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Chapter 5
Effects of Nanoparticles on Germination, 
Growth, and Plant Crop Development
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Abstract  The use of nanotechnologies in agricultural systems has been widely 
promoted. Nanomaterials have been proposed as a useful tool for the improvement 
of agricultural practices. Some plants have shown diverse effects in terms of mor-
phological and physiological changes, with uptake and translocation into different 
parts. A relation has been demonstrated between the dose and the plant response in 
different crops, with variations from plant to plant. However, the use of nanoparti-
cles for crop production still faces some challenges because of possible toxicity and 
hazardous effects, and especially because of the lack of experimental evidence that 
nanomaterials are harmless to plants and humans. Some studies have reported both 
positive and negative effects of nanoparticles on plant growth and development, 
depending on the nature of the nanomaterials, application, time of exposure, plant 
species, and soil characteristics. The objective of this chapter is to describe the 
effects of the application of nanoparticles on plant development, focusing on the 
physiological and biochemical mechanisms of plants in relation to nanoparticles. It 
also reviews the behavior of nanoparticles in the soil and water matrix and their 
effects on microbial communities interacting with plants.
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1  �Introduction

Nanotechnology is a fast-developing industry, and it has crucial impacts on the 
economy, society, and the environment, with implications for health, medicine, bio-
materials, and treatment of solid, liquid, and gaseous residues (Fulekar 2010). The 
number of studies and researchers focused on the positive and negative effects of 
this sector have increased year after year around the world (Hullmann 2007). The 
multidisciplinary approach needed to understand this field has been integrated by 
policy makers, scientists, and social scientists, among others (Oberdörster 2010; 
Nikalje 2015; DeRosa et al. 2010; Ibrahim et al. 2016). The versatility of nanoma-
terials has reached a wide range of fields—e.g., agriculture, cosmetics, remediation 
technologies, robotics, chemistry, and optics (Vance et  al. 2015)—leading to the 
release of nanomaterial residues into the air, water, and soil.

Balbus et al. (2007) classified nanomaterials into four groups: (1) carbon-based 
materials (CNMs), usually including fullerene, single-walled carbon nanotubes 
(SWCNTs), and multiwalled carbon nanotubes (MWCNTs); (2) metal-based mate-
rials such as quantum dots, nanogold (nano-Au), nanozinc (nano-Zn), nanoalumi-
num (nano-Al), and nanoscale metal oxides such as TiO2, ZnO, and Al2O3; (3) 
dendrimers, which are nanosized polymers built from branched units capable of 
being tailored to perform specific chemical functions; and (4) composites, which 
combine nanoparticles with other nanoparticles or with more abundant, bulk-type 
materials. The first two types are common and are often studied.

Nanomaterials present physical and chemical characteristics that can modify 
their properties, such as conductivity, reactivity, and optical sensitivity. Therefore, 
these materials can generate adverse biological effects in living cells (plants and 
animals) (Wiesner et al. 2006; Vecchio et al. 2012; Shang et al. 2014). Some studies 
have demonstrated effects of nanoparticles and nanomaterials on human cells 
(Soenen et al. 2015; Suliman et al. 2015) and bacterial communities (Barnes et al. 
2010; Ge et al. 2012; Yang et al. 2014); however, the number of studies describing 
the effects of nanomaterials on plants is limited relative to the vast numbers of plant 
species and nanomaterial types (Monica and Cremonini 2009). A significant num-
ber of nanoparticle and nanomaterial types have been tested on different types of 
plant (Lin and Xing 2007; Stampoulis et al. 2009; Ma et al. 2010; Lee et al. 2012; 
El-Temsah and Joner 2012; Liu and Lal 2015); these studies have contributed to the 
understanding of nanoparticles and their effects on biological systems.

Agriculture is one area that has been modified with the incorporation of nanoma-
terials, improving the yields of crop cultivars, increasing their nutritional values, 
and facilitating environmental monitoring of the cultivation conditions (Srilatha 
2011; Razzaq et al. 2015). Nanomaterials have diverse uses in agriculture, such as 
micronutrient delivery systems, detection of pathogens, and crop and food system 
security. Since nanomaterials are in the same size range as viruses or bacteria, they 
can be used as materials for detection and eradication (Perlatti et al. 2013). In the 
agricultural sector, nanotechnology research and development are likely to aid and 
frame the next level of expansion of genetically modified crops, animal production 
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inputs, chemical pesticides, and precision farming techniques (Scrinis and Lyons 
2007).

Changes in agricultural technology have been a significant factor shaping mod-
ern agriculture. In the latest line of technological innovations, nanotechnology 
occupies a prominent position in transforming agriculture and food production. So 
far, the use of nanotechnology in agriculture has been mostly theoretical (Kumari 
and Yadav 2014), but it has begun to—and will continue to—have a significant 
impact in the main areas of the food industry, development of new functional mate-
rials, product development, and design of methods and instrumentation for food 
safety and biosecurity (Prasad et al. 2012).

2  �Presence of Nanoparticles in the Environment and Their 
Interactions with Plants

In general, nanoparticles are structures that can be described as particulate matter in 
the nanoscale size range. Materials of this size also occur naturally in the environ-
ment. For the past 30 years, most of the works published in the literature regarding 
nanoparticles have mainly focused on synthetically customized nanoparticles, 
referred to as engineered nanoparticles. Because of their unique size, shape, and 
chemistry-related properties, engineered nanoparticles have been widely and suc-
cessfully used in electronic, pharmaceutical, medical, cosmetic, and life science 
applications (Dionysiou 2004). Environmental cleanups such as improvement of 
environmental quality, water treatment processes, and remediation are among the 
activities in which engineered nanoparticles are also used (Crane and Scott 2012). 
Because of their commercial applications, concerns have been raised about their 
risks and fate in the natural environment when they are released accidentally or 
deliberately.

3  �Sources of Engineered Nanoparticles in the Environment

In the last 20  years, the use of engineered nanoparticles in diverse applications 
(Nowack and Bucheli 2007) has been increasing. Although their presence in soil 
and water has been proved, the occurrence of nanoparticles in these environmental 
matrixes is complicated to estimate (Praetorius et  al. 2013). The last estimation 
made by the Royal Society and Royal Academy of Engineering estimated delivery 
of around 60,000 tonnes of nanoparticles by 2020 (Maynard et al. 2006).

The chances of engineered nanoparticles being emitted into the environment are 
growing; therefore, their potential risks and toxicity could affect all living organ-
isms on earth. There are several ways in which engineered nanoparticles can reach 
the natural environment by intentional and unintentional releases into solid and 
liquid waste streams from households, manufacturing sites, and waste treatment 
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plants, and by emissions into the air. Uses of nanoparticles as additives in fabrics 
[e.g., silver nanoparticles (Ag-NP)], paints (TiO2), personal health care products 
(sunscreens), and cosmetics are examples of their commercial applications. 
According to studies by Gottschalk et al. (2009), aquatic organisms could be those 
most affected by the release of Ag, TiO2, and ZnO nanoparticles because of their 
presence in sewage effluent and wastewater sludge (Brar et al. 2010).

Anthropogenic nanoparticles are released into the environment from activities 
such as accidental spills, wearing of car tires, fuel exhaust, and urban air pollution 
(Sajid et al. 2015). Activities involving the use of engineered nanoparticles such as 
iron oxide and zero-valent iron nanoparticles (nZVI) in contaminated groundwater 
remediation and agriculture (use of fertilizers) are examples of the intentional 
release of engineered nanoparticles into the natural environment (Crane and Scott 
2012). However, the current primary source of engineered nanoparticles deposited 
on land is the disposal of wastewater treatment plant sewage sludge, in which the 
nanoparticles released from commercial products into wastewater streams end up in 
the sewage sludge generated during municipal and industrial wastewater treatment 
processes (Stasinakis 2012; Xu et al. 2012). It has been observed that these engi-
neered nanoparticles are unlikely to enter the environment in their original form. 
According to the literature, naturally occurring nanoparticles disappear from the 
environment by dissolution, and their change into bigger particles by aggregation is 
a widely studied and well-known mechanism. However, engineered nanoparticles 
are reported to potentially persist in the environment, especially in natural aquatic 
systems, because of the stabilizers used to coat these nanoparticles, which may 
contain toxic elements in their structures at specific concentrations (Handy et al. 
2008, 2012). Therefore, concerns about the emission of engineered nanoparticles 
into the environment are growing in regulatory organizations worldwide.

4  �Fate of Nanoparticles in Environmental Matrixes

4.1  �Fate of Nanoparticles in Soil

Research publications on the behavior and fate of engineered nanoparticles in soil 
systems are very limited and are less numerous than work carried out in water sys-
tems. This is mainly due to the lack of methodologies and techniques for character-
izing and investigating the interactions of nanoparticles with the different 
components in soil (i.e., organic matter, minerals, and microbial biomass) (Boxall 
et al. 2007). In fact, most of the research on the behavior of engineered nanoparti-
cles in soils has been carried out on soil suspensions and not in soil systems as such. 
The interactions between natural colloids and other particles such as humic sub-
stances (HSs) and clay particles in soil have been shown to differ from those between 
these soil elements and engineered nanoparticles (Ben-Moshe et al. 2010). Once 
this interaction occurs, partitioning of these newly formed composites between the 
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aqueous and solid phases within the soil takes place through desorbing mechanisms 
(Darlington et al. 2009). It has also been observed that in environmental conditions 
of low ionic strength and high concentration of organic matter, nanoparticles are 
less likely to interact with and sorb to soils, increasing the mobility in the case of 
metal nanoparticles (Tourinho et al. 2012).

Under environmental conditions, HSs are negatively charged, so these natural 
organic colloids can sorb to metal nanoparticle surfaces, improving their stability 
and reducing aggregation and sedimentation. However, this phenomenon does not 
occur with all metal nanoparticles. In the case of Al2O3 nanoparticles, different 
transformations have been observed (Ghosh et al. 2008). Environmental conditions 
and physicochemical features of nanoparticles dictate how these particles interact 
with the solid phase and hence their transport through soils; in porous media the 
mobility of nanoparticles is governed by Brownian diffusion (Lecoanet et al. 2004). 
However, gravitational forces become relevant as nanoparticles agglomerate and 
aggregate, making these larger particles interact more with the soil particle surfaces. 
There are also interactions such as electrostatic attraction and repulsion between 
nanoparticles and soil, which are controlled by the surface charges of the soil and 
the engineered nanoparticles. When the charge is similar in both systems, repulsion 
and therefore high mobility of nanoparticles are observed (Darlington et al. 2009). 
Repulsive forces are observed to decrease among nanoparticles in soil conditions of 
higher ionic strength, promoting more aggregation and sorption to the solid phase 
of the soil.

In some soil studies reported in the literature, smaller particles have been shown 
to be more mobile and to penetrate and reach groundwater. In the case of larger 
aggregates, more retention has been observed. These particles tend to remain in the 
top layers of soils, resulting in soil clogging, which is another factor to take into 
account in nanoparticle transport and mobility studies in the soil. In previous works 
carried out using copper oxide nanoparticles, it was observed that flow rate influ-
ences the deposition of these particles and also affects their aggregation in porous 
media (Darlington et al. 2009).

In the case of CNTs, the association of these nanomaterials with solid phases is 
one of the most relevant processes affecting the distribution of CNTs between water, 
soil, and sediments. Only one type of soil organic matter has been found to sorb 
acid-treated MWCNTs with sodium concentrations between 4 and 40 mM (Zhang 
et al. 2011). The sodium ions affect the surface charge of the soil organic matter and 
CNTs, facilitating interactions between these two components. Additionally, Zhang 
and coworkers showed that removal of dissolved organic matter–coated MWCNTs 
from the aqueous phase in the presence of peat was not affected by a change in pH 
from 4 to 8 (Zhang et al. 2011). Experimental results from the same work also sug-
gested that in hard water or seawater, MWCNTs are more readily sorbed by sedi-
ments, whereas in aquatic systems with high concentrations of dissolved organic 
matter, MWCNTs tend to stay dispersed in the water.
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4.2  �Fate of Nanoparticles in Water

There are several mechanisms that engineered nanoparticles can undergo once they 
reach natural aquatic systems. Aggregation, dispersion, dissolution, sedimentation, 
photochemical reactions due to sunlight, transformation reactions, degradation by 
living organisms, and interactions with natural colloids and other water elements are 
some of the processes that need to be thoroughly understood to predict the fate, 
bioavailability, and ecotoxicity of engineered nanoparticles in water (Delay and 
Frimmel 2012).

As has been described, nanoparticles are known to repel each other when they are 
in close proximity, because of Brownian motion. This phenomenon is observed when 
their negatively charged surfaces overcome the weak bonding caused by van der 
Waals forces, which are also known as agglomeration attractive forces (Jiang et al. 
2009). However, when nanoparticles are electrostatically functionalized, reduced sta-
bilization can occur because of the counterions present in an aqueous solution.

Dissolution and chemical transformation are also possible processes that 
nanoparticles can undergo under environmental conditions. These processes are ini-
tially triggered by the speciation of the metal nanoparticles, which is facilitated by 
the redox and pH conditions of natural waters. The oxidation, dissolution, and spe-
ciation of zero-valent metal nanoparticles into the corresponding metal ions and the 
solubility of these ions are increased by acidic pH conditions (Levard et al. 2012). 
Once these metal ions are released from the nanoparticle surface, they can also 
undergo chemical transformation on the basis of their reactions with other inorganic 
species in natural waters, within thermodynamic constraints and possibilities.

Oxidation may occur not only for metal nanoparticles. In the case of CNTs, it is 
well known that the chemical oxidation of these CNMs requires strong oxidative 
forces, which are unlikely to occur spontaneously in the environment (Petersen 
et al. 2011). However, photo-oxidation reactions are possible. Several oxygen radi-
cals [reactive oxygen species (ROS)] are produced when carboxylated SWCNT 
solutions are exposed to sunlight or to lamps that emit light within the solar spec-
trum (Chen and Jafvert 2010). These radicals can oxidize CNTs at the same time 
and modify their surfaces. Some oxidants such as ozone (which is commonly used 
in wastewater treatment) may potentially impact CNTs released into the environ-
ment through this pathway.

5  �Incorporation of Nanoparticles into Plants

5.1  �Fate of Nanoparticles in Soil

Most of the research performed on nanoparticles to analyze their distribution and 
behavior in ecosystems has focused on water systems; this is because of the limita-
tions in the availability of methodologies for characterizing and investigating 
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interactions with soil components (organic matter, minerals, microorganisms). 
Experiments to describe the behavior of nanoparticles in soil have been developed 
in soil suspensions (Nowack and Bucheli 2007), not in soil systems.

Among the organic compounds present in the soil, HSs are the most abundant; 
some colloids and clay are present in the soil matrix as well. Partitioning of the 
newly formed composites between the aqueous and solid phases take place, and 
sorption and desorption mechanisms are present; the presence of HSs and organic 
compounds could enhance the interaction of nanoparticles with soils, increasing the 
mobility of metallic nanoparticles, mainly.

The environmental conditions in the soil favor the negative charge of humic 
and fulvic acids, so the nanoparticles are attracted to them and form colloids to 
improve stability and reduce aggregation and sedimentation. This phenomenon 
does not occur with all metal nanoparticles; for instance, nanoparticles of alumi-
num show different transformations (Grillo et al. 2015). Some physicochemical 
features of nanoparticles—i.e., electrostatic repulsion, size, pH, organic matter 
content, ionic strength, solubility, surface charge, flow rate, van der Waals forces, 
and Brownian motion (Tourinho et al. 2012)—dictate their behavior and interac-
tions with the solid phase in the soil, affecting transport and mobilization (Riding 
et al. 2015).

The surface coating of nanoparticles can affect their agglomeration/aggregation 
in soils; this is due to the presence of hydroxyl (–OH) groups, which can accept and 
release protons and can take up dissolved chemical species such as metal ions and 
ligands (Peijnenburg et al. 2015). Surface charging results in the formation of an 
electrical double layer, comprising the charged surface, in response to the charge; 
this potential (zeta potential) can be measured, and its variation is dependent on the 
pH value, tending to a zero value when the pH reaches the isoelectric point (Badawy 
et al. 2010).

The transformation of nanoparticles and nanomaterials is a phenomenon that 
affects the environment—for instance, dissolution, which has been widely studied 
for Ag and Zn nanoparticles (Xiu et  al. 2012)—however, in realistic conditions 
(environmental conditions) this effect is present with simultaneous transformations 
such as deposition and aggregation with organic matter (Thio et al. 2011).

5.2  �Microbial Role of Microorganisms in Plant Nutrition

Soil microbial communities, as a critical component of soil, favor a sustainable 
environment for plants and animals. The soil is a dynamic ecosystem and storage 
system for microorganisms, including bacteria, actinobacteria, cyanobacteria, fungi, 
archaea, microalgae, protozoa, and viruses (Lange et al. 2015). Microbes play an 
essential role in element cycling, affecting the composition and concentration of 
nutrients in the soil (Paul 2014). The carbon, nitrogen, sulfur, and iron cycles are 
driven and mediated by microorganisms in soils (Falkowski et al. 2008). The micro-
organisms generate nutrients such as vitamins, trace elements, and amino acids, 
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which are fundamental for plant growth. The microbial communities coexist in the 
vicinity of plant roots and on the surfaces of the roots (rhizosphere and rhizoplane 
microbial communities) (Dennis et al. 2010).

5.3  �Effects of Nanoparticles on Soil Microbial Communities

The benefits of nanoparticles and nanomaterials in medicine, biotechnology, agri-
culture, etc., are well known; however, it is necessary to understand the environ-
mental implications of nanoparticles for components of it, such as soil microbial 
communities. Shah and Belozerova (2009) reported the importance of the soil 
microbial communities for ecosystem sustainability and its relationship with micro-
bial diversity and soil and plant quality. Diverse studies (Ge et al. 2011; He et al. 
2011; Frenk et al. 2013) have been performed to describe the interaction of nanoma-
terials and microbial diversity by using methods based on molecular analysis, such 
as fluorescent in situ hybridization (FISH), denaturing gradient gel electrophoresis 
(DGGE), and next-generation sequencing (NGS). The beneficial and adverse effects 
of nanomaterials on microbial communities have been analyzed, especially those 
focused on the use on metal and metal oxide nanoparticles (Du et al. 2011), fuller-
enes and carbon nanotubes (Tong et al. 2007), and nZVI (Fajardo et al. 2012).

Soil microbial communities, known as plant growth–promoting rhizobacteria 
(PGPR), mediate nitrogen fixation and the exoenzymatic activity of microbial com-
munities (Bhattacharyya and Jha 2012). Karunakaran et al. (2013) performed stud-
ies that demonstrated adverse effects of Al2O3, TiO2, and SiO2 nanoparticles on 
Bacillus subtilis and Pseudomonas fluorescens, and also the toxic effects of nano-
silica and bulk silica and alumina particles on PGPR members. Since the relation-
ships between microbial communities and plants are apparently known, it is a 
priority to elucidate the effects of these nanomaterials on soil microorganisms and 
their effects on plant nutrition.

6  �Behavior of Nanoparticles in Hydroponic Conditions

This cultivation method is suitable for semiaquatic plants and terrestrial plants, with 
the root system being immersed in a water nutrient solution or an inert medium. 
Because it allows better control of biotic and abiotic factors, hydroponics allows us 
to understand the nutritional status of plants and their growth; also, in this system, 
control of pH, microorganisms, and microbial enzymatic machinery are easily mon-
itored (Schwabe et al. 2013). Many studies have been performed to describe the 
effects of nanoparticle solutions on seed germination (Lin and Xing 2007; 
Stampoulis et al. 2009; El-Temsah and Joner 2012), biomass growth (i.e., root elon-
gation), root morphology, and cell morphology (Juhel et al. 2011; Yin et al. 2012; 
Wang et al. 2012). The same nanoparticle characteristics (physical and chemical) 
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are essential for interactions with plants and mobilization in plant tissue in both 
hydroponic and soil media.

7  �Uptake of Nanoparticles into Plants: Root Uptake

Uptake of nanoparticles by plant roots occurs via two routes: the apoplastic and 
symplastic routes. Plant cell walls are a complex matrix where pores permit passage 
into the plant cell (Deng et al. 2014). In uptake via the apoplastic route, nanoparti-
cles that pass through these pores are diffused between the cell walls and the plasma 
membrane, and are subjected to osmotic pressure (Navarro et  al. 2008). These 
nanoparticles can reach the endodermis. The symplastic pathway allows entrance of 
nanoparticles through the inner side of the plasma membrane; this route is more 
important than the apoplastic route. The processes involved in the passage of 
nanoparticles through the plant are represented in Fig. 5.1. Nanoparticles can use 
the carrier proteins in cells through aquaporin proteins, which regulate water pas-
sage in cells, ion channels, and endocytosis (Qian et al. 2013).

The interactions of nanomaterials with cells and with the environment occur 
mostly through van der Waals, electrostatic, and steric forces. The nanoparticles and 
endosome or protein complexes can translocate to another cell through plasmodes-
mata (measuring approximately 50 nm) (Zhai et al. 2014). Not all nanoparticles can 
enter plant cells, and reports have confirmed the passage through the plant cell of 

Fig. 5.1  Mechanisms involved in nanoparticle transport through a plant. After plant exposure to 
nanoparticles, these nanostructures pass vegetal barriers; some specific mechanisms are triggered, 
and some critical effects can be observed
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ZnO nanoparticles (Lin and Xing 2008) and TiO2 (Du et al. 2011); however, the 
question remains as to why other nanoparticles do not present the same behavior.

7.1  �Uptake of Nanoparticles into Plants: Foliar Uptake

Depending on the exposure route, foliar entrance of nanoparticles also occurs in 
some cases and under specific conditions; the reported mechanism occurs via the 
stomatal pores (Hong et al. 2014). In recent years, some studies have reported foliar 
incorporation of metallic nanoparticles (i.e., CeO2, TiO2, Fe2O3, Mg and Zn oxides, 
and Ag) (Chichiriccò and Poma 2015); foliar uptake of nanoparticles has been dem-
onstrated in Vicia faba L., Lactuca sativa L., and Cucumis sativus L. Since foliar 
internalization of nanomaterials in edible plants is possible and this may affect the 
food chain, more research in this area is necessary.

8  �Physiological and Morphological Responses of Plants 
to Nanomaterials

Considering the global conditions related to the urgent need to feed the growing world 
population, in this century it has become imperative to increase crop production in a 
sustainable manner while protecting the environment, especially in developing coun-
tries (Pikaar et al. 2017; Srivastava et al. 2016; Tomberlin et al. 2015). To meet this 
increasing demand, researchers are trying to develop efficient and eco-friendly pro-
duction technology based on innovative and emerging techniques to increase seed 
germination, seedling vigor, plant growth, and yield, through sustainable physical 
seed and plants treatments (Snapp and Pound 2017). Validation of emerging technolo-
gies such as nanotechnology (NT), for helping to improve food productivity without 
any adverse impact on the ecosystem, has been also one of the most important issues 
in the experimentation field under laboratory and field conditions (Baker et al. 2017). 
From this perspective, development of controlled delivery systems for slow and sus-
tained release of agrochemicals based on nanotechnology is essential for modern and 
sustainable agriculture (Quiñones et al. 2017; Volova et al. 2016).

In recent decades, nanomaterials in the form of nanoparticles have been synthe-
sized and studied for incorporation into many industrial, medical, and agricultural 
applications (Prasad et al. 2017). Because their physical and chemical properties 
differ from those of bulk materials, research is focused on understanding their inter-
actions with their surroundings and ecosystems, as well on the physiological, mor-
phological, and biochemical responses of crop plants (Du et al. 2017). Many recent 
studies have shown the potential of nanoparticles in improving seed germination 
and growth, plant protection, pathogen detection, and pesticide/herbicide residue 
detection (Anderson et al. 2017; Saharan and Pal 2016).
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Plants respond differently, depending on the specific nanoparticles applied, the 
growth conditions, the exposure dose and time, and the target plant (Cox et  al. 
2016), as well as the physiological and biochemical functions the nanoparticles 
perform in the plant, and also depending on whether they act as an essential micro-
nutrient, such as copper, zinc, or iron (Wang et  al. 2015). It is well known that 
optimal crop production requires recommended doses of nutrients, which are pre-
sumably in agreement with the physiological needs of the crop or the soil nutrient 
levels (Dimkpa et al. 2017). In addition to the concepts appeared with the green 
revolution, there are many ways to increase the productivity of crops, one of which 
is use of biological or natural agrochemicals in the necessary quantity at the time 
when they are necessary or during the appropriate phenological stage (Shiva 2016).

Nanotechnology can be employed as a tool to modify nanoparticles in fertilizer 
formulations to increase their uptake in plant cells in such a way that nutrient loss is 
minimized, and to increase the crop use efficiency of fertilizer micronutrients 
(Monreal et  al. 2016). According to research results, nanomaterials can improve 
crop productivity by increasing the seed germination rate, seedling growth and 
vigor, plant photosynthetic activity, nitrogen metabolism, carbohydrate synthesis, 
and protein synthesis. In this section we review the current literature on the use of 
nanoscale essential micronutrients such as metals (Cu, Fe, Mn, Zn, etc.), metal 
oxides (CeO2, Fe2O3, TiO2, ZnO, etc.), and CNMs to suppress crop disease and 
subsequently enhance germination, vigor, plant growth, and yield (Servin et  al. 
2015).

9  �Carbon Nanomaterials

Several research groups have evaluated the positive effects of carbon nanomaterials 
(CNMs) and their derivatives—SWCNTs and MWCNTs—in plant growth and 
development. The most common effects of CNMs are summarized in Table 5.1. 
Jakubus et al. (2017) pointed out that carbon nanotubes (CNTs) are currently one of 
the most promising groups of materials for agriculture and industrial applications 
because of their interesting properties such as lightness, rigidity, high surface area, 
high mechanical strength in tension, good thermal conductivity, and resistance to 
mechanical damage. Some earlier reports by Khodakovskaya et al. (2012) demon-
strated that introduction of CNTs into the soil mix through watering could affect the 
phenotype of tomato plants. They also showed that Solanaceae plants grown in soil 
supplemented with CNTs produced the same number of leaves but twice as many 
flowers and fruit as plants grown in nontreated soil. This work provided new per-
spectives on technological applications for the introduction of CNTs as growth 
regulators in modern agricultural practice.

It has also been reported that CNMs have the capacity to increase leaf and root 
growth, as well as seedling development of crop plants (Zhang et al. 2017; Cañas 
et al. 2008). Similarly, it has been revealed that MWCNTs can activate the growth 
of tomato plants by affecting the expression of genes that are essential for cell divi-
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sion and plant development (Villagarcia et al. 2012; Khodakovskaya et al. 2011). 
Current research has shown that the positive effects induced by MWCTs in plant 
development are associated with changes in lipid composition, stiffness and perme-
ability of plasma membranes in roots, and increases in gibberellin content (Zhang 
et al. 2017; Martínez-Ballesta et al. 2016).

It has been reported that MWCNTs can increase the number of nodules and 
nitrogen activity at the roots of the rhizobium–legume association (Yuan et  al. 
2017). In a similar way, Liu et al. (2009) confirmed that SWCNTs are of a suitable 
size to penetrate cell walls and membranes of tobacco cells; this ability of nanopar-
ticles to penetrate plant cells has generated considerable interest because, like aqua-
porins, CNTs can help transport water and nutrients within plants (Joseph and Aluru 
2008). Khodakovskaya et  al. (2011) demonstrated that Lycopersicon esculentum 
Mill. plants stressed by MWCTs showed upregulation of aquaporins. A separate 
study involving tobacco in cell culture found that MWCNTs enhanced tobacco cell 
growth at a low concentration (5 μg mL−1) but were toxic at higher concentrations 
(Khodakovskaya et al. 2012). Consequently, the enhanced plant growth reported so 
far has been linked to increased water penetration in seeds and increased activity of 
crucial water channel proteins in developing seedlings. The similarity of these 
results across studies and research groups does suggest that MWCNT-stimulated 
growth may occur across some crop species (Servin et al. 2015).

Information from several sources (Vithanage et al. 2017; Zhang et al. 2017; De 
La Torre-Roche et al. 2013; Lin and Xing 2007) is presented in Table 5.1. Here we 
point out that CNMs induce many morphological effects on several horticultural 
and grain plants such as zucchini (Cucurbita pepo L.), garlic bulb (Allium sativum 
L.); tomato (Solanum lycopersicum L.), lettuce (Lactuca sativa L.), cucumber 
(Cucumis sativus L.), rape radish (Raphanus sativus L.), oilseed rape (Brassica 
napus L.), ryegrass (Lolium perenne L.), corn (Zea mays L.), rice (Oryza sativa L.) 
soybean [Glycine max (L.) Merr], and wheat (Triticum aestivum L.).

It is well known that stimulation of plant growth by CNMs is dependent on the 
morphology of the material, with a better biological performance structure with 
small diameters (Tripathi et  al. 2016). Although CNMs can be considered plant 
growth promoters, this occurs only at a low concentration, because these materials 
become toxic with increased concentrations and time of exposure (Vithanage et al. 
2017). The concentration of CNMs has to be optimized to obtain the best germina-
tion performance of various crop seeds (Vithanage et  al. 2017; Haghighi and da 
Silva 2014; Rao and Srivastava 2014).

The extent and mechanisms by which terrestrial plant species accumulate 
MWCNTs is currently unknown (Zhao et al. 2017). However, it is well known that 
CNMs can penetrate the plant cell wall, in addition to the cell membrane, by creating 
more pores, thus allowing greater water uptake into the seeds (Khodakovskaya et al. 
2009). Development of CNTs as nanotransporters for intact plant cells is of practical 
and fundamental importance for plant intracellular labeling and imaging, for genetic 
transformation, and for advancing our knowledge of plant cell biology and crop 
production (Liu et al. 2009). Servin et al. (2015) have pointed out that although some 
published work on carbon-based nanoparticles appears promising regarding 
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enhanced growth and pathogen suppression, the mechanisms of the interaction 
between plants and microbes with different CNMs is not well understood, and the 
reported instances of phytotoxicity demonstrate the need for caution.

10  �Metallic Engineered Nanomaterials

Recent investigations have shown that carbon-based nanomaterials and metal-based 
engineered nanomaterials (ENMs), which are used as components of consumer 
goods and agricultural products, have the potential to build up in sediments and 
biosolid-amended agricultural soils. Moreover, reports indicate that both carbon-
based and metal-based nanomaterials affect plants differently at the physiological, 
biochemical, nutritional, and genetic levels (Zuverza-Mena et al. 2017). The toxic-
ity threshold for each nanoparticle formulation is species dependent, and responses 
to ENMs are driven by a series of factors including the characteristics of the nano-
material and the environmental conditions. The dynamics of interactions between 
plants and ENMs are not yet completely understood, and our ability to forecast the 
effects of ENM formulations in different soils and on diverse crop plants awaits the 
acquisition of information bases coordinating multiple physical, chemical, and bio-
logical factors (Anderson et al. 2017).

In recent times, abundant research has demonstrated that metallic nanoparticles 
have a dual effect, since they can both stimulate and inhibit seed germination and 
plant development. Nanoparticles containing essential metals such as Fe, Mg, Zn, 
Cu, and Mn are proposed to be used as fertilizers at low doses and as pesticides at 
higher doses (Liu and Lal 2015; Servin et al. 2015) because these metals are vital 
for cellular function but toxic above certain thresholds (Marschner 2011; Welch and 
Shuman 1995).

ENMs such as Fe, Zn, Cu, and their oxides are the focus of this section because 
these metals are essential micronutrients in crop plants (Jeyasubramanian et  al. 
2016) and are nontoxic in a wide concentration range; at the same time, they can be 
used as antagonists of bacteria and fungi, with huge potential for use in pesticide 
formulations (Le Van et al. 2016; Giannousi et al. 2013). Metallic ENMs such as 
Au, Ag, Cu, Cr, Fe, and Zn have demonstrated their potential to be used as antimi-
crobial/pesticidal agents for plant protection; however, precautions should be taken 
to avoid higher concentrations not only in plant systems but also for the sake of 
other constituents in society, the environment, and the economy (Tolaymat et al. 
2017).

Therefore, further research is necessary to explore the stimulatory and inhibitory 
effects of engineered metallic nanoparticles in soil media to broaden the horizon of 
sustainable agricultural production of higher and safer yields to meet the food 
requirements of the human population (Auvinen et al. 2017). Additionally, as ENMs 
of CuO, ZnO, TiO2, and Ag are increasingly used in consumer products, they will 
most probably enter the natural environment via wastewater, atmospheric deposi-
tion, and other routes (Markus et  al. 2016); consequently, it is predictable that 
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nanoparticles are capable of being transported over long distances, in much the 
same way as suspended particulate matter. For that reason, it is critical to keep in 
mind that the life cycle of ENMs should be well studied, and large-scale synthesis 
of them must be executed with consideration of their fate in ecosystems, since in the 
quest for innovation and advancement of science, environmental problems are 
becoming more severe and uncontrolled (Khan et al. 2016).

11  �Zinc-Based Nanoparticles

Zinc oxide (ZnO) nanoparticles in agricultural production are studied for their anti-
microbial activity (Sabir et  al. 2014; Fang et  al. 2013) and for their potential as 
nanofertilizers, improving zinc deficiencies and promoting seed germination and 
plant growth (Dimkpa et al. 2015; Raskar and Laware 2014; Naderi and Danesh-
Shahraki 2013). Recent studies have pointed out that high concentrations 
(1000 mg L−1) of ZnO nanoparticles stimulate phytotoxicity and inhibit germination 
(Rizwan et al. 2017; Zhang et al. 2015; Ko and Kong 2014). Although low doses 
(<50 mg L−1) have shown significant positive effects on plant growth and develop-
ment (Jyothi and Hebsur 2017; Zuverza-Mena et al. 2017; Prasad et al. 2012), usu-
ally the effect on crop plants implies greater dry biomass and a greater total leaf 
area. These helpful effects have been attributed to zinc because this metal is an 
essential micronutrient needed for cell division and is very important as a compo-
nent of several enzymes (Pandey et al. 2010); moreover, it is involved in the synthe-
sis of proteins, carbohydrates, lipids, and nucleic acids in plants (Tarafdar et  al. 
2014). Likewise, Priester et  al. (2012) observed high Zn accumulation 
(344.07  mg  kg−1) in soybean leaves after 50  days of exposure to ZnO 
nanoparticles.

Some reports have shown that ZnO nanoparticles promote seed germination and 
seedling vigor (Siddiqui et al. 2015; Ko and Kong 2014). Analogous results reported 
by Adhikari et al. (2016a) indicated that germination percentages were improved in 
coated seeds of Z. mays L., G. max L., Cajanus cajan L., Druce, and Abelmoschus 
esculentus Moench treated with ZnO nanoparticles. Foliar application of ZnO 
nanoparticles doped with silver at 1.25% and 2.5% increased plant growth and dry 
biomass production of Capsicum annuum L. (Méndez-Argüello et  al. 2016). 
Recently Raliya et al. (2015) studied the effects of biosynthesized ZnO nanoparti-
cles on mung bean plants. They found that Zn acts as a cofactor for P-solubilizing 
enzymes such as phosphatase and phytase, and nano-ZnO increased their activity. 
Biosynthesized ZnO also improved plant phenology such as the stem height and 
root volume, and biochemical indicators such as the leaf protein content and chlo-
rophyll content. Similarly, Tarafdar et  al. (2014) reported that pearl millet 
(Pennisetum americanum L.) exposed to ZnO nanoparticles showed significant 
enhancements in shoot and root length, chlorophyll content, plant dry biomass, and 
enzyme activity involved with the assimilation of phosphorus.
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Zhao et al. (2013) amended soil with either CeO2 or ZnO nanoparticles at con-
centrations of 0, 400, or 800 mg kg−1. The results showed that at the concentrations 
tested, neither CeO2 nor ZnO nanoparticles impacted cucumber plant growth, gas 
exchange, or chlorophyll content. However, at a concentration of 800  mg  kg−1, 
CeO2 nanoparticles reduced the yield. In soil amended with either ZnO nanoparti-
cles or Zn2+, cowpea [Vigna unguiculata (L.) Walp.] plants showed no differences in 
growth, accumulation, or speciation between the ion treatment and the ZnO 
nanoparticle treatment (Wang et  al. 2013). The authors explained that these out-
comes emphasized the importance of the growth matrix when studying nanoparti-
cle–plant interactions. ZnO nanoparticles are considered an emerging contaminant 
when applied at high concentrations, and their effects on crops and soil microorgan-
isms present new concerns and challenges. It has been stated by Wang et al. (2016) 
that beneficial microorganisms such as fungi (which form mutualistic symbioses 
with most vascular plants) and arbuscular mycorrhizae may contribute to alleviation 
of adverse effects of ZnO nanoparticles and zinc accumulation in maize. Soil pH 
plays a vital role in the solubility and availability of plant nutrients. For instance, 
Watson et al. (2015) grew wheat (T. aestivum L.) in acidic and alkaline soils that had 
been amended with ZnO nanoparticles; the authors reported 200-fold higher soluble 
Zn content in the acidic soil and a ten-fold higher concentration in wheat shoots, in 
comparison with the alkaline soil. However, plants grown in the ZnO nanoparticle 
(500 mg kg−1)–amended alkaline soil had increased lateral root production, whereas 
wheat grown in the acidic soil had decreased root growth. Independently of the 
exposure route, nanoparticles can trigger positive and negative responses in exposed 
plants, which are grouped into physiological and biochemical responses; these are 
schematized in Fig. 5.2.

Though treatments with relatively low ZnO nanoparticle concentrations (10 and 
20 μg mL−1) have been reported to improve germination of onion seeds and enhance 
root and shoot lengths, application of higher concentrations of ZnO nanoparticles 
had detrimental effects on these characteristics (Raskar and Laware 2014). However, 
Prasad et  al. (2012) reported that application of a ZnO nanoparticle dose of 
1000 mg L−1 to peanut plants (Arachis hypogaea L.) increased seed germination and 
root and stem length; moreover, the plants exhibited early flowering and a higher 
chlorophyll content—effects similar to those of plant growth regulators or chemical 
messengers for intercellular communication.

The effects of ZnO nanoparticles on plant growth could be related to the activity 
of zinc as a precursor in the production of growth-regulating auxins such as indole-
3-acetic acid (IAA), which also promotes cell elongation and division (Shyla and 
Natarajan 2014; Rehman et al. 2012). In addition, it has been reported that zinc is 
an essential nutrient and a very important component of several enzymes responsi-
ble for many metabolic reactions (Shyla and Natarajan 2014). It also plays an essen-
tial role in the production of chlorophyll, seed germination, pollen production, and 
biomass production (Pandey et al. 2010).
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12  �Iron-Based Nanoparticles

Iron (Fe) is an essential micronutrient, which is highly unavailable for plants in 
calcareous soils, such as in those in most areas of the north of Mexico and in other 
countries. Iron is an essential element for both plant and animal nutrition; it is 
required for critical cell functions such as respiration, photosynthesis, DNA synthe-
sis, nitrogen fixation, and hormone production (Jalali et al. 2017). Regardless of its 
absolute requirement, Fe reacts in cells with oxygen and generates noxious ROS, 
which have deleterious effects on plant growth and development (Thomine and Vert 
2013). Regardless of the abundant presence of iron on our planet and in agricultural 
soils, the low solubility of Fe compounds in many calcareous soils prevents plant 
iron uptake and induces the development of Fe deficiency symptoms (Lucena and 
Hernandez-Apaolaza 2017).

Agricultural plant iron deficiency has economic significance, as crop quality and 
yields can be severely compromised; therefore, the use of expensive corrective 

Fig. 5.2  Positive and negative responses in plants after exposure to zinc oxide nanoparticles. 
Plants can show physiological and biochemical responses observed in the flowering time, yield, 
expression of genes involved in the biosynthesis of chlorophyll, etc. The interpretation of these 
responses is crucial for decisions regarding field trials
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methods such as application of iron chelates is often required (Fernández and Ebert 
2005). Lately, uses of Fe in the form of magnetic nanoparticles (Fe-NP) for agro-
nomic purposes have been experimentally explored (Corredor et  al. 2010). Iron 
oxide (Fe2O3) nanoparticles have emerged as an innovative and promising method 
of Fe application in agricultural systems. However, the possible toxicity of Fe2O3 
nanoparticles and their uptake and translocation require further study prior to large-
scale field application (Li et al. 2016).

Iron oxides exhibit great potential in fields of life science such as biomedicine, 
agriculture, and environmental science. Fe nanoparticles are considered to be bio-
logically and chemically inert (Ren et al. 2011) and are useful for imaging and sepa-
ration techniques because of their magnetic properties and environmental 
remediation. In plants, Fe participates in chlorophyll biosynthesis, respiration, 
redox reactions, and biosynthesis of phytohormones. However, Fe deficiency is a 
widespread agronomic issue caused by poor Fe solubility in the vast majority of 
soils and consequential insufficient Fe availability to plants (Lucena and Hernandez-
Apaolaza 2017). A report by Hao et  al. (2016) regarding the effects of different 
nanoparticles on seed germination and seedling growth pointed out that Fe2O3 nano-
cubes, Fe2O3 short nanorods, and Fe2O3 long nanorods all significantly promoted 
root length and stimulated shoot growth at most concentrations but had no apparent 
effect on the fresh weight of rice (O. sativa L.) plants.

Askary et al. (2017) investigated the impact of iron oxide nanoparticles—applied 
at 0, 10, 20, or 30 μM concentrations—on physiological parameters of peppermint 
(Mentha piperita L.) under salt stress. Fe2O3 nanoparticles caused increases in fresh 
leaf weight and dry weight, and in P, K, Fe, Zn, and Ca content of the peppermint 
under salinity stress, but did not affect sodium content. Lipid peroxidation and the 
proline content of the peppermint under salinity decreased significantly with appli-
cation of Fe2O3 nanoparticles. Maximum activities of the antioxidant enzymes cata-
lase (CAT), superoxide dismutase (SOD), and guaiacol peroxidase (GPOD) were 
observed in plants treated with 150 mM of NaCl, but application of Fe2O3 nanopar-
ticles decreased these antioxidant activities. The results suggested that application 
of an appropriate concentration of Fe2O3 nanoparticles could be used to increase the 
stress resistance of peppermint.

Furthermore, Shankramma et al. (2016) investigated the effect of Fe2O3 nanopar-
ticles on Solanum lycopersicum plants. Exposure of tomato seeds to iron nanopar-
ticles increased the shoot and root length, and it was noted that the nanoparticles 
were deposited preferentially in root hairs and in root tips, followed by the nodal 
and middle zones of the plant. Likewise, Iannone et al. (2016) reported that Fe3O4 
nanoparticles had positive effects on growth of wheat (T. aestivum L.). When Rui 
et al. (2016) applied Fe2O3 nanoparticles to A. hypogaea L. as a fertilizer, the plants 
showed increases in the root length, plant height, biomass, and chlorophyll index 
[Soil Plant Analysis Development (SPAD) value], which were due to regulation of 
phytohormone content and antioxidant enzyme activity. Increased chlorophyll lev-
els have also been reported in soybean seedlings treated with Fe3O4 nanoparticles; 
translocation into soybean stems was reported by Ghafariyan et  al. (2013). 
Analogous results were achieved by Zhu et al. (2008), who reported that Curcubita 
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maxima exposed to magnetite (Fe3O4) nanoparticles showed translocation and 
accumulation of the nanoparticles in plant tissues. Crop species such as barley 
(Hordeum vulgare L.) and flax (Linum usitatissimum L.) were evaluated for toxicity 
of nZVI, using seed germination tests. The nanoparticles did not affect germination, 
but shoot growth was more sensitive. Complete inhibition of germination was 
observed at 1000–2000 mg L−1 of this kind of nanoparticle (El-Temsah and Joner 
2012).

13  �Copper-Based Nanoparticles

Copper (Cu) is an essential micronutrient for plants, which acts as a structural ele-
ment in regulatory proteins and participates in photosynthetic electron transport, 
mitochondrial respiration, oxidative stress responses, cell wall metabolism, and hor-
mone signaling (Marschner 2011). Nevertheless, when Cu is either deficient or 
present in excess, it can cause disorders in plant growth and development by 
adversely affecting crucial physiological processes in plants, with negative impacts 
on crop growth and quality (Yruela 2009). The behavior of Cu nanoparticles in 
plants is similar to that of other nanomaterials, with their effects being dependent on 
the exposure time, nanoparticle characteristics, and plant species. Application of 
CuO nanoparticles to wheat grown in sand caused morphological changes such as 
root hair proliferation and shortening of the zones of division and elongation; these 
changes were associated with accumulation of nitric oxide (NO), which promoted 
root hair proliferation (Adams et al. 2017). However, there have also been reports of 
inhibitory effects of CuO nanoparticles. Le Van et  al. (2016) found that CuO 
nanoparticle concentrations greater than 10 mg L−1 inhibited the growth and devel-
opment of cotton in terms of its height, root length, root number, and biomass pro-
duction. Also, concentrations of the hormones IAA and abscisic acid (ABA) were 
affected. Moreover, the treatments reduced the uptake of nutrients such as B, Mo, 
Mn, Mg, Zn, and Fe, and inhibited the transport of Na and Mn in cotton plants. Da 
Costa and Sharma (2016) reported that exposure of O. sativa, var. Jyoti to CuO 
nanoparticles decreased its germination rate, root and shoot length, and biomass.

Perreault et al. (2014) observed that inhibition of the photosynthetic activity of 
duckweed exposed to CuO nanoparticles was due to release of Cu2+ ions from the 
nanoparticles. A study performed in Phaseolus radiatus L. and T. aestivum L. 
revealed a differential effect between species, with P. radiatus L. being more sensi-
tive; this outcome also suggested that Cu nanoparticles can cross the cell membrane, 
because Cu aggregates in root cell vacuoles of both species (Lee et  al. 2008). 
Although the mechanism through which CuO nanoparticles get into the plant vas-
cular system is still not well understood, they can be assimilated by plants and 
enhance their growth by regulating different enzyme activities.

Recently, exposure to Cu-based nanoparticles was shown to increase P and S in 
Medicago sativa L. shoots while reducing Fe and P in shoots of other crops such as 
L. sativa and Coriandrum sativum L. (Hong et al. 2015; Zuverza-Mena et al. 2015). 
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Application of Cu nanoparticles in chitosan–PVA hydrogels affected the growth, 
development, and quality of S. lycopersicum L. and C. annuum L. plants (Pinedo-
Guerrero et al. 2017; Juarez-Maldonado et al. 2016). Similarly, it was reported by 
Adhikari et al. (2016b) that CuO nanoparticles applied through a solution culture, 
as well as a spray, enhanced the growth of Z. mays. The nanoparticles could get into 
the plant cells and improve growth by activation of enzymes from the pentose phos-
phate pathway and enzymes involved in oxidative stress. Peng et  al. (2015) also 
demonstrated that CuO nanoparticles could enter the xylem through lateral roots in 
O. sativa and translocate to the leaves; moreover, these nanoparticles were trans-
formed and reduced in the rice plant. Previously, Wang et al. (2012) had reported the 
same behavior in Z. mays L. plants, where CuO nanoparticles were translocated 
from the roots to the shoots via the xylem and retranslocated from the shoots to the 
roots via the phloem; during this translocation, Cu could be reduced from Cu (II) to 
Cu (I). Using a split-root exposure system, Ma et al. (2017) illustrated uptake and 
translocation of manufactured nanoparticles by the xylem and phloem in hydro-
ponic cucumber plants; this was the first report of root-to-shoot-to-root redistribu-
tion after transformation of metallic nanoparticles in plants.

14  �Reactive Oxygen Species and Biochemical Responses

Reactive oxygen species (ROS) are produced in plants as by-products of aerobic 
metabolism, and ROS levels increase during abiotic or biotic stress conditions. 
Plants generate ROS as signaling molecules to control various processes, including 
pathogen defense, programmed cell death, and stomatal behavior (Apel and Hirt 
2004). Nanomaterials can produce ROS in plants; the amounts of ROS formed by 
nanoparticles correlate with the particle size, shape, surface area, and chemistry. 
ROS possess multiple functions in cellular biology. ROS are a crucial factor in 
nanomaterial-induced toxicity, as well as in modulation of cellular signaling 
involved in cell death, proliferation, and differentiation (Abdal Dayem et al. 2017).

The recent literature indicates that nanomaterials cause oxidative stress in treated 
plants through increased lipid peroxidation, oxidized glutathione (GSSG), and anti-
oxidant enzyme activities, or through decreased chlorophyll content and photosyn-
thesis (Da Costa and Sharma 2016; Wang et al. 2016). Metallic nanoparticles from 
heavy metals such as Cu and Zn are essential for healthy plant growth, although 
elevated concentrations of both essential metals can result in growth inhibition and 
toxicity symptoms (Ruttkay-Nedecky et  al. 2017). According to Hossain et  al. 
(2012), metals can induce an increase in GSSG, so plants have decreased levels of 
reduced glutathione (GSH), with GSH being a vital antioxidant in plant defense 
against ROS (Apel and Hirt 2004). As a result, plants activate enzymatic antioxidant 
defense [peroxidase (POD), CAT, ascorbate peroxidase (APX), SOD] and nonenzy-
matic antioxidant defense (glutathione, ascorbic acid, phenolic compounds, vitamin 
A, vitamin E, etc.) to scavenge excess ROS and maintain general homeostasis 
(Marslin et  al. 2017). Disruption of ROS homeostasis impairs plant growth and 
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development, whereas maintenance of ROS levels within appropriate parameters 
stimulates plant health (Mittler 2017). It is generally expected that alterations in 
enzyme activities in exposed plants are responses to modulations in ROS concentra-
tions. The role of nanoparticle chemical attributes in the modulation of the antioxi-
dant defense system in plants is still unclear. As can be observed in Fig. 5.3, when 
nanoparticles come into contact with plant cells, a continuous response is observed 
after the first effect of the nanomaterials on the living organism (cell damage) 
occurs; the end point of this event is observed at a macroscopic level.

15  �Nanoparticle Impacts on Crop Yields

The early information regarding the effects of nanoparticles on plant growth and 
yield suggests a significant potential of metallic nanoparticles to act as nanofertil-
izers or nanoinsecticides, with either foliar or root application, to suppress disease 
and increase crop yields. Future research should be targeted at uncovering the pre-
cise nature of these enhancements, including efforts to optimize treatment success 
and maximize yields (Servin et al. 2015).

To analyze the impact of cerium oxide nanoparticles on wheat (T. aestivum L.), 
Rico et al. (2014) cultivated grain in soil amended with 0, 125, 250, or 500 mg kg−1 
of nCeO2. The results showed that relative to the control, nCeO2-H improved plant 
growth, shoot biomass, and grain yield by 9.0%, 12.7%, and 36.6%, respectively. 
Ce accumulation in roots increased with increased nCeO2 concentrations, but did 
not differ across treatments in leaves, hulls, and grains, indicating a lack of Ce trans-
port to the aboveground tissues. The findings suggest the potential of cerium oxide 
nanoparticles to modify crop physiology and food quality, with unknown conse-
quences for living organisms.

Fig. 5.3  Effects of nanoparticles on plant cells. Most of the mechanisms involved in the responses 
to nanoparticle exposure are related to oxidative stress. ROS reactive oxygen species
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Reviewing the effects of nanofertilizers on the growth and yield of selected cere-
als, Jyothi and Hebsur (2017) reported that nanofertilizer application increased the 
plant height, chlorophyll content, and numbers of reproductive tillers, panicles, and 
spikelets in rice; the magnitudes of these increases in comparison with the control 
were 3.6%, 2.72%, 9.10%, 9.10%, and 15.42%, respectively. Exposure to Zn 
nanoparticles (at 0, 25, 50, 75, 100, or 150 mg L−1) caused significant changes in 
root and shoot lengths, and in biomass. ZnO nanoparticles increased the shoot dry 
matter and leaf area indexes by 63.8% and 69.7%, respectively. The effects of TiO2 
nanoparticles were significant in terms of the numbers of corns cobs on the plant, 
dry maize weight, and corn yield. Application of silver nanoparticles at a concentra-
tion of 25 parts per million (ppm) resulted in significant improvements in the maxi-
mum leaf area and grain yield, while a 75  mg  L−1 concentration resulted in a 
decrease in the grain yield in wheat.

Yasmeen et al. (2017) studied the proteomic and physiological changes of wheat 
seeds exposed to Cu and Fe nanoparticles. The outcomes indicated that the spike 
length, number of grains per spike, and 1000-grain weight were increased in wheat 
varieties treated with 25 mg L−1 of Cu and Fe nanoparticles; these improvements 
implied an increase in grain yield. The exposure to Cu nanoparticles increased pro-
teins involved in starch degradation and glycolysis. The authors suggested that Cu 
nanoparticles improved stress tolerance in wheat varieties by mediating starch deg-
radation, glycolysis, and the tricarboxylic acid cycle through nanoparticle uptake.

Experiments were carried out by Arora et al. (2012) to determine the effect of 
gold nanoparticles (Au-NP) on the growth profile and yield of Brassica juncea (L.) 
Coss. under field conditions. Five different concentrations (0, 10, 25, 50, and 
100 mg L−1) of Au nanoparticles were applied through a foliar spray. Various growth 
and yield-related parameters—including the plant height, stem diameter, number of 
branches, number of pods, and seed yield—were positively affected by the nanopar-
ticle treatments. An optimal increase in seed yield was recorded with an Au nanopar-
ticle treatment of 10 mg L−1. These results, for the first time, demonstrated successful 
use of Au nanoparticles in enhancing the growth and yield of B. juncea (L.) Coss. 
under actual field conditions and presented a viable alternative to genetic modifica-
tion of crops to ensure food security.

Findings by Bradfield et al. (2017)—who studied sweet potato (Ipomoea batatas 
var. Georgia Jet) subjected to treatments of ZnO, CuO, and CeO2 nanoparticles—
demonstrated that adverse effects on yield were observed only at higher exposure 
concentrations (1000 mg kg−1 of dry weight). The effects of ZnO nanoparticles on 
growth, productivity, and zinc biofortification in maize were studied by Subbaiah 
et al. (2016). The highest germination percentage and seedling vigor index were 
observed with 1500 mg L−1 of ZnO nanoparticles. The yield was 42% greater than 
that of the control plants and 15% greater than that observed with 2000 mg L−1 of 
ZnSO4. These results indicated that ZnO nanoparticles have significant effects on 
the growth, yield, and zinc content of maize grains, which is an important feature 
for human health.
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16  �Pros and Cons of Nanoparticles in Agriculture and Food 
Supply

There is not doubt that nanotechnology offers some benefits to modern agriculture 
around the world. The relative attractiveness of this novel technology depends on 
many circumstances, but it is clear that it could be beneficial to promote sustainable 
agricultural practices and to help make food production more efficient, because use 
of nanoparticles is predicted to allow less use of agrochemicals such as pesticides 
(fungicides, bactericides, insecticides, herbicides), antibiotics, and veterinary medi-
cines; this implies less harm to ecosystems by lessening environmental pollution 
and diminishing chemical runoff, as well as resulting in less carry-over of harmful 
chemical residues in food. Since nanoparticles can promote longer shelf life of fresh 
and packed food products, it is possible for their use to contribute to a reduction in 
food waste and a more dependable food supply.

Also, application of nanotechnology to crop plants has the capacity to allow 
controlled release of agrochemicals and site-targeted delivery of several compounds 
required to improve plant growth and yield, with enhanced plant disease resistance 
and efficient macro- and micronutrient delivery to, and utilization by, crop plants. 
Nanotechnology can be used to enrich foods such as fruit and vegetables to deliver 
high nutrient density in such foods and to dissolve additives such as antioxidants, 
phenolic compounds, vitamins, and minerals. Furthermore, through nanoencapsula-
tion technologies, additional nutrients can be added to food and beverage products 
without altering their flavor or quality.

According to the United Nations Food and Agriculture Organization (FAO), 
about 20–45% of plant, meat, and fish products are lost or wasted, amounting to 286 
million tonnes of cereal products in industrialized countries. Therefore, at all stages 
of food production, there is a need to use sensors to monitor the quality of products 
to ensure food safety and commercial viability (Srivastava et al. 2017). Such sensors 
include electrochemical nanosensors, optical nanosensors, the electronic nose and 
electronic tongue, nanobarcode technology, and wireless nanosensors. They can 
detect food contaminants such as preservatives, antibiotics, heavy metal ions, tox-
ins, microbial load, and pathogens. They can also monitor temperature, traceability, 
humidity, gas, and the aromas of foodstuffs. Additionally, the use of nanosensors in 
food packaging for detection of food spoilage is important for combating patho-
genic microorganisms and consequently reducing foodborne illnesses in 
consumers.

With regard to the potential risks of using nanoparticles in agricultural practices, 
they are no different from those in any other business. Through the fast supply of 
nanoparticles to food products, whether they are in the food itself or part of the 
packaging, nanoparticles will practically come into direct or indirect contact with 
everyone. Since there is no regulation of the use and testing of nanotechnology, 
products incorporating nanomaterials are being produced without checks. The abil-
ity for these materials to infiltrate the human body is well known, but there is no 
information on the effects they may have. While there is no evidence of harm to 
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people or the environment at this stage, use of nanotechnology in modern agricul-
ture is a novel and evolving phenomenon that could cause a great deal of harm 
because the chemical properties of nanomaterials are not yet fully undestood (Prasad 
et al. 2014).

In the field of agriculture, there are still many possibilities to explore and a great 
deal of potential in upcoming products and techniques. Therefore, extensive studies 
are required to understand the mechanisms of nanomaterial toxicity and its impacts 
on the natural environment. Recently, Servin and White (2016) stated that robust 
literature assessing the toxicity of ENMs to terrestrial/agricultural plant species has 
begun to develop. However, much of this literature has focused on short-term, high-
dose exposure scenarios, often conducted in model media. The literature generally 
confirms the existence of low to moderate toxicity to terrestrial plant species and 
phytotoxicity from nanoparticles generated in studies, but such studies are inade-
quate for assessing the actual risks posed to agricultural systems, including sensitive 
receptors such as humans.

17  �Conclusion

It is clear that excessive use of fertilizers and pesticides has caused soil deterioration 
and contaminated water sources; consequently, there is an urgent need to develop 
more efficient agrochemicals. Nanotechnology is therefore becoming necessary to 
formulate nanoagrochemicals to help promote modern agriculture with a low envi-
ronmental impact. The use of nanozeolite in agriculture represents a good option for 
slow release of water and fertilizers for efficient use of irrigation water and as a 
substrate for the growth of plants in biospaces such as greenhouses and tunnels. 
Nanotechnology is the emerging knowledge of the twenty-first century in all fields 
of science. In agriculture, its benefits include improving agricultural productivity by 
using nanoparticles as plant growth promoters, nanoencapsulated production for 
slow release of fertilizers, and formulation of nanopesticides and nanoherbicides. 
With the use of nanotechnology, very efficient nanosensors can also be manufac-
tured for early detection of diseases. Nanotechnology can also be a useful tool for 
the transfer of DNA in plants, intended for the development of new plant varieties 
that are resistant to pests and diseases, as well as biotic and abiotic factors.
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