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Abstract Reduced-order modeling techniques enable a remarkable speed up in the
solution of the parametrized electromechanical model for heart dynamics. Being
able to rapidly approximate the solution of this problem allows to investigate the
impact of significant model parameters querying the parameter-to-solution map
in a very inexpensive way. The construction of reduced-order approximations
for cardiac electromechanics faces several challenges from both modeling and
computational viewpoints, because of the multiscale nature of the problem, the
need of coupling different physics, and the nonlinearities involved. Our approach
relies on the reduced basis method for parametrized PDEs. This technique performs
a Galerkin projection onto low-dimensional spaces built from a set of snapshots
of the high-fidelity problem by the Proper Orthogonal Decomposition technique.
Snapshots are obtained for different values of the parameters and computed, e.g., by
the finite element method. Then, suitable hyper-reduction techniques, in particular
the Discrete Empirical Interpolation Method and its matrix version, are called into
play to efficiently handle nonlinear and parameter-dependent terms. In this work we
show how a fast and reliable approximation of both the electrical and the mechanical
model can be achieved by developing two separate reduced order models where
the interaction of the cardiac electrophysiology system with the contractile muscle
tissue, as well as the sub-cellular activation-contraction mechanism, are included.
Open challenges and possible perspectives are finally outlined.

1 Introduction

Cardiac electromechanics refers to a model for the description of the coupling of the
electrophysiology model, which describes the propagation of the signal triggering
the heart contraction, and the mechanical model, which describes the contraction
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and relaxation of the muscle tissue, including the sub-cellular activation-contraction
mechanism. Solving such a coupled problem is crucial to investigate how clinically
relevant processes affect different features of the heart beat [70].

Cardiac electromechanics is a challenging problem from both a mathematical and
anumerical viewpoint, because of the coupling of different physical problems which
take place at different spatial and temporal scales. Indeed, a model for the cardiac
electrophysiology has to describe on one hand the sub cellular activity (1-100 pm)
which gives rise to the cellular depolarization, on the other hand the spreading of
the electrical signal through the whole myocardium (1-10cm). The modeling of
these processes yields a two-way coupled problem involving a PDE with a nonlinear
reaction term and a system of nonlinear ODEs. To correctly track the propagation
of the action potential, in the form of wave-front solutions, fine computational grids
are needed, thus yielding large-scale algebraic problems to be solved. Moreover,
the description of the mechanics of the cardiac tissue requires complex constitutive
laws, characterized by an exponential strain energy function and the presence of
muscular fibers and sheets, resulting in a complex highly nonlinear model. This
turns into the need of assembling involved Jacobian matrices when relying, e.g., on
the Newton method for the solution of nonlinear systems of equations. Furthermore,
the heart muscle contracts after being electrically activated without the need of
an external load, and this active behavior of the cardiac cells has to be properly
taken into account when coupling the electrical and the mechanical models. To
describe these processes different works have proposed more and more accurate
electromechanical models [29, 31, 36, 53, 74, 80], very often yielding overwhelming
computational costs.

Computational complexity is even more exacerbated if one is interested in going
beyond a single, direct simulation. Indeed, when simulating cardiovascular prob-
lems, several input data affect the problem under investigation, often varying within
a broad range and possibly affected by uncertainty. Addressing the impact of input
variations on outputs of clinical interest is thus of paramount importance in order to
(1) obtain reliable results, (2) calibrate the numerical solver and/or (3) personalize
the mathematical model. In fact, model parameters have to be specifically tuned to fit
subject-specific clinical data in order to take into account inter-patient variability. To
correctly calibrate cardiac models and estimate the unknown input parameters, such
as muscular fibers orientation or parameters affecting the signal propagation, several
numerical simulations have to be carried out, thus calling for multiple queries of the
parameter-to-solution map in fast and accurate ways. Beyond parameter estimation,
this requirement also arises when dealing with sensitivity analysis, control and
optimization, and uncertainty quantification, noteworthy classes of problems whose
importance in cardiovascular modeling is growing faster and faster.

The need of solving these problems efficiently calls for the development of
efficient and accurate reduced order modeling (ROM) techniques in electromechan-
ics. These techniques are designed to provide accurate and reliable solutions to
PDEs depending on several parameters at a greatly reduced computational cost. In
particular, the reduced basis (RB) method replaces the original large-scale numerical
problem (or high-fidelity approximation) originated by applying, e.g., a finite
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element (FE) method, with a reduced problem of substantially smaller dimension;
this latter is generated through a projection of the high-fidelity problem upon a low-
dimensional subspace, spanned by a set of high-fidelity solutions corresponding to
suitably chosen parameters [41, 68].

In this work we show how to solve both the electrophysiology and the mechanical
problems, when these depend on a set of parameters, in the framework of RB
methods, also taking into account active mechanics triggered by the cellular
depolarization. Because of the nonlinear nature of these problems, computational
efficiency is obtained by combining a general-purpose technique to generate the
low-dimensional subspace, such as proper orthogonal decomposition, and suitable
hyper-reduction techniques allowing to assemble the algebraic structures required
by the ROM independently of the high-fidelity arrays. This is required, e.g., when
dealing with Newton iterations while solving cardiac mechanics—for which the
global Jacobian matrix would have to be entirely reassembled at each Newton
step—as well as time stepping in cardiac electrophysiology, for which nonlinear
terms have to be evaluated at each time step, also involving the contribution from
the cell model. Among recent applications of ROM techniques to problems related
with the cardiovascular system, we also mention haemodynamics, for the sake of
simulating blood dynamics in different flow conditions [25, 26, 54] or geometrical
configurations [7, 8], also in view of the optimal design of prosthetic devices [47, 50]
or parameter identification [48, 70]. Cardiac electrophysiology has also been tackled
in the last decade [15, 20, 30, 35, 88], however by performing reduction only with
respect to the time independent variable, thus avoiding the main difficulties related
with the efficient handling of parameter-dependent problems. Recent results for
parametrized problems in cardiac electrophysiology, also in view of the efficient
solution of uncertainty quantification problems, can be found in [59]. Instead,
regarding cardiac mechanics, this subject has only been addressed in a recent paper
by the authors [14] and in [13], where also first results about one-way and two-ways
coupled electromechanical problems have been obtained. The reduction of coupled
problems, however, is still matter of investigation and therefore are not included in
this paper.

The structure of this paper is as follows. After a brief recall (Sect.2) on the
mathematical modeling of cardiac electromechanics, we describe the high-fidelity
FE approximation we start from (Sect. 3). We then introduce the key tools of the
proposed ROM technique (Sect. 4): the Galerkin-POD method and suitable hyper-
reduction strategies. Then, we show how to combine them to derive a ROM for
both cardiac electrophysiology (Sect.5) and mechanics (Sect.6), independently.
Numerical results dealing with patient-specific left ventricle configurations in the
systolic phase are then shown (Sect.7), and finally open critical issues and future
perspectives are outlined (Sect. 8).
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2 Mathematical Models

In this section we present an overview of the electromechanics mathematical
models. We consider the minimal Bueno-Orovio model for describing the cellular
behavior, the monodomain model for cardiac electrophysiology, and the hypere-
lastic Holzapfel-Ogden model for the passive ventricular mechanics, adopting an
active-strain formulation to take into account active mechanics. This latter requires
a dynamical system for the variable which describes fiber shortening as a function
of calcium concentration (and then electrical activation).

2.1 Cardiac Electrophysiology

A mathematical model for cardiac electrophysiology has to include processes
arising at different scale, ranging from subcellular activity, which originates the
cellular depolarisation to the spreading of the signal in the whole myocardium. To
model the whole heart, several works have considered continuous models, where the
myocardium is approximated as a syncytium, that is a domain where the intra and
extracellular spaces coexist at each point [31, 44, 61, 76]. These continuous models
describe the spreading of the signal in the heart tissue and are usually coupled to a
ionic model which describes the evolution of ion concentrations and ionic currents
inside the cells. In this section we first introduce a general framework for the ionic
models, focusing on the Bueno-Orovio model [17], and we show how to couple it to
the bidomain and monodomain models, widely adopted continuous tissue models.

2.1.1 Cell Models

Cell models describe the evolution of the transmembrane potential across the cell
membrane of a single cardiomyocyte. Several ionic models have been proposed,
most of which are based on the well-studied Hodgkin-Huxley model [42]; see e.g.
[58] for a review. They are all based on the assumption that the electrical properties
of the cell membrane can be modeled as an electrical circuit, which connects
in parallel a resistor and a capacitance: the latter describes the cell membrane
which separates the intra and the extra cellular space, while the former models
the ionic channels and pumps regulating ionic fluxes through the membrane. The
conservation of currents across the cell membrane can be expressed through the
relation

ov

Cn P + lion(v, W, ¢) = Iappy

where v is the transmembrane potential, C,, the membrane capacitance, /,p, an
external applied current density and /;,, the sum of the current densities through
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the membrane, that can be written using the general Hodgkin-Huxley formalism
introduced in [42] as

P q
lion(, w,©) = Y gr(© [ Jw}™ (v — w(e) + Io(v, w, ©). ()

k=1 j=1

Here w is a vector of gating variables taking values in [0, 1] that represent the
portion of open channels on the membrane, whereas ¢ is a vector describing the
concentration of ionic species within the cell. We denote by gi(c) and vi(c) the
conductance and the Nernst equilibrium potential associated to the k-th ion, and by
pjk the number of sub-units composing each ionic channel, so that the ion k can
flow through a ionic channel if all the sub-units forming the channel are opened.
Thus, ]_[;1.:1 w’* represents the probability that the ions k flow through the cellular
membrane. The term Ip(v, w, ¢) represents possible time independent ionic fluxes.
The dynamic of a single cell can thus be described in general by a ionic model under
the form:

ov
Cm P + lion(v, W, ¢) = Lapp inf2p x (0, T),
M sw.w) in2 x (0, T)
= v1 1 0 9 bl
ot 2
ac .
9 =r(v,w,c) in29 x (0, T),
w(t) =wp, c¢(t) =c¢o inf2o

where we denote by 2 the computational domain, here representing the cell. The
first set of ODE:s is related to the evolution of the gating variables while the second
set characterizes the evolution of the ionic concentrations during the cardiac cycle.
The number of equations, the functions s and r and the overall complexity depend
on the considered model. In this work, we focus on the so-called minimal model
introduced by Bueno-Orovio in [17], developed to reproduce physiological action
potential morphologies, at moderate computational costs.

The minimal model is a four variables model, able to reproduce experimental
measures characteristics of human ventricular transmembrane potential. It can be
expressed as:

av .
Cm oy + Ifi(va wi) + Lo (V) + L5 (v, wp, w3) = Lapp, inf29 x (0, T)
Jw w w —w .
'Y HW—0,)  —[1-Hu—0,)] " "' =0, in2x (0,7
ot Tw, Tw,
Jw w w —w .
P HW=0uw) [~ —H@—0u)] % "2 =0, in2x(0,7)
ot W) Tw,
9 1+ tanh (ks (v — v5))1/2 —
w3 [1+ tanh(ks(v — vs))]/ w3 —0, inf2o x (0, T)
ot Tus

3)
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where the three currents I¢;, Iy; and I, represent the fast inward, the overall slow
outward and the slow inward currents, respectively. In particular, we have:

Ifl'(l), wl) = w (U —le)(cv — ‘U)H(v _ewl)’

‘Cfi
Is()(l)) = (U - UO)(I - H(U - 911)2)) + H(U — ewz) ’
to Tso

H(v —0y)

si

L (v, wa, w3) = wow3

where H(-) is the Heaviside function. The model parameters, provided in [17],
allow to reproduce the action potential morphologies and the dynamics of more
complex models, such as the Ten Tusscher model or the O’Hara and Rudy model
[72]. The evolution of the transmembrane potential v and the gating variables
w1, wy and w3 obtained with the considered parameters are reported in Fig. 1. In
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Fig. 1 From top left to bottom right: transmembrane potential v and gating variables w1, w, and
w3 of the minimal model during a heart beat
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particular, we observe that the variable v correctly reproduces the action potential
shape characteristic of the ventricular cardiomyocytes. We notice that the variable
v is dimensionless and it can be rescaled to dimensions of mV using the equations
Uy = 87.5v — 84.

Note that this model does not provide specific informations about intracellular
calcium concentration. However, the variable w3 can be assumed to be responsible
of calcium dynamics, as it shows a phenomenological behavior which is really
similar to the one of the calcium ions in the cardiac cells [72]. In what follows,
we refer to w3 as the calcium concentration ¢ and denote by w = (w1, wa, ¢).

2.1.2 Tissue Models

To describe the propagation of the activation front in the cardiac muscle, we rely
on a tissue model able to characterize the evolution of the transmembrane potential.
This latter plays indeed a crucial role in the description of the heart contraction.
In particular, the bidomain and the monodomain models have been widely used
to study the cardiac electrophysiology (see e.g. [24, 66] and reference therein).
These models arise from a homogenization process applied to the cardiac tissue
and simulate the propagation of the electrical signal through the myocardium; a
complete derivation of the two models can be found in [28].

The bidomain model, first proposed in [83], represents the cardiac tissue as a
syncytium composed of intracellular and extracellular domains coexisting at every
point of the tissue. Each domain is thus considered as a continuum, rather than
a group of discrete cells connected with each other. Denoting by v, and v; the
extracellular and the intracellular potential, respectively, and by v = v; — v, the
transmembrane potential, the bidomain model can be expressed as:

d
o a'; + Lion(v, W, ©) = V- (D;Vy;) =0 inf2 x (0, T),

Jdv .
Cm 9t + Lion(v,w,¢) + V- (D, Vv,) = Lapp inf2p x (0, T),
0 d 4
N oswow, =1 w0 inox 0.7, ¥
D;Vv;-n=0, D,Vv,-n=0 ondf2g x (0, T),
v(to) =vo, W(lo) =wo, c¢(fp) =c¢p in$2y,

where the Neumann boundary conditions express the condition that the cardiac
tissue is electrically insulated. Here, C,, is the membrane capacitance, [;,, is the
sum of the density currents through the membrane and I, is an external applied
density current. The domain £2p now represents a portion of myocardium; in the
case of the left ventricle, its boundary 3§29 = Iendo U Iepi U I'pase is made by the
endocardium, the epicardium and the base, respectively. The conductivity tensors
D; € R3 and D, € R? model the anisotropy of the cardiac tissue, characterized by
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a higher conductivity in the fiber direction, and can be expressed as:

D,',e = ()‘;?ef() ® fo + Gj’eS() ® so + G,l;’en() ® ng,
where 04, !¢ and 0, are the electrical conductivities in the intracellular and
extracellular domains. Here, fy denotes the fibers direction, sg the sheets direction
and ny is orthogonal to both f( and sg.

The bidomain model is currently the most complete mathematical model for
describing the electrical signal propagation in the heart. However, it is computa-
tionally demanding, since to capture the rapid dynamics of the cellular reactions
high resolutions in space and time is required. For this reason, a common approach
in the literature is to reduce the bidomain equations to simpler tissue models. In
particular, the monodomain model can be obtained by assuming that the intra and
extracellular domains have equal anisotropy ratios, a} / a; =o0l/o¢ =0} /of. The
monodomain model is not suitable for the description of pathological situations,
such as, cardiac arrhythmias or fibrillation, since in these situations the extracellular
domain influence the transmembrane potential and the ionic currents. However, it
provides an accurate description of the cardiac tissue in physiological situations
[27, 66], at reduced computational costs. From now on, we adopt the monodomain
model as we are only interested, for the time being, to capture the relevant
phenomena for describing the electromechanical coupling in healthy conditions.

The monodomain model reads as follows:

d
Cu'y + lion(v. W.©) = V- (DVV) = Loy ing20 x (0.7,
M sww). € —rw.w.o) ins2 x (0, T)
= = m X
at v’ W 9 8[ v’ w’ 0 9 9 (5)
DVv-n=0 ondf2g x (0, T),
v(to) =vo, W(lo) =wo, ¢(fp) =c¢p in$2y,

where D € R3 is the conductivity tensor. In particular, we assume that
D = ofo ® fo + 0580 ® o + 0o @ Mo (6)

where we denote by o' ¢, o5 and o, the electrical conductivities in the direction fo, s
and ng, respectively.

2.2 Cardiac Mechanics

The description of cardiac mechanics involves both a passive and an active
contribution; besides the hyper-elastic behavior of the tissue, the active contraction
of the muscular fibers has to be included in the force balance when modeling the
systolic part of the cardiac cycle.
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We consider a reference configuration §2p and an actual configuration £2 at the
current time ¢t. We denote by X the position vector in £2p and by x the position
vector in 2. We can now introduce the body deformation as the map ¢ : 29 — £
from the reference to the actual configuration, such that x = ¢ (X) for any X € £2y,
x € §2. The deformation gradient tensor F is defined as

17 A9

FZBX’ [1"1']‘]=a , 4L j=1273. (N

X
By denotingu : 29 — £2, u(X) = ¢(X)—Xthe displacement field, the deformation

gradient tensor can be written as F = I + Vu. We also denote by J = det (F) the
determinant of F and by C = F”F the left Cauchy-Green strain tensor.

2.2.1 Passive Mechanics

We first provide a description of the passive ventricular mechanics, by recalling the
hyperelastic model proposed by Holzapfel and Ogden in [43]. Cardiac deformations
can be modeled by considering the myocardium as orthotropic, hyperelastic, and
incompressible with passive properties characterized by means of an exponential
strain energy function.

The equations of motion for the cardiac tissue express the balance of linear
momentum in material coordinates, which reads as

d’u
PO 4o Vo - Py, = by,
where pg is the tissue density and by are the body forces. Here, P, is the first
(passive) Piola(-Kirchhoff) tensor, which is related to the surface tractions tg
through the relation ty = P,n, where n is the normal to the boundary of the
reference domain. As usual in cardiac mechanics literature (see e.g. [29, 37, 72]),
inertial forces can be neglected, since they are about two orders of magnitude
smaller than other terms [86], thus obtaining the quasi-static problem

—Vo - P, =byo. ®)

We impose Neumann boundary conditions on the endocardium (I'y = In40)
to model the effect of blood pressure,! and Robin boundary conditions on the
epicardium and on the base (I'r = I¢pi U I'pase); the boundaries are reported for a
patient-specific left ventricle geometry in Fig. 4. We also neglect the body forces bg

"More specifically, we would have g = pengo(f)n where n is the unit normal vector to the
boundary, and pengo = Pendo(t) is the external load applied by the fluid at the endocardium wall,
which in this context is assumed to be prescribed.
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because their contribution is negligible [72]. In conclusion, the cardiac deformation
u solves:

—Vo-Py(w) =0 inQ2
P,(un=g onl endo ©
P,(wn+oau=0 onlyy Ulpgge.

The myocardium is considered as an hyperelastic material: there exists a strain
energy function % : 29 — R related to the Piola tensor through the relation

AW (u)

Prw="F

(10)
The description of the cardiac muscle mechanics faces a number of difficulties.
Indeed, the myocardium is non-homogeneous and it is composed by several layers;
moreover, fibers have different orientation in each layer and rotate across the heart
wall, featuring a complex mechanical characterization. To model this complex
behavior we consider the orthotropic model proposed by Holzapfel and Ogden
in [43], characterized by a simple invariant-based formulation. This model hinges
upon the idea that for an orthotropic, incompressible material the strain energy
density function can be written as

W = Wl(jl) + %,fg(fjll,fo) + %,So(j4,50) + %,foSQ(fj&foso)s

where fo, so are the two (fibers and sheets respectively) preferred directions and .7,
T4ty F4.50> IB.1ys, are invariants of the right Cauchy-Green strain tensor,

1 =tr(C), Sag, =1o-Cly, s, =50-Cso, H3 g5, = fo - Cso,

respectively. In particular, we have

a 7, _ arf 7 _1)2
W(I)) = o I:eb(Jl 3) _ 1]’ %,fo(ﬂ&fo) — bef I:ehf(/4.f0 D= _ 1]’
dg _1)2 afe b .Sj2
%,So(ﬂ4,50) = 2; [ehS(jALSO 1) - 1]1 WS,f(}SQ(ﬂS,fgSQ) = 2bf: I:E 1 S,foso - 1]
s fs
1D

The coefficients of the Holzapfel-Ogden constitutive law are taken from [33] and
are reported in Table 1.

Table 1 Parameters of the Holzapfel-Ogden model

a =3.33kPa ay = 18.47kPa a; = 2.481 kPa aygs = 0.417kPa
b =8.023 by =16.026 by = 11.120 byy = 11.436
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In order to describe myocardium deformations, we consider a quasi-
incompressible formulation [39, 77], which offers several advantages with respect
to a full incompressible one, from both a modeling and a numerical viewpoint.
Indeed, taking into account limited volumetric changes is possible according to
experimental evidence since the volume of cardiac tissue can vary until 7% during
systolic contraction [6]. Moreover, a quasi-incompressible formulation leads to a
simpler numerical problem with respect to a full incompressible one [65]. The
adopted formulation can be obtained by introducing a multiplicative decomposition
F = F;;,Fy, of the deformation gradient tensor, where we impose det (Fis,) = 1
and det (Fyo) = J. This formulation leads to an additive decomposition of the
isotropic part # of the strain energy function, which reads as

a -3 K
W= Wiso+ Wt = 5, [P0 < 1]+ DuF T -7 ()

2b

where ¥ > 0 denotes the Bulk modulus, which measures the material resistance to
a uniform compression.

2.2.2 Active Mechanics

The cardiomyocytes of the heart muscle contract after being electrically acti-
vated, without the need of an external load. This behavior can be modeled by
including the active contraction of the muscular fibers in the force balance (9);
however, this is a challenging task because muscular contraction occurring at
the macroscale is caused by release of energy at the microscale, inside each
cardiomyocyte. Different approaches have been investigated in order to obtain
accurate mathematical description of the active mechanics; the most popular ones
are the active stress [37, 52, 53, 62, 78] and the active strain approaches; see [4, 73]
for numerical comparisons. Both strategies allow to couple electrophysiology and
mechanics, defining a modified first Piola-Kirchhoff tensor P which involves a
passive component describing the stress required to obtain a given deformation of
the passive myocardium, and an active component denoting the tension generated
by the depolarization of the propagating electrical signal that provides the internal
active forces responsible for the contraction. Thus, Eq. (9) becomes

—Vo-Pu();t,c) =0 ing2
P(u();t,c)n=g onl gndo (13)
Pu@);t,c)n+au(t) =0 onlep; U lpuse.

This leads to a coupled electromechanical problem, where the electrical solution

affects cardiac deformations. Here we focus on the active strain approach [3, 23, 51,
81], which is based on a multiplicative decomposition of the deformation gradient
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tensor, under the form
F(u, 1) = F.(WF, ().

F, describes the elastic deformation of the myocardium and F, (¢) is the anelastic
deformation due to the fibers contraction. The active strain decomposition is based
on the idea that fibers inside the muscle contract and shorten; the deformation
F, can thus be seen as a prescribed distortion of the microstructure, whereas the
deformation at the macroscale F, is needed to ensure compatibility of F.

In particular, the anelastic deformation takes the form

Fo(t) =1+ yr()fo ® 1o+ ys(t)so ® so + yu(t)no @ ng,

where ngp is a vector normal to fo and sp; yf, ys and y, are time-dependent
coefficients describing the cell shortening respectively in the fy, sop and ng directions.
The fibers shortening y ¢ can be computed from the following evolution law

2f4,f
(I +yy)
vr(0) =yro in2y,

payr = falo) + 3 = 254 fle=cy inL20 x (0, T),

(14)

where c(¢) is the calcium concentration. We remark that the anelastic deformation
F, depends on the calcium concentration through the coefficients yr, y; and y,.
Here, fa(c(t)) = al(c(t) — c0)*RrL (A4, ), where we assume o = —2.5 [72], and
Rp is the sarcomere force-length relationship of the cardiac cells given by

3
+ Z[Cn Sil’l(n]4’fl()) +dy COS(H]4’fl())] ;

n=1

€0

RFL (]4,f) = X[SLminsSLmax](j“vf) 2

here, Iy represents the initial length of a single contractile unit (sarcomere) and
we assume lp = 1.95um, whereas the coefficients ¢, and d,, are parameters of
a truncated Fourier series fitted to match the experimental length-force relations
reported in [79]; see [75] for further details. Moreover, X[SL,,in,SLma](*) 18 the char-
acteristic function of the interval [SL,,in, SLuax], which represent the minimum
and maximum sarcomere length, respectively; here we assume SL,,;, = 0.87 um
SLpax = 1.33um [72]. Here ¢ represents the calcium concentration at the end of
the diastolic phase.

The other two coefficients y; and y,, can be directly derived from the expression
of yr, relying on an orthotropic activation model, as

1
— ' . = - 1
VEEIYE T Gy 4 )
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The parameter k¢ allows to correctly describe the thickening occurring during
myocardial contraction in the sheets direction. In the mechanical equations, the
Piola tensor takes the following form

W (Fe) ot

P=det(F
et(Fy) 9F, a

leading to the following full mechanical problem, where we highlight the depen-
dence on y¢(1):

Vo P yr) =0 in®
Pu(); yr())n=g onlendo (15)
P(u(r); yf(t)) n+ou(t) =0 OnFepi U Ipase-

We point out that in the active strain approach the solution of the mechanical
problem depends on the calcium concentration ¢, rather than on the transmembrane
potential. However, we need to compute the solution of the full electrical problem
in order to characterize the mechanical displacement, since ¢ is coupled to the
transmembrane potential v, e.g., in the monodomain model (5).

A schematic representation of the model describing the electromechanical
coupling is reported in Fig. 2.

2.3 Parameters of Interest

ROM techniques allow to efficiently solve the problems introduced so far in
different scenarios in order assess the effect of clinically relevant parameters on
their solutions by taking into account a possible inter-patient variability. We denote
by p € & C R? the set of p selected parameters.

In particular, we are interested in analyzing how the electrical conductivities—
o, oy and o, introduced in (5)—and the fibers orientation fy affect heart contrac-
tion. Electrical conductivities significantly influence the propagation of the electrical
signal and, consequently, the displacement of the cardiac muscle; fibers orientation
highly varies among subjects and can have a crucial impact on the correct torsion
and shortening of the ventricle. We will restrict our attention to these parameters
in this work; note that fibers’ orientation affects both the electrophysiology and
the mechanics since it directly enters in the monodomain Eq.(5) as well as in
the constitutive law (11). Instead, electrical conductivities affects primarily the
monodomain equation through the conductivity tensor D, and only indirectly the
myocardium displacement. Additional parameters of interest are, for instance, the
(isotropic) coefficient a(p) introduced in (11), related to the stiffness of the cardiac
muscle, as well as the Bulk modulus « defined in (12), related to the material
incompressibility; more can be found in [13, 14].
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Cma—: FLion(v,W,€) = V- (JE'DFTVv) =1, in Qo (0,T),
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Fig. 2 Schematical representation of the cardiac electromechanical model

Regarding electrophysiology, we thus have D = D(p) and the parametrized
electrical model reads as:

dv(p)
9
aw(p)
ot

v(fp) = vo

=s(v(p), w(p))

D(w)Vu(p) -m=0

w(fo) = wo

Cm , + lion(v(p), w(p)) — V- D@)Vu(p)) = lapp

in.Q()

in.Q()

x (0, T),

x (0, T),

ond 2o x (0, T),

in$2g.

(16)
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If D is p-dependent, also the variables v and w will depend on parameters. Since
the activation equation depends on the solution of the electrical problem, we also
have yr = yr(u), so that (14) reads as

= facwn+ . 2 ag in2o x (0, T)
MmAYF() = JA " (1+7/f(ﬂ))3 4, fle=co 0 , .

As for the mechanical problem, we have u = wu(u), either if we consider
parameters directly affecting mechanics or parameters which directly enter only in
the electrophysiology, so that (13) modifies as:

—Vo -Pu(t, p); yr(t, p)) =0 in§2
P(u(t, p); yr(t, p))n=g onlendo a7
P(u(z, p); )/f(ta mw)n+ou(t, mu) =0 onlpi U Ipase-

In this work, we neglect the influence of the blood in the ventricular chamber,
thus taking g = 0—that is, pengo(t) = 0, by assuming that no information on the
blood inside the ventricle are available. Note that the problem is not trivial: indeed,
even if external loads are zero, stress (and then deformation) originates because of
the presence of a term depending on the fiber shortening y .

3 Full-Order Model: Finite Element Method

Before addressing the reduction of the electrophysiology and the mechanical
problems, we sketch their finite element (FE) approximation [31, 38, 82, 84], which
the reduced order model is built on, and plays the role of full-order model (FOM).
For the sake of notation the dependence on the parameter vector u is understood in
this section.

3.1 Electrical Model

After deriving the weak formulation of problem (16), we introduce the discretization
Tep of the domain §2¢ and the finite dimensional spaces Zj, and Qj, with dim(Zy) =
N, < oo and dim(Qp) = Ny < oo, respectively, for the approximation of the

potential v and the ionic variables w € R4, d = 3. We denote by {(p,-}fvzzl, ©i € Zp
and {1/;,-}?]:"1, Y; € Qp, their FE bases, so that the approximated potential v;, and
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ionic variables wy, can be expressed under the form

N; wi K (X, 1) Ny
vp(x 1) =Y vigi(x) and Wy, 1) = [wy 0 [ =Y wi) o ¥ x;
i=1 ch(x,t) i=1

(18)

here wid are the basis functions of the space QZ and the operator o is the element-
wise vector product. We denote the components of w; € R,i=1,..., Ny, as
W1.i, W2,i, C;, respectively. The FE approximation of the monodomain model (5)
turns into the following nonlinear system of algebraic equation

N, N, Ny
- v; = .
Z(Cm 8; (%,w_/)-i-v;a((ﬂi,(pj))+1(Zvi<pi,zwiO'/fid;tpj):o vi=1,..., Nz,

i=1 i=1 i=1
Ny

. Nz Nq
Z ag:l Wi, ¥ = (S(Zvif/)i,Zw,-owid),r/fj) Vi=1,..., N,
i=1

i=1 i=1
by defining the bilinear form a and the functional I as
a(v,z) = fg DVv - Vzd 2, (v, w; 2) = (Lion(v, W) — Iapp, 2),
0
respectively, with
(v, w) = / vwd 29, (v,w) = / v - wdS2.
20 £20

Here we restrict ourselves to the case of linear (P1) finite elements, so that N, =
N, = N;. We denote by V = (Vl,...,VNﬁ)T, W = (Wi, W,, C), where

W, = (W1,1,---,W1,N;)T, Wy = (Wz,l,---,Wz,N;)T and C = (Cl,---,CN,j)T-
Moreover, M;; = (¢;, ¢i), M‘ql,ij = (¥;,¥;) and K;; = a(yj, ¢;) denote the

mass matrices and the stiffness matrix associated to problem (19), respectively. To
treat the nonlinear term 7, we rely on the so-called ionic current interpolation (ICI)
method, which introduces a linear interpolation of the ionic currents,

N N
I(Zw;,Zwowid;w/)w/Q1(v,-,wi>go,(x)goj(x)=I(V,W) (20)
i=1 i=1 0

and makes the assembling of the ionic currents term straightforward, only requir-
ing a matrix-vector multiplication, I(V, W) = MI(V, W), where I(V,W) =
(I(vy, wyp), ..., I(vN;;, WN;))T. A further enhancement of this procedure can be
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obtained by considering a lumped version of the ICI strategy (L-ICI) where the
ionic currents are interpolated nodally or, equivalently, the mass matrix arising in
the ICI method is lumped, thus yielding I(V, W) = MLi(V, W). We remark that
a possible alternative to the ICI method is the so-called state variable interpolation
(SVID) method, in which the transmembrane potential and the variables of the
ionic model are computed on the quadrature points and then used to evaluate
the ionic current in the monodomain equation. The SVI method turns out to be
more accurate than the ICI, since it does not approximate the nonlinear term with
piecewise linear functions. However, the ICI method represents a reasonable trade-
off between accuracy and computational cost; a detailed comparison between the
two approaches can be found in [63]. Moreover, the ICI method better fits with
the matrix formulation of the hyper-reduction techniques we have exploited, thus
making the coupling between the monodomain equation and the ionic model more
efficient when dealing with the reduced order model for electrophysiology. We also
point out that when using coarse meshes, the L-ICI method underestimates the
propagation velocity of the electrical signal. However, this problem can be solved
by artificially increasing the electrical conductivities o7, oy and o0y, in the L-ICI
method, as done in [72].
The nonlinear function s appearing in the ionic model is approximated as

NN N;
(s vigr Yowio i, ¥ ) ~ D s wo i, ;) =S(V. W), 1)
i=1 i=1

i=1

s that S(V, W) = M?S(V, W), where S(V, W) = (s(v1, W1), ..., s(vye, Wye)) .

Since the ionic variables can be computed at each node independently, the second

equation of (19) yields to a system of N; uncoupled ODEs, W —S(V,W) = 0.
The spatial FE discretization of (19) thus leads to the following system:

MV + KV + M, I =
!cm V+KV+M IV, W) =0 )

W-S(V,W)=0

Let us now introduce a time discretization of (22), denoting by Az, = T /n, the time
step, with ¢, = nAt.,n = 1, ..., n;; the superscript n denotes a quantity evaluated
at time #,. We adopt a forward Euler scheme to solve the ODEs representing the
ionic model, with a sufficiently small A¢ to preserve the stability of the method. To
discretize in time the monodomain equation, we rely on a semi-implicit scheme; in
particular, we treat the diffusion term implicitly and the reaction term explicitly. This
strategy allows us to solve, at each time step, a linear system instead of a nonlinear
one, as it would have been instead required by an implicit method.

We finally assume a weak coupling between all the electrophysiology fields,
that is we consider an explicit algorithm to compute the solution of (22), solving
sequentially two separate problems in order to compute the ionic variables w and
the potential v. In conclusion, we obtain the following system: given V?, WO, for
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n=0,...,n, — 1 compute

Wil = W 4 ArS(V", W)

Cn . Cm . 1 (23)
(ML + KV = MLV MV, W,

At At
where mass lumping is commonly used (note the presence of the matrix My) to
reduce possible oscillations near the wave-front [46, 67].

3.2 Activation Equation

Regarding the activation Eq. (14), we first perform a Taylor series expansion around
v = 0 of the quantity

2 - I . j
Fup =, WS —j; V(i + DG +27 57} (24)

appearing at the right-hand side of the ODE in (14). Since # (u, 0) = 2.9 f|c=c)»
we can approximate the ODE under the form

M
pavs = fa@ + >~V + DG + DI v} = Fle.yp): (25
j=1
the choice M = 5 ensures that ||.# (u, yr) — Zf/lzl G+ DG+ 2)f4hf-y}|| <
0.005, see [72]. Similarly to the discretization of the ionic model (21), the spatial
semidiscretization reads

N
uaMyGy =F(C.Gp) ==Y Flci.vs) (Wi, ¥j),

i=1

where linear finite elements have been chosen to approximate yy. Here Gy =
Vhseees ny)T € RVi and C € RV denote the vectors of degrees of freedom
(dofs) related to y and to the calcium variable c, respectively. The fully discretized
problem, obtained by adopting the forward Euler scheme for the time discretization,
then reads as follows: given G(;-, forn =0,...,n;, — 1 compute

At
M, G+ = MG + " F(C', GY). (26)
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3.3 Mechanical Model

We now turn to the FE approximation of the mechanical subproblem (15), which is
a fully nonlinear, quasi-static problem since it depends on time through the coupling
with the electrical subproblem. We rely on the Newton method to solve, at a given
time instant, such a nonlinear problem. Performing a Newton step at the continuous
level around a generic displacement t(¢) yields a weak problem under the following
form to be solved: find u(¢) such that

Jary(Ou(®),v) = —(Rg), V) VveV,tel0,T), 27
where
P
Jan(du(@), v) = / [ (u()) : V(Su(t):| 1 VvdS2 —l—/ adu(t) - vdo
20 oF I'r
and

(Ra. V) = / Pa(1)) : Vvd2 + f aii(t) - vdo — / g vdo.
20 I'r I'y

This problem arises after integrating (15) by parts over §2p and linearizing the
resulting problem; recall that F is the deformation gradient tensor defined in (7).
The FE approximation of problem (27) over a suitable triangulation .7, of the
domain £2¢ can be obtained in a straightforward way; in this work, we use linear
(P1) finite elements to approximate the mechanical displacement, denoting by N;'
the dimension of the FE space for the approximated displacement. We then obtain
the following algebraic form of the Newton problem: for each t,,n =0, ..., N;—1,
given UV (z,), for every k > 1 we search §U(z,) satisfying
JUED@))sUO 1) = —RUCD (@), 28)
UO @) = U4V (,) + 85U 1)

until ||R(u’hC (t)]]2 < €, being ¢ > 0 a small fixed tolerance. Here, for any U €
RN,

[J(U(t))]” ZJU(I)((p/"pz)’ l’JZ 1”N}r1n
[RUMY = Rug. @) i =1....N]!

(29)

are the components of the Jacobian J(U) € RV *Ni" and the residual R@U) e RN
evaluated at U € RN/T; {p;ji=1,...,N ,’:’} denote the (vector) basis functions of
the FE space for the displacement and U(¢) = (u1(¢), ..., u NI ()T the vector of
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Algorithm 1 FOM for the (one-way) coupled electromechanical model

»

AN

o >

INPUT: vy, wg, Hy and ug
OUTPUT: u
:form=0,...,T/At, do

forn =mD,...,(m+1)D — 1do solve
Wit = W7+ ArS(V", W) (ionic model)
C C -
( A’;’ M; + K)V"“ = A"; M, V" + M, LV", W)  (monodomain model)
M,,G’}H =M,G’; + ﬁi F(C"t!, G'}) (activation model (active strain))
end for
Interpolate G'}H on the mesh .7, using the RBF strategy
while |[R(U%=D gm+1y, G;+‘)|| 12 < & do solve (Newton step)
J(U(kfl) (l‘erl); G;+1)8U(k) (tm+1) — _R(U(kfl)(tmntl); (}r}-%—l)7
U(k) (tm+l) — U(k*l)(th»l) + aU(k)([)n+l) (30)
end while
end for

dofs of its high-fidelity approximation u(¢)—here denoted, with a slight abuse of
notation, in the same way as the displacement at the continuous level.

A segregated algorithm is finally chosen for the solution of the electromechanical

problem, in which the governing equations are solved sequentially—that is, segre-
gated from one another; see Algorithm 1. This approach is shown to be appropriate
when considering a model which is independent on the fibers stretch or which
depends on the stretch but not on the stretch-rate [62]. In particular:

we consider two different time steps for the electrical and the mechanical prob-
lem. The electrophysiology requires a significantly small time-step Az, = T/n;
in order to correctly capture the propagation front of the electrical potential. Since
the mechanical displacement is slower (of a factor ranging between 10 and 100)
than the electrical signal propagation, for the mechanical model it is sufficient to
consider a time step At,, = T /N, small enough to guarantee the convergence
of the Newton method. In particular, we set them so that Az, = DAf,, that is,
n; = DN;. Since we are discretizing the activation equation with the forward
Euler method, we need to solve (26) using the time step Af, of the electrical
model to guarantee the stability of the overall numerical scheme. Therefore,
D time steps for the electrical subproblem (23) and the activation Eq. (26) are
evaluated between two time instants in which the mechanical subproblem is
solved;

different meshes 7, 7}, are employed for the electrical and mechanical prob-
lems, respectively; the latter problem requires less mesh-size restrictions than the
former and can thus be solved on a coarser mesh [69]. This implies the need of
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transferring information between the two meshes: to impose the activation in the
mechanical problem we need to evaluate the solution of the electrophysiology
problem on .7, whereas the electromechanical feedback (which here is not
considered) would require to evaluate the solution of the mechanical problem
on 7. This inter-grid transfer is performed by means of a rescaled localized
radial basis functions (RBF) interpolation technique introduced in [32]; see also
[9, 72].

4 Reduced Order Modeling Techniques

The reduced basis (RB) method allows to speed up the approximation of a
parameter-dependent PDE in the case multiple evaluations of its solution are
required for several values of the parameter p € 4. The basic idea of the RB
method is to seek the solution of a problem in a subspace of much smaller dimension
than the one, Nj,, of the FOM space. During the offline stage, the parameter domain
is explored, and a set of high-fidelity solutions (snapshots) is computed to generate a
low dimensional RB space of dimension N < Nj,. This space can be built by means
of either a greedy algorithm (if suitable a posteriori error estimators are available
and can be efficiently evaluated) or, in more general situations, proper orthogonal
decomposition (POD) technique; see Sect.4.1. Then, during the online phase, for
each new value of u, the RB approximation is rapidly computed by combining
(possibly few) arrays stored offline, whose complexity must no longer depend on
Nj.

The technique is well-established for linear PDEs (both of elliptic and parabolic
type) showing an affine dependence on u; see, e.g., [68] for an in-depth presentation
of the methodology. Under the assumption of affine parametric dependence, the
differential operators and data can be expressed as a linear combination of u-
independent forms (which can thus be precomputed) weighted by p-dependent
coefficients, which can be inexpensively evaluated. The RB method in its classical
formulation, however, is no longer efficient when dealing with nonlinear (and/or
nonaffinely parametrized) problems, unless we employ suitable hyper-reduction
techniques to perform system approximation in addition to solution-space reduction;
in the nonlinear case, these two operations shall be performed at the same time.

We first address the issue of solution-space reduction, which is achieved by
means of the POD technique. We consider the case of a nonlinear stationary
problem, a class which the mechanical subproblem fits in, for the sake of general
exposition. We postpone the case of time-dependent nonlinear problems—albeit
treated in a semi-implicit way, thus requiring the solution of a linear system at each
time step—to Sect. 5, where we address the reduction of the monodomain equation.
For the sake of exposition, we formulate everything in a purely algebraic form.
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4.1 POD-Galerkin Method

Let us consider the following, abstract, nonlinear p-dependent algebraic system

RUu); p) = 0. €19

and the associated Newton method: given v (n) € RN for k > 1, find sU((n) €

RM: gt

JUED (s wsUD () = —RUD (p); ), 32)
UO () = 0% D) 4+ 50D (n)

and iterate until [|[R(U® (u); p)||2 < &, being ¢ > 0 a small, given tolerance.
As before, JU(p); p) € RN:>Ni denotes the -dependent Jacobian matrix (with
linearization around U(p)) and R(U(w); ) € RM: the p-dependent residual vector.

In the case of mechanical problems characterized by complex nonlinear con-
stitutive laws, the computational burden in solving (32); is represented by the
assembling of the Jacobian matrix, which can consume almost the entire CPU
time required by each Newton step. To reduce the computational complexity of
problem (32), the RB method seeks, for any u € &, an approximation of U®) (u)
given by a linear combination of (possibly few) basis functions,

UR ) ~ 2o (n), Vk>1, N < Ny, (33)

where ug\l,c) (w) € RN and Z € RM*N js a matrix whose N <« Nj, columns
contained the nodal values of the RB functions. Problem (32) is then replaced by
the following: given ug\(,)) (n) € R¥, fork > 1, find Suy € R s.t.

273zl (w); wZsuy (p) = —ZTR(Zuy ™ (); ),

34
uﬁ\l,‘) (n) = H%H)(u) + Sun(p), .
and iterate until ||ZTR(Zu%‘) (m); w)|l2 < erp, being egp > 0 a small, given
tolerance. If (34) converges, Zuy(p) can be regarded as an approximation of
U(p) in the RB space, with uy = limg_ u%(). Problem (34); is obtained by
requiring that the Galerkin projection over Vy of the FOM residual computed on
the ansatz (33) vanishes, where Vy has to be intended as the space spanned by the
columns of Z.
The POD technique—through the so-called method of snapshots—can be used to
compute the reduced basis Z (and, as we shall see in Sect. 4.2, for the construction of
both DEIM and MDEIM bases). In the case of a stationary, g-dependent nonlinear
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problem, POD performs the singular value decomposition of a matrix

S=W0Pw) UPmw) ... tPw,) UP@w,) ..]

of snapshots of the high-fidelity problem and returns an orthonormal basis of
the RB space made by the first N right singular vectors of S. Here snapshots
are represented by Newton steps obtained for n; parameter vectors u; € %,
i = 1,...,ns, randomly sampled over £2; more ad-hoc strategies, such as e.g.
latin hypercube sampling or sparse grid, could be exploited especially for high-
dimensional parameter spaces.

Hence, from the factorization S = ZZAT, where A = diag(oy,02,...) 18
the matrix of singular values of S, the POD basis Zy of dimension N < ny is
obtained by collecting the first N columns of Z (i.e. the first N left singular vectors),
corresponding to the first N (largest) singular values; we can set the basis dimension
N as the minimum integer such that

N 2
2.i=10;
n, o = 1—¢€prop,
219
given a suitable, small tolerance eppop > 0. The reduced basis provided by POD
is optimal, in the sense that it minimizes the sum of the squared distances between
each snapshot and the corresponding projection onto the subspace. When denoting
by Z the POD basis, its dimension N will be understood.

4.2 Hpyper-Reduction Techniques

When using Newton iterations to solve nonlinear problems, assembling the ROM
for any new parameter would require to assemble (also in the online phase) the
FOM arrays first and then to project them onto the reduced space, thus calling into
play high-fidelity arrays at the online stage, too. This issue is even more relevant
when dealing with fully nonlinear problems, for which the global Jacobian matrix
has to be entirely reassembled at each Newton step.

Hyper-reduction (or system approximation) techniques aim to recover an approx-
imate affine structure of nonlinear terms to guarantee an efficient offline-online
decomposition. The archetypical hyper-reduction technique introduced in the RB
framework is the empirical interpolation method (EIM), developed in [10, 49] to
approximate nonaffinely parametrized functions. Its discrete variant, the so-called
Discrete EIM (DEIM), was originally proposed in [21] to efficiently deal with
nonlinear problems, but has also been applied to nonaffinely parametrized linear
operators. More recently, a matrix version of DEIM (MDEIM) has been developed
[19, 87], and then further explored in [55] to approximate the full-order parametrized
operators in a purely algebraic way.
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4.2.1 DEIM for Residual Approximation

For the problem at hand, at each Newton step, DEIM [21] allows to efficiently
express the residual vector as a linear combination of (possibly few) u-independent
terms so that the m-dependent weights of this combination can be efficiently
computed by solving an interpolation problem. In particular, we project the residual
vector R(Zug\]f) (m); p) onto a low-dimensional subspace spanned by a basis @ €

RN guch that, Vk > 1
R(Zuly (0); 1) ~ Ry (Zu (); p) = RO (Zuy 35
(Zuy (p); 1) m(Zuy” ()); ) ROR(Zuy (1), p) (35)

where 0R(Zu%‘)(u), ) € R™R is a coefficient vector to be determined. In
particular:

 the basis @ can be computed (once for all) by performing POD on a set of
snapshots

Sk = (RZuY ()i i) i=1,....n5,k=1,..}.

To obtain the residual snapshots R(Zug\l,{) (m;); p;), we need to solve the reduced
problem (34) for different values of u and, at each Newton iteration, to store the
computed residual vectors;

¢ the coefficient vector 0R(Zu§\l,c) (), p) can be evaluated for each new value of
i by imposing mg interpolation constraints on a subset p = [©1, ..., Pmg]
of entries of R(Zugl\;) (); m) (the so-called magic points, introduced in [49]),
selected by the DEIM algorithm, see Algorithm 2. For ease of notation, we
introduce the matrix

P= [eb/')l’ ’eb/')mR] c RthmR, (36)
where e, = [0,---,0,1,0,---,0]7 € R is the gp;-th column of the identity
matrix I € RV»*Nu fori =1, .-, mg. The coefficient vector 0R(Zu%‘) (1), )

Algorithm 2 DEIM algorithm (as originally proposed in [21])

INPUT: @ = [¢1 ..... ¢m] € RMi*m made by linearly independent columns
OUTPUT: p = [p1,.-., Om] € R™
: o1 = maxpos{¢1}
@D =[¢],P=1ep]
fork=2,..., m do
Solve (PT @)c = (PT ¢,)
r=¢, — Pc
©x = maxpos{r}
D <[P ¢ P[P eyl
: end for

A
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is then obtained as the solution of
P @ p0r(Zufy (), w) = PTR(Zuy (); p);

PT® ; and PTR(Zug\],C) (1); p) are the restrictions of @ g and R(Zug\l,c) (1); p) to
the subset of indices g, respectively.

The approximation of the reduced residual vector in (34) can be obtained by
projecting (35) onto the reduced space yielding

Z"R2u) () ) ~ 27 @ @7 @ )T PTR@ZuY (0); ) 1= Ry (Z) (w); ).
(37)

All the quantities appearing in (37) which do not depend on p can be precomputed
offline; in the online stage we only need to assemble PTR(Zqu) (m); ), which
is the restriction of the residual to the subset of DEIM nodes. In the FE context,
this restriction can be computed by simply integrating the residual only on the
quadrature points belonging to those mesh elements which provide a non-zero
contribution to the entries g; this set of elements is usually referred to as reduced
mesh [18].

4.3 Jacobian Approximation

An affine approximation of the reduced Jacobian matrix Jy (Zug\lﬁ) (m); m) can
be obtained by relying on either the DEIM algorithm or a MDEIM alternative
technique.

The classical DEIM approach to tackle nonlinear problems (see e.g. [11, 22,
45, 64]) computes the reduced Jacobian Jy (Zwy (1); p), for any wy € RV as
the derivative of the reduced approximated residual vector (i.e. the right-hand side
of (37)),

ORN  (Zwy ()5 1)

=2Tor® o g) P J(Zwy (1); WZ.
BwN

INm(Zwy (1); p) =

(38)

As for the residual vector, we can precompute the p-independent quantities offline,
while online we have to assemble PTJ(Zwy(u); p) € R™r-*Ni_ that is the
restriction of the Jacobian matrix to the rows which correspond to the indices in
. Consequently, we need to assemble online, at each Newton step, a matrix of
dimension mg x Nj, which still depends on the dimension N, of the FE problem,
which is unfeasible when m r becomes large. Note that since the reduced Jacobian
matrix is obtained as the derivative of the reduced residual, DEIM yields the
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application of the exact Newton method (i.e. with the exact reduced Jacobian matrix)
although on an approximated version of problem (34).

When a large number mgr of DEIM terms is obtained, a matrix version of
DEIM (MDEIM) can be employed to perform hyper-reduction of the Jacobian
matrices arising in (34). The idea is to directly approximate the reduced Jacobian
VAR | (Zug\l,{)(u); M)Z by relying on a different basis than the one used for the
residual. This yields a quasi-Newton method since the reduced Jacobian matrix is
not the exact derivative of the reduced residual; nevertheless, since the pu-dependent
Jacobian matrix usually varies in a significantly smaller range compared to the
residual vector, few (much less than m g) terms are required.

MDEIM provides an approximation of the Jacobian matrix J (Zu%‘) (w);, m) €
RN#*Nn ynder the form

mj
JZu (w); ) ~ I (20 (w); ) = > 05 (), (39)
i=1
being {J} € RM>Ni j = 1,...,my} a set of u-independent matrices that

can be computed once for all and 0;(p) = (9}(;1,), e ,9;“ ([L))T a coef-

ficient vector. This approximation is obtained by defining j(Zug\l,c) (wy;, m)y =

vec(J (Zug\l,{) (w); p) € RNI% as the vector obtained by stacking all the columns of

J (Zug\l,c) (m); m), and approximating j(Zug\l,c) (p); p) by its DEIM counterpart

2
J @ () ) ~ 20 () ) = @10, (), By = (... 9" € RN

Then, the matrices J' can be computed transforming each column ¢, € RN of @ J
into a matrix J' € RV*Ni by reverting the vec operation, as J' = vec™!(¢;), so
that J,, (Zug\l,{) (n); p) = vec (i (Zu%‘) (m); p)). The basis @ ; and the coefficient
vector 0 ;(p) are determined following the same procedure used for the residual
vectors, relying on a set of snapshots S; = {J(Zuy;)(p,,-); ), i=1,....ng, k=
1, ...}, evaluated on the reduced solution. Finally, the reduced Jacobian matrix
in (34) can be approximated as

myj
AR (VAN IOV A SOV AR 2 (40)
i=1

4.3.1 Efficient Assembling on a Reduced Mesh

By using DEIM and MDEIM as above, the POD solution-space reduction is first
performed, while the bases associated to the DEIM and MDEIM approximations of
R and J are computed at a later time. The major drawback of this strategy is that
problem (34) must be solved n; times. To avoid this, we can rely on an intermediate
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Algorithm 3 ROM construction (stationary, nonlinear problem)

INPUT: ng combinations of parameters {f1, ..., )
OUTPUT: Z, ¢J, ¢R
fori=1,..., ng do

Solve problem (32) for u;

At each Newton iteration k:

Su < Sy UPMm)L Sy« I[S; veec@U D (u;), p;))]

end for
Z =POD(Sy; ¢), ®; =POD(Sy; ¢y)
fori=1,..., ng do

Solve problem (41) for p;
9: At each Newton iteration k:
10: Sk < Sk RZu§ ™" (1), 1)l
11: end for
12: @ p = POD(Ug; €R).

A O ol e

problem where the Jacobian matrix is replaced by its MDEIM approximation and

the residual is exact: given “5\(/),);11 e RY, at each Newton step we search (Sug\]f’)m e RV,

k > 1 satisfying

my
> 6! W2 Y Zsuy . (w) = ~Z R(Zuy ) (W)

i=1
k k—1
uly, () =ul () + suym ()

(41)

and iterate until ||ZTR(Zu§\],€) (m); w2 < erp. Solving this problem is significantly
faster than solving problem (34), since J is assembled only onto the reduced mesh.
Moreover, problem (41) is very fast to solve since it requires almost the same
effort of the full hyper-reduced problem. The complete procedure for the ROM
construction is reported in Algorithm 3.

S RB Methods for Cardiac Electrophysiology

We now apply the techniques introduced in the previous section to the electrical
problem. The parametrized version of problem (23) reads: given u € 2, V’(x) and
WO([L), foreachn =0, ...,n; — 1 solve

Wi () = W () + AtS(V™ (), W" (i)

Cm Cm T
( ML+ K(m)V”+1 (= "MLV () + MV (), W ().
42)
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A ROM for the monodomain Eq.(42);, exploits the POD technique for the
construction of the reduced space, and on the DEIM technique to approximate the
nonlinear terms. Moreover, we exploit the MDEIM technique to efficiently recover
an affine decomposition for the p-dependent stiffness matrix, and use the DEIM
technique to reduce the computational cost associated to the ionic model (42);.

We consider a vector of physical parameters u € & as in Eq.(16) affecting
the conductivity tensor D = D(u) (and possibly the initial data); this yields
a p-dependent stiffness matrix K(p) € RVi*Ni: in the case we considered a
geometrical parametrization of the domain where the problem is set, also the mass
matrix My, would be p-dependent. Moreover, for the sake of simplicity we do not
consider the case of parameters affecting the ionic terms; see [59] for more about
this subject.

5.1 Monodomain Equation

We rely on the POD-Galerkin method recalled in Sect. 4.1: for each value of u € &7,
we approximate the FE discretization of the potential at time #,, as

Vi) ~ ZeViye(w), n=0,....n, (43)

where Vye(p) € RV denotes the reduced transmembrane potential and Z, denotes
the matrix whose columns span the RB space for the monodomain equation. By
substituting (43) in (23); and projecting the resulting residual onto the reduced space
spanned by the columns of Z,, we obtain the following problem: given u € & and
V?Ve (m), foreachn =0, ...,n;, — 1 solve

C C
T m n+1 _ EMm 5T n
7! (AtML ~|—K(;L)>Z6VN6 W= "ZIMLZN e () w

+ ZIMLIZ Ve (), W ().

Since the matrix ZeTK(u)Ze depends on p, it has to be reassembled for each new
value of u; to avoid this, we replace K(u) by an approximate affine expansion

mg
K(p) ~ ) 0 (WK (45)

i=1

obtained through the MDEIM technique. Here {Ki € RNi*N ,i=1,...,mg} are
a set of p-independent matrices that can be computed once for all and O (1) =
[6 }( (wy, -, 91"(”( ()] a vector of coefficients to be evaluated for any p € £. In
this way, no matter which kind of u-dependence is considered in the expression of
the diffusion tensor (6), the ROM stiffness matrix can be assembled using a set of
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precomputed quantities; in particular, if g also includes the maximum fibers rotation
angle 6,4, the vector defining the fiber direction fo(u) cannot be written under
affine form; see [13]. We point out that K(u) is time-independent, hence it has to
be assembled only once for each value of u; in particular, during the online stage,
we can compute 0 x (1) and the corresponding approximation (45) of K(u) when
selecting a new ., and then use the computed quantities for all time instants.

Using approximation (45), problem (44) becomes: given u € & and V?Ve (),
foreachn =0, ...,n; — 1 solve

C = 1 ¢
[ LML+ Zl Ok (WZ{ KiZe}V’}vt (W) = 3 Ze MLZeViye ()
+ ZIMLIZ Ve (), W ().
(46)

Since the term describing the ionic current is nonlinear, we replace it by its DEIM
. . . . e
approximation. We introduce a basis @; € RV:*"/  and express

L(Zo Ve (1), W () ~ @101 (Viye (), W (). 47)

The basis @; € R has to be precomputed during the offline phase by
performing a POD on a set of snapshots {i(ZeV" (1), wrtl ), i=1,...,ng};
instead, the coefficient vector 8; (V. (1), Wl (n)) € R™ has to be computed
online, by solving the interpolation problem

PId10,(Vie(w), W (n) = PTI(Z Ve (), W (n)), (48)

e . . . .
where PIT = [ep; 1> " €01 1" € RVi*™m1 s the restriction matrix to the set of

DEIM indices g, defined in (36). The DEIM approximation of (47) is thus
L(Z Ve (), W () ~ @1 (PT @) ' PTLZ Ve (), W (). (49)

To obtain the second term of the right hand side of (44) we can simply
project (49) onto the reduced space spanned by Z,, thus getting

ZIMLI(Vie (), W () ~ ZI ML &1 (P] @) PTI(Z Vi (), W' ().
(50)

We point out that the matrices ZL,TML &; € RN>mi gnd PITd)I € R™>™MI can be
precomputed during the offline stage, since they are pu-independent. For the sake of
system approximation, during the online stage we only need to evaluate (only once)
the restriction of I to the indices g, that is, PT1(Z V7. (1), W'+ () € R
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Relying on (50), instead of (44) we thus obtain the following hyper-reduced

monodomain equation: given p € & and V(]{,g (m), foreachn = 0,...,n; — 1
solve
C ISy C
[ o LeMLZe + 3 0} WZK; Ze]v';vtl W= " ZIMLZ Ve (w)

i=1
+7'Mp 0T @) PIIZ Ve (), W ().
(51)

The construction of the reduced basis Z, and the snapshots selection strategy will
be addressed in Sect. 5.3.

5.2 The Full Electrophysiology Problem

In this section we aim at developing an efficient ROM for the full electrical
problem (42), which involves a PDE (monodomain equation) and a system of ODEs
(ionic model). Replacing the second equation of (42) with the ROM (51) derived in
the previous section, we obtain the following problem: given u € & and V(I)ve (m)
and Wo(u), foreachn =0, ...,n; — 1 solve

W () = W () + ArS(V" (), W ()

C < C

[ A EMLZe + ) 0, (W2 K,-Ze}v;@t W= "ZMLZV(r)
i=1

+ZIM @ (P] &) ' PTI(Z Ve (), W' ().

(52)

Since the ODE:s still depend on the high-fidelity approximation of the potential V"
at each time #,, n = 1, ..., n;, we should in principle compute the matrix-vector
product V"' = Z,V’, at each time 7, to evaluate S(V" (), W"(n)) and solve the
ionic model. To avoid this operation, we can again rely on a DEIM approximation.
In fact, we can express the restriction of i(V, W) to the subset of DEIM indices g,

as
PIL(ZViye (), W (1)) = I(Ze Ve (), W ()1, -
=1Z Ve (Wlp,, W ()p,)-

In particular, we observe that in order to solve (52),, only the restriction of the
ionic variables vector W1 (p) to the indices g is required. Hence, (52) becomes:
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given L € 2, V?Ve (n) and Wo(p), foreachn =0, ..., n; — 1 solve

WL ()|, = W (w)lp, + AS(V" (1), W (1)),
C L C
m T ] T +1 _ “MmoT
[At Z, MLZe+_X;e;((u>Ze K,-Ze]v';ve =" ZIMLZ Ve (0
1=
+2IM @1 PT @) HZ Ve Wlp, . WH (0o
(54)

As done in (53) for the ionic current, we write

SOV (), W' ()l p, = SZeVie (), » W' () p,)

so that, exploiting the approximation V" (u) ~ ZeV’;Vg (w), n=0,...,n; — 1, the
hyper-reduced order model for the electrical problem reads as follows: given u € Z,
Vg,g (m) and WO([L), foreachn =0, ...,n, — 1 solve

WL (w)lo, = W), + AS(Ze Ve (W)p, . W ()|p,)

Cm 1 S i T +1 Cm 1
ez MLZe+2;9k(ﬂ)Ze KiZe Vit w = " ZIM 2V
1=
+2IMp @ ®T @) HZ Ve Wlp, . WH (0)p))
(55)

Hence, instead of solving the ODEs (54); for each degree of freedom of Zp, we
compute their solution only at m; nodes, with m; < N; . Indeed, both the ionic
model and the monodomain equation only depend on the restriction of the potential
to the indices g ; in particular, by recalling that

ZNVNe(W)p, =PI Z Ny (R),

we notice that the matrix P; Z. € R™ >N’ can be precomputed offline. Solving the
ODE:s system at each node of the mesh would have been required if the activation
equation underwent a similar reduction procedure and a ROM for the coupled
electromechanical problem was built; see [13] for more on this subject.

5.3 Snapshots Selection Strategy

To build Z, and @ ; we rely on a POD-POD strategy, namely we perform POD with
respect to both the time and the parameter vector. In particular:

* for each parameter value 1, ..., p, randomly chosen in &, we solve the high-
fidelity problem (42) and perform a POD in time to compress the snapshots
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V*(p;), n = 1,...,n;, thus obtaining a basis Z;; finally, we obtain the POD
basis Z, performing a POD on the n bases Zi, ..., Zj,;

regarding the nonlinear term, we collect the snapshots i(ZV';\,e (), wrtl ),
n=1,...,n,i=1,...,ng by solving the following problem: given V?Ve ;)
and Wo(u,-), i=1,...,n5,foreachn =0,...,n, — 1 compute

Wi () = W () + AtS(V* (), W (i)

c UL C
2™z + Y w2 KZ|Vy = " 2 M2V ()
i=1
+ Z"TMLIZ Ve (p), W ()

(56)

and then perform the same POD-POD procedure with respect to time and
parameters as in the previous case; see Algorithm 4.

Here we rely on global reduced bases; considering local bases obtained by

partitioning the snapshot set either with respect to time or the parameters, or,
alternatively, produced by a clustering procedure in the physical space, represents a
further improvement, currently under investigation; see [59] for further details.

Algorithm 4 ROM construction (electrophysiology)

iy
Nk LYo 0

18

A e

INPUT: ng parameter values {§, ..., b Vo(ui), Wo(ui), i=1,..., ng
OUTPUT: Ze, ¢1, ¢K

cfori=1,..., ng do
Sk < [Sk  vec(K(u;))]
forn =0,..., N, — 1do

Solve problem (42) for p;

Sy < [Sv V"]
end for
Z; =POD(Sy, ¢)
: end for
: Z,=POD(Z,, ..., Z,;¢)
. @ x=POD(Sk: emperim), Ki = vee " (@, ), 1=1,..., mg
cfori=1,..., ng do
forn=0,..., N; — 1 do

Solve problem (56) for p;

S; < [S; L@V (), WH(u))]
end for
@; =POD(S;: epEIM)
: end for
: ¢1:POD(¢1 ..... ¢ﬂx; 5DE1M)
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6 RB Methods for Cardiac Mechanics

We now show how to take advantage of the techniques presented in Sect.4 in
order to build a ROM for the mechanical problem. This latter is a time-driven
problem, since its solution depends on time only through its coupling with the
electrophysiology model, which is intrinsically unsteady. Relying on the RB method
provides a twofold advantage, since the problem has to be solved not only for
different parameters, but also at several time instants.

The parametrized version of problem (28) reads: given UD(t,: ) = Ulty_1; ),
forn=1,..., Ny, N; = T/Aty, for k > 1 solve:

:J(U“‘“(tn, 1; G ()8U (s k) = —RUCD (15 0); G(w), 57

U (1,5 ) = U D (1,5 ) + 8U (103 1),

until |[ROUC=D(,; p); Glf (w)|l2 < e, where k is the index of the Newton
iterations, #,, denotes the time instant which the mechanical problem is computed
at,andl = (n + 1)D — 1, with D = At,,/At,. Here we also have made the
dependence on the (discrete representation of the) fibers shortening G f; recall that
the time stepping for this latter variable follows the one of the electrical problem.

For the mechanical problem, time is instead considered as an additional param-
eter, although with peculiar features. Indeed, as we are not interested in solving
problem (57) for generic values of ¢ selected online, we use the same time step
At,, in both the offline and online stages; in particular, online we solve the reduced
problem associated with (57) only in the time instants of the form 7, = n At,, used
during the offline stage for the snapshots computation.

6.1 Jacobian Approximation by the Broyden Method

When dealing with time dependent (and/or large scale) problems, (M)DEIM might
be not efficient enough to guarantee a rapid approximation of the Jacobian matrix
during the online phase. In particular, the classical DEIM technique (see Sect.4.3)
provides moderate computational speed-up when dealing with nonlinear problems
which require a large number of terms mg. On the other hand, MDEIM may
require an overwhelming amount of CPU time and memory to store the snapshots
JUU*=Dq,. n); Glf(p,i)), and to build the basis @ ; during the offline phase. For
these reasons, a possible alternative to approximate the reduced Jacobian matrix (38)
is to rely on a purely algebraic technique such as the Broyden method [16],
developed to effectively approximate the Jacobian matrix when its analytic form
is unknown, or it is too expensive to compute. This approach has been applied for
the reduction of nonlinear structural problems in [71] and further improved in [13].
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This yields the following hyper-reduced order model for the mechanical problem:

foreacht,,n =1,..., N;, given “Ev)m (ty; p), for k > 1 solve:

!JN(u(k) (tn: 1): Gl ()SUY (1 1) = —Ry  (Zuly), (1 p): G (),

N;U(tn; n = uN)m (tn; w) + SHN)m (tn; w),
(58)

and iterate until || Ry, m(ZuN m(tn, n); G ([L))||2 < egp;asin (57), herel = (n +
1)D — 1. We underline that the high- ﬁdehty approximation of the fibers shortening
variable Gy is considered, that is, we do not deal in this work with the reduction of
the coupled electro-mechanical problem; rather, we focus on the efficient reduction
of the mechanical problem only.

At each Newton step, the Broyden approximation of the reduced Jacobian matrix
is computed as

I ¢ (tn; ) =1J ((k l)(;j ))_i_ARN*’" JN(“(k l)(fn,ﬂ))AuNmA_T
u : u : ] |
N Uy Uns I N n; L AUN’mAuN’m .
(59
where
R © s ) (k 1)
ARN,m = RN,m(leN’m (tys )i ty, m) — RN m(Zu (tn: J0); o ft)
and

_ k—1
Au;vm—uN)m(tn,ﬂ) uﬁ\,m)(tn;ﬂ)-

The method is based on a rank-one update of the Jacobian matrix J& N (u(k) (tw; ));
indeed, the second term of the right hand side of (59) is a rank one matrix since
every column is a scalar multiple of Aﬁﬁ’m, and only require simple operations
between vectors of dimension N. Therefore, at the online stage each Newton step
only requires a residual assembling, since the update of the reduced Jacobian matrix
and the solution of the low dimensional linear system are extremely fast. On the
other hand, the initialization of the Jacobian matrix J% N (u(o) (tn; 1); Y (tn, p)) at
step k = O represents a critical aspect of the Broyden technique. To provide a
suitable approximation of the exact Jacobian matrix, we consider a finite difference
approximation of the form

©) ()
_ Ry Z(uyy, (s p) + n€i))]j — [Ry m(Zay (0 w))]
(35 @, (s )i, = ) :
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where e; is the i-th column of the identity matrix and n € R is a coefficient to be
properly chosen (here we take n = 107>). 7 shall be small enough to guarantee an
accurate approximation of the derivatives, however an excessively small value may
lead to undesired cancellation errors. Note that the initialization requires to assemble
online N times the residual vector—an affordable operation if N is relatively
small. Instead, if N > mpg, relying on DEIM to initialize the Jacobian matrix
is more convenient than the finite difference approximation. In general, problems
characterized by a large dimension of the reduced space N can be efficiently reduced
exploiting the MDEIM technique, provided a small number m; of terms can be
selected to accurately approximate the Jacobian matrix.

We close this section by pointing out that, during the online stage, only the
reduced basis Z and a DEIM basis @ g for the residual approximation are required.
To build this latter, we rely on a strategy similar to the one described in Sect. 4.3.1,
introducing the following intermediate problem similar to (41): for each t,, n =
0,..., N, given ug\(,))(tn; ) € R¥ for k > 1 solve:

(60)
uly " (s ) = 0 (s ) + Suly (s ),

!jg @yt w): G ()ou (tn; p) = —~ZTR(Zu (1; p): G (w)),
and iterate until ||ZTR(Zu%‘) (tw; 1); G’f(u))llg < ERB.

Precisely, we first solve the high-fidelity problem (28) n, times to compute the
reduced basis Z; then, we solve (60) to store the residual snapshots R(Zug\]f) (th; 1))
needed to build the DEIM basis @ . Problem (60); is an inexact Newton step,
for which the Jacobian matrix J f\;, is approximated through the Broyden technique,
however relying on the projection of the high-fidelity residual onto the RB space—
rather than on the reduced residual, as in (59). Solving (60) is significantly faster
than solving (28) since the only operation to perform is the assembling of the high-
fidelity residual.The full snapshots selection procedure is summarized in the next
section (see Algorithm 5).

6.2 Local-in-Time Reduced Basis

If the w-dependent solution of a non stationary problem significantly varies
throughout the time interval [0, T'], describing the whole set of solutions for u € &
may require a large number of RB functions and, in particular, a large number
of terms mpg when considering nonlinear problems where the residual vector is
approximated by DEIM. To overcome this issue, we build local-in-time bases
of smaller dimension, instead than a unique (larger) global basis on [0, T'], thus
yielding a strong reduction in terms of online computational time, still retaining the
same cost during the offline stage. In particular, we split the full time interval [0, T]



150 A. Manzoni et al.

Algorithm 5 ROM construction (mechanics)

INPUT: ng combinations of parameters {#y, ..., i, }, np time subintervals {/y, ..., I,}
OUTPUT: Z°, ®%, @ (only for MDEIM), s = 1,...,n,

1: fori =1,...,n5;do

2: fors=1,...,n,do

3: for ¢, € 7, do

4: Solve problem (57) for t,,, p;

5: At each Newton step k: Sy < [Sy UM (1,: i)l

6: At each Newton step k: S; < [S;  vec(J(UX (¢,; p;)))] (only for MDEIM)
7. end for

8: 75 =POD(Sy;e); @° « [@° ZM];  delete [Sy]

9: @' =POD(S;;¢); @Y « [@% @'°] (only for MDEIM);  delete [S,]
10: end for
11: end for
12: fors =1,...,n; do
13:  Z* =POD(®%; ¢)

14: @% < POD(®%; ¢) (only for MDEIM)

15: end for

16: fori =1,...,n, do

17: fors =1,...,n,do

18: for ¢, € 7; do

19: Solve problem (41) (for MDEIM) or (60) (for Broyden) for t,,, p;
20: At each Newton step k: Sg < [Sg RUM(,; i)l
21: end for )
22: ¢’1’§ =POD(Sg;e), @% < [P} ¢'1’;]; delete [Sgr]
23: end for
24: end for
25: fors =1,...,n; do
26: @}, < POD(®%; &)
27: end for

into nj subintervals
Il = [Os Tl]v 12 = [Tlv T2]7 ] Inb = [Tnbflv T]

and we build different bases on each subinterval. In particular, we compute np set
of bases {Z*, %}, s = 1,...,np (and @’ if using MDEIM), and each basis
associated to the s-th interval is obtained by performing the POD only on the set
of snapshots related to Iy = [Ts—1, T§].

We remark that the mechanical problem is solved in correspondence of evenly
spaced time instants {#, 2’;0, whereas the new partition in subintervals /; is not
necessarily uniform. This means that, denoting by ty = {#, |, € I}, the number of
elements of 75 can be different from the number of elements of 7, when s # r; in
particular, larger subintervals I; are taken if the solution features a small variability
in time, while narrow subintervals where the solution rapidly changes. The choice
of number and width of the different subintervals is not trivial and multiple options
can be considered. Here, we opt for an heuristic choice of the subintervals I, s =
1, ..., np; a more-in-depth investigation is required in this respect. More general
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strategies to obtain multiple, local bases have been proposed in the literature; see
e.g. [5, 85] for the use of proper clustering algorithms. They require to compute
and store the solution snapshots, when varying time and parameters, and then to
apply a clustering algorithm in order to build different bases, one for each cluster.
While guaranteeing a satisfactory accuracy, snapshots storage can be quite large.
Promising results in the case of cardiac electrophysiology can be found in [59].

The local-in-time basis approach combined with a POD-POD strategy allows
to avoid the storage of all snapshots. Following this approach, for each u;, i =
1,...,ns, we perform a full time-driven simulation and we store separately the
snapshots u® (tn; p;) associated with the subintervals Is, s = 1, ..., np. Then, for
each subinterval I;, we apply the POD algorithm to the local snapshots U®) (1,,; u;),
tn € I, obtaining the POD bases Z*. Once we have performed the high-fidelity
simulations for all p; and we have computed all the POD bases, we build our final
bases for each subinterval /; as:

Z°' = POD(Z,¢).

A schematic representation of the method is reported in Fig. 3. The same procedure
is used also to build @ and, if required, @%. In this way, different snapshots can
be computed simultaneously; at the end of each simulation, we can only retain the
POD bases {Z"*, di’ks, diijs}, thus saving significant memory resources.

to h Iy, T
e T ]
C My \ _____________________________________________
P| | i
U ’ i | Solve problem (1.57) Solve problem (1.57) |
— M ! for 1, € Iy for 1, € Iy, |
- Sy Sy UM (t;))] Sy« [Sy U0 ()| !
cl M ! !
L oo
Pl Z'' = POD (Sy:e) Z'™ = POD (Sy:€)
Ul u
L1 Ho )
C | O W‘
|
p : | Solve problem (1.57) Solve problem (1.57) |
U u' : for t, %)11 for t, € I, :
1Y m\: Su« [Su UM (tsp,,)] Su Sy UM (t,:p,,)] 3
|

Fig. 3 Flowchart of the POD-POD procedure combined with local-in-time bases to compute the

basesZ5,s =1, .

7! = POD (Sy;€)
I

(pl — [Z].]’“"Zﬂﬁl}
Z' =POD (@';¢)

.., np, of the reduced space

2" = POD (Sy;€)
I

P — [Zl‘””7 . .Z”vﬂh]
Z" = POD (& ¢)
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The procedure described above has to be integrated with the generation of
snapshots (and bases) to approximate residual vectors and Jacobian matrices; in
particular, we split in two different stages the construction of {Z*, @% } and @%. The
full procedure is described in Algorithm 5 in the case either MDEIM or Broyden
approximations are considered.

7 Numerical Results

We apply the strategies described in the previous sections for the reduction of an
electrical and a mechanical problem, both solved on a patient-specific left ventricle
geometry, by focusing on the systolic phase of the heart beat. This geometry was
generated from medical images using the semi-automatic segmentation method
proposed in [34]. Fibers and sheets have been computed according to the algorithm
proposed in [74]; this procedure is based on the assumption that sheets are lying
along the radial direction sp and requires the solution of a Laplace problem over the
ventricular domain to compute the sheets direction.

We rely on two different computational meshes: %1, with 248,216 elements
and N; = 45,817 dofs for the electrical problem and .7, with 31,027 elements
and N, = 18,567 dofs for the mechanics. In Fig.4 we show the two meshes, as
well as the fibers distribution computed using the algorithm proposed in [74] with
maximum fibers orientation on the epicardium and endocardium of 6,,; = —60°
and 6,,,4, = 60°, respectively. For both problems we consider as high-fidelity full-
order model (FOM) the approximation obtained with linear (P1) finite elements.
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Fig. 4 Computational grids adopted for the electrical problem (left) and the mechanical problem
(center); fibers orientation (right)
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7.1 Test Case 1: Electrophysiology

In the case of the electrophysiology problem, the parameters that we consider are
those representing the electrical conductivities:

e op€[30k2 ' em™!,80k27 L em ™1,
s oy =0, €[10k2 Lem™,30k2 L em™1].

in the fibers direction (0 f) and in the plane orthogonal to the former (o5 = 0;,), see
Eq. (6). For the time discretization of the monodomain equation and the ionic model
we employ a time step Af, = 0.02ms. The depolarization wave is initialized on a
layer in the bottom part of the endocardium; this choice is motivated by the fact that
the Purkinje fibers terminations are mainly located near the apex of the ventricle.

By employing the POD-Galerkin method with DEIM/MDEIM approximations
for the nonlinear ionic terms/parametrized diffusion matrix described in Sect.5
we reduce the two-way coupled electrical problem (42), which involves a PDE
(monodomain equation) and a system of ODEs (ionic model). The proposed ROM
yields a speed-up of more than one order of magnitude, since it takes about 0.01 s for
each time step, while the FOM takes 0.12 s. The RB solutions have been computed
using N, = 217 basis functions for the solution and m; = 363 DEIM terms to
approximate the ionic currents, as specified in Table 2. Provided a sufficient number
of basis functions N,, m is considered, the front propagation captured by the ROM
is similar to the one obtained with the FOM. However, depending on the chosen
parametrization, this achievement might be more difficult to obtain; for instance,
if parameters describe local variations of tissue properties (such as, for instance,
the presence of a scar) the behavior of the solution is much more involved, thus
requiring a larger number of basis functions to reach a good accuracy.

A comparison between the high-fidelity and the reduced solutions is reported in
Fig.5, where we observe that the two models provide very similar results from a
qualitative point of view. The average relative error between the ROM and the FOM
is shown in Fig. 6 for three different values of m; and is about 5%. The error has
been computed over a test set of 50 randomly chosen parameters different than the
values of the training sample used to compute the snapshots.

Moreover, we report in Fig. 7 the activation maps obtained for different parameter
values. The electrical signal first activates the central area of the epicardium, then
it spreads towards the apex and finally reaches the base. As expected, the duration

Table 2 Test case 1: numerical data

POD tolerances 10-4/5.107! RB dofs 217
DEIM tolerances 10-4/5.107! MDEIM tolerance 10-10
DEIM terms 363 MDEIM terms 5

FE time ionic model 0.022 RB time ionic model 0.001 s
FE time monodomain 0.09s RB time monodomain 0.0085 s

FE time 0.12s RB time 0.01s



154 A. Manzoni et al.

111-FOM

#11-ROM

112-FOM

j12-ROM

t=10ms t = 20ms t = 30ms t = 40ms t = 50ms I

Fig. 5 Test case 1: FOM and ROM solutions computed at different time instants for w3 = [30, 10]
and py = [80, 30]
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Fig. 6 Test case 1: average L2(0, T; H'(£20)) relative error between FOM and ROM solutions

of the depolarization phase is longer if electrical conductivities are smaller. The
depolarization time as a function of o is reported in Fig. 8.
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Fig. 7 Test case 1: activation maps for uy1 = [30, 10], up = [45, 10], p3 = [65,30] and ug4 =
[80, 30]
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Fig. 8 Test case 1: whole depolarization times (ms) when varying o, considering oy = 0, = 20

7.2 Test Case 2: Mechanics

We now turn to the reduction of the mechanical problem, recalling that for the case
at hand, the electromechanical coupling is not included in the ROM—that is, for
each parameter value queried online we rely on the FOM approximation of the
electrophysiology model and, in particular, of the fibers’ shortening variable.

We consider as parameters the electrical conductivities (similarly to test case 1)
and the orientation of the fibers:

e o5 €[30k2 ' em™!,80k2 L em ™,

o oy =0, €[10k2 Y em™,30k2 " em™1;
* Opax € [30°,80°];

t € [0, 100ms].

Time can be seen as an additional parameter, since the problem is quasi-static, and
needs to be solved at different time steps. In particular, we split the [0, 100 ms],
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corresponding to the systolic phase of the heart beat, into n, = 4 subintervals:
[0,30ms], [30ms, 60ms], [60ms, 90 ms], [90 ms, 100 ms]. Such a partition is
introduced heuristically, taking into account the fact that the solution changes very
rapidly during the last part of the systole; for this reason the last interval is smaller
than the others. We consider a time step A#, = 0.02 ms for the time discretization of
the electrical problem, and time instants equispaced with A,, = 3 ms for ¢ € [0, 90)
and A, = 0.5ms for ¢ € [90, 100] for the mechanical problem. This latter is then
solved, for different parameter values, at these time instants.

In Figs.9 and 10 we show the displacement of the myocardium obtained with
the FOM and the ROM on the whole ventricle and on a longitudinal section for two
different parameters.

Employing the POD-Galerkin method with DEIM/Broyden approximations for
the residual vector and the Jacobian matrix described in Sect. 6 we obtain also in the
case of the mechanical problem even more promising results: the proposed ROM
yields a speed-up of about 20, since the ROM takes about 20s while the FOM
requires 7 min for each solution of the mechanical problem at a single time instant,
on a single-core processor. In particular, the Broyden technique turns out to be really
appropriate since to efficiently reduce the cardiac mechanical problem we have to
choose mp significantly bigger than N.

The proposed ROM correctly captures the high-fidelity solution, as it can be seen
also from the behavior of the average relative error shown in Fig. 11; the difference

p1-FOM

p1-ROM

1o-FOM

p2-ROM

t =0ms t = 30ms t = 60ms t=90ms t = 100ms ol

Fig. 9 Test case 2: displacement at different time instants, u; = [60, 10, 78°] (first two rows),
o = [80, 30, 34°] (last two rows), obtained with the FOM and the ROM
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Fig. 10 Test case 2: section of the ventricle at different time instants, w; = [60, 10, 78°] (first two
rows), m, = [80, 30, 34°] (last two rows), obtained with the FOM and the ROM

0.038
0.036
0.034

0.032

0.03

0.028

0.026

0.024

0.022

\ \ \ \ \ b
16 18 20 22 24

N

®
-
o
-
)
-
N

Fig. 11 Test case 2: average L2(0, T; H'(£20)) relative error

between the FOM and the ROM solutions is about 2%. Numerical data associated
to this test case are reported in Table 3.

We show in Fig. 12 the variation of the volume inside the ventricular cavity for
different values of 6,4, and oy. In particular, the cases oy = 60, oy = 0, = 20
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Table 3 Test case 2: numerical data

POD tolerances 1073 - 0.05 RB dofs 22
Residual DEIM tolerances 107 — 1072 Residual DEIM terms 72
Newton iterations 8 Newton tolerance 1077
FE time residual assembling 4s RB time residual assembling 0.525
FE time Tmin RB time 20s

Internal Volume Internal Volume

V (mL)
V (mL)

40 40
0 20 40 60 80 100 0 20 40 60 80 100

t (ms) t (ms)

Fig. 12 Test case 2: internal volume variation when varying 6,4, (left) and oy (right)
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Fig. 13 Test case 2: ejection fraction and ventricular shortening as functions of o'y and 6;4x

(left) and 6,4, = 60°, oy = 0, = 20 (right) have been considered. The associated
ejection fraction has been reported in Fig. 13, where also the ventricular shortening
is shown. These analyses have been carried out by varying 6,,,x and o since oy
and o, have a moderate effect on the solution. The quantity of blood ejected by
the ventricle is larger when 6,4, and oy assume large values. On the contrary,
shortening is higher when considering small values of 6,,,,. This behavior appears
counterintuitive since we may expect that higher shortening corresponds to higher
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Fig. 14 Displacement of the myocardium for 6,,,x = 30° (up) and 6,4, = 80°

ejection fraction. To explain this phenomenon, we report in Fig. 14 the displacement
of the muscle for two different values of 6,,,,: even if for 6,,,, = 80° the shortening
is smaller, the cavity is more shrunk due to a larger wall thickening.

The model is able to reproduce the wall thickening and the ventricular shortening
of the heart contraction. In particular, we obtain a ventricular shortening ranging
from 13% to 23%, coherent with physiological values. The ejection fraction, usually
measured by an echocardiogram, varies between 50% and 55% in healthy patients.

8 Challenges and Perspectives

The proper integration of several techniques to perform both solution-space reduc-
tion (Galerkin-POD method) and system approximation (DEIM/MDEIM or, alter-
natively to this latter, Broyden approximation) has enabled the application of
the reduced basis method for parametrized PDEs to problems arising in car-
diac electromechanics. Cardiac electrophysiology and mechanics problems pose
several challenges to ROM techniques, because of their complex, nonlinear, mul-
tiscale (both in space and time) nature; moreover, parameter dependence might be
extremely involved, for instance when aiming at describing subject-specific clinical
data and exploring inter-patient variability. On the other hand, ROM techniques
provide a unique opportunity to solve relevant problems related with data-model
integration, such as model calibration, uncertainty characterization and propagation,
parameter identification and inverse problems, data assimilation.

All these problems are of primary importance in order to translate mathematical
models into clinical care. Quantitative insights coming from the repeated solution
of electrophysiology corresponding to different values of material parameter could
provide better understanding of heart (mis)functionality; parameter identification
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has potential to improve the diagnosis of cardiovascular diseases; model calibration
may be beneficial to develop therapies tailored to the subject characteristics. All
these problems would be computationally unaffordable when relied only on high-
fidelity techniques, aiming at considering variability of geometries, a wide number
of scenarios to explore, and several parameters to deal with.

The roadmap to make ROM techniques even more efficient to tackle these
challenging problems needs to address several bottlenecks. Among these, we
mention those which, in our opinion, are the most relevant:

1. local ROMs. Using a global reduced basis for the whole parameter set and
the whole time interval can be an extremely limiting approach. For instance,
if the solution shows moving fronts and this latter is highly sensible with
respect to parameter variations (as it might happen in the case of cardiac elec-
trophysiology), applying the standard ROM techniques can become unfeasible.
Local-in-time bases, as shown in this paper, can partially cure this problem,
however more general and robust techniques to build local ROMs are required.
As shown in [59, 60], a k-means clustering in the state space of the snapshots for
both the solution and the nonlinear term can be a viable strategy to overcome this
bottleneck;

2. time behavior. So far, POD has been applied also with respect to the time
independent variable, to compress information carried by a set of solution
snapshots computed at different time steps, no matter which is the time behavior
characterizing the problem. In general, however, reduction of parametrized PDEs
becomes much more difficult when passing from elliptic (or dissipative time-
dependent) to hyperbolic problems (for instance pure transport equations). More
ad-hoc strategies, able for instance to detect time invariances, or to track traveling
waves, should be considered in the case of cardiac electrophysiology, because of
the sharpness of the front and its extremely rapid dynamics;

3. coupled and multiphysics problems. Designing efficient ROMs (either monolithic
or segregated) to couple different problems, such as cardiac electrophysiology
and mechanics, is still an open issue, and almost untouched in the field of
cardiovascular applications; preliminary investigations on the electromechanical
case can be found in [13]. In this latter work it is also shown a possible strategy
to realize a fully coupled electromechanical problem by including the mechano-
electrical feedback only during the online stage, and relying on different ROMs
for the two subproblems; Similarly, in this work the choice of using the
monodomain model is performed. Such a model is adequate in physiological
conditions, however the richer—but more complicated—bidomain model is
required for treating some pathological conditions. The methods described in
the previous sections can also apply to the bidomain model, however entailing
an extra burden from a computational standpoint, because of the presence of two
fields to be computed, and the different overall nature of the PDEs system.

4. multiscale problems. The multiscale nature of the electromechanical model
should be properly taken into account in a ROM aiming at describing multiple
behaviors at different scales. Among the mentioned open problems, this is by
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far the most involved one, because of the intrinsic difficulty of the models at
the cellular scale. Several extensions of the RB method to multiscale problems
showing highly oscillating coefficients have been considered in the last decade,
however only focusing on elliptic problems [1, 2, 40, 57]. When applied to
these problems, the RB method enables to speed up a large number of similar
computations on the fine local mesh for each new realization of the coefficient;
its application to complex nonlinear materials, however, is still completely open.

. multi-fidelity problems. In view of exploiting reduced order modeling techniques

to solve uncertainty quantification problems, the use of models characterized by
different fidelities is also foreseen. Following, e.g., the approach relying on multi-
fidelity sampling and a Bayesian formulation proposed in [12], information from
an approximate, low-fidelity model can be rigorously exploited and incorporated
to perform output evaluations, estimates on their variability and, ultimately,
parameter studies. In this respect, the eikonal model and a recently proposed
reaction-eikonal source model [56], this latter offering the computational advan-
tages of the eikonal model while preserving the full biophysical details of
a computationally costly reaction-diffusion model, could be considered as an
extremely cheap, yet detailed, low-fidelity model.

The investigation and development of reliable and efficient reduced-order model-

ing techniques is a very active field of numerical analysis and scientific computing;
with no doubt, cardiovascular applications represent one of the most challenging
and significant environments.
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