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Abstract. Sometimes data is generated unboundedly and at such a fast
pace that it is no longer possible to store the complete data in a database.
The development of techniques for handling and processing such streams
of data is very challenging as the streaming context imposes severe con-
straints on the computation: we are often not able to store the whole
data stream and making multiple passes over the data is no longer pos-
sible. As the stream is never finished we need to be able to continuously
provide, upon request, up-to-date answers to analysis queries. Even prob-
lems that are highly trivial in an off-line context, such as: “How many
different items are there in my database?” become very hard in a stream-
ing context. Nevertheless, in the past decades several clever algorithms
were developed to deal with streaming data. This paper covers several
of these indispensable tools that should be present in every big data sci-
entists’ toolbox, including approximate frequency counting of frequent
items, cardinality estimation of very large sets, and fast nearest neigh-
bor search in huge data collections.

1 Introduction

Many data sources produce data as a never-ending stream of records. Examples
include sensor networks, logs of user activities on the web, or credit card trans-
actions. Processing these data becomes a challenge, because often there is no
storage space or time to store the data for an in-depth off-line analysis. Imagine
for instance a credit card fraud detection system that requires that transactions
are collected over time and stored on disk for analysis later on. In such a sce-
nario the delay between a credit card fraud and the actual detection of this fraud
would be unacceptable. In this case not only the application of fraud prediction
methods needs to be online and on the fly, but also the collection of several
statistics and modeling parameters needs to be immediate to be able to keep
the model up-to-date. Indeed, an important factor in fraud detection is learning
what is the normal behavior of a person. This behavior may be changing over
time, necessitating flexible and dynamic modelling of what constitutes normal
behavior.

We call this type of dynamic processing of data, stream processing [4]. We dis-
tinguish three different types of stream processing. In the literature these terms
are often lumped together while in fact their requirements are quite different.
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1. Online Stream Processing: the distribution of the stream is changing over time
and we need to have, at any point in time, an up-to-date model of the current
situation. An examples of this challenging processing type is monitoring web
traffic for intrusion detection, where the intrusion patterns may change over
time. More recent data is more important, and data loses its importance over
time. For algorithms under this computational model it is very important that
they scale very well with data size as in theory the streams could go on forever.
Memory bounds that are logarithmic in the number of instances seen over the
stream sofar are considered reasonable. Furthermore, it is important that the
algorithms require processing time which is independent from the number of
instances already seen as otherwise the streaming algorithms would become
increasingly slower. A popular technique to deal with online stream processing
is using the window-based technique which considers a conceptual window of
the most recent instances in the stream only. Continuously new instances
enter the window while old, outdated instances leave the window. A window-
based algorithm then continuously and incrementally maintains a summary
of the contents of the window that allows to quickly answer analytical queries
over the data.

2. Batch Processing: new data are processed in batches. This is for instance
the case when new documents arrive that need to be indexed in an infor-
mation retrieval context, or predictive models need to be updated. Often it
is sufficient if the new data are processed continuously, but not necessarily
immediately. This setting is far less challenging than the online stream pro-
cessing model and is hence preferable if the application allows. Algorithms in
this category are often incremental in the sense that they are able to incre-
mentally update an existing model with a new batch of data.

3. One-pass algorithms: sometimes datasets to be processed are extremely large
and disk-based. Given the relative efficiency of sequential data processing
for secondary memory as compared to random access, algorithms that can
process the data in one scan are preferable. Such algorithms are often termed
streaming as well, since data is streamed from disk into the algorithm for
processing. The requirements, however, are different from those of online or
batch stream processing as there is not necessarily a temporal aspect in the
data; there is no notion of more important recent tuples nor online results
that need to be maintained.

It is important to note that distributed computing facilities such as offered
by Hadoop [2], Spark [3], Flink [1], can only be part of the answer to the need
expressed by these three categories of stream processing. First of all, distributed
computing does not address the online aspect of the stream mining algorithms,
although it may actually help to increase the throughput. For most batch pro-
cessing algorithms it is conceivable that multiple batches could be treated in par-
allel, yet this would introduce an additional delay: handling n batches in parallel
implies that batch 1 is still being processed while batch n is fully received, real-
istically putting a limitation on the scaling factors achievable. And last but not
least, distributing computations over 1000 data processors can make processing



114 T. Calders

at most 1000 times faster, and usually because of communication overhead the
speedup is far less. In contrast, here in this paper we will exhibit several methods
that achieve exponential performance gains with respect to memory consump-
tion, albeit at the cost of having approximate results only.

Most streaming algorithms do not provide exact results as exact results often
imply unrealistic lower complexity bounds. For many applications approxima-
tions are acceptable, although guarantees on the quality are required. Approxi-
mate results without guarantee should not be trusted any more than a gambler’s
“educated guess” or a manager’s “gut feeling”. Guarantees can come in many dif-
ferent forms; a method that finds items exceeding a minimal popularity threshold
may guarantee that no popular items are missed, although maybe some items
not meeting the threshold may be returned, or a method counting frequencies
of events may have a guarantee on the maximal relative or absolute error on
the reported frequency. A popular generalization of these guarantees are the so-
called ε, δ-guarantees. An approximation algorithm A for a quantity q provides
an ε, δ-guarantee if in at most 1−δ of the cases, the quantity A(D) computed by
the algorithm for a dataset D differs at most ε from the true quantity q(D); i.e.,
P [|A(D) − q(D)| > ε] < 1 − δ. Notice incidentally that this guarantee requires
some notion of probability over all possible datasets and hence always has to
come with an assumption regarding the distribution over possible datasets, such
as a uniform prior over all possible datasets.

In this paper we will see three different building blocks that were, arguable
subjectively, selected on the basis that at some point in the author’s scientific
career they proved to be an indispensable algorithmic tool to solve a scientific
problem. The content of the paper can as such be seen as a tools offered to the
reader to acquire and add into his or her data scientist’s toolbox. The building
blocks that will be provided are the following:

1. What is hot? Tracking heavy hitters: count which items exceed a given fre-
quency threshold in a stream. We’ll see Karp’s algorithm [9] and Lossy Count-
ing [11] as prototypical examples and show an application in blocking exces-
sive network usage.

2. Extreme Counting: estimate the cardinality of a set. Flajolet-Martin
sketches [7] and the related HyperLogLog sketch [6] are discussed. These
sketches offer a very compact representation of sets that allow cardinality
estimation of the sets. There are many applications in telecommunication,
yet we will show an example use of the HyperLogLog sketch for estimating
the neighborhood function of a social network graph.

3. Anyone like me? Similarity search: last but not least, we consider the case
of similarity search in huge collections. Especially for high-dimensional data,
indexing is extremely challenging. We show how Locality Sensitive Hashing [8]
can help reduce complexity of similarity search tremendously. We show an
application for plagiarism detection in which the detection of near duplicates
of a given document decreases in complexity from hours to execute to sub-
second response times.
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We do not claim that our list of techniques is exhaustive in any sense. Many
other very important building blocks exist. However, we are convinced that the
set provided in this paper is a nice addition to any data scientist’s professional
toolbox. The individual blocks should not be seen as the endpoint, but rather
as a set of blocks that can be freely adapted and combined, depending on need.
For additional resources we refer the reader to the excellent books by Aggrawal
on stream processing [4] and by Leskovec et al. on mining massive datasets [10].

2 Efficient Methods for Finding Heavy Hitters

The first building block we consider is efficiently finding heavy hitters. We assume
that the stream consists of items from a fixed but potentially infinite universe.
For example, keyword sequences entered in a search engine, IP addressed that
are active in a network, webpages requested, etc. Items arrive continuously and
may be repeating. A heavy hitter is an item whose frequency in the stream
observed sofar exceeds a given relative frequency threshold. That is, suppose
that the stream we observed sofar consists of the sequence of items

S = 〈i1, . . . , iN 〉.

The relative frequency of an item a is defined as:

freq(a,S) :=
|{j | ij = a}|

N
.

The heavy hitters problem can now be stated as follows:

Heavy Hitters Problem: Given a threshold θ and a stream S, give the set of
items

HH (S, θ) := {a | freq(a,S) ≥ θ}.

Before we go into the approximation algorithms, let’s first see how much
memory would be required by an exact solution. First of all it is important to
realize that in an exact solution we need to maintain counts for all items seen
sofar, because the continuation of the stream in future is unknown and even an
error on the count of the frequency of 1 will result in a wrong result. As such,
we need to be able to distinguish any two situations in which the count of even
a single item differs. Indeed, suppose θ = 0.5, we have seen N/2 + 1 items in
the stream, and the count of item a is 1. Then, if the next N/2 − 1 items are all
a’s, a should be in the output. On the other hand, if in the first N/2 + 1 items
there are no occurrences of a, a should not be in the answer, even if all N/2 − 1
items are a’s. Therefore, the internal state of the algorithm has to be different
for these two cases, and we need to keep counters for each item that appeared in
the stream. In worst case, memory consumption increases linearly with the size
of the stream. If the number of different items is huge, this memory requirement
is prohibitive.



116 T. Calders

To solve this problem, we will rely on approximation algorithms with much
better memory usage. We will see two prototypical algorithms for approximating
the set of heavy hitters. Both algorithms have the property that they produce
a superset of the set of heavy hitters. Hence, they do not produce any false
negatives, but may produce some false positives. The first algorithm by Karp
uses maximally 1

θ counters, and may produce up to 1
θ false positives, while the

second algorithm, called Lossy Counting, is parameterized by ε and has the
guarantee that it produces no items b with freq(b) < θ − ε. Hence, the only false
positives are in the range [θ − ε, θ[ which likely represents still acceptable results
given that the threshold θ is fuzzy anyway in most cases. The algorithm realizes
this guarantee using only O (

1
ε log(Nε)

)
space in worst case.

2.1 Karp’s Algorithm

Karp’s algorithm [9] is based on the following simple observation: suppose we
have a bag with N colored balls. There may be multiple balls of the same color.
Now repeat the following procedure: as long as it is possible, remove from the
bag sets of exactly k balls of all different color. This procedure is illustrated in
Fig. 1. When our procedure ends, it is clear that there will be balls of at most
k − 1 colors left. Furthermore, each color that appeared more than N/k times
in the original bag will still be present. That is easy to verify: suppose there are
�N/k +1� red balls. In order to remove all red balls, there need to be �N/k +1�
sets of size k of balls of different color that were removed. But this is impossible
as k�N/k + 1� > N . Hence, if we want to find all colors that have a relative
frequency of at least θ, then we can run the algorithm with k = �1/θ�. In this
way we are guaranteed that in the final bag we will have all θ-frequent colors
left. If we want to get rid of the false positives, we can run through our original
bag for a second time, counting only the at most k − 1 different colors that were
left in the bag after our procedure.

a a
e e
e b
d b
b b

→

a
e

e
d b
b b

→ e
b

b b

Fig. 1. Iteratively removing 3 different items from a bag; all element that had a relative
frequency exceeding 1/3 will be left in the final result. In this case b and e are left. b
indeed has a frequency exceeding 1/3, while e is a false positive. This procedure cannot
have false negatives

The nice part of this observation is that it easily can be generalized to stream-
ing data. Indeed, suppose we have a stream of items arriving. Each item can
be considered a “color” and we need to retrieve all items that have a relative
frequency exceeding θ. This can be realized by following the remove-k-different-
colors procedure with k = �1/θ�. Because of the streaming aspect we do not have
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New item a a e e e b d b b b
Updated counters a:1 a:2 a:2 a:2 a:2 a:1 e:1 b:1 b:2 b:3

e:1 e:2 e:3 e:2 e:1 e:1 e:1

Fig. 2. Streaming version of the procedure in Fig. 1

any controle, however, over the order in which we need to treat the items/balls.
Therefore we remember what we have seen sofar, until we reach k different
items/colors. As soon as that happens, we throw out k different items. In order
to remember what remains, it is easy to see that we need at most k −1 variables
holding the items/colors we still have, plus k − 1 counters holding how many
times we still have each of them. Whenever a new ball/item arrives, we check if
that color/item is already among the variables. If that is the case, we increase
the associated counter. Otherwise, either we start a new counter if not all coun-
ters are in use yet, or we decrease all k − 1 counters by 1 in order to reflect that
we remove a k-tuple (one ball of each of the k − 1 colors we already have plus
the new color that just arrived). This leads to Karp’s algorithm which is given
in Algorithm 1 and illustrated in Fig. 2.

Notice that the update time of Algorithm 1 is O(k) in worst case, but in
their paper, Karp et al. describe a data structure which allows processing items
in constant time amortized.

Algorithm 1. Karp’s algorithm
Input: Threshold ω, sequence S of items i1, . . . , iN arriving as a stream
Output: Superset of HH (S, θ).

1: k ← �1/θ�
2: L ← empty map
3: for each item i arriving over S do
4: if exists key i in L then
5: L[i] ← L[i] + 1
6: else
7: if |L| = k − 1 then
8: for key k of L do
9: L[k] ← L[k] − 1

10: if L[k] = 0 then
11: Remove the element with key k from L
12: end if
13: end for
14: else
15: L[i] ← 1
16: end if
17: end if
18: end for
19: return {k | k key in L}
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2.2 Lossy Counting

One of the disadvantages of Karp’s algorithm is that it only allows for identifying
a set of candidate heavy hitters, but does not provide any information regarding
their frequencies. The Lossy counting algorithm [11] covered in this subsection,
however, does allow for maintaining frequency information. Lossy counting is
parameterized by ε. ε will be the bound on the maximal absolute error on the
relative frequency that we guarantee. Lossy counting is based on the observation
that we do not have to count every single occurrence of an item. As long as we
can guarantee that the relative frequency of an item in the part of the stream in
which it was not counted, does not exceed ε, the absolute error on the relative
frequency will be at most ε. Indeed: suppose S can be divided into two disjoint
sub-streams S1 and S2, and we do have the exact number of occurrences cnt1 of
item a in S1, and an upper bound of ε on the exact relative frequency f2 = cnt2

|S2|
of a in S2. Then the true relative frequency of a in S equals:

freq(a,S) =
cnt1 + cnt2

|S| <
cnt1 + εS2

|S| ≤ cnt1
|S| + ε.

This observation means that we can postpone counting any item that has a
relative frequency below ε if we are fine with an absolute error of at most ε. This
is exactly what Lossy Counting does: basically it counts everything, but from
the moment on that it is noticed that an item’s relative frequency in the window
we are counting it, drops below ε we immediately stop counting it. If the item
reappears, we start counting it again. In this way, at any point in time we can
guarantee that any item that isn’t counted has a relative frequency below ε. This
principle is illustrated in Fig. 3.

recorded recorded
No No 

recorded

Less than N occurrences of 

infrequent infrequent

Fig. 3. Illustration of the Lossy Counting algorithm. The blue rectangles indicate peri-
ods in which the item was counted. If one takes the whole stream except for the last
rectangle which is still open, then the item is ε-infrequent in that area (Color figure
online)

The pseudo code of Lossy Counting is given in Algorithm 2. Notice that
lines 10–14 constitute a potential bottleneck as we need to check after each item
received from the stream, if the item is still frequent. We can, however, avoid
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Algorithm 2. Lossy Counting algorithm
Input: Threshold ω, threshold ε, sequence S of items i1, . . . , iN arriving as a stream
Output: (i, f)-pairs such that freq(i, S) ∈ [f, f + ε] and f ≥ θ − epsilon. The output

contains a pair for each element of HH (S, θ)

1: Cnt ← empty map
2: Start ← empty map
3: for each item ij arriving over S do
4: if exists key i in Cnt then
5: Cnt[ij ] ← Cnt[ij ] + 1
6: else
7: Cnt[ij ] ← Cnt[ij ] + 1
8: Start[ij ] ← j
9: end if

10: for all keys k of Cnt do
11: if Cnt[k]

j−Start[k]+1
< ε then

12: Remove the elements with key k from Cnt and Start
13: end if
14: end for
15: end for
16: return

{
(i, f) | i key of Cnt, f := Cnt[k]

j−Start[k]+1
> θ − ε

}

this costly check by associating with every item an “expiration date”; that is:
whenever we update the count of an item, we also compute after how many
steps the item will no longer be ε-frequent unless it occurs again. This is easily
achieved by finding the smallest number t such that:

Cnt[k]
t − Start[i] + 1

< ε.

The smallest t that satisfies this inequality is:
⌊

Cnt[k]
ε

+ start[i]
⌋

.

We can order the items for which a counter exists in a priority queue according
to this number and update the number and position of the item in this queue
every time the item occurs. Steps 10–14 then simply become evading all items
having the current time as expiration date.

For didactic purposes, the Lossy Counting variant we explained in this sub-
section differs slightly from the one given by Manku and Motwani in [11]. The
computational properties, intuitions and main ideas, however, were preserved.

Let us analyze the worst case memory consumption of the Lossy Counting
algorithm. The analysis is illustrated in Fig. 4. The memory consumption is
proportional to the number of items for which we are maintaining a counter.
This number can be bounded by the observation that every item for which we
maintain a counter, must be frequent in a suffix of the stream. To analyze how
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Divide stream in blocks of size k = 1/

Constellation with maximum number of candidates:

k candidates;
“consume” 

1 element

k candidates;
“consume” 

2 elements

k candidates;
“consume” 

3 elements

k candidates;
“consume” 

4 elements

p p p p q q q q mmmnnnooo i i j  j k  k l  l a b c d e f g h

k/3 different
each appears
3 times

k/4 different
each appears
4 times

k/2 different
each appears
2 times

k different
each appears
1 time

Fig. 4. Worst possible case w.r.t. memory consumption for the Lossy Counting algo-
rithm

this affects the number of items being counted, we conceptually divide our stream
in blocks of size k = 1/ε. For an item to be supported, it needs to appear either:

– at least once in the last block;
– at least twice in the last two blocks;
– . . .
– at least i times in the last i blocks;
– . . .
– at least N/k = Nε times in the last N/k blocks; i.e., in the whole stream.

Let ni denote the number of items that fall in the ith category above. The above
observations translate into the following constraints:

– n1 ≤ k;
– n1 + 2n2 ≤ 2k;
– . . .
– n1 + 2n2 + 3n3 + . . . + ini ≤ ik;
– . . .
– n1 + 2n2 + 3n3 + . . . + N/knN/k ≤ N .

This number is maximized if n1 = k, n2 = k/2, . . . , ni = k/i, . . . In that
situation we obtain the following number of items for which we are maintaining
a counter (H(i) is the ith Harmonic number):

N/k∑

i=1

k/i = kH(N/k) = O(k log(N/k)) = O(1/ε log(εN)).
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The memory requirements are hence logarithmic in the size of the stream in
worst case. This worst-case, however, is a pathological case; in experiments with
real-life data it was observed that the memory requirements are far less.

2.3 Applications of Heavy Hitters

Approximation algorithms for heavy hitters have many useful applications. Imag-
ine for instance a network provider wanting to monitor its network for unreason-
able bandwidth usage, and block or slow down the connection of any user using
more than 0.1% of the bandwidth on any of its routers. To achieve this policy,
the provider could install a lossy counter on each of its routers with θ set to
0.11% and ε to 0.01%. The lossy counter counts how many times IP-addresses
participate in the traffic; for every packet the sender and receiver IP address
is monitored. The lossy counters would catch all items with a frequency higher
than 0.11% as well as some items with a frequency in the interval [0.1%, 0.11%].
Some of the users using between 0.1% and 0.11% of the bandwidth may remain
unnoticed, but that can be acceptable. Installing such a lossy counter would
require 10000 log(N/10000)) items to be stored in the absolute worst case. If the
counters are reset every 1 billion packets, this would add up to at most 12K
counters. That is quite acceptable for finding heavy hitters in up to a billion
items.

3 Approximation Algorithms for Cardinality Counting
over Streams

Another interesting building block in our toolbox is efficient cardinality counting.
The setting is similar as in previous section; items are arriving one by one over
a stream. This time, however, we are not interested in tracking the frequent
items, but instead we want to know how many different items there are. Any
exact solution must remember every item we have already seen. For large data
collections this linear memory requirement may be unacceptable. Therefore, in
this section we describe a sketching technique that maintains a succinct sketch
of the stream that allows for accurately estimating the number of different items.

Cardinality Estimation Problem: Given a stream S = 〈i1, . . . , iN 〉, give the
cardinality of the set {i1, . . . , iN}. That is, count the number of unique items
in S.

Reliable and efficient cardinality estimation has many applications such as
counting the number of unique visitors to a website, or estimating the cardinal-
ity of projecting a relation that does not fit into memory onto a subset of its
attributes without sorting.

3.1 Flajolet-Martin Sketches

The Flajolet-Martin sketch [7] is based on the observation that if we have a set
of random numbers, the probability of observing a very high number increases
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with increasing size of the set. This observation is exploited as follows: suppose
we have a randomly selected hash function h that hashes every element that
can arrive over our stream to a random natural number. h is a function, so if an
item a occurs repeatedly in the stream, it gets assigned the same natural number.
Whenever an item a arrives over the stream, we apply the hash function to it,
and record the size of the longest suffix of h(a) consisting only of 0’s. Let ρ(a)
denote this number. For example, if h(a) = 0110010b, then ρ(a) = 1, as h(a)
ends with only 1 zero; for h(b) = 01101011b, ρ(b) = 0, and for h(c) = 1000000b,
ρ(c) = 6. The more different elements we observe in the stream, the more likely it
is that we have seen an element x with a high ρ(x), and vice versa, the higher the
highest ρ(x) we observed, the more likely it is that we have seen many different
elements. The Flajolet-Martin sketch is based on this principle, and records the
highest number ρ(x) we have observed over the stream. For this we only need to
remember one number: the highest ρ(x) observed sofar, and update this number
whenever an element y arrives over the stream with an even higher ρ(y). Let’s
use R to denote this highest observed ρ(x).

If we have one element x, the probability that ρ(x) = t for a given threshold
t equals 1/2t+1. Indeed, half of the numbers ends with a 1, 1/4th with 10, 1/8th
with 100 and so on. The probability that ρ(x) < t equals 1/2+1/4+ . . .+1/2t =
1 − 1/2t.

So, suppose we have a set S with N different items, what is the probability
that R exceeds a threshold t? This equals

P [max
x∈S

ρ(x) ≥ t] = 1 −
∏

x∈S

P [ρ(x) < t] (1)

= 1 − (1 − 1/2t)N (2)

= 1 −
(
(1 − 1/2t)2

t
)N/2t

(3)

≈ 1 − e−N/2t (4)

Hence, we can conclude that if N � 2t, the probability that R ≥ t is close to
0, and if N � 2t, the probability that R ≥ t is close to 1. We can thus use 2R as
an estimate for the cardinality N . In the original Flajolet-Martin algorithm not
the maximum number ρ(x) observed is used, but instead the smallest number
r such that no element a was observed with ρ(a) = r. Then the estimator 2r/φ
where φ is a correction factor approximately equal to 0.77351 has to be used.

The variance of this estimation, however, can be high. Therefore we can use
multiple independent hash functions to create multiple independent estimators
and combine them. Averaging them, however, is very susceptible to outliers,
while taking the median has the disadvantage of producing estimates which are
always a power of 2. Therefore, a common solution is to group estimates, take
the average for each group, and take the median of all averages. In this way we
get an estimate which is less susceptible to outliers because of the median, and
is not necessarily a power of 2 because of the averages.
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3.2 HyperLogLog Sketch

A HyperLogLog (HLL) sketch [6] is another probabilistic data structure for
approximately counting the number of distinct items in a stream. The HLL
sketch approximates the cardinality with no more than O(log(log(N))) bits.
The HLL sketch is an array with β = 2k cells (c1, . . . , cβ), where k is a constant
that controls the accuracy of the approximation. Initially all cells are 0. Every
time an item x in the stream arrives, the HLL sketch is updated as follows: the
item x is hashed deterministically to a positive number h(x). The first k bits of
this number determine the 0-based index of the cell in the HLL sketch that will
be updated. We denote this number ι(x). For the remaining bits in h(x), the
position of the least significant bit that is 1 is computed. Notice that this is the
ρ(x) + 1. If ρ(x) + 1 is larger than cι(x), cι(x) will be overwritten with ρ(x) + 1.

For example, suppose that we use a HLL sketch with β = 22 = 4 cells.
Initially the sketch is empty:

0 0 0 0

Suppose now item a arrives with h(a) = 1110100110010110b. The first 2 bits are
used to determine ι(a) = 11β = 3. The rightmost 1 in the binary representation
of h(a) is in position 2, and hence c3 becomes 2. Suppose that next items arrive
in the stream with (cι(x), ρ(x)) equal to: (c1, 3), (c0, 7), (c2, 2), and (c1, 2), then
the content of the sketch becomes:

7 3 2 2

Duplicate items will not change the summary. For a random element x, P (ρ(x)+
1 ≥ 	) = 2−�. Hence, if d different items have been hashed into cell cι, then
P (cι ≥ 	) = 1 − (1 − 2−�)d. This probability depends on d, and all ci’s are
independent. Based on a clever exploitation of these observations, Flajolet et al.
[6] showed how to approximate the cardinality from the HLL sketch.

Last but not least, two HLL sketches can easily be combined into a single
sketch by taking for each index the maximum of the values in that index of both
sketches.

3.3 Applications: Estimating the Neighborhood Function

One application of the HLL sketch is approximating the so-called neighborhood
function [5]. The algorithm we will see computes the neighborhood vector for
all nodes in a graph at once. The neighborhood vector of a node is a vector
(n1, n2, . . .) holding respectively the number of nodes at distance 1, distance 2,
etc. The more densely connected a node is, the larger the numbers at the start
of the vector will be. The neighborhood function is then the componentwise
average of the neighborhood vector of the individual nodes; it gives the average
number of neighbors at distance 1, 2, 3, etc. The neighborhood function is useful
for instance to compute the effective diameter of a graph; that is: the average
number of steps needed from a random node to reach a predefined fraction of
the other nodes in the graph. For instance, the effective diameter for a ratio of
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Algorithm 3. Neighborhood function
Input: Graph G(V, E).
Output: Neighborhood function (N0, N1, . . .).

1: for v ∈ V do
2: nv0(v) ← {}
3: end for
4: N0 ← 1
5: i ← 0
6: while Ni �= 0 do
7: i ← i + 1
8: for v ∈ V do
9: nvi(v) ← nvi−1(v)

10: for {v, w} ∈ E do
11: nvi(v) ← nvi(v) ∪ nvi−1(w)
12: nvi(w) ← nvi(w) ∪ nvi−1(v)
13: end for
14: end for
15: Ni ← avgv∈V (|nvi(v)|) − Ni−1

16: end while
17: return (N0, N1, . . . , Ni−1)

90% is the average number of steps needed from a random node to reach 90%
of the other nodes. Using the neighborhood function, we can easily see from
which point in the vector 90% of the other nodes are covered. For instance, if
the neighborhood function is (12, 1034, 12349, 234598, 987, 3), then the number
of steps needed is 4, as more than 90% of the nodes are at distance 4 or less.
The diameter of the graph we can get by observing the rightmost entry in the
neighborhood function that is nonzero. We can see if the graph is connected
by adding up all numbers and comparing it to the total number of nodes. The
neighborhood function of a graph is hence a central property from which many
other characteristics can be derived.

A straightforward algorithm for computing the neighborhood function is
given in Algorithm 3. It is based on the observation that the nodes at distance i
or less of node v can be gotten by taking the union of all nodes at distance i − 1
or less of its neighbors. Iteratively applying this principle gives subsequently the
neighbors at distance 1, 2, 3, etc. of all nodes in the graph. This we continue as
long as new nodes are being added for at least one vector.

The space complexity of this algorithm is O(|V |2), as for every node we need
to keep all other reachable nodes. This complexity, however, can easily be reduced
using a HyperLogLog sketch to approximate the neighbors for all nodes. Instead
of storing nvi(v) for each node, we store HLL(nvi(v)). All operations we need in
the algorithm are supported for the HLL; that is: taking unions (componentwise
maximum of the two HLL sketches), and estimating the cardinality. In this way
we get a much more efficient algorithm using only O(|V |b log log(|V |)) space,
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where b is the number of buckets in the HyperLogLog sketches we keep. b depends
only on the accuracy of the approximation, and not on the size of the graph.

4 Anyone Like Me? Similarity Search

In a big data context, high-dimensional similarity search is a very common prob-
lem. One of the most successful classification techniques is nearest neighbor,
which requires quickly finding all closest points to a given query point. Although
the setting is strictly speaking no longer a streaming setting, the Locality Sen-
sitive Hashing technique [8] which we will cover in this section can usefully be
applied whenever items arrive at a fast pace, and quickly need to be matched
to a large database of instances to find similar items. Examples include face
recognition where cameras are continuously producing a sequence of faces to
be recognized in a large database, or image search where one quickly needs to
produce images which are alike a given image. One example we will use to illus-
trate the locality sensitive hashing is that of plagiarism detection, where we
assume that we have a large collection of documents and whenever a new docu-
ment arrives we need to be able to quickly generate all near neighbors; that is:
candidate original sources of a plagiarized document.

4.1 Similarity Measure: Jaccard

We will first introduce the locality sensitive hashing technique with the so-called
Jaccard similarity measure. The Jaccard similarity measures distances between
sets. These could be sets of words occurring in a document, sets of properties
or visual clues of pictures, etc. Later we will see how the Locality Sensitive
Hashing technique can be extended to other similarity measure, such as the
Cosine Similarity measure for instance. Given two sets A and B, their similarity
is defined as:

J(A,B) :=
|A ∩ B|
|A ∪ B| .

Suppose now that we order all elements of the universe from which the sets A
and B are drawn. Let r(a) denote the rank of element a in this order, minr(A)
is then defined as min{r(a) | a ∈ A}. We now have the following property which
will be key for the locality sensitive hashing technique we will develop in the
next subsection.

Minranking Property: Let r be a random ranking function assigning a unique
rank to all elements from a domain U . Let A,B ⊆ U . Now the following property
holds:

P [min
r

(A) = min
r

(B)] = J(A,B).

The probability is assuming a uniform distribution over all ranking functions r.
Indeed, every element in A ∪ B has the same probability of being the unique
element in A ∪ B that has the minimal rank in A ∪ B. Only if this element is
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in the intersection of A and B, minr(A) = minr(B). The probability that the
minimum over all elements in A ∪ B is reached in an element of A ∩ B equals
J(A,B).

Minrank Sketch of a Set: If we have multiple ranking functions r1, . . . , rk, we can
use these functions in order to get an estimate for J(A,B) as follows: compute
minri

(A) and minri
(B). Count for how many i = 1, . . . , k, minri

(A) = minri
(B).

This gives us an estimate of P [minr(A) = minr(B)] = J(A,B). The higher k,
the more accurate our approximation will become.

There is one problem with the minrank sketch: a ranking function is very
expensive to represent and store. Indeed: for a universe with n elements, there
exist n! rankings. Representing them requires on average log(n!) space. There-
fore, instead of using a ranking function, we can use a hash function assigning
numbers to the items in the range [0, L] where L is significantly smaller than
n. Such hash functions are usually easy to represent, and a popular choice for
a hash function is ((ax + b) mod p) mod L, where p is a prime number larger
than |U |, and a and b are randomly drawn integers from [1, p − 1] and [0, p − 1]
respectively. One problem with hash functions is that P [minh(A) = minh(B)] is
no longer equal to J(A,B), but is slightly higher as there may be hash collisions.
The probability of such a collision is, however, extremely low: let a, b ∈ U be two
different items. P [h(a) = h(b)] = 1/L. If L is sufficient large, this quantity can
be neglected, the more since it will only cause problems if the collision happens
between the smallest element in A and the smallest element in B. Unless the sets
A and B are extremely large, in the order of L, we can replace ranking function
by hash function in the above definitions. In this way we obtain the minhash
sketch of a set A as (minh1(A), . . . ,minhk

(A)). When comparing two sketches
(a1, . . . , ak) and (b1, . . . , bk) we hence have the approximation |{i=1...k | ai=bi}|

k .

4.2 Locality-Sensitive Hash Functions

The name Locality Sensitive Hashing comes from the idea that in order to index
high dimensional data, we need a way to hash instances into buckets in a way
that is sensitive to locality. Locality here means that things that are similar
should end up close to each other. In other words, we look for hash functions
such that the probability that two instances are hashed into the same bucket,
monotonically increases if their similarity increases. If we have such a family
of independent hash functions at our disposition, there are principled ways to
combine them into more powerful and useful hash functions. Our starting point
is a family of independent hash functions F which is (s1, p1, s2, p2)-sensitive for
a similarity measure sim. That means that for any h ∈ F , P [h(x) = h(y)] is
non-decreasing with respect to sim(x, y), P [h(x) = h(y)|sim(x, y) < s1] ≤ p1,
and P [h(x) = h(y)|sim(x, y) ≥ s2] ≥ p2. For the Jaccard-index we do have
such a family of hash functions, namely the functions minh(.) for random hash
functions h. This family of functions is (s1, s1, s2, s2)-sensitive.

Suppose we have a set D of objects from universe U and we need to index
them such that we can quickly answer the following (at this point still informal)
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near-duplicate query: given a query point q from universe U , give all objects d
in D such that sim(q, d) is high. If we have a family of (s1, p1, s2, p2)-sensitive
hash functions, we could index the objects in D as follows: pick a hash function
h from F and divide D into buckets according to the hash value given by h; that
is: for each hash value v in h(D), there is a bucket D[v] := {d ∈ D | h(d) = v}.
If we now need a near duplicate of a query point q ∈ U , we will only check
the elements d in the bucket D[h(q)]. Since h is from a (s1, p1, s2, p2)-sensitive
family, we are guaranteed that if an object d ∈ D has sim(d, q) ≥ s2, then
P [d ∈ D[h(q)]] ≥ p2. On the other hand if the similarity sim(q, d) is lower
than s1, the chance of finding d in the same bucket as q decreases to p1. If the
documents with similarity exceeding s2 represent the ones we need to retrieve,
the ones in the interval [s1, s2] are acceptable but not necessary in the result,
and the ones with similarity lower than s1 represent documents that shouldn’t
be in the answer, then p1 can be interpreted as the False Positive Ratio; that
is, the probability that a negative example is a FP, and p2 the probability that
a positive example is correctly classified and hence a TP ; i.e., the True Positive
Ratio.

Often, however, the sensitivities (s1, p1, s2, p2) are insufficient for applica-
tions. For instance, if we use minhashing for finding plagiarized texts where
documents are represented as the set of words they contain, the sensitivity we
get is (s1, s1, s2, s2) for any pair of numbers s1 < s2. So, if we consider a text
plagiarized if the similarity is above 90% and not plagiarized if the similarity is
less than 80%, then the indexing system proposed above has a guaranteed true
positive rate of only 90% and a false positive rate of up to 80%. This is clearly
not acceptable. Fortunately, there exist techniques for “boosting” a family of
sensitive hash functions in order to achieve much better computational prop-
erties. This boosting technique can be applied on any family of hash-functions
that are (s1, p1, s2, p2)-sensitive for a given similarity function, as long as the
hash functions are independent, as we will see next.

4.3 Combining Locality-Sensitive Hash Functions

Instead of creating an index based on one hash function, we can combine up to k
hash functions h1, . . . , hk as follows: assign each document x in our collection D
to a bucket D[h1(x), h2(x), . . . , hk(x)] where D[v1, . . . , vk] := {d ∈ D | h1(d) =
v1, . . . , hk(d) = vk}. If a query q comes, we check the similarity with the docu-
ments in bucket D[h1(q), . . . , hk(q)] only. We now get:

P [q ∈ D[h1(d), . . . , hk(d)]] = P [∀i = 1 . . . k : hi(q) = hi(d)] (5)

=
k∏

i=1

P [hi(q) = hi(d)] (6)

Hence, the combination of hash functions is (s1, pk
1 , s2, p

k
2)-sensitive. In this way

we can reduce the number of false positives tremendously; for p1 = 80% as in
our example above, for k = 10, the false positive rate decreases from 80% to
(80%)10, which is less than 11%!
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• D = { 00110011, 01010101, 00011100, 01110010, 
11001100, 10101010 }

• Query q = 00011100
– Only compute distance to x1,x2,x3

01
10
11

Partition 1

x2,x4
x6
x5

00

10
11

Partition 2
x5

x6
x1,x4

00 x1,x3
01 x2,x3

00 x1,x3
01 x2,x3

Fig. 5. LSH-Index based on a (2, 2)-scheme. For illustrative purposes a simple hamming
distance between 0–1 vectors is chosen, defined as the fraction of entries on which the
vectors correspond. The first index is based on the first two entries in the vector, and
the second index on the next two entries. A query point is compared to all vectors in
the 2 buckets in which the query point is hashed (one for the first index, one for the
second)

The true positive rate, however, decreases as well: from 90% to around 35%.
To counter this problem, however, we can create multiple indices for different sets
of hash functions: H1 = (h1

1, . . . , h
1
k), . . . , H� = (h�

1, . . . , h
�
k). For each j = 1 . . . 	

we create an independent index for the documents. Each document d ∈ D gets
assigned to 	 buckets: D1[H1(d)], . . . , D�[H�(d)], where Hi(d) is shorthand for
the composite tuple (hi

1(d), . . . , hi
k(d)). If a query q comes, we will compare q

to all documents in D1[H1(q)] ∪ . . . ∪ D�[H�(q)]. This way of indexing data is
illustrated in Fig. 5.

Suppose that P [h(x) = h(y)] = p for al given pair of documents x, y and a
random hash function from a given family of hash functions. Then the probability
that x and y share at least one bucket in the 	 indices under our (k, 	)-scheme
equals:

P [x and y share at least one bucket] = 1 − P [x and y share no bucket] (7)

= 1 −
�∏

j=1

P [Hj(x) �= Hj(y)] (8)

= 1 −
�∏

j=1

(1 − P [Hj(x) = Hj(y)]) (9)

= 1 −
�∏

j=1

(1 − pk) (10)

= 1 − (1 − pk)� (11)
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Hence our (k, l)-scheme is (s1, 1 − (1 − pk
1)

�, s2, 1 − (1 − pk
2)

�)-sensitive. As long
as our family of hash functions is large enough to allow for k	 hash functions,
we can achieve any desired precision (s1, P1, s2, P2) for our indexing scheme by
solving the following system of equations for l and k:

{
P1 = 1 − (1 − pk

1)
�

P2 = 1 − (1 − pk
2)

�

Figure 6 plots some examples in which the similarity of two documents is
plotted against the probability that they share at least one bucket, for the
Jaccard similarity measure using the minhash family. Recall that P [h(x) =
h(y)] ≈ J(x, y), which makes the relation between the similarity of two doc-
uments x and y and their probability of sharing a bucked straightforward:
P [x shares bucket with y] = 1 − (1 − J(x, y)k)�.

Fig. 6. Relation between the similarity and probability of being in the same bucket
under different (k, �)-hashing schemes (LSH for Jaccard using minhash)

4.4 LSH for Cosine Similarity

Locality-sensitive hashing works not only for the Jaccard-index; any similarity
measure for which we can find an appropriate family of hash functions for, can
benefit from this framework. We will illustrate this principle with one more exam-
ple: the cosine similarity measure. The universe from which our documents and
queries come are N -dimensional vectors of non-negative numbers, for instance
TF.IDF-vectors for text documents. Given two vectors, x = (x1, . . . , xN ) and
y = (y1, . . . , yN ), the cosine similarity between them is defined as x·y

|x||y| , where
· is the scalar product and |.| the l2-norm. The cosine similarity measure thanks
its name to the fact that it equals the cosine of the angle formed by the two
vectors.
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v1

v2

a x=0

Fig. 7. Random hyperplane separating 2 2D vectors (Color figure online)

It is this property that will be exploited by the hash functions we will design:
every hash function we consider is associated with a random hyperplane through
the origin. All points on one side of the hyperplane get assigned 0, and all points
on the other side get assigned 1. That is, if the equation of the hyperplane
is a · x = 0, then the hash function ha we consider is defined as ha(x) =
sign(a · x). It can be shown that if we chose the hyperplane by drawing each
of the components of a from an independent standard normal distribution, then
the probability that we separate two vectors by the random hyperplane a ·x = 0
is proportional to the angle between the two vectors. This situation is depicted
for 2 dimensions in Fig. 7. The green line represents the separating hyperplane
between two vectors. The plane, in 2D a line, separates the vectors if its slope is
in [α1, α2] where αi is the angle between the horizontal axis and the vector vi.
The probability that this happens, if all slopes are equally likely, is α

π/2 , where
α is the angle between v1 and v2; i.e., α = |α2 − α1|. Hence, we get:

P [ha(x) = ha(y)] = 1 − α

π/2
(12)

= 1 − arccos(sim(x,y))
π/2

(13)

As arccos(x) is monotonically decreasing for x ∈ [0, 1], the probability that two
elements share a bucket is monotonically increasing with the cosine similarity
between the two elements, which is exactly the LSH property we need to use
the technique of last subsection. We can again combine the hash functions into 	
groups of k independent hashes. In this way we get an index where two elements
share at least one bucket with a probability of:

1 −
(

1 −
(

1 − arccos(sim(x,y))
π/2

)k
)�

This probability in function of the cosine similarity between two documents is
depicted in Fig. 8.
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Fig. 8. Relation between the similarity and probability of being in the same bucket
under different (k, �)-hashing schemes (LSH for cosine similarity)

4.5 Application: Plagiarism Detection

One potential application of LSH is plagiarism detection. We will illustrate this
application with a collection of 23M Wikipedia documents. Each document con-
sists of one chapter of a Wikipedia page. The pages are preprocessed as follows:
first the pages are decomposed into their 4-shingles; that is: each page is rep-
resented by the set of all 4 consecutive words in the text. For instance, if the
document is “Royal Antwerp Football Club is the number 1 team in Belgium”,
then the representation becomes: {“Royal Antwerp Football Club”, “Antwerp
Football Club is”, “Football Club is the”, . . . , “1 team in Belgium”}. Subse-
quently, to reduce space, all shingles are hashed into a unique number. After
that, two documents are compared using the Jaccard similarity. Via minhash-
ing we create 49 independent (s1, s1, s2, s2)-sensitive hash functions. These are
combined into an LSH-index using a (7, 7)-scheme.

In order to get an idea of the overall distribution of the similarities between
two random documents in the collection, we sampled a subset of 1000 docu-
ments. For these 1000 documents, the similarity between all pairs is measured.
These numbers, extrapolated to the whole collection, are plotted as a histogram
in Fig. 9. As can be seen in this histogram, the vast majority of pairs of docu-
ments has low similarity (notice incidentally that the scale on the vertical axis
is logarithmic). Only about 100 document pairs have a similarity higher than
90%, and there is a gap between 70% and 90%. This indicates that, as to be
expected, there is some duplicate content in Wikipedia, which scores a similar-
ity higher than 90%, while the normal pairs score at most around 70% with a
vast majority of pairs of documents having similarities around 10%, 20%, 30%.
This is very good news for the application of LSH. Indeed, it indicates that any
indexing scheme which is (30%, p1, 90%, p2)-sensitive with low p1 and high p2
will perform very well. The large gap between s1 = 30% and s2 = 90% means
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Fig. 9. Histogram representing the extrapolated numbers of pairs of documents with
respect to similarity (binned per 10%; logscale). Overlayed is the probability that two
documents share a bucket in a (7, 7) LSH index (normal scale)

that we will not need a lot of hash functions. In Fig. 9, the histogram has been
overlayed with the probability of sharing a bucket for a (7, 7)-scheme. As can
be seen, this indexing scheme should perform very well; for most of the pairs
of documents the similarity is low, and at the same time the probability that
those pairs end up in the same bucket is extremely low. Hence, the number of
false positives will be very low relative to the total number of pairs. On the other
hand, for the highly similar documents, the similarity is high and the probability
of those pairs ending up in the same bucket is nearly 1. So, not too many false
negatives to be expected either.

Because of the low number of candidates that will have to be tested, the
time of finding duplicates in an experiment with this setup went down from over
6 hours to compare a query document to all documents in the collection, to
less than a second, all on commodity hardware. The exact run times depend on
the exact characteristics of the setup and the similarity distribution among the
documents, but in this particular case a speedup of over 20000 times could be
observed using LSH, with virtually no false negatives.

5 Conclusions

In this overview we reviewed three techniques which can come in handy when
working with large amounts of data. First of all, we looked into fast and effi-
cient algorithms for recognizing heavy hitters; that is: highly frequent items, in a
stream. Then we went into even more efficient sketches for streaming data which
allow for cardinality estimation of a stream. Last but not least, we reviewed the
Locality Sensitive Hashing technique for similarity search in large data collec-
tions. These techniques, and combinations thereof are frequently handy when
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working with large data collections, and are a nice addition to a data scientists
toolbox. A number of applications we gave were: finding users in an IP network
using an excessively large fraction of the bandwidth, computing the neighbor-
hood function of a graph, and plagiarism detection.
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