
Transitivity vs Preferential Attachment:
Determining the Driving Force Behind

the Evolution of Scientific
Co-Authorship Networks

Masaaki Inoue1,2(B), Thong Pham2, and Hidetoshi Shimodaira1,2

1 Kyoto University, Kyoto, Japan
minoue@sys.i.kyoto-u.ac.jp
2 RIKEN AIP, Tokyo, Japan

Abstract. We propose a method for the non-parametric joint estima-
tion of preferential attachment and transitivity in complex networks, as
opposite to conventional methods that either estimate one mechanism
in isolation or jointly estimate both assuming some functional forms.
We apply our method to three scientific co-authorship networks between
scholars in the complex network field, physicists in high-energy physics,
and authors in the Strategic Management Journal. The non-parametric
method revealed complex trends of preferential attachment and transitiv-
ity that would be unavailable under conventional parametric approaches.
In all networks, having one common collaborator with another scientist
increases at least five times the chance that one will collaborate with that
scientist. Finally, by quantifying the contribution of each mechanism, we
found that while transitivity dominates preferential attachment in the
high-energy physics network, preferential attachment is the main driv-
ing force behind the evolutions of the remaining two networks.
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1 Introduction

Cooperation is among the most fundamental behaviors of living creatures [1].
Animals cooperate in various activities: from hunting and forming territories to
grooming and child raising [2]. Humans are the experts of cooperation. From
cooperation between states [3], companies [4] to cooperation between individu-
als [5], it is the bedrock of our society.

As a form of human cooperation, scientific collaboration is the backbone
of the scientific world. In this process, scientists share their ideas, their time,
and their skills with each other in order to push the boundary of knowledge.
Since the start of the twentieth century, the number of scientific articles with
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more than one author has grown to more than three times the number of single-
author articles [6]. There is accumulating evidence that articles resulted from
collaborations are cited more frequently than non-collaborated ones [6,7]. Since
the number of citations is the main metric of scientific impact [8], collabora-
tions thus lead to high impact research. Therefore, understanding the evolution
of a scientific co-authorship network, in particular, understanding how new col-
laborations are fostered, is significantly important for policy makers, funding
agencies, university managers as well as each scientist.

To understand the evolution of a scientific co-authorship network, it is bene-
ficial to consider this evolution in a larger context of the evolution of a complex
network. Two defining characteristics of an evolving complex network are the
heavy-tail of the degree distribution and the high value of the clustering coeffi-
cient [9]; both are often represented at the same time in scientific co-authorship
networks [10,11].

On the one hand, to explain the heavy tail property, complex network studies
have proposed the preferential attachment (PA) mechanism where the probabil-
ity that a node with degree k receives a new link is proportional to the PA
function Ak [12,13]. When Ak is an increasing function on average, nodes with
higher numbers of links will receive more new links, and thus hubs are formed
and the heavy-tail degree distribution emerges.

On the other hand, one of the most simple mechanisms to explain the high
value of the clustering coefficient is transitivity where the probability that a
pair of nodes with b common neighbors receives a new link is proportional to the
transitivity function Bb [14]. When Bb is an increasing function on average, more
triangles are formed between sets of three nodes, and this leads to an increase
in the clustering coefficient.

Existing approaches either estimate one mechanism in isolation [13–15] or
estimate jointly the two mechanisms assuming some parametric forms for Ak

and Bb [16,17]. On the one hand, estimating either mechanism in isolation often
leads to poor fit, since many real-world networks exhibit simultaneously heavy-
tail degree distribution and high-clustering. On the other hand, it is difficult
to justify a particular choice of functional forms used in parametric estimation
methods. A non-parametric estimation method would allow the functional forms
to be learnt from the observed data.

Estimating Ak and Bb is the first step towards answering the question of what
matters more in the evolution of a complex network: transitivity or PA. While
there is some research studying a similar question regarding PA and fitness [18],
the question regarding PA and transitivity has curiously remained unexplored,
despite its potential to provide deeper understanding on how new cooperation
is fostered.

Our contribution is threefold. In our first contribution, we propose a method
for the non-parametric joint estimation of the PA function Ak and the transitiv-
ity function Bb. In our model, the probability that a new edge emerges between
node i and node j at time step t is

Pij(t) ∝ Aki(t)Akj(t)Bbij(t), (1)
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where ki(t) and kj(t) are the degrees of nodes i and j at time-step t, respectively,
and bij(t) is the number of common neighbors between i and j at that time-step.
We estimate Ak and Bb by maximum likelihood estimation. The log-likelihood of
the observed data is maximized by a Minorize-Maximization algorithm [19]. This
is an iterative algorithm that increases the log-likelihood value at each iteration
until convergence. Although our primary targets for estimation are the non-
parametric functions Ak and Bb, one can apply the same maximum likelihood
estimation method for the power-law parametric model where we assume Ak =
(k + 1)α and Bb = (b + 1)β . The method is discussed more in details in Sect. 2.

We use the co-authorship network between scientists in the complex net-
work field [20] to illustrate the goodness-of-fit of three estimation methods: (a)
jointly estimating the two mechanisms, i.e., the proposed method in Eq. (1),
(b) estimating the PA function Ak in isolation, i.e., Pij(t) ∝ Aki(t)Akj(t), and
(c) estimating the transitivity function Bb in isolation, i.e., Pij(t) ∝ Bbij(t). In
each case, after estimation, starting from the same initial snapshot as in the
real-world data, we simulated the new edges based on Pi,j(t) while we kept
the numbers of new nodes and new edges at each time-step exactly the same
as in the real-world network. Figure 1 shows the clustering coefficient C in the
final snapshot of the simulated networks of each case over 100 replications. Only
the proposed method of joint estimation could satisfactorily reproduce the true
clustering coefficient C∗. This implies that the true growth mechanism in this
network, whatever it might be, is closer to PA + transitivity than either PA or
transitivity alone. Using, for example, transitivity alone to explain the growth of
the network would lead to over-estimation of the transitivity function Bb, since
the edge-increasing effect of the neglected PA mechanism has to be explained by
Bb alone. This over-estimation, in turn, would lead to an overly high C as can
be seen in Fig. 1.

In our second contribution, we propose a method to quantify the contribu-
tions of PA and transitivity mechanisms in the growth process of a network,
and thus provide a way to answer the question of what matters more: PA or
transitivity. The method is discussed in Sect. 3.

In our third contribution, we analyzed three scientific co-authorship networks
between scholars in the complex network field [20], physicists in high-energy
physics [21], and authors in the Strategic Management Journal (SMJ) [22]. The
results are shown in Sect. 4. As opposite to conventional parametric approaches,
the non-parametric approach provides us a chance to investigate finer details of
PA and transitivity mechanisms. While Ak in CMP and SMJ is increasing in
general, its trend is complex in HEP: it is first increasing, then decreasing, and
finally increasing again. On the other hand, while Bb in HEP shows a clearly
increasing trend, it is flat or even decreasing in CMP and SMJ when we exclude
b = 0.

Furthermore, in all networks, having at least one common collaborator with
another scientist increases at least five times the chance that one will collaborate
with that scientist in the future, which is consistent with previous studies [14].
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Fig. 1. Simulated clustering coefficients in three cases: the proposed method (jointly
estimating the two functions), estimating the PA function in isolation, and estimating
the transitivity function in isolation in the co-authorship network between scientists in
the complex network field. The number of replications is 100. The plotted box in each
case shows the population mean and its ±2σ confidence interval. The red dashed line
represents the value of the true clustering coefficient.

This implies that, if one wants to boost their number of collaborators, one should
collaborate with well-connected scientists.

By quantifying the contribution of each mechanism in the growth process, we
also found that while transitivity dominates PA in the high-energy physics net-
work, preferential attachment triumphs transitivity in the remaining networks.
Concluding remarks are given in Sect. 5.

2 Maximum Likelihood Estimation

In this section, we describe the maximum likelihood estimation method for
the model described in Eq. (1). Let kmax be the maximum value of the
degree of a node and bmax be the maximum value of the number of com-
mon neighbors between a pair of nodes. The variables we want to estimate are
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A = [A0, A1, . . . , Akmax−1] and B = [B0, B1, . . . , Bbmax−1]. The log-likelihood
function is:

l(A,B) =
T∑

t=1

kmax−1∑

k1=0

kmax−1∑

k2=k1

bmax−1∑

b=0

mk1,k2,b(t) log Ak1Ak2Bb

−
T∑

t=1

m(t) log

(
kmax−1∑

k1=0

kmax−1∑

k2=k1

bmax−1∑

b=0

nk1,k2,b(t)Ak1Ak2Bb

)
, (2)

where m(t) is the number of new edges at time-step t, mk1,k2,b(t) is the
number of new edges at time-step t between node pairs (i, j) that satisfy
(ki(t), kj(t), bi,j(t)) = (k1, k2, b), and nk1,k2,b(t) is the number of such pairs.
By substituting Ak = (k + 1)α and Bb = (b + 1)β in Eq. (2), we can obtain the
log-likelihood function of the parametric model. In practice, logarithmic binning
is applied to k and b for fast computation [13]. The log-likelihood function in
Eq. (2) can be maximized by an MM algorithm [19]. Starting from some ini-
tial vectors A0 = [A0

0, A
0
1, . . . , A

0
kmax−1] and B0 = [B0

0 , B
0
1 , . . . , B

0
bmax−1], the

algorithm updates Ai and Bi in parallel so that l(Ai, Bi) is monotonically
increasing in i.

3 Calculating the Contributions of PA and Transitivity

It is not straightforward to meaningfully quantify the contributions of PA and
transitivity. According to Eq. (2), if we define Â = [Â0, Â1, . . . , Âkmax−1] and
B̂ = [B̂0, B̂1, . . . , B̂bmax−1] as the estimated PA and transitivity functions, then
(Â, B̂) and (cÂ, dB̂) give the same log-likelihood value for any positive constant
factors c and d. This means that the magnitudes of Â and B̂ cannot be mean-
ingfully compared with each other and summary statistics that bases solely on
magnitudes such as the mean are also out of the question.

The contributions vPA(t) of PA and vtrans(t) of transitivity at time-step t,
however, can be meaningfully defined if we look at scale-invariant statistics, such
as the variance of logarithmic values. From Eq. (1), we have:

log Pi,j(t) = log Âki(t)Âkj(t) + log B̂bij(t) + S(t),

for some constant S(t) that is independent of i and j. We have the following
three observations. Firstly, what matters is the variances in log Pi,j(t) across
node pairs (i, j): the more uniform log Pi,j(t)’s are, the closer the behavior at
time-step t of the temporal network to that of an Erdös-Rényi random net-
work where each pair (i, j) has the same probability of developing new edges
regardless of ki(t), kj(t) and bi,j(t). Secondly, PA and transitivity mechanisms
influence log Pi,j(t) through log Âki(t)Âkj(t) and log B̂bij(t), respectively. Finally,
since Var(log(cX)) = Var(log(X) + log c) = Var(log(X)) for any positive con-
stant factor c, the variances of log Âki(t)Âkj(t) and log B̂bi,j(t) are invariant to
the scale of (Â, B̂). From these observations, we define vPA(t) and vtrans(t)
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to be the variances of log Âki(t)Âkj(t) and log B̂bi,j(t), respectively, where each
variance is calculated from all node pairs that exist at time-step t. Note that
(Â, B̂) is estimated using all the time-steps as described in Sect. 2. A low vPA(t)
or vtrans(t) indicates that the contribution of the corresponding mechanism is
weak at that time-step. For example, when B̂b ≈ 1 for all b, i.e., there is almost
no transitivity, then log B̂bi,j(t) will take approximately the same value for all
node pairs, and thus vtrans(t) will be very close to zero. Although Âk and B̂b do
not change with t, vPA(t) and vtrans(t) are inherently temporal for two reasons:
(1) the set of all node pairs that exist at time-step t might be changing due to the
births of new nodes, and (2) log Âki(t)Âkj(t) and log B̂bi,j(t) might be changing
due to the changes of ki(t), kj(t) or bi,j(t).

4 Results

We analyzed three different scientific co-authorship networks: between authors
in the complex network field (CMP) [20], authors of articles in the arXiv Hep-
Th (high-energy theory) section (HEP) [21]), and authors of articles published
in the SMJ (SMJ) [22]. While new collaborations and repeated collaborations
are pooled together in HEP and SMJ, in CMP only new collaborations are
considered. Table 1 shows the summary statistics for the three datasets.

Table 1. Summary statistics for three scientific co-authorship networks. |V | and |E|
are the total numbers of nodes and edges in the final snapshot, respectively. T is the
number of time-steps. Δ|V | and Δ|E| are the increments of nodes and edges after the
initial snapshot, respectively. C is the clustering coefficient of the final snapshot.

Dataset |V | |E| T Δ|V | Δ|E| C

CMP 1498 2849 144 1377 2719 0.689

HEP 6798 290597 217 6796 290594 0.333

SMJ 2704 4131 354 2696 4123 0.378

We note that the number of edges per node in HEP is nearly 100 times
greater than those in CMP and SMJ. As we shall see in Figs. 2a and b, this
would cause the confidence interval at each estimated Ak and Bb in HEP to be
very small comparing with those in CMP and SMJ.

Figures 2a shows the estimated PA functions in three networks. The esti-
mated PA functions of CMP and SMJ are clearly increasing in average, which
implies the existence of PA in these datasets. The estimated Ak of HEP is, how-
ever, only increasing up to k1 ≈ 30, from there it decreases up to k2 ≈ 300 and
then once again increases. This might be caused by the fact that there are papers
with hundreds of authors in high-energy physics and such papers are likely to
be governed by some mechanism that is different than PA.
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Fig. 2. Results in CMP, HEP, and SMJ networks. a: Estimated PA functions Âk. The
vertical bar at each point indicates the ±2σ confidence interval. b: Estimated transitiv-
ity functions B̂b. The vertical bar at each point indicates the ±2σ confidence interval.
c: Estimated PA exponent α and transitivity exponent β. α and β are estimated by
fitting the parametric forms Ak = (k + 1)α and Bb = (b + 1)β . d: The evolutions of
vPA(t) and vtrans(t). vPA(t) and vtrans are the contributions of PA and transitivity,
respectively, at time-step t. The arrow in each dataset indicates the final time-step.

Figure 2b shows the estimated transitivity functions in three networks. In
CMP, where only new collaborations are considered, the increase in B1 from B0

is nearly 100-fold. This is consistent with what was observed in Newman’s analy-
sis [14], which revealed a 50-fold increase in a co-authorship network from the Los
Alamos E-print Archive. The implication of this observation is that one common
co-author between a pair of scientists dramatically increase the chance that the
two will collaborate in the future, thus one might want to co-author with well-
connected scientists if one wants to boost their number of co-authors. When new
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collaborations and repeated collaborations are pooled together, B1/B0 is also
very high: this quantity is about 10 and about 80 in HEP and SMJ, respectively,
which also indicates the importance of one common collaborator in facilitating
collaborations between a pair of authors.

When b is greater than 1, the confidence intervals in CMP and SMJ are too
big to draw any conclusions beyond the observation that Bb in these two datasets
fluctuate and show a non-increasing trend. The Bb in HEP, however, shows a
clearly increasing trend when b > 1. This trend, together with Fig. 2d, shows
the dominance of transitivity in HEP, which is consistent with the well-known
fact that the field of high-energy physics enjoys many long-lasting collaborations
[23,24].

Although the non-parametric Ak and Bb in these datasets seem to not follow
any simple parametric forms, it is still beneficial to consider the power-law forms
Ak = (k+1)α and Bb = (b+1)β and then estimate the PA exponent α and tran-
sitivity exponent β. These exponents reveal the general trend of the two mecha-
nisms and might be important in predicting the future of the network. Figure 2c
shows the estimated α and β in three networks. The estimated values of α are
founded to be from 0 to 1, which are consistent with previous works [13,14]. This
range of α falls in the linear and sub-linear PA regions, which have been shown
to lead to stable degree distributions when there is PA alone [12]. Extrapolating
this result to our case, it is likely that some stable degree distribution would
arise in the long run, too. This is important since it means that the low-degree
authors would still have a chance to develop new collaborations, as opposite to
the “winner-take-all” situation when the degree distribution is not stable. The
estimated values of β are all greater than 1. There is, however, no study on the
effects of such values of β on the asymptotic behavior of the network.

Finally, Fig. 2d shows vPA(t) and vtrans(t) of three datasets at each time-
step. In HEP, vtrans(t) is greater than vPA(t) for all time-steps t, which suggests
that transitivity completely dominates PA in this network. In CMP and SMJ
networks, the situation is reversed: vPA(t) is greater than vtrans(t) for all t,
which implies that PA triumphs transitivity in CMP and SMJ.

5 Concluding Remarks

We proposed a non-parametric joint estimation method for the PA and transitiv-
ity mechanisms. Applying our method to three scientific co-authorship networks,
we found the main driving force behind the evolution of each network is different:
it is transitivity in Hep-Th network, and is PA in the remaining two. Further-
more, we found that B1 increases at least five fold from B0, which indicates
the importance of one common collaborators in facilitating new collaborations
between two authors. Among many possible directions for future research, two
particularly stand out. The first one is to incorporate the fitness mechanism [25]
to express node heterogeneity which is ignored in the PA and transitivity mech-
anisms. The second promising direction is to explore the evolutions of the PA
and transitivity mechanisms themselves by investigating how the functions Ak

and Bb change with time.
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