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Preface

The 7th European Business Intelligence and Big Data Summer School (eBISS 20171)
took place in Brussels, Belgium, in July 2017. Tutorials were given by renowned
experts and covered advanced aspects of business intelligence and big data. This
volume contains the lecture notes of the summer school.

The first chapter covers data profiling, which is the process of metadata discovery.
This process involves activities that range from ad hoc approaches, such as eye-balling
random subsets of the data or formulating aggregation queries, to systematic inference
of metadata via profiling algorithms. The chapter emphasizes the importance of data
profiling as part of any data-related use-case, classifying data profiling tasks, and
reviews data profiling systems and techniques. The chapter also discusses hard prob-
lems in data profiling, such as algorithms for dependency discovery and their appli-
cation in data management and data analytics. It concludes with directions for future
research in the area of data profiling.

The second chapter targets extract–transform–load (ETL) processes, which are used
for extracting data, transforming them, and loading them into data warehouses.
Most ETL tools use graphical user interfaces (GUIs), where the developer “draws” the
ETL flow by connecting steps/transformations with lines. Although this gives an easy
overview, it can be rather tedious and requires a lot of trivial work for simple things.
This chapter proposes an alternative approach to ETL programming by writing code. It
presents the Python-based framework pygrametl, which offers commonly used func-
tionality for ETL development. By using the framework, the developer can efficiently
create effective ETL solutions from which the full power of programming can be
exploited. The chapter also discusses some of the lessons learned during the devel-
opment of pygrametl as an open source framework.

The third chapter presents an overview of temporal data management. Despite the
ubiquity of temporal data and considerable research on the processing of such data,
database systems largely remain designed for processing the current state of some
modeled reality. More recently, we have seen an increasing interest in the processing of
temporal data. The SQL:2011 standard incorporates some temporal support, and
commercial DBMSs have started to offer temporal functionality in a step-by-step
manner. This chapter reviews state-of-the-art research results and technologies for
storing, managing, and processing temporal data in relational database management
systems. It starts by offering a historical perspective, after which it provides an over-
view of basic temporal database concepts. Then the chapter surveys the state of the art
in temporal database research, followed by a coverage of the support for temporal data
in the current SQL standard and the extent to which the temporal aspects of the
standard are supported by existing systems. The chapter ends by covering a recently

1 http://cs.ulb.ac.be/conferences/ebiss2017/



proposed framework that provides comprehensive support for processing temporal data
and that has been implemented in PostgreSQL.

The fourth chapter discusses historical graphs, which capture the evolution of graphs
through time. A historical graph can be modeled as a sequence of graph snapshots,
where each snapshot corresponds to the state of the graph at the corresponding time
instant. There is rich information in the history of the graph not present in only the
current snapshot of the graph. The chapter presents logical and physical models, query
types, systems, and algorithms for managing historical graphs.

The fifth chapter introduces the challenges around data streams, which refer to data
that are generated at such a fast pace that it is not possible to store the complete data in
a database. Processing such streams of data is very challenging. Even problems that are
highly trivial in an off-line context, such as: “How many different items are there in my
database?” become very hard in a streaming context. Nevertheless, in the past decades
several clever algorithms were developed to deal with streaming data. This chapter
covers several of these indispensable tools that should be present in every big data
scientist’s toolbox, including approximate frequency counting of frequent items, car-
dinality estimation of very large sets, and fast nearest neighbor search in huge data
collections.

Finally, the sixth chapter is devoted to deep learning, one of the fastest growing
areas of machine learning and a hot topic in both academia and industry. Deep learning
constitutes a novel methodology to train very large neural networks (in terms of
number of parameters), composed of a large number of specialized layers that are able
to represent data in an optimal way to perform regression or classification tasks. The
chapter reviews what is a neural network, describes how we can learn its parameters by
using observational data, and explains some of the most common architectures and
optimizations that have been developed during the past few years.

In addition to the lectures corresponding to the chapters described here, eBISS 2017
had an additional lecture:

– Christoph Quix from Fraunhofer Institute for Applied Information Technology,
Germany: “Data Quality for Big Data Applications”

This lecture has no associated chapter in this volume.

As with the previous editions, eBISS joined forces with the Erasmus Mundus
IT4BI-DC consortium and hosted its doctoral colloquium aiming at community
building and promoting a corporate spirit among PhD candidates, advisors, and
researchers of different organizations. The corresponding two sessions, each organized
in two parallel tracks, included the following presentations:

– Isam Mashhour Aljawarneh, “QoS-Aware Big Geospatial Data Processing”
– Ayman Al-Serafi, “The Information Profiling Approach for Data Lakes”
– Katerina Cernjeka, “Data Vault-Based System Catalog for NoSQL Store Integration

in the Enterprise Data Warehouse”
– Daria Glushkova, “MapReduce Performance Models for Hadoop 2.x”
– Muhammad Idris, “Active Business Intelligence Through Compact and Efficient

Query Processing Under Updates”
– Anam Haq, “Comprehensive Framework for Clinical Data Fusion”
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– Hiba Khalid, “Meta-X: Discovering Metadata Using Deep Learning”
– Elvis Koci, “From Partially Structured Documents to Relations”
– Rohit Kumar, “Mining Simple Cycles in Temporal Network”
– Jose Miguel Mota Macias, “VEDILS: A Toolkit for Developing Android Mobile

Apps Supporting Mobile Analytics”
– Rana Faisal Munir, “A Cost-Based Format Selector for Intermediate Results”
– Sergi Nadal, “An Integration-Oriented Ontology to Govern Evolution in Big Data

Ecosystems”
– Dmitriy Pochitaev, “Partial Data Materialization Techniques for Virtual Data

Integration”
– Ivan Ruiz-Rube, “A BI Platform for Analyzing Mobile App Development Process

Based on Visual Languages”

We would like to thank the attendees of the summer school for their active par-
ticipation, as well as the speakers and their co-authors for the high quality of their
contribution in a constantly evolving and highly competitive domain. Finally, we
would like to thank the external reviewers for their careful evaluation of the chapters.

May 2018 Esteban Zimányi
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An Introduction to Data Profiling

Ziawasch Abedjan(B)

TU Berlin, Berlin, Germany
abedjan@tu-berlin.de

Abstract. One of the crucial requirements before consuming datasets
for any application is to understand the dataset at hand and its meta-
data. The process of metadata discovery is known as data profiling.
Profiling activities range from ad-hoc approaches, such as eye-balling
random subsets of the data or formulating aggregation queries, to sys-
tematic inference of metadata via profiling algorithms. In this course, we
will discuss the importance of data profiling as part of any data-related
use-case, and shed light on the area of data profiling by classifying data
profiling tasks and reviewing the state-of-the-art data profiling systems
and techniques. In particular, we discuss hard problems in data profil-
ing, such as algorithms for dependency discovery and their application
in data management and data analytics. We conclude with directions for
future research in the area of data profiling.

1 Introduction

Recent studies show that data preparation is one of the most time-consuming
tasks of researchers and data scientists1. A core task for preparing datasets
is profiling a dataset. Data profiling is the set of activities and processes to
determine the metadata about a given dataset [1]. Most readers probably have
engaged in the activity of data profiling, at least by eye-balling spreadsheets,
database tables, XML files, etc. Possibly more advanced techniques were used,
such as keyword-searching in datasets, writing structured queries, or even using
dedicated analytics tools.

According to Naumann [46], data profiling encompasses a vast array of meth-
ods to examine datasets and produce metadata. Among the simpler results are
statistics, such as the number of null values and distinct values in a column,
its data type, or the most frequent patterns of its data values. Metadata that
are more difficult to compute involve multiple columns, such as inclusion depen-
dencies or functional dependencies. Also of practical interest are approximate
versions of these dependencies, in particular because they are typically more
efficient to compute. This chapter will strongly align with the survey published
in 2015 on profiling relational data [1] and will focus mainly on exact methods.
Note that all discussed examples are also taken from this survey.

1 https://www.forbes.com/sites/gilpress/2016/03/23/data-preparation-most-time-
consuming-least-enjoyable-data-science-task-survey-says/#2c61c6c56f63.

c© Springer International Publishing AG, part of Springer Nature 2018
E. Zimányi (Ed.): eBISS 2017, LNBIP 324, pp. 1–20, 2018.
https://doi.org/10.1007/978-3-319-96655-7_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96655-7_1&domain=pdf
https://www.forbes.com/sites/gilpress/2016/03/23/data-preparation-most-time-consuming-least-enjoyable-data-science-task-survey-says/#2c61c6c56f63
https://www.forbes.com/sites/gilpress/2016/03/23/data-preparation-most-time-consuming-least-enjoyable-data-science-task-survey-says/#2c61c6c56f63
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Apart from managing the input data, data profiling faces two significant
challenges: (i) performing the computation, and (ii) managing the output. The
first challenge is the main focus of this chapter and that of most research in the
area of data profiling: The computational complexity of data profiling algorithms
depends on the number or rows and on the number of columns. Often, there is an
exponential complexity in the number of columns and subquadratic complexity
in the number of rows. The second challenge, namely meaningfully interpreting
the data profiling has yet to be addressed. Profiling algorithms generate meta-
data and often the amount of meta-data itself is impractical requiring a meta-
profiling step, i.e., interpretation, which is usually performed by database and
domain experts.

1.1 Use Cases for Data Profiling

Statistics about data and dependencies are have always been useful in query
optimization [34,41,52]. Furthermore, data profiling plays an important role in
use cases, such as data exploration, data integration, and data analytics.

Data Exploration. Users are often confronted with new datasets, about which
they know nothing. Examples include data files downloaded from the Web, old
database dumps, or newly gained access to some DBMS. In many cases, such
data have no known schema, no or old documentation, etc. Even if a formal
schema is specified, it might be incomplete, for instance specifying only the
primary keys but no foreign keys. A natural first step is to identify the basic
structure and high-level content of a dataset. Thus, automated data profiling is
needed to provide a basis for further analysis. Morton et al. recognize that a key
challenge is overcoming the current assumption of data exploration tools that
data is “clean and in a well-structured relational format” [45].

Data Integration and Data Cleaning. There are crucial questions to be answered
before different data sources can be integrated: In particular, the dimensions of
a dataset, its data types and formats are important to recognize before auto-
mated integration routines can be applied. Similarly, profiling can help to detect
data quality problems, such as inconsistent formatting within a column, missing
values, or outliers. Profiling results can also be used to measure and monitor the
general quality of a dataset, for instance by determining the number of records
that do not conform to previously established constraints [35]. Generated con-
straints and dependencies also allow for rule-based data imputation.

Big Data Analytics. Fetching, storing, querying, and integrating big data is
expensive, despite many modern technologies. Before using any sort of Big Data
simple assessment of the dataset structure is necessary. In this context, lead-
ing researchers have noted “If we just have a bunch of datasets in a reposi-
tory, it is unlikely anyone will ever be able to find, let alone reuse, any of this
data. With adequate metadata, there is some hope, but even so, challenges will
remain[. . .].” [4]
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1.2 Chapter Overview

The goal of this chapter is to provide an overview on existing algorithms and
open challenges in data profiling. The remainder of this chapter is organized as
follows. In Sect. 2, we outline and define data profiling based on a new taxonomy
of profiling tasks and briefly survey the state of the art of the two main research
areas in data profiling: analysis of single and multiple columns. We dedicate
Sect. 3 on the detection of dependencies between columns. In Sect. 4 we shed
some light on data profiling tools from research and industry and we conclude
this chapter in Sect. 5.

2 Classification of Profiling Tasks

This section presents a classification of data profiling tasks according to the
aforementioned survey [1]. Figure 1 shows the classification, which distinguishes
single-column tasks, multi-column tasks, and dependency detection. While
dependency detection falls under multi-column profiling, we chose to assign a
separate profiling class to this large, complex, and important set of tasks.

2.1 Single Column Profiling

Typically, the generated metadata from single columns comprises various counts,
such as the number of values, the number of unique values, and the number of
non-null values. These metadata are often part of the basic statistics gathered by
the DBMS. In addition, the maximum and minimum values are discovered and
the data type is derived (usually restricted to string vs. numeric vs. date). More
advanced techniques create histograms of value distributions and identify typical
patterns in the data values in the form of regular expressions [54]. Table 1 lists
the possible and typical metadata as a result of single-column data profiling. In
the following, we point out some of the interesting tasks.

From the number of distinct values the uniqueness can be calculated, which is
typically defined as the number of unique values divided by the number of rows.
Apart from determining the exact number of distinct values, query optimization
is a strong incentive to estimate those counts in order to predict query execu-
tion plan costs without actually reading the entire data. Because approximate
profiling is not the focus of this survey, we give only two exemplary pointers.
Haas et al. base their estimation on data samples. They describe and empirically
compare various estimators from the literature [27]. Another approach is to scan
the entire data but use only a small amount of memory to hash the values and
estimate the number of distinct values [6].

The constancy of a column is defined as the ratio of the frequency of the most
frequent value (possibly a pre-defined default value) and the overall number of
values. It thus represents the proportion of some constant value compared to the
entire column.

A particularly interesting distribution is the first digit distribution for
numeric values. Benford’s law states that in naturally occurring numbers the
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Fig. 1. A classification of traditional data profiling tasks according to [1].

distribution of the first digit d of a number approximately follows P (d) =
log10(1 + 1

d ) [8]. Thus, the 1 is expected to be the most frequent leading digit,
followed by 2, etc. Benford’s law has been used to uncover accounting fraud and
other fraudulently created numbers.

2.2 Multi-column Profiling

The second class of profiling tasks covers multiple columns simultaneously. In
general, one can apply most of the tasks from Table 1 also on multiple columns
in a bundle. For example, one could count the number of distinct value combi-
nations in a set of columns. Additionally, multi-column profiling identifies inter-
value dependencies and column similarities. Furthermore, clustering and outlier
detection approaches that consume values of multiple columns and generating
summaries and sketches of large datasets relates to profiling values across multi-
ple columns. Multi-column profiling tasks generate meta-data on horizontal par-
titions of the data, such as values and records, instead of vertical partitions, such
as columns and column groups. Although the discovery of column dependencies,
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Table 1. Overview of selected single-column profiling tasks [1]

Category Task Description

Cardinalities num-rows Number of rows

value lengthMeasurements of value lengths (minimum,
maximum, median, and average)

null values Number or percentage of null values

distinct Number of distinct values; sometimes called
“cardinality”

uniqueness Number of distinct values divided by the number of
rows

Value
distributions

histogram Frequency histograms (equi-width, equi-depth, etc.)

constancy Frequency of most frequent value divided by number
of rows

quartiles Three points that divide the (numeric) values into
four equal groups

first digit Distribution of first digit in numeric values; to check
Benford’s law

Patterns basic type Generic data type, such as numeric, alphabetic,
alphanumeric, date, time

data types data type Concrete DBMS-specific data type, such as varchar,
timestamp, etc.

and domains size Maximum number of digits in numeric values

decimals Maximum number of decimals in numeric values

patterns Histogram of value patterns (Aa9. . . )

data class Semantic, generic data type, such as code, indicator,
text, date/time, quantity, identifier

domain Classification of semantic domain, such as credit
card, first name, city, phenotype

such as key or functional dependency discovery, also relates to multi-column
profiling, we dedicate a separate section to dependency discovery as described
in the next section.

Correlations and Association Rules. Correlation analysis reveals related
numeric columns, e.g., in an Employees table, age and salary may be correlated.
A straightforward way to do this is to compute pairwise correlations among all
pairs of columns. In addition to column-level correlations, value-level associations
may provide useful data profiling information.

Traditionally, a common application of association rules has been to find
items that tend to be purchased together based on point-of-sale transaction data.
In these datasets, each row is a list of items purchased in a given transaction. An
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association rule {bread} → {butter}, for example, states that if a transaction
includes bread, it is also likely to include butter, i.e., customers who buy bread
also buy butter. A set of items is referred to as an itemset, and an association
rule specifies an itemset on the left-hand-side and another itemset on the right-
hand-side.

Most algorithms for generating association rules from data decompose the
problem into two steps [5]:

1. Discover all frequent itemsets, i.e., those whose frequencies in the dataset
(i.e., their support) exceed some threshold. For instance, the itemset {bread,
butter} may appear in 800 out of a total of 50,000 transactions for a support
of 1.6%.

2. For each frequent itemset a, generate association rules of the form l → a − l
with l ⊂ a, whose confidence exceeds some threshold. Confidence is defined
as the frequency of a divided by the frequency of l, i.e., the conditional prob-
ability of l given a − l. For example, if the frequency of {bread, butter} is
800 and the frequency of {bread} alone is 1000 then the confidence of the
association rule {bread} → {butter} is 0.8.

The first step is the bottleneck of association rule discovery due to the large
number of possible frequent itemsets (or patterns of values) [31]. Popular algo-
rithms for efficiently discovering frequent patterns include Apriori [5], Eclat [62],
and FP-Growth [28]. Negative correlation rules, i.e., those that identify attribute
values that do not co-occur with other attribute values, may also be useful in
data profiling to find anomalies and outliers [11]. However, discovering negative
association rules is more difficult, because infrequent itemsets cannot be pruned
the same way as frequent itemsets.

Clustering and Outlier Detection. Another useful profiling task is to iden-
tify homogeneous groups of records as clusters or to identify outlying records
that do not fit into any cluster. For example, Dasu et al. cluster numeric columns
and identify outliers in the data [17]. Furthermore, based on the assumption that
data glitches occur across attributes and not in isolation [9], statistical inference
has been applied to measure glitch recovery in [20].

Summaries and Sketches. Besides clustering, another way to describe data
is to create summaries or sketches [13]. This can be done by sampling or hashing
data values to a smaller domain. Sketches have been widely applied to answering
approximate queries, data stream processing and estimating join sizes [18,23].
Cormode et al. give an overview of sketching and sampling for approximate query
processing [15].

Another interesting task is to assess the similarity of two columns, which can
be done using multi-column hashing techniques. The Jaccard similarity of two
columns A and B is |A∩B|/|A∪B|, i.e., the number of distinct values they have
in common divided by the total number of distinct values appearing in them.
This gives the relative number of values that appear in both A and B. If the
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distinct value sets of columns A and B are not available, we can estimate the
Jaccard similarity using their MinHash signatures [19].

2.3 Dependencies

Dependencies are metadata that describe relationships among columns. In con-
trast to multi-column profiling, the goal is to identify meta-data that describe
relationships among column combinations and not the value combinations within
the columns.

One of the common goals of data profiling is to identify suitable keys for
a given table. Thus, the discovery of unique column combinations, i.e., sets of
columns whose values uniquely identify rows, is an important data profiling
task [29]. A unique that was explicitly chosen to be the unique record identifier
while designing the table schema is called primary key. Since the discovered
uniqueness constraints are only valid for a relational instance at a specific point
of time, we refer to uniques and non-uniques instead of keys and non-keys. A
further distinction can be made in terms of possible keys and certain keys when
dealing with uncertain data and NULL values [37].

Another frequent real-world use-case of dependency discovery is the discov-
ery of foreign keys [40] with the help of inclusion dependencies [7,42]. An inclu-
sion dependency states that all values or value combinations from one set of
columns also appear in the other set of columns – a prerequisite for a foreign
key. Finally, functional dependencies (Fds) are relevant for many data quality
applications. A functional dependency states that values in one set of columns
functionally determine the value of another column. Again, much research has
been performed to automatically detect Fds [32]. Section 3 surveys dependency
discovery algorithms in detail.

2.4 Conditional, Partial, and Approximate Solutions

Real datasets usually contain exceptions to rules. To account for this, dependen-
cies and other constraints detected by data profiling can be be relaxed. Typi-
cally, relaxations in terms of partial and conditional dependencies have been the
focus of research [12]. Within the scope of this chapter, we will only discuss the
approaches for discovering the exact set of dependencies.

Partial dependencies are dependencies that hold for only a subset of the
records, for instance, for 95% of the records or for all but 5 records. Such depen-
dencies are especially valuable in cleaning dirty datasets where some records
might be broken and impede the detection of a dependency. Violating records
can be extracted and cleansed [57].

Conditional dependencies can specify condition for partial dependencies. For
instance, a conditional unique column combination might state that the col-
umn city is unique for all records with Country �= ‘USA’. Conditional inclusion
dependencies (Cinds) were proposed by Bravo et al. for data cleaning and con-
textual schema matching [10]. Conditional functional dependencies (Cfds) were
introduced in [21], also for data cleaning.
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Approximate dependencies are not guaranteed to hold for the entire relation.
Such dependencies are discovered using approximate solutions, such as sam-
pling [33] or other summarization techniques [15]. Approximate dependencies
can be used as input to the more rigorous task of detecting true dependencies.
This survey does not discuss such approximation techniques.

2.5 Data Profiling vs. Data Mining

Generally, it is apparent that some data mining techniques can be used for data
profiling. Rahm and Do distinguish data profiling from data mining by the num-
ber of columns that are examined: “Data profiling focusses on the instance analy-
sis of individual attributes. [. . . ] Data mining helps discover specific data patterns
in large datasets, e.g., relationships holding between several attributes” [53].
While this distinction is well-defined, we believe several tasks, such as Ind or
Fd detection, belong to data profiling, even if they discover relationships between
multiple columns.

The profiling survey [1] rather adheres to the following way of differentiation:
Data profiling gathers technical metadata (information about columns) to sup-
port data management; data mining and data analytics discovers non-obvious
results (information about the content) to support business management with
new insights. With this distinction, we concentrate on data profiling and put
aside the broad area of data mining, which has already received unifying treat-
ment in numerous textbooks and surveys [58].

3 Dependency Detection

Before discussing actual algorithms for dependency discovery, we will present
a set of formalism that are used in the following. Then, we will present algo-
rithms for the discovery of the prominent dependencies unique column combina-
tions (Sect. 3.1), functional dependencies (Sect. 3.2), and inclusion dependencies
(Sect. 3.3). Apart from algorithms for these traditional dependencies, newer types
of dependencies have also been the focus of research. We refer the reader to the
survey on relaxed dependencies for further reading [12].

Notation. R and S denote relational schemata, with r and s denoting the
instances of R and S, respectively. We refer to tuples of r and s as ri and
sj , respectively. Subsets of columns are denoted by upper-case X,Y,Z (with |X|
denoting the number of columns in X) and individual columns by upper-case
A,B,C. Furthermore, we define πX(r) and πA(r) as the projection of r on the
attribute set X or attribute A, respectively; thus, |πX(r)| denotes the count of
distinct combinations of the values of X appearing in r. Accordingly, ri[A] indi-
cates the value of the attribute A of tuple ri and ri[X] = πX(ri). We refer to an
attribute value of a tuple as a cell.
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3.1 Unique Column Combinations and Keys

Given a relation R with instance r, a unique column combination (a “unique”)
is a set of columns X ⊆ R whose projection on r contains only unique value
combinations.

Definition 1 (Unique/Non-Unique). A column combination X ⊆ R is a
unique, iff ∀ri, rj ∈ r, i �= j : ri[X] �= rj [X]. Analogously, a set of columns
X ⊆ R is a non-unique column combination (a “non-unique”), iff its projection
on r contains at least one duplicate value combination.

Each superset of a unique is also unique while each subset of a non-unique is
also a non-unique. Therefore, discovering all uniques and non-uniques can be
reduced to the discovery of minimal uniques and maximal non-uniques:

Definition 2 (Minimal Unique/Maximal Non-Unique). A column com-
bination X ⊆ R is a minimal unique, iff ∀X ′ ⊂ X : X ′ is a non-unique. Accord-
ingly, a column combination X ⊆ R is a maximal non-unique, iff ∀X ′ ⊃ X : X ′

is a unique.

To discover all minimal uniques and maximal non-uniques of a relational
instance, in the worst case, one has to visit all subsets of the given relation. Thus,
the discovery of all minimal uniques and maximal non-uniques of a relational
instance is an NP-hard problem and even the solution set can be exponential
[26]. Given |R|, there can be

(|R|
|R|
2

) ≥ 2
|R|
2 minimal uniques in the worst case, i.e.,

as all combinations of size |R|
2 .

Gordian – Row-Based Discovery. Row-based algorithms require multiple
runs over all column combinations as more and more rows are considered. They
benefit from the intuition that non-uniques can be detected without verifying
every row in the dataset. Gordian [56] is an algorithm that works this way in a
recursive manner. The algorithm consists of three stages: (i) Organize the data
in form of a prefix tree, (ii) Discover maximal non-uniques by traversing the
prefix tree, (iii) Generate minimal uniques from maximal non-uniques.

Each level of the prefix tree represents one column of the table whereas each
branch stands for one distinct tuple. Tuples that have the same values in their
prefix share the corresponding branches. E.g., all tuples that have the same
value in the first column share the same node cells. The time to create the prefix
tree depends on the number of rows, therefore this can be a bottleneck for very
large datasets. However because of the tree structure, the memory footprint will
be smaller than the original dataset. By a depth-first traversal of the tree for
discovering maximum repeated branches, which constitute maximal non-uniques,
maximal non-uniques will be discovered.

After discovering all maximal non-uniques, Gordian computes all minimal
uniques by a complementation step. For each non-unique, the updated set of
minimal uniques must be simplified by removing redundant uniques. This sim-
plification requires quadratic runtime in the number of uniques.
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The generation of minimal uniques from maximal non-uniques can be a bot-
tleneck if there are many maximal non-uniques. Experiments showed that in
most cases the unique generation dominates the runtime [2].

Column-Based Traversal of the Column Lattice. In the spirit of the well-
known Apriori approach, minimal unique discovery working bottom-up as well
as top-down can follow the same approach as for frequent itemset mining [5].
With regard to the powerset lattice of a relational schema, the Apriori algorithms
generate all relevant column combinations of a certain size and verify those at
once. Figure 2 illustrates the powerset lattice for the running example in Table 2.
The effectiveness and theoretical background of those algorithms is discussed by
Giannela and Wyss [24]. They presented three breadth-first traversal strategies:
a bottom-up, a top-down, and a hybrid traversal strategy.

Table 2. Example dataset.

Tuple id First Last Age Phone

1 Max Payne 32 1234

2 Eve Smith 24 5432

3 Eve Payne 24 3333

4 Max Payne 24 3333

Fig. 2. Powerset lattice for the example Table 2 [1].

Bottom-up unique discovery traverses the powerset lattice of the schema
R from the bottom, beginning with all 1-combinations toward the top of the
lattice, which is the |R|-combination. The prefixed number k of k-combination
indicates the size of the combination. The same notation applies for k-candidates,
k-uniques, and k-non-uniques. To generate the set of 2-candidates, we generate
all pairs of 1-non-uniques. k-candidates with k > 2 are generated by extending
the (k − 1)-non-uniques by another non-unique column. After the candidate
generation, each candidate is checked for uniqueness. If it is identified as a non-
unique, the k-candidate is added to the list of k-non-uniques.
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If the candidate is verified as unique, its minimality has to be checked. The
algorithm terminates when k = |1-non-uniques|. A disadvantage of this candi-
date generation technique is that redundant uniques and duplicate candidates
are generated and tested.

The Apriori idea can also be applied to the top-down approach. Having the
set of identified k-uniques, one has to verify whether the uniques are minimal.
Therefore, for each k-unique, all possible (k−1)-subsets have to be generated and
verified. Experiments have shown that in most datasets, uniques usually occur
in the lower levels of the lattice, which favours bottom-up traversal [2]. Hca is
an improved version of the bottom-up Apriori technique [2], which optimizes the
candidate generation step, applies statistical pruning, and considers functional
dependencies that have been inferred on the fly.

DUCC – Traversing the Lattice via Random Walk. While the breadth-
first approach for discovering minimal uniques gives the most pruning, a depth-
first approach might work well if there are relatively few minimal uniques that
are scattered on different levels of the powerset lattice. Depth-first detection
of unique column combinations resembles the problem of identifying the most
promising paths through the lattice to discover existing minimal uniques and
avoid unnecessary uniqueness checks. Ducc is a depth-first approach that tra-
verses the lattice back and forth based on the uniqueness of combinations [29].
Following a random walk principle by randomly adding columns to non-uniques
and removing columns from uniques, Ducc traverses the lattice in a manner that
resembles the border between uniques and non-uniques in the powerset lattice
of the schema.

Ducc starts with a seed set of 2-non-uniques and picks a seed at random.
Each k-combination is checked using the superset/subset relations and pruned if
any of them subsumes the current combination. If no previously identified com-
bination subsumes the current combination Ducc performs uniqueness verifica-
tion. Depending on the verification, Ducc proceeds with an unchecked (k − 1)-
subset or (k−1)-superset of the current k-combination. If no seeds are available, it
checks whether the set of discovered minimal uniques and maximal non-uniques
correctly complement each other. If so, Ducc terminates; otherwise, a new seed
set is generated by complementation.

Ducc also optimizes the verification of minimal uniques by using a position
list index (PLI) representation of values of a column combination. In this index,
each position list contains the tuple IDs that correspond to the same value
combination. Position lists with only one tuple ID can be discarded, so that the
position list index of a unique contains no position lists. To obtain the PLI of
a column combination, the position lists in PLIs of all contained columns have
to be cross-intersected. In fact, Ducc intersects two PLIs similar to how a hash
join operator would join two relations. As a result of using PLIs, Ducc can also
apply row-based pruning, because the total number of positions decreases with
the size of column combinations. Since Ducc combines row-based and column-
based pruning, it performs significantly better than its predecessors [29].
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3.2 Functional Dependencies

A functional dependency (Fd) over R is an expression of the form X → A,
indicating that ∀ri, rj ∈ r if ri[X] = rj [X] then ri[A] = rj [A]. That is, any two
tuples that agree on X must also agree on A. We refer to X as the left-hand-
side (LHS) and A as the right-hand-side (RHS). Given r, we are interested in
finding all nontrivial and minimal Fds X → A that hold on r, with non-trivial
meaning A∩X = ∅ and minimal meaning that there must not be any Fd Y → A
for any Y ⊂ X. A naive solution to the Fd discovery problem is to verify for
each possible RHS and LHS combination whether there exist two tuples that
violate the Fd. This is prohibitively expensive: for each of the |R| possibilities
for the RHS, it tests 2(|R|−1) possibilities for the LHS, each time having to scan
r multiple times to compare all pairs of tuples. However, notice that for X → A
to hold, the number of distinct values of X must be the same as the number of
distinct values of XA – otherwise at least one combination of values of X that is
associated with more than one value of A, thereby breaking the Fd [32]. Thus,
if we pre-compute the number of distinct values of each combination of one or
more columns, the algorithm simplifies to:

Recall Table 2. We have |πphone(r)| = |πage,phone(r)| = |πlast,phone(r)|.
Thus, phone → age and phone → last hold. Furthermore, |πlast,age(r)| =
|πlast,age,phone(r)|, implying {last,age} → phone.

This approach still requires to compute the distinct value counts for all pos-
sible column combinations. Similar to unique discovery, Fd discovery algorithms
employ row-based (bottom-up) and column-based (top-down) optimizations, as
discussed below.

Column-Based Algorithms. As was the case with uniques, Apriori-like
approaches can help prune the space of Fds that need to be examined, thereby
optimizing the first two lines of the above straightforward algorithms. TANE [32],
FUN [47], and FD Mine [61] are three algorithms that follow this strategy, with
FUN and FD Mine introducing additional pruning rules beyond TANE’s based
on the properties of Fds. They start with sets of single columns in the LHS
and work their way up the powerset lattice in a level-wise manner. Since only
minimal Fds need to be returned, it is not necessary to test possible Fds whose
LHS is a superset of an already-found Fd with the same RHS. For instance,
in Table 2, once we find that phone → age holds, we do not need to consider
{first,phone} → age, {last,phone} → age, etc.

Additional pruning rules may be formulated from Armstrong’s axioms, i.e.,
we can prune from consideration those Fds that are logically implied by those
we have found so far. For instance, if we find that A → B and B → A, then
we can prune all LHS column sets including B, because A and B are equiva-
lent [61]. Another pruning strategy is to ignore columns sets that have the same
number of distinct values as their subsets [47]. Returning to Table 2, observe that
phone → first does not hold. Since |πphone(r)| = |πlast,phone(r)| = |πage,phone(r)| =
|πlast,age,phone(r)|, we know that adding last and/or age to the LHS cannot lead to
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a valid Fd with first on the RHS. To determine these cardinalities the approaches
use the PLIs as discussed in Sect. 3.1.

Row-Based Algorithms. Row-based algorithms examine pairs of tuples to
determine LHS candidates. Dep-Miner [39] and FastFDs [59] are two examples;
the FDEP algorithm [22] is also row-based, but the way it ultimately finds Fds
that hold is different.

The idea behind row-based algorithms is to compute the so-called difference
sets for each pair of tuples that are the columns on which the two tuples differ.
Table 3 enumerates the difference sets in the data from Table 2. Next, we can
find candidate LHS’s from the difference sets as follows. Pick a candidate RHS,
say, phone. The difference sets that include phone, with phone removed, are:
{first,last,age}, {first,age}, {age}, {last} and {first,last}. This means that there
exist pairs of tuples with different values of phone and also with different val-
ues of these five difference sets. Next, we find minimal subsets of columns that
have a non-empty intersection with each of these difference sets. Such subsets
are exactly the LHSs of minimal Fds with phone as the RHS: if two tuples
have different values of phone, they are guaranteed to have different values of
the columns in the above minimal subsets, and therefore they do not cause
Fd violations. Here, there is only one such minimal subset, {last,age}, giving
{last,age} → phone. If we repeat this process for each possible RHS, and com-
pute minimal subsets corresponding to the LHS’s, we obtain the set of minimal
Fds.

Table 3. Difference sets computed from Table 2.[1]

Tuple ID pair Difference set

(1,2) first, last, age, phone

(1,3) first, age, phone

(1,4) age, phone

(2,3) last, phone

(2,4) first, last, phone

(3,4) first

Experiments confirm that row-based approaches work well on high-
dimensional tables with a relatively small number of tuples, while column-based
approaches perform better on low-dimensional tables with a large number of
rows [49]. Recent approaches to Fd discovery are DFD [3] and HyFD [51]. DFD
decomposes the attribute lattice into |R| lattices, considering each attribute as
a possible RHS of an Fd. On each lattice, DFD applies a random walk app-
roach by pruning supersets of Fd LHS’s and subsets of non-Fd LHS’s. HyFD
is a hybrid solution that optimally switches between a row-based and a column-
based strategy.
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3.3 Inclusion Dependencies

An inclusion dependency (Ind) R.A ⊆ S.B asserts that each value of column
A from relation R appears in column B from relation S; or A ⊆ B when the
relations are clear from context. Similarly, for two sets of columns X and Y ,
we write R.X ⊆ S.Y , or X ⊆ Y , when each distinct value combination in X
appears in Y . We refer to R.A or R.X as the LHS and S.B or S.Y as the RHS.
Inds with a single-column LHS and RHS are referred to as unary and those with
multiple columns in the LHS and RHS are called n-ary. A naive solution to Ind
discovery in relation instances r and s is to try to match each possible LHS X
with each possible RHS Y . For any considered X and Y , we can stop as soon
as we find a value combination of X that does not appear in Y . This is not an
efficient approach as it repeatedly scans r and s when testing the possible LHS
and RHS combinations.

Generating Unary Inclusion Dependencies. To discover unary Inds, a
common approach is to pre-process the data to speed up the subsequent Ind
discovery [7,43]. The SPIDER algorithm [7] pre-processes the data by sorting
the values of each column and writing them to disk. Next, each sorted stream,
corresponding to the values of one particular attribute, is consumed in parallel
in a cursor-like manner, and an Ind A ⊆ B can be discarded as soon as a value
in A is read that is not present in B.

Generating n-ary Inclusion Dependencies. After discovering unary Inds,
a level-wise algorithm, similar to the TANE algorithm for Fd discovery can
be used to discover n-ary Inds. De Marchi et al. [43] propose an algorithm
that constructs Inds with i columns from those with i − 1 columns. Addition-
ally, hybrid algorithms have been proposed in [38,44] that combine bottom-up
and top-down traversal for additional pruning. Recently, the Binder algorithm,
which uses divide and conquer principles to handle larger datasets, has been
introduced [50]. In the divide step, it splits the input dataset horizontally into
partitions and vertically into buckets with the goal to fit each partition into
main memory. In the conquer step, Binder then validates the set of all pos-
sible inclusion dependency candidates. Processing one partition after another,
the validation constructs two indexes on each partition, a dense index and an
inverted index, and uses them to efficiently prune invalid candidates from the
result set.

Generating Foreign Keys. Ind discovery is the initial step for foreign key
detection: a foreign key must satisfy the corresponding inclusion dependency but
not all Inds are foreign keys. For example, multiple tables may contain auto-
increment columns that serve as keys, and while inclusion dependencies among
them may exist, they are not foreign keys. Once Inds have been discovered,
additional heuristics have been proposed, which essentially rank the discovered
Inds according to their likelihood of being foreign keys [40,55]. A very simple
heuristic may be the similarity of the column names.
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4 Profiling Tools

To allow a more powerful and integrated approach to data profiling, software
companies have developed data profiling techniques, mostly to profile data resid-
ing in relational databases. Most profiling tools so far are part of a larger software
suite, either for data integration or for data cleansing. We first give an overview
of tools that were created in the context of a research project (see Table 4 for a
listing). Then we give a brief glimpse of the vast set of commercial tools with
profiling capabilities.

Table 4. Research tools with data profiling capabilities [1].

Tool Main goal Profiling capabilities

Bellman [19] Data quality browser Column statistics, column
similarity, candidate key discovery

Potters Wheel [54] Data quality, ETL Column statistics (including value
patterns)

Data Auditor [25] Rule discovery Cfd and Cind discovery

RuleMiner [14] Rule discovery Denial constraint discovery

MADLib [30] Machine learning Simple column statistics

Research Prototypes. Data profiling tools are often embedded in data clean-
ing systems. For example, the Bellman [19] data quality browser supports column
analysis (counting the number of rows, distinct values, and NULL values, find-
ing the most frequently occurring values, etc.), and key detection (up to four
columns). It also provides a column similarity functionality that finds columns
whose value or n-gram distributions are similar; this is helpful for discovering
potential foreign keys and join paths. Furthermore, it is possible to profile the
evolution of a database using value distributions and correlations [18]: which
tables change over time and in what ways (insertions, deletions, modifications),
and which groups of tables tend to change in the same way. The Potters Wheel
tool [54] also supports column analysis, in particular, detecting data types and
syntactic structures/patterns. The MADLib toolkit for scalable in-database ana-
lytics [30] includes column statistics, such as count, count distinct, minimum and
maximum values, quantiles, and the k most frequently occurring values.

Recent data quality tools are dependency-driven: dependencies, such as Fds
and Inds, as well as their conditional extensions, may be used to express the
intended data semantics, and dependency violations may indicate possible data
quality problems. Most research prototypes, such as GDR [60], Nadeef [16], and
StreamClean [36], require users to supply data quality rules and dependencies.
However, data quality rules are not always known apriori in unfamiliar and
undocumented datasets, in which case data profiling, and dependency discovery
in particular, is an important pre-requisite to data cleaning.
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There are at least three research prototypes that perform rule discovery to
some degree: Data Auditor [25], RuleMiner [14], and Metanome [48]. Data Audi-
tor requires an Fd as input and generates corresponding Cfds from the data.
Additionally, Data Auditor considers Fds similar to the one that is provided
by the user and generates corresponding Cfds. The idea is to see if a slightly
modified Fd can generate a more suitable Cfd for the given relation instance.
On the other hand, RuleMiner does not require any rules as input and instead
it is designed to generate all reasonable rules from a given dataset. RuleM-
iner expresses the discovered rules as denial constraints, which are universally-
quantified first order logic formulas that subsume Fds, Cfds, Inds and many
others. Metanome is a recent profiling system that embeds various profiling tech-
niques with a unified interface. So far, it is the most comprehensive tool in this
regard, covering Fds, Cfds, Inds, basic statistics etc.

Commercial Tools. Generally, every database management system collects
and maintains base statistics about the tables it manages. However, they do
not readily expose those metadata, the metadata are not always up-to-date and
sometimes based only on samples, and their scope is usually limited to simple
counts and cardinalities. Furthermore, commercial data quality or data cleansing
tools often support a limited set of profiling tasks. In addition, most Extract-
Transform-Load tools have some profiling capabilities. Prominent examples of
current commercial tools include software from vendors, such as IBM, SAP,
Attacama, or Informatica. Most commercial tools focus on the so-called easy to
solve profiling tasks. Only some of them, such as the IBM InfoSphere Informa-
tion Analyzer, support inter-column dependency discovery and that only up to
certain dependency size.

5 Conclusions and Outlook

In this chapter, we provided an introduction into the state-of-the-art in data pro-
filing: the set of activities and processes to determine metadata about a given
database. We briefly discussed single-column profiling tasks and multi-column
tasks and provided algorithmic details on the challenging aspects of dependency
discovery. While many data profiling algorithms have been proposed and imple-
mented in research prototypes and commercial tools, further work is needed,
especially in the context of profiling new types of data and interpreting and
visualizing data profiling results. As mentioned in the introduction, the inter-
pretation of profiling results remains an open challenge. To facilitate interpreta-
tion of metadata, effectively visualizing and ranking profiling results is of utmost
importance.
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Abstract. Extract-Transform-Load (ETL) processes are used for
extracting data, transforming it and loading it into data warehouses
(DWs). The dominating ETL tools use graphical user interfaces (GUIs)
such that the developer “draws” the ETL flow by connecting steps/trans-
formations with lines. This gives an easy overview, but can also be rather
tedious and require much trivial work for simple things. We therefore
challenge this approach and propose to do ETL programming by writ-
ing code. To make the programming easy, we present the Python-based
framework pygrametl which offers commonly used functionality for ETL
development. By using the framework, the developer can efficiently cre-
ate effective ETL solutions from which the full power of programming
can be exploited. In this chapter, we present our work on pygrametl and
related activities. Further, we consider some of the lessons learned during
the development of pygrametl as an open source framework.

1 Introduction

The Extract–Transform–Load (ETL) process is a crucial part for a data ware-
house (DW) project. The task of the ETL process is to extract data from possibly
heterogeneous source systems, do transformations (e.g., conversions and cleans-
ing of data) and finally load the transformed data into the target DW. It is
well-known in the DW community that it is both time-consuming and difficult
to get the ETL right due to its high complexity. It is often estimated that up to
80% of the time in a DW project is spent on the ETL.

Many commercial and open source tools supporting the ETL developers exist
[1,22]. The leading ETL tools provide graphical user interfaces (GUIs) in which
the developers define the flow of data visually. While this is easy to use and easily
gives an overview of the ETL process, there are also disadvantages connected
with this sort of graphical programming of ETL programs. For some problems,
it is difficult to express their solutions with the standard components available
in the graphical editor. It is then time consuming to construct a solution that is
based on (complicated) combinations of the provided components or integration
of custom-coded components into the ETL program. For other problems, it can
also be much faster to express the desired operations in some lines of code instead
of drawing flows and setting properties in dialog boxes.
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The productivity does not become high just by using a graphical tool. In fact,
in personal communication with employees from a Danish company with a rev-
enue larger than one billion US Dollars and hundreds of thousands of customers,
we have learned that they gained no change in productivity after switching from
hand-coding ETL programs in C to using one of the leading graphical ETL tools.
Actually, the company experienced a decrease during the first project with the
tool. In later projects, the company only gained the same productivity as when
hand-coding the ETL programs. The main benefits were that the graphical ETL
program provided standardization and self-documenting ETL specifications such
that new team members easily could be integrated.

Trained specialists are often using textual interfaces efficiently while non-
specialists use GUIs. In an ETL project, non-technical staff members often are
involved as advisors, decision makers, etc. but the core development is (in our
experience) done by dedicated and skilled ETL developers that are specialists.
Therefore it is attractive to consider alternatives to GUI-based ETL programs.
In relation to this, one can recall the high expectations to Computer Aided
Software Engineering (CASE) systems in the eighties. It was expected that non-
programmers could take part in software development by specifying (not pro-
gramming) characteristics in a CASE system that should generate the code.
Needless to say, the expectations were not fulfilled. It might be argued that
forcing all ETL development into GUIs is a step back to the CASE idea.

We acknowledge that graphical ETL programs are useful in some circum-
stances but we also claim that for many ETL projects, a code-based solution is
the right choice. However, many parts of such code-based programs are redun-
dant if each ETL program is coded from scratch. To remedy this, a framework
with common functionality is needed.

In this chapter, we present pygrametl which is a programming framework
for ETL programmers. The framework offers functionality for ETL development
and while it is easy to get an overview of and to start using, it is still very
powerful. pygrametl offers a novel approach to ETL programming by provid-
ing a framework which abstracts the access to the underlying DW tables and
allows the developer to use the full power of the host programming language.
For example, the use of snowflaked dimensions is easy as the developer only
operates on one “dimension object” for the entire snowflake while pygrametl
handles the different DW tables in the snowflake. It is also very easy to insert
data into dimension and fact tables while only iterating the source data once and
to create new (relational or non-relational) data sources. Our experiments show
that pygrametl indeed is effective in terms of development time and efficient
in terms of performance when compared to a leading open source GUI-based
tool.

We started the work on pygrametl back in 2009 [23]. Back then, we had in
a project with industrial partners been building a DW where a real-life dataset
was loaded into a snowflake schema by means of a GUI-based ETL tool. It was
apparent to us that the used tool required a lot of clicking and tedious work
to be able to load the dataset. In an earlier project [21], we had not been able
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to find an ETL tool that fitted the requirements and source data. Instead we
had created our ETL flow in Python code, but not in reusable, general way.
Based on these experiences, we were convinced that the programmatic approach
clearly was advantageous in many cases. On the other hand, it was also clear that
the functionality for programmatic ETL should be generalized and isolated in a
library to allow for easy reuse. Due to the ease of programming (we elaborate
in Sect. 3) and the rich libraries, we chose to make a library in Python. The
result was pygrametl. Since 2009 pygrametl has been developed further and
made available as open source such that it now is used in proof-of-concepts and
production systems from a variety of domains. In this chapter we describe the
at the time of writing current version of pygrametl (version 2.5). The chapter
is an updated and extended version of [23].

pygrametl is a framework where the developer makes the ETL program by
coding it. pygrametl applies both functional and object-oriented programming
to make the ETL development easy and provides often needed functionality. In
this sense, pygrametl is related to other special-purpose frameworks where
the user does coding but avoids repetitive and trivial parts by means of libraries
that provide abstractions. This is, for example, the case for the web frameworks
Django [3] and Ruby on Rails [17] where development is done in Python and
Ruby code, respectively.

Many commercial ETL and data integration tools exist [1]. Among the ven-
dors of the most popular products, we find big players like IBM, Informatica,
Microsoft, Oracle, and SAP [5,6,10,11,18]. These vendors and many other pro-
vide powerful tools supporting integration between different kinds of sources
and targets based on graphical design of the processes. Due to their wide field
of functionality, the commercial tools often have steep learning curves and as
mentioned above, the user’s productivity does not necessarily get high(er) from
using a graphical tool. Many of the commercial tools also have high licensing
costs.

Open source ETL tools are also available [22]. In most of the open source
ETL tools, the developer specifies the ETL process either by means of a GUI or
by means of XML. Scriptella [19] is an example of a tool where the ETL process
is specified in XML. This XML can, however, contain embedded code written in
Java or a scripting language. pygrametl goes further than Scriptella and does
not use XML around the code. Further, pygrametl offers DW-specialized func-
tionality such as direct support for slowly changing dimensions and snowflake
schemas, to name a few.

The academic community has also been attracted to ETL. Vassiliadis presents
a survey of the research [28]. Most of the academic approaches, e.g., [20,26], use
UML or graphs to model an ETL workflow. We challenge the idea that graphical
programming of ETL is always easier than text-based programming. Grönniger
et al. [4] have previously argued why text-based modeling is better than graphical
modeling. Among other things, they point out that writing text is more efficient
than drawing models, that it is easier to grasp details from text, and that the
creative development can be hampered when definitions must be added to the
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graphical model. As graphical ETL tools often are model-driven such that the
graphical model is turned into the executable code, these concerns are, in our
opinion, also related to ETL development. Also, Petre [13] has previously argued
against the widespread idea that graphical notation and programming always
lead to more accessible and comprehensible results than what is achieved from
text-based notation and programming. In her studies [13], she found that text
overall was faster to use than graphics.

The rest of this chapter is structured as follows: Sect. 2 presents an exam-
ple of an ETL scenario which is used as a running example. Section 3 gives
an overview of pygrametl. Sections 4–7 present the functionality and classes
provided by pygrametl to support data sources, dimensions, fact tables, and
flows, respectively. Section 8 describes some other useful functions provided by
pygrametl. Section 9 evaluates pygrametl on the running example. Section 10
presents support for parallelism in pygrametl and another pygrametl-based
framework for MapReduce. Section 11 presents a case-study of a company using
pygrametl. Section 12 contains a description of our experiences with making
pygrametl available as open source. Section 13 concludes and points to future
work. AppendixA offers readers who are not familiar with the subject a short
introduction to data warehouse concepts.

2 Example Scenario

In this section, we describe an ETL scenario which we use as a running exam-
ple. The example considers a DW where test results for tests of web pages are
stored. This is inspired by work we did in the European Internet Accessibility
Observatory (EIAO) project [21] but has been simplified here for the sake of
brevity.

In the system, there is a web crawler that downloads web pages from different
web sites. Each downloaded web page is stored in a local file. The crawler stores
data about the downloaded files in a download log which is a tab-separated file.
The fields of that file are shown in Table 1(a).

When the crawler has downloaded a set of pages, another program performs
a number of different tests on the pages. These tests could, e.g., test if the pages
are accessible (i.e., usable for disabled people) or conform to certain standards.
Each test is applied to all pages and for each page, the test outputs the number
of errors detected. The results of the tests are also written to a tab-separated
file. The fields of this latter file are shown in Table 1(b).

After all tests are performed, the data from the two files is loaded into a
DW by an ETL program. The schema of the DW is shown in Fig. 1. The DW
schema has three dimensions: The test dimension holds information about each
of the tests that are applied. This dimension is static and prefilled (and not
changed by the ETL). The date dimension holds information about dates and
is filled by the ETL on-demand. The page dimension is snowflaked and spans
several tables. It holds information about the individual downloaded web pages
including both static aspects (the URL and domain) and dynamic aspects (size,
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Table 1. The source data format for the running example

server, etc.) that may change between two downloads. The page dimension is also
filled on-demand by the ETL. The page dimension is a type 2 slowly changing
dimension [8] where information about different versions of a given web page is
stored.

Each dimension has a surrogate key (with a name ending in “id”) and one
or more attributes. The individual attributes have self-explanatory names and
will not be described in further details here. There is one fact table which has a
foreign key to each of the dimensions and a single measure holding the number
of errors found for a certain test on a certain page on a certain date.

test

 testid: int (PK)

 testname: text

 testauthor: text

date

 dateid: int (PK)

 date: date

 day: int

 month: int

 year: int

 week: int

 weekyear: int

page

 pageid: int (PK)

 url: text

 size: int

 validfrom: date

 validto: date

 version: int

 domainid: int (FK)

 serverversionid: int (FK)

testresults

 pageid: int (PK, FK)

 testid: int (PK, FK)

 dateid: int (PK, FK)

 errors: int

domain

 domainid: int (PK)

 domain: text

 topleveldomainid: int (FK)

topleveldomain

 topleveldomainid: int (PK)

 topleveldomain: text

server

 serverid: int (PK)

 server: text

serverversion

 serverversionid: int (PK)

 serverversion: text

 serverid: int (FK)

Fig. 1. The schema for the running example.
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3 Overview of the Framework

Unlike many commercial ETL tools which can move data from sources to a
variety of targets, the purpose of pygrametl is only to make it easy to load
data into dimensional DWs [8] managed by relational database managements
systems (RDBMSs). Focusing on RDBMSs as the targets for pygrametl keeps
the design simple as it allows us to make assumptions and go for the good solu-
tions specialized for this domain instead of thinking in very general “integration
terms”. The data sources do not have to be relational.

When using pygrametl, the programmer makes code that controls the flow,
the extraction (the E in ETL) from source systems, the transformations (the T
in ETL) of the source data, and the load (the L in ETL) of the transformed
data. For the flow control, extraction, and load, pygrametl offers components
that support the developer and it is easy for the developer to create more of
these components. For the transformations, the programmer benefits from having
access to the full-fledged Python programming language.

The loading of data into the target DW is particularly easy with pygram-
etl. The general idea is that the programmer creates objects for each fact table
and dimension (different kinds are directly supported) in the DW. An object
representing a dimension offers convenient methods like insert, lookup, etc.
that hide details of caching, key assignment, SQL insertion, etc. In particular it
should be noted that a snowflaked dimension also is treated in this way such that
a single object can represent the entire dimension although the data is inserted
into several tables in the underlying database.

The dimension object’s methods take rows as arguments. A row in pygram-
etl is simply a mapping from names to values. Based on our personal experi-
ences with other tools, we found it important that pygrametl does not try to
validate that all data rows given to a dimension object have the same attributes
or the same attribute types. If the programmer wants such checks, (s)he should
make code for that. It is then, e.g., possible for the programmer to leave an
attribute that was used as temporary value holder in a row or on purpose to leave
out certain attributes. Only when attributes needed for pygrametl’s operations
are missing, pygrametl complains. Attribute values that should be inserted
into the target DW must exist when the insertion is done as pygrametl does
not try to guess missing values. However, pygrametl has functionality for set-
ting default values and/or on-demand call-back of user-defined functions that
provide the missing values. Some other existing tools are strict about enforcing
uniformity of rows. In pygrametl, it should be easy for the programmer to do
what (s)he wants – not what the tool thinks (s)he wants.

pygrametl is implemented as a module in Python [16]. Many other pro-
gramming languages could obviously have been used. We chose Python due to
its design to support programmer productivity and its comprehensive standard
libraries. Further, Python is both dynamically typed (the programmer does not
have to declare the type a variable takes) and strongly typed (if a variable holds
an integer, the programmer cannot treat it like a string). Consider, for example,
this pygrametl function:
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def getfloat(value, default=None):
try:

return float(value)
except Exception:

return default

This function converts its input to a float or – if the conversion fails – to another
value which defaults to None, Python’s null value. Note that no types are spec-
ified for the input variables in the function declaration. It is possible to call the
function with different types as in the following:
f1 = getfloat(10)
f2 = getfloat('1e1')
f3 = getfloat('A string', 10.0)
f4 = getfloat(['A', 'list'], 'Not a float!')

After this, f1, f2, and f3 all equal 10.0 while f4 holds the string ‘Not a float!’.
The expression f1 + f2 will thus succeed, while f3 + f4 will fail since a float
and a string cannot be added.

Python is object-oriented but to some degree it also supports functional pro-
gramming, e.g., such that functions or lambda expressions can be used as argu-
ments. This makes it very easy to customize behavior. pygrametl, for example,
exploits this to support calculation of missing values on-demand (see Sect. 5).
As Python also supports default arguments, pygrametl provides reasonable
defaults for most arguments to spare the developer for unnecessary typing.

4 Data Source Support

In this and the following sections, we describe the functionality provided by
pygrametl. As explained in Sect. 3, data is moved around in rows in pygram-
etl. Instead of implementing our own row class, we use Python’s built-in dictio-
naries that provide efficient mappings between keys (i.e., attribute names) and
values (i.e., attribute values). The data sources in pygrametl pass data on in
such dictionaries. Apart from that, the only requirement to a data source is that
it is iterable (i.e., its class must define the iter method) such that code as
the following is possible: for row in datasrc:.... Thus, it does not require
a lot of programming to create new sources (apart from the code that does the
real extraction which might be simple or not depending on the source format).
For typical use, pygrametl provides a few, basic data sources described below.

SQLSource is a data source returning the rows of an SQL query. The query,
the database connection to use and optionally new names for the result columns
and “initializing” SQL are given when the data source is initialized.

CSVSource is a data source returning the lines of a delimiter separated file
turned into dictionaries. This class is in fact just implemented in pygrametl as
a reference to the class csv.DictReader in Python’s standard library. Con-
sider again the running example. There we have two tab-separated files and an
instance of CSVSource should be created for each of them to load the data.
For TestResults.csv, this is done as in
testresults = CSVSource(open('TestResults.csv', 'r'),

delimiter='\t')
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Again, we emphasize the flexibility of using a language like Python for the
pygrametl framework. Much more configuration can be done during the instan-
tiation than what is shown but default values are used in this example. The input
could also easily be changed to come from another source than a file, e.g., a web
resource or a string in memory.

MergeJoiningSource is a data source that equijoins rows from two other
data sources. It is given two data sources (which must deliver rows in sorted
order) and information about which attributes to join on. It then merges the
rows from the two sources and outputs the combination of the rows.

In the running example, we consider data originating from two data sources.
Both the data sources have the field localfile and this is how we relate
information from the two files:
inputdata = MergeJoiningSource(testresults, 'localfile',

downloadlog, 'localfile')

where testresults and downloadlog are CSVSources.
HashJoiningSource is also a data source that equijoins rows from two

other data sources. It does this by using a hash map. Thus, the input data
sources do not have to be sorted.

The data sources described above were all available in the first public release
of pygrametl in 2009. Since then, more sources have been added including the
following.

TypedCSVSource is like a CSV source, but will perform type casts on
(textual) values coming from the input file:
testresults = TypedCSVSource(open('TestResults.csv', 'r'),

casts={'size':int},
delimiter='\t')

While TypedCSVSource always overwrites an attribute value with the result
of a function (a cast to an int in the example above), TransformingSource
allows any transformation to be applied to a row, also transformations that add
new attributes. For these two sources, Python’s support for functional program-
ming is used and functions are passed as arguments.

CrossTabbingSource can pivot data from another source. Data from
other sources can also be filtered or unioned by FilteringSource and
UnionSource, respectively. A DynamicForEachSource will for each given
argument create a new source which is iterated by the DynamicForEach-
Source instance. This is, for example, useful for a directory with many CSV
files to iterate. The user must provide a function that when called with a single
argument returns a new source to iterate as exemplified below:
srcs = DynamicForEachSource([... sequence of the names of the files ...],

lambda f: CSVReader(open(f, 'r')))
for row in srcs: # will iterate over all rows from all the files;

... # do something with the row data here

5 Dimension Support

In this section, we describe the classes representing dimensions in the DW to
load. This is the area where the flexibility and easy use of pygrametl are most
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apparent. Figure 2 shows the class hierarchy for the dimension supporting classes
(classes for parallel load of dimensions are not shown for brevity). Methods
only used internally in the classes and attributes are not shown. Only required
arguments are shown, not those that take default values when not given. Note
that SnowflakedDimension actually does not inherit from Dimension but
offers the same interface and can be used as if it were a Dimension due to
Python’s dynamic typing.

Dimension

 lookup(row)

 getbykey(keyvalue)

 getbyvals(row)

 insert(row)

 ensure(row)

 update(row)

CachedDimension SlowlyChangingDimension

 scdensure(row)

SnowflakedDimension

 scdensure(row)

TypeOneSlowlyChangingDimension

 scdensure(row)

_BaseBulkloadable

 insert(row)

 endload()

CachedBulkDimension BulkDimension

Fig. 2. Class hierarchy for the dimension supporting classes.

5.1 Basic Dimension Support

Dimension is the most basic class for representing a DW dimension in pygram-
etl. It is used for a dimension that has exactly one table in the DW. When an
instance is created, the name of the represented dimension (i.e., the name of the
table in DW), the name of the key column1, and a list of attributes (the under-
lying table may have more attributes but pygrametl will then not use them)
must be given. Further, a number of optional settings can be given as described
in the following. A list of lookup attributes can be given. These attributes are
used when looking up the key value. Consider again the running example. The
test dimension has the surrogate key testid but when data is inserted from the
CSV files, the test in question is identified from its name (testname). The ETL
application then needs to find the value of the surrogate key based on the test
name. That means that the attribute testname is a lookup attribute. If no lookup
attributes are given by the user, the full list of attributes (apart from the key)
is used.

When the dimension object is given a row to insert into the underlying DW
table (explained below), the row does not need to have a value for the dimension’s
key. If the key is not present in the row, a method (called idfinder) is called
with the row as an argument. Thus, when creating a Dimension instance, the

1 We assume that a dimension has a non-composite key.
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idfinder method can also be set. If not set explicitly, it defaults to a method
that assumes that the key is numeric and returns the current maximum value
for the key incremented by one.

A default key value for unfound dimension members can also be set. If a
lookup does not succeed, this default key value is returned. This is used if new
members should not be inserted into the dimension but facts still should be
recorded. By using a default key value, the facts would then reference a prefilled
member representing that information is missing. In the running example, test
is a prefilled dimension that should not be changed by the ETL application. If
data from the source file TestResults.csv refers to a test that is not represented
in the test dimension, we do not want to disregard the data by not adding a
fact. Instead, we set the default ID value for the test dimension to be −1 which
is the key value for a preloaded dimension member with the value “Unknown
test” for the testname attribute. This can be done as in the following code.
testdim = Dimension(name='test',

key='testid',
defaultidvalue=-1,
attributes=['testname', 'testauthor'],
lookupatts=['testname'])

Finally, it is possible for the developer to assign a function to the argument
rowexpander. With such a function, it is in certain situations (explained below)
possible to add required fields on-demand to a row before it is inserted into the
dimension.

Many of the methods defined in the Dimension class accept an optional
name mapping when called. This name mapping is used to map between
attribute names in the rows (i.e., dictionaries) used in pygrametl and names
in the tables in the DW. Consider again the running example where rows from
the source file TestResults.csv have the attribute test but the corresponding
attribute in the DW’s dimension table is called testname. When the Dimen-
sion instance for test in pygrametl is given a row r to insert into the DW, it
will look for the value of the testname attribute in r. However, this value does
not exist since it is called test in r. A name mapping n= {‘testname’ : ‘test’} can
then be set up such that when pygrametl code looks for the attribute testname
in r, test is actually used instead.

Dimension offers the method lookup which based on the lookup attributes
for the dimension returns the key for the dimension member. As arguments it
takes a row (which at least must contain the lookup attributes) and optionally a
name mapping. Dimension also offers the method getbykey. This method is
the opposite of lookup: As argument it takes a key value and it returns a row
with all attributes for the dimension member with the given key value. Another
method for looking up dimension members is offered by Dimension’s get-
byvals method. This method takes a row holding a subset of the dimension’s
attributes and optionally a name mapping. Based on the subset of attributes, it
finds the dimension members that have equal values for the subset of attributes
and returns those (full) rows. For adding a new member to a dimension, Dimen-
sion offers the method insert. This method takes a row and optionally a



Programmatic ETL 31

name mapping as arguments. The row is added to the DW’s dimension table.
All attributes of the dimension must be present in the pygrametl row. The
only exception to this is the key. If the key is missing, the idfinder method
is applied to find the key value. The method update takes a row which must
contain the key and one or more of the other attributes. The member with the
given key value is updated to have the same values as the given attributes.

Dimension also offers a combination of lookup and insert: ensure. This
method first tries to use lookup to find the key value for a member. If the
member does not exist and no default key value has been set, ensure proceeds
to use insert to create the member. In any case, ensure returns the key value
of the member to the caller. If the rowexpander has been set (as described
above), that function is called by ensure before insert is called. This makes it
possible to add calculated fields before an insertion to the DW’s dimension table
is done. In the running example, the date dimension has several fields that can
be calculated from the full date string (which is the only date information in the
source data). However, it is expensive to do the calculations repeatedly for the
same date. By setting rowexpander to a function that calculates them from
the date string, the dependent fields are only calculated the first time ensure
is invoked for certain date.

CachedDimension has the same public interface as Dimension and the
same semantics. However, it internally uses memory caching of dimension mem-
bers to speed up lookup operations. The caching can be complete such that the
entire dimension is held in memory or partial such that only the most recently
used members are held in memory. A CachedDimension can also cache new
members as they are being added.

When an instance of CachedDimension is created, it is possible to set the
same settings as for Dimension. Further, optional settings can decide the size
of the cache, whether the cache should be prefilled with rows from the DW or
be filled on-the-fly as rows are used, whether full rows should be cached or only
keys and lookup attributes, and finally whether newly inserted rows should be
put in the cache. In the running example, a CachedDimension for the test
dimension can be made as in the following code.
testdim = CachedDimension(name='test',

key='testid',
defaultidvalue=-1,
attributes=['testname', 'testauthor'],
lookupatts=['testname'],
cachesize=500,
prefill=True,
cachefullrows=True)

5.2 Advanced Dimension Support

SlowlyChangingDimension provides support for type 2 changes in slowly
changing dimensions [8] and in addition to type 2 changes, type 1 changes can
also be supported for a subset of the dimension’s attributes. When an instance
of SlowlyChangingDimension is created, it can be configured in the same
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way as a Dimension instance. Further, the name of the attribute that holds
versioning information for type 2 changes in the DW’s dimension table can be
set. If it is set, the row version with the greatest value for this attribute is
considered the newest row and pygrametl will automatically maintain the
version number for newly added versions. If there is no such attribute with
version information, the user can specify another attribute to be used for the
ordering of row versions. A number of other things can optionally be configured.
It is possible to set which attribute holds the “from date” telling from when
the dimension member is valid. Likewise it is possible to set which attribute
holds the “to date” telling when a member becomes replaced. A default value
for the “to date” for a new member can also be set as well as a default value
for the “from date” for the first version of a new member. Further, functions
that, based on data in new rows to add, calculate the “to date” and “from date”
can be given but if they are not set, pygrametl defaults to use a function
that returns the current date. pygrametl offers some convenient functions for
this functionality. It is possible not to set any of these date related attributes
such that no validity date information is stored for the different versions. It is
also possible to list a number of attributes that should have type 1 changes
(overwrites) applied. SlowlyChangingDimension has built-in cache support
and its details can be configured. Finally, it is possible to configure if versions
should be sorted by the DBMS such that pygrametl uses SQL’s ORDER BY
or if pygrametl instead should fix all versions of a given member and do a sort
in Python. It depends on the used DBMS what performs the best, but for at
least one popular commercial DBMS, it is significantly faster to let pygrametl
perform the sorting.

SlowlyChangingDimension offers the same functions as Dimension
(which it inherits from) and the semantics of the functions are basically
unchanged. lookup is, however, modified to return the key value for the newest
version. To handle versioning, SlowlyChangingDimension offers the method
scdensure. This method is given a row (and optionally a name mapping). It is
similar to ensure in the sense that it first sees if the member is present in the
dimension and, if not, inserts it. However, it does not only do a lookup. It also
detects if any changes have occurred. If changes have occurred for attributes
where type 1 changes should be used, it updates the existing versions of the
member. If changes have also occurred for other attributes, it creates a new ver-
sion of the member and adds the new version to the dimension. As opposed to
the previously described methods, scdensure has side-effects on its given row:
It sets the key and versioning values in its given row such that the programmer
does not have to query for this information afterwards.

When a page is downloaded in the running example, it might have been
updated compared to last time it was downloaded. To be able to record this his-
tory, we let the page dimension be a slowly changing dimension. We add a new
version when the page has been changed and reuse the previous version when the
page is unchanged. We lookup the page by means of the URL and detect changes
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by considering the other attributes. We create the SlowlyChangingDimen-
sion object as in the following.
pagedim = SlowlyChangingDimension(name='page',

key='pageid',
attributes=['url', 'size', 'validfrom',

'validto', 'version', 'domainid',
'serverversionid'],

lookupatts=['url'],
fromatt='validfrom',
fromfinder=pygrametl.datereader('lastmoddate'),
toatt='validto',
versionatt='version')

In the shown code, the fromfinder argument is a method that extracts a “from
date” from the source data when creating a new member. It is also possible to
give a tofinder argument to find the “to date” for a version to be replaced.
If not given, this defaults to the fromfinder. If another approach is wished,
(e.g., such that the to date is set to the day before the new member’s from date),
tofinder can be set to a function which performs the necessary calculations.

SnowflakedDimension supports filling a dimension in a snowflake
schema [8]. A snowflaked dimension is spread over more tables such that there is
one table for each level in the dimension hierarchy. The fact table references one
of these tables that itself references tables that may reference other tables etc.
A dimension member is thus not only represented in a single table as each table
in the snowflaked dimension represents a part of the member. The complete
member is found by joining the tables in the snowflake.

Normally, it can be a tedious task to create ETL logic for filling a snowflaked
dimension. First, a lookup can be made on the root table which is the table refer-
enced by the fact table. If the member is represented there, it is also represented
in the dimension tables further away from the fact table (otherwise the root
table could not reference these and thus not represent the member at the lowest
level). If the member is not represented in the root table, it must be inserted
but it is then necessary to make sure that the member is represented in the next
level of tables such that the key values can be used in references. This process
continues for all the levels until the leaves2. While this is not difficult as such, it
takes a lot of tedious coding and makes the risk of errors bigger. This is remedied
with pygrametl’s SnowflakedDimension which takes care of the repeated
ensures such that data is inserted where needed in the snowflaked dimension
but such that the developer only has to make one method call to add/find the
member.

An instance of SnowflakedDimension is constructed from other Dimen-
sion instances. The programmer creates a Dimension instance for each table
participating in the snowflaked dimension and passes those instances when cre-
ating the SnowflakedDimension instance. In the running example, the page
dimension is snowflaked. We can create a SnowflakedDimension instance for

2 It is also possible to do the lookups and insertions from the leaves towards the root
but when going towards the leaves, it is possible to stop the search earlier if a part
of the member is already present.
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the page dimension as shown in the following code (where different Dimension
instances are created before).
pagesf = SnowflakedDimension([

(pagedim, [serverversiondim, domaindim]),
(serverversiondim, serverdim),
(domaindim, topleveldim) ])

The argument is a list of pairs where a pair shows that its first element refer-
ences each of the dimensions in the second element (the second element may
be a list). For example, it can be seen that pagedim references serverversiondim
and domaindim. We require that if t’s key is named k, then an attribute refer-
encing t from another table must also be named k. This requirement could be
removed but having it makes the specification of relationships between tables
much easier. We also require that the tables in a snowflaked dimension form a
tree (where the table closest to the fact table is the root) when we consider tables
as nodes and foreign keys as edges. Again, we could avoid this requirement but
this would complicate the ETL developer’s specifications and the requirement
does not limit the developer. If the snowflake does not form a tree, the developer
can make SnowflakedDimension consider a subgraph that is a tree and use
the individual Dimension instances to handle the parts not handled by the
SnowflakedDimension. Consider, for example, a snowflaked date dimension
with the levels day, week, month, and year. A day belongs both to a certain
week and a certain month but the week and the month may belong to different
years (a week has a week number between 1 and 53 which belongs to a year).
In this case, the developer could ignore the edge between week and year when
creating the SnowflakedDimension and instead use a single method call to
ensure that the week’s year is represented:
# Represent the week's year. Read the year from weekyear
row['weekyearid'] = yeardim.ensure(row,{'year':'weekyear'})
# Now let SnowflakedDimension take care of the rest
row['dateid'] = datesnowflake.ensure(row)

SnowflakedDimension’s lookup method calls the lookup method on
the Dimension object for the root of the tree of tables. It is assumed that the
lookup attributes belong to the table that is closest to the fact table. If this
is not the case, the programmer can use lookup or ensure on a Dimension
further away from the root and use the returned key value(s) as lookup attributes
for the SnowflakedDimension. The method getbykey takes an optional
argument that decides if the full dimension member should be returned (i.e., a
join between the tables of the snowflaked dimension is done) or only the part
from the root. This also holds for getbyvals. ensure and insert work on
the entire snowflaked dimension starting from the root and moving outwards
as much as needed. The two latter methods actually use the same code. The
only difference is that insert, to be consistent with the other classes, raises an
exception if nothing is inserted (i.e., if all parts were already there). Algorithm1
shows how the code conceptually works but we do not show details like use
of name mappings and how to keep track of if an insertion did happen. The
algorithm is recursive and both ensure and insert first invoke it with the
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Algorithm 1. ensure helper(dimension, row)
1: keyval ← dimension.lookup(row)
2: if found then
3: row[dimension.key] ← keyval
4: return keyval
5: for each table t that is referenced by dimension do
6: keyval ← ensure helper(t, row)
7: if dimension uses the key of a referenced table as a lookup attribute then
8: keyval ← dimension.lookup(row)
9: if not found then

10: keyval ← dimension.insert(row)
11: else
12: keyval ← dimension.insert(row)
13: row[dimension.key] ← keyval
14: return keyval

table dimension set to the table closest to the fact table. On line 1, a normal
lookup is performed on the table. If the key value is found, it is set in the row
and returned (lines 2–4). If not, the algorithm is applied recursively on each of
the tables that are referenced from the current table (lines 5–6). As side-effects
of the recursive calls, key values are set for all referenced tables (line 3). If the
key of one of the referenced tables is used as a lookup attribute for dimension,
it might just have had its value changed in one of the recursive calls and a new
attempt is made to look up the key in dimension (lines 7–8). If this attempt
fails, we insert (part of) row into dimension (line 10). We can proceed directly
to this insertion if no key of a referenced table is used as a lookup attribute in
dimension (lines 11–12).

SnowflakedDimension also offers an scdensure method. This method
can be used when the root is a SlowlyChangingDimension. In the run-
ning example, we previously created pagedim as an instance of Slowly-
ChangingDimension. When pagedim is used as the root as in the defini-
tion of pagesf above, we can use the slowly changing dimension support on a
snowflake. With a single call of scdensure, a full dimension member can be
added such that the relevant parts are added to the five different tables in the
page dimension.

When using the graphical ETL tools such as SQL Server Integration Services
(SSIS) or the open source Pentaho Data Integration (PDI), use of snowflakes
requires the developer to use several lookup/update steps. It is then not easily
possible to start looking up/inserting from the root as foreign key values might
be missing. Instead, the developer has to start from the leaves and go towards
the root. In pygrametl, the developer only has to use the SnowflakedDi-
mension instance once. The pygrametl code considers the root first (and may
save lookups) and only if needed moves on to the other levels.

The previously described Dimension classes were all present in the first
public release of pygrametl [23]. Since then more classes have been added.
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TypeOneSlowlyChangingDimension is similar to SlowlyChaningDi-
mension apart from that it only support type 1 changes where dimension
members are updated (not versioned) to reflect changes [8]. BulkDimension
is used in scenarios where much data must be inserted into a dimension table
and it becomes too time-consuming to use traditional SQL INSERTs (as the
previously described Dimension classes do). BulkDimension instead writes
new dimension values to a temporary file which can be bulk loaded.

The exact way to bulkload varies from DBMS to DBMS. Therefore, we rely
on Python’s functional programming support and require the developer to pass a
function when creating an instance of BulkDimension. This function is invoked
by pygrametl when the bulkload should take place. When using the database
driver psycopg2 [15] and the DBMS PostgreSQL [14], the function can be defined
as below.
def pgbulkloader(name, attributes, fieldsep, rowsep,

nullval, filehandle):
global connection # Opened outside this method
cursor = connection.cursor()
cursor.copy_from(file=filehandle, table=name, sep=fieldsep,

null=nullval, columns=attributes)

The developer can optionally also define which separator and line-ending to use
and which file the data is written to before the bulkload. A string value used to
represent nulls can also be defined.

To enable efficient lookups, BulkDimension caches all data of the dimen-
sion in memory. This is viable for most dimensions as modern computers have
big amounts of memory. In some scenarios it can, however, be infeasible to
cache all data of a dimension in memory. If that is the case and efficient bulk
loading still is desired, the CachedBulkDimension can be used. Like the
CachedDimension, the size of its cache can be configured, but in addition
it supports bulk loading. To avoid code duplication, code supporting bulk load-
ing has been placed in the class BaseBulkloadable which BulkDimen-
sion and CachedBulkDimension then inherit from (as does BulkFact-
Table described below).

6 Fact Table Support

pygrametl also offers three classes to represent fact tables. In this section,
we describe these classes. It is assumed that a fact table has a number of key
attributes and that each of these is referencing a dimension table. Further, the
fact tables may have a number of measure attributes.

FactTable provides a basic representation of a fact table. When an instance
is created, the programmer gives information about the name fact table, names
of key attributes and optionally names of measure attributes.

FactTable offers the method insert which takes a row (and optionally
a name mapping) and inserts a fact into the DW’s table. This is obviously the
most used functionality. It also offers a method lookup which takes a row that
holds values for the key attributes and returns a row with values for both key
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and measure attributes. Finally, it offers a method ensure which first tries to
use lookup. If a match is found on the key values, it compares the measure
values between the fact in the DW and the given row. It raises an error if there
are differences. If no match is found, it invokes insert. All the methods support
name mappings.

BatchFactTable inherits FactTable and has the same methods. How-
ever, it does not insert rows immediately when insert is called but instead
keeps them in memory and waits until a user-configurable number of rows are
available. This can lead to a high performance improvement.

BulkFactTable provides a write-optimized representation of a fact table.
It does offer the insert method but not lookup or ensure. When insert
is called, the data is not inserted directly into the DW but instead written to a
file. When a user-configurable number of rows have been added to the file (and
at the end of the load), the content of the file is bulkloaded into the fact table.

BulkFactTable inherits from BaseBulkloadable which provides sup-
port for bulk loading. As for BulkDimension and CachedBulkDimension,
the user has to provide a function that invokes the bulk-loading method of her
particular DB driver. For the running example, a BulkFactTable instance can
be created for the fact table as shown below.
facttbl = BulkFactTable(name='testresults',

measures=['errors'],
keyrefs=['pageid', 'testid', 'dateid'],
bulkloader=pgbulkloader,
bulksize=5000000)

7 Flow Support

A good aspect from GUI-based ETL tools, is that it is easy to keep different
aspects separated and thus to get an overview of what happens in a sub-task.
To make it possible to create small components with encapsulated functionality
and easily connect such components, pygrametl offers support for steps and
flow of data between them. The developer can, for example, create a step for
extracting data, a step for cleansing, a step for logging, and a step for insertion
into the DW’s tables. Each of the steps can be coded individually and finally
the data flow between them can be defined.

Step is the basic class for flow support. It can be used directly or as a base
class for other step-supporting classes. The programmer can for a given Step
set a worker function which is applied on each row passing through the Step.
If not set by the programmer, the function defaultworker (which does not
do anything) is used. Thus, defaultworker is the function inheriting classes
override. The programmer can also determine to which Step rows by default
should be sent after the current. That means that when the worker function
finishes its work, the row is passed on to the next Step unless the programmer
specifies otherwise. So if no default Step is set or if the programmer wants
to send the row to a non-default Step (e.g., for error handling), there is the
function redirect which the programmer can use to explicitly direct the row
to a specific Step.
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There is also a method inject for injecting a new row into the flow before
the current row is passed on. The new row can be injected without an explicit
target in which case the new row is passed on the Step that rows by default are
sent to. The new row can also be injected and sent to a specified target. This
gives the programmer a large degree of flexibility.

The worker function can have side-effects on the rows it is given. This is, for
example, used in the class DimensionStep which calls ensure on a certain
Dimension instance for each row it sees and adds the returned key to the
row. Another example is MappingStep which applies functions to attributes
in each row. A typical use is to set up a MappingStep applying pygrametl’s
type conversion functions to each row. A similar class is ValueMappingStep
which performs mappings from one value set to another. Thus, it is easy to
perform a mapping from, e.g., country codes like ‘DK’ and ‘DE’ to country names
like ‘Denmark’ and ‘Germany’. To enable conditional flow control, the class
ConditionalStep is provided. A ConditionalStep is given a condition
(which is a function or a lambda expression). For each row, the condition is
applied to the row and if the condition evaluates to a True value, the row is
passed on to the next default Step. In addition, another Step can optionally
be given and if the condition then evaluates to a False value for a given row,
the row is passed on to that Step. Otherwise, the row is silently discarded. This
is very easy to use. The programmer only has to pass on a lambda expression
or function. Also, to define new step functionality is very easy. The programmer
just writes a single function that accepts a row as input and gives this function
as an argument when creating a Step.

Steps can also be used for doing aggregations. The base class for aggregat-
ing steps, AggregatingStep, inherits Step. Like an ordinary Step, it has
a defaultworker. This method is called for each row given to the Aggre-
gatingStep and must maintain the necessary data for the computation of the
average. Further, there is a method defaultfinalizer that is given a row
and writes the result of the aggregation to the row.

The functionality described above can of course also be implemented by the
developer without Steps. However, the Step functionality was included in the
first public release of pygrametl to support a developers who prefer to think
in terms of connected steps (as typically done in GUI-based ETL programs). In
hindsight, this seems to be a non-wanted functionality. While we have received
comments, questions, and bug reports about most other areas of pygrametl,
we have virtually never received anything about Steps. It seems that developers
who choose to define their ETL flows with code, in fact prefer not to think in
the terms used by GUI-based tools.

8 Further Functionality

Apart from the classes described in the previous sections, pygrametl also offers
some convenient methods often needed for ETL. These include functions that
operate on rows (e.g., to copy, rename, project attributes or set default values)
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and functions that convert types, but return a user-configurable default value if
the conversion cannot be done (like getfloat shown in Sect. 3).

In particular for use with SlowlyChangingDimension and its support for
time stamps on versions, pygrametl provides a number of functions for parsing
strings to create date and time objects. Some of these functions apply functional
programming such that they dynamically create new functions based on their
arguments. In this way specialized functions for extracting time information can
be created. For an example, refer to pagedim we defined in Sect. 5. There we
set fromfinder to a (dynamically generated) function that reads the attribute
lastmoddate from each row and transforms the read text into a date object.

While this set of provided pygrametl functions is relatively small, it is
important to remember that with a framework like pygrametl, the programmer
also has access to the full standard library of the host language (in this case
Python). Further, it is easy for the programmer to build up private libraries
with the most used functionality.

9 Evaluation

To evaluate pygrametl and compare the development efforts for visual and
code-based programming, the full paper about pygrametl [24] presented an
evaluation where the running example was implemented in both pygrametl
and the graphical ETL tool Pentaho Data Integration (PDI) [12], a popular
Java-based open source ETL tool. Ideally, the comparison should have included
commercial ETL tools, but the license agreements of these tools (at least the ones
we have read) explicitly forbid publishing any evaluation/performance results
without the consent of the provider, so this was not possible. In this section, we
present the findings of the evaluation. pygrametl, the case ETL program, and
the data generator are publicly available from pygrametl.org.

9.1 Development Time

It is obviously difficult to make a comparison of two such tools, and a full-scale
test would require several teams of fully trained developers, which is beyond our
resources. We obviously know pygrametl well, but also have solid experience
with PDI from earlier projects. Each tool was used twice to create identical
solutions. In the first use, we worked slower as we also had to find a strategy. In
the latter use, we found the “interaction time” spent on typing and clicking.

The pygrametl-based program was very easy to develop. It took a little less
than an hour in the first use, and 24 min in the second. The program consists
of ∼140 short lines, e.g., only one argument per line when creating Dimension
objects. This strongly supports that it is easy to develop ETL programs using
pygrametl. The main method of the ETL is shown below.
def main():

for row in inputdata:
extractdomaininfo(row)
extractserverinfo(row)
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row['size'] = pygrametl.getint(row['size'])
# Add the data to the dimension and fact tables
row['pageid'] = pagesf.scdensure(row)
row['dateid'] = datedim.ensure(row,

{'date':'downloaddate'})
row['testid'] = testdim.lookup(row,

{'testname':'test'})
facttbl.insert(row)

connection.commit()

The methods extractdomaininfo and extractserverinfo have four lines
of code to extract domain, top-level domain, and server name. Note that the
page dimension is an SCD, where scdensure is a very easy way to fill a both
snowflaked and slowly changing dimension. The date dimension is filled using a
rowexpander for the datedim object to (on demand) calculate the attribute
values so it is enough to use ensure to find or insert a member. The test
dimension is preloaded and we only do lookups.

In comparison, the PDI-based solution took us a little more than two hours in
the first use, and 28 min in the second. The flow is shown in Fig. 3. We emulate the
rowexpander feature of pygrametl by first looking up a date and calculating
the remaining date attributes in case there is no match. Note how we must fill
the page snowflake from the leaves towards the root.

Fig. 3. Data flow in PDI-based solution.

To summarize, pygrametl was faster to use than PDI. The first solution
was much faster to create in pygrametl and we believe that the strategy is
far simpler to work out in pygrametl (compare the shown main method and
Fig. 3). And although trained PDI users also may be able to generate a first
solution in PDI quickly, we still believe that the pygrametl approach is simple
and easy to use which is also seen from the second uses of the tools where it was
as fast (actually a little faster) to type code as to click around in the GUI to
(re)create the prepared solutions.

9.2 Performance

The original full paper [24] also presented performance results for both PDI and
pygrametl on the running example. In the current chapter, we provide new
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results for the same example, but with the newer versions of both PDI (version
7.1) and pygrametl (version 2.5) and executed on newer hardware.

To test the performance of the solutions, we generated data. The genera-
tor was configured to create results for 2,000 different domains each having 100
pages. Five tests were applied to each page. Thus, data for one month gave 1
million facts. To test the SCD support, a page could remain unchanged between
two months with probability 0.5. For the first month, there were thus 200,000
page versions and for each following month, there were ∼100,000 new page ver-
sions. We did the tests for 5, 10, 50, and 100 months, i.e., on data sets of realistic
sizes. The solutions were tested on a single3 virtual machine with three virtual
processors, and 16 GB of RAM (the CPUs were never completely used during the
experiments and the amount of RAM was big enough to allow both pygram-
etl and PDI to cache all dimension data). The virtual machine ran openSUSE
Leap 42.2 Linux, pygrametl 2.5 on Python 3.6, PDI 7.1 on OpenJDK 8, and Post-
greSQL 9.4. The virtual machine was running under VirtualBox 5.1 on Windows
10 on a host machine with 32 GB of RAM, SSD disk, and a 2.70 GHz Intel i7
CPU with 4 cores and hyperthreading.

We tested the tools on a DW where the primary key constraints were declared
but the foreign key constraints were not. The DW had an index on page(url,
version).

PDI was tested in two modes. One with a single connection to the DW such
that the ETL is transactionally safe and one which uses a special component for
bulkloading the facts into PostgreSQL. This special component makes its own
connection to the DW. This makes the load faster but transactionally unsafe
as a crash can leave the DW loaded with inconsistent data. The pygrametl-
based solution uses bulkloading of facts (by means of BulkFactTable) but is
always running in a safe transactional mode with a single connection to the DW.
The solutions were configured to use caches without size limits. When PDI was
tested, the maximal Java heap size was set to 12 GB.
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Fig. 4. Performance results.

3 We did not test PDI’s support for distributed execution.
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Figure 4(a) shows the elapsed wall-clock time for the loads and Fig. 4(b) shows
the spent CPU time. It can be seen that the amounts of time grow linearly for
both PDI and pygrametl.

pygrametl is significantly faster than PDI in this experiment. When load-
ing 100 million facts, the pygrametl-based solution handles 9208 facts/s. PDI
with a single connection handles 2433 and PDI with two connections handles
3584 facts/s.

Servers may have many CPUs/cores but it is still desirable if the ETL uses
little CPU time. More CPU time is then available for other purposes like pro-
cessing queries. This is in particular relevant if the ETL is running on a virtu-
alized server with contention for the CPUs. From Fig. 4(b), it can be seen that
pygrametl also uses much less CPU time than PDI. For example, when loading
the data set with 100 million facts, pygrametl’s CPU utilization is 53%. PDI’s
CPU utilization is 83% with one connection and 93% with two. It is clearly seen
that it in terms of resource consumption, it is beneficial to code a specialized
light-weight program instead of using a general feature-rich but heavy-weight
ETL application.

10 Parallelism

ETL flows often have to handle large data volumes and parallelization is a nat-
ural way to achieve good performance. pygrametl has support for both task
parallelism and data parallism [25]. The support was made to keep the simplic-
ity of pygrametl programs For example, extraction and transformation of data
can happen in another process using a ProcessSource:
rawdata = CSVSource(open('myfile.csv', 'r'))
transformeddata = TransformingSource(rawdata, transformation1, transformation2)
inputdata = ProcessSource(transformeddata)

The ProcessSource will here spawn another process in which the rows of trans-
formeddata are found and then delivered to the inputdata object in the
main process. In a similar way, Dimension instances can also do their work in
another process, by means of DecoupledDimension which has an interface
identical to Dimension, but just pushes all work to a Dimension instance in
another process. This other instance is given to DecoupledDimension when
it is created as exemplified below:
pagedim = DecoupledDimension(SlowlyChangingDimension(name='page', ...))

Work on a FactTable instance can also happen in another process by means of
DecoupledFactTable. Decoupled instances can also be defined to consume
data from each other such that, e.g., lookup operations don’t become block-
ing but rather return a placeholder value that a consuming class later will get
without involvement from the user (or main process). For details, see [25].
facttbl = DecoupledFactTable(BulkFactTable(name='testresults', ...),

consumes=pagedim,
returnvalues=False)
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Finally, pygrametl has support for making user-defined functions run in
parallel with other tasks by means of using a splitpoint annotation.
@splitpoint(instances=2)
def myfunction(*args)

# Do some (possibly expensive) transformations here

In [25], it is concluded that the simple constructs for parallelism give good
improvements and that “a small increase in used CPU time gives a large increase
in performance. The available CPUs are used more intensively, but for a shorter
amount of (wall-clock) time”. In the pygrametl implementation, new processes
are spawned when pygrametl is executed on CPython, the reference implemen-
tation for Python. The reason is that Python threads cannot execute Python
bytecode in parallel on CPython due to the global interpreter lock (GIL). Use
of threads on CPython can thus result in poor performance. When pygrametl
is running on Jython, the implementation of Python in Java, threads are used
instead since their performance is good on the JVM. It is, however, possible to
tune the performance of both processes and threads by setting defining sizes for
batches of row and the queues they are placed in when transferred to another
process/thread. We have attempted to pick reasonable default values, but have
also experienced that other values may increase or decrease the performance
significantly. Unfortunately, it is not easy to pick good values as sizes that work
well on one machine can be unappropriate for another machine. Automatic and
dynamic selection of good values for these sizes is thus an interesting future task.

The functionality described above enables parallelism on a single computer.
However, it becomes infeasible to scale up to very large amounts of data and
instead it is necessary to scale out. This is exactly what the MapReduce [2]
framework does. It is thus interesting to apply MapReduce to ETL programming.
However, while MapReduce offers high flexibility and scalability, it is a generic
programming model and has no native support of ETL-specific constructs such as
star schemas, snowflake schemas, and slowly changing dimensions. Implementing
a parallel ETL procedure on MapReuce is therefore complex, costly, and error-
prone and leads to low programmer productivity. As a remedy, Liu et al. [9]
presented ETLMR which is a dimensional ETL framework for MapReduce with
direct support for high-level ETL constructs. The general idea is that ETLMR
leverages the functionality of MapReduce, but also hides the complexity. To
achieve this, the user only specifies transformations and declarations of sources
and targets which only requires few lines of code. The implementation of ETLMR
is based on pygrametl but some parts have been extended or modified to
support MapReduce.

To exploit the strengths of MapReduce, the user has a little less freedom with
ETLMR than with pygrametl. With ETLMR, an ETL flow always consists
of dimension processing first followed by fact processing in another MapReduce
job. In a file, config.py, the user has to declare sources and targets as well as a
mapping called dims which tells which attributes are needed for each dimension
and which transformations (i.e., Python functions) to apply to dimension data
first. An example for our running example is shown below.
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from odottables import * # Different dimension processing schemes are supported
fileurls = ['dfs://.../TestResults0.csv' ,'dfs://.../TestResults1.csv', ...]

datedim = CachedDimension(...) # Similar to declarations in pygrametl
pagedim = SlowlyChangingDimension(...)
testdim = CachedDimension(...)

dims = {pagedim:{'srcfields':('url', 'serverversion', 'domain',
'size', 'lastmoddate'),

'rowhandlers':(UDF_extractdomain, UDF_extractserver)},
datedim:...,
testdim:...

}

There are different dimension processing schemes available in ETLMR. The
first one is called One Dimension, One Task (ODOT). In this scheme, mappers
will project attributes needed for the different dimensions and emit pairs of the
form (dimension name, list of attribute values). One reducer will then process all
data for one dimension and apply user-defined transformations, do key genera-
tion, and fill/update the dimension table. Another scheme is called One Dime-
nion, All Tasks (ODAT). In ODAT, mappers will also project attributes, but
here they for each input row emit one key/value pair with data for all dimen-
sions, i.e., a pair of the form (rownumber, [dimension1:{...}, dimension2:{...},
...]). These pairs are then distributed to the reducers in a round-robin fashion
and one reducer thus processes data for all dimensions and one dimension is pro-
cessed by all reducers. This can, however, lead to inconsistencies and therefore
a final step is needed to clean up such inconsistencies [9]. A hybrid of ODAT
and ODOT is also possible. In this hybrid scheme, a data-intensive dimension
(such as pagedim) can be partitioned based on business key (url) and processed
by all tasks which is ODAT-like while the remaining dimensions are processed
in ODOT-style.

11 Case Study

In this section, we describe how and why a concrete company uses programmatic
ETL and pygrametl for its DW solutions.

The company FlexDanmark4 handles demand-responsive transport in Den-
mark. For example, elderly people are picked up at home and driven to a hospi-
tal for examinations and school children living in areas without access to public
transportation are driven from home to school. The yearly revenue is around 120
million US dollars. To organize the transportation and plan the different tours
effectively, FlexDanmark makes routing based on detailed speed maps built from
GPS logs from more than 5,000 vehicles. Typically, 2 million GPS coordinates
are delivered to FlexDanmark every night. FlexDanmark has a DW where the
cleaned GPS data is represented and integrated with other data such as weather
data (driving speeds are related to the weather and are, e.g., lower when there
is snow). The ETL procedure is implemented in Python. Among other things,

4 http://flexdanmark.dk. One of the authors (Ove Andersen) is employed by Flex-
Danmark.

http://flexdanmark.dk
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the ETL procedure has to transform between different coordinate systems, do
map matching to roads (GPS coordinates can be quite imprecise), do spatial
matching to the closest weather station, do spatial matching to municipalities
and zip code areas, and finally load the DW. The latter is done by means of
pygrametl.

The trips handled by FlexDanmark are paid by or subsidized by public funds.
To be able to analyze how money is spent, another DW at FlexDanmark there-
fore holds data about payments for the trips, the taxi companies providing the
vehicles, customers, etc. This DW integrates data from many different source
systems and has some interesting challenges since payment details (i.e., facts in
the DW) about already processed trips can be updated, but the history of these
updates must by tracked in a similar way to how dimension changes are tracked
for a type-2 slowly changing dimension. Further, new sources and dimensions
are sometimes added. The ETL procedure for the DW is also implemented in
Python, but FlexDanmark has created a framework that by means of templates
can generate Python code incl. pygrametl objects based on metadata param-
eters. Thus, FlexDanmark can easily and efficiently generate ETL code that
handles parallelism, versioning of facts, etc. when new sources and/or dimen-
sions are added.

FlexDanmark’s reasons for using code-based, programmatic ETL are mani-
fold. FlexDanmark’s DWs are rather advanced since they handle GPS data and
versioned facts, respectively. To implement ETL produres for these things in tra-
ditional GUI-based tools was found to be hard. FlexDanmark did in fact try to
implement the map matching in a widely used commercial ETL tool, but found
it hard to accomplish this task. In contrast, it was found to be quite easy to
do programmatically in Python where existing libraries easily could be used and
also easily replaced with others when needed. Programmatic ETL does thus give
FlexDanmark bigger flexibility. Yet another aspect is pricing since FlexDanmark
is publicly funded. Here programmatic ETL building on free, open source soft-
ware such as Python and pygrametl is desirable. It was also considered to use
a free, open source GUI-based ETL tool, but after comparing a few program-
matic solutions with their counterparts in the GUI-based tool, it was found to
be faster and more flexible to code the ETL procedures.

In most cases where pygrametl is used, we are not aware for what since
users are not obliged to register in any way. A few pygrametl users have,
however, told us in private communication how they use pygrametl. We thus
know that pygrametl is used in production systems from a wide variety of
domains including health, advertising, real estate, public administration, and
sales.

Based on the feedback we have received, we have so far not been able to
extract guidelines or principles for how best to design programmatic ETL pro-
cesses. The programming involved can vary from very little for a small proof
of concept to a significant amount for a multi-source advanced DW. The prin-
ciples to apply should thus probably be those already applied in the organiza-
tion. Reusing existing and known development principles also reduces the time
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required to learn pygrametl as users only have to get to know a new Python
library, but not new development principles. pygrametl does not make any
strict assumptions about how the program should be organized (for example, it
is not required that dimension data is processed before fact data). pygrametl
is designed as a library where the user can make objects for the dimension tables
or fact tables she wishes to operate on. pygrametl will then do all insertions
into and updates of the underlying database while the user can focus on and
structure the surrounding logic as she pleases.

12 Experiences from Open-Sourcing pygrametl

In this section, we describe our experiences with open-sourcing pygrametl.
When the first paper about pygrametl was published, we also made the

source code available for download from our department’s web page. From logs,
we could see that there were some downloads and we also received some questions
and comments, but not too many. Later, the source code was moved to Google
Code and the received attention increased. When Google Code was taken out of
service, the code was moved to GitHub5 where we got a lot more attention. The
lesson we learned from this is that it is very important to publish source code at
a well-known place where people are used to look for source code. In fact, before
we went to GitHub, others had already created unofficial and unmaintained
repositories with the pygrametl code outside our control. Anyone is of course
free to take, modify, and use the code as they please, but we prefer to be in control
of the repository where people get the code to ensure availability of new releases.
Along the same lines, we also learned that it is important to make it easy for users
to install the library. For a Python library as pygrametl, it thus important to
be available on the Python Package Index (PyPI6). Again we experienced that
unofficial and unmaintained copies were created before we published our official
version. With pygrametl on PyPI, installation of pygrametl is as simple as
using the command pip install pygrametl.

Another lesson learned – although not very surprising – is that good doc-
umentation is needed. By making a Beginner’s Guide and examples available
online7, we have reduced the number of (repeated) questions to answer via mail,
but also made it easy to get started with pygrametl. It is also important to
describe early what the tool is intended to do. For example, we have now and
then received questions about how to do general data movement from one plat-
form to another, but that is not what pygrametl is intended for. Instead, the
focus for pygrametl is to do ETL for dimensional DWs.

Finally, we have also received very good help from users. They have found
– and improved – performance bottlenecks as well as generalized and improved
functionality of pygrametl.

5 http://chrthomsen.github.io/pygrametl/.
6 http://pypi.python.org/pypi.
7 http://chrthomsen.github.io/pygrametl/doc/index.html.

http://chrthomsen.github.io/pygrametl/
http://pypi.python.org/pypi
http://chrthomsen.github.io/pygrametl/doc/index.html
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pygrametl is published under a BSD license. We have chosen this license
since it is a very permissive license. The BSD license allows proprietary use
of the licensed code and has no requirements about making derivative work
publicly available. In principle, there is thus a risk that users could improve the
pygrametl source code without sharing the improvements with us. However,
we prefer to give users freedom in deciding how to use the pygrametl code and,
as described above, we do get suggestions for code improvements from users.

13 Conclusion and Future Work

We have presented pygrametl which is a programming framework for ETL pro-
gramming. We challenge the conviction that ETL development is always best
done in a graphical tool. We propose to also let the ETL developers (that typ-
ically are dedicated experts) do ETL programming by writing code. Instead of
“drawing” the entire program, the developers can concisely and precisely express
the processing in code. To make this easy, pygrametl provides commonly used
functionality such as data source access and filling of dimensions and fact tables.
In particular, we emphasize how easy it is to fill snowflaked and slowly chang-
ing dimensions. A single method call will do and pygrametl takes care of all
needed lookups and insertions.

Our experiments have shown that ETL development with pygrametl is
indeed efficient and effective. pygrametl’s flexible support of fact and dimen-
sion tables makes it easy to fill the DW and the programmer can concentrate
on the needed operations on the data where (s)he benefits from the power and
expressiveness of a real programming language to achieve high productivity.

pygrametl is available as open source and is used in proofs of concepts as
well as production systems from a variety of different domains. We have learned
the importance of publishing code at well-known places such as GitHub and the
joy of users contributing improvements. When code is added or changed, we try
hard to ensure that existing code does not break. For this, a future focus area
is to automate testing much more than today. For future major releases, it can
also be considered to introduce a new API with fewer classes, but the same or
more functionality. The current class hierarchy to some degree reflects that new
functionality has been added along the way when someone needed it. The way
to load rows (plain SQL INSERTs, batched INSERTs, or by bulkloading) is now
defined by the individual classes for tables. A more general approach could be
by composition of loader classes into the classes for handling dimensions and
fact tables. It would also be interesting to investigate how to allow generation
of specialized code for the task at hand by using templating where the user
can select features to enable such as bulkloading. This could potentially give
big performance advantages. A strength of pygrametl is the easy integration
with other Python projects. More integration with relevant projects such as data
sources for Pandas8 would also be beneficial.

8 http://pandas.pydata.org/.

http://pandas.pydata.org/
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Appendix A Data Warehouse Concepts

This appendix offers a very short introduction to concepts and terms used in the
chapter. More details and explanations can be found in the literature [7,8,27]. In
a data warehouse (DW), data from an organization’s different operational sys-
tems is stored in a way that supports analysis (rather than the daily operations
which are supported by the operational systems). An Extract-Transform-Load
(ETL) process extracts data from the source systems, transforms the data (to
make it fit into the DW and to cleanse it), and loads it into the DW. Data is
divided into facts and dimensions. Facts represent the subjects of the desired
analyses (e.g., sales) and have numerical measures (e.g., sales amount). Dimen-
sions provide context and describe facts (Product, Store, and Time are, for
example, relevant dimensions for sales). Dimensions are thus used for selection
of data and grouping of data in analyses. Dimensions have hierarchies with lev-
els (a Time dimension can, for example, have the hierarchy Day → Month →
Quarter → Year). Each of the levels can also have a number of attributes.

When using a relational database to represent a DW, one can choose between
two approaches for the schema design. In a snowflake schema, each level in a
dimension is represented by a table and the tables have foreign keys to the
following levels. The dimension tables are thus normalized. In a star schema
there is only one table for each dimension. This table thus represents all levels
and is denormalized. In both star schemas and snowflake schemas, the facts
are represented by a fact table which has a foreign key for each dimension and
a column for each measure. In a star schema, the foreign keys reference the
dimension tables while they reference the tables for the lowest levels of the
dimensions in a snowflake schema. The keys used in a dimension table should be
integers not carrying any special meaning. Such keys are called surrogate keys.

Changes may happen in the represented world. It is thus necessary to be able
to represent changes in dimensions. A dimension where changes are represented
is called a slowly changing dimension (SCD). There are a number of different
techniques for SCDs [8]. Here we will consider two of the most commonly used.
For type 1 SCDs, changes are simply represented by overwriting old values in the
dimension tables. If, for example, the size of a shop changes, the size attribute
is updated. This can be problematic as old facts (e.g., facts about sales from the
shop when it had the previous size) now refer to the updated dimension member
such that history is not correctly represented. This problem is avoided with a
type 2 SCD where a new version of the dimension member is created when there
is a change. In other words, for type 2 SCDs, changes result in new rows in the
dimension tables. In a type 2 SCD, there are often attributes called something
like ValidFrom, ValidTo, MostCurrentVersion, and VersionNumber to provide
information about the represented versions.
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Abstract. Despite the ubiquity of temporal data and considerable
research on the effective and efficient processing of such data, database
systems largely remain designed for processing the current state of some
modeled reality. More recently, we have seen an increasing interest in the
processing of temporal data that captures multiple states of reality. The
SQL:2011 standard incorporates some temporal support, and commer-
cial DBMSs have started to offer temporal functionality in a step-by-step
manner, such as the representation of temporal intervals, temporal pri-
mary and foreign keys, and the support for so-called time-travel queries
that enable access to past states.

This tutorial gives an overview of state-of-the-art research results and
technologies for storing, managing, and processing temporal data in rela-
tional database management systems. Following an introduction that
offers a historical perspective, we provide an overview of basic tempo-
ral database concepts. Then we survey the state-of-the-art in temporal
database research, followed by a coverage of the support for temporal
data in the current SQL standard and the extent to which the tem-
poral aspects of the standard are supported by existing systems. The
tutorial ends by covering a recently proposed framework that provides
comprehensive support for processing temporal data and that has been
implemented in PostgreSQL.

1 Introduction

The capture and processing of temporal data in database management systems
(DBMS) has been an active research area since databases were invented. In the
temporal database research history, four overlapping phases can be distinguished.
First, the concept development phase (1956–1985) concentrated on the study of
multiple kinds of time and temporal aspects of data and on temporal conceptual
modeling. The following phase was dedicated to the design of query languages
(1978–1994), including relational and object-oriented temporal query languages.
Then the focus shifted to implementation aspects (1988–present), emphasis being
on storage structures, algorithms for specific operators, and temporal indices.
c© Springer International Publishing AG, part of Springer Nature 2018
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Finally, the consolidation phase (1993–present) produced a consensus glossary of
temporal database concepts [47], a query language test suite [36], and TSQL2 [81]
as an effort towards standardization of a temporal extension to SQL.

A number of events and activities involving the temporal database commu-
nity have impacted the evolution of temporal database research significantly. The
1987 IFIP TC 8/WG 8.1 Working Conference on Temporal Aspects in Informa-
tion Systems [78] covered a wide range of topics, including requirements for
temporal data models and information systems, temporal query languages, ver-
sioning, implementation techniques, temporal logic, constraints, and relations to
natural language. The 1993 ARPA/NSF International Workshop on an Infras-
tructure for Temporal Databases [80] aimed at consolidating different tempo-
ral data models and query languages. In the same year, the collection Tempo-
ral Databases: Theory, Design, and Implementation [87] was published, which
describes primarily a number of data models and query languages. Another influ-
ential book, The TSQL2 Temporal Query Language [81], was published in 1995.
By leveraging many of the concepts that were proposed in previous research,
TSQL2 aimed to be a consensus data model and query language. At the same
time, a project with the ambition of creating a new part of the SQL standard ded-
icated to the support of temporal data started. Several proposals were submitted,
e.g., [83], but were eventually not successful. The proposals proved controversial,
and they were unable to achieve support from major database vendors. The last
notable event dedicated to temporal database research was the 1997 Dagstuhl
Seminar on Temporal Databases [37] that had as its aim to discuss future direc-
tions for temporal database management both in research as well as in system
development.

The last several years have seen a renewed interest in temporal database
management in both academia and industry. This interest is driven in part by
the needs of new and emerging applications, such as versioning of web docu-
ments [33], social network analysis and communication networks [65,76], man-
agement of normative texts [46], air traffic monitoring and patient care [7], video
surveillance [71], sales analysis [70], financial market analysis [45], and data ware-
housing and analytics [82], to name a few. These and other applications produce
huge amounts of temporal data, including time series and streaming data, which
are special forms of temporal data. It has been recognized [5] that analyses of
historical data can reveal valuable information that cannot be found in only the
current snapshot.

This tutorial provides an overview of temporal data management concepts
and techniques, covering both research results and commercial database manage-
ment systems. In Sect. 2, we summarize the most important concepts developed
in temporal database research. In Sect. 3, we provide a brief overview of the state-
of-the-art in temporal database research. Section 4 describes the most important
temporal features of the SQL:2011 standard that introduces temporal support
into SQL. In Sect. 5, we provide a brief overview of the support for the temporal
SQL standard in commercial database management systems. Finally, in Sect. 6,
we describe a recent framework that provides a comprehensive and native solu-
tion for processing temporal queries in relational database management systems.
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2 Basic Concepts of Temporal Databases

In this section, we briefly summarize important concepts that have been devel-
oped in temporal database research.

2.1 Time Domain and Structure

The time domain (or ontology) specifies the basic building blocks of time [66].
It is generally modeled as a set of time instants (or points) with an imposed
partial order, e.g., (N, <). Additional axioms impose more structure on the time
domain, yielding more refined time domains. Linear time advances from past
to future in a step-by-step fashion. This model of time is mainly used in the
database area. In contrast, AI applications often used a branching time model,
which has a tree-like structure, allowing for possible futures. Time is linear from
the past to now, where it divides into several time lines; along any future path,
additional branches may exist. This yields a tree-like structure rooted at now.
Now marks the current time point and is constantly moving forward [32]. The
time domain can be bounded in the past and/or in the future, i.e., a first and/or
last time instant exists; otherwise, it is called unbounded.

The time domain can be dense, discrete, or continuous. In a discrete time
domain, time instants are non-decomposable units of time with a positive dura-
tion, called chronons [31]. A chronon is the smallest duration of time that can be
represented. This time model is isomorphic to the natural numbers. In contrast,
in a dense time domain, between any two instants of time, there exists another
instant; this model is isomorphic to the rational numbers. Finally, continuous
time is dense and does not allow “gaps” between consecutive time instants. Time
instants are durationless. The continuous time model is isomorphic to the real
numbers.

While humans perceive time as continuous, a discrete linear time model is
generally used in temporal databases for several practical reasons, e.g., measures
of time are generally reported in terms of chronons, natural language references
are compatible with chronons, and any practical implementation needs a discrete
encoding of time. A limitation of a discrete time model is, for example, the
inability to represent continuous phenomena [40].

A time granularity is a partitioning of the time domain into a finite set of
segments, called granules, providing a particular discrete image of a (possibly
continuous) timeline [9,10]. The main aim of granularities is to support user-
friendly representations of time. For instance, birth dates are typically measured
at the granularity of days, business appointments at the granularity of hours, and
train schedules at the granularity of minutes. Multiple granularities are needed
in many real-world applications.

2.2 Temporal Data Models

A data model is defined as M = (DS,QL), where DS is a set of data structures
and QL is a language for querying instances of the data structures. For instance,
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the relational data model is composed of relations and, e.g., SQL. Many exten-
sions of the relational data model to support time have been proposed in past
research, e.g., IXSQL [63], TSQL2 [81], ATSQL [16] and SQL/TP [92]. When
designing a temporal data model [49], several aspects have to be considered,
such as

– different time dimensions, or temporal aspects,
– different timestamp types, and
– different forms of timestamping.

Time Dimensions. Different temporal aspects of data are of interest. Valid
time and transaction time are the two aspects that have attracted the most
attention by far in database research; other temporal aspects include publication
time, efficacy time, assertion time, etc.

Valid time [54] is the time when a fact was/is/will be true in the modeled
reality, e.g., John was hired from October 1, 2014 to May 31, 2016. Valid time
captures the time-varying states of the modeled reality and is provided by the
application or user. All facts have a valid time by definition, and it exists inde-
pendently of whether the fact is recorded in a database or not. Valid time can
be bounded or unbounded.

Transaction time [53] is the time when a fact is current/present in the
database as stored data, e.g., the fact “John was hired from October 1, 2014 to
May 31, 2016” was stored in the database on October 5, 2014, and was deleted
on March 31, 2015. Transaction time captures the time-varying states of the
database, and it is supplied automatically by the DBMS. Transaction time has
a duration from the insertion of a fact to its deletion, with multiple insertions
and deletions being possible for the same fact. Deletions of facts are purely log-
ical: the fact remains in the database, but ceases to be part of the database’s
current state. Transaction time is always bounded on both ends. It starts when
the database is created (nothing was stored before), and it does not extend past
now (it is not known which facts are current in the future). Transaction time
is the basis for supporting accountability and traceability requirements, e.g., in
financial, medical, or legal applications.

A data model can support none, one, two, or more time dimensions. A so-
called snapshot data model provides no support for time dimensions and records
only a single snapshot of the modeled reality. A valid time data model sup-
ports only valid time, a transaction time data model only transaction time. A
bitemporal data model supports both valid time and transaction time.

Timestamp Types. A timestamp is a time value that is associated with an
attribute value (attribute (value) timestamping) or a tuple (tuple timestamping)
in a database and captures some temporal aspect, e.g., valid time or transaction
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time. It can be represented as one or more attributes or columns of a relation.
Three different types of timestamps [50,51,62] have received particular attention:

– time points,
– time intervals, and
– temporal elements.

To illustrate different types of timestamps, we consider a car rental company,
where customers, identified by a CustID, rent cars, identified by a CarID. Assume
the following rentals during May 1997:
– On 3rd of May, customer Sue rents car C1 for three days.
– On 5th of May, customer Tim rents car C2 for 3 days.
– From 9th to 12th of May, customer Tim rents car C1.
– From 19th to 20th of May, and again from 21st to 22nd of May, customer Tim

rents car C2.

These rentals are stored in a relation Rental, which is illustrated in Fig. 1.

Fig. 1. Relation Rental.

Time Points. In a point-based data model, tuples or attribute values are times-
tamped with a time point (or instant) (cf. Fig. 2(a)). This is the most basic and
simple data model. Timestamps are atomic values and can be compared easily
with =, �=, <, >,≥,≤. Multiple tuples are used if a fact is valid at several time
points, e.g., four tuples for the two consecutive rentals from time 19 to time 22.
Additional attributes are required to restore the original relation. In the Rental
relation in Fig. 2(a), the SeqNo attribute is used to group tuples that constitute a
rental. Without this attribute, it would be impossible to restore the two consecu-
tive 2-day rentals, as they could be restored, e.g., as a single 4-day rental or four
1-day rentals. The point-based model is simple and provides an abstract view
of a database, which makes it popular for theoretical studies, but inappropriate
for physical implementation.

Time Intervals. In an interval-based data model, each tuple or attribute is times-
tamped with a time interval, or period (cf. Fig. 2(b)). Timestamps can be com-
pared using Allen’s 13 basic interval relationships (before, meets, during, etc.) [4],
which is more convenient than comparing the endpoints of the intervals. Mul-
tiple tuples are used if a fact is valid during disjoint time intervals. The SeqNo
attribute is not needed to distinguish among different tuples. This is the most
popular model from an implementation perspective. Interval timestamps are not
closed under set operations, e.g., subtracting the interval [5, 7] from the interval
[1, 9] gives the set of intervals {[1, 4], [8, 9]}, not a single interval.
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Fig. 2. Point- and interval-based data models for Rental relation.

Temporal Elements. In data models with temporal elements, each tuple or
attribute is timestamped with a finite union of intervals, called a temporal ele-
ment [38,39] (cf. Fig. 3). The full history of a fact is stored in a single tuple.
For instance, the second tuple represents the fact that Tim rents car C1 from
time 5 to 7 and from time 19 to 22. Temporal elements support only a point-
based semantics, and an additional attribute would be necessary to distinguish
between the two consecutive 2-day rentals (see also the discussion below).

Fig. 3. Data model with temporal elements.

Point-Based and Interval-Based Semantics. From a semantic viewpoint,
two different types of models can be distinguished: models with point-based
semantics and models with interval-based semantics. This distinction is orthog-
onal to the choice of the timestamp (i.e., time points, time intervals, or temporal
elements) and focuses on the meaning of the timestamps. For instance, relation
Rental in Fig. 2(a) uses time points as timestamps, but adopts an interval-based
semantics, as information on the rental periods is preserved by using the addi-
tional SeqNo attribute. Similarly, a relation that uses interval timestamps may
adopt either a point-based semantics or an interval-based semantics. The corre-
sponding models are referred to as, respectively, weak interval-based model and
strong interval-based model – see Figs. 2(b) and (c).
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In the weak interval-based data model, intervals are only used as a compact
and convenient representation of contiguous sets of time points. For instance,
although (syntactically) different, the two relations in Figs. 2(b) and (c) are con-
sidered equivalent under point-based semantics since they are snapshot equiva-
lent [48], i.e., they contain the same snapshots. More formally, let r and s be two
temporal relations, ΩT be the time domain, and τt(r) be the timeslice opera-
tor [52] with t being a time instant. The relations r and s are snapshot equivalent
if and only if

∀t ∈ ΩT : τt(r) ≡ τt(s)

For the weak interval-based model, an important operation is coalescing
[2,19,99]. Coalescing is the process of merging adjacent and overlapping inter-
val timestamped tuples with identical nontemporal attribute values into tuples
with maximal time intervals. For instance, the relation in Fig. 2(c) is the result
of coalescing the relation in Fig. 2(b). Without an additional SeqNo attribute,
the two consecutive 2-day rentals disappear: they are merged into a single 4-day
rental.

In the strong interval-based data model, intervals are atomic units that carry
meaning (and not just sets of time points). Thus, strong interval-based data
models are more expressive. They can distinguish between a 4-day rental and
two consecutive 2-day rentals without requiring an additional attribute. The
relation in Fig. 2(b) is the appropriate representation of the Rental relation in
our example since two 2-day rentals and one 4-day rental might impose different
fees.

Timestamping. Timestamping denotes the association of a data element in a
relation with a time value. In the above examples, we used tuple timestamping,
which associates each tuple with a time value such as a time point, a time
interval, or a temporal element.

In attribute (value) timestamping, each attribute value in a relation is asso-
ciated with a timestamp (cf. Fig. 4). Relations are grouped by an attribute, and
all information about that attribute (or real-world object) is captured in a sin-
gle tuple. Information about other objects is spread across several tuples. In
Fig. 4(a), all information about a customer is in one tuple, while the information
about cars is spread across several tuples. A single tuple may record multiple
facts. For instance, the second tuple records four different rentals involving cus-
tomer Tim and the cars C1 and C2. Different groupings of the information into
tuples are possible. Figure 4(b) shows the same relation grouped on CarID. The
two relations are snapshot-equivalent. Data models using attribute value times-
tamping are non-first-normal-form data models.

2.3 Query Language Semantics

The querying capabilities of temporal DBMSs can be partitioned into three
modes [16,82,84]: nonsequenced, current, and sequenced semantics.
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Fig. 4. Attribute value timestamping.

The nonsequenced semantics [18] is time agnostic, that is, the DBMS does not
enforce any specific meaning on the timestamps, and applications must explic-
itly specify how to process the temporal information. The support for the nonse-
quenced semantics in DBMSs is limited to extending SQL with new data types,
predicates, and functions. Predicates such as OVERLAPS, BEFORE, and CONTAINS
are part of the SQL:2011 standard. Another approach to specify temporal rela-
tionships are to use the operators of temporal logic, which target the reasoning
across different database states [23]. Nonsequenced semantics is the most flexi-
ble and expressive semantics since applications handle timestamps like all other
attributes without any implicit meaning being enforced.

The current semantics [6,17] performs query processing on the database
snapshot at the current time and can be realized by restricting the data to the
current time. Current semantics is present in the SQL:2011 standard, where
standard SQL queries over transaction time tables (in SQL:2011 called system-
versioned tables) are evaluated on the current snapshot [58]. As a simple exten-
sion to current semantics, so-called time travel queries allow to specify any snap-
shot of interest. The integration of current semantics into a database engine is
usually done with the help of selection operations.

The sequenced semantics [15,44] of a temporal query is defined by viewing a
temporal database as a sequence of snapshot databases and evaluating the query
at each of these snapshots. This concept is known as snapshot reducibility [63,86].
More formally, let r1, . . . , rn be temporal relations, ψT be an n-ary temporal
operator, ψ be the corresponding nontemporal operator, ΩT be the time domain,
and τt(r) be the timeslice operator [52] with t being a time instant. Operator ψT

is snapshot reducible to ψ if and only if

∀t ∈ ΩT : τt(ψT (r1, . . . , rn)) ≡ ψ(τt(r1), . . . , τt(rn))
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Snapshot reducibility provides a minimum requirement for sequenced semantics
by constraining the result of a temporal query to be consistent with the snapshots
that are obtained by computing the corresponding nontemporal query on each
snapshot of the temporal database. This provides a clear semantics for theoretical
studies, but a practical implementation needs additional constraints.

First, snapshot reducibility does not constrain the coalescing of consecu-
tive tuples with identical nontemporal attribute values. For instance, the two
relations in Figs. 2(b) and (c) are snapshot equivalent, yet they store different
information. Change preservation [27,30] is a way to determine the time inter-
vals of the result tuples, and thus control the coalescing of tuples. A new time
interval is created when the argument tuples that contribute to a result tuple
change (i.e., have different lineage or provenance) [20,24], yielding maximal time
intervals for the result tuples over which the argument relations are constant.

Second, snapshot reducibility does not allow temporal operators to reference
the timestamps of the argument relations since the intervals are removed by the
timeslice operator. For example, computing the average duration of projects at
each point is not possible. This problem can be tackled by propagating the orig-
inal timestamp as additional attribute to relational algebra operators, yielding
a concept known as extended snapshot reducibility [15].

Finally, sometimes attribute values need to be changed when the timestamp
intervals of tuples change. For instance, if a project budget is 100, 000 for a
period of two years, then the corresponding budget for one year should be 50, 000
(assuming a uniform distribution). This concept is called scaling of attribute
values [11,28].

3 State-of-the-Art

In this section, we discuss the state-of-the-art in temporal database research,
focusing on data models, SQL-based query languages, and evaluation algorithms
for query processing.

3.1 Data Models and SQL-Based Query Languages

To make the formulation of temporal queries more convenient, various temporal
query languages [14,87] have been proposed. The earliest and simplest approach
to add temporal support to SQL-based query languages was to introduce new
data types with associated predicates and functions that were strongly influenced
by Allen’s interval relationships [4]. While this approach facilitates the formu-
lation of some temporal queries, it falls short in the extent to which it makes
it easier to formulate temporal queries. Therefore, new constructs were added
to SQL with the goal of expressing temporal queries more easily. A representa-
tive query language following this approach is TSQL2 [81], which uses so-called
syntactic defaults to facilitate query formulation. Challenges with this type of
approach include to be “complete” in enabling easy formulation of temporal
queries and to avoid unintentional interactions between the extensions.
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A more systematic approach was adopted in IXSQL [25,63], which normal-
izes interval timestamped tuples for query processing and works as follows: (i) a
function unfold transforms an interval timestamped relation into a point times-
tamped relation by splitting each tuple into a set of point timestamped tuples;
(ii) the corresponding nontemporal operation is applied to the normalized rela-
tion; (iii) a function fold collapses value-equivalent tuples over consecutive time
points into interval timestamped tuples over maximal time intervals. The app-
roach is conceptually simple, but timestamp normalization does not respect lin-
eage, and no efficient implementation exists.

SQL/TP [92,93] is an approach that is based on a point-based data model:
a temporal relation is modeled as a sequence of nontemporal relations (or snap-
shots). To evaluate a temporal query, the corresponding nontemporal query
is evaluated at each snapshot. For an efficient evaluation, an interval encod-
ing of point timestamped relations was proposed together with a normaliza-
tion function. The normalization splits overlapping value-equivalent input tuples
into tuples with equal or disjoint timestamps, on which the corresponding non-
temporal SQL statements are executed. SQL/TP considers neither lineage nor
extended snapshot reducibility, which are not relevant for point timestamped
relations. Moreover, the normalization function is not applicable to joins, outer
joins, and anti joins.

Agesen et al. [1] extend normalization to bitemporal relations by means of
a split operator. This operator splits input tuples that are value-equivalent over
nontemporal attributes into tuples over smaller, yet maximal timestamps such
that the new timestamps are either equal or disjoint. The split operator supports
temporal aggregation and difference in now-relative bitemporal databases.

ATSQL [16] offers a systematic way to construct temporal SQL queries from
nontemporal SQL queries. The main idea is to first formulate the nontempo-
ral query and then prepend to this query a so-called statement modifier that
specifies the intended semantics of the query evaluation, such as sequenced or
nonsequenced semantics.

The temporal alignment approach [27,30] is a solution for computing tempo-
ral queries over interval timestamped relations using sequenced semantics. The
key idea is to first adjust the timestamps of the input tuples and then to execute
the corresponding nontemporal operator to obtain the intended result. While the
adjustment of timestamps is similar to the normalization in SQL/TP [92], the
temporal alignment approach is comprehensive and offers snapshot reducibility,
extended snapshot reducibility, and attribute value scaling for all operators of
a relational algebra. This approach provides a native database implementation
for temporal query languages with sequenced semantics, such as ATSQL. More
details are provided in Sect. 6.

The scaling of attribute values in response to the adjustment of interval
timestamps has received little attention. Böhlen et al. [11] propose three differ-
ent attribute characteristics: constant attributes that never change value during
query processing, malleable attributes that require adjustment of the value when
the timestamp changes, and atomic attributes that become undefined (invalid)
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when the timestamp changes. For malleable attributes, an adjustment function
is proposed. Terenziani and Snodgrass [91] distinguish between atelic facts that
are valid for each point in time and telic facts that are only valid for one specific
interval. That work focuses on the semantics of facts recorded in a database and
proposes a three-sorted relational model (atelic, telic, nontemporal). Dignös et al.
[28] show that scaling of attributes values is possible during query processing.

The focus of Dyreson et al. [34,35] is to provide a uniform framework for
the evaluation of queries under different temporal semantics, including the two
extremes of sequenced and nonsequenced semantics. Additional semantics can be
realized in this framework, such as context, periodic, and preceding semantics.
The framework uses lineage to track tuples through operations. The work is
primarily at the conceptual level, the main goals being to unify and reconcile
different temporal semantics.

3.2 Query Processing Algorithms

In terms of query processing, various query algorithms for selected operators
have been studied, primarily for temporal aggregations (e.g., [13,57,67,95,97])
and temporal joins (e.g., [42,85,98]) over interval timestamped relations, which
are arguably the most important and expensive operations.

Processing Temporal Aggregations. Aggregate functions enable the sum-
marization of large volumes of data, and they were introduced in early relational
DBMSs such as System R and INGRES. Various forms of temporal aggregation
have been proposed since then. They differ in how the data is grouped along
the time dimension [41]. In instantaneous temporal aggregation, an aggregate
function is conceptually computed at each time point, followed by a subsequent
coalescing step to merge contiguous tuples with the same aggregate value into
a single interval timestamped tuple. Moving-window temporal aggregation, also
termed cumulative temporal aggregation, works similarly, except that an aggre-
gate at a time point is computed over all tuples that occur within a user-specified
window. Finally, in span temporal aggregation, the aggregates are computed over
sets of tuples that overlap with fixed time intervals specified by the user.

The earliest proposal aimed at the efficient processing of instantaneous tem-
poral aggregates is by Tuma [94]. Following Tuma’s work, research focused on the
development of efficient main-memory algorithms for the evaluation of instanta-
neous temporal aggregates as the most important form of temporal aggregation.
Key works in this direction include the aggregation tree algorithm [57] and the
balanced tree algorithm [67].

With the diffusion of data warehouses and OLAP, disk-based index structures
for incremental computation and maintenance of temporal aggregates were inves-
tigated. Notable works include the SB-tree by Yang and Widom [95], which was
extended to the MVSB-tree by Zhang et al. [97] to include nontemporal range
predicates. The high memory requirements of the MVSB-tree were addressed by
Tao et al. [88], proposing two approximate solutions for temporal aggregation.
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Vega Lopez et al. [61] formalized temporal aggregation in a unified frame-
work that enables the comparison of the different forms of temporal aggregation
based on various mechanisms for defining aggregation groups. In a similar vein,
Böhlen et al. [13] propose a framework that generalizes existing forms of temporal
aggregation by decoupling the partitioning of the time line from the specification
of the aggregation groups.

The development of efficient temporal aggregation algorithms has recently
received renewed interest. Kaufmann et al. [55,56] propose the timeline index to
efficiently support query processing, including instantaneous temporal aggrega-
tion, in the main memory DBMS HANA. The timeline index is a general data
structure that instead of intervals uses start and end points of the intervals.
Query processing is performed by scanning sorted lists of endpoints. Piatov and
Helmer [74] present a family of plane-sweeping algorithms that adopt the time-
line index for other forms of temporal aggregation, such as aggregation over fixed
intervals, sliding window aggregates, and MIN/MAX aggregates.

Temporal aggregation has been studied for different query languages and
data models. Böhlen et al. [12] investigate how temporal aggregation is sup-
ported in different types of temporal extensions to SQL. Selected temporal
aggregations are also found in non-relational query languages, such as XML,
e.g., τXQuery [43].

Processing Temporal Joins. The overall efficiency of a query processor
depends highly on its ability to evaluate joins efficiently, as joins occur fre-
quently. Two classes of join algorithms can be distinguished: solutions that rely
on indexing or secondary access paths, and solutions for ad-hoc join operations
that operate on the original tables, but might take advantage of sorting the data.

Gao et al. [42] present a comprehensive and systematic study of join oper-
ations in temporal databases as of 2005, covering both semantics and imple-
mentation aspects. In addition to providing formal definitions of various join
operations, the paper classifies existing evaluation algorithms along the follow-
ing dimensions: nested-loop, partitioning, sort-merge, and index-based. The work
includes also an experimental performance evaluation of 19 join algorithms.

Recently, a number of new studies on the efficient evaluation of temporal
joins have been published. The timeline index by Kaufmann et al. [55,56] is a
main memory index structure that supports also temporal joins where matching
tuples must be overlapping.

The overlap interval partition join algorithm by Dignös et al. [29] partitions
the input relations in such a way that the percentage of matching tuples in
corresponding partitions is maximized. This yields a robust join algorithm that
is not affected by the distribution of the data. The proposed partitioning works
both in disk-based and main-memory settings.

The lazy endpoint-based interval join algorithm by Piatov et al. [75] adopts
the timeline index. After creating a timeline index of the input relations, the two
index structures are scanned in an interleaved fashion. Thereby, active tuples are
managed by an in-memory hash map, called a gapless hash map, that is optimized
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for sequential reads of the entire map. Additionally, a lazy evaluation technique
is used to minimize the number of scans of the active tuple map.

The disjoint interval partitioning join algorithm by Cafagna and Böhlen [22]
first creates so-called disjoint partitions for each relation, where all tuples in a
partition are temporally disjoint. To compute a temporal join, all outer parti-
tions are then sort-merge-joined with each inner partition to produce the final
result. Since tuples within a partition are disjoint, the algorithm is able to avoid
expensive backtracking.

Bouros and Mamoulis [21] implement a forward-scan based plane sweep algo-
rithm for temporal joins and provide two optimizations. The first optimization
groups consecutive tuples such that join results can be produced in batches in
order to avoid redundant comparisons. The second optimization extends the
grouping with a bucket index to further reduce the number of comparisons.
A major contribution of this work is a parallel evaluation strategy based on a
domain-based partitioning of the input relations.

4 Temporal Support in the SQL:2011 Standard

This section summarizes the most important temporal features of the SQL:2011
standard, which is the first SQL standard with support for time.

The ability to create and manipulate tables whose rows are associated with
one or two temporal periods, representing valid and transaction time, is the key
extension in SQL:2011 [58,96]. A core concept of this extension is the specifica-
tion of time periods associated with tables, bundled with support for updates,
deletions, and integrity constraints. The support for querying temporal relations
is limited to simple range restrictions and predicates.

In the following discussion, we use two valid time relations, which are illus-
trated in Fig. 5 and initially contain the following data:

– an employee relation, named Emp, records that Anton was working in the ifi
department from 2010 to 2014 and in the idse department from 2015 to 2016;

– a department relation, named Dept, contains descriptions of the ifi and idse
departments.

Fig. 5. Graphical illustration of the Emp and Dept relations.



64 M. H. Böhlen et al.

4.1 Creation of Tables with Time Periods

SQL:2011 adopts an interval-based data model with tuple timestamping. Rather
than introducing a new data type for a time interval, a time period specification
is added as metadata to the table schema. A period specification combines a
physical start time attribute and an end time attribute to form a period. Periods
are specified with the PERIOD FOR clause:

PERIOD FOR <PeriodName> (<StartTime>, <EndTime>)

Here, <StartTime> and <EndTime> are of type DATE or TIMESTAMP and together
form a time period, which can be referred to by the name <PeriodName>. A
period is by default a closed-open interval, where StartTime is included and
EndTime is excluded1.

By designing periods as metadata, a minimally invasive approach was chosen
that achieves backward compatibility, i.e., old schemas, queries, and tools still
work. If start and end time points are already stored in a table (which is often
the case), a time period can be added without the need to modify the physical
table schema. A new data type would require more substantial changes across
the DBMS.

SQL:2011 supports valid time and transaction time, which are called, respec-
tively, application time and system time. At most one application time and one
system time can be specified for a table. Tables that have an application time
period are called application time period tables, and tables with a system time
period are called system time period tables. Tables that support both time dimen-
sions are usually called bitemporal tables, although SQL:2011 does not provide
an explicit name.

To facilitate reading and to be consistent with the research literature, we will
use the widely adopted terms valid time for application time and transaction time
for system time.

Valid Time Tables. Valid time tables store for each tuple the time interval
when the tuple is true in the modeled reality. In our example, the schema of the
Emp relation with a valid time attribute can be created as follows:

CREATE TABLE Emp (
EName VARCHAR,
EDept VARCHAR,
EStart DATE,
EEnd DATE,
PERIOD FOR EPeriod (EStart, EEnd)

);

The PERIOD FOR clause specifies a valid time interval named EPeriod, which is
built from the physical attributes EStart and EEnd. Notice that EPeriod is not
1 To comply with the SQL:2011 standard, in this section we use closed-open intervals,

whereas in the other sections we use closed-closed intervals.
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a physical column of the table, but it is stored as metadata and can be used to
refer to the interval. A table with this schema is shown in Fig. 6(a).

When inserting tuples, the user has to specify the valid time period in addi-
tion to the nontemporal attribute values of the tuples. For instance, the follow-
ing statements insert two tuples indicating that Anton was working in the ifi
department from 2010 to 2014 and in the idse department from 2015 to 2016:2

INSERT INTO Emp VALUES (Anton, ifi, 2010, 2015);
INSERT INTO Emp VALUES (Anton, idse, 2015, 2017);

Fig. 6. Tables with period timestamps.

Transaction Time Tables. In a transaction time table, each tuple stores
an interval that records when the tuple was current in the database. Different
from the valid time, the transaction time is set by the DBMS when a tuple is
created, updated, or deleted; the user is not allowed to change the transaction
time values. The following statement creates a transaction time table for the
department relation:

CREATE TABLE Dept (
DName VARCHAR,
DDesc TEXT,
DStart DATE GENERATED ALWAYS AS ROW START,
DEnd DATE GENERATED ALWAYS AS ROW END,
PERIOD FOR SYSTEM TIME (DStart, DEnd)

) WITH SYSTEM VERSIONING;

The GENERATED ALWAYS clause specifies that the two attributes DStart and DEnd
are generated by the system when a tuple is, respectively, inserted, deleted,
or modified. The PERIOD FOR clause in combination with the WITH SYSTEM
VERSIONING clause define a system-versioned table. While the attribute names
DStart and DEnd are user-specified, the name of the transaction time attribute
must be SYSTEM TIME.

The following SQL statements insert two tuples in the system-versioned
department relation as shown in Fig. 6(b):

INSERT INTO DEPT (DName, DDesc) VALUES (‘ifi’, ‘DBTG @ uzh’);
INSERT INTO DEPT (DName, DDesc) VALUES (‘idse’, ‘DB @ unibz’);

2 To keep the examples simple, we use only the year, not complete dates or timestamps.
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The user specifies only the nontemporal attributes, whereas the transaction time
is added automatically by the system. The value of DStart is set to the cur-
rent transaction time when the tuple/row is created. Hence, the first tuple was
inserted in 2009 and the second in 2010. The value 9999 of the DEnd attribute
is the highest possible timestamp value and indicates that the tuple is current
in the database.

A transaction time table conceptually distinguishes between current tuples
and historical tuples. A tuple is considered a current tuple if its timestamp
contains the current time (aka now). All other tuples are called historical tuples.
Historical tuples are never modified and form immutable snapshots of the past.

4.2 Modification of Tables

The SQL:2011 standard specifies the behavior of temporal tables in the case of
updates and deletions, which is different for valid time tables and transaction
time tables.

Valid Time Tables. Conventional update and delete operations work in the
same way as for nontemporal tables. That is, both nontemporal and temporal
attributes can be modified using the known SQL syntax. In addition, there is
enhanced support for modifying tuples over parts of the associated time peri-
ods by using the FOR PORTION OF clause. In this case, overlapping tuples are
automatically split or cut. Consider the following statement:

DELETE Emp
FOR PORTION OF EPeriod FROM DATE ‘2011’ TO DATE ‘2013’
WHERE EName = ‘Anton’;

This statement deletes a portion of the first tuple in the Emp relation in Fig. 7(a).
As a consequence, the tuple is automatically split in two: one stating that Anton
was employed at ifi in 2010, and the other that he was employed from 2013 to
2014, as shown in Fig. 7(b). Non-overlapping tuples are not affected.

Fig. 7. Modifying a valid time table.
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The behavior of the UPDATE operation is similar. For instance, the following
statement would split the first tuple in Fig. 7(a) into three tuples:

UPDATE Emp
FOR PORTION OF EPeriod FROM DATE ‘2011’ TO DATE ‘2013’
SET EDept = ‘ai’
WHERE EName = ‘Anton’;

Transaction Time Tables. Any modification of a transaction time table oper-
ates only on the current tuples, and the user can only modify nontemporal
attributes, not the timestamp attribute. The transaction time is automatically
modified when nontemporal attributes of current tuples are modified. That is, if
a current tuple is modified, a copy of that tuple is created with the end times-
tamp set to the current time. The tuple ceases to be current in the database and
becomes a historical tuple. Then, the start time of the tuple is updated to the
current timestamp, and the nontemporal attributes are changed accordingly. A
DELETE statement creates only the historical tuple with end time equal to the
current time. The following UPDATE statement changes the description of the
IDSE department as of 2016 (cf. Fig. 8):

UPDATE Dept
SET DDesc = ‘DBS @ unibz’
WHERE DName = ‘idse’;

This creates a historical tuple (idse, 2010, 2016, DB @ unibz), which
records the name of the idse department until 2015 (the gray tuple in Fig. 8).
At the same time, the start time of the current tuple for the idse department
is set to 2016 and the description is set to DBS @ unibz.

Fig. 8. Modifying a transaction time table.

4.3 Integrity Constraints

Valid Time Tables. Primary keys enforce uniqueness of attribute values in
a table. In a valid time table, the natural interpretation of a primary key is to
require uniqueness of attribute values at each time point. To achieve this, the pri-
mary key specification includes, in addition to the nontemporal key attributes,
also the valid time period together with the WITHOUT OVERLAPS constraint.
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This ensures that only one value at a time exists for nontemporal key attributes
(that is, the same values for nontemporal key attributes require disjoint peri-
ods). For instance, we can use the following primary key constraint to enforce
that an employee is never in two different departments at the same time:

ALTER TABLE Emp
ADD PRIMARY KEY (EName, EPeriod WITHOUT OVERLAPS);

This primary key constraint would reject the table in Fig. 9 since the valid times
of both tuples with EName equal to Anton include year 2014. Without the WITH-
OUT OVERLAPS clause, but including EPeriod, we would obtain a conven-
tional primary key, which is satisfied by the table in Fig. 9 since the tuples have
syntactically different values for these two attributes.

Fig. 9. Primary key constraint is violated.

Valid time tables support also foreign keys to enforce the existence of certain
tuples. A foreign key constraint in a valid time table guarantees that, at each
point in time, for each tuple in the child table there exists a corresponding tuple
in the referenced parent table. Consider Fig. 10 and assume that both Emp and
Dept are valid time tables with valid time EPeriod and DPeriod, respectively.
The following foreign key constraint achieves that, at any time, the department,
in which an employee works, exists:

Fig. 10. Valid time foreign keys.

ALTER TABLE Emp
ADD FOREIGN KEY (EDept, PERIOD EPeriod)
REFERENCES (DName, PERIOD DPeriod);

It is not required that a single matching tuple exists in the referenced parent
table that entirely covers the tuple in the child table. It is sufficient that the union
of the timestamps of matching tuples in the parent table covers the timestamp
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of the corresponding tuple in the child table. The tables in Fig. 10 satisfy the
above constraint. The first tuple in the Emp table is covered by a single tuple in
the Dept table, while the second tuple is covered by the union of the second and
third tuples in Dept.

Transaction Time Tables. The enforcement of primary and foreign key con-
straints in transaction time tables is much simpler since only current tuples
need to be considered. Historical data continue to satisfy the constraints as they
are never changed. Therefore, the time periods need not to be included in the
definition of the key constraints.

A primary key on an attribute in a transaction time table enforces that
at most one current tuple exists with a given value for that attribute. Note
that there might be several historical tuples with the same key attribute value.
Consider now that Emp and Dept are transaction time tables. Then, the following
primary key constraint ensures that there exists at most one current tuple with
a given DName value:

ALTER TABLE Dept
ADD PRIMARY KEY (DName);

In a similar way, also foreign keys need only be verified among the current
tuples of the two tables. That is, for each current tuple in the child table, there
exists a matching current tuple in the parent table. For instance, the following
constraint enforces that for each current Emp tuple there exists now a tuple in
the Dept table with DName = EDept:

ALTER TABLE Dept
ADD FOREIGN KEY (EDept) REFERENCES (DName);

4.4 Querying Temporal Tables

Valid Time Tables. SQL:2011 provides limited support for querying temporal
tables, in particular for valid time tables. The usual SQL syntax can be used to
specify constraints on the period end points. For instance, the following query
retrieves all departments that existed in 2012:

SELECT DName, DDesc
FROM Emp
WHERE DStart <= ‘2012’ AND DEnd > ‘2012’;

To facilitate the formulation of queries, so-called period predicates are intro-
duced, such as OVERLAPS, BEFORE, AFTER, etc. Although similar, they do not
correspond exactly to Allen’s interval relations [4]. With these predicates, the
selection predicate in the above statement can be specified as WHERE EPeriod
CONTAINS DATE ‘2011’.

The temporal predicates can also be used in the FROM clause. For instance,
the OVERLAPS predicate allows to formulate a temporal join, which requires that
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matching result tuples are temporally overlapping. The following query is a tem-
poral join on the department name of the Emp and Dept tables:

SELECT *
FROM Emp
JOIN Dept ON EDept = DName AND EPeriod OVERLAPS DPeriod;

Transaction Time Tables. To facilitate the retrieval of data from transaction
time tables, three new SQL extensions are provided. First, the FOR SYSTEM TIME
AS OF extension retrieves tuples as of a given time point, i.e., tuples with start
time less than or equal to and end time larger than a user-specified time point.
The following statement retrieves all employee tuples that were current in the
database in 2010:

SELECT *
FROM Emp FOR SYSTEM TIME AS OF DATE ‘2010’;

The second extension, FOR SYSTEM TIME FROM TO, retrieves tuples between
any two time points, where the start time is included and the end time is
excluded, corresponding to a closed-open interval model. The following state-
ment retrieves all tuples that were current from 2011 (including) up to 2013
(excluding):

SELECT *
FROM Dept FOR SYSTEM TIME FROM DATE ‘2011’ TO DATE ‘2013’;

The third extension is FOR SYSTEM TIME BETWEEN and is similar to the pre-
vious one, except that the end time point is also included, corresponding to a
closed-closed interval model:

SELECT *
FROM Dept FOR SYSTEM TIME BETWEEN DATE ‘2011’ AND DATE ‘2012’;

If none of the above extensions are specified in the FROM clause, only the
current tuples are considered. This corresponds to FOR SYSTEM TIME AS OF
CURRENT TIMESTAMP. This feature facilitates the migration to system-versioned
tables, as old queries would continue to produce correct results by considering
only current tuples.

5 Temporal Data Support in Commercial DBMSs

Since the introduction of the temporal features in the SQL:2011 standard [58,96],
major database vendors have started to implement temporal support in their
database management systems [59,72,73]. Some companies realized the need for
supporting temporal data earlier, and they extended their database systems with
basic temporal features, such as data types, functions, and time travel queries,
that make past states of a database available for querying.
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IBM was the first vendor to integrate the temporal features from SQL:2011
into their DB2 database system, which occurred in version 10 [79]. DB2 supports
both valid time and transaction time tables, which are called business time and
system time tables, respectively. Transaction time tables are implemented by
means of two distinct tables: a current table and a history table. The current
table stores the current snapshot of the data, i.e., all tuples whose timestamp
contains the current time (now). The history table stores all previously current
data, i.e., all tuples that were modified or deleted in the past. Queries on trans-
action time tables are automatically rewritten into queries over one or both of
these two tables.

The Oracle DBMS supports temporal features from SQL:2011 as of version
12c. The temporal features are implemented using the Oracle flashback tech-
nology [69]. The syntax employed differs slightly from that of the SQL stan-
dard, e.g., AS OF PERIOD FOR is used instead of FOR to retrieve data in a cer-
tain time period. Earlier versions of Oracle offered similar support for tempo-
ral data through the Oracle Workspace Manager [68]. The workspace manager
(DBMS WM package) offered a PERIOD data type with associated predicates
and functions as well as additional support for valid and transaction time. Query-
ing temporal relations was possible at a specific time point (snapshot) or for a
specific period.

PostgreSQL originally provided an external module [26] that introduced a
PERIOD data type for anchored time intervals together with Boolean predicates
and functions, such as intersection, union, and minus. Most of the functionality
of this module was subsequently integrated into the core of PostgreSQL ver-
sion 9.2 using range types [77]. Unlike the period specification that is metadata
in the SQL standard, a range type in PostgreSQL is a new data type in the
query language that was introduced to represent generic intervals, and it comes
with associated predicates, functions, and indices. Indices on range types are
based on the extendible index infrastructure GiST (Generalized Search Tree)
and SP-GiST (space-partitioned Generalized Search Tree). These indices sup-
port efficient querying when predicates involve range types as well as support
efficient constraint implementation, such as uniqueness for overlapping intervals
in a table.

The Teradata DBMS as of version 15.00, supports derived periods and tem-
poral features from the SQL:2011 standard. Version 13.10 already integrated
temporal features, including a PERIOD data type with associated predicates and
functions as well as support for valid and transaction time [3,89]. The querying
of valid and transaction time tables is achieved by means of so-called temporal
statement modifiers such as SEQUENCED and NONSEQUENCED [16]. The implemen-
tation of the sequenced semantics is based on query rewriting, where a temporal
query is rewritten into a standard SQL query [2,3]. The support for temporal
features in Teradata has been enhanced gradually. As of version 14.10 [90], sup-
port for sequenced aggregation and coalescing (using the syntax NORMALIZE ON)
was added. Sequenced outer joins and set operations are not yet supported.
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Since 2016, Microsoft’s SQL Server [64] has supported temporal features
from SQL:2011. The support is limited to transaction time tables, called system
time tables. To achieve general temporal support for querying, users have to
write user-defined functions [8] that implement the fold and unfold functions of
IXSQL.

6 Native Support for Managing Temporal Data
in RDBMSs

In this section, we describe a recent approach [30] to extending a relational
database engine to achieve full-fledged, industrial-strength, and comprehensive
support for sequenced temporal queries. The key idea is to reduce temporal
queries to nontemporal queries by first adjusting the timestamps of the input
tuples, which produces intermediate relations on which the corresponding non-
temporal operators are applied. This solution provides comprehensive support
for temporal queries with sequenced semantics without limiting the use of queries
with nonsequenced semantics. The approach is systematic and separates interval
adjustment from the evaluation of the operators. This strategy renders it possi-
ble to fully leverage the query optimization and evaluation engine of a DBMS
for sequenced temporal query processing.

6.1 Requirements for Sequenced Temporal Queries

The evaluation of sequenced temporal queries over a temporal database has
to satisfy four properties: snapshot reducibility, change preservation, extended
snapshot reducibility, and scaling (cf. Sect. 2.3). Two important ingredients are
needed for the query execution in order to achieve these properties:

– timestamps must be adjusted for the result, and
– some values might have to be scaled to the adjusted timestamps.

This is illustrated in the example in Fig. 11, which computes the budget for each
department in the Dept relation. In a nontemporal context, the result would be
380 K for the DB department and 150 K for the AI department. In a temporal
context, we want to obtain the time-varying budget shown in Fig. 11(b). We
observe that there are two result tuples for the DB department. Result tuple z1 is
over the time period [Feb,Apr], where only one project is running. Result tuple
z2 is over the time period [May, Jul] with two contributing input tuples, namely
r1 and r2. A second observation is that the total budget of 200 K of the input
tuple r1 is distributed over (or scaled to) the two sub-periods [Feb,Apr] and
[May,Sep], i.e., 100 K is assigned to each of the two periods.

A major limitation of SQL that renders it difficult to process interval times-
tamped data, such as in the above example, is that periods are considered as
atomic units. Comparing interval timestamped tuples in SQL yields the following
results:
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Fig. 11. Compute budget for each department.

– (DB, [May, Jul]) = (DB, [May, Jul]) → true
– (DB, [Feb,Apr]) = (DB, [May, Jul]) → false
– (DB, [Feb, Jul]) = (DB, [May, Jul]) → false

The first two comparisons are ok, since the two tuples are, respectively, identical
in the first case and have disjoint timestamps (and hence are syntactically dif-
ferent) in the second case. The result of the last comparison is problematic in a
temporal context. Since the two timestamps are overlapping, the two tuples are
equal over the common part of the timestamps.

6.2 Reducing Temporal Operators to Nontemporal Operators
via Temporal Alignment

Based on the above requirements and observations, the core of the temporal
alignment approach [30] is to adjust the timestamps of input tuples such that
all tuples that contribute to a single result tuple have identical timestamps. The
adjusted timestamps can then be treated as atomic units, and the correspond-
ing nontemporal operator with SQL’s notion of equality produces the expected
result. Additionally, for some queries, the original timestamp needs to be pre-
served, and the attribute values need to be scaled. This reduction of a temporal
operator ψT to the corresponding nontemporal operator ψ is a four-step process
(cf. Fig. 12):

1. Timestamp propagation replicates the original timestamps in the argument
relations as additional attributes. This step is optional and is only executed if
the original timestamps are needed, either to scale attribute values in step 3 or
to evaluate a predicate or a function that references the original timestamps,
in step 4.

2. Interval adjustment splits the overlapping timestamps of the input tuples such
that they are aligned. This yields an intermediate relation, where all tuples
that (in step 4) are processed together to produce a result tuple have the
same timestamp. This intermediate relation can conceptually be considered
as a sequence of snapshots, each of which lasts for one or more time points.
Two interval adjustment primitives are needed: a temporal normalizer, N , for
the operators π, ϑ, −, ∩, and ∪, where for each time point, one input tuple
can contribute to at most one result tuple; and a temporal aligner, φ, for the
operators ×, �, �, � , � , and �, where for each time point, one input tuple
can contribute to more than one result tuple.
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Fig. 12. Reduction of a temporal operator ψT to the corresponding nontemporal oper-
ator ψ using interval adjustment, timestamp propagation, and attribute value scaling.

3. Attribute value scaling is optional and scales, if required, the attribute values
of intermediate tuples to the adjusted timestamps. For this, the original and
new timestamps in addition to the original value of the attribute to be scaled
are needed. As part of this step, the propagated timestamps are removed if
they are no longer needed by subsequent operators.

4. The nontemporal operator evaluation applies the corresponding nontemporal
operator ψ to the intermediate relations. An additional equality constraint
over the adjusted timestamps (e.g., as a grouping attribute for aggregation or
an equality predicate in joins) guarantees that all tuples that produce a single
result tuple are processed together. For join operations, a post-processing step
α is required to remove non-maximal duplicates.

The interval adjustment (step 2) and the evaluation of the corresponding non-
temporal operator (step 4) form the core of the temporal alignment approach
and guarantee snapshot reducibility and change preservation. In addition, the
propagation of the timestamp intervals (step 1) enables attribute value scaling
(step 3) and the access to the original timestamp in step 4 (needed for extended
snapshot reducibility).

Table 1 provides a summary of the reduction rules, following the above strat-
egy, for all operators of the relational algebra. Here, r and s are temporal rela-
tions, A and B are sets of attributes, T is the timestamp attribute, θ is a condi-
tion, and α is a post-processing operator that removes duplicates. For instance,
the temporal aggregation operator BϑT

F (r) =B,T ϑF (NB(r, r)) with grouping
attributes B can be computed as follows: First, input relation r is aligned by
calling the temporal normalizer NB(r, r), which yields an intermediate relation
of aligned tuples. Then, nontemporal aggregation is applied to the intermedi-
ate result. By adding the timestamp attribute T as an (additional) grouping
attribute, the intermediate tuples are grouped by snapshot, and the nontempo-
ral aggregation operator is applied to each snapshot.

Figure 13 illustrates the temporal alignment approach by using a tempo-
ral aggregation query to compute the number of projects for each department:
Deptϑ

T
Count(Proj )(Proj). Since timestamp propagation and attribute value scal-

ing are not needed for this query, steps 1 and 3 are skipped. During the adjust-
ment of the timestamps using the temporal normalizer (step 2), the first input
tuple r1 is split into tuples r′

1 and r′′
1 . The split point is determined by tuple r2,

which belongs to the same department. There is no need to split tuples r2 and
r3, yielding an intermediate relation with four tuples. Then, the intermediate
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Table 1. Reduction rules ψT −→ {N ,φ} + ψ (from [27,30])

Operator Reduction

Selection σT
θ (r) = σθ(r)

Projection πT
B(r) = πB,T (NB(r, r))

Aggregation BϑT
F (r) = B,T ϑF (NB(r, r))

Difference r−T s = NA(r, s) − NA(s, r)

Union r∪T s = NA(r, s) ∪ NA(s, r)

Intersection r∩T s = NA(r, s) ∩ NA(s, r)

Cartesian Product r ×T s = α(φ�(r, s)�r.T=s.T φ�(s, r))

Inner Join r�T
θ s = α(φθ(r, s) �θ∧r.T=s.T φθ(s, r))

Left Outer Join r �T
θ s = α(φθ(r, s) � θ∧r.T=s.T φθ(s, r))

Right Outer Join r� T
θ s = α(φθ(r, s) � θ∧r.T=s.T φθ(s, r))

Full Outer Join r � T
θ s = α(φθ(r, s) � θ∧r.T=s.T φθ(s, r))

Anti Join r�T
θ s φθ(r, s) �θ∧r.T=s.T φθ(s, r)

relation is aggregated (step 4) by using the nontemporal aggregation, where the
timestamp attribute T is added to the grouping attributes. Hence, all tuples with
the same adjusted timestamp and the same department are processed together.

Figure 14 illustrates a temporal left outer join using the temporal aligner
primitive. Given a manager relation Mgr and a project relation Proj, we want

Fig. 13. Illustration of temporal normalizer for a temporal aggregation query.
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Fig. 14. Illustration of temporal aligner for a temporal left-outer join query.

to determine a manager’s budget: Mgr �T
Mgr.Dept=Proj.Dept Proj. Again, to keep

the example simple, timestamp propagation and attribute value scaling are not
involved. Hence, we first align the timestamps of the two input relations. In
the manager relation, the only tuple m1 is split into three intermediate tuples.
The first two, m′

1 and m′′
1 , are generated from the intersection of m1’s timestamp

and the timestamp of the joining tuples r1 and r2 of Proj, respectively. The third
intermediate tuple, m′′′

1 , covers the part of m1’s timestamp not covered by any
matching tuple in the project relation; this tuple is needed for the outer join.
Similarly, the tuples in the project relation are adjusted. The first two tuples are
completely covered by matching tuple m1, so no split is required. The third tuple
need not to be split since it has no matching tuple in Mgr. After adjusting the
timestamps of the two input relations, the two intermediate tables are joined by
using the nontemporal left outer join, where the timestamp attribute T is added
to the join condition in order to join only tuples that have identical timestamps.

6.3 Temporal Primitives

The temporal alignment approach requires two new temporal primitives, a tem-
poral normalizer and a temporal aligner, to break the timestamps of the input
tuples into aligned pieces.

The temporal normalizer is used for operators, ψ(r1, . . . , rn), for which more
than one tuple of each argument relation ri can contribute to a result tuple z (i.e.,
the lineage set of z can contain more than one tuple from each input relation).
This holds for the following operators: aggregation (ϑ), projection (π), difference
(−), intersection (∩), and union (∪). The temporal normalizer splits each input
tuple into temporally disjoint pieces, where groups of matching tuples define the
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split points. This is illustrated in Fig. 15(a) for an input tuple r and two other
input tuples g1 and g2 in the same group. Tuple r is split whenever another tuple
in the same group starts or finishes, producing r1, r2 and r3. Moreover, all parts
of r that are not covered by another tuple in the group are reported, i.e., r4.
Notice that the intermediate tuples are disjoint.

The temporal aligner is used for operators, ψ(r1, . . . , rn), for which at most
one input tuple from each argument relation ri can contribute to a result tuple
z (i.e., the lineage set of z contains at most one tuple from each input relation).
This holds for the following operators: Cartesian product (×) and all forms of
joins (�, �, � , � , �). The temporal aligner considers pairs of matching tuples
and determines the intersections of their timestamps; the resulting intermediate
relation might contain temporally overlapping tuples. Figure 15(b) illustrates the
temporal aligner for an input tuple r and two other matching input tuples g1 and
g2. Tuple r produces three intermediate tuples: one as the intersection with tuple
g1, one as the intersection with tuple g2, and one for the part of the timestamp
that is not covered by any matching tuple (r3).

Fig. 15. Temporal normalizer vs. aligner (from [27,30]).

6.4 Implementation

The temporal alignment approach to transform temporal queries to the cor-
responding nontemporal queries with the help of two adjustment primitives
requires minimal extensions of an existing DBMS. Moreover, this strategy ren-
ders it possible to fully leverage the query optimization and evaluation engine of
a DBMS for sequenced temporal query processing, and it does not affect the use
of nonsequenced queries. The key extension is the integration of the normalizer
N and aligner φ operators into the DBMS kernel. Timestamp propagation (ε)
and attribute value scaling can be achieved, respectively, by means of generalized
projections and user defined functions.

The temporal alignment approach has been implemented in the kernel of the
PostgreSQL database system and is available at tpg.inf.unibz.it [27,30].

http://tpg.inf.unibz.it/
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7 Conclusion

In this tutorial, we provided an overview of temporal data management, cover-
ing both research results and commercial database management systems. Fol-
lowing a brief summary of important concepts that have been developed and
used in temporal database research, we discussed the state-of-the-art in tempo-
ral database research, focusing on query languages and evaluation algorithms.
We then described the most important temporal features in SQL:2011, which is
the first SQL standard to introduce temporal support in SQL. Next, we briefly
discussed the degree to which temporal features of the SQL:2011 standard have
been adopted by commercial database management systems. The tutorial ends
with a description of a recent framework that provides a comprehensive and
native solution to the processing of so-called sequenced temporal queries in rela-
tional database management systems.

Future work in temporal databases points in various directions. While tem-
poral alignment provides a solid and systematic framework for implementing
temporal query support in relational database systems, a number of open issues
require further investigation. First, it would be interesting to extend the frame-
work to multisets that allow duplicates, as well as to support two or more time
dimensions. Second, for some operators, a significant boost in efficiency is needed
to scale for very large datasets. Ideas for performance optimizations range from
additional and more targeted alignment primitives over more precise cost esti-
mates to specialized query algorithms and equivalence rules. Third, support for
user-friendly formulation of complex temporal queries is needed, including a
SQL-based temporal query language.
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Abstract. Historical graphs capture the evolution of graphs through
time. A historical graph can be modeled as a sequence of graph snap-
shots, where each snapshot corresponds to the state of the graph at the
corresponding time instant. There is rich information in the history of
the graph not present in just the current snapshot of the graph. In this
chapter, we present logical and physical models, query types, systems and
algorithms for managing historical graphs. We also highlight promising
directions for future work.
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1 Introduction

Graphs offer a natural model for the interactions and relationships between
entities. There are numerous applications of graphs. In collaborative networks,
graph edges capture the cooperation between actors in movies, authors of scien-
tific articles, or co-workers in a team. In social networks, graphs edges express
the relationship (e.g., friend, follower) as well as the interactions and reactions
(e.g., retweets, likes) between users. In communication networks, edges indicate
email and phone exchanges between people, in transportation networks, edges
represent roads and flights between cities, while in biological networks, edges
may model interactions between proteins.

Most graphs that model such real networks evolve with time. New interac-
tions and relationships are created, while existing ones may no longer be valid.
In addition, new entities join the network, while old ones leave the network. Fur-
thermore, content associated with the graph structure, such as labels on vertices
or weights on edges, is also updated. We use the term historical graph to refer
to the sequence G = {G1, G2, ...} of graph snapshots, where each snapshot Gt in
the sequence captures the state of the graph (i.e., vertices, edges and content)
at time instant t.

There is rich information in a historical graph not to be found in just the
current snapshot. As a very simple example, there is no way to differentiate
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between a vertex whose centrality (e.g., degree, or Pagerank) keeps rising and
a vertex whose centrality keeps falling, if both vertices have the same current
centrality value. In general, looking at the whole history of the graph helps us
identify interesting patterns in its evolution and may be useful in predicting its
future states.

In this chapter, we present recent work in processing historical graphs. Since
this is an active area of research, the goal is both to survey recent research results
and also highlight promising directions for future research.

The remainder of this chapter is organized as follows. In Sect. 2, we start with
a formal definition of a historical graph and logical models for its representation.
A distinction is also made between historical graphs and other types of graphs
with temporal information. Then, in Sect. 3, we present a general overview of
research in graph management to serve as background for the work on historical
graph management. An overview and a taxonomy of the variety of interesting
graph queries that are possible in the case of historical graphs is presented in
Sect. 4. In Sect. 5, we discuss various issues regarding the physical representation
and storage of historical graphs, while in Sect. 4, we introduce a taxonomy of
the approaches to processing historical graphs queries. Section 7 concludes the
chapter.

2 Historical Graphs

A graph is typically represented as an ordered pair G = (V,E) of a set V of
vertices and a set E ⊆ V × V of edges. Graphs can be undirected or directed.
In undirected graphs, an edge is a 2-multiset of vertices, that is edge (u, v) is
identical with edge (v, u). In directed graphs, an edge (u, v) is an ordered pair
of vertices where order indicates a direction, from source vertex u to destination
vertex v. Multigraphs are graphs that allow multiple edges between two vertices.

In some cases, data or content is attached to the graph structure. The sim-
plest form is that of values or labels associated with vertices, edges or both. For
example, a vertex labeled graph is a triplet G = (V,E,L) where L: V → Σ is a
labeling function that assigns to each vertex in V a label from a set of labels Σ.
A special case of a labeled graph is a weighted graph where labels take numerical
values. Often, labels are used to associate semantics with vertices and edges, for
example, to give vertices and edges a type.

In the following definitions, for notational simplicity, we will consider vertex
labeled graphs, but the definitions easily extend to include graphs with other
type of content associated with them. We will also use the term graph element
to denote a vertex, edge or label.

Graphs change over time. Graph updates may involve structural updates,
that is, the addition or deletion of vertices and edges. The content associated
with vertices and edges may also be updated. A historical graph captures the
evolution of the graph over time by maintaining all edges, vertices and content.

We assume a linearly ordered, discrete time domain Ωt and use successive
integers to denote successive time instants in Ωt. A time interval is a contiguous
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set of time instants where [ti, tj ], with tj ≥ ti, denotes the time instants from ti
to tj .

Let Gt = (Vt, Et, Lt) denote the graph snapshot at time instant t, that is, the
set of vertices, edges and the labeling function that exist at time instant t.

Definition 1 (Historical Graph). A historical graph G[ti,tj ] in time interval
[ti, tj ] is a sequence {Gti , Gti+1, . . . , Gtj} of graph snapshots.

An example of a historical graph is shown in Fig. 1. Time instants may, for
example, correspond to milliseconds, seconds, minutes or days. Defining various
levels of time granularity are also possible by grouping sets of time instants.

We call lifespan of a graph element the set of time intervals during which
the element exists. To model the case where the same element is deleted and
then re-inserted, lifespans are sets of time intervals, also known as temporal
elements. For example, the lifespan of edge (1, 2) in the historical graph in
Fig. 1 is {[1, 2], [4, 5]}. We assume that lifespans consist of non-overlapping and
non-adjacent time intervals.

Note that, if there are no element re-inserts, a lifespan is just a time interval
instead of a set of intervals. Finally, if no element is ever deleted, we can use
simple time instants to represent lifespans, i.e., the time instant when the element
was created.

We now define useful aggregation graphs of the historical graph, namely, the
union, intersection and version graph.

Definition 2 (Union Graph). Given a historical graph G, we call union graph
of G, the graph G∪ = (V∪, E∪, L∪) where V∪ =

⋃
Gt∈G Vt, E∪ =

⋃
Gt∈G Et and

L∪(u) =
⋃

Gt∈G Lt(u).

An example is shown in Fig. 2(a). The union graph includes all elements
independently of their lifespan. Any time information is lost.

Definition 3 (Intersection Graph). Given a historical graph G, we call
intersection graph of G, the graph G∩ = (V∩, E∩, L∩) where V∩ =

⋂
Gt∈G Vt,

E∩ =
⋂

Gt∈G Et and L∩(u) =
⋂

Gt∈G Lt(u).

Fig. 1. A historical graph consisting of five snapshots. Vertex labels are not shown.

An example is shown in Fig. 2(b). In the intersection graph, transient ele-
ments are lost. The intersection graph includes only the elements that exist in
all time instants.
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(a) (b) (c)

Fig. 2. The (a) union, (b) intersection, and (c) version graph of the historical graph in
Fig. 1.

Definition 4 (Version Graph). Given a historical graph G, the version graph
of G, is the union graph of G where each element is annotated with its lifespan.

An example is shown in Fig. 2(c). The version graph offers a concise represen-
tation of a historical graph preserving all the information in the graph sequence.
The lifespans associated with the elements in the version graph can be seen as
timestamps.

Note that in temporal database research, there are two notions of time,
namely valid and transaction time, associated with the facts recorded in a
database (e.g., see [19], and [6] in this collection). The valid time of a fact
corresponds to the time period over which the fact is true in the real world,
while the transaction time of a fact corresponds to the time when the fact is
recorded in the database. Bitemporal databases provide support for both valid
and transaction time. In our case, lifespans report valid times, since the lifespan
of a graph element indicates the time periods during which the graph element
exists in the real world modeled by the graph.

We also adopt point-based semantics. An alternative approach is an interval-
based view where time intervals are not just containers of time points (i.e.,
instants). Instead, time-intervals are atomic values that can not be split or
merged without altering the meaning of data [5].
Other Graphs with Temporal Information. Another line of research that
studies graphs over time focuses on dynamic, time-evolving, or, evolutionary
graphs (e.g., see [1]). As opposed to research in historical graphs, research in
dynamic graphs looks at just a single snapshot of the graph, namely, the current
one. For example, centrality computation (e.g., Pagerank) in dynamic graphs
would output the current centrality value of a vertex. In contrast, when the
graph is seen as a historical one, centrality computations involve many previous
snapshots and may reflect fluctuations and trends in the centrality values of the
vertices over time.
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Research in dynamic graphs aims at timely graph analysis and query eval-
uation so that the current state of the graph is reflected in the results. Often,
the focus is on efficient incremental updates of any indexes and auxiliary data
structures so as to avoid reconstructing them from scratch each time the graph
is updated.

Graph streams are a special type of dynamic graphs (see e.g., [33] for a sur-
vey). In the case of graph streams, graph updates arrive in a streaming fashion
and queries are continuously evaluated against this stream of updates in real
time. An additional constraint in this model is limited storage and the impossi-
bility of storing the whole graph in memory or disk. A key challenge is dealing
with the high rate at which updates are generated. A popular model of process-
ing infinite data streams in small space is a sliding-window model where the goal
is to evaluate a query using the data that has arrived in the last window of time.

Another type of dynamic graphs are online dynamic graphs (e.g., [3]).
Research in online dynamic graphs also considers graphs that evolve over time
but it assumes that these updates are not known. Instead, to get information
about the current state of the graph, one needs to explicitly pose requests, or
probes to the graph. There is a clear trade-off between the number and the fre-
quency of probes and the quality of the analysis: the larger the number of probes,
the more accurate the results of the analysis. This model finds applications for
example in third-party computations on the Twitter graph, where although the
graph constantly evolves, access to the graph is made possible only through a
rate-limited API.

Finally, another form of graphs with time information are temporal graphs
(e.g., [49]). Temporal graphs are often used to model interaction networks, or
transportation networks, and in general, networks for which there is time dura-
tion or delay associated with their edges.

Definition 5 (Temporal graph). A temporal graph G = (V,E) is a graph
where each edge e ∈ E is a quadruple (u, v, ts, δ) where u, v ∈ V , ts is the
starting time of e and δ is the delay or duration of e.

For example, when a temporal graph is used to model a phone call network,
ts is the time instant when the call between user u and user v started and δ is
the duration of the call. Analogously, for a temporal graph representing a road
network, vertices may correspond to places and edges to routes between them.
In this case, ts is the time instant of arrival at a place u and δ the traversal time
to get from place u to place v. Since there may be multiple interactions between
vertices, temporal graphs are often multigraphs.

3 Overview of Graph Processing and Graph Systems

Graph management is a very active area of research. Research on data graphs
can be roughly classified into research that focus on developing algorithms and
indexes for specific graph queries and research that focus on developing general
purpose graph management systems. In this section, we provide a concise review
of related research to serve as background for the following sections.
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3.1 Graph Processing

We can distinguish graph processing into two general categories:

– graph queries, and
– graph analytics.

There are two generic types of graph queries, namely navigational queries and
graph pattern queries [4]. The basic form of a navigational query is a path query,
Qpath: u

C−→ v, where u, v denote the starting and ending points of the paths and
C conditions on the paths. The query Qpath on a graph G retains all paths of G
from u to v that satisfy C. The starting and ending points can be specific vertices
or vertices with specific content, or a mix of both. C expresses constraints on the
content (e.g., labels) that the vertices and the edges of the path must satisfy. Two
special cases of navigational queries that have received considerable attention are
(a) shortest path queries that return the shortest among the qualifying paths,
and (b) reachability queries that return true if there is at least one qualifying
path and false otherwise.

A graph pattern query specifies as input a graph pattern Qpattern which
is usually a labeled subgraph. The query returns all matches of Qpattern in
the graph G. Most commonly, a match is defined as a subgraph of G that is
isomorphic to Qpattern, but various other semantics have also been considered.

There are many types of online analysis in the case of graphs. Most common
forms of analysis performed on graphs include PageRank and other types of
centrality computations, finding all pairs shortest paths, identifying connected
components and triangle counting. The authors of [22] list 29 different types
of graph analysis tasks along with their frequency of use for evaluating graph
processing systems.

Finally, another way to distinguish graph processing is based on the extent
of the graph that is explored. In this respect, graph processing can be:

– local, when only specific parts of the graph are considered, an example is an
egonetwork query that looks only in the neighborhood of a vertex, or

– global, when the whole graph is explored as is the case with most navigational
queries.

3.2 Systems

Numerous systems have been proposed for managing graphs (see, e.g., [21] and
[51] for recent surveys and additional references). We can distinguish graph sys-
tems into two general categories, namely, graph databases and graph processing
systems. Graph databases provide out of core storage of graphs, offer OLTP
queries and transactions. Graph processing systems are tailored to OLAP type
of graph analysis.
Graph Databases. Graph databases are based on a graph data model and
provide support for both navigational queries and graph pattern matching. The
data models most commonly supported by graph databases are the resource
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description framework (RDF) and the property graph model (PGM). Some graph
databases come with their own custom graph data model.

RDF is the standard model for exchanging information on the web consisting
of (subject, predicate, object) triples. If we consider subjects and objects as
vertices and predicates as edges, a dataset consisting of RDF triples forms a
directed labeled multigraph. For the RDF graph databases, the related query
language is called SPARQL.

A property graph is a directed multigraph where an arbitrary set of key-
value pairs, called properties, can be attached to vertices and edges. In addition,
property graphs support labels that specify vertex and edge types. An exam-
ple is shown in Fig. 3. In its basic form, PGM is schema-free, in that, there is
no dependency between a type label and the allowed property keys. Although
not a standard, the Gremlin graph traversal language, part of the TinkerPop
graph processing framework, is the language often supported by property graph
databases [48]. Another graph query language for property graphs that is gaining
popularity is the query language of the Neo4j database, called Cypher [46].

Fig. 3. An example of a property graph: there are two different types of vertices (Person
and Movie) and two different types of edges (DIRECTED and ACTED IN); proper-
ties are also associated with vertices and edges, for example, there are two properties
associated with Person, namely name and born.

We can distinguish graph databases into native and non-native ones. Native
graph databases use a storage model tailored to graphs, for example, adjacency
lists. Non-native graph databases are built on top of databases supporting alter-
native data models, for example, on top of relational, or document databases.
The most common way to store a graph in a relational database is by maintaining
a vertex and an edge table. Edges are commonly stored as vertex pairs.
Graph Processing Systems. Graph processing systems focus on analytical
tasks that need to iteratively process the graph. We can distinguish graph pro-
cessing systems into two broad categories, namely specialized graph processing
frameworks such as Pregel and its derivatives and graph systems built on top
of general purpose parallel programming frameworks. The overall architecture
uses a master node for coordination and a set of worker nodes for the actual
distributed processing. The input graph is partitioned among the worker nodes.
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Pregel advocates the think-like-a-vertex programming model [32]. The user
provides a vertex compute function that proceeds in three steps: read all incom-
ing messages, update the internal state of the vertex and send information to
its neighbors. These functions are executed in synchronized supersteps. At each
superstep, the worker applies this function to all its vertices. This model of exe-
cution is also known as bulk synchronous parallel (BSP) mode. Giraph provides
an open source implementation of the Pregel model [12].

Many systems propose performance optimizations and additional features, for
example graph mutations or combiners and aggregators for reducing the com-
putation and communication cost. Powergraph [13] uses a gather-apply-scatter
(GAS) programming model, where the user provides three functions: a gather
function that aggregates all messages addressing the same vertex on the sending
worker node, an apply function that updates the state of each vertex based on
the incoming messages, and a scatter function that uses the vertex state to cre-
ate the outgoing messages. There are also systems such as GraphLab [30] and
GraphChi [30] that allow for asynchronous execution.

In addition to the think-like-a-vertex approaches that operate on the scope of
a single vertex, there are also programming models that operate on the subgraph
level. In the graph-partition centric model, the user provides a compute function
to be applied to all vertices managed by a worker node. In the neighborhood
centric model the compute function operates on custom subgraphs of the input
graph explicitly built around vertices and their multihop neighborhoods.

The filter-process programming model, also known as think like an embedding,
operates on embeddings, where an embedding is a subgraph instance of the input
graph that matches a user-specified pattern. The user provides a filter function
that examines whether a given embedding is eligible and a process function that
performs some computation on the embedding and may produce output. The
filter-process model differs from the previous two models in that embeddings
are dynamically generated during execution, whereas partitions and subraphs
are generated once, at the beginning of computation as a pre-processing step.
The filter-process model comes closer to pattern matching queries seen in graph
databases.

There are also systems that use linear algebra primitives and operations
for expressing graph algorithms. An example is Pegasus [23], an open source
library that implements various graph analytics based on an iterated matrix-
vector multiplication primitive.

Besides specialized graph processing systems, there are also graph systems
built on top of existing distributed programming frameworks. This allows treat-
ing graph analysis as part of a larger data analysis pipeline. Two well-known
graph systems built on top of distributed in memory dataflow systems are
GraphX [14] built on top of Spark and Gelly [11] built on top of Flink. Both
adopt variants of the vertex centric programming model.

Finally, we can further distinguish graph processing systems in those that
require the full graph to be in memory and those that do not (i.e., out-of-
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core systems). Further, there are single machine processing systems as well as
distributed ones.

3.3 Storage Layout

The simplest way to represent a graph is as a list of edges, that is, as a list of
vertex pairs. A very common representation is also an adjacency list represen-
tation where edges are stored in per-vertex edge arrays. Each vertex u points to
an array containing its neighboring vertices. Most commonly the array contains
the destination vertices of the outgoing edges of u. In some cases, there is also
an additional array containing the source vertices of the incoming edges of u.

A commonly used in-memory representation for graphs is the compressed
sparse row representation (CSR) format. CSR keeps vertices and edges in sep-
arate arrays. The vertex array is indexed by vertex id. It stores offsets into the
edge array; each position points to the first neighbor of the corresponding vertex
in the edge array. The CSR representation of the first snapshot G1 in Fig. 1 is
shown in Fig. 4. CSR uses minimum O(n,m) storage, where n is the number
of vertices and m the number of edges. Note that the CSR format is not very
appropriate for dynamic graphs, since modifying the neighbor of a vertex affects
the pointers and neighbors of all vertices that follow it.

Fig. 4. CSR representation of graph G1 in Fig. 1.

4 Historical Graph Queries

In this section, we present a taxonomy of graph queries for historical graphs.
Although, we focus on graph queries, the presented query types translate easily
to graph analytics as well.
Past-Snapshot Historical Graph Queries. The first type of historical graph
queries refers to typical graph queries applied to past snapshots. Let us call
them past-snasphot historical graph queries. Specifically, each graph query Q is
associated with a temporal element (i.e., a set of time intervals) IQ and Q is
applied at all time instants in IQ. The simplest type of a past-snapshot query
is a time-point query where IQ is just a single time instant t. In this case, Q is
just applied at the corresponding graph snapshot Gt. When IQ is a single time
interval, past-snapshot queries are also known as time-slice queries. In general,
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IQ may involve an arbitrary number of time intervals to allow the application
of Q at various time instants of interest, for example, for identifying temporal
patterns, such as, periodic behavior.

When IQ includes more than one time instant, we can get various different
types of past-snapshot queries by considering alternative ways of aggregating the
results of applying Q in the time instants in IQ. Take for example a path query

Qpath: u
C−→ v from u to v to be applied in all graph snapshots corresponding to

the time instants in IQ. Which of the paths from u to v that satisfy C should
be retained? At one extreme, we could retain all paths that exist in at least one
graph snapshot in IQ. At the other extreme, we could retain only the paths that
exist in all graph snapshots in IQ. In general, we may ask that a path appears
in at least L > 1 graph snapshots, for some user defined L value.

A variety of additional possible interpretations exist in the case of distance
path queries that return the length of the shortest path between u and v. For
example, are we looking for the distance of the shortest among the paths that
exist in all graph snapshots? for the average of the path distances of the shortest
path in each graph snapshot? and so on. Similar considerations are applicable
to graph pattern queries.

Different aggregation semantics are appropriate for different applications.
They also result in processing algorithms with different complexities. Although
there has been some initial work in the topic (e.g., [17,42,45]), there are many
issues that need further exploration.
Persistence or Durability Historical Graph Queries. Persistence or dura-
bility historical graph queries return the most persistent, or, durable result of a
query Q in IQ. There are two different interpretations of durable results: con-
tiguous and non-contiguous. With contiguous semantics, we ask for the results
that exist for the longest time interval, while with non contiguous semantics for
the results that exist for the largest number of time instants. We may also ask
not just for the most durable result, but for the top-k most durable results.

A straightforward way to process a durable query is to apply the query
at each graph snapshot and then output the most durable among the results.
However since the number of results at each graph snapshot may be large, an
interesting approach is to “estimate” the duration of the most durable match
and avoid unnecessary computations. Although, there has been some work for
graph pattern queries [41,44], there are still many directions for future work. A
promising direction is considering historical graph pattern queries with relaxed
pattern matching semantics.
“When” Historical Graph Queries. An interesting type of historical graph
queries that has not been sufficiently explored yet are queries that focus on
the time instants that a result (e.g., a path or a graph pattern) appeared. An
example would be a query that asks for the first time that a path between u and
v appeared, or, for the frequency of the appearance of a graph pattern.
Evolution Historical Graph Queries. Finally, a novel type of historical graph
queries are queries that look into the evolution of the graph. An instance of such
queries can be queries whose input is not a graph pattern or a path but instead
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an evolution pattern. It is an open question how to express an evolution pattern.
As a simple example consider looking for vertices (or, subgraphs) that appear
and disappear periodically. Another instance of evolution queries is looking for
the results that have changed the most, for example, for the pairs of vertices
with the largest change in their shortest path distance.

Table 1 depicts examples of different types of historical shortest path queries.

Table 1. Example of different types of historical queries, where the query Q is a
shortest path query from vertex u to vertex v and IQ = [1, 5].

Query type Example

Past-snapshot Find the shortest path from vertex u to vertex v during [1, 5]

Persistence Find the top-3 most durable shortest paths from vertex u to
vertex v during [1, 5]

When Find the time instant when the shortest path from vertex u to
vertex v become smaller than d = 2 for the first time during [1, 5]

Evolution Find pairs of vertices such that their shortest paths decreased
and then increased again during [1, 5]

5 Physical Representation of Historical Graphs

In this section, we focus on the physical representation of historical graphs. We
start by presenting general models and techniques and show how they have been
exploited and applied in various historical graph management systems. We also
briefly discuss how continuous updates are treated.

5.1 Models and Techniques

As with any versioned database, there are two basic strawman approaches to
storing a sequence of graph snapshots [40]:

– a copy approach, where we store each snapshot in the sequence as a separate
graph, and

– a log approach, where we store only the initial snapshot G1 and a delta log
that includes the differences of each snapshot from the one preceding it in the
sequence. To get any graph snapshot, we apply the appropriate part of delta
to G1.

The two approaches present a clear tradeoff between storage and perfor-
mance. The log approach takes advantage of the commonalities among snap-
shots and stores only the different parts of the graph snapshots, thus avoiding the
storage redundancy of the copy approach. However, the log approach intro-
duces extra overhead at query processing time for constructing the required
snapshots, whereas, in the copy approach, any snapshot is readily available.
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A hybrid copy+log approach has also been proposed (e.g., [24], [27]) where
instead of storing just a single snapshot, a small set of selected snapshots GS ⊂
G is stored along with the deltas that relate them. To construct a snapshot that
is not in GS , one of the snapshots in GS is selected and the corresponding deltas
are applied to it. Deltas can be applied to an old snapshot Gi to create a more
recent one Gj , j > i. It is also possible to reverse a delta and apply it to a new
snapshot Gj to get an older one, Gi, i < j.

Another approach is a versioning approach (e.g., [45]) where we use just
a single graph, the version graph, to represent the sequence. Recall that the
version graph is the union graph where each graph element is annotated with
its lifespan (see Fig. 2(c)).

In most cases, the graph structure (edges and vertices) is stored separately
from any data content, such as properties, weights, or labels, associated with
edges and vertices. A copy, log, or versioning approach can be used for
representing data content as well. It is also possible to use one approach for
storing structural updates and a different one for storing content updates.

In laying-out a historical graph, two types of locality can be exploited [15,34]:

– time locality, where the states of a vertex (or an edge) at two consecutive
graph snapshots are laid out consecutively, and

– structure locality, where the states of two neighboring vertices at the same
graph snasphot are laid out close to each other.

While time locality can be achieved perfectly since time progresses linearly,
structure locality can only be approximate because it is challenging to project a
graph structure into a linear space.

Indexes have also been proposed for historical graphs. Some of these indexes
aim at improving the efficiency of constructing specific snapshots. Other indexes
focus on the efficiency of reconstructing the history (e.g., all snapshots) of a
given vertex or subgraph. There are also indexes tailored to specific types of
historical graph queries.

Finally, there are different ways to implement a historical graph management
system:

– as a native historical graph database (e.g., G* [29]), or as a native historical
graph processing system (e.g., Chronos [15]); that is, to build a new system
tailored to historical graphs;

– on top of an existing graph database or graph processing system (e.g., [37,
43]), that is, to use the model of an existing system to store the graph and
to implement historical queries by translating them to the query language
supported by the system;

– as an extension of an existing graph database or graph processing system
(e.g., [20]); that is, to modify an existing system appropriately so as to support
historical graphs.

Many representations have been proposed for graphs, deltas and lifespans for
both in memory and external storage. In the following, we present representative
approaches.
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5.2 Historical Graph Systems

Depending on the type of the graph system, many alternative physical represen-
tation of a historical graph have been proposed.

A common way to represent a delta log is as an operational log, that is, as a
sequence of graph operations, i.e., a sequence of vertex and edge insertions and
deletions. For example, an operational delta log from G1 to G3 in Fig. 1 would look
like Δ1 = {(insert-edge, (3, 4))}, Δ2 = {(delete-vertex, 2), (delete-edge, (1, 2)),
(delete-edge, (2, 3)), (delete-edge, (2, 4)), (delete-edge, (3, 4))}.

Alternatively, one could co-design graphs and deltas to reduce the cost of
re-constructing snapshots. This is the approach taken by most graph processing
systems. Examples are LLAMA [31] and Version Traveler (VT) [20] that augment
a CSR-based in memory graph representations to store multi-snapshot graphs.

LLAMA and VT In-Memory Graph Layout. LLAMA [31] is a single
machine graph processing system optimized for incremental updates that can
also provide analytics on multiple snapshots. LLAMA separates the modified
neighbors related to a snapshot into a dedicated consecutive area in the neigh-
bor array of the CSR, thus avoiding copying unmodified neighbors. In particular,
in LLAMA, a historical graph is represented by a single vertex table and mul-
tiple edge tables, one per graph snapshot. The vertex table is organized as a
multi-versioned array (LAMA) using a data structure that avoids unnecessary
copying of unmodified pages across snapshots. Each vertex in the vertex table
maintains the necessary information to retrieve its adjacency list from the edge
tables. An edge table for a snapshot Gi contains adjacency list fragments stored
consecutively where each fragment contains the edges of a vertex u that were
added in Gi and continuation records pointing to any edges of u added in pre-
vious snapshots. Deletion of an edge of u is handled by either writing the entire
neighborhood of u with no continuation or by deletion vectors encoding when
an edge was deleted.

Version Traveler (VT) [20] is a system designed for fast snapshot switching in
in-memory graph processing systems. VT further refines the use of CSR for his-
torical graphs with sharing and chaining. Sharing reduces memory consumption
by merging the delta entries of a vertex that span multiple snapshots into a single
shared entry. Chaining refers to the representation of the neighbors of a vertex
with a chain of vectors, each containing a subset of neighbors and capturing the
difference between the snapshots associated with it and the first snapshot.

G* Native Graph Database. G* [29] is a distributed native graph database
with a custom nested data model. The goal of G* is storing and managing mul-
tiple graphs and graph snapshots efficiently by exploring commonalities among
the graphs. G* assigns each vertex and its outgoing edges to the same server
and at the same logical disk block. A new version of a vertex is created only
when the attributes or the outgoing edges of a vertex change, else the same
vertex is shared among snapshots. Each G* server maintains a compact graph
index to quickly find the disk location of a vertex and its edges. The index stores



Historical Graphs: Models, Storage, Processing 97

only a single (vertex id, disk location) pair for each version of the vertex for the
combination of snapshots that contain this version.

The approaches taken by LLAMA, VT, and G* where deltas are co-designed
with the graph snapshots can also be seen as a partial copy approach. In this
respect, when a new snapshot Gi+1 is created, instead of storing the entire Gi+1

as a separate graph, we store only the parts (subgraphs) of Gi that have been
modified. The subgraphs are in the granularity of the neighborhood of each
updated vertex.

DeltaGraph Graph Store. An excellent example of a hybrid copy+log rep-
resentation for storing the historical graph is the approach taken by the Delta-
Graph system [24]. DeltaGraph focus on the compact storage and the efficient
retrieval of graph snapshots. Each event (such as the addition and deletion of a
vertex or an edge) is annotated with the time point when the event happened.
These events are maintained in event lists. Graph snapshots are not explicitly
stored.

There are two main components, namely the DeltaGraph hierarchical index
and the GraphPool in memory data structure. The leaves of the DeltaGraph
index correspond to (not explicitly stored) graph snapshots. These snapshots
correspond to time points equally-spaced in time. They are connected with each
other through bidirectional event lists. The internal nodes of the index corre-
spond to graphs constructed by combining the lower level graphs. These graphs
do not necessarily correspond to any actual graph snapshot. The edges are anno-
tated with event lists, termed event deltas that maintain information for con-
structing the parent node from the corresponding child node. An example is
shown in Fig. 5. In this example, internal nodes are constructed as the intersec-
tion of their children. Other functions, such as the union, could also be used.

To construct the snapshot Gt corresponding to time instant t, first the
eventlist L that contains t is located. Any path from the root of the Delta-
Graph index to the leaves (snapshots) adjacent to L is a valid solution. For

Fig. 5. DeltaGraph for snapshots in time period [0, 45]. Leaves are connected with
eventlists (L) and edges are annotated with event deltas (Δ).
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instance, to construct snapshot G12 in the example of Fig. 5, candidates are the
paths to leaves G10 and G15. The optimal solution corresponds to the path with
the lowest weight, where the weight of each edge captures the cost of reading the
associated event delta and applying it to the graph constructed so far. The app-
roach generalized to materializing more than one graph snapshot by considering
the lowest-weight Steiner tree that includes the leaves involved.

The GraphPool maintains the union of (a) the current state of the graph,
(b) any graph snapshots constructed during the processing of previous queries
and (c) graphs and deltas corresponding to internal nodes and edges of the
DeltaGraph materialized during previous queries. The union graph is stored in
the form of a version graph.

The Historical Graph Store (HGI) extends DeltaGraph in two basic ways
[25]. First, HGI supports a more refined partitioning of the historical graph than
the original equally-spaced partitioning. Second, HGI maintains version chains
for all vertices in the graph. The version chain for a vertex is a chronologically
sorted list of pointers to all references of this vertex in the event lists.
Chronos. Chronos is a parallel graph processing system that supports time-
range graph analytics [15]. The in-memory layout of Chronos leverages time
locality and uses a variation of the CSR approach. Graph snapshots are stored
in a vertex and an edge array. In the vertex array, data content is grouped by
the vertices. The content of a vertex in consecutive graph snapshots is stored
together. In the edge array, edges are grouped by the source vertices. Each edge
stores its target vertex id along with its lifespan. In a sense, this is a versioning
approach.

Chronos exploits time locality also for storing historical graphs on disk.
For on disk storage, it uses a copy+log approach. Snapshots are partitioned
into groups, where a group for interval [ti, tj ] contains snapshot Gti and an
operational delta that includes all updates until tj . Snapshot groups are stored
in vertex and edge files. Each edge file starts with an index to each vertex in
the snapshot group, followed by a sequence of segments, each corresponding to
a vertex. The index allows Chronos to locate the starting point of a segment
corresponding to a specific vertex without a sequential scan. A segment for a
vertex v consists of a starting sector, which includes the edges associated with
v and their properties at the start time of this snapshot group, followed by edge
operations associated with v. To further speed-up processing, operations that
refer to the same edge or vertex are linked together.
Lifespan Representation. An important issue in historical graph processing is
the representation of lifespans. Various approaches are presented and evaluated
in [41]. One approach is to represent lifespans as a ordered list of time instants.
Take for example lifespan {[1, 3], [8, 10]}. With this representation, the lifespan
is maintained as {1, 2, 3, 8, 9, 10}. Another representation follows the physical
representation of an interval by storing an ordered list of time objects where
each time object represents an interval by its start and end point.

Finally, an efficient way of representing lifespan is using bit arrays. Assume
without loss of generality, that the number of graph snapshots is T . Then, each
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lifespan is represented by a bit array B of size T , such that B[i] = 1 if time
instant i belongs to I and B[i] = 0 otherwise. For example, for T = 16, the bit
array representation of the above interval is 1110000111000000. The bit array
representation of lifespans provides an efficient implementation for joining lifes-
pans. Specifically, let I and I ′ be two lifespans and B and B′ be their bit arrays.
Then, the intersection of the two lifespans (the time instants that belong to both
of them) can be computed as B logical-AND B′.
Native Graph Databases. A natural way of storing a historical graph in a
native graph database is by using the versioning approach. In this case, a key
issue is modeling lifespans. Most native graph database systems support the
property model. There are two options for modeling lifespans in this case, one
using types and the other using properties. These options are studied in [42,43]
where a multi-edge approach and a single-edge approach are introduced.

The multi-edge (ME) approach utilizes a different edge type between two
vertices u and v for each time instant in the lifespan of the edge (u, v). The
multi-edge representation of the historical graph G[1,5] of Fig. 1 is depicted in
Fig. 6. Since all native graph databases provide efficient traversal of edges having
a specific type, the ME approach provides an efficient way of retrieving the graph
snapshot Gt corresponding to time instant t.

The single-edge approach (SE) uses a single edge between any two vertices
and uses properties to model theirs lifespans. Two different approaches are con-
sidered. In the single-edge with time points (SEP) approach, the lifespan of an
edge is modeled with one property whose value is a sorted list of the time instants
in the lifespan of the edge. The representation of the historical graph G[1,5] of
Fig. 1 is shown in Fig. 7(a). In the single-edge with time intervals (SEI) app-
roach, two properties Ls and Le are associated with each edge. Each of the two
properties is an ordered list of time instants. Let m be the number of time inter-
vals in the lifespan of an edge. Ls[i], 1 ≤ i ≤ m, denotes the start point of the

Fig. 6. Representation of the historical graph in Fig. 1 in a native graph database using
the multi-edge approach. Vertex labels are not shown for clarity.



100 E. Pitoura

(a) (b)

Fig. 7. Representation of the historical graph in Fig. 1 (a) with the single-edge with
time points approach, and (b) with the single-edge with time intervals approach. Vertex
labels are not shown for clarity.

i-th interval in the lifespan, while Ls[i], 1 ≤ i ≤ m, denotes its endpoint. An
example is shown in Fig. 7(b). With the single-edge approaches, retrieving the
graph snapshot Gt at time instant t requires further processing of the related
properties.

A partial copy approach is followed in [7], where the historical graph is
stored as a sequence of graph snapshots. Each graph snapshot is represented
using a frame vertex that has edges pointing to all graph elements active at
the corresponding graph snapshot. Frames are linked together. A hierarchical
temporal index is also proposed to provide different time granularity, for exam-
ple, hours are aggregated to days.

For the versioning approach, the authors of [9] follow a single edge with time
intervals approach in which each graph element is annotated with its lifespan,
called timestamp. Timestamps are simple time intervals, as opposed to set of
time intervals. Combining versioning with a log approach is also considered.
Operational deltas are proposed called backlogs. Each operation in the backlog
is represented as a an edge of a special backlog type. A special logger vertex
is introduced. Each backlog edge connects this logger vertex with the graph
element that the edge (i.e., corresponding operation) refers to.

Relational Graph Databases. The basic way of storing a historical graph in
relational databases is to extend the vertex and edge tables with an additional
lifespan attribute. For example, the authors of [36,37] use a vertex relation with
schema V (u, p) that associates a vertex u with the time interval p during which
the vertex is present and an edge relation with schema E(u, v, p) connecting pairs
of vertices from V during time interval p. Additional relations may be used to
store any content associated with the graph structure. For example, in the case
of vertex labeled graphs, we may have a relation with schema L(u, p, l) storing
the label l of u at time interval p.



Historical Graphs: Models, Storage, Processing 101

Graph Partitioning. Most graph processing systems exploit some form of
parallelism or distribution by assigning parts of a graph to different workers. In
abstract terms, a graph partitioning algorithm must satisfy two goals: achieve
load balance and minimize the communication cost among the partitions. There
are two general approaches to achieving these goals, namely edge cuts and vertex
cuts. Systems based on edge cuts, assign vertices to partitions, while systems
based on vertex cuts assign edges to partitions. In both cases, structural locality
is considered to minimize the number of neighboring nodes (or, adjacent edges)
placed in different partitions. In the case of historical graphs, an additional type
of locality, time locality is introduced. Time locality requires placing snapshots
that are nearby in time in the same partition.

Partitioning a historical graph is a hard problem, since it depends both on
the structure of the graphs in the sequence and on the type of historical graph
queries. An exploitation of the tradeoffs of temporal and structural locality for
local and global queries is presented in [34]. Some preliminary results regarding
partitioning a historical graph in GraphX are presented in [35].

Indexes. There have been proposals for indexes for specific type of graph queries
for the case of historical graphs. For path queries, a form of index commonly used
is based on 2hop-covers. A 2hop-cover based index maintains for each vertex u
a label consisting of a set of vertices that are reachable from u along with their
distance from u. Then, to estimate the distance between two vertices u and v,
the vertices in the intersection of the labels of u and v are used. The work in
[2,16] extends 2hop-cover indexes and proposes appropriate pruning techniques
for both dynamic and historical shortest path queries. The work in [45] also
considers 2hop-cover indexes but for historical reachability queries.

The authors of [17] propose an extension of contraction hierarchies (CHs) for
historical shortest path queries. CHs use shortcuts to bypass irrelevant vertices
during search. A certain ordering of the vertices in the graph is established
according to some notion of relative importance; then the CH is constructed by
“contracting” one vertex at a time in increasing order. CHs were extended by
adding temporal information on the shortcut edges. Finally, there has been work
on building indexes appropriate for graph pattern queries in historical graphs
[41,44], where path indexes are extended to compactly store time information.

5.3 Handling Continuous Updates

In the case of historical graphs, most commonly, graph computation is performed
separately from graph updates. In particular, graph processing is performed in
a sequence of existing snapshots, while any updates are collected to create the
next snapshot to be added to the sequence.

This is the approach takes by Kineograph, an in-memory distributed graph
store and engine that supports incremental graph mining for graph streams
[8]. Kineograph decouples graph mining from graph updates by applying graph
mining to an existing snapshot, while graph updates are used to create new
snapshots. The graph store produces reliable and consistent snapshots periodi-
cally using a simple epoch commit protocol without global locking. The protocol
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ensures that each snapshot reflects all updates within an epoch by grouping
updates in sequence of transactions and applying them in a predetermined order
to achieve atomicity. graphtau considers generating window-based snapshots
for the streaming dynamic graph model [18].

6 Processing Historical Graphs

In this section, we present general approaches to processing historical graphs for
both the case of graph queries and the case of graph analytics. The presented
approaches are tailored to past-snapshot historical graph queries, since the other
types of historical graph queries introduced in Sect. 4 are less studied.

6.1 Two-Phase Approach

Let Q be a query (or an analytical computation) to be applied to a historical
graph for a temporal element IQ. A baseline approach to historical query pro-
cessing is the following two-phase strategy. In the first phase, all graph snapshots
in IQ are constructed. Based on the representation of the historical graph, this
step may involve, for example, applying deltas, or using a time-index to select
the valid elements at each snapshot. In the second phase, the best known static
algorithm for Q is applied at each of the snapshots in IQ. Then, in an optional
phase, the results of applying Q at each snapshot are combined. The phases of
this approach are depicted in Fig. 8, where Q(G) denotes the results of applying
query Q on graph G.

Fig. 8. Two-phase approach for IQ = [2, 4].

An example of a system that follows a two-phase approach is the DeltaGraph
system [24]. DeltaGraph focuses on the efficient retrieval of snapshots and sup-
ports their compact in-memory representation and re-use.
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Since reconstructing the whole graph snapshot is expensive, partial recon-
struction has been proposed for reducing the cost of the two-phase approach.
With partial reconstruction, only those parts of each graph snapshot that are
relevant to the query are reconstructed. This approach is especially relevant for
local or vertex-centric queries that need to access only a specific subgraph of the
historical graph.

Partial views are introduced in [26] to capture the partial reconstruction of
historical graphs. A partial view is modeled as an extended egonets. An extended
egonet(v,R, t) of a historical graph centered at vertex v is the subgraph of snap-
shot Gt induced by v and the neighbors of v lying at distance at most R from v.
Local historical queries are also modeled as egonets. The view selection problem
is then defined as follows. Given a workload of local historical queries and limited
storage, select a set of egonets to materialize so that the total cost of evaluating
the historical queries is minimized.

To support partial reconstruction, all versions of a vertex are linked together
in [25] so as to efficiently reconstruct the neighbors of a vertex through time.
Partial reconstruction is also facilitated by the approach taken by HiNode [28].
HiNode stores along with each vertex its complete history, thus making the recon-
struction of its egonet very efficient. The resulting vertex is called diachronic.
Specifically, a diachronic vertex u maintains an external interval tree which stores
information regarding the incident edges of u and any content associated with
u for the entire graph history.

For some queries, it may be also possible to avoid reconstructing the snap-
shots. For instance, it is possible to report the degree fluctuation of a vertex
through time by just accessing an operational delta. An interesting research
problem is identifying the type of historical graph queries that do not require
reconstructing graph snapshots. Some initial steps to this end are taken in [27].

6.2 Grouping Snapshots Appproach

The two-phase approach applies query Q at every graph snapshot Gt, t in IQ.
However, since snapshots at consecutive time points are quite similar, some
applications of Q may be redundant. At a preprocessing step, the grouping
snapshots approach aggregates graph snapshots or subgraphs of these snapshots.
At query processing, instead of applying the query at each individual snapshot,
the grouping snapshots approach applies the query at the aggregated graphs.
Then, the attained results are refined for individual graph snapshots. The basic
steps of this approach are depicted in Fig. 9.

This is the approach taken by the Find-Verify-and-Fix (FVF) processing
framework [38]. At a high level, FVF work as follows. In a preprocessing step,
similar graph snapshots are clustered together. For each cluster, a number of
representative graphs are constructed. In the find step, query Q is applied at
the representative graphs of each cluster. In the verification step, the result of Q
is verified for each graph snapshot Gt in IQ. Finally, in the fix step, Q is applied
to those snapshots in IQ for which the verification step failed.
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Fig. 9. Grouping snapshots approach.

Many interesting research challenges are involved in realizing FVF. One is
how to cluster snapshots. Since graphs evolve gradually, consecutive graph snap-
shots have many edges in common. To exploit such redundancy, each clusters in
[38] contains consecutive graph snapshots. Let us denote with GC

∩ and GC
∪ the

intersection and the union graph of the graph snapshots in cluster C. As graph
snapshots are created, they are placed in the same cluster C until the (Jaccard)
distance between the edge sets of GC

∩ and GC
∪ exceeds a system defined thresh-

old. If the inclusion of a graph snapshot Gt in the current cluster C would result
in the threshold being exceeded, a new cluster is created and Gt is added to
the new cluster. The procedure continues until all snapshots are clustered. This
clustering algorithm has been extended to a hierarchical one in [39]. Another
research question is which graphs to retain as representatives of each cluster C.
The authors of [38] maintain GC

∩ and GC
∪ .

The fix and verify steps depend heavily on the type of historical query. The
authors of [38,39] have explored the application of the framework to shortest
path queries and closeness centrality queries. The closeness centrality of a vertex
u is the reciprocal of the sum of distances from u to all other vertices.

Another approach that falls in this general type of query processing is the
TimeReach approach to historical reachability queries [45]. At a preprocessing
step, TimeReach finds the strongly connected components (SCCs) in each of the
graph snapshots, identifies similar SCCs at different graph snapshots and maps
them to each other. The mapping of similar SCCs is done in rounds. Initially, the
SCCs of G1 are mapped with the SCCs of G2. At the next round, the resulting
SCCs are mapped with the SCCs of G3. Mapping continues until the last graph
snapshot is mapped. The mapping of the SCCs at each round is reduced to a
maximum-weight bipartite matching problem. Let Si and Si+1 be the two sets
of SCCs to be mapped at round i. An edge-weighted graph is constructed whose
vertices are the SCCs in Si and Si+1. There is an edge from a vertex representing
a SCC in Si to a vertex representing a SCC in Si+1, if the two SCCs have at
least one vertex in common. The weight of each edge corresponds to the number
of common vertices between its incident SCCs.
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At query processing, to test reachability between two nodes u and v, the
identified SCCs are used. For any time point t in IQ, for which u and v belong
to the same SCC, there is no need for refinement. For the remaining graph
snapshots, a refinement step is necessary. This step checks reachability between
the corresponding SCCs.

Both the FVF and TimeReach approaches take advantage of commonali-
ties between consecutive snapshots to process specific graph queries. It is an
open question to formally characterize the set of queries for which the group-
ing snapshots strategy is applicable. It is also interesting to define appropriate
groups, group representatives and general algorithms for refining the results for
additional type of queries, such as graph pattern queries.

6.3 Incremental Processing

Another approach to historical query processing is an incremental one. With
incremental query processing, instead of computing the results of Q on each
graph snapshot Gt+1 from scratch, the results of Q on Gt are exploited. Figure 10
shows the steps of incremental historical query processing. Incremental process-
ing is often studied in the context of dynamic graphs and streams, where a query
is continuously evaluated on the current snapshot.

Fig. 10. Incremental approach, the results of Q on Gt are used as input for computing
the results of Q on Gt+1.

This is the approach taken for example by Kineograph [8]. Kineograph is
a dynamic graph processing system that adopts a think-like-a-vertex gather-
apply-scatter (GAS) approach. Kineograph uses user-defined rules to check the
vertex status compared to the previous snapshot. If the vertex has been modified,
for example, if edges were added, Kineograph invokes user-specified functions
to compute the new value of the query for that vertex (e.g., a new PageR-
ank value). When the value changes significantly, Kineograph propagates the
changes, or deltas, of these values to a user-defined set of vertices, usually in the
neighborhood of the vertex. Kineograph supports both push and pull models for
communicating updates. In the push model, vertices push updates to neighbor-
ing vertices, while in the pull model, a vertex proactively pulls data from its
neighboring vertices.
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It is not possible to compute all queries incrementally. Recent work studies
this problem for dynamic graphs [10]. Let S ⊕ ΔS denote the result of applying
updates ΔS to S, where S is either a graph G or a query result Q(G). The
incremental graph computation problem is formally defined as follows: for a class
Q of graph queries (for example for the class of shortest path queries), find an
algorithm, such that, given a query Q ∈ Q, a graph G, query result Q(G) and
updates ΔG of G as input, the incremental algorithm computes changes ΔO of
query result Q(G) such that Q(G ⊕ ΔG) = Q(G) ⊕ ΔO. That is, the algorithm
answers Q in the updated graph by computing only the changes to the old
output of Q. The authors in [10] present various results regarding the existence
of incremental algorithms and their efficiency. It is an interesting problem to
see how these results translate to historical graphs and to the various types of
historical graph queries.

6.4 Time-Locality Aware Iterative Processing

In most approaches to historical query processing that we have presented so
far, the same query processing algorithm is applied to multiple snapshots. Such
redundancy may be avoided by exploiting time locality. As opposed to applying
the same algorithm one snapshot at a time, with time-locality aware iterative
processing, each step of the algorithm is applied to multiple snapshots at the
same time.

This is the approach taken by Chronos [15] (and its descendant called Immor-
tal Graph [34]), a parallel in memory graph processing system. Chronos uses an
in-memory layout that exploits time locality. Chronos proposes locality-aware
batch scheduling (LABS) that exploits this layout to extend the think-like-a-
vertex model. LABS batches computation at a vertex as well as propagation
to neighboring vertices across all snapshots. Thus, instead of grouping message
propagation by snapshots, propagation is grouped by the source and target ver-
tices. An example is shown in Fig. 11.

Fig. 11. First steps of an iterative approach on two graph snapshots.

A similar strategy is taken by the single algorithm multiple snapshots (SAMS)
approach [47]. As opposed to Chronos that focuses on a vertex-centric model,
SAMS advocates the automatic transformation of any graph algorithm so that
all instances (i.e., evaluations on a particular snapshot) of the algorithm execute
the same statement concurrently.
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6.5 Recency-Based Processing

An issue with historical graph query processing is the recency of the results. As
time progresses, the number of graph snapshots and potentially the proportion
of stale data in these snapshots becomes larger. Consequently, the results of
any analysis may increasingly reflect out-of-date characteristics. On the other
extreme, dynamic graph query processing looks only at the current graph snap-
shot and may miss to detect interesting patterns in the evolution of the graph.
In between historical and dynamic graph query processing, the sliding window
approach considers a small fixed number of the most current snapshots, and
may fail to reflect the continuity of results with time. To increase recency and
preserve continuity, decay, or, aging schemes consider all snapshots but they
weight the participation of each snapshot in the result based on the recency of
the snapshot.

This is the approach taken by TIDE, a system for the analysis of interaction
graphs where new interactions, i.e., edges, are continuously created [50]. TIDE
proposes a probabilistic edge decay (PED) model to produce a static view of
dynamic graphs. PED takes one or more samples of the snapshots at a given time
instant. The probability P f (e) that a given edge e is considered at time instant
t decays over time according to a user specified decay function, f : R+ → [0, 1],
specifically, P f (e) = f(t − tc(e)), where tc(e) is the creation time of edge e.
With PED, every edge has a non-zero chance of being included in the analysis
(continuity), and this chance becomes increasingly small over time, so that newer
edges are more likely to participate (recency).

TIDE focus on the commonly used class of exponential decay functions. Such
functions are of the general form f(x) = αx, for some 0 < α < 1, where x denotes
the age of an edge. It can be shown that with such functions, the lifespan of each
edge in the sample graph follows a geometric distribution.

Recency-based processing introduces an interesting variation in historical
graph query processing. A future research direction would be to define novel
types of queries on historical graphs that exploit different notions of aging for
extracting useful information from the evolution of the graph.

7 Conclusions

Most graphs evolve through time. A historical graph captures the evolution
of a graph by maintaining its complete history in the form of a sequence of
graph snapshots {G1, G2, ...} where each graph snapshot Gt in the sequence
corresponds to the state of the graph at time instant t. In this chapter, we have
presented various approaches to modeling, storing and querying such historical
graphs.

Historical and temporal graphs is an active area of research with many open
problems. In the chapter, we have also highlighted many promising directions
for future research. These directions range from defining novel query types for
extracting useful information from the history of the graph to designing more
efficient storage models and query processing algorithms.
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Abstract. Sometimes data is generated unboundedly and at such a fast
pace that it is no longer possible to store the complete data in a database.
The development of techniques for handling and processing such streams
of data is very challenging as the streaming context imposes severe con-
straints on the computation: we are often not able to store the whole
data stream and making multiple passes over the data is no longer pos-
sible. As the stream is never finished we need to be able to continuously
provide, upon request, up-to-date answers to analysis queries. Even prob-
lems that are highly trivial in an off-line context, such as: “How many
different items are there in my database?” become very hard in a stream-
ing context. Nevertheless, in the past decades several clever algorithms
were developed to deal with streaming data. This paper covers several
of these indispensable tools that should be present in every big data sci-
entists’ toolbox, including approximate frequency counting of frequent
items, cardinality estimation of very large sets, and fast nearest neigh-
bor search in huge data collections.

1 Introduction

Many data sources produce data as a never-ending stream of records. Examples
include sensor networks, logs of user activities on the web, or credit card trans-
actions. Processing these data becomes a challenge, because often there is no
storage space or time to store the data for an in-depth off-line analysis. Imagine
for instance a credit card fraud detection system that requires that transactions
are collected over time and stored on disk for analysis later on. In such a sce-
nario the delay between a credit card fraud and the actual detection of this fraud
would be unacceptable. In this case not only the application of fraud prediction
methods needs to be online and on the fly, but also the collection of several
statistics and modeling parameters needs to be immediate to be able to keep
the model up-to-date. Indeed, an important factor in fraud detection is learning
what is the normal behavior of a person. This behavior may be changing over
time, necessitating flexible and dynamic modelling of what constitutes normal
behavior.

We call this type of dynamic processing of data, stream processing [4]. We dis-
tinguish three different types of stream processing. In the literature these terms
are often lumped together while in fact their requirements are quite different.
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1. Online Stream Processing: the distribution of the stream is changing over time
and we need to have, at any point in time, an up-to-date model of the current
situation. An examples of this challenging processing type is monitoring web
traffic for intrusion detection, where the intrusion patterns may change over
time. More recent data is more important, and data loses its importance over
time. For algorithms under this computational model it is very important that
they scale very well with data size as in theory the streams could go on forever.
Memory bounds that are logarithmic in the number of instances seen over the
stream sofar are considered reasonable. Furthermore, it is important that the
algorithms require processing time which is independent from the number of
instances already seen as otherwise the streaming algorithms would become
increasingly slower. A popular technique to deal with online stream processing
is using the window-based technique which considers a conceptual window of
the most recent instances in the stream only. Continuously new instances
enter the window while old, outdated instances leave the window. A window-
based algorithm then continuously and incrementally maintains a summary
of the contents of the window that allows to quickly answer analytical queries
over the data.

2. Batch Processing: new data are processed in batches. This is for instance
the case when new documents arrive that need to be indexed in an infor-
mation retrieval context, or predictive models need to be updated. Often it
is sufficient if the new data are processed continuously, but not necessarily
immediately. This setting is far less challenging than the online stream pro-
cessing model and is hence preferable if the application allows. Algorithms in
this category are often incremental in the sense that they are able to incre-
mentally update an existing model with a new batch of data.

3. One-pass algorithms: sometimes datasets to be processed are extremely large
and disk-based. Given the relative efficiency of sequential data processing
for secondary memory as compared to random access, algorithms that can
process the data in one scan are preferable. Such algorithms are often termed
streaming as well, since data is streamed from disk into the algorithm for
processing. The requirements, however, are different from those of online or
batch stream processing as there is not necessarily a temporal aspect in the
data; there is no notion of more important recent tuples nor online results
that need to be maintained.

It is important to note that distributed computing facilities such as offered
by Hadoop [2], Spark [3], Flink [1], can only be part of the answer to the need
expressed by these three categories of stream processing. First of all, distributed
computing does not address the online aspect of the stream mining algorithms,
although it may actually help to increase the throughput. For most batch pro-
cessing algorithms it is conceivable that multiple batches could be treated in par-
allel, yet this would introduce an additional delay: handling n batches in parallel
implies that batch 1 is still being processed while batch n is fully received, real-
istically putting a limitation on the scaling factors achievable. And last but not
least, distributing computations over 1000 data processors can make processing
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at most 1000 times faster, and usually because of communication overhead the
speedup is far less. In contrast, here in this paper we will exhibit several methods
that achieve exponential performance gains with respect to memory consump-
tion, albeit at the cost of having approximate results only.

Most streaming algorithms do not provide exact results as exact results often
imply unrealistic lower complexity bounds. For many applications approxima-
tions are acceptable, although guarantees on the quality are required. Approxi-
mate results without guarantee should not be trusted any more than a gambler’s
“educated guess” or a manager’s “gut feeling”. Guarantees can come in many dif-
ferent forms; a method that finds items exceeding a minimal popularity threshold
may guarantee that no popular items are missed, although maybe some items
not meeting the threshold may be returned, or a method counting frequencies
of events may have a guarantee on the maximal relative or absolute error on
the reported frequency. A popular generalization of these guarantees are the so-
called ε, δ-guarantees. An approximation algorithm A for a quantity q provides
an ε, δ-guarantee if in at most 1−δ of the cases, the quantity A(D) computed by
the algorithm for a dataset D differs at most ε from the true quantity q(D); i.e.,
P [|A(D) − q(D)| > ε] < 1 − δ. Notice incidentally that this guarantee requires
some notion of probability over all possible datasets and hence always has to
come with an assumption regarding the distribution over possible datasets, such
as a uniform prior over all possible datasets.

In this paper we will see three different building blocks that were, arguable
subjectively, selected on the basis that at some point in the author’s scientific
career they proved to be an indispensable algorithmic tool to solve a scientific
problem. The content of the paper can as such be seen as a tools offered to the
reader to acquire and add into his or her data scientist’s toolbox. The building
blocks that will be provided are the following:

1. What is hot? Tracking heavy hitters: count which items exceed a given fre-
quency threshold in a stream. We’ll see Karp’s algorithm [9] and Lossy Count-
ing [11] as prototypical examples and show an application in blocking exces-
sive network usage.

2. Extreme Counting: estimate the cardinality of a set. Flajolet-Martin
sketches [7] and the related HyperLogLog sketch [6] are discussed. These
sketches offer a very compact representation of sets that allow cardinality
estimation of the sets. There are many applications in telecommunication,
yet we will show an example use of the HyperLogLog sketch for estimating
the neighborhood function of a social network graph.

3. Anyone like me? Similarity search: last but not least, we consider the case
of similarity search in huge collections. Especially for high-dimensional data,
indexing is extremely challenging. We show how Locality Sensitive Hashing [8]
can help reduce complexity of similarity search tremendously. We show an
application for plagiarism detection in which the detection of near duplicates
of a given document decreases in complexity from hours to execute to sub-
second response times.
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We do not claim that our list of techniques is exhaustive in any sense. Many
other very important building blocks exist. However, we are convinced that the
set provided in this paper is a nice addition to any data scientist’s professional
toolbox. The individual blocks should not be seen as the endpoint, but rather
as a set of blocks that can be freely adapted and combined, depending on need.
For additional resources we refer the reader to the excellent books by Aggrawal
on stream processing [4] and by Leskovec et al. on mining massive datasets [10].

2 Efficient Methods for Finding Heavy Hitters

The first building block we consider is efficiently finding heavy hitters. We assume
that the stream consists of items from a fixed but potentially infinite universe.
For example, keyword sequences entered in a search engine, IP addressed that
are active in a network, webpages requested, etc. Items arrive continuously and
may be repeating. A heavy hitter is an item whose frequency in the stream
observed sofar exceeds a given relative frequency threshold. That is, suppose
that the stream we observed sofar consists of the sequence of items

S = 〈i1, . . . , iN 〉.

The relative frequency of an item a is defined as:

freq(a,S) :=
|{j | ij = a}|

N
.

The heavy hitters problem can now be stated as follows:

Heavy Hitters Problem: Given a threshold θ and a stream S, give the set of
items

HH (S, θ) := {a | freq(a,S) ≥ θ}.

Before we go into the approximation algorithms, let’s first see how much
memory would be required by an exact solution. First of all it is important to
realize that in an exact solution we need to maintain counts for all items seen
sofar, because the continuation of the stream in future is unknown and even an
error on the count of the frequency of 1 will result in a wrong result. As such,
we need to be able to distinguish any two situations in which the count of even
a single item differs. Indeed, suppose θ = 0.5, we have seen N/2 + 1 items in
the stream, and the count of item a is 1. Then, if the next N/2 − 1 items are all
a’s, a should be in the output. On the other hand, if in the first N/2 + 1 items
there are no occurrences of a, a should not be in the answer, even if all N/2 − 1
items are a’s. Therefore, the internal state of the algorithm has to be different
for these two cases, and we need to keep counters for each item that appeared in
the stream. In worst case, memory consumption increases linearly with the size
of the stream. If the number of different items is huge, this memory requirement
is prohibitive.
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To solve this problem, we will rely on approximation algorithms with much
better memory usage. We will see two prototypical algorithms for approximating
the set of heavy hitters. Both algorithms have the property that they produce
a superset of the set of heavy hitters. Hence, they do not produce any false
negatives, but may produce some false positives. The first algorithm by Karp
uses maximally 1

θ counters, and may produce up to 1
θ false positives, while the

second algorithm, called Lossy Counting, is parameterized by ε and has the
guarantee that it produces no items b with freq(b) < θ − ε. Hence, the only false
positives are in the range [θ − ε, θ[ which likely represents still acceptable results
given that the threshold θ is fuzzy anyway in most cases. The algorithm realizes
this guarantee using only O (

1
ε log(Nε)

)
space in worst case.

2.1 Karp’s Algorithm

Karp’s algorithm [9] is based on the following simple observation: suppose we
have a bag with N colored balls. There may be multiple balls of the same color.
Now repeat the following procedure: as long as it is possible, remove from the
bag sets of exactly k balls of all different color. This procedure is illustrated in
Fig. 1. When our procedure ends, it is clear that there will be balls of at most
k − 1 colors left. Furthermore, each color that appeared more than N/k times
in the original bag will still be present. That is easy to verify: suppose there are
�N/k +1� red balls. In order to remove all red balls, there need to be �N/k +1�
sets of size k of balls of different color that were removed. But this is impossible
as k�N/k + 1� > N . Hence, if we want to find all colors that have a relative
frequency of at least θ, then we can run the algorithm with k = �1/θ�. In this
way we are guaranteed that in the final bag we will have all θ-frequent colors
left. If we want to get rid of the false positives, we can run through our original
bag for a second time, counting only the at most k − 1 different colors that were
left in the bag after our procedure.

a a
e e
e b
d b
b b

→

a
e

e
d b
b b

→ e
b

b b

Fig. 1. Iteratively removing 3 different items from a bag; all element that had a relative
frequency exceeding 1/3 will be left in the final result. In this case b and e are left. b
indeed has a frequency exceeding 1/3, while e is a false positive. This procedure cannot
have false negatives

The nice part of this observation is that it easily can be generalized to stream-
ing data. Indeed, suppose we have a stream of items arriving. Each item can
be considered a “color” and we need to retrieve all items that have a relative
frequency exceeding θ. This can be realized by following the remove-k-different-
colors procedure with k = �1/θ�. Because of the streaming aspect we do not have
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New item a a e e e b d b b b
Updated counters a:1 a:2 a:2 a:2 a:2 a:1 e:1 b:1 b:2 b:3

e:1 e:2 e:3 e:2 e:1 e:1 e:1

Fig. 2. Streaming version of the procedure in Fig. 1

any controle, however, over the order in which we need to treat the items/balls.
Therefore we remember what we have seen sofar, until we reach k different
items/colors. As soon as that happens, we throw out k different items. In order
to remember what remains, it is easy to see that we need at most k −1 variables
holding the items/colors we still have, plus k − 1 counters holding how many
times we still have each of them. Whenever a new ball/item arrives, we check if
that color/item is already among the variables. If that is the case, we increase
the associated counter. Otherwise, either we start a new counter if not all coun-
ters are in use yet, or we decrease all k − 1 counters by 1 in order to reflect that
we remove a k-tuple (one ball of each of the k − 1 colors we already have plus
the new color that just arrived). This leads to Karp’s algorithm which is given
in Algorithm 1 and illustrated in Fig. 2.

Notice that the update time of Algorithm 1 is O(k) in worst case, but in
their paper, Karp et al. describe a data structure which allows processing items
in constant time amortized.

Algorithm 1. Karp’s algorithm
Input: Threshold ω, sequence S of items i1, . . . , iN arriving as a stream
Output: Superset of HH (S, θ).

1: k ← �1/θ�
2: L ← empty map
3: for each item i arriving over S do
4: if exists key i in L then
5: L[i] ← L[i] + 1
6: else
7: if |L| = k − 1 then
8: for key k of L do
9: L[k] ← L[k] − 1

10: if L[k] = 0 then
11: Remove the element with key k from L
12: end if
13: end for
14: else
15: L[i] ← 1
16: end if
17: end if
18: end for
19: return {k | k key in L}
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2.2 Lossy Counting

One of the disadvantages of Karp’s algorithm is that it only allows for identifying
a set of candidate heavy hitters, but does not provide any information regarding
their frequencies. The Lossy counting algorithm [11] covered in this subsection,
however, does allow for maintaining frequency information. Lossy counting is
parameterized by ε. ε will be the bound on the maximal absolute error on the
relative frequency that we guarantee. Lossy counting is based on the observation
that we do not have to count every single occurrence of an item. As long as we
can guarantee that the relative frequency of an item in the part of the stream in
which it was not counted, does not exceed ε, the absolute error on the relative
frequency will be at most ε. Indeed: suppose S can be divided into two disjoint
sub-streams S1 and S2, and we do have the exact number of occurrences cnt1 of
item a in S1, and an upper bound of ε on the exact relative frequency f2 = cnt2

|S2|
of a in S2. Then the true relative frequency of a in S equals:

freq(a,S) =
cnt1 + cnt2

|S| <
cnt1 + εS2

|S| ≤ cnt1
|S| + ε.

This observation means that we can postpone counting any item that has a
relative frequency below ε if we are fine with an absolute error of at most ε. This
is exactly what Lossy Counting does: basically it counts everything, but from
the moment on that it is noticed that an item’s relative frequency in the window
we are counting it, drops below ε we immediately stop counting it. If the item
reappears, we start counting it again. In this way, at any point in time we can
guarantee that any item that isn’t counted has a relative frequency below ε. This
principle is illustrated in Fig. 3.

recorded recorded
No No 

recorded

Less than N occurrences of 

infrequent infrequent

Fig. 3. Illustration of the Lossy Counting algorithm. The blue rectangles indicate peri-
ods in which the item was counted. If one takes the whole stream except for the last
rectangle which is still open, then the item is ε-infrequent in that area (Color figure
online)

The pseudo code of Lossy Counting is given in Algorithm 2. Notice that
lines 10–14 constitute a potential bottleneck as we need to check after each item
received from the stream, if the item is still frequent. We can, however, avoid
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Algorithm 2. Lossy Counting algorithm
Input: Threshold ω, threshold ε, sequence S of items i1, . . . , iN arriving as a stream
Output: (i, f)-pairs such that freq(i, S) ∈ [f, f + ε] and f ≥ θ − epsilon. The output

contains a pair for each element of HH (S, θ)

1: Cnt ← empty map
2: Start ← empty map
3: for each item ij arriving over S do
4: if exists key i in Cnt then
5: Cnt[ij ] ← Cnt[ij ] + 1
6: else
7: Cnt[ij ] ← Cnt[ij ] + 1
8: Start[ij ] ← j
9: end if

10: for all keys k of Cnt do
11: if Cnt[k]

j−Start[k]+1
< ε then

12: Remove the elements with key k from Cnt and Start
13: end if
14: end for
15: end for
16: return

{
(i, f) | i key of Cnt, f := Cnt[k]

j−Start[k]+1
> θ − ε

}

this costly check by associating with every item an “expiration date”; that is:
whenever we update the count of an item, we also compute after how many
steps the item will no longer be ε-frequent unless it occurs again. This is easily
achieved by finding the smallest number t such that:

Cnt[k]
t − Start[i] + 1

< ε.

The smallest t that satisfies this inequality is:
⌊

Cnt[k]
ε

+ start[i]
⌋

.

We can order the items for which a counter exists in a priority queue according
to this number and update the number and position of the item in this queue
every time the item occurs. Steps 10–14 then simply become evading all items
having the current time as expiration date.

For didactic purposes, the Lossy Counting variant we explained in this sub-
section differs slightly from the one given by Manku and Motwani in [11]. The
computational properties, intuitions and main ideas, however, were preserved.

Let us analyze the worst case memory consumption of the Lossy Counting
algorithm. The analysis is illustrated in Fig. 4. The memory consumption is
proportional to the number of items for which we are maintaining a counter.
This number can be bounded by the observation that every item for which we
maintain a counter, must be frequent in a suffix of the stream. To analyze how
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Divide stream in blocks of size k = 1/
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2 times

k different
each appears
1 time

Fig. 4. Worst possible case w.r.t. memory consumption for the Lossy Counting algo-
rithm

this affects the number of items being counted, we conceptually divide our stream
in blocks of size k = 1/ε. For an item to be supported, it needs to appear either:

– at least once in the last block;
– at least twice in the last two blocks;
– . . .
– at least i times in the last i blocks;
– . . .
– at least N/k = Nε times in the last N/k blocks; i.e., in the whole stream.

Let ni denote the number of items that fall in the ith category above. The above
observations translate into the following constraints:

– n1 ≤ k;
– n1 + 2n2 ≤ 2k;
– . . .
– n1 + 2n2 + 3n3 + . . . + ini ≤ ik;
– . . .
– n1 + 2n2 + 3n3 + . . . + N/knN/k ≤ N .

This number is maximized if n1 = k, n2 = k/2, . . . , ni = k/i, . . . In that
situation we obtain the following number of items for which we are maintaining
a counter (H(i) is the ith Harmonic number):

N/k∑

i=1

k/i = kH(N/k) = O(k log(N/k)) = O(1/ε log(εN)).



Three Big Data Tools for a Data Scientist’s Toolbox 121

The memory requirements are hence logarithmic in the size of the stream in
worst case. This worst-case, however, is a pathological case; in experiments with
real-life data it was observed that the memory requirements are far less.

2.3 Applications of Heavy Hitters

Approximation algorithms for heavy hitters have many useful applications. Imag-
ine for instance a network provider wanting to monitor its network for unreason-
able bandwidth usage, and block or slow down the connection of any user using
more than 0.1% of the bandwidth on any of its routers. To achieve this policy,
the provider could install a lossy counter on each of its routers with θ set to
0.11% and ε to 0.01%. The lossy counter counts how many times IP-addresses
participate in the traffic; for every packet the sender and receiver IP address
is monitored. The lossy counters would catch all items with a frequency higher
than 0.11% as well as some items with a frequency in the interval [0.1%, 0.11%].
Some of the users using between 0.1% and 0.11% of the bandwidth may remain
unnoticed, but that can be acceptable. Installing such a lossy counter would
require 10000 log(N/10000)) items to be stored in the absolute worst case. If the
counters are reset every 1 billion packets, this would add up to at most 12K
counters. That is quite acceptable for finding heavy hitters in up to a billion
items.

3 Approximation Algorithms for Cardinality Counting
over Streams

Another interesting building block in our toolbox is efficient cardinality counting.
The setting is similar as in previous section; items are arriving one by one over
a stream. This time, however, we are not interested in tracking the frequent
items, but instead we want to know how many different items there are. Any
exact solution must remember every item we have already seen. For large data
collections this linear memory requirement may be unacceptable. Therefore, in
this section we describe a sketching technique that maintains a succinct sketch
of the stream that allows for accurately estimating the number of different items.

Cardinality Estimation Problem: Given a stream S = 〈i1, . . . , iN 〉, give the
cardinality of the set {i1, . . . , iN}. That is, count the number of unique items
in S.

Reliable and efficient cardinality estimation has many applications such as
counting the number of unique visitors to a website, or estimating the cardinal-
ity of projecting a relation that does not fit into memory onto a subset of its
attributes without sorting.

3.1 Flajolet-Martin Sketches

The Flajolet-Martin sketch [7] is based on the observation that if we have a set
of random numbers, the probability of observing a very high number increases
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with increasing size of the set. This observation is exploited as follows: suppose
we have a randomly selected hash function h that hashes every element that
can arrive over our stream to a random natural number. h is a function, so if an
item a occurs repeatedly in the stream, it gets assigned the same natural number.
Whenever an item a arrives over the stream, we apply the hash function to it,
and record the size of the longest suffix of h(a) consisting only of 0’s. Let ρ(a)
denote this number. For example, if h(a) = 0110010b, then ρ(a) = 1, as h(a)
ends with only 1 zero; for h(b) = 01101011b, ρ(b) = 0, and for h(c) = 1000000b,
ρ(c) = 6. The more different elements we observe in the stream, the more likely it
is that we have seen an element x with a high ρ(x), and vice versa, the higher the
highest ρ(x) we observed, the more likely it is that we have seen many different
elements. The Flajolet-Martin sketch is based on this principle, and records the
highest number ρ(x) we have observed over the stream. For this we only need to
remember one number: the highest ρ(x) observed sofar, and update this number
whenever an element y arrives over the stream with an even higher ρ(y). Let’s
use R to denote this highest observed ρ(x).

If we have one element x, the probability that ρ(x) = t for a given threshold
t equals 1/2t+1. Indeed, half of the numbers ends with a 1, 1/4th with 10, 1/8th
with 100 and so on. The probability that ρ(x) < t equals 1/2+1/4+ . . .+1/2t =
1 − 1/2t.

So, suppose we have a set S with N different items, what is the probability
that R exceeds a threshold t? This equals

P [max
x∈S

ρ(x) ≥ t] = 1 −
∏

x∈S

P [ρ(x) < t] (1)

= 1 − (1 − 1/2t)N (2)

= 1 −
(
(1 − 1/2t)2

t
)N/2t

(3)

≈ 1 − e−N/2t (4)

Hence, we can conclude that if N � 2t, the probability that R ≥ t is close to
0, and if N � 2t, the probability that R ≥ t is close to 1. We can thus use 2R as
an estimate for the cardinality N . In the original Flajolet-Martin algorithm not
the maximum number ρ(x) observed is used, but instead the smallest number
r such that no element a was observed with ρ(a) = r. Then the estimator 2r/φ
where φ is a correction factor approximately equal to 0.77351 has to be used.

The variance of this estimation, however, can be high. Therefore we can use
multiple independent hash functions to create multiple independent estimators
and combine them. Averaging them, however, is very susceptible to outliers,
while taking the median has the disadvantage of producing estimates which are
always a power of 2. Therefore, a common solution is to group estimates, take
the average for each group, and take the median of all averages. In this way we
get an estimate which is less susceptible to outliers because of the median, and
is not necessarily a power of 2 because of the averages.
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3.2 HyperLogLog Sketch

A HyperLogLog (HLL) sketch [6] is another probabilistic data structure for
approximately counting the number of distinct items in a stream. The HLL
sketch approximates the cardinality with no more than O(log(log(N))) bits.
The HLL sketch is an array with β = 2k cells (c1, . . . , cβ), where k is a constant
that controls the accuracy of the approximation. Initially all cells are 0. Every
time an item x in the stream arrives, the HLL sketch is updated as follows: the
item x is hashed deterministically to a positive number h(x). The first k bits of
this number determine the 0-based index of the cell in the HLL sketch that will
be updated. We denote this number ι(x). For the remaining bits in h(x), the
position of the least significant bit that is 1 is computed. Notice that this is the
ρ(x) + 1. If ρ(x) + 1 is larger than cι(x), cι(x) will be overwritten with ρ(x) + 1.

For example, suppose that we use a HLL sketch with β = 22 = 4 cells.
Initially the sketch is empty:

0 0 0 0

Suppose now item a arrives with h(a) = 1110100110010110b. The first 2 bits are
used to determine ι(a) = 11β = 3. The rightmost 1 in the binary representation
of h(a) is in position 2, and hence c3 becomes 2. Suppose that next items arrive
in the stream with (cι(x), ρ(x)) equal to: (c1, 3), (c0, 7), (c2, 2), and (c1, 2), then
the content of the sketch becomes:

7 3 2 2

Duplicate items will not change the summary. For a random element x, P (ρ(x)+
1 ≥ 	) = 2−�. Hence, if d different items have been hashed into cell cι, then
P (cι ≥ 	) = 1 − (1 − 2−�)d. This probability depends on d, and all ci’s are
independent. Based on a clever exploitation of these observations, Flajolet et al.
[6] showed how to approximate the cardinality from the HLL sketch.

Last but not least, two HLL sketches can easily be combined into a single
sketch by taking for each index the maximum of the values in that index of both
sketches.

3.3 Applications: Estimating the Neighborhood Function

One application of the HLL sketch is approximating the so-called neighborhood
function [5]. The algorithm we will see computes the neighborhood vector for
all nodes in a graph at once. The neighborhood vector of a node is a vector
(n1, n2, . . .) holding respectively the number of nodes at distance 1, distance 2,
etc. The more densely connected a node is, the larger the numbers at the start
of the vector will be. The neighborhood function is then the componentwise
average of the neighborhood vector of the individual nodes; it gives the average
number of neighbors at distance 1, 2, 3, etc. The neighborhood function is useful
for instance to compute the effective diameter of a graph; that is: the average
number of steps needed from a random node to reach a predefined fraction of
the other nodes in the graph. For instance, the effective diameter for a ratio of



124 T. Calders

Algorithm 3. Neighborhood function
Input: Graph G(V, E).
Output: Neighborhood function (N0, N1, . . .).

1: for v ∈ V do
2: nv0(v) ← {}
3: end for
4: N0 ← 1
5: i ← 0
6: while Ni �= 0 do
7: i ← i + 1
8: for v ∈ V do
9: nvi(v) ← nvi−1(v)

10: for {v, w} ∈ E do
11: nvi(v) ← nvi(v) ∪ nvi−1(w)
12: nvi(w) ← nvi(w) ∪ nvi−1(v)
13: end for
14: end for
15: Ni ← avgv∈V (|nvi(v)|) − Ni−1

16: end while
17: return (N0, N1, . . . , Ni−1)

90% is the average number of steps needed from a random node to reach 90%
of the other nodes. Using the neighborhood function, we can easily see from
which point in the vector 90% of the other nodes are covered. For instance, if
the neighborhood function is (12, 1034, 12349, 234598, 987, 3), then the number
of steps needed is 4, as more than 90% of the nodes are at distance 4 or less.
The diameter of the graph we can get by observing the rightmost entry in the
neighborhood function that is nonzero. We can see if the graph is connected
by adding up all numbers and comparing it to the total number of nodes. The
neighborhood function of a graph is hence a central property from which many
other characteristics can be derived.

A straightforward algorithm for computing the neighborhood function is
given in Algorithm 3. It is based on the observation that the nodes at distance i
or less of node v can be gotten by taking the union of all nodes at distance i − 1
or less of its neighbors. Iteratively applying this principle gives subsequently the
neighbors at distance 1, 2, 3, etc. of all nodes in the graph. This we continue as
long as new nodes are being added for at least one vector.

The space complexity of this algorithm is O(|V |2), as for every node we need
to keep all other reachable nodes. This complexity, however, can easily be reduced
using a HyperLogLog sketch to approximate the neighbors for all nodes. Instead
of storing nvi(v) for each node, we store HLL(nvi(v)). All operations we need in
the algorithm are supported for the HLL; that is: taking unions (componentwise
maximum of the two HLL sketches), and estimating the cardinality. In this way
we get a much more efficient algorithm using only O(|V |b log log(|V |)) space,
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where b is the number of buckets in the HyperLogLog sketches we keep. b depends
only on the accuracy of the approximation, and not on the size of the graph.

4 Anyone Like Me? Similarity Search

In a big data context, high-dimensional similarity search is a very common prob-
lem. One of the most successful classification techniques is nearest neighbor,
which requires quickly finding all closest points to a given query point. Although
the setting is strictly speaking no longer a streaming setting, the Locality Sen-
sitive Hashing technique [8] which we will cover in this section can usefully be
applied whenever items arrive at a fast pace, and quickly need to be matched
to a large database of instances to find similar items. Examples include face
recognition where cameras are continuously producing a sequence of faces to
be recognized in a large database, or image search where one quickly needs to
produce images which are alike a given image. One example we will use to illus-
trate the locality sensitive hashing is that of plagiarism detection, where we
assume that we have a large collection of documents and whenever a new docu-
ment arrives we need to be able to quickly generate all near neighbors; that is:
candidate original sources of a plagiarized document.

4.1 Similarity Measure: Jaccard

We will first introduce the locality sensitive hashing technique with the so-called
Jaccard similarity measure. The Jaccard similarity measures distances between
sets. These could be sets of words occurring in a document, sets of properties
or visual clues of pictures, etc. Later we will see how the Locality Sensitive
Hashing technique can be extended to other similarity measure, such as the
Cosine Similarity measure for instance. Given two sets A and B, their similarity
is defined as:

J(A,B) :=
|A ∩ B|
|A ∪ B| .

Suppose now that we order all elements of the universe from which the sets A
and B are drawn. Let r(a) denote the rank of element a in this order, minr(A)
is then defined as min{r(a) | a ∈ A}. We now have the following property which
will be key for the locality sensitive hashing technique we will develop in the
next subsection.

Minranking Property: Let r be a random ranking function assigning a unique
rank to all elements from a domain U . Let A,B ⊆ U . Now the following property
holds:

P [min
r

(A) = min
r

(B)] = J(A,B).

The probability is assuming a uniform distribution over all ranking functions r.
Indeed, every element in A ∪ B has the same probability of being the unique
element in A ∪ B that has the minimal rank in A ∪ B. Only if this element is
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in the intersection of A and B, minr(A) = minr(B). The probability that the
minimum over all elements in A ∪ B is reached in an element of A ∩ B equals
J(A,B).

Minrank Sketch of a Set: If we have multiple ranking functions r1, . . . , rk, we can
use these functions in order to get an estimate for J(A,B) as follows: compute
minri

(A) and minri
(B). Count for how many i = 1, . . . , k, minri

(A) = minri
(B).

This gives us an estimate of P [minr(A) = minr(B)] = J(A,B). The higher k,
the more accurate our approximation will become.

There is one problem with the minrank sketch: a ranking function is very
expensive to represent and store. Indeed: for a universe with n elements, there
exist n! rankings. Representing them requires on average log(n!) space. There-
fore, instead of using a ranking function, we can use a hash function assigning
numbers to the items in the range [0, L] where L is significantly smaller than
n. Such hash functions are usually easy to represent, and a popular choice for
a hash function is ((ax + b) mod p) mod L, where p is a prime number larger
than |U |, and a and b are randomly drawn integers from [1, p − 1] and [0, p − 1]
respectively. One problem with hash functions is that P [minh(A) = minh(B)] is
no longer equal to J(A,B), but is slightly higher as there may be hash collisions.
The probability of such a collision is, however, extremely low: let a, b ∈ U be two
different items. P [h(a) = h(b)] = 1/L. If L is sufficient large, this quantity can
be neglected, the more since it will only cause problems if the collision happens
between the smallest element in A and the smallest element in B. Unless the sets
A and B are extremely large, in the order of L, we can replace ranking function
by hash function in the above definitions. In this way we obtain the minhash
sketch of a set A as (minh1(A), . . . ,minhk

(A)). When comparing two sketches
(a1, . . . , ak) and (b1, . . . , bk) we hence have the approximation |{i=1...k | ai=bi}|

k .

4.2 Locality-Sensitive Hash Functions

The name Locality Sensitive Hashing comes from the idea that in order to index
high dimensional data, we need a way to hash instances into buckets in a way
that is sensitive to locality. Locality here means that things that are similar
should end up close to each other. In other words, we look for hash functions
such that the probability that two instances are hashed into the same bucket,
monotonically increases if their similarity increases. If we have such a family
of independent hash functions at our disposition, there are principled ways to
combine them into more powerful and useful hash functions. Our starting point
is a family of independent hash functions F which is (s1, p1, s2, p2)-sensitive for
a similarity measure sim. That means that for any h ∈ F , P [h(x) = h(y)] is
non-decreasing with respect to sim(x, y), P [h(x) = h(y)|sim(x, y) < s1] ≤ p1,
and P [h(x) = h(y)|sim(x, y) ≥ s2] ≥ p2. For the Jaccard-index we do have
such a family of hash functions, namely the functions minh(.) for random hash
functions h. This family of functions is (s1, s1, s2, s2)-sensitive.

Suppose we have a set D of objects from universe U and we need to index
them such that we can quickly answer the following (at this point still informal)
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near-duplicate query: given a query point q from universe U , give all objects d
in D such that sim(q, d) is high. If we have a family of (s1, p1, s2, p2)-sensitive
hash functions, we could index the objects in D as follows: pick a hash function
h from F and divide D into buckets according to the hash value given by h; that
is: for each hash value v in h(D), there is a bucket D[v] := {d ∈ D | h(d) = v}.
If we now need a near duplicate of a query point q ∈ U , we will only check
the elements d in the bucket D[h(q)]. Since h is from a (s1, p1, s2, p2)-sensitive
family, we are guaranteed that if an object d ∈ D has sim(d, q) ≥ s2, then
P [d ∈ D[h(q)]] ≥ p2. On the other hand if the similarity sim(q, d) is lower
than s1, the chance of finding d in the same bucket as q decreases to p1. If the
documents with similarity exceeding s2 represent the ones we need to retrieve,
the ones in the interval [s1, s2] are acceptable but not necessary in the result,
and the ones with similarity lower than s1 represent documents that shouldn’t
be in the answer, then p1 can be interpreted as the False Positive Ratio; that
is, the probability that a negative example is a FP, and p2 the probability that
a positive example is correctly classified and hence a TP ; i.e., the True Positive
Ratio.

Often, however, the sensitivities (s1, p1, s2, p2) are insufficient for applica-
tions. For instance, if we use minhashing for finding plagiarized texts where
documents are represented as the set of words they contain, the sensitivity we
get is (s1, s1, s2, s2) for any pair of numbers s1 < s2. So, if we consider a text
plagiarized if the similarity is above 90% and not plagiarized if the similarity is
less than 80%, then the indexing system proposed above has a guaranteed true
positive rate of only 90% and a false positive rate of up to 80%. This is clearly
not acceptable. Fortunately, there exist techniques for “boosting” a family of
sensitive hash functions in order to achieve much better computational prop-
erties. This boosting technique can be applied on any family of hash-functions
that are (s1, p1, s2, p2)-sensitive for a given similarity function, as long as the
hash functions are independent, as we will see next.

4.3 Combining Locality-Sensitive Hash Functions

Instead of creating an index based on one hash function, we can combine up to k
hash functions h1, . . . , hk as follows: assign each document x in our collection D
to a bucket D[h1(x), h2(x), . . . , hk(x)] where D[v1, . . . , vk] := {d ∈ D | h1(d) =
v1, . . . , hk(d) = vk}. If a query q comes, we check the similarity with the docu-
ments in bucket D[h1(q), . . . , hk(q)] only. We now get:

P [q ∈ D[h1(d), . . . , hk(d)]] = P [∀i = 1 . . . k : hi(q) = hi(d)] (5)

=
k∏

i=1

P [hi(q) = hi(d)] (6)

Hence, the combination of hash functions is (s1, pk
1 , s2, p

k
2)-sensitive. In this way

we can reduce the number of false positives tremendously; for p1 = 80% as in
our example above, for k = 10, the false positive rate decreases from 80% to
(80%)10, which is less than 11%!
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• D = { 00110011, 01010101, 00011100, 01110010, 
11001100, 10101010 }

• Query q = 00011100
– Only compute distance to x1,x2,x3

01
10
11

Partition 1

x2,x4
x6
x5

00

10
11

Partition 2
x5

x6
x1,x4

00 x1,x3
01 x2,x3

00 x1,x3
01 x2,x3

Fig. 5. LSH-Index based on a (2, 2)-scheme. For illustrative purposes a simple hamming
distance between 0–1 vectors is chosen, defined as the fraction of entries on which the
vectors correspond. The first index is based on the first two entries in the vector, and
the second index on the next two entries. A query point is compared to all vectors in
the 2 buckets in which the query point is hashed (one for the first index, one for the
second)

The true positive rate, however, decreases as well: from 90% to around 35%.
To counter this problem, however, we can create multiple indices for different sets
of hash functions: H1 = (h1

1, . . . , h
1
k), . . . , H� = (h�

1, . . . , h
�
k). For each j = 1 . . . 	

we create an independent index for the documents. Each document d ∈ D gets
assigned to 	 buckets: D1[H1(d)], . . . , D�[H�(d)], where Hi(d) is shorthand for
the composite tuple (hi

1(d), . . . , hi
k(d)). If a query q comes, we will compare q

to all documents in D1[H1(q)] ∪ . . . ∪ D�[H�(q)]. This way of indexing data is
illustrated in Fig. 5.

Suppose that P [h(x) = h(y)] = p for al given pair of documents x, y and a
random hash function from a given family of hash functions. Then the probability
that x and y share at least one bucket in the 	 indices under our (k, 	)-scheme
equals:

P [x and y share at least one bucket] = 1 − P [x and y share no bucket] (7)

= 1 −
�∏

j=1

P [Hj(x) �= Hj(y)] (8)

= 1 −
�∏

j=1

(1 − P [Hj(x) = Hj(y)]) (9)

= 1 −
�∏

j=1

(1 − pk) (10)

= 1 − (1 − pk)� (11)
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Hence our (k, l)-scheme is (s1, 1 − (1 − pk
1)

�, s2, 1 − (1 − pk
2)

�)-sensitive. As long
as our family of hash functions is large enough to allow for k	 hash functions,
we can achieve any desired precision (s1, P1, s2, P2) for our indexing scheme by
solving the following system of equations for l and k:

{
P1 = 1 − (1 − pk

1)
�

P2 = 1 − (1 − pk
2)

�

Figure 6 plots some examples in which the similarity of two documents is
plotted against the probability that they share at least one bucket, for the
Jaccard similarity measure using the minhash family. Recall that P [h(x) =
h(y)] ≈ J(x, y), which makes the relation between the similarity of two doc-
uments x and y and their probability of sharing a bucked straightforward:
P [x shares bucket with y] = 1 − (1 − J(x, y)k)�.

Fig. 6. Relation between the similarity and probability of being in the same bucket
under different (k, �)-hashing schemes (LSH for Jaccard using minhash)

4.4 LSH for Cosine Similarity

Locality-sensitive hashing works not only for the Jaccard-index; any similarity
measure for which we can find an appropriate family of hash functions for, can
benefit from this framework. We will illustrate this principle with one more exam-
ple: the cosine similarity measure. The universe from which our documents and
queries come are N -dimensional vectors of non-negative numbers, for instance
TF.IDF-vectors for text documents. Given two vectors, x = (x1, . . . , xN ) and
y = (y1, . . . , yN ), the cosine similarity between them is defined as x·y

|x||y| , where
· is the scalar product and |.| the l2-norm. The cosine similarity measure thanks
its name to the fact that it equals the cosine of the angle formed by the two
vectors.
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v1

v2

a x=0

Fig. 7. Random hyperplane separating 2 2D vectors (Color figure online)

It is this property that will be exploited by the hash functions we will design:
every hash function we consider is associated with a random hyperplane through
the origin. All points on one side of the hyperplane get assigned 0, and all points
on the other side get assigned 1. That is, if the equation of the hyperplane
is a · x = 0, then the hash function ha we consider is defined as ha(x) =
sign(a · x). It can be shown that if we chose the hyperplane by drawing each
of the components of a from an independent standard normal distribution, then
the probability that we separate two vectors by the random hyperplane a ·x = 0
is proportional to the angle between the two vectors. This situation is depicted
for 2 dimensions in Fig. 7. The green line represents the separating hyperplane
between two vectors. The plane, in 2D a line, separates the vectors if its slope is
in [α1, α2] where αi is the angle between the horizontal axis and the vector vi.
The probability that this happens, if all slopes are equally likely, is α

π/2 , where
α is the angle between v1 and v2; i.e., α = |α2 − α1|. Hence, we get:

P [ha(x) = ha(y)] = 1 − α

π/2
(12)

= 1 − arccos(sim(x,y))
π/2

(13)

As arccos(x) is monotonically decreasing for x ∈ [0, 1], the probability that two
elements share a bucket is monotonically increasing with the cosine similarity
between the two elements, which is exactly the LSH property we need to use
the technique of last subsection. We can again combine the hash functions into 	
groups of k independent hashes. In this way we get an index where two elements
share at least one bucket with a probability of:

1 −
(

1 −
(

1 − arccos(sim(x,y))
π/2

)k
)�

This probability in function of the cosine similarity between two documents is
depicted in Fig. 8.
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Fig. 8. Relation between the similarity and probability of being in the same bucket
under different (k, �)-hashing schemes (LSH for cosine similarity)

4.5 Application: Plagiarism Detection

One potential application of LSH is plagiarism detection. We will illustrate this
application with a collection of 23M Wikipedia documents. Each document con-
sists of one chapter of a Wikipedia page. The pages are preprocessed as follows:
first the pages are decomposed into their 4-shingles; that is: each page is rep-
resented by the set of all 4 consecutive words in the text. For instance, if the
document is “Royal Antwerp Football Club is the number 1 team in Belgium”,
then the representation becomes: {“Royal Antwerp Football Club”, “Antwerp
Football Club is”, “Football Club is the”, . . . , “1 team in Belgium”}. Subse-
quently, to reduce space, all shingles are hashed into a unique number. After
that, two documents are compared using the Jaccard similarity. Via minhash-
ing we create 49 independent (s1, s1, s2, s2)-sensitive hash functions. These are
combined into an LSH-index using a (7, 7)-scheme.

In order to get an idea of the overall distribution of the similarities between
two random documents in the collection, we sampled a subset of 1000 docu-
ments. For these 1000 documents, the similarity between all pairs is measured.
These numbers, extrapolated to the whole collection, are plotted as a histogram
in Fig. 9. As can be seen in this histogram, the vast majority of pairs of docu-
ments has low similarity (notice incidentally that the scale on the vertical axis
is logarithmic). Only about 100 document pairs have a similarity higher than
90%, and there is a gap between 70% and 90%. This indicates that, as to be
expected, there is some duplicate content in Wikipedia, which scores a similar-
ity higher than 90%, while the normal pairs score at most around 70% with a
vast majority of pairs of documents having similarities around 10%, 20%, 30%.
This is very good news for the application of LSH. Indeed, it indicates that any
indexing scheme which is (30%, p1, 90%, p2)-sensitive with low p1 and high p2
will perform very well. The large gap between s1 = 30% and s2 = 90% means
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Fig. 9. Histogram representing the extrapolated numbers of pairs of documents with
respect to similarity (binned per 10%; logscale). Overlayed is the probability that two
documents share a bucket in a (7, 7) LSH index (normal scale)

that we will not need a lot of hash functions. In Fig. 9, the histogram has been
overlayed with the probability of sharing a bucket for a (7, 7)-scheme. As can
be seen, this indexing scheme should perform very well; for most of the pairs
of documents the similarity is low, and at the same time the probability that
those pairs end up in the same bucket is extremely low. Hence, the number of
false positives will be very low relative to the total number of pairs. On the other
hand, for the highly similar documents, the similarity is high and the probability
of those pairs ending up in the same bucket is nearly 1. So, not too many false
negatives to be expected either.

Because of the low number of candidates that will have to be tested, the
time of finding duplicates in an experiment with this setup went down from over
6 hours to compare a query document to all documents in the collection, to
less than a second, all on commodity hardware. The exact run times depend on
the exact characteristics of the setup and the similarity distribution among the
documents, but in this particular case a speedup of over 20000 times could be
observed using LSH, with virtually no false negatives.

5 Conclusions

In this overview we reviewed three techniques which can come in handy when
working with large amounts of data. First of all, we looked into fast and effi-
cient algorithms for recognizing heavy hitters; that is: highly frequent items, in a
stream. Then we went into even more efficient sketches for streaming data which
allow for cardinality estimation of a stream. Last but not least, we reviewed the
Locality Sensitive Hashing technique for similarity search in large data collec-
tions. These techniques, and combinations thereof are frequently handy when
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working with large data collections, and are a nice addition to a data scientists
toolbox. A number of applications we gave were: finding users in an IP network
using an excessively large fraction of the bandwidth, computing the neighbor-
hood function of a graph, and plagiarism detection.
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Abstract. Deep learning is one of the fastest growing areas of machine
learning and a hot topic in both academia and industry. This tutorial
tries to figure out what are the real mechanisms that make this technique
a breakthrough with respect to the past. To this end, we will review what
is a neural network, how we can learn its parameters by using observa-
tional data, some of the most common architectures (CNN, LSTM, etc.)
and some of the tricks that have been developed during the last years.

Keywords: Deep learning · Automatic differentiation · Optimization

1 On Deep Learning and Black Boxes

Neural Networks is a biologically inspired programming paradigm which enables
a computer to learn from observational data. The origins of neural networks can
be traced, at least, until 1949, when Hebb proposed a simple learning principle
for neurons: ‘fire together, wire together’ [1]. Later, in 1957, Rosenblatt invented
the first learning machine: the perceptron [2]. These simple models were further
developed during more than 30 years until 1988, when the backpropagation
algorithm was proposed by Rumelhart et al. [3]. This algorithm was the first
computational approach for training modern multilayer neural networks.

In spite of the fact that the discovery of the backpropagation algorithm
started a rich research field leading to interesting models such as convolutional
neural networks or recurrent neural networks, its severe practical limitations at
that time provoked after a few years what is known as the neural net winter, a
period of reduced funding and interest in the field. The neural net winter ended
in 2012, when a neural network called AlexNet [4] competed in the ImageNet
Large Scale Visual Recognition Challenge. The network achieved a top-5 error
of 15.3%, more than 10.8% points ahead of the runner up. These results, that
where unexpectedly good, led to the current deep learning boom.

Deep Learning is a powerful set of techniques (and tricks) for learning in
neural networks with a high number of layers. Its notoriety builds upon the
fact that it currently provides the best solutions to many problems in image
recognition, speech recognition, and natural language processing [5], but at the
c© Springer International Publishing AG, part of Springer Nature 2018
E. Zimányi (Ed.): eBISS 2017, LNBIP 324, pp. 134–153, 2018.
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same time some critics describe deep learning as a black box where data goes in
and predictions come out without any kind of transparency.

The black box criticism can be approached from many sides, such as discussing
model explainability, predictability or transparency, but in this paper we will try
to open the black box by explaining some of the inner workings of deep models.
The success of deep learning does not stand on a brilliant formula neither in a
set of heuristic rules implemented in code, but in a carefully assembled software
machinery that uses in a very smart way several strategies from different fields,
from the chain rule of Calculus to dynamic graph computation or efficient matrix
multiplication.

In a few words, this chapter tries to shed light on this cryptic but precise
sentence: deep learning can be defined as a methodology to train large and
highly complex models with deeply cascaded non-linearities by using automatic
differentiation and several computational tricks. I hope that we will be able
to fully appreciate what G.Hinton, one of the fathers of deep learning, said in a
recent speech: ‘All we have really discovered so far is that discriminative training
using stochastic gradient descend works far better than any reasonable person
would have expected’.

2 How to Learn from Data?

In general, Learning from Data is a scientific discipline that is concerned with
the design and development of algorithms that allow computers to infer, from
data, a model that allows a compact representation of raw data and/or good
generalization abilities. In the former case we are talking about non supervised
learning. In the later, supervised learning.

This is nowadays an important technology because it enables computational
systems to improve their performance with experience accumulated from the
observed data in real world scenarios.

Neural nets are a specific method for learning from data, a method that is
based on a very simple element, the neuron unit. A neuron unit is a mathematical
function of this kind:

f(x,w, b) = σ(wT · x + b) (1)

where x represents an input element in vector form, w is a vector of weights, σ
is a non-linear function and b a scalar value. (w, b) are called the parameters of
the function. The output of this function is called the activation of the neuron.
Figure 1a shows the most common graphical representation of a neuron.

Regarding the non-linear function, historically the most common one was the
Sigmoid function (see Fig. 1b), but nowadays there are several alternatives that
are supposed to be better suited to learning from data, such as ReLU [6] and
variants.

Simple neurons can be organized in larger structures by applying to the
same data vector different sets of weights, forming what is called a layer, and
by stacking layers one on top of the output of the other. In Fig. 2 we can see
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(a) Graphical representation of a neu-
ron unit

(b) Sigmoid function

Fig. 1. 1-layer neural network

a 2-layer neural network that gets as input 4-dimensional data and produces 2-
dimensional outcomes based on the activations of its neurons. It is important to
notice that a multilayer neural network can be seen as a composition of matrix
products (matrices represent weights) and non-linear function activations. For
the case of the network represented in Fig. 2, the outcome is:

y = σ
(
W 1σ

(
W 0x + b0

)
+ b1

)
(2)

where σ represents a vectorial version of the sigmoid function and W i are the
weights of each layer in matrix form.

Fig. 2. Neural network
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What is interesting about this kind of structures is that it has been showed
that even a neural network with a single hidden layer containing a finite
number of neurons can approximate any continuous function of Rn [7]. This
fact makes neural networks a sound candidate to implement learning from
data methods. The question is then: how to find the optimal parameters,
w = (W i,b), to approximate a function that is implicitly defined by a set of
samples {(x1,y1), . . . , (xn,yn)}?

From a technical point of view, not only neural networks but most of the
algorithms that have been proposed to infer models from large data sets are
based on the iterative solution of a mathematical problem that involves data
and a mathematical model. If there was an analytic solution to the problem, this
should be the adopted one, but this is not the case for most of the cases. The
techniques that have been designed to tackle these problems are grouped under
a field that is called optimization. The most important technique for solving
optimization problems is gradient descend.

2.1 Learning from Data

Let’s consider the supervised learning problem from an optimization point of
view. When learning a model from data the most common scenario is composed
of the following elements:

– A dataset (x, y) of n examples. For example, (x, y) can represent:
– x: the behavior of a game player; y: monthly payments.
– x: sensor data about your car engine; y: probability of engine error.
– x: financial data of a bank customer; y: customer rating.

If y is a real value, the problem we are trying to solve is called a regression
problem. If y is binary or categorical, it is called a classification problem.

– A target function f(x,y)(w), that we want to minimize, representing the dis-
crepancy between our data and the model we want to fit.

– A model M that is represented by a set of parameters w.
– The gradient of the target function, ∇f(x,y)(w) with respect to model param-

eters.

In the case of regression f(x,y)(w) represents the errors from a data rep-
resentation model M . Fitting a model can be defined as finding the optimal
parameters w that minimize the following expression:

f(x,y)(w) =
1
n

∑
i

(yi − M(xi,w))2 (3)

Alternative regression and classification problems can be defined by consid-
ering different formulations to measure the errors from a data representation
model. These formulations are known as the Loss Function of the problem.
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2.2 Gradient Descend

Let’s suppose that we have a function f(w) : R → R and that our objective is
to find the argument w that minimizes this function (for maximization, consider
−f(w)). To this end, the critical concept is the derivative.

The derivative of f of a variable w, f ′(w) or df
dw , is a measure of the rate

at which the value of the function changes with respect to the change of the
variable. It is defined as the following limit:

f ′(w) = lim
h→0

f(w + h) − f(w)
h

The derivative specifies how to scale a small change in the input in order to
obtain the corresponding change in the output. Knowing the value of f(w) at a
point w, this allows to predict the value of the function in a neighboring point:

f(w + h) ≈ f(w) + hf ′(w)

Then, by following these steps we can decrease the value of the function:

1. Start from a random w0 value.
2. Compute the derivative f ′(w) = limh→0

f(w+h)−f(w)
h .

3. Walk small steps in the opposite direction of the derivative, wi+1 = wi −
hf ′(wi), because we know that f(w − hf ′(w)) is less than f(w) for small
enough h, until f ′(w) ≈ 0.

The search for the minima ends when the derivative is zero because we have
no more information about which direction to move. w is called a critical or
stationary point of f(w) if f ′(w) = 0.

All extrema points (maxima/minima) are critical points because f(w) is
lower/higher than at all neighboring points. But these are not the only criti-
cal points: there is a third class of critical points called saddle points. Saddle
points are points that have partial derivatives equal to zero but at which the
function has neither a maximum nor a minimum value.

If f is a convex function, when the derivative is zero this should be the
extremum of our function. In other cases it could be a local minimum/maximum
or a saddle point.

The recipe we have proposed to find the minima of a function is based on the
numerical computation of derivatives. There are two problems with the compu-
tation of derivatives by using numerical methods:

– It is approximate: it depends on a parameter h that cannot be tuned in
advance to get a given precision.

– It is very slow to evaluate: there are two function evaluations at each step:
f(w + h), f(w). If we need to evaluate complex functions, involving millions
of parameters, a lot of times, this problem becomes a real obstacle.

The classical solution to this problem is the use the of the analytic derivative
f ′(w), which involves only one function evaluation, but this solution is only
feasible to those problems where f ′(w) can be analytically derived.
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2.3 From Derivatives to Gradient

Let’s now consider a n-dimensional function f(w) : Rn → R. For example:

f(w) =
n∑

i=1

w2
i

As in the previous section, our objective is to find the argument w that
minimizes this function.

The gradient of f is the vector whose components are the n partial derivatives
of f .

∇f =
( ∂f

∂w1
, . . . ,

∂f

∂wn

)

It is thus a vector-valued function. The gradient is an interesting function
because it plays the same role as the derivative in the case of scalar functions:
it can be shown that it points in the direction of the greatest rate of increase of
the function. Then, we can follow this steps to minimize the function:

– Start from a random w vector.
– Compute the gradient vector ∇f .
– Walk small steps in the opposite direction of the gradient vector.

It is important to be aware that this gradient computation is very expensive
when using numerical derivatives: if w has dimension n, we have to evaluate f
at 2 ∗ n points.

2.4 Stochastic Gradient Descend

Taking for granted that we will apply an iterative method to minimize a loss
function at every step, we must consider the cost of this strategy. The inspection
of Eq. (3) shows that we must evaluate the discrepancy between the prediction of
our model and a data element for the whole dataset (xi, yi) at every optimization
step. If the dataset is large, this strategy is too costly. In this case we will use a
strategy called Stochastic Gradient Descend (SGD).

Stochastic Gradient Descend is based on the fact that the cost function is
additive: it is computed by adding single discrepancy terms between data samples
and model predictions. Then, it can be shown [11] that we can compute an
estimate, maybe noisy, of the gradient (and move towards the minimum) by
using only one data sample (or a small data sample). Then, we can probably find
a minimum of f(w) by iterating this noisy gradient estimation over the dataset.
A full iteration of over the dataset is called an epoch. To ensure convergence
properties, during each epoch, data must be used in a random order.
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If we apply this method we have some theoretical guarantees [11] to find a
good minimum:

– SGD essentially uses the inaccurate gradient per iteration. What is the cost
by using approximate gradient? The answer is that the convergence rate is
slower than the gradient descent algorithm.

– The convergence of SGD has been analyzed using the theories of convex
minimization and of stochastic approximation: it converges almost surely to
a global minimum when the objective function is convex or pseudoconvex,
and otherwise converges almost surely to a local minimum.

During the last years there have been proposed several improved stochastic
gradient descend algorithms, such as Momentum-SGD [8], Adagrad [9] or Adam
[10], but a discussion about these methods is out of the scope of this tutorial.

2.5 Training Strategies

In Python-like code, a standard Gradient Descend method that considers the
whole dataset at each iteration looks like this:

nb_epochs = 100
for i in range(nb_epochs):

grad = evaluate_gradient(target_f, data, w)
w = w - learning_rate * grad

For a pre-defined number of epochs, we first compute the gradient vector of
the target function for the whole dataset w.r.t. our parameter vector and update
the parameters of the function.

In contrast, Stochastic Gradient Descent performs a parameter update for
each training example and label:

nb_epochs = 100
for i in range(nb_epochs):

np.random.shuffle(data)
for sample in data:

grad = evaluate_gradient(target_f, sample, w)
w = w - learning_rate * grad

Finally, we can consider an hybrid technique, Mini-batch Gradient Descent,
that takes the best of both worlds and performs an update for every small subset
of m training examples:

nb_epochs = 100
for i in range(nb_epochs):

np.random.shuffle(data)
for batch in get_batches(data, batch_size=50):

grad = evaluate_gradient(target_f, batch, w)
w = w - learning_rate * grad
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Minibatch SGD has the advantage that it works with a slightly less noisy
estimate of the gradient. However, as the minibatch size increases, the number of
updates done per computation decreases (eventually it becomes very inefficient,
like batch gradient descent).

There is an optimal trade-off (in terms of computational efficiency) that
may vary depending on the data distribution and the particulars of the class of
function considered, as well as how computations are implemented.

2.6 Loss Functions

To learn from data we must face the definition of the function that evaluates
the fitting of our model to data, the loss functions. Loss functions specifically
represent the price paid for inaccuracy of predictions in classification/regression
problems: L(y,M(x,w)) = 1

n

∑
i �(yi,M(xi,w)).

In regression problems, the most common loss function is the square loss
function:

L(y,M(x,w)) =
1
n

∑
i

(yi − M(xi,w))2

In classification this function could be the zero-one loss, that is,
�(yi,M(xi,w)) is zero when yi = M(xi,w) and one otherwise. This function is
discontinuous with flat regions and is thus impossible to optimize using gradient-
based methods. For this reason it is usual to consider a proxy to the zero-one
loss called a surrogate loss function. For computational reasons this is usually a
convex function. In the following we review some of the most common surrogate
loss functions.

For classification problems the hinge loss provides a relatively tight, convex
upper bound on the zero-one loss:

L(y,M(x,w)) =
1
n

∑
i

max(0, 1 − yiM(xi,w))

Another popular alternative is the logistic loss (also known as logistic regres-
sion) function:

L(y,M(x,w)) =
1
n

log(1 + exp(−yiM(xi,w)))

This function displays a similar convergence rate to the hinge loss function,
and since it is continuous, simple gradient descent methods can be utilized.

Cross-entropy is a loss function that is very used for training multiclass prob-
lems. In this case, our labels have this form yi = (1.0, 0.0, 0.0). If our model
predicts a different distribution, say M(xi,w) = (0.4, 0.1, 0.5), then we’d like to
nudge the parameters so that M(xi,w) gets closer to yi. C. Shannon showed
that if you want to send a series of messages composed of symbols from an alpha-
bet with distribution y (yj is the probability of the j-th symbol), then to use the
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smallest number of bits on average, you should assign log( 1
yj

) bits to the j-th
symbol. The optimal number of bits is known as entropy:

H(y) =
∑

j

yj log
1
yj

= −
∑

j

yj log yj

Cross-entropy is the number of bits we’ll need if we encode symbols by using
a wrong distribution ŷ:

H(y, ŷ) = −
∑

j

yj log ŷj

In our case, the real distribution is y and the ‘wrong’ one is M(x,w). So, min-
imizing cross-entropy with respect our model parameters will result in the model
that best approximates our labels if considered as a probabilistic distribution.

Cross entropy is used in combination with the Softmax classifier. In order to
classify xi we could take the index corresponding to the max value of M(xi,w),
but Softmax gives a slightly more intuitive output (normalized class probabili-
ties) and also has a probabilistic interpretation:

P (yi = j | M(xi,w)) =
eMj(xi,w)

∑
k eMk(xi,w)

where Mk is the k-th component of the classifier output.

3 Automatic Differentiation

Let’s come back to the problem of the derivative computation and the cost it
represents for Stochastic Gradient Descend methods. We have seen that in order
to optimize our models we need to compute the derivative of the loss function
with respect to all model parameters for a series of epochs that involve thousands
or millions of data points.

In general, the computation of derivatives in computer models is addressed
by four main methods:

– manually working out derivatives and coding the result;
– using numerical differentiation, also known as finite difference approxima-

tions;
– using symbolic differentiation (using expression manipulation in software);
– and automatic differentiation (AD).

When training large and deep neural networks, AD is the only practical
alternative. AD works by systematically applying the chain rule of differential
calculus at the elementary operator level.

Let y = f(g(w)) our target function. In its basic form, the chain rule states:

∂f

∂w
=

∂f

∂g

∂g

∂w
(4)
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or, if there is more than one variable gi in-between y and w (f.e. if f is a two
dimensional function such as f(g1(w), g2(w))), then:

∂f

∂w
=

∑
i

∂f

∂gi

∂gi

∂w

For example, let’s consider the derivative of one-dimensional 1-layer neural
network:

fx(w, b) =
1

1 + e−(w·x+b)
(5)

Now, let’s write how to evaluate f(w) via a sequence of primitive operations:

x = ?
f1 = w * x
f2 = f1 + b
f3 = -f2
f4 = 2.718281828459 ** f3
f5 = 1.0 + f4
f = 1.0/f5

The question mark indicates that x is a value that must be provided. This
program can compute the value of f and also populate program variables.

We can evaluate ∂f
∂w at some x by using Eq. (4). This is called forward-mode

differentiation. In our case:

def dfdx_forward(x, w, b):
f1 = w * x
df1 = x # = d(f1)/d(w)
f2 = f1 + b
df2 = df1 * 1.0 # = df1 * d(f2)/d(f1)
f3 = -f2
df3 = df2 * -1.0 # = df2 * d(f3)/d(f2)
f4 = 2.718281828459 ** f3
df4 = df3 * 2.718281828459 ** f3 # = df3 * d(f4)/d(f3)
f5 = 1.0 + f4
df5 = df4 * 1.0 # = df4 * d(f5)/d(f4)
df6 = df5 * -1.0 / f5 ** 2.0 # = df5 * d(f6)/d(f5)
return df6

It is interesting to note that this program can be readily executed if we have
access to subroutines implementing the derivatives of primitive functions (such
as exp (x) or 1/x) and all intermediate variables are computed in the right order.
It is also interesting to note that AD allows the accurate evaluation of derivatives
at machine precision, with only a small constant factor of overhead.

Forward differentiation is efficient for functions f : Rn → Rm with n � m
(only O(n) sweeps are necessary). For cases n � m a different technique is
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needed. To this end, we will rewrite Eq. (4) as:

∂f

∂x
=

∂g

∂x

∂f

∂g
(6)

to propagate derivatives backward from a given output. This is called reverse-
mode differentiation. Reverse pass starts at the end (i.e. ∂f

∂f = 1) and propagates
backward to all dependencies.

def dfdx_backward(x, w, b):
f1 = w * x
f2 = f1 + b
f3 = -f2
f4 = 2.718281828459 ** f3
f5 = 1.0 + f4
f6 = 1.0/f5

df6 = 1.0 # = d(f)/d(f)
df5 = 1.0 * -1.0 / (f5 ** 2) # = df6 * d(f6)/d(f5)
df4 = df5 * 1.0 # = df5 * d(f5)/d(f4)
df3 = df4 * log(2.718281828459)

* 2.718281828459 ** f3 # = df4 * d(f4)/d(f3)
df2 = df3 * -1.0 # = df3 * d(f3)/d(f2)
df1 = df2 * 1.0 # = df2 * d(f2)/d(f1)
df = df1 * x # = df1 * d(f1)/d(w)
return df

In practice, reverse-mode differentiation is a two-stage process. In the first
stage the original function code is run forward, populating fi variables. In the
second stage, derivatives are calculated by propagating in reverse, from the out-
puts to the inputs.

The most important property of reverse-mode differentiation is that it
is cheaper than forward-mode differentiation for functions with a high num-
ber of input variables. In our case, f : Rn → R, only one application of
the reverse mode is sufficient to compute the full gradient of the function
∇f =

(
∂f

∂w1
, . . . , ∂f

∂wn

)
. This is the case of deep learning, where the number

of parameters to optimize is very high.
As we have seen, AD relies on the fact that all numerical computations are

ultimately compositions of a finite set of elementary operations for which deriva-
tives are known. For this reason, given a library of derivatives of all elementary
functions in a deep neural network, we are able of computing the derivatives of
the network with respect to all parameters at machine precision and applying
stochastic gradient methods to its training. Without this automation process
the design and debugging of optimization processes for complex neural networks
with millions of parameters would be impossible.
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4 Architectures

Up to now we have used classical neural network layers: those that can be rep-
resented by a simple weight matrix multiplication plus the application of a non
linear activation function. But automatic differentiation paves the way to con-
sider different kinds of layers without pain.

4.1 Convolutional Neural Networks

Convolutional Neural Networks have been some of the most influential innova-
tions in the field of computer vision in the last years. When considering the
analysis of an image with a computer we must define a computational represen-
tation of an image. To this end, images are represented as n × m × 3 array of
numbers, called pixels. The 3 refers to RGB values and n,m refers to the height
and width of the image in pixels. Each number in this array is given a value
from 0 to 255 which describes the pixel intensity at that point. These numbers
are the only inputs available to the computer.

What is to classify an image? The idea is that you give the computer this
array of numbers and it must output numbers that describe the probability of
the image being a certain class.

Of course, this kind of image representation is suited to be classified by a
classical neural network composed of dense layers, but this approach has several
limitations.

The first one is that large images with a high number of pixels will need
from extremely large networks to be analyzed. If an image has 256 × 256 =
65, 536 pixels, the first layer of a classical neural network needs to have 65, 536×
65, 536 = 4, 294, 967, 296 different weights to consider all pixel interactions. Even
in the case that this number of weights could be stored in the available memory,
learning these weights would be very time consuming. But there is a better
alternative.

Natural images are not a random combination of values in a 256× 256 array,
but present strong correlations at different levels. At the most basic, it is evident
that the value of a pixel is not independent of the values of its neighboring
pixels. Moreover, natural images present another interesting property: location
invariance. That means that visual structures, such as a cat or a dog, can be
present on any place of the image at any scale. Image location is not important,
what is important for attaching a meaning to an image are the relative positions
of geometric and photometric structures.

All this considerations leaded, partially inspired by biological models, to the
proposal of a very special kind of layers: those based on convolutions. A convo-
lution is a mathematical operation that combines two input images to form a
third one. One of the input images is the image we want to process. The other
one, that is smaller, is called the kernel. Let’s suppose that our kernel is this
one:

Kernel =

⎡
⎣

0 −1 0
−1 5 −1

0 −1 0

⎤
⎦ (7)
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The output of image convolution is calculated as follows:

1. Flip the kernel both horizontally and vertically. As our selected kernel is
symmetric, the flipped kernel is equal to the original.

2. Put the first element of the kernel at every element of the image matrix.
Multiply each element of the kernel with its corresponding element of the
image matrix (the one which is overlapped with it).

3. Sum up all product outputs and put the result at the same position in the
output matrix as the center of kernel in image matrix.

Mathematically, given a convolution kernel K represented by a (M × N)
array, the convolution of an image I with K is:

output(x, y) = (I ⊗ K)(x, y) =
M−1∑
m=0

N−1∑
n=1

K(m,n)I(x − n, y − m)

The output of image convolution is another image that might represent some
kind of information that was present in the image in a very subtle way. For
example, the kernel we have used is called an edge detector because it highlights
the edges of visual structures and attenuates smooth regions. Figure 3 depicts
the result of two different convolution operations.

In convolutional neural networks the values of the kernel matrix are free
parameters that must be learned to perform the optimal information extraction
in order to classify the image.

Convolutions are linear operators and because of this the application of suc-
cessive convolutions can always be represented by a single convolution. But if
we apply a non linear activation function after each convolution the application
of successive convolution operators makes sense and results in a powerful image
feature structure.

In fact, after a convolutional layer there are two kinds of non linear functions
that are usually applied: non-linear activation functions such as sigmoids or
ReLU and pooling. Pooling layers are used with the purpose to progressively
reduce the spatial size of the image to achieve scale invariance. The most common
layer is the maxpool layer. Basically a maxpool of 2×2 causes a filter of 2 by 2 to
traverse over the entire input array and pick the largest element from the window
to be included in the next representation map. Pooling can also be implemented
by using other criteria, such as averaging instead of taking the max element.

A convolutional neural network is a neural network that is build by using sev-
eral convolutional layers, each one formed by the concatenation of three different
operators: convolutions, non-linear activation and pooling. This kind of networks
are able of extracting powerful image descriptors when applied in sequence. The
power of the method has been credited to the fact that these descriptors can be
seen as hierarchical features that are suited to optimally represent visual struc-
tures in natural images. The last layers of a convolutional neural network are
classical dense layers, which are connected to a classification or regression loss
function.
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(a) (b)

(c)

Fig. 3. (a) Original image. (b) Result of the convolution of the original image with
a 3 × 3 × 3 kernel where all elements have 1/27 value. This kernel is a smoother. (c)
Result of the convolution of image (b) with the kernel defined in Eq. (7). This kernel
is an edge detector.

Finally, it is interesting to point out that convolutional layers are much
lighter, in terms of number of weights, than fully connected layers, but more
computationally demanding1. In some sense, convolutional layers trade weights
for computation when extracting information.

1 The number of weights we must learn for a (M × N) convolution kernel is only
(M ×N), which is independent of the size of the image.
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4.2 Recurrent Neural Networks

Classical neural networks, including convolutional ones, suffer from two severe
limitations:

– They only accept a fixed-sized vector as input and produce a fixed-sized vector
as output.

– They do not consider the sequential nature of some data (language, video
frames, time series, etc.)

Fig. 4. Recurrent Neural Network. The figure shows the number of parameters that
must be trained if the input vector dimension is 8000 and the hidden state is defined
to be a 100-dimensional vector.

Recurrent neural networks (RNN) overcome these limitations by allowing to
operate over sequences of vectors (in the input, in the output, or both). RNNs
are called recurrent because they perform the same task for every element of the
sequence, with the output depending on the previous computations (see Fig. 4).
The basic formulas of a simple RNN are:

st = f1(Uxt + Wst−1)
yt = f2(V st)

These equations basically say that the current network state, commonly
known as hidden state, st is a function f1 of the previous hidden state st−1

and the current input xt. U, V,W matrices are the parameters of the function.
Given an input sequence, we apply RNN formulas in a recurrent way until

we process all input elements. The RNN shares the parameters U, V,W across
all recurrent steps. We can think of the hidden state as a memory of the network
that captures information about the previous steps.
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The computational layer implementing this very basic recurrent structure is
this:

def rnn_layer(x, s):
h = np.tanh(np.dot(W, s) + np.dot(U, x))
y = np.dot(V, s)
return y

where np.tanh represents the non-linear tanh function and np.dot represents
matrix multiplication.

The novelty of this type of network is that we have encoded in the very
architecture of the network a sequence modeling scheme that has been in used
in the past to predict time series as well as to model language. In contrast to the
precedent architectures we have introduced, now the hidden layers are indexed
by both ‘spatial’ and ‘temporal’ index.

These layers can also be stacked one on top of the other for building deep
RNNs:

y1 = rnn_layer(x)
y2 = rnn_layer(y1)

Training a RNN is similar to training a traditional neural network, but with
some modifications. The main reason is that parameters are shared by all time
steps: in order to compute the gradient at t = 4, we need to propagate 3 steps
and sum up the gradients. This is called Backpropagation through time (BPTT)
[12].

The inputs of a recurrent network are always vectors, but we can process
sequences of symbols/words by representing these symbols by numerical vectors.

Let’s suppose we want to classify a phrase or a series of words. Let x1, ..., xC

the word vectors corresponding to a corpus with C symbols2. Then, the rela-
tionship to compute the hidden layer output features at each time-step t is
ht = σ(Wst−1 + Uxt), where:

– xt ∈ Rd is input word vector at time t.
– U ∈ RDh×d is the weights matrix of the input word vector, xt.
– W ∈ RDh×Dh is the weights matrix of the output of the previous time-step,

t − 1.
– st−1 ∈ RDh is the output of the non-linear function at the previous time-step,

t − 1.
– σ() is the non-linearity function (normally, “tanh”).

The output of this network is ŷt = softmax(V ht), that represents the output
probability distribution over the vocabulary at each time-step t.

2 The computation of useful vectors for words is out of the scope of this tutorial, but
the most common method is word embedding, an unsupervised method that is based
on shallow neural networks.
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Essentially, ŷt is the next predicted word given the document context score
so far (i.e. ht−1) and the last observed word vector x(t).

The loss function used in RNNs is often the cross entropy error:

L(t)(W ) = −
|V |∑
j=1

yt,j × log(ŷt,j)

The cross entropy error over a corpus of size C is:

L =
1
C

C∑
c=1

L(c)(W ) = − 1
C

C∑
c=1

|V |∑
j=1

yc,j × log(ŷc,j)

These simple RNN architectures have been shown to be too prone to for-
get information when sequences are long and they are also very unstable when
trained. For this reason several alternative architectures have been proposed.
These alternatives are based on the presence of gated units. Gates are a way to
optionally let information through. They are composed out of a sigmoid neu-
ral net layer and a pointwise multiplication operation. The two most important
alternative RNN are Long Short Term Memories (LSTM) [13] and Gated Recur-
rent Units (GRU) networks [14].

Let us see how a LSTM uses ht−1, Ct−1 and xt to generate the next hidden
states Ct, ht:

ft = σ(Wf · [ht−1, xt]) (Forget gate)
it = σ(Wi · [ht−1, xt]) (Input gate)

C̃t = tanh(WC · [ht−1, xt])
Ct = ft ∗ Ct−1 + it ∗ C̃t (Update gate)

ot = σ(Wo · [ht−1, xt])
ht = ot ∗ tanh(Ct)(Output gate)

GRU are a simpler architecture that has been shown to perform at almost
the same level as LSTM but using less parameters:

zt = σ(Wz · [xt, ht−1]) (Update gate)
rt = σ(Wr · [xt, ht−1]) (Reset gate)

h̃t = tanh(rt · [xt, rt ◦ ht−1]) (New memory)
ht = (1 − zt) ◦ h̃t−1 + zt ◦ ht (Hidden state)

Recurrent neural networks have shown success in areas such as language mod-
eling and generation, machine translation, speech recognition, image description
or captioning, question answering, etc.

5 Conclusions

Deep learning constitutes a novel methodology to train very large neural net-
works (in terms of number of parameters), composed of a large number of spe-
cialized layers that are able of representing data in an optimal way to perform
regression or classification tasks.
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Nowadays, training of deep learning models is performed with the aid of
large software environments [15,16] that hide some of the complexities of the
task. This allows the practitioner to focus in designing the best architecture and
tuning hyper-parameters, but this comes at a cost: seeing these models as black
boxes that learn in an almost magical way.

To fully appreciate this fact, here we show a full model specification, training
procedure and model evaluation in Keras [17], for a convolutional neural network:

model = Sequential()
model.add(Convolution2D(32, 3, 3,

activation=’relu’,
input_shape=(1,28,28)))

model.add(Convolution2D(32, 3, 3,
activation=’relu’))

model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Flatten())
model.add(Dense(128,

activation=’relu’))
model.add(Dense(10,

activation=’softmax’))
model.compile(loss=’categorical_crossentropy’,

optimizer=’SGD’,
metrics=[’accuracy’])

model.fit(X_train, Y_train,
batch_size=32,
nb_epoch=10)

score = model.evaluate(X_test, Y_test)

It is not difficult to see in this program some of the elements we have discussed
in this paper: SGD, minibatch training, epochs, pooling, convolutional layers,
etc.

But to fully understand this model, it is necessary to understand everyone
of the parameters and options. It is necessary to understand that this program
is implementing an optimization strategy for fitting a neural network model,
composed of 2 convolutional layers with 32 3×3 kernel filters and 2 dense layers
with 128 and 10 neurons respectively. It is important to be aware that fitting this
model requires a relatively large data set and that the only way of minimizing
the loss function, cross-entropy in this case, is by using minibatch stochastic
gradient descend. We need to know how to find the optimal minibatch size to
speed up the optimization process in a specific machine and also to select the
optimal non linearity function. Automatic differentiation is hidden in the fitting
function, but it is absolutely necessary to deal with the optimization of the
complex mathematical expression that results from this model specification.

This paper is only a basic introduction to some of the background knowledge
is hidden behind this model specification, but to fully appreciate the power of
deep learning the reader is advised to deepen in these areas ([18,19]): she will
not be disappointed!
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