
Applying Complexity Science
with Machine Learning, Agent-Based
Models, and Game Engines: Towards

Embodied Complex Systems Engineering

Michael D. Norman(B), Matthew T. K. Koehler, Jason F. Kutarnia,
Paul E. Silvey, Andreas Tolk, and Brittany A. Tracy

The MITRE Corporation, Bedford, MA 01730, USA
mnorman@mitre.org

Abstract. The application of Complexity Science, an undertaking
referred to here as Complex Systems Engineering, often presents chal-
lenges in the form of agent-based policy development for bottom-up com-
plex adaptive system design and simulation. Determining the policies
that agents must follow in order to participate in an emergent property
or function that is not pathological in nature is often an intensive, manual
process. Here we will examine a novel path to agent policy development
in which we do not manually craft the policies, but allow them to emerge
through the application of machine learning within a game engine envi-
ronment. The utilization of a game engine as an agent-based modeling
platform provides a novel mechanism to develop and study intelligent
agent-based systems that can be experienced and interacted with from
multiple perspectives by a learning agent. In this paper we present results
from an example use-case and discuss next steps for research in this area.

Keywords: Artificial intelligence · Complexity · Emergence
Reinforcement learning

1 Introduction

The application of the science of complexity, specifically attempts at engineer-
ing complex adaptive systems (CAS) [9], present the scientist or systems engi-
neer with the non-trivial task of crafting agent policies that achieve the desired
emergent properties of the system, assuming they are known. Complex Systems
Engineering [8] addresses this new set of challenges, but requires a significantly
extended set of methods, many of them from the domain of simulation, and
in particular agent-based approaches which can be enriched by artificial intelli-
gence methods [20]. We can use these machine learning (ML) techniques to effec-
tively derive agent-based policies that maximize the probability of the desired

c© Springer Nature Switzerland AG 2018
A. J. Morales et al. (Eds.): ICCS 2018, SPCOM, pp. 173–183, 2018.
https://doi.org/10.1007/978-3-319-96661-8_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96661-8_18&domain=pdf


174 M. D. Norman et al.

emergent effects (via feedback of information on agent decisions during training)
while minimizing the probability of emergent outcomes we deem negative, which
we refer to as pathological emergence.

The focus of this work is on the application of reinforcement learning (RL) to
evolve and engineer collections of agents well-suited to producing and maintain-
ing an emergent property of interest. Ongoing work cross-pollinating the fields
of agent-based modeling and ML that these authors are aware of are focused on
utilizing ML to derive agent policies from existing datasets [19], whereas in this
work we utilize a game engine to enable an embodied RL paradigm [14] based
solely on experience gained in the model of the complex system itself.

The recent integration of Unity [22], a popular game engine, with TensorFlow,
an open source machine learning framework [18] has created an opportunity to
build agent-based models that can learn from their own embodied experience.
Our preliminary work here has enabled us to plot a course for using this technol-
ogy to employ imitation learning from observing human-driven embodied expe-
riences within their world, as well as new depths of human-machine teaming
applied to agent-based modeling through true embodiment of the human inside
of the model using virtual reality (VR). The implications for the integration of
the CAS modeling field and the serious gaming field appear on the surface to be
potentially far-reaching, including training autonomous vehicles [9], and perhaps
virtual avatars capable of passing the Turing test.

In what follows, we explore the applicability of such a technology stack to
designing an agent-based search and rescue model. Development of polices and
results will be discussed. Future work will explore the impact of further agent
heterogeneity, scaling, and higher-fidelity environments.

2 Technological Enablers

Real-time game engines such as Unity and Unreal [3], which are capable of pro-
ducing life-like experiences, high-definition head-mounted displays (HMDs) and
controllers which are designed to bring hand and body presence into virtual
environments such as the HTC Vive [5], and consumer-grade graphical pro-
cessing units (GPUs) designed for high-performance parallel processing such as
those made by NVIDIA [10], have put the power to create agents trained by
human interaction in virtual worlds in the average computer enthusiast’s hands.
Real-time generated virtual worlds could become ideal training grounds for the
development of strategies for learning and problem solving in both virtual and
real-world environments, as evidenced by the investment being made in compa-
nies who are using game-like environments to train artificial intelligence (AI) for
real world autonomous car deployment [1].

Our work here represents an initial first step in this direction for the Applied
Complexity Science community, and demonstrates the feasibility of agent-based
modeling in a high-fidelity game environment combined with an RL mechanism.
Future work on imitation learning may leverage alternative learning processes
as appropriate.



Applying Complexity Science 175

3 Agent Policy Development

Agent-based modeling policies are challenging to approach for many reasons,
not the least of which is the sensitivity of complex systems to their initial condi-
tions [15], which means a successful policy must be robust enough to withstand
latent, unpredictable, and path-dependent edge-cases. This leads a CAS designer
or modeler to seek absolute minimalism in their policy implementations in order
to avoid generating inexplicable pathological emergence; from simple rules com-
plexity emerges. In this paper we present a different method of developing such
robust policies via the application of ML techniques within a game engine envi-
ronment. The results of a search-and-rescue use-case implemented using the
Unity game engine and TensorFlow ML framework are discussed.

3.1 Determining Agent Policies When Modeling Complex Adaptive
Systems

One of the best examples of a well-known and human-understandable agent
policy set is that of the boids algorithm [11]. Through tuning of the simple rules
of attraction, repulsion, and alignment, a flock of birds emerges. Previous work
leveraging emergent properties of the boids rule-set has shown the emergence
of a flock is an embodied phenomenon which depends greatly on context and
scale, as well as very minimalist tweaking of the known, presumably ‘stable’
rule sets [9]. By stable, we mean capable of producing an emergent stability at
the scale of the system. For example, a flock does not cease to be a flock just
because there is instability among the population. This is sometimes known as
metastability [6], but for our purposes, stability is an adequate term. It is also
worth noting that a truly well-engineered CAS would demonstrate the properties
of antifragility [16], but this is a lofty goal and will remain unobtainable until
the science of complexity is able to catch its tools up to its theory. This paper
is but a small attempt to move forward on that front.

If we are willing to accept a certain level of opacity in our agent policy
sets and we are interested in problems of embodiment, then the creation of a
capability to develop agent-based policies via ML in a 3D game engine is an
excellent means of exploring the emergent dynamics of a complex system.

3.2 Reinforcement Learning

RL has a long history as a means of developing learning agents, and some work
has even focused on the emergence of cooperation in relatively low-dimensional
systems such as Pong [17], as well as within our own experimental framework [14],
but its use in the development of agent-based modeling policies for studying and
simulating CAS on a larger scale is still quite nascent, with only hints of the
implications envisioned thus far [4].

The agents are trained via an RL implementation, so they proceed through
many iterations of the simulation before training is considered complete. Train-
ing terminates after a certain number of time-steps. We proceed to repeat this



176 M. D. Norman et al.

process a number of times and compare outputs. We are then able to insert
the newly-trained agent into the simulation to confirm it functions as expected.
Selecting which trained agent to instantiate as multiple agents in the system
(assuming homogeneous agents) in order to achieve a desired aggregate behav-
ior is currently a manual process.

Five agents simultaneously inhabit the environment, interacting with one
another and contributing to the learning of a single shared policy during each
training run; the policy also controls each of the agents. The agent policy ini-
tially starts out doing very random things, and learns optimal rules through
reinforcement-based trial-and-error.

3.3 Proximal Policy Optimization

The RL algorithm implemented at the core of the reinforcement learners is known
as Proximal Policy Optimization (PPO). PPO was developed and released by
OpenAI [12], and is their default algorithm for RL.

3.4 Performance

The measure of performance we will focus on for this use-case is simply Cumu-
lative Reward at the conclusion of training. We will consider the cumulative
reward across all agents at the conclusion of a given policy’s training run to be
the measure of emergent system performance, despite the fact that it is literally
the sum of its parts. We can assume that a stable policy has been learned when
the cumulative reward is positive. More interesting measures of emergence will
be applied in future work.

4 Technology Stack

For this effort, Unity3D version 2017.3.1f1 was used in combination with Tensor-
Flow version 1.6.0 and TensorFlowSharp version 1.6.0-pre1. Anaconda 5.1 and
Python 3.6 were used to create a virtual environment and run Unity’s external
training API, respectively. The open source ml-agents package [23] from Unity
Technology was the critical piece that integrated all of these technologies. Early
pilot work involved training with discrete NVIDIA GTX 1080 GPUs, but these
are optional. The ml-agents package was used to train a TensorFlow neural
network graph from the RL experience of embodied agents situated in a game
world.

5 Search and Rescue Use-Case

The open-source ml-agents package [23] was adapted to emulate autonomous
search and rescue in a contested environment. In our simulation, the agents were
cast as autonomous helicopters attempting to collect soldiers within a contested



Applying Complexity Science 177

environment. A screen capture of the training environment is shown in Fig. 1.
We implemented constrained peripheral vision for the agents as we consider it to
be a rudimentary emulation of partial observability. With five agents acting and
effecting concurrently in the simulation, the presence of multiple autonomous
helicopter agents in the same “airspace” seeking the same basic objective was
considered analogous to a dynamic multi-agent rescue situation in a theater of
battle or other contested environment containing bad actors. Finally, the unpre-
dictable distribution and periodic redistribution of soldiers within the rescue area
required the agents to learn responsive behaviors tailored to stochastic condi-
tions that cannot be anticipated in any actionable sense, only responded to pru-
dently (positively rewarding) or imprudently (negatively rewarding): rampant
exploration, but also care when maneuvering to a rescue so as not to encounter
hostiles. To establish a baseline understanding of helicopter agent behavior, as
well as to demonstrate the technological method first and foremost, we modeled
five helicopters endeavoring to rescue friendly soldiers and avoid hostile soldiers,
but a logical extension of this work could include dividing helicopters into dis-
crete teams, positively rewarding agents when they rescue affiliated soldiers and
negatively rewarding them for encounters with hostile soldiers. We populated
the model with 20 friendly and 20 hostile soldiers. However, for every friendly
soldier rescued, another is promptly respawned (this is not the case for hostile
soldiers). The game area is reset at regular intervals to 20 and 20 soldiers of each
category, and also randomly reassigns origin positions to the autonomous rescue
helicopters.

We executed 10 experimental runs of our Search and Rescue application for
50,000 time steps.

In pilot runs, the initial reward structure (+1 for friendlies and −1 for hos-
tiles) was not sufficient to produce the desired behavior of “colliding” with
friendly soldiers and avoiding encounters with hostile soldiers. The helicopters’
form entails that they often collide with hostile soldiers unintentionally from the
side while they are still on a lateral trajectory (the hostiles are out-of-sight in
the agents’ periphery). In these initial trials, helicopters learned to remain sta-
tionary because they were frequently, though incidentally, negatively rewarded
when they collided with clusters of bad soldiers.

In response, the reward structure was modified to negatively reward the
helicopters with −1 points for every time step when they were not colliding with
a soldier, in order to discourage inactivity. At this point, the helicopters learned
to fly in lateral translation across the rescue area, thereby colliding with as
many objects for +1 and −1 rewards as possible (either benefiting by +1 points
or experiencing a −1 reward, the same result as if they had remained static). To
discourage this lateral translation strategy, the reward structure was modified to
negatively reward collision with a wall (on the bounds of the rescue area) at −100
points. Finally, the reward for collecting friendlies was increased to +500 points
to offset the −1 reward increment applied at every non-collision timestep. Instead
of proportional negative reward for collecting hostiles, the value was reduced to
only one-fifth of the positive reward, −100 points. Finally, the simulation had



178 M. D. Norman et al.

Fig. 1. Training environment screen capture.

achieved a form in which the reward structure was truly conducive to helicopters
learning to explore the game area and attempting to rescue friendly soldiers.

The hyperparameter settings used for this experiment can be found in
Table 1. These were informed by the recommended defaults of the ml-agents
package.

6 Results and Discussion

Interesting summary results from the training can be found in Figs. 2 and 3,
which show the Cumulative Reward and Entropy, respectively, across all runs.

Learners emerged that were capable of performing the task at hand, but
whose entropy levels were still quite high at the termination of the training round
that created them. We interpret this result as follows: these agents, although hav-
ing constructed successful policies for survival, had also created a strategy which
involved continual exploration. The implications of a novelty-seeking agent for
a search and rescue use case seem rather tangible, as this ‘injection of random-
ness’ [16] may lead to nudging an emergent system dynamic out of an unsuccess-
ful attractor’s area of influence. For a summary of dynamical systems theory in
context of agent-to-agent influence see Liebovitch et al. [7]. The varying levels of
entropy across runs that was exhibited at the conclusion of training is indicative
of the pervasiveness of exploration as a fruitful strategy. In fact the agent policy
with highest total cumulative reward (as shown in the yellow line of Fig. 2) did
not have the lowest entropy at the conclusion of its training, as can be seen in
the dark blue line of Fig. 3.



Applying Complexity Science 179

Table 1. Hyperparameters.

Hyperparameter Value

Batch size 1024

Beta 5.00E-03

Buffer size 10240

Epsilon 0.2

Gamma 0.99

Hidden units 128

Lambd 0.95

Learning rate 3.00E-04

Max steps 5.00E+04

Memory size 256

Normalize FALSE

Num epoch 3

Num layers 2

Time horizon 64

Summary freq 1000

Use recurrent FALSE

7 Future Work

The general need for research agendas to support better support of system of
systems challenges [21] and complex systems engineering [2] has been identified
and builds the general frame for this section, which provides particular research
topics derived from the machine learning and agent-based metaphor applied in
the work presented in this paper.

7.1 Hyperparameter Tuning

Hyperparameter tuning is a fundamental part of machine learning and must be
carefully considered if one hopes to construct a high-performing autonomous
agent. There are a number of intelligent algorithms that could be incorporated
into our training workflow but investigation into the most effective was out-
side the scope of this paper. Recent research in simulation calibration may be
applicable to support these ideas in future efforts [24].



180 M. D. Norman et al.

The näıve approach is a simple grid search, but this breaks down when there
are numerous parameters to tune or the model’s sensitivity is nonlinear with
respect to the hyperparameter, which is the case with neural networks. This
can be overcome by using a logarithmically-scaled grid where sensitive areas
of the hyperparameter space are heavily sampled. Other more advanced meth-
ods which attempt to minimize the number of trials necessary to converge on
the optimum parameter values include Bayesian optimization and Sequential
Model-based Algorithm Configuration. Future work will include more robust
hyperparameter exploration.

7.2 Apply Machine Learning to Manage Design of Experiments

Although a very simple measure of performance was used with a human-in-the-
loop to judge agent employability, future work may shift the focus on deployment
of ML in the service of suggesting what sort of metrics might be useful, as well
as determining which training runs have developed the most appropriate learner
for a given deployment context. Implementing a ML agent to select the best
trained agent for model deployment and determining heterogeneity ratios.

7.3 Evolve Measures of Performance

A relatively simple measure was used to grade the performance of the emergent
collective that was quite simply the sum of the system’s parts. Future work
will focus on putting such aggregate measures in greater context and exploring
scenarios that tend to exhibit, and benefit from, emergent properties.

7.4 Imitation Learning and Virtual Reality

Imitation learning allows one to harness the human brain’s natural ability to pro-
cess and integrate multiple (and often multi-modal) informational streams pre-
sented in complex environments and then make decisions under uncertainty (the
global state of universe is not known to any given agent). Learning via imitation
methods avoids the difficult task of explicitly stating the rules and their relative
priority in all probable situations that an expert human is following. We believe
that fully immersive, embodied experiences will enable a virtuous cycle of human-
machine teaming where humans are training artificial agents and vice-versa.



Applying Complexity Science 181

Fig. 2. Cumulative reward across 10 training runs of a stylized Search and Rescue
scenario

Fig. 3. Entropy across 10 training runs of a stylized Search and Rescue scenario



182 M. D. Norman et al.

8 Conclusion

We have shown that agent-based modeling can be conducted using reinforce-
ment learning agents within a fully-featured 3D game environment. Our trained
agents, on the whole, were successful in accomplishing their mission. We have
learned that these initial attempts at training, while showing promise, still pro-
duce a range of behavioral features and resulting cumulative rewards across runs.
This indicates there is much work yet to be done to understand how the com-
plexities of the environment, the interactions between agents, and the learning
hyperparameters all come together to produce the results we have seen.

The INCOSE complexity primer [13] recommends the use of a variety of
methods and approaches from a variety of disciplines that have to cope with
complexity in support of analyzing, diagnosing, modeling, and synthesizing com-
plex systems. We followed these recommendations in our research and applied
machine learning, agent based models, and simulation-enabling game engines
in support of architectural analysis challenges, demonstrating how the combi-
nation of these methods supports the complex systems engineering processes
captured in the use case of autonomous search and rescue. This successful appli-
cation shows the usefulness of this approach for a new category of engineering
challenges requiring the application of complexity science.

Acknowledgements and Disclaimer. The work presented in this paper was partly
supported by the MITRE Innovation Program. The authors wish to specifically
acknowledge Sham Chakravorty and Muhammad Sungkar for their contributions to
this effort. The views, opinions, and/or findings contained in this paper are those of
The MITRE Corporation and should not be construed as an official government posi-
tion, policy, or decision, unless designated by other documentation. It is approved for
Public Release; Distribution Unlimited. Case Number 17-3081-17.

References

1. Cognata. http://www.cognata.com
2. Diallo, S., Mittal, S., Tolk, A.: Research agenda for next-generation complex sys-

tems engineering. In: Emergent Behavior in Complex Systems Engineering: A Mod-
eling and Simulation Approach, pp. 379–397 (2018)

3. Epic. https://www.unrealengine.com
4. Holland, J.H., Miller, J.H.: Artificial adaptive agents in economic theory. Am.

Econ. Rev. 81(2), 365–370 (1991)
5. HTC. https://www.vive.com
6. Kelso, J.S.: Dynamic Patterns: The Self-organization of Brain and Behavior. MIT

Press, Cambridge (1997)
7. Liebovitch, L.S., Peluso, P.R., Norman, M.D., Su, J., Gottman, J.M.: Mathematical

model of the dynamics of psychotherapy. Cogn. Neurodyn. 5(3), 265–275 (2011)
8. Norman, M.D.: Complex systems engineering in a federal it environment: lessons

learned from traditional enterprise-scale system design and change. In: 2015 9th
Annual IEEE International Systems Conference (SysCon), pp. 33–36. IEEE (2015)

http://www.cognata.com
https://www.unrealengine.com
https://www.vive.com


Applying Complexity Science 183

9. Norman, M.D., Koehler, M.T., Pitsko, R.: Applied complexity science: enabling
emergence through heuristics and simulations. In: Emergent Behavior in Complex
Systems Engineering: A Modeling and Simulation Approach, pp. 201–226 (2018)

10. NVIDIA. https://www.nvidia.com
11. Reynolds, C.W.: Flocks, herds and schools: a distributed behavioral model. In:

ACM SIGGRAPH Computer Graphics, vol. 21, pp. 25–34. ACM (1987)
12. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal Policy

Optimization Algorithms. ArXiv e-prints (2017)
13. Sheard, S., Cook, S., Honour, E., Hybertson, D., Krupa, J., McEver, J., McKinney,

D., Ondrus, P., Ryan, A., Scheurer, R., et al.: A complexity primer for systems
engineers. INCOSE Complex Systems Working Group White Paper (2015)

14. Silvey, P.E., Norman, M.D.: Embodied cognition and multi-agent behavioral emer-
gence. In: Proceedings of the Ninth International Conference on Complex Systems
(ICCS 2018) (2018, in press)

15. Strogatz, S.: Sync: The Emerging Science of Spontaneous Order. Penguin, London
(2004)

16. Taleb, N.N.: Antifragile: Things That Gain from Disorder, vol. 3. Random House
Incorporated (2012)

17. Tampuu, A., Matiisen, T., Kodelja, D., Kuzovkin, I., Korjus, K., Aru, J., Aru,
J., Vicente, R.: Multiagent cooperation and competition with deep reinforcement
learning. PLoS ONE 12(4), e0172395 (2017)

18. TensorFlow. https://www.tensorflow.org
19. Tolk, A.: The next generation of modeling & simulation: integrating big data and

deep learning. In: Proceedings of the Conference on Summer Computer Simulation,
pp. 1–8. Society for Computer Simulation International (2015)

20. Tolk, A., Diallo, S., Mittal, S.: Complex systems engineering and the challenge of
emergence. In: Emergent Behavior in Complex Systems Engineering: A Modeling
and Simulation Approach, pp. 79–97 (2018)

21. Tolk, A., Rainey, L.B.: Toward a research agenda for m&s support of system of
systems engineering. In: Modeling and Simulation Support for System of Systems
Engineering Applications, pp. 581–592 (2015)

22. Unity3D. https://www.unity3d.com
23. Unity3D. https://github.com/Unity-Technologies/ml-agents
24. Xu, J.: Model calibration. In: Advances in Modeling and Simulation: Seminal

research from 50 Years of Winter Simulation Conferences, pp. 27–46 (2017)

https://www.nvidia.com
https://www.tensorflow.org
https://www.unity3d.com
https://github.com/Unity-Technologies/ml-agents

	Applying Complexity Science with Machine Learning, Agent-Based Models, and Game Engines: Towards Embodied Complex Systems Engineering
	1 Introduction
	2 Technological Enablers
	3 Agent Policy Development
	3.1 Determining Agent Policies When Modeling Complex Adaptive Systems
	3.2 Reinforcement Learning
	3.3 Proximal Policy Optimization
	3.4 Performance

	4 Technology Stack
	5 Search and Rescue Use-Case
	6 Results and Discussion
	7 Future Work
	7.1 Hyperparameter Tuning
	7.2 Apply Machine Learning to Manage Design of Experiments
	7.3 Evolve Measures of Performance
	7.4 Imitation Learning and Virtual Reality

	8 Conclusion
	References




