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Preface

Although there are innumerable complex systems and therefore such a large
number of networks, the focus of this book is social networks. A social network
contains individuals as nodes and links representing the relationship between these
individuals. The study of social networks is of particular interest because it focuses
on this abstract view of human relationships which gives insight into various kinds
of social relationships ranging all the way from bargaining power to psychological
health.

We describe in detail graph theory, statistical properties and graph algorithms.
Through this, we hope to describe the various patterns and statistical properties of
networks, introduce design principles and models for looking at these properties,
provide an understanding as to why networks are organized the way they are and
apply our understanding to predict behaviour of networks.

The world around us provides a plethora of instances of complex systems.
Transportation networks, social media applications, protein–protein interactions,
auction houses, spreading of diseases and so on are all examples of complex
systems we all encounter in our daily lives. All of these systems are extremely
complicated to comprehend because they contain several seemingly disparate
components which may be directly or indirectly related to one another. These
components exhibit behaviour which is increasingly difficult to reason about and
too risky to tinker with. Even a slight seemingly innocuous change in one of the
components can have a domino effect which could have unexpected consequences.

Figure 1 depicts the Internet on a global scale. This figure can help paint a sort of
picture as to how complicated a system really is, and how one must proceed in order
to understand such a complex system.

Each of these complex systems (especially the Internet) has its own unique
idiosyncrasies but all of them share a particular commonality in the fact that they
can be described by an intricate wiring diagram, a network, which defines the
interactions between the components. We can never fully understand the system
unless we gain a full understanding of its network.
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Network

A network is a collection of objects where some pairs of these objects are connected
by links. These objects are also sometimes referred to as nodes. By representing a
complex system through its network, we are able to better visualize the system and
observe the interconnections among the various nodes. From close examination of
networks, we can gather information about which nodes are closely linked to one
another, which are sparsely linked, whether there is a concentration of links in a
particular part of the network, do some nodes have a very high number of links
when compared to others and so on.

Figure 2 illustrates network corresponding to the ARPANET in December 1970
(what the Internet was called then). It consisted of 13 sites where the nodes rep-
resent computing hosts and links represent direct communication lines between
these hosts.

Fig. 1 Illustration of the global Internet. Online at https://www.weforum.org/projects/internet-for-
all
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Graph

Several properties can be retrieved from these networks but there are some others
which require a more mathematical approach. In the purview of mathematics,
networks in its current state fail to be amenable. To allow for this amenability, a
network is represented as a graph. In this view, a graph can be described as a
mathematical representation of networks which acts as a framework for reasoning
about numerous concepts. More formally, a graph can be defined as GðV ;EÞ where
V denotes the set of all vertices of G and E denotes the set of edges of G. Each edge
e ¼ ðu; vÞ 2 E where u; v 2 V describes an edge from u to v. If an edge exists
between u and v then they are considered as neighbours. The number of vertices in
G is denoted as jV j and the number of edges is denoted by jEj. These notations will
be used throughout the book.

Figure 3 represents the graph corresponding to the network in Fig. 2 where the
vertices of the graph correspond to the computing hosts and the edges correspond to
the linking communication lines.

Organization of the Book

We reason about each graph and therefore its networks in the following manner.
First, we study the data therein and use it to find organizational principles that help
measure and quantify networks. Second, using graph theory and statistical models,

Fig. 2 ARPANET in December 1970. Computing hosts are represented as nodes and links denote
the communication lines. Online at https://imgur.com/gallery/Xk9MP
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we attempt to understand behaviours and distinguish surprising from expected
phenomena. Finally, we apply graph algorithms to analyse the graphs representing
the networks.

Although there are innumerable complex systems and therefore such a large
number of networks, the focus of this book is social networks. A social network
contains individuals as nodes and links representing the relationship between these

Fig. 3 Graph corresponding to Fig. 2 consisting of 13 vertices and 17 edges
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individuals. The study of social networks is of particular interest because it focuses
on this abstract view of human relationships which gives insight into various kinds
of social relationships ranging all the way from bargaining power to psychological
health.

Completeness of a network is important in this study of online social networks
because unlike other offline and certain online networks, the members of online
social networks are not controlled random samples and instead are biased samples.

In this book, we follow the possible convention: a complex system has com-
ponents interconnected by interactions, a network consists of nodes with links
representing connections and a graph contains vertices with connecting edges.
Wherever possible, we will try to stick to this convention but these terms may be
used interchangeably.

We describe in detail graph theory, statistical properties and graph algorithms.
Through this, we hope to accomplish the following goals: Describe the various
patterns and statistical properties of networks, introduce design principles and
models for looking at these properties, provide an understanding as to why net-
works are organized the way they are, and apply our understanding to predict
behaviour of networks.

Network Datasets

In this age of information technology, we are blessed with an ever increasing
availability of large and detailed network datasets. These datasets generally fall into
one or more of the following groups.

• Collaboration graphs: Collaboration graphs show the collaborators as vertices
and an edge between vertices indicating a collaboration between the corre-
sponding collaborators. Co-authorship among scientists, co-appearances in
movies among performers and Wikipedia collaboration networks are all
instances of collaboration graphs.

• Who-talks-to-whom graphs: These graphs have conversers as vertices and an
edge between a pair of them if they have shared a conversation. Phone call logs,
e-mail logs, SMS logs and social media message logs are examples of
who-talks-to-whom graphs. However, these graphs have a certain amount of
regulation with it because it involves private information that can be accessed.
Certain privacy concerns must be resolved before these graphs can be subject to
any form of analysis.
A variant of these graphs are a “Who-transacts-with-whom graphs” where the
nodes represent individuals and edges denote a transaction between individuals.
These graphs are of particular interest to economists.

• Information Linkage graphs: The Web is an example of these graphs where the
webpages denote the vertices and a hyperlink between webpages are represented
by edges. Such graphs which contain a large amount of information in both the
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vertices and the edges, whose manipulation is a task per se connotes information
linkage graphs.

• Technological graphs: In these graphs, physical devices such as routers or
substations represent the vertices and an edge represents a communication line
connecting these physical devices. Water grid, power grid, etc. are examples of
technological graphs.
There is a specific kind of technological graphs called the autonomous systems
(AS) graph where the vertices are autonomous systems and the edges denote the
data transfer between these systems. AS graphs are special in that they have a
two-level view. The first level is the direct connection among components but
there is a second level which defines the protocol regulating the exchange of
information between communicating components. A graph of communication
between network devices controlled by different ISPs, transfer between bank
accounts, transfer of students between departments, etc. are all instances of these
AS graphs.

• Natural-world graphs: Graphs pertaining to biology and other natural sciences
fall under this category. Food webs, brain, protein–protein interactions, disease
spread, etc. are natural-world graphs.

Bangalore, India Krishna Raj P. M.
Bangalore, India Ankith Mohan
Jaffarpur, India K. G. Srinivasa
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Chapter 1
Basics of Graph Theory

Agraph can shed light on several properties of a complex system, but this is incumbent
on the effectiveness of the network. If the network does not fully represent all the
features described in the system, then the graph will also fail to describe all the
properties lying therein. Therefore, the choice of a proper network representation of
the complex system is of first importance.

A network must be chosen in such a way that it weighs every component of a
system individually on its own merit. In some cases, there is a unique, unambiguous
representation. While in others, the representation is not unique.

1.1 Choice of Representation

Undirected graphs and directed graphs are the most common choices for represen-
tation of networks.

1.1.1 Undirected Graphs

A graph G(V, E) is said to be an undirected graph if every edge is bidirectional, i.e,
every edge is symmetrical and reciprocal. Therefore, an edge e between u and v in
G can be represented as e = (u, v) or e = (v, u). Figure1.1 depicts an undirected
graph with 4 vertices connected by 5 edges.

Collaborations and friendships on social media applications are some of the
instances in the real-world that can be represented as undirected graphs.
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Fig. 1.1 An undirected
graph comprising of 4
vertices A, B, C and D, and
5 edges, (A,B), (A,C),
(A,D), (B,C), (B,D)

Fig. 1.2 A directed graph
comprising of 4 vertices A,
B, C and D, and 5 edges,
(A,B), (A,C), (A,D), (B,C),
(B,D)

1.1.2 Directed Graphs

A graph G(V, E) is said to be a directed graph if every edge is directional, i.e,
every edge is asymmetrical and non-reciprocal. An edge e from u to v in G must
be represented as e = (u, v). Figure1.2 represents a directed graph with 4 vertices
interconnected by 5 edges.

Voting and followings on social media applications are examples of real-world
that can be described by directed graphs.

1.2 Degree of a Vertex

The degree of a vertex i , denoted as ki , is defined as the number of edges that are
adjacent to this vertex i .

The definition of the degree of a node in a directed graph is slightly more nuanced.
The in-degree of a vertex i , denoted as kini , is defined as the number of edges directed
towards this vertex i . The out-degree of a vertex i , denoted as kouti , is defined as
the number of edges directed away from this vertex i . The degree of vertex i in
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Table 1.1 Table shows the
vertices of the graph in
Fig. 1.1 and their
corresponding degrees

Vertex Degree

A 3

B 3

C 2

D 2

Total 10

Table 1.2 Table shows the
vertices of the graph in
Fig. 1.2 and their
corresponding in-degrees,
out-degrees and degrees

Vertex In-degree Out-degree Degree

A 0 3 3

B 1 2 3

C 2 0 2

D 2 0 2

Total 5 5 10

a directed graph is therefore defined as the sum of the in-degree of this vertex i and
its out-degree. This is represented as ki = kini + kouti .

Tables1.1 and 1.2 tabulate the degrees of all the vertices in Figs. 1.1 and 1.2
respectively.

A vertex with zero in-degree is called a source vertex, a vertex with zero out-
degree is called a sink vertex, and a vertex with in-degree and out-degree both equal
to zero is called an isolated vertex.

1.3 Degree Distribution

The degree distribution of a graph G(V, E), denoted by P(k), is defined as the
probability that a random chosen vertex has degree k. If |V |k denotes the number of
vertices with degree k,

P(k) = |V |k
|V | (1.1)

The degree distribution is plotted either as a histogram of k vs P(k) (Fig. 1.3) or
as a scree plot of k vs |V |k (Fig. 1.4).

1.4 Average Degree of a Graph

The average degree of a graph G(V, E), denoted by k, is defined as the average of
the degrees of all the vertices in G. More formally, the average degree is given by
Eq.1.2.
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Fig. 1.3 Histogram of k
versus P(k)

Fig. 1.4 Scree plot of k
versus |V |k

k = 1

|V |
|V |∑

i=1

ki (1.2)

The average degree of a graph satisfies the properties given in Eqs. 1.3 and 1.4.

k = 2|E |
|V | (1.3)

kin = kout (1.4)

The average degree of the graph in Fig. 1.1 as well as the graph in Fig. 1.2 is
10
4 = 2.5. Since there are 4 vertices and 5 edges in both of these graphs, Eq.1.3 is
satisfied. The average in-degree of the graph in Fig. 1.2 is 5

4 = 1.25, and its average
out-degree is 5

4 = 1.25. This satisfies Eq.1.4.
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Fig. 1.5 A complete undirected graph having 20 vertices and 190 edges

1.5 Complete Graph

The maximum number of edges that a graph with |V | number of vertices, as denoted
by Emax , is given by Eq.1.5.

Emax =
{(|V |

2

) = |V |(|V |−1)
2 for undirected graphs

2
(|V |

2

) = |V |(|V | − 1) for directed graphs
(1.5)

A graphwith |E | = Emax number of edges is called a complete graph. The average
degree of a complete graph is |V | − 1.

Figures1.5 and 1.6 illustrate complete undirected and directed graphs each having
20 vertices and therefore 190 and 380 edges respectively.
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Fig. 1.6 A complete directed graph having 20 vertices and 380 edges

1.6 Regular Graph

A regular graph is defined as a graph where each vertex has the same degree, i.e, k1 =
k2 = · · · = k|V |. A regular directed graphmust also satisfy the stronger condition that
the in-degree and out-degree of each vertex be equal to each other, i.e, kin1 = kout1 ,
kin2 = kout2 , . . ., kin|V | = kout|V | . A regular graph with vertices of degree k is called a k-
regular graph or regular graph of degree k. Figure1.7 shows a 5-regular graph having
10 vertices.

1.7 Bipartite Graph

A bipartite graph is a graph whose vertices can be divided into two independent sets
L and R such that an edge connects a vertex in L to one in R. The corresponding
graph that does not have these independent set partitions is called a folded graph.
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Fig. 1.7 A 5-regular random
graph on 10 vertices

Figure1.8 depicts the undirected bipartite graph with its corresponding folded
graph and Fig. 1.9 illustrates the directed bipartite graph and its corresponding folded
graph.

1.8 Graph Representation

So far, we have only looked at the visualisation of a graph which is very tedious
to work with in the case of graph algorithms. Instead, we look at several other
representations of graphs.

1.8.1 Adjacency Matrix

The adjacency matrix of a graph, denoted by A, is defined as a matrix where 1
indicates the presence of an edge and 0 indicates the absence of one. More formally,
an adjacency matrix is defined as in Eq.1.6.

Ai j =
{
1 is an edge exists between the vertex i and the vertex j

0 otherwise
(1.6)

The adjacency matrix for the graph in Fig. 1.1 is as shown in the matrix below.

⎡

⎢⎢⎣

0 1 1 1
1 0 1 1
1 1 0 0
1 1 0 0

⎤

⎥⎥⎦



8 1 Basics of Graph Theory

Fig. 1.8 A folded undirected
graph with its corresponding
bipartite undirected graph

(a) An undirected graph with 4 vertices, 0, 1,
2 and 3 with 5 edges, (0,1), (0,2), (0,3), (1,2),
(1,3)

(b) The bipartite graph corresponding to Fig-
ure 2.8a where the vertices 0, 1, 2 and 3 in
red, denote the set L and the vertices 4, 5, 6,
7 and 8 in blue denote the set R

Similarly, the adjacency matrix for the graph in Fig. 1.2 is described in the fol-
lowing matrix.

⎡

⎢⎢⎣

0 1 1 1
0 0 1 1
0 0 0 0
0 0 0 0

⎤

⎥⎥⎦

We can summarize the following properties from adjacency matrices.

Aii = 0 (1.7)

Aii �= 0 (1.8)

Ai j = A ji (1.9)

Ai j �= A ji (1.10)
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Fig. 1.9 A folded directed
graph with its corresponding
bipartite directed graph

(a) A directed graph with 4 vertices, 0, 1, 2
and 3 with 5 edges, (0,1), (0,2), (0,3), (1,2),
(1,3)

(b) The bipartite graph corresponding to Fig-
ure 2.9a where the vertices 0, 1, 2 and 3 in
red, denote the set L and the vertices 4, 5, 6,
7 and 8 in blue denote the set R

|E | = 1

2

|V |∑

i, j=1

Ai j (1.11)

|E | =
|V |∑

i, j=1

Ai j (1.12)
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Undirected graphs satisfy Eqs. 1.7, 1.9 and 1.11 while directed graphs satisfy
Eqs. 1.7, 1.10 and 1.12.

1.8.2 Edge List

The edge list of a graph G(V, E) is its representation as a list of edges where each
edge e ∈ E is represented as a tuple e = (u, v) where u denotes the source vertex
and v denotes the destination vertex of e.

The edge list for both the graph in Fig. 1.1 and for the graph in Fig. 1.2 is given
by {(A,B), (B,C), (B,D), (A,C), (A,D)}.

1.8.3 Adjacency List

The adjacency list of a graphG(V, E) is defined as {u: [v1, v2, . . .], ∃ e1 = (u, v1) ∈
E, e2 = (u, v2) ∈ E, . . . ; ∀u, v1, v2, . . . ∈ V }

The adjacency list for the graph in Fig. 1.1 and that for the graph in Fig. 1.2 is as
shown in Tables1.3 and 1.4 respectively.

When the graphs are small, there is not a notable difference between any of these
representations. However, when the graph is large and sparse (as in the case of most
real world networks), the adjacency matrix will be a large matrix filled mostly with
zeros. This accounts for a lot of unnecessary space and account for a lot of time
that could have been avoided during computations. Although edge lists are concise,
they are not the best data structure for most graph algorithms. When dealing with
such graphs, adjacency lists are comparatively more effective. Adjacency lists can
be easily implemented in most programming languages as a hash table with keys for
the source vertices and a vector of destination vertices as values. Working with this
implementation can save a lot of computation time. SNAP uses this hash table and
vector representation for storing graphs [1].

Table 1.3 Adjacency list for
the graph in Fig. 1.1

A : [B, C , D]

B : [A, C , D]

C : [A, B]

D : [A, B]

Table 1.4 Adjacency list for
the graph in Fig. 1.2

A : [φ]

B : [A]

C : [A, B]

D : [A, B]
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1.9 Edge Attributes

Some networks may sometimes have to store information on the edges to properly
represent the corresponding complex system. This information could be any of the
following:

• Weight: The frequency of communication between the connected vertices, the
strength of this connection, etc.

• Type: The type of the relationship between the connected vertices. Eg: Family,
friends, colleagues.

• Ranking: Best friend, second best friend, third best friend, so on.
• Sign: Friend vs foe, trust vs distrust, etc.
• Properties dependent on the structure of the rest of the graph. Such as the number
of common neighbours, centrality measure, etc.

Based on edge attributes, the number of edges between vertices and the source
and destination of an edge, graphs can be further classified.

1.9.1 Unweighted Graph

Unweighted graphs are graphs where the edges do not have any associated weights.
Figures1.1 and 1.2 are instances of an undirected unweighted graph and a directed
unweighted graph respectively.

Friendships and hyperlinks are real-world instances of unweighted graphs.

1.9.2 Weighted Graph

Weighted graphs are graphs where the edges are associated with a certain weight.
Figures1.10 and 1.11 depict an undirected weighted graph and a directed weighted
graph respectively.

The adjacency matrix for the graph in Fig. 1.10 is given below
⎡

⎢⎢⎣

0 1 2.5 13.75
1 0 0.3 100
2.5 0.3 0 0
13.75 100 0 0

⎤

⎥⎥⎦

The adjacency matrix for the graph in Fig. 1.11 is as depicted below
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Fig. 1.10 An undirected
weighted graph with 4
vertices and 5 weighted
edges

Fig. 1.11 A directed
weighted graph with 4
vertices and 5 weighted
edges

⎡

⎢⎢⎣

0 1 2.5 13.75
0 0 0.3 100
0 0 0 0
0 0 0 0

⎤

⎥⎥⎦

Undirected weighted graphs satisfy properties in Eqs. 1.7, 1.9 and 1.13.

|E | = 1

2

|V |∑

i, j=1

nonzero(Ai j ) (1.13)

Directed weighted graphs on the other hand satisfy properties in Eqs. 1.7, 1.10
and 1.14.

|E | =
|V |∑

i, j=1

nonzero(Ai j ) (1.14)
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Collaborations and transportation networks are some examples of weighted
graphs.

1.9.3 Self-looped Graph

Self-loops are defined as edges whose source and destination vertices are the same.
More formally, an edge e ∈ E is called a self-looped edge if e = (u, u)where u ∈ V .
A graph that contains one or more self-loops is called a self-looped graph. Fig-
ures1.12 and 1.13 illustrate an undirected self-looped graph and a directed self-
looped graph respectively.

The adjacency matrix for the graph in Fig. 1.12 is as shown below
⎡

⎢⎢⎣

1 1 1 1
1 1 1 1
1 1 1 0
1 1 0 1

⎤

⎥⎥⎦

The adjacency matrix for the graph in Fig. 1.13 is illustrated as follows
⎡

⎢⎢⎣

1 1 1 1
0 1 1 1
0 0 1 0
0 0 0 1

⎤

⎥⎥⎦

Fig. 1.12 An undirected
self-looped graph with 4
vertices and 9 edges

Fig. 1.13 A directed
self-looped graph with 4
vertices and 9 edges
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Fig. 1.14 An undirected
multigraph with 4 vertices
and 9 edges

Undirected self-looped graphs satisfy properties in Eqs. 1.8, 1.9 and 1.15.

|E | = 1

2

|V |∑

i, j=1;i �= j

Ai j +
|V |∑

i=1

Aii (1.15)

Directed weighted graphs on the other hand satisfy properties in Eqs. 1.8, 1.10
and 1.16.

|E | =
|V |∑

i, j=1;i �= j

Ai j +
|V |∑

i=1

Aii (1.16)

Proteins and hyperlinks are some commonly encountered examples of self-looped
graphs.

1.9.4 Multigraphs

A multigraph is a graph where multiple edges may share the same source and desti-
nation vertices. Figures1.14 and 1.15 are instances of undirected and directed multi-
graphs respectively.

The adjacency matrix for the graph in Fig. 1.14 is as shown below
⎡

⎢⎢⎣

0 1 2 1
1 0 1 3
2 1 0 3
1 3 3 0

⎤

⎥⎥⎦

The adjacency matrix for the graph in Fig. 1.15 is illustrated as follows
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Fig. 1.15 A directed
multigraph with 4 vertices
and 9 edges

⎡

⎢⎢⎣

0 1 2 1
0 0 1 2
0 0 0 1
0 1 2 0

⎤

⎥⎥⎦

Undirectedmultigraphs satisfy properties inEqs. 1.7, 1.9 and 1.13.Directedmulti-
graphs on the other hand satisfy properties in Eqs. 1.7, 1.10 and 1.14.

Communication and collaboration networks are some common instances ofmulti-
graphs.

1.10 Path

A path from a vertex u to a vertex v is defined either as a sequence of vertices in
which each vertex is linked to the next, {u,u1,u2,. . .,uk ,v} or as a sequence of edges
{(u,u1), (u1,u2), . . ., (uk ,v)}. A path can pass through the same edge multiple times.
A path that does not contain any repetition in either the edges or the nodes is called a
simple path. Following a sequence of such edges gives us a walk through the graph
from a vertex u to a vertex v. A path from u to v does not necessarily imply a path
from v to u.

The path {A,B,C} is a simple path in both Figs. 1.1 and 1.2. {A,B,C ,B,D} is a
path in Fig. 1.1 while there are no non-simple paths in Fig. 1.2.
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1.11 Cycle

A cycle is defined as a path with atleast three edges, in which the first and the
last vertices are the same, but otherwise all other vertices are distinct. The path
{A,B,C ,A} and {A,B,D,A} are cycles in Fig. 1.1.

Cycles exist in graph sometimes by design. The reason behind this is redundancy.
If any edge were to fail there would still exist a path between any pair of vertices.

1.12 Path Length

The length of a path is the number of edges in the sequence that comprises this path.
The length of the path {A,B,C} in both Figs. 1.1 and 1.2 is 2 because it contains the
edges (A,B) and (B,C).

1.13 Distance

The distance between a pair of vertices u and v is defined as the number of edges
along the shortest path connecting u and v. If two nodes are not connected, the
distance is usually defined as infinity. Distance is symmetric in undirected graphs
and asymmetric in directed graphs.

The distance matrix, h of a graph is the matrix in which each element hi j denotes
the distance from vertex i to vertex j . More formally, distance matrix is defined as
given in Eq.1.17.

hi j =
{
the number of edges from vertex i to vertex j if a path exists from i to j

∞ otherwise
(1.17)

The distance matrix for the undirected graph in Fig. 1.1 is
⎡

⎢⎢⎣

0 1 1 1
1 0 1 1
1 1 0 2
1 1 2 0

⎤

⎥⎥⎦

The distance matrix for the directed graph in Fig. 1.2 is
⎡

⎢⎢⎣

0 1 1 1
∞ 0 1 1
∞ ∞ 0 ∞
∞ ∞ ∞ 0

⎤

⎥⎥⎦



1.14 Average Path Length 17

1.14 Average Path Length

The average path length of a graph, denoted as h is the average of the distances
between all pairs of vertices in the graph. Formally, the average path length is given
by

h = 1

Emax

∑

i, j

hi j (1.18)

All infinite distances are disregarded in the computation of the average path length.

1.15 Diameter

The diameter of a graph is the maximum of the distances between all pairs of vertices
in this graph. While computing the diameter of a graph, all infinite distances are
disregarded.

The diameter of Figs. 1.1 and 1.2 is 2 and 1 respectively.

1.16 Connectedness of Graphs

A graph is said to be connected if for every pair of vertices, there exists a path
between them. A subgraph which is connected is called a connected component or
simply a component. A disconnected graph is a graph which breaks apart naturally
into a set of components which are connected when considered in isolation without
overlap between these components.

When dealing with directed graphs, the definition of connectedness is two-fold.
A strongly connected directed graph is one where there is a path between every pair
of vertices of this graph. While, a weakly connected directed graph is considered
connected if and only if the graph is considered undirected.

Figure1.1 is a connected undirected graph because there is a path between all of
the vertices. Figure1.16 is an instance of a disconnected undirected graph because
D is an isolated vertex and hence there are no paths connecting D to the rest of the
vertices.

Figure1.2 is a weakly connected directed graph because the following paths do
not exist in the directed graph: A to itself, B to A, B to itself, C to all other vertices
including itself, D to itself and the rest of the vertices. But, there is a path between
all pairs of vertices when Fig. 1.2 is considered undirected. Figure1.17 is a strongly
connected directed graph where each vertex in this directed graph has a path to all
of the other vertices including itself.
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Fig. 1.16 A disconnected
undirected graph with 4
vertices, A, B, C and D, and
2 edges, (A,B), (B,C)
leaving D as an isolated
vertex

Fig. 1.17 A strongly
connected directed graph
with 4 vertices, A, B, C and
D, and 5 edges, (A,B),
(B,C), (C ,A), (C ,D) and
(D,B)

Giant Component

The largest component of a graph is called its giant component. It is a unique,
distinguishable component containing a significant fraction of all the vertices and
dwarfs all the other components. A,B,C is the giant component in Fig. 1.16.

Bridge Edge

Abridge edge is an edgewhose removal disconnects the graph.Every edge inFig. 1.17
is a bridge edge. For Fig. 1.1, the combination of edges (A,B), (A,C), (A,D); or (A,C),
(B,C); or (A,D), (B,D) are bridge edges.

Articulation Vertex

An articulation vertex is defined as a vertex which when deleted renders the graph
a disconnected one. Every vertex in Fig. 1.17 as well as in Fig. 1.1 is an articulation
vertex.

In and Out of a Vertex

For a graphG(V, E), we define the In andOut of a vertex v ∈ V as given in Eqs. 1.19
and 1.20.
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I n(v) = {w ∈ V | there exists a path f rom w to v} (1.19)
Out (v) = {w ∈ V | there exists a path f rom v to w} (1.20)

In other words if Eq. 1.21 is satisfied by a directed graph, then this graph is said to
be a strongly connected directed graph. This means that a weakly connected directed
graph must satisfy Eq.1.22.

I n(v) = Out (v) ∀ v ∈ V (1.21)
I n(v) �= Out (v) ∀ v ∈ V (1.22)

Tables1.5, 1.6, 1.7 and 1.8 tabulate the I n and Out for all the vertices in each of
these graphs. From these tables, we observe that Fig. 1.17 is strongly connected and
Fig. 1.2 is weakly connected because they satisfy Eqs. 1.21 and 1.22 respectively.

Directed Acyclic Graph

A directed acyclic graph (DAG) is a directed graph that does not have any cycles.
Figure1.2 is an instance of a DAG.

Strongly Connected Component

A strongly connected component (SCC) is a set of vertices S such that it satisfies the
following conditions:

• Every pair of vertices in S has a path to one another.
• There is no larger set containing S that satisfies this property.

Figure1.18 is a weakly connected directed graph having the SCCs, E , A,B,C and
D.

Table 1.5 I n and Out for all the vertices in Fig. 1.1

v ∈ V In(v) Out (v)

A A,B,C ,D A,B,C ,D

B A,B,C ,D A,B,C ,D

C A,B,C ,D A,B,C ,D

D A,B,C ,D A,B,C ,D

Table 1.6 I n and Out for all the vertices in Fig. 1.2

v ∈ V In(v) Out (v)

A φ B,C ,D

B A C ,D

C A,B φ

D A,B φ
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Table 1.7 I n and Out for all the vertices in Fig. 1.16

v ∈ V In(v) Out (v)

A A,B,C A,B,C

B A,B,C A,B,C

C A,B,C A,B,C

D φ φ

Table 1.8 I n and Out for all the vertices in Fig. 1.17

v ∈ V In(v) Out (v)

A A,B,C ,D A,B,C ,D

B A,B,C ,D A,B,C ,D

C A,B,C ,D A,B,C ,D

D A,B,C ,D A,B,C ,D

Fig. 1.18 A weakly
connected directed graph G
with 5 vertices, A, B, C , D
and E , with 6 edges, (A,B),
(B,C), (B,D), (C ,A), (E ,A)
and (E ,C). This graph has
the SCCs, E , A,B,C and D

The SCC containing a vertex v ∈ V can be computed using Eq.1.23.

I n(V ) ∩ Out (v) (1.23)

These definitions of a DAG and SCC gives us Theorem1.

Theorem 1 Every directed graph is a DAG on its SCC.

1. SCCs partition vertices of a graph, i.e, each node is in exactly one SCC.
2. If we build a graph G ′ whose vertices are SCCs of G and an edge between vertices

of G ′ exists if there is an edge between corresponding SCCs of G, then G ′ is a
DAG.

For the proof of this theorem, we will use the graphs G in Fig. 1.18 and G ′ in
Fig. 1.19.
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Fig. 1.19 A weakly
connected graph whose
vertices are the SCCs of G
and whose edges exist in G ′
because there is an edge
between the corresponding
SCCs in G

Fig. 1.20 A strongly
connected directed graph
where vertex v belongs to
two SCCs A,v,B and C ,v,D

Fig. 1.21 A graph with the
same vertices and edges as
shown in Fig. 1.19 with the
exception that there exists an
edge between D and E to
make the graph a strongly
connected one

Proof 1. Let us assume there exists a vertex v which is a member of two SCCs S =
A,v,B and S′ = C ,v,D as shown in Fig. 1.20. By the definition of a SCC, S ∪ S′
becomes one large SCC. Therefore, SCCs partition vertices of a graph.

2. Assume that G ′ is not a DAG, i.e, there exists a directed cycle in G ′ (as depicted
in Fig. 1.21). However, by the definitions of a SCC and a DAG this makes
{A,B,C ,D,E} one large SCC, rendering G ′ no longer a graph of edges between
SCCs. Therefore by contradiction, G ′ is a DAG on the SCCs of G.
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1.17 Clustering Coefficient

The clustering coefficient of a vertex i in a graph G(V, E), denoted by Ci , gives
what portion of i’s neighbours are connected. Formally, the clustering coefficient is
as given in Eq.1.24

Ci = 2ei
ki (ki − 1)

ε[0, 1] (1.24)

where ei denotes the number of edges between the neighbours of vertex i .
The clustering coefficients of the vertices for the graphs in Figs. 1.1 and 1.2 are

as tabulated in Table1.9.

1.18 Average Clustering Coefficient

The average clustering coefficient of a graph G(V, E), denoted by C , is defined as
the average of the clustering coefficients of all the vertices v ∈ V . Formally, the
average clustering coefficient is given by

C = 1

|V |
∑

i

|V |Ci (1.25)

The average clustering coefficients of the graphs in Figs. 1.1 and 1.2 are both equal
to 1.6.

Problems

Download the email-Eu-core directed network from the SNAP dataset repository
available at http://snap.stanford.edu/data/email-Eu-core.html.

For this dataset compute the following network parameters:

1 Number of nodes

2 Number of edges

Table 1.9 Clustering
coefficient of vertices of
Figs. 1.1 and 1.2

Vertex Clustering coefficient

A 2
3

B 2
3

C 3

D 3

http://snap.stanford.edu/data/email-Eu-core.html
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3 In-degree, out-degree and degree of the first five nodes

4 Number of source nodes

5 Number of sink nodes

6 Number of isolated nodes

7 In-degree distribution

8 Out-degree distribution

9 Average degree, average in-degree and average out-degree

10 Distance between five pairs of random nodes

11 Shortest path length distribution

12 Diameter

13 Is the graph strongly connected? If so, compute the strongly connected compo-
nent size distribution

14 Is the graph weakly connected? If so, compute the weakly connected component
size distribution

15 Number of bridge edges

16 Number of articulation nodes

17 Number of nodes in I n(v) for five random nodes

18 Number of nodes in Out (v) for five random nodes

19 Clustering coefficient for five random nodes

20 Clustering coefficient distribution

21 Average clustering coefficient

Reference

1. Leskovec, Jure, and Rok Sosič. 2016. Snap: A general-purpose network analysis and graph-
mining library. ACM Transactions on Intelligent Systems and Technology (TIST) 8 (1): 1.



Chapter 2
Graph Structure of the Web

In this chapter, we will take a close look at theWeb when it is represented in the form
of a graph and attempt to understand its structure. We will begin by looking at the
reasons behind why we must be interested with this problem concerning the Web’s
structure. There are numerous reasons as to why the structure of the Web is worth
studying, but the most prominent ones are as follows: the Web is a large system that
evolved naturally over time, understanding such a system’s organization and proper-
ties could help better comprehend several other real-world systems; the study could
yield valuable insight into Web algorithms for crawling, searching and community
discovery, which could in turn help improve strategies to accomplish these tasks; we
could gain an understanding into the sociological phenomena characterising content
creation in its evolution; the study could help predict the evolution of known or new
web structures and lead to the development of better algorithms for discovering and
organizing them; and we could predict the emergence of new phenomena in theWeb.

Bowtie Structure of the Web

Reference [1] represented theWeb as a directed graphwhere thewebpages are treated
as vertices and hyperlinks are the edges and studied the following properties in
this graph: diameter, degree distribution, connected components and macroscopic
structure. However, the dark-web (part of the Web that is composed of webpages
that are not directly accessible (even by Web browsers)) were disregarded. This
study consisted of performing web crawls on a snapshot of the graph consisting of
203 million URLs connected by 1.5 billion hyperlinks. The web crawl is based on
a large set of starting points accumulated over time from various sources, including
voluntary submissions. A 465MHz server with 12GB of memory was dedicated for
this purpose.

Reference [1] took a large snapshot of the Web and using Theorem1, attempted
to understand how its SCCs fitted together as a DAG.

© Springer Nature Switzerland AG 2018
K. Raj P. M. et al., Practical Social Network Analysis with Python,
Computer Communications and Networks,
https://doi.org/10.1007/978-3-319-96746-2_2
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Power Law

The power law is a functional relationship between two quantities where a relative
change in one quantity results in a proportional relative change in the other quantity,
independent of the initial size of those quantities, i.e, one quantity varies as the power
of the other. Hence the name power law [3]. Power law distributions as defined on
positive integers is the probability of the value i being proportional to 1

i k for a small
positive integer k.

2.1 Algorithms

In this section we will look at several algorithms used by [1] in their experiments.

2.1.1 Breadth First Search (BFS) Algorithm

The BFS algorithm (Algorithm1) takes as input a graphG(V, E) and a source vertex
s. The algorithm returns the set of vertices that the source vertex has a path to.

Algorithm 1 BFS algorithm
1: procedure BFS(G(V, E),s)
2: Let reachable be an array
3: Let Q be a queue
4: Q.enqueue(s)
5: reachable.add(s)
6: while Q is not empty do
7: v ← Q.dequeue()
8: for each neighbour w of v in V do
9: if w is not in reachable then
10: Q.enqueue(w)

11: reachable.add(w)

12: end if
13: end for
14: end while
15: return reachable
16: end procedure

The Web crawl proceeds in roughly a BFS manner, subject to various rules
designed to avoid overloading, infinite paths, spam, time-outs, etc. Each build is
based on crawl data after further filtering and processing. Due to multiple starting
points, it is possible for the resulting graph to have several connected components.
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2.1.2 Strongly Connected Components (SCC) Algorithm

The SCC algorithm (Algorithm4) takes a graph G(V, E) as input and returns a list
of all the SCCs in this graph as output. The SCC of G is computed using Eq.1.21.
The function unique returns a list of all the distinct elements in the input list. For
instance, unique([1,2,1,3,2,2]) will return [1,2,3].

Algorithm 2 In algorithm
1: procedure In(G(V, E),s)
2: Let I n be an array
3: for each vertex v in V do
4: if s in BFS(G(V, E), v) then
5: I n.add(v)
6: end if
7: end for
8: return I n
9: end procedure

Algorithm 3 Out algorithm
1: procedure Out(G(V, E),s)
2: Let Out be an array
3: Out ← BFS(G(V, E), s)
4: return Out
5: end procedure

Algorithm 4 SCC algorithm
1: procedure SCC(G(V, E))
2: Let SCC be an array
3: for each vertex v in V do
4: SCC.add(I n(G(V, E), v) ∩ Out (G(V, E), v))
5: end for
6: return unique(SCC)

7: end procedure
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2.1.3 Weakly Connected Components (WCC) Algorithm

The WCC algorithm (Algorithm5) computes the list of all WCCs given a graph
G(V, E) as input.

Algorithm 5WCC algorithm
1: procedure WCC(G(V, E))
2: Let WCC be an array
3: Let G ′(V ′, E ′) be G(V, E) as an undirected graph
4: for each vertex v in V ′ do
5: WCC.add(BFS(G ′(V ′, E ′), v)
6: end for
7: return unique(WCC)

8: end procedure

Three sets of experiments on these web crawls were performed from May 1999
to October 1999.

2.2 First Set of Experiments—Degree Distributions

The first set of experiments involved generating in-degree and out-degree distribu-
tions on the graph of the Web crawl. The in-degree distribution is observed to follow
a power law with exponent of 2.1 as seen in Figs. 2.1 and 2.2. The out-degree dis-
tribution is found to also follow a power law with exponent of 2.72 as shown in
Figs. 2.3 and 2.4.

Fig. 2.1 In-degree
distribution when only
off-site edges are considered
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Fig. 2.2 In-degree
distribution over May and
October 1999 crawls

Fig. 2.3 Out-degree
distribution when only
off-site edges are considered

2.3 Second Set of Experiments—Connected Components

The second set of experiments were concerned with the study of the directed and
undirected connected components of the Web. The Web was considered as an undi-
rected graph and the sizes of the undirected component was computed. By running
theWCC algorithm on theWeb, a giant component comprising of 186 million nodes
in which fully 91% of these nodes have a path to one another by following either
the forward or the backward edges was identified. The remaining 17 million nodes
formed the DI SCONNECT ED COMPONENT S. Even the distribution of the
sizes of the WCCs exhibits a power law with exponent 2.5 as illustrated in Fig. 2.5.

However, there still exists the question as to whether this widespread connectivity
results from a few vertices of large in-degree. The answer is as tabulated in Table2.1.
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Fig. 2.4 Out-degree
distribution over May and
October 1999 crawls

Fig. 2.5 Distribution of
WCCs on the Web

Table 2.1 Size of the largest surviving weak component when links to pages with in-degree at least
k are removed from the graph

k 1000 100 10 5 4 3

Size
(millions)

177 167 105 59 41 15

Table shows the size of the largest surviving weak components when edges to pages
with in-degree atleast k are removed from the graph.

Table2.1 gives us the following insights: Connectivity of the Web graph is
extremely resilient and does not depend on the existence of vertices of high degree,
vertices which are useful tend to include those vertices that have a high PageRank
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Fig. 2.6 Distribution of
SCCs on the Web

or those which are considered as good hubs or authorities are embedded in a graph
that is well connected without them.

To understand what the giant component is composed of, it was subjected to
the SCC algorithm. The algorithm returned a single large SCC consisting of 56
million vertices which barely amounts to 28% of all the vertices in the crawl. This
corresponds to all of the vertices that can reach one another along the directed edges
situated at the heart of the Web graph. Diameter of this component is atleast 28.
The distribution of sizes of the SCCs also obeys power law with exponent of 2.5 as
observed in Fig. 2.6.

2.4 Third Set of Experiments—Number of Breadth First
Searches

The third set of experiments were related to computing the number of breadth first
searches from randomly chosen start vertices in the web crawl to understand what
apart from the SCC constitutes the giant component.

570 vertices were randomly chosen and the BFS algorithm was run twice from
each of these selected vertices, once in the forward direction, following the direction
of the edges in the Web graph, and the other in the backward direction, following the
edges in the reverse direction.

Each of these BFS traversals exhibited a sharp bimodal behaviour: it would either
die out after reaching a small set of vertices (90% of the time this set has fewer than
90 vertices, in extreme cases it has a few hundred thousand), or it would explode to
cover about 100 million vertices. Further, for a fraction of the starting vertices, both
the forward and the backward BFS runs would explode, each covering about 100
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Fig. 2.7 Cumulative
distribution on the number of
nodes reached when BFS is
started from a random vertex
and follows in-links

Fig. 2.8 Cumulative
distribution on the number of
nodes reached when BFS is
started from a random vertex
and follows out-links

million vertices (≈ 50%). This behaviour can be observed in Figs. 2.7, 2.8 and 2.9.
These explosive nodes are the ones which correspond to the SCC .

Zipf’s Law

Zipf’s law states that the frequency of occurrence of a certain value is inversely
proportional to its rank in the frequency table [3]. The in-degree distribution shows
a fit more with Zipf distribution than the power law as is evident from Fig. 2.10.

From the previous set of experiments, we got the giant undirected component, the
DI SCONNECT ED COMPONENT S and the SCC . The 100 million vertices
whose forwardBFS traversals exploded correspond to either the SCC component or a
component called I N . Since, SCC corresponds to 56million vertices, this leaveswith
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Fig. 2.9 Cumulative
distribution on the number of
nodes reached when BFS is
started from a random vertex
and follows both in-links and
out-links

Fig. 2.10 In-degree
distribution plotted as power
law and Zipf distribution

44 million vertices (≈ 22%) for I N . On similar lines, the 100 million vertices whose
backward BFS traversals exploded correspond to either SCC or a component called
OUT , which will have 44 million vertices (≈ 22%). This leaves us with roughly
44 million vertices (≈ 22%), which are not yet accounted for. These vertices were
placed in a component called T ENDRI LS. These components altogether form the
famous bowtie structure (Fig. 2.11) of the Web.

The numbers of the vertices in each of these components given above is a rough
estimate. The actual numbers are as given in Table2.2.

The intuition behind these components is that I N corresponds to those webpages
that can reach the SCC , but cannot be reached back from the I N component. This
possibly contains new webpages that have not yet been discovered and linked to.
The webpages that are accessible from the SCC , but do have a link back to this
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Fig. 2.11 Bowtie structure of the graph of the Web

Table 2.2 Sizes of the components forming the bowtie

Region Size (number of vertices)

SCC 56,463,993

IN 43,343,168

OUT 43,166,185

TENDRILS 43,797,944

DISC. COMP. 16,777,756

Total 203,549,046

component correspond to OUT . The web sites of private corporations that contain
only internal links could be the OUT component. The pages that can neither reach
the SCC , nor can it be reached by the SCC form the T ENDRI LS.

Of the 570 starting vertices, 172 correspond to the T ENDRI LS and the
DI SCONNECT ED COMPONENT . The BFS algorithm cannot differentiate
between these. 128 of these vertices correspond to I N , 134 correspond to OUT and
the remaining 136 correspond to the SCC .

Insights Derived from This Study

The distribution of degrees and the sizes of several various components follow a
power law. Therefore, power law phenomenon must be a basic Web property.
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It was hypothesized that the Web was more likely to be a single giant SCC. One
way to look at this is as follows: Assume that the Web consisted of two equally
large SCCs. If there existed even a single link from one of these SCCs to the other,
then by the definition of a SCC, these two SCCs would merge into one large SCC.
Since the Web easily consists of a million webpages with atleast a billion hyperlinks
interconnecting these webpages, the likelihood of a link not crossing over between
the SCCs is extremely small. Thus, theWeb could plausibly be one large SCC where
one could easily go from any page to any other. However, the bowtie Web structure
gave us the real organization of the Web.

Although the bowtie structure of the Web explains its conceptual organization, it
leaves the following questions unanswered:

• Whyare all the pages treated equally?Shouldn’twebsites of popular search engines
or social media sites given more importance than others?

• Which are the most important pages? Is there a certain network property exhibited
by these pages that explain its importance?

• What is the internal structure of the giant SCC? Is it a regular graph? Is there
a SCC inside this giant SCC? Is there a large central core with several smaller
components in its periphery?

• How far apart are the vertices in the SCC? Do all the paths have more or less the
same distance? Does the distribution of a path follow a well known probability
distribution? If so, is it expected or surprising?

Study of Properties of Internet

Reference [2] performed a study exclusively at understanding the power-law exhi-
bition of certain network properties of the Internet between November 1997 and
December 1998.

The following four datasets were used:

• Int-11-97: This is the inter-domain topology of the Internet in November of 1997
with 3015 nodes, 5156 edges, and 3.42 average outdegree.

• Int-04-98: This identifies the inter-domain topology of the Internet in April of
1998 with 3530 nodes, 6432 edges, and 3.65 average outdegree.

• Int-12-98: This corresponds to the inter-domain topology of the Internet inDecem-
ber of 1998 with 4389 nodes, 8256 edges, and 3.76 average outdegree.

• Rout-95: This lists the routers of the Internet in 1995 with 3888 nodes, 5012 edges,
and an average outdegree of 2.57.

Thefirst three datasets signify an evolvingnetworkwhile the last dataset represents
the topology of the routers of the Internet in 1995 used in [4].

Here, the out-degree of a node v is denoted by dv , rv denotes the rank of node
v (indexed in order of decreasing out-degree), and fd denotes the frequency of out-
degree d.
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2.5 Rank ExponentR

From the log-log plots of the out-degree dv as a function of the rank rv in the sequence
of decreasing out-degree (shown in Figs. 2.12, 2.13, 2.14 and 2.15), the paper shows
the following results:

• The out-degree, dv , of a node v is proportional to the rank of this node, rv , to the
power of a constant, R (Eq. 2.1).

dv ∝ rRv (2.1)

• If the nodes of the graph are sorted in decreasing order of out-degree, then the rank
exponent, R is defined to be the slope of the node versus the rank of the nodes in
the log-log scale.

• The out-degree, dv , of a node v is a function of the rank of this node, rv , and the
rank exponent, R, as in Eq.2.2.

dv = 1

NR r Rv (2.2)

• The number of edges, |E |, of a graph can be estimated as a function of the number
of nodes, |V |, and the rank exponent, R, as in Eq.2.3.

|E | = 1

2(R + 1)

(
1 − 1

NR+1

)|V |
(2.3)

Fig. 2.12 Log-log plot of
the out-degree dv as a
function of the rank rv in the
sequence of decreasing
out-degree for Int-11-97
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Fig. 2.13 Log-log plot of
the out-degree dv as a
function of the rank rv in the
sequence of decreasing
out-degree for Int-04-98

Fig. 2.14 Log-log plot of
the out-degree dv as a
function of the rank rv in the
sequence of decreasing
out-degree for Int-12-98

Fig. 2.15 Log-log plot of
the out-degree dv as a
function of the rank rv in the
sequence of decreasing
out-degree for Rout-95
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2.6 Out-Degree ExponentO

The log-log plots of the frequency fd as a function of the out-degree d (illustrated
in Figs. 2.16, 2.17, 2.18 and 2.19), gives the following results:

• The frequency, fd , of an out-degree, d, is proportional to the out-degree to the
power of a constant, O (Eq. 2.4).

fd ∝ dO (2.4)

• The out-degree exponent,O, is defined to be the slope of the plot of the frequency
of the out-degrees versus the out-degrees in log-log scale.

Fig. 2.16 Log-log plot of
frequency fd versus the
out-degree d for Int-11-97

Fig. 2.17 Log-log plot of
frequency fd versus the
out-degree d for Int-04-98
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Fig. 2.18 Log-log plot of
frequency fd versus the
out-degree d for Int-12-98

Fig. 2.19 Log-log plot of
frequency fd versus the
out-degree d for Rout-95

2.7 Hop Plot ExponentH

Here, the total number of pairs of nodes P(h) within h hops, defined as the total
number of pairs of nodes within less or equal to h hops, including self-pairs, and
counting all other pairs twice, is plotted as the function of the number of hops h in
log-log scale (depicted in Figs. 2.20, 2.21, 2.22 and 2.23). This gives the following
results:

• The total number of pairs of nodes, P(h), within h hops, is proportional to the
number of hops to the power of a constant, H (Eq. 2.5)

P(h) ∝ hH, h << δ (2.5)

where δ is the diameter of the graph.



40 2 Graph Structure of the Web

Fig. 2.20 Log-log plot of
the number of pairs of nodes
P(h) within h hops versus
the number of hops h for
Int-11-97

Fig. 2.21 Log-log plot of
the number of pairs of nodes
P(h) within h hops versus
the number of hops h for
Int-04-98

Fig. 2.22 Log-log plot of
the number of pairs of nodes
P(h) within h hops versus
the number of hops h for
Int-12-98
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Fig. 2.23 Log-log plot of
the number of pairs of nodes
P(h) within h hops versus
the number of hops h for
Rout-95

• If we plot the number of pairs of nodes, P(h), within h hops as a function of the
number of hops in log-log scale. For h << δ, the slope of this plot is defined to
be the hop-plot exponent H

• The number of pairs within h hops is as given in Eq.2.6.

P(h) =
{
chH, h << δ

|V |2, h ≥ δ
(2.6)

where c = |V | + 2|E | to satisfy internal conditions.
• Given a graph with |V | nodes, |E | edges and H hop-plot exponent, the effective
diameter, δe f is defined as in Eq.2.7.

δe f =
( |V |2

|V | + 2|E |
)1/H

(2.7)

• The average size of the neighbourhood, NN (h), within h hops as a function of
the hop-plot exponent, H, for h << δ, is as given in Eq.2.8

NN (h) = c

|V |h
H − 1 (2.8)

where c = |V | + 2|E | to satisfy internal conditions.
• The average out-degree estimate , NN ′(h), within h hops with average out-degree
d , is as given in Eq.2.9

NN ′(h) = d(d − 1)h−1 (2.9)
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2.8 Eigen Exponent E

The plot of the eigenvalue λi as a function of i in the log-log scale for the first 20
eigenvalues in the decreasing order (shown in Figs. 2.24, 2.25, 2.26 and 2.27) gives
the following results:

• The eigenvalues, λi , of a graph are proportional to the order, i , to the power of a
constant, E is as given in Eq.2.10.

λi ∝ iE (2.10)

• The eigen exponent E is defined as the slope of the plot of the sorted eigenvalues
as a function of their order in the log-log scale.

Fig. 2.24 Log-log plot of
the eigenvalues in decreasing
order for Int-11-97

Fig. 2.25 Log-log plot of
the eigenvalues in decreasing
order for Int-04-98
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Fig. 2.26 Log-log plot of
the eigenvalues in decreasing
order for Int-12-98

Fig. 2.27 Log-log plot of
the eigenvalues in decreasing
order for Rout-95

The proofs for many of these results can be found in [2].

Problems

Download theEpinions directed network from the SNAP dataset repository available
at http://snap.stanford.edu/data/soc-Epinions1.html.

For this dataset compute the structure of this social network using the same meth-
ods as Broder et al. employed.

22 Compute the in-degree and out-degree distributions and plot the power law for
each of these distributions.

23 Choose 100 nodes at random from the network and do one forward and one
backward BFS traversal for each node. Plot the cumulative distributions of the nodes

http://snap.stanford.edu/data/soc-Epinions1.html
http://snap.stanford.edu/class/cs224w-readings/broder00bowtie.pdf
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covered in these BFS runs as shown in Fig. 2.7. Create one figure for the forward BFS
and one for the backward BFS. Howmany nodes are in theOUT and IN components?
How many nodes are in the TENDRILS component?

(Hint: The forward BFS plot gives the number of nodes in SCC+OUT and simi-
larly, the backward BFS plot gives the number of nodes in SCC+IN).

24 What is the probability that a path exists between two nodes chosen uniformly
from the graph? What if the node pairs are only drawn from the WCC of the two
networks? Compute the percentage of node pairs that were connected in each of
these cases.
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Chapter 3
Random Graph Models

The exercises in Chap.1 required the computation of several network properties. Are
these computed values as expected or surprising? From these values, it is impossible
to conclude per se. Instead, we require a null model for comparison. One such null
model for the study on real-world graphs would be random graphs. There have been
numerous approaches to generate random graphs. In this section, we will look at
some of the most prominent models used to generate random graphs that are capable
of being compared with real-world graphs.

3.1 Random Graphs

A random graph, denoted by G∗(|V |, |E |), can be defined as a collection of vertices,
with edges connecting pairs of them at random. It is assumed that the presence or
absence of an edge between two vertices is assumed to be independent of the presence
or absence of any other edge, so that each edge may be considered to be present with
probability p.

3.2 Erdös–Rényi Random Graph Model

Paul Erdös and Alfréd Rényi were two prominent Hungarian mathematicians who
proposed this random graph model which has certain properties which, with surpris-
ing accuracy match the properties of real-world networks.

Let G |V |,|E | denote the set of all graphs having |V | vertices, v1, v2, . . . , v|V | and
|E | edges. These graphs must not have self-edges or multiple edges. Thus a graph
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belonging to G |V |,|E | is obtained by choosing |E | out of the possible
(|V |

2

)
edges

between the vertices v1, v2, . . . , v|V |, and therefore the number of elements ofG |V |,|E |
is equal to

((|V |
2 )|E |

)
. A random graph �|V |,|E | can be defined as an element of G |V |,|E |

chosen as random, so that each of the elements of G |V |,|E | have the same probability
to be chosen, namely 1

((
|V |
2 )

|E | )
.

From a different viewpoint, the formation of a random graph may be considered
as a stochastic process defined as follows: At time t = 1 we choose one out of
the

(|V |
2

)
possible edges connecting the vertices v1, v2, . . . , v|V |, each of these edges

having the same probability of being chosen, let this edge be denoted by e1. At
time t = 2 we choose one of the

(|V |
2

) − 1 edges different from e1, all of these being
equiprobable. Continuing this process at time t = k+1we choose one of the

(|V |
2

)−k
possible edges different from e1, e2, . . . , ek already chosen, each of the remaining
edges being equiprobable, i.e, having probability 1

(|V |
2 )−k

. This graph consisting of

vertices v1, v2, . . . , v|V | and the edges e1, e2, . . . , e|E | is the random graph denoted
by �|V |,|E |.

This second point of view gives us the evolution of �|V |,|E | as |E | increases. This
evolution shows very clear-cut features. If |V | is a fixed large positive integer and |E |
is increasing from 1 to

(|V |
2

)
, the evolution passes through five clearly distinguishable

phases. These phases correspond to ranges of growth of the number |E | of edges,
these ranges being defined in terms of the number |V | of vertices. These phases, with
increasing p, are as follows:

1. p = 0: Graph with |V | isolated vertices.
2. Phase 1, p = 1

|V |−1 : Giant component appears.

3. Phase 2, p = C
|V |−1 : The average degree is constant but lots of isolated vertices

still exist.
4. Phase 3, p = log|V |

|V |−1 : Fewer number of isolated vertices exist.

5. Phase 4, p = 2log|V |
|V |−1 : The graph contains no more isolated vertices.

6. Phase 5, p = 1: A complete graph is obtained.

The proofs for each of these phases can be found in [5].
There are two variants of this graph model,

• Gn,p denotes a graph on n vertices where each edge (u,v) appears independent
and identically distributed with probability p.

• Gn,m denotes a graph on n vertices and m uniformly at random picked edges.

n, p and m do not uniquely determine the graphs. Since the graph is the result
of a random process, we can have several different realizations for the same values
of n, p and m. Figure3.1 gives instances of undirected graphs generated using this
model and Fig. 3.2 are examples of directed graphs also generated using the model.
Each of these graphs have n = 5 and m = 5.

If we consider a random graph �|V |,|E | having |V | possible vertices and |E | edges,
and choose uniformly at random one of the

((|V |
2 )|E |

)
possible graphs which can be
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(a) First undirected graph
rendering of G5,5

(b) Second undirected
graph rendering of G5,5

(c) Third undirected graph
rendering of G5,5

Fig. 3.1 Figure shows three undirected graph variants of G5,5

(a) First directed graph
rendering of G5,5

(b) Second directed graph
rendering of G5,5

(c) Third directed graph
rendering of G5,5

Fig. 3.2 Figure shows three directed graph variants of G5,5
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formed from the |V | vertices P1,P2,. . .,P|V | by selecting |E | edges from the
(|V |

2

)

possible edges. The effective number of vertices of �|V |,|E | may be less than |V |
since some vertices Pi may not be connected in�|V |,|E | with any other vertices. These
vertices Pi are the isolated vertices. These isolated vertices are still considered as
belonging to �|V |,|E |.

�|V |,|E | is called completely connected if it effectively contains all the vertices
P1,P2,. . .,Pn .

�|V |,|E | has the statistical properties stated in the Theorems2, 3, 4 and 5.

Theorem 2 If P0(|V |, |Ec|) denotes the probability of �|V |,|E | being completely con-
nected, then we get Eq.3.1

lim|V |→∞ P0(|V |, |Ec|) = e−e−2c
(3.1)

where |Ec| = [ 12 |V |log|V | + c|V |]. Here, c ∈ R and [x] denotes the integral part
of x.

Theorem 3 If Pk(|V |, |Ec|) (k = 0, 1, . . .) denotes the probability of the giant
component of �|V |,|E | consisting effectively of |V | − k vertices, then we get Eq.3.2

lim|V |→∞ Pk(|V |, |Ec|) = (e−2c)ke−e−2c

k! (3.2)

i.e, the number of vertices outside the giant component of �|V |,|E | is distributed in
the limit according to Poisson’s law with mean e−2c.

Theorem 4 If
∏

k(|V |, |Ec|) denotes the probability of �|V |,|E | consisting of exactly
k + 1 disjoint components (

∏
0(|V |, |Ec|) = P0(|V |, |Ec|)). Then we get Eq.3.3

lim|V |→∞
∏

k

(|V |, |Ec|) = (e−2c)ke−e−2c

k! (3.3)

i.e, the number of components of �|V |,|E | diminished by one is the limit distributed
according to Poisson’s law with mean value e−2c.

Theorem 5 If the edges of �|V |,|E | are chosen successively so that after each step,
every edge which has not yet been chosen has the same probability to be chosen as the
next, and if we continue this process until the graph becomes completely connected,
the probability that the number of necessary steps v will be equal to a number l is
given by Eq.3.4

P(v|V |) =
[
1

2
|V |log|V |] + l

]
∼ 2

n
e

−2l
n −e

−2l
n (3.4)

for |l| = O(n) where v|V | denotes the number of edges of �|V |,|E | and we get Eq.3.5
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lim|V |→∞ P

(
v|V | − 1

2 |V |log|V |
|V | < x

)

= e−e−2x
(3.5)

The proofs for these theorems may be found in [4].

3.2.1 Properties

We will look at various graph properties of the Gn,p variant of this graph model.

3.2.1.1 Edges

Let P(|E |) denote the probability that Gn,p generates a graph on |E | edges.

P(|E |) =
(

Emax

|E |
)

p|E |(1 − p)Emax −|E | (3.6)

From Eq.3.6, we observe that P(|E |) follows a binomial distribution with mean
of pEmax and variance of p(1 − p)Emax .

3.2.1.2 Degree

Let Xv be the random variable measuring the degree of vertex v.

Xv = Xv,v1 + Xv,v2 + · · · + Xv,v|V |−1

where Xv,u is a {0,1}-random variable which tells us whether or not the edge (v,u)
exists. The expectation of the degree of vertex v is as given in Eq.3.7.

E[Xv] =
v|V |−1∑

u=v1

E[Xv,u] = p(|V | − 1) (3.7)

3.2.1.3 Degree Distribution

The degree distribution of Gn,p is given in Eq.3.8

P(k) =
(|V | − 1

k

)
pk(1 − p)|V |−1−k (3.8)
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Equation3.8 shows that the degree distribution follows a binomial distribution
with mean, k = p(|V | − 1) and variance, σ 2 = p(1 − p)(|V | − 1).

σ

k
=

[
1 − p

p

1

|V | − 1

] 1
2

→ 1

|V | − 1
as |V | → ∞

By the law of large numbers, as the network size increases, the distribution
becomes increasingly narrow, i.e, we are increasingly confident that the degree of
the vertex is in the vicinity of k.

3.2.1.4 Clustering Coefficient

The clustering coefficient of a graph is given by Sect. 3.2.1.4.

Ci = 2ei

ki (ki − 1)

where ei is the number of edges between i’s neighbours.

ei =
{

p ki (ki −1)
2 i f undirected

pki (ki − 1) i f directed
(3.9)

From Eq.3.9, we get

Ci =
{

2
ki (ki −1) p ki (ki −1)

2 i f undirected
2

ki (ki −1) pki (ki − 1) i f directed
=

{
p i f undirected

2p i f directed
(3.10)

Ci → 0 as |V | → ∞
The clustering coefficient of Gn,p is small. As the graph gets bigger with fixed k,

C decreases with |V |.

3.2.1.5 Diameter

The path length is O(log|V |) and the diameter is O(
log|V |

α
) where α denotes the

expansion of Gn,p.
A graph G(V, E) has expansion α if

∀S ⊆ V : number of edges leaving S ≥ α min(|S|, |V \ S|)
=⇒ α = minS⊆V

number of edges leaving S

min(|S|, |V \ S|)
(3.11)
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3.2.2 Drawbacks of Gn, p

The exercise in this chapter will require the computations of the real world graph
and the Gn,p.

These computations will show that the degree distribution of Gn,p greatly differs
from that of real-world ones. The giant component in most real-world networks does
not emerge through phase transition, and the clustering coefficient of Gn,p is too low.

3.2.3 Advantages of Gn, p

In spite of these drawbacks, Gn,p acts as an extremely useful null model which assists
in the computation of quantities that can be compared with real data, and helps us
understand to what degree a particular property is the result of some random process.

3.3 Bollobás Configuration Model

BélaBollobás is a British-Hungarianmathematicianwho proposed this configuration
model to generate random graphs. For a graph G(V, E), let d ∈ N and |V | > d such
that |V |d is even. This model starts with a uniform random d-regular graph on |V |
vertices, and proceeds by the following steps.

1. Start with |V | vertices and draw d half-edges emanating from each of these
vertices, so that the ends of these half-edges are all distinct.

2. Let W be the set of ends of these half-edges. Index these ends by |V | × d, where
(i ,1), (i ,2), . . ., (i ,d) are the ends emanating from vertex i . Now choose a random
matching M of the set W of ends (uniformly at random from the set of all
matchings of W ) and use the edges of the random matching to join these pairs of
half-edges to produce an edge. This edge could be a self-edge if the matchingM
joins two half-edges that emanate from the same vertex, or a multiple edge if the
matching has another edge between the same two vertices.

3. Repeat this process of matching half-edges until all pairs of half-edges have been
paired. This generates a d-regular graph on |V |.
Figure3.3 gives an instance of a random graph generated on d = 3 and |V | = 4.
Let G∗(|V |, d) denote the random d-regular graph produced by this process.

However, it is not a uniform random graph. The probability that a particular graph
arises depends on the number of loops and on the multiplicities of the edges. The
probability that a graph generated using this process is simple is as given in Eq.3.12.

P{G∗(|V |, d) is simple} → e
−(d2−1)

4 as |V | → ∞ (3.12)
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(a) 3 half-edges emanating from each of the 4 vertices

(b) 3 half-edges matched randomly

(c) Resultant graph of Fig 4.3b

Fig. 3.3 A random graph generated using Bollobás configuration model with d = 3 and |V | = 4

3.4 Permutation Model

The permutation model also generates a random graph. It starts with |V | vertices
and picks d permutations, σ1, σ2, . . ., σd , uniformly at random from the symmetric
group Sn , with replacement. For each l ∈ d and each i ∈ |V |, join i to σi (forming
a loop if σl(i) = i). This produces a random (2d)-regular graph which is commonly
denoted as R∗(|V |, 2d).

The graph is simple if and only if the following conditions are satisfied,

1. None of the permutations have any fixed points.
2. None of the permutations have any 2-cycles.
3. No two permutations agree anywhere.
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The probability that this graph is simple as given in Eq.3.13.

P{R∗(|V |, 2d) is simple} → e−de−2de−(d
2) = e

−d2

2−d as |V | → ∞ (3.13)

The proof for Eqs. 3.12, 3.13 and other properties of graphs generated using
Bollobás or Permutation models can be found in [1].

3.5 Random Graphs with Prescribed Degree Sequences

Reference [2] describes several algorithms used to uniformly generate randomgraphs
with prescribed degree sequences to be used asmodel of complex networks. Compar-
ing an observed network to an ensemble of such graphs allows us to detect deviations
from randomness in network properties.

3.5.1 Switching Algorithm

This algorithm uses a Markov chain to generate a random graph with a given degree
sequence. Here, we start from a given random network and carry out a series of
Monte Carlo switching steps whereby a pair of edges (A → B,C → D) is selected
at random and the ends are exchanged to give (A → D,C → B). The exchange
is only performed if no self-edges or multiple edges occur. Otherwise, it is not
performed. The entire process is repeated some number Q|E | times where Q ∈ N

is chosen large enough so that the Markov chain shows good mixing. As with many
Markov chain methods, this method suffers because in general we have no measure
of how long to wait for proper mixing. Reference [2] states that empirically Q = 100
appears to be adequate.

3.5.2 Matching Algorithm

In this algorithm, each vertex is assigned a set of half-edges according to a desired
degree sequence. Then, a pair of half-edges are picked randomly and joined up to
create the edges of the graph. If self-edges or multiple edges are created, the entire
graph is discarded and the process starts over from scratch.

This process will correctly generate random graphs with desired properties. How-
ever, the expected number of edges between two vertices will often exceed one. This
makes it unlikely that the procedure will run to completion except in the rarest of
cases. To obviate this problem, a modification of the method can be used in which
following selection of a pair of half-edges that create a multiple edge, instead of
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discarding the graph, an alternate half-edge pair is randomly selected. Although the
method generates a biased sample of possible graphs, not significantly serving the
required purpose.

3.5.3 “Go with the Winners” Algorithm

The “gowith the winners” algorithm is a non-Markov chainMonte Carlo method for
sampling uniformly from a given distribution. Consider a colony of M graphs. Start
with the appropriate number of half-edges for each vertex and repeatedly choose
at random a pair of half-edges and link them to create an edge. If a multiple edge
or self-edge is generated, the graph containing it is removed from the colony and
discarded. To compensate for the resulting slow decline in the size of the colony, its
size is periodically doubled by cloning each of the surviving graphs; this cloning step
is carried out at a predetermined rate chosen to keep the size of the colony roughly
constant on average. This process is repeated until all half-edges have been linked,
then one of the graphs is chosen at random from the colony and assigned a weight

Wi = 2−c m

M

where c is the number of cloning stepsmade andm is the number of surviving graphs.
The mean of any quantity X over a set of such graphs is

∑

i
Wi Xi

∑

i
Wi

where Xi is the value of X in the i th graph.

3.5.4 Comparison

• Switching algorithm (Sect. 3.5.1):

– Samples the configurations uniformly, generating each graph an equal number
of times within measurement error on calculation.

– Produces results essentially identical to but faster than “go with the winners”
algorithm.

• Matching algorithm (Sect. 3.5.2):

– Introduces a bias and undersamples the configurations.
– Faster than the other two methods but samples in a measurable biased way.
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• “Go with the winners” algorithm (Sect. 3.5.3):

– Produces an equal number of graphs which are more statistically correct by
sampling ensembles uniformly within permissible error.

– Far less computationally efficient than the other two methods.

From these points it is evident that any of these methods are adequate for gen-
erating suitable random graphs to act as null models. Although the “go with the
winners” and the switching algorithms, while slower, are clearly more satisfactory
theoretically, the matching algorithm gives better results on real-world problems.

Reference [2] argues in favour of using the switching method, with the “go with
the winners” method finding limited use as a check on the accuracy of sampling.

Reference [3] shows how using generating functions, one can calculate exactly
many of the statistical properties of random graphs generated from prescribed degree
sequences in the limit of the number of vertices. Additionally, the position at which
the giant component forms, the size of the giant component, the average and the
distribution of the size of the other components, average number of vertices at certain
distance from a given vertex, the clustering coefficient and the typical vertex-vertex
distances are explained in detail.

Problems

Download the Astro Physics collaboration network from the SNAP dataset reposi-
tory available at http://snap.stanford.edu/data/ca-AstroPh.html. This co-authorship
network contains 18772 nodes and 198110 edges.

Generate the graph for this dataset (we will refer to this graph as the real world
graph).

25 Erdös–Rényi random graph (G(n, m): Generate a random instance of this model
by using the number of nodes and edges as the real world graph.

26 Configuration model random graph: Generate a random instance of this model
by using the graph in the dataset.

For each of the real world graph, Erdös–Rényi graph and Cofiguration model
graph, compute the following:

27 Degree distributions

28 Shortest path length distributions

29 Clustering coefficient distributions

30 WCC size distributions

31 For each of these distributions, state whether or not the random models have the
same property as the real world graph.

http://snap.stanford.edu/data/ca-AstroPh.html


56 3 Random Graph Models

32 Are the random graph generators capable of generating graphs that are repre-
sentative of real world graphs?
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Chapter 4
Small World Phenomena

We have all had the experience of encountering someone far from home, who turns
out to share a mutual acquaintance with us. Then comes the cliché, “My it’s a small
world”. Similarly, there exists a speculative idea that the distance between vertices in
a very large graph is surprisingly small, i.e, the vertices co-exist in a “small world”.
Hence the term small world phenomena.

Is it surprising that such a phenomenon can exist? If each person is connected to
100 people, then at the first step 100 people can be reached, the next step reaches
104 people, 106 at the third step, 108 at the fourth step and 1010 at the fifth step.
Taking into account the fact that there are only 7.6 billion people in the world as of
December 2017, the six degrees of separation is not at all surprising. However, many
of the 100 people a person is connected to may be connected to one another. Due to
the presence of this overlap in connections, the five steps between every inhabitant
of the Earth is a longshot.

4.1 Small World Experiment

StanleyMilgram, an American social psychologist aimed at answering the following
question: “Given two individuals selected randomly from the population, what is the
probability that the minimum number of intermediaries required to link them is
0, 1, 2, . . . , k?” [16]. This led to his famous “small-world” experiment [15] which
contained two studies. The first study, called the “Kansas study” recruited residents
from Wichita, Kansas and the next study, called the “Nebraska study” involved
volunteers from Omaha, Nebraska. The targets for these studies were located in
Massachusetts. The authors particularly selected the volunteers from these two cities
because from a psychological perspective, they are very far away from the target’s
location. The target for the Kansas study was the wife of a divinity student living in
Cambridge, MA and that for the Nebraska study was a stockbroker who worked in
Boston and lived in Sharon, MA.
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The volunteers were sent a folder containing a document and a set of tracer cards,
with the name and some relevant information concerning their target. The following
rules were set: (i) The subjects could only send the folder to individuals they knew on
a first-name basis. If the subject did not know the target on this basis, they could send
it to only one other person who qualified this condition and was more likely to know
the target. (ii) The folder contained a roster on which the subject and all subsequent
recipients had to write their name. This roster tells the recipients all the people who
were part of this chain and thereby prevents endless loop. (iii) Every participant had
to fill out in the tracer card the relationship of the person they are sending it to, and
send it back to the authors. This helped the authors keep track of the complete and
incomplete links.

Kansas Study

The Kansas study started with 145 participants which shows a certain pattern: 56
of the chains involved a female sending the folder to another female, 58 of them
involved a male sending the folder to a male, 18 of them involved a female sending
the folder to a male, and 13 of the chains had a male passing the folder to a female.
This shows a three times greater tendency for a same-gender passing. 123 of these
participants were observed to send the folder to friends and acquaintances while the
other 22 sent the folder to relatives. However, the authors indicate that this preference
towards friends could be exclusive to the participants and this does not necessarily
generalize to the public.

Nebraska Study

The starting population for the Nebraska study was: 296 people were selected, 100
of them were people residing in Boston designated as the “Boston random” group,
100 were blue chip stock holders from Nebraska, and 96 were randomly chosen
Nebraska inhabitants called the “Nebraska random” group. Only 64 chains (29%)
completed,with 24%by “Nebraska random”, 31%byNebraska stockholder and 35%
by “Boston random”. There were 453 participants who made up the intermediaries
solicited by other participants as people likely to extend the chains towards the target.
Similar to the Kansas study, 86% of the participants sent the folders to friends or
acquaintances, and the rest to relatives. Men were ten times more likely to send the
document to other men than to women, while women were equally likely to send the
folder to males as to females. These results were probably affected by the fact that
the target was male.

Figure4.1 shows that the average number of intermediaries on the path of the
folders was between 4.4 and 5.7, depending on the sample of people chosen. The
average number of intermediaries in these chains was 5.2, with considerable differ-
ence between the Boston group (4.4) and the rest of the starting population, whereas
the difference between the two other sub-populations were not statistically signifi-
cant. The random group from Nebraska needed 5.7 intermediaries on average. On
average, 6.2 steps to make it to the target. Hence the expression “six degrees of sep-
aration”. The main conclusion was that the average path length is much smaller than
expected, and that geographic location has an impact on the average length whereas
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Fig. 4.1 Frequency
distribution of the number of
intermediaries required to
reach the target

other information, such as profession, did not. It was also observed that some chains
moved from Nebraska to the target’s neighbourhood but then goes round in circles
never making contact to complete the chain. So, social communication is restricted
less by physical distance than by social distance. Additionally, a funnelling-like phe-
nomenon was observed because 48% of chains in the last link passed through only 3
of the target’s acquaintances. Thereby, showing that not all individuals in a person’s
circle are equally likely to be selected as the next node in a chain.

Figure4.2 depicts the distribution of the incomplete chains. The median of this
distributions is found tobe2.6.There are twoprobable reasons for this: (i) Participants
are not motivated enough to participate in this study. (ii) Participants do not know to
whom they must send the folder in order to advance the chain towards the target.

The authors conclude from this study that although each and every individual is
embedded in a small-world structure, not all acquaintances are equally important.
Some are more important than others in establishing contacts with broader social
realms because while some are relatively isolated, others possess a wide circle of
acquaintances.

What is of interest is that Milgram measured the average length of the routing
path on the social network, which is an upper bound on the average distance (as
the participants were not necessarily sending postcards to an acquaintance on the
shortest path to the target). These results prove that although the world is small, the
actors in this small world are unable to exploit this smallness.

Although the idea of the six degrees of separation gained quick and wide accep-
tance, there is empirical evidence which suggests that we actually live in a world
deeply divided by social barriers such as race and class.

Income Stratification

Reference [3] in a variation of the small world study, probably sent to Milgram
for review, not only showed extremely low chain completion rates (below 18%)
but also suggested that people are actually separated by social class. This study
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Fig. 4.2 Frequency distribution of the intermediate chains

consisted of 151 volunteers from Crestline, Ohio, divided into low-income, middle-
income and high-income groups. These volunteers were to try to reach a low-income,
middle-income and high-income person in Los Angeles, California. While the chain
completion rate was too low to permit statistical comparison of subgroups, no low-
income sender was able to complete chains to targets other than the low-income
target groups. The middle and high income groups did get messages through to some
people in every other income group. These patterns suggest a world divided by social
class, with low-income people disconnected.

Acquaintance Networks

Milgram’s study of acquaintance networks [11] between racial groups also reveals
not only a low rate of chain completion but also the importance of social barriers.
Caucasian volunteers in Los Angeles, solicited through mailing lists, were asked
to reach both Caucasian and African-American targets in New York. Of the 270
chains started and directed towards African-American targets, only 13% got through
compared to 33% of 270 chains directed towards Caucasian targets.

Social Stratification

Reference [13] investigated a single urbanized area in the Northeast. The research
purposewas to examine social stratification, particularly barriers betweenCaucasians
and African-Americans. Of the 596 packets sent to 298 volunteers, 375 packets were
forwarded and 112 eventually reached the target—a success rate of 30%. The authors
concluded that,
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Communication flowsmainlywithin racial groups. Crossing the racial boundary is less likely
to be attempted and less likely to be effective.

Urban Myth

Reference [10] speculates that the six degrees of separation may be an academic
equivalent of an urban myth. In Psychology Today, Milgram recalls that the target
in Cambridge received the folder on the fourth day since the start of the study,
with two intermediaries between the target and a Kansas wheat farmer. However, an
undated paper found in Milgram’s archives, “Results of Communication Project”,
reveals that 60 people had been recruited as the starting population from a newspaper
advertisement inWichita. Just 3 of the 60 folders (5%) reached the lady inCambridge,
passing through an average of 8 people (9 degrees of separation). The stark contrast
between the anecdote and the paper questions the phenomenon.

Bias in Selection of Starting Population

Milgram’s starting population has several advantages: The starting population had
social advantages, theywere far from a representative group. The “Nebraska random”
group and the stock holders from Nebraska were recruited from a mailing list apt to
contain names of high income people, and the “Boston random” groupwere recruited
from a newspaper advertisement. All of these selected would have had an advantage
in making social connections to the stockbroker.

The Kansas advertisement was worded in a way to particularly attract sociable
people proud of their social skills and confident of their powers to reach someone
across class barriers, instead of soliciting a representative group to participate. This
could have been done to ensure that the participants by virtue of their inherent social
capital could increase the probability of the folder reaching the target with the least
amount of intermediaries.

Milgram recruited subjects for Nebraska and Los Angeles studies by buyingmail-
ing lists. People with names worth selling (who would commonly occur in mailing
lists) are more likely to be high-income people, who are more connected and thus
more apt to get the folders through.

Reference [10] questionswhetherMilgram’s low success rates results from people
not bothering to send the folder or does it reveal that the theory is incorrect. Or do
some people live in a small, small world where they can easily reach people across
boundaries while others do not. Further, the paper suggests that the research on the
small world problem may be a familiar pattern:

We live in a world where social capital, the ability to make personal connections, is not
widespread and more apt to be a possession of high income, Caucasian people or people
with exceptional social intelligence. Certainly some people operate in small worlds such as
scientists with worldwide connections or university administrators. But many low-income
or minority people do not seem to. What the empirical evidence suggests is that some people
are well-connected while others are not. A world not of elegant mathematical patterns where
a random connector can zap us together but a more prosaic world, a lot like a bowl of lumpy
oatmeal.
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Results and Commentaries

People who owned stock had shorter paths (5.4) to stockbrokers than random people
(6.7). People from Boston area have even closer paths (4.4). Only 31 out of the 64
chains passed through one of three people as their final step, thus not all vertices and
edges are equal. The sources and target were non-random. 64 is not a sufficiently
large sample to base a conclusion on. 25% of the approached refused to participate.
It was commonly thought that people would find the shortest path to the target but the
experiment revealed that they instead used additional information to form a strategy.

WhenMilgram first published his results, he offered two opposing interpretations
of what this six degrees of separation actually meant. On the one hand, he observed
that such a distance is considerably smaller than what one would naturally intuit. But
at the same time, Milgram noted that this result could also be interpreted to mean
that people are on average six worlds apart:

When we speak of five intermediaries, we are talking about an enormous psychological
distance between the starting and target points, a distance which seems smaller only because
we customarily regard five as a small manageable quantity.We should think of the two points
as being not five persons apart, but five circles of acquaintances apart—five structures apart.

Despite all this, the experiment and the resulting phenomena have formed a crucial
aspect in our understanding of social networks. The conclusion has been accepted in
the broad sense: social networks tend to have very short paths between essentially
arbitrary pairs of people. The existence of these short paths has substantial conse-
quences for the potential speed with which information, diseases, and other kinds of
contagion can spread through society, as well as for the potential access that the social
network provides to opportunities and to people with very different characteristics
from one’s own.

This gives us the small world property , networks of size n have diameter O(logn),
meaning that between any two nodes there exists a path of size O(logn).

4.2 Columbia Small World Study

All studies concerning large-scale social networks focused either on non-social net-
works or on crude proxies of social interactions. To buck this trend, Dodds,Muhamad
and Watts, sociologists at Columbia University, performed a global, Internet-based
social search experiment [4] to investigate the small world phenomenon in 2003.
In this experiment, participants registered online and were randomly assigned one
of 18 targets of various backgrounds from 13 countries. This was done to remove
biases concerning race, gender, nationality, profession, etc. Participants were asked
to help relay an email to their allocated target by forwarding it to social acquaintances
whom they considered closer than themselves to the target. Of the 98847 individuals
who had registered, about 25% had initiated chains. Because subsequent senders
were effectively recruited by their own acquaintances, the participation rate after
the first step increased to an average of 37%. Including the initial and subsequent
senders, data were recorded on 61168 individuals from 166 countries, constituting
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24163 distinct message chains. The sender had to provide a description of how he or
she had come to know the person, alongwith the type and strength of the resulting
relationship.

The study observed the following: When passing messages, the senders typically
used friendships in preference to business or family ties. Successful chains in com-
parison with incomplete chains disproportionately involved professional ties (33.9
versus 13.2%) rather than friendship and familial relationships (59.8 versus 83.4%).
Men passed messages more frequently to other men (57%) and women to other
women (61%) and this tendency to pass to a same gender contact was strengthened
by about 3% if the target was the same gender as the sender and similarly weakened
in the opposite case. Senders were also asked why they considered their nominated
acquaintance a suitable recipient. Geographical proximity of acquaintance to tar-
get and similarity of occupation accounted for atleast half of all choices. Presence
of highly connected individuals appear to have limited relevance to any kind of
social search involved in this experiment. Participants relatively rarely nominated an
acquaintance primarily because he or she had more friends, and individuals in suc-
cessful chains were far less likely than those in incomplete chains to send messages
to hubs (1.6 versus 8.2%). There was no observation of message funneling : at most
5% of messages passed through a single acquaintance of any target, and 95% of all
chains were completed through individuals who delivered atmost 3 messages. From
these observations, the study concluded that social search is an egalitarian exercise,
not one whose success depends on a small minority of exceptional individuals.

Although the average participation rate was 37%, compounding effects of attrition
over multiple links resulted in exponential attenuation of chains as a function of their
length and therefore leading to an extremely low chain completion rate. Only a mere
384 of 24163 chains reached their targets. There were three reasons for the termi-
nation of chains: (i) randomly, because of an individual’s apathy or disinclination to
participate, (ii) chains get lost or are otherwise unable to reach their target, at longer
chain lengths, (iii) individuals nearer the target are more likely to continue the chain,
especially at shorter chain lengths. However, the random-failure hypothesis gained
traction because with the exception of the first step, the attrition rates remain almost
constant for all chain lengths at which there is sufficiently large N , and the senders
who didn’t forward their messages after a buffer time were asked why they hadn’t
participated. Less than 0.3% of those contacted claimed that they couldn’t think of
an appropriate recipient, suggesting that lack of interest or incentive, not difficulty,
was the main reason for chain termination.

The aggregate of the 384 completed chains across targets (Fig. 4.3) gives us an
average length of 4.05 as shown in Fig. 4.4.

However, this number is misleading because it represents an average only over
the completed chains, and shorter chains are more likely to be computed. To correct
for the 65% dropout per step, the ideal frequency distribution of chain lengths, n′(L),
i.e, chain lengths that would be observed in hypothetical limit of zero attrition, may
be estimated by accounting for observed attrition as shown in Eq. 4.1.
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Fig. 4.3 Average per-step
attrition rates (circles) and
95% confidence interval
(triangles)

Fig. 4.4 Histogram
representing the number of
chains that are completed in
L steps

Fig. 4.5 “Ideal” histogram
of chain lengths in Fig. 4.4
by accounting for message
attrition in Fig. 4.3

n′(L) = n(L)
L−1∏

i=0
(1 − ri )

(4.1)

where n(L) is the observed number of chains completed in L steps and rL is the
max-likelihood attrition rate from step L to L + 1. Figure4.5 shows the histogram
of the corrected number of chains with a poorly specified tail of the distribution, due
to the small number of observed chains at large L . This gives us the median, L∗ = 7,
the typical ideal chain length for the hypothetical average individual. For chains that
started and ended in the same country, L∗ = 5, or in different countries, L∗ = 7.

The study finds that successful chains are due to intermediate toweak strength ties.
It does not require highly connected hubs to succeed but instead relies on professional
relationships. Small variations in chain lengths and participation rates generate large
differences in target reachability. Although global social networks are searchable,
actual success depends on individual incentives. Since individuals have only limited,
local information about global social networks, finding short paths represents a non-
trivial search effort.

On the one hand, all the targets may be reachable from random initial seeders in
only a few steps, with surprisingly little variation across targets in different coun-
tries and professions. On the other hand, small differences in either the participation
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rates or the underlying chain lengths can have a dramatic impact on the apparent
reachability of the different targets. Therefore, the results suggest that if the indi-
viduals searching for remote targets do not have sufficient incentives to proceed, the
small-world hypothesis will not appear to hold, but that even the slightest increase in
incentives can render social searches successful under broad conditions. The authors
add that,

Experimental approach adopted here suggests that empirically observed network structures
can only be meaningfully interpreted in light of actions, strategies and even perceptions of
the individuals embedded in the network: Network structure alone is not everything.

4.3 Small World in Instant Messaging

Reference [5] analyzed a month of anonymized high-level communication activities
within the whole of the Microsoft Messenger instant-messaging system. This study
was aimed at examining the characteristics and patterns that emerge from the collec-
tive dynamics of a large number of people, rather than the actions and characteristics
of individuals. The resulting undirected communication graph contained 240 mil-
lion active user accounts represented as nodes and there is an edge between two
users if they engaged in a two-way conversation at any point during the observation
period. This graph turned out to have a giant component containing almost all of
the nodes, and the distances within this giant component were very small. Indeed,
the distances in the Instant Messenger network closely corresponded to the numbers
from Milgram’s experiment, with an estimated average distance of 6.6, and an esti-
mated median of 7 (as seen in Fig. 4.6). This study containing more than two million
times larger than [15], gives “seven degrees of separation”. There are longer paths
with lengths up to 29. A random sample of 1000 users was chosen and breadth-first
search was performed from each of these separately. The reason for this sampling is
because the graph was so large that performing breadth-first search from each and
every one of these users would have taken an astronomical amount of time.

Fig. 4.6 Distribution of
shortest path lengths
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Fig. 4.7 A hand-drawn picture of a collaboration graph between various researchers. Most promi-
nent is Erdös

4.4 Erdös Number

A similar phenomenon is observed in collaborations among researchers. The most
popular one is the Erdös number. In the collaboration graph of mathematicians as
vertices and an edge between mathematicians if they have co-authored a paper, the
Erdös number is the distance between amathematician and Erdös. Figure4.7 shows a
small hand-drawn piece of the collaboration graph, with paths leading to Paul Erdös.
The highlight is that most mathematicians have an Erdös number of atmost 5 and if
scientists of other fields were included, it is atmost 6.

4.5 Bacon Number

The compelling belief that the American actor and musician, Kevin Bacon was at the
center of the Hollywood universe, led three college students to adapt the Erdös num-
ber into the Bacon number. Here, a collaboration graph has Hollywood performers
as nodes and edge between nodes indicates that the performers have appeared in a
movie. The Bacon number of a performer gives the number of steps to Kevin Bacon.
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The average is 2.9 and there is a challenge to find one that is greater than 5. (there
is one with Bacon number 8 that involves a 1928 Soviet pirate movie). Only 12% of
all performers cannot be linked to Bacon. There is also a computer game called the
“Six Degrees of Kevin Bacon”, where players are required to find the shortest path
between an arbitrary actor and Kevin Bacon.

4.6 Decentralized Search

Given a graph, s has to send a message to t , passing it along the edges of this graph,
so that the least number of steps is taken. s only knows the location of its neighbours
as well as the location of the target t , and does not know the neighbours of anyone
else except itself. Each vertex has its local information, i.e, a vertex u in a given step
has knowledge of:

1. The set of local contacts among among all the vertices
2. The location of the target t
3. The locations and long-range contacts of all the vertices who were part of this

message chain

Given this information, u must choose one of its contacts v to pass on themessage.

4.7 Searchable

A graph is said to be searchable or navigable if its diameter is O((log|V |)β), i.e, the
expected delivery time of a decentralized algorithm is polylogarithmic. Therefore, a
non-searchable or a non-navigable graph is one which has a diameter of O(|V |α),
i.e, the expected delivery time of a decentralized algorithm is not polylogarithmic.

In other words, a graph is searchable if the vertices are capable of directing
messages through other vertices to a specific vertex in only a few hops.

4.8 Other Small World Studies

Small World in an Interviewing Bureau

Reference [7] conducted a small-world study where they analysed 10, 920 shortest
path connections and small-world routes between 105 members of an interviewing
bureau. They observed that the mean small-world path length (3.23) is 40% longer
than themean of the actual shortest paths (2.30), showing that mistakes are prevalent.
AMarkov model with a probability of simply guessing an intermediary of 0.52 gives
an excellent fit to these observations, thus concluding that people make the wrong
small-world choice more than half the time.
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Reverse Small World Study

Reference [6] attempted to examine and define the network of a typical individual
by discovering how many of her acquaintances could be used as first steps in a
small-world procedure, and for what reasons. The starting population were provided
background information about each of 1267 targets in the small-world experiment
and asked to write down their choice, amongst the people they knew, for the first
link in a potential chain from them to each of these targets. The subjects provided
information on each choice made and the reason that choice had been made. The
reason could be in one or more of four categories: something about the location of
the target caused the subject to think of her choice; the occupation of the target was
responsible for the choice; the ethnicity of the target; or some other reason.

The study drew the following conclusions. First, amean of 210 choices per subject.
However, only 35 choices are necessary to account for half the world. Of the 210, 95
(45%)were chosenmost often for location reasons, 99 (47%)were chosenmost often
for occupation reasons, and only 7% of the choices were mainly based on ethnicity
or other reasons. Second, the choices were mostly friends and acquaintances, and
not family. For any given target, about 82% of the time, a male is likely to be chosen,
unless both subject and target are female, or if the target has a low-status occupation.
Over 64% of the time, this trend appears even when female choices are more likely.
Lastly, the order of the reasons given were: location, occupation and ethnicity.

The authors conclude that the strong similarity between predictions from these
results and the results of [16] suggests that the experiment is an adequate proxy for
behavior.

4.9 Case Studies

4.9.1 HP Labs Email Network

Reference [1] simulates small-world experiments on HP Lab email network, to eval-
uate how participants in a small world experiment are able to find short paths in a
social network using only local information about their immediate contacts.

In the HP Lab network, a social graph is generated where the employees are the
vertices and the there is an edge between vertices if there has been atleast 6 emails
exchangedbetween the corresponding employees during the periodof the study.Mass
emails such as announcements sent tomore than 10 individuals at oncewere removed
to minimize likelihood of one-sided communications. With these conditions, Fig. 4.8
shows the graph having 430 vertices with a median of 10 edges and a mean of 12.9.
The degree distribution, Fig. 4.9, is highly skewed with an exponential tail. Here,
each individual can use knowledge only of their own email contacts, but not their
contacts’ contacts, to forward the message. In order to avoid loops, the participants
append their names to the message as they receive it.



4.9 Case Studies 69

Fig. 4.8 Email communication between employees of HP Lab

Fig. 4.9 Degree distribution of HP Lab network
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The first strategy involved sending the message to an individual who is more
likely to know the target by virtue of the fact that he or she knows a lot of people.
Reference [2] has shown that this strategy is effective in networks with power law
distribution with exponent close to 2. However, as seen in Fig. 4.9, this network does
not have a power law, but rather an exponential tail, more like a Poisson distribution.
Reference [2] also shows that this strategy performs poorly in the case of Poisson
distribution. The simulation confirms this with a median of 16 and an average of 43
steps required between two randomly chosen vertices.

The second strategy consists of passing messages to the contact closest to the
target in the organizational hierarchy. In the simulation, the individuals are given full
knowledge of organizational hierarchy but they have no information about contacts of
individuals except their own. Here, the search is tracked via the hierarchical distance
(h-distance) between vertices. The h-distance is computed as follows: individuals
have h-distance 1 to their manager and everyone they share a manager with. Then,
the distances are recursively assigned, i.e, h-distance of 2 to their first neighbour’s
neighbour, 3 to their second neighbour’s neighbour, and so on. This strategy seems
to work pretty well as shown in Figs. 4.10 and 4.11. The median number of steps was
only 4, close to the median shortest path of 3. The mean was 5 steps, slightly higher
than the median because of the presence of a four hard to find individuals who had
only a single link. Excluding these 4 individuals as targets resulted in a mean of 4.5
steps. This result indicates that not only are people typically easy to find, but nearly
everybody can be found in a reasonable number of steps.

Fig. 4.10 Probability of linking as a function of the hierarchical distance
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Fig. 4.11 Probability of linking as a function of the size of the smallest organizational unit indi-
viduals belong to

The last strategy was based on the target’s physical location. Individuals’ loca-
tions are given by their building, the floor of the building, and the nearest building
post to their cubicle. Figure4.12 shows the email correspondence mapped onto the
physical layout of the buildings. The general tendency of individuals in close physi-
cal proximity to correspond holds: over 87% percent of the 4000 emails are between
individuals on the same floor. From Fig. 4.13, we observe that geography could be
used to find most individuals, but was slower, taking a median number of 6 steps,
and a mean of 12.

The study concludes that individuals are able to successfully complete chains in
small world experiments using only local information. When individuals belong to
groups based on a hierarchy and are more likely to interact with individuals within
the same small group, then one can safely adopt a greedy strategy—pass the message
onto the individual most like the target, and they will be more likely to know the
target or someone closer to them.

4.9.2 LiveJournal Network

Reference [12] performed a study on the LiveJournal online community, a social
network comprising of 1.3million bloggers (as of February 2004). A blog is an online
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Fig. 4.12 Email communicationmappedonto approximate physical location. Eachblock represents
a floor in a building. Blue lines represent far away contacts while red ones represent nearby ones

Fig. 4.13 Probability of two individuals corresponding by email as a function of the distance
between their cubicles. The inset shows how many people in total sit at a given distance from one
another



4.9 Case Studies 73

Fig. 4.14 In-degree and
out-degree distributions of
the LiveJournal network

diary, often updated daily, typically containing reports on the user’s personal life,
reactions to world events, and commentary on other blogs. In the LiveJournal system,
eachblogger also explicitly provides a profile, includinggeographical location among
other information, and a list of other bloggerswhomhe or she considers to be a friend.
Of these 1.3million bloggers, therewere about half amillion in the continentalUnited
States who listed a hometown and state which could be mapped to a latitude and a
longitude. Thus, the discussion of routing was from the perspective of reaching the
home town or city of the destination individual.

They defined “u is a friend of v” relationship, by the explicit appearance of blogger
u in the list of friends in the profile of blogger v. Let d(u, v) denote the geographic
distance between u and v. There are about 4 million friendship links in this directed
network, an average of about eight friends per user. It was observed that 77.6% of
the graph formed a giant component. Figure4.14 depicts the in-degree and the out-
degree distributions for both the full network and the network of the users who could
be geographically mapped. The parabolic shape shows that the distribution is more
log-normal than a power law.

They perform a simulated version of the message-forwarding experiment in the
LiveJournal, using only geographic information to choose the next message holder
in a chain. This was to determine whether individuals using purely geographic infor-
mation in a simple way can succeed in discovering short paths to a destination city.
This approach using a large-scale network of real-world friendships but simulating
the forwarding of messages, allowed them to investigate the performance of simple
routing schemes without suffering from a reliance on the voluntary participation of
the people in the network.

In the simulation, messages are forwarded in the following manner: if a person
s currently holds the message and wants to eventually reach a target t , then she
considers her set of friends and chooses as the next step in the chain the friend in
this set who is geographically closest to t . If s is closer to the target than all of his or
her friends, then s gives up, and the chain terminates. When sources and targets are
chosen randomly, we find that the chain successfully reaches the city of the target in
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Fig. 4.15 In each of 500, 000 trials, a source s and target t are chosen randomly; at each step,
the message is forwarded from the current message-holder u to the friend v of u geographically
closest to t . If d(v, t) > d(u, t), then the chain is considered to have failed. The fraction f (k) of
pairs in which the chain reaches t’s city in exactly k steps is shown (12.78% chains completed;
median 4, μ = 4.12, σ = 2.54 for completed chains). (Inset) For 80.16% completed, median 12,
μ = 16.74, σ = 17.84; if d(v, t) > d(u, t) then u picks a random person in the same city as u to
pass the message to, and the chain fails only if there is no such person available.

≈ 13% of the trials, with a mean completed-chain length of slightly more than four
(as shown in Fig. 4.15).

The authors conclude that, even under restrictive forwarding conditions, geo-
graphic information is sufficient to perform global routing in a significant fraction of
cases. This simulated experiment may be taken as a lower bound on the presence of
short discoverable paths, because only the on-average eight friends explicitly listed
in each LiveJournal profile are candidates for forwarding. The routing algorithm
was modified: an individual u who has no friend geographically closer to the target
instead forwards the message to a person selected at random from u’s city. Under
this modification, chains complete 80% of the time, with median length 12 and mean
length 16.74 (see Fig. 4.15). The completion rate is not 100% because a chain may
still fail by landing at a location in which no inhabitant has a friend closer to the
target. This modified experiment may be taken as an upper bound on completion
rate, when the simulated individuals doggedly continue forwarding the message as
long as any closer friend exists.

To closely examine the relationship between friendship and geographic distance,
for each distance δ, P(δ) denotes the proportion of pairs u, v separated by distance
d(u, v) = δ who are friends. As δ increases, it is observed that P(δ) decreases, indi-
cating that geographic proximity indeed increases the probability of friendship (as
shown in Fig. 4.16). However, for distances larger than ≈ 1, 000 km, the δ-versus-
P(δ) curve approximately flattens to a constant probability of friendship between
people, regardless of the geographic distance between them. Figure4.16 shows that
P(δ) flattens to P(δ) ≈ 5.0 × 10−6 for large distances δ; the background friendship
probability ε dominates f (δ) for large separations δ. It is thus estimated that ε is
5.0 × 10−6 . This value can be used to estimate the proportion of friendships in the
LiveJournal network that are formed by geographic and non-geographic processes.
The probability of a non-geographic friendship between u and v is ε, so on average
u will have ≈ 2.5 non-geographic friends. An average person in the LiveJournal
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Fig. 4.16 a For each
distance δ , the proportion
P(δ) of friendships among all
pairs u, v of LiveJournal
users with d(u, v) = δ is
shown. The number of pairs
u,v with d(u, v) = δ is
estimated by computing the
distance between 10, 000
randomly chosen pairs of
people in the network. b The
same data are plotted,
correcting for the
background friendship
probability: plot distance δ
versus P(δ) − 5.0 × 10−6

network has eight friends, so ≈ 5.5 of an average person’s eight friends (69% of
his or her friends) are formed by geographic processes. This statistic is aggregated
across the entire network: no particular friendship can be tagged as geographic or
non-geographic by this analysis; friendship between distant people is simply more
likely (but not guaranteed) to be generated by the nongeographic process. How-
ever, this analysis does estimate that about two-thirds of LiveJournal friendships are
geographic in nature. Figure4.16 shows the plot of geographic distance δ versus
the geographic-friendship probability f (δ) = P(δ) − ε. The plot shows that f (δ)
decreases smoothly as δ increases. This shows that any model of friendship that is
based solely on the distance between people is insufficient to explain the geographic
nature of friendships in the LiveJournal network.

Since, geographic distance alone is insufficient as the basis for a geographical
model, this model uses rank as the key geographic notion: when examining a friend
v of u, the relevant quantity is the number of people who live closer to u than v does.
Formally, the rank of v with respect to u is defined as given in Eq.4.2.

ranku(v) := |{w : d(u, w) < d(u, v)}| (4.2)

Under the rank-based friendshipmodel, the probability that u and v are geographic
friends is modelled as in Eq.4.3

Pr [u → v]α 1

ranku(v)
(4.3)

Under this model, the probability of a link from u to v depends only on the
number of people within distance d(u, v) of u and not on the geographic distance
itself; thus the non-uniformity of LiveJournal population density fits naturally into
this framework.

The relationship between rankv(u) and the probability that u is a friend of v
shows an approximately inverse linear fit for ranks up to ≈ 100, 000 (as shown in
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Fig. 4.17 The relationship between friendship probability and rank. The probability P(r) of a link
from a randomly chosen source u to the r th closest node to u, i.e, the node v such that ranku(v) = r ,
in the LiveJournal network, averaged over 10, 000 independent source samples. A link from u to one
of the nodes Sδ = {v : d(u, v) = δ}, where the people in Sδ are all tied for rank r + 1, . . . , r + |Sδ |,
is counted as a ( 1

|Sδ | ) fraction of a link for each of these ranks. As before, the value of ε represents
the background probability of a friendship independent of geography. aData for every 20th rank are
shown. b The data are averaged into buckets of size 1, 306: for each displayed rank r , the average
probability of a friendship over ranks {r − 652, . . . , r + 653} is shown. c and b The same data
are replotted (unaveraged and averaged, respectively), correcting for the background friendship
probability: we plot the rank r versus P(r) − 5.0 × 10−6

Fig. 4.17). An average person in the network lives in a city of population 1, 306. Thus
in Fig. 4.17 the same data is shown where the probabilities are averaged over a range
of 1, 306 ranks.

So, message passing in the real-world begins by making long geography-based
hops as the message leaves the source and ends by making hops based on attributes
other than geography. Thus there is a transition from geography-based to
nongeography-based routing at some point in the process.

4.9.3 Human Wayfinding

Given a network of links between concepts ofWikipedia, [18] studied howmore than
30000 trajectories from9400 people find the shortest path from a given start to a given
target concept following hyperlinks. Formally, they studied the game of Wikispeedia
in which players (information seekers) are given two random articles with the aim
to solve the task of navigating from one to the other by clicking as few hyperlinks
as possible. However, the players are given no knowledge of the global structure
and must rely solely on the local information they see on each page—the outgoing
links connecting current articles to its neighbours—and on expectation about which
articles are likely to be interlinked. The players are allowed to use the back button
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of the browser at any point in the game. This traversal from one webpage to another
by information seekers is characterized as human wayfinding.

On first thought, it might obviously occur that each game of Wikispeedia is an
instance of decentralized search. Therefore, employing a decentralized search algo-
rithm will solve the problem. However, there is a subtle difference. In a decentral-
ized search problem, each node works with local information and independently
forwards the message to the next node, forfeiting control to the successor. While in
Wikispeedia, although the information seeker has only local knowledge about the
unknown network, she stays in control all the way and can thus form more elaborate
strategies than in a multi-person scenario.

Human wayfinding is observed to take two approaches. The first approach is
where players attempt to first find a hub. A hub is a high-degree node that is easily
reachable from all over the graph and that has connections to many regions of this
graph. Then they constantly decrease the conceptual distance to the target thereafter
by following content features. While this strategy is sort of “playing it safe” and thus
commonly preferred by most of the players, it is observed that this is not the most
efficient. The other approach is to find the shortest paths between the articles while
running the risk of repeatedly getting lost. This technique is a precarious one but is
efficient, successful and thus particularly used by the top players.

This study identified aggregate strategies people use when navigating information
spaces and derived insights which could be used in the development of automatically
designing information spaces that humans find intuitive to navigate and identify
individual links that could make the Wikipedia network easier to navigate.

Based on this study, we understand that although global information was unavail-
able, humans tend to be good at finding short paths. This could be because they
possess vast amounts of background knowledge about the world, which they lever-
age to make good guesses about possible solutions. Does this mean that human-like
high-level reasoning skills are really necessary for finding short paths?

In an attempt to answer this question, [17] designed a number of navigation agents
that did not possess these skills, instead took decisions based solely on numerical
features.

The agents were constrained by several rules to make them behave the same
way humans would, thereby levelling the playing field. The agents could only use
local node features independent of global information about the network. Only nodes
visited so far, immediate neighbours, and the targetmay play a role in picking the next
node. The user can only follow links from the current page or return to its immediate
predecessor by clicking the back button. Jumping between two unconnected pages
was not possible, even if they were both visited separately before.

The agent used the navigation algorithm given in Algorithm6. Here, s is the
start node, t is the target node and V is the evaluation function. V is used to score
each neighbour u′ of the current node u and is a function of u, u′ and t only. Thus,
V (u′|u, t) captures the likelihood of u’s neighbour, u′ being closer to t than u is.
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Algorithm 6 Basic Navigation algorithm
1: procedure Navigation(s,t ,V )
2: Let S and visi ted be empty stacks
3: S.push(s)
4: while S is not empty do
5: u ← S.pop()
6: visi ted.push(u)
7: if u = t then
8: return visi ted
9: else if u is not in visi ted then
10: for all neighbours u′ of u in increasing order of V (u′|u, t) do
11: S.push(u′)
12: if u′ = t then
13: return
14: end if
15: end for
16: end if
17: end while
18: return “No path between s and t exists”
19: end procedure

The following are the candidates for the evaluation V :

• Degree-based navigation (DBN): V (u′|u, t) = out − degree(u′)
• Similarity-based navigation (SBN): V (u′|u, t) = t f − id f (u′, t)
• Expected value navigation (EVN): V (u′|u, t) = 1 − (1 − qu′t )

out−degree(u′)

• Supervised learning to learn Vi for every iteration i
• Reinforcement learning learns V i for every iteration i

The supervised and reinforcement learning were found to obtain the best results.
With the exception of DBN, even the fairly simple agents were found to do well.

The study observed that agents find shorter paths than humans on average and
therefore, no sophisticated background knowledge or high-level reasoning is required
for navigating networks. However, humans are less likely to get totally lost during
search because they typically form robust high-level plans with backup options,
something automatic agents cannot do. Instead, agents compensate for this lack of
smartness with increased thoroughness: since they cannot know what to expect, they
always have to inspect all options available, thereby missing out on fewer immediate
opportunities than humans, who focused on executing a premeditated plan, may
overlook shortcuts. In other words, humans have a common sense expectation about
what links may exist and strategize on the route to take before even making the first
move. Following through on this premeditated plan, they might often just skim pages
for links they already expect to exist, thereby not taking notice of shortcuts hidden in
the abundant textual article contents. These deeper understanding of the world is the
reason why their searches fail completely less often: instead of exact, narrow plans,
they sketch out rough, high-level strategies with backup options that are robust to
contingencies.
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4.10 Small World Models

We have observed that random graphs have a low clustering and a low diameter, a
regular graph has a high clustering and a high diameter. But, a real-world graph has
a clustering value comparable with that of a regular graph but a diameter of the order
of that of a random graph. This means that neither the random graph models nor a
regular graph generator is the best model that can produce a graph with clustering
and diameter comparable with those of real-world graphs. In this section, we will
look at models that are capable of generating graphs that exhibit the small world
property.

4.10.1 Watts–Strogatz Model

In the Watts–Strogatz model, a generated graph has two kinds of edges, local and
long-range. Start with a set V of n points spaced uniformly on a circle, and joins each
point by an edge to each of its k nearest neighbours, for a small constant k. These
form the local edges which ensure the desired high value of clustering. But this still
has a higher than desired diameter. In order to reduce the diameter, we introduce the
long-range edges. First, add and remove edges to create shortcuts between remote
parts of the graph. Next, for each edge with probability p, move the other end to a
random vertex. This gives the small world property for the graph which is pictorially
depicted in Fig. 4.18.

This Watts–Strogatz model provides insight on the interplay between clustering
and smallworld. It helps capture the structure ofmany realistic networks and accounts

Fig. 4.18 Depiction of a regular network proceeding first to a small world network and next to a
random network as the randomness, p increases
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for the high clustering of real-world networks. However, this model fails to provide
the correct degree distribution.

The Watts–Stogatz model having O(|V | 2
3 ) is a non-searchable graph.

4.10.2 Kleinberg Model

In this model, [8] begins with a set of nodes that are identified with a set of lattice
points in a n × n square, {(i, j) : i ε {1, 2, . . . , n}, j ε {1, 2, . . . , n}} and the lattice
distance between two nodes (i , j) and (k,l) is the number of lattice steps between
them d((i, j), (k, l)) = |k − i | + |l − j |. For a universal constant p ≥ 1, node u has
a directed edge to every other node within lattice distance p. These are node u’s
local contacts. For universal constants q ≥ 0 and r ≥ 0, we construct directed edges
from u to q other nodes using independent random trials; the i th directed edge from
u has endpoint v with probability proportional to [d(u, v)]−r . These are node u’s
long-range contacts. When r is very small, the long range edges are too random to
facilitate decentralized search (as observed in Sect. 4.10.1), when r is too large, the
long range edges are not random enough to provide the jumps necessary to allow
small world phenomenon to be exhibited.

This model can be interpreted as follows: An individual lives in a grid and knows
her neighbours in all directions for a certain number of steps, and the number of her
acquaintances progressively decrease as we go further away from her.

The model gives the bounds for a decentralized algorithm in Theorems 6, 7 and 8.

Theorem 6 There is a constant α0, depending on p and q but independent of n,
such that when r = 0, the expected delivery time of any decentralized algorithm is
atleast α0n

2
3

As n increases, decentralized algorithm performs best at q closer and closer to 2
(Fig. 4.19). One way to look at why this value of 2 leads to best performance is that
at this value, the long range edges are being formed in a way that is spread uniformly
over all different scales of resolution. This allows people fowarding the message to
consistently find ways of reducing their distance to the target, no matter the distance
from it.

Theorem 7 There is a decentralized algorithm A and a constant α2, independent
of n, so that when r = 2 and p = q = 1, the expected delivery time of A is atmost
α2(logn)2.

When the long-range contacts are formed independent of the geometry of the grid
(as is the case in Sect. 4.10.1), short chains will exist but the nodes will be unable to
find them.When long-range contacts are formed by a process related to the geometry
of the grid in a specific way, however, then the short chains will still form and the
nodes operating with local knowledge will be able to construct them.
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Fig. 4.19 Log of
decentralized search time as
a function of the exponent

Theorem 8 1. Let 0 ≤ r < 2. There is a constant αr , depending on p, q, r but
independent of n, so that the expected delivery time of the decentralized algorithm

is atleast αr n
2−r
3 .

2. Let r > 2. There is a constant αr , depending on p, q, r but independent of n, so
that the expected delivery time of any decentralized algorithm is atleast αr n

r−2
r−1 .

Kleinberg’s model is a searchable graph because its diameter is O((log|V |)2).

4.10.2.1 Hierarchical Model

Consider a hierarchy using b-ary tree T for a constant b. Let V denote the set of leaves
of T and n denote the size of V . For two leaves v andw, h(v,w) denotes the height of
the least common ancestor of v and w in T and f (·) determines the link probability.
For each node v ∈ V , a random link to w is created with probability proportional
to f (h(v,w)), i.e, the probability of choosing w is f (h(v,w))/

∑

x 
=v

f (h(v, x)). k

links out of each node v is created in this way, choosing endpoint w each time
independently and with repetitions allowed. This results in a graph G on the set V .
Here the out-degree is k = clog2n for constant c. This process of producing G is the
hierarchical model with exponent α if f (h) grows asymptotically like b−αh .

lim
h→∞

f (h)

b−α′h = 0 ∀ α′ < α and lim
h→∞

b−α′′h

f (h)
= 0 ∀ α′′ > α

A decentralized algorithm has knowledge of the tree T , and knows the location
of a target leaf that it must reach; however, it only learns the structure of G as it visits
nodes. The exponent α determines how the structures of G and T are related.
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Theorem 9 1. There is a hierarchical model with exponent α = 1 and polyloga-
rithmic out-degree in which decentralized algorithm can achieve search time of
O(logn).

2. For every α 
= 1, there is no hierarchical model with exponent α and polyloga-
rithm out-degree in which a decentralized algorithm can achieve polylogarithm
search time.

4.10.2.2 Group-Induced Model

A group structure consists of an underlying set of nodes and a collection of subsets
of V . The collection of groups must include V itself, and must satisfy the following
two properties, for constants λ < 1 and β > 1.

1. If R is a group of size q ≥ 2 containing a node v, then there is a group R′ ⊆ R
containing v that is strictly smaller than R, but has size atleast λq.

2. If R1, R2, . . . are groups that all have sizes atmost q and all contain a common
node v, then their union has size almost βq.

Given a group structure (V ,{Ri}), and a monotone non-increasing function f (·),
we generate a graph on V in the following manner. For two nodes v and w, q(v,w)

denotes the minimum size of the group containing both v and w. For each node
v ε V , we create a random link to w with probability proportional to f (q(v,w)).
Repeating this k times independently yields k links out of v. This is referred to as
group-induced model with exponent α if f (q) grows asymptotically like q−α.

lim
h→∞

f (q)

q−α
= 0 ∀ α′ < α and lim

h→∞
q−α′′

f (q)
= 0 ∀ α′′ > α

A decentralized search algorithm in this network is given knowledge of the full
group structure, and must follow links of G to the designated target t .

Theorem 10 1. For every group structure, there is a group-induced model with
exponent α = 1 and polylogarithm out-degree in which a decentralized algo-
rithm can achieve search time of O(logn).

2. For every α < 1, there is no group-induced model with exponent α and polylog-
arithm out-degree in which a decentralized algorithm can achieve polylogarithm
search time.

4.10.2.3 Hierarchical Models with a Constant Out-Degree

To start with a hierarchical model and construct graphs with constant out-degree k,
the value of k must be sufficiently large in terms of other parameters of this model.
To obviate the problem that t itself may have no incoming links, the search problem
is relaxed to finding a cluster of nodes containing t . Given a complete b-ary tree T ,
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where b is a constant, let L denote the set of leaves of T and m denote the size of L .
r nodes are placed at each leaf of T , forming a set V of n = mr nodes total. A graph
G on V is defined for a non-increasing function f (·), we create k links out of each
node v ∈ V , choosingw as an endpoint with probability proportional to f (h(v,w)).
Each set of r nodes at a common leaf of T is referred to as a cluster and the resolution
of the hierarchical model is defined to be r .

A decentralized algorithm is given the knowledge of T , and a target node t . It
must reach any node in the cluster containing t .

Theorem 11 1. There is a hierarchical model with exponent α = 1, constant out-
degree and polylogarithmic resolution in which a decentralized algorithm can
achieve polylogarithmic search time.

2. For every α 
= 1, there is no hierarchical model with exponent α, constant out-
degree and polylogarithmic resolution in which a decentralized algorithm can
achieve polylogarithmic search time.

The proofs for Theorems9, 10 and 11 can be found in [9].

4.10.3 Destination Sampling Model

Reference [14] describes an evolutionary model which by successively updating
shortcut edges of a small-world graph generates configurations which exhibit the
small world property.

The model defines V as a set of vertices in a regular lattice and E as the set of
long-range (shortcut) edges between vertices in V . This gives a digraph G(V, E).
Let G ′ be G augmented with edges going both ways between each pair of adjacent
vertices in lattice.

The configurations are generated in the following manner: Let Gs = (V, Es) be
a digraph of shortcuts at time s and 0 < p < 1. Then Gs+1 is defined as:

1. Choose ys+1 and zs+1 uniformly from V .
2. If ys+1 
= zs+1 do a greedy walk in G ′

s from ys to zs . Let x0 = ys+1, x1, . . . , xt =
zs+1 denote the points of this walk.

2. For each x0, x1, . . . , xt−1 with atleast one shortcut, independentlywith probability
p replace a randomly chosen shortcut with one to zs+1.

Updating shortcuts using this algorithm eventually results in a shortcut graph with
greedy path-lengths of O(log2n). p serves to dissociate shortcut from a vertex with
its neighbours. For this purpose, the lower the value of p > 0 the better, but very
small values of p will lead to slower sampling.

Each application of this algorithm defines a transition of Markov chain on a set of
shortcut configurations. Thus for any n, the Markov chain is defined on a finite state
space. Since this chain is irreducible and aperiodic, the chain converges to a unique
stationary distribution.
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Problems

Download the General Relativity and Quantum Cosmology collaboration network
available at https://snap.stanford.edu/data/ca-GrQc.txt.gz.

For the graph corresponding to this dataset (which will be referred to as real world
graph), generate a small world graph and compute the following network parameters:

33 Degree distribution

34 Short path length distribution

35 Clustering coefficient distribution

36 WCC size distribution

37 For each of these distributions, state whether or not the small world model has
the same property as the real world graph

38 Is the small world graph generator capable of generating graphs that are repre-
sentative of real world graphs?
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Chapter 5
Graph Structure of Facebook

Reference [2] explains the study of the social graph of the active users of the world’s
largest online social network, Facebook. The study mainly focused on computing
the number of users and their friendships, degree distribution, path length, clustering
and various mixing patterns. All calculations concerning this study were performed
on Hadoop cluster with 2250 machines using Hadoop/Hive data analysis frame-
work developed at Facebook. This social network is seen to display a broad range
of unifying structural properties such as homophily, clustering, small-world effect,
heterogeneous distribution of friends and community structure.

The graph of the entire social network of the active members of Facebook as of
May 2011 is analysed in an anonymized form and the focus is placed on the set of
active user accounts reliably corresponding to people. A user of Facebook is deemed
as an active member if they logged into the site in the last 28 days from the time of
measurement in May 2011 and had atleast one Facebook friend. The restriction to
study only active users allows us to eliminate accounts that have been abandoned in
the early stages of creation, and focus on accounts that plausibly represent actual indi-
viduals. This graphs precedes the existence of “subscriptions” and does not include
“pages” that people may “like”. According to this definition, the population of active
Facebook users is 721 million at the time of measurement. The world’s population
at the time was 6.9 billion people which means that this graph includes roughly 10%
of the Earth’s inhabitants. There were 68.7 billion friendships in this graph, so the
average Facebook user had around 190 Facebook friends.

The study also focuses on the subgraph of the 149 US Facebook users. The
US Census Bureau for 2011 shows roughly 260 million individuals in the US over
the age of 13 and therefore eligible to create a Facebook account. Therefore this
social network includes more than half the eligible US population. This graph had
15.9 billion edges, so an average US user had 214 other US users as friends. Note
that this average is higher than that of the global graph.

Neighbourhood function, denoted by NG(t) of a graph G returns for each t ∈ N,
the number of pairs of vertices (x,y) such that x has a path of length at most x to y.
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It provides data about how fast the “average ball” around each vertex expands. It
measures what percentile of vertex pairs are within a given distance. Although, the
diameter of a graph can be wildly distorted by the presence of a single ill- connected
path in some peripheral region of the graph, the neighbourhood function and the
average path length are thought to robustly capture the distances between pairs of
vertices. From this function, it is possible to derive the distance distribution which
gives for each t , the fraction of reachable pairs at a distance of exactly t .

5.1 HyperANF Algorithm

The HyperANF algorithm [1] is a new tool for accurately studying the distance
distribution of large graphs. It is a diffusion-based algorithm that is able to approx-
imate quickly the neighbourhood functions of very large graphs. It is based on the
observation that B(x, r), the ball of radius r around the vertex x satisfies

B(x, r) = ∪x→y B(y, r − 1) ∪ {x}

Since B(x, 0) = {x}, we can compute each B(x, r) incrementally using sequen-
tial scans of graph, i.e, scans in which we go in turn through the successor list of
each vertex. The problem is that during the scan we need to access randomly the
sets B(x, r − 1) (the sets B(x, r) can be just saved on disk on a update file and
reloaded later). The space needed for such sets would be too large to be kept in main
memory. However, HyperANF represents these sets in an approximate way, using
HyperLogLog counters, which are a kind of dictionaries that can answer questions
related to size. Each such counter is made of a number of small registers. A register
keeps track of the maximum number of trailing zeros of the values of a good hash
function applied to the elements of a sequence of vertices: the number of distinct
elements in the sequence is proportional to 2M . A technique called stochastic aver-
aging is used to divide the stream into a number of substreams, each analysed by a
different register. The result is then computed by aggregating suitably the estimation
from each register.

The main performance challenge to solve is, how to quickly compute the Hyper-
LogLog counter associated to a union of balls, each represented by a HyperLogLog
counter: HyperANF uses an algorithm based on word-level parallelism that makes
the computation very fast, and a carefully engineered implementation exploits mul-
ticore architectures with a linear speedup in the number of cores. Another important
feature of HyperANF is that it uses a systolic approach to avoid recomputing balls
that do not change during an iteration. This approach is fundamental to be able to
compute the entire distance distribution.

The results of a run of HyperANF at the t th iteration is the estimation of the
neighbourhood function in t .
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ˆNG(t) =
∑

0≤i<|V |
Xi,t

where Xi,t denotes the HyperLogLog counter that counts the vertices reached by
vertex i in t steps.

5.2 Iterative Fringe Upper Bound (iFUB) Algorithm

HyperANF cannot provide exact results about the diameter. However, the number of
steps of a run is necessarily a lower bound for the diameter. To compute the exact
diameter, a highly parallel version of this iFUB algorithm [1] was implemented.

The idea behind this algorithm is as follows: consider some vertex x , and find by
breadth-first search a vertex y farthest from x . Now, find a vertex z farthest from y
by which d(y, z) gives us a very good lower bound on the diameter. Then, consider
a vertex c halfway between y and z. This vertex c is in the middle of the graph, so if
h is the eccentricity of c, 2h is expected to be a good upper bound for the diameter. If
lower and upper bounds match, we are done. Otherwise, we consider the fringe: the
vertices at distance exactly h from c. If M is the maximum of eccentricities of the
vertices in fringe, max{2(h − 1),M} is a new upper bound, and M is a new lower
bound. We then iterate the process by examining fringes closer to the root until the
bounds match. The implementation uses a multicore breadth first search: the queue
of vertices at distance d is segmented into small blocks handled by each core. At the
end of a round, we have computed the queue of vertices at distance d + 1.

5.3 Spid

Measures the dispersion of degree distribution. Spid, an acronym for “shortest-paths
index of dispersion”, is defined as the variance-to-mean ratio of the distance distri-
bution. It is sometimes referred to as the webbiness of a social network. Networks
with spid greater than one should be considered web-like whereas networks with
spid less than one should be considered properly social.

The intuition behind this measure is that proper social networks strongly favour
short connections, whereas in the web, long connections are not uncommon. The cor-
relation between spid and average distance is inverse, i.e, larger the average distance,
smaller is the spid.

The spid of the Facebook graph is 0.09 thereby confirming that it is a proper social
network.
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5.4 Degree Distribution

The degree distribution was computed by performing several HyperANF runs on the
graph, obtaining estimate of the values of the neighbourhood function with relative
standard deviation at most 58%. These neighbourhood functions were computed on
a single 24-core machine with 72 GiB of RAM and 1 TiB of disk space, using the
HyperANF algorithm, averaging across 10 runs.

Figure5.1 shows the degree distribution of the global and the US Facebook graph.
We observe that it is monotonically decreasing, except for a small anomaly near 20
friends. This kink is due to forces within the Facebook product to encourage the low
friend count individuals in particular to gain more friends until they reach 20 friends.
The distribution shows a clear cut-off at 5000 friends, a limit imposed on the number
of friends by Facebook at the time of measurement. Since 5000 is nowhere near the
number of Facebook users, each user is clearly friends with a vanishing fraction of
the Facebook population, making these social relationships sparse.

From Fig. 5.1, we observe that most individuals have a moderate number of
friends, less than 200, while a much smaller population have many hundreds or
even thousands of friends. There is a small population of users who have an abnor-
mally high degree than the average user. The distribution is clearly right-skewed with
high variance but there is a substantial curvature exhibited in the distribution on the
log–log scale. This curvature is somewhat surprising because empirical measure-
ments of networks have claimed that the degree distributions follow a power law.
Thus, strict power laws are inappropriate for this degree distribution.

Fig. 5.1 Degree distribution of the global and US Facebook active users, alongside its CCDF
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Fig. 5.2 Neighbourhood
function showing the
percentage of users that are
within h hops of one another

5.5 Path Length

The goal in studying the distance distribution is the identification of interesting
statistical parameters that can be used to tell proper social networks from other
complex networks such as web graphs. Distance distribution is one such interesting
global feature that makes it possible to reject probabilistic models even when they
match local features such as in-degree distribution.

The Facebook graph does not have paths between all pairs of vertices. It con-
sists of one large connected component and therefore the neighbourhood function is
representative of an overwhelming majority of pair of vertices. Figure5.2 shows the
neighbourhood function computed on the graph. The average distance between users
was 4.7 for global users and 4.3 for US users, thus confirming the six degrees of sep-
aration. What is more interesting, is that since the results show 3.74 intermediaries,
this gives a “four degrees of separation”. 92% of all pairs of FB users were within
5 degrees of separation, 99.6% were within 6 degrees. For US, 96% were within 5
degrees and 99.7% were within 6 degrees.

5.6 Component Size

Figure5.3 shows the distribution of component sizes on log–log scale. While there
are many connected components, most of these components are extremely small.
The second largest component has just over 2000 individuals, whereas the largest
component consists of 99.91% of the network. This giant component comprises
the vast majority of active Facebook users with atleast one friend. So not only are
the average path lengths between individuals short, these social connections exist
between nearly everyone on Facebook.
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Fig. 5.3 Distribution of
component sizes on log–log
scale

This component structure was analysed using the Newman–Zipf (NZ) algorithm.
The NZ algorithm is a type of Union-Find algorithm with path compression which
records the component structure dynamically as edges are added to the network that
begins completely empty of edges. When all the edges are added, the algorithm has
computed the component structure of the network. This algorithm does not require
that the edges must be retained in memory. The algorithm is applied to the Facebook
graph on a single computer with 64GB of RAM by streaming over a list of edges.

5.7 Clustering Coefficient and Degeneracy

Neighbourhood graph for user i , also called the ego or 1-ball graph is the graph-
induced subgraph consisting of users who are friends with user i and friendship
between these users. However, user i is not included in their own neighbourhoods.

Figure5.4 shows the clustering coefficient and the degeneracy on log–log scale.
The clustering coefficient decreases monotonically with degree. In particular, the
clustering coefficient drops rapidly for users with close to 5000 friends, indicating
that these users are likely using Facebook for less coherent social purposes and
befriending users more indiscriminately.

Having observed such large clustering coefficients, the degeneracy of the graph
was measured to study the sparsity of neighbourhood graphs. Formally, the degen-
eracy of an undirected graph is the largest k for which the graph has a non-empty
k-core. The k-core of a graph is the maximal subgraph in which all the vertices have
degree atleast k, i.e, the subgraph formed by iteratively removing all the vertices of
degree less than k until convergence. Figure5.4 depicts the average degeneracy as
an increasing function of user degree. From this, we find that even though the graph
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Fig. 5.4 Clustering coefficient and degeneracy as a function of degree on log–log scale

is sparse as a whole, when users accumulate sizeable friend counts, their friendships
are far more indiscriminate and instead center around sizeable dense cores.

5.8 Friends-of-Friends

The friends-of-friends, as the name suggests, denotes the number of users that are
within two hops of an initial user. Figure5.5 computes the average counts of both
the unique and non-unique friends-of-friends as a function of the degree. The non-
unique friends-of-friends count corresponds to the number of length 2 paths starting
at an initial vertex and not returning to that vertex. The unique friends-of-friends

Fig. 5.5 Average number of
unique and non-unique
friends-of-friends as a
function of degree
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count corresponds to the number of unique vertices that can be reached at the end of
a length 2 path.

A naive approach to counting friends-of-friends would assume that a user with
k friends has roughly k2 non-unique friends-of-friends, assuming that their friends
have roughly the same friend count as them. The same principle could also apply to
estimating the number of unique friends-of-friends. However, the number of unique
friends-of- friends grows very close to linear, and the number of non-unique friends-
of-friends grows only moderately faster than linear. While the growth rate may be
slower than expected, as Fig. 5.5 illustrates, until a user has more than 800 friends
the absolute amounts are unexpectedly large: a user with 100 friends has 27500
unique friends-of-friends and 40300 non-unique friends-of-friends. This is signifi-
cantly more than 100 × 99 = 9900 non-unique friends-of-friends we would have
expected if our friends had roughly the same number of friends as us.

5.9 Degree Assortativity

The number of friendships in your local network neighbourhood depends on the
number of friends of your friends. It is observed that your neighbour’s degree is
correlated with your own degree: it tends to be large when your degree is large, and
smallwhen your degree is small. This is called degree assortativity. Figure5.6 depicts
the degree assortativity and this explains the more than expected friends behaviour
of the previous section.

Fig. 5.6 Average neighbour degree as a function of an individual’s degree, and the conditional
probability p(k′|k) that a randomly chosen neighbour of an individual with degree k has degree k′
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Fig. 5.7 Neighbor’s logins versus user’s logins to Facebook over a period of 28days, and a user’s
degree versus the number of days a user logged into Facebook in the 28 day period

5.10 Login Correlation

Figure5.7 shows the correlation calculation of the number of days users logged in
during the 28-day window of the study. The definition of a random neighbour of
vertices with trait x is to first select a vertex with trait x in proportion to their degree
and select an edge connected to that vertex uniformly at random, i.e, we give each
edge connected to vertices with trait x equal weight. From Fig. 5.7, it is evident that
similar to degree’s assortativity property, login also shows a correlation between that
of an individual with neighbours’.

This correlation phenomena is best explained as follows: a Facebook user provides
and receives content through status updates, links, videos, photos, etc to and from
friends, and hence may be motivated to login if they have more friends. So, a user
who logs in more generally has more friends on Facebook and vice versa. So, since
your friends have more friends than you do, they also login to Facebook more than
you do.

5.11 Other Mixing Patterns

The study later focused on the effects of age, gender and country of origin on friend-
ships.

5.11.1 Age

To understand the friendship patterns among individuals with different ages, we
compute p(t ′|t) of selecting a random neighbour of individuals with age t who has
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Fig. 5.8 Distribution p(t ′|t)
of ages t ′ for the neighbours
of users with age t

age t ′. A random neighbour means that each edge connected to a user with age
t is given equal probability of being followed. Figure5.8 shows that the resulting
distribution is not merely a function of the magnitude of age difference |t − t ′| as
might naively be expected, and instead are asymmetric about a maximum value of
t ′ = t . Unsurprisingly, a random neighbour is most likely to be the same age as you.
Younger individuals have most of their friends within a small age range while older
individuals have a much wider range.

5.11.2 Gender

By computing p(g′|g), we get the probability that a random neighbour of individuals
with gender g has gender g′ where M denotes male and F denotes female. The
Facebook graph gives us the following probabilities, p(F |M) = 0.5131, p(M |M) =
0.4869, p(F |F) = 0.5178 and p(M |F) = 0.4822. By these computations, a random
neighbour is more likely to be a female. There are roughly 30 million fewer active
female users on Facebook with average female degree (198) larger than the average
male degree (172) with p(F) = 0.5156 and p(M) = 0.4844. Therefore, we have
p(F |M) < p(F) < p(F |F) and p(M |F) < p(M) < p(M |M). However, the
difference between these probabilities is extremely small thereby giving a minimal
effect on the preference for same gender friendships on Facebook.

5.11.3 Country of Origin

The obvious expectation is that an individual will have more friends from the same
country of origin than from outside that country, and data shows that 84.2% of edges
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are within countries. So, the network divides fairly cleanly along country lines into
network clusters or communities. This division can be quantified using modularity,
denoted by Q, which is the fraction of edges within communities in a randomized
version of the network that preserves the degree for each individual, but is otherwise
random. The computed value of Q = 0.7486 which is quite large and indicates a
strongly modular network structure at the scale of countries. Figure5.9 visualizes
this structure displayed as a heatmap of the number of edges between 54 countries
where active Facebook user population exceeds a million users and is more than 50%
of internet-enabled population. The results show a intuitive grouping according to
geography. However, other groupings not based on geography include combination
of UK, Ghana and South Africa which reflect links based on strong historical ties.

The complete list of countries is provided in Table 5.1.

Fig. 5.9 Normalized country adjacencymatrix as a heatmap on a log scale. Normalized by dividing
each element of the adjacency matrix by the product of the row country degree and column country
degree
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Table 5.1 Countries with their codes

Country Code

Indonesia ID

Philipines PH

Sri Lanka LK

Australia AU

New Zealand NZ

Thailand TH

Malaysia MY

Singapore SG

Hong Kong HK

Taiwan TW

United States US

Dominican Republic DO

Puerto Rico PR

Mexico MX

Canada CA

Venezuela VE

Chile CL

Argentina AR

Uruguay UY

Colombia CO

Costa Rica CR

Guatemala GT

Ecuador EC

Peru PE

Bolivia BO

Spain ES

Ghana GH

United Kingdom GB

South Africa ZA

Israel IL

Jordan JO

United Arab Emirates AE

Kuwait KW

Algeria DZ

Tunisia TN

Italy IT

Macedonia MK

(continued)
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Table 5.1 (continued)

Albania AL

Serbia RS

Slovenia SI

Bosnia and Herzegovina BA

Croatia HR

Turkey TR

Portugal PT

Belgium BE

France FR

Hungary HU

Ireland IE

Denmark DK

Norway NO

Sweden SE

Czech Republic CZ

Bulgaria BG

Greece GR

Appendix

Problems

Download the Friendster undirected social network data available at https://snap.
stanford.edu/data/com-Friendster.html.

This network consists of 65 million nodes and 180 million edges. The world’s
population in 2012 was 7 billion people. This means that the network has 1% of the
world’s inhabitants.

For this graph, compute the following network parameters:

39 Degree distribution

40 Path length distribution

41 WCC size distribution

42 Clustering coefficient distribution

43 k-core node size distribution

44 Average friends-of-friends distribution

45 Average neighbour degree distribution

https://snap.stanford.edu/data/com-Friendster.html
https://snap.stanford.edu/data/com-Friendster.html
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Chapter 6
Peer-To-Peer Networks

Peer-To-Peer (P2P) overlay networks are distributed systems in nature, without any
hierarchical organization or centralized control. Peers form self-organizing networks
that are overlayed on the Internet Protocol (IP) networks, offering a mix of various
features such as robust wide-area routing architecture, efficient search of data items,
selection of nearby peers, redundant storage, permanence, hierarchical naming, trust
and authentication, anonymity,massive scalability and fault tolerance. These systems
go beyond services offered by client-server systems by having symmetry in roles
where a client may also be a server. It allows access to its resources by other systems
and supports resource-sharing, which requires fault-tolerance, self-organization and
massive scalability properties. Unlike Grid systems, P2P networks do not arise from
the collaboration between established and connected groups of systems and without
a more reliable set of resources to share. All being said, the core operation in a P2P
network is the efficient location of data items.

These networks are deliberately designed in a decentralized manner, such that
global search is impossible.

Figure 6.1 shows an abstract P2P overlay architecture, illustrating the components
in the communications framework. The communication framework specifies a fully-
distributed, cooperative network designwith peers building a self-organizing system.

There are two classes of P2P infrastructure: Structured and Unstructured. Struc-
tured P2P networks are tightly controlled and content are placed not at random peers
but at specified locations that will make subsequent queries more efficient. Con-
tent Addressable Network (CAN), Tapestry, Chord, Pastry, Kademlia and Viceroy
are some of the commonly known Structured networks. Unstructured P2P networks
organize peers in a random graph in flat or hierarchical manners and use flooding
or random walks or expanding-ring Time-To-Live (TTL) search, etc on the graph
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Fig. 6.1 Abstract P2P network architecture

to query content stored by overlay peers. Each peer visited will evaluate the query
locally on its own content, and will support complex queries. Freenet, Gnutella, Fas-
track/KaZaA, BitTorrent and Overnet/eDonkey2000 are instances of Unstructured
networks.

Reference [2] gives a detailed comparison of these P2P networks. In this chapter
we will take a close look at the Chord and the Freenet P2P networks.

6.1 Chord

Chord [3] is a distributed lookup protocol that addresses the problem of efficiently
locating the node that stores a particular data item in a structured P2P application.
Given a key, it maps the key onto a node. A key is associated with each data item and
key/data item pair is stored at the node to which the key maps. Chord is designed to
adapt efficiently as nodes join and leave the network dynamically.

The Chord software takes the form of a library to be linked with the client and
server applications that use it. The application interacts with Chord in two ways:
First, Chord provides key algorithm that yields IP address of the node responsible for
the key. Next, the Chord software on each node notifies the application of changes in
the set of keys that the node is responsible for. This allows the application to move
the corresponding values to new homes when new node joins.

Chord uses consistent hashing. In this algorithm, each node and key has a m-bit
identifier. One has to ensure that m is large enough to make the probability of two
nodes or keys hashing to the same identifier negligible. The keys are assigned to
nodes as follows: The identifiers are ordered in an identifier circle modulo 2m . Key
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k is assigned to the first node whose identifier is equal to or follows k. This node is
called the successor node of key k, denoted by successor(k). If the identifiers are
represented as a circle of numbers from 0 to 2m−1, then successor(k) is the first node
clockwise from k. This tends to balance the load, since each node receives roughly
the same number of keys and involves relatively little movement of keys when nodes
join and leave the system. In a N -node system, each node maintains information of
O(logN ) other nodes and resolves all lookups via O(logN ) messages to the other
nodes. To maintain consistent hashing mapping when a node n joins the network,
certain keys previously assigned to n’s successor now become assigned to n. When
n leaves the network, all of its assigned keys are reassigned to n’s successor.

Each node n, maintains a routing table with atmost m entries, called the finger
table. The i th entry in a table at node n contains entry of the first node s, that
succeeds n by atleast 2i−1 on the identifier circle, i.e, s = successor(n + 2i−1)

where 1 ≤ i ≤ m (and all arithmetic is modulo 2m). Node s is the i 4th finger of
node n. This finger table scheme is designed for two purposes: First, each node stores
information about only a small number of other nodes and knows more about nodes
closely following it than the nodes far away. Next, the node’s finger table generally
does not contain enough information to determine the success of an arbitrary key k.

If n does not know the successor of key k, then it finds the node whose ID is
closer than its own to k. That node will know more about identifier circle in region
of k than n does. Thus, n searches its finger table for node j whose ID immediately
precedes k, and asks j for the node it knows whose ID is closest to k. By repeating
this process, n learns about nodes with IDs closer to k.

In a dynamic network where the nodes can join and leave at any time, to preserve
the ability to locate every key in the network, each node’s successor must be cor-
rectly maintained. For fast lookups, the finger tables must be correct. To simplify
this joining and leaving mechanisms, each node maintains a predecessor pointer. A
node’s predecessor pointer contains Chord identifier and IP address of the immedi-
ate predecessor of this node, and can be used to walk counter-clockwise around the
identifier circle. To preserve this, Chord performs the following tasks when a node n
joins the network: First, it initializes the predecessor and fingers of the node n. Next,
it updates the fingers and predecessors of the existing nodes to reflect the addition of
n. Finally, it notifies the application software so that it can transfer state associated
keys that node n is now responsible for.

6.2 Freenet

Freenet [1] is an unstructured P2P network application that allows the publication,
replication and retrieval of data while protecting the anonymity of both the authors
and the readers. It operates as a network of identical nodes that collectively pool their
storage space to store data files and cooperate to route requests to the most likely
physical location of data. The files are referred to in a location-independent manner,
and are dynamically replicated in locations near requestors and deleted from locations
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where there is no interest. It is infeasible to discover the true origin or destination
of a file passing through the network, and difficult for a node operator to be held
responsible for the actual physical contents of his or her node.

The adaptive peer-to-peer network of nodes query one another to store and retrieve
data files, which are named by location-independent keys. Each node maintains a
datastore which it makes available to the network for reading and writing, as well as a
dynamic routing table containing addresses of their immediate neighbour nodes and
the keys they are thought to hold.Most users run nodes, both for security from hostile
foreign nodes and to contribute to the network’s storage capacity. Thus, the system
is a cooperative distributed file system with location independence and transparent
lazy replication.

The basic model is that the request for keys are passed along from node to node
through a chain of proxy requests in which each node makes a local decision about
where to send the request next, in the style of IP routing. Since the nodes only have
knowledge of their immediate neighbours, the routing algorithms are designed to
adaptively adjust routes over time to provide efficient performance while using only
local knowledge. Each request is identified by a pseudo-unique random number, so
that nodes can reject requests they have seen before, and a hops-to-live limit which
is decremented at each node, to prevent infinite chains. If a request is rejected by a
node, then the immediately preceding node chooses a different node to forward to.
The process continues until the request is either satisfied or exceeds its hops-to-live.
The result backtracks the chain to the sending node.

No privileges among the nodes, thereby preventing hierarchy or a central point
of failure. Joining the network is simply a matter of first discovering the address of
one or more existing nodes and then starting to send messages.

To retrieve a file, a user must first obtain or calculate its key (calculation of the key
is explained in [1]). Then, a request message is sent to his or her own node specifying
that key and a hops-to-live value. When a node receives a request, it first checks its
own store for the file and returns it if found, together with a note saying it was the
source of the data. If not found, it looks up the nearest key in its routing table to the
key requested and forwards the request to the corresponding node. If that request is
ultimately successful and returns with the data, the node will pass the data back to
the user, cache the file in its own datastore, and create a new entry in its routing table
associating the actual data source with the requested key. A subsequent request for
the same key will be immediately satisfied by the user’s node. To obviate the security
issue which could potentially be caused by maintaining a table of data sources, any
node can unilaterally decide to change the reply message to claim itself or another
arbitrarily chosen node as the data source.

If a node cannot forward a request to its preferred node, the node having the
second-nearest key will be tried, then the third-nearest, and so on. If a node runs
out of candidates to try, it reports failure back to its predecessor node, which will
then try its second choice, etc. In this manner, a request operates as a steepest-ascent
hill-climbing search with backtracking. If the hops-to-live limit is exceeded, a failure
result is propagated back to the original requestor without any further nodes being
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tried. As nodes process requests, they create new routing table entries for previously
unknown nodes that supplies files, thereby increasing connectivity.

File insertions work in the samemanner as file requests. To insert a file, a user first
calculates a file key and then sends an insert message to his or her node specifying
the proposed key and a hops-to-live value (this will determine the number of nodes
to store it on). When a node receives an insert message, it first checks its own store
to see if the key is already taken. If the key exists, the node returns the existing file
as if a request has been made for it. This notifies the user of a collision. If the key is
not found, the node looks up the nearest key in its routing table to the key proposed
and forward the insert to the corresponding node. If that insert also causes a collision
and returns with the data, the node will pass the data back to the upstream inserter
and again behave as if a request has been made. If the hops-to-live limit is reached
without a key collision being detected, a success message will be propagated back to
the original inserter. The user then sends the data to insert, which will be propagated
along the path established by the initial query and stored in each node along the way.
Each node will also create an entry in its routing table associating the inserter with
the new key. To avoid the obvious security problem, any node along the way can
arbitrarily decide to change the insert message to claim itself or another arbitrarily-
chosen node as the data source. If a node cannot forward an insert to its preferred
node, it uses the same backtracking approach as was used while handling requests.

Data storage is managed as a least recently used cache (LRU) approach by each
node, in which data items are kept stored in decreasing order by the time of most
recent request, or time of insert, if an item has never been requested. When a new
file arrives, which would cause the datastore to exceed the designated size, the least
recently used files are evicted in order until there is space. Once a particular file is
dropped from all the nodes, it will no longer be available in the network. Files are
encrypted to the extent that node operators cannot access its contents.

When a new node intends to join the network, it chooses a random seed and
sends an announcement message containing its address and the hash of that seed to
some existing node. When a node receives a new node announcement, it generates
a random seed, XORs that with the hash it received and hashes the result again to
create a commitment. It then forwards this new hash to some randomly chosen node.
This forwarding continues until the hops-to-live of the announcement runs out. The
last node to receive the announcement just generates a seed. Now all the nodes in the
chain reveal their seeds and the key of the new node is assigned as the XOR of all
the seeds. Checking the commitments enables each node to confirm that everyone
revealed their seeds truthfully. This yields a consistent random key which each node
as an entry for this new node in the routing table.

A key factor in the identification of a small-world network is the existence of
a scale-free power-law distribution of the links within the network, as the tail of
such distributions provides the highly connected nodes needed to create short paths.
Figure 6.2 shows the degree distribution of the Freenet network. Except for one point,
it seems to follow a power-law. Therefore, Freenet seems to exhibit power-law.

Reference [4] observed that the LRU cache replacement had a steep reduction in
the hit ratio with increasing load. Based on intuition from the small-world models
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Fig. 6.2 Degree distribution of the freenet network

they proposed an enhanced-clustering cache replacement scheme for use in place
of LRU. This replacement scheme forced the routing tables to resemble neighbour
relationships in a small-world acquaintance graph and improved the request hit ratio
dramaticallywhile keeping the small average hops per successful request comparable
to LRU.

Problems

In this exercise, the task is to evaluate a decentralized search algorithm on a network
where the edges are created according to a hierarchical tree structure. The leaves of
the tree will form the nodes of the network and the edge probabilities between two
nodes depends on their proximity in the underlying tree structure.

P2P networks can be organized in a tree hierarchy, where the root is the main
software application and the second level contains the different countries. The third
level represents the different states and the fourth level is the different cities. There
could be several more levels depending on the size and structure of the P2P network.
Nevertheless, the final level are the clients.

Consider a situation where client A wants a file that is located in client B. If A
cannot access B directly, A may connect to a node C which is, for instance, in the
same city and ask C to access the file instead. If A does not have access to any node
in the same city as B, it may try to access a node in the same state. In general, A will
attempt to connect to the node “closest” to B.
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In this problem, there are two networks: one is the observed network, i.e, the edge
between P2P clients and the other is the hierarchical tree structure that is used to
generated the edges in the observed network.

For this exercise, we will use a complete, perfectly balanced b-ary tree T (each
node has b children and b ≥ 2), and a network whose nodes are the leaves of T . For
any pair of network nodes v and w, h(v,w) denotes the distance between the nodes
and is defined as the height of the subtree L(v,w) of T rooted at the lowest common
ancestor of v and w. The distance captures the intuition that clients in the same city
are more likely to be connected than, for example, in the same state.

To model this intuition, generate a random network on the leaf nodes where for a
node v, the probability distribution of node v creating an edge to any other node w

is given by Eq. 6.1

pv(w) = 1

Z
b−h(v,w) (6.1)

where Z = ∑
w �=v b

−h(v,w) is a normalizing constant.
Next, set some parameter k and ensure that every node v has exactly k outgoing

edges, using the following procedure. For each node v, sample a random node w

according to pv and create edge (v,w) in the network. Continue this until v has
exactly k neighbours. Equivalently, after an edge is added from v to w, set pv(w)

to 0 and renormalize with a new Z to ensure that
∑

w p(w) = 1. This results in a
k-regular directed network.

Now experimentally investigate a more general case where the edge probability
is proportional to b−αh(v,w). Here α > 0 is a parameter in our experiments.

Consider a network with the setting h(T ) = 10, b = 2, k = 5, and a given α, i.e,
the network consists of all the leaves in a binary tree of height 10; the out degree of
each node is 5. Given α, create edges according to the distribution described above.

46 Create random networks for α = 0.1, 0.2, . . . , 10. For each of these networks,
sample 1000 unique random (s, t) pairs (s �= t). Then do a decentralized search
starting from s as follows. Assuming that the current node is s, pick its neighbour
u with smallest h(u, t) (break ties arbitrarily). If u = t , the search succeeds. If
h(s, t) > h(u, t), set s to u and repeat. If h(s, t) ≤ h(u, t), the search fails.

For each α, pick 1000 pairs of nodes and compute the average path length for the
searches that succeeded. Then draw a plot of the average path length as a function
of α. Also, plot the search success probability as a function of α.
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Chapter 7
Signed Networks

In many online social applications, users express positive or negative attitudes or
opinions in two ways:

• Through actions. Eg: One user giving a “like” or a “rating”.
• Through text. Eg: User “comments” and “reviews”.

These user expressions result in a signed network. A signed network is defined
as a network whose edges are associated with an explicit sign. More formally, for
a given link (u, v) between vertices u and v in this signed network, the sign of this
edge denoted by, s(u, v) is defined to be either positive or negative depending on
whether it expresses a positive or negative attitude from the generator of the link to
the recipient. Although this definition is in the purview of directed signed networks,
this also applies to the undirected case.

Positive edges between vertices signify amitywhile negative edges signify enmity.
The user expressions are more commonly known as user evaluations. They reflect

the overall levels of status in the community, i.e, the extent of users’ past contributions
or achievements and serve a crucial purpose in the functioning of social applications,
by directing users toward content that is highly favoured, and (where applicable)
enabling the formation of cohorts of highly trusted users who guide the operation of
the site.

7.1 Theory of Structural Balance

According to this theory, a triad is said to be balanced if and only if all three of these
edges are positive or exactly one of them is. In other words, a triad is balanced if
the sign of the product of the links equals one. This property is called the structural
balance property.
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Therefore a triad that does satisfy the structural balance property is called an
unbalanced triad.

A balanced triad therefore fulfils the adage:

• “The friend of my friend is my friend”.
• “The enemy of my enemy is my friend”.
• “The enemy of my friend is my enemy”.
• “The friend of my enemy is my enemy”.

Figures7.1, 7.2, 7.3 and 7.4 are instances of two balanced and two unbalanced
triads respectively.

A graph inwhich all possible triads satisfy the structural balance property is called
a balanced graph and one which does not is called an unbalanced graph.

Fig. 7.1 A, B and C are all
friends of each other.
Therefore this triad (T3) by
satisfying structural balance
property is balanced

Fig. 7.2 A and B are
friends. However, both of
them are enemies of C .
Similar to Fig. 7.1, this triad
(T1) is balanced

Fig. 7.3 A is friends with B
and C . However, B and C
are enemies. Therefore the
triad (T2) by failing to satisfy
the structural balance
property is unbalanced
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Fig. 7.4 A, B and C are all enemies of one another. Similar to Fig. 7.3, the triad (T0) is unbalanced

Fig. 7.5 A balanced (left) and an unbalanced (right) graph

Figure7.5 depicts a balanced and an unbalanced graph. The graph to the left is
balanced because all of the triads A,B,C ; A,B,D; B,C ,D and A,C ,D satisfy the
structural balance property. However, the graph to the right is unbalanced because
the triads A,B,C and B,C ,D do not satisfy the structural balance property.

This leads to the balance theorem which states that if a labelled complete graph
is balanced, then either all pairs of its vertices are friends (this state is referred as
“paradise” [3]) , or else the nodes can be divided into two groups, X and Y , such that
every pair of vertices in X are friends of each other, every pair of vertices in Y are
friends of each other, and everyone in X is the enemy of everyone in Y (this state
is called “bipolar” [3]). Reference [6] reformulated this theorem to include multiple
groups X , Y , …, Z , such that every pair of vertices in X , Y or Z are friends of each
other, and everyone in different groups are enemies of one another.

Reference [6] also made an argument that a triad where all edges bear a negative
sign is inherently balanced, therefore giving aweak structural balance property. This
property says that there is no triad such that the edges among them consist of exactly
two positive edges and one negative edge.

Reference [11] found a closed-form expression for faction membership as a func-
tion of initial conditions which implies that the initial amount of friendliness in large
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Fig. 7.6 A signed graph

social networks (started from random initial conditions) determines whether they
will end up as a paradise or a pair of bipolar sets.

Although identifying whether or not a graph is balanced merely involves deter-
mining whether or not all of its triads satisfy the structural balance property, this is
a rather convoluted approach. A simpler approach is as follows: Consider the signed
graph shown in Fig. 7.6. To determine whether or not this graph is balanced, we
follow the procedure given below:

1. Identify the supernodes. Supernodes are defined as the connected components
where each pair of adjacent vertices have a positive edge. If the entire graph
forms one supernode, then the graph is balanced. If there is a vertex that cannot
be part of any supernode, then this vertex is a supernode in itself. Figure7.7
depicts the supernodes of Fig. 7.6. Here, we see that the vertices 4, 11, 14 and 15
are supernodes by themselves.

2. Now beginning at a supernode we assign each of the supernodes to groups X or
Y alternatively. If every adjacent connected pair of supernodes can be placed in
different groups, then the graph is said to be balanced. If such a placement is not
possible, then the graph is unbalanced. Figure7.6 is unbalanced because, if we
consider a simplified graph of the supernodes (Fig. 7.8), then there are two ways
to bipartition these vertices starting from the vertex A: either A, C , G and E are
assigned to X with B, D and F assigned to Y or A, F , D and B are assigned to X
with E , G and C assigned to Y . In the first case, A and E are placed in the same
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Fig. 7.7 Supernodes of the graph in Fig. 7.6

Fig. 7.8 A simplified
labelling of the supernodes
for the graph in Fig. 7.6

group while in the next case, A and B are assigned to the same group. Since this
is the case no matter which of the vertices we start from, this graph is unbalanced.

This procedure however shows that the condition for a graph to be balanced
is very strict. Such a strict condition almost never applies in real case scenarios.
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Alternatively,we comeupwith an approximate balanced graph condition.According
to this condition, let ε be any number such that 0 ≤ ε < 1

8 , and define δ = (ε)
1
3 . If

atleast 1 − ε of all triangles in a labelled completed graph are balanced, then either

1. there is a set consisting of atleast 1 − δ of the vertices in which atleast 1 − δ of
all the pairs are friends, or else

2. the vertices can be divided into two groups, X and Y , such that

a. atleast 1 − δ of the pairs in X are friends of one another
b. atleast 1 − δ of the pairs in Y are friends of one another, and
c. atleast 1−δ of the pairs with one end in X and the other end in Y are enemies.

7.2 Theory of Status

The theory of status for signed link formation is based on an implicit ordering of the
vertices, in which a positive s(u, v) indicates that u considers v to have higher status,
while a negative s(u, v) indicates that u considers v to have lower status.

7.3 Conflict Between the Theory of Balance and Status

Consider the situation where A has a positive edge to B and B has a positive edge
to C . If C forms an edge to A, what should be the sign of this edge? The theory
of balance would suggest a positive sign to satisfy the structural balance, while the
theory of status would say that since A regards B as having a higher status and B
regards C as having a higher status, C should regard A as having lower status and
thus assign a negative sign to the link. Therefore, the theory of balance and status
are at odds with one another.

One must keep in mind that the balance theory disregards the direction of the
edges in the graph, while the status theory considers the edge’s direction while
making predictions.

In an attempt to investigate this conflict [10] studied three signed social net-
work datasets: the trust networks of the Epinions website, where users can indicate
their trust or distrust of reviews; the Slashdot blog, where users can like or dislike
comments; and the Wikipedia adminship voting network where users can vote for or
against the promotion of another. The statistics of the dataset is as shown in Table 7.1.

Table 7.2 tabulates the number of all the balanced and unbalanced triads in each
of these datasets. Let p denote the fraction of positive edges in the network, Ti denote
the type of the triad, |Ti | denote the number of Ti , and p(Ti ) denote the fraction of
triads Ti , computed as p(Ti ) = Ti/� where � denotes the total number of triads.
Now, we shuffle the signs of all the edges in the graph (keeping the fraction p of
positive edges the same), and we let p0(Ti ) denote the expected fraction of triads
that are of type Ti after this shuffling.
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Table 7.1 Dataset statistics

Epinions Slashdot Wikipedia

Nodes 119, 217 82, 144 7, 118

Edges 841, 200 549, 202 103, 747

+ edges 85.0% 77.4% 78.7%

− edges 15.0% 22.6% 21.2%

Triads 13, 375, 407 1, 508, 105 790, 532

Table 7.2 Dataset statistics

Ti |Ti | p(Ti ) p0(Ti ) s(Ti )

Epinions

T3+++ 11, 640, 257 0.870 0.621 1881.1

T1+−− 947, 855 0.071 0.055 249.4

T2++− 698, 023 0.052 0.321 −2104.8

T0−−− 89, 272 0.007 0.003 227.5

Slashdot

T3+++ 1, 266, 646 0.840 0.464 926.5

T1+−− 109, 303 0.072 0.119 −175.2

T2++− 115, 884 0.077 0.406 −823.5

T0−−− 16, 272 0.011 0.012 −8.7

Wikipedia

T3+++ 555, 300 0.702 0.489 379.6

T1+−− 163, 328 0.207 0.106 289.1

T2++− 63, 425 0.080 0.395 −572.6

T0−−− 8, 479 0.011 0.010 10.8

If p(Ti ) > p0(Ti ), then triads of type Ti are over-represented in the data relative
to chance; if p(Ti ) < p0(Ti ), then they are under-represented. To measure how
significant this over- or under-representation is, we define the surprise s(Ti ) to be
the number of standard deviations by which the actual quantity of type-Ti triads
differs from the expected number under the random-shuffling model. This surprise
is formally computed as given in Eq.7.1

s(Ti ) = (Ti − E[Ti ])/
√

�p0(Ti )(1 − p0(Ti )) (7.1)

where E[Ti ] is the expected number of triads Ti computed as E[Ti ] = p0(Ti )�.
Table 7.2 shows that T3 is heavily over-represented (40% in all three datasets) and

T2 is heavily under-represented (75% in Epinions and Slashdot, 50% in Wikipedia).
The overall fraction of positive signs that a user creates, considering all her links,

is referred to as her generative baseline and the overall fraction of positive signs in
the links a user receives as her receptive baseline.
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There is the question of joint positive endorsement—if a node X links positively
to each of the two nodes A and B, and A now forms a link to B, should there be an
expected elevation in the probability of the link being positive, or a reduced proba-
bility of the link being positive? Balance theory would predict a positive link because
A and B are both friends of X , they must be friends of one another. Status theory,
on the other hand, would make two contradictory predictions. From the viewpoint
of B, since she has received a positive evaluation from X , she is more likely than
not to have above-average status. Therefore, A should more likely have a positive
link to B. However, from the perspective of A, since she has also been positively
evaluated by X , she is more likely than not to have above-average status. Therefore,
A is less likely to have a positive link to B. In other words, status theory predicts that
the evaluation will lie between A’s generative baseline and B’s receptive baseline.

To deal with these contrasting predictions, a contextualized link (c-link) is defined.
The c-link is a triple (A,B;X ) which evaluates the sign of a link between A and B
after each of A and B already has a link either to or from X . This gives 16 distinct
possible combinations depending on the direction and sign of the link between A
and X , and B and X . These 16 c-links labelled t1 to t16 are as shown in Fig. 7.9.

Fig. 7.9 All contexts (A,B;X ) where the red edge closes the triad
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Consider a particular type t of c-link and suppose (A1,B1;X1), (A2,B2;X2), …,
(Ak ,Bk ;Xk) are all instances of this type t of c-link in the data. The generative baseline
for this type t is defined as the sum of the generative baselines of all vertices Ai .
This gives the generative surprise, sg(t) for this type t to be the number of standard
deviations by which the actual number of Ai − Bi edges in the data differs above
or below this generative baseline. On similar lines, the definitions for the receptive
baseline and the receptive surprise, sr (t).

To quantify the statuses of each of the users in a c-link, we start with X having a
status value of 0. If X links positively to A, or A links negatively to X , then A gets
a status value of 1, otherwise, A is assigned a status of −1. The same applies to B.
The generative surprise for type t is said to be consistent with status if B’s status has
the same sign as the generative surprise: in this case, high-status recipients B receive
more positive evaluations than would be expected from the generative baseline of
the user A producing the link. Similarly, the receptive surprise for type t is consistent
with status if A’s status has the opposite sign from the receptive surprise: high-status
generators of links A produce fewer positive evaluations than would be expected
from the receptive baseline of the user B receiving the link.

Similarly, balance is said to consistent with generative surprise for a particular
c-link type if the sign of the generative surprise is equal to the sign of the edge as
predicted by balance. Analogously, balance is consistent with receptive surprise for
a particular c-link type if the sign of the receptive surprise is equal to the sign of the
edge as predicted by balance.

Figure7.10 shows that the prediction of status with respect to both the generative
and receptive surprise perform much better against the data that the predictions of
structural balance. This gives us some interesting insights. First, we observe that one
of the two c-link types where status is inconsistent with generative surprise is the t3
configuration. This suggests that when such conditions arise, users of the systems
may be relying on balance-based reasoning more than status-based reasoning. In
addition, it shows that balance theory is a reasonable approximation to the structure
of signed networks when they are viewed as undirected graphs, while status theory
better captures many of the properties when the networks are viewed in more detail
as directed graphs that grow over time.

To understand the boundary between the balance and status theories and where
they apply, it is interesting to consider a particular subset of these networks where
the directed edges are used to create reciprocating relationships. Figure7.11 shows
that users treat each other differently in the context of reciprocating interactions than
when they are using links to refer to others who do not link back.

To consider how reciprocation between A and B is affected by the context of A
and B’s relationships to third nodes X , suppose that an A-B link is part of a directed
triad in which each of A and B has a link to or from a node X . Now, B reciprocates
the link to A. As indicated in Fig. 7.12, we find that the B-A link is significantly
more likely to have the same sign as the A-B link when the original triad on A-B-X
(viewed as an undirected triad) is structurally balanced. In other words, when the
initial A-B-X triad is unbalanced, there is more of a latent tendency for B to “reverse
the sign” when she links back to A.
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Fig. 7.10 Surprise values and predictions based on the competing theories of structural balance
and status

Fig. 7.11 Given that the first edge was of sign X , P(Y | X) gives the probability that reciprocated
edge is of sign Y

Transition of an Unbalanced Network to a Balanced One

A large signed network whose signs were randomly assigned was almost surely
unbalanced. This currently unbalanced network had to evolve to amore balanced state
with nodes changing their signs accordingly. Reference [3] studied how a unbalanced
network transitions to a balanced one and focused on any human tendencies being
exhibited.

They considered local triad dynamics (LTD) wherein every update step chooses
a triad at random. If this triad is balanced, T1 or T3, no evolution occurs. If the
triad is unbalanced, T0 or T2, the sign of one of the links is changed as follows:
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Fig. 7.12 Edge reciprocation in balanced and unbalanced triads. Triads: number of bal-
anced/unbalanced triads in the network where one of the edges was reciprocated. P(RSS): proba-
bility that the reciprocated edge is of the same sign. P(+ | +): probability that the positive edge is
later reciprocated with a plus. P(− | −): probability that the negative edge is reciprocated with a
minus

T2 → T3 occurs with probability p, T2 → T1 occurs with probability 1 − p, while
T0 → T1 occurs with probability 1. After an update step, the unbalanced triad
becomes balanced but this could cause a balanced triad that shares a link with this
target to become unbalanced. These could subsequently evolve to balance, leading
to new unbalanced triads.

They show that for p < 1
2 , LTD quickly drives an infinite network to a quasi-

stationary dynamic state. As p passes through a critical value of 1
2 , the network

undergoes a phase transition to a paradise state. On the other hand, a finite network
always reaches a balanced state. For p < 1

2 , this balanced state is bipolar and the
time to reach this state scales faster than exponentially with network size. For p ≥ 1

2 ,
the final state is paradise. The time to reach this state scales algebraically with N
when p = 1

2 , and logarithmically in N for p > 1
2 .

They also investigated constrained triad dynamics (CTD). A random link was
selected, and the sign of this link was changed if the total number of unbalanced
triads decreases. If the total number of unbalanced triads is conserved in an update,
then the update occurs with probability 1

2 . Updates that would increase the total
number of unbalanced triads are not allowed. On average each link is changed once
in a unit of time. A crucial outcome of this is that a network is quickly driven to a
balanced state in a time that scales as lnN .

What is most important with user evaluations is to determine what are the factors
that drive one’s evaluations and how a composite description that accurately reflects
the aggregate opinion of the community can be created. The following are some of
the studies that focus on addressing this problem.

Reference [12] designed and analysed a large-scale randomized experiment on a
social news aggregation Web site to investigate whether knowledge of such aggre-
gates distorts decision-making . Prior ratings were found to create significant bias in
individual rating behaviour, and positive and negative social influences were found to
create asymmetric herding effects. Whereas negative social influence inspired users
to correct manipulated ratings, positive social influence increased the likelihood of
positive ratings by 32% and created accumulating positive herding that increased
final ratings by 25% on average. This positive herding was topic-dependent and
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affected by whether individuals were viewing the opinions of friends or enemies. A
mixture of changing opinion and greater turnout under both manipulations together
with a natural tendency to up-vote on the site combined to create the herding effects.

Reference [13] studied factors in how users give ratings in different contexts, i.e,
whether they are given anonymously or under one’s own name and whether they
are displayed publicly or held confidentially. They investigated on three datasets,
Amazon.com reviews, Epinions ratings, and CouchSurfing.com trust and friendship
networks, which were found to represent a variety of design choices in how ratings
are collected and shared. The findings indicate that ratings should not be taken at
face value, but rather that one should examine the context in which they were given.
Public, identified ratings tend to be disproportionately positive, but only when the
ratee is another user who can reciprocate.

Reference [1] studied YahooAnswers (YA) which is a large and diverse question
answer community, acting not only as a medium for knowledge sharing, but as a
place to seek advice, gather opinions, and satisfy one’s curiosity about things which
may not have a single best answer. The fact about YA that sets it apart from others is
that participants believe that anything from the sordid intricacies of celebrities’ lives
to conspiracy theories is considered knowledge, worthy of being exchanged. Taking
advantage of the range of user behaviour in YA, several aspects of question-answer
dynamics were investigated. First, content properties and social network interac-
tions across different YA categories (or topics) were contrasted. It was found that
the categories could be clustered according to thread length and overlap between
the set of users who asked and those who replied. While, discussion topics or topics
that did not focus on factual answers tended to have longer threads, broader distri-
butions of activity levels, and their users tended to participate by both posing and
replying to questions, YA categories favouring factual questions had shorter thread
lengths on average and users typically did not occupy both a helper and asker role
in the same forum. It was found that the ego-networks easily revealed YA categories
where discussion threads, even in this constrained question-answer format, tended
to dominate. While many users are quite broad, answering questions in many dif-
ferent categories, this was of a mild detriment for specialized, technical categories.
In those categories, users who focused the most (had a lower entropy and a higher
proportion of answers just in that category) tended to have their answers selected as
best more often. Finally, they attempted to predict best answers based on attributes
of the question and the replier. They found that just the very basic metric of reply
length, along with the number of competing answers, and the track record of the
user, was most predictive of whether the answer would be selected. The number of
other best answers by a user, a potential indicator of expertise, was predictive of an
answer being selected as best, but most significantly so for the technically focused
categories.

Reference [8] exploredCouchSurfing, an application which enables users to either
allow other users to sleep in their couch or sleep on someone else’s couch. Due to
security and privacy concerns, this application heavily depends on reciprocity and
trust among these users. By studing the surfing activities, social networks and vouch
networks, they found the following: First, CouchSurfing is a community rife with
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generalized reciprocity, i.e, active participants take on the role of both hosts and
surfers, in roughly equal proportion.About a third of thosewho hosted or surfed are in
the giant strongly connected component, such that one couch can be reached from any
other by following previous surfs. Second, the high degree of activity and reciprocity
is enabled by a reputation system wherein users vouch for one another. They found
that connections that are vouched, or declared trustworthy can best be predicted
based on the direct interaction between the two individuals: their friendship degree,
followed by the overall experience from surfing or hosting with the other person,
and also how the two friends met. However, global measures that aim to propagate
trust, such as PageRank, are found to be poor predictors of whether an edge is
vouched. Although such metrics may be useful in assigning overall reputation scores
to individuals, they are too diffuse to predict specifically whether one individual will
vouch for another. Finally, the analysis revealed a high rate of vouching: about a
quarter of all edges that can be vouched are, as are a majority of highly active users.
While this could be reflection of a healthy web of trust, there are indications that
vouches may be given too freely. The main reason behind this high rate of vouching
may be its public nature. It can be awkward for friends to not give or reciprocate a
vouch, even if privately they have reservations about the trustworthiness of the other
person.

7.4 Trust in a Network

Reference [7] proposed and analysed algorithms to develop a web of trust that would
allow users to express trust of other users, and in return would apply the entire web of
relationships and trusts to help a user assess the likely quality of information before
acting on it. Through such a web of trust, a user can develop an opinion of another
user without prior interaction.

The first issue was that webs of trust tend to be relatively “sparse”: every user has
expressed trust values for only a handful of other users. The problem is to determine
trust values for the remaining user pairs using only those which are explicitly
specified.

Assume a universe of n users, each of whom may optionally express some level
of trust and distrust for any other user. These entries will be partitioned into two
matrices, let T be the matrix of trusts; ti j is the trust that user i holds for user j .
Similarly, let D be the matrix of distrusts. Both ti j and di j lie between 0 and 1. From
these matrices the intent is to predict an unknown trust/distrust value between any
two users, using the entries available in the trust and distrustmatrices. Now, let matrix
B represent a set of beliefs that we initially hold about the world, i.e, Bi j might be
i’s trust of j , i’s distrust of j , or any of the possible combinations.
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7.4.1 Atomic Propagations

The atomic propagations are a “basis set” of techniques by which the system may
infer that one user should trust or distrust another. The set is constructed so that any
inference regarding trust should be expressible as a combination of elements of this
set. The basis set is as follows:

1. Direct propagation: If Bi j = 1, i.e, i trusts j and Bjk = 1, i.e, j trusts k, then
we could conclude that Bik = 1, i.e, i trusts k. This operation is referred to as
direct propagation since the trust propagated directly along an edge. Such direct
propagations are represented as a matrix M such that all conclusions expressible
by these direct propagation can be read from the matrix B · M . The appropriate
matrix M to encode direct propagation is simply B itself: in this case B ·M = B2,
which is the matrix of all length-2 paths in the initial belief graph. Thus, B itself
is the operator matrix that encodes the direct propagation basis element.

2. Co-citation: If Bi1 j1 = 1, Bi1 j2 = 1 and Bi2 j2 = 1, i.e, i1 trusts j1 and j2, and i2
trusts j2, then we conclude that i2 should also trust j1. Here, B ·M = BBT B will
capture all beliefs that are inferable through a single co-citation. The sequence
BT B can be viewed as a backward-forward step propagating i2’s trust of j2
backward to i1, then forward to j1. Therefore, the operator M for this atomic
propagation is BT B.

3. Transpose trust: Here i’s trust of j causes j to develop some level of trust towards
i . In this case, M = BT .

4. Trust coupling: When both i and j trust k, this implies that i trusts j . This makes
M = BBT .

If α = (α1,α2,α3,α4) is a vector representing weights for combining these four
atomic propagation schemes. Then all these atomic propagations can be captured
into a single combined matrix CB,α based on a belief matrix B and a weight vector
α as follows:

CB,α = α1B + α2B
T B + α3B

T + α4BB
T

CB,α is a matrix whose i j th entry describes how beliefs should flow from i to j
via an atomic propagation step; if the entry is 0, then nothing can be concluded in an
atomic step about i’s views on j .

7.4.2 Propagation of Distrust

Let k ∈ Z
+, and P (k) be a matrix whose i j th entry represents the propagation from

i to j after k atomic propagations. The following are three models defined on B and
P(k) for the propagation of trust and distrust, given initial trust and distrust matrices
T and D respectively:
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1. Trust only: By completely disregarding distrust scores and propagating only the
trust scores, we get: B = T and P (k) = C (k)

B,α.
2. One-step distrust: When a user distrusts someone, they discount all their judge-

ments. Therefore, distrust propagates only one step, giving us: B = T and
P (k) = CB,α · (T − D).

3. Propagated distrust: When trust and distrust both propagate together, we get:
B = T − D and P (k) = C (k)

B,α.

7.4.3 Iterative Propagation

The end goal is to produce a final matrix F that has the trust or distrust between any
pair of users in this universe. There are two approaches to computing F from the
sequence of propagations:

1. Eigenvalue propagation(EIG): If K ε Z, then F = P (K ).
2. Weighted linear combinations(WLC): If γ is a discount factor that is smaller than

the largest eigenvalue of CB,α and K ε Z, then F =
K∑

k=1
γk · P (k).

7.4.4 Rounding

The next problem encountered was that of converting a continuous value into a dis-
crete one (±1). There were the following three ways of accomplishing this rounding:

1. Global rounding: This rounding tries to align the ratio of trust to distrust values
in F to that in the input M . In the row vector Fi , i trusts j if and only if Fi j is
within the top τ fraction of entries of the vector Fi . This threshold τ is chosen
based on the overall relative fractions of trust and distrust in the input.

2. Local rounding: Here, we account for the trust/distrust behavior of i . The condi-
tions for Fi j and τ are same as the previous definition.

3. Majority rounding: This rounding intends to capture the local structure of the
original trust and distrust matrix. Consider the set J of users on whom i has
expressed either trust or distrust. If J is a set of labelled examples using which
we are to predict the label of a user j , j /∈ J . We order J along with j according
to the entries Fi j ′ where j ′ ∈ J ∪ { j}. At the end of this, we have an ordered
sequence of trust and distrust labels with the unknown label for j embedded in
the sequence at a unique location. From this, we predict the label of j to be that
of the majority of the labels in the smallest local neighbourhood surrounding it
where the majority is well-defined.
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Epinions

For this study, theEpinionswebof trustwas constructed as a directed graph consisting
of 131, 829 nodes and 841, 372 edges, each labelled either trust or distrust. Of these
labelled edges, 85.29%were labelled trust; we interpret trustto be the real value+1.0
and distrust to be −1.0.

The combinations of atomic propagations, distrust propagations, iterative propa-
gations and rounding methods gave 81 experimental schemes. To determine whether
any particular algorithm can correctly induce the trust or distrust that i holds for j , a
single trial edge (i, j) ismasked from the truth graph, and then each of the 81 schemes
is asked to guess whether i trusts j . This trial was performed on 3, 250 randomly
masked edges for each of the 81 schemes, resulting in 263, 000 total trust compu-
tations, and depicted in Fig. 7.13. In this table, ε denotes the prediction error of an
algorithm and a given rounding method, i.e., ε is the fraction of incorrect predictions
made by the algorithm.

The trust edges in the graph outnumber the distrust edges by a huge margin: 85
versus 15. Hence, a naive algorithm that always predicts “trust” will incur a predic-
tion error of only 15%. Nevertheless, the results are first reported for prediction on

Fig. 7.13 Prediction of the algorithms. Here, e∗ = (0.4, 0.4, 0.1, 0.1), K = 20
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randomly masked edges in the graph, as it reflects the underlying problem. However,
to ensure that the algorithms are not benefiting unduly from this bias, the largest
balanced subset of the 3, 250 randomly masked trial edges are taken such that half
the edges are trust and the other half are distrust—this is done by taking all the 498
distrust edges in the trial set as well as the 498 randomly chosen trust edges from the
trial set. Thus, the size of this subset S is 996. The prediction error in S is called εS .
The naive prediction error on S would be 50%.

They found that even a small amount of information about distrust (rather than
information about trust alone) can provide tangibly better judgements about how
much user i should trust user j , and that a small number of expressed trusts/distrust
per individual can allow prediction of trust between any two people in the system
with surprisingly high accuracy.

7.5 Perception of User Evaluation

Reference [5] reasoned that the evaluation of an opinion is fundamentally different
from reasoning about the opinion itself: instead of say,“What didY think ofX?”, look
at, “What did Z think of Y’s opinion of X?”. For this study, they picked Amazon.com,
one of the largest online e-commerce providers whose website includes not just
product reviews contributed by users, but also evaluations of the helpfulness of these
reviews. Here, each review comes with both a star rating—the number of stars it
assigns to the product—and a helpfulness vote—the information that a out of b people
found the review itself helpful.

A dataset consisting of over 4 million book reviews of roughly 675, 000 books on
Amazon’s US site, as well as smaller but comparably- sized corpora from Amazon’s
UK, Germany, and Japan sites were used. Of these reviews, more than 1 million
received atleast 10 helpfulness votes each.

The following four hypothesis were considered:

1. The conformity hypothesis: This hypothesis holds that a review is evaluated as
more helpful when its star rating is closer to the consensus star rating for the
product.

2. The individual-bias hypothesis: According to this hypothesis, when a user consid-
ers a review, she will rate it more highly if it expresses an opinion that she agrees
with. However, one might expect that if a diverse range of individuals apply this
rule, then the overall helpfulness evaluation could be hard to distinguish from one
based on conformity.

3. The brilliant-but-cruel hypothesis: This hypothesis arises from the argument that
“negative reviewers are perceived as more intelligent, competent, and expert than
positive reviewers.”

4. The quality-only straw-man hypothesis: There is the possibility that helpfulness
is being evaluated purely based on the textual content of the reviews, and that
these non-textual factors are simply correlates of textual quality.
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The helpfulness ratio of a review is defined to be the fraction of evaluators who
found it to be helpful (in other words, it is the fraction a

b when a out of b people found
the review helpful). The product average for a review of a given product is defined
to be the average star rating given by all reviews of that product. Figure7.14 shows
that the median helpfulness ratio of reviews decreases monotonically as a function
of the absolute difference between their star rating and the product average. This is
consistent with the conformity hypothesis: reviews in aggregate are deemed more
helpful when they are close to the product average. However, to assess the brilliant-
but-cruel hypothesis, we must look not at the absolute difference between a review’s
star rating and its product average, but at the signed difference, which is positive
or negative depending on whether the star rating is above or below the average.
Figure7.15 shows that not only does the median helpfulness as a function of signed
difference fall away on both sides of 0; it does so asymmetrically: slightly negative
reviews are punished more strongly, with respect to helpfulness evaluation, than
slightly positive reviews. This is at odds with both the brilliant-but-cruel hypothesis
as well as the conformity hypothesis.

To investigate the oddity, we group products by the variance of the star ratings
assigned to it by all its reviews, and perform the signed-difference analysis on sets of
products having fixed levels of variance. Figure7.16 shows that the effect of signed
difference to the average changes smoothly but in a complex fashion as the variance
increases. The role of variance can be summarized as follows.

Fig. 7.14 Helpfulness ratio declines with the absolute value of a review’s deviation from the
computed star average. The line segments within the bars indicate the median helpfulness ratio; the
bars depict the helpfulness ratio’s second and third quantiles. Grey bars indicate that the amount of
data at that x value represents 0.1% or less of the data depicted in the plot
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Fig. 7.15 Helpfulness ratio as a function of a review’s signed deviation

• When the variance is very low, the reviews with the highest helpfulness ratios are
those with the average star rating.

• With moderate values of the variance, the reviews evaluated as most helpful are
those that are slightly above the average star rating.

• As the variance becomes large, reviews with star ratings both above and below the
average are evaluated as more helpful than those that have the average star rating
(with the positive reviews still deemed somewhat more helpful).

This is a clear indication that variance is a key factor that any hypothesis needs to
incorporate.

For a given review, let the computed product-average star rating be the average
star rating as computed over all reviews of that product in the dataset.

To investigate straw-man quality-only hypothesis, wemust review the text quality.
To avoid the subjectiveness that may be involved when human evaluators are used,
a machine learning algorithm is trained to automatically determine the degree of
helpfulness of each review. For i, j ∈ {0, 0.5, . . . , 3.5} where i < j , i 	 j when the
helpfulness ratio of reviews, with absolute deviation i is significantly larger than for
reviews with absolute deviation j .

Reference [5] explains a model that can explain the observed behaviour.
We evaluate the robustness of the observed social-effects phenomena by compar-

ing review data from three additional different national Amazon sites: Amazon.co.uk
(UK), Amazon.de (Germany) and Amazon.co.jp (Japan). The Japanese data exhibits
a left hump that is higher than the right one for reviews with high variance, i.e.,
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Fig. 7.16 As the variance of the star ratings of reviews for a particular product increases, the
median helpfulness ratio curve becomes two-humped and the helpfulness ratio at signed deviation
0 (indicated in red) no longer represents the unique global maximum

Fig. 7.17 Signed deviations vs. helpfulness ratio for variance = 3, in the Japanese (left) and U.S.
(right) data. The curve for Japan has a pronounced lean towards the left

reviews with star ratings below the mean are more favored by helpfulness evaluators
than the respective reviews with positive deviations (Fig. 7.17).

They found that the perceived helpfulness of a review depends not just on its
content but also in subtle ways on how the expressed evaluation relates to other
evaluations of the same product.
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7.6 Effect of Status and Similarity on User Evaluation

Some of the most commonly found social applications that greatly rely on these user
evaluations are.

• Wikipedia is a collaboratively authored free encyclopedia. Active users can be
nominated for promotion to admin privilege status. Once nominated, a public
deliberation process begins and other Wikipedia users cast either positive, nega-
tive, or neutral votes on the candidate. Votes are public, signed by the voter, and
timestamped. After enough time has passed, aWikipedia official reviews the votes
and discussion and decides whether the election was successful or not. A public
record of the election is archived online. Table 7.3 tabulates a public record of
election from English, German, French and Spanish Wikipedias.

• Stack Overflow is a popular question-answering site for programmers. Users post
questions and answers, and can upvote or downvote other users’ questions and
answers. Heavily upvoted answers are prominently displayed on the question page,
and heavily upvoted questions are publicized on the site. There is a visible reputa-
tion system that assigns a score to each user on the site. Users gain/lose reputation
by receiving upvotes/downvotes on the content they produce. Users cannot down-
vote freely; it costs them a small amount of reputation to do so. There were 1.1M
questions, 3.2M answers, and 7.5M votes (1.8M on questions, 5.7M on answers)
from the site’s inception in 2008–2011. 93.4% of the votes are positive, and for
each vote we know the identity of the voter and the time it occurred. Who voted
on what is not publicly displayed on the site. Questions are annotated with tags
describing relevant topics. There are 31K unique tags and 3.6M tag events.

• Epinions is an online reviewing site where users can review products and rate each
others’ reviews. Our dataset has 132K users, 1.5M reviews, and 13.6M ratings
of those reviews (on a scale of 1–5 stars). The ratings are overwhelming positive
(78% are 5-star ratings), so we call a 5-star rating a “positive” evaluation and all
others “negative”.

The question is: “When multiple people all provide evaluations of the same “tar-
get” person, how to create a composite description of these evaluations that accurately
reflects some type of cumulative opinion of the community?” In an attempt to answer
this question, [2] found that similarity in the characteristics of two users—such as the
extent to which their contributions to the site have involved similar content, or have

Table 7.3 Wikipedia statistics. N = number of votes, P0(+) = baseline fraction of positive votes,
U = number of users

Wikipedia language N P0(+) U

English 119489 74.5% 10558

German 78647 67.7% 3560

French 22534 78.0% 1552

Spanish 8641 83.4% 917
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involved interactions with a common set of other users—can affect the evaluation
one user provides of another. They also found how the interaction of similarity and
status can produce strong effects, and that evaluations are less status-driven when
users are more similar to each other; and evaluations are particularly low among
users of roughly equal status.

They describe user A evaluating a user B as shorthand either for a direct evaluation
of B herself, or for an indirect evaluation via content that B has authored.

The authors have defined the following two notions of similarity.

• Users are represented by the “actions” they take. By action, we mean editing an
article onWikipedia, asking or answering a question on Stack Overflow, and rating
a review on Epinions. Let user u’s binary action vector be a vector of length M
(where M is the number of all possible actions a user can take) with a 1 in the i th
position if u took action i at least once, and 0 otherwise. The similarity between
users u and v is then the cosine between their respective binary action vectors:
s(u, v) = ua ·va

||ua ||·||va || (where ua is u’s binary action vector). If either ||ua|| = 0 or
||va|| = 0 (either u or v hasn’t taken any actions), then we say s(u, v) is undefined
and exclude it from calculations. A user’s action vector changes over time as they
make more actions. Whenever we compute the similarity s(E, T ) between an
evaluator E and a target T , we use the action vectors corresponding to the time at
which E evaluated T . This is called the content similarity.

• A user is characterized by a vector of other users that a user has evaluated and
define similarity between two users as the cosine between their corresponding
binary evaluation vectors. This is called the social similarity.

7.6.1 Effect of Similarity on Evaluation

The investigation on how similarity affected the probability of a positive evaluation
gave the following results. On Wikipedia the probability of a positive evaluation
grows with the content as well as social similarity between the evaluator and the
target. On average, overlapping interests with the target make it more likely that an
evaluator will cast a positive vote. Figure7.18 shows the probability of a positive
vote as a function of the cosine between the evaluator and target binary edit vectors
(averaging over all values of�). Themonotonically-increasing, diminishing- returns
relationship between them is clearly present. For ease of presentation,Wikipedia plots
are restricted to English Wikipedia for the remainder of this section. The results are
similar across all Wikipedia datasets, except where explicitly stated.

On Stack Overflow, the effect of similarity on evaluations is more nuanced. The
more similar an evaluator-target pair is, the more likely the evaluation is positive. But
in contrast to Wikipedia, the strength of this relationship depends on which notion
of similarity is used. The similarity on tags is a measure of content similarity and
the similarity on evaluations is a measure of social similarity. Figure7.19 plots the
fraction of positive evaluations as a function of these two measures of similarity.
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Fig. 7.18 Probability of a
positive evaluation (P(+))
as a function of the similarity
(binary cosine) between the
evaluator and target edit
vectors (s(e, t)) in Wikipedia

Fig. 7.19 Probability of E
positively evaluating T as a
function of similarity in
Stack Overflow

Since the scale of the cosine values are different for the two measures, we normalize
by their respective cumulative distribution functions so that we compare percentiles
instead of raw values on the x-axis. We find that P(+) increases with tag-similarity
very gradually for most of the data (from the 25th to the 80th percentile, P(+)

only increases by 0.5%, a relative gain of 7%). But for evaluation-similarity, P(+) is
higher than it is for tag-similarity (except for s = 0) and risesmuchmore significantly
(for the same range, P(+) increases 1.5%, a relative gain of 21%—3 times as much).
This suggests that the social orbits users travel in influence evaluations much more
than the topics they’re interested in. Similar effects were found for content similarity
on Epinions while social similarity turns out to be too sparse to be meaningful in
Epinions.
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7.6.2 Effect of Status on Evaluation

A user’s status, or standing in the community, is a function of the community’s
perception of her contributions. User u’s status, denoted as σu , at time t is defined as
the number of actions u has taken before time t (i.e. the number of non-zero entries
in her corresponding binary action vector ua at time t). Thus the status, onWikipedia
is the total number of edits made by a user u before time t ; on Stack Overflow, the
total number of questions asked and answers; and on Epinions, the number of ratings
given.

The differential status, � = σE − σT compare the evaluator’s status with the
target’s status. It was observed that if an evaluator and target have similar action
profiles, the vote varies less with their status difference than if the evaluator and
target operate in different domains. This is shown in Fig. 7.20, where P(+) is plotted
as a function of � for different levels of similarity in English Wikipedia.

The trend is somewhat similar on StackOverflow as depicted in Fig. 7.21 for P(+)

versus � plot. When � > 0, the picture is qualitatively the same as in Wikipedia:
the higher the similarity, the higher P(+) is. But for � < 0, the situation is very
different: the similarity curves are in the opposite order from before: evaluators
with low similarity to the higher-status targets (since � < 0) are more positive
than evaluators with high similarity. This is due to a particular property of Stack
Overflow’s reputation system, in which it costs a user a small amount of reputation
to downvote a question or answer (issue a negative evaluation). This creates a dis-

Fig. 7.20 Probability of E voting positively on T as a function of� for different levels of similarity
in English Wikipedia
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Fig. 7.21 Probability of E voting positively on T as a function of� for different levels of similarity
on Stack Overflow for a all evaluators b no low status evaluators

Fig. 7.22 Similarity between E and T pairs as a function of� for a EnglishWikipedia and b Stack
Overflow

incentive to downvote which is most strongly felt by users with lower reputation
scores (which correlates with our measure of status on Stack Overflow). When the
low-status evaluators (σE < 100), this effect disappears and the overall picture looks
the same as it does on Wikipedia.

InWikipedia elections, we find that the evaluator’s similarity to the target depends
strongly on � while this does not happen on Stack Overflow or Epinions. This is
shown in Fig. 7.22.

Figure7.23 plots the fraction of positive evaluations P(+) against the target’s
status σT within several narrow � ranges on Stack Overflow. If the status difference
is really how users compare their status against others, then we would expect that
these curves are approximately flat, because this would imply that for pairs separated
by�, evaluation positivity does not depend on what their individual statuses are, and
that the level of these constant curves depends on �, so that different � values result
in different evaluation behaviour. However, � does not control the result well for
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Fig. 7.23 Probability of E
positively evaluating T
versus σT for various fixed
levels of � in Stack
Overflow

extremely low target status values, where evaluators are much more negative than
just the difference in status would otherwise suggest. This is because the poor quality
of targets with low status overwhelms the difference in status between evaluator and
target. Thus absolute status, and not differential status, is themain criterion evaluators
use to evaluate very low-status targets.

7.6.3 Aggregate User Evaluation

At small positive�, there appears to be a “dip” and subsequent rebound in Fig. 7.24.
This suggests that users are particularly harsh on each other when they have approx-
imately the same status. However, this is at odds with the findings in the previous
subsection that users who are similar in other dimensions tend to be more positive
toward each other.

When we examine P(+) as a function of �, we are aggregating over the two
different regimes of user evaluations. In the previous subsection, we showed that
evaluation behaviour is qualitatively different for low-status targets. Since most eval-
uators in the data have relatively low status, this implies that most evaluations in the
absolute status evaluation regime will have small positive � values. And since these
evaluations are much more negative than those made in the relative status regime,
this can cause a dip slightly to the right of 0. This explains the anomaly in the case
of Stack Overflow and Epinions but in the case of Wikipedia, the dip persists even
when we eliminate targets of low status. The high similarity between evaluator and
target, and the observation that higher-status evaluators are more similar to the target
than lower-status evaluators are contribute to this non-monotonicity in Wikipedia.
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Fig. 7.24 Dip in various datasets

7.6.4 Ballot-Blind Prediction

The problem of ballot-blind prediction is formally defined as follows. Knowing only
the first few users A1, A2, …, Ak who evaluate another user B and their attributes
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(similarity to B and relative status)—but not the actual evaluations—can we make
accurate predictions about the outcome of the election? The crucial point being that
we do not have access to the evaluations provided by A1, A2, …, Ak , but only to their
attributes as individuals relative to user B. In other words, can we infer an audience’s
approval or disapproval of a piece of content purely from themakeup of the audience.

Here,we focus on predicting administrator promotion onWikipedia from the early
voters, without looking at the sign of their votes. Just by looking at properties of the
first few voters who show up (and importantly, their similarity with the candidate up
for election), we attempt to predict whether the election succeeds or not.

Formally, a Wikipedia adminship election (T , ω, R) is specified by a target (or
candidate) T , a set of ordered votes ω, and a result Rε{+1,−1} denoting whether T
was promoted or not. Each vote viεω is a tuple (Ei , si , ti ) where Ei is the evaluator,
siε{+1,−1} denotes whether the vote is positive or negative (disregarding neutral
votes), and ti is the time when Ei cast the vote. The votes are sorted by time, so
t1 < t2 < · · · < tm , where m is the number of votes cast in the election. The task is
to predict R from the first k votes v1, . . . , vk (without looking at the sign si of each
vote) using the similarity and status of the evaluators relative to the target.

In English Wikipedia, the data consisted of approximately 120, 000 votes made
by approximately 7, 600 unique voters across 3, 422 elections on 2, 953 distinct
candidates. (The number of elections exceeds the number of distinct candidates
since some candidates go up for election more than once). k = 5 is used in the
experiments. The performance is evaluated using accuracy on leave-one-out cross-
validation, where the model is trained on the entire dataset minus one example and
is tested on the example for every example in the dataset.

For each vote vi , the identity of the evaluator Ei , her similarity s(Ei , T ) with
the target, her status σEi , and the status difference �i = σEi − σT between her and
the target. Positivity is voter i’s historical fraction of positive votes Pi (excluding
the current vote, since this the value to be predicted). If i has no other votes in the
dataset, their positivity is defined to be the global positivity across the entire dataset
(the overall fraction of positive votes across all voters).

Two classes of features were used:

• Simple Summary Statistics (S) of the status and similarity of the target and the

evaluators: log(σT ), mean similarity s =
k∑

i=1

s(vi ,T )

k and � =
k∑

i=1

(σEi −σT )

k .

• �-s space is divided into four quadrants as shown in Fig. 7.25, divided by � = 0
and a similarity value that roughly splits the evaluations into two equally-sized
buckets. This gives us four features where each simply counts the number of
voters coming from a particular �-s quadrant.

Three baselines were formulated:

• B1: A logistic regression classifier that uses the 4 features of �-s quadrants and
the S statistics.

• B2: The probability of voter Ei voting positively (without considering his relation
to the candidate). The probability of user Ei voting positively P(Ei = 1) is
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Fig. 7.25 The
Delta-similarity half-plane.
Votes in each quadrant are
treated as a group

estimated as the empirical fraction Ei ’s votes that are positive. The estimated

fraction of positive votes in an election is simply the average 1
k

k∑

i=1
Pi of the first k

voters.
• GS: The “gold-standard” represents the best possible performance that can be
achieved. It “cheats” by examining the values of actual votes themselves (si , for
i ≤ k), computes the empirical fraction of positive votes and learns the optimal
threshold to predict the election outcome.

The methods developed were:

• M1: M1 models the probability that Ei votes positively as P(Ei = 1) = Pi +
d(�i , si ), where Pi is Ei ’s positivity, and d(�i , si ) is the average deviation of the
fraction of positive votes in the �i , si bucket compared to the overall fraction of
positive votes across the entire dataset. The average P(Ei = 1) for i = 1 . . . k is
computed and then made threshold for prediction.

• M2: P(Ei = 1) is modelled as P(Ei = 1) = α · Pi (�i , si ) + (1− α) · d(�i , si ).
α between 0.6 and 0.9 is used for computation.

Figure7.26 plots the classification accuracy for the models on English Wikipedia
as well as German Wikipedia (French and Spanish Wikipedia were very similar to
the German results). Here, the prior refers to the accuracy of random guessing.

These results demonstrate that without even looking at the actual votes, it is
possible to derive a lot of information about the outcome of the election from a small
prefix of the evaluators. Very informative implicit feedback could be gleaned from
a small sampling of the audience consuming the content in question, especially if
previous evaluation behaviour by the audience members is known.
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Fig. 7.26 Ballot-blind prediction results for a English Wikipedia b German Wikipedia

7.7 Predicting Positive and Negative Links

Reference [9] investigated relationships in Epinions, Slashdot and Wikipedia. They
observed that the signs of links in the underlying social networks canbepredictedwith
high accuracy using generalized models. These models are found to provide insight
into some of the fundamental principles that drive the formation of signed links in
networks, shedding light on theories of balance and status from social psychology.
They also suggest social computing applications by which the attitude of one user
towards another can be estimated from evidence provided by their relationships with
other members of the surrounding social network.

The study looked at three datasets.

• The trust network of Epinions data spanning from the inception of the site in 1999
until 2003. This network contained 119, 217 nodes and 841, 000 edges, of which
85.0% were positive. 80, 668 users received at least one trust or distrust edge,
while there were 49, 534 users that created at least one and received at least one
signed edge. In this network, s(u, v) indicates whether u had expressed trust or
distrust of user v.

• The social network of the technology-related news website Slashdot, where u can
designate v as either a “friend” or “foe” to indicate u’s approval or disapproval
of v’s comments. Slashdot was crawled Slashdot in 2009 to obtain its network
of 82, 144 users and 549, 202 edges of which 77.4% are positive. 70, 284 users
received at least one signed edge, and there were 32, 188 users with non-zero in-
and out-degree.

• Thenetwork of votes cast byWikipedia users in elections for promoting individuals
to the role of admin. A signed link indicated a positive or negative vote by one user
on the promotion of another. Using the January 2008 complete dump ofWikipedia
page edit history all administrator election and vote history datawas extracted. This
gave 2, 794 elections with 103, 747 total votes and 7, 118 users participating in
the elections. Out of this total, 1, 235 elections resulted in a successful promotion,
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while 1, 559 elections did not result in the promotion of the candidate. The resulting
network contained 7, 118 nodes and 103, 747 edges of which 78.7% are positive.
There were 2, 794 nodes that received at least one edge and 1, 376 users that both
received and created signed edges. s(u, v) indicates whether u voted for or against
the promotion of v to admin status.

In all of these networks the background proportion of positive edges is about the
same, with ≈80% of the edges having a positive sign.

The aim was to answer the question: “How does the sign of a given link interact
with the pattern of link signs in its local vicinity, or more broadly throughout the
network? Moreover, what are the plausible configurations of link signs in real social
networks?” The attempt is to infer the attitude of one user towards another, using the
positive and negative relations that have been observed in the vicinity of this user.
This becomes particularly important in the case of recommender systems where
users’ pre-existing attitudes and opinions must be deliberated before recommending
a link. This involves predicting the sign of the link to be recommended before actually
suggesting this.

This gives us the edge sign prediction problem. Formally, given a social network
with signs on all its edges, but the sign on the edge from node u to node v, denoted
s(u, v), has been “hidden”.With what probability can we infer this sign s(u, v) using
the information provided by the rest of the network? In a way, this problem is similar
to the problem of link prediction.

7.7.1 Predicting Edge Sign

Given a directed graph G = (V, E) with a sign (positive or negative) on each edge,
let s(x, y) denote the sign of the edge (x, y) from x to y, i.e, s(x, y) = 1 when
the sign of (x, y) is positive, −1 when the sign is negative, and 0 when there is no
directed edge from x to y. In cases where we are interested in the sign of edge (x, y)
regardless of its direction, we write s(x, y) = 1 when there is a positive edge in one
of the two directions (x, y) or (y, x), and either a positive edge or no edge in the
other direction. We write s(x, y) = −1 analogously when there is a negative edge in
one of these directions, and either a negative edge or no edge in the other direction.
We write s(x, y) = 0 in all other cases (including when there are edges (x, y) and
(y, x) with opposite signs, though this is in fact rare). For different formulations, we
will suppose that for a particular edge (u, v), the sign s(u, v) or s(u, v) is hidden
and that we are trying to infer it.

There are two classes of features. The first class of features, based on degree, is
as follows. As we are interested in predicting the sign of the edge from u to v, we
consider outgoing edges from u and incoming edges to v. d+

in(v) and din−(v) denotes
the number of incoming positive and negative edges to v, respectively. Similarly,
d+
out (u) and d−

out (u) denotes the number of outgoing positive and negative edges
from u, respectively. C(u, v) denotes the total number of common neighbours of u
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and v in an undirected sense, i.e, the number of nodes w such that w is linked by
an edge in either direction with both u and v. C(u, v) is sometimes also referred to
as the embeddedness of the edge (u, v). In summary, the features in this class are:
d+
in(v), d−

in(v), d+
out (u), d−

out (u), C(u, v), together with the total out-degree of u and
the total in-degree of v, which are d+

out (u)+d−
out (u) and d+

in(v)+d−
in(v) respectively.

For the second class of feature, we consider each triad involving the edge (u, v),
consisting of a node w such that w has an edge either to or from u and also an edge
either to or from v. Since, the edge between w and u can be in either direction and
of either sign, and the edge between w and v can also be in either direction and of
either sign; this leads to 2 × 2 × 2 × 2 = 16 distinct possibilities. Each of these 16
triad types may provide different evidence about the sign of the edge from u to v,
some favouring a negative sign and others a positive sign. All of this is encoded in
a 16-dimensional vector specifying the number of triads of each type that (u, v) is
involved in.

Logistic regression was applied to learn the sign of an edge based on these 23
features. The full dataset containing 80% positive edges are first used. Next, a bal-
anced dataset was created with equal numbers of positive and negative edges, so that
random guessing yields a 50% correct prediction rate. The classification accuracy is
shown in Fig. 7.27, for different levels of minimum embeddedness (Em).

The coefficients provided by logistic regressionwhen associatedwith each feature
suggests how the feature is being used by the model to provide weight for or against
a positive edge sign. Specifically, we say that a theory of triad types is a function

f : {t ypes τ } → {+1,−1, 0}

which specifies for each triad type τ whether it constitutes evidence for a positive
(u, v) edge ( f (τ ) = +1), evidence for a negative (u, v) edge ( f (τ ) = −1), or
whether it offers no evidence ( f (τ ) = 0).

For studying balance,we see that ifw forms a triadwith the edge (u, v), then (u, v)

should have the sign that causes the triangle on u, v, w to have an odd number of posi-
tive signs, regardless of edge direction. In other words, fbalance(τ ) = s(u, w)s(v,w).
In order to determine fstatus(τ ), we first flip the directions of the edges between u
and w and between v and w, so that they point from u to w and from w to v; we
flip the signs accordingly as we do this. We then define fstatus(τ ) to be the sign of
s(u, w) + s(w, v). The accuracy of predicting signs considering these balance and
status coefficients is depicted in Fig. 7.28.Here, StatusLrn andBalanceLrn denote the
coefficients learned via logistic regression. The coefficients from {−1, 0,+1} pro-
vided by balance, weak balance and status are denoted by BalanceDet,WeakBalDet
and StatusDet respectively.

Next the following handwritten heuristic predictors were considered:

• Balance heuristic (Balance): For each choice of the sign of (u, v), some of the
triads it participates in will be consistent with balance theory, and the rest of the
triads will not.We choose the sign for (u, v) that causes it to participate in a greater
number of triads that are consistent with balance.
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Fig. 7.27 Accuracy of predicting the sign of an edge based on the signs of all the other edges in
the network in a Epinions, b Slashdot and c Wikipedia

• Status heuristic (StatDif): An estimate of a node x’s status is σx = d+
in(x) +

d−
out (x) − d+

out (x) − d−
in(x). This gives x status benefits for each positive link it

receives and each negative link it generates, and status detriments for each negative
link it receives and each positive link it generates. We then predict a positive sign
for (u, v) if σu ≤ σv , and a negative sign otherwise.

• Out-degree heuristic (OutSign): We predict the majority sign based on the signs
given by the edge initiator u, i.e, we predict a positive sign if d+

out (u) ≥ d−
out (u).

• In-degree heuristic (InSign): We predict the majority sign based on the signs
received by the edge target v, i.e, we predict a poisitive sign if d+

in(u) ≥ d−
in(v).
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Fig. 7.28 Accuracy of predicting the sign of an edge based on the signs of all the other edges in
the network in a Epinions, b Slashdot and c Wikipedia

These predictors are plotted in Fig. 7.29 as a function of embeddedness.
In addition to sign prediction, the study focused at whether information about

negative links can be helpful in addressing questions that concern purely positive
links, i.e, given a pair u and v, is there a positive link between u and v? If so, how
much performance is improved if the negative links in the network are also visible.
In other words, how useful is it to know where a person’s enemies are, if we want to
predict the presence of additional friends? The study found that negative links can be
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Fig. 7.29 Accuracy for handwritten heuristics as a function of minimum edge embeddedness

a powerful source of additional information for a task such as this. This type of result
helps to argue that positive and negative links in online systems should be viewed
as tightly related to each other, rather than as distinct non-interacting features of the
system.

Reference [4] studied Essembly.com, a “fiercely non-partisan social network” that
allowsmembers to post resolves reflecting controversial opinions.Members can then
vote on these resolves, using a four-point scale: Agree, Lean Agree, Lean Against,
or Against. Users can only vote once per resolve, and all their votes are viewable by
othermembers, forming an ideological profile. Instead of a plain “friend request”, this
social network apart allows users to form three semantically distinct but overlapping
types of connections: friend request, ally request: a person who shares the same
ideologies as the person being requested, and nemesis request: a person who has
opposite ideologies to the person being requested. They found that users are affected
differently by their friends, allies andnemesis, indicating that people use these distinct
connections for different purposes.

They conclude that social applications that encourage online socialization and
registration of users’ “friends” may compel people to add as “friends” people whom
they know only superficially or who don’t hold much influence over them. There-
fore, the use of this friends network to make recommendations or to influence users
may then be diminished. Therefore, sites seeking to exploit the influence exerted by
friends in changing behaviour or making recommendations should provide multiple
classes of friendship. The closer a user is to recommending friends, the stronger the
persuasion is likely to be.

Problems

Download the signed Epinions social network dataset available at https://snap.
stanford.edu/data/soc-sign-epinions.txt.gz.

Consider the graph as undirected and compute the following:

47 Calculate the count and fraction of triads of each type in this network.

48 Calculate the fraction of positive and negative edges in the graph. Let the fraction
of positive edges be p. Assuming that each edge of a triad will independently be

https://snap.stanford.edu/data/soc-sign-epinions.txt.gz
https://snap.stanford.edu/data/soc-sign-epinions.txt.gz
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assigned a positive sign with probability p and a negative sign with probability
1 − p, calculate the probability of each type of triad.

49 Now, analyse a simple generative model of signed networks by running simula-
tions of the dynamic process on small networks in the following manner. Create a
complete network on 10 nodes. For each edge, choose a sign with uniform probabil-
ity. Run this dynamic process for a million iterations. Repeat this process 100 times.
What fraction of these networks are balanced?
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Chapter 8
Cascading in Social Networks

Cascades are periods during which individuals in a population exhibit herd-like
behaviour because they are making decisions based on the actions of other individ-
uals rather than relying on their own information about the problem. Cascades are
often regarded as a specific manifestation of the robust yet fragile nature of many
complex systems: a systemmay appear stable for long periods of time and withstand
many external shocks, then suddenly and apparently inexplicably exhibit a large
cascade [17].

8.1 Decision Based Models of Cascade

Consider the following coordination game that helps to better understand decision
based cascading. Consider a situation in a social network where every node has to
decide between two possible behaviours, A and B. If nodes v and w are neighbours,
then it would be of mutual benefit if both of them adopted the same behaviour. The
possible payoffs between the players and the behaviours are as follows: if both v and
w adopt behaviour A, they each get a payoff of a > 0; if they both adopt B, they
each get a payoff of b > 0; and if they adopt opposite behaviours, then they each get
a payoff of 0. This is better illustrated in the payoff matrix given in Table 8.1.

Each node v is faced with the choice of adopting a certain behaviour taking into
consideration the payoffs it will receive from each of its neighbour. Figure 8.1 shows
node v’s predicament. In the figure, p fraction of v’s neighbours adopt behaviour
A, while (1 − p) fraction have behaviour B. So if d denotes the degree of v, then v

will receive a payoff of pda if it adopts behaviour A, and v will receive a payoff of
(1 − p)db if it adopts behaviour B. Therefore, A is a better choice if
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Table 8.1 A-B coordination game payoff matrix

A B

A a,a 0,0

B 0,0 b,b

Fig. 8.1 v must choose
between behaviours A and B
based on its neighbours
behaviours

pda ≥ (1 − p)db (8.1)

Rearranging the terms in Eq. 8.1, we get

p ≥ b

a + b
(8.2)

If we denote the right had side term as q (q = b
a+b ), then q can be called the

threshold. This gives us the threshold rule: if atleast a q fraction of v’s neighbours
adopt a specific behaviour, then in terms of payoff, it is beneficial for v to also adopt
this behaviour.

In the long run, this behaviour adoption leads to one of the following states
of equilibria. Either everyone adopts behaviour A, or everyone adopts behaviour
B. Additionally, there exists a third possibility where nodes adopting behaviour A
coexist with nodes adopting behaviour B. In this section, we will understand the
network circumstances that will lead to one of these possibilities.

Assume a network where every node initially has behaviour B. Let a small portion
of the nodes be early adopters of the behaviour A. These early adopters choose A
for reasons other than those guiding the coordination game, while the other nodes
operate within the rules of the game. Now with every time step, each of these nodes
following B will adopt A based on the threshold rule. This adoption will cascade
until one of the two possibilities occur: Either all nodes eventually adopt A leading
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Fig. 8.2 Initial network
where all nodes exhibit the
behaviour B

Fig. 8.3 Nodes v and w are
initial adopters of behaviour
A while all the other nodes
still exhibit behaviour B

to a complete cascade, or an impasse arises between those adopting A and the ones
adopting B forming a partial cascade.

Figures 8.2, 8.3, 8.4 and 8.5 all show an example of a complete cascade. In this
network, let the payoffs be a = 4 and b = 5, and the initial adopters be v and w.
Assuming that all the nodes started with behaviour B. In the first time step, q = 5

9
but p = 2

3 for the nodes r and t , and p = 1
3 for the nodes s and u. Since the p for

nodes r and t is greater than q, r and t will adopt A. However, the p for nodes s and
u is less than q. Therefore these two nodes will not adopt A. In the second time step,
p = 2

3 for the nodes s and u. p being greater than q cause the remaining two nodes
to adopt the behaviour, thereby causing a complete cascade.

Figures 8.6, 8.7 and 8.8 illustrate a partial cascade. Similar to the complete cascade
depiction, we begin with a network where all the nodes exhibit behaviour B with
payoffs a = 3 and b = 2. The nodes 7 and 8 are the initial adopters, and q = 2

5 . In
the first step, node 5 with p = 2

3 and node 10 with p = 1
2 are the only two nodes

that can change behaviour to A. In the second step, node 4 has p = 2
3 and node 9

has p = 1
1 , causing them to switch to A. In the third time step, node 6 with p = 2

3
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Fig. 8.4 First time step
where r and t adopt
behaviour A by threshold
rule

Fig. 8.5 Second time step
where s and u adopt
behaviour A also by
threshold rule

adopts A. Beyond these adoptions, there are no possible cascades leading to a partial
cascade of behaviour A.

There are two ways for a partial cascade to turn into a complete cascade. The first
way is for the payoff of one of the behaviours to exceed the other. In Fig. 8.6, if the
payoff a is increased, then the whole network will eventually switch to A. The other
way is to coerce some critical nodes of one of the behaviours to adopt the other. This
would restart the cascade, ending in a complete cascade in favour of the coerced
behaviour. In Fig. 8.6, if nodes 12 and 13 were forced to adopt A, then this would
lead to a complete cascade. Instead, if 11 and 14 were coerced to switch, then there
would be no further cascades.

Partial cascades are caused due to the fact that the spread of a new behaviour
can stall when it tries to break into a tightly-knit community within the network, i.e,
homophily can often serve as a barrier to diffusion, by making it hard for innovations
to arrive from outside densely connected communities. More formally, consider a set
of initial adopters of behaviour A, with a threshold of q for nodes in the remaining
network to adopt behaviour A. If the remaining network contains a cluster of density
greater than 1− q, then the set of initial adopters will not cause a complete cascade.
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Fig. 8.6 Initial network where all nodes have behaviour B

Fig. 8.7 Nodes 7 and 8 are early adopters of behaviour A while all the other nodes exhibit B
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Fig. 8.8 After three time steps there are no further cascades

Table 8.2 Coordination game for node specific payoffs

A B

A av, aw 0, 0

B 0, 0 bv, bw

Whenever a set of initial adopters does not cause a complete cascade with threshold
q, the remaining network must contain a cluster of density greater than 1 − q.

The above discussed models work on the assumption that the payoffs that each
adopter receives is the same, i.e, a for each adopter of A and b for each adopter of
B. However, if we consider the possibility of node specific payoff, i.e, every node v

receives a payoff av for adopting A and payoff bv for taking B. So the payoff matrix
in such a coordination game is as shown in Table 8.2.

On the same lines as the previous coordination game we arrive at the Eq. 8.3

p ≥ bv

av + bv

(8.3)

Here, we can define qv = bv

av+bv
as the personal threshold of v. So, this will give a

personal threshold rule whereby v will take the behaviour adopted by atleast qv of
its neighbours.
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8.1.1 Collective Action

Collective actionproblems are thosewhere an activity produces benefit only if enough
people participate. Situations such as protest against a repressive regime work only
with collective action. If only a handful of demonstrators staged a protest, these
protesters would simply be arrested and thereby end the revolt. Instead if a large
group were mobilised, the government would be weakened and everyone including
the demonstrators would benefit. However, this large group will assemble if and
only if every individual in the group is assured of the fact that the number of other
protesters being present is greater than this individual’s personal threshold. In other
words, the success of this demonstration is incumbent upon the common knowledge
of all of these protesters, i.e, among the protesters in this group, each protester
knows that a number greater than their personal threshold is going to be mobilised,
each protester knows that every protester knows it, each protester knows that every
protester knows that each of the protesters know it, and so on indefinitely. The various
forms of mass media and social network applications usually help people achieve
this common knowledge. Additionally, it is observed that although a large fraction
of a group are in support of a radical idea, most believe that they are in a small
minority and it is way too risky for them to get involved. This phenomenon is termed
as pluralistic ignorance. To maintain a state of pluralistic ignorance by preventing
the spread of common knowledge, is the reason why governments usually curb the
freedom of press during protests and why repressive governments work so hard
towards achieving censorship.

8.1.2 Cascade Capacity

The cascade capacity is defined with respect to an infinite network as the largest
threshold at which a finite set of nodes can cause a complete cascade.

Consider a network with infinite nodes where each node is connected to a finite
set of these nodes. Let a finite set S of these nodes have behaviour A while the rest of
the network exhibits behaviour B. In each time step t , each of these nodes initially
exhibiting behaviour B adopt A based on their threshold. So, the cascade capacity
of this network is the largest value of q for which S can cause complete cascade.

First, let us consider what happens if the network is an infinite path. Even if just
one node in this network is an early adopter of A while all other nodes exhibit B,
a value of q ≤ 1

2 is sufficient for a complete cascade while q > 1
2 fails to do so.

Therefore in the case of an infinite path, the cascade capacity is 1
2 .

Next, we will look at an infinite grid as shown in Fig. 8.9. Let the nine nodes in
black be the early adopters of behaviour A while the other nodes exhibit behaviour
B. Here, if the threshold q ≤ 3

8 then there will be a complete cascade. First the nodes
c, i , h and n will adopt A, followed by b, d, f , g, j , k, m and o, and then the others.
Thus, the cascade capacity of this network is 3

8 .
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Fig. 8.9 An infinite grid with 9 early adopters of behaviour A while the others exhibit behaviour B

8.1.3 Co-existence of Behaviours

Reference [9] sought to understand how a new technology A might spread through
a social network of individuals who are currently users of technology B, and how
diffusion works when there exist a group of these individuals who can manage both
A and B (bilingual).

Suppose there are two instant messenger (IM) systems A and B, which are not
interoperable, i.e, users must be on the same system in order to communicate. There
is a social network G on the users, indicating who wants to talk to whom, and the
endpoints of each edge (v, w) play a coordination game with possible strategies A
or B: if v and w each choose IM system B, then they they each receive a payoff of
q; if they each choose IM system A, then they they each receive a payoff of 1 − q;
and if they choose opposite systems, then they each receive a payoff of 0. A becomes
the “better” technology if q < 1

2 , in the sense that A− A payoffs would then exceed
B − B payoffs, while A is the “worse” technology if q > 1

2 .
If all nodes initially play B, and a small number of nodes begin adopting strategy

A instead, the best response would be to switch to A if enough of a user’s neighbours
have already adopted A. As this unfolds, cascading will occur where either all nodes
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Table 8.3 Payoff matrix

A B AB

A 1 − q, 1 − q 0, 0 1 − q, 1 − q − c

B 0, 0 q, q q, q − c

AB 1 − q − c, 1 − q q − c, q max(q, 1 − q) − c,max(q, 1 − q) − c

switch to A, or there will exist a state of co-existence where some users use A, others
use B, with no interoperability between these two groups.

However, we see that the real-world contains exampleswhere co-existence occurs.
Windows coexisting with Mac OS, or Android coexisting with iOS. The point of
interest is that these coexisting groups are not completely isolated. There exists a
region of overlap between these groups, i.e, there are certain users who are able to
use both of the choices and thus act as the bridge between the groups.

Considering that our IM system becomes as follows. Users can choose among
three strategies, A, B and AB (in which both A and B are used). An adopter of AB
gets to use, on an edge-by-edge basis, whichever of A or B yields higher payoffs
in each interaction. However, AB has to pay a fixed cost c for being bilingual. The
payoffs now become as shown in Table 8.3.

Let us consider that G is infinite and each node has a degree� ∈ N. The per-edge
cost for adopting AB is defined as r = c/�.

Reference [9] found that for values of q close to but less than 1
2 , strategy A can

cascade on the infinite line if r is sufficiently small or sufficiently large, but not
if r takes values in some intermediate interval. In other words, strategy B (which
represents the worse technology, since q < 1

2 ) will survive if and only if the cost of
adopting AB is calibrated to lie in this middle interval. The explanation for this is as
follows:

• When r is very small, it is cheap for nodes to adopt AB as a strategy, and so AB
spreads through the whole network. Once AB is everywhere, the best-response
updates cause all nodes to switch to A, since they get the same interaction benefits
without paying the penalty of r .

• When r is very large, nodes at the interface, with one A neighbour and one B
neighbour, will find it too expensive to choose AB, so they will choose A (the
better technology), and hence A will spread step-by-step through the network.

• When r takes an intermediate value, a node with one A neighbour and one B
neighbour, will find it most beneficial to adopt AB as a strategy. Once this happens,
the neighbour who is playing B will not have sufficient incentive to switch, and
the updates make no further progress. Hence, this intermediate value of r allows
a “boundary” of AB to form between the adopters of A and the adopters of B.

Therefore, the situation facing B is this: if it is too permissive, it gets invaded by
AB followed by A; if it is too inflexible, forcing nodes to choose just one of A or
B, it gets destroyed by a cascade of direct conversions to A. But if it has the right
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balance in the value of r , then the adoptions of A come to a stop at a boundary where
nodes adopt AB.

Reference [9] also shows that when there are three competing technologies, two of
these technologies have an incentive to adopt a limited “strategic alliance”, partially
increasing their interoperability to defend against a new entrant.

8.1.4 Cascade Capacity with Bilinguality

Here, we will look at the following question: Given an infinite network with three
possible behaviours, A, B and AB, and payoff values of a for adopting A, b for
adopting B and max(a, b) for adopting AB with an incurred cost c for bilinguality;
what is the largest threshold at which a finite set adopting A can cause a complete
cascade when the rest of the network adopts B?

In the case of an infinite path, instead of looking at it in the perspective of a
sequence of time steps, we will look at what a certain node will do when it is faced
with the choice between different behaviours from each of its neighbour.

8.1.4.1 Choice between A and B

We look at the graph in Fig. 8.10 where w is sandwiched between a neighbour with
behaviour A and neighbour adopting behaviour B.

Here,w receives a payoff of a if it chooses A; it receives a payoff of 1 for choosing
B; and a payoff of a + 1 − c for adopting AB. The logical thing for w is to adopt
the behaviour that gives it the highest payoff. The a − c plot in Fig. 8.11 gives us
a simpler way to look at the payoffs. These lines intersect at (1, 1) and gives six
regions. We see that A is the best strategy in two of these regions, B is the best in
two of them, and AB is the best in other two.

Fig. 8.10 The payoffs to
node w on an infinite path
with neighbours exhibiting
behaviour A and B
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Fig. 8.11 By dividing the a-c plot based on the payoffs, we get the regions corresponding to the
different choices

Fig. 8.12 The payoffs to
node w on an infinite path
with neighbours exhibiting
behaviour AB and B

8.1.4.2 Choice Between AB and B

The graph in Fig. 8.12 gives us the situation where w is placed between a node with
behaviour AB and another exhibiting B.

If a < 1, then B will provide w with the highest payoff regardless of the value of
c. Instead, let a ≥ 1 and b = 2 (if w adopts behaviour B, it can interact with both
of its neighbours). Similar to the case where w was sandwiched between neighbours
exhibiting A and B, a − c plot as shown in Fig. 8.13 simplifies the view of the
payoffs. This a − c plot shows a diagonal line segment from the point (1, 0) to the
point (2, 1). To the left of this line segment, B wins and the cascade stops. To the left
of this line segment, AB wins—so AB continues spreading to the right, and behind
this wave of AB’s, nodes will steadily drop B and use only A.

Figure 8.14 summarises the possible cascade outcomes based on the values of a
and c. The possibilities are: (i) B is favoured by all nodes outside the initial adopter
set, (ii) A spreads directly without help from AB, (iii) AB spreads for one step
beyond the initial adopter set, but then B is favoured by all nodes after that, (iv) AB
spreads indefinitely to the right, with nodes subsequently switching to A.

Models are developed to understand systems where users are faced with alterna-
tives and the costs and benefits of each depend on how many others choose which
alternative. This is further complicated when the idea of a “threshold” is introduced.
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Fig. 8.13 The a-c plot shows the regions where w chooses each of the possible strategies

Fig. 8.14 The plot shows
the four possible outcomes
for how A spreads or fails to
spread on the infinite path,
indicated by this division of
the (a, c)-plane into four
regions

The threshold is defined as the proportion of neighbours who must take a decision
so that adoption of the same decision by the user renders the net benefits to exceed
the net costs for this user.

Reference [8] aimed to present a formal model that could predict, from the initial
distribution of thresholds, the final proportion of the users in a system making each
of the two decisions, i.e, finding a state of equilibrium. Let the threshold be x , the
frequency distribution be f (x), and the cumulative distribution be F(x). Let the
proportion of adopters at time t be denoted by r(t). This process is described by
the difference equation r(t + 1) = F[r(t)]. When the frequency distribution has a
simple form, the difference equation can be solved to give an expression for r(t) at
any value of t . Then, by setting r(t + 1) = r(t), the equilibrium outcome can be
found. However, when the functional form is not simple, the equilibrium must be
computed by forward recursion. Graphical observation can be used to compute the
equilibrium points instead of manipulating the difference equations. Let’s start with
the fact that we know r(t). Since r(t+1) = F[r(t)], this gives us r(t+1). Repeating
this process we find the point re at F[re] = re. This is illustrated in Fig. 8.15.
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Fig. 8.15 Graphical method
of finding the equilibrium
point of a threshold
distribution

Table 8.4 Symmetric payoff matrix

0 1

0 u(0, 0), u(0, 0) u(0, 1), u(1, 0)

1 u(1, 0), u(0, 1) u(1, 1), u(1, 1)

Consider an infinite population of players. Each player interacts with some finite
subset of the population and must choose one of two actions (0 and 1) to play against
all neighbours. Let �(x) denote the set of neighbours of x . There exists a critical
number 0 ≤ q ≤ 1 such that action 1 is the best response for a player if at least
proportion q of the neighbours plays 1. The payoff of a player is denoted as u(a, a′) if
the player chooses the action a and the neighbour chooses the action a′. This payoff
function gives the symmetric payoff matrix shown in Table 8.4.

Action 1 is best response for some player exactly if the probability assigned is at
least

q = u(0, 0) − u(1, 0)

(u(0, 0) − u(1, 0)) + (u(1, 1) − u(0, 1))
(8.4)

This changes the payoff matrix to as tabulated in Table 8.5.
A configuration s is the assignment of actions for each of the players in the

population. Given a configuration s, player x’s best response is to choose an action
which maximises the sum of the payoffs from the interactions with each of the
neighbours. Thus action a is the best response to configuration s for player x , i.e,
aεb(s, x), if Eq. 8.5 is satisfied.
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Table 8.5 Symmetric payoff matrix parametrized by critical probability q

0 1

0 q, q 0, 0

1 0, 0 1 − q, 1 − q

∑

yε�(x)

u(a, s(y)) ≥
∑

yε�(x)

u(1 − a, s(y)) (8.5)

Contagion is said to occur if one action can spread from a finite set of players
to the whole population. There is a contagion threshold such that the contagion
occurs if and only if the payoff parameter q is less than this contagion threshold.
A group of players is said to be p-cohesive if every member of that group has at
least proportion p of the neighbours within the group. Reference [13] shows that
the contagion threshold is the smallest p such that every “large” group (consisting
of all but a finite sets of players) contains an infinite, (1 − p)-cohesive, subgroup.
Additionally, the contagion threshold is the largest p such that it is possible to label
players so that, for any player with a sufficiently high label, proportion at least p of
the neighbours has a lower label.

Contagion is most likely to occur if the contagion threshold is close to its upper
bound of 1

2 . Reference [13] shows that the contagion threshold will be close to 1
2 if

two properties hold. First, there is low neighbour growth: the number of players who
can be reached in k steps grows less than exponentially in k. This will occur if there is
a tendency for players’ neighbours’ neighbours to be their own neighbours. Second,
the local interaction system must be sufficiently uniform, i.e, there is some number
α such that for all players a long way from some core group, roughly proportion α

of their neighbours are closer to the core group.
Reference [1] deals with a polling game on a directed graph. At round 0, the

vertices of a subset W0 are coloured white and all the other vertices are coloured
black. At each round, each vertex v is coloured according to the following rule. If
at a round r , the vertex v has has more than half of its neighbours coloured c, then
at round r + 1, the vertex v will be coloured c. If at round r , the vertex v has the
vertex v has exactly half of its neighbours coloured white and the other half coloured
black, then this is said to be a tie. In this case, v is coloured at round r + 1 by the
same colour it had at round r . If at a finite round r , all the vertices are white, then
W0 is said to be a dynamic monopoly or dynamo. The paper proves that for n ∈ N,
there exists a graph with more than n vertices and with a dynamo of 18 vertices. In
general, a dynamo of size O(1) (as a function of the number of vertices) is sufficient.

Reference [4] performed a study to understand the strength of weak ties versus
the strong ties. They found that the strength of weak ties is that they tend to be
long—they connect socially distant locations. Moreover, only a few long ties are
needed to give large and highly clustered populations the “degrees of separation”
of a random network, in which simple contagions, like disease or information, can
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rapidly diffuse. It is tempting to regard this principle as a lawful regularity, in part
because it justifies generalization from mathematically tractable random graphs to
the structured networks that characterize patterns of social interaction. Nevertheless,
our research cautions against uncritical generalization. Using Watts and Strogatz’s
original model of a small world network, they found that long ties do not always
facilitate the spread of complex contagions and can even preclude diffusion entirely
if nodes have too fewcommonneighbours to providemultiple sources of confirmation
or reinforcement. While networks with long, narrow bridges are useful for spreading
information about an innovation or social movement, too much randomness can be
inefficient for spreading the social reinforcement necessary to act on that information,
especially as thresholds increase or connectedness declines.

An informational cascade occurs when it is optimal for an individual, having
observed the actions of those ahead of him, to follow the behaviour of the preced-
ing individual without regard to his own information. Reference [2] modelled the
dynamics of imitative decision processes as informational cascades and showed that
at some stage a decision maker will ignore his private information and act only on
the information obtained from previous decisions. Once this stage is reached, her
decision is uninformative to others. Therefore, the next individual draws the same
inference from the history of past decisions; thus if her signal is drawn independently
from the same distribution as previous individuals’, this individual also ignores her
own information and takes the same action as the previous individual. In the absence
of external disturbances, so do all later individuals.

The origin of large but rare cascades that are triggered by small initial shocks is
a phenomenon that manifests itself as diversely as cultural fads, collective action,
the diffusion of norms and innovations, and cascading failures in infrastructure and
organizational networks. Reference [17] presented a possible explanation of this phe-
nomenon in terms of a sparse, random network of interacting agents whose decisions
are determined by the actions of their neighbours according to a simple threshold
rule. Two regimes are identified in which the network is susceptible to very large cas-
cades also called global cascades, that occur very rarely. When cascade propagation
is limited by the connectivity of the network, a power law distribution of cascade
sizes is observed. But when the network is highly connected, cascade propagation is
limited instead by the local stability of the nodes themselves, and the size distribution
of cascades is bimodal, implying a more extreme kind of instability that is corre-
spondingly harder to anticipate. In the first regime, where the distribution of network
neighbours is highly skewed, it was found that the most connected nodes were far
more likely than average nodes to trigger cascades, but not in the second regime.
Finally, it was shown that heterogeneity plays an ambiguous role in determining
a system’s stability: increasingly heterogeneous thresholds make the system more
vulnerable to global cascades; but an increasingly heterogeneous degree distribution
makes it less vulnerable.

To understand how social networks affect the spread of behavior, [3] juxtaposed
several hypothesis. One popular hypothesis stated that networks with many clustered
ties and a high degree of separation will be less effective for behavioural diffusion
than networks in which locally redundant ties are rewired to provide shortcuts across
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the social space. A competing hypothesis argued that when behaviours require social
reinforcement, a network with more clustering may be more advantageous, even if
the network as a whole has a larger diameter. To really understand the phenomenon,
the paper investigated the effects of network structure on diffusion by studying the
spread of health behaviour through artificially structured online communities. Indi-
vidual adoption was found to be much more likely when participants received social
reinforcement frommultiple neighbours in the social network. The behaviour spread
farther and faster across clustered-lattice networks than across corresponding random
networks.

Reference [5] called the propagation requiring simultaneous exposure to multiple
sources of activation, multiplex propagation. This paper found that the effect of
random links makes the propagation more difficult to achieve.

8.2 Probabilistic Models of Cascade

These cascades primarily refer to epidemic diseases which are contagious and pass
fromone person to another. These epidemics can either spread through the population
at an alarming rate or persist quietly for a long time. In a manner of speaking, the
cascade of diseases is similar to the cascade of behaviours. Both of these travel from
person to person. However, this is where the similarities end. Behaviour adoption
depends on the decision of a person whether or not to switch to that behaviour. On
the other hand, a person’s decision is moot in the case of the spread of diseases. Only
the susceptibility of a person plays a factor in epidemics.

The spread of diseases from one to another can be visualized through a contact
network. A network where every node is a person and an edge between people if
they come in contact with one another which makes it possible for disease to spread.
Contact networks are used not only to study the spread of fast-moving diseases
in plants and animals but also to track the spread of malicious software through
communication networks.

The pathogen and the network are closely intertwined: for different diseases affect-
ing the same population, depending on the transmission medium these diseases may
have different rates of spreading. Air-borne diseases would spread faster and over a
larger area, infecting a large fraction of the population in very little time. Whereas, a
disease requiring some form of physical contact may not spread as fast and may not
be able to infect as many individuals when compared to other forms of transmission.
A similar case exists in the case of malicious software. A software that can infect any
device running a particular operating system, for example, will spread at a rate faster
than one requiring a more specific form of access, such as being connected to the
same network or being at a certain distance from another infected physical device.

The cascading process in epidemics is more random than that used in modelling
behaviour because in each stage of contact there is a certain probability associated
withwhether or not the diseasewill be spread. To understand such random behaviour,
there exist several models which are discussed as follows.
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8.2.1 Branching Process

This is the simplest model which works in the following steps:

• First wave: Suppose that a disease carrier enters a population. She will transmit the
disease to every person she meets independently with probability p. Let’s suppose
she met k people. These k individuals form the first wave of the epidemic and
some of them may be infected, while others may not.

• Second wave: Now, each of these k individuals in the first wave meet with k
different people. This results in k · k = k2 people. Each individual infected in the
first wave infects each person in the second wave independently with probability
p.

• Subsequent waves: Further waves are formed in a similar manner where each
person in the preceding wave meets with k different people and transmits the
infection independently with probability p.

The contact network in Fig. 8.16 illustrates the transmission of an epidemic. In this
tree network, the root node represents the disease carrier. The first wave is represented
by this root node’s child nodes. Each of these child nodes denote the parent nodes
for the second wave. The set of nodes in every subsequent depth depict each wave.

Figure 8.17 depicts a contact network where the probability of infection is high.
This leads the disease to become widespread and multiply at every level, possibly
reaching a level where all nodes are infected. In stark contrast, Fig. 8.18 signifies a
contact network where the probability is low. This causes the disease to infect fewer
and fewer individuals at every level until it completely vanishes.

8.2.2 Basic Reproductive Number

The basic reproductive number, denoted by R0, is defined as the expected number
of new cases of the disease caused by a single individual. In the branching process
discussed in Sect. 8.2.1, since each individual meets k new people and infects each
with probability p, the basic reproductive number is pk.

Fig. 8.16 Contact network for branching process

Fig. 8.17 Contact network for branching process where high infection probability leads to
widespread
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Fig. 8.18 Contact network for branching process where low infection probability leads to the
disappearance of the disease

Let qn denote the probability that the epidemic survives for atleast n waves, i.e,
that some individual in the nth level of the tree becomes infected. Let q∗ be the limit
of qn as n goes to infinity. In other words, we can call this term q∗ the probability of
persistence.

8.2.2.1 Expected Number of Infected Individuals in the Branching
Process

The number of individuals at level n of this tree is kn . Let Xn be a random variable
equal to the number of infected individuals at this level n. For each individual at level
n, let Ynj be a random variable equal to 1 if j is infected, and equal to 0 otherwise.
Then

Xn = Yn1 + Yn2 + · · · + Ynm (8.6)

where m = kn . By linearity of expectation.

E[Xn] = E[Yn1 + Yn2 + · · · + Ynm] = E[Yn1] + E[Yn2] + · · · + E[Ynm] (8.7)

Now, E[Ynj ] = 1·P[Ynj = 1]+0 ·P[Ynj = 0] = P[Ynj = 1], i.e, the expectation
of each Ynj is the probability of that individual j getting infected.

Individual j at depth n gets infected when each of the n contacts leading from
the root to j successfully transmit the disease. Since each contact transmits the
disease independently with probability p, individual j is infected with probability
pn . Therefore, E[Ynj ] = pn . This leads us to conclude that

E[Xn] = pnkn = (pk)n = Rn
0 (8.8)

8.2.2.2 Formula for qn

This quantity qn depends on three quantities: the number of contacts per individual
k, the contagion probability p, and the level of the tree n. A direct formula for qn is
difficult to formulate, but it is easier to express qn in terms of qn−1.

Let us consider the following situation: Starting from the root node, the disease
spreads through the root’s first contact j and then continues to transmit down to n
levels in the part of the tree reachable through j . For this to happen, it would first
require j to catch the disease from the root, which will happen with probability p.
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Fig. 8.19 Repeated
application of
f (x) = 1 − (1 − px)k

Once j has contracted the pathogen, j analogously becomes the root of its tree. Now
the disease will persists through this tree containing n−1 levels, accessible by j with
probability qn−1 (by definition of qn−1). This means that the situation will occur with
probability pqn−1. In other words, the situation will fail with probability 1− pqn−1.
Now, this gives the probability of failure for the disease to persist through the tree
accessible by j . Since, the root node has k contacts in all, each of these contacts will
fail with probability 1 − pqn−1. Since they’re independent, the probability that they
all fail is (1− pqn−1)

k . But this is also 1− qn , since by definition of qn , the quantity
1− qn is exactly the probability that the disease fails to persist to n levels. Therefore

1 − qn = (1 − pqn−1)
k =⇒ qn = 1 − (1 − pqn−1)

k (8.9)

Since the root is infected, we can take q0 = 1 by considering that the root is at
level 0. From here, we can compute q1, q2, . . . . However, this does not tells us the
value of qn as n tends to infinity.

Let f (x) = 1− (1− px)k . Then, we can write qn = f (qn−1). Figure 8.19 shows
the plot of f (x) for the values 1, f (1), f ( f (1)), . . . obtained by repeated application
of f .

The derivative of f is f ′(x) = pk(1 − px)k . Now f ′(0) = pk = R0. From the
figure, we can conclude that when R0 > 1, q∗ > 0 and q∗ = 0 when R0 < 1.

In summary, if R0 < 1, then with probability 1, the disease dies out after a finite
number of waves, i.e, q∗ = 0. If R0 > 1, then with probability greater than 0 the
disease persists by infecting atleast one person in each wave, i.e, q∗ > 0.

So in situations requiring us to contain an epidemic, we have to either quarantine
individuals, which will reduce k, or take additional measures such as improving
sanitation, which could bring down the value of p.
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8.2.3 SIR Epidemic Model

In this epidemic model, each individual goes through the following three stages
during the course of the epidemic:

• Susceptible (S): Before the individual has caught the disease, it is susceptible to
infection from its neighbours.

• Infected (I): Once the individual has caught the disease, it is infected and has some
probability of infecting each of its susceptible neighbours.

• Removed (R): After the individual has experienced the full infectious period, it is
removed from the network because it no longer poses a threat of future infection.

The SIR model is defined as follows: Given a directed graph representing the
contact network where an edge between u and v indicates that if u becomes infected,
then the disease could spread to v. Each individual in this network can go through
the Susceptible-Infected-Removed cycle. To control the progress of the epidemic,
the model has the following two parameters: p is the probability of the spread of
infection and tI indicates the length of the infection.

The model progresses in the following manner: Initially, a finite set of these nodes
are in state I while all the others are in state S. Each node v that is in this state I
remains infectious for a fixed number of steps tI . During these tI time steps, v can
infect its susceptible neighbour with probability p. After tI time steps, the node v

moves to state R and can neither infect any other susceptible node nor get infected
by any other node.

However, this model is only applicable for diseases which individuals can only
contract once in their lifetime such as chicken pox, small pox, etc. The node gets
removed from the network because it has gained lifetime immunity. When dealing
with diseases such as cholera, typhoid, jaundice, etc, which can recur in individuals,
such models cannot be used.

Additionally, this model makes the assumption that the probability of an infection
spreading from an infected individual to a susceptible one is uniform throughout
with probability p. This assumption rarely works in the real-world. The probability
of disease spreading depends on the duration and intensity of contact between an
infected and a susceptible individual. To account for this, we modify the model to
have the probability pu,v between node u and v. Higher the probability, greater the
intensity of contact.

8.2.4 SIS Epidemic Model

This is a model which is useful for diseases that can be contracted by individuals
multiple times. In this model, there are only two states: Susceptible and Infected.
There is no Removed state. Instead, an infected individual returns to the susceptible
state once she is done with the infectious state. The mechanics of the SIS model is
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similar to the SIRmodel except that in the latter model, after tI time steps, an infected
node moves to state R, but in the former model, the infected node moves to state S.
Like the SIR model, this model can also have varying probability of infection.

The SIS model may be considered the same as the SIR model if we consider that
a node u infected at time step t is different from the same node u infected at time
step t ′. A network that represents the same nodes at different time steps is called a
time-expanded network.

The qualitative difference between a SIR model and a SIS model is that in the
former model, the disease kind of “burns” through the network because nodes once
infected move to the removed state after tI time steps and cannot be reinfected.
However, in the latter model, the disease can persist for a very long time infecting
an individual multiple times. The only point when the disease vanishes from the
network by this model, is when no individual possess the pathogen.

8.2.5 SIRS Epidemic Model

Measles and certain sexually transmitted diseases show a certain property of oscil-
lation, i.e, these diseases confer a temporary period of immunity on the infected
individuals. To accommodate this phenomenon, we build a model that combines the
elements of the SIS and the SIR model. In this model after tI time steps, i.e, after the
infected node has recovered, the node moves to the R state for tR time steps. After
tR time steps, the node returns to the S state.

8.2.6 Transient Contact Network

There are certain other diseases such as HIV/AIDS which progress over many years,
and its course is heavily dependent on the contact network. There is a possibility
of multiple contacts at a certain period of time which can affect the progression of
the disease. Additionally, these contacts so not necessarily last through the whole
course of the epidemic, thereby making the contact transient. To keep track of this
transience, we will associate with every edge in this contact network the time period
during which it was possible for the disease to have been transmitted from one node
to the other. Figure 8.20 illustrates a transient network where the time period of
contact is associate with each edge.

8.2.6.1 Concurrency

In certain situations it is not just the timing of the contacts that matter but the pattern
of timing also which can influence the severity of the epidemic. A timing pattern of
particular interest is concurrency. A person is involved in concurrent partnerships if
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Fig. 8.20 A contact network
where each edge has an
associated period of time
denoting the time of contact
between the connected
vertices

she has multiple active partnerships that overlap in time. These concurrent patterns
cause the disease to circulate more vigorously through the network and enable any
node with the disease to spread it to any other.

Reference [7] proposed a model which when given as input the social network
graph with the edges labelled with probabilities of influence between users could
predict the time by which a user may be expected to perform an action.

8.3 Cascading in Twitter

Reference [16] analysed the ways in which hashtags spread on the network of Twitter
users. The network contains a directed edge from user u to user v if u includes “@v”
in atleast t tweets for some threshold t . The neighbour set of a user u is the the set
of other users to whom u has an edge. As users in u’s neighbour set each mentioned
a given hashtag H in a tweet for the first time, this paper looked at the probability
that u would first mention it as well. Looking at all the users u who have not yet
mentioned H , but for whom k neighbors have; p(k) is defined to be the fraction of
such users who mentioned H before a (k + 1)st neighbour did so. In other words,
p(k) is the fraction of users who adopt the hashtag directly after their kth exposure to
it, given that they hadn’t yet adopted it. Figure 8.21 shows a plot of p(k) as a function
of k for the 500 most mentioned hashtags in the dataset. Such a curve is called an
exposure or influence curve. It can be observed that the curve peaks relatively early
on and then declines.

Stickiness is defined as the probability that a piece of information will pass from
a person who knows or mentions it to a person who is exposed to it. It is computed
as the maximum value of p(k). Persistence is defined as the relative extent to which
repeated exposures to a piece of information continue to have significant marginal
effects on its adoption.

To understand how these exposure curves vary across different kinds of hashtags,
the 500 most-mentioned hashtags were classified according to their topic. Then the
curves p(k) were averaged separately within each category and their shapes were
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Fig. 8.21 Exposure curve
for top 500 hashtags

compared. Many of the categories had p(k) curves that did not differ significantly
in shape from the average, but unusual shapes for several important categories were
found. First, for political hashtags, the persistence had a significantly larger value
than the average - in other words, successive exposures to a political hashtag had
an unusually large effect relative to the peak. In contrast, Twitter idiom hastags -
a kind of hashtag that will be familiar to Twitter users in which common English
words are concatenated together to serve as a marker for a conversational theme (e.g.
#cantlivewithout, #dontyouhate, #iloveitwhen, and many others, including concate-
nated markers for weekly Twitter events such as #musicmonday and #followfriday).
In such cases, the stickiness was high, but the persistence was unusually low; if a
user didn’t adopt an idiom after a small number of exposures, the marginal chance
they did so later fell off quickly.

Next, the paper looks at the overall structure of interconnections among the initial
adopters of a hashtag. For this, the firstm individuals to mention a particular hashtag
H were taken, and the structure of the subgraph Gm induced on these first m men-
tioners were studied. In this structural context, it was found that political hashtags
exhibited distinctive features - in particular, the subgraphs Gm for political hashtags
H tended to exhibit higher internal degree, a greater density of triangles, and a large
of number of nodes not in Gm who had significant number of neighbors in it.

In the real-world there are multiple pieces of information spreading through the
network simultaneously. These pieces of information do not spread in isolation,
independent of all other information currently diffusing in the network. These pieces
sometimes cooperate while in other times compete with one another. Reference [14]
explains a statistical model that allows for this competition as well as cooperation of
different contagions in information diffusion. Competing contagions decrease each
other’s probability of spreading, while cooperating contagions help each other in
being adopted throughout the network. It was observed that the sequence in which
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the contagions were exposed to a person played a role in the effect of a particular
contagion X . Thus all possible sequences of contagions have to be considered. This
model was evaluated on 18, 000 contagions simultaneously spreading through the
Twitter network. It learnt how different contagions interact with each other and then
uses these interactions tomore accurately predict the diffusion of a contagion through
the network. The following summary for the effects of contagions was learnt:

• A user is exposed to a certain contagion u1. Whether or not she retweets it, this
contagion influences her.

• This user is next exposed to another contagion u2. If u2 is more infectious than
u1, the user shifts focus from u1 to u2.

• On the other hand, if u2 is less infectious than u1, then the user will still be
influenced by u1 instead of switching to u2. However, one of two things can
happen:

– If u2 is highly related to u1 in content, then the user will be more receptive of
u2 and this will increase the infection probability of u2.

– If u2 is unrelated to u1, then the user is less receptive of u2 and the infection
probability is decreased.

Moreover, the model also provided a compelling hypothesis for the principles
that govern content interaction in information diffusion. It was found that contagions
have an adversely negative (suppressive) effect on less infectious contagions that are
of unrelated content or subject matter, while at the same time they can dramatically
increase the infection probability of contagions that are less infectious but are highly
related in subject matter. These interactions caused a relative change in the spreading
probability of a contagion by 71%on the average. Thismodel providesways inwhich
promotion content could strategically be placed to encourage its adoption, and also
ways to suppress previously exposed contagions (such as in the case of fake news).

Information reaches people not only through ties in online networks but also
through offline networks. Reference [15] devised such a model where a node can
receive information through both offline as well as online connections. Using the
Twitter data in [14], they studied how information reached the nodes of the network.
It was discovered that the information tended to “jump” across the network, which
could only be explained as an effect of an unobservable external influence on the
network. Additionally, it was found that only about 71% of the information volume
in Twitter could be attributed to network diffusion, and the remaining 29% was due
to external events and factors outside the network.

Cascades in Recommendations

Reference [11] studied information cascades in the context of recommendations, and
in particular studied the patterns of cascading recommendations that arise in large
social networks. A large person-to-person recommendation network from a online
retailer consisting of fourmillion peoplewhomade sixteenmillion recommendations
on half amillion productswere investigated.During the period covered by the dataset,
each time a person purchased a book, DVD, video, or music product, she was given
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the option of sending an e-mail message recommending the item to friends. The first
recipient to purchase the item received a discount, and the sender received a referral
credit withmonetary value. A person couldmake recommendations on a product only
after purchasing it. Since each sender had an incentive for making effective referrals,
it is natural to hypothesize that this dataset is a good source of cascades. Such a
dataset allowed the discovery of novel patterns: the distribution of cascade sizes is
approximately heavy-tailed; cascades tend to be shallow, but occasional large bursts
of propagation can occur. The cascade sub-patterns revealed mostly small tree-like
subgraphs; however differences in connectivity, density, and the shape of cascades
across product types were observed. It was observed that the frequency of different
cascade subgraphs was not a simple consequence of differences in size or density;
rather, there were instances where denser subgraphs were more frequent than sparser
ones, in a manner suggestive of properties in the underlying social network and
recommendation process. The relative abundance of different cascade subgraphs
suggested subtle properties of the underlying social network and recommendation
process.

Reference [10] analysed blog information to find out how blogs behave and how
information propagates through the Blogspace, the space of all blogs. There findings
are summarized as follows: The decline of a post’s popularity was found to follow
a power law with slope ≈ −1.5. The size of the cascades, size of blogs, in-degrees
and out-degrees all follow a power law. Stars and chains were the basic components
of cascades, with stars being more common. A SIS model was found to generate
cascades that match very well the real cascades with respect to in-degree distribution
and cascade size distribution.

Reference [6] developed a generative model that is able to produce the temporal
characteristics of the Blogspace. This model ZC used a ‘zero-crossing’ approach
based on a random walk, combined with exploration and exploitation.

Reference [12] analysed a large networkofmassmedia andblogposts to determine
how sentiment features of a post affect the sentiment of connected posts and the
structure of the network itself. The experimentswere conducted on a graph containing
nearly 8million nodes and 15million edges. They found that (i) the nodes are not only
influenced by their immediate neighbours but also by its position within a cascade
and that cascade’s characteristics., (ii) deep cascades lead complex but predictable
lives, (iii) shallow cascades tend to be objective, and (iv) sentiment becomes more
polarized as depth increases.

Problems

Generate the following two graphs with random seed of 10:

50 An Erdös-Rényi undirected random graph with 10000 nodes and 100000 edges.

51 A preferential attachment graph with 10000 nodes with out-degree 10.
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Let the nodes in each of these graphs have IDs ranging from 0 to 9999.
Assume that the graphs represent the political climate of an upcoming election

between yourself and a rival with a total of 10000 voters. If most of the voters have
already made up their mind: 40% will vote for you, 40% for your rival, and the
remaining 20% are undecided. Let us say that each voter’s support is determined by
the last digit of their node ID. If the last digit is 0, 2, 4 or 6, the node supports you.
If the last digit is 1, 3, 5 or 7, the node supports your rival. And if the last digit is 8
or 9, the node is undecided.

Assume that the loyalties of the ones that have already made up their minds are
steadfast. There are 10 days to the election and the undecided voters will choose their
candidate in the following manner:

1. In each iteration, every undecided voter decides on a candidate. Voters are pro-
cessed in increasing order of node ID. For every undecided voter, if the majority
of their friends support you, they now support you. If the majority of their friends
support your rival, they now support your rival.

2. If a voter has equal number of friends supporting you and your rival, support is
assigned in an alternating fashion, starting from yourself. In other words, the first
tie leads to support for you, the second tie leads to support for your rival, the third
for you, the fourth for your rival, and so on.

3. When processing the updates, the values from the current iteration are used.
4. There are 10 iterations of the process described above. One happening on each

day.
5. The 11th day is the election day, and the votes are counted.

52 Perform these configurations and iterations, and compute who wins in the first
graph, and by how much? Similarly, compute the votes for the second graph.

Let us say that you have a total funding of Rs. 9000, and you have decided to
spend this money by hosting a live stream. Unfortunately, only the voters with IDs
3000–3099. However, your stream is so persuasive that any voter who sees it will
immediately decide to vote for you, regardless of whether they had decided to vote
for yourself, your rival, or where undecided. If it costs Rs. 1000 to reach 10 voters
in sequential order, i.e, the first Rs. 1000 reaches voters 3000–3009, the second Rs.
1000 reaches voters 3010–3019, and so on. In other words, the total of Rs. k reaches
voters with IDs from 3000 to 3000+ k/100− 1. The live stream happens before the
10 day period, and the persuaded voters never change their mind.

53 Simulate the effect of spending on the two graphs. First, read in the two graphs
again and assign the initial configurations as before.Now, before the decision process,
you purchase Rs. k of ads and go through the decision process of counting votes.

For each of the two social graphs, plot Rs. k (the amount you spend) on the x-axis
(for values k = 1000, 2000, . . . , 9000) and the number of votes you win by on the
y-axis (that is, the number of votes for youself less the number of votes for your
rival). Put these on the same plot. What is the minimum amount you can spend to
win the election in each of these graphs?
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Instead of general campaigning, you decide to target your campaign. Let’s say
you have a posh Rs. 1000 per plate event for the high rollers among your voters (the
people with the highest degree). You invite high rollers in decreasing order of their
degree, and your event is so spectacular that any one who comes to your event is
instantly persuaded to vote for you regardless of their previous decision. This event
happens before the decision period. When there are ties between voters of the same
degree, the high roller with lowest node ID gets chosen first.

54 Simulate the effect of the high roller dinner on the two graphs. First, read in
the graphs and assign the initial configuration as before. Now, before the decision
process, you spendRs. k on the fancy dinner and then go through the decision process
of counting votes.

For each of the two social graphs, plot Rs. k (the amount you spend) on the x-axis
(for values k = 1000, 2000, . . . , 9000) and the number of votes you win by on the
y-axis (that is, the number of votes for yourself less the number of votes for your
rival). What is the minimum amount you can spend to win the election in each of the
two social graphs?

Assume that a mob has to choose between two behaviours, riot or not. However,
this behaviour depends on a threshold which varies from one individual to another,
i.e, an individual i has a threshold ti that determines whether or not to participate.
If there are atleast ti individuals rioting, then i will also participate, otherwise i will
refrain from the behaviour.

Assuming that each individual has full knowledge of the behaviour of all the
other nodes in the network. In order to explore the impact of thresholds on the
final number of rioters, for a mob of n individuals, the histogram of thresholds
N = (N0, . . . , Nn−1) is defined, where Nl expresses the number of individuals that
have threshold l ∈ [n]. For example, N0 is the number of people who riot no matter
what, N1 is the number of people who will riot if one person is rioting, and so on.

Let T = [1, 1, 1, 1, 1, 4, 1, 0, 4, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 4, 0, 1, 4, 0, 1, 1, 1,
4, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 4, 1, 1, 4. 1, 4, 0, 1, 0, 1, 1,
1, 0, 4, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 4, 0, 4, 0, 0, 1, 1, 1,
4, 0, 4, 0] be the vector of thresholds of 101 rioters.

55 For this threshold vector, compute the histogram N .

56 Using the N calculated in Problem 55, compute its cumulative histogram [N ] =
(N[1], . . . , N[n−1]), where N[k] = ∑k

l=0 Nl . Plot the cumulative histogram and report
the final number of rioters.
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Chapter 9
Influence Maximisation

The influence maximization problem is a long running problem with significant
amount of literature dedicated to solving this problem. Given a directed social net-
work with influence weights on edges and a number k, find k seed nodes such that
activating them leads to the maximum expected number of activated nodes, accord-
ing to a propagation model. In this chapter, we learn that this problem is a NP-hard
problem with an approximation giving at best a 63% optimal solution.

9.1 Viral Marketing

Marketing is one of the crucial aspects of an organisation because this department
is tasked with determining which potential customers to market to. The traditional
idea was that if the expected profits from the customer were greater than the cost of
marketing to her, then this customer was marketed to. The limitation of this idea is
that it believes each customer’s decision to be independent of others. However, this
is rarely the case. In reality, each customer’s decision is based on friends, acquain-
tances and other buyers. Taking this into account, each customer has two kinds of
values. (i) Intrinsic value from the profits that can be obtained from a customer, (ii)
Network value from the profits that can be obtained from her influences, each of their
influences, and so on. So if the marketing costs exceed the expected profits from the
customer’s intrinsic value but can be more than paid up for from her network value,
then it is worth marketing to this customer. This marketing strategy that taps on
the network value of customers and thereby inexpensively promoting a product by
marketing primarily to those with the strongest influence in the market is called viral
marketing. This dependency of one’s decision on that of the people she’s connected
to makes viral marketing potentially more profitable than direct marketing.
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Reference [4] sought to answer the following question: Suppose that we have data
on a social network, with estimates for the extent to which individuals influence one
another, and we would like to market a new product that we hope will be adopted
by a large fraction of the network. If we can initially targeting a few “influential”
members of the network using incentives, we can trigger a cascade of influence by
which friendswill recommend the product to other friends, andmany individuals will
ultimately try it. But how should we choose the few key individuals to use for seeding
this process? In the search for the solution, a model was developed to compute each
customer’s probability of buying a product as a function of both the intrinsic value
and the network value to optimize the choice of customers to market to, as well as
estimating the optimum customer acquisition cost. The framework was applied to
marketing movies using the publicly available EachMovie database of 2.8 million
movie ratings. Reference [12] later modified this work and applied the framework
to study the Epinions social network application.

Let us say that X = {X1, . . . , Xn} be the set of n potential customers, Xi be a
boolean variable that takes the value 1 if customer i buys the marketed product and
0 otherwise, and Ni = {Xi,1, . . . , Xi,ni } ⊆ X −{Xi } be the neighbours of Xi each of
whom can directly influence Xi . Let the product be described by a set of attributes
Y = {Y1, . . . ,Ym}. Let Mi be a variable representing the marketing action that is
taken by customer i , i.e, either Mi could be 1 if customer i was offered a discount
and 0 if not, or Mi could be a continuous variable indicating the amount of discount
offered, or a nominal variable indicating which of the several possible actions was
taken.

Let M = {M1, . . . , Mn} represent the marketing plan containing the marketing
actions for each of the n potential customers.

P(Xi |X − {Xi },Y, M) = P(Xi |Ni ,Y, M)

= βi P0(Xi |Y, Mi ) + (1 − βi )PN (Xi |Ni ,Y, M)
(9.1)

where P0(Xi |Y, Mi ) is Xi ’s internal probability of purchasing the marketed product.
PN (Xi |Ni ,Y, M) is the effect that Xi ’s neighbours have onhim. 0 ≤ βi ≤ 1measures
how self-reliant Xi is.

PN (Xi |Ni ,Y, M) =
∑

X j∈Ni

wi j X j (9.2)

where wi j represents how much customer i is influenced by her neighbour j , with
wi j ≥ 0 and

∑
X j∈Ni

wi j = 1. wi j = 0 if j /∈ Ni .

Combining Eqs. 9.1 and 9.2, we get
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P(Xi = 1|Ni ,Y, M) =
βi P0(Xi = 1|Y, Mi ) + (1 − βi )

∑

X j∈Ni

wi j X j
(9.3)

For calculating the optimal marketing plan for a product that has not yet been
introduced to the market, we compute

P(Xi = 1|Y, M) =
∑

Ñ∈C(Ni )

P(Xi = 1|Ñ ,Y, M)P(Ñ |Y, M) (9.4)

where C(Ni ) is the set of all possible configurations of Ni and hence Ñ is a set of
neighbour state assignments.

Substituting Eq. 9.4 in Eq. 9.3, we get

P(Xi = 1|Y, M) =
∑

Ñ∈C(Ni )

βi P0(Xi = 1|Y, Mi )P(Ñ |Y, M)

+
∑

Ñ

(1 − βi )
∑

X j∈Ni

wi j Ñ j P(Ñ |Y, M)
(9.5)

where N j is the value of X j specified by Ñ . P0(Xi = 1|Y, Mi ) is independent of
(̃N ), so the first term simplifies to it. The summation order in the second term is
swapped, and it is zero whenever Ñ j is zero. This leads to

P(Xi = 1|Y, M) = βi P0(Xi = 1|Y, Mi ) + (1 − βi )
∑

X j∈Ni

wi j P(X j = 1|Y, M)

(9.6)
The goal is to find the marketing plan that maximises profit. Assume that M is

a boolean vector, c is the cost of marketing to a customer, r0 is the revenue from
selling to the customer if no marketing action is performed, and r1 is the revenue
if marketing is performed. r0 and r1 is the same unless marketing action includes
offering a discount. Let f 1i (M) be the result of setting Mi to 1 and leaving the rest of
M unchanged, and similarly for f 0i (M). The expected lift in profit from marketing
to customer i in isolation is then

ELP1
i (Y, M) =

r1P(Xi = 1|Y, f 1i (M))

− r0P(Xi = 1|Y, f 0i (M)) − c

(9.7)

This equation gives the intrinsic value of the customer. Let M0 be the null vector.
The global lift in profit that results from a particular choice M of customers to market
to is then
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ELP(Y, M) =
n∑

i=1

[ri P(Xi = 1|Y, M) − r0P(Xi = 1|Y, M0) − ci ] (9.8)

where ri = r1 if Mi = 1, ri = r0 if Mi = 0, and |M | is the number of ones in M .
The total value of a customer is computed as ELP(Y, f 1i (M)) − ELP(Y, f 0i (M)).
The network value is the difference between her total and intrinsic values.

Let 0 ≤ z ≤ 1 be a marketing action where z = 0 when no marketing action
is performed. Let c(z) be the cost of performing the action and r(z) be the revenue
obtained if the product is purchased. Let f zi (M) be the result of setting Mi to z
and leaving the rest of M unchanged. The expected lift in profit from performing
marketing action z on customer i in isolation is then

ELPz
i (Y, M) = r(z)P(Xi = 1|Y, f zi (M))

− r(0)(Xi = 1|Y, f 0i (M)) − c(z).
(9.9)

The global lift in profit is

ELP(Y, M) =
n∑

i=1

[r(Mi )P(Xi = 1|Y, M) − r(0)P(Xi = 1|Y, M0) − c(Mi )].
(9.10)

To find the optimalM thatmaximises ELP , wemust try all possible combinations
of assignments to its components. However, this is intractable, [4] proposes the
following approximate procedures:

• Single pass: For each i , set Mi = 1 if ELP(Y, f 1i (M0)) > 0 and set Mi = 0
otherwise.

• Greedy search: Set M = M0. Loop through the Mi ’s setting each Mi to 1 if
ELP(Y, f 1i (M)) > ELP(Y, M). Continue looping until there are no changes in
a complete scan of the Mi ’s.

• Hill climbing search: Set M = M0. Set Mi1 = 1 where i1 = argmaxi
{ELP(Y, f 1i (M))}. Now, set Mi2 = 1 where i2 = argmaxi
{ELP(Y, f 1i ( f 1i (M)))}. Repeat until there is no i for which setting Mi = 1
increases ELP .

The effect that marketing to a person has on the rest of the network is independent
of the marketing actions to other customers. From a customer’s network effect, we
can directly compute whether he is worth marketing to. Let the�i (Y ) be the network
effect of customer i for a product with attributes Y . It is defined as the total increase
in probability of purchasing in the network (including Xi ) that results from a unit
change in P0(Xi ):

�i (Y ) =
N∑

j=1

∂P(X j = 1|Y, M0)

∂P(Xi = 1|Y, Mi )
(9.11)
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Since �i (Y ) is the same for any M , we define it for M = M0. Reference [4]
calculates �i (Y ) as

�i (Y ) =
n∑

j=1

w j i� j (Y ) (9.12)

�i (Y ) is initially set to 1 for all i , then recursively re-calculated using Eq. 9.12
until convergence. �Pi (z,Y ) is defined to be the immediate change in customer i’s
probability of purchasing when he is marketed to with marketing action z:

�Pi (z,Y ) =
βi [P0(Xi = 1|Y, Mi = z) − P0(Xi = 1|Y, Mi = 0)] (9.13)

From Eq. 9.11, and given that P(X j = 1|Y, M0) varies linearly with P(X j =
1|Y, Mi ), the change in the probability of purchasing across the entire network is
then

n∑

j=1

�P(X j = 1|Y, M0) = �i (Y ) · �P0(Xi = 1|Y, Mi )

= �i (Y ) · �Pi (z,Y )

(9.14)

So the total lift in profit becomes

ELPz
i,total(Y, M) =

r(0)[(�i (Y ) − 1) · �Pi (z,Y )]
+ [r(z)P(Xi = 1|Y, f zi (M)) − r(0)P(Xi = 1|Y, M)]
− c(z)

(9.15)

This approximation is exactwhen r(z) is constant, which is the case in anymarket-
ing scenario that is advertising-based. When this is the case, the equation simplifies
to:

ELPz
i,total(Y, M)

= r [(�i (Y ) − 1) · �Pi (z,Y )] + r [�Pi (z,Y )] − c(z)

= r�i (Y ) · �Pi (z,Y ) − c(z)

(9.16)

With Eq. 9.16, we can directly estimate customer i’s lift in profit for anymarketing
action z. To find the z that maximises the lift in profit, we take the derivative with
respect to z and set it equal to zero, resulting in:

r�i (Y )
d�Pi (z,Y )

dz
= dc(z)

dz
(9.17)
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Assume �Pi (z,Y ) is differentiable, this allows us to directly calculate the z
which maximises ELPz

i,total(Y, M) which is the optimal value for Mi in the M that
maximizes ELP(Y, M). Hence, from the customers network effects, �i (Y ), we can
directly calculate the optimal marketing plan.

Collaborative filtering systems were used to identify the items to recommend to
customers. In these systems, users rate a set of items, and these ratings are used to
recommend other items that the user might be interested in. The quantitative col-
laborative filtering algorithm proposed in [11] was used in this study. The algorithm
predicts a user’s rating of an item as the weighted average of the ratings given by
similar users, and recommends these items with high predicted ratings.

These methodologies were applied on the problem of marketing movies using the
EachMovie collaboration filtering database. EachMovie contains 2.8 million ratings
of 1628 movies by 72916 users between 1996 and 1997 by the eponymous recom-
mendation site. EachMovie consists of three databases: one contains the ratings (on a
scale of zero to five), one contains the demographic information, and one containing
information about the movies. The methods with certain modifications were applied
to the Epinions dataset.

In summary, the goal is to market to a good customer. Although in a general sense,
the definition of good is a subjective one, this paper uses the following operating def-
initions. A good customer is one who satisfies the following conditions: (i) Likely
to give the product a high rating, (ii) Has a strong weight in determining the rating
prediction for many of her neighbours, (iii) Has many neighbours who are easily
influenced by the rating prediction they receive, (iv) Will have high probability of
purchasing the product, and thus will be likely to actually submit a rating that will
affect her neighbours, (v) has many neighbours with the aforementioned four char-
acteristics, (vi) will enjoy the marketed movie, (vii) has many close friends, (viii)
these close friends are easily swayed, (ix) the friends will very likely see this movie,
and (x) has friends whose friends have these properties.

9.2 Approximation Algorithm for Influential Identification

Reference [8] found that the optimization problem of selecting the most influential
nodes is NP-hard. The paper instead proposes an approximation algorithm. Using an
analysis framework based on submodular functions, the paper showed that a natural
greedy strategy obtains a solution that is provably within 63% of optimal for several
classes of models.

Consider a directed graph G which represents a social network. Each node is
either active or inactive depending on whether or not this node is an adopter of an
innovation or product. We will look at how the node progresses from being inactive
to active. The switch in the other direction can be made easily. Roughly, a node v is
initially inactive. As time unfolds, more and more of v’s neighbours become active.
At some point, this may cause v to become active, and this decision may in turn
trigger further decisions by nodes to which v is connected.
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Here, the linear threshold model is used to look at the cascading process. A
node v is influenced by each neighbour w according to a weight bv,w such that∑
w neighbour of v

bv,w ≤ 1. Each node v chooses a threshold θv uniformly at random

from the interval [0, 1] which represents the weighted fraction of v’s neighbours
that must become active in order for v to become active. Given a random choice of
thresholds, and an initial set of active nodes A0 with all other nodes inactive, the
diffusion process unfolds deterministically in discrete steps. In step t , all nodes that
were active in step t − 1 remain active, and we activate any node v for which the
total weight of its active neighbours is atleast θv , such that

∑

w active neighbour of v

bv,w ≥ θv (9.18)

Additionally, the independent cascade model is also considered sometimes. This
model also starts with an initial active set of nodes A0, and the process unfolds in
discrete steps according to the following randomized rule.When node v first becomes
active in step t , it is given a single chance to activate each currently inactive neighbour
w. It succeeds with probability pv,w. If v succeeds, thenw will become active in step
t + 1. Whether or not v succeeds, it cannot make any further attempts to activate w

in subsequent rounds. This process runs until no more activations are possible.
We define the influence of a set of nodes A, denoted by σ(A), as the expected

number of active nodes at the end of the process. We need to find for a given value
of k, a k-node set of maximum influence. It is NP-hard to determine the optimum for
influence maximisation and an approximation can be done to a factor of (1− 1

e − ε)
where e is the base of the natural logarithm and ε is any positive real number. This
gives a performance guarantee of approximately 63%. The algorithm that achieves
this performance guarantee is a natural greedy hill-climbing strategy. Additionally,
the paper shows that this approximation algorithm can be applied to the models
proposed in [4, 12].

Consider a function f (·) that maps subsets of a finite ground setU to non-negative
real numbers. f is said to be submodular if it satisfies a natural self-diminishing
property: the marginal gain from adding an element to a set S is atleast as high
as the marginal gain from adding the same element to a superset of S. Formally, a
submodular function satisfies Eq. 9.19.

f (S ∪ {v}) − f (S) ≥ f (T ∪ {v}) − f (T ) (9.19)

for all elements v and all pairs of sets S ⊆ T . There is one particular property of
submodular functions that is of specific interest to the paper.

Theorem 12 For a non-negative integer, monotone submodular function f , let S be
a set of size k obtained by selecting elements one at a time, each time choosing an
element that provides the largest marginal increase in the function value. Let S∗ be a
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set thatmaximises the value of f over all k-element sets. Then f (S) ≥ (1− 1
e )· f (S∗),

i.e, S provides a (1 − 1
e )-approximation.

This property can be extended to show that for any ε > 0, there is a γ > 0
such that by using (1 + γ)-approximate values for the function to be optimized, a
(1 − 1

e − ε)-approximation.
Further it is assumed that each node v has an associated non-negative weight wv

which tells us how important it is that v be activated in the final outcome. If B denotes
the set activated by the process with initial activation A, then the weighted influence
function σw(A) is defined to be the expected value over outcomes B of the quantity∑
v∈B

wv .

The paper proves the following theorems:

• Theorem 13 For an arbitrary instance of the independent cascade model, the
resulting influence function σ(·) is submodular.

• Theorem 14 For an arbitrary instance of the linear thresholdmodel, the resulting
influence function σ(·) is submodular.

• Theorem 15 A node x ends up active if and only if there is a path from some node
in A to x consisting of live edges.

• Theorem 16 For a given targeted set A, the following two distributions over sets
of nodes are the same:

1. The distribution over active sets obtained by running the linear threshold model
to completion starting from A.

2. The distribution over sets reachable from A via live-edge paths, under the ran-
dom selection of live edges defined above.

• Theorem 17 The influence maximization problem is NP-hard for the independent
cascade model.

• Theorem 18 The influence maximization problem is NP-hard for the linear
threshold model.

This approximation algorithm was tested on the collaboration graph obtained
from co-authorships in the high-energy physics theory section of the e-print arXiv
publications. This collaboration graph contains a node for each researcher who has
atleast one paper with co-author(s) in the arXiv database. For each paper with two
or more authors, an edge was inserted for each pair of authors (single-author papers
were ignored). The resulting graph had 10748 nodes, and edges between about 53000
pairs of nodes.

The algorithm was compared in three different models of influence. In the linear
threshold model, if nodes u and v have cu,v parallel edges between them, and degrees
du and dv , the edge (u, v) was assigned the weight cu,v

dv
and the edge (v, u) is given

the weight cu,v

du
. In the independent cascade model, a uniform probability of p was

assigned to each edge, choosing 1 and 10% in separate trials. If nodes u and v have
cu,v edges, u has a chance of p to activate v, i.e, u has total probability of 1−(1− p)cu,v

of activating v once it becomes active. A special case of the independent cascade
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model termed as “weighted cascade” was studied wherein each edge from node u to
v was assigned probability 1

dv
of activating v.

The greedy algorithm was compared with heuristics based on degree centrality,
distance centrality and a crude baseline of choosing random nodes to target. The
degree centrality involves choosing nodes in order of decreasing degrees, the distance
centrality chooses nodes in order of increasing average distance to other nodes in the
network.

For computing σ(A), the process was simulated 10000 times for each targeted set,
re-choosing thresholds or edge outcomes pseudo-randomly from [0, 1] every time.

Figures 9.1, 9.2, 9.3, 9.4 show the performance of the algorithms in the linear
model, weight cascade model, independent cascade model with probabilities 1 and
10% respectively. It is observed that the greedy algorithm clearly surpasses the other
heuristics.

From these results, the paper proposes a broader framework that generalizes these
models. The general threshold model is proposed. A node v’s decision to become
active can be based on an arbitrary monotone function of the set of neighbours of
v that are already active. Thus, associated with v is a monotone threshold function
fv that maps subsets of v’s neighbour set to real numbers in [0, 1], subject to the
condition that fv(φ) = 0. Each node v initially chooses θv uniformly at random from
the interval [0, 1]. Now, however, v becomes active in step t if fv(S) ≥ θv , where S is
the set of neighbours of v that are active in step t−1. Thus, the linear thresholdmodel
is a special case of this general threshold model in which each threshold function
has the form fv(S) = ∑

u∈S
bv,u for parameters bv,u such that

∑
u neighbour of v

bv,u ≤ 1.

The independent cascade model is generalized to allow the probability that u
succeeds in activating a neighbour v to depend on the set of v’s neighbours that

Fig. 9.1 Results for the linear threshold model
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Fig. 9.2 Results for the weight cascade model

Fig. 9.3 Results for the independent cascade model with probability 1%

have already tried. This uses an incremental function pv(u, S) ∈ [0, 1], where S
and u are disjoint subsets of v’s neighbour set. A general cascade process works by
analogy with the independent case: in the general case, when u attempts to activate
v, it succeeds with probability pv(u, S), where S is the set of neighbours that have
already tried (and failed) to activate v. The independent cascade model is the special
case where pv(u, S) is a constant pu,v , independent of S. The cascade models of
interest are only those defined by incremental functions that are order-independent in
the following sense: if neighbours u1, u2, . . ., ul try to activate v, then the probability
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Fig. 9.4 Results for the independent cascade model with probability 10%

that v is activated at the end of these l attempts does not depend on the order in which
the attempts are made.

These two models are equivalent and there is a way to convert between them.
First, consider an instance of the general threshold model with threshold functions
fv . To define an equivalent cascade model, we need to understand the probability
that an additional neighbour u can activate v, given that the nodes in a set S have
already tried and failed. If the nodes in S have failed, then node v’s threshold θv must
be in the range θv ∈ ( fv(S), 1]. However, subject to this constraint, it is uniformly
distributed. Thus, the probability that a neighbour u /∈ S succeeds in activating v,
given that the nodes in S have failed, is as given in Eq. 9.20.

pv(u, S) = fv(S ∪ {u}) − fv(S)

1 − fv(S)
(9.20)

So the cascade process with these functions is equivalent to the original threshold
process.

Conversely, consider a node v in the cascade model, and a set S = {u1, . . . , uk}
of its neighbours. Assume that the nodes in S try to activate v in the order u1, . . . , uk ,
and let Si = {u1, . . . , ui }. Then the probability that v is not activated by this process

is by definition
k∏

i=1
(1− pv(ui , Si−1)). Recall that we assumed that the order in which

the ui try to activate v does not affect their overall success probability. Hence, this

value depends on the set S only, and we can define fv(S) =
k∏

i=1
(1 − pv(ui , Si−1)).

Analogously, one can show that this instance of the threshold model is equivalent to
the original cascade process.
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The paper also proposed a triggering model, where each node v independently
chooses a random “triggering set” Tv according to some distribution over subsets of
its neighbours. To start the process, we target a set A for initial activation. After this
initial iteration, an inactive node v becomes active in step t if it has a neighbour in
its chosen triggering set Tv that is active at time t − 1. (Thus, v’s threshold has been
replaced by a latent subset of Tv of neighbours whose behaviour actually affects v).

Theorem 19 Whenever the threshold functions fv at every node are monotone and
submodular, the resulting influence function σ(·) is monotone and submodular as
well.

Reference [10] presented an optimization in selecting new seeds, which is referred
to as the “Cost-Effective Lazy Forward” (CELF) scheme. This CELF optimization
uses the submodularity property of the influence maximization objective to greatly
reduce the number of evaluations on the influence spread of vertices. Their exper-
imental results demonstrate that CELF optimization could achieve as much as 700
times speedup in selecting seed vertices.

Reference [2] designed schemes to combine with the CELF optimisation to
improve the greedy algorithms of [8], and proposed a degree discount heuristics
with influence spreads to replace the degree and distance centrality heuristics of [8].
The advantage of these new heuristics is their speed. The algorithm using this degree
discount has order of O(klogn +m) when compared to the greedy algorithm which
has O(knRm). Here n denotes the number of vertices, m denotes the number of
edges, k is the number of elements in the k-set of influentials, and R is the number of
simulations. These schemes when applied to the independent cascade model showed
a completion time of only a few milliseconds, which is less than one-millionth of the
time of the fastest greedy algorithm. Additionally, they also show a good influence
spread performance. The developed algorithms were tested on the same datasets as
used in [8].

However these heuristics developed in [2] apply only to the independent cascade
model and not to the independent cascademodel. Reference [3] developed the LDAG
algorithm for this lattermodel. In thismodel, a localDAG is computed for each vertex
v and the influence to v is restricted to within this DAG structure. To select local
DAGs that could cover a significant portion of influence propagation, a fast greedy
algorithm of adding nodes into the local DAG of a node v one by one was proposed
such that the individual influence of these nodes to v is larger than a threshold
parameter θ. After constructing the local DAGs, the greedy approach of selecting
seeds that provide the maximum incremental influence spread with a fast scheme of
updating incremental influence spread of every node was combined. This combined
fast local DAG construction and fast incremental influence update make the LDAG
algorithm very efficient. This algorithm was found to perform much faster than the
greedy algorithm at a fraction of its completion time. However, finding the optimal
LDAG is still NP-hard.

Reference [6] proposed SIMPATH, an algorithm under the linear cascade model
that addresses the drawbacks found in [8] using several optimisations. The paper
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proves that in the linear threshold model which says the spread of a set of nodes can
be calculated as the sum of spreads of each node in the set on appropriate induced
subgraphs. SIMPATH builds on the CELF optimization. However, instead of using
expensive MC simulations to estimate the spread, the spread is computed by enu-
merating the simple paths starting from the seed nodes. Although the problem of
enumerating simple paths is #P-hard, majority of the influence flows within a small
neighbourhood, since probabilities of paths diminish rapidly as they get longer. Thus,
the spread can be computed accurately by enumerating paths within a small neigh-
bourhood. A parameter η is proposed to control the size of the neighbourhood that
represents a direct trade-off between accuracy of spread estimation and running time.
Two novel optimizations were proposed to reduce the number of spread estimation
calls made by SIMPATH . The first one, called the VERTEX COVER OPTIMIZA-
TION, cuts down on the number of calls made in the first iteration, thus addressing a
key weakness of the simple greedy algorithm that is not addressed by CELF. Since
the spread of a node can be computed directly using the spread of its out-neighbors,
in the first iteration, a vertex cover of the graph is first constructed and the spread
only for these nodes is obtained using the spread estimation procedure. The spread
of the rest of the nodes is derived from this. This significantly reduces the running
time of the first iteration. Next, it is observed that as the size of the seed set grows
in subsequent iterations, the spread estimation process slows down considerably.
Another optimization called LOOK AHEAD OPTIMIZATION which addresses this
issue and keeps the running time of subsequent iterations small is proposed. Specif-
ically, using a parameter l, it picks the top-l most promising seed candidates in the
start of an iteration and shares the marginal gain computation of those candidates.
The paper concludes by showing through extensive experiments on four real datasets
that the SIMPATH algorithm is more efficient, consumes less memory and produces
seed sets with larger spread of influence than LDAG. Indeed, among all the settings
we tried, the seed selection quality of SIMPATH is quite close to the simple greedy
algorithm.

Reference [9] studied the contrasting behaviour between cascading models and
viral marketing by analysing a person-to-person recommendation network, consist-
ing of 4 million people who made 16 million recommendations on half a million
products. This network was retrieved from an online retailer’s incentivised viral
marketing program. The website gave discounts to customers recommending any
of its products to others, and then tracked the resulting purchases and additional
recommendations. Although, it is assumed in epidemic models such as SIRS model
that individuals have equal probability of being infected every time they interact, the
paper observed that the probability of infection decreases with repeated interaction.
Thismeans that providing excessive incentives for customers to recommend products
could backfire by weakening the credibility of the very same links they are trying to
take advantage of.

Cascading models also often assume that individuals either have a constant prob-
ability of ‘converting’ every time they interact with an infected individual [5], or that
they convert once the fraction of their contacts who are infected exceeds a threshold
[7]. In both cases, an increasing number of infected contacts results in an increased
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likelihood of infection. Instead, it was found that the probability of purchasing a
product increases with the number of recommendations received, but quickly sat-
urated to a constant and relatively low probability. This meant that individuals are
often impervious to the recommendations of their friends, and resist buying items
that they do not want.

In network-based epidemic models, extremely highly connected individuals play
a very important role. For example, in needle sharing and sexual contact networks
these nodes become the “super-spreaders” by infecting a large number of people. But
thesemodels assume that a high degree node has asmuch of a probability of infecting
each of its neighbours as a low degree node does. In contrast, it was found that there
are limits to how influential high degree nodes are in the recommendation network.
As a person sends out more and more recommendations past a certain number for
a product, the success per recommendation declines. This indicates that individuals
have influence over a few of their friends, but not everybody they know.

A simple stochastic model was also presented that allowed for the presence of
relatively large cascades for a few products, but reflects well the general tendency of
recommendation chains to terminate after just a short number of steps. Aggregating
such cascades over all the products, a highly disconnected network was obtained,
where the largest component grew over time by aggregating typically very small but
occasionally fairly large components. Itwas observed that themost popular categories
of items recommended within communities in the largest component reflected differ-
ing interests between these communities. A model which showed that these smaller
and more tightly knit groups tended to be more conducive to viral marketing was
presented.

The characteristics of product reviews and effectiveness of recommendations was
found to vary by category and price. A small fraction of the products accounted for
a large proportion of the recommendations. Although not quite as extreme in pro-
portions, the number of successful recommendations also varied widely by product.
Still, a sizeable portion of successful recommendations were for a product with only
one such sale—hinting at a long tail phenomenon.

Thus viral marketing was found to be, in general, not as epidemic as one might
have hoped. Marketers hoping to develop normative strategies for word-of-mouth
advertising should analyze the topology and interests of the social network of their
customers.

By investigating the attributes and relative influence of 1.6 million Twitter users
by tracking 74 million diffusion events that took place on the Twitter follower graph
over a two month interval in 2009, [1] found that although individuals who have
been influential in the past and who have many followers are indeed more likely
to be influential in the future, this intuition is correct only on average. Although it
is the most cost-effective approach for marketing, we have learnt that finding these
influentials is NP-hard. Instead, they propose that under certain circumstances it
was effective to find the “ordinary influencers”, individuals who exert average, or
even less-than-average influence. However, these results were based on statistical
modelling of observational data and thus do not imply causality. It is quite possible,
for example, that content seeded by outside sources— e.g., marketers—may diffuse
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quite differently than content selected by users themselves. Likewise, while a wide
range of possible cost functions was considered, other assumptions about costs are
certainly possible and may lead to different conclusions. Nevertheless, these finding
regarding the relative efficacy of ordinary influencers is consistent with previous the-
oretical work [14] that has also questioned the feasibility of word-of-mouth strategies
that depend on triggering “social epidemics” by targeting special individuals.

Reference [13] show that even when given access to individuals’ costs, no mecha-
nism that offers uniform rewards can approximate the optimal solutionwithin a factor
better than�(

logn
loglogn ). The paper introduces incentive compatible mechanismswhich

take each users’ true private information and use it to identify and reward the subset of
initial adopters. Thereby developing incentive compatible mechanisms that compare
favourably against the optimal influence maximization solution. The experiments
used Facebook network data that had almost a million nodes and over 72 million
edges, together with a representative cost distribution that was obtained by running
a simulated campaign on Amazon’s Mechanical Turk platform.
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Chapter 10
Outbreak Detection

Outbreak detection is the task of detecting outbreaks in networks, where given a
network and a dynamic process spreading over this network, we have to select a
set of nodes to detect this process as effectively as possible. Multiple situations fall
under these settings. Consider a city water distribution network, delivering water to
households via pipes and junctions. Accidental or malicious intrusions can cause
contaminants to spread over the network, and we want to select a few locations (pipe
junctions) to install sensors, in order to detect these contaminations as quickly as
possible. Next, if we have a social network of interactions between people, we want
to select a small set of people to monitor, so that any disease outbreak can be detected
early, when very few people are infected.

In the domain of blogs, bloggers publish posts and use hyper-links to refer to other
bloggers’ posts and content on the web. Each post is time stamped, so the spread of
information on the Blogspace can be observed. In this setting, we want to select a
set of blogs which are most up to date, i.e, our goal is to select a small set of blogs
which “catch” as many cascades as possible.

10.1 Battle of the Water Sensor Networks

Following the terrorist attacks of September 11, 2001, in theUnited States, awareness
for possible attacks on the water grid has increased dramatically. The most feared
of all the threats to the water supply system is the deliberate chemical or biological
contaminant injection, due to both the uncertainty of the type of injected contaminant
and its consequences, and the uncertainty of the time and location of the injection.
An online contaminant monitoring system is considered as a major opportunity to
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protect against the impacts of a deliberate contaminant intrusion. To develop the
infrastructure required to efficiently run this monitoring system, the Battle of the
Water Sensor Networks (BWSN) competition was undertaken as part of the 8th
Annual Water Distribution Systems Analysis Symposium, Cincinnati, Ohio, August
27–29, 2006.

The following four quantitative design objectives were used for evaluation:

10.1.1 Expected Time of Detection (Z1)

For a particular contamination, the time of detection by a sensor is defined as the
elapsed time from the start of the contamination event to the first identified presence
of a non-zero contaminant concentration. The time of first detection t j , refers to the
j th sensor location. The time of detection (or detection time (DT)) for the sensor
network for a particular contamination, td , is the minimum among all the sensors
present in the design

td = min j t j (10.1)

The objective function to be minimized is the expected value computed over the
assumed probability distribution of the contaminations

Zi = E(td) (10.2)

where E(td) denotes the mathematical expectation of the minimum detection time
td . Undetected events have no detection times.

10.1.2 Expected Population Affected Prior to Detection (Z2)

For a specific contamination, the population affected is a function of the ingested
contaminant mass. The assumptions are that no mass is ingested after detection
and that all mass ingested during undetected events is not counted. For a particular
contamination, the mass ingested by any individual at a network node i is

Mi = ϕ�t
N∑

k=1

cikρik (10.3)

whereϕdenotes themeanamount ofwater consumedbyan individual (L/day/person),
�t is the evaluation time step (days), cik is the contaminant concentration for node i
at time step k (mg/L), ρik is the dose rate multiplier for node i and time step k, and N
is the number of evaluation time steps prior to detection. The series ρik , k = 1, . . . , N
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has a mean of 1 and is intended to model the variation in ingestion rate throughout
the day. It is assumed that the ingestion rate varies with the water demand rate at the
respective node, thus

ρik = qik/qi ∀ k ∈ N (10.4)

where qik is the water demand for time step k and node i , and qi is the average water
demand at node i .

A dose-responsemodel is used to express the probability that any person ingesting
mass Mi will be infected

Ri = �{βlog10[(Mi/W )/D50]} (10.5)

where Ri is the probability that a person who ingests contaminant mass Mi will
become infected, β is called the Probit slope parameter,W is the average body mass
(kg/person), D50 is the dose that would result in a 0.5 probability of being infected
(mg/kg), and � is the standard normal cumulative distribution function.

The population affected (PA), Pa , for a particular contamination is calculated as

Pa =
V∑

i=1

Ri Pi (10.6)

where Pi is the population assigned to node i and V is the total number of nodes.
The objective function to be minimized is the expected value of Pa computed over
the assumed probability distribution of contamination events

Z2 = E(Pa) (10.7)

where E(Pa) denotes the mathematical expectation of the affected population Pa .

10.1.3 Expected Consumption of Contaminated Water Prior
to Detection (Z3)

Z3 is the expected volume of contaminated water consumed prior to detection.

Z3 = E(Vd) (10.8)

where Vd denotes the total volumetric water demand that exceeds a predefined hazard
concentration threshold C ; and E(Vd) is the mathematical expectation of Vd .
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10.1.4 Detection Likelihood (Z4)

Given a sensor network design, the detection likelihood (DL) is estimated by

Z4 = 1

S

∑

r=1

Sdr (10.9)

where dr = 1 if contamination scenario r is detected, and zero otherwise; and S
denotes the total number of the contaminations considered.

10.1.5 Evaluation

A methodology for evaluating a given sensor design should comply with two basic
requirements: (i) it should be objective, and (ii) it should assess a design regardless
of the method used to receive it.

To accomplish this the utility developed comprised of two steps: (i) generation
of a matrix of contamination injection events in either of two mechanisms: random,
using Monte Carlo-type simulations selected by the user; or deterministic, injection
at each node each 5 min, and (ii) evaluation of Zi (i = 1, . . . , 4) according to the
matrix of contamination injection events constructed in Stage 1.

This utility was distributed to all participants prior to the BWSN for testing both
the networks.

Thus, the goal of the BWSN was to objectively compare the solutions obtained
using different approaches to the problem of placing five and 20 sensors for two real
water distribution systems of increasing complexity and for four derivative cases,
taking into account the aforementioned four design objectives. Fifteen contributions
were received from academia and practitioners.

Reference [5] provides a summary of these contributions and concludes that due
to the presence of four different objective functions, BWSN is a multi-objective
problem. In a multi-objective context the goal is to find, from all the possible feasi-
ble solutions, the set of non-dominated solutions, where a non-dominated solution
is optimal in the sense that there is no other solution that dominates it (i.e, there
is no other solution that is better than that solution with respect to all objectives).
This leads to two observations: (i) comparisons can be made on the Zi (i = 1, 2, 3)
versus Z4 domains, and (ii) a unique single optimal solution cannot be identified,
thus a “winner” cannot be declared. It should also be emphasized in this context
that alternate comparison methods could have been employed, thus there is no claim
that the adopted comparison approach is better in an absolute sense than an alter-
native methodology. However, this assessment provides indications of breadth and
similarity of findings, as desired using different mathematical algorithms.

This competition found that general guidelines cannot be set. Engineering judg-
ment and intuition alone are not sufficient for effectively placing sensors, and these
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need to be supported by quantitative analysis. The analysis has shown that sensors
do not need to be clustered and that placing sensors at vertical assets (sources, tanks,
and pumps) is not a necessity. In fact, most of the designs have not placed sensors at
vertical assets. In some cases, there were considerable similarities where the same
nodes (or nodes at a immediate vicinity)were selected bymany of themethodologies.

10.2 Cost-Effective Lazy Forward Selection Algorithm

Of all the sensor designs contributed to the BWSN, one of the interesting ones
was [3]. Reference [4] explains in detail the algorithm behind the near optimal sen-
sor placements. Outbreak detection objectives are found to exhibit the property of
submodularity. In the previous chapter, we have learnt that problems having these
submodularity properties can be solved using the hill-climbing approach. The CELF
algorithm presented in this paper are a factor of 700 times faster than this greedy
algorithm. References [2, 3] further detail the results in support of the algorithm
presented in this paper.

The paper proves that the objective functions described in the previous section
are submodular and by exploiting this property, an efficient approximation algorithm
was proposed.

Detection of outbreaks essentially involves strategically planting sensors on a
subset A of nodes in a graph G = (V, E) which will trigger an alarm to indicate
that an outbreak has been detected. However, these sensors are expensive with each
sensor s having an associated non-negative cost c(s) and a reward R(s). Thus, the
total cost of all the sensors, c(A) is c(A) = ∑

s∈A
c(s) which must not exceed a total

budget of B which is the maximum amount that can be spent on the sensors. The
goal is to solve the optimisation function

maxA⊆V R(A) subject to c(A) ≤ B (10.10)

An event i ∈ I from set I of contaminants originates from a node s ′ ∈ V , and
spreads through the network, affecting other nodes. Eventually, it reaches amonitored
node s ∈ A ⊆ V and gets detected. Depending on the time of detection t = T (i, s),
and the impact on the network before the detection, a penalty πi (t). The goal is to
minimize the expected penalty over all possible contaminants i :

π(A) =
∑

i

P(i)πi (T (i, A)) (10.11)

where for A ⊆ V , T (i, A) = mins∈AT (i, s) is the time until event i is detected by
one of the sensors in A, and P is a given probability distribution over the events.
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πi (t) is assumed to be monotonically nondecreasing in t , i.e, late detection are
never preferred if they can be avoided. Also T (i,φ) = ∞, and set πi (∞) to some
maximum penalty incurred for not detecting event i .

Instead of maximising the penalty π(A), the paper considers penalty reduction,
Ri (A) = πi (∞) − πi (T (i, A)) and the expected penalty reduction

R(A) =
∑

i

P(i)Ri (A) = π(φ) − π(A) (10.12)

which describes the expected reward received from placing sensors.
For the DL function, πi (t) = 0 and πi (∞) = 1, i.e, no penalty is incurred if the

outbreak is detected in finite time, otherwise the incurred penalty is 1. For the DT
measure, πi (t) = min(t, Tmax ), where Tmax is the time horizon. The PA criterion has
πi (t) is the size of the cascade i at time t , and πi (∞) is the size of the cascade at the
end of the horizon.

The penalty reduction function R(A) has several properties: First, R(φ) = 0, i.e,
we do not reduce the penalty if we do not place any sensors. Second, R is non-
decreasing, i.e, R(A) ≤ R(B) ∀ A ⊆ B ⊆ V . So, adding sensors can only decrease
the penalty. Finally, ∀ A ⊆ B ⊆ V and sensors s ∈ V \ B, R(A ∪ {s}) − R(A) ≥
R(B ∪ {s}) − R(B), i.e, R is submodular.

To solve the outbreak detection problem, we will have to simultaneously opti-
mize multiple objective functions. Then, each A is R(A) = (R1(A), . . . , Rm(A)).
However, there can arise a situation where A1 and A2 are incomparable, i.e,
R1(A1) > R1(A2), but R2(A1) > R2(A2). So, we hope for Pareto-optimal solutions.
A is said to be Pareto-optimal, if there does not exist A′ such that Ri (A′) ≥ Ri (A)∀i ,
and R j (A′) > R j (A) for some j . One approach to finding such Pareto-optimal solu-
tions is scalarization. Here, one picks positive weights λ1 > 0, . . . ,λm > 0, and
optimizes the objective R(A) = ∑

i
λi Ri (A). Any solutionmaximising R(A) is guar-

anteed to be Pareto-optimal, and by varying the weights λi , different Pareto-optimal
solutions can be obtained.

If we consider that every node has equal cost (i.e., unit cost, c(s) = 1 for all
locations s), then the greedy algorithm starts with A0 = φ, and iteratively, in step k,
adds the location sk which maximizes the marginal gain

sk = argmaxs∈V \Ak−1R(Ak−1 ∪ s) − R(Ak−1) (10.13)

The algorithm stops, once it has selected B elements. For this unit cost case, the
greedy algorithm is proved to achieve atleast 63% optimal score (Chap. 9). We will
refer to this algorithm as the unit cost algorithm.

In the case where the nodes non-constant costs, the greedy algorithm that itera-
tively adds sensors until the budget is exhausted can fail badly, since a very expensive
sensor providing reward r is preferred over a cheaper sensor providing reward r − ε.
To avoid this, we modify Eq.10.13 to take costs into account
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sk = argmaxs∈V \Ak−1

R(Ak−1 ∪ s) − R(Ak−1)

c(s)
(10.14)

So the greedy algorithm picks the element maximising the benefit/cost ratio. The
algorithm stops once no element can be added to the current set A without exceeding
the budget. Unfortunately, this intuitive generalization of the greedy algorithm can
perform arbitrarily worse than the optimal solution. Consider the case where we have
two locations, s1 and s2 , c(s1) = ε and c(s2) = B. Also assume we have only one
contaminant i , and R(s1) = 2ε, and R(s2) = B. Now, R((s1) − R(φ))/c(s1) = 2,
and R((s2) − R(φ))/c(s2) = 1. Hence the greedy algorithm would pick s1. After
selecting s1, we cannot afford s2 anymore, and our total reward would be ε. However,
the optimal solution would pick s2, achieving total penalty reduction of B. As ε goes
to 0, the performance of the greedy algorithmbecomes arbitrarily bad. This algorithm
is called the benefit-cost greedy algorithm.

The paper proposes the Cost-Effective Forward selection (CEF) algorithm. It
computes AGCB using the benefit-cost greedy algorithm and AGUC using the unit-
cost greedy algorithm. For both of these, CEF only considers elements which do not
exceed the budget B. CEF then returns the solution with higher score. Even though
both solutions can be arbitrarily bad, if R is a non-decreasing submodular function
with R(φ) = 0. Then we get Eq.10.15.

max{R(AGCB), R(AGUC )} ≥ 1

2

(
1 − 1

e

)
maxA,c(A)≤B R(A) (10.15)

The running time of CEF is O(B|V |). The approximation guarantees of (1 − 1
e )

and 1
2 (1 − 1

e ) in the unit and non- constant cost cases are offline, i.e, we can state them
in advance before running the actual algorithm. Online bounds on the performance
can be found through arbitrary sensor locations. For Â ⊆ V and each s ∈ V \ Â,
let δs = R( Â ∪ {s}) − R( Â). Let rs = δs/c(s), and let s1, . . . , sm be the sequence

of locations with rs in decreasing order. Let k be such that C =
k−1∑
i=1

c(si ) ≤ B and

k∑
i=1

c(si ) > B. Let λ = (B − C)/c(sk), then we get Eq.10.16.

maxA,c(A)≤B R(A) ≤ R( Â) +
k−1∑

i=1

δsi + λδsk (10.16)

This computes how far away Â is from the optimal solution. This is found to give
a 31% bound.

Most outbreaks are sparse, i.e, affect only a small area of network, and hence are
only detected by a small number of nodes. Hence, most nodes s do not reduce the
penalty incurred by an outbreak, i.e, Ri (s) = 0. However, this sparsity is only present
when penalty reductions are considered. If for each sensor s ∈ V and contaminant
i ∈ I we store the actual penalty πi (s), the resulting representation is not sparse. By
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representing the penalty function R as an inverted index, which allows fast lookup
of the penalty reductions by sensor s, the sparsity can be exploited. Therefore, the
penalty reduction can be computed as given in Eq.10.17.

R(A) =
∑

i :i detected by A

P(i)maxs∈ARi ({s}) (10.17)

Even if we can quickly evaluate the score R(A) of any A, we still need to perform
a large number of these evaluations in order to run the greedy algorithm. If we select
k sensors among |V | locations, we roughly need k|V | function evaluations. We can
exploit submodularity further to require far fewer function evaluations in practice.
Assume we have computed the marginal increments δs(A) = R(A ∪ {s}) − R(A)

(or δs(A)/c(s)) for all s ∈ V \ A. As our node selection A grows, the marginal
increments δs ′ (and δs ′/c(s)) (i.e., the benefits for adding sensor s ′) can never increase:
For A ⊆ B ⊆ V , it holds that δs(A) ≥ δs(B). So instead of recomputing δs ≡ δs(A)

for every sensor after adding s ′ (and hence requiring |V | − |A| evaluations of R), we
perform lazy evaluations: Initially, we mark all δs as invalid. When finding the next
location to place a sensor, we go through the nodes in decreasing order of their δs . If
the δs for the top node s is invalid, we recompute it, and insert it into the existing order
of the δs (e.g., by using a priority queue). In many cases, the recomputation of δs will
lead to a new value which is not much smaller, and hence often, the top element will
stay the top element even after recomputation. In this case, we found a new sensor to
add, without having re-evaluated δs for every location s. The correctness of this lazy
procedure follows directly from submodularity, and leads to far fewer (expensive)
evaluations of R. This is called the lazy greedy algorithm CELF (Cost-Effective
Lazy Forward selection). This is found to have a factor 700 improvement in speed
compared to CEF.

10.2.1 Blogspace

A dataset having 45000 blogs with 10.5 million posts and 16.2 million links was
taken. Every cascade has a single starting post, and other posts recursively join by
linking to posts within the cascade, whereby the links obey time order. We detect
cascades by first identifying starting post and then following in-links. 346, 209 non-
trivial cascades having at least 2 nodes were discovered. Since the cascade size
distribution is heavy-tailed, the analysis was limited to only cascades that had at
least 10 nodes. The final dataset had 17, 589 cascades, where each blog participated
in 9.4 different cascades on average.

Figure10.1 shows the results when PA function is optimized. The offline and the
online bounds can be computed regardless of the algorithm used. CELF shows that
we are at 13.8% away from optimal solution. In the right, we have the performance
using various objective functions (from top to bottom: DL, DT, PA). DL increases
the fastest, which means that one only needs to read a few blogs to detect most of the
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Fig. 10.1 (Left) Performance of CELF algorithm and off-line and on-line bounds for PA objective
function. (Right) Compares objective functions

Fig. 10.2 Heuristic blog selection methods. (Left) unit cost model, (Right) number of posts cost
model

cascades, or equivalently that most cascades hit one of the big blogs. However, the
population affected (PA) increases much slower, which means that one needs many
more blogs to know about stories before the rest of population does.

In Fig. 10.2, the CELF method is compared with several intuitive heuristic selec-
tion techniques. The heuristics are: the number of posts on the blog, the cumulative
number of out-links of blog’s posts, the number of in-links the blog received from
other blogs in the dataset, and the number of out-links to other blogs in the dataset.
CELF is observed to greatly outperform the other methods. For the figure in the right,
given a budget of B posts, we select a set of blogs to optimize PA objective. For the
heuristics, a set of blogs to optimize chosen heuristic was selected, e.g., the total
number of in-links of selected blogs while still fitting inside the budget of B posts.
Again, CELF outperforms the next best heuristics by 41%.
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10.2.2 Water Networks

In this water distribution system application, the data and rules introduced by the Bat-
tle of Water Sensor Networks (BWSN) challenge was used. Both the small network
on 129 nodes (BWSN1), and a large, realistic, 12, 527 node distribution network
(BWSN2) provided as part of the BWSN challenge were considered. In addition a
third water distribution network (NW3) of a large metropolitan area in the United
States was considered. The network (not including the household level) contains
21, 000 nodes and 25, 000 pipes (edges). The networks consist of a static descrip-
tion (junctions and pipes) and dynamic parameters (time-varying water consumption
demand patterns at different nodes, opening and closing of valves, pumps, tanks, etc).

In the BWSN challenge, the goal is to select a set of 20 sensors, simultaneously
optimizing the objective functions DT, PA and DL. To obtain cascades a realistic
disease model was used, which depends on the demands and the contaminant con-
centration at each node. In order to evaluate these objectives, the EPANET simulator
was used, which is based on a physical model to provide realistic predictions on
the detection time and concentration of contaminant for any possible contamination
event. Simulations of 48h length, with 5min simulation timesteps were considered.
Contaminations can happen at any node and any time within the first 24h, and spread
through the network according to the EPANET simulation. The time of the outbreak
is important, since water consumption varies over the day and the contamination
spreads at different rates depending on the time of the day. Altogether, a set of
3.6 million possible contamination scenarios were considered, each of which were
associated with a “cascade” of contaminant spreading over the network.

Figure10.3 presents the CELF score, the off-line and on-line bounds for PA objec-
tive on the BWSN2 network. On the right is shown CELF’s performance on all 3
objective functions.

Figure10.4 shows two 20 sensor placements after optimizing DL and PA respec-
tively on BWSN2. When optimizing the population affected (PA), the placed sen-

Fig. 10.3 (Left) CELF with offline and online bounds for PA objective. (Right) Different objective
functions



10.2 Cost-Effective Lazy Forward Selection Algorithm 199

Fig. 10.4 Water network sensor placements: (Left) when optimizing PA, sensors are concentrated
in high population areas. (Right) when optimizing DL, sensors are uniformly spread out

Fig. 10.5 Solutions of
CELF outperform heuristic
approaches

sors are concentrated in the dense high-population areas, since the goal is to detect
outbreaks which affect the population the most. When optimizing the detection like-
lihood, the sensors are uniformly spread out over the network. Intuitively this makes
sense, since according to BWSN challenge, outbreaks happen with same probabil-
ity at every node. So, for DL, the placed sensors should be as close to all nodes as
possible.

Figure10.5 shows the scores achieved by CELF compared with several heuristic
sensor placement techniques, where the nodes were ordered by some “goodness”
criteria, and then the top nodes were picked for the PA objective function. The
following criteria were considered: population at the node, water flow through the
node, and the diameter and the number of pipes at the node. CELF outperforms the
best heuristic by 45%.

Reference [1] proposed the CELF++ algorithm which the paper showed as being
35–55% faster than CELF. Here σS denotes the spread of seed set S. A heap Q
is maintained with nodes corresponding to users in the network. The node of Q
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corresponding to user u stores a tuple of the form < u.mg1, u.prev_best, u.mg2,
u. f lag >, where u.mg1 = δu(S) which is the marginal gain of u w.r.t the current
seed set S, u.prev_best is the node that has the maximal marginal gain among all the
users examined in the current iteration before user u, u.mg2 = δu(S ∪ {prev_best}),
and u. f lag is the iteration number when u.mg1 was last updated. The idea is that
if the node u.prev_best is picked as a seed in the current iteration, the marginal
gain of u w.r.t (S ∪ {prev_best}) need not be recomputed in the next iteration. In
addition to computing �u(S), it is not necessary to compute �u(S ∪ {prev_best})
from scratch. The algorithm can be implemented in an efficientmanner such that both
�u(S) and �u(S ∪ {prev_best}) are evaluated simultaneously in a single iteration
of Monte Carlo simulation (which typically contains 10, 000 runs).

The variables S is used to denote the current seed set, last seed to track the ID of
the last seed user picked by the algorithm, and cur_best to track the user having the
maximum marginal gain w.r.t S over all users examined in the current iteration. The
algorithm starts by building the heap Q initially. Then, it continues to select seeds
until the budget k is exhausted. As in CELF, the root element u of Q is looked at and
if u. f lag is equal to the size of the seed set, we pick u as the seed as this indicates
that u.mg1 is actually �u(S). The optimization of CELF++ is that we update u.mg1
without recomputing the marginal gain. Clearly, this can be done since u.mg2 has
already been computed efficiently w.r.t the last seed node picked. If none of the above
cases applies, we recompute the marginal gain of u.

Reference [6] indicate that uniform immunization programmes undertaken are
unsatisfactory in curtailing the spread of epidemics. Instead they show results which
indicate that targeted immunization achieve the lowering of epidemics. The targeting
of just the most connected individuals is found to raise the tolerance to infections
in the whole population by a dramatic factor. An instance of this is provided by
the spread of computer viruses. Even after the virus is detected and corresponding
patches are developed, it still has a large lifetime. A similar situation persists in the
case of sexually transmitted diseases where instead of uniform immunization, the
approach must be to identify “superseeders”, the set of the promiscuous individuals
who are key in the spread of the infection.

Problems

Download the DBLP collaboration network dataset at
https://snap.stanford.edu/data/bigdata/communities/com-dblp.ungraph.txt.gz.

This exercise is to explore how varying the set of initially infected nodes in a SIR
model can affect how a contagion spreads through a network.We learnt in Sect. 8.2.3
that under the SIRmodel, every node can be either susceptible, infected, or recovered
and every node starts off as either susceptible or infected. Every infected neighbour
of a susceptible node infects the susceptible node with probability β, and infected
nodes can recover with probability δ. Recovered nodes are no longer susceptible and
cannot be infected again. The pseudocode is as given in Algorithm 7.

https://snap.stanford.edu/data/bigdata/communities/com-dblp.ungraph.txt.gz
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Algorithm 7 SIR model
1: procedure SIRModel(G(V, E), I ) � I is initial set of infected nodes
2: S ← V \ I � susceptible nodes
3: R ← φ � recovered nodes
4: while I = φ do
5: S′ ← φ � nodes no longer susceptible
6: I ′ ← φ � newly infected nodes
7: J ′ ← φ � nodes no longer infected
8: R′ ← φ � newly recovered nodes
9: for each node u ∈ V do
10: if u ∈ S then
11: for each (u, v) ∈ E with v ∈ I do
12: With probability β: S′ ← S′ ∪ {u}, I ′ ← I ′ ∪ {u}
13: break
14: end for
15: else if u ∈ I then
16: With probability δ: J ′ ← J ′ ∪ {u}, R′ ← R′ ∪ {u}
17: end if
18: end for
19: S ← S \ S′
20: I ← (I ∪ I ′) \ J ′
21: R ← R ∪ R′
22: end while
23: end procedure

57 Implement the SIRmodel in Algorithm 7 and run 100 simulations with β = 0.05
and δ = 0.5 for each of the following three graphs:

1. The graph for the network in the dataset (will be referred to as the real world
graph).

2. An Erdös-Rényi random graph with the same number of nodes and edges as the
real world graph. Set a random seed of 10.

3. A preferential attachment graph with the same number of nodes and expected
degree as the real world graph. Set a random seed of 10.

For each of these graphs, initialize the infected set with a single node chosen
uniformly at random. Record the total percentage of nodes that became infected in
each simulation. Note that a simulation ends when there are no more infected nodes;
the total percentage of nodes that became infected at some point is thus the number
of recovered nodes at the end of your simulation divided by the total number of nodes
in the network.

58 Repeat the above process, but instead of selecting a random starting node, infect
the node with the highest degree. Compute the total percentage of nodes that became
infected in each simulation.

59 Repeat the experiments by initialising the infected set to be 10 random nodes
and the top 10 highest degree nodes, respectively. Calculate the total percentage of
nodes that became infected in each simulation.



202 10 Outbreak Detection

References

1. Goyal, Amit, Wei Lu, and Laks V.S. Lakshmanan. 2011. Celf++: Optimizing the greedy algo-
rithm for influence maximization in social networks. In Proceedings of the 20th international
conference companion on World wide web, 47–48. ACM.

2. Krause, Andreas, and Carlos Guestrin. 2005. A note on the budgeted maximization of submod-
ular functions. 2005.

3. Krause, Andreas, Jure Leskovec, Carlos Guestrin, Jeanne VanBriesen, and Christos Faloutsos.
2008. Efficient sensor placement optimization for securing large water distribution networks.
Journal of Water Resources Planning and Management 134 (6): 516–526.

4. Leskovec, Jure, Andreas Krause, Carlos Guestrin, Christos Faloutsos, Jeanne VanBriesen, and
Natalie Glance. 2007. Cost-effective outbreak detection in networks. In Proceedings of the 13th
ACM SIGKDD international conference on Knowledge discovery and data mining, 420–429.
ACM.

5. Ostfeld, Avi, James G. Uber, Elad Salomons, Jonathan W. Berry, William E. Hart, Cindy A.
Phillips, Jean-PaulWatson, GianlucaDorini, Philip Jonkergouw, ZoranKapelan, et al. 2008. The
battle of the water sensor networks (BWSN): A design challenge for engineers and algorithms.
Journal of Water Resources Planning and Management 134 (6): 556–568.

6. Pastor-Satorras, Romualdo, and Alessandro Vespignani. 2002. Immunization of complex net-
works. Physical Review E 65 (3): 036104.



Chapter 11
Power Law

An interesting question to ask is, which are the popular websites? Although popu-
larity may be considered an elusive term with a lot of varying definitions, here we
will restrict ourselves by taking a snapshot of the Web and counting the number of
in-links to websites and using this a measure of the site’s popularity.

Another way of looking at this is as follows: As a function of k, what fraction of
sites on the Web have k in-links? Since larger values of k indicate greater popularity,
this should give us the popularity distribution of the Web.

On first thought, one would guess that the popularity would follow a normal
or Gaussian distribution, since the probability of observing a value that exceeds
the mean by more than c times the standard deviation decreases exponentially in
c. Central Limit Theorem supports this fact because it states that if we take any
sequence of small independent random quantities, then in the limit their sum (or
average) will be distributed according to the normal distribution. So, if we assume
that each website decides independently at random whether to link to any other site,
then the number of in-links to a given page is the sum of many independent random
quantities, and hence we’d expect it to be normally distributed. Then, by this model,
the number of pages with k in-links should decrease exponentially in k, as k grows
large.

However, we learnt in Chap.2 that this is not the case. The fraction of websites
that have k in-links is approximately proportional to 1/k2 (the exponent is slightly
larger than 2). A function that decreases as k to some fixed power, such as 1/k2, is
called a power law; when used to measure the fraction of items having value k, it
says, that it’s possible to see very large values of k.

Mathematically, a quantity x obeys a power law if it is drawn from a probability
distribution given by Eq.11.1

p(x) ∝ x−α (11.1)
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Fig. 11.1 A log-log plot exhibiting a power law

where α is a constant parameter of the distribution known as the exponent or scaling
parameter.

Going back to the question of popularity, this means that extreme imbalances with
very large values are likely to arise. This is true in reality because there are a few
websites that are greatly popular while compared to others. Additionally, we have
learnt in previous chapters that the degree distributions of several social network
applications exhibit a power law.

We could say that just as the normal distribution is widespread among natural
sciences settings, so is the case of power law when the network in question has a
popularity factor to it.

One way to quickly check if a dataset exhibits a power-law distribution is to
generate a “log-log” plot, i.e, if we want to see if f (k) follows a power law, we plot
log( f (k)) as a function of logk. If this plot has an approximately straight line whose
exponent can be read from the slope (as shown in Fig. 11.1), then the dataset follows
a power law.

However, [5] argues against this practise of determining whether or not a dataset
follows a power law. The paper found that such straight-line behaviour was a nec-
essary but by no means sufficient condition for true power-law behaviour. Instead a
statistically principled set of techniques were presented that allow for the validation
and quantification of power laws. Properly applied, these techniques can provide
objective evidence for or against the claim that a particular distribution follows a
power law.
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In practice, few empirical phenomena obey power laws for all values of x . More
often the power law applies only for values greater than someminimum xmin . In such
cases we say that the tail of the distribution follows a power law.

Broadly, the steps to verify power-law exhibition by a dataset is as follows:

1. Estimate the parameters xmin and α of the power-law model using maximum
likelihood estimation (MLE) techniques.

2. Calculate the goodness-of-fit between the data and the power law. If the resulting
p-value is greater than 0.1 the power law is a plausible hypothesis for the data,
otherwise it is rejected.

3. Compare the power lawwith alternative hypotheses via a likelihood ratio test. For
each alternative, if the calculated likelihood ratio is significantly different from
zero, then its sign indicates whether the alternative is favoured over the power-law
model or not. Other established and statistically principled approaches for model
comparison, such as a fully Bayesian approach [9], a cross-validation approach
[17], or a minimum description length approach [8] can also be used instead.

The power law has several moniker in various fields. It goes by the term Lotka
distribution for scientific productivity [15], Bradford law for journal use [4], Pareto
law of income distribution [16] and the Zipf law for literary word frequencies.

11.1 Power Law Random Graph Models

Reference [1] proposed a set of random graph models which exhibit power law in
its degree distributions. The four models are given as follows:

11.1.1 Model A

Model A is the basic model which the subsequent models rely upon. It starts with
no nodes and no edges at time step 0. At time step 1, a node with in-weight 1
and out-weight 1 is added. At time step t + 1, with probability 1 − α a new node
with in-weight 1 and out-weight 1 is added. With probability α a new directed edge
(u, v) is added to the existing nodes. Here the origin u is chosen with probability

proportional to the current out-weightwout
u,t

def= 1 + δoutu,t and the destinationv is chosen

with probability proportional to the current in-weight win
v,t

def= 1 + δinv,t . δ
out
u,t and δinv,t

denote the out-degree of u and the in-degree of v at time t , respectively.
The total in-weight (out-weight) of graph in model A increases by 1 at a time

step. At time step t , both total in-weight and total out-weight are exactly t . So the
probability that a new edge is added onto two particular nodes u and v is exactly as
given in Eq.11.2.
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α
(1 + δoutu,t )(1 + δinv,t )

t2
(11.2)

11.1.2 Model B

Model B is a slight improvement of Model A. Two additional positive constant
γin and γout are introduced. Different powers can be generated for in-degrees and
out-degrees. In addition, the edge density can be independently controlled.

Model B starts with no node and no edge at time step 0. At time step 1, a node with
in-weight γin and out-weight γout is added. At time step t + 1, with probability 1 − α
a new nodewith in-weight γin and out-weight γout is added.With probabilityα a new
directed edge (u, v) is added to the existing nodes. Here the origin u (destination

v) is chosen proportional to the current out-weight wout
u,t

def= γout + δoutu,t while the

current in-weight win
v,t

def= γin + δinv,t . δ
out
u,t and δinv,t denote the out-degree of u and the

in-degree of v at time t , respectively.
In model B, at time step t the total in-weight win

t and the out-weight wout
t of

the graph are random variables. The probability that a new edge is added onto two
particular nodes u and v is as given in Eq.11.3.

α
(γout + δoutu,t )(γ

in + δinv,t )

win
t wout

t

(11.3)

11.1.3 Model C

Nowwe consider Model C, this is a general model with four specified types of edges
to be added.

Assume that the random process of model C starts at time step t0. At t = t0, we
start with an initial directed graph with some vertices and edges. At time step t > t0,
a new vertex is added and four numbersme,e,mn,e,me,n ,mn,n are drawn according to
some probability distribution. Assuming that the four random variables are bounded,
we proceed as follows:

• Addme,e edges randomly. The origins are chosenwith the probability proportional
to the current out-degree and the destinations are chosen proportional to the current
in-degree.

• Add me,n edges into the new vertex randomly. The origins are chosen with the
probability proportional to the current out-degree and the destinations are the new
vertex.

• Add mn,e edges from the new vertex randomly. The destinations are chosen with
the probability proportional to the current in-degree and the origins are the new
vertex.
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• Add mn,n loops to the new vertex.

Each of these random variables has a well-defined expectation which we denote
by μe,e, μn,e, μe,n , μn,n , respectively. We will show that this general process still
yields power law degree distributions and the powers are simple rational functions
of μe,e, μn,e, μe,n , μn,n .

11.1.4 Model D

Model A, B and C are all power law models for directed graphs. Here we describe
a general undirected model which we denote by Model D. It is a natural variant
of Model C. We assume that the random process of model C starts at time step t0.
At t = t0, we start with an initial undirected graph with some Vertices and edges.
At time step t > t0, a new vertex is added and three numbers me,e, mn,e, mn,n are
drawn according to some probability distribution. We assume that the three random
variables are bounded. Then we proceed as follows:

• Addme,e edges randomly. The vertices are chosenwith the probability proportional
to the current degree.

• Add me,n edges randomly. One vertex of each edge must be the new vertex. The
other one is chosen with the probability proportional to the current degree.

• Add mn,n loops to the new vertex.

11.2 Copying Model

Reference [3] proposed the following model to generate graphs that exhibit power
law. Consider a directed graph which grows by adding single edges at discrete time
steps. At each such step a vertex may or may not also be added. Let multiple edges
and loops be allowed. More precisely, let α, β, γ, δin and δout be non-negative
real numbers, with α + β + γ = 1. Let G0 be any fixed initial directed graph, for
example a single vertex without edges, and let t0 be the number of edges of G0. We
set G(t0) = G0, so at time step t the graph G(t) has exactly t edges, and a random
number n(t) of vertices. In what follows, to choose a vertex v of G(t) according to
dout + δout means to choose v so that P(v = vi ) is proportional to dout (vi ) + δout ,
i.e., so that P(v = vi ) = (dout (vi ) + δout )/(t + δoutn(t)). To choose v according to
din + δin means to choose v so that P(v = vi ) = (din(vi ) + δin)/(t + δinn(t)). Here
dout (vi ) and din(vi ) are the out-degree and in-degree of vi , measured in the graph
G(t).

For t ≥ t0 we form G(t + 1) from G(t) according to the following rules:

1. With probabilityα, add a new vertex v together with an edge from v to an existing
vertex w, where w is chosen according to din + δin .
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2. With probability β, add an edge from an existing vertex v to an existing vertex
w, where v and w are chosen independently, v according to dout + δout , and w

according to din + δin .
3. With probability γ, add a new vertex w and an edge from an existing vertex v to

w, where v is chosen according to dout + δout .

The probabilities α, β and γ clearly should add up to one. We will also assume
that α + γ > 0. When considering the web graph we take δout = 0; the motivation
is that vertices added under the final step correspond to web pages which purely
provide content - such pages never change, are born without out-links and remain
without out-links. Vertices added under the first step correspond to usual pages, to
which links may be added later. If we take δin = 0 in addition to δout = 0, this gives
a model in which every page not in G0 has either no in-links or no out-links. A
non-zero value of δin corresponds to insisting that a page is not considered part of
the Web until something points to it, typically one of the big search engines. We
include the parameter δout to make the model symmetric with respect to reversing
the directions of edges (swapping αwith γ and δin with δout ), and because we expect
the model to be applicable in contexts other than that of the web graph.

This model allows loops and multiple edges; there seems no reason to exclude
them. However, there will not be very many, so excluding them would not signifi-
cantly affect the conclusions.

Reference [7] studied howpower lawwas exhibited in the demand for products and
how companies could operate based on this exhibition to improve the size and quality
of service provided to their patronage. Companies that have limited inventory space
have to opt for operating on only those products that are at the top of the distribution,
so as to remain in the competition. On the other hand, there exist companies called
“infinite-inventory” spaced who are capable of servicing all products no matter how
low their demand. This way the companies can profit by catering to all kinds of
customers and earn from selling products their limited spaced competitors could not.

11.3 Preferential Attachment Model

Reference [2] found that a common problem with the Erdös-Rényi (Chap. 3) and
the Watts-Strogatz (Chap.4) model is that the probability of finding a highly con-
nected vertex (,i.e, a large k, where k denotes the degree of the vertex) decreases
exponentially with k, thus vertices with large connectivity are practically absent. In
contrast, the power-law tail characterizing P(k) for the studied networks indicates
that highly connected (large k) vertices have a large chance of occurring, dominating
the connectivity.

This is attributed to two properties of the real-world networks that are not incorpo-
rated in either of these models. First, both of these models begin with a fixed number
of vertices which does not change. However, this is rarely the case in real-world
networks, where this number varies. Second, the models assume that the probability
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that two vertices are connected is uniform and random. In contrast, real-world net-
works exhibit preferential attachment. So, the probability with which a new vertex
connects to the existing vertices is not uniform, but there is a higher probability to
be linked to a vertex that already has a large number of connections.

This scale-free model was thus proposed to deal with these two issues. Scale-free
in the sense that the frequencyof sampling (w.r.t. the growth rate) is independent of the
parameter of the resulting power law graphs. This model is found to show properties
resembling those of real-world networks. To counter the first issue, starting with a
small number m0 of vertices, at every time step a new vertex is added with m ≤ m0

edges that link the new vertex to m different vertices already present in the network.
To exhibit preferential attachment, the probability

∏
with which a new vertex will

be connected to a vertex i depends on the connectivity ki of that vertex, such that∏
(ki ) = ki/

∑

j
k j . After t time steps the model leads to a random network with

t + m0 vertices and mt edges. This network is found to exhibit a power-law with
exponent 2.9 ± 0.1.

Due to preferential attachment, a vertex that acquired more connections than
another one will increase its connectivity at a higher rate, thus an initial difference in
the connectivity between two vertices will increase further as the network grows. The
rate at which a vertex acquires edges is ki/t = ki/2t , which gives ki (t) = m(t/ti )0.5,
where ti is the time at which vertex i was added to the system. Thus older (smaller
ti ) vertices increase their connectivity at the expense of the younger (larger ti ) ones,
leading with time to some vertices that are highly connected, thus exhibiting a “rich-
get-richer” phenomenon.

It is commonlyknown that the power-lawdistributions arise fromdecision-making
across a population in the presence of cascades.

Wewill create the followingmodel concerning the presence of hyperlinks between
websites, to illustrate this:

1. Sites are created in order, and named 1, 2, 3, . . . , N .
2. When site j is created, it produces a link to an earlier website according to the

following probabilistic rule (probability 0 ≤ p ≤ 1).

a. With probability p, site j chooses a site i uniformly at random among all
earlier sites, and creates a link to this site i .

b. With probability 1 − p, site j instead chooses a site i uniformly at random
from among all earlier sites, and creates a link to the site that i points to.

3. This describes the creation of a single link from site j . One can repeat this
process to create multiple, independently generated links from site j .

Step 2(b) is the key because site j is imitating the decision of site i . The main
result about this model is that if we run it for many sites, the fraction of sites with
k in-links will be distributed approximately according to a power law 1/kc, where
the value of the exponent c depends on the choice of p. This dependence goes in
an intuitive direction: as p gets smaller, so that copying becomes more frequent, the
exponent c gets smaller as well, making one more likely to see extremely popular
pages.
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Fig. 11.2 Distribution with
a long tail

The process described in line 2(b) is an implementation of the rich-get-richer or
preferential attachment phenomenon. It is called the rich-get-richer process because
when j copies the decision of i , the probability of linking to some site l is directly
proportional to the total number of sites that currently link to l. So, the probability
that site l experiences an increase in popularity is directly proportional to l’s current
popularity. The term preferential attachment is given because the links are formed
preferentially to pages that already have high popularity. Intuitively, this makes sense
because the more well-known some website is, the more likely that name comes up
in other websites, and hence it is more likely that websites will have a link to this
well-known website.

This rich-get-richer phenomenon is not confined to settings governed by human-
decision making. Instead the population of cities, the intensities of earthquakes, the
sizes of power outages, and the number of copies of a gene in a genome are some
instances of natural occurrences of this process.

Popularity distribution is found to have a long tail as shown in Fig. 11.2. This
shows some nodes which have very high popularity when compared to the other
nodes. This popularity however drops of to give a long set of nodes who have more
or less the same popularity. It is this latter set of a long list of nodes which contribute
to the long tail.

11.4 Analysis of Rich-Get-Richer Phenomenon

In this section, we will look at a heuristic argument that analyses the behaviour of
the model concerning the presence of hyperlinks between websites presented in the
previous section, to indicate why power law arises. This will also show us how power
law exponent c is related to more basic features of the model.

Let the number of in-links to node j at time step t ∈ j be a random variable X j (t).
The following two conditions exist for X j (t):

1. Initial condition: Since node j has no linkswhenfirst created at time j , X j ( j) = 0.
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2. Expected change toX j over time: At time step t + 1, node j gains an in-link if
and only if a link from this new created node t + 1 points to it. From step (2a)
of the model, node t + 1 links to j with probability 1/t . From step (2b) of the
model, node t + 1 links to j with probability X j (t)/t since at the moment node
t + 1 was created, the total number of links in the network was t and of these
X j (t) point to j . Therefore, the overall probability that node t + 1 links to node
j is as given in Eq.11.4.

p

t
+ (1 − p)X j (t)

t
(11.4)

However, this deals with the probabilistic case. For the deterministic case, we
define the time as continuously running from 0 to N instead of the probabilistic
case considered in the model. The function of time X j (t) in the discrete case is
approximated in the continuous case as x j (t). The two properties of x j (t) are:

1. Initial condition: Since we had X j ( j) = 0 in the probabilistic case, the determin-
istic case gets x j ( j) = 0.

2. Growth equation: In the probabilistic case, when node t + 1 arrives, the number
of in-links to j increases with probability given by Eq.11.4. In the deterministic
approximation provided by x j , the rate of growth is modeled by the differential
equation given in Eq.11.5.

dx j

dt
= p

t
+ (1 − p)x j

t
(11.5)

Let q = (1 − p) in Eq.11.5, then

dx j

dt
= p + qx j

t

Dividing both sides by p + qx j , we get

1

p + qx j

dx j

dt
= 1

t

Integrating both sides ∫
1

p + qx j

dx j

dt
dt =

∫
1

t
dt

we get
ln(p + qx j ) = q ln t + c

for some constant c. Taking A = ec, we get

p + qx j = Atq
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and hence

x j (t) = 1

q

(
Atq − p

)
(11.6)

Using the initial condition, x j ( j) = 0 in Eq.11.6, we get

0 = x j ( j) = 1

q

(
Ajq − p

)

and hence A = p/jq . Substituting this value for A in Eq.11.6, we get

x j (t) = 1

q

(
p

jq
tq − p

)

= p

q

[(
t

j

)q

− 1

]

(11.7)

Nowweask the followingquestion: For a givenvalue of k, and time t ,what fraction
of all nodes have atleast k in-links at time t? This can alternately be formulated as:
For a given value of k, and time t , what fraction of all functions x j satisfy x j (t) ≥ k?

Equation11.7 corresponds to the inequality

x j (t) = 1

q

[(
t

j

)q

− 1

]

≥ k

This can be re-written as

j ≤ 1

t

[
q

p
· k + 1

]− 1
q

we get

1

t
· t

[
q

p
· k + 1

]− 1
q

=
[
q

p
· k + 1

]− 1
q

(11.8)

Since p and q are constants, the expression inside brackets is proportional to k
and so the fraction of x j that are atleast k is proportional to k−1/q .

Differentiating Eq.11.8, we get

1

q

q

p

[
q

p
· k + 1

]−1−1/q

From this, we can infer that the deterministic model predicts that the fraction of
nodes with k in-links is proportional to k−(1+1/q) with exponent

1 + 1

q
= 1 + 1

p
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With high probability over the random formation of links, fraction of nodes with
k in-links is proportional to k(−1+1/(1−p). When p is close to 1, the link formation
is mainly based on uniform random choices, and so the rich-get-richer dynamics is
muted. On the other hand, when p is close to 0, the growth of the network is strongly
governed by rich-get-richer behaviour, and the power-law exponent decreases to-
wards 2, allowing for many nodes with a very large number of in-links. The fact that
2 is a natural limit for the exponent as rich-get-richer dynamics become stronger also
provides a nice way to think about the fact that many power-law exponents in real
networks tend to be slightly above 2.

11.5 Modelling Burst of Activity

Reference [10] developed a formal approach for modelling “bursts of activity”, the
phenomenonwhere the appearance of a topic in a document stream grows in intensity
for a period of time and then fades away. These bursts show certain features rising
sharply in frequency as the topic emerges. Here, an organizational framework for
robustly and efficiently identifying and analysing the content is developed. The ap-
proach is based on modelling the stream using an infinite-state automaton, in which
bursts appear naturally as state transitions.

Suppose we are given a document stream, how dowe identify the bursts of activity
in the stream? On first thought, it would occur that bursts correspond to points at
which the intensity of activity increases sharply. However, this intensity does not rise
smoothly to a crescendo and then fall away, but rather exhibits frequent alternations of
rapid flurries and longer pauses when examined closely. Thus, methods that analyse
gaps between consecutivemessage arrivals in too simplistic away can easily be pulled
into identifying large numbers of short spurious bursts, as well as fragmenting long
bursts into many smaller ones. It is worth noting that the intent is to extract global
structure from a robust kind of data reduction, i.e, identifying bursts only when they
have sufficient intensity, and in a way that allows a burst to persist smoothly across
a fairly non-uniform pattern of message arrivals.

This paper models the generation of bursts by an automaton that is in one of two
states, “low” and “high”. The time gaps between consecutive events are distributed
according to an exponential distribution whose parameter depend on the current state
of the automaton. Thus, the high state is hypothesized as generating bursts of events.
There is a cost associated with any state transition to discourage short bursts. Given
a document stream, the goal is to find a low cost sequence that is likely to generate
that stream. Finding an optimal solution to this problem is accomplished by dynamic
programming.

In the case where each event in a stream is either relevant or irrelevant, this two-
state model can be extended to generate events with a particular mix of these relevant
and irrelevant events according to a binomial distribution. A sequence of events is
considered bursty if the fraction of relevant events alternates between periods in
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which it is large and long periods in which it is small. Associating a weight with
each burst, solves the problem of enumerating all the bursts by order of weight.

Reference [11] identify bursts in theBlogspace and propose techniques to generate
bursty intra-community links.

It was found that within a community of interacting bloggers, a given topic may
become the subject of intense debate for a period of time, then fade away. Simply
identifying the bloggers contributing to this burst is not enough, the corresponding
time interval of activity is also a requirement.

The paper uses a graph object called the time graph. A time graph G = (V, E)
consists of

1. A set V of vertices where each vertex v ∈ V has an associated interval D(v) on
the time axis called the duration of v.

2. A set E of edges where each edge e ∈ E is a triplet (u, v, t) where u and v are
vertices in V and t is a point in time in the interval D(u) ∩ D(v).

A vertex v is said to be alive at time t if t ∈ D(v). This means that each edge is
created at a point in time at which its two endpoints are alive.

Thus, tracking bursty communities on the Blogspace involves the following two
steps:

1. Identify dense subgraphs in the timegraph of theBlogspacewhichwill correspond
to all potential communities. However, this will result in finding all the clusters
regardless of whether or not they are bursty.

2. Apply the work of [10] to perform burst analysis of each subgraph obtained in
the previous step.

The time graph was generated for blogs from seven blog sites. The resulting
graph consisted of 22299 vertices, 70472 unique edges and 777653 edges counting
multiplicity. Applying the steps to this graph, the burstiness of the graph is as shown
in Fig. 11.3.

11.6 Densification Power Laws and Shrinking Diameters

Reference [13] studied temporal graphs and found that most of these graphs densify
over time with the number of edges growing superlinearly in the number of nodes.
Also, the average distance between nodes is found to shrink over time.

It was observed that as graphs evolve over time,

|E |(t) ∝ |V |(t)a (11.9)

where |E |(t) and |V |(t) denote the number of vertices and edges at time step t and
a is an exponent that generally lies between 1 and 2. This relation is referred to as
the Densification power-law or growth power-law.



11.6 Densification Power Laws and Shrinking Diameters 215

Fig. 11.3 Burstiness of communities in the time graph of the Blogspace

Twelve different datasets from seven different sources were considered for the
study. These included HEP-PH and HEP-TH arXiv citation graphs, a citation graph
for U.S. utility patents, a graph of routers comprising the Internet, five bipartite affil-
iation graphs of authors with papers they authored for ASTRO-PH, HEP-TH, HEP-
PH, COND-MAT and GR-QC, a bipartite graph of actors-to-movies corresponding
to IMDB, a person to person recommendation graph, and an email communication
network from an European research institution.

Figure 11.4 depicts the plot of average out-degree over time. We observe an
increase indicating that graphs become dense. Figure 11.5 illustrates the log-log plot
of the number of edges as a function of the number of vertices. They all obey the
densification power law. This could mean that densification of graphs is an intrinsic
phenomenon.

In this paper, for every d ∈ N, g(d) denotes the fraction of connected node pairs
whose shortest connecting path has length atmost d. The effective diameter of the
network is defined as the value of d at which this function g(d) achieves the value
0.9. So, if D is a value where g(D) = 0.9, then the graph has effective diameter D.
Figure11.6 shows the effective diameter over time. A decrease in diameter can be
observed from the plots. Since all of these plots exhibited a decrease in the diameter,
it could be that the shrinkage was an inherent property of networks.

To verify that the shrinkage of diameters was not intrinsic to the datasets, experi-
ments were performed to account for:

1. Possible sampling problems: Since computing shortest paths among all node pairs
is computationally prohibitive for these graphs, several different approximate
methods were applied, obtaining almost identical results from all of them.
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Fig. 11.4 Average out-degree over time. Increasing trend signifies that the graph are densifying

2. Effect of disconnected components: These large graphs have a single giant com-
ponent. To see if the disconnected components had a bearing on the diameter,
the effective diameter for the entire graph and just the giant component were
computed. The values were found to be the same.

3. Effects of missing past: With almost any dataset, one does not have data reaching
all the way back to the network’s birth. This is referred to as the problem of
missing past. This means that there will be edges pointing to nodes prior to the
beginning of the observation period. Such nodes and edges are referred to as
phantom nodes and phantom edges respectively.
To understand how the diameters of our networks are affected by this unavoidable
problem, we perform the following test. We pick some positive time t0 > 0 and
determine what the diameter would look like as a function of time if this were the
beginning of our data. We then put back in the nodes and the edges from before
time t0 and study how much the diameters change. If this change is small, then it
provides evidence that the missing past is not influencing the overall result.
t0 were suitably set for the datasets and the results of three measurements were
compared:
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Fig. 11.5 Number of edges as a function of the number of nodes in log-log scale. They obey the
densification power law

a. Diameter of full graph: For each time t , the effective diameter of the graph’s
giant component was computed.

b. Post-t0 subgraph: The effective diameter of the post-t0 subgraph using all
nodes and edges were computed. For each time t (t > t0), a graph using all
nodes dated before t was created. The effective diameter of the subgraph of
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Fig. 11.6 Effective diameter over time for 6 different datasets. There is a consistent decrease of
the diameter over time

the nodes dated between t0 and t was computed. To compute the effective
diameter, we can use all edges and nodes (including those dated before t0).
This means that we are measuring distances only among nodes dated be-
tween t0 and t while also using nodes and edges before t0 as shortcuts or by-
passes. The experimentmeasures the diameter of the graph if we knew the full
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Fig. 11.7 The fraction of nodes that are part of the giant connected component over time. Observe
that after 4 years, 90% of all nodes in the graph belong to the giant component

(pre-t0) past, the citations of the papers which we have intentionally excluded
for this test.

c. Post-t0 subgraph, no past. We set t0 the same way as in the previous experi-
ment, but then, for all nodes dated before t0, we delete all their outlinks. This
creates the graph we would have gotten if we had started collecting data only
at time t0.
In Fig. 11.6, we superimpose the effective diameters using the three different
techniques. If the missing past does not play a large role in the diameter, then
all three curves should lie close to one another. We observe this is the case
for the arXiv citation graphs. For the arXiv paper-author affiliation graph and
for the patent citation graph, the curves are quite different right at the cut-off
time t0, but they quickly align with one another. As a result, it seems clear
that the continued decreasing trend in the effective diameter as time runs to
the present is not the result of these boundary effects.

4. Emergence of the giant component: We have learnt in Chap.3 that in the Erdös-
Rényi random graph model, the diameter of the giant component is quite large
when it first appears, and then it shrinks as edges continue to be added. Therefore,
are shrinking diameters a symptom of the emergence of giant component?
Figure 11.7 shows us that this is not the case. In the plot of the size of the GCC
for the full graph and for a graph where we had no past, i.e, where we delete
all outlinks of the nodes dated before the cut-off time t0. Because we delete the
outlinks of the pre-t0 nodes, the size of the GCC is smaller, but, as the graph
grows, the effect of these deleted links becomes negligible.
Within a few years, the giant component accounts for almost all the nodes in the
graph. The effective diameter, however, continues to steadily decrease beyond
this point. This indicates that the decrease is happening in a mature graph and not
because many small disconnected components are being rapidly glued together.
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Themodels studied so far do not exhibit this densification and diameter shrinkage.
The paper proposes the following models which can achieve these properties. The
first model is the Community Guided Attachment where the idea is that if the nodes
of a graph belong to communities-within-communities [6], and if the cost for cross-
community edges is scale-free, then the densification power-law follows naturally.
Also, this model exhibits a heavy-tailed degree distribution. However, this model
cannot capture the shrinking effective diameters. To capture all of these, the Forest
Fire model was proposed. In this model, nodes arrive in over time. Each node has a
center-of-gravity in some part of the network and its probability of linking to other
nodes decreases rapidly with their distance from this center-of-gravity. However,
occasionally a new node will produce a very large number of outlinks. Such nodes
will help cause a more skewed out-degree distribution. These nodes will serve as
bridges that connect formerly disparate parts of the network, bringing the diameter
down.

Formally, the forest fire model has two parameters, a forward burning probability
p, and a backward burning probability r . Consider a node v joining the network at
time t > 1, and let Gt be the graph constructed thus far. Node v forms outlinks to
nodes in Gt according to the following process:

1. v first chooses an ambassador node w uniformly at random and forms a link to
w.

2. Two random numbers, x and y are generated, that are geometrically distributed
with means p/(1 − p) and rp/(1 − rp), respectively. Node v selects x out-links
and y in-links of w incident to nodes that were not yet visited. Let w1, w2, . . .,
wx+y denotes the other ends of these selected links. If not enough in- or out-links
are available, v selects as many as it can.

3. v forms out-links to w1, w2, . . ., wx+y , and then applies the previous step recur-
sively to each of w1, w2, . . ., wx+y . As the process continues, nodes cannot be
visited a second time, preventing the construction from cycling.

Thus, the burning of links in the Forest Fire model begins atw, spreads tow1, . . .,
wx+y , and proceeds recursively until it dies out. Themodel can be extended to account
for isolated vertices and vertices with large degree by having newcomers choose no
ambassadors in the former case (called orphans) and multiple ambassadors in the
latter case (simply calledmultiple ambassadors). Orphans andmultiple ambassadors
help further separate the diameter decrease/increase boundary from the densification
transition and so widen the region of parameter space for which the model produces
reasonably sparse graphs with decreasing effective diameters.

Reference [12] proposed an affiliation network framework to generate models
that exhibit these phenomena. Their intuition is that individuals are part of a certain
society, therefore leading to a bipartite graph. By folding this bipartite graph B, the
resultant folded graph G is found to exhibit the following properties:

• B has power-law distribution, and G has a heavy-tailed distribution.
• G has super-linear number of edges.
• The effective diameter of G stabilizes to a constant.
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11.7 Microscopic Evolution of Networks

Reference [14] proposed the use of model likelihood of individual edges as a way to
evaluate and compare various network evolution models.

The following datasets were considered: (i) FLICKR (a photo- sharing website),
(ii) DELICIOUS (a collaborative bookmark tagging website), (iii) YAHOO! AN-
SWERS (a knowledge sharing website), and (iv) LINKEDIN (a professional con-
tacts website). Here, nodes represent people and edges represent social relationships.
These datasets were considered particularly because they have the exact temporal
information about individual arrival of nodes and edges. Thereby, we are able to
consider edge-by-edge evolution of networks, and hence efficiently compute the
likelihood that a particular model would have produced a particular edge, given the
current state of the network.

There are three core processes to the models: (i) Node arrival process: This gov-
erns the arrival of newnodes into the network, (ii)Edge initiation process:Determines
for each node when it will initiate a new edge, and (iii) Edge destination selection
process: Determines the destination of a newly initiated edge.

Let Gt denote a network composed from the earliest t edges, e1, . . ., et for t ∈
{1, . . . , |E |}. Let te be the time when edge e is created, let t (u) be the time when the
node u joined the network, and let tk(u) be the time when the kth edge of the node u
is created. Then at (u) = t − t (u) denotes the age of the node u at time t . Let dt (u)
denote the degree of the node u at time t and d(u) = dT (u). [·] denotes a predicate
(takes value of 1 if expression is true, else 0).

The maximum likelihood estimation (MLE) was applied to pick the best model
in the following manner: the network is evolved in an edge by edge manner, and
for every edge that arrives into this network, the likelihood that the particular edge
endpoints would be chosen under some model is measured. The product of these
likelihoods over all edges will give the likelihood of the model. A higher likelihood
means a better model in the sense that it offers a more likely explanation of the
observed data.

11.7.1 Edge Destination Selection Process

By the preferential attachment (PA) model, the probability pe(d) that a new edge
chooses a destination node of degree d, normalized by the number of nodes of degree
d that exist just before this step is computed as

pe(d) =
∑

t
[et = (u, v) ∧ dt−1(v) = d]
∑

t
|{u : dt−1(u) = d}| (11.10)
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Fig. 11.8 Probability pe(d) of a new edge e choosing a destination at a node of degree d

Figure 11.8 shows the plot of pe(d) as a function of the node degree d. Figure
11.8a, b are for an Erdös-Rényi random graph and a preferential attachment model
respectively. Figure 11.8c–f are for the datasets. Observe that they all follow pe(d) ∝
dτ where the exponent τ ≈ 1 for all plots except the first.

The average number of edges, e(a), created by nodes of age a, is the number of
edges created by nodes of age a normalized by the number of nodes that achieved
age a given in Eq.11.11



11.7 Microscopic Evolution of Networks 223

Fig. 11.9 Average number of edges created by a node of age a

e(a) = |{e = (u, v) : t (e) − t (u) = a}|
|{t (u) : tl − t (u) ≥ a}| (11.11)

where tl is the time when the last node in the network joined.
Figure11.9 plots the fraction of edges initiated by nodes of a certain age. The

spike at nodes of age 0 correspond to the people who receive an invite to join the
network, create a first edge, and then never come back.

Using the MLE principle, the combined effect of node age and degree was stud-
ied by considering the following four parameterised models for choosing the edge
endpoints at time t .

• D: The probability of selecting a node v is proportional to its current degree raised
to power τ : dt (v)τ .

• DR: With probability τ , the node v is selected preferentially (proportionally to its
degree), and with probability (1 − τ ), uniformly at random: τ · dt (v) + (1 − τ ) ·
1/N (t).

• A: The probability of selecting a node is proportional to its age raised to power
τ : at (v)τ .

• DA: The probability of selecting a node v is proportional the product of its current
degree and its age raised to the power τ : dt (v) · at (v)τ .
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Fig. 11.10 Log-likelihood of an edge selecting its source and destination node. Arrows denote τ
at highest likelihood

Figure11.10 plots the log-likelihood under the different models as a function of
τ . The red curve plots the log-likelihood of selecting a source node and the green
curve for selecting the destination node of an edge.

InFLICKR the selection of destination is purely preferential:model D achieves the
maximum likelihood at τ = 1, and model DA is very biased to model D, i.e, τ ≈ 1.
Model A has worse likelihood but model DA improves the overall log-likelihood
by around 10%. Edge attachment in DELICIOUS seems to be the most “random”:
model D has worse likelihood than model DR. Moreover the likelihood of model
DR achieves maximum at τ = 0.5 suggesting that about 50% of the DELICIOUS
edges attach randomly. Model A has better likelihood than the degree-based models,
showing edges are highly biased towards young nodes. For YAHOO! ANSWERS,
models D, A, and DR have roughly equal likelihoods (at the optimal choice of
τ ), while model DA further improves the log-likelihood by 20%, showing some
age bias. In LINKEDIN, age-biased models are worse than degree-biased models. A
strong degree preferential bias of the edges was also noted. As in FLICKR, model
DA improves the log-likelihood by 10%.

Selecting an edge’s destination node is harder than selecting its source (the green
curve is usually below the red). Also, selecting a destination appears more random
than selecting a source, the maximum likelihood τ of the destination node (green
curve) for models D and DR is shifted to the left when compared to the source
node (red), which means the degree bias is weaker. Similarly, there is a stronger bias
towards young nodes in selecting an edge’s source than in selecting its destination.
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Based on the observations, model D performs reasonably well compared to more
sophisticated variants based on degree and age.

Even though the analysis suggests that model D is a reasonable model for edge
destination selection, it is inherently “non-local” in that edges are no more likely to
form between nodes which already have friends in common. A detailed study of the
locality properties of edge destination selection is required.

Consider the following notion of edge locality: for each new edge (u, w), the
number of hops it spans are measured, i.e., the length of the shortest path between
nodes u and w immediately before the edge was created. Figure11.11 shows the
distribution of these shortest path values induced by each new edge for Gnp (with
p = 12/n), PA, and the four social networks. (The isolated dot on the left counts
the number of edges that connected previously disconnected components of the
network). For Gnp most new edges span nodes that were originally six hops away,
and then the number decays polynomially in the hops. In the PA model, we see a
lot of long-range edges; most of them span four hops but none spans more than
seven. The hop distributions corresponding to the four real-world networks look
similar to one another, and strikingly different from both Gnp and PA. The number
of edges decays exponentially with the hop distance between the nodes, meaning that
most edges are created locally between nodes that are close. The exponential decay
suggests that the creation of a large fraction of edges can be attributed to locality in the
network structure, namelymost of the times peoplewho are close in the network (e.g.,
have a common friend) become friends themselves. These results involve counting
the number of edges that link nodes certain distance away. In a sense, this over
counts edges (u, w) for which u and w are far away, as there are many more distant
candidates to choose from, it appears that the number of long-range edges decays
exponentially while the number of long-range candidates grows exponentially. To
explore this phenomenon, the number of hops each new edge spans are counted but
then normalized by the total number of nodes at h hops, i.e, we compute

pe(h) =
∑

t
[et connects nodes at distance h in Gt−1]

∑

t
(# nodes at distance h f rom the source node of et )

(11.12)

First, Fig. 11.12a, b show the results for Gnp and PAmodels. (Again, the isolated
dot at h = 0 plots the probability of a new edge connecting disconnected compo-
nents.) In Gnp, edges are created uniformly at random, and so the probability of
linking is independent of the number of hops between the nodes. In PA, due to
degree correlations short (local) edges prevail. However, a non-trivial amount of
probability goes to edges that span more than two hops. Figure11.12c–f show the
plots for the four networks.Notice the probability of linking to a node h hops away de-
cays double-exponentially, i.e., pe(h) ∝ exp(exp(−h)), since the number of edges
at h hops increases exponentially with h. This behaviour is drastically different from
both the PA and Gnp models. Also note that almost all of the probability mass is
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Fig. 11.11 Number of edges Eh created to nodes h hops away. h = 0 counts the number of edges
that connected previously disconnected components

on edges that close length-two paths. This means that edges are most likely to close
triangles, i.e, connect people with common friends.

11.7.2 Edge Initiation Process

Here, we assume that the sequence and timing of node arrivals is given, andwemodel
the process by which nodes initiate edges. We begin by studying how long a node
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Fig. 11.12 Probability of linking to a random node at h hops from source node. Value at h = 0
hops is for edges that connect previously disconnected components

remains active in the social network, and then during this active lifetime, we study
the specific times at which the node initiates new edges.

To avoid truncation effects, we only consider those nodes whose last-created edge
is in the first half of all edges in the data. Recall that the lifetime of a node u is a(u) =
td(u)(u) − t1(u). We evaluate the likelihood of various distributions and observe that
node lifetimes are best modeled by an exponential distribution, pl(a) = λexp(−λa).
Figure11.13 gives the plot of the data and the exponential fits, where time ismeasured
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Fig. 11.13 Exponentially distributed node lifetimes

in days. We find that the exponential distribution does not fit well the nodes with
very short lifetimes, i.e, nodes that are invited into the network, create an edge and
never return. But the distribution provides a very clean fit for nodes whose lifetime
is more than a week.

Now that we have amodel for the lifetime of a node u, wemust model that amount
of elapsed time between edge initiations from u. Let δu(d) = td+1(u) − td(u) be the
time it takes for the node u with current degree d to create its (d + 1)-st out-edge;
we call δu(d) the edge gap. Again, we examine several candidate distributions to
model edge gaps. The best likelihood is provided by a power law with exponential
cut-off: pg(δ(d);α,β) ∝ δ(d)−αexp(−βδ(d)), where d is the current degree of the
node. These results are confirmed in Fig. 11.14, in which we plot the MLE estimates
to gap distribution δ(1), i.e., distribution of times that it took a node of degree 1 to
add the second edge. We find that all gaps distributions δ(d) are best modelled by a
power law with exponential cut-off. For each δ(d) we fit a separate distribution and
Fig. 11.15 shows the evolution of the parameters α and β of the gap distribution, as
a function of the degree d of the node. Interestingly, the power law exponent α(d)
remains constant as a function of d, at almost the same value for all four networks.
On the other hand, the exponential cutoff parameter β(d) increases linearly with d,
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Fig. 11.14 Edge gap distribution for a node to obtain the second edge, δ(1), and MLE power law
with exponential cutoff fits

and varies by an order of magnitude across networks; this variation models the extent
to which the “rich get richer” phenomenon manifests in each network. This means
that the slope α of power-law part remains constant, only the exponential cutoff part
(parameter β) starts to kick in sooner and sooner. So, nodes add their (d + 1)-st edge
faster than their dth edge, i.e, nodes start to create more and more edges (sleeping
times get shorter) as they get older (and have higher degree). So, based on Fig. 11.15,
the overall gap distribution can be modelled by pg(δ|d;α,β) ∝ δ−αexp(−βdδ).

11.7.3 Node Arrival Process

Figure11.16 shows the number of users in each of our networks over time. FLICKR
grows exponentially over much of our network, while the growth of other networks is
much slower. DELICIOUS grows slightly super-linearly, LINKEDIN quadratically,
and YAHOO! ANSWERS sub-linearly. Given these wild variations we conclude the
node arrival process needs to be specified in advance as it varies greatly across
networks due to external factors.
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Fig. 11.15 Evolution of theα and β parameters with the current node degree d.α remains constant,
and β linearly increases

Fig. 11.16 Number of nodes over time

11.7.4 Network Evolution Model

From the observations so far, we now present a complete network evolution model.
The model is parametrized by N (·), λ, α, β, and operates as follows:

1. Nodes arrive using the node arrival function N (·).
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2. Node u arrives and samples its lifetime a from the exponential distribution
pl(a) = λexp(−λa).

3. Node u adds the first edge to node v with probability proportional to its degree.
4. A node uwith degree d samples a time gap δ from the distribution pg(δ|d;α,β) =

(1/Z)δ−αexp(−βdδ) and goes to sleep for δ time steps.
5. When a node wakes up, if its lifetime has not expired yet, it creates a two-hop

edge using the random-random triangle-closing model.
6. If a node’s lifetime has expired, then it stops adding edges; otherwise it repeats

from step 4.

Problems

Given that the probability density function (PDF) of a power-law distribution is given
by Eq.11.13.

P(X = x) = α − 1

xmin

(
x

xmin

)−α

(11.13)

where xmin is the minimum value that X can take.

60 Derive an expression of P(X ≥ x), the ComplementaryCumulativeDistribution
Function (CCDF), in terms of α.

61 Show how to generate a random sample from the power-law distribution using
the CCDF derived and a uniform random sample u ∼ U (0, 1).

62 Using this sampling technique, create a dataset of 10000 samples following
the power-law distribution with exponent α = 2 and xmin = 1. Plot the empirical
distribution on a log-log scale by first rounding each sample to the nearest integer
and then plotting the empirical PDF over these rounded values. Also plot the true
probability density function for the power law (this will help verify that the data was
generated correctly).
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Chapter 12
Kronecker Graphs

The graph models that we have learnt heretofore cater to specific network proper-
ties. We need a graph generator that can produce the long list of properties. These
generated graphs can be used for simulations, scenarios and extrapolation, and the
graphs draw a boundary over what properties to realistically focus on. Reference [4]
proposed that such a realistic graph is the Kronecker graph which is generated using
the Kronecker product.

The idea behind theseKronecker graphs is to create self-similar graphs recursively.
Beginning with an initiator graph G1, with |V |1 vertices and |E |1 edges, produce
successively larger graphs G2, . . . ,Gn such that the kth graph Gk is on |V |k = |V |k1
vertices. To exhibit the densification power-law, Gk should have |E |k = |E |k1 edges.
The Kronecker product of two matrices generates this recursive self-similar graphs.

Given two matrices A = [ai, j ] and B of sizes n ×m and n′ ×m ′ respectively, the
Kronecker product matrix C of size (n ∗ n′) × (m ∗ m ′) is given by Eq.12.1.

C = A ⊗ B =

⎛
⎜⎜⎜⎝

a1,1B a1,2B . . . a1,m B
a2,1B a2,2B . . . a2,m B

...
...

. . .
...

an,1B an,2B . . . an,m B

⎞
⎟⎟⎟⎠ (12.1)

So, the Kronecker product of two graphs is the Kronecker product of their adja-
cency matrices.

In a Kronecker graph, Edge(Xi j , Xkl) ∈ G ⊗ H iff (Xi , Xk) ∈ G and
(X j , Xl) ∈ H where Xi j and Xkl are vertices in G ⊗ H , and Xi , X j , Xk and Xl

are the corresponding vertices in G and H .
Figure12.1 shows the recursive construction of G ⊗ H , when G = H is a 3-node

path.
The kth power of G1 is defined as the matrix G[k]

1 (abbreviated to Gk), such that:

G[k]
1 = Gk = G1 ⊗ G1 ⊗ . . .G1︸ ︷︷ ︸

k times

= Gk−1 ⊗ G1 (12.2)
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Fig. 12.1 Top: a “3-chain” and itsKronecker productwith itself; each of the Xi nodes gets expanded
into 3 nodes, which are then linked. Bottom: the corresponding adjacency matrices, along with the
matrix for the fourth Kronecker power G4

The self-similar nature of the Kronecker graph product is clear: To produce Gk

from Gk−1, we “expand” (replace) each node of Gk−1 by converting it into a copy
of G, and we join these copies together according to the adjacencies in Gk−1 (see
Fig. 12.1). This process is intuitive: one can imagine it as positing that communities
with the graph grow recursively, with nodes in the community recursively getting
expanded into miniature copies of the community. Nodes in the subcommunity then
link among themselves and also to nodes from different communities.

Kronecker graphs satisfy the following properties. The proofs for these theorems
can be found in [4] or [5].

• Theorem 20 Kronecker graphs have multinomial degree distributions, for both
in- and out-degrees.

• Theorem 21 Kronecker graphs have a multinomial distribution for its eigenval-
ues.

• Theorem 22 The components of each eigenvector of the Kronecker graph Gk

follow a multinomial distribution.
• Theorem 23 If atleast one of G and H is a disconnected graph, then G ⊗ H is
also disconnected.

• Theorem 24 If both G and H are connected but bipartite, then G ⊗ H is discon-
nected, and each of the two connected components is again bipartite.

• Theorem 25 Kronecker graphs follow the Densification Power Law (DPL) with
densification exponent a = log(E1)/ log(N1).

• Theorem 26 If G and H each have diameter at most d, and each has a self-loop
on every node, then the Kronecker product G ⊗ H also has diameter at most d.
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Therefore, if G1 has diameter d and a self-loop on every node, then for every k,
the graph Gk also has diameter d.

• Theorem 27 If G1 has diameter d and a self-loop on every node, then for every
q, the q-effective diameter of Gk converges to d (from below) as k increases.

12.1 Stochastic Kronecker Graph (SKG) Model

While theKronecker power construction discussed thus far yields graphswith a range
of desired properties, its discrete nature produces “staircase effects” in the degrees
and spectral quantities, simply because individual values have large multiplicities.
A stochastic version of Kronecker graphs that eliminates this effect is proposed.

We start with an N1 × N1 probability matrix P1: the value pi j denotes the prob-
ability that edge (i, j) is present. We compute its kth Kronecker power P [k]

1 = Pk ;
and then for each entry puv of Pk , we include an edge between nodes u and v with
probability pu,v . The resulting binary random matrix R = R(Pk) will be called the
instance matrix (or realization matrix).

In principle one could try choosing each of the N 2
1 parameters for the matrix

P1 separately. However, we reduce the number of parameters to just two: α and β.
Let G1 be the initiator matrix (binary, deterministic); we create the corresponding
probability matrixP1 by replacing each “1” and “0” of G1 with α and β respectively
(β ≤ α). The resulting probability matrices maintain, with some random noise, the
self-similar structure of the Kronecker graphs described earlier (called Deterministic
Kronecker graphs for clarity).

The random graphs produced by this model continue to exhibit the desired prop-
erties of real datasets, and without the staircase effect of the deterministic version.

Formally, a SKG is defined by an integer k and a symmetric 2× 2 initiator matrix
θ: θ[1, 1] = α, θ[1, 0] = θ[0, 1] = β, θ[0, 0] = γ, where 0 ≤ γ ≤ β ≤ α ≤
1. The graph has n = 2k vertices, each vertex labelled by a unique bit vector of
length k; given two vertices u with label u1u2 . . . uk and v with label v1v2 . . . vk , the
probability of edge (u, v) existing, denoted by P[u, v], is ∏

i θ[ui , vi ], independent
on the presence of other edges.

The SKG model is a generalization of the R-MAT model proposed by [2].
Reference [6] prove the following theorems for SKGs

• Theorem 28 The expected degree of a vertex u with weight l is (α+β)l(β+γ)k−l .
• Theorem 29 The necessary and sufficient condition for Kronecker graphs to be
connected with high probability (for large k) is β + γ > 1 or α = β = 1, γ = 0.

• Theorem 30 The necessary and sufficient condition for Kronecker graphs to have
a giant component of size �(n) with high probability is (α + β)(β + γ) > 1, or
(α + β)(β + γ) = 1 and α + β > β + γ.

• Theorem 31 If β + γ > 1, the diameters of Kronecker graphs are constant with
high probability.

• Theorem 32 Kronecker graphs are not n(1−α) log e-searchable.
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Fig. 12.2 CIT-HEP-TH: Patterns from the real graph (top row), the deterministic Kronecker graph
with K1 being a star graph on 4 nodes (center + 3 satellites) (middle row), and the Stochastic
Kronecker graph (α = 0.41, β = 0.11 - bottom row). Static patterns: a is the PDF of degrees in
the graph (log-log scale), and b the distribution of eigenvalues (log-log scale). Temporal patterns:
c gives the effective diameter over time (linear-linear scale), and d is the number of edges versus
number of nodes over time (log-log scale)

• Theorem 33 If β + max(α, γ) > 1, then Kronecker graphs are connected with
high probability.

Reference [4] show the results of deterministic and stochastic Kronecker graphs
juxtaposed with real-world networks for the following datasets:

• CIT-HEP-TH: A citation graph for High-Energy Physics Theory research papers
from pre-print archive ArXiv, with a total of 29, 555 papers and 352, 807 citations.
One data-point for every month from January 1993 to April 2003 is present.

• AS-ROUTEVIEWS: A static data set consisting of a single snapshot of connectivity
among Internet Autonomous Systems from January 2000 with 6, 474 nodes and
26, 467 edges.

Figure12.2 shows the plots for the network properties of CIT-HEP-THwith that of
the deterministic and the stochastic Kronecker graphs. Figure12.3 depict the plots of
network properties of AS-ROUTEVIEWS with that of stochastic Kronecker graphs.
For reasons of brevity, the plots of the deterministic Kronecker graphs have been
omitted. In both of these cases, the stochastic Kronecker graphs matches well the
properties the real graphs.
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Fig. 12.3 AS-ROUTEVIEWS: Real (top) versus Kronecker (bottom). Columns a and b show the
degree distribution and the scree plot. Columns c shows the distribution of network values (principal
eigenvector components, sorted, versus rank) and d shows the hop-plot (the number of reachable
pairs g(h) within h hops or less, as a function of the number of hops h

12.1.1 Fast Generation of SKGs

Generating a SKG on |V | vertices naively takes O(|V |2) time. Reference [5] presents
a fast heuristic procedure that takes linear time in the number of edges to generate
a graph. To arrive to a particular edge (vi , v j ) of Pk one has to make a sequence
of k decisions among the entries of P1, multiply the chosen entries of P1, and then
placing the edge (vi , v j ) with the obtained probability.

Thus, instead of flipping O(N 2) = O(N 2k
1 ) biased coins to determine the edges

in a graph, we place E edges by directly simulating the recursion of the Kronecker
product. Basically, we recursively choose sub-regions of matrix K with probability
proportional to θi j , θi j ∈ P1 until in k steps we descend to a single cell of the big
adjacency matrix K and place an edge.

More generally, the probability of each individual edge of Pk follows a Bernoulli
distribution, as the edge occurrences are independent. By the Central Limit Theorem

the number of edges inPk tends to a normal distribution with mean (
N1∑

i, j=1
θi j )

k = Ek
1 ,

where θi j ∈ P1. So, given a stochastic initiatormatrix P1 we first sample the expected
number of edges E in Pk . Then we place E edges in a graph K , by applying the
recursive descent for k stepswhere at each stepwe choose entry (i, j)with probability
θi j/E1 where E1 = ∑

i j θi j . Since we add E = Ek
1 edges, the probability that edge

(vi , v j ) appears in K is exactly Pk[vi , v j ]. However, in practice it can happen that
more than one edge lands in the same (vi , v j ) entry of big adjacency matrix K . If an
edge lands in a already occupied cell we simply insert it again. Even though values
of P1 are usually skewed, adjacency matrices of real networks are so sparse that
collisions are not really a problem in practice as only around 1% of edges collide. It
is due to these edge collisions the above procedure does not obtain exact samples from
the graph distribution defined by the parametermatrix P . However, in practice graphs
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Fig. 12.4 Comparison of
degree distributions for SKG
and two noisy variations

generated by this fast linear time (O(E)) procedure are basically indistinguishable
from graphs generated with the exact exponential time (O(N 2)) procedure.

12.1.2 Noisy Stochastic Kronecker Graph (NSKG) Model

Reference [8] proved that the SKG model cannot generate a power-law distribution
or even a lognormal distribution. However, by using random noise for smoothing,
they proposed an enhanced model, Noisy SKG (NSKG), that is capable of exhibiting
a lognormal distribution.

They found that the degree distributions of the SKG model oscillate between
a lognormal and an exponential tail which is a disappointing feature. Real degree
distributions do not have these large oscillations or the exponential tail behaviour.
By adding small amount of noise, NSKG straightens out the degree distribution to
be lognormal. Figure12.4 shows the SKG and NSKG degree distributions.

If we consider the SKG model as having to generate a graph G = (V, E) with an
arbitrary square generator matrix with |V | as a power of its size, the 2×2 generating
matrix is defined as in Eq.12.3.

T =
[
t1 t2
t3 t4

]
wi th t1 + t2 + t3 + t4 = 1. (12.3)

The NSKGmodel adds some noise to this matrix given as follows. Let b be noise
parameter b ≤ min((t1 + t4)/2, t2). For each level i ≤ l, define a new matrix Ti
in such a way that the expectation of Ti is just T , i.e, for level i , choose μi to be a
uniform random number in the range [−b,+b]. Set Ti to be
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T =
[
t1 − 2μi t1

t1+t4
t2 + μi

t3 + μi t4 − 2μi t4
t1+t4

]
(12.4)

Ti is symmetric with all its entries positive and summing to 1.

12.2 Distance-Dependent Kronecker Graph

Theorem 32 shows that Kronecker graphs are not searchable by a distributed greedy
algorithm. Reference [1] propose an extension to the SKGs that is capable of gener-
ating searchable networks. By using a new “Kronecker-like” operation and a family
of generator matrices, H, both dependent upon the distance between two nodes,
this generation method yields networks that have both a local (lattice-based) and
global (distance-dependent) structure. This dual structure allows a greedy algorithm
to search the network using only local information.

Kronecker graphs are generated by iterativelyKronecker-multiplying one initiator
matrix with itself to produce a new adjacency or probability matrix. Here, a distance-
dependent Kronecker operator is defined. Depending on the distance between two
nodes u and v, d(u, v) ∈ Z, a different matrix from a defined family will be selected
to be multiplied by that entry.

C = A ⊗d H =

⎛
⎜⎜⎜⎝

a11Hd(1,1) a12Hd(1,2) . . . a1nHd(1,n)

a21Hd(2,1) a22Hd(2,2) . . . a2nHd(2,n)

. . . . . .
. . . . . .

an1Hd(n,1) an2Hd(n,2) . . . annHd(n,n)

⎞
⎟⎟⎟⎠ where H = {Hi }i∈Z

(12.5)
This makes the kth Kronecker power as in Eq.12.6

Gk = G1 ⊗d H · · · ⊗d H︸ ︷︷ ︸
k times

(12.6)

In this Kronecker-like multiplication, the choice of Hi from the familyH, multi-
plying entry (u, v), is dependent upon the distance d(u, v). d(u, v) = −d(v, u) and
Hd(u,v) = H ′

d(v,u). This change to the Kronecker operation makes the model more
complicated at the cost of some of the beneficial properties of Kronecker multiplica-
tion. Instead, we gain generality and the ability to create many different lattices and
probability of long-range contacts.

Reference [1] explains how the conventional Kronecker graphs can be gener-
ated from these distance-dependent ones. Additionally, it is also mathematically
proved that the Watts-Strogatz model cannot be generated from the original Kro-
necker graphs.



240 12 Kronecker Graphs

12.3 KRONFIT

Reference [5] presented KRONFIT, a fast and scalable algorithm for fitting
Kronecker graphs by using the maximum likelihood principle. A Metropolis sam-
pling algorithmwas developed for sampling node correspondences, and approximat-
ing the likelihood of obtaining a linear time algorithm for Kronecker graph model
parameter estimation that scales to large networks with millions of nodes and edges.

12.4 KRONEM

Reference [3] addressed the network completion problem by using the observed part
of the network to fit a model of network structure, and then estimating the missing
part of the network using the model, re-estimating the parameters and so on. This is
combined with the Kronecker graphs model to design a scalable Metropolized Gibbs
sampling approach that allows for the estimation of the model parameters as well as
the inference about missing nodes and edges of the network.

The problem of network completion is cast into the Expectation Maximisation
(EM) framework and the KRONEM algorithm is developed that alternates between
the following two stages. First, the observed part of the network is used to estimate
the parameters of the network model. This estimated model then gives us a way
to infer the missing part of the network. Now, we act as if the complete network
is visible and we re-estimate the model. This in turn gives us a better way to infer

Fig. 12.5 Schematic illustration of the multifractal graph generator. a The construction of the link
probability measure. Start from a symmetric generating measure on the unit square defined by a
set of probabilities pi j = p ji associated to m × m rectangles (shown on the left). Here m = 2, the
length of the intervals defining the rectangles is given by l1 and l2 respectively, and the magnitude
of the probabilities is indicated by both the height and the colour of the corresponding boxes. The
generatingmeasure is iterated by recursivelymultiplying each boxwith the generatingmeasure itself
as shown in the middle and on the right, yielding mk ×mk boxes at iteration k. The variance of the
height of the boxes (corresponding to the probabilities associated to the rectangles) becomes larger
at each step, producing a surface which is getting rougher and rougher, meanwhile the symmetry
and the self similar nature of the multifractal is preserved. b Drawing linking probabilities from
the obtained measure. Assign random coordinates in the unit interval to the nodes in the graph, and
link each node pair I, J with a probability given by the probability measure at the corresponding
coordinates
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Fig. 12.6 A small network generated with the multifractal network generator. a The generating
measure (on the left) and the link probabilitymeasure (on the right). The generatingmeasure consists
of 3×3 rectangles for which the magnitude of the associated probabilities is indicated by the colour.
The number of iterations, k, is set to k = 3, thus the final link probabilitymeasure consists of 27×27
boxes, as shown in the right panel. b A network with 500 nodes generated from the link probability
measure. The colours of the nodes were chosen as follows. Each row in the final linking probability
measure was assigned a different colour, and the nodes were coloured according to their position
in the link probability measure. (Thus, nodes falling into the same row have the same colour)

the missing part of the network. We iterate between the model estimation step (the
M-step) and the inference of the hidden part of the network (the E-step) until the
model parameters converge.

The advantages of KronEM are the following: It requires a small number of
parameters and thus does not overfit the network. It infers not only the model param-
eters but also the mapping between the nodes of the true and the estimated networks.
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The approach can be directly applied to cases when collected network data is incom-
plete. It provides an accurate probabilistic prior over the missing network structure
and easily scales to large networks.

12.5 Multifractal Network Generator

Reference [7] proposed the following network generator. This generator has three
stages: First, a generating measure is defined on the unit square. Next, the generating
measure is transformed into a link probability measure through a couple of iterations.
Finally, links are drawn between the vertices using the link probability measure.

The generating measure is defined as follows: Both the x and y axis of the unit
square are identically divided intom (not necessarily equal) intervals, splitting it into
m2 rectangles. Each rectangle is assigned a probability pi j . These probabilities must
be normalized,

∑
pi j = 1 and symmetric pi j = p ji .

The link probabilitymeasure is obtained by recursivelymultiplying each rectangle
with the generating measure k times. This results in m2k rectangles, each associated
with a linking probability pi j (k) equivalent to product of k factors from the original
generating pi j .

N points are distributed independently, uniformly at random on the [0, 1] interval,
and each pair is linked with probability pi j (k) at the given coordinates.

Figure12.5 illustrates the working of a multifactor generator. Figure12.6 depicts
the generation of a network using this generator.
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Chapter 13
Link Analysis

13.1 Search Engine

A search engine is an application which takes as input a search query and returns a
list of relevant Webpages. Reference [3] explains in detail the general architecture
of a typical search engine as shown in Fig. 13.1.

Every engine requires a crawlermodule.A crawler is a small program that browses
the Web by following links. The crawlers are given a starting set of pages. They then
retrieve the URLs appearing in these pages and give it to the crawl control module.
The crawl control module determines what links to visit next, and feeds the links
to visit back to the crawler. The crawler also stores the retrieved pages in the page
repository.

The indexer module extracts all the words from each page, and records the URL
where each word occurred. The result is a very large “lookup table” that has URLs
mapped to the pages where a given word occurs. This index is the text index. The
indexermodule could also generate a structure index, which reflects the links between
pages. The collection analysis module is responsible for creating other kinds of
indexes, such as the utility index. Utility indexes may provide access to pages of a
given length, pages of a certain “importance”, or pages with some number of images
in them. The text and structure indexes may be used when creating utility indexes.
The crawl controller can change the crawling operation based on these indexes.

The query engine module receives and files search requests from users. For the
queries received by the query engine, the results may be too large to be directly
displayed to the user. The rankingmodule is therefore tasked with the responsibility
to sort the results.
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Fig. 13.1 Typical search engine architecture

13.1.1 Crawling

The crawler module starts with an initial set of URLs S0 which are initially kept
in a priority queue. From the queue, the crawler gets a URL, downloads the page,
extracts any URLs in the downloaded page, and puts the new URLs in the queue.
This process repeats until the crawl control module asks the crawler to stop.

13.1.1.1 Page Selection

Due to the sheer quantity of pages in the Web and limit in the available resources,
the crawl control program has to decide which pages to crawl, and which not to. The
“importance” of a page can be defined in one of the following ways:

1. Interest Driven: The important pages can be defined as those of “interest to”
the users. This could be defined in the following manner: given a query Q, the
importance of the page P is defined as the textual similarity between P and Q
[1]. This metric is referred to as I S(·).

2. Popularity Driven: Page importance depends on how “popular” a page is. Popu-
larity can be defined in terms of a page’s in-degree. However, a page’s popularity
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is the in-degree with respect to the entire Web. This can be denoted as I B(·). The
crawler may have to instead provide an estimate I B ′(·) with the in-degree from
the pages seen so far.

3. Location Driven: This importance measure is computed as a function of a page’s
location instead of its contents. Denoted as I L(·), if URL u leads to a page P ,
then I L(P) is a function of u.

Therefore, the importance of a page P can be defined as IC(P) = k1 I S(P) +
k2 I B(P) + k3 I L(P), for constants k1, k2, k3 and query Q.

Next, we will look at the performance of a crawler. The following ways may be
used to compute the performance:

1. Crawl and stop: Under this method, a crawler C starts at a page P0 and stops
after visiting K pages. Here, K denotes the number of pages that the crawler
can download in one crawl. At this point a perfect crawler would have visited
R1, . . . , RK , where R1 is the page with the highest importance value, R2 is the
next highest, and so on. These pages R1 through RK are called the hot pages. The
K pages visited by our real crawler will contain only M(≤ K ) pages with rank
higher than or equal to that of RK . We need to know the exact rank of all pages
in order to obtain the value M . The performance of the crawler C is computed
as PCS(C) = (M · 100)/K . Although the performance of the perfect crawler is
100%, a crawler that manages to visit pages at randomwould have a performance
of (K · 100)/T , where T is the total number of pages in the Web.

2. Crawl and stop with threshold: Assume that a crawler visits K pages. If we are
given an importance target G, then any page with importance target greater than
G is considered hot. If we take the total number of hot pages to be H , then the
performance of the crawler, PST (C), is the percentage of the H hot pages that
have been visited when the crawler stops. If K < H , then an ideal crawler will
have performance (K · 100)/H . If K ≥ H , then the ideal crawler has 100%
performance. A purely random crawler that revisits pages is expected to visit
(H/T )K hot pages when it stops. Thus, its performance is (k · 100)/T . Only if
the random crawler visits all T pages, is its performance expected to be 100%.

13.1.1.2 Page Refresh

Once the crawler has downloaded the “important” pages, these pages must be pe-
riodically refreshed to remain up-to-date. The following strategies can be used to
refresh the pages:

1. Uniform refresh policy: All pages are revisited at the same frequency f , regardless
of how often they change.

2. Proportional refresh policy: The crawler visits a page proportional to its change.
If λi is the change frequency of a page ei , and fi is the crawler’s revisit frequency
for ei , then the frequency ratio λi/ fi is the same for any i . Keep in mind that the
crawler needs to estimate λi ’s for each page, in order to implement this policy.
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This estimation can be based on the change history of a page that the crawler can
collect [9].

Reference [3] defines the “freshness” and “age” of a Webpage as follows:

1. Freshness: Let S = {e1, . . . , eN } be the collection of N pages. The freshness of
a local page ei at time t is as given in Eq.13.1

F(ei ; t) =
{
1 i f ei is up − to − date at time t

0 otherwise
(13.1)

Then the freshness of the local collection S at time t is as given in Eq.13.2.

F(S; t) = 1

N

N∑
i=1

F(ei ; t) (13.2)

Since the pages get refreshed over time, the time average of the freshness of page
ei , F(ei ), and the time average of the freshness of collection S, F(S), are defined
as in Eqs. 13.3 and 13.4.

F(ei ) = lim
t→∞

1

t

∫ t

0
F(ei ; t)dt (13.3)

F(S) = lim
t→∞

1

t

∫ t

0
F(S; t)dt (13.4)

2. Age: The age of the local page ei at time t is as given in Eq.13.5.

A(ei ; t) =
{
0 i f ei is up − to − date at time t

t − modi f ication time of ei otherwise
(13.5)

Then the age of the local collection S at time t is as given in Eq.13.6.

A(S; t) = 1

N

N∑
i=1

A(ei ; t) (13.6)

13.1.2 Storage

The storage repository of a search engine must perform two basic functions. First, it
must provide an interface for the crawler to store pages. Second, it must provide an
efficient access API that the indexer module and the collection analysis module can
use to retrieve pages.
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The issues a repositorymust deal with are as follows: First, it must be scalable, i.e,
it must be capable of being distributed across a cluster of systems. Second, it must be
capable of supporting both random access and streaming access equally efficiently.
Random access for quickly retrieving a specific Webpage, given the page’s unique
identifier to serve out cached copies to the end-user. Streaming access to receive
the entire collection as a stream of pages to provide pages in bulk for the indexer
and analysis module to process and analyse. Third, since the Web changes rapidly,
the repository needs to handle a high rate of modifications since pages have to be
refreshed periodically. Lastly, the repository must have a mechanism of detecting
and removing obsolete pages that have been removed from the Web.

A distributedWeb repository that is designed to function over a cluster of intercon-
nected storage nodesmust dealwith the following issues that affect the characteristics
and performance of the repository. A detailed explanation of these issues are found
in [15].

13.1.2.1 Page Distribution Policies

Pages can be assigned to nodes using a number of different policies. In a uniform
distribution policy, all nodes are treated identically, and a page can be assigned to any
of these nodes, independent of its identifier. Thus each node will store portions of the
collection proportionate to its storage capacity. On the other hand, a hash distribution
policy allocates pages to nodes depending on the page identifiers. A page identifier
would be hashed to yield a node identifier and the page would be allocated to the
corresponding node.

13.1.2.2 Physical Page Organization Methods

In essence, physical page organization at each node determines how well each node
supports page addition/insertion, high-speed streaming and random page access.

A hash-based organization treats a disk as a set of hash-buckets, each of which
is small enough to fit in memory. Pages are assigned to hash buckets depending on
their page identifier. For page additions, a log-structured organization may be used in
which the entire disk is treated as a large contiguous log to which incoming pages are
appended. Random access is supported using a separate B-tree index that maps page
identifiers to physical locations on disk. One can also devise a hybrid hashed-log
organization, where storage is divided into large sequential “extents”, as opposed to
buckets that fit inmemory. Pages are hashed into extents, and each extent is organized
like a log-structured file.

13.1.2.3 Update Strategies

The updates of the crawler can be structured in two ways:
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1. Batch-mode or steady crawler: A batch-mode crawler is periodically executed and
allowed to crawl for a certain amount of time or until a targeted set of pages have
been crawled, and then stopped. In contrast, a steady crawler runs continuously,
without pause, supplying updates and new pages to the repository.

2. Partial or complete crawls: A partial crawl recrawls only a specific set of pages,
while a complete crawl performs a total crawl of all the pages. This makes sense
only for a batch- mode crawler while a steady crawler cannot make such a dis-
tinction.

3. In-place update or shadowing: With in-place updates, pages received from the
crawl are directly integrated into the repository’s existing collection, probably re-
placing the older version.With shadowing, pages from a crawl are stored separate
from the existing collection and updates are applied in a separate step.

The advantage of shadowing is that the reading and updating tasks can be dele-
gated to two separate nodes thereby ensuring that a node does not have to con-
currently handle both page addition and retrieval. However, this is a two-edged
sword. While avoiding conflict by simplifying implementation and improving
performance, there is a delay between the time a page is retrieved by the crawler
and the time it is available for access.

13.1.3 Indexing

The indexer and the collection analysis modules are responsible for generating the
text, structure and the utility indexes. Here, we describe the indexes.

13.1.3.1 Structure Index

To build this index, the crawled content is modelled as a graph with nodes and edges.
This index helps search algorithms by providing neighbourhood information: For a
page P , retrieve the set of pages pointed to by P or the set of pages pointing to P ,
and sibling pages: Pages related to a given page P .

An inverted index over a collection of Webpages consists of a set of inverted lists,
one for each word. The inverted list for a term is a sorted collection of locations
(page identifier and the position of the term in the page) where the term appears in
the collection.

To make the inverted index scalable, there are two basic strategies for partitioning
the inverted index across a collection of nodes.

In the local inverted file (I FL ) organization [21], each node is responsible for a
disjoint subset of pages in the collection. A search query would be broadcast to all
nodes, each of which would return disjoint lists of page identifiers containing the
search terms.
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Global inverted file (I FG) organization [21] partitions on index terms so that each
query server stores inverted lists only for a subset of the terms in the collection.

Reference [19] describes important characteristics of the I FL strategy that make
this organization ideal for the Web search environment. Performance studies in [22]
indicate that I FL organization uses system resources effectively and provides good
query throughput in most cases.

13.1.3.2 Text Index

Traditional information retrieval methods using suffix arrays, inverted indices and
signature files, can be be used to generate these text index.

13.1.3.3 Utility Index

The number and type of utility indexes built by the collection analysis module de-
pends on the features of the query engine and the type of information used by the
ranking module.

13.1.4 Ranking

The query engine collects search terms from the user and retrieves pages that are
likely to be relevant. These pages cannot be returned to the user in this format and
must be ranked.

However, the problem of ranking is faced with the following issues. First, before
the task of ranking pages, onemust first retrieve the pages that are relevant to a search.
This information retrieval suffers from problems of synonymy (multiple terms that
more or less mean the same thing) and polysemy (multiple meanings of the same
term, so by the term “jaguar”, do you mean the animal, the automobile company, the
American football team, or the operating system).

Second, the time of retrieval plays a pivotal role. For instance, in the case of an
event such as a calamity, government and news sites will update their pages as and
when they receive information. The search engine not only has to retrieve the pages
repeatedly, but will have to re-rank the pages depending on which page currently has
the latest report.

Third, with every one capable of writing aWeb page, theWeb has an abundance of
information for any topic. For example, the term “social network analysis” returns a
search of around 56 million results. Now, the task is to rank these results in a manner
such that the most important ones appear first.
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13.1.4.1 HITS Algorithm

When you search for the term “msrit”, what makes www.msrit.edu a good answer?
The idea is that the page www.msrit.edu is not going to use the term “msrit” more
frequently or prominently than other pages. Therefore, there is nothing in the page
that makes it stand out in particular. Rather, it stands out because of features on other
Web pages: when a page is relevant to “msrit”, very often www.msrit.edu is among
the pages it links to.

One approach is to first retrieve a large collection of Web pages that are relevant
to the query “msrit” using traditional information retrieval. Then, these pages are
voted based on which page on the Web receives the greatest number of in-links from
pages that are relevant to msrit. In this manner, there will ultimately be a page that
will be ranked first.

Consider the search for the term “newspapers”. Unlike the case of “msrit”, the
position for a good answer for the term “newspapers” is not necessarily a single
answer. If we try the traditional information retrieval approach, then we will get a
set of pages variably pointing to several of the news sites.

Now we attempt to tackle the problem from another direction. Since finding the
best answer for a query is incumbent upon the retrieved pages, finding good retrieved
pages will automatically result in finding good answers. Figure 13.2 shows a set of
retrieved pages pointing to newspapers.

We observe from Fig. 13.2 that among the sites casting votes, a few of them voted
for many of the pages that received a lot of votes. Therefore, we could say that these
pages have a sense where the good answers are, and to score them highly as lists.
Thus, a page’s value as a list is equal to the sum of the votes received by all pages that
it voted for. Figure 13.3 depicts the result of applying this rule to the pages casting
votes.

If pages scoring well as lists are believed to actually have a better sense for where
the good results are, then we should weigh their votes more heavily. So, in particular,
we could tabulate the votes again, but this time giving each page’s vote a weight
equal to its value as a list. Figure 13.4 illustrates what happens when weights are
accounted for in the newspaper case.

This re-weighting can be done repeatedly.
The “good” answers that we were originally seeking for a query are called the

authorities for the query and the high-value lists are called the hubs for the query.
The goal here is to estimate a page p’s value as a potential authority and as a potential
hub. Therefore, each page p is assigned two numerical scores: auth(p) and hub(p).
Each of these initially starts out at 1.

Now, auth(p) and hub(p) are updated according to the Authority Update rule
andHub Update rule respectively. The authority update rule states that for each page
p, auth(p) is computed as the sum of the hub scores of all pages that point to it. The
hub update rule says that for each page p, hub(p) is the sum of the authority scores
of all pages that it points to.

www.msrit.edu
www.msrit.edu
www.msrit.edu
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Fig. 13.2 Counting in-links to pages for the query “newspapers”

By the principle of repeated improvement, we do the following:

1. Start with all hub and authority scores equal to 1.
2. Choose a number of steps k.
3. Perform a sequence of k hub-authority updates. Each update works as follows:

• Apply the Authority Update rule to the current set of scores.
• Apply the Hub Update rule to the resulting set of scores.

4. The resultant hub and authority scores may involve numbers that are very large
(as can be seen in Fig. 13.4). But we are concerned only with their relative size
and therefore they can be normalized: we divide down each authority score by
the sum of all authority scores, and divide down each hub score by the sum of all
hub scores. Figure 13.5 shows the normalized scores of Fig. 13.4.

This algorithm is commonly known as the HITS algorithm [16].
However, as k goes to infinity, the normalized values converge to a limit. Fig-

ure 13.6 depicts the limiting values for the “newspaper” query.
These limiting values correspond to a state of equilibrium where a page p’s

authority score is proportional to the hub scores of the pages that point to p, and p’s
hub score is proportional to the authority scores of the pages p points to.
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Fig. 13.3 Finding good lists for the query “newspapers”: each page’s value as a list is written as a
number inside it

When we intend to perform the spectral analysis of HITS algorithm, we will first
represent the network of n nodes as an adjacency matrix M . Although, it is not a very
efficient way to represent a large network (as studied in Chap.1), it is conceptually
useful for analysis.

The hub and authority scores are represented as vectors in n dimensions. The
vector of hub scores is denoted as h where the i th element represents the hub score
of node i . On similar lines, we denote the vector of authority scores as a. Thus, the
Hub Update rule can be represented by Eq.13.7 and therefore the Authority Update
rule can be represented by Eq.13.8.

h ← M · a (13.7)

a ← MT · h (13.8)

The k-step hub-authority computations for large values of k is be described below:
The initial authority and hub vectors are denoted as a[0] and h[0] each of which

are equal to unit vectors. Let a[k] and h[k] represent the vectors of authority and hub
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Fig. 13.4 Re-weighting votes for the query “newspapers”: each of the labelled page’s new score
is equal to the sum of the values of all lists that point to it

scores after k applications of the Authority and Hub Update Rules in order. This
gives us Eqs. 13.9 and 13.10.

a[1] = MTh[0] (13.9)

and

h[1] = Ma[1] = MMTh[0] (13.10)

In the next step, we get

a[2] = MTh[1] = MT MMTh[0] (13.11)

and

h[2] = Ma[2] = MMT MMTh[0] = (MMT )2h[0] (13.12)

For larger values of k, we have
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Fig. 13.5 Re-weighting votes after normalizing for the query “newspapers”

a[k] = (MT M)k−1MTh[0] (13.13)

and

h[k] = (MMT )kh[0] (13.14)

Now we will look at the convergence of this process.
Consider the constants c and d. If

h[k]

ck
= (MMT )kh[0]

ck
(13.15)

is going to converge to a limit h[∗], we expect that at the limit, the direction of h[∗]
shouldn’t change when it is multiplied by (MMT ), although its length might grow
by a factor of c, i.e, we expect that h∗ will satisfy the equation

(MMT )h[∗] = ch[∗] (13.16)
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Fig. 13.6 Limiting hub and authority values for the query “newspapers”

This means that h[∗] is the eigenvector of thematrixMMT , with c a corresponding
eigenvalue.

Any symmetric matrix with n rows and n columns has a set of n eigenvectors that
are all unit vectors and all mutually orthogonal, i.e, they form a basis for the space
R

n .
Since MMT is symmetric, we get the n mutually orthogonal eigenvectors as

z1, . . . , zn , with corresponding eigenvalues c1, . . . , cn . Let |c1| ≥ |c2| ≥ · · · ≥
|cn|. Suppose that |c1| > |c2|, if we have to compute the matrix-vector product
(MMT )x for any vector x , we could first write x as a linear combination of the
vectors z1, . . . , zn , i.e, x = p1z1 + p2z2 + · · · + pnzn for coefficients p1, . . . , pn .
Thus

(MMT )x = (MMT )(p1z1 + p2z2 + · · · + pnzn)

= p1MMT z1 + p2MMT z2 + · · · + pnMMT zn
= p1c1z1 + p2c2z2 + · · · + pncnzn

(13.17)

k multiplications of MMT of the matrix-vector product will therefore give us
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(MMT )k x = ck1 p1z1 + ck2 p2z2 + · · · + ckn pnzn (13.18)

Applying Eq.13.18 to the vector of hub scores, we get h[k] = (MMT )h[0]. Since
h[0] is just a starting unit vector, it can be represented in terms of the basis vectors
z1, . . . , zn as some linear combination h[0] = q1z1 + q2z2 + · · · + qnzn . So,

h[k] = (MMT )kh[0] = ck1q1z1 + ck2q2z2 + · · · + cknqnzn (13.19)

Dividing both sides by ck1, we get

h[k]

ck1
= q1z1 +

(
c2
c1

)k

q2z2 + · · · +
(
cn
c1

)k

qnzn (13.20)

Since |c1| > |c2|, as k goes to infinity, every term on the right-hand side except
the first is going to 0. This means that the sequence of vectors h[k]

ck1
converges to the

limit q1z1 as k goes to infinity.
What would happen if we began the computation from some starting vector x ,

instead of the unit vector h[0]? If x is a positive vector expressed as x = p1z1 +· · ·+
pnzn for some coefficients p1, . . . , pn , and so (MMT )k x = ck1 p1z1 + · · · + ckn pnzn .
Then, h[k]

ck1
converges to p1z1. Thus, we converge to a vector in the direction of z1

even with this new starting vector.
Now we consider the case when the assumption |c1| > |c2| is relaxed. Let’s

say that there are l > 1 eigenvalues that are tied for the largest absolute value, i.e,
|c1| = · · · = |cl |, and then cl+1, . . . , cn , are all smaller in absolute value. With all the
eigenvalues in MMT being non-negative, we have c1 = · · · = cl > cl+1 ≥ · · · ≥
cn ≥ 0. This gives us

h[k]
ck1

= ck1q1z1 + · · · + cknqnzn

ck1
= q1z1+· · ·+ ql zl+

(
cl+1

cl

)k
ql+1zl+1+· · ·+

(
cn
c1

)k
qnzn

(13.21)

Terms l + 1 through n of this sum go to zero, and so the sequence converges to
q1z1 + · · · + ql zl . Thus, when c1 = c2, we still have convergence, but the limit to
which the sequence converges might now depend on the choice of the initial vector
h[0] (and particularly its inner product with each of z1, . . . , zl). In practice, with real
and sufficiently large hyperlink structures, one essentially always gets a matrix M
with the property that MMT has |c1| > |c2|.

This can be adapted directly to analyse the sequence of authority vectors. For the
authority vectors, we are looking at powers of (MT M), and so the basic result is that
the vector of authority scores will converge to an eigenvector of the matrix MT M
associated with its largest eigenvalue.
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Table 13.1 PageRank values of Fig. 13.7

Step A B C D E F G H

1 1/2 1/16 1/16 1/16 1/16 1/16 1/16 1/8

2 3/16 1/4 1/4 1/32 1/32 1/32 1/32 1/16

13.1.4.2 PageRank

PageRank [7] also works on the same principle as HITS algorithm. It starts with
simple voting based on in-links, and refines it using the Principle of Repeated Im-
provement.

PageRank can be thought of as a “fluid” that circulates through the network,
passing from node to node across edges, and pooling at the nodes that are most
important. It is computed as follows:

1. In a network with n nodes, all nodes are assigned the same initial PageRank, set
to be 1/n.

2. Choose a number of steps k.
3. Performa sequence of k updates to thePageRankvalues, using the followingBasic

PageRank Update rule for each update: Each page divides its current PageRank
equally across its out-going links, and passes these equal shares to the pages it
points to. If a page has no out-going links, it passes all its current PageRank to
itself. Each page updates its new PageRank to be the sum of the shares it receives.

This algorithm requires no normalization because the PageRank values are just
moved around with no chance of increase.

Figure 13.7 is an instance of a network with eight Webpages. All of these pages
start out with a PageRank of 1/8. Their PageRanks after the first two updates are as
tabulated in Table 13.1.

Similar to the HITS algorithm, the PageRank values converge to a limit as k goes
to infinity. Figure 13.8 depicts the equilibrium PageRank values.

There is a problem with the PageRank rule in this form. Consider the network in
Fig. 13.9, which is the same network as in Fig. 13.7 but with F and G pointing to one
another rather than pointing to A. This causes the PageRanks to converge to 1/2 for
F and G with 0 for all other nodes.

Thismeans that any network containing reciprocating linkswill have this clogging
of PageRanks at such nodes. To prevent such a situation, the PageRank rule is updated
by introducing a scaling factor s that should be strictly between 0 and 1. This gives
us the following Scaled PageRank Update rule. According to this rule, first apply
the Basic PageRank Update rule. Then scale down all PageRank values by a factor
of s, thereby shrinking the total PageRank from 1 to s. The residual 1 − s units of
PageRank are divided equally over all the nodes, giving (1 − s)/n to each.

This scaling factor makes the PageRank measure less sensitive to the addition or
deletion of small number of nodes or edges.
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Fig. 13.7 A collection of eight web pages

A survey of the PageRank algorithm and its developments can be found in [4].
We will first analyse the Basic PageRank Update rule and then move on to the

scaled version.Under the basic rule, each node takes its current PageRank and divides
it equally over all the nodes it points to. This suggests that the “flow” of PageRank
specified by the update rule can be naturally represented using a matrix N . Let Ni j

be the share of i’s PageRank that j should get in one update step. Ni j = 0 if i doesn’t
link to j , and when i links to j , then Ni j = 1/ li , where li is the number of links out
of i . (If i has no outgoing links, then we define Nii = 1, in keeping with the rule that
a node with no outgoing links passes all its PageRank to itself.)

If we represent the PageRank of all the nodes using a vector r , where ri is the
PageRank of node i . In this manner, the Basic PageRank Update rule is

r ← NT · r (13.22)

We can similarly represent the Scaled PageRank Update rule using the matrix N̂
to denote the different flow of PageRank. To account for the scaling, we define N̂i j

to be sNi j + (1 − s)/n, this gives the scaled update rule as

r ← N̂ T · r (13.23)
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Fig. 13.8 Equilibrium PageRank values for the network in Fig. 13.7

Starting from an initial PageRank vector r [0], a sequence of vectors r [1], r [2], . . .
are obtained from repeated improvement by multiplying the previous vector by N̂ T .
This gives us

r [k] = (N̂ T )kr [0] (13.24)

This means that if the Scaled PageRank Update rule converges to a limiting vector
r [∗], this limit would satisfy N̂ T r [∗] = r [∗]. This is proved using Perron’s Theorem
[18].

Reference [2] describes axioms that are satisfied by the PageRank algorithm, and
that any page ranking algorithm that satisfies these must coincide with the PageRank
algorithm.

13.1.4.3 Random Walk

Consider the situation where one randomly starts browsing a network of Webpages.
They start at a random page and pick each successive page with equal probability.
The links are followed for a sequence of k steps: in each step, a random out-going
link from the current page is picked. (If the current page has no out-going links, they
just stay where they are.)



262 13 Link Analysis

Fig. 13.9 The same collection of eight pages, but F and G have changed their links to point to
each other instead of to A. Without a smoothing effect, all the PageRank would go to F and G

Remark 1 Taking a random walk in this situation, the probability of being at a page
X after k steps of this randomwalk is precisely the PageRank of X after k applications
of the Basic PageRank Update rule.

Proof If b1, b2, . . . , bn denote the probabilities of thewalk being at nodes 1, 2, . . . , n
respectively in a given step, then the probability it will be at node i in the next step
is computed as follows:

1. For each node j that links to i , if we are given that the walk is currently at node
j , then there is a 1/ l j chance that it moves from j to i in the next step, where l j
is the number of links out of j .

2. The walk has to actually be at node j for this to happen, so node j contributes
b j (1/ l j ) = b j/ l j to the probability of being at i in the next step.

3. Therefore, summing b j/ l j over all nodes j that link to i gives the probability the
walk is at bi in the next step.

So the overall probability that the walk is at i in the next step is the sum of b j/ l j
over all nodes that link to i .
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If we represent the probabilities of being at different nodes using a vector b, where
the coordinate bi is the probability of being at node i , then this update rule can be
written using matrix-vector multiplication as

b ← NT · b (13.25)

This is exactly the same as Eq.13.22. Since both PageRank values and random-
walk probabilities start out the same (they are initially 1/n for all nodes), and they
then evolve according to exactly the same rule, so they remain same forever. This
justifies the claim.

Remark 2 The probability of being at a page X after k steps of the scaled random
walk is precisely the PageRank of X after k applications of the Scaled PageRank
Update Rule.

Proof We go by the same lines as the proof of Remark1. If b1, b2, . . . , bn denote
the probabilities of the walk being at nodes 1, 2, . . . , n respectively in a given step,
then the probability it will be at node i in the next step, is the sum of sb j/ l j , over all
nodes j that link to i , plus (1 − s)/n. If we use the matrix N̂ , then we can write the
probability update as

b ← N̂ T b (13.26)

This is the same as the update rule from Eq.13.23 for the scaled PageRank values.
The random-walk probabilities and the scaled PageRank values start at the same
initial values, and then evolve according to the same update, so they remain the same
forever. This justifies the argument.

Aproblemwith both PageRank andHITS is topic drift. Because they give the same
weights to all edges, the pages with the most in-links in the network being considered
tend to dominate, whether or not they are most relevant to the query. References
[8] and [5] propose heuristic methods for differently weighting links. Reference
[20] biased PageRank towards pages containing a specific word, and [14] proposed
applying an optimized version of PageRank to the subset of pages containing the
query terms.

13.1.4.4 SALSA Algorithm

Reference [17] proposed the SALSA algorithm which starts with a “Root Set” short
list ofWebpages relevant to the given query retrieved from a text-based search engine.
This root set is augmented by pageswhich link to pages in theRoot Set, and also pages
which are linked to pages in the Root Set, to obtain a larger “Base Set” of Webpages.
Perform a random walk on this base set by alternately (a) going uniformly to one of
the pages which links to the current page, and (b) going uniformly to one of the pages
linked to by the current page. The authority weights are defined to be the stationary
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distribution of the two-step chain first doing (a) and then (b), while the hub weights
are defined to be the stationary distribution of the two-step chain first doing (b) and
then (a).

Formally, let B(i) = {k : k → i} denote the set of all nodes that point to i , i.e, the
nodes we can reach from i by following a link backwards, and let F(i) = {k : i → k}
denote the set of all nodes that we can reach from i by following a forward link. The
Markov Chain for the authorities has transition probabilities

Pa(i, j) =
∑

k:k∈B(i)∩B( j)

1

|B(i)|
1

|F(k)| (13.27)

If theMarkov chain is irreducible, then the stationary distributiona = (a1, a2, . . . ,
aN ) of the Markov chain satisfies ai = |B(i)|/|B|, where B = ⋃

i B(i) is the set of
all backward links.

Similarly, the Markov chain for the hubs has transition probabilities

Ph(i, j) =
∑

k:k∈F(i)∩F( j)

1

|F(i)|
1

|B(k)| (13.28)

and the stationary distribution h = (h1, h2, . . . , hN ) of the Markov chain satisfies
hi = |F(i)|/|F |, where F = ⋃

i F(i) is the set of all forward links.
In the special case of a single component, SALSA can be viewed as a one-step

truncated version of HITS algorithm, i.e, in the first iteration of HITS algorithm, if
we perform the Authority Update rule first, the authority weights are set to a = AT u,
where u is the vector of all ones. Ifwe normalize in the L1 norm, thenai = |B(i)|/|B|,
which is the stationary distribution of the SALSA algorithm. A similar observation
can be made for the hub weights.

If the underlying graph of the Base Set consists of more than one component, then
the SALSA algorithm selects a starting point uniformly at random, and performs a
random walk within the connected component that contains that node. Formally, let
j be a component that contains node i , let N j denote the number of nodes in the
component, and Bj the set of (backward) links in component j . Then, the authority
weight of node i is

ai = N j

N

|B(i)|
|Bj | (13.29)

A simplified version of the SALSA algorithm where the authority weight of a
node is the ratio |B(i)|/|B|, corresponds to the case that the starting point for the
random walk is chosen with probability proportional to its in-degree. This variation
of the SALSA algorithm is commonly referred to as pSALSA.
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13.1.4.5 PHITS Algorithm

Reference [10] proposed a statistical hubs and authorities algorithm called PHITS
algorithm. A probabilistic model was proposed in which a citation c of a document d
is caused by a latent “factor” or “topic”, z. It is postulated that there are conditional
distributions P(c|z) of a citation c given a factor z, and also conditional distributions
P(z|d) of a factor z given a document d. In terms of these conditional distributions,
they produce a likelihood function.

The EM Algorithm of [11] to assign the unknown conditional probabilities so
as to maximize this likelihood function L, best explained the proposed data. Their
algorithm requires specifying in advance the number of factors z to be considered.
Furthermore, it is possible that the EMalgorithm could get stuck in a local maximum,
without converging to the true global maximum.

13.1.4.6 Breadth First Algorithm: A Normalized n-step Variant

Reference [6] proposed a BFS algorithm, as a generalization of the pSALSA al-
gorithm, and a restriction of the HITS algorithm. The BFS algorithm extends the
idea of in-degree that appears in pSALSA from a one link neighbourhood to a n-
link neighbourhood. Here, we introduce the following notations. If we follow a link
backwards, then we call this a B path, and if we follow a link forwards, we call it a
F path. So, a BF path is a path that first follows a link backwards, and then a link
forward. (BF)n(i, j) denotes the set of (BF)n paths that go from i to j , (BF)n(i)
the set of (BF)n paths that leave node i , and (BF)n the set of all possible (BF)n

paths. Similar sets can be defined for the (FB)n paths.
In this algorithm, instead of considering the number of (BF)n paths that leave i ,

it considers the number of (BF)n neighbours of node i . The contribution of node j
to the weight of node i depends on the distance of the node j from i . By adopting an
exponentially decreasing weighting scheme, the weight of node i is determined as:

ai = 2n−1|B(i)| + 2n−2|BF(i)| + 2n−3|BFB(i)| + · · · + |(BF)n(i)| (13.30)

The algorithm starts from node i , and visits its neighbours in BFS order. At each
iteration it takes a Backward or a Forward step (depending on whether it is an odd,
or an even iteration), and it includes the new nodes it encounters. The weight factors
are updated accordingly. Note that each node is considered only once, when it is first
encountered by the algorithm.

13.1.4.7 Bayesian Algorithm

Reference [6] also proposed a fully Bayesian statistical approach to authorities and
hubs. If there are M hubs and N authorities, we suppose that each hub i has a
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real parameter ei , corresponding to its tendency to have hypertext links, and also a
non-negative parameter hi , corresponding to its tendency to have intelligent hyper-
text links to authoritative sites. Each authority j has a non-negative parameter a j ,
corresponding to its level of authority.

The statistical model is as follows. The a priori probability of a link from hub i
to authority j is given by

P(i → j) = exp(a jhi + ei )

1 + exp(a jhi + ei )
(13.31)

with the probability of no link from i to j given by

P(i �→ j) = 1

1 + exp(a jhi + ei )
(13.32)

This states that a link is more likely if ei is large (in which case hub i has large
tendency to link to any site), or if both hi and a j are large (in which case i is an
intelligent hub, and j is a high-quality authority).

We must now assign prior distributions to the 2M + N unknown parameters ei ,
hi , and a j . To do this, we letμ = −5.0 and σ = 0.1 be fixed parameters, and let each
ei have prior distribution N (μ, σ 2), a normal distribution with mean μ and variance
σ 2. We further let each hi and a j have prior distribution exp(1), meaning that for
x ≥ 0, P(hi ≥ x) = P(a j ≥ x) = exp(−x). The Bayesian inference method then
proceeds from this fully-specified statistical model, by conditioning on the observed
data, which in this case is the matrix A of actual observed hypertext links in the Base
Set. Specifically, when we condition on the data A we obtain a posterior density∏ : R2M+N → [0,∞) for the parameters (e1, . . . , eM , h1, . . . , hM , a1, . . . , aN ).
This density is defined so that

P((e1, . . . , eM , h1, . . . , hM , a1, . . . , aN ) ∈ S|{Ai j })
=

∫
S
π(e1, . . . , eM , h1, . . . , hM , a1, . . . , aN )

de1 . . . deMdh1 . . . dhMda1 . . . daN

(13.33)

for any measurable subset S ⊆ R2M+N , and also

E(g(e1, . . . , eM , h1, . . . , hM , a1, . . . , aN )|{Ai j })
=

∫
R2M+N

g(e1, . . . , eM , h1, . . . , hM , a1, . . . , aN )

π(e1, . . . , eM , h1, . . . , hM , a1, . . . , aN )

de1 . . . deMdh1 . . . dhMda1 . . . daN

(13.34)

for any measurable function g : R2M+N → R.
The posterior density for the model is given up to a multiplicative constant, by
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π(e1, . . . , eM , h1, . . . , hM , a1, . . . , aN ) ∝
M−1∏
i=0

exp(−hi )exp[−(ei − μ)2/(2σ 2)]

×
N−1∏
j=0

exp(−a j ) ×
∏

(i, j):Ai j=1

exp(a jhi + ei )/
∏
all i, j

(1 + exp(a jhi + ei ))

(13.35)
The Bayesian algorithm then reports the conditional means of the 2M + N pa-

rameters, according to the posterior density π , i.e, it reports final values â j , ĥi , and
êi , where, for example

â j =
∫
R2M+N

a jπ(e1, . . . , eM , h1, . . . , hM , a1, . . . , aN )

de1 . . . deMdh1 . . . dhMda1 . . . daN

(13.36)

A Metropolis algorithm is used to compute these conditional means.
This algorithm can be further simplified by replacing Eq.13.31 with P(i → j) =

(a jhi )/(1 + a jhi ) and replacing Eq.13.32 with P(i �→ j) = 1/(1 + a jhi ). This
eliminates the parameters ei entirely, so that prior values μ and σ are no longer
needed. This leads to the posterior density π(·), now given by π : RM+N → R≥0

where

π(h1, . . . , hM , a1, . . . , aN ) ∝
M−1∏
i=0

exp(−hi ) ×
N−1∏
j=0

exp(−a j ) ×
∏

(i, j):Ai j=1

a jhi

/
∏
all i, j

(1 + a jhi )

(13.37)
Comparison of these algorithms can be found in [6].

13.2 Google

Reference [7] describes Google, a prototype of a large-scale search engine which
makes use of the structure present in hypertext. This prototype forms the base of the
Google search engine we know today.

Figure 13.10 illustrates a high level view of how the whole system works. The
paper states that most of Google was implemented in C or C++ for efficiency and
was available to be run on either Solaris or Linux.

The URL Server plays the role of the crawl control module here by sending the
list of URLs to be fetched by the crawlers. The Store Server receives the fetched
pages and compresses them before storing it in the repository. Every Webpage has
an associated ID number called a docID which is assigned whenever a new URL is
parsed out of aWebpage. The Indexermodule reads the repository, uncompresses the
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Fig. 13.10 High level Google architecture

documents and parses them. Each of these documents is converted to a set of word
occurrences called hits. The hit record theword, position in document, approximation
of the font size and capitalization. These hits are then distributed into a set of Barrels,
creating a partially sorted forward index. The indexer also parses out all the links in
every Webpage and stores important information about them in anchor files placed
in Anchors. These anchor files contain enough information to determine where each
link points from and to, and the text of the link.

The URL Resolver reads these anchor files and converts relative URLs into abso-
lute URLs and in turn into docIDs. These anchor texts are put into the forward index,
associated with the docID that the anchor points to. It also generates a database of
links which are pairs of docIDs. The Links database is used to compute PageRanks
for all the documents. The Sorter takes the barrels, which are sorted by docID, and
resorts them by wordID to generate the inverted index. The sorter also produces a
list of wordIDs and offsets into the inverted index. A program called DumpLexicon
takes this list together with the lexicon produced by the indexer and generates a new
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lexicon to be used by the searcher. The Searcher is run by a Web server and uses the
lexicon built by DumpLexicon together with the inverted index and the PageRanks
to answer queries.

13.2.1 Data Structures

Almost all of the data is stored inBigFileswhich are virtual files that can spanmultiple
file systems and support compression. The raw HTML repository uses roughly half
of the necessary storage. It consists of concatenation of the compressed HTML of
every page, preceded by a small header. TheDocIndex keeps information about each
document. The DocIndex is a fixed width Index Sequential Access Mode (ISAM)
index, ordered by docID. The information stored in each entry includes the current
document status, a pointer into the repository, a document checksum, and various
statistics. Variable width information such as URL and title is kept in a separate file.
There is also an auxiliary index to convert URLs into docIDs. The lexicon has several
different forms for different operations. They all are memory-based hash tables with
varying values attached to each word.

Hit lists account for most of the space used in both the forward and the inverted
indices. Because of this, it is important to represent them as efficiently as possible.
Therefore, a hand optimized compact encoding is used which uses two bytes for
every hit. To save space, the length of the hit list is stored before the hits and is
combined with the wordID in the forward index and the docID in the inverted index.

The forward index is actually already partially sorted. It is stored in a number
of barrels. Each barrel holds a range of wordIDs. If a document contains words
that fall into a particular barrel, the docID is recorded into the barrel, followed by a
list of wordIDs with hitlists which correspond to those words. This scheme requires
slightlymore storage because of duplicated docIDs but the difference is very small for
a reasonable number of buckets and saves considerable time and coding complexity
in the final indexing phase done by the sorter. The inverted index consists of the same
barrels as the forward index. Except that they have been processed by the sorter. For
every valid wordID, the lexicon contains a pointer into the barrel that wordID falls
into. It points to a list of docIDs together with their corresponding hit lists. This list
is called a doclist and represents all the occurrences of that word in all documents.

An important issue is in what order the docIDs should appear in the doclist. One
simple solution is to store them sorted by docID. This allows for quick merging of
different doclists for multiple word queries. Another option is to store them sorted
by a ranking of the occurrence of the word in each document. This makes answer-
ing one word queries trivial and makes it likely that the answers to multiple word
queries are near the start. However, merging is much more difficult. Also, this makes
development much more difficult in that a change to the ranking function requires a
rebuild of the index. A compromise between these options was chosen, keeping two
sets of inverted barrels - one set for hit lists which include title or anchor hits and
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another set for all hit lists. This way, we check the first set of barrels first and if there
are not enough matches within those barrels we check the larger ones.

13.2.2 Crawling

Crawling is the most fragile application since it involves interacting with hundreds of
thousands of Web servers and various name servers which are all beyond the control
of the system. In order to scale to hundreds ofmillions ofWebpages, Google has a fast
distributed crawling system. A single URLserver serves lists of URLs to a number of
crawlers. Both the URLserver and the crawlers were implemented in Python. Each
crawler keeps roughly 300 connections open at once. This is necessary to retrieve
Web pages at a fast enough pace. At peak speeds, the system can crawl over 100Web
pages per second using four crawlers. A major performance stress is DNS lookup so
each crawler maintains a DNS cache. Each of the hundreds of connections can be in
a number of different states: looking up DNS, connecting to host, sending request.
and receiving response. These factors make the crawler a complex component of the
system. It uses asynchronous IO to manage events, and a number of queues to move
page fetches from state to state.

13.2.3 Searching

Every hitlist includes position, font, and capitalization information. Additionally, hits
from anchor text and the PageRank of the document are factored in. Combining all
of this information into a rank is difficult. The ranking function so that no one factor
can have too much influence. For every matching document we compute counts of
hits of different types at different proximity levels. These counts are then run through
a series of lookup tables and eventually are transformed into a rank. This process
involves many tunable parameters.

13.3 Web Spam Pages

Web spam pages are notorious for using techniques to achieve higher-than-deserved
rankings in a search engine’s results. Reference [12] proposed a technique to semi-
automatically separate reputable pages from spam. First, a small set of seed pages
are evaluated to be good by a human expert. Once these reputable seed pages have
been identified, the link structure of the Web is used to discover other pages that are
likely to be good.

Humans can easily identify spam pages and a number of search engine companies
have been known to recruit people who have expertise in identifying spam, and
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regularly scan the Web looking for such pages. However, this is an expensive and
time-consuming process but nevertheless has to be done in order to ensure the quality
of the search engine’s result.

The algorithm first selects a small seed set of pages whose spam status needs to
be determined by a human. Using this, the algorithm identifies other pages that are
likely to be good based on their connectivity with the good seed pages.

The human checking of a page for spam is formalized as a oracle function O over
all pages p ∈ V

O(p) =
{
0 i f p is bad

1 i f p is good
(13.38)

Since oracle evaluations over all pages is an expensive ordeal, this is avoided by
asking the human to assign oracle values for just a few of the pages.

To evaluate pages without relying on O , the likelihood that a given page p is good
is estimated using a trust function T which yields the probability that a page is good,
i.e, T (p) = P[O(p) = 1].

Although it would be difficult to come up with a function T , such a function
would be useful in ordering results. These functions could be defined in terms of the
following properties. We first look at the ordered trust property

T (p) < T (q) ⇔ P[O(p) = 1] < P[O(q) = 1]
T (p) = T (q) ⇔ P[O(p) = 1] = P[O(q) = 1] (13.39)

By introducing a threshold value δ, we define the threshold trust property as

T (p) > δ ⇔ O(p) = 1 (13.40)

A binary function I (T, O, p, q) to signal if the ordered trust property has been
violated.

I (T, O, p, q) =

⎧⎪⎨
⎪⎩
1 i f T (p) ≥ T (q) and O(p) < O(q)

1 i f T (p) ≤ T (q) and O(p) > O(q)

0 otherwise

(13.41)

We now define a set of P of ordered pairs of pages (p, q), p �= q, and come up
with the pairwise orderedness function that computes the fraction of pairs for which
T did not make a mistake

pairord(T, O,P) =
|P| − ∑

(p,q)∈P
I (T, O, p, q)

|P| (13.42)

If pairord equals 1, there are no cases when misrated a pair. In contrast, if
pairord equals 0, then T misrated all the pairs.
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We now proceed to define the trust functions. Given a budget L of O-invocations,
we select at random a seed set S of L pages and call the oracle on its elements. The
subset of good and bad seed pages are denoted as S+ and S−, respectively. Since the
remaining pages are not checked by human expert, these are assigned a trust score of
1/2 to signal our lack of information. Therefore, this scheme is called the ignorant
trust function T0 defined for any p ∈ V as

T0(p) =
{
O(p) i f p ∈ S
1/2 otherwise

(13.43)

Now we attempt to compute the trust scores, by taking advantage of the approx-
imate isolation of good pages. We will select at random the set S of L pages that
we invoke the oracle on. Then, expecting that good pages point to other good pages
only, we assign a score of 1 to all pages that are reachable from a page in S+ in M
or fewer steps. The M-step trust function is defined as

TM(p) =

⎧⎪⎨
⎪⎩
O(p) i f p ∈ S
1 i f p /∈ S and ∃q ∈ S+ : q �M p

1/2 otherwise

(13.44)

where q �M p denotes the existence of a path of maximum length of M from page
q to page p. However, such a path must not include bad seeds.

To reduce trust as we move further away from the good seed pages, there are two
possible schemes. The first is called the trust dampening. If a page is one link away
from a good seed page, it is assigned a dampened trust score of β. A page that can
reach another page with score β, gets a dampened score of β · β.

The second technique is called trust splitting. Here, the trust gets split if it prop-
agates to other pages. If a page p has a trust score of T (p) and it points to ω(p)
pages, each of the ω(p) pages will receive a score fraction T (p)/ω(p) from p. In
this case, the actual score of a page will be the sum of the score fractions received
through its in-links.

The next task is to identify pages that are desirable for the seed set. By desirable,
we mean pages that will be the most useful in identifying additional good pages.
However, we must ensure that the size of the seed set is reasonably small to limit the
number of oracle invocations. There are two strategies for accomplishing this task.

The first technique is based on the idea that since trust flows out of the good
seed pages, we give preference to pages from which we can reach many other pages.
Building on this, we see that seed set can be built from those pages that point to
many pages that in turn point to many pages and so on. This approach is the inverse
of the PageRank algorithm because the PageRank ranks pages based on its in-degree
while here it is based in the out-degree. This gives the technique the name inverted
PageRank. However, this method is a double-edged sword. While it does not guar-
antee maximum coverage, its execution time is polynomial in the number of pages.
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The other technique is to take pages with high PageRank as the seed set, since
high-PageRank pages are likely to point to other high- PageRank pages.

Piecing all of these elements together gives us the TrustRank algorithm. The
algorithm takes as input the graph. At the first step, it identifies the seed set. The
pages in the set are re-ordered in decreasing order of their desirability score. Then,
the oracle function is invoked on the L most desirable seed pages. The entries of
the static score distribution vector d that correspond to good seed pages are set to
1. After normalizing the vector d so that its entries sum to 1, the TrustRank scores
are evaluated using a biased PageRank computation with d replacing the uniform
distribution.

Reference [13] complements [12] by proposing a novel method for identifying the
largest spam farms. A spam farm is a group of interconnected nodes involved in link
spamming. It has a single target node, whose ranking the spammer intends to boost
by creating the whole structure. A farm also contains boosting nodes, controlled
by the spammer and connected so that they would influence the PageRank of the
target. Boosting nodes are owned either by the author of the target, or by some other
spammer. Commonly, boosting nodes have little value by themselves; they only exist
to improve the ranking of the target. Their PageRank tends to be small, so serious
spammers employ a large number of boosting nodes (thousands of them) to trigger
high target ranking.

In addition to the links within the farm, spammers may gather some external
links from reputable nodes. While the author of a reputable node y is not voluntarily
involved in spamming, “stray” links may exist for a number of reasons. A spammer
may manage to post a comment that includes a spam link in a reputable blog. Or a
honey pot may be created, a spam page that offers valuable information, but behind
the scenes is still part of the farm.Unassuming usersmight then point to the honey pot,
without realizing that their link is harvested for spamming purposes. The spammer
may purchase domain names that recently expired but had previously been reputable
and popular. This way he/she can profit of the old links that are still out there.

A term called spammass is introducedwhich is ameasure of howmuch PageRank
a page accumulates through being linked to by spam pages. The idea is that the target
pages of spam farms, whose PageRank is boosted by many spam pages, are expected
to have a large spam mass. At the same time, popular reputable pages, which have
high PageRank because other reputable pages point to them, have a small spammass.

In order to compute this spam mass, we partition the Web into a set of reputable
node V+ and a set of spam nodes V−, with V+ ∪V− = V and V+ ∩V− = φ. Given
this partitioning, the goal is to detect web nodes x that gain most of their PageRank
through spam nodes in V− that link to them. Such nodes x are called spam farm
target nodes.

A simple approachwould be that, given a node x , we look only at its immediate in-
neighbours. If we are provided information about whether or not these in-neighbours
are reputable or spam, we could infer whether or not x is good or spam.

In a first approach, if majority of x’s links comes from spam nodes, x is labelled
a spam target node, otherwise it is labelled good. This scheme could easily mislabel
spam. An alternative is to look not only at the number of links, but also at what
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amount of PageRank each link contributes. The contribution of a link amounts to the
change in PageRank induced by the removal of the link. However, this scheme does
not look beyond the immediate in-neighbours of x and therefore could succumb to
mislabelling. This paves a way for a third scheme where a node x is labelled con-
sidering all the PageRank contributions of other nodes that are directly or indirectly
connected to x .

The PageRank contribution of x to y over the walk W is defined as

qW
y = skπ(W )(1 − s)vx (13.45)

where vx is the probability of a random jump to x , and π(W ) is the weight of the
walk.

π(W ) =
k−1∏
i=0

1

out (xi )
(13.46)

This weight can be interpreted as the probability that a Markov chain of length k
starting in x reaches y through the sequence of nodes x1, . . . , xk−1.

This gives the total PageRank contribution of x to y, x �= y, over all walks from
x to y as

qx
y =

∑
W∈Wxy

qW
y (13.47)

For a node’s contribution to itself, a virtual cycle Zx that has length zero and
weight 1 is considered such that

qx
x =

∑
W∈Wxx

qW
x = qZx

x +
∑

V∈Wxx ,|V |≥1

qV
x

= (1 − s)vx +
∑

V∈Wxx ,|V |≥1

qV
x

(13.48)

If a node x does not participate in cycles, x’s contribution to itself isqx
x = (1−s)vx ,

which corresponds to the random jump component. If these is no walk from node x
to y then the PageRank contribution qx

y is zero.
This gives us that the PageRank score of a node y is the sum of the contributions

of all other nodes to y

py =
∑
x∈V

qx
y (13.49)

Under a given random jump distribution v, the vector qx of contributions of a
node x to all nodes is the solution of the linear PageRank system for the core-based
random jump vector vx
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vx
y =

{
vx i f x = y

0 otherwise
=⇒ qx = PR(vx ) (13.50)

From this, we can compute the PageRank contribution qU of any subset of nodes
U ⊆ V by computing the PageRank using the random jump vector vU defined as

vUy =
{

vy i f y ∈ U

0 otherwise
(13.51)

We will now use this to compute the spammass of a page. For a given partitioning
{V+, V−} of V and for any node x , px = qV+

x +qV−
x , i.e, x’s PageRank is the sum of

the contributions of good and that of spam nodes. The absolute spam mass of a node
x , denoted by Mx , is the PageRank contribution that x receives from spam nodes, i.e,
Mx = qV−

x . Therefore, the spam mass is a measure of how much direct or indirect
in-neighbour spam nodes increase the PageRank of a node. The relative spam mass
of node x , denoted by mx , is the fraction of x’s PageRank due to contributing spam
nodes, i.e, mx = qV−

x /px .
If we assume that only a subset of the good nodes Ṽ+ is given, we can compute

two sets of PageRanks scores. p = PR(v) is the PageRank of nodes based on the
uniform random jump distribution v = (1/n)n , and p′ = PR(vṼ+

) is a core-based
PageRank with a random jump distribution vṼ+

vṼ+
x =

{
1/n i f x ∈ Ṽ+

0 otherwise
(13.52)

Given the PageRank scores px and p′
x , the estimated absolute spam mass of node

x is

M̃x = px − p′
x (13.53)

and the estimated spam mass of x is

m̃x = (px − p′
x )/px = 1 − p′

x/px (13.54)

Instead, if Ṽ− is provided, the absolute spam mass can be estimated by M̂ =
PR(vṼ−

). When both V− and V+ are known, the spam mass estimates could be
derived by simply computing the average (M̃ + M̂)/2.

Now, we consider the situation where the core Ṽ+ is significantly smaller than
the actual set of good nodes V+, i.e, |Ṽ+| << |V+| and thus ||vV+|| << ||v||.
Since p = PR(v), ||p|| ≤ ||v|| and similarly ||p′|| ≤ ||vṼ+||. This means that
||p′|| << ||p||, i.e, the total estimated good contribution is much smaller than the
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total PageRank of nodes. Therefore, we will have ||p − p′|| ≈ ||p|| with only a few
nodes that have absolute mass estimates differing from their PageRank scores.

To counter this problem, we construct a uniform random sample of nodes and
manually label each sample node as spam or good. This way it is possible to roughly
approximate the prevalence of spam nodes on the Web. We introduce γ to denote
the fraction of nodes that we estimate that are good, so γ n ≈ |V+|. Then, we scale
the core-based random jump vector vṼ+

to w, where

wx =
{

γ /|Ṽ+| i f x ∈ Ṽ+

0 otherwise
(13.55)

Note that ||w|| = γ ≈ ||vV+||, so the two random jump vectors are of the
same order of magnitude. Then, we can compute p′ based on w and expect that
||p′|| ≈ ||pV+||, so we get a reasonable estimate of the total good contribution.

Using w in computing the core-based PageRank leads to the following: as Ṽ+
is small, the good nodes in it will receive an unusually high random jump (γ /|Ṽ+|
as opposed to 1/n). Therefore, the good PageRank contribution of these known
reputable nodes will be overestimated, to the extent that occasionally for some node
y, p′

y will be larger than py . Hence, when computing M̃ , there will be nodes with
negative spam mass. In general, a negative mass indicates that a node is known to be
good in advance (is a member of Ṽ+) or its PageRank is heavily influenced by the
contribution of nodes in the good core.

Now we can discuss the mass-based spam detection algorithm. It takes as input a
good core Ṽ+, a threshold τ to which the relative mass estimates are compared, and
a PageRank threshold ρ. If the estimated relative mass of a node is equal to or above
this τ then the node is labelled as a spam candidate. Only the relative mass estimates
of nodes with PageRank scores larger than or equal to ρ are verified. Nodes with
PageRank less than ρ are never labelled as spam candidates.

Problems

Download the Wikipedia hyperlinks network available at
https://snap.stanford.edu/data/wiki-topcats.txt.gz.

63 Generate the graph of the network in this dataset.

64 Compute the PageRank, hub score and authority score for each of the nodes in
the graph.

65 Report the nodes that have the top 3 PageRank, hub and authority scores respec-
tively.

https://snap.stanford.edu/data/wiki-topcats.txt.gz
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Chapter 14
Community Detection

14.1 Strength of Weak Ties

As part of his Ph.D. thesis research in the late 1960s, Mark Granovetter interviewed
people who had recently changed employers to learn how they discovered their new
jobs [4]. He learnt that many of them learnt about the jobs through personal contacts.
These personal contacts were more often than not an acquaintance rather than a
close friend. Granovetter found this rather surprising because one would suppose
that close friends are the most motivated in helping a person find a job, so why is it
that acquaintances are actually the ones who help land the job?

The answer that Granovetter proposed links two different perspectives on ac-
quaintanceship. One is structural, focusing on the way the connections span different
portions of the full network; and the other is interpersonal, which is concerned with
the local consequences that follow from the friendship. Before dwelling any further
on this question, we will go over an important concept.

14.1.1 Triadic Closure

The triadic closure property states that if two individuals in a social network have
a mutual friend, then there is an increased likelihood that they will become friends
themselves. Figure 14.1 shows a graph with vertices A, B, C and D with edges
between A and B, B and C , C and D, and A and D. By triadic closure property,
edges A and C will be formed because of the presence of mutual friends B and D.
Similarly, due to A and C , an edge will exist between B and D. These edges are
depicted in Fig. 14.2.

Granovetter postulated that triadic closure was one of the most crucial reason why
acquaintances are the ones to thank for a person’s new job. Consider the graph in
Fig. 14.3, B has edges to the tightly-knit group containing A, D and C , and also has
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Fig. 14.1 Undirected graph
with four vertices and four
edges. Vertices A and C have
a mutual contacts B and D,
while B and D have mutual
friend A and C

Fig. 14.2 Figure 14.1 with
an edge between A and C ,
and B and D due to triadic
closure property

an edge to E . The connection of B to E is qualitatively different from the links to
the tightly-knit group, because the opinions and information that B and the group
have access to are similar. The information that E will provide to B will be things
that B will not necessarily have access to.

We define an edge to be a local bridge is the end vertices of the edge do not
have mutual friends. By this definition, the edge between B and E is a local bridge.
Observe that local bridge and triadic closure are conceptually opposite term. While
triadic closure implies an edge between vertices having mutual friends, local bridge
does not form an edge between such vertices. So, Granovetter’s observation was that
acquaintances connected to an individual by local bridges can provide information
such as job openingswhich the individualmight otherwise not have access to because
the tightly-knit group, although with greater motivation to find their buddy a job, will
know roughly the same things that the individual is exposed to.

When going about edges in formal terms, acquaintanceships are considered as
weak tieswhile friendships in closely-knit groups are called strong ties. Let us assume
that we are given the strength of each tie in Fig. 14.3 (shown in Fig. 14.4). So, if a
vertex A has edges to both B and C , then the B-C edge is likely to form if A’s edges
to B and C are both strong ties. This could be considered a similarity to the theory of
structural balance studied in Chap. 7, where the affinity was to keep triads balanced
by promoting positive edges between each pair of vertices in the triangle.

This gives us the following statement: If a node A in a network satisfies the Strong
Triadic Closure property and is involved in at least two strong ties, then any local
bridge it is involved in must be a weak tie.
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Fig. 14.3 Graph with a local
bridge between B and E

Fig. 14.4 Each edge of the
graph in Fig 14.3 is labelled
either as a strong tie(S) or a
weak tie(W). The labelling in
the figure satisfies the Strong
Triadic Closure property

Putting all of this together, we get that an edge is either a strong tie or a weak tie,
and it is either a local bridge or it isn’t.

The neighbourhood overlap of an edge connecting two nodes A and B is defined
to be the ratio

number of vertices who are neighbours of both A and B

number of vertices who are neighbours of at least one of A or B
(14.1)

Consider the edge (B, F) in Fig. 14.3. The denominator of the neighbourhood
overlap is determined by the vertices A,C , D, E andG, since they are the neighbours
of either B or F . Of these only A is a neighbour of both B and F . Therefore, the
neighbourhood overlap of (B, F) is 1/5.
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Similarly, the neighbourhood overlap of (B, E) is zero. This is because these
vertices have no neighbour in common. Therefore, we can conclude that a local
bridge has zero neighbourhood overlap.

The neighbourhood overlap can be used as a quantitative way of determining the
strength of an edge in the network.

14.2 Detecting Communities in a Network

To identify groups in a networkwewill first have to formulate an approach to partition
the graph.

One class of methods to partition graphs is to identify and remove the “spanning”
links between densely-connected regions. Once these links are removed, the graph
breaks into disparate pieces. This process can be done recursively. These methods
are referred to as divisive methods of graph partitioning.

An alternate class of methods aims at identifying nodes that are likely to belong to
the same region and merge them together. This results in a large number of chunks,
each of which are then merged in a bottom-up approach. Such methods are called
agglomerative methods of graph partitioning.

One traditional method of agglomerative clustering is hierarchical clustering. In
this technique, we first calculate the weight Wi j for each pair i , j of vertices in the
network, which gives a sense of how similar these two vertices are when compared
to other vertices. Then, we take the n vertices in the network, with no edge between
them, and add edges between pairs one after another in order of their weights, starting
with the pair with the strongest weight and progressing to the weakest. As edges are
added, the resulting graph shows a nested set of increasingly large components,
which are taken to be the communities. Since the components are properly nested,
they can all be represented using a tree called “dendrograms”, in which the lowest
level at which two vertices are connected represents the strength of the edge which
resulted in their first becoming members of the same community. A “slice” through
this tree at any level gives the communities which existed just before an edge of the
corresponding weight was added.

Several different weights have been proposed for the hierarchical clustering al-
gorithm. One possible definition of the weight is the number of node-independent
paths between vertices. Two paths which connect the same pair of vertices are said
to be node-independent if they share none of the same vertices other than their initial
and final vertices. The number of node-independent paths between vertices i and j
in a graph is equal to the minimum number of vertices that need be removed from
the graph in order to disconnect i and j from one another. Thus this number is in a
sense a measure of the robustness of the network to deletion of nodes.

Another possible way to define weights between vertices is to count the total
number of paths that run between them. However, since the number of paths between
any two vertices is infinite (unless it is zero), we typically weigh paths of length l
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by a factor αl with α small, so that the weighted count of the number of paths
converges. Thus long paths contribute exponentially less weight than short ones. If
A is the adjacencymatrix of the network, such that Ai j is 1 if there is an edge between
vertices i and j and 0 otherwise, then the weights in this definition are given by the
elements of the matrix

W =
∞∑

l=0

(αA)l = [I − αA]−1 (14.2)

In order for the sum to converge, we must choose α smaller than the reciprocal
of the largest eigenvalue of A.

However, these definitions of weights are less successful in certain situations. For
instance, if a vertex is connected to the rest of a network by only a single edge then, to
the extent that it belongs to any community, it should clearly be considered to belong
to the community at the other end of that edge. Unfortunately, both the numbers of
node-independent paths and the weighted path counts for such vertices are small and
hence single nodes often remain isolated from the network when the communities
are formed.

14.2.1 Girvan-Newman Algorithm

Reference [2] proposed the following method for detecting communities. The be-
tweenness value of an edge is defined as the number of shortest paths between pairs
of vertices that pass through it. If there is more than one shortest path between a
pair of vertices, each of these paths is given equal weight such that the total weight
of all the paths is unity. The intuition is that if a network contains communities or
groups that are only loosely connected by a few inter-group edges, then all shortest
paths between different communities must go along one of these few edges. Thus, the
edges connecting communities will have high edge betweenness. By removing these
edges, the groups are separated from one another and so the underlying community
structure of the graph is revealed.

The algorithm for identifying communities using the edge betweenness values is
called the Girvan-Newman algorithm and is stated as follows:

1. Calculate the betweenness values for all the edges in the network.
2. Remove the edge with the highest betweenness value.
3. Recalculate the betweenness for all edges affected by the removal.
4. Repeat from step 2 until no edges remain.

The algorithm in [5] can calculate the betweenness for all the |E | edges in a graph
of |V | vertices in time O(|V ||E |). Since the calculation has to be repeated once for
the removal of each edge, the entire algorithm runs in worst-case time O(|E |2|V |).
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However, Girvan-Newman algorithm runs in O(|V |3) time on sparse graphs,
which makes it impractical for very large graphs.

14.2.2 Modularity

Reference [2] proposed a measure called “modularity” and suggested that the op-
timization of this quality function over the possible divisions of the network is an
efficient way to detect communities in a network. The modularity is, up to a mul-
tiplicative constant, the number of edges falling within groups minus the expected
number in an equivalent network with edges placed at random. The modularity can
be either positive or negative, with positive values indicating the possible presence
of community structure. Thus, we can search for community structure precisely by
looking for the divisions of a network that have positive, and preferably large, values
of the modularity.

Let us suppose that all the vertices in our graph belongs to one of two groups,
i.e, si = 1 if vertex i belongs to group 1 and si = −1 if it belongs to group 2. Let
the number of vertices between vertices i and j be Ai j , which will normally be 0 or
1, although larger values are possible for graphs with multiple edges. The expected
number of edges between vertices i and j if edges are placed at random is ki k j/2|E |
where ki and k j are the degrees of vertices i and j respectively, and E = ∑

i ki/2.
The modularity Q is given by the sum of Ai j − ki k j/2|E | over all pairs of vertices
i and j that fall in the same group.

Observing that the quantity 1
2 (si s j + 1) is 1 if i and j are in the same group and

0 otherwise, the modularity is formally expressed as

Q = 1

4|E |
∑

i j

(
Ai j − ki k j

2|E |
)

(si s j + 1) = 1

4|E |
∑

i j

(
Ai j − ki k j

2|E |
)
si s j (14.3)

where the secondequality follows from theobservation that 2|E | = ∑
i ki = ∑

i j Ai j .
Equation 14.3 can be written in matrix form as

Q = 1

4|E | s
T Bs (14.4)

where s is the column vector whose elements are si and have defined a real symmetric
matrix B with elements

Bi j = Ai j − ki k j

2|E | (14.5)

which is called themodularity matrix. The elements of each of its rows and columns
sum to zero, so that it always has an eigenvector (1, 1, 1, . . .) with eigenvalue zero.
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Given Eq. 14.4, s can be written as a linear combination of the normalized eigen-
vectors ui of B so that s = ∑|V |

i=1 aiui with ai = uT
i · s, we get

Q = 1

4|E |
∑

i

ai u
T
i B

∑

j

a j u j = 1

4|E |
|V |∑

i=1

(uT
i · s)2βi (14.6)

where βi is the eigenvalue of B corresponding to eigenvector ui .
Assume that the eigenvalues are labelled in decreasing order, β1 ≥ β2 ≥ · · · ≥

β|V |. To maximize the modularity, we have to choose the value of s that concentrates
as much weight as possible in terms of the sum in Eq. 14.6 involving the largest
eigenvalues. If there were no other constraints on the choice of s, this would be an
easy task: we would simply chose s proportional to the eigenvector u1. This places
all of the weight in the term involving the largest eigenvalue β1, the other terms being
automatically zero, because the eigenvectors are orthogonal.

There is another constraint on the problem imposed by the restriction of the
elements of s to the values ±1, which means s cannot normally be chosen parallel to
u1 . To make it as close to parallel as possible, we have to maximize the dot product
uT
1 · s. It is straightforward to see that the maximum is achieved by setting si = +1

if the corresponding element of u1 is positive and si = −1 otherwise. In other words,
all vertices whose corresponding elements are positive go in one group and all of the
rest in the other. This gives us the algorithm for dividing the network: we compute
the leading eigenvector of the modularity matrix and divide the vertices into two
groups according to the signs of the elements in this vector.

There are some satisfying features of this method. First, it works even though the
sizes of the communities are not specified. Unlike conventional partitioning methods
that minimize the number of between-group edges, there is no need to constrain the
group sizes or artificially forbid the trivial solution with all vertices in a single group.
There is an eigenvector (1, 1, 1, . . .) corresponding to such a trivial solution, but its
eigenvalue is zero. All other eigenvectors are orthogonal to this one and hence must
possess both positive and negative elements. Thus, as long as there is any positive
eigenvalue this method will not put all vertices in the same group.

It is, however, possible for there to be no positive eigenvalues of the modularity
matrix. In this case the leading eigenvector is the vector (1, 1, 1, . . .) corresponding
to all vertices in a single group together. But this is precisely the correct result: the
algorithm is in this case telling us that there is no division of the network that results
in positive modularity, as can immediately be seen from Eq. 14.6, because all terms
in the sum will be zero or negative. The modularity of the undivided network is zero,
which is the best that can be achieved. This is an important feature of the algorithm.
The algorithm has the ability not only to divide networks effectively, but also to
refuse to divide them when no good division exists. The networks in this latter case
will be called indivisible, i.e, a network is indivisible if the modularity matrix has no
positive eigenvalues. This idea will play a crucial role in later developments.

The algorithm as describedmakes use only of the signs of the elements of the lead-
ing eigenvector, but the magnitudes convey information, too. Vertices corresponding
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to elements of large magnitude make large contributions to the modularity, Eq. 14.6,
and conversely for small ones. Alternatively, if we take the optimal division of a
network into two groups and move a vertex from one group to the other, the vector
element for that vertex gives an indication of howmuch themodularity will decrease:
vertices corresponding to elements of large magnitude cannot be moved without in-
curring a large modularity penalty, whereas those corresponding to smaller elements
can be moved at relatively little cost. Thus, the elements of the leading eigenvector
measure how firmly each vertex belongs to its assigned community, those with large
vector elements being strong central members of their communities, whereas those
with smaller elements are more ambivalent.

When dealing with networks that can be divided into more than two communities,
we use the algorithm of the previous section first to divide the network into two
parts, then divide those parts, and so forth. However, after first dividing a network
in two, it is not correct to simply delete the edges falling between the two parts
and then apply the algorithm again to each subgraph. This is because the degrees
appearing in the definition, Eq. 14.3, of the modularity will change if edges are
deleted, and any subsequent maximization of modularity would thus maximize the
wrong quantity. Instead, the correct approach is to write the additional contribution
�Q to the modularity upon further dividing a group g of size |V |g in two as

�Q = 1

2|E |

⎡

⎣1

2

∑

i, j∈g

Bi j (si s j + 1) −
∑

i, j∈g

Bi j

⎤

⎦

= 1

4|E |

⎡

⎣
∑

i, j∈g

Bi j si s j −
∑

i, j∈g

Bi j

⎤

⎦ (14.7)

= 1

4|E |
∑

i, j∈g

⎡

⎣Bi j − δi j
∑

k∈g

Bik

⎤

⎦ si s j

= 1

4|E | s
T B(g)s

where δi j is theKronecker δ-symbol, B(g) is theng × ng matrixwith elements indexed
by the labels i, j of vertices within group g and having values

B(g)

i j = Bi j − δi j
∑

k∈g

Bik (14.8)

Since Eq. 14.7 has the same form as Eq. 14.4, we can now apply the spectral
approach to this generalized modularity matrix, just as before, to maximize �Q.
Note that the rows and columns of B(g) still sum to zero and that �Q is correctly
zero if group g is undivided. Note also that for a complete network Eq. 14.8 reduces
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to the previous definition of the modularity matrix, Eq. 14.5, because
∑

k Bik is zero
in that case.

In repeatedly subdividing the network, an important question we need to address
is at what point to halt the subdivision process. A nice feature of this method is that it
provides a clear answer to this question: if there exists no division of a subgraph that
will increase themodularity of the network, or equivalently that gives a positive value
for �Q, then there is nothing to be gained by dividing the subgraph and it should be
left alone; it is indivisible in the sense of the previous section. This happens when
there are no positive eigenvalues to the matrix B(g), and thus the leading eigenvalue
provides a simple check for the termination of the subdivision process: if the leading
eigenvalue is zero, which is the smallest value it can take, then the subgraph is
indivisible.

Note, however, that although the absence of positive eigenvalues is a sufficient
condition for indivisibility, it is not a necessary one. In particular, if there are only
small positive eigenvalues and large negative ones, the terms in Eq. 14.6 for nega-
tive βi may outweigh those for positive. It is straightforward to guard against this
possibility, however; we simply calculate the modularity contribution �Q for each
proposed split directly and confirm that it is greater than zero.

Thus the algorithm is as follows. We construct the modularity matrix, Eq. 14.5,
for the network and find its leading (most positive) eigenvalue and the corresponding
eigenvector. We divide the network into two parts according to the signs of the
elements of this vector, and then repeat the process for each of the parts, using the
generalized modularity matrix, Eq. 14.8. If at any stage we find that a proposed
split makes a zero or negative contribution to the total modularity, we leave the
corresponding subgraph undivided. When the entire network has been decomposed
into indivisible subgraphs in this way, the algorithm ends.

An alternate method for community detection is a technique that bears a striking
resemblance to the Kernighan-Lin algorithm. Suppose we are given some initial
division of our vertices into two groups. We then find among the vertices the one
that, when moved to the other group, will give the biggest increase in the modularity
of the complete network, or the smallest decrease if no increase is possible. Wemake
such moves repeatedly, with the constraint that each vertex is moved only once.
When all the vertices have been moved, we search the set of intermediate states
occupied by the network during the operation of the algorithm to find the state that
has the greatestmodularity. Starting again from this state, we repeat the entire process
iteratively until no further improvement in the modularity results.

Although this method by itself only gives reasonable modularity values, the
method really comes into its own when it is used in combination with the spectral
method introduced earlier. The spectral approach based on the leading eigenvector of
the modularity matrix gives an excellent guide to the general form that the commu-
nities should take and this general form can then be fine-tuned by the vertex moving
method to reach the best possible modularity value. The whole procedure is repeated
to subdivide the network until every remaining subgraph is indivisible, and no further
improvement in the modularity is possible.
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The most time-consuming part of the algorithm is the evaluation of the leading
eigenvector of the modularity matrix. The fastest method for finding this eigenvector
is the simple power method, the repeated multiplication of the matrix into a trial
vector. Although it appears at first glance that matrix multiplications will be slow,
taking O(n2) operations each because the modularity matrix is dense, we can in
fact perform them much faster by exploiting the particular structure of the matrix.
Writing B = A − kkT /2|E |, where A is the adjacency matrix and k is the vector
whose elements are the degrees of the vertices, the product of B and an arbitrary
vector x can be written

Bx = Ax − k(kT · x)
2|E | (14.9)

The first term is a standard sparsematrixmultiplication taking time O(|V | + |E |).
The inner product kT · x takes time O(|V |) to evaluate and hence the second term
can be evaluated in total time O(|V |) also. Thus the complete multiplication can be
performed in O(|V | + |E |) time. Typically O(|V |) such multiplications are needed
to converge to the leading eigenvector, for a running time of O[(|V | + |E |)|V |]
overall. Often we are concerned with sparse graphs with |E | ∝ |V |, in which case
the running time becomes O(|V |2). It is a simple matter to extend this procedure to
find the leading eigenvector of the generalized modularity matrix, Eq. 14.8, also.

Althoughwewill not go through the details here, it is straight-forward to show that
the fine-tuning stage of the algorithm can also be completed in O[(|V | + |E |)|V |]
time, so that the combined running time for a single split of a graph or subgraph
scales as O[(|V | + |E |)|V |], or O(|V |2) on a sparse graph.

We then repeat the division into two parts until the network is reduced to its
component indivisible subgraphs. The running time of the entire process depends on
the depth of the tree or “dendrogram” formed by these repeated divisions. In theworst
case the dendrogram has depth linear in |V |, but only a small fraction of possible
dendrograms realize this worst case. A more realistic figure for running time is given
by the average depth of the dendrogram, which goes as log |V |, giving an average
running time for the whole algorithm of O(|V |2 log |V |) in the sparse case. This is
considerably better than the O(|V |3) running time of the betweenness algorithm, and
slightly better than the O(|V |2 log 2|V |) of the extremal optimization algorithm.

14.2.3 Minimum Cut Trees

Reference [1] introduces a simple graph clustering method based on minimum cuts
within the graph.

The idea behind the minimum cut clustering techniques is to create clusters that
have small inter-cluster cuts and relatively large intra-cluster cuts. The clustering
algorithm used in this paper is based on inserting an artificial sink into a graph that
gets connected to all nodes in the network.



14.2 Detecting Communities in a Network 289

For a weighted graph G(V, E), we define a cut in this graph as (A, B) where A
and B are two subsets of V , such that A ∪ B = V and A ∩ B = φ. The sum of the
weights of the edges crossing the cut defines its value. A real function c is used to
represent the value of a cut, i.e, cut(A, B) has value c(A, B). c can also be applied
when A and B don’t cover V , but A ∪ B ⊂ V .

For this graph G, there exists a weighted graph TG , which is called the minimum
cut tree of G. This minimum cut tree has the property that the minimum cut between
two vertices s and t in G can be found by inspecting the path that connects s and t
in TG . The edge of minimum capacity on that path corresponds to the minimum cut.
The capacity of the edge is equal to the minimum cut value, and its removal yields
two sets of nodes in TG , and also in G corresponding to the two sides of the cut.
Reference [3] provides algorithms for computing minimum cut trees.

Let (S, S) be a cut in G. The expansion of the cut is defined as

ψ(S) =

∑

u∈S,v∈S
w(u, v)

min{|S|, |S|} (14.10)

where w(u, v) is the weight of the edge (u, v). The expansion of a (sub)graph is the
minimum expansion over all the cuts of the (sub)graph. The expansion of a clustering
of G is the minimum expansion over all its clusters. The larger the expansion of the
clustering, the higher its quality.

The conductance for the cut (S, S) is defined as

φ(S) =

∑

u∈S,v∈S
w(u, v)

min{c(S), c(S)} (14.11)

where c(S) = c(S, V ) = ∑
u∈S

∑
v∈V

w(u, v). The conductance of a graph is the mini-

mum conductance over all the cuts of the graph. For a clustering of G, let C ⊆ V be
a cluster and (S,C − S) a cluster within C , where S ⊆ C . The conductance of S in
C is

φ(S,C) =
∑

u∈S,v∈C−S
w(u, v)

min{c(S), c(C − S)} (14.12)

The conductance of a cluster φ(C) is the smallest conductance of a cut within the
cluster; for a clustering, the conductance is the minimum conductance of its clusters.

The main difference between expansion and conductance is that expansion treats
all nodes as equally important while the conductance gives greater importance to
nodes with higher degree and adjacent edge weight.

However, both expansion and conductance are insufficient by themselves as clus-
tering criteria because neither enforces qualities pertaining to inter-cluster weight,
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nor the relative size of clusters. Moreover, these are both NP-hard and require ap-
proximations.

The paper present a cut clustering algorithm. Let G(V, E) be a graph and let
s, t ∈ V be two nodes of G. Let (S, T ) be the minimum cut between s and t , where
s ∈ S and t ∈ T . S is defined to be the community of s in G w.r.t t . If the minimum
cut between s and t is not unique, we choose the minimum cut that maximises the
size of S.

The paper provides proofs for the following theorems.
Here, a community S is defined as a collection of nodes that has the property that

all nodes of the community predominantly links to other community nodes.

• Theorem 34 For an undirected graph G(V, E), let S be a community of s w.r.t t .
Then ∑

v∈S
w(u, v) >

∑

v∈S
w(u, v),∀u ∈ S − {s} (14.13)

• Theorem 35 Let G(V, E) be a graph and k > 1 an integer. The problem of par-
titioning G into k communities is NP-complete.

When no t is given, an artificial node t called the artificial sink is introduced. The
artificial sink is connected to all nodes of G via an undirected edge of capacity α.

• Theorem 36 Let G(V, E) be an undirected graph, s ∈ V a source, and connect
an artificial sink t with edges of capacity α to all nodes. Let S be the community
of s w.r.t t . For any non-empty P and Q, such that P ∪ Q = S and P ∩ Q = φ,
the following bounds always hold:

c(S, V − S)

|V − S| ≤ α ≤ c(P, Q)

min(|P|, |Q|) (14.14)

• Theorem 37 Let s, t ∈ V be two nodes of G and let S be the community of s w.r.t
t . Then, there exists a minimum cut tree TG of G, and an edge (a, b) ∈ TG, such
that the removal of (a, b) yields S and V − S.

• Theorem 38 Let TG be a minimum cut tree of a graph G(V, E), and let (u, w)

be an edge of TG. Edge (u, w) yields the cut (U,W ) in G, with u ∈ U, w ∈ W.
Now, take any cut (U1,U2) of U, so that U1 and U2 are non-empty, u ∈ U1,
U1 ∪U2 = U, and U1 ∩U2 = φ. Then,

c(W,U2) ≤ c(U1,U2) (14.15)

• Theorem 39 Let Gα be the expanded graph of G, and let S be the community of
s w.r.t the artificial sink t . For any non-empty P and Q, such that P ∪ Q = S and
P ∩ Q = φ, the following bound always holds:

α ≤ c(P, Q)

min(|P|, |Q|) (14.16)
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• Theorem 40 Let Gα be the expanded graph of G(V, E) and let S be the commu-
nity of s w.r.t the artificial sink t . Then, the following bound always holds:

c(S, V − S)

|V − S| ≤ α (14.17)

The cut clustering algorithm is as given in Algorithm 8

Algorithm 8 Cut clustering algorithm
1: procedure CutClusteringAlgorithm(G(V, E),α)
2: Let V ′ = V ∪ t
3: for all nodes v ∈ V do
4: Connect t to v with edge of weight α
5: end for
6: Let G ′(V ′, E ′) be the expanded graph after connecting t to V
7: Calculate the minimum-cut tree T ′ of G ′
8: Remove t from T ′
9: Return all connected components as the clusters of G
10: end procedure

• Theorem 41 For a source s in Gαi , where αi ∈ {α1, . . . ,αmax }, such that α1 <

α2 < · · · < αmax , the communities S1, . . . , Smax are such that S1 ⊆ S2 ⊆ · · · ⊆
Smax , where Si is the community of s w.r.t t in Gαi .

• Theorem 42 Let v1, v2 ∈ V and S1, S2 be their communities w.r.t t in Gα. Then
either S1 and S2 are disjoint or the one is a subset of the other.

• Theorem 43 Let α1 > α2 > · · · > αmax be a sequence of parameter values that
connect t to V in Gαi . Letαmax+1 ≤ αmax be small enough to yield a single cluster
in G and α0 ≥ α1 be large enough to yield all singletons. Then all αi+1 values, for
0 ≤ i ≤ max, yield clusters in G which are supersets of the clusters produced by
each αi , and all clusterings together form a hierarchical tree over the clusterings
of G.

14.3 Tie Strengths in Mobile Communication Network

Reference [6] examined the communication patterns of millions of mobile phone
users and found that social networks are robust to the removal of the strong ties but
fall apart after a phase transition if the weak ties are removed.

A significant portion of a country’s communication network was reconstructed
from 18 weeks of all mobile phone call records among ≈20% of the country’s entire
population, 90% of whose inhabitants had a mobile phone subscription. To translate
this phone log data into a network representation that captures the characteristics
of the underlying communication network, the two users were connected with an
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undirected link if there had been at least one reciprocated pair of phone calls between
them and the strength, wAB = wBA, of a tie is defined as the aggregated duration of
calls between users A and B. The resulting mobile call graph (MCG) contains 4.6
million nodes and 7 million links, 84.1% of which belonged to a giant component.

Figure 14.5a shows that the MCG has a skewed degree distribution with a long
tail, indicating that although most users communicate with only a few individuals,
a small minority talks with dozens. If the tail is approximated by a power law,
which appears to fit the data better than an exponential distribution, the obtained
exponent γk = 8.4. Figure 14.5b indicates that the tie strength distribution is broad
but decayingwith exponent γw = 1.9, so that although themajority of ties correspond
to a few minutes of airtime, a small fraction of users spend hours chatting with each
other. Figure 14.5c measures the relative topological overlap of the neighbourhood
of two users vi and v j , representing the proportion of their common friends Oi j =
ni j/((ki − 1) + (k j − 1) − ni j ), where ni j is the number of common neighbours of
vi and v j , and ki (k j ) denotes the degree of node vi (v j ). If vi and v j have no common
acquaintances, then we have Oi j = 0, the link between i and j representing potential
bridges between two different communities. If i and j are part of the same circle of
friends, then Oi j = 1. Figure 14.5d shows that permuting randomly the tie strengths
between links results in Oi j that is independent of wi j .

Figure 14.6a depicts the network in the vicinity of a randomly selected individual,
where the link colour corresponds to the strength of each tie. We observe from the
figure that the network consists of clusters, typically grouped around a high degree
individual. The majority of strong ties are found within the clusters, indicating that
users spend most of their on-air time talking to members of their immediate circle
of friends. On the contrary, most links connecting different communities are visibly
weaker than the links within communities. Figure 14.6b shows that when the link
strengths among the connected user pairs are randomly permuted, more weak ties are
found to connect vertices within communities and more strong ties connect distant
communities. Figure 14.6c shows what it would look like if, inter-community ties
were strong and intra-community ties were weak.

Figures 14.5 and 14.6 suggest that instead of tie strength being determined by
the characteristics of the individuals it connects or by the network topology, it is
determined solely by the network structure in the tie’s immediate vicinity.

To evaluate this suggestion, we explore the network’s ability to withstand the
removal of either strong or weak ties. For this, we measure the relative size of the
giant component Rgc( f ), providing the fraction of nodes that can all reach each
other through connected paths as a function of the fraction of removed links, f .
Figure 14.7a, b shows that removing in rank order the weakest (or smallest overlap)
to strongest (or greatest overlap) ties leads to the network’s sudden disintegration
at f w = 0.8( f O = 0.6). However, removing first the strongest ties will shrink the
network but will not rapidly break it apart. The precise point at which the network
disintegrates can be determined by monitoring S̃ = ∑

s<smax
nss2/N , where ns is the

number of clusters containing s nodes. Figure 14.7c, d shows that S̃ develops a peak
if we start with the weakest links. Finite size scaling, a well established technique
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Fig. 14.5 a Degree distribution. b Tie strength distribution. The blue line in a and b correspond
to P(x) = a(x + x0)−x exp(−x/xc), where x corresponds to either k or w. The parameter values
for the fits in (A) are k0 = 10.9, γk = 8.4, kc = ∞, and for the fits in (B) are w0 = 280, γw =
1.9, wc = 3.45 × 10.5. c Illustration of the overlap between two nodes, vi and v j , its value being
shown for four local network configurations. d In the real network, the overlap < O >w (blue
circles) increases as a function of cumulative tie strength Pcum(w), representing the fraction of
links with tie strength smaller than w. The dyadic hypothesis is tested by randomly permuting the
weights, which removes the coupling between < O >w and w (red squares). The overlap < O >b
decreases as a function of cumulative link betweenness centrality b (black diamonds)

for identifying the phase transition, indicates that the values of the critical points are
f Oc (∞) = 0.62 ± 0.05 and f w

c (∞) = 0.80 ± 0.04 for the removal of the weak ties,
but there is no phase transition when the strong ties are removed first.

This finding gives us the following conclusion: Given that the strong ties are
predominantly within the communities, their removal will only locally disintegrate
a community but not affect the network’s overall integrity. In contrast, the removal
of the weak links will delete the bridges that connect different communities, leading
to a phase transition driven network collapse.

To see whether this observation affects global information diffusion, at time 0 a
randomly selected individual is infected with some novel information. It is assumed
that at each time step, each infected individual, vi , can pass the information to his/her
contact, v j , with effective probability Pi j = xwi j , where the parameter x controls
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Fig. 14.6 Each link
represents mutual calls
between the two users, and
all nodes are shown that are
at distance less than six from
the selected user, marked by
a circle in the center. a The
real tie strengths, observed in
the call logs, defined as the
aggregate call duration in
minutes. b The dyadic
hypothesis suggests that the
tie strength depends only on
the relationship between the
two individuals. To illustrate
the tie strength distribution
in this case, we randomly
permuted tie strengths for the
sample in a. c The weight of
the links assigned on the
basis of their betweenness
centrality bi j values for the
sample in A as suggested by
the global efficiency
principle. In this case, the
links connecting
communities have high bi j
values (red), whereas the
links within the communities
have low bi j values (green)

the overall spreading rate. Therefore, the more time two individuals spend on the
phone, the higher the chance that they will pass on the monitored information. The
spreadingmechanism is similar to the susceptible-infectedmodel of epidemiology in
which recovery is not possible, i.e., an infected individual will continue transmitting
information indefinitely. As a control, the authors considered spreading on the same
network, but replaced all tie strengths with their average value, resulting in a constant
transmission probability for all links.

Figure 14.8a shows the real diffusion simulation, where it was found that informa-
tion transfer is significantly faster on the network for which all weights are equal, the
difference being rooted in a dynamic trapping of information in communities. Such
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Fig. 14.7 The control parameter f denotes the fraction of removed links. a and c These graphs
correspond to the case in which the links are removed on the basis of their strengths (wi j removal).
b and d These graphs correspond to the case in which the links were removed on the basis of their
overlap (Oi j removal). The black curves correspond to removing first the high-strength (or high
Oi j ) links, moving toward the weaker ones, whereas the red curves represent the opposite, starting
with the low-strength (or low Oi j ) ties and moving toward the stronger ones. a and b The relative
size of the largest component RGC ( f ) = NGC ( f )/NGC ( f = 0) indicates that the removal of the
low wi j or Oi j links leads to a breakdown of the network, whereas the removal of the high wi j or
Oi j links leads only to the network’s gradual shrinkage. a Inset Shown is the blowup of the highwi j
region, indicating that when the low wi j ties are removed first, the red curve goes to zero at a finite
f value. c and d According to percolation theory, S̃ = ∑

s<smax
nss2/N diverges for N → ∞ as

we approach the critical threshold fc, where the network falls apart. If we start link removal from
links with low wi j (c) or Oi j (d) values, we observe a clear signature of divergence. In contrast, if
we start with high wi j (c) or Oi j (d) links, there the divergence is absent

trapping is clearly visible if the number of infected individuals in the early stages of
the diffusion process is monitored (as shown in Fig. 14.8b). Indeed, rapid diffusion
within a single community was observed, corresponding to fast increases in the num-
ber of infected users, followed by plateaus, corresponding to time intervals during
which no new nodes are infected before the news escapes the community. When
all link weights are replaced with an average value w (the control diffusion simula-
tion) the bridges between communities are strengthened, and the spreading becomes
a predominantly global process, rapidly reaching all nodes through a hierarchy of
hubs.

The dramatic difference between the real and the control spreading process begs
the following question: Where do individuals get their information? Figure 14.8c
shows that the distribution of the tie strengths through which each individual was
first infected has a prominent peak atw ≈ 102 s, indicating that, in the vastmajority of
cases, an individual learns about the news through ties of intermediate strength. The
distribution changes dramatically in the control case, however, when all tie strengths
are taken to be equal during the spreading process. In this case, the majority of
infections take place along the ties that are otherwiseweak (as depicted in Fig. 14.8d).
Therefore, both weak and strong ties have a relatively insignificant role as conduits



296 14 Community Detection

for information, the former because the small amount of on-air time offers little
chance of information transfer and the latter because they are mostly confined within
communities, with little access to new information.

To illustrate the difference between the real and the control simulation, Fig. 14.8e,
f show the spread of information in a small neighbourhood. First, the overall direction
of information flow is systematically different in the two cases, as indicated by the
large shaded arrows. In the control runs, the information mainly follows the shortest
paths. When the weights are taken into account, however, information flows along
a strong tie backbone, and large regions of the network, connected to the rest of the
network by weak ties, are only rarely infected.

Problems

The betweenness centrality of an edge (u, v) ∈ E in G(V, E) is given by Eq. 14.18.

B(u, v) =
∑

(s,t)∈V 2

σst (u, v)

σst
(14.18)

where σst is the number of shortest paths between s and t , and σst (u, v) is the number
of shortest paths between s and t that contain the edge (u, v). This is assuming that
the graph G is connected.

The betweenness centrality can be computed in the following manners.

14.4 Exact Betweenness Centrality

For each vertex s ∈ V , perform a BFS from s, which gives the BFS tree Ts . For each
v ∈ V , let v’s parent set Ps(v) be defined as the set of nodes u ∈ V that immediately
precede v on some shortest path from s to v inG. During the BFS, compute, for every
v ∈ V , the number σsv of shortest paths between s and v, according to recurrence

σsv =
⎧
⎨

⎩
1 if v = s∑
u∈Ps (v)

σsu otherwise (14.19)

After the BFS is finished, compute the dependency of s on each edge (u, v) ∈ E
using the recurrence

δs(u, v) =
⎧
⎨

⎩

σsu
σsv

if v is a leaf of Ts
σsu
σsv

(1 + ∑
x :w∈Ps (x)

δs(w, x)) otherwise (14.20)
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Fig. 14.8 The dynamics of spreading on the weighted mobile call graph, assuming that the prob-
ability for a node vi to pass on the information to its neighbour v j in one time step is given by
Pi j = xwi j , with x = 2.59 × 10−4. a The fraction of infected nodes as a function of time t . The
blue curve (circles) corresponds to spreading on the network with the real tie strengths, whereas the
black curve (asterisks) represents the control simulation, in which all tie strengths are considered
equal. b Number of infected nodes as a function of time for a single realization of the spread-
ing process. Each steep part of the curve corresponds to invading a small community. The flatter
part indicates that the spreading becomes trapped within the community. c and d Distribution of
strengths of the links responsible for the first infection for a node in the real network (c) and control
simulation (d). e and f Spreading in a small neighbourhood in the simulation using the real weights
(E) or the control case, in which all weights are taken to be equal (f). The infection in all cases
was released from the node marked in red, and the empirically observed tie strength is shown as
the thickness of the arrows (right-hand scale). The simulation was repeated 1,000 times; the size
of the arrowheads is proportional to the number of times that information was passed in the given
direction, and the colour indicates the total number of transmissions on that link (the numbers in
the colour scale refer to percentages of 1, 000). The contours are guides to the eye, illustrating the
difference in the information direction flow in the two simulations
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Since the δ values are only really defined for edges that connect two nodes, u
and v, where u is further away from s than v, assume that δ is 0 for cases that are
undefined (i.e., where an edge connects two nodes that are equidistant from s).

Do not iterate over all edges when computing the dependency values. It makes
more sense to just look at edges that are in some BFS tree starting from s, since other
edges will have zero dependency values (they are not on any shortest paths). (Though
iterating over all edges is not technically wrong if you just set the dependency values
to 0 when the nodes are equidistant from s.)

The betweenness centrality of (u, v) or B(u, v) is

B(u, v) =
∑

s∈V
δs(u, v) (14.21)

This algorithm has a time complexity of O(|V ||E |). However, the algorithm
requires the computation of the betweenness centrality of all edges even if only the
values in some edges are to required to be computed.

14.5 Approximate Betweenness Centrality

This is an approximation of the previous algorithm with the difference that it does
not start a BFS from every node but rather samples starting nodes randomly with
replacement. Also, it can approximate betweenness for any edge e ∈ E without
necessarily having to compute the centrality of all other edges as well.

Repeatedly sample a vertex vi ∈ V and perform a BFS from vi and maintain a
running sum�e of the dependency scores δvi (e) (one�e for each edge e of interest).
Sample until �e is greater than cn for some constant c ≥ 2. Let the total number of
samples be k. The estimated betweenness centrality score of e is given by n

k �e.
In this exercise, do the following:

66 Generate a preferential attachment model on 1000 nodes and degree of 4.

67 Implement the exact betweenness centrality algorithm and compute the values
for all edges e ∈ E .

68 Implement the approximate betweenness centrality algorithm and compute the
values for all edges e ∈ E . Use c = 5 and sample at most |V |

10 random starting nodes
vi .

69 Each algorithm induces an ordering over edges with respect to betweenness
centrality. Plot one curve for the exact betweenness centrality algorithm and one
for the approximate betweenness centrality algorithm, overlaid in the same plot. If
the edge with the x th largest betweenness centrality (according to the respective
algorithm) has betweenness centrality y, draw a dot with co-ordinates (x, y). Use a
logarithmic y-axis.
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Chapter 15
Representation Learning on Graphs

Machine learning on social network applications is nowubiquitouswith tasks ranging
from recommendation networks to spam detection. These applications have tradi-
tionally relied on hand-engineered heuristics to extract features from the graph to
exploit machine learning models. However, recent developments in the field of deep
learning have led to advancements in representation learning which automatically
encode the graph structure into low-dimensional embeddings.

Reference [15] provides a brief review of the representation learning techniques
that can embed individual nodes as well as subgraphs.

The major problem of applying traditional machine learning techniques to graphs
is finding a way to incorporate the information about the structure of the graph
into the machine learning model. For instance, in the case of link prediction in a
social network, one has to first encode the pairwise properties between nodes such
as the strength of relationships or number of common friends. However, there is
no straightforward approach to encode this information into a feature vector. This
means that to extract these vectors, the vectors depend on hand-engineered features
which are inflexible because they cannot adapt during the learning process, and can
be time-consuming and expensive to design.

This is where representation learning approaches are an advantage. They seek to
learn representations that encode structural information about the graph by learning
a mapping that embeds nodes, or entire subgraphs, as points in a low-dimensional
vector space,Rd . The goal is to optimize this mapping so that geometric relationships
in this learned space reflect the structure of the original graph. After optimizing the
embedding space, the learned embeddings can be used as feature inputs for machine
learning tasks. The key distinction between these representation learning approaches
and hand-engineering tasks is how they deal with the problem of capturing structural
information about the graph. Hand-engineering techniques deal with this problem as
a pre-processing step, while representation learning approaches treat it as a machine
learning task in itself, using a data-driven approach to learn embeddings that encode
graph structure.
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We assume that the representation learning algorithm takes as input an undirected
graph G = (V, E), its corresponding binary adjacency matrix A and a real-valued
matrix of node attributes X ∈ R

m×|V |. The goal is to use this information contained
in A and X to map each node, or subgraph, to a vector z ∈ R

d , where d << |V |.
There are two perspectives to consider before deciding how to optimize this map-

ping. First is the purview of unsupervised learning where only the information in A
and X are considered without accounting for the downstream machine learning task.
Second is the arena of supervised learning where the embeddings are considered as
regression and classification tasks.

15.1 Node Embedding

In node embedding, the goal is to encode nodes as low-dimensional vectors that
summarize their graph position and the structure of their local graph neighbourhood.
These low-dimensional embeddings can be viewed as encoding, or projections of
nodes into a latent space, where geometric relations in this latent space correspond
to connections in the original graph.

First, we will look at the encoder-decoder framework which consists of two main
mapping functions: an encoder, which maps each node to a low-dimensional vector
or embedding, and a decoder, which decodes structural information about the graph
from these learned embeddings. The idea behind this framework is that ifwe can learn
to decode high-dimensional graph information from the encoded low-dimensional
embeddings, then these embeddings should be sufficient for the downstreammachine
learning tasks.

Formally, the encoder is a function

ENC : V → R
d (15.1)

that maps nodes to vector embeddings, zi ∈ R
d (where zi corresponds to the embed-

ding vector for the node vi ∈ V ).
Adecodermust accept a set of node embeddings as input anddecodeuser-specified

graph statistics from these embeddings. Although there are several ways to accom-
plish this task, one of the most commonly used is a basic pairwise decoder

DEC : Rd × R
d → R

+ (15.2)

that maps pairs of node embeddings to a real-valued graph proximity measure, which
quantifies the proximity of the two nodes in the original graph.

When we apply the pairwise decoder to a pair of embeddings (zi , z j ) we get a
reconstruction of the proximity between vi and v j in the original graph, and the goal
is to optimize the encoder and decoder mappings to minimize the error, or loss, in
this reconstruction so that:
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DEC(ENC(vi ), ENC(v j )) = DEC(zi , z j ) ≈ sG(vi , v j ) (15.3)

where sG is a user-defined, graph-based proximity measure between nodes, defined
over G.

Most approaches realize the reconstruction objective (Eq.15.3) by minimizing an
empirical loss, L, over a set of training node pairs, D

L =
∑

(vi ,v j )∈D
l(DEC(zi , z j ), sG(vi , v j )). (15.4)

where l : R × R → R is a user-specified loss function, which measures the dis-
crepancy between the decoded proximity values, DEC(zi , z j ), and the true values,
sG(vi , v j ).

Once the encoder-decoder system has been optimised, we can use the trained
encoder to generate embeddings for nodes, which can then be used as a feature
inputs for downstream machine learning tasks.

15.1.1 Direct Encoding

In this direct encoding approach, the encoder function is simply an embedding
lookup:

ENC(vi ) = Zvi (15.5)

where Z ∈ R
d×|V | is amatrix containing the embedding vectors for all nodes and vi ∈

IV is a one-hot indicator vector indicating the column of Z corresponding to node vi .
The set of trainable parameters for direct encoding methods is simply �ENC = {Z},
i.e. the embedding matrix Z is optimized directly.

15.1.2 Factorization-Based Approaches

Early methods for learning representations for nodes largely focused on matrix-
factorization approaches, which are directly inspired by classic techniques for dimen-
sionality reduction.

15.1.2.1 Laplacian Eigenmaps

This technique can be viewed as a direct encoding approach in which the decoder is
defined as
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DEC(zi , z j ) = ||zi − z j ||22 (15.6)

and the loss function weights pairs of nodes according to their proximity in the graph

L =
∑

(vi ,v j )∈D
DEC(zi , z j ) · sG(vi , v j ) (15.7)

15.1.2.2 Inner-Product Methods

There are a large number of embedding methodologies based on a pairwise, inner-
product decoder

DEC(zi , z j ) = zTi z j (15.8)

where the strength of the relationship between two nodes is proportional to the
dot product of their embeddings. This decoder is commonly paired with the mean-
squared-error (MSE) loss

L =
∑

(vi ,v j )∈D
||DEC(zi , z j ) − sG(vi , v j )||22 (15.9)

Graph Factorization (GF) algorithm [1], GraRep [4], and HOPE [22] fall under
this category. These algorithms share the same decoder function as well as the loss
function, but differ in the proximity measure. The GF algorithm defines proxim-
ity measure directly based on the adjacency matrix, i.e, sG(vi , v j ) � Ai, j . GraRep
uses higher-order adjacency matrix as a definition of the proximity measure, (e.g.,
sG(vi , v j ) � A2

i, j . The HOPE algorithm supports general proximity measures.
These methods are generally referred to as matrix-factorization approaches

because, averaging across all nodes, they optimize loss function of the form:

L = ||ZT Z − S||22 (15.10)

where S is a matrix containing pairwise proximity measures (i.e., Si, j � sG(vi , v j ))
and Z is the matrix of node embeddings. Intuitively, the goal of these methods
is simply to learn embeddings for each node such that the inner product between
the learned embedding vectors approximates some deterministic measure of graph
proximity.

15.1.3 Random Walk Approaches

In this method, the node embeddings are learnt from random walks statistics. The
idea is to optimize the node embeddings so that nodes have similar embeddings if
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they tend to co-occur on short random walks over the graph. Thus, instead of using
a deterministic measure of graph proximity, these random walk methods employ a
flexible, stochastic measure of graph proximity.

15.1.3.1 DeepWalk and node2vec

DeepWalk [23] and node2vec [13] rely on direct encoding and use a decoder based on
the inner product. However, instead of trying to decode a fixed deterministic distance
measure, these approaches optimize embeddings to encode the statistics of random
walks. The idea behind these approaches is to learn embeddings so that:

DEC(zi , z j ) � ez
T
i z j

∑
vk∈V

ez
T
i zk

(15.11)

≈ pG,T (v j |vi )

where pG,T (v j |vi ) is the probability of visiting v j on a length-T randomwalk starting
at vi , with T usually defined to be in the range T ∈ {2, . . . , 10}. pG,T (v j |vi ) is both
stochastic and symmetric.

More formally, these approaches attempt to minimize the following cross-entropy
loss:

L =
∑

(vi ,v j )∈D
−log(DEC(zi , z j )) (15.12)

where in this case the training set, D, is generated by sampling random walks
starting from each node (i.e., where N pairs for each node, vi , are sampled from
the distribution (vi , v j ) ∼ pG,T (v j |v j )). However, naively evaluating this loss is of
order O(|D||V |) since evaluating the denominator of Eq.15.11 has time complexity
O(|V |). Thus, DeepWalk and node2vec use different optimizations and approxima-
tions to compute the loss in Eq.15.12. DeepWalk employs a “hierarchical softmax”
technique to compute the normalizing factor, using a binary-tree structure to accel-
erate the computation. In contrast, node2vec approximates Eq.15.12 using “negative
sampling”: instead of normalizing over the full vertex set, node2vec approximates
the normalizing factor using a set of random “negative samples”.

The key distinction between node2vec and DeepWalk is that node2vec allows
for a flexible definition of random walks, whereas DeepWalk uses simple unbiased
random walks over the graph. In particular, node2vec introduces two random walk
hyper-parameters, p and q, that bias the random walk. The hyper-parameter p con-
trols the likelihood of the walk immediately revisiting a node, while q controls the
likelihood of the walk revisiting a node’s one-hop neighbourhood. By introducing
these hyper-parameters, node2vec is able to smoothly interpolate between walks that



306 15 Representation Learning on Graphs

Fig. 15.1 a Graph of the Zachary Karate Club network where nodes represent members and edges
indicate friendship between members. b Two-dimensional visualization of node embeddings gen-
erated from this graph using the DeepWalk method. The distances between nodes in the embedding
space reflect proximity in the original graph, and the node embeddings are spatially clustered
according to the different colour-coded communities

Fig. 15.2 Graph of the Les Misérables novel where nodes represent characters and edges indicate
interaction at some point in the novel between corresponding characters. (Left) Global positioning
of the nodes. Same colour indicates that the nodes belong to the same community. (Right) Colour
denotes structural equivalence between nodes, i.e, they play the same roles in their local neighbour-
hoods. Blue nodes are the articulation points. This equivalence where generated using the node2vec
algorithm

are more akin to breadth-first or depth-first search. Reference [13] found that tun-
ing these parameters allowed the model to trade-off between learning embeddings
that emphasize community structures or embeddings that emphasize local structural
roles.

Figure15.1 depicts the DeepWalk algorithm applied to the Zachary Karate Club
network to generate its two-dimensional embedding. The distance between nodes in
this embedding space reflects proximity in the original graph.

Figure15.2 illustrates the node2vec algorithm applied to the graph of the charac-
ters of the Les Misérables novel where colour depict the nodes which have structural
equivalence.
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15.1.3.2 Large-Scale Information Network Embeddings (LINE)

Another highly successful direct encoding approach, which is not based on random
walks but is often compared with DeepWalk and node2vec, is the LINE method
[28]. LINE combines two encoder-decoder objectives that optimize “first-order”
and “second-order” graph proximity, respectively. The first-order objective uses a
decoder based on the sigmoid function,

DEC(zi , z j ) = 1

1 + e−zTi z j
(15.13)

and an adjacency-based proximity measure. The second-order encoder-decoder
objective is similar but considers two-hop adjacency neighbourhoods and uses an
encoder identical to Eq.15.11. Both the first-order and second-order objectives are
optimized using loss functions derived from the KL-divergence metric [28]. Thus,
LINE is conceptually related to node2vec and DeepWalk in that it uses a probabilis-
tic decoder and loss, but it explicitly factorizes first- and second-order proximities,
instead of combining them in fixed-length random walks.

15.1.3.3 Hierarchical Representation Learning for Networks (HARP)

Reference [7] introduced a “meta-strategy”, called HARP, for improving various
random-walk approaches via a graph pre-processing step. In this approach, a graph
coarsening procedure is used to collapse related nodes in G together into “supern-
odes”, and then DeepWalk, node2vec, or LINE is run on this coarsened graph. After
embedding the coarsened version of G, the learned embedding of each supernode
is used as an initial value for the random walk embeddings of the supernode’s con-
stituent nodes (in another round of non-convex optimization on a “finer-grained”
version of the graph). This general process can be repeated in a hierarchical man-
ner at varying levels of coarseness, and has been shown to consistently improve
performance of DeepWalk, node2vec, and LINE.

These direct encoding approaches that we have discussed so far train unique
embedding vectors for each node independently and hence have the following draw-
backs:

1. No parameters are shared between nodes in the encoder. This can be statistically
inefficient, since parameter sharing can act as a powerful form of regulariza-
tion, and it is also computationally inefficient, since it means that the number of
parameters in direct encoding methods necessarily grows as O(|V |).

2. Direct encoding also fails to leverage node attributes during encoding. In many
large graphs, nodes have attribute information (e.g., user profiles) that is often
highly informative with respect to the node’s position and role in the graph.

3. Direct encoding methods can only generate embeddings for nodes that were
present during the training phase, and they cannot generate embeddings for pre-
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viously unseen nodes unless additional rounds of optimization are performed to
optimize the embeddings for these nodes. This is highly problematic for evolving
graphs, massive graphs that cannot be fully stored in memory, or domains that
require generalizing to new graphs after training.

A number of approaches have been proposed for dealing with the aforementioned
drawbacks.

15.2 Neighbourhood Autoencoder Methods

Deep Neural Graph Representations (DNGR) [5] and Structural Deep Network
Embeddings (SDNE) [30] address the first problem. Unlike the direct encoding
methods, they directly incorporate graph structure into the encoder algorithm. These
approaches use autoencoders [16] to compress information about a node’s local
neighbourhood. Additionally, the approaches use a unary decoder instead of a pair-
wise one.

In these approaches, each node, vi , is associated with a neighbourhood vector,
si ∈ R

|V |, which corresponds to vi ’s row in the matrix S. The si vector contains vi ’s
pairwise graph proximity with all other nodes and functions as a high-dimensional
vector representation of vi ’s neighbourhood. The autoencoder objective for DNGR
and SDNE is to embed nodes using the si vectors such that the si vectors can then
be reconstructed from these embeddings:

DEC(ENC(si )) = DEC(zi ) ≈ si (15.14)

The loss for these methods takes the following form:

L =
∑

vi∈V
||DEC(zi ) − si ||22 (15.15)

As with the pairwise decoder, we have that the dimension of the zi embeddings
is much smaller than |V |, so the goal is to compress the node’s neighbourhood
information into a low-dimensional vector. For both SDNE and DNGR, the encoder
and decoder functions consist of multiple stacked neural network layers: each layer
of the encoder reduces the dimensionality of its input, and each layer of the decoder
increases the dimensionality of its input.

SDNE and DNGR differ in the similarity functions they use to construct the
neighborhood vectors si and also how the autoencoder is optimized. DNGR defines
si according to the pointwise mutual information of two nodes co-occurring on
randomwalks, similar to DeepWalk and node2vec. SDNE sets si � Ai and combines
the autoencoder objective with the Laplacian eigenmaps objective.

However, the autoencoder objective depends on the input si vector, which contains
information about vi ’s local graph neighbourhood. This dependency allows SDNE
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Fig. 15.3 Illustration of the neighbourhood aggregation methods. To generate the embedding for
a node, these methods first collect the node’s k-hop neighbourhood. In the next step, these methods
aggregate the attributes of node’s neighbours, using neural network aggregators. This aggregated
neighbourhood information is used to generate an embedding, which is then fed to the decoder

and DNGR to incorporate structural information about a node’s local neighbourhood
directly into the encoder as a form of regularization, which is not possible for the
direct encoding approaches. However, despite this improvement, the autoencoder
approaches still suffer from some serious limitations. Most prominently, the input
dimension to the autoencoder is fixed at |V |, which can be extremely costly and
even intractable for very large graphs. In addition, the structure and size of the
autoencoder is fixed, so SDNE and DNGR cannot cope with evolving graphs, nor
can they generalize across graphs.

15.3 Neighbourhood Aggregation and Convolutional
Encoders

Another way to deal with the limitations of direct encoding is by designing encoders
that rely on a node’s local neighbourhood instead of the entire graph. These
approaches attempt to generate embeddings by aggregating information from a
node’s local neighbourhood (as shown in Fig. 15.3).

These neighbourhood aggregation algorithms rely on node features or attributes
(denoted xi ∈ R

m) to generate embeddings. The neighbourhood aggregation meth-
ods leverage this attribute information to inform their embeddings. In cases where
attribute data is not given, these methods can use simple graph statistics as attributes
or assign each node a one-hot indicator vector as an attribute. Thesemethods are often
called convolutional because they represent a node as a function of its surrounding
neighbourhood, in a manner similar to the receptive field of a center-surround con-
volutional kernel in computer vision [18].

In the encoding phase, the neighbourhood aggregation methods build up the rep-
resentation for a node in an iterative, or recursive fashion. First, the node embeddings
are initialized to be equal to the input node attributes. Then at each iteration of the
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encoder algorithm, nodes aggregate the embeddings of their neighbours, using an
aggregation function that operates over sets of vectors. After this aggregation, every
node is assigned a new embedding, equal to its aggregated neighbourhood vector
combined with its previous embedding from the last iteration. Finally, this combined
embedding is fed through a dense neural network layer and the process repeats. As
the process iterates, the node embeddings contain information aggregated from fur-
ther and further reaches of the graph. However, the dimensionality of the embeddings
remains constrained as the process iterates, so the encoder is forced to compress all
the neighbourhood information into a low dimensional vector. After K iterations the
process terminates and the final embedding vectors are output as the node represen-
tations.

Graph convolutional networks (GCN) [18, 19, 27, 29], column networks [24],
and the GraphSAGE algorithm [14] are some of the algorithms that follow this
approach. A set of aggregation functions and a set of weight matrices {Wk,∀k ∈
[1, K ]} specify how to aggregate information from a node’s local neighbourhood and,
unlike the direct encoding approaches, these parameters are shared across nodes. The
same aggregation function and weight matrices are used to generate embeddings for
all nodes, and only the input node attributes and neighbourhood structure change
depending on which node is being embedded. This parameter sharing increases
efficiency, provides regularization, and allows this approach to be used to generate
embeddings for nodes that were not observed during training.

GraphSAGE, column networks, and the various GCN approaches all follow this
algorithm but differ primarily in how the aggregation and vector combination are
performed. GraphSAGE uses concatenation and permits general aggregation func-
tions; the authors experiment with using the element-wise mean, a max-pooling
neural network and LSTMs [17] as aggregators, and they found the the more com-
plex aggregators, especially the max-pooling neural network, gave significant gains.
GCNs and column networks use a weighted sum and a (weighted) element-wise
mean.

Column networks also add an additional “interpolation” term, setting

hk
′

v = αhkv + (1 − α)hk−1
v (15.16)

where α is an interpolation weight computed as a non-linear function of hk−1
v and

hk−1
N (v). This interpolation term allows the model to retain local information as the

process iterates.
In principle, the GraphSAGE, column network, and GCN encoders can be com-

binedwith any of the previously discussed decoders and loss functions, and the entire
system can be optimized using Stochastic Gradient Descent.

At a high level, these approaches solve the fourmain limitations of direct encoding:
they incorporate graph structure into the encoder; they leverage node attributes;
their parameter dimension can be made sub-linear in |V |; and they can generate
embeddings for nodes that were not present during training.
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15.4 Binary Classification

In cases where nodes have an associated binary classification label, the following
approach can be used. It should be noted that this approach can be easily extended
to more complex classification settings.

Assume that we have a binary classification label, yi ∈ Z, associated with each
node. To learn to map nodes to their labels, we can feed our embedding vectors, zi ,
through a logistic, or sigmoid, function ŷi = σ(zTi θ), where θ is a trainable parameter
vector. We can then compute the cross-entropy loss between these predicted class
probabilities and the true labels:

L =
∑

vi∈V
yi log(σ(ENC(vi )

T θ)) + (1 − yi )log(1 − σ(ENC(vi )
T θ)) (15.17)

The gradient computed according to Eq.15.17 can then be backpropagated
through the encoder to optimize its parameters. This task-specific supervision can
completely replace the reconstruction loss computed using the decoder, or it can be
included along with the decoder loss.

15.5 Multi-modal Graphs

The previous sections have all focused on simple, undirected graphs. However many
real-world graphs have complex multi-modal, or multi-layer, structures (e.g., het-
erogeneous node and edge types). In this section we will look at strategies that cope
with this heterogeneity.

15.5.1 Different Node and Edge Types

When dealing with graphs that contain different types of nodes and edges, a general
strategy is to (i) use different encoders for nodes of different types [6], and (ii) extend
pairwise decoders with type-specific parameters [21, 27]. The standard inner product
edge decoder can be replaced with a bilinear form:

DECτ (zi , z j ) = zT Aτ z (15.18)

where τ indexes a particular edge type and Aτ is a learned parameter specific to
edges of type τ . The matrix, Aτ , in Eq.15.18 can be regularized in various ways,
which can be especially useful when there are a large number of edge types, as in the
case for embedding knowledge graphs. Indeed, the literature on knowledge-graph
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completion,where the goal is predictmissing relations in knowledge graphs, contains
many related techniques for decoding a large number of edge types.

Recently, [10] also proposed a strategy for sampling random walks from hetero-
geneous graphs, where the random walks are restricted to only transition between
particular types of nodes. This approach allows many of the methods in Sect. 15.1.3
to be applied on heterogeneous graphs and is complementary to the idea of including
type-specific encoders and decoders.

15.5.2 Node Embeddings Across Layers

When graphs have multiple “layers” that contain copies of the same nodes, such as in
protein-protein interaction networks derived from different tissues (e.g., brain or liver
tissue), some proteins occur across multiple tissues. In these cases it can be beneficial
to share information across layers, so that a node’s embedding in one layer can be
informed by its embedding in other layers. Reference [31] offer one solution to this
problem, called OhmNet, that combines node2vec with a regularization penalty that
ties the embeddings across layers. Assuming that we have a node vi , which belongs
to two distinct layers G1 and G2, the standard embedding loss on this node can be
augmented as follows:

L(vi )
′ = L(vi ) + λ||zG1

i − zG2
i || (15.19)

where L denotes the usual embedding loss for that node, λ denotes the regulariza-
tion strength, and zG1

i and zG2
i denote vi ’s embeddings in the two different layers,

respectively.
Reference [31] further extend this idea by exploiting hierarchies between graph

layers. For example, in protein-protein interaction graphs derived from various
tissues, some layers correspond to interactions throughout large regions (e.g., inter-
actions that occur in any brain tissue) while other interaction graphs are more fine-
grained (e.g., only interactions that occur in the frontal lobe). To exploit this structure,
embeddings can be learned at the various levels of the hierarchy, and the regulariza-
tion in Eq.15.19 can recursively be applied between layers that have a parent-child
relationship in the hierarchy.

15.6 Embedding Structural Roles

In many tasks it is necessary to learn representations that correspond to the struc-
tural roles of the nodes, independent of their global graph positions. The node2vec
approach offers one solution to this problem. It was found that biasing the ran-
dom walks allows the model to better capture structural roles. However, [11, 25]
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have developed node embedding approaches that are specifically designed to cap-
ture structural roles.

Reference [25] propose struc2vec,which involves generating a a series ofweighted
auxiliary graphs G ′

k , k = {1, 2, . . . } from the original graph G, where the auxiliary
graph G ′

k captures structural similarities between nodes’ k-hop neighbourhoods. In
particular, letting Rk(vi ) denote the ordered sequence of degrees of the nodes that
are exactly k-hops away from vi , the edge-weights,wk(vi , v j ), in auxiliary graph G ′

k
are recursively defined as

wk(vi , v j ) = wk−1(vi , v j ) + d(Rk(vi ), Rk(v j )) (15.20)

where w0(vi , v j ) = 0 and d(Rk(vi ), Rk(v j )) measures the distance between the
ordered degree sequences Rk(vi ) and Rk(v j ). After computing these weighted aux-
iliary graphs, struc2vec runs biased random walks over them and uses these walks
as input to the node2vec optimization algorithm.

Reference [11] takes an approach called GraphWave to capture structural roles.
It relies on spectral graph wavelets and heat kernels. Let L denote the graph Lapla-
cian, i.e, L = D − A where D contains node degrees on the diagonal and A is the
adjacency matrix. Also, let U and λi , i = 1 . . . |V | denote the eigenvector matrix
and eigenvalues of L , respectively. Finally, we define a heat kernel, g(λ) = e−sλ,
with pre-defined scale s. Using U and g(λ), GraphWave computes a vector, ψvi ,
corresponding to the structural role of node, vi ∈ V , as

ψvi = UGUT vi (15.21)

where G = diag([g(λ1), . . . , g(λ|V |)]) and vi is a one-hot indicator vector corre-
sponding to vi ’s row/column in the Laplacian. The paper shows that these ψvi vec-
tors implicitly relate to topological quantities, such as vi ’s degree and the number of
k-cycles vi is involved in. With a proper choice of scale, s, the WaveGraph is able to
effectively capture structural information about a node’s role in a graph.

Node embeddings find applications in visualization, clustering, node classifica-
tion, link prediction and pattern discovery.

15.7 Embedding Subgraphs

Now that we have looked at ways of embedding nodes, we will now turn to the task
of embedding subgraphs. Here, the goal is to learn a continuous vector represen-
tation, zS ∈ R

d , of an induced subgraph G[S] of the graph G, where S ⊆ V . This
embedding, zS , can then be used to make predictions about the entire subgraph.

Most of the methods discussed in node embeddings can be extended to subgraphs.
The node embeddings and convolutional approaches discussed earlier is used to gen-
erate embeddings for nodes and then additional modules are applied to aggregate sets
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of node embeddings corresponding to subgraphs. The primary distinction between
the different approaches is how they aggregate the set of node embeddings corre-
sponding to a subgraph.

15.7.1 Sum-Based Approaches

Reference [12] introduced “convolutionalmolecular fingerprinting” to represent sub-
graphs inmolecular graph representations by summing all the individual node embed-
dings in the subgraph

zS =
∑

vi∈S
zi (15.22)

Reference [8] constructive intermediate embeddings, ηi, j , corresponding to edges,
(i, j) ∈ E

ηk
i, j = σ(Wk

E · COMBI N E(xi , AGGREGAT E({ηk−1
l,i ,∀vl ∈ N (vi ) \ v j })))

(15.23)
These edge embeddings are then aggregated to form the node embeddings:

zi = σ(Wk
V · COMBI N E(xi , AGGREGAT E({ηK

i,l,∀vl ∈ N (vi )}))) (15.24)

Once these embeddings are computed, a simple element-wise sum to combine the
node embeddings for a subgraph.

15.7.2 Graph-Coarsening Approaches

References [3, 9] also employ convolutional approaches, but instead of summing the
node embeddings for thewhole graph, they stack convolutional and graph coarsening
layers. In the graph coarsening layers, the nodes are clustered together, and the
clustered node embeddings are combined using element-wise max-pooling. After
clustering, the new coarser graph is again fed through a convolutional encoder and
the process repeats.

Unlike the previous discussed convolutional approaches, there is considerable
emphasis placed on designing convolutional encoders based upon the graph Fourier
transform. However, because the graph Fourier transform requires identifying and
manipulating the eigenvectors of the graph Laplacian, naive versions of these
approaches are necessarily O(|V |3). State-of-the-art approximations to these spectral
approaches are discussed in [2].
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15.8 Graph Neural Networks

Reference [26] discuss the graph neural network (GNN)where instead of aggregating
information from neighbours, the idea is that subgraphs can be viewed as specifying
a compute graph, i.e, a recipe for accumulating and passing information between
nodes.

Every node, vi , is initialized with a random embedding, h0i , and at each iteration
of the GNN algorithm, nodes accumulate inputs from their neighbours using simple
neural network layers

hki =
∑

v j∈N (vi )

σ(Whk−1
j + b) (15.25)

whereW ∈ R
d×d and b ∈ R

d are trainable parameters and σ is a non-linearity. Equa-
tion15.25 is repeatedly applied in a recursive fashion until the embeddings converge,
and special care must be taken during initialization to ensure convergence. Once the
embeddings have converged, they are aggregated for the entire (sub)graph and this
aggregated embedding is used for subgraph classification. The paper suggests that
the aggregation can be done by introducing a “dummy” super-node that is connected
to all nodes in the target subgraph.

Reference [20] extend and modify the GNN framework to use Gated Recurrent
Units and back propagation through time,which removes the need to run the recursion
in Eq.15.25 to convergence. Adapting the GNN framework to use modern recurrent
units also allows the leverage of node attributes and to use the output of intermediate
embeddings of subgraphs.

The GNN framework is highly expressive, but it is also computationally intensive
compared to the convolutional approaches, due to the complexities of ensuring con-
vergence or running back propagation through time. Thus, unlike the convolutional
approaches, which are most commonly used to classify molecular graphs in large
datasets, the GNN approach has been used for more complex, but smaller scale,
tasks, e.g., for approximate formal verification using graph-based representations of
programs.
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Undirected self-looped graph, 13
Undirected unweighted graph, 11
Undirected weighted graph, 11
Uniform distribution policy, 249
Uniform immunization programmes, 200
Uniform random d-regular graph, 51
Uniform random jump distribution, 275
Uniform refresh policy, 247
Uniform sampling, 54
Union-Find, 92
unique, 27
Unique friends-of-friends, 93
Unit cost algorithm, 194
Unit-cost greedy algorithm, 195
Unstructured P2P network, 101, 103
Unsupervised learning, 302
Unweighted graph, 11
Urban myth, 61
URL Resolver, 268
URL Server, 267
User evaluation, 109, 134
Utility index, 245
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Variance-to-mean ratio, 89
VERTEX COVER OPTIMIZATION, 185
Vertices, vii
Viceroy, 101
Viral marketing, 173
Visualization, 313
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Water distribution system, 198
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Watts, 62
Watts–Strogatz model, 79
WCC algorithm, 28
WeakBalDet, 140
Weakly connected directed graph, 17, 19
Weak structural balance property, 111
Weak ties, 280
Web, 25
Webbiness, 89
Web crawls, 25
Weighted auxillary graph, 313
Weighted cascade, 181
Weighted graph, 11
Weighted linear combinations, 123
Weighted path count, 283
Who-talks-to-whom graph, ix
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Wikipedia adminship election, 136
Wikipedia adminship voting network, 114
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Zachary Karate Club network, 306
Zero-crossing, 169
Zipf distribution, 32
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