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Abstract The endocytic compartment is not only the functional continuity of the
plasma membrane but consists of a diverse collection of intracellular heterogeneous
complex structures that transport, amplify, sustain, and/or sort signaling molecules.
Over the years, it has become evident that early, late, and recycling endosomes rep-
resent an interconnected vesicular-tubular network able to form signaling platforms
that dynamically and efficiently translate extracellular signals into biological out-
come. Cell activation, differentiation, migration, death, and survival are some of the
endpoints of endosomal signaling. Hence, to understand the role of the endosomal
system in signal transduction in space and time, it is therefore necessary to dissect
and identify the plethora of decoders that are operational in the different steps along
the endocytic pathway. In this chapter, we focus on the regulation of spatiotempo-
ral signaling in cells, considering endosomes as central platforms, in which several
small GTPases proteins of the Ras superfamily, in particular Ras and Rac1, actively
participate to control cellular processes like proliferation and cell mobility.
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3.1 Introduction

3.1.1 An Overview of the Endosomal System

Endocytosis describes the internalization of nutrients, receptor–ligand complexes,
fluids, lipids, extracellular proteins and viruses, and many other biomolecules. Once
inside cells, endosomes are responsible for the fine-tuning of multiple pathways
that enable the degradation, recycling, storage, activation, or signaling of incoming
molecules. Since their discovery in the late 70s, using biochemical analysis and cel-
lular fractionation techniques on extracts from rat liver (Bergeron et al. 1978; Posner
et al. 1980;Marsh et al. 1983; Debanne et al. 1982), the knowledge on the complexity
of the endosomal compartment has vastly increased. Over the years, a huge number
of publications revealed an astonishing complex system of vacuolar-tubular endo-
somal structures with distinct characteristics that are dynamically interconnected,
communicating with the plasma membrane and other cellular compartments like the
trans-Golgi network (TGN). The proper functioning of this endocytic system guaran-
tees balanced cellular homeostasis and essential cellular processes like proliferation,
migration, invasion, division, polarity among many others (Scita and Di Fiore 2010;
Huotari and Helenius 2011; Gould and Lippincott-Schwartz 2009).

The endosomal membrane system consists of several different compartments.
Early endosomes (EEs) are the first andmain sorting station in the endocytic pathway
where endocytosed molecules that enter the cell via clathrin-dependent (CDE) or
clathrin-independent (CIE) pathways are routed to different cellular destinations.
From EEs, most internalized molecules are recycled back to the plasma membrane
directly by transport vesicles or indirectly through passage via recycling endosomes
(REs). Molecules in EE that are neither segregated for recycling nor directed to the
TGN, where it can be delivered to the cell surface via the secretory pathway, are
destined for degradation along the lysosomal pathway. For this to occur, EEs mature
to late endosomes (LEs)/multivesicular bodies (MVBs) and thereafter fusion with
lysosomes (Scita and Di Fiore 2010; Huotari and Helenius 2011; Mayor and Pagano
2007). There is also a continuous exchange between the TGN and the EEs in order to
direct acid hydrolases from the Golgi apparatus to lysosomes. The structure, identity,
and functionality of each endosomal compartment is characterized by a specific
luminal pH regulated by the vacuolar proton pumpV-ATPase andmost relevant to this
review, a specific combination of proteins, lipids, and signaling complexes attached
to its cytosolic membrane surface. In particular, the family of Rab GTPases is critical
for the organization of microenvironments that determine endosomal functions. Rab
proteins define the identity of endosomal subdomains by recruiting effectors and
facilitate membrane flux along the endocytic pathway (Jovic et al. 2010; Zerial and
McBride 2001). In the following, we will briefly outline the characteristics of the
various endosomal compartments, their respective Rab proteins and the Rab effectors
that define their identity. Intruigingly, some of these proteins and lipids listed below
and required to determine uniqueness and guiding of vesicle transport within the
endosomal compartment are intimately linked to the trafficking and signaling of rat
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sarcoma (Ras) and Ras-related C3 botulinum toxin substrate 1 (Rac1) proteins from
EEs, REs, and LEs (see Sect. 3.1.2 onwards).

EEs represent a weakly acidic (pH 6.8–6.1) compartment that is mainly located
in the periphery of the cell. This compartment is principally characterized by a
tubulo-vesicular morphology and the presence of Rab5 and its effector Vps34,
a phosphatidylinositol 3-kinase type III that generates the phosphoinositide (PI)
PtdIns(3)P. The presence of activeRab5 (Rab5-GTP),which is generated in a guanine
exchange factor (GEF) [rabaptin 5-associated exchange factor for RAB5 (Rabex5)]
and PtdIns(3)P-dependent manner, allows the recruitment of the effector early endo-
some antigen 1 (EEA1), which together with SNAREs (syntaxin 6 and 13) enables
endosome fusion. Rab5-GTP and PtdIns(3)P also recruit rabenosin-5, which inter-
acts with EH domain-containing protein 1 (EHD1) and regulates recycling from
EEs. In addition, EEs contain distinctive membrane microdomains enriched in spe-
cific proteins [including Rab4, Rab11, ADP ribosylation factor 1 (Arf1), complex
protein I (COPI), retromer, Rab9, or Rab7] that together with the cytoskeleton, actin,
and microtubules, regulate the subcellular trafficking of certain cargoes through slow
and fast recycling routes to the plasma membrane, the degradative pathway to lyso-
somes or retrograde transport to the TGN (Huotari and Helenius 2011; Vonderheit
and Helenius 2005; Rojas et al. 2008; Bonifacino and Rojas 2006; Hayer et al. 2010;
Bonifacino andHurley2008; Pfeffer 2009;Zerial andMcBride 2001; Sigismundet al.
2012; Johannes and Popoff 2008). There is also a subpopulation of EEs that instead
of EEA1 contain the Rab5 effector Adaptor protein containing PH domain, PTB
domain, and Leucine zipper motif 1/2 (APPL1/2). As outlined below, the presence
of APPL1/2 on EEmight be responsible to create specific endosomal subpopulations
that can trigger signaling events related to cell growth (see Sect. 3.1.2) (Miaczynska
et al. 2004; Schenck et al. 2008; Zoncu et al. 2009).

Rab5 also promotes the transformation of EEs to LEs by ensuing conversion
from a Rab5-positive to a Rab7-positive (LE) compartment. This Rab conversion is
achievedwhen theMon1-complex binds to PtdIns(3)P and facilitates the exchange of
theRab5-GEFRabex5 for theRab7-GEF that is associatedwith the homotypic fusion
and protein sorting (HOPS) complex (Poteryaev et al. 2010; Rink et al. 2005). In this
LEmaturation, intraluminal vesicles (ILVs) are acquired through the participation of
the endosomal sorting complex required for Transport (ESCRT) complexes by a reg-
ulated posttranslational ubiquitination and de-ubiquitination modification. Although
a simplematuration that confers the conversion of EE to LE compartment is possible,
it seems that a fission of domains within EE that acquired LE features participates
in the formation of the LE compartment. The resulting endosomal carrier vesicles
(ECVs) from this fission process move to the center of the cell via microtubules and
fuse with the LE compartment. The vacuolar LEs, arranged in a perinuclear location,
are more acidic (pH: 6.0–5.0), contain Rab7 and the PtdIns(3,5)P2, which is synthe-
sized by the PtdIns(3)P 5-kinase FAB1/PIKfyve. Finally, LEs will mature or fuse
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with lysosomes containing acidic hydrolases (proteases and lipases among others).
This compartment has a pH around 5.0–4.5, and its membrane is protected by the
presence of lysosome-associated membrane proteins (LAMP) proteins (Huotari and
Helenius 2011; Poteryaev et al. 2010; Jovic et al. 2010; Scott et al. 2014; Platta and
Stenmark 2011).

3.1.2 Endocytosis and Signaling from Endosomal
Compartments

Over the last decades, it has become apparent that signaling within the endosomal
system contributes to an enormous variety of events that participate in a range of
cellular processes. This has led to the widely accepted concept of the “signaling
endosome.”

This concept recognizes endocytosis to play a key role attenuating signals gen-
erated by activated receptors at the plasma membrane, directing them into the
degradative-lysosomal pathway. On the other hand, on route to lysosomes, these
active receptors can continue to signal in EEs and LEs/MVBs. Therefore, endo-
somes act as signaling platforms to maintain or prolong signals generated at the
plasma membrane. Sustained stimulation can be also enhanced by increased recy-
cling of receptors to the plasma membrane, which is often observed in tumor cells in
order to intensify proliferative signals. In addition, endosomes also seem to promote
localized and selective recruitment of scaffold and effectors proteins, thereby assem-
bling specific modules. These signaling building blocks can also be transported and
directed, through endocytosis-mediated recycling, to specific places in the cell or to
specific domains at the plasma membrane to achieve functionality (Sigismund et al.
2012; Lobert and Stenmark 2011; Jones et al. 2006; Frittoli et al. 2011; Taub et al.
2007; Teis and Huber 2003; Palamidessi et al. 2008; White et al. 2006; Sorkin and
von Zastrow 2009; Platta and Stenmark 2011; Ohashi et al. 2011; Puthenveedu et al.
2010; Dobrowolski and De Robertis 2011; Schiefermeier et al. 2014; Villasenor et al.
2016).

A substantial number of publications, using biochemical cellular fractionation
techniques aswell as new live cell imaging techniques such as fluorescence resonance
energy transfer (FRET), fluorescence-lifetime imagingmicroscopy (FLIM), photoac-
tivatable fluorescent proteins (PAFPs), or Ras and interacting protein chimeric unit
(Raichu) biosensors (Gonnord et al. 2012; Miaczynska and Bar-Sagi 2010; Murphy
et al. 2009), have highlighted the role of the endocytic system to attenuate or sustain
signaling, to participate in specific outcomes and to direct modules or complexes to
specific subcellular sites or microdomains. The potential relevance of the endocytic
system is highlighted in cancer, where altered dynamics of the endocytic pathway
are often associated with an inability to properly internalize, recycle, or degrade key
cancer drivers such as receptor tyrosine kinases, leading to aberrant proliferation
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and metastasis of tumor cells (Stasyk and Huber 2016; Lanzetti and Di Fiore 2008;
Porther and Barbieri 2015).

Before embarking on the focus of this chapter, the signaling of the small GTPases
Ras and Rac on endosomes (Sect. 3.2), it is essential to outline the overarching role
of cell surface receptors in signal transduction. Hence, in the following, we will first
illustrate in more detail the endosome signaling outputs for some receptors.

Specific endosomal signaling has been demonstrated for several families of
cell surface receptors, in particular, receptor tyrosine kinases (RTKs) such as the
epidermal growth factor receptor (EGFR), platelet-derived growth factor receptor
(PDGFR), hepatocyte growth factor receptor (HGF-R orMet), tropomyosin receptor
kinase A (TrkA), and insulin receptor (Ins-R). In addition, serine/threonine kinases
such as transforming growth factor beta (TGFβ) receptors, G-protein coupled recep-
tors (GPCRs), or Wnt and Notch receptors have also been reported to signal from
endosomes (Stasyk and Huber 2016; Joffre et al. 2011; Wang et al. 2002; Sorkin
and von Zastrow 2009; Dobrowolski and De Robertis 2011; Kermorgant and Parker
2008; Murphy et al. 2009; Flinn et al. 2010; Gould and Lippincott-Schwartz 2009;
Lanzetti and Di Fiore 2008; Le Roy and Wrana 2005; Tomas et al. 2014; Mellman
and Yarden 2013; Barrow-McGee and Kermorgant 2014).

To reach the endosomal compartment, the above-mentioned receptors appear to
employ different internalization routes, either via CDE or CIE. Interestingly, depend-
ing on ligand concentration, some receptors can be internalized by both entry routes,
which then differentially impacts on their signaling output. For instance, while CIE
for TGFβ-R and EGFR directs ligand–receptor complexes to lysosomes for degra-
dation, the CDE routes these receptors to signaling competent endosomal vesicles
distinct from the lysosomal pathway (Sigismund et al. 2008, 2012). Moreover, sig-
naling of these TGFβ- and EGF receptors, that remain ligand-bound and active after
internalization, are principal examples for the creation of a very localized and spe-
cific signal transduction elicited from EE microdomains exclusively located within
a population of Smad anchor for receptor activation (SARA)- and APPL-positive
endosomes, respectively. SARA, which binds PtdIns(3)P on EEs, is a scaffold pro-
tein that interactswithTGFβ-R andMothers against decapentaplegic (SMAD) family
member 2 enabling the phosphorylation of the former by TGFβ and its translocation
to the nucleus to regulate gene transcription (Hayes et al. 2002; Tsukazaki et al. 1998;
Di Guglielmo et al. 2003). On the other hand, APPL, which recruits protein kinase
B (PKB or AKT) and its substrate glycogen synthase kinase 3 (GSK3), is activated
and translocated to the nucleus by the endocytosed EGFR (Miaczynska et al. 2004).

Other examples for the relevance of endosomal signaling establishing discrete
cellular functions include the sustained signaling of GPCRs on endosomes, which is
important to ensure continuous cyclicAMPproduction andmitogen-activated protein
kinase (MEK)—extracellular signal-regulated kinases (ERK) signaling beyond its
initial activation at the cell surface (Vilardaga et al. 2014; Shenoy and Lefkowitz
2011; Sorkin and von Zastrow 2002). Internalization of nerve growth factor (NGF)
bound to its TrkA receptor has also been proven necessary to prolong activation
of Rap1 GTPase and to promote neuronal survival via ERK5 activation and cAMP
response element binding protein (CREB)-dependent transcription (Wu et al. 2001;
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Watson et al. 2001). In addition, the NGF-TrkA receptor–ligand complex can also
activate the Ras/mitogen-activated protein kinase (MAPK) pathway from endosomes
in neuronal cells (Howe et al. 2001).

EGFRexemplifies a classical example of specific and sustained signaling on endo-
somes. EGF induces the accumulation of EGFRand downstream signalingmolecules
such as SH2-containing collagen related (Shc), growth factor receptor-bound protein
2 (Grb2), son of sevenless (Sos), Ras, as well as the serine/threonine kinases rapidly
growingfibrosarcomaprotein 1 (Raf-1),Mek, andErk1/2 in endosome compartments
(Balbis et al. 2007; Lu et al. 2009; Moreto et al. 2008; Pol et al. 1998; Sorkin and von
Zastrow 2009; Teis et al. 2006; Di Guglielmo et al. 1994; Nada et al. 2009; Teis et al.
2002; Wang et al. 2002). In fact, early pioneering work from Vieira et al. elegantly
demonstrated the importance of CDE for the control of the EGFR signaling cascade
(Vieira et al. 1996). In these studies, inhibition of EGFR internalization, through over-
expression of a dominant-negative mutant of the vesicular fission protein dynamin
(Dynk44A), drastically interfered with activation of Raf-1 kinase downstream Ras
and consequently MAPK signal output, indicating a crucial role of endosomes in the
EGFR/Ras/Raf-1/MAPK signaling cascade (Vieira et al. 1996; Moreto et al. 2008).
Furthermore, in elegant experiments from Wang et al., the EGFR tyrosine kinase
inhibitor AG1478 was used to inhibit EGFR signaling at the cell surface, leading to
the internalization of nonactive EGF-EGFR complexes into endosomes. Subsequent
removal of AG1478 then enabled activation of endosome-associated EGFR followed
by Ras, ERK1/2, and Akt signaling to promote cell proliferation and survival (Wang
et al. 2002).

Under certain conditions, EGFR signaling likely occurs in the LE compartment,
as the late endosomal adaptors p14 and Mek partner-1 (MP1) can recruit Mek1 to
participate in EGFR-induced MAPK activation (Teis et al. 2002, 2006). Indeed, in
primary hepatocytes late endosomal EGFR signaling has recently been demonstrated
to participate in cell cycle progression (Luo et al. 2011). The p14/MP1 complex also
serves as a scaffold to recruit Rag GTPases, which sense amino acid levels and
together with Ras homolog enriched in brain (RheB) and hVps34, activate mam-
malian target of rapamycin complex 1 (mTORC1) in the endo-lysosomal (LE/Lys)
compartment to promote cell growth via protein synthesis (Sancak et al. 2010; Zoncu
et al. 2011; Duan et al. 2015).

In addition, p14/MP1 in the LE/Lys compartment is also critical for cell migration,
as the adaptor complex is directed to the cell periphery, in a Rab7-regulated manner,
in order to promote focal adhesion (FA) turnover for cell motility and tumor invasion
(Schiefermeier et al. 2014). Furthermore, in the context of cell migration, EEs, and
LE/Lys have also been identified to facilitate receptor-mediated signaling events that
activate and transport Rac1 GTPase to the leading edge (Palamidessi et al. 2008;
Menard et al. 2014; Joffre et al. 2011). Specific guanine exchange factors (GEFs) of
the small GTPase Rac1 are known to activate Rac1 in EEs and LEs. This is followed
by vesicular transport to the plasma membrane, where active Rac1 then regulates
the actin cytoskeleton to promote the formation of lamellipodia in the leading edge,
altogether creating forward movement. In the rear of migratory cells, EE and LE
control the delivery of the pro-migratory Endo180 receptor to promote adhesion
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disassembly by the Rho kinase-derived contractile signals (Gould and Lippincott-
Schwartz 2009; Sturge et al. 2006).

Further to the trafficking routes of Rac1 and Endo180 receptor to the front and
rear of moving cells, respectively, several recent publications have highlighted the
importance of recycling for the delivery of integrins from endosomes to specific
plasma membrane domains, which in combination with the export of membrane
type-1 matrix metalloproteinase 1 (MT1-MMP) also regulates motility and inva-
siveness (De Franceschi et al. 2015; Alanko and Ivaska 2016). Along these lines,
impaired cholesterol export fromLEs inNiemann–Pick type C1 (NPC1)mutant cells
or upon overexpression of annexin A6 interfered with the task of the RE compart-
ment to deliver cargo to the cell surface. This imbalanced distribution of intracellular
cholesterol strongly reduced integrin recycling from RE to plasma membrane, and
consequently, inhibited cell migration (Garcia-Melero et al. 2016; Reverter et al.
2014). Integrins are transmembrane adhesion proteins that by forming FAs con-
nect the F-actin cytoskeleton to the extracellular matrix (ECM), thus attaching cells
to their surroundings. In migrating cells, integrin recycling via a fast and Rab4-
dependent, as well as a slow and Rab11-dependent recycling route, is the driving
force to continuously assemble and disassemble FAs in the leading edge enabling
forward movement (De Franceschi et al. 2015; Shafaq-Zadah et al. 2016). Addi-
tionally, integrin-dependent adhesion to collagen type-1 matrix protein stimulates
MT1-MMP translocation, from the intracellular biosynthetic-storage compartment
and by a Rab8-dependent exocytosis, to surface structures that promote invasion of
MDA-MB-231 tumor cells (Bravo-Cordero et al. 2007). However, additional Rab
GTPases (Rab2, Rab5, Rab7, Rab14) and the internalization process could also reg-
ulate MT1-MMP activity at the plasma membrane in other settings (Frittoli et al.
2011; Wiesner et al. 2013; Williams and Coppolino 2011; Castro-Castro et al. 2016;
Kajiho et al. 2016). Interestingly, from the point of view of endosomal signaling,
integrins bind distinct sets of proteins when located at the plasma membrane or in
endosomes. Consequently, this elicits different signal output in endosomes: activa-
tion of focal adhesion kinase (FAK), Akt, ERK, and suppression of anoikis (Alanko
et al. 2015; Alanko and Ivaska 2016).

In summary, in this section we have given an overview how the endo/lysosomal
system provides membranous platforms to regulate spatiotemporal signaling in cells
(Flinn et al. 2010; Gould and Lippincott-Schwartz 2009; Kermorgant and Parker
2008; Lobert and Stenmark 2011; Ohashi et al. 2011; Palamidessi et al. 2008; Platta
and Stenmark 2011; Sorkin and vonZastrow2009; Taub et al. 2007). In the following,
we will discuss in more detail how the endosomal localization of several small
GTPases proteins of the Ras superfamily actively participates to control cellular
processes like proliferation and cell mobility.
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3.2 Signaling of the Small GTPases Ras and Rac1
from Endosomes

The Ras superfamily of GTPases comprising a total of 150 members is also known
as small GTPases due to their small molecular weight (20–40 kDa). They are classi-
fied into six subfamilies: Ras, Rho, Rab, Arf, Ran, and Galpha subunits (Flinn et al.
2010; Rojas et al. 2012). The Rho family members control cytoskeleton dynamics
and cellular mobility, while Rab and Arf proteins modulate formation and transport
of intracellular vesicles, including exo- and endocytosis. The Ran family coordinates
nuclear transport processes, and Galpha subunits manage GPCR signaling. Finally,
Ras GTPases are located upstream signaling cascades such as the Raf-1/MAPK
pathway that is known to regulate transcription relevant for proliferation and differ-
entiation processes among others.

Rac1, which will be discussed in more detail in Sect. 3.2.2, belongs to the Rho
subfamily and within the Ras subfamily there are four isoforms (HRAS, NRAS,
KRAS4A, and KRas4B). All of them have in common a module called the G-
domain, which adopts an α/β topology and contains 60–180 residues, responsible for
nucleotide (GTP)-dependent conformational changes of two internal regions named
switch region I (residues 30–38) and switch region II (residues 59–67) (Wittinghofer
and Vetter 2011). The ability to bind GTP and the concomitant conformational
changes associated with GTP or GDP binding enables Ras proteins to act as binary
molecular switches, active when GTP is bound to the G-domain and inactive when
GDP is associated with the G-domain. In the active state (GTP-bound), GTPases
interact and activate a plethora of different effectors with different functions, includ-
ing Raf-1, phosphoinositide 3–kinase (PI3K), RAL guanine nucleotide dissociation
stimulator (RalGDS), T lymphoma invasion and metastasis-inducing 1 (TIAM1),
WASP-family verprolin-homologous protein (WAVE,) and others. The active and
inactive state cycle is controlled by guanine exchange factors (GEFs) which facil-
itate the exchange of GDP for GTP. The ability of GEFs to remove GDP enables
more efficient GTP binding which is found at approximately tenfold higher con-
centrations compared to GDP in the cytosol. On the other hand, GTPase activating
proteins (GAPs) increase the intrinsic GTP hydrolyzing capacities of GTPases to
ensure rapid inactivation (Rajalingam et al. 2007; Downward 1996; Marshall 1996).
Both, GEFs and GAPs, are spatially and temporally modulated by external stimuli
and signaling molecules (Bos et al. 2007).

Given their prominent localization at the plasma membrane and proximity to
RTKs and GPCRs, Ras GTPases are key players in the initial steps of signaling
cascades generated at the cell surface and therefore control important processes such
as proliferation, differentiation, apoptosis, cytoskeleton dynamics or cell motility
(Malumbres and Barbacid 2003). However, critical for the “signaling endosome”
concept, the presence of Ras proteins in the endosomal compartment makes them the
key transducers of the signaling events generated by active receptors along endocytic
pathways.Asoutlined in the following sections inmoredetail,Ras andRac1 signaling
from endomembranes, in particular from endosomes, have been associated with
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proliferation, apoptosis, and/or cellular migration. Nevertheless, it should be noted
that some caution should be takenwhen referring to the conclusions based onRas and
Rac1 signaling from endosomes as the majority of published data has been obtained
from model systems that often express unphysiologically high levels of receptors
and signaling components.

3.2.1 Ras Signaling from Endosomes

3.2.1.1 The Ras Family

In human cells, Ras isoforms are encoded by three genes: KRAS (Kirsten rat sar-
coma viral oncogene homolog, NRAS (Neuroblastoma RAS viral (v-ras) oncogene
homolog), and HRAS (Harvey rat sarcoma viral oncogene homolog). This gives
rise to 4 different Ras isoforms (~21 kDa): HRas, NRas, KRas4A, and KRas4B
(referred to as KRas), the latter two being derived from alternative RNA splicing.
Since Ras proteins control proliferation, survival and migration, missense mutations
at position G12, G13, and Q61 result in gain-of-function Ras mutants that confer
oncogenic activity. All these mutations impair Ras-GTP hydrolysis by inhibiting its
intrinsic GTPase activity. Consequently, this interferes with the action of GAPs and
Ras remains in a constitutively active state. Hence, oncogenic Ras mutant hyper-
activity contributes to the initiation and progression of a large variety of human
cancers (~25% of human cancers, with KRas being the most frequently mutated iso-
form) (Hobbs et al. 2016; Barbacid 1987; Bos 1989; Malumbres and Barbacid 2003;
Rajalingam et al. 2007; Newlaczyl et al. 2014).

Given their prominent contribution to the development of tumorigenic events,
much effort over the years aimed to unravel the structure, localization and differential
function of the Ras isoforms. Structural analysis first revealed that all Ras isoforms
shared a highly conserved and nearly identical globular N-terminal domain (residues
1–165), which binds nucleotides and the majority of Ras effectors (see Sects. 3.2.1.3
and 3.2.1.4). However, as described in more detail below, important differences
were found in the C-terminal domain (last 24–25 residues), named the hypervariable
region (HVR), which is posttranslational modified and responsible for differential
subcellular localization and as a result differential signaling among the Ras isoforms
(Barbacid 1987; Hancock 2003; Mor and Philips 2006; Fotiadou et al. 2007; Calvo
et al. 2010; Eisenberg and Henis 2008; Prior and Hancock 2012). For instance, in cell
culture, KRas activates the small GTPase Rac1 more efficiently than HRas because
of their differently membrane anchoring and localization, which is consequently
translated in more efficient KRas induction of membrane ruffling, pinocytosis, cell
motility, and cell survival than HRas (Walsh and Bar-Sagi 2001).
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3.2.1.2 Synthesis, Processing, and Trafficking of Ras Isoforms
to the Plasma Membrane

Ras proteins are synthesized in the cytosol as globular hydrophilic proteins (188
amino acids in the case of KRas and 189 for all other Ras isoforms) containing a
C-terminal CAAX motif (C, cysteine; A, aliphatic residue; X, any residue); being
CVLS, CVVM and CVIM for H-, N-, and KRas, respectively. This CAAX sequence
is essential for subsequent posttranslational modifications of Ras and its successive
targeting to different cellular membranes. Because Ras proteins contain a methion-
ine or a serine as last amino acid (X residue), this CAAX sequence is specifically
recognized by a farnesyl transferase in the cytosol, which irreversibly incorporates
a farnesyl group (15-carbons isoprenyl) to the cysteine C186, and C185 in KRas.
Farnesylation allows Ras proteins to insert and localize on the endoplasmic reticulum
membrane for subsequent CAAX modifications which includes AAX hydrolysis by
Ras-converting enzyme 1 (Rce1) and the methylation of the remaining farnesylcys-
teine residue by Isoprenylcysteine carboxyl methyltransferase (Icmt) (Fehrenbacher
et al. 2009) (see [1] in Fig. 3.1). Strikingly, despite all these posttranslational mod-
ifications occurring for each Ras isoform, H-, N-, and KRas then follow different
routes from the ER to the plasma membrane (Mor and Philips 2006).

Although farnesylcysteine methylation is an essential prerequisite, it is not suf-
ficient for cell surface delivery, and Ras needs a second signal to finally reach
the plasma membrane or other organelles like endosomes. In the case of KRas,
this second signal is a polybasic region (PBR) composed of six basic lysine
residues near the farnesylcysteine in the HVR. This PBR motif electrostatically
interacts with anionic phospholipids in membranes, such as phosphatidylinositol-
4,5-bisphosphate PtdIns (4,5)P2, the phosphatidylinositol-3,4,5-trisphosphate PtdIns
(3,4,5)P3 or phophatidylserine (PS) (Hancock et al. 1990; Cho et al. 2012; Apolloni
et al. 2000; Heo et al. 2006; Yeung et al. 2008; Gelabert-Baldrich et al. 2014).
Hence, through a yet still not well-defined Golgi exocytic-independent route that
likely involves the above-mentioned electrostatic interactions both signals (farnesyl
lipid group and PBR) contribute to direct KRas from the ER to the plasmamembrane
(Apolloni et al. 2000; Magee andMarshall 1999) (see [2] in Fig. 3.1). The molecular
machinery that regulates this trafficking route is also not well known and includes
the possibility of a passive electrostatic switch. Alternatively, recent results from
the Bastiaens group suggest that the delta-subunit of phosphodiesterase 6 (PDE6-δ),
or maybe other chaperone-like proteins, act as a cytosolic solubilization factor and
its binding to the farnesyl moiety of KRas could then facilitate KRas trafficking
to the plasma membrane. Once at the plasma membrane, the highest electrostatic
interaction exerted by acid phospholipids could compete and displace PDE6-δ from
KRas, favoring its incorporation or insertion into the inner leaflet of the cell surface
phospholipid bilayer (Schmick et al. 2015).

Much different to the complex regulation of KRas translocation to the cell surface,
the second signal for targeting H-, N-, and spliced KRas4A proteins to the plasma
membrane is represented by the reversible addition of one or two palmitoyl groups
at additional cysteine residues adjacent to the CAAX motif. A palmitoyl-transferase
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Fig. 3.1 Different routes to the plasma membrane and through the endocytic compartment
followed by the Ras isoforms. Once synthesized in the cytosol, Ras isoforms are cysteine farne-
sylated in their terminal CAAX motif by farnesyl transferases (FTs). This is followed by further
posttranslational modificationsmediated by Ras-converting enzyme 1 (Rce1) and Isoprenylcysteine
carboxyl methyltransferase (Icmt) in the endoplasmic reticulum (ER) [1]. This scheme recapitu-
lates the following traffic routes for the different Ras isoforms: H- or NRas trafficking is shown in
orange and KRas trafficking is depicted in green. KRas reaches the PM by still not well-defined
non-vesicular routes that likely involve chaperone proteins like PDE-δ [2]. In contrast, H- and
NRas use the vesicular exocytic pathway via Golgi and/or Golgi and recycling endosomes (RE)
to the plasma membrane (PM) [3]. H- and NRas switch between PM and the Golgi by the action
of thioesterases at the PM and palmitoyl-transferases (PATs) at the Golgi, which is known as the
acylation cycle [4]. Moreover, from the PM, H-, and NRas can be internalized via CDE or CIE
pathways to reach early endosomes (EEs) [6], where they can either be recycled back to PM trough
RE [9] or remain retainedwhen ubiquitinated [7]. On the other hand, KRas can also use the vesicular
CDE pathway but the bidirectional movement of KRas between PM and endosomal compartments
is mainly accomplished through an electrostatic switch modulated by serine phosphorylation (P-
181S) or binding proteins, like CaM or PDE-δ, to its hypervariable region [5]. KRas can also return
back from RE to the PM via a Arl2-dependent vesicle transport route [10]. In contrast to H- and
NRas, KRas moves to late endosome/multivesicular bodies (LE/MVBS) on route for degradation
in lysosomes (Lys) [8]

enzyme localized in the Golgi/ER is responsible for palmitoylation of HRas at C181
and C184, NRas at C181and KRas4A at C180 (Hancock et al. 1989; Swarthout
et al. 2005). This modification stabilizes the membrane interaction of these Ras
isoforms and favors its transport to the plasma membrane through vesicles carriers
following the exocytic pathway from the TGN (Choy et al. 1999). In some cases
this includes trafficking through REs, which act as a way-station for palmitoylated
H- and NRas proteins as they move along the post-Golgi exocytic pathway to the
plasma membrane (Misaki et al. 2010) (see [3] in Fig. 3.1). Palmitoylation being
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decisive for these Ras proteins to reach the plasma membrane was experimentantlly
evidenced in live cell imaging, where green fluorescent protein (GFP)-tagged and
palmitoyl-deficient Ras mutants were mislocalized in the ER and Golgi and lacked
delivery to the plasma membrane (Hancock et al. 1989; Choy et al. 1999). Note that
palmitoylation also contributes to certain levels of diversity in the Ras family. While
di-palmitoylated HRas is strongly associated with membranes and can efficiently
follow the slow exocytic transport to the plasma membrane, the mono-palmitoylated
N- and KRas4A isoforms need additional hydrophobic/basic amino acid sequences
(Laude and Prior 2008). The different mechanisms that contribute to Ras processing
associated with different trafficking routes are depicted in Fig. 3.1.

One can envisage that the differential contribution of the various CAAX motifs,
posttranslational modifications (farnesylation, palmitoylation), together with HVR
sequence variations, will impact on their spatiotemporal distribution, with con-
sequences for their ability to activate effector pathways. Hence, the possibility
to uncover underlying principles for the creation of signal diversity prompted
researchers to extensively examine the distribution of Ras isoforms at the plasma
membrane. Indeed, subcellular fractionation as well as advanced imaging identified
that once at the plasma membrane, Ras isoforms display distinct localizations in
specific membrane subdomains. Moreover, it is now believed that active and inac-
tive Ras proteins are organized in nanoclusters, containing 6–7 Ras proteins per
nanocluster. Over the years, it has become clear that these clusters highly depend
on the distribution of lipids within the membrane. HRas is the best-characterized
member of the Ras family in this context, with HRas-GTP nanoclusters being found
in disordered (fluid, cholesterol-poor) domains (Prior et al. 2003; Zhou and Han-
cock 2015). In contrast, HRas GDP clusters are mainly localized in cholesterol- and
sphingolipid-rich domains (lipid rafts). While NRas seems to distribute similar to
HRas, KRas is predominantly localized outside lipid rafts. In addition, a distinct
cohort of phospholipids, in particular phosphatidylserine, but also phosphatidic acid
and phosphatidylinositides contribute to the spatial segregation of Ras isoforms. The
different distribution of active and inactive Ras proteins implicates lateral movement
of Ras isoforms in the plasmamembrane. As Ras activity is determined byGTP/GDP
exchange, the localized recruitment and activity of GEFs and GAPs appears criti-
cal to ensure the transient nature of Ras nanoclusters (Grewal and Enrich 2006).
Interestingly, a specialized form of lipid raft, caveolae, seems to critically trans-
late environmental cues, such as mechanical stress, into the remodeling of lipids
at the plasma membrane that in turn extensively modulate the organization of Ras
nanoclusters (Ariotti et al. 2014). As such, caveolin-1 deficiency or downregula-
tion of cavin-1, another structural component of caveolae, alters phosphatidylserine
distribution at the plasma membrane, which correlates with enhanced KRasG12V
nanoclustering andMAPK signaling. Yet lateral segregation of HRas was abolished,
thereby compromising signal output from HRasG12V nanoclusters (Ariotti et al.
2014).

In addition to their differential distribution at the cell surface outline above, the
different posttranslational modifications of each Ras isoforms affect also the asso-
ciation dynamics of cytosolic Ras protein pools with the plasma membrane. It was
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originally postulated that all Ras isoforms display stablemembrane association,mov-
ing by lateral diffusion as described above (Niv et al. 1999, 2002). However, under
certain conditions or upon specific posttranslational modifications, Ras localization
at the plasma membrane switches from lateral diffusion to exchange dynamics with
cytoplasmic Ras protein pools (Vartak and Bastiaens 2010). As described above,
activation of H- and NRas, via GTP-induced conformational changes, leads to their
exchange between lipid rafts and non-rafts (Gorfe et al. 2007). Yet, H- and NRas can
also dissociate from the plasma membrane in a process known as the acylation cycle,
which involves the depalmitoylation of cysteine residues in their HVR domain that
is independent of the activation state of Ras (Rocks et al. 2005, 2010). This non-
vesicular pathway is mediated by acyl protein thioesterases in the plasma membrane
rapidly returning Ras to the diffusing low-membrane affinity farnesylated Ras pool in
the cytoplasm. It is yet unclear how the cell translates the intricate network of cellu-
lar and environmental signals to provide the balance between lateral diffusion at the
plasma membrane or diffusion into the cytosol, but one modulating factor could be
the interaction of the Ras-farnesyl group with PDE-δwhen Ras proteins are depalmi-
toylated (Vartak and Bastiaens 2010; Chandra et al. 2011; Goodwin et al. 2005). This
could enable protein acetyltransferase (PAT) enzymes to trap depalmitoylated Ras
specifically in Golgi/ER membranes, where another round of palmitoylation and
trafficking through the exocytic pathway may then be required to ensure the return to
the plasma membrane (Rocks et al. 2005; Schmick et al. 2015) (see [4] in Fig. 3.1).

While a general concept of diffusion dynamics for H- and NRas seems to be
emerging, the data on trafficking dynamics of KRas to and from the plasma mem-
brane is more complex and in part controversial. Initially, it was proposed that the
half-time for KRas membrane desorption was in the order of minutes or even longer,
which was in consonance with a postulated stable plasmamembrane association reg-
ulated by lateral diffusion (Silvius et al. 2006; Niv et al. 1999, 2002). Lately, Silvius
et al. (2006), using an inducible heterodimerization technique between ectopically
expressed KRas and a complementary binding partner confirmed predominant KRas
association with the plasma membrane under basal conditions. Yet, this included
a continuous cycling of KRas on and off the membrane in an interval of minutes.
Further results from Yokoe and Meyer indicate that the rate of KRas exchange
between plasma membrane and cytoplasm may be even more rapid, within seconds
(Yokoe and Meyer 1996). In line with these findings, in vitro studies demonstrated
that the PBR of KRas associates with lipid bilayers in a rapidly reversible manner
with a half-time of seconds or less (Leventis and Silvius 1998). On the other hand,
depending on the experimental settings and stimuli, desorption of KRas from the
plasma membrane is also modulated by several KRas-interacting proteins, as such as
PDE-δ, prenylated Rab protein acceptor protein 1, calmodulin (CaM), and galectin-3
(Chandra et al. 2011; Bhagatji et al. 2010; Elad-Sfadia et al. 2004; Figueroa et al.
2001; Fivaz andMeyer 2005; Lopez-Alcala et al. 2008; Nancy et al. 2002; Villalonga
et al. 2001; Philips 2012). In addition, the protein kinase C (PKC)-mediated phos-
phorylation of active KRas at serine 181 (Ballester et al. 1987) affects the PBR net
charge of KRas, thereby inducing an electrostatic switch that displaces KRas from
the plasma membrane to endomembranes, including endosomes (Bivona et al. 2006;
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Chandra et al. 2011). KRas phosphorylation at serine 181 inhibits CaM binding
and accordingly, CaM efficiently interacts with non-phosphorylated KRas-GTP
(Lopez-Alcala et al. 2008), an interaction that also favors KRas desorption from
the plasma membrane (Bhagatji et al. 2010; Fivaz and Meyer 2005). In this context,
elegant studies fromFivaz andMeyer revealed the physiological significance of these
interactions in neuronal cells, as cell activation caused the translocation of KRas
from the plasma membrane to endosomes through sequestration of the PBR-farnesyl
motif in a Ca2+/CaM-dependent manner (Fivaz andMeyer 2005) (see [5] in Fig. 3.1).

3.2.1.3 Ras Trafficking Along Endocytic Routes

Although Ras proteins are predominantly found at the plasma membrane to trans-
duce signals received from surface receptors, substantial amounts of Ras proteins
have also been identified in subcellular organelles where they can elicit several func-
tions. Over the last decades, the combination of cellular fractionation techniques
with newly developed advanced microscopy revealed the presence of Ras proteins in
endosomal fractions, visualized their trafficking to endosomal structures in live cells,
and provided extensive colocalization data with established markers of the different
endocytic compartments (Lu et al. 2009; Moreto et al. 2008, 2009; Pol et al. 1998;
Howe et al. 2001; Fivaz andMeyer 2005; Jiang and Sorkin 2002; Gomez andDaniotti
2007; Roy et al. 2002; Yeung et al. 2008; Hancock 2003; Gelabert-Baldrich et al.
2014; Choy et al. 1999; Zheng et al. 2012b; Prior and Hancock 2012). Most of the
results have been obtained with ectopic expression of fluorescently tagged wildtype,
active and inactive Ras mutant proteins in different cell types. Using advanced imag-
ing like FRET, FRAP technology or in the case of KRas, RAICHU probes, these
fusion constructs were critical tools to develop experimental approaches that were
able to monitor the location and activity of Ras proteins over time in live and fixed
cells. As the availability of sensitive antibodies specific for Ras isoforms and their
activity remains an issue in the field, these fluorescently labeled Ras proteins have
been proven very valuable. However, despite the great insights obtained with these
methodologies, it should be noted that a lot of the conclusions drawn from these
overexpression studies still lack validation for their endogenous counterparts.

In general, Ras proteins can be translocated from the plasma membrane to endo-
somes via two different routes. The pathway mainly used by H-, N-, and KRas4A is
through endocytic vesicles derived fromCDE and CIE pathways (Porat-Shliom et al.
2008; Howe et al. 2001; Gomez and Daniotti 2005; Jiang and Sorkin 2002; Roy et al.
2002) (see [6] in Fig. 3.1). The other route predominantly used by KRas involves
desorption from the plasma membrane into the cytosol, followed by non-vesicular
diffusion shuttling mechanism to endosomes (Gelabert-Baldrich et al. 2014; Fivaz
and Meyer 2005; Yeung et al. 2008; Schmick et al. 2015) (see [5] in Fig. 3.1).

Endocytosed palmitoylated Ras proteins, via CDE or Arf6-dependent CIE
encounter the EE or RE compartment in a process regulated by Rab5 or Rab11
GTPases (Gomez and Daniotti 2005; Porat-Shliom et al. 2008; Howe et al. 2001)
(see [6] in Fig. 3.1). In EEs, H- and NRas can be mono- and di-ubiquitinated via
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a lysine 63-linked chains on lysine 117, lysine 147, and lysine 170 independently
of their activation state (Jura et al. 2006). This is not a degradative posttranslational
modification but rather stabilizes these Ras isoforms in endosomes and inhibits their
recycling to plasma membrane (Jura et al. 2006) (see [7] in Fig. 3.1). The HVR of
these Ras proteins is not an obligatory acceptor for ubiquitin but participates in ubiq-
uitination by the E3 ubiquitin ligase Rabex5 (Xu et al. 2010). Interestingly, activated
Ras induces the recruitment of Rabex-5 to endosomes through a RAS and RAB inter-
actor 1 (RIN1)-containing machinery. Consequently, this leads to Rab5 activation.
Hence, through this complex interplay of Ras with ubiquitination and Rab5 activ-
ity, Ras modulates its own stability in endosomes (Zheng et al. 2012b; Ahearn et al.
2011). In addition, retention of Ras proteins in endosomes is also regulated by several
members of the sorting nexin (SNX) family such as SNX17, SNX27, and SNX31,
which bind PtdIns(3)P as well as active Ras on endosomes (Ghai et al. 2011).

In contrast to H- and NRas, KRas is mono-ubiquitinated via lysine 45-linked
chain on lysine 104 and lysine 147 and this modification does not affect its endoso-
mal trafficking but enhances interactions with several effectors (Sasaki et al. 2011).
Overall, the endosomal localization of KRas is less prominent compared to H- and
NRas isoforms, probably because KRas is less retained on endosomes and as a result
faster recycling to the plasma membrane may occur (Vigil et al. 2010; Jiang and
Sorkin 2002; Roy et al. 2002). Yet, despite the small amount of KRas in EE, KRas
can also continue its journey to LE/MVBs and eventually into lysosomes following
the degradative endocytic pathway (Lu et al. 2009) (see [8] in Fig. 3.1). This feature
is strikingly different to H- and NRas, which are essentially found in EEs and REs
following the recycling route to the plasma membrane (see [9] in Fig. 3.1). The traf-
ficking of GFP-tagged KRas through these different compartments was confirmed
by colocalization with established endocytic markers for EE, LE and LE/lysosomes
(Lu et al. 2009). Moreover, subcellular fractionation identified approximately 10%
of ectopically expressed GFP-KRas, but also endogenous KRas independent of its
activation state, in purified EE and LE fractions (Lu et al. 2009; Gelabert-Baldrich
et al. 2014). The trafficking routes that deliverKRas to LE and lysosomes are not fully
resolved. As GFP-KRas is observed in clathrin-coated pits and vesicles, KRas may
reach EE/LE/MVB/lysosomes via CDE and endosomal transport vesicles (Lu et al.
2009). However, FRAP microscopy implicated that delivery through transport vesi-
cles accounted for only a minor proportion of GFP-KRas on endosomal membranes
(Gelabert-Baldrich et al. 2014).

FRAP analysis identified a fast replenishment (half-time 1.3 s) of approximately
80% of the bleached GFP-KRas pool on endosomes. This indicates that KRas is
highly dynamic, which is in agreement with a model of rapid diffusional incorpora-
tion from the cytoplasm. Strikingly different from KRas, the fluorescence recovery
was negligible for GFP-H- and GFP-KRas4A, strongly supporting their dependence
in slow vesicular transport (Gelabert-Baldrich et al. 2014).

Based on these findings, one can assume that cellular stimuli that lead to KRas
serine 181 phosphorylation or promote association of known PBR/farnesyl-binding
proteins to the active KRas (CaM, PRA1, PDE-δ) could regulate KRas interaction
dynamics with endosomes by inducing electrostatic switch or membrane dissocia-
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tion, respectively (Alvarez-Moya et al. 2011; Bhagatji et al. 2010; Fivaz and Meyer
2005; Lopez-Alcala et al. 2008; Chandra et al. 2011; Bivona et al. 2006). Indeed,
FRAP microscopy in COS1 cells identified that the constitutively inactive KRas
mutant KRasS17N was more immobile than the active mutant KRasG12V as a con-
sequence that active KRas, but not the inactive, can bind CaM or can be posttrans-
lationally modified via serine 181 phosphorylation (Gelabert-Baldrich et al. 2014)
(see [5] Fig. 3.1).

As previously mentioned, the PDE-δ protein, through its interaction with the
farnesyl group of KRas, regulates KRas localization and dynamics on endoso-
mal membranes and plasma membrane. This interaction solubilizes KRas from
endomembranes with low negatively charged surfaces, including EE membranes,
leading to a redistribution of KRas to perinuclear RE membranes. The underlying
mechanism for this redistribution was based on an activity in RE that displaced KRas
from PDE-δ. Further studies then identified the Arf-like GTPase Arl2, which in its
active form binds to an allosteric site on PDE-δ, thereby inducing a conformational
change that unloads farnesylated cargo (Ismail et al. 2011). Finally, from RE, KRas
follows the recycling pathway to the plasma membrane through vesicular transport
(Schmick et al. 2015) (see [10] in Fig. 3.1). Trafficking of the different isoforms is
summarized in Fig. 3.1.

3.2.1.4 Ras Signaling Pathways from Endosomes

Several studies identified upstream components of the Ras activation pathway on
endosomes, including activated EGFR and adaptor proteins Shc/Grb2. This complex
is able to recruit Sos1, facilitating GDP/GTP exchange for increasing Ras activity
in the endosomal compartment (von Zastrow and Sorkin 2007; Vieira et al. 1996;
Herbst et al. 1994; Jiang and Sorkin 2002; Wang et al. 2002). Ras activation on
endosomes in live cells has been elegantly demonstrated using FRET microscopy,
which allows the spatiotemporal analysis of interaction between molecules inside
cells (Jiang and Sorkin 2002; Moreto et al. 2008; Miaczynska and Bar-Sagi 2010).
This methodology is based on the energy transfer between two spectrally overlap-
ping GFP variants in cells, for instance, Cyan/cerulean-FP acting as a donor and
Yellow/Venus-FP as an acceptor of energy. In order to determine Ras activation uti-
lizing FRET, one of the GFP variants were fused with Ras, while the other GFP
variants was fused with the Ras-binding domain of the Raf1 effector. This approach
appeared appropriate to detect Ras activation on endosomes (Lu et al. 2009; Jiang
and Sorkin 2002; Gomez and Daniotti 2005; Misaki et al. 2010), in particular, as
phosphorylated and activated Raf1 was present in purified endosomes from rat liver
(Di Guglielmo et al. 1994; Pol et al. 1998). In addition, bimolecular fluorescent com-
plementation (BiFC) microscopy has been also very useful to characterize several
other Ras effectors that interact directly or in a protein complex with active Ras
on endosomes, such as PI3K and Cdc42 (Tsutsumi et al. 2009; Chang and Philips
2006; Cheng et al. 2011). The BiFC technique relies on the fusion of the N- and
C-terminal Venus fluorescent protein with Ras and the RBD of the selected effector,
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respectively. Once both proteins interact, the Venus fluorophore rebuilds by comple-
mentation, generating a fluorescence signal that can be monitored using microscopy
(Zheng and Chang 2014).

The FRET technology described above is based on the overexpression of two
fluorescent proteins, often creating false FRET signals that did not correlate with
endogenous Ras activation. Unimolecular FRET technology using Raichu probes
provided a great advancement for the field. In this approach, YFP-KRas is fused
to the CFP-tagged RBD of Raf-1 to provide a single (‘biosensor’) construct that
upon KRas activation, allows intramolecular binding to Raf-RBD. This ultimately
brought CFP and YFP in close proximity to create a detectable FRET signal. Using
this Raichu probe, it has been demonstrated that EGF-induced activation of KRas in
live cells (Lu et al. 2009; Kiyokawa et al. 2006; Mochizuki et al. 2001; Miaczynska
and Bar-Sagi 2010).

Despite these findings, the general perception in the field still considers Ras acti-
vation at the plasma membrane rather than endosomal signaling as the driver of
oncogenic events. However, in NIH3T3 cells, inhibition of Ras internalization to
exclusively examine Ras signaling emanating from the cell surface was inefficient
to effectively induce cell transformation (Cheng et al. 2011). In addition, a focus
formation assay identified expression of endosomal GFP-Ras to produce more foci
than the GFP transfected control (Aran and Prior 2013). Hence, endosomal Ras sig-
naling seems to substantially contribute to oncogenic events. In the following, we
will dissect some of the Ras isoforms and their effector pathways and endosomal
locations that possibly contribute to cell transformation.

The identification of signal specificity within the Ras family has captivated
the field for a long time, as the highly conserved effector binding G-domain in
all active Ras (GTP-bound) isoforms is capable to interact with the same set of
effectors (Wittinghofer and Herrmann 1995) to potentially elicit the same signaling
output. Out of more than 20 known Ras effectors, Raf1 and PI3K have been the
most extensively studied, driving MEK/MAPK and Akt signaling cascades that
control proliferation and cell survival, respectively. Based on their similar binding
behavior, it was initially proposed that Ras isoforms would have no preference to
couple with either Raf1/MAPK or PI3K/Akt (Omerovic et al. 2008). However, more
recent work revealed that depending on the activated Ras isoform, Raf1/MAPK and
PI3K/Akt effector pathways appear to be differentially regulated on endosomes. This
observation seems to be a consequence of the Ras isoform-specific posttranslational
ubiquitin modifications discussed previously. The ubiquitination of H- and NRas on
endosomes, which stabilizes their association with EE and simultaneously, reduces
recycling to the plasma membrane (see Sect. 3.2.1.3), impairs interaction of H- and
NRas with Raf1. Consequently, MAPK activation is reduced, yet PI3K/Akt activa-
tion is not affected (Xu et al. 2010; Yan et al. 2010; Jura et al. 2006). Hence, inhibition
or overexpression of the ubiquitin ligase Rabex5, which is responsible for H- and
NRas ubiquitination on endosomes, resulted in increased or attenuated Raf1/MAPK
activation, respectively (Xu et al. 2010; Yan et al. 2010). In a much more complex
scenario, Rin1, the GEF for Rab5, can bind HRas on endosomes and simultaneously
stimulates Rab5-dependent endocytosis (Cheng et al. 2011; Tall et al. 2001). If the
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latter then triggers Rabex5 recruitment, this could also lead to HRas ubiquitination,
thereby generating a negative feedback mechanism for HRas/MAPK activation.

Despite the substantial amount of data generated frommultiple research groups in
recent years on Ras signaling from endosomes, including FRETmicroscopy demon-
strating interaction of ectopically expressed HRas with Raf1 on endosomes (Jiang
and Sorkin 2002), Sorkin and coworkers recently reported that endogenous HRas
signals from receptors activated at the plasma membrane and not from internal
membranes (Pinilla-Macua et al. 2016). These findings clearly challenge the now
widely accepted concept of HRas-mediated Raf1/MAPK activation on endosomes
highlighting the need for cautious interpretation of data based on ectopic Ras over-
expression, which generate highly elevated Ras levels compared to their endogenous
counterpart. Hence, future research with advanced technology that would clarify the
signaling activities of endogenous HRas on endosomes is still required.

In contrast to the inhibitory impact of ubiquitination on H- and NRas activity, the
same posttranslational modification enhances KRas activity. This increases inter-
action with Raf1 and PI3K, thus elevating signal output of MAPK and Akt path-
ways (Sasaki et al. 2011). Interestingly, HRas- and KRas-mediated activation of the
Raf1/MAPK cascade varies in its dependence on endocytosis, CaM and PI3K activ-
ity (Roy et al. 2002; Moreto et al. 2008, 2009). Actually, inhibition of CaM and/or
PI3K impairs recycling from EEs, which seems to be linked to HRas/MAPK inhi-
bition (Roy et al. 2002). In fact, CaM inhibition generates enlarged endosomes by
preventing the exit of endocytosed molecules, such as the EGFR, from EEs (Tebar
et al. 2002) by a molecular mechanism that involves PKC-δ activity (Llado et al.
2004) and actin polymerization (Llado et al. 2008).

In COS1 cells, inhibition of endocytosis via overexpression of the dominant-
negative dynamin mutant dynK44A, negatively affects HRas-dependent activation
of Raf1 (Moreto et al. 2008). Although dynK44A may also affect other cellular pro-
cesses, Omevoric et al. also demonstrated that inhibition of receptor internalization
reduced H- and N-, but not KRas-mediated Raf1 activation (Omerovic et al. 2008).
Together with reports demonstrating HRas and Raf1 interaction in Rab11-positive
recycling endosomes after serum stimulation (Gomez and Daniotti 2005), this may
suggest that Raf1 activation by HRas indeed occurs in endosomes. Taken together,
current views favor divergent roles of endosomes in H/NRas-mediated Raf1/MAPK
activation. Signal outcome, either abrogation or stimulation, could be explained by
the existence of two different pools of H/NRas on endosomes: ubiquitinated Ras
(Raf1/MAPK incompetent) and non-ubiquitinated Ras (Raf1/MAPK competent).
The final signal output from H- and NRas on endosomes would then depend on
the balance between these two Ras pools, which could be modulated differently by
environmental signals, experimental settings, and the cell type.

Besides the differential regulation of Ras isoforms in EE described above, an
additional layer of signal specificity is achieved through the localization of KRas,
but not H- and NRas in LE/MVBs/lysosomes. In COS1 cells, Raichu probes revealed
that EGF stimulation increased KRas activity in LE/MVBs, which in combination
with Raf1 and the p14/MP1 scaffold for MEK and ERK (Teis et al. 2002), activates
MAPK in this compartment (Lu et al. 2009).
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Most interestingly, although the pool of ubiquitinated H- and NRas displays
impaired MAPK activation in EEs, these isoforms are perfectly competent to acti-
vate the Rho-GTPase Cdc42, thus regulating Cdc42-dependent cytoskeletal rear-
rangements and cell transformation when they are endocytosed (Cheng et al. 2011;
Cheng andChang 2011). These findings complementRas function in the fissionYeast
pombe, which only express one Ras protein, Ras1. At the plasma membrane, Ras1
activates Byr2 (a MEKK homolog)/MAPK but on endomembranes, Ras1 activates
Sed1, a GEF for Cdc42 but not MAPK. Thus, in endosomes Ras also activates the
cytoskeleton to maintain an elongated morphology, cell polarity, and mitosis (Chang
and Philips 2006; Onken et al. 2006). Strikingly, HRas-mediated Cdc42 activation
also seems relevant in vivo, as expression of a constitutively active HRas mutant
restricted to endomembranes induced tumors in nude mice by a mechanism com-
prising HRas/Cdc42 complex formation (Cheng et al. 2011). This interaction may
be mediated by Dbl, one of several GEFs for Cdc42 (Cheng et al. 2011; Cerione
2004). Moreover, the presence of NRas-, and to a minor extent, KRas-containing
Cdc42 complexes in these studies could indicate their contribution to tumor initia-
tion (Cheng et al. 2011).

That Ras isoform signaling from endosomal compartments is intimately linked
to the endocytic machinery is further highlighted by a screen for HRas effectors in
endosomes using BiFC methodology. This study confirmed interaction of ubiqui-
tinated HRas with Cdc42 and PI3K in this compartment (Zheng and Chang 2014;
Tsutsumi et al. 2009), but also identified CHMP6/VPS20 and VPS4A as HRas inter-
action partners, all proteins of the ESCRT-III complex that controls recycling from
endosomes to the plasma membrane (Zheng et al. 2012a). One could speculate that
the latter interaction could increase recycling of HRas, but also other components of
endosomes, such as growth factor receptors, to enhance and sustain growth factor
signaling.

Finally, among the differentRas effectors, it is noteworthy tomentionT lymphoma
invasion andmetastasis-inducing 1 (Tiam1) (Lambert et al. 2002), which is a specific
GEF for the small GTPase Rac1 (Habets et al. 1994). Interestingly, endosomal Tiam1
activates Rac1 in this compartment, a prerequisite for the subsequent transport of
active Rac1 to specific plasmamembrane domains and the generation of lamellipodia
in migrating cells (Palamidessi et al. 2008). Together with Tiam1 being required for
the development of Ras-induced skin tumors (Malliri et al. 2002), this points at
Tiam1 as a critical link between Ras and Rac1 in metastasis. The role of Rac1 on
endosomes will be explained in more detail in the following section. Figure 3.2
summarizes endosome signaling outcome of different Ras isoforms.
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Fig. 3.2 Signaling pathways and outputs from endosomes generated byRasGTPases. Growth
factors induce Ras activation in early endosomes (EE) by recruiting the molecular machinery
required for Ras-GTP loading, including adaptors Grb2, Shc, and the guanine exchange factor
Sos1. In EE, activated H- or NRas (orange) and KRas (green) then signal through Raf1/Mek/Erk
and PI3K/Akt pathways to regulate cell proliferation and survival, respectively. In the case of
KRas, Erk activation is also elicited in late endosome/multivesicular bodies (LE/MVBs) through
the Raf1/p14/MP1/Mek signaling cascade, which may also support cell proliferation. Furthermore,
trafficking of KRas along the degradative route via LE/MVBs and lysosomes (Lys) finally down-
regulates KRas signaling. In addition, once in EEs, Ras isoforms then also follow the recycling
pathway back to the plasma membrane (PM). Along this route, activation of the Raf1/Mek/Erk
cascade can occur in the recycling endosomal compartment (RE), which consequently impacts on
cell proliferation. In the EE compartment, Ras regulates several cellular processes by activating
GEFs of other signaling proteins. In particular, Ras stimulates Tiam1-mediated Rac1 activation
for cell motility and Rin1-mediated Rab5 activation to increase endocytosis. In EEs, Ras isoforms
could also become substrates for the ubiquitin ligase Rabex5 for ubiquitination. This posttransla-
tional modification enables all Ras isoforms to enhance PI3K activation but differentially affects the
ability of H-, N-, or KRas to regulate Raf1 activity. On the other hand, ubiquitinated H- and NRas,
through CHMP6 and VPS4A, increase overall transport through the recycling pathway. Addition-
ally, both ubiquitinated as well as non-ubiquitinated H- and NRas activate Cdc42, through the GEF
Dbl2, which may control cell morphology and transformation
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3.2.2 Rac1 Signaling from Endosomes

Rac proteins belong to the Rho subfamily within the Ras superfamily of small
GTPases (Bishop and Hall 2000; Didsbury et al. 1989). Mammalian organisms
express three Rac isoforms: Rac1, the focus of this chapter, is ubiquitously expressed,
while Rac2 is mostly expressed in the hematopoietic lineage and Rac3 is only found
in the central nervous system (Didsbury et al. 1989; Bolis et al. 2003). Together with
Rho and Cdc42, Rac1 represents one of the three most extensively studied Rho fam-
ily members, all well known to coordinate cytoskeleton dynamics that control the
formation of stress fibers, filopodia, and lamellipodia, respectively, for cell mobility
(Bishop and Hall 2000; Hall 1998; Ridley 2001).

By controlling the dynamics of the actin cytoskeleton, Rac1 regulates many cel-
lular processes linked to cell motility, including cell spreading, adhesion, migration,
and axonal growth, but also phagocytosis, macropinocytosis, pinocytosis or vesic-
ular transport (Bosco et al. 2009; Ridley 2006; Heasman and Ridley 2008; Bustelo
et al. 2007). Moreover, a wide range of cellular functions, not strictly related with the
control of the cytoskeleton, have also been described for Rac1, such as cell survival,
the control of gene expression, cell cycle, cell differentiation as well as proliferation
(Bosco et al. 2009; Sahai and Marshall 2002; Bishop and Hall 2000). In this context,
some mitogenic Rac1 activities can be attributed to signaling events downstream of
oncogenic Ras (Samuel et al. 2011; Joneson et al. 1996; Qiu et al. 1995).

Hence, given the multiple functions of Rac1 in fundamental cellular processes,
deregulation of Rac1 has been identified to significantly contribute to pathogenic
events in several human diseases, including cardiovascular diseases, and metastatic
disseminationduring cancer progression (Marei andMalliri 2016; Sahai andMarshall
2002). Indeed,Rac1 is a potent regulator of epithelial-mesenchymal transition (EMT)
and its reverse process, mesenchymal-epithelial transition (MET), both considered
critical to guide cell migration and metastasis of epithelial tumors (Marei andMalliri
2016).

Although activating mutations of Rac1 have only been found with a very low
frequency in lung, skin or breast cancer (Schnelzer et al. 2000; Davis et al. 2013),
its significant contribution to cell motility, metastasis and cancer progression has
been thoroughly demonstrated (Parri and Chiarugi 2010; Bosco et al. 2009; Marei
and Malliri 2016). However, despite these pro-oncogenic activities, Rac1 and its
GEF Tiam1 also protect against invasion by stabilizing cadherin-mediated cell—
cell contacts (Marei and Malliri 2016), and restoring epithelial morphology in Ras-
transformedMadin Darby canine kidney cells (Hordijk et al. 1997). It is believed that
these pro- and anti-invasive Rac1 activities could be triggered by different stimuli, or
response to changes in the surrounding microenvironment, such as cell interaction
with the ECM or reflect differential effects of Rac1 activity in relation to the stage
of tumor progression (Sander et al. 1998; Sahai and Marshall 2002; De Franceschi
et al. 2015; Marei and Malliri 2016; Bosco et al. 2009).
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3.2.2.1 Synthesis, Processing and Trafficking of Rac1

In the cytosol, Rac1 is synthesized as a hydrophilic protein and like the Ras iso-
forms, contains a C-terminal CAAX motif (CLLL). The final leucine residue allows
its recognition by a geranylgeranyltransferase type I that covalently incorporates a
geranylgeranyl group (20-carbons isoprenyl) to the cysteine residue of the CLLL
recognition sequence (Reid et al. 2004). This first cytosolic posttranslational modifi-
cation enables incorporation of Rac1 into ER membranes and the subsequent AAX
hydrolysis, followed bymethylation of the geranylgeranylated cysteine residuemedi-
ated by Rce1 and Icmt enzymes, respectively, similar to the processing of Ras iso-
forms described above (Sect. 3.2.1.2). Adding additional complexity in the regulation
of Rac1 processing, localization and activity, interaction with Rho-GDP dissociation
inhibitor (RhoGDI) proteins then facilitates solubilization of ER-associated Rac1
and consequently, Rac1 release into the cytosol (Bustelo et al. 2007; Hoffman et al.
2000; Marei and Malliri 2016).

Like all other Ras GTPases, Rac1 switches between the active GTP-bound and
inactive GDP-bound form, a cycle controlled by several Rho-GEFs and Rho-GAPs
that ensure the spatiotemporal regulation of Rac1 activity (Sahai andMarshall 2002).
However, in striking contrast to the Ras isoforms, the interaction of RhoGDIs with
Rac1, as well as the other members of the Rho family, provides an additional layer to
control Rac1 activity. RhoGDIs mainly interact with the inactive Rac1 (GDP-bound)
via the G-domain and the geranylgeranyl group, which weakens the membrane
anchoring provided by the geranylgeranyl group, thereby solubilizing and seques-
tering the inactive Rac1 GTPase into the cytosol (Olofsson 1999; DerMardirossian
and Bokoch 2005; Grizot et al. 2001). Extensive research over the years identified
multiple regulatory circuits driven by growth factors and other external stimuli that
can modify this interaction. For instance, RhoGDI can be phosphorylated by PKC
or p21-activated kinase (PAK), decreasing its affinity for Rac1-GDP and allowing
the insertion of the Rac1 prenyl group into the plasma membrane, followed by GEF-
mediated activation of Rac1 (DerMardirossian et al. 2004; Price et al. 2003). Also,
integrins can displace RhoGDIs by favoring Rac1 insertion into lipid rafts, special-
ized plasmamembrane domains associatedwithRac1 activation (del Pozo et al. 2000,
2002). This complex regulatory circuit is initiated by ECM proteins, fibronectins,
first activating integrins in lipid rafts. This stimulates phospholipase D (PLD) and
leads to the localized generation of PA in this membrane domain, which competes
with RhoGDI for the binding to Rac1. Ultimately, this ensures the Rac1 prenyl group
insertion into this membrane domain, which favors Rac1 activation and consequently
cell spreading, lamellipodia and migration (Chae et al. 2008).

Within the hypervariable region and adjacent to the CAAX motif, Rac1 also
harbors a polybasic region. Several reports demonstrate that this PBR electrostat-
ically interacts with anionic membrane phospholipids, like PS, PtdIns(3,4,5)P3,
PtdIns(3,5)P2, or PA, determining its localization in specific membrane domains
under different physiological conditions (Michaelson et al. 2001; ten Klooster and
Hordijk 2007; Finkielstein et al. 2006; Yeung et al. 2006; Chae et al. 2008). In addi-
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tion, a proline-rich domain neighboring the PBR has been demonstrated to contribute
to the targeting of Rac1 to cellular focal adhesions (ten Klooster et al. 2006).

Finally, Rac1 is also palmitoylated at the cysteine 178 amino acid, which greatly
enhances Rac1 membrane stability and promotes its localization and functionality in
cholesterol-rich plasmamembrane domains (lipid rafts) (Navarro-Lerida et al. 2012).
Similar to theRas isoforms, at the plasmamembraneRac1 canbe internalized through
CIE transport vesicles reaching EEs and then LEs. The role of Rac1 endocytosis in
signaling and its implication in the regulation of different cellular processes is detailed
in the next section.

3.2.2.2 Signaling Pathways Regulated by Rac1 from Endosomes

As the genetic ablation of Rac1 in mice results in embryonic lethality (Sugihara et al.
1998) limited information of Rac1 function in vivo is available up to date, mostly
relying on studies modulating Rac1 effector gene expression. Therefore, the current
knowledge in the field is still based on the vast majority of Rac1 signaling studies
performed in cell culture experiments using different cell types.

Signaling elicited by Rac1 effectors commonly are related to actin cytoskeleton
rearrangements. One of the most extensively studied Rac1 effectors is PAK which
phosphorylates LIM kinase and cortactin, among others, to coordinate actin poly-
merization (F-actin) at the plasmamembrane in a multifactorial process that includes
the actin-related protein-2/3 (Arp2/3) complex, Neural Wiskott–Aldrich syndrome
protein (N-WASP)/WASP-family verprolin-homologous protein (WAVE), cofilin or
dynamin proteins (Frost et al. 1998; Yang et al. 1998; Vidal et al. 2002; Webb
et al. 2006; Sauvonnet et al. 2005; Schafer et al. 2002; Grassart et al. 2010). In
addition, another Rac1 effector determining actin dynamics is phosphatidylinositol-
4-phosphate 5-kinase (Tolias and Carpenter 2000; Tolias et al. 2000; Vidal-Quadras
et al. 2011; Weernink et al. 2004; Chao et al. 2010), which upon activation leads
to increased production of PtdIns(4,5)P2 at the plasma membrane (Doughman et al.
2003; Tolias et al. 2000; van den Bout and Divecha 2009; Shibasaki et al. 1997). On
the other hand, Rac1 interacts and activates phospholipase C enzymes (Illenberger
et al. 1998; Jezyk et al. 2006; Li et al. 2009), which hydrolyzes PtdIns(4,5)P2 to gen-
erate diacylglycerol and PtdIns(3)P both well established second messengers. This
rapid turnover of PtdIns(4,5)P2 has been demonstrated to promote F-actin polymer-
ization and cell migration (Li et al. 2009). The diversity and complexity of PIs modu-
lating Rac1 signaling are further underscored with PI3K generating PtdIns(3,4,5)P3
from PtdIns(4,5)P2, which affects cell migration and cell survival controlled by Rac1
(Yang et al. 2011; Murga et al. 2002). Moreover, PtdIns(3,4,5)P3 is able to recruit
several Rac1-GEFs to the plasma membrane, providing multiple opportunities for
positive feedback mechanisms between PI3K and Rac1 (Zhu et al. 2015; Ebi et al.
2013).

All of these Rac1 effectors are critical for actin organization at the plasma mem-
brane, which in addition to controlling formation of membrane protrusions such as
lamellipodia in migrating cells, also influences endocytosis (Lamaze et al. 1996;



88 F. Tebar et al.

Soriano-Castell et al. 2017). For instance, Rac1 impacts on CIE of receptors, such as
IL-2R (Grassart et al. 2008; Lamaze et al. 2001), fluid phase ingestion, TrkA recep-
tor internalization via macropinocytosis (Valdez et al. 2007), as well as phagocytosis
of pathogens (Etienne-Manneville and Hall 2002; Criss et al. 2001). Interestingly,
the recently identified novel Rac1 effector amyotrophic lateral sclerosis 2 (ALS2)
gene, which is vital for motor neurons, is a Rab5-GEF driving Rac1 activation for
macropinocytosis and the subsequent fusion of macropinosomes with EEs (Kunita
et al. 2007).

As outlined above, membrane recruitment of Rac1 effectors is intimately linked
to cholesterol- and sphingolipid-enriched domains, but is also strongly influenced
by the distribution of phosphorylated derivatives of PI. All of these membrane lipids
localize to distinct membrane domains at the plasma membrane and in endosomal
compartments, contributing to the recruitment of distinct effectors that not only
establish signaling platforms, but also control membrane dynamics. Thus, Rac1 does
not only control endocytic transport (see above), but vice versa endocytic trafficking
is also instrumental in modulating Rac1 activity. This intermingled connection
between endocytic trafficking and signal output provides opportunity for localized
Rac1 signaling within the endocytic compartment and has been thoroughly demon-
strated for ectopically expressed and fluorescently tagged Rac1, Raichu sensors, or
photoactivatable GFP-Rac1 by means of biochemical and microscopy techniques.
For instance, endocytosis of activated growth factor receptor enabled Rac1 activa-
tion in EEs and LEs, while RE ensured the translocation of active Rac1 to specific
plasma membrane domains to control decisive events enabling forward movement,
such as cell–cell contact, focal adhesion dynamics, assembly and disassembly of
invadopodia or lamellipodia membrane protrusion at the leading edge (Menard
et al. 2014; Revach et al. 2016; Garcia-Weber and Millan 2016; Stasyk and Huber
2016; Miaczynska and Bar-Sagi 2010; De Franceschi et al. 2015; Zhou et al. 2007;
Harrington et al. 2011). Indeed, Kermorgant and coworkers demonstrated that the
signaling output from endosomes of activated HGF-R (Met) not only enables Rac1
activation in this compartment, but subsequently ensures redirection of active (GTP-
bound) Rac1 to the plasma membrane to control cell migration (Barrow-McGee and
Kermorgant 2014). This implicates Rac1 signaling events from endosomes as well
as from the plasma membrane to cooperatively determine the migratory behavior
of cells. Indeed, PI3K activity and the Rac1-GEF Vav2 in perinuclear endosomes
are required to sustain Rac1 signaling output to efficiently activate cell migration
and invasion (Menard et al. 2014; Joffre et al. 2011). Most strikingly, constitutively
active and oncogenic Met mutants (M1268T and D1246N), which accumulate in
endosomal compartments, are characterized by enhanced endosomal Rac1 activity,
reduced actin stress fibers, and increased cell migration, highlighting the significant
contribution of endocytosis, and endosomal Rac1 signaling to tumor progression
and metastatic events (Joffre et al. 2011; Barrow-McGee and Kermorgant 2014).

Further underscoring endocytic trafficking substantially contributing to Rac1 acti-
vation, after growth factor-induced activation ofmotogenic receptors such asHGF-R,
Rab5 activity, and CDE is required for Rac1 activation on EEs through the Rho-GEF
Tiam1. Moreover, the recycling of active endosomal Rac1 back to the plasma mem-
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brane, via the small GTPase Arf6, triggered the formation of actin-based migratory
protrusions. This endocytic trafficking route of active Rac1 through Rab5- and Arf6-
positive compartments seems to contribute to cell motility in a variety of tumor cells
(Palamidessi et al. 2008). In support of the latter, it has been described that active
Arf6 induces Rac1 activation through endosomal trafficking (Donaldson et al. 2009).

In other cell types and settings, the initiation of Rac1 signaling from endosomes
does not always require growth factor activation. For example, in endothelial cells
ECM-bound β1-integrins recruit another member of the Ras superfamily, R-Ras,
to nascent adhesions in lamellipodia, which promotes β1-integrin and R-Ras inter-
nalization by a Rab5-dependent pathway. Once endocytosed, R-Ras then activates
Rac1 through Tiam1, followed by active Rac1 redirection to the plasma membrane
to control cell adhesion and morphogenesis (Sandri et al. 2012). Similarly, TrkB
receptor-mediated activation of PI3K and Tiam1/Rac in endosomes is essential to
mediate the chemotactic response of the brain-derived neurotrophic factor (Zhou
et al. 2007).

While the majority of Rac1 signaling events described above seem to occur pre-
dominantly in EE and RE compartments, Rac1 activity has also been associated with
proteins and events located in LE. Along this line, the small GTPase Rab7, an estab-
lished LEmarker that controls late endocytic trafficking, directly interacts with Rac1
and both proteins colocalize in endosomes at the perinuclear region and on vesicles
near the plasma membrane. It has been recently demonstrated that Rab7 enables
Rac1 activation and promotes Rac1 delivery to the plasma membrane to stimulate
cell migration (Margiotta et al. 2017). Moreover, Rab7 and Rac1 association also
facilitates endosomal transport, throughmicrotubules and actin filaments, in the con-
text of ruffled border formation in osteoclasts, E-cadherin turnover, and stability of
cell-cell contacts (Sun et al. 2005; Frasa et al. 2010).

In the LE compartment, the small GTPase RhoB acts as a negative regulator of
Rac1 activity. Hence, inhibition of RhoB induced Rac1 activity and consequently
lamellipodia protrusion (Garcia-Weber and Millan 2016). In contrast, active RhoB
retained Rac1 in intracellular endosomal localizations and prevented Rac1 activa-
tion and its recycling to the cell border, blocking Rac1-dependent endothelial barrier
reformation and stabilization of cell-cell junctions (Marcos-Ramiro et al. 2016).
These findings are in consonance with the protective effect of HGF-induced and
Tiam1-dependent Rac1 activation on endothelial cell barrier function, also requiring
the Rac1 effector cortactin and a formation of a cortical actin ring (Birukova et al.
2007). Other negative Rac1 regulators include Rab11-family interacting protein 3
(FIP3). In T-cells, this interaction diverts Rac1 to a Rab11-positive recycling perin-
uclear endosomes, restricting access of Rac1 to the plasma membrane. In fact, FIP3
silencing induced T-cell spreading, a process that is controlled by Rac1, suggesting
endosomal trafficking of Rac1 to regulate T-cell spreading in the immunological
synapse (Bouchet et al. 2016).

Finally, it should be noted that the localization of intracellular Rac1 regulatorsmay
include players not restricted to the EE, RE, and LE compartments. This includes
Rab8, which has been implicated in exocytic/recycling membrane trafficking, but
also actin and microtubule cytoskeletal rearrangements (Hattula et al. 2006; Huber
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Fig. 3.3 Involvement of the endosomal compartment in Rac1 activation and trafficking to
plasmamembrane. This scheme illustrates the current knowledge onRac1 activation on endosomes
and Rac1 transport to the plasmamembrane (PM) to regulate actin dynamics. In the cytosol, inactive
Rac1 (GDP-bound, yellow) is sequestered and maintained soluble by RhoGDI. RhoGDI could be
released by phosphorylation through activated p21-activated kinase (PAK)/protein kinase C (PKC)
[1]. Alternatively, RhoGDI can be released by activated integrins bound to the extracellular matrix
(ECM) upon phospholipase D (PLD) activation and generation of phosphatidic acid (PA), which
competes with RhoGDI for Rac1 binding [2]. This allows the insertion of Rac1 at the PM and its
interactionwithGEFs, which are recruited to the PMby vesicular transport [3] or by interactionwith
elevated phosphoinositides at the PM. This interaction consequently leads to Rac1 activation (GTP-
bound, green).At thePM, activeRac1 regulates cytoskeletondynamicswhich controls phagocytosis,
macropinocytosis, membrane ruffling, protrusion and lamellipodia formation. Exemplifying the
multiple links between Rac1 activity and endocytosis, the Rac1-effector Als2 is a Rab5-GEF, which
together with Rac1-induced actin rearrangements, activates macropinocytosis and the subsequent
fusion of macropinosomes with early endosomes (EE) [4]. Endocytic membrane compartments and
vesicular transport are also critical for Rac1 activation and its redirection to specific PM domains
to exert the above-mentioned functions. Growth factor stimulation induces Rac1 activation in EEs
and late endosomes (LEs/MVBs) by the GEFs Tiam1 [5] and Vav2 [6], respectively. Thereafter,
recycling from these compartments by Arf6 [7], via the recycling compartment (RE), and Rab7 [8]
redirects active Rac1 to specific domains at the PM. In addition, the Rab11 effector FIP3 in EEs
[9] and the GTPase RhoB in LE/MVBs [10] have also been reported to deliver Rac1 to associated
sequestering endocytic vesicles, which inactivate Rac1 by impairing its recycling to the PM
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et al. 1993; Peranen et al. 1996; Roland et al. 2007). Rab8 localizes to vesicular
structures, including RE and LE, but also the Golgi region, and peripheral membrane
ruffles, and increases Rac1 activity and Tiam1/Rac1 mobilization from intracellular
compartments to cortical locations to maintain directionality of migrating cells by
enabling focal adhesion turnover and actin polymerization (Bravo-Cordero et al.
2016).

In summary, the aforementioned results exemplify and highlight the role of the
endocytic system to regulate spatiotemporal Rac1 functionality. Several of these
results have been illustrated in Fig. 3.3.
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