ(t)
= lim

t→∞
1

Φ(t)

(∫ t

0
(φ(s)− 1

2
θ2(s)) ds +

∫ t

0
σθ(s) dw(s)

)

= lim
t→∞

(
1 − 1

2Φ(t)

∫ t

0
θ2(s) ds

)
+ lim

t→∞
1

Φ(t)

∫ t

0
σθ(s) dw(s)

= 1 − 1

2
K a.s.

6.4.3 Asymptotic Behavior of Solutions of Stochastic
Differential Equation (6.7)

We consider Eq. (6.7) which obviously is a member of the class of Eq. (6.4)
corresponding to the case of φ(t) ≡ 1, σ(x) ≡ 1. Condition (6.17) in this case
can be rewritten as follows

∞∑
k=0

Θ(2k+1)

Φ2(2k)
= 1

4

∞∑
k=1

1

22k

∫ 2k

0
σθ2(s) ds < ∞.

It can be simplified further, since

∞∑
k=1

1

22k

∫ 2k

1
θ2(s) ds =

∞∑
k=1

1

22k

k∑
i=1

∫ 2i

2i−1
θ2(s) ds =

∞∑
i=1

∫ 2i

2i−1
θ2(s) ds

∞∑
k=i

1

22k

= 4

3

∞∑
i=1

1

22i

∫ 2i

2i−1
θ2(s) ds '

∞∑
i=1

∫ 2i

2i−1

θ2(s)

s2 ds

=
∫ ∞

1

θ2(s)

s2 ds.

Theorem 6.1 reads as follows for the Cauchy problem of Eq. (6.7):

dX(t) = g (X(t)) dt + θ (t) dw(t), t ≥ 0; (6.31)

X(0) = b > 0.

Corollary 6.2 Let g(·) and θ(·) be continuous positive functions and condi-
tions (6.15) and (6.16) hold. We further assume that a solution of problem (6.31)



112 O. I. Klesov and O. A. Tymoshenko

satisfies condition (6.13). If

∫ ∞

1

θ2(s)

s2 ds < ∞,

then

lim
t→∞

1

t

∫ t

0
θ(s) dw(s) = 0 a.s. (6.32)

This result can be called the weighted strong law of large numbers for the Wiener
process. The so-called (moment, in probability, almost sure) stability can also be
obtained for solutions of problem (6.31) (see [24], also see [1, 2]).

Note that (6.32) does not involve the solution X(·) at all. On the other hand,
limit result (6.32) can be used to obtain a precise asymptotic behavior. Following
the technique developed in [13] one can conclude from (6.32) that, under some
additional assumption imposed on the function g(·),

lim
t→∞

X(t)

μ(t)
= 1 a.s.

where μ(·) is a solution of the Cauchy problem for the following ordinary
differential equation

dμ(t) = g(μ(t))dt, t ≥ 0;
μ(0) = b.

The additional condition mentioned above is

G(u) =
∫ u

0

du

g(u)
→ ∞ as x → ∞,

G preserves the asymptotic equivalence. (6.33)

Functions with property (6.33) are called pseudo-regularly varying in [13] (more
detail on relationships between pseudo-regularly varying functions and limit prop-
erties of solutions of stochastic differential equations is given in [13], also see [8,
10, 11]).
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Chapter 7
Procedure of the Galerkin Representation
in Transversely Isotropic Elasticity

Dimitri V. Georgievskii

Abstract An algorithm for splitting an equilibrium displacement equation system
with bulk forces for a transversely isotropic linearly-elastic medium is described that
leads to three uncoupled equations with certain canonical fourth-order differential
operators in the three components of the displacement vector. It is shown that, in the
special case of isotropy, the proposed algorithm is mathematically equivalent to the
Galerkin representation, well-known in the theory of elasticity.

7.1 The Classic Galerkin Representation in Isotropic
Elasticity

As is known, the expressions of a displacement vector u = uiei (i = 1, 2, 3) in
terms of vectors complying with equations that seem to be more simple than the
Lamé equations

(λ+ μ)grad div u + μΔu + ρF = 0 (7.1)

in isotropic elasticity (λ, μ are Lamé constants; ρ is a density; F is a mass force) are
called representations of solutions of a boundary-value problem in elasticity theory.
The Galerkin representation is one of these classic representations which reduce the
Lamé operator to the biharmonic operator ΔΔ. Let us remind an essence of the
Galerkin representation in isotropic elasticity.

By applying the operator div for two hands of (7.1) we receive

Δdiv u = − ρ div F
λ+ 2μ

. (7.2)
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Then applying the operator Δ for two hands of (7.1) and taking into account
the relation (7.2) we derive the system of non-coupled not uniform biharmonic
equations

μΔΔu = λ+ μ

λ+ 2μ
ρgrad div F − ρΔF, (7.3)

which may be written in operator form by means of the Galerkin representation

ΔΔu = M̌ · F, (7.4)

with the Galerkin tensor differential operator M̌:

M̌ = (1 + ν)ρ

(1 − ν)E
grad div − 2

E
(1 + ν)ρΔ, (7.5)

where E is Young modulus, ν is Poisson ratio.
Solution of the system (7.4) is sought in the form

u = M̌ · Γ, (7.6)

where Γ is the Galerkin vector. Using permutability of two linear differential
operators M̌ and Δ we derive the following sufficient conditions for compliance
of the system (7.4):

ΔΔΓ = F. (7.7)

Reduction of the Lamé equations system (7.1) to biharmonic equation (7.7)
makes an essence of the Galerkin representation procedure in isotropic elasticity.
The system (7.7) with respect to vector Γ is appeared to be simpler than another
biharmonic system (7.4) with respect to vector u because a class of smoothness of
mass forces in (7.7) is more broad than in (7.4).

In the capacity of known example we choose a mass force F in form of point
loading at the origin of coordinates in unbounded three-dimensional elastic space:
ρF = Pδ(x) where P is a value with dimension of force. It is naturally to find the
solution of the following from (7.7) equations

ΔΔΓ = P
ρ
δ(x) (7.8)

in the form

Γ = Cr

ρ
P, r = |x|, C = const. (7.9)
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As Δr = 2/r and Δ(1/r) = −4πδ(x) in R3 than C = −1/(8π), so

Γi = − Pir

8πρ
, ui = Pj (1 + ν)

8πE(1 − ν)

(xixj
r3 + (3 − 4ν)

δij

r

)
. (7.10)

The small Latin subscripts change from 1 to 3 while the large Latin subscripts
encountered later from 1 to 2. Summation is carried out over a doubly repeated
index.

Thus, on the basis of the solution (7.10) of the problem on point force action
in unbounded elastic space (the Kelvin problem) one can explicitly write all
componentsU(k)

i (x, ξ) of the Kelvin displacement tensor:

U
(k)
i (x, ξ ) = P(1 + ν)

8π(1 − ν)E

[ (xi − ξi)(xk − ξk)

r3(x, ξ)
+ (3 − 4ν)

δik

r(x, ξ)

]
, (7.11)

where r(x, ξ ) = |x − ξ |, P = |P|.

7.2 Splitting of the System of Displacement Equations
in Anisotropic Elasticity

The equilibrium equations in terms of displacements in anisotropic elasticity have
the form

Cijkluk,lj +Xi = 0, (7.12)

where Cijkl andXi are the components of the elastic moduli tensor C(4) and volume
force vector X(x). We differentiate both sides of (7.12) with respect to xm and xn
and multiply by the constant components Dpnim of the fourth rank tensor D(4),
from which we require that: (a) it has the same symmetry as C(4), that is, Dpnim =
Dnpim = Dpnmi = Dimpn; (b) physical dimension of its components coincides with
dimension of elastic compliances.

Hence,

DpnmiCijkluk,ljmn +DpnimXi,mn = 0. (7.13)

The idea of choosing the tensor D(4) using a known tensor C(4) is involved in
reducing equations (7.13) to the form

Ľ(p)up +DpnimXi,mn + Yp = 0, (7.14)

where Ľ(p) are certain scalar canonical fourth-order operator; Yp are known func-
tions of coordinates. Because of increase in the order, system (7.14) unlike (7.13)
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consists of three split equations with respect to u1, u2 and u3 that are not connected
with one another.

In case of elastic moduli tensor for isotropic medium C(4) with the components

Cijkl = Eν

(1 − 2ν)(1 + ν)
δij δkl + E

2(1 + ν)
(δikδjl + δilδjk) (7.15)

a tensor with components

Dpnmi = − (1 + ν)(3 − 2ν)

E(1 − ν)
δpnδmi + 2(1 + ν)

E
(δpmδni + δpiδnm) (7.16)

may be taken as the tensor D(4). Equalities in (7.13) are then written in the following
way:

up,kkmm + 1 + ν

E

(
2Xp,kk − 1

1 − ν
Xk,kp

)
= 0. (7.17)

Comparing equalities (7.17) and (7.14) we see that in isotropic medium Ľ(1) =
Ľ(2) = Ľ(3) = Δ2 and Yp = 0. It should be noted that the tensor D(4) is not identical
to the elastic compliance tensor J(4) with the components

Jpnmi = − ν

E
δpnδmi + 1 + ν

2E
(δpmδni + δpiδnm). (7.18)

7.3 Transversely Isotropic Medium

Let us consider the case of transversely isotropic elastic medium with the rotational
axes of symmetry x3 [1, 2] (such materials are sometimes called transtropic [3]).
This medium is defined by five material constants λ1, . . . , λ5:

Cijkl = λ1γij γkl + λ2(γikγjl + γilγjk)+ λ3(γij δ3kδ3l + γklδ3iδ3j )+

+ λ4δ3iδ3j δ3kδ3l + λ5(γikδ3j δ3l + γjkδ3iδ3l + γilδ3j δ3k + γjlδ3iδ3k), (7.19)

γij = δ1iδ1j + δ2iδ2j . (7.20)

It is conveniently to introduce the notation

ξ1 = λ1 + λ2, ξ2 = λ1 + 2λ2, ξ3 = λ3 + λ5, ξ4 = λ3 + λ4 + λ5.
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We seek [4] the tensor D(4) in the class of tensors that are similar by structure to
C(4):

Dpnmi = d1γpnγmi + d2(γpmγni + γpiγnm)+ d3(γpnδ3mδ3i + γmiδ3pδ3n)+

d4δ3pδ3nδ3mδ3i + d5(γpmδ3nδ3i + γnmδ3pδ3i + γpiδ3nδ3m + γniδ3pδ3m). (7.21)

The Case p = 3 Let us substitute expressions (7.19) and (7.21) into Eq. (7.13) and
initially write one of them when p = 3. The first term on the left-hand side of it has
the form

D3nmiCijkluk,ljmn = [ξ2d3 +(ξ2 +ξ3)d5]uK,KLL3+[λ5d3 +ξ3d4 +λ5d5]uK,K333+

+ λ5d5u3,KKLL + [ξ3d3 + λ5d4 + ξ4d5]u3,KK33 + λ4d4u3,3333. (7.22)

The following obvious properties of the symbols γij (7.13) are used:

γij γjk = γik, γkl(∗)kl = (∗)KK. (7.23)

We require that the normalization condition λ5d5 = 1 and the constraint between
the constants:

d3 = −ξ2 + ξ3

ξ2
d5, d4 = λ5

ξ2
d5 (7.24)

are satisfied. The coefficients by uK,KLL3 and uK,K333 in (7.22) become equal to
zero.

From equalities (7.13) and (7.22) we obtain the required equation for the
displacement component u3:

u3,KKLL + B1u3,KK33 + B2u3,3333 +D3nimXi,mn = 0 (7.25)

with the coefficients

B1 = 1

λ5

(
λ4 − λ3

ξ3 + λ5

ξ2

)
, B2 = λ4

ξ2
. (7.26)

Comparing equalities (7.14) and (7.25) we see that Y3 = 0 as well as the
canonical operator Ľ(3) is

Ľ(3) = ∂4

∂xK∂xK∂xL∂xL
+ B1

∂4

∂xK∂xK∂2x3
+ B2

∂4

∂4x3
. (7.27)
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As in isotropic elasticity, the solution of (7.25) can be sought in the form

u3 = D3nimΓi,mn = (d3 + d5)ΓK,K3 + d5Γ3,KK + d4Γ3,33, (7.28)

where Γi(x) are the components of the unknown Galerkin vector. To satisfy
equality (7.25), it is sufficient to require that

Ľ(3)Γi ≡ Γi,KKLL + B1Γi,KK33 + B2Γi,3333 + Xi = 0. (7.29)

The Case p=P In a similar way to (7.22) we now write out the first term on the
left-hand side of (7.13) (after substituting expressions (7.19) and (7.21) into it) for
values p = 1 and p = 2:

DPnmiCijkluk,ljmn = [ξ2d1 + (ξ1 + ξ2)d2]uK,KLLP+

+[λ5d1 + λ5d2 + ξ3d3 + (ξ1 + ξ3)d5]uK,K33P+

+(ξ3d1 + 2ξ3d2 + λ5d3 + λ5d5)u3,LL3P+

+ (λ4d3 + ξ4d5)u3,333P + λ2d2uP,KKLL + (λ5d2 + λ2d5)uP,LL33 + λ5d5uP,3333.

(7.30)

In addition to constraints (7.24), we require that the constraints

d1 = −
(

1 + ξ1

ξ2

)
ξ5d5, d2 = ξ5d5, ξ5 = ξ1ξ2 − ξ2

3

ξ1λ5
(7.31)

are satisfied. Then the coefficients by uK,KLLP and uK,K33P in equality (7.30)
vanish.

From equalities (7.13) and (7.30), we obtain two equations for uP (P = 1, 2)

B3uP,KKLL + B4uP,LL33 + uP,3333 + B5u3,LL3P + B6u3,333P +DPnimXi,mn = 0

(7.32)

with the coefficients

B3 = λ2

λ5
ξ5, B4 = λ2

λ5
+ ξ5, B5 =

(λ2

λ5
ξ5 − 1

)ξ3

ξ2
, B6 =

(
1 − λ4

ξ2

) ξ3

λ5
.

(7.33)
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Comparing (7.14) and (7.32), we write out the operators Ľ(P ) and the compo-
nents YP that are known from the results for the case p = 3:

Ľ(P ) = B3
∂4

∂xK∂xK∂xL∂xL
+ B4

∂4

∂xK∂xK∂2x3
+ ∂4

∂4x3
, (7.34)

YP = (B5u3,LL + B6u3,33),3P .

The operators Ľ(P ) (7.34) and Ľ(3) (7.27) only differ in the values of the coefficients.
Now let us represent the solutions uP of two equations (7.32) and the known

functions u3,P in the form

uP = DPnimΓ
∗
i,mn = η1Γ

∗
K,KP + d2Γ

∗
P,KK + η3Γ

∗
3,3P + d5Γ

∗
P,33, (7.35)

u3,P = DPnimΦi,mn3 = η1ΦK,K3P+d2ΦP,KK3+η3Φ3,33P +d5ΦP,333, (7.36)

where η1 = d1 +d3, η3 = d3 +d5, and Γ ∗
i are the components of a further Galerkin

vector that differ from Γi . The known functions

Φ1 = Φ2 = 0, Φ3 = 1

η3

∫ ∫
u3 dx3dx3 (7.37)

can be taken as the functionsΦi . Substituting (7.35) and (7.36) into (7.32), we derive
the sufficient conditions for which these equations are satisfied:

B3Γ
∗
i,KKLL + B4Γ

∗
i,LL33 + Γ ∗

i,3333 + B5Φi,LL33 + B6Φi,3333 +Xi = 0. (7.38)

By virtue of (7.37), conditions (7.38) can also be written as follows:

B3Γ
∗
P,KKLL + B4Γ

∗
P,LL33 + Γ ∗

P,3333 +XP = 0. (7.39)

B3Γ
∗

3,KKLL + B4Γ
∗

3,LL33 + Γ ∗
3,3333 + B5

η3
u3,KK + B6

η3
u3,33 + X3 = 0. (7.40)

Thus, in relations (7.24) and (7.31), where the equality d5 = 1/λ5 has to be taken
into account, all the material constants d1, . . . , d5 of the tensor D(4) participating in
the extended Galerkin representation have been found. The equilibrium equations
in terms of displacements for a transversely isotropic medium are reduced to three
equations (7.25) and (7.32) that are not connected to one another, containing the
fourth-order operators Ľ(3) (7.27) and Ľ(P ) (7.34). By introducing two Galerkin
vectors with the components Γi (7.28) and Γ ∗

i (7.35), the equations can be written
in the simpler form (7.29), (7.39), (7.40). The volume (mass) forces occurring in the
initial equations (7.12), rather than its derivatives with respect to coordinates, are
the discontinuities. This is important if the loads are concentrated at one point as
well as possess some similar singular character [5].
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As a test of all mentioned relations we take the limit of an anisotropic elastic
medium with Lamé constants λ and μ. Putting

λ1 = λ3 = λ, λ2 = λ5 = μ, λ4 = λ+ 2μ, (7.41)

in accordance with the adopted notation we obtain

ξ1 = ξ3 = λ+ μ, ξ2 = λ+ 2μ, ξ4 = 2λ+ 3μ, ξ5 = 1. (7.42)

After simplification we will have

d1 = d3 = − 2λ+ 3μ

(λ+ 2μ)μ
= − (1 + ν)(3 − 2ν)

E(1 − ν)
, d2 = d5 = 1

μ
= 2(1 + ν)

E
,

d4 = d1 + 2d2 = 1

λ+ 2μ
,

B1 = B4 = 2, B2 = B3 = 1, B5 = B6 = 0, Ľ(i) = Δ2, i = 1, 2, 3.

The componentsDpnmi are identical to the components determined using (7.16)
and three equilibrium equations (7.25) and (7.32) are identical to three equa-
tions (7.17) for an isotropic medium.
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Chapter 8
Symmetries and Fundamental Solutions
of Displacement Equations
for a Transversely Isotropic Elastic
Medium

Alexander V. Aksenov

Abstract A fourth-order linear elliptic partial differential equation describing the
displacements of a transversely isotropic linear elastic medium is considered. Its
symmetries and the symmetries of an inhomogeneous equation with a delta function
on the right-hand side are found. The latter symmetries are used to construct an
invariant fundamental solution of the original equation in terms of elementary
functions.

8.1 Introduction and the Main Result

In [1], the system of displacement equilibrium equations for a transversely isotropic
linear elastic medium is reduced to a system of three linear inhomogeneous
equations for three displacement components. The homogeneous equations are asso-
ciated with canonical linear partial differential equations of the fourth order. These
canonical equations are a generalization of the biharmonic equation describing the
displacements of an isotropic linear elastic medium. To find the displacements of
a transversely isotropic linear elastic medium subjected to a given body force, we
need to know fundamental solutions of the canonical equations.

Note that reductions of the system of displacement equations in 3D elasticity
to systems of higher order equations based on operators that are more suitable
for a numerical-analytical study than the Lamé operator are called representations
of the solution of the elasticity problem and are described in the classical theory.
Specifically, a reduction to tetraharmonic equations was discussed in [2].

Fundamental solutions of linear partial differential equations are frequently
invariant under transformations admitted by the original equation [3]. Below, a
fundamental solution is constructed using the algorithm from [4] proposed for
finding fundamental solutions of linear partial differential equations. The algorithm
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makes use of the symmetries admitted by a linear partial differential equation with
a delta function on its right-hand side. Let us briefly describe the main result of this
work. Consider the p th-order linear partial differential equation

Lu ≡
p∑
α=1

Aα(x)D
αu = 0 , x ∈ Rm . (8.1)

Here, the standard notation is used: α = (α1, . . . , αm) is a multi-index with
nonnegative integer components, α = α1 + · · · + αm, and

Dα ≡
(

∂

∂x1

)α1

· · ·
(

∂

∂xm

)αm
.

The fundamental solutions of Eq. (8.1) are solutions of the equation

Lu = δ(x − x0) . (8.2)

It was shown in [5] that Eq. (8.1) with p ≥ 2 and m ≥ 2 can only admit symmetry
operators of the form

Z =
m∑
i=1

ξ i(x)
∂

∂xi
+η(x, u) ∂η

∂u
,

∂2η

∂u2 = 0 .

The basic Lie algebra of symmetry operators of Eq. (8.1) regarded as a vector space
is a direct sum of two subalgebras: one consisting of operators of the form

X =
m∑
i=1

ξ i(x)
∂

∂xi
+ζ(x) u ∂

∂u
(8.3)

and the infinite-dimensional subalgebra generated by the operators

X∞ = ϕ(x)
∂

∂u
, (8.4)

where ϕ(x) is an arbitrary solution of Eq. (8.1). Note that operators (8.4) are
symmetry operators of Eq. (8.2). In what follows, we consider only symmetry
operators of form (8.3). Let X

p
denote an extension of order p of symmetry

operator (8.3).

Proposition 8.1 The infinitesimal operator given by (8.3) is a symmetry operator
of Eq. (8.1) if and only if there exists a function λ = λ(x) satisfying the identity

X
p
(Lu) ≡ λ(x) Lu (8.5)

for any function u = u(x) from the domain of Eq. (8.1).
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Theorem 8.1 The Lie algebra of symmetry operators of Eq. (8.2) is a subalgebra
of the Lie algebra of symmetry operators of Eq. (8.1) and is defined by the relations

ξ i(x0) = 0, i = 1, . . . ,m ,

λ(x0)+
m∑
i=1

∂ξ i(x0)

∂xi
= 0 .

(8.6)

Let us describe an algorithm for finding fundamental solutions by applying
symmetries [4]:

1. Find a general symmetry operator of Eq. (8.1) and the corresponding function
λ(x) satisfying identity (8.5).

2. Use this operator and relations (8.6) to obtain the basis for the Lie algebra of
symmetry operators of Eq. (8.2).

3. Construct invariant fundamental solutions with the help of the symmetries of
Eq. (8.2).

4. Obtain new fundamental solutions from the known ones with the help of the
symmetries of Eq. (8.2) (production of solutions).

Remark 8.1 To find generalized invariant fundamental solutions, we need to search
for invariants in the class of generalized functions.

Example 8.1 Consider a two-dimensional biharmonic equation

ΔΔu ≡ ∂4u

∂x4 + 2
∂4u

∂x2∂y2 + ∂4u

∂y4 = 0 . (8.7)

Fundamental solutions of the two-dimensional biharmonic equation satisfy the
equation

∂4u

∂x4
+ 2

∂4u

∂x2∂y2
+ ∂4u

∂y4
= δ(x, y) . (8.8)

The finite part of the basis of the Lie algebra of symmetry operators of Eq. (8.7) is
given by [6]

X1 = ∂

∂x
, X2 = ∂

∂y
, X3 = x

∂

∂x
+ y

∂

∂y
,

X4 = y
∂

∂x
− x

∂

∂y
, X5 = (x2 − y2)

∂

∂x
+ 2xy

∂

∂y
+ 2xu

∂

∂u
,

X6 = 2xy
∂

∂x
+ (y2 − x2)

∂

∂y
+ 2yu

∂

∂u
, X7 = u

∂

∂u
.



128 A. V. Aksenov

To find the symmetry operators admitted by Eq. (8.8) we write the general form of
the symmetry operator admitted by Eq. (8.7) as X = ∑

ai Xi (i = 1, . . . , 7) or

X = [
a1 + a3x + a4y + a5(x

2 − y2)+ 2a6xy
] ∂
∂x

+

+ [
a2 + a3y − a4x + 2a5xy + a6(y

2 − x2)
] ∂
∂y

+ (8.9)

+ (2a5x + 2a6y + a7)u
∂

∂u
,

where ai (i = 1, . . . , 7) are arbitrary constants. Symmetry operator (8.9) corre-
sponds to the function λ(x, y)

λ = a7 − 4a3 − 6a5x − 6a6y .

Then using theorem 1 we find

a1 = a2 = 0 , a7 − 2a3 = 0 .

Proposition 8.2 Equation (8.8) admits the following basis of Lie algebra symmetry
operators

Y1 = y
∂

∂x
− x

∂

∂y
, Y2 = x

∂

∂x
+ y

∂

∂y
+ 2u

∂

∂u
,

Y3 = (x2 − y2)
∂

∂x
+ 2xy

∂

∂y
+ 2xu

∂

∂u
,

Y4 = 2xy
∂

∂x
+ (y2 − x2)

∂

∂y
+ 2yu

∂

∂u
.

The fundamental solution of the two-dimensional biharmonic equation is known to
be [7]

u = x2 + y2

16π
ln (x2 + y2) . (8.10)

Solution (8.10) is invariant under the one-parameter group of rotations corre-
sponding to the symmetry operator Y1. The symmetry operator Y2 generates a
one-parameter group of inhomogeneous scaling transformations x ′ = ea x, t ′ =
ea t , u′ = e2a u, where a is a group parameter. Under the action of this one-
parameter group the fundamental solution of (8.10) is transformed into fundamental
solution

u = x2 + y2

16π

[
ln (x2 + y2)+ 2a

]
.
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Consider the symmetry operator Y3. The symmetry operator Y3 generates a one-
parameter transformation group

x ′ = x − a(x2 + y2)

1 − 2ax + a2(x2 + y2)
,

y ′ = y

1 − 2ax + a2(x2 + y2)
, (8.11)

u′ = u

1 − 2ax + a2(x2 + y2)
,

where a is a group parameter. Under the action of this one-parameter group the
fundamental solution of (8.10) is transformed into nontrivial fundamental solution

u = [x − a(x2 + y2)]2 + y2

16π[1 − 2ax + a2(x2 + y2)] · ln

[ (
x − a(x2 + y2)

)2 + y2

(
1 − 2ax + a2(x2 + y2)

)2

]
. (8.12)

Similarly, we can consider the symmetry operator Y4. The symmetry operator Y4
corresponds to the one-parameter transformation group

x ′ = x

1 − 2ay + a2(x2 + y2)
,

y ′ = y − a(x2 + y2)

1 − 2ay + a2(x2 + y2)
, (8.13)

u′ = u

1 − 2ay + a2(x2 + y2)
,

where a is a group parameter. Under the action of this one-parameter group the
fundamental solution of (8.10) is transformed into nontrivial fundamental solution

u = 1

16π
· x

2 + (
y − a(x2 + y2)

)2

1 − 2ay + a2(x2 + y2)
· ln

[
x2 + (

y − a(x2 + y2)
)2

(
1 − 2ay + a2(x2 + y2)

)2

]
. (8.14)

Remark 8.2 We can consider the composition of transformations (8.11) and (8.13).
Then instead of one-parameter families of fundamental solutions (8.12) and (8.14)
one can obtain a nontrivial two-parameter family of fundamental solutions.

The main result of this paper is the construction, in terms of elementary functions,
of an invariant fundamental solution to the equation of a transversely isotropic linear
elastic medium.
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8.2 The Basic Equations

Consider the following fourth-order linear differential equations, which were
introduced in [1]:

L1u ≡ uxxxx + 2uxxyy + uyyyy + B1(uxxzz + uyyzz)+ B2uzzzz = 0 ,

L2u ≡ B3(uxxxx + 2uxxyy + uyyyy)+ B4(uxxzz + uyyzz)+ uzzzz = 0 .
(8.15)

Here B1, B2, B3, B4, and are positive constants characterizing a linear elastic
medium. The fundamental solutions of Eq. (8.15) are solutions of the equations

L1u = δ(x)δ(y)δ(z) , L2u = δ(x)δ(y)δ(z) . (8.16)

Let us show that Eqs. (8.15) and (8.16) can be reduced to identical equations by
changing variables. For this purpose, in the equations for the differential operator
L1, we pass to the new variables

z̄ = z
4
√
B2

, ū = 4
√
B2u .

After omitting the bars over the new variables, the corresponding equations (8.15)
and (8.16) become

L3u ≡ uxxxx + 2uxxyy + uyyyy + b(uxxzz + uyyzz)+ uzzzz = 0 , (8.17)

L3u = δ(x)δ(y)δ(z) . (8.18)

Here, b = B1/
√
B2. Similarly, by changing to the variables

x̄ = x
4
√
B3

, ȳ = y
4
√
B3

, ū = √
B3u

the equations for the differential operator L2 are reduced to Eq. (8.17) and (8.18)
with b = B4/

√
B3.

Assume that Eq. (8.17) is elliptic. Then it must hold that b ≥ 2. In what follows,
Eq. (8.17) is considered the basic equation. The axisymmetric solutions of Eq. (8.17)
satisfy the equation

L4u ≡ urrrr + burrzz + uzzzz + 2

r
urrr + b

r
urzz − 1

r2 urr + 1

r3 ur = 0 , (8.19)

while the axisymmetric fundamental solutions (or axisymmetric solutions of
Eq. (8.18)) satisfy the equation

rL4u = 1

π
δ(r)δ(z) . (8.20)
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Here r = √
x2 + y2, and

∞∫

0

δ(r)dr = 1

2
.

Equation (8.20) can be rewritten in conservative form as

(
rurrr + brurzz + urr − 1

r
ur

)
r
+

(
ruzzz

)
z

= 1

π
δ(r)δ(z) . (8.21)

8.3 Symmetries of the Basic Equations

The symmetries of Eq. (8.17) can be found using the symmetry-finding algorithm
from [3].

Proposition 8.3 Equation (8.17) with an arbitrary parameter admits the following
basis of the Lie algebra of symmetry operators:

X1 = ∂

∂x
, X2 = ∂

∂y
, X3 = ∂

∂z
,

X4 = y
∂

∂x
−x ∂

∂y
, X5 = x

∂

∂x
+y ∂

∂y
+z ∂

∂z
,

X6 = u
∂

∂u
, X∞ = ϕ(x, y, z)

∂

∂u
.

For b = 2, the basis of the Lie algebra is supplementedwith the symmetry operators

X7 = z
∂

∂x
−x ∂

∂z
, X8 = z

∂

∂y
−y ∂

∂z
,

X9 = (x2 − y2 − z2)
∂

∂x
+2xy

∂

∂y
+2xz

∂

∂z
+xu ∂

∂u
,

X10 = 2xy
∂

∂x
+(y2 − x2 − z2)

∂

∂y
+2yz

∂

∂z
+yu ∂

∂u
,

X11 = 2xz
∂

∂x
+2yz

∂

∂y
+(z2 − x2 − y2)

∂

∂z
+zu ∂

∂u
.

Here, u = ϕ(x, y, z) is an arbitrary solution of Eq. (8.17).
To find the symmetries of Eq. (8.18) we use the results of [4]. Using the finite-

dimensional part of the Lie algebra of symmetry operators of Eq. (8.17), we consider
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the general symmetry operator

X =
6∑
i=1

aiXi .

Here, ai (i = 1, . . . , 6) are arbitrary constants.

Proposition 8.4 It is true that

X
4
L3u = (a6 − 4a5)L3u .

Then, using Theorem 8.1, we find that

a1 = a2 = a3 = 0 , a5 − a6 = 0 .

Proposition 8.5 For an arbitrary parameter b, Eq. (8.18) admits the following
basis of the Lie algebra of symmetry operators:

Y1 = y
∂

∂x
−x ∂

∂y
, Y2 = x

∂

∂x
+y ∂

∂y
+z ∂

∂z
+u ∂

∂u
. (8.22)

Remark 8.3 It can also be shown that Eq. (8.18) admits symmetry operators (8.22),
the symmetry operator

Y3 = z
∂

∂x
−x ∂

∂z
, (8.23)

and the symmetry operatorsX8, X9, X10, and X11.

8.4 Fundamental Solution

Let us find a solution of Eq. (8.17) that is invariant under symmetry operators (8.22).
The invariants of the admitted transformation group are J1 = r2/z2 = τ and J2 =
u/z. Then an invariant solution is sought in the form

u = zf (τ ) . (8.24)

Substituting (8.24) into Eq. (8.17) (or Eq. (8.19)), we obtain the fourth-order
ordinary differential equation

4τ 2(τ 2 + bτ + 1)
d4f

d τ 4 + 2τ (14τ 2 + 11bτ + 8)
d3f

d τ 3 +

+ (39τ 2 + 22bτ + 8)
d2f

d τ 2 + 2(3τ + b)
d f

d τ
= 0 .

(8.25)
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Proposition 8.6 The ordinary differential equation (8.25) has the following funda-
mental set of solutions:

f1 = 1 ,

f2 =
√
τ

a
+ 1 − arcoth

√
τ

a
+ 1 + √

aτ + 1 − arcoth
√
aτ + 1 ,

f3 = a

a2 − 1

(√
τ

a
+ 1 − arcoth

√
τ

a
+ 1 − √

aτ + 1 + arcoth
√
aτ + 1

)
,

f4 = a

a2 − 1

(√
τ

a
+ 1 arcoth

√
τ

a
+ 1 − 1

2
arcoth2

√
τ

a
+ 1 −

− √
aτ + 1 arcoth

√
aτ + 1 + 1

2
arcoth2

√
aτ + 1

)
,

where the parameter a satisfies the relation b = a + 1/a.

Consider the general solution of Eq. (8.25):

f =
4∑
i=1

cifi , (8.26)

where ci (i = 1, . . . , 4) are arbitrary constants. Among solutions (8.26), we find
ones that take finite values, together with their first derivatives, at τ = 0.

Proposition 8.7 As τ → 0 ,we obtain

f =
[
c2 + a ln a

2(a2 − 1)
c4

]
ln τ +O(1) ,

df

dτ
=

[
c2 + a ln a

2(a2 − 1)
c4

]
1

τ
+ c4

8
ln τ +O(1) .

It follows that c2 = 0 and c4 = 0. Assume also that c1 = 0. As a result, we obtain
the following one parameter family of solutions to Eq. (8.25):

f = c3a

a2 − 1

(√
τ

a
+ 1 − √

aτ + 1 − arcoth

√
τ

a
+ 1 + arcoth

√
aτ + 1

)
.
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Then, using (8.24) yields a one-parameter family of solutions to Eq. (8.17) (or to
Eq. (8.19)):

u = c3a

a2 − 1

(√
r2

a
+ z2 −

√
ar2 + z2 − z · arcoth

√
r2

a
+ z2

z
+

+ z · arcoth

√
ar2 + z2

z

)
.

(8.27)

Let us show that solutions (8.27) contain a fundamental one. For this purpose, both
sides of Eq. (8.21) are integrated over the rectangular domain Π = {0 � r �
r0, −z1 � z � z2, r0 > 0, z1 > 0, z2 > 0}. By using the Stokes formula,
the integral on the left-hand side can be written in terms of an integral along the
boundary of Π . Then solution (8.27) is substituted into the resulting integrand.
Finally, we find that c3 = 1/(4π).

Below is the main result of this work.

Theorem 8.2 The fundamental solution of Eq. (8.17) can be written as

uf = a

4π(a2 − 1)

[√
r2

a
+ z2 −

√
ar2 + z2 +

+ z

2
ln

(√
r2

a
+ z2 − z

)(√
ar2 + z2 + z

)

(√
r2

a
+ z2 + z

)(√
ar2 + z2 − z

)
]
.

(8.28)

Remark 8.4 For a = 1 (or b = 2), the fundamental solution (8.28) becomes

uf = − 1

8π

√
r2 + z2

and coincides with the fundamental solution of the three-dimensional biharmonic
equation [7].

Remark 8.5 When b = 2, the construction of a fundamental solution based on
symmetries is especially effective. Specifically, the solution of Eq. (8.17) invariant
under symmetry operators (8.22) and (8.23) is immediately determined up to a
multiplicative constant and is given by

u = c
√
r2 + z2 . (8.29)

Proceeding as described above, we find that (8.29) is a fundamental solution with
c = −1/(8π).
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8.5 Conclusion

The main result of this work is the construction (in terms of elementary functions)
of an invariant fundamental solution to the equation of a transversely isotropic
linear elastic medium. To conclude, we note that the symmetry approach can also
be effectively used to construct fundamental solutions of linear partial differential
equations with variable coefficients and for higher-order equations.
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Chapter 9
Modification of Hydrodynamic
and Acoustic Fields Generated
by a Cavity with Fluid Suction

Volodymyr G. Basovsky, Iryna M. Gorban, and Olha V. Khomenko

Abstract The hybrid numerical technique coupled with the vortex method for
simulation of viscous incompressible flow and the Ffowcs William-Hawkings
acoustic analogy is applied to the investigation of hydrodynamic and acoustic fields
generated by a two-dimensional open cylindrical cavity. The problem is considered
for a thin laminar boundary layer before the cavity and with the Reynolds number of
Re = 2 ·104, based on the cavity chord. The obtained results indicate that the cavity
flow oscillates in the shear-layer mode and radiates a dipole in the far acoustic field
so that the sound intensity in the backward direction is higher than in the forward
direction. The effectiveness of controlling of the flow oscillations by applying steady
suction through the rear cavity wall is studied. The results show that the suction
allows us to localize the vortical flow inside the cavity when saving the mode of
self-sustained oscillations in the shear layer. The vortices generated in the shear
layer do not hit the trailing edge now but are absorbed by the suction causing the
rise of pressure fluctuations in the vicinity of suction point. As a result, the obtained
levels of radiated sound are much higher than in the uncontrolled cavity flow. The
obtained positive effect of the suction on the cavity flow is that it suppresses the
pressure fluctuations on the wall portion behind the cavity that leads to stabilization
of the attached boundary layer.

9.1 Introduction

Cavity flows are found in various engineering devices and means of transport,
including aircrafts, submarines and ground vehicles. The cavity may be either a
design component or installed for creation of a special near-wall flow pattern. When
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the purpose of a flow control is intensification of heat and mass transfer, cavities
are arranged on the surface for additional turbulization in the flow [1]. On the other
hand, lift enhancement requires localization of a large vortex inside the cavity as in
the Kasper wing [2].

Numerous technical applications of cavities have stimulated a large number of
studies devoted to cavity flows. Note that canonical problem in this area is defined
by a rectangular cavity located on the flat wall. Firstly, the cavities were classified
into deep and shallow according to the ratio of cavity length to its depth [3]. Then
shallow cavities were separated into open, transitional and closed basing on the
pressure distribution along the cavity floor [4]. In the majority of works, flows near
open shallow cavities have been investigated because those are the most relevant
in practical applications. Gharib and Roshko [5] revealed that the flow regime
in such a cavity is determined by the ratio between the cavity span L and the
displacement thickness θ of the oncoming boundary layer. It was found that under
a wide range of these parameters open cavity flows operate in the regime of self-
sustained oscillations, which can be considered as one of the most important sources
of the noise generated by the flow over a cavity.

The mechanism of self-sustained oscillations in a cavity flow has been described
in details by Rockwell and Naudascher [6], who denoted its dependence on
the Mach number. In compressible flows, there is a feedback loop between
hydrodynamic and acoustic disturbances when the shear layer instability generates
the pressure wave near the rear cavity edge and this wave propagates upstream
amplifying disturbances in the shear layer. The frequency of the shear layer
instability is defined by the semi-empirical formula proposed by Rossiter [7]. At low
Mach numbers (M < 0.2), the acoustic wavelength is much greater than the cavity
span, so the self-sustaining oscillation mechanism has to be considered as purely
hydrodynamic. In this case, the oscillation frequency is governed by the convective
velocity of vortices in the shear layer [8].

The typical flow characteristics for the open shallow cavities operating in self-
sustained oscillation mode include free-stream flow separation at the cavity leading
edge, a shear layer developed between the free-stream flow and the flow inside the
cavity, impingement of the shear layer on the cavity aft wall and the shear layer
disintegration into separate vortex structures. The processes produce high dynamic
loads on the construction, which can lead to undesirable phenomena such as
structural vibration and fatigue. In addition, the flow under consideration generates
noise in the surrounding space that consists of intense discrete and broadband
components.

The different techniques have been proposed to reduce the cavity flow unsteadi-
ness and suppress acoustic resonances excited by impinging shear flow. The detailed
summary of studies devoted to dynamics and control of open cavity flows can be
found in reviews [9, 10]. The emphasis in these reviews is made on experimental
investigations of open- and closed-loop suppression techniques developed in recent
years. Numerical modeling has been also applied to provide a basis for techniques
used for cavity flow control. Shao and Li [11] presented two passive control schemes
where the cavity either with recessed leading edge step or with sloping trailing edge
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wall is considered. To demonstrate the effects of the control, numerical simulation
of the cavity flow was carried out by the LES-method. The obtained results showed
the decreasing of resonant Strouhal numbers and the reduction of overall sound
pressure levels in both cases. The control technique proposed by Suponitsky et al.
[12] is based on applying simultaneous steady injection and suction through the
front and rear cavity walls. The large eddy simulation technique coupled with the
Lighthill-Curle acoustic analogy was used to get flow characteristics and estimate
the effectiveness of control. The major effect of the control was the reduction of the
reverse flow inside the cavity to the levels at which the absolute instability of flow
is impossible.

Note that the majority of research deals with the rectangular cavity and either
supersonic or compressible subsonic cavity flows because of their relevance to
aeronautical applications. Much less attention has been given to low Mach number
cavity flows and especially to non-rectangular cavities, although they are also widely
implied in various engineering devices. In the present work, the incompressible fluid
flow grazing over a shallow cylindrical cavity is numerically studied in the shear-
layer mode. The developing flow field and its associated sound are derived and
modification of those performed with a help of steady suction of fluid is discussed.

The use of suction is considered in the framework of the overall control strategy
for near-wall flows, which involves cavities for creation of stable vortex systems
near a body surface. Artificial generation and sustentation of the coherent vortices
in near-wall flows is known to be an effective way to reduce surface friction and
intensify heat and mass transfer [13, 14]. Taking into account the non-stationary
nature of cavity flow, as mentioned above, the suction is assumed to facilitate
localization of the vortex sheet generated at the leading edge inside the cavity.

The nonlinear theoretical model of the vortical flow control in a cross cavity has
been developed in [15]. Being based on the Ringleb theory of the trapped vortex
[14], the model describes the dynamic behavior of a single vortex inside the cavity
in the system that consists of the uniform free stream and fluid suction. Analysis of
the topology of this flow allowed us to get the optimal parameters of suction device,
location and strength, with different cavity geometries. Note that optimal control in
this case implies the trapped vortex laying at the stable critical point. It was also
found that the region of vortex stability in shallow cavities is wider than in deep
ones therefore the latter are more promising for near-wall flow control.

In the present work, numerical simulation of the two-dimensional viscous incom-
pressible flow in the shallow cylindrical cavity is carried out by the vortex method
[16], which belongs to the high-resolution Lagrangian-type schemes developed as
fast alternative to direct numerical simulations. The vortex numerical schemes have
been successfully used for calculation of various flows that take place in natural
environment and technical applications [17]. The version of the vortex method
used in this work as well as its advantages and restrictions have been described
in details in papers [18, 19]. To derive the acoustic field, the hydrodynamic solution
is coupled with the Ffowcs William-Hawkings equation, which is a development of
the Lighthill acoustic analogy for bounded flows [20, 21].
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The first part of the paper focuses on study of flow patterns and acoustic pressure
generated by the cylindrical cavity with an aspect ratio of length to maximum depth
of L/D ≈ 5. The problem is considered for a thin laminar boundary layer on the
wall portion before the cavity and with the Reynolds numberRe = 2 ·104, based on
the cavity length L. The characteristics of the near hydrodynamic field show that the
cavity operates in the shear-layer mode, when the self-sustained oscillations of flow
are caused by collision of the large-scale vortex structures developed in the shear
layer with the cavity trailing edge. The flow is the source of the dipole radiation with
unequal lobes in the far acoustic field so that the sound intensity in the backward
direction is higher than in the forward direction.

In the second part of the paper, modification of hydrodynamic and acoustic fields
with the help of a steady suction through the rear cavity wall is considered. It was
found that the applied control technique, which was used allows us to localize the
vortical flow inside the cavity when saving the mode of self-sustained oscillations
in the shear layer. The vortex structures developed in the shear layer do not hit
the trailing edge now but are absorbed by the suction that causes considerable
fluctuations as the mean pressure as the root-mean-square deviation of pressure in
the vicinity of suction point. As a result, the levels of radiated sound are much higher
than in the uncontrolled cavity flow. The obtained positive effect of suction on the
cavity flow is that it suppresses the pressure fluctuations on the wall portion behind
the cavity that leads to stabilization of the attached boundary layer.

9.2 Problem Statement and Numerical Procedure

Hydrodynamic and acoustic fields generated by a two-dimensional flow of viscous
fluid in the region bounded by a wall with an embedded cylindrical cavity are
studied. The problem is considered at uniform flow velocity U0 and naturally
laminar boundary layer before the cavity. The geometry of interest and coordinate
systems are presented in Fig. 9.1.

U0 M(r, φ)
Oc

Q

O

y

x
D

L

α

β
δ

R0

φ

Fig. 9.1 Schemes of the flat wall with a cylindrical cavity and the flow
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The axis Ox of the Cartesian coordinate system is directed along the wall,
vertical axis Oy passes through the cavity center and the origin of the polar
coordinate system coincides with that of the Cartesian system (r, ϕ). The angle ϕ
of the polar system is measured counter-clockwise from the positive direction of
x-axis. The point M(r, ϕ) in Fig. 9.1 indicates the listener position.

The cavity geometry is described by its chordL and the angle α between the axis
Ox and the tangent to the cavity at the intersection point. The shallow cavity, which
is a subject of this research, is a part of the circle the center of which Oc(xc, yc)

is located above the wall. The fluid suction to be used in the second part of the
current research is modeled by a hydrodynamic sink of constant strength Q placed
on the cavity rear wall. Its coordinates are uniquely defined by the angle β (Fig. 9.1):
xq = R0 sin β, yq = R0 cosβ + yc , where R0 is the radius of the circle.

The problem under consideration is fully characterized by the following parame-
ters: the ratio of the cavity length to its maximum depth,L/D; the initial boundary
layer thickness at the cavity leading edge, δ; the Reynolds numberRe based on the
cavity length L, free-stream velocity U0 and the kinematic viscosity of the ambient
flow ν; the Mach number of the free-stream, M = U0/c0, where c0 is the speed of
sound in the ambient medium. The velocityU0 is supposed to be much less than c0,
so the problem deals with a very low Mach number and the model of incompressible
fluid can be used for simulation of both hydrodynamic and acoustic fields.

Note that all geometrical lengths are normalized with the cavity length L,
velocities with U0, physical times with L/U0 and hydrodynamic pressure is
specified by the dynamic coefficient ρ0U

2
0 /2, where ρ0 is the ambient fluid density.

Since a flow of very low Mach number is considered, there is no a reverse
effect of the acoustic field on the hydrodynamic process. So, the hybrid numerical
technique combining an independent evaluation of near hydrodynamic field with
a certain acoustic analogy can be applied. In the present work, the viscous
incompressible flow past the cylindrical cavity is simulated by the vortex method
and the Ffowcs William-Hawkings analogy is used to derive the sound field.

9.2.1 Hydrodynamic Calculations

The flow evolution in the region under consideration is governed by the continuity
equation and the Navier–Stokes equations with the non-leaking condition on the
whole solid boundary. The no-slip condition is assumed to be satisfied on the cavity
boundary and on the flat wall portions located directly before and beyond the cavity.
This approach allows one to obtain the specified boundary layer thickness δ99 just
above the cavity leading edge and constrain an influence of the boundary layer
emerging along the back of flat plate to the cavity flow.

The vortex numerical scheme used for simulation of the flow field has been
described in details in papers [18, 19] therefore its generalities are only considered
here. In this approach, the vorticity ω = k · ∇ × U, where U is the velocity vector
and k is the unit vector out of the page, is considered as the primary variable. Its



142 V. G. Basovsky et al.

transfer in the flow field is examined according to the vorticity transport equation:

∂ω

∂t
+ (U · ∇)ω = 1

Re
�ω, (9.1)

Equation (9.1) is solved using a fractional step procedure (see Cottet and
Koumoutsakos [16]) when that is split into convective and diffusive parts, which
are solved separately. In the present realization of the vortex method, the spatial
derivative in the diffusion equation is approximated by the finite-difference scheme
on the orthogonal grid put on the calculation domain. The convection of vorticity
is simulated by the finite volume method, which controls vorticity flows across
boundaries of elementary volumes. The volumes are connected with node points
of the orthogonal grid. The vorticity is assumed to distribute evenly inside each
volume. Note that the cavity boundary is approximated by the step function in this
approach. To integrate the process in time, the explicit scheme of the second order
with correction of all variables after each operator performed is applied.

The velocity field U(r, t) is recovered from the vorticity field with help of the
Biot–Savart integral. To build the integral, the fundamental solution of the Laplacian
for a vortex in the region under consideration must be found. The conformal
mapping of the flow field in the physical plane z(x, y) into an upper half-plane of
the auxiliary plane ζ(ξ, η) is performed to ensure this solution. The vortex function
satisfying the non-leaking condition of the solid wall in the canonical plane is
constructed with applying the well-known technique of mirror images:

G(ζ, ζv) = 1

2πi
[ln(ζ − ζv)− ln(ζ − ζ v)], (9.2)

where ζ , ζ v are the complex coordinate of a vortex and its image in the canonical
plane, respectively.

The function that realizes the necessary mapping is the following [22]:

ζ(z) = Lγ

2

[
1 +

(
z− L/2

z+ L/2

)γ ]/[
1 −

(
z− L/2

z+ L/2

)γ ]
, γ = α

π − α
.

(9.3)

Taking into account that the vorticity in any field point is conserved when
conformal mapping and solution (9.2) annihilates the effect of the horizontal wall,
which the flow boundary is reflected in, one obtains the Biot–Savart integral in the
following form:

U(r, t) =
[
U0 + Q

π

1

ζ(r)− ζ(rq)
+

∫

S

∫
ω(r′, t)k × ∇G(ζ(r), ζ(r′))ds(r′)

⎤
⎦ dζ

dr
,

(9.4)
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where S is the flow domain, r is the radius-vectors of the field points. Note that the
second term in square brackets represents an influence of the sink located on the
cavity boundary.

To derive the boundary condition for the vorticity on a solid wall, the Lighthill’s
vorticity creation mechanism, which attaches the vortex sheet to the wall, is applied.
The vortex sheet is assumed to compensate the spurious slip on the wall that appears
due to vorticity flow modifications. Taking into account the velocity jump across
the vortex sheet, we obtain the following relation between the spurious slip and the
vortex sheet strength:

U0
τ + γ

2
= 0, (9.5)

where γ is the strength of the adjoined sheet and U0
τ is the tangential velocity in the

wall points calculated from (9.4).
As soon as the vortex sheet at a solid wall is obtained, it has to be transferred

to the flow using either the Neuman or Dirichlet-type boundary condition for the
vorticity. In this work, we follow Wu [23] who divided the strength of the vortex
sheet by the distance from the wall to the first mesh point in the computational
domain and then get the following equation for the wall vorticity ω0 from (9.5):

ω0 = −2U0
τ

Δs
, (9.6)

where Δs is the grid spacing perpendicularly to the wall.
The vorticity created on smooth parts of the flow boundary enters the fluid

through a mechanism of viscous diffusion. To simulate the flow separation on the
sharp cavity edges, the Kutta-Joukowskii condition is applied. In the numerical
scheme, the condition is realized by convective transferring the vorticity from the
sharp edge to the surrounding flow.

The formulation of the Navier-Stokes equations with vorticity and velocity
variables permits us to decouple purely kinematical problem from the pressure
problem that simplifies significantly numerical modeling of fluid flows. The viscous
flow equations connecting pressure, velocity and vorticity were obtained by Lamb
[24]. Then one can retrieve the pressure coefficient Cp = 2(p− p0)/ρU

2
0 by direct

integration of those relative to the field coordinates (see [19]). It is convenient for the
present flow configuration to integrate the second equation of the Lamb system top-
down along the vertical direction. Note that the integration must start sufficiently far
from the source of perturbations of the fluid field.
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9.2.2 Far Acoustic Field

In the present work, the Ffowcs William-Hawkings (FW-H) analogy for the
computation of the acoustic pressure from the obtained hydrodynamic field is
applied. The approach deals with most of the practical cases where the problem
of aerodynamic sound involves moving or fixed boundaries. The classical FW-H
equation is written in the time domain in the coordinate system connected rigidly
with a body [20]. The body is believed to move in stationary environment. The
monomial terms in the right part of the equation, which describe monopoly and
dipole sound sources located on the body boundary, include the Dirac function of
the argument depending both on time and on spatial coordinates. This does not
allow us to apply the Fourier transformation directly to the FW-H equation. But for
the important practical case of a uniform rectilinear body motion, one can pass to the
fixed coordinate system using the Galilean transformation. Note that system is still
connected with the body, which is at rest now. After the Galilean transformation, the
wave FW-H equation becomes the convective wave equation [20]:

{
∂2

∂t2
+ UiUj

∂2

∂yi∂yj
+ 2Uj

∂2

∂yj ∂t
− c2

0
∂2

∂y2
i

}
[ρ′H(f )] =

= ∂

∂t
[Qδ(f )] − ∂

∂yi
[Fiδ(f )] + ∂2

∂yi∂yj
[TijH(f )],

(9.7)

where monopoly, dipole and quadrupole terms in the right-hand side are respectively
written as:

Q(y, t) = (ρui − ρ0Ui) ni,

Fi(y, t) = (
pδij + ρ (ui − 2Ui) uj + ρ0UiUj

)
nj ,

Tij (y, t) = ρuiuj + pδij − c2
0ρ

′δij .

(9.8)

Here t is the time and y is the radius-vector of a point in the Cartesian coordinate
system, where axis are denoted as y1, y2; c0 is the sound velocity; ρ = ρ0 + ρ′,
p = p0 + p′, ui = Ui + u′

i are the total density, pressure and velocity; Ui are the
velocity components of the oncoming flow. Note that the parameters with subscript
“0” in (9.8) characterize the undisturbed flow and a prime is used to denote a
perturbation quantity. The numerical indices in formulae (9.7), (9.8) are used instead
of the letter indexation of coordinates for convenience in summation. Since we deal
with a two-dimensional problem, the indices i, j take the value 1 or 2. It must be
also noted that in further consideration the viscous part of the Lighthill stress tensor
Tij will be neglected and only the term pδij is considered.

In the present statement, the function f is only a function of the spatial
coordinates, so: f = f (y). It is introduced in such a way that the equation f (y) = 0
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defines a closed control surface outside which the acoustic field is considered. The
region f (y) > 0 lies outside the surface and f (y) < 0 elsewhere. The vector
nj = ∂f/∂yj designates the outer normal to the control surface. The Heaviside
function H(f ) is introduced in such a way that H = 1 for f ≥ 0 and H = 0 for
f < 0. Its derivative H ′(f ) = δ(f ) is the Dirac delta-function and δij in (9.8) is
the Kronecker symbol. It must be noted that the control surface includes the solid
boundary of a flow.

For a low Mach number and an uniform rectilinear flow, Eq. (9.7) can be
transformed into the frequency domain with the help of the Fourier transformation.
Assuming isotropic acoustically ideal medium in the far field, where ρ′ * ρ0,
p′ * p0, p′ = c2

0ρ
′ one obtains after some simplifications the following formula

for the acoustic pressure [21]:

p′(yo,Ω) = −
∮

f=0

iΩQ̂(y,Ω)G(yo, y,Ω) dl −
∮

f=0

F̂i(y,Ω)
∂G(yo, y,Ω)

∂yi
dl−

−
∫

f>0

T̂ij (y,Ω)
∂2G(yo, y,Ω)

∂yi∂yj
dy, (9.9)

where Q̂(y,Ω), F̂i (y,Ω) and T̂ij (y,Ω) are the Fourier transformation of
monopoly, dipole and quadrupole terms of the right part of Eq. (9.7); G is the
Green function; Ω is the angular frequency; y = (y1, y2), y0 = (y01, y02) are
the radius-vectors of the point in the hydrodynamic field and the listener position,
respectively.

The Green function in (9.2.2) takes into account the convective effects and has
the following form:

G(yo, y,Ω) = i

4β
exp

(
iMkr1

β2

)
·H 2

0

(
k

β2

√
r2

1 + β2r2
2

)
, (9.10)

where r1 = (y01−y1), r2 = (y02−y2),H 2
0 is the Hankel function of the second kind

of order zero, k = Ω/c0 is the wave number,M is the Mach number, β = √
1 −M2

is the Prandt-Glauert factor, i = √−1 is the imaginary unit.
The transition into the frequency domain is a very important step when solving

the FW-H equation for two-dimensional problems because this allows one to
estimate the extension of sound sources across the flow. It is impossible in the time
domain where the Green function is expressed by the Heaviside function and one has
to integrate over time on a half-indefinite interval, which is actually impossible. To
turn back into the time domain after computing the sound field, the inverse Fourier
transformation must be performed.

Sound field calculations can be greatly simplified if one takes into account two
factors. The first is conditioned by the fact that the sound wave in the far field
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is cylindrical and the amplitudes of pressure pulsations are proportional to M3/2,
M5/2, M7/2 for monopoly, dipole and quadrupole sound sources respectively. Con-
sequently, at low Mach numbers the amplitude of sound from quadrupole sources
is much smaller than that of others and one can neglect the last double integral in
Eq. (9.2.2). The second simplification follows from the problem statement, because
the hydrodynamic data used in (9.2.2) are estimated on the impermeable surface,
where ui = 0, and the uniform rectilinear external flow is considered. Only the
monomial pδij nij in (9.8) depends on time. Therefore, to determine the sound field,
it is sufficient to calculate the second contour integral in (9.2.2), which describes the
dipole source of sound and is conditioned by the unsteady force acting on the body.

9.2.3 Details of the Numerical Scheme

With the described hybrid numerical technique that combines the vortex method and
the Ffowcs William-Hawkings analogy, the flow patterns and generated acoustic
field above the open shallow cavity with L/D ≈ 5 were derived at Re = 2 · 104.
The structure of the calculation domain and the boundary conditions involved are
presented in Fig. 9.2.

Since the only source of vorticity in the region is a solid surface where the no-
slip condition is satisfied, the flow is assumed to be irrotational at the inlet cross-
section and at the upper boundary. At the output section, where the gradients of
hydrodynamic parameters are small enough, the so-called soft boundary condition
∂2ω/∂t2 is set. The width of the calculation region was 2L and the length of the wall
portion beyond the cavity was 25L at that the length of the no-slip segment, where
ω = ω0, was 5L (Fig. 9.2). As test calculations have shown, a further enlargement of
the computational domain has no appreciable influence on the flow characteristics.

The non-dimensional length l0 of the wall portion before the cavity is a very
important parameter in the present study because it controls the properties of the
oncoming boundary layer before the zone of flow separation. Since the boundary
layer is laminar, the famous Blasius solution is available to estimate near-wall flow
parameters [25]. But Larsson et al. [26] have shown that the upstream boundary

U0

ω = ω0

ω = 0

= 0

ω = 0
x

ω = 0

y

3L 5L 20L

2L
∂2ω
∂x2

Fig. 9.2 Sketch of the computational domain
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Fig. 9.3 Average velocity profiles at the leading edge of the cavity: solid line—Blasius solution,
dash line and circles—numerical solutions for the wall with a cavity and flat plate, respectively

layer is essentially affected by the presence of the cavity; as a result, the actual
parameters of the boundary layer above the cavity leading edge may be greater than
in Blasius solution. Figure 9.3 illustrates the average velocity profiles just above the
cavity leading edge obtained from a Blasius solution for the flat plate (solid line)
and in the present calculations (dash line). Note that we set the length of l0 to obtain
a thin enough boundary layer before the cavity, l0 = 3. The Blasius solution ensures
the boundary layer thickness δ99 ≈ 0.061 for this l0. At the same time, the value
of δ99 obtained in the present simulation is about 0.073. To estimate an error of
the numerical scheme, the simulation of the boundary layer developing along the
flat wall was carried out. The average velocity profile obtained in the calculation is
depicted by circles in Fig. 9.3. One can see that the numerical results are close to an
exact solution, which indicates the good accuracy of the numerical scheme.

The value of the boundary layer momentum thickness θ99, which is important
for cavity flow classification, is deduced from the parameter δ99, assuming a ratio
δ/θ = 8 [25]. This gives the relation L/θ ≈ 110 above the cavity leading edge and
we expect the cavity oscillating in the shear-layer mode [5].

The uniform grid with the square elements of size h = 0.005 was used and the
normalized time step Δt was chosen from the Courant–Friedrichs–Lewy condition:

max{u, v}Δt
h

≤ 1.

The maximum value of the local flow velocity U(u, v) obviously depends on the
flowed surface curvature and the Reynolds number. As preliminary calculations
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have shown, the numerical stability for the present geometry and flow conditions
is achieved at Δt = 0.5h.

The pressure fluctuations on the flow boundary obtained by the hydrodynamic
modeling at the successive instances were the input data of the acoustic problem,
which was characterized by the Mach number M = 0.2. As it has been mentioned,
the far acoustic field is only generated by dipole sources of sound. The integration
contour f (y) = 0 in Eq. (9.2.2) coincides with the outside of the flow boundary and
the curvilinear integral is calculated in quadrature by the trapezium method.

9.3 Results

9.3.1 Natural Flow in Open Cylindrical Cavity

In this subsection, the results of simulation of the natural flow, without suction, in the
cavity under consideration are analyzed. The flow regime in the shallow rectangular
cavity is known to depend on the momentum thickness θ of the boundary layer
formed on the wall before the cavity. Depending on its magnitude, the flow in the
rectangular cavity oscillates either in the shear-layer mode or in the wake mode,
which are characterized by very different values of the average drop coefficientCD ,
which describes the cavity drag resulting from a pressure difference on rear and
front walls. It is well known that CD is much higher in the wake mode than in the
shear-layer mode, 0.3 against 0.01 [9]. So, to define the oscillation mode in the
cavity flow under consideration, we first consider the drop coefficient obtained in
the calculations. For a cylindrical cavity, it is normalized on the maximum cavity
depth D and reduced to the unit length along the cavity axis. The time evolution
of the instantaneous drop coefficient CD is presented in Fig. 9.4, where the time
segment covers four statistically stationary fluctuation periods. It follows from these
results that CD = 0.0096 and the non-dimensional period of oscillations T · (U0/L)

Fig. 9.4 Time history of the
cavity drop coefficient CD



9 Modification of Hydrodynamic and Acoustic Fields 149

Fig. 9.5 Instantaneous vorticity field (on the left) and pressure field (on the right) at five times
during one cycle. (a) t = 0. (b) t = T /4. (c) t = T /2. (d) t = 3T /4. (e) t → T

is about 1. It follows that the frequency of oscillations is of f = 1/T = 1 that
ensures St = fL/U0 = 1, where St is the Strouhal number of flow.

The conclusion is confirmed by the results presented in Fig. 9.5, where the
instantaneous fields of vorticity (on the left) and pressure (on the right) over one
period of the well-established self-sustained oscillations are depicted. Note that the
time instance t = 0 corresponds here to the maximum value of the drop coefficient
CD . The pictures demonstrate the classical behavior of the cavity flow in the regime
of shear-layer oscillations.
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As the flow separates at the upstream edge of the cavity, the shear layer develops
between the free stream and the flow inside the cavity. Further the layer loses
stability and clockwise large-scale vortical structures are generated there and move
to the trailing edge. The snapshots of the vorticity field (Fig. 9.5, left) show that
two vortical structures can be identified in the cavity shear layer at any time. In
Fig. 9.5a, the first vortex is located approximately in the middle of the cavity and
the second vortex is born near the leading edge. These vortices travel downstream
in the next pictures, growing with convection. As the first vortex impinges on the
trailing edge (Fig. 9.5d), the second vortex locates at the cavity center. After the
impingement, part of the vortex spills over the cavity and is convected downstream,
increasing the thickness of the reattached boundary layer. The other component is
swept downwards into the cavity amplifying the recirculation zone. The process
is accompanied by pressure fluctuations of large amplitude near the output edge,
as a result, the drop coefficient decreases to its minimum value. In Fig. 9.5e, the
impinging vortex is finally divided and the vortex generated at the leading edge in
the first picture travels to the trailing edge to sustain the vortex impingement process.

At the same time, the secondary recirculation flow is developing inside the cavity.
It consists of two counter-clockwise vortical structures born near the cavity lateral
walls and the clockwise vortex located near the bottom. During the oscillation cycle,
the flow configuration in the cavity changes according to the vortex dynamics in the
shear-layer. This fact points out that the secondary vortices are one of the elements
of the hydrodynamic feedback in the self-sustaining oscillation mechanism. But the
main cause of a feedback phenomenon connects with the velocity production in the
shear layer according to the Biot-Savart law. As a result, the oscillation frequency
is governed by the convective velocity of the vortices in the shear layer. Since the
length of acoustic wave exceeds considerably the cavity span at a low Mach number,
only hydrodynamic mechanism produces self-sustained oscillations of the cavity
flow in this case.

The fact that the flow field clearly oscillates in a shear-layer mode is confirmed
by the instantaneous pressure contours presented in Fig. 9.5 (on the right). Here
the negative pressure zones are the markers of the vortical structures in the shear-
layer. Two vortices are clearly visible in Fig. 9.5b, c and only one vortex is present
explicitly in other pressure snapshots. This is due to the fact that the second vortex
is either already broken or is still in its developing. It is also seen that pronounced
areas of positive pressure are emerging between the vortices.

To determine the convective velocity of vortex structures in the shear layer, let
us consider the cross correlation coefficient of fluctuating pressure R12(τ ) between
the points located on the cavity chord. Here τ is the time delay between the peaks
of the pressure function in the considered points. It is clearly seen in Fig. 9.5 that
the shear layer vortices are formed not directly nearby the leading edge but at some
distance downstream from it. So, the functions R12(τ ) between the reference point
x = 0 and the points located at x > 0 are only analyzed. The cross correlation
coefficientR12(τ ) for some points of x-axis is shown in Fig. 9.6a. Since the direction
of travel of the vortices is obvious it is enough to consider this coefficient only
for positive values of τ . To liquidate the phase coupling of the pressure functions
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Fig. 9.6 Cross correlation coefficients R12 of fluctuating pressure along the cavity chord at various
x—locations—(a) and time delay ε of maximum correlation coefficients at various separation
distances—(b)

at two points, the abscissa τmax of the first maximum of R12(τ ) for τ ≥ 0 is
considered as a real time delay. The non-dimension separation distance ε between
each sampling point and the reference point as well as the non-dimension time delay
τ̄max are determined. The function ε(τ̄max) is depicted in Fig. 9.6b by the bold points
for each location. After fitting a linear curve through all the data points and the
point of coordinates (0, 0), the convection velocity of vortices in the shear layer
Uc normalized with the flow velocity U0 is estimated as the angular slope of the
approximating straight line. The obtained value of the non-dimensional velocity of
the vortices is Uc = 0.47 that is in close agreement with the experimental data of
Özsoy et al. [27], where Uc ≈ 0.5 has been found.

It is obvious that the frequency of collisions of the shear-layer vortices with the
cavity trailing edge depends on the number of vortices, the distance between them
and the velocity Uc. Due to absence of the acoustic feedback in the flow under
consideration, the frequency of collisions defines the frequency of self-sustained
oscillations of shear layer, known as the Strouhal number of cavity flow. It can be
determined from the Rossiter formula adapted to incompressible fluid [28]:

St = fL/U0 = Uc(n− α), n = 1, 2, . . . (9.11)

where n is the number of vortices and α = 0.25 is the empiric constant interpreted
as a phase delay of the vortices in the shear layer. Using St = 1, which has
been obtained on the base of drop pressure fluctuations (Fig. 9.4) and n = 2 as
follows from snapshots of Fig. 9.5, one calculates the value of Uc = 0.57. There is
some difference between this value and the convective velocity derived in Fig. 9.6b
because the Rossiter formula considers the vortices running the entire cavity chord.
At the same time, we have clarified in Fig. 9.5 that the shear-layer vortices are born
not near the leading edge of cavity that is a consequence of the specified geometry.

Periodical vortex processes occurring in the shear layer above the cavity generate
pressure fluctuations on its surface to be characterized by the time-mean-pressure
coefficient Cp and the root-mean-square deviation of pressure Cp,rms . In Fig. 9.7,
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Fig. 9.7 Mean pressure coefficient Cp—(a) and root-mean-square deviation of pressure Cp,rms—
(b) on the cavity boundary and on the wall just before and beyond the cavity

these characteristics calculated on the cavity floor and on the wall portions located
directly before and beyond the cavity are plotted. Note that the points of cavity
boundary are projected to x-axis and closed between dashed vertical lines. The
curves reflect the dynamics of flow in the cavity during the period of oscillations. It
is seen that both the value and the amplitude of coefficient Cp are small enough in
the vicinity of the cavity leading edge and they grow significantly on the rear cavity
wall, where sharp jumps in Cp are observed. It is clear that those are caused by
non-stationary behavior of the cavity shear layer in this flow region. The moderate
increase of Cp on the wall just beyond the cavity is connected with the movement
of the vortex structures which have left the cavity.

The root-square deviation of pressure from its mean value characterized by the
coefficient Cp,rms is also the largest in the aft part of cavity where the shear-layer
vortices hit the wall. The fluctuations of Cp,rms in other cavity parts are seen caused
by the change of configuration of the secondary vortices in the cavity during the
oscillation cycle. On the wall before the cavity, the coefficient Cp,rms is small and
it gradually decays beyond the cavity trailing edge.

Thus it has been found that self-sustained oscillations of shear layer are the
reason of substantial pressure fluctuations in the closed hydrodynamic field, which,
in turn, radiate an acoustic wave in the far field. The frequency of fluctuations of the
sound pressure in the far field fixed point is equal to the Strouhal number of flow. So,
the directivity characteristics of the sound field are only considered for the amplitude
of pressure fluctuations p′

amp. The calculated directivity chart for the sound pressure
levels is depicted in Fig. 9.8, in which the amplitude of pressure fluctuations is
normalized with the dynamic pressure: p′

amp(r, ϕ) = p′
amp(r, ϕ)/(ρ0U

2
0 /2). This

picture demonstrates that the cavity flow is a source of dipole radiation with unequal
lobes. The sound intensity in the backward direction is seen to be higher than that
in the forward direction. The maximum value of the sound pressure is observed
at ϕ ≈ 140◦. The inverse proportion between the amplitude of acoustic pressure
p′
amp(r, ϕ) and the square root from radius r at any fixed angle ϕ follows from these
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Fig. 9.8 Directivity chart for
the overall sound pressure
level: solid line—r/L = 60,
dash line—r/L = 80,
dash-dotted line—r/L = 100

results. This fact points out that the present cavity flow radiates a cylindrical sound
wave in the far field.

9.3.2 Cavity Flow with Fluid Suction

In this section, an influence of the fluid suction on the cavity flow and radiated
noise is examined. The fluid suction may be used to localize the vortical flow
inside a cavity and reduce the level of fluctuations of hydrodynamic parameters
in the attached boundary layer. The problem arises, for example, when cavities are
applied for creation of a stable vortical pattern in the near-wall flow. The theoretical
model of near-wall flow control that uses a vortex trapped in a cylindrical cavity and
suction of fluid is developed in [15]. It is based on the analysis of the flow topology
in the domain. The parameters of the control device are set by us to obtain the
trapped vortex located in a stable critical point. To estimate feasible advantages and
disadvantages of this control technique, the numerical simulation of hydrodynamic
and acoustic fields generated by the cylindrical cavity with fluid suction is carried
out.

The suction is modeled by the hydrodynamic sink, whose strength and location
are determined with applying the theoretical model [15]. The sink is located on the
rear cavity edge as seen in Fig. 9.1. In this study, the angle β characterizing the sink
position is equal to 55◦ and the non-dimensional strength is set Q = Q/U0L =
0.08.

It is revealed in the present simulation that the cavity flow with suction operates in
the regime of self-sustained oscillations, as in the previous case. The instantaneous
fields of vorticity (on the left) and pressure (on the right) over one period of the
oscillations are represented in Fig. 9.9. One can see generation, development and
movement of vortex structures in the shear layer. The difference is that the vortices
do not impinge on the traveling edge but are attracted by the sink point located
on the aft cavity wall. The second mode of self-sustained oscillations is seen to be
realized here because two vortices exist in the shear layer at any time. The suction
absorbs the vortex structures so that they have almost no effect on the attached
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Fig. 9.9 Instantaneous vorticity field (on the left) and pressure field (on the right) at five times
during one cycle in the cavity with suction. (a) t = 0. (b) t = T /4. (c) t = T /2. (d) t = 3T /4. (e)
t → T

boundary layer beyond the cavity. It is seen on the pressure pictures that there is
always a large-scale zone of positive pressure near the trailing edge that prevents
the vorticity concentrated in the cavity from emission. The secondary flow in the
cavity is weak because of the limited space in this case.

The periodicity of the shear-layer processes is confirmed by the time history
of the drag coefficient CD presented in Fig. 9.10a. It was found that the non-
dimensional period of the oscillations T increased in comparison with the natural
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Fig. 9.10 Characteristics of near hydrodynamic and far acoustic fields for the cavity flow
with fluid suction: (a)—time history of the cavity drop coefficient CD ; (b)—cross correlation
coefficients R12 of fluctuating pressure along the cavity chord at various x—locations; (c)—time
delay ε of maximum correlation coefficients at various separation distances; (d)—mean pressure
coefficient Cp on the cavity boundary and on the wall just before and beyond the cavity; (e)—root-
mean-square deviation of pressure Cp,rms on the cavity boundary and on the wall just before and
beyond the cavity; (f)—directivity chart for the overall sound pressure level: solid line—r/L = 60,
dash line—r/L = 80, dash-dotted line r/L = 100

cavity flow. Here T = 1.257 against T = 1, when the suction is absent. So, the
Strouhal number of the flow under consideration is equal to 0.795. It is significant
that the coefficient CD is always below zero and its average value CD = −0.319
that makes the obtained flow regime similar to the wake mode.
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Since the control action increases the period of cavity flow oscillations one
can expect that the convection velocity of vortices Uc will drop. It is seen in
Fig. 9.9 that the vortices travel along the line that is slightly inclined to the cavity
chord. Therefore, the change of pressure at the points on the cavity chord occurs
synchronously with the displacement of the vortices in the shear layer. So, to
estimate the convection velocity, the cross correlation coefficient of fluctuating
pressure R12(τ ) can be evaluated between the points located on the cavity chord.
We consider x = 0 as the reference point and 0.1 ≤ x ≤ 0.3 as the sampling
points. The corresponding curves are presented in Fig. 9.10b and the dependence
ε(τ ) which illustrates the convection velocity calculation is depicted in Fig. 9.10c.
It follows from Fig. 9.10c, Uc = 0.33.

Figure 9.10d, e demonstrate the effect of suction on the pressure fluctuations esti-
mated on the cavity surface. The time-mean-pressure coefficient Cp demonstrates
the most important changes on the aft wall. The minimum of Cp is achieved in
the vicinity of the suction point. This value is obtained to be Cp ≈ −13. As in
the uncontrolled case, the function Cp(x) has its maximum value just before the
cavity trailing edge. Note the range −1 ≤ Cp ≤ 1 in Fig. 9.10d is chosen to
show distinctly the behavior of this coefficient along the cavity surface. The zone
of the highest values of the root-mean-square deviation of pressure Cp,rms shifts
from the trailing edge, as it has been in the uncontrolled cavity, to the vicinity of
the suction point. Taking into account the results presented in Fig. 9.10d, e one can
conclude that the absolute values of pressure characteristics grow as compared with
the uncontrolled case everywhere except the region located beyond the trailing edge.
Therefore it can be deduced that the fluid suction does indeed reduce the pulsations
of the hydrodynamic parameters on the wall behind the cavity, thus stabilizing the
attached boundary layer.

Since the far acoustic field is the linear reflection of fluctuating pressure close
to the wall, one can expect that essential quantitative changes observed in the
fluctuating pressure levels should modify dramatically the directivity chart when the
fluid suction takes place. Comparing the plots of the root-mean-square deviation of
pressureCp,rms derived in the natural cavity flow and in the cavity with fluid suction
(Figs. 9.7b and 9.10e) we obtain that in the last case the maximum value of Cp,rms
is twelve times higher. Besides, it is displaced from the trailing edge into the cavity.
These two factors have the largest effect on the configuration of the directivity chart,
which is depicted in Fig. 9.10e for the same values of radius r as in the previous case
(Fig. 9.8). It is seen that the maximum of acoustic pressure here is nine times higher
than the corresponding value for the natural cavity flow. This chart also has a dipole
configuration, but it is less pronounced. The backward lobe of the chart extends and
the lobe in the forward direction decreases considerably. In this case, the directivity
chart rotates counter-clockwise by about 10◦, and the maximum of the sound energy
is propagated in the direction ϕ = 130◦.
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9.4 Conclusion

The hybrid numerical technique coupled with the vortex method for simulation of
viscous incompressible flow and the Ffowcs William-Hawkings acoustic analogy
is developed. It is applied to the investigation of hydrodynamic and acoustic fields
generated by a two-dimensional cylindrical cavity with an aspect ratio of L/D ≈ 5.
The problem is considered for a thin laminar boundary layer before the cavity and
with the Reynolds number of ReL = 2 · 104. The Mach number was set to 0.2. The
natural cavity flow and the flow with fluid suction through the cavity aft wall were
studied and obtained results were compared to clarify advantages and disadvantages
of such control.

The present simulation revealed that the given flow conditions result in the shear-
layer regime above the cavity without suction. This is characterized by the self-
sustained oscillations of cavity flow which are caused by dynamics of large-scale
vortex structures in the shear layer. The second mode of oscillations is realized
because no more than two vortices exist in the shear layer at any time. The calculated
frequency of oscillations is in a good agreement with the analytical solution and the
convective velocity of vortices is slightly lower in comparison with the known data
for a rectangular cavity which is consequence of the specific flow geometry. The
directivity chart for the sound pressure levels demonstrates that the present cavity
flow is a source of dipole radiation with unequal lobes. The sound intensity in the
backward direction is higher than that in the forward direction. The maximum value
of the sound pressure is observed at ϕ ≈ 140◦.

A steady suction through the rear cavity wall allows to localize the vortical flow
inside the cavity while maintaining the mode of self-sustained oscillations in the
shear layer. The vortices generated in the shear layer do not hit the trailing edge
here but are absorbed by the suction that causes the considerable fluctuations as
the mean pressure as the root-mean-square deviation of pressure in the vicinity of
suction point. As a result, the obtained levels of radiated sound are much higher
than in the uncontrolled cavity flow. The obtained positive effect of the suction on
the cavity flow is that it suppresses the pressure fluctuations on the wall portion
behind the cavity that leads to stabilization of the attached boundary layer.
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Chapter 10
Numerical Modeling of the Wing
Aerodynamics at Angle-of-Attack at Low
Reynolds Numbers

Iryna M. Gorban and Oleksiy G. Lebid

Abstract Flows over symmetrical airfoils are numerically investigated for
Reynolds number of 500. The high-resolution vortex method is used for the
computations. The effects of both airfoil thickness and angle-of-attack (AoA)
on non-linear wake and aerodynamic loads are examined. When increasing AoA
from 0◦ to 60◦, a flow regime in the airfoil wake was found to change from
stationary to multiperiodic one through the Hopf bifurcation and period-doubling
bifurcation. The highest lift-drag ratio of the airfoil is achieved in the stationary
regime, when AoA< 15◦. With further increase in the angle-of-attack, the airfoil
performance drops due to increment in the drag force. The obtained results show that
a thinner airfoil has better hydrodynamic characteristics but the effect of thickness
is considerable in the stationary regime only. The analysis of pressure fields shows
that negative pressure zones form not only in the airfoil frontal part, as at large
Reynolds numbers, but near the trailing edge that is due to effect of boundary layer.
The intensity of those grows with increasing an angle-of-attack.

10.1 Introduction

Interest in aerodynamics of low Reynolds numbers is kept up by the performance
of mechanical systems operating with relatively small speeds such as unmanned
aerial vehicles (UAVs) and wind turbines. Besides, UAVs move at large enough
angles of attack during a maneuver, especially when landing that is followed by the
sudden drop of its lift force. So, the study of such flight regimes is important for the
further improvement of UAV technology. As for wind turbines, those work under
significant non-stationary loads due to rapid changes in direction and speed of air
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flows that requires evaluating the forces acting on the wing in wide range of both
angles of attack and Reynolds numbers.

Flows around aerodynamic shapes at low Reynolds numbers are known to have
a complex nature conditioned by boundary layer separation, flow reattachment and
unsteady shedding of vortices. When increasing the angle of attack, the phenomena
become stronger that affects greatly on the airfoil efficiency.

The creation of slow-speed flying apparatus, which operate in a wide range of
angles of attack, has stimulated researches dealing with unsteady aerodynamics of
wing at a small Reynolds number. In most of them, biomechanical analogies of a
wing like flexible or flapping configurations were considered [1–3]. At subcritical
angles of attack, birds and insects were found to enhance the lift force owing to
generation of a stable leading-edge vortex.

On the other hand, there is a lack of papers devoted to translational movement
of a rigid wing at low Reynolds numbers. Most of the research effort in this point
is directed toward the understanding of the flow field over flat-plate airfoils, whose
separation points are fixed at the plate edges. In paper [4], both two- and three-
dimensional numerical simulations of the flow over an impulsively started flat plate
at a chord Reynolds number of 300 were carried out. A number of simulations were
performed with varied aspect ratio AR, angle of attack α (α = 0◦–60◦) and plan-
form geometry. It was found that aspect ratio influences significantly on the wake
patterns and forces experienced by the plate. In three-dimensional flows, leading-
edge vortices are evolved into hairpin vortices that interact with the tip vortices.
These interactions weaken non-stationary effects; as a result, the highest loads on
the plate develop at large aspect ratios when the airfoil flow is two-dimensional.

The fundamental aspects of the flow separated behind an inclined plate were
numerically analyzed by Zhang et al. [5] at Re ∈ [100, 850] and α ∈ [0◦, 45◦].
It was found that the vortical flow patterns behind the plate depend on correlation
between the angle of attack and the Reynolds number. The transition from steady to
chaotic flow is realized through the Hopf bifurcation, period-doubling bifurcations
and various incommensurate bifurcations. Yang et al. [6] captured numerically the
shedding characteristics of the wake behind a flat plate at α = 30◦ and Re = 750.
Two different problem statements were considered, in which either the plate or the
incoming flow were inclined relative to the Cartesian grid. The central conclusion
of the research lies in the fact that the statements are quite coincident.

In papers [7, 8], a flow near the NACA-0012 airfoil was calculated by Lattice-
Boltzmann Equation solver based on the kinetic theory of fluid. The 2D and
3D statements as well as different Reynolds numbers and angles of attack were
considered. It was found that the drag coefficient CD at α = 0◦ and Re = 500
compares very well with that obtained by a Navier-Stokes equation-based finite
difference method.

Kuns and Kroo [9] explored numerically flows near two-dimensional airfoils
at Re < 104 and α ∈ [0◦, 10◦] under the assumption that the flow field is fully
laminar. Variations in the thickness, camber, and leading/trailing edge shape were
considered. The main conclusion of this study affirms that airfoil flows at low
Reynolds numbers are viscously dominated that leads to very large increase of the
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drag coefficient. So, flight at these Reynolds numbers is much less efficient than at
higherRe, although the lift of wing increases due to generating the intensive bubble
at the low pressure side.

Experimental investigations of the problem are limited by the aerodynamic
regimes, when α ≤ 15◦. The researches of Mueller and Batillt [10] accentuated
on the airfoil boundary layer and the leading-edge separation bubble. The dynamics
of the bubble and its influence on airfoil loads for a chord Reynolds number range
of 4 ·104–4 ·105 were investigated. The rapid rise in lift with increasing the angle of
attack was observed at Re = 4 · 104. At the same time, it was shown that a negative
lift can be produced at Re = 1.3 · 105 and α ≤ 4◦ as a result of laminar separation
on upper and lower surfaces downstream of midchord.

Systematic studies of aerodynamic characteristics of different shape airfoils were
examined by Sunada et al. at Re = 4 · 103 [11, 12]. In this case, airfoils with
good aerodynamic performance were found to be thinner than airfoils for higher
Reynolds numbers and have a sharp leading edge and a camber of about five
percent. However, a thinner wing has lower rigidity; as a result, it cannot support
the favorable distribution of the surface pressure for a long time. It was shown that
by analogy with the insects wings the corrugation of surface can be used to eliminate
this disadvantage.

It follows from the above studies that the airfoil flows at low Reynolds numbers
essentially depend on this parameter. So, the successful operation of wing systems
at these conditions demands additional investigations of aerodynamic flows in the
specified range of Reynolds number.

In this work, numerical simulations of viscous two-dimensional flows around
aerodynamic profiles are performed with applying the vortex method [13], which
belongs to high-resolution Lagrangiantype schemes developed as fast alternative to
direct numerical simulations. The vortex numerical schemes have been successfully
used for calculation of various flows that take place in natural environment
and technical applications [14]. Those are based on the idea of transition in a
mathematical model from natural variables, pressure and velocity, to vorticity and
focus on its creation, transport and diffusion. Advantages of the vortex schemes are
the absence of pressure in the equations; automatic enforcing boundary conditions
at infinity; an inherent economy in the number of computational elements since
vorticity is usually concentrated near bodies and in their wakes; a direct physical
interpretation of the results and internal ability of the algorithm to be parallelized.

At first the algorithm was tested by the example of the airfoil flow over
NACA0012 profile at Re = 500 and α = 0◦. The calculated surface pressure as
well as drag coefficient are close to its values obtained by high order numerical
schemes. Once the numerical results have been validated, a number of simulations
are carried out for NACA0008 and NACA0018 profiles, to estimate an influence of
the thickness alongside other factors.

In this simulation, the vortical flow patterns behind the airfoils and the corre-
sponding lift and drag coefficients are calculated atRe = 500 when the flow near an
airfoil is still laminar. The fundamental features of the airfoil flow in the wide range
of the angle of attack α, from 0◦ to 60◦, are derived. The rise of α is shown to lead
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to changing the vortical flow pattern in the wake from stationary to multiperiodic
through the Hopf bifurcation and period-doubling bifurcation. Calculations of the
airfoil dynamic characteristics corresponding to these regimes indicate that the
highest ratio of the lift to drag is achieved with the stationary flow. When the angle
of attack increases, the aerodynamic performance drops to the values that are less
than one due to a significant increment in the drag.

An analysis of the pressure fields near the airfoils shows that the lift force is
conditioned by the dynamics of the separation bubble generated on the upper side.
At α < 15◦, the lift is provided by the vortex sheet leaving the trailing edge and
the leading-edge separation bubble. When increasing α, unsteady effects prevail in
the wake, as a result, vortex shedding occurs. This leads to both oscillations of the
lift and the change in the mechanism of its generation. At α > 20◦, the lift depends
mainly on the strength and size of the recirculation bubble generated on the upper
surface. The results of calculations demonstrate the formation of negative pressure
zones not only in the airfoil frontal part, as at large Reynolds numbers, but also near
the trailing edge, which is due to the influence of viscosity. When increasing an
angle of attack, the strength of the rear recirculation zone growths.

It follows from the comparison of dynamic characteristics of NACA0008 and
NACA0018 airfoils, the thinner profile has better performance but the flow around
the thick one is more regular. In general, the results obtained show that operating
wing systems at low Reynolds numbers is significantly different from traditional
aerodynamic regimes due to the domination of viscous effects in the flow.

10.2 Problem Statement and Method Description

A two-dimensional flow of incompressible Newtonian fluid of velocity V0 around
the symmetrical airfoil of chord d is studied. The geometry of the problem and
coordinate system are depicted in Fig.10.1.

Two control parameters of the problem are the inclined angle α (angle of attack)
with respect to the free-stream flow and the Reynolds number Re = V0d/ν, where
ν is the kinematic viscosity of fluid. The flow under consideration is described by
the Navier-Stokes equations:

∇V = 0, (10.1)

∂V
∂t

+ (V · ∇)V = −∇p + 1

Re
∇2V, (10.2)

Fig. 10.1 The geometry of
interest
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where V(u, ν) is the velocity vector, p is the non-dimensional pressure and t is the
time scale. Note that all geometrical lengths are normalized with d , velocities with
V0, physical times with d/V0 and pressure is specified by the dynamic coefficient
ρV 2

0 /2, where ρ is the fluid density.
On the airfoil, the slipping condition must be satisfied

V · n|L = 0, (10.3)

V · τ |L = 0, (10.4)

where L denotes the airfoil contour, n, τ are the normal and tangential unit vectors
to L.

It should be noted that the application of the model of incompressible fluid to
simulation of the flows at the subsonic velocities that corresponds to the Mach
number less than 0.2 is quite justified and does not introduce a significant error
in the calculations [15].

The governing equations are solved by the vortex method, which considers
vorticity ω = k · ∇ × V as the primary variable (here k is the unit vector out of
the page) and examines its translation in the flow field according to the vorticity
transport equation (see Cottet and Koumoutsakos [13]).

∂ω

∂t
+ (V · ∇)ω = 1

Re
Δω. (10.5)

To satisfy boundary conditions in the vorticity equation, the Lighthill creation
mechanism describing generation of vorticity at the solid boundary is used. It
attaches a vortex sheet on the airfoil surface to cancel the spurious slip arising due
to transformations in the vorticity field. Then the Biot–Savart integral that recovers
the velocity field from the vorticity takes the following form:

V(r, t) =
∫

S

∫
ω(r′, t)k × ∇G(r, r′)ds(r′)+

∫

L

γ (r′, t)k × ∇G(r, r′)dl(r′)+ V0,

(10.6)

where S is the flow domain, r is the radius-vectors of the field points, ω is the
vorticity, γ is the strength of bound vortex sheet, G is the fundamental solution of

the Laplacian: G(r, r′) = 1

2π
ln|r − r′|.

The strength γ is determined from no-slip boundary condition (10.4). Taking into
account the tangential velocity jump on the vortex sheet, which is equal to γ /2, and
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equality n(r) × τ (r) = k one obtains from (10.4) the following equation relative
to γ :

∫
L

γ (r′, t) ∂G(r, r′)
∂n

dl(r′)− γ (r)
2

=

τ (r) ·
⎛
⎝V0 +

∫

S

∫
ω(r′, t)k × ∇G(r, r′)ds(r′)

⎞
⎠ ,

(10.7)

where r ∈ L.
Note that in compliance with the conception of linked boundary conditions

substantiated by Shiels [16], satisfaction of the tangential velocity condition means
that no-through boundary condition (10.3) is also satisfied since only a translation
motion of the boundary enclosed body is considered.

Equation (10.7) that defines the strength of bound vortex sheet is a Fredholm
equation of the second kind. It is a singular one and additionally it admits a non-
unique solution. The uniqueness of the solution of equation (10.7) is ensured with
Kelvins circulation theorem that relates the vortex sheet strength with the change of
the flow circulation. The theorem requires the conservation of the total circulation
in the flow domain and it is expressed by the equation:

∫

L

γ (r′, t)dl(r′) +
∫

S

∫
ω(r′, t)ds(r′) = 0. (10.8)

After a vortex sheet on the boundary is obtained to cancel the slip velocity, it has
to be transferred to the fluid domain. This is achieved by solving a diffusion equation
in respect to the vorticity with a Neuman-type boundary condition that connects the
vortex sheet strength with the vorticity flux. This condition has been formulated in
paper [17], which is classical for the vortex methodology. In accordance with it,
the total flux of vorticity to be emitted into the flow for the small time step δt is
connected with the sheet strength by the expression:

∂ω0

∂n
= − γ

νδt
, (10.9)

where ω0 is the surface vorticity.

10.3 Numerical Methodology

To realize numerically the mathematical model described in Eqs. (10.5)–(10.9), we
put a uniform orthogonal grid (iΔx, jΔy) on the flow domain, where Δx, Δy are
small spatial scales, i = 1, 2, . . . , Nx , j = 1, 2, . . . , Ny . We introduce also the
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volume cells Q(x, y) = {ξ, η : |ξ−x| < Δx/2, |η−y| < Δy/2} around the mesh
points of the grid and assume the vorticity occupying the cell Qij is converted into
a vortex particle of circulation Γij . Then the continuous vorticity field is replaced in
full with a finite system of the discrete vortices, whose circulation is determined by
the expression:

Γij =
∫

Qij

∫
ω(x, y)dxdy ≈ ωijΔxΔy. (10.10)

Note that the present realization of the vortex method supposes a uniform distribu-
tion of vorticity inside the cell Qij .

Equation (10.5) is solved on the grid introduced using a fractional step procedure
when that is split into convective and diffusive parts, which are integrated separately.
The algorithm and its applications to modeling bluff body flows have been described
in details in papers [18, 19]; so, only the principal features of the numerical scheme
are considered here.

The viscous diffusion equation is integrated by the finite-difference method on
the orthogonal grid with Γij in the mesh points. If the spatial derivative of this
equation is approximated by the scheme of the second order and a simple Euler
explicit scheme for temporal discretization is used for updating Γij , the resulting
finite difference scheme will take the following form:

Γ t+Δt
ij − Γ t

ij

Δt
= 1

Re

(
Γ t
i+1j − 2Γ t

ij + Γ t
i−1j

(Δx)2
+ Γ t

ij+1 − 2Γ t
ij + Γ t

ij−1

(Δy)2

)
,

(10.11)

where Δt is the time step.
In the vortex methods, the vorticity convection is usually simulated by a

displacement of vortex elements along fluid particle trajectories. It means the
vortices move with their induced velocities while the vortex circulation does not
change during this sub step. In our approach, we calculate numerical fluxes of
vorticity through boundaries of grid cells Qij according to the convection equation
that leads to changing the circulation of the vortices fixed in the mesh points of the
given orthogonal grid. Taking into account that the normal vectors to the boundaries
of the vorticity elementQij coincide with the directions of coordinate axes, one can
write the vorticity balance inside Qij during the time step Δt as follows:

ω t+Δt
ij − ω t

ij

Δt
ΔxΔy ≈ (ω t

i−1ju
t
i−1j − ω t

i+1ju
t
i+1j )Δy+

(ω t
ij−1ν

t
ij−1 − ω t

ij+1ν
t
ij+1)Δx − ω t

ij (|u t
ij |Δy + |ν t

ij |Δx).
(10.12)
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From (10.12), the evolutionary equations for the vortex circulation are derived:

Γ t+Δt
ij = Γ t

ij +
[(
Γ t
i−1ju

t
i−1j − Γ t

i+1ju
t
i+1j

)
/Δx +

(
Γ t
ij−1ν

t
ij−1 − Γ t

ij+1ν
t
ij+1

)
/Δy − Γ t

ij

(
|utij |/Δx + |νtij |/Δy

)]
Δt.

(10.13)

Scheme (10.13) is of the second order in space and of the first order in time. Note
also it is a non-dissipative and has improved dispersion properties compared to
classical linear schemes.

The airfoil contour L is discretized into Np boundary elements (panels) and
each of them assumes a constant value of vortex strength γk, k = 1, 2, . . . , Np .
In the computation scheme, the panel is replaced by a single point vortex, whose
circulation Γ p

k is equal to that of the panel: Γ p
k = γkΔlk , where Δlk is the length

of k-th panel. The vortices are assumed to be located in the middle of the panels
and then integrals in expressions (10.6)–(10.8) can be replaced by sums based on
trapezoidal quadrature. Formula (10.6) for determination of the velocity in the flow
domain takes the following form:

V(r, t) = 1

2π

Nx∑
i=1

Ny∑
j=1

Γij
k × (r − rij )

|r − rij |2 + 1

2π

Np∑
k=1

Γ
p
k

k × (r − rpk )

|r − rpk |2 + V0

(10.14)

where rij and rpk are the radius-vectors of free and bound vortices, respectively.
Singular integral equation (10.9) together with condition (10.10) are reduced to

a system of linear algebraic equations with respect to the circulations of bound
vortices Γ p

k :

Np∑
k=1,k �=m

Γ
p

k

n(rpm) · (rpm − rpk )

|rpm − rpk |2 − πΓ
p
m

Δlm
+ R =

τ (rpm) ·
⎡
⎣V0 +

Nx∑
i=1

Ny∑
j=1

Γij
k × (rpm − rij )

|rpm − rij |2

⎤
⎦ , m = 1, 2, . . . , Np,

(10.15)

Np∑
k=1

Γ
p
k =

Nx∑
i=1

Ny∑
j=1

Γij . (10.16)

Here n(rpm), τ (r
p
m) are the normal and tangent unit vectors to the contourL at them-

th panel, R is the regularizing variable, which is introduced because of the obtained
system is overdetermined. Equation (10.15) are written for the control points rpm,
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those are located in the middle of the panels and coincide with the bound vortices.
Such an approach to constructing a discrete analogue of Eq. (10.7) has been applied
in paper [20], in which the correctness of the quadrature formula for the principal
value of the considered singular integral is substantiated.

The calculated vortex sheet γk = Γ
p
k /Δlk , k = 1, 2, . . . , Np , must be distributed

to neighbor vortices of the fluid domain in accordance with the diffusion equation
and Neumann boundary condition (10.9). In this work, we apply the solution of the
diffusion equation developed by Ploumhans and Winckelmans [21] since it allows
accurate calculation of the vortical flows past bluff bodies of general geometry
including those with great surface curvature.

To simulate the inertial flow separation in the trailing edge of airfoil, the Kutta-
Joukowski condition is used. This is satisfied by appropriate discretization of the
airfoil contour, when the vortex is displaced in the sharp edge and it is transferred
to the flow. Note that the technique has been successfully used by Belotserkovsky
et al. [22] for simulation of viscous flows around bluff bodies with sharp edges.

The velocity-vorticity formulation of the Navier-Stokes equations allows decou-
ple purely kinematical problem from the pressure problem that simplifies sig-
nificantly numerical modeling of fluid flows. To recover the pressure field from
the vorticity and velocity, we integrate the Navier-Stokes equations in the Lamb
representation on the base orthogonal grid (see [19]). The coefficients of the forces
acting on the airfoil are calculated from the pressure distribution on its surface:

CD =
∫

L

p̄nx dx, CL =
∫

L

p̄ny dy, (10.17)

where CD , CL are the coefficients of drag and lift, respectively, nx, ny are the
components of the internal normal to the airfoil and p̄ = 2(p − p∞)/ρV 2

0 is the
pressure coefficient.

10.4 Results

With the vortex method described above, simulations of the fluid flows past an
inclined symmetrical NACA profiles were carried out at Re = 500 and 0◦ ≤ α ≤
60◦. The geometry of such a profile depends on its thickness only and is given by
the following function:

y(x) = ± t

0.2
(0.2969

√
x−0.1260x−0.3516x2+0.2843x3−0.1015x4) (10.18)

where t is the airfoil thickness.
We discuss the evolution of the vortical flow and pressure fields generating

around 8% and 18% airfoils as well as their dynamic characteristics.
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Fig. 10.2 Sketch of the computational grid

10.4.1 Discretization Details

In this study, we adopt the three-level rectangular grid with a constant cell size at
each level as presented in Fig.10.2.

The grid spacing in the domain adjoining the airfoil is chosen as Δx = Δy =
0.005d and the cell size of each next grid is doubled compared with the previous.
The dimensionless width of the calculation region is 10 and the lengths of upstream
and wake regions are 5 and 50, respectively (Fig.10.2). As test calculations have
shown, a further enlargement of the computational domain has no appreciable
influence on kinematic and dynamic flow characteristics to be derived.

The explicit scheme for integration in time is employed and that is why the
normalized time step Δt has to be chosen from the Courant–Friedrichs–Lewy
condition:

max(u, ν)Δt

min(Δx,Δy)
≤ 1

The maximum value of the local flow velocity V (u, ν) obviously depends on the
flowed surface curvature, angle of attack and Reynolds number. As calculations
have shown, the numerical stability for the present flow conditions can be achieved
at Δt = 0.5, where h is the finest grid spacing.

The airfoil contour is sampled with the following equation [22]:

xk = 1 − sin2
(
π
k − 1

Np

)
, k = 1, 2, . . . , Np, (10.19)
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where xk is the abscissa of the control point at zero angle of attack. Its ordinate
is obtained from function (10.18). Note the present calculations are performed at
Np = 200.

The developed numerical scheme was earlier applied by us for modeling
separation flows past bluff bodies and in body systems at moderate Reynolds
numbers. In particular, the results of the detailed calculations for a square prism
at 102 ≤ Re ≤ 103 are presented in [19]. Those demonstrate a good agreement
of the Strouhal number and averaged hydrodynamic loads with related numerical
and experimental studies. A small difference (up to 10%) is only observed for the
amplitudes of non-stationary forces.

We performed also the test calculations of the viscous flow around the
NACA0012 profile at Re = 500 and zero angle of attack. The obtained averaged
fields of vorticity and pressure around the profile are presented in Fig. 10.3a, b.
The results indicate that the main contribution into the wing drag in this flow
configuration is provided by the surface friction, so, the net force acting on the wing
is here calculated from the vorticity field with applying the impulse theorem [13].
The obtained value CD = 0.175 compares very well with CD = 0.1761 reported in
paper [7].

Fig. 10.3 NACA0012 profile at α = 0◦ and Re = 500: (a) vorticity contours, (b) pressure
contours, (c) surface pressure coefficient. The solid line corresponds to the present simulations,
markers illustrate the data from [8]
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Figure 10.3c illustrates the pressure coefficient along the profile and its compari-
son with related data from paper [8]. Remember that calculations in [7, 8] are based
on the PowerFLOW technique, which is in a good concurrency to finite difference
methods used for integrating the Navier-Stokes equations. The above results indicate
that the presented version of the vortex method is able to predict correctly a viscous
flow around an airfoil in the considered range of the Reynolds number.

10.4.2 Vortical Flow Patterns and Frequency Analysis

In this section, the characteristics of the vortex field around an airfoil obtained in
the present simulation are analyzed. The calculations were performed at Re = 500
and α ∈ [0◦, 60◦]. Two symmetrical profiles NACA0008 and NACA0018 were
considered to evaluate the effect of thickness along with other factors. Figure 10.4
illustrates the patterns of near wake past 8%-profile corresponding to different
incidence, at α = 15◦, 20◦, 40◦, 60◦. Here the instantaneous vorticity contours
are presented and the solid lines denote the counter-clockwise rotation, the dash
lines mean clockwise rotation. Figure 10.5 shows the Fourier power spectra of the
velocity at the point located in the airfoil wake at α = 20◦ and α = 40◦. Note the
frequencies in Fig. 10.5 are normalized by V0/d .

It is seen in Fig. 10.4 that the vortical flow pattern past the airfoil changes from
stationary to multiperiodic one in the considered range of angles of attack. In the
stationary regime, when α ≤ 15◦ (Fig. 10.4a), the airfoil wake is composed of the
opposite regular vortex sheets. The clockwise sheet separates from the trailing edge
and the counter-clockwise sheet generates in the front face. When increasing the
angle of attack to α = 20◦, the vortical flow turns into periodic state via a Hopf
bifurcation. It is seen in Fig. 10.4b that the regular von Karman vortex street is
formed past the airfoil in this case. The regularity of the process is confirmed by
the power spectrum of velocity which contains peaks at the primary frequency f1
and its harmonic frequency 2f1 (Fig. 10.5a). The vortices separating from the front
face and in the trailing edge are approximately of the same scale and almost do not
interact with each other. It is obtained in the calculations, the Hopf bifurcation in
the wake of NACA0008 profile occurs at α ≈ 18◦, while a regular vortex street is
observed before α ≈ 30◦.

When α is further increased to 40◦, significant complication of the vortical flow
in the airfoil wake is observed. In this state, both the scale and the strength of
the vortex structures grow, in addition, the opposite vortices intensively interact
(Fig. 10.4c—α = 40◦). The vortex street is relatively stable only at a short distance
from the profile, approximately to x ≈ 12d . Further the opposite vortices push off
from each other; as a result, the wake broadens greatly. The corresponding power
spectrum (Fig. 10.5b) contains a series of peaks at the primary frequency f1 and its
harmonic frequencies 2f1, 3f1 etc. It indicates that the wake is still regular enough
but the presence of low periodic phenomena indicates a strong interaction between
the vortices.
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Fig. 10.4 Instantaneous
vorticity fields in the wake of
NACA0008 profile at
different angles of attack:
|ωmin| = 0.25, |ωmax | = 4;
t = 50. (a) α = 15◦. (b)
α = 20◦. (c) α = 40◦. (d)
α = 60◦

The wake pattern derived at α = 60◦ (Fig. 10.4d) is known as period-doubling
state [23], when opposite vortices form stable vortex pairs without merging. The
clockwise vortex separated from the front face being split into two parts where
the foot is attracted to the counter-clockwise vortex generated in the trailing edge.
This leads to violation of the basic spatial structure of the vortex street but not to
chaotic states in the wake. The power spectrum of velocity in this case is found to
be characterized by occurrence of subharmonic frequency f1/2, which corresponds
to the period of vortex pairing. We have identified also that the transformation of the
wake to the period-doubling state begins at α ≈ 45◦.
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Fig. 10.5 Power spectrum density of the velocity component in the y- direction in the near wake
of NACA0008 profile at different angles of attack: (a) α = 20◦, (b) α = 40◦

Fig. 10.6 Instantaneous vorticity in the wake of NACA0018 profile at α = 15◦, t = 50

It is revealed in the simulation that an increase of the thickness of profile leads
to destabilization of the wake in the sense that transitional phenomena occur earlier
relative to the angle of attack. This fact is confirmed by Fig. 10.6, where the pattern
of vorticity past NACA0018 profile at α = 15◦ is presented. One can see here that
the vortex sheets have disintegrated into the vortex street in contrast to the results
presented in Fig. 10.4a.

The dependence of the main frequency f1, or Strouhal number St on the angle of
attack is presented in Fig. 10.7. The frequency characterizes shedding of large-scale
vortices from the airfoil. The results also reflect the influence of the profile thickness
because the two curves in this figure correspond to NACA0008 and NACA0018
profiles. The obtained vortex shedding frequency is seen to decrease from 0.52 to
0.2 that indicates a significant augmentation in the scale and intensity of the vortex
structures. The effect of profile thickness is significant at smaller angles of attack
from the predetermined range and it disappears with transition to period-doubling
state.

In summary, the results presented show the dominance of viscous effects in the
airfoil flow at the Reynolds number under consideration. Those include the viscous
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Fig. 10.7 Strouhal number
St against the angle of
attack α

Fig. 10.8 Lift and drag
history of NACA0008 profile
at α = 15◦ and α = 20◦

separation of the boundary layer in the front part and intense interaction between
the opposite sheets which leads to its disintegration and establishment of a certain
wake pattern depending on the angle of attack.

10.4.3 Forces

In this section, the dynamic characteristics of the profiles under consideration are
analyzed. It is obvious that the time history of force coefficients correlates with
patterns of vortex shedding by the profile. At the start of the process, a sharp peak
in both force coefficients, CD and CL, is observed in the entire range of an angle of
attack. In the stationary regime, both coefficients reach their steady-state values after
the peak. It is seen in Fig. 10.8, where the time history of CD and CL coefficients
for NACA0008 profile in the stationary regime, at α = 15◦, is presented by the
dotted line.

The pressure field near the profile indicates on the existence of a stable separation
bubble attached to the upper surface at this regime. When an angle of attack
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Fig. 10.9 Lift and drag
history of NACA0008 profile
at α = 40◦

is further increased, the flow on the upper surface of the airfoil separates and
phenomenon known as stall developes. The wake modification at increase of an
angle of attack causes changes in time evolution of airfoil forces. At α = 20◦,
there is a broad bump in CL and CD before the regular oscillations (Fig. 10.8—
solid line) that is a consequence of the gradual development of the separation bubble
into a large leading edge vortex. In contrast, at an angle of attack of α = 40◦, the
leading vortex develops rapidly and it is quite large, so its separation causes force
oscillations that are comparable to action of the trailing edge vortex (Fig. 10.9). The
curves in Figs. 10.8 and 10.9 show increase of both force coefficients when raising
an angle of attack but the drag force grows much faster than the lift force and those
are approximately equal to one another at α = 45◦.

Amplitudes of force coefficients also increase with an angle of attack due to
strengthening the vortices generated by the airfoil. At α < 45◦, the magnitude of
force oscillations is more substantial in the time history of CL than of CD , but
after 45◦ oscillations in drag are more noticeable. It would be mentioned that the
forces reach a maximum value around t = 1.5 for 8%—profile and when the profile
is thickened the value shifts towards a smaller time. Note also that the period T1
in Fig. 10.8 corresponds to the Strouhal number from Fig. 10.7, which has been
calculated from the velocity oscillations in the wake.

Figure 10.10 illustrates the flow dynamics around NACA0008 profile at α = 40◦
by the way of distribution of vorticity (left) and pressure (right). The picture in
Fig. 10.10a describes the fields at the time instance when the lift force coefficient
amounts to its maximum value; on the contrary, Fig. 10.10b corresponds to the lift
force minimum. The leading vortex in Fig. 10.10a is developed enough but it is still
attached to the upper surface of airfoil. This ensures the intense rarefaction over the
airfoil. At this instance, the trailing vortex is separating that causes the widening of
positive pressure region at the lower surface. As a result, the difference between the
upper and lower pressure increases and the airfoil lift achieves its maximum value.
When the leading vortex is separating (Fig. 10.10b) the pressure over the airfoil
grows and the lift force drops to the minimum value. So, at high angles of attack
the lift generation mainly depends on the dynamics of the leading vortex. Besides,
the presented results demonstrate the formation of negative pressure zones not only
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Fig. 10.10 Instantaneous vorticity (on the left) and pressure (on the right) fields around
NACA0008 profile at α = 40◦ (a) at maximum lift (b) at minimum lift

in the airfoil frontal part, as at large Reynolds numbers, but also near the trailing
edge, that is due to the influence of viscosity. When an angle of attack increases, the
strength of the rear recirculation zone growths.

General conclusions about the efficiency of wing systems in the given ranges
of angles of attack and Reynolds number come to light from the analysis of the
time-average loads. The calculated time-average drag CD and lift CL coefficients
as well as the lift-drag ratio CD/CL versus the angle of attack α for the profiles
under consideration are presented in Figs. 10.11 and 10.12, respectively. One can
see three distinctive areas as for behavior of the airfoil forces. In the first area,
the lift gradient is much higher than that of the drag, so the lift-drag ratio grows
to its maximal value. For a NACA0008 profile, the value is about three and it is
reached at α ≈ 12◦. The efficiency of the NACA0018 profile is lower because
its maximum performance is approximately equal to two. So, the thinner wing
has better hydrodynamic characteristics. The conclusion complies with the data
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Fig. 10.11 Time-averaged force coefficients CD and CL against angle of attack α. (a) NACA0008
profile. (b) NACA0018 profile

Fig. 10.12 Aerodynamic performance of NACA0008 and NACA0018 profiles against angle of
attack α



10 Numerical Modeling of the Wing Aerodynamics 177

of experimental study [12], in which the dynamic characteristics of the wings of
different airfoil shapes have been measured at Re = 4 · 103.

In the second area of the above-mentioned the ratio CD/CL drops with increas-
ing an angle of attack but it still remains higher than unit. For both considered
profiles, the lift-drag ratio approaches a unit at α ≈ 45◦. When 45◦ < α ≤ 60◦,
the drag increases rapidly with an angle of attack, at the same time, the lift remains
near a constant value and it even decreases slightly for a NACA0008 profile. So, the
aerodynamic performance drops from 1 to 0.75 in this area.

The results in Fig. 10.11 show that the lift coefficient of NACA0008 profile grows
greatly as compared with that for NACA0018 profile at small angles of attack from
the range under consideration. Those are just the angles at which an effect of the
profile thickness on the aerodynamic performance is maximal. Further an influence
of viscosity and nonstationarity on the airfoil flow exceeds geometrical effects;
accordingly the loads on both profiles are almost equal.

The estimates obtained in the present simulation are important for understanding
the flow evolution and loads developing when wing systems operate at a low
Reynolds number and in the wide range of angles of attack.

10.5 Conclusion

In this paper, the vortex numerical scheme is implemented to simulation of a two-
dimensional viscous flow around wing profiles. The scheme was shown to calculate
correctly non-stationary fields of vorticity and pressure as well as aerodynamics
characteristics of wings at Reynolds numbers lying in the range from 102 to 103.

The developed technique is used for modeling a vortex flow past symmetrical
NACA0008 and NACA0018 profiles at Re = 500 and angles of attack from 0◦ to
60◦. The obtained results indicate the domination of viscous effects in the airfoil
flow in this case. The rise of α is shown to lead to changing the vortical flow
pattern in the wake from stationary to multiperiodic through the Hopf bifurcation
and period-doubling bifurcation.

Calculations of the airfoil dynamic characteristics corresponding to these regimes
revealed that the highest lift-drag ratio is achieved with the stationary flow, at
α < 15◦. When an angle of attack increases, the aerodynamic performance drops to
values less than one, which is due to a significant increment in the drag.

As follows from the pressure fields, the lift generation is mainly conditioned by
the dynamics of the separation bubble on the upper surface of profile, as in the case
of large Reynolds numbers.

A comparison of dynamic characteristics of NACA0008 and NACA0018 profiles
revealed that the thinner profile has better performance but the flow around the thick
one is more regular. The effect of the profile thickness on the force coefficients is
significant only in the stationary flow regime.
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In general, the results obtained in this work show that operation of wing systems
at low Reynolds numbers is significantly different from traditional aerodynamic
regimes due to the domination of viscous effects in the flow.
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Chapter 11
Strong Solutions of the Thin Film
Equation in Spherical Geometry

Roman M. Taranets

Abstract We study existence and long-time behaviour of strong solutions for the
thin film equation using a priori estimates in a weighted Sobolev space. This
equation can be classified as a doubly degenerate fourth-order parabolic and it
models coating flow on the outer surface of a sphere. It is shown that the strong
solution asymptotically decays to the flat profile.

11.1 Introduction

In this paper, we study the following doubly degenerate fourth-order parabolic
equation

ut +
(
(1 − x2)|u|n((1 − x2)ux)xx

)
x

= 0 in QT , (11.1)

where QT = Ω × (0, T ), n > 0, T > 0, and Ω = (−1, 1). This equation describes
the dynamics of a thin viscous liquid film on the outer surface of a solid sphere.
More general dynamics of the liquid film for the cases when the draining of the
film due to gravity were balanced by centrifugal forces arising from the rotation
of the sphere about a vertical axis and by capillary forces due to surface tension
was considered in [12]. In addition, Marangoni effects due to temperature gradients
were taken into account in [13]. The spherical model without the surface tension
and Marangoni effects was studied in [15, 17].

In [12], the authors derived the following equation for no-slip regime in
dimensionless form

ht + 1
sin θ (h

3 sin θ J )θ = 0,

J := a sin θ + b sin θ cos θ + c[2h+ 1
sin θ (sin θ hθ )θ ]θ ,
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where h(θ, t) represent the thickness of the thin film, θ ∈ (0, π) is the polar angle in
spherical coordinates, with t denoting time; the dimensionless parameters a, b and
c describe the effects of gravity, rotation and surface tension, respectively. After the
change of variable x = − cos θ , this equation can be written in the form:

ht + [h3(1 − x2)(a − bx + c(2h+ ((1 − x2)hx)x)x)]x = 0, (11.2)

where x ∈ (−1, 1). As a result, Eq. (11.1) for n = 3 is a particular case of (11.2)
for no-slip regime. On the other hand, (11.1) for n < 3 generalises (11.2) with
a = b = 0 for different slip regimes, for example, like weak or partial wetting.

In contrast to the classical thin film equation:

ut + (|u|nuxxx
)
x

= 0, (11.3)

which describes the behaviour of a thin viscous film on a flat surface under the effect
of surface tension, Eq. (11.1) is not yet well analysed. To the best of our knowledge,
there is only one analytical result [14], where the authors proved existence of weak
solutions in a weighted Sobolev space. In 1990, Bernis and Friedman [3] constructed
non-negative weak solutions of the equation (11.3) when n � 1, and it was also
shown that for n � 4, with a positive initial condition, there exists a unique positive
classical solution. In 1994, Bertozzi et al. [4] generalised this positivity property
for the case n � 7

2 . In 1995, Beretta et al. [2] proved the existence of non-negative
weak solutions for the equation (11.3) if n > 0, and the existence of strong ones
for 0 < n < 3. Also, they could show that this positivity-preserving property holds
for almost every time t in the case n � 2. A similar result on a cylindrical surface
was obtained in [9, 10]. Regarding the long-time behaviour, Carrillo and Toscani [8]
proved the convergence to a self-similar solution for equation (11.3) with n = 1 and
Carlen and Ulusoy [7] gave an upper bound on the distance from the self-similar
solution. A similar result on a cylindrical surface was obtained in [1, 5].

In the present article, we obtain the existence of weak solutions in a wider
weighted classes of functions than it was done in [14]. Moreover, we show the
existence of non-negative strong solutions and we also prove that this solution
decays asymptotically to the flat profile. Note that (11.1) loses its parabolicity not
only at u = 0 (as in (11.3)) but also at x = ±1. For this reason, it is natural to seek
solution in a Sobolev space with weight 1 − x2. For example, it is the well-known
that the non-negative steady state of Eq. (11.3) for x ∈ (−1, 1) has the form

us(x) = c1(1 − x2)+ c2, where ci � 0.

On the other hand, the Eq. (11.1) has the following non-negative steady state

us(x) = (c1 + c2) ln(1 + x)+ (c1 − c2) ln(1 − x)+ c3,

where 0 � |c2| � −c1, c3 � −(c1 + c2) ln(1 + c2
c1
) + (c1 − c2) ln(1 − c2

c1
), hence

us(x) → +∞ as x → ±1.
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11.2 Existence of Strong Solutions

We study the following thin film equation

ut +
(
(1 − x2)|u|n

(
(1 − x2)ux

)
xx

)
x

= 0 in QT (11.4)

with the no-flux boundary conditions

(1 − x2)ux = (1 − x2)
(
(1 − x2)ux

)
xx

= 0 at x = ±1, t > 0, (11.5)

and the initial condition

u(x, 0) = u0(x) � 0. (11.6)

Here n > 0,QT = Ω×(0, T ),Ω := (−1, 1), and T > 0. Integrating the Eq. (11.4)
by using boundary conditions (11.5), we obtain the mass conservation property

∫

Ω

u(x, t)dx =
∫

Ω

u0(x)dx =: M > 0. (11.7)

Consider initial data u0(x) � 0 for all x ∈ Ω̄ satisfying

∫

Ω

{u2
0(x)+ (1 − x2)u2

0,x(x)}dx < ∞. (11.8)

Definition 11.1 (Weak Solution) Let n > 0. A function u is a weak solution of
the problem (11.4)–(11.6) with initial data u0 satisfying (11.8) if u(x, t) has the
following properties

(1 − x2)
β
2 u ∈ C

α
2 ,

α
8

x,t (Q̄T ), 0 < α < β � 2
n
,

ut ∈ L2(0, T ; (H 1(Ω))∗), (1 − x2)
1
2 ux ∈ L∞(0, T ;L2(Ω)),

(1 − x2)
1
2 |u| n2 ((1 − x2)ux)xx ∈ L2(P ),

u satisfies (11.4) in the following sense:

T∫

0

〈ut , φ〉 dt −
∫∫

P

(1 − x2)|u|n((1 − x2)ux)xxφx dxdt = 0
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for all φ ∈ L2(0, T ;H 1(Ω)), where P := Q̄T \ {{u = 0} ∪ {t = 0}},

(1 − x2)
1
2 ux(., t) → (1 − x2)

1
2 u0,x(.) strongly in L2(Ω) as t → 0,

and boundary conditions (11.5) hold at all points of the lateral boundary, where
{u �= 0}.

Let us denote by

0 � G0(z) :=

⎧
⎪⎪⎨
⎪⎪⎩

z2−n−A2−n
(n−1)(n−2) − A1−n

1−n (z− A) if n �= 1, 2,

z ln z− z(lnA+ 1)+ A if n = 1,

ln(A
z
)+ z

A
− 1 if n = 2,

(11.9)

where A � 0 if n ∈ (1, 2) and A > 0 if else. Next, we establish existence of a more
regular solution u of (11.4) than a weak solution in the sense of Definition 11.1.
Besides, we show that L1-norm of this strong solution u decays to M

|Ω| .

Theorem 11.1 (Strong Solution) Assume that n � 1 and initial data u0 satisfies∫
Ω

G0(u0) dx < +∞ then the problem (11.4)–(11.6) has a non-negative weak

solution, u, in the sense of Definition 11.1, such that

(1 − x2)ux ∈ L2(0, T ;H 1(Ω)), (1 − x2)
γ
2 ux ∈ L2(QT ), γ ∈ (0, 1],

u ∈ L∞(0, T ;L2(Ω)), (1 − x2)
μ
2 u ∈ L2(QT ), μ ∈ (−1, β].

Moreover, if n ∈ [1, 2) then there exist positive constants A, B depending on initial
data and n such that

‖u− M
|Ω| ‖L1(Ω) � A

1+B t → 0 as t → +∞.

11.3 Proof of Theorem 11.1

11.3.1 Regularised Problems

Equation (11.4) is doubly degenerate when u = 0 and x = ±1. For this reason, for
any ε > 0 and δ > 0 we consider two-parametric regularised equations

uεδ,t +
[
(1 − x2 + δ)(|uεδ|n + ε)

(
(1 − x2 + δ)uεδ,x

)
xx

]
x

= 0 in QT (11.10)

with boundary conditions

uεδ,x =
(
(1 − x2 + δ)uεδ,x

)
xx

= 0 at x = ±1, (11.11)
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and initial data

uεδ(x, 0) = u0,εδ(x) ∈ C4+γ (Ω̄), γ > 0, (11.12)

where

u0,εδ(x) � u0δ(x)+ εθ , θ ∈ (0, 1
2(n−1) ), (11.13)

u0,εδ → u0δ strongly in H 1(Ω) as ε → 0, (11.14)

(1 − x2 + δ)
1
2 u0x,δ → (1 − x2)

1
2 u0,x strongly in L2(Ω) as δ → 0. (11.15)

The parameters ε > 0 and δ > 0 in (11.10) make the problem regular up to
the boundary (i.e. uniformly parabolic). The existence of a local in time solution
to (11.10) is guaranteed by the Schauder estimates in [11]. Now suppose that uεδ is
a solution of equation (11.10) and that it is continuously differentiable with respect
to the time variable and fourth order continuously differentiable with respect to the
spatial variable.

11.3.2 Existence of Weak Solutions

In order to get an a priori estimation for uεδ , we multiply both sides of Eq. (11.10)
by −[(1 − x2 + δ)uεδ,x]x and integrate over Ω by (11.11). This gives us

1
2
d
dt

∫

Ω

(1 − x2 + δ)u2
εδ,x dx+

∫

Ω

(1 − x2 + δ)(|uεδ|n + ε)[(1 − x2 + δ)uεδ,x]2
xx dx = 0. (11.16)

Integrating (11.16) in time, we get

1
2

∫

Ω

(1 − x2 + δ)u2
εδ,x dx+

∫∫

QT

(1 − x2 + δ)(|uεδ|n + ε)[(1 − x2 + δ)uεδ,x]2
xx dxdt =

1
2

∫

Ω

(1 − x2 + δ)u2
0x,εδ dx. (11.17)
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By (11.15) we have

∫

Ω

(1 − x2 + δ)u2
εδ,x dx � C0, (11.18)

where C0 > 0 is independent of ε and δ. From (11.18) and (11.17) it follows that

{uεδ}ε>0 is uniformly bounded in L∞(0, T ;H 1(Ω)), (11.19)

{(1 − x2 + δ)
1
2 (|uεδ|n + ε)

1
2 [(1 − x2 + δ)uεδ,x]xx}ε, δ>0 is u. b. in L2(QT ).

(11.20)

By (11.19) and (11.20), using the same method as [3], we can prove that solutions
uεδ have uniformly (in ε) bounded C1/2,1/8

x,t -norms. By the Arzelà-Ascoli theorem,
this equicontinuous property, together with the uniformly boundedness shows that
every sequence {uεδ}ε>0 has a subsequence such that

uεδ → uδ uniformly in QT as ε → 0. (11.21)

As a result, we obtain a solution uδ of the problem (11.10)–(11.12) with ε = 0 in
the sense of [3, Theorem 3.1, pp. 185–186].

Next, we show that the family of solutions {uδ}δ>0 is uniformly bounded in some
weighted space. Using the conservation of mass property

∫

Ω

uδ(x, t)dx = Mδ > 0, (11.22)

we arrive at

|uδ − Mδ|Ω| | =
∣∣∣

x∫

x0

ux dx

∣∣∣ �
( ∫

Ω

(1 − x2)u2
x dx

) 1
2
( x∫

x0

dx

1−x2

) 1
2
. (11.23)

Multiplying (11.23) by (1 − x2)
β
2 , where β > 0, by (11.18) we deduce that

(1 − x2)
β
2 |uδ − Mδ|Ω| | � (C0

2 )
1
2

(
(1 − x2)β ln( (1+x)(1−x0)

(1−x)(1+x0)
)
) 1

2 � C1 (11.24)

for all x ∈ Ω̄ , where C1 > 0 is independent of δ > 0. From (11.24) we find that

{(1 − x2)
β
2 uδ}δ>0 is u. b. in QT for any β > 0. (11.25)
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In particular, by (11.18) we get

(1 − x2)
β
2 |uδ(x1, t)− uδ(x2, t)| � C2|x1 − x2| α2 ∀ x1, x2 ∈ Ω, α ∈ (0, β).

(11.26)

By (11.20), (11.25) and (11.26) with β ∈ (0, 2
n
], using the same method as [3,

Lemma 2.1, p. 183], we can prove similarly that

(1 − x2)
β
2 |uδ(x, t1)− uδ(x, t2)| � C3|t1 − t2| α8 ∀ t1, t2 ∈ (0, T ). (11.27)

The inequalities (11.26) and (11.27) show the uniform (in δ) boundedness of a

sequence {(1 − x2)
β
2 uδ}δ>0 in the C

α
2 ,

α
8

x,t -norm. By the Arzelà-Ascoli theorem,
this a priori bound together with (11.25) shows that as δ → 0, every sequence

{(1 − x2)
β
2 uδ}δ>0 has a subsequence {(1 − x2)

β
2 uδk }δk>0 such that

(1 − x2)
β
2 uδk → (1 − x2)

β
2 u uniformly in Q̄T as δk → 0. (11.28)

Following the idea of proof [3, Theorem 3.1], we obtain a solution u of the
problem (11.10)–(11.12) in the sense of Definition 11.1.

11.3.3 Existence of Strong Solutions

Let us denote by Gε(z) the following function

Gε(z) � 0 ∀ z ∈ R, G′′
ε (z) = 1

|s|n+ε .

Now we multiply Eq. (11.10) by G′
ε(uεδ) and integrate over Ω to get

d
dt

∫

Ω

Gε(uεδ(x, t)) dx +
∫

Ω

[(1 − x2 + δ)uεδ,x]2
x dx = 0. (11.29)

After integration in time, Eq. (11.29) becomes

∫

Ω

Gε(uεδ(x, T )) dx +
∫∫

QT

[(1 − x2 + δ)uεδ,x]2
x dxdt =

∫

Ω

Gε(u0,εδ(x)) dx.

(11.30)

We compute

G′′
0(z)−G′′

ε (z) = ε
|z|n(|z|n+ε) ,
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and consequently

G0(z)−Gε(z) = ε

z∫

A

v∫

A

dsdv
|s|n(|s|n+ε) ,

whereA is some positive constant. As u0,εδ(x) is bounded then by (11.13) it follows
that

|G0(u0,εδ(x))−Gε(u0,εδ(x))| � C ε1−2θ(n−1) → 0 as ε → 0,

and therefore, due to (11.14), we have

∫

Ω

Gε(u0,ε(x)) dx →
∫

Ω

G0(u0δ(x)) dx as ε → 0. (11.31)

As a result, by (11.30), (11.31) we deduce that

∫

Ω

Gε(uεδ(x, T )) dx � C4, (11.32)

{(1 − x2 + δ)uεδ,x}ε, δ>0 is u. b. in L2(0, T ;H 1(Ω)), (11.33)

where C4 > 0 is independent of ε and δ. Similar to [3, Theorem 4.1, p. 190],
using (11.19) and (11.32), we can show that the limit solution uδ is non-negative if
n ∈ [1, 4) and strictly positive if n � 4. Next, letting δ → 0, we get a non-negative
strong solution.

11.3.4 Asymptotic Behaviour

First of all, note that the energy functional E0(u(t)) := 1
2

∫
Ω

(1 − x2)u2
x dx is

decaying (by (11.16) with ε = δ = 0), bounded from below and lower semi-
continuous it must have a minimizer, umin(x), which is continuous on Ω . Taking
into account the mass conservation, we find that umin(x) = M

|Ω| and

E0(u(t)) → 0 as t → +∞.

Next, we will use the mass conservation property (11.22) and the following
interpolation inequality.

Lemma 11.1 ([6]) Let p, q , r , α, β, γ , σ and θ be real numbers satisfying p, q �
1, r > 0, 0 � θ � 1, γ = θσ + (1 − θ)β, 1

p
+ α

n
> 0, 1

q
+ β

n
> 0 and 1

r
+ γ

n
> 0.
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There exists a positive constant C such that the following inequality holds for all
v ∈ C∞

0 (Rn) (n � 1)

‖|x|γ v‖Lr � C‖|x|α|Dv|‖θLp‖|x|βv‖1−θ
Lq

if and only if

1
r

+ γ
n

= θ
(

1
p

+ α−1
n

)
+ (1 − θ)

(
1
q

+ β
n

)

and
{

0 � α − σ if a > 0
α − σ � 1 if a > 0 and 1

p
+ α−1

n
= 1

r
+ γ

n
.

Applying Lemma 11.1 to v = uδ − Mδ|Ω| with Ω = (−1, 1), γ = β = 0, α = 1
2 ,

r = p = 2, q = 1, n = 1, and θ = 1
2 , we have

‖uδ − Mδ|Ω| ‖2 � CN‖(1 − x2)
1
2 uδ,x‖θ2‖uδ − Mδ|Ω| ‖1−θ

1 ,

whence for uδ � 0 we deduce that

∫

Ω

(uδ − Mδ|Ω| )
2 dx � 2MδC

2
N

( ∫

Ω

(1 − x2)u2
δ,x dx

) 1
2
. (11.34)

Next, we will use the following Hardy’s inequality

1∫

−1

(1 − x2)−1v2(x) dx � CH

1∫

−1

v2
x(x) dx (11.35)

for all v ∈ H 1(−1, 1) such that v(±1) = 0, where CH = 4K ≈ 7.028. Really,
using integration by parts and Cauchy inequality, we have

1∫

−1

(1 − x2)−1v2(x) dx = v2(x) ln( 1+x
1−x )

∣∣∣∣
1

−1
− 2

1∫

−1

v(x)vx(x) ln( 1+x
1−x ) dx �

2
( 1∫

−1

(1 − x2)−1v2(x) dx
) 1

2
( 1∫

−1

(1 − x2)(ln( 1+x
1−x ))

2v2
x(x) dx

) 1
2
.
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As v(x) ∈ C
1
2 [−1, 1] then v2(x) ln( 1+x

1−x ) = 0 at x = ±1. From here we find that

1∫

−1

(1 − x2)−1v2(x) dx � 2
( 1∫

−1

(1 − x2)−1v2(x) dx
) 1

2
(
K

1∫

−1

v2
x(x) dx

) 1
2
,

where

K := max[−1,1](1 − x2)(ln( 1+x
1−x ))

2 ≈ 1.757,

whence it follows (11.35).
Applying (11.35) to v = (1 − x2)ux , we obtain that

∫

Ω

(1 − x2)u2
x dx � CH

∫

Ω

[(1 − x2)ux]2
x dx,

whence, due to (11.34), we find that

1
4CHM2

δ C
4
N

( ∫

Ω

(uδ − Mδ|Ω| )
2 dx

)2
�

∫

Ω

[(1 − x2)ux]2
x dx. (11.36)

Assume that n ∈ [1, 2). Taking A = Mδ|Ω| in the definition of G0(z), we have

0 � G0(z) � Cn(z− Mδ|Ω| )
2 for all z � 0,

where Cn depends on n only. As a result, by (11.36)

1
4CHM2

δ C
4
NC

2
n

( ∫

Ω

G0(uδ) dx
)2

�
∫

Ω

[(1 − x2)ux ]2
x dx. (11.37)

Taking δ → 0 in (11.30), due to (11.37), we arrive at

∫

Ω

G0(u) dx + B0

t∫

0

( ∫

Ω

G0(uδ) dx
)2
ds � A0 :=

∫

Ω

G0(u0) dx, (11.38)

where B0 := 1
4CHM2C4

NC
2
n

. From (11.38) by comparing to the solution y(t) of the

problem for ODE

y ′(t)+ B0y
2(t) = 0, y(0) = A0,
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we get

0 �
∫

Ω

G0(u) dx � A0
1+A0B0t

→ 0 as t → +∞. (11.39)

As a result, applying Csiszár-Kullback inequality [16], by (11.39) we obtain

‖u− M
|Ω| ‖L1(Ω) � A0

1+A0B0t
→ 0 as t → +∞

provided n ∈ [1, 2). This proves Theorem 11.1 completely. �
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Chapter 12
Sequence Spaces with Variable
Exponents for Lattice Systems
with Nonlinear Diffusion

Xiaoying Han, Peter E. Kloeden, and Jacson Simsen

Abstract Motivated by the study of lattice dynamical systems, i.e., infinite dimen-
sional systems of ordinary differential equations, with nonlinear and state dependent
diffusion, a new sequence space with variable exponents is introduced. In particular,
given an exponent sequence p = (pi)i∈Z, a discrete Musielak-Orlicz space of real
valued bi-infinite sequences �p is defined and equipped with a norm ‖ · ‖p induced
by a semi-modular ρ(·). Properties of ‖ · ‖p and ρ(·), as well as properties of the
space (�p, ‖ · ‖p) are discussed in greater detail. While these properties largely
facilitate dynamical analysis of a much wider class of lattice systems, this work is a
step towards the construction of an integral mathematical framework for the study
of lattice models with complicated diffusion structures.

12.1 Introduction

The simplest lattice dynamical system (LDS) has the form

dui
dt

= ν(ui−1 − 2ui + ui+1)+ f (ui), i ∈ Z, (12.1)
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where ui ∈ R for each i ∈ Z and f : R → R satisfies proper conditions. The
LDS (12.1) can be viewed as the spatial discretization of the reaction-diffusion
equation ∂u

∂t
= νΔu + f (u) on a one-dimensional domain, where the Laplacian

operator Δ is discretized by using a finite difference quotient to obtain the leading
operator

(Au)i := ui−1 − 2ui + ui+1. (12.2)

Extensive studies have been done to investigate long term dynamics for variations
of the system (12.1) in the forcing term (see, e.g., [1, 2, 8, 16, 17] and references
therein), but mostly with the same leading operator A as defined in (12.2). Such
systems can be formulated as a deterministic or stochastic ordinary differential
equation in the Hilbert space �2of real valued square summable bi-infinite sequences
with the inner product and the norm

(u, v) :=
∑
i∈Z

uivi , ‖u‖2 :=
(∑
i∈Z

u2
i

) 1
2

for u = (ui)i∈Z, v = (vi)i∈Z ∈ �2.

Notice that the operator A defined in (12.2) describes the simplest linear tri-
diagonal interconnection structure that allows only linear and uniform diffusion
within the nearest neighborhood. This excludes numerous applications where the
diffusion does not follow a linear or a uniform structure such as cell dynamics (see,
e.g., [4, 15]). To model nonlinear diffusion, a lattice dynamical system with the
discretized p-Laplacian operator

(Γ u)i := ∣∣D+ui
∣∣p−2

D+ui − ∣∣D−ui
∣∣p−2

D−ui (12.3)

where D+ui := ui+1 −ui and D−ui := ui −ui−1, was proposed and studied in [7]
in the space �p of p-times summable bi-infinite sequences with norm

‖u‖p :=
(∑
i∈Z

u
p
i

)1/p

, for u = (ui)i∈Z ∈ �p.

To further model nonlinear and state dependent diffusive structures, the p(x)-
Laplacian operator div

(|∇u|p(x)−2∇u) had been used in the continuum context
(see, e.g., [9, 10]). Thereby partial differential equations with the p(x)-Laplacian
on a bounded smooth domain Ω ∈ R

n were studied in the function space Lp(·)
defined by

Lp(·)(Ω) :=
{
u : Ω → R : u is measurable,

∫

Ω

|u(x)|p(x)dx < ∞
}
, (12.4)
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with the exponent function p(·) ∈ C (Ω̄) satisfying

1 < min
x∈Ω

p(x) ≤ max
x∈Ω

p(x).

On the contrary, lattice dynamical systems with nonlinear and state dependent
diffusion operators have never been studied in the past. A major obstacle is that the
most important coercive properties of the diffusion operator to investigate behavior
of solutions may not hold in the classical sequence spaces such as �2 or �p when the
operator is state dependent and nonlinear. New spaces and techniques are required
to study the dynamics of such systems.

The goal of this work is to construct a new sequence space with variable
exponents which is an analog to the function space Lp(·), that allows the exponent p
in �p to vary with respect to the state. In particular, the spatially uniform exponent
p is generalized to state dependent exponents described by an infinite sequence
p := (pi)i∈Z. Such spaces show strong relevance to lattice dynamical systems with
nonlinear and state dependent diffusion, but have never been studied systematically
in the past.

The rest of this paper is organized as follows. In Sect. 12.2 we formulate the
new sequence space �p and define a semi-modular ρ(·) and a norm ‖ · ‖p on it. In
Sect. 12.3 we investigate properties of ρ(·) and ‖ · ‖p, which are essential to study
dynamics of lattice models in the space �p. In Sect. 12.4 we show that the space �p
equipped with the norm ‖·‖p is a separable and reflexive Banach space. In addition,
a weak compact embedding theorem and a Hölder-like inequality are established.
Some closing remarks are provided in Sect. 12.5.

12.2 Formulation of Sequence Spaces with Variable
Exponents

The formulation of �p arises from the function space Lp(·) defined in (12.4). More
precisely, the exponent functionp(x)will be descritized into a real valued bi-infinite
sequences p = (pi)i∈Z, with pi = p(iΔx) and Δx is the spatial scaling. Define

p− := inf
i∈Zpi, p+ := sup

i∈Z
pi.

It is assumed throughout the paper that

(P0) 1 < p− ≤ p+ < ∞.

Given such an exponent sequence p, define the discrete Musielak-Orlicz space
of real valued bi-infinite sequences �p as

�p :=
{

u = (ui)i∈Z :
∑
i∈Z

|ui |pi < ∞
}
. (12.5)
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Such spaces were first considered by Orlicz [14] in 1931, and later appeared
scatteredly in textbooks and a few papers (see, e.g., [12, 13]).

The new �p space can be regarded as a discretised counterpart of Lp(·), but does
not share the same properties. For example, �2 ⊂ �p while Lp(·)(Ω) ⊂ L2(Ω)

on any bounded domain Ω when p− ≥ 2. In fact, the space Lp(·) is defined on
a bounded domain Ω but the space �p is defined on an infinite lattice, which is
essentially an unbounded domain. As a result, the properties of �p ought to be
studied by techniques different from those used for Lp(·).

We first show that the space �p is a linear space (see Lemma 12.1 below). For
any u = (ui)i∈Z ∈ �p define the mapping ρ : �p → R

+ by

ρ(u) :=
∑
i∈Z

|ui |pi , (12.6)

and the mapping ‖ · ‖p : �p → R
+ by

‖u‖p := inf
{
λ > 0 : ρ

(u

λ

)
≤ 1

}
. (12.7)

We will then show that ‖ · ‖p is a norm on the linear space �p (see Lemma 12.2
below).

Lemma 12.1 The space �p defined in (12.5) is a linear space.

Proof First of all it is obvious that the zero sequence 0 is in �p. We next show that
�p is closed under component-wise scalar multiplication and addition.

1. (Scalar multiplication) For any scalar α ∈ R, define

ζ(α) :=
{
p−, |α| ≤ 1,
p+, |α| > 1.

(12.8)

Then |α|pi ≤ |α|ζ(α) for all i ∈ Z. Thus for any u = (ui)i∈Z ∈ �p,

∑
i∈Z

|αui |pi =
∑
i∈Z

|α|pi |ui |pi ≤ |α|ζ(α)
∑
i∈Z

|ui |pi < ∞,

which implies that αu ∈ �p.
2. (Addition) First note that for any p ≥ 1 the function x �→ |x|p is convex on R

+.
Then for any u = (ui)i∈Z, v = (vi)i∈Z ∈ �p,

|ui + vi |pi =
∣∣∣∣
1

2
(2ui)+ 1

2
(2vi)

∣∣∣∣
pi

≤ 1

2
|2ui |pi + 1

2
|2vi |pi

≤ 2pi−1|ui |pi + 2pi−1|vi |pi ,
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which implies that

∑
i∈Z

|ui + vi |pi ≤ 2p
+−1

(∑
i∈Z

|ui |pi +
∑
i∈Z

|vi |pi
)
< ∞, (12.9)

i.e., u + v ∈ �p. �
From Part II of the above proof we can deduce that ρ is a convex mapping. For

later reference we give an explicit statement and a direct proof below.

Corollary 12.1 The mapping ρ : �p → R
+ is convex.

Proof For any u, v ∈ �p and θ ∈ [0, 1], by Lemma 12.1, θu, (1−θ)v, θu+(1−θ)v
∈ �p. The mapping x �→ |x|p is convex for p ≥ 1, so for each i ∈ Z

|θui + (1 − θ)vi |pi ≤ θ |ui |pi + (1 − θ)|vi |pi ,

and thus

ρ(θu + (1 − θ)v) =
∑
i∈Z

|θui + (1 − θ)vi |pi

≤ θ
∑
i∈Z

|ui |pi + (1 − θ)
∑
i∈Z

|vi |pi = θρ(u)+ (1 − θ)ρ(v),

i.e., ρ is convex. �
Lemma 12.2 ‖ · ‖p defined in (12.7) is a norm on the linear space �p.

Proof First observe that ‖u‖p < ∞ for all u ∈ �p. In fact, for each given u ∈ �p the
set {λ > 0 : ρ(u/λ) ≤ 1} is bounded below by zero, and hence the completeness
property of real numbers guaranties the existence of

inf
{
λ > 0 : ρ

(u

λ

)
≤ 1

}
∈ R.

We next show the positive definiteness, scalar multiplication and triangular inequal-
ity for ‖ · ‖p .

1. (Positive definiteness) If u = 0, then ui = 0 for each i ∈ Z, and thus ui/λ = 0
for each i ∈ Z. As a result ρ(u/λ) = 0 for each λ > 0, from which it follows that
‖0‖p = 0.

On the other hand, if ‖u‖p = 0, then there is a positive sequence λn → 0+
such that ρ(u/λn) ≤ 1. Suppose (for contradiction) that u �= 0, then there exists
an ι ∈ Z such that uι �= 0. It then follows that |uι|pι/λn ≤ ρ(u/λn) ≤ 1, and
hence 0 < |uι|pι ≤ λn → 0+ as n → ∞, which contradicts with uι �= 0.
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2. (Scalar multiplication) For any u ∈ �p and α ∈ R, αu ∈ �p and in addition

‖αu‖p = inf
{
λ > 0 : ρ

(αu

λ

)
≤ 1

}
= inf

{
λ = μ|α| > 0 : ρ

(
u

μ

)
≤ 1

}

= |α| inf
{
μ > 0 : ρ

(
u

μ

)
≤ 1

}
= |α| · ‖u‖p .

3. (Triangular inequality) For any u, v ∈ �p, u + v ∈ �p. Given an arbitrary ε > 0,
by properties of infimum there exist λu, λv ∈ {λ > 0 : ρ(u/λ) ≤ 1} such that

λu < ‖u‖p + ε and λv < ‖v‖p + ε.

with ρ
(

u
λu

)
≤ 1 and ρ

(
v
λv

)
≤ 1. Let θ := λu

λu+λv , then by the convexity of ρ

we have

ρ

(
u + v

λu + λv

)
≤ θρ

(
u

λu

)
+ (1 − θ)ρ

(
v

λv

)
≤ 1.

It then follows from the definition of ‖ · ‖p that

‖u + v‖p ≤ λu + λv < ‖u‖p + ‖v‖p + 2ε.

Since ε > 0 is arbitrary, then

‖u + v‖p ≤ ‖u‖p + ‖v‖p.

�
Now define the sequence space with variable exponents by

P := (�p, ‖ · ‖p).

While properties for Lp and Lp(·) spaces have been well documented (see, e.g.,
[5, 6, 11]), properties of the space P have only appeared scatteredly in different
sources. One of main aims of this work is to establish properties of P that do not
exist in the literature. They are closely related to the properties of the semi-modular
ρ and norm ‖ · ‖p, which are constructed in the next Section.

12.3 Properties of ρ and ‖ · ‖p

In this section we discuss important properties of the semi-modular ρ and the norm
‖ · ‖p , as well as relations between them.
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Lemma 12.3 For every u ∈ �p and α ∈ R, the mapping ρ defined in (12.6)
satisfies

(i) ρ(αu) ≤ |α|ρ(u) if |α| ≤ 1 and ρ(αu) ≥ |α|ρ(u) if |α| ≥ 1;
(ii) ρ(u) ≤ αρ(u) ≤ αp

−
ρ(u) ≤ ρ(αu) ≤ αp

+
ρ(u) if α ≥ 1, and

ρ(u) ≥ αρ(u) ≥ αp
−
ρ(u) ≥ ρ(αu) ≥ αp

+
ρ(u) if 0 < α < 1;

(iii) the mapping α �→ ρ(αu) is continuous;
(iv) the mapping α �→ ρ(αu) increasing for α > 0 and decreasing for α < 0.

Proof

(i) For |α| ≤ 1, |α|pi ≤ |α|p− ≤ |α|, and thus

ρ(αu) =
∑
i∈Z

|α|pi |ui |pi ≤
∑
i∈Z

|α|p−|ui |pi ≤ |α|
∑
i∈Z

|ui |pi = |α|ρ(u).

For |α| ≥ 1, by convexity of ρ,

ρ(u) = ρ

(
1

|α| |α|u +
(

1 − 1

|α|
)

0
)

≤ 1

|α|ρ(|α|u).

It then follows immediately that ρ(αu) = ρ(|α|u) ≥ |α|ρ(u).
(ii) If α ≥ 1,

|ui |pi ≤ α|ui |pi ≤ αp
−|ui |pi ≤ |αui |pi ≤ αp

+|ui |pi

and if 0 < α < 1

|ui |pi ≥ α|ui |pi ≥ αp
−|ui |pi ≥ |αui |pi ≥ αp

+|ui |pi .

Summing all the inequalities for i ∈ Z gives the result.
(iii) For any α0 ∈ R, u ∈ �p, due to the continuity of α �→ |α|pi for every ε > 0

there exists δi > 0 such that

∣∣|α|pi − |α0|pi
∣∣ < ε

ρ(u)
, for all |α − α0| < δi.

Let δ := infi∈Z δi , then δ > 0 and for every |α − α0| < δ we have

|ρ(αu)− ρ(α0u)| ≤
∑
i∈Z

∣∣|α|pi − |α0|pi
∣∣ · |ui |pi < ε

ρ(u)

∑
i∈Z

|ui |pi = ε,

which implies the continuity of the mapping α �→ ρ(αu).
(iv) For any 0 < α1 < α2, 0 < α1/α2 < 1 and thus

ρ(α1u) = ρ

(
α1

α2
α2u

)
≤ α1

α2
ρ(α2u) < ρ(α2u).
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Similarly for α1 < α2 < 0, α1/α2 > 1 and thus

ρ(α1u) = ρ

(
α1

α2
α2u

)
≥ α1

α2
ρ(α2u) > ρ(α2u).

�
Theorem 12.1 (Unit Ball Theorem) For every u ∈ �p,

(i) ρ(u) < 1 if and only if ‖u‖p < 1;
(ii) ρ(u) ≤ 1 if and only if ‖u‖p ≤ 1;
(iii) ρ(u) ≥ 1 if and only if ‖u‖p ≥ 1;
(iv) ‖u‖p = 1 if and only if ρ(u) = 1.

Proof

(i) On the one hand, for ‖u‖p < 1, there exists a α > 1 with ρ(αu) ≤ 1. Then by
Lemma 12.3-(i),

ρ(u) ≤ 1

α
ρ(αu) ≤ 1

α
< 1.

On the other hand, for ρ(u) < 1, by Lemma 12.3-(ii) there exists α > 1 such
that ρ(αu) < 1. Hence ‖αu‖p < 1 and ‖u‖p ≤ 1

α
< 1.

(ii) On the one hand if ρ(u) ≤ 1, then ‖u‖p ≤ 1 by the definition of the norm.
On the other hand, if ‖u‖p ≤ 1, then for each α > 1 there exists λα ∈ {λ >
0 : ρ(u/λ) ≤ 1} such that λα < α. From Lemma 12.3 -(iii) we know that the
function ρ(αu) is increasing in α, and hence

ρ(u/α) ≤ ρ(u/λα) ≤ 1.

Letting α → 1+ gives immediately ρ(u) ≤ 1.
(iii) The assertion follows immediately from (i).
(iv) The assertion follows immediately from parts (i) and (ii). �
Lemma 12.4 For every u ∈ �p,

ρ(u) ≤ ‖u‖p if ‖u‖p ≤ 1 and ρ(u) ≥ ‖u‖p if ‖u‖p ≥ 1.

Proof The argument is obvious if u = 0. First assume that ‖u‖p ∈ (0, 1]. Then by
Lemma 12.3-(i),

ρ (u)

‖u‖p
≤ ρ

(
u

‖u‖p

)
.

On the other hand, by Theorem 12.1-(iv), ρ(u/‖u‖p) = 1 because ‖u/‖u‖p‖p =
1. It then follows immediately that ρ(u)/‖u‖p ≤ 1, i.e., ρ(u) ≤ ‖u‖p.
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The proof of the case for ‖u‖p ≥ 1 is analogous. �

Corollary 12.2 Let Λ := {u ∈ �p : ρ(u) ≤ 1}. Then Λ = B(0, 1), the unit closed
ball centered at zero, with respect to the norm ‖ · ‖p.

Proof For any u ∈ Λ, ρ(u) ≤ 1. It follows immediately from Lemma 12.3 that
‖u‖p ≤ 1, i.e., u ∈ B(0, 1). Therefore, Λ ⊂ B(0, 1). On the other hand, for any
u ∈ B(0, 1), ‖u‖p ≤ 1. Then by Lemma 12.4, ρ(u) ≤ 1 and thus u ∈ Λ. Therefore
B(0, 1) ⊂ Λ which concludes that Λ = B(0, 1). �
Lemma 12.5 Let un ∈ �p for n ∈ N. Then ‖un‖p → 0 as n → ∞ if and only if
ρ(αun) → 0 as n → ∞ for every α > 0.

Proof Assume that ‖un‖p → 0 as n → ∞. Then for every α > 0, we have

lim
n→∞ ‖Kαun‖p = lim

n→∞ |K||α|‖un‖p = 0, ∀K > 0.

Hence for any K > 1 there exists N0 = N0(K) > 0 such that ‖Kαun‖p < 1 for all
n > N0. As a consequence

‖Kαun‖p = inf

{
λ > 0 : ρ

(
Kαun

λ

)
≤ 1

}
< 1, for all n > N0(K).

By Lemma 12.3-(i),

inf

{
λ > 0 : 1

λ
ρ(Kαun) ≤ ρ

(
Kα

un

λ

)
≤ 1

}
< 1, for all n > N0(K),

i.e., ρ(Kαun) ≤ λ < 1 for all n > N0(K). As a result, for any K > 1 we have

ρ(αun) ≤ 1

K
ρ(Kαun) <

1

K
, for all n > N0(K),

which implies that ρ(αun) → 0 as n → ∞.
Now assume that if ρ(αun)→ 0 as n→ ∞ for every α > 0. Then for any α > 0

there exists N0 = N0(α) such that ρ(αun) ≤ 1 for n > N0. In particular, by the
definition of the norm, ‖un‖p ≤ 1/α for n > N0(α). Since α > 0 is arbitrary, ‖un‖p

→ 0 as n → ∞. �
Lemma 12.6 The mapping ρ : �p → R

+ is lower semi continuous, i.e.,

ρ(û) ≤ lim inf
n→∞ ρ(un) for all un → û in P .

Proof Let un, û ∈ �p with ‖un − û‖p → 0. By Lemma 12.5

lim
n→∞ ρ(α(û − un)) = lim

n→∞ ρ(α(un − û)) = 0 ∀α > 0.
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Let ε ∈ (0, 1
2 ). Then by the convexity of ρ we have

ρ((1 − ε)û) = ρ

(
1

2
û + 1 − 2ε

2

(
û − un

) + 1 − 2ε

2
un

)

≤ 1

2
ρ(û)+ 1

2
ρ

(
(1 − 2ε)(û − un)+ (1 − 2ε)un

)

≤ 1

2
ρ(û)+ 2ε

2
ρ

(
1 − 2ε

2ε
(û − un)

)
+ 1 − 2ε

2
ρ
(
un

)
.

Taking the limit of the above inequality as n → ∞ gives

ρ((1 − ε)û) ≤ 1

2
ρ(û)+ 1 − 2ε

2
lim inf
n→∞ ρ

(
un

)
. (12.10)

Then taking the limit of (12.10) as ε → 0+ to obtain

ρ(û) ≤ 1

2
ρ(û)+ 1

2
lim inf
n→∞ ρ

(
un

)
.

Finally, since ρ(û) < ∞, this gives ρ(û) ≤ lim infn→∞ ρ (un). �
The following lemma provide a direct relationship between the norm ‖ · ‖p and

the semi-modular ρ.

Lemma 12.7 Let u ∈ �p − {0}. Then ‖u‖p = a if and only if ρ(u/a) = 1.

Proof For convenience, write

Iu := {λ > 0 : ρ(u/λ) ≤ 1}.

(⇒) When ‖u‖p = a, Iu = [a,∞) and ρ(u/a) ≤ 1. Suppose (for contradiction)
that ρ(u/a) < 1. Then for λ > 0, the function λ �→ ρ(u/λ) is continuous and
decreasing as a direct consequence of Lemma 12.3. So, there exists δ > 0 such that
ρ(u/λ) < 1 for λ ∈ (a − δ, a + δ). This implies that a − δ

2 ∈ Iu, which is a
contradiction. Therefore, ρ(u/a) = 1.
(⇐) When ρ(u/a) = 1, a ∈ Iu and thus ‖u‖p ≤ a. Suppose (for contradiction)
that ‖u‖p < a. Then by the properties of infimum, there exists λ0 ∈ Iu such that
‖u‖p ≤ λ0 < a. This implies that ρ(u/a) < ρ(u/λ0) ≤ 1 by contradiction.
Therefore, ‖u‖p = a. �
In the rest of this section we construct several inequalities on ‖ · ‖p which are
critical for studying lattice systems that can be formulated as an ordinary differential
equation or an evolution equation on P .
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Theorem 12.2 For any u ∈ P ,

min
{
ρ(u)1/p

−
, ρ(u)1/p

+}
≤ ‖u‖p ≤ max

{
ρ(u)1/p

−
, ρ(u)1/p

+}
. (12.11)

Proof Assume that ρ(u) < 1. Then 1/p+ < 1/p− ≤ 1, and thus ρ(u)1/p
− ≤

ρ(u)1/p
+

. In this case the inequality (12.11) becomes

ρ(u)1/p
− ≤ ‖u‖p ≤ ρ(u)1/p

+
. (12.12)

Since pi/p
+ ≤ 1 for all i ∈ Z and ρ(u) < 1, then

∑
i∈Z |ui |pi = ρ(u) ≤

ρ(u)pi/p
+
. Hence ρ(u)−pi/p+ ≤ ρ(u)−1 for all i ∈ Z, and thus

ρ

(
u

ρ(u)1/p
+

)
=

∑
i∈Z

∣∣∣∣
ui

ρ(u)1/p
+

∣∣∣∣
pi

=
∑
i∈Z

|ui |pi
ρ(u)pi/p

+ ≤
∑

i∈Z |ui |pi
ρ(u)

= 1

By the Unit Ball Theorem this means that
∥∥∥ u

ρ(u)1/p
+
∥∥∥

p
≤ 1. Finally, by the

homogeneity property of a norm,

1

ρ(u)1/p
+ ‖u‖p =

∥∥∥∥
u

ρ(u)1/p
+

∥∥∥∥
p

≤ 1,

i.e., ‖u‖p ≤ ρ(u)1/p
+

, which is the upper inequality in (12.12).

Similarly, since pi/p− ≥ 1 for all i ∈ Z and ρ(u) < 1, then ρ(u)pi/p
− ≤ ρ(u).

Hence ρ(u)−1 ≤ ρ(u)−pi/p−
or all i ∈ Z, so

1 =
∑

i∈Z |ui |pi
ρ(u)

≤
∑
i∈Z

|ui |pi
ρ(u)pi/p

− =
∑
i∈Z

∣∣∣∣
ui

ρ(u)1/p
−

∣∣∣∣
pi

= ρ

(
u

ρ(u)1/p
−

)
.

By the Unit Ball Theorem again, 1 ≤
∥∥∥ u

ρ(u)1/p
+
∥∥∥

p
and the homogeneity property of

a norm

1 ≤
∥∥∥∥

u

ρ(u)1/p
−

∥∥∥∥
p

= 1

ρ(u)1/p
− ‖u‖p ,

i.e., ρ(u)1/p
+ ≤ ‖u‖p, which is the lower inequality in (12.12).

The case ρ(u) > 1 can be shown by a similar process. �
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Corollary 12.3 For any u ∈ P, ‖u‖p−
p ≤ ρ(u) ≤ ‖u‖p+

p if ‖u‖p > 1; and

‖u‖p+
p ≤ ρ(u) ≤ ‖u‖p−

p if ‖u‖p ≤ 1. In other words,

min
{
‖u‖p−

p , ‖u‖p+
p

}
≤ ρ(u) ≤ max

{
‖u‖p−

p , ‖u‖p+
p

}
.

By using the Corollary 12.3 above Lemma 12.5 can be improved to the following
important result.

Theorem 12.3 Let {un} be a sequence in �p and let u ∈ �p. Then

lim
n→∞ ρ(un − u) = 0 if and only if lim

n→∞ ‖un − u‖p = 0.

Proof (⇒) Assume limn→∞ ρ(un − u) = 0. Given any ε ∈ (0, 1) there exists
N1 = N1(ε) ∈ N such that ρ(un − u) < εp

+
< ε < 1 for all n ≥ N1. Then by

Theorem 12.1 (i), we have ‖un − u‖p < 1 for all n ≥ N1 and by Corollary 12.3,

‖un−u‖p+
p ≤ ρ(un−u) < εp

+
for all n ≥ N1. Therefore, limn→∞ ‖un−u‖p = 0.

(⇐) Assume limn→∞ ‖un − u‖p = 0. Given any ε ∈ (0, 1) there exists
N2 = N2(ε) ∈ N such that ‖un − u‖p < ε < 1 for all n ≥ N2. Then by

Corollary 12.3, ρ(un − u) ≤ ‖un − u‖p−
p < εp

−
< ε for all n ≥ N2, which

implies that limn→∞ ρ(un − u) = 0. �

12.4 Properties of the Space P

In this section we discuss properties of the space �p equipped with the norm ‖ · ‖p .
Due to Lemmas 12.1 and 12.2 the space P is a linear normed space. Indeed, P
is a Banach space (see Theorem 12.4 below) and moreover, P is separable (see
Theorem 12.5 below) and reflexive (see Theorem 12.7 below).

Theorem 12.4 The spaceP is a Banach space.

Proof With Lemmas 12.1 and 12.2 it remains to prove the completeness of P . To
this end, let {un}n∈N be a Cauchy sequence on P . Then given any ε ∈ (0, 1) there
exists an N1(ε) ∈ N such that ‖un − um‖p ≤ ε < 1 for all n,m ≥ N1(ε). By
Lemma 12.4,

ρ
(
un − um

) ≤ ‖un − um‖p ≤ ε, ∀n,m ≥ N1(ε).

Thus for each i ∈ Z,

∣∣uni − umi

∣∣ ≤ ε1/pi for n,m ≥ N1(ε), (12.13)
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which implies that the sequence {uni } is a Cauchy sequence in R for each i ∈ Z and

thus has a convergent subsquence {unji } such that limnj→∞ u
nj
i = ûi for each i ∈ Z.

Define the bi-infinite sequence û := (ûi)i∈Z. Then by a diagonal subsequence
argument, there exists a subsequence {unj }j∈N in �p of the sequence {un}n∈N that
converges componentwise to û. Replacing n and m in (12.13) by nj , nj+k , i.e.,
using elements u

nj
i , u

nj+k
i of this diagonal subsequence, and taking the limit as k →

∞ gives

∣∣∣unji − ûi

∣∣∣ ≤ ε1/pi for nj ≥ N1(ε), i ∈ Z.

The rest of the proof follows from that of [5, Theorem 2.3.13]. Let α > 0 and
ε ∈ (0, 1). Since {un}n∈N is a Cauchy sequence in P there exists N2 = N2(α, ε)

∈ N such that ‖α(un − um)‖p < ε for all n, m ≥ N2. Lemma 12.4 implies that
ρ (α(un − um)) < ε and by Fatou’s Lemma we obtain that

ρ
(
α(unj − û)

) =
∑
i∈Z

lim
k→∞

∣∣∣α(unji − u
nk
i )

∣∣∣
pi

≤ lim
k→∞

∑
i∈Z

∣∣∣α(unji − u
nk
i )

∣∣∣
pi = lim

k→∞ ρ
(
α(unj − unk )

) ≤ ε,

which implies that ρ
(
α(unj − û)

) → 0 as j → ∞ for all α > 0. Then by
Lemma 12.5, ‖unj − û‖p → 0 as j → ∞ and thus the Cauchy sequence un

converges in P .
It remains to show that û ∈ �p . Note that by inequality (12.9)

|ûi |pi ≤ 2p
+−1|ûi − u

nj
i |pi + 2p

+−1|unji |pi , ∀nj > max{N1, N2}

for each i ∈ Z. Therefore

ρ
(
û
) =

∑
i∈Z

|ûi |pi ≤ 2p
+−1

∑
i∈Z

|ûi − u
nj
i |pi + 2p

+−1
∑
i∈Z

|unji |pi

≤ 2p
+−1ρ

(
unj − û

) + 2p
+−1ρ

(
unj

)

≤ 2p
+−1ε + 2p

+−1ρ
(
unj

)
< ∞

for j > max{N1, N2}. It follows from unj ∈ �p that û ∈ �p. �
Theorem 12.5 The Banach spaceP is separable.

Proof Let en = (eni )i∈Z be the element in �p with eni = δni where δ is the Kronecker
delta. Then en forms a Schauder base for P and the desired assertion follows
immediately. �
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To show that P is reflexive, we now introduce the dual space of �p. More
precisely, given a sequence p = (pi)i∈Z, let q = (qi)i∈Z be the bi-infinite sequence
such that

1

pi
+ 1

qi
= 1, ∀ i ∈ Z.

Define the discrete Musielak-Orlicz space �q by

�q :=
{

u = (ui)i∈Z :
∑
i∈Z

|ui |qi < ∞
}
.

Similarly to (12.6) and (12.7) for any u = (ui)i∈Z ∈ �q define

η(u) :=
∑
i∈Z

|ui |qi and ‖u‖q := inf
{
λ > 0 : η

(u

λ

)
≤ 1

}
. (12.14)

The following theorem presents a Hölder-like inequality.

Theorem 12.6 For any u = (ui)i∈Z ∈ �p and v = (vi)i∈Z ∈ �q it holds

∑
i∈Z

|uivi | ≤
(

1

p− + 1

q−

)
‖u‖p‖v‖q ,

where q− := infi∈Z qi.

Proof Let ‖u‖p = a and ‖u‖q = b. By Young’s inequality and Lemma 12.7 we
obtain

1

ab

∑
i∈Z

|uivi | ≤
∑
i∈Z

1

pi

∣∣∣ui
a

∣∣∣
pi +

∑
i∈Z

1

qi

∣∣∣vi
b

∣∣∣
qi

≤ 1

p−
∑
i∈Z

∣∣∣ui
a

∣∣∣
pi + 1

q−
∑
i∈Z

∣∣∣vi
b

∣∣∣
qi

= 1

p− ρ(u/a)+ 1

q− η(v/b) = 1

p− + 1

q− ,

which completes the proof. �
Denote by Q := (�q , ‖ · ‖q ). We next show that P is reflexive with the dual

space Q.

Lemma 12.8 �p is reflexive provided p− ≥ 2.

Proof We will prove that �p is uniformly convex, which implies its reflexivity.
Given any ε > 0 let u, v ∈ �p be such that ‖u‖p ≤ 1, ‖v‖p ≤ 1 and ‖u− v‖p > ε.
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Since pi ≥ p− ≥ 2 for all i ∈ Z, Clarkson’s inequality gives

∣∣∣∣
ui + vi

2

∣∣∣∣
pi

+
∣∣∣∣
ui − vi

2

∣∣∣∣
pi

≤ 1

2

(|ui |pi + |vi |pi
)
, ∀ i ∈ Z.

Summing the above inequality over i ∈ Z and using Theorem 12.1 (ii) we have

ρ

(
u + v

2

)
+ ρ

(
u − v

2

)
≤ 1

2
ρ(u)+ 1

2
ρ(v) ≤ 1,

which implies that ρ(u+v
2 ) ≤ 1 and ρ(u−v

2 ) ≤ 1.
Using Theorem 12.1 again we obtain ‖u+v

2 ‖p ≤ 1 and ‖u−v
2 ‖p ≤ 1. It then

follows immediately from Corollary 12.3 (ii) that

∥∥∥∥
u + v

2

∥∥∥∥
p+

p

+
∥∥∥∥
u − v

2

∥∥∥∥
p+

p

≤ 1.

Since ‖u − v‖p > ε,
∥∥u+v

2

∥∥
p
<

[
1 − ( ε2 )

p+]1/p+
< 1, which implies that �p is

uniformly convex and completes the proof.

To prove the duality �∗p ≡ �q for p− ≥ 2 the following lemma is needed.

Lemma 12.9 Let T : �q → �∗p be the linear operator defined by

v �→ 〈T v,u〉�∗p,�p :=
∑
i∈Z

uivi , ∀ u = (ui)i∈Z ∈ �p, v = (vi)i∈Z ∈ �q .

Then T is injective.

Proof For v = (vi)i∈Z ∈ �q with ‖v‖q = a, let

v̂ = (
v̂i

)
i∈Z with v̂i =

∣∣∣vi
a

∣∣∣
qi−1 · sign vi and sign vi :=

⎧
⎪⎪⎨
⎪⎪⎩

1, vi > 0,

0, vi = 0,

−1, vi < 0.

Then v̂ ∈ �p and ‖v̂‖p = 1. In fact, by Lemma 12.7, η(v/a) = 1 and hence

ρ(v̂) =
∑
i∈Z

∣∣v̂i
∣∣pi =

∑
i∈Z

∣∣∣vi
a

∣∣∣
qi = η

(v

a

)
= 1.
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By Lemma 12.7 again, ‖v̂‖p = 1. On the other hand,

〈T v, v̂〉�∗p,�p =
∑
i∈Z

vi

∣∣∣vi
a

∣∣∣
qi−1

sign vi =
∑
i∈Z

∣∣∣vi
a

∣∣∣
qi
a = aη

(v

a

)
= a.

Therefore

‖T v‖�∗p = sup
‖u‖p≤1

〈T v,u〉�∗p,�p ≥ 〈T v, v̂〉�∗p,�p = a = ‖v‖q , (12.15)

which implies that v(1) = v(2) if T v(1) = T v(2) and completes the proof. �
Lemma 12.10 Assume that (i) p− ≥ 2 or (ii) 1 < p− ≤ pi ≤ p+ ≤ 2. Then Q is
the dual space of P with �∗p ≡ �q .

Proof

(i) First notice that 1 < qi ≤ 2 when 2 ≤ p− ≤ pi ≤ p+ < ∞, because

1 < 1 + 1

p+ − 1
≤ qi = 1 + 1

pi − 1
≤ 1 + 1

p− − 1
≤ 2.

Let T be the linear injection defined in Lemma 12.9 and let E := T (�q).
Then E is a vectorial subspace of �∗p. Due to the Hölder inequality in Theo-
rem 12.6, ‖T v‖�∗p ≤ C‖v‖q for some constant C > 0. Together with (12.15)
we obtain ‖v‖q ≤ ‖T v‖�∗p ≤ C‖v‖q . It then follows that E is closed, because
�q is a Banach space.

We next show that T is an isomorphism. To this end, we only need to show
that E is dense in �∗p. Let u ∈ �∗∗

p = �p (by Lemma 12.8) be such that

〈T v,u〉�∗p,�p = 0 for all v ∈ �q .

Let v̂ = (
v̂i

)
i∈Z with v̂i = |ui |pi−2ui . Then

η(v̂) =
∑
i∈Z

∣∣∣|ui |pi−2ui

∣∣∣
qi =

∑
i∈Z

|ui |pi = ρ(u) < ∞.

Thus v̂ ∈ �q and should satisfy 〈T v̂,u〉�∗p,�p = 0. On the other hand,

〈T v̂,u〉�∗p,�p =
∑
i∈Z

|ui |pi−2u2
i = ρ(u).

Hence ρ(u) = 0, which implies that u = 0. By Corollary 1.8 of [3], E is dense
in �p. As a result, T is an isomorphism and therefore �∗p ≡ �q .
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(ii) If 1 < p− ≤ pi ≤ p+ ≤ 2, then qi ≥ 2 for all i, which implies that q− ≥ 2.
Hence by Lemma 12.8, �q is reflexive, i.e., �q = �∗∗

q . On the other hand by part
(i) we have �∗q = �p. As a result, �q = (�∗q)∗ = (�p)

∗. �
The next lemma follows immediately from Lemmas 12.8 and 12.10.

Lemma 12.11 Suppose that p = (pi)i∈Z is such that p− ≥ 2 or 1 < p− ≤ pi ≤
p+ ≤ 2. Then �p is reflexive.

Proof If p− ≥ 2, then we know from Lemma 12.8 that �p is reflexive.
If 1 < p− ≤ pi ≤ p+ ≤ 2, then by Lemma 12.10, �p is the dual space of the

reflexive space �q with q− ≥ 2, and consequently also reflexive. Indeed, �∗∗
p =

(�∗q)∗∗ = (�∗∗
q )∗ = (�q)

∗ = �p. �
Finally we reach a general statement on the reflexivity of �p.

Theorem 12.7 Assume that p− > 1. Then the space �p is reflexive and Q is the
dual space ofP .

Proof For p = (pi)i∈Z define

J 1
p := {i ∈ Z : pi > 2} and J 2

p := {i ∈ Z : 1 < pi ≤ 2} .

Then for each u = (ui)i∈Z ∈ �p, write

u = (ui)i∈Z = (vi)i∈Z + (wi)i∈Z = v + w,

where

vi =
{
ui, i ∈ J 1

p

0, i ∈ J 2
p

, and wi =
{

0, i ∈ J 1
p

ui, i ∈ J 2
p

. (12.16)

Moreover, define the spaces �1
p := {v : u ∈ �p} and �2

p := {w : u ∈ �p}, where

v and w are defined as in (12.16). By Lemma 12.11 we have �1
p and �2

p are reflexive

spaces with (�1
p)

∗ = �2
q and (�2

p)
∗ = �1

q . Since �p = �1
p ⊕ �2

p , �p is also a reflexive

space and �∗p ≡ �2
q ⊕ �1

q ≡ �q . �
The rest of this section concerns the relation between two sequence spaces with

variable exponents.

Theorem 12.8 Suppose p = (pi)i∈Z and r = (ri )i∈Z are such that pi ≥ ri ≥ 1,
for all i ∈ Z. Then �r is densely and continuously embedded in the space �p.

Proof We first show the inclusion �r ⊂ �p. To this end, consider u = (ui)i∈Z ∈ �r
with

∑
i∈Z |ui |ri < ∞. Then lim|i|→+∞ |ui |ri = 0 and there exists I ∈ N such that

|ui | < 1 for all |i| ≥ I . This gives |ui |pi ≤ |ui |ri for all |i| ≥ I and as a result
∑
i∈Z

|ui |pi ≤
∑
|i|<I

|ui |pi +
∑
|i|≥I

|ui |ri < ∞,
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i.e, u = (ui)i∈Z ∈ �p.

We next show the inclusion �r ⊂ �p is dense. For u = (ui)i∈Z ∈ �p, consider
the truncation sequence of elements in �r given by

un := (· · · , 0, 0, · · · , 0, u−n, · · · , u−1, u0, u1, · · · , un, 0, · · · , 0, 0, · · · ).

Clearly ρ(un − u) → 0 as n → +∞ and hence by Theorem 12.3

lim
n→+∞ ‖un − u‖p = 0.

It then remains to show that the inclusion �r ⊂ �p is continuous. For any u ∈ �r ,
define γ (u) := ∑

i∈Z |ui |ri . Then γ is a semi-modular for the space �r and satisfies
all properties developed in Sect. 12.3. Consider the cases (i) γ (u) ≤ 1, and (ii)
γ (u) > 1.

(i) When γ (u) ≤ 1, |ui | ≤ 1 for all i ∈ Z since ri ≥ 1. Thus |ui |ri ≥ |ui |pi for
all i ∈ Z, which implies that ρ(u) ≤ γ (u).

(ii) When γ (u) > 1, for any k ∈ Z we have 0 ≤ |uk|
γ (u)1/rk

≤ 1, and thus

|uk|pk
γ (u)p

+/r− ≤
[ |uk|
γ (u)1/rk

]pk
≤

[ |uk|
γ (u)1/rk

]rk
, (12.17)

where r− := infi∈Z ri .
Summing inequalities (12.17) over k ∈ Z gives

ρ(u)

[γ (u)]p+/r− ≤ γ (u)

γ (u)
= 1,

i.e., ρ(u) ≤ [γ (u)]p+/r− . This implies that

ρ(u) ≤ max{γ (u), [γ (u)]p+/r−} ∀u ∈ �r . (12.18)

It follows from Theorem 12.3 and (12.18) that u(n) → û in �r as n → ∞
implies u(n) → û in �p as n → ∞. Therefore, the inclusion �r ↪→ �p is
continuous. �

Remark 12.1 As an important particular case, the Hilbert space �2 is densely and
continuously embedded in the space �p with p− ≥ 2.

Note that the inclusion �r ↪→ �p is continuous and dense but not compact.
In fact, consider the sequence {en = (eni )i∈Z}n∈N with eni = δni where δ is the
Kronecker delta. Then ρ(en) = γ (en) = 1 for all n ∈ N. But there is no convergent
subsequence of {en}n∈N in �p , because for all subsequences {enj } of {en} we have

ρ
(
enj − enl

) = 2 ∀j �= l.
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However, with Theorem 12.7 we can show that the inclusion is weakly compact,
presented in the following theorem.

Theorem 12.9 Suppose p = (pi)i∈Z and r = (ri )i∈Z are such that pi ≥ ri ≥ 1,
for all i ∈ Z. Then the inclusion �r ⊂ �p is weakly compact.

Proof Let {u(n)}n∈N be a bounded sequence in �r . Then there exists c1 > 0 such
that

γ (u(n)) =
∑
i∈Z

∣∣∣u(n)i
∣∣∣
ri ≤ c1 ∀n ∈ N.

It follows immediate from (12.18) that

ρ(u(n)) ≤ max{γ (u(n)), [γ (u(n))]p+/r−} ≤ c2 ∀n ∈ N

for some c2 > 0. Hence {u(n)}n∈N is a bounded sequence in the space �p.
Noting that �p is reflexive, there exists û ∈ �p and a subsequence {u(nj )} of

{u(n)}n∈N such that

u(nj ) → û (weakly) as j → ∞.

The proof is complete. �

12.5 Closing Remarks

The motivation of this work is to investigated the long term dynamics of lattice
dynamical systems with state dependent and nonlinear diffusion. In particular, we
are interested in lattice dynamical systems with a leading operator defined by the
discretization of the p(x)-Laplacian div

(|∇u|p(x)−2∇u) considered in Kloeden &
Simsen [9, 10]. Applying the chain rule and the finite difference quotient to the
operator div

(|∇u|p(x)−2∇u), we obtain a generalized version of the operator Γ
defined in (12.3) for variable exponents:

(Γpu)i := |D−ui |pi−2 [
(D+pi)(D−ui) ln |D−ui | + (pi − 1)D+D−ui

]
.

(12.19)
The ultimate goal is to investigate long term dynamics of lattice dynamical

systems with the leading operator Γp, which has never been done in the past, as
the coercive properties of Γp may not hold in classical sequence spaces such as �2

and �p. However, this is not the main focus of this work. This work is to construct
the proper sequence space to obtain desired properties of the leading operator Γp

and hence can be viewed as one necessary and crucial step for further studies on
lattice systems with nonlinear and state dependent diffusion.
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There is very little in the literature dealing directly with the �p space, see [12, 13].
A majority of results in this work are established by adaptations from the constant
exponent case �p with p ≥ 1 constant, to the variable exponent case �p and
adaptations from the continuous case Lp(x)(Ω) [6, 11] to the discrete case �p. The
adaptations, however, are nontrivial and require skillful calculations.

All results in this work can be considered new in the context of �p. In particular,
the proofs of Theorems 12.2, 12.5, 12.7, 12.8 and 12.9 are new and nontrivial to
derive from earlier results. Some of results can be deduced from abstract results for
the Orlicz spaces Lp(x)(A,μ) in Diening et al. [5], by choosing A = Z and μ to be
the counting measure. But here we provide the reader with proofs more direct than
those in [5].
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of China grant number 11571125 (PEK) and FAPEMIG process CEX-PPM-00329-16 (JS).
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Chapter 13
Attractors for a Random Evolution
Equation with Infinite Memory:
An Application

María J. Garrido-Atienza, Björn Schmalfuß, and José Valero

Abstract In this paper we study the existence of random pullback attractors for
an integro-differential parabolic equation of reaction-diffusion type with both finite
and infinite delays and also some kind of randomness.

13.1 Introduction

In our previous paper [4] we studied the existence of a random attractor for a rather
general random integro-differential equation of reaction-diffusion type with some
memory terms given by a convolution integral having infinite delays and a non-
linear term with a finite delay, and where all the nonlinear forcing functions of the
equation depend on a random parameter.

Since uniqueness of the Cauchy problem was not guaranteed, we defined a
multivalued random dynamical system and proved that a random global pullback
attractor exists under some assumptions on the nonlinear terms of the equations. It
is important to mention that the multivalued character of the system makes it difficult
to study the measurability properties of both the dynamical system and the pullback
attractor. This is why several technical conditions (involving the dependence of
the nonlinear functions with respect to the random parameter) were needed to be
assumed.
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Our aim now consists in applying this abstract result to a more concrete reaction-
diffusion equation with delay, in which all the non-linear functions are given
explicitly and the random parameter is defined. As the assumptions given in [4]
are very hard to verify when the random equation comes from the transformation of
a stochastic one, we consider in this paper a particular simple random perturbation
for which we are able to check all the conditions.

The paper is organized as follows. In the second section we recall the main
theorem from [4]. In the third section we develop a particular application and
prove that, by using the abstract results from [4], the solutions of the considered
system generate a multivalued random dynamical system possessing a random
global pullback attractor. We will end the paper giving a few examples of random
fields that can be considered in our application.

13.2 Preliminaries

Let Ω be a Polish space with the metric dΩ and let F be the Borel σ -algebra of Ω .
A pair (Ω, θ) where θ = (θt )t∈R is a flow on Ω , that is,

θ : R ×Ω → Ω,

θ0 = idΩ, θt+τ = θt ◦ θτ =: θtθτ for t, τ ∈ R,

is called a non-autonomous perturbation.
Let P := (Ω,F ,P) be a probability space. On P we consider a measurable

non–autonomous flow θ :

θ : (R ×Ω,B(R)⊗ F ) → (Ω,F ).

In addition, P is supposed to be ergodic with respect to θ , which means that every
θt -invariant set has measure zero or one for t ∈ R. Hence P is invariant with respect
to θt . The quadruple (Ω,F ,P, θ) is called a metric dynamical system. We denote
by Pc its completion: Pc := (Ω, F̄P, P̄).

Let O ⊂ R
N be an open bounded set with C∞-smooth boundary. Let H =

L2 (O), V = H 1
0 (O), with their norms and scalar products denoted by ‖·‖, ‖·‖V

and by (·, ·), ((·, ·)), respectively. We shall use 〈·, ·〉 for the pairing between the
spaces V ′ (the dual space of V ) and V , and 〈·, ·〉q,p for the pairing between Lp (O)
and Lq (O), where 1

p
+ 1

q
= 1 with p ≥ 2.

Let A be a positive symmetric operator on H with compact inverse. The
eigenvalues of A, denoted by 0 < λ1 ≤ λ2 ≤ · · · → ∞, have finite multiplicity.
In the sequel, A will be −Δ, where Δ is the Laplacian operator endowed with
homogeneous Dirichlet boundary conditions.

We will consider the space L2(−∞, r;V ), r ∈ R, of square integrable functions
with values in V and with the measure eλ1sLeb, whereLeb is the standard Lebesgue
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measure. The space L2(−∞, r;V ) is equipped with the following norm

‖ψ‖2
L2(−∞,r;V ) =

∫ r

−∞
eλ1s ‖ψ (s)‖2

V ds.

This Banach space is separable, see e.g. [7]. In what follows, we will denote L2
V :=

L2(−∞, 0;V ). Also, for h > 0 we consider the space Ch := C([−h, 0],H) of
continuous functions on [−h, 0] with values in H and with the supremum norm.
Let us finally consider the space

H = {ψ ∈ L2
V such that Phψ ∈ Ch},

where Ph is the restriction operator to the interval [−h, 0]. H is a Banach space
endowed with the norm ‖ψ‖H = ‖ψ‖L2

V
+ ‖ψ‖Ch . It can be proved easily that H

is separable.
In this section, we recall an abstract result proved in [4] concerning existence of

random attractors for the following random delay system

⎧
⎪⎪⎨
⎪⎪⎩

du

dt
+ Au(t) = f (θtω, ut )+ h(θtω, ut )− g(θtω, u(t)), for t ∈ [0, T ],

u(t) = ψ(t), for t ≤ 0,
(13.1)

where T > 0 and ut (·) denotes the element of H given by ut (s) = u(t + s), s ≤ 0.
The initial condition ψ belongs to H , which means that

u(t) = ψ(t), for t ∈ [−h, 0] but almost everywhere when s < −h. (13.2)

We impose the following assumptions on the operators f, g, h.
First, g : Ω × Lp (O) → Lq (O), q = p/ (p − 1) , h : Ω × Ch → H and

f : Ω × L2
V → V ′ are such that the mappings

v �→ g (ω, v) , (ω, ξ) �→ h (ω, ξ) , ζ �→ f (ω, ζ ) (13.3)

are continuous in their respective spaces (ω is fixed for g and f ), and for arbitrary
fixed v ∈ Lp (O), ξ ∈ Ch, ζ ∈ L2

V we have that

ω �→ g (ω, v) , ω �→ h (ω, ξ) , ω �→ f (ω, ζ ) (13.4)

are measurable. Since L2
V , Ch, L

p(O), V ′ and H are separable, the functions

(ω, v) �→ g (ω, v) , (ω, ξ) �→ h (ω, ξ) , (ω, ζ ) �→ f (ω, ζ )
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are jointly measurable with respect to their arguments, see Castaing and Valadier
[5, Chapter 3]. We observe also that since Ω is separable, for the function h

condition (13.3) implies (13.4).
Moreover, assume the following inequalities

〈g(ω, v), v〉q,p ≥ η ‖v‖pLp(O) − c1(ω), for v ∈ Lp (O) , (13.5)

‖g(ω, v)‖q
Lq(O) ≤ ν ‖v‖p

Lp(O) + c2(ω), for v ∈ Lp (O) , (13.6)

‖h (ω, ξ)‖ ≤ c3(ω)+ c4(ω) ‖ξ‖Ch , for ξ ∈ Ch, (13.7)

2‖f (ω, ζ )‖2
V ′ ≤ c5(ω)+K‖ζ‖2

L2
V

, for ζ ∈ L2
V , (13.8)

where η, ν,K > 0 and ci : Ω → R
+ are measurable with respect to F . Also,

the functions t �→ c1(θtω), t �→ c2
3(θtω) are assumed to be integrable on any finite

interval and subexponentially growing (that is, tempered), whereas t �→ c2(θtω),
t �→ c5(θtω) are integrable on any finite interval. For c4 we suppose that E(c2

4) < ∞
(and then t �→ c2

4(θtω) is integrable on any finite interval by the ergodic theorem),
so that

lim
t→±∞

1

t

∫ t

0
c2

4 (θsω) ds = E

(
c2

4

)

on a (θt )t∈R-invariant set of full measure.
On the other hand, and as a consequence of the Young inequality, we have

‖u‖pLp(O) ≥ μ ‖u‖2 − Cμ, (13.9)

where μ > 0 can be chosen arbitrarily and Cμ denotes a positive constant. In
particular, we take μ such that

E(c2
4) <

ημλ1

4eλ1h
. (13.10)

Note that from (13.8) it is straightforward to derive that

2
∫ t

r

eλ1s‖f (θsω, us)‖2
V ′ds ≤

∫ t

r

eλ1sc5(θsω)ds +K(t − r)

∫ t

−∞
eλ1s‖u(s)‖2

V ds.

(13.11)

For f and t > 0 we also assume the following inequalities

2
∫ t

0
eλ1s‖f (θsω, us)‖2

V ′ds ≤
∫ t

0
eλ1sc6(θsω)ds + d

2

∫ t

−∞
eλ1s‖u(s)‖2

V ds,

(13.12)
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2
∫ t

0
eλ1s‖f (θsω, us)− f (θsω, vs )‖2

V ′ds ≤
∫ t

0
eλ1sc7(θsω, θsω)ds

+ b

2

∫ t

−∞
eλ1s‖u(s)− v(s)‖2

V ds,

(13.13)

for u, v ∈ L2(−∞, t;V ), ω,ω ∈ Ω , where d, b < 1, and c6 : Ω → R
+, c7 :

Ω × Ω → R
+ are measurable with respect to F and F ⊗ F , respectively, and

the functions t �→ c6 (θtω), t �→ c7 (θtω, θtω) are integrable on any finite interval.
Also, t �→ c6 (θtω) is subexponentially growing. Moreover, for any t ∈ R, ε > 0
there exists δ > 0 such that if dΩ(ω,ω) < δ, then

∫ t

0
eλ1sc7(θsω, θsω)ds < ε. (13.14)

Also, we assume that the maps

ω �→
∫ t

0
ci(θsω)ds, i = 1, 3, 4, 5, (13.15)

are continuous for any fixed t ∈ R, and that for every ω0 ∈ Ω , t ∈ R there exists a
neighborhood U of ω0 and a constant C(t, ω0) such that

∫ t

0
c2

3(θsω)ds ≤ C,

∫ t

0
ci(θsω)ds ≤ C for any ω ∈ U , (13.16)

where i = 1, 2, 5, 6. It is obvious that for i = 1, 5 the property (13.15) implies
condition (13.16). Also, suppose that for every ω0 ∈ Ω , t0 ∈ R there exists a
neighbourhoodU of ω0 and a constant D(t0, ω0) such that

∫ t+t0

t

c2
4(θsω)ds ≤ D, for any ω ∈ U , t ∈ R, (13.17)

and, moreover, assume that for any ω0 ∈ Ω and k > 0 there exist a neighborhood
U of ω0 and C(ω0, k), t(ω0, k) > 0 such that

ci(θtω) ≤ C(ω0, k)e
k|t |, i = 1, 6, (13.18)

c2
3(θtω) ≤ C(ω0, k)e

k|t |, (13.19)
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for all ω ∈ U , |t| ≥ t . Additionally, assume that for any ω0 ∈ Ω there exists a
neighborhood U such that for any γ > 0 there exists r0(γ, ω0) < 0 such that

(−E(c2
4)+ γ )r ≤

∫ 0

r

c2
4(θsω)ds ≤ (−E(c2

4)− γ )r, (13.20)

for all ω ∈ U and r ≤ r0.
Finally, let us assume that if ωn → ω, un → u in L2 (0, T ;H) , un → u weakly

in Lp (0, T ;Lp (O)) and un → u weakly in L2 (−∞, T ;V ) then

f (θ·ωn, un· ) → f (θ·ω, u·) weakly in L2 (
0, T ;V ′) , (13.21)

g
(
θ·ωn, un(·)

) → g (θ·ω, u(·)) weakly in Lq
(
0, T ;Lq (O)) , (13.22)

and

lim inf
n→∞

∫ T

0
e−λ1(T−s) 〈g (

θsω
n, un(s)

)
, un(s)

〉
q,p

ds

≥
∫ T

0
e−λ1(T−s) 〈g (θsω, u(s)) , u(s)〉q,p ds.

(13.23)

Given T > 0, the function u(t) = u(t, ω,ψ) ∈ L2(−∞, T ;V ) ∩
C ([−h, T ],H) ∩ Lp(0, T ;Lp(O)) is called a weak solution of (13.1) on (0, T )
with initial data ψ ∈ H , if for arbitrary v ∈ V ∩ Lp(O),

d

dt
(u, v)+ < Au, v >= 〈f (θtω, ut ), v〉 + (h(θtω, ut ), v) − 〈g (θtω, u(t)) , v〉q,p ,

(13.24)

and u agrees with the initial condition ψ according to (13.2).
It is known [4, Theorem 4.5] that for any ψ ∈ H there exists at least one

weak solution to problem (13.1), although in general it could be non-unique. Every
weak solution of (13.1) can be extended to a globally defined one (i.e. for all
t ∈ R

+) simply by concatenating solutions. Let then S (ψ,ω) be the set of all
globally defined solutions to (13.1) corresponding to ψ ∈ H and ω ∈ Ω . Let
P(H ) be the set of all non-empty subsets of H . We define the multivalued map
Φ : R+ ×Ω × H → P(H ) as follows

Φ(t, ω,ψ) = {ut : u(·, ω,ψ) ∈ S (ψ,ω)}.
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It is proved in [4, Lemma 4.6 and Corollary 1] that Φ satisfies the strict cocycle
property:

Φ(t + τ, ω,ψ) = Φ(t, θτω,Φ(τ, ω,ψ)), for any t, τ ∈ R
+, ψ ∈ H , ω ∈ Ω,

and also that Φ has closed (in fact, compact) values. Therefore, Φ is a strict
multivalued non-autonomous dynamical system.

Moreover, the map (t, ω,ψ) �→ Φ (t, ω,ψ) is B(R+) ⊗ F ⊗ B(H )

measurable, see [4, Lemma 6.1], that is, the set

{(t, ω, x) : Φ(t, ω, x) ∩O �= ∅} ∈ B(R+)⊗ F ⊗ B(H )

for any open set O of H . Hence, Φ is a multivalued random dynamical system
(MRDS).

Denote by Pf (H ) the set of all non-empty closed subsets of H .
Let us consider the system D given by the multivalued mappings D : ω →

D(ω) ∈ Pf (H ) with D(ω) ⊂ BH (0, #(ω)), the closed ball with center zero and
radius #(ω), which is supposed to have a subexponential growth (ρ is tempered),
i.e.

lim
t→±∞

log+ #(θtω)
t

= 0 for ω ∈ Ω.

D is called the family of subexponentially growing (or tempered) multi-functions.

Definition 13.1 The family A ∈ D is said to be a global pullback D-attractor for
the MRDS Φ if it satisfies:

i) A (ω) is compact for any ω ∈ Ω .
ii) A is pullback D-attracting, i.e., for every D ∈ D ,

lim
t→+∞ dist(Φ(t, θ−tω,D (θ−tω)),A (ω)) = 0, for all ω ∈ Ω,

where dist (A,B) = supx∈A infy∈B ‖x − y‖H denotes the Hausdorff semi-
distance of two non-empty sets A,B.

iii) A is negatively invariant, that is, A (θtω) ⊂ Φ(t, ω,A (ω)) for all ω ∈ Ω ,
t ≥ 0.

A is said to be a strict global pullback D-attractor if, additionally, A (θtω) =
Φ(t, ω,A (ω)) for all ω ∈ Ω , t ≥ 0. If, moreover, A is a random set with respect
to Pc, then A is called a random global pullback D-attractor.

Theorem 13.1 ([4, Theorem 6.5]) The MRDS Φ possesses a random global
pullbackD-attractorA inH , which is strictly invariant.
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13.3 Application

We consider the following random heat equation in materials with memory:

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂u

∂t
−Δu− ∫ t

−∞ γ (t − s)(Δu(s, x)+Δz(θsω, x))ds +G(u(t, x)+ z(θtω, x))

= L(u(t − h, x)+ z(θt−hω, x)),
u(t, x) = 0 on ∂O , t > 0,
u(s, x) = u0(s, x) = ψ(s, x), for s ≤ 0, x ∈ O,

(13.25)

in the bounded open subset O ⊂ R
N with C∞–smooth boundary ∂O , where h > 0,

and z : Ω×O → R,where the probability space P and the map θ : (R×Ω,B(R)⊗
F ) → (Ω,F ) satisfy the assumptions of Sect. 13.2. In particular, Ω is a Polish
space with the metric dΩ and F is the Borel σ -algebra ofΩ . As before, the operator
A : H 2(O) ∩ H 1

0 (O) → L2(O) will be −Δ, where Δ is the Laplacian operator
endowed with homogeneous Dirichlet boundary conditions.

The particular form of the random perturbation in Eq. (13.25) appears naturally
when we make a suitable change of variable in the following stochastic heat
equation in materials with memory [2]:

⎧⎪⎪⎨
⎪⎪⎩

∂v

∂t
−Δv + ∫ t

−∞ γ (t − s)Δv (s, x) ds +G(v (t, x)) = L (v (t − h, x))+ dW

dt
,

v (t, x) = 0 on ∂O , t > 0,
v (s, x) = v0 (s, x) , for s ≤ 0, x ∈ O,

(13.26)

where W (t), t ∈ R, is a two-sided Wiener process in L2 (O). Indeed, we consider
the metric dynamical system (Ω,F ,P, θ) generated byW (see [3] for more details)
and the following linear stochastic differential equation

dz∗ = Az∗ dt + dW. (13.27)

It is known that this equation has a unique stationary solution which we denote
by z : Ω → L2(O). From z we can define the well-known stationary Ornstein-
Uhlenbeck process z̄ : R ×Ω → L2(O) given by z̄(t, ω) := z(θtω). Let Q be the
covariance operator of W(t). Assuming that trL2(O)(QA

ε) < ∞, for some ε > 0,
it is known that z̄(t, ω) ∈ H 1

0 (O) [6, Proposition 3.1]. Then by means of the change
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of variable u = v − z (13.26) is transformed into

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂u

∂t
− νΔu + ∫ t

−∞ γ (t − s) (Δu (s, x)+Δz (s, ω) (x)) ds +G(u (t, x)+ z (t, ω) (x))

= L (u (t − h, x)+ z (t − h,ω) (x)) ,

u (t, x) = 0 on ∂O , t > 0,

u (s, x) = u0 (s, x) = v0(s, x)− z(s, x), for s ≤ 0, x ∈ O,

(13.28)

which has the form given in (13.25).
We assume the following conditions:

(H1) G ∈ C(R) and

G(v)v ≥ α0 |v|p − α1, (13.29)

|G(v)| ≤ γ1 |v|p−1 + γ2, (13.30)

where αi, γi > 0 and p ≥ 2.
(H2) L ∈ C(R) and

|L(v)| ≤ γ3 |v| + γ4, (13.31)

where γi > 0.
(H3) γ ∈ C(R+) and

0 ≤ γ (s) ≤ γ5e
−δs,∀s ≥ 0, (13.32)

where γ5 > 0 and δ > 0 satisfy

δ > λ1,
8γ 2

5

δ(δ − λ1)
< 1. (13.33)

(H4) The map z satisfies the following assumptions:

1. The maps

ω �→
∫

O
|z (ω, x)|r dx = ‖z(ω)‖rLr ,

ω �→
∫ 0

−∞
γ (−r) ‖z (θrω)‖2

V dr,

(ω, ω) �→
∫ 0

−∞
γ (−r) ‖z (θrω)− z (θrω)‖2

V dr

are measurable, where r = 1, 2, p.
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2. The maps

t �→
∫

O
|z (θtω, x)|r dx = ‖z(θtω)‖rLr ,

t �→
∫ 0

−∞
γ (−r) ‖z (θr+tω)‖2

V dr

are integrable on any finite interval ofR for anyω ∈ Ω , where r = 1, 2, p.
3. The maps

ω �→
∫ t

0

∫

O
|z (θsω, x)|r dxds =

∫ t

0
‖z(θsω)‖rLr ds,

ω �→
∫ t

0

(∫

O
|z (θsω, x)|2 dx

) 1
2

ds =
∫ t

0
‖z(θsω)‖ds,

ω �→
∫ t

0

∫ 0

−∞
γ (−r) ‖z (θr+sω)‖2

V drds

are continuous for any t ∈ R, where r = 1, 2, p.
4. For any ω0 ∈ Ω and k > 0 there exist a neighborhood U of ω0 and
C(ω0, k), t(ω0, k) > 0 such that

‖z(θtω)‖rLr ≤ C(ω0, k)e
k|t |,

∫ 0

−∞
γ (−r) ‖z(θr+tω)‖2

V dr ≤ C(ω0, k)e
k|t |,

for all ω ∈ U , |t| ≥ t , where r = 1, 2, p.
5. The maps fz : Ω → L2(0, T , L2

γ (−∞, 0;V )), gz : Ω →
Lp((0, T ), Lp(O)), hz : Ω → Lp(O), wz : Ω → L2

γ (−∞, 0;V )
are continuous, where

fz(ω) =
{
y ∈ L2(0, T , L2

γ (−∞, 0;V )) : y(t, r, x) = z(θt θrω, x),

for a.a. t ∈ (0, T ) , r ∈ (−∞, 0) , x ∈ O,

(13.34)

gz(ω) =
{
y ∈ Lp((0, T )× O) : y(t, x) = z(θtω, x),

for a.a. t ∈ (0, T ) x ∈ O,

hz(ω) = {
y ∈ Lp(O) : y(t, x) = z(ω, x) for a.a. x ∈ O,

wz(ω) =
{
y ∈ L2

γ (−∞, 0;V ) : y(r, x) = z(θrω, x),

for a.a. r ∈ (−∞, 0) , x ∈ O.



13 Attractors for a Random Evolution Equation 225

Here, L2
γ (−∞, 0;V ) is the space of square integrable functions u(·) with

values in the space V and with the measure γ (r)Leb, equipped with the
norm

‖u‖L2
γ (−∞,0;V ) :=

∫ 0

−∞
γ (−r) ‖u(r)‖2

V dr.

Let us consider some sufficient conditions on z ensuring that (H4) holds.
Let us assume that the mappings t �→ θtω and ω �→ θtω are continuous.

This is the situation when choosing for Ω the Fréchet space C0(R,H) (the
space of continuous functions from R into H that are zero at zero) and θ is
the Wiener shift

θtω(·) = ω(· + t)− ω(t). (13.35)

In this case

(t, ω) �→ θtω

is continuous, see Arnold [1, Appendix A]. We assume that the mapping
z(ω, x) ∈ R is jointly measurable with respect to both arguments. In
particular, we assume that

Ω  ω �→ z(ω) ∈ V ∩ Lp(O)

is continuous and bounded. Note that if we assume 1/2 − 1/N ≤ 1/p, then
the continuous embedding V ⊂ Lp(O) is ensured, therefore the previous
assumption could be reduced to assume the continuity and the boundedness
of the mapping

Ω  ω �→ z(ω) ∈ V.

At the end of this section, we will give three examples of random fields
fulfilling the above assumptions.

Let us check now that the assumptions (H4.1)–(H4.5) hold true. Since p ≥
2 we have the measurability of the first mapping in (H4.1) by the continuous
embedding Lp(O) ⊂ L2(O) ⊂ L1(O). By the measurability of (t, ω) �→
θtω, the measurability of the second and third expressions of (H4.1) follows
by Tonelli’s theorem.
By the continuity of

t �→ θtω,

ω �→ ‖z(ω)‖Lq(O) for q = 1, 2, p,

ω �→ ‖z(ω)‖V ,
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and the boundedness of ‖z(ω)‖p
Lp(O) and ‖z(θr+tω)‖2

V , the mappings
in (H4.2) are integrable on any bounded interval. In particular, since
‖z(θr+tω)‖V is bounded in r and t , the last expression of (H4.2) is bounded
in t .
The majorant theorem applies to obtain the continuity of the expressions in
(H4.3). In addition, (H4.4) follows trivially with k = 0, C(ω0, k) = C and
U = Ω .
To deal with first expression fz of (H4.5) we take a sequence (ωn)n∈N
converging in the metric of Ω to ω0. The convergence

∫ T

0

∫ 0

−∞
γ (−r)‖z(θr+tωn)− z(θr+tω0)‖2

V drdt → 0

follows by the convergence of the inner integral by Lebesgue’s theorem
for any t ∈ [0, T ]. However, the inner integrals are uniformly bounded
with respect to t ∈ [0, T ]. Applying the majorant theorem again gives the
desired convergence. The continuity of the expressions gz, hz and wz can
be studied in a similar manner. By the considerations above we obtain the
desired continuity.

We define the maps g : Ω×Lp (O) → Lq (O), q = p/ (p − 1) , h : Ω×Ch →
H and f : Ω × L2

V → V ′ in the following way:

g(ω, v) = G(v(·)+ z(ω, ·)),
h (ω, ξ) = L(ξ(−h)(·)+ z(θ−hω, ·)),

f (ω,ψ) = −
∫ 0

−∞
γ (−r)(Aψ(r)+ Az(θrω))dr.

We check now the properties of the maps g, h, f.

Lemma 13.1 Conditions (13.3)–(13.23) are satisfied.

Proof First, we check conditions (13.5)–(13.8). For any v ∈ Lp (O) from (13.29)–
(13.30) in (H1) and Hölder’s inequality we get

〈g(ω, v), v〉q,p =
∫

O
G(v(x)+ z(ω, x))v(x)dx

=
∫

O
G(v(x)+ z(ω, x))(v(x)+ z(ω, x))dx

−
∫

O
G(v(x)+ z(ω, x))z(ω, x)dx

≥ α0

∫

O
|v(x)+ z(ω, x)|p dx − α1 |O| − γ2

∫

O
|z(ω, x)| dx
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− γ1

∫

O
|z(ω, x)| |v(x)+ z(ω, x)|p−1 dx

≥ α0

2

∫

O
|v(x)+ z(ω, x)|p dx − α1 |O| − γ2

∫

O
|z(ω, x)| dx

−K1

∫

O
|z(ω, x)|p dx.

Using

|v|p = |v + z− z|p ≤ 2p−1 (|v + z|p + |z|p)

we obtain

〈g(ω, v), v〉q,p ≥ 2−pα0

∫

O
|v(x)|p dx − α1 |O|

− γ2

∫

O
|z(ω, x)| dx −K2

∫

O
|z(ω, x)|p dx

= η ‖v‖p
Lp(O) − c1(ω),

where c1(ω) = α1 |O| + γ2
∫
O |z(ω, x)| dx +K2

∫
O |z(ω, x)|p dx, η = 2−pα0.

Furthermore,

‖g(ω, v)‖q
Lq(O) =

∫

O
|G(v(x)+ z(ω, x))|q dx

≤
∫

O

(
γ2 + γ1 |v(x)+ z(ω, x)|p−1

)q
dx

≤ 2q−1
(
γ
q
2 |O| + 2p−1γ

q
1

∫

O

(|v(x)|p + |z(ω, x)|p) dx
)

= ν ‖v‖p
Lp(O) + c2(ω),

where c2(ω) = 2q−1(γ
q
2 |O| + 2p−1γ

q
1

∫
O |z(ω, x)|p dx), ν = 2q2p−1γ

q
1 .

Also, on account of (13.31), for ξ ∈ Ch,

‖h(ω, ξ)‖2

=
∫

O
(L(ξ(−h)(x)+ z(θ−hω, x)))2dx

≤ 2
∫

O
(γ 2

3 |ξ(−h)(x)+ z(ω, x)|2 + γ 2
4 )dx

≤ 4γ 2
3

∫

O
|ξ(−h)(x)|2 dx + 2γ 2

4 |O| + 4γ 2
3

∫

O
|z(ω, x)|2 dx.
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Hence

‖h (ω, ξ)‖ ≤ c3(ω)+ c4(ω) ‖ξ‖Ch ,

where c3(ω) = 2
1
2 γ4 |O| 1

2 + 2γ3(
∫
O |z (ω, x)|2 dx) 1

2 , c4(ω) = 2γ3.
For ζ ∈ L2

V and v ∈ V we have

|〈f (ω, ζ ), v〉| ≤
∫ 0

−∞
γ (−r)(‖ζ(r)‖V + ‖z(θrω)‖V ) ‖v‖V dr,

thus

2‖f (ω, ζ )‖2
V ′ ≤ 2

(∫ 0

−∞
γ (−r)(‖ζ(r)‖V + ‖z(θrω)‖V )dr

)2

≤ 4

(∫ 0

−∞
γ5e

δr ‖ζ(r)‖V dr
)2

+ 4

(∫ 0

−∞
γ (−r) ‖z(θrω)‖V dr

)2

≤ 4‖ζ‖2
L2
V

∫ 0

−∞
γ 2

5 e
(2δ−λ1)rdr + 4γ5

δ

∫ 0

−∞
γ (−r) ‖z(θrω)‖2

V dr

= K‖ζ‖L2
V

+ c5(ω),

where K = 4γ 2
5

2δ−λ1
and c5(ω) = 4γ5

δ

∫ 0
−∞ γ (−r) ‖z(θrω)‖2

V dr . Note that above we

have used that δ > λ1
2 and (13.32).

It follows from (H4) that the maps ci : Ω → R
+, i = 1, 2, 3, 5 are measurable

and that t �→ ci(θtω), i = 1, 2, t �→ c2
3(θtω) are integrable on any finite interval

and tempered. Also, t �→ c5(θtω) is integrable on any finite interval. Finally, as
c4(ω) is constant, we have

c2
4(ω) = E(c2

4) = 4γ 2
3 < +∞.

Therefore, conditions (13.5)–(13.8) hold.
Next, we check conditions (13.12)–(13.16).
First, for u ∈ L2(−∞, t;V ), ω ∈ Ω , t > 0, using (13.32) we get

2
∫ t

0
eλ1s‖f (θsω, us)‖2

V ′ds

≤ 2
∫ t

0
eλ1s

(∫ 0

−∞
γ (−r)(‖us(r)‖V + ‖z(θr+sω)‖V )dr

)2

ds

≤ 4
∫ t

0
eλ1s

(∫ s

−∞
γ (s − r) ‖u(r)‖V dr

)2

ds
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+ 4
∫ t

0
eλ1s

(∫ 0

−∞
γ (−r) ‖z(θr+sω)‖V dr

)2

ds

≤ 4
∫ t

0
eλ1s

(∫ s

−∞
γ5e

−δ(s−r) ‖u(r)‖V dr
)2

ds

+ 4γ5

δ

∫ t

0
eλ1s

(∫ 0

−∞
γ (−r) ‖z (θr+sω)‖2

V dr

)
ds.

The first term is estimated as follows:

4
∫ t

0
eλ1s

(∫ s

−∞
γ5e

−δ(s−r) ‖u(r)‖V dr
)2

ds

≤ 4γ 2
5

∫ t

0
eλ1s

∫ s

−∞
e−δ(s−r)dr

∫ s

−∞
e−δ(s−r) ‖u(r)‖2

V drds

≤ 4γ 2
5

δ

∫ t

0
eλ1s

∫ s

−∞
e−δ(s−r) ‖u(r)‖2

V drds

= 4γ 2
5

δ

∫ 0

−∞

∫ t

0
eλ1se−δ(s−r) ‖u(r)‖2

V dsdr

+ 4γ 2
5

δ

∫ t

0

∫ t

r

eλ1se−δ(s−r) ‖u(r)‖2
V dsdr

≤ 4γ 2
5

δ(δ − λ1)

(∫ 0

−∞
eδr ‖u(r)‖2

V dr +
∫ t

0
eδre(λ1−δ)r ‖u(r)‖2

V dr

)

≤ 4γ 2
5

δ(δ − λ1)

∫ t

−∞
eλ1r ‖u(r)‖2

V dr.

Hence,

2
∫ t

0
eλ1s‖f (θsω, us)‖2

V ′ds ≤ d

2

∫ t

−∞
eλ1s ‖u(s)‖2

V ds +
∫ t

0
eλ1sc6(θsω)ds,

where d = 8γ 2
5

δ(δ−λ1)
, c6(ω) = 4γ 2

5
δ

∫ 0
−∞ γ (−r) ‖z (θrω)‖2

V dr . In view of (13.33)
we have d < 1. Also, (H4) implies that c6 : Ω → R

+ is measurable and that
t �→ c6(θtω) is integrable on any finite interval and tempered. Thus, (13.12) holds.
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For u, v ∈ L2(−∞, t;V ), ω,ω ∈ Ω and t > 0, in the same way as before we
obtain

2
∫ t

0
eλ1s‖f (θsω, us)− f (θsω, vs )‖2

V ′ds

≤ 4
∫ t

0
eλ1s

(∫ s

−∞
γ5e

−δ(s−r) ‖u(r)− v(r)‖V dr
)2

ds

+ 4
∫ t

0
eλ1s

(∫ 0

−∞
γ (−r) ‖z (θr+sω)− z (θr+sω)‖V dr

)2

ds

≤ 4γ 2
5

δ(δ − λ1)

∫ t

−∞
eλ1r ‖u(r)− v(r)‖2

V dr

+ 4γ5

δ

∫ t

0
eλ1s

∫ 0

−∞
γ (−r) ‖z (θr+sω)− z (θr+sω)‖2

V drds

= b

2

∫ t

−∞
eλ1r ‖u(s)− v(s)‖2

V ds +
∫ t

0
eλ1sc7(θsω, θsω)ds,

where b = d < 1 and

c7(ω, ω) = 4γ5

δ

∫ 0

−∞
γ (−r) ‖z (θr+sω)− z (θr+sω)‖2

V dr.

From (H4) we can see that c7 : Ω → R
+ is measurable and that t �→

c7(θtω) is integrable on any finite interval. Therefore, we have checked (13.13).
Assumption (13.14) follows from (H4) as well.

From the third assumption in (H4) we obtain that (13.15)–(13.16) are true.
From the fourth condition in (H4) it is obvious that (13.18)–(13.19) hold.

Moreover, since c4(ω) is a constant, it is clear that assumptions (13.17) and (13.20)
are true.

Let us consider now condition (13.22). Since L2((0, T ) × O)) ∼= L2(0, T ;H)
(see [9, Chapter 7]), un → u in L2 (0, T ;H) and the fifth condition in (H4)
imply that un (t, x) → u (t, x) , z (θtω

n, x) → z (θtω, x) for a.a. (t, x) ∈
(0, T ) × O . Hence, the continuity of G implies that G(un (t, x)+ z (θtω

n, x)) →
G(u (t, x)+ z (θtω, x)) for a.a. (t, x). Condition (13.30), un → u weakly in
Lp (0, T ;Lp(O)) and the third condition in (H4) imply that

∥∥g (
θ·ωn, un(·)

)∥∥
Lq(0,T ;Lq(O)) ≤ C1

∫ T

0

∫

O

(
1 + ∣∣un (t, x)+ z

(
θtω

n, x
)∣∣p) dxdt ≤ C2,

and also that g (θ·ω, u (·)) ∈ Lq (0, T ;Lq (O)). Hence, a standard result (see
e.g. [8]) implies that g (θ·ω, un (·)) → g (θ·ω, u (·)) weakly in Lq (0, T ;Lq (O)).
Therefore, (13.22) is satisfied.



13 Attractors for a Random Evolution Equation 231

For condition (13.21) we note that for any ψ ∈ L2 (0, T ;V ) ,
∫ T

0

〈
f (θtω

n, unt ), ψ(t)
〉
dt

=
∫ T

0

〈
−

∫ 0

−∞
γ (−r) (Aun(t + r)+ Az(θt+rωn)

)
dr,ψ(t)

〉
dt

= −
∫ T

0

∫ 0

−∞
γ (−r) (〈Aun(t + r), ψ(t)

〉 + 〈
Az

(
θt+rωn

)
, ψ(t)

〉)
drdt.

For a.a. t ∈ (0, T ) we have γ (−·) ψ(t) ∈ L2
V , so that un (t + ·) → u (t + ·) weakly

in L2
V gives

∫ 0

−∞
γ (−r) 〈Aun(t + r), ψ(t)

〉
dr →

∫ 0

−∞
γ (−r) 〈Au(t + r), ψ(t)〉 dr.

Since un is bounded in L2(−∞, T ;V ) and δ > λ1, using (13.32) we have

∫ 0

−∞
γ (−r) 〈Aun (t + r) , ψ(t)

〉
dr

≤
∫ 0

−∞
γ (−r) ∥∥un(t + r)

∥∥
V
dr ‖ψ(t)‖V

≤
(∫ 0

−∞
eλ1r

∥∥un (t + r)
∥∥2
V
dr

) 1
2
(∫ 0

−∞
e−λ1rγ 2(−r)dr

) 1
2

‖ψ(t)‖V

≤ Cγ5 ‖ψ(t)‖V
(∫ 0

−∞
e(2δ−λ1)rdr

) 1
2

= C
γ5

(2δ − λ1)
1
2

‖ψ(t)‖V , for a.a. t ∈ (0, T ) .

By Lebesgue’s theorem we obtain that

∫ T

0

∫ 0

−∞
γ (−r) 〈Aun(t + r), ψ(t)

〉
drdt →

∫ T

0

∫ 0

−∞
γ (−r) 〈Au(t + r), ψ(t)〉drdt.

Finally, by the fifth condition in (H4) the map ω �→ fz(ω) defined in (13.34) is
continuous, which implies that

∫ T

0

∫ 0

−∞
γ (−r) 〈Az(θt+rωn), ψ(t)

〉
drdt →

∫ T

0

∫ 0

−∞
γ (−r) 〈Az(θt+rω), ψ(t)〉drdt.
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Thus,

〈
f (θ·ωn, un· ), ψ

〉 → 〈f (θ·ω, u·), ψ〉 ,

that is, (13.21) holds.
Further, we will check condition (13.23). Since G(u) is continuous and

un (t, x) → u (t, x), z (θtωn, x) → z (θtω, x) for a.a. (t, x) ∈ (0, T ) × O , we
have the convergence G(un(t, x) + z(θtω

n, x)) → G(u(t, x) + z(θtω, x)) for a.a.
(t, x). It follows from (13.29)–(13.30) and the fifth condition in (H4) that there
exists r (·, ·) ∈ L1 ((0, T )× O) such that

G(un(t, x)+ z(θtω
n, x))un(t, x)

≥ −α1 + α0
∣∣un(t, x)+ z(θtω

n, x)
∣∣p −G(un(t, x)+ z(θtω, x))z(θtω

n, x)

≥ −α1 + α0
∣∣un(t, x)+ z(θtω

n, x)
∣∣p − γ2

∣∣z(θtωn, x)
∣∣

− γ1
∣∣un (t, x)+ z(θtω

n, x)
∣∣p−1 ∣∣z(θtωn, x)

∣∣

≥ α0

2

∣∣un(t, x)+ z(θtω
n, x)

∣∣p − R1
∣∣z(θtωn, x)

∣∣p − R2

≥ −R1
∣∣z(θtωn, x)

∣∣p − R2 ≥ r (t, x) , for a.a. (t, x).

Then Lebesgue-Fatou’s lemma (see [10]) implies

lim inf
n→∞

∫ T

0
e−λ1(T−s)(g(θsωn, un(s)), un(s))ds

= lim inf
n→∞ (

∫ T

0

∫

O
e−λ1(T−s)G(un(t, x)+ z(θtω

n, x))un(t, x)dxds)

≥
∫ T

0

∫

O
e−λ1(T−s) lim inf

n→∞ G(un(t, x)+ z(θtω
n, x))un(t, x)dxds

=
∫ T

0

∫

O
e−λ1(T−s)G(u(t, x)+ z(θtω, x))u(t, x)dxds

=
∫ T

0
e−λ1(T−s)(g(θsω, u(s)), u(s))ds,

so that (13.23) is satisfied.
Finally, we need to verify (13.3)–(13.4). Since all the spaces are separable and

metrizable, for this it suffices to prove that the three maps g, h, f are jointly
continuous with respect to both variables, see Castaing and Valadier [5, Chapter 3].

Let us consider first the continuity of the map (ω, u) �→ g(ω, u). Let ωn → ω,
un → u in Lp (O). In view of the fifth condition in (H4) the map z(ωn,·) converges
to z(ω,·) in Lp (O). Thus, up to a subsequence, the continuity of G implies that
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G(un(x) + z(ωn, x)) → G(u(x) + z(ω, x)) for a.a. x. Thus, by using (13.30) and
Lebesgue’s theorem the result follows.

The continuity of (ω, u) �→ h(ω, u) is proved in a rather similar way by
using (13.31) and the continuity of L.

The continuity of (ω,ψ) → f (ω,ψ) follows from the fifth condition in (H4)
and

‖f (ω1, ψ1)− f (ω2, ψ2)‖V ′

≤
∫ 0

−∞
γ (−r) ‖ψ1(r)−ψ2 (r)‖V dr +

∫ 0

−∞
γ (−r) ‖z (θrω1)− z(θrω2)‖V dτ

≤
(∫ 0

−∞
γ 2

5 e
(2δ−λ1)rdr

) 1
2

‖ψ1 − ψ2‖
L2
V

+ γ5

δ

∫ 0

−∞
γ (−r) ‖z(θrω1)− z(θrω2)‖2

V dr

≤ γ5

(2δ − λ1)
1
2

‖ψ1 − ψ2‖L2
V

+ γ5

δ

∫ 0

−∞
γ (−r) ‖z(θrω1)− z(θrω2)‖2

V dr,

where we have used (13.32) and δ > λ1
2 .

Remark 13.1 In Sect. 13.2, in (13.9) we chose the constant μ > 0 such that
inequality (13.10) is satisfied. In this case, since c4 (ω) = 2γ3, μ has to be chosen
such that

8γ3e
λ1h

ηλ1
< μ.

Applying Lemma 13.1 and Theorem 13.1 we obtain the existence of the random
attractor.

Theorem 13.2 The solutions of system (13.25) generate a MRDS having a random
global pullbackD-attractorA , which is strictly invariant.

We would like to give some examples of the random fields z introduced above.
For simplicity, we assume that 1/2 − 1/N ≤ 1/p, hence V is continuously

embedded into Lp(O).
Let Ω be the Fréchet space C0(R,H) and θ is the Wiener shift defined

by (13.35). We consider a bounded mapping

z : Ω × O → R

such that

x �→ z(ω, x) ∈ C1(O),
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and the derivative with respect to its second variable

D2z : Ω × O �→ R

is bounded too. We assume that for any x ∈ O,

Ω  ω �→ z(ω, x), Ω  ω �→ D2z(ω, x)

are continuous. By the separability of Ω the mapping

(ω, x) �→ z(ω, x)

is measurable with respect to F ⊗ B(O).
Under these conditions, the map

ω �→ z(ω, ·) ∈ V

is continuous and bounded. Indeed, if ωn → ω for any x ∈ O we have that
z(ωn, x) → z (ω, x) , D2z(ωn, x) → D2z(ω, x). Thus, the boundedness of z,D2z

and the majorant theorem imply that

∫

O

(
(z(ωn, x)− z(ω, x))2 + (D2z(ωn, x)−D2z(ω, x))

2
)
dx → 0,

which proves the continuity. Also, boundedness in V is straightforward.
Therefore, condition (H4) is satisfied for such z.
Let us give some precise examples in which the above conditions are true.

Example 13.1 Let

Z : H × O �→ R

that is supposed to be bounded and continuous with respect to each argument, and
such that for a fixed argument in H the mapping is in C1(O) with respect to x.
Assume also thatD2Z is bounded and continuous with respect to the first argument.
In addition, for some T ∈ R let δT ω = ω(T ), which is a continuous mapping from
Ω into H . Define

z(ω, x) = Z(δT ω, x).

It is obvious that z is bounded, continuous with respect to each argument and
belongs to C1(O) for any fixed ω. On top of that, it is straightforward to see that
D2z is bounded and continuous with respect to the first argument. Thus, z satisfies
all the above conditions.
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Example 13.2 Let now ζ be a bounded mapping on H ×O , which is continuous in
the first argument if the second argument is fixed, and for fixed first argument h ∈ H

the mapping ζ(h, ·) ∈ C1(O). We assume forD2ζ boundedness and continuity with
respect to the first argument. Then for any T1 < T2 ∈ R we define the mapping

z(ω, x) =
∫ T2

T1

ζ(ω(t), x)dt.

The convergence in Ω of a sequence (ωn)n∈N induces the uniform convergence of
this sequence on [T1, T2]. Therefore, z is bounded as ζ is bounded. The boundedness
of D2ζ ensures that we can exchangeD2 and the integral, that is,

D2z (ω, x) =
∫ T2

T1

D2ζ(ω(t), x)dt,

so that by the majorant theorem we obtain easily that x �→ z(ω, x) ∈ C1(O) and
also that D2z is bounded and z, D2z are continuous with respect to ω. Thus, z
satisfies all the above assumptions.

Example 13.3 Consider a sequence of functions (ζi)i∈Z on H × O , continuous in
the first variable and contained in C1(O) with respect to the second variable. We
suppose that there exists a C > 0 such that

sup
H×O

|ζi(h, x)| ≤ C2−|i|, sup
H×O

|D2ζi(h, x)| ≤ C2−|i|

and that D2ζi are continuous with respect to the first argument. We define

z(ω, x) =
∑
i∈Z

∫ i+1

i

ζi(ω(t), x)dt.

It is clear that z and D2z are bounded in the whole space Ω × O . Indeed,

|D2z(ω, x)| =
∑
i∈Z

∫ i+1

i

|D2ζi(ω(t), x)| dt ≤ C
∑
i∈Z

2−|i| = 3C,

and the same estimate is true for z. Also, using the majorant theorem and estimating
the tails we obtain that x �→ z(ω, x) ∈ C1(O) and also that z, D2z are continuous
with respect to ω. Thus, z satisfies all the above assumptions.
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Chapter 14
Non-Lipschitz Homogeneous Volterra
Integral Equations

Theoretical Aspects and Numerical Treatment

M. R. Arias, R. Benítez, and V. J. Bolós

Abstract In this chapter we introduce a class of nonlinear Volterra integral
equations (VIEs) which have certain properties that deviate from the standard results
in the field of integral equations. Such equations arise from various problems in
shock wave propagation with nonlinear flux conditions. The basic equation we will
consider is the nonlinear homogeneous Hammerstein–Volterra integral equation of
convolution type

u(t) =
∫ t

0
k(t − s)g(u(s)) ds.

When g(0) = 0, this equation has function u ≡ 0 as a solution (trivial solution). It is
interesting to determine whether there exists a nontrivial solution or not. Classical
results on integral equations are not to be applied here since most of them fail to
assure the existence of other solution than the trivial one. Several characterizations
of the existence of nontrivial solutions under different hypothesis on the kernel k
and the nonlinearity g will be presented. We will also focus on the uniqueness of
nontrivial solutions for such equations. In this regard, it is important to note that
this equation can be written as a fixed point equation, so we shall also discuss
the attracting character of the solutions with respect to the Picard iterations of the
nonlinear integral operator defined by the RHS of the equation. Indeed we will
give some examples for which those iterations do not converge to the nontrivial
solutions for some initial conditions and we will study the attraction basins for
such repelling solutions. Numerical estimation of the solutions is also discussed.
Collocation methods have proven to be a suitable technique for such equations.
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However, classical results on numerical analysis of existence and convergence
of collocation solutions cannot be considered here either since the non-Lipschitz
character of the nonlinear operator prevents these results from being applied. New
concepts on collocation solutions are introduced along with their corresponding
results on existence and uniqueness of collocation solutions.

14.1 Introduction

Integral equations in general, and Volterra integral equations in particular, have been
a source of very interesting problems within the realm of functional analysis since
the early works of Volterra more than a century ago. Moreover, over the years,
Volterra integral equations have been successfully applied to numerous problems
of physics, engineering and ecology, among others.

The present review is devoted to establish the strong relation between the
existence and uniqueness of solutions of nonlinear Volterra integral equations of
convolution type with kernel k and nonlinearity g

u(x) =
∫ x

0
k(x − s)g(u(s)) ds, x ≥ 0, (14.1)

and their attractive character. The main objective of this work is to present in a self-
contained way the problems related to the existence and uniqueness of the above
mentioned equation so the reader can get a general idea of the current status of the
proposed problems.

We will say that a function f is attracted by u if

lim
n→∞ T nkgf (x) = u(x), x ≥ 0,

where T nkg denotes the composition of Tkg with itself n-times; being Tkg the operator

Tkgf (x) =
∫ x

0
k(x − s)g(f (s)) ds, x ≥ 0.

This operator will be referred to as associated operator to Eq. (14.1).
This equation is the homogeneous case of the nonlinear Volterra-Hammerstein

integral equation

u(x) = f (x)+
∫ x

0
k(x − s)g(u(s)) ds, x ≥ 0; (14.2)

which is also a particular case of the more general Volterra integral equation

u(x) = f (x)+
∫ x

0
h(x, s, u(s)) ds, x ≥ 0. (14.3)
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The following two theorems, whose proofs were given in 1953 by Sato in [18], are
an example of classical results about the existence and uniqueness of solutions for
Eq. (14.3), where the relationship between existence and uniqueness of solutions
and their attractive character become clear.

Theorem 14.1 Let f be a continuous function on 0 ≤ x ≤ δ, and let

D :=
{
(x, s, u) ∈ R

3 : 0 � s � x � δ, |u− f (x)| � p
}
.

Let h ∈ C(D) have the bound |h(x, s, u)| ≤ M in D. Then, if r := min{δ, p/M},
the integral equation (14.3) has a solution in C([0, r]).
Theorem 14.2 Under the hypotheses of the previous theorem, let h in addition
satisfy a Lipschitz condition

|h(x, s, z)− h(x, s, v)| ≤ L|z− v|,
for all (x, s, z) and (x, s, v) in D. Then there is a unique continuous solution u of
the integral equation (14.3) on the interval [0, r], which satisfies |u(x) − f (x)| �
p on this interval. Moreover, this solution is the uniform limit of the successive
approximations un(x), defined by

u0(x) = f (x)

un+1(x) = f (x)+
∫ x

0
h(x, s, un(s)) ds.

Similar results about existence, uniqueness and convergence of the successive
approximations for systems of Volterra integral equations of the form

u(x) = f (x)+
∫ x

0
k(x − s)g(s, u(s)) ds, x ≥ 0,

where f and g are vectors of n components and k is a n × n matrix, defined on
[0, x0), were presented by J. A. Nohel in 1962 (see [16]).

Let us go back to the convolution equations, (14.1) and (14.2), and let us consider
monotone increasing associated operators Tkg (i.e. let g be an increasing function).
In the homogeneous case, assuming without loss of generality1 that g(0) = 0, we
have that u ≡ 0 is a continuous solution and that if u is a solution, then for any
c > 0 the function

uc(x) =
{

0 if x ∈ [0, c)
u(x − c) if x ≥ c,

1If g(0) = g0 > 0, then Eq. (14.1) could be writen as u(x) = f (x) + ∫ x
0 k(x − s)g̃(u(s))ds,

being f (x) = g0
∫ x

0 k(s)ds and g̃(u) = g(u) − g0 and therefore the equation would be non-
homogeneous.
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is also a solution of the same equation. This kind of solutions will be referred to as c-
translations of u. Let M be any positive constant. It is also known that the sequence
of successive approximations

u0 = M

un = Tkgun−1, n ≥ 1,

converges to 0, on an interval [0, δ), if and only if there is no other continuous
solution than the trivial one (see [6]).

It is very important to note that in this homogeneous case, if the nonlinearity g
satisfies a Lipschitz condition like the one in Theorem 14.2, then it can be easily
proved that g(u) ≤ Lu for any positive u. This sublinearity condition implies that
any solution for Eq. (14.1) will satisfy

u(x) =
∫ x

0
k(x − s)g(u(s)) ds ≤ L

∫ x

0
k(x − s)u(s) ds.

Thus, by means of a generalization of Gronwall’s Inequality (see [11], page 69),
it follows that u(x) ≤ 0, which implies that Eq. (14.1) would only have the trivial
solution, since the kernel k and the nonlinearity g are assumed to vanish in (−∞, 0].

In the non-homogeneous case (14.2), assuming that f is continuous, it is obvious
that function zero is a subsolution, i.e., 0 ≤ f +Tkg0, so the sequence of successive
approximations, starting with function 0, is a monotonic increasing sequence upper
bounded by any positive constant, M , on an interval [0, δ), with δ depending on M .
This implies the existence of a continuous solution for Eq. (14.2), at least near zero
(see [11, Theorem 2.1.10]).

In both cases, the existence of continuous solutions is obtained from a simple
argument in which the attractive character of the solutions has an important role.
Therefore Theorem 14.1 gives us no more information about the existence of
continuous solutions than that obtained in both previous paragraphs. This is an
example of the relationship between the existence, the uniqueness and the attractive
behaviour of the solutions.

14.2 Increasing Nonlinear Volterra Operators with Locally
Bounded Kernels

In our first step in this analysis we will deal with Eq. (14.1), that is, the nonlinear
homogeneous Volterra equation

u(x) =
∫ x

0
k(x − s)g(u(s)) ds, x ≥ 0,
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with kernel k and nonlinearity gsatisfying, at least, the following conditions:

• k : [0,+∞) → [0,+∞) is a locally bounded, measurable function such that

K(x) =
∫ x

0
k(s) ds

is a strictly increasing function.
• g : [0,+∞) → [0,+∞) is a strictly increasing function vanishing at 0.

Other extra assumptions on the kernel and nonlinearity will be indicated when
necessary.

There is a broad bibliography about Volterra integral equation, where it is imme-
diate to appreciate the closeness between existence and uniqueness of solutions and
their attractive behaviour. One nice example is the paper by Bushell [12], where
some results about homogeneous operators of degree p are proved. Recall that T
is an homogeneous operator of degree p if T (mv) = mpT (v), for any positive m.
Also, let us denote

K = {v ∈ C([0, 1]) : v ≥ 0 in [0, 1]},
K 0 = {v ∈ K : v(0) = 0 and v > 0 in (0, 1]} and

K 0
h = {v ∈ Ch : inf

(0,1]
v(t)

h(t)
> 0},

being

Ch = {v ∈ C([0, 1]) : ‖v‖h = sup
(0,1]

|v(t)|
h(t)

< ∞}

and ‖ · ‖ denotes the supremum norm in C([0, 1]). Under this notation, in [12,
Theorem 1.1 and Theorem 1.2] they are proved the following results:

Theorem 14.3 Suppose that T : K → K is a monotone increasing mapping
which is homogeneous of degree p with 0 < p < 1. If there exists a function
h ∈ C([0, 1]) such that h > 0 in (0, 1] and T h ∈ K 0

h , then T has a unique fixed
point in K 0

h .

Theorem 14.4 Suppose that T : K → K is a monotone increasing mapping
which is homogeneous of degree p with 0 < p < 1. Take f ∈ K 0 and define
S : K 0 → K 0 by Sv = f + T v.

If, in addition, T is continuous and uniformly bounded on K 0 ∩ {v : ‖v‖ = 1}
then exists unique solutions in K 0 to the equations u = Su and u = S(1/u).

To prove the above theorems, first, the author finds the complete metric space
{Eh, dh}, being dh the Hilbert’s projective metric on K 0

h and Eh = K 0
h ∩ {v :

v ∈ Ch, ‖v‖h = 1}. The aim is to prove that operator F : Eh → Eh defined by
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F(v) = T (v)/‖T (v)‖h is a strict contraction. Next, the author is ready to prove
the existence and uniqueness of a fixed point of the operator T , by using Banach’s
contraction mapping theorem.

Using these theorems, the author proved the existence and uniqueness of
solutions for an homogeneous Volterra integral equation with a more general non-
convolution smooth kernel and a power nonlinearity of the form

u(x) =
∫ x

0
k(x, s)(u(s))p ds, 0 < p < 1.

Note that the nonlinearity of such equations is a non-Lipschitz function.

14.2.1 Continuous and Increasing Kernels

In [17], Szwarc considers a generalization of continuous increasing convolution
kernels. He studies the non-convolution equation

u(x) =
∫ x

0
k(x, s)g(u(s)) ds, x ≥ 0, (14.4)

where k : R
2 → R is continuous in 0 ≤ s ≤ x with k(x, s) = 0 whenever

0 ≤ x ≤ s and such that,

k(s, t) ≤ k(x, y), if x � s, y � t, x − y > s − t . (14.5)

This condition is a generalization of increasing convolution kernels, since if μ is an
increasing function, the kernel k(x, s) = μ(x − s) satisfies condition (14.5). For
such equations, the associated operator Tkg has an important property: if x < y,
then, for all positive and measurable function f , we have that

Tkgf (x) =
∫ x

0
k(x, s)g(f (s)) ds =

∫ y

0
k(x, s)g(f (s)) ds

≤
∫ y

0
k(y, s)g(f (s)) ds = Tkgf (y),

so the associated operator, Tkg, transforms measurable positive functions, defined
on R

+, into increasing functions.
R. Szwarc proves first the uniqueness of positive solutions and secondly he

proves that when it exists, the solution is a global attractor of all positive and
measurable functions. In order to prove the uniqueness of positive solution he first
proves, in [17, Lemma 2], the following result:
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Lemma 14.1 Let u be a subsolution of Eq. (14.4), then for all positive c, there exists
ε > 0 such that, the function v, defined as

v(x) =
{
u(x) if x ∈ [0, c]
u(c) if x > c,

satisfies

lim inf
n→∞ T nkgv(x) ≥ u(x),

for all x ∈ (c, c + ε).

Using this local attraction result and the fact that Tkg transforms horizontal
translations of subsolutions into subsolutions, the uniqueness of positive solutions
for Eq. (14.4) is proved in [17, Proposition 1].

Once the uniqueness is granted, it is proved that if it exists, the unique positive
solution is a global attractor of all positive and measurable functions. This result is
proved in two steps: first it is shown that every subsolution and every supersolution
is globally attracted by the solution; and secondly it is proved that every positive
function, that without losing generality can be considered increasing, can be upper-
bounded and lower-bounded by a supersolution and a subsolution respectively.

A particular case of Eq. (14.4) is the convolution equation (14.1) with a continu-
ous and increasing kernel k. In this case we have the following result:

Theorem 14.5 Let k be a continuous and increasing function. If Eq. (14.1) admits
a positive solution, then it is unique and attracts all positive functions.

14.2.2 Continuous Like Increasing Kernels

With the aim of extending the results of Szwarc to a wider class of kernels, Arias and
Castillo study, in [6], a Volterra integral equation (k, g), with a continuous kernel
k being “like” a continuous increasing function. That is, a kernel k such that there
exists a continuous increasing function ϕ, and two positive constants, m and M ,
satisfying mϕ ≤ k ≤ Mϕ.

Let Tmg and TMg be the associated operators to the equations (mϕ, g) and
(Mϕ, g), respectively. Let us assume that equation (k, g) admits a solution u. On
one hand, since u = Tkgu ≤ TMgu, u is a subsolution of equation (Mϕ, g). This
implies the existence of a solution, uM , for equation (Mϕ, g). On the other hand,
next theorem assures that then, equation (mϕ, g) also admits a solution um.

Theorem 14.6 Let (ϕ, g) be an equation having a positive increasing kernel. The
equation (ϕ, g) admits a solution if and only if for every λ > 0 the equation (λϕ, g)
admits a solution.
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Since ϕ is an increasing function, equations (mϕ, g) and (Mϕ, g) are one of
those considered by Szwarc in [17], thus, both um and uM , are unique and global
attractor of all positive functions. Taking this into account, they prove the following
preliminary result:

Proposition 14.1 Let (k, g) be an equation with a continuous kernel being like
an increasing continuous function ϕ. If the equation (k, g) admits a solution then
it admits a maximum solution and a minimum solution, which are increasing
functions.

Proof (Sketch of the Proof) If equation (k, g) has a solution u, sincemϕ ≤ k ≤ Mϕ,
last theorem guarantees the existence of solutions um and uM of equations (mϕ, g)
and (Mϕ, g), respectively. First it is proved that um ≤ u ≤ uM . Thus, by the
monotony of the operator Tkg , we get that (T nkguM)n∈N is a decreasing sequence
bounded by below by u. Defining

u1 = lim
n→∞ T nkguM,

the Monotone Convergence Theorem yields that u1 is a solution of equation (k, g).
Similarly, the sequence (T nkgum)n∈N is increasing and upperbounded by u, and its
pointwise limit, u2, is also a solution for (k, g).

In order to prove that u1 and u2 are a maximum and a minimum solution,
respectively, it suffices to show that u1 attracts all functions f ≥ u1, and that u2
attracts all functions f ≤ u2.

Using the same method of demonstration as in [17, Proposition 1], the uniqueness
of increasing solutions is obtained.

Proposition 14.2 The equation (k, g) has at most one positive increasing solution.

Note that, since um and uM are increasing functions,u1 and u2 are also increasing
functions. Thus, from last proposition, it follows that if equation (k, g) has a positive
solution u, then we have that u1 = u2 = u. And from the attracting properties shown
in the proof of that proposition, we get the following theorem:

Theorem 14.7 Let k be a kernel like an increasing kernel. If the equation (k, g)
admits a solution, then it is unique and attracts all positive functions.

Thus, in [6], Arias and Castillo obtain for continuous and like increasing kernels,
the same results Szwarc obtained in [17] for continuous increasing kernels.

14.2.3 Continuous Kernels

Another extension of the results obtained by Szwarc was carried out in [2]. In
that paper, an equation (k, g) with a continuous kernel was considered. First, it
is presented a characterization of the existence of continuous strictly increasing
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functions, by means of an operator, denoted by H , and defined as

Hf (x) =
∫ x

0
K(F(x)− F(s)) ds, (14.6)

being

K(x) =
∫ x

0
k(s) ds, F (x) =

∫ x

0
f (s) ds.

Using classical results about the properties of the convolution operator (see [13,
p. 99]), it is immediate that continuous strictly increasing solutions of equation
(k, g) are locally absolutely continuous functions with positive derivatives a.e. and
their inverses are also locally absolutely continuous functions on R

+. With this
properties of continuous strictly increasing solutions, first it is proved the following
technical lemma:

Lemma 14.2 Let u be a continuous strictly increasing function. Then u is a solution
of (k, g) if and only if

x =
∫ g(x)

0
K(u−1(x)− u−1 ◦ g−1(s)) ds.

This lemma leads to the characterization of the existence of continuous strictly
increasing solutions of equation (k, g).

Theorem 14.8 Equation (k, g) has a continuous strictly increasing solution if and
only if there exists a positive integrable function f such that Hf ≥ g−1.

Using the remarkable fact that there exits a bijection between the set of all
continuous strictly increasing solutions of (k, g), and the set L1

loc(R
+,R+) ∩

H−1(g−1), it is proved the following uniqueness theorem, by showing that the
operator H is injective on L1

loc(R
+,R+).

Theorem 14.9 The equation (k, g) has at most one continuous strictly increasing
solution.

Once the uniqueness of continuous strictly increasing solutions is proved, the
question is: do there exist another kind of positive solutions? As it was shown in
[3], if k is a continuous function, we can define the auxiliary kernel

k(x) = max{k(s) : s ∈ [0, x]}.

Obviously k is increasing and continuous, so the equation (k, g) is one of those
considered by Szwarc in [17]. Thus, the associated operator to equation (k, g), Tkg ,
transforms positive measurable functions into increasing functions and satisfies the



246 M. R. Arias et al.

inequality Tkg ≤ Tkg . So if u is a positive solution of equation (k, g), then

u = Tkgu ≤ Tkgu.

Since Tkgu is an increasing function, u is a locally bounded function. Also, since
the kernel k is continuous, from the properties of the convolution, the continuity of
locally bounded solutions is obtained. To sum up, we know, from Theorem 14.9,
that there is at most one unique continuous strictly increasing solution of equation
(k, g), and we also have obtained that any positive solution of such equation is a
continuous function. Then, what we have to deal now is with the problem of the
existence of continuous non-increasing solutions.

In order to prove the uniqueness of positive solutions, an equation (k, g) with a
positive solution v is considered. First it is proved that the existence of a positive
solution implies the existence of a continuous strictly increasing solution u, which
is the maximum solution of (k, g). Then, some attracting properties of u (Properties
of Inertia) are obtained. For the first one, given a positive real function, f , defined
on R

+, and a positive constant α, we shall define the α-shift of f by

fα(x) =
{

0 if x ∈ [0, α]
f (x − α) if x > α,

and the α-cut of f by

f α(x) =
{
f (x) if x ∈ [0, α]
f (α) if x > α.

Lemma 14.3 (First Property of Inertia) Let α and β be two positive constants
with β > α. Then limn→∞ T nkgu

β
α = uα .

The second property asserts that there cannot exist two different solutions that
coincide on a neighborhood of 0.

Lemma 14.4 (Second Property of Inertia) Let v be a solution of (k, g). If v = u

in an interval [0, δ], then v ≡ u.

Using these two Properties of Inertia, one can show the following uniqueness result:

Theorem 14.10 The unique solution of (k, g) is u.

With a similar proof an attraction property is obtained.

Corollary 14.1 Le f be a positive and measurable function such that f ≤ u. Then
f is attracted by u.

To obtain a similar attraction result, for functions f ≥ u, in [3] the auxiliary
increasing kernel k was considered again. Note that if u is the positive solution of
equation (k, g), then u ≤ Tkgu, that is, u is a subsolution of equation (k, g). Thus,
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equation (k, g) has a positive solution u, which is unique and a global attractor of
all positive functions (see Theorem 14.5). From the attracting behaviour of u, and
the inequality u ≤ Tkgu, it is also obtained that u ≤ u. Since Tkg is a monotone
operator, using the Monotone Convergence Theorem, it can be shown that the
sequence (Tkgu)n∈N converges to a solution of equation (k, g). From the uniqueness
of solutions of equation (k, g) we get that limn→∞ T nkgu = u.

With a proof similar to the proof of Proposition 14.1, we find another attracting
property of u.

Lemma 14.5 Let f be a positive measurable function such that f ≥ u. Then

lim
n→∞ T nkgf = u.

As a consequence of Corollary 14.1 and Lemma 14.5, we finally get the following
theorem:

Theorem 14.11 Let k be a continuous kernel. If equation (k, g) admits a positive
solution, then it is unique and attracts (globally) all positive functions.

14.2.4 Locally Bounded Kernels

A brief analysis of the results above mentioned reveals that one of the keys to prove
the uniqueness and the attractive behaviour of the solutions of equation (k, g), is the
construction of the auxiliary increasing kernel k. But in order to define the kernel k
we do not need k to be a continuous function; it is only necessary that k is locally
bounded. Although Szwarc considers in [17] continuous increasing kernels, after a
close inspection of that paper, one can conclude that the continuity of k is only used
in Lemma 2, in order to find a bound of the kernel in a closed and bounded interval.
That can be done with a locally bounded kernel.

In [5, Sec. 2] it is analyzed where, in [2] and [3], is needed the continuity of the
kernel. It is shown that there is no problem to replace continuous kernels by locally
bounded ones. Thus we can get the following extension of Theorem 14.11:

Theorem 14.12 Let k be a locally bounded kernel. If equation (k, g) admits a
positive solution, then it is unique and attracts (globally) all positive functions.

Then we have the following progression
Continuous Continuous like

increasing kernels ⇒ increasing kernels
⇓

Locally bounded Continuous
kernels ⇐ kernels
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The question that arises now in a natural way is: can Theorem 14.12 be extended
to non-locally bounded kernels? As we shall see in next section, the answer is no.

14.3 Increasing Nonlinear Volterra Operators with Locally
Integrable Kernels

In order to study the equation (k, g) when the kernel is a locally integrable but non-
locally bounded function, it was considered in [5], the Abel integral equation

u(x) =
∫ x

0
(x − s)αg(u(s)) ds, (14.7)

where −1 < α < 0. Such equation has been deeply studied in the literature. W.
Mydlardzyc considered, in [15], the more general integral equation

u(x) =
∫ x

0
k(x − s)r(s)g(u(s)+ h(s)) ds, (14.8)

where

1. k > 0,
∫ x

0 k(s) ds < ∞ for x > 0.
2. r and g are nondecreasing and continuous functions, vanishing in (−∞, 0], and

positive in (0,+∞).
3. h is a nondecreasing and continuous function, vanishing in (−∞, 0] and h(x) >

0 for x > 0, or h ≡ 0.

For such equations, W. Mydlardzyc proves that Eq. (14.8) has at most one contin-
uous solution u. Note that Eq. (14.8) reduces to equation (k, g), when r ≡ 1 on
(0,+∞), and h ≡ 0. Thus, the uniqueness result introduced in [15] is an alternative
proof of Theorem 14.9. So, denoting Eq. (14.7) by (xα, g), we have the following
uniqueness result:

Proposition 14.3 Equation (xα, g) has at most one continuous solution.

Taking into account that the convolution of an integrable function with a bounded
function is a uniformly continuous function, it can be proved that every locally
bounded solution of equation (xα, g) is a continuous function. Thus last proposition
can be rewritten as a more general uniqueness theorem:

Theorem 14.13 Equation (xα, g) has at most one locally bounded solution.

Recall that the aim of this section is to study whether Theorem 14.12 can be
extended to Abel kernels or not. To study the attracting character of the locally
bounded solutions of equation (xα, g), it suffices that the kernel is a locally
integrable function. Thus, we have that
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Proposition 14.4 Let u be a locally bounded solution of equation (xα, g), and f
a positive and measurable function such that f ≤ u. Then f is globally attracted
by u.

The next step is to prove the same attraction property for functions lower bounded
by u. In Sect. 14.2 that was proved by defining an auxiliary increasing kernel, k such
that k ≤ k. Since Abel kernels are non-locally bounded and strictly decreasing,
we cannot find an increasing function bounding the Abel kernel. Thus we cannot
use the same arguments as those considered in last section with locally bounded
kernels. Nevertheless, constant functions are supersolutions on an interval [0, δ),
with δ depending on the constant. So constant functions are locally attracted by
the locally bounded solution. Using a comparison argument, any locally bounded
function will be locally attracted by such solution. Adding some conditions on the
nonlinearity, this local attraction property can be extended (see [4]), to a global
attraction one.

Theorem 14.14 Let f be a positive, measurable and locally bounded function, and
g a nonlinearity satisfying

lim
x→+∞

x

g(x)
= +∞. (14.9)

Then f is globally attracted by the locally bounded solution of equation (xα, g).

In conclusion, for Abel equations we have the following result:

Theorem 14.15 Equation (xα, g) has at most one locally bounded solution. More-
over, if g satisfies (14.9) then such solution is a global attractor of any positive,
measurable and locally bounded function.

Note that results in Theorem 14.15 are not as strong as in Theorem 14.12. While
in Theorem 14.12 we have uniqueness of positive solutions and global attraction of
all positive functions, in Theorem 14.15 we can only guarantee the uniqueness of
locally bounded solutions and the attraction of locally bounded functions.

The first question that arises in view of Theorem 14.15 is: is there any positive
and non-locally bounded solution of equation (xα, g)? As we shall see next, the
answer is positive.

14.3.1 Non-locally Bounded and Multiple Solutions

Simple examples of Abel integral equations with non-locally bounded solutions can
be obtained considering nonlinearities g(x) = xβ . Indeed, the equation (xα, xβ),
with −1 < α < 0 and β > −α−1 has as solution, the function u(x) = dxγ , being

γ = α + 1

1 − β
, d = B(α + 1, γβ + 1)1/(1−β),



250 M. R. Arias et al.

where B denotes the Beta function. Since β > −α−1 > −1, then γ < 0, and
therefore u is a positive non-locally bounded solution of equation (xα, xβ).

To the question of whether this non-locally bounded solution is an attractor or
not, a partial answer was given in [5]. There it was proved that u does not attract the
functions of the family

U = {cxγ : c > 0, c �= d}.

In the next theorem, whose proof can be found in the aforementioned reference [5],
for the sake of simplicity, Tαβ denotes the associated operator to equation (xα, xβ).

Theorem 14.16 Let f ∈ U . Then we have that:

(a) If c > d then limn→∞ T nαβf (x) = +∞, for all x ∈ (0,+∞)

(b) If c < d then limn→∞ T nαβf (x) = 0, for all x ∈ (0,+∞)

The existence of Abel equations with non-locally bounded solutions leads to
the existence of Abel equations with two positive solutions. Such equations were
obtained in [4], combining two Abel equations: one with a locally bounded solution,
and one with a non-locally bounded solution. Consider an Abel equation (xα, Cg̃)
with a locally bounded solution ũ, and an Abel equation (xα, xβ), as above,
with a nonlocally bounded solution dxγ . Then, given a positive δ, we define the
nonlinearity

g(x) =
{
Cg̃(x) if x ∈ [0, δ)
xβ if x ≥ δ,

where C = δβg̃(δ)−1 is such that g is continuous. For such nonlinearity we have
that equation (xα, g) has two positive solutions: one, u1, locally bounded and the
other, u2, non-locally bounded. Moreover, we have that, in a neighbourhood of zero,
u1 coincides with ũ and u2 coincides with dxγ .

The attracting properties of the solutions of equation (xα, g), when two positive
solutions are present, was studied in [5]. First it was proved the following lemma:

Lemma 14.6 Let u1 and u2 denote the locally bounded and the non-locally
bounded solution of equation (xα, g), respectively. Then u1 ≤ u2.

Theorem 14.17 Let f be a function such that f (x) = cxγ in a neighbourhood of
zero. Then

(a) If c > d , limn→∞ T nαgf (x) = +∞ for all x ∈ (0,+∞).
(b) If c < d , limn→∞ T nαgf (x) = u1(x) on the domain of u1.

However, the structure of the attraction basins of the solutions u1 and u2 is far
more complex that what may appear from Theorem 14.17. In fact, the structure of
the attraction basin of the non-bounded solution u2 was studied in [7]. There, it was
found that the basins of attraction could not be separated with theL1(0, δ) topology,
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in the sense that for every ball, centered on the unbounded fixed point u2, B(u2),
we could find functions u0 ∈ B(u2) such that the iteration sequence (T nu0)n∈N
converges to u2, converges to u1 or diverges to ∞.

14.3.2 Abel Equations as Limit of Volterra Equations

Let (xα, g) be an Abel integral equation with a locally bounded solution u and, for
any natural n, we define

kn(x) =
{

1
nα

if x ∈ [0, 1
n
]

xα if x > 1
n
.

The sequence (kn)n∈N converges pointwise to the Abel kernel xα on (0,+∞). Next
we shall see that under some assumptions, any equation (kn, g) has a solution un.

Proposition 14.5 If there exists a positive δ such that

∫ δ

0

ds

g(s)
< +∞, (14.10)

then for any natural n the equation (kn, g) admits a solution un.

In the next result, which was proved in [4], Tng and Tαg denote the associated
operators to equation (kn, g) and (xα, g), respectively.

Proposition 14.6 If Tαgf is continuous and m ∈ N, then the sequence (T mngf )n∈N
converges to T mαgf uniformly on any compact in R+.

With this convergence result we obtain the following theorem:

Theorem 14.18 The sequence (un)n∈N converges to u uniformly on any compact
in R+.

Note that, since the existence of solutions for the equation (kn, g) implies the
existence of a locally bounded solution of (xα, g), this theorem shows a way to
construct such solution.

We also have to note that hypothesis (14.10) cannot be dismissed. Since the
kernel kn is constant in the interval [0, 1/n], equation (kn, g) takes the form

un(x) = 1

nα

∫ x

0
g(un(s)) ds.

And this equation is equivalent to the initial value problem

u′
n(x) = 1

nα
g(un(x)), x ∈ [0, 1

n
]; un(0) = 0. (14.11)
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But it follows from the Osgood Uniqueness Theorem (see [13]), that if

∫ δ

0

ds

g(s)
= +∞,

then un ≡ 0 is the only continuous solution of the initial value problem (14.11). So
if (14.10) does not hold, equation (kn, g) has only the trivial solution. Moreover, in
such case the Abel equation (xα, g) cannot be written as the (pointwise) limit of a
Volterra integral equation sequence (kn, g)n∈N with locally bounded kernels.

Finally, recall that, since kn is a locally bounded function, the locally bounded
solution un is unique. So if we consider an Abel integral equation (xα, g) with two
positive solutions, then equations (kn, g) may have only the trivial solution or the
locally bounded solution un, depending on whether (14.10) holds or not. Therefore,
neither the existence of nontrivial solutions, nor the uniqueness of such solutions
are properties preserved under the pass to the (pointwise) limit.

14.4 Numerical Study

Over this section we are going to deal with numerical methods to estimate non trivial
solutions for homogeneous Volterra integral equations. In previous sections of this
chapter we have seen results about existence and uniqueness of nontrivial solutions
and also, certain results describing some attractive and repelling behaviours of such
solutions considered as fixed points of some discrete dynamical systems. Among
these results, some of them bound their basins of attraction or, at least, determine
subsets enclosed in them. From this information, to raise some numerical methods
for estimating nontrivial solutions is relatively straightforward. A couple of these
methods can be seen in [1]. Next, we will give a brief description of two direct
methods. In both of them, the equation considered will be Eq. (14.1)

u(x) =
∫ x

0
k(x − s)g(u(s))ds, x ∈ [0, δ].

We assume that last equation has a unique bounded nontrivial solution. In this
section, for the sake of readability, operator Tkg will be denoted by T , since there is
no ambiguity in either the kernel or the nonlinearity.

From the previous sections it becomes clear that u is an absolutely continuous
function on [0, δ] and therefore the existence of positive constants M and δ0 ≤ δ

such that u ≤ M on [0, δ] and M ≥ TM ≥ u on [0, δ0] is an immediate fact.
The last inequalities are the basis for the first method presented in [1, Chapter 5].
Since T is an increasing operator and u is the unique continuous fixed point; the
immediate consequences are the proper definition of the sequence (T nM)n∈N and
their monotonous decreasing character. Obviously, (T nM)n∈N, the orbit of M , must
be a convergent sequence lower bounded by u. Since the limit of this orbit must be
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a fixed point of T we can assert that

(T nM)n∈N → u,

on [0, δ0]. It is not necessary a deep analysis to recognize the drawback of this
method to estimate u. The main problem is the required computations in order
to determine the different terms of (T nM)n∈N; namely, to calculate the n-fold
convolution. To overcome this problem we consider the downward-upward method
[1]. We know that

M ≥ TM ≥ u, on [0, δ0].

Since TM is an absolute continuous function, for ε/2 > 0, there exists δ1 > 0 and
P1, a partition of [0, δ0] with size δ1, and it is possible to define the step function

M1(x) =
n1∑
i=1

TM(xi)χi(x), x ∈ [0, δ0]

where xi ∈ P1 with i = 1, . . . , n1 and χi , the characteristic function of [xi−1, xi);
in order to ensure that 0 ≤ M1 − TM ≤ ε/2 and M ≥ M1 ≥ TM on [0, δ0].
In this sense, TM would be the drop and M1, the rise. Considering the monotone
increasing character of T and the last inequalities we obtain thatM1 ≥ TM ≥ TM1
on [0, δ0].

From TM1, analogously to the construction of M1 from TM , it is possible to
define the step function

M2(x) =
n2∑
i=1

TM1(xi)χi(x), x ∈ [0, δ0],

where xi ∈ P2 with i = 1, . . . , n2; being P2, a partition of [0, δ0] with size δ2. The
partition P2 and δ2 are selected in order to ensure that 0 ≤ M2 − TM1 ≤ ε/22 and
M1 ≥ M2 ≥ TM1 on [0, δ0]. Therefore M2 ≥ TM1 ≥ TM2 holds on [0, δ0]. In
this case TM1 would be the drop and M2, the rise.

And so on for any m ∈ N, once TMm is obtained, it is possible to define the step
function

Mm+1(x) =
nm+1∑
i=1

TMm(xi)χi(x), x ∈ [0, δ0],

where xi ∈ Pm+1 with i = 1, . . . , nm+1; being Pm+1, in this case, a partition of
[0, δ0] with size δm+1. The partition Pm+1 and δm+1 are selected in order to ensure
that 0 ≤ Mm+1 − TMm ≤ ε/2m+1 and Mm ≥ Mm+1 ≥ TMm on [0, δ0]. Therefore
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Mm+1 ≥ TMm ≥ TMm+1 holds on [0, δ0]. In this case TMm would be the drop
and Mm+1, the rise.

It can be seen that, for any m ∈ N, the sequence (T nMm)n∈N → u pointwise on
[0, δ0] and the same will happen with the sequences (T nMm)m∈N, for any n ∈ N,
see [1]. Therefore, an easy way to estimate u locally, near to zero, is to consider the
sequence (TMm)m∈N. In our opinion the major problem with downward-upward
method is the slow convergence rate. To solve this and other problems, other
methods can be considered, as we shall see below.

14.4.1 Collocation Methods

Let us consider the nonlinear homogeneous Volterra-Hammerstein integral equation
(HVHIE) with non-convolution kernel given by

u (x) =
∫ x

0
k (x, s) g (u (s)) ds, x ∈ I := [0, δ] . (14.12)

We assume that the following general conditions are always held, even if they are
not explicitly mentioned.

• Over k. The kernel k : R
2 → [0,+∞) is a locally bounded function and its

support is in
{
(x, s) ∈ R

2 : 0 ≤ s ≤ x
}
.

For every x > 0, the map s �→ k (x, s) is locally integrable, and
∫ x

0 k (x, s) ds is
a strictly increasing function.

• Over g. The nonlinearity g : [0,+∞) → [0,+∞) is a continuous, strictly
increasing function, and g (0) = 0.

Note that since g(0) = 0, the zero function is a solution of Eq. (14.12) and
so, uniqueness of solutions is no longer a desired property for Eq. (14.12) because
we are obviously interested in nontrivial solutions. Therefore, it will be necessary
that the nonlinearity g does not satisfy a Lipschitz condition. This is an important
issue because the main theorems about the existence, uniqueness and convergence
of collocation solutions for Volterra integral equations rely on the Neumann Lemma,
which states that under certain condition, some matrices must have a spectral radius
lower than 1, and use this fact in order to prove the convergence. Such conditions
are, namely, the Lipschitz continuity of the nonlinearity (see [11]).

Taking z := g◦u, Eq. (14.12) can be written as an implicitly linear homogeneous
Volterra integral equation (HVIE) for z:

z(x) = g

(∫ x

0
k (x, s) z(s) ds

)
, x ∈ I. (14.13)

So, if z is a solution of (14.13), then u := g−1 ◦ z is a solution of (14.12).
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14.4.1.1 Collocation Problems for Implicitly Linear HVIEs

Let Ih := {xn : 0 = x0 < x1 < . . . < xN = δ} be a mesh (not necessarily uniform)
on the interval I = [0, δ], and set σn := (xn, xn+1] with lengths hn := xn+1 −
xn (n = 0, . . . , N − 1). The quantity h := max {hn : 0 ≤ n ≤ N − 1} is called the
stepsize. Given a set ofm collocation parameters {ci : 0 ≤ c1 < . . . < cm ≤ 1}, the
collocation points are given by xn,i := xn+cihn (n = 0, . . . , N−1) (i = 1, . . . ,m),
and the set of collocation points is denoted by Xh. All this defines a collocation
problem for Eq. (14.13) (see [10], [11, p. 117]), and a collocation solution zh is
given by the collocation equation

zh (x) = g

(∫ x

0
k (x, s) zh (s) ds

)
, x ∈ Xh , (14.14)

where zh is in the space of piecewise polynomials of degree less than m (see [11,
p. 85]). Note that the identically zero function is always a collocation solution, since
g (0) = 0.

As it is stated in [11], a collocation solution zh is completely determined
by the coefficients Zn,i := zh

(
xn,i

)
(n = 0, . . . , N − 1) (i = 1, . . . ,m),

since zh (xn + vhn) = ∑m
j=1 Lj (v) Zn,j for all v ∈ (0, 1], where Lj (v) :=∏m

k �=j
v−ck
cj−ck (j = 1, . . . ,m) are the Lagrange fundamental polynomials with respect

to the collocation parameters. The values of Zn,i are given by the systems

Zn,i = g

⎛
⎝Fn

(
xn,i

) + hn

m∑
j=1

Bn (i, j) Zn,j

⎞
⎠ , (14.15)

where

Bn (i, j) :=
∫ ci

0
k
(
xn,i, xn + shn

)
Lj (s) ds. (14.16)

and

Fn (x) :=
∫ xn

0
k (x, s) zh (s) ds. (14.17)

14.4.1.2 Existence and Uniqueness of Nontrivial Collocation Solutions

Given a kernel k, a nonlinearity g and some collocation parameters {c1, . . . , cm},
our aim is to study the existence of collocation solutions in an interval I = [0, δ]
using a mesh Ih. Specifically, we are interested in “nontrivial” collocation solutions
that are not identically zero in σ0. Next, we are going to define three different kinds
of existence of nontrivial collocation solutions.
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• We say that there is existence near zero if there exists H0 > 0 such that if
0 < h0 ≤ H0 then there are nontrivial collocation solutions in [0, x1]; moreover,
there existsHn > 0 such that if 0 < hn ≤ Hn then there are nontrivial collocation
solutions in [0, xn+1] (for n = 1, . . . , N − 1 and given h0, . . . , hn−1 > 0
such that there are nontrivial collocation solutions in [0, xn]). That is, collocation
solutions can always be extended a bit more.

• We say that there is existence for fine meshes if there exists H > 0 such
that if 0 < h ≤ H then the corresponding collocation problem has nontrivial
collocation solutions in any interval I .

• We say that there is unconditional existence if there exist nontrivial collocation
solutions in any interval I and for any mesh Ih.

Collocation solutions should converge to solutions of (14.13) (if they exist) when
h → 0+ (and N → +∞), but these convergence problems are, in general, very
complex. Taking this into account, we are interested in the study of existence of
nontrivial collocation solutions using meshes Ih with arbitrarily small h > 0 and
moreover, we are not interested in collocation problems whose collocation solutions
“escape” to +∞ in a certain σn when hn → 0+.

Let S be an index set of all the nontrivial collocation solutions of a collocation
problem with mesh Ih. For any s ∈ S we denote by Zs;n,i the coefficients satisfying
Eq. (14.15) (with n = 0, . . . , N − 1 and i = 1, . . . ,m) and such that, at least, one
of the coefficients Zs;0,i is different from zero (for some i ∈ {1, . . . ,m}). Given
Ih = {0 = x0 < . . . < xN−1} such that there exist nontrivial collocation solutions
using this mesh, we say that there is nondivergent existence if, for n = 0, . . . , N−1,

Zhn := inf
s∈Shn

{
max

i=1,...,m

{
Zs;n,i

}}

exists for small enough hn > 0 and it does not diverge to +∞ when hn → 0+.
Moreover, we say that there is nondivergent uniqueness if

min
s∈Shn

{
max

i=1,...,m

{
Zs;n,i

}} = Zhn

exists for small enough hn > 0 and it does not diverge to +∞ when hn → 0+, but

inf
s∈Shn

({
max

i=1,...,m

{
Zs;n,i

}} − {
Zhn

})

diverges. In case of nondivergent uniqueness, the nondivergent collocation solution
that makes sense is the one whose coefficients Zn,i satisfy maxi=1,...,m

{
Zn,i

} =
Zhn for n = 0, . . . , N − 1.

Next, we are going to present some results about nondivergent existence and
uniqueness for cases 1 (m = 1 with c1 > 0) and 2 (m = 2 with c1 = 0) given in
[8]. In these results, we say that a property P holds near zero if there exists ε > 0
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such that P holds on (0, δ) for all 0 < δ < ε. On the other hand, we say that P
holds away from zero if P holds on (x,+∞) for all x > 0. Finally, we say that
g is “well-behaved” if g(α+u)

u
is strictly decreasing near zero for all α > 0. This

condition is in fact very weak, since limu→0+ g(α+u)
u

= +∞. Now, we are able to
present these results:

• k (x, s) ≤ k
(
x ′, s

)
for all 0 ≤ s ≤ x < x ′;

g(u)
u

is unbounded near zero if and only if there is nondivergent existence near
zero.
Moreover, if g is “well-behaved” then there is nondivergent uniqueness near zero.

• (Hypothesis only for case 2: c2 = 1, or k (x, s) ≤ k
(
x ′, s

)
for all 0 ≤ s ≤ x <

x ′);
If g(u)

u
is unbounded near zero but bounded away from zero then there is

nondivergent existence near zero.
Moreover, if g is “well-behaved” then there is nondivergent uniqueness near zero.
With these hypotheses, for convolution kernels k(x − s) there is nondivergent
existence or uniqueness (resp.) for fine meshes instead of near zero.

• (Hypothesis only for case 2: c2 = 1, or k (x, s) ≤ k
(
x ′, s

)
for all 0 ≤ s ≤ x <

x ′);
If g(u)

u
is unbounded near zero and there exists a sequence {un}+∞

n=1 of positive

real numbers and divergent to +∞ such that limn→+∞ g(un)
un

= 0 then there is
unconditional nondivergent existence.
Moreover, if g is “well-behaved” then there is unconditional nondivergent
uniqueness.

It should be noted that if the collocation problem is not in the scope of cases 1 and
2, the existence of nontrivial collocation solutions is not assured. Some examples
can be found in [8].

14.4.1.3 Blow-Up Collocation Solutions

Some problems in engineering and physics exhibiting explosive behaviour are
described by nonlinear integral equations whose solutions present a blow-up at finite
time. It has been an important issue regarding these equations, not only to determine
whether a nonlinear Volterra integral equation has blow-up solutions, but also, to
give estimates of the location of such blow-up time (see [14, 19]).

In this section, we are going to extend the concept of collocation problem and
collocation solution in order to consider the case of “blow-up collocation solutions”.
But first, since non locally bounded kernels appear in many cases of blow-up
solutions, we have to make some changes in the general conditions over the kernel
k in order to not exclude this kind of kernels. Specifically, we are going to replace
the condition “locally bounded” on the kernel by “limx→a+

∫ x
a
k (x, s) ds = 0 for

all a ≥ 0”. In [9] can be found a list of results about nondivergent existence and
uniqueness taking into account these new general conditions.
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We say that a collocation problem is a blow-up collocation problem (or has a
blow-up) if the following conditions are held:

1. There exists t∗ > 0 such that there is no collocation solution in I = [
0, t∗

]
for

any mesh Ih.
2. Given M > 0 there exists 0 < τ < t∗, and a collocation solution zh defined on

[0, τ ] such that |zh(x)| > M for some x ∈ [0, τ ].
We can not speak about “blow-up collocation solutions” in the classic sense,

since “collocation solutions” are defined in compact intervals and obviously they
are bounded; so, we have to extend first the concept of “collocation solution” to
half-closed intervals I = [0, t∗) before we are in position to define the notion of
“blow-up collocation solution”.

Let I := [0, t∗) and Ih be an infinite mesh given by a strictly increasing sequence
{xn}+∞

n=0 with x0 = 0 and convergent to t∗.

• A collocation solution on I using the mesh Ih is a function defined on I such that
it is a collocation solution (in the classic sense) for any finite submesh {xn}Nn=0
with N ∈ N.

• A collocation solution on I is a blow-up collocation solution (or has a blow-up)
with blow-up time t∗ if it is unbounded.

Given a collocation problem with nondivergent uniqueness near zero, a necessary
condition for the nondivergent collocation solution to blow-up is that there is neither
existence for fine meshes nor unconditional existence. So, for example, given a
convolution kernel k(x−s), in cases 1 and 2 we must require that g(u)

u
is unbounded

away from zero; moreover, in case 2 with c2 �= 1, we must demand that there exists
ε > 0 such that k is continuous in (0, ε). More examples and a numerical algorithm
for detecting blow-ups can be found in [9].
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Chapter 15
Solving Random Ordinary and Partial
Differential Equations Through the
Probability Density Function: Theory
and Computing with Applications

J. Calatayud, J.-C. Cortés, M. Jornet, and A. Navarro-Quiles

Abstract This contribution provides a practical view to the computation of the first
probability density function of the solution stochastic process to ordinary and partial
differential equations with randomness using the Random Variable Transformation
technique. The analysis is performed via a set of simple examples, belonging to
different areas like Physics, Biology and Engineering, with the aim of illustrating
key ideas from a practical standpoint.

15.1 Introduction and Motivation

Differential equations play a prominent role in applications of Mathematics to other
scientific areas such as Physics, Chemistry, Engineering, Biology, Epidemiology,
Economy, etc. However, differential equations governing physical phenomena (in
a wide sense) have inputs (initial and/or boundary conditions, forcing term and/or
coefficients) that in practice need to be set from experimental data. Due to errors in
the measurements and inherent uncertainty often involved in real phenomena, it is
more realistic to consider those inputs as random variables or stochastic processes
rather than numbers or deterministic functions, respectively. This approach leads to
the area of random or stochastic differential equations. Accordingly, the solutions
of such differential equations are stochastic processes. As a major difference with
respect to what is done in the deterministic scenario, where the main goal is to
calculate (exact or approximate) solutions of differential equations, in the random
framework it is also important to find the relevant probabilistic information of
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the solution stochastic process, say X(t). This information is usually reported via
the statistical moments of X(t) such as mean, variance, kurtosis, asymmetry, etc.
However, to complete this statistical information it is also desirable to compute
the so-called fidis (finite distributions) of X(t) [1, Ch. 3]. In particular, the first
probability density function (1-PDF), f1(x, t), allows us to compute all one-
dimensional statistical moments of X(t),

E[(X(t))k] =
∫ ∞

−∞
xkf1(x, t) dx, k = 1, 2, . . . . (15.1)

As a consequence, from f1(x, t) we can obtain the mean, E[X(t)], and the variance,
V[X(t)] = E[X2(t)] − (E[X(t)])2.

In dealing with differential equations with uncertainty one usually distinguishes
between two different kind of such equations, namely, stochastic differential
equations (SDEs) and random differential equations (RDEs). Both SDEs and RDEs
are distinctly different because of the nature of randomness acting on them. As a
consequence, analysis and approximation of RDES and SDEs require completely
different methods [2, pp. 96–97]. SDEs are forced by an irregular noise such
as a Wiener process W(t). They are usually written in terms of Riemann and
Itô stochastic integrals. The calculation of the exact solution of SDEs is based
on the application of the so-called Itô’s lemma [3]. However, since most of the
SDEs cannot be solved in an exact manner, a number of numerical schemes have
been proposed [4]. In general, the order of numerical schemes designed for SDEs
where uncertainty is considered via the Wiener process have lower order than their
deterministic counterpart. RDEs are those in which random effects are directly
manifested with inputs that are assumed to possess sample regular behaviour (e.g.,
sample continuous or differentiable) with respect to time. The computation of the
1-PDF of the solution stochastic process for both types of differential equations
is a major goal. On the one hand, in the context of SDEs, it can be proved that
this function solves the so-called Fokker-Planck-Kolmogorov partial differential
equation [5]. In general, the exact solution of this equation is extremely difficult
and one must rely on numerical techniques. On the other hand, a method that has
demonstrated its effectiveness to determine the 1-PDF of RDEs is the Random
Variable Transformation (RVT) technique.

The objective of this chapter is twofold. Firstly, we will show how the RVT
technique can be applied to compute the 1-PDF of RDEs. With the aim of providing
a broader view of the application of this technique, we shall obtain the 1-PDF of the
solution stochastic process of ordinary and partial RDEs. Secondly, we will illustrate
the usefulness of computing the 1-PDF to fit a mathematical model using real data.
In the context of this application, it is also a primary goal of this contribution to
address the inverse problem which consists of determining appropriate probability
distributions for model inputs using a Bayesian approach.

The chapter is organized as follows. Section 15.2 is devoted to introduce RVT
technique and to illustrate its application to determine the 1-PDF of an absolutely
continuous stochastic process. Section 15.3 is divided into two parts, the first one
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addresses the computation of the 1-PDF of the solution stochastic process of a
random ordinary differential equation that appears in a physical problem, while
in the second part we show a Bayesian technique for determining the probability
distributions of input data of a randomized differential equation modelling the
fish weight using real data. In Sect. 15.4 we illustrate, by means of a randomized
nonlinear partial differential equation, how the RVT technique can also be applied
to obtain the 1-PDF of the solution stochastic process in the context of partial
differential equations. Conclusions are drawn in Sect. 15.5.

15.2 A Glance to the RVT Technique

The RVT technique is a powerful method that permits the computation of the PDF
of a random vector which is obtained after mapping another random vector whose
PDF is given. There exist several formulations of this result [6–8], below we state
the one that will be used throughout this chapter.

Lemma 15.1 ([9] Random Variable Transformation Technique) Let X be
an absolutely continuous random vector with density fX and with support DX

contained in an open set D ⊆ R
n. Let g : D → R

n be a C1(D) function,
injective on D such that J [g](x) �= 0 for all x ∈ D (J stands for Jacobian). Let
h = g−1 : g(D) → R

n. Let Y = g(X) be a random vector. Then Y is absolutely
continuous with density

fY (y) =
{
fX(h(y))|J [h](y)|, y ∈ g(D),

0, y /∈ g(D).

Although this result is formulated for random variables (vectors), we can still take
advantage of it in the context of stochastic processes, say X(t), as by definition for
each t̂ fixed,X(t̂) is a random variable. Then, applying Lemma 15.1 one obtains the
PDF of the random variableX(t̂). If this expression is valid for every t , then one gets
the so-called 1-PDF of X(t), f1(x, t). Analogously, if two different time instants,
say t̂1 and t̂2, are fixed, then applying Lemma 15.1 one can calculate the joint PDF
of the random vector (X(t̂1),X(t̂2)), and letting (t1, t2) be arbitrary, one can deduce
the so-called second probability density function (2-PDF) ofX(t), f2(x1, t1; x2, t2),
and so on.

To illustrate this procedure, next we show an example where the 1-PDF is
computed. Despite the simplicity of the stochastic process involved in this example
(it is just a linear transformation of two independent uniform random variables), it is
interesting to notice that the computation of the 1-PDF is not trivial. In the context
of random ordinary and partial differential equations the computation of the 1-PDF
becomes harder.

Example 15.1 Let us consider the stochastic process Y (t) = At + B, t > 0 where
A and B are independent and identically random variables uniformly distributed on
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the interval ]0, 1[ (A,B ∼ Un(]0, 1[)). Let us fix t > 0 and consider the following
transformation mapping g : D =]0, 1[×]0, 1[−→ R

2, where y1 = g1(a, b) =
at + b and y2 = g2(a, b) = b which is C1(D) and injective. Moreover, its inverse
transformation mapping is h = g−1 :]0, t + 1[×]0, 1[−→ R

2, h1(y1, y2) = (y1 −
y2)/t and h2(y1, y2) = y2. It is straightforward to check that the Jacobian of h is
|J [h](y1, y2)| = 1/t �= 0. Then, according to Lemma 15.1, the joint PDF of the
random vector (Y1, Y2) is given by

fY1,Y2(y1, y2) = fA,B

(
y1 − y2

t
, y2

)
1

t
.

Observe that as usual, we write random variables/vectors by capital letters while
deterministic quantities are denoted in lower case letters. By marginalizing with
respect to Y2 and taking into account that t is arbitrary, one obtains the 1-PDF of
Y (t):

f1(y, t) =
∫ 1

0
fY1,Y2(y1, y2)dy2 =

∫ 1

0
fA,B

(
y − b

t
, b

)
1

t
db

= 1

t

∫ 1

0
fA

(
y − b

t

)
fB(b)db = 1

t

∫ 1

0
fA

(
y − b

t

)
db

= 1

t
, b ≤ y ≤ b + t,

where independence between the random variables A and B and that the PDF of
B ∼ Un(]0, 1[) is fB(b) = 1, 0 < b < 1, have been used. Observe that the
interval where y belongs to guarantees (y − b)/t ∈]0, 1[, as requested, so that the
last integral makes sense. Notice that b < y < b + t entails y − t < b < y, hence
f1(y, t) can be expressed as follows:

f1(y, t) = 1

t

∫ min(1,y)

max(0,y−t )
1 db.

To give an explicit expression of f1(y, t) it is necessary to split the integral in four
cases:

Case 1: y ≥ t and y ≥ 1

f1(y, t) = 1

t

∫ 1

y−t
1db = 1 + 1

t
(1 − y).

Case 2: y ≥ t and 0 ≤ y ≤ 1

f1(y, t) = 1

t

∫ y

y−t
1db = 1.
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Case 3: y ≤ t and y ≥ 1

f1(y, t) = 1

t

∫ 1

0
1db = 1

t
.

Case 4: y ≤ t and 0 ≤ y ≤ 1

f1(y, t) = 1

t

∫ y

0
1db = y

t
.

Now, we check that the integral of this function is the unit:

∫ ∞

−∞
f1(y, t)dy =

∫ 1+t

1
1 + 1

t
(1 − y)dy +

∫ 1

t

1dy +
∫ t

0

y

t
dy = 1

where we have taken into account that 0 < y < 1 + t , since Y (t) = At + B, t > 0,
and A,B are uniformly distributed on ]0, 1[.

15.3 Computing the 1-PDF in the Context of Random
Ordinary Differential Equations

This section is addressed to show, in a practical way, how the 1-PDF of the solution
stochastic process can be computed in the context of random ordinary differential
equations. Moreover, we will illustrate the Bayesian technique to determine the
probability distributions of inputs when a RDE is considered to model real data.

Before addressing our particular study, it is convenient to point out that the
computation of the 1-PDF of the solution stochastic process of random ordinary
differential equations has been studied in recent contributions. On the one hand,
in [10] random linear first-order differential equations have been studied; in [11]
one extends the corresponding analysis for random linear second-order differential
equations; in [12], one addresses the study of an important class of random nonlinear
differential equation, namely, the Bernoulli equation. On the other hand, some
applications in Epidemiology and Biology are shown in [13, 14], respectively.

15.3.1 The Nonlinear Random Differential Equation for a
Falling Body

Let us consider the differential equation governing the velocity V (t) of a falling
body of mass m in a medium where the resistance is proportional to the square of
the velocity

V ′(t)+ p

m
V 2(t) = g, t > 0, (15.2)
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being p > 0 a physical constant related to the resistance and g the gravity constant.
Let us assume that the initial velocity is unknown in a deterministic way because of
measurement errors and hence it is assumed to be a positive random variable, say
V0. Hereinafter, fV0(v0) will denote its PDF. For the sake of simplicity in this first
example, uncertainty is only considered through the initial condition. The solution
of the Riccati differential equation (15.2) with random initial condition V (0) = V0
is given by

V (t) = a
a tanh(bt)+ V0

a + V0 tanh(bt)
, t ≥ 0, where a =

√
mg

p
> 0, b =

√
p g

m
> 0.

(15.3)

For each t ≥ 0 fixed, V (t) = V can be seen as a transformation mapping g : D =
]0,+∞[−→ R defined by g(v0) = (a2 tanh(bt) + av0)/(a + v0 tanh(bt)), which
satisfies

dg

dv0
= ab(a − v0)(a + v0)

(a cosh(bt)+ v0 sinh(bt))2
.

Therefore g is injective (increasing if 0 < v0 < a and decreasing if v0 > a).
Moreover, its inverse h and the Jacobian of its inverse are given by

v0 = h(v) = av − a2 tanh(bt)

a − v tanh(bt)
, J [h](v) = dh

dv
= a2

(a cosh[bt] − v sinh[bt])2 > 0,

respectively. According to Lemma 15.1, the PDF fV of random variable V can be
computed in terms of the PDF fV0 , and taking t ≥ 0 arbitrary one also obtains the
1-PDF of the velocity stochastic process

f1(v, t) = fV0

(
av − a2 tanh(bt)

a − v tanh(bt)

)
a2

(a cosh(bt)− v sinh(bt))2
, (15.4)

where the positive constants a and b are defined in (15.3).
In order to illustrate numerically the above theoretical results, let us assume that

m = 100 kg, p = 10 kg/m, g = 9.8 m/s2 and that the initial velocity V0 has a
uniform distribution on the interval [1.4, 1.6]. In agreement with (15.4), the 1-PDF
of the velocity of the falling body is given by

f1(v, t) = 490(√
98 cosh

(√
98

10 t
)

− v sinh
(√

98
10 t

))2 ≥ 0, t ≥ 0, v0,1 ≤ v ≤ v0,2,

(15.5)
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where

v0,1 = 70 − 343
√

2

tanh
(

7t
5
√

2

)
+ 5

√
2
, v0,2 = 7

4

⎛
⎝35 − 1193

√
2

8 tanh
(

7t
5
√

2

)
+ 35

√
2

⎞
⎠ .

It can be checked that
∫ v0,2
v0,1

f1(v, t)dv = 1, thus f1(v, t) is really a PDF for every
t ≥ 0. Furthermore, the mean of the velocity is

E[V (t)] =
∫ v0,2

v0,1

vf1(v, t)dv

= 7
2 csch2

(
7t

5
√

2

)(√
2 sinh

(
7
√

2t
5

)
− 140 log

(
1

35
√

2 coth
(

7t
5
√

2

)
+7

+ 1

))
,

where csch(·) and coth(·) stand for the hyperbolic cosecant and cotangent, respec-
tively. It is instructive to observe that

lim
t→0

E[V (t)] = 1.5, lim
t→∞E[V (t)] = 0,

as expected.

15.3.2 Bayesian Computation of the Parameters of a Fish
Weight Growth Model

In this section we consider the random Bertalanffy model that has been applied
to describe the evolution of the time of fish weights [15, p. 331]. In [12], authors
randomized the deterministic Bertalanffy model

{
W ′(t) = −λW(t) + η(W(t))2/3, t ≥ t0,

W(t0) = W0,
(15.6)

whereW(t) denotes the fish weight at the time instant t and λ, η andW0 are assumed
to be absolutely continuous random variables on a common complete probability
space (Ω,F ,P). Notice that Bertalanffy model (15.6) is formulated via a Bernoulli
differential equation. Assuming that λ �= 0 almost surely, the solution stochastic
process of this random Cauchy problem is given by

W(t) =
(
W

1
3

0 e
− 1

3λ(t−t0) − η

λ
e

1
3λ(t−t0) + η

λ

)3

. (15.7)
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Taking advantage of the RVT method stated in Lemma 15.1, in [12] one determines
the 1-PDF of the solution stochastic process W(t),

f1(w, t) =
∫

D(η)

∫

D(λ)
fW0,η,λ

⎛
⎝

(
e(1/3)λ(t−t0)λw1/3 + η − e(1/3)λ(t−t0)η

λ

)3

, η, λ

⎞
⎠

×
(
e(1/3)λ(t−t0)λw1/3 + η − e(1/3)λ(t−t0)η

λ

)2

e(1/3)λ(t−t0)|w|−2/3dλ dη,

(15.8)

where D(η) and D(λ) denote the domains of random inputs η and λ, respectively. In
[12] it is presented an inverse frequentist technique to assign a reliable distribution
to input model parameter (W0, η, λ), [2, ch. 7]. Due to the own foundations of
frequentist technique, a trivariate Gaussian distribution is attributed to random
vector (W0, η, λ). Now, we shall illustrate an alternative approach to deal with the
key problem of assigning an adequate probability distribution to parametres of a
random ordinary differential equation in the context of the Bertalanffy model. This
method is based on the so-called Bayesian approach [16] and [2, ch. 8].

In Fig. 15.1, we show the fish weight in lbs (vertical axis) per year (horizontal
axis). The fish weight datum at the i-th year will be denoted by wi , for 1 ≤ i ≤ 33.

We have data on fish weights w1, . . . , w33 at years t1 = 1, . . . , t33 = 33 (that
is, realizations wi = Wi(ω), ω ∈ Ω of Wi := W(ti) for i = 1, . . . , 33). In
this framework, we deal with the following Random Inverse Parameter Estimation
Problem, namely, to find random variables W0, η and λ that fit data shown in
Fig. 15.1 to the random Bertalanffy model whose solution is given in (15.7). To

Fig. 15.1 Fish weights data
[12]. The horizontal axis
represents time measure in
years and the vertical axis
represents weight measure in
lbs
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this aim, we propose the following hierarchical Bayesian model:

(W1, . . . ,WN)|(W0, η, λ, τ ) ∼
N∏
i=1

N

({
W

1
3

0 e
− 1

3λ(ti−t0) − η

λ
e

1
3λ(ti−t0) + η

λ

}3

, τ

)
,

(W0, η, λ)|(μ,A) ∼ N3(μ,A), μ ∼ N3(0, 0.1 I3), A ∼ Wishart(I3, 3), 1 τ ∼ Ga(0.1, 0.1),

whereN = 33, τ is the precision (inverse of the variance σ 2) and A is the inverse of
the covariance matrix (following the notation from the software WinBUGS, where
the Bayesian model is implemented). The random variables/vectors τ , μ and A are
assumed to be independent.

The joint posterior density of the vector parameter (W0, η, λ, τ, μ,A) is:

pW0,η,λ,τ,μ,A|W1,...,WN
(w0, η, λ, τ, μ, a|w1, . . . , wN)

=
∏N
i=1 pWi |W0,η,λ,τ (wi |w0, η, λ, τ)pτ (τ)pW0,η,λ|μ,A(w0, η, λ|μ, a)pμ(μ)pA(a)∫

D

∏N
i=1 pWi |W0,η,λ,τ (wi |w̃0, η̃, λ̃, τ̃ )pτ (τ̃ )pW0,η,λ|μ,A(w̃0, η̃, λ̃|μ̃, ã)pμ(μ̃)pA(ã) dã dμ̃ dτ̃ dλ̃ dη̃ dw̃0

,

(15.9)

where D = D(A)×R
3×(0,∞)×R×R×R and D(A) is the set of vectors in R

3×3

such that before vectorization they formed a symmetric positive definite matrix. The
posterior density for each of the parameters, p(·|w1, . . . , wN), is computed via the
marginal distributions of (15.9). The posterior predictive distribution of Wi (in a
more comprehensible language, its 1-PDF) is given by

pWi |W1,...,WN
(w̃i |w1, . . . , wN)

=
∫

R

∫

R

∫

R

∫ ∞

0
pWi |W0,η,λ,τ (w̃i |w0, η, λ, τ)pW0 ,η,λ,τ |W1,...,WN

(w0, η, λ, τ |w1, . . . , wN) dτ dλ dη dw0.

(15.10)

Since these formulas cannot be computed analytically, the computations are per-
formed in WinBUGS. We simulate a sample from the posterior distribution of the
parameters. We run 900,000 iterations with a burn-in period of 600,000. We assess
convergence via two chains with different initial conditions. Table 15.1 shows the

1The Whishart distribution is a probability distribution for random matrices. A random matrix is
a matrix whose entries are random variables. We say that a k × k random matrix A is absolutely
continuous (respectively discrete) if its vectorization, vec(A), is an absolutely continuous (respec-
tively discrete) k2 × 1 random vector. In this case, the density or mass function of A is defined as
the density or mass function of vec(A). We say that a k × k random matrix A follows a Wishart
distribution, A ∼ Wishart(H, n), H being k× k symmetric and positive definite matrix and n ≥ k,
if it is symmetric, positive definite and absolutely continuous, with density

PA(a) = c[det(a)] n2 − k+1
n e−

n
2 tr(H−1a),

being c a constant depending on H and n.
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Table 15.1 Posterior mean
and 0.95 credible interval for
the model parameters

Parameter Mean Credible interval

σ 0.242 (0.188, 0.315)

μ1 0.296 (−2.375, 2.844)

μ2 0.267 (−2.391, 2.831)

μ3 0.079 (−2.525, 2.680)

a11 3.148 (0.289, 9.524)

a12 0.003 (−3.625, 3.632)

a13 0.001 (−3.626, 3.635)

a21 0.003 (−3.625, 3.632)

a22 3.160 (0.294, 9.555)

a23 −0.006 (−3.630, 3.623)

a31 0.001 (−3.626, 3.635)

a32 −0.006 (−3.630, 3.623)

a33 3.158 (0.292, 9.568)
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Fig. 15.2 Fish weights given by the model

mean and a 0.95 credible interval for σ = 1/
√
τ , μ = (μ1, μ2, μ3) and A (with

entries aij ).
In Fig. 15.2 we show the fit of the model to the data. All points lie in the credible

region. We conclude that the model explains data in a good way. These results are
in agreement with the ones reported by some of the authors in [12], where data were
fitted using an Inverse Frequentist technique for parameter estimation.

We plot the PDF of random variables W1, . . . ,W15 in Fig. 15.3. The density
function of Wi is given by its posterior predictive distribution (15.10). We use
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the samples for the parametres generated by WinBUGS to simulate the posterior
predictive distribution. Notice that Fig. 15.3 is an alternative to the computation of
the 1-PDF (15.8) obtained via an inverse frequentist technique and RVT technique
in [12].

15.4 Probability Density Function of a Soliton Solution
of the Random Nonlinear Dispersive Partial Differential
Equation

As indicated in Sect. 15.1, it is also an objective of this chapter to illustrate the
computation of the 1-PDF of the solution stochastic process in the context of
random partial differential equations. To the best of our knowledge, there are few
contributions dealing with these kind of problems. In [17, 18] one can find some
contributions in this regard in the context of particular problems of great interest in
Physics and Engineering.

Now, our goal is to obtain the 1-PDF of a soliton solution of the random nonlinear
dispersive partial differential equation (PDE). The nonlinear dispersive PDE that we
will deal with, in its deterministic version, is given by

un(un)t + a(u3n)x + d un(un)xxx = 0, (15.11)

where n > 0 and a and d are real constants.
Determinsitic nonlinear dispersive PDEs, including existence and stability of

solitary and periodic travelling wave solutions, have been studied in many con-
tributions [19]. To find a soliton solution to this deterministic PDE, we will
use the Bernoulli method [20, 21]. Once we have the soliton solution, we will
randomize this deterministic PDE. The soliton solution to the random nonlinear
dispersive PDE will become a stochastic process. In order to compute its probability
density function, we will make use of the Random Variable Transformation (RVT)
technique.

15.4.1 Bernoulli Method

Consider a general deterministic PDE problem for the function u(x, t):

f (u, ut , ux, utx, uxx, utxx, . . .) = 0.

We look for a solution of the form u(x, t) = U(x − ct), where c ∈ R. This type
of solutions are called solitons. Physically, they represent a solitary travelling wave,
that is, a wave that propagates with no change of its properties (velocity, shape, etc.).
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Using the chain rule, we derive that U(ξ) verifies an ODE:

F(U,U ′, U ′′, . . .) = 0. (15.12)

We look for solutions U of the form

U(ξ) = a0 +
M∑
i=1

aiG
i(ξ), (15.13)

where G(ξ) satisfies a Bernoulli ODE

G′ + λG = μG2, (15.14)

where λ �= 0 and μ �= 0. The solution to this Bernoulli ODE is given by

G(ξ) = 1
μ
λ

+ beλξ
, (15.15)

where b is a constant. Substituting (15.13) in the ODE (15.12) and using the
relation (15.14), we obtain a polynomial on G(ξ) that is equal to 0. We equate
the coefficients of this polynomial to 0 to obtain a0, a1, . . . , aM . The superscript M
is chosen in such a way that there exist a0, a1, . . . , aM .

15.4.2 Application of the Bernoulli Method to Find a Soliton
Solution for the Deterministic Nonlinear Dispersive
PDE

The goal in this subsection is to find a solution for the deterministic nonlinear
dispersive equation (15.11) using the Bernoulli method described in Sect. 15.4.1.

First of all, we simplify the deterministic PDE problem (15.11). Set v = un, so
that

0 = vvt + a(v3)x + dvvxxx = vvt + 3av2vx + dvvxxx.

Divide by v:

0 = vt + 3avvx + dvxxx = vt + 3

2
a(v2)x + dvxxx.

Now, we look for a solution of the form v(x, t) = V (x − ct). This transforms the
PDE problem in the following ODE problem for V (ξ) with ξ = x − ct:

−cV ′ + 3

2
a(V 2)′ + dV ′′′ = 0.
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Integrating with respect to ξ and setting the constant of integration to zero,

− cV + 3

2
aV 2 + dV ′′ = 0. (15.16)

Bernoulli method proposes to find a solution of the form

V (ξ) = a0 +
M∑
i=1

aiG
i(ξ),

where G satisfies the Bernoulli ODE (15.14).
Suppose that M = 1, so that V = a0 + a1G, a1 �= 0. Then V ′′ = a1G

′′, where

G′′ = (−λG+μG2)′ = −λG′+2μGG′ = (−λ+2μG)G′ = (−λ+2μG)(−λG+μG2).

Therefore, V ′′ = a1(−λ + 2μG)(−λG + μG2), which is a polynomial of degree
three on G(ξ) (because a1 �= 0 and μ �= 0). But −cV + (3/2)aV 2 is a polynomial
of degree two on G(ξ), so the equality in (15.16) is not possible.

Thus, we need to try with M = 2. In this case, as we shall see, we will obtain a
solution for (15.16). Let V = a0 + a1G+ a2G

2. Differentiate twice:

V ′ = a1G
′ + 2a2GG

′,

V ′′ = a1G
′′ + 2a2(G

′)2 + 2a2GG
′′ = G′′(a1 + 2a2G)+ 2a2(G

′)2

= (−λ+ 2μG)(−λG+ μG2)(a1 + 2a2G)+ 2a2G
2(−λ+ μG)2

= λ2a1G+ (4λ2a2 − 3λμa1)G
2 + (−10λμa2 + 2μ2a1)G

3 + 6μ2a2G
4.

From (15.16),

0 = − cV + 3

2
aV 2 + dV ′′ = −ca0 − ca1G− ca2G

2

+3

2
a[a2

0 + 2a0a1G+ (2a0a2 + a2
1)G

2 + 2a1a2G
3 + a2

2G
4]

+dλ2a1G+ (4dλ2a2 − 3dλμa1)G
2 + (−10dλμa2 + 2dμ2a1)G

3 + 6dμ2a2G
4

=
(

3

2
aa2

0 − ca0

)
+ (dλ2a1 + 3aa0a1 − ca1)G

+
(

−3dλμa1 + 3aa0a2 + 3

2
aa2

1 − ca2 + 4dλ2a2

)
G2

+(−10λμa2d + 2μ2a1d + 3aa1a2)G
3 +

(
6μ2a2d + 3

2
aa2

2

)
G4.
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Matching the coefficients of this polynomial on G(ξ) to 0, we obtain a system of
nonlinear equations. The solutions of this system, obtained with Mathematica�, are:

a0 = 0, a1 = 4dλμ

a
, a2 = −4dμ2

a
, c = dλ2,

a0 = −2dλ2

3a
, a1 = 4dλμ

a
, a2 = −4dμ2

a
, c = −dλ2.

Put these values on V (ξ) = a0 + a1G(ξ) + a2G
2(ξ), where G(ξ) is given by the

solution (15.15) of the Bernoulli ODE (15.14). Finally, u(x, t) = V (x − ct)1/n is a
solution of the PDE (15.11). This procedure gives two solutions:

u1(x, t) =
[

4dμλ3beλ(x−dtλ2)

a
(
λbeλ(x−dtλ2) + μ

)2

] 1
n

, (15.17)

and

u2(x, t) =
(

2

3

) 1
n

⎛
⎜⎝−

dλ2
(
b2λ2e2λ

(
dλ2t+x) − 4bλμeλ

(
dλ2t+x) + μ2

)

a
(
bλeλ(dλ

2t+x) + μ
)2

⎞
⎟⎠

1
n

.

In Fig. 15.4, we have plotted the travelling solution u1(x, t) for particular values
of parameters a, b, d , μ, λ and n.

Fig. 15.4 Solution u1(x, t)

for a = 1, μ = 1, λ = 1,
d = 1, b = 1 and n = 2. In
this case, u1(x, t) =
2
√
et+x/ (et + ex)2
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15.4.3 Obtaining the Probability Density Function of the
Soliton Solution

Suppose that the coefficients a and d in the nonlinear dispersive equation (15.11) are
random variables on a complete probability space (Ω,F ,P). In this new setting,
the random PDE (15.11) may have different interpretations. We could say that a
stochastic process

u = {u(x, t)(ω) : (x, t) ∈ D, ω ∈ Ω}

is a solution to the random PDE (15.11) if:

• it is an almost sure solution. That is, for almost every ω ∈ Ω , u(·, ·)(ω) ∈
C3,1(D) (it has three classical derivatives on x and one classical derivative on
t) and

un(x, t)(ω)(un(x, t)(ω))t + a(ω)(u3n(x, t)(ω))x

+ d(ω) un(x, t)(ω)(un(x, t)(ω))xxx = 0,

for all (x, t) ∈ D .
• it is a mean square solution. That is, u is three times mean square differentiable

with respect to x, it is one time mean square differentiable with respect to t ,
and satisfies the random PDE (15.11) in the mean square sense. For a detailed
exposition on the mean square differentiation theory, see Chapter 4 in [1].

Looking for solutions in an almost sure sense is exactly as in the deterministic
case, for each fixed ω ∈ Ω . In the analysis performed in Sect. 15.4.2, we could
consider that, for each ω ∈ Ω , we take a c(ω) for the change of variable and a μ(ω)
and λ(ω) to define a stochastic process G(ξ)(ω) that satisfies the random Bernoulli
ODE

G′(ξ)(ω)+ λ(ω)G(ξ)(ω) = μ(ω)G(ξ)(ω)2

almost surely. In this way, a solution for the random PDE problem (15.11) is given
by randomizing expression (15.17), i.e.,

u1(x, t)(ω) =
[

4d(ω)μ(ω)λ(ω)3b(ω)eλ(ω)(x−d(ω)tλ(ω)2)

a(ω)
(
λ(ω)b(ω)eλ(ω)(x−d(ω)tλ(ω)2) + μ(ω)

)2

] 1
n

. (15.18)

The search of mean square solutions is slightly more complicated [1, Ch. 4],
[22, 23]. Following the same reasoning as in Sect. 15.4.2, the key fact consists in
proving that the stochastic processG(ξ)(ω) is a mean square solution of the random
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Bernoulli ODE (15.14). To differentiate

G(ξ)(ω) = 1
μ(ω)
λ(ω)

+ b(ω)eλ(ω)ξ

in the mean square sense, we need to check, essentially, that the mean square
differentiation of a quotient and of the exponential function follows the same rules
as in the deterministic calculus.

Given a stochastic process X(ξ)(ω) that is mean fourth differentiable and such
that |X(ξ)(ω)| ≥ C for certain constant C > 0, the mean square derivative
of 1/X exists and is given by −X′/X2. We apply this result to X(ξ)(ω) =
μ(ω)/λ(ω) + b(ω)eλ(ω)ξ . Essentially, we need to prove that b(ω)eλ(ω)ξ is mean
fourth differentiable, that is,

lim
h→0

∥∥∥∥∥b
eλ(ξ+h) − eλξ

h
− bλeλξ

∥∥∥∥∥
L4(Ω)

= 0. (15.19)

Here (L4(Ω), ‖·‖4) stands for the Banach space of real random variables having
fourth-order moment, i.e., E[X4] < +∞ and ‖X‖4 = (E[X4])1/4. Notice
that (15.19) is a consequence of the Mean Value Theorem applied to the function ex

and of the Dominated Convergence Theorem, assuming that the dominating random
variable |b(ω)|eλ(ω)ξ |λ(ω)|(e|λ(ω)|h0 + 1) belongs to L4(Ω), for certain h0 > 0 (for
example, if b and λ are bounded random variables). Therefore, under this extra
assumption, the stochastic process u1(x, t)(ω) given by (15.18) is a mean square
solution of the randomized PDE (15.11).

Hereinafter, the main goal is to obtain the PDF of the stochastic process
u1(x, t)(ω), for each (x, t). For the sake of generality, we assume that (a, d, λ, μ, b)
is an absolutely continuous random vector with density function f(a,d,λ,μ,b), so
that u1(x, t) is absolutely continuous as well, with density function fu1(x,t) to be
computed. We use the RVT technique stated in the Lemma 15.1 with the following
identification in the notation of this result: consider the transformation mapping

g(a, d, λ,μ, b) =
⎛
⎝

[
4dμλ3beλ(x−dtλ2)

a
(
λbeλ(x−dtλ2) + μ

)2

] 1
n

, d, λ, μ, b

⎞
⎠ ,

with domain

D = (R\{0})× {(d, λ, μ, b) ∈ (R\{0})4 : beλ(x−dtλ2) + μ

λ
�= 0}

︸ ︷︷ ︸
D′

. (15.20)

Suppose that the random vector (a, d, λ, μ, b) has its support contained in D. In
such a case, the solution stochastic process (15.18) is defined for all (x, t) ∈ R

2
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(because the denominator of the fraction does not vanish). In the domain D, the
transformation mapping g is injective and has inverse

h(u, v,w, r, s) =
(

4vrw3sew(x−vtw2)

un(wsew(x−vtw2) + r)2
, v,w, r, s

)
,

with domain g(D) = D. Its Jacobian is given by

|J [h](u, v,w, r, s)| = 4n|v||r||w|3|s|ew(x−vtw2)

|u|n+1
(
wsew(x−vtw2) + r

)2 �= 0.

By RVT technique stated in Lemma 15.1,

f(u,v,w,r,s)(u, v,w, r, s) = f(a,d,λ,μ,b)

(
4vrw3sew(x−vtw2)

un(wsew(x−vtw2) + r)2
, v,w, r, s

)
·

· 4n|v||r||w|3|s|ew(x−vtw2)

|u|n+1
(
wsew(x−vtw2) + r

)2
,

for (u, v,w, r, s) ∈ D, and 0 otherwise. Computing the marginal PDF for U , we
obtain the density of u1(x, t), for x, t ∈ R:

fu1(x,t)(u) =
∫

D′
f(a,d,λ,μ,b)

(
4vrw3sew(x−vtw2)

un(wsew(x−vtw2) + r)2
, v,w, r, s

)

· 4n|v||r||w|3|s|ew(x−vtw2)

|u|n+1
(
wsew(x−vtw2) + r

)2
ds dr dw dv, (15.21)

for u �= 0 (the fact that this PDF is not defined for u = 0 does not suppose any
problem, since density functions are defined only up to sets of Lebesgue measure
zero).

Remark 15.1 In the case that any of the random variables λ(ω), μ(ω) and b(ω)

is not considered as a random variable, that is, any of them is a constant, the
same reasoning applies. In the transformation mapping g, the new constant random
variables do not appear in the evaluation of g nor in its domainD. In the final density
function (15.21), the integration with respect to this constant parameter does not
appear.

Another way of interpreting this fact is that the probability density function of a
constant random variable x0 ∈ R is a Dirac delta function δx0 , which satisfies
∫

A
H(ξ1, ξ2, . . . , ξn)δx0(ξ1) dξ1 dξ2 · · · dξn =

∫

Ax0

H(x0, ξ2, . . . , ξn) dξ2 · · · dξn,

(15.22)
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where A ⊆ R
n, H is a function defined on A and

Ax0 = {(ξ2, . . . , ξn) ∈ R
n−1 : (x0, ξ2, . . . , ξn) ∈ A }.

Using property (15.22) yields the same result as the first paragraph of this remark.

15.4.4 Example

Suppose that the data coefficients a and d in the PDE (15.11) are random variables,
so that a ∼ Gamma(6, 4) and d ∼ Beta(5, 6). Suppose that the coefficients
that appear in the Bernoulli random ODE (15.14) and in the solution stochastic
process (15.15) are random variables as well, being (λ, μ) a multivariate Gaussian
random vector, with mean vector and covariance matrix

(
0
0

)
,

(
1 0.2

0.2 1

)
,

respectively, truncated to the square [2, 5] × [1, 6], and b ∼ Uniform(1, 2). Under
these distributions, the random vector (a, d, λ, μ, b) has its support contained in D,
whereD is the domain defined in (15.20). The random variables/vectors a, d , (λ, μ)
and b are assumed to be independent. We take n = 2 in (15.11). Then, the density
function (15.21) becomes

fu1(x,t)(u)=
∫ 1

0

∫ 5

2

∫ 6

1

∫ 2

1
fa

(
4vrw3sew(x−vtw2)

u2(wsew(x−vtw2) + r)2

)
fd(v)f(λ,μ)(w, r)fb(s)

· 8|v||r||w|3|s|ew(x−vtw2)

|u|3 (
wsew(x−vtw2) + r

)2 ds dr dw dv, (15.23)

for u �= 0 and x, t ∈ R. In Fig. 15.5, a three dimensional plot of the density function
fu1(x,t=1)(u) given in (15.23) is presented. In Fig. 15.6, the graph of the density
function fu1(x=1,t=1)(u) given in (15.23) is shown.

15.5 Conclusions

The aim of this chapter has been to provide an affordable view of the computation
of the first probability density function of the solution stochastic process to both
random ordinary and partial differential equations via the so-called Random Vari-
able Transformation technique. Our presentation has been focused mainly on simple
examples with the aim of illustrating key ideas. As setting probabilistic distribution
of input parameters (initial/boundary condition, forcing term and/or coefficients)
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Fig. 15.5 Density function
fu1(x,t=1)(u) given in (15.23).
Two different perspectives of
the same graph

is a crucial point when Random Variable Transformation is set in practice, we
have shown a Bayesian technique to assign the initial probabilistic distribution in
the context of mathematical modelling using real data. It is important to point out
that our approach has relied upon the availability of a closed expression for the
solution of the corresponding differential equation. From a practical standpoint, this
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Fig. 15.6 Density function fu1(x=1,t=1)(u) given in (15.23)

is a strong assumption since for the most part of differential equations numerical
techniques are required. Therefore, it would be very interesting to extend the
application of the Random Variable Transformation technique in that scenario in
future contributions.
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Chapter 16
A Strong Averaging Principle for Lévy
Diffusions in Foliated Spaces
with Unbounded Leaves

Paulo Henrique da Costa, Michael A. Högele, and Paulo Regis Ruffino

Abstract This article extends a strong averaging principle for Lévy diffusions
which live on the leaves of a foliated manifold subject to small transversal Lévy
type perturbation to the case of non-compact leaves. The main result states that
the existence of p-th moments of the foliated Lévy diffusion for p � 2 and an
ergodic convergence of its coefficients in Lp implies the strong Lp convergence of
the fast perturbed motion on the time scale t/ε to the system driven by the averaged
coefficients. In order to compensate the non-compactness of the leaves we use an
estimate of the dynamical system for each of the increments of the canonical Marcus
equation derived in da Costa and Högele (Potential Anal 47(3):277–311, 2017),
the boundedness of the coefficients in Lp and a nonlinear Gronwall-Bihari type
estimate. The price for the non-compactness are slower rates of convergence, given
as p-dependent powers of ε strictly smaller than 1/4.

16.1 Introduction

The literature on averaging principles for deterministic and stochastic systems
reaches far back to the eighteenth century and is enormously rich both in theory
and applications. At this point, however, we would like to refrain from a more
systematic review of the long and bifurcated history of the field and restrict ourselves
to the references to some classical texts. Standard texts on the deterministic field
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include [3, 25, 29, 30] and the references therein. For stochastic systems we refer to
[4, 5, 7, 9, 13, 15, 21, 27] and the respective bibliographies.

Loosely speaking, an averaging principle describes the observation that in a
coupled slow-fast system in the limit of infinite time scale separation, the slow
system is close to a system, where the fast variable is replaced by the limiting
measure of its ergodic time average. In the case of stochastic differential equations
rescaling the time variable shows that this problem can be restated as a problem of
an ergodic system perturbed by small perturbations.

The results of this article generalize recent approaches by the authors for
diffusions on finite dimensional foliated manifolds. For properties of foliated spaces
consult [6, 11, 28, 31]. Motivated by [20] Gargate and Ruffino studied in [10] the
case of foliated Gaussian diffusions on compact leaves subject to deterministic
Lipschitz transversal perturbation. In Högele and Ruffino [12] the authors treat
the case of foliated Lévy jump diffusions with exponential moments but still with
deterministic transversal perturbation and compact leaves. This type of processes is
described in terms of canonical Marcus equations.

The recent work by da Costa and Högele [8] covers the case of a general class
of foliated Lévy diffusions on compact leaves perturbed by a near optimally large
class of Lévy diffusions. This is carried out with the help of a nonlinear comparison
principle and a fine study of the individual jump increments. However in this case
the compactness still allows global estimates of the horizontal components, for
instance, in the force acting on the “vertical” component of the perturbed system.

The current article treats an averaging principle for the same type of foliated
Lévy diffusions, however with non-compact leaves. The lack of compactness yields
an almost unmitigated system of fully coupled SDEs. The strategies are once again
non-linear Gronwall-Bihari type inequalities, using instead the Lp boundedness of
the drift. However, this comes at the price of slower rates of convergence. Our
main result, Theorem 16.4 states that locally the transversal behavior of Xε

t/ε can
be approximated Lp uniformly in time by the Lévy stochastic differential equation
in the transversal space with coefficients given by the average of the deterministic
transversal component of the perturbation (with respect to the invariant measure on
the leaves for the original unperturbed dynamics) and the diffusion component given
by the projection of the original perturbation into the transversal space. We should
mention that our results cover the results by [32] as the special case of uniformly
bounded jumps.

In the Sect. 16.2 we present the dynamical and stochastic framework, the main
hypotheses and the main result. In Sect. 16.3 we prove the key proposition which is
the basis for the proof of the main theorem, proved in Sect. 16.4. Wherever possible
in the exposition without lost of coherence we refer to the article [8] in order to
avoid trivial repetition.
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16.2 Object of Study and Main Results

16.2.1 The Setup

The following setup is a non-compact extension of the setup on [8] and [12].

The Foliated Manifold: Let M be a finite dimensional connected, smooth Rie-
mannian manifold. It is known by the classical Nash theorem in [22] that any finite
dimensional smooth manifold may be embedded in R

m with m sufficiently large.
We assume that M is equipped with an n-dimensional foliation M in the following
sense. Let M = (Lx)x∈M , with M = ⋃

x∈M Lx and the sets Lx are equivalence
classes of the elements of M satisfying the following.

(a) Given x0 ∈ M there exist a neighborhood U ⊂ M of the corresponding leaf
Lx0 and a diffeomorphism ϕ : U → Lx0 × V , where V ⊂ R

d is a connected
open set containing the origin 0 ∈ R

d .
(b) For any Lx0 ∈ M the neighborhood U ⊃ Lx0 can be taken small enough such

that the coordinate map ϕ is uniformly Lipschitz continuous.

Remark 16.1 The second coordinate of a point x ∈ U , called the vertical coordi-
nate, will be denoted with the help the projection π : U → V by ϕ(x) = (x̄, π(x))

for some x̄ ∈ Lx . For any fixed v ∈ V , the preimage π−1(v) is the leaf Lx , where x
is any point in U such that the vertical projection satisfies π(x) = v.

The Unperturbed Equation: We are interested in the ergodic behavior of the
strong solution of a Lévy driven SDE with jump components which takes values
in M and which respects the foliation. Intuitively, a straight line increment z does
not cause the exit from the leaf of its current position if the entire line segment
(x0 + θz)θ∈[0,1] is contained in it. Ordinary differential equations with a vector
field F on the right-hand side generalize this concept in the following sense.
By definition, their solutions follow F as “infinitesimal” tangents. If F itself is
tangential to a given manifold the integral curves remain “infinitesimally tangential”
to the manifold and hence will not leave it. Therefore a straight line jump increment
z which is transformed in the stochastic integral into an integral curve following a
tangential vector field F of a given leaf will remain on the leaf, that is, it respects
the foliated structure of the space. This intuition is made rigorous in the notion of
stochastic integration in the sense of a canonical Marcus equation in the sense of
Kurtz et al. [19]. Those equations are the equivalent for Lévy jump diffusions to the
Stratonovich equation for Brownian SDE in that they satisfy the Leibniz chain rule
(cf. Proposition 4.2 in [19]). Their definition however is different since they treat
discontinuous processes.

Let us consider the formal canonical Marcus stochastic differential equation

dXt = F0(Xt )dt + F(Xt) 2 dZt +G(Xt) ◦ dBt , X0 = x0 ∈ M, (16.1)
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with the following components defined over a given filtered probability space
(Ω,F , (Ft )t�0,P) which satisfies the usual conditions in the sense of Protter
[24].

1. Let Z = (Zt )t�0 with Zt = (Z1
t , . . . , Z

r
t ) be a Lévy process over Ω with values

in R
r for some r ∈ N and characteristic triplet (0, ν, 0). It is a consequence of

the Lévy-Itô decomposition of Z that Z is a pure jump process with respect to a
Lévy measure ν : B(Rr ) → [0,∞] satisfying

∫

Rr

(1 ∧ ‖z‖2) ν(dz) < ∞ and ν({0}) = 0. (16.2)

For details we refer to the overview article by Kunita [18] and the monographs
of Sato [26] or Applebaum [2].

2. Let F ∈ C 2(M;L(Rr; TM)) satisfying the following. The function x �→ F(x)

is C 2 and for each x ∈ M the linear map F(x) sends a vector z ∈ R
r �→ F(x)z ∈

TxLx to the tangent space of the respective leaf. Furthermore, let F and (DF)F
be globally Lipschitz continuous on M with common Lipschitz constant � > 0.

3. Let B = (B1, . . . , Br) be an Brownian motion on Ω with values in R
r . For

G ∈ C 2(M,L(Rr , TM)) we assume that G and (DG)G are globally Lipschitz
continuous on M with Lipschitz constant � > 0.

Following [19] a strong solution of the formal Eq. (16.1) is defined as a random map
X : [0,∞)×Ω → M satisfying almost surely for all t � 0

Xt = x0 +
∫ t

0
F0(Xs)ds +

∫ t

0
G(Xs)dBs + 1

2

∫ t

0
(DG(Xs))G(Xs)d〈B〉s

+
∫ t

0
F(Xs−)dZs +

∑
0<s�t

(ΦFΔsZ(Xs−)− Xs− − F(Xs−)ΔsZ),

(16.3)

where 〈B〉· stands for the quadratic variation process of B in R
r and the function

ΦFz(x) = Y (1, x;Fz) and Y (t, x;Fz) for the solution of the ordinary differential
equation

d

dσ
Y (σ) = F(Y (σ))z, Y (0) = x ∈ M, z ∈ R

r , σ � 0. (16.4)

The Perturbed Equation: This article studies the situation where an SDE in the
sense of (16.3), which is invariant on the leaf of the initial condition x0 is perturbed
by a transversal smooth vector field εKdt and stochastic differentials εG̃ ◦ dB̃ and
εK̃ 2 dZ̃, ε > 0, in the limit for ε ↘ 0. More precisely we denote by Xε , ε > 0, the
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analogous solution in the sense of (16.3) of the perturbed formal system

dXε
t = F0(X

ε
t )dt + F(Xε

t ) 2 dZt +G(Xε
t ) ◦ dBt

+ ε
(
K(Xε

t )dt + K̃(π(Xε
t )) 2 dZ̃t + G̃(π(Xε

t )) ◦ dB̃t
)
, (16.5)

Xε
0 = x0 ∈ M,

where the additional coefficients are defined as follows.

4. The vector field K : M → TM is smooth and globally Lipschitz continuous.
5. Let Z̃ = (Z̃1, . . . , Z̃r ) be a Lévy process on Ω with values in R

r with
Lévy triple (0, ν′, 0), ν′ being a given Lévy measure. The vector field K̃ ∈
C 2(V ,L(Rr , TM)) satisfies that K̃ and (DK̃)K̃ are globally Lipschitz continu-
ous with Lipschitz constant �̃ > 0.

6. Let B̃ = (B̃1, . . . , B̃r ) be a Brownian motion onΩ with values inRr . We assume
that G̃ ∈ C 2(V ,L(Rr , TM)) satisfies that G̃ and (DG̃)G̃ are globally Lipschitz
continuous with Lipschitz constant �̃ > 0.

7. Assume that the stochastic processes Z,B, Z̃, B̃ are independent.

Theorem 16.2 ([19], Theorem 3.2 and 5.1)

1. Under the preceding setup (items (a), (b), 1.–3. and 7.) there is a unique (Ft )t�0
semimartingale X which is a strong global solution of (16.1) in the sense of
Eq. (16.3). It has a càdlàg version and is a (strong) Markov process.

2. Under the preceding setup (in particular items a, b and 1.–7.) there is a unique
semimartingale Xε which is a strong global solution of Eq. (16.5) in the sense of
Eq. (16.3), where F0 is replaced by F0 +εK and F by (F, εK̃),G by (G, εG̃), B
by (B, B̃) and Z by (Z, Z̃). The perturbed solution Xε has càdlàg paths almost
surely and is a (strong) Markov process.

The Support Theorem: We are now in the position to apply the crucial support
theorem, Proposition 4.3, in Kurtz et al. [19]. The hypotheses of Theorem 16.2 imply
for any ε > 0 and x0 ∈ M that P(Xε

t (x0) ∈ M for all t � 0) = 1. This result
applied to the leaves of M yields that each solution X of (16.1) is foliated in the
sense that X stays on the leaf of its initial condition, i.e. for any x0 ∈ M we have
P(Xt(x0) ∈ Lx0 for all t � 0) = 1.

16.2.2 The Hypotheses and the Main Result

In the general setup of Sect. 16.2.1 we assume the following precise hypotheses.

Hypothesis 1: Integrability There is an exponent p � 2 such that the Lévy
measures ν of Z and ν′ of Z̃ satisfy

∫

Rr

‖z‖p ν(dz) < ∞ and
∫

Rr

‖z‖2p ν′(dz) < ∞.
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Hypothesis 2: Foliated Invariant Measures

1. Each leaf Lx0 ∈ M passing through x0 ∈ M has an associated unique invariant
measure μx0 with supp(μx0) = Lx0 of the unperturbed foliated system (16.1)
with initial condition x0.

2. For v0 = π(x0) the vertical coordinate of x0 ∈ M we define for h : M → TM

Qh(v0) :=
∫

Lx0

h(y)μx0(dy). (16.6)

We assume for any globally Lipschitz continuous map h : M → TM the
function

R
d ⊃ V  v �→ Qh(v) ∈ R

d (16.7)

is globally Lipschitz continuous.

Remark 16.3 Note that Lx0 only depends on v0 = π(x0). The same is true for μx0 .

Hypothesis 2 guarantees that for each x0 ∈ M , v0 = π(x0) ∈ V the stochastic
differential equation

dwt = QπK (wt ) dt + K̃(wt ) 2 dZ̃t + G̃(wt ) ◦ dB̃t , w0 = v0 ∈ V (16.8)

has a unique strong solution w = (wt (v0))t∈[0,σ ) on Ω , σ being the first exit time
of w from V .

Hypothesis 3: Ergodic Convergence of the Vertical Coefficient in Lp Fix p � 2
from Hypothesis 1.

1. There are continuous functions η0 : [0,∞) → [0,∞) and η̄ : M → [0,∞),
where η0 is monotonically decreasing with η0(t) → 0 as t → ∞ and η̄ is
globally Lipschitz continuous. For all x0 ∈ M and t � 0 we have

(
E

∣∣∣∣
1

t

∫ t

0
πK(Xs(x0)) ds −QπK(π(x0))

∣∣∣∣
p) 1

p

� η̄(x0)η
0(t). (16.9)

2. We assume for any x0 ∈ M that
∫
η̄(y)μx0(dy) < ∞.

It is known in the literature that there is no standard rate of convergence [14, 16],
which is why we assume an external rate of convergence, which decomposes by
factors, see for instance [17].
For ε > 0 and x0 ∈ M let τ ε being the first exit time of the solution Xε(x0) of
Eq. (16.5) from the foliated coordinate neighborhoodU of item a) in Sect. 16.2.1.

The main result of this article is the following strong averaging principle.

Theorem 16.4 Let Hypotheses 1, 2 and 3 be satisfied for some p � 2. Then for any
x0 ∈ M and λ ∈ (0, p−1

p2 ) there are constants c, C > 0 and ε0 ∈ (0, 1] such that
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ε ∈ (0, ε0] and T ∈ [0, 1] imply
(
E

[
sup

t∈[0,T∧ετ ε∧σ ]
|π(

Xε
t
ε

(x0)
) −wt(π(x0))|p

]) 1
p

� CT
[
ελ + η0(cT | ln(ε)|)

]
.

(16.10)

Remark 16.5 Our results focus on the case with only p-th moments, hence we set
the coefficients G and G̃ to zero in the proofs.

16.3 The Transversal Perturbations

In order to prove the main theorem we need to control the error Xε −X in terms of
Lp. This section is dedicated to the control of this error by the following result.

Proposition 16.6 Let the assumptions of Sect. 16.2.1 and Hypotheses 1, 2 and 3 be
satisfied for some p � 2. Then for any Lipschitz function h : M → R, x0 ∈ M

and for all T · : [0, 1] → [1,∞) satisfying εT ε → 0 there exist positive constants
ε0 ∈ (0, 1], k1, k2, k3 > 0 such that ε ∈ (0, ε0] implies

(
E

[
sup

t∈[0,T ]
|h(Xε

t (x0))− h(Xt (x0))|p
]) 1

p

� k1ε
p−1
p2 exp(k2T ). (16.11)

In addition, we have k1(x0) � k3(1 + η̄(x0)).

We apply this result for the following setting.

Corollary 16.7 Let the assumptions of Proposition 16.6 be satisfied for some p �
2. Then for any λ ∈ (0, p−1

p2 ) there exist positive constants cλ, ε0 ∈ (0, 1], k4, k5 > 0
such that for Tε := cλ| ln(ε)|, ε ∈ (0, ε0], satisfies

(
E

[
sup

t∈[0,Tε]
|h(Xε

t (x0))− h(Xt (x0))|p
]) 1

p

� k4ε
λ, (16.12)

for the constant k4 = k5k1.

Proof Plugging Tε = −c ln(ε) in the right-hand side of (16.11) we obtain

k1ε exp(k2Tε) = k1ε
p−1
p2 −ck2

. Given λ ∈ (0, p−1
p2 ) we fix cλ := 1

k2

(p−1
p2 − λ

)
and

infer the desired result.

The proof of Proposition 16.6 relies on the following lemma on positive invariant
dynamical systems and the nonlinear comparison principle Corollary 16.14 given
in the appendix. The main difficulty stems from the fact that the influence of the
horizontal component in the vertical component cannot be estimated uniformly by
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the “diameter” of the leaf but has to be taken fully into account, which leads to a
non-linear comparison principle.

Lemma 16.8 For F ∈ C 2(Rr+n, L(Rr ,Rr+n)) being a globally Lipschitz continu-
ous matrix-valued vector field and z ∈ R

r we denote by (Y (t; x, Fz))t�0 the unique
global strong solution of the ordinary differential equation

dY

dt
= F(Y )z Y (0, x, Fz) = x ∈ R

r+n.

1. Then there exists C > 0 such that for any z ∈ R
r and x, y ∈ M with Y (t; x) =

Y (t; x, Fz) we have

sup
t�0

|(DF(Y (t; x))z)F(Y (t; x))z − (DF(Y (t; y))z)F(Y (t; y))z| � C |x − y| ‖z‖2.

2. For any x ∈ M we have supt∈[0,1] ‖DF(Y (t; x))F (Y (t; x))‖ < ∞.

A proof is given in [8] under Lemma 3.1.

Proof (of Proposition 16.6) The first step of the proof yields the local orthogonality
of the foliations and a transversal component by an appropriate change of coordi-
nates. In a second step we estimate the transversal components with the help of
the ergodic convergence of Hypothesis 3 and the nonlinear comparison principle
Corollary 16.14. This is followed by the estimate of the horizontal component as
the result of a classical Gronwall estimate before we conclude.

1. Change of Coordinates: We first rewrite X and Xε , the solutions of Eqs. (16.1)
and (16.5), in terms of the coordinates given by the diffeomorphism φ

(ut , vt ) := φ(Xt ) and (uεt , v
ε
t ) := φ(Xε

t ).

The Lipschitz regularities of h and φ yields for C0 := Lip(h ◦ φ−1) the estimate

|h(Xε
t )− h(Xt)| � C0(|uεt − ut | + |vεt − vt |). (16.13)

The proof of the statement consists in calculating estimates for each summand on
the right hand side of equation above. We define the

F0 := (Dφ) ◦ F0 ◦ φ−1, F := (Dφ) ◦ F ◦ φ−1,

K := (Dφ) ◦K ◦ φ−1, K̃ := (Dφ) ◦ K̃ ◦ φ−1,

whose derivatives are uniformly bounded. Considering the components in the image
of φ we have:

K = (KH ,KV ), K̃ = (K̃H , K̃V )
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with KH , K̃H ∈ T Lx0 and KV , K̃V ∈ T V 4 R
d . The chain rule of the canonical

Marcus equations mentioned in the introduction (Theorem 4.2 of [19]) yields for
Eq. (16.5) the following form in φ coordinates

duεt = F0(u
ε
t , v

ε
t )dt + F(uεt , v

ε
t ) 2 dZt + εKH (u

ε
t , v

ε
t )dt + εK̃H (v

ε
t ) 2 dZ̃t ,

(16.14)

dvεt = εKV (u
ε
t , v

ε
t )dt + εK̃V (v

ε
t ) 2 dZ̃t , (16.15)

where uεt ∈ Lx0 and vεt ∈ V P-a.s. for all t � 0.

2. Estimate of the Transversal Coordinate E[sup |vε−v|p]: Identically to [8], we
start with estimates on the transversal components |vε − v|. The change of variables
formula x �→ g(x) := |x|p, x ∈ R

n+d using 〈Dg(x), u〉 = p|x|p−2〈x, u〉 yields
almost surely for t � 0

|vεt − vt |p = p

∫ t

0
|vεs − vs |p−2〈vεs − vs, εKV (u

ε
s , v

ε
s )〉ds

+ p

∫ t

0
|vεs− − vs−|p−2〈vεs− − vs−, εK̃V (vεs−) 2 dZ̃s〉

� p

∫ t

0
|vεs − vs |p−1|εKV (uεs , vεs )− εKV (us, vs)|ds (H1)

+ p

∫ t

0
|vεs − vs |p−1|εKV (us, vs)|ds (H2)

+ p

∫ t

0
|vεs− − vs−|p−2|〈vεs− − vs−, ε(K̃V (vεs−)− K̃V (vs−))dZ̃s〉|

(H3)

+ p

∫ t

0
|vεs− − vs−|p−2|〈vεs− − vs−, εK̃V (vs−)dZ̃s〉| (H4)

+ p
∑

0<s�t
|vεs− − vs−|p−1|ΦεK̃V ΔsZ̃(vεs−)−ΦεK̃V ΔsZ̃(vs−)

− (vεs− − vs−)− ε(K̃V (v
ε
s−)− εK̃V (vs−))ΔsZ̃| (H5)

+ p
∑

0<s�t
|vεs− − vs−|p−1|ΦεK̃V ΔsZ̃(vs−)− vs− − εK̃V (vs−)ΔsZ̃|

(H6)

=: H1 +H2 +H3 +H4 +H5 +H6. (16.16)
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2.1 Pathwise Estimates H1 : Clearly we have

H1 � εp�

∫ t

0
|vεs − vs |pds. (16.17)

H2 : Young’s inequality for the conjugate indices p and p/(p − 1) yields

H2 = εp

∫ t

0
|vεs − vs |p−1|KV (us, vs )|ds

� εp sup
[0,t ]

|vε − v|p−1
∫ t

0
|KV (us, vs )|ds

� ε sup
[0,t ]

|vε − v|p + ε(p − 1)tp
(1

t

∫ t

0
|KV (us, vs)|ds

)p
. (16.18)

H3 and H4: Switching to the Poisson random measure representation with respect
to the compensated Ñ ′, for instance see Kunita [18], we obtain

H3 � εp

∫ t

0

∫

Rr

|vεs− − vs−|p−2〈vεs− − vs−, (K̃V (vεs−)− K̃V (vs−))z〉Ñ ′(dsdz)

+ εC1

∫ t

0
|vεs − vs |pds. (16.19)

and

H4 � εp

∫ t

0

∫

Rr

|vεs− − vs−|p−2|〈vεs− − vs−, K̃V (vs−)z〉|Ñ ′(dsdz)

+ εC2

∫ t

0
|vεs − vs |pds. (16.20)

H5 : For the canonical Marcus terms we apply Lemma 16.8, statement 1) which
yields a positive constant such that

H5 � ε2C3

∫ t

0

∫

Rr

|vεs− − vs−|p‖z‖2Ñ ′(dsdz)+ ε2C4

∫ t

0
|vεs − vs |p ds.

(16.21)

The details can be found in [8].
H6 : For the last term we apply Lemma 16.8, statement (2), and

∫
‖z‖>1 ‖z‖4ν′(dz) <

∞ and obtain a positive constant C5 such that

H5 � ε2C5

∫ t

0

∫

Rr

|vεs− − vs−|p−1‖z‖4Ñ ′(dsdz)+ ε2C6

∫ t

0
|vεs − vs |p−1ds.

(16.22)
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Combining the estimates (16.17)–(16.22) we obtain

|vεt − vt |p � ε sup
[0,t ]

|vε − v|p + ε(p − 1)tp
(1

t

∫ t

0
|KV (us, vs )|ds

)p
(16.23)

+ ε(C1 + C2)

∫ t

0
|vεs − vs |pds

+ ε2C4

∫ t

0
|vεs − vs |p ds + ε2C6

∫ t

0
|vεs − vs |p−1ds

+ εp

∫ t

0

∫

Rr

|vεs− − vs−|p−2〈vεs− − vs−, εK̃V (vs−)z〉|Ñ ′(dsdz)

(16.24)

+ ε2C3

∫ t

0

∫

Rr

|vεs− − vs−|p‖z‖2Ñ ′(dsdz) (16.25)

+ ε2pC5

∫ t

0

∫

Rr

|vεs− − vs−|p−1‖z‖4Ñ ′(dsdz). (16.26)

2.2 Estimates on Average: The main difference to [8] is found in the treatment
of term H2. In the sequel we drop the superscript of T = T ε where T ε ∈ [1,∞)

satisfying εT ε → 0. Taking the supremum t ∈ [0, T ] and taking the expectation
yields that the term (16.23) can be bounded by

ε E
[

sup
[0,T ]

|vε − v|p
]

+ ε(p − 1)C∞T p,

where

C∞ = C∞(x0) = sup
t�0

E

[(1

t

∫ t

0
|KV (us(x0), 0)|ds

)p]
< ∞ (16.27)

due to the convergence

E

[(1

t

∫ t

0
|KV (us(x0), 0)|ds −

∫
|KV (y, 0)|μx0(dy)

)p] → 0, as t → ∞.

This implies in particular that

C∞(x0) �
∫

|KV (y, 0)|μx0(dy)+ η0(0)η̄(x0). (16.28)
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We obtain the integral inequality

E
[

sup
[0,T ]

|vε − v|p]

� εC7E
[

sup
[0,T ]

|vε − v|p] + ε(p − 1)C∞T p + εC8

∫ T

0
E
[

sup
[0,s]

|vε − v|p]ds

+ εC9

∫ T

0
E
[

sup
[0,s]

|vε − v|p−1]ds

� εE
[

sup
[0,T ]

|vε − v|p] + ε(p − 1)C∞T p + εC8

∫ T

0
E
[

sup
[0,s]

|vε − v|p]ds

+ εC9

∫ T

0
E
[

sup
[0,s]

|vε − v|p] p−1
p ds.

Hence for any value ε ∈ (0, 1
2 ] we eliminate the first term

E
[

sup
[0,T ]

|vε − v|p] � 2ε(p − 1)C∞T p + 2εC8

∫ T

0
E
[

sup
[0,s]

|vε − v|p]ds

+ 2εC9

∫ T

0
E
[

sup
[0,s]

|vε − v|p] p−1
p ds.

That is, for Ψ (T ) = E
[

sup[0,T ] |vε − v|p] we have

Ψ (T ) � εC10T
p + εC11

∫ T

0
Ψ (s)ds + εC12

∫ T

0
Ψ (s)

p−1
p ds.

Using the nonlinear extension of the Gronwall-Bihari inequality in Corollary 16.14
in the appendix essentially given by Pachpatte [23], Theorem 2.4.2, which we adapt
to our case we obtain a global constantC > 0 such that using that ε0T is sufficiently
small implies for all ε ∈ (0, ε0]

Ψ (T ) � C
(
εT p + ε

p−1
p T

p+ p−1
p

)
. (16.29)
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3. Estimate of the Horizontal Component E[sup |uε − u|p]: For convenience of
notation we restart with the numbering of constants. Formally we obtain

uεt − ut =
∫ t

0
(F0(u

ε
s , v

ε
s )− F0(us , vs ))ds +

∫ t

0
(F(uεs−, vεs−)− F(us−, vs−)) 2 dZs

+ ε

∫ t

0

(
KH (u

ε
s , v

ε
s )− KH (us, vs )

)
ds + ε

∫ t

0
KH (us, vs )ds

+ ε

∫ t

0
K̃H (v

ε
s−) 2 dZ̃s . (16.30)

For further details consult [8] where we obtain with the help of the change of
variable formula for (16.30) the following equality in R

n almost surely for t � 0

|uεt − ut |p

= p

∫ t

0
|uεs − us |p−2〈uεs − us,F0(u

ε
s , v

ε
s )− F0(us, vs)〉ds (I1)

+ p

∫ t

0
|uεs− − us−|p−2〈uεs− − us−, (F(uεs−, vεs−)− F(us−, vs−))dZs〉 (I2)

+ p
∑

0<s�t
|uεs− − us−|p−2〈uεs− − us−,ΦFΔsZ(uεs−, vεs−)−ΦFΔsZ(us−, vs−)

− (uεs− − us−, vεs− − vs−)− (F(uεs−, vεs−)− F(us−, vs−))ΔsZ〉 (I3)

+ ε p

∫ t

0
|uεs − us |p−2〈uεs − us,KH (u

ε
s , v

ε
s )− KH (us, vs )〉ds (I4)

+ εp

∫ t

0
|uεs − us |p−2〈uεs − us,KH (us, vs )〉ds (I5)

+ εp

∫ t

0
|uεs− − us−|p−2〈uεs− − us−, K̃H (vεs−)dZ̃s〉 (I6)

+ p
∑

0<s�t
|uεs− − us−|p−2〈uεs− − us−,ΦεK̃HΔsZ̃(vεs−)−ΦεK̃HΔsZ̃(vs−)

− (vεs− − vs−)− ε(K̃H (v
ε
s−)− K̃H (vs−))ΔsZ̃〉 (I7)

+ p
∑

0<s�t
|uεs− − us−|p−2〈uεs− − us−,ΦεK̃HΔsZ̃(vs−)− vs− − εK̃H (vs−)ΔsZ̃〉

(I8)

=: I1 + I2 + I3 + I4 + I5 + I6 + I7 + I8. (16.31)
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In fact, we shall use the following estimate

|uεt − ut |2p � 8p−1
8∑
i=1

I 2
i . (16.32)

We shall estimate each of the eight preceding summands on the right-hand side. The
estimates of I1 and I4 are direct Lipschitz estimates. For the stochastic Itô terms we
use the different kinds of maximal inequalities, see for instance [2] and [18]. The
estimate of the canonical Marcus terms I3, I7 and I8 is the most difficult task in
which we use the result of Lemma 16.8. The term I5 is straightforward.

3.1 Estimate of the Stochastic Itô Integral Terms I2 and I6: I2: Due to the
existence of moments of order at least 1, I2 has the following representation with
respect to the compensated Poisson random measure associated to Z

∫ t

0
|uεs− − us−|p−2〈uεs− − us−,

(
F(uεs−, vεs−)− F(us−, vs−)

)
dZs〉

=
∫ t

0

∫

Rr

|uεs− − us−|p−2〈uεs− − us−,
(
F(uεs−, vεs−)− F(us−, vs−)

)
z〉Ñ(dsdz)

(16.33)

+
∫ t

0

∫

‖z‖>1
|uεs − us |p−2〈uεs − us,

(
F(uεs , v

ε
s )− F(us, vs)

)
z〉ν(dz)ds.

(16.34)

For the first term (16.33) we exploit the embedding L2 ⊂ L1, Kunita’s maximal
inequality (see [2] or [18]) for exponent equal to 2, and the Young inequality for the
exponents p/2 and p/(p − 2) combined with Inequality (16.29) and obtain

E

[
sup
[0,T ]

∣∣∣
∫ ·

0

∫

Rr

|uεs− − us−|p−2〈uεs− − us−,
(
F(uεs−, vεs−)− F(us−, vs−)

)
z〉Ñ(dsdz)

∣∣∣
]2

� E

[
sup
[0,T ]

∣∣∣
∫ ·

0

∫

Rr

|uεs− − us−|p−2〈 . . . , (F(uεs−, vεs−)− F(us−, vs−)
)
z〉Ñ(dsdz)

∣∣∣
2
]

= E

[∫ T

0

∫

Rr

|uεs − us |2(p−2)|〈uεs − us,
(
F(uεs , v

ε
s )− F(us, vs )

)
z〉|2ν(dz)ds

]

� C1E

[∫ T

0

∫

Rr

|uεs − us |2(p−1)
(
|uεs − us |2 + |vεs − vs |2

)
‖z‖2ν(dz)ds

]

� C1

( ∫

Rr

‖z‖2ν(dz)
)
E

[∫ T

0

(|uεs − us |2p + |uεs − us |p−2|vεs − vs |2
)
ds

]
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� C2

( ∫ T

0
E

[
sup
[0,s]

|uε − u|2p
]
ds +

∫ T

0
E

[
|vεs − vs |2p

]
ds

)

� C2

(∫ T

0
E

[
sup
[0,s]

|uε − u|2p
]
ds

)
+ C

(
εT 2p + ε

2p−1
2p T 2(p+1)+1). (16.35)

The second term follows by Young’s inequality and the Lipschitz continuity of F:

E

[
sup

t∈[0,T ]

∫ t

0

∫

‖z‖>1
|uεs − us |p−2〈uεs − us,

(
F(uεs , v

ε
s )− F(us, vs)

)
z〉ν(dz)ds

]2

�
(
�

∫

‖z‖>1
‖z‖ν(dz)E

[
sup

t∈[0,T ]

∫ t

0

(|uεs − us |p + |uεs − us |p−1|vεs − vs |
)
ds

])2

�
(
�

∫

‖z‖>1
‖z‖ν(dz)

(
2
∫ T

0
E

[
sup
[0,s]

|uε − u|p
]
ds +

∫ T

0
E

[
|vεs − vs |p

]
ds

))2

� C3T

∫ T

0
E

[
sup
[0,s]

|uε − u|2p
]
ds + C

(
εT 2p + ε

2p−1
2p T 2(p+1)+1). (16.36)

I6: We go over to the representation with the Poisson random measure Ñ ′ associated
to the Lévy process Z̃ and obtain

sup
t∈[0,T ]

ε

∫ t

0
|uεs− − us−|p−2〈uεs− − us−, K̃H (vεs−)dZ̃s 〉

= sup
t∈[0,T ]

ε

∫ t

0

∫

Rr
|uεs− − us−|p−2〈uεs− − us−, (K̃H (vεs−)− K̃H (vs−))z〉Ñ ′(dsdz)

(J1)

+ sup
t∈[0,T ]

ε

∫ t

0

∫

‖z‖>1
|uεs − us |p−2〈uεs − us, (K̃H (v

ε
s )− K̃H (vs))z〉ν′(dz)ds

(J2)

+ sup
t∈[0,T ]

ε

∫ t

0

∫

Rr
|uεs− − us−|p−2〈uεs− − us−, K̃H (vs−)z〉Ñ ′(dsdz) (J3)

+ sup
t∈[0,T ]

ε

∫ t

0

∫

‖z‖>1
|uεs − us |p−2〈uεs − us, K̃H (vs)z〉ν′(dz)ds. (J4)
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The terms J1 and J2 are estimated analogously to (16.35) and (16.36) where F is
replaced by K̃H , which yield the following estimates

(
E

[
sup
[0,T ]

|ε
∫ ·

0

∫

Rr
|uεs− − us−|p−2〈uεs− − us−, (K̃H (vεs−)− K̃H (vs−))z〉Ñ ′(dsdz)|

])2

� C4

(∫ T

0
E

[
sup
[0,s]

|uε − u|2p
]
ds

) 1
2

+ C
(
εT 2p + ε

2p−1
2p T 2(p+1)+1) and

(
E

[
sup
[0,T ]

ε|
∫ t

0

∫

‖z‖>1
|uεs − us |p−2〈uεs − us, (K̃H (v

ε
s )− K̃H (vs))z〉ν′(dz)ds|

])2

� C5

∫ T

0
E

[
sup
[0,s]

|uε − u|2p
]
ds + C

(
εT 2p + ε

2p−1
2p T 2(p+1)+1).

For the term J3 we observe that vs = 0 consequently KV (vs) is constant. Applying
Kunita’s maximal inequality for the exponent 2, we obtain

(
E

[
sup

t∈[0,T ]
ε|

∫ t

0

∫

Rr

|uεs− − us−|p−2〈uεs− − us−, K̃H (vs−)z〉Ñ ′(dsdz)|
])2

� ε2
E

[
sup

t∈[0,T ]
|
∫ t

0

∫

Rr

|uεs− − us−|p−2〈uεs− − us−, K̃H (vs−)z〉Ñ ′(dsdz)|2
]

� ε2C6

∫ T

0

∫

Rr

E

[
|uεs − us |2(p−1)

]
‖z‖2ν′(dz)ds

� ε2C6

(∫

Rr

‖z‖2ν′(dz)
)(∫ T

0
E

[
sup
[0,s]

|uε − u|2p−2
]
ds

)

� ε2C7

∫ T

0
E

[
sup
[0,s]

|uε − u|2p−2
]
ds

� ε2C7

(∫ T

0
E

[
sup
[0,s]

|uε − u|2p
]
ds + C8

p
T

)
.

The term J4 is again easier. Using εT < 1 and ε < 1 we obtain

(
E

[
sup
[0,T ]

ε

∫ t

0

∫

‖z‖>1
|uεs − us |p−2〈uεs − us, K̃H (vs)z〉ν′(dz)ds

])2

�
(
ε

∫

‖z‖>1
‖z‖ν′(dz)‖K̃H (0)‖

∫ T

0
E[sup

[0,s]
|uε − u|p−1]ds

)2
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� ε2C9

(∫ T

0
E

[
sup
[0,s]

|uε − u|p
]
ds

)2

+ C9ε
2pT 2

� ε2TC9

∫ T

0
E

[
sup
[0,s]

|uε − u|2p
]
ds + C9ε

2pT 2

� C9

∫ T

0
E

[
sup
[0,s]

|uε − u|2p
]
ds + C9ε

2pT 2.

Summing up we obtain

E[ sup
[0,T ]

|I6|2] � C10

(∫ T

0
E

[
sup
[0,s]

|uε − u|p
]
ds + ε

2p−1
2p T 2(p+1)+1 + ε2T

)
.

(16.37)

3.2 Estimate of the Canonical Marcus Terms I3, I7 and I8 The estimate is
identical to estimate (54) in [8] and yields a constant C11 such that

|I3| � 2C11

( ∑
0<s�t

|uεs− − us−|p‖ΔsZ‖2 +
∑

0<s�t
|vεs− − vs−|p‖ΔsZ‖2

)
.

(16.38)

Once again, the representation of this sum in terms of the Poisson random measure
given in Kunita [18] tells us that

∑
0<s�t

|uεs− − us−|p‖ΔsZ‖2

=
∫ t

0

∫

Rr

|uεs− − us−|p‖z‖2Ñ(dsdz)+
∫ t

0

∫

‖z‖>1
|uεs − us |p‖z‖2 ν(dz) ds.

(16.39)

The maximal inequality for integrals with respect to the compensated Poisson
random measures and inequality (16.29) yield

E[ sup
[0,T ]

|I3|2] � C12

∫ T

0

∫

Rr

(
E[sup

[0,s]
|uε − u|2p] + E[|vεs − vs |2p]

)
‖z‖4 ν(dz) ds

= C12

∫

Rr

‖z‖4ν(dz)
( ∫ T

0

(
E[sup

[0,s]
|uε − u|2p] + E[|vεs − vs |2p]

)
ds

)

� C13

( ∫ T

0
E[sup

[0,s]
|uε − u|2p ds + C

(
εT 2p + ε

2p−1
2p T 2(p+1)+1)).

(16.40)
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I7: For I7 we apply Lemma 16.8 statement 1) and Young’s inequality and obtain the
analogous result

∑
0<s�t

|uεs− − us−|p−2〈uεs− − us−,ΦεK̃HΔsZ̃(vεs−)−ΦεK̃HΔsZ̃(vs−)

− (vεs− − vs−)− ε(K̃H (v
ε
s−)− K̃H (vs−))ΔsZ̃〉

� ε2C14

( ∑
0<s�t

(|uεs− − us−|p + |vεs− − vs−|p)‖ΔsZ̃‖2
)
.

Rewriting the last expression in terms of the (compensated) Poisson random
measure Ñ ′ we obtain

∑
0<s�t

(|uεs− − us−|p + |vεs− − vs−|p)‖ΔsZ̃‖2

=
∫ t

0

∫

Rr

(|uεs− − us−|p + |vεs− − vs−|p)‖z‖2Ñ ′(dsdz) (16.41)

+
∫ t

0

∫

‖z‖>1

(|uεs − us |p + |vεs − vs |p
)‖z‖2ν′(dz)ds. (16.42)

Kunita’s maximal inequality for the exponent 2 yields

E

[
| sup
[0,T ]

∫ t

0

∫

Rr

(|uεs− − us−|p + |vεs− − vs−|p)‖z‖2Ñ ′(dsdz)|2
]

� C15

∫ T

0

∫

Rr

E

[
|uεs − us |2p + |vεs − vs |2p

]
‖z‖2ν′(dz)ds

� C16

(∫

Rr

‖z‖2ν′(dz)
∫ T

0
E

[
sup
[0,s]

|uε − u|2p
]
ds +

∫ T

0
E

[
|vεs − vs |2p

]
ds

)

� C16

∫

Rr

‖z‖2ν′(dz)
∫ T

0
E

[
sup
[0,s]

|uε − u|2p
]
ds + C17

(
εT 2p + ε

2p−1
2p T 2(p+1)+1),

where C17 = C from (16.29). The term (16.42) is treated obviously such that

E[ sup
[0,T ]

|I7|2] � ε2C18

∫

Rr

‖z‖4ν′(dz)
∫ T

0
E

[
sup
[0,s]

|uε − u|2p
]
ds

+ C17
(
εT 2p + ε

2p−1
2p T 2(p+1)+1). (16.43)
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I8: For I8 Lemma 16.8, statement 2), yields

∑
0<s�t

|uεs− − us−|p−2〈uεs− − us−,ΦεK̃HΔsZ̃(vs−)− vs− − εK̃H (vs−)ΔsZ̃〉

�
∑

0<s�t
|uεs− − us−|p−1|ΦεK̃HΔsZ̃(vs−)− vs− − εK̃H (vs−)ΔsZ̃|

� ε2C19

∑
0<s�t

|uεs− − us−|p−1‖ΔsZ̃‖2.

Therefore Kunita’s inequality with exponent 2 and elementary Young’s estimate for
parameters p

p−2 and p
2 imply

E[ sup
[0,T ]

|I8|2] � ε2C20

∫

Rr

‖z‖4ν′(dz)
∫ T

0
E[sup

[0,s]
|uε − u|2p−2

]
ds

� εC21

∫ T

0
E[sup

[0,s]
|uε − u|2p

]
ds + C21ε

p
2 T . (16.44)

3.3 Estimate of I5

∫ T

0
|uεs − us |p−2〈uεs − us, εKH (us, vs)〉ds � C22

∫ T

0
ε|uεs − us |p−1ds

� C22

∫ T

0
ε|uεs − us |pds + C22ε

pT

such that

E[ sup
[0,T ]

|I5|2] � εC23T

∫ T

0
E

[
sup
[0,s]

|uε − u|2p
]
ds + C23ε

2pT 2. (16.45)

3.4 Linear Comparison Principle: Taking the supremum and the expec-
tation of the left-hand side of Eq. (16.31) and combining the estimates of∑8

i=1 E[sup[0,T ] |Ii |] given by (16.35)–(16.37), (16.40), (16.43)–(16.45) we obtain
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a positive constant C24

E

[
sup
[0,T ]

|uε − u|2p
]

� C24

(∫ T

0
E

[
sup
[0,s]

|uε − u|2p
]
ds + εT 2p + ε

2p−1
2p T 2(p+1)+1 + (εpT )2

)

� C24

(∫ T

0
E

[
sup
[0,s]

|uε − u|2p
]
ds + εT 2p+3

)
.

Finally

E

[
sup
[0,T ]

|uε − u|p
]
� E

[
sup
[0,T ]

|uε − u|2p
]
� C25ε

2p−1
2p T 2p+3eC25T .

4. Conclusion: The estimates of the sum of the vertical and the horizontal estimate
yield

E

[
sup
[0,T ]

|h(Xε)− h(X)|p
]
� C0

(
E

[
sup
[0,T ]

|uε − u|p
]

+ E

[
sup
[0,T ]

|vε − v|p
])

� C26ε
2p−1

2p T 2p+3eC25T + C
(
εT p + ε

p−1
p T

p+ p−1
p

)

� C27ε
p−1
p eC27T .

We finally note that the only dependence on the initial conditions stems from C∞
and hence by (16.28) the estimate C27 � C28(1 + η0(0)η̄(x0)). This finishes the
proof.

16.4 The Averaging Error and the Proof of the Main Result

For convenience we fix the following notation. Given h : M → R
n a globally

Lipschitz continuous function and Qh : V → R
n its average on the leaves defined

in definition (16.6). For t � 0, x0 ∈ M and ε ∈ (0, 1] we write

δhx0
(ε, t) :=

∫ t∧ετ ε

0
h(Xε

s
ε
(x0))−Qh(π(Xε

s
ε
(x0)))ds.

Proposition 16.9 Let the assumptions of Proposition 16.6 be satisfied for fixed p �
2. Then for any globally Lipschitz continuous function h : M → R

n, λ ∈ (0, p−1
p2 )
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and x0 ∈ M there exist constants b1 > 0 and ε0 ∈ (0, 1] such that for ε ∈ (0, ε0]
and T ∈ [0, 1] we have

(
E

[
sup

s∈[0,T ]
|δhx0

(ε, s)|p
]) 1

p

� b1T
[
ελ + η0 (cT | ln ε|)

]
,

where c := 1
k2

(p−1
p2 − λ

) ∧ �Lip(φ−1) is given in Corollary 16.7 and η0 is the
temporal factor of the ergodic rate of convergence given in estimate (16.9) of
Hypothesis 3.

Proof of Proposition (16.9) Fix x0 ∈ M . For ε ∈ (0, 1) and T > 0 we define the
partition

t0 = 0 < tε1 < · · · < tεNε �
T

ε
∧ τ ε

with the step size

Δε := −cT ln(ε) for some c > 0.

The grid points of the partition are given by tεn := nΔε ∧ τ ε for 0 � n � Nε

for ε ∈ (0, 1] with Nε = � 1
cε| ln(ε)| �. The term δhx0

(ε, t) can be estimated by the
following three sums

|δhx0
(ε, T )| � |A1(T , ε)| + |A2(T , ε)| + |A3(T , ε)|, (16.46)

where

A1(T , ε) := ε

Nε∑
n=0

∫ tn+1

tn

[h(Xε
s (x0))− h(Xs−tn(Xε

tn
(x0)))] ds,

A2(T , ε) := ε

Nε∑
n=0

∫ tn+1

tn

[h(Xs−tn(Xε
tn
(x0)))−ΔεQ(π(X

ε
tn
(x0)))] ds,

A3(T , ε) :=
Nε∑
n=0

εΔεQ(π(X
ε
tn
(x0)))−

∫ tNε+1

0
εQ(π(Xε

s
ε
(x0))) ds.

The following lemmas estimate the preceding terms one-by-one. For convenience
of the reader we number the constants Ci .
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Lemma 16.10 For any λ ∈ (0, p−1
p
) there exist constants b2 > 0 and ε0 ∈ (0, 1]

such that for any ε ∈ (0, ε0] and T � 0

(
E

[
sup

s∈[0,T ]
|A1(s, ε)|p

]) 1
p

� b2T ε
λ.

Proof Using the Markov property analogously to [8] and Corollary 16.7 we obtain

E

[
sup
[0,T ]

A1(s, ε)|p
] 1
p

= ε

Nε−1∑
n=0

E

[
E

[
|
∫ tn+1

tn

|h(Xεs (x0))− h(Xs−tn(Xεtn(x0)))ds|p | Ftn

]] 1
p

= ε

Nε−1∑
n=0

E

[
E

[
|
∫ tn+1

tn

|h(Xεs−tn(y))− h(Xs−tn(y))ds|p | y = Xεtn(x0)
]] 1

p

� ε(Nε + 1)Δε max
n=0,...,Nε

E

[
E

[
| sup
s∈[0,t1]

|h(Xεs (y))− h(Xs−tn(y))|p | y = Xεtn(x0)
]] 1

p

� T ελ max
n=0,...,Nε

E
[
k4(X

ε
tn
(x0))

]
.

Note that by Corollary (16.7) we have

max
n=0,...,Nε

E
[
k4(X

ε
tn
(x0))

]
� k3k5

(
1 + max

n=0,...,Nε
E
[
η̄(Xε

tn
(x0))

])
.

It remains to bound the last summand. We estimate as follows for any n ∈ N

E
[
η̄(Xεtn(x0))

]

� E
[
η̄(Xεtn(x0))− η̄(Xtn(x0))

] + E

[
η̄(Xtn(x0))

]

� �̄E
[|Xεtn(x0)−Xtn(x0)|

] +
∫
η̄(y)μx0(dy)+ sup

t�0
E

[
|
∫
η̄(y)μx0(dy) − η̄(Xt (x0))|

]

� �̄E
[|Xεtn(x0)−Xtn(x0)|p

] 1
p + C1.

For the first term in the preceding expression we derive a recursion formula. Using
Theorem 3.2 in Kunita [18] it yields for the horizontal component

E

[
sup
s∈0,T ]

|Xs(x1)− Xs(x2)|p
]
� e�Lip(φ

−1)T |x1 − x2|p,



16 A Strong Averaging Principle on Unbounded Foliated Space 305

which implies the inequality

E

[
|Xt1(x1)−Xt1(x2)|p

]
� C2ε

λ|x1 − x2|p.

We estimate

E
[|Xεtn(x0)−Xtn(x0)|p

] 1
p

� E
[|Xεtn(x0)−Xtn−tn−1(X

ε
tn−1

(x0))|p
] 1
p + E

[|Xtn(Xεtn−1
(x0))−Xtn(x0)|p

] 1
p

� C3ε
λ
E
[
k4(X

ε
tn−1

(x0))
] + C2ε

λ
E
[|Xεtn−1

(x0)−Xtn−1(x0)|p
] 1
p

� C4ε
λ
(

1 + E
[
η̄(Xεtn−1

(x0))
]) + C2ε

λ
E
[|Xεtn−1

(x0)−Xtn−1(x0)|p
] 1
p

� C4ε
λ
(
C1 + �̄E

[|Xεtn−1
(x0)−Xtn−1(x0)|p

] 1
p

)
+ C2ε

λ
E
[|Xεtn−1

(x0)−Xtn−1(x0)|p
] 1
p

= C5ε
λ
E
[|Xεtn−1

(x0)−Xtn−1(x0)|p
] 1
p + C6ε

λ.

That is, for ψn := E
[|Xε

tn
(x0)− Xtn(x0)|p

] 1
p we have then

ψn � C7ε
λψn−1 + C7ε

λ,

which gives the following estimate for any n ∈ N and k ∈ {1, . . . , n}

ψn � (C7ε
λ)n−k +

n−k∑
i=1

(C7ε
λ)i .

For C7ε
λ
0 <

1
2 we obtain for any n ∈ N the estimate

ψn � C7ε
λ +

∞∑
i=1

(C7ε
λ) � 3C7ε

λ < ∞.

Under these assumptions, we obtain for all ε ∈ (0, ε0]

max
n=0,...,Nε

E
[
η̄(Xε

tn
(x0))

]
� max

n=0,...,Nε

(
�̄E

[|Xε
tn
(x0)−Xtn(x0)|p

] 1
p + C1

)

� C7ε
λ + C1 < ∞. (16.47)

Going back to our main estimate, we obtain C8 > 0 such that

E

[
sup

s∈[0,T ]
A1(s, ε)|p

] 1
p � T ελk3k5

(
1 + max

n=0,...,Nε
E
[
η̄(Xε

tn
(x0))

])
� C8T ε

λ.
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Lemma 16.11 For any λ ∈ (0, p−1
p
) there exist constants b3 > 0 and ε0 ∈ (0, 1]

such that for any ε ∈ (0, ε0] and T � 0

(
E

[
sup

s∈[0,T ]
|A2(s, ε)|p

]) 1
p

� b3T η
0(cT | ln(ε)|).

Proof We have

(
E

[
sup

s∈[0,T ]
|A2(s, ε)|p

]) 1
p

� ε

⎡
⎣E

∣∣∣∣∣
Nε−1∑
n=0

[
∫ tn+1

tn

h(Xs−tn(Xε
tn
(x0)))ds −ΔεQ

h(π(Xε
tn
(x0)))]

∣∣∣∣∣

p
⎤
⎦

1
p

� εΔε

Nε−1∑
n=0

[
E

∣∣∣ 1

Δε

∫ tn+1

tn

h(Xs−tn(Xε
tn
(x0)))ds −Q(π(Xε

tn
(x0)))

∣∣∣
p
] 1
p

.

We apply the Markov property for all n = 0, . . . , Nε . By Hypothesis 3 the two
terms inside the modulus converge to each other when Δε goes to infinity with rate
of convergence bounded by η̄(Xε

tn
(x0))η

0(Δε). Hence, for small ε we have

(
E

[
sup

s∈[0,T ]
|A2(s, ε)|p

]) 1
p

� εNε Δε η
0(Δε) max

n=0,...,Nε
E[η̄(Xε

tn
(x0))]

� T η0(cT | ln(ε)|) max
n=0,...,Nε

E[η̄(Xε
tn
(x0))].

Therefore, using (16.47), we obtain for ε ∈ (0, ε0] the estimate

(
E

[
sup

s∈[0,T ]
|A2(s, ε)|p

]) 1
p

� C8T η
0(cT | ln(ε)|).

Lemma 16.12 For any λ ∈ (0, p−1
p
) there exist positive constants b4 > 0 and

ε0 ∈ (0, 1] such that for any ε ∈ (0, ε0] and T � 0

(
E

[
sup

s∈[0,T ]
|A3(s, ε)|p

]) 1
p

� b4T ε
λ.
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Proof We calculate

|A3(T , ε)| =
∣∣∣
Nε∑
n=0

εΔεQ
πK(π(Xε

tn
))−

∫ NεΔε

0
εQπK(π(Xε

s
ε
)) ds

∣∣∣

� ε

Nε∑
n=0

Δε sup
tn�s<tn+1

|QπK(π(Xε
s ))−QπK(π(Xε

tn
))|

� εΔεC1

Nε∑
n=0

sup
tn�s<tn+1

|vεs − vεtn |. (16.48)

By Minkowski’s inequality, the Markov property, Proposition 16.9 and (16.47) (with
the appropriate constant C8) we have that

E[ sup
s∈[0,T ]

|A3(s, ε)|p] 1
p � T C1 max

n∈{0,...,Nε}
E[E[ sup

tn�s<tn+1

|vεs−tn (y)− vε0(y)|p | y = Ftn ]]
1
p

� T C1 max
n∈{0,...,Nε}

E[E[ sup
t0�s<t1

|vεs (y)− vε0(y)|p | y = Xε
tn
(x0)]]

1
p

� T C2ε
λ
E

[
k4(X

ε
tn
(x0))

]

� T C2C8ε
λ.

This ends the proof of Proposition 16.9.

Proof of the Main Theorem 16.4: With the help of Proposition 16.9, the proof of
Theorem 16.4 is identical the one given in Section 5 of [8].
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Appendix

Proposition 16.13 (Pachpatte [23]) Let u, f, g and h be nonnegative continuous
functions defined on R

+. Let v be a continuous non-decreasing subadditive and
submultiplicative function defined on R

+ and v(u) > 0 on (0,∞). Let e, φ be
continuous and nondecreasing functions defined onR+ with p being strictly positive
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and φ(0) = 0. If

u(t) � e(t)+ g(t)

∫ t

0
f (s)u(s)ds + φ

( ∫ t

0
h(s)v(u(s))ds

)

for all t � 0, then for any 0 � t � t2

u(t) � a(t)
[
e(t)+ φ

(
F−1(F(A(t))+

∫ t

0
h(s)v(a(s))ds

))]
,

where

a(t) := 1 + g(t)

∫ t

0
f (s) exp

( ∫ t

s

g(σ )f (σ )dσ
)
ds,

A(t) :=
∫ t

0
h(s)v(a(s)e(s))ds,

F (t) :=
∫ t

0

ds

v(φ(s))
,

F−1 is the inverse of F and t2 ∈ R
+ such that

F(A(t))+
∫ t

0
h(s)v(a(t))ds ∈ dom(F−1) for all 0 � t � t2.

In the following special case of coefficients it is possible to drop the continuity
assumption on u.

Corollary 16.14 Let Ψ a non-negative, measurable, increasing function and h be
nonnegative, continuous, increasing function on the interval [0, T ] satisfying for
p � 2, ε > 0, c > 0 and any t ∈ [0, T ] the inequality

Ψ (t) � εctp + εc
(∫ t

0
Ψ (s)+ Ψ (s)

p−1
p ds

)
, t ∈ [0, T ]. (16.49)

Then there is a constant k > 0 such that for any ε0 ∈ (0, 1] such that ε0T < k we
have for all t ∈ [0, T ] and ε ∈ (0, ε0]

Ψ (t) � C
(
εtp + tp(εt)

p−1
p

)
.

Proof For e(t) = cεtp, g ≡ 1, f, h ≡ εc, φ(t) = t , w(t) = t
p−1
p we calculate the

coefficients of Proposition 16.13

a(t) := 1 + εc

∫ t

0
exp(εc(t − s))ds = exp(εct)
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and in the limit of εt being small (εt * 1) we have

ε

∫ t

0
a(s)

p−1
p ds = εt

(exp(c p−1
p
εt)− 1

c
p−1
p
εt

)
�εt*1 2εt.

Applying the change of parameter r = εs it follows that

A(t) :=
∫ t

0
exp(εc

p − 1

p
s)(e(s))

p−1
p ds =

∫ t

0
exp(c

p − 1

p
εs)(cεsp)

p−1
p ds

= ε
p−1
p

∫ εt

0
exp(c

p − 1

p
r)c

p−1
p

( r
ε

)p−1 dr

ε
� t

1

εpt

∫ εt

0
exp(c

p − 1

p
r)(cr)

p−1
p dr

�εt*1 2t exp(c
p − 1

p
εt)(cεt)

p−1
p � C1t exp(c

p − 1

p
εt)(εt)

p−1
p .

Finally, we obtain

F(t) :=
∫ t

0
s
− p−1

p ds = pr
1
p and F−1(t) := tp

pp
.

In the sequel we follow the proof of Theorem 2.4.2 in Pachpatte [23] and define the
continuous, positive, non-decreasing function

n(t) := e(t)+ φ
( ∫ t

0
h(s)w(u(s))ds

)
= e(t)+ εc

∫ t

0
h(s)u(s)

p−1
p ds, t � 0,

such that inequality (16.49) can be restated as

u(t) � n(t) + g(t)

∫ t

0
f (s)u(s)ds = e(t)+ εc

∫ t

0
u(s)ds.

It is well-known, see for instance [1], that this integral estimate implies the
following Gronwall-Bellmann inequality also in the case of u being merely positive
measurable. The main reason is that the integral is absolutely continuous with a
bounded density. This result yields

u(t) � a(t)n(t), t � 0.

The remainder of the proof of Theorem 2.4.2 in [23] does use the continuity of u
and remains intact.
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Chapter 17
Young Differential Delay Equations
Driven by Hölder Continuous Paths

Luu Hoang Duc and Phan Thanh Hong

Abstract In this paper we prove the existence and uniqueness of the solution of
Young differential delay equations under weaker conditions than it is known in the
literature. We also prove the continuity and differentiability of the solution with
respect to the initial function and give an estimate for the growth of the solution. The
proofs use techniques of stopping times, Shauder-Tychonoff fixed point theorem and
a Gronwall-type lemma.

17.1 Introduction

In this paper we would like to study the deterministic delay equation of the
differential form

dx(t) = f (xt )dt + g(xt )dω(t), t ∈ [0, T ] (17.1)

x0 = η ∈ Cr := C([−r, 0],Rd)

or in the integral form

x(t) = x(0)+
∫ t

0
f (xs)ds +

∫ t

0
g(xs)dω(s), t ∈ [0, T ] (17.2)

x0 = η ∈ Cr
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for some fixed time interval [0, T ], where C([a, b],Rd) denote the space of all
continuous paths x : [a, b] → R

d equipped with sup norm ‖x‖∞,[a,b] =
supt∈[a,b] ‖x(t)‖, with ‖ · ‖ is the Euclidean norm in R

d , xt ∈ Cr is defined by
xt (u) := x(t + u) for all u ∈ [−r, 0]; f, g : Cr → R

d are coefficient functions; and
ω belongs to Cν−Hol([0, T ],R) - the space of Hölder continuous paths for index
ν > 1

2 . Such system appears, for example, while solving stochastic differential
equations of the form

dx(t) = f (xt )dt + g(xt )dB
H (t), x0 = η ∈ Cr, (17.3)

where BH is a fractional Brownian motion defined on a complete probability space
(Ω,F ,P) with the Hurst indexH ∈ (1/2, 1) [15]. Since BH is neither Markov nor
semimartingale if H �= 1

2 , one cannot apply the classical Ito theory to solve (17.3).
Instead, due to the fact that BH(·) is Hölder continuous for almost surely all the
realizations, one can define the stochastic integral w.r.t. the fBm as the integral
driven by a Hölder continuous path using the so called rough path theory [8, 12–
14], or fractional calculus theory [18, 21]. As a result, solving (17.3) leads to
the deterministic equation (17.1) or (17.2), where the second integral in (17.2) is
understood in the Young sense (see [11, 20]).

The theory of stochastic differential equations driven by the fBm BH for H >
1
2 has been well developed by many authors, especially results on existence and
uniqueness of the pathwise solution, the generation of random dynamical systems
(see e.g. [4, 5, 9–11, 16, 17, 20],. . . and the references therein). For studies on delay
equations, we refer to [1–3, 6].

In the general case where f, g are functions of (t, xt ), under some regularity
conditions, i.e. f is globally Lipschitz continuous and of linear growth, g is C1

such that its Frechet derivative is bounded and globally Lipschitz continuous, there
exists a unique solution x(·, ω, η) of (17.1) (see [1] or [19]). These results are based
on the tools of fractional calculus developed in [17, 21, 22].

In this paper, we reprove the existence and uniqueness theorem of (17.1) under
the following assumptions.

(Hf ) The function f is globally Lipschitz continuous and thus has linear growth,
i.e there exist constants Lf such that for all ξ, η ∈ Cr

‖f (ξ)− f (η)‖ ≤ Lf ‖ξ − η‖∞,[−r,0]

(Hg) The function g is C1 such that its Frechet derivative is bounded and locally
δ−Hölder continuous with 1 ≥ δ > 1−ν

ν
, i.e there exists Lg such that for all ξ, η ∈

Cr

‖Dg(ξ)‖L(Cr ,Rd) ≤ Lg

and for each M > 0, there exists LM such that for all ξ, η ∈ Cr that satisfy

‖ξ‖∞,[−r,0], ‖η‖∞,[−r,0] ≤ M
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one has

‖Dg(ξ) −Dg(η)‖L(Cr ,Rd) ≤ LM‖ξ − η‖δ∞,[−r,0] (17.4)

for some constant 1 > δ > 1−ν
ν

. Assumption (17.4) is weaker than the global
Lipschitz continuity of Dg, as seen in [1, 6] or [19].

Furthermore, we show that the solution is differentiable with respect to the initial
function η and give an estimate for the growth of the solution. Note that in order to
define the second integral in (17.2) in the Young sense, one needs to consider the
solution x and the initial function η in Hölder function spacesCβ-Hol with β+ν > 1.

To finish the introduction, we recall some facts about Young integral, more details
can be seen in [8]. For p ≥ 1 and [a, b] ⊂ R, a continuous path x : [a, b] → R

d is
of finite p-variation if

|||x|||p-var,[a,b] :=
(

sup
Π(a,b)

n∑
i=1

‖x(ti+1)− x(ti)‖p
)1/p

< ∞, (17.5)

where the supremum is taken over the whole class of finite partition of [a, b]. The
subspace Cp−var([a, b],Rd) ⊂ C([a, b],Rd) of all paths x with finite p-variation
and equipped with the p-var norm

‖x‖p-var,[a,b] := ‖x(a)‖ + |||x|||p-var,[a,b] ,

is a nonseparable Banach space [8, Theorem 5.25, p. 92].
Also, for 0 < β ≤ 1 denote by Cβ−Hol([a, b],Rd) the Banach space of all

Hölder continuous paths x : [a, b] → R
d with exponent β, equipped with the norm

‖x‖∞,β,[a,b] := ‖x‖∞,[a,b] + |||x|||β,[a,b] where

|||x|||β,[a,b] := sup
a≤s<t≤b

‖x(t)− x(s)‖
(t − s)β

< ∞. (17.6)

Note that the space is not separable. However, the closure of C∞([a, b],Rd) in
the β-Holder norm denoted by C0,β−Hol([a, b],Rd) is a separable space (see [8,
Theorem 5.31, p. 96]), which can be defined as

C0,β−Hol([a, b],Rd ) :=
{
x ∈ Cβ-Hol([a, b],Rd )

∣∣∣ lim
h→0

sup
a≤s<t≤b,|t−s|≤h

‖x(t)− x(s)‖
(t − s)β

= 0
}
.

Clearly, if x ∈ Cβ−Hol ([a, b],Rd) then for all s, t ∈ [a, b] we have

‖x(t)− x(s)‖ ≤ |||x|||β,[a,b] |t − s|β.
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Hence, for all p such that pβ ≥ 1 we have

|||x|||p-var,[a,b] ≤ |||x|||β,[a,b] (b − a)β < ∞. (17.7)

In particular, C1/p-Hol([a, b],Rd) ⊂ Cp−var([a, b],Rd).
For a, b, c ∈ R such that a < b < c and x ∈ Cβ-Hol([a, c],Rd), it is easy to see

that

|||x|||β,[a,c] ≤ |||x|||β,[a,b] + |||x|||β,[b,c] .

Now consider x ∈ Cβ-Hol([a, b],Rd) and ω ∈ Cν-Hol([a, b],R) with β + ν > 1.

Then by (17.7), x ∈ C
1
β

-var
([a, b],Rd) and ω ∈ C

1
ν -var([a, b],R), thus it is well

known that the Young integral
∫ b
a
x(t)dω(t) exists (see [8, pp. 264–265]). Moreover,

for all s ≤ t in [a, b], due to the Young-Loeve estimate [8, Theorem 6.8, p. 116]

∥∥∥∥
∫ t

s

x(u)dω(u)− x(s)[ω(t)− ω(s)]
∥∥∥∥ ≤ K |||ω||| 1

ν -var,[s,t ] |||x||| 1
β -var,[s,t ]

≤ K(t − s)β+ν |||ω|||ν,[s,t ] |||x|||β,[s,t ] ,

where K := 1
1−21−(β+ν) . Hence

∥∥∥∥
∫ t

s

x(u)dω(u)

∥∥∥∥ ≤ (t−s)ν |||ω|||ν,[s,t ]
(‖x(s)‖ +K(t − s)β |||x|||β,[s,t ]

)
. (17.8)

17.2 Existence, Uniqueness and Continuity of the Solution

Since δν + ν > 1, there exists β < ν such that

β + ν > βδ + ν > 1.

By choosing a smaller ν′ ∈ ( 1
2 , ν) if necessary, we can always assume without loss

of generality that ω ∈ C0,ν−Hol([0, T ],R). System (17.1) would then be considered
for η ∈ Cβ−Hol([−r, 0],Rd), i.e. we consider the equation

dx(t) = f (xt )dt + g(xt )dω(t), t ∈ [0, T ] (17.9)

x0 = η ∈ Cβ−Hol([−r, 0],Rd).
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Lemma 17.1 If x ∈ Cβ−Hol([a − r, b],Rd) then the function x. : [a, b] → Cr ,
xt (·) = x(t + ·) belongs to Cβ−Hol([a, b], Cr) and satisfies

i, |||x.|||β,[a,b] ≤ |||x|||β,[a−r,b] (17.10)

ii, ‖x.‖∞,β,[a,b] ≤ ‖x‖∞,β,[a−r,b]. (17.11)

Proof The fact that

|||x.|||β,[a,b] = sup
a≤s<t≤b

‖xt − xs‖∞,[−r,0]
(t − s)β

= sup
a≤s<t≤b

sup
−r≤u≤0

‖x(t + u)− x(s + u)‖
[(t + u)− (s + u)]β

≤ sup
a−r≤s ′<t ′≤b

‖x(t ′)− x(s′)‖
(t ′ − s′)β

= |||x|||β,[a−r,b]

proves (17.10). As a result,

‖x.‖∞,β,[a,b] = sup
t∈[a,b]

‖xt‖∞,[−r,0] + |||x.|||β,[a,b]
≤ ‖x(·)‖∞,[a−r,b] + |||x|||β,[a−r,b] ,

which proves (17.11).

Remark 17.1 The lemma is not true if we replace the Hölder continuous space byp-
variation bounded space. Namely, if a function x belongs to Cp−var([a− r, b],Rd),
it does not follow that its translation function x· belongs to Cp−var([a, b], Cr) with
p ≥ 1. As a counter example, consider the function x(t) = |t|β , t ∈ [−1, 1], βp < 1
then x ∈ Cp−var([−1, 1],R). However, with the partitionΠ = 0 < 1

n
< 2

n
< · · · <

n−1
n

< 1 we have

(∑
i

‖x i+1
n

− x i
n
‖p∞,[−1,0]

)1/p

=
(∑

i

sup
−1≤u≤0

∣∣∣x( i + 1

n
+ u)− x(

i

n
+ u)

∣∣∣
p

)1/p

≥
(∑

i

∣∣∣x( i + 1

n
− i

n
)− x(

i

n
− i

n
)

∣∣∣
p
)1/p

≥
(∑

i

1

nβp

)1/p

= n
1−βp
p → ∞, as n → ∞.

This shows that x. is not of bounded p-variation.
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Lemma 17.2 Assume that g satisfies the condition (Hg). If x ∈ Cβ−Hol([a −
r, b],Rd) then g(x.) ∈ Cβ−Hol([a, b],Rd) and

|||g(x.)|||β,[a,b] ≤ Lg |||x|||β,[a−r,b] . (17.12)

Proof The proof is directed from the Lipschitz continuity of g and Lemma 17.1.
Namely,

sup
a≤s<t≤b

‖g(xt )− g(xs)‖
(t − s)β

≤ sup
a≤s<t≤b

Lg
‖xt − xs‖∞,[−r,0]

(t − s)β

≤ Lg |||x|||β,[a−r,b] .

Remark 17.2 Since β + ν > 1 the integral
∫ b
a g(xt )dω(t) is well defined.

Lemma 17.3 Assume that g satisfies the condition (Hg). If x, y ∈ Cβ−Hol([a −
r, b],Rd) are such that ‖x‖∞,β,[a−r,b], ‖y‖∞,β,[a−r,b] ≤ M , then

|||g(x.)− g(y.)|||δβ,[a,b] ≤ Lg(b − a)β−δβ |||x − y|||β,[a−r,b] + LMM
δ‖x − y‖∞,[a−r,b]

≤
(
Lg(b − a)β−δβ + LMM

δ
)
‖x − y‖∞,β,[a−r,b] (17.13)

Proof By the mean value theorem

|g(xt )− g(yt )− g(xs)+ g(ys)|

=
∣∣∣∣
∫ 1

0
Dg(θxt + (1 − θyt))(xt − yt )dθ +

∫ 1

0
Dg(θxs + (1 − θ)ys)(xs − ys)dθ

∣∣∣∣

≤
∣∣∣∣
∫ 1

0
Dg(θxt + (1 − θ)yt )[(xt − yt )− (xs − ys)]dθ

∣∣∣∣

+
∣∣∣∣
∫ 1

0
[Dg(θxt + (1 − θ)yt )−Dg(θxs + (1 − θ)ys)](xs − ys)dθ

∣∣∣∣
≤ Lg‖(xt − yt )− (xs − ys)‖∞,[−r,0]

+LM‖xs − ys‖∞,[−r,0]
∫ 1

0

(
θ‖xt − xs‖δ∞,[−r,0] + (1 − θ)‖yt − ys‖δ∞,[−r,0]

)
dθ

≤ Lg(t − s)β |||x. − y.|||β,[a,b]
+LM‖xs − ys‖∞,[−r,0](t − s)δβ max

{
|||x.|||δβ,[a,b] , |||y.|||δβ,[a,b]

}

≤ Lg(t − s)β |||x − y|||β,[a−r,b] + LM(t − s)δβMδ‖x − y‖∞,[a−r,b].
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This implies

|||g(x.)− g(y.)|||δβ,[a,b] ≤ Lg(b − a)β−δβ |||x − y|||β,[a−r,b] + LMM
δ‖x − y‖∞,[a−r,b].

Consider x ∈ Cβ−Hol([t0 − r, t1],Rd) with any interval [t0, t1] ⊂ [0, T ]. Put

I (x)(t) :=
∫ t

t0

f (xs)ds and J (x)(t) :=
∫ t

t0

g(xs)dω(s), t ∈ [t0, t1]

and define the map

F(x)(t) =
{

x(t0)+ I (x)(t) + J (x)(t) if t ∈ [t0, t1]
x(t) if t ∈ [t0 − r, t0]

Lemma 17.4 If x, y ∈ Cβ−Hol([a − r, b],Rd) are such that ‖x‖∞,β,[a−r,b],
‖y‖∞,β,[a−r,b] ≤ M , then there exists L = L(b − a,M) satisfying

|||F(x)− F(y)|||β,[a,b] ≤ L
(
(b − a)1−β + (b − a)ν−β |||ω|||ν,[a,b]

)
‖x − y‖∞,β,[a−r,b].

(17.14)

Proof First, observe that

|||I (x)− I (y)|||β,[a,b] = sup
a≤s<t≤b

|I (x)(t)− I (y)(t) − I (x)(s)+ I (y)(s)|
(t − s)β

≤ sup
a≤s<t≤b

∫ t
s

|f (xu)− f (yu)|du
(t − s)β

≤ sup
a≤s<t≤b

Lf (t − s)‖x − y‖∞,[a−r,b]
(t − s)β

≤ Lf (b − a)1−β‖x − y‖∞,[a−r,b]. (17.15)

Secondly, since ν + δβ > 1, by assigning K ′ = 1
1−21−(ν+δβ) and applying

Lemma 17.3 one has

sup
a≤s<t≤b

|J (x)(t) − J (y)(t) − J (x)(s) + J (y)(s)|
(t − s)β

≤ sup
a≤s<t≤b

| ∫ t
s
[g(xu)− g(yu)]dω(u)|

(t − s)β

≤ sup
a≤s<t≤b

(t − s)ν |||ω|||ν,[s,t]
[‖g(xs)− g(ys)‖ +K ′(t − s)δβ |||g(x.)− g(y.)|||δβ,[s,t]

]

(t − s)β
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≤ (b − a)ν−β |||ω|||ν,[a,b]
[
Lg‖x − y‖∞,[a−r,b] + LgK

′(b − a)β |||x − y|||β,[a−r,b]
+K ′LMMδ(b − a)δβ‖x − y‖∞,[a−r,b]

]
.

(17.16)

Now (17.14) is followed from (17.15) and (17.16) by choosing

L = L(b− a,M) := Lf +Lg +LgK
′(b− a)β +K ′LMMδ(b− a)δβ. (17.17)

We can now state the theorem on existence and uniqueness of solution of
system (17.1).

Theorem 17.1 Assume that (Hf ) and (Hg) are satisfied. If η ∈ Cβ−Hol([−r, 0],
R
d) then there exists a unique solution to the Eq. (17.9) in Cβ−Hol([−r, T ],Rd).

Moreover, the solution is ν-Hölder continuous on [0, T ].
Proof The proof is divided into several steps.

Step 1: For any a < b in [0, T ], one first proves that F is a mapping from
Cβ-Hol([a − r, b],Rd) into itself, or sufficiently

|||F(x)|||β,[a,b] ≤ |||I (x)|||β,[a,b] + |||J (x)|||β,[a,b] < ∞.

With a ≤ s < t ≤ b, using assumption (Hf ) and assigning L′ :=
max{Lf , ‖f (0)‖} one has

‖I (x)(t) − I (x)(s)‖ =
∥∥∥
∫ t

s

f (xu)du

∥∥∥

≤ L′(t − s)(1 + ‖x.‖∞,[s,t ])

≤ L′(t − s)(1 + ‖x‖∞,[a−r,b])

hence

|||I (x)|||β,[a,b] ≤ L′(b − a)1−β (1 + ‖x‖∞,[a−r,b]) ≤ L′(b − a)1−β (1 + ‖x‖∞,β,[a−r,b]) < ∞.

On the other hand, using Lemma 17.2 with K = 1
1−21−(ν+β) , one has

‖J (x)(t)− J (x)(s)‖

=
∣∣∣
∫ t

s

g(xu)dω(u)

∣∣∣

≤ |||ω|||ν,[a,b] (t − s)ν
(‖g(xs)‖ +K(t − s)β |||g(x.)|||β,[a,b]

)

≤ |||ω|||ν,[a,b] (t − s)ν
(‖g(0)‖ + Lg‖x‖∞,[a−r,b] + LgK(t − s)β |||x|||β,[a−r,b]

)
,
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which implies

|||J (x)|||β,[a,b]
≤ (b − a)ν−β |||ω|||ν,[a,b]

(‖g(0)‖ + Lg‖x‖∞,[a−r,b] + LgK(b − a)β |||x|||β,[a−r,b]
)

≤ (b − a)ν−β |||ω|||ν,[a,b]
[‖g(0)‖ + Lg + LgK(b − a)β

]
(1 + ‖x‖∞,β,[a−r,b]) < ∞.

Therefore |||F(x)|||β,[a,b] is finite. Moreover, by assigning a := t0, b := t1 it
follows from the definition of F that

‖F(x)‖∞,β,[t0−r,t1]

= ‖F(x)‖∞,[t0−r,t1] + |||F(x)|||β,[t0−r,t1]

≤ max
{
‖F(x)‖∞,[t0−r,t0], ‖F(x)‖∞,[t0,t1]

}
+ |||F(x)|||β,[t0−r,t0] + |||F(x)|||β,[t0,t1]

≤ max
{
‖F(x)‖∞,[t0−r,t0], ‖F(x)(t0)‖ + (t1 − t0)

β |||F(x)|||β,[t0,t1]
}

+ |||F(x)|||β,[t0−r,t0] + |||F(x)|||β,[t0,t1]

≤ ‖x‖∞,[t0−r,t0] + |||x|||β,[t0−r,t0] + [1 + (t1 − t0)
β ] |||F(x)|||β,[t0,t1]

≤ ‖x‖∞,β,[t0−r,t0] + C′ [(t1 − t0)
1−β + (t1 − t0)

ν−β |||ω|||ν,[t0,t1]
]
(1 + ‖x‖∞,β,[t0−r,t1]),

(17.18)

where

C′ = C′(t1−t0) := [1+(t1−t0)β ](‖g(0)‖+Lg+LgK(t1−t0)β+L′). (17.19)

Furthermore, for 0 < ε ≤ ν − β small enough,

|||F(x)|||(β+ε),[t0,t1]

≤ C′ ((t1 − t0)
1−β−ε + (t1 − t0)

ν−β−ε |||ω|||ν,[t0,t1]
)
(1 + ‖x‖∞,β,[t0−r,t1]).

(17.20)

Step 2: Following [5] and [7] , assign

C := 2(‖g(0)‖ + L′ + Lg(K + 1)) (17.21)

and fix μ < min{1, C}. We construct a sequence ti in [0,∞) such that t0 = 0
and

ti+1 = sup{t ≥ ti : C
[
(t − ti )

1−β + (t − ti )
ν−β |||ω|||ν,[ti ,t ]

]
≤ μ}.
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Since ω ∈ C0,ν−Hol([0, T ],R),
∣∣∣ |||ω|||ν,[0,τ ] − |||ω|||ν,[0,τ±h]

∣∣∣ ≤ max
{

|||ω|||ν,[τ,τ+h] , |||ω|||ν,[τ−h,τ ]
}

→ 0 as h → 0+,

the function τ 1−β + τ ν−β |||ω|||ν,[0,τ ] is then continuous due to the continuity of
each component in τ . Hence

(ti+1 − ti)
1−β + (ti+1 − ti)

ν−β |||ω|||ν,[ti ,ti+1] = μ

C
, ∀i ≥ 0. (17.22)

If t∞ := sup ti < ∞, then by choosing k such that k(ν − β) ≥ 1, one has

n(μ/C)k ≤
n−1∑
i=0

[
(ti+1 − ti )

1−β + (ti+1 − ti )
ν−β |||ω|||ν,[ti ,ti+1]

]k

≤ 2k−1
n−1∑
i=0

[
(ti+1 − ti)

k(1−β) + (ti+1 − ti )
k(ν−β) |||ω|||kν,[0,t∞]

]

≤ 2k−1

[
n−1∑
i=0

(ti+1 − ti )
k(1−β) +

n−1∑
i=0

(ti+1 − ti )
k(ν−β) |||ω|||kν,[0,t∞]

]

≤ 2k−1t
k(1−β)∞ + t

k(ν−β)∞ |||ω|||kν,[0,t∞] < ∞

for all n ∈ N, which is contradiction. Hence {ti} is increasing to infinity and it
makes sense to define

N(T ,ω) := max{i : ti ≤ T }.

Moreover,

N(T ,ω) ≤ 2k−1
(
C

μ

)k (
T k(1−β) + T k(ν−β) |||ω|||kν,[0,T ]

)
. (17.23)

Step 3: In this step one shows the local existence of solution on [t0, t1] con-
structed as above. From definition of stopping times, |t1 − t0| < 1 and
C′(t1 − t0) ≤ C, hence it follows that

F : Cβ-Hol([t0 − r, t1],Rd) → Cβ-Hol([t0 − r, t1],Rd)

satisfying

‖F(x)‖∞,β,[t0−r,t1] ≤ ‖x‖∞,β,[t0−r,t0] + μ(1 + ‖x‖∞,β,[t0−r,t1]) (17.24)
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Introducing the set

B :=
{
x ∈ Cβ-Hol([t0 − r, t1],Rd )| xt0 = η, ‖x‖∞,β,[t0−r,t1] ≤ R := ‖η‖∞,β,[t0−r,t0] + μ

1 − μ

}
,

then F : B → B. By Lemma 17.4 and the definition of F , the following estimate

‖F(x)− F(y)‖∞,β,[t0−r,t1] = ‖F(x)− F(y)‖∞,[t0,t1] + |||F(x)− F(y)|||β,[t0,t1]
≤

[
1 + (t1 − t0)

β
]
|||F(x)− F(y)|||β,[t0,t1]

≤ L(t1 − t0, R)
[
1 + (t1 − t0)

β
]
‖x − y‖∞,β,[t0−r,t1].

proves the continuity of F on B.
Observe that F is a compact operator on B. Indeed, take the sequence yn =
F(xn), xn ∈ B, by (17.20)

∣∣∣∣∣∣yn∣∣∣∣∣∣
(β+ε),[t0,t1] ≤ C

(
(t1 − t0)

1−β−ε + (t1 − t0)
ν−β−ε |||ω|||ν,[t0,t1]

)
(1 + R).

By Proposition 5.28 of [8], there exists a subsequence ynk1[t0,t1] which converges
in Cβ-Hol([t0, t1],Rd ). Additionally, for all k, ynk (t) = η(t),∀t ∈ [t0 − r, t0],
hence

‖ynk − ynk′ ‖∞,β,[t0−r,t1] = ‖ynk − ynk′ ‖∞,β,[t0,t1] → 0 as k, k′ → ∞.

SinceCβ-Hol([t0−r, t1],Rd) is Banach one concludes that there is a subsequence
of yn that converges in Cβ-Hol([t0 − r, t1],Rd).
To sum up, F : B → B is a compact operator on the non empty, closed, bounded,
convex subset of Banach space Cβ-Hol([t0 − r, t1],Rd ). By Schauder-Tychonoff
fixed point theorem (see e.g [23, Theorem 2.A, p. 56]), there exists a function
x∗ ∈ B such that F(x∗) = x∗, i.e x∗ is a local solution of (17.9) on [t0 − r, t1].
The fact that x∗ ∈ Cν-Hol([t0 − r, t1],Rd ) is then obvious.

Step 4: The local solution is unique.
Assuming that x and y are solutions to (17.9) on [t0 − r, t1] with the same initial
condition η , bounded by M > 0. Put z = x − y then F(x) − F(y) = z. By
virtue of Lemma 17.4, for t0 ≤ s < t ≤ t1,

|||z|||β,[s,t] ≤ L(t1 − t0,M)
[
(t − s)1−β + (t − s)ν−β |||ω|||ν,[s,t]

]
‖z‖∞,β,[s−r,t]

≤ L(t1 − t0,M)
[
(t − s)1−β + (t − s)ν−β |||ω|||ν,[s,t]

] (‖z‖∞,[s−r,t] + |||z|||β,[s−r,t]
)

≤ L(t1 − t0,M)
[
(t − s)1−β + (t − s)ν−β |||ω|||ν,[s,t]

]

× (
max{‖z‖∞,[s−r,s], ‖z‖∞,[s,t]} + |||z|||β,[s−r,s] + |||z|||β,[s,t]

)
.
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Since ‖z‖∞,[s,t ] ≤ ‖z(s)‖ + (t − s)β |||z|||β,[s,t ] ≤ ‖z‖∞,[s−r,s] + |||z|||β,[s,t ], it
follows that

|||z|||β,[s,t ]
≤ 2L(t1 − t0,M)

[
(t − s)1−β + (t − s)ν−β |||ω|||ν,[s,t ]

] (‖z‖∞,β,[s−r,s] + |||z|||β,[s,t ]
)
.

(17.25)

Construct similarly to Step 2 a finite sequence {si} on [t0, t1] such that s0 = t0
and

(si+1 − si )
1−β + (si+1 − si)

ν−β |||ω|||ν,[si ,si+1] = μ

2L(t1 − t0,M)
.

It follows from (17.25) that

|||z|||β,[s0,s1] ≤ μ
(‖z‖∞,β,[s0−r,s0] + |||z|||β,[s0,s1]

) = μ |||z|||β,[s0,s1] . (17.26)

Consequently, |||z|||β,[s0,s1] = 0. By induction, one can prove that |||z|||β,[t0,t1] = 0.
Therefore, z(u) ≡ 0,∀u ∈ [t0 − r, t1], i.e. x ≡ y on [t0 − r, t1].

Step 5: By induction, there exists a unique solution of (17.9) on each [ti−r, ti+1].
Finally, due to the unboundedness of {ti} the solution of (17.9) can be extended
to the whole [−r, T ] by concatenation.

Theorem 17.2 Under the assumptions of Theorem 17.1, one has

sup
t∈[tN(t,ω),tN(t,ω)+1]

‖xt‖∞,β,[−r,0] ≤ e−[N(t,ω)+1] log(1−μ)[‖xt0‖∞,β,[−r,0] + 1
]
,

(17.27)

where N(t, ω)-the number of stopping times (17.22) in (0, t], can be approximated
by (17.23).

Proof From the proof of Theorem 17.1, in particular (17.18) and (17.24), it follows
that for any i ≥ 0

‖x‖∞,β,[ti−r,t ] ≤ ‖x‖∞,β,[ti−r,ti ] + μ(1 + ‖x‖∞,β,[ti−r,t ]), ∀t ∈ [ti , ti+1].

In other words,

‖x‖∞,β,[ti−r,t ] ≤ μ

1 − μ
+ 1

1 − μ
‖x‖∞,β,[ti−r,ti], ∀t ∈ [ti , ti+1]. (17.28)

On the other hand,

‖x‖∞,β,[t−r,t ] = ‖x‖∞,[t−r,t ] + |||x|||β,[t−r,t ] ≤ ‖x‖∞,β,[ti−r,t ], ∀t ∈ [ti , ti+1].
(17.29)
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Hence it follows from (17.28) and (17.29) that

‖x‖∞,β,[t−r,t ] ≤ μ

1 − μ
+ 1

1 − μ
‖x‖∞,β,[ti−r,ti ], ∀t ∈ [ti , ti+1].

which implies that

sup
t∈[ti ,ti+1]

‖xt‖∞,β,[−r,0] ≤ μ

1 − μ
+ 1

1 − μ
‖xti‖∞,β,[−r,0]. (17.30)

In particular, for any i ≥ 0,

‖xti+1‖∞,β,[−r,0] ≤ μ

1 − μ
+ 1

1 − μ
‖xti‖∞,β,[−r,0],

or equivalently

‖xti+1‖∞,β,[−r,0] + 1 ≤ 1

1 − μ

[
‖xti‖∞,β,[−r,0] + 1

]
.

By induction arguments, one can conclude that

‖xti‖∞,β,[−r,0] ≤
[ 1

1 − μ

]i[‖xt0‖∞,β,[−r,0] + 1
]

− 1, ∀i ≥ 0. (17.31)

Equation (17.27) is then a direct consequence of (17.30) and (17.31).

The arguments in the proof of Theorem 17.2 help us to derive a type of Gronwall
lemma for Hölder norms.

Lemma 17.5 (Gronwall-Type Lemma) Assume that z : [−r, T ] → R
d satisfies

for any 0 ≤ s ≤ t ≤ T

|||z|||β,[s,t ] ≤ A+ C
(
(t − s)1−β + (t − s)ν−β |||ω|||ν,[s,t ]

)
‖z‖∞,β,[s−r,t ] (17.32)

with some constants A,C > 0. Then for μ < min{ 1
2 , C} the following estimate

holds

‖zt‖∞,β,[−r,0] ≤ e−[N(t,ω)+1] log(1−2μ)
[A
μ

+ ‖z‖∞,β,[−r,0]
]
, ∀t ∈ [0, T ].

(17.33)

Proof Using the construction of stopping times in (17.22), one has

|||z|||β,[ti ,t ] ≤ A+ μ‖z‖∞,β,[ti−r,t ], ∀t ∈ [ti , ti+1],
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hence

‖z‖∞,β,[ti−r,t ] ≤ max{‖z‖∞,[ti−r,ti ], ‖z‖∞,[ti ,t ]} + |||z|||β,[ti−r,ti ] + |||z|||β,[ti ,t ]
≤ ‖z‖∞,β,[ti−r,ti ] + (1 + (ti+1 − ti )

β) |||z|||β,[ti ,t ]
≤ ‖z‖∞,β,[ti−r,ti ] + 2[A+ μ‖z‖∞,β,[ti−r,t ]]

due to the fact that μ
C
< 1. It follows that

‖z‖∞,β,[ti−r,t ] ≤ 2A

1 − 2μ
+ 1

1 − 2μ
‖z‖∞,β,[ti−r,ti], ∀t ∈ [ti , ti+1],

(provided that μ < 1
2 ), which has similar form to (17.28). As a consequence, by

following the same arguments as in Theorem 17.2, one has

‖zti‖∞,β,[−r,0] ≤
[ 1

1 − 2μ

]i[‖zt0‖∞,β,[−r,0] + A

μ

]
− A

μ
, ∀i ≥ 0,

which proves (17.33).

Denote by x(·, ω, η) the solution of (17.1) with initial function η. We prove in
the following the continuity of the solution with respect to the initial condition.

Theorem 17.3 Under the assumptions of Theorem 17.1, the solution xt (·, ω, η) is
continuous with respect to η.

Proof For any η1, η2 ∈ Cβ-Hol([−r, 0],Rd) denote xi(·) = x(·, ω, ηi),
i = 1, 2. Fix η1, by (17.27) one can choose M large enough such that
‖x(·, ω, η2)‖∞,β,[−r,T ] ≤ M for all η2 such that ‖η2 − η1‖∞,β,[−r,0] ≤ 1.
From (17.14) in Lemma 17.4, one has for all 0 ≤ a ≤ b ≤ T ,
∣∣∣
∣∣∣
∣∣∣x1 − x2

∣∣∣
∣∣∣
∣∣∣
β,[a,b] ≤ L(T ,M)

(
(b− a)1−β + (b − a)ν−β |||ω|||ν,[a,b]

)
‖x1 − x2‖∞,β,[a−r,b],

which has the form (17.32) with A = 0 and C = L(T ,M). Therefore,

‖xt (·, ω, η2)− xt (·, ω, η1)‖∞,β,[−r,0] ≤ e−[N(t,ω)+1] log(1−2μ)‖η1 − η2‖∞,β,[−r,0],∀t ∈ [0, T ],

in which N(t, ω) is defined in (17.23) with C = L(T ,M) and μ <

min{1/2, L(T ,M)} and N depends on L(T ,M) - the local constant in the vicinity
of η1. That proves the continuity of xt (·, ω, η) w.r.t. the initial function η.

Remark 17.3 It can be seen that for x ∈ Cβ−Hol([−r, T ],Rd) there exists C(T , r)
such that

‖x(·)‖∞,β,[−r,T ] ≤ C(T , r) sup
t∈[0,T ]

‖xt (·)‖∞,β,[−r,0].
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Indeed, since ‖x(·)‖∞,[−r,T ] = supt∈[0,T ] ‖xt (·)‖∞,[−r,0], for s, t ∈ [−r, T ] one can
construct a finite sequence si as follow: s = s0, s1 = s0 + r, s2 = s1 + r, . . . , until
sn + r ≥ t and assign sn+1 := t . Then

‖x(t)− x(s)‖
|t − s|β ≤

n∑
i=0

‖x(si+1)− x(si)‖
|si+1 − si |β

≤
n∑
i=0

‖xsi+1(si − si+1)− xsi+1(0)‖
|si+1 − si |β

≤
n∑
i=0

∣∣∣∣∣∣xsi+1

∣∣∣∣∣∣
β,[−r,0]

≤ (1 + T/r) sup
t∈[0,T ]

|||xt |||β,[−r,0] .

Hence, from Theorem 17.3 one concludes that

‖x(·, ω, η2)−x(·, ω, η1)‖∞,β,[−r,T ] ≤ C(T , r)e−[N(T,ω)+1] log(1−2μ)‖η1−η2‖∞,β,[−r,0].

Next, assuming that f is C1, we fix a solution x(·, ω, η) of (17.1) and consider
the linearized equation

y(t) = η1(0)− η(0)+
∫ t

0
Df (xs)ysds +

∫ t

0
Dg(xs)ysdω(s), (17.34)

with initial function η1−η ∈ Cβ−Hol([−r, 0],Rd). Since y ∈ Cδβ−Hol([−r, T ],Rd )

and

‖Dg(xt )−Dg(xs)‖L(Cr ,Rd) ≤ LM‖xt − xs‖δ∞,[−r,0]
≤ LM |||x|||δβ,[−r,T ] (t − s)δβ ,

|||Dg(x.)|||δβ,[a,b] ≤ LMM
δ (17.35)

with M ≥ ‖x‖∞,β,[−r,T ], the integrals
∫ t

0 Df (xs)ysds and
∫ t

0 Dg(xs)ysdω(s) are
well defined. We need to prove the following lemma

Lemma 17.6 The Eq. (17.34) has unique solution y in Cδβ−Hol([−r, T ],Rd).
Moreover, the solution is Hölder continuous with exponent ν on [0, T ].
Proof The proof is similar to that of Theorem 17.1. Note that ‖Df (ξ)‖ ≤ Lf for
all ξ ∈ Cr



328 L. H. Duc and P. T. Hong

Define the map

G(y)(t) =
{

y(t0)+ ∫ t
0 Df (xs)ysds + ∫ t

0 Dg(xs)ysdω(s), if t ∈ [t0, t1]
y(t), if t ∈ [t0 − r, t0],

then for s, t ∈ [0, T ]

‖G(y)(t)−G(y)(s)‖
≤ Lf ‖y‖∞,[s−r,t ](t − s)+ |||ω|||ν,[s,t ] (t − s)ν

[
Lg‖y‖∞,[s−r,t ]

+K ′(t − s)δβ‖y‖∞,[s−r,t ] |||Dg(x.)|||δβ,[s,t ] +K ′Lg(t − s)δβ |||y|||δβ,[s−r,t ]
]
,

with K ′ = 1
1−21−(ν+δβ) . Combining with (17.35), it follows that

|||G(y)|||δβ,[s,t ] ≤ C
(
(t − s)1−δβ + |||ω|||ν,[s,t ] (t − s)ν−δβ

)
‖y‖∞,δβ,[s−r,t ]

Repeat the arguments in Theorem 17.1, one can prove the existence of solution
to (17.35). Since G is linear, the uniqueness of the solution is derived by a
contraction mapping argument. Finally, it is obvious that the solution depends
linearly on the initial function.

Theorem 17.4 Assuming that f, g satisfy conditions (Hf ) and (Hg) and f is a
C1 function. Then the solution xt(·, ω, η) of (17.9) is differentiable with respect to
initial function η.

Proof Consider two solutions x(·) = x(·, ω, η) and x1(·) = x(·, ω, η1) of (17.9)

x1(t) = η1(0)+
∫ t

0
f (x1

s )ds +
∫ t

0
g(x1

s )dω(s)

x(t) = η(0)+
∫ t

0
f (xs)ds +

∫ t

0
g(xs)dω(s),

and the solution y(·) = y(·, ω, η1 − η) of (17.34). Define

z(·) = x1(·)− x(·)− y(·)

then z ≡ 0 on [−r, 0]. By the assumptions, there exists F ∗,G∗- the nonlinear
remaining terms of f, g such that

f (x1
s )− f (xs) = Df (xs)(x

1
s − xs)+ F ∗(x1

s − xs)

g(x1
s )− g(xs) = Dg(xs)(x

1
s − xs)+G∗(x1

s − xs).
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Since f, g are C1, there exist a number h > 0 and continuous functions p, q :
[0, h] → R+, p(0) = q(0) = 0 and lim

u→0
p(u) = lim

u→0
q(u) = 0, such that

‖F ∗(x1
s − xs)‖ =

∥∥∥
∫ 1

0
[Df (θx1

s + (1 − θ)xs)−Df (xs)](x1
s − xs)dθ

∥∥∥

≤ ‖x1(·)− x(·)‖∞,β,[−r,T ] p
(‖x1(·)− x(·)‖∞,β,[−r,T ]

)

and

‖G∗(x1
s − xs)‖ =

∥∥∥
∫ 1

0
[Dg(θx1

s + (1 − θ)xs)−Dg(xs)](x1
s − xs)dθ

∥∥∥

≤ ‖x1(·)− x(·)‖∞,β,[−r,T ] q
(‖x1(·)− x(·)‖∞,β,[−r,T ]

)
.

whenever ‖x1(·) − x(·)‖∞,β,[−r,T ] ≤ h. Similar to Lemma 17.3, we estimate the
Hölder norm of G∗. Specifically, for 0 ≤ s < t ≤ T ,

‖G∗(x1
t − xt )−G∗(x1

s − xs)‖

=
∥∥∥∥
∫ 1

0
[Dg(θx1

t + (1 − θ)xt )−Dg(xt )](x1
t − xt )dθ

−
∫ 1

0
[Dg(θx1

s + (1 − θ)xs)−Dg(xs)](x1
s − xs)dθ

∥∥∥∥

≤
∥∥∥∥
∫ 1

0
[Dg(θx1

t + (1 − θ)xt )−Dg(xt )−Dg(θx1
s + (1 − θ)xs)

+Dg(xs)](x1
t − xt )dθ

∥∥∥

+
∥∥∥∥
∫ 1

0
[Dg(θx1

s + (1 − θ)xs)−Dg(xs)](x1
t − xt − x1

s + xs)dθ

∥∥∥∥ . (17.36)

From the assumption of g the second integral in (17.36) is less than or equal

LM‖x1
t − xt − x1

s + xs‖.‖x1
s − xs‖δ∞,[−r,0],

where M is a upper bound of ‖x‖∞,β,[−r,T ] and ‖x1‖∞,β,[−r,T ]. It follows from
Lemma 17.1 that

∥∥∥∥
∫ 1

0
[Dg(θx1

s + (1 − θ)xs)−Dg(xs)](x1
t − xt − x1

s + xs)dθ

∥∥∥∥

≤ LM(t − s)β‖x1 − x‖1+δ
∞,β,[−r,T ]. (17.37)
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Since δβ + ν > 1, one can choose 0 < γ < 1 such that γ δβ + ν > 1. Then

‖Dg(θx1
t + (1 − θ)xt )−Dg(xt )−Dg(θx1

s + (1 − θ)xs)+Dg(xs)‖γL(Cr ,Rd)
≤ ‖Dg(θx1

t + (1 − θ)xt )−Dg(θx1
s − (1 − θ)xs)‖γL(Cr,Rd)

+‖Dg(xt )−Dg(xs)‖γL(Cr ,Rd)
≤ 2LγM

(
‖x1

t − x1
s ‖γ δ∞,[−r,0] + |xt − xs‖γ δ∞,[−r,0]

)

≤ 2LγM(t − s)γ δβ
(
‖x1

. ‖γ δβ,[0,T ] + ‖x.‖γ δβ,[0,T ]
)

≤ 2LγM(t − s)γ δβ
(
‖x1‖γ δ∞,β,[−r,T ] + ‖x‖γ δ∞,β,[−r,T ]

)

≤ 4MγδL
γ

M(t − s)γ δβ . (17.38)

On the other hand,

‖Dg(θx1
t + (1 − θ)xt )−Dg(xt )−Dg(θx1

s + (1 − θ)xs)+Dg(xs)‖1−γ
L(Cr ,Rd)

≤ ‖Dg(θx1
t + (1 − θ)xt )−Dg(xt )‖1−γ

L(Cr,Rd )

+‖Dg(x1
s + (1 − θ)xs)−Dg(xs)‖1−γ

L(Cr ,Rd)

≤ 2L1−γ
M ‖x1 − x‖(1−γ )δ

∞,β,[−r,T ]. (17.39)

Therefore, the first integral in (17.36) does not exceed 8MγδLM(t − s)γ δβ‖x1 −
x‖1+(1−γ )δ

∞,β,[−r,T ]. Combining this with (17.36) and (17.37), one obtains

‖G∗(x1
t − xt )−G∗(x1

s − xs)‖ ≤ (t − s)γ δβC(T ,M)‖x1 − x‖1+(1−γ )δ
∞,β,[−r,T ],

which implies

∣∣∣
∣∣∣
∣∣∣G∗(x1

. − x.)

∣∣∣
∣∣∣
∣∣∣
γ δβ,[0,T ] ≤ C(G∗)‖x1 − x‖1+(1−γ )δ

∞,β,[−r,T ], (17.40)

Rewrite the equation of z in the form

z(t) =
∫ t

0

(
f (x1

s )− f (xs )−Df (xs)ys

)
ds +

∫ t

0

(
g(x1

s )− g(xs )−Dg(xs)ys

)
dω(s)

=
∫ t

0

(
Df (xs)zs + F ∗(x1

s − xs)
)
ds +

∫ t

0

(
Dg(xs)zs +G∗(x1

s − xs)
)
dω(s)

=
[ ∫ t

0
F ∗(x1

s − xs)ds +
∫ t

0
G∗(x1

s − xs)dω(s)
]

+
∫ t

0
Df (xs)zsds +

∫ t

0
Dg(xs)zsdω(s).
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By similar estimates as in Theorem 17.1, there exist constantsK1,K2 depending on
ν, β, δ, γ and generic constants C1, C2 such that for all 0 ≤ s < t ≤ T

|||z|||β,[s,t ] ≤
(
|t − s|1−β‖F ∗(x1· − x·)‖∞,[s,t ]

+|t − s|ν−βK(1 + T γ δβ) |||ω|||ν,[s,t ] ‖G∗(x1· − x·)‖∞,γ δβ,[s,t ]
)

+
(
‖Df (x·)z·‖∞,[s,t ]|t − s|1−β

+|t − s|ν−βK(1 + T δβ) |||ω|||ν,[s,t ] ‖Dg(x·)z·‖∞,δβ,[s,t ]
)

≤ C1

(
‖F ∗(x1· − x·)‖∞,[0,T ] + ‖G∗(x1· − x·)‖∞,γ δβ,[0,T ]

)

+C2

(
(t − s)1−β + (t − s)ν−β |||ω|||ν,[s,t ]

)
‖z‖∞,β,[s−r,t ]

≤ C1

(
‖x1 − x‖∞,β,[−r,T ] P(‖x1 − x‖∞,β,[−r,T ])

)

+C2

(
(t − s)1−β + (t − s)ν−β |||ω|||ν,[s,t ]

)
‖z‖∞,β,[s−r,t ] (17.41)

where P(u) = p(u) + q(u) + u(1−γ )δ. Due to Remark 17.3, there exist constants
A(T , η), C(T , η), a number h1 > 0 and a function p1 : [0, h1] → R+ with p1(0) =
0, lim

u→0
p1(u) = 0, such that

|||z|||β,[s,t ] ≤ A(T , η)‖η1 − η‖∞,β,[−r,0]p1
(‖η1 − η‖∞,β,[−r,0]

)

+C(T , η)
(
(t − s)1−β + (t − s)ν−β |||ω|||ν,[s,t ]

)
‖z‖∞,β,[s−r,t ],

whenever ‖η1 −η‖∞,β,[−r,0] ≤ h1. Applying Lemma 17.5, one concludes that there
exists a generic constant C such that for all t in [0, T ]

‖zt‖∞,β,[−r,0] ≤ C
[
‖η1 − η‖∞,β,[−r,0]p1

(‖η1 − η‖∞,β,[−r,0]
) + ‖z‖∞,β,[−r,0]

]

≤ C‖η1 − η‖∞,β,[−r,0]p1
(‖η1 − η‖∞,β,[−r,0]

)

for all ‖η1 − η‖∞,β,[−r,0] ≤ h1, since z ≡ 0 on [−r, 0]. Therefore,

‖xt (·, ω, η1)− xt (·, ω, η)− yt(·, ω, η1 − η)‖∞,β,[−r,0]

≤ ‖η1 − η‖∞,β,[−r,0]Cp1
(‖η1 − η‖∞,β,[−r,0]

)
(17.42)

for any η1 in the vicinity of η such that ‖η1 − η‖∞,β,[−r,0] ≤ h1. Finally, (17.42)
implies that xt (·, ω, η) is differentiable with respect to η, with its derivative to be
yt (·, ω, ·) .
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Chapter 18
Uniform Strong Law of Large Numbers
for Random Signed Measures

O. I. Klesov and I. Molchanov

Abstract We prove a strong law of large numbers for random signed measures on
Euclidean space that holds uniformly over a family of arguments (sets) scaled by
diagonal matrices. Applications to random measures generated by sums of random
variables, marked point processes and stochastic integrals are also presented.

18.1 Introduction

Set-indexed stochastic processes naturally appear in many areas of probability
theory and mathematical statistics, e.g., as empirical measures [26], set-indexed
martingales [15], point processes [7, 8], and random measures [17].

Both empirical and partial sum processes are special cases of marked point
processes or random measures. They can be described via the pairs (xi , mi), where
xi are locations and mi is the mass located at xi , also called the mark of xi .

Empirical processes assign the same nonrandom mass to each random location.
More precisely, based on d-dimensional sample X1, . . . ,Xn the empirical measure
is defined for any Borel A ⊂ R

d by

Fn(A) = 1

n
#{j = 1, . . . , n : Xj ∈ A}.
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Partial-sum processes are defined by assigning i.i.d. random masses to fixed
locations on a grid in the space R

d . If Z
d stands for the set of integer points in

R
d , then the partial-sum process is the normalized version of

S(A) =
∑
j∈A

Xj (18.1)

being the sum of i.i.d. random variables Xj, j ∈ Z
d , with j ∈ A. We set S(A) = 0 if

{j : j ∈ A} = ∅.
The partial sum processes in dimension one are extensively studied in the

classical probability theory as cumulative sums of random variables. We discuss
below the higher-dimensional setting and allow for a richer family of sets A than
in the classical case of multiple sums, see, e.g., [19]. There are three main types of
asymptotic results for partial-sum processes indexed by sets, namely,

• strong laws of large numbers,
• central limit theorems,
• laws of the iterated logarithms.

Perhaps the first strong law of large numbers appeared in the paper by Bass and Pyke
[3]. The central limit theorem for partial-sum processes is obtained by Kuelbs [22],
while the law of the iterated logarithm is due to Wichura [29]. Further references
can be found in the survey papers by Pyke [25] and Gaenssler and Ziegler [11].
From now on, we concentrate on the strong law of large numbers.

The paper is organised as follows. First, we recall the Bass–Pyke theorem (the
uniform strong law of large numbers) in Sect. 18.2. It is generalised for signed
measures in Sect. 18.3 and proved in the subsequent Sect. 18.4. The main feature is
the general scaling of the argument set using diagonal matrices with the determinant
converging to infinity. The case of stationary measures is considered in Sect. 18.5.
The most important special cases concern random measures generated by marked
point processes and by sums of random variables on a grid. Section 18.6 describes
an application to stochastic integrals. Section 18.7 concludes and mentions a number
of further related references.

18.2 The Bass–Pyke Theorem

Let N
d be the set of d-dimensional vectors with positive integer coordinates.

Consider a family of independent identically distributed random variables {Xj, j ∈
N
d}. If A is a Borel measurable subset of Rd define S(A) by (18.1). Let |A| denote

the Lebesgue measure of A and tA = {tx : x ∈ A} for t > 0, and let B be the open
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unit Euclidean ball centered at the origin. For r ≥ 0 and Borel A ⊂ R
d ,

Ar = {x ∈ R
d : x + rB ∩ A �= ∅}

denotes the outer r-parallel set of A and

A−r = {x : x + rB ⊂ A}

is the inner r-parallel set. Therefore,

A(r) = Ar \ A−r = {x : ρ(x, ∂A) < r},

where ρ is the Euclidean distance and ∂A is the boundary of A.

Theorem 18.1 (See [3, Th. 1]) Assume that the expectation μ = E
[
Xj

]
exists.

Let A be a collection of Borel measurable subsets of [0, 1]d . If

sup
A∈A

|A(δ)| → 0 as δ ↓ 0, (18.2)

then

lim
n→∞ sup

A∈A

∣∣∣∣
S(nA)

nd
− μ|A|

∣∣∣∣ = 0 a.s. (18.3)

To appreciate some peculiarities of this theorem we briefly discuss below its
simplest case, where A consists of a single set A.

Example 18.1 If A = [0, 1]d , then nA is the cube in N
d with a side of length

n and thus mA ⊆ nA if m ≤ n. Therefore S(nA) is, in fact, a subsequence of
sums of independent identically distributed random variables with the expectation
μ. In this case, (18.3) follows from the Kolmogorov strong law of large numbers for
independent identically distributed random variables.

Example 18.2 Let A be the set of points with rational coordinates in [0, 1]d .
Clearly (18.2) fails. On the other hand, S(nA) is the same as in the case of [0, 1]d
but |A| = 0. Therefore, (18.3) holds if μ = 0 and it fails otherwise.

Example 18.3 Let A be the set of points of [0, 1]d with irrational coordinates.
Clearly (18.2) fails. Since S(nA) = 0, strong law of large numbers (18.3) fails
if μ �= 0. Otherwise (18.3) holds.

The situation is even more complicated if A becomes richer.
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18.3 Uniform Law of Large Numbers for Random Signed
Measures

Let ξ(A), A ∈ B, be a random signed measure defined on the family B of Borel
sets in R

d , see, e.g., [17]. Denote |t| = ∏d
i=1 ti and [t, s] = ×d

i=1[ti , si ] for t =
(t1, . . . , td ) and s = (s1, . . . , sd ) from R

d . For t ∈ R
d+ and A ⊂ R

d , write

t ·A = {(t1x1, . . . , tdxd) : x = (x1, . . . , xd) ∈ A}.

Assume that ξ(A) is integrable for each bounded Borel A and let

Λ(A) = E [ξ(A)] , A ∈ B,

be the first moment measure of ξ .
The signed measure ξ is said to satisfy the multiparameter strong law of large

numbers if

lim|t|→∞
ξ(t · I)− E [ξ(t · I)]

|t| = 0 a.s., (18.4)

where I = (0, 1]. Note that t converges to infinity in a rather arbitrary manner, it is
only essential that the volume of the rectangle [0, t] converges to infinity.

Let A be a subfamily of Borel sets in I . For m ≥ 1, denote

Cm(k) = 1

m
(k − 1,k], k ∈ N

d .

Here 1 = (1, . . . , 1) and k − 1 = (k1 − 1, . . . , kd − 1) for k = (k1, . . . , kd) ∈ N
d .

For every A ∈ A ,

A =
⋃

Cm(k)⊆A
Cm(k), A′′

m =
⋃

Cm(k)∩A�=∅

Cm(k)

are discrete analogues of the inner and outer parallel sets to A.
The following result generalizes Theorem 18.1.

Theorem 18.2 Let ξ be a random signed measure that satisfies the multiparameter
strong law of large numbers. Assume that

lim
m→∞ lim sup

|t|→∞
sup
A∈A

∣∣∣∣∣
E

[
ξ(t · (A \A′

m))
]

|t|

∣∣∣∣∣ = 0 (18.5)
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and |ξ(A)| ≤ η(A) for all Borel sets A and a random measure η that satisfies the
multiparameter strong law of large numbers and such that

lim
m→∞ lim sup

|t|→∞
sup
A∈A

E
[
η(t · (A′′

m \ A′
m))

]

|t| = 0. (18.6)

Then ξ satisfies the uniform strong law of large numbers, that is,

lim|t|→∞ sup
A∈A

∣∣∣∣
ξ(t ·A)− E [ξ(t · A)]

|t|
∣∣∣∣ = 0 a.s. (18.7)

Corollary 18.1 Assume that ξ is a random (non-negative) measure that satisfies
the multiparameter strong law of large numbers. If

lim
m→∞ lim sup

|t|→∞
sup
A∈A

E
[
ξ(t · (A′′

m \A′
m))

]

|t| = 0,

then (18.7) holds.

Even in the setting of partial sums, there are several differences with Theo-
rem 18.1. First, the growth parameter t is continuous. This allows one to treat the
cases where some of the coordinates of t approach the axes or are constant, while all
coordinates are separated from zero and grow in the setting of [3], so that the set nA
increases to the whole R

d+ in the limit if A contains a neighborhood of the origin.
Second, we deal with signed measures rather than with sums of random variables

over sets in R
d . Even if we restrict our setting and consider a particular case where ξ

is constructed in the same manner as in [3], we still are in a more general situation,
since we do not impose the independence assumption on the auxiliary random
variables, e.g., it is applicable to orthogonal random variables. Of course, one should
be aware of appropriate conditions for the strong law of large numbers (18.4)
for every particular dependence scheme. Various examples are presented in [19].
Therefore, we provide a universal method for obtaining the uniform strong law of
large numbers (18.7) from (18.4).

18.4 Proof of Theorem 18.2

For x = (x1, . . . , xd) ∈ I , we have x · I = (0, x]. Then

lim|t|→∞
ξ(t · A)− E [ξ(t · A)]

|t| = 0 a.s. (18.8)
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holds with A = x · I for any fixed x ∈ I , since t · (x · I) = s · I for s = t · x =
(t1x1, . . . , tdxd) and |t| → ∞ is equivalent to |s| → ∞.

Since ξ is a signed measure, condition (18.8) also holds for every set A being a
difference of x1 · I and x2 · I . Thus, (18.8) holds for sets A being a finite union of
differences (x1 · I) \ (x2 · I).

Turning to the general set A ∈ A , fix m ≥ 1 and write

lim sup
|t|→∞

sup
A∈A

∣∣∣∣
ξ(t · A)− E [ξ(t ·A)]

|t|
∣∣∣∣

≤ lim sup
|t|→∞

sup
A∈A

∣∣∣∣
ξ(t · A)− ξ(t · A′

m)

|t|
∣∣∣∣

+ lim sup
|t|→∞

sup
A∈A

∣∣∣∣∣
ξ(t · A′

m)− E
[
ξ(t · A′

m)
]

|t|

∣∣∣∣∣ (18.9)

+ lim sup
|t|→∞

sup
A∈A

∣∣∣∣∣
E

[
ξ(t ·A′

m)
] − E [ξ(t ·A)]
|t|

∣∣∣∣∣ .

Since ξ is a signed measure, E
[
ξ(t · A′

m)
] −E [ξ(t ·A)] = −E

[
ξ(t · (A \A′

m))
]

,
hence,

lim sup
|t|→∞

sup
A∈A

∣∣∣∣∣
E

[
ξ(t · A′

m)
] − E [ξ(t ·A)]
|t|

∣∣∣∣∣ = lim sup
|t|→∞

sup
A∈A

∣∣∣∣∣
E

[
ξ(t · (A \ A′

m))
]

|t|

∣∣∣∣∣ .

Passing to the second term on the right hand side of (18.9), note that there is only
a finite number of possible combinations of the cubes Cm(k) belonging to I (this
number depends on m, of course). Since A′

m is constructed from the cubes Cm(k),
there is only a finite number of possible values for A′

m if A ∈ A . From the strong
law of large numbers (18.8) we conclude that

lim sup
|t|→∞

sup
A∈A

∣∣∣∣∣
ξ(t ·A′

m)− E
[
ξ(t · A′

m)
]

|t|

∣∣∣∣∣ = 0 a.s.

Now we proceed with the first term on the right-hand side of (18.9). Since

|ξ(t ·A)− ξ(t ·A′
m)| = |ξ(t · (A \ A′

m))| ≤ η(t · (A \ A′
m)) ≤ η(t · (A′′

m \A′
m)),
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we get

lim sup
|t|→∞

sup
A∈A

∣∣∣∣
ξ(t ·A)− ξ(t ·A′

m)

|t|
∣∣∣∣

≤ lim sup
|t|→∞

sup
A∈A

∣∣∣∣∣
η(t · (A′′

m \ A′
m))− E

[
η(t · (A′′

m \ A′
m))

]

|t|

∣∣∣∣∣

+ lim sup
|t|→∞

sup
A∈A

E
[
η(t · (A′′

m \A′
m))

]

|t| .

Since η is assumed to satisfy the multiparameter strong law of large numbers, (18.8)
holds for η instead of ξ and with A being a finite union of the cubes Cm(k). The set
A′′
m \A′

m belongs to (0, 1+ (1/m)]d . Since only a finite number of configurations of
the cubes Cm(k) ⊆ (0, 1 + (1/m)]d exists, the strong law of large numbers (18.8)
for η implies that

lim sup
|t|→∞

sup
A∈A

∣∣∣∣∣
η(t · (A′′

m \A′
m))− E

[
η(t · (A′′

m \ A′
m))

]

|t|

∣∣∣∣∣ = 0 a.s.

Therefore,

lim sup
|t|→∞

sup
A∈A

∣∣∣∣
ξ(t ·A)− E [ξ(t · A)]

|t|
∣∣∣∣

≤ lim sup
|t|→∞

sup
A∈A

∣∣∣∣∣
E

[
ξ(t · (A \ A′

m))
]

|t|

∣∣∣∣∣

+ lim sup
|t|→∞

sup
A∈A

E
[
η(t · (A′′

m \ A′
m))

]

|t| .

Passing to the limit as m → ∞ and using assumptions (18.5) and (18.6), we
complete the proof of the uniform strong law of large numbers (18.7).

18.5 Homogeneous Random Fields and Stationary Measures

A random signed measure ξ in R
d is said to be stationary if ξ(·) shares the finite-

dimensional distributions with ξ(· + t) for each t ∈ R
d . If the first moment E [ξ(·)]

is finite, then the first moment measure Λ is proportional to the Lebesgue measure.
The ergodic theorem of Zygmund [31] implies that, if ξ is stationary with

E
[
|ξ(A)|(log+ |ξ(A)|)d−1

]
< ∞ (18.10)
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for all bounded Borel A, then

|t|−1
∫

[0,t]
ξ(A+ x)dx

converges almost surely as t → ∞ to a finite random variable, being the
conditional expectation of ξ(A) with respect to the invariant σ -algebra. The limit
is deterministic and equals E [ξ(A)] if ξ is ergodic. Here log+ z = log(e + z) for
z ≥ 0. Note that all results of Sect. 18.3 can be amended for the convergence t → ∞
instead of |t| → ∞. The notation t → ∞ means that all coordinates of t tend to
infinity, while |t| → ∞ means that at least one of them tends to infinity.

Theorem 18.3 Let A be a family of Borel sets in I that satisfies (18.2). Assume
that ξ is a stationary ergodic random measure such that (18.10) holds for A = I .
Then ξ satisfies the uniform strong law of large numbers as t → ∞, that is, (18.7)
holds with t → ∞.

Proof Note that

∫

[0,t]
ξ(I + x)d x =

∫

[0,t]

∫

I+x
ξ(d u)d x =

∫

[0,t+1]
|(−I + u) ∩ [0, t]|ξ(d u).

Further, |(−I + u) ∩ [0, t]| is less than or equal to one for all u ∈ [0, t + 1] and is
exactly one if u ∈ [1, t], whence

ξ([1, t]) ≤
∫

[0,t]
ξ(I + x) dx ≤ ξ([0, t + 1]), (18.11)

since ξ is nonnegative. If d = 1, then

lim
t→∞

ξ([0, t])− ξ([1, t])
|t| = 0 a.s. (18.12)

which together with (18.11) and ergodic theorem (Zygmund’s theorem [31] for d =
1) yields for d = 1

lim
t→∞

ξ(t · I)
|t| = E [ξ(I)] a.s. (18.13)

Now let d > 1 and assume that (18.13) holds for all dimensions less than d .
Then (18.12) holds for the dimension d . This together with (18.11) combined
with Zygmund’s theorem [31] yields (18.13) for the dimension d . Since ξ is
stationary, (18.5) and (18.6) follow from (18.2). The result follows from a variant of
Theorem 18.2 for the convergence t → ∞.

Let Xj, j ∈ N
d , be a homogeneous random field, that is, (Xj1, . . . , Xjm)

coincides in distribution with (Xj1+s, . . . , Xjm+s) for allm ∈ N, and s, j1, . . . , jm ∈
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N
d . For n = (n1, . . . , nd) ∈ N

d , denote Sn = S([0,n]) from (18.1). In other words,

Sn =
∑
k5n

Xk

where 5 is a partial order in N
d defined by

k 5 n ⇐⇒ k1 ≤ n1, . . . , kd ≤ nd

for k = (k1, . . . , kd) ∈ N
d and n = (n1, . . . , nd) ∈ N

d .
Dunford [9] proved that if

E
[
|Xj|

(
log+ |Xj|

)d−1
]
< ∞, (18.14)

then the limit of the averages

Sn

|n| (18.15)

exists almost surely as |n| = n1 × · · · × nn → ∞. Smythe [27] provides
a probabilistic statement and proof of this result for independent identically
distributed random variables Xj. Etemadi [10] obtains the same result for pairwise
independent identically distributed random variables. The limit of Sn/|n| in the
latter case coincides with the expectation μ = E

[
Xj

]
. This property requires

the ergodicity if random variables are not necessarily pairwise independent and
identically distributed.

Note that S(A) given by (18.1) is not a stationary random measure and it may be
also signed, so Theorem 18.3 is not directly applicable. The following result follows
from Theorem 18.2.

Corollary 18.2 Let {Xj, j ∈ N
d } be a homogeneous random field and the moment

condition (18.14) holds. Further letA be a family of subsets of the unit cube I that
satisfies (18.2). If {Xj} is ergodic, then

lim|t|→∞ sup
A∈A

∣∣∣∣
S(t ·A)

|t| − μ|A|
∣∣∣∣ = 0 a.s.

Proof Note that the expectations in (18.5) and (18.6) are dominated by a constant
times |A′′

m \A′
m|.

Remark 18.1 Condition (18.14) is necessary for the almost sure convergence
of (18.15) in the case of independent identically distributed random variables.

Another particularly important family of random signed measures is generated
by marked point processes. LetN = {(xi , mi), i ≥ 1} be a point process in R

d ×R,
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where the second coordinatemi represents the mark of the point xi . Then

ξ(A) =
∑
xi∈A

mi (18.16)

is a random signed measure. The process is called independently marked if the
marks are i.i.d. random variables and independent of locations. The first order
moment measure

Λ(A× C) = E [#{i : (xi , mi) ∈ A× C}]

is the measure on Borel sets in R
d × R, and we assume that Λ(A× R) is finite for

each bounded Borel set A.
The marked point process is stationary if its distribution does not change if the

locations xi are all translated by any vector t; then Λ(A×C) = Λ((A+ t)×C) for
all t ∈ R

d .

Theorem 18.4 Assume that ξ is given by (18.16) for an ergodic independently
marked point process satisfying

E
[
|m1|(log+ |m1|)d−1

]
< ∞,

and the random variable N = card{i : xi ∈ I } is square integrable. Then (18.7)
holds for any family A satisfying (18.2).

The proof of Theorem 18.4 is based on the following elementary upper bound
for the function x(log x)r .

Lemma 18.1 Let r > 0, n ≥ 1 and a1, . . . , an ≥ er−1. Put An = a1 + · · · + an.
Then

An(logAn)r ≤
n∑
i=1

ai(log ai)r + r

n∑
i=1

(An − ai)(log ai)r−1.

Proof It is clear that

An(logAn)r =
n∑
i=1

ai(logAn)r =
n∑
i=1

ai(log ai)r +
n∑
i=1

ai
(
(logAn)r − (log ai)r

)
.

By the mean value theorem,

(logAn)r − (log ai)r = (An − ai) · r (log ξ)r−1

ξ
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for some ai ≤ ξ ≤ An. Since the right hand side is a decreasing function in ξ ,

(logAn)r − (log ai)r ≤ (An − ai) · r (log ai)r−1

ai
.

Therefore,

An(logAn)
r ≤

n∑
i=1

ai(log ai)
r + r

n∑
i=1

(An − ai)(log ai)
r−1.

Proof (of Theorem 18.4) In order to apply Theorem 18.2, we only need to show that

ξ̄ (I ) =
∑
xi∈I

|mi |

satisfies (18.14). Without loss of generality, we assume that |mi | ≥ ed−2 almost
surely, since ξ̄ (I ) = ξ̄1(I) + ξ̄2(I), where ξ̄1(I) and ξ̄2(I) are constructed from
mi1I{|mi |<ed−2} and mi1I{|mi |≥ed−2}, respectively, with mi1I{|mi |<ed−2} being bounded.
By Lemma 18.1 with r = d − 1, and ai = |mi |

E
[
AN(logAN)

d−1
]

≤ E

[
N∑
i=1

ai(log ai)
r

]
+ (d−1)E

[
N∑
i=1

(AN − ai)(log ai)
r−1

]
.

Since N and {mi} are independent, Wald’s equality implies

E

[
N∑
i=1

ai(log ai)r
]

= E [N] · E
[
ai(log ai)r

]
.

The total expectation formula yields that

E

[
N∑
i=1

(AN − ai)(log ai)
r−1

]
=

∞∑
n=1

P(N = n)E

[
n∑
i=1

(An − ai)(log ai)
r−1

]

=
∞∑
n=1

P(N = n)

n∑
i=1

E
[
(An − ai)(log ai)

r−1
]

=
∞∑
n=1

P(N = n)

n∑
i=1

E [(An − ai)] · E
[
(log ai)r−1

]
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=
∞∑
n=1

P(N = n)n(n− 1)E [|m1|] · E
[
(log |m1|)r−1

]

= E [|m1|] · E
[
(log |m1|)r−1

]
E [N(N − 1)] .

This together with the latter bound proves the desired result.

18.6 Stochastic Integrals

Stochastic integrals with respect to the Brownian sheet have been intensively studied
since the 70s. Treated as signed measures, stochastic integrals fit very well the
framework of Theorem 18.2. Although the construction of stochastic integrals can
be done for any dimension, we restrict ourselves to the case of d = 2 as in [6].

Let W be a white noise in the plane, that is a finitely additive set function
defined on the Borel subsets of R2+ such that W(A) is a normal random variable
with parameters 0 and |A| and W(A) and W(B) are independent for disjoint Borel
subsets A and B.

If Rst denotes the rectangle [0, s] × [0, t], then Wst = W(Rst ) is called the
Brownian sheet. By Fst , (s, t) ∈ R

2+, we denote the σ -algebra generated by the
random variables Wuv , (u, v) 5 (s, t).

Let A be a closed rectangle with the lower left-hand corner z0. Introduce the
function φz, z ∈ R

2+, as follows

φz = φ01IA(z), z ∈ R
2+, (18.17)

where φ0 is a Fz0 measurable random variable. Then, by definition,

∫

Rz

φ dW = φ0W(A ∩ Rz), z ∈ R
2+.

The integral is extended by linearity to simple φ, i.e. to finite linear combinations of
“step” functions of the form (18.17). In general, let φ be such that

(a) φz is Fz-measurable,
(b) (z, ω) �→ φz(ω), z ∈ R

2+, ω ∈ Ω , is B ×F -measurable where B is the family
of Borel subsets in the plane and F is the σ -algebra of the probability space
(Ω,F ,P), and

(c)
∫

Rz

E
[
φ2
ζ

]
dζ < ∞ for all z ∈ R

2+.

Then one can find a sequence of simple random functions {φn} for which

lim
n→∞

∫

Rz

E
[
(φn − φ)2

]
dζ = 0 for all z ∈ R

2+.
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The integrals
∫
Rz
φn dW converge in the mean square sense, the limit is denoted by∫

Rz
φ dW . The defined integral is

• continuous as a function of z,
• a two-parameter martingale, and
• for all z ∈ R

2+,

E

[(∫

Rz

φ dW

)2
]

=
∫

Rz

E
[
φ2
ζ

]
dζ. (18.18)

Recall the three defining properties for an arbitrary two-parameter martingale
Mz, z ∈ R

2+, with respect to the family of σ -algebras Fz, z ∈ R
2+ (see [5]):

(I) E [|Mz|] < ∞ for all z ∈ R
2+;

(II) Mz is Fz-measurable;
(III) if z 5 z′, then E

[
Mz′

∣∣Fz

] = Mz.

The final step in the construction of the integral is to pass to a general bounded Borel
set A by letting

∫

A

φ dW =
∫

R

1IA φ dW,

where R is a rectangle containing A. Then, for each fixed φ,

ξ(A) =
∫

A

φ dW

is a signed measure.
Now we define the two-parameter discrete time martingale associated with the

stochastic integral. For (m, n) ∈ N
2, define rmn = Rmn \ (Rm−1,n ∪ Rm,n−1) and

put

Xmn =
∫

rmn

φ dW, Smn =
m∑
i=1

n∑
j=1

Xij =
∫

Rmn

φ dW.

Then Smn is a two-parameter discrete time martingale with respect to the family of
σ -algebras Fmn. It follows from [20] that if

∞∑
m=1

∞∑
n=1

E
[
X2
mn

]

(mn)2
< ∞, (18.19)
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then the strong law of large numbers holds for {Smn},

lim
mn→∞

Smn

mn
= 0 a.s. (18.20)

In view of (18.18), condition (18.19) is equivalent to

∫ ∞

1

∫ ∞

1

E
[
φ2
st

]

(st)2
ds dt < ∞. (18.21)

The strong law of large numbers (18.20) is easily extended to the continuous
time limit result by using the Cairoli maximal inequality [5]. Thus (18.4) holds with
the signed measure ξ(A) = ∫

A
φ dW . Now Theorem 18.2 implies the following

corollary.

Corollary 18.3 Let φz, z ∈ R
2+, satisfy conditions (a)–(c). Let A be a family of

subsets of the square [0, 1] × [0, 1] such that conditions (18.5) and (18.6) hold.
Then (18.21) implies

lim
st→∞
s≥1, t≥1

sup
A∈A

∣∣∣∣
1

st

∫

st ·A
φ dW

∣∣∣∣ = 0 a.s.

18.7 Concluding Remarks

The assumptions for the uniform strong law of large numbers imposed on the family
A (either (18.2) in Theorem 18.1 or (18.5)–(18.6) in Theorem 18.2) do not involve
any entropy type restriction needed for both the central limit theorem [1] and law of
the iterated logarithm [2]. For the both latter results, one needs to assume that the
entropy is integrable, that is

∫ 1

0

√
H(u)

u
du < ∞,

where H(u) is the entropy of the family A being the logarithm of the cardinality of
a minimal u-net.

Krengel and Pyke [21] provide the strong law of large numbers for multiparam-
eter subadditive processes rather than for signed measures as in our Theorem 18.2.
It is worthwhile mentioning that they do not get a uniform version. Liu, Rio, and
Rouault [23] treat the uniform strong law of large numbers for random measures,
which is a partial case of signed measures with a one-dimensional growth parameter.
A version of Theorem 18.1 for random product measures is considered by Kil and
Kwon [18]. Jang and Kwon [16] obtain a generalization of Theorem 18.1 for fuzzy
random variables. Bing [4] extends Theorem 18.1 for the α-mixing case. Note that
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this result follows from Theorem 18.2 by referring to the usual strong law of large
numbers available in this case. Ziegler [30] investigates the uniform law of large
numbers for triangular arrays extending Theorem 18.1 to the case of non-identically
distributed random variables.

Considering random sets as measurable mappings from a probability space into
the set of compact convex subsets of a Banach space, Jang and Kwon [16] prove a
uniform strong law of large numbers for sequences of independent and identically
distributed random sets, which is another direct generalization of Theorem 18.1.

Under a mild assumption, Giné and Zinn [12] show that condition (18.2) is
necessary and sufficient for the uniform strong law of large numbers (18.3) if μ = 0
(see also Hong and Kwon [13]). However, the case of μ �= 0 is different.

Ivanoff [14] discusses the uniform strong law of large numbers in connection to
possible generalizations of the definitions of a stochastic process indexed by R+ to
processes indexed by a multidimensional time parameter or a class of sets.

Müller and Song [24] apply the uniform strong law of large numbers for partial-
sum process to investigate the problem of edge estimation in a two-region image
in the setting of a fixed design regression model. Terán and López-Díaz [28] use
Theorem 18.1 to study some aspects of the approximation of mappings taking values
in a special class of upper semicontinuous functions and to obtain some Korovkin
type theorems for positive linear operators.
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Chapter 19
On Comparison Results for Neutral
Stochastic Differential Equations of
Reaction-Diffusion Type in L2(R

d)

Oleksandr M. Stanzhytskyi, Viktoria V. Mogilova, and Alisa O. Tsukanova

Abstract In the present paper, we establish a comparison result for solutions to
the Cauchy problems for two stochastic integro-differential equations of reaction-
diffusion type with delay. On this subject number of authors have obtained
their comparison results. We deal with the Cauchy problems for two stochastic
integro-differential equations of reaction-diffusion type with delay. Except drift and
diffusion coefficients, our equations include also one integro-differential term. Basic
difference of our case from the case of all earlier investigated problems is presence
of this term. Presence of this term turns this equation into a nonlocal neutral
stochastic equation of reaction-diffusion type. Nonlocal deterministic equations
of this type are well known in literature and have wide range of applications.
Such equations arise, for instance, in mechanics, electromagnetic theory, heat flow,
nuclear reactor dynamics, and population dynamics. These equations are used in
modeling of phytoplankton growth, distant interactions in epidemic models and
nonlocal consumption of resources. We introduce a concept of mild solutions to
our problems and state and prove a comparison theorem for them. According to our
result, under certain assumptions on coefficients of equations under consideration,
their solutions depend on the transient coefficients in a monotone way.
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19.1 Introduction

In the given paper we study the following Cauchy problems for neutral partial
stochastic integro-differential equations of reaction-diffusion type

d

(
ui(t, x) +

∫

Rd

bi (t, x, ui (t − r, ξ ), ξ )dξ

)
= (

Δxui(t, x) + fi(t, ui(t − r, x), x)
)
dt

+ σ(t, x)dW(t, x), 0 < t ≤ T , x ∈ R
d , i ∈ {1, 2}, (19.1)

ui(t, x) = φi(t, x), − r ≤ t ≤ 0, x ∈ R
d , r > 0, i ∈ {1, 2}, (19.2)

where T > 0 is fixed, Δx ≡
d∑
i=1

∂2

∂x2
i

is d-measurable Laplacian in the space

variables, W is a Q-Wiener process, fi : [0, T ] × R × R
d → R, i ∈ {1, 2},

σ : [0, T ] × R
d → R and bi : [0, T ] × R

d × R × R
d → R, i ∈ {1, 2}, are some

given functions to be specified later, φi : [−r, 0] × R
d → R, i ∈ {1, 2}, are initial-

datum functions. For solutions u1 and u2 of these problems we prove a comparison
theorem. According to our result, if f1 ≥ f2, then u1 ≥ u2 with probability one.

A problem of comparison of solutions to stochastic differential equations in
finite-dimensional case has firstly arised in [10]. A comparison theorem for equation
of the form dξ(t) = f (t, ξ(t))dt + σ(t, ξ(t))dβ(t), where β is standard one-
dimensional Brownian motion, has been obtained in this work. According to
this theorem, under certain assumptions, a solution of the equation above is
monotonously non-decreasing function from “drift” coefficient f . A more general
presentation of the comparison theorem is given in [11, 12]. Variations of the
result from [10] have been the proposed in [2, 3, 5, 6, 8, 9, 13]. In [4] this
theorem for solutions to stochastic differential equations with a multidimensional
Wiener process and stochastic partial differential equations has been obtained.
In [7] a comparison result for solutions to the Cauchy problem for stochastic
differential equations with a Q-Wiener processes in Hilbert space is presented. The
main goal of the given work is to prove a comparison theorem for solutions of
problem (19.1)–(19.2), using the idea from this work. This result plays an important
role when studying the existence of solutions to the Cauchy problem for stochastic
differential equations of reaction-diffusion type with non-Lipschitz conditions on
“drift” coefficients.

This paper is organised as follows. Firstly, in Sect. 19.2, we introduce a statement
of the problem and formulate our main result. Then we represent a few necessary
facts, needed for the treatment in the subsequent sections. These auxiliary results of
independent interest are gathered in Sect. 19.3. Section 19.4 is devoted to the proof
of the main theorem.
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19.2 Problem Definition

Throughout the paper let (Ω,F ,P) be a complete probability space, L2(R
d )

denotes real Hilbert space with the norm ‖g‖L2(Rd)
=

( ∫
Rd

g2(x)dx

) 1
2

. Let

{en(x), n ∈ {1, 2, . . . }} be an orthonormal basis on L2(R
d) such that

sup
n∈{1,2,... }

ess sup
x∈Rd

|en(x)| ≤ 1.

We now define L2(R
d )-valued Q-Wiener process W(t, x) = W(t, · ), t ≥ 0, x ∈

R
d , as follows

W(t, · ) =
∞∑
n=1

√
λnen(· )βn(t), t ≥ 0,

where {βn(t), n ∈ {1, 2, . . . }} ⊂ R are independent standard one-dimensional
Brownian motions on t ≥ 0, {λn, n ∈ {1, 2, . . . }} is a sequence of positive numbers

such that λ =
∞∑
n=1

λn < ∞. Let {Ft , t ≥ 0} be a normal filtration on F . We assume

that W(t, · ), t ≥ 0, is a Q-Wiener process with respect to a filtration {Ft , t ≥ 0},
i.e.,

• W(t, · ), t ≥ 0, is Ft -measurable;
• the increments W(t + h, · ) − W(t, · ) are independent of Ft for all h > 0 and
t ≥ 0.

Let the following conditions be true

(1) fi : [0, T ]×R×R
d → R, i ∈ {1, 2}, σ : [0, T ]×R

d → R, bi : [0, T ]×R
d×R×

× R
d → R, i ∈ {1, 2}, are measurable functions with respect to all of their

variables.
(2) The initial-data functions φi(t, x, ω) : [−r, 0]×R

d ×Ω → L2(R
d), i ∈ {1, 2},

are F0-measurable random functions, independent of W(t, x), t ≥ 0, x ∈ R
d ,

with almost surely continuous paths and such that

sup
−r≤t≤0

E‖φi(t, · )‖2
L2(Rd)

< ∞, i ∈ {1, 2}.

(3) bi , i ∈ {1, 2}, are uniformly continuous in the first argument and satisfy the
Lipschitz condition in the third argument of the form

|bi(t, x, u, ξ)− bi(t, x, v, ξ)| ≤ l(t, x, ξ)|u− v|,
0 ≤ t ≤ T , {x, ξ} ⊂ R

d , {u, v} ⊂ R, i ∈ {1, 2},
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where l : [0, T ] × R
d × R

d → [0,∞) is such that

sup
0≤t≤T

∫

Rd

√√√√
∫

Rd

l2(t, x, ξ)dξdx < ∞,

sup
0≤t≤T

∫

Rd

∫

Rd

l2(t, x, ξ)dξdx <
1

4
. (19.3)

(4) There exists a function χ : Rd × R
d → [0,∞), satisfying the following

conditions
∫

Rd

∫

Rd

χ(x, ξ)dξdx < ∞,

∫

Rd

(∫

Rd

χ(x, ξ)dξ

)2

dx < ∞,

such that

sup
0≤t≤T

|bi(t, x, 0, ξ)| ≤ χ(x, ξ), 0 ≤ t ≤ T , {x, ξ} ⊂ R
d , i ∈ {1, 2}. (19.4)

(5) There exists a function η : [0, T ] × R
d → [0,∞) with

sup
0≤t≤T

∫

Rd

η2(t, x)dx < ∞,

such that the following linear-growth and Lipschitz conditions are valid for fi ,
i ∈ {1, 2},

|fi(t, u, x)| ≤ η(t, x)+L|u|, 0 ≤ t ≤ T , u ∈ R, x ∈ R
d , i ∈ {1, 2}, (19.5)

|fi(t, u, x)− fi(t, v, x)| ≤ L|u− v|, 0 ≤ t ≤ T , u ∈ R, x ∈ R
d , i ∈ {1, 2}.

(6) The next condition holds true for σ

sup
0≤t≤T

‖σ(t, · )‖2
L2(R

d)
< ∞.
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(7) For ∇xbi and D2
xbi , i ∈ {1, 2}, the following linear-growth condition with

respect to the third argument is true

|∇xbi(t, x, u, ξ)| + ‖D2
xbi(t, x, u, ξ)‖ ≤ ψ(t, x, ξ)

(
1 + |u|),

0 ≤ t ≤T , {x, ξ} ⊂ R
d , u ∈ R, i ∈ {1, 2},

and for D2
xbi , i ∈ {1, 2}, – the following Lipschitz condition

‖D2
xbi(t, x, u, ξ)−D2

xbi(t, x, v, ξ)‖ ≤ ψ(t, x, ξ)|u− v|,
0 ≤ t ≤ T , {x, ξ} ⊂ R

d , {u, v} ⊂ R, i ∈ {1, 2}, (19.6)

where ψ : [0, T ] × R
d × R

d → [0,∞) is such that

sup
0≤t≤T

∫

Rd

(∫

Rd

ψ(t, x, ξ)dξ

)2

dx < ∞,

sup
0≤t≤T

∫

Rd

∫

Rd

ψ2(t, x, ξ)dξdx < ∞,

and besides for any point x0 ∈ R
d there is its neighborhood Bδ(x0) and a

nonnegative function ϕ such that

sup
0≤t≤T

ϕ(t, · , x0, δ) ∈ L2(R
d ) ∩ L1(R

d), δ > 0,

|ψ(t, x, ξ) − ψ(t, x0, ξ)| ≤ ϕ(t, ξ, x0, δ)|x − x0|,
0 ≤ t ≤ T , |x − x0| < δ, ξ ∈ R

d .

Next, we introduce the notion of a mild solution to the problem (19.1)–(19.2).

Remark 19.1 From now on we use the notation S(t)g( · ), g ∈ L2(R
d), to denote

the convolution

(
S(t)g( · ))(x) =

∫

Rd

K (t, x − ξ)g( · )dξ , x ∈ R
d , g ∈ L2(R

d ).

It is known from semi-group theory that

‖(S(t)g( · ))(x)‖2
L2(Rd)

≤ ‖g(x)‖2
L2(Rd)

.
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Here

K (t, x) =
⎧⎨
⎩

1

(4πt)
d
2

exp
{ − |x|2

4t

}
, t > 0, x ∈ R

d ,

0, t < 0, x ∈ R
d ,

denotes the fundamental solution (source function, diffusion kernel) of the heat
equation.

For convenience denote u ≡ ui , φ ≡ φi , b ≡ bi , f ≡ fi , i ∈ {1, 2}.
Definition 19.1 A continuous random process u(t, x, ω) : [−r, T ] × R

d × Ω →
L2(R

d) is called a mild solution (solution) to (19.1)–(19.2) provided

1. It is Ft -measurable for almost all −r ≤ t ≤ T .
2. It satisfies the integral equation

u(t, x) =
∫

Rd

K (t, x − ξ)

(
φ(0, ξ)+

∫

Rd

b(0, ξ, φ(−r, ζ ), ζ )dζ
)
dξ

−
∫

Rd

b(t, x, u(t − r, ξ), ξ)dξ

−
t∫

0

(
Δx

∫

Rd

K (t − s, x − ξ)

(∫

Rd

b(s, ξ, u(s − r, ζ ), ζ )dζ

)
dξ

)
ds

+
t∫

0

∫

Rd

K (t − s, x − ξ)f (s, u(s − r, ξ), ξ)dξds

+
t∫

0

∞∑
n=1

√
λn

(∫

Rd

K (t − s, x − ξ)σ (s, ξ)en(ξ)dξ

)
dβn(s),

0 < t ≤ T , x ∈ R
d , (19.7)

u(t, x) = φ(t, x), − r ≤ t ≤ 0, x ∈ R
d , r > 0. (19.8)

3. It satisfies the condition

E

T∫

0

‖u(t, · )‖2
L2(Rd)

dt < ∞.
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Remark 19.2 It is assumed in the definition above that all the integrals from (19.7)
are well defined.

The following is the comparison theorem.

Theorem 19.1 (Comparison Theorem) Suppose assumptions (1)–(7) are satis-
fied. Let

1) the initial-datum functions satisfy the condition

φ1(t, x) ≥ φ2(t, x), 0 ≤ t ≤ T , x ∈ R
d ;

2) the functions bi , i ∈ {1, 2}, satisfy the conditions

b1(0, x, φ2(−r, ξ), ξ) = b2(0, x, φ2(−r, ξ), ξ), {x, ξ} ⊂ R
d ,

b1(0, x, φ1(−r, ξ), ξ) = b2(0, x, φ1(−r, ξ), ξ), {x, ξ} ⊂ R
d ,

b1(0, x, φ1(−r, ξ), ξ) = b1(0, x, φ2(−r, ξ), ξ), {x, ξ} ⊂ R
d ,

b1(t, x, u, ξ) ≤ b2(t, x, u, ξ), 0 ≤ t ≤ T , {x, ξ} ⊂ R
d , u ∈ R;

3) the functions fi , i ∈ {1, 2}, satisfy the conditions

f1(t, u, x) ≥ f2(t, u, x), 0 ≤ t ≤ T , u ∈ R, x ∈ R
d .

Let one of the following conditions be true

M1) b1 is monotonously non-increasing, f1 is monotonously non-decreasing with
respect to u;

M2) b2 is monotonously non-increasing, f2 is monotonously non-decreasing with
respect to u.

Then for all 0 ≤ t ≤ T the solutions of (19.1)–(19.2) satisfy the inequality

u1(t, x) ≥ u2(t, x), x ∈ R
d ,

with probability one.

19.3 Preliminaries

This section is the toolbox of the results that will be used in the proof of
Theorem 19.1.
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19.3.1 Comparison Theorem for Finite-Dimensional Case

In order to prove our main result we need a finite-dimensional comparison theorem
for the following Cauchy problems for two neutral stochastic integro-differential
equations

d

(
ui(t, x)+

∫

Rd

bi(t, x, ui(α(t), ξ), ξ)dξ

)
= fi(t, ui(α(t), x), x)dt

+ σ(t, x)dβ(t), 0 < t ≤ T , x ∈ R
d , i ∈ {1, 2}, (19.9)

ui(t, x) = φi(t, x), − r ≤ t ≤ 0, x ∈ R
d , r > 0, i ∈ {1, 2}, (19.10)

where β is one-dimensional real-valued Brownian motion, α : [0, T ] → [−r,∞) is
a delay function.

Concerning coefficients of this problem we impose the following conditions

(1) α : [0, T ] → [−r,∞) belongs to C1([0, T ]) with α′ ≥ 1, α(t) ≤ t ;
(2) fi : [0, T ]×R×R

d → R, i ∈ {1, 2}, σ : [0, T ]×R
d → R, bi : [0, T ]×R

d×R×
× R

d → R, i ∈ {1, 2}, are measurable with respect to all of their variables
functions;

(3) the initial-datum functions φi(t, x, ω) : [−r, 0]×R
d×Ω → L2(R

d ), i ∈ {1, 2},
are F0-measurable random functions and such that

sup
−r≤t≤0

E‖φi(t, · )‖2
L2(R

d)
< ∞, i ∈ {1, 2};

(4) bi , i ∈ {1, 2}, satisfy the Lipshitz condition in the third argument of the form

|bi(t, x, u, ξ)− bi(t, x, v, ξ)| ≤ l(t, x, ξ)|u− v|,
0 ≤ t ≤ T , {x, ξ} ⊂ R

d , {u, v} ⊂ R, i ∈ {1, 2},

where l : [0, T ] × R
d × R

d → [0,∞) is such that

sup
0≤t≤T

∫

Rd

∫

Rd

l2(t, x, ξ)dξdx <
1

4
;

(5) there exists a functionχ : Rd×R
d → [0,∞), satisfying the following condition

∫

Rd

(∫

Rd

χ(x, ξ)dξ

)2

dx < ∞,
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such that

sup
0≤t≤T

|bi(t, x, 0, ξ)| ≤ χ(x, ξ), 0 ≤ t ≤ T , {x, ξ} ⊂ R
d , i ∈ {1, 2}.

For notational simplicity denote u ≡ ui , φ ≡ φi , b ≡ bi , f ≡ fi , i ∈ {1, 2}.
Definition 19.2 A continuous random process u(t, x, ω) : [−r, T ] × R

d ×Ω →
→ L2(R

d) is called a solution to (19.9)–(19.10) provided

1. It is Ft -measurable for almost all −r ≤ t ≤ T .
2. It satisfies the following integral equation

u(t, x) = φ(0, x)+
∫

Rd

b(0, x, φ(−r, ξ), ξ)dξ −
∫

Rd

b(t, x, u(α(t), ξ), ξ)dξ

+
t∫

0

f (s, u(α(s), x), x)ds +
t∫

0

σ(s, x)dβ(s), 0 ≤ t ≤ T , x ∈ R
d ,

(19.11)

u(t, x) = φ(t, x), − r ≤ t ≤ 0, x ∈ R
d , r > 0. (19.12)

3. It satisfies the condition

E

T∫

0

‖u(t, · )‖2
L2(Rd)

dt < ∞.

Earlier we have stated and proved the following two theorems.

Theorem 19.2 (Existence Theorem) Suppose assumptions (1)–(5) and conditions
(5), (6) from Sect. 19.2 are valid. Then (19.11)–(19.12) has a unique solution.

Theorem 19.3 (Finite-Dimensional Comparison Theorem) Suppose conditions
of existence theorem above are valid and

1) the initial-datum functions satisfy the condition

φ1(t, x) ≥ φ2(t, x), 0 ≤ t ≤ T , x ∈ R
d ;

2) the functions bi , i ∈ {1, 2}, satisfy the conditions
b1(0, x, φ2(−r, ξ), ξ) = b2(0, x, φ2(−r, ξ), ξ), {x, ξ} ⊂ R

d ,

b1(0, x, φ1(−r, ξ), ξ) = b2(0, x, φ1(−r, ξ), ξ), {x, ξ} ⊂ R
d ,

b1(0, x, φ1(−r, ξ), ξ) = b1(0, x, φ2(−r, ξ), ξ), {x, ξ} ⊂ R
d ,

b1(t, x, u, ξ) ≤ b2(t, x, u, ξ), 0 ≤ t ≤ T , {x, ξ} ⊂ R
d , u ∈ R;
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3) the functions fi , i ∈ {1, 2}, satisfy the conditions

f1(t, u, x) ≥ f2(t, u, x), 0 ≤ t ≤ T , u ∈ R, x ∈ R
d .

Let one of the following conditions be true

M1) b1 is monotonously non-increasing, f1 is monotonously non-decreasing with
respect to u;

M2) b2 is monotonously non-increasing, f2 is monotonously non-decreasing with
respect to u.

Then for all 0 ≤ t ≤ T the solutions of (19.9)–(19.10) satisfy the inequality

u1(t, x) ≥ u2(t, x), x ∈ R
d ,

with probability one.

19.3.2 Approximation Properties

During the proof we will need also auxiliary results of independent interest for the
following Cauchy problem

∂z(t, x)

∂t
= Az(t, x), t > 0, x ∈ R

d , (19.13)

z(0, x) = g(x), x ∈ R
d , (19.14)

where A : L2(R
d) → L2(R

d ) is a monotone operator. The next theorem is true.

Theorem 19.4 ([1], p. 25) For any g ∈ L2(R
d ) there exists a unique solution z

to (19.13)–(19.14), belonging to C1([0,∞)×R
d )∩ ([0,∞)×R

d ), and besides for
t > 0

‖z(t, · )‖L2(Rd)
≤ ‖g( · )‖L2(Rd)

,
∥∥∥∥
∂z(t, · )
∂t

∥∥∥∥
L2(Rd)

= ‖Az(t, · )‖L2(Rd)
≤ ‖Ag( · )‖L2(Rd)

. (19.15)

Lemma 19.1 ([1], p. 22) Let zN ∈ C1([0,∞)×R
d) be a solution to the following

Yosida approximating equation

∂zN(t, x)

∂t
= ANzN(t, x), t > 0, x ∈ R

d ,
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where AN , N ∈ {1, 2, . . .}, is Yosida approximation of operator A. Then
‖zN(t, · )‖L2(Rd)

and
∥∥ ∂zN (t, · )

∂t

∥∥
L2(Rd)

are monotonously non-increasing on t > 0.

The following approximative property is valid.

Lemma 19.2 There exists Yosida approximation of operatorA = Δx by a sequence
{AN,N ∈ {1, 2, . . .}} of linear bounded operatorsAN : L2(R

d) → L2(R
d) and the

following conditions are true

1) for each N ∈ {1, 2, . . .} there exists a constant CN > 0 such that

‖AN‖2
L (L2(R

d),L2(R
d))

≤ CN ; (19.16)

2) for each g ∈ L2(R
d ) the following equality is true

lim
N→∞

∥∥( (AN − A)g( · ))(x)∥∥2
L2(Rd)

= 0, x ∈ R
d ; (19.17)

3) operators AN,N ∈ {1, 2, . . .}, generate semigroup {SN(t),N ∈ {1, 2, . . .}} of
operators SN (t) : L2(R

d) → L2(R
d ) with the following properties

a) for an arbitrary x ∈ R
d there exists N0 = N0(x) ∈ {1, 2, . . .} such that

for all N ≥ N0(x)
(
SN(t − s)g( · ))(x) ≥ 0, 0 ≤ s ≤ t ≤ T , x ∈ R

d ,
g ∈ L2(R

d ), g ≥ 0;
b)

lim
N→∞ sup

0≤s≤t≤T
∥∥( (SN (t − s)− S(t − s)) g( · ))(x)∥∥2

L2(Rd)
= 0,

x ∈ R
d , g ∈ L2(R

d). (19.18)

19.4 Proof of Theorem 19.1

1. From now on x ∈ R
d is supposed to be fixed. Let fix an arbitraryM ∈ {1, 2, . . .}

and define by WM(t, · ) QM -Wiener process

WM(t, · ) =
M∑
j=1

√
λj ej (· )βj (t), 0 ≤ t ≤ T .
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Let us consider the following Cauchy problems

u
N,M
i (t, · ) = φi(0, · )+

∫

Rd

bi(0, · , φi(−r, ξ), ξ)dξ −
∫

Rd

bi(t, · , uN,Mi (t − r, ξ), ξ)dξ

+
t∫

0

(
ANu

N,M
i

(s, · )+fi(s, uN,Mi
(s − r, · ), · ))ds+

t∫

0

σ(s, · )dWM(s, · ),

0 < t ≤ T , i ∈ {1, 2}, N ∈ {1, 2, . . .}, (19.19)

u
N,M
i (t, · ) = φi(t, · ), − r ≤ t ≤ 0, r > 0, i ∈ {1, 2}, N ∈ {1, 2, . . .},

(19.20)

where {AN,N ∈ {1, 2, . . .}} are operators from Lemma 19.2. Denote u ≡ ui ,
φ ≡ φi , b ≡ bi , f ≡ fi , i ∈ {1, 2}, for simplicity. A continuous Ft -measurable
for almost all −r ≤ t ≤ T random process uN,M : [−r, T ] × Ω → L2(R

d) is
called a solution to (19.19)–(19.20) provided

uN,M(t, · ) = SN(t)

(
φ(0, · )+

∫

Rd

b(0, · , φ(−r, ξ), ξ)dξ
)

−
∫

Rd

b(t, · , uN,M(t − r, ξ), ξ)dξ

−
t∫

0

ANSN(t − s)

(∫

Rd

b(s, · , uN,M(s − r, ξ), ξ)dξ

)
ds

+
t∫

0

SN(t − s)f (s, uN,M(s − r, · ), · )ds +
t∫

0

σ(s, · )dWM(s, · ),

0 < t ≤ T , N ∈ {1, 2, . . .}, (19.21)

uN,M(t, · ) = φ(t, · ), − r ≤ t ≤ 0, r > 0, N ∈ {1, 2, . . .}, (19.22)

and E
T∫
0
‖u(t, · )‖2

L2(Rd)
dt < ∞. Since operators {AN,N ∈ {1, 2, . . .}} are

bounded, (19.21)–(19.22) possesses a unique up to equivalence solution. Fix
additionally N ∈ {1, 2, . . .} and write ui instead of uN,Mi , i ∈ {1, 2}, for
notational simplicity. Let us prove that u1(t, · ) ≥ u2(t, · ), 0 ≤ t ≤ T , almost
surely.
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2. Let us fix n ∈ {1, 2, . . .}, put tk = kT
N

, k ∈ {0, . . . , n}, with tk+1 − tk = T
n
< r ,

−r < 0 ≤ t1 ≤ r ≤ 2t1 ≤ 2r ≤ . . ., and consider the next equations

z
0,n
i (t, · ) = φi(0, · )+

∫

Rd

bi(0, · , φi(−r, ξ), ξ)dξ −
∫

Rd

bi(t, · , z0,n
i (t − r, · ), ξ)dξ

+
t∫

0

σ(s, · )dWM(s, · ), 0 ≤ t ≤ t1, i ∈ {1, 2}, (19.23)

v
0,n
i (t, · ) = z

0,n
i (t1, · )+

t∫

0

(
ANv

0,n
i (s, · )+ fi(s, v

0,n
i (s − r, · ), · ))ds,

0 ≤ t ≤ t1, i ∈ {1, 2}, (19.24)

and

z
k,n
i (t, · ) = v

k−1,n
i (tk, · )+

∫

Rd

bi(tk, · , zk−1,n
i (tk − r, ξ), ξ)dξ

−
∫

Rd

bi(t, · , zk,ni (t − r, ξ), ξ)dξ

+
t∫

tk

σ (s, · )dWM(s, · ), tk ≤ t ≤ tk+1, k ∈ {1, . . . , n− 1}, i ∈ {1, 2},

(19.25)

v
k,n
i (t, · ) = z

k,n
i (tk+1, · )+

t∫

tk

(
ANv

k,n
i (s, · )+ fi(s, v

k,n
i (s − r, · ), · ))ds,

tk ≤ t ≤ tk+1, k ∈ {1, . . . , n− 1}, i ∈ {1, 2}, (19.26)

z
k,n
i (t, · ) = v

k,n
i (t, · ) = φi(t, · ), − r ≤ t ≤ 0, k ∈ {0, . . . , n− 1}, i ∈ {1, 2}.
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3. Define zni : [0, T ] × Ω → L2(R
d ), vni : [0, T ] × Ω → L2(R

d), i ∈ {1, 2}, as
follows

zni (t, · ) = z
k,n
i (t, · ), tk ≤ t < tk+1, k ∈ {0, . . . , n− 1}, i ∈ {1, 2}, (19.27)

vni (t, · ) = v
k,n
i (t, · ), tk < t ≤ tk+1, k ∈ {0, . . . , n− 1}, i ∈ {1, 2}, (19.28)

zni (T , · ) = vni (T , · ), i ∈ {1, 2},
zni (t, · ) = vni (t, · ) = φi(t, · ), − r ≤ t ≤ 0, i ∈ {1, 2}.

Taking into account identities for vk−1,n
i (tk, · ), zk−1,n

i (tk, · ), k ∈ {1, . . . , n−1},
i ∈ {1, 2}, and z0,n

i (t1, · ), i ∈ {1, 2}, one easily verifies

v
k−1,n
i (tk, · ) = z

k−1,n
i (tk, · )︸ ︷︷ ︸+

tk∫

tk−1

(
ANv

k−1,n
i (s, · )+ fi(s, v

k−1,n
i (s − r, · ), · ))ds

=
︷ ︸︸ ︷
v
k−2,n
i (tk−1, · )+

∫

Rd

bi(tk−1, · , zk−2,n
i (tk−1 − r, ξ), ξ)dξ

︸ ︷︷ ︸

−
∫

Rd

bi(tk, · , zk−1,n
i (tk − r, ξ), ξ)dξ +

tk∫

tk−1

σ(s, · )dWM(s, · )
︸ ︷︷ ︸

+
tk∫

tk−1

(
ANv

k−1,n
i (s, · )+ fi(s, v

k−1,n
i (s − r, · ), · ))ds =

︷ ︸︸ ︷
z
k−2,n
i (tk−1, · )

+

︷ ︸︸ ︷
tk−1∫

tk−2

(
ANv

k−2,n
i (s, · )+ fi(s, v

k−2,n
i (s − r, · ), · ))ds

+
∫

Rd

bi(tk−1, · , zk−2,n
i (tk−1 − r, ξ), ξ)dξ

−
∫

Rd

bi(tk, · , zk−1,n
i (tk − r, ξ), ξ)dξ +

tk∫

tk−1

σ(s, · )dWM(s, · )

+
tk∫

tk−1

(
ANv

k−1,n
i (s, · )+ fi(s, v

k−1,n
i (s − r, · ), · ))ds = . . .
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= v
0,n
i (t1, · )+

∫

Rd

bi(t1, · , φi(t1 − r, ξ), ξ)dξ −
∫

Rd

bi(tk, · , zk−1,n
i (tk − r, ξ), ξ)dξ

+
t2∫

t1

σ(s, · )dWM(s, · )+
t3∫

t2

σ(s, · )dWM(s, · )+ . . .+
tk−1∫

tk−2

σ(s, · )dWM(s, · )

+
tk∫

tk−1

σ(s, · )dWM(s, · )+
t2∫

t1

(
ANv

1,n
i (s, · )+ fi(s, v

1,n
i (s − r, · ), · ))ds

+
t3∫

t2

(
ANv

2,n
i (s, · )+ fi(s, v

2,n
i (s − r, · ), · ))ds + . . .

+
tk−1∫

tk−2

(
ANv

k−2,n
i (s, · )+ fi(s, v

k−2,n
i (s − r, · ), · ))ds

+
tk∫

tk−1

(
ANv

k−1,n
i (s, · )+ fi(s, v

k−1,n
i (s − r, · ), · ))ds = . . .

= φi(0, · )+
∫

Rd

bi(0, · , φi(−r, ξ), ξ)dξ −
∫

Rd

bi(t1, · , φi(t1 − r, ξ), ξ)dξ

+
t1∫

0

σ(s, · )dWM(s, · )+
t1∫

0

(
ANv

0,n
i (s, · )+ fi(s, v

0,n
i (s − r, · ), · ))ds

+
∫

Rd

bi(t1, · , φi(t1 − r, ξ), ξ)dξ −
∫

Rd

bi(tk, · , zk−1,n
i (tk − r, ξ), ξ)dξ

+
t2∫

t1

σ(s, · )dWM(s, · )+
t3∫

t2

σ(s, · )dWM(s, · )+ . . .+
tk−1∫

tk−2

σ(s, · )dWM(s, · )

+
tk∫

tk−1

σ(s, · )dWM(s, · ) +
t2∫

t1

(
ANv

1,n
i (s, · )+ fi(s, v

1,n
i (s − r, · ), · ))ds

+
t3∫

t2

(
ANv

2,n
i (s, · )+ fi(s, v

2,n
i (s − r, · ), · ))ds + . . .
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+
tk−1∫

tk−2

(
ANv

k−2,n
i (s, · )+ fi(s, v

k−2,n
i (s − r, · ), · ))ds

+
tk∫

tk−1

(
ANv

k−1,n
i (s, · )+ fi(s, v

k−1,n
i (s − r, · ), · ))ds, i ∈ {1, 2}. (19.29)

After substitution (19.29) into (19.25) and, using (19.27), we obtain for tk ≤ t <

tk+1, k ∈ {1, . . . , n− 1},

z
k,n
i (t, · ) = zni (t, · ) = φi(0, · )+

∫

Rd

bi(0, · , φi(−r, ξ), ξ)dξ

−
∫

Rd

bi(tk, · , zni (tk − r, ξ), ξ)dξ +
tk∫

0

σ(s, · )dWM(s, · )

+
tk∫

0

(
ANv

n
i (s, · )+ fi(s, v

n
i (s − r, · ), · ))ds +

∫

Rd

bi(tk, · , zni (tk − r, ξ), ξ)dξ

−
∫

Rd

bi(t, · , zni (t − r, ξ), ξ)dξ +
t∫

tk

σ (s, · )dWM(s, · )

= φi(0, · )+
∫

Rd

bi(0, · , φi(−r, ξ), ξ)dξ −
∫

Rd

bi(t, · , zni (t − r, ξ), ξ)dξ

+
tk∫

0

(
ANv

n
i (s, · )+fi(s, vni (s − r, · ), · ))ds+

t∫

0

σ(s, · )dWM(s, · ), i ∈ {1, 2}.

Similarly, taking into account (19.28), we get from (19.26) for tk < t ≤ tk+1,
k ∈ {1, . . . , n− 1},

vni (t, · ) = v
k,n
i (t, · ) = φi(0, · )+

∫

Rd

bi(0, · , φi(−r, ξ), ξ)dξ

−
∫

Rd

bi(tk+1, · , zni (tk+1 − r, ξ), ξ)dξ +
tk∫

0

(
ANv

n
i (s, · )+ fi(s, v

n
i (s − r, · ), · ))ds
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+
tk+1∫

0

σ(s, · )dWM(s, · ) +
t∫

tk

(
ANv

n
i (s, · )+ fi(s, v

n
i (s − r, · ), · ))ds

= φi(0, · )+
∫

Rd

bi(0, · , φi(−r, ξ), ξ)dξ −
∫

Rd

bi(tk+1, · , zni (tk+1 − r, ξ), ξ)dξ

+
t∫

0

(
ANv

n
i (s, · )+fi(s, vni (s − r, · ), · ))ds+

tk+1∫

0

σ(s, · )dWM(s, · ), i∈{1, 2}.

Thus, one easily verifies for zni (t, · ), vni (t, · ), i ∈ {1, 2},

zni (t, · ) = φi(0, · )+
∫

Rd

bi(0, · , φi(−r, ξ), ξ)dξ −
∫

Rd

bi(t, · , zni (t − r, ξ), ξ)dξ

+
tk∫

0

(
ANv

n
i (s, · )+ fi (s, v

n
i (s − r, · ), · ))ds +

t∫

0

σ(s, · )dWM(s, · ),

tk ≤ t < tk+1, k ∈ {0, . . . , n− 1}, i ∈ {1, 2}, (19.30)

vni (t, · ) = φi(0, · )+
∫

Rd

bi(0, · , φi(−r, ξ), ξ)dξ−
∫

Rd

bi(tk+1, · , zni (tk+1−r, ξ), ξ)dξ

+
t∫

0

(
ANv

n
i (s, · )+ fi (s, v

n
i (s − r, · ), · ))ds +

tk+1∫

0

σ(s, · )dWM(s, · ),

tk < t ≤ tk+1, k ∈ {0, . . . , n− 1}, i ∈ {1, 2}, (19.31)

zni (t, · ) = vni (t, · ) = φi(t, · ), − r ≤ t ≤ 0, i ∈ {1,2}.

4. Now let us show that

zn1(t, · ) ≥ zn2(t, · ), (19.32)

vn1 (t, · ) ≥ vn2 (t, · ), (19.33)

almost surely for any 0 ≤ t ≤ T .
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Let us prove (19.32) for 0 ≤ t ≤ t1. Invoking Theorem 19.3, one obtains

zn1(t, · ) = φ1(0, · )+
∫

Rd

b1(0, · , φ1(−r, ξ), ξ)dξ−
∫

Rd

b1(t, · , zn1(t − r, ξ), ξ)dξ

+
M∑
j=1

√
λj ej (· )

t∫

0

σ(s, · )dβj (s) ≥ φ2(0, · )+
∫

Rd

b2(0, · , φ2(−r, ξ), ξ)dξ

−
∫

Rd

b2(t, · , zn2(t − r, ξ), ξ)dξ +
M∑
j=1

√
λj ej (· )

t∫

0

σ(s, · )dβj (s) = zn2(t, · ),

0 ≤ t < t1. (19.34)

Similarly we obtain for z0,n
i (t1, · ), i ∈ {1, 2},

z
0,n
1 (t1, · ) = φ1(0, · )+

∫

Rd

b1(0, · , φ1(−r, ξ), ξ)dξ −
∫

Rd

b1(t1, · , z0,n
1 (t1 − r, ξ), ξ)dξ

+
M∑
j=1

√
λj ej (· )

t1∫

0

σ(s, · )dβj (s) ≥ φ2(0, · )+
∫

Rd

b2(0, · , φ2(−r, ξ), ξ)dξ

−
∫

Rd

b2(t1, · , z0,n
2 (t1 − r, ξ), ξ)dξ +

M∑
j=1

√
λj ej (· )

t1∫

0

σ(s, · )dβj (s) = z
0,n
2 (t1, · ).

Now let us prove (19.33) for 0 ≤ t ≤ t1. Since this inequality is obvious for
t = 0, we will show it for 0 < t ≤ t1. Since we have −r < t − r ≤ t1 − r ≤ 0
for 0 < t ≤ t1, then zni (t − r, · ) = φi(t − r, · ), 0 < t ≤ t1, i ∈ {1, 2}, and
f2(s, φ1(s− r, · ), · ) ≥ f2(s, φ2(s− r, · ), · ), according to M2. Then we get for
vn1 (t, · ) − vn2 (t, · ), 0 < t ≤ t1, from (19.31), taking into account conditions of
the theorem, the following identity

vn1 (t, · )−vn2 (t, · ) = (
z

0,n
1 (t1, · )− z

0,n
2 (t1, · ))+

t∫

0

AN
(
vn1 (s, · )− vn2 (s, · ))ds

+
t∫

0

(
f1(s, φ1(s − r, · ), · )− f2(s, φ1(s − r, · ), · ))ds

+
t∫

0

(
f2(s, φ1(s − r, · ), · )− f2(s, φ2(s − r, · ), · ))ds.
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Since SN supposed to be positivity preserving, the equality above can be
rewritten in the following manner

vn1 (t, · )− vn2 (t, · ) = SN(t)
(
z

0,n
1 (t1, · )− z

0,n
2 (t1, · ))

+
t∫

0

SN(t − s)
(
f1(s, φ1(s − r, · ), · )− f2(s, φ1(s − r, · ), · ))ds

+
t∫

0

SN(t − s)
(
f2(s, φ1(s − r, · ), · )− f2(s, φ2(s − r, · ), · ))ds ≥ 0.

Thus we have

vn1 (t, · ) ≥ vn2 (t, · ), 0 < t ≤ t1. (19.35)

This estimate implies (19.33) for 0 ≤ t ≤ t1.
It remains to show that zn1(t1, · ) ≥ zn2(t1, · ). Since

vni (t1, · ) = zni (t1, · ), i ∈ {1, 2},

then we obviously obtain from (19.35)

zn1(t1, · ) ≥ zn2(t1, · ).

This estimate and relation (19.34), in turn, give (19.32) for any 0 ≤ t ≤ t1.
Let us prove (19.32) for t1 ≤ t ≤ t2. First let estimate zn1(t, · )−zn2(t, · ), t1 ≤

t < t2. Since we have −r ≤ t1 − r ≤ t− r < t2 − r = 2t1 − r ≤ t1, i.e. −r ≤ t−
r ≤ t1 for t1 ≤ t < t2, then zn1(t−r, · ) ≥ zn2(t−r, · ), vn1 (t−r, · ) ≥ vn2 (t−r, · ),
t1 ≤ t < t2, and, according to M2, f2(t, v

n
1 (t− r, · ), · ) ≥ f2(t, v

n
2 (t− r, · ), · ),

b2(t, · , zn2(t − r, ξ), ξ) ≥ b2(t, · , zn1(t − r, ξ), ξ), t1 ≤ t < t2, ξ ∈ R
d . Then we

obtain for zn1(t, · )− zn2(t, · ), t1 ≤ t < t2, from (19.30)

zn1(t, · )− zn2(t, · ) = (
φ1(0, · )− φ2(0, · ))

+
∫

Rd

(
b1(0, · , φ1(−r, ξ), ξ)− b2(0, · , φ2(−r, ξ), ξ)

)
dξ

+
∫

Rd

(
b2(t, · , zn2(t − r, ξ), ξ) − b2(t, · , zn1(t − r, ξ), ξ)

)
dξ
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+
∫

Rd

(
b2(t, · , zn1(t − r, ξ), ξ) − b1(t, · , zn1(t − r, ξ), ξ)

)
dξ

+
t1∫

0

AN
(
vn1 (s, · )− vn2 (s, · ))ds

+
t1∫

0

(
f1(s, v

n
1 (s − r, · ), · )− f2(s, v

n
1 (s − r, · ), · ))ds

+
t1∫

0

(
f2(s, v

n
1 (s − r, · ), · )− f2(s, v

n
2 (s − r, · ), · ))ds.

Since SN supposed to be positivity preserving, the equality above can be
rewritten in the following manner

zn1(t, · )− zn2(t, · ) = SN(t)
(
φ1(0, · )− φ2(0, · ))

+ SN (t)

∫

Rd

(
b2(t, · , zn2(t − r, ξ), ξ) − b2(t, · , zn1(t − r, ξ), ξ)

)
dξ

+ SN (t)

∫

Rd

(
b2(t, · , zn1(t − r, ξ), ξ) − b1(t, · , zn1(t − r, ξ), ξ)

)
dξ

+
t1∫

0

SN(t − s)
(
f1(s, v

n
1 (s − r, · ), · )− f2(s, v

n
1 (s − r, · ), · ))ds

+
t1∫

0

SN(t − s)
(
f2(s, v

n
1 (s − r, · ), · )− f2(s, v

n
2 (s − r, · ), · ))ds ≥ 0.

The last inequality holds because of the conditions of the theorem.
Hence it follows that

zn1(t, · ) ≥ zn2(t, · ), t1 ≤ t < t2. (19.36)
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Now let us prove (19.33) for t1 ≤ t ≤ t2. Since estimate for t = t1 follows
from (19.35), we will show it for t1 < t ≤ t2. We derive from (19.31)

vn1 (t, · )− vn2 (t, · ) = (
φ1(0, · )− φ2(0, · ))

+
∫

Rd

(
b1(0, · , φ1(−r, ξ), ξ) − b2(0, · , φ2(−r, ξ), ξ)

)
dξ

+
∫

Rd

(
b2(t2, · , zn2(t2 − r, ξ), ξ) − b2(t2, · , zn1(t2 − r, ξ), ξ)

)
dξ

+
∫

Rd

(
b2(t2, · , zn1(t2 − r, ξ), ξ) − b1(t2, · , zn1(t2 − r, ξ), ξ)

)
dξ

+
t∫

0

(
f1(s, v

n
1 (s − r, · ), · )− f2(s, v

n
1 (s − r, · ), · ))ds

+
t∫

0

(
f2(s, v

n
1 (s − r, · ), · )− f2(s, v

n
2 (s − r, · ), · ))ds.

Since SN supposed to be positivity preserving, the equality above can be
rewritten as

vn1 (t, · )− vn2 (t, · ) = SN (t)
(
φ1(0, · )− φ2(0, · ))

+ SN (t)

∫

Rd

(
b2(t2, · , zn2(t2 − r, ξ), ξ) − b2(t2, · , zn1(t2 − r, ξ), ξ)

)
dξ

+ SN (t)

∫

Rd

(
b2(t2, · , zn1(t2 − r, ξ), ξ) − b1(t2, · , zn1(t2 − r, ξ), ξ)

)
dξ

+
t∫

0

SN(t − s)
(
f1(s, v

n
1 (s − r, · ), · )− f2(s, v

n
1 (s − r, · ), · ))ds

+
t∫

0

SN(t − s)
(
f2(s, v

n
1 (s − r, · ), · )− f2(s, v

n
2 (s − r, · ), · ))ds ≥ 0.

Hence,

vn1 (t, · ) ≥ vn2 (t, · ), t1 < t ≤ t2.

Thus, (19.33) is proved for t1 ≤ t ≤ t2.
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It remains to show that zn1(t2, · ) ≥ zn2(t2, · ). Since

vni (t2, · ) = zni (t2, · ), i ∈ {1, 2},

then

zn1(t2, · ) ≥ zn2(t2, · ).

The inequality above and estimate (19.36) give (19.32) for t1 ≤ t ≤ t2.
5. We will prove here that there exists Cn > 0 such that

sup
0≤t≤T

E‖zni (t, · )‖2
L2(Rd)

≤ Cn, i ∈ {1, 2}, (19.37)

sup
0≤t≤T

E‖vni (t, · )‖2
L2(Rd)

≤ Cn, i ∈ {1, 2}, (19.38)

where vni , i ∈ {1, 2}, are defined from (19.31), zni , i ∈ {1, 2}, – from (19.30). In
order to prove (19.37) it is sufficient to show that

sup
tj≤t≤tj+1

E‖zj,ni (t, · )‖2
L2(R

d)
≤ cn, j ∈ {0, . . . , n− 1}, i ∈ {1, 2}, (19.39)

for some cn > 0. It is sufficient to prove (19.39) for j ∈ {0, 1}, because for j ∈
∈ {2, . . . , n− 1} the proof is similar.

5.1. Let us estimate sup
0≤t≤t1

E‖z0,n
i (t, · )‖2

L2(Rd)
, i ∈ {1, 2}. From (19.23) we derive

sup
0≤t≤t1

E‖z0,n
i (t, · )‖2

L2(Rd)
≤ 4E‖φi(0, · )‖2

L2(Rd)

+ 4E

∥∥∥∥
∫

Rd

|bi(0, · , φi(−r, ξ), ξ)|dξ
∥∥∥∥

2

L2(R
d)

+ 4 sup
0≤t≤t1

E

∥∥∥∥
∫

Rd

|bi(t, · , φi(t − r, ξ), ξ)|dξ
∥∥∥∥

2

L2(Rd)

+ 4 sup
0≤t≤t1

E

∥∥∥∥
t∫

0

σ(s, · )dWM(s, · )
∥∥∥∥

2

L2(Rd)

= 4E‖φi(0, · )‖2
L2(Rd)

+
3∑

j=1

S
(Z0)
j , i ∈ {1, 2}. (19.40)



19 On Comparison Results for Neutral SDE of RD Type in L2(R
d ) 373

Let us now estimate each of S(Z
0)

j , j ∈ {1, 2, 3}, separately. We have,
taking into account conditions of the theorem,

S
(Z0)
1 = 4E

∫

Rd

(∫

Rd

|b(0, x, φi(−r, ξ), ξ)|dξ
)2

dx

≤ 8

(∫

Rd

∫

Rd

l2(0, x, ξ)dξdx

)
E‖φi(−r, · )‖2

L2(Rd)

+ 8
∫

Rd

(∫

Rd

χ(x, ξ)dξ

)2

dx, i ∈ {1, 2},

S
(Z0)
2 = 4 sup

0≤t≤t1
E

∫

Rd

(∫

Rd

|bi(t, x, φi(t − r, ξ), ξ)|dξ
)2

dx

≤ 8

(
sup

0≤t≤T

∫

Rd

∫

Rd

l2(t, x, ξ)dξdx

)

× sup
−r≤t≤0

E‖φi(t, · )‖2
L2(Rd)

+ 8
∫

Rd

(∫

Rd

χ(x, ξ)dξ

)2

dx, i ∈ {1, 2},

S
(Z0)
3 = 4 sup

0≤t≤t1
E

∫

Rd

( M∑
j=1

√
λj

( t∫

0

σ(s, x)dβj (s)

)
ej (x)

)2

dx

≤ 4M
∫

Rd

( M∑
j=1

λj

t1∫

0

σ 2(s, x)ds

)
dx

≤ 4M

( M∑
j=1

λj

)
T

n
sup

0≤t≤T
‖σ(t, · )‖2

L2(Rd)
.

With the help of these estimates we get from (19.40)

sup
0≤t≤t1

E‖z0,n
i (t, · )‖2

L2(R
d)

≤4E‖φi(0, · )‖2
L2(R

d)
+8

(∫

Rd

∫

Rd

l2(0, x, ξ)dξdx

)

× E‖φi(−r, · )‖2
L2(Rd)

+ 16
∫

Rd

(∫

Rd

χ(x, ξ)dξ

)2

dx



374 O. M. Stanzhytskyi et al.

+ 8

(
sup

0≤t≤T

∫

Rd

∫

Rd

l2(t, x, ξ)dξdx

)
sup

−r≤t≤0
E‖φi(t, · )‖2

L2(Rd)

+ 4M

( M∑
j=1

λj

)
T

n
sup

0≤t≤T
‖σ(t, · )‖2

L2(Rd)
= C(Z0)

n , i ∈ {1, 2}.

(19.41)

5.2. Let us estimate E‖v0,n
i (t1, · )‖2

L2(Rd)
, i ∈ {1, 2}. We derive from (19.24),

taking into account (19.41),

E‖v0,n
i (t1, · )‖2

L2(R
d )

≤ 3E‖z0,n
i (t1, · )‖2

L2(R
d )

+ 3E

∥∥∥∥
t1∫

0

ANv
0,n
i (s, · )ds

∥∥∥∥
2

L2(R
d )

ds

+ 3E

∥∥∥∥
t1∫

0

|fi(s, φi(s − r, · ), · )|ds
∥∥∥∥

2

L2(R
d )

≤ 3
(
C(Z0)
n + S

(V 0)
1 + S

(V 0)
2

)
, i ∈ {1,2}. (19.42)

In order to estimate S(V
0)

1 let us take (19.16) into account. We obtain

S
(V 0)
1 = E

∫

Rd

( t1∫

0

ANv
0,n
i (s, x)ds

)2

dx ≤ T

n
E

t1∫

0

‖ANv0,n
i (s, · )‖2

L2(R
d)
ds

≤ CNT

n

t1∫

0

E‖v0,n
i (s, · )‖2

L2(Rd)
, i ∈ {1, 2}.

In order to estimate S(V
0)

2 let us take (19.5) into account. We obtain

S
(V 0)
2 = E

∫

Rd

( t1∫

0

|fi(s, φi(s − r, x), x)|ds
)2

dx

≤ 2T

n
E

t1∫

0

∫

Rd

(
η2(s, x)+ L2φ2

i (s − r, x)
)
dxds
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≤ 2T

n

(
T sup

0≤t≤T

∫

Rd

η2(t, x)dx + L2

t1−r∫

−r
E‖φi(s − r, · )‖2

L2(R
d )
d(s − r)

)

≤ 2T

n

(
T sup

0≤t≤T

∫

Rd

η2(t, x)dx + rL2 sup
−r≤t≤0

E‖φi(t, · )‖2
L2(R

d )

)
, i ∈ {1, 2}.

With the help of the obtained estimates it follows from (19.42) and from
Bellman-Gronwalls inequality

E‖v0,n
i (t1, · )‖2

L2(R
d)

≤
[

3C(Z0)
n + 6T

n

(
T sup

0≤t≤T

∫

Rd

η2(t, x)dx

+ rL2 sup
−r≤t≤0

E‖φi(t, · )‖2
L2(R

d)

)]

× exp

{
3CNT

n
· T
n

}
, i ∈ {1, 2}. (19.43)

5.3. Let estimate sup
t1≤t≤t2

E‖z1,n
i (t, · )‖2

L2(Rd)
, i ∈ {1, 2}. Applying (19.25)

and (19.43), we conclude

sup
t1≤t≤t2

E‖z1,n
i
(t, · )‖2

L2(R
d)

≤ 6E‖v0,n
i

(t1, · )‖2
L2(R

d)
+ 6E

∥∥∥∥
∫

Rd

|bi (t1, · , φi(t1 − r, ξ), ξ)|dξ
∥∥∥∥

2

L2(Rd)

+ 2 sup
t1≤t≤t2

∥∥∥∥
∫

Rd

|bi (t, · , z1,n
i
(t − r, ξ), ξ)|dξ

∥∥∥∥
2

L2(Rd)

+ 6 sup
t1≤t≤t2

E

∥∥∥∥
t∫

t1

σ(s, · )dWM(s, · )
∥∥∥∥

2

L2(R
d)

≤ 6

[
3C(Z

0)
n +6T

n

(
T sup

0≤t≤T

∫

Rd

η2(t, x)dx + rL2 sup
−r≤t≤0

E‖φi(t, · )‖2
L2(Rd)

)]

× exp

{
3CNT

n
· T
n

}
+

3∑
j=1

S
(Z1)
j

, i ∈ {1, 2}. (19.44)
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Let us estimate each of S(Z
1)

j , j ∈ {1, 2, 3}, separately. We conclude

S
(Z1)
1 = 6E

∫

Rd

(∫

Rd

|bi(t1, x, φi(t1 − r, ξ), ξ)|dξ
)2

dx

≤ 12

(
sup

0≤t≤T

∫

Rd

∫

Rd

l2(t, x, ξ)dξdx

)

× sup
−r≤t≤0

E‖φi(t, · )‖2
L2(Rd)

+ 12
∫

Rd

(∫

Rd

χ(x, ξ)dξ

)2

dx, i ∈ {1, 2},

S
(Z1)
2 = 2 sup

t1≤t≤t2
E

∫

Rd

(∫

Rd

|bi(t, x, z1,n
i (t − r, ξ), ξ)|dξ

)2

dx

≤ 4

(
sup

0≤t≤T

∫

Rd

∫

Rd

l2(t, x, ξ)dξdx

)

×
(

sup
−r≤t≤0

E‖φi(t, · )‖2
L2(Rd)

+ sup
0≤t≤t1

E‖z0,n
i (t, · )‖2

L2(Rd)

)

+ 4
∫

Rd

(∫

Rd

χ(x, ξ)dξ

)2

dx

≤ 4

(
sup

0≤t≤T

∫

Rd

∫

Rd

l2(t, x, ξ)dξdx

)(
sup

−r≤t≤0
E‖φi(t, · )‖2

L2(Rd)
+C(Z0)

n

)

+ 4
∫

Rd

(∫

Rd

χ(x, ξ)dξ

)2

dx, i ∈ {1, 2},

S
(Z1)
3 = 6 sup

t1≤t≤t2
E

∫

Rd

( M∑
j=1

√
λj

( t∫

t1

σ(s, x)dβj (s)

)
ej (x)

)2

dx

≤ 6M

( M∑
j=1

λj

)
T

n
sup

0≤t≤T
‖σ(t, · )‖2

L2(Rd)
.
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These three estimates and (19.44) finally give

sup
t1≤t≤t2

E‖z1,n
i (t, · )‖2

L2(R
d )

≤ 6

[
3C(Z0)

n + 6T

n

(
T sup

0≤t≤T

∫

Rd

η2(t, x)dx

+ rL2 sup
−r≤t≤0

E‖φi(t, · )‖2
L2(R

d )

)]

× exp

{
3CNT

n
· T
n

}
+16

(
sup

0≤t≤T

∫

Rd

∫

Rd

l2(t, x, ξ)dξdx

)
sup

−r≤t≤0
E‖φi(t, · )‖2

L2(R
d )

+ 16
∫

Rd

(∫

Rd

χ(x, ξ)dξ

)2

dx + 4

(
sup

0≤t≤T

∫

Rd

∫

Rd

l2(t, x, ξ)dξdx

)
C(Z0)
n

+ 6M

( M∑
j=1

λj

)
T

n
sup

0≤t≤T
‖σ(t, · )‖2

L2(R
d )

= C(Z1)
n , i ∈ {1, 2}.

Equation (19.39) and, obviously, (19.37) is proved. Equation (19.38) is
proved in a similar way.

6. Next we will prove that there exists some C(U)(T ) > 0 such that

sup
0≤t≤T

E‖ui(t, · )‖2
L2(Rd)

≤ C(U)(T ), i ∈ {1, 2}. (19.45)

In order to do it we need to estimate sup
0≤t≤T

E‖ui(t, · )‖2
L2(R

d)
, i ∈ {1, 2},

from (19.19). We have

sup
0≤t≤T

E‖ui(t, · )‖2
L2(Rd)

≤ 10E‖φi(0, · )‖2
L2(Rd)

+ 10E

∥∥∥∥
∫

Rd

|bi(0, · , φi(−r, ξ), ξ)|dξ
∥∥∥∥

2

L2(R
d)

+ 10 sup
0≤t≤T

E

∥∥∥∥
t∫

0

ANui(s, · )ds
∥∥∥∥

2

L2(R
d)

+ 10 sup
0≤t≤T

E

∥∥∥∥
t∫

0

|fi(s, ui(s − r, · ), · )|ds
∥∥∥∥

2

L2(Rd)

+ 10 sup
0≤t≤T

E

∥∥∥∥
t∫

0

σ(s, · )dWM(s, · )
∥∥∥∥

2

L2(Rd)
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+ 2 sup
0≤t≤T

E

∥∥∥∥
∫

Rd

|bi(t, · , ui(t − r, ξ), ξ)|dξ
∥∥∥∥

2

L2(R
d)

= 10E‖φi(0, · )‖2
L2(Rd)

+
5∑

j=1

S
(U)
j , i ∈ {1, 2}. (19.46)

Taking into account previous calculations, we obtain

S
(U)
1 = 10E

∫

Rd

( ∫

Rd

|bi (0, x, φi (−r, ξ), ξ)|dξ
)2
dx

≤ 20

( ∫

Rd

∫

Rd

l2(0, x, ξ)dξdx

)
E‖φi(−r, · )‖2

L2(Rd)

+ 20
∫

Rd

( ∫

Rd

χ(x, ξ)dξ

)2
dx, i ∈ {1, 2},

S
(U)
2 = 10 sup

0≤t≤T
E

∫

Rd

( t∫

0

ANui(s, x)ds

)2
dx

≤ 10CNT

T∫

0

sup
0≤s≤t

E‖ui(s, · )‖2
L2(Rd)

dt , i ∈ {1, 2},

S
(U)
3 = 10 sup

0≤t≤T
E
∫

Rd

( t∫

0

|fi(s, ui (s − r, x), x)|ds
)2
dx ≤ 20T

(
T sup

0≤t≤T

∫

Rd

η2(t, x)dx

+ rL2 sup
−r≤t≤0

E‖φi(t, · )‖2
L2(Rd)

+ L2
T∫

0

sup
0≤s≤t

E‖ui(s, · )‖2
L2(Rd)

dt

)
, i ∈ {1, 2},

S
(U)
4 = 10 sup

0≤t≤T
E

∫

Rd

( M∑
j=1

√
λj

( t∫

0

σ(s, x)dβj (s)

)
ej (x)

)2

dx

≤ 10M

( M∑
j=1

λj

)
T sup

0≤t≤T
‖σ(t, · )‖2

L2(R
d)

,

S
(U)
5 = 2 sup

0≤t≤T
E

∫

Rd

( ∫

Rd

|bi (t, x, ui (t − r, ξ), ξ)|dξ
)2
dx

≤ 4

(
sup

0≤t≤T

∫

Rd

∫

Rd

l2(t, x, ξ)dξdx

)
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×
(

sup
−r≤t≤0

E‖φi(t, · )‖2
L2(R

d)
+ sup

0≤t≤T
E‖ui(t, · )‖2

L2(R
d)

)

+ 4
∫

Rd

( ∫

Rd

χ(x, ξ)dξ

)2
dx, i ∈ {1, 2}.

Put

c(U)(T ) = 10E‖φi(0, · )‖2
L2(R

d)
+ 20

( ∫

Rd

∫

Rd

l2(0, x, ξ)dξdx

)
E‖φi(−r, · )‖2

L2(R
d)

+ 24
∫

Rd

( ∫

Rd

χ(x, ξ)dξ

)2
dx + 20T

(
T sup

0≤t≤T

∫

Rd

η2(t, x)dx

+ rL2 sup
−r≤t≤0

E‖φi(t, · )‖2
L2(R

d)

)

+ 10M

( M∑
j=1

λj

)
T sup

0≤t≤T
‖σ(t, · )‖2

L2(R
d)

+ 4

(
sup

0≤t≤T

∫

Rd

∫

Rd

l2(t, x, ξ)dξdx

)

× sup
−r≤t≤0

E‖φi(t, · )‖2
L2(R

d)
, i ∈ {1, 2}.

Invoking Bellman-Gronwalls lemma and condition (19.3), we obtain
from (19.46) estimate (19.45) of the form

sup
0≤t≤T

E‖ui(t, · )‖2
L2(R

d)
≤

(
1 − 4 sup

0≤t≤T

∫

Rd

∫

Rd

l2(t, x, ξ)dξdx

)−1

c(U)(T )

× exp

{(
1−4 sup

0≤t≤T

∫

Rd

∫

Rd

l2(t, x, ξ)dξdx

)−1(
10CNT+20L2T

) · T
}
=C(U)(T ),

i ∈ {1, 2}.

7. Due to (19.37), (19.38) and (19.45), there exists a constant Cn > 0 such that

sup
0≤t≤T

E‖vni (t, · )− ui(t, · )‖2
L2(Rd)

+ sup
0≤t≤T

E‖zni (t, · )− ui(t, · )‖2
L2(Rd)

≤ 2 sup
0≤t≤T

E‖vni (t, · )‖2
L2(Rd)

+ 4 sup
0≤t≤T

E‖ui(t, · )‖2
L2(Rd)

+ 2 sup
0≤t≤T

E‖zni (t, · )‖2
L2(Rd)

≤ Cn, i ∈ {1, 2}. (19.47)
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Now let us prove

lim
n→∞ sup

tk≤t<tk+1

E‖zni (t, · )− ui(t, · )‖2
L2(Rd)

= 0, i ∈ {1, 2}. (19.48)

7.1. Let estimate E‖vni (t, · )− ui(t, · )‖2
L2(R

d)
, tk < t ≤ tk+1, k ∈ {0, . . . , n− 1},

i ∈ {1, 2}. We have

E‖vni (t, · )− ui(t, · )‖2
L2(Rd )

≤ 2E

∥∥∥∥
∫

Rd

|bi(tk+1, · , ui (tk+1 − r, ξ), ξ)

− bi(tk+1, · , zni (tk+1 − r, ξ), ξ)|dξ
∥∥∥∥

2

L2(R
d )

+ 10E
∥∥∥∥
∫

Rd

|bi(t, · , ui(t − r, ξ), ξ)

− bi(tk+1, · , ui (t − r, ξ), ξ)|dξ
∥∥∥∥

2

L2(R
d )

+ 10E

∥∥∥∥
∫

Rd

|bi (tk+1, · , ui(t − r, ξ), ξ)

− bi(tk+1, · , ui (tk+1 − r, ξ), ξ)|dξ
∥∥∥∥

2

L2(R
d )

+ 10E

∥∥∥∥AN
(
vni (s, · )− ui(s, · ))ds

∥∥∥∥
2

L2(R
d )

+ 10E

∥∥∥∥
t∫

0

|fi(s, vni (s − r, · ), · )− fi(s, ui(s − r, · ), · )|ds
∥∥∥∥

2

L2(R
d )

+ 10E
∥∥∥∥
tk+1∫

t

σ (s, · )dWM(s, · )
∥∥∥∥

2

L2(R
d )

=
6∑

j=1

S
(V−U)
j , i ∈ {1, 2}. (19.49)

Let us estimate each of S(V−U)
j , j ∈ {1, . . . , 6}, from (19.49) separately.

We conclude

S
(V−U)
1 = 2E

∫

Rd

(∫

Rd

|bi(tk+1, x, ui (tk+1−r, ξ), ξ)−bi(tk+1, x, z
n
i (tk+1−r, ξ), ξ)|dξ

)2

dx

≤ 2

(
sup

0≤t≤T

∫

Rd

∫

Rd

l2(t, x, ξ)dξdx

)
E‖zni (tk+1 − r, · )− ui(tk+1 − r, · )‖2

L2(R
d )

,

i ∈ {1, 2}.

In order to estimate S(V−U)
2 we will use the unform continuity of bi , i ∈

{1, 2}, and Lebesgue’s dominated convergence theorem. Finally we get

S
(V−U)
2 =10E

∫

Rd

( ∫

Rd

|bi (t, x, ui(t−r, ξ), ξ)−bi (tk+1, x, ui(t−r, ξ), ξ)|dξ
)2
dx

= ε1(n), i ∈ {1, 2}, lim
n→∞ ε1(n) = 0.
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Taking into account continuity of ui , i ∈ {1, 2}, we get for S(V−U)
3

S
(V−U)
3 =10E

∫

Rd

(∫

Rd

|bi(tk+1, x, ui(t−r, ξ), ξ)−bi(tk+1, x, ui (tk+1−r, ξ), ξ)|dξ
)2

dx

≤ 10

(
sup

0≤t≤T

∫

Rd

∫

Rd

l2(t, x, ξ)dξdx

)
E‖ui(t − r, · )

− ui(tk+1 − r, · )‖2
L2(R

d )
= ε2(n),

i ∈ {1, 2}, lim
n→∞ ε2(n) = 0.

Considering S
(V−U)
j , j ∈ {4, 5, 6}, let us take into account proceeding

analysis. We conclude

S
(V−U)
4 = 10E

∫

Rd

( t∫

0

AN
(
ui(s, x)− vni (s, x)

)
ds

)2

dx

≤ 10CNT

t∫

0

E‖ui(s, · )− vni (s, · )‖2
L2(R

d)
ds, i ∈ {1, 2},

S
(V−U)
5 = 10E

∫

Rd

( t∫

0

|fi(s, vni (s − r, x), x)− fi(s, ui(s − r, x), x)|ds
)2

dx

≤ 10L2T

t−r∫

−r
E‖ui(s − r, · )− vni (s − r, · )‖2

L2(Rd)
d(s − r)

≤ 10L2T

t∫

0

E‖ui(s, · )− vni (s, · )‖2
L2(Rd)

ds, i ∈ {1, 2},

S
(V−U)
6 = 10E

∫

Rd

( M∑
j=1

√
λj

( tk+1∫

t

σ (s, x)dβj (s)

)
ej (x)

)2

dx

≤ 10M

( M∑
j=1

λj

)
T

n
sup

0≤t≤T
‖σ(t, · )‖2

L2(Rd)
.

Taking into account obtained estimates, we apply Bellman-Gronwalls
inequality to (19.49) (it is applicated due to (19.47)) and, summing up, obtain
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the following estimate

sup
tk<t≤tk+1

E‖vni (t, · )− ui(t, · )‖2
L2(Rd)

≤ β(V−U)
n (tk+1)

× exp{10
(
CN + L2)T 2}, i ∈ {1, 2}, (19.50)

with

β(V−U)
n (tk+1) = ε3(n)+ 2

(
sup

0≤t≤T

∫

Rd

∫

Rd

l2(t, x, ξ)dξdx

)
E‖zni (tk+1 − r, · )

− ui(tk+1 − r, · )‖2
L2(Rd)

+ 10M

( M∑
j=1

λj

)
T

n
sup

0≤t≤T
‖σ(t, · )‖2

L2(Rd)
, i ∈ {1, 2},

ε3(n) = min{ε1(n), ε2(n)}.

7.2. Now let us estimate sup
tk≤t<tk+1

E‖zni (t, · )−ui(t, · )‖2
L2(Rd)

, k ∈ {0, . . . , n−1},
i ∈ {1, 2}. Since we have for difference

vni (tk, · )− ui(tk, · ) = −
∫

Rd

bi(tk, · , zni (tk − r, ξ), ξ)dξ

+
∫

Rd

bi(tk, · , ui(tk − r, ξ), ξ)dξ

+
tk∫

0

(
ANv

n
i (s, · )+ fi(s, v

n
i (s − r, · ), · ))ds −

tk∫

0

(
ANui(s, · )

+ fi(s, ui(s − r, · ), · ))ds,
i ∈ {1, 2},

we observe

sup
tk≤t<tk+1

E‖zni (t, · )− ui(t, · )‖2
L2(R

d)
= sup

tk≤t<tk+1

E

∥∥∥∥vni (tk, · )− ui(tk, · )

+
∫

Rd

(
bi(t, · , ui(t − r, ξ), ξ) − bi(tk, · , ui(tk − r, ξ), ξ)

)
dξ
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+
∫

Rd

(
bi (tk, · , zni (tk − r, ξ), ξ) − bi (t, · , zni (t − r, ξ), ξ)

)
dξ

−
t∫

tk

(
ANui(s, · )+ fi(s, ui (s − r, · ), · ))ds

∥∥∥∥
2

L2(R
d )

≤ 2E‖vni (tk, · )− ui(tk, · )‖2
L2(R

d )

+ 8 sup
tk≤t<tk+1

E

∥∥∥∥
∫

Rd

|bi (t, · , ui(t − r, ξ), ξ) − bi(tk, · , ui(tk − r, ξ), ξ)|dξ
∥∥∥∥

2

L2(R
d )

+ 8 sup
tk≤t<tk+1

E

∥∥∥∥
∫

Rd

|bi (tk, · , zni (tk − r, ξ), ξ) − bi(t, · , zni (t − r, ξ), ξ)|dξ
∥∥∥∥

2

L2(R
d )

+ 8 sup
tk≤t<tk+1

E

∥∥∥∥
t∫

tk

ANui(s, · )ds
∥∥∥∥

2

L2(R
d )

+8 sup
tk≤t<tk+1

E

∥∥∥∥
t∫

tk

|fi(s, ui (s−r, · ), · )|ds
∥∥∥∥

2

L2(R
d )

= 2E‖vni (tk, · )− ui(tk, · )‖2
L2(R

d )
+ 8

4∑
j=1

S
(Z−U)
j , i ∈ {1, 2}. (19.51)

Let us estimate each of S(Z−U)
j , j ∈ {1, . . . , 4}, from (19.51) separately.

Estimating as before, we obtain

S
(Z−U)
1 = sup

tk≤t<tk+1

E
∫

Rd

(∫

Rd

|bi(t, · , ui(t − r, ξ), ξ) − bi(tk, · , ui(tk − r, ξ), ξ)|dξ
)2

dx

≤ 2 sup
tk≤t<tk+1

E
∫

Rd

(∫

Rd

|bi(t, · , ui(t − r, ξ), ξ)− bi(t, · , ui(tk − r, ξ), ξ)|dξ
)2

dx

+ 2 sup
tk≤t<tk+1

E
∫

Rd

(∫

Rd

|bi(t, · , ui(tk−r, ξ), ξ)−bi(tk , · , ui(tk − r, ξ), ξ)|dξ
)2

dx

= ε4(n), i ∈ {1, 2}, lim
n→∞ ε4(n) = 0, (19.52)

S
(Z−U)
2 = sup

tk≤t<tk+1

E
∫

Rd

(∫

Rd

|bi(tk, x, zni (tk − r, ξ), ξ)− bi(t, x, z
n
i (t − r, ξ), ξ)|dξ

)2

dx

≤ 2 sup
tk≤t<tk+1

E
∫

Rd

(∫

Rd

|bi(tk, x, zni (tk−r, ξ), ξ)−bi(tk, x, zni (t − r, ξ), ξ)|dξ
)2

dx

+ 2 sup
tk≤t<tk+1

E
∫

Rd

(∫

Rd

|bi(tk, x, zni (t − r, ξ), ξ) − bi (t, x, z
n
i (t − r, ξ), ξ)|dξ

)2

dx

= ε5(n), i ∈ {1, 2}, lim
n→∞ ε5(n) = 0, (19.53)
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S
(Z−U)
3 = sup

tk≤t<tk+1

E
∫

Rd

( t∫

tk

ANui(s, x)ds

)2

dx ≤ CNT
2

n
sup

0≤t<T
E‖ui(t, · )‖2

L2(R
d )

,

i ∈ {1, 2}, (19.54)

S
(Z−U)
4 = sup

tk≤t<tk+1

E
∫

Rd

( t∫

tk

|fi(s, ui(s − r, x), x)|ds
)2

dx ≤ 2T

n

(
T sup

0≤t≤T

∫

Rd

η2(t, x)dx

+ rL2 sup
−r≤t≤0

E‖φi(t, · )‖2
L2(R

d )
+ L2T sup

0≤t≤T
E‖ui(t, · )‖2

L2(R
d )

)
,

i ∈ {1, 2}. (19.55)

It follows from (19.50)

E‖vni (tk, · )− ui(tk, · )‖2
L2(Rd)

≤ sup
tk−1<t≤tk

E‖vni (t, · )− ui(t, · )‖2
L2(Rd)

≤ β(V−U)
n (tk) · exp{10

(
CN + L2)T 2}, i ∈ {1, 2}, (19.56)

with

β(V−U)
n (tk) = ε3(n)+ 2

(
sup

0≤t≤T

∫

Rd

∫

Rd

l2(t, x, ξ)dξdx

)
E‖zni (tk − r, · )

− ui(tk − r, · )‖2
L2(R

d)

+ 10M

( M∑
j=1

λj

)
T

n
sup

0≤t≤T
‖σ(t, · )‖2

L2(R
d)

≤ ε3(n)

+ 2

(
sup

0≤t≤T

∫

Rd

∫

Rd

l2(t, x, ξ)dξdx

)

× sup
tk≤t<tk+1

E‖zni (t, · )− ui(t, · )‖2
L2(R

d)

+ 10M

( M∑
j=1

λj

)
T

n
sup

0≤t≤T
‖σ(t, · )‖2

L2(R
d)

,

i ∈ {1, 2}.
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Thus, we finally obtain from (19.51), using estimates (19.52)–(19.56),

sup
tk≤t<tk+1

E‖zni (t, · )− ui(t, · )‖2
L2(Rd)

≤ C(Z−U)
n (T )

×
(

1 − 4 exp{10
(
CN + L2)T 2}

(
sup

0≤t≤T

∫

Rd

∫

Rd

l2(t, x, ξ)dξdx

))−1

,

i ∈ {1, 2}, (19.57)

with

C
(Z−U)
n (T ) = ε(n)+ 8CNT

2

n
sup

0≤t<T
E‖ui(t, · )‖2

L2(R
d)

+ 20M

( M∑
j=1

λj

)
T

n
sup

0≤t≤T
‖σ(t, · )‖2

L2(R
d)

× exp{10
(
CN + L2)T 2} + 16T

n

(
T sup

0≤t≤T

∫

Rd

η2(t, x)dx

+ rL2 sup
−r≤t≤0

E‖φi(t, · )‖2
L2(Rd)

+ L2T sup
0≤t≤T

E‖ui(t, · )‖2
L2(Rd)

)
, i ∈ {1, 2},

ε(n) = min{2 exp{10
(
CN+L2)T 2}ε3(n), ε4(n), ε5(n)}, lim

n→∞ ε(n) = 0.

Since lim
n→∞C

(Z−U)
n (T ) = 0, then (19.57) clearly implies (19.48).

8. For any 0 ≤ t ≤ T a sequence {zni (t, · ), n ∈ {1, 2, . . .}}, i ∈ {1, 2}, contains
a subsequence {znmi (t, · ),m ∈ {1, 2, . . .}}, i ∈ {1, 2}, converging to ui(t, · ),
i ∈ {1, 2}, in L2(R

d)) almost surely. This implies

u1(t, · ) ≥ u2(t, · )

almost surely for 0 ≤ t ≤ T .
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9. Denote u ≡ ui , φ ≡ φi , b ≡ bi , f ≡ fi , i ∈ {1, 2}, for brevity. Let
uM : [−r, T ] × Ω → L2(R

d ) be a continuous Ft -measurable for almost all
−r ≤ t ≤ T process, defined as a unique solution to the following integral
equation

uM(t, · ) = S(t)

(
φ(0, · )+

∫

Rd

b(0, · , φ(−r, ξ), ξ)dξ
)

−
t∫

0

AS(t − s)

(∫

Rd

b(s, · , uM(s − r, ξ), ξ)dξ

)
ds

+
t∫

0

S(t − s)f (s, uM(s − r, · ), · )ds +
t∫

0

σ(s, · )dWM(s, · ),

0 < t ≤ T , (19.58)

uM(t, · ) = φ(t, · ), − r ≤ t ≤ 0, r > 0, (51*)

satisfying the condition

E

T∫

0

‖uM(t, · )‖2
L2(Rd)

dt < ∞.

It remains to show that

lim
N→∞ sup

0≤t≤T
E‖uN,Mi (t, · )− uMi (t, · )‖2

L2(R
d)

= 0, i ∈ {1, 2}, (19.59)

lim
M→∞ sup

0≤t≤T
E‖uMi (t, · )− Ui(t, · )‖2

L2(Rd)
= 0, i ∈ {1, 2}, (19.60)

where Ui : [−r, T ] ×Ω → L2(R
d), i ∈ {1, 2}, is a unique solution to (19.1).

9.1. Let us prove (19.59), where u
N,M
i , i ∈ {1, 2}, are defined from (19.19)–

(19.20). In order to do it we will estimate sup
0≤t≤T

E‖uN,Mi (t, · ) −
uMi (t, · )‖2

L2(Rd)
, i ∈ {1, 2}. We get

sup
0≤t≤T

E‖uN,Mi (t, · )− uMi (t, · )‖2
L2(Rd )

≤ 4 sup
0≤t≤T

E

∥∥∥∥
(
SN(t)− S(t)

)(
φi(0, · )+

∫

Rd

bi(0, · , φi(−r, ξ), ξ)dξ
)∥∥∥∥

2

L2(Rd )
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+ 4 sup
0≤t≤T

E

∥∥∥∥
∫

Rd

|bi (t, · , uMi (t − r, ξ), ξ)− bi(t, · , uN,Mi (t − r, ξ), ξ)|dξ
∥∥∥∥

2

L2(R
d )

+ 4 sup
0≤t≤T

E

∥∥∥∥
t∫

0

AS(t − s)

(∫

Rd

bi(s, · , uMi (s − r, ξ), ξ)dξ

)
ds

−
t∫

0

ANSN (t − s)

(∫

Rd

bi(s, · , uN,Mi (s − r, ξ), ξ)dξ

)
ds

∥∥∥∥
2

L2(R
d )

+ 4 sup
0≤t≤T

E

∥∥∥∥
t∫

0

(
SN (t − s)fi(s, u

N,M(s − r, · ), · )

− S(t − s)fi(s, u
M(s − r, · ), · ))ds

∥∥∥∥
2

L2(R
d )

=
4∑

j=1

S
(UN−U)
j , i ∈ {1, 2}.

(19.61)

Let estimate S(U
N−U)

j , j ∈ {1, . . . , 4}, from (19.61) separately. Taking into

account belongingφi(0, · )+
∫
Rd

bi(0, · , φi(−r, ξ), ξ)dξ , i ∈ {1, 2}, toL2(R
d )

and property (19.18), we conclude

S
(UN−U)
1 = 4 sup

0≤t≤T
E

∥∥∥∥
(
SN(t)− S(t)

)(
φi(0, · )+

∫

Rd

bi (0, · , φi(−r, ξ), ξ)dξ
)∥∥∥∥

2

L2(R
d )

= ε1(N), i ∈ {1, 2}, lim
N→∞ ε1(N) = 0. (19.62)

For S(U
N−U)

2 we get, estimating as before,

S
(UN−U)
2 = 4 sup

0≤t≤T
E

∫

Rd

(∫

Rd

|bi(t, x, uMi (t − r, ξ), ξ)−bi(t, x, uN,Mi (t−r, ξ), ξ)|dξ
)2

dx

≤ 4

(
sup

0≤t≤T

∫

Rd

∫

Rd

l2(t, x, ξ)dξdx

)
sup

0≤t≤T
E‖uMi (t−r, · )−uN,Mi (t − r, · )‖2

L2(R
d )

≤ 4

(
sup

0≤t≤T

∫

Rd

∫

Rd

l2(t, x, ξ)dξdx

)
sup

0≤t≤T
E‖uMi (t, · )− u

N,M
i (t, · )‖2

L2(R
d )

,

i ∈ {1, 2}. (19.63)
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For S(U
N−U)

3 we conclude

S
(UN−U)
3 = 4 sup

0≤t≤T
E

∥∥∥∥
t∫

0

AS(t − s)

(∫

Rd

bi(s, · , uMi (s − r, ξ), ξ)dξ

)
ds

−
t∫

0

ANSN(t − s)

(∫

Rd

bi(s, · , uMi (s − r, ξ), ξ)dξ

)
ds

∥∥∥∥
2

L2(Rd)

+
t∫

0

ANSN(t − s)

(∫

Rd

(
bi(s, · , uMi (s − r, ξ), ξ)

− bi(s, · , uN,Mi (s − r, ξ), ξ)
)
dξ

)
ds

∥∥∥∥
2

L2(Rd)

≤ 8 sup
0≤t≤T

E

∥∥∥∥
t∫

0

AS(t − s)

(∫

Rd

bi(s, · , uMi (s − r, ξ), ξ)dξ

)
ds

−
t∫

0

ANSN(t − s)

(∫

Rd

bi(s, · , uMi (s − r, ξ), ξ)dξ

)
ds

∥∥∥∥
2

L2(Rd)

+ 8 sup
0≤t≤T

E

∥∥∥∥
t∫

0

ANSN(t − s)

(∫

Rd

(
bi(s, · , uMi (s − r, ξ), ξ)

− bi(s, · , uN,Mi (s − r, ξ), ξ)dξ
))
ds

∥∥∥∥
2

L2(Rd)

, i ∈ {1, 2}.
(19.64)

For estimating the first term in (19.64) we will use Lemma 19.1. It follows
from this lemma uniform in t convergence zN(t, · ) to z(t, · ) as N → ∞,

where zN(t, · ) = SN(t − s)

( ∫
Rd

bi(s, · , uMi (s − r, ξ), ξ)dξ

)
, t ≥ s, i ∈

{1, 2}, is a solution to the problem (19.13)–(19.14) of the form

∂zN(t, · )
∂t

= ANzN(t, · ), t > s,

zN(s, · ) =
∫

Rd

bi(s, · , uMi (s − r, ξ), ξ)dξ , i ∈ {1, 2},
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and z(t, · ) = S(t − s)

( ∫
Rd

bi(s, · , uMi (s − r, ξ), ξ)dξ

)
, t ≥ s, i ∈ {1, 2},

solves the problem (19.13)–(19.14) of the form

∂z(t, · )
∂t

= Az(t, · ), t > s,

z(s, · ) =
∫

Rd

bi(s, · , uMi (s − r, ξ), ξ)dξ , i ∈ {1, 2}.

Therefore we have from (19.64)

8 sup
0≤t≤T

E

∥∥∥∥
t∫

0

AS(t − s)

(∫

Rd

bi(s, · , uMi (s − r, ξ), ξ)dξ

)
ds

−
t∫

0

ANSN(t − s)

(∫

Rd

bi(s, · , uMi (s − r, ξ), ξ)dξ

)
ds

∥∥∥∥
2

L2(R
d )

= ε2(N),

i ∈ {1, 2}, lim
N→∞ ε2(N) = 0.

For estimating the second term in (19.64) we will use Lemma 19.1, (19.15)
from Theorem 19.4 and property (19.6). We conclude

8 sup
0≤t≤T

E

∥∥∥∥
t∫

0

ANSN(t − s)

(∫

Rd

(
bi(s, · , uMi (s − r, ξ), ξ)

− bi(s, · , uN,Mi (s − r, ξ), ξ)
)
dξ

)
ds

∥∥∥∥
2

L2(R
d )

≤ 8 sup
0≤t≤T

E

∥∥∥∥
t∫

0

AN

(∫

Rd

(
bi(s, · , uMi (s − r, ξ), ξ)

− bi(s, · , uN,Mi (s − r, ξ), ξ)
)
dξ

)
ds

∥∥∥∥
2

L2(R
d )

≤ 8 sup
0≤t≤T

E
∫

Rd

( t∫

0

Δx

(∫

Rd

(
bi(s, x, u

M
i (s − r, ξ), ξ)

− bi(s, x, u
N,M
i (s − r, ξ), ξ)

)
dξ

)
ds

)2

dx
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≤ 8TE

T∫

0

∫

Rd

(∫

Rd

‖D2
xbi(s, x, u

M
i (s − r, ξ), ξ)

−D2
xbi(s, x, u

N,M
i (s − r, ξ), ξ)‖dξ

)2

dxds

≤ 8TE

T∫

0

∫

Rd

(∫

Rd

ψ(s, x, ξ)|uMi (s − r, ξ) − u
N,M
i (s − r, ξ)|dξ

)2

dxds

≤ 8T

(
sup

0≤t≤T

∫

Rd

∫

Rd

ψ2(t, x, ξ)dξdx

) T−r∫

−r
E‖uMi (s − r, · )

− u
N,M
i (s − r, · )‖2

L2(R
d )
d(s − r)

≤ 8T

(
sup

0≤t≤T

∫

Rd

∫

Rd

ψ2(t, x, ξ)dξdx

) T∫

0

sup
0≤s≤t

E‖uMi (s, · )

− u
N,M
i (s, · )‖2

L2(R
d )
dt ,

i ∈ {1, 2}.

Thus we obtain from (19.64)

S
(UN−U)
3 ≤ ε2(n)+ 8T

(
sup

0≤t≤T

∫

Rd

∫

Rd

ψ2(t, x, ξ)dξdx

)

×
T∫

0

sup
0≤s≤t

E‖uMi (s, · )− u
N,M
i (s, · )‖2

L2(R
d)
dt , i ∈ {1, 2}.

(19.65)

For estimating S
(UN−U)
4 let apply (19.18) and belonging η(t, · ) +

|uN,Mi (t − r, · )|,
0 ≤ t ≤ T , i ∈ {1, 2}, to L2(R

d ). We have

S
(UN−U)
4 = 4 sup

0≤t≤T
E

∫

Rd

( t∫

0

(
SN(t − s) − S(t − s)

+ S(t − s)
)
fi(s, u

N,M
i (s − r, · ), · )ds
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−
t∫

0

S(t − s)fi(s, u
M
i (s − r, · ), · )ds

)2

dx

≤ 8 sup
0≤t≤T

E
∫

Rd

( t∫

0

(
SN(t − s)− S(t − s)

)|fi(s, uN,Mi (s − r, · ), · )|ds
)2

dx

+ 8 sup
0≤t≤T

E
∫

Rd

( t∫

0

S(t − s)|fi (s, uN,Mi (s − r, x), x)

− fi(s, u
M
i (s − r, x), x)|ds

)2

dx

≤ 8 sup
0≤t≤T

E
∫

Rd

( t∫

0

(
SN(t − s)− S(t − s)

)(
η(s, x)

+ L|uN,Mi (s − r, x)|)ds
)2

dx

+ 8L2 sup
0≤t≤T

E
∫

Rd

( t∫

0

S(t − s)|uN,Mi (s − r, x) − uMi (s − r, x)|ds
)2

dx

≤ 8T sup
0≤t≤T

E

t∫

0

∥∥∥∥
(
SN(t − s) − S(t − s)

)(
η(s, · )

+ L|uN,Mi (s − r, · )|)
∥∥∥∥

2

L2(R
d )

ds

+ 8L2T sup
0≤t≤T

E

t∫

0

∥∥∥∥S(t − s)
(
u
N,M
i (s − r, · )− uMi (s − r, · ))

∥∥∥∥
2

L2(R
d )

ds

≤ 8T sup
0≤t≤T

E

t∫

0

∥∥∥∥
(
SN(t−s)−S(t − s)

)(
η(s, · )+ L|uN,Mi (s − r, · )|)

∥∥∥∥
2

L2(R
d )

ds

+ 8L2T sup
0≤t≤T

T−r∫

−r
E‖uN,Mi (s, · )− uMi (s, · )‖2

L2(R
d )
ds ≤ ε3(n)

+ 8L2T

T∫

0

sup
0≤s≤t

E‖uN,Mi (s, · )− uMi (s, · )‖2
L2(R

d )
dt , lim

N→∞ ε3(N) = 0.

(19.66)
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Taking into account (19.62), (19.63), (19.65) and (19.66), we conclude

sup
0≤t≤T

E‖uN,M
i

(t, · )− uMi (t, · )‖2
L2(Rd)

≤
(

1 − 4 sup
0≤t≤T

∫

Rd

∫

Rd

l2(t, x, ξ)dξdx

)−1

×
[
ε(N)+ 8T

(
sup

0≤t≤T

∫

Rd

∫

Rd

ψ2(t, x, ξ)dξdx + L2
)

×
T∫

0

sup
0≤s≤t

E‖uN,Mi (s, · )− uMi (s, · )‖2
L2(Rd)

dt

]
, i ∈ {1, 2},

ε(N) = min{ε1(N), ε2(N), ε3(N)}, lim
N→∞ ε(N) = 0.

An application of Bellman-Gronwalls inequality yields

sup
0≤t≤T

E‖uN,Mi (t, · )− uMi (t, · )‖2
L2(R

d )
≤ ε(N)

(
1 − 4 sup

0≤t≤T

∫

Rd

∫

Rd

l2(t, x, ξ)dξdx

)−1

× exp

{(
1 − 4 sup

0≤t≤T

∫

Rd

∫

Rd

l2(t, x, ξ)dξdx

)−1

× 8T

(
sup

0≤t≤T

∫

Rd

∫

Rd

ψ2(t, x, ξ)dξdx + L2
)

· T
}

, i ∈ {1, 2}. (19.67)

Since lim
N→∞ ε(N) = 0, then (19.67) obviously implies (19.59).

9.2. Finally let us prove (19.60). In order to do it we will estimate
sup

0≤t≤T
E‖uMi (t, · )− Ui(t, · )‖2

L2(Rd)
, i ∈ {1, 2}. We have

sup
0≤t≤T

E‖uMi (t, · )− Ui(t, · )‖2
L2(R

d )

≤ 4 sup
0≤t≤T

E

∥∥∥∥
∫

Rd

|bi(t, · , Ui(t − r, ξ), ξ)− bi(t, · , uMi (t − r, ξ), ξ)|dξ
∥∥∥∥

2

L2(R
d )

+ 4 sup
0≤t≤T

E

∥∥∥∥
t∫

0

AN

(∫

Rd

(
bi(s, · , uMi (s − r, ξ), ξ)

− bi(s, · , Ui(s − r, ξ), ξ)
)
dξ

)
ds

∥∥∥∥
2

L2(Rd )

+ 4 sup
0≤t≤T

E

∥∥∥∥
t∫

0

S(t − s)|fi(s, uMi (s − r, · ), · )− fi(s, Ui(s − r, · ), · )|ds
∥∥∥∥

2

L2(Rd )
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+ 4 sup
0≤t≤T

E

∥∥∥∥
t∫

0

S(t − s)σ(s, · )dWM(s, · )−
t∫

0

S(t − s)σ(s, · )dW(s, · )
∥∥∥∥

2

L2(Rd )

=
4∑

j=1

S
(u−U)
j , i ∈ {1, 2}. (19.68)

Using preceding calculations, we obtain

S
(u−U)
1 = 4 sup

0≤t≤T
E

∫

Rd

(∫

Rd

|bi (t, x, Ui(t − r, ξ), ξ)− bi(t, x, u
M
i (t − r, ξ), ξ)|dξ

)2

dx

≤ 4

(
sup

0≤t≤T

∫

Rd

∫

Rd

l2(t, x, ξ)dξdx

)
sup

0≤t≤T
E‖Ui(t, · )− uMi (t, · )‖2

L2(Rd )
,

i ∈ {1, 2}, (19.69)

S
(u−U)
2 = 4 sup

0≤t≤T
E

∫

Rd

( t∫

0

ΔxS(t − s)

(∫

Rd

(
bi(s, x, u

M
i (s − r, ξ), ξ)

− bi(s, x, Ui(s − r, ξ), ξ)
)
dξ

)
ds

)2

dx

≤ 4T sup
0≤t≤T

E

t∫

0

∫

Rd

(∫

Rd

‖D2
xbi(s, x, u

M
i (s − r, ξ), ξ)

−D2
xbi(s, x, Ui(s − r, ξ), ξ)‖dξ

)2

dxds

≤ 4T

(
sup

0≤t≤T

∫

Rd

∫

Rd

ψ2(t, x, ξ)dξdx

) T∫

0

sup
0≤s≤t

E‖uMi (s, · )− Ui(s, · )‖2
L2(R

d )
dt ,

i ∈ {1, 2}. (19.70)

S
(u−U)
3 = 4 sup

0≤t≤T
E

∫

Rd

( t∫

0

S(t−s)|fi(s, uMi (s−r, x), x)−fi(s, Ui (s − r, x), x)|ds
)2

dx

≤ 4L2T

T∫

0

sup
0≤s≤t

E‖uMi (s, · )− Ui(s, · )‖2
L2(R

d )
dt , i ∈ {1, 2}. (19.71)
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S
(u−U)
4 = 4 sup

0≤t≤T
E

∫

Rd

( M∑
j=1

√
λj

( t∫

0

S(t − s)σ (s, x)dβj (s)

)
ej (x)

−
∞∑
j=1

√
λj

( t∫

0

S(t − s)σ (s, x)dβj (s)

)
ej (x)

)2

dx

= 4 sup
0≤t≤T

E
∫

Rd

( ∞∑
j=M+1

√
λj

( t∫

0

S(t − s)σ (s, x)dβj (s)

)
ej (x)

)2

dx

≤ 4

( ∞∑
j=M+1

λj

)
sup

0≤t≤T
E

∫

Rd

t∫

0

(
S(t − s)σ (s, x)

)2
dsdx

= 4

( ∞∑
j=M+1

λj

)
sup

0≤t≤T
E

t∫

0

‖S(t − s)σ (s, · )‖2
L2(Rd)

ds

≤ 4T

( ∞∑
j=M+1

λj

)
sup

0≤t≤T
E‖σ(t, · )‖2

L2(Rd)
. (19.72)

Estimates (19.69)–(19.72) with property (19.3) help us conclude
from (19.68) that

sup
0≤t≤T

E‖uMi (t, · )− Ui(t, · )‖2
L2(R

d )
≤

(
1 − 4 sup

0≤t≤T

∫

Rd

∫

Rd

l2(t, x, ξ)dξdx

)−1

×
(

4T

(
sup

0≤t≤T

∫

Rd

∫

Rd

ψ2(t, x, ξ)dξdx

) T∫

0

sup
0≤s≤t

E‖uMi (s, · ) − Ui(s, · )‖2
L2(R

d )
dt

+ 4L2T

T∫

0

sup
0≤s≤t

E‖uMi (s, · )− Ui(s, · )‖2
L2(R

d )
dt

+ 4T

( ∞∑
j=M+1

λj

)
sup

0≤t≤T
E‖σ(t, · )‖2

L2(R
d )

)
, i ∈ {1, 2}.
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Finally Bellman-Gronwalls inequality leads to

sup
0≤t≤T

E‖uMi (t, · )− Ui(t, · )‖2
L2(R

d )
≤

(
1 − 4 sup

0≤t≤T

∫

Rd

∫

Rd

l2(t, x, ξ)dξdx

)−1

× 4T

( M∑
j=1

λj

)
sup

0≤t≤T
E‖σ(t, · )‖2

L2(R
d )

exp

{(
1−4 sup

0≤t≤T

∫

Rd

∫

Rd

l2(t, x, ξ)dξdx

)−1

× 4T

(
sup

0≤t≤T

∫

Rd

∫

Rd

ψ2(t, x, ξ)dξdx + L2
)

· T
}

, i ∈ {1, 2}.

Recall that
∞∑
n=1

λn < ∞. This fact along with estimate above implies

(19.60), thereby completing the proof of the theorem. #$
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Chapter 20
Maximum Sets of Initial Conditions
in Practical Stability and Stabilization
of Differential Inclusions

Volodymyr V. Pichkur

Abstract In this work we consider the problem of practical stability of differential
inclusion solutions on the basis of the maximum sets of practical stability concept.
On one hand we propose results concerning nonlinear differential inclusion includ-
ing both topological properties of the maximum sets of initial conditions for four
types of practical stability (internal, weak internal, external, weak external) and the
necessary and sufficient conditions of internal practical stability using the optimal
Lyapunov function. On the other hand we offer the analytical forms of the maximum
sets of initial conditions representation in the linear differential inclusion case. In the
last section we consider the problem of practical stabilization.

20.1 Introduction

Practical stability studies behavior of dynamic systems under state constrains on a
finite time interval. The concept of this theory was for the first time introduced in
[1, 2]. The main direction of research consisted in developing stability technique
taking into account features of the problem. The second Lyapunov method has
been generalized due to [3–5]. Sufficient conditions of practical stability have been
obtained for different types of practical stability and different classes of dynamic
systems. In particular cases the necessary conditions have been also proved.

In [4] the concept of extremal sets of initial conditions on the basis of directional
stability has been proposed and effective numerical methods for the problem of
charge particles beam optimization have been developed. In works [6–10] this
approach has been generalized. The topological properties of maximum sets of
practical stability have been studied including the systems with set-valued righthand
part. In the case of linear systems and inclusions under convex phase constraints
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different techniques (based on Minkowski functions, support functions etc.) in order
to describe the optimal sets have been used. In [11] the necessary and sufficient
conditions of practical stability via Lyapunov functions has been obtained. The
problem of practical stabilization have been studied in [3, 4, 11–13]. Different
problems concerning qualitative analysis and control for differential inclusions and
other classes of dynamic systems have been investigated in [14–23].

In this paper we introduce the following basic notations: Rn is an n-dimensional
Euclidean space; 〈x, y〉 is the usual inner product of x, y ∈ R

n, ‖x‖ = √〈x, x〉;
Kr(a) is the ball in R

n,Kr(a) = {x ∈ R
n : ‖x − a‖ ≤ r}, S = {x ∈ R

n : ‖x‖ = 1},
and E (a,Q) is the ellipsoid in R

n,

E (a,Q) =
{
x ∈ R

n :
〈
Q−1(x − a), x − a

〉
≤ 1

}
,

where Q is symmetric positive definite n × n-matrix, a ∈ R
n, r > 0; M∗ is the

transpose of n × m-matrix M; graph f is the graph of a mapping f ; coψ f is
the convex hull of a function f with respect to ψ; intA, ∂A are respectively the
set of inner points and the boundary, A ⊂ R

n; comp(Rn) (conv(Rn)) is the set of
nonempty (convex) compact subsets of Rn; α(A,B) is the Hausdorf distance for
A,B ⊂ R

n, ‖A‖ = α(A, 0), c(A,ψ) = supx∈A 〈x,ψ〉 is the support function,ψ ∈
R
n. Let A ⊂ R

n be a star shaped set, 0 ∈ intA. We denote by m(A, x) = inf{λ >
0 : x ∈ λA} the Minkowski function, and by k(A, x) = sup{λ > 0 : λx ∈ A} the
inverse Minkowski function of the set A, x ∈ R

n. If the inverse Minkowski function
is defined only on the unit sphere S, we will call it the deformation function of the
set A.

We consider differential inclusion

dx

dt
∈ F(x, t), (20.1)

where x ∈ R
n is an n-dimensional vector of phase coordinate, (x, t) ∈ D,

D ⊂ R
n+1 is a bounded domain. The set-valued mapping F : D → conv(Rn)

is measurable with respect to variable t and satisfies the Lipschitz condition

α(F (x, t), F (y, t)) ≤ L(t)‖x − y‖.

Here L(t) is a positive integrable function, (x, t) ∈ D, (y, t) ∈ D, F(0, t) = 0,
(0, t) ∈ D. The map F is integrably bounded. It means that there exists an integrable
positive function λ(·) so that

F(x, t) ⊆ λ(t)K1(0), (x, t) ∈ D.

Let x(t, z, s) be a solution of (20.1) corresponding to the Cauchy condition
x(s) = z, Ω(·, z, s) be a solutions set, andX(t, z, s) be an attainability set of (20.1),
where x(s) = z. The attainability set X(t, z, s) generates set-valued mappings
X(·, z, s) : t �→ X(t, z, s), X(t, ·, s) : z �→ X(t, z, s), (z, s) ∈ D. A multifunction
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Φ : [t0, T ] → comp(Rn) prescribes state constraints, graph of the mapping Φ

belongs to D, 0 ∈ intΦ(t), t ∈ [t0, T ], G0 ⊂ R
n is a set of initial conditions,

0 ∈ G0.
We define four modes of practical stability of differential inclusion (20.1):

internal, external, weakly internal, and weakly external.

Definition 20.1 We say, that the equilibrium position x(t) = 0 of differential inclu-
sion (20.1) is {G0,Φ(t), t0, T }—internally stable, if arbitrary solution x(t, x0, t0)

of (20.1) belongs to Φ(t) for any point x0 ∈ G0, and for all t ∈ [t0, T ].
Definition 20.2 The solution x(t) = 0 of (20.1) is called weakly {G0,Φ(t), t0, T }-
internally stable if for arbitrary x0 ∈ G0 there exists a solution x(·, x0, t0) of
differential inclusion (20.1) such, that x(t, x0, t0) ∈ Φ(t), t ∈ [t0, T ].

Let E0 ⊆ R
n be a set containing zero point.

Definition 20.3 If for any x0 ∈ E0 and for all solutions x(·, x0, t0) of differential
inclusion (20.1) there exists a point t ∈ [t0, T ] so that x(t, x0, t0) ∈ Φ(t)

then the equilibrium position x(t) = 0 of differential inclusion (20.1) is called
{E0,Φ(t), t0, T }-externally stable.

Definition 20.4 The equilibrium position x(t) = 0 of (20.1) is said to be
{E0,Φ(t), t0, T }-weakly external stable if for arbitrary x0 ∈ E0 there exist t ∈
[t0, T ] and a solution x(·, x0, t0) of inclusion (20.1) such that x(t, x0, t0) belongs to
Φ(t).

On the basis of Definition 20.1 we state the following problems:

1. given G0, Φ, and [t0, T ]. Verify if the equilibrium position x(t) = 0 of
differential inclusion (20.1) is {G0,Φ(t), t0, T }—internally stable;

2. given Φ, [t0, T ]. Find the maximum set G∗ ⊆ Φ(t0) such that the equilibrium
position x(t) = 0 of differential inclusion (20.1) is {G∗,Φ(t), t0, T }—internally
stable;

3. given Φ, [t0, T ], and the set of initial conditions G0(a) ⊆ Φ(t0) depends on
some parameter a. Find all parameter a values so that the zero solution x(t) = 0
of differential inclusion (20.1) is {G0(a),Φ(t), t0, T }—internally stable;

4. given G0, [t0, T ], the states constraints Φ(t, b) depends on some parameter b,
t ∈ [t0, T ]. Find all parameter b values so that he equilibrium position x(t) = 0
of differential inclusion (20.1) is {G0(a),Φ(t, b), t0, T }—internally stable;

5. givenG0,Φ, t0. Find the maximum T such that the equilibrium position x(t) = 0
of differential inclusion (20.1) is {G0,Φ(t), t0, T }—internally stable.

One can state the same problems for weak internal, external, and weak external
modes of practical stability by a similar way. It turns out that the problem of finding
the maximum set is central in the following sense: the solution of other problems is
based on the properties of the maximum set.

Bellow we discuss some topological properties of the maximum sets of initial
conditions for four types of practical stability (internal, weak internal, external,
weak external) and the necessary and sufficient conditions of inner practical stability
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using the optimal Lyapunov function. Further we offer the analytical forms of the
maximum sets of initial conditions representation in the linear differential inclusion
case. In the last section we consider the problem of practical stabilization.

20.2 Maximum Set of Initial Conditions: Nonlinear Case

20.2.1 Internal Practical Stability

In this subsection we describe properties of a set G∗ ⊆ Φ(t0). The set G∗
consists of all points x0 ∈ Φ(t0) such that any solution x(·, x0, t0) of differential
inclusion (20.1) belongs to Φ(t) for all t ∈ [t0, T ]. We will call G∗ the maximum
set of internal practical stability [6, 7, 9]. One can observe that Definition 20.1 takes
place if G0 ⊆ G∗. Consider the following assertions [6, 7, 9].

Theorem 20.1 Suppose that the set-valued mapping Φ is closed; then G∗ is
compact.

Theorem 20.2 Assume Φ is upper semicontinuous. Then x0 ∈ ∂G∗ if and only if
X(t, x0, t0) ⊆ Φ(t), t ∈ [t0, T ] and tubeX(·, x0, t0) ∩ tubeΦ �= ∅.

Here tubeΦ denotes a tube of the mapping Φ. It consists of all points z ∈
∂graphΦ such that there exists a sequence zk ∈ R

n×[t0, T ], zk /∈ graphΦ tending
to z as k → ∞.

Corollary 20.1 Let the set-valued mappingΦ be upper semicontinuous and quasi-
open; then x0 ∈ ∂G∗ if and only if X(t, x0, t0) ⊆ Φ(t) for all t ∈ [t0, T ] and there
exists a solution x(·, x0, t0) of differential inclusion (20.1) and s ∈ [t0, T ] so that
x(s, x0, t0) ∈ ∂Φ(s).

Notice that under the corollary conditions x0 ∈ intG∗ iffX(t, x0, t0) ⊂ intΦ(t),
t ∈ [t0, T ]. Suppose that the mapping Φ is continuous and quasi-open, t ∈ [t0, T ].
Consider a continuous function ϕ ∈ C(Rn × [t0, T ]) such that ϕ(y, t) < 1, y ∈
intΦ(t); ϕ(y, t) = 1 if y ∈ ∂Φ(t); ϕ(y, t) > 1, y /∈ Φ(t).

Theorem 20.3 The function

ξ(z) = max
t∈[t0,T ] max

y∈X(t,z,t0)
ϕ(y, t)

is continuous, ξ(z) < 1, z ∈ intG∗; ξ(z) = 1 if z ∈ ∂G∗; ξ(z) > 1, z /∈ G∗,
t ∈ [t0, T ].

Define the set-valued function Φ on a set [t̄ , T̄ ]. We assume as above that Φ
is continuous and quasi-open. It is clear that the optimal set of internal practical
stability depends on points t0, T . Denote by θ the map of [t̄ , T̄ ]×[t̄ , T̄ ] to comp(Rn)

such that θ(t0, T ) = G∗ for all t0, T ∈ [t̄ , T̄ ], t0 < T .
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Theorem 20.4 The map θ is continuous.

Consider a parametric class of multifunctions Φ(u) taking each t ∈ [t0, T ] to a
compact setΦ(t, u) in R

n, u ∈ U . HereU ⊆ R
m is a closed domain, graphΦ(u) ⊂

D. In this case the optimal set of practical stability under the phase constraints given
by Φ(u) depends on u ∈ U . We denote this set by G∗(u). Suppose that the set-
valued function (t, u) �→ Φ(t, u) is continuous in u and upper semicontinuous with
respect to t , 0 ∈ Φ(t, u), t ∈ [t0, T ], u ∈ U . If graphΦ(u) ⊆ graphΦ(v), then
G∗(u) ⊆ G∗(v), u ∈ U , v ∈ U . We propose the following statements.

Theorem 20.5 The set-valued mapping F : u �→ G∗(u) is continuous, u ∈ U .
If there exists ε > 0 such that Φ(t, u) + εK1(0) ⊆ Φ(t, v), t ∈ [t0, T ], then
G∗(u) ⊂ intG∗(v), u ∈ U , v ∈ U .

Theorem 20.6 Suppose graphΦ(u) ⊆ graphΦ(v), tubeΦ(u) ∩ tubeΦ(v) = ∅;
then G∗(u) ⊂ intG∗(v), u ∈ U , v ∈ U .

Now we discuss the necessary and sufficient condition of internal practical
stability via the Lyapunov function [11].

Theorem 20.7 The zero solution of differential inclusion (20.1) is {G0,Φ(t),

t0, T }—internally stable, if and only if there exists a continuous function V : D →
R

1 such that the following conditions take place:

1)

G0 ⊆ {
x ∈ R

n : V (x, t0) ≤ 1
} ;

2)

{
x ∈ R

n : V (x, t) ≤ 1
} ⊆ Φ(t), t ∈ [t0, T ];

3) V (x(t), t) is nonincreasing function, where x(t) is a solution of differential
inclusion (20.1).

The function V (x, t) in Theorem 20.7 is called the Lyapunov function. One of
the possibilities to construct the Lyapunov function is as follows [11]. Consider a
function g : Rn → R

1 having the following properties: g(x) < 1, if x ∈ intG∗;
g(x) = 1, if x ∈ ∂G∗; g(x) > 1, x /∈ G∗. For instance, g(x) = 1 − ρ(x), if
x ∈ G∗; 1 + ρ(x), if x /∈ G∗ satisfies the requirements. Here ρ(x) = ρ(x, ∂G∗) is
the distance from x ∈ R

n to ∂G∗. The function

V (y, t) = min
x(·)∈Ω(·,y,t)g(x(t0)) = min

z∈X(t0,y,t)
g(z)

satisfies conditions 1–3 of Theorem 20.7. Since we use the optimal set of practical
stability G∗ to construct V (y, t), we call such a function the optimal Lyapunov
function.
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Another way to find V (y, t) satisfying Theorem 20.7 conditions consists of using
the set G0 instead of G∗. Let G0 ∈ comp(Rn). Define a continuous function g0 :
R
n → R

1 such that g0(x) < 1, if x ∈ intG0; g0(x) = 1, if x ∈ ∂G0; g0(x) > 1,
x /∈ G0. To prove the necessity of Theorem 20.7 we can use the function

V (y, t) = min
x(·)∈Ω(·,y,t)g0(x(t0)) = min

z∈X(t0,y,t)
g0(z).

For instance, if G0 = Kr(0), then

V (y, t) = min
z∈X(t0,y,t)

‖z‖ + r − 1

Corollary 20.2 Suppose that there exists a continuously differentiable function V :
D → R

1 such that conditions 1, 2 of Theorem 20.7 hold and upper derivative due
to differential inclusion (20.1)

(
dV

dt

)

(20.1)
= ∂V (x, t)

∂t
+ max

v∈F(x,t)
〈gradxV (x, t), v〉 ≤ 0

on {(x, t) ∈ D : V (x, t) ≥ 1}. Then the zero solution of differential inclusion (20.1)
is {G0,Φ(t), t0, T }—internally stable.

20.2.2 Weak Internal Practical Stability

In this subsection we offer the main properties of optimal set of weak internal
practical stability I∗ ⊆ Φ(t0) [6, 7, 9]. This set consists of all initial points x0 ∈
Φ(t0) such that there exists a solution x(·, x0, t0) of differential inclusion (20.1)
belonging to Φ(t) for all t ∈ [t0, T ]. Obviously if G0 ⊆ I∗, then Definition 20.2 is
true.

Assume that the mapping Φ is upper semicontinuous [6, 7, 9].

Theorem 20.8 The set I∗ is contained in comp(Rn).

Theorem 20.9 Suppose that x0 ∈ ∂I∗ and x = x(·, x0, t0) ∈ X(·, x0, t0) is a
solution of differential inclusion (20.1) such that x(t, x0, t0) ∈ Φ(t), t ∈ [t0, T ];
then graph x ∩ tubeΦ �= ∅.
Definition 20.5 We will say that x = x(·, z0, t0) ∈ X(·, z0, t0) is consistent with Φ
if graph x ⊂ graphΦ and there exists a sequence zk → z0, k = 1, 2, . . . such that
graph xk/graphΦ �= ∅ for any xk ∈ Ω(·, zk, t0), k = 1, 2, . . ..

Theorem 20.10 Suppose x0 ∈ I∗ and the following conditions hold:

1. graph x ∩ tubeΦ �= ∅ for all x = x(·, x0, t0) ∈ Ω(·, x0, t0) such that
x(t, x0, t0) ∈ Φ(t), t ∈ [t0, T ];
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2. there exists a consistent with Φ solution x(·, x0, t0) ∈ Ω(·, x0, t0) of differential
inclusion (20.1);

then x0 ∈ ∂I∗.

20.2.3 Weak External Practical Stability

We consider the set E∗ ⊆ R
n of all points x0 ∈ R

n such that there is a solution
x(·, x0, t0) to differential inclusion (20.1) and a time t ∈ [t0, T ] such that x(t, x0, t0)

lies in Φ(t). The set E∗ is called the maximum set of weak external practical
stability [6, 7, 9].

Theorem 20.11 Let Φ be upper semicontinuous; then the set E∗ is compact.

Theorem 20.12 SupposeΦ is upper semicontinuous andX(t, x0, t0)∩ intΦ (t) �=
∅ in a time t ∈ [t0, T ]; then x0 ∈ intE∗.

Denote I (Φ) = graphΦ/tubeΦ and assume that for arbitrary z ∈ tubeΦ any
neighborhood of z contains a point from I (Φ).

Theorem 20.13 Let Φ be upper semicontinuous and quasi-open. If x0 ∈ intE∗,
then graph x(·) ∩ I (Φ) �= ∅ for all x(·) ∈ Ω(·, x0, t0).

Corollary 20.3 Let Φ be upper semicontinuous and quasi-open. The initial point
x0 ∈ intE∗ if and only if graph x(·) ∩ I (Φ) �= ∅ for all x(·) ∈ Ω(·, x0, t0).

20.2.4 External Practical Stability

We denote by D∗ the maximum set of external practical stability [6, 7, 9]. The set
D∗ consists of all points x0 ∈ R

n such that for any solution x(·, x0, t0) of differential
inclusion (20.1) there exists a time t ∈ [t0, T ] such that x(t, x0, t0) ∈ Φ(t). Let Φ
be upper semicontinuous

Theorem 20.14 The set D∗ is compact. If x0 ∈ ∂D∗, then there exists a solution
x(·) ∈ Ω(·, x0, t0) to differential inclusion (20.1) such that graph x(·)∩graphΦ �=
∅, graph x(·) ∩ I (Φ) = ∅.
Definition 20.6 We say that x = x(·, z0, t0) ∈ Ω(·, z0, t0) is consistent with the
mapping Φ exterior if graph x ∩ graphΦ �= ∅ and there exists a sequence xk ∈
Ω(·, zk, t0) tending uniformly to x, k = 1, 2, . . ., and graph xk ∩ graphΦ = ∅.
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Theorem 20.15 Assume that x0 ∈ D∗ and there exists a consistent with the
mapping Φ exterior solution x = x(·, x0, t0) ∈ Ω(·, x0, t0) of differential
inclusion (20.1) such that graph x(·) ∩ graphΦ �= ∅, graph x(·) ∩ I (Φ) = ∅;
then x0 ∈ ∂D∗.

20.3 Maximum Set of Initial Conditions: Linear Case

In this section we consider linear differential inclusion

dx

dt
∈ A(t)x + U(t), (20.2)

where x ∈ R
n is an n-dimensional vector of phase coordinate, A(t) is a measurable

integrally bounded n×n-matrix,U : [t0, T ] → comp(Rn) is a measurable bounded
set-valued mapping, 0 ∈ intU(t). We denote by Θ(t, s) a fundamental matrix of
the linear system dx

dt
= A(t)x normalized at the point s so that Θ(s, s) = I , where

I is the identity n× n-matrix.
The attainability set of (20.2) satisfies the Cauchy-like formula [21]

X(t, x0, t0) = Θ(t, t0)x0 + Q(t), and it is convex and compact. In (20.2)
Q(t) = ∫ t

t0
Θ(t, s)U(s)ds, where integral is considered in Aumann meaning.

A continuous multifunction Φ : [t0, T ] → conv(Rn) prescribes phase constraints,
Q(t) ⊂ intΦ(t), t ∈ [t0, T ].

Let us denote byΣ(U) the set of measurable integrable selections of the mapping
U , q(t, u) = ∫ t

t0
Θ(t, s)u(s)ds, u ∈ Σ(U), P(�) = {ψ ∈ S : 〈Θ∗(t, t0)ψ, �〉 > 0},

� ∈ S. The following assertion is true [6, 7, 9].

Theorem 20.16 The maximum set of internal stabilityG∗ is convex and 0 ∈ intG∗.
The support function, the Minkowski function, and the deformation function of the
set G∗ are given as follows:

c(G∗, ψ) = coψ min
t∈[t0,T ]

c(Φ(t)
∗−Q(t), z(t, ψ)), ψ ∈ R

n,

dz(t, ψ)

dt
= −A∗(t)z(t, ψ), z(t0, ψ) = ψ, t ∈ [t0, T ]; (20.3)

m(G∗, x0) = max
t∈[t0,T ]

max
ψ∈S

〈Θ∗(t, t0)ψ, x0〉
c(Φ(t), ψ)− c(Q(t), ψ)

, x0 ∈ R
n;

k(G∗, �) = min
t∈[t0,T ]

min
ψ∈P(�)

c(Φ(t), ψ) − c(Q(t), ψ)

〈Θ∗(t, t0)ψ, �〉 , � ∈ S.
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Here Φ(t)
∗−Q(t) is the Minkowski difference between Φ(t) and Q(t). Notice that

G∗ is symmetric if U(t) and Φ(t) are symmetric for all t ∈ [t0, T ].
Theorem 20.16 gives possibility to represent the maximum set of internal

practical stability as follows [6, 7, 9]

G∗ = ∩ψ∈SL(ψ) = {
x ∈ R

n : m(G∗, x) ≤ 1
} = ∪�∈SI (�)

where L(ψ) = {x ∈ R
n : 〈x,ψ〉 ≤ c(G∗, ψ)}, I (�) = ∪k∈[0,k(G∗,�)]k�. Consider a

particular case U(t) = E(0,H(t)). Here H(t) is a continuous symmetric positive
definite n× n-matrix. The following assertion holds [11].

Theorem 20.17 We suppose thatG0 = E(0, R0),

min
t∈[t0,T ] min

ψ∈S

(
c(Φ(t), ψ) − √〈R(t)ψ,ψ〉

)
≥ 0,

an n×n- matrixR(t) is a positive definite solution of the matrix differential equation
dR(t)

dt
= A(t)R(t) + R(t)A∗(t)+ qR(t)+ q−1H(t), R(t0) = R0, t ∈ [t0, T ],

q > 0, R0 is a symmetric positive definite n× n-matrix. Then the trivial solution of
differential inclusion (20.2) is {G0,Φ(t), t0, T }—internally stable.

Let the righthand part of differential inclusion (20.2) be time-independent. It
means that A(t) = A, H(t) = H , t ∈ [t0, T ], where A is n × n—matrix, H is
a symmetric positive definite n × n-matrix. In this case the following statement is
true [11].

Theorem 20.18 Suppose that

min
t∈[t0,T ] min

ψ∈S

(
c(Φ(t), ψ) − √〈Rψ,ψ〉

)
≥ 0,

an n× n- matrix R is positive definite and satisfies the matrix equation

AR + RA∗ + qR + q−1H = 0, q > 0,

and R − R−1
0 is a nonnegative definite matrix. Here R0 is a symmetric positive

definite n × n-matrix, G0 = E(0, R0). Then the trivial solution of differential
inclusion (20.2) is {G0,Φ(t), t0, T }—internally stable.

Now we discuss some properties of maximum sets of initial conditions for weak
internal practical stability, weak external practical stability, and external practical
stability of the trivial solution (20.2) under the state constraints given by the
multifunction Φ [6, 7, 9].
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Theorem 20.19 The maximum set of weak internal stability I∗ is convex and

c(I∗, ψ) = coψ max
u∈Σ(U)

min
t∈[t0,T ]

c(Φ(t)− q(t, u), z(t, ψ)), ψ ∈ R
n;

m(I∗, x0) = min
u∈Σ(U)

max
t∈[t0,T ]

max
ψ∈S

〈Θ∗(t, t0)ψ, x0〉
c(Φ(t)− q(t, u), ψ)

, x0 ∈ R
n;

k(I∗, �) = max
u∈Σ(U)

min
t∈[t0,T ]

min
ψ∈P(�)

c(Φ(t)− q(t, u), ψ)

〈Θ∗(t, t0)ψ, �〉 , � ∈ S.

Here z(t, ψ) satisfies (20.3).

If U(t) and Φ(t) are symmetric, t ∈ [t0, T ], then I∗ is symmetric.

Theorem 20.20 The maximum set of weak external practical stability E∗ is star
shaped. The support function, the Minkowski function, and the deformation function
of E∗ are given as follows:

c(E∗, ψ) = coψ max
t∈[t0,T ]

c(Φ(t)+ (−1) ·Q(t), z(t, ψ)), ψ ∈ R
n;

m(E∗, x0) = min
t∈[t0,T ]

max
ψ∈S

〈Θ∗(t, t0)ψ, x0〉
c(Φ(t), ψ) − c(Q(t), ψ)

, x0 ∈ R
n;

k(E∗, �) = max
t∈[t0,T ]

min
ψ∈P(�)

c(Φ(t), ψ) − c(Q(t), ψ)

〈Θ∗(t, t0)ψ, x0〉 , � ∈ S.

Here z(t, ψ) satisfies (20.3).

As it was in the previous case if U(t) and Φ(t) are symmetric, t ∈ [t0, T ], then E∗
is symmetric.

Theorem 20.21 The maximum set of external practical stability D∗ is star shaped
and

c(D∗, ψ) = coψ min
u∈Σ(U) max

t∈[t0,T ]
c(Φ(t)− q(t, u), z(t, ψ)), ψ ∈ R

n;

m(D∗, x0) = max
u∈Σ(U)

min
t∈[t0,T ]

max
ψ∈S

〈Θ∗(t, t0)ψ, x0〉
c(Φ(t)− q(t, u), ψ)

, x0 ∈ R
n;

k(D∗, �) = min
u∈Σ(U) max

t∈[t0,T ]
min

ψ∈P(�)
c(Φ(t)− q(t, u), ψ)

〈Θ∗(t, t0)ψ, �〉 , � ∈ S.

Here z(t, ψ) satisfies (20.3).
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20.4 Internal Practical Stabilization

We consider differential inclusion

dx

dt
∈ F(x, t)+G(t)u(x, t), (20.4)

where (x, t) ∈ D, D ⊂ R
n+1 is a bounded domain, a set-valued mapping F : D →

conv(Rn) is measurable in t , upper semicontinuous in x, F(0, t) = 0, (0, t) ∈ D

and integrably bounded on D. Further,G(t) is integrable n×m-matrix, u(x, t) is an
m- dimensional control function, u(0, t) = 0. We assume that u(x, t) is integrably
bounded on D, continuous with respect to variable x being measurable with respect
to t .

A multifunctionΦ : [t0, T ] → comp(Rn) prescribes phase constraints, the graph
of the mapping Φ belongs to D, 0 ∈ intΦ(t), t ∈ [t0, T ], G0 ⊂ Φ(t0). Suppose,
that there exists a continuously differentiable function V : D → R

1 such that

Φ(t) = {
x ∈ R

n : V (x, t) ≤ 1
}
, t ∈ [t0, T ],

and V (0, t) = 0, gradxV (0, t) = 0 on [t0, T ]. We assume that the maximum set
of internal practical stability of the zero solution of (20.1) does not contain G0. The
problem of {G0,Φ(t), t0, T }—internal stabilization for differential inclusion (20.4)
consists of finding the admissible control function u(x, t) such that the zero solution
to (20.4) is {G0,Φ(t), t0, T }—internally stable.

Theorem 20.22 ([11]) Suppose thatW(x, t) is a continuous nonnegative function
on D and

|W(x, t)+ ∂V (x, t)

∂t
+ c(F (x, t), gradxV (x, t))| ≤ C

∥∥G∗(t)gradxV (x, t)
∥∥2
,

C > 0. Then the control function

u(x, t) =
{
(k(x, t)I + P)G∗(t)gradxV (x, t), if G∗(t)gradxV (x, t) �= 0,

0, if G∗(t)gradxV (x, t) = 0
(20.5)

solves the problem of {G0,Φ(t), t0, T }—internal stabilization for differential inclu-
sion (20.4). Here P = −P ∗ is an arbitrary m×m—matrix,

k(x, t) = −W(x, t)+ ∂V (x,t)
∂t

+ c(F (x, t), gradxV (x, t))

‖G∗(t)gradxV (x, t)‖2 . (20.6)
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Consider linear differential inclusion

dx

dt
∈ Ω(t)x +G(t)u(x, t). (20.7)

Here Ω : [t0, T ] → comp(Rn×n) is a measurable integrably bounded
multifunction. In other words, there exists an integrable positive function λ(·) so
that Ω(t) ⊆ λ(t)B, t ∈ [t0, T ], where B is the unit ball in R

n×n, Rn×n is space of
n× n- matrices with real components.

The solution of {G0,Φ(t), t0, T }—internal stabilization problem for differential
inclusion (20.7) is given by Theorem 20.22, where

|W(x, t) + ∂V (x, t)

∂t
+ c(Ω(t), gradxV (x, t)x

∗)| ≤ C
∥∥G∗(t)gradxV (x, t)

∥∥2
,

k(x, t) = −W(x, t) + ∂V (x,t)
∂t

+ c(Ω(t), gradxV (x, t)x
∗)

‖G∗(t)gradxV (x, t)‖2 . (20.8)

Here c(Ω(t), Ψ ) = maxA∈Ω(t) tr(A∗Ψ ) is a support function, Ψ ∈ R
n×n.

Example 20.1 Suppose that in (20.7) G(t) = I , V (x, t) = 1
2 〈Mx, x〉, W(x, t) =

〈Nx, x〉,

Ω(t) =
{
A ∈ R

n×n : tr(A∗Q−1A) ≤ 1
}
,

where Q, M , N are symmetric positive definite n × n—matrices. Then
from (20.5), (20.8) it follows that

u(x) =
{

2(k(x)I + P)G∗Mx, if x �= 0,

0, if x = 0
(20.9)

gives a solution of {G0,Φ(t), t0, T }—internal stabilization problem for differential
inclusion (20.7) where

k(x) = −〈Nx, x〉 + ‖x‖√〈M∗QMx, x〉
‖Mx‖2 .

Example 20.2 Let under Example 20.1 conditions

Ω(t) =
{
A = (aij )

n
i,j=1 ∈ R

n×n : |aij | ≤ rij

}
,
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rij > 0. Then the control function (20.9) solves {G0,Φ(t), t0, T }—internal
stabilization problem for differential inclusion (20.7) if

k(x) = −〈Nx, x〉 + ∑n
i,j=1 rij |xjm∗

i x|
‖Mx‖2

.

Here mi ∈ R
n is the i-th row of the matrix M , i = 1, 2, . . . , n.
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Chapter 21
Asymptotic Translation Uniform
Integrability and Multivalued Dynamics
of Solutions for Non-autonomous
Reaction-Diffusion Equations

Michael Z. Zgurovsky, Pavlo O. Kasyanov, Nataliia V. Gorban,
and Liliia S. Paliichuk

Abstract In this note we introduce asymptotic translation uniform integrability
condition for a function acting from a positive semi-axes of time-line to a Banach
space. We prove that this condition is equivalent to uniform integrability condition.
As a result, we obtain the corollaries for the multivalued dynamics (as time t →
+∞) of solutions for non-autonomous reaction-diffusion equations.

21.1 Introduction

Let R = [0,+∞), γ ≥ 1, and E be a real separable Banach space. As Lloc
γ (R+; E )

we consider the Fréchet space of all locally integrable functions with values in E ,
that is, ϕ ∈ Lloc

γ (R+; E ) if and only if for any finite interval [τ, T ] ⊂ R+ the
restriction of ϕ on [τ, T ] belongs to the space Lγ (τ, T ; E ). If E ⊆ L1(Ω), then any
function ϕ from Lloc

γ (R+; E ) can be considered as a measurable mapping that acts
fromΩ×R+ into R. Further, we write ϕ(x, t), when we consider this mapping as a
function fromΩ×R+ into R, and ϕ(t), if this mapping is considered as an element
from Lloc

γ (R+; E ); cf. Gajewski et al. [5, Chapter III]; Temam [10]; Babin and
Vishik [1]; Chepyzhov and Vishik [3]; Zgurovsky et at. [12] and references therein.
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A function ϕ ∈ Lloc
γ (R+; E ) is called translation bounded in Lloc

γ (R+; E ), if

sup
t≥0

t+1∫

t

‖ϕ(s)‖γE ds < +∞; (21.1)

Chepyzhov and Vishik [4, p. 105].
Let N = 1, 2, . . . and Ω ⊂ R

N be a bounded domain. A function
ϕ ∈ Lloc

1 (R+;L1(Ω)) is called translation uniform integrable one (t.u.i.) in
Lloc

1 (R+;L1(Ω)), if

lim
K→+∞ sup

t≥0

t+1∫

t

∫

Ω

|ϕ(x, s)|χ{|ϕ(x,s)|≥K}dxds = 0; (21.2)

Gorban et al. [6–9]. Dunford-Pettis compactness criterion provides that a function
ϕ ∈ Lloc

1 (R+;L1(Ω)) is t.u.i. in Lloc
1 (R+;L1(Ω)) if and only if for every

sequence of elements {τn}n≥1 ⊂ R+ the sequence {ϕ( · + τn)}n≥1 contains a
subsequence which converges weakly in Lloc

1 (R+;L1(Ω)). We note that for any
γ > 1 Hölder’s and Chebyshev’s inequalities imply that every translation bounded
in Lloc

γ (R+;Lγ (Ω)) function is t.u.i. in Lloc
1 (R+;L1(Ω)), because

t+1∫

t

∫

Ω

|ϕ(x, s)|χ{|ϕ(x,s)|≥K}dxds ≤ 1

Kγ−1 sup
t≥0

t+1∫

t

∫

Ω

|ϕ(x, s)|γ dxds → 0 as K → +∞.

Let us introduce the definition of asymptotic translation uniform integrable function.

Definition 21.1 A function ϕ ∈ Lloc
1 (R+;L1(Ω)) is called asymptotic translation

uniform integrable one (a.t.u.i.) in Lloc
1 (R+;L1(Ω)), if

lim
K→+∞ lim

t→+∞

t+1∫

t

∫

Ω

|ϕ(x, s)|χ{|ϕ(x,s)|≥K}dxds = 0. (21.3)

Remark 21.1 The limit (asK → +∞) in (21.2) ((21.3)) exists because the function

K �→ sup
t≥0

(
lim

t→+∞
) t+1∫

t

∫

Ω

|ϕ(x, s)|χ{|ϕ(x,s)|≥K}dxds (21.4)

is nonincreasing in K > 0.

The main result of this note has the following formulation.
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Theorem 21.1 Let ϕ ∈ Lloc
1 (R+;L1(Ω)). Then there exists T̃ ≥ 0 such that

ϕ( · + T̃ ) is t.u.i. in Lloc
1 (R+;L1(Ω)) iff ϕ is a.t.u.i. in Lloc

1 (R+;L1(Ω)).

In Sect. 21.3 we apply Theorem 21.1 to non-autonomous nonlinear reaction-
diffusion system.

21.2 Proof of Theorem 21.1

Let us prove Theorem 21.1. The t.u.i. of ϕ( · + T̃ ) for some T̃ ≥ 0 implies a.u.t.i. of
ϕ( · ) because for each sequence {an}n=1,2,... ⊂ R its limit superior is no greater than
its supremum, that is, (21.2) implies (21.3). Let us prove the converse statement: if
ϕ( · ) is a.t.u.i., then ϕ( · + T̃ ) is t.u.i. for some T̃ ≥ 0. We provide the proof in
several steps.

Step 1 The following equalities hold:

0 = lim
K→+∞ lim

t→+∞

t+1∫

t

∫

Ω

|ϕ(x, s)|χ{|ϕ(x,s)|≥K}dxds

= inf
K>0

inf
T≥0

sup
t≥T

t+1∫

t

∫

Ω

|ϕ(x, s)|χ{|ϕ(x,s)|≥K}dxds

= inf
T≥0

inf
K>0

sup
t≥T

t+1∫

t

∫

Ω

|ϕ(x, s)|χ{|ϕ(x,s)|≥K}dxds.

(21.5)

Indeed, the first equality follows from a.t.u.i. of ϕ( · ), the second equality holds
because the mapping

K �→ lim
t→+∞

t+1∫

t

∫

Ω

|ϕ(x, s)|χ{|ϕ(x,s)|≥K}dxds

is nonincreasing and for each a : [0,+∞) �→ R the equality

lim
t→+∞ a(t) = inf

T≥0
sup
t≥T

a(t)

holds, and the last equality follows from the basic properties of infimum.
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Step 2 We set

δ(T ) := inf
K>0

sup
t≥T

t+1∫

t

∫

Ω

|ϕ(x, s)|χ{|ϕ(x,s)|≥K}dxds, (21.6)

T ≥ 0, and notice that (21.5) directly implies the existence of T̃ ≥ 0 such that

δ(T ) < +∞ for each T ≥ T̃ and δ(T ) ↘ 0 as T → ∞. (21.7)

Step 3 According to (21.6) and (21.7), for each T ≥ T̃ there exists KT > 0 such
that

sup
t≥T

t+1∫

t

∫

Ω

|ϕ(x, s)|χ{|ϕ(x,s)|≥K}dxds < δ(T )+ 1

T
< +∞, (21.8)

for each K ≥ KT .

Step 4 Since for each n = 0, 1, . . .

T̃+n+1∫

T̃+n

∫

Ω

|ϕ(x, s)|dxds =
T̃+n+1∫

T̃+n

∫

Ω

|ϕ(x, s)|χ{|ϕ(x,s)|≤K
T̃
}dxds

+
T̃+n+1∫

T̃+n

∫

Ω

|ϕ(x, s)|χ{|ϕ(x,s)|≥K
T̃
}dxds

≤ KT̃ meas(Ω)+ δ(T̃ )+ 1

T̃
< +∞,

where the first inequality follows from (21.8), and the second inequality holds
because meas(Ω) < +∞, then absolute continuity of the Lebesgue integral implies
that for each T > T̃ and t ∈ [T̃ , T ] there exists K(T̃ , T ) > 0 such that

t+1∫

t

∫

Ω

|ϕ(x, s)|χ{|ϕ(x,s)|≥K}dxds ≤
T+1∫

T̃

∫

Ω

|ϕ(x, s)|χ{|ϕ(x,s)|≥K}dxds <
1

T
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for each K ≥ K(T̃ , T ), that is,

sup
t∈[T̃ ,T ]

t+1∫

t

∫

Ω

|ϕ(x, s)|χ{|ϕ(x,s)|≥K}dxds ≤ 1

N
, (21.9)

for each T > T̃ and K ≥ K̃T̃
T := sup

t∈[T̃ ,T ]
{KT ;K(T̃ , T )}.

Step 5 Inequalities (21.8) and (21.9) imply that

sup
t≥T̃

t+1∫

t

∫

Ω

|ϕ(x, s)|χ{|ϕ(x,s)|≥K}dxds < δ(T )+ 1

T
,

for each T > T̃ and K ≥ K̃T̃
T . Thus, according to (21.6),

δ(T̃ ) = inf
K>0

sup
t≥T̃

t+1∫

t

∫

Ω

|ϕ(x, s)|χ{|ϕ(x,s)|≥K}dxds < δ(T )+ 1

T
, (21.10)

for each T > T̃ .

Step 6 Since the function

K �→ sup
t≥T̃

t+1∫

t

∫

Ω

|ϕ(x, s)|χ{|ϕ(x,s)|≥K}dxds

is nonincreasing, we have that

lim
K→+∞ sup

t≥T̃

t+1∫

t

∫

Ω

|ϕ(x, s)|χ{|ϕ(x,s)|≥K}dxds = δ(T̃ ) < δ(T )+ 1

T
. (21.11)

for each T > T̃ , where the inequality follows from (21.10). According to (21.7),
δ(T )+ 1

T
↘ 0 as T → +∞. Therefore, (21.11) implies that

lim
K→+∞ sup

t≥T̃

t+1∫

t

∫

Ω

|ϕ(x, s)|χ{|ϕ(x,s)|≥K}dxds = 0,

that is, ϕ( · ) is t.u.i.
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21.3 Examples of Applications

Let N,M = 1, 2, . . ., Ω ⊂ R
N be a bounded domain with sufficiently smooth

boundary ∂Ω . We consider a problem of long-time behavior of all globally defined
weak solutions for the non-autonomous parabolic problem (named RD-system)

{
yt = aΔy − f (x, t, y), x ∈ Ω, t > 0,
y|∂Ω = 0,

(21.12)

as t → +∞, where y = y(x, t) = (y(1)(x, t), . . . , y(M)(x, t)) is unknown vector-
function, f = f (x, t, y) = (f (1)(x, t, y), . . . , f (M)(x, t, y)) is given function, a is
real M ×M matrix with positive symmetric part.

We suppose that the listed below assumptions hold.

Assumption I Let pi ≥ 2 and qi > 1 are such that 1
pi

+ 1
qi

= 1, for any i =
1, 2, . . . , M . Moreover, there exists a positive constant d such that 1

2 (a+a∗) ≥ dI ,
where I is unit M ×M matrix, a∗ is a transposed matrix for a.

Assumption II The interaction function f = (f (1), . . . , f (M)) : Ω×R+×R
M →

R
M satisfies the standard Carathéodory’s conditions, i.e. the mapping (x, t, u) →

f (x, t, u) is continuous in u ∈ R
M for a.e. (x, t) ∈ Ω × R+, and it is measurable

in (x, t) ∈ Ω × R+ for any u ∈ R
M .

Assumption III (Growth Condition) There exist an a.t.u.i. in Lloc
1 (R+;L1(Ω))

function c1 : Ω × R+ → R+ and a constant c2 > 0 such that

M∑
i=1

∣∣∣f (i)(x, t, u)
∣∣∣
qi ≤ c1(x, t)+ c2

M∑
i=1

∣∣∣u(i)
∣∣∣
pi

for any u = (u(1), . . . , u(M)) ∈ R
M , and a.e. (x, t) ∈ Ω × R+.

Assumption IV (Sign Condition) There exists a constant α > 0 and an a.t.u.i. in
Lloc

1 (R+;L1(Ω)) function β : Ω × R+ → R+ such that

M∑
i=1

f (i)(x, t, u)u(i) ≥ α

M∑
i=1

∣∣∣u(i)
∣∣∣
pi − β(x, t)

for any u = (u(1), . . . , u(M)) ∈ R
M , and a.e. (x, t) ∈ Ω × R+.

In further arguments we will use standard functional Hilbert spaces H =
(L2(Ω))

M , V = (H 1
0 (Ω))

M , and V ∗ = (H−1(Ω))M with standard respective inner
products and norms (·, ·)H and ‖ · ‖H , (·, ·)V and ‖ · ‖V , and (·, ·)V ∗ and ‖ · ‖V ∗ ,



21 A.T.U.I. and Dynamics for Non-autonomous RD Equations 419

vector notations p = (p1, p2, . . . , pM) and q = (q1, q2, . . . , qM), and the spaces

Lp(Ω) := Lp1(Ω)× . . . × LpM (Ω), Lq(Ω) := Lq1 (Ω)× . . . × LqM (Ω),

Lp(τ, T ; Lp(Ω)) := Lp1(τ, T ;Lp1(Ω))× . . . × LpM (τ, T ;LpM (Ω)),
Lq(τ, T ; Lq(Ω)) := Lq1(τ, T ;Lq1 (Ω))× . . . × LqM (τ, T ;LqM (Ω)), 0 ≤ τ < T < +∞.

Let 0 ≤ τ < T < +∞. A function y = y(x, t) ∈ L2(τ, T ;V )∩Lp(τ, T ; Lp(Ω)) is
called a weak solution of Problem (21.12) on [τ, T ], if for any function ϕ = ϕ(x) ∈
(C∞

0 (Ω))M , the following identity holds

d

dt

∫

Ω

y(x, t) · ϕ(x)dx +
∫

Ω

{a∇y(x, t) · ∇ϕ(x)+ f (x, t, y(x, t)) · ϕ(x)}dx = 0

(21.13)

in the sense of scalar distributions on (τ, T ).
In the general case Problem (21.12) on [τ, T ] with initial condition y(x, τ ) =

yτ (x) in Ω has more than one weak solution with yτ ∈ H (cf. Balibrea et al. [2]
and references therein).

Assumptions I–IV and Chepyzhov and Vishik [4, pp. 283–284] (see also
Zgurovsky et al. [11, Chapter 2] and references therein) provide the existence of
a weak solution of Cauchy problem (21.12) with initial data y(τ) = y(τ) on
the interval [τ, T ], for any y(τ) ∈ H . The proof is provided by standard Faedo–
Galerkin approximations and using local existence Carathéodory’s theorem instead
of classical Peano results. A priori estimates are similar. Formula (21.13) and
definition of the derivative for an element from D([τ, T ];V ∗ + Lq(Ω)) yield that
each weak solution y ∈ Xτ,T of Problem (21.12) on [τ, T ] belongs to the space
Wτ,T . Moreover, each weak solution of Problem (21.12) on [τ, T ] satisfies the
equality:

∫ T

τ

∫

Ω

[
∂y(x, t)

∂t
· ψ(x, t)+ a∇y(x, t) · ∇ψ(x, t)+ f (x, t, y(x, t)) · ψ(x, t)

]
dxdt = 0,

(21.14)

for any ψ ∈ Xτ,T . For fixed τ and T , such that 0 ≤ τ < T < +∞, we denote

Dτ,T (y
(τ )) = {y(·) | y is a weak solution of (21.12) on [τ, T ], y(τ ) = y(τ )}, y(τ ) ∈ H.

We remark that Dτ,T (y
(τ)) �= ∅ and Dτ,T (y

(τ)) ⊂ Wτ,T , if 0 ≤ τ < T < +∞
and y(τ) ∈ H . Moreover, the concatenation of Problem (21.12) weak solutions is
a weak solutions too, i.e. if 0 ≤ τ < t < T , y(τ) ∈ H , y(·) ∈ Dτ,t (y

(τ)), and
v(·) ∈ Dt,T (y(t)), then

z(s) =
{
y(s), s ∈ [τ, t],
v(s), s ∈ [t, T ],

belongs to Dτ,T (y
(τ)); cf. Zgurovsky et al. [12, pp. 55–56].
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Each weak solution y of Problem (21.12) on a finite time interval [τ, T ] ⊂ R+
can be extended to a global one, defined on [τ,+∞). For arbitrary τ ≥ 0 and
y(τ) ∈ H let Dτ (y

(τ)) be the set of all weak solutions (defined on [τ,+∞))
of Problem (21.12) with initial data y(τ) = y(τ). Let us consider the family
K +
τ = ∪y(τ )∈HDτ (y

(τ)) of all weak solutions of Problem (21.12) defined on the
semi-infinite time interval [τ,+∞).

Consider the Fréchet space

Cloc(R+;H) := {y : R+ → H : Πt1,t2y ∈ C([t1, t2];H) for any [t1, t2] ⊂ R+},

where Πt1,t2 is the restriction operator to the interval [t1, t2]; Chepyzhov and Vishik
[3, p. 918]. We remark that the sequence {fn}n≥1 converges (converges weakly
respectively) in Cloc(R+;H) towards f ∈ Cloc(R+;H) as n → +∞ if and
only if the sequence {Πt1,t2fn}n≥1 converges (converges weakly respectively) in
C([t1, t2];H) towards Πt1,t2f as n → +∞ for any finite interval [t1, t2] ⊂ R+.

We denote T (h)y(·) = yh(·), where yh(t) = y(t + h) for any y ∈ Cloc(R+;H)
and t, h ≥ 0.

In the non-autonomous case we notice that T (h)K +
0 �⊆ K +

0 . Therefore (see
Gorban et al. [8]), we need to consider united trajectory space that includes all
globally defined on any [τ,+∞) ⊆ R+ weak solutions of Problem (21.12) shifted
to τ = 0:

K +
∪ :=

⋃
τ≥0

{
y( · + τ ) ∈ W loc(R+) : y( · ) ∈ K +

τ

}
. (21.15)

Note that T (h){y( · + τ ) : y ∈ K +
τ } ⊆ {y( · + τ + h) : y ∈ K +

τ+h} for any
τ, h ≥ 0. Therefore,

T (h)K +
∪ ⊆ K +

∪

for any h ≥ 0. Further we consider extended united trajectory space for Prob-
lem (21.12):

K +
C loc(R+;H) = clC loc(R+;H)

[
K +

∪
]
, (21.16)

where clC loc(R+;H)[ · ] is the closure in Cloc(R+;H). We note that

T (h)K +
C loc(R+;H) ⊆ K +

C loc(R+;H)

for each h ≥ 0, because

ρC loc(R+;H)(T (h)u, T (h)v) ≤ ρC loc(R+;H)(u, v) for any u, v ∈ Cloc(R+;H),

where ρC loc(R+;H) is a standard metric on Fréchet space Cloc(R+;H).
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Let us provide the result characterizing the compactness properties of shifted
solutions of Problem (21.12) in the induced topology from Cloc(R+;H).
Theorem 21.2 Let Assumptions I–IV hold. If {yn}n≥1 ⊂ K +

C loc(R+;H) is an arbi-

trary sequence, which is bounded in L∞(R+;H), then there exist a subsequence
{ynk }k≥1 ⊆ {yn}n≥1 and an element y ∈ K +

C loc(R+;H) such that

‖Πτ,T ynk −Πτ,T y‖C([τ,T ];H) → 0, k → +∞, (21.17)

for any finite time interval [τ, T ] ⊂ (0,+∞). Moreover, for any y ∈ K +
C loc(R+;H)

the estimate holds

‖y(t)‖2
H ≤ ‖y(0)‖2

He
−c3t + c4, (21.18)

for any t ≥ 0, where positive constants c3 and c4 do not depend on y ∈ K +
C loc(R+;H)

and t ≥ 0.

Proof This statement directly follows from Gorban et al. [8, Theorem 4.1] and
Theorem 21.1.

A set P ⊂ F loc(R+) ∩ L∞(R+;H) is said to be a uniformly attracting set
(cf. Chepyzhov and Vishik [3, p. 921]) for the extended united trajectory space
K +

F loc(R+) of Problem (21.12) in the topology of F loc(R+), if for any bounded

in L∞(R+;H) set B ⊆ K +
F loc(R+) and any segment [t1, t2] ⊂ R+ the following

relation holds:

distFt1 ,t2
(Πt1,t2T (t)B,Πt1,t2P) → 0, t → +∞, (21.19)

where distFt1 ,t2
is the Hausdorff semi-metric.

A set U ⊂ K +
F loc(R+) is said to be a uniform trajectory attractor of the

translation semigroup {T (t)}t≥0 on K +
F loc(R+) in the induced topology from

Cloc(R+;H), if

1. U is a compact set in Cloc(R+;H) and bounded in L∞(R+;H);
2. U is strictly invariant with respect to {T (h)}h≥0, i.e. T (h)U = U ∀h ≥ 0;
3. U is a minimal uniformly attracting set for K +

C loc(R+;H) in the topology of

Cloc(R+;H), i.e. U belongs to any compact uniformly attracting set P of
K +
C loc(R+;H): U ⊆ P .

Note that uniform trajectory attractor of the translation semigroup {T (t)}t≥0 on
K +
C loc(R+;H) in the induced topology from Cloc(R+;H) coincides with the classical

global attractor for the continuous semi-group {T (t)}t≥0 defined on K +
C loc(R+;H).

Assumptions I–IV are sufficient conditions for the existence of uniform trajectory
attractor for weak solutions of Problem (21.12) in the topology of Cloc(R+;H).
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Theorem 21.3 Let Assumptions I–IV hold. Then there exists an uniform trajectory
attractorU ⊂ K +

C loc(R+;H) of the translation semigroup {T (t)}t≥0 on K +
C loc(R+;H)

in the induced topology from Cloc(R+;H). Moreover, there exists a compact in
Cloc(R+;H) uniformly attracting set P ⊂ Cloc(R+;H) ∩ L∞(R+;H) for the
extended united trajectory spaceK +

C loc(R+;H) of Problem (21.12) in the topology of

Cloc(R+;H) such thatU coincides with ω-limit set ofP:

U =
⋂
t≥0

clC loc(R+;H)

⎡
⎣⋃
h≥t

T (h)P

⎤
⎦ . (21.20)

Proof This statement directly follows from Gorban et al. [8, Theorem 3.1] and
Theorem 21.1.

21.4 Conclusions

Asymptotic translation uniform integrability condition for a function acting from
positive semi-axe of time line to a Banach space is equivalent to uniform integrabil-
ity condition. As a result, we claim only asymptotic (as time t → +∞) assumptions
of translation compactness for parameters of non-autonomous reaction-diffusion
equations.
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Chapter 22
Automation of Impulse Processes Control
in Cognitive Maps with Multirate
Sampling Based on Weights Varying

Victor D. Romanenko and Yuriy L. Milyavsky

Abstract Automated control systems for multirate impulse processes in cognitive
maps are considered. Some coordinates of the cognitive map can be measured and
changed with small sampling period while others need longer sampling period.
Thus, the impulse process is decomposed into two subsystems described as first-
order difference equations systems with different sampling periods. Effects of the
fast subsystem on the slow subsystem and vice versa are considered as disturbances
which should be suppressed. Control for both subsystems is implemented not via
external inputs (i.e. varying resources of the cognitive map) but via map’s edges
varying, which means that decision-maker modifies degree of influence of one
cognitive map node on another one. Two approaches for control system design are
proposed. The first approach is based on invariant ellipsoids method which allows
robust stabilization of the system. The second approach is based on generalized
variance minimization which allows setting some of the coordinates at predefined
levels. Both approaches are verified on the real cognitive map of IT company HR
management process.

22.1 Introduction

Cognitive map (CM) is a weighted directed graph with nodes representing coor-
dinates of complex systems and edges representing relations between these coor-
dinates. In [1] dynamic process in CM is discussed, which appears as a result
of impulse disturbance at some CM node. This dynamic transient is named “CM
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impulse process” in [1]. Impulse propagation rule in CM free motion is formalized
in [1] in the form of difference equation

ΔYi(k + 1) =
n∑

j=1

aijΔYj (k), (22.1)

where ΔYi(k) = Yi(k) − Yi(k − 1), i = 1, 2, . . . , n; aij—weight of digraph edge
connecting the j -th node with the i-th one. In vector form the expression (22.1) is
written as

ΔY(k + 1) = AΔY(k), (22.2)

where A—weighted incidence matrix (n × n), ΔY—vector of CM nodes coordi-
nates’ increments Yi .

In [2–6] control of CM impulse processes in complex systems is automated by
means of external control vector design based on varying of resources associated
with CM nodes in closed-loop control systems, using known methods of discrete
controllers design. For this purpose forced motion equation under CM impulse
process is formulated:

ΔYi(k + 1) =
n∑

j=1

aijΔYj (k)+ biΔui(k), (22.3)

where Δui(k) = ui(k)− ui(k − 1)—controls increments implemented via varying
available resources of coordinates Yi(k) and affecting directly CM nodes. In vector
form Eq. (22.3) can be written as

ΔY(k + 1) = AΔY(k)+ BΔu(k). (22.4)

Here elements of matrix B which correspond to controls in vector Δu are equal to
ones, and others are zeros.

In [7] new principle of CM impulse process control design is discussed. It is
based on edges’ weights varying as control inputs in closed-loop system. This is
possible when we can change the degree of influence Δaij (k) of one CM node on
another one at the k-th sampling period. For this the following model of forced
motion of CM impulse process with unirate sampling is proposed:

ΔY(k + 1) = AΔY(k)+ L(k)Δa(k), (22.5)

where matrix L(k) is composed of measured coordinates Yμ(k), μ �= i which affect
coordinates ΔYi(k + 1) via edges with varying coefficients Δaiμ(k). To design
control vector Δa(k) quadratic criterion in the form of generalized variance is used
as optimality criterion.
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In [5, 8] control automation for complex systems’ CM impulse processes with
multirate sampling is proposed. Some of coordinates Yi(i = 1, 2, . . . , p) are
measured in discrete time with small sampling period T0 and other coordinates
Yη(η = p + 1, . . . , n) are measured with period

h = mT0, (22.6)

where m is integer greater than 1. To describe dynamics of this system impulse
processes models are proposed for sampling periods T0 and h respectively. Based on
quadratic optimality criteria fast and slow controllers are designed which generate
controls that vary resources of nodes coordinates Yi and Yη.

22.2 Problem Statement

Implementation of control system of CM impulse process based on control inputs
Δu(k) according to model (22.4) by means of varying resources of CM nodes [2–
6, 8] is fraught with difficulties because it presupposes forced varying of CM nodes
of complex system according to control law. It raises additional tensions in complex
system’s operating because of personal, antagonistic human factors.

Thus, present paper considers development of the new principal of CM impulse
processes control in closed-loop system based on weights varying (started in [7]).
We suppose that the first group of CM nodes coordinates Yf (p × 1) is measured
(fixed) with sampling period T0. These coordinates can be controlled by fast
controller via edges weights Δaf varying with period T0. The second group of
coordinates Y s is measured with sampling period h. For these coordinates control
vector Δas is generated by slow controller with period h.

To describe dynamics of forced motion of CM impulse process with multirate
sampling unirate model (22.5) is split into two parts. The first part of the model is
written as

ΔYf

[[
k

m

]
h+ (l + 1)T0

]
= A11ΔYf

[[
k

m

]
h+ lT0

]
+ A12ΔỸ s

[[
k

m

]
h

]

+Gf

[[
k

m

]
h+ lT0

]
Δaf

[[
k

m

]
h+ lT0

]
, (22.7)

where
[
k
m

]
is integer part of k

m
, l = 0, 1, . . . ,m − 1, ΔYf

[[
k
m

]
h+ lT0

] =
Yf

[[
k
m

]
h+ lT0

] − Yf
[[

k
m

]
h+ (l − 1)T0

]
is the vector (p × 1) of increments

of nodes coordinates measured with sampling period T0. Vector ΔỸ s
[[

k
m

]
h
] =

ΔYs
[[

k
m

]
h
]

for l = 0 and is zero otherwise. Coefficients increments vector
Δaf

[[
k
m

]
h+ lT0

] = af
[[

k
m

]
h+ lT0

] − af
[[

k
m

]
h+ (l − 1)T0

]
has dimension

q1. Then matrices have the following dimensions: A11(p × p), A12(p × (n − p)),
Gf (p × q1).
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The second part of the mathematical model of CM impulse process with period
h = mT0 is written as

ΔYs

[([
k

m

]
+ 1

)
h

]
= A22ΔYs

[[
k

m

]
h

]
+ A21ΔỸf

[[
k

m

]
h+ lT0

]

+Gs

[[
k

m

]
h

]
Δas

[[
k

m

]
h

]
, l = 0, 1, 2, . . . ,m− 1, (22.8)

where ΔYs
[[

k
m

]
h
] = Y s

[[
k
m

]
h
] − Y s

[([
k
m

] − 1
)
h
]

is the vector ((n − p) × 1)
of increments of CM coordinates measured with sampling period h, Δas

[[
k
m

]
h
] =

as
[[

k
m

]
h
]−as

[([
k
m

] − 1
)
h
]

is the vector (η×1) of increments of edges’ weights.

Vector ΔỸ f
[[

k
m

]
h+ lT0

]
is defined as

ΔỸf

[[
k

m

]
h+ lT0

]

= ΔYf

[[
k

m

]
h

]
+ΔYf

[[
k

m

]
h+ T0

]
+ . . .+ΔYf

[[
k

m

]
h+ (m− 1)T0

]
.

It is easy to prove that [8]

ΔỸ f

[[
k

m

]
h+ lT0

]
= Yf

[[
k

m

]
h+ (m− 1)T0

]
− Yf

[[
k

m

]
h− T0

]
.

Rule for creating matrices Gf ,Gs and vectors of weights increments Δaf ,Δas
in models (22.7), (22.8) are described in details in [7]. When decomposing initial

model (22.5) into these two parts components ΔỸ s
[[

k
m

]
h
]

in model (22.7) and

ΔỸf
[[

k
m

]
h+ lT0

]
in model (22.8) are considered as disturbances (with multirate

sampling) affecting main dynamic coordinates (state variables) of CM.
The first problem in the present work is to design multirate state controllers

to suppress constrained disturbances in impulse processes—ΔỸ s
[[

k
m

]
h
]

in model (22.7) and ΔỸf
[[

k
m

]
h+ lT0

]
in model (22.8) respectively. The

second problem is to design closed-loop control system for impulse pro-
cesses (22.7), (22.8) to shift CM nodes to different levels under effect of
disturbances with multirate sampling. Thus, to solve both problems control vectors
Δaf

[[
k
m

]
h+ lT0

]
,Δas

[[
k
m

]
h
]

in the form of CM weights increments with
multirate sampling should be designed.
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22.3 Suppression of Constrained Disturbances in Impulse
Processes with Multirate Sampling Based on Invariant
Ellipsoids Method

Probabilistic characteristics of disturbances ΔỸ s
[[

k
m

]
h
]

in the first model (22.7)

andΔỸf
[[

k
m

]
h+ lT0

]
in the second model (22.8) are unknown. So, for solving the

first problem we suppose that these disturbances are neither random nor harmonic.
Arbitrary constrained external disturbances can be suppressed in terms of invariant
ellipsoids; this technique can be found in [9, 10].

Invariant ellipsoid with respect to state variables of the model (22.7) is written as
following:

EΔYf =
{
ΔYf

[[
k

m

]
h+ lT0

]
∈ 6p :

ΔY
T

f

[[
k

m

]
h+ lT0

]
P−1
f ΔYf

[[
k

m

]
h+ lT0

]
≤ 1

}
, (22.9)

where Pf > 0 is ellipsoid matrix. This ellipsoid is invariant w.r.t. vector ΔYf if
from ΔYf (0) ∈ EΔYf it follows that ΔYf

([
k
m

]
h+ lT0

) ∈ EΔYf for all time

samples. Disturbances ΔỸ s
[[

k
m

]
h
]

in model (22.7) should be constrained in L∞-
norm:

‖ΔỸ s‖∞ = sup

[
ΔỸ s

T
[[

k

m

]
h

]
ΔỸ s

[[
k

m

]
h

]]1/2

≤ 1. (22.10)

Invariant ellipsoid with respect to state variables of the model (22.8) is written as
following:

EΔYs =
{
ΔYs

[[
k

m

]
h

]
∈ 6(n− p) : ΔYTs

[[
k

m

]
h

]
P−1
s ΔY s

[[
k

m

]
h

]
≤ 1

}
, (22.11)

where Ps > 0 is ellipsoid matrix. Disturbances ΔỸ f
[[

k
m

]
h+ lT0

]
in model (22.7)

should be constrained in L∞-norm:

‖ΔỸ f ‖∞ = sup

[
ΔỸf

T
[[

k

m

]
h+ lT0

]
ΔỸ f

[[
k

m

]
h+ lT0

]]1/2

≤ 1, l = 0, 1, . . . ,m− 1 (22.12)

This ellipsoid is invariant w.r.t. vector ΔYs if from ΔYs(0) ∈ EΔYs it follows that

ΔYs
([

k
m

]
h
) ∈ EΔYs for all time samples.
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We will suppress constrained slow disturbances ΔỸ s
[[

k
m

]
h
]

in Eq. (22.7)
with measured coordinates ΔYf

[[
k
m

]
h+ lT0

]
using vector Δaf

[[
k
m

]
h+ lT0

]
generated by fast state controller

Δaf

[[
k

m

]
h+ lT0

]
= −Kf

[[
k

m

]
h+ lT0

]
ΔYf

[[
k

m

]
h+ lT0

]
. (22.13)

This controller should ensure optimal speed of change of CM weights coefficients’
vector Δaf (as control vector) depending on speed of change of measured nodes’
coordinatesΔYf .

We will also suppress constrained fast disturbances ΔỸ f
[[

k
m

]
h+ lT0

]
in

Eq. (22.8) with measured coordinates ΔYs
[[

k
m

]
h
]

using vector Δas
[[

k
m

]
h
]

gen-
erated by slow state controller

Δas

[[
k

m

]
h

]
= −Ks

[[
k

m

]
h

]
ΔYs

[[
k

m

]
h

]
. (22.14)

If coordinates ΔYf , ΔYs in (22.13), (22.14) respectively remain constant then
increments Δaf , Δas will be zero. Thus, control vectors Δaf

[[
k
m

]
h+ lT0

]
,

Δas
[[

k
m

]
h
]

are intended to stabilize transit process in complex system’s dynamics
described by CM impulse process models (22.7), (22.8) under the effect of

disturbances ΔỸf
[[

k
m

]
h+ lT0

]
, ΔỸ s

[[
k
m

]
h
]

constrained by (22.10), (22.12).
Algorithms for control laws (22.13), (22.14) for impulse processes (22.7), (22.8)

are based on minimization of the optimality criteria:

trPf → min, (22.15)

trPs → min, (22.16)

guaranteeing minimal invariant ellipsoids (22.9), (22.11) with maximal suppression
of any disturbances constrained only by their range (22.10), (22.12).

Based on models (22.7), (22.8) and control laws (22.13), (22.14), equations of
fast and slow closed-loop CM impulse process control subsystems respectively can
be written as:

ΔYf

[[
k

m

]
h+ (l + 1)T0

]
=

(
A11 −Gf

[[
k

m

]
h+ lT0

]
Kf

[[
k

m

]
h+ lT0

])

×ΔYf
[[

k

m

]
h+ lT0

]
+ A12ΔỸ s

[[
k

m

]
h

]
, (22.17)
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ΔYs

[([
k

m

]
+ 1

)
h

]
=

(
A22 −Gs

[[
k

m

]
h

]
Ks

[[
k

m

]
h

])

×ΔYs
[[

k

m

]
h

]
+ A21ΔỸf

[[
k

m

]
h+ lT0

]
, (22.18)

where ΔỸ f
[[

k
m

]
h+ lT0

] = Yf
[[

k
m

]
h+ (m− 1)T0

] − Yf
[[

k
m

]
h− T0

]
. We

suppose that both subsystems are controllable.
In [9] invariant ellipsoid method is utilized for unirate state-space system with

L∞-constrained disturbances, using linear matrix inequalities. In the present case
for closed-loop systems (22.17), (22.18) linear matrix inequalities will be written in
the following way:

1

α1

(
A11 −Gf

[[
k

m

]
h+ lT0

]
Kf

[[
k

m

]
h+ lT0

])
Pf

[[
k

m

]
h+ lT0

]

×
(
A11 −Gf

[[
k

m

]
h+ lT0

]
Kf

[[
k

m

]
h+ lT0

])T

−Pf
[[

k

m

]
h+ lT0

]
+ A12A

T
12

1 − α1
≤ 0; (22.19)

1

α2

(
A22 −Gs

[[
k

m

]
h

]
Ks

[[
k

m

]
h

])
Ps

[[
k

m

]
h

]

×
(
A22 −Gs

[[
k

m

]
h

]
Ks

[[
k

m

]
h

])T
− Ps

[[
k

m

]
h

]
+ A21A

T
21

1 − α2
≤ 0, (22.20)

where 0 < α1 < 1, 0 < α2 < 1.
After multiplication we obtain:

1

α1

(
A11Pf

[[
k

m

]
h+ lT0

]
AT11 −Gf

[[
k

m

]
h+ lT0

]

×Kf

[[
k

m

]
h+ lT0

]
Pf

[[
k

m

]
h+ lT0

]
AT11

− A11Pf

[[
k

m

]
h+ lT0

]
Kf

[[
k

m

]
h+ lT0

]T
GT
f

[[
k

m

]
h+ lT0

]

+Gf

[[
k

m

]
h+ lT0

]
Kf

[[
k

m

]
h+ lT0

]

×Pf
[[

k

m

]
h+ lT0

]
KT
f

[[
k

m

]
h+ lT0

]
GT
f

[[
k

m

]
h+ lT0

])

−Pf
[[

k

m

]
h+ lT0

]
+ A12A

T
12

1 − α1
≤ 0; (22.21)
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1

α2

(
A22Ps

[[
k

m

]
h

]
AT22 −Gs

[[
k

m

]
h

]
Ks

[[
k

m

]
h

]
Ps

[[
k

m

]
h

]
AT22

− A22Ps

[[
k

m

]
h

]
KT
s

[[
k

m

]
h

]
GT
s

[[
k

m

]
h

]

+ Gs

[[
k

m

]
h

]
Ks

[[
k

m

]
h

]
Ps

[[
k

m

]
h

]
KT
s

[[
k

m

]
h

]
GT
s

[[
k

m

]
h

])

−Ps
[[

k

m

]
h

]
+ A21A

T
21

1 − α2
≤ 0.

(22.22)

These inequalities are nonlinear w.r.t. Pf
[[

k
m

]
h+ lT0

]
and Kf

[[
k
m

]
h+ lT0

]
in (22.21) and Ps

[[
k
m

]
h
]
, Ks

[[
k
m

]
h
]

in (22.22). To linearize them the following
substitutions are proposed:

Mf = KfPf ;Ms = KsPs. (22.23)

Auxiliary matrices Df = DT
f ,Ds = DT

s are also introduced such that

(
Df Mf

MT
f Pf

)
≥ 0, (22.24)

(
Ds Ms

MT
s Ps

)
≥ 0. (22.25)

From Schur formula it follows that if Pf > 0, Ps > 0 inequalities (22.24), (22.25)
are equivalent to Df ≥ MfP

−1
f MT

f = KfPfK
T
f , Ds ≥ MsP

−1
s MT

s = KsPsK
T
s .

Then for inequalities (22.21), (22.22) to be fulfilled it is sufficient that

1

α1

(
A11Pf

[[
k

m

]
h+ lT0

]
AT11 −Gf

[[
k

m

]
h+ lT0

]
Mf

[[
k

m

]
h+ lT0

]
AT11

− A11M
T
f

[[
k

m

]
h+ lT0

]
GT
f

[[
k

m

]
h+ lT0

]

+ Gf

[[
k

m

]
h+ lT0

]
Df

[[
k

m

]
h+ lT0

]
GT
f

[[
k

m

]
h+ lT0

])

−Pf
[[

k

m

]
h+ lT0

]
+ A12A

T
12

1 − α1
≤ 0;

(22.26)
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1

α2

(
A22Ps

[[
k

m

]
h

]
AT22 −Gs

[[
k

m

]
h

]
Ms

[[
k

m

]
h

]
AT22

−A22M
T
s

[[
k

m

]
h

]
GT
s

[[
k

m

]
h

]

+ Gs

[[
k

m

]
h

]
Ds

[[
k

m

]
h

]
GT
s

[[
k

m

]
h

])
− Ps

[[
k

m

]
h

]
+ A21A

T
21

1 − α2
≤ 0. (22.27)

We minimize criterion (22.15) for fast subsystem (22.17) under constrains (22.24),
(22.26) w.r.t. to variables Pf

[[
k
m

]
h+ lT0

]
, Mf

[[
k
m

]
h+ lT0

]
, Df

[[
k
m

]
h+ lT0

]
using semidefinite programming. If P̂f

[[
k
m

]
h+ lT0

]
, M̂f

[[
k
m

]
h+ lT0

]
,

D̂f

[[
k
m

]
h+ lT0

]
are obtained estimates ensuring minimum of (22.15) under

(22.24), (22.26) then optimal gain matrix of fast controller (22.13) is written based
on (22.23) as

K̂f

[[
k

m

]
h+ lT0

]
= M̂f

[[
k

m

]
h+ lT0

]
P̂f

−1
[[

k

m

]
h+ lT0

]
. (22.28)

In the same manner, we minimize criterion (22.16) for slow subsystem (22.18)
under constrains (22.25), (22.27) w.r.t. to variables Ps

[[
k
m

]
h
]
, Ms

[[
k
m

]
h
]
,

Ds

[[
k
m

]
h
]
. Let P̂s

[[
k
m

]
h
]
, M̂s

[[
k
m

]
h
]
, D̂s

[[
k
m

]
h
]

ensure minimum of (22.16)
under (22.25), (22.27). Then optimal gain matrix of slow controller (22.14) is
written as

K̂s

[[
k

m

]
h

]
= M̂s

[[
k

m

]
h

]
P̂s

−1
[[

k

m

]
h

]
.

22.4 Design of Multirate Impulse Processes Control Systems
for Stabilization of CM Nodes

To design automated impulse processes control system for stabilization of CM nodes
coordinates it is necessary to write vectors Yf and Y s in models (22.7), (22.8) in
full coordinates of CM nodes:

Yf

[[
k

m

]
h+ (l + 1)T0

]
= (I11 + A11 − A11q

−1
1 )Y f

[[
k

m

]
h+ lT0

]

+A12ΔỸ s

[[
k

m

]
h

]
+Gf

[[
k

m

]
h+ lT0

]
Δaf

[[
k

m

]
h+ lT0

]
, (22.29)
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l = 0, 1, 2, . . . ,m− 1,

Y s

[([
k

m

]
+ 1

)
h

]
= (I22 + A22 − A22q

−1
2 )Y s

[[
k

m

]
h

]

+A21ΔỸf

[[
k

m

]
h+ lT0

]
+Gs

[[
k

m

]
h

]
Δas

[[
k

m

]
h

]
, (22.30)

where q−1
1 , q−1

2 are inverse shift operators for sampling periods T0 and h = mT0
respectively; I11, I22 are identity matrices with dimensions p × p and (n − p) ×
(n− p) respectively.

To design control law for fast controller quadratic optimality criterion is utilized:

Jf

[[
k

m

]
h+ (l + 1)T0

]
= E

{[
Yf

[[
k

m

]
h+ (l + 1)T0

]
−Wf

]T

×
[
Yf

[[
k

m

]
h+ (l + 1)T0

]
−Wf

]
+ΔaTf

[[
k

m

]
h+ lT0

]
Rf Δaf

[[
k

m

]
h+ lT0

]}
,

l = 0, 1, . . . , m− 1, (22.31)

where Wf is a set-point vector of predefined levels for CM nodes Yf , Rf is
positive-definite weight matrix. Minimizing this criterion w.r.t. vector Δaf , having
considered (22.29), we obtain the fast controller equation:

∂Jf
[[

k
m

]
h+ (l + 1)T0

]

∂Δaf
[[

k
m

]
h+ lT0

] = 2GT
f

[[
k

m

]
h+ lT0

] {(
I11 + A11 − A11q

−1
1

)

×Yf
[[

k

m

]
h+ lT0

]
+Gf

[[
k

m

]
h+ lT0

]
Δaf

[[
k

m

]
h+ lT0

]

+A12ΔỸ s

[[
k

m

]
h

]
−Wf

}
+ 2RfΔaf

[[
k

m

]
h+ lT0

]
= 0.

Hence we get control law of the fast controller:

Δaf

[[
k

m

]
h+ lT0

]
= −

(
GTf

[[
k

m

]
h+ lT0

]
Gf

[[
k

m

]
h+ lT0

]
+ Rf

)−1

×GTf
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k

m

]
h+ lT0

]{
(I11 + A11 − A11q

−1
1 )Y f

[[
k

m

]
h+ lT0

]

+A12ΔỸ s

[[
k

m

]
h

]
−Wf

}
.

(22.32)
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To design control law for slow controller with sampling period h the following
optimality criterion is proposed:

Js

[[
k

m

]
h

]
= E

{[
Y s

[([
k

m

]
+ 1

)
h

]
−Ws

]T

×
[
Y s

[([
k

m

]
+ 1

)
h

]
−Ws

]
+ΔaTs

[[
k

m

]
h

]
RsΔas

[[
k

m

]
h

]}
, (22.33)

where Ws is a set-point vector of predefined levels for CM nodes Y s , Rs is
positive-definite weight matrix. Minimizing this criterion w.r.t. vector Δas , having
considered (22.30), we obtain the fast controller equation:

∂Js
[([

k
m

] + 1
)
h
]

∂Δas
[[

k
m

]
h
] = 2GT

s
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k
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]
h

] {(
I22 + A22 − A22q
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2

)
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]
h

]
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]
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]
Δas
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]
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]

+A21ΔỸf
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]
h+ lT0

]
−Ws

}
+ 2RsΔas

[[
k

m

]
h

]
= 0. (22.34)

Hence we get control law of the slow controller:

Δas
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k

m

]
h

]
= −

(
GTs
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]
h

]
Gs
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]
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]
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GTs
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×
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(I22 + A22 − A22q
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2 )Y s
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m

]
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]
+ A21ΔỸf
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k

m

]
h+ lT0

]
−Ws

}
. (22.35)

22.5 Example of Human Resources Management in IT
Company Based on CM Weights Increments
with Multirate Sampling

CM of IT company’s human resources (HR) development process was built
(Fig. 22.1). The nodes of this CM can be split into two groups:

1 Nodes measured with sampling period T0 = 1 month, included into
vector Yf . These are: career and staff management y1, bonuses for early
completion of tasks y3, bonuses for new skills development y4, level
of quality monitoring y5, planning of staff training process y6, average
salary y7, company finance per employee y8, employees satisfaction y9,
promotion perspectives y10, spending on employees’ sports y11, staff
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Fig. 22.1 CM of HR management

training without specialization change y12, products innovativeness y15,
supporting staff training y16.

2 CM nodes measured with sampling period h = 6T0 = 6 months, included
into vector Y s . These are staff certification y2, staff retraining with change
of main specialization y13, professional skills y14, spending on research
and development y17, graduate school effectiveness y18.

Initial weights of this CM edges are the following: a1,15 = 0.5; a2,1 = 0.4; a2,12 =
0.2; a2,13 = 0.5; a3,5 = −0.8; a4,5 = −0.8; a4,8 = 0.7; a4,14 = 0.5; a5,14 =
0.3; a6,1 = 0.5; a7,2 = 0.4; a7,3 = 0.2; a7,4 = 0.2; a7,8 = 0.5; a7,10 =
0.05; a7,15 = 0.2; a7,16 = 0.1; a8,8 = 0.4; a8,15 = 0.4; a9,7 = 0.4; a9,10 =
0.2; a9,11 = 0.3; a9,16 = 0.4; a10,1 = 0.5; a10,2 = 0.4; a10,10 = 0.5; a10,15 =
0.4; a10,18 = 0.4; a11,8 = 0.4; a12,1 = 0.4; a12,6 = 0.4; a12,8 = 0.5; a13,1 =
0.4; a13,6 = 0.4; a13,8 = 0.5; a14,2 = 0.7; a14,14 = 0.4; a14,16 = 0.1; a14,17 =
0.4; a14,18 = 0.4; a15,5 = 0.3; a15,9 = 0.15; a15,14 = 0.4; a15,15 = 0.3; a15,17 =
0.25; a16,6 = 0.8; a16,16 = 0.3; a17,8 = 0.3; a18,17 = 0.3; a18,18 = 0.4.

Fast impulse process model (22.29) is written as

Yf

[[
k

6

]
h+ (l + 1)T0

]
= (I11 + A11 − A11q

−1
1 )Y f

[[
k

6

]
h+ lT0

]
+ A12ΔỸ s

[[
k

6

]
h

]
+

+Gf

[[
k

6

]
h+ lT0

]
Δaf

[[
k

6

]
h+ lT0

]
, l = 0, 1, . . . , 5,
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where matrices are

A11 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0 0 0 a1,15 0
0 0 0 a3,5 0 0 0 0 0 0 0 0 0
0 0 0 a4,5 0 0 a4,8 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
a6,1 0 0 0 0 0 0 0 0 0 0 0 0

0 a7,3 a7,4 0 0 0 a7,8 0 a7,10 0 0 a7,15 a7,15

0 0 0 0 0 0 a8,8 0 0 0 0 a8,15 0
0 0 0 0 0 a9,7 0 0 a9,10 a9,11 0 0 a9,16

a10,1 0 0 0 0 0 0 0 a10,10 0 0 a10,15 0
0 0 0 0 0 0 a11,8 0 0 0 0 0 0

a12,1 0 0 0 a12,6 0 a12,8 0 0 0 0 0 0
0 0 0 a15,5 0 0 0 a15,9 0 0 0 a15,15 0
0 0 0 0 a16,6 0 0 0 0 0 0 0 a16,16

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

A12 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 0 0 0
0 0 a4,14 0 0
0 0 a5,14 0 0
0 0 0 0 0
a7,2 0 0 0 0

0 0 0 0 0
0 0 0 0 0

a10,2 0 0 0 a10,18

0 0 0 0 0
0 0 0 0 0
0 0 a15,14 a15,17 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Control vector of weights increments for fast subsystem is the following:

Δaf = (
Δa1,15 Δa3,5 Δa4,5 Δa6,1 Δa7,8 Δa10,1 Δa11,8 Δa12,6 Δa16,6

)T
.

Then matrix Gf is the following:

Gf

[[
k

6

]
h+ lT0

]
= Gf (kT0) =
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Y15(kT0) 0 0 0 0 0 0 0 0
0 Y5(kT0) 0 0 0 0 0 0 0
0 0 Y5(kT0) 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 Y1(kT0) 0 0 0 0 0
0 0 0 0 Y8(kT0) 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 Y1(kT0) 0 0 0
0 0 0 0 0 0 Y8(kT0) 0 0
0 0 0 0 0 0 0 Y6(kT0) 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 Y6(kT0)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Slow impulse process model (22.30) of this CM looks like

Y s

[([
k

m

]
+ 1

)
h

]
= (I22 + A22 −A22q

−1
2 )Y s

[[
k

6

]
h

]
+ A21ΔỸf

[[
k

6

]
h+ lT0

]
+

+Gs
[[
k

6

]
h

]
Δas

[[
k

6

]
h

]
,

whereΔỸ f
[[
k
6

]
h+ lT0

] = ΔỸ f
[[
k
6

]
h+ 5T0

]−ΔỸf
[[
k
6

]
h− lT0

]
and matrices

are the following:

A21 =

⎛
⎜⎜⎜⎜⎜⎝

a2,1 0 0 0 0 0 0 0 0 0 a2,12 0 0
a13,1 0 0 0 a13,6 0 a13,8 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 a14,16

0 0 0 0 0 0 a17,8 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠
,

A22 =

⎛
⎜⎜⎜⎜⎜⎝

0 a2,13 0 0 0
0 0 0 0 0

a14,2 0 a14,14 a14,17 a14,18

0 0 0 0 0
0 0 0 a18,17 a18,18

⎞
⎟⎟⎟⎟⎟⎠
.

Matrix Gs and increments vector Δas are

Gs

[[
k

6

]
h

]
=

⎛
⎜⎜⎜⎜⎜⎝

y13
[[
k
6

]
h
]

0
0 0
0 y2
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k
6

]
h
]

0 0
0 0

⎞
⎟⎟⎟⎟⎟⎠
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]
h

]
=
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Δa2,13
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h
]

Δa14,2
[[
k
6

]
h
]
)
.
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We simulated dynamics of both closed-loop subsystems using proposed methods
of control. MatLab environment was used for simulation, specifically, SeDuMi
package was useful to solve linear matrix inequalities [11]. Suppose that initial
impulse affects all CM nodes negatively and aim of controller is to stabilize the
system. Using the first method developed in the present work, stabilizing the system
is ensured by minimizing invariant ellipsoids in which the increments of CM nodes’
coordinates are placed. The coordinates increments converge to zero during the
impulse process as it is shown on Fig. 22.2. Designed control inputs dynamics (in
the form of CM weights’ increments) are shown in Fig. 22.3.

Using the second method developed in the present work, stabilizing the system
can be understood as getting the nodes coordinates back to level before initial
impulse disturbance. Dynamics of CM nodes full coordinates and edges weights
are shown on Figs. 22.4 and 22.5 respectively.

Fig. 22.2 CM nodes increments dynamics in the closed-loop system based on invariant ellipsoids
method
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Fig. 22.3 CM weights increments dynamics in the closed-loop system based on invariant ellip-
soids method

22.6 Conclusion

The present work develops the new principal of complex systems’ dynamics control
based on mathematical models of impulse processes in CM. Methods of automated
control of CM impulse process with multirate sampling are discussed, where some
of the coordinates are measured with small sampling period T0 and other coordinates
are measured with big sampling period h = mT0. Basic impulse process model is
written in the form of two interacting subsystems. The first subsystem describes
dynamics of the first part of CM nodes Yf in impulse process mode with sampling
period T0, and the second subsystem describes dynamics of other part of CM
nodes Y s with sampling period h. In the first subsystem changes of coordinates
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Fig. 22.4 CM nodes coordinates dynamics in the closed-loop system based on quadratic optimal-
ity criterion

Y s are considered as disturbances, and in the second subsystem changes of Yf are
disturbances.

Unlike the report [8], here designed controls are implemented via CM edges’
weights varying. They are generated in the closed-loop system with multirate
sampling based on automated control theory methods. The following problems are
solved in the present work:

• multirate state controllers are designed for suppression of constrained distur-
bances in the first and the second subsystems of CM impulse processes with
multirate sampling based on invariant ellipsoids method;



442 V. D. Romanenko and Y. L. Milyavsky

Fig. 22.5 CM weights increments dynamics in the closed-loop system based on quadratic
optimality criterion

• control vectors are designed based on varying weights of the first and the second
subsystems of CM impulse processes with multirate sampling ensuring transition
of CM nodes coordinates from one level to another with further stabilization;

• impulse process in CM of human resources management in IT company is
simulated with weights varying according to control laws generated by both
proposed methods.
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Chapter 23
On Approximation of an Optimal Control
Problem for Ill-Posed Strongly Nonlinear
Elliptic Equation with p-Laplace
Operator

Peter I. Kogut and Olha P. Kupenko

Abstract We study an optimal control problem for one class of non-linear elliptic
equations with p-Laplace operator and L1-nonlinearity in their right-hand side. We
deal with such case of nonlinearity when we cannot expect to have a solution
of the state equation for any given control. After defining a suitable functional
class in which we look for solutions and a special cost functional, we prove
the existence of optimal pairs. In order to handle the inherent degeneracy of the
p-Laplacian and strong non-linearity in the right-hand side of elliptic equation,
we use a two-parametric (ε, k)-regularization of p-Laplace operator, where we
approximate it by a bounded monotone operator, and involve a special fictitious
optimization problem. We derive existence of optimal solutions to the parametrized
optimization problems at each (ε, k)-level of approximation. We also deduce the
differentiability of the state for approximating problem with respect to the controls
and obtain an optimality system based on the Lagrange principle. Further we discuss
the asymptotic behaviour of the optimal solutions to regularized problems as the
parameters ε and k tend to zero and infinity, respectively.

23.1 Introduction

Let Ω be a bounded open subset of RN (N ≥ 3). We assume that its boundary
∂Ω is of the class C1,1 and there exists a point x0 ∈ intΩ such that Ω is star-
shaped with respect to x0, i.e. (σ − x0, ν(σ )) ≥ 0 for H N−1-a.a. σ ∈ ∂Ω . Let
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F : R → [0,+∞) be a mapping satisfying conditions F ∈ C1
loc(R), F is a convex

function, and F(z) ≥ exp(CF z) for all z ∈ R with some constant CF > 0. Let
f (z) = F ′(z) and we assume that

f (z) ≥ F(z), ∀ z ∈ R, and

∣∣∣∣
∫ 0

−∞
zf (z) dz

∣∣∣∣ < +∞. (23.1)

We are concerned with the following optimal control problem

Minimize J (u, y) = 1

2

∫

Ω

|y − yd |2 dx + 1

q

∫

Ω

|u|q dx + α

p′

∫

Ω

|f (y)|p′
dx,

(23.2)

subject to constrains

−Δp y = f (y)+ u in Ω, (23.3)

y = 0 on ∂Ω, (23.4)

u ∈ Lq(Ω), y ∈ W
1,p
0 (Ω), (23.5)

where α > 0 is a given weight which is assumed to be small enough, 2 ≤ p < N ,
q > p′, p′ = p/(p − 1) ∈ (1, 2] stands for the conjugate exponent, Δp y =
div

(|∇y|p−2∇y) is the p-Laplacian, and yd ∈ L2(Ω) is a given distribution.

The state y ∈ W
1,p
0 (Ω) is called a weak solution of (23.3) and (23.4) if y belongs

to the set

Y =
{
y ∈ W

1,p
0 (Ω)

∣∣∣ f (y) ∈ L1(Ω)
}
, (23.6)

and the integral identity

∫

Ω

|∇y|p−2 (∇y,∇ϕ) dx =
∫

Ω

f (y)ϕ dx +
∫

Ω

uϕ dx (23.7)

holds for every test function ϕ ∈ C∞
0 (Ω).

A physical motivation to the study of optimal control problem (23.2)–(23.5),
various applications of this type of boundary value problems (BVPs), and their
main characteristic features are described in details in our recent paper [9] (see also
[11, 12, 14]). We just mention here that the problem (23.3) and (23.4) can be seen
as the stationary counterpart of evolution equations with nonlinear diffusion and the
indicated BVP is ill-posed in general. Since the exponential growth of the term f (y)

can lead to the blow-up of the solutions of the corresponding evolution problems, it
means that there is no reason to suppose that a weak solution to (23.3) and (23.4) for
a given u ∈ Lq(Ω), even if it exists, is unique. As for the last term in the cost func-
tional, it plays rather special role and it is unknown whether this OCP is consistent
without this stabilizing term. In Sect. 23.2 we clarify this point in more details.
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It is worth to note here that the optimal control problem (23.2)–(23.5) in the case
of p = 2 and f (y) = ey was first discussed in detail by Casas et al. [5]. The
problem of existence and uniqueness of the underlying boundary value problem and
the corresponding optimal control problem was treated and an optimality system
has been derived and analyzed. Analogous results for the case of general nonlinear
elliptic equations of the type div(a(∇·)) + f (·) remained open. In this article we
treat the case of the p-Laplacian, where a(∇y) = |∇y|p−2∇y and p ≥ 2. The
corresponding strongly nonlinear differential operator −div(|∇y|p−2∇y)− f (y) is
not monotone and, in principle, has degeneracies as ∇y tends to zero. Moreover,
when the term |∇y|p−2 is regarded as the coefficient of the Laplace operator,
we also have the case of unbounded coefficients (see, for example, [8]). Because
of this and L1-boundedness of the function f (y) there are serious hurdles to
deduce an a priori estimate for the weak solutions of BVP (23.3) and (23.4) in
the standard Sobolev space W 1,p

0 (Ω). As a result, we focus on the case when for
each admissible control u ∈ Lq(Ω), the original BVP (23.3) and (23.4) possesses
a special type of weak solutions satisfying some extra state constraint (see the
control-state inequality (23.10)). However, in this case it is not an easy matter to
touch directly on this special set because its structure and the main topological
properties are unknown in general (for the details we refer to [5, 9]). To lighten this
problem and make the corresponding optimization procedure more feasible, some
regularization and approximation of the optimal control problem (23.2)–(23.5) are
necessary.

Using a monotone and bounded approximation Fk(|∇y|2) of |∇y|2 and follow-
ing in many aspect our recent paper [6] (see also [7, 13]), we introduce a special
family of optimization problems with fictitious controls and show that an optimal
pair to the original optimal control problem can be attained by optimal solutions to
the approximating ones provided the parameters k ∈ N and ε > 0 possess some
special asymptotic properties. With that in mind we consequently provide the well-
posedness analysis for the perturbed partial differential equations as well as for the
corresponding fictitious optimal control problems. After that we pass to the limits
as k → ∞ and ε → 0. Since the fictitious optimization problems are stated for the
quasi-linear elliptic equations with coercive and monotone operators without any
state and control constraints, the approximation and regularization approach is not
only considered to be useful for the mathematical analysis, but also for the purpose
of numerical simulations.

The plan of the paper is as follows. In Sect. 23.2 we study the existence of
a solution for the original problem (23.2)–(23.5). A two-parametric family of
approximating optimal control problems with a fictitious control is introduced in
Sect. 23.3. We show here that each of these problems is consistent and admits at
least one solution at each (ε, k)-level of approximation. Section 23.4 contains the
proof of the main results of this paper (Theorems 23.5 and 23.6) and deals with
the asymptotic analysis of the sequences of optimal solutions to the approximating
problems (23.26)–(23.29), provided the parameter ε varies within a strictly decreas-
ing sequence {εk}k∈N of positive real numbers satisfying some special condition.
Finally, in Sect. 23.5 we deduce the differentiability of the state for approximating
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problem with respect to the controls u and v and obtain the optimality system for
each (ε, k)-level of approximation based on the Lagrange principle.

23.2 On Consistency of Optimal Control
Problem (23.2)–(23.5)

Before proceeding further with qualitative analysis of the optimal control prob-
lem (23.2)–(23.5), we make use of the following results (see [9, Lemma 2.4 and
Proposition 3.1]).

Lemma 23.1 Let y = y(u) ∈ Y be a weak solution to BVP (23.3) and (23.4) for a
given u ∈ Lq(Ω). Then f (y) ∈ W−1,p′

(Ω), where W−1,p′
(Ω) stands for the dual

space toW 1,p
0 (Ω) with p′ = p/(p − 1) ∈ (1; 2],

〈f (y), z〉
W−1,p′

(Ω);W 1,p(Ω)
=

∫

Ω

z f (y) dx, ∀ z ∈ W
1,p
0 (Ω), (23.8)

and y satisfies the energy equality

∫

Ω

|∇y|p dx =
∫

Ω

y f (y) dx +
∫

Ω

yu dx. (23.9)

Proposition 23.1 Let u ∈ Lq(Ω) and let y = y(u) ∈ W
1,p
0 (Ω) be a weak

solution to BVP (23.3) and (23.4). Assume that f (y) ∈ Lp
′
(Ω) and f satisfies

properties (23.1). Then

(
N

p
− 1

)∫

Ω

|∇y|p dx ≤ N

∫

Ω

F(y) dx −
∫

Ω

u (x − x0,∇y) dx, (23.10)

where x0 ∈ intΩ is an arbitrary point.

Theorem 23.1 Let u ∈ Lq(Ω) and let y = y(u) ∈ Y be a weak solution to
BVP (23.3) and (23.4) such that y satisfies the inequality (23.10) and proper-
ties (23.1) hold true. Then

∫

Ω

y f (y) dx ≤ C1‖u‖p
′

Lq(Ω) + C2‖u‖p
′−1

Lq(Ω) + C3, (23.11)

‖y‖
W

1,p
0 (Ω)

≤ C4‖u‖p
′−1

Lq(Ω) + C5, (23.12)

for some positive constants Ci , 1 ≤ i ≤ 5, independent of u and y.

It spite of the fact that inequality (23.10) makes sense even if we do not assume
fulfillment of the inclusion f (y) ∈ Lp

′
(Ω) but have only that y ∈ Y and u ∈
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Lq(Ω), it is unknown whether this inequality holds for an arbitrary weak solution
to BVP (23.3) and (23.4). Since the existence and uniqueness of the weak solutions
to the original BVP is an open question for arbitrary given control u ∈ Lq(Ω) with
q > p′, the following result reflects some interesting properties of the Dirichlet
boundary value problem (23.3) and (23.4) (see Theorem 7.2 in [9]).

Theorem 23.2 Let p ∈ [2, N) and let u ∈ Lq(Ω) with q > p′ be an arbitrary
admissible control such that the boundary value problem (23.3) and (23.4) is
solvable. Then the Dirichlet boundary value problem (23.3) and (23.4) admits a
weak solution y ∈ Y ⊂ W

1,p
0 (Ω) satisfying the inequality (23.10).

Mainly inspired by this theorem, it has been proposed in [9] to reformulate the
original control problem (23.2)–(23.5) to the following setting:

Minimize J (u, y) = 1

2

∫

Ω

|y − yd |2 dx + 1

q

∫

Ω

|u|q dx, (23.13)

subject to constrains

−Δp y = f (y)+ u in Ω, (23.14)

y = 0 on ∂Ω, (23.15)
∫

Ω

|∇y|p dx ≤ Np

N − p

∫

Ω

F(y) dx − p

N − p

∫

Ω

u (x − x0,∇y) dx, (23.16)

u ∈ Lq(Ω), y ∈ W
1,p
0 (Ω), (23.17)

where, from the formal point of view, the inequality (23.16) plays the role of an
extra control-state constraint.

As follows from Theorem 23.2, the reformulated version (23.13)–(23.17)
becomes a consistent optimization problem with a nonempty set of feasible
solutions. Moreover, this problem has at least one solution for each yd ∈ L2(Ω) (see
Theorem 4.1 in [9]). However, because of the inequality (23.16), there are serious
hurdles to derive the corresponding optimality conditions for the problem (23.13)–
(23.17) and provide its numerical simulations.

On the other hand, the validity of inequality (23.16) is a direct consequence of
the condition f (y) ∈ Lp

′
(Ω). Hence, it is reasonable to consider instead of the

problem (23.13)–(23.17), its regularized version in the form of the optimal control
problem (23.2)–(23.5). As a result, its consistency immediately follows from Propo-
sition 23.1, and moreover, the set of feasible solutions to the problem (23.2)–(23.5)

Ξ =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
(u, y)

∣∣∣∣∣∣∣∣∣∣

u ∈ Lq(Ω), y ∈ Y, f (y) ∈ Lp
′
(Ω),∫

Ω

|∇y|p−2 (∇y,∇ϕ) dx =
∫

Ω

f (y)ϕ dx

+
∫

Ω

uϕ dx, ∀ϕ ∈ W
1,p
0 (Ω)

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(23.18)



450 P. I. Kogut and O. P. Kupenko

is always nonempty. Indeed, if we take an arbitrary function ỹ ∈ C∞
0 (Ω) and

put ũ := −Δpỹ − f (ỹ), then ũ ∈ Lq(Ω), ỹ ∈ W
1,p
0 (Ω), and f (ỹ) ∈ Lp

′
(Ω).

Hence, ỹ ∈ Y ⊂ W
1,p
0 (Ω) is a weak solution to the boundary value problem (23.3)

and (23.24) for given ũ and (̃u, ỹ) ∈ Ξ . Let us show that the optimal control
problem (23.2)–(23.5) is solvable.

Theorem 23.3 ([9]) Let p ∈ [2, N) and q > p′. Then, for a given yd ∈ L2(Ω),
the optimal control problem (23.2)–(23.5) has at least one solution.

Proof Since J (u, y) ≥ 0 for all (u, y) ∈ Ξ , it follows that there exists a non-
negative value μ ≥ 0 such that μ = inf(u,y)∈Ξ J (u, y). Let {(uk, yk)}k∈N be a
minimizing sequence to the problem (23.2)–(23.5), i.e.

(uk, yk) ∈ Ξ ∀ k ∈ N and lim
k→∞ J (uk, yk) = μ.

So, we can suppose that J (uk, yk) ≤ μ + 1 for all k ∈ N. Taking into account the
definition of the set Ξ , it follows from Proposition 23.1 and Theorem 23.1 that

‖yk‖W 1,p
0 (Ω)

≤ C4‖uk‖p
′−1

Lq(Ω) + C5

for some constants C4 and C5 independent of k and uk . Then

‖yk‖W 1,p
0 (Ω)

+ ‖uk‖Lq(Ω) ≤ C5 + C4 (qJ (uk, yk))
p′−1
q + (qJ (uk, yk))

1
q

≤ C5 + C4 (q(μ+ 1))
p′−1
q + (q(μ+ 1))

1
q , ∀ k ∈ N,

‖f (yk)‖Lp′
(Ω)

≤
(
p′

α
(μ+ 1)

)1/p′

.

Thus, without loss of generality, we can suppose that there exists a subsequence of
{(uk, yk)}k∈N (still denoted by the same index) and a pair (u0, y0) ∈ Lq(Ω) ×
W

1,p
0 (Ω) such that

(uk, yk) ⇀ (u0, y0) weakly in Lq(Ω)×W
1,p
0 (Ω) as k → ∞,

Let us show now that the limit pair (u0, y0) is related by the integral identity (23.7).
By the Sobolev Embedding Theorem, the injection W

1,p
0 (Ω) ↪→ Lp(Ω) is

compact. Hence, the weak convergence yk ⇀ y in W
1,p
0 (Ω) implies the strong

convergence in Lp(Ω). Therefore, up to a subsequence, we can suppose that
yk(x) → y(x) for almost every point x ∈ Ω . As a result, we have the pointwise
convergence: f (yk) → f (y) almost everywhere in Ω . Since the sequence
{f (yk)}k∈N is bounded in Lp

′
(Ω), it follows that

f (yk) ⇀ f (y0) weakly in Lp
′
(Ω). (23.19)
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As a result, the limit passage in the right-hand side of the equality
∫

Ω

|∇yk|p−2 (∇yk,∇ϕ) dx =
∫

Ω

f (yk)ϕ dx +
∫

Ω

ukϕ dx, ∀ϕ ∈ C∞
0 (RN)

(23.20)

becomes trivial.
As for the limit passage as k → ∞ in the left-hand side of (23.20), we make use

of the following result (see Boccardo and Murat [2, Theorem 2.1]): if

(i) yk → y0 weakly in W 1,p
0 (Ω), strongly in Lp(Ω) and a.e. in Ω ;

(ii) uk → u0 strongly in W−1,p′
(Ω);

(iii) the sequence {fk}k∈N is bounded in L1(Ω);
(iv) −div(|∇yk|p−2∇yk) = fk + uk in D ′(Ω) for all k ∈ N,

then, within a subsequence,

∇yk → ∇y0 strongly in Lr(Ω)N for any 1 ≤ r < p and a.e. in Ω. (23.21)

In our case, the fulfilment of condition (iii) is guaranteed by the property (23.19).
However, instead of (ii), we have the weak convergence uk ⇀ u in Lq(Ω for the
given q > p′. Since, by Sobolev embedding theorem, W 1,p

0 (Ω) is continuously

embedded in Lp
∗
(Ω) with p∗ = pN

N−p , we have by duality arguments that(
Lp

∗
(Ω)

)∗
is continuously embedded in W−1,p′

(Ω). So, if we define

p∗ = (p∗)′ = pN

pN −N + p
,

then we have

Lr(Ω) ⊂ Lp∗(Ω) ⊂ W−1,p′
(Ω) ∀ r > pN

pN −N + p
.

It is easy to check that pN
pN−N+p < p′ = p

p−1 for all p ≥ 2. Hence, the weak
convergence uk ⇀ u in Lq(Ω) with q > p′, implies the strong convergence in
W−1,p′

(Ω). As for the rest assumptions of Boccardo–Murat Theorem they are
obviously satisfied in our case. Hence, the pointwise convergence property (23.21),
continuity of the mapping ξ �→ |ξ |p−2ξ , and Vitali’s theorem imply that

|∇yk|p−2∇yk → |∇y0|p−2∇y0 strongly in Lr(Ω)N for all 1 ≤ r < p′.
(23.22)

Thus, taking these facts into account and passing to the limit in the integral
identity (23.20) as k → ∞, we see that y0 is a weak solution to BVP (23.3)
and (23.4) for the given u0 ∈ Lq(Ω). Hence, (u0, y0) is a feasible pair to the prob-
lem (23.2)–(23.5). To conclude the proof, it remains to take into account the lower
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semi-continuity of the cost functional J : Lq(Ω)× W
1,p
0 (Ω) → R with respect to

the weak convergence in Lq(Ω)×W
1,p
0 (Ω) and property (23.19). This yields

μ = inf
(u,y)∈Ξ J (u, y) = lim

k→∞ J (uk, yk) ≥ J (u0, y0).

Thus, (u0, y0) ∈ Ξ is an optimal pair to the problem (23.2)–(23.5).

23.3 On Approximating Optimal Control Problems and
Their Previous Analysis

We introduce, as in [6], the following two-parameter family of perturbed operators

Δε,k,p(y) = div

((
ε + Fk

(
|∇y|2

)) p−2
2 ∇y

)
, (23.23)

where Fk : R+ → R+ is a non-decreasing C1(R+)-function such that

Fk(t) = t, if t ∈
[
0, k2

]
, Fk(t) = k2 + 1, if t > k2 + 1, and

t ≤ Fk(t) ≤ t + δ, if k2 ≤ t < k2 + 1 for some δ ∈ (0, 1),

F ′
k(t) ≤ δ∗, if k2 ≤ t < k2 + 1 for some δ∗ > 1,

(23.24)

and the constants δ and δ∗ are independent of k ∈ N. In particular, if

Fk(t) =
⎧
⎨
⎩
t, if 0 ≤ t ≤ k2,

(k2 − t)3 + (k2 − t)2 + t, if k2 ≤ t ≤ k2 + 1,
k2 + 1, if t ≥ k2 + 1.

(23.25)

then δ = 4/27 and δ∗ = 4/3 satisfy (23.24). Hereinafter, we assume that the
parameter ε varies within a strictly decreasing sequence of positive real numbers
which converge to zero.

We now introduce the following perturbed optimal control problem (see, for
comparison, [3, 4]).

Minimize
{
Iε,k(u, v, y) = 1

2

∫

Ω

|y − yd |2 dx + k

p′

∫

Ω

|v − Tε(f (y))|p′
dx

+ 1

q

∫

Ω

|u|q dx + α

p′

∫

Ω

|v|p′
dx

}
(23.26)
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subject to the constraints

−Δε,k,p(y) = v + u in Ω, (23.27)

y = 0 on ∂Ω, (23.28)

v ∈ Lp
′
(Ω), u ∈ Lq(Ω), y ∈ H 1

0 (Ω). (23.29)

Here, Tε : R → R is the truncation operator defined by

Tε(s) = max
{

min
{
s, ε−1

}
,−ε−1

}
. (23.30)

We consider the function v ∈ Lp
′
(Ω) as a fictitious control.

For our further analysis, we make use of the following the notation

‖ϕ‖ε,k =
(∫

Ω

(
ε + Fk(|∇ϕ|2)

) p−2
2 |∇ϕ|2 dx

)1/p

∀ϕ ∈ H 1
0 (Ω).

It is clear that the effect of such perturbation ofΔp(y) is to provide its regularization
around points where |∇y(x)| is equal to zero and becomes unbounded. Indeed,
for an arbitrary element y∗ ∈ H 1

0 (Ω) let us consider the level set Ωk(y
∗) :={

x ∈ Ω : |∇y∗(x)| > √
k2 + 1

}
. Then

|Ωk(y
∗)| :=

∫

Ωk(y∗)
1 dx ≤ 1√

k2 + 1

∫

Ωk(y∗)
|∇y∗(x)| dx

≤ 1

k
|Ωk(y

∗)| 1
2

(∫

Ωk(y∗)
|∇y∗|2 dx

) 1
2

= 1

k

(
1

ε + k2 + 1

) p−2
4

(∫

Ωk(y∗)

(
ε + Fk(|∇y∗|2)

) p−2
2 |∇y∗|2dx

) 1
2

|Ωk(y
∗)| 1

2

≤ 1

k
p
2

|Ωk(y
∗)| 1

2 ‖y∗‖
p
2
ε,k.

Hence, the Lebesgue measure of the set Ωk(y
∗) satisfies the estimate

|Ωk(y
∗)| ≤ 1

kp
‖y∗‖pε,k, ∀ y∗ ∈ H 1

0 (Ω). (23.31)

In what follows, we say that for given ε > 0, k ∈ N, u ∈ Lq(Ω), and
v ∈ Lp

′
(Ω), a distribution yε,k ∈ H 1

0 (Ω) is the weak solution to boundary value
problem (23.27) and (23.28) if

∫

Ω

(ε+Fk(|∇yε,k|2))
p−2

2
(∇yε,k,∇ϕ

)
RN

dx =
∫

Ω

(u+v)ϕ dx, ∀ϕ ∈ C∞
0 (Ω),

(23.32)
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or equivalently

∫

Ω

(ε + Fk(|∇ϕ|2)) p−2
2

(∇ϕ,∇ϕ − ∇yε,k
)
RN

dx

≥
∫

Ω

(u+ v)(ϕ − yε,k) dx, ∀ϕ ∈ C∞
0 (Ω). (23.33)

To prove the well-posedness of the boundary value problem (23.27) and (23.28),
it is enough to show that Lp

′
(Ω) is continuously embedded in H−1(Ω). Indeed,

by Sobolev embedding theorem, we have: H 1
0 (Ω) ↪→ Lr(Ω) compactly for all

r ∈ [1, 2N/(N − 2)). Hence, the compactness of injection Lr
′
(Ω) ↪→ H−1(Ω)

holds true if only r ′ > 2N/(N + 2). Since p′ > 2N/(N + 2) for each p ∈[
2, 2N/(N − 1)

)
, it follows by duality arguments that Lp

′
(Ω) ↪→ H−1(Ω) with

a compact embedding. So, there exists a constant Cp > 0 such that ‖v‖H−1(Ω) ≤
Cp‖v‖

Lp
′
(Ω)

for all v ∈ Lp
′
(Ω). Moreover, taking into account the estimate

∫

Ω

vϕ dx = 〈v, ϕ〉H−1(Ω);H 1
0 (Ω)

≤ ‖v‖H−1(Ω)‖ϕ‖H 1
0 (Ω)

≤ Cp‖v‖Lp′
(Ω)‖ϕ‖H 1

0 (Ω)
, ∀ϕ ∈ C∞

0 (Ω)

and the inclusion u+ v ∈ Lp
′
(Ω), we see that the right-hand side of (23.32) can be

extended to a linear continuous functional on H 1
0 (Ω),

L(ϕ) := 〈v, ϕ〉H−1(Ω);H 1
0 (Ω)

+
∫

Ω

uϕ dx, ∀ϕ ∈ H 1
0 (Ω).

Since the operator −Δε,k,p(·) : H 1
0 (Ω) → H−1(Ω) is bounded, strictly monotone,

semi-continuous, and coercive (see [6]), it follows from the general theory of
monotone operators that for each ε > 0, k ∈ N, p ∈ [

2, 2N/(N − 1)
)
, u ∈ Lq(Ω),

and v ∈ Lp
′
(Ω), the boundary value problem (23.27) and (23.28) admits a unique

weak solution yε,k ∈ H 1
0 (Ω) satisfying the energy equality (see Theorem 4.5 in [6])

‖yε,k‖pε,k = 〈
v, yε,k

〉
H−1(Ω);H 1

0 (Ω)
+

∫

Ω

uyε,k dx. (23.34)

From this it is easy to deduce that, for every positive value ε > 0 and integer
k ∈ N, the set of feasible solutions to the problem (23.26)–(23.29)

Ξε,k =
{
(u, v, y)

∣∣∣∣∣
u ∈ Lq(Ω), v ∈ Lp

′
(Ω), y ∈ H 1

0 (Ω), Iε,k(u, v, y) < +∞,

(u, v, y) are related by identity (23.32)

}

(23.35)

is nonempty.
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For our further analysis, we assume that p ∈ [
2, 2N/(N − 1)

)
. We also need

to obtain some appropriate a priory estimates for the weak solutions to prob-
lem (23.27) and (23.28). With that in mind, we make use of the following auxiliary
results.

Proposition 23.2 Let k ∈ N and ε > 0 be given. Then, for arbitrary u ∈ Lq(Ω),
v ∈ Lp

′
(Ω), and y ∈ H 1

0 (Ω), we have

∣∣∣〈v, y〉H−1(Ω);H 1
0 (Ω)

∣∣∣ ≤ Cp‖v‖Lp′
(Ω)

[
|Ω | p−2

2p ‖y‖ε,k + ‖y‖
p
2
ε,k

]
, (23.36)

∣∣∣∣
∫

Ω

uy dx

∣∣∣∣ ≤ Cp|Ω |
q−p′
qp′ ‖u‖Lq(Ω)

[
|Ω | p−2

2p ‖y‖ε,k + ‖y‖
p
2
ε,k

]
.

(23.37)

Proof Let us fix an arbitrary element y of H 1
0 (Ω). We associate with this element

the set Ωk(y), where Ωk(y) := {x ∈ Ω : |∇y(x)| > k}. Then

∫

Ω

uy dx ≤ Cp‖u‖
Lp

′
(Ω)

‖y‖H 1
0 (Ω)

≤ Cp|Ω|
q−p′
qp′ ‖u‖Lq(Ω)

(‖∇y‖L2(Ω\Ωk(y))N + ‖∇y‖L2(Ωk(y))N
)
,

(23.38)

〈v, y〉H−1(Ω);H 1
0 (Ω)

≤ Cp‖v‖
Lp

′
(Ω)

‖y‖H 1
0 (Ω)

= Cp‖v‖
Lp

′
(Ω)

(‖∇y‖L2(Ω\Ωk(y))N + ‖∇y‖L2(Ωk(y))N
)
.

(23.39)

Using the fact that

‖∇y‖L2(Ω\Ωk(y))N ≤ |Ω | p−2
2p ‖∇y‖Lp(Ω\Ωk(y))N

≤ |Ω | p−2
2p

(∫

Ω\Ωk(y)

(ε + |∇y|2) p−2
2 |∇y|2 dx

) 1
p

and

Fk(|∇y|2) = |∇y|2 a.e. in Ω \Ωk(y), and

k2 ≤ Fk(|∇y|2) ≤ k2 + 1 a.e. in Ωk(y), ∀ k ∈ N,
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we obtain

‖∇y‖L2(Ω\Ωk(y))N ≤ |Ω | p−2
2p

(∫

Ω\Ωk(y)

(ε + Fk(|∇y|2))
p−2

2 |∇y|2 dx
) 1

p

= |Ω | p−2
2p ‖y‖ε,k, (23.40)

‖∇y‖L2(Ωk(y))N ≤
(∫

Ωk(y)

(ε + Fk(|∇y|2))
p−2

2 |∇y|2 dx
) 1

2 = ‖y‖
p
2
ε,k.

(23.41)

As a result, inequalities (23.36) and (23.37) immediately follows from (23.38)–
(23.41).

Definition 23.1 Let {uε,k, vε,k} ε>0
k∈N

⊂ Lq(Ω) × Lp
′
(Ω) be an arbitrary sequence

of admissible controls. We say that a two-parametric sequence
{
yε,k

}
ε>0
k∈N

⊂ H 1
0 (Ω)

is bounded with respect to the ‖ · ‖ε,k-quasi-seminorm if sup ε>0
k∈N

‖yε,k‖ε,k < +∞.

Let us show that for every (u, v) ∈ Lq(Ω) × Lp
′
(Ω), the sequence of weak

solutions to the boundary value problem (23.27) and (23.28)
{
yε,k = yε,k(u, v)

}
ε>0
k∈N

is bounded with respect to the ‖·‖ε,k -quasi-seminorm in the sense of Definition 23.1.
Indeed, the energy equality (23.34) together with estimates (23.36) and (23.37)

immediately lead us to the relation

‖yε,k‖pε,k :=
∫

Ω

(
ε + Fk(|∇yε,k|2)

) p−2
2 |∇yε,k|2 dx

= 〈
v, yε,k

〉
H−1(Ω);H 1

0 (Ω)
+

∫

Ω

uyε,k dx

≤ Cp

(
‖v‖

Lp
′
(Ω)

+ |Ω |
q−p′
qp′ ‖u‖Lq(Ω)

)[
|Ω | p−2

2p ‖yε,k‖ε,k + ‖yε,k‖
p
2
ε,k

]
.

(23.42)

As a result, it follows from (23.42) that

‖yε,k‖ε,k ≤ max

{
C

2
p
u,v, C

1
p−1
u,v

}
, ∀ ε > 0, ∀ k ∈ N, ∀ u ∈ Lq(Ω), ∀ v ∈ Lp

′
(Ω),

(23.43)

where

Cu,v := Cp

(
‖v‖

Lp
′
(Ω)

+ |Ω |
q−p′
qp′ ‖u‖Lq(Ω)

)(
|Ω | p−2

2p + 1

)
. (23.44)

To conclude this section, we give the following result.
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Theorem 23.4 Let p ∈ [2, 2N/(N − 1)) and q > p′. Then, for every positive
value ε > 0 and integer k ∈ N, the approximating optimal control problem (23.26)–
(23.29) has at least one solution.

Proof Since Iε,k(u, v, y) ≥ 0 for all (u, v, y) ∈ Lq(Ω) × Lp
′
(Ω) × H 1

0 (Ω),
it follows that there exists a non-negative value με,k such that με,k =
inf(u,v,y)∈Ξε,k Iε,k(u, v, y). Let

{
(uε,k,m, vε,k,m, yε,k,m)

}
m∈N be a minimizing

sequence, i.e.

(uε,k,m, vε,k,m, yε,k,m) ∈ Ξε,k ∀m ∈ N and lim
m→∞ Iε,k(uε,k,m, vε,k,m, yε,k,m) = με,k.

So, without loss of generality, we can suppose that

Iε,k(uε,k,m, vε,k,m, yε,k,m) = 1

2

∫

Ω

|yε,k,m − yd |2 dx + k

p′

∫

Ω

|vε,k,m−Tε(f (yε,k,m))|p′
dx

+ 1

q

∫

Ω

|uε,k,m|q dx + α

p′

∫

Ω

|vε,k,m|p′
dx

≤ με,k + 1 for all m ∈ N. (23.45)

Since Tε(f (yε,k,m)) ∈ L∞(Ω), it follows from (23.45) that the sequence
of fictitious controls

{
vε,k,m

}
k∈N is uniformly bounded in Lp

′
(Ω). The similar

conclusion can be made for the sequence
{
uε,k,m

}
k∈N. So, we can admit the

existence of elements v0
ε,k ∈ Lp

′
(Ω) and u0

ε,k ∈ Lq(Ω) such that (up to a
subsequence)

vε,k,m ⇀ v0
ε,k in Lp

′
(Ω) and uε,k,m ⇀ u0

ε,k in Lq(Ω) as m → ∞. (23.46)

Moreover, in view of estimate (23.43), we see that the sequence
{
yε,k,m

}
k∈N is

bounded in H 1
0 (Ω). Indeed, setting Ωk(yε,k,m) := {

x ∈ Ω : |∇yε,k,m(x)| > k
}

for each k ∈ N, we have

‖yε,k,m‖H 1
0 (Ω)

≤ ‖∇yε,k,m‖L2(Ω\Ωk(yε,k,m))
N + ‖∇yε,k,m‖L2(Ωk(yε,k,m))

N

by (23.40) and (23.41)≤
[
|Ω | p−2

2p ‖yε,k,m‖ε,k + ‖yε,k,m‖
p
2
ε,k

]
by (23.43)

< +∞. (23.47)

As a result, we deduce the existence of a subsequence of
{
yε,k,m

}
k∈N, denoted in

the same way, and an element y0
ε,k ∈ H 1

0 (Ω) such that yε,k,m ⇀ y0
ε,k in H 1

0 (Ω) as

m → ∞. Let us prove that y0
ε,k is the solution of (23.27) and (23.28) with v = v0

ε,k

and u = u0
ε,k . Let us fix an arbitrary test function ϕ ∈ C∞

0 (Ω) and pass to the limit
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in the Minty inequality

∫

Ω

(ε + Fk(|∇ϕ|2)) p−2
2

(∇ϕ,∇ϕ − ∇yε,k,m
)
RN

dx

≥ 〈
vε,k,m, (ϕ − yε,k,m)

〉
H−1(Ω);H 1

0 (Ω)
+

∫

Ω

uε,k,m(ϕ − yε,k,m) dx, (23.48)

as m → ∞. In view of the convergences vε,k,m ⇀ v0
ε,k in Lp

′
(Ω), uε,k,m ⇀ u0

ε,k in

Lq(Ω), and yε,k,m → y0
ε,k strongly in L2(Ω), we obtain

lim
m→∞

∫

Ω

(ε + Fk(|∇ϕ|2)) p−2
2

(∇ϕ,∇yε,k,m
)
RN

dx

=
∫

Ω

(ε + Fk(|∇ϕ|2)) p−2
2

(
∇ϕ,∇y0

ε,k

)
RN

dx,

lim
m→∞

〈
vε,k,m, (ϕ − yε,k,m)

〉
H−1(Ω);H 1

0 (Ω)
=

〈
v0
ε,k, (ϕ − y0

ε,k)
〉
H−1(Ω);H 1

0 (Ω)
,

lim
m→∞

∫

Ω

uε,k,m(ϕ − yε,k,m) dx =
∫

Ω

u0
ε,k(ϕ − y0

ε,k) dx.

Thus, passing to the limit in relation (23.48) as m → ∞, we arrive at the inequality

∫

Ω

(ε + Fk(|∇ϕ|2)) p−2
2

(
∇ϕ,∇ϕ − ∇y0

ε,k

)
RN

dx ≥
〈
v0
ε,k, (ϕ − y0

ε,k)
〉
H−1(Ω);H 1

0 (Ω)

+
∫

Ω

u0
ε,k(ϕ − y0

ε,k) dx, ∀ϕ ∈ C∞
0 (Ω).

Finally, from the density of C∞
0 (Ω) in H 1

0 (Ω), we infer that the integral identity

∫

Ω

(ε + Fk(|∇y0
ε,k|2))

p−2
2

(
∇y0

ε,k,∇ϕ
)
RN

dx =
〈
v0
ε,k, ϕ

〉
H−1(Ω);H 1

0 (Ω)
+

∫

Ω

u0
ε,kϕ dx

holds for every ϕ ∈ H 1
0 (Ω), and hence y ∈ H 1

0 (Ω) is the solution to the boundary
value problem (23.27) and (23.28) for v = v0

ε,k and u = u0
ε,k. Since the solution

of (23.27) and (23.28) is unique, the whole sequence {yε,k,m}m∈N converges weakly

to y0
ε,k in H 1

0 (Ω). Thus,
(
u0
ε,k, v

0
ε,k, y

0
ε,k

)
∈ Ξε,k .

The fact that
(
u0
ε,k, v

0
ε,k, y

0
ε,k

)
is an optimal solution to the problem (23.26)–

(23.29) immediately follows from such observations: in accordance to the strong
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convergence yε,k,m → y0
ε,k in L2(Ω), we have

Tε(f (yε,k,m)) → Tε(f (y
0
ε,k)) a.e. in Ω and sup

m∈N
‖Tε(f (yε,k,m))‖Lq (Ω) ≤ ε

− 1
q |Ω| 1

q .

Since q > 2, it follows that the sequence Tε(f (yε,k,m)) → Tε(f (y
0
ε,k)) strongly in

Lp
′
(Ω). Combining this fact with the weak convergence vε,k,m ⇀ v0

ε,k in Lp
′
(Ω)

and the lower semi-continuity of the norm ‖ · ‖Lp′
(Ω) with respect to the weak

convergence in Lp
′
(Ω), we finally obtain

inf
(u,v,y)∈Ξε,k

Iε,k(u, v, y) = lim
m→∞ Iε,k(uε,k,m, vε,k,m, yε,k,m) ≥ Iε,k

(
u0
ε,k, v

0
ε,k, y

0
ε,k

)
.

Thus,
(
u0
ε,k, v

0
ε,k, y

0
ε,k

)
is an optimal solution to the problem (23.26)–(23.29).

23.4 Asymptotic Analysis of Approximating
OCP (23.26)–(23.29)

Our main intention in this section is to show that optimal solutions to the original
OCP (23.2)–(23.5) can be attained (in some sense) by optimal solutions to the
approximating problems (23.26)–(23.29). With that in mind, we make use of the
concept of variational convergence of constrained minimization problems (see
[10]) and study the asymptotic behaviour of a family of OCPs (23.26)–(23.29) as
ε → 0 and k → ∞. We begin with some auxiliary results concerning the weak
compactness in H 1

0 (Ω) of ‖ · ‖ε,k-bounded sequences.

Lemma 23.2 Let {uε,k} ε>0
k∈N

⊂ Lq(Ω) and {vε,k} ε>0
k∈N

⊂ Lp
′
(Ω) be arbitrary

bounded sequences of admissible controls with associated states
{
yε,k

}
ε>0
k∈N

⊂
H 1

0 (Ω), i.e. yε,k = yε,k(uε,k, vε,k) is a weak solution of (23.27) and (23.28). Then
the sequence

{
yε,k

}
ε>0
k∈N

is bounded in H 1
0 (Ω). Moreover, each cluster point y of

the sequence
{
yε,k

}
ε>0
k∈N

with respect to the weak convergence in H 1
0 (Ω), satisfies:

y ∈ W
1,p
0 (Ω).

For the proof of this Lemma we refer to [6, Lemma 5.1].

Lemma 23.3 Let {εi}i∈N, {ki}i∈N, {ui}i∈N ⊂ Lq(Ω), and {vi}i∈N ⊂ Lp
′
(Ω) be

sequences such that

εi → 0, ki → ∞, ui ⇀ u in Lq(Ω), vi ⇀ v in Lp
′
(Ω), (23.49)
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where p′ = p/(p − 1) and 2 ≤ p < 2N/(N − 1). Let y = y(u, v) and yi =
yεi,ki (ui, vi) be the solutions of

−div
(
|∇y|p−2∇y

)
= v + u in Ω, (23.50)

y = 0 on ∂Ω (23.51)

and

−div

((
εi + Fki

(
|∇y|2

)) p−2
2 ∇y

)
= vi + ui in Ω, (23.52)

y = 0 on ∂Ω, (23.53)

respectively. Then

yi → y in H 1
0 (Ω) as i → ∞, (23.54)

χΩ\Ωk(yi)∇yi → ∇y strongly in Lp(Ω)N, (23.55)

lim
i→∞

∫

Ω

(
εi + Fki (|∇yi |2)

) p−2
2 |∇yi |2 dx =

∫

Ω

|∇y|p dx, (23.56)

whereΩki (yi) is defined as

Ωki (yi) :=
{
x ∈ Ω : |∇yi(x)| >

√
k2
i + 1

}
. (23.57)

Proof For the reader’s convenience, we divide the proof into five steps.

Step 1 yi ⇀ y in H 1
0 (Ω). Taking into account the a priori estimate (23.43), we

have

‖yi‖pεi ,ki ≤ Cp

[
‖vi‖Lp′

(Ω)
+ |Ω |

q−p′
qp′ ‖ui‖Lq(Ω)

] [
|Ω | p−2

2p ‖yi‖εi ,ki + ‖yi‖
p
2
εi ,ki

]
.

(23.58)

It follows from (23.58) that

‖yi‖εi ,ki ≤ max

{
C

2
p

i , C
1

p−1
i

}
, ∀ i ∈ N, (23.59)

where Ci := Cp

(
‖vi‖Lp′

(Ω)
+ |Ω |

q−p′
qp′ ‖ui‖Lq(Ω)

)(
|Ω | p−2

2p + 1

)
.
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Then from Lemma 23.2 we deduce the existence of a subsequence, denoted in
the same way {yi}i∈N ⊂ H 1

0 (Ω) and an element y ∈ W
1,p
0 (Ω) such that yi ⇀ y

in H 1
0 (Ω). Let us prove that y is the solution of (23.50) and (23.51). With that in

mind we fix an arbitrary test function ϕ ∈ C∞
0 (Ω) and pass to the limit in the Minty

inequality

∫

Ω

(εi + Fki (|∇ϕ|2)) p−2
2 (∇ϕ,∇ϕ − ∇yi)RN dx

≥ 〈vi, ϕ − yi〉H−1(Ω);H 1
0 (Ω)

+
∫

Ω

ui(ϕ − yi) dx,

(23.60)

as i → ∞. Taking into account that

(εi+Fki (|∇ϕ|2)) p−2
2 ∇ϕ → |∇ϕ|p−2∇ϕ strongly in Lp

′
(Ω)N , with p′ = p/(p−1),

in view of the convergences ∇yi ⇀ ∇y in L2(Ω)N , ui ⇀ u in Lq(Ω), vi → v in
H−1(Ω) (by compactness of the embedding Lp

′
(Ω) ↪→ H−1(Ω)), and yi → y in

L2(Ω), we obtain

lim
i→∞

∫

Ω

(εi + Fki (|∇ϕ|2)) p−2
2 (∇ϕ,∇ϕ)RN dx =

∫

Ω

|∇ϕ|p−2 (∇ϕ,∇ϕ)RN dx,

lim
i→∞

∫

Ω

(εi + Fki (|∇ϕ|2)) p−2
2 (∇ϕ,∇yi)RN dx =

∫

Ω

|∇ϕ|p−2 (∇ϕ,∇y)RN dx,

lim
i→∞

∫

Ω

ui(ϕ − yi) dx =
∫

Ω

u(ϕ − y) dx,

lim
i→∞ 〈vi, ϕ − yi〉H−1(Ω);H 1

0 (Ω)
= 〈v, ϕ − y〉

W−1,p′
(Ω);W 1,p

0 (Ω)
.

Thus, passing to the limit in relation (23.60) as i → ∞, we arrive at the inequality

∫

Ω

|∇ϕ|p−2 (∇ϕ,∇ϕ − ∇y)RN dx ≥ 〈v, ϕ − yi〉W−1,p′
(Ω);W 1,p

0 (Ω)
+

∫

Ω

u(ϕ − y) dx

for every ϕ ∈ C∞
0 (Ω). Finally, from the density of C∞

0 (Ω) in W 1,p
0 (Ω), we infer

that this inequality holds for every ϕ ∈ W
1,p
0 (Ω), and hence y ∈ W

1,p
0 (Ω) is

the solution to the boundary value problem (23.50) and (23.51) in the sense of
distributions. Since the solution of (23.50) and (23.51) is unique, the whole sequence
{yi}i∈N converges weakly to y = y(u, v) in H 1

0 (Ω).
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Step 2 χΩ\Ωk(yi)∇yi ⇀ ∇y in Lp(Ω)N . Following the definition of the sets
Ωki (yi), we obtain

∫

Ω

|χΩ\Ωki
(yi )∇yi |p dx =

∫

Ω\Ωki
(yi )

|∇yi |p dx

≤
∫

Ω\Ωki
(yi )

(
εi + Fki (|∇yi |2)

) p−2
2 |∇yi |2 dx,≤ ‖yi‖pεi ,ki

by (23.43)≤ C < +∞, ∀ i ∈ N.

Hence, taking a new subsequence if necessary, we infer the existence of a vector-
valued function g ∈ Lp(Ω)N such that χΩ\Ωki

(yi)∇yi⇀g inLp(Ω)N as i→∞, i.e.

lim
i→∞

∫

Ω\Ωki
(yi)

(∇yi,∇ϕ) dx =
∫

Ω

(g,∇ϕ) dx, ∀ϕ ∈ C∞
0 (Ω). (23.61)

On the other hand, in view of the weak convergence ∇yi ⇀ ∇y in L2(Ω)N ,
∫

Ω

(∇y,∇ϕ) dx = lim
i→∞

∫

Ω

(∇yi,∇ϕ) dx

= lim
i→∞

∫

Ω\Ωki
(yi)

(∇yi,∇ϕ) dx + lim
i→∞

∫

Ωki
(yi)

(∇yi,∇ϕ) dx.
(23.62)

Since
∣∣∣∣∣
∫

Ωki
(yi)

(∇yi,∇ϕ) dx
∣∣∣∣∣ ≤ ‖ϕ‖C1(Ω)

√|Ωki (yi)|
(∫

Ωki
(yi)

|∇yi|2 dx
)1/2

≤ ‖ϕ‖C1(Ω)

(
εi+k2

i +1
) p−2

4

√|Ωki (yi)|‖yi‖
p
2
εi ,ki

by (23.31),(23.43)≤ ‖ϕ‖C1(Ω)

C

k
p−1
i

→0 as i→∞,

it follows from (23.61) and (23.62) that
∫

Ω

(g,∇ϕ) dx =
∫

Ω

(∇y,∇ϕ) dx, ∀ϕ ∈ C∞
0 (Ω).

Hence, g = ∇y almost everywhere in Ω and χΩ\Ωk(yi)∇yi ⇀ ∇y in Lp(Ω)N

holds.

Step 3 χΩ\Ωk(yi)∇yi → ∇y in Lp(Ω)N . For each i ∈ N, we have the energy
equalities

∫

Ω

(εi + Fki (|∇yi|2))
p−2

2 |∇yi|2 dx = 〈vi, yi〉H−1(Ω);H 1
0 (Ω)

+
∫

Ω

uiyi dx,

∫

Ω

|∇y|p dx = 〈v, y〉
W−1,p′

(Ω);W 1,p
0 (Ω)

+
∫

Ω

uy dx.

(23.63)
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From (23.63) and the fact that yi ⇀ y inH 1
0 (Ω) and vi → v inH−1(Ω), we deduce

lim
i→∞

∫

Ω

(εi+Fki (|∇yi|2))
p−2

2 |∇yi|2dx= lim
i→∞

[
〈vi, yi〉H−1(Ω);H 1

0 (Ω)
+

∫

Ω

uiyidx

]

= 〈v, y〉
W−1,p′

(Ω);W 1,p
0 (Ω)

+
∫

Ω

uy dx
by (23.63)2=

∫

Ω

|∇y|p dx.
(23.64)

Moreover, we have

∫

Ω

|∇y|p dx = lim
i→∞

∫

Ω

(
εi + Fki (|∇yi |2)

) p−2
2 |∇yi |2 dx

≥ lim sup
i→∞

∫

Ω\Ωki
(yi)

(
εi + Fki (|∇yi |2)

) p−2
2 |∇yi |2 dx

by (23.57)≥ lim sup
i→∞

∫

Ω\Ωki
(yi)

(
εi + |∇yi |2

) p−2
2 |∇yi|2 dx

≥ lim sup
i→∞

∫

Ω

χΩ\Ωki
(yi)|∇yi |p dx ≥ lim inf

i→∞

∫

Ω

χΩ\Ωki
(yi)|∇yi |p dx.

(23.65)

Since χΩ\Ωki
(yi)∇yi ⇀ ∇y in Lp(Ω)N , it follows from (23.65) that

∫

Ω

|∇y|p dx ≥ lim sup
i→∞

∫

Ω

χΩ\Ωki
(yi)|∇yi |p dx ≥ lim inf

i→∞

∫

Ω

χΩ\Ωki
(yi)|∇yi|p dx

= lim inf
i→∞ ‖χΩ\Ωki

(yi)∇yi‖pLp(Ω)N ≥ ‖∇y‖p
Lp(Ω)N

=
∫

Ω

|∇y|p dx.

It remains to note that the weak convergence χΩ\Ωki
(yi)∇yi ⇀ ∇y in Lp(Ω)N and

the convergence of their norms ‖χΩ\Ωki
(yi)∇yi‖Lp(Ω)N → ‖∇y‖Lp(Ω)N imply the

strong convergence χΩ\Ωki
(yi)∇yi → ∇y in Lp(Ω)N .

Step 4 yi → y in H 1
0 (Ω). From (23.55) and (23.65) we obtain

lim
i→∞

∫

Ωki
(yi)

(
εi + Fki (|∇yi|2)

) p−2
2 |∇yi|2 dx = 0. (23.66)

We apply (23.66) to deduce

lim
i→∞

∫

Ωk(yi)

|∇yi |2 dx ≤ lim
i→∞

∫

Ωk(yi)

(εi + Fk(|∇yi |2))
p−2

2 |∇yi |2 dx = 0.
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Now, combining this estimate and (23.55), we conclude that

∇yi = χΩk(yi)∇yi + χΩ\Ωk(yi)∇yi → ∇y strongly in L2(Ω)N .

The following noteworthy property is crucial for our further analysis.

Theorem 23.5 Let
{
(u0
ε,k, v

0
ε,k, y

0
ε,k)

)
} ε>0
k∈N

be an arbitrary sequence of optimal

solutions to the approximating problems (23.26)–(23.29). Assume that 2 ≤ p <

2N/(N − 1) and the parameter ε varies within a strictly decreasing sequence
{εk}k∈N of positive real numbers such that

lim
k→∞

(
k ε

p′
k

)
= 0. (23.67)

Then the sequence
{
(u0
ε,k, v

0
ε,k, y

0
ε,k)

)
} ε>0
k∈N

is bounded in Lq(Ω)×Lp
′
(Ω)×H 1

0 (Ω)

and any its cluster triple (u0, v0, y0) with respect to the weak topology of Lq(Ω)×
Lp

′
(Ω)×H 1

0 (Ω) is such that v
0 = f (y0) and (u0, y0) is a feasible solution of the

OCP (23.2)–(23.5).

Proof Let us take an arbitrary function ỹ ∈ C∞
0 (Ω) and put ũ := −Δpỹ − f (ỹ).

Then ũ ∈ Lq(Ω), ỹ ∈ H 1
0 (Ω), and f (ỹ) ∈ L2(Ω). Hence, ỹ ∈ Y ⊂ H 1

0 (Ω) is
a weak solution to the boundary value problem (23.3) and (23.4) for given ũ, and,
therefore, (̃u, ỹ) ∈ Ξ . Having set

ṽε,k := −Δε,k,p(ỹ)+Δp ỹ + f (ỹ), (23.68)

it is easy to check that ṽε,k ∈ L2(Ω) and (̃u, ṽε,k, ỹ) ∈ Ξε,k .
Let us show that, for sufficiently small ε > 0 and k ∈ N large enough, there

exists a constant C > 0 such that

‖̃vε,k − Tε (f (ỹ)) ‖p
′

Lp
′
(Ω)

≤ Cεp
′
. (23.69)

Indeed, using the fact that ỹ ∈ C∞
0 (Ω), we see that

f (ỹ) = Tε (f (ỹ)) for sufficiently small ε > 0 and

Fk(|∇ỹ|2) = |∇ỹ|2 for k ∈ N large enough.

In what follows, we make use of the notation Δ∞(ỹ) = (∇ỹ,D2(ỹ)∇ỹ). Then, for
indicated ε and k, by smoothness of the function ỹ, we have

ṽε,k − Tε (f (ỹ)) = div

(
|∇ỹ|p−2∇ỹ −

(
ε + |∇ỹ|2

) p−2
2 ∇ỹ

)

= |∇ỹ|p−2Δỹ + (p − 2)|∇ỹ|p−4Δ∞(ỹ)
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−
(
ε + |∇ỹ|2

) p−2
2
Δỹ − (p − 2)

(
ε + |∇ỹ|2

) p−4
2
Δ∞(ỹ)

= −
[(
ε + |∇ỹ|2

) p−2
2 − |∇ỹ|p−2

]
Δỹ

− (p − 2)

[(
ε + |∇ỹ|2

) p−4
2 − |∇ỹ|p−4

]
Δ∞(ỹ). (23.70)

Setting Φ(ε) := (
ε + |∇ỹ|2)

p−2
2 , we see that Φ ∈ C([0, 1]) and Φ ∈ C1(0, 1)

because p ≥ 2. Hence, by the mean value theorem, we deduce that

(
ε + |∇ ỹ|2

) p−2
2 − |∇ ỹ|p−2 = Φ(ε)−Φ(0) = εΦ ′(ε0) = p − 2

2

(
ε0 + |∇ ỹ|2

) p−4
2
ε,

(23.71)

where ε0 ∈ (0, 1). The similar inference can be done for the function Ψ (ε) :=(
ε + |∇ỹ|2)

p−4
2 provided p ≥ 4. Indeed, in this case we have

(
ε + |∇ ỹ|2

) p−4
2 − |∇ ỹ|p−4 = Ψ (ε)− Ψ (0) = εΨ ′(ε1) = p − 4

2

(
ε1 + |∇ ỹ|2

) p−6
2
ε,

(23.72)

for some ε1 ∈ (0, 1). Utilizing (23.71) and (23.72), and using the fact that

|∇ỹ|, Δ∞(ỹ), Δỹ ∈ L∞(Ω),

we can deduce from (23.70) existence of a positive constant C1, depending only on
ε0, ε1, ỹ, and p, such that the following estimate

‖̃vε,k − Tε (f (ỹ)) ‖rLr (Ω) =
∫

Ω

(̃
vε,k − Tε (f (ỹ))

)r
dx ≤ C1ε

r (23.73)

holds true for all r ∈ [1,∞), ε small enough, and k large enough, provided p ≥ 4.
In the case if p ∈ [2, 4), we have

∣∣∣
(
ε + |∇ỹ|2

) p−4
2 − |∇ỹ|p−4

∣∣∣Δ∞(ỹ) =
∣∣∣∣∣
(
ε + |∇ỹ|2

) 4−p
2 − |∇ỹ|4−p

∣∣∣∣∣

× |∇ỹ|p−2

(
ε + |∇ỹ|2) 4−p

2

( ∇ỹ
|∇ỹ| ,D

2(ỹ)
∇ỹ
|∇ỹ|

)
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≤
∣∣∣∣∣
(
ε + |∇ỹ|2

) 4−p
2 − |∇ỹ|4−p

∣∣∣∣∣
(
ε + |∇ỹ|2

)p−2− 4−p
2 ‖D2(ỹ)‖

by (23.72)≤ 4 − p

2

(
ε2 + |∇ỹ|2

) 2−p
2
ε
(

1 + |∇ỹ|2
) 3

2 (p−2) ‖D2(ỹ)‖

Combining this estimate with (23.71) and using the same arguments as we did it
before, we also can deduce the existence of a constantC2, depending only on ε0, ε2,
ỹ, and p ∈ [2, 4), such that

‖̃vε,k − Tε (f (ỹ)) ‖rLr (Ω) =
∫

Ω

(̃
vε,k − Tε (f (ỹ))

)r
dx ≤ C2ε

r, ∀ r ≥ 1.

(23.74)

Hence, the estimate (23.69) is valid. Taking this fact into account, we see that

Iε,k

(
u0
ε,k, v

0
ε,k, y

0
ε,k

)
= inf

(u,v,y)∈Ξε,k
Iε,k(u, v, y) ≤ Iε,k

(̃
u, ṽε,k, ỹ

)

≤ 1

2

∫

Ω

|̃y − yd |2 dx + k

p′Cε
p′ + 1

q

∫

Ω

|̃u|q dx + α

p′

∫

Ω

|̃vε,k|p′
dx,

(23.75)

where

∫

Ω

|̃vε,k|p′
dx

by (23.68)≤ 2p
′
[∫

Ω

∣∣−Δε,k,p(ỹ)+Δp ỹ
∣∣p′

dx +
∫

Ω

|f (ỹ)|p′
dx

]

≤ Cεp
′ + 2p

′‖f (ỹ)‖p′
L∞(Ω)

|Ω |. (23.76)

Utilizing the estimates (23.75) and (23.76), and assuming that the sequence {ε} =
{εk}k∈N satisfies the condition (23.67), we obtain

sup
ε>0
k∈N

Iε,k

(
u0
ε,k, v

0
ε,k, y

0
ε,k

)
= sup

ε>0
k∈N

[1

2

∫

Ω

|y0
ε,k − yd |2 dx + k

p′

∫

Ω

|v0
ε,k − Tε(f (y

0
ε,k))|p

′
dx

+ 1

q

∫

Ω

|u0
ε,k |q dx + α

p′

∫

Ω

|v0
ε,k |p

′
dx

]

≤ sup
ε>0
k∈N

[1

2

∫

Ω

|y0
ε,k − yd |2 dx + k

p′ ε
p′ + 1

q

∫

Ω

|u0
ε,k |q dx + α

p′

∫

Ω

|v0
ε,k |p

′
dx

]

≤ 1

2

∫

Ω

|̃y − yd |2 dx + 1

q

∫

Ω

|̃u|q dx + α

p′ 2p
′‖f (ỹ)‖p′

L∞(Ω)|Ω| < +∞
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and, as a consequence, we can deduce the existence of a constant C∗> 0 indepen-
dent on ε and k such that

sup
ε>0
k∈N

‖v0
ε,k‖Lp′

(Ω) < C∗, sup
ε>0
k∈N

‖u0
ε,k‖qLq(Ω) < C∗,

and sup
ε>0
k∈N

‖v0
ε,k − Tε(f (y

0
ε,k))‖p

′
Lp

′
(Ω)

< C∗k−1.

(23.77)

Then the estimate (23.59) implies that

sup
ε>0
k∈N

‖y0
ε,k‖εi ,ki ≤ max

{
C

2
p∗ , C

1
p−1∗

}
(23.78)

with C∗ = Cp

(
C∗ + |Ω |

q−p′
qp′ C∗

)(
|Ω | p−2

2p + 1

)
,

i.e., in view of (23.47), we can suppose that the sequence
{
y0
ε,k

}
ε>0
k∈N

is bounded

in H 1
0 (Ω) and, therefore, the sequence of solutions to the approximating prob-

lems
{(
u0
ε,k, v

0
ε,k, y

0
ε,k)

)}
ε>0
k∈N

is compact with respect to the weak convergence in

Lq(Ω)× Lp
′
(Ω)×H 1

0 (Ω).
Let (u0, v0, y0) be its any cluster triplet, i.e. up to a subsequence, we have

y0
ε,k ⇀ y0 in H 1

0 (Ω), u
0
ε,k ⇀ u0 in Lq(Ω), v0

ε,k ⇀ v0 in Lp
′
(Ω). (23.79)

Then Lemma 23.3 implies that y0 = y(u0, v0) is a weak solution to the
problem (23.50) and (23.51). Moreover, for any ϕ ∈ C∞

0 (Ω) we have

∣∣∣
∫

Ω

v0ϕ dx −
∫

Ω

f (y0)ϕ dx

∣∣∣ ≤
∣∣∣
∫

Ω

v0
ε,kϕ dx −

∫

Ω

v0ϕ dx

∣∣∣

+
∣∣∣
∫

Ω

v0
ε,kϕ dx −

∫

Ω

f (y0)ϕ dx

∣∣∣

≤
∣∣∣
∫

Ω

(
v0
ε,k − v0

)
ϕ dx

∣∣∣ +
∫

Ω

∣∣∣v0
ε,k − Tε

(
f (y0

ε,k)
)∣∣∣ |ϕ| dx

+
∫

Ω

∣∣∣Tε
(
f (y0

ε,k)
)

− f (y0
ε,k)

∣∣∣ |ϕ| dx +
∫

Ω

∣∣∣f (y0
ε,k)− f (y0)

∣∣∣ |ϕ| dx

= J0 + J1 + J2 + J3, (23.80)
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where

J0 =
∣∣∣
∫

Ω

(
v0
ε,k − v0

)
ϕ dx

∣∣∣ by (23.79)3→ 0 as ε → 0 and k → ∞, (23.81)

J1 ≤ ‖v0
ε,k − Tε

(
f (y0

ε,k)
)

‖
Lp

′
(Ω)

‖ϕ‖Lp(Ω) by (23.77)→ 0 as ε → 0 and k → ∞,

(23.82)

J2 ≤ ‖Tε
(
f (y0

ε,k)
)

−f (y0
ε,k)‖L1(Ω)‖ϕ‖L∞(Ω)

by definition of Tε→ 0as ε→0 and k→∞,

(23.83)

J3 ≤ ‖f (y0
ε,k)− f (y0)‖L1(Ω)‖ϕ‖L∞(Ω).

Let us show that

f (y0
ε,k) → f (y0) strongly in L1(Ω) as ε → 0 and k → ∞. (23.84)

With that in mind, we note that by compactness of the injection H 1
0 (Ω) ↪→

L2(Ω), we can deduce the existence of a subsequence of
{
y0
ε,k

}
ε>0
k∈N

, denoted in

the same way, such that f (y0
ε,k) → f (y0) almost everywhere in Ω . So, in order to

conclude (23.84), it remains to establish the equi-integrability on Ω of the sequence{
f

(
y0
ε,k

)}
ε>0
k∈N

. For this purpose, we make use of the following relation, coming

from the energy identity (23.42),
∫

Ω
y0
ε,kf

(
y0
ε,k

)
dx = ‖y0

ε,k‖pε,k−
〈
v0
ε,k − f

(
y0
ε,k

)
, y0
ε,k

〉
H−1(Ω);H 1

0 (Ω)
−
∫

Ω
u0
ε,ky

0
ε,k dx.

(23.85)
Since

‖y0
ε,k‖pε,k

by (23.78)≤ A
p
1 := max

{
C

2
p∗ , C

1
p−1∗

}
, (23.86)

∫

Ω

u0
ε,ky

0
ε,k dx

by (23.37)≤ Cp|Ω |
q−p′
qp′ ‖u0

ε,k‖Lq(Ω)
[
|Ω | p−2

2p ‖y0
ε,k‖ε,k + ‖y0

ε,k‖
p
2
ε,k

]

by (23.86), (23.77)≤ A2 := Cp |Ω |
q−p′
qp′ C∗

[
|Ω | p−2

2p A1 + A
p
2
1

]

(23.87)

and
∣∣∣
〈
v0
ε,k−f

(
y0
ε,k

)
, y0

ε,k

〉
H−1(Ω);H 1

0 (Ω)
≤

∣∣∣
〈
v0
ε,k−Tε

(
f

(
y0
ε,k

))
, y0

ε,k

〉
H−1(Ω);H 1

0 (Ω)

∣∣∣

+
∣∣∣
〈
f

(
y0
ε,k

)
− Tε

(
f

(
y0
ε,k

))
, y0

ε,k

〉
H−1(Ω);H 1

0 (Ω)

∣∣∣
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by (23.36)≤ Cp‖v0
ε,k − Tε

(
f

(
y0
ε,k

))
‖
Lp

′
(Ω)

[
|Ω | p−2

2p ‖y0
ε,k‖ε,k + ‖y0

ε,k‖
p
2
ε,k

]

+ Cp‖f
(
y0
ε,k

)
− Tε

(
f

(
y0
ε,k

))
‖
Lp

′
(Ω)

[
|Ω | p−2

2p ‖y0
ε,k‖ε,k + ‖y0

ε,k‖
p
2
ε,k

]

by (23.77), (23.86), (23.30)≤ Cp

[
|Ω | p−2

2p A1 + A
p
2
1

] (
εC∗ + εC̃

)
. (23.88)

Utilizing the estimates (23.88), (23.87), (23.86), it follows from (23.85) that there
exists a constant M > 0 independent of ε and k such that

sup
ε>0
k∈N

∣∣∣∣
∫

Ω

y0
ε,kf

(
y0
ε,k

)
dx

∣∣∣∣ ≤ M. (23.89)

We recall that a sequence {fk}k∈N is called equi-integrable on Ω if for any δ > 0,
there is a τ = τ (δ) such that

∫
S |fk | dx < δ for every measurable subset S ⊂ Ω of

Lebesgue measure |S| < τ . So, in order to show that the sequence
{
f

(
y0
ε,k

)}
ε>0
k∈N

is equi-integrable on Ω , we take m > 0 such that

m > 2Mδ−1. (23.90)

We also set τ = δ/(2f (m)). Then for every measurable set S ⊂ Ω with |S| < τ ,
we have
∫

S

f (y0
ε,k) dx =

∫
{
x∈S : y0

ε,k(x)>m
} f (y0

ε,k) dx +
∫
{
x∈S : y0

ε,k(x)≤m
} f (y0

ε,k) dx

≤ 1

m

∫
{
x∈S : y0

ε,k(x)>m
} y0

ε,kf (y
0
ε,k) dx +

∫
{
x∈S : y0

ε,k(x)≤m
} f (m) dx

by (23.89)≤ M

m
+ f (m)|S| by (23.90)≤ δ

2
+ δ

2
.

As a result, the assertion (23.84) is a direct consequence of Lebesgue’s Convergence
Theorem. Thus,

J3 ≤ ‖f (y0
ε,k)− f (y0)‖L1(Ω)‖ϕ‖L∞(Ω)

by (23.84)→ 0 as ε → 0 and k → ∞.

Combining this fact with properties (23.81)–(23.83), we deduce from (23.80) that
v0 = f (y0) almost everywhere on Ω . Hence, by (23.79), we have

f (y0) ∈ Lp
′
(Ω) and v0

ε,k ⇀ f (y0) in Lp
′
(Ω).
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Thus, (u0, y0) a feasible solution of the OCP (23.2)–(23.5). The proof is complete.

We are now in a position to show that optimal solutions to the approximating
OCP (23.26)–(23.29) lead in the limit to optimal pairs of the original OCP (23.2)–
(23.5).

Theorem 23.6 Let 2 ≤ p < 2N/(N − 1) and let
{
(u0
ε,k, v

0
ε,k, y

0
ε,k)

)
} ε>0
k∈N

be an

arbitrary sequence of optimal solutions to the approximating problems (23.26)–
(23.29), where the parameter ε varies within a strictly decreasing sequence {εk}k∈N
of positive real numbers satisfying condition (23.67). Then, this sequence is bounded
in Lq(Ω) × Lp

′
(Ω) × H 1

0 (Ω) and any its cluster point (u0, v0, y0) with respect
to the weak topology is such that v0 = f (y0) and (u0, y0) is solution of the
OCP (23.2)–(23.5). Moreover, if for one subsequence we have y0

ε,k ⇀ y0 inH 1
0 (Ω),

u0
ε,k ⇀ u0 in Lq(Ω), and v0

ε,k ⇀ v0 in Lp
′
(Ω), then the following properties

hold

y0
ε,k → y0 in H 1

0 (Ω), u0
ε,k → u0 in Lq(Ω), (23.91)

v0
ε,k → f (y0) in Lp

′
(Ω),

k

p′

∫

Ω

|v0
ε,k − Tε(f (y

0
ε,k))|p

′
dx → 0, (23.92)

χΩ\Ωk(y
0
ε,k)

∇y0
ε,k → ∇y0 strongly in Lp(Ω)N, (23.93)

lim
ε→0
k→∞

∫

Ω

(
ε + Fk(|∇y0

ε,k|2)
) p−2

2 |∇y0
ε,k|2 dx =

∫

Ω

|∇y0|p dx, (23.94)

lim
ε→0
k→∞

Iε,k(u
0
ε,k, v

0
ε,k, y

0
ε,k) = lim

ε→0
k→∞

J (u0
ε,k, y

0
ε,k) = J (u0, y0). (23.95)

Proof The boundedness of the sequence
{
(u0
ε,k, v

0
ε,k, y

0
ε,k)

)
} ε>0
k∈N

has been proved

in Theorem 23.5. Let (u0, v0, y0) be its any cluster point with respect to the weak
topology of Lq(Ω)× Lp

′
(Ω)×H 1

0 (Ω). Let us take a subsequence, denoted in the
same way, satisfying the property (23.79). Then

y0
ε,k ⇀ y0 in H 1

0 (Ω), u
0
ε,k ⇀ u0 in Lq(Ω), v0

ε,k ⇀ v0 in Lp
′
(Ω) as ε → 0 and k → ∞,

(23.96)

and from Lemma 23.3 we get that y0
ε,k → y0 strongly in H 1

0 (Ω). As for the con-
vergences (23.93) and (23.94), they follow from (23.55) and (23.56), respectively.
Moreover, Theorem 23.5 implies that v0 = f (y0), f (y0) ∈ Lp

′
(Ω), and y0 is a

weak solution of (23.3) and (23.4) corresponding to u = u0.
Let us prove that (u0, y0) is an optimal pair to the problem (23.2)–(23.5). Given

an arbitrary feasible (u, y) ∈ Ξ , we define uε,k = u, vε,k = Tε (f (y)), and yε,k
as the solution of the boundary value problem (23.27) and (23.28). Since vε,k ∈
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Lp
′
(Ω), it follows that (uε,k, vε,k, yε,k) ∈ Ξε,k . By definition of the cut-off operator

Tε, we have

vε,k → f (y) strongly in Lp
′
(Ω) as ε → 0 and k → ∞. (23.97)

Then Lemma 23.3 implies the existence of an element y∗ ∈ W
1,p
0 (Ω) such that

yε,k → y∗ in H 1
0 (Ω) and y∗ satisfies the equality (in the sense of distributions)

−div
(
|∇y∗|p−2∇y∗) = f (y)+ u in Ω.

On the other hand, the condition (u, y) ∈ Ξ leads to the relation

−div
(
|∇y|p−2∇y

)
= f (y)+ u in Ω.

Hence,

−div
(
|∇y∗|p−2∇y∗) + div

(
|∇y|p−2∇y

)
= 0

and, therefore,

〈
−div

(
|∇y∗|p−2∇y∗) + div

(
|∇y|p−2∇y0

)
, y∗ − y

〉
W−1,p′

(Ω);W 1,p
0 (Ω)

= 0.

Since the p-Laplace operator is strictly monotone, it follows that y∗ = y as element
of W 1,p

0 (Ω). Thus, from (23.97) and Lemma 23.3 we get that

Ξε,k  (uε,k, vε,k, yε,k) −→ (u, f (y) , y) strongly in Lq(Ω) × Lp
′
(Ω)×H 1

0 (Ω).

(23.98)

Further, we make use of the following observation. Since f ∈ Cloc(R), it follows
from (23.30) and (23.97) that

vε,k − Tε(f (yε,k)) −→ 0 strongly in Lp
′
(Ω) as ε → 0 and k → ∞.

Hence, there exists a mapping ε �→ k(ε), increasing to +∞ and arguably depending
on y, such that (see Section 1.2.2 in [1])

lim
ε→0
k→∞

[∫

Ω

|vε,k − Tε(f (yε,k))|p′
dx

]
= lim

ε→0

[∫

Ω

|vε,k(ε) − Tε(f (yε,k(ε)))|p′
dx

]
= 0.

(23.99)
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Utilizing (23.98) and (23.99), we have

lim
ε→0
k→∞

[1

2

∫

Ω

|yε,k − yd |2 dx + 1

q

∫

Ω

|uε,k|q dx + α

p′

∫

Ω

|vε,k|p′
dx

]

= lim
ε→0

[1

2

∫

Ω

|yε,k(ε) − yd |2 dx + 1

q

∫

Ω

|uε,k(ε)|q dx + α

p′

∫

Ω

|vε,k(ε)|p′
dx

]

= 1

2

∫

Ω

|y − yd |2 dx + + 1

q

∫

Ω

|u|q dx + α

p′

∫

Ω

|f (y)|p′
dx. (23.100)

Since

0 ≤ lim sup
ε→0
k→∞

[
k

p′

∫

Ω

|vε,k(ε) − Tε(f (yε,k(ε)))|p′
dx

]

≤ lim sup
k→∞

[
k

p′ lim sup
ε→0

∫

Ω

|vε,k(ε) − Tε(f (yε,k(ε)))|p′
dx

]
= 0, (23.101)

it follows from (23.100) and (23.101) that

lim
ε→0
k→∞

Iε,k(uε,k(ε), vε,k(ε), yε,k(ε)) = lim sup
k→∞

[
lim sup
ε→0

Iε,k(uε,k(ε), vε,k(ε), yε,k(ε))

]

= J (u, y). (23.102)

Now, using (23.96), (23.77), the above identity, and the fact that (u0
ε,k, v

0
ε,k, y

0
ε,k) is

a solution of (23.26)–(23.29), we get

J (u0, y0) ≤ lim inf
ε→0
k→∞

Iε,k(u
0
ε,k, v

0
ε,k, y

0
ε,k) ≤ lim inf

ε→0
k→∞

Iε,k(u
0
ε,k(ε), v

0
ε,k(ε), y

0
ε,k(ε))

≤ lim inf
ε→0
k→∞

Iε,k(uε,k(ε), vε,k(ε), yε,k(ε))

≤ lim sup
ε→0
k→∞

Iε,k(uε,k(ε), vε,k(ε), yε,k(ε)) = J (u, y).

Since (u, y) is an arbitrary pair in Ξ , this implies that (u0, y0) is a solution of
the original optimal control problem (23.2)–(23.5). Moreover, taking (u, y) =
(u0, y0) in the above inequalities, the relations (23.95) is proved. Finally, (23.91)2
and (23.92) are the direct consequences of (23.95) and the convergence proper-
ties (23.96) established before.
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23.5 Optimality Conditions for Approximating
OCP (23.26)–(23.29)

The aim of this section is to derive the optimality system for approximating optimal
control problem (23.26)–(23.29). With that in mind, we assume that the mapping
F : R → [0,+∞) satisfies condition F ∈ C2

loc(R) and begin with investigation
of differentiability of the mapping (u, v) �→ yε,k(u, v). It is well known that in the
case ε = 0 and k = ∞ this mapping is not necessarily Gâteaux differentiable even
if f (y) ≡ 0. Indeed, let us consider the following boundary value problem

−div
(
|∇y|p−2∇y

)
= u in Ω,

y = 0 on ∂Ω,

wherep > 2 andΩ is the unite open ball inRN centered at the origin,Ω = B(0, 1).
It is easy to check that the states associated to u0(x) = 0, u1(x) = −N , and

ut (x) := u0(x)+ tu1(x)(x) = −tN , for each t > 0, are

y0(x) = 0, y1(x) = p − 1

p

(
|x| p

p−1 − 1
)
, and yt (x) = t

1
p−1 y1(x),

respectively. Then the mapping u �→ y(u) is not Gâteaux differentiable at u = u0,
because the sequence

{
yt − y0

t
= tαy1(x)

}

t>0
, with α = (2 − p)/(p − 1)

does not converge as t → 0, if p > 2.
So, in order to derive an optimality system to the original optimal control

problem (23.2)–(23.5) and provide its rigour mathematical substantiation, a direct
application of the implicit function theorem or Ioffe–Tikhomirov theorem looks
rather questionable. On the other hand, Theorem 23.6 reveals another way to
characterize the optimal pairs to the problem (23.2)–(23.5). Namely, we can do it
deriving an optimality system for the approximating problem (23.26)–(23.29) and
studying then its asymptotic behaviour as ε → 0 and k → ∞.

We know that the boundary value problem (23.27)–(23.28) has a unique solution
yε,k ∈ H 1

0 (Ω) for every u ∈ Lq(Ω) and v ∈ Lp
′
(Ω). Let Gε,k : Lq(Ω) ×

Lp
′
(Ω) −→ H 1

0 (Ω) be the mapping defined by Gε,k(u, v) = yε,k(u, v), where
yε,k(u, v) solution of (23.27)–(23.28) associated to u and v.

Theorem 23.7 The mapping Gε,k is of the class C1 and for any u ∈ Lq(Ω), v ∈
Lp

′
(Ω), hu ∈ Lq(Ω), and hv ∈ Lp

′
(Ω) the element

z(hu, hv) = DuGε,k(u, v) [hu] +DvGε,k(u, v) [hv]
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is the unique solution in H 1
0 (Ω) of the equation

− div
(
ρε,k(yε,k)Aε,k(yε,k)∇z

) = hu + hv, (23.103)

where yε,k = Gε,k(u, v) and

Aε,k(y) =
⎛
⎝IN + (p − 2)F ′

k

(
|∇y|2

)
⎡
⎣ ∇y√

ε + Fk

(|∇y|2)
⊗ ∇y√

ε + Fk

(|∇y|2)

⎤
⎦
⎞
⎠ ,

(23.104)

ρε,k(y) = (ε + Fk

(
|∇y|2

)
)
p−2

2 . (23.105)

Proof We apply the implicit function theorem. To this end we define the function
F : H 1

0 (Ω)× Lq(Ω)× Lp
′
(Ω) −→ H−1(Ω) by

F(y, u, v) = −Δε,k,p(y)− u− v.

It is immediate that F is of class C1. Moreover the partial derivative ∂F
∂y
(y, u, v) :

H 1
0 (Ω) −→ H−1(Ω) is an isomorphism. Indeed, it is easy to see that

∂F

∂y
(y, u, v) [z] = −div

(
ρε,k(yε,k)Aε,k(yε,k)∇z

)
,

where the matrix Aε,k(y) and the scalar function ρε,k(y) are given by (23.104)
and (23.105) and possess the following properties:

Aε,k(y) ∈ L∞(Ω; SNsym); (23.106)

‖Aε,k(y)‖L∞(Ω;SNsym) ≤ 1 + (p − 2)δ∗, ∀ ε > 0 and ∀ k ∈ N; (23.107)

ε
p−2

2 ≤ ρε,k(y) ≤ (ε + k2 + 1)
p−2

2 a.e. in Ω; (23.108)

|η|2 ≤ (
η,Aε,k(y)η

)
RN

≤ (
1 + (p − 2)δ∗

) |η|2 a.e. in Ω, ∀ η ∈ R
N,

(23.109)

where SNsym is the set of all N × N symmetric matrices.
We note that properties (23.106) and (23.108) immediately follow from (23.104)

and (23.105) and definition of the C1(R+)-function Fk : R+ → R+. To prove
the property (23.109), it is enough to take into account the following chain of
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estimates

|η|2 ≤ (η, Iη)RN ≤ (η, Iη)RN + (p − 2)F ′
k

(
|∇y|2

)
⎛
⎝ ∇y√

ε + Fk

(|∇y|2)
, η

⎞
⎠

2

RN

= (
η,Aε,k(y)η

)
RN

≤ |η|2 + (p − 2)F ′
k

(
|∇y|2

)
∣∣∣∣∣∣

∇y√
ε + Fk

(|∇y|2)

∣∣∣∣∣∣

2

|η|2

≤ (
1 + (p − 2)δ∗

) |η|2 a.e. in Ω,

because F ′
k

(|∇y|2) = 0 a.e. on the set Ωk(y) :=
{
x ∈ Ω : |∇y(x)| > √

k2 + 1
}

.

As a result, the isomorphism of the mapping

∂F

∂y
(y, u, v) : H 1

0 (Ω) −→ H−1(Ω)

is a direct consequence of estimates (23.108) and (23.109) and the Lax-Milgram
theorem. In addition, for every u ∈ Lq(Ω), v ∈ Lp

′
(Ω), and yε,k = Gε,k(u, v), we

have that F(yε,k, u, v) = 0. Hence, by application of the implicit function theorem,
we deduce that for any (u0, v0) ∈ Lq(Ω) × Lp

′
(Ω) there exists a neighborhood

U × V of (u0, v0) in Lq(Ω)×Lp
′
(Ω) and a mapping g : U × V −→ H 1

0 (Ω) of
class C1 such that

F(g(u, v), u, v) = 0 ∀ (u, v) ∈ U × V .

The mapping g obviously coincides with Gε,k, which proves that Gε,k is of class
C1 and the expression of the derivative follows from the equation

∂F

∂y
(yε,k, u, v)

[
DuGε,k(u, v) [hu] +DvGε,k(u, v) [hv]

]

+ ∂F

∂u
(yε,k, u, v) [hu] + ∂F

∂v
(yε,k, u, v) [hv] = 0.

Now we observe that the problem (23.26)–(23.29) can be written in the form

Minimize
(u,v)∈Lq(Ω)×Lp′

(Ω)

Jε,k(u, v) = 1

2

∫

Ω

|yε,k(u, v)− yd |2 dx

+ k

p′

∫

Ω

|v − Tε(f (yε,k(u, v)))|p′
dx + 1

q

∫

Ω

|u|q dx + α

p′

∫

Ω

|v|p′
dx.

(23.110)



476 P. I. Kogut and O. P. Kupenko

In the functional Jε,k we distinguish two terms Jε,k(u, v) = Fε,k(u, v) + j (u, v)

with

Fε,k(u, v) = 1

2

∫

Ω

|yε,k(u, v)− yd |2 dx + k

p′

∫

Ω

|v − Tε(f (yε,k(u, v)))|p′
dx

and

j (u, v) = 1

q

∫

Ω

|u|q dx + α

p′

∫

Ω

|v|p′
dx.

Now we make use of the Stampacchia’s Theorem (see, for instance, Theorem 1.19
in [15]) which says that if Φ : R → R is a Lipschitz continuous function and
z ∈ W

1,p
0 (Ω), then ∇Φ(z) belongs to Lp(Ω)N and ∇Φ(z) = Φ ′(z)∇z almost

everywhere in Ω . Setting Φ(t) = Tε(f (t)) and using the fact that f is of class C1,
from the differentiability of Gε,k and the chain rule it immediately follows that

(
Fε,k

)′
u
(u, v)[hu] + (

Fε,k
)′
v
(u, v)[hv] =

∫

Ω

(yε,k(u, v) − yd)z(hu, hv) dx

+ k

∫

Ω

|v − Tε(f (yε,k(u, v)))|p′−2 (
v − Tε(f (yε,k(u, v)))

)

×
(
hv − f ′(yε,k(u, v))χ{|f (yε,k(u,v))|≤ ε−1}z(hu, hv)

)
dx

=
∫

Ω

Ψ1z(hu, hv) dx +
∫

Ω

Ψ2hv dx

with

z(hu, hv) = DuGε,k(u, v) [hu] +DvGε,k(u, v) [hv] ,

for any (u, v) ∈ Lq(Ω)× Lp
′
(Ω) and (hu, hv) ∈ Lq(Ω)× Lp

′
(Ω). Here,

Ψ1 = yε,k(u, v) − yd − k|v − Tε(f (yε,k(u, v)))|p′−2

× (
v − Tε(f (yε,k(u, v)))

)
f ′(yε,k(u, v))χ{|f (yε,k(u,v))|≤ ε−1}

Ψ2 = k|v − Tε(f (yε,k(u, v)))|p′−2 (
v − Tε(f (yε,k(u, v)))

)
.

As for the functional j (u, v), we have

j ′
u(u, v)[hu] + j ′

v(u, v)[hv] =
∫

Ω

|u|q−2uhu dx

+ α

∫

Ω

|v|p′−2vhv dx, ∀ (hu, hv) ∈ Lq(Ω) × Lp
′
(Ω).
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Now we introduce the adjoint state as follows

{
−div

(
ρε,k(yε,k(u, v))Aε,k(yε,k(u, v))∇με,k

)
= Ψ1 in Ω,

με,k = 0 on ∂Ω.
(23.111)

Using (23.103), we obtain

(
Fε,k

)′
u
(u, v)[hu] + (

Fε,k
)′
v
(u, v)[hv] =

∫

Ω

[hu + hv]με,k dx

+ k

∫

Ω

[
|v − Tε(f (yε,k(u, v)))|p′−2 (

v − Tε(f (yε,k(u, v)))
)]
hv dx.

(23.112)

We are now in a position to establish the main result of this section.

Theorem 23.8 For given ε > 0, k ∈N, 2 ≤p< 2N/(N − 1), q > p′, and

yd ∈ L2(Ω), let
(
u0
ε,k, v

0
ε,k

)
be a local solution of (23.110). Assume that

F ∈ C2
loc(R). Then there exist elements y0

ε,k, με,k ∈ H 1
0 (Ω) such that the

tuple (u0
ε,k, v

0
ε,k, y

0
ε,k, με,k) satisfies the following Euler-Lagrange system to the

problem (23.26)–(23.29)
⎧
⎪⎨
⎪⎩

−div
(
ρε,k(y

0
ε,k)∇y0

ε,k

)
= v0

ε,k + u0
ε,k in Ω,

y0
ε,k = 0 on ∂Ω,

(23.113)

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−div
(
ρε,k(y

0
ε,k)Aε,k(y

0
ε,k)∇με,k

)
= y0

ε,k − yd − k|v0
ε,k − Tε(f (y

0
ε,k))|p

′−2

×
(
v0
ε,k − Tε(f (y

0
ε,k))

)
f ′(y0

ε,k)χ
{
|f (y0

ε,k)|≤ ε−1
} in Ω,

με,k = 0 on ∂Ω,

(23.114)

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u0
ε,k = − ∣∣με,k

∣∣ 1
q−1 sign(με,k) a.e. in Ω,

με,k = −α|v0
ε,k|p

′−2v0
ε,k

− k
[
|v0
ε,k − Tε(f (y

0
ε,k))|p

′−2
(
v0
ε,k − Tε(f (y

0
ε,k))

)]
, a.e. in Ω.

(23.115)

Remark 23.1 Here, we say that
(
u0
ε,k, v

0
ε,k

)
is a local solution of (23.110) if there

is a closed neighborhood U (u0
ε,k) × V (v0

ε,k) of
(
u0
ε,k, v

0
ε,k

)
in the norm topology
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of Lq(Ω)× Lp
′
(Ω) satisfying

Jε,k

(
u0
ε,k, v

0
ε,k

)
< Jε,k(u, v) ∀ u ∈ U (u0

ε,k) and ∀ v ∈ V (v0
ε,k)

such that (u, v, yε,k(u, v)) is a feasible triplet for (23.27) and (23.28) and (u, v) �=(
u0
ε,k, v

0
ε,k

)
.

Proof Given u ∈ Lq(Ω) and v ∈ Lp
′
(Ω), since

(
u0
ε,k, v

0
ε,k

)
is a local optimal

solution of (23.110), we have that

Jε,k(u
0
ε,k + ρ(u− u0

ε,k), v
0
ε,k + ρ(v − v0

ε,k)) ≥ Jε,k(u
0
ε,k, v

0
ε,k)

for all ρ > 0 small enough.
Hence,

0 ≤ 1

ρ

(
Jε,k(u

0
ε,k + ρ(u− u0

ε,k), v
0
ε,k + ρ(v − v0

ε,k))− Jε,k(u
0
ε,k, v

0
ε,k)

)

= Fε,k(u
0
ε,k + ρ(u− u0

ε,k), v
0
ε,k + ρ(v − v0

ε,k))− Fε,k(u
0
ε,k, v

0
ε,k + ρ(v − v0

ε,k))

ρ

+ Fε,k(u
0
ε,k, v

0
ε,k + ρ(v − v0

ε,k))− Fε,k(u
0
ε,k, v

0
ε,k)

ρ

+ j ((u0
ε,k + ρ(u− u0

ε,k)), v
0
ε,k + ρ(v − v0

ε,k))− j (u0
ε,k, v

0
ε,k + ρ(v − v0

ε,k))

ρ

+ j (u0
ε,k, v

0
ε,k + ρ(v − v0

ε,k))− j (u0
ε,k, v

0
ε,k)

ρ
.

Now, taking ρ → 0, we get

0 ≤ (
Fε,k

)′
u
(u0
ε,k, v

0
ε,k)

[
u− u0

ε,k

]
+ (

Fε,k
)′
v
(u0
ε,k, v

0
ε,k)

[
v − v0

ε,k

]

+ j ′
u(u

0
ε,k, v

0
ε,k)

[
u− u0

ε,k

]
+ j ′

v(u
0
ε,k, v

0
ε,k)

[
v − v0

ε,k

]
.

Finally, using the expression of F ′
ε,k given by (23.112) we obtain

0 ≤
∫

Ω

[
u− u0

ε,k

]
με,k dx +

∫

Ω

[
v − v0

ε,k

]
με,k dx +

∫

Ω

|u0
ε,k|q−2u0

ε,k

[
u− u0

ε,k

]
dx

+ α

∫

Ω

|v0
ε,k|p

′−2v0
ε,k

[
v − v0

ε,k

]
dx

+ k

∫

Ω

[
|v0
ε,k − Tε(f (y

0
ε,k))|p

′−2
(
v0
ε,k − Tε(f (y

0
ε,k))

)] [
v − v0

ε,k

]
dx.
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Since u ∈ Lq(Ω) and v ∈ Lp
′
(Ω) are independent and arbitrary functions, we

deduce from this relation the following equalities

με,k = −|u0
ε,k|q−2u0

ε,k, a. e. in Ω (23.116)

με,k = −α|v0
ε,k|p

′−2v0
ε,k (23.117)

− k
[
|v0
ε,k − Tε(f (y

0
ε,k))|p

′−2
(
v0
ε,k − Tε(f (y

0
ε,k))

)]
a. e. in Ω.

(23.118)

Thus, the optimality system (23.113)–(23.115) immediately follows from (23.111)
and (23.116).
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Chapter 24
Approximate Optimal Regulator for
Distributed Control Problem with
Superposition Functional and Rapidly
Oscillating Coefficients

Olena A. Kapustian

Abstract In this paper, we consider the optimal stabilization problem on infinite
time interval for a parabolic equation with rapidly oscillating coefficients and
non-decomposable quadratic cost functional with superposition type operator. In
general, to find the exact formula of optimal regulator is not possible for such a
problem, because the Fourier method cannot be directly applied. But the transition
to the homogenized parameters greatly simplifies the structure of the problem.
Assuming that the problem with the homogenized coefficients already admits
optimal regulator, we ground approximate optimal control in the feedback form
for the initial problem. We give an example of superposition operator for specific
conditions in this paper.

24.1 Introduction

In this work, we focus on the finding effective methods of control for complicated
systems with distributed parameters on infinite time interval, initiated in the works
[3, 11]. Finding control in the feedback form (regulator) plays important role here.
In [6–10, 12, 14] it was proposed and substantiated a procedure for constructing
approximate optimal feedback control for a wide class of infinite-dimensional
processes in micro-inhomogeneous medium both on finite and infinite time interval.
We use some known facts on G-convergence theory from [2, 4, 16]. In this paper
from this point of view we consider the optimal control problem on infinite time
interval for a parabolic equation with rapidly oscillating coefficients and non-
decomposable quadratic cost functional with superposition type operator. The
case of finite time interval was considered in [5]. In general, to find the exact
formula of optimal regulator is not possible for problem with rapidly oscillating
coefficients, because we cannot directly apply the Fourier decomposition method.
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But the transition to the problem with homogenized parameters greatly simplifies
the structure of the problem. Assuming that the problem with the homogenized
coefficients already admits optimal feedback form, we ground approximate optimal
regulator for the initial problem. For a deeper understanding of the problem, we give
an example of superposition operator for specific conditions in this paper.

24.2 Setting of the Problem

Let Ω ⊂ Rn be a bounded domain, ε ∈ (0, 1) is a small parameter. In cylinder
Q = (0,+∞)×Ω controlled process {y, u} is described by the problem

⎧
⎪⎪⎨
⎪⎪⎩

∂y
∂t

= Aεy + u(t, x),

y|∂Ω = 0,

y(0, x) = yε0,

(24.1)

u ∈ U ⊆ L2(Q), (24.2)

Jε(y, u) = ∫
Q

qε(t, x, y(t, x))y(t, x)dtdx + ∫
Q

u2(t, x)dtdx → inf, (24.3)

where U is convex and closed subset of L2(Q), 0 ∈ U ,

Aε = div(aε∇), aε(x) = a
(x
ε

)
,

a is measurable, symmetric, periodic matrix, satisfying the conditions of uniform
ellipticity and boundedness: ∃ν1 > 0, ν2 > 0 ∀η ∈ Rn ∀ x ∈ Rn

ν1

n∑
i=1

η2
i ≤

n∑
i,j=1

ai,j (x)ηiηj ≤ ν2

n∑
i=1

η2
i , (24.4)

qε : (0,+∞) × Ω × R �→ R is a Caratheodory function, i.e. it is measurable
with respect to the first two variables and continuous with respect to the third
variable, and there exist functions C1 ∈ L2(Q), C2 ∈ L1(Q), and constant C > 0,
independent of ε ∈ (0, 1) such that for all ξ ∈ R and almost all (a. a.) (t, x) ∈ Q

the following inequalities hold

|qε(t, x, ξ)| ≤ C|ξ | + C1(t, x),

qε(t, x, ξ)ξ ≥ −C2(t, x).
(24.5)
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Then superposition operator qε(t, x, ·) : L2(Q) �→ L2(Q) is continuous [1].
Hence, by conditions (24.4), (24.5) and the properties of solutions of problem (24.1)
(see Lemma 24.1) we obtain [11] that problem (24.1)–(24.3) has solution {ȳε, ūε}
(optimal process) in class W (0,+∞)× L2 (Q) , where W (0, T ) with T ≤ ∞ is a
class of functions y ∈ L2

(
0, T ; H 1

0 (Ω)
)
, which have distributed derivatives with

respect to t from L2
(
0, T ; H−1 (Ω)

)
. In general case, we are not able to find an

exact optimal feedback law for problem (24.1)–(24.3). However, in many cases [4]
a transition to homogenized parameters simplifies the structure of the problem. We
will assume that the problem with homogenized coefficients already admits optimal
feedback control of the form u[t, x, y (t, x)].

The main goal of this paper is to prove the fact that the regulator u[t, x, y (t, x)]
realizes an approximate feedback control in initial problem (24.1)–(24.3), i.e. for
any η > 0

∣∣Jε(ȳε, ūε)− Jε(yε, u[t, x, yε])
∣∣ < η (24.6)

for ε > 0 small enough, where yε is a solution of problem (24.1)–(24.3) with control
u[t, x, yε].

24.3 Main Results

We shall use ‖ · ‖ to denote the norm and ( · , · ) to denote the inner product in
L2 (Ω). Let us assume that there exists a Caratheodory function q : (0,+∞)×Ω×
R �→ R such that

∀ r > 0 ∀ T > 0 qε(t, x, ξ) → q(t, x, ξ) weakly inL2 (QT )

uniformly for |ξ | ≤ r,
(24.7)

where QT = (0, T )×Ω .
We refer to the following problem

⎧
⎪⎪⎨
⎪⎪⎩

∂y
∂t

= A0y + u(t, x),

y|∂Ω = 0,

y|t=0 = y0,

(24.8)

u ∈ U ⊆ L2(Q), (24.9)

J (y, u) =
∫

Q

q(t, x, y(t, x))y(t, x)dtdx +
∫

Q

u2(t, x)dtdx → inf, (24.10)
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as an homogenized one for problem (24.1)–(24.3). Here a constant matrix a0 is
homogenized for aε [9], A0 = div(a0∇), y0 ∈ L2(Ω) such that

yε0 → y0 weakly in L2 (Ω) as ε → 0. (24.11)

In further arguments we will use the following result about convergence of
parabolic operators which is the consequence of G-convergence of Aε to A0 [16].

Lemma 24.1 ([2, 16]) Let yε0 → y0 weakly in L2 (Ω), uε → u weakly in
L2 (QT ). Then yε → y in L2(QT ) and in C

([δ, T ];L2 (Ω)
) ∀δ > 0, where yε

is the solution of problem (24.1) on (0, T ) with control uε , y is the solution of
problem (24.8) on (0, T ) with control u.

Let us assume the following conditions hold:

problem (24.8)–(24.10) has a unique solution {y, u} ; (24.12)

there exists a measurable map u : [0,+∞)×Ω × L2(Ω) �→ L2(Ω) such that

u(t, x) ≡ u [t, x, y(t)]; (24.13)

∃ D > 0 such that ∀ t ≥ 0, y, z ∈ L2(Ω)

u[t, x, 0] ∈ L2(Q),

‖u [t, x, y] − u [t, x, z]‖ ≤ D ‖y − z‖ .
(24.14)

Moreover,

∃ T̂ > 0 ∀ t ≥ T̂ ∀ y ∈ L2(Ω)

∫

Ω

u[t, x, y(x)]y(x)dx < ν1λ‖y‖2, (24.15)

where λ > 0 is taken from Poincare inequality

∀ y ∈ H 1
0 (Ω) ‖∇y‖2 ≥ λ‖y‖2.

Before we formulate the main result, we give a typical example of problem (24.1)–
(24.3), for which conditions (24.5), (24.7), (24.12)–(24.15) hold.

Example Let {Xi}, {λi} be solutions of spectrum problem

{
A0Xi = −λiXi,

Xi |∂Ω = 0,

U =
{
v ∈ L2(Q)

∣∣∣ ∀i ∈ 1, p
∣∣∣
∫

Ω

v(t, x)Xi(x)dx

∣∣∣ ≤ ξi for a.a. t > 0
}
,

(24.16)
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where p ≥ 1, and ξ1 > 0, . . . , ξp > 0 are fixed numbers,

qε(x, ξ) = g
(x
ε

)
ξ,

where g is measurable, bounded, non-negative, periodic function with mean value
〈g〉 [4]. Then conditions (24.5), (24.7) hold for q(x, ξ) = 〈g〉 ξ . Moreover,
problem (24.8) and (24.10) becomes a classical linear quadratic problem that has
the unique solution [11]. Thus, condition (24.12) holds.

Suppose that

∀ i ∈ 1, p
∣∣∣(y0,Xi)

∣∣∣ > ξi

Ri
,

where Ri = −λi +
√
λ2
i + 1.

In this case, using Fourier decomposition method, it’s easy to obtain optimal
control in feedback form for problem (24.8)–(24.10) [7]:

u[t, x, y(t)] =
p∑
i=1

(αi(t) (y(t),Xi)+ βi(t)) Xi(x)−
∞∑

i=p+1

Ri (y(t),Xi)Xi(x),

(24.17)

where

αi(t) =
{

0, t ∈ [0, ti],
−Ri t > ti ,

βi(t) =
{−ξisign (y(t),Xi) , t ∈ [0, ti],

0, t > ti,

and ti > 0 is a unique solution of the equation

ti = 1

λi
ln

⎛
⎝ Ri√

λ2
i + 1

(
1 + λi

ξi
|(y(t),Xi)|

)
eλit

⎞
⎠ , t ∈ [0, ti],

where y is a solution of problem (24.8) with control (24.17).
Using (24.17), we can define optimal regulator u : [0,+∞) × Ω × L2(Ω) �→

L2(Ω) in the following form

u[t, x, y] =
p∑
i=1

(αi(t) (y,Xi)+ βi(t)) Xi(x)−
∞∑

i=p+1

Ri (y,Xi)Xi(x),

(24.18)
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where

αi(t) =
{

0, t ∈ [0, ti],
−Ri t > ti ,

βi(t) =
{−ξisign (y0,Xi) , t ∈ [0, ti],

0, t > ti,

ti = 1

λi
ln

⎛
⎝ Ri√

λ2
i + 1

(
1 + λi

ξi
|(y0,Xi)|

)
eλit

⎞
⎠ .

Then conditions (24.13) and (24.14) hold. Moreover, for t ≥ T̂ := max
1≤i≤p{ti} we

deduce the inequality

(u[t, y], y) ≤ 0,

which implies (24.15).
Other examples of optimal regulator for infinite-dimensional control problems

one can find in [7].
Let us return to problem (24.1)–(24.3). Using regulator (24.13), we consider the

problem

⎧⎪⎪⎨
⎪⎪⎩

∂y
∂t

= Aεy + u[t, x, y],
y |∂Ω = 0,

y
∣∣
t=0 = yε0 .

(24.19)

Under conditions (24.14) problem (24.19) has a unique solution yε ∈
C([0,+∞);L2(Ω)) which belongs to the class W (0, T ) for every T > 0 [5, 15].
Moreover, due to (24.15) for some γ > 0

∀ t ≥ T̂
d

dt
‖yε(t)‖2 + γ ‖yε(t)‖2 ≤ 0. (24.20)

In particular, yε ∈ L2(Q) and Jε(yε, u[t, x, yε]) < ∞.
The main result of this article is the following theorem.

Theorem 24.1 Let conditions (24.4), (24.5), (24.7), (24.12)–(24.15) hold and,
moreover, there exists a positive function l, l ∈ L∞(QT ) ∀ T > 0 such that for
all ε ∈ (0, 1)

|qε(t, x, ξ1) − qε(t, x, ξ2)| ≤ l(t, x)|ξ1 − ξ2|. (24.21)
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Then for an arbitrary η > 0 there exists ε̄ ∈ (0, 1) such that ∀ε ∈ (0, ε̄)

∣∣Jε
(
ȳε, ūε

) − Jε (yε, u [t, x, yε (t, x)])
∣∣ < η,

where {ȳε, ūε} is an optimal process for problem (24.1), (24.3), yε is the solution
of problem (24.19), control u [t, x, yε (t, x)] is defined from (24.13).

Proof At the beginning we show that as ε → 0 both the solution yε of prob-
lem (24.19) and the solution ȳε of problem (24.1) and (24.3) tend to y in some
sense, where {y, u} is the optimal process in problem (24.8) and (24.10). Firstly we
consider problem (24.19). For almost all (a.a.) t > 0 and for some D1 > 0 the
following estimate holds for the solution yε

d

dt
‖yε (t)‖2 + 2v1 ‖yε (t)‖2

H 1
0

≤ D1

(
‖yε (t)‖2 + 1

)
. (24.22)

Using Gronwall’s Lemma, from (24.22) we obtain that for every T > 0 the sequence
{yε} is bounded in W (0, T ). Then, by Compactness Lemma [13] there exists a
function z such that along subsequence for every T > 0

yε → z in L2 (QT ) and almost everywhere in Q,

yε(t) → z(t) in L2 (Ω) for a. a. t > 0, and weakly ∀ t ≥ 0.
(24.23)

Moreover, from (24.20)

yε → z weakly in L2 (Q) . (24.24)

From (24.14) we derive that

u[t, x, yε] → u[t, x, z] in L2 (QT ) ∀ T > 0, (24.25)

u[t, x, yε] → u[t, x, z] weakly in L2 (Q) . (24.26)

From Lemma 24.1 we obtain that z is the solution of problem (24.19) with operator
A0 and initial data y0, and

yε → z in C
(
[δ, T ];L2 (Ω)

)
∀0 < δ < T . (24.27)

Since the optimal control problem (24.8) and (24.10) has a unique solution {y, u}
and formula u(t, x) = u[t, x, y(t, x)] is valid for control u, then y is the solution
of problem (24.19) with operator A0 and initial data y0. However, this problem also
has a unique solution, so y ≡ z, and moreover, convergences (24.23)–(24.27) hold
as ε → 0 (not only along subsequence).

The following result is proved in [5]
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Lemma 24.2 Let functions qε satisfy conditions (24.5), (24.7), (24.21) and for
some T > 0 yε → y in L2(QT ). Then

qε(t, x, yε) → q(t, x, y) weakly in L2(QT ).

In all further arguments we will denote by J Tε (or J T ) functional (24.3) (or (24.10))
over QT .

From Lemma 24.2 and (24.23), (24.25) we derive that for every T > 0

J Tε (yε, u [t, x, yε]) → J T (y, u) , ε → 0. (24.28)

Moreover, from (24.20), (24.22) for T > T̂

∞∫

T

‖yε(t)‖2dt ≤ 1

γ
‖yε0‖2e(D1+γ )T̂ e−γ T . (24.29)

Then (24.28) and (24.29) imply convergence

Jε (yε, u [t, x, yε]) → J (y, u) , ε → 0. (24.30)

Now we consider the optimal process {ȳε, ūε} of problem (24.1)–(24.3). Let zε be
a solution of problem (24.1) with control u ≡ 0. Then

2v1λ

∞∫

0

‖zε (t)‖2 dt ≤ ‖yε0‖2.

The last inequality and optimality of {ȳε, ūε} imply an inequality

−
∫

Q

C2(t, x)dtdx +
∫

Q

(
ūε

)2
(t, x)dtdx ≤

≤ Jε
(
ȳε, ūε

) ≤ C

2v1λ
‖yε0‖2.

Therefore, the sequence { ūε} is bounded in L2 (Q). Then, there exists v ∈ L2 (Q)

such that along some subsequence

ūε → v weakly in L2(Q), ε → 0.

By the boundedness of {ūε} in L2 (Q) and estimate

d

dt

∥∥ȳε (t)∥∥2 + 2v1
∥∥ȳε (t)∥∥2

H 1
0

≤ 2
∣∣(ȳε (t) , ūε (t)∣∣ , (24.31)
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and by Gronwall’s Lemma, we deduce the boundedness of the sequence {ȳε} in
W(0, T ) for every T > 0. Then along subsequence it tends to some function y as
ε → 0 within the meaning of (24.23). Using Lemma 24.1, we obtain that y is the
solution of problem (24.8) with control v, and ȳε tends to y in the sense of (24.27).

Let us show that the process {y, v} is optimal for problem (24.8)–(24.10). From
the optimality of {ȳε, ūε} for arbitrary u ∈ L2 (Q) the following inequality holds

Jε
(
ȳε, ūε

) ≤ Jε (pε, u) , (24.32)

where pε is the solution of problem (24.1) with control u. Hence, replacing uε on u,
estimate (24.31) holds for pε . Thus, {pε} is bounded in W(0, T ) for every T > 0.
With the above thinking we obtain that pε converges to some function p as ε → 0 in
the meaning of (24.23). Moreover, p is the solution of problem (24.8) with control
u and pε converges to p in the meaning of (24.27). Analyzing problem (24.8), we
deduce that for some δ > 0, Cδ > 0 for all t ≥ 0

d

dt
‖p(t)‖2 + δ‖p(t)‖2 ≤ Cδ‖u(t)‖2. (24.33)

In particular, inequality (24.33) implies that for T > 0

‖p(T )‖2 ≤
(
‖y0‖2 + Cδ‖u‖L2(Q)

)
e−

δT
2 + Cδ

∫ ∞
T
2

‖u(t)‖2dt. (24.34)

Moreover, for some D2 > 0 for every T > 0

+∞∫

T

‖pε(t)‖2dt ≤ D2

⎛
⎝‖pε(T )‖2 +

+∞∫

T

|u(t)|2dt
⎞
⎠ . (24.35)

Then from inequality (24.32) we obtain for all T > 0:

J Tε
(
ȳε, ūε

) ≤
∫

QT

qε(t, x, pε(t, x))pε(t, x)dtdx +
+∞∫

0

|u(t)|2dt+

∞∫

T

∫

Ω

C2(t, x)dtdx +D2 ‖pε(T )‖2 +D2

+∞∫

T

‖u(t)‖2dt. (24.36)

Hence,

lim inf
ε→0

J Tε
(
ȳε, ūε

) ≥
∫

QT

q(t, x, y(t, x)y(t, x)dtdx + lim inf
ε→0

T∫

0

‖ūε(t)‖2dt ≥ J T (y, v),

(24.37)
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lim sup
ε→0

J Tε
(
ȳε, ūε

) ≤ D2‖p(T )‖2 +
∫

QT

q(t, x, p(t, x)p(t, x)dtdx+

∞∫

T

∫

Ω

C2(t, x)dtdx +
+∞∫

0

|u(t)|2dt +D2

+∞∫

T

|u(t)|2dt. (24.38)

Thus from inequalities (24.37), (24.38) and (24.34) for T → ∞ it follows that

J (y, v) ≤ J (p, u),

so {y, v} = {ȳ, ū} is optimal process in problem (24.8) and (24.10).
Now in previous arguments we put u = ū. Then for corresponding solutions p̄ε

of problem (24.1) due to (24.12) we have p̄ε → ȳ in the meaning of (24.23) and

lim sup
ε→0

+∞∫

0

|ūε(t)|2dt ≤
+∞∫

0

|ū(t)|2dt +D2‖ȳ(T )‖2 +D2

+∞∫

T

|ū(t)|2dt +
∞∫

T

∫

Ω

C2(t, x)dtdx,

and for T → ∞ we get

lim sup
ε→0

+∞∫

0

|ūε(t)|2dt ≤
+∞∫

0

|ū(t)|2dt, (24.39)

which guarantees strong convergence of ūε to ū in L2(Q) together with weak
convergence.

As inequality (24.33) takes place for {ȳε, ūε}, then strong convergence of {ȳε in
L2(QT ) and strong convergence of ūε to ū in L2(Q) allow us to pass to the limit
for ε → 0 and obtain

Jε
(
ȳε, ūε

) → J (y, u) , ε → 0. (24.40)

Theorem is proved.

Remark 24.1 Theorem guarantees convergence not only for quality criteria but also
for controls and phase variables in the following way:

ūε − u[t, x, yε] → 0 in L2(Q), ε → 0,

ȳε − yε → 0 in C
(
[δ, T ];L2 (Ω)

)
∀0 < δ < T .
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24.4 Conclusion

In this paper, the optimal control problem for a parabolic equation with rapidly
oscillating coefficients and non-decomposable quadratic cost functional with super-
position type operator was considered on infinite time interval. Using some results
for corresponding problem with homogenized parameters, the approximate optimal
control in the feedback form (regulator) for the initial problem was grounded.
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Chapter 25
Divided Optimal Control
for Parabolic-Hyperbolic Equation
with Non-local Pointed Boundary
Conditions and Quadratic Quality
Criterion

Volodymyr O. Kapustyan and Ivan O. Pyshnograiev

Abstract We obtain necessary and sufficient conditions for finding the divided
optimal control for parabolic-hyperbolic equations with non-local boundary con-
ditions and general quadratic criterion in the special norm. The initial data, which
guarantee the classical solvability of the problem, was drown out. The unique
solvability of problem is established, systems kernels are estimated, and the
convergence of solutions of the problem is proved.

25.1 Introduction

The investigation of complex systems behaviour is very important problem nowa-
days. It appears in different fields of human life. There is a big amount of the
methods for solving these problems [1, 2]. One of them is the considering of
mathematical models including mixed boundary value problems.

Such problems were studied by various scientists [3–9].
In the paper we found the conditions for the divided optimal control for

parabolic-hyperbolic equations with non-local boundary conditions and general
quadratic quality criterion in special norm. Its approximate solution was considered
in [10].
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25.2 The Problem Statement

Let the controlled process y(x, t) ∈ C1(D̄)∩C2(D−)∩ C2,1(D+) in D satisfy the
equation

Ly(x, t) = g(x)û(t) (25.1)

with initial

y(x,−α) = ϕ(x) (25.2)

and boundary conditions

y(0, t) = 0, y ′(0, t) = y ′(1, t),−α ≤ t ≤ T , (25.3)

where D = {(x, t) : 0 < x < 1,−α < t ≤ T , α, T > 0}, D− = {(x, t) : 0 < x <

1,−α < t ≤ 0},D+ = {(x, t) : 0 < x < 1, 0 < t ≤ T },

Ly =
{
yt − yxx, t ≥ 0,
ytt − yxx, t < 0.

and

û(t) =
{
u(t), t ≥ 0,
v(t), t < 0.

This boundary value problem was solved in [11].
It is needed to find the control v∗(t) ∈ C[−α, 0) : |v∗(t)| ≤ 1; |u∗(0)| ≤

l0; ξ∗(t) ∈ L2[0, T ] : |ξ∗(t)| ≤ l1 almost everywhere on [0, T ], which minimizes
the functional

I (û) = 0.5(α̂||y(., T )− ψ(.)||2D + β̂1

0∫

−α
||y(., t)||2Ddt + β̂2

T∫

0

||y(., t)||2Ddt +

+γ̂1

0∫

−α
v2(t)dt + γ̂2(u

2(0)+
T∫

0

ξ2(t)dt)) =

= 0.5(
∞∑
i=0

(α̂ (yi(T )− ψi)
2 + β̂1

0∫

−α
y2
i (t)dt + β̂2

T∫

0

y2
i (t)dt +

+γ̂1

0∫

−α
v2(t)dt + γ̂2(u

2(0)+
T∫

0

ξ2(t)dt)), u(t) = u(0)+
T∫

0

ξ(t)dt.

(25.4)
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Because of strict convexity functional (25.4) by control it has a single point of
minimum (v∗(t), u∗(0), ξ∗(t)) C[−α, 0) × R1 × L2(0, T ), which is characterized
by following optimality conditions

0∫

−α
[γ̂1v

∗(t) +
0∫

−α
K (1)

1 (t, τ)v∗(τ)dτ + K (1)
2 (t)u∗(0) +

T∫

0

K (1)
3 (t, τ)ξ ∗(τ)dτ−

− M (1)
1 (t, ϕ) − M (1)

2 (t, ψ)][v(t) − v∗(t)]dt ≥ 0,∀|v(t)| ≤ 1,

(γ̂2u
∗(0) +

0∫

−α
K (2)

1 (τ)v∗(τ)dτ + K (2)
2 u∗(0) +

T∫

0

K (2)
3 (τ)ξ ∗(τ)dτ −

−M (2)
1 (ϕ) + M (2)

2 (ψ))[u(0) − u∗(0)] ≥ 0,∀|u(0)| ≤ l0,

T∫

0

[γ̂2ξ
∗(t)+

0∫

−α
K (3)

1 (t, τ)v∗(τ)dτ + K (3)
2 (t)u∗(0) +

T∫

0

K (3)
3 (t, τ)ξ ∗(τ)dτ −

−M (3)
1 (t, ϕ) − M (3)

2 (t, ψ)][ξ(t) − ξ ∗(t)]dt ≥ 0, |ξ(t)| ≤ l1,

(25.5)

where

K (1)
1 (t, τ) = g2

0K
(1)

0,1 (t, τ) +
∞∑
k=1

(g2
2k−1K

(1,2k−1)
2k−1,1 (t, τ) +

+2 g2k−1g2kK
(1,2k−1)

2k,1 (t, τ) + g2
2kK

(1,2k)
2k,1 (t, τ)),

K (1)
2 (t) = g2

0K
(1)

0,2 (t) +
∞∑
k=1

(g2
2k−1K

(1,2k−1)
2k−1,2 (t)+ 2 g2k−1g2kK

(1,2k−1)
2k,2 (t)+

+g2
2kK

(1,2k)
2k,2 (t)),

K (1)
3 (t, τ) = g2

0K
(1)

0,3 (t, τ) +
∞∑
k=1

(g2
2k−1K

(1,2k−1)
2k−1,3 (t, τ) +

+2 g2k−1g2kK
(1,2k−1)

2k,3 (t, τ) + g2
2kK

(1,2k)
2k,3 (t, τ)),

M (1)
1 (t, ϕ) = M (1)

0,1 (t) ϕ0g0 +
∞∑
k=1

(g2k−1 (M
(1,2k−1)
2k−1,1 (t)ϕ2k−1 + M (1,2k−1)

2k,1 (t)ϕ2k)+

+g2k(M
(1,2k)
2k−1,1(t)ϕ2k−1 + M (1,2k)

2k,1 (t)ϕ2k)),
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M (1)
2 (t, ψ) = M (1)

0,2 (t)ψ0g0 +
∞∑
k=1

(g2k−1(M
(1,2k−1)
2k−1,2 (t)ψ2k−1 + M (1,2k−1)

2k,2 (t)ψ2k)+

+g2kM
(1,2k)
2k,2 (t)ψ2k),K

(2)
1 (t) = K (1)

2 (t),

K (2)
2 = K (2)

0,2 g
2
0 +

∞∑
k=1

(g2
2k−1K

(2,2k−1)
2k−1,2 + 2g2k−1g2kK

(2,2k−1)
2k,2 + g2

2kK
(2,2k)

2k,2 ),

K (2)
3 (t) = K (2)

0,3 (t)g
2
0 +

∞∑
k=1

(g2
2k−1K

(2,2k−1)
2k−1,3 (t) + 2g2k−1g2kK

(2,2k−1)
2k,3 (t)+

+g2
2kK

(2,2k)
2k,3 (t)),

M (2)
1 (ϕ) = M (2)

0,1 ϕ0g0 +
∞∑
k=1

(g2k−1 (M
(2,2k−1)
2k−1,1 ϕ2k−1 + M (2,2k−1)

2k,1 ϕ2k)+

+g2k(M
(2,2k)
2k−1,1ϕ2k−1 + M (2,2k)

2k,1 ϕ2k)),

M (2)
2 (ψ) = M (2)

0,2 ψ0g0 +
∞∑
k=1

(g2k−1 (M
(2,2k−1)
2k−1,2 ψ2k−1 + M (2,2k−1)

2k,2 ψ2k)+

+g2kM
(2,2k)
2k,2 ψ2k),K

(3)
1 (t, τ ) = K (1)

3 (τ, t),K (3)
2 (t) = K (2)

3 (t),

K (3)
3 (t, τ ) = g2

0K
(3)

0,3 (t, τ )+
∞∑
k=1

(g2
2k−1K

(3,2k−1)
2k−1,3 (t, τ )+

+2 g2k−1g2kK
(3,2k−1)

2k,3 (t, τ )+ g2
2kK

(3,2k)
2k,3 (t, τ )),

M (3)
1 (t, ϕ) = M (3)

0,1 (t) ϕ0g0 +
∞∑
k=1

(g2k−1 (M
(3,2k−1)
2k−1,1 (t)ϕ2k−1 +

+M (3,2k−1)
2k,1 (t)ϕ2k)+ g2k(M

(3,2k)
2k−1,1(t)ϕ2k−1 + M (3,2k)

2k,1 (t)ϕ2k)),

M (3)
2 (t, ψ) = M (3)

0,2 (t) ψ0g0 +
∞∑
k=1

(g2k−1 (M
(3,2k−1)
2k−1,2 (t)ψ2k−1 +

+M (3,2k−1)
2k,2 (t)ψ2k)+ g2kM

(3,2k)
2k,2 (t)ψ2k). (25.6)
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25.3 The Problem Solving

25.3.1 Unbounded Control

Let’s consider the unbounded control. Then the system of variational inequali-
ties (25.5) takes the form

γ̂1v
∗(t)+

0∫

−α
K (1)

1 (t, τ )v∗(τ )dτ + K (1)
2 (t)u∗(0)+

T∫

0

K (1)
3 (t, τ )ξ∗(τ )dτ =

= M (1)
1 (t, ϕ)+ M (1)

2 (t, ψ), t ∈ [−α, 0),

γ̂2u
∗(0)+

0∫

−α
K (2)

1 (τ )v∗(τ )dτ + K (2)
2 u∗(0)+

T∫

0

K (2)
3 (τ )ξ∗(τ )dτ =

= M (2)
1 (ϕ)+ M (2)

2 (ψ),

γ̂2ξ
∗(t)+

0∫

−α
K (3)

1 (t, τ )v∗(τ )dτ + K (3)
2 (t)u∗(0)+

T∫

0

K (3)
3 (t, τ )ξ∗(τ )dτ =

= M (3)
1 (t, ϕ)+ M (3)

2 (t, ψ), t ∈ (0, T ].
(25.7)

Using the estimations of (25.6), we establish inequalities

||K (1)
1 ||C(−α,0)×C(−α,0) ≤ C

∞∑
k=1

(g2
2k−1||K (1,2k−1)

2k−1,1 ||C(−α,0)×C(−α,0) + 2|g2k−1| ×

×|g2k|||K (1,2k−1)
2k,1 ||C(−α,0)×C(−α,0) + g2

2k||K (1,2k)
2k,1 ||C(−α,0)×C(−α,0)) ≤

≤ C

∞∑
k=1

(g2
2k−1 + g2

2k)(
α̂

λ2
k exp(2λ2

kT )
+ β̂1

λ2
k

+ β̂2

λ4
k

),

||K (1)
2 ||C(−α,0) = ||K (2)

1 ||C(−α,0) ≤ C

∞∑
k=1

(g2
2k−1 + g2

2k) (
α̂

λ2
k exp(λ2

kT )
+ β̂1

λ3
k

+ β̂2

λ4
k

),

||K (1)
3 ||C(−α,0)×C(0,T ) = ||K (3)

1 ||C(−α,0)×C(0,T ) ≤

≤ C

∞∑
k=1

(g2
2k−1 + g2

2k)(
α̂

λ2
k exp(λ2

kT )
+ β̂2

λ4
k

),

|K (2)
2 | ≤ C

∞∑
k=1

(g2
2k−1 + g2

2k) (
α̂

λ2
k

+ β̂1

λ4
k

+ β̂2

λ2
k

),
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||K (2)
3 ||C(0,T ) = ||K (3)

2 ||C(0,T ) ≤ C

∞∑
k=1

(g2
2k−1 + g2

2k) (
α̂

λ2
k

+ β̂2

λ2
k

),

||K (3)
3 ||C(0,T )×C(0,T ) ≤ C

∞∑
k=1

(g2
2k−1 + g2

2k) (
α̂

λ2
k

+ β̂2

λ2
k

);

||M (1)
1 (., ϕ)||C(−α,0) ≤ C

∞∑
k=1

(|g2k−1| + |g2k|) (|ϕ2k−1| + |ϕ2k|)×

×
2k∑

i,j=2k−1

||M (1,j )
i,1 ||C(−α,0) ≤ C

∞∑
k=1

(|g2k−1| + |g2k|) (|ϕ2k−1| + |ϕ2k|)×

×( α̂

λ2
k exp(2λ2

kT )
+ β̂1

λk
+ β̂2

λ3
k

),

||M (1)
2 (., ψ)||C(−α,0) ≤ C

∞∑
k=1

(|g2k−1| + |g2k|) (|ψ2k−1| + |ψ2k|)×

×
2k∑

i,j=2k−1

||M (1,j )
i,2 ||C(−α,0) ≤ C

∞∑
k=1

(|g2k−1| + |g2k|) (|ψ2k−1| + |ψ2k|) α̂

λk expλ2
kT

,

|M (2)
1 (ϕ)| ≤ C

∞∑
k=1

(|g2k−1| + |g2k|) (|ϕ2k−1| + |ϕ2k |)
2k∑

i,j=2k−1

|M (2,j )
i,1 | ≤

≤ C

∞∑
k=1

(|g2k−1| + |g2k|)(|ϕ2k−1| + |ϕ2k |)( α̂

λk exp(λ2
kT )

+ β̂1

λ2
k

+ β̂2

λ3
k

),

|M (2)
2 (ψ)| ≤ C

∞∑
k=1

(|g2k−1| + |g2k|) (|ψ2k−1| + |ψ2k|)
2k∑

i,j=2k−1

|M (2,j )
i,2 | ≤

≤ C

∞∑
k=1

(|g2k−1| + |g2k|) (|ψ2k−1| + |ψ2k|) α̂
λk
,

||M (3)
1 (., ϕ)||C(0,T ) ≤ C

∞∑
k=1

(|g2k−1| + |g2k|)(|ϕ2k−1| + |ϕ2k|)×

×
2k∑

i,j=2k−1

||M (3,j )
i,1 ||C(0,T ) ≤ C

∞∑
k=1

(|g2k−1| + |g2k|)(|ϕ2k−1| + |ϕ2k|)×

×( α̂

λk exp(λ2
kT )

+ β̂2

λ3
k

),
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||M (3)
2 (., ψ)||C(0,T ) ≤ C

∞∑
k=1

(|g2k−1| + |g2k|) (|ψ2k−1| + |ψ2k|)×

×
2k∑

i,j=2k−1

||M (3,j)
i,2 ||C(0,T ) ≤ C

∞∑
k=1

(|g2k−1| + |g2k|) (|ψ2k−1| + |ψ2k|) α̂
λk
.

(25.8)

From the estimations (25.8), the theorem on symmetric operator [12] and
conditions of initial boundary value problem solvability [11] it follows that the
convergence of the series

∞∑
k=1

|ψ2k−1| + |ψ2k|
λk

(25.9)

ensure the convergence of the series in the right-hand sides of the inequalities (25.8),
i.e. kernels and the right part of the system (25.7) are continuous functions.

Let’s establish the uniquely solvability of the system (25.7). For this purpose we
will determine the operator

ˆA θ(.) = Γ3×3θ(t)+ A θ(.),

where (θ(t))′ = (v(t), u(0), ξ(t)) ∈ L2(−α, 0) × R1 × L2(0, T ), Γ3×3 =
diag{γ̂1, γ̂2, γ̂2}, operator A is determined by the remaining members of the left-
hand sides of the system of equations (25.7).

Because of the convergence of the series (25.9) operator ˆA operates out of the
space L2(−α, 0) × R1 × L2(0, T ) to the L2(−α, 0) × R1 × L2(0, T ). Also it is
linear and continuous. Let’s prove the following theorem.

Theorem 25.1 If functions ψ(x), ϕ(x), g(x) are such that the series (25.9) coin-
cides with the convergent series

∞∑
k=1

λ2
k(|ϕ2k−1| + |ϕ2k|),

∞∑
k=1

λk(|g2k−1| + |g2k|),

then the system (25.7) has a single solution in space C(−α, 0)× R1 × L2(0, T ).
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Proof The space L2(−α, 0)× R1 ×L2(0, T ) is a Hilbert space with a natural inner
product

〈θ, θ̃〉3 =
0∫

−α
v(t)ṽ(t)dt + u(0) ũ(0)+

T∫

0

ξ(t)ξ̃ (t) dt,

where (θ(t))′ = (v(t), u(0), ξ(t)), (θ̃ (t))′ = (ṽ(t), ũ(0), ξ̃ (t)).
Using the solution of initial boundary value problem [11] and (25.6) we select

from the functional (25.4) quadratic by control v(t), t ∈ [−α, 0); u(0), ξ(t) ∈ [0, T ]
part and subtract the value

0.5(γ̂1

0∫

−α
v2(t)dt + γ̂2u

2(0)+
T∫

0

ξ2(t)dt))

from it. That is, we get functional

0 ≤ Ĩ = 0.5〈A θ(.), θ(.)〉3.

This implies a positive definition of the operator ˆA and unique solvability of the
system (25.7) in the space L2(−α, 0)× R1 × L2(0, T ). In addition, an estimation

||θ ||3 = (

0∫

−α
v2(t)dt + u2(0)+

T∫

0

ξ2(t)dt)1/2 ≤ C

2∑
i=1

(||M (1)
i ||L2(−α,0) +

+|M (2)
i | + ||M (3)

i ||L2(0,T )) ≤ C

∞∑
k=1

(|g2k−1| + |g2k|)((|ϕ2k−1| + |ϕ2k|)×

×( α̂

λk exp(λ2
kT )

+ β̂1

λk
+ β̂2

λ3
k

)+ (|ψ2k−1| + |ψ2k|) α̂
λk
) < ∞

(25.10)

is made for the solutions of this system.
From the first equation of this system, considering it as an identity on the solution

θ(t), we find an estimate

||dv(.)
dt

||L2(0,T ) ≤ C (||dK
(1)

1 (., .)

dt
||L2(−α,0)×L2(−α,0)||v||L2(0,T ) +

+||dK
(1)

2 (.)

dt
||L2(0,T )|u(0)| + ||dK

(1)
3 (., .)

dt
||L2(−α,0)×L2(0,T )||ξ ||L2(0,T ) +

+||dM
(1)
1 (., ϕ)

dt
||L2(−α,0) + ||dM

(1)
2 (., ψ)

dt
||L2(−α,0)).

(25.11)
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Let’s estimate the norms of functions derivatives standing on the right side of the
inequality (25.10).

||dK
(1)

1 (., .)

dt
||L2(−α,0)×L2(−α,0) ≤ C

∞∑
k=1

[g2
2k−1 ×

×(||dK
(1,2k−1)

2k−1,1 (., .)

dt
||L2(−α,0)×L2(−α,0) + ||dK

(1,2k−1)
2k,1 (., .)

dt
||L2(−α,0)×L2(−α,0))+

+g2
2k(||

dK (1,2k)
2k,1 (., .)

dt
||L2(−α,0)×L2(−α,0))+

+||dK
(1,2k−1)

2k,1 (., .)

dt
||L2(−α,0)×L2(−α,0))] ≤ C

∞∑
k=1

(g2
2k−1 + g2

2k)(
α̂

λk exp(2λ2
kT )

+ β̂1

λk
+ β̂2

λ3
k

),

||dK
(1)

2 (.)

dt
||L2(−α,0) ≤ C

∞∑
k=1

[g2
2k−1(||

dK (1,2k−1)
2k−1,2 (.)

dt
||L2(−α,0) +

+||dK
(1,2k−1)

2k,2 (.)

dt
||L2(−α,0))+ g2

2k(||
dK (1,2k)

2k,2 (.)

dt
||L2(−α,0) + ||dK

(1,2k−1)
2k,2 (.)

dt
||L2(−α,0))] ≤

≤ C

∞∑
k=1

(g2
2k−1 + g2

2k)(
α̂

λk exp(λ2
kT )

+ β̂1

λ2
k

+ β̂2

λ3
k

),

||dK
(1)

3 (., .)

dt
||L2(−α,0)×L2(0,T ) ≤ C

∞∑
k=1

[g2
2k−1||

dK (1,2k−1)
2k−1,3 (., .)

dt
||L2(−α,0)×L2(0,T ) +

+||dK
(1,2k−1)

2k,3 (., .)

dt
||L2(−α,0)×L2(0,T ))+ g2

2k(||
dK (1,2k)

2k,3 (., .)

dt
||L2(−α,0)×L2(0,T ) +

+||dK
(1,2k−1)

2k,3 (., .)

dt
||L2(−α,0)×L2(0,T ))] ≤ C

∞∑
k=1

(g2
2k−1 + g2

2k) (
α̂

λk exp(λ2
kT )

+ β̂2

λ3
k

),

||dM
(1)
1 (., ϕ)

dt
||L2(−α,0) ≤ C

∞∑
k=1

[|g2k−1| (||
dM (1,2k−1)

2k−1,1 (.)

dt
||L2(−α,0)|ϕ2k−1| +

+||dM
(1,2k−1)
2k,1 (.)

dt
||L2(−α,0)|ϕ2k |)+ |g2k | (||

dM (1,2k)
2k−1,1(.)

dt
||L2(−α,0)|ϕ2k−1| +

+||dM
(1,2k)
2k,1 (.)

dt
||L2(−α,0)|ϕ2k |)] ≤ C

∞∑
k=1

(|g2k−1| + |g2k |)(|ϕ2k−1| + |ϕ2k |)×

×( α̂

λk exp(2λ2
kT )

+ β̂1 + β̂2

λ2
k

),

||dM
(1)
2 (., ψ)

dt
||L2(−α,0) ≤ C

∞∑
k=1

[|g2k−1| (||
dM (1,2k−1)

2k−1,2 (.)

dt
||L2(−α,0)|ψ2k−1| +
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+||dM
(1,2k−1)
2k,2 (.)

dt
||L2(−α,0)|ψ2k|) + |g2k |||

dM (1,2k)
2k,2 (.)

dt
||L2(−α,0) |ψ2k |] ≤

≤ C

∞∑
k=1

(|g2k−1| + |g2k |)(|ψ2k−1| + |ψ2k|) α̂

exp λ2
kT

.

(25.12)

When the conditions of the theorem are fulfilled the estimations (25.10)–(25.12)
guarantee the absolute continuity of the control v(t) •

Let’s consider the following case.
Let v(t) = 0, t < 0; ξ(t) = 0, t > 0, β̂1 = β̂2 = 0. Then from the second

equation of the system (25.7) we find

u(0) = M (2)
1 (ϕ)+ M (2)

2 (ψ)

γ̂2 + K (2)
2

,

where

K (2)
2 = (Û0

0,+(T )g0)
2 +

∞∑
k=1

[(Û2k−1
2k−1,+(T )g2k−1)

2 + (Û2k−1
2k,+ (T )g2k−1 + Û2k

2k,+(T )g2k)
2],

M (2)
1 (ϕ) = −Φ0

0,+(T ) Û
0
0,+(T )ϕ0g0 −

∞∑
k=1

[Φ2k−1
2k−1,+(T ) Û

2k−1
2k−1,+(T )ϕ2k−1 g2k−1)+

+(Φ2k−1
2k,+ (T )ϕ2k−1 +Φ2k

2k,+(T )ϕ2k)(Û
2k−1
2k,+ (T )g2k−1 + Û2k

2k,+(T )g2k)],

M (2)
2 (ϕ) = Û0

0,+(T )ψ0 g0 +
∞∑
k=1

[Û2k−1
2k−1,+(T )ψ2k−1 g2k−1)+

+ψ2k(Û
2k−1
2k,+ (T )g2k−1 + Û2k

2k,+(T )g2k)].

The values of the Fourier coefficients of the optimal trajectories also correspond to
this control at the point t = T :

y0(T ) = Φ0
0,+(T )ϕ0 + g0 U

0
0,+(T )u(0),

y2k−1(T ) = Φ2k−1
2k−1,+(T )ϕ2k−1 + g2k−1Û

2k−1
2k−1,+(T )u(0),

y2k(T ) = Φ2k−1
2k,+ (T )ϕ2k−1 + Φ2k

2k,+(T )ϕ2k + (g2k−1 Û
2k−1
2k,+ (T )+ g2kÛ

2k
2k,+(T )) u(0).

And the value of the optimality criterion is

I = 0.5[
∞∑
k=0

α̂(yi(T )− ψi)
2 + γ̂2u

2(0)].
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The above formulas remain valid for γ̂2 = 0, but in this case they do not solve
the problem with minimal energy: the control

lim
γ̂2→0

u(0) = M (2)
1 (ϕ)+ M (2)

2 (ψ)

K (2)
2

does not enforce conditions

lim
γ̂2→0

yi(0) = ψi, i ≥ 0 (25.13)

since then they would have to satisfy equality

ψ0 −Φ0
0,+(T )ϕ0

g0 U
0
0,+(T )

= ψ2k−1 − Φ2k−1
2k−1,+(T )ϕ2k−1

g2k−1 Û
2k−1
2k−1,+(T )

=

= ψ2k −Φ2k−1
2k,+ (T )ϕ2k−1 −Φ2k

2k,+(T )ϕ2k

(g2k−1 Û
2k−1
2k,+ (T )+ g2kÛ

2k
2k,+(T ))

= lim
γ̂2→0

u(0), (25.14)

which is impossible in the case of arbitrary functions ϕ(x), ψ(x), g(x) from
Theorem 25.1.

25.3.2 Bounded Control

Let u∗(0) = 0, ξ∗(t) = 0, t > 0, and optimal control v∗(t) has the following
structure: v∗(t) = −1, t ∈ [−α, ξ̄1]; |v∗(t)| < 1, t ∈ (ξ̄1, 0]. Then this control
satisfies the expressions

v∗(t) = −1,−1 +
0∫

ξ̄1

K (1)
1 (t, τ )v∗(τ )dτ >M (1)

1 (t, ϕ)+ M (1)
2 (t, ψ)+

+
ξ̄1∫

−α
K (1)

1 (t, τ )dτ, t ∈ [−α, ξ̄1);

v∗(t)+
0∫

ξ̄1

K (1)
1 (t, τ ) v∗(τ )dτ = M (1)

1 (t, ϕ)+ M (1)
2 (t, ψ)+

+
ξ̄1∫

−α
K (1)

1 (t, τ )dτ, |v∗(t)| < 1, t ∈ [ξ̄1, 0).

(25.15)
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The number ξ̄1 here defined as the only solution of the equation

v∗(ξ̄1) = −1, (25.16)

where v∗(t) is the solution of the equation from (25.15).
It should be noted that from the results of the paragraph with the unbounded

control it follows that the Eq. (25.15) has a single absolutely continuous solution.
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Chapter 26
Quasi-Linear Differential-Deference
Game of Approach

Lesia V. Baranovska

Abstract The paper is devoted to the games of approach. We consider a controlled
object whose dynamics is described by the linear differential system with pure
time delay or the differential-difference system with commutative matrices in
Euclidean space. The approaches to the solutions of these problems are proposed
which based on the Method of Resolving Functions and the First Direct Method
of L.S. Pontryagin. The guaranteed times of the game termination are found, and
corresponding control laws are constructed. The results are illustrated by a model
example.

26.1 Introduction

We consider the game problems of approach, which are central to the theory of
conflict-controlled processes. They were the basis of the emergence of the theory,
are the most informative and of considerable interest to researchers. The impetus for
their development was given by real applications in economics, space technology,
military affairs, biology, medicine, etc.

Conflict-controlled processes is a section of the mathematical control theory
which is studying the manipulation of moving objects operated under in conditions
of conflict and uncertainty. The evolution of an object can be described by
systems of difference, ordinary differential, differential-difference, integral, integro-
differential equations, systems of equations with distributed parameters, systems
of equations with fractional derivatives, impulse influences and their various
combinations (hybrid systems).

The term differential game is used for games in which the dynamics of an
object is described by a system of ordinary differential equations. If the process is
described by more complicated equations, possessing the semigroup property, then
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the term dynamic games is used. Finally, conflict-controlled processes are the most
common term for determining the range of issues relating to game problems.

There are two types of dynamic games: games of degree and games of kind (see
[1]). On the trajectory of the dynamical system, there is a function that depends on
the initial state and on the player’s control. In games of the first type, the goal of the
first player is to minimize this function, set on the system trajectories, the purpose
of the other one is to maximize it. In games of the second type, this functionality
is the time of the exit of the trajectory of an object to a given terminal set, and the
problem is to analyze the possibility of the pursuit of a trajectory of a system to a
terminal set (the game of approach) or the deviation of the trap escape from this set
(the deviation game).

The well-known pursuit strategies were mostly designed for military purposes. In
practice, the rule of positional pursuit (see Fig. 26.1) and the rule of parallel pursuit
(see Fig. 26.2) are widely used.

In the theory of differential games, along with the Pontryagin-Pshenichny’s
backward procedures (see [2, 3]), Krasovskii rule of extreme aiming (see [4]) and
Isaacs’s ideology (see [1]), there exist effective methods that constitutes share a
separate direction.

Fig. 26.1 Positional pursuit

Fig. 26.2 Parallel pursuit
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These are the First Direct Method of L.S. Pontryagin and the Method of Resolv-
ing Functions (see [5]). They are combined by the general principle of constructing
controls of the pursuer on the basis of the Filippov-Castain multidimensional choice
theorem (see [6]) and they provide a theoretical justification for the rule of parallel
pursuit (see Fig. 26.2).

In this paper, the Method of Resolving Functions is chosen as the main tool
for research, widely used to study conflict-controlled processes of various nature
(see [5, 7]). The processes with fractional derivatives are studied in (see [8]), game
problems of successive convergence are discussed in (see [9]), a general scheme of
the method of resolving functions is given in (see [7]), the applied problem of soft
meeting is solved in (see [10]), the nonstationary problems are considered in (see
[11–14]), a variant of the matrix resolving functions are proposed in (see [15]), an
approach games problem under the failure of controlling devices are considered in
(see [16, 17]), and in (see [18, 19]) the cases of integral constraints on control are
examined.

The future of many processes depends not only on the present state, but is also
significantly determined by the entire prehistory. Numerous problems in the theory
of automatic control, engineering, mechanics, radiophysics, biology, economics are
described by differential equations with delay. For example, transport delay usually
occurs in systems in which matter, energy or signals are transmitted over a distance
(see [20]). In control systems, where one of the links is a person, the delay in
the reaction of a person is important in constructing a mathematical model of the
entire system. Distributed time delay occurs in the modeling of feeding systems
and combustion chambers in a liquid monopropellant rocket motor with pressure
feeding (see [21]). Great contribution to the development of these directions is made
by Bellman R., Cooke K., Lunel S.M.V., Mitropolskii U.A., Myshkis A.D., Norkin
S.B., Hale J.C., Azbelev N.V., Maksimov V.P., Rakhmatulina L.F. and others.

In (see [22–25]) the modification of the Method of Resolving Function for
the differential-difference pursuit games is described, pursuit differential-difference
games of approach with non-fixed time are considered in (see [26, 27]), system
with time-varying delay is considered in (see [28]), in (see [29, 30]) the pursuit
games with differential-difference equations of a neutral type are studied, an analytic
approach based on the Method of Resolving Functions to study the differential-
difference games of approach with commutative matrices is suggested in (see [31]),
and the differential-difference games of approach for objects with different inertial
are proposed in (see [32, 33]).

An attractive side of the Method of Resolving Functions is the fact that it allows
us to effectively use modern technology of set-valued mappings and their selectors
in the substantiation of game constructions and to obtain meaningful results on their
basis (see [5]).

For dynamical systems whose evolution is described by differential-difference
system with a cylindrical terminal set under the condition of L.S. Pontryagin
introduces a resolving function, through which the game’s end time is determined.
The peculiarity of the basic scheme of the method is the fact that the time of the
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end of the game depends on a selector, the choice of which is in the power of the
pursuer.

The resolving function characterizes the course of the game. When, at some point
in time, the integral from it becomes a unit, this means that the trajectory falls onto
the terminal set. Sufficient conditions for solvability of the problem of approach
with a terminal set are provided. The pursuit process is divided into two stages.

On the first one [0, t∗), where t∗ is the moment of switching, the Method of
Resolving Functions with using by the pursuer at the time t of the entire run-time
control prehistory vt (·) work. When at the instant t∗ the integral of the resolving
function turns into unity, the process of pursuit is switched to the First Direct
Method of L.S. Pontryagin which is realized within the class of countercontrols
in quasistrategy. In other words, from the moment of switching to the calculated
moment, the ending of the game “stretches” time, and, in this area, the resolving
function is considered to be zero, since it does not make any sense to accumulate it.

26.2 Differential-Difference Games of Approach with
Commutative Matrices

Let Rn be an Euclidean space of points z = (z1, . . . , zn) and K (Rn) be a set of
nonempty compacts in R

n.
We consider the problem of approach for the system of differential-difference

equations of retarded type (see [34–36]):

ż (t) = Az (t)+ Bz (t − τ )+ φ (u , v) , z ∈ R
n , u ∈ U , v ∈ V , (26.1)

where A and B are square constant matrices of order n; U, V ∈ K (Rn); φ : U ×
V → R

n, is jointly continuous in its variables; τ = const > 0 .
The phase vector consists of geometric coordinates, velocities and accelerations

of the pursuer and the evader.
Let z (t) be a solution of Eq. (26.1) under the initial condition

z (t) = z0 (t) , −τ ≤ t ≤ 0 , (26.2)

where function z0 (t) is absolutely continuous on [−τ , 0] .
The piece of the trajectory zt ( · ), where

zt ( · ) = { z (t + s) , −τ ≤ s ≤ 0}

will be referred to as the state of system (26.1) at the moment t .
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Definition 26.1 (See [37, 38]) For each k = 1, 2, . . ., the time-delay exponential is
defined as follows

expτ {B, t} =

⎧⎪⎨
⎪⎩

Θ, −∞ < t < −τ ;
I, −τ ≤ t < 0;
I + B t

1! + B2 (t−τ )2
2! + · · · + Bk (t−(k−1)τ )k

k! , (k − 1) τ ≤ t ≤ kτ,

where Θ is a zero matrix.

Lemma 26.1 (See [37, 38]) Let z (t) be a continuous solution to the system (26.1)
with commutative matrices A and B under the initial condition in (26.2). Then,

z (t) = exp{A (t + τ )}expτ {B1, t − τ }z0 (−τ )

+
∫ 0

−τ
exp{A (t − τ )}expτ {B1, t − τ − s}[ż0 (s)− Az0 (s)]ds

+
∫ t

0
exp{A (t − τ − s)}expτ {B1, t − τ − s}φ (u (s) , v (s)) ds,

or, in another form,

z (t) = F (t) a +
∫ 0

−τ
F (t − τ − s) b (s) ds

+
∫ t

0
F (t − τ − s) φ (u (s) , v (s)) ds,

where we denote

a = exp{Aτ }z0 (−τ ) , b (t) = exp{Aτ }[ż0 (t)− Az0 (t)],

and matrix

F (t) = exp{At}expτ{B1, t}, t ≥ 0, B1 = exp{−Aτ }B,

is a solution to the similar system

ż (t) = Az (t)+ Bz (t − τ )
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under the initial condition

F (t) ≡ exp{At}, −τ ≤ t ≤ 0.

Let us examine the differential-difference system (see [31]) as an example:

ż (t) = Az (t)+ Bz (t − τ )+ u (t)− v (t) , z ∈ R
2n,

where

A =
(
I 0
0 0

)
, B =

(
0 0
0 I

)
,

0 is a zero matrix, I is a unit matrix of order n,

U =
{(

−u (t)
0

)
: u ∈ R

n, ||u|| ≤ 2

}
, V =

{(
0

−v (t)

)
: v ∈ R

n, ||v|| ≤ 1

}
.

The initial condition is equal to

z0 (t) =
(
z0

1 (t) , z
0
2 (t)

)
, −1 ≤ t ≤ 0.

We observe that matrices A and B are commutative, and AB = BA =
Θ, An = A, Bn = B.

From Lemma 26.1, we see that the functional matrix F(t) is a solution to the
similar system

(
F11 (t) F12 (t)

F21 (t) F22 (t)

)
⊗ I =

(
I 0
0 0

)
·
(
F11 (t) F12 (t)

F21 (t) F22 (t)

)
⊗ I +

(
0 0
0 I

)
·
(
F11 (t − 1) F12 (t − 1)
F21 (t − 1) F22 (t − 1)

)
⊗ I =

(
F11 (t) F12 (t)

F21 (t − 1) F22 (t − 1)

)
⊗ I

and it satisfies the initial condition F (t) ≡ exp{At}, −τ ≤ t ≤ 0. Since

B1 = exp{−A} · B =
(
In − A+ A2

2! − A3

3! + · · · + (−1)n
An

n! + · · ·
)

· B = B,



26 Quasi-Linear Differential-Deference Game of Approach 511

we obtain

F (t) = exp{At} · expτ {B, t}

=
(
In + At + A2 t

2

2! + A3 t
3

3! + · · · + An
tn

n! + · · ·
)

·
(
In + Bt + B2 (t − 1)2

2! + B3 (t − 2)3

3! + · · · + Bn (t − (n− 1))n

n! + · · ·
)

= In + Bt + B2 (t − 1)2

2! + B3 (t − 2)3

3! + · · · + Bn (t − (n− 1))n

n! + · · ·

+At + A2 t
2

2! + A3 t
3

3! + · · · + An
tn

n! + · · · =
(
et 0
0 F22 (t)

)
⊗ I,

where

F22 (t) = exp1{I, t} = 1 + t

1! + (t − 1)2

2! + (t − 2)3

3! + · · · + (t − (k − 1))k

k! ,

(k − 1) ≤ t ≤ k, k = 0, 1, 2, . . . .

The terminal set has cylindrical form, i.e.

M∗ = M0 +M, (26.3)

where M0 is a linear subspace in R
nand M is a compact set from the orthogonal

complement of M0 in R
n.

The players choose their controls in the form of certain functions. Thus, the
pursuer and the evader affect the process (26.1), pursuing their own goals. The
goal of the pursuer (u) is in the shortest time to bring a trajectory of the process
to a certain closed set M∗; the goal of the evader (v) is to avoid a trajectory of the
process from meeting with the terminal set (26.3) on a whole semi-infinite interval
of time or if is impossible to maximally postpone the moment of meeting.

Now we describe what kind of information is available to the pursuer in the
course of the game.

Denote by ΩU , ΩV the sets of Lebesgue measurable functions u (t) , v (t),
u (t) ∈ U, v (t) ∈ V, t ≥ 0, respectively. A mapping that puts into correspondence
to a state z0 ( · ) some element in ΩV is called an open-loop strategy of the evader,
specific realization of this strategy for a given initial state z0 ( · ) of process (26.1)
is called an open-loop control. In the process of the game (26.1), (26.3), the evader
applies open-loop controls v ( · ) ∈ ΩV .

Function

u (t) = u
(
z0 ( · ) , t, v (t)

)
,
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such that v ( · ) ∈ ΩV implies u ( · ) ∈ ΩU is called countercontrol (stroboscopic
strategy of Hajek (see [39])) of pursuer corresponding to initial state z0 ( · ) . The
game is evolving on the closed time interval [0, T ] . We assume that the pursuer
chooses his control in the form

u (t) = u
(
z0 ( · ) , t, vt ( · )

)
, t ≥ 0,

where vt ( · ) = {v (s) : s ∈ [0, t] , v ( · ) ∈ ΩV } , and u ( · ) ∈ ΩU.

Under these hypotheses, we will play the role of the pursuer and find sufficient
conditions on the parameters of the problem (26.1), (26.3), insuring the game
termination for certain guaranteed time.

Let π be the orthogonal projector from R
n onto the subspace L. Consider the

set-valued mapping

W (t, v) = πF (t) φ (U, v) , W (t) =
⋂
v∈V

W (t, v) ,

where F(t) is defined in Lemma 26.1.

Condition 1 (Pontryagin’s Condition) The mapping W (t) �= ∅ for all t ≥ 0 .

Remark 26.1 For the linear process (φ(u, v) = u− v)

W (t) = πK (t) U
∗− πK (t) V ,

where
∗− is a geometric subtraction of the sets (Minkowski’ difference) (see [43]).

By virtue of the assumptions on the process parameters, the set-valued mapping
W (t, v) is continuous on the set [0, +∞)×V in Hausdorff metric. Consequently,
as follows from Condition 1, the mapping W (t) is upper semi-continuous and
therefore Borel measurable function (see [44]). Hence, there exists at least one
Borelian selection g (t) , g (t) ∈ W (t) , t ≥ 0 (see [45]). Let us denote by
G = {g ( · ) : g (t) ∈ W (t) , t ≥ 0} the set of all Borelian selections of the
set-valued mapping W (t) . For fixed g ( · ) ∈ G we put

ξ
(
t , z0 ( · ) , g ( · )

)
=

= πF (t) a +
∫ 0

−τ
πF (t − τ − s) b (s)ds +

∫ t

0
g (s)ds,

and consider the resolving function

α
(
t, s, z0( · ),m, v, g( · )

)
= αW(t−τ−s,v)−g(t−τ−s)

(
m− ξ

(
t , z0 ( · ) , g ( · )

))

for t ≥ s ≥ 0, v ∈ V, m ∈ M, x ∈ R
n.
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By virtue of the properties of the superposition of set-valued mappings and
functions, it is Borel measurable function in s, v (see [5]). Finally, denote

α
(
t, s, z0( · ), v, g( · )

)
= max

m∈M α
(
t, s, z0( · ),m, v, g( · )

)
,

and then we obtain the resolving function

α
(
t, s, z0( · ), v, g( · )

)
= sup{α ≥ 0 :

[W(t − τ − s, v) − g(t − τ − s)] ∩ α
[
M − ξ

(
t, z0( · ), g( · )

)]
�= ∅ }.

(26.4)

Moreover, we also observe that function α
(
t, s, z0 ( · ) , v , g ( · )) = +∞ for

all s ∈ [0 , t] , v ∈ V, if and only if ξ
(
t, z0 ( · ) , g ( · )) ∈ M. If for some t ≥ 0

ξ
(
t, z0 ( · ) , γ ( · )) /∈ M, then function (26.4) assumes finite values.
Define the function T by

T = T
(
z0 ( · ) , g ( · )

)

= inf

{
t ≥ 0 :

∫ t

0
inf
v∈V α

(
t , s , z0 ( · ) , v , g ( · )

)
ds ≥ 1

}
, g ( · ) ∈ G.

(26.5)

If the inequality in the curly brackets is not satisfied for all t ≥ 0, we set
T

(
z0 ( · ) , g ( · )) = +∞.

Theorem 26.1 Let the conflict controlled process (26.1), (26.3) ) with the initial
condition (26.2) and commutative matrices A and B satisfy Condition 1, and let the
set M be convex, for the given initial state z0 ( · ) and some selection g0 ( · ) ∈ G

T = T
(
z0 ( · ) , g0 ( · )) < +∞.

Then a trajectory of the process (26.1), (26.3) can be brought by the pursuer from
z0 ( · ) to the terminal setM∗ at the moment T under arbitrary admissible controls
of the evader.

Proof Let v ( · ) ∈ ΩV . First consider the case when ξ
(
T , z0 ( · ) , g0 ( · )) /∈ M.

We introduce the controlling function

h (t) = h
(
T , t, s, z0 ( · ) , v ( · ) , g0 ( · )

)

= 1 −
∫ t

0
α
(
T , s, z0 ( · ) , v (s) , g0 ( · )

)
ds, t ≥ 0.

From the definition of time T , there exists a switching time t∗ =
t∗ (v ( · )) , 0 < t∗ ≤ T , such that h (t∗) = 0.
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Let us describe the rules by which the pursuer constructs his control on the so-
called active and the passive parts, [0 , t∗) and [t∗ , T ] , respectively.

Consider the set-valued mapping

U1(s, v) =
{
u ∈ U : πF (T − τ − s) φ (u, v)− g0 (T − τ − s)

∈ α
(
T , s, z0 ( · ) , v (s) , g0 ( · )

) [
M − ξ

(
T , z0 ( · ) , g0 ( · )

)]}
.

From assumptions concerning the process (26.1), (26.3) parameters, with
account of properties of the resolving function, it follows that the mappingU1 (s, v)

is a Borel measurable function on the set [0, T ] × V. Then selection

u1 (s, v) = lex minU1 (s, v)

appears as a jointly Borel measurable function in its variables (see [44]). The
pursuer’s control on the interval [0, t∗) is constructed in the following form

u (s) = u1 (s, v (s)) ,

being superposition of Borel measurable functions it is also Borel measurable
function (see [44]).

The pursuer’s control on the interval [0, t∗) is constructed in the following form

u (s) = u1 (s, v (s)) ,

being superposition of Borel measurable functions it is also Borel measurable
function (see [44]).

Set

α
(
T , s, z0 ( · ) , v (s) , g0 ( · )

)
≡ 0, s ∈ [t∗, T ] .

Then the mapping

U2 (s, v)

=
{
u ∈ U : πF (T − τ − s) φ (u, v)− g0 (T − τ − s) = 0

}
, s ∈ [t∗, T ] , v ∈ V

is Borel measurable function in its variables, and its selection

u2 (s, v) = lex minU2 (s, v)

is Borel measurable function also.
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On the interval [t∗ , T ] we set the pursuer’s control equal to

u (s) = u2 (s , v (s)) . (26.6)

It is measurable function too (see [5, 9]).
Let ξ

(
T , z0 ( · ) , g0 ( · )) ∈ M. In this case, we choose the pursuer’s control

on the interval [0, T ] in the form (26.6).
Thus, the rules are defined, to which the pursuer should follow in constructing

his control. We will now show that if the pursuer follows these rules in the course
of the game, a trajectory of process (26.1) hits the terminal set at the time T under
arbitrary admissible controls of the evader.

By virtue of Lemma 26.1, the Cauchy formula for the system (26.1) implies the
representation

πz (T ) = πF (T ) a +
∫ 0

−τ
πF (T − τ − s) b (s) ds

+
∫ T

0
πF (T − τ − s) φ (u (s) , v (s)) ds.

(26.7)

First we examine the case when ξ
(
T , z0 ( · ) , g0 ( · )) /∈ M.

By adding and subtracting from the right-hand side of Eq. (26.7) the value∫ T
0 g0 (T − τ − s) ds, one can deduce

πz (T )

=
[
πF (T ) a +

∫ 0

−τ
πF (T − τ − s) b (s) ds +

∫ T

0
g0 (T − τ − s) ds

]

+
∫ T

0

[
πF (T − τ − s) φ (u (s) , v (s))− g0 (T − τ − s)

]
ds

∈ ξ
(
T , z0 ( · ) , g0 ( · )

)
+

∫ T

0
α
(
T , s, z0 ( · ) , v, g0 ( · )

)
[M − ξ

(
T , z0 ( · ) , g0 ( · )

)
]ds

= ξ
(
T , z0 ( · ) , g0 ( · )

)
+

∫ T

0
α
(
T , s, z0 ( · ) , v, g0 ( · )

)
Mds

−
∫ T

0
α
(
T , s, z0 ( · ) , v, g0 ( · )

)
ξ
(
T , z0 ( · ) , g0 ( · )

)
ds.

(26.8)
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By virtue (26.8) and α
(
T , s, z0 ( · ) , v (s) , g0 ( · )) = 0, s ∈ [t∗, T ] we have

the inclusion

πz (T ) ∈ ξ
(
T , z0 ( · ) , g0 ( · )

) [
1 −

∫ t∗

0
α
(
T , s, z0 ( · ) , v (s) , g0 ( · )

)
ds

]

+
∫ t∗

0
α
(
T , s, z0 ( · ) , v (s) , g0 ( · )

)
Mds.

Since
∫ t∗

0 α
(
T , s, z0 ( · ) , v (s) , g0 ( · )) ds = 1 and the set M is convex then

πz (T ) ∈ M . Then, applying the rule of the pursuer control for the case when
ξ
(
T , z0 ( · ) , g0 ( · )) ∈ M, we obtain the inclusion πz (T ) ∈ M. The proof is

therefore complete.

Corollary 26.1 Assume that the differential-difference game of approach (26.1),
(26.3) is linear (φ (u, v) = u− v) ,matrices A and B are commutative, Condition 1
holds, there exists a continuous positive function r (t) , r : R → R, and a number
l ≥ 0 such that πF (t) U = r (t) S, M = lS, where S is the unit ball centered at
zero in the subspace L.

Then when ξ
(
t, z0 ( · ) , g ( · )) /∈ lS, the resolving function (26.4) is the

largest root of the quadratic equation for α > 0

∥∥∥πF (t − τ − s) v + g (t − τ − s)− αξ
(
t, z0 ( · ) , g ( · )

)∥∥∥ =
= r (t − τ − s)+ αl.

(26.9)

Proof By virtue of the assumptions of Corollary 26.1, we conclude from expres-
sion (26.4) that the resolving function α

(
T , s, z0 ( · ) , v, g ( · )) for fixed values

of its arguments is the maximal number α such that

[r (t − τ − s) S − πF (t − τ − s) v − g (t − τ − s)] ∩
α
[
lS − ξ

(
t, z0 ( · ) , g ( · )

)]
�= ∅.

The last expression is equivalent to the inclusion

πF (t − τ − s) v + g (t − τ − s)− αξ
(
t, z0 ( · ) , g ( · )

)
∈

[r (t − τ − s)+ αl)]S.

Due to the linearity of the left-hand side of this inclusion in α, the vector
πF (t − τ − s) v + g (t − τ − s) − αξ

(
t, z0 ( · ) , g ( · )) lies on the boundary

of the ball [r (t − τ − s)+ αql] S for the maximal value of α. In other words, the
length of this vector is equal to the radius of this ball that is demonstrated by (26.9).
The proof is complete.
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26.3 Differential-Difference Games of Approach with Pure
Time Delay

We consider the problem of approach, which is described by the system of
differential-difference equations with pure time delay (see [38, 43, 44])

ż (t) = Bz (t − τ )+ φ (u, v) , z ∈ R
n, u ∈ U, v ∈ V, t ≥ 0, (26.10)

with the initial condition (26.2).

Lemma 26.2 (See [41]) Let z (t) be a continuous solution to the system (26.10)
under the initial condition (26.2). Then,

z (t) = expτ {B, t}z0 (−τ )+
∫ 0

−τ
expτ {B, t − τ − s}ż0 (s) ds

+
∫ t

0
expτ {B, t − τ − s}φ (u (s) , v (s)) ds.

The terminal set has the cylindrical form (26.3). Function

u (t) = u
(
z0 ( · ) , t, v (t)

)
,

such that v ( · ) ∈ ΩV implies u ( · ) ∈ ΩU is called countercontrol stroboscopic
strategy of Hajek (see [39]) of pursuer corresponding to initial state z0 ( · ) . The
game is evolving on the closed time interval [0, T ] . We assume that the pursuer
chooses his control in the form

u (t) =
{
u1

(
z0 ( · ) , t, v (t)) , t ∈ [0, t∗) ;

u2
(
z0 ( · ) , t, v (t)) , t ∈ [t∗ , T ] ,

where [0, t∗) is the active interval time, [t∗ , T ] is the passive one, and t∗ =
t∗ (v ( · )) is the moment of switching from the Method of Resolving Functions
in first interval time to the First Direct Method of L.S. Pontryagin in the second one.

We introduce set-valued mappings

W̄ (t, v) = πexpτ {B, t}φ (U, v) ,
W̄ (t) =

⋂
v∈V

W̄ (t, v) ,

Condition 2 The mapping W̄ (t) �= ∅ for all t ≥ 0.
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The mapping W̄ is upper semi-continuous and therefore Borel measurable func-
tion (see [40, 41]). Hence, there exists at least one Borelian selection g (t) , g (t) ∈
W̄ (t) (see [42]). Denote by G = {g (t) : g (t) ∈ W̄ (t) , t ≥ 0} the set of all
Borelian selections of the set-valued mapping W̄ (t) . For fixed g ( · ) ∈ G we put

ξ
(
t , z0 ( · ) , g ( · )

)
=

= πexpτ {B, t}z0 (−τ )+
∫ 0

−τ
πexpτ {B, t − τ − s}ż0 (s)ds +

∫ t

0
g (s)ds,

and consider the resolving function

α
(
t, s, z0( · ), v, g( · )

)
= sup{α ≥ 0 :

[
W̄ (t − τ − s, v) − g(t − τ − s)

] ∩ α
[
M − ξ

(
t, z0( · ), g( · )

)]
�= ∅ }.

(26.11)

The function α
(
t, s, z0( · ), v, g( · )) is summable for s ∈ [0, t] (see [5]).

We introduce the function (26.5). The value T = T
(
z0( · ), g( · )) for the

initial state z0( · ) of the system (26.10) and some selector g0 ( · ) ∈ G is the
guaranteed moment of capture by the pursuer of the evader according to the Method
of Resolving Functions.

On the other hand, we set

P
(
z0 ( · ) , g ( · )

)

= min

{
t ≥ 0 : πexpτ {B, t}z0 (−τ )+

∫ 0

−τ
πexpτ {B, t − τ − s}ż0 (s)ds

∈ M −
∫ t

0
W̄ (t − τ − s)ds

}
. (26.12)

Let us show that the quantity (26.3) is the guaranteed moment of the end of
the game of approach according to the First Direct Method of L.S. Pontryagin (see
[45]).

Theorem 26.2 Let the conflict controlled process (26.10), (26.3) with the initial
condition (26.2) satisfy Condition 2, the set M be convex, P

(
z0 ( · ) ) < +∞,

when P
(
z0 ( · ) ) is defined by formula (26.3).

Then a trajectory of the process (26.10), (26.3) can be brought by the pursuer
from z0 ( · ) to the terminal setM∗ at the moment P

(
z0 ( · ) ).
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Proof For simplicity of presentation, denote P0 = P
(
z0 ( · )). We have the

following inclusion

πexpτ {B,P0}z0 (−τ )+
∫ 0

−τ
πexpτ {B,P0 − τ − s}ż0 (s)ds

∈ M −
∫ P0

0
W̄ (P0 − τ − s)ds.

Since, there exist point m ∈ M and selection g ( · ) ∈ G such that

πexpτ {B,P0}z0 (−τ )+
∫ 0

−τ
πexpτ {B,P0 − τ − s}ż0 (s)ds

= m−
∫ P0

0
g (P0 − τ − s)ds.

Consider the set-valued mapping

U (s, v) = {u ∈ U : πexpτ {B,P0 − τ − s}φ (u, v)
−g (P0 − τ − s) = 0} , s ∈ [0, P0] , v ∈ V.

(26.13)

The mapping U (s, v) and selection u (s, v) = lex minU (s, v) are Borel
measurable functions in its variables.

We set the pursuers control equal to

u (s) = u (s , v (s)) , s ∈ [0, P0] ,

where v (s) , v (s) ∈ V, is an arbitrary admissible control of the evader, and it will
be a Borel measurable function of time.

From the relation (26.13) with (26.3) we obtain

πz (P0) = πexpτ {B,P0}z0 (−τ )+
∫ 0

−τ
πexpτ {B,P0 − τ − s}ż0 (s)ds

+
∫ P0

0
πexpτ {B,P0 − τ − s}φ (u (s) , v (s))ds = m ∈ M.

This means that z (P0) ∈ M∗. The proof is therefore complete.

Theorem 26.3 Let the conflict controlled process (26.10), (26.3) with the initial
condition (26.2) satisfy Condition 2.
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Then the inclusion

πexpτ {B, t}z0 (−τ )+
∫ 0

−τ
πexpτ {B, t − τ − s}ż0 (s)ds

∈ M −
∫ t

0
W̄ (t − τ − s)ds, t ≥ 0,

holds if and only if a selection g ( · )∈G exists, such that ξ
(
t, z0 ( · ) , g ( · ))∈M.

Proof Letting

πexpτ {B, t}z0 (−τ )+
∫ 0

−τ
πexpτ {B, t − τ − s}ż0 (s)ds

∈ M −
∫ t

0
W̄ (t − τ − s)ds.

There exist point m ∈ M and selection g ( · ) ∈ G such that

πexpτ {B, t}z0 (−τ )+
∫ 0

−τ
πexpτ {B, t − τ − s}ż0 (s)ds

= m−
∫ t

0
g (t − τ − s)ds,

which is equivalent to ξ
(
t, z0 ( · ) g ( · )) = m ∈ M.

Using the reverse line of reasoning we come to the required result. The proof is
therefore complete.

Theorem 26.4 Let the conflict controlled process (26.10), (26.3) with the initial
condition (26.2) satisfy Condition 2, and let the setM be convex, for the given initial
state z0 ( · ) and some selection g0 ( · ) ∈ G T = T

(
z0 ( · ) , g0 ( · )) < +∞.

Then a trajectory of the process (26.10), (26.3) can be brought by the pursuer
from z0 ( · ) to the terminal setM∗ at the moment T .

Proof Let v (s) , v (s) ∈ V, s ∈ [0, T ] be an arbitrary Borel measurable function.
First, consider the case when ξ

(
T , z0 ( · ) , g0 ( · )) /∈ M. We introduce the

controlling function

h (t) == 1 −
∫ t

0
α
(
T , s, z0 ( · ) , v (s) , g0 ( · )

)
ds, t ≥ 0.

From the definition of time T , there exists a switching time t∗ =
t∗ (v ( · )) , 0 < t∗ ≤ T , such that h (t∗) = 0.

Let us describe the rules by which the pursuer constructs his control on the so-
called active and the passive parts, [0 , t∗) and [t∗ , T ] , respectively.
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Consider the set-valued mapping

U1(s, v) =
{
u ∈ U : πexpτ {B, T − τ − s}φ (u, v)− g0 (T − τ − s)

∈ α
(
T , s, z0 ( · ) , v (s) , g0 ( · )

) [
M − ξ

(
T , z0 ( · ) , g0 ( · )

)]}
.

It follows from assumptions concerning the process (26.10), (26.3) parameters,
with account of properties of the resolving function, that the mapping U1 (s, v) is a
Borel measurable function on the set [0, T ] × V. Then selection

u1 (s, v) = lex minU1 (s, v)

appears as a jointly Borel measurable function in its variables (see [41]).
The pursuer’s control on the interval [0, t∗) is constructed in the following form

u (s) = u1 (s, v (s)) ,

being a superposition of Borel measurable functions it is also Borel measurable
function (see [42]).

Set

α
(
T , s, z0 ( · ) , v (s) , g0 ( · )

)
≡ 0, s ∈ [t∗, T ] .

Then the mapping

U2 (s, v)

=
{
u ∈ U : πexpτ {B,T − τ − s}φ (u, v)− g0 (T − τ − s) = 0

}
, s ∈ [t∗, T ] , v ∈ V

is Borel measurable function in its variables, and its selection

u2 (s, v) = lex minU2 (s, v)

is Borel measurable function as well.
On the interval [t∗ , T ] we set the pursuer’s control equal to

u (s) = u2 (s , v (s)) . (26.14)

It is measurable function too.
Let ξ

(
T , z0 ( · ) , g0 ( · )) ∈ M. In this case, we choose the pursuer’s control

on the interval [0, T ] in the form (26.14).
Thus, the rules are defined, to which the pursuer should follow in constructing

his control. We will now show that if the pursuer follows these rules in the course
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of the game, a trajectory of process (26.10) hits the terminal set at the time T under
arbitrary admissible controls of the evader.

By virtue of Lemma 26.2, the Cauchy formula for the system (26.10) implies the
representation

πz (T ) = πexpτ {B, T }z0 (−τ )+
∫ 0

−τ
πexpτ {B, T − τ − s}ż0 (s)ds

+
∫ T

0
πexpτ {B, T − τ − s}φ (u (s) , v (s))ds.

(26.15)

First, we examine the case when ξ
(
T , z0 ( · ) , g0 ( · )) /∈ M.

By adding and subtracting from the right-hand side of Eq. (26.15) the value∫ T
0 g0 (T − τ − s) ds, one can deduce

πz (T ) ∈ ξ
(
T , z0 ( · ) , g0 ( · )

) [
1 −

∫ t∗

0
α
(
T , s, z0 ( · ) , v (s) , g0 ( · )

)
ds

]

+
∫ t∗

0
α
(
T , s, z0 ( · ) , v (s) , g0 ( · )

)
Mds.

Since
∫ t∗

0 α
(
T , s, z0 ( · ) , v (s) , g0 ( · )) ds = 1 and the set M is convex then

πz (T ) ∈ M . Then, applying the rule of the pursuer control for the case when
ξ
(
T , z0 ( · ) , g0 ( · )) ∈ M, we obtain the inclusion πz (T ) ∈ M. The proof is

therefore complete.

Corollary 26.2 Let the conflict-controlled process (26.10), (26.3) with the initial
condition (26.2) satisfy Condition 2.

Then for any initial state z0 ( · ) there exists a selection g0 ( · ) ∈ G such that

T
(
z0 ( · ) , g0 ( · )

)
≤ P

(
z0 ( · )

)
.

The effectiveness of the Method of Resolving Functions, sufficient conditions
that are easily verified, the ability to quickly build the resolution function, using the
modern techniques of set-valued mappings and their selections, prove the relevance
of this method for solving differential-difference games that are of great practical
importance.
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Chapter 27
The Problem of a Function Maximization
on a Type-2 Fuzzy Set

S. O. Mashchenko and D. O. Kapustian

Abstract The article focuses on generalizing the concept of the maximizing
alternative in the case of the objective function maximization problem on the type-2
fuzzy set (T2FS) of feasible alternatives. An extension of the natural order relation
to the class of fuzzy sets is used for comparison of fuzzy sets of alternatives
membership degrees. It is shown that such a fuzzy preference relation provides
fuzzy sets of membership degrees of T2FSs of feasible alternatives to be normal.
With the help of this preference relation a fuzzy set of non-dominated alternatives
is constructed. The notion of α-level non-dominated alternative is introduced. It
is shown that this is a solution to the optimization problem. In this problem the
objective function is maximized with a bounded secondary membership degree of
the T2FS of feasible alternatives. The problem of choosing alternatives according to
the two criteria (the objective function and secondary degrees of membership to the
T2FS of feasible alternatives) is formulated. Its Pareto optimal solutions are called
the effective maximizing alternatives. Their properties are investigated.

27.1 Introduction

The problem of maximizing a given non-fuzzy function on a given fuzzy set (type-
1) of feasible elements has been considered by Negoita and Ralescu [1]. These
authors interpreted the function to be maximized as a membership function of
some fuzzy goal set. A significant contribution to solve this problem was made by
Orlovsky [2]. He proposed two concepts for solving this problem and investigated
their equivalence. The first solution concept makes use of levels sets of a fuzzy
set. The second one is based on the idea of representing the support of a fuzzy
set of solutions as a set of Pareto optimal solutions to a two-criteria problem. It
maximizes both the objective function and the membership function of the fuzzy set
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of feasible alternatives. Models and methods of fuzzy mathematical programming
are sufficiently well-developed [3–5].

Although fuzzy sets are the main tool for formalizing of uncertainty in describing
the decision-making problem under the Bellman-Zadeh approach, they can also be
vague. Mendel and John [6] emphasize that there are such sources of uncertainty
in fuzzy sets. These are: the meanings of words that are used in the description of
fuzzy sets; an ambiguity of the opinions of various experts; a measurement noise;
a data noise. All these problems lead to uncertainty of the fuzzy set membership
function.

The main instrument of description such uncertainty is fuzzy set type-2 (T2FS)
theory, which introduced by Zadeh in 1971 [7]. The degree of membership of
elements in a usual fuzzy set is given by a value on the interval [0, 1], whereas
the degree of membership of elements in a T2FS is a fuzzy set on [0, 1]. It can be
seen that, mathematically, a T2FS A is a mapping A : X → [0, 1][0,1] (see [7]).
Mendel and John [6] provide the following definition which is based on the ideas
invented by Karnik and Mendel [8].

A T2FS A is characterized by a type-2 membership function (T2MF) μ̃A(x, y),
where x ∈ X and y ∈ Y (x) ⊆ [0, 1], that is,

A = {(x, μ̃A(x, y)) : x ∈ X, y ∈ Y (x) ⊆ [0, 1]} .

Sometimes it is convenient to use this definition in combination with remarks of
Harding et al. [9] and Aisbett et al. [10] in which the notion of T2FS is characterized
by a T2MF

μA(x, y) =
{
μ̃A(x, y), y ∈ Y (x);

0, elsewhere,

x ∈ X which is expanded on y ∈ Y (x) ⊆ [0, 1]. Consequently,

A = {(x, μ̃A(x, y)) : x ∈ X, y ∈ Y ⊆ [0, 1]} .

The main lack of T2FSs is some difficulties of their understanding and using.
Despite these problems, T2FSs are widely used in decision making theory [11–14].

27.2 Formulation of the Problem

When solving the function maximizing problem on a fuzzy set F of feasible
alternatives of universal set X of alternatives, the main idea of the approach of
Negoita and Ralescu [1] consisted of its formulation as a problem of achieving a
fuzzy goal set G, membership function of which was specified by the maximizing
function. Further, to solve this, the Bellman-Zade concept was used [15]. According
to this approach the goal of decision making G and the set of feasible alternatives
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F are considered as equitable fuzzy sets. This makes it possible to fairly simply
determine the solution set D. The “optimal” solution is defined as any alternative,
which maximizes membership function of the fuzzy set D and is named as
maximizing alternative. We apply this idea when set of solutions is T2FS.

Let X be a universal set of alternatives. Denote by the F T2FS of feasible
alternatives in X which is characterized by a T2MF μF (x, y) , x ∈ X, y ∈ Y ⊆
[0, 1]. Let g(x) is function X → R. We suppose g(x) ∈ [0, 1] for ∀x ∈ X and
maximize it on the T2FS F of feasible alternatives. We formulate the problem to
achieve fuzzy goal. Let this goal is the fuzzy set G0 in X with membership function
μG0(x) = g(x) , x ∈ X. This implies that better membership degrees μG0(x) to
the fuzzy set G0 correspond to better values of the function g(x), which we want to
maximize. The intersection of F and G0 we define as the fuzzy solution set D. For
this end we according to [6] represent fuzzy goal set G0 in the form of T2FSG with
T2MF

μG(x, y) =
{

1, y = g(x),

0, elsewhere,
(27.1)

x ∈ X, y ∈ [0, 1]. We define the fuzzy set D of solution as the T2FS resulting from
the intersection of F and G. According to [6]

μD(x, y) = max
u,v∈[0,1], min{u,v}=y

min{μF (x, u), μG(x, v)}, x ∈ X, y ∈ Y ⊆ [0, 1]
(27.2)

is its T2MF. Which alternative in X can be chosen as maximizing?
Consider an example.

Example 1 Suppose that T2FS of feasible alternatives F is given on the universal
set X = [0, 12]. Its T2MF μF (x, y), x ∈ X, y ∈ Y ⊆ [0, 1] takes values in the
set {0, 5; 1}. Let g(x) = x/12 is objective function, which is maximizing. The goal
T2FS G with T2MF μG(x, y) in the form (1) corresponds to the objective function
g(x). Figure 27.1 shows the 0, 5-level lines (thin lines) and 1-level lines (thick lines)
of the T2MFs of feasible alternatives F (solid lines) and goal G (dashed lines). A
fuzzy solution to this problem is the T2FS D = F

⋂
G whose T2MF has 0, 5-level

lines (thin lines) and 1-level lines (thick lines). They are shown on Fig. 27.2. On
this figure we see that the alternative x = 6 has the maximal primary degree of
membership to the T2FS of solutions which is equal to 0, 5 with secondary grade
0, 5; but the alternative x = 5, 25 has the maximal primary degree of membership
which is equal to 7/16 with secondary grade 1. Which alternative should be chosen?
First, second or . . . ?

The sets FYD(x) = ⋃
y∈Y (x)(y, μD(x, y)) of the membership degrees of the

alternatives x ∈ X to the T2FS D of solutions are fuzzy. For example, we have
single point fuzzy sets FYD(6) = {(0, 5; 0, 5)} for the alternative x = 6 and
FYD(5, 25) = {(7/16; 1)} for the alternative x = 5, 25. Therefore, to solve the
problem one needs to learn how to compare the alternatives. Then the alternative
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Fig. 27.1 The levels lines of
the F and G T2MFs
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which corresponds to the ‘best’ fuzzy set of membership degrees can be thought of
as a solution to the formulated problem of choosing the maximizing alternative.

In the case, where fuzzy sets of membership degrees of T2FS can be represented
as fuzzy numbers, it is advisable to use known ranking methods that have been
extensively investigated in the last few years because of their applicability in
classical fuzzy optimization. There are many approaches to compare fuzzy numbers
[15–20]. An excellent review is presented in [21]. A large number of methods for
comparing fuzzy numbers can be explained by the wide scope of their applications.
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Nevertheless, sometimes fuzzy sets of the T2FS membership degrees cannot be
represented as fuzzy numbers. This is, for instance, the case when membership
degrees have discrete values as in Example 1. Also, for example, in [22, 23] such
T2FSs are obtained as the result of union and intersection operations of fuzzy sets
with fuzzy number of operands. In view of this in the present article we focus on the
more general case of T2FSs.

27.3 Preliminaries

27.3.1 A Fuzzy Preference Relation

In this section, we give some definitions from [24] which we will use further.
A fuzzy preference relation (FPR) R on the set X is a fuzzy subset of the product

set X × X with the membership function ηR : X × X → [0, 1]. It is assumed that
the FPR is reflexive, that is ηR(x, x) = 1 ∀x ∈ X.

For a given FPR R we define two fuzzy relations:

– fuzzy indifference relation I = R
⋂
R−1 with the membership function

ηI (x, y) = min{ηR(x, y), ηR(y, x)} , x, y ∈ X;

– fuzzy strict preference relation S = R\R−1 with the membership function

ηS(x, y) = max{0, ηR(x, y)− ηR(y, x)} , x, y ∈ X.

For FPR R on a given set X we introduce the fuzzy set ND of non-dominated
alternatives with the membership function

ηND(x) = miny∈X{1 − ηS(x, y)} = 1 − maxy∈X ηS(x, y) =
1 − maxy∈X{ηR(x, y)− ηR(y, x)}. (27.3)

By the value ηND(x) we mean the degree with which alternative x is not dominated
by any one of the elements of the set X.

27.3.2 Extension of a Fuzzy Preference Relation to the Class
of Fuzzy Sets

Formally this problem can be stated as follows. Let μF : Y × Y → [0, 1] be a
membership function of FPR F on a given set Y and Φ is a class of fuzzy sets of Y .
What is the form of the FPR F on the class Φ?
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To obtain the desired FPR we argue as follows [25]. If a fuzzy set A belongs to
Φ and has the membership function λA(y), y ∈ Y , then the value

η(A, y ′) = max
y∈Y min{λA(y), μF (y, y ′)}

can be taken as a degree to which the fuzzy set A is preferred to the element y ′ ∈ Y .
Similarly, the value

η(y ′, A) = max
y∈Y min{λA(y), μF (y ′, y)}

is a degree to which the reverse preference is true. Now ifA′ andA′′ are two arbitrary
fuzzy sets on Y , then the value

η(y ′, A) = max
y∈Y min{λA′(y),max

z∈Y min{λA′′ (z), μF (y, z)}} =

max
y,z∈Y min{λA′(y), λA′′(z), μF (y, z)}

is a degree of the preference A′F̃A′′, where we write F̃ for the FPR on Φ with
the membership function η. Such a FPR F̃ defined on Φ is induced by the FPR F

defined on the universal set Y .
When Y is the set of real numbers and F is the natural order “≥” on Y , the

induced FPR F̃ has the form

η(A′, A′′) = max
y,z∈Y, y≥zmin{λA′(y), λA′′ (z)}.

In a more particular case, when the class Φ is smaller this formula can be
simplified. According to [25] for any two normal convex fuzzy sets A′ and A′′ on Y
one of the equations holds

η(A′, A′′) = 1 or η(A′, A′′) = max
y∈Y min{λA′(y), λA′′(y)}.

It should be noted that this coincides with the result obtained in [26] for fuzzy
numbers which are also normal and convex fuzzy sets. This indicates a certain
universality of such approach.

27.4 Fuzzy Set of Non-dominated Alternatives

Let T2FS D be a solution to the maximization problem of function g(x) on the
T2FS F . Its T2MF μD(x, y), x ∈ X, y ∈ Y ⊆ [0, 1] is given by (27.2). Firstly we
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simplify formula (27.2). Formulas (27.1) and (27.2) imply that

μD(x, y) = max
u,v∈[0,1], min{u,v}=y min{μF (x, u), μG(x, v)} =

max{ max
u,v∈[0,1], u≤v, u=y min{μF (x, u), μG(x, v)},

max
u,v∈[0,1], u>v, v=y min{μF (x, u), μG(x, v)}} =

max{ max
v∈[0,1], y≤v

min{μF (x, y), μG(x, v)}, max
u∈[0,1], u>y

min{μF (x, u), μG(x, y)}} =
⎧⎨
⎩

max{min{μF (x, y), 0},maxu∈[0,1], u>y min{μF (x, u), 0}}, y > g(x),

max{min{μF (x, y), 1},maxu∈[0,1], u>y min{μF (x, u), 1}}, y = g(x),

max{min{μF (x, y), 1},maxu∈[0,1], u>y min{μF (x, u), 0}}, y < g(x),

=
⎧⎨
⎩

0, y > g(x),

max{μF (x, y),maxu∈[0,1], u>y μF (x, u)}, y = g(x),

μF (x, y), y < g(x).

Whence we finally get

μD(x, y) =
⎧⎨
⎩

0, y > g(x),

maxu∈[0,1], u≥y μF (x, u)}, y = g(x),

μF (x, y), y < g(x).

(27.4)

The sets FYD(x) = ⋃
y∈Y (y, μD(x, y)) of membership degrees of the cor-

responding alternatives x ∈ X to the T2FS D of solutions are fuzzy. In view
of this, to compare alternatives we use a FPR F̃ with the membership function
η(x ′, x ′′) = η(FYD(x

′), FYD(x ′′)). The FPR F̃ is an extension of the natural order
“≥” on the set of real numbers to the class of fuzzy sets which are defined for
y ∈ Y ⊆ [0, 1]. Recall from Sect. 27.3.2 that the membership function of the FPR
F̃ takes the form

η(x ′, x ′′) = max
u,v∈Y, u≥v min{μD(x ′, u), μD(x ′′, v)}, x ′, x ′′ ∈ X. (27.5)

We call a T2FS on X with T2MF ϕ(x, y), x ∈ X, y ∈ Y ⊆ [0, 1] normal with
respect to (w.r.t.) secondary grades if

max
y∈Y ϕ(x, y) = 1, ∀x ∈ X. (27.6)

Formula (27.1) implies obvious proposition.

Proposition 27.1 T2FSG of goal is normal w.r.t. secondary grades.
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Lemma 27.1 The fuzzy relation F̃ on X is FPR if, and only if, the T2FS of feasible
alternatives F is normal w.r.t. secondary grades.

Proof Note that the membership function of the fuzzy set
⋃
y∈Y (y, μF (x∗, y))

of membership degrees to the T2FS F for the alternative x∗ ∈ X has the form
μF (x

∗, y). Similarly, μG(x∗, y) and μD(x
∗, y) are the membership functions of

the fuzzy sets of membership degrees to the T2FSs G and D for the alternative
x∗ ∈ X, respectively.

Sufficiency Assume that the T2FSs of feasible alternatives F and goal G (accord-
ing to Proposition 27.1) are normal w.r.t. secondary grades, that is,

max
y∈Y μF (x, y) = 1, max

y∈Y μG(x, y) = 1, ∀x ∈ X. (27.7)

We intend to show that

max
y∈Y μD(x, y) = 1, ∀x ∈ X. (27.8)

Assume on the contrary that ∃x ′ ∈ X for which

μD(x
′, y) < 1, ∀y ∈ Y. (27.9)

Set u′ = arg maxy∈Y μF (x ′, y), v′ = arg maxy∈Y μF (x ′, y) and y ′ = min{u′, v′}.
Formulas (27.7) imply that μF (x ′, u′) = 1 and μG(x ′, v′) = 1. According to (27.2)

μD(x
′, y ′) = max

u,v∈Y, min{u,v}=y ′ min{μF (x ′, u), μG(x ′, v)} ≥

min{μF (x ′, u′), μG(x ′, v′)} = min{1, 1} = 1

A contradiction to (27.9). Therefore, equalities (27.8) hold and the T2FS D of
solutions is normal w.r.t. secondary grades.

Now it is necessary to show that the fuzzy relation F̃ is reflexive, that is,
η(x, x) = 1, ∀x ∈ X. Assume on the contrary that ∃x ′ ∈ X for which

η(x ′, x ′) < 1. (27.10)

Denote by u′ and v′ arbitrary elements of the set Argmaxy∈Y μD(x ′, y) = 1.
Without loss of generality we assume that u′ ≥ v′. Formula (27.8) entails
μD(x

′, u′) = 1 and μD(x ′, v′) = 1. Therefore, according to formula (27.5)

η(x ′, x ′) = max
u,v∈Y, u≥v min{μF (x ′, u), μG(x ′, v)} ≥

min{μF (x ′, u′), μG(x ′, v′)} = min{1, 1} = 1,

we have a contradiction to (27.10). Thus, the fuzzy relation F̃ is reflexive.
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Necessity Assume that the fuzzy relation F̃ is reflexive, that is,

η(x, x) = 1, ∀x ∈ X. (27.11)

We first show that equalities (27.8) hold.
Assume on the contrary that ∃x ′ ∈ X for which μD(x ′, y) < 1 for any y ∈ Y ,

hence, particularly, for y = u′ and y = v′ satisfying

min{μF (x ′, u′), μG(x ′, v′)} = max
u,v∈Y, u≥v min{μF (x ′, u), μG(x ′, v)}.

In view of min{μF (x ′, u′), μG(x ′, v′)} < 1 formula (27.5) implies that η(x ′, x ′) <
1, this is a contradiction to (27.11). Thus, equalities (27.8) do hold which implies
that the T2FS D of solutions is normal w.r.t. secondary grades.

We are going to check that equalities (27.7) hold. Assume on the contrary that
∃x ′ ∈ X for which at least one of the equalities does not hold. Assume, without
loss of generality, that μF (x ′, u) < 1 ∀u ∈ Y . This inequality particularly holds for
u = u′ satisfying

min{μF (x ′, u′), μG(x ′, v′)} = max
u,v∈Y min{μF (x ′, u), μG(x ′, v)} (27.12)

Setting y ′ = min{u′, v′} we can represent (27.12) in the form

min{μF (x ′, u′), μG(x ′, v′)} = max
u,v∈Y, min{u,v}=y ′ min{μF (x ′, u), μG(x ′, v)}.

In view of min{μF (x ′, u′), μG(x ′, v′)} < 1 formula (27.2) entails μD(x ′, v′) < 1,
which is a contradiction to (27.8). Thus, equalities (27.7) do hold and the T2FS of
feasible alternatives F is normal w.r.t. secondary grades.

The proof of Lemma 27.1 is complete.

Remark 27.1 The assumptions of Lemma 27.1 restrict applicability of this approach
to problems of maximizing a given function on a T2FS of feasible alternatives.

Since FPR is introduced on the set X of alternatives, the original problem is
reduced to the problem of finding a fuzzy set of non-dominated alternatives and
then choosing an alternative which is ‘the best’ in some sense.

Now we intend to construct on the set X a fuzzy set ND of non-dominated
alternatives. According to formulas (27.3) and (27.5), its membership function has
the form

ηND(x) = 1 − maxy∈X{η(x, y)− η(y, x)} =
1 − maxy∈X{maxu,v∈Y, u≥v min{μD(y, u), μD(x, v)}−

maxu,v∈Y, u≥v min{μD(x, u), μD(y, v)}}.
(27.13)
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According to the Bellman-Zadeh approach [27] the maximizing alternative (with
the maximal degree of membership) is usually chosen as the “best” alternative to the
fuzzy set. In the situations when such an alternative is not easily found, one selects
an alternative with a degree of membership not less than a given value α ∈ [0, 1].
We apply this idea to solve the original problem.

An alternative x∗ ∈ X satisfying ηND(x) ≥ α will be called an α-level non-
dominated alternative to the problem of the function g(x) maximization on the F .

Observe that ηND(x) is the degree of non-dominance of the alternative x ∈ X.
Hence, ηND(x) ≥ α implies that there is no alternative dominating the alternative
x with a membership degree greater than 1 − α, α ∈ [0, 1] on the set X. The
membership function ηND(x) of the fuzzy set ND of non-dominated alternatives
is complicated enough. Therefore, a method is needed which enables one to select
α-level non-dominated alternatives by making only implicit use of this membership
function. Consider the problem:

g(x) → max (27.14)

subject to

μF (x, y) ≥ α,

u ≥ g(x),

x ∈ X, y ∈ Y ⊆ [0, 1].
(27.15)

Theorem 27.1 Assume that the T2FS F of feasible alternatives is normal w.r.t. sec-
ondary grades and (x∗, y∗) is an optimal solution to problem (27.14) and (27.15).
Then x∗ is an α-level non-dominated alternative.

Proof Suppose that (x∗, y∗) is the optimal solution to problem (27.14) and (27.15).
Denote y∗ = g(x∗). Then (x∗, u∗, y∗) is optimal solution to the problem:

y → max (27.16)

subject to

μF (x, y) ≥ α,

u ≥ g(x),

y = g(x),

x ∈ X, y, u ∈ Y ⊆ [0, 1].
(27.17)

We show the vector (x∗, u∗, y∗) is optimal solution to the problem:

y → max (27.18)
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subject to

maxu∈[0,1], u≥g(x) μF (x, u) ≥ α,

y = g(x),

x ∈ X, y, u ∈ Y ⊆ [0, 1].
(27.19)

Assume on the contrary that the vector (x∗, u∗, y∗) is not optimal solution to
problem (27.18) and (27.19). In view of constraints (27.19) hold, then ∃x̄ ∈ X,
∃ȳ, ū ∈ [0, 1] for which ȳ > y∗, μF (x, ū) ≥ α, ȳ = g(x̄), ū ≥ g(x̄). This
implies the vector (x̄, ū, x̄) satisfies to constraints (27.17) and has better value of
the objective function, than (x∗, u∗, y∗). This is a contradiction. Formula (27.4)
implies obvious inequality

μD(x, y) ≥ max
u∈[0,1], u≥y=g(x)

μF (x, u).

Whence optimal solution to the problem (27.18) and (27.19) (x∗, y∗) is optimal
solution to the problem:

y → max (27.20)

subject to

μD(x, u) ≥ α,

x ∈ X, y ∈ Y ⊆ [0, 1]. (27.21)

We consider fuzzy relation F̃ on X. According to the Lemma 27.1 F̃ be FPR
with membership function ηND(x∗) in the form (27.13). We intend to show that

ηND(x
∗) = 1 − max

x∈X { max
u,y∈Y, u≥y min{μD(x, u), μD(x∗, y)}−

max
u,y∈Y, u≥y min{μD(x∗, u), μD(x, y)}} ≥ α.

Assume on the contrary that there is x̃ ∈ X such that

maxu,y∈Y, u≥y min{μD(x̃, u), μD(x∗, y)}−
maxu,y∈Y, u≥y min{μD(x∗, u), μD(x̃, y)} ≥ 1 − α.

(27.22)

Claim 1 there exists a ỹ ∈ Y satisfying

μD(x̃, ỹ)} ≥ α. (27.23)
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Indeed, if this is not the case, then μD(x, y)} < α, ∀y ∈ Y and thereupon

max
y∈Y μD(x, y)} < α.

Claim 2 y∗ ≥ ỹ. Assume on the contrary that y∗ < ỹ. This inequality
together with (27.23) implies that the vector (x∗, y∗) is not the optimal solution
to problem (27.20) and (27.21), and we get a contradiction.

Combining pieces together yields

max
u,y∈Y, u≥y min{μD(x∗, u), μD(x̃, y)} ≥

min{μD(x∗, y∗), μD(x̃, ỹ)} ≥ min{α, α} = α.

Now formula (27.22) entails

max
u,y∈Y, u≥y min{μD(x∗, u), μD(x̃, y)} >

1 − α + max
u,y∈Y, u≥y min{μD(x∗, u), μD(x̃, y)} ≥ 1 − α + α = 1

which is a contradiction in view of μD(x, y)} ≤ 1 for ∀x ∈ X, ∀y ∈ Y .
The proof of Theorem 27.1 is complete.

27.5 Effective Maximizing Alternatives

It is easy to construct an example with nonlinear objective function in which
problem (27.14) and (27.15) has the set of optimal solutions (x∗, y∗) with the
same values of objective function g(x), but with different secondary grades of
membership μF (x

∗, y∗) ≥ α. In this case, it is sensible to select an alternative
which corresponds to the optimal solution to the following problem:

μF (x, y) → max (27.24)

subject to

g(x) ≥ g(x∗)
y ≥ g(x)

x ∈ X, y ∈ Y ⊆ [0, 1].
(27.25)

This observation leads to the following conclusion. When selecting a maxi-
mizing alternative one should try to take as large as possible both the objective
function (problem (27.14) and (27.15)) and the secondary grade (problem (27.24)
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and (27.25)). In other words, one should choose only those alternatives that are
called Pareto optimal in the two-criteria optimization problem:

g(x) → max,
μD(x, y) → max

(27.26)

subject to

y ≥ g(x)

x ∈ X, y ∈ Y ⊆ [0, 1]. (27.27)

Maximized in this problem are the objective function and the secondary grade of
membership to the T2FS F of feasible alternatives.

Recall that the vector (x, y), x ∈ X, y ∈ Y dominates the vector (x ′, y ′), x ′ ∈ X,
y ′ ∈ Y in two-criteria problem (27.26) and (27.27) (notation (x, y) 9 (x ′, y ′)) if
the inequalities g(x) ≥ g(x ′) and μF (x, y) ≥ μF (x

′, y ′) hold and at least one of
these is strict. This concept allows us to define the set of Pareto optimal solutions
to two-criteria problem. This observation leads to the following conclusion. When
selecting a maximizing alternative one should try to take as large as possible both
the objective function (27.26) and (27.27).

The vector (x∗, y∗) is called Pareto optimal solution to two-criteria prob-
lem (27.26) and (27.27) if there is no such vector (x, y), x ∈ X, y ∈ Y which
dominates (x∗, y∗). We denote the set of Pareto optimal solutions to problem (27.26)
and (27.27) by P = {(x∗, y∗) : �∃x ∈ X, �∃y ∈ Y (x, y) 9 (x∗, y∗)}.
Remark 27.2 Assume that the Pareto optimal solutions to problem (27.26)
and (27.27) exist. Sufficient conditions for this to hold are widely known. For
instance, μF (x, y) is continuous and X, Y are bicompacts, or μF (x, y) is arbitrary
and X, Y are finite sets.

We call x∗ ∈ X the effective maximizing alternative if there exists y∗ ∈ Y such
that the vector (x∗, y∗) is a Pareto optimal solution to problem (27.26) and (27.27),
that is, (x∗, y∗) ∈ P .

The properties of effective maximizing are partially investigated in the following
theorem.

Theorem 27.2 Assume that the T2FS F of feasible alternatives is normal w.r.t.
secondary grades and that the vector (x∗, y∗) is a Pareto optimal solution to
two-criteria optimization problem (27.26) and (27.27). Then x∗ is the effective
maximizing alternative which is also μF (x∗, y∗)-level non-dominated.

Proof Assume that (x∗, y∗) ∈ P . By definition, x∗ is then the effective maximizing
alternative. Setting α = μF (x

∗, y∗) we observe that α ∈ [0, 1]. Further, we
intend to show that the vector (x∗, y∗) is the optimal solution to problem (27.14)
and (27.15). It is obvious that system of constraints (27.15) is compatible. Assume
that system (27.15) has a feasible solution (x̃, ỹ) for which the inequalities g(x̃) ≥
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g(x∗) and μF (x̃, ỹ) > μD(x
∗, y∗) hold. Then (x̃, ỹ) 9 (x∗, y∗) and thereupon

(x∗, y∗) /∈ P by the definition of Pareto optimal solutions to problem (27.26)
and (27.27). We get a contradiction. Thus, the vector (x∗, y∗) is the optimal solution
to problem (27.14) and (27.15). It remains to note that according to Theorem 27.1
x∗ is the α-level non-dominated alternative for α = μF (x

∗, y∗).
The proof of Theorem 27.2 is complete.

Recall that Pareto optimal solutions are incomparable. Therefore, to select
an effective maximizing alternative x∗ ∈ X a decision-maker (DM) chooses
a compromise between the desire to obtain the largest possible values of both
the objective function g(x) and secondary membership degree μF (x∗, y). In this
situation the best values for one criterion lead to worse values for the other.

Let us now get back to Example 1. It is easy to verify that the set P of
Pareto optimal solutions to problem (27.26) and (27.27) contains only two vectors
(x ′, y ′) = (6; 0, 5) and (x ′′, y ′′) = (5, 25; 7/16) with the values μF (x ′, y ′) = 0, 5
and μF (x ′′, y ′′) = 1, respectively. They are incomparable because 0, 5 = g(x ′) >
g(x ′′) = 7/16 and 0, 5 = μF (x

′, y ′) < μF (x
′′, y ′′) = 1. Which effective

maximizing alternative does a DM select? There are two options: either x ′ = 6
with the values of the objective function g(x ′) = 0, 5 and secondary membership
degree μF (x ′, y ′) = 0, 5 or x ′′ = 5, 25 with g(x ′′) = 7/16 and μF (x ′′, y ′′) = 1.
The DM particular choice depends on what is more important for him/her: the value
of objective function or secondary degree of membership to the T2FS of feasible
alternatives.

The methods of multi-criteria (particularly, two-criteria) optimization are rather
effective, well understood, have been sufficiently well studied (two-criteria in
particular). These methods provide a variety of opportunities to extract information
from the DM about his/her preferences on the set of criteria (in this case this
is the preference between the objective function value and secondary degrees of
membership to the T2FS of feasible alternatives) and use this information to obtain
Pareto optimal solutions. Surveys of multi-objective optimization methods can be
found in Branke et al. [28], Sawaragi et al. [29] and Steuer [30].

27.6 Conclusion

The T2FSs are an extension of the classical fuzzy sets. The former can model greater
uncertainty than the latter. However, complexity of the theory of T2FSs and related
computations precludes the wide use of T2FS in practical applications. The present
article demonstrates that the Bellman-Zadeh approach can be successfully applied
to decision-making problems which are defined on T2FSs. There are known areas
of applications of mathematical programming problems in the case when different
types of uncertainty are present in the membership function of the fuzzy set feasible
alternatives. It is expected that the method developed in the present article will be
useful in these areas.
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Chapter 28
Using Wavelet Techniques to
Approximate the Subjacent Risk of Death

Generating Alternative Scenarios via Bootstrap

F. G. Morillas Jurado and I. Baeza Sampere

Abstract In Actuarial science, graduation techniques have been used extensively:
the large number of scientific papers and technical documentation published
evidences this fact (see Ayuso M et al. (Estadística Actuarial Vida. UBe, Barcelona
(2007)), Baeza Sampere and Morillas Jurado (Rev. Anales del Instituto de Actuarios
Españoles 135–164 (2011)), London (Graduation: The Revision of Estimates.
ACTEX Publications, Connecticut (1985)), Cairns, et al. (Scand Actuar J 2(3):79–
113 (2008)) and the references therein). Graduation techniques are defined by
Haberman and Renshaw J Inst Actuar 110:135–156 (1983) as a set of principles
and techniques for use that are used on raw data so that a more appropriate basis
is obtained to make inferences and calculations of premiums, reserves and other
variables of interest in the financial and insurance sector. Solvency II (Directive
2009/138/EC) is the regulatory framework used for risk management and for the
supervision of insurance companies. This normative is effective from 1/2016 and
it establishes the technical exigencies to be applied on some procedures such as
mathematical provisioning or pricing. Related to these procedures, this normative
introduces the concepts of best-estimate and margin-risk (see also CEIOPS: QIS5
Technical specifications. Technical Report. European Commissions-Internal market
and services DG (2010)). The purpose of the former is to approximate the expected
loss, and the latter to control the deviation from the best-estimate. In life actuarial
methodologies, the probabilities of death are used explicitly and so the estimation
of qx has a great impact on best-estimate. A widely recognized technique is
that of wavelet techniques which have been applied in several fields such as
engineering, digital processing of images, medicine, economy, finances, etc. (see
Mallat (A wavelet tour of signal processing. Elsevier, Oxford (2009)). In this paper,
we use wavelet techniques to achieve a good approximation of qx with the aim of

F. G. Morillas Jurado (�) · I. Baeza Sampere
Department of Applied Economy, University of Valencia, Valencia, Spain
e-mail: Francisco.Morillas@uv.es; Ismael.Baeza@uv.es

© Springer International Publishing AG, part of Springer Nature 2019
V. A. Sadovnichiy, M. Z. Zgurovsky (eds.), Modern Mathematics and Mechanics,
Understanding Complex Systems, https://doi.org/10.1007/978-3-319-96755-4_28

541

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96755-4_28&domain=pdf
mailto:Francisco.Morillas@uv.es
mailto:Ismael.Baeza@uv.es
https://doi.org/10.1007/978-3-319-96755-4_28


542 F. G. Morillas Jurado and I. Baeza Sampere

obtaining a good estimation of the best-estimate. Therefore, as we can deduce from
Standards IFRS 17 (view [16]), the knowledge of future scenarios is an important
key point. In this research, the best-estimate is obtained using a wavelet-based
graduation technique similar to Meneu et al. El Factor de Sostenibilidad: Diseños
alternativos y valoración financiero-actuarial de sus efectos sobre los parámetros
del sistema. Economía Española y Protección Social, V, 63–96 (2013). Then,
using resampling techniques over the deviations between the graduated values
and the observed values, we can obtain an approximation to the variability of the
estimation and go on to construct several series of alternative scenarios of death.
Complementarily, we note that the wavelet techniques present some problems when
the amount of data is small; for this reason, we countercheck the cases where we
have low-frequency series (as is usually the case in the context of Life Insurers).

28.1 Introduction

In recent times, the study of longevity has experienced a boom due to its application
in different fields of insurance and finance. Issues such as pensions, dependence,
longevity/survival in the public sphere or pricing/provisioning, design of new
products, insurance or finance (Solvency Directive) and impact on retirement plans
(public or private) in the insurance ambit have led to these studies being considered
socially relevant.

The instruments that summarize the study of survival or death are the life tables
or mortality tables. These tables collect information, such as the age of death, risk
of dying at age x, the number of persons who survive or die at each age or the
probability of dying between ages.

It is important to note that the value of the risk of death at a given age is
generally unknown and this fact has prompted a large number of studies in order
to estimate the underlying value at each age x. These death risks, or their estimates,
are necessary, for example, to calculate different policy premiums or to estimate the
Sustainability Factor used in public pension systems [21]. To do these estimations,
the technical specifications [4] and the standards IFRS [16] are used.

A way of simplifying the study of mortality is to consider that:

1. The biometric functions are continuous.
2. The underlying probabilities cannot be observed directly: we only can perceive

the true values plus random fluctuations and they are indistinguishable.
3. The rates have a structural behavior [1, 14].

These assumptions justify the extensive development of graduation techniques and
enable us to articulate the numerical method for the validation of proposed methods.

Haberman and Renshaw [13] define graduation as the principles and methods by
which a set of observed (or raw) probabilities are adjusted in order to provide a
smooth base that will allow us to make inferences and also practical calculations of
bonuses, reserves, etc. The reasons for graduating an initial sequence of estimates is
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based [18] on the fact that a sequence of initial values can often present abrupt
changes between adjacent ages in the same period or between the same age in
adjacent periods. These facts may be due to the concreteness of the random behavior
of mortality.

The subject of graduation has been covered widely in the literature which
describes a number of different types of graduation techniques, the main ones being
Parametric and non-Parametric. The parametric graduation adjusts the raw data to
a family of functions that depend on one or more parameters. In this context, the
accepted mortality laws are well-known, examples of which include: De Moivre
law; Gompertz laws [12]. These laws are applied only to adult ages and many of
them fail to properly represent the hump of accidents in adulthood. Often, the study
of mortality must be used over the whole age range (demographic previsions) and,
in this case, the Heligman and Pollard Model [14] is a recommended model. Other
types of techniques, such as splines graduation [10], are known as semiparametric.
The last group of techniques, non-parametric techniques, is characterized by
assuming non-functional forms for the behavior of the data. In this case, the
mortality rates are obtained by applying smoothing methods by combining adjacent
death rates (for example kernel graduation [1] and [5]). Some classical examples
can be found in ([3, 9] or [11]). Recently, a new wavelet graduation method (non-
parametric technique) was proposed in [2], and improved in [22].

In [22], authors propose a method based on the multiresolution wavelet decompo-
sition, combining it with thresholding and Piecewise Polynomial Harmonic (PPH)
techniques in order to obtain the graduation of the true risk of death values. In this
paper, we combine wavelet graduation with the bootstrap technique in order to solve
the limitations of information and to generate several alternative scenarios of death
when the true values are not known. We use the Heligman and Pollard law to validate
this technique.

The paper is structured as follows. Section 28.2 presents the biometric model.
Section 28.3 describes (briefly) the wavelet graduation approach used and intro-
duces some problems in its application. Also, this section describes the bootstrap
technique and how to combine it with the wavelet graduation. Section 28.4 presents
the measures used in the validation process and outlines an application to real data.
The paper ends with the conclusions section (Sect. 28.5).

28.2 The Biometric Model

The Biometric Model is a stochastic conceptual framework constructed around the
random variable Age at death, X and, in particular, around qx , the risk of death at
age x. The model used is sustained by the hypotheses that follow:

H1. The moment of death is independent for each person.
H2. The distribution probability function of the moment of death is the same for

different persons in the group studied.
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The H2 hypothesis suggests that the number of deaths at age x, dx , can be seen
as a random variable. It is modeled using a binomial law, dx~Bi(lx, qx), where lx
represents the number of persons exposed to risk (population of exact age x), and
qx is the above defined probability.

A priori, the probability qx is unknown and we can only observe the number
of deaths, dx and the exposed to risk, lx . From this, we can estimate the observed
rate of death, q̂x = dx/lx . This fact allows us to split q̂x into two parts: the real
probability of death, qx , plus a random fluctuation, fx , due to the random nature of
the phenomenon considered, giving us: q̂x = qx + fx . In Insurance and Finance
practice, it is usual to use the estimation of qx for several purposes; for example,
to calculate life expectancy and to determine premiums, quotes and age to pension
etc. So, the precision of the estimations is important. With the aim of reducing the
effect of the random fluctuations, graduation techniques are used; parametric or non-
parametric (see [2] and [19]).

In this paper, we consider observed data from different nature:

• Observed data of the real population, from INE (see [17])-for male and female,
and for ages between [0, 100], and

• Observed data generated synthetically, obtained using a numerical procedure
that evolves the H2 hypothesis (via dx~Bi(lx, qx)) and a survival model, the
Heligmann and Pollard law [14]:

qx

px
= A(x+B)C +De−E(ln(x)−ln(F ))2 +GHx .

A usual demographic interpretation of the model is made term by term and using
the representation in logarithmic scale of qx (view Fig. 28.1):

(1) The first term represents the adaptation to the environment. The parameter A
measures the infant mortality, B represents the probability of death in the first
year of life and C is an environmental adaptation factor.

(2) The second term deals with the Social hump or accidents hump. The parameter
D represents the intensity of the Social hump,E the amplitude of the hump and
F is the exact point (age) where the hump has a maximal intensity.

(3) Finally, the last term represents the natural longevity. G is interpreted as the
Mortality at older ages and H is a measure of the increment of mortality at
older ages.

We use the Heligman and Pollard model for several reasons: (a) it is valid for
the whole range of ages, (b) it has been applied successfully in other regions (Italy,
France, United States, United Kingdom, Spain. . . ) and at a different time (Australian
population of 1962), (c) its numerical implementation is simple.

Figure 28.2 shows similarities between values observed in different regions (Italy
2009 and France 2012) and the qualitative description made previously of the
Heligman and Pollard model of the three widely acknowledged parts: (1) adaptation
to the environment, (2) social or accidents hump and (3) natural longevity.
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Fig. 28.2 Observed mortality rates: Italy 2009 (left) and France 2012 (right). Data Source:
compiled by the authors using data from Human Mortality Data Base [15]

The Heligman and Pollard law is used in several steps of this research. Firstly,
we use it to find out true values of the probability of death at each age, and we
use these as reference values. Secondly, we use the reference values to generate
(several) synthetic experiences of death: these values have random fluctuations.
Thirdly, we graduate the synthetic experiences (applying the technique proposed)
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and we compare the graduated values with the reference values. The differences
obtained help us to validate the technique.

The numerical process, described below, is used to simulate the observed values.
This procedure is repeated as many times as necessary to generate the different
experiences required.

We start the process using theoretical probabilities of death given qx derived
from the Heligman and Pollard law (the reference values) and taking into account
an initial number of persons, l0 = 100.000. Follows:

• Given that dx follows a binomial distribution, thus: dx~Bi(lx, qx), we generate a
random number given by the distributionBi(l0, q0). This is the number of deaths
at age 0, d0, and we use it to estimate l1 = l0 − d0.

• We then generate a random number that follows a distribution Bi(l1, q1). We
obtain the number of deaths at age x = 1, d1, and we use it for the estimation of
l2 = l1 − d1.

• Iterating this process, we generate random numbers from a binomial law,
Bi(lx, qx), lx being the estimated number of survivors in the previous stage
lx = lx−1 − dx−1, and qx , the risk of death at the age considered (and derived
from the Heligman and Pollard law). In this way, we obtain dx and lx+1, the latter
is used for the next step as input of a new random number of the distribution
Bi(lx+1, qx+1).

• The process ends when we obtain the last value dω, ω being the age at which any
person can survive.

The fact that qx are known (synthetically via Heligman and Pollard law) enables us
to obtain several scenarios of mortality. So, each of these scenarios can be used to
apply the bootstrap method and then to construct/calculate several measures of the
risk assumed by the insurers or the stakeholders for the population analyzed. In this
research, we select, randomly, a unique scenario to apply the bootstrap method and
to validate the combination of the wavelet graduation and the re-sampling technique.

28.3 Wavelet Graduation

As we can see in the literature [19], a wavelet (a family of them) is a set of functions
that can be used to split a series of initial values into two parts with uniqueness:
tendency and details. If we apply this procedure again in the tendency parts, we
obtain a multiresolution analysis at different levels. It is known that if the values
of the series contain random fluctuations, these fluctuations are manifested in the
wavelet part. We can see these in Fig. 28.3.

So, to reduce the random fluctuations and recover the real values, we have to
treat the wavelet part. To do this, we introduce another step in the procedure before
the inverse transform. Specifically, we use a standard technique to treat the wavelet
part known as thresholding, μ-threshold method. Values of less than a particular
threshold Thr are converted to 0 (hard-thresholding). Then, we obtain other details
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(a modification of the initially obtained ones). From here, it is a simple step to
obtain the graduated values applying the inverse wavelet transform using the initial
scaling part jointly with the modified wavelet part. In the thresholding method, the
election of the threshold is a key point; [6] allows us to obtain the value 2σ

√
2 logN

as threshold. In this expression, σ is the standard deviation of the level 1 wavelet
part. The scheme (mental framework) of wavelet graduation can be seen in Fig. 28.4.
Here, via the thresholding technique and the inverse wavelet transform, it is possible
to obtain a pointwise estimation for each age x of the biometric function, qx .

28.3.1 Wavelet Graduation Problems

The wavelet graduation may have some drawbacks according to the information
available or the functional relationship of the data. In the biometric model for
younger ages (0–20 years), the mortality curve (logarithmic values) has a nonlinear
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relationship that complicates the analysis because there are not enough data to
recover its form. Other drawbacks are:

• The incorporation of symmetric information at the ends of the series introduces
noise by discontinuity.

• The problem of discontinuity reappears if we use a wavelet family with a big
support or if we make several scales of the process.

• An effect, similar to the Gibbs phenomenon, appears in the social hump
projection (Fig. 28.1). We can see values that are smaller (greater) than the
relative minimum (maximum) after (and before) the accident hump.

The Piecewise polynomial harmonic PPH interpolation used in [22] allows the
incorporation of additional data preserving the concavity (or convexity) of the
function to overcome the disadvantage of the limited information available. In
addition, this introduces no spurious oscillations and it avoids some undesirable
effects such as Gibbs phenomenon or noise by discontinuity. However, and by
simplicity, we do not use this PPH-wavelet technique; in this paper we consider
the usual wavelet transform. The results of the resampling method presented are
good enough.

28.3.2 Combining Bootstrap and Wavelet Graduation

The proposed method starts with the wavelet graduation of a biometric function,
qx . This initial biometric function could be this or an original series like the one
that can be seen in Fig. 28.5. First, the sequence of observed (or synthetic) values
is decomposed into scaling part and wavelet part using the wavelet transform.
Then, the modified wavelet part is obtained via the thresholding technique and
the graduated values (point estimate), q̇x , are obtained via the inverse wavelet
transform. These steps can be seen graphically in Fig. 28.6. Figure 28.7 The
top left panel shows the residuals (difference between the original details and
those obtained through thresholding) by age while the bottom left panel shows
its density distribution. It is clear that the magnitude of the residuals depends on
its corresponding age. This suggests that the residuals are not comparable; they
have a strong dependency on age. It is therefore not appropriate to apply the
resampling directly. To avoid this problem, the second step of this procedure is to
use a transformation of the residuals, in particular we propose the Pearson residuals,
[20]. The Pearson residuals are the initial residuals scaled by the estimated standard
deviation, via binomial law and the previous wavelet (and pointwise) graduation.
The Pearson residuals expression is:

rPearsonx = Exqx − Exq̇x√
Exq̇x(1 − q̇x)

.

Figure 28.7 shows the Pearson residuals (top right panel). Now that they are
comparable, it is not possible to associate the value of the residual to a particular
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age. Also, Fig. 28.7 (bottom right panel) shows the density function of the Pearson
residuals. We perform a goodness-of-fit to verify if the residuals have a Gaussian
distribution. The answer is affirmative with a p-value equal to 0.9658 in the
Kolmogorov-Smirnov test. From these considerations, it is appropriate to apply a
bootstrap technique (view [7] and [8]).
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In order to obtain several (a large quantity) bootstrap-sampled plausible (syn-
thetic) values of residuals, the third step is to apply the re-sampling method on the
Pearson residuals. The fourth step is to apply the Pearson inverse transformation in
order to obtain the random fluctuations in the same magnitude as the initial residuals.
Finally, the bootstrapping residuals are added to the point estimate obtained in the
first step by the wavelet graduation. This procedure generates an arbitrary number
of death scenario alternatives.

28.4 Validation and Applications

In this section, we describe the process and perform a first test verifying the integrity
of the process to check if it is robust. We also indicate the numerical features,
parameters and data used.

MatLab R2017b is the software used to do the estimations and to implement
the procedure. The synthetic (and true) values of mortality have been obtained
from the Heligman and Pollard law. The values of the parameters used can be
found in [14], the original work of Heligman and Pollard. This sequence of true
values is the input used to obtain an arbitrary number of sequences of the observed-
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synthetic experiences of death via the procedure described in Sect. 28.2. The number
of synthetic experiences obtained is 1000. Randomly selected, we focus on the
realization #498.

We graduate log(q#498
x ) using wavelet graduation with wavelet family Biorth3.3

and multiresolution scheme of level 3. This graduated series of values enables
us to estimate the residuals (with respect to q#498

x ) and to apply the Pearson
Transformation to them, obtaining the Pearson Residuals. Then, the Pearson
transformations are re-sampled without replacement; for each bootstrap series of
Pearson residuals, we apply the inverse Pearson transformation to each particular
age considered to obtain the bootstrap residuals. Finally, we use these series of B-
residuals to obtain the bootstrap series of death experiences.

Next, the B-series of death experiences are used to increase the information that
the observed data (in this case, realization #498) give us about the phenomenon
of the mortality. The bootstrap series allow us to obtain summaries of the death
experiences; for example, for each age we can obtain the B-mean value, the B-
standard deviation and a collection of B-quantiles. Here, the B-notation indicates
estimations from the Bootstrap series of qi=1,...,B

x . The number of bootstrap series
is the same as the initial realization from the Heligman and Pollard law, which is
B = 1000 (equal to the number of synthetic experiences).

Figure 28.8a shows the theoretical Heligman and Pollard law, an arbitrary
scenario derived from this (the number #498, randomly selected) and several (and
alternative) B-scenarios of death obtained graduating the logarithmic of #498 via
wavelet, and resampling the Pearson residuals. Figure 28.8b–d presents the his-
togram of all B-scenarios obtained at ages 12, 25 and 44 (ages from adaptation part,
social hump part and natural longevity part, respectively). The graphical information
must be completed using numerical measures to conclude if the procedure described
is appropriate.

Table 28.1 summarizes the comparison criteria considered for the validation of
the proposed procedure. Among these are (for ages 12, 25 and 44) the true values
derived from the Heligman and Pollard model, and the homologous bootstrap values
estimated from the bootstrap experiences of death using a unique realization, #498.
In particular, the following are considered: (1) the expectation and the variance and
(2) the α − quantiles, with α = 0.025 and α = 0.975. The comparison is made
verifying that the true values (from Heligman and Pollard law) and the estimated
values (using the bootstrap technique proposed) are very similar. We denote them
as HP-values and B-values.

Complementarily, theoretical bounds (upper and lower) are calculated using the
reference HP-values {qHPx } and {lx} and considering that dx~Bi(lx, qHPx ) which
can be approximated by N(lxqHPx ,

√
lxqHPx (1 − qHPx )- via a heuristic rule to apply

that the binomial law can be approximated by a normal law. Then, the α−quantile

of qx has the expression qHPx + zα

√
qHPx (1−qHPx )

lx
, where zα indicates the quantile

of order α from the normal distribution, N(0, 1). Figure 28.9 graphically shows the
graduated values, the quantiles of the considered order (upper and lower bounds),
and for the both cases, bootstrap quantiles (B-upper and B-lower bounds) and the
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HP-quantiles (HP-upper and HP-lower bounds) from Heligman & Pollard law, as
reference values; it illustrates what was highlighted in previous paragraph. We can
see how close they are to both intervals. The bootstrap interval is usually wider
except in a few cases, although hardly noticeable in the figure.

We use the next indicators or measures to compare the pointwise approxima-
tion:

1. Mean relative indicator by age x: MRIx(q) = |qx−q̂x |
qx

.

2. Mean squared relative indicator by age x: MSRIx(q) = |qx−q̂x |2
qx

.
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Table 28.1 Comparison criteria: summary

Age 12 Age 25 Age 44

HP-value 0, 000437123 0, 001558924 0, 004186888

Mean B-realizations 0, 000594550 0, 001846275 0, 004525413

Mean HP-realizations 0, 000311250 0, 001315326 0, 003648085

Variance B-realizations 0, 000591281 0, 001852038 0, 004676685

Variance HP-realizations 0, 000304618 0, 001306981 0, 003765890

Upper B-realizations bound 0, 000447843 0, 001569230 0, 004064932

(97.5% percentile)

Lower B-realizations bound 0, 000451087 0, 001591419 0, 004235235

(2.5% percentile)

Upper HP-realizations bound 5, 469243 ·10−9 1, 861573 ·10−8 5, 053358 ·10−8

(97.5% percentile)

Lower HP-realizations bound 5, 359965 ·10−9 2, 008833 ·10−8 5, 462567·10−8

(2.5% percentile)

Upper theoretical bound 0, 000568433 0, 001808512 0, 004603548

(97.5% percentile)

Lower theoretical bound 0, 000305813 0, 001309336 0, 003770228

(2.5% percentile)
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Fig. 28.9 HP-quantiles and B-quantiles. Source: compiled by the authors
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Table 28.2 Indicators of differences in interval bounds

MRIx (q) upperbound 0, 005529244 0, 003111714 0, 032346040

MRIx (q) lowerbound 0, 021771653 0, 006384491 0, 031281947

MSRIx(q) upperbound 1, 807696358·10−8 1, 793284626·10−8 4, 893057642·10−6

MSRIx(q) lowerbound 1, 443906219·10−7 5, 327482761·10−8 3, 685149757·10−6

Table 28.3 Aggregate
Indicators (considering all
ages)

MRI(q) MSRI(q)

Upper bound 0, 034214835 0, 543317049·10−3

Lower bound 0, 040460117 0, 596278098·10−3

In the above expressions, qx denotes the reference value, from Heligman and
Pollard law, and q̂x denotes an estimation obtained, in this case, via wavelet-
bootstrap technique.

Table 28.2 gives us a comparison of the differences between the bootstrap and
the theoretical bounds. This table shows differences less than 3, 1% in the sense of
the MRIx indicator. We observe that the value of the MRIx is depending of age, from
this, we note that for age 25, the differences are less than 0, 64%.

To compare the full sequence of the values we can generalize the indicators
previously used:

1. Mean relative indicator: MRI(q) = 1
ω+1

∑ω
x=0

|qx−q̂x |
qx

2. Mean squared relative indicator: MSRI(q) = 1
ω+1

∑ω
x=0

|qx−q̂x |2
qx

Table 28.3 gives us the values of the MRI and MSRI indicators. From these, we
observe that the value of MRI is less (for all age) than 4%. Then, we can conclude
that the bootstrap technique proposed can be valid and it increases the initial
information.

28.4.1 Application to Real Data

In this section, we show an application to real data. In particular, we consider the
observed values (real values) of the Spanish population (both genders) in the year
2015. The data are provided by INE [17]. We then apply the proposed technique
to estimate, firstly, the subjacent risk of the population by age and; secondly, the
bootstrap 95% (for example) confidence intervals (by quantiles) for these data and
for each age.

To obtain these intervals, five thousand bootstrap realizations are obtained after
discarding those that are impossible. For example, in the observed data we find that
the probability at age 4 is equal to 0.000060946 (similar values at range of ages
3-14). Considering that a B-residual can be negative, then it can provide a negative
value of the re-sampled probability, which would make this scenario impossible. It
should be noted that only 2.5% of B-realizations are discarded.
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bootstrap confidence interval and ensemble of B-realizations. Source: compiled by the authors
with data from INE

Figure 28.10 shows the bounds of bootstrap confidence intervals at 95% for
the Spanish population of 2015 along with some realizations, the real data and its
graduation.

28.5 Conclusions

Life tables (or mortality tables) are tools widely used in the study of mortality. These
summarize the experience of mortality observed in a region (and time period). It is
common for the death risks values {qx}, x = 0, . . . , ω (ω being the highest age
considered in the study) not to be known. But these values, or their estimates, are
necessary to calculate different policy premiums or to estimate the Sustainability
Factor used in public pension systems and other scenarios.

In this paper, we introduce a technique that uses wavelet transform to obtain
(1) a pointwise estimation of the true (and subjacent) probability of death and (2)
other alternative scenarios. In actuarial life methodologies, this estimation impacts
directly on the calculus of the best-estimate and can be used in the estimation of
the risk-margin. The pointwise estimation is obtained using a wavelet-graduation
technique (introduced in [2] and improvement in [22]). Thus, using re-sampling
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techniques over the deviations between the graduated values and the observed
values, we obtain several alternative scenarios. It is important to note that the
Pearson Transformation must be used in order to treat the direct residuals to reduce
the effect of the age; in other words, to reduce the heteroscedasticity of the observed
data.

To verify the integrity of the process and to check if it is robust, we apply it
to a random sequence (#498) obtained from the Heligman and Pollard law and,
using a biometric model, produce one thousand scenarios. From the comparative
measures, it has been possible to conclude that the data is close to the theoretical
function from which the random sequence comes. The results obtained comparing
the bootstrap quantiles and the quantiles obtained from the Heligman and Pollard
law (as reference values) verify that this methodology provides an appropriate
method for estimating the real and plausible scenarios.

As an application, we estimate the subjacent probability of death and we generate
five thousand bootstrap realizations (discarding those that are impossible) as alterna-
tive scenarios, for the actual Spanish population in 2015. From these scenarios, we
calculate bootstrap quantiles and then we estimate confidence intervals. It should
be noted that quantiles of any order can be calculated. So, this method increases
the information available to the analyst and it provides an interval estimate that can
be used as input in a different process (reloaded life tables); it also provides other
measures such as VAR (value-at-risk) that the Solvency directive requires. Although
we obtain the bootstrap confidence intervals to approximate the true-confidence
intervals, we do not need to know the real value of the risk of death nor the number
of survivors by age.
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