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Abstract In addition to being the terminal degradative compartment of the cell’s
endocytic and autophagic pathways, the lysosome is a multifunctional signalling
hub integrating the cell’s response to nutrient status and growth factor/hormone
signalling. The cytosolic surface of the limiting membrane of the lysosome is the
site of activation of the multiprotein complex mammalian target of rapamycin com-
plex 1 (mTORC1), which phosphorylates numerous cell growth-related substrates,
including transcription factor EB (TFEB). Under conditions in which mTORC1 is
inhibited including starvation, TFEB becomes dephosphorylated and translocates to
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the nucleus where it functions as a master regulator of lysosome biogenesis. The sig-
nalling role of lysosomes is not limited to this pathway. They act as an intracellular
Ca2+ store, which can release Ca2+ into the cytosol for both local effects on mem-
brane fusion and pleiotropic effects within the cell. The relationship and crosstalk
between the lysosomal and endoplasmic reticulum (ER) Ca2+ stores play a role in
shaping intracellular Ca2+ signalling. Lysosomes also perform other signalling func-
tions, which are discussed. Current views of the lysosomal compartment recognize
its dynamic nature. It includes endolysosomes, autolysosome and storage lysosomes
that are constantly engaged in fusion/fission events and lysosome regeneration. How
signalling is affected by individual lysosomal organelles being at different stages of
these processes and/or at different sites within the cell is poorly understood, but is
discussed.

6.1 The Discovery of the Lysosomal Membrane
as a Signalling Hub

Less than ten years ago, a description of the role of the lysosome in intracellular
signalling would likely have focused mainly on its function in the down-regulation,
by degradation, of endocytosed cell surface receptors. An extensive literature had
built up on the endocytic pathways taken by different receptors, including the role of
endosomes as signalling platforms, the mechanisms of sorting into recycling path-
ways, the loss of signalling when they were sorted into the intraluminal vesicles
(ILVs) of multivesicular bodies (MVBs) and delivery to lysosomes for degradation
by proteases [for reviews, see (Platta and Stenmark 2011; Alonso and Friedman
2013; Goh and Sorkin 2013; Bowman et al. 2016)]. However, two papers in Science
published at the end of the last decade radically changed the perception of the lyso-
some’s role in intracellular signalling. David Sabatini’s group found that whereas
in starved, cultured mammalian cells, mammalian/mechanistic target of rapamycin
(mTOR) was distributed throughout the cytoplasm, amino acid feeding resulted in
a substantial fraction translocating to late endosomal and lysosomal compartments
(Sancak et al. 2008). Initially using a systems biology approach, Andrea Ballabio’s
group discovered that many lysosomal genes exhibited coordinated transcriptional
behaviour and are regulated by transcription factor EB (TFEB), which translocates
from the cytoplasm to the nucleus under various conditions of lysosomal stress and
acts as amaster regulator of lysosome biogenesis (Sardiello et al. 2009). The Sabatini
and Ballabio research groups went on to show that TFEB and the multiprotein com-
plex mTORC1 [mTOR complex 1, reviewed in (Eltschinger and Loewith 2016)]
co-localize on the lysosome membrane where mTORC1 phosphorylates TFEB
(Settembre et al. 2012). Under conditions in which mTORC1 is inhibited, they
observed that TFEB becomes dephosphorylated and translocates to the nucleus. The
discovery of a lysosome-to-nucleus signalling mechanism involving mTORC1 and
TFEB, together with subsequent work showing that multiple signals are sensed and
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Fig. 6.1 Lysosome fusion/regeneration cycle. Electron-dense, terminal storage lysosomes fuse
with late endosomes/MVBs to form catalytically active, acidic endolysosomes. Subsequent tubu-
lation, maturation and content condensation steps are involved in the regeneration/re-formation of
storage lysosomes. A similar cycle occurs for the fusion of lysosomes with autophagosomes to form
autolysosomes from which lysosomes are regenerated. Electron-dense material is shaded in dark
grey

integrated on the lysosomal surface to regulate the activation state of mTORC1, has
led to the current consensus that the lysosomal membrane is a major hub of intra-
cellular signalling, which regulates cell metabolism and growth (Perera and Zoncu
2016).

In addition to these major discoveries about the role of the lysosomal membrane
in mTORC1 and TFEB signalling, there has also been a growing realization over
the past two decades that the mammalian lysosomal compartment is heterogeneous
and is made up of less acidic/neutral lysosomes, acidic endolysosomes and autolyso-
somes, formed respectively by fusion of late endosomes or autophagosomes with
lysosomes, as well as organelles that are at different stages of maturation on lyso-
some regeneration pathways (Fig. 6.1). As more and more components of the molec-
ular machinery of lysosome fusion and re-formation are discovered, there is also an
increasing emphasis on how these processes are regulated and how they contribute
to or are affected by intracellular signalling.

6.2 The Lysosomal Compartment and the Lysosome
Fusion/Regeneration Cycle

Lysosomes were originally discovered in the mid-twentieth century as membrane-
bound organelles containing acid hydrolases and were rapidly recognized as the ter-
minal degradative compartment of the endocytic and autophagic pathways [reviewed
in (de Duve 2005)]. Nowadays, we are more aware of the dynamic nature of the
endocytic pathway and the role of the lysosome fusion/regeneration cycle in deter-
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mining the complexity of the late endosomal and lysosomal compartments (Fig. 6.1).
The endocytic pathway taken by macromolecules en route to lysosomes has been
well described (Luzio et al. 2007; Woodman and Futter 2008; Huotari and Helenius
2011; Luzio et al. 2014), as has the autophagic (i.e. macroautophagic) pathway (Feng
et al. 2014; Bento et al. 2016). The delivery of endocytosed cargo to lysosomal acid
hydrolases is achieved by kiss-and-run as well as full-fusion events between late
endosomes, also known as multivesicular bodies (MVBs), and lysosomes (Bright
et al. 2005, 2016). These events result in the formation of endolysosomes, which are
hybrid organelles with characteristics of both late endosomes and lysosomes. It is
in endolysosomes that hydrolytic degradation commences and these organelles can
undertake further, multiple, fusion events with other late endosomes and lysosomes.

6.2.1 Lysosome Fusion with Endosomes
and Autophagosomes—Core Machinery
and Regulation

The molecular mechanism of late endosome–lysosome fusion is broadly understood
and, like other fusion events in secretory and endocytic membrane traffic pathways,
involves tethering, docking and phospholipid bilayer fusion steps (Luzio et al. 2007).
Tethering requires the heterohexameric HOPS (homotypic fusion and vacuole pro-
tein sorting) complex (Wartosch et al. 2015). In the yeast Saccharomyces cerevisiae,
HOPS, which structurally is a three-legged filamentous complex (Chou et al. 2016),
is recruited directly to the limiting membrane of the vacuole (the yeast equivalent of
the mammalian lysosome) by Ypt7p, the ortholog of the mammalian small GTPase
Rab7 (Hickey and Wickner 2010). However, in mammalian cells, the Rab7 effector
RILP (Lin et al. 2014; van der Kant et al. 2015) and the small GTPase Arl8b are
needed for HOPS recruitment to late endosomal/lysosomal membranes (Khatter
et al. 2015). Following tethering, the late endosome–lysosome fusion process
requires the formation of a trans-SNARE (soluble N-ethylmaleimide-sensitive
factor attachment protein receptor) complex consisting of three Q-SNAREs, namely
syntaxin 7 (a Qa-SNARE), Vti1b (a Qb-SNARE), syntaxin 8 (a Qc-SNARE) and
VAMP7 (an R-SNARE), which interact to form a parallel four-helix bundle that
brings the two phospholipid bilayers together to enable membrane fusion (Pryor
et al. 2004). It has been suggested that in vivo, the requirement for VAMP7 may be
complemented by another R-SNARE, VAMP8 (Pols et al. 2013).

Components of the molecular machinery required for autophagosome–lysosome
fusion have also been discovered. The HOPS complex is required (Jiang et al.
2014), but an additional factor involved in tethering is the Rab7 effector and HOPS-
interacting protein, PLEKHM1 (pleckstrin homology domain-containing protein
family member 1), which functions as a central hub in integrating endocytic and
autophagic pathways at the lysosome (McEwan et al. 2015;McEwan andDikic 2015;
Marwaha et al. 2017). PLEKHM1 contains an LC3 (microtubule-associated protein
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1 light chain 3)-interacting region that mediates its binding to autophagosomes via
LC3 or GABARAP (Gamma-aminobutyric acid type A receptor-associated protein)
members of the ATG8 (autophagy-related 8) family of proteins, which are essen-
tial for autophagosome–lysosome fusion (Nguyen et al. 2016). The recruitment of
PLEKHM1 and HOPS may also be regulated by the cholesterol-sensing Rab7 effec-
tor ORP1L which localizes to autophagosomes and under low cholesterol conditions
is involved in the formation of autophagosome-ER (endoplasmic reticulum) mem-
brane contact sites (Wijdeven et al. 2016). The trans-SNARE complex required for
autophagosome–lysosome fusion has been identified as consisting of syntaxin 17 as
theQa-SNARE, SNAP-29 as theQbc-SNAREandVAMP8 as theR-SNARE (Itakura
et al. 2012). A role for an alternative R-SNARE, VAMP7, has been proposed (Fader
et al. 2009).

What is much less clear than our knowledge of the minimal protein machin-
ery required for lysosome fusion with either late endosomes or autophagosomes is
our understanding of how these processes are regulated. Relatively little is known
about how flux through the late endocytic pathway or the route taken are regulated,
although it is clear that regulation does occur. For example, whereas we have a
good understanding of how epidermal growth factor (EGF) binding to its receptor at
the plasma membrane leads to receptor phosphorylation, ubiquitination, endocytosis
and sorting into endosomal ILVs, as well as intracellular signalling (Sorkin and Goh
2008), the regulation of its passage through late endocytic compartments is less well
understood. EGF stimulates both the number of MVBs per unit of cytoplasm and
the number of ILVs per MVB, an effect specific to the MVBs containing the EGF
receptor (White et al. 2006), but the mechanism is unclear. Even within a single
MVB, ILVs are of different sizes and are formed by more than one mechanism, with
evidence that a competitive relationship exists between the well-described endocytic
sorting complex required for transport (ESCRT) pathway for ILV formation and
sorting of ubiquitinated cargo such as the EGF receptor and an ESCRT-independent
pathway, which requires the tetraspanin membrane protein CD63 (Edgar et al. 2014).
Details of the latter pathway are very sketchy, although recent work on the role of
tetraspanins in MVB formation in yeast may provide some clues (MacDonald et al.
2015).

Whilst it is also known that lysosomes fuse with late endosomes much more effi-
ciently than they do with early endosomes, how fusion is signalled is only poorly
understood. A partial explanation is the Rab5/Rab7 switch that occurs as the endo-
some matures allowing different Rab effectors to be recruited [reviewed in (Huotari
and Helenius 2011)]. However, there is also a need to ensure that the MVBs that
fuse have been depleted of recycling membrane proteins such as the mannose 6-
phosphate receptors and that formation of ILVs, as well as sorting of ubiquitinated
cargo into ILVs by the ESCRT pathway, is complete. Although it is not known how a
matureMVB is identified for fusion, it could be as simple as the loss of ubiquitinated
cargo from the limiting membrane. There may also be a role for some components
of the ESCRT pathway, since an involvement of ESCRT-III proteins in fusion of late
endosomes with lysosomes, separate to the requirement for ILV formation, has been
described [reviewed in (Metcalf and Isaacs 2010)].



156 G. G. Hesketh et al.

Efficient fusion of lysosomes with late endosomes requires release of luminal
Ca2+ at a late stage in the fusion process (Pryor et al. 2000). Although the mech-
anism by which this aids membrane fusion is not resolved, it may well underlie
the effects of other perturbations of lysosome fusion. For example, Niemann–Pick
type-C1-deficient cells have a defect in fusion of lysosomes with endosomes, which
is likely to be a consequence of altered luminal Ca2+ content (Lloyd-Evans et al.
2008). It is also unclear which Ca2+ channel(s) in the lysosome membrane is most
important in release of this luminal Ca2+ with evidence that mucolipins [especially
transient receptor potential mucolipin 1, MCOLN1 also known as TRPML1 (Dong
et al. 2010)], two-pore channels [especially TPC2 (Grimm et al. 2014)], a voltage-
gated calcium channel (Tian et al. 2015) and/or the purinergic receptor, P2X4 (Cao
et al. 2015), may be involved. Intriguingly, cation transport through both mucol-
ipin1 and TPC2 is activated by phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2],
which, in mammalian cells, is formed by the action of the enzyme PIKfyve on phos-
phatidylinositol 3-phosphate [PI(3)P] in endosomal membranes (Jin et al. 2016). It
has been reported that a rapid increase in the concentration of PI(3,5)P2 occurs on
the membranes of late endocytic organelles immediately before they fuse (Li et al.
2013), although the specificity of the PI(3,5)P2 probe used in the studies leading
to this conclusion has been questioned (Hammond et al. 2015). In addition, it has
been argued that PI(3,5)P2 may be more important in regulating fission rather than
fusion (see below). Lysosomal Ca2+ release via mucolipin1 is also thought to be
important for the fusion of autophagosomes with lysosomes, as are appropriate lev-
els of PI(3,5)P2 (Martens et al. 2016). Unlike PI(3,5)P2, PI(4,5)P2 is mostly found
in the plasma membrane, some can be generated at the lysosomal membrane where
it can act as an inhibitor of Ca2+ transport through mucolipin1. Part of the cellular
complement of the PI(4,5)P2 5-phosphatase OCRL (oculocerebrorenal syndrome of
Lowe) is associated with mucolipin1 and maintains PI(4,5)P2-free microdomains
around this Ca2+ channel (De Leo et al. 2016). Thus, when OCRL activity is absent
either as a result of experimental manipulation or in the disease Lowe syndrome, an
unrestricted accumulation of PI(4,5)P2 occurs on the lysosomal membrane with con-
sequent inhibition of Ca2+ flux throughmucolipin1 and inhibition of lysosome fusion
with autophagosomes. This has been proposed as the reason why autophagosomes
accumulate in cells from Lowe syndrome patients. Local generation of PI(4,5)P2 is
also thought to play a role in lysosome re-formation from autolysosomes (see below),
emphasizing the likely importance of spatiotemporal regulation of the concentration
of phosphoinositides on the lysosomal membrane. A role for luminal acidity has
also been proposed for fusion events undertaken by lysosomes and yeast vacuoles,
but remains controversial as does the requirement for the V-ATPase (vacuolar H+

ATPase), which may involve an unconventional role of the VO sector interacting
with SNARE proteins and contributing physically to membrane fusion (Coonrod
et al. 2013; Mauvezin et al. 2015; Desfougeres et al. 2016).

Regulatory cytosolic factors are also implicated in lysosome fusion with endo-
somes and/or autophagosomes and include the VAMP7-binding protein, VARP
(vacuolar protein sorting 9 ankyrin repeat protein) (Schafer et al. 2012), ATG14
(Diao et al. 2015) and EPG5 (ectopic P-granules autophagy protein 5) (Wang
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et al. 2016), which have effects on SNARE complex assembly and/or stabilization.
The leucine-rich repeat kinases LRRK1 and LRRK2 have also been implicated in
defective traffic to lysosomes via the endocytic and autophagy pathways. LRRK2
is highly expressed in brain, kidney and some immune cells. It localizes to several
membrane-bound organelles on post-Golgi membrane traffic pathways and regulates
a subset of Rab GTPases (Steger et al. 2016). Autosomal dominant mutations in the
gene encoding LRRK2 are the most common cause of familial forms of the neurode-
generative disorder, Parkinson’s disease and are also associated with sporadic forms
of the disease. LRRK1 is widely expressed, but less highly in brain than LRRK2.
LRRK1 indirectly regulates Rab7 activity and is recruited to lysosomes by VAMP7
(Toyofuku et al. 2015). Lysosome fusion with both autophagosomes and endosomes
is negatively regulated by RUBICON (Run domain BECLIN-1-interacting and
cysteine-rich domain-containing protein), which binds to UVRAG (UV radiation
resistance-associated gene product), when this component of VPS34 complex II
(consisting of the phosphatidylinositol-3-kinase VPS34, VPS15, BECLIN-1 and
UVRAG) is phosphorylated bymTORC1 (Kim et al. 2015). This results in inhibition
of Rab7 and HOPS activity and has led to the suggestion that the mTORC1-UVRAG
pathway is an important regulatory axis through which cells coordinate autophagy
and the endosome–lysosomal degradation pathway (Kim et al. 2015). In addition to
possible nutritional regulation via mTORC1 (Antonioli et al. 2016), lysosome–au-
tophagosome fusion is reduced when cells are incubated in high glucose as a result
of increased addition of O-linked-N-acetylglucosamine to SNAP29, which inhibits
the formation of trans-SNARE complexes. Conversely, glucose starvation results
in less modification of SNAP29 with O-linked-N-acetylglucosamine and increased
formation of autolysosomes (Guo et al. 2014). Also implicated in regulating
the efficiency of fusion with lysosomes are motor proteins, which are bound to
organelles destined for fusion and move them along microtubules and/or actin
filaments (van der Kant et al. 2013; Kruppa et al. 2016). Finally, it should be noted
that inefficient degradation of macromolecules may itself reduce the efficiency of
fusion via effects on membrane cholesterol (Fraldi et al. 2010) and also prevent
lysosome re-formation (Bright et al. 1997, 2016; Schmid et al. 1999).

6.2.2 Other Lysosomal Fusion Events

In addition to fusing with late endosomes and autophagosomes, lysosomes can also
fuse with phagosomes, macropinosomes and the plasma membrane [reviewed in
(Luzio et al. 2007)]. Lysosome fusion with the plasma membrane is triggered by
an increase in cytosolic Ca2+ concentration and is regulated by the Ca2+ sensor
synaptotagmin VII, which restricts both the kinetics and extent of fusion and inter-
acts with the core fusion machinery comprising the SNARE proteins syntaxin 4,
SNAP23 and VAMP7 (Rao et al. 2004). The increased cytosolic Ca2+ concentration
can occur as a result of plasma membrane damage causing Ca2+ influx. The resul-
tant exocytosis of a peripheral population of lysosomes starts a plasma membrane
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sealing and re-modelling process that is essential for the survival of cells wounded
by mechanical stress or attacked by some pathogens (Castro-Gomes et al. 2016).
Lysosomal secretion is also regulated by the transcription factor TFEB, which can
cause translocation of lysosomes to the plasma membrane and increased secretion,
but the molecular mechanisms are unclear (Medina et al. 2011). Over-expression
of TFEB in some cellular models of lysosomal storage disease results in increased
lysosomal exocytosis and clearance of accumulated metabolites, suggesting TFEB
as a therapeutic target in these diseases (Medina et al. 2011; Spampanato et al. 2013).
Although all cell types seem to have the ability to fuse lysosomes with the plasma
membrane, some cells have specialized “secretory lysosomes” or “lysosome-related
organelles” (LROs). The variety of LROs and signalling pathways to trigger their
secretion are reviewed in (Luzio et al. 2014).

6.2.3 Lysosome Re-formation and Its Regulation

In contrast to the molecular machinery of fusion, less is known about the mecha-
nism(s) by which lysosomes are re-formed from endolysosomes and autolysosomes.
In both cases, tubulation and fission events have been suggested to occur. Some of
these events are likely concerned with the recycling of membrane components, e.g.
SNAREs that should not be present on the re-formed lysosomes. However, others
are necessary in the formation and scission, along their length, of protolysosomal
tubules from which mature re-formed lysosomes are generated. In the re-formation
of lysosomes from autolysosomes, the formation of protolysosomal tubules is regu-
lated by mTORC1 (Yu et al. 2010; Rong et al. 2011) and their scission/vesiculation
is mediated by the GTPase dynamin2 (Schulze et al. 2013). Currently, the best model
for re-formation of lysosomes from autolysosomes comes from the results of exper-
imental manipulations, suggesting that localized phosphoinositide generation on the
autolysosomemembrane causes the recruitment of the sorting adaptor AP-2, clathrin
and the kinesin motor KIF5B to microdomains enriched in PI(4,5)P2, which results
in the formation and extension of protolysosomal tubules along microtubules (Rong
et al. 2012; Du et al. 2016). One note of caution about this model is that much earlier
experiments showed how easy it was to mis-target AP-2 and clathrin to intracellular
compartments and away from the plasma membrane, where their recruitment and
function are well understood, simply by adding GTPγS or excess Ca2+ (Seaman et al.
1993). Recently, it has been suggested that it is not alterations in mTORC1 activity
per se that induces lysosome re-formation, but the delivery to the autolysosome of
mitochondrial DNA, which binds to TLR9 (toll-like receptor 9). This triggers an
increase in local PI(4,5)P2 concentration, resulting in the recruitment of AP-2 and
clathrin (De Leo et al. 2016).

Additional clues about the machinery of lysosome re-formation have come from
the study of cells from patients with lysosomal storage diseases. These are rare,
inherited genetic defects, in many cases causing deficiencies in specific lysoso-
mal acid hydrolases, but in others resulting in defects in lysosomal membrane pro-
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teins or nonenzymatic soluble lysosomal proteins. Cells from such patients contain
membrane-bound, heterogeneous storage lesions,most probably abnormal endolyso-
somes/autolysosomes, filled with different contents in different diseases (Platt et al.
2012). Amongst lysosomal disease-associated proteins implicated in lysosome re-
formation areNiemann–Pick type-C2 (Goldman andKrise 2010), lysosomal traffick-
ing regulator (LYST) (Holland et al. 2014), the sorting adaptors AP-4 (Rong et al.
2012) and AP-5, along with its associated proteins spatacsin and spastizin (Hirst
et al. 2015), as well as mucolipin1 (Miller et al. 2015), but molecular mechanisms
remain elusive. In the case of mucolipin1, it has been proposed that this cation chan-
nel is responsible for the release of luminal Ca2+ and earlier in vitro experiments
had shown that luminal Ca2+ is necessary for the formation of dense core lysosomes
from endolysosomes (Pryor et al. 2000). As described above, PI(3,5)P2 is an acti-
vator and PI(4,5)P2 an inhibitor of this channel, which suggests at the very least
tight spatiotemporal control of the concentrations of these phosphoinositides on the
lysosomalmembrane if fusion events and re-formation events are to be properly coor-
dinated. Certainly, depletion or pharmacological inhibition of PIKfyve, the enzyme
synthesizing PI(3,5)P2, results in the formation of enlarged endocytic compartments
with many characteristics of endolysosomes [reviewed in (Dove et al. 2009)] and
small molecule activators of mucolipin1 can reverse the enlarged endolysosomal
phenotype observed when a protein acting as a scaffold for PIKfyve is depleted (Zou
et al. 2015). The Ca2+ released through mucolipin1 may be required for the exten-
sion and/or scission of the membrane bridges connecting endolysosomes to nascent
lysosomes in the protolysosomal tubules (Miller et al. 2015). It has been argued
that a good candidate for a Ca2+-regulated target is actin (Miller et al. 2015), the
polymerization state of which can also be affected by PI(4,5)P2 (Saarikangas et al.
2010).

One of the most interesting aspects of lysosome re-formation is that it may be
associated with an alteration in luminal acidity. For a long time, it has been widely
assumed that the lumen of all lysosomes is acidic (pH≤5), despite evidence from
early ratiometric imaging experiments in the 1980s (Yamashiro and Maxfield 1987)
and experiments on lysosomal enzyme function and acidophilic dye accumulation
in the 1990s (Butor et al. 1995), suggesting that lysosomes exhibit a wide range
of pH. This has been reinforced by recent studies, suggesting that a proportion of
lysosomes (up to~25%) have a luminal pH that is closer to neutral (>pH 6.5) (John-
son et al. 2016; Bright et al. 2016). These less acidic lysosomes are preferentially
distributed closer to the cell periphery in cultured mammalian cells (Johnson et al.
2016) (Fig. 6.2). The subcellular localization of lysosomes is determined by the bal-
ance between the small GTPases Rab7 and Arl8b, which interact with kinesin and
dynein microtubule motors via different effectors (Jordens et al. 2001; Rosa-Ferreira
and Munro 2011; Pu et al. 2015; Guardia et al. 2016; Fujiwara et al. 2016), as well
as an ER-located ubiquitin ligase system that contributes to their immobilisation in
the perinuclear region (Jongsma et al. 2016). Over-expression of the GTPases and/or
their effectors can alter lysosome distribution within the cell, as can the use of motor
inhibitors. It was found that if cells were experimentally manipulated to drive more
lysosomes to the periphery, there was a reduction in their acidity (Johnson et al.
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(a) (b)

(c)

Fig. 6.2 Ratiometric imaging of lysosomal pH inNRKcells.NRK (normal rat kidney) cells were
incubated in tissue culture medium containing both 0.5 mg/ml Dextran-Oregon Green 488 as the
acid-sensitive fluorochrome and 0.5 mg/ml Dextran-Alexa 647 as the acid-insensitive fluorochrome
for 4 h followed by a 20-h chase in conjugate-freemedium to load terminal endocytic compartments.
Dual-fluorochrome ratiometric confocalmicroscopy showed that acidic organelles (blue)weremore
centrally located, whereas less acidic/more neutral organelles (cyan and green) were concentrated
towards the cell periphery in a representative cell (a). To construct a pH calibration curve, cells
were clamped at pH 4–7 in buffer containing 10 μM nigericin and 10 μM monensin for 5 min
and representative confocal images are shown from a cell clamped at pH 7 (b) or pH 4 (c) using
identical imaging parameters used to collect the unclamped image. Scale bar�10 μm

2016). Conversely, if lysosomes were driven towards the microtubule organizing
centre/nucleus, there was an increase in acidity. In a separate study, it was concluded
that the more acidic lysosomes were in fact endolysosomes, acting as the principal
sites of proteolytic degradation, with the less acidic lysosomes being in the latter
stages of lysosome re-formation, such that the least acidic form a pool of terminal
storage lysosomes (Bright et al. 2016). Although one of these studies concluded that
lysosome positionwithin the cell determines acidity and the other that it is the stage of
the lysosome fusion/regeneration cycle, which is important, the conclusions are not
incompatible. At present, little is known about the role, if any, of Rab7, Arl8b, their
effectors and microtubule motor proteins in lysosome re-formation from endolyso-
somes. The reduced acidity of some lysosomes appears to be due to an increased
passive (leak) permeability to protons togetherwith reducedV-ATPase activity (John-
son et al. 2016). This could be due to recycling of the intact V-ATPase, as has been
suggested for the generation of neural post-lysosome compartments inDictyostelium
discoideum (Carnell et al. 2011), or the separation of V0 andV1 sub-complexes of the
V-ATPase, as is observed under nutritional control in yeast (Parra and Kane 1998).
Interestingly, in yeast, the late endosomal/vacuolar phosphoinositide PI(3,5)P2 has
been shown to stabilize the V0/V1 interaction in yeast (Li et al. 2014). There may
also be regulation of V-ATPase activity as a result of protein binding, one candidate
being the Rab7 effector RILP (Rab-interacting lysosomal protein) (De Luca et al.
2014). In this context, it is interesting to note that whereas acidic juxtanuclear lyso-
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somes/endolysosomes are Rab7-positive, less acidic and more peripheral lysosomes
are Rab7-negative (Johnson et al. 2016; Bright et al. 2016). Another protein observed
to bind V-ATPase and potentially regulate activity is the interferon-induced protein
IFITM3 (interferon-inducible transmembrane protein 3), which may be particularly
important in regulating lysosomal acidity and function following viral infection (Wee
et al. 2012).

6.3 Lysosomal Signalling and Cell Growth Control

The lysosome acts as an important site of nutrient sensing and metabolic regulation,
because it is on the limiting membrane of the lysosome that the kinase activity of
mTORC1 is regulated in a nutrient-, energy-, stress- and growth factor-regulated
manner to regulate the balance between anabolic and catabolic pathways within the
cell [reviewed in (Zoncu et al. 2011b; Lim and Zoncu 2016; Perera and Zoncu 2016;
Carroll and Dunlop 2017)]. mTORC1 is a rapamycin-sensitive multi-subunit pro-
tein complex that contains the PI3K-related serine/threonine protein kinase mTOR.
mTOR also exists in an alternative rapamycin-insensitive protein complex called
mTORC2 that phosphorylates the serine/threonine kinase AKT (also known as pro-
tein kinase B) in response to growth factor stimulation and participates in modulating
many cellular functions including cell survival and actin dynamics (Laplante and
Sabatini 2012). Whereas mTORC1 activation is associated primarily with the lyso-
some membrane, mTORC2 function has been localized to the plasma membrane
(Ebner et al. 2017). The convergence of several growth factor-initiated signalling
pathways on mTORC1 enables it to participate in many developmental and phys-
iological processes, and it is essential for early embryonic development. Some of
these signalling pathways (e.g. insulin stimulation or low energy levels), result in
the phosphorylation of a large protein complex, TSC (tuberous sclerosis complex),
which regulates the nucleotide binding state of the small GTPase RHEB on the
cytosolic surface of lysosomes and controls the kinase activation state of mTORC1
(Sengupta et al. 2010). However, independently of TSC, mTORC1 recruitment to the
lysosome cytosolic surface is controlled by nutrient levels (most strongly by amino
acids), through regulation of the nucleotide binding state and heterodimerization of
the Rag family of small GTPases. Thus, it is the lysosome-limiting membrane where
diverse signal inputs are sensed and integrated to control both the localization of
mTORC1 and subsequent activation of mTOR kinase activity to exert global effects
on cell growth and metabolism. A consequence of the activation of mTORC1 is the
phosphorylation of a vast array of substrates that control growth and metabolism.
Well-studied targets include the ribosomal protein S6 kinase and eIF4E-binding pro-
tein 1, which are proteins that control distinct aspects of mRNA translation and thus
control the rate of protein synthesis (Sonenberg andHinnebusch 2009). Because of its
ability to sense nutrient levels, mTORC1 controls the activation state of non-selective
macroautophagy through phosphorylation of the autophagy-initiating kinase ULK1
(Kim et al. 2011). When nutrient supply is low, mTORC1 is turned off, thus reliev-
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ing its inhibitory effect on autophagy and this liberates cellular sources of nutrients
through bulk degradation of macromolecules. mTORC1 also controls the activity of
several transcription factors including some that are implicated in lipid synthesis and
mitochondrial metabolism as well as TFEB and TFE3, members of the MiTF/TFE
transcription factor family. TFEB and TFE3 are phosphorylated by mTORC1 at
the lysosomal surface and regulate lysosome biogenesis, lysosome secretion and
autophagy (Raben and Puertollano 2016; Napolitano and Ballabio 2016).

6.3.1 Lysosomal Localization and Activation of mTORC1

Two protein complexes, an obligate heterodimer of Rag GTPases and a multimeric
complex called Ragulator, function together to localize mTORC1 to the lysosomal
membrane. The Rag heterodimers comprise RagA or Bwith RagC or D.When RagA
or B is bound to GTP, RagC or D is loaded with GDP. Ragulator is composed of
five proteins, LAMTOR 1–5 (lysosomal adaptor and mTOR regulator 1–5), and acts
both as a scaffold anchoring the Rag GTPases to the lysosomal membrane and as a
guanine nucleotide exchange factor for RagA/B (Bar-Peled et al. 2012). Thus, in the
presence of amino acids,Ragulator promotes the loading ofGTPontoRagA/B,which
dimerizes with GDP-loaded Rag C/D. It is likely that it is the GDP-loaded Rag C/D,
which directly recruits mTORC1 to the lysosomal membrane (Tsun et al. 2013). It is
proposed that recruitment ofmTORC1 to the cytosolic surface of the lysosome brings
it into close physical proximity to the small GTPase RHEB, which directly activates
mTOR kinase activity. The nucleotide loading state of the Rag heterodimers is also
regulated at the lysosomal membrane by a protein called GTPase-activating protein
towards Rags 1 (GATOR1) (Bar-Peled et al. 2013), which promotes the inactive
GDP-bound state of RagA/B. The activity of GATOR1 is under inhibitory control by
a second complex called GATOR2, which itself is controlled by additional proteins
including Sestrin2 homodimers and the CASTOR complex (dimer of GATSL1/2).
Recently, it has been shown that GATOR1 complex recruitment to the lysosome
surface is controlled by a complex termed KICSTOR (Peng et al. 2017; Wolfson
et al. 2017). The nucleotide binding state of RagC/D has been shown to be regulated
by the tumour suppressor protein folliculin, which forms a complex with FNIP1/2
(folliculin-interacting proteins 1/2). Folliculin is proposed to function as a GTPase-
activating protein for Rag C/D (Petit et al. 2013; Tsun et al. 2013), although the
mechanism of GTPase activation remains to be elucidated.

A long-standing question is what are the precise mechanisms by which amino
acids are sensed to control mTORC1 activation on the lysosome surface? Changes
in amino acid concentration, in both the lumen of the lysosome and the cytosol,
can regulate the activity of mTORC1, although the signalling pathways are complex
and far from completely understood (Manifava et al. 2016). The signalling path-
way employed by luminal amino acids to stimulate Ragulator GEF activity towards
RagA/B on the cytosolic side of the lysosome’s limiting membrane requires both
the V-ATPase and the sodium-coupled, amino acid-transporting, 11-pass transmem-
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brane protein SLC38A9. The V-ATPase binds Ragulator and the Rag GTPases in
an amino acid-dependent manner, and experimental inhibition of the V-ATPase pre-
vents recruitment of mTORC1 to the lysosome in response to amino acids (Zoncu
et al. 2011a). SLC38A9 may play a particularly important role in sensing arginine
levels within the lysosome lumen (Jung et al. 2015; Rebsamen et al. 2015; Wang
et al. 2015). It binds to the V-ATPase via its C-terminal transmembrane region and
to Ragulator and the Rag GTPases via its N-terminal cytosolic domain and may act
primarily as a transceptor rather than purely as a transporter. Other lysosomal amino
acid transporters have also been implicated in mTORC1 activation [reviewed in (Lim
and Zoncu 2016)]. SLC38A9 also enables mTORC1 activation by cholesterol, inde-
pendently of its arginine-sensing function (Castellano et al. 2017).

A rise in cytosolic amino acid concentration results in Rag complex activation, in
part through a reduction in RagA/B inhibition by the negative regulator GATOR1. A
rise in the concentration of specific amino acids is detected by the cytosolic leucine
sensor Sestrin2 and the cytosolic arginine sensor CASTOR, which become inhibited
when bound to their respective amino acid ligands (Chantranupong et al. 2016;Wolf-
son et al. 2016). When not bound to amino acids, both Sestrin2 and CASTOR inhibit
GATOR2 (the GATOR1 inhibitory complex described above), resulting in Rag com-
plex inactivation. Thus, when Sestrin2 and CASTOR are bound by amino acids, the
net effect is that GATOR2 is able to inhibit the GATOR1-dependent inhibition of
RagA/B. The entirety of the lysosome membrane protein machinery responding to
amino acids is shown in Fig. 6.3 and includes both integral membrane proteins, the
Ragulator/Rag/mTORC1 complexes and associated proteins on the cytosolic surface
of the lysosome. It has been suggested that this entire machinery be referred to as the
LYNUS (lysosome nutrient sensing) machinery (Settembre et al. 2013b). One inter-
esting consequence of the critical role played by the lysosomal V-ATPase in amino
acid signalling to mTORC1 is that it raises the question of whether juxtanuclear and
peripheral lysosomes and/or organelles at different stages of the lysosome regener-
ation cycle play different roles in this signalling, given their difference in V-ATPase
activity and luminal pH (Gowrishankar and Ferguson 2016). There is evidence that
intracellular lysosome positioning coordinates metabolic responses to nutrient avail-
ability with plasma membrane signalling events (Korolchuk et al. 2011).

The regulation of mTORC1 activity by insulin and growth factors is mediated via
phosphorylation of the TSC complex as mentioned above. The TSC complex is a
heterotrimer of the tuberous sclerosis complex tumour suppressor genes TSC1 and
TSC2 with TBC1D7 (Dibble et al. 2012). TSC functions as an inhibitor of mTORC1
by acting as a GAP (GTPase-activating protein) towards the mTOR kinase activator
RHEB. Insulin signalling results in release of TSC from the lysosomal surface fol-
lowing its phosphorylation by the protein kinase AKT (Menon et al. 2014), which is
dependent on AKT recruitment to the membrane by interaction with phosphoinosi-
tides (Ebner et al. 2017). TSC activity can also be enhanced through phosphorylation
via the LKB1/AMPK (liver kinase B1/AMP-activated protein kinase) signalling axis
in response to energy stress (Inoki et al. 2003), the activity of which has also been
localized to the lysosome surface (Zhang et al. 2014).
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Fig. 6.3 Regulation of mTORC1 activation on the lysosome surface. The mTORC1 complex is
recruited to the lysosome surface through direct interaction with the RagA/B(GTP)-RagC/D(GDP)
(active state) heterodimer. The Rag heterodimer nucleotide loading state is under complex regula-
tory control and responds to nutrient levels (especially amino acids). The Ragulator complex acts
as a GEF towards RagA/B (thus promoting the active Rag dimer) and functions in concert with
SLC38A9 and the V-ATPase in response to amino acid levels in the lysosome lumen. The GATOR1
complex acts as a GAP towards RagA/B (thus promoting the inactive Rag dimer) and is under reg-
ulatory control by the GATOR2 complex. GATOR2 inhibition of GATOR1 is regulated by Sestrin2
(SESN2) and CASTOR complexes binding to individual amino acids (Leu and Arg, respectively).
The GATOR complexes are recruited to the lysosome surface by the KICSTOR complex. Folliculin
(FLCN) and its interacting proteins FNIP1/2 are proposed to act as a GAP towards RagC/D (thus
promoting the active Rag dimer). At the lysosome surface, the activation state of the mTOR kinase
is regulated by the small GTPase RHEB. The TSC complex (TSC1/2, TBC1D7) acts as a GAP
towards RHEB, and is regulated by signals downstream of growth factor receptors, energy levels
and cellular stress pathways. Collectively, the integrated regulation of mTORC1 activity on the
lysosome surface by nutrients, energy levels, stress and growth signalling pathways exerts global
control over the balance between catabolic (e.g. autophagy, lysosome biogenesis) and anabolic cell
growth pathways.

Although the best-studied signalling inputs to TSC are those downstream of
growth factor receptor activation and energy stress, it has been shown that TSC
recruitment to the lysosome surface is also controlled by amino acid availability and
may in fact be a general consequence of cellular stress (Demetriades et al. 2014,
2016). Thus, it is spatial control of TSC that contributes to the integration of growth
factor signalling, nutrient regulation, and stress signalling and their role in mTORC1
activation on the lysosome surface.

6.3.2 Lysosomal Signalling to the Nucleus: TFEB
and the CLEAR Network

In addition to recruiting mTORC1 to the lysosome membrane, active Rag GTPases
also promote recruitment of the transcription factor TFEB in an amino acid-
dependent manner (Martina and Puertollano 2013). In fully fed cells, TFEB con-



6 The Lysosome and Intracellular Signalling 165

tinuously cycles between lysosomes and the cytosol, such that when associated with
the lysosome it can be phosphorylated bymTORC1 at several sites, including residue
S211 (Settembre et al. 2012; Vega-Rubin-de-Celis et al. 2017). Phosphorylation at
S211 promotes interaction with the cytosolic chaperone 14-3-3, resulting in a steady
state inwhich themajority of TFEB is in the cytosol (Roczniak-Ferguson et al. 2012).
Nutrient withdrawal or other treatments leading to lysosomal stress, e.g. V-ATPase
inhibition, lead to inactivation of mTORC1, since it is released from the lysosomal
surface, thus reducing phosphorylation of TFEB. Nutrient withdrawal/lysosomal
stress also causes the dephosphorylation of TFEB by the calcium-dependent phos-
phatase calcineurin, dissociation from14-3-3 and transport into the nucleus (Fig. 6.4).
Activation of calcineurin results from the release of luminal Ca2+ from the lysosome
via mucolipin1 (Medina et al. 2015). TFEB is a basic helix–loop–helix transcription
factor which binds to a palindromic 10-bp (base pair) nucleotide motif, GTCACGT-
GAC, present (often in multiple copies) in the promoter region of many genes
encoding lysosomal enzymes. The palindromic nucleotide motif has been named the
CLEAR (coordinated lysosomal expression and regulation) element (Sardiello et al.
2009) and the extensive number of genes affected, the CLEAR network (Palmieri
et al. 2011). This network provides a system that regulates the expression, delivery
to lysosomes and activity of lysosomal enzymes, which control the degradation of
proteins, glycosaminoglycans, sphingolipids and glycogen. The CLEAR network
is involved in the regulation of autophagy, exo- and endocytosis, phagocytosis and
the immune response, as well as regulating some non-lysosomal enzymes/proteins
involved in protein degradation and lipid metabolism (Palmieri et al. 2011; Settem-
bre et al. 2013a). Other members of the MiTF/TFE transcription factor family, in
particular TFE3 which also binds CLEAR elements, are regulated in a very similar
way to TFEB [reviewed in (Raben and Puertollano 2016; Napolitano and Ballabio
2016)]. TFEB and TFE3 are partially redundant in their ability to induce lysosome
biogenesis in response to starvation and both are necessary for a maximal response.
However, overall MiTF/TFE transcription factors appear to have limited redundancy
and some specific functions. Their ability to heterodimerize with each other has been
a complication in studies of their function.

It should be noted that lysosome biogenesis is also affected by mTORC1-
independent mechanisms. Thus, protein kinase C couples activation of TFEB with
inactivation of the transcriptional repressor ZKSCAN3 via parallel signalling cas-
cades (Li et al. 2016) and an mTORC1-independent pathway mediated via protein
kinase RNA-like endoplasmic reticulum kinase (PERK) has been shown to reg-
ulate TFEB/TFE3 translocation to the nucleus in response to ER stress (Martina
et al. 2016). Recently, it has been demonstrated that AKT modulates TFEB activ-
ity by phosphorylation at S467 and that trehalose, an mTOR-independent autophagy
enhancer, promotes nuclear translocation of TFEB by inhibiting AKT (Palmieri et al.
2017). These observations are especially interesting because they have suggested that
AKT control of TFEB activitymay be a usefulmTORC1-independent target for phar-
macological treatment of neurodegenerative lysosomal storage diseases to stimulate
cellular clearance of the storage material.
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Fig. 6.4 Regulation of TFEB by lysosomal Ca2+. In fully fed cells, TFEB is phosphorylated by
mTORC1 on the lysosomal membrane. Binding of phosphorylated TFEB by 14-3-3 in the cytosol
prevents its entry into the nucleus (left).Upon starvation or lysosomal stress,mucolipin1 (MCOLN1)
releases lysosomal Ca2+, which leads to local calcineurin activation in the cytoplasm and TFEB
dephosphorylation. Dephosphorylated TFEB cannot be bound by 14-3-3 proteins and translocates
into the nucleus where it binds to CLEAR elements on the DNA and activates the transcription of
lysosomal/autophagic genes (right).

6.4 Lysosomal Ca2+ Signalling

Mammalian, acidic lysosomes/endolysosomes contain a significant store of intracel-
lular free Ca2+, measured as being~0.5 mM (Christensen et al. 2002; Lloyd-Evans
et al. 2008; Ronco et al. 2015). This is within the range of estimates of the steady-state
luminal free concentration in the ER and is>3 orders of magnitude higher than the
cytosolic Ca2+ concentration. Thus, release of Ca2+ through any of the identified lyso-
somal channels has the potential to affect a range of cytosolic functions. Regulated
release of lysosomal Ca2+ is implicated in fusion/fission events and the activation of
calcineurin to dephosphorylate TFEB and upregulate genes with CLEAR elements
as described above. However, the effect of releasing lysosomal Ca2+ on cytosolic
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Ca2+ concentration can be amplified by stimulation of ER Ca2+ release, facilitating
its involvement in a range of other cellular processes including muscle contraction,
neurite extension and differentiation [reviewed in (Morgan et al. 2011; Penny et al.
2015)]. Ca2+ release through two-pore channels in the endolysosomal system has
also been implicated in metastasis (Nguyen et al. 2017) and in Ebola virus entry
into host cells (Sakurai et al. 2015). Defects in lysosomal Ca2+ signalling and home-
ostasis have been suggested to play a role in lysosomal storage disease pathogenesis
(Lloyd-Evans and Platt 2011). One of the most significant developments in under-
standing a role for lysosomes in intracellular signalling came from the discovery that
release of Ca2+ from acidic LROs in sea urchin eggs is stimulated by the pyridine
nucleotide metabolite NAADP (Clapper et al. 1987). Whilst the physiological pro-
duction and degradation of NAADP are not fully understood, it clearly functions as
an intracellular second messenger in mammalian cells (Yamasaki et al. 2005), not
just in sea urchin eggs, and a major intracellular target activated by NAADP is the
lysosomal two-pore channel TPC2 (Pitt et al. 2010). The regulation of the release of
Ca2+ through TPC2 is also affected by lysosomal Ca2+ concentration and lysosomal
pH. As discussed above, the acidic lysosomal pH is generated through the activ-
ity of the lysosomal V-ATPase, with charge compensation provided via unspecified
cation channels, the lysosomal Cl−/H+ antiporter ClC-7/Ostm1 and/or alternative
counter-ion pathways (Steinberg et al. 2010). In some cell types, lysosomal pH can
be regulated by signalling pathways affecting V-ATPase trafficking or charge com-
pensation, e.g. pathways involving a cell surface G protein-coupled receptor, cyclic
AMP and protein kinase A (Lassen et al. 2016; Folts et al. 2016), thus potentially
also affecting lysosomal Ca2+ release. Re-filling of lysosomal Ca2+ stores may also
play a role in signalling. The lysosomal Ca2+/H+ exchanger CAX has been shown to
play a role in cell migration during frog development, but does not appear to have
an ortholog in placental mammals (Melchionda et al. 2016). In mammalian cells,
the ER is the primary source of Ca2+ for the lysosome (Garrity et al. 2016) and it
has been proposed that selective accumulation of Ca2+ released from the ER may
allow lysosomes to play a role in shaping cytosolic Ca2+ signals caused by release
of ER Ca2+ (Lopez-Sanjurjo et al. 2013). The functional relationship(s) between
lysosomal and ER Ca2+ stores are likely affected by the close physical proximity of
these organelles and the formation of ER-lysosome contact sites (Penny et al. 2015;
Lopez-Sanjurjo et al. 2013; Ronco et al. 2015; Sbano et al. 2017). Membrane contact
sites (MCS) between intracellular organelles, especially those involving the ER, are
currently the subject of much investigation [reviewed in (Gatta and Levine 2016;
Zhang and Hu 2016; Hariri et al. 2016; Raffaello et al. 2016)], since they enable
non-vesicular communication, for example for the transfer of cholesterol between
endolysosomes and the ER (Du et al. 2011), as well as marking sites of organelle
fission of both mitochondria (Friedman et al. 2011) and endosomes (Rowland et al.
2014; Allison et al. 2017) and regulating the final steps of autophagy (Wijdeven et al.
2016). In the context of lysosomal signalling, one especially interesting observation
was the induction of NAADP-dependent microdomains of high Ca2+ concentration
between lysosomes and the sarcoplasmic reticulum in response to beta-adrenoceptor
activation in cardiac myocytes (Capel et al. 2015).
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6.5 Other Lysosomal Signalling Pathways

6.5.1 Toll-like Receptors

Lysosomes play an important role in the innate immune system, through the function
of an intracellular subgroup of the toll-like receptor (TLR) family of pattern recog-
nition receptors, comprising TLR3,7,8 and 9 [reviewed in (Kawai and Akira 2010;
Majer et al. 2016)]. These type I integral membrane proteins are widely expressed,
require proteolytic cleavage to become functional receptors and bind nucleic acids.
This results in the activation of a signalling cascade from their cytosolic domains.
TLRs play an important role in initiating and enhancing adaptive immune responses
to invading pathogens. TLR9 is one of the best-studied TLRs, including the reg-
ulation of its trafficking from the ER to lysosomes, and requires cleavage in an
acidic environment by endolysosomal proteases to become functional. TLR9 binds
unmethylated CpG motifs in DNA and in addition to its role in innate immunity,
responding to bacterial or viral infection, it has also been implicated in regulation of
the autophagic pathway, as described above, through recognition of mitochondrial
DNA.

6.5.2 Regulation of Lysosome Membrane Permeability

An aspect of lysosomal signalling that merits wider consideration is partial and
selective permeabilization of the limiting membrane which can trigger cell death as
a consequence of cathepsin release into the cytosol [reviewed in (Serrano-Puebla and
Boya 2016)]. One relativelywell-studied instance is the post-lactational involution of
the mammary gland caused by lysosome-mediated, non-apoptotic, programmed cell
death. The key trigger of this process is milk itself, with a Stat3-dependent pathway
involving increased phagocytic uptake of milk fat globules by mammary epithelial
cells, resulting in degradation ofmilk triglycerides and the generation of an increased
concentration of oleic acid that disrupts the lysosomal membrane enabling cathepsin
release (Sargeant et al. 2014). Regulation of lysosomal membrane permeabilization
likely plays a wider role in health and disease although the complexities and molec-
ular mechanisms are poorly understood (Serrano-Puebla and Boya 2016). In cancer,
it has been suggested that minor lysosomal leakage may not necessarily be lethal
and that release of lysosomal cathepsins may be anti-apoptotic (Pislar et al. 2015).
In addition, what has been described as lysosome hyperactivity in some cancer cells
can result in increased lysosomal membrane vulnerability—a frailty that might be
exploited therapeutically by drugs that can induce lysosomal damage preferentially
in cancer cells [reviewed in (Hamalisto and Jaattela 2016)].
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6.5.3 Lysosomal Signalling, Ageing and Longevity

Lysosomal dysfunction has long been associated with cellular ageing and reduced
longevity in animals [reviewed in (Carmona-Gutierrez et al. 2016; Colacurcio and
Nixon 2016)]. Whilst much of this is associated with alterations in the degradative
and signalling functions discussed above, it has been suggested that an additional sig-
nalling pathway between lysosomes and the nucleus may play a role. In Caenorhab-
ditis elegans, increased lifespan occurs as a consequence of lysosomal production
of the bioactive lipid oleoylethanolamide, which is translocated into the nucleus by
a chaperone protein and affects the transcription of genes that regulate longevity.
Interestingly, the components of this signalling pathway are conserved in mammals
(Folick et al. 2015).

6.6 Conclusions

Whilst the lysosome was for a long time simply regarded as the terminal degradative
compartment of the cell’s endocytic and autophagic pathways, it is clear that it is in
fact a multifunctional signalling hub. The cell’s lysosomal compartment is function-
ally heterogeneous and includes endolysosomes, autolysosomes, storage lysosomes
and organelles at different stages of the lysosome fusion/regeneration cycle. It is
in constant dynamic exchange with endosomal and autophagosomal compartments,
links nutrient status to gene transcription, integrates hormonal and nutrient signalling,
signals to other intracellular organelles, ensures plasmamembrane integrity and plays
a role in regulating cell death and in the ageing and longevity of both individual cells
and themetazoanorganism.There aremany remaining important questions to address
concerning the lysosomal compartment and signalling. A non-exhaustive list of such
questions, where we currently have at best only partial answers, includes how the var-
ious fusion/fission events undertaken by organelles in the lysosomal compartment are
regulated and coordinated, how lysosomal acidity is regulated, how calcium accumu-
lation/release in the compartment is regulated, whether there is additional molecular
machinery to be discovered in the signalling pathways between the lysosome, the
nucleus and other organelles and whether there is physiologically significant hetero-
geneity in the signalling capacity of endolysosomes/lysosomes based on intracellular
positioning and/or stage in the lysosome fusion/regeneration cycle.
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