
Chapter 13
Link Analysis

13.1 Search Engine

A search engine is an application which takes as input a search query and returns a
list of relevant Webpages. Reference [3] explains in detail the general architecture
of a typical search engine as shown in Fig. 13.1.

Every engine requires a crawlermodule.A crawler is a small program that browses
the Web by following links. The crawlers are given a starting set of pages. They then
retrieve the URLs appearing in these pages and give it to the crawl control module.
The crawl control module determines what links to visit next, and feeds the links
to visit back to the crawler. The crawler also stores the retrieved pages in the page
repository.

The indexer module extracts all the words from each page, and records the URL
where each word occurred. The result is a very large “lookup table” that has URLs
mapped to the pages where a given word occurs. This index is the text index. The
indexermodule could also generate a structure index, which reflects the links between
pages. The collection analysis module is responsible for creating other kinds of
indexes, such as the utility index. Utility indexes may provide access to pages of a
given length, pages of a certain “importance”, or pages with some number of images
in them. The text and structure indexes may be used when creating utility indexes.
The crawl controller can change the crawling operation based on these indexes.

The query engine module receives and files search requests from users. For the
queries received by the query engine, the results may be too large to be directly
displayed to the user. The rankingmodule is therefore tasked with the responsibility
to sort the results.
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Fig. 13.1 Typical search engine architecture

13.1.1 Crawling

The crawler module starts with an initial set of URLs S0 which are initially kept
in a priority queue. From the queue, the crawler gets a URL, downloads the page,
extracts any URLs in the downloaded page, and puts the new URLs in the queue.
This process repeats until the crawl control module asks the crawler to stop.

13.1.1.1 Page Selection

Due to the sheer quantity of pages in the Web and limit in the available resources,
the crawl control program has to decide which pages to crawl, and which not to. The
“importance” of a page can be defined in one of the following ways:

1. Interest Driven: The important pages can be defined as those of “interest to”
the users. This could be defined in the following manner: given a query Q, the
importance of the page P is defined as the textual similarity between P and Q
[1]. This metric is referred to as I S(·).

2. Popularity Driven: Page importance depends on how “popular” a page is. Popu-
larity can be defined in terms of a page’s in-degree. However, a page’s popularity
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is the in-degree with respect to the entire Web. This can be denoted as I B(·). The
crawler may have to instead provide an estimate I B ′(·) with the in-degree from
the pages seen so far.

3. Location Driven: This importance measure is computed as a function of a page’s
location instead of its contents. Denoted as I L(·), if URL u leads to a page P ,
then I L(P) is a function of u.

Therefore, the importance of a page P can be defined as IC(P) = k1 I S(P) +
k2 I B(P) + k3 I L(P), for constants k1, k2, k3 and query Q.

Next, we will look at the performance of a crawler. The following ways may be
used to compute the performance:

1. Crawl and stop: Under this method, a crawler C starts at a page P0 and stops
after visiting K pages. Here, K denotes the number of pages that the crawler
can download in one crawl. At this point a perfect crawler would have visited
R1, . . . , RK , where R1 is the page with the highest importance value, R2 is the
next highest, and so on. These pages R1 through RK are called the hot pages. The
K pages visited by our real crawler will contain only M(≤ K ) pages with rank
higher than or equal to that of RK . We need to know the exact rank of all pages
in order to obtain the value M . The performance of the crawler C is computed
as PCS(C) = (M · 100)/K . Although the performance of the perfect crawler is
100%, a crawler that manages to visit pages at randomwould have a performance
of (K · 100)/T , where T is the total number of pages in the Web.

2. Crawl and stop with threshold: Assume that a crawler visits K pages. If we are
given an importance target G, then any page with importance target greater than
G is considered hot. If we take the total number of hot pages to be H , then the
performance of the crawler, PST (C), is the percentage of the H hot pages that
have been visited when the crawler stops. If K < H , then an ideal crawler will
have performance (K · 100)/H . If K ≥ H , then the ideal crawler has 100%
performance. A purely random crawler that revisits pages is expected to visit
(H/T )K hot pages when it stops. Thus, its performance is (k · 100)/T . Only if
the random crawler visits all T pages, is its performance expected to be 100%.

13.1.1.2 Page Refresh

Once the crawler has downloaded the “important” pages, these pages must be pe-
riodically refreshed to remain up-to-date. The following strategies can be used to
refresh the pages:

1. Uniform refresh policy: All pages are revisited at the same frequency f , regardless
of how often they change.

2. Proportional refresh policy: The crawler visits a page proportional to its change.
If λi is the change frequency of a page ei , and fi is the crawler’s revisit frequency
for ei , then the frequency ratio λi/ fi is the same for any i . Keep in mind that the
crawler needs to estimate λi ’s for each page, in order to implement this policy.
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This estimation can be based on the change history of a page that the crawler can
collect [9].

Reference [3] defines the “freshness” and “age” of a Webpage as follows:

1. Freshness: Let S = {e1, . . . , eN } be the collection of N pages. The freshness of
a local page ei at time t is as given in Eq.13.1

F(ei ; t) =
{
1 i f ei is up − to − date at time t

0 otherwise
(13.1)

Then the freshness of the local collection S at time t is as given in Eq.13.2.

F(S; t) = 1

N

N∑
i=1

F(ei ; t) (13.2)

Since the pages get refreshed over time, the time average of the freshness of page
ei , F(ei ), and the time average of the freshness of collection S, F(S), are defined
as in Eqs. 13.3 and 13.4.

F(ei ) = lim
t→∞

1

t

∫ t

0
F(ei ; t)dt (13.3)

F(S) = lim
t→∞

1

t

∫ t

0
F(S; t)dt (13.4)

2. Age: The age of the local page ei at time t is as given in Eq.13.5.

A(ei ; t) =
{
0 i f ei is up − to − date at time t

t − modi f ication time of ei otherwise
(13.5)

Then the age of the local collection S at time t is as given in Eq.13.6.

A(S; t) = 1

N

N∑
i=1

A(ei ; t) (13.6)

13.1.2 Storage

The storage repository of a search engine must perform two basic functions. First, it
must provide an interface for the crawler to store pages. Second, it must provide an
efficient access API that the indexer module and the collection analysis module can
use to retrieve pages.
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The issues a repositorymust deal with are as follows: First, it must be scalable, i.e,
it must be capable of being distributed across a cluster of systems. Second, it must be
capable of supporting both random access and streaming access equally efficiently.
Random access for quickly retrieving a specific Webpage, given the page’s unique
identifier to serve out cached copies to the end-user. Streaming access to receive
the entire collection as a stream of pages to provide pages in bulk for the indexer
and analysis module to process and analyse. Third, since the Web changes rapidly,
the repository needs to handle a high rate of modifications since pages have to be
refreshed periodically. Lastly, the repository must have a mechanism of detecting
and removing obsolete pages that have been removed from the Web.

A distributedWeb repository that is designed to function over a cluster of intercon-
nected storage nodesmust dealwith the following issues that affect the characteristics
and performance of the repository. A detailed explanation of these issues are found
in [15].

13.1.2.1 Page Distribution Policies

Pages can be assigned to nodes using a number of different policies. In a uniform
distribution policy, all nodes are treated identically, and a page can be assigned to any
of these nodes, independent of its identifier. Thus each node will store portions of the
collection proportionate to its storage capacity. On the other hand, a hash distribution
policy allocates pages to nodes depending on the page identifiers. A page identifier
would be hashed to yield a node identifier and the page would be allocated to the
corresponding node.

13.1.2.2 Physical Page Organization Methods

In essence, physical page organization at each node determines how well each node
supports page addition/insertion, high-speed streaming and random page access.

A hash-based organization treats a disk as a set of hash-buckets, each of which
is small enough to fit in memory. Pages are assigned to hash buckets depending on
their page identifier. For page additions, a log-structured organization may be used in
which the entire disk is treated as a large contiguous log to which incoming pages are
appended. Random access is supported using a separate B-tree index that maps page
identifiers to physical locations on disk. One can also devise a hybrid hashed-log
organization, where storage is divided into large sequential “extents”, as opposed to
buckets that fit inmemory. Pages are hashed into extents, and each extent is organized
like a log-structured file.

13.1.2.3 Update Strategies

The updates of the crawler can be structured in two ways:
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1. Batch-mode or steady crawler: A batch-mode crawler is periodically executed and
allowed to crawl for a certain amount of time or until a targeted set of pages have
been crawled, and then stopped. In contrast, a steady crawler runs continuously,
without pause, supplying updates and new pages to the repository.

2. Partial or complete crawls: A partial crawl recrawls only a specific set of pages,
while a complete crawl performs a total crawl of all the pages. This makes sense
only for a batch- mode crawler while a steady crawler cannot make such a dis-
tinction.

3. In-place update or shadowing: With in-place updates, pages received from the
crawl are directly integrated into the repository’s existing collection, probably re-
placing the older version.With shadowing, pages from a crawl are stored separate
from the existing collection and updates are applied in a separate step.

The advantage of shadowing is that the reading and updating tasks can be dele-
gated to two separate nodes thereby ensuring that a node does not have to con-
currently handle both page addition and retrieval. However, this is a two-edged
sword. While avoiding conflict by simplifying implementation and improving
performance, there is a delay between the time a page is retrieved by the crawler
and the time it is available for access.

13.1.3 Indexing

The indexer and the collection analysis modules are responsible for generating the
text, structure and the utility indexes. Here, we describe the indexes.

13.1.3.1 Structure Index

To build this index, the crawled content is modelled as a graph with nodes and edges.
This index helps search algorithms by providing neighbourhood information: For a
page P , retrieve the set of pages pointed to by P or the set of pages pointing to P ,
and sibling pages: Pages related to a given page P .

An inverted index over a collection of Webpages consists of a set of inverted lists,
one for each word. The inverted list for a term is a sorted collection of locations
(page identifier and the position of the term in the page) where the term appears in
the collection.

To make the inverted index scalable, there are two basic strategies for partitioning
the inverted index across a collection of nodes.

In the local inverted file (I FL ) organization [21], each node is responsible for a
disjoint subset of pages in the collection. A search query would be broadcast to all
nodes, each of which would return disjoint lists of page identifiers containing the
search terms.
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Global inverted file (I FG) organization [21] partitions on index terms so that each
query server stores inverted lists only for a subset of the terms in the collection.

Reference [19] describes important characteristics of the I FL strategy that make
this organization ideal for the Web search environment. Performance studies in [22]
indicate that I FL organization uses system resources effectively and provides good
query throughput in most cases.

13.1.3.2 Text Index

Traditional information retrieval methods using suffix arrays, inverted indices and
signature files, can be be used to generate these text index.

13.1.3.3 Utility Index

The number and type of utility indexes built by the collection analysis module de-
pends on the features of the query engine and the type of information used by the
ranking module.

13.1.4 Ranking

The query engine collects search terms from the user and retrieves pages that are
likely to be relevant. These pages cannot be returned to the user in this format and
must be ranked.

However, the problem of ranking is faced with the following issues. First, before
the task of ranking pages, onemust first retrieve the pages that are relevant to a search.
This information retrieval suffers from problems of synonymy (multiple terms that
more or less mean the same thing) and polysemy (multiple meanings of the same
term, so by the term “jaguar”, do you mean the animal, the automobile company, the
American football team, or the operating system).

Second, the time of retrieval plays a pivotal role. For instance, in the case of an
event such as a calamity, government and news sites will update their pages as and
when they receive information. The search engine not only has to retrieve the pages
repeatedly, but will have to re-rank the pages depending on which page currently has
the latest report.

Third, with every one capable of writing aWeb page, theWeb has an abundance of
information for any topic. For example, the term “social network analysis” returns a
search of around 56 million results. Now, the task is to rank these results in a manner
such that the most important ones appear first.
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13.1.4.1 HITS Algorithm

When you search for the term “msrit”, what makes www.msrit.edu a good answer?
The idea is that the page www.msrit.edu is not going to use the term “msrit” more
frequently or prominently than other pages. Therefore, there is nothing in the page
that makes it stand out in particular. Rather, it stands out because of features on other
Web pages: when a page is relevant to “msrit”, very often www.msrit.edu is among
the pages it links to.

One approach is to first retrieve a large collection of Web pages that are relevant
to the query “msrit” using traditional information retrieval. Then, these pages are
voted based on which page on the Web receives the greatest number of in-links from
pages that are relevant to msrit. In this manner, there will ultimately be a page that
will be ranked first.

Consider the search for the term “newspapers”. Unlike the case of “msrit”, the
position for a good answer for the term “newspapers” is not necessarily a single
answer. If we try the traditional information retrieval approach, then we will get a
set of pages variably pointing to several of the news sites.

Now we attempt to tackle the problem from another direction. Since finding the
best answer for a query is incumbent upon the retrieved pages, finding good retrieved
pages will automatically result in finding good answers. Figure 13.2 shows a set of
retrieved pages pointing to newspapers.

We observe from Fig. 13.2 that among the sites casting votes, a few of them voted
for many of the pages that received a lot of votes. Therefore, we could say that these
pages have a sense where the good answers are, and to score them highly as lists.
Thus, a page’s value as a list is equal to the sum of the votes received by all pages that
it voted for. Figure 13.3 depicts the result of applying this rule to the pages casting
votes.

If pages scoring well as lists are believed to actually have a better sense for where
the good results are, then we should weigh their votes more heavily. So, in particular,
we could tabulate the votes again, but this time giving each page’s vote a weight
equal to its value as a list. Figure 13.4 illustrates what happens when weights are
accounted for in the newspaper case.

This re-weighting can be done repeatedly.
The “good” answers that we were originally seeking for a query are called the

authorities for the query and the high-value lists are called the hubs for the query.
The goal here is to estimate a page p’s value as a potential authority and as a potential
hub. Therefore, each page p is assigned two numerical scores: auth(p) and hub(p).
Each of these initially starts out at 1.

Now, auth(p) and hub(p) are updated according to the Authority Update rule
andHub Update rule respectively. The authority update rule states that for each page
p, auth(p) is computed as the sum of the hub scores of all pages that point to it. The
hub update rule says that for each page p, hub(p) is the sum of the authority scores
of all pages that it points to.

www.msrit.edu
www.msrit.edu
www.msrit.edu
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Fig. 13.2 Counting in-links to pages for the query “newspapers”

By the principle of repeated improvement, we do the following:

1. Start with all hub and authority scores equal to 1.
2. Choose a number of steps k.
3. Perform a sequence of k hub-authority updates. Each update works as follows:

• Apply the Authority Update rule to the current set of scores.
• Apply the Hub Update rule to the resulting set of scores.

4. The resultant hub and authority scores may involve numbers that are very large
(as can be seen in Fig. 13.4). But we are concerned only with their relative size
and therefore they can be normalized: we divide down each authority score by
the sum of all authority scores, and divide down each hub score by the sum of all
hub scores. Figure 13.5 shows the normalized scores of Fig. 13.4.

This algorithm is commonly known as the HITS algorithm [16].
However, as k goes to infinity, the normalized values converge to a limit. Fig-

ure 13.6 depicts the limiting values for the “newspaper” query.
These limiting values correspond to a state of equilibrium where a page p’s

authority score is proportional to the hub scores of the pages that point to p, and p’s
hub score is proportional to the authority scores of the pages p points to.
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Fig. 13.3 Finding good lists for the query “newspapers”: each page’s value as a list is written as a
number inside it

When we intend to perform the spectral analysis of HITS algorithm, we will first
represent the network of n nodes as an adjacency matrix M . Although, it is not a very
efficient way to represent a large network (as studied in Chap.1), it is conceptually
useful for analysis.

The hub and authority scores are represented as vectors in n dimensions. The
vector of hub scores is denoted as h where the i th element represents the hub score
of node i . On similar lines, we denote the vector of authority scores as a. Thus, the
Hub Update rule can be represented by Eq.13.7 and therefore the Authority Update
rule can be represented by Eq.13.8.

h ← M · a (13.7)

a ← MT · h (13.8)

The k-step hub-authority computations for large values of k is be described below:
The initial authority and hub vectors are denoted as a[0] and h[0] each of which

are equal to unit vectors. Let a[k] and h[k] represent the vectors of authority and hub
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Fig. 13.4 Re-weighting votes for the query “newspapers”: each of the labelled page’s new score
is equal to the sum of the values of all lists that point to it

scores after k applications of the Authority and Hub Update Rules in order. This
gives us Eqs. 13.9 and 13.10.

a[1] = MTh[0] (13.9)

and

h[1] = Ma[1] = MMTh[0] (13.10)

In the next step, we get

a[2] = MTh[1] = MT MMTh[0] (13.11)

and

h[2] = Ma[2] = MMT MMTh[0] = (MMT )2h[0] (13.12)

For larger values of k, we have
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Fig. 13.5 Re-weighting votes after normalizing for the query “newspapers”

a[k] = (MT M)k−1MTh[0] (13.13)

and

h[k] = (MMT )kh[0] (13.14)

Now we will look at the convergence of this process.
Consider the constants c and d. If

h[k]

ck
= (MMT )kh[0]

ck
(13.15)

is going to converge to a limit h[∗], we expect that at the limit, the direction of h[∗]
shouldn’t change when it is multiplied by (MMT ), although its length might grow
by a factor of c, i.e, we expect that h∗ will satisfy the equation

(MMT )h[∗] = ch[∗] (13.16)



13.1 Search Engine 257

Fig. 13.6 Limiting hub and authority values for the query “newspapers”

This means that h[∗] is the eigenvector of thematrixMMT , with c a corresponding
eigenvalue.

Any symmetric matrix with n rows and n columns has a set of n eigenvectors that
are all unit vectors and all mutually orthogonal, i.e, they form a basis for the space
R

n .
Since MMT is symmetric, we get the n mutually orthogonal eigenvectors as

z1, . . . , zn , with corresponding eigenvalues c1, . . . , cn . Let |c1| ≥ |c2| ≥ · · · ≥
|cn|. Suppose that |c1| > |c2|, if we have to compute the matrix-vector product
(MMT )x for any vector x , we could first write x as a linear combination of the
vectors z1, . . . , zn , i.e, x = p1z1 + p2z2 + · · · + pnzn for coefficients p1, . . . , pn .
Thus

(MMT )x = (MMT )(p1z1 + p2z2 + · · · + pnzn)

= p1MMT z1 + p2MMT z2 + · · · + pnMMT zn
= p1c1z1 + p2c2z2 + · · · + pncnzn

(13.17)

k multiplications of MMT of the matrix-vector product will therefore give us
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(MMT )k x = ck1 p1z1 + ck2 p2z2 + · · · + ckn pnzn (13.18)

Applying Eq.13.18 to the vector of hub scores, we get h[k] = (MMT )h[0]. Since
h[0] is just a starting unit vector, it can be represented in terms of the basis vectors
z1, . . . , zn as some linear combination h[0] = q1z1 + q2z2 + · · · + qnzn . So,

h[k] = (MMT )kh[0] = ck1q1z1 + ck2q2z2 + · · · + cknqnzn (13.19)

Dividing both sides by ck1, we get

h[k]

ck1
= q1z1 +

(
c2
c1

)k

q2z2 + · · · +
(
cn
c1

)k

qnzn (13.20)

Since |c1| > |c2|, as k goes to infinity, every term on the right-hand side except
the first is going to 0. This means that the sequence of vectors h[k]

ck1
converges to the

limit q1z1 as k goes to infinity.
What would happen if we began the computation from some starting vector x ,

instead of the unit vector h[0]? If x is a positive vector expressed as x = p1z1 +· · ·+
pnzn for some coefficients p1, . . . , pn , and so (MMT )k x = ck1 p1z1 + · · · + ckn pnzn .
Then, h[k]

ck1
converges to p1z1. Thus, we converge to a vector in the direction of z1

even with this new starting vector.
Now we consider the case when the assumption |c1| > |c2| is relaxed. Let’s

say that there are l > 1 eigenvalues that are tied for the largest absolute value, i.e,
|c1| = · · · = |cl |, and then cl+1, . . . , cn , are all smaller in absolute value. With all the
eigenvalues in MMT being non-negative, we have c1 = · · · = cl > cl+1 ≥ · · · ≥
cn ≥ 0. This gives us

h[k]
ck1

= ck1q1z1 + · · · + cknqnzn

ck1
= q1z1+· · ·+ ql zl+

(
cl+1

cl

)k
ql+1zl+1+· · ·+

(
cn
c1

)k
qnzn

(13.21)

Terms l + 1 through n of this sum go to zero, and so the sequence converges to
q1z1 + · · · + ql zl . Thus, when c1 = c2, we still have convergence, but the limit to
which the sequence converges might now depend on the choice of the initial vector
h[0] (and particularly its inner product with each of z1, . . . , zl). In practice, with real
and sufficiently large hyperlink structures, one essentially always gets a matrix M
with the property that MMT has |c1| > |c2|.

This can be adapted directly to analyse the sequence of authority vectors. For the
authority vectors, we are looking at powers of (MT M), and so the basic result is that
the vector of authority scores will converge to an eigenvector of the matrix MT M
associated with its largest eigenvalue.
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Table 13.1 PageRank values of Fig. 13.7

Step A B C D E F G H

1 1/2 1/16 1/16 1/16 1/16 1/16 1/16 1/8

2 3/16 1/4 1/4 1/32 1/32 1/32 1/32 1/16

13.1.4.2 PageRank

PageRank [7] also works on the same principle as HITS algorithm. It starts with
simple voting based on in-links, and refines it using the Principle of Repeated Im-
provement.

PageRank can be thought of as a “fluid” that circulates through the network,
passing from node to node across edges, and pooling at the nodes that are most
important. It is computed as follows:

1. In a network with n nodes, all nodes are assigned the same initial PageRank, set
to be 1/n.

2. Choose a number of steps k.
3. Performa sequence of k updates to thePageRankvalues, using the followingBasic

PageRank Update rule for each update: Each page divides its current PageRank
equally across its out-going links, and passes these equal shares to the pages it
points to. If a page has no out-going links, it passes all its current PageRank to
itself. Each page updates its new PageRank to be the sum of the shares it receives.

This algorithm requires no normalization because the PageRank values are just
moved around with no chance of increase.

Figure 13.7 is an instance of a network with eight Webpages. All of these pages
start out with a PageRank of 1/8. Their PageRanks after the first two updates are as
tabulated in Table 13.1.

Similar to the HITS algorithm, the PageRank values converge to a limit as k goes
to infinity. Figure 13.8 depicts the equilibrium PageRank values.

There is a problem with the PageRank rule in this form. Consider the network in
Fig. 13.9, which is the same network as in Fig. 13.7 but with F and G pointing to one
another rather than pointing to A. This causes the PageRanks to converge to 1/2 for
F and G with 0 for all other nodes.

Thismeans that any network containing reciprocating linkswill have this clogging
of PageRanks at such nodes. To prevent such a situation, the PageRank rule is updated
by introducing a scaling factor s that should be strictly between 0 and 1. This gives
us the following Scaled PageRank Update rule. According to this rule, first apply
the Basic PageRank Update rule. Then scale down all PageRank values by a factor
of s, thereby shrinking the total PageRank from 1 to s. The residual 1 − s units of
PageRank are divided equally over all the nodes, giving (1 − s)/n to each.

This scaling factor makes the PageRank measure less sensitive to the addition or
deletion of small number of nodes or edges.
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Fig. 13.7 A collection of eight web pages

A survey of the PageRank algorithm and its developments can be found in [4].
We will first analyse the Basic PageRank Update rule and then move on to the

scaled version.Under the basic rule, each node takes its current PageRank and divides
it equally over all the nodes it points to. This suggests that the “flow” of PageRank
specified by the update rule can be naturally represented using a matrix N . Let Ni j

be the share of i’s PageRank that j should get in one update step. Ni j = 0 if i doesn’t
link to j , and when i links to j , then Ni j = 1/ li , where li is the number of links out
of i . (If i has no outgoing links, then we define Nii = 1, in keeping with the rule that
a node with no outgoing links passes all its PageRank to itself.)

If we represent the PageRank of all the nodes using a vector r , where ri is the
PageRank of node i . In this manner, the Basic PageRank Update rule is

r ← NT · r (13.22)

We can similarly represent the Scaled PageRank Update rule using the matrix N̂
to denote the different flow of PageRank. To account for the scaling, we define N̂i j

to be sNi j + (1 − s)/n, this gives the scaled update rule as

r ← N̂ T · r (13.23)
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Fig. 13.8 Equilibrium PageRank values for the network in Fig. 13.7

Starting from an initial PageRank vector r [0], a sequence of vectors r [1], r [2], . . .
are obtained from repeated improvement by multiplying the previous vector by N̂ T .
This gives us

r [k] = (N̂ T )kr [0] (13.24)

This means that if the Scaled PageRank Update rule converges to a limiting vector
r [∗], this limit would satisfy N̂ T r [∗] = r [∗]. This is proved using Perron’s Theorem
[18].

Reference [2] describes axioms that are satisfied by the PageRank algorithm, and
that any page ranking algorithm that satisfies these must coincide with the PageRank
algorithm.

13.1.4.3 Random Walk

Consider the situation where one randomly starts browsing a network of Webpages.
They start at a random page and pick each successive page with equal probability.
The links are followed for a sequence of k steps: in each step, a random out-going
link from the current page is picked. (If the current page has no out-going links, they
just stay where they are.)
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Fig. 13.9 The same collection of eight pages, but F and G have changed their links to point to
each other instead of to A. Without a smoothing effect, all the PageRank would go to F and G

Remark 1 Taking a random walk in this situation, the probability of being at a page
X after k steps of this randomwalk is precisely the PageRank of X after k applications
of the Basic PageRank Update rule.

Proof If b1, b2, . . . , bn denote the probabilities of thewalk being at nodes 1, 2, . . . , n
respectively in a given step, then the probability it will be at node i in the next step
is computed as follows:

1. For each node j that links to i , if we are given that the walk is currently at node
j , then there is a 1/ l j chance that it moves from j to i in the next step, where l j
is the number of links out of j .

2. The walk has to actually be at node j for this to happen, so node j contributes
b j (1/ l j ) = b j/ l j to the probability of being at i in the next step.

3. Therefore, summing b j/ l j over all nodes j that link to i gives the probability the
walk is at bi in the next step.

So the overall probability that the walk is at i in the next step is the sum of b j/ l j
over all nodes that link to i .
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If we represent the probabilities of being at different nodes using a vector b, where
the coordinate bi is the probability of being at node i , then this update rule can be
written using matrix-vector multiplication as

b ← NT · b (13.25)

This is exactly the same as Eq.13.22. Since both PageRank values and random-
walk probabilities start out the same (they are initially 1/n for all nodes), and they
then evolve according to exactly the same rule, so they remain same forever. This
justifies the claim.

Remark 2 The probability of being at a page X after k steps of the scaled random
walk is precisely the PageRank of X after k applications of the Scaled PageRank
Update Rule.

Proof We go by the same lines as the proof of Remark1. If b1, b2, . . . , bn denote
the probabilities of the walk being at nodes 1, 2, . . . , n respectively in a given step,
then the probability it will be at node i in the next step, is the sum of sb j/ l j , over all
nodes j that link to i , plus (1 − s)/n. If we use the matrix N̂ , then we can write the
probability update as

b ← N̂ T b (13.26)

This is the same as the update rule from Eq.13.23 for the scaled PageRank values.
The random-walk probabilities and the scaled PageRank values start at the same
initial values, and then evolve according to the same update, so they remain the same
forever. This justifies the argument.

Aproblemwith both PageRank andHITS is topic drift. Because they give the same
weights to all edges, the pages with the most in-links in the network being considered
tend to dominate, whether or not they are most relevant to the query. References
[8] and [5] propose heuristic methods for differently weighting links. Reference
[20] biased PageRank towards pages containing a specific word, and [14] proposed
applying an optimized version of PageRank to the subset of pages containing the
query terms.

13.1.4.4 SALSA Algorithm

Reference [17] proposed the SALSA algorithm which starts with a “Root Set” short
list ofWebpages relevant to the given query retrieved from a text-based search engine.
This root set is augmented by pageswhich link to pages in theRoot Set, and also pages
which are linked to pages in the Root Set, to obtain a larger “Base Set” of Webpages.
Perform a random walk on this base set by alternately (a) going uniformly to one of
the pages which links to the current page, and (b) going uniformly to one of the pages
linked to by the current page. The authority weights are defined to be the stationary
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distribution of the two-step chain first doing (a) and then (b), while the hub weights
are defined to be the stationary distribution of the two-step chain first doing (b) and
then (a).

Formally, let B(i) = {k : k → i} denote the set of all nodes that point to i , i.e, the
nodes we can reach from i by following a link backwards, and let F(i) = {k : i → k}
denote the set of all nodes that we can reach from i by following a forward link. The
Markov Chain for the authorities has transition probabilities

Pa(i, j) =
∑

k:k∈B(i)∩B( j)

1

|B(i)|
1

|F(k)| (13.27)

If theMarkov chain is irreducible, then the stationary distributiona = (a1, a2, . . . ,
aN ) of the Markov chain satisfies ai = |B(i)|/|B|, where B = ⋃

i B(i) is the set of
all backward links.

Similarly, the Markov chain for the hubs has transition probabilities

Ph(i, j) =
∑

k:k∈F(i)∩F( j)

1

|F(i)|
1

|B(k)| (13.28)

and the stationary distribution h = (h1, h2, . . . , hN ) of the Markov chain satisfies
hi = |F(i)|/|F |, where F = ⋃

i F(i) is the set of all forward links.
In the special case of a single component, SALSA can be viewed as a one-step

truncated version of HITS algorithm, i.e, in the first iteration of HITS algorithm, if
we perform the Authority Update rule first, the authority weights are set to a = AT u,
where u is the vector of all ones. Ifwe normalize in the L1 norm, thenai = |B(i)|/|B|,
which is the stationary distribution of the SALSA algorithm. A similar observation
can be made for the hub weights.

If the underlying graph of the Base Set consists of more than one component, then
the SALSA algorithm selects a starting point uniformly at random, and performs a
random walk within the connected component that contains that node. Formally, let
j be a component that contains node i , let N j denote the number of nodes in the
component, and Bj the set of (backward) links in component j . Then, the authority
weight of node i is

ai = N j

N

|B(i)|
|Bj | (13.29)

A simplified version of the SALSA algorithm where the authority weight of a
node is the ratio |B(i)|/|B|, corresponds to the case that the starting point for the
random walk is chosen with probability proportional to its in-degree. This variation
of the SALSA algorithm is commonly referred to as pSALSA.
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13.1.4.5 PHITS Algorithm

Reference [10] proposed a statistical hubs and authorities algorithm called PHITS
algorithm. A probabilistic model was proposed in which a citation c of a document d
is caused by a latent “factor” or “topic”, z. It is postulated that there are conditional
distributions P(c|z) of a citation c given a factor z, and also conditional distributions
P(z|d) of a factor z given a document d. In terms of these conditional distributions,
they produce a likelihood function.

The EM Algorithm of [11] to assign the unknown conditional probabilities so
as to maximize this likelihood function L, best explained the proposed data. Their
algorithm requires specifying in advance the number of factors z to be considered.
Furthermore, it is possible that the EMalgorithm could get stuck in a local maximum,
without converging to the true global maximum.

13.1.4.6 Breadth First Algorithm: A Normalized n-step Variant

Reference [6] proposed a BFS algorithm, as a generalization of the pSALSA al-
gorithm, and a restriction of the HITS algorithm. The BFS algorithm extends the
idea of in-degree that appears in pSALSA from a one link neighbourhood to a n-
link neighbourhood. Here, we introduce the following notations. If we follow a link
backwards, then we call this a B path, and if we follow a link forwards, we call it a
F path. So, a BF path is a path that first follows a link backwards, and then a link
forward. (BF)n(i, j) denotes the set of (BF)n paths that go from i to j , (BF)n(i)
the set of (BF)n paths that leave node i , and (BF)n the set of all possible (BF)n

paths. Similar sets can be defined for the (FB)n paths.
In this algorithm, instead of considering the number of (BF)n paths that leave i ,

it considers the number of (BF)n neighbours of node i . The contribution of node j
to the weight of node i depends on the distance of the node j from i . By adopting an
exponentially decreasing weighting scheme, the weight of node i is determined as:

ai = 2n−1|B(i)| + 2n−2|BF(i)| + 2n−3|BFB(i)| + · · · + |(BF)n(i)| (13.30)

The algorithm starts from node i , and visits its neighbours in BFS order. At each
iteration it takes a Backward or a Forward step (depending on whether it is an odd,
or an even iteration), and it includes the new nodes it encounters. The weight factors
are updated accordingly. Note that each node is considered only once, when it is first
encountered by the algorithm.

13.1.4.7 Bayesian Algorithm

Reference [6] also proposed a fully Bayesian statistical approach to authorities and
hubs. If there are M hubs and N authorities, we suppose that each hub i has a
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real parameter ei , corresponding to its tendency to have hypertext links, and also a
non-negative parameter hi , corresponding to its tendency to have intelligent hyper-
text links to authoritative sites. Each authority j has a non-negative parameter a j ,
corresponding to its level of authority.

The statistical model is as follows. The a priori probability of a link from hub i
to authority j is given by

P(i → j) = exp(a jhi + ei )

1 + exp(a jhi + ei )
(13.31)

with the probability of no link from i to j given by

P(i �→ j) = 1

1 + exp(a jhi + ei )
(13.32)

This states that a link is more likely if ei is large (in which case hub i has large
tendency to link to any site), or if both hi and a j are large (in which case i is an
intelligent hub, and j is a high-quality authority).

We must now assign prior distributions to the 2M + N unknown parameters ei ,
hi , and a j . To do this, we letμ = −5.0 and σ = 0.1 be fixed parameters, and let each
ei have prior distribution N (μ, σ 2), a normal distribution with mean μ and variance
σ 2. We further let each hi and a j have prior distribution exp(1), meaning that for
x ≥ 0, P(hi ≥ x) = P(a j ≥ x) = exp(−x). The Bayesian inference method then
proceeds from this fully-specified statistical model, by conditioning on the observed
data, which in this case is the matrix A of actual observed hypertext links in the Base
Set. Specifically, when we condition on the data A we obtain a posterior density∏ : R2M+N → [0,∞) for the parameters (e1, . . . , eM , h1, . . . , hM , a1, . . . , aN ).
This density is defined so that

P((e1, . . . , eM , h1, . . . , hM , a1, . . . , aN ) ∈ S|{Ai j })
=

∫
S
π(e1, . . . , eM , h1, . . . , hM , a1, . . . , aN )

de1 . . . deMdh1 . . . dhMda1 . . . daN

(13.33)

for any measurable subset S ⊆ R2M+N , and also

E(g(e1, . . . , eM , h1, . . . , hM , a1, . . . , aN )|{Ai j })
=

∫
R2M+N

g(e1, . . . , eM , h1, . . . , hM , a1, . . . , aN )

π(e1, . . . , eM , h1, . . . , hM , a1, . . . , aN )

de1 . . . deMdh1 . . . dhMda1 . . . daN

(13.34)

for any measurable function g : R2M+N → R.
The posterior density for the model is given up to a multiplicative constant, by
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π(e1, . . . , eM , h1, . . . , hM , a1, . . . , aN ) ∝
M−1∏
i=0

exp(−hi )exp[−(ei − μ)2/(2σ 2)]

×
N−1∏
j=0

exp(−a j ) ×
∏

(i, j):Ai j=1

exp(a jhi + ei )/
∏
all i, j

(1 + exp(a jhi + ei ))

(13.35)
The Bayesian algorithm then reports the conditional means of the 2M + N pa-

rameters, according to the posterior density π , i.e, it reports final values â j , ĥi , and
êi , where, for example

â j =
∫
R2M+N

a jπ(e1, . . . , eM , h1, . . . , hM , a1, . . . , aN )

de1 . . . deMdh1 . . . dhMda1 . . . daN

(13.36)

A Metropolis algorithm is used to compute these conditional means.
This algorithm can be further simplified by replacing Eq.13.31 with P(i → j) =

(a jhi )/(1 + a jhi ) and replacing Eq.13.32 with P(i �→ j) = 1/(1 + a jhi ). This
eliminates the parameters ei entirely, so that prior values μ and σ are no longer
needed. This leads to the posterior density π(·), now given by π : RM+N → R≥0

where

π(h1, . . . , hM , a1, . . . , aN ) ∝
M−1∏
i=0

exp(−hi ) ×
N−1∏
j=0

exp(−a j ) ×
∏

(i, j):Ai j=1

a jhi

/
∏
all i, j

(1 + a jhi )

(13.37)
Comparison of these algorithms can be found in [6].

13.2 Google

Reference [7] describes Google, a prototype of a large-scale search engine which
makes use of the structure present in hypertext. This prototype forms the base of the
Google search engine we know today.

Figure 13.10 illustrates a high level view of how the whole system works. The
paper states that most of Google was implemented in C or C++ for efficiency and
was available to be run on either Solaris or Linux.

The URL Server plays the role of the crawl control module here by sending the
list of URLs to be fetched by the crawlers. The Store Server receives the fetched
pages and compresses them before storing it in the repository. Every Webpage has
an associated ID number called a docID which is assigned whenever a new URL is
parsed out of aWebpage. The Indexermodule reads the repository, uncompresses the
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Fig. 13.10 High level Google architecture

documents and parses them. Each of these documents is converted to a set of word
occurrences called hits. The hit record theword, position in document, approximation
of the font size and capitalization. These hits are then distributed into a set of Barrels,
creating a partially sorted forward index. The indexer also parses out all the links in
every Webpage and stores important information about them in anchor files placed
in Anchors. These anchor files contain enough information to determine where each
link points from and to, and the text of the link.

The URL Resolver reads these anchor files and converts relative URLs into abso-
lute URLs and in turn into docIDs. These anchor texts are put into the forward index,
associated with the docID that the anchor points to. It also generates a database of
links which are pairs of docIDs. The Links database is used to compute PageRanks
for all the documents. The Sorter takes the barrels, which are sorted by docID, and
resorts them by wordID to generate the inverted index. The sorter also produces a
list of wordIDs and offsets into the inverted index. A program called DumpLexicon
takes this list together with the lexicon produced by the indexer and generates a new
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lexicon to be used by the searcher. The Searcher is run by a Web server and uses the
lexicon built by DumpLexicon together with the inverted index and the PageRanks
to answer queries.

13.2.1 Data Structures

Almost all of the data is stored inBigFileswhich are virtual files that can spanmultiple
file systems and support compression. The raw HTML repository uses roughly half
of the necessary storage. It consists of concatenation of the compressed HTML of
every page, preceded by a small header. TheDocIndex keeps information about each
document. The DocIndex is a fixed width Index Sequential Access Mode (ISAM)
index, ordered by docID. The information stored in each entry includes the current
document status, a pointer into the repository, a document checksum, and various
statistics. Variable width information such as URL and title is kept in a separate file.
There is also an auxiliary index to convert URLs into docIDs. The lexicon has several
different forms for different operations. They all are memory-based hash tables with
varying values attached to each word.

Hit lists account for most of the space used in both the forward and the inverted
indices. Because of this, it is important to represent them as efficiently as possible.
Therefore, a hand optimized compact encoding is used which uses two bytes for
every hit. To save space, the length of the hit list is stored before the hits and is
combined with the wordID in the forward index and the docID in the inverted index.

The forward index is actually already partially sorted. It is stored in a number
of barrels. Each barrel holds a range of wordIDs. If a document contains words
that fall into a particular barrel, the docID is recorded into the barrel, followed by a
list of wordIDs with hitlists which correspond to those words. This scheme requires
slightlymore storage because of duplicated docIDs but the difference is very small for
a reasonable number of buckets and saves considerable time and coding complexity
in the final indexing phase done by the sorter. The inverted index consists of the same
barrels as the forward index. Except that they have been processed by the sorter. For
every valid wordID, the lexicon contains a pointer into the barrel that wordID falls
into. It points to a list of docIDs together with their corresponding hit lists. This list
is called a doclist and represents all the occurrences of that word in all documents.

An important issue is in what order the docIDs should appear in the doclist. One
simple solution is to store them sorted by docID. This allows for quick merging of
different doclists for multiple word queries. Another option is to store them sorted
by a ranking of the occurrence of the word in each document. This makes answer-
ing one word queries trivial and makes it likely that the answers to multiple word
queries are near the start. However, merging is much more difficult. Also, this makes
development much more difficult in that a change to the ranking function requires a
rebuild of the index. A compromise between these options was chosen, keeping two
sets of inverted barrels - one set for hit lists which include title or anchor hits and
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another set for all hit lists. This way, we check the first set of barrels first and if there
are not enough matches within those barrels we check the larger ones.

13.2.2 Crawling

Crawling is the most fragile application since it involves interacting with hundreds of
thousands of Web servers and various name servers which are all beyond the control
of the system. In order to scale to hundreds ofmillions ofWebpages, Google has a fast
distributed crawling system. A single URLserver serves lists of URLs to a number of
crawlers. Both the URLserver and the crawlers were implemented in Python. Each
crawler keeps roughly 300 connections open at once. This is necessary to retrieve
Web pages at a fast enough pace. At peak speeds, the system can crawl over 100Web
pages per second using four crawlers. A major performance stress is DNS lookup so
each crawler maintains a DNS cache. Each of the hundreds of connections can be in
a number of different states: looking up DNS, connecting to host, sending request.
and receiving response. These factors make the crawler a complex component of the
system. It uses asynchronous IO to manage events, and a number of queues to move
page fetches from state to state.

13.2.3 Searching

Every hitlist includes position, font, and capitalization information. Additionally, hits
from anchor text and the PageRank of the document are factored in. Combining all
of this information into a rank is difficult. The ranking function so that no one factor
can have too much influence. For every matching document we compute counts of
hits of different types at different proximity levels. These counts are then run through
a series of lookup tables and eventually are transformed into a rank. This process
involves many tunable parameters.

13.3 Web Spam Pages

Web spam pages are notorious for using techniques to achieve higher-than-deserved
rankings in a search engine’s results. Reference [12] proposed a technique to semi-
automatically separate reputable pages from spam. First, a small set of seed pages
are evaluated to be good by a human expert. Once these reputable seed pages have
been identified, the link structure of the Web is used to discover other pages that are
likely to be good.

Humans can easily identify spam pages and a number of search engine companies
have been known to recruit people who have expertise in identifying spam, and
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regularly scan the Web looking for such pages. However, this is an expensive and
time-consuming process but nevertheless has to be done in order to ensure the quality
of the search engine’s result.

The algorithm first selects a small seed set of pages whose spam status needs to
be determined by a human. Using this, the algorithm identifies other pages that are
likely to be good based on their connectivity with the good seed pages.

The human checking of a page for spam is formalized as a oracle function O over
all pages p ∈ V

O(p) =
{
0 i f p is bad

1 i f p is good
(13.38)

Since oracle evaluations over all pages is an expensive ordeal, this is avoided by
asking the human to assign oracle values for just a few of the pages.

To evaluate pages without relying on O , the likelihood that a given page p is good
is estimated using a trust function T which yields the probability that a page is good,
i.e, T (p) = P[O(p) = 1].

Although it would be difficult to come up with a function T , such a function
would be useful in ordering results. These functions could be defined in terms of the
following properties. We first look at the ordered trust property

T (p) < T (q) ⇔ P[O(p) = 1] < P[O(q) = 1]
T (p) = T (q) ⇔ P[O(p) = 1] = P[O(q) = 1] (13.39)

By introducing a threshold value δ, we define the threshold trust property as

T (p) > δ ⇔ O(p) = 1 (13.40)

A binary function I (T, O, p, q) to signal if the ordered trust property has been
violated.

I (T, O, p, q) =

⎧⎪⎨
⎪⎩
1 i f T (p) ≥ T (q) and O(p) < O(q)

1 i f T (p) ≤ T (q) and O(p) > O(q)

0 otherwise

(13.41)

We now define a set of P of ordered pairs of pages (p, q), p �= q, and come up
with the pairwise orderedness function that computes the fraction of pairs for which
T did not make a mistake

pairord(T, O,P) =
|P| − ∑

(p,q)∈P
I (T, O, p, q)

|P| (13.42)

If pairord equals 1, there are no cases when misrated a pair. In contrast, if
pairord equals 0, then T misrated all the pairs.
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We now proceed to define the trust functions. Given a budget L of O-invocations,
we select at random a seed set S of L pages and call the oracle on its elements. The
subset of good and bad seed pages are denoted as S+ and S−, respectively. Since the
remaining pages are not checked by human expert, these are assigned a trust score of
1/2 to signal our lack of information. Therefore, this scheme is called the ignorant
trust function T0 defined for any p ∈ V as

T0(p) =
{
O(p) i f p ∈ S
1/2 otherwise

(13.43)

Now we attempt to compute the trust scores, by taking advantage of the approx-
imate isolation of good pages. We will select at random the set S of L pages that
we invoke the oracle on. Then, expecting that good pages point to other good pages
only, we assign a score of 1 to all pages that are reachable from a page in S+ in M
or fewer steps. The M-step trust function is defined as

TM(p) =

⎧⎪⎨
⎪⎩
O(p) i f p ∈ S
1 i f p /∈ S and ∃q ∈ S+ : q �M p

1/2 otherwise

(13.44)

where q �M p denotes the existence of a path of maximum length of M from page
q to page p. However, such a path must not include bad seeds.

To reduce trust as we move further away from the good seed pages, there are two
possible schemes. The first is called the trust dampening. If a page is one link away
from a good seed page, it is assigned a dampened trust score of β. A page that can
reach another page with score β, gets a dampened score of β · β.

The second technique is called trust splitting. Here, the trust gets split if it prop-
agates to other pages. If a page p has a trust score of T (p) and it points to ω(p)
pages, each of the ω(p) pages will receive a score fraction T (p)/ω(p) from p. In
this case, the actual score of a page will be the sum of the score fractions received
through its in-links.

The next task is to identify pages that are desirable for the seed set. By desirable,
we mean pages that will be the most useful in identifying additional good pages.
However, we must ensure that the size of the seed set is reasonably small to limit the
number of oracle invocations. There are two strategies for accomplishing this task.

The first technique is based on the idea that since trust flows out of the good
seed pages, we give preference to pages from which we can reach many other pages.
Building on this, we see that seed set can be built from those pages that point to
many pages that in turn point to many pages and so on. This approach is the inverse
of the PageRank algorithm because the PageRank ranks pages based on its in-degree
while here it is based in the out-degree. This gives the technique the name inverted
PageRank. However, this method is a double-edged sword. While it does not guar-
antee maximum coverage, its execution time is polynomial in the number of pages.
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The other technique is to take pages with high PageRank as the seed set, since
high-PageRank pages are likely to point to other high- PageRank pages.

Piecing all of these elements together gives us the TrustRank algorithm. The
algorithm takes as input the graph. At the first step, it identifies the seed set. The
pages in the set are re-ordered in decreasing order of their desirability score. Then,
the oracle function is invoked on the L most desirable seed pages. The entries of
the static score distribution vector d that correspond to good seed pages are set to
1. After normalizing the vector d so that its entries sum to 1, the TrustRank scores
are evaluated using a biased PageRank computation with d replacing the uniform
distribution.

Reference [13] complements [12] by proposing a novel method for identifying the
largest spam farms. A spam farm is a group of interconnected nodes involved in link
spamming. It has a single target node, whose ranking the spammer intends to boost
by creating the whole structure. A farm also contains boosting nodes, controlled
by the spammer and connected so that they would influence the PageRank of the
target. Boosting nodes are owned either by the author of the target, or by some other
spammer. Commonly, boosting nodes have little value by themselves; they only exist
to improve the ranking of the target. Their PageRank tends to be small, so serious
spammers employ a large number of boosting nodes (thousands of them) to trigger
high target ranking.

In addition to the links within the farm, spammers may gather some external
links from reputable nodes. While the author of a reputable node y is not voluntarily
involved in spamming, “stray” links may exist for a number of reasons. A spammer
may manage to post a comment that includes a spam link in a reputable blog. Or a
honey pot may be created, a spam page that offers valuable information, but behind
the scenes is still part of the farm.Unassuming usersmight then point to the honey pot,
without realizing that their link is harvested for spamming purposes. The spammer
may purchase domain names that recently expired but had previously been reputable
and popular. This way he/she can profit of the old links that are still out there.

A term called spammass is introducedwhich is ameasure of howmuch PageRank
a page accumulates through being linked to by spam pages. The idea is that the target
pages of spam farms, whose PageRank is boosted by many spam pages, are expected
to have a large spam mass. At the same time, popular reputable pages, which have
high PageRank because other reputable pages point to them, have a small spammass.

In order to compute this spam mass, we partition the Web into a set of reputable
node V+ and a set of spam nodes V−, with V+ ∪V− = V and V+ ∩V− = φ. Given
this partitioning, the goal is to detect web nodes x that gain most of their PageRank
through spam nodes in V− that link to them. Such nodes x are called spam farm
target nodes.

A simple approachwould be that, given a node x , we look only at its immediate in-
neighbours. If we are provided information about whether or not these in-neighbours
are reputable or spam, we could infer whether or not x is good or spam.

In a first approach, if majority of x’s links comes from spam nodes, x is labelled
a spam target node, otherwise it is labelled good. This scheme could easily mislabel
spam. An alternative is to look not only at the number of links, but also at what



274 13 Link Analysis

amount of PageRank each link contributes. The contribution of a link amounts to the
change in PageRank induced by the removal of the link. However, this scheme does
not look beyond the immediate in-neighbours of x and therefore could succumb to
mislabelling. This paves a way for a third scheme where a node x is labelled con-
sidering all the PageRank contributions of other nodes that are directly or indirectly
connected to x .

The PageRank contribution of x to y over the walk W is defined as

qW
y = skπ(W )(1 − s)vx (13.45)

where vx is the probability of a random jump to x , and π(W ) is the weight of the
walk.

π(W ) =
k−1∏
i=0

1

out (xi )
(13.46)

This weight can be interpreted as the probability that a Markov chain of length k
starting in x reaches y through the sequence of nodes x1, . . . , xk−1.

This gives the total PageRank contribution of x to y, x �= y, over all walks from
x to y as

qx
y =

∑
W∈Wxy

qW
y (13.47)

For a node’s contribution to itself, a virtual cycle Zx that has length zero and
weight 1 is considered such that

qx
x =

∑
W∈Wxx

qW
x = qZx

x +
∑

V∈Wxx ,|V |≥1

qV
x

= (1 − s)vx +
∑

V∈Wxx ,|V |≥1

qV
x

(13.48)

If a node x does not participate in cycles, x’s contribution to itself isqx
x = (1−s)vx ,

which corresponds to the random jump component. If these is no walk from node x
to y then the PageRank contribution qx

y is zero.
This gives us that the PageRank score of a node y is the sum of the contributions

of all other nodes to y

py =
∑
x∈V

qx
y (13.49)

Under a given random jump distribution v, the vector qx of contributions of a
node x to all nodes is the solution of the linear PageRank system for the core-based
random jump vector vx
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vx
y =

{
vx i f x = y

0 otherwise
=⇒ qx = PR(vx ) (13.50)

From this, we can compute the PageRank contribution qU of any subset of nodes
U ⊆ V by computing the PageRank using the random jump vector vU defined as

vUy =
{

vy i f y ∈ U

0 otherwise
(13.51)

We will now use this to compute the spammass of a page. For a given partitioning
{V+, V−} of V and for any node x , px = qV+

x +qV−
x , i.e, x’s PageRank is the sum of

the contributions of good and that of spam nodes. The absolute spam mass of a node
x , denoted by Mx , is the PageRank contribution that x receives from spam nodes, i.e,
Mx = qV−

x . Therefore, the spam mass is a measure of how much direct or indirect
in-neighbour spam nodes increase the PageRank of a node. The relative spam mass
of node x , denoted by mx , is the fraction of x’s PageRank due to contributing spam
nodes, i.e, mx = qV−

x /px .
If we assume that only a subset of the good nodes Ṽ+ is given, we can compute

two sets of PageRanks scores. p = PR(v) is the PageRank of nodes based on the
uniform random jump distribution v = (1/n)n , and p′ = PR(vṼ+

) is a core-based
PageRank with a random jump distribution vṼ+

vṼ+
x =

{
1/n i f x ∈ Ṽ+

0 otherwise
(13.52)

Given the PageRank scores px and p′
x , the estimated absolute spam mass of node

x is

M̃x = px − p′
x (13.53)

and the estimated spam mass of x is

m̃x = (px − p′
x )/px = 1 − p′

x/px (13.54)

Instead, if Ṽ− is provided, the absolute spam mass can be estimated by M̂ =
PR(vṼ−

). When both V− and V+ are known, the spam mass estimates could be
derived by simply computing the average (M̃ + M̂)/2.

Now, we consider the situation where the core Ṽ+ is significantly smaller than
the actual set of good nodes V+, i.e, |Ṽ+| << |V+| and thus ||vV+|| << ||v||.
Since p = PR(v), ||p|| ≤ ||v|| and similarly ||p′|| ≤ ||vṼ+||. This means that
||p′|| << ||p||, i.e, the total estimated good contribution is much smaller than the
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total PageRank of nodes. Therefore, we will have ||p − p′|| ≈ ||p|| with only a few
nodes that have absolute mass estimates differing from their PageRank scores.

To counter this problem, we construct a uniform random sample of nodes and
manually label each sample node as spam or good. This way it is possible to roughly
approximate the prevalence of spam nodes on the Web. We introduce γ to denote
the fraction of nodes that we estimate that are good, so γ n ≈ |V+|. Then, we scale
the core-based random jump vector vṼ+

to w, where

wx =
{

γ /|Ṽ+| i f x ∈ Ṽ+

0 otherwise
(13.55)

Note that ||w|| = γ ≈ ||vV+||, so the two random jump vectors are of the
same order of magnitude. Then, we can compute p′ based on w and expect that
||p′|| ≈ ||pV+||, so we get a reasonable estimate of the total good contribution.

Using w in computing the core-based PageRank leads to the following: as Ṽ+
is small, the good nodes in it will receive an unusually high random jump (γ /|Ṽ+|
as opposed to 1/n). Therefore, the good PageRank contribution of these known
reputable nodes will be overestimated, to the extent that occasionally for some node
y, p′

y will be larger than py . Hence, when computing M̃ , there will be nodes with
negative spam mass. In general, a negative mass indicates that a node is known to be
good in advance (is a member of Ṽ+) or its PageRank is heavily influenced by the
contribution of nodes in the good core.

Now we can discuss the mass-based spam detection algorithm. It takes as input a
good core Ṽ+, a threshold τ to which the relative mass estimates are compared, and
a PageRank threshold ρ. If the estimated relative mass of a node is equal to or above
this τ then the node is labelled as a spam candidate. Only the relative mass estimates
of nodes with PageRank scores larger than or equal to ρ are verified. Nodes with
PageRank less than ρ are never labelled as spam candidates.

Problems

Download the Wikipedia hyperlinks network available at
https://snap.stanford.edu/data/wiki-topcats.txt.gz.

63 Generate the graph of the network in this dataset.

64 Compute the PageRank, hub score and authority score for each of the nodes in
the graph.

65 Report the nodes that have the top 3 PageRank, hub and authority scores respec-
tively.

https://snap.stanford.edu/data/wiki-topcats.txt.gz
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