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Preface

Design is a prosperous field. It reaches across the domains of science, stretching out
into seemingly irrelevant fields such as robotics. Robots are becoming a part of
human lives and, to an ever-increasing extent, will have an impact on human lives
since the field of social robotics has been emerging rapidly. Social robots are
expected to interact with people in various contexts. The emotional component
plays an important role in the interaction with people.

The importance of emotion within practical and scientific design has increased
significantly. People form emotional associations with the objects they use and
emotions play a crucial role in people’s capacity to comprehend and discover the
world. Emotional design endeavors to make products that encourage positive
emotions and is concerned with pleasure and usability as well as aesthetics,
attractiveness and beauty. If people are engaged to specific products, the impact of
positive emotions cannot be neglected. As such emotional design is essential within
social robotics to create positive experiences for the people who will coexist with
robots. Therefore, for the future involvement of social robots, more emotional cues
should be introduced to communicate and respond to the perception of people
interacting with them. Providing robots with emotions can be very useful for
facilitating Human-Robot interaction. However, human’s emotions toward social
robots should not be neglected. Social robots can be designed to be human centric
to interact with people and maintain a state of positive emotions.

The main emphasis of this book is the emotional component of social robot
design, as a means of promoting successful Human-Robot Interaction. The suc-
cessful social robot design is the ultimate fulfillment of creativity and multidisci-
plinary work. Social robots are designed by people and meant for people. This book
highlights the multidisciplinary work and design for people.

The contents have been structured to achieve four main objectives: to promote
emotional design for robotics; to highlight the fundamentals of design concerning
the emotional component of social robots; to define the measures that can be used to
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identify the emotional component of robots used in the environment; and enrich-
ment through case studies. This book makes a contribution to a very promising and
challenging research field in which much needs to be done to develop social robots
that are more affective, pleasurable, and satisfactory.

Lisbon, Portugal Hande Ayanoglu
Emilia Duarte
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Chapter 1 ®)
Introduction Check for

Hande Ayanoglu and Emilia Duarte

Over the past few years, significant technological development has been witnessed.
This progress is visible not only in scientific and technological areas but also in social
sciences and humanities (i.e., Design). Design, as a field of knowledge, is influenced
by diverse disciplines such as Sociology, Philosophy, Psychology, Neuroscience,
Geometry, Engineering, Robotics, among others. However, it was necessary to wait
until the twenty-first century to attend to the greatest impacts in Design, one of
which was suggested by Norman (2004) at the beginning of the new century. Nor-
man suggested that assumptions from the field of Psychology related to the study
about emotions are applicable to Design, specifically to product design. The author
proposes and defends the importance of emotions in product design and how it is
reflected in the user’s interaction with the product or object. With this new argument,
emotional design arises, which, over the last decades, has provided a big innovation
in the way designers project and develop products, given the emotion and experience
that they aim at triggering in the user. Van Gorp and Adams (2012) emphasize that
over the last three decades, research that examines the relationship between design
and emotion has steadily grown.

Another strong influence on the field of Design was Computer Science and
Robotics. Computer Science technology boosted Design in the development of prod-
ucts that improve Human—Computer Interaction (HCI) (e.g., Norman and Draper
1986). In the meanwhile, Robotics was in its expansion and innovation phase. Ini-
tially, the objective of Robotics was the creation of industrial robots that would
replace humans in the most dangerous and routine tasks (e.g., Paiva et al. 2014). As
a consequence of technological development, other robots (e.g., companion robots)
besides industrial ones were created which originated in the need for and focus on
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Human-Robot Interaction (HRI) (e.g., Breazeal 2002). Considering the growing
number of robots designed to interact directly with humans, it has become nec-
essary for the interaction to be able to be social. Within this scope, if robots are
going to coexist with humans, then, better robot design is required (Kamide et al.
2014) considering more appropriate, desirable, suitable, and preferable interactions.
Design is integral to the continued development of the field of HRI and it is in this
sense that Design, Robotics, and Emotional Design should join forces for a superior
HRI, namely for social robots.

According to Sanders (1992), product requirements are usefulness, usability, and
desirability. Emotional design concerns with pleasure and usability, besides esthetics,
attractiveness, and beauty (Norman 2004). According to Mokdad and Abdel-Moniem
(2017) emotional design also takes users’ emotions into consideration while design-
ing or redesigning products by maximizing the good (positive) emotions and mini-
mizing the bad (negative) emotions. If an emotional connection is necessary, pleasing
and satisfying robots can build to strengthen the connection. To further the useful,
usable, and desirable experiences in a relationship with robots, designers manipulate
diverse characteristics of a robot (e.g., appearance, expressiveness, and behavior).
The manipulations, familiar or unfamiliar, can result in triggering people’s desires
and create attraction and engagement to robots. Van Gorp and Adams (2012) state
that the only familiarity can be enough to create pleasurable emotions and unfamil-
iar products are potentially unpleasant. In this sense, equipping robots with familiar
features could lead to more desirable HRI through user testing to understand this
connection for robots.

Emotion is an overriding influence in everyday life (Demasio 1994). Norman (in
van Geel 2011) remarks that everything has a personality and sends an emotional
signal. Van Gorp and Adams (2012) state that people tend to perceive a personality
for each object and form relationships with each of them based on their perceived
personality. In the case of robots, their personality can be represented by their charac-
teristics. However, it should be investigated if the characteristics can evoke positive
emotions and therefore lead to an engaging HRI.

Goris et al. (2011) suggest that the upcoming generation of robots will collaborate
with humans in many aspects of daily life: from domestic tasks to health care with
different population groups (e.g., children or elderly), whereby communication is
essential. Different kinds of communication (e.g., using vocal expressions or ges-
tures) can occur between humans and robots. Since emotions play a vital role in
improving communication as well as in the mutual understanding between humans
and robots (Buiu and Popescu 2011), Breazeal and Brooks (2005) suggest that inter-
acting with a robot with the capability of giving social cues (e.g., by appearance or
expressing emotions) is more natural and easier for people.

A person’s psychological reactions toward robots can offer an important perspec-
tive on the investigation of expressions of emotions by robots. Fellous and Arbib
(2005) declare that some aspects of emotions depend only on how humans react
to observing behavior, some depend additionally on a scientific account of adap-
tive behavior, and some depend also on how that behavior is internally generated.
Therefore, the main concern is how robots with emotions can improve the way they
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function, how people observe them correctly and feel more natural with them around.
Moreover, people can more easily relate to arobot when they are able to connect with
it on a personal level. As a result, the overall intent is not to create a robotic human,
but rather to produce useful interactions by using emotions in autonomous robotic
systems which can create positive emotions and lead people to define interaction
with the robot as a desirable experience.

Emotions occur in every relationship from formal to the most intimate one; they
can compel people to take action and influence their thoughts and decisions which
can establish or ruin relationships. Arkin (2005) indicates that emotions provide
two crucial roles for robots which are survivability and interaction. Survivability
can be essential in a moment that does not allow for time to think nor react but
emotions can help to modulate the situation and robots should interact effectively and
efficiently with people in ways they are familiar and comfortable with. As emotions
play an important role during interactions, incorporating emotions should be a key
consideration in robot design.

When designing a robot that can be enjoyed and cared for over extended periods
of time, it is essential that an understanding of not only Robotics but also emotional
design be brought to bear. Emotional experiences with robots may be as important
as the robot’s task performance in terms of user acceptance and assessments of
effectiveness. Understanding emotional design, how users feel, and what affects these
feelings, is essential to provide better user experiences and interactions with robots.
Some studies regarding emotions (e.g., Dautenhahn and Billard 1999; Breazeal 2002)
provide support for effective interactivity between a robot and a human.

In the beginning, robots were nothing more than machines that people use to
help and/or accomplish a task. Reeves and Nass (1996) emphasize that everyone
responds, automatically and unconsciously, socially and naturally to media (i.e.,
robots). Accordingly, emotional meaning can become more important to a person
than the functional meaning during an interaction. There are many robots in the mar-
ket and although some of them are not particularly attractive, people still enjoy them.
This can show that emotional meaning has a stronger effect on a person. Van Gorp
and Adams (2012) mention connections which are created between people and robots
that subconsciously affect the people. Hence, including emotional design is essential
to provide meaning, connections, relations, and experiences with robots. Introducing
emotions to robots is one way to ascribe positive meanings, create stronger connec-
tions, form desirable relations, and initiate effective interactions for enhancing HRI.

Social robotics has been gaining importance due to the increasing number of
robots performing tasks where interaction with humans is a necessity. The ultimate
goal of Social robotics is to communicate and interact with humans on an emotional
level. Another goal of designing a social robot is that people should feel secure.
How do people feel secure and comfortable while they are interacting with a robot—
something that many regard as a threat to the human race? What kind of characteristics
of robot design can help to overcome this association? What kind of process to
elicit emotions is involved? How can we design a robot that is strong or weak,
friendly or unfriendly, natural or unnatural? Another goal is to understand how people
respond to robots emotionally. People should be able to interact with robots and this



6 H. Ayanoglu and E. Duarte

interaction should fit emotionally in terms of being engaged and having positive
emotions toward them. Van Gorp and Adams (2012) suggest that a product must
be emotional to be successful. Therefore, for successful HRI, emotions should be
involved. In this sense, the main goal of this book is to present the process of designing
a social robot, particularly focusing on its emotional component in order to create
emotional connections and desirable and pleasurable experiences to improve the
HRI. Moreover, the book helps to create robot designs that communicate emotions
to fulfill users’ needs by presenting the evaluation methods to test the emotions of
the users.
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Chapter 2 ®)
A Motivational Case Study in Social oo
Robotics

Joao S. Sequeira, Maria Isabel Aldinhas Ferreira, Ana Nunes Barata
and Maria Filomena Pereira

Abstract Different social environments have been used, in recent times, as con-
texts for interaction by social robotics such as children in hospitals or classrooms
with positive results. Recently, the MOnarCH project explored the formation of
social relations between a robot and users, namely children, in the Pediatrics ward of
an Oncological hospital. This robot can navigate autonomously in the available free
space, interacting with basic verbal and non-verbal utterances, explicitly when some-
one is recognized or touches it. The chapter shows the design process of MOnarCH
which is carried out in three phases: Conceptual, Production, and Deployment and
Evaluation. The main intention is to understand how the system can be designed to
best suit the people and the society who need to use it and include the necessary
flexibility for a posteriori behavioral adjustment. Annotated video recordings and
micro-behaviors that were used in some of the experiments asserts that MOnarCH
is simply a playmate for a physically and emotionally fragile population, a new
experience that does not replace healthcare professionals. The empirical evidence
suggests that the vast majority of children surveyed had the correct perception that
the robot was not alive. Nevertheless, children acknowledged the robot’s presence in
the Pediatrics ward and the liveliness features implemented positively.

Keywords Social robot + User-centered design + Design process - MOnarCH
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2.1 The Dawn of Social Robotics

By acquiring mobility and becoming robots, computers are nowadays required to
engage in complex interactions with humans. The resulting momentum developed
into social robotics, a blossoming area in the wide field of Robotics. Pragmatic
economics, the aging of the population, and the intrinsic desire for a better Quality
of Life (QoL) have been the underlying leitmotifs of this development.

Initially conceived to perform repetitive actions where human instructions were
given a priori, robots are now starting to be assigned socially complex tasks. Creat-
ing artificial intelligence systems capable of acting as active partners, either being
engaged in cooperative activities in a working environment or as coactors in multi-
ple social contexts, is a highly complex endeavor. Its complexity challenges robotic
engineering to go beyond primary concerns with the correctness of functional per-
formance and compliance with basic safety rules, maximizing well-being and taking
into account the specificities of the user, their needs, their expectations, and the way
they feel and react to technology. In other words, as happens with all other arti-
facts, appliances or services, the figure of the user has come to play a central and
determinant role throughout the design and production process.

Human-robot interaction is the natural follow-up to the initial stages of human-
computer Interaction. People’s perceptions of a robot resemble those involved in
human-human interaction, with the distinctive feature that the robot still has a long
road to go to achieve human-like sentiency.

Nevertheless, the growing integration of robots with social skills in society is
leading to a worldwide expansion of the social robotics’ field. Different social envi-
ronments have been used as contexts for interaction by social robotics, e.g., children
in hospitals (Shibata et al. 2001; Dautenhahn 2003; Dautenhahn and Werry 2004;
Marti et al. 2013; Liu et al. 2008), children in classrooms (Tanaka et al. 2007; Kanda
et al. 2009), adults in institutions and/or domestic scenarios (Turkle et al. 2006a, b),
with positive results. Moreover, the existence of numerous projects targeting a diver-
sity of populations shows the importance of the field (see a selection of projects in
Table 2.1). All of these projects share common goals: well-being, moving robots
outside labs, multimodal HRI, long-term HRI, understanding social environments,
etc.

The number of projects in Table 2.1 is evidence of the maturity of robotics tech-
nologies, namely when operating in social contexts. The majority of these projects
focus on (i) elderly people as end users and (ii) helping functionalities. Some of the
robots in this summary have a dual purpose, as it is proposed they target different
users (the elderly and children). The suggested bias toward the elderly population
may be due to the fact that most elderly people like robots (Martin et al. 2013).

Studies have been carried out to discover elderly people’s preferences regarding
the design and features of a robot. The current results have shown that elderly patients
prefer a robot that is smaller and with less humanoid features (Wu et al. 2012).

Zoomorphic robots have mostly been used to interact with elderly patients and
results have been similar to those obtained with domestic animals (Bernabei et al.
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2013). Results show an increase in social activity, and less aggression and agitation,
as well as fewer depressive symptoms (Giusti and Marti 2006; Sabanovic et al.
2013; Wada et al. 2013). Nutritional intake was also improved and the overall need
for medication and medical follow-ups was reduced. At this moment, studies have
not yet shown clear effects on patients’ cognitive function.

In 2009, the U.S. Food and Drug Administration (USFDA) approved the PARO
(see Chang et al. 2013; Moyle et al. 2013) robot as a class 2 medical device, for
use with the elderly. This robot is currently being used in various countries, such as
Germany, Denmark, and Japan.

In a pediatric hospital context, PARO has been used with children aged 2-15,
whose communication improved as a result of the interactions between children and
robot (Shibata et al. 2001). Another study measured brain activity in young adults
through Functional Near-Infrared Spectroscopy (fNIRS) during interaction with this
seal robot and the subsequent resting periods. Results showed that activity around
the motor cortex decreased when PARO was turned off (meaning participants had
no motivation to interact with it voluntarily), and there was also a decrease in the
left frontal area activity after having interacted with PARO while it was turned on.
This means that the area related to the recognition of emotional gestures as well as
positive emotions had been activated while interacting with the robot (Kawaguchi
et al. 2012).

Friedman et al. conducted a study with Sony’s AIBO, the first consumer robot of its
kind to be offered to the public (Aibo 2017). They looked into understanding people’s
relationships with AIBO, by analyzing the spontaneous postings in online AIBO
discussion forums. The results showed that AIBO psychologically engaged this group
of participants, particularly by drawing conceptions of technological essences, life-
like essences, mental states, and social rapport (Giusti and Marti 2006; Friedman
et al. 2003).

The companion robot cat from Hasbro (2017) has been used with people suffering
from dementia and Alzheimer’s in care homes. The social skills of the cat do not
include walking, which is an important part of the animal’s social behavior.

Current social robots include several commercial prototypes, some of which have
already been used in real environments. The Chelsea and Westminster Hospital has
been using an NAO robot “to assess whether these robots could help combat the
social isolation experienced by many inpatients in hospital wards” (see NAO 2017).

The case of SoftBank Robotics’ Pepper, used as auxiliary staff/receptionist at
Ostend Hospital (see NAOb 2017) is an interesting example of technology that is still
under development but, nonetheless, is profiting from its public usage. Pepper has also
been “employed” in a maternity ward at a Belgium hospital, as an attempt to improve
healthcare and putting a smile on patients’ faces NAODb (2017). Other applications
of this robot include very simple receptionist tasks in commercial environments.

Social robots are challenging the dichotomy between apparent living
beings/artificial objects (at least from an epistemic point of view): people tend to
recognize the robots as intentional agents even knowing they are not living entities,
as a consequence of the natural human tendency to attribute intentional states to
artificial objects (Giusti and Marti 2006).
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2.2 A Case Study: The MOnarCH Project

Recently, the MOnarCH project explored the formation of social relations between a
robot and people, namely children, in the Pediatrics ward of an Oncological hospital.

The MOnarCH robot (see Fig. 2.1) has an appearance consistent with the robot
stereotype identified in a survey conducted with a set of children of ages up to 16 years
old (Sequeira and Ferreira 2014). The robot is capable of navigating autonomously
in the available free space, interacting with basic verbal and non-verbal utterances,
namely when someone is recognized or touches it (see Fig. 2.2). It can also play
simple games, such as a variant of the popular Flow Free commonly available in cell
phones adapted to the slow dynamics of the inpatient children. It was assumed that
adults (visitors and staff) could also be involved in casual interaction.

The paradigm underlying the MOnarCH project is that, even with technological
limitations, a close human-like interaction mimicking some human communication
features can be created. This is achieved by regulating the robot’s activity/liveliness
level according to the environment.

A typical scenario will be that of a robot wandering in open spaces, such as
corridors or common rooms, socializing through various forms of greeting (e.g.,
Fig. 2.3 where the interaction with a child is depicted), until it is called to execute
specialized tasks triggered by healthcare specialists.

Fig. 2.1 Young child exploring the robot (Credits: Exame Informética, 2016)
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Fig.2.3 A common reaction to the robot by a child in a hospital (Credits: José¢ Oliveira and Revista
Visao)
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Flg 2.4 The blueprint of the Pediatrics ward; the areas marked “classroom”,
“main corridor” can be used by the robot

playroom”, and

2.3 The MOnarCH Environment

The environment accessible to the robot is essentially a flat area made up of a long
corridor, a playroom, and a classroom (see Fig. 2.4).

During the project, video cameras were installed in static positions. These were
used to estimate people’s positions in the ward, specifically the position of the children
playing the Flow Free game variant (see Sequeira et al. 2015).

The areas accessible to the robot form a well-structured environment, where state-
of-the-art localization techniques yield good results. Even in the presence of obsta-
cles, the laser range sensors installed at the front and rear of the robot can acquire
measurements that easily match an a priori defined map of the environment (see
Ventura and Ahmad 2015 for details).

2.4 Designing a Social Robot—A User-Centered
Framework

The term user-centered design was coined by Donald Norman and Stephen Draper
in 1986 (Norman and Draper 1986) focusing the particular field of ergonomics in
human—computer interaction. The approach explicitly highlighted the need, through-
out the design process, to be aware of the potential user and the specificities of
their physicality, as well as the nature of their experience using it. User-centered
approaches have been reported, for example, in Wu et al. (2012).

The rich multidisciplinary framework involved in the process led some authors
(e.g., Steen 2012; Giacomin 2012) to propose the term “Human-Centered Design”
as more suitable for covering all aspects of what being a human means and not only
those specifically concerned with usability. However, both user-centered design and
human-centered design highlight the fact that all artifacts, including technological
artifacts, are determined in their function and form by the anatomy and physiology of



18 J. S. Sequeira et al.

the user, by their psychology and life experience, by their expectations of technology,
as well as by the specificities of the particular context of use.

Consequently, rather than expecting people to just adapt to a new technological
artifact, learning how to handle or interact with it, robotic engineering has to be
capable of thinking and anticipating how the system can be designed to best suit the
people and the society who need to use it, or include the necessary flexibility for a
posteriori behavioral adjustments.

In order to achieve this aim, one needs to identify the assumed end user and
design for the variability represented in the population, spanning such attributes
as age, size, strength, cognitive ability, prior experience, cultural expectations, and
goals, thus optimizing performance, safety, and well-being.

Acknowledging the essential role played by the explicit understanding of the
nature, status, and context of end users, the International Organization for Stan-
dardization has defined the six essential procedures to be followed throughout the
production process (see ISO 9241-210 2010):

1. The design is based upon an explicit understanding of users, tasks, and environ-
ments.

Users are involved throughout design and development.

The design is driven and refined by user-centered evaluation.

The process is iterative.

The design addresses the whole user experience.

The design team includes multidisciplinary skills and perspectives.

SAINARE IR N

2.4.1 The Definition of the User’s Referential Framework

The particular characteristics of the users, all with their own special circumstances;
the specific civilizational/cultural environment and the communicative context and
conditions of use in the definition of the overall system and its expected performance
play an essential part. This has therefore called for the definition of what we have
designated the User’s Referential Framework—URF.

The following factors, in some cases subsuming a small set of features, can be
identified as constituting this referential framework:

Function/role to be performed by the system.
Universe of users.

Nature and Status.

Typical Environment: Scenario and Context of use.
Interaction Lifespan: Frequency and Duration.

SR

Function/Role is determinant when conceiving an artifact. Whether it is technolog-
ical or not, the overall architecture and all the design options are dependent on the
function being performed.



2 A Motivational Case Study in Social Robotics 19

Universe refers to the number of individuals supposed to interact with the artifact
on regular terms. This interaction can involve a single individual, as in the case of an
elderly person who has a service robot at home; or a multiple universe, as in the case
of a service robot performing in a domestic environment and being assigned various
tasks by the different family members, e.g., educational interaction with children,
assisting adults in cleaning tasks, or entertaining grandma playing games.

Universe can consequently correspond to a single individual or to multiple indi-
viduals.

Nature and Status subsumes the variants (i) Age, (ii) Gender, (iii) Civilizational/
Cultural Context, and (iv) Particularities.

The age of the user and the specificities of their physicality are fundamental. Is
the robot meant to interact with children, with adults or with both? The answer to
this simple question will determine the dimensions of the robotic structure, the type
of interfaces available, the overall appearance of the robot, and the materials to be
used.

Besides the individual physical/chronological constraints when defining the sys-
tem’s architecture, designers have to be aware of important cultural differences in
communities and societal groups that may determine the consumers’ preferences
in terms of the robot’s appearance. For instance, it is well-known that the uncanny
valley effect—the feelings of eeriness and revulsion experienced by most human
beings when interacting with near-realistic humanoid objects (Mori 2012)—seems
to be prevalent in the choice of a robot’s appearance in western countries, though its
effect is not so significant in the east (MacDorman et al. 2008).

One has to acknowledge the possible relevance of Gender, but we consider that
this factor really places no constraints, although its specification just contributes to
a possible customization of the artifact.

The Particularities factor relates to specific physical and mental user constraints that
have to be considered by the design, for instance, any kind of physical impairment
or psychological/mental condition.

Typical Environment: Scenario and Context of Use relates to the physical envi-
ronment in which the system will be integrated, as well as the social atmosphere
where it is going to be embedded and which it has to be responsive to. It involves
questions such as Where is the robot going to operate? In the open air as, for instance,
an agriculture aid? Will it operate indoors? For example, in collaborative contexts
within industry; in institutional spaces and collaborative contexts such as assistive
and care tasks; or in the domestic environment in edutainment activities for all the
family? All these different options determine fundamental differences in terms of its
overall architecture, namely, its physical robustness, mobility, perceptional aware-
ness, navigation performance, as well as variations concerning interface definition
and the forms of interaction available.

When we talk of Interaction Lifespan, we are assuming that every HRI taking
place in a virtual timeline can vary according to its frequency, i.e., the number of
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times it occurs and according to its duration, i.e., how long it keeps going on. Regard-
ing its frequency—it can be either occasional, such as the interaction between arobot
and a museum visitor, or it can be recurring, as with a service robot in a domestic
environment and the people that live there. Regarding duration, interactions can be
either short- or long-termed. In a way, we can say that all occasional interactions
are short-termed, while recurrent interactions are necessarily long-termed. The dif-
ferences in interaction frequency and duration pose distinct problems. Occasional
interaction, such as people suddenly coming face to face with a robot in a shop-
ping center, requires the platform to swiftly attract and engage people, because the
chance to interact happens in a snapshot. On the other hand, interactions that have a
durative character, especially those that are long-termed, test the system’s capacity
for keeping the recipient’s interest in the interaction. It must surprise them with new
approaches/activities so that it doesn’t become predictable and boring.

Table 2.2 sums up and organizes the main factors defining the User’s Referential
Framework.

2.4.2 The URF in the MOnarCH Project

The design of the MOnarCH robot is fully compatible with a user-centered design
approach. Though it is anticipated that the robots might, and probably will, also inter-
act with adults; children are the primary end users. Their interactions will be generally
recurrent, though not necessarily long-termed, as the duration of the children’s stay
in hospital will vary.

Considering the relevant factors defining the User’s Referential Framework (URF)
as shown in Table 2.2, the following previous definition of the MOnarCH’s end user
profile is displayed in Table 2.3.

According to this referential framework the users, as mentioned above, will mul-
tiple, constituted by children and/or teenagers, mainly European and African. The
interaction, either short- or long-termed (Ferreira and Sequeira 2015) according to
the individual situations, will take place in the Pediatrics ward of a hospital, involv-
ing edutainment activities. The interactions will be generally recurrent though not
necessarily long-termed, as the time span children are hospitalized will vary.

The activities included (i) helping to maintain the children in socially interesting
dynamics and (ii) playing with the children. The assumption is that adults (visitors
and staff) could also be enrolled in casual interaction.

The Pediatrics ward in MOnarCH is regulated by social norms established to
preserve healthcare efficiency and the children’s well-being. These norms implicitly
limit the spatial areas a robot can use, and the admissible interactions. Consequently,
specific behavior has been adapted to different areas of the ward. In a playroom,
for example, the robot is able to play an interactive Flow Free game with a child;
whereas in the main corridor of the ward, the robot can play catch-and-touch or
simply wander around greeting people it recognizes.
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2.4.3 The Design Process

The design process was carried out in three phases: Conceptual, Production, Deploy-
ment, and Evaluation. For the purpose of the present chapter, brief descriptions are
given here of only the first two.

In Phase 1—the Conceptual Phase—the process started with an inquiry conducted
in two public schools (to about 120 children and teens) of the suburban area of Lisbon
in order to verify (i) the existence of a prototypical mental image corresponding to
the concept of robot and (ii) the semantic consistency of this concept among children
and teens.

Identifying the children’s assumptions in terms of visual image (Fig. 2.5) and
their expectations concerning the functions to be performed by a robot provided
design guidelines that were important when defining an engaging and stimulating
application capable of enhancing a fluent child/robot interaction.

As regards the visual image, the results of the above-mentioned survey pointed
to a nearly generalized preference for anthropomorphic forms relative to all possible
others, and a multi-functional capacity that body forms always reflected. Features
such as eyes, mouth, and arms were present in most of the children’s drawings (98%)
and a particular emphasis was given in a significant percentage (35%) to a supple-
mentary “tablet-like” interface on the chest area. As to the expected functionalities,

Fig. 2.5 Sample of children’s drawings from the survey
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edutainment and helping with domestic tasks, such as tidying up the bedroom were
prevalent.

Some of the elements identified by the children were used by the design team.
A set of preliminary drawings, shown in Fig. 2.6, was discussed by the MOnarCH
team.

A merging of the options # 2 and # 3 features (Fig. 2.6, top left) was chosen,
namely, because of their rounded, smooth surfaces, interface area in the belly zone,
and expressive potential of the facial area.

The robot is 1.15 m tall, about the height of an 8—11-year-old child, in order to
keep interaction with the children as close to eye level as possible (see Fig. 2.7).
The robot weighs around 45 kg, fitting for a child’s companion. It is equipped with
a variety of sensors, including laser range finders and touch sensors (bumpers and
soft touch). These enable the robot to estimate its localization with accuracy, so as
to avoid obstacles and interact with the children.

The robot has an omnidirectional motion with linear velocities of up to 2.5 m/s, and
is thus capable of walking beside a person at a moderately fast pace. The empirical
evidence collected throughout the project suggested that there was no need for higher
velocities. For some expressive capacity, the robot has got two 1-dof arms and a 1-dof
neck, variable luminosity eyes and cheeks, a LED matrix for a mouth, loudspeakers,
microphone, touch sensors placed in strategic places of the body shell, and a RFID
tag reader. The 1-dof arms do not aim at any form of manipulation. Instead, they
are useful, for example, to convey the perception of body movement when the robot
circulates.

Fig. 2.6 The MOnarCH robot’s appearance: initial studies conducted by one of the project partners
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Fig. 2.7 Main features of the MOnarCH robot final version

Movement can be perceived by living organisms as expressive, in the sense of
being meaningful, and body movements are generally interpreted among different
species in specific ways. Just the way one walks carries a multitude of data com-
prehending for the observer: such different features as psychological state/attitude,
mood, intention and also physical condition, or age.

The MOnarCH robot tries to convey the idea of lightness and cheerfulness with
its soft and swift movements. Moreover, the smooth motion of the robot’s body can
sometimes be seen as “dancing” (see Fig. 2.8). This is just an example of expressive
motion that contributes to the liveness of the robot. Similarly, when playing Flow-

Fig. 2.8 The MOnarCH robot using a “dancing” movement for expressivity (the sequence evolves
from left to right)
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Fig. 2.9 Child playing the Flow Free interactive game with the robot (cell phone sample game on
the right image)

Free (see Fig. 2.9) it is important to include small movements to convey a perception
of liveness.

The two 1-dof arms are used to improve liveliness. A simple balancing of the
arms, while the robot is moving, can easily convey the perception that the robot has
a focus while moving or a goal location (as, for example, when playing “catch-and-
touch”—see Fig. 2.10).

Also, the fact that the neck can rotate right or left (1-dof neck) conveys the feeling
that it is looking at whoever it is interacting with or that it has a clear focus of
attention, which contributes to interaction fluency (relevant in scenarios such as the
Flow Free game of Fig. 2.9).

2.5 Technologies

The omnidirectional platform supports two laser-based range sensors, for obstacle
avoidance and localization, with one computer in charge of the navigation and another
to handle the interaction devices. These are the touchscreen in the chest, two LED
eyes with color and intensity control, a LED matrix mouth, two RGB-D cameras,
and a RFID reader inside the head. Touch sensors are available at the tip of the arms
and around the shoulder area.

The laser range finders located at the front and at the back of the robot, at approx-
imately floor level, provide 360° coverage around the robot with a 0.5° angular
separation. Figure 2.11 shows the location of the robot in the ward (left-hand image)
and the LRF measurements in the neighborhood of the robot (right-hand image).
Regions of measurements (the red and blue points) aligned along with line seg-
ments, corresponding to walls in the corridor, are visible in the right-hand image.
The dots in the close neighborhood of the front part of the head correspond to people
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Fig. 2.10 Child playing catch-and-touch with the robot
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Fig. 2.11 A sample of laser range finder around the robot (the red dots stand for the laser range

finder measurements)
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standing in front of the robot (the legs of these people are visible as pairs of small
sets of red points).

Primary interaction occurs through the facial expressions made through the eyes,
mouth, and touch sensors. The legal restrictions on the use of video imaging discour-
age the use of the RGB cameras. Only the depth information is being used to detect
people in the surroundings. Therefore, the robot does recognize or record RGB-D
images but with no connection to databases maintaining inpatient health records.

The robot can operate either fully autonomously or using a Wizard-of-Oz strat-
egy with various degrees of autonomy (see Fig. 2.12). Under full autonomy, the
robot behavior is supervised by a finite-state machine that can be easily adapted to
environmental changes (see Fig. 2.13).

Switching between the high-level behaviors is triggered through specific RFID
tags detected by the reader inside the head of the robot. By default, the robot operates
in the wander mode, moving around the main corridor without entering the inpatient
rooms. The tags controlling the supervision state machine are only used by duly
authorized staff members.

To account for emergency situations, the robot has a stop button (placed in a
visible area at the back) that if activated stops all activity and allows anyone to push
it out of the way.

People recognition is also made through the RFID technology. People wanting to
be recognized must carry a small tag. This tag contains only information voluntarily
waived by the user of the tag, e.g., a name, which does not need to have any relation
with the person’s real name.

The reader’s antenna has a distinctive detection pattern (see Fig. 2.14) that is also
used to provide a rough estimate of the angular position of a tag around the robot’s
head (Sequeira and Gameiro 2017).

Fig. 2.12 Wizard-of-Oz interaction using a smartphone
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This rough estimate creates the interesting perception that the robot knows where
a person carrying a RFID tag is, much like a normal person, i.e., often correct but

failing sometimes.
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2.6 Assessment

Developing metrics for social robotics’ experiments have been a central topic in
the field. The diversity of conditions makes the conclusions of one experiment not
immediately applicable to another, even if seemingly equivalent.

The literature on the topic is extensive. For example, randomness has been rec-
ognized as helpful in some HRI scenarios (Holthaus et al. 2011), meaning that to
properly compare different environments, uncertainty must be adequately estimated
in them.

Moreover, assessing in-lab experiments may yield consistently different results
than apparently equivalent out-lab ones (Weiss et al. 2011). In fact, standard tech-
niques such as Likert questionnaires may easily introduce bias in out-lab experi-
ments, e.g., by creating expectations about what is expected from people answering
the questionnaire.

Annotation techniques, e.g., either directly or indirectly through video record-
ings, seem more appropriate for experiments in generic out-lab environments. With
MOnarCH, annotated video recordings were used. Table 2.4 shows a list of micro-
behaviors used in some of the experiments. These were selected to (i) be reasonably
simple to identify, and thus minimize a priori misclassification of micro-behaviors
and (ii) provide indicators that can be easily identified with the desired performance
indicators, e.g., acceptance/rejection.

In MOnarCH, multiple indicators of micro-behavior relevance were used, namely,
(1) direct counting of occurrences, (ii) activation rates, and (iii) functions of the time
between occurrences (see Sequeira 2017 for details).

The activation rate, i.e., the number of micro-behavior occurrences per unit of
time, indicates the micro-behavior relevance within a given time interval.

Counting the number of occurrences in an experiment allows for micro-behavior
ranking and, hence, it is an indicator of their relative relevance.

The time between occurrences is intrinsic to the environment dynamics for which
probabilistic models can be estimated.

In a sense, if the set of micro-behaviors to be annotated is rich enough, it will
capture the environment dynamics, defined in terms of the timing of the micro-

Table 2.4 Sample of annotated micro-behaviors in a MOnarCH experiment

Micro-behavior

Looking toward the robot, without direct interaction

Looking toward the robot and moving (around, ahead, and/or at the back of the robot)

Touching the robot

Aggressive movement toward the robot

Ignoring the robot

Following the robot

N AN R W N =

Compliant behavior toward the robot
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behavior occurrence (the relevant events). Performance can then be assessed by
looking at models of the environment and at any deviations from normal conditions.

As an example, experiments in MOnarCH yield aggregate countings, such as
those in Table 2.5, found in two separate experiments. These occurred on different
days with a 6-day interval in between, and with different children.

A ranking of micro-behaviors formed with these values, after normalization, sug-
gests that (i) the robot does not significantly change the environment, as the micro-
behaviors related to indifference are top rank and (ii) the robot is well accepted, as
those related to acceptance are ranked next, while those related to non-acceptance
are ranked bottom (see Sequeira 2017).

An example of the activation rates obtained in MOnarCH experiments is shown
in Table 2.6. In this case, the set of micro-behaviors in Table 2.4 was used to annotate
two different experiments on the liveliness exhibited by the robot.

A direct comparison between the two lines in Table 2.6 suggests that increased
liveliness diminishes the relevance of micro-behavior 5, i.e., ignoring the robot.
Furthermore, the values in the rightmost, micro-behavior 7, column suggest that
people tend to be more compliant if the robot seems alive. People also appear to be
less interested in following the robot if it shows improved liveliness. The differences
between values relative to micro-behaviors 1-4 do not seem to be significant when
drawing conclusions.

A major issue when assessing social interaction experiments in out-lab environ-
ments is the planning of experiments. To avoid introducing bias, experiments often
cannot be scheduled in advance. Instead, they must occur at the environment’s natu-
ral pace. The examples are the trials reported in Table 2.5. They had 6 days between
them, as the team had to wait for the right environmental conditions.

Table 2.5 Aggregate counting for each of the micro-behaviors in Table 2.4, for two experiments

1 2 3 4 5 6 7
Count 1 49 40 9 1 71 16 40
Count 2 50 18 1 0 97 0 65

Table 2.6 Activation rates (x1072) in two experiments (the micro-behavior list in Table 2.4 is
used)

Activation rate (low liveliness) 1 0.64 0.16 0.03 1.9 3.2 0.61
Activation rate (high liveliness) 0.86 0.78 0.16 0 1.1 0.23 0.82
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2.7 Current and Future Challenges

In the near future, the widespread deployment of robots in different domains of human
life will be one of the major technological and social challenges. There will, conse-
quently, be a need for harmonious and sustainable coexistence between humans and
embodied intelligent machines in shared physical, social, and cultural environments.
So far, most of these new robotic applications have been conceived and tested in the
lab, with their design process and evaluation being mainly guided by concerns with
the functional correctness of their performance, e.g., when navigating, perceiving the
surrounding environment, or grabbing things. There has been less concern about the
need to produce autonomous artificial entities that are not only functionally efficient
but also appealing and adequate for differentiated end user groups. If it is true that
the process of incorporating a new artifact in society always involves the adapta-
tion of human beings to it, it is also true that technology has to be user-friendly, so
that it is easily accepted, understood, and smoothly incorporated in people’s typical
routines and environments. A user-centered approach, therefore, becomes essential
throughout the design and production process. The identification of the potential
end users and their corresponding characteristics, as well as the identification of the
circumstances and contexts of use calls for the definition of what we designate the
User’s Referential Framework—URF.

The added value brought by a social robot, such as MOnarCH, must be assessed
through long-term experiments. MOnarCH is simply a playmate for a physically and
emotionally fragile population, a new experience that does not replace healthcare
professionals. The empirical evidence collected suggested that the vast majority of
children surveyed had the correct perception that the robot was not alive. Never-
theless, children acknowledged the robot’s presence in the Pediatrics ward and the
liveliness features implemented positively.

Ethical issues are currently gaining momentum, profiting from a media frenzy.
MOnarCH followed the legal recommendations, namely (i) those from the National
Data Protection Authority (CNPD), which severely restricts the usage of sensors,
such as video cameras; (ii) the use of Informed Consents (EC 2017a) and (iii) the
use of a code of conduct for the team members (Delvaux 2016; EC 2017b).

A Pediatrics ward is, by nature, a sensitive environment and requires extreme care
in terms of the robot’s behavior. From a physical point of view, people’s safety in the
Pediatrics ward was never an issue, with the current technology ensuring a collision-
free operation. For approximately 18 months, the robot operated on a daily basis in
two 1-h periods, one during the morning and the other in the afternoon. During these
periods, several developmental stages were tested, always minimizing team member
presence in the ward.

To continue improving inpatient QoL, it is paramount to innovate in perception
techniques, namely avoiding ethics related issues. The real-time estimation of social
environment models and the adjustment of robot behaviors to comply with any local
social norms, especially related to multimodal communication to improve interaction
with humans, are also topics of interest.
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Chapter 3 ®)
Human-Robot Interaction Geda

Hande Ayanoglu and Joao S. Sequeira

Abstract Social robots are artificial socially intelligent partners, designed to inter-
act with humans in various contexts. If well accepted by users, they can accomplish
tasks (e.g., personal assistant/companion), which are particularly relevant when other
humans are absent and improve the quality of life. As the main purpose of social
robots is to interact with humans, they must have the ability to establish and maintain
a relationship. In this context, the chapter introduces Human-Robot Interaction as
interaction became more important, especially with social robots, due to the recent
move of robotics from the industrial environment to the human environment. Var-
ious factors such as uncanny valley, proxemics, empathy, trust, engagement, and
emotional design affect the interaction with a social robot and are explained in the
chapter.

Keywords Human-Robot Interaction + Social robots * Influencing factors in HRI

3.1 Introduction

Human-Robot Interaction (HRI) is an area extensively covered in literature, often
including the more general Human—Computer Interaction (HCI) or Human—Machine
Interaction (HMI) areas (e.g., Carroll 2003; Dix et al. 2004). HRI is dedicated to
understanding, designing, and evaluating robotic systems for use by or with humans
(Goodrich and Schultz 2007). The design of a robot, namely its appearance, behavior
and social skills, is highly challenging and requires interdisciplinary collaborations.
Thus, HRI is a growing area of research that intersects many different fields such
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as Design, Psychology, Cognitive Science, Social Sciences, Artificial Intelligence,
Computer Science, Robotics, and Engineering.

Dautenhahn (2013) mentions that researchers focus on the HRI field for a vari-
ety of reasons. Some may be roboticists, working on developing advanced robotic
systems with possible real-world applications, e.g., service robots to assist people in
their homes or at work, and they may join this field to find out how to handle situa-
tions where these robots need to interact with people, in order to increase the robots’
efficiency. Others may be psychologists or ethnologists and take a human-centered
perspective on HRI; they may use robots as tools in order to understand fundamental
issues of how humans interact socially and communicate with others and with inter-
active artifacts. Artificial Intelligence and Cognitive Science researchers may join
this field with the motivation to understand and develop complex intelligent systems,
using robots as embodied instantiations and test beds of those. Last but not least,
a number of people are interested in studying the interaction of people and robots,
how people perceive different types (e.g., human-like, animal-like) and behaviors of
robots, how they perceive social cues or different robot embodiments, etc.

Early robots were nothing more than clever mechanical devices that performed
simple pick and place operations, whereas, nowadays robots have become more
sophisticated and diversified to meet the ever-changing user requirements (Wang et al.
2006). Due to the fact that robots are involved with more users, there is a growing area
of research interest regarding the HRI which highlights human-centered experiences
in which people are the core focus (e.g., rescue, military, entertainment, hospital care).
Besides robots and humans sharing the same context, sometimes they share the same
objectives to achieve a task. Accordingly, it has become increasingly apparent that
social and interactive skills are necessary requirements in many application areas and
contexts where robots need to interact and collaborate with other robots or humans
(Dautenhahn 2007).

While improving robot functions, evaluating the risks and benefits of interaction
and collaboration is essential. In this sense, research in HRI is focusing on safe
physical interaction (e.g., Lasota et al. 2017) but also on a socially correct interaction
by building intuitive and easy communication with robot through speech, gestures,
and facial expressions (e.g., Giambattista et al. 2016; Kanda et al. 2005). Depending
on the roles and type of robots, interaction, and communication can have various
forms.

HRI addresses the multidisciplinary aspects involved in all forms of communica-
tion, explicit and implicit, between humans and robots. In a sense, it encompasses
social and nonsocial robotics. In the area of nonsocial robotics, there are numerous
examples, with well-defined metrics, where the importance of carefully designed HRI
is clear. Considering robotics strict sense, where a robot must have motion capabili-
ties of its own (though it may not be autonomous), it is easy to construct an example
where adequate HRI is paramount, e.g., warning the people in the surroundings that
the robot is approaching by issuing verbal and/or nonverbal utterances (this is an
especially relevant example in the context of autonomous/intelligent automobiles).
For wide sense robotics, e.g., a cell phone that only moves jointly with its owner, it
is important that the design of the interface maximizes a usability measure. Social
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robotics is specifically dedicated to equip robots to respond to the needs of people
(Sekmen and Challa 2013). As there is more interaction/communication with social
robots than nonsocial ones, it is important to focus more on the former.

3.2 Social Robots

The robot industry used to focus more on labor-intensive or hazardous tasks such as
factory automation or military operation. Since robots have their roots in the industry,
industrial robots are more focused on repetitive tasks. Siegel (2009) emphasizes that
the robot industry has seen rapid growth in areas outside of industrial robots, and as a
result of this transition robots are beginning to resemble those of our science fiction
inspired imaginings, in that they are designed to function in a human environment.

The Japan Robot Association (2001) showed that there was a considerable expec-
tation of a growing need for robots in houses, medical, and nursing care services
to assist the aging society, both from a physical as well as a psychological point of
view. Therefore, as research in robotics further, a shift occurred from industrial to
more domestic, service-oriented and human-centered robots. The International Orga-
nization for Standardization defines a service robot as a robot that performs useful
tasks for humans or equipment excluding industrial automation applications (Inter-
national Organization for Standardization 2012). Litzenberger and Higele (2017)
indicate service robots are for professional and personal/domestic use in nonindus-
trial environments. A personal service robot or a service robot for personal use is a
service robot used for a noncommercial task, usually by laypersons, such as a domes-
tic servant robot, automated wheelchair, and personal mobility assistance robot. A
professional service robot or a service robot for professional use is a service robot
used for a commercial task, usually operated by a properly trained operator. The
operator is designated to monitor and stop the intended task. Examples are cleaning
robots for public places, delivery robots in offices or hospitals, fire-fighting robots,
rehabilitation robots and surgery robots in hospitals.

After years of development, robots are being designed to serve in our daily lives
as pets such as Sony’s Aibo (Kubinyi et al. 2004) and Paro (Wada and Shibata 2007),
servants like Kuri (Simon 2017) and ElliQ (Wilson 2017) or tour guides like Aggie
(Wynne 2016). These robots are considered social robots due to their autonomous
interaction with humans in a meaningful way. However, depending on their purposes
service robots are not necessarily social robots. For instance, UV-Disinfection Robot
(Robi-X Case 2018) is a mobile service robot that disinfects through a powerful UV-
C light for hospitals. The robot requires virtually no human interaction and therefore
has a minimal impact on the workflow of the hospital staff.
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In accordance with this definition, the consumer market for service robots that
are designed for personal and domestic use is also growing at an increasing rate
(World Robotics 2013). This shows that robots are increasingly becoming an inte-
gral component of our society and they have great potential in being utilized as social
companions. According to Dautenhahn and Billard (1999) social robots are embod-
ied agents that are part of a heterogeneous group: a society of robots and humans.
Therefore, robots need social skills to enable them to perform a task. Breazeal (2002)
defines a social robot as a robot that is socially intelligent in a human-like way and
interacting with it is like interacting with another person. According to the author,
creating social robots will require an understanding of how humans respond to them,
and in what ways our understanding of human interaction applies to HRI. It is notice-
able that social robots are already supporting various tasks of our lives such as care
and service providers (e.g., help elderly and disabled people), educational partners
(e.g., help children to learn a new language), and entertainment (e.g., play games).

Social robots can be classified as animal-like such as Leonard (Breazeal et al.
2005), Probo (Saldien et al. 2008) and AIBO (Kubinyi et al. 2004), human-like
such as KASPAR (Dautenhahn et al. 2009) and SAYA (Hashimoto et al. 2006),
character-like such as eMuu (Bartneck 2002), Teo (Bonarini et al. 2016), and Mung
(Kim et al. 2009) or machine-like such as Nao (Beck et al. 2010), EMYS (Ribeiro
and Paiva 2012), and QRIO (Tanaka et al. 2004). These new generations of robots
will be used in close collaboration with people in a wide spectrum of applications
(Goris et al. 2010). As social robots become more utilized and routine in everyday
situations, people will be interacting with social robots in a variety of contexts (e.g.,
hospitals, homes, museums). There are robots which were not designed only to
operate in a human environment, but also to function with a social component by
interacting with people. Siegel (2009) indicates that robots are expected to interact
with humans in the very same way that humans interact with each other and this
may prove to be an ideal form of communication for robots. Goetz et al. (2003)
found that people expect a robot to look and act appropriately depending on the task,
form follows function. Thusly, if a robot acts like a human, then it should have a
human-like appearance. Moreover, Dautenhahn et al. (2005) highlight that people
prefer a robot to perform specific roles and tasks in addition to the desired behavioral
and appearance characteristics. In other words, some robots will appear in different
forms, not for reasons of aesthetics, but because it is the most effective design for
the task (Norman 2004).

Fong et al. (2003) explain that a social robot should show emotions, have capabil-
ities to converse on an advanced level, understand the mental models of their social
partners, form social relationships, make use of natural communication cues, show
personality and learn social capabilities. Interaction is the most serious difference
between industrial robots and robots which serve in daily environments (Kanda and
Ishiguro 2013). Therefore, if social robots are sharing environments with people, it
is important to understand what the interaction with them looks like.
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3.3 Interaction

The success of robots in the assistance of humans depends on the extent to which
they are able to interact with humans at a social level (Lewandowska-Tomaszczyk
and Wilson 2016). Therefore, having robots be able to autonomously interact with
humans, in a context where they would have to continuously adapt to novel and
unstructured scenarios, is considered as a significant milestone in HRI (Tanevska et al.
2017). It is important to understand how the interaction should be. The technology
which is implemented in robots has been used to enhance the quality of human life
which requires more natural and intuitive ways of interaction. Interaction is defined
as a reciprocal action or influence (oxforddictionaries.com 2018). Therefore, any
action between a human and a robot is considered as an interaction. Robots can
participate in various forms of interaction by mimicking facial expressions, gestures,
body postures, sound, touch, etc., in which the form of communication depends on
the context of interaction. Haddadin (2014) points out that HRI is divided into two:
cognitive and social HRI, and physical HRI.

As the integration of social robots in human social spaces increases, HRI is sub-
ject to challenges similar to those in Human—Human Interaction (HHI). Successful
HRI in a social context seems highly dependent on quality estimation, (e.g., recogni-
tion and generation of a number of features, e.g., emotions, speech, perception from
artificial vision, and touch sensing), and also on architectural aspects of the physical
systems (e.g., external sensing and supporting communication infrastructures). Psy-
chological/emotional factors also play a key role. For example, Kanda and Ishiguro
(2013) report the positive influence of robot-robot interactions in the acceptance
of robots by humans. Sodnik and Tomazi¢ (2015) specify that the interaction with
modern devices (i.e., robots) is most commonly done through a visual, auditory, or
tactile user interface.

The interaction between humans and robots requires communication which can
take place in several forms, largely influenced by whether humans and robots are in
the scope adjacent to each other or not, like most other technologies, robots require
the user interface to interact with people or humans (Siregar et al. 2017). Nejat
et al. (2009) describe noninteractive robots as providing support for surgical, reha-
bilitation, and medication delivery purposes, whereas highly interactive robots can
provide more cognitive, affective, and social support. In recent years, people have
become more exposed to robots (e.g., toy robots) in their daily lives due to increas-
ing availability. Therefore, in the daily environment, robots are expected to interact
with humans along performing their task since these require encountering humans.
Rather, one of the main tasks of robots will be interaction for which it has become
increasingly apparent that social and interactive skills are necessary requirements
in many application areas and contexts (Dautenhahn 2007). Comprehending more
about the HRI process in the everyday context is an important consideration for
researchers (Holmquist and Forlizzi 2014).

In fact, in many studies, robots are being equipped with faces, speech recogni-
tion, or other features (e.g., gestures, emotions) in order to make the interaction more
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human-like (e.g., Breazeal and Scassellati 1999; Zecca et al. 2009). Also, it is argued
that a humanoid form is easier to interact with since they provide a more intuitive
interface and contain more social cues (Breazeal and Scassellati 1999; Brooks et al.
1999). Also, Kanda et al. (2013) remark that the physical appearance of human-like
bodies of humanoid robots enable humans to intuitively understand their gestures and
cause people to unconsciously behave as if they were communicating with humans,
that is, if a humanoid robot effectively uses its body, people will communicate natu-
rally with it. The term humanoid is mostly associated with the human-like physical
appearance of a robot, rather than to its human-like capabilities, whereby it is fun-
damental that the robot’s appearance matches its cognitive capabilities. Moreover,
Adams et al. (2000) suggest that robots should be designed to interact socially with
people by exploiting natural human social cues, i.e., robot interact with people in
the same way as people interact with each other. According to Fong et al. (2002),
although socially interactive robots have already been used with success, much work
remains to increase their effectiveness, for instance, in order for socially interactive
robots to be accepted as natural interaction partners, they need more sophisticated
social skills, such as the ability to recognize social context and convention.

Interaction moments can also be important. For instance, during the initial inter-
action with robots, people are more uncertain, anticipate less social presence, and
have fewer positive feelings (Edwards et al. 2016; Spence et al. 2014).

According to Mehrabian (1968), more than 60% of human communication is non-
verbal, mostly through facial expressions and gestures, 7% of information is trans-
ferred through spoken language, while 38% is transferred through paralanguage and
55% is due to facial expressions. Humans convey intent through the direction of
their gaze, posture, gestures, vocal prosody, and facial displays (Breazeal and Scas-
sellati 1999). Adams et al. (2000) support that for many social interactions a vocal
exchange is an important part. Therefore, it is important to develop those capabilities
during communication in order for the robot to become social (Goris et al. 2010).
Dautenhahn (2007) states that a primary goal of research in the HRI area has been
to investigate ‘natural’ means through which a human can interact and communicate
with a robot. Since the mid-2000s, anthropomorphized robots in various forms have
been developed, with faces, arms, and mobile devices or tablet interfaces attached to
their chests. Even though some robots, such as Monarch (Sequeira et al. 2013), IRO-
BIQ (Han 2012) and Pepper (https://www.ald.softbankrobotics.com/en/cool-robots/
pepper), use displays on their bodies which can provide multiple interface services,
they are different from computers and mobile devices, namely they have character-
istic appearances, names, personalities, and are capable of social relations. These
robots are notable in their capacity for nonverbal communication, such as facial
expressions, gestures, postures, and mimics, while coexisting with users in a real
environment.

Also, speech is relevant both in verbal and nonverbal forms. Sounds, tones, and
music influence the effective expression and can be used in multicultural environ-
ments, where verbal language rules may be understood by everyone (see Luengo
et al. 2017) for a system that generates meaningful nonverbal sounds). Better social
interaction for social robots, interactive dialog and interactive motion planning can
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be included, though are still relatively unexplored areas. Furthermore, Hoffman and
Ju (2014) declare that movement is critical to conveying more dynamic informa-
tion about the robot, therefore, designing robots with movements which accurately
express the robot’s purpose, intent, state, mood, personality, attention, responsive-
ness, intelligence, and capabilities should be considered for better interaction.

The ability of robots to interact with humans in ways that resemble HHI becomes
increasingly more relevant, as robots progress from very controlled settings in labo-
ratory environments and are deployed in homes and social contexts (Breazeal 2009).
The environment represents a natural challenge for any HRI system. People without a
robotics background may a priori have unknown expectations about the behavior of a
social robot. This reinforces the importance of experimenting away from laboratory
conditions (see, Kanda and Ishiguro 2013, Chap. 2). According to Picard (2000),
HRI is only effective if the robot is able to express emotions, in this sense, emotions
are essential for a better HRI. Overall, successful HRI systems tend to mimic HHI.
Speech, body posture, facial expressions, eye gaze, and deictic and representational
gestures, are extensively used by humans and highly valuable in social robots (e.g.,
Admoni and Scassellati 2017; Cameron et al. 2015a, b; Deshmukh et al. 2016; Mutlu
et al. 2012; Salem et al. 2012; Shimada and Kanda 2012).

3.4 Contributing Factors to Human-Robot Interaction

The use of social robots in daily life has been increasing, so interaction between
people and social robots has been progressively gaining relevance. If well accepted
and as a part of the daily routine, robots can have a positive influence on people’s
quality of life. However, in spite of the many signs of progress made and the strong
pieces of evidences on the benefits of using social robots, the interaction between
humans and robots has not, yet, reached the quality that was expected. In this sense,
HRI continues to be studied depending on various contributing factors to human
acceptance of robots and eventually how well the human can act comfortably in
human-robot spatial relationships.

3.4.1 Uncanny Valley

Although it is quite common to imitate HHI with robots appearing human-like, Mori
(1970) introduced the concept of Uncanny Valley which suggests that robots can look
like a human up to a certain level or humans can be uncomfortable with or disgusted
by them. As the robot’s appearance reached the maximum degree of similarity, the
perceived oddness reverted to dislikability. On one hand, research exists supporting
the Uncanny Valley (e.g., DiSalvo et al. 2002; Schindler et al. 2017; Woods et al.
2004), on the other hand, there are some studies (e.g., Kraft 2017) indicating that
there are no real indications as to where within the Uncanny Valley the appearances
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actually fall. Cheetham (2017) and Kitsyri et al. (2015) emphasize that Uncanny
Valley is not a hypothesis in the scientific sense of an empirically testable statement.

Stein and Ohler (2017) mention that research exploring the phenomenon empha-
sized specific visual factors in connection to evolutionary psychological theories
or an underlying categorization conflict, though recently, studies (e.g., Mathur and
Reichling 2016; Yamada et al. 2013) have also shifted focus away from the human-
like appearance, exploring their mental capabilities reached as the basis for the user’s
discomfort.

3.4.2 Proxemics

In HHI, there is a personal space that is maintained between people, which is
called proxemics (Hall 1966). There are several elements influencing the prox-
emics, namely, among others, personality, the relationship between people, social
rule, and cultural rules (Argyle 1975). Some studies have revealed that proxemics
is also important in HRI (e.g., Walters et al. 2005). To enable socially integrated
HRI, a robot should display appropriate interaction, and both understand and con-
trol proxemics in the human’s environment. Studies (e.g., Mumm and Mutlu 2011;
Takayama and Pantofaru 2009) have shown that people tend to stay closer to robots
than to other people. Proxemics effect can be analyzed from the robot’s and from the
human’s perspective.

Regarding the human’s perspective, studies (e.g., Walters et al. 2005) have shown
that children tend to stay further away from robots than adults, and with women
keeping more distance from robots than men (e.g., Takayama and Pantofaru 2009).
The proxemics during HRI is also affected by some of the characteristics of robots
(Takayama and Pantofaru 2009), namely voice and form. In relation to the voice of
the robot, studies have revealed that in the interaction with robots with synthesized
voice, humans tend to a greater distance by comparison with the proximal maintained
with robots without voice or with female or male voices of high quality (Walters et al.
2008).

From the robot’s perspective, since human proxemics preferences with respect to
arobot can change during the interaction, this change has a significant impact on the
performance of the robot’s automated speech and gesture recognition systems (e.g.,
Mead and Matari 2016a, b; Tapus and Matari¢ 2008).

3.4.3 Empathy

Empathy is important in HHI. Plutchik (1987) denotes that empathy bonds individ-
ual to each other. Paiva (2011) indicates that empathy is the capacity to perceive,
understand, and experience others’ emotions. Therefore, emotions can be used to
achieve empathy in communication (Nishida et al. 2010). Also, Beck et al. (2010)
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support that robots should display rich emotions to be socially accepted and generate
empathy. Empathy can also be demonstrated through words, tone of voice, facial
expressions, posture, and physical gestures.

Given the strong role of empathy in shaping the way of communication, it is
obvious that to create better interactions with robots, empathy is a major element
(Paiva et al. 2017). Research shows that humans feel empathy with machines (e.g.,
Breazeal 2002; Cafiamero and Fredslund 2000; Demers 2012; Kozima et al. 2004).
Furthermore, some studies (e.g., Cramer et al. 2010; Fan et al. 2017) showed a robot
with high empathy would lead it to be more trustworthy, which is another important
factor in HRI.

3.4.4 Trust

Every day, people make decisions about whether to trust machines. Some studies
have shown that humans do not readily trust robots by showing some reluctance to
conform to their suggestions and to accept them as partners in social tasks (Gaudiello
et al. 2016) because they consider robots to be socially ignorant (Young et al. 2009).
Trust that the human has in a robot is however fundamental in HRI (Cameron et al.
2015a, b; Hancock et al. 2011; Salem and Dautenhahn 2015; Salem et al. 2015).
According to Freedy et al. (2007), the confidence that the human has in the robot
influences the acceptance or not of suggestions and information given by the robot.

As reported by Hancock et al. (2011), the factors that influence trust in robots are
divided into human-related factors, robot-related factors, and environment-related
factors. Therefore, depending on these factors, trust level during interaction can
change which can eventually affect engagement.

3.4.5 Engagement

According to Sidner and Dzikovska (2005), engagement is a process that two (or
more) individuals establish, maintain, and end during their perceived connection to
one another. O’Brien and Toms (2008) suggest that engagement is a quality of user
experiences with technology (i.e., robots), which is characterized by various attributes
such as challenge, aesthetic and sensory appeal, feedback, novelty, interactivity,
perceived control and time, awareness, motivation, interest, and affect.

Being engaged with a robot can be the sole purpose of HRI. In certain interactions
with robots (e.g., a smile for greeting), a person can allege that the purpose is to be
connected. Making a natural experience between a robot and a human requires under-
standing the nature of engagement and applying similar types of human engagement
behavior to a robot.
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Aylett et al. (2011) claim that believability of a robot would convey user engage-
ment in which users display appropriate affective behavior and robots respond appro-
priately to the user’s affective behavior.

3.4.6 Emotional Design

Due to the users’ variability and the variety of designs and purposes (e.g., pets, toys),
the understanding of which factors contribute/influence most to proper HRI is not
easy and immediate for all robots. Models about the acceptance of technologies were
developed and some studies indicate that the ease of use and usefulness are the two
strongest factors in the acceptance of robots (e.g., Heerink et al. 2010). However, the
influence of other factors as robot’s appearance, facial expressions, or body move-
ment (e.g., Hoffman and Ju 2014; Hwang et al. 2013; Kulic and Croft 2007; Nehaniv
et al. 2005) are also well known. This can be related to the importance of the expres-
sion of emotions (e.g., Picard 2000) in the establishment of an empathic relationship.
Moreover, additional facial features can provide more expressive capabilities (e.g.,
including facial muscles, using eyelids).

In this context, the emotional design (see Norman 2004; Desmet 2002) of the robot
can facilitate HRI since it will prompt the design of products with the main intention
of evoking and/or prevent the induction of certain emotions (Demir et al. 2009).
The availability of guidelines about the robot’s design features (e.g., appearance),
behaviors (e.g., movements, facial expressions), and affective/emotional features
while in social interaction, could be very informative for designers and/or developers.

3.5 Conclusion

Robots are not only integral to industrial life but are entering human’s everyday life.
Particularly social robots are integrating more and more seamlessly in daily tasks,
in this sense, these robots should be designed to respond to meaningful interactions
with humans and employ natural communication.

Most, if not all, of the social robots currently actively assume some degree of
passivity by humans. This means that the robots are not problem solvers, that is,
end-users cannot expect that the robot solves problems in an intelligent manner, e.g.,
requiring complex deduction skills. However, expectations can be boosted if some
novelty is introduced in the interaction from time to time. For example, Alonso-
Martin et al. (2015) discuss a dialog system capable of maintaining the coherence
of the interaction and introducing new topics. Maintaining natural interactions with
end-users for significant periods of time is a clear indicator of the success of a social
robot and the quality of its interaction skills. Being able to control this time may be
the ultimate goal of Human-Robot Interaction (HRI); this is a process often difficult
even for socially experienced humans.
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Other factors influencing the interaction between a robot and a person include
uncanny valley, proxemics, trust, empathy, engagement, and emotional design. One
factor can have an impact on the other (e.g., empathy on engagement). Hence, it
should be important to consider these factors, not only individually but also together,
while designing a social robot’s appearance and behavior to create better and more
engaging interactions.

People need engaging interactions that lead to affective user experiences. The
experiences can be related either to the functionality or the usability of a robot.
Effective understanding of people’s emotions during interactions can help to create
pleasing robots. Therefore, emotional design can be a strong ally for HRI. The mean-
ing of pleasure in the use of robots can be complex. With regards to recent years, where
robots are integrating more into human lives, if the application of emotions toward
robots and pleasurable/joyful interaction is considered, emotional design becomes a
necessity. Moreover, by applying emotional design, better user experience could be
expected.
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Chapter 4 ®)
Emotions and Emotions in Design e

Magda Saraiva and Hande Ayanoglu

Abstract This chapter discusses and clarifies the concepts and definitions of emo-
tion, feeling, and mood. Although they refer to distinct phenomena, these concepts
are normally used indiscriminately when someone refers to emotions. This is fol-
lowed by a brief review of the literature on the main theories applied to the study
of emotions. This reference to the study of emotions will serve as the basis for the
introduction and exploration of the concept, purpose, and application of Emotional
Design.

Keywords Emotions - Emotion theories - Design

4.1 Introduction

Emotions play a key role in an individual’s behavior within the social context
(Plutchik 1991). The study of emotions and their influence on human behavior took
a leap forward in 1872, when Darwin published The Expression of Emotions in Man
and Animals. However, and despite emotions having been studied for almost a cen-
tury and a half, there is still no consensual definition. For example, Plutchik noted
in 2001 that there were more than 90 definitions of emotions (Plutchik 2001a).
Over time, various theories and models about emotions have emerged, based
on different perspectives, such as the evolutionary theory (e.g., Darwin 1872), the
physiological theory (e.g., James 1884) and the cognitive theory (e.g., Schachter and
Singer 1962), among others. The different theories of emotions are supported by
other existing theories of Psychology (among other areas) and, due to this, differ in
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their definitions, as well as on the role and importance they play in the life of the
individual.

However, before presenting some of these theories, we shall discuss and clarify
some concepts: emotion, feeling, and mood. Although they refer to different phenom-
ena, these concepts are used by all of us as if they referred to a single one—emotion.

4.2 Emotions, Feelings, Moods, and Sentiments

Before focusing on emotions and their main theories, it is important to define and
clarify other concepts. Individuals usually refer to feelings, moods, or sentiments as
if they were emotions (e.g., Beedie et al. 2005; Ekman 1994a). However, these three
concepts refer to different phenomena.

Feelings can be defined as the subjective experience of emotions (e.g., Scherer
2005). They are states of mind, which derive from the evaluation that the individual
makes about an event, such as the level of its pleasantness or unpleasantness (e.g.,
pain) (TenHouten 2007). According to Damaésio (2003), feelings occur after emo-
tions. In this sense, feelings are less visible at the behavioral level than emotions,
and are therefore considered more private than emotions (TenHouten 2007). The
duration of a feeling is short, usually seconds, and is less intense than an emotion
(Damasio 2003).

According to Ekman (1999), the emotions are the result of a specific cause (i.e.,
specific event). However, mood may or may not ensue from a specific cause (e.g.,
Ekman 1990; Beedie et al. 2005). Contrary to emotions, moods can have a long
duration (i.e., hours, days) (e.g., Ellis and Ashbrook 1988), change frequently, alter-
nating with other mood states (Desmet 2015), and have a medium intensity (e.g.,
Morris 1992; Scherer 2005). Frijda et al. (1991) explained moods as continuous
feeling states without a specified object. However, both emotions and moods have a
high impact on the individual’s behavior, since they can stop one behavior and start
another one that is more effective for that event (Scherer 2005).

Turner (1970) called sentiments a socially defined complex of feelings that vary
across cultures. Frijda et al. (1991) defined sentiments as emotional dispositions to
a certain product. Nass and Brave (2007) argued that sentiments are not a person’s
state but characteristics that are designated to a product; and while emotions last for
seconds and moods for hours/days, sentiments can remain indefinitely.

The concept of emotion has been described in a varied way by different authors,
according to the theory they follow. The emotions correspond to a construct that the
individual creates, allowing for the emotional evaluation of the event, and because
of this, the emotions are relatively constant for each individual (Lazarus 1999).
Emotions, it is argued, trigger a set of behavioral (e.g., run), physiological (e.g.,
sweat), and cognitive responses (e.g., evaluation of the event), and these changes
allow the individual to adapt and respond appropriately to an event (e.g., Nesse
1990). From all these definitions, we identify with and have adopted the definition
proposed by Frijda (1987), which defines emotions as the tendency that the individual



4 Emotions and Emotions in Design 59

has to establish, maintain, or terminate a relationship with the environment or with
others. According to this author, emotions are characterized by high intensity and
short duration (i.e., seconds, minutes) (Frijda 1994).

Although, as mentioned earlier, there are several theories about emotions, there
is agreement on the two dimensions for measuring them: Arousal and Valence
(e.g., Lang et al. 1997; Russell and Barrett, 1999). Arousal refers to the psycho-
physiological condition caused in the individual by the presence of a stimuli, product,
or object (Lang 1995). It may be high when the stimulus produces a high activation
in the subject (e.g., seeing a snake) or low when the stimulus produces low activation
(e.g., listening to music for relaxing). Arousal is characterized by an activation of the
autonomic nervous system (e.g., running away), and the activation of the endocrine
system (e.g., increased heart rate) enabling the individual to respond appropriately
to the stimuli. Valence concerns the positivity (e.g., happiness) or negativity (e.g.,
sadness) that a stimulus or situation elicits in the individual (e.g., Lewin 1935).

As mentioned above, the definition of emotion depends on the theoretical current
that the authors follow. Over the years, various theories about emotions have emerged.
The next section presents the basic principles of what we consider to be the most
significant theories in the field.

4.3 Theories About Emotions

This section is not intended to be exhaustive. It has a selection of the theories consid-
ered most influential or controversial in the study of emotions: Psychoevolutionary
Theories of Emotion; Physiological Theories of Emotions; and Cognitive Theories
of Emotion.

4.3.1 The Psychoevolutionary Theories of Emotion

According to Darwin (1872), emotions are not a specific characteristic of humans,
since other animals, even insects, have them. In his studies about emotions, Darwin
(1872) concluded that their function was to ensure the adaptation, communication,
and survival of species in different environments. It is on the basis of this assump-
tion that the first great theory in the area was created: the Evolutionary Theory of
Emotions.

One of its main followers was Robert Plutchik, who developed The Psycho-
evolutionary Theory of Emotion (Plutchik 1962). Plutchik, like Darwin, argues that
emotions play an important role in the evolution of species and supports the principle
of antithesis.

According to this theory, emotions result from a cognitive interpreta-
tion/evaluation that is made in relation to a particular event or stimulus. It is this
interpretation that triggers a physiological reaction, which enables the action (e.g.,
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running away) (Plutchik 1977). In the light of this theory, emotions are adaptive
responses to dangerous events/situations. Some situations or events that jeopardize
the survival and adaptation of the individual cause imbalance, and the function of
the emotions is to reestablish that balance. For Plutchik (2001b), the emotions are
activated in response to four types of problems that are commons to all species:
temporality, identity, hierarchy, and territoriality.

For Plutchik (1979, 1980), the first problem, temporality, is related to the repro-
duction of the species. For humans, it is related to the building and continuity of the
family and its community, involving positive emotions such as joy if the mission is
accomplished, and sadness if not.

The problem of identity corresponds to the fact that individuals/animals accept
(or not) other individuals/animals as being part of the same species. Although the
definition of this problem has not been thoroughly explored by Plutchik, he has
associated it with acceptance and disgust emotions. In other words, the solution of
this problem is the acceptance or rejection of other members of the species.

The problem of hierarchy is related to power and dominance within the same
species. The strongest/dominant members have privileged access to food or sex-
ual partners, ensuring the survival of the species. To overcome this problem,
humans/animals have two possible solutions: to fight and to resist, which is expressed
through the emotion anger; or give up, expressed through the emotion fear.

Finally, territoriality concerns the struggle for control and defense of a space
that is safe for the species, ensuring its survival. For Plutchik, this problem has two
possible solutions: spatial control by thinking ahead of the enemy—anticipation or
losing control of that space to the enemy—surprise.

Plutchik (1980) argues that there are eight basic emotions—two per problem: joy,
fear, anticipation, acceptance, anger, sadness, disgust, and surprise. In the same year,
Plutchik created the Wheel of Emotions model to explain the relation between the
emotions (see figure XX). According to this model, the eight basic emotions follow
the principle of antithesis, with each emotion having an opposite emotion: joy versus
sadness; fear versus anger; disgust versus trust; anticipation versus surprise. Each of
the basic emotions can manifest itself in different intensities and form combinations
with other emotions (e.g., disgust and sadness = remorse).

Along with the eight emotions, Plutchik (1980) considered the existence of 24
secondary emotions that derive from the various possible conjugations between the
basic emotions: ecstasy, admiration, terror, amazement, grief, loathing, rage, vigi-
lance, serenity, acceptance, apprehension, distraction, pensiveness, boredom, annoy-
ance, interest, optimism, love, submission, awe, disapproval, remorse, contempt, and
aggressiveness.

Another author who based his theory of emotions on Darwin’s arguments and
on the evolutionary theory of emotions is Paul Ekman. Ekman (1994b) argues that
there are basic emotions that play an important role in the adaptation and evolution of
species. In 1969, Ekman et al. argued for the existence of six basic emotions: sadness,
happiness, fear, surprise, disgust, and anger (as Darwin had argued in 1872). For the
authors, these emotions are innate, present from birth and universally recognized.
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In this sense, each emotion has a specific function that allows adaptation to cer-
tain contexts (Ekman 2003). According to Ekman (1973), the basic emotions are
manifested through facial expressions, which distinguish them, and each expression
is universal. Darwin (1872) had argued that some emotions had a universal facial
expression and were also expressed in animals. Based on this argument, Ekman ded-
icated himself over the years to the study of the facial expression of emotions in
humans (e.g., Ekman 1972, 1992, 1994b). The facial expression of emotions will be
explored in more detail in Chap. 7.

Although the importance of evolutionary theory in explaining emotions is undeni-
able and is still argued by some authors, other explanatory theories of emotions have
emerged over the years. In the nineteenth century, William James and Carl Lange
argued that emotions result from physiological responses to external stimuli. This
idea runs counter to the Psychoevolutionary argument that emotions are the response
to an evaluation made in relation to a stimulus.

4.3.2 The Physiological Theories of Emotions

4.3.2.1 The James-Lange Theory

In Psychology: The Briefer Course, published in 1892, William James distinguished
emotions from instincts. For James, instincts are considered the tendency to act,
whereas emotions are defined as the tendency to feel, although these are also
expressed through the body.

James (1884) argued that bodily changes (visceral and muscular) derive from
adjustments that the nervous system makes in response to stimuli, and it is the aware-
ness of those changes that constitutes an emotion. According to this theory, if the
individual is in the presence of a snake, the individual is not afraid of the snake. They
are afraid because they tremble: the individual is aware of the bodily changes that
the presence of the snake has triggered.

Thus, physical changes (i.e., emotion) are felt immediately upon contact with
the stimulus that triggers it and prior to its cognitive perception. It is possible to
distinguish between different emotions because each of them has a different bodily
change (James 1892: 245).

James was not an apologist for experimental methodologies, so all his investiga-
tions were made on the basis of self-observation, strongly based on personal memo-
ries of the mental processes experienced. This approach was highly criticized, since
phenomena based on self-observation could not be replicated by other researchers.
James’ theory is counterintuitive because the emotion is not interpreted as a response
to a stimulus but rather as the awareness of the physiological changes that this stim-
ulus has provoked.

In 1885, Carl Lange presented his theory of emotions. Although they worked
independently, Lange and James built similar theories about emotions, and so their
theories became known as the James—Lange Theory. In addition, for Lange (1885),
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when a stimulus is presented, there is a physical arousal and the reaction of the ner-
vous system to that arousal is an emotion. This theory has been criticized because, for
James and Lange, emotions do not have any function (e.g., Damasio 1994; Plutchik
1962), and it ignored the influence of previous experience in the evaluation of emo-
tions, in other words, the cognitive dimension of emotions (e.g., Damasio 1994).

One of the main critics of the James—Lange Theory was Walter Cannon (1914),
a student of William James. According to Cannon, the brain played a vital role in
the emotional process. For this author, (together with Philip Bard), the James—Lange
Theory presents some problems, such as the fact that the body takes between 1 and 2 s
to respond to a stimulus, so the physiological changes associated with an emotion are
not immediate. Furthermore, the fact that many emotions produce similar visceral
responses means it is not possible to distinguish and recognize emotions through
physiological response/change. The Cannon-Bard Theory emerged as an attempt to
deal with these problems.

4.3.2.2 Cannon-Bard Thalamic Theory of Emotions

In the first decade of the 1990s, Cannon devoted himself to the study of emotions in
healthy animals, measuring their physiological changes, and strongly influenced by
the James—Lange Theory. This approach resulted in the distinction between sympa-
thetic visceral patterns and parasympathetic visceral patterns. According to Cannon,
emotions can be distinguished through these two visceral patterns, i.e., if visceral
expression of an emotion (body changes) occurs in the thoracic-lumbar zone, it
belongs to the sympathetic visceral patterns; whereas if it occurs in the cervico-sacral
zone, it belongs to the parasympathetic visceral patterns. As the nerves constituting
the autonomic nervous system are antagonist, the emotions expressed by each of
these patterns are also antagonistic (Cannon 1914).

In 1925, Cannon and Britton began studying emotional expression in animals that
had had a part of the cerebral cortex removed. They thus determined that the thalamic
region was responsible for emotional expression, since some emotional expressions
were compromised or disappeared when the thalamus was removed.

Later, Cannon (1927) and Bard (1928) investigated the level at which emotional
expressions were integrated into the brain, which would give rise to the Cannon—-Bard
Thalamic Theory of Emotions. These authors verified that there was no significant
alteration in the emotional response of animals that had had a part of their sympathetic
nervous system removed. In other words, the emotional response is not a merely
visceral process as argued by the previous theory.

Moreover, Cannon and Bard found that viscera are less-sensitive structures than
James and Lange believed (e.g., during the digestive process we do not account for
all responses and visceral movements that occur) (Cannon 1927).

This theory argues, as already mentioned, that there is an area of the brain (the
thalamus) responsible for emotional expression. In addition to this idea, the authors
also argued that arousal does not have to be prior to emotion. On the contrary,
arousal and emotion occur at the same time, which contradicts the key idea of the
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James-Lange Theory of Emotions. Thus, in the presence of a stimulus, the receptors
are activated and send the information to the cortex, where the response to that
stimulus is decided. This response will activate the thalamus, producing an emotional
expression at same time as the bodily and visceral changes occur (Cannon 1927).

However, other studies soon demonstrated that the thalamic region was not the
center of control of emotional expression, or at least it was not the only area of
the brain involved in that process. An example was Papez (1937), who created a
circuit of emotion. For Papez (1937), the emotions and their expression come from
the interconnections between some brain structures, such as: hypothalamus, anterior
thalamic nuclei, gyrus cinguli, and hippocampus. The expression circuit is due to the
fact that Papez argued the emotional process begins and ends in the hypothalamus,
traversing a circuit between different structures constituting the limbic system.

Although these theories have contributed significantly to the understanding of
the emotional process from the physiological and neurological point of view, the
cognitive component of emotion was neglected or even ignored. In the second half
of the twentieth century, however, some theories began to emerge based on the
importance of cognition in the emotional process. An example was that of Schachter
and Singer.

4.3.2.3 Schachter-Singer: The Two-Factor Theory of Emotions

Contrary to the theoretical currents about the emotions that had emerged based
essentially on their physiological component, Schachter and Singer (1962) argued
that emotions are the result of physiological arousal but also of cognitive factors.
According to these authors, physiological arousal and physiological changes are not
sufficient to distinguish emotions, since some of them produce very similar physio-
logical changes. This theory argues that emotion depends on two factors: physiologi-
cal arousal, and the way that arousal is interpreted—cognition. Thus, when our body
undergoes some physiological change, we are able to perceive these changes and
through them, perceive the emotion we are experiencing. In this sense, the emotions
result from the individual’s interpretation of internal and external changes.

To test this theory, Schachter and Singer (1962) developed a complex experiment.
Some participants were injected with a placebo substance (i.e., did not produce any
arousal), while others were injected with a drug that produced physiological arousal.
Some of the participants injected with the drug were informed about its effects and
others were not. The results revealed that participants who received information
about the effects of the drug did not experience emotions because, according to
the authors, participants interpreted the physiological changes as an effect of the
drug and not as an emotion. That is, emotion does not depend only on physiological
changes. In contrast, participants who received no explanation about the effects of the
drug experienced physiological arousal and interpreted it cognitively as an emotional
state. That is, emotional experience depends on the cognitive interpretation given to
physiological changes.



64 M. Saraiva and H. Ayanoglu

This theory constituted a change in the paradigm of the study of emotions. If until
then, the focus had been on the physiological changes, from here onwards, cogni-
tion gained relevance, in particular the importance of the thought for the emotional
process.

4.3.3 Cognitive Theories of Emotion

4.3.3.1 Appraisal Theories of Emotions

According to this theory, emotions derive from the evaluations and interpretations
that individuals make of a stimuli, i.e., appraisal. The emotion thus stems from the
appraisal, with no physiological arousal being necessary. Emotions are regarded as an
adaptive response of individuals to the environment. Over the years, several authors
have contributed to the development of these theories (e.g., Arnold 1960; Lazarus
1968; Frijda 1986). Since appraisal may differ between individuals, the same stimuli
may have different emotional responses; but if the appraisal is the same, the expressed
emotion is the same. It was Arnold who introduced the term appraisal of emotions
with his Appraisal Theory of Emotions (Arnold 1960). According to this author,
individuals, when faced with a stimuli, evaluate it automatically and immediately as
good or bad, and stimuli evaluated as indifferent are ignored. This evaluation is made
on the basis of past experiences (i.e., memory) with the same or similar stimulus. In
this sense, appraisal represents the tendency for the individual to act in a certain way
when faced with a situation. According to Arnold, whenever this tendency is strong,
an emotion is being expressed. So appraisal is the beginning of emotional experience
followed by physiological changes.

In 1968, Lazarus carried out a set of studies whose main objective was to under-
stand the determinants of appraisal. As aresult of these studies, Lazarus argued for the
existence of three types of appraisal: primary, secondary, and re-appraisal. Primary
appraisal corresponds to the recognition of the stimuli and their importance for the
well-being of the individual. Secondary appraisal is the analysis the individual makes
of the resources that can be used to respond to the stimulus. Finally, re-appraisal is
the changes that the individual makes to the primary and secondary appraisals after
interaction with the stimulus. This process of continuous (re) evaluation attributes a
continuous and nonstatic character to emotion (Lazarus 1968).

Another researcher who contributed actively to the development of this theory was
Frijda, who argued that emotions are cognitive states representing action dispositions
(Frijda 1986). For this author, the emotions also correspond to responses to stimuli
appraised as relevant for individual concerns (Frijda 1986). By concerns, Frijda
(1986, 1988) means the individual’s motives and values. Emotions initially involve
the perception of the stimulus, which follows an evaluation (i.e., appraisal) made on
the basis of the individual’s concerns, which activates a set of actions (i.e., arousal).
Emotions, therefore, involve all these stages of preparation for action (Frijda 1986).
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Finally, another author who made important contributions to this theory was
Scherer. For him, the emotions are a set of synchronized changes between several
subsystems in the organism of an individual (Scherer 2001). For Scherer (1984),
emotions have five components: appraisal, physiological changes, motor expres-
sion (e.g., facial expression), action tendency and subjective feelings (i.e., emotional
experience).

As has been seen, a number of theories on emotions have appeared over the years,
although we have only referred to those that we consider most significant. While
some theories are based on evolutionary arguments (e.g., Plutchik 1962), others are
based more on physiological (e.g., James 1884) or cognitive arguments (e.g., Scherer
1984). However, other theories that were not mentioned here are based on cultural
(e.g., Malatesta and Haviland 1982), social (e.g., de Rivera 1977), or developmental
(e.g., Giblin 1981) factors. If, on the one hand, the interest in the study of emotions
has served areas such as Psychology, Philosophy, or Sociology; since the beginning
of this century, we have seen an increased interest in the role of emotions in Design,
as we explore next.

4.4 Design and Emotions

The combination of design and emotion has been gaining interest within design
practice and design research over the last 20 years (e.g., Desmet and Pohlmeyer
2013; Fokkinga and Desmet 2012; Yoon et al. 2014 and Yoon et al. 2016). Emotions
play an important role in the generation, development, production, purchase, and
final use of products that we surround ourselves with. When an object or a product is
idealized, it should take into account not only its usability and functionality, but also
the user’s pleasure (Jordan 2000). Aesthetically pleasing objects attract people, and
it is sometimes possible to establish an emotional connection between the individual
and the object (Helander and Khalid 2006).

One of the first authors to be interested in studying the importance of emotions
in design was Pieter Desmet. Basing his approach on the Appraisal Theory of Emo-
tions, he began studying the emotional connection between the user and the product.
Desmet (2002) argues that individuals extract meaning from their relationship with
the product. Therefore, products that contribute to the well-being of the user trig-
ger positive emotions and pleasure. Besides this, when the user’s relationship with
the product is assessed as harmful or unpleasant, negative emotions are triggered.
According to Desmet, it is the designers’ purpose to develop products capable of
eliciting positive emotions from the user, or to avoid certain negative emotions (e.g.,
sadness).

Desmet (2003) proposed five categories of product emotions (i.e., instrumental,
aesthetic, social, surprise, and interest emotions). Instrumental emotions relate to
the function of a product. Aesthetic emotions address the physical characteristics of
a product. Social emotions are associated with products that are used by a specific
group. Surprise emotions astonish users by novelty/innovation in products. Interest
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emotions are the result of products that stimulate and motivate users into producing
a creative action or thought.

Although Desmet categorizes product emotions, he also states (2003; 2004) that
products can elicit all kinds of emotions and that they are elicited not only by the prod-
uct’s appearance, but also by its function, brand, behavior, and associated meanings.
Desmet (2004) also argues that individuals experience different emotions about the
same product because they are personal and one product can elicit mixed emotions
simultaneously. For Desmet (2012), users can experience 25 positive emotions dur-
ing their interaction with objects/products. These emotions are: sympathy, kindness,
respect, hope, surprise, anticipation, energized, pride, confidence, courage, dreami-
ness, admiration, love, lust, desire, worship, euphoria, joy, amusement, satisfaction,
relief, relaxation, fascination, inspiration, and enchantment.

Producing objects capable of eliciting emotions (particularly positive emotions)
in the user is therefore the main objective of Emotional Design (Norman 2004).
Emotional design, sometimes also referred to as hedonic design, affective design,
affective human factors design, human-centered design, and empathetic design is,
in a simple way, the inclusion of emotions as an influencing factor in the way that
individuals interact with objects and products (Aumer-Ryan 2005). Throughout this
book, the term Emotional Design refers to the emotional component involved in the
interaction between human and product (i.e., robot).

Based on a neurobiological theory of emotions, Norman (2004) proposed the
existence of three levels in Emotional Design: visceral, behavioral, and reflective.
According to Norman, it is not possible to design without all three levels. The visceral
level is about the initial impact of a product, about its appearance, touch, and feel. The
behavioral level concerns the pleasure and effectiveness of use, the experience with
a product. Experience, however, has different facets: function (i.e., what the product
is meant to do), performance (i.e., how well the product carries out the desired
functions) and usability (i.e., how easily the user can understand how it works and
how to get it to perform). Finally, the reflective level is related to the rationalization
and intellectualization of a product (e.g., creating good memories for the user).

For Aumer-Ryan (2005), emotions are quick at the visceral level (e.g., fear and
disgust); at the behavioral level, emotions coincide with bodily activity, and include
such feelings as frustration, aggravation, and annoyance; finally, at the reflective
level, emotions, are removed, contemplative, and include feelings such as pride,
embarrassment or guilt.

Though interest in studying the emotions in the design process is still recent, its
principles have now been applied not only to object design but also to robots, in
order to facilitate Human-Robot Interaction (HRI). We will return to the theme of
Emotional Design in that context, in Chap. 8, in particular to its HRI application.
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4.5 Conclusion

Emotions play a key role in an individual’s behavior within the social context
(Plutchik 1991). Over time, various theories and models about emotions have
emerged, based on different perspectives, as explored at the beginning of this chapter.

Although the earliest theories about emotions date back to the nineteenth century,
only recently, have emotions come to be regarded as an important component of
cognitive functioning (e.g., decision-making), and not just as something that nega-
tively affects rational thought (e.g., Damasio 2003; Goleman 1995; Norman 2004).
Norman (2004) suggested that the Psychology assumptions related to the study of
emotions were applied to Design, specifically product design. Therefore, this author
argues for the importance of emotions in product design, and how this is reflected in
the user’s interaction with the product/object. Emotional Design arose out of this new
argument that, over the last decade, has proved to be a major innovation in the way
designers conceive and develop their products: hence the recent history of emotions
in the design field. In recent years, there has been an increase in the importance of
emotions applied to this area—Emotional Design. Emotional Design aims to elicit
(e.g., pleasure) or prevent (e.g., displeasure) determined emotions during the human
product interaction. In other words, it regulates the emotional interaction between
the individual and the product. One of the most significant developments of emotion
in technology was to create products, objects, and machines capable of expressing,
recognizing and feeling/showing emotions. The importance of the individual estab-
lishing an emotional and empathetic relationship with the products through design
has become evident, thus giving rise to Emotional Design.
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Chapter 5 )
On the Origins and Basic Aspects ez
of User-Centered Design and User

Experience

Rodrigo Hernandez-Ramirez

Abstract Over a decade after the iPhone was first commercialized, screen-based
tactile interfaces have become our primary means for interacting with computational
technologies; although thanks to recent developments in Machine Learning (ML),
gesture and voice control mechanisms will become more common. Smart technolo-
gies and what we end up defining and recognizing as robots will determine the
practical principles, and the type of experience designers will be able to shape. To
understand where the future of User-Centered Design and User Experience will take
us, we need to understand how we got to where we are. The main goal of this chapter
is clarifying what may be understood by User-Centered Design and User Experience.
To do so, it will look at the period between the late 1960s and early 1980s, when
Personal Computing and the ensuing democratization of technology forced designers
to think about their users honestly.

Keywords Aesthetics - Artificial agents - Human—computer interaction -
Human-centered design - Pragmatism + Technology - User experience - User
experience design

5.1 Introduction

Over the last four decades, computers went from being rare tools for specialists to
ubiquitous personal, intimate devices.' Nowadays, computational technology has
already been—or can be potentially—integrated into every other artifact, including
cars, telephones, vacuum cleaners, stoves, thermostats, or toilets. Thanks to high-
speed data transfer, the increasingly potent sensors, and processors embedded within

! As Kay (2002, p. 124) notes, when he first began to conceive the “personal” computer, the idea he
had in mind was “intimacy”.
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these artifacts can gather and receive vast amounts of data. Some of these datasets,
in turn, are used alongside new algorithmic methods to train so-called “smart” soft-
ware systems. These Machine Learning methods are behind the third “boom” or
“wave” (Garvey 2018; Lee 2018) of Artificial Intelligence (Al), which can take raw
visual and auditive information such as images and voice directly as input. This
type of Al is powering a new generation of smart appliances that we would nor-
mally refer to as artificial agents (AAs) or robots.” Paradigmatic examples of the
latter include autonomous vehicles, the highly publicized robotic humanoids, and
quadrupeds developed by Boston Dynamics, and Al-powered personal assistants®
such as Apple’s “Siri”, Microsoft’s “Cortana”, or Google’s Assistant.

These devices have increasing agency* and autonomy? thanks to ubiquitous com-
puting, which has “enveloped”® our environment, making it more accommodating for
AAs (Floridi 2014). Our world, which until recently harbored only “dead” objects,
will be further populated by responsive, interactive, and interconnected systems.
As this Internet of Things (IoT) trend continues, more aspects of concrete reality
will be incorporated into our informational environment or “infosphere” (see Floridi
2002). Consequently, hitherto meaningful boundaries between the (linear, Newto-
nian, and inert) offline world and the (post historical, informational, alive) online
world will become irrelevant. Our interaction with information technologies (ITs)
will stop being primarily mediated by screens and instead will be embedded in our
environment (Lee 2018). This situation brings a host of issues, but also possibilities
for Interaction Design (IxD) and User Experience (UX) at large, not to mention that
some of the principles behind User-Centered Design (UCD) will need to be revised
and updated to meet the challenges of new Human—AA relationships better.

Both UCD and UX are tied to Donald A. Norman and the work he developed as an
academic and as a design consultant working for major technology companies. Many
of the principles and methods comprising UCD can be traced back to Gould’s and
Lewis (1985) article “Designing for Usability” and the Project on Human—Machine
Interaction from the Institute for Cognitive Science at the University of California in
which Norman played a central role (see Norman and Draper 1986). In terms of design

2Paraphrasing Bryson (2009, 2019), a robot is any nonhuman artificial agent that transforms per-
ception into action; any artifact that senses and acts in the physical world, and in real time. Thus,
under this broad definition, smartphones, smart speakers such as Amazon’s Echo (“Alexa”), and
even “Roomba” vacuum cleaners count as robots, but so do disembodied AAs such as chatbots. In
this chapter, the terms “robot” and “artificial agent” will be used indistinctly.

3 According to Danaher (2018), a “personal Al assistant” is any software system that can act
autonomously in a goal-directed manner. That is to say, any software that can receive instruc-
tions (usually by voice) as input and provide specific output, such as directions to a place, selecting
among a range of options.

4Understood as the capacity to decide to act (or not), to choose the means to do so, and to apply
those means to bring about specific changes in the world (Bunnin and Yu 2009, p. 19).

SIn the context of Al, “autonomy” has a distinctive, more restrictive, meaning of a system being
capable of achieving a given goal without having their course of action fully specified by a human
(Johnson and Verdicchio 2017).

6 An envelope or “reach envelop” refers to the three-dimensional bounded space in which a robot
can reach (Floridi 2013).
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practice, there is a growing number of methodologies based on UCD principles. Some
of the most influential approaches are Norman’s (2013) own Human-Centered Design
(HCD) and Goal-Directed Design by Cooper et al. (2014).” Whereas more recent
iterations include Wright’s and McCarthy’s (2010) Experience-Centered Design,
Karjaluoto’s (2013) “knowledge-led, systems based” Design Method, and perhaps
the most well-known of all, IDEO’s Design Thinking® (Brown 2008, 2009; Meinel
etal. 2011).

The term UX was allegedly invented by Norman in the early 1990s while work-
ing at Apple’s Advanced Technology Group (Buley 2013; Merholz 2007; Norman
et al. 1995). Norman contended that “user experience” would better characterize an
expanding area of design practice that could no longer be described through interface
design and usability (Merholz 2007). Hassenzahl’s (2013) entry in the Encyclopedia
of Human-Computer Interaction, as well as his book, “Experience Design” (2010),
provide thorough descriptions of UX principles. Wright and McCarthy (2010), and
McCarthy and Wright (2004) also give a good account of UX design focusing on
its philosophical and aesthetic roots. Besides providing a host of practical insights
Saffer’s book, Designing for Interaction (2010) contains a widely distributed car-
tography of the various disciplines associated with UX. UCD and UX are the two
dominant paradigms in contemporary design practice. Nonetheless, a decade after
popularizing the term, Norman lamented that UX and HCD, along with usability and
“even affordances’ have turned into buzzwords (see Merholz 2007). That people now
use these terms with little or no awareness of their, origin, history, and the actual
meaning.

This chapter takes the circumstances previously discussed as a starting point.
Its main goal is clarifying what may be understood by UCD and UX. Its primary
assumption is that to understand how these concepts will change as nonhuman agents
further populate our environment, we first need to understand their origins. To do
so, we need to look at the period between the late 1960s and early 1980s, when
technical means and the cultural environment converged to allow the crystallization
of the Personal Computer (PC) and the emergence of contemporary HCI.

5.2 Before There Were UCD and UX

Nowadays, the idea that computers are personal and even intimate devices are taken
for granted, and so is the fact that we interact with them primarily through Graphical

"Cooper et al. (2014, pp. 13-14) make a point of distinguishing their approach from Norman’s,
which they claim is heavily inspired in Activity Theory, a conceptual framework initially developed
by Russian psychologist Aleksei Leontiev (see Kaptelinin 2013; see also Kaptelinin and Nardi
2012).

81t is essential to distinguish between design thinking as an epistemic domain halfway between
logical rationality and artistic intuition—i.e., as understood by Archer (1979) and Cross (201 1)—and

Kelley’s and Brown'’s five-step general methodology for problem-solving (see Hernandez-Ramirez
2018).
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User Interfaces (GUI). This was not always the case. Before the 1970s, computational
technology was not accessible to everyone, instead it was rigidly controlled by the
government, educational, and private institutions. Even within universities, access to
computers outside certain institutes was only possible through time-sharing,” which
could be quite expensive.'? Interacting with computers required at least basic knowl-
edge of programming since the only way to work with them/issue commands was
by inputting text through a terminal.

Since the mid-1950s, the United States Military (mainly through DARPA) had
been financing research to improve the usability of computers. The public and private
institutions doing it mostly followed ergonomic principles. Hence, as a distinctive
field of research, Human-Computer Interaction (HCI) only emerged in the 1980s,
around the same time computers became PCs, that is, consumer products for the gen-
eral population (Carroll 2013). HCI marked a profound shift in the way engineers
who had been developing computational technology in the last decades regarded
end-users: they realized that nonspecialists had “functioning minds” and that under-
standing those minds would determine the way people would relate to computers in
the future (Kay 2002). This shift had been gestating since the late 60s but arguably
only turned paradigmatic once all the necessary components that are now familiar in
every computer came together: microprocessors, pointing devices, and the GUIL

The icons and graphical representations comprising the GUI enabled every poten-
tial user to conceptualize computational process in more familiar terms through visual
metaphors of “real life”” objects and actions. While pointing devices allowed them
to interact with computers more intuitively, by selecting and “touching” objects in
the screen. The principles behind the GUI were based on intuitive learning and cre-
ativity; they contemplated and made explicit a factor which had hitherto been absent
from interface design: the aesthetic dimension. To understand the origins of HCI and
later, of UCD and UX, we need to make a short digression to look at the origins of
the GUI and the notion of personal computing in general.

5.3 Early HCI and Interface Design

The origins of the GUI can be traced back to Ivan Sutherland’s “Sketchpad” (1964),
a computer program he developed during his Ph.D. that would revolutionize HCI,
computer graphics, and the very notion of the computer. The primary goal of Sketch-
pad was allowing users to generate graphics not by writing code but by directly
“drawing” over the monitor with a light pen. With Sketchpad, Sutherland introduced
a new paradigm of interactivity, wherein by manipulating an image displayed on

9Time-sharing allowed multiple users to work on the same computer using different terminals,
receiving alternated “slices” of computer execution time as they became available (Alesso and
Smith 2008, p. 61).

100ne hour of time-sharing could cost between 10 and 20 USD (Campbell-Kelly et al. 2014), that
is, between 50 and 100 USD in today’s money.
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the screen, a person could directly change “something in the computer’s memory”’
(Manovich 2002, p. 104).

Among the people influenced by Sketchpad was Douglas Engelbart. Engelbart was
the founder of the Augmentation Research Center at the Stanford Research Institute.
Inspired by Bush’s (1945) seminal article, “As We May Think”,'! Engelbart had been
attempting since the mid-1950s to develop a computer-based “personal information
storage and retrieval machine” (Campbell-Kelly et al. 2014, p. 258). In late 1962,
Engelbart obtained funding to develop what he and his research team called the
“electronic office”, a computer system capable of integrating for the first-time text
and pictures (2014, pp. 258-259). Five years later, Engelbart’s group was already
prototyping what would arguably become their most lasting contribution to HCI:
the computer mouse. After extensive testing, this peripheral showed to be more
effective than the “light pen” used by Sketchnote and other joystick-like devices
(Ceruzzi 2003). On December 9, 1968, at the Fall Joint Computer Conference in San
Francisco,'? Engelbart and about a dozen other people—including Stewart Brand,
editor of the highly influential zine The Whole Earth Catalog—staged what came
to be known as “The mother of all demos”. Using a video projector to enlarge
a computer screen to six meters, Engelbart showed the mouse, hypermedia, and
teleconferencing; all of the features that would end up defining the contemporary
computing environment.

Engelbart’s electronic office system was too expensive to be commercialized due
to a lack of cost-effective technology,'® but the demo made a profound impression
on the emerging HCI research community. Engelbart and his group conceived the
feasible technological means for interacting with the computer beyond inputting text
with a keyboard. But it was a group of researchers from the University of Utah—
where Sutherland was a professor at that time—who conceived the software, and the
visual language that eventually allowed computers to become personal tools. And
arguably the most influential of them was Alan Kay.

As a doctoral candidate at the University of Utah, Kay pursued an ambitious
project that would culminate in his thesis, The Reactive Engine (1969). In the thesis,
he specified a new programming language called FLEX, as well as an early prototype
for a personal computer that he designed along Ed Cheadle. According to Kay, the
computer used a pointing device, a high-resolution display for text and animated
graphics, and used the concept of multiple windows, but the interface, nonetheless,
“repelled end-users” (2002, p. 123).

In 1972, Kay joined the recently founded Xerox Palo Alto Research Center
(Xerox PARC) along with many of Engelbart’s former colleagues (Ceruzzi 2003).
This laboratory would be responsible for developing the Ethernet, laser printing,
Object-Oriented programming, as well as the concept of the contemporary personal

lIgee Engelbart (1962) for his account of Bush’s influence.

12For a full account, see “A research center for augmenting human intellect” (Engelbart and English
1968).

13 At that time, even so-called “mini-computers” would cost several thousand dollars. The Intel
4004 microprocessor, which powered the new generation of PCs, only entered the market in 1971.
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computer. By 1973, Kay and his team had developed a prototype computer called
the “Xerox Alto”, whose operating system and configuration owed considerably
to FLEX. The Alto was a desktop machine, it had a custom-built bitmap screen
roughly equivalent to a letter-sized sheet of paper (215.9 by 279.4 mm) but oriented
in portrait instead of landscape mode. The alto displayed documents that “look[ed]
like typeset pages incorporating graphical images” (Campbell-Kelly et al. 2014,
p. 260), and each one of the visible elements on it could be manipulated. Users
could “scale letters and mix text and graphics on the screen” (Ceruzzi 2003, p. 262),
which meant editing was effectively “what-you-see-is-what-you-get” (WYSIWYG).
Having refined Engelbart’s design, Kay and his team incorporated the mouse into
the alto, along with the “now-familiar desktop environment of icons, folders, and
documents” (2014, p. 260). However, the Alto was never commercialized; at 18,000
USD a piece — about 90,000 USD in today’s money (Ceruzzi 2003, p. 261)—it was
simply too expensive.

In 1979, Steve Jobs visited the Xerox PARC and was so impressed by the Alto
that he convinced his partners (Steve Wozniak and Ronald Wayne) to incorporate
the GUI paradigm into Apple computers. According to Kay’s account (2017a) Jobs
was so amazed by the GUI that he missed the fact that the Alto had already incor-
porated networking (ethernet) and Object-Oriented Programming, two features that
are indispensable in contemporary systems.

In 1981, Xerox introduced a commercial version of the Alto, the “Xerox 8010
Star System”, which was targeted at business users. Besides having a mouse and
network connection, it was the first commercial computer to use a GUI based on
the office “desktop” metaphor simulating interactable objects such as documents,
folders, trash bin, rulers, pencils, “in” and “out” boxes, etc. (Brey 2008). The oper-
ating system allowed the user to treat everything that was displayed on the monitor
(images, characters, words, sentences, paragraphs) as “objects” and thus select and
manipulate them individually. Object integration was system-wide so that a docu-
ment could hold charts, tables, and image modules along with the text. Moreover,
the system incorporated generic commands (such as move, copy, open, delete, and
show properties) that could be used on every object selected, using dedicated key-
board buttons. These features liberated the user from having to remember specific
commands (e.g., Ctrl + C) to apply changes (Johnson et al. 1989).

The Xerox Star was conceptually and technically superior to every other office
machine available at the time, but it was a commercial failure (Campbell-Kelly et al.
2014; Ceruzzi 2003). It was too expensive (it sold for approximately 16,500 USD),
almost five times the price of other computers available at the time (Johnson et al.
1989; Smith and Alexander 1988). Furthermore, to take advantage of the Star’s
distributed (Ethernet-based) networking, the potential buyer had to acquire at least
two or three workstations along with a file server and one or two laser printers. That
meant spending between fifty and a hundred thousand USD (almost a quarter of a
million USD in today’s money). But the other major obstacle the Star faced was
conceptual, and those responsible were Xerox’s salespeople as well as the potential
buyers themselves.
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5.4 The Computer Becomes Personal

As previously noted, before the mid-1970s, the very idea of a personal computer
was not mainstream. The Star was advertised depicting an executive making calls,
writing, and sending documents while sitting at his desk. Somehow the marketing
department at Xerox failed to see that in those days’ executives rarely, if ever, carried
out any of those tasks (Ceruzzi 2003, p. 263). And even if a technologically curious
executive would be willing to try a computer, he or she could buy and experiment
with a far cheaper one (Smith and Alexander 1988). In contrast to Xerox’s strategy,
other brands (such as the now-defunct Wang Laboratories) aimed their products
precisely at the people whose work conditions could be improved by using a PC:
secretaries and office clerks. By then, the PC had been defined physically as an
artifact, conceptually, however, it remained unclear why anyone would be interested
in having one at home or work. The cultural environment was not yet ready for
advanced personal information systems.

At that time, computers were still regarded as single-task devices meant for insti-
tutions. While in theory, the computer is a universal machine (Turing 1937), in prac-
tice mainframe and “mini” computers were fixed, and their reprogramming required
specialized knowledge and hardware adjustments. For that reason, large companies
such as IBM not only sold (or rather leased) computers but also “business services”.
Mainframe computers were custom-designed and programmed to meet a client’s
specific computing requirements; the software was hard-coded into the machine so,
along with selling the equipment, IBM included the services of its engineers for
a yearly fee. Minicomputers, on the other hand, were usually sold without engi-
neering support, they were not customized and had to be programmed by whoever
bought them. Consequently, the idea of a computer being used by a single person was
unthinkable at that time. What ended up making the PC appealable for consumers
was not the hardware that early computer hobbyists were so fond of tinkering with,
but software—along with IBMs (cautiously skeptical) decision to finally enter the
PC market.

PCs were from the outset all-in-one general purpose machines “ready to run”
(Byte 1995, p. 100). By late 1977, the pioneering “trinity” (see Byte 1995; Williams
and Welch 1985) of personal computers— the Apple I, the Tandy/RadioShack TRS-
80, and the Commodore PET —had opened the market for a new class of cultural
product: software applications for business, education, and entertainment. A whole
new industry emerged around software—particularly around computer games—that
would end up redefining human culture at large.'* The consumer software industry
would play a crucial role in the emergence of the UCD paradigm and UX.

In August 1981, IBM officially entered the PC market; this meant personal com-
puting was finally legitimized by a “serious” (i.e., conservative) corporation willing
to bet on the new technology. Whereas the “trinity”” had certainly gained followers

14 Arguably, the software industry continues to play a critical role in technological adoption. We
should remember the success of smartphones depends mainly on the fact that they allow users to
run myriads of “apps” controlling an equal amount of services.
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in the electronics enthusiasts and educational markets before IBM introduced the
Model 5150 PC most business users who had hesitated to buy an Apple or a Tandy
(the Commodore was seen mainly as an educational device) were finally convinced.
To the news media, unaware of the cultural origins of this technological shift, the
computer was an overnight phenomenon whose success surprised even IBM itself
(Campbell-Kelly et al. 2014, p. 248).

Engelbart’s “electronic office” and Kay’s Alto were two technological models
that joined to form not only the modern GUI but also the paradigm of contemporary
HCI (Campbell-Kelly et al. 2014, p. 259). Companies such as Apple and Microsoft
capitalized on these innovations, “liberating” consumers from having to interact with
the command line and creating a market for software applications which brought new
challenges for the field of HCI and set the stage for the emergence of UCD and UX
as disciplines. Before looking at the origins of these design paradigms, it is critical
to focus on the ideas behind the GUI, in particular on its pedagogical imperatives,
for it is there that we will find the reason why HCI researchers stopped treating the
actual needs of end-users as an afterthought.

As we will see further along the way, one of the tenets of contemporary design
practices following UCD approach (particularly Interaction Design) is creating tech-
nological solutions that are not only usable but useful. The goal is providing users
with the means to accomplish something better; the technical solution is, therefore
“just” an enabler, an affordance that will improve a user’s experience while carrying
out a task. To achieve this goal, designers need to understand the role of products in
the context of meaningful activities, this means learning not only what kind of tasks
a user engages in, but why she does it.

5.5 The Pedagogical Role of the GUI

Kay’s goal was offering people, particularly children, not (just) a multipurpose tool,
but a “metamedium” (Kay and Goldberg 1977) for constructing knowledge. Whereas
other HCI pioneers such Engelbart and English (1968) had focused on improving
HCI to “augment human intellect”, Kay was looking instead to develop an enabling
device for personalized learning (Coyne 1995, p. 33). Kay’s vision highlighted the
nature of the computer as prefigured by Alan Turing. Turing (1937) imagined his
machine as capable of simulating, or rather of “computing”'®> any machine that
was computable. Kay thought this universality—this capacity to simulate—could
be extended to sound and images (Manovich 2013). Hence, he made simulation the
“central notion” guiding the design of his prototypes, particularly, of the Dynabook
(Kay and Goldberg 1977, p. 36).

If Kay and his team spent over a decade researching the computer’s potential as “a
medium for expression through drawing, painting, animating pictures, and compos-

I5Turing never used the word “simulation” in his paper, the term is the product of later interpretation
of Turing’s ideas.
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ing and generating music” (1977, p. 31), it was not due to artistic inclinations. Kay
was interested in improving human learning potential through computational tech-
nology, but he disagreed with the prevailing rationalist conceptualizations of knowl-
edge shared by most HCI researchers. For them, computers could be at best devices
for capturing and retrieving information (Bush 1945) or machines for automating
routine work (Licklider 1960). Whereas Kay regarded the computer as a “culture
machine”—to borrow Manovich’s formulation (2013); as a medium through which
active learning and experimentation could be significantly amplified by simulation.

Influenced by the ideas of Jerome Bruner, Seymour Papert and Marvin Minsky,
Kay, and his group at Xerox PARC imagined the computer interface as something
that should be equally approachable for anyone regardless of age and prior cognitive
skills and knowledge. In 1968, as a graduate student, Kay met the ideas of Papert
through Minsky (Kay 2017b). Papert, who studied with developmental psychologist
Jean Piaget, had realized that children under 12 years old are not well equipped to do
“standard” symbolic mathematics, but they nonetheless could do other kinds of math-
ematical thinking when presented in a way that matched their current capacities (Kay
2002). Kay later came into contact with Jerome Bruner’s interpretation of Piaget’s
ideas on children’s cognitive development and came to believe that interaction with
a computer interfaces should take advantage of the three “mentalities” (modes of
representation) Bruner had identified: enactive (manipulate objects), iconic (recog-
nize things), and symbolic (abstract reason); as opposed to merely stimulating the
symbolic mentality like the traditional command line interface (CLI) did (Kay 2002;
see also Manovich 2013, pp. 97-98). Kay condensed his vision in the slogan “doing
with images makes symbols” (2002, p. 128), which culminated in the Alto’s GUL

Early programmers and HCI researchers were mostly mathematicians and sci-
entists, their approach to interface design and programming, in general, was based
on mathematical logic. A shift in paradigm required, to borrow Kay’s formulation,
“a new class of artisan” (1984, p. 54). These artisans understood the role aesthetics
plays in cognitive processes, specifically one that privileged simplification via visual
metaphors and analogies over abstract logical descriptions. To embrace this new
paradigm required accepting that people are different from computers; that human
behavior is far more complex than any logical model would admit. Therefore, a new
design approach was required. One that was “pluralist” (interdisciplinary) enough to
accommodate all the nuances of human behavior, and sensitive enough to place the
human needs rather than the system’s needs at the start and the core of the design
process. This approach was UCD.

5.6 User-Centered Design (UCD)

The origins of UCD date back to the early 1980s, to the Project on Human-Machine
Interaction from the Institute for Cognitive Science at the University of California,
San Diego. At the time, a group of researchers from Al and psychology, among them
Donald A. Norman, put together an interdisciplinary team of researchers and orga-
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nized a series of conferences and workshops that culminated in the book User Cen-
tered System Design (1986). Both the name of the book'® and the holistic approach it
advocated grew in popularity among HCI practitioners and researchers and has since
then become the dominating paradigm, particularly in Interaction Design (IxD).
Another key document is “Designing for usability” by Gould and Lewis (1985), an
article that outlined the main ideas and reasons for adopting an empirical approach in
what was then called system design, that includes user research and intensive cycles
of prototyping and testing.

The emergence of UCD is arguably a continuation of the ideas that led to the GUI
in the first place, albeit more pragmatic and with the benefit of having computers
already transformed into consumer products. Its origins may be attributed to HCI
practitioners and researchers realizing that computers are not (just) about technology
but about people using them. These researchers recognized that “computation is a
social act”—to borrow Turkle’s (1980, p. 22) words, and hence, that the computer
could be understood as a social tool (Norman et al. 1986, p. 2) that influences social
interactions and policy. They understood that the computer could and should be
viewed “from the experience of the user”, which is itself influenced by the nature of
the task, the user herself, and the context of use.

The ideal driving the shift toward UCD was giving users “the feeling of ‘direct
engagement’” (Norman et al. 1986, p. 3). That is, the feeling that the computer
itself receded to the background while letting the task at hand, whether it involved
sound, words, or images to come to the forefront. This stance was radical insofar as it
proposed completely subordinating the interface to “social concerns”: to the various
ways in which the computer could be use, rather than the other way around—as had
been the case until then. So much so that Gould and Lewis (1985, p. 301) note that
while they had been promoting these principles since the 1970s and many designers
claimed not only that they applied them but that these ideas were “common sense”,
the reality is they did not even understand them. It has been more than 30 years
since Gould and Lewis and Norman and Draper (1986) outlined the core principles
of UCD, but only in the last decade or so have they been accepted and implemented
in product design (Still and Crane 2017, p. 19).

5.7 WhatIs UCD

UCD developed from many different sources; it is related to Interaction Design
(IxD) and User Interface Design (UID),!” but whereas these are “artifact driven”
notions, UCD is better understood as a comprehensive process (Wallach and Scholz

16The name “User Centered System Design” was originally an alliteration of the abbreviated name
of the University of California, San Diego (UCSD). Norman and Draper (1986 iX) credit Paul
Smolensky with having come up with the idea.

17UCD is informed by these two design areas but also by cognitive science, user research psychology,
HCI, and ergonomics (Still and Crane 2017).
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2012)—although not as ample as UX. UCD is a cluster'® of operations comprising
a framework that implicitly recognizes the interface of a computational device as
a sociotechnical intersection. That is, as something where “many different kinds of
things: people, machines, tasks, groups of people, groups of machines, and more”
(Norman et al. 1986, p. 5) come together. As Wallach and Scholz (2012) note, there is
little doubt that Gould and Lewis (1985) laid the foundational concepts and general
approach on which current UCD practices are still based. This is no small feat,
considering that in terms of technological development, three decades is a significant
time span. Their central claim was that “[a]ny [computational] system designed for
people to use should be easy to learn (and remember), useful, that is, contain functions
people truly need in their work and be easy and pleasant to use” (1985, p. 300). They
were, in short, advocating that to provide learnability, usability, and “delightful”
experiences (see Cooper et al. 2014; see also Norman 2013), designers'® ought to
first and foremost understand their potential users.

Gould and Lewis do not define “usability”,20 however, their claim is echoed in
the International Organisation for Standardisation (2018), according to which:

usability

[is the] extent to which a system, product or service can be used by specified users
to achieve defined goals with effectiveness, efficiency, and satisfaction in a specified
context of use.

Gould and Lewis (1985, p. 306) were prescient enough to recognize that in this
age the product is not (just) the device but the interface. They understood the need to
develop a robust methodology to increase usability, which undoubtedly would have a
powerful impact on the emerging market of computational devices. They advocated
three principles that are now obvious for anyone acquainted with UCD, but which
at the time seemed if not foreign, at least superficial. First, that “systems designers”
should engage in “interactive design” (1985, p. 302), that is, they should focus on the
users and their tasks from the outset, understanding who they are and the nature of
the work they engage in by studying their behavior through direct contact. Second,
carry out empirical measurement while testing prototypes with actual users early
in the design process, focusing on their reactions and suggestions. Third, embrace
iterative cycles consisting of design, testing, and redesigning.

18 A “cluster” is best understood as “a number of things growing naturally together” (Harper 2019).
191t is important to remember that, at the time, there was no such thing as a “user interface designer”.
The people designing interfaces were mostly self-taught programmers and scientists with little or
no training in design. Design as practice continued to be primarily analogical and divided along
two traditional branches: graphic and industrial.

20For thorough discussions on the history and broader meanings of the term see Johnson et al.
(2007) and Sullivan (1989).
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5.8 Understanding Users

Gould and Lewis further clarify that by understanding “typical users™?! they do not
mean identifying, describing, or stereotyping. They argue contact with them should
be direct, preferably through interviews carried out before the actual design cycle
begins because it is at that moment that the information gathered can influence the
outcome of the design. This process stands in stark contrast to what inexperienced
designers (mainly students) attempting to follow an empirical approach do: conduct-
ing user research after creating the prototypes thus falling into the trap of post hoc
rationalization that forcibly attempts to validate design decisions that were already
implemented. Gould and Lewis (1985, p. 302) note this type of user involvement
resembles participatory design, a methodology that originated in Scandinavia and
which advocates direct user involvement throughout the entire design process (for a
thorough discussion see Luck 2018; see also Spinuzzi 2005).

Regarding “empirical measurements”, Gould and Lewis are talking about testing
and measuring variables such as learnability and usability with a user interacting with
a prototype, rather than carrying out simple analytical questions. In other words, they
warn against attempting to “sell” a finished interface to a potential user. Usability
testing helps overcome the problem of designers being too used to their product and
hence not being able to see all the potential pitfalls and untested assumptions in their
project. Usability testing makes explicit the differences between the ways a designer
and a user think about the interface.

Gould and Lewis understand iterative prototyping as an effective way to address
the unpredictability of user’s needs, which often lead to fundamental changes in
design. Prototyping should be based on user testing, for the latter can reveal that
even the most thoughtful design might prove to be inadequate. This implies that the
implementation should be as flexible as possible, extending throughout the system.
An essential aspect of iterative prototyping is that designers need to be capable of
accepting (and reacting upon) test results that call for radical changes in the design
and be prepared to “’kill their darlings”. In sum, testing prototypes can help designers
to reliably identify critical problems in what they create; hence, it should not be
treated as a luxury or unnecessary waste of time.

5.9 Norman’s Approach

Gould’s and Lewis’ principles are aligned with one of Norman’s most influential
works, The Design of Everyday Things (2013). Norman argues his approach concerns
three major areas of design: Interaction Design, Industrial Design, and Experience

21Gould and Lewis (1985, p. 302) suggest user research should be conducted for example with
secretaries and clerks: from a historical standpoint this suggestion is interesting because it reveals
an understanding of who the actual users of personal computers were. A knowledge that contradicts
the naive assumptions that some computer manufacturers such as Xerox had at the time.



5 On the Origins and Basic Aspects of User-Centered Design ... 83

Design. However, whereas Gould and Lewis claim their approach could increase
“usability marks” (and therefore make systems easier for users to learn and use),
Norman’s approach is more holistic; he sees the users from a broader perspective.
He talks about human—technology relations, not restricting his approach to a specific
technology or context of use. Norman’s vital contribution is suggesting that designers
not only provide a given product or service but a whole experience; something with an
active aesthetic component. Experience, Norman (2013, p. 10) contends, is critical
because it determines how people are going to internalize their interaction with a
given technology.

For Norman, the design is ultimately a humanistic activity; a form of mediation.
As he puts it, “[a]ll artificial things are designed” (2013, p. 4); the design is con-
cerned with how things work and how they are controlled, and thus how humans
interact with them. But while people build machines, their behavior is limited (pro-
cedural and literal) and may often seem alien to the users. Traditionally, it was users
who had to adapt to the situations presented by the machine, but that should not
be the case any longer. Instead, machines should adapt to people’s needs and cir-
cumstances, and it is the designer’s task to make sure that happens. The problem,
Norman contends, is that the people in charge of designing the technologies are
experts in the machines, not in people’s behavior. Furthermore, they are often con-
vinced that logic is the most appropriate way of thinking, whereas human thought is
far more complex. The technological design thus stands at an intersection between
humans and machines; its task is bridging the gap that separates the two. For Norman
(2013, p. 9) UCD, or rather HCD is not only an approach but a design philosophy
that relies primarily on (scientific-like) observation of people. Because specifying
what is going to be defined is the most challenging aspect of the process UCD/HCD
instead iterates potential approximations to the solution. UCD is a methodology that
can be employed by different design areas, regardless of their specific focus (e.g.,
Interaction, Communication, Industrial products).

In the decade since Norman and Gould and Lewis first promoted their ideas
UCD/HCD has been expanded and adapted by many design practitioners, leading
to somewhat different methodologies which, nonetheless, maintain the same basic
principles: understand the user before designing and incorporate insights from user
research throughout the design process; test prototypes in recursive iterative cycles
and be prepared to make changes after each cycle, regardless how radical they need
to be.

In summary, UCD is a process or rather a set of processes that emphasize an
approach to design that breaks from the traditional product-centric/technological
approach by taking care of the whole experience of the user. It is a humbling method
that highlights the uncertain nature of design, and the complexities of its various
stages, putting a humane focus throughout the design process. UCD is above all
iterative; it implicitly addresses a vital issue for design practitioners, which Parsons
(2015) calls the “epistemological problem” or difficulty of design: the question of
how a designer can know her solution is going to solve the intended problem (see
also Galle 2011). UCD tackles this problem by adopting a fundamentally empirical
method to gain as much information from the users as possible to craft a unique
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experience. How this concept should be understood in the context of design and
what is its relationship with aesthetics will be the focus of the next section.

5.10 User Experience (UX)

Contemporary design practices address complex problems that involve difficult
sociocultural issues and reveal the deep entanglement between human behavior and
technologies. If we lend credit to Norman, designers today are more like applied
behavioral scientists than applied artists. New design areas such as interaction or
product design require a deep “understanding of human cognition and emotion, sen-
sory and motor systems, and sufficient knowledge of the scientific method, statistics,
and experimental design” (Norman 2010). Traditional design skills such as drawing,
sketching, and modeling are supplemented and sometimes replaced by programming,
and scientific methodologies for gathering and analyzing data. Design products and
what is expected from them have thus become significantly more complex.

The emergence of UX is arguably the result of the technological shift discussed in
the first section of this chapter, which led designers from “merely” designing concrete
objects (i.e., “stuff”’) to designing the conditions that may elicit a positive and complex
response from users. In the early and mid-decades of the past century, designers
mainly focused on ‘“external” aspects of products, i.e., their form, function, use,
and materials (Buchanan 2001). However, with the arrival of the PC and consumer
software, designers began to move their focus away from “visual symbols and things”
and onto understanding products “from the inside” of the humans interacting with
them in specific social and cultural circumstances. Computational technology opened
an uncharted space for a design where form, function, use, and materials are still
important, but they are re-conceptualized through research attempting to understand
what is it that makes a product useful, usable, desirable and delightful (2001, p. 13).

Defining UX in general terms is a difficult if not impossible task. It can be a
practice or area of focus in contemporary design but also the result of a design
process.?? It is an umbrella term that attempts to describe all the complex things
that a user undergoes when interacting with a designed artifact. Hence, while it
is a relatively novel concept, it describes phenomena that have been discussed for
a long time by designers under other names, such as ergonomics, affordances, or
anthropometrics. The main distinction, however, is that unlike previous notions,
UX explicitly acknowledges that whatever happens between a human being and a
designed artifact has a strong aesthetic component.

22From this point onwards, UX will be used to designate the result of a design process, whereas
UXD will refer to the activity aiming to achieve it.
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To the best of our knowledge, Norman was among the first one to use—if not
the inventor®® of—the term “User Experience” (Norman 2013, xiii—xiv) in the early
1990s while he was the head of the “User Experience Architect’s Office” at Apple.
Norman implicitly defines experience as “the aesthetics of form and the quality of
interaction” provided by a given product (Norman 2013, p. 4). This implies the prod-
uct is not only usable but useful; that its features are immediately discoverable and
understandable to the user. This succinct definition is a good starting point. Nonethe-
less, to fully grasp what experience stands for in a contemporary design, we need
to look at its origins and evolution as a concept and its relationship with aesthetics.
But also, to its usage within a philosophical school (American pragmatism) and,
particularly, in the work of John Dewey. This we will do before turning our attention
to the ways experience influenced computer system design, HCI, UCD, and IxD.

From a (traditional) epistemological standpoint, an experience is that which con-
trasts to what is thought or to what is accepted based on authority or tradition; it is
what we perceive through our senses; information that comes from external sources
(or through inner reflection) (Bunnin and Yu 2009, p. 240). In this sense, the experi-
ence is associated with empirical observation. Because it concerns sensory perception
experience is closely linked to aesthetics, which was initially understood as “the sci-
ence of sensitive knowing” (Bunnin and Yu 2009, p. 17), from the Greek aisthitiki,
“perceived by the senses” (Fishwick 2006).

Although aesthetics is usually associated with art, there is an essential distinction
between the two. Aesthetics may be concerned with works of art, butitis not restricted
to art or beauty or the beautiful (Nake 2012, p. 66). Aesthetics is also concerned with
value and with our experience of the environment (both natural and artificial); it
is an autonomous branch of philosophy concerned with the analysis of problems
relating to perception. It was initially conceived as a companion and complement
to logic, and thus its focus was human cognition. Whereas logic studied discursive
and rational cognition, aesthetics focused on holistic sensory cognition (cognitio
sensitiva), that is, cognition experienced and practiced through our senses, tied to
our physical capacities (Proudfoot and Lacey 2010). There are many approaches to
aesthetics, but the one that interests us, due to its lasting influence on contemporary
design practices and areas of specialization such as interaction design and User
Experience Design (UXD) is by the American Pragmatist philosopher, John Dewey.

5.11 Dewey and Pragmatism

Pragmatism is a philosophical school that emerged in the United States in the late
nineteenth century. Unlike other philosophical strains in the Western Tradition, prag-
matism evaluates claims (e.g., concerning meaning, truth, knowledge, or morality)

23Norman admitted to having “invented” the term because usability and human interface seemed too
narrow to account for everything that happened when a person interacted with a system (Merholz
2007).
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not in terms of perennial axioms or syllogisms but in terms of the consequences
that a given action has (Dusek 2009). Pragmatism rejects dualism (mind vs. body
distinction) and the separation of theory and practice; it embraces the materiality
of the world, the embodiment of knowledge, the interaction of the senses, and the
formative power of technology in everyday life (Coyne 1995, p. 17). Pragmatism
is anti-essentialist; it emphasizes practice, not representation (Ihde 2009). For prag-
matism, experiences are crucial for creating knowledge. Their view of experience is
holistic and dynamic, according to it, humans do not merely (passively) receive indi-
vidual sense impressions but actively engage with the world through active habits;
hence we continuously transform our experience of it (see Pihlstrom 2011, p. 31).

According to Coyne (1995, pp. 38-41) Dewey understood facts, ideas, and con-
cepts as tools; he regarded theoreticians as technicians. Tools are not universally
useful; their applicability changes according to the situation. Thus, he did not grant
any special privilege to reason or inference—he regarded science as just another
form of practice, albeit highly specialized. Knowledge cannot exist outside of doing,
knowing is “knowing how” instead of “knowing that”. Humankind, for Dewey, is not
above nature but always involved with nature and in constant interaction with it; life
happens not only in an environment but within it. More important, and because he
emphasizes (human action) Dewey regarded perception not as analytical or passive
but as a participatory activity, and this is key for his understanding of aesthetics.

For Dewey aesthetic artifacts such as works of art have no intrinsic, essential
features, the “art” is in what the object does within an experience. To understand the
aesthetic value of an artifact, we need to look at ordinary, “in the raw”, everyday
aesthetics. That is to say, for example, that if we want to understand the Parthenon,
we first must understand the cultural context of Athenian society (Leddy 2016).

In Dewey’s view, aesthetic experiences begin in happy absorption in an activity
(poking fire in a campfire, or watching a baseball game), so a crafty mechanic fixing
a car may be in this sense “artistically engaged” (see Granger 2006). Organisms
(including humans) engage in a dialectical relationship with their environment: every
creature has needs, their life flows are a constant rhythmic resolution of tensions
between requirements and their satisfaction; between disunity and a unity (balance)
(Leddy 2016). For humans, this rhythm is conscious. Direct experience is a function
of the interaction between us and our environment. The aesthetic experience involves
a drama (narrative) where actions, feelings, and meaning play a part. The most
intense aesthetic experiences happen in the transitions between the disturbance of
needs and the harmony of balance when needs are met. Happiness is the result of
deep fulfillment; when every aspect of our being is adjusted to the environment
(in full balance). Experience is the result of active engagement with these tensions
when we infuse them with conscious meaning through communication (Leddy 2016).
Consequently, the experience is not only the result of the interaction between subject
and environment but the subject’s reward when it transforms mere interaction into
active (meaningful) participation.

Dewey’s book (1980) Art as Experience and, in particular, the chapter “Having
an experience” has had a longstanding influence on contemporary design practices,
particularly on IxD (Buchanan 2009). Dewey’s book was compulsory reading in



5 On the Origins and Basic Aspects of User-Centered Design ... 87

the Industrial Design course at the New Bauhaus in Chicago (Findeli 1990). It later
informed HCI research at Xerox PARC and continues to elicit much discussion
among IxD researchers (Dixon 2019).

For Dewey, in “an experience” the material of experience is fulfilled or consum-
mated, e.g., when a game is played, or a problem is solved (Leddy 2016). As we
saw before, Dewey understands life as a collection of histories, each one with a
unique quality. In an experience, every one of its components follows in an unbroken
chain without sacrificing their identity; each part is a phase of an enduring whole.
A good example of experience is an artwork; in it, separate elements participate in
forming a unity; their particular identity is not diluted but enhanced.?* For Dewey,
no experience has unity without aesthetic quality, although this does not imply that
all experiences can be reduced to aesthetic experiences (Leddy 2016). Emotion is
the unifying quality that distinguishes an aesthetic experience from other kinds of
experiences (Buchanan 2009).

5.12 Experience as Design

Dewey’s influence is palpable in the work of Hassenzahl (2010, pp. 5-30), who
describes experiences in terms of unique emergent qualities that are not reducible to
(nor explainable by) their constituting elements and processes. Nonetheless, these
elements are open to study and deliberate manipulation; experiences can thus be
shaped through carefully modifying their elements. Experiences are lived episodes
comprising sights, sounds, feelings, thoughts, and actions; they are stories emerging
from the “dialogue” of a person with her surroundings. Experiences are holistic,
situated, and dynamic; they arise from the activation of perception, action, motivation,
and cognition at a given place and moment, and they extend over a certain timespan.
Experiences may occur in infinite variations, but, in Hassenzahl’s view, there are
universal psychological needs that are essential constituents of experience (2010,
p.- 57).

UX is a sub-category of experience that is deliberately elicited and shaped through
an (interactive) product (Hassenzahl 2013). UX is not unlike experience at large; the
difference being that it focuses on a person’s attention on that specific product. The
product is not the experience per se, but a facilitator, a mediator that can shape or
influence what and how we experience a given activity (2010, p. 8). The emergence of
a given experience cannot be guaranteed; however, careful application of knowledge
about how experiences are elicited can make them more likely, that is precisely the
task of UXD.

Although for UX, the interactive product is a necessity, UXD is not about the tech-
nology itself, but about transcending its materials, about making it an instrumental

24 Artworks may be understood as integral complex informational systems, wherein each element
is necessary for the aesthetic content to emerge, a slight change in the configuration may alter the
whole meaning of the piece (see Herndndez-Ramirez 2016).
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and yet almost transparent presence. The technologies are the canvas, the pretext for
the UX designer. Given that the majority of these products are digital, an excellent
way to understand UXD is in terms of narratives, or “material tales” narrated through
digital objects (Hassenzahl 2013). Because experiences are dynamic and happen over
a timespan, any given moment within that timespan can impact the overall experi-
ence. Designers can influence that experience by manipulating order and timing; by
scripting interactions among the elements (Hassenzahl 2010, pp. 29-30).

Products fulfill needs, but to do so, they need to be “instrumental”, i.e., able to
shape the user’s experience as intended (Hassenzahl 2013). Products need to be
functional, useful, discoverable, and understandable to satisfy a particular need; it
is only then that a (good) experience emerges. Functionality and usability, however,
need to be contextualized, and that means being meaningful. A genuinely unique
experience requires that not only the engineering, manufacturing, and ergonomic
aspects are met, but also the aesthetic ones; interaction with the product should also
be delightful and enjoyable. It is only with this holistic satisfaction of needs that truly
unique experience can emerge (Hassenzahl 2010; Norman 2013).

5.13 Concluding Remarks

Pervasive computation and general advances in hardware and software have allowed
us to transform artifacts that were traditionally “dead” into alive devices. Computa-
tional objects have come a long way since the dawn of HCI, UCD, and UX. While
ergonomics and HCI emerged almost at the same time as computational technology,
only with the democratization of computers, it became a necessity for designers to
honestly think about their users. Smart technologies and what we end up defining
and recognizing as robots will determine the practical principles, and the type of
experience designers will be able to shape.

Robots should be able to enhance and improve our experience of the world,
improve our living standards, liberate us of chores and burdens so we can dedicate
ourselves to cultivate meaningful activities. Robots and our technologies, in general,
are reflections of what we are, how we understand them and design them reflect our
understanding of ourselves. Designing should always consider the human—technol-
ogy relationship as complementary, not in terms of substitution. We need artificial
agents that highlight what is valuable and enjoyable about being human. Ultimately,
and given the broader objectives of the volume to which this chapter belongs, it is
fundamental to pay attention to the core principles behind UCD and UX. It is crucial
to listen to the core ideal of UCD and UX: to focus on the human in her context, not
in decontextualized technology for the sake of technology.
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Chapter 6 ®)
“I Love You,” Said the Robot: Gouck ko
Boundaries of the Use of Emotions

in Human-Robot Interactions

Eduard Fosch Villaronga

Abstract This chapter reflects upon the ethical, legal, and societal (ELS) implica-
tions of the use of emotions by robot technology. The first section introduces different
cases where emotions play a role in human-robot interaction (HRI) contexts. This
chapter draws particular attention to disparities found in recent technical literature
relating to the appropriateness of the use of emotions in HRIs. These examples, cou-
pled with the lack of guidelines on requirements, boundaries, and the appropriate use
of emotions in HRI, give rise to a vast number of ELS implications that the second
section addresses. Recent regulatory initiatives in the European Union (EU) aim at
mitigating the risks posed by robot technologies. However, these may not entirely
suffice to frame adequately the questions the use of emotions entails in these contexts.

Keywords Emotions + Human-robot interaction - Ethical, legal and societal (ELS)
issues - Guidelines - Law - Ethics

6.1 Introduction

Over recent years, social interactions have expanded from mere human interactions to
technology-mediated human interactions. What is more, technology enables humans
to interact with information and with the world. Technology can be, thus, not only
a means of communication but also an end in itself; an end to which humans are
addicted (Kardaras 2016). Companies invest time and resources in improving user
interfaces to make them more appealing and functional both for trivial (making you
click on the advertisements that financially support the company) (Vance 2011) and
meaningful interactions (e.g., in cognitive therapies for people with dementia) (Tapus
et al. 2009).

The more users mingle with screens, computers, and increasingly with robots,
thus, the more these machines need to be appealing, useful, and interactive to be
adopted by users. The High-Level Expert Group on Al (HLEG Al) of the European
Commission (2019) believes that robot and Al technologies also need to be trustwor-
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thy. In the context of personal care, that includes assistance with dressing, feeding,
washing, and toileting, but even encouragement and emotional and psychological
support (Elderly Accommodation Counsel of the UK), this would translate in robots
that are trustworthy, appealing, useful, and integrate a social interface that promotes
engagement. Robots fail to integrate a social, trustworthy, dimension in this context
risk not being fully adopted.

The technology used in industrial environments, where safety standards reduced
human contact for obvious reasons, has not experienced such an evolution—user-
friendly, appealing, and trustworthy technology results from the increasing develop-
ment of technology that directly interacts with users. As the novelty effect soon wears
off (Kanda et al. 2004), the technology requires continuous “improvements” to con-
tinue being attractive to users once they get used to the technology. One way to “im-
prove” such systems is to make the technology exhibit human social characteristics.
Social robots, for instance, perceive/express emotions, communicate in high-level
dialogue, establish/maintain social relationships, use natural cues (gaze, gestures),
exhibit distinctive personalities and characteristics, and can learn and develop social
competencies (Fong et al. 2003). Because people treat computers in the same way
they treat other people (Cafamero 2001), they do the same with robot technology
(Darling 2016). The exhibition of such characteristics in robots ensures their believ-
ability and their aliveness, improving, thus, the effectiveness of their interaction with
humans (Hudlicka 2011).

This tendency is leading users to interact increasingly more with technology than
with other humans. As a consequence, “the more human attention and learning effort
is absorbed by the virtual variety of proximity, the less time is dedicated to the
acquisition and exercise of skills which the other, non-virtual kind of proximity
requires” (Bauman 2013). The problem is that the readiness level of technology
is not quite there yet. In the words of Yang et al. (2018), “a robot that expresses
excitement when the death of a family member is being discussed, one that shouts
at inappropriate times, or one that takes a coffee mug before it is empty will not find
itself welcome in the home or workplace.” This article, therefore, wonders what are
the implications of the recent and increasing use of emotions in HRI given that the
systems created for “social” interactions fall behind in accuracy, preciseness, and
reliability levels. This type of concern has yet to be reflected in the technical, legal,
and robot ethics literature.

This chapter reflects upon the ethical, legal, and societal (ELS) implications of
the use of emotions by robot technology. The first section introduces different cases
where emotions are used in human-robot interaction (HRI) contexts. Special atten-
tion is drawn to disparities found in recent technical literature relating to the appro-
priateness of the use of emotions in HRIs. These examples, coupled with the lack
of guidelines (Barco and Fosch-Villaronga 2017) on requirements, boundaries, and
appropriate use of emotions in HRI, give rise to a vast number of ELS implications,
which the second section addresses. Recent regulatory initiatives in the European
Union (EU) aim at mitigating the risks posed by robot technologies. However, these
may not entirely suffice to frame adequately the questions the use of emotions entails
in these contexts. Some conclusions at the end of the chapter raise awareness regard-
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ing the importance of integrating ELS aspects into the design of emotions not as an
afterthought but as an integral and essential part of the life-cycle design, implemen-
tation, and use of robot technology.

6.2 The Use of Emotions in Human-Robot Interaction

Emotions play a significant role in human behavior, communication, and interaction
(Fong et al. 2003). However, the community has come no further than the Ancient
Greeks in reaching a consensus on what emotions are (Scarantino 2016). It seems
that “everyone knows what an emotion is until asked to give a definition” (Fehr
and Russell 1984). However, this has not impeded advances in the understanding of
the nature and extension of emotions from the perspective of different disciplines,
including philosophy, music, sociology, and neuroscience (Barrett et al. 2016).

The computing that “relates to, arises from, or influences emotions” is called
affective computing (Picard 1995), and has been used in many applications, including
helping people with disabilities, for domestic use or lately to help people mourn. In
physically embodied computing, aka robots, emotions relate to the capability of
displaying facial expressions, body and pointer gesturing, and vocalization and they
are typically used to provide the user with information about the robot’s internal state,
goals, and intentions, to act as a control mechanism, but also to make the interaction
more believable (Fong et al. 2003). Robots also exhibit personality, which provides
affordances to understand robot behavior and can range from tool-like to pet-like
or even human-like. The robot embodiment can convey this personality, but also
its motion or the tasks that it performs (Fong et al. 2003). This section compiles
different cases of the use of emotions in HRI contexts that will help illustrate their
ELS implications.

a. Therapeutic contexts

The insertion of robot technology in healthcare settings is accelerating. Typical exam-
ples of such cyber-physical systems are cognitive therapeutic robots (for autism,
traumatic brain injury or dementia patients), physical rehabilitation robots (lower-
/upper-limb exoskeletons), mobile assistants (servants), and surgery robots. Other
less typical examples include sexual robots for the elderly in care homes, or disabled
people (Martin 2016). Of all of these systems, socially assistive robots (SAR), those
that assist people in a non-physical way, through non-contact interaction to support
patients (Feil-Seifer and Mataric 2005) are those that generally integrate emotions
into their interaction design. Sexual robots allow users to choose different traits and
emotions that the users feel are appealing (Sharkey et al. 2016). In sensitive contexts,
the use of emotions is crucial in the caregiver—receiver relationship. This extends to
SAR.

The inclusion of emotions into the design of the robot derives from the need to
maintain and support long-term interactions, but also from the need to manage the
emotions that the interaction with the human arouses. One example is the “Traumatic
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Brain Injury (TBI) Project” (Barco et al. 2013). Some researchers in Barcelona used
a social robot to help improve the effectiveness of neuropsychological treatments for
children with TBI. The robot included several activities defined by neuropsychol-
ogists to recover the functionalities most affected by TBI. After six months of the
rehabilitation process, the researchers found out that the engagement was fragile, and
decided to add personalization features to the robot to match the children’s likes and
dislikes. The conclusions of their study show an increased interaction given the per-
sonality trait adjustment and accordingly better performance of the children. Years
later, one of the authors acknowledged that the personality adjustment had some
drawbacks: there was increased dependence on the robot, and the emotional bond
created between the robot and the child was powerful (Fosch-Villaronga et al. 2016).
When the robot’s behavior is more personalized, the emotional engagement with the
user is stronger. Two consequences derive from this: that the task performance of the
robot may entail the management of user emotions too; and that because the HRI is
safe at the physical level, it does not mean that it is safe at the emotional level.

In another project called ‘“Rehabibotics,” some researchers went one step fur-
ther in the personalization of the robot and created an emotional adaptation model
to help generate empathic responses to improve the interaction between the robot
and dementia patients (Shukla et al. 2015). They collected sensorial data includ-
ing physiological, eye-tracking and ambient video recording, a database containing
information about the user (preferences, physical/mental abilities), algorithms to
predict the users’ emotional state, and a user-learning model containing user per-
formance records and information about the user, such as degradation and memory
level. Although they collected valuable information about the user and improved the
interaction, they acknowledged errors in the prediction of the user’s emotional state.
Taken together with the possibility that user’s feedback may be non-existent, as they
have dementia, and may not be aware of these errors, the predictive analysis of the
user’s behavior and the subsequent robot action may mismatch, if not endanger the
effective HRI. The researchers claimed a lack of guidance on the boundaries for the
use of emotions in HRI.

b. Domestic contexts

If a robot exhibits personality, the engagement with the user accelerates (Lee et al.
2006). In a study with the iRobot’s Roomba, the robotic vacuum cleaner, the users
reported increased pleasure, willingness to share it with others, and even making an
effort to make room for the robot only by developing intimacy with it (Sung et al.
2007). If the robot is friendly, it also elucidates better responses from the users. For
instance, Jibo—considered one of the best inventions of 2017 (Time Staff 2017) but
that never hit the market—has such human-like expressions that users report saying
“thank you” and “please” more often than with other devices (Stern 2017). The way
arobot behaves and interacts with users affects users’ behavior. In a way, technology
becomes a filter and, at the same time, an agent determining how users see the world
(Fosch-Villaronga et al. 2018a; Verbeek 2015).
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Sometimes the construction of robot personalities is not transparent to the user.
In 2015, Google patented the development of robot personality drawn from cloud
computing capacities (Google 2015b). The patent covers the creation of robot per-
sonalities from collected information (from the user, user devices, environment, or
social network sites) or modifiable from a default-persona. As they announce, “the
robot can build emotion models or access emotion models on the cloud to determine
an appropriate reaction to a situation.” If the robot prepares a meal with peanut oil and
the user has an allergic reaction, then (the patent explains) the robot will understand
scolding the robot as a negative feedback response for the action carried out. Using
the emotional reaction of the user as reinforcement learning in real environments,
thus, may seriously compromise the safety of the user (Fosch-Villaronga and Albo-
Canals 2018). Instead, there should be testing beds for the appropriate assessment
of the safety, efficiency, and efficacy of robot technology.

Technology marketed directly to children offers other reasons to worry. Hello
Barbie or IXI-play from WittyWorX that has a lifelike body movement and posture,
animated eyes and sounds to express emotions and support a playful interaction
(WittyWorX 2017) are just some examples of robotic devices targeted to children.
Companies like Google aim at developing devices in the form of dolls or toys with
embedded anthropomorphic queues, exhibiting emotions to elucidate an emotional
response from the user. A Google patent explains that “in order to express interest,
this anthropomorphic device may open its eyes, lift its head, and/or focus its gaze
on the user (...) to express curiosity (...) tilt its head, furrow its brow, and/or scratch
its head with an arm. To express boredom (...) defocus its gaze, direct its gaze in
a downward fashion, tap its foot (...) an anthropomorphic device may use other
non-verbal movements to simulate these or other emotions” (Google 2015a).

In the same way that the sugar industry is not particularly interested in the health of
its consumers, it is uncertain how worried these companies are about the implications
of the continuous use of their technologies, especially if they can “store, or have
access to, a profile for each resident of the house” (Google Patent 2015a). Having
access to all these data using innocent dolls means feeding large corporations with
the behavioral surplus they need to predict the behavior of vulnerable parts of the
society for their benefit (Zuboff 2019). While corporations may use some of these
data to improve the user experience of these children, they inevitably encourage more
device usage. Advances in related research, however, show that the overexposure to
technology (in the case of the research, screens) activate a system of rewards in
the brain that releases dopamine, which leads to an unhealthy addiction involving
irritability, anger, aggression, and violence (Lezhaen 2018). Other effects include
brain damage (Zhou et al. 2011).

Research has yet to prove how these impacts translate into HRI contexts. Still,
recent industry-driven legal documents focus on how the use of Al fosters human
nature and its potentialities, thus creating opportunities; how the underuse creates
opportunity costs; and how the overuse and misuse creates risks (Floridi et al. 2018).
The overfocus on use, of the industry and the policy documents, aligns with the so
much needed return of investment, the extraction of behavioral surplus for predic-
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tive behavioral analytics and modifiers, and blurs the understanding of long-term
consequences that might affect human nature (Zuboff 2019).

c. Griefbots

The quoted patent of Google reads, “the robot may be programmed to take on the
personality of real-world people (e.g., behave based on the user, a deceased loved one,
a celebrity) to take on character traits of people to be emulated by a robot” (Google
2015b). Although very nuanced and only appearing once in the patent, it seems to
imply that storing personalities in the cloud may allow users to speak with people
that pass away. A similar idea inspired a whole episode of Black Mirror entitled
“Be right back.” After her husband dies, a woman decides to hire the services of a
company that, in order to help mourners, collects all the data from those that have
passed away to create synthetic replicas. She can speak to him on the phone and,
after an upgrade, she embeds his (synthetic) self in a “sleeve” that looks the same as
him.!

Although seemingly very futuristic, there are already real cases trying to solve
immortality. Eugenia Kuyda used an artificially intelligent chatbot to recreate the
conversations she had with her friend that passed away (Newton 2017). She founded
Replika.ai, an artificially intelligent system that uses neural networks to have a con-
versation with users and learn, over time, to speak like them. Other companies provide
similar services. Under the promise to “become virtually immortal” Eterni.me is a
company that generates digital avatars from pictures, videos, and memories of the
users to allow a permanent virtual presence of humans.

If there is enough information about a person, it is already possible to create his or
her digital simulation—a simulation that other users could use to talk with that person
once s/he dies (Ahmad 2016). Interacting with a digital avatar of a deceased person
connects with the idea of “continuing bonds,” where the process of grieving is not
about detaching oneself from the deceased but establishing a new relationship with
them (Klass et al. 2014). These Al systems, also called griefbots, could activate the
grieving process more efficiently and accurately than people’s memories and objects,
and speed up the stages of such a process: denial, anger, bargaining, depression, and
acceptance (Godfrey 2018).

6.3 Implications of the Use of Emotions in Human-Robot
Interaction

By now, the reader may already imagine that the use of emotions in human—-machine
interactions has implications at various levels, including ELS level. Typically, the
general opinion differs between those who think that robots should embody empathy

IThe sense of the word sleeve has been taken from the TV Series “Altered Carbon.” This refers
to the human-like body that carries human consciousness, two things completely separated in the
series.
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and emotions for different applications, including care, medical, or social applica-
tions. Others, in contrast, may completely oppose to that idea (Fung 2015). Part of
the scientific community may think this has nothing to do with them, that they merely
work on the detection and simulation of facial expressions to improve user experience
and support long-term engagement. Another part of the community may think this
is worth paying attention to because current safeguards for ensuring a human-robot
safe interaction do not include guidelines on how roboticists should implement it,
and that this may have tremendous implications at various levels.

In2003, Fong et al. already wondered whether there should be ethical issues linked
to the sophistication of social robots. They mentioned that detailed user modeling
could involve privacy concerns and might not be acceptable, and wondered to what
extent a robot should take action when detecting human error (Fong et al. 2003).
In 2016, Ahmad wrote, “Given that one is trying to simulate a deceased person,
several ethical questions arise, and, e.g., if one can interact with a Simulacrum of
the deceased, does that diminish the significance of bereavement? How will children
respond to such a Simulacrum? At what age do children have the cognitive apparatus
to appreciate the difference between a real person and a Simulacrum of that person?
Most importantly, even if the technology to create a simulation of a deceased person
exists, is it ethically correct to do so? (Ahmad 2016).

The use of emotions in HRI contexts gives rise to distinct legal and ethical implica-
tions; however, the legal literature has not yet reflected on this topic. Legal research on
emotions has typically focused on how emotions can bias legal reasoning (Popovski
2016), or on how emotions influence the behavior of the people that commit offenses
(Karstedt et al. 2011). The newest research deals with the legal and regulatory impli-
cations of advances in emotion detection technologies used for advertising and mar-
keting (Clifford 2017). The legal community has not addressed questions concerning
the boundaries in emotion robot embedment, or the safeguards implemented to ensure
a safe emotional human-robot interaction yet. The titles of the following subsections
describe the implications or issues arising from or connected with such uses, followed
by an explanation.

a. Disagreements in the technical literature impede clear discernment of the impor-
tance of associated ethical, legal, and societal (ELS) issues.

Petisca et al. (2015) highlight that “more social and emotional behavior may lead
to poorer perceptions of a social robot.” In a similar study, Kennedy et al. (2015)
also showed how embedding social behavior to robots may negatively affect child
learning. In their study, Petisca et al. (2015) used an autonomous robot that played
a game against a participant while expressing some social behaviors. They wanted
to see whether the emotional sharing of the robot affected how its users perceived it.
To the surprise of the researchers, and contrary to their hypothesis, they found that
in the non-sharing condition, participants rated the robot more “conscious, lifelike,
and nice.” At the end of their paper, they highlight the importance of being cautious
when embedding social behaviors in HRI; and claim that more research is needed
to understand in which contexts the emotional sharing of the robot provides it with
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better social capabilities and in which such sharing should be avoided (Petisca et al.
2015).

Some researchers argue that by allowing the robot to show attention, care, and
concern for the user (Turkle 2006), as well as being able to engage in genuine,
meaningful interactions, socially assistive robots can be useful as therapeutic tools
(Shukla et al. 2015). Others, however, suggest that the emotional sharing from the
robot to the user does not necessarily imply feeling closer to it (Goetz et al. 2003). This
context-dependent division may suggest that there could be a “purpose limitation.”
In law, purpose limitation refers to one of the principles relating to the processing of
personal data. It states that a data controller has to collect data for specified, explicit,
and legitimate purposes and that they cannot use it for other purposes. In this case,
however, it would relate more to the establishment of a limitation in the contexts
where emotions are used. For instance, and based on the given examples, the use of
emotions in therapeutic contexts could improve the interaction of the users.

Still, the use of emotions (personalization or emotional adaptation) raises other
types of questions concerning how appropriate the use of emotional data from patients
is under certain clinical conditions. How error-tolerant should the technologies used
for the detection of the mood and emotional state of the users be? What lines should
the industry not cross? Knowing the impacts, benefits, and limitations of the use of
emotions in HRI is essential to understand what safeguards policymakers need to
devise to ensure a human-robot safe interaction.

b. The lack of standardized procedures and guidelines impedes the establishment
of a clear safeguard baseline for safe emotional human-robot interactions.

Although the majority of the scientific community agrees on their importance, there
are currently no guidelines on the use of emotions in HRI, child-robot interactions
(Barco and Fosch-Villaronga 2017), and cognitive HRI (Fosch Villaronga et al. 2016).
This concern relates to the intangibility of “emotions.” Current standards and guide-
lines governing service robot technology are not well suited for robots that have
zero contact with humans (Fosch-Villaronga 2017). Indeed, these standards typically
establish safety requirements that aim at mitigating the risks related to physical HRIs,
typically concerning various internal and external design factors, i.e., robot shape,
emotion, correct decision-making; but also environmental aspects (ISO 13482:2014).
However, there is not much research on the non-physical but psychological, cogni-
tive part of the HRI. ISO 13482:2014 concerning personal care robots, for instance,
mentions “stress” as a human-related hazard but other aspects such as how to address
the fear of falling from an exoskeleton or conversational privacy are not addressed
(Fosch-Villaronga et al. 2018a).

The European Parliament (EP) stressed this aspect on its resolution with rec-
ommendations to the European Commission (EC) on Civil Law Rules on Robotics
(2017). This resolution is a non-binding regulatory initiative that stresses that the
designers of robot technology “should draw up design and evaluation protocols and
join with potential users and stakeholders when evaluating the benefits and risks of
robotics, including cognitive, psychological and environmental ones” (European Par-
liament Resolution 2017). This is of crucial importance because, although “robotics
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combines [...] the promiscuity of information with the capacity to do physical harm”
(Calo 2015), when mental and emotional communication is practically the only chan-
nel of communication between the user and the robot, physical safeguards may not
suffice to provide a comprehensive protection to the integrity of the user (Fosch-
Villaronga and Virk 2016). In this regard, and because the law protects both the
physical and the mental integrity of the person via Art. 3 of the European Charter
of Fundamental Rights, the EP resolution claims that the users “are permitted to
make use of a robot without risk or fear of physical or psychological harm,” and that
designers should “respect human frailty, both physical and psychological, and the
emotional needs of humans.”

The fact that there are not well-established and community-supported guidelines
that detail the boundaries, limits, requirements, and procedures has an impact on
the design of emotions for robot technology. Indeed, the establishment of a safe-
guard baseline is not straightforward, which further challenges the establishment of
a benchmark to be followed by developers assessed in a testing zone. Still, although
this could help improve legal certainty concerning what is called “certified safety”
is not clear how perceived safety should be addressed (Salem et al. 2015).

The community working on emotions should make an effort to draw interdisci-
plinary guidelines (from lessons learned, for instance) that could, over time, be fully
respected by all roboticists designing and implementing emotions in the robot design.
This effort does not need to be titanic. Instead, it could be a gradual, progressive, and
scalable process, where different research institutes share their lessons learned, write
down common/agreed protocols and, gradually, ask others to join forces and improve
their benchmark (Fosch-Villaronga and Heldeweg 2017, 2018). These efforts would
be an excellent first step to ensure that HRI is safe both physically and psychologi-
cally.

c. There is little awareness regarding the consequences of the use of emotions in
HRI and their creators’ level of responsibility.

After attending the Conference “Scientific Aspects of Development and Implemen-
tation of Emotionally Intelligent Human-Inspired Robots—Enthusiasm and Skepti-
cism” organized by Prof. Dr. Aleksandar Rodi¢ from the Mihaljo Pupin Institut in
Belgrade, an email popped in my email box:

Good Morning Eduard,

Thanks for your email (...) It [was] a pleasure to meet you and [learn] about the field
you are working in. It is really interesting to hear about the ethical, legal and safety issues
regarding robotics. To be honest, I [had] never thought about it. But your talk, in which you
highlighted “Who implements emotions?” is really a point which interests me a lot. Since
I am implementing algorithms and emotions for the robot for specific situations, there is
definitely a question there: whether [I am] the right person to decide ‘How robots should
behave’ or should there be an expert who tells me about this information. I found [out on a]
relatively smaller scale that emotions that I code/implement [in] the robot sometimes doesn’t
appear natural to some other subjects. The reason is I am implementing them based on my
view or opinion about situations which more often than not [differ] from others. For me, it
is quite informative and somehow opens a new perspective [on] my work.”

2See: https://twitter.com/eduardfosch/status/942710206932357121.
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Designers and creators of robotic and artificial intelligent systems may work in silos,
without receiving interdisciplinary feedback, with no formation on the impacts their
work might have. As Asaro (2006) explains, roboethics involves the ethics of the
people that interact with robots, the ethical systems of people who design robots,
and the ethical systems built into robots. Designing robotic systems that interact with
users implies, thus, careful multifold thought about what implications this system
has for the user and society.

The responsibility of the designer is a significant factor here. In “Concrete prob-
lems in Al safety,” Amodei et al. (2016) refer to the designer’s problems. In their
words:

— the designer may have specified the wrong formal objective function;

— the designer may know the correct objective function, or at least have a method of
evaluating it (...), but it is too expensive to do so frequently, leading to possible
harmful behavior caused by bad extrapolations from limited samples;

— the designer may have specified the correct formal objective, so that we would get
the correct behavior were the system to have perfect beliefs, but something bad
occurs due to making decisions based on insufficient or poorly curated training
data or an insufficiently expressive model.

What often lacks in these discussions is the question whether from “those who
design, use, and control this kind of robot should also be required moral agency and
emotion.” (Coeckelbergh 2010). Designers tend to overlook internal biases that may
be projected into the robot and may lead to regrettable scenarios (Campolo et al.
2017). The ongoing debate on whether robots should receive legal status (in the form
of an electronic person according to EP Resolution, 2017) offers an unsatisfactory
solution in this regard, as humans create robots, and they may project their inherent
bias onto the robot. Openly opposed by some researchers, there is a push for “at least
the most sophisticated autonomous robots [to have the legal] status of electronic per-
sons responsible for making good any damage they may cause, and possibly applying
electronic personality to cases where robots make autonomous decisions or otherwise
interact with third parties independently” (European Parliament Resolution 2017).
Although it is society, who decides how to address technology and not technology
itself (Johnson 2015); some authors already highlighted electronic personhood might
not be an ideal construction (Bryson et al. 2017).

The EP also seems to push for the establishment of the accountability principle,
stating that “robotics engineers should remain accountable for the social, environ-
mental and human health impacts that robotics may impose on present and future
generations.” Similarly found in Regulation 2016/679 on data protection (General
Data Protection Regulation, GDPR), the accountability principle currently reigns in
the European Union. This principle changes the burden of proof, with the robotic
engineer being responsible for showing that s/he took reasonable steps to ensure user
safety. That is why the EP is also promoting the establishment of codes of conduct for
robotic engineers, although typical questions concerning code of conduct are going
to arise once again: who writes such codes, to what extent are they binding and what
are the consequences for someone that has not followed them. In this respect, com-
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plex relationships generated by the use of cloud services are going to exacerbate the
issue of who is responsible for what (Millard 2013).

d. The use of emotions may undermine privacy and data protection

Ahmad already mentioned that “an important open question to consider is [...] what
kind of data should be collected for this project for the eventual use [of] a person
who is still alive but will inevitably be dead, and thus a simulation may be needed to
interact with such person” (Ahmad 2016). Very similar questions arise in the general
use of emotions in HRI, as it will be unclear how much data is needed to achieve the
desired interaction, clashing with the data minimization principle. It is also unclear
what constitutes training data, what safeguards are implemented to protect the data
of the users, and who should be the one to implement those.

For now, it is unclear what emotional data is. While the concept of personal
data has been expanded in recent years and reflected accordingly in the GDPR,
it is uncertain whether emotions stricto sensu are covered. Lato sensu emotions
commonly refer to biometrical and physiological data. However, due to the intimacy
and delicate nature of the processing of such information concerning the essence
of the user. While it remains uncertain whether emotional data may be considered
one day a specific category of data worth of protection (Fosch-Villaronga and Albo
2019) if emotions are currently biometrical data, which are a special category under
the GDPR, the data controller will have to assess the impacts of the processing of
these data. In such an assessment, the controller will have to explain what steps s/he
took to mitigate associated risks.

There are many principles enshrined in the GDPR, and addressing them is beyond
the scope of this paper. There are some articles and principles, however, worth consid-
ering. A lesson learned from PbD is that the design of technologies has a severe impact
on privacy. Art. 25 GDPR obliges the data controller ‘at the time of the determination
of the means for processing and at the time of the processing itself, to implement
appropriate technical and organizational measures, such as pseudonymization, which
are designed to implement data protection principles, such as data minimization, in
an effective manner and to integrate the necessary safeguards into the processing in
order to meet the requirements of this Regulation and protect the rights of data sub-
jects. The default part of the article refers to the processing in which “only personal
data which are necessary for each specific purpose of the processing are processed.”
In the case of emotions, this may be difficult to determine as much data is being col-
lected and the real intentions of the company processing such data rich in behavioral
content are often unknown (Zuboff 2019).

PbD can be an excellent approach to follow if it provides engineers with concrete
recommendations that use their everyday language. In this respect, Tamo-Larrieux
(2018) proposes a way to think about PbD in terms of integrating security, autonomy,
anonymity, and transparency tools. Other authors, like Mulligan and King (2011)
even re-envision privacy by design more as an alignment with value-sensitive design.

One principle to take into account will be the principle of data minimization. There
is a common understanding that more data leads to more accurate results. At this
moment, it is unclear, however, how much data designers need to process to develop
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their emotion-based models. Some may use weather data to infer the mood of a user,
and others may use facial expressions to identify a preset of emotions. However,
those collecting and processing the data should only process the data needed for the
performance of the task to which the users agreed.

As the collection of data is dynamic and progressive, however, the demand for
life-cycle protection becomes evident. In this respect, other rights will also play an
important role. For instance, the GDPR also grants the user the right “to receive the
personal data concerning him or her, which he or she has provided to a controller,
in a structured, commonly used and machine-readable format and have the right to
transmit those data to another controller without hindrance from the controller to
whom the personal data have been provided” (art. 20, GDPR). However, it is still
unclear how this can be realized as standards for cloud robotics are still missing
(Fosch-Villaronga and Millard 2019).

Another right is the “right to obtain from the controller the erasure of personal
data concerning him or her without undue delay, and the controller shall have an
obligation to erase personal data without undue delay. This right is called the right
to be forgotten, and it has been proven very difficult to realize in artificial intelli-
gent environments without seriously endangering the consistency of the environment
(Fosch-Villaronga et al. 2018b). Although there might be many robots, the dynamic,
progressive learning of the robots happens in one place, mainly in the “brain” of the
robot, often offloaded to the cloud. Such global cloud-based learning empowers a
single robot to perform tasks more efficiently. Still, the identification of the single
emotional model that contributed to the overall learning of the robot might be chal-
lenging to differentiate from the rest and to be eliminated without endangering the
consistency of the learning environment of the robot.

There is an ongoing debate on the importance of making robotic system actions
explainable in everyday language, which is connected to the transparency princi-
ple, trust, and accountability (HRI 2018; Felzmann et al. 2019). The explainability
and intelligibility of the robot’s action differ from the right to an explanation of
the GDPR—if that even exists (Selbst and Powels 2017; Edwards and Veale 2018;
Kaminski 2019). Given the complexity and opacity of information processing in
information technologies, there will be an increasing need to accommodate an ideal
balance between meeting legal requirements, the efficiency of the operation of the
robot and the respect of user’s rights, which will require interdisciplinary collabora-
tion between legal, social science, and technology experts (Felzmann et al. 2019).

e. Emotions can be used very differently, especially by industry, and the ethical
committee cannot do anything to prevent it.

Before conducting a study, a researcher may typically approach the ethical committee
of the university. Upon approval, the researcher may proceed with the experiment.
However, ethical committees may not offer enough protection to users. Although this
committee may protect the rights of the user involved in the study, it may not ensure
the ethicality of the created application/system. Moreover, there have already been
cases where the ethical committee had asked for the consent form of some participants
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when these “participants” were just very well done facial representations of humans
(Chen and Jack 2017).

Ethical committees usually work on a standalone basis, and their decision process
is not often very transparent. What is more, their decisions are not published and
shared with the community or with other ethical committees to gradually develop
guidelines on the topics they address. If policymakers could create a shared data
repository of ethical committee decisions, the collected knowledge could mainly
improve and ease the production of guidelines in this domain.

The industry does not wait for any of this to happen. Most of the time, it is not inter-
ested in following any of these aspects, unless there is a transparent business model
behind it. For instance, consumers did not adopt biological and ecological products
fully until the demand for those products was an apparent gain for the industry. Sim-
ilarly, only when the protection of user rights (and the assurance of that in a transpar-
ent manner) is a business model (already seen in many privacy-friendly applications)
will it be pursued. One of the consequences of the fast development of technology
is that public policymakers struggle to develop policies that adequately frame the
technology impacts, challenges, and opportunities in time (Fosch-Villaronga and
Golia 2018). Difficulties in catching up with the speed of the technological change
favor private actors who develop their standards decentralizing this way the power to
regulate from policymakers. This decentralization is evident after the appearance of
ethical standards, namely BS 8611:2016 Guide to ethical design of robot technology
or the IEEE 7000 series. While the majority of these standards costs money—which
may entail the privatization of the law (Fosch-Villaronga and Roig 2017), one may
wonder to what extent society should allow private actors to develop their standards,
in particular, if they deal with the ethics of these systems.

f. The use of emotions can have broader legal and ethical implications

When someone buys a t-shirt, it is not the t-shirt that adapts to the individual; but
the individual adapts to the t-shirt. For many years now, t-shirt sizes range from XS
to XXL. The procrustean design of technology constraints how robots perform their
tasks (Fosch-Villaronga and Albo 2019). The continuous use and development of
emotional models may result in the creation of standard emotion models, and behav-
ioral patterns, into which individuals may fit. Is society prepared to have standardized
human emotions?

It seems society has a little say in this. Technology usually works in an “Accept
Terms and Conditions” basis, which makes difficult the understanding of whether
society truly accepts the way certain technology is deployed. Indeed, there is an art
in hiding relevant information that affects users to users. Seen how companies have
replicated this way of doing in different domains (Zuboff 2019), it is difficult to
imagine this is going to be different in the deployment of “emotion-as-a-service”
models.

For a while, it seemed only those repetitive tasks were subject to replacement.
However, the improvement of technology that uses empathy and emotions is increas-
ing day by day, and this poses the question of whether robots could perform cognitive-
based and social tasks. Virtual tutors, socio-educational companions, and empathic
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avatars in virtual reality are just some examples of possible applications of emotional-
based that robots and Al technologies could use. Some authors believe that robots are
just doing the job that should have already been carried out by them in the very first
place (Pistono 2014). However, which job-related tasks dignify a person, and which
not? Should automation replace part of the therapeutic tasks of human therapists
working with children under the autism spectrum disease?

6.4 Conclusions

The use of emotions in HRIs entails several implications that need careful consider-
ation from designers, policymakers, and users. Since “there is urgency in coming to
see the world as a web of interrelated processes of which we are integral parts so that
all of our choices and actions have consequences for the world around us” (Mesle
2008); this article calls for interdisciplinary efforts to understand the boundaries of
the use and development of robot and Al technologies that use emotions.

The definition of a robot is still, according to the Merriam-Webster dictionary, “a
machine that looks like a human being and performs various complex acts (such as
walking or talking) of a human being; also: a similar but fictional machine whose
lack of capacity for human emotions is often emphasized.” However, this article
stresses the fact that robots can express and perceive human emotions and exhibit
human social characteristics, including personality, to the humans with whom they
interact. Indeed, it is essential to acknowledge the “psychological/cognitive” dimen-
sion to ensure a safe HRI. In this respect, the EP claims that “human dignity and
autonomy—both physical and psychological—is always to be respected.” Although
often disregarded not only by the law but also by designers, the implementation of
safeguards at the cognitive/emotional level is of fundamental importance. Indeed,
safety is like a body with two legs, without which it cannot walk: one leg relates
to physical safety, and the other leg to cognitive safety, which typically relates to
psychological aspects and perceived safety.

Designers should take into account both technical aspects and legal and ethical
considerations to promote responsible use and development of robots using emotions.
Available studies suggest that designers should think carefully about the extent to
which robots could use emotions in HRI contexts and where it should be prohibited.
Policymakers may want to make use of this evidence to consider the implementation
of a purpose limitation in this respect.

In the end, “if things go this way, it will not be a natural evolution of technologi-
cal development. Rather it will be because in the negotiations about the technology,
certain actors pushed in that direction, were able to enroll others in the way of think-
ing, and together they won the day in terms of design and responsibility practices”
(Johnson 2015).
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Chapter 7 ®)
Ethics in Human-Robot Interaction Geda

Joao S. Sequeira

Abstract As social robotics becomes ubiquitous so is the range of ethics questions
involving human-robot interaction (HRI). Though Ethics is a well-established field,
the human-robot mix is raising questions on the human and robot conditions that
exponentiate with the increase in the number of robots in human societies. Safe-
guarding the human quality of life and well-being is at the core of current legislative
efforts on robots. The chapter reviews some of these efforts and points to the need
for an educational effort that clarifies the role of technologies, namely robotics, in
societies.

Keywords Ethics + Technology - Robotics -+ Human-Robot Interaction

7.1 Introduction

Ethics is often referred to as Moral Philosophy (Rachels 2003), or, in a Socratic sense,
the way people should live. The translation into the Robotics’ context means making
robots replacing in a socially acceptable manner when interacting with humans.

Interactions among humans are subject to a wide variety of rules, e.g., linguistics,
proxemics, and cultural. These rules may have multiple representations, be rigid,
or allow for some flexibility. This easily generates subjective, ill-posed, scenarios
that challenge rigid moral constructions and hence are hard to materialize in the
computational frameworks underlying most of robotics constructs.

Initial references to Ethics in Robotics can be found, for example, in the literature
on robot control architectures (see Koplowitz and Noton 1973; Meystel and Albus
2002). For a broad coverage of Ethics issues in Robotics, see also Ferreira et al.
(2017).

The literature on social robotics has highlighted health care (Lee and Lau 2011;
Kahn et al. 2012), the use of lethal actions (Asaro 2009; Lin et al. 2009), and the
manipulation of human emotions (Sullins 2012; Lin et al. 2012), as the key areas
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involving Ethics issues, namely (i) privacy, (ii) contention, (iii) deception, (iv) lia-
bility, and (v) psychological damage (Sharkey and Sharkey 2006).

The rapid progression of social robotics has fostered the recent developments
in Ethics-related legislation. Moreover, the media frenzy about the possibility of a
singularity is both (i) nudging the general public toward fear of social robots, and
(ii) raising awareness of the ethical issues in social robotics. Overall, there is a net
effect of amplifying those fears.

In the healthcare domain, the most sensitive area, regulations tend to be strict.
The recommendations from the World Health Organization (WHO) and from the
World Medical Organization (WMO), point to the need for robots to comply with
national regulations. These tend to enforce absolute transparency concerning the end
users, meaning that any interaction must be consented to. In fact, the use of Informed
Consent (IC) forms is a standard practice to ensure that anyone interacting with the
robot has access to any relevant information (EC 2017).

Lethal actions by robots are, in general, discouraged. Many people still think
that there must always be a human-in-the-loop and that delegating lethal actions to
robots may be immoral (Kukita 2014). However, the dynamics of a decision involving
humans tends to be slower than that of a fully autonomous system. In life-or-death
decisions, this means, both, (i) that lives can be lost because of a split-second delay
in a decision, and (ii) that decision errors can cost lives (see examples in HRW 2012).
In a sense, this problem is mapped into the Ethics of decision error management.

Human emotions represent an effective communication strategy, saving band-
width in complex interactions. In simple interactions, not including hidden meanings,
people will generally have a clear perception of the robot’s role. However, robots
may be used to manipulate human emotions, e.g., robots can be used to tell people
bad news (a problem akin to having a medical doctor to avoid explaining a terminal
condition to a patient) or even inducing maternity feelings through a companion baby
robot (see Toyota 2016).

Besides the people normally interacting with the robots, those involved in devel-
opment and maintenance also need to be accounted for. The recommendations in
Delvaux (2016), namely §6 and §7, seem to suggest that everyone in the team be
bound (i) to a code of conduct specific to the project (to be detailed in the Con-
sortium Agreement), and (ii) to any codes of conduct enforced at the participating
institutions. These also match the recent European Parliament resolution (EP 2017).

A key EU regulation on Ethics is the Directive 2001/20/EC of the European
Parliament and of the Council of April 4, 2001, on the approximation of Member
State laws, regulations, and administrative provisions relating to the implementation
of good clinical practice in the conduct of clinical trials on medicinal products for
human use JEC (2001). Additional principles and legislation of interest for Robotics
R&D can be found in ECPO (2013), ECPO (2012) and JEC (2006).

EU-funded projects provide extensive material both on generic, health- and
robotics-related Ethics issues. The expected outcome of Project RoboLaw is reg-
ulations for robotics developments. Project Linked2Safety aimed at developing a
secure and ethically compliant exchange of medical and clinical information in the
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European zone. Social networking, interactive media technologies, including aug-
mented reality and content production, were addressed in the Experimedia project.

Additional documents of interest used by the EU legislators are those produced
by the Working Parties, namely ECDPO-131 on the processing of Electronic Health
Records and ECDPO-187 on the definition of “consent”; ECDPO-171, on behav-
ioral advertising, may also still be relevant given that the key project information is
disseminated through broad media such as the web.

7.2 Technology and Interaction

HRI is the operational side of social robotics. Ethics compliant HRI means matching
the technology capabilities with the social norms enforced in each environment.

The capabilities of the current technologies enable robots to be equipped with
sensing systems providing information with a quality approaching that of human
physical senses. These sensors are capable of acquiring information sensitive from
a privacy perspective.

The privacy issue is at the center of Ethics-related questions with the usage of, for
example, imaging technologies. Current computer vision is already able to produce
interesting performances in facial and body recognition (see, for instance, airport
technologies already in place at passport control points). Using facial recognition
from a machine (robot) that moves anonymously in a social environment is, in general,
prohibited/discouraged on the grounds of Ethics. However, people recognition by
other people will, in general, be tolerated. This paradoxical behavior by humans
interacting with robots, exponentiated by the (human) legislator is justified by some
authors on biological grounds (see Adolphs 2013). Similar concerns apply to other
sensing information, e.g., speech recognition. Though frameworks claiming to solve
such issues may be found in the literature (see, for instance, the “ethical regulator” of
Shim and Arkin 2017), its efficacy remains to be demonstrated. Moreover, algorithms
processing the information acquired through these sensors can generate processed
information in which people’s anonymity cannot be ensured.

Besides anonymity, HRI has the capability to influence the actions of humans
interacting with a robot. Exerting direct authority, from robots toward humans, is
frequently not well received by humans. Advising/counseling is likely to produce
the best results. Indirect suggestions, e.g., nudges (see, for instance, Sunstein 2014)
also play a valuable role.

Deception may arise in multiple interactions, either on purpose or inadvertently,
and is often morally inadmissible. However, similar to human—human interactions,
there are situations in which deception may be ethically acceptable/indicated, e.g.,
when smoothing bad news to someone that it is likely to become disturbed by it. See,
for instance, Matthias (2015) for morally permissive deception criteria. A taxonomy
for the benefits of deception in HRI can be found in Shim and Arkin (2013).

Regarding liability, the recommendations in Delvaux (2016), namely §27; and
also, in EP (2017), can again be followed by logging every relevant interaction so
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that causal links involved in liability questions can be verified. The use of mean-
ingful validation metrics may prevent liability situations. The healthcare domain is
a sensitive area, with numerous cases of medical errors caused by poorly designed
interaction interfaces available in the literature (see, for instance, Fairbanks and
Caplan 2004).

As the complexity of the interactions increases, the Informed Consent principle
may be expanded, providing full information on (i) how the interfaces work, (ii)
expected behaviors, and (iii) contingency situations. The educational role (i) is pre-
ventive and, simultaneously, (ii) makes robot integration smoother. This enforces
some degree of transparency, as suggested in IEEE (2016).

7.3 Conclusion

Designing behaviors for social robots from Ethics principles is a difficult problem,
as it requires humanizing the robots (see the discussion in MacDorman and Cowley
2006) and must account for advances in Psychology that some authors argue might
be impossible to be applied to HRI (Kahn et al. 2006).

The creation of sentient robots appears to be a long-term objective of mankind
(Sharkey and Sharkey 2010), which means Ethics-related issues will either converge
on, or extend, arguments used in human-only societies. Education to prioritize Ethics
when designing robots, or, more generally, HRI, is thus of paramount importance
(IEEE 2016). This however must adopt a cautious strategy, not focusing on media
trends, and, instead, taking an educational approach to explain that a dystopian society
due to robots is a fallacy and that humans have the power to stay in control at all
times. Knowledge on technologies is a fundamental part of this.
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Chapter 8 ®)
Emotional Design and Human-Robot e
Interaction

Magda Saraiva, Hande Ayanoglu and Beste Ozcan

Abstract Recent years have shown an increase in the importance of emotions
applied to the Design field—Emotional Design. In this sense, the emotional design
aims to elicit (e.g., pleasure) or prevent (e.g., displeasure) determined emotions,
during human product interaction. That is, the emotional design regulates the emo-
tional interaction between the individual and the product (e.g., robot). Robot design
has been a growing area whereby robots are interacting directly with humans in
which emotions are essential in the interaction. Therefore, this paper aims, through
a non-systematic literature review, to explore the application of emotional design,
particularly on Human-Robot Interaction. Robot design features (e.g., appearance,
expressing emotions and spatial distance) that affect emotional design are introduced.
The chapter ends with a discussion and a conclusion.

Keywords Emotional design - Human-robot interaction + Emotion expressions *
Facial expressions + Vocal expressions

8.1 Introduction

Some products have positive traits (e.g., appealing, engaging, exciting, tempting)
while others have negative traits (e.g., repulsive, displeasing, undesirable, unattrac-
tive), thus, products can evoke several different emotions. Although, studies on prod-
uct design focused on more functionality and utility of the product than emotional
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factor (Khalid and Halander 2006), for sustained interaction it is vital to make expe-
riences pleasurable and enjoyable (Wensveen and Overbeeke 2003). Pleasure can
make the importance of emotions more apparent.

Tielman et al. (2014) indicate that expressive behavior (e.g., emotions) is a crucial
aspect of human interaction. Emotions can allow humans to establish a relationship
with others as well as the environment (e.g., objects, machines). In this sense, inter-
action with technology (i.e., robots) should be guided by the same principle (Valli
2008). Currently, robots are designed to become a part of people’s lives and creating
emotional engagement with robots can shape the involvement of people during an
interaction. In particular tasks (e.g., entertainment and playing), the robot will interact
closely with people in their daily environment. Within this context, it is essential to
create natural, engaging, pleasurable and intuitive communication between humans
and robots.

Walter (2011) emphasizes that emotional experiences (positive or negative) make
deep influences on people’s long-term memory. Negative emotional experiences can
cause unpleasant and unappealing interaction with the products, whereas positive
emotional experiences can cause pleasure and enjoyment. Pleasure and enjoyment
have a critical role to make an appropriated bridge between people and robot’s fea-
ture and characteristics which support a continuous interaction. The main concern
during an interaction between a robot and a person is how the person feels about the
experience which can be positive or negative. Is the person happy, satisfied, scared,
or stressed? Another concern is how the robot can reveal a positive or negative
experience by its appearance, behavior, expressions. In order to comprehend these
concerns, first emotional design will be introduced followed by its applications in
Human-Robot Interaction.

8.2 [Emotional Design

Gorp and Adams (2012) explain emotional design as directing the attention of a
person to create an emotional response to the right thing at the right time. Emotional
design is mostly about creating positive emotions and preventing negative ones.
According to Norman (2004), as aesthetics, attractiveness and beauty collaborate so
do pleasure, and usability within the emotional design. Designing emotionally mean-
ingful products can change the experience with the products. Personal experiences
and emotional meanings complete the appearance and functions of a product.

Walter (2011) indicates that emotional design captivates ordinary people, thus
they would be ready to tell others about their positive experience.

There are also other terms which seek to build an emotional connection with
people: affective design, pleasurable design, and hedonomics. Helander and Khalid
(2012) define affect as the judgmental system and emotion as the conscious expe-
rience of affect. According to Demirbilek and Sener (2003), affect is the user’s
psychological response to product design.
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According to Picard (1997), machines and robots, in particular, should associate
intelligence with emotion, thus giving rise to affective computing. The field of artifi-
cial intelligence aims to study how machines (e.g., computers, robots) can process and
express emotions. According to Norman (2004), affective computing is an attempt to
evolve machines which can sense the emotions of the people and respond accordingly.
Hence, affective design arose from affective computing which endeavors to improve
human—computer interaction with emotional information that is communicated by
the users in a natural and comfortable way.

Jordan (2003) defined pleasure as the emotional, hedonic and practical benefits
related with products where the emotional benefit is how things related with a prod-
uct affects people’s emotions, hedonic benefits refer to the sensory and aesthetic
appreciation whereas practical benefits are outcomes of tasks that the product is for.

Tiger (2000) proposed a framework that classifies positive emotions into four
type types of pleasures. First, the physical pleasure derives from the five senses (e.g.,
touching a robot during interaction). Second is the social pleasure that is related to
relationships (e.g., social interactions with a robot). The third one is the psychological
pleasure which refers to people’s cognitive and emotional reactions (e.g., robots
stimulating interaction for a certain satisfaction). The last one is the ideological
pleasure that expresses the values that a product represents (e.g., robot made of
sustainable material). The four pleasures can be useful to design pleasurable robots,
thereby, motivate people to enhance HRI.

Hancock et al. (2005) defined hedonomics as the scientific study which is ded-
icated to promote pleasurable human—technology interaction. Mokdad and Abdel-
Moniem (2017) noted that ergonomics was more focused on the physical and cogni-
tive aspects of a system, though later ergonomists became enthusiastic about making
the human—machine system pleasurable. Helander (2002) denotes that hedonomics
concerns with pleasurable products and tasks. Each product can evoke various emo-
tions and depend on the emotions, a person can enjoy using/interacting with the
product.

Desmet (2002) explained three characteristics concerning product emotions,
which are personal (i.e., people differ and consequently so does the emotional
response toward the same product), temporal (i.e., a person can have different emo-
tions independent of time toward the same product), and mixed (i.e., a person can
have various emotions toward a product). Gorp and Adams (2012) state that emo-
tions can be effective in inducing people to alter attention and change their behaviors.
Also, experiences and realities are dominated by emotions and emotions play a role
in human reasoning (Demasio 1994).
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8.3 Emotional Design in HRI

Changing emotional states of people can increase the possibility of performing the
desired behavior (e.g., securely approaching a robot). Creating positive emotional
states/experiences between people and robots would eventually influence the inter-
action between them.

Gorp and Adams (2012) supports that whatever the desired behavior, emotional
design can guide people’s attention to the right place at the right time to initiate
and extend the interaction into a relationship. A relationship can be created between
people and robots for cogent interactions.

Emotional design is also relevant in the robot design process because people’s
needs must be taken into account and the most important features from their point
of view, thus facilitating greater user acceptance of the robot (Hameed et al. 2016).
Demirbilek and Sener (2003) state that for high-tech products (i.e., robots) emotional
needs have been a basis. Moreover, Norman (2004) emphasizes the importance of
robots to display emotions for successful interaction.

Helander and Khalid (2012) refer that there are two purposes to understand the
emotions and affect. The first purpose is how to measure and analyze human reactions
(i.e., emotions) to affective and pleasurable design. Limited studies (e.g., Rosenthal-
von der Piitten et al. 2013) can be found dedicated to measure emotional reactions
of people toward the design of robots though mainly behavior and attitudes toward
robots. In Chap. 9, methods to measure people’s emotions are detailed. The second
purpose is how to produce affective design features of a product (e.g., robots). Con-
stituting affective/pleasurable robots, besides appearance (e.g., human-like robots),
is mostly fulfilled by making them capable of expressing emotions. Though emotions
need to appear as natural and ordinary as human emotions or they look fake and will
be more irritating than useful (Norman 2004).

There are different interaction scenarios where in some cases, people need to
touch robots (e.g., Nakata et al. 1998; McGlynn et al. 2017) which can influence
emotional design in HRI. Emotional design can be affected by various characteristics
of robots, i.e., in order to create positive emotions and experiences on a person, robot
design features (e.g., appearance, expressing emotions and spatial distance) can be
manipulated. Moreover, the robot’s design features are crucial for attaining HRI.

8.3.1 Appearance

Emotional design can be affected by various components of the appearance of a
robot. Leite et al. (2013) emphasize that embodiment can play an important role in
the first impressions and future expectations about a robot. Campa (2016) supports
that the appearance is fundamentally important, due to interacting with humans on
an emotional level, and this type of interaction is grounded in visual and tactile
perception no less than in verbal communication.
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Robots can appear in different forms, sizes, colors, and even genders, age, eth-
nicity, and outfits due to having anthropomorphous (e.g., humanoids and androids)
features. Mori (1970) states that when the appearance of a robot is similar to a human,
emotional response to the robot becomes positive until a point in which the robot
looks too much like a human. It is still desirable for natural interactions that robots
share some physical characteristics with humans. The appearance of a robot is impor-
tant to distinguish social expectations. Bartneck et al. (2008) state that appearance
can evoke expectations (e.g., human-like robots are expected to listen and talk) and
that if the robot is not able to fulfill those expectations it can cause disappointment.

The form of robots can be categorized into four classes: human-like, semi-human-
like (i.e., limited lower body movements), pet-like, and character-like. Concerning
the resemblance of characteristics of a human, social robots, mostly, have a torso,
hands, and head. On one hand, Dautenhahn (2004) indicates that anthropomorphism
might create incorrect expectations related to the cognitive and social abilities that the
robot cannot perform. On the other hand, several authors (e.g., Bartneck et al. 2010;
Kanda and Ishiguro 2013) point out that human brain does not react emotionally
to artificial objects but reacts positively to the resemblance to the human likeness.
As such, robots should be designed taking into account their behavioral and social
capabilities, as well as the robot’s functions (Leite et al. 2013).

8.3.2 Expressing Emotions

Expression of emotions allows for the existence of a realistic HCI and/or HRI, and
for this reason, HRI currently aims to provide robots with human characteristics.
Some studies have revealed that humans are able to establish an empathic relation-
ship with human-like robots (Riek et al. 2009) easier than with nonhuman-like robots
(e.g., Bartneck et al. 2010). In HRYI, it is effective and necessary that the robot, no
matter what it looks like, is able to express emotions, and also recognize the emo-
tions expressed by humans and respond to them appropriately (e.g., empathetically,
complicit) (Picard 2000).

A robot should be capable of interacting naturally with humans as a social partner
and adapt its behavior according to the given states. Fong et al. (2002) support that
the robot must manifest believable behavior such as establishing appropriate social
expectations, regulating social interaction (using dialogue and action), and following
social convention and norms. Emotions are also an important factor in reflecting the
given states. However, it should be noted that when referring to the robots that
recognize emotions, this recognition is not the same as in humans. That is, a robot
is unable to attribute meaning or analyze cognitively an experience or interaction
as a human does (e.g., Blow et al. 2006). Thus, Picard and Klein (2002) defined
two types of requirements for interaction between users and machines (which can
refer to robots): (1) emotional needs (e.g., empathy); (2) emotional experience (e.g.,
frustration). It is at the level of emotional experience that machines play an important
role. With its artificial intelligence and endowed with affective computing, machines
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help the user to have a positive experience while interacting, allowing the user to not
have a negative experience and preventing frustrating situations (Klein et al. 2002).

Equipping machines with the ability to respond to emotions and to express them
is a way to create intelligent machines (artificial intelligence) (Picard 1997). Thus,
the biggest challenge is to build machines (i.e., robots) that are able to infer emo-
tional states through behaviors and emotional expressions of the user and respond to
them appropriately. According to Picard (1997), there are four factors that explain
the need for robots to present emotions: (1) the presence of emotions facilitates the
communication (emotional communication) with the user; (2) the need to develop
applications that control emotional information; (3) growing interest in developing
robots with social and emotional skills, and; (4) the presence of emotions in robots
makes the interaction with user, a more interesting experience and less frustrating
for the user. These components are particularly important when referring to service
robots. Service robots are autonomous systems equipped with artificial intelligence,
which enable them to perform many of the daily activities carried out by humans
(Khan 1998). This type of robots which provide assistance are having an increased
focus recently, due to uncertainties in the industrialized world (e.g., increasing num-
ber of the elderly, diseases). These robots are intended to help people in their daily
tasks but also to be, for example, companion robots for the elderly without family.
Currently, there are some robots which are able to express emotions and/or recognize
emotions expressed by humans while doing their tasks.

From a design perspective, the emotion system would implement the style and
the personality of a robot, encoding and conveying its attitudes and behavioral incli-
nations toward the events it counters (Breazeal and Brooks 2005). Designing robots
with personality may help provide people a good mental model (Breazeal and Brooks
2005), similar to what occurs in the interaction between humans. Breazeal (2002)
discusses an important and related aspect in HRI which is the readability of the behav-
ior. The author supports the fact that the robot’s behavior and manner of expression
(facial expressions, shifts of gaze and posture, gestures, actions, etc.) should be well
matched to the robot’s cues and movements so that people would understand and
predict its behavior (e.g., their theory-of-mind and empathy competencies). For bet-
ter readability, the robot anthropomorphizes itself to make its behavior familiar and
more understandable.

It is in this context that social robots appear and are able to express and recog-
nize emotions and human behaviors. Adams et al. (2000) discuss that two skills are
required for a social robot to have an emotional model that understands and manipu-
lates the environment around it. First is the ability to attain social input to understand
the cues which humans provide about their emotional state. Second is the ability
to manipulate the environment, which can be done by the robot expressing its own
emotions. Therefore, expressing emotions can be the key to improved interaction.

Bartneck (2001) states that for humans one of the ways to express emotions is by
using body language (i.e., facial expression, gesture, and body movement). Picard
(1997) also supports that emotions can be expressed through body movement, facial
expressions, and physiological responses. Since some social robots’ bodies are built
to resemble human’s, this allows more natural interactions while using their body
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language. Breazeal (2003) declares that robots should have a social interface which
naturally employs human-like social cues and communication modalities. According
to DiSalvo et al. (2002), the addition of a nose, eyelids, and a mouth gives a robot
more human characteristics. On one hand, robots are expected to resemble human
for natural interactions, on the other hand, it is also encouraged that robots should
maintain as much of arobotic appearance feeling as possible while remaining human-
friendly in order to avoid an uncanny valley effect (Mori 1970).

Expressiveness of robots can be a key to keep natural interactions in HRI. Robots
can use facial expressions, vocal expressions, and body movements while expressing
emotions similar to a human.

8.3.2.1 Facial Expressions

Facial expressions are particularly important in the communication between humans
because it allows easily identifying emotions through small changes in the face
(e.g., Russell 1997; Plutchik 1984; Woodworth 1938). Facial expressions provide
a basic means by which people can detect emotion (Ekman et al. 1972) and are
used in nonverbal communication. There are distinctive clues of the face to each
basic emotion though depending on the intensity and the meaning more areas can
be involved and according to intensity signals are adapted (Ekman 2003a, b). Facial
expressions can be reduced to changes in eyes, eyebrows, mouth, nose, and so on.

Argyle (1994) specifies that facial expressions work better as a way of providing
feedback on what the other person is saying. According to the author, the eyebrows
provide a continuous running commentary; the mouth area adds to the running com-
mentary by diversifying between turned up (i.e., pleasure) and turned down (i.e.,
displeasure); eye movements (e.g., eye contact, eye gaze, blinking, pupil size) have
an important role in sustaining the flow of interaction between humans. While a
person is in a conversation with another person, eye movements are a natural and
important part of the communication process. Eye movements such as eye gaze,
blinking, and pupil size can be implemented to robots as ocular behaviors to express
emotions. Eye gaze is especially important while approaching a person and should
be implemented to robots for natural interactions (e.g., Yamazaki et al. 2008; Mutlu
2009; Mohammad et al. 2010).

Since nonverbal emotional feedback plays a very important role in human inter-
action (Salichs et al. 20006), it should be extended to HRI as well. If a similar type of
human-human communication is anticipated to be interpreted by robots, the facial
expressions and the corresponding emotions should be clearly defined so that they
are recognized reliably. Usually, the programming of facial expressions in robots
(e.g., Loza et al. 2013) is based on FACS (Ekman and Friesen 1978), which is val-
idated (in humans) for the six basic emotions. Instead of visualizing emotions in a
static manner, dynamic methods and additional visualization methods (e.g., blink-
ing, blushing) can be used to generate robot emotions. Some common features to
include robot expressiveness can be making direct eye contact (e.g., prolonged eye
contact can cause distress) or averting gaze (e.g., this might indicate distraction or
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discomfort), blinking (e.g., often or rarely, rapid or slow), or dilated pupils (e.g.,
highly dilated eyes can indicate interest or arousal).

8.3.2.2 Vocal Expressions

Vocal expressions can be divided as linguistic (e.g., speech) and nonlinguistic vocal-
izations (e.g., laughing, crying, yawning, whispering sounds). Douglas-Cowie et al.
(2000) indicate that vocal expression is linked to facial expression, gestures, and
verbal content.

Speech is the most natural method of communication between human and the
same method can apply to human and machine (Feil-Seifer and Mataric 2005; El
Ayadi et al. 2011). Speech is also used as a way to transmit emotional state for
humans (e.g., Engberg et al. 1997; Amir et al. 2000). According to Burkhardt et al.
(2005), emotional cues in speech gained attention due to new developments with
respect to human—machine interfaces that see applications of automatic recognition
and simulation of emotional expression within reach. Moreover, speech emotion
recognition is useful in human—machine interfaces (El Ayadi et al. 2011). Feil-Seifer
and Mataric (2005) suggest robots may use synthetic speech generation or preloaded
human voice, which is another factor to change the emotional design.

Darwin (1872) described various nonlinguistic vocalizations for specific emotions
such as deep sighs for grief, snorts for contempt, and little coughs for embarrassment.
Russell et al. (2003) hypothesize that since there are different variations of laughter,
different types of laughs correspond to different emotional states. Depending on the
expressed emotion the sound can be slower/faster or have a lower/higher pitch. There
are studies (e.g., Schroder 2000; Sauter and Scott 2007; Simon-Thomas et al. 2009)
about vocal bursts (e.g., “yeeey” for amusement, “ahhh” for fear) while people are
expressing emotions. These studies support the fact that most vocal expressions are
accurately categorized for the intended emotion. Furthermore, Kraus (2017) found
that hearing (i.e., voices) may be more reliable than sight (i.e., facial expressions) to
accurately detect emotions.

For more natural interactions, robots are expected to mirror or mimic humans.
Thus, during interactions, robots can use diverse vocal expressions with or without
facial expressions to show their emotional states. Thereby, it would be easier to
identify the emotions that the robot is representing and, people can react accordingly.

8.3.2.3 Body Movements

De Gelder et al. (2015) specify that historically the human body has been perceived
primarily as a tool for actions, there is now increased understanding that the body is
also an important medium for emotional expression. Montepare et al. (1999) empha-
sized that research on the communication of emotion has generally supposed that the
perception of emotion is more engaged with facial or vocal expressions than with
body movements. Bodily emotion communication is an old though neglected topic
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in emotion research regarding humans (Dael et al. 2012). Although movement of the
body or its parts makes a considerable contribution to nonverbal communication for
humans (e.g., Atkinson et al. 2004; Zieber et al. 2014), there is conclusive support
that specific facial expressions exist for certain emotions (e.g., Ekman et al. 1972).

Atkinson et al. (2004) found that exaggerating body movements increase both the
recognition of emotions and intensity. Wallbott (1998) denotes that there is evidence
that specific body movements accompany specific emotions and, also, movements
might be the indication of the intensity of emotion. Moreover, Aviezer et al. (2012)
found that peak emotions are detected more accurately from body movements than
facial expressions.

Body movements can be divided into two for robots: movements of parts of body
and translocation. Compared to other machines, body movements are one of the
most distinguishing features of robots. Hence, introducing body movements in robots
could support the emotion that is indicated by facial expressions. Furthermore, it is
necessary to understand robot abilities/limitations to use the movement information
to distinguish different emotions.

Mobility (i.e., translocation) is an important feature for robots to execute tasks.
Most of the social robots are mobile (e.g., Bonarini et al. 2016). Robots can use
location change as an additional component to reveal the emotional state, though,
using only translocation to express emotions can be inefficient and strange. Hence,
it should be introduced with other expression methods.

8.4 Spatial Distance

Hall (1966) categorized the distance people keep with each other in four: intimate,
personal, social, and public. According to Hall, the distance between people is deter-
mined depending on what they do, the relationship between them, mutual feelings,
and culture. According to Gillespie and Leffler (1983), age, gender and place are
also factors that affect the distance.

Feil-Seifer and Mataric (2012) suggested that if a robot is to be an effective
socially, its actions, including interpersonal distance, must be appropriate for the
given social situation. van Oosterhout and Visser (2008) stated that when one inter-
action partner is a robot, it is not well known to what extent the different factors
of human distances still apply and what new factors play a role. Though, robots
should still follow similar distances to interact with people (Yamaji et al. 2011) in
order not to make people uncomfortable or disturbed and cause miscommunica-
tion. Walters et al. (2005) found out that when approaching a robot, or when being
approached by a robot, prefer approach distances that are compatible with those
expected for human—human interaction. van Oosterhout and Visser (2008) defined
possible factors that influence the spatial distance in HRI: robot type (i.e., to know
the intention), person’s height, gender, and age, and occupancy of the interaction
space (e.g., crowded). Therefore, the spatial distance would change according to the
robot.
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The spatial distance can have an impact on emotional design. Based on the dis-
tance between a robot and a person, people can have negative or positive emotions
toward robots. Furthermore, the way and speed of approaching could also influence
emotional design. Kato et al. (2015) defined two types of approaches. The passive
approach is when a robot waits until a person initiates interaction with the robot
which can cause hesitation or uncertainty for the person. The proactive approach is
when a robot seeks people to initiate conversation (e.g., Satake et al. 2009) in which
people can feel annoyed or disrespected.

The direction of approach can also be important in HRI. For instance, Dauten-
hahn et al. (2006) found out that when people are seated, they preferred a robot to
approach from either the left or right side and they found frontal approach uncom-
fortable, impractical, and even threatening or confrontational. Moreover, sometimes,
interactions require a robot to follow (approach behind) its human companion (e.g.,
Hiittenrauch et al. 2006; Hu et al. 2014). Siinderhauf et al. (2018) define person-
following scenarios as the result of a common task in which a robot needs to follow a
person. The spatial distance during the interaction should also be taken into account
to perceive the emotions of the person followed.

Furthermore, if the spatial distance is too close between a robot and a person,
this might end up with physical interaction. In most healthcare cases (e.g., Mukai
et al. 2010; Chen et al. 2011; McGlynn et al. 2017), physical contact is needed in
which the robot is in the intimate space of a person. Physical contact can affect the
emotional state of the people, though it depends on other variables such as whether
the robot or the person initiates the contact, cause of the contact and forms of touch
that Weiss (1992) referred such as the location, intensity, modality, and duration of
the touch. Additionally, psychological discomfort caused by any factors, as well as
a robotic violation of social conventions and norms during an interaction, can also
have serious negative effects on people over time (Lasota et al. 2017).

8.5 Related Studies

As mentioned, several theories on the existence and nature of basic and fundamental
emotions have been proposed (e.g., James 1884; Plutchik 1980; Schachter and Singer
1962). Atthe same time, robots are mainly expected to help and assist during activities
of daily living and to achieve the outcome, personal robots should be capable of
human-like emotion expressions (Endo et al. 2008).

Different studies were performed to assess emotions in HRI. Studies about expres-
sions of emotions by robots (e.g., Cafiamero and Fredslund 2000; Breazeal 2003;
Blow et al. 2006; Sosnowski et al. 2006; Hashimoto et al. 2006; Salichs et al. 2006;
Endo et al. 2008; Zecca et al. 2009; Beck et al. 2010; Oh and Kim 2010; Cohen et al.
2011; Giambattista et al. 2016) and human reactions and attitudes toward robots
(e.g., Bruce et al. 2002; Nomura et al. 2004; Woods et al. 2004, 2006; Ray et al.
2008) are presented.
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In this sense, the studies about the expression of robot emotions can be differen-

tiated as follows: (a) form; (b) emotion stimuli; c) ways of emotion expression; (d)
robot stimuli; (e) participants in the study; (f) measures; and (g) results revealed.

()

(b)

(©)

Form. Human-like robot examples are Feelix (Cafiamero and Fredslund 2000),
iCub (Beira et al. 2006; Tanevska et al. 2017), KASPAR (Blow et al. 2006),
Kismet (Breazeal and Aryananda 2002; Breazeal 2003), Nao (Beck et al. 2010;
Hiring et al. 2011), Saya (Hashimoto et al. 2006), Kobian (Zecca et al. 2009,
2010), Tiro (Oh and Kim 2010), Doldori (Kwon et al. 2007; Lee et al. 2007),
Eddie (Sosnowski et al. 2006).

Semi human-like robots examples are Ifbot (Kanoh et al. 2005; Kato et al. 2004),
Maggie (Salichs et al. 2006), Monarch (Giambattista et al. 2016; Ferreira and
Sequeira 2017), Pepper (Dignan 2014), WE-4RII (Miwa et al. 2004; Endo et al.
2008).

iCat (Kessens et al. 2009; Cohen et al. 2011), Probo (Saldien et al. 2010) and
Sparky (Scheeff et al. 2002) have a pet-like appearance while eMuu (Bartneck
2002) is an example of character-like.

Emotion Stimuli. The emotions that are implemented in many robots as stimuli
(e.g., Ifbot, Eddie, Probo, Doldori) correspond to the ones known as the six basic
emotions (Ekman et al. 1972) which are joy, sadness, fear, surprise, anger, and
disgust. Furthermore, there are some robots that exclude the disgust emotion
(e.g., Feelix, iCat) or used extra emotions such as calm, pride, excitement and
perplexity (e.g., Saya, Kobian, Nao) or sorrow, interest, and curiosity (e.g., Tiro,
Kismet, Monarch) additional to the 6 basic emotions. It is worth to mention that
there is a common use of a neutral emotion in many studies.

Ways of emotion expression. Four different ways of emotional expression can be
found which are implemented to a robot: (i) facial expressions; (ii) body move-
ments; (iii) translocation; and, (iv) vocal expressions. These ways are used by
themselves or simultaneously. The first and most common way is to manipu-
late facial expressions. Most of the robots use their eyes and mouth (e.g., Ifbot,
eMuu) to express emotions. Changing color in facial features, such as eye color
(see Chap. 10) or, cheek color (WE-4RII), is an extra feature for adapting dif-
ferent emotions.

Additionally, to these features, some robots use the eye brows (e.g., Feelix,
iCat) or the eyelids (e.g., Saya, WE-4RII, Maggie). Nose (e.g., Probo) and
ears (e.g., Kismet and Eddie) are used when the robots resemble a character.
The second way of expression is by using body movements. Arm rotations are
extensively used for several robots (e.g., Maggie, Kaspar), while, rotation of
the head is also frequently applied (e.g., Doldori, Monarch). Even though many
of the robots lack legs, some are using leg movements to express emotions
(e.g., Kobian, Nao). Translocation is the third way in which robots express
emotions, by changing their positions while expressing an emotion (e.g., Kobian,
Monarch). Furthermore, some robots are also using tablets on their body (e.g.,
Monarch, Pepper) as an extra element to interact with people. Care-o0-Bot 4’s
head is working as a touch screen besides expressing facial emotions (Kittmann
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(d)

(e)

®

(o)

et al. 2015). While vocal expressions are not studied in detail, there are some
robots which can talk to communicate (e.g., Breazeal and Aryananda 2002;
Salichs et al. 2006; Dignan 2014) or use various sounds (e.g., an animal or
weather event) to express emotions (e.g., Wagner 2015).

Robot stimuli. In the studies about expressions of robot emotions, it is possible
to verify that there are, at least, four different ways of presenting robots in tests
with participants: (i) the robot itself—the real robot was used (e.g., Eddie, eMuu,
Feelix, iCat, Ifbot, Nao, Probo) to express emotions; (ii) images—the robot’s
expressions were photographed (e.g., Kismet, Saya) and shown to participants;
(iii) videos—the robots performed an expression and this video was recorded
(Kaspar, Kismet, Kobian, Saya) and presented to participants; and (iv) virtual
models—the robot was demonstrated as a computerized 3D model (e.g., Probo,
Monarch).

Some of the studies (e.g., Tsui et al. 2010) did not use any particular robot
and focused on the idea of the robots specialized in different tasks (i.e., service
robots, medical robots, military robots).

Participants. The expressions of emotions in robots has been studied with par-
ticipants of different ages including children aged between 5 and 14 years old
(e.g., iCat, Probo, Feelix, Kismet, Eddie, Tiro), adults aged 15-58 (e.g., Kaspar,
Saya, Kobian, Nao), and elderly (e.g., Kobian). Moreover, some studies (e.g.,
Feelix, Eddie, Kismet) had two groups of participants, namely, children and
adults.

Measures. There are essentially three forms of measure in the studies: (i) Free
test in which the participants observe the robot’s performance to express a
sequence of emotions and then identify the emotions that were expressed (e.g.,
Feelix); (ii) Multiple choice in which participants are asked to label a sequence
of expressions, but this time they are given a list of emotions (e.g., Feelix,
Eddie, Kismet, Kobian, Nao, Probo, Saya); and (iii) Likert scale in which the
participants rated, on a scale, the level of the emotion expressed by the robot
(e.g., Kaspar).

Results. Many of these studies (e.g., Kismet, eMuu, Eddie, Nao) were done
in labs, though there are some studies (e.g., Tiro, Monarch) that took place
in different contexts (e.g., school and hospital) or contexts that were given as
stories (e.g., iCat). Results related to context revealed that emotions expressed in
a specific context were significantly better recognized than emotions expressed
without a context (e.g., iCat).

In terms of robot stimuli, the data showed that in studies with videos, partici-

pants using had an overall stronger recognition of emotions performance than with
static images (e.g., Kismet, Saya). Another result (e.g., WE-4RII, Kobian) showed
the importance of combining different cues (e.g., face and body) to promote the
recognition of emotions expressed by the robot. The most recognized emotions are
happiness, sadness, and surprise (e.g., Saldien et al. 2010; Giambattista et al. 2016)
and fear is the least recognizable emotion for many robots (e.g., Breazeal 2002;
Zecca et al. 2004; Kanoh et al. 2005). If disgust is included in the list of emotions
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expressed, it also has a lower rate (e.g., Kanoh et al. 2005; Saldien et al. 2010). Fur-
thermore, in some studies (e.g., Ifbot, Kismet, Monarch), there are some emotions
that are confused with others. For instance, the surprise was confused with fear or
despair and fear was confused with disgust, anxiety, or sadness.

As it was referred, many robots are expressing the emotions in their own ways.
However, the interest should also focus on the emotions of the human toward robots.
There are some studies that concern about human emotions which can be recog-
nized by robots (e.g., Maggie, Pepper). Furthermore, studies concerning human
reactions/attitudes toward robots can be found as well (e.g. Woods et al. 2004, 2006;
Nomura et al. 2006; Syrdal et al. 2009). Nomura et al. (2004) created the NARS
scale (Negative Attitudes Toward Robots) to measure human attitudes toward robots
in various studies (e.g., Nomura et al. 2009; Wang et al. 2010; Riek and Robinson
2011; Schaefer et al. 2012; Nomura 2017). The NARS scale consists of 3 subor-
dinate scales, 5-point Likert scales, which are negative attitudes toward situations
of interaction with robots, negative attitudes toward the social influence of robots,
and negative attitudes toward emotions in interaction with robots. Besides the NARS
scale, questionnaires were also used to collect data about attitudes toward robots
(e.g., Khan 1998; Fong et al. 2003; Woods et al. 2004; Ray et al. 2008; Sanders et al.
2017).

8.6 Discussion and Conclusion

The chapter provides information about emotional design and how it is applied to
Human-Robot Interaction (HRI). Appearance, expressing emotions, and spatial dis-
tance are defined factors that can influence emotional design. Displaying emotions
is the most common and effective way to affect the emotional design, through facial
expressions, vocal expressions, and body movements. Manipulating the expressive-
ness of a robot’s emotions can lead to pleasurable and enjoyable experiences during
HRI. Also, studies related to emotional design in HRI, namely, expressions of emo-
tions by robots and human reactions and attitudes toward robots, are presented.

Spatial distance should be considered as another factor affecting the emotional
design. Mumm and Mutlu (2011) emphasize that robots must be designed to follow
societal norms of physical and psychological distancing to seamlessly integrate into
human environments. Also, Kim and Mutlu (2014) emphasize that robots which are
deployed in a social setting should be aware of the social norms (i.e., social distance).
Though, if the distance is not as expected, people may experience negative emotions
(e.g., anxiety, annoyance, fear, frustration) which is another research branch to be
considered/included in HRI concerning emotional design.

The expectations of people regarding robots are changing due to robots increas-
ingly participating in daily life. Besides functionality, usability, and safety, people
would desire robots to enhance their lives and evoke emotions. Also, DiSalvo et al.
(2004) support the idea that people look for more dimensions that go beyond usability
and the necessity to create an emotional resonance between people and products (i.e.,
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robots) increases. In fact, in many products, designers are challenged to manipulate
the emotional impact. Likewise, Cupchik (1999) claims that the emotional process
begins with an initial impression (i.e., appearance) of a product and continues with
experiences of usage and culminate with an emotional attachment to it. Hereby,
appearance can be a very powerful affirmative approach and encourage experiences
between people and robots. Bartneck et al. (2008) suggest that the emotional response
becomes positive as the appearance and movements of robots become less distin-
guishable from those of a human. Moreover, Fong et al. (2003) state that the physical
appearance biases interaction and most research in HRI is not focused on the design
of the robot. Additionally, Koay et al. (2007) revealed that humans let robots without
human traits approach themselves more than humanoid robots. Therefore, the design
of the robot is quite important to achieve a substantial emotional experience and it
is essential to include design areas (e.g., product, graphics, and interaction design)
to the field of HRIL.

Emotional design, creating positive emotions and pleasurable experience, is an
important approach in HRI. Norman (2004) indicates that emotional expressions of
robots would notify people about their motivations, desires, accomplishments, and
frustrations which increase people’s satisfaction and appreciation. Desmet (2002)
states that people are expert at interpreting emotional expressions. In this sense,
introducing emotional design in HRI should, first, demonstrate the interpretation
of expressed emotions by robots. One way to manipulate emotions elicited by the
design of a robot is to implement emotions to robots. Generating emotions in robot
design can be implemented by using facial expressions, vocal expressions, body
movements, and spatial distance. Ekman et al. (1972) denote that as sound and speech
are intermittent, the face can be informative. The studies in the HRI field support that
the most common way used to convey emotions is by manipulating facial expressions.
Eyes and mouth are mainly studied due to the limitations of robots (i.e., not having
more facial features). However, with more facial features to convey emotions, they
could be easier for people to perceive (e.g., Kiihnlenz et al. 2010) and, accordingly,
interaction becomes less effortful. The main issue is to find realistic and accepted
combinations of modalities during emotional expression.

There are various robots functioning in diverse environments. Depending on the
context and functions, robots may/should be designed to address specific emotions.
Desmet et al. (2007) found that it was possible to design products that target spe-
cific types of emotions by measuring emotional responses. Moreover, understanding
the context might enhance and stimulate the emotional experience and make the
experience more pleasing, agreeable, and favorable.

Emotions, obviously, play an important role in people’s lives. Triberti et al. (2017)
state that emotions are cognitive processes with a significant influence on the overall
quality of interaction and accordingly new technologies (i.e., robots) can be treated as
opportunities to manipulate, enhance and trigger different discrete, and even complex
emotional states. Helander and Khalid (2012) denote that there is not a neutral design,
thus any design will reveal emotions. Though, DiSalvo et al. (2004) specify that prod-
ucts cannot be designed to generate specific emotional experiences and according to
Desmet (2002) designers can only predict the emotional impact of a design. While
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many studies (e.g., Fong et al. 2003; Dautenhahn 2004) support that robots should
behave in a socially acceptable manner to increase acceptance in human-occupied
environments, the analysis of the impact of robot designs during HRI is a lacking
area of HRI research. Hence, including people is essential when designing HRI tri-
als (Koay et al. 2007) whereby it is essential to consider that accurately foreseeing
emotional responses is difficult for various factors and emotions are not dependent
on the instant perceptual situation (Helander and Khalid 2012).

With advanced technology, it is easier to achieve usability as well as encourage
pleasure for people. Designers are advised to thoughtfully address the link between
emotions and HRI. This would facilitate communication and interaction with robots;
consequently, it would lead to the desired experience. As HRI employs emotional
design more effectively, better and more positive experiences will emerge, though, as
Walter (2011) emphasizes the emotional design should never interfere with usability,
functionality, or reliability.
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Chapter 9 ®)
Subjective and Objective Measures ez

Hugo Alexandre Ferreira and Magda Saraiva

Abstract One of the greatest challenges in the study of emotions and emotional
states is their measurement. The techniques used to measure emotions depend essen-
tially on the authors’ definition of the concept of emotion. Currently, two types
of measures are used: subjective and objective. While subjective measures focus
on assessing the conscious recognition of one’s own emotions, objective measures
allow researchers to quantify and assess the conscious and unconscious emotional
processes. In this sense, when the objective is to evaluate the emotional experience
from the subjective point of view of an individual in relation to a given event, then
subjective measures such as self-report should be used. In addition to this, when the
objective is to evaluate the emotional experience at the most unconscious level of
processes such as the physiological response, objective measures should be used.
There are no better or worse measures, only measures that allow access to the same
phenomenon from different points of view. The chapter’s main objective is to make
a survey of the main measures of evaluation of the emotions and emotional states
more relevant in the current scientific panorama.

Keywords Emotions - Measures + Emotional response * Arousal + Valence

9.1 Introduction

The biggest challenge in the study of emotions is to measure them because they
are related to internal states of the individual. First, it is noted that the emotional
response may be of several types, for instance, verbally, through facial expressions,
body movements and/or physiological responses. Although there are several theories
about emotions, there is agreement on the two dimensions for measuring emotions:
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Arousal and Valence (e.g., Lang et al. 1997; Russell and Barrett 1999). Arousal refers
to the psychophysiological condition caused in the individual by the presence of a
stimulus, product or object (Lang 1995). It may be high when the stimulus produces
a high activation in the subject (e.g., see a snake) or low when the stimulus produces
low activation (e.g., listening to music for relaxing). Arousal is characterized by
an activation of the autonomic nervous system (e.g., fight or flight reaction), and
the activation of the endocrine system (e.g., increased blood cortisol levels) which
enable the individual to respond appropriately to the stimuli. Valence (Lewin 1935)
concerns to the positivity (e.g., Happiness) or negativity (e.g., Sadness) that a stimulus
or situation elicits in the individual.

Existing instruments for measuring emotions can be divided into two major
groups: subjective measures (e.g., questionnaires) and objective measures (i.e., psy-
chophysiological).

9.2 Subjective Measures

One way to measure and evaluate emotions and emotional states is using subjective
measures. This type of measures is essentially based on self-reports or questionnaires.
Arange of different subjective measures is available which reflects the variety of ways
in which emotion has been conceptualized. Next, some of the most commonly used
subjective measures are described.

The subjective measure most used to measure emotions against a given product
is PrEmo. This instrument was created by Desme et al. (2000) and aims to measure
the pleasantness or unpleasantness that one product elicits in the user. It consists of
eighteen cartoon-like images, each image representing an emotion: 9 positive emo-
tions (inspired, appreciative, pleasantly surprised, enthusiastic, attracted, desiring,
fascinated, content, and softened) and 9 negative emotions (bored, contempt, aver-
sive, disgusted, disappointed, dissatisfied, indignant, vulnerable, and disillusioned).
The cartoons represent the facial expressions and body postures of each emotion.

The application of this instrument consists of showing the products to the par-
ticipants. After the interaction with the product, the participant must choose which
cartoon(s) best characterize the emotion felt in the presence of the product. This
instrument has a great advantage for the evaluation of emotions elicited by products.
Participants do not need to verbalize the emotion felt, since they only have to identify
it visually through the cartoons represented in PrEmo. This feature is very important
for this type of measures since verbally expressing emotions can prove to be a very
difficult task since not all individuals have the necessary vocabulary to do it (e.g.,
Desmet et al. 2000).

Another widely used instrument for emotion self-reporting is the SAM (Self-
Assessment Manikin) proposed by Bradley and Lang (1994). SAM evaluates the
valence, arousal and also the emotional dominance (subjective feeling of control
regarding the emotional event). The three dimensions are represented by a pictogram
rating system: the valence is evaluated on a scale ranging between negative and pos-
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itive dimensions (sad, neutral and happy faces); the arousal varies between calm
and active (e.g. from a small beating heart to a heart beating with an explosive/flash
appearance); and the dominance varies from submissive to overwhelming domi-
nance (e.g. a picture element that is much larger than the rest). The participants only
have to indicate the option that best applies to their emotional experience with the
object/product, for each dimension. It should be noted that this test only allows access
to the general emotional state of the individual, so for this reason, it is advisable that
this test should be applied in conjunction with other measures (e.g., physiological
measurements). This test has the main advantage that it is easy to administer, answer
and analyze, and, also, the fact that it is cheaper and may be applied on paper or com-
puter. SAM has often been used in human-robot interaction (e.g., Mussakhojayeva
et al. 2017).

Other examples of self-report instruments are: PANAS—Positive and Negative
Affect Schedule (Watson et al. 1988) which is a self-reported questionnaire consisting
of two 10-item scales to measure positive and negative affect with different versions
developed for different purposes (e.g., PANAS-C, PANAS-X); STAXI—State-Trait
Anger Expression Inventory (Spielberger 1988) which was developed to measure
intensity of anger and the disposition to experience angry feelings (current version
STAXI II, Spielberger 1994); STEM—State-Trait Emotion Measure (Levine et al.
2011) which assesses stable and current emotions at workplaces; Affective Slider
(Betella and Verschure 2016) which is a digital self-reporting tool to measure arousal
and pleasure on a continuous scale; among others. In fact, there are studies in human-
robot interaction area which have used PANAS (e.g., Bucci et al. 2017; Mutlu et al.
2009).

Many other techniques have been used in the measurement of emotions, such
as the analysis of facial expressions proposed by Ekman and Friesen (1978) and
Ekman et al. (2002) called Facial Actions Coding System (FACS). FACS is a tool to
measure facial expressions by dividing facial expressions into individual components
of muscle movements. Some robots (e.g., Tutsoy et al. 2017) are detecting human’s
emotions by using FACS technique while others (e.g., Loza et al. 2013) use FACS
to define their own facial expressions.

Ten Emotion Heuristics (Lera and Garreta-Domingo 2007) is another technique
which is dedicated to help measuring the affective dimension in the user evaluations.
The heuristics are based on different theories such as FACS (Ekman et al. 2002) and
The Maximally Discriminative Facial Moving Coding System (MAX) (Izard 1979).

Furthermore, other techniques such as analysis of the body movements (e.g., Tracy
and Robins 2004) and vocal expressions/speech analysis (e.g., Juslin and Scherer
2005) can be used to assess in a more qualitative or quantitative manner.

Only recently, emotions came to be regarded as an important component of cog-
nitive functioning (e.g., decision-making), and not just as something that negatively
affects rational thought (e.g., Damasio 2003; Goleman 1995; Norman 2004), hence
the recent history of emotions in the field of Design and Engineering. In this sense,
one of the most significant developments of emotion in technology was to create prod-
ucts, objects, and machines capable of expressing, recognizing and feeling/showing
emotions. That is, it became evident the importance of the individual establishing
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an emotional and empathetic relationship with the products, through its design, thus
giving rise to emotional design.

Despite the relevance of the subjective evaluation of emotional states, it is some-
times necessary to evaluate the individuals’ emotional experience in a deeper way,
i.e. accessing the internal, cognitive and physiological mechanisms that individuals
are not able to report subjectively.

9.3 Objective Measures

The instruments previously discussed are subjective in nature as they rely on self-
reporting. Consequently, what is being assessed with these instruments is the con-
scious recognition of one self’s emotions, i.e. emotions are to certain extends “ra-
tionalized”. As such, the unconscious emotional processes which can, in some sense,
be regarded as “truther” are not being clearly evaluated. Additionally, although
such self-reporting measurements are based on scores, they only provide a semi-
quantitative assessment of emotions.

The use of objective physiological measures comes then to both quantify and
assess the conscious and unconscious emotional processes (e.g., Ekman et al. 1983;
Lang et al. 1993; Scherer and Wallbott 1994; Stemmler et al. 2001). As before, the
two-dimensional model for emotions: Arousal and Valence are considered and are
now correlated to quantitative physiological measures.

Understanding which physiological measures to consider, one has to understand
how emotions are “generated”. This issue has not yet a definite answer, is a topic
of discussion and research for generations, and often dwelling into the realms of
philosophy. Scientifically though, the processes are starting to be understood and
have their bases in neuroscience.

The nervous system is an intricate and complex information and communication
system (see Table 9.1) (Kandel et al. 2013). It gathers information from the external
environment by making use of senses (sight, hearing, touch, taste and smell) and,
similarly, from the internal environment by making use of various bodily sensors
such as muscle spindle sensors that provide information regarding proprioception
(knowledge of body parts/movement) and pain (e.g. inner organs malfunctioning such
as in a heart attack). Stimuli information from the external and internal environments
is then communicated to the brain directly via nerves (e.g. optic nerve and facial
nerves) or to the spinal cord via peripheral nerves. Information at the spinal cord
is then forwarded to the brain (the brain and the spinal cord comprise the central
nervous system) where it is processed and interpreted in complex cognitive and
emotional processes, from which result in action that is communicated to other brain
regions (e.g. storage of an event into memory), to the face (e.g. triggering the mimicry
muscles for smiling) or to the body via peripheral nerves (e.g. informing the hand’s
muscles to wave goodbye or increase heart rate during running).

Unlike, cognitive processes (e.g. memory, calculus, navigation, executive func-
tions), which are regarded as being held solely in the brain, emotional processes do
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Table 9.1 Simplified organization and roles of the nervous system and its components

System level

Role

Central nervous system

Information gathering, processing,
interpretation, translation into action and
communication

Brain

High-level (cognition and emotion)
processing, interpretation and translation into
action

Organs of senses (sight, hearing, taste, smell)
and sense of touch of the face)

Gather information from the external
environment and forwards it directly to the
brain via cranial nerves; gather information
from touch, proprioception and pain from the
trigeminal cranial nerve; facial mimicry via
the cranial facial nerve

Spinal cord

Low-level (muscle and osteotendinous
reflexes) processing, gathers/sends
information from/to the peripheral nervous
system

Peripheral nervous system

Gathers information from the rest of the body
to the spinal cord or to the vagus nerve
(autonomic information)

Somatic

Gathers information from the sense of touch,
proprioception and pain from the body;
convey conscious/voluntary and
unconscious/involuntary motor information;
also convey motor information to the pharynx
(speech)

Autonomous

Gathers information and acts upon visceral
organs (e.g. heart, lung, gut, bladder), glands,
and sex organs; conveys conscious
information; regulates pupil diameter

Sympathetic

Conveys “fight or flight” information;
increases pupil diameter; sweating

Parasympathetic

Conveys “rest/maintenance” information;
decreases pupil diameter; increases secretion
of salivary and lacrimal glans

For a more complete view of the nervous system explained in a joyful yet complete way it is
suggested the reading of “Clinical neuroanatomy made ridiculously simple” by Stephen Goldberg

have a bodily translation (e.g. when feeling anxious the palms get sweaty and the
heart is pounding). In the event of an external (e.g. listening to the favorite music;
touching a rose petal) stimuli or internal process (e.g. thought of the loved one),
information is further processed in the brain where is emotionally interpreted and

then translated into a bodily response.

The emotional communication between the brain and the body is then mediated
via the spinal cord and the peripheral nervous system, which includes the somatic

and the autonomous nervous systems.
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The somatic nervous system communicates both conscious and unconscious brain
processes, such as voluntary and involuntary movements. Emotional content is,
nonetheless, more often perceived from involuntary movements such as body move-
ments (e.g. gestures, body stances, and postures). The autonomous nervous system,
on the other hand, communicates unconscious brain processes only (see Fig. 9.1).

Emotional processing of stimuli in the brain often makes use of evolutionary older
brain structures such as the diencephalon (hypothalamus and basal ganglia) and the
limbic system but also of evolutionary newer brain structures such as the neocortex.
The emotional output is then communicated to the autonomous nervous system which
is comprised of sympathetic and parasympathetic systems, which have “opposite”
effects. The former system is related to a “fight or flight” or stress reaction, in the
sense that prepares the body for action. The latter system is related to a rest reaction
as it prepares the body for “maintenance” (e.g. digestion and sleep).

The effect of sympathetic activation (or parasympathetic inactivation) results for
instance in increased pupil diameter, heart rate, blood pressure, breathing rate, and
sweating as the body prepares to better assess the nature of a threat (increased visual
acumen) and makes resources available for action (increased blood flow delivered
to skeletal muscles, heart, and head that results in increased local temperature and
blushing). The effect of parasympathetic activation (or sympathetic inactivation)

Somatic nervous system Autonomous nervous system
(increased voluntary control) Brain activity (decreased voluntary control)

@ Eye movement

Facial mimicry e Speech

A

Gestures

A

: Pupil
Crying diameter
Salivating

Blood pumping
and respiration

Temperature

Sweating
Body posture 0
@
Gut
el Bladder
Sex Organs

Body movements

Fig. 9.1 Representation of physiological measures/actions and their relations to the somatic and
autonomous nervous systems
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oppositely results in decreased pupil diameter, heart rate, blood pressure, breathing
rate as the body is being set to a rest state, and also increased secretion of salivary
and lacrimal glands.

The autonomous nervous system is a system that can react fast to changing
environments and therefore to emotional processes. These processes also elicit the
response of the endocrine system which has a much slower but long-lasting effect.
For instance, in the event of chronic stress, there is a sustained increase in blood
cortisol levels, a process which is mediated via the endocrine system.

Arousal is then understood as a degree of alertness/excitement, and therefore
is more directly related to the activation of the autonomic nervous system and the
endocrine system, but also to some extent to the somatic nervous system. Con-
sequently, arousal can then be measured more directly in the body. Nonetheless,
aspects of arousal can also be translated into facial mimicry (e.g. surprise)

Valence, on the other hand, does not have a simple correlation to the activation
of the autonomic nervous system, as stimuli strongly positive or negative could
provide similar autonomic reactions. Valence can be better perceived from facial
mimicry (e.g. disgust) and speech and overall from the somatic nervous system body
movements/posture and gestures. Also correlates of valence have been described
regarding the brain activity, such as pre-frontal alpha wave asymmetry (see below).

As such, Arousal and Valence can be perceived via different physiological mea-
sures which can be assessed using different techniques. A resume is shown in
Table 9.2.

Although less studied, the dimension of emotional dominance has also been cor-
related to physiological measurements, such as beta wave power in the midline brain,
a measure of brain electrical activity.

The different techniques to assess the physiological measures are mostly optical,
and electrical/electrode or sensor-based (here, chemical methods of assessment of
emotions via analysis of bodily fluids such as blood and saliva are not discussed). In
particularly, when the brain or body electrical activities are assessed it is referred to
electrophysiological techniques, which will be described in more detail below.

Optical techniques include the use of visible or infra-red video cameras, which
may have 3D depth perception, to assess facial mimicry, gestures, postures, and
movements. These cameras can further be combined with markers placed on the
body for increased precision.

When used for facial mimicry these cameras are combined with recogni-
tion/computer vision algorithms based on the Facial Action Coding System (FACS)
method. This method codes facial expressions, depending on involved muscles and
was developed by Paul Ekman and Wallace V. Friesen in 1976. Nowadays, companies
such as Affectiva offer software development kits that facilitate the development and
deployment of facial mimicry recognition applications. For the assessment of body
movement, other algorithms are used instead. Microsoft’s Kinect is one of the first
and most well-known system for body movement recognition and more recently Leap
Motion developed its controller which recognizes gestures with greater accuracies.

The same Kinect or other video cameras can make use of an algorithm called
Eulerian Video Magnification to magnify subtle changes of color of the skin at
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Table 9.2 Emotional dimension, physiological measure and assessment technique

Dimension | Physiologic measure Suggest assessment technique
Arousal Pupil diameter Eye tracking
Eye movement patterns Eye tracking; EOG
Facial mimicry Video facial recognition; EMG
Speech Voice/sound analysis; EGG; IMU
Heart rate; Heart rate variability ECG,; PPG; video
Breathing rate and pattern Piezo/Force/pressure sensors; EMG;
PPG; Oximetry
Blood pressure/BVP Pressure sensor/PPG
Temperature Thermometer; IR; thermographic
cameras
“Sweatiness” GSR/EDA
Brain activity EEG; other
neuroimaging/physiological
techniques (see overall)

Valence Facial mimicry Video facial recognition; EMG

Speech Voice/sound analysis; EGG; IMU

Body movements VIS/IR video (w/ or w/o markers); 3D
depth cameras

Brain activity IMU; EMG
EEG:; other
neuroimaging/physiological
techniques (see overall)

Dominance | Brain activity EEG:; other
neuroimaging/physiological
techniques (see overall)

Overall Neurophysiologic/neuroimaging fMRI; fNIRS; MEG; PET; BCI; tCS;

correlates

TMS

BCI, brain-computer interface; BVP, blood volume-pressure; ECG, electrocardiography; EDA, elec-
trodermal activity; EGG, electroglottography; EMG, electromyography; EOG, electrooculography;
fMRI, functional magnetic resonance imaging; fNIRS, near-infrared spectroscopy; GSR, galvanic
skin response; IMU, inertial measurement unit (accelerometer + gyroscope + magnetometer +
barometer); MEG, magnetoencephalography; PET, positron emission tomography; Piezo, piezo-
electric sensors; PPG, photopletysmography; tCS, transcranial current stimulation; 7MS, transcra-
nial magnetic stimulation; VIS/IR, Visible/infrared. Invasive techniques that require bodily fluid
collection such as blood or saliva (e.g. for cortisol level measurement) are not here considered
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each heartbeat: due to increased blood flow in the face, the skin is slightly redder. In
this manner, it is possible to assess heart rate in a contactless manner (Gambi et al.
2017).

Other sophisticated infrared systems are eye trackers, which have been fundamen-
tal in the Design process. These instruments allow to perceive the points in an image
or video in which users focus their gaze and also enable the measurement of pupil
diameter, thus informing on the cognitive processes of exploration of an image of a
product for instance and the arousal levels such product elicites in the users (Poole
and Ball 2006).

The use of the eye tracker already has more than a century of history, existing
records of its use in Javal (1878). However, the first eye trackers were very invasive
and dangerous measuring instruments, because to measure the ocular movement,
they had to be in contact with the cornea.

It is estimated that the first non-invasive eye tracker was created in 1901 by Dodge
and Cline. However, this instrument was very limited (e.g., participants could not
move their heads). Over the years, the eye tracker technique has been improved and
used primarily in research and studies on reading.

Its evolution was such that in 1948, Hartridge and Thompson, created the first
head-mounted eye tracker. Over the years and as the technology improved, eye track-
ers have extended their use to other areas of knowledge, such as human-computer
interaction (e.g. Josephson and Holmes 2002; Reeder et al. 2001).

Eye movements allow the individual to maintain or shift the gaze between various
visual areas (Goldberg and Wichansky 2003) by capturing information that is then
transmitted and processed in the brain.

This set of information collected through the eye tracker may prove to be fun-
damental for the designer to identify the points of the object that most catch the
attention of the user, and thus increase them.

Simpler optical systems comprised of light emitting diodes (LEDs) and pho-
toresistors or other photodetectors are used to assess blood-volume pressure (BVP)
signals, a technique called photoplethysmography (PPG). BVP signals translate the
amount of blood flowing through a vessel and can be used to compute the heart rate
and heart rate variability, but also the breathing rate, and a correlate of the blood
pressure. In fact, just after a heartbeat, excess blood flow is observed in tissues in
a pulsatile manner which will reflect or transmit light differently, enabling it to be
detected.

Further development of these systems which include both red and infrared LEDs
is oximetry. Besides the former measures discussed above, it can also provide oxygen
saturation, translating increased or decreased oxygenated blood flow in the brain that
may result from an emotional response. Finally, temperature can also be assessed
using an infrared LED or infrared cameras, as well as with other methods.

Other physical sensors include piezoresistors, and other force and pressure sensors
may be used to measure breathing rate and breathing patterns via a flexible sensor
strap placed around the thorax. Pressure sensors are typically used for assessing
blood pressure, or as microphones can also be used to capture speech, which is then
classified by specialized algorithms.
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Inertial measurement units (IMUs) typically comprise accelerometers, gyro-
scopes, magnetometers/compass and, also, more recently barometers. IMUs are used
to assess both voluntary and involuntary movement and may be used also to assess
speech, by measuring the vocal box vibrations.

Electrophysiological techniques, on the other hand, are used to measure a large
variety of brain and body electrical signals (see Fig. 9.2), especially associated to
emotions and the autonomous nervous system but also to cognitive processes and to
the somatic nervous system.

Since it was invented by Hans Berger in 1929 (Berger 1929), electroencephalog-
raphy (EEG) has been the neurophysiological technique by excellence, as it measures
the electrical activity of the brain. Both EEG signals and their frequency components
(delta, theta, alpha, beta and gamma) have been associated with arousal, valence and
dominance (Reuderink et al. 2013):

— Delta (0.5—4 Hz): a power increase in the posterior right hemisphere is associated
with increasing arousal;

Amplitude (V)

25"V y
30 05 kil 35 32 325
Time (s)

Fig. 9.2 Example of electrophysiological signals tracings: A—Electroencephalography; B—Elec-
tromyography; C—Electrooculography; and D—Electrocardiography. Adapted from Ribeiro et al.
(2014)
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— Theta (4-8 Hz): a power decrease in the frontal cortex is associated with increasing
positive valence and to attention;

— Alpha (8-13 Hz): a global power increase is associated with increasing arousal;
additionally, a frontal left-right hemispherical asymmetry correlates with valence
with a decrease in power in the left/right hemisphere for positive/negative emo-
tional information, respectively;

— Beta (13-30 Hz): a correlation in the midline with dominance;

— Gamma (>30 Hz): asymmetry in the temporal cortex was found associated with
valence.

Additionally, EEG signals have been shown to assess attentive/focused and med-
itative/resting states. In attentive/focused states an increase in beta power and a
decrease in alpha power are observed (Marrufo et al. 2001). In meditative states, an
increase in alpha power in the occipital cortex, and an overall increase in both theta
and beta powers were observed as well (Ahani et al. 2014).

Electromyography (EMG) is a technique that translates skeletal muscle activity.
It is therefore related to the somatic nervous system and can translate both conscious
and unconscious cognitive processes. EMG sensors are typically placed over the
facial muscles in order to detect expressions related to facial mimicry (Bartlett et al.
1996), but they can also be placed in the upper or lower limbs to perceive movement
or event jitter associated to an anxious state (Haag et al. 2004). Finally, EMG sensors
can also be placed over respiratory muscles in order to assess the breathing rate,
which is under control by the autonomous nervous system. Fast breadths can be
associated with high arousal states while slow shallow breadths can be associated
with low arousal states. Here, the deepness of breadth (as assessed by the amplitude
of breathing) can further discriminate between emotions, whereas fast and deep
breading can be related to an excited state, which can be positive or negative in
valence, fast and shallow breading can be related to tense anticipation. Also, slow
and deep breading can be related to a relaxed state, whilst a slow shallow breathing
may be associated with depressive syndromes or calm happiness (Haag et al. 2004).

Electrooculography (EOG) measures the electrical activity associated with eye
movements. EOG may be used as a complement to EEG for instance for the detection
of EEG signal artifacts but can also be used to monitor eye movements as scanning
of a particular visual stimuli, and detect blinking rate (Calvo and D’Mello 2010),
which may help translate a particular emotional state (e.g. anxiety, withdrawal) and
also be used to detect facial mimicry around the eyes (Setz et al. 2009).

Electroglottography (EGG) measures the electrical flow across the larynx which
is increased when focal cords are closed. It can be used to depict the emotional
content of speech (Hui et al. 2015).

Electrocardiography (ECG) measures the electrical activity of the heart and there-
fore measures the activity of the autonomous nervous system. It is perhaps the most
widely used technique for assessing emotions using physiological signals. These sig-
nals can be measured using electrodes over the chest or even on the fingertips using
a two-electrode setup. Heart rate (HR) and heart rate variability (HRV) can be easily
computed from ECG signals and can translate a state of relaxation when the HR is
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decreased and the HRV is increased and a state of anxiety/stress when the HR is
increased and the HRV is decreased in regards to baseline values (Haag et al. 2004).
Finally, ECG signals can also be used for artifact removal in EEG signals.

Finally, the electrodermal activity (EDA), also known as, galvanic skin response
(GSR) is also a widely used electrophysiological signal for emotion recognition. It
translates skin conductance, which changes accordingly to the skin sweat, as already
first studied by German physiologist Emil Heinrich Du Bois-Reymond in 1849. EDA
then assesses the autonomous nervous system, especially the arousal level. As such,
EDA has been found to be a useful way to assess stress and to differentiate between
conflict/no-conflict situations. The main drawback of this technique is its dependence
on external factors such as temperature (Haag et al. 2004).

All these signals have been used individually, but multimodal approaches have
shown improved accuracies in emotion detection (Kim et al. 2004). This type of
measures involves the application of sensors and electrodes in the individual, so
that, although painless and harmless, these methods are more intrusive and more
expensive than self-report instruments, but also much more powerful.

So far, considering what was discussed, EEG is the only technique that directly
measures brain electrical activity. The other techniques mostly measure the outcome
of brain processes communicated to the peripheral nervous system.

More recently, other more complex and expensive neurophysiological and neu-
roimaging techniques have been used to study emotional processes in the whole brain.
In this regard, besides EEG, the magnetoelectroencephalography (MEG) technique
is being used for the study of emotions within the millisecond time-scale (Giorgetta
etal. 2013). Moreover, when both EEG and MEG are used for high-density recording
their output may result in functional images, which may provide advantageous views
on the data.

Other functional neuroimaging techniques include functional near-infrared spec-
troscopy (fNIRS), functional magnetic resonance (fMRI) and positron emission
tomography.

fNRIS uses similar technology to oximetry, but sensors are spatially arranged in
order to provide increased spatial information. Nonetheless, fNRIS does not provide
adirect measure of brain activity, as EEG does. Instead, it assesses the local increased
arterial blow flow resulting from the increased demand of local neurons for oxygen
and glucose during stimuli processing or during a task (Nishitani and Shinohara
2013).

fMRI works similarly as fNIRS, as it depends also on local increased arterial
blow flood. In this case, though, it makes use of the proton properties of tissues,
not the optical properties. fMRI as an imaging technique is able to provide better
spatial localization of the brain processes, although being a more expensive and less
available technique (Phan et al. 2002).

The PET technique is the most specific of all, as radiotracers can be designed
and used to address a particular metabolic route or neurotransmitter receptor. In this
manner this technique as the greatest potential to enable a deeper understanding of
molecular and cellular functional processes. Nonetheless, when comparing to fMRI,
a number of disadvantages has to be equated, such as the invasiveness/need to inject
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a contrast agent, use of ionizing radiation, longer scan times, smaller temporal and
spatial resolutions, smaller market availability and higher costs.

These techniques are all related to the measurement of cognitive and emo-
tional processes. Nonetheless, it is possible to study these processes by modulat-
ing/manipulating the brain and observing the outcomes. These interventional tech-
niques include EEG-based brain-computer interfaces (BCI) which operate via neu-
rofeedback, exposing the user to a translated version of his/her own physiological
measures and enabling the progressive control of such measures (Johnston et al.
2011).

Other interventional techniques include transcranial current stimulation (tCS)
and transcranial magnetic stimulation (TMS), which both modulate tissue electri-
cal excitability via the application of electrical currents (in the former) and magnetic
fields (the latter) (Martin et al. 2018; Notzon et al. 2017). As being interventional
and more recent, there is still a great investment in assessing the safety profiles and
effectiveness of such techniques, but their potential, particularly in combination with
the other measurement techniques, is enormous.

9.4 Conclusion

Emotions are ever more a topic of research and, correspondingly of application.
As more and more studies put in evidence the critical role of emotions; in what
makes us humans like and dislike, love and hate, and motivate, lead and decide;
the more important is to have awareness of the subjective and objective tools and
techniques that are available and that are being developed for measuring (and also for
modulating) emotions. That is so more important in the Design field, as the designer
makes use of his/her emotions to dream and create, and the user, as more than a
recipient, also co-participates in the design process guided by his/her own emotions,
aesthetics and purchasing decision.

In this chapter, besides subjective measures, neural-correlates of emotions, related
physiological measures, and assessment techniques are described, hopefully in with
the right mix of overall perspective and detail. We further hope to have given our
reader, the designer (and other related professionals), additional tools to create ever-
more valued products and services.
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Abstract Robots should have characteristics that make the interaction effective and
fluent for a successful Human-Robot Interaction (HRI). Since the emotions play
a fundamental role in the human interaction process, many robots are introduced
facial expressions, speech, body movements, among others to deepen the HRI. This
chapter presents the exploration, design, and evaluation of the recognition of emo-
tions displayed by a social robot. Initially, a pre-experiment was done to program
the emotions in a virtual prototype. Afterwards, a pilot study and two experiments
were conducted by manipulating the robot facial expressions and body movements
to evaluate the recognition of the emotions. The results show that joy, surprise, and
sadness have higher correct recognition and fear, disgust, and anger reported as lower
recognition. Further study is needed regarding body movement and displacement of
the robot for disgust, fear, and anger. Moreover, a robot should be introduced in a
specific context to increase the recognition of emotions.
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10.1 Introduction

It is expected to increasingly penetrate social robots to everyday life (e.g., Graaf and
Allouch 2013). Until a few years ago industrial robots were occupying a prominent
place, currently, social robots play an increasingly important role in the lives of
humans. On one hand, industrial robots were created with the aim of helping, or
even replace, the human in routine and dangerous tasks (e.g., blasting bombs). On
the other hand, social robots are designed to interact and accompany humans in their
daily tasks (Siegel et al. 2009). This type of robot operates autonomously while
performing tasks and interacts with humans contributing to the human’s well-being
(Schraft and Schmierer 2000; Siegel et al. 2009).

When a human interacts with another human, this interaction is guided by a
complex set of characteristics (i.e., verbal and nonverbal) which make it effective.
One of the most important characteristics for the interaction between humans is the
expression of emotions (e.g., Frith 2009). Although there is not a single, universal
definition of emotions, this can be defined as the tendency that humans have to
start, maintain and finish an interaction with the environment and/or with another
human (Frijda 1986). Emotions are considered subjective experiences (because they
vary from individual to individual in terms of intensity, arousal, and such) and are
commonly accompanied by biological changes (i.e., changes in the nervous system)
and behavioral reactions (e.g., start or stop one behavior), which allows the individual
to adapt to a particular situation or event (Levenson 1994). In this sense, emotions
play an important role in human life. However, different theories ascribe different
functions. Thus, the physiological theories (e.g., James 1884) argue that when an
individual experience an event, the nervous system generates a physical reaction
in relation to this event (e.g., crying), which causes an emotional reaction (e.g.,
sadness). This means, according to these theories, that the emotion is the result of
the interpretation that the individual makes about physical reactions caused by an
event.

In addition, cognitive theories (e.g., Schachter and Singer 1962) argue that there
are two key factors for the emergence of emotion, arousal, and cognitive label. The
arousal is the psycho-physiological condition caused by an event. This condition is
derived from the activation of the endocrine and autonomic nervous system. After
this, the individual seeks environmental clues to assign a label to that activation.

Finally, the most common theory about emotions is the evolutionary theory (e.g.,
Darwin 1872; Ekman et al. 1982). For authors who advocate this theory, some emo-
tions are innate and universally recognized, which allows the individual to identify, in
their interaction with others, potential dangers to their survival. According to Ekman
etal. (1982), there are six basic emotions (i.e., joy, sadness, fear, disgust, surprise, and
anger) that are expressed and recognized universally (through facial expressions),
regardless of cultural and social factors. In this sense, it is easy to understand that
emotions play a key role in human’s life, allowing them to interact effectively with
others.
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Reeves and Nass (1998) argue that humans tend to apply social rules in their
interaction with computers, similar to those that apply in their interaction with other
humans, for example, assign gender, name or personality (e.g. Nass et al. 1997). The
same can be true for Human-Robot Interaction (HRI). In the case of robots, their
interaction with humans is influenced by several factors, such as robot appearance,
facial expressions, body movement, among others (e.g., Hwang et al. 2013; Kulic
and Croft 2007; Nehaniv et al. 2005). In this sense, there are some authors who argue
that HRI is effective only when an empathic relationship between human and robot
is created, which is possible through the expression of emotions (e.g., Picard 2000).
This is the reason that an increase in the number of robots is seen, particularly social
robots, able to express and recognize emotions (e.g., Blow et al. 2006; Breazeal
2003; Zecca et al. 2009, 2010). Expressing and recognizing emotions are important
features of social robots, as these features allow them to respond adequately to the
needs of its user (Picard 2000). Depending upon the sort of the robot, the tasks it
performs, the context and its social life, the robot needs to express emotional state
as well as the emotions of the people it interacts (Norman 2004). However, it should
be noted that when referring to the robots that present emotions, the expression is
not the same as in humans since robots are not humans and they do not have human
cognitive abilities (e.g., assigning a meaning to an interaction) (Blow et al. 2006)
and can also have diverse limitations (i.e., people’s faces are rich in muscles).

Norman (2004) denotes that in order to increase people’s satisfaction and appre-
ciation emotional expressions of robots are needed to inform people about robots’
motivations, desires, accomplishments, frustrations which increase people’s satis-
faction and appreciation. Therefore, the main objective of this study was to explore
and evaluate the recognition of emotions displayed by a social robot. The ability of
participants’ recognition of emotions by a robot (i.e., a virtual replica of a social
robot) was tested. Accordingly, a pre-experiment (in order to program the emotions
in the virtual prototype), a pilot study, and two experiments were conducted.

10.2 Pre-experiment

This part was mainly to define the characteristics that the virtual robot which
presented the facial expression, movement, and displacement, to represent eight
basic emotions: joy, trust, fear, surprise, sadness, disgust, anger, and anticipation
(Plutchik 1980). Pre-experiment was divided into two phases: Definition; and Design
(Giambattista et al. 2016).

10.2.1 Definition Phase

The objective of this phase was to define a combination of characteristics, i.e., facial
expressions, body movements, and displacement) to represent 8 emotions (i.e., joy,
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trust, fear, surprise, sadness, disgust, anger, and anticipation). The study was con-
ducted with 10 students who tried to simulate a robot’s behavior, namely Monarch
(Ferreira and Sequeira 2017) to express emotions, by using two cardboard arms
(Fig. 10.1). The students were informed about the limitations of the robot’s move-
ments: they could move their arms only up and down, walk forward backward and
move sideways, rotate their head and body to the left and right, but they could not
bend their body.

The participants were voluntaries and that they consented the video recording
of their participation in the experiment. The procedure took place in a photography
studio/lab and the performance of the participants was video recorded. In the lab,
the participants could perform each emotion in a limited area which was marked
on the floor as 2 by 2 meters. Before performing each emotion, they were asked to
perform training in which they were shown an emotion besides the 8 emotions. If they
accomplished this session as requested, then they were asked to start performing the
8 emotions in which each was written on a sheet of paper. The order of the emotions
was randomized and after each performed emotion, the participants were asked to
clarify some facial expressions and movements that are not clear to the researchers.

The videos were analyzed by two researchers to identify the characteristics of
each emotion, based on the criteria defined and given to the participants, with a
focus on the characteristics (e.g., eyes, mouth, arms and body movements) that the
virtual robot would be able to reproduce. A table was filled in which each emotion
was identified by various features (Fig. 10.2).

Fig. 10.1 A student is imitating the robot with cardboard arms
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Fig. 10.2 Each emotion’s variables which were implemented to the virtual robot

10.2.2 Design Phase

In the Design phase, a Virtual Environment (VE) was created. The VE was a 5 m
long hospital corridor, and the virtual robot was placed at the end of the corridor.
The context was chosen due to the Monarch’s case study’s aim (Messias et al. 2014)
which is improving the quality of life of inpatient children. Both VE and virtual robot
were created using Rhinoceros, then exported to Unity 3D to program and represent
the emotions that robot would express. The VE was simple and neutral since the aim
of the study was that the participant focuses on the robot performance and not on
the environment (see Fig. 10.3). Participants were seated during the procedure. The
virtual robot was presented to participants in 3D, and for this, a 3D projection-based
virtual reality system with a 1280 x 720 pixel resolution at 120 Hz was used.

Fig. 10.3 Robot’s neutral emotion in the VE
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Fig. 10.4 Static images of the eight target emotions with facial expressions and body movements

for the pilot study

Eight target emotions; i.e., joy, trust, fear, surprise, sadness, disgust, anger, and
anticipation were selected, gathered from Plutchik’s theory (1980). An animation
was created for each emotion that was based on the results of the Definition phase.
The static images of the emotions are shown in Fig. 10.4. In the animation, before
each emotion, the robot showed the neutral emotion first and then the target emotion.

10.3 Pilot Study

This study’s main objective was to understand whether the 8 emotions programmed
into the virtual robot model was correctly recognized by the participants. To this end,
all materials developed in the Design phase were tested.
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10.3.1 Participants

Thirteen participants volunteered in this experiment. Seven were female (53.8%) and
six males (46.2%) aged between 19 and 37 (M = 24.6; SD = 5.02) years old.

10.3.2 Stimuli and Materials

8 emotions (i.e., surprise, sadness, trust, fear, anticipation, disgust, anger, and joy)
were used proposed by Plutchik.

Initially, the participants answered to some demographic’s questions (e.g., age,
education) and were asked about the previous experience/contact with social robots.
If participants had already had contact with a robot of this type, they should indicate
the context and the frequency of interaction. Then it was presented a questionnaire
to the participants. The questionnaire was divided into four sub-questionnaires: (a)
Technological Attitude Scale—before the interaction with the robot; (b) Perception
Scale about Robots—before the interaction with the robot; (c) Emotion Recognition
Task—during the interaction with the robot; and (d) Perception Scale of the Virtual
Model—after the interaction with the robot. The stages are described below:

a. Technological Attitude Scale (based on Lakatos et al. 2014)—this scale aims to
understand the relationship that the participants have with technology, in general.
It consists of 7 affirmations (e.g., my technological knowledge is excellent), and
the participant must, in a 5-point Likert scale (1—I Strongly Disagree, 2—I
Disagree, 3—Undecided; 4—I Agree; 5—I Strongly Agree) choose the answer
that best applies.

b. Perception Scale about Robots (based on Nomura et al. (2006)—it is a scale that
aims to evaluate the participants’ perception about robots (e.g., I worry that the
robots can be a bad influence on children). It consists of 10 affirmations and it
was used the same 5-point Likert scale used previously.

c. Emotion Recognition task—it is composed of a list of 16 emotions (8 main
emotions and 8 distracting emotions): joy, trust, fear, surprise, sadness, disgust,
anger, anticipation, anxiety, irritation, shame, contempt, guilt, pleasure, despair,
proud, and the option “none of the above emotions is correct”. This task aims to
understand if participants would correctly identify the emotions expressed by the
virtual robot. To this end, after the robot expressed each emotion, the participants
selected in this list, the emotion that thought to have been expressed by the robot.

d. Perception Scale of the Virtual Model—this scale aims to analyze the perception
that participants have about the virtual robot. To this end, participants must, a
5-point Likert scale, report their opinion for three affirmations: 1—1I would feel
comfortable if I had to interact with this robot; 2—I would not like to have this
robot in my house; 3—I would feel sorry if I had to destroy this robot. In the end,
the participants were asked about the robot’s gender (i.e., female, male, without
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defined gender) and one question about the functions that the robot could perform
(e.g., tourist guide).

10.3.3 Procedure

The procedure took place in a dark room (user experience laboratory), with ideal
conditions (e.g., controllable light, temperature conditions) for the use of virtual
reality and had a maximum duration of 15 min. When participants arrived, they were
informed about the general objectives of the study and they signed informed consent.
Also, they were warned for the possibility of slight negative effects due to the use of
3D glasses (e.g., possibility of nausea due to simulator sickness). Then, participants
answered the demographic’s questions, the Technological Attitude Scale, and the
Perception Scale about Robots.

Thereafter, participants were told that the virtual robot would start its performance,
i.e., to express emotions. Participants sat at a distance of 1 m from the wall screen and
put the 3D shutter glasses. After that, the robot appears in the virtual environment,
with a neutral expression. In the neutral expression, the mouth of the robot was
represented by a simple line, arms rested, and the eyes were lit but without any level
of glow. Then, the robot moves in a straight line towards the participant. This phase
was designed to accustom the participant to the virtual environment, the robot, and
the 3D shutter glasses.

The researcher tells the participant that the robot would start its performance,
expressing one emotion at a time. Each emotion was displayed for 10 s, after which,
the participant had to recognize the emotion expressed by the robot in the list of 16
emotions presented. After expressing an emotion, the robot returned to the starting
position (i.e., in front of the participant, where it started the performance). The robot
remained still as it was turned off (i.e., mouth and eyes off, and arms down) until the
following emotion expression that began with a key press by the researcher.

Emotions were presented to the participants in one of two sequences: Sequence
1—surprise, sadness, trust, fear, anticipation, disgust, anger, joy; Sequence 2—sad-
ness, fear, trust, joy, surprise, anger, anticipation, disgust. All the emotions were
placed in a website to generate several ordered lists and two were chosen.

After the performance of the robot, that is, at the end of the six emotions expres-
sion, participants answered the Perception Scale of the Virtual Model questionnaire
and a question about the gender of the robot and its function. In the end, the researcher
asked the participants some possible changes in the robot in order to improve the
expression and recognition of emotions. After that, the participants were thanked,
debriefed and dismissed.
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Fig. 10.5 Percentage of correct responses for each emotion for Pilot Study

10.3.4 Results

The main objective of the pilot study was to understand if participants were able
to recognize 8 emotions correctly which were expressed by the robot. Therefore,
only the results for Emotion Recognition Task are presented. In this sense, results
revealed that participants had some difficulty in recognizing correctly the emotions
expressed by the robot (33% correct answers). Figure 10.5 represents the percentage
of correct answers for each presented emotion. The results revealed that joy (69%) and
surprise (54%) were the ones with a higher percentage of correct answers, followed
by sadness (46%) and anticipation (46%). The other emotions presented a percentage
of accuracy below 25%: fear (23%), trust (15%), disgust (8%) and anger (0%).

These results showed that some of the emotions are confused with others (e.g.,
trust was confused with joy in 46% of cases), which shows the need to implement
some changes in the expressions of emotions by the virtual robot, making them easier
to recognize. For more information about the results of this pilot study please see
Giambattista et al. (2016).

10.4 Experiment 1

In the pilot study, the correct recognition of the emotions expressed by the virtual
robot was quite low. This result revealed the need to make significant changes in
the programming of emotions in order to increase its correct recognition. In this
sense, also the theoretical approach to emotions was altered. Thus, in the following
experiments, the 6 basic emotions (i.e., joy, sadness, fear, disgust, surprise, and anger)
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based on evolutionary perspective, proposed by Ekman et al. (1982) were used. There
are several studies (e.g., Bartneck 2002; Kanoh et al. 2005; Hashimoto et al. 2006;
Saldien et al. 2010) identifying the characteristics of the emotions for robots in terms
of facial expression which can be combined with the features that was classified in
Definition Phase.

10.4.1 Participants

The sample consists of 20 volunteered students, 17 (85%) were females and 3 (15%)
were male. The ages vary between 18 and 22 years (M = 19.75, SD = 1.04). The
participation was voluntary. The participants did not receive course credits or any
monetary compensation for participating in this study.

10.4.2 Stimuli and Materials

As mentioned before, this experiment used the 6 basic emotions proposed by Ekman
(1999) instead of the 8 emotions proposed by Plutchik (1980), this means that the
emotions trust and anticipation are not part of this experiment. In this experiment the
same VE, virtual robot and questionnaires were used. However, since two emotions
(i.e., trust and anticipation) were eliminated, the Emotion Recognition task has been
slightly modified. In this sense, Emotion Recognition task is composed of a list of
12 emotions: 6 basic emotions and 6 distracting emotions: despair, anxiety, shame,
anticipation, contempt, and trust; and the option “none of the above emotions is
correct”.

Considering the results of the pilot study, some changes were made in the pro-
gramming of the emotions that had a low hit rate. The emotions joy and surprise
were not changed, while the remaining four emotions suffered small adjustments in
motion (i.e., anger and fear), shape of the mouth (i.e., anger, disgust, and fear), and
eyes color (i.e., anger—red; fear—yellow; disgust—green; sadness—purple).

These changes were suggested and defined by a multidisciplinary team of
researchers (e.g., designers, psychologists, engineers) taking into account the anal-
ysis and study of the expression of emotions in humans and robots, as well the
opinions and suggestions of some participants who were subject to some tests of
emotion recognition with the virtual robot. Figure 10.6 shows the expression of the
six basic emotions by the virtual robot in a static manner.

10.4.3 Procedure

The same procedure as in the Pilot Study was followed.
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Fig. 10.6 Static images of the six target emotions with facial expressions and body movements for
Experiment 1

10.4.4 Results and Discussion

A qualitative analysis of the results is shown that was obtained for the different
scales used and for the recognition of emotions expressed by the robot. The mode
was calculated for each answer for all scales since they are ordinal scales. 18 out
of the 20 participants mentioned they had never been in contact with a social robot
before participating in this experiment.

a. Technological Attitude Scale

On this scale, most participants declared they liked to explore new technological
devices (Q1) while assuming that their technological knowledge is not excellent
(Q2). On the other hand, participants revealed that they could imagine having a
social robot in your home (Q3) and agreed that they liked to have a social robot to
help them (Q4). Also, in this sense, participants said they would like to try new robots
(Q6) and they completely agreed that social robots were useful (Q7). In relation to
question 5 (Q5—I am afraid that robots are used for bad purposes in the future), the
responses mode of participants was 3, or undecided.
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b. Perception Scale about Robots

In this questionnaire, the participants revealed that they felt comfortable if robots
would express emotions (Q1) and if they had to talk with them (Q3). Furthermore,
the participants agreed that if the robots had artificial intelligence, something may
go wrong (Q2). Regarding the questions related to the interaction that participants
would be able to establish with robots, participants declared that they would not be
able to establish a friendship with a robot that expresses emotions (Q5), they would
feel nervous if they had to obey an order given by a robot (Q6), or if they depended on
a robot to perform tasks (Q8). For the question “I would feel uncomfortable if I was
given a job where I have to interact with robots” (Q4), participants were undecided
about their response. This questionnaire also revealed that participants are undecided
about the influence of robots could have on children (Q9) and about the domain of
the robots in the future (Q10). Finally, participants agreed that they would not like
if the robots were able to make judgments about different subjects (Q7).

c. Emotion Recognition task

Regarding the ability of the participants’ correct recognition of the emotions
expressed by the virtual robot, the results revealed that the success rate was 46%.
This result was significantly higher than the results obtained in the pilot study (33%).
However, these results were not comparable since two emotions (i.e., trust and antic-
ipation) from the pilot study were removed, and the virtual robot has been repro-
grammed. Figure 10.7 represents the percentage of correct answers for each of the
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Fig. 10.7 Percentage of correct responses for each emotion for Experiment 1
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The emotion joy had a 100% success rate, i.e., all 20 participants recognized
correctly this emotion. The other two emotions that also had a higher success rate
were surprise (70%) and sadness (55%). Fear was correctly recognized in 25% of
the cases and anger in 20% (which represents an improvement in relation to the pilot
study result). Additionally, the emotion disgust had a low success rate (5%).

As mentioned before, participants could choose an emotion from 16 possible (6
target emotions and 6 distracting emotions) and also had the option “none”. Regarding
the association between the displayed emotions and the emotions listed, we found
that participants identified some emotions from these distracting ones. In this sense,
the emotion surprise was wrongly recognized in 20% of the cases as despair, anxiety,
anticipation or trust, and 2 participants selected the option “none”. Despite this false
recognition, surprise was the second most easily recognized emotion.

Besides, sadness was confused in 30% of cases with fear, which can be explained
by the fact that the robot performed a backward movement which might have repre-
sented fear. This emotion was still confused in 5% of the cases with shame and 10%
with disgust.

Fear was confused in 35% of cases with shame, which may be explained with the
backward movement made by the robot and with a fast and rhythmic head shaking
(i.e. disagree). In 30% of cases, the participants selected the option “none” or despair,
and anxiety or surprise in 10% of cases. This distribution of participants’ responses
by different options reveals the difficulty experienced in recognizing emotion.

Disgust was confused with shame in 70% and fear in 15% of cases. This result may
be due to the fact that the robot raised an arm to hide the face. This arm movement
was intended to simulate repulsed by something but could be confused with shame
or fear, because it might look like the robot was hiding from something or someone.
In 10% of cases, the participants chose the option “none” or contempt.

Anger was confused in 50% of cases with despair and in 25% of cases with fear.
This result may be due to the fact that the robot moved quickly from one side to the
other which may mean despair like the robot did not know what to do. On the other
hand, this rapid movement could be interpreted as being to flee from something (i.e.,
fear). In the remaining 5% of cases, the participants chose the option anxiety.

d. Perception Scale of the Virtual Model

In this questionnaire, the participants revealed that they would have felt comfortable
to interact with the displayed robot (Q1) and they would have liked to have the robot
at home (Q2). Participants also revealed that they felt sorry if they had to destroy
the robot (Q3) which suggested that an empathic relationship with the robot was
established. About the gender of the robot, 75% of participants said that the robot
did not have a defined gender, and 20% reported that it was male. Finally, most
of the participants suggested that the function of the robot was to help humans in
housework.

It was possible to understand, compared to the pilot study, that some emotions,
particularly anger, had a higher success rate of recognition. However, success rates
remained low, especially for fear, anger, and disgust. This result reinforced the need
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to continue to make changes to the virtual robot in order to improve the correct
recognition.

10.5 Experiment 2

Some of the emotions expressed by the virtual robot in experiment 1 were not cor-
rectly recognized. The low success rate for the emotions anger, disgust and fear can
be an example of this. In this sense, in experiment 2, our objective was to make some
changes in the programming of these emotions in the virtual robot and to test if these
changed increased the success rates.

10.5.1 Participants

The sample consisted of 20 students, 11 (55%) were females and 9 (45%) were male.
The ages of participants varied between 18 and 27 years (M = 20.95, SD = 2.16).
As in the previous experiment, the participants were volunteers and did not receive
course credits or any monetary compensation for participating in this study.

10.5.2 Stimuli and Materials

The same VE, virtual robot, questionnaire and emotions from Experiment 1 were
used.

In terms of emotions, some changes were done in the virtual robot. In this sense,
the emotion fear has changed the shape of the mouth and the robot moves backward
and slightly to the left side. Regarding the emotion disgust, the arm movement was
removed (in the previous version the right arm of the robot was raised parallel to its
head) and the shape of the mouth was changed. In the emotion sadness the movement
of the robot was removed, that is, the robot had only facial expressions (the same as
in Experiment 1). Finally, in the emotion anger, the shape of the mouth was changed
to simulate the existence of teeth. The robot raised both arms simultaneously at the
level of the head and the robot moved from one side to the other. Figure 10.8 shows
the expression of the six basic emotions by the virtual robot in a static manner.

10.5.3 Procedure

Similar to Experiment 1.
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Fig. 10.8 Static images of the six target emotions with facial expressions and body movements for
Experiment 2

10.5.4 Results and Discussion

Same data analysis was applied as previously in Experiment 1. Fifteen out of the
20 participants mentioned they had never been in contact with a social robot before
participating in this experiment.

a. Technological Attitude Scale

On this scale, most participants declared that they liked to explore new technological
devices (Q1), while they revealed to be undecided about their technological knowl-
edge (Q2). As in Experiment 1, participants revealed that they could have imagined
having a social robot at home (Q3) however they were undecided in relation to the
question “T would like to have a social robot to help me” (Q4). Most participants
agreed that they were afraid that robots could be used for bad purposes (Q5), but they
would have liked to test new robots (Q6), and they agreed that social robots were
useful (Q7).

b. Perception Scale about Robots

In this questionnaire, participants revealed that would have felt comfortable if robots
expressed emotions (Q1) or if they had to interact with a robot during work (Q4).
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However, participants proved to be undecided in the response to questions “Some-
thing wrong could happen if the robots have artificial intelligence” (Q2), “I would
feel comfortable speaking with a robot *“ (Q3), and “I would feel nervous if I had
to obey an order given by a robot in front of other people” (Q6). The results of this
questionnaire revealed that participants would be able to establish a friendly relation-
ship with the robots if they had emotions (Q5), they liked the robots that were able
to make judgments (Q7), and they did not feel nervous if they were dependent on a
robot to perform tasks (Q8). Finally, participants said they worried about the robots
could influence children badly (Q9), and they were convinced that society would be
dominated by robots in the future (Q10).

c. Emotion Recognition task

The success rate for the recognition of emotions expressed by the virtual robot was
51% on average. Figure 10.9 shows the percentage of correct answers for each of
the six presented emotions.

As for the emotions joy and surprise, no changes were made since a similar success
rate was expected as Experiment 1. This hypothesis was confirmed with the joy
getting a success rate of 95% and surprise getting 70% of success. Regarding sadness,
it was possible to observe an increase in the success rate (85%) when compared with
the result of Experiment 1 (46%).

Anger also increased in success rate (40%) when compared with Experiment 1
(20%). However, participants confused anger with despair in 40% of cases, which
can be due to the robot’s movement from one side of the wall to the other. This may
indicate some level of despair. In the remaining 20% of cases, participants confused
anger with fear (10%), anxiety (5%) or contempt (5%).
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Fig. 10.9 Percentage of correct responses for each emotion for Experiment 2
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On the other hand, the results for the recognition of fear decreased in success
rate in Experiment 2 (10%) compared with Experiment 1 (25%). In 80% of cases,
participants confused fear with shame. This result may be due to the movement that
the robot makes to one side of the wall. Participants interpreted the robot’s movement
as hiding from something or someone as if the robot did something wrong. This result
revealed the clear need to implement new changes in the virtual robot to make the
recognition of this emotion easier. Some participants suggested that the eye color
should be changed from yellow to white, and the motion should be changed. In this
sense, it has been suggested by participants that the robot should move backward
instead of moving to the side. However, this was the movement that the robot was in
Experiment 1, and as verified then, the success rate was also low (25%). this shows
that the difficulty in recognizing fear was not only related to the movement, but more
changes and tests are required.

Finally, despite the changes made in the expression of disgust, the success rate
remained very low (5%) as in Experiment 1. Participants confused disgust with all
other emotions, except joy, anger and trust: sadness (5%), despair (5%), surprise (5%),
anticipation (5%), fear (5%), anxiety (10%), shame (15%), and contempt (25%). In
the remaining 20% of the cases, the participants chose the option “none”. The fact
that the participants indiscriminately chose other emotions, without any pattern, was
indicative of the difficulty in recognizing the emotion disgust.

d. Perception Scale of the Virtual Model

In this questionnaire, the results of Experiment 1 were replicated, i.e., the participants
showed that they would have felt comfortable to interact with the displayed robot (Q1)
and they would have liked to have the robot at home (Q2). Participants also revealed
that they would have felt sorry if they had to destroy the robot (Q3). Regarding the
gender of the robot 80% of participants said that the robot does not have gender, and
20% reported that it is male. Once again, the participants suggested that the function
of the robot was to help humans in housework.

10.6 Conclusion

The expression of emotions allows humans to communicate their internal states
to others that through empathic responses understand and react adequately to their
needs. Cafiamero (2005) discussed that modeling emotions in robots can offer several
valuable contributions to emotion research regarding human perception of emotions
although the field is still in its infancy. Thereby, the main objective of this study
was to design the emotions expressed by a social robot and test the correct recog-
nition of participants when they interact with the virtual robot. For this purpose, a
pre-experiment was done in order to design and program the emotions for the vir-
tual robot. Then, a pilot study was performed to understand whether the 8 emotions
programmed into the virtual robot model were correctly recognized by the partic-
ipants. The results showed that some emotions were easily recognized (e.g., joy)
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while others had a very low recognition rate (e.g., disgust, anger). In this sense, tak-
ing into account the feedback from participants in the pilot study and the experience
of the research team, some changes were done in the robot’s expressions. One of the
changes was theoretical in which the next two experiments would use Ekman’s the-
ory of emotions because the facial expressions for the six basic emotions in humans
are well documented in the literature and this could be an important help to design
the emotion representation of the robot.

These two experiments were conducted to make changes in the expressions of
low recognized emotions in the virtual robot, and to test if these changes increased
the success rates of recognition. The results showed that the emotions that have
higher correct recognitions were joy, surprise, and sadness. Moreover, fear, disgust,
and anger were emotions with lower success rates. For these three emotions, several
changes were done, though, participants always revealed that they were hard to
recognize correctly. However, it is important to note that the success rate for anger
increased significantly between Experiment 1 (20%) and Experiment 2 (40%). This
means that changes made to the virtual robot worked as expected. It should also be
noted that participants confused anger with despair, which may be due to the robot’s
movement which had signs from other emotions as well.

Furthermore, relative to disgust, some studies with humans have shown
some problems in its correct recognition (e.g., Bullock and Russell 1984; Widen
and Russell 2008; Panksepp 2007). Between humans, the recognition of that emo-
tion is difficult, therefore, between human and robot, it should be expected to be
even harder since a robot has more limitations in terms of facial expressions and
body movements than a human while expressing an emotion. Especially in this case
of study, the virtual robot has several limitations: it was only possible to change the
intensity of light and the color of the eyes; light on/off LEDs panel to draw the mouth;
move arms up/down; move forward/backward, left/right. Also, usually, in humans,
the expression of disgust involves the act of spitting (e.g., Widen and Russell 2008),
and this expression is impossible to program in the robot, because of the limitations,
mentioned above.

Regarding fear, the success rate in Experiment 1 was higher than in Experiment 2.
The difference between the two experiments was the robot’s body movement. While
in Experiment 1 the robot walked back simulating moving away for something, in
Experiment 2 it moved to the left side in the direction of the wall. However, in
Experiment 1 the success rate was higher than in Experiment 2, but it was still low
(25%). Therefore, the movement of the virtual robot was also more problematic than
the facial expression in this emotion as well.

Also, it is worth to mention that in many projects with robots, the recognition of
fear in facial expressions tends to be the most difficult (Fairchild et al. 2009; Saldien
et al. 2010). Since the robot had the most limitations related to face, it was expected
to have a lower rate in correct recognition.

During the study, the robot was presented in a neutral context and it expressed
all the emotions in sequence. However, in a real context, emotions arise in response
to a stimulus, person or event in a given context, in a specific moment (e.g., Ekman
1999; Frijda 1986; Lazarus 1999). All these circumstances are clues to the correct



10 Human-Robot Interaction ... 181

recognition of emotions. Due to the limitations, the robot could not express all the
emotions successfully by using its facial expressions and body movements. However,
a given context, and/or a scenario could help the success rate go higher for lower
rated emotions. In this sense, it is important that in future studies, the virtual robot
is presented in a context, accompanied by a narrative that allows participants to
contextualize each emotion. Besides, further study is needed for body movements
and displacement for the robot in particular emotions (i.e., disgust, fear, and anger).
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Chapter 11
Artificial Intelligence in Human-Robot e
Interaction

Edirlei Soares de Lima and Bruno Feijo

Abstract Human-Robot Interaction challenges the field of research on Artificial
Intelligence in many ways, especially regarding the complexity of the physical
world. While physical interactions require Artificial Intelligence techniques to handle
dynamic, nondeterministic, and partially unknown environments, the communication
with humans requires socially acceptable responses and common-sense knowledge
to handle a broad variety of situations with complex semantics to interpret and under-
stand. In the context of emotional design, different Artificial Intelligence techniques
are necessary to allow robots to express, understand, and induce emotions as part
of the interaction process. This chapter explores Human-Robot Interaction from the
Artificial Intelligence point of view, presenting the main challenges, techniques, and
our particular vision for future developments in this research area.

Keywords Artificial intelligence - Robotics -+ Human-robot interaction - Machine
learning

11.1 Introduction

In the emotional design of Human-Robot Interaction, we should consider the con-
nections that can form between humans and robots, and the emotions that can arise
from them. In this context, the most central technological question is the intelligence
of the machines. What is Artificial Intelligence and what are its limitations?

Over the last decades, Artificial Intelligence (AI) has emerged into the public view
as an important frontier of technological innovation with potential influences in many
areas. The first use of the term Artificial Intelligence is attributed to John McCarthy,
who created the term in his 1955 proposal for the 1956 Dartmouth Conference
(Russell and Norvig 2009), which is considered the seminal event for Artificial
Intelligence as a field. Today, applications of Artificial Intelligence are all around us
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(virtual assistants, recommendation systems, robotics arms in assembly lines) and
there are more to come in the near future (autonomous vehicles, autonomous drone
delivery services, robot assistants, etc.).

The term Artificial Intelligence can have different definitions depending on the
context and the intended application. The English Oxford Dictionary defines it as
“the theory and development of computer systems able to perform tasks normally
requiring human intelligence, such as visual perception, speech recognition, decision-
making, and translation between languages.” (Stevenson 2010). A more general
definition is given by the Merriam-Webster dictionary: “a branch of computer science
dealing with the simulation of intelligent behavior in computers.” (Merriam-Webster
2016). Similarly, The Encyclopedia Britannica states that Al is “the ability of a digital
computer or computer-controlled robot to perform tasks commonly associated with
intelligent beings.” (Encyclopedia Britannica 2003). However, all these definitions
do not consider the fact that intelligence itself is not very well defined or understood.

In general, Artificial Intelligence can still be considered a young discipline, and its
structure, concerns, and methods are less clearly defined than those of more mature
sciences (such as physics).

Many different disciplines contributed to the development and establishment of
the field of research on Artificial Intelligence, including Philosophy, Mathematics,
Psychology, Neuroscience, Linguistics, and Computer Engineering. The general goal
of the research on Artificial Intelligence is to create the technology necessary for
computers to work in an intelligent manner. Over the past years, several techniques
have been proposed and successfully applied for a variety of different tasks, such as
market analysis, medical diagnosis, speech recognition, simulation, training, weather
forecasting, emotion analysis, facial recognition, and robotics.

There are many approaches and methods to creating intelligent systems, including
search and optimization, logic and planning, probabilistic reasoning, and machine
learning. Some approaches are becoming synonyms of Al, such as machine learning,
which gives computers the ability to learn without being explicitly programmed to
solve a specific problem (Russell and Norvig 2009). Machine learning techniques
are employed in a vast range of computing tasks, where designing and programming
explicit algorithms with good performance is difficult or infeasible (Mitchell 1997).

Human-Robot Interaction represents a challenge for the field of research on Al
(Lemaignan et al. 2017). Most classical Al techniques were not designed to handle
the dynamic, nondeterministic, and partially unknown environments of the physical
world. Over the last decades, the most successful applications of robots were limited
to simple tasks that involve predictable situations (e.g., packaging, welding, and
spray painting). Robot automation obtained a huge commercial success because it
is usually applied to highly repetitive processes that hardly vary and require little
dexterity, such as those done in industrial plants. However, physical interactions and
communication with humans require socially acceptable responses and common-
sense knowledge to handle a broad variety of situations with complex semantics to
interpret and understand.

Robots that interact with humans are very different than those used in assembly
lines: they require more intelligent behavior than simply following a set of instruc-
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tions to complete repetitive tasks. As a result, robotics is moving into areas where
sensor input becomes increasingly important and the Al must be robust enough to
anticipate and handle a range of different situations (Thrun et al. 2005). Robotics,
thus, is increasingly becoming a software science, where the goal is to develop robust
software that enables robots to handle the challenges that arise when dealing with
complex and dynamic environments.

Human-Robot Interaction requires intelligent robots able to recognize, under-
stand, and participate in communication situations, both explicit (e.g., the human
addresses verbally the robot) and implicit (e.g., the human points to an object). In
addition, an intelligent robot must be able to take part in joint actions, both proac-
tively (by planning and proposing resulting plans to the human) and reactively (by
following the human instructions) (Lemaignan et al. 2017). All these actions must
be complemented with the robot’s ability to move and act in a safe, efficient, and leg-
ible way, considering all social rules relevant to the situation. This kind of behavior
requires more than just Al algorithms; it requires support from Psychology, Philos-
ophy, Interaction studies, and General computer engineering.

11.2 Artificial Intelligence in Robotics

From the Artificial Intelligence point of view, robots are physical agents that per-
form tasks by manipulating the physical world (Russell and Norvig 2009). They are
equipped with effectors (e.g., legs, wheels, joints, and grippers) and sensors (e.g.,
cameras, lasers gyroscopes, and accelerometers). While the sensors allow the robot
to perceive the environment, effectors are used to asserting physical forces on the
environment.

In the physical world, robots must interact with environments that are partially
observable, nondeterministic, dynamic, continuous, and multiagent. Partial observ-
ability, continuously, and non-determinism are the result of dealing with a large and
complex world. Most robot sensors cannot see around corners, and motion commands
are subject to uncertainty due to gear slipping and friction (i.e., it is not possible to
guarantee that all planned actions will have the desired results). The physical world
is also dynamic, so it can change while the robot is planning or performing an action,
which requires real-time responses from the robot. In addition, some robots can inter-
act with other robots or with humans, which adds the multiagent characteristic to the
environment.

Figure 11.1 illustrates a general robot interaction process. First, the robot sen-
sors capture raw signals from the environment (e.g., visual signals, audio signals,
and tactile signals). Then, feature extraction methods are used to obtain meaningful
data from the raw signals. Based on the extracted features, Artificial Intelligence and
Computer Vision techniques are performed to procedure a semantic understanding
of the current situation (e.g., object recognition, object tracking, and emotion recog-
nition). With this information, the robot can plan and perform the most appropriated
actions, such as movements, gestures, and speech.
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Fig. 11.1 General robot interaction process

Perception is one of the key elements when designing robots that interact with
complex environments (Russell and Norvig 2009). It consists of the process of map-
ping sensor measurements into internal representations of the environment. The per-
ception process can be divided into two steps: (1) feature extraction, which has the
objective of converting the raw signals from sensors to feature descriptors for sub-
sequent understanding tasks; and (2) semantic understanding, which aims at infer-
ring the objects or human behaviors from the extracted features. Typical semantic
understanding tasks include object detection and recognition, human tracking and
identification, speech recognition, emotion recognition, and touching detection and
recognition.

One of the most basic perceptions a robot requires is localization, which is used
to determine where things are in the environment (including the robot itself). This
kind of knowledge is the key element of any successful physical interaction with
the environment (Thrun et al. 2005). For example, robot manipulators must know
the location of objects they seek to manipulate, navigating robots must know where
they are to find their way around, and assistant robots must know where their human
subjects are.

Localization has received a lot of research attention in the past decades and,
as a result, significant advances have been made on this front. The most common
method used to determine the position of the robot in the environment is called Monte
Carlo localization (MCL) (Dellaert et al. 1999). The MCL algorithm estimates the
position and orientation of a robot as it moves and senses the environment (Thrun
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et al. 2005). The algorithm uses a particle filter to represent the distribution of likely
states (each particle represents a possible state, that is a hypothesis of where the
robot is). Initially, the particles are uniformly distributed based on prior knowledge.
Whenever the robot moves and senses something new, the particles are resampled
using a recursive Bayesian estimation (Berger 1985). This process repeats until all
the particles converge toward the actual position of the robot. In some situations, no
map of the environment is available. In these cases, the robot must acquire a map
while navigating through the environment. This problem is known as simultaneous
localization and mapping (SLAM) (Thrun and Leonard 2008). Usually, this problem
is solved using probabilistic techniques, including the extended Kalman filter (Jetto
et al. 1999).

Not all robot perceptions are about localization. Social robots also need to recog-
nize objects, identify humans, recognize gestures, track subjects, recognize emotions,
and so on. Motivated by the fact that most information received by human beings are
visual signals (Castleman 1996), most robot systems use visual signals to simulate
human-like perceptions (Yan et al. 2014). Most of these visual signals are usually
obtained using traditional or stereographic camera sensors. Then, Computer Vision
techniques are used to extract meaningful information from the captured images.

Different tasks usually require different features and specific techniques to extract
them. The field of research on Computer Vision provides a vast repertory of tech-
niques for feature extraction, including color, texture, shape, and motion. Color can
be used to detect objects with distinct color components (Khan et al. 2012). It can
also be used to efficiently detect human skin and identify the presence of human sub-
jects (Darrell et al. 2000; Wang et al. 2008). However, color can be easily affected by
illumination conditions, which requires special treatment. Visual texture is another
important property for object and face detection. The Local Binary Pattern (LBP)
(Wang and He 1990; Ojala et al. 1996) and the Scale Invariant Feature Transform
(SIFT) (Lowe 1999) are both popular texture descriptors for feature representation
that have been widely used in object recognition, robotic navigation, video tracking,
and image matching. The shape is also a useful feature for visual signal repre-
sentation, especially for facial image analysis and human detection. Popular shape
descriptors include the snake model (Kass et al. 1988), which can capture features
like lines and edges; and the Hu descriptors (Hu 1962), which are based on non-
orthogonalized central moments that are invariant to image rotation, translation, and
scale. Another important visual feature is motion, which is widely used for object
tracking. Optical flow is a typical motion feature that represents the distribution of
velocities of brightness patterns’ movement in an image (Horn and Schunck 1981;
Brox et al. 2004; Bab-Hadiashar and Suter 1998).

Motivated by the fact that speech is an important communication channel for
human beings, audio signals are also an important source of information for robots
that interact with human subjects. By analyzing the collected audio signals, robots can
acquire more information related to their interaction subjects, such as their positions,
commands, and emotional states (Yan et al. 2014). In addition, audio signals are
essential to establish a communication channel between humans and robots through
speech recognition and speech synthesis.
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With all relevant features extracted from the sensors’ signals, semantic under-
standing tasks must be performed in order to generate semantic knowledge to be
used by the robot to plan future actions. For these tasks, Artificial Intelligence tech-
niques—especially machine learning methods—are essential for general solutions.
While some simple tasks can be solved only with Computer Vision techniques (such
as human tracking), most of the semantic understanding tasks require machine learn-
ing algorithms (e.g., object recognition, emotion recognition, human identification).

11.3 Machine Learning

Machine learning tasks are typically classified into three categories, depending on
the type of data available to the system: supervised learning, unsupervised learning,
and reinforcement learning (Russell and Norvig 2009). In supervised learning tasks,
the system learns a function that maps an input (features describing an instance of a
problem) to an output (the correct answer for the instance of the problem) based on
examples of input—output pairs. There are several algorithms for supervised machine
learning, including artificial neural networks (Priddy and Keller 2005), decision trees
(Rokach and Maimon 2014), support vector machines (Steinwart and Christmann
2008), k-nearest neighbors (Altman 2012), etc. In contrast, unsupervised learning
tasks require from the system the ability to learn patterns in the input even though no
explicit output is supplied. Algorithms for unsupervised learning include clustering
methods (Aggarwal and Reddy 2013), artificial neural networks, and latent variable
models (Loehlin 1998). In reinforcement learning tasks, the system learns from a
series of reinforcements (rewards or punishments). The system does not know which
actions to take, but instead, it must discover which actions yield the highest rewards
by trying them. Algorithms for reinforcement learning include Q-learning (Watkins
and Dayan 1992) and State-Action-Reward-State-Action (Szepesvari 2010).

Artificial Neural Network is a very popular machine learning algorithm used
in robotics for a variety of tasks. Inspired by the biological neural networks that
constitute biological brains (Russell and Norvig 2009), artificial neural networks
comprise several artificial neurons interconnected with each other to form a network
with input, hidden, and output layers (Fig. 11.2). Neural networks “learn” by example
and can be trained to extract patterns and detect trends.'

Over the last years, several works explored the use of neural networks to solve
robotic tasks. Seemann et al. (2004) presented a method for estimating a person’s
head pose using neural networks trained with grayscale and disparity images from
a stereo camera. Ge et al. (2011) described a neural network to estimate human
motion intention based on the desired trajectory in human limb model. Yin and Xie

'In a nutshell, given a set of training points (x;, y;), a system that learns by example tries to
find a function f that maps a given x to its corresponding y (within a certain error tolerance). In
a neural network, this function is represented by numerical weights associated with each node.
During training, these numbers are continually adjusted until training data with the same labels
consistently yielding similar outputs.
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Input Layer

Hidden Layer

Fig. 11.2 Structure of an artificial neural network. Each neuron is connected to all neurons in the
next layer and each connection has a numeric weight (Wj; and W’;;) that determines the strength
and sign of the connection

(2007) proposed a hand posture recognition system for humanoid robots that uses
neural networks trained with topological features extracted from the silhouette of
the segmented hand. Ito et al. (2006) used a dynamic neural network model to allow
a small humanoid robot to learn object handling behaviors. Other authors proposed
solutions for general problems that also exist in robotics using neural networks.
Maturana and Scherer (2015) proposed a real-time object recognition method that
uses a supervised 3D convolutional neural network capable of recognizing hundreds
of objects per second. Bhatti et al. (2004) presented a language-independent emotion
recognition system for the identification of human affective state in the speech signal
using a neural network. Lawrence et al. (1997) presented a hybrid neural network
for human face recognition that combines local image sampling, a self-organizing
map neural network, and a convolutional neural network.

11.4 Future Developments

Future developments in Artificial Intelligence in HRI should be mainly driven by
breakthroughs in deep learning. However, a realistic assessment and a solid under-
standing of these new possibilities require a review of the core of what Artificial
Intelligence means and what are its most challenging problems.

If we take the claimed goal of Al seriously—i.e., the production of Al—then we
shall specify the most important features of intelligence. There is no consensus in
the Al community about the most adequate theory of intelligence, mainly because
this depends on the context. For the purposes of the present writing, we can assume
that intelligent behavior arises from the ability to learn, to adapt behavior to new and
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challenging environments, and to be creative.” Alternatively, we can suppose that
intelligent behavior arises from the balance of the following abilities: (i) the ability
to evaluate, analyze, and compare information; (ii) the ability to generate invention
and discovery; (iii) the ability to apply what have been learned in the appropriate
situation. This is exactly the Triarchic Theory of Successful Intelligence proposed
by Cianciolo and Sternberg (2008). However, no matter which intelligence theory
we adopt, the challenge of producing Artificial Intelligence is enormous.

The story of Al consists of successes and failures, ups and downs, abundance
and scarcity of investments.® From a theoretical viewpoint, this story is marked by
the rivalry between two lines of thought: logic-based Al (also known as logicism or
symbolic AI) and machine learning (mainly, artificial neural networks). In the first
line, cognition involves operations on symbols. In contrast, neural networks exhibit
intelligent behavior without processing on symbolic expressions.

Logicism was the predominant theory within the AI community until the mid-
1980s, when neural networks, genetic algorithms, and other machine learning
paradigms started producing impressive results. Currently, in the late 2010s, after
almost 20 years of experiencing slow development, Al innovation has exploded and
deep learning (mainly in the form of neural networks) has been dominating the Al
scenario.

A deep learning algorithm (also known as hierarchical learning) attempts to learn
in multiple levels, corresponding to different levels of abstraction. Deep learning
requires extremely large datasets (called big data), which are complex sets to pro-
cess, manage, and maintain. Furthermore, current deep learning models also require
training datasets that are labeled (i.e., data that have been classified or categorized
by humans).

Deep learning typically uses artificial neural networks leading to the so-called deep
neural networks (DNN5s). In a DNN, there are multiple layers to process features, and
generally, each layer extracts some piece of information. In this architecture, higher
level features are defined in terms of lower level ones. Deep neural networks can
have hundreds of millions of parameters (LeCun et al. 2015), allowing them to model
complex functions such as nonlinear dynamics. They form compact representations
of states from raw, high-dimensional, multimodal sensor data commonly found in
robotic systems.

The current burst of Al advances occurred due to the emergence of powerful GPUs
(Graphics Processing Units) * being used for complex computations of deep learning
models, and the availability of big data. Deep learning has achieved astonishing
performance in many complex tasks like language translation (Wu et al. 2016),

2 Apart from being “creative”, this is totally aligned with early psychological theories, such as the
one by Edward Thorndike in the very ending of the nineteenth century (Thorndike 1911), which are
one of the first references on learning mentioned by researchers of artificial neural networks (also
known as connectionists) (Knight 2017; Ertugrul and Tagluk 2017).

3 A fun but complete and accurate history of Al until the early 1990s can be found in Crevier (1993).

4GPUs are designed for rendering graphics by having a large number of simple process units for
massively parallel calculation. However, we can use GPUs to perform any sort of computation (e.g.,
deep learning computation). We can use multiple GPUs to increase processing power.
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strategic games playing (Silver et al. 2016), and self-driving cars (Bojarski et al.
2016). Although deep learning has been successful in perception and classification
problems, it is far from solving real reasoning problems. The next Al revolution is
when deep reasoning becomes effective. Cognitive robots® rely not only on deep
learning but also on deep reasoning. Deep reasoning is required for cognitive tasks,
such as common sense, dealing with changing situations, planning, remembering,
and making complex decisions. Robots and other Artificial Intelligent systems are
still far from real deep reasoning. Yet there are even more complex issues that current
technology cannot deal with, such as consciousness (especially the ability to obtain
and process information about ourselves) and ethics. An interesting approach to
machine consciousness can be found in Dehaene et al. (2017). The present authors
believe that logicism and machine learning should cooperate with each other to deal
with these challenging questions and the situation of Al safety in general. A deep
discussion about Al safety is presented in Amodei et al. (2016).

While disruptive solutions for deep reasoning are yet to come, important improve-
ments in deep learning can be pursued: (i) to train systems on less data (“small data™);
(ii) to use unlabeled training datasets (unsupervised learning); and (iii) to open the
black box of deep learning systems—the interpretability problem (Lipton 2017).
These subjects are somewhat intertwined, and we may envisage a future system that
can attain rapid learning from small unlabeled data and, in case of an accident, can
track down the cause.

The use of small data is necessary not only because developing Al systems using
big data is a costly and time-consuming task (or because extremely large sets of
data are not available in many domains) but also because an Al system must quickly
adapt to single unexpected observations. Many situations require rapid inference
from small quantities of data. As pointed by some researchers of Google DeepMind
(Santoro et al. 2016): “in the limit of ‘one-shot learning’, single observations should
result in abrupt shifts in behavior.” The use of statistical models (e.g., Gaussian
process and Bayesian optimization) to deal with the problems of small data and
interpretability have been reported by the media (Metz 2017). In a different approach
to interpretability, a recent work by Google Brain explains how a deep neural network
can make decisions by combining feature visualization (what is a neuron looking
for?) with attribution (how does it affect the output?) (Olah et al. 2018).

The second research direction mentioned above efers to the use of raw, unlabeled
data to train Al systems with little or no human intervention (known as unsupervised
learning). The use of massive labeled dataset training presents many drawbacks: it is
costly, consumes time, and introduces human bias into the systems (either uninten-
tionally or caused by malicious attackers). One of the first experiments with large-
scale unsupervised learning was presented by Google and Stanford University (Le
etal. 2012). We can reduce the use of labeled data if we use transfer learning, a tech-
nique in which the first layers of a network are a copy of the first layers of another
network (Yosinski et al. 2014).

5Cognitive robots, different from industrial robots, are robots that reason, remember, learn, antici-
pate, plan, and communicate with humans and with each other.
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The next Al breakthrough can be driven by new hardware currently under devel-
opment. The two most promising new hardware paradigms are neuromorphic chips
and quantum computing, according to current media reports (Knight 2018).

A review of deep learning in robotics can be found in Pierson and Gashler (2017).
These authors argue that large training data, long training times and unsupervised
learning for critical robotic systems® are the main barriers to the adoption of deep
learning in robotics. They also claim that a promising perspective is crowdsourcing
training data via cloud robotics (Pratt 2015). However, as we have mentioned in the
present section, advances in small data, unsupervised learning, and interpretability
can also lower the barriers to adoption of deep learning in robotics.

As far as HRI is concerned, deep learning is of ultimate importance for communi-
cation and assistance. For example, deep neural networks can recognize spontaneous
emotional expressions (Barros et al. 2015), which is essential for Human-Robot Inter-
action. Assistance has been considered a premium goal in Al systems, in the sense
that Al should be used to augment human intelligence. In this case, we should cre-
ate user interfaces that let us work with the representations inside machine learning
models (Carter and Nielsen 2017). As a general prognosis, future developments in
Al systems must maintain a strong adherence to the concept of creating an interactive
and intelligent conversation between a human and a machine.
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