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Preface

This book is dedicated to the outstanding career of Piero Colli Franzone, one of
the founders of the field of computational electrocardiology. Piero graduated in
mathematics from the University of Pavia in 1969. He subsequently became a
researcher at the Institute of Numerical Analysis of the National Research Council
(CNR) in Pavia (1971–1973), Associated Professor of Mathematical Analysis at the
University of Pavia (1973–1981), and Full Professor of Numerical Analysis, first at
the University of Udine (1981–1983) and then at the University of Pavia (1983–
2016), where he is now Professor Emeritus. During his career, Piero has made
pioneering contributions in the field of the inverse problem of electrocardiology,
in the development of eikonal models for the propagation of electrical signals in
cardiac tissue, in the development of an anisotropic source model for the simulation
of electrocardiograms, and more recently in the modeling of cardiac mechanics and
electromechanical coupling.

Although Piero’s works have mainly focused on computational cardiac electro-
physiology and mechanics, this book also contains contributions on the modeling
and simulation of the entire cardiovascular system. The increasing use of numerical
models and methods in the field of diagnosis/prognosis/therapy of cardiovascular
diseases (the main cause of death in Western countries) is considered very important
and increasingly appreciated by the scientific and medical community. However,
its penetration into clinical practice is slowed by various cultural factors and
methodological challenges, in particular by the high computational cost of the
complex mathematical, multiscale, and nonlinear models used in computational
cardiology.

The quantitative description of cardiovascular activity is based on the construc-
tion, analysis, and simulation of models of both the heart and the circulatory system.
Cardiac models are composed of nonlinear multiphysical submodels that describe
the three main components (electrophysiology, mechanics, and hemodynamics) of
cardiac activity, with spatial and temporal scales very different from each other and
with specific computational difficulties. The bioelectric models are based on systems
of partial and ordinary differential equations that include both the microscopic
models of the membrane ionic channels and the macroscopic cardiac models
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vi Preface

(bidomain, monodomain, and eikonal models). The mechanical models are based
on nonlinear orthotropic elastic models for the large deformations of the almost
incompressible cardiac tissue and active tension models for the generation of the
myocyte contraction. The hemodynamic models are based on the equations of
incompressible fluid dynamics in moving domains for blood flow in the cardiac
chambers and in the vascular system. Another important process which is described
by the interaction between fluid and structures is given by the cardiac valve
modeling.

The numerical simulation of these complex multiscale models coupled together
by various reaction and feedback terms is very intense, and several aspects are
still problematic. The integrated simulation of the three main cardiac phases
(bioelectrical, mechanical, and fluid dynamical) is currently a very competitive goal:
several leading research groups in the world are working intensively toward this
goal, which, if reached in the next few years, could have a major impact on our basic
scientific knowledge (regarding cardiac arrhythmogenesis, myocardial infarction,
ischemia, heart failure, valve pathologies, etc.), on health technologies, and on the
design and development of new biomedical devices.

This volume contains selected invited papers from the conference “Mathematical
and Numerical Modeling of the Cardiovascular System and Applications,” held
at the Aula Volta of the University of Pavia, Italy, on February 21–22, 2017
(http://matematica.unipv.it/pieroconference/), which was also the final workshop of
the PRIN Project (funded by the Italian government) 2012HBLYE4 “Metodolo-
gie Innovative nella Modellistica Differenziale Numerica” coordinated by Alfio
Quarteroni. The conference comprised contributions from recognized international
experts in diverse fields of cardiovascular modeling and simulation. The event was
sponsored by the Department of Mathematics of the Universities of Pavia and Milan,
SISSA, the Polytechnic of Milan, the MIUR Grants PRIN 201289A4LX, PRIN
2012HBLYE4, the INdAM Grant Project GNCS 2017, and the Progetto Cariplo-
Regione Lombardia: Problemi variazionali di evoluzione e trasporto ottimo.

The first chapter, entitled “A Distributed Lagrange Formulation of the Finite
Element Immersed Boundary Method for Fluids Interacting with Compressible
Solids” and coauthored by Daniele Boffi, Lucia Gastaldi, and Luca Heltai, reports
on recent advances in the modeling and the numerical approximation of fluids
interacting with compressible solids. A version of the Finite Element Immersed
Boundary Method is presented which is based on a new variational formulation,
thanks to the introduction of a distributed Lagrange multiplier. Stability estimates
and numerical validation are included.

The second chapter, entitled “High-Order Operator-Splitting Methods for the
Bidomain and Monodomain Models” and coauthored by Jessica Cervi and Ray-
mond J. Spiteri, focuses on high-order operator splitting methods for the reaction-
diffusion systems of computational electrocardiology. The methods considered are
third and fourth order accurate and are based on use of a combination of explicit and
implicit Runge–Kutta schemes. Numerical tests in one and three spatial dimensions
and employing both simplified and detailed ionic models are performed to assess
the accuracy of the methods.

http://matematica.unipv.it/pieroconference/
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The third chapter, entitled “Electro-mechanical Modeling and Simulation of
Reentry Phenomena in the Presence of Myocardial Infarction” and coauthored by
Piero Colli Franzone, Luca F. Pavarino, and Simone Scacchi, presents a review of
the cardiac electromechanical coupling models and of the numerical methods for
their discretizations. It then reports the results of numerical simulations focusing on
the genesis of reentrant arrhythmias in the presence of infarct scars.

The fourth chapter, entitled “Ergotropic Effect in Cardiac Tissue After Electro-
magnetic and β-Adrenergic Stimulus” and coauthored by Lorenzo Fassina, Marisa
Cornacchione, Maria E. Mognaschi, Giovanni Magenes, and Fabio Naro, demon-
strates ergotropic effects in murine ventricular cardiomyocytes after electromagnetic
field and/or isoproterenol stimulation by means of an innovative image processing
technique. The study adds important and significant findings with regard to the
structure–function relationship in spontaneously beating primary cultures of murine
cardiomyocytes.

The fifth chapter, entitled “Role of Electrotonic Current in Excitable Cells” and
coauthored by Emilio Macchi, Ezio Musso, and Stefano Rossi, provides a thorough
overview of our understanding of electrotonic current in excitable cells. After a short
introduction, the authors go through cable models of conduction, electrotonic cur-
rents and potentials, subthreshold current injection, the stimulation threshold, and
propagating action potentials. Finally, the authors discuss electrotonic modulation
of repolarization by the activation sequence and present some experimental evidence
of acute modulation of the activation-recovery interval and the effective refractory
period at a test site during ventricular drive and sinus rhythm in the normal rat heart.

The sixth chapter, entitled “Reduced Order Modeling for Cardiac Electro-
physiology and Mechanics: New Methodologies, Challenges & Perspectives” and
coauthored by Andrea Manzoni, Diana Bonomi, and Alfio Quarteroni, presents an
extensive and detailed description of POD-Galerkin methods developed to speed up
the solution of parametric coupled electromechanical problems arising in cardiac
electrophysiology. In the first part, the authors introduce the models used to describe
the electrophysiology and the mechanics of living tissues. Then, after presenting the
full-order discretization and reduced-order techniques, they detail the methods used
to tackle the challenges of the system considered and the numerical experiments.

The seventh chapter, entitled “Aortic Endovascular Surgery” and coauthored by
M. Conti, S. Morganti, A. Finotello, R.M. Romarowski, A. Reali, and F. Auricchio,
reports on the use of computer simulations to support two of the most routinely
performed endovascular procedures: thoracic endovascular aortic repair (TEVAR)
and transcatheter aortic valve implantation (TAVI). The authors report a short review
of simulations (structural for TEVAR and both structural and fluid dynamics for
TAVI) and then present two examples of applications.

The eighth chapter, entitled “Combined Parameter and Model Reduction of
Cardiovascular Problems by Means of Active Subspaces and POD-Galerkin Meth-
ods” and coauthored by Marco Tezzele, Francesco Ballarin, and Gianluigi Rozza,
deals with a first example of combination of a priori geometrical parameter space
reduction carried out by the active subspace approach combined with a classic
computational reduction method for blood flows, based on the POD-Galerkin
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technique, and applied over a parametrized shape of a patient-specific carotid artery
bifurcation. This model problem could be seen as a proof of concept for future, more
involved, applications in blood flows.

The ninth chapter, entitled “Extended Finite Elements Method for Fluid-
Structure Interaction with an Immersed Thick Non-Linear Structure” and coau-
thored by Christian Vergara and Stefano Zonca, first introduces an overview of
extended finite element methods for general interfaces and heterogeneous coupled
problems. Then, it addresses the fluid-structure interaction problem for a thick
immersed structure whose thickness is, however, often smaller than the fluid mesh
characteristic size. In particular, the authors proposed an inexact Newton method
to handle the case of a nonlinear structure described by finite elasticity. Finally, the
chapter presents some numerical 3D results.

Pavia, Italy Daniele Boffi
Pavia, Italy Luca F. Pavarino
Trieste, Italy Gianluigi Rozza
Milano, Italy Simone Scacchi
Milano, Italy Christian Vergara
Giugno 2018
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A Distributed Lagrange Formulation
of the Finite Element Immersed
Boundary Method for Fluids Interacting
with Compressible Solids

Daniele Boffi, Lucia Gastaldi, and Luca Heltai

Abstract We present a distributed Lagrange multiplier formulation of the Finite
Element Immersed Boundary Method to couple incompressible fluids with com-
pressible solids. This is a generalization of the formulation presented in Heltai and
Costanzo (Comput. Methods Appl. Mech. Eng. 229/232:110–127, 2012), that offers
a cleaner variational formulation, thanks to the introduction of distributed Lagrange
multipliers, that act as intermediary between the fluid and solid equations, keeping
the two formulation mostly separated. Stability estimates and a brief numerical
validation are presented.

1 Introduction

Fluid-structure interaction (FSI) problems are everywhere in engineering and
biological applications, and are often too complex to be solved analytically.

Well established techniques, like the Arbitrary Lagrangian Eulerian (ALE)
framework [9], enable the numerical simulation of FSI problems by coupling
computational fluid dynamics (CFD) and computational structural dynamics (CSD),
through the introduction of a deformable fluid grid, whose movement at the interface
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2 D. Boffi et al.

is driven by the coupling with the CSD simulation, while the interior is deformed
arbitrarily, according to some smooth deformation operator.

Although this technique has reached a great level of robustness, whenever
changes of topologies are present in the physics of the problem, or when freely
floating objects (possibly rotating) are considered, a deforming fluid grid that
follows the solid may no longer be a feasible solution strategy.

The Immersed Boundary Method (IBM), introduced by Peskin in the seven-
ties [10] to simulate the interaction of blood flow with heart valves, addressed this
issue by reformulating the coupled FSI problem as a “reinforced fluid” problem,
where the CFD system is solved everywhere (including in the regions occupied
by the solid), and the presence of the solid is taken into account in the fluid as a
(singular) source term (see [11] for a review).

In the original IBM, the body forces expressing the FSI are determined by
modeling the solid body as a network of elastic fibers with a contractile element,
where each point of the fiber acts as a singular force field (a Dirac delta distribution)
on the fluid.

Finite element variants of the IBM were first proposed, almost simultaneously,
by [2, 15], and [16]. However, only [2] exploited the variational definition of the
Dirac delta distribution directly in the finite element (FE) approximations.

Such approximation was later generalized to thick hyper-elastic bodies (as
opposed to fibers) [3], where the constitutive behavior of the immersed solid is
assumed to be incompressible and visco-elastic with the viscous component of the
solid stress response being identical to that of the fluid.

In [7], the authors present a formulation that is applicable to problems with
immersed bodies of general topological and constitutive characteristics, without
the use of Dirac delta distributions, and with interpolation operators between the
fluid and the solid discrete spaces that guarantee semi-discrete stability estimates
and strong consistency. Such formulation has been successfully used [13] to match
standard benchmark tests [14].

The incompressible version of the FSI model presented in [7] can be seen as a
special case of the Distributed Lagrange Multiplier method, introduced in [5]. In this
paper we present a novel distributed Lagrange multiplier method that generalizes the
compressible model introduced in [7].

We provide a general variational framework for Immersed Finite Element
Methods (IFEM) based on the distributed Lagrange multiplier formulation that is
suitable for general fluid structure interaction problems.

2 Setting of the Problem

Let Ω ⊂ R
d , with d = 2, 3, be a fixed open bounded polyhedral domain with

Lipschitz boundary which is split into two time dependent subdomainsΩft andΩst ,
representing the fluid and the solid regions, respectively. Hence Ω is the interior of
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Ω

Ωf
t

Ωs
t

ΓtB

s

X(s, t)

X := s + w(s, t)

Fig. 1 Geometrical configuration of the FSI problem

Ω
f

t ∪Ωst and we denote by Γt = Ω
f

t ∩Ωst the moving interface between the fluid
and the solid regions. For simplicity, we assume that Γt ∩ ∂Ω = ∅ (Fig. 1).

The current position of the solidΩst is the image of a reference domainB through
a mapping X : B → Ωst . The displacement of the solid is indicated by w and for
any point x ∈ Ωst we have x = X(s, t) = X0(s) + w(s, t) for some s ∈ B, where
X0 : B → Ωs0 denotes the mapping providing the initial configuration of Ωst . For
convenience, we assume that the reference domain B coincides with Ωs0 so that
X(s, t) = s+w(s, t) and B ⊂ Ω . From the above definitions, F = ∇s X = I+∇s w
stands for the deformation gradient and J = det(F) for its determinant.

We denote by uf : Ω → R
d and pf : Ω → R the fluid velocity and pressure

and assume that the solid velocity us is equal to the material velocity of the solid,
that is

us(x, t) = ∂X(s, t)
∂t

∣
∣
∣
x=X(s,t )

= ∂w(s, t)
∂t

∣
∣
∣
x=X(s,t )

. (1)

We indicate with generic symbols u, p, ρ the Eulerian fields, depending on x and t ,
which describe the velocity, pressure, and density, respectively, of a material particle
(be it solid or fluid). By u̇ we denote the material derivative of u, which in Eulerian
coordinates is expressed by

u̇(x, t) = ∂u
∂t
(x, t)+ u(x, t) · ∇ u(x, t). (2)

In the Lagrangian framework, the material derivative coincides with the partial
derivative with respect to time, so that

ẇ(s, t) = ∂w(s, t)/∂t.
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Continuum mechanics models are based on the conservation of three main proper-
ties: linear momentum, angular momentum, and mass.

When expressed in Lagrangian coordinates, mass conservation is guaranteed
if the reference mass density ρ0 is time independent. If expressed in Eulerian
coordinates, however, mass conservation takes the form

ρ̇ + ρ divu = 0 in Ω, (3)

and should be included in the system’s equations.
Conservation of both momenta can be expressed, in Eulerian coordinates, as:

ρu̇ = div σ + ρb in Ω, (4)

where ρ is the mass density distribution, u the velocity, σ is the Cauchy stress
tensor (its symmetry implies that conservation of angular momenta is guaranteed
by Eq. (4)), and b describes the external force density per unit mass acting on the
system. Such a description is common to all continuum mechanics models (see, for
example, [6]). The equations for fluids and solids are different according to their
constitutive behavior, i.e., according to how σ relates to u,w, or p.

If the material is incompressible, it can be shown that divu = 0 everywhere,
and the material derivative of the density is constantly equal to zero (from Eq. (3)).
Notice that this does not imply that ρ is constant (neither in time nor in space), and
it is still in general necessary to include Eq. (3) in the system.

For incompressible materials, however, the volumetric part of the stress tensor
can be interpreted as a Lagrange multiplier associated with the incompressibility
constraints. For incompressible fluids, the stress is decomposed into σ f = −pf I+
νfDuf where uf is the fluid velocity, pf the pressure, νf > 0 is the viscosity
coefficient and Duf = (1/2)

(∇ uf + (∇ uf )	
)

.
Hence the equations describing the fluid motion are the well-known Navier–

Stokes equations, that is:

ρf u̇f − div(νfDuf )+ ∇ pf = ρf b in Ωft

divuf = 0 in Ωft ,
(5)

where we assumed that ρf is constant throughoutΩft .
As far as the solid is concerned, we assume that it is composed by a viscous

elastic material so that the Cauchy stress tensor can be decomposed into the sum of
two contributions: a viscous part and a pure elastic part, as follows

σ s = σ vs + σ es = νsDus + σ es . (6)

Here us is the solid velocity, νs ≥ 0 is the solid viscosity coefficient and σ es denotes
the elastic part of the solid Cauchy stress tensor. We assume this elastic part to
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behave hyper-elastically, i.e., we assume that there exists an elastic potential energy
density W(F) such that W(RF) = W(F) for any rotation R, that represents the
amount of elastic energy stored in the current solid configuration, and that depends
only on its deformation gradient F = ∇s X.

When expressed in Lagrangian coordinates, a possible measure for the elastic
part of the stress is the so called first Piola–Kirchhoff stress tensor, defined as the
Fréchet derivative ofW w.r.t. to F, i.e.:

P
e
s := ∂W

∂F
. (7)

The first Piola–Kirchhoff stress tensor allows one to express the conservation of
linear momentum in Lagrangian coordinates as

ρs0ẅ = Div(P)+ ρs0B in B, (8)

where, similarly to its Eulerian counterpart, we assume that P is decomposed in an
additive way into its viscous part Pvs and into its elastic part Pes , defined in Eq. (7).

For any portion P ⊂ B of the solid (with outer normal N) deformed to Pt (with
outer normal n), the following relation between P and σ holds:

∫

P
PNdΓs =

∫

Pt
σndΓx, ∀P ⊂ B, Pt := X(P, t), (9)

that is, we can express pointwise the viscous part of the solid stress in Lagrangian
coordinates by rewriting the first Piola–Kirchhoff stress Pvs in terms of σ vs := νsDus ,
and the hyper-elastic part of the solid stress in Eulerian coordinates by expressing
the Cauchy stress σ es in terms of Pes := ∂W/∂F:

P
v
s (s, t) := J σ vs (x, t)F

−	(s, t) for x = X(s, t)

σ es(x, t) := J−1
P
e
s(s, t) F

	(s, t) for x = X(s, t).
(10)

With these definitions, the conservation of linear momentum for the solid
equation can be expressed either in Lagrangian coordinates as

ρs0ẅ = DivPvs + Div
∂W

∂F
+ ρs0B in B (11)

or in Eulerian coordinates as

ρs u̇s − div(νsDus )− div σ es = ρsb inΩst . (12)
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Notice that the conservation of mass for the solid equation is a simple kinematic
identity that derives from the fact that ρs0 does not depend on time, i.e., we have

ρ̇s

ρs
+ divus = 0 inΩst , (13)

or, equivalently,

ρs(x, t) = ρs0(s)/J (s, t) for x = X(s, t), (14)

that is:

divus (x, t) = J̇

J
(s, t) for x = X(s, t). (15)

The equations in the solid and in the fluid are coupled through interface
conditions along Γt , which enforce the continuity of the velocity, corresponding to
the no-slip condition between solid and fluid, and the balance of the normal stress:

uf = us on Γt

σ f nf + σ sns = 0 on Γt ,
(16)

where nf and ns denote the outward unit normal vector toΩft andΩst , respectively.
The system is complemented with initial and boundary conditions. The boundary

∂Ω is split into two parts ∂ΩD and ∂ΩN , where Dirichlet and Neumann conditions
are imposed, respectively, with ∂ΩD∩∂ΩN = ∅. Since we assumed that ∂Ω∩Γt =
∅, the initial and boundary conditions are given by:

uf (0) = uf 0 inΩf0

us(0) = us0 inΩs0

X(0) = X0 in B
uf = ug on ∂ΩD

(νfDuf − pf I)nf = τg on ∂ΩN.

(17)

In the following, we shall consider ug = 0 on ∂ΩD, for simplicity, and we define
the space H 1

0,D(Ω)
d as the space of functions in H 1(Ω)d such that their trace on

∂ΩD is zero.
By multiplying by v ∈ H 1

0,D(Ω)
d the first equation in (5) and (12), integrating

by part and using the second interface condition in (16), we arrive at the following
weak form of the fluid-structure interaction problem: find uf , pf , us , and w such
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that (1), (16)1 and (17) are satisfied and it holds:

∫

Ω
f
t

ρf (u̇f − b)v dx +
∫

Ω
f
t

νfDuf : Dv dx−
∫

Ω
f
t

pf div v dx

+
∫

Ωst

ρs(u̇s − b)v dx +
∫

Ωst

νsDus : Dv dx +
∫

Ωst

σ es : Dv dx

=
∫

∂ΩN

τ g · v da ∀v ∈ H 1
0,D(Ω)

d

∫

Ω
f
t

divuf qf dx = 0 ∀qf ∈ L2(Ω
f
t )

(18)

where the notation u̇ indicates the material derivative with respect to time. Using
a fictitious domain approach and extending the arguments of [5], we transform
problem (18) by introducing the following new unknowns. Thanks to the continuity
condition for fluid and solid velocity, we define u ∈ H 1

0,D(Ω)
d and p ∈ L2(Ω) as

u =
{

uf inΩft
us inΩst .

, p =
{

pf inΩft
ps = 0 inΩst .

. (19)

Notice that the pressure field does not have any physical meaning in the solid, and
it is (weakly) imposed to be zero.

Then we can write:
∫

Ω

ρf u̇v dx +
∫

Ω

νfD(u) : D(v) dx −
∫

Ω

p div v dx +
∫

Ωst

(ρs − ρf )u̇v dx

+
∫

Ωst

(νs − νf )Du : Dv dx +
∫

Ωst

σ es : Dv dx +
∫

Ωst

p div v dx

=
∫

Ω

fv dx +
∫

∂ΩN

τ g · v da ∀v ∈ H 1
0,D(Ω)

d

∫

Ω

div u q dx −
∫

Ωst

div u q dx +
∫

Ωst

1

κ
pq dx = 0 ∀q ∈ L2(Ω)

(20)

where

f =
{

ρf b inΩft
ρsb inΩst

,

and κ plays the role of a bulk modulus constant.
In the solid the Lagrangian framework should be preferred, hence we transform

the integrals over Ωst into integrals on the reference domain B. Recalling (1)



8 D. Boffi et al.

and (14) the equations in (20) are rewritten in the following form:

∫

Ω

ρf u̇(t)v dx +
∫

Ω

νfDu(t) : Dv dx −
∫

Ω

p div v dx

+
∫

B
(ρs0 − ρf J )ẅ(t)v(X(s, t)) ds + V

(

ẇ(t), v(X(s, t))
)

+
∫

B
P
e
s (t) : ∇s v(X(s, t)) ds +

∫

B
Jp(X(s, t), t)F−	 : ∇sv(X(s, t)) ds

=
∫

Ω

f(t)v dx +
∫

∂ΩN

τ g · v da ∀v ∈ H 1
0,D(Ω)

d

∫

Ω

div u(t) q dx −
∫

B
J q(X(s, t))F−	 : ∇s ẇ(t) ds

+
∫

B

1

κ
p(t)qJ dx = 0 ∀q ∈ L2(Ω)

(21)

where, for all X, z ∈ H 1(B)d

V (X, z) = νs − νf
4

∫

B
(∇s XF−1 + F

−	 ∇s X	) : (∇s zF−1 + F
−	 ∇s z	)J ds.

(22)

Since X(t) : B → Ωst is one to one and belongs toW 1,∞(B)d , z = v(X(t)) is an
arbitrary element of H 1(B)d when v varies in H 1

0,D(Ω)
d .

Let Λ be a functional space to be defined later on and c : Λ × H 1(B)d → R a
bilinear form such that

c is continuous on Λ ×H 1(B)d

c(μ, z) = 0 for all μ ∈ Λ implies z = 0.
(23)

For example, we can take Λ as the dual space of H 1(B)d and define c as the duality
pairing between H 1(B)d and (H 1(B)d)′, that is:

c(μ, z) = 〈μ, z〉 ∀μ ∈ (H 1(B)d)′, z ∈ H 1(B)d. (24)

Alternatively, one can set Λ = H 1(B)d and define

c(μ, z) = (∇s μ,∇s z)B + (μ, z)B ∀μ, z ∈ H 1(B)d. (25)
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With the above definition for c, we introduce an unknown λ ∈ Λ such that

c(λ, z) =
∫

B
(ρs0 − ρf J )ẅ(t)z ds + V (ẇ(t), z)

+
∫

B
P(F(t)) : ∇s z ds +

∫

B
Jp(X(s, t), t)F−	 : ∇s z ds ∀z ∈ H 1(B)d .

(26)

Hence we can write the following problem.

Problem 1 Let us assume that u0 ∈ H 1
0,D(Ω)

d , X0 ∈ W 1,∞(B)d , and that for all

t ∈ [0, T ] τg(t) ∈ H−1/2(∂ΩN), and f(t) ∈ L2(Ω). For almost every t ∈]0, T ],
find (u(t), p(t)) ∈ H 1

0,D(Ω)
d × L2(Ω), w(t) ∈ H 1(B)d , and λ(t) ∈ Λ such that it

holds

ρf (u̇(t), v)+ a(u(t), v)− (div v, p(t))

+ c(λ(t), v(X(t))) = (f(t), v)+ (τg(t), v)∂ΩN ∀v ∈ H 1
0,D(Ω)

d (27a)

− (divu(t), q)+ (J q(X(s, t))F−	,∇s ẇ(t))B
− 1

κ
(Jp(t), q)B = 0 ∀q ∈ L2(Ω) (27b)

(

δρẅ(t), z
)

B + (Pes(t),∇s z)B + V (ẇ(t), z)
+ (Jp(X(s, t), t)F−	,∇s z)B − c(λ(t), z) = 0 ∀z ∈ H 1(B)d (27c)

c (μ,u(X(·, t), t) − ẇ(t)) = 0 ∀μ ∈ Λ (27d)

X(s, t) = s + w(s, t) for s ∈ B (27e)

u(0) = u0 in Ω, X(0) = X0 in B. (27f)

Here δρ = ρs0 − ρf J , (·, ·) and (·, ·)B stand for the scalar product in L2(Ω) and
L2(B), respectively, and

a(u, v) = (νfDu,Dv) ∀u, v ∈ H 1
0,D(Ω)

d

(τg, v)∂ΩN =
∫

∂ΩN

τg · v da

(P,Q)B =
∫

B
P : Q ds for P,Q tensors in L2(B).

Proposition 1 Let (u, p,w,λ) be a solution of Problem 1. We have that p(t) = 0
inΩst for t ∈]0, T ] and (divu, q)

Ω
f
t

= 0 for all q ∈ L2(Ω
f
t ).
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Proof The constraint in (27d) together with (23) implies that u(t) = ẇ(t) in Ωst .
Using this fact and changing variable in the last two integrals in (27b), we arrive at

−(divu(t), q)+
∫

Ωst

divu(t)q dx −
∫

Ωst

1

κ
p(t)q dx = 0 ∀q ∈ L2(Ω).

Taking q = p(t) in Ωst and vanishing in Ωft , we end up with

∫

Ωst

1

κ
p2(t) dx = 0,

which implies that p(t) = 0 inΩst . Taking q = 0 inΩft in (27b)Ωst we obtain that
the velocity is divergence free in the fluid domain.

Since the pressure variable does not carry any physical meaning, the choice of
the constant κ is arbitrary. In this work we choose κ so that the entries of the mass
matrix of the pressure have the same scale w.r.t. the other entries of the problem,
i.e., we select κ to be equal to the bulk modulus of the solid problem.

The following theorem gives the estimate of the energy.

Theorem 1 Let (u, p,w, λ) be the solution of Problem 1, then the following
estimate holds true

1

2

d

dt
‖ρ1/2u(t)‖2

0,Ω + ‖ν1/2Du(t)‖2
0,Ω + d

dt

∫

B

W(F(t)) ds

≤ C
(

‖f(t)‖2
0,Ω + ‖τ g(t)‖H−1/2(∂ΩN)

)

.

(28)

Here

ρ =
{

ρf inΩft
ρs(x, t) inΩst

, ν =
{

νf in Ωft
νs in Ωst

.

Proof We take the following test functions in the equations listed in Problem 1: v =
u(t), q = −p(t), z = ∂w(t)/∂t , and μ = −λ(t). Summing up all the equations,
and taking into account Proposition 1 and the constraint in (27d) together with (23),
we have

ρf

∫

Ω

u̇(t) · u(t) dx + νf ‖Du(t)‖2
0,Ω + (νs − νf )‖Du‖2

0,Ωst

+ 1

2

∫

B

δρ
∂

∂t
(ẇ(t))2 ds +

(

P
e
s(t),∇s ẇ(t)

)

B

= (f(t),u(t))+ (τ g(t),u(t))∂ΩN .

(29)
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Using again the constraint (27d), we can deal with the first integral on the second
line as follows:

1

2

∫

B

δρ
∂

∂t
(ẇ)2 ds = 1

2

∫

B

ρs0
∂

∂t
(ẇ)2 ds − 1

2

∫

B

ρf J
∂

∂t
(ẇ)2 ds

= 1

2

d

dt

∫

B

ρs0(ẇ)
2 ds − 1

2

d

dt

∫

B
ρf J ẇ ds + 1

2

∫

B

ρf
∂J

∂t
(ẇ)2 ds

= 1

2

d

dt

∫

Ωst

(ρs(x, t)− ρf )u2(x, t) dx + 1

2

∫

Ωst

ρf (divu)u2(x, t) dx.

We add this relation to the first integral in (29), and we take into account the
definition of the material derivative; hence we obtain after integration by parts

ρf

∫

Ω

u̇(t) · u(t) dx + 1

2

∫

B

δρ
∂

∂t
(ẇ(t))2 ds

= ρf

2

∫

Ω

(∂u2(t)

∂t
+ u(t) · ∇ u(t)2

)

dx + 1

2

d

dt

∫

Ωst

(ρs(x, t)− ρf )u2(t) dx

+ 1

2

∫

Ωst

ρf (divu(t))u2(t) dx

= ρf

2

d

dt

∫

Ω

u2(t) dx − ρf

2

∫

Ω

(divu(t))u2(t) dx

+ 1

2

d

dt

∫

Ωst

(ρs(x, t)− ρf )u2(t) dx + 1

2

∫

Ωst

ρf (divu(t))u2(t) dx

= 1

2

d

dt

∫

Ω

ρu2(t) dx

(30)

Notice that the quantity (1/2)ρu2 represents the kinetic energy density per unit
volume.

From the definition of the deformation gradient, we deduce that

(

P
e
s(t),∇s ẇ(t)

)

B =
∫

B
P
e
s(t) : ∂F

∂t
(t) ds =

∫

B
∂W(F(t))

∂F
: ∂F(t)
∂t

ds

=
∫

B

∂W(F(t))

∂t
ds = d

dt

∫

B
W(F(t)) ds.

The integral on the right hand side represents the elastic energy of the solid.
Putting together these expressions with (29) we obtain the desired stability

estimate.
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3 Time Discretization

For an integer N , let Δt = T/N be the time step, and tn = nΔt for n = 0, . . . , N .
We discretize the time derivatives with backward finite differences and use the
following notation:

∂tun+1 = un+1 − un

Δt
, ∂ttun+1 = un+1 − 2un + un−1

Δt2
.

By linearization of the nonlinear terms, we arrive at the following semi-discrete
problem:

Problem 2 For n = 1, . . . , N , find (un, pn) ∈ H 1
0,D(Ω)

d ×L2(Ω),wn ∈ H 1(B)d ,
and λn ∈ Λ such that it holds

ρf (∂tun+1, v)+ b(un,un+1, v)+ a(un+1, v)

− (div v, pn+1)+ c(λn+1, v(Xn))

= (fn+1, v)+ (τ n+1
g , v)∂ΩN ∀v ∈ H 1

0,D(Ω)
d (31a)

− (divun+1, q)+ (J n q(Xn)(Fn)−	,∇s ∂twn+1)B

− 1

κ
(J npn+1, q)B = 0 ∀q ∈ L2(Ω) (31b)

(

δnρ∂ttw
n+1, z

)

B + (Pesn+1
,∇s z)B + Vn(∂twn+1, z)

+ (J npn+1(Xn)(Fn)−	,∇s z)B − c(λn+1, z) = 0 ∀z ∈ H 1(B)d (31c)

c
(

μ,un+1(Xn)− ∂twn+1
)

= 0 ∀μ ∈ Λ (31d)

Xn+1 = s + wn+1 in B (31e)

u0 = u0 inΩ, X0 = X0 in B. (31f)

In (31c), Vn(X, z) indicates that the Jacobian J and the deformation gradient F

appearing in the definition of V (see (22)) are computed at time tn, moreover,
using the definition of the first Piola–Kirchhoff stress tensor (7) we set Pes

n+1 =
∂W

∂F
(Fn+1) where different linearizations can be obtained according to the specific

hyper-elastic model in use.

In (31a) we have b(u, v,w) = ρf (u · ∇ v,w).
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Problem 2 can be written in operator matrix form as follows:

⎡

⎢
⎢
⎢
⎣

Mf /Δt + Anf B	
f 0 Cnf

	

Bf Mn
p Bns 0

0 Bns
	/Δt Mn

s /Δt
2 + Av,ns /Δt + Ae,ns −C	

s

Cnf 0 −Cs/Δt 0

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎣

un+1

pn+1

wn+1

λn+1

⎤

⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

Mf un/Δt + fn+1 + τn+1
g

Bns
	wn/Δt

Mn
s (2w

n − wn−1)/Δt2 + Avswn/Δt
Cswn/Δt

⎤

⎥
⎥
⎥
⎦

where

〈Mf u, v〉 = (u, v), 〈Mn
s w, z〉 = (δnρw, z)B, 〈Mn

pp, q〉 = 1

κ
(J np, q)B,

〈Anf u, v〉 = b(un,u, v)+ a(u, v),

〈Av,ns w, z〉 = Vn(w, z), 〈Ae,ns w, z〉 = (2 ∇s w · ∂W
∂C
(Fn), z)B,

〈Bf v, q〉 = −(div v, q), 〈Bns z, q〉 = (J nq(Xn)(Fn)−	,∇s z)B,
〈Cnf v,μ〉 = c(μ, v(Xn)), 〈Csw,μ〉 = c(μ,w).

We have used the second Piola-Kirchhoff stress tensor to define the operator
associated to the elastic stress tensor in the solid and C = F

	
F.

By choosing the bilinear operator c as in Eq. (24), and solving explicitly for
the Lagrange multiplier λ (inverting Eq. (27c) and substituting its result in the
conservation equation), it is possible to recover exactly the system described in [7].
In this case, the discretisation of the two different formulations provide exactly the
same numerical results.

On the other hand, the formulation we present here is more general, and allows
greater flexibility in the choice of both the operator c and the numerical resolution
scheme. The numerical results in [13] provide so far only a qualitative comparison
of the two formulations.

4 Space-Time Discretization

In this section we introduce the finite element spaces needed for the space-time
discretization of Problem 1. For this we consider two independent meshes inΩ and
in B. We use a stable pair Vh × Qh of finite elements to discretize fluid velocity
and pressure. We denote by h the maximum edge size. For example, we can take
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a mesh made of simplexes and use the Hood–Taylor element of lowest degree or
we can subdivide the domainΩ in parallelepipeds and apply theQ2 − P1 element.
The main difference among the above finite elements consists in the fact that the
pressure for the Hood–Taylor element is continuous while it is discontinuous in the
Q2 − P1 case. It is well known that discontinuous pressure approximation enjoys
better local mass conservation; possible strategies to improve mass conservation are
presented in [4]. In the solid, we take a regular mesh of simplexes, where hs stands
for the maximum edge size and denote by Sh the finite element space containing
piecewise polynomial continuous functions. Finally, the finite element space Λh for
the Lagrange multiplier λ coincides with Sh.

Problem 3 Given u0,h ∈ Vh and X0,h ∈ Sh, for n = 1, . . . , N find (unh, p
n
h) ∈

Vh ×Qh, wnh ∈ Sh, and λnh ∈ Λh such that it holds

ρf (∂tu
n+1
h , v)+ b(unh,un+1

h , v)+ a(un+1
h , v)

− (div v, pn+1)+ c(λn+1
h , v(Xn))

= (fn+1, v)+ (τn+1
g , v)∂ΩN ∀v ∈ Vh (32a)

− (divun+1
h , q)+ (J n q(Xn)(Fn)−	,∇s ∂twn+1

h )B

− 1

κ
(J npn+1(Xn), q)B = 0 ∀q ∈ Qh (32b)

(δnρ∂ttw
n+1, z)B + (Pesn+1

h ,∇s z)B + Vh,n(∂twn+1
h , z)

+ (J npn+1(Xn)(Fn)−	,∇s z)B − c(λn+1
h , z) = 0 ∀z ∈ Sh (32c)

c
(

μ,un+1(Xn)− ∂twn+1
h

)

= 0 ∀μ ∈ Λh (32d)

Xn+1
h = s + wn+1

h in B (32e)

u0 = u0,h inΩ, X0 = X0,h in B. (32f)

5 Numerical Validation

We have implemented the model described in the previous sections in a custom C++
code, based on the open source finite element software library deal.II [1], and
on a modification of the code presented in [8].

We use the classic inf-sup stable pair of finite elementsQ2 −P1, for the velocity
and pressure in the fluid part, and standardQ2 elements for the solid part.

In the following test cases the solid is modeled as a compressible neo-Hookean
material, and the constitutive response function for the first Piola–Kirchhoff stress
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of the solid is given as

P
e
s = μe

(

F − J−2ν/(1−2ν)
F

−T
)

, (33)

where μe is the shear modulus and ν is the Poisson’s ratio for the solid.
The tests are designed to validate the correct handling of the coupling between

incompressible fluids and compressible solids.
This paper is not focused on the behavior of the numerical solution with respect

to the involved discretization parameters (for instance, fluid and solid mesh size).
We expect the results to be not too different from what we obtained in the case of
incompressible solids (see, for instance, [5]).

5.1 Recovery and Rise of an Initially Compressed Disk in a
Stationary Fluid

This test case has been presented initially in Heltai and Costanzo [7] and simulates
the motion of a compressible, viscoelastic disk having an undeformed radiusR. The
disk is initially squeezed (i.e. initial dimension of disk is λ0R with λ0 < 1), and left
to recover in a square control volume of edge length L that is filled with an initially
stationary, viscous fluid (see Fig. 2). The referential mass density of the disk is less
than that of the surrounding fluid, i.e. ρs0 < ρf. The bottom and the sides of the
control volume have homogeneous Dirichlet boundary condition, while the top side
has homogeneous Neumann boundary conditions. This ensures that fluid can freely
enter and exit the control volume along the top edge. As the disk tries to recover its
undeformed state, it expands and causes the flux to exit the control volume. Thus
the change in the area of the disk from its initial state, over a certain interval of time,

Fig. 2 Initial configuration
of the system with the
compressible disk
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matches the amount of fluid efflux from the control volume over the same interval
of time. We use this idea to estimate the error in our numerical method.

In this test, the following parameters have been used: R = 0.125 m, l = 1.0 m,
ρs0 = 0.8 kg/m3, ρf = 1.0 kg/m3, μe = 20 Pa, μs = 2.0 Pa·s, μf = 0.01 Pa·s,
λ0 = 0.7. The body force on the system is b = (0,−10)m/s2. The initial location
of the center of the disk is xC0 = (0.6, 0.4)m. We have used Q2 − P1 elements
for the control volume and the mesh comprises 1024 cells and 11522 DoFs. Q2
elements have been used for disk and the mesh comprises 224 cells with 1894 DoFs.

In Fig. 3a–f, we can see the velocity field over the entire control volume due to
the motion of the disk as well as the pressure in the fluid for several instants of time
spanning the duration of the simulation. The initial deformation of the disk is such
that the density of the disk is greater than that of the fluid. But as soon as the disk
is released, it starts to expand while remaining at almost the same vertical height,
instead of descending, as can be seen from Fig. 4a. This causes a surge of fluid
outflow that as shown in Fig. 4b. The expansion of the disk results in an increased
buoyancy on the disk that begins to rise through the fluid. As the solid rises the
hydrostatic pressure from the fluid decreases and hence it grows further (see Fig. 5a)
till it reaches the top of the domain. The amount of fluid ejected from the control
volume due to expansion of the disk does not quite keep pace with this expansion
(see Fig. 5a). The difference in these two amounts is a measure of the error in our
numerical method (see Fig. 5b).

5.2 Deformation of a Compressible Annulus Under the Action
of Point Source of Fluid

This test was first proposed by Roy [12], as a toy model to describe the behavior
of hydrocephalus in the brain. In this test we observe the deformation of a hollow
cylinder, submerged in a fluid contained in a rigid prismatic box, due to the influx of
fluid along the axis of the cylinder. In the two-dimensional context the test comprises
an annular solid with inner radius R and thickness w that is concentric with a fluid-
filled square box of edge length l (see, Fig. 6). A point mass source of fluid of
strengthQ is located at xC which corresponds to the center C of the control volume.
The radially symmetric nature of point source ensures that momentum balance law
remains unaltered. However, we need to modify the balance of mass to account for
the mass influx from the point source by adding the following term to the pressure
equation:

Q

ρf
δ (x − xC) (34)

For this test we have used a single point source whose strength is a constant, and
all boundary conditions on the control volume are of homogeneous Dirichlet type.
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Fig. 3 The velocity field over the entire control volume, the pressure in the fluid and the mesh of
the disk. (a) t = 0 s. (b) t = 0.01 s. (c) t = 0.5 s. (d) t = 1.0 s. (e) t = 2.0 s. (f) t = 3.0 s

The solid is compressible and hence volume of solid and thereby the volume of fluid
in the control volume can change. The homogeneous Dirichlet boundary condition
implies that the fluid cannot leave the control volume and hence the amount of fluid
that accumulates in the control volume due to the point source must equate the
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Fig. 4 Instantaneous vertical position of the disk and flux of the fluid. (a) Vertical position. (b)
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Fig. 5 Instantaneous area change of the disk, amount of fluid ejected from the control volume
and the difference between them as an estimate of the error in our numerical implementation. (a)
Volume. (b) Error

decrease in volume of the solid. The difference in these two volumes can serve as
an estimate of the numerical error incurred.

We have used the following parameters for this test: R = 0.25 m, w = 0.05 m,
l = 1.0 m, ρf = ρs0 = 1 kg/m3, μf = μs = 1 Pa·s, μe = 1 Pa, ν = 0.3, Q =
0.1 kg/s and dt = 0.01 s. We have tested for three different mesh refinement levels
whose details have been listed in Table 1.

The initial state of the system is shown in Fig. 7a. As time progresses, the fluid
entering the control volume deforms and compresses the annulus as shown in Fig. 7b
for t = 1 s. When we look at the difference in the instantaneous amount of fluid
entering the control volume and the decrease in the volume of the solid, we see that
the difference increases over time (see Fig. 8). This is not surprising since the mesh
of the solid becomes progressively distorted as the fluid emanating from the point
source push the inner boundary of the annulus. The error significantly reduces with
the increase in the refinements of the fluid and the solid meshes.
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Fig. 6 Initial configuration of an annulus immersed in a square box filled with fluid. At the center
C of the box there is a point source of strength Q

Table 1 Number of cells and
DoFs used in the different
simulations involving the
deformation of a
compressible annulus under
the action of a point source

Solid Control volume

Cells DoFs Cells DoFs

Level 1 6240 50960 1024 9539

Level 2 24960 201760 4096 37507

Level 3 99840 802880 16384 148739
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Fig. 7 The velocity and the mean normal stress field over the control volume. Also shown is the
annulus mesh. (a) t = 0 s. (b) t = 1.0 s
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Fig. 8 The difference between the instantaneous amount of fluid entering due to the source and
the change in the area of the annulus. The difference reduces with mesh refinement

6 Conclusions

The Finite Element Immersed Boundary Method (FEIBM) is a well established
formulation for fluid structure interaction problems of general types. In most imple-
mentations (see, for example, [3]), the solid constitutive behavior is constrained to
be viscous (with the same viscosity of the surrounding fluid) and incompressible.

The first attempt to allow for solids of arbitrary constitutive type was presented
in [7], whose formulation is applicable to problems with immersed bodies of general
topological and constitutive characteristics. Such formulation, however, did not
expose the intrinsic structure of the underlying problem.

In this work we presented a novel distributed Lagrange multiplier method that
generalizes the compressible model introduced in [7] and which can be seen as a
special case of the Distributed Lagrange Multiplier method, introduced in [5].

Two validation tests are presented, to demonstrate the capability of the model to
take into account complex fluid structure interaction problems between compress-
ible solids and incompressible fluids.
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High-Order Operator-Splitting Methods
for the Bidomain and Monodomain
Models

Jessica Cervi and Raymond J. Spiteri

Abstract The bidomain and monodomain models are among the most widely
used mathematical models to describe cardiac electrophysiology. They take the
form of multi-scale reaction-diffusion partial differential equations that couple the
dynamic behaviour on the cellular scale with that on the tissue scale. The systems
of differential equations associated with these models are large and strongly non-
linear, but they also have a distinct structure due to their multi-scale nature. For these
reasons, numerical solutions to these systems are often found via operator-splitting
methods. In this chapter, we provide a survey of operator-splitting methods for
the numerical solution of differential equations. In particular, we focus on splitting
methods with order higher than two that, according to the Sheng–Suzuki theorem,
require backward time integration and historically have been considered unstable for
solving deterministic parabolic systems. We demonstrate the stability of operator-
splitting methods of up to order four to solve the bidomain and monodomain models
on several examples arising in the field of cardiovascular modeling.

1 Introduction

The cardiac pumping function is a process that is controlled by a complex pattern
of electrical activation of approximately 10 billion muscle cells. Because the
myocardial electrical activity is fundamental for the function of the heart, extensive
research has been done to understand the different mechanisms occurring at a
cellular, tissue, and organ level [30]. It follows that the organ-level electrical activity
in the heart is the result of billions of small-scale processes occurring in the cells,
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yet the knowledge about how these processes interact is limited. For this reason,
the use of mathematical models and computer simulation to reproduce the electrical
activity of the heart has been a promising technique to study the heart and heart
diseases.

Mathematically, the electrophysiological behaviour of the heart can be modelled
using the bidomain model [35] or the monodomain model [30]. Both are multi-
scale models that were developed to overcome the fact that the distance scales
used to measure the electrical potentials are large compared to the length of a
single cell [35]. For this reason, the bidomain and monodomain models use a
continuum approach in order to handle the large number of cells. The bidomain
model is a generalization of the monodomain model under the assumption of
unequal anisotropy rates [30, 35]. The bidomain model is generally considered to
be the most accurate and general model of cardiac tissue electrophysiology [11];
nonetheless, the monodomain model is still widely used by the research community,
e.g., [20].

Solving the bidomain or monodomain models is challenging because of the
resolutions in time and space required to produce clinically relevant data. A classic
strategy to deal with complicated problems is the well-known “divide and conquer”
strategy. In the context of evolutionary partial differential equations (PDEs), of
which the bidomain and monodomain models are examples, a rather successful
approach in this spirit has been operator splitting (OS). OS constitutes an appro-
priate choice when dealing with a PDE whose vector field can be decomposed into
different pieces, each of which is integrable or whose solution is more amenable.
OS methods have been successfully employed to find numerical solutions to the
bidomain and monodomain models, e.g., [23, 31]. Although fully coupled methods
exist for the numerical solution of the bidomain and monodomain models, e.g., [8],
OS methods represent more the rule rather than the exception and in fact are the
only option in the Cancer, Heart, and Soft Tissue Environment (Chaste) software
environment [19].

The remainder of this chapter is structured as follows. In Sect. 2, the bidomain
and monodomain models are described mathematically. In Sect. 3, the theoretical
background behind OS methods is given, including example methods and algo-
rithms for how the methods can be applied to the bidomain and monodomain
models. In Sect. 4, the convergence of high-order OS methods is demonstrated on a
diverse set of benchmark problems. Finally, in Sect. 5, conclusions from this study
are given.

2 Mathematical Models

The bidomain model is widely accepted as a useful model for describing the
electrical activity in myocardial tissue. It is a multi-scale reaction-diffusion model
that couples PDEs describing the chemical reactions and the local flow of ions at the
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cell membrane level with a system of diffusion PDEs that describes the propagation
of the electrical activation through the cardiac muscle. To account for both of these
effects, the tissue is divided into two co-located domains, the intracellular and the
extracellular. These domains are separated by the cell membrane, which acts as an
insulator between them.

On a spatial domain Ω ⊂ R
d of dimension d and time interval [t0, tf ], the

bidomain model can be written as

∂s
∂t

= f(t, s, v), (1a)

χCm
∂v

∂t
+ χIion(s, v) = ∇ · (σi∇v)+ ∇ · (σi∇ue), (1b)

0 = ∇ · (σi∇v)+ ∇ · ((σi + σe)∇ue), (1c)

subject to boundary conditions on ∂Ω × [t0, tf ] given by

n̂ · (σi∇v + σi∇ue) = 0, (1d)

n̂ · (σe∇ue) = 0, (1e)

where s = s(x, t) is a vector describing the cellular state at location x ∈ Ω and time
t ∈ [t0, tf ], v = v(x, t) is the transmembrane potential, and ue = ue(x, t) is the
extracellular potential. The ionic current, represented by Iion(v, s), and f(t, s, v) are
non-linear terms related to the cell model, and σi and σe are the intracellular and
extracellular conductivities, respectively. Finally, χ is the area of the cell membrane
per unit volume, Cm is the capacitance of the cell membrane per unit area, and n̂ is
the outward unit normal to ∂Ω .

By making the assumption of equal anisotropy rates throughout the domain, i.e.,
σi = λσe, where λ is a constant scalar, it is possible to write a simplified version of
the bidomain model describing only the dynamics of the transmembrane potential v
in the intracellular tissue. Such a model is known as monodomain model and can be
written as

∂s
∂t

= f(t, s, v), (2a)

χCm
∂v

∂t
+ χIion(s, v, t) = λ

1 + λ∇ · (σi∇v), (2b)

subject to

n̂ · (σi∇v) = 0. (2c)



26 J. Cervi and R. J. Spiteri

3 Operator-Splitting Methods

Operator-splitting methods represent powerful divide-and-conquer strategies to
solve mathematical models, including the bidomain and monodomain models,
where a system can be decomposed into smaller and simpler problems that can
be solved with the aid of targeted and specialized techniques. Before giving details
about the specific splitting methods presented in this chapter and ways to derive
them, it is useful to present the general theoretical framework behind OS methods.

Consider the following Cauchy problem

dy
dt

= A (y) = A [1](y)+ A [2](y), y(0) = y0, (3)

with associated exact flow φt , where the (generally non-linear) operator A (·) has
been additively split into two terms A [1](·) and A [2](·) and y0 is the given initial
condition. We now view the original problem as split into two separate subproblems

dy[1]

dt
= A [1](y[1]), dy[2]

dt
= A [2](y[2]), (4)

with associated flows φ[1]
t and φ[2]

t , respectively, that in principle are somehow more
desirable to solve.

As shown in the next sections, it is possible to generate numerical methods for
such systems with a high order of accuracy. Although the theory throughout this
chapter is illustrated in terms of a basic 2-additive splitting, it is generalizable to
N-additively split or partitioned systems.

In this chapter, we focus our attention on the so-called fractional-step methods,
e.g., [15]. To understand how we can derive methods belonging to this class, we
consider an evolution equation in the form (3) and define the s-stage methodSΔt(y)
with “abscissae” α = {(α[1]

j , α
[2]
j )}sj=1 in a recursive manner as

SΔt(y) = S (s)
αsΔt

◦ S (s−1)
αs−1Δt

◦ · · · ◦ S (1)
α1Δt

(y) ≈ φΔt(y), (5)

with building block

S
(j)
αjΔt

(y) = φ
[2]
α

[2]
j Δt

◦ φ[1]
α

[1]
j Δt

(y). (6)

The solution information from the end point of a given fractional step (or sub-flow)
is used as the initial condition for the start of the subsequent sub-flow. An example
of a 2-additive, two-stage OS method with positive sub-flows α[i]

j Δt , i, j = 1, 2,
is depicted in Fig. 1 to advance the numerical solution from time tn to time tn+1 =
tn + Δt . The solid lines denote sub-flows and dashed lines denote the transfer of
solution information between sub-flows.



High-Order Operator-Splitting Methods for the Bidomain and Monodomain Models 27

a [1]
1 D t

a [2]
1 D t

a [2]
2 D t

a [1]
2 D t

tn tn+1

Fig. 1 Schematic of a two-stage OS method. The solid lines denote the sub-flows and the dashed
lines denote the transfer of solution information between sub-flows

The local splitting error of an OS method can be written as

LΔt(y) = φΔt − SΔt (y). (7)

A fractional-step OS method has order of accuracy p if and only if the Taylor
expansion of (7) is O((Δt)p+1). However, in practice, the sub-flows must be
approximated numerically. Accordingly, for the overall error of a time integration to
have orderp, each of the individual sub-flows must also be approximated to order p.

Using the notation of Lie derivatives, the building block can be expressed as

S
(j)
αjΔt

(y) = e
Δtα

[2]
j D [2]

e
Δtα

[1]
j D [1]

, j = 1, 2, . . . , s.

For notational convenience, we further compact the notation for the building
block to

S
(j)
αjΔt

(y)
.= (αjΔt). (8)

We further denote the reversal of the default order (6) in which the differential
operators A [j ], j = 1, 2, are applied by

(α̌jΔt)
.= e

Δtα
[1]
j D [1]

e
Δtα

[2]
j D [2]

, (9)

where α̌j = (α
[2]
j , α

[1]
j ).

3.1 Basic Operator-Splitting Methods

We start our discussion about specific operator-splitting methods by considering the
celebrated Godunov [12] and Strang [29] methods.
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Consider the split system (4). The Godunov (also known as Lie–Trotter [34])
OS method advances an approximate solution by time step Δt by first solving the
problem

dy[1]

dt
= A [1](y[1]), y[1](0) = y0,

for t ∈ [0,Δt] to yield an approximate solution y[1]
Δt . Next, it solves

dy[2]

dt
= A [2](y[2]), y[2](0) = y[1]

Δt ,

for t ∈ [0,Δt] to obtain y[2]
Δt such that

y(Δt) ≈ y[2]
Δt = eΔtD

[2]
eΔtD

[1]
y0

The above method is perhaps the most famous and simplest OS method. This
method computes an approximation to the exact solution of (3) that is first-order
accurate in the sense that

‖y(Δt)− y[2]
Δt‖ = O((Δt)2).

This result can be derived by computing the Taylor series for the exact solution y(t)
and using that of the approximate solution y[2]

Δt obtained by operator spitting. We
have

y(Δt) = y0 +Δt dy
dt

∣
∣
∣
∣
0
+ (Δt)2

2

d2y
dt2

∣
∣
∣
∣
0
+ O((Δt)3).

From (4), by applying direct differentiation k times, we have

dky
dtk

= (A [1] + A [2])ky,

which, when substituted into the above Taylor series, gives

y(Δt) = y0 +Δt(A [1] + A [2])y0 + (Δt)2

2
(A [1] + A [2])2y0 + O((Δt)3).

The expansions of the approximate solutions y[1](Δt) and y[2](Δt) are

y[1](Δt) = y0 +ΔtA [1]y0 + (Δt)2

2
(A [1])2y0 + O((Δt)3)

y[2](Δt) = y[1]
Δt +ΔtA [2]y[1]

Δt +
(Δt)2

2
(A [2])2y[1]

Δt + O((Δt)3)
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Inserting the series expansion for y[1](Δt) into the expansion of y[2](Δt), the local
splitting error is

y(Δt)− y[2](Δt) = (Δt)2

2
[A [1],A [2]]y0 + O((Δt)3),

where [A [1],A [2]] = A [1]A [2] −A [2]A [1] is a commutator. We see that the error
after one time step is proportional to (Δt)2. Thus, the Godunov–Lie–Trotter OS
method is first order.

It is possible to increase the accuracy of an OS method by adding stages or
interchanging the order of applying A [1] and A [2]. For example, carrying out two
symmetric half steps gives the method

yn+1 =
(

e
1
2ΔtD

[1]
e

1
2ΔtD

[2]) (
e

1
2ΔtD

[2]
e

1
2ΔtD

[1])
yn.

Following the notation in (8), the Strang–Marchuk method is represented by

(α1Δt)(α̌2Δt),

for α[i]
j = 1/2 for i, j = 1, 2.

We refer to this method, independently proposed by Strang [29] and Marchuk
[17], as SM2. After a series expansion, the local splitting error is found to be

y(Δt)− y[1](Δt) = 1

24
(Δt)3

(

[D[1], [D[1],D[2]]] + 2([D[2], [D[2],D[1]]]
)

y
(
Δt

2

)

+ O((Δt)5).

Therefore, the SM2 method is a second-order method.

3.2 High-Order Operator-Splitting Methods

Extensive research has been done in recent years to find high-order OS methods. In
1989, Sheng showed that OS methods with order higher than two require sub-flows
that integrate backwards in time [25]. This result was proved separately by Suzuki
in 1991 [32], and it is now known as the Sheng–Suzuki theorem. In particular, every
OS method of at least third order applied to (3) with at least two additive operators
requires at least one backward-in-time sub-flow for each solution operator. This
result was first proved in [13]; a simpler proof appears in [6]. Furthermore, a fourth-
order method for which α[1] = α[2] must contain at least two backwards-in-time
sub-flows [27]. Although numerous high-order OS methods have been proposed
(see, e.g., [3, 7, 27]), there have been claims in the literature that these methods are
not suitable for parabolic equations because such equations are well-known to be ill-
posed in the negative time direction. Nonetheless, in this section, we present a few
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high-order OS methods that are ultimately shown to be stable and converge at their
expected orders in simulations involving the bidomain and monodomain models.

The first high-order OS method that we consider was proposed in [26, 27]. In
these works, a family of high-order OS methods is derived by using the Campbell–
Baker–Hausdorff (CBH) formula. The idea is to approximate the exact N-additive
flow exp(

∑N
i=1 A

[i]) by the product of single exponentials exp(A [i]). A well-
known strategy to achieve this result is to recursively use the CBH formula, which
reads

exp
(

tD [1]) exp
(

tD [2]) = exp

[

t (D [1] + D [2])+ 1

2
t2D12 + 1

12
t3(D112 + D221)+ . . .

]

,

where

Dkl...mn
.= [D [k], [D [l], · · · [D [m],D [n]] · · · ]]

and

[D [m],D [n]] .= D [m]D [n] − D [n]D [m].

In this way, order conditions are derived, and integer solutions to the order
conditions that also minimize 2-norm of the leading local error coefficients to
produce a number of third- and fourth-order methods [27]. In [26], a specific third-
order method is presented and shown to be stable for a simple convection-diffusion
PDE. We denote this method by S3. It is represented by

(α1Δt)(α̌2Δt)(α̌3Δt)(α̌4Δt)(α̌5Δt)(α6Δt)(α7Δt)(α̌8Δt)(α̌9Δt). (10)

The coefficients α[i]
j for the method (10) are displayed in Table 1.

Another family of high-order OS methods was proposed by Koch, Neuhauser,
and Thalhammer in [14] and further analyzed by Auzinger and co-workers in [3, 4].
The derivation of the order conditions was based on the literal formulation that an

Table 1 Coefficients α[i]
j

for the S3 method
j α

[1]
j α

[2]
j

1 1/6 1/6

2 1/6 1/6

3 1/6 1/6

4 1/6 1/6

5 1/6 1/6

6 −1/3 −1/3

7 1/6 1/6

8 1/6 1/6

9 1/6 1/6
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OS method is of order p if and only if the local error L (Δt) = O((Δt)p+1), and
hence

d

dt
L (0) = d2

dt2
L (0) = · · · = dp

dtp
L (0) = 0.

To select optimal methods among those that satisfy the order conditions, the authors
in [5] minimize the local error measure (LEM)

LEM :=
⎛

⎝

lp+1
∑

k=1

|λp+1,k|2
⎞

⎠

1/2

,

where the λp+1,k are the coefficients of the Lyndon (or Lyndon–Shirshov) monomi-
als used as a basis to express the order conditions. This measure has the advantage
of being convenient to calculate because it uses precisely the same framework used
to set up the order conditions.

The first high-order OS method considered here is one proposed by Auzinger and
co-workers [5]. This method, denoted in [5] as “Emb 3/2 AKS” and here simply as
“AKS3”, is third-order accurate and has three stages. It is optimal in the sense that
it has minimal LEM among similar methods with comparable effort. Following the
notation (8), it can be written as

(α1Δt)(α2Δt)(α3Δt), (11)

where the coefficients α[i]
j for i = 1, 2, j = 1, 2, 3 for the method (11)

are displayed in Table 2. The AKS3 method belongs to the class of embedded
exponential operator-splitting methods; it is in fact the main integrator of a 3(2)
embedded pair. Such methods were presented for the first time in [14]. It is also a
palindromic method [3]. Palindromic methods are characterized by the property

α
[2]
j = α

[1]
s+1−j , j = 1, 2, . . . , s.

We also consider a third-order OS method originally proposed by Ruth in 1983
[24]. This method, denoted here by R3, has three stages, and it was considered in [4]

Table 2 Coefficients α[i]
j

for the AKS3 method
j α

[1]
j α

[2]
j

1 0.268330095781759925 α
[1]
3

2 −0.187991618799159782 α
[1]
2

3 0.919661523017399857 α
[1]
1
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Table 3 Coefficients α[i]
j

for the R3 method
j α

[1]
j α

[2]
j

1 1 −1/24

2 −2/3 3/4

3 2/3 7/24

Table 4 Coefficients α[i]
j

for the Y4 method
j α

[1]
j α

[2]
j

1 0.675603595979828817 1.351207191959657634

2 −0.175603595979828817 −1.702414383919315268

3 −0.175603595979828817 1.351207191959657634

4 0.675603595979828817 0.0

as part of a pair of embedded methods. It was derived in the context of Hamilton’s
conditions and Hamiltonian systems; we refer to [24] for details. Following the
notation used for the previous methods, the R3 method can be written as

(α1Δt)(α2Δt)(α3Δt), (12)

where the coefficients α[i]
j for i = 1, 2, j = 1, 2, 3, for the method (12) are

displayed in Table 3.
As an example of fourth-order method, we consider a method proposed by

Yoshida [36]. This method, denoted here by Y4, has four stages, and it was
derived using a three-fold composition of the Strang–Marchuk method and repeated
application of the CBH formula; see [36] for details. Following the notation used
for the previous methods, the Y4 scheme can be written as

(α1Δt)(α2Δt)(α3Δt)(α4Δt), (13)

where the coefficients α[i]
j for i = 1, 2, j = 1, 2, . . . , 5, for the method (13) are

displayed in Table 4. The method proposed by Yoshida is remarkable in the sense
that is a fourth-order OS method with four stages and real coefficients α[i]

j .

3.3 Operator Splitting for the Bidomain Model

To apply operator splitting to the bidomain model, we write (1) as

MẎ = A (Y) = A [1](Y)+ A [2](Y), (14)
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Algorithm 1 OS for the bidomain model

1: Define α[i]
0 = 0, i = 1, 2, t

nα
[i]
j

= tn + α[i]
j Δt , Ynα[i]

j
≈ Y(tnα

[i]
j ).

2: for j = 1 to s do
3: Solve the ODE sub-system
4: MẎ = A [1](Y)
5: for t

nα
[1]
j−1

≤ t ≤ t
nα

[1]
j

subject to the IC Y
nα

[1]
j−1

= Y
nα

[2]
j−1

to obtain Y
nα

[1]
j

6: Solve the DAE sub-system
7: MẎ = A [2](Y)
8: from t

nα
[2]
j−1

≤ t ≤ t
nα

[2]
j

subject to the IC Y
nα

[2]
j−1

= Y
nα

[1]
j

and the BC (1d), (1e) to obtain

Y
nα

[2]
j

.

9: end for
10: Set Yn+1 = Y

nα
[2]
s

as the solution at time tn+1 = tn +Δt .

where Y .= (sT , v, ue)T ,

M =
⎛

⎝

I 0 0
0 1 0
0 0 0

⎞

⎠ ,

A [1](Y) =
⎛

⎜
⎝

f(t,Y)
− 1
Cm
Iion(Y)
0

⎞

⎟
⎠ , and A [2](Y) =

⎛

⎜
⎝

0
1

χCm
(∇ · (σi∇v)+ ∇ · (σi∇ue))

∇ · (σi∇v)+ ∇ · ((σi + σe)∇ue)

⎞

⎟
⎠ .

Doing so, we split (1b) into a non-linear PDE, involving only the Iion term and
no spatial derivatives, and a linear PDE. Upon spatial discretization, the non-linear
PDE forms an ODE sub-system at each mesh point, and hence we loosely refer
to this sub-system as such. Similarly, the discretized linear PDE system forms a
differential-algebraic equation (DAE) sub-system. For the appropriate choice of
α

[i]
j , an algorithm for one integration step of an OS method applied to the bidomain

model is described in Algorithm 1, where it is assumed the ODE sub-system is
solved first. For the sub-steps in (10) and (11) that require solving the DAE sub-
system first, the order of the solves and the associated indices are reversed.

To ensure the overall accuracy of a third-order OS method is third-order accurate
in time, we need to approximate the flows of both the ODE and DAE sub-systems
to at least third order in time. To approximate the flow of the ODE sub-system in
line (4), we use the three-stage, third-order explicit Runge–Kutta method (ERK3)
defined by the Butcher tableau

0 0 0 0
1/2 1/2 0 0
1 −1 2 0

1/6 2/3 1/6
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To approximate the flow of the PDE sub-system in line (7), we use the A-stable,
two-stage, third-order SDIRK method defined by the Butcher tableau

γ γ 0
1 − γ 1 − 2γ γ

1/2 1/2

with γ = (3 + √
3)/6 [1].

Similar considerations must be made at order four. The numerical method used
to approximate the flow of the ODE system is the classic four-stage, fourth-order
explicit Runge–Kutta (ERK4) method

0 0 0 0 0
1/2 1/2 0 0 0
1/2 0 1/2 0 0
1 0 0 1 0

1/6 1/3 1/3 1/6

The numerical method used to approximate the flow the DAE system is the A-
stable, three-stage, fourth-order SDIRK method defined by the Butcher tableau

(1 + γ )/2 (1 + γ )/2 0 0
1/2 −γ /2 (1 + γ )/2 0

(1 − γ )/2 1 + γ −(1 − 2γ ) (1 + γ )/2
1/(6γ 2) 1 − 1/(3γ 2) 1/(6γ 2)

with γ = 2√
3

cos
(
π
18

)

[9, 21].

3.4 Operator Splitting for the Monodomain Model

In a similar fashion to the bidomain model, we write the monodomain model (2) as

∂Y
∂t

= A [1](Y)+ A [2](Y),

where Y .= (sT , v)T ,

A [1](Y) =
(

f(t,Y)
− 1
Cm
Iion(Y)

)

, and A [2](Y) =
(

0
λ

(1+λ)
1

χCm
∇ · (σi∇v)

)

.
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Algorithm 2 OS for the monodomain model

1: Define α[i]
0 = 0, t

nα
[i]
j

= tn + α[i]
j Δt , Ynα[i]

j
≈ Y(t

nα
[1]
j
).

2: for j = 1 to s do
3: Solve the ODE sub-system
4: Ẏ = A [1](Y)
5: for t

nα
[1]
j−1

≤ t ≤ t
nα

[1]
j

subject to the IC Y
nα

[1]
j−1

= Y
nα

[2]
j−1

to obtain Y
nα

[1]
j

.

6: Solve the PDE sub-system
7: Ẏ = A [2](Y)
8: from t

nα
[2]
j−1

≤ t ≤ t
nα

[2]
j

subject to the IC Y
nα

[2]
j−1

= Y
nα

[1]
j

and the BC in (2c) to obtain

Y
nα

[2]
j

.

9: end for
10: Set Yn+1 = Y

nα
[2]
s

as the solution at time tn+1 = tn +Δt .

After spatial discretization, this splitting reduces the non-linear PDE to a set of
non-linear ODEs at each spatial mesh point and a linear PDE. Again to ensure the
overall method is accurate up to desired order, we approximate the flows of the ODE
and PDE sub-systems using the appropriate integrators for the ODE and the PDE
systems to reach third- and fourth-order accuracy as we did in Sect. 3.3.

For the appropriate choice of α[i]
j , one integration step of an OS method applied

to the monodomain can be performed as described in Algorithm 2.
As previously mentioned, for the sub-steps in (10) that require solving the PDE

sub-system first, the order of the solves and the associated indices are reversed.

4 Numerical Experiments

In this section, we present the numerical experiments that were performed in order to
assess the order of convergence of the high-order OS methods described in Sect. 3.2
when applied to the bidomain and monodomain models. The experiments consist of
problems set in one and three spatial dimensions with a variety of different initial
conditions and cardiac ionic cell models with a range of stiffness characteristics.

The Chaste software environment [19] is used for all the numerical experiments.
Chaste uses linear finite elements for the spatial discretization and integrates in
time as per the method of lines. The (Chaste default) method for handling the
Iion term in the finite element method uses ionic current interpolation [22]. The
(Chaste default) pair of Krylov subspace solver and preconditioner in Chaste, i.e.,
the conjugate gradient solver with block Jacobi preconditioner, are used as the linear
system solver.

Timings were recorded in Chaste 3.4 running in serial on a dual Quad-Core Intel
Xeon 2.26GHz with 16GB of RAM running OS X El Capitan 10.11.6.
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4.1 Accuracy

To assess the accuracy of the third- and fourth-order OS methods described in
Sect. 3.2, we use the Mixed Root Mean Square (MRMS) error [18] defined by

[MRMS]w =
√
√
√
√

1

N

N
∑

i=1

(
w̃i −wi
1 + |w̄i |

)2

, (15)

where w̃i and wi denote the reference and numerical solutions, respectively, for the
quantity w at the space-time point i. The order of convergence of the numerical
solution p was then computed in the standard way as

p = log([MRMS]w1/[MRMS]w2)

log(Δt1/Δt2)
,

where the subscripts 1 and 2 refer to computations performed using time steps Δt1
andΔt2.

Reference solutions for the experiments were generated as follows. We compared
solutions computed in Chaste by halving the time step and doubling the number of
mesh points until there were 4 to 6 matching digits between successive approxima-
tions. Solutions were then stored from the finest mesh at Ns = 101 equally spaced
points in the spatial interval and Nt = 21 equally spaced points in the time interval
of the simulations for a total of N = NsNt space-time points.

4.1.1 1D Experiments

The monodomain model was simulated in one spatial dimension with two cell
models, those of FitzHugh–Nagumo (FHN) [10] and Ten Tusscher–Panfilov (TTP)
for epicardial tissue [33].

The FNH model has two cellular state variables and is considered to be non-stiff
[28], whereas the TTP model has 19 cellular variables and is considered to be highly
stiff [28]. We use the following initial conditions for the variables in each model:

s(x, 0) = s0,

v(x, 0) = v0 + 100(1 − sin(x)),

where s0 and v0 are the default values for s and v according to the definition in
CellML [2] for the cell model in use. The Chaste default parameters χ = 1400/cm,
Cm = 1 μF/cm2, and σi = 1.75 mS/cm were used. The spatial domain was [0, 1]
cm and the time interval was [0, 40] ms for all the reported cases. We used a regular
grid with N = 51 points giving a spatial resolution Δx = 0.02 mm. Convergence
of the third- and fourth-order methods was successfully assessed using different
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Table 5 Convergence of the
S3 method applied to the
monodomain model using the
FHN and the TTP epicardial
cell models

FHN TTP

Δt (ms) [MRMS]v p [MRMS]v p

1.5e−5 0.03896 – 0.04058 –

1.0e−5 0.01245 2.84 0.01358 2.90

8.0e−6 0.00653 2.89 0.00635 3.04

Table 6 Convergence of the
AKS3 method applied to the
monodomain model using the
FHN and the TTP epicardial
cell models

FHN TTP

Δt (ms) [MRMS]v p [MRMS]v p

1.5e−5 0.03683 – 0.03946 –

1.0e−5 0.01304 3.20 0.01058 3.24

8.0e−6 0.00787 2.92 0.00528 3.11

Table 7 Convergence for the
R3 method applied to the
monodomain model using the
LR1 and the TTP epicardial
cell models

FHN TTP

Δt (ms) [MRMS]v p [MRMS]v p

1.5e−5 0.03748 – 0.03699 –

1.0e−5 0.01102 3.01 0.0101 3.20

8.0e−6 0.00571 2.95 0.00512 3.04

Table 8 Convergence for the
Y4 method applied to the
monodomain model using the
LR1 and the TTP epicardial
cell models

FHN TTP

Δt (ms) [MRMS]v p [MRMS]v p

1.5e−5 0.03051 – 0.02985 –

1.0e−5 0.00621 3.92 0.00571 4.07

8.0e−6 0.00321 3.96 0.00237 3.94

combinations of time steps for both cell models considered. Results for all the high-
order methods described are reported in Tables 5, 6, 7 and 8. confirming the expected
order of convergence.

4.1.2 3D Experiments

The convergence of the high-order OS methods when applied to solve the bidomain
model was verified by considering the cell models of Luo–Rudy Phase I (LR1) [16]
and TTP for epicardial tissue [33]. The model of LR1 has 9 cellular state variables
and is considered mildly stiff [28]. We use the following initial condition for the
variables in our model:

s(x, y, z, 0) = s0,

v(x, y, z, 0) = v0 + 100(1 − sin(xyz)),

ue(x, y, z, 0) = 0,
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Table 9 Convergence for the
S3 method applied to the
bidomain model using the
LR1 and the TTP epicardial
cell models

LR1 TTP

Δt (ms) [MRMS]v p [MRMS]v p

1.5e−5 0.03975 – 0.03948 –

1.0e−5 0.01199 2.90 0.01219 2.89

8.0e−6 0.00597 3.12 0.00611 3.09

Table 10 Convergence for
the AKS3 method applied to
the bidomain model using the
LR1 and the TTP epicardial
cell models

LR1 TTP

Δt (ms) [MRMS]v p [MRMS]v p

1.5e−5 0.03751 – 0.03846 –

1.0e−5 0.00995 3.27 0.01145 2.98

8.0e−6 0.00491 2.98 0.00583 3.02

Table 11 Convergence for
the R3 method applied to the
bidomain model using the
LR1 and the TTP epicardial
cell models

LR1 TTP

Δt (ms) [MRMS]v p [MRMS]v p

1.5e−5 0.03799 – 0.03699 –

1.0e−5 0.01012 3.21 0.01184 2.90

8.0e−6 0.00495 3.19 0.00578 3.20

Table 12 Convergence for
the Y4 method applied to the
bidomain model using the
LR1 and the TTP epicardial
cell models

LR1 TTP

Δt (ms) [MRMS]v p [MRMS]v p

1.5e−5 0.03147 – 0.03004 –

1.0e−5 0.00571 4.20 0.00583 4.04

8.0e−6 0.00234 3.99 0.00242 3.97

where, as before s0 and v0 are the CellML default values for s and v according
to the cell model in use [2]. We use the (Chaste default) parameter values χ =
1400/cm, Cm = 1 μF/cm2, σi = diag(σfi , σ

n
i , σ

t
i ), σe = diag(σfe , σne , σ

t
e ), with

σ
f
i = σni = σ ti = 1.75 mS/cm and σfe = σne = σ te = 7 mS/cm. The spatial

domain was [0, 1]cm × [0, 1]cm × [0, 1]cm, and the time interval was [0, 40] ms.
We used a grid with N = 51 equally spaced points per direction resulting in a
Δx = 0.02 mm. The accuracy of the third- and fourth-order methods when applied
to the bidomain model was assessed for all the cell models considered in this study,
and the results are reported in Tables 9, 10, 11 and 12, confirming the expected order
of convergence for all the schemes.

5 Conclusions

The generation of clinically relevant numerical solutions to the bidomain and mon-
odomain models for the simulation of cardiac electrophysiology is computationally
demanding. Due to typical limitations of readily available computer hardware,
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the bidomain and monodomain models are typically solved with the use of OS
methods. High-order OS methods hold the promise of greater efficiency for accurate
calculations, and hence finding high-order numerical methods is of great interest.

However, OS methods of order greater than two require sub-flows in the direction
of negative time. Because such backward time integration is ill-posed for diffusion
problems, it is not well appreciated that it is possible to use high-order OS
methods in practice for the bidomain and monodomain models. In this chapter, we
demonstrate that third- and fourth-order OS methods can successfully simulate the
bidomain and monodomain models and converge at their expected orders despite
the necessary backward time integration.
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Electro-Mechanical Modeling and
Simulation of Reentry Phenomena
in the Presence of Myocardial Infarction

Piero Colli Franzone, Luca F. Pavarino, and Simone Scacchi

Abstract In this work we present a parallel solver for the numerical simulation
of the cardiac electro-mechanical activity. We first review the most complete
mathematical model of cardiac electro-mechanics, the so-called electro-mechanical
coupling (EMC) model, which consists of the following four sub-models, strongly
coupled together: the Bidomain model for the electrical activity at tissue scale,
constituted by a parabolic system of two reaction-diffusion partial differential
equations (PDEs); the finite elasticity system for the mechanical behavior at tissue
scale; the membrane model for the bioelectrical activity at cellular scale, consisting
of a stiff system of ordinary differential equations (ODEs); the active tension model
for the mechanical activity at cellular scale, consisting of a system of ODEs. The
discretization of the EMC model is performed by finite elements in space and an
operator splitting strategy in time, based on semi-implicit finite differences. As a
result of the discretization techniques adopted, the most computational demanding
part at each time step is the solution of the non-linear algebraic system, deriving
from the discretization of the finite elasticity equations, and of the linear system
deriving from the discretization of the Bidomain equations. The former is solved by
a Newton-GMRES-BDDC solver, i.e. the Jacobian system at each Newton iteration
is solved by GMRES accelerated by the Balancing Domain Decomposition by
Constraints (BDDC) preconditioner. The latter is solved by the Conjugate Gradient
method, preconditioned by the Multilevel Additive Schwarz preconditioner. The
performance of the resulting parallel solver is studied on the simulation of the
induction of ventricular tachycardia in an idealized left ventricle affected by an
infarct scar. The simulations are run on the Marconi-KNL cluster of the Cineca
laboratory.
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1 Introduction

The heartbeat represents a complex multiphysical phenomenon, consisting of three
main aspects: bioelectrical, mechanical and fluid dynamical. The propagation of
the electrical impulse through the cardiac tissue is mathematically described by
non-linear reaction-diffusion equations. The subsequent mechanical contraction and
relaxation process is described by the large deformation elasticity equations. The
ejection of blood from atria to ventricles and then from ventricles to the circulatory
system, induced by the mechanical contraction of the cardiac muscle, is described
by the Navier-Stokes equations. For integrated models of the whole heart function,
see the recent reviews [10, 46, 78, 79]. In this work, we will focus only on the
coupling of the bioelectrical and mechanical phenomena.

The most complete mathematical model of the cardiac bioelectrical activity at
macroscopic level is the so-called Bidomain model, see [27, 95]. In this model,
the cardiac tissue is represented as the superposition of two anisotropic continuous
media, the intra- and extra- cellular media, coexisting at every point of the tissue and
separated by a distributed continuous cellular membrane; see [72] for a rigorous
derivation of the macroscopic Bidomain model from homogenization of cellular
models and [16] for an introduction to its mathematical analysis and numerical
discretization. The anisotropy of the intra- and extra-cellular media is related to
the macroscopic arrangement of the cardiac myocytes in a fiber structure. The
model consists of a degenerate system of two parabolic reaction-diffusion partial
differential equations (PDEs), that describe the spatio-temporal evolution of the
intra- and extra-cellular electric potentials. The diffusion terms are linear, with
diffusion tensors modeling the anisotropic structure of the cardiac tissue. Through
the non-linear reaction term, the two PDEs are coupled with a system of ordinary
differential equations (ODEs), the so-called membrane model, that describes the
ionic exchanges across the cellular membrane. The unknowns of the membrane
model are the gating variables, representing the percentage of channels open for
a specific ion, and the intra- and extra-cellular concentrations of ions, among which
the most important are sodium, potassium and calcium. The first membrane model
was proposed by Hodgkin and Huxley in [32]. Although the Hodgkin-Huxley model
was developed specifically for nerve cells, the ideas and the mathematical formalism
have been used later in a huge number of models describing the ionic fluxes across
the membrane of cardiac cells, see the reviews [64, 84] and the monographs [16, 77].

The numerical solution of the Bidomain system is computationally very expen-
sive, because of the interaction of the different scales in space and time, the
degenerate nature of the PDEs involved and the very severe ill-conditioning of
the discrete systems arising at each time step. Fully implicit methods in time have
been considered in few studies, see e.g. [54–56, 87] and require the solution of
non-linear systems at each time step. Instead, a large body of numerical studies
employ semi-implicit methods in time and/or operator splitting schemes, where the
diffusion and reaction terms are treated separately, see e.g [15, 101]. In order to
devise efficient iterative solvers for the linear systems arising at each time step,
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many different preconditioners have been proposed: block type [14, 26, 53, 69, 73],
multigrid [4, 5, 74, 76, 89], Additive Schwarz [68, 69], Neumann-Neumann and
BDDC [104, 105] preconditioners.

The intracellular calcium released during electrical activation couples the elec-
trical and mechanical phenomena of the heartbeat, being an input of the active
tension model, which describes the generation of active force within each myocyte,
see [61, 81]. Active tension models consist of systems of ordinary differential—
algebraic equations describing the calcium binding to troponin C, cooperativity
between regulatory proteins, and cross-bride cycling.

The deformation of the cardiac muscle is modeled by the equations of finite
elasticity, with the myocardium being an orthotropic, hyperelastic, and nearly
incompressible material. The orthotropic passive properties of the cardiac tissue are
described by strain energy functions of exponential or pole-zero type laws, see e.g.
[29, 35, 58], while the active properties depend on the cellular active tension. During
contraction, the stretch ratio (ratio of myocyte length before and after deformation)
and its time derivative influence the active tension generation, including length-
dependent calcium sensitivity. As a result, the active tension model and the finite
elasticity system are strongly coupled. Finally, to take into account the pressure of
cavitary blood on the interior surfaces of the ventricles, the non-linear elasticity
PDEs are coupled through the boundary conditions with lumped-parameter models
of the systemic and pulmonary circulatory systems.

The coupling of the two electrophysiological models (Bidomain and mem-
brane model) with the two mechanical models (finite elasticity and active tension
model) yields the so-called cardiac electro-mechanical coupling (EMC) model.
This complex non-linear model poses great theoretical and numerical challenges.
At the numerical level, the approximation and simulation of the cardiac EMC
model is a very demanding and expensive task, because of the very different space
and time scales associated with the electrical and mechanical models, as well as
their non-linear and multiphysics interactions. Nevertheless, in recent years several
research groups have developed electro-mechanical models by assembling the main
four components with different levels of coupling and description details: see e.g.
[24, 28, 31, 41, 59, 67, 86, 96] for electro-mechanical simulations based on the
active-stress approach; [12, 57, 63, 82] for electro-mechanical simulations based
on the active-strain approach; [19, 39, 40, 102] for electro-mechanical simulations
of cardiac arrhythmias, including the mechano-electric feedback; [4] for a parallel
highly scalable algebraic multigrid solver for cardiac electro-mechanics; [11] for a
recent stress-driven electro-mechanical model.

The aim of this work is to review the main mathematical models that constitute
the EMC model and to present our parallel solver for the solution of EMC model.
The solver is based on a finite element discretization in space of the PDEs of the
model and on operator splitting methods in time, employing semi-implicit finite
difference schemes. The non-linear system arising from the discretization of finite
elasticity is solved by a Newton-GMRES-BDDC solver, where the Jacobian system
at each Newton iteration is solved by GMRES accelerated by the Balancing Domain
Decomposition by Constraints (BDDC) preconditioner. The linear system arising
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from the discretization of the Bidomain equations is solved by the Conjugate Gradi-
ent method, preconditioned by the Multilevel Additive Schwarz preconditioner. We
apply the parallel solver to the simulation of ventricular tachycardia in an idealized
left ventricular geometry, affected from infarct scars. The simulations are run on 256
cores of the Marconi-KNL cluster of the italian computing center Cineca.

2 Mathematical Models

2.1 Macroscopic Mechanical Model

Let us denote the material coordinates of the undeformed or reference cardiac
domain by X = (X1,X2,X3)

T , the spatial coordinates of the deformed cardiac
domain by x = (x1, x2, x3)

T and the region occupied at time t by the undeformed
and deformed cardiac domains by Ω̂ and Ω(t), respectively. We denote by Div
and div (Grad and grad) the material and spatial divergence (gradient) of a vector
(scalar), respectively. From a mechanical point of view, the cardiac tissue is
modeled as a non-linear elastic material. The deformation gradient tensor F and
its determinant J are given by

F(X, t) = {Fij } =
{
∂xi

∂Xj
i, j = 1, 2, 3

}

, J (X, t) = detF(X, t).

The Cauchy-Green deformation tensor C and Lagrange-Green strain tensor E are

C = FT F and E = 1

2
(C − I),

where I denotes the identity matrix.
Most simulation works based on cardiac electro-mechanical models, see e.g.

[39–41, 59], have adopted the quasi-static mechanical regime. For an evaluation
of the influence of the inertial term, we refer to [85, 103]. In the quasi-static regime,
the Cauchy’s equation of equilibrium in the coordinates of the deformed body,
neglecting external volumetric forces, is given in term of the Cauchy stress tensor
σ by

div σ = 0, inΩ(t),

while in the coordinates of the undeformed body it satisfies the steady-state force
equilibrium equation

Div(FS) = 0, X ∈ Ω̂, (1)
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where S = JF−1σF−T is the second Piola-Kirchoff stress tensor. We close the
quasi-static mechanical model (1) by imposing a prescribed displacement on a
Dirichlet boundary x(X) = x̂(X), X ∈ ∂Ω̂D , a prescribed normal stress on a
Neumann boundary, representing the cavitary blood pressure on the endocardial
ventricular surface, i.e. FSN = − p(t) N, X ∈ ∂Ω̂N with N the outward normal
to Ω̂ , and a free-stress condition elsewhere.

According to the so-called active-stress approach, the tensor S is given by the
sum of a passive elastic component Spas , a volumetric component Svol and a
biochemically generated active component Sact ,

S = Spas + Svol + Sact ,

as proposed in many previous studies, see e.g. [41, 59, 67, 88, 100]. An alternative
multiplicative strategy, called active-strain, for combining the passive and active
properties of the cardiac tissue has been proposed in [12], see also [75, 82]. In
our simulations presented in the last section of the present paper, we have adopted
the former approach, because in the literature biophysical cellular models of the
complex cross-bridge sarcomere dynamics are available, see e.g. [7, 47, 61, 81].
Adopting instead the active-strain approach, to our knowledge only phenomenolog-
ical fiber stretch models can be used so far, see [78, 79, 82, 83].

The passive component Spas is computed from a suitable strain energy function
Wpas and the Green-Lagrange strain tensor E

S
pas
ij = 1

2

(
∂Wpas

∂Eij
+ ∂Wpas

∂Eji

)

i, j = 1, 2, 3.

Several strain energy functions Wpas have been proposed and adopted in the
literature, see e.g. [21, 29, 30, 35, 58, 86].

We recall that cardiac cells are elongated cells connected end-to-end, forming the
cardiac fibers, which lie on muscle sheets, running radially across the ventricular
wall. Moreover, fibers are connected also side-to-side and rotate counterclockwise
from epi- to endocardium, with fiber connections between adjacent sheets, see e.g.
[48]. Therefore this arrangement of fibers and the laminar organization imply that,
at a macroscopic level, the cardiac tissue displays orthotropic properties both of
electric conduction and mechanical stress, see e.g [20, 35, 97].

Let us denote by al (x), at (x), an(x) a triplet of orthonormal principal axes with
al(x) parallel to the local fiber direction, at (x) and an(x) tangent and orthogonal
to the radial laminae, respectively, and both being transversal to the fiber axis.
Indicating by âl(X), ât (X), ân(X) the unit vectors parallel and across the local fiber
direction in the reference configuration, then, al,t,n = Fâl,t,n/||Fâl,t,n|| gives the
unit vector parallel to the local fiber in the deformed configuration and it holds

al,t,n = Fâl,t,n/
√

âTl,t,nC âTl,t,n.
Three examples of strain energy functions, one isotropic and the other two

anisotropic, are described here below.
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Isotropic Strain Energy Function In the simplest case, the myocardium is
modeled as a neo-Hookean material with the strain energy function

Wpas = c(I1 − 3), (2)

where I1 = trace(C) is the first invariant of the Cauchy-Green deformation tensor
C.

Axisymmetric Strain Energy Function In this case, the myocardium is modeled
as a transversely isotropic hyperelastic material, with the exponential strain energy
function [29, 100]

Wpas = 1

2
c
(

eQ − 1
)

,

Q = bllE
2
ll + btn(E2

nn + E2
t t + 2E2

nt )+ 2blt (E2
lt + E2

ln).
(3)

The Lagrange-Green strain tensor is referred here to the orthogonal local fiber
coordinate system, consisting of the fiber direction (l), and two orthogonal cross
fiber directions (t,n), for instance

Ers = âTr Eâs , r, s ∈ {l, t, n}

Ell = âTl Eâl, Ett = âTt Eât , Enn = âTnEân,

Eln = âTl Eân, Elt = âTt Eât , Ent = âTnEât ,

where âl , ât and ân are the unit vectors of the local fiber coordinate system in
the reference configuration. The material constant c rescales the stress, bll and btn
rescale the material stiffness in the fiber and the two cross fiber directions, and blt
rescales the material rigidity under shear in the fiber-transverse plane. We remark
that the strain energy function (3) is transversely isotropic because the parameter
rescaling the terms E2

nn and E2
t t is the same. Rescaling these terms with different

parameters would lead to an orthotropic strain energy function.

Orthotropic Strain Energy Function In general, the myocardium is modeled as
an orthotropic hyperelastic material, with the exponential strain energy function
proposed by Holzapfel-Odgen in [35]:

Wpas = a

2b

(

eb(I1−3) − 1
)

+
∑

i=l,n

ai

2bi

(

ebi(I4i−1)2 − 1
)

+ aln

2bln

(

eblnI
2
8ln − 1

)

,

(4)

where a, b, a(l,n,ln), b(l,n,ln) are positive material parameters and

I4l = âTl C âl, I4n = âTnC ân, I8ln = âTl C ân.
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In order to model the nearly-incompressibility of the myocardium, following
[100], we add to the energy a volumetric term Wvol , depending on the positive
bulk modulusK ,

Wvol = K
(√

det(C)− 1
)2
, (5)

hence the volumetric component Svol of the second Piola-Kirchhoff stress tensor is

Svolij = 1

2

(
∂Wvol

∂Eij
+ ∂Wvol

∂Eji

)

i, j = 1, 2, 3.

Another possibility is to choose the volumetric energy is

Wvol = K (J log J − J + 1) .

see for other choices [23].

2.2 The Excitation-Contraction Coupling Model

The contraction of the ventricles results from the active tension generated by the
model of myofilaments dynamics activated by calcium (see e.g. [37, 61, 81] for
excitation-contraction coupling models). We assume that the generated active force
acts only in the direction of the fiber, as in the other works [28, 67, 103]. Hence,
according to [36, Ch. 10], the active Cauchy stress is expressed as

σ act = Taal ⊗ al,

where al is a unit vector parallel to the local fiber direction and Ta9x, t) is the active
stress related to the deformed domain.

In terms of the principal axes of the reference configuration, we obtain:

al ⊗ al = Fâl ⊗ Fâl
||Fâl||2 = Fâl âTl FT

âTl C âl
. (6)

Then, the corresponding second Piola-Kirchhoff active stress component is given
by

Sact = J F−1 σact F−T = J T̂a
âl ⊗ âl
âTl C âl

.

where T̂a(X, t) = Ta(φ
−1
t (x), t) with φt : Ω̂ → Ω(t).
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Active components in the direction ân can be also considered.
The biochemically generated active tension Ta was described with models

incorporating different degrees of detail of the myofilaments dynamics. Here, we
briefly describe the main three models used in simulation studies.

Stretch and Stretch-Rate Independent Active Tension ̂Ta = ̂Ta(̂v) In the
electro-mechanical models presented in [28, 59], the dynamics of T̂a(X, t) depends
only on the transmembrane potential distribution v̂(X, t), defined on the reference
configuration, according to this simple twitch-like rule

∂T̂a

∂t
= ε(̂v)(kT̂a (̂v − vr)− T̂a), (7)

where kT̂a > 0 controls the saturated value of T̂a for a given potential v̂ and a given
resting potential vr , which is about −80 mV in cardiac cells. The function ε(̂v)
controls the delay in the development and recovery of active stress with respect to v̂
and is given by

ε(̂v) = ε0 + (ε∞ − ε0) exp(− exp(−ξ(̂v − v̄))),

where ε0, ε∞, ξ are positive constants and v̄ = −30 mV. Under this simplified
assumption, the active component of the second Piola-Kirchhoff stress tensor Sact

can be written as the derivative of the active energy function

Wact = 1

2
T̂a log(I4l ).

We remark that in general active force is not conservative, thus it can not be asso-
ciated to an active strain energy function. Nevertheless, this active energy function
was considered to establish the solvability of the coupled electro-mechanical model,
see [2, 66].

Stretch-Rate Independent Active Tension ̂Ta = ̂Ta(̂Cai, λ) In this model
proposed in [37, 38], the active tension depends on the intracellular calcium
concentration Ĉai (one of the variables indicated with c in system (10), defined
here on the reference configuration) and on the muscle fiber stretch

λ = √

I4l =
√

âTl C âl, (8)

according to the equation

T̂a = Ĉa
n
i

Ĉa
n
i + Cn50

T maxa (1 + η(λ− 1)).
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C50 = 0.5μM is the value of the intracellular calcium concentration for 50% of
T maxa , n = 3 is a coefficient controlling the shape of the curve, T maxa = 100 kPa is
the maximum isometric active stress developed at λ = 1 and η = 2.5.

Stretch and Stretch-Rate Dependent Active Tension ̂Ta = ̂Ta

(

̂Cai, λ, ∂λ
∂t

)

In

this model proposed by Land et al. [47], based on the previous models [61, 81], the
dynamics of the active tension T̂a is described by the following system of ordinary
differential equations

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tr

∂t
= ktr

((
Ĉai

Ca50(1 + β(λ− 1))

)ntr

(1 − tr)− tr
)

∂xb

∂t
= kxb

(

tr50tr
nxb (1 − xb)− 1

tr50trnxb
xb

)

∂Qi

∂t
= Ai

∂λ

∂t
− αiQi, i = 1, 2

T̂a = g(Q) h(λ) xb, Q = Q1 +Q2,

(9)

with constant parameters 0 < ktr < 1, 0 < kxb < 1, ntr > 1, nxb > 1, 0 < Ca50 <

1, 0 < tr50 < 1, β > 1, A1 < 0, A2 > 0, α1, α2 > 0. The function h : R → R is
continuous and defined by

h(x) =
⎧

⎨

⎩

0 x ≤ x0

h̄(x) x0 < x < x1

hmax x ≥ x1,

with 0 < x0 < 1, x1 > 1, hmax > 0 and 0 < h̄(x) < hmax non-decreasing
Lipschitz function. The function g(Q) : R → R is a non-decreasing, bounded,
Lipschitz function.

Note that the two differential equations for Qi, i = 1, 2, can be rewritten as
integral equations

Qi(t) = Ai

∫ t

−∞
exp(−αi(t − s))∂λ

∂s
ds.

2.3 The Bidomain Model

The macroscopic Bidomain representation of the cardiac tissue is obtained by
considering the superposition of two anisotropic continuous media, the intra- (i)
and extra- (e) cellular media, coexisting at every point of the tissue and separated
by a distributed continuous cellular membrane; see e.g. [16, 72] for a derivation
of the Bidomain model from homogenization of a periodic assembling of cellular
models. We remark that the Bidomain model describes the propagation of the
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electric impulse in the atrial and ventricular tissue. For models of the propagation
of the electric impulse in the Purkinje network, see e.g. [60, 65, 99].

The anisotropy of the intra- and extracellular media, related to the macroscopic
arrangement of the cardiac myocytes in the fiber structure, is described by the
anisotropic conductivity tensors Di (x) and De(x), respectively, defined in (11)
below.

We will now introduce the parabolic-parabolic formulation of the Bidomain
system on the cardiac domain Ω(t) for t ∈ (0, T ). Given an applied current
per unit volume Iapp : Ω(t) → R, and initial conditions v0 : Ω(0) → R,
(w0, c0) : Ω(0) → R

Nw × R
Nc , find the intra- and extracellular electric potentials

ui,e : Ω(t) → R, the transmembrane potential v = ui − ue : Ω(t) → R, the gating
and ionic concentrations variables (w, c) : Ω(t)→ R

Nw × R
Nc such that

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

cm
∂v

∂t
− div(Di gradui)+ Iion(v,w, c) = Iapp inΩ(t)

−cm ∂v
∂t

− div(De gradui)− Iion(v,w, c) = −Iapp inΩ(t)

∂w
∂t

− R(v,w) = 0,
∂c
∂t

− S(v,w, c) = 0, inΩ(t)

nTDi,e gradui,e = 0 in ∂Ω(t)
v(x, 0) = v0(x), w(x, 0) = w0(x), c(x, 0) = c0(x) inΩ(0),

(10)

where we have assumed an insulated cardiac boundary ∂Ω .
We remark that this system uniquely determines v, while the potentials ui and

ue are defined only up to the same additive time-dependent constant related to the
reference potential. We choose this potential to be the average extracellular potential
in the cardiac volume by imposing

∫

Ω(t)
ue dx = 0. The non-linear reaction term

Iion and the right-hand-side functions R, S in the ODE system for the gating w and
ionic concentrations c variables depend on the ionic membrane model chosen; here
we will consider the ten Tusscher (TP06) membrane model [92, 93]. For the well-
posedness analysis of the Bidomain model (10) coupled with complex membrane
models, we refer to [98].

The conductivity tensors Di (x) and De(x) at any point x ∈ Ω(t) are defined as

Di,e(x) = σ
i,e
t I + (σ i,el − σ i,et ) at (x)aTt (x)+ (σ i,en − σ i,et ) an(x)aTn (x), (11)

where σ i,el , σ
i,e
t , σ

i,e
n denote the conductivity coefficients in the intra- and

extracellular media measured along the directions al , at , an.
In this work, the electric conduction of the cardiac tissue is modeled as an axi-

symmetric anisotropic media with respect to the local finer direction, i.e. σ i,en = σ
i,e
t .

Hence, using the orthogonality of the principal axes the conductivity tensors can be
written as

Di,e(x) = σ
i,e
t I + (σ i,el − σ i,et ) al(x) aTl (x). (12)
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In order to take into account the mechanical deformation of the tissue, following
[59, 67, 103] we will now introduce the parabolic-parabolic formulation of the
Bidomain system on the reference cardiac domain Ω̂ , applying the usual pull-back
operation.

Given an applied current per unit volume Îapp : Ω̂ × (0, T ) → R, and initial
conditions v̂0 : Ω̂ → R, ŵ0 : Ω̂ → R

Nw , find the intra- and extracellular potentials
ûi,e : Ω̂×(0, T ) → R, the transmembrane potential v̂ = ûi−ûe : Ω̂×(0, T ) → R,
the gating and ionic concentrations variables (ŵ, ĉ) : Ω̂ × (0, T ) → R

Nw × R
Nc

such that

⎧

⎪⎪⎪
⎪⎨

⎪⎪⎪⎪⎩

cm

(
∂v̂

∂t
− F−T Grad v̂ · V

)

− J−1 Div(JF−1D̂iF−T Grad ûi )+ Iion = Îapp in Ω̂

−cm
(
∂v̂

∂t
− F−T Grad v̂ · V

)

− J−1 Div(JF−1D̂eF−T Grad ûi )− Iion = −Îapp in Ω̂

n̂T F−1D̂i,eF−T Grad ûi,e = 0 on ∂Ω̂ v̂(X, 0) = v̂0(X), in Ω̂
(13)

where F is the deformation gradient tensor, V = ∂x
∂t
(X, t), Iion = Iion(̂v, ŵ, ĉ).

The previous PDE system is coupled with the ODE system in the gating and
concentration variables:

⎧

⎨

⎩

∂w
∂t

− R(v,w) = 0,
∂c
∂t

− S(v,w, c) = 0, inΩ(t)

w(x, 0) = w0(x), c(x, 0) = c0(x) inΩ(0),

We remark that this formulation of the Bidomain system, in the potential
unknowns ûi,e, called parabolic-parabolic formulation, is equivalent to the other
more popular formulation in the unknowns v̂, ûe, called parabolic-elliptic, because
constituted by a parabolic and an elliptic PDE, see e.g. [16].

The computation of the tensors F−1(X)D̂i,e(x)F−T (X)must be performed on the
reference configuration Ω̂ . Denoting by âl(X) the unit vector parallel to the local
fiber direction in the reference configuration, then we recall that, from (6), it holds

al aTl = Fâl âl
T FT

âl
T Câl

. Considering the product F−1(X)D̂i,e(x)F−T (X) and assuming

that the conductivity coefficients refer to the deformed configuration, we finally
obtain, in the orthotropic case (see [17]),

(F−1D̂i,eF−T )(X) = σ
i,e
t C−1(X)+ (σ i,el − σ i,et )

âl(X)âTl (X)

âTl (X)C(X)âl(X)
+

(σ i,en − σ i,et )
C−1(X)ân(X)(C−1(X)ân(X))T

âTn (X)C−1(X)ân(X)
,

(14)



52 P. Colli Franzone et al.

and, in the axisymmetric case,

(F−1D̂i,eF−T )(X) = σ
i,e
t C−1(X)+ (σ i,el − σ i,et )

âl(X)âTl (X)

âTl (X)C(X)âl(X)
. (15)

2.4 Membrane Model and Stretch-Activated Channel Current

The ionic current in the Bidomain model (13) is given by iion = χIion, where
χ is the membrane surface to volume ratio and the ionic current per unit area of
the membrane surface Iion is given by the sum Iion(v,w, c, λ) = Imion(v,w, c) +
ISAC of the ionic term Imion(v,w, c) given by the ten Tusscher model (TP06) [92,
93], available from the cellML depository (models.cellml.org/cellml), and a stretch-
activated current (SAC) ISAC , see for its role [45]. The TP06 ionic model also
specifies the functions Rw(v,w) and Rc(v,w, c) in the ODE system, consisting of
17 ordinary differential equations modeling the main ionic currents dynamics.

The ISAC current is modeled as in [62] as the sum of non-specific and specific
currents ISAC = ISAC,n + IKo. The non-specific current is defined by ISAC,n =
ISAC,Na + ISAC,K , with

ISAC,Na = gSACγSL,SAC(v − ENa)
(
ER − EK
ENa − ER

)

, ISAC,K = gSACγSL,SAC(v − EK),

where gSAC = 4.13 · 10−3 mS/cm2, γSL,SAC = 10 max(λ − 1, 0) and ER =
−10 mV. The specific stretch-dependentK+ current is defined by

IKo = gKo
γSL,Ko

1 + exp(−(10 + v)/45)
(v − EK),

where gKo = 1.2·10−2 mS/cm2 and γSL,Ko = 3 max(λ−1, 0)+0.7. We remark that
the stretch activated ion channels are active only during the stretching phase of the
fibers, thus we consider the constraint max(λ− 1, 0). For related models of stretch-
activated currents, we refer e.g. to [1, 39, 40, 45, 102]. The advantage of using the
SAC model described here with respect to simpler models adopted in [39, 40, 85] is
that it separates SAC into non-selective and potassium selective components, which
have been measured experimentally in [49].

2.5 Pressure-Volume Loop

A few studies so far have coupled the mechanics of the ventricle with Navier-
Stokes equations for the blood flow inside the cavity, see [90, 91]. Most works

models.cellml.org/cellml
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Fig. 1 Plot of pressure-volume loop

have adopted a simplified description of intracavitary blood flow, called pressure-
volume loop, where pressure boundary conditions modeling the response of cavitary
blood to ventricular deformation are imposed on the endocardial surface in the finite
elasticity equations (1). The pressure p in the left ventricular (LV) cavity can be
described by sophisticated closed-loop models as in [42]. A simpler model, adopted
e.g. in [18, 24, 96], is based on the following four phases (see Fig. 1):

1. Isovolumetric LV contraction phase, where p increases from the end diastolic
pressure (EDP) value of about 2 to 10 kPa;

2. Ejection phase, where the pressure-volume relationship is described by a two
element Windkessel model, until the volume reduction stops;

3. Isovolumetric LV relaxation phase, where p decreases to 1 kPa;
4. Filling phase, where p increases linearly to EDP.

During the isovolumetric phases (1) and (3), the pressure is updated according to
the iterative procedure introduced in [96], in order to keep the LV cavity volume
constant.

3 Numerical Methods

3.1 Space and Time Discretization

Domain Geometry The cardiac domain Ω̂ = Ω(0) is the image of a cartesian
periodic slab using ellipsoidal coordinates, yielding a truncated ellipsoid modeling
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a left ventricular geometry, described by the parametric equations

⎧

⎨

⎩

x = a(r) cos θ cosφ φmin ≤ φ ≤ φmax,
y = b(r) cos θ sin φ θmin ≤ θ ≤ θmax,
z = c(r) sin θ 0 ≤ r ≤ 1,

where a(r) = a1 + r(a2 − a1), b(r) = b1 + r(b2 − b1), c(r) = c1 + r(c2 − c1),

and a1 = b1 = 1.5, a2 = b2 = 2.7, c1 = 4.4, c2 = 5 (all in cm) and
φmin = −π/2, φmax = 3π/2, θmin = −3π/8, θmax = π/8. We will refer to
the inner surface of the truncated ellipsoid (r = 0) as endocardium and to the
outer surface (r = 1) as epicardium. The fibers rotate intramurally linearly with
the depth for a total amount of 120o proceeding counterclockwise from epicardium
to endocardium. More precisely, in a local ellipsoidal reference system (eφ, eθ , er ),
the fiber direction al(x) at a point x is given by al(x) = bl (x) cos(β)+ n(x) cos(β),
where

bl (x) = eφ cosα(r)+ eθ sinα(r), with α(r) = 2

3
π(1 − r)− π

4
, 0 ≤ r ≤ 1,

n(x) is the unit outward normal to the ellipsoidal surface at x and β is the imbrication
angle calibrated as in [13] given by β = arctan(cosα tan γ ), with γ = θ(1 −
r)60/π .

Space Discretization We discretize the cardiac domain with a hexahedral struc-
tured grid Thm for the mechanical model (1) and The for the Bidomain model (13),
where The is a refinement of Thm , i.e. hm is an integer multiple of he. We consider
the variational formulations of both mechanical and bioelectrical models and then
approximate all scalar and vector fields by isoparametric Q1 finite elements in
space. In all the electro-mechanical simulations, we employ an electrical mesh size
he = 0.01 cm in order to properly resolve the sharp excitation front, while the
smoother mechanical deformation allow us to use a coarse mechanical mesh of size
hm = 0.08 cm. We remark that, when adopting a complex membrane model such as
that proposed by ten Tusscher et al. [92, 93], the depth of the steep excitation layer
is about 1 mm, thus a mesh size of at least 0.01 cm is needed in order to accurately
catch the velocity of the wavefront.

Time Discretization The time discretization of the electro-mechanical model is
performed by the following semi-implicit splitting method, where the electrical and
mechanical time steps could be different. At each time step,

a) given vn, wn, cn at time tn, solve the ODE system of the membrane model with
a first order implicit-explicit (IMEX) method to compute the new wn+1, cn+1;

b) given the calcium concentration Can+1
i , which is included in the concentration

variables cn+1, solve the variational formulation of the mechanical problem (1)
and the active tension system to compute the new deformed coordinates xn+1,
providing the new deformation gradient tensor Fn+1;
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c) givenwn+1, cn+1, Fn+1 and Jn+1 = det(Fn+1), solve the variational formulation
of the Bidomain system (13) with a first order IMEX method and compute the
new electric potentials vn+1, un+1

e with an operator splitting method, consisting
of decoupling the parabolic from the elliptic equation.

In our simulations, the electrical time step size is Δet = 0.05 ms, while the
mechanical times step is Δmt = 0.25 ms. We remark that to approximate the
convective term in the variational formulation of (13), an upwind computation of

the nodal gradient of vn is derived, projected onto the deformation rate xn+1−xn
Δtn

vector and then integrated against the test function. We refer to [17, 18] for more
details about the numerical scheme.

3.2 Computational Kernels and Parallel Solvers

Due to the employed space and time discretization strategies, at each time step, the
main computational kernels are:

i) the mechanical solver, which consists of solving the non-linear system deriving
from the discretization of the mechanical problem (1) by a parallel Newton-
GMRES-BDDC (NKBDDC) solver, see [70];

ii) the electrical solver, which consists of solving the two linear systems deriving
from the discretization of the elliptic and parabolic equations in the Bidomain
model (13) by a parallel Conjugate Gradient method preconditioned with a
Multilevel Additive Schwarz preconditioner, studied in [68], and a Block Jacobi
preconditioner, respectively. In the following, the two linear solvers will be
denoted by elliptic and parabolic solvers, respectively, see e.g. Fig. 6.

Our parallel simulations have been performed on the Linux cluster MARCONI of
CINECA laboratory using the parallel library PETSc [6] from the Argonne National
Laboratory.

The next sections will describe more in detail the Multilevel Additive Schwarz
and BDDC preconditioners used in the electrical and mechanical solvers, respec-
tively.

3.3 Multilevel Additive Schwarz Preconditioners

In this section, we describe the Multilevel Additive Schwarz preconditioner used to
solve the linear system arising from the Bidomain equations. LetΩk, k = 0, . . . , �−
1 be a family of � nested triangulations ofΩ , coarsening from �−1 to 0, and Ak the
matrix obtained by discretizing the elliptic equation of the Bidomain model (10) on
Ωk: so A�−1 is the matrix Abid of the linear system arising from the discretization
of the elliptic equation of (10) on the fine mesh. Rk are the restriction operators from
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Ω�−1 toΩk . We decompose each gridΩk, for k = 1, . . . , �−1, intoNk overlapping
subgridsΩkm for m = 1, . . . , Nk , such that the overlap δk at level k = 1, . . . , �− 1
is equal to the mesh size hk of the gridΩk . Let Rkm be the restriction operator from

Ω�−1 toΩkm and define Akm := RkmAkRk
T

m . The Multilevel Additive Schwarz (MAS)
preconditioner is given by

B−1
MAS := R0T A0−1

R0 +
�−1
∑

k=1

Rk
T

m Ak
−1

m Rkm.

The following theorem ensures the convergence of the MAS method, in particular
that it is independent of the number of subdomains Nk (scalability) and the number
of levels � (optimality).

Theorem 1 The condition number of the MAS operator TMAS = B−1
MASAbid is

bounded by

κ2(TMAS) ≤ C max
k=1,...,L−1

(

1 + hk−1

δk

)

,

where C is a constant independent of the mesh sizes hk , the number of subdomains
Nk and the number of levels �.

In the general case of elliptic problems, see e.g. [94], while for the Bidomain system
see [16, 68, 69].

3.4 Iterative Substructuring, Schur Complement System
and BDDC Preconditioners

In this section, we describe the BDDC preconditioner used to solve the Jacobian
system arising at each iteration of the Newton method applied to the non-linear
mechanical system. To keep the notation simple, in the following of this section and
in the next one, we will denote the reference domain by Ω instead of Ω̂ . Let us
consider a decomposition ofΩ intoN non-overlapping subdomainsΩi of diameter
Hi (see e.g. Toselli and Widlund [94, Ch. 4])

Ω =
N
⋃

i=1

Ωi,

and setH = maxHi . As in classical iterative substructuring, we reduce the Jacobian
linear system with matrix denoted by K , obtained at each Newton iteration of the
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mechanical solver, to the interface

Γ :=
( N
⋃

i=1

∂Ωi

)

\∂Ω

by eliminating the interior degrees of freedom associated to basis functions with
support in the interior of each subdomain, hence obtaining the Schur complement
system

SΓ xΓ = gΓ , (16)

where SΓ = KΓΓ − KΓ IK
−1
II KΓ I and gΓ = fΓ − KΓ IK

−1
II fI are obtained

from the original Jacobian system by reordering the finite element basis functions
in interior (subscript I ) and interface (subscript Γ ) basis functions

(

KII KIΓ

KΓ I KΓ Γ

)(

xI

xΓ

)

=
(

fI

fΓ

)

. (17)

The Schur complement system (16) is solved iteratively by the GMRES method,
where only the action of SΓ on a vector is needed and SΓ is never explicitly
formed: instead, a block diagonal problem on interior degrees of freedom is solved
while computing the matrix vector product. Once the interface solution xΓ is
computed, the internal values xI can be recovered by solving local problems on each
subdomain Ωi . The preconditioned Schur complement system solved by GMRES
is then

M−1
BDDCSΓ xΓ = M−1

BDDCfΓ , (18)

whereM−1
BDDC is the BDDC preconditioner, defined in (22) below.

Balanced Domain Decomposition by Constraints (BDDC) preconditioners where
introduced by Dohrmann [22] and first analyzed by Mandel, Dohrmann and Tezaur
[51, 52]. They can be regarded as an evolution of balancing Neumann-Neumann
methods where all local and coarse problems are treated additively due to a choice
of so-called primal continuity constraints across the interface of the subdomains.
These primal constraints can be point constraints and/or averages or moments over
edges or faces of the subdomains. We refer to the domain decomposition monograph
by Toselli and Widlund [94, Ch. 6] for a detailed treatment of Neumann-Neumann,
FETI and FETI-DP algorithms, see also [8, 25, 43, 44, 50]; the latter are closely
related to BDDC methods, since they exhibit essentially the same spectrum (except
for possible 0 and 1 eigenvalues) when the primal set is the same.

Subspace Decompositions Let V be theQ1 finite element space for displacements
and V (i) be the local discrete space defined on the subdomain Ωi that vanish on
∂Ωi ∩∂ΩD . We split the local space into a direct sum of its interior (I) and interface
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(Γ ) subspaces V (i) = V
(i)
I

⊕
V
(i)
Γ and we define the associated product spaces by

VI :=
N
∏

i=1

V
(i)
I , VΓ :=

N
∏

i=1

V
(i)
Γ .

The functions in VΓ are generally discontinuous across Γ , while our finite element
approximations are not. Therefore, we also define the subspace

V̂Γ := {functionsofVΓ thatarecontinuousacrossΓ }.

We also need an intermediate subspace

ṼΓ := VΔ
⊕

V̂Π ,

defined by further splitting the interface (subscript Γ ) degrees of freedom into
primal (subscriptΠ) and dual (subscriptΔ) degrees of freedom, where:

a) V̂Π is a subspace consisting of functions which are continuous at selected
primal variables, which can be the subdomain basis functions associated with
subdomains’ corners and/or edge/face basis functions with a constant value at
the nodes of the associated edge/face. In order to simplify the formulas and keep
the exposition compact, we assume that a change of basis has been performed
and each primal variable correspond to an explicit degree of freedom; see [50].

b) VΔ = ∏N
i=1 V

(i)
Δ is the product space of the local subspaces V (i)Δ of dual

interface functions that vanish at the primal degrees of freedom.

Restriction and Scaling Operators In order to define our preconditioners, we will
need the following restriction and interpolation operators represented by matrices
with elements in the set {0, 1}:

RΓΔ : ṼΓ −→ VΔ, RΓΠ : ṼΓ −→ V̂Π ,

R
(i)
Δ : VΔ −→ V

(i)
Δ , R

(i)
Π : V̂Π −→ V̂

(i)
Π ,

(19)

where V̂ (i)Π is the local subspace of primal interface functions. We will also need the
standard counting functions of the Neumann–Neumann methods and in particular
their pseudoinverses δ†

i (x) defined at each degrees of freedom x on the interface of
subdomainΩi by

δ
†
i (x) := 1

Nx

, (20)

with Nx the number of subdomains sharing x.
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We finally define scaled local restriction operators R(i)D,Δ by multiplying the sole

nonzero element of each row of R(i)Δ by δ†
i , and we define

RD,Γ := the direct sum RΓΠ ⊕ R(i)D,ΔRΓΔ. (21)

Choice of Primal Constraints The choice of primal degrees of freedom is
fundamental for the construction of efficient BDDC preconditioners. One of the
simplest choices consists of taking as primal degrees of freedom those associated
with the subdomain corners. Such choice is not always sufficient to obtain scalable
and fast preconditioners and this has motivated the search for richer primal sets that
may yield faster preconditioners but at the expense of higher computational costs
due to larger coarse problems employing also edge and/or face based primal degrees
of freedom, see e.g. [44, 94].

The BDDC Preconditioner We denote byK(i) the local stiffness matrix restricted
to subdomainΩi . By partitioning the local degrees of freedom into interior (I), dual
(Δ), and primal (Π) degrees of freedom,K(i) can be written as

K(i) =
[

K
(i)
II K

(i)T

Γ I

K
(i)
Γ I K

(i)
Γ Γ

]

=
⎡

⎢
⎣

K
(i)
II K

(i)T

ΔI K
(i)T

ΠI

K
(i)
ΔI K

(i)
ΔΔ K

(i)T

ΠΔ

K
(i)
ΠI K

(i)
ΠΔ KΠΠ

⎤

⎥
⎦ .

Using the scaled restriction matrices defined in (19) and (21), the BDDC precondi-
tioner can be written as

M−1
BDDC = RTD,Γ S̃

−1
Γ RD,Γ , (22)

where

S̃−1
Γ = RTΓΔ

⎛

⎝

N
∑

i=1

[

0 R(i)
T

Δ

]
[

K
(i)
II K

(i)T

ΔI

K
(i)
ΔI K

(i)
ΔΔ

]−1 [
0
R
(i)
Δ

]⎞

⎠RΓΔ+ΦS−1
ΠΠΦ

T . (23)

The first term in (23) is the sum of local solvers on each subdomain Ωi , with
Neumann data on the local dual nodes and with the local primal degrees of freedom
constrained to vanish. The second term is a coarse solver for the primal variables,
that we implemented as in [50, 71] by using the coarse matrix

SΠΠ =
N
∑

i=1

R
(i)T

Π

⎛

⎝K
(i)
ΠΠ −

[

K
(i)
ΠI K

(i)
ΠΔ

]
[

K
(i)
II K

(i)T

ΔI

K
(i)
ΔI K

(i)
ΔΔ

]−1 [

K
(i)T

ΠI

K
(i)T

ΠΔ

]⎞

⎠R
(i)
Π
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and a matrix Φ which maps primal degrees of freedom to interface variables

Φ = RTΓΠ − RTΓΔ
N
∑

i=1

[

0 R(i)
T

Δ

]
[

K
(i)
II K

(i)T

ΔI

K
(i)
ΔI K

(i)
ΔΔ

]−1 [

K
(i)T

ΠI

K
(i)T

ΠΔ

]

R
(i)
Π .

The columns of Φ represent the coarse basis functions defined as the minimum
energy extension into the subdomains with respect to the original bilinear form and
subject to the chosen set of primal constraints.

Remark 1 It is well-known that BDDC and FETI-DP preconditioners for compress-
ible linear elasticity problems satisfy a scalable quasi-optimal condition number
bound (see e.g. [94, Ch. 6.4])

cond(M−1
BDDCSΓ ) ≤ C

(H

h

)(

1 + log
H

h

)2
,

with C(H
h
) = α constant for sufficiently rich coarse spaces and C(H

h
) = αH

h
for

the minimal primal space spanned by the degrees of freedom defined at subdomain
corners. Due to the more complex non-linear elasticity problem (1) based on an
exponential strain energy function (3), we could not prove a similar GMRES bound
for the convergence rate of our non-symmetric NKBDDC preconditioned operator.
Nevertheless, the numerical results reported in our previous work [70] have shown
that our NKBDDC method is scalable and quasi-optimal.

4 Numerical Simulations

In this final section, we apply our parallel electro-mechanical solver to the simula-
tion of the induction of ventricular tachycardia in an idealized left ventricle affected
by an infarct scar. The cardiac electro-mechanical coupling model adopted in the
simulations consists of the following components:

• the quasi-static finite elasticity system, with a transversely isotropic exponential
strain energy function derived from [24];

• the Bidomain system in the parabolic-elliptic formulation;
• the stretch and stretch-rate dependent active tension model proposed in [47];
• the ten Tusscher (TP06) membrane model [92, 93] for human ventricular

myocytes.

4.1 Computational Domain with Scar

The computational domain consists of the truncated ellipsoid modeling a left
ventricular geometry, described previously. The resulting electrical mesh consists
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Fig. 2 Epicardial view (left) and transmural sections (right) of the idealized left ventricle
computational domain with the scar. Red color denotes the scar region, white represents the border
zone of the scar volume and blue indicates the normal myocardial volume

ofNφ×Nθ ×Nk = 384×192×48 elements, yielding about 3.63 ·106 nodes, while
the mechanical mesh consists of 48 × 24 × 6 elements, yielding about 8400 nodes.
In the left ventricular geometry, we consider the presence of a scar of dimension
2×3.5×1 cm3 (see Fig. 2). The scar develops along the entire transmural thickness,
from endocardium to epicardium. We include a border zone (BZ) region consisting
of a sub-epicardial channel located at the center of the scar (see Fig. 2) of dimension
0.5 × 3.4 × 0.5 cm3.

4.2 Electrical and Mechanical Parameters Calibration

The values of the transversely isotropic conductivity coefficients in (11), that we use
in all the numerical tests for the healthy tissue, are σ il = 3, σ it = 0.31525, σel = 2,
σet = 1.3514, all expressed in mΩ−1cm−1. These values, coupled with the TP06
membrane model, predict conduction velocities of about 0.061 and 0.027 cm/ms for
excitation wavefronts propagating along and across the fiber direction, respectively.
We remark that these conduction velocities are within the physiological range. The
membrane surface to volume ratio is χ = 103 cm−1 and the membrane capacitance
per unit volume is cm = χCm, whereCm = 1μF/cm2 is the membrane capacitance
per unit area. In the scar region, the conductivity coefficients and the fast sodium
current conductance in the TP06 model are reduced by a factor 10. Analogously
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to the previous simulation studies [3, 9], the BZ is modeled by implementing a
60% reduction of fast sodium current conductance gNa , 70% reduction of L-type
calcium current conductance gCaL, 70% and 80% reduction of the rapidly and
slowly delayed rectifier potassium current conductances gKr and gKs , respectively,
and 75% reduction of cross fiber intracellular conductivity coefficient σ it . The
parameters of the transversely isotropic strain energy function are adapted from
[24]. The scar region is considered as an isotropic passive elastic material, i.e.
without active stress, dropping in Eq. (4) the anisotropic terms, and increasing
the parameter a by a factor 4. However, we recall that scar tissue may show a
mechanical anisotropic structure due to stretch of fibroblasts and collagen fibers:
for more detailed anisotropic mechanical models of scar tissue, we refer e.g. to
[33, 34, 80]. The bulk modulus is K = 200 kPa. In this simulation, we disregard the
complete pressure-volume loop and we have assumed a fixed intracavitary blood
pressure close to the diastolic value of 2 kPa.

4.3 Initial and Boundary Conditions

The initial conditions for the electrical model are at resting values for all the
potentials and gating variables of the TP06 model, while in the Bidomain model
homogeneous Neumann boundary conditions are imposed. For what concerns the
mechanical boundary conditions, in order to prevent rigid body motion, we set
to zero the displacement in all components only at the circumferential basal line
meeting the endocardial surface, while setting to zero only the third displacement
component on the rest of the basal surface. Moreover, on the endocardial surface we
impose Neumann boundary conditions given by the intracavitary blood pressure,
and we assume that the rest of domain is not subject to any external loading, i.e.
free-stress boundary conditions are prescribed elsewhere.

4.4 Stimulation Protocol

Three stimuli of 250mA/cm3 amplitude and 1 ms duration are applied on the
endocardial apical region below the scar, at a basic cycle length (BCL) of 400 ms.
290 ms after the third stimulus, an S2 stimulus of 1250mA/cm3 amplitude and 5 ms
duration is applied at an epicardial site located close to the apical entrance of the BZ
channel. The total simulation time is 2400 ms.

4.5 Parallel Solver Setup

The parabolic and elliptic linear systems arising from the discretization of the Bido-
main equations are solved by the Conjugate Gradient (CG) method preconditioned
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with Block-Jacobi and 3-level Additive Schwarz preconditioners, respectively. The
stopping criterion of the CG solver is the 10−6 reduction of the relative residual
in l2-norm. The mechanical non-linear system is solved by an inexact Newton
method, using as stopping criterion the 10−6 reduction of the relative residual in
l2-norm. At each Newton iteration, the Jacobian linear system is solved by GMRES
preconditioned with the BDDC preconditioner employing vertex and edge averages
primal unknowns. The stopping criterion of the GMRES solver is a 10−8 reduction
of the relative residual in l2-norm. The following simulation is run on 4 nodes of the
Marconi-KNL Linux cluster of CINECA, employing 64 cores for each node, for a
total amount of 256 cores.

4.6 Results

After the three stimulations at BCL = 400 ms, a premature S2 stimulus delivered at
an S1S2 coupling interval of 290 ms does not propagate inside the bottom entrance
of the BZ channel, close to the apex of the ventricle, because the BZ tissue is still
refractory, but it moves around the scar, see Fig. 3. Then it enters the BZ channel
through the top entrance, close to the base of the ventricle, and, since the BZ tissue
has now recovered, it propagates through the channel. Eventually the wavefront
exits through the bottom gate into the healthy tissue and propagates again around
the scar, leading to a stable reentry, typical of ventricular tachycardia, see Fig. 4.

We report in Fig. 5 the time evolution of transmembrane potential, extracellular
potential and fiber stretch in an epicardial healthy site and in a border zone site, and
of left ventricular volume. The first three action potential correspond to the normal
stimulations at BCL = 400 ms, the fourth is elicited by the premature S2 stimulus,
and the last two correspond to the reentrant excitation wavefront. Interestingly, the
amount of contraction (see the time evolution of the fiber stretch λ) during reentry is
analogous to the normal dynamics. This can be attributed to the fact that the stable
reentrant excitation wavefront proceeds similar to the normal excitation wavefronts
elicited by the first three beats. Only the premature excitation induced by the S2
stimulus exhibits a reduced contraction. In fact the dynamics of the left ventricular
volume, which during the reentrant beats (the last two) reached the same maximum
and minimum values as in the normal beats (the first three), shows a significant
increase of the minimum value (the end systolic volume) only in the premature
beat.

Finally, Fig. 6 shows, as function of simulation time, the CG iterations and CPU
times of the parabolic solver, the CG iterations and CPU times of the elliptic solver
and the Newton/GMRES iterations and CPU times of the mechanical solver. A
part the normal variations during each heartbeat, corresponding to the different
phases of the cardiac cycle (depolarization-repolarization, contraction-relaxation),
among the six beats all the mathematical quantities remain stable, indicating that
they are not influenced by the transition from the normal to the reentrant dynamics.
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Fig. 3 Transmembrane potential snapshots on the deforming domain during reentry initiation.The
six selected instants are: t = 1085 ms, t = 1185 ms (first row), t = 1285 ms, t = 1385 ms (second
row) and t = 1485 ms, t = 1585 ms (third row)
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Fig. 4 Transmembrane potential snapshots on the deforming domain after reentry initiation. The
six selected instants are: t = 1600 ms, t = 1680 ms (first row), t = 1760 ms, t = 1920 ms (second
row) and t = 2080 ms, t = 2240 ms (third row)
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Fig. 5 Time evolution of transmembrane potential (a), extracellular potential (b) and fiber stretch
(c) in an epicardial healthy (black line) site and in a border zone (red line) site, and of left
ventricular volume (d)

Furthermore, the parabolic and elliptic solvers are robust with respect to the jumps
in the conductivity coefficients across the scar border.

5 Conclusions

In this work, we have first reviewed the main mathematical models used to describe
the cardiac electrical and mechanical interaction process, that constitute the so-
called cardiac electro-mechanical coupling model. Then we have presented the
numerical methods adopted to discretize the continuous model, with particular
emphasis on the parallel solver used by our group to speedup the numerical
simulation of the cardiac electro-mechanical activity. The results section is devoted
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Fig. 6 Time evolution of: conjugate gradient (CG) iterations (a) and CPU times (b) of the
parabolic solver (first row); CG iterations (c) and CPU times (d) of the elliptic solver (second
row); Newton and GMRES iterations (e) and CPU times (f) of the mechanical solver (third row)
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to show the effectiveness of the proposed solver to simulate the induction of
ventricular tachycardia in a left ventricle affected from infarct scars.

Limitations and Future Works Among the limitations of the model used in
the simulations, we mention the transversely isotropic tissue anisotropy and the
constant left ventricular intracavitary blood pressure. Future work should be devoted
to investigate the role of orthotropic tissue anisotropy and of the application of
a variable endocardial pressure on the initiation and maintenance of ventricular
tachycardia in presence of infact scars.
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Ergotropic Effect in Cardiac Tissue After
Electromagnetic and β-Adrenergic
Stimulus

Lorenzo Fassina, Marisa Cornacchione, Maria Evelina Mognaschi,
Giovanni Magenes, and Fabio Naro

Abstract In a murine ventricular cardiac tissue in vitro, via an image processing
analysis, we have studied the ergotropic effect (contraction energy) after electro-
magnetic stimulation (frequency, 75 Hz), isoproterenol administration (10 μM), and
their combination. We have found that the electromagnetic stimulation is able to
counteract the β-adrenergic action of isoproterenol.

1 Introduction

A core idea of Tissue Engineering is to understand the relationships between
structures and functions in mammalian cells. This information is important during
the growth of tissue substitutes in vitro; in other words, Tissue Engineering
constructs are based not only on the use of growth factors, but also on the stimuli
provided by the structural context (e.g., the biomaterials with their biocompatibility
and mechanical properties) and provided by the biophysical context (e.g., the
forces acting onto the plasma membrane, transmitted to the cytoskeleton, and
biochemically transduced).

For instance, a fluid shear stress [9, 38, 47] or ultrasounds [17] or biomaterial
features [12, 19, 42] lead to the remodeling of bone matrix in vitro.

L. Fassina (�) · M. E. Mognaschi · G. Magenes
Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
e-mail: lorenzo.fassina@unipv.it; eve.mognaschi@unipv.it; giovanni.magenes@unipv.it

M. Cornacchione
IRCCS SDN, Naples, Italy
e-mail: marisa.cornacchione@uniroma1.it

F. Naro
Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University
of Rome, Rome, Italy
e-mail: fabio.naro@uniroma1.it

© Springer Nature Switzerland AG 2018
D. Boffi et al. (eds.), Mathematical and Numerical Modeling of the Cardiovascular
System and Applications, SEMA SIMAI Springer Series 16,
https://doi.org/10.1007/978-3-319-96649-6_4

75

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96649-6_4&domain=pdf
mailto:lorenzo.fassina@unipv.it
mailto:eve.mognaschi@unipv.it
mailto:giovanni.magenes@unipv.it
mailto:marisa.cornacchione@uniroma1.it
mailto:fabio.naro@uniroma1.it
https://doi.org/10.1007/978-3-319-96649-6_4


76 L. Fassina et al.

In addition, a modulation of the cellular function is well attested by the
cardiomyocytes subjected to the mechanical forces induced by an electromagnetic
field [3, 33]. However, the effects of the electromagnetic fields are controversial.
Some works showed that basal heart rate was either decreased and coupled with
arrhythmias or increased with occurrence of tachycardia [28, 44].

In the heart, the β-adrenergic receptors (βARs), associated to G proteins, play a
fundamental role in regulating the cardiac function [29, 41].

In this work, we have studied the contraction movement of murine cardiomy-
ocytes under electromagnetic and/or β-adrenergic stimulation, addressing, in partic-
ular, the ergotropic effect (contraction energy).

2 Materials and Methods

2.1 Beating Mouse Cardiac Syncytia

Spontaneously beating cardiac syncytia were obtained from hearts of 1- to 2-day-
old CD-1® mouse pups (Charles River Laboratories Italia, Calco, Italy) (Fig. 1), as
previously described [5, 45, 46] with some modifications. Briefly, beating primary
cultures of murine cardiomyocytes were prepared in vitro as follows: the hearts
were quickly excised, the atria were cut off, and the ventricles were minced and
digested by incubation with 100 μg/ml type II collagenase (Invitrogen, Carlsbad,
CA) and with 900 μg/ml pancreatin (Sigma-Aldrich, Milan, Italy) in ADS buffer
(0.1 M HEPES, 0.1 M D-glucose, 0.5 M NaCl, 0.1 M KCl, 0.1 M NaH2PO4 • H2O,
0.1 M MgSO4) for 15 min at 37 °C. The resulting cell suspension was preplated
for 2 h at 37 °C to reduce the contribution of non-myocardial cells. The unattached,

Fig. 1 Cardiac syncytium
with gap junctions (green
fluorescence related to
connexin 43) and cellular
nuclei (blue fluorescence);
white marker, 20 μm
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cardiomyocyte-enriched cells remaining in suspension were collected, plated onto
collagen-coated 35-mm Petri dishes, and covered by DMEM containing 10% horse
serum, 5% fetal bovine serum, and 1× gentamicin (Roche Molecular Biochemicals,
Indianapolis, IN). About 3 × 105 cardiomyocytes were cultured in each Petri dish
at 37 °C and 5% CO2 to form a spontaneously beating cardiac syncytium (that is,
a cardiac cell culture made by multilayers of contracting cardiomyocytes as in our
previous works [20, 23]).

2.2 Experimental Conditions

On day 3 of culture, at a constant temperature of 37 °C and 5% CO2, each syncytium
was observed via a movie capture system (ProgRes C5, Jenoptik, Germany) in
four different conditions: untreated control (CTRL), stimulated via β-adrenergic
isoproterenol (ISO, 10 μM; Sigma-Aldrich, Milan, Italy), via an electromagnetic
field (EMF; see below for details), via both isoproterenol and electromagnetic field
(ISO+EMF). In particular, for each condition, AVI videos (duration, 20 s) of 20
beating syncytia were collected every 3 min (in general, in each video, we have
systematically selected 30 spots or markers to be tracked during contraction; see
below for details), permitting us to specifically study the average contraction pattern
during the time interval 27–39 min.

2.3 Electromagnetic Bioreactor

The electromagnetic bioreactor used here has been previously investigated in terms
of biological effects [10, 14, 16, 18, 31, 35] and in terms of numerical dosimetry
and physical parameters (induced electric field, induced electric current, induced
forces) [33]. The setup was based on two air-cored solenoids (Fig. 2) connected in
series, placed inside a cell incubator and powered by a pulse generator (Biostim
SPT from Igea, Carpi, Italy). The magnetic induction field (module, circa 3 mT;
frequency, 75 Hz) was perpendicular to the seeded cells.

In particular, in our experimental setup:

• the electric current in the solenoid wire ranged from 0 to 319 mA in 1.36 ms
(Fig. 2 in [33]);

• in order to optimize the spatial homogeneity of the magnetic induction field,
especially in the central region where the cells were stimulated, the two solenoids
were supplied by the same electric current and their dimensions and distance
were comparable; the spatial homogeneity was both calculated in silico [33] and
verified inside the cell incubator by means of Hall-effect gaussmeter;
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Fig. 2 Solenoids of the
electromagnetic bioreactor
with a culture well-plate in
the central region

• the maximum electromagnetic energy density applied to the cells was about
3.18 J/m3 and, using a thermocouple, we observed no EMF-induced heating;

• according to the Faraday-Neumann-Lenz and Lorentz laws, inside the cylindrical
culture wells, the time varying and homogeneous magnetic induction generated a
concentric and planar distribution of induced electric currents with corresponding
induced distribution of radial mechanical forces (Fig. 10 in [33]): in the temporal
range 0–1.36 ms the magnetic induction was arising, the currents clockwise,
and the radial mechanical forces inwardly directed (compression), whereas,
on the contrary, during the temporal range 1.36–6 ms, the magnetic induction
was decreasing, the currents anticlockwise, and the radial mechanical forces
outwardly directed (traction);

• during the same time interval of the electromagnetic stimulation, control cells
were placed into another but identical incubator with no EMF.
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2.4 Registration of the Syncytium Movement via the Apposition
of Software Markers

By the Video Spot Tracker (VST) program, which is used to track the motion of one
or more spots in an AVI video file (http://cismm.cs.unc.edu/downloads), in each
video, we have systematically selected 30 spots or markers onto the first video
frame, according to the same orthogonal grid [30, 34]. By starting the videos in
VST, frame by frame, the program followed and registered the spatial-temporal
coordinates x, y, and t for each marker, as previously described [20]. The coordinates
x and y are expressed in pixel, whereas the coordinate t in s.

2.5 Kinematics of the Beating Syncytium

By an algorithm based on the Matlab programming language (The MathWorks, Inc.,
Natick, MA), frame by frame and for each marker, we have studied the kinematics
of the beating cardiac syncytia, as previously described [20, 22, 23, 32, 39, 40]. In
particular, in this work, we have evaluated the syncytium contraction in terms of
contraction energy (pixel2/s2) (ergotropic effect).

2.6 Statistics

In order to compare the results between the different conditions, one-way analysis
of variance (ANOVA) with post hoc least significant difference (LSD) test was
applied, electing a significance level of 0.05. The results are expressed as mean
±95% confidence interval for the differences between means.

3 Results

In terms of ergotropy i.e. contraction energy (Fig. 3), in comparison with control
(CTRL), the isoproterenol (ISO) showed a significant positive ergotropic effect
(p<0.05) and the electromagnetic stimulation (EMF) caused a non-significant
negative ergotropic action (p>0.05). The simultaneous use of pharmacological and
physical stimulation (ISO+EMF) significantly reduced the positive ergotropic effect
of ISO (p<0.05), giving an overall non-significant negative ergotropic action in
comparison with CTRL (p>0.05).

http://cismm.cs.unc.edu/downloads
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Fig. 3 Mean contraction energy (during the time interval 27–39 min). In terms of ergotropy, in
comparison with control (CTRL), the isoproterenol (ISO) showed a significant positive ergotropic
effect (p<0.05) and the electromagnetic stimulation (EMF) caused a non-significant negative
ergotropic action (p>0.05). The simultaneous use of pharmacological and physical stimulation
(ISO+EMF) significantly reduced the positive ergotropic effect of ISO (p<0.05), giving an overall
non-significant negative ergotropic action in comparison with CTRL (p>0.05). The horizontal
bars are the 95% confidence intervals for the differences between means according to LSD (least
significant difference) statistical test: there is a statistically significant difference between the
means with non-overlapping bars (n=20 syncytia for each condition)

4 Discussion

The mouse is in the center of the models of cardiovascular diseases. Using in
vitro beating primary murine ventricular cardiomyocytes, we have studied the
modification of their contraction following the mechanical forces induced by
an electromagnetic field and/or a β-adrenergic stimulation (10 μM isoproterenol)
[3, 33].

In particular, the electromagnetic bioreactor induced compression/traction
cycles, that is, a mechanical vibration (frequency=75Hz) onto the cells. A similar
vibration (frequency=80Hz), according to [27], is able to cause a speeding up
of the cardiomyocyte relaxation and a reduced cellular tension via an increase in
detachment rate of attached cross-bridges from the thin filaments of the cytoskeleton
without substantial reattachment. In a preceding work [24], we then observed an
accordant reduction of contraction acceleration and contractility, whereas, in the
present study, we have recognized the same biological behavior in the reduction of
the contraction energy (ergotropy).

In addition, in the heart, the stimulation of β1ARs and β2ARs enhances the
contraction frequency by increasing cAMP production via activation of adenylyl
cyclases [3]. Then, activated PKA phosphorylates proteins essential for contraction.
β1AR is significantly more effective than β2AR to increase the sarcomeric short-
ening, because it directly activates the Gs-cAMP pathway, whereas β2AR activates
sequentially both the Gs and Gi pathways.

Moreover, by the electromagnetic bioreactor previously described [1, 2, 6,
8, 10, 11, 13–16, 18, 21, 26, 35–37, 43], our previous work indicated that an
exposure to a low-frequency EMF decreases the beat frequency of neonatal murine
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cardiomyocytes and also the effects of the β-adrenergic stimulation [3], due to the
internalization of β2ARs.

In accordance with the cited papers, in the present work, we have showed that
a low-frequency electromagnetic stimulus was able to counteract both the basal
ergotropy and the β-adrenergically enhanced ergotropy, due to induced mechanical
vibration [27, 33], internalization of β2ARs [3], and inhibition of T-type calcium
channels via AA/LTE4 signal [4].

5 Conclusion

While some studies arouse alarms about the low-frequency electromagnetic expo-
sure [7, 44], this work suggests a potential use of that biophysical stimulation to
modulate the β-adrenergic sensibility. In particular, a weakening of the β-adrenergic
sensibility can be essential in the ischemia-reperfusion injuries [25].

Ethics Statement

All procedures involving mice were completed in accordance with the policy of
the Italian National Institute of Health (Protocol nr. 118/99-A) and with the ethical
guidelines for animal care of the European Community Council (Directive nr.
86/609/ECC).

CD-1® mice were obtained from the Charles River Laboratories Italia (Calco,
Italy) and were housed under 12-h light/dark cycles, at constant temperature, and
with food and water ad libitum. The mice were sacrificed by cervical dislocation.
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Role of Electrotonic Current in Excitable
Cells

Emilio Macchi, Ezio Musso, and Stefano Rossi

Abstract The aim of the present chapter is to review basic properties of electrotonic
current flow in excitable cells, such as neuronal axons and cardiac tissue, during
subthreshold stimulation, excitation threshold and impulse conduction. Electrotonic
current is proportional to the spatial gradient of the transmembrane potential and
consists of a current flow across the membrane with the effect to depolarize it. There
is a close interrelationship between electrotonic current that originates from local
source-sink interactions and excitation threshold. Successful impulse conduction
requires that the amount of active current supplied by the membrane at the source
location must be equal to or exceed the amount of electrotonic current required to
excite the membrane at the sink location. Such condition is determined by the state
of membrane excitability at the source, at the sink and by the degree of electrical
coupling between source and sink. Conversely, conduction slowing induced by
source-sink mismatch in cardiac tissue may be responsible for unidirectional con-
duction block and reentry, a condition leading to increased arrhythmia vulnerability,
both in normal and pathological tissue. In addition to affecting impulse conduction,
electrotonic current flow originating from an activation sequence locally modulates
action potential repolarization, determining its duration and spatial dispersion
across the tissue. Ultimately, experimental evidence is presented in support of the
hypothesis of electrotonic current modulation of ventricular repolarization by two
different activation sequences, sinus beat and ventricular test site drive, in normal
rat heart.
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1 Introduction

Considerable data has been reported concerning the spread of electrotonic current
in excitable cells such as along neuronal axons and between neighboring cells
in cardiac muscle. Electrotonic current is proportional to the membrane potential
difference between neighboring cells and consists of a current flow across a
membrane with the effect to depolarize its membrane potential. However, an
accurate definition and description of electrotonic current, an important prerequisite
for understanding the mechanisms of impulse initiation and conduction in excitable
cells, is not readily available in the literature. In addition, experience gathered
in teaching electrophysiology to Biology students suggests that, although the
common significance of electrotonic current may be readily understood, still its
intimate mechanism is not easily grasped. Indeed, the close relationship between
electrotonic current and threshold of excitation is usually ignored in electrophysi-
ology textbooks. Electrotonic current originates from local source-sink interactions
that determine conduction of excitation in cardiac tissue. Successful propagation
requires that the amount of active current supplied by the membrane at the
source location must be equal to or exceed the amount of electrotonic current
required to excite the membrane at the sink location. At the cellular level, this
condition is determined by the state of membrane excitability at the source and
the sink and by the degree of electrical coupling between source and sink. At the
macroscopic scale of multicellular tissue, this condition is strongly influenced by
structural properties of myocardium, such as branching of fibers or heterogeneities
of electrical coupling over tissue segments. Moreover, the relevance of electrotonic
current in sustaining impulse conduction extends beyond normal propagation. Over
the last decades electrotonic current mismatch has been increasingly recognized
as a potential substrate for abnormal rhythms and reentry, both in normal as well
as pathological conditions. For example, electrotonic conduction slowing may be
responsible for unidirectional conduction block and reentry, a condition leading to
increased myocardial arrhythmia vulnerability.

In addition to affecting action potential conduction, electrotonic current modu-
lates action potential repolarization determining its duration and spatial variation
(dispersion) across the tissue. The influence of electrotonic current on the repolar-
ization phase of a propagating action potential is commonly undervalued in spite of
the relevance of electrotonic modulation by the activation sequence.

Hence, the present chapter aims to review basic properties of electrotonic current
flow in excitable cells during subthreshold and threshold stimulation and during
action potential conduction. We also present some experimental evidence that
supports the hypothesis of electrotonic current modulation of repolarization.
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2 Linear Cable Model of Excitable Cells

The linear cable, as equivalent model of excitable cells (see, e.g. [1]), represents
transmembrane current im as the sum of two components, the capacitive (or
displacement) current ic and the ionic (or resistive) current iion (Fig. 1). Within
excitable cells, current is carried by ions, primarily sodium, potassium, chloride
and calcium.

Capacitive current ic is a displacement of ionic charges on either side of cell
membrane without movement across the membrane. For an ion deposition on one
side of the membrane, an ion withdrawal of the same sign occurs on the opposite
side. Capacitive current is much more important than one might at first suspect,
because cell membrane is very thin and thus highly capacitive.

Conversely, ionic current iion consists of ions that physically cross membrane ion
channels.

In brief, im = ic + iion with im, ic, iion currents per unit length of the cell.
By definition, capacitive current ic = cm

∂Vm
∂t

, with cm membrane capacitance per
unit length of the cell, Vm = Vi − Ve membrane potential and Vi, Ve intracellular and
extracellular potential, respectively. Ionic current iion is resistive, i.e. according to
Ohm’s law, through passive ion channels, and active through voltage-gated, ligand-
gated or mechanosensitive ion channels.

The change in potential per unit length along the intracellular (or extracellular)
axial path equals the axial current times the intracellular (or extracellular) resis-
tance/unit length (i.e., a voltage drop according to Ohm’s law).

Fig. 1 Electrical equivalent circuit of the linear cable model of excitable cells. Parallel resistance
rm and capacitance cm represent cell membrane impedance with corresponding iion and ic
current flow, respectively. Transmembrane current im is given by im = iion + ic. Ii. Longitudinal
extracellular and intracellular currents are Ie and Ii, extracellular and intracellular potentials are
Ve and Vi and extracellular and intracellular resistances per unit length are re and ri, respectively.
Current flow is due to subthreshold point stimulation from an intracellular anode outside the right
side of the circuit or an extracellular cathode outside the left side of the circuit
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Consequently,

Ii = − 1

ri

∂ Vi

∂ x
and Ie = − 1

re

∂ Ve

∂ x
,

with Ii, Ie intracellular and extracellular axial current, ri, re intracellular and
extracellular axial resistance per unit length, respectively and the axial variable is
x. The minus signs arises because we define positive longitudinal currents to be
flowing in the positive x direction. The potential must decrease with increasing x
for current to flow in the positive x direction because current flows from higher to
lower potential values.

If a portion of intracellular axial current Ii leaves the intracellular space by
outward crossing the membrane, then the axial decrease is transformed into a
transmembrane current im and extracellular axial current Ie increases. The changes
in axial current per unit length must precisely equal the transmembrane current per
unit length, because the total current must be conserved, i.e.:

im = −∂ Ii
∂ x

= ∂ Ie

∂ x
.

By definition, transmembrane current im is considered to have a positive sign
when it flows across the membrane in the direction from the inside to the outside.

Hence, from the previous definitions we have:

im = 1

ri + re
∂2Vm

∂x2 .

In fact, by deriving twice both members of Vm = Vi − Ve, we obtain at first:

∂ Vm

∂ x
= ∂ Vi

∂ x
− ∂ Ve

∂ x
= −riIi + reIe,

and then:

∂2 Vm

∂ x2 = −ri ∂ Ii
∂ x

+ re ∂ Ie
∂ x

= riim + reim = (ri + re) im.

The extracellular axial current may increase with axial distance x either due to
the arrival of current that crosses the membrane (transmembrane current, im) or
the introduction of a stimulus current from outside the preparation through inserted
electrodes. In presence of impressed current, i.e. extracellular, ∂ Ie

∂ x
= im+ is,where

is the impressed current per unit length, positive for current entering the extracellular
space via polarizing electrodes. The units for is then correspond to the same units



Role of Electrotonic Current in Excitable Cells 91

used for im. In this case, it results:

∂2Vm

∂ x2 = (ri + re) im + reis .

Thus, when is = 0, im is directly proportional to ∂2 Vm
∂ x2 and depends only on ri

and re.

2.1 Units of Resistance and Capacitance

If r is the resistance (ohm) of a box of conducting material of length L (cm) and
section area A (cm2) through which ionic current flows, then r = R · L/A, where R
(ohm·cm) is the resistivity of the conducting material. The resistivity is defined as
the resistance of a unit box of conducting material (L = 1 cm, A = 1 cm2).

Hence, units of intracellular/extracellular resistance per unit length, i.e.
ri,e = r/L= Ri,e/A, are ohm/cm where Ri,e is the intracellular/extracellular resistivity,
respectively.

Units of membrane resistance per unit/length rm are defined by considering a
thin sheet of resistive material instead of the conducting box, with thickness l
infinitesimal (δl). Hence, membrane resistivity Rm = R · δl has units ohm·cm2. By
considering the surface area A (cm2) of a length of cell membrane L (cm), i.e. A = s
· L with s (cm) the cell circumference, then membrane resistance per unit length is
defined by rm = r · L = Rm/s in units ohm·cm.

If c is the capacitance (microfarad) of a cell membrane of length L (cm),
circumference s (cm) and area A = L · s (cm2) through which capacitive current
flows, then c = Cm · A where Cm (microfarad/cm2) is the membrane capacity,
defined as membrane capacitance per unit area. Accordingly, membrane capacitance
per unit length is defined as cm = c/L = Cm · s in units microfarad/cm.

3 Electrotonic Current and Potential

An extracellular point current source of strength is, such as a point electrode
connected with the positive or negative pole of an external current generator,
positioned close to an excitable cell, generates an extracellular current Ie that flows
away from the positive pole (Fig. 2a, upper panel) or toward the negative pole
(Fig. 2a, lower panel), respectively. A fraction of extracellular current Ie crosses cell
membrane as transmembrane current im that transforms into intracellular current
Ii flowing along the cell axis x. At steady-state, a potential gradient ΔVm(x) exists
along the cell axis where im crosses the membrane. Transmembrane current im is the
electrotonic current and the membrane potential gradient ΔVm(x) generated by im
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Fig. 2 Schematic diagrams showing steady-state current flow during extracellular stimulation
from a current generator of is strength. (a) Upper panel: unipolar anodal stimulation. Lower
panel: unipolar cathodal stimulation. (b) Upper panel, bipolar stimulation. Lower panel: theo-
retical voltage changes following bipolar stimulation; the straight line represents ΔVe and ΔVi,
extracellular and intracellular voltage changes, respectively, at the make of the stimulus; the dashed
and dotted lines represent steady-state values of ΔVe and ΔVi, respectively. In each diagram: x,
longitudinal distance; λ, space constant; e and i, extracellular and intracellular space, respectively;
thick horizontal line, cell membrane; dashed horizontal line, surface of extracellular conducting
layer; arrowed straight lines, extracellular (Ie), intracellular (Ii) and transmembrane (im) current
lines, respectively where density of current lines is not directly proportional to current field density;
ΔVm = ΔVi − ΔVe, transmembrane voltage change; Vr , resting potential
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Fig. 3 (a) parallel resistance
(rm) and capacitance (cm)
circuit representing cell
membrane impedance. (b)
Time change of
transmembrane current im,
capacitive current ic and ionic
current iion, during and
following application to the
circuit shown in A of a step
current pulse of strength is
and duration T. (c) Time
change of transmembrane
voltage ΔVm(t) for: (a)
parallel rm and cm circuit; (b)
purely rm circuit; (c) purely
cm circuit, respectively,
during and following
application of a step current
pulse of strength is and
duration T

along the cell axis is the electrotonic potential. The amplitude of the electrotonic
potential is highest at the source location and decreases exponentially with the
distance away from the source proportionally to im. At distance of a few space

constants λ (λ =
√

rm
ri+re ) from the source, im = 0 so that also ΔVm = 0 and Vm

is spatially constant at its resting potential Vr [1].
By representing a membrane segment δx, small enough that the transmembrane

voltage is the same all across the patch, with the electrical equivalent circuit of
Fig. 3a, the electrotonic current im that flows across the membrane is given by
im = ic + iion. Capacitive current ic adds or subtracts positive charges on one side
of the membrane and an equivalent number of negative charges on the other side
and the charge change of the membrane capacitor generates the membrane potential
changeΔVm(t) that causes ionic resistive current iion to flow.

In summary, the membrane capacitor is charged or discharged by capacitive
current ic. The charge change in time on the capacitor creates membrane potential
change ΔVm(t) that generates ionic resistive current iion to flow through rm with
the same orientation of ic. Membrane resistance per unit length rm is passive
when voltage dependent ion channels are at their resting state. In presence of a
rectangular current pulse of subthreshold strength, the electrotonic potentialΔVm(t)
is an exponential function of time with time constant τ = rmcm (subthreshold
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response) (Fig. 3c, line a) and iion(t) = ΔVm(t)/rm is also an exponential function
with the same time constant (Fig. 3b) (see [1]). Ionic current iion is resistive when
membrane resistance per unit length rm is passive, i.e. below activation threshold
of voltage dependent channels, and does not affect the charge on the membrane
surface. Thus, near the extracellular current source, transmembrane current im is
given by im = ic + iion: capacitive component ic generates the electrotonic potential,
and resistive ionic component iion is generated by the electrotonic potential with
both ic and iion flowing in the same direction and orientation.

Particularly, outward electrotonic current im depolarizes the membrane by adding
positive charges by means of ic on the inside of membrane surface, while inward
electrotonic current im hyperpolarizes the membrane by adding positive charges by
means of ic on the outside of membrane surface (Fig. 2). In both cases, resistive
ionic current iion is represented by positive ions crossing the membrane with the
same direction and orientation of the capacitive current without affecting the charge
on the two sides of the membrane. Hence, in the region of outward im, it is not
outward iion that depolarizes the cell. The situation is rather the other way round:
an outward ionic current iion flows because the cell is depolarized by the capacitive
current ic. In fact, a step current pulse generates an electrotonic potentialΔVm even
if membrane resistance was infinite (Fig. 3c, line c). The transmembrane current
would then be entirely capacitive and the change in membrane potential would
be simply proportional to the amount of charge applied, i.e. ΔVm(t) would change
linearly with time due to the charge accumulating on the two sides of the membrane.
In case of a purely resistive circuit (cm = 0), ΔVm(t) changes simultaneously as the
step current pulse (Fig. 3c, line b).

In excitable cells, electrotonic current can be generated by:

(a) current injection from an electrode connected with a current generator;
(b) membrane electromotive force (i.e. propagating action potential) generating

active transmembrane ionic current iion.

4 Subthreshold Stimulation

Current injection is extracellular if both electrodes connected with the current
generator are external to the cell (Fig. 2), while it is intracellular if one of the
two electrodes is positioned inside the cell (Fig. 3a, electrical equivalent circuit).
Furthermore, extracellular current injection is unipolar if the return current electrode
is located at great distance from the current injection electrode (Fig. 2a), or bipolar
if both electrodes are next to each other (Fig. 2b).
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4.1 Intracellular Current Injection

In this setting, the intracellular microelectrode is connected to an anode (positive
pole) or a cathode (negative pole), while the return current electrode is extracellular.
In presence of an intracellular anode the current flows outward from the cell
depolarizing the membrane, while in presence of an intracellular cathode the current
flows into the cell hyperpolarizing the membrane. If the extracellular electrode is
close to the microelectrode in the stimulated cell, current lines are mostly comprised
within the inter-electrode region, while if the extracellular electrode is at a great
distance, current lines display radial flow from the intracellular electrode.

Let us consider an intracellular rectangular current injection of subthreshold
strength is, as occurs in an isolated cell or a uniformly polarized cardiac Purkinje
fibre [2]. The electrical equivalent circuit is represented in Fig. 3a. At t = 0, current
pulse onset, ic = is while iion = 0 (Fig. 3b). Subsequently, ic decreases exponentially
toward zero with time constant τ (Fig. 3b, 0 < t < T). The charging of the capacitor
generates an exponential potential change ΔVm(t) (Fig. 3c, line a, 0 < t < T) and a
corresponding exponential increase in iion toward steady-state is (Fig. 3b, 0 < t < T).
During the current pulse, both ic and iion flow across the membrane with the same
orientation and satisfy at each instant the relationship im = is = ic + iion. Under
steady-state conditions, im is simply represented by its resistive component iion = is
since ic = 0 (Fig. 3b, 0 < t < T). At t = T, current pulse offset, im = ic + iion = 0 and
ic = −iion, i.e. ic and iion flow across the membrane with opposite orientation (Fig.
3b, t > T), discharging the capacitor cm through the resistor rm while the potential
decreases exponentially toward zero (Fig. 3c, line a, t > T).

4.2 Extracellular Current Injection

Extracellular current injection is unipolar when one electrode, anode or cathode, is
close to the cell membrane and the other electrode is at infinite distance (Fig. 2a)
while it is bipolar when both electrodes, anode and cathode, are in close proximity
to the cell membrane at short inter-electrode distance (Fig. 2b). Due to the higher
resistance of the membrane compared to extracellular resistance, a small fraction of
the injected current from an electrode crosses the membrane as electrotonic current
im flowing along cell axis as intracellular current Ii, while the larger fraction of the
injected current flows as extracellular current Ie. Electrotonic current im is inward
at the anode and hyperpolarizes the membrane along a distance of few λ (Fig. 2a,
upper panel). Electrotonic current im is outward at the cathode and depolarizes the
membrane along a distance of few λ (Fig. 2a, lower panel). Beyond a distance
of a few λ from the poles, electrotonic current im = 0 and electrotonic potential
ΔVm =Δ(Vi – Ve) =ΔVi −ΔVe = 0. In fact, beyond a distance of a few λ from the
poles,ΔVi andΔVe change linearly along cell axis according to Ohm’s law because
Ii and Ie are constant and ΔVi = ri · Ii and ΔVe = re · Ie have the same amplitude
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and sign [3]. For bipolar current injection, Fig. 2b, lower panel, represents steady-
state voltage changes ΔVi (dotted line) and ΔVe (dashed line) and instantaneous
voltage changes at the make of the stimulus ΔVi and ΔVe (straight line). In case
of anodal and cathodal unipolar current injection, intracellular and extracellular
currents flow from the anode to infinity (Fig. 2a, upper panel) and toward the cathode
from infinity (Fig. 2a, lower panel), respectively. In case of bipolar current injection
both intracellular and extracellular currents flow from anode to cathode within the
inter-electrode distance (Fig. 2b, upper panel).

Detailed analytical solution for the temporo-spatial response of an infinite cable
to a current step is described, for example, in Jack et al. [4] and Plonsey and Barr
[1].

5 Stimulation Threshold

When an excitable membrane reaches excitation threshold, it becomes itself a
membrane current source or a local membrane electromotive force and, as such,
can elicit a “membrane action potential” in absence of electrotonic current (im = 0)
or a “propagating action potential” in presence of electrotonic current (im �= 0).
Requirements for reaching excitation threshold for the two conditions are different.

5.1 The Membrane Action Potential

Let us consider the case of a cell in which the whole membrane surface experiences
the same potential changes at the same time, i.e. the membrane is clamped spatially,
and there is no intracellular current flowing along cell axis. This condition occurs
in an isolated cardiomyocyte, in shortened segments of Purkinje fibers or in a
squid giant axon by the use of an internal silver wire which makes the squid axon
membrane isopotential [2, 5]. In this setting, the membrane will become a current
source when membrane potential Vm is depolarized from resting potential Vr to a
threshold potential Vu (uniform threshold potential).

In a squid giant axon, not considering pumps and exchangers and in absence of
the inward rectifier current IK1, resting potential Vr is characterized by net ionic
transmembrane current iion = 0 (electrical equilibrium) as the result of opposite ion
diffusions, mainly through Na+ and K+ passive ion channels, respectively. In this
setting,

iion = iNa + iK = (Vr − ENa) · gNa + (Vr − EK) · gK = 0,

with ENa, EK equilibrium potential, and gNa, gK membrane conductance for Na+
and K+, respectively. Extracellular cathodal current injection modifies resting
potential Vr, by depolarizing Vm towards more positive values (Fig. 4). At the
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Fig. 4 Steady-state
membrane current/voltage
(iion/Vm) relation defining
voltage threshold Vu for cable
excitation by uniform
polarization. EK , K+
equilibrium potential; Vr,
resting potential

beginning of depolarization, while gNa and gK remain constant, outward K+ current
iK increases because Vm − EK increases and inward Na+ current iNa decreases
because Vm − ENa decreases and, as a consequence, net ionic current iion becomes
outward (Fig. 4). However, when the increase in depolarization activates voltage
dependent Na+ channels, inward iNa current increases due gNa increase and net
outward ionic current iion, after reaching a maximum, gradually decreases. With
a further increase in depolarization, outward net ionic current iion becomes zero
again at potential Vm = Vu. While Vr is a steady-state electrical equilibrium, Vu

represents a highly unstable electrical equilibrium due to the counterbalance of high
strength inward and outward currents through low resistance active ion channels.
Electrical equilibrium instability is manifested by the iion/Vm relationship displaying
negative slope (conductance) at Vu compared to positive slope at Vr (Fig. 4). Hence,
if current injection is terminated at Vm = Vu, a small spontaneous depolarization
will initiate an action potential simultaneously on every patch of membrane,
while a small spontaneous repolarization will reestablish resting potential Vr.
Under these conditions, the active response is a membrane action potential as it
occurs in an isolated cell or an uniformly polarized membrane. During membrane
action potential, active ionic current is entirely transformed into capacitive current
iion = −ic and electrotonic current im = 0 (Fig. 5). Only during the short time
interval of extracellular current injection, electrotonic current im = ic + iion �= 0: the
stimulus current is almost entirely used to charge the local cell membrane capacitor
and none flows as local circuit current. Hence, during the stimulus, both ic and iion
flow outward with the same orientation: ic has higher strength while iion is lower due
to passive high resistance ion channels (Fig. 5). Once an action potential has been
initiated by passing sufficient depolarizing current im to exceed threshold potential
Vu, the stimulus current im may be set to zero.

In summary, the condition for excitation of a uniformly polarized membrane is
that the voltage should reach and exceed a critical value Vu, the uniform threshold
potential, corresponding to net ionic current iion = 0. In fact, net ionic current
iion is outward for Vm within the interval Vr < Vm < Vu, zero for Vm = Vu and
inward for Vm > Vu during the upstroke of the action potential (Figs. 4 and 5).
It is worth noticing that during a membrane action potential iion, initially inward,
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Fig. 5 Changes in voltage and currents during a membrane (uniform) action potential initiated
by a brief rectangular stimulus current. The top diagram shows membrane potential change Vm
as a function of time. The second diagram shows the capacity current ic = cmdVm/dt. The initial,
nearly square, wave corresponds to the applied current (see bottom diagram), most of which flows
as capacity current when brief pulses are used. The third diagram shows the total ionic current
(continuous curve) and its K+ and Na+ components (dashed curves). The bottom diagram shows
the total membrane current im = iion + ic, which is zero apart from time interval during which
the stimulus is applied. The first dashed vertical line indicates when threshold Vu is reached while
the following three dashed vertical lines indicate the times at which dVm/dt is maximal, zero and
minimal, respectively. This diagram may be compared with the corresponding one for a propagated
action potential shown in Fig. 9. Adapted from Jack et al. [4]

reaches a minimum when dVm/dt is maximal, is zero at the action potential peak
when dVm/dt = 0 and reaches a maximum when dVm/dt is minimal.

Hence, when a uniform polarized membrane becomes an active source, iion
entirely converts into ic and the two currents flow in opposition, i.e. iion = −ic.
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5.2 The Propagating Action Potential

Conversely, when a cell is in contact with other cells as in cardiac tissue or long
point-stimulated Purkinje fibers [2], active inward current iion generated by the
cell membrane is not entirely transformed into ic on the local membrane. Hence,
iion = −ic + im and im �= 0 is the electrotonic current that flows across cell
membrane.

Let us consider a simple electrical model of an excitable cell as shown in Fig. 6
[4]. An external current pulse generator is connected to a model consisting of
a resistor and capacitor in parallel. In addition, to represent the sodium current

Fig. 6 Simple electrical circuits representing excitation and conduction. (a) an external current
generator applies charge to the capacitance cm of the model circuit. When the potential across the
circuit reaches a threshold value, the switch on the Na+ circuit closes and the Na+ battery passes
current into the cell. (b) the external current generator is removed. The potential change on the
capacitance continues as current flows through the Na circuit and replaces the external current
generator as the source of excitatory current. (c) the excited circuit is connected to a passive circuit
and now acts like the external current generator in applying current to the passive circuit. Thus,
the excitation may propagate for circuit to circuit. Since the Na+ current in the excited circuit is
the only inward current flowing, rNa must be low (i.e. gNa high) in order to allow sufficient Na+
current to flow to continue charging the local capacitance and to excite the passive circuit. Hence
there will be a minimal value of gNa below which propagation cannot occur. Adapted from Jack
et al. [4]
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system, a battery ENa+ (the Na+ equilibrium potential) and resistance rNa+ (the Na+
active resistance) are also placed in parallel with the capacitor. A voltage-sensitive
switch (i.e. the Na+ channel ‘gates’), which closes when depolarization reaches
Na+ activation threshold, controls this circuit element. When a depolarizing current
is is applied to the inside of the model (see Intracellular current injection), positive
charge accumulates on the inside of the membrane capacitor (Fig. 6a). The potential
changes in a positive direction and, therefore, a small outward current iion also flows
across the passive high membrane resistance rm. When Na+ activation threshold is
reached, the voltage dependent switch closes and an inward current is generated
across the Na+ resistance (Fig. 6b). It is assumed that the external impressed
current pulse then terminates, i.e. the stimulating current is just threshold. This
condition occurs when the charge furnished by the external impressed current pulse
is (pulse strength · pulse duration) is turned off as soon as Na+ activation threshold
is reached. The inward flow of current across the Na+ circuit now takes over the
function of the external generator in applying positive charge to the inside of the
membrane capacitance. Moreover, if this circuit were connected to a similar resting
circuit, the current flowing across the sodium circuit could also apply positive charge
to the capacitance of the resting circuit (Fig. 6c). The resting circuit would then
also become excited and so a wave of excitation propagates from circuit to circuit.
Such an arrangement of serially connected circuits can be used to represent the
propagation process.

The condition for generating a propagating action potential in a cable is that the
voltage at the point of current injection should exceed a critical value at which the
net ionic current generated by the cable as a whole becomes inward. This critical
voltage should be higher than Vu, the voltage threshold for excitation by uniform
polarization. In order to determine the condition for exciting a cable by current
applied at one point, it is useful to consider an expression for the iion/Vm relationship
for the applied current I at a point x = 0 and the voltage Vm at the same point x = 0
(Fig. 7) as described by Jack et al. [4]. The equation derived by these authors is:

I = 2

⎛

⎝
2

ri

Vm�
Vr

iion dV

⎞

⎠

1
2

.

Since I becomes zero when the integral term is zero, the voltage threshold for
cable excitation, expressed in terms of the voltage at the point of current injection,
must be larger than the threshold for uniform membrane polarization Vu (Fig. 7).
Moreover, provided that the iion(Vm) relation is independent of time and the system
is allowed to approach a steady-state before excitation occurs, the voltage threshold
VTh will be given by:

VT h�
Vr

iiondV = 0.
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Fig. 7 Relation of voltage threshold for cable excitation VTh to membrane current/voltage relation.
Vr is the resting potential and Vu is the voltage threshold for excitation by uniform polarization.

VTh is given by the point at which the integral
VT h�
Vr

iiondV = 0 becomes zero. Adapted from Jack

et al. [4]

If there is no voltage that satisfy this equation, excitation cannot occur.
This equation may be more readily understood in terms of the corresponding

curves for voltage Vm and current iion as function of distance x from the current
source corresponding to threshold current applied at x = 0 (Fig. 8). The condition
corresponding to the voltage threshold VTh is that the integral of current with respect
to distance should be zero so that no further current is required for the stimulation
electrode, i.e.

∞�
0

iiondx = 0.

The length of fiber over which the excitation process occurs at threshold identifies
the liminal length for excitation [5, 6]. The membrane region corresponding to the
liminal length represents the source, delimited by Vth where inward iion is maximal
and by Vu, where iion is zero. The membrane region where iion is outward and Vm

decreases exponentially to Vr represents the sink, i.e. the membrane region that has
to be depolarized by intracellular current flowing form the source (Fig. 8).

An important question is how safe action potential propagation is under nor-
mal and pathological conditions. Shaw and Rudy [7] provided a comprehensive
approach to the computation of the so-called safety factor (SF) using a multi-cellular
theoretical fiber, as formulated by:

SF =

�
A

ic · dt + �
A

im · dt
�
A

Ii · dt .
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Fig. 8 Source, sink and liminal length. Upper panel: schematic diagram of currents flowing along
a longitudinal sequence of cardiomyocytes induced by extracellular cathodal current injection at
x = 0 reaching depolarization threshold. Ionic current iion, is inward in the source region where it
is generated across the active membrane and outward in the sink region, i.e. electrotonic, across
passive membrane that is being depolarized. Intracellular current Ii flowing from source to sink and
extracellular current Ie flowing from sink to source complete the closed loop of current field lines.
The source region identifies the liminal length comprised between threshold membrane potential
for excitation VTh at the point of current injection x = 0 and uniform threshold potential Vu at
the point where sink region initiates. Middle panel: spatial variation in membrane current for
threshold depolarization. Threshold is reached when the amount of inward current generated near
the polarizing electrode is equal to the amount of (outward) repolarizing current generated by areas
of membrane polarized below Vu. Lower panel: membrane potential Vm profile along source and
sink, initiating at VTh at the centre of the source and extending toward Vr, resting potential, where
the sink ends. Adapted from Jack et al. [4]

The denominator of this equation corresponds to the electric charge flowing into
a given cell during excitation and supplied by the neighboring active cell upstream
(intracellular current Ii). The numerator represents the two terms into which the
active ionic current iion generated by the cell divides. The first term refers to the
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capacitive current ic producing the upstroke of the action potential and the second
term to the current im that transforms into Ii flowing out of the cell to excite
neighboring resting cell downstream and to propagate the action potential. The
integration range A relates to the time window during which the membrane is being
depolarized, i.e. foot and upstroke of the action potential. Intuitively, this definition
is straight-forward: propagation is safe if SF > 1, i.e. the denominator is smaller
than the numerator, that is, if the electrotonic current required to excite a given
cell (denominator) is smaller than the ionic current generated by this same cell
(numerator). Hence, for a uniformly propagating action potential, the denominator
of SF represents the threshold charge computed as time integral at a cell point,
equivalent to the voltage integral of current at the point of current injection shown
in Fig. 7 or the space integral of current with respect to liminal length shown in
Fig. 8.

When excitation threshold is reached, action potential initiation and propagation
occurs. The currents flowing during a propagated action potential are shown in
Fig. 9. This figure represents an action potential propagating from right to left,
initiating far away to the right, so that the action potential is already conducting
as a wave of constant shape and speed. The first sign of arrival is an exponential rise
in potential Vm, corresponding to the foot of the action potential. As indicated by
the current diagram at the bottom of the figure, this phase corresponds to outward
current flow im resulting from current flowing from the active region of membrane
further to the right (source). During this phase, the source is acting as an external
circuit applying depolarizing current im to the resting region ahead, the sink. The
current flow im is almost entirely represented by ic since the passive membrane
conductance and ionic current iion are both very small.

Along action potential profile, the curve of ionic current iion is triphasic. At the
foot of the action potential, ionic current iion is initially outward and, as sodium
conductance increases, iion reaches a maximum and then declines to zero at Vu

(Fig. 9, vertical line a) becoming inward. The membrane region where iion is
outward and Vr < Vm ≤ Vu represents the sink. The inward flow of Na+ current
further depolarizes the membrane. Threshold potential VTh is reached above Vu

within interval a–b. In studies by Hoffman and Cranefield [8], SF associated with
a propagated action potential in normal cardiac muscle was estimated to be more
than six times that of diastolic threshold. As the Na+ conductance inactivates and
the K+ conductance increases, the inward ionic current iion decreases. However,
repolarization begins (Fig. 9, vertical line c) before the ionic current iion becomes
outward (Fig. 9, vertical line a′). The reason for this is that, in addition to adding
charge to the local membrane capacity, the inward flow of ionic current iion is
also supplying local circuit current flow to regions of membrane that are already
repolarizing. It continues to do so beyond the peak of the action potential, and for
a period of time the local capacity and ionic currents flow in the same direction
(interval c–a′). Ultimately, the ionic current iion vanishes and becomes outward (Fig.
9, beyond vertical line a′) and the membrane potential returns towards its resting
value.



104 E. Macchi et al.

Fig. 9 The top curve shows membrane potential Vm. Immediately below are shown changes in
gNa and gK conductances. The middle diagram shows the changes in im and its components, ii and
ic. The bottom diagram is a schematic representation of the local circuits during propagation. The
wave is propagating from right to left at uniform speed θ and the abscissa may also be regarded
as time, since x = θ t. The dashed vertical lines connect the points of the curves corresponding
to zero crossing of iion, (line a and a’), zero crossing of im (line b and b’) and zero crossing of ic
(line c). Note that (i) im = 0 for ic at maximum and Vm at maximum depolarization rate (line a);
(ii) im = 0 for ic at minimum and Vm at maximum repolarization rate (line a’); (iii) ic = 0 at Vm
maximum value (peak of action potential). The source and sink regions are defined by the distances
comprised between Vr − Vu (outward iion) and Vu − VTh (inward iion), respectively. Adapted from
Jack et al. [4]
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Along action potential profile, the curve of membrane current im is also triphasic,
being:

– outward along the foot and initial upstroke of the action potential and becoming
zero at maximum depolarization rate (Fig. 9, vertical line b, maximum of ic
curve);

– inward within interval b-b′ in Fig. 9, reaching a minimum at peak of action
potential (Fig. 9, vertical line c, ic = 0) and becoming zero at maximum
repolarization rate (Fig. 9, vertical line b′, minimum of ic curve);

– outward beyond vertical line b′ in Fig. 9, where im = 0.

Interestingly, the current curves shown in this figure may all be obtained
experimentally from measurements of the propagating action potential [9]. The
capacity current ic is obtained by differentiating the action potential,

ic = Cm
∂Vm

∂t
.

Moreover, transmembrane current im may be obtained from the second derivative
since, when the wave conducts with a constant shape and velocity, the time
and distance scale are proportional, the constant of proportionality being θ , the
conduction velocity. Hence, transmembrane current im becomes:

im = 1

riθ2

∂2Vm

∂ t2
.

The ionic current iion may then be computed as the difference between im and ic.
In summary, inward current im flowing across active membrane undergoing

rapid depolarization and early repolarization gives rise to axial current Ii flowing
in opposite directions along fiber axis. Partition point for im occurs at the peak
of action potential profile. Axial current Ii transforms into outward electrotonic
current, mainly capacitive, that sustains propagation ahead of action potential profile
and delays repolarization phase behind. Hence, the amount of electrotonic current
flowing behind direction of propagation modulates action potential profile, i.e.
action potential duration (APD).

6 Electrotonic Modulation of Repolarization
by the Activation Sequence

As compared to a cable like structure where action potential propagation is one-
dimensional, propagation in cardiac muscle is three-dimensional. Electrotonic mod-
ulation of repolarization is more complex than the classic electrotonus described by
cable theory for strands or axons with constant values of membrane resistance and
uniformly distributed longitudinal resistance. It is well known that spatial dispersion
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of repolarization plays an important role in arrhythmogenesis. At tissue level,
intrinsic APD heterogeneity can be modulated by electrotonic interactions between
cells [10]. Regional variations of APD represent a form of electrophysiological
heterogeneity in the heart. In a wide range of species, spatial gradients of APD exist
from base to apex, from right to left ventricle and in the transmural plane of healthy
myocardium [11, 12]. Furthermore, electrotonic interactions during repolarization
can lead to dynamic modulation of APD gradients depending on the activation
sequence, leading to an inverse linear relationship between activation time (AT)
and APD [10, 13–20]. The dynamic nature of this modulation is due, in part, to the
spatial gradient in membrane potential occurring during the repolarization phase of
a propagating AP. Each cell is influenced by the electrotonic load from its neighbors
such that, cells repolarizing later generate an inward electrotonic current flowing
toward their earlier repolarizing neighbors with the effect of delaying repolarization
phase. In homogeneous tissue, electrotonic modulation of repolarization effectively
prolongs the APD of the earlier activated cells and generates gradually decreasing
APDs away from the pacing site. These APD gradients are most pronounced at the
pacing site, at the tissue boundaries and in directions of slow propagation [18, 21,
22].

6.1 Modulation of Activation-Recovery Interval

Experimental evidence of acute electrotonic modulation of repolarization during
two different activation sequences, sinus rhythm (SR) and ventricular drive (VD),
can be obtained by electrical mapping in the in situ heart. An unpublished experi-
mental result from our laboratory is shown in Fig. 10. Unipolar potential mapping
was performed from the anterior ventricular surface in rat heart by means of an
8 × 8 epicardial electrode array, with 1-mm resolution square mesh [23]. Unipolar
stimulation at a ventricular test site was obtained from one of the array electrodes
by means of 1 ms duration and twice diastolic-threshold strength cathodal current
pulses. Ventricular ATs were computed from unipolar epicardial electrograms as
the times of the minimum time derivative (dV/dtmin) during QRS complex and
referenced to QRS or stimulus onset for SR and ventricular drive, respectively.
Recovery times (RT) were computed as the times of the minimum of the time
derivative (dV/dtmin) during the downslope of the T wave. Activation recovery
interval (ARI), a well-validated estimate of local APD [24, 25] was obtained as
difference between AT and RT. Isochrone line maps in Fig. 10 display the general
time course and spatial distribution of AT, RT and ARI on the anterior ventricular
epicardium during normal SR and VD at a test site located on the anterior paraseptal
area.

Commonly, during normal SR in rat heart [26, 27] two breakthrough points
(BTPs) characterize ventricular activation onset on the lateral right (RV) and left
(LV) ventricular surfaces, respectively (not shown because outside the electrode
array). Thereafter, two planar wave fronts that originate from the two BTPs prop-
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Fig. 10 Isochrone line maps during sinus rhythm (SR) and ventricular drive (VD) computed from
electrograms recorded by a 8 × 8 epicardial electrode array in rat heart. AT, activation times;
RT, repolarization times; ARI = RT − AT, activation recovery intervals; current pulse symbol,
pacing site; circle, electrode corresponding to pacing site; double headed arrow, fiber direction
at pacing site; RV, right ventricle; LV, left ventricle; IVS, interventricular septum. AT and RT
isochrone numbers, milliseconds from QRS or stimulus onset during SR or VD, respectively.
Bottom diagram: relationships between AT and ARI displayed by linear regression analysis at
each array electrode. A good linear relationship occurs at points around pacing site. Correlation
coefficient R2 for VD is reduced by the presence of ARI at electrodes distant from pacing site, at
lower right and left corners of the electrode array
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agate from RV and LV along epicardial fiber direction toward the interventricular
septum (IVS) (Fig. 10, SR, AT). The two wave fronts collide over the IVS and
merge into a new V-shaped wave front that spreads toward the RV outflow tract,
mainly across epicardial fiber direction.

RTs display uniform spatial dispersion on the anterior epicardial surface (Fig. 10,
SR, RT). In particular, on the RV, recovery isochrones mainly follow the activation
sequence toward the IVS with uniform parallel lines. The density of recovery
isochrones is higher toward the paraseptal area indicating a pronounced recovery
gradient oriented perpendicularly to the IVS. On the LV, recovery isochrones
propagate away from the IVS with uniform parallel lines toward LV free wall.

ARI isochrones display uniform spatial dispersion oriented from RV to LV,
similarly to RT isochrones (Fig. 10, SR, ARI).

Conversely, activation isochrones during ventricular drive were elongated, sym-
metric, and quasi-elliptical around the pacing site with the major axis oriented along
the local sub-epicardial fiber direction (Fig. 10, VD, AT). Recovery isochrones show
that onset of repolarization occurs at pacing site and that RTs are almost constant
up to a distance of few λ (2–3 mm) [3] around pacing site. The different spatial
distribution of RTs during VD compared to SR is due to the different electrotonic
modulation of repolarization by the two activation sequences at test site: symmetric
during VD compared to planar during SR.

ARI spatial distribution during VD is heterogeneous, with the longest duration
at pacing site that gradually decreases with distance in all directions: longest ARI
(37 ms) is observed at pacing site and shortest ARI (27 ms) lays close to the site of
the latest AT (Fig. 10, VD, ARI).

The relationship between AT and ARI at each array electrode is displayed by
linear regression analysis. A clear decreasing trend of ARI with AT is revealed
during VD (slope = −0.72): electrode sites activating earliest have longer ARIs
and electrode sites activating later have shorter ARIs. Similar negative correlation
between AT and either ARI or APD has previously been reported in experimental
models [18, 28] and humans [16]. A likely mechanism for the relationship is local
electrotonic current flow between cells which tends to equalize action potential
durations. This coupled with the later repolarization of cells downstream and
electrotonic current flow from cells downstream to cells upstream would contribute
to the AT–ARI gradient [29]. Conversely, during SR a relatively shallow relationship
and an undefined correlation links ATs and ARIs.

Hence, at an electrode site, different ARI values and, correspondingly, different
APDs are present, depending on the activation sequence. In particular, Fig. 10,
shows that at an electrode site ARI is shorter during SR (26 ms) than during VD at
the same site (38 ms). Hence, different APD values can be measured at a myocardial
site depending on the different activation sequence occurring at that site, likely due
to the different electrotonic modulation of repolarization. It is known that dispersion
of RT is an important determinant of the vulnerability to arrhythmias following a
premature activation. However, in our experiments we found that, due to electrotonic
interactions, RT spatial distribution in the normal rat heart was uniform during
SR and relatively homogeneous during VD. These results suggest that normal



Role of Electrotonic Current in Excitable Cells 109

ventricular myocardium would be resistant against arrhythmias following ectopic
activation, at least in the rat heart.

6.2 Modulation of Effective Refractory Period

In experimental and clinical electrophysiology studies, refractoriness is measured
by the effective refractory period (ERP). In normal myocardium, there is a close
temporal relationship between ERP and APD, and the two are often used as
estimates of each other, although this relationship is altered in ischemic myocardium
where the recovery of excitability lags behind full repolarization (postrepolarization
refractoriness).

ERP can be measured as the interval from depolarization to the recovery of
excitability when stimulation fails to induce a propagated response. The classic
technique for ERP measurement is the extra-stimulus technique where a train of
eight basic stimuli S1 is followed by a single premature stimulus S2 elicited at
the same site (test site drive). Alternatively, ERP duration can also be measured
by the extra-stimulus technique during SR, which consists of a sequence of eight
sinus beats (RW, the upward deflection of the QRS complex) followed by a single
premature stimulus (S). Unpublished experimental findings in rat heart show that
ERP durations measured by the two protocols, S1–S2 and RW-S, are different
and consistent with the difference in ARI values measured during corresponding
sequences of basal ventricular activation, i.e. VD and SR. In fact, ERP is shorter
when measured during RW-S than during S1–S2. Interestingly, at the same site, ERP
difference is the same as ARI difference. Hence, it is hypothesized that also ERP
difference is likely due to the different electrotonic modulation of repolarization
by the different activation sequence. Consequently, different APDs measured at an
electrode site during SR and VD would also imply correspondingly different ERPs
measured at the same site. Experimental verification of electrotonic modulation of
ERP by the activation sequence is shown in Fig. 11 where ERP measured at a test
site during VD (S1–S2 protocol) and SR (RW-S protocol) was 90 ms and 72 ms,
respectively.

Since APD changes are also function of rate, with the APD at steady-state
shorter the higher the frequency, it can be argued that the different ARI (or APD)
measured values are due to the different basal ventricular activation rates (S1 and
SR). However, in contrast to this argument, ARI values are longer during S1 drive at
a frequency higher than SR. Moreover, the difference between ARI and ERP values
did not change when SR rate was matched to that of S1 drive by means of atrial drive
(AD) (Fig. 11). Hence, it can be concluded that, at least for frequencies used in our
experiments, electrotonic modulation of repolarization by the activation sequence is
responsible for dynamic modulation of ARI and ERP gradients.
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Fig. 11 Reference electrogram displaying pacing protocols for effective refractory period (ERP)
measurement by premature stimulation (S2 or S) during Ventricular Drive (S1–S1), Atrial Drive
(AD–AD) and Sinus Rhythm (RW–RW). Results show that ERP is longer when measured
during S1–S2 than RW–S protocol, irrespective of S1–S1 or RW–RW cycle length. See text for
explanation

7 Summary and General Conclusions

In summary, electrotonic current is a transmembrane current, provided by either an
external current generator or an active region of cell membrane, which depolarizes
membrane potential locally.

In case of an external current generator, the stimulating extracellular electrode
(cathode) removes current Ie from the surrounding extracellular volume including
outward transmembrane current im from excitable tissue. The stimulating current
im = ic + iion depolarizes membrane potentialVm by means of capacitive component
ic that forces ionic component iion to flow across passive membrane resistance rm.
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Both ic and iion are outward currents that flow with the same orientation across the
membrane. On reaching excitation threshold at the stimulation site, action potential
initiation and propagation occurs from the stimulating electrode with opposite
orientation along cell axis.

In case of an active membrane region, as it occurs for a propagating action
potential, the membrane itself is a current source generating inward ionic current iion
whose largest fraction turns into outward capacitive current ic depolarizing source
membrane potential. It is worth noting that iion and ic flow with opposite orientation
across the active membrane region. The fraction of iion that is not used to depolarize
membrane potential as ic at the source region, i.e. im = iion + ic, flows into the cell
transforming into intracellular current Ii. Current Ii flows from the source region
in opposite orientation sustained by Vm potential gradients along cell axis. The
inversion point for the opposite flow occurs at the peak of the action potential
profile. Ii flows downstream towards the sink region, down the slope of action
potential upstroke. In the sink region, Ii transforms into transmembrane current
im = − ∂ Ii

∂ x
= ∂ Ie

∂ x
= ic + iion that depolarizes membrane potential to threshold

by means of ic greater than iion, due to high rm value. Ii flows upstream from the
source region along the repolarization slope of action potential profile transforming
into outward depolarizing im that delays repolarization phase and prolongs APD.

A clear definition of electrotonic current and its mechanism of action is of
particular importance in cardiac electrophysiology, where APD heterogeneity is
in part determined by the intrinsic properties of the myocardial cells, but it has
also been shown to depend on cell-to-cell coupling and activation patterns [18].
Electrotonic interactions due to the coupling of cells in tissue are capable of
gradually decreasing the duration of an action potential as it propagates away from
the pacing site, with the strongest effect found in the direction of small conduction
velocities or for reduced coupling. Cell-to-cell coupling has also been found to
modulate the rate-dependency of APD, i.e. APD restitution [30]. Since the steepness
of APD restitution has been implicated in arrhythmogenesis, it is important to
understand which factors can modulate this dynamical property of cardiac tissue.
Epicardial potential measurements in a rat experimental model, suggest that APD
is shorter at later activation times independent on basal pacing frequency. However,
these findings require validation for a broad range of basal pacing frequencies.
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Reduced Order Modeling for Cardiac
Electrophysiology and Mechanics: New
Methodologies, Challenges
and Perspectives

Andrea Manzoni, Diana Bonomi, and Alfio Quarteroni

Abstract Reduced-order modeling techniques enable a remarkable speed up in the
solution of the parametrized electromechanical model for heart dynamics. Being
able to rapidly approximate the solution of this problem allows to investigate the
impact of significant model parameters querying the parameter-to-solution map
in a very inexpensive way. The construction of reduced-order approximations
for cardiac electromechanics faces several challenges from both modeling and
computational viewpoints, because of the multiscale nature of the problem, the
need of coupling different physics, and the nonlinearities involved. Our approach
relies on the reduced basis method for parametrized PDEs. This technique performs
a Galerkin projection onto low-dimensional spaces built from a set of snapshots
of the high-fidelity problem by the Proper Orthogonal Decomposition technique.
Snapshots are obtained for different values of the parameters and computed, e.g., by
the finite element method. Then, suitable hyper-reduction techniques, in particular
the Discrete Empirical Interpolation Method and its matrix version, are called into
play to efficiently handle nonlinear and parameter-dependent terms. In this work we
show how a fast and reliable approximation of both the electrical and the mechanical
model can be achieved by developing two separate reduced order models where
the interaction of the cardiac electrophysiology system with the contractile muscle
tissue, as well as the sub-cellular activation-contraction mechanism, are included.
Open challenges and possible perspectives are finally outlined.

1 Introduction

Cardiac electromechanics refers to a model for the description of the coupling of the
electrophysiology model, which describes the propagation of the signal triggering
the heart contraction, and the mechanical model, which describes the contraction
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and relaxation of the muscle tissue, including the sub-cellular activation-contraction
mechanism. Solving such a coupled problem is crucial to investigate how clinically
relevant processes affect different features of the heart beat [70].

Cardiac electromechanics is a challenging problem from both a mathematical and
a numerical viewpoint, because of the coupling of different physical problems which
take place at different spatial and temporal scales. Indeed, a model for the cardiac
electrophysiology has to describe on one hand the sub cellular activity (1–100 μm)
which gives rise to the cellular depolarization, on the other hand the spreading of
the electrical signal through the whole myocardium (1–10 cm). The modeling of
these processes yields a two-way coupled problem involving a PDE with a nonlinear
reaction term and a system of nonlinear ODEs. To correctly track the propagation
of the action potential, in the form of wave-front solutions, fine computational grids
are needed, thus yielding large-scale algebraic problems to be solved. Moreover,
the description of the mechanics of the cardiac tissue requires complex constitutive
laws, characterized by an exponential strain energy function and the presence of
muscular fibers and sheets, resulting in a complex highly nonlinear model. This
turns into the need of assembling involved Jacobian matrices when relying, e.g., on
the Newton method for the solution of nonlinear systems of equations. Furthermore,
the heart muscle contracts after being electrically activated without the need of
an external load, and this active behavior of the cardiac cells has to be properly
taken into account when coupling the electrical and the mechanical models. To
describe these processes different works have proposed more and more accurate
electromechanical models [29, 31, 36, 53, 74, 80], very often yielding overwhelming
computational costs.

Computational complexity is even more exacerbated if one is interested in going
beyond a single, direct simulation. Indeed, when simulating cardiovascular prob-
lems, several input data affect the problem under investigation, often varying within
a broad range and possibly affected by uncertainty. Addressing the impact of input
variations on outputs of clinical interest is thus of paramount importance in order to
(1) obtain reliable results, (2) calibrate the numerical solver and/or (3) personalize
the mathematical model. In fact, model parameters have to be specifically tuned to fit
subject-specific clinical data in order to take into account inter-patient variability. To
correctly calibrate cardiac models and estimate the unknown input parameters, such
as muscular fibers orientation or parameters affecting the signal propagation, several
numerical simulations have to be carried out, thus calling for multiple queries of the
parameter-to-solution map in fast and accurate ways. Beyond parameter estimation,
this requirement also arises when dealing with sensitivity analysis, control and
optimization, and uncertainty quantification, noteworthy classes of problems whose
importance in cardiovascular modeling is growing faster and faster.

The need of solving these problems efficiently calls for the development of
efficient and accurate reduced order modeling (ROM) techniques in electromechan-
ics. These techniques are designed to provide accurate and reliable solutions to
PDEs depending on several parameters at a greatly reduced computational cost. In
particular, the reduced basis (RB) method replaces the original large-scale numerical
problem (or high-fidelity approximation) originated by applying, e.g., a finite
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element (FE) method, with a reduced problem of substantially smaller dimension;
this latter is generated through a projection of the high-fidelity problem upon a low-
dimensional subspace, spanned by a set of high-fidelity solutions corresponding to
suitably chosen parameters [41, 68].

In this work we show how to solve both the electrophysiology and the mechanical
problems, when these depend on a set of parameters, in the framework of RB
methods, also taking into account active mechanics triggered by the cellular
depolarization. Because of the nonlinear nature of these problems, computational
efficiency is obtained by combining a general-purpose technique to generate the
low-dimensional subspace, such as proper orthogonal decomposition, and suitable
hyper-reduction techniques allowing to assemble the algebraic structures required
by the ROM independently of the high-fidelity arrays. This is required, e.g., when
dealing with Newton iterations while solving cardiac mechanics—for which the
global Jacobian matrix would have to be entirely reassembled at each Newton
step—as well as time stepping in cardiac electrophysiology, for which nonlinear
terms have to be evaluated at each time step, also involving the contribution from
the cell model. Among recent applications of ROM techniques to problems related
with the cardiovascular system, we also mention haemodynamics, for the sake of
simulating blood dynamics in different flow conditions [25, 26, 54] or geometrical
configurations [7, 8], also in view of the optimal design of prosthetic devices [47, 50]
or parameter identification [48, 70]. Cardiac electrophysiology has also been tackled
in the last decade [15, 20, 30, 35, 88], however by performing reduction only with
respect to the time independent variable, thus avoiding the main difficulties related
with the efficient handling of parameter-dependent problems. Recent results for
parametrized problems in cardiac electrophysiology, also in view of the efficient
solution of uncertainty quantification problems, can be found in [59]. Instead,
regarding cardiac mechanics, this subject has only been addressed in a recent paper
by the authors [14] and in [13], where also first results about one-way and two-ways
coupled electromechanical problems have been obtained. The reduction of coupled
problems, however, is still matter of investigation and therefore are not included in
this paper.

The structure of this paper is as follows. After a brief recall (Sect. 2) on the
mathematical modeling of cardiac electromechanics, we describe the high-fidelity
FE approximation we start from (Sect. 3). We then introduce the key tools of the
proposed ROM technique (Sect. 4): the Galerkin-POD method and suitable hyper-
reduction strategies. Then, we show how to combine them to derive a ROM for
both cardiac electrophysiology (Sect. 5) and mechanics (Sect. 6), independently.
Numerical results dealing with patient-specific left ventricle configurations in the
systolic phase are then shown (Sect. 7), and finally open critical issues and future
perspectives are outlined (Sect. 8).
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2 Mathematical Models

In this section we present an overview of the electromechanics mathematical
models. We consider the minimal Bueno-Orovio model for describing the cellular
behavior, the monodomain model for cardiac electrophysiology, and the hypere-
lastic Holzapfel-Ogden model for the passive ventricular mechanics, adopting an
active-strain formulation to take into account active mechanics. This latter requires
a dynamical system for the variable which describes fiber shortening as a function
of calcium concentration (and then electrical activation).

2.1 Cardiac Electrophysiology

A mathematical model for cardiac electrophysiology has to include processes
arising at different scale, ranging from subcellular activity, which originates the
cellular depolarisation to the spreading of the signal in the whole myocardium. To
model the whole heart, several works have considered continuous models, where the
myocardium is approximated as a syncytium, that is a domain where the intra and
extracellular spaces coexist at each point [31, 44, 61, 76]. These continuous models
describe the spreading of the signal in the heart tissue and are usually coupled to a
ionic model which describes the evolution of ion concentrations and ionic currents
inside the cells. In this section we first introduce a general framework for the ionic
models, focusing on the Bueno-Orovio model [17], and we show how to couple it to
the bidomain and monodomain models, widely adopted continuous tissue models.

2.1.1 Cell Models

Cell models describe the evolution of the transmembrane potential across the cell
membrane of a single cardiomyocyte. Several ionic models have been proposed,
most of which are based on the well-studied Hodgkin-Huxley model [42]; see e.g.
[58] for a review. They are all based on the assumption that the electrical properties
of the cell membrane can be modeled as an electrical circuit, which connects
in parallel a resistor and a capacitance: the latter describes the cell membrane
which separates the intra and the extra cellular space, while the former models
the ionic channels and pumps regulating ionic fluxes through the membrane. The
conservation of currents across the cell membrane can be expressed through the
relation

Cm
∂v

∂t
+ Iion(v,w, c) = Iapp,

where v is the transmembrane potential, Cm the membrane capacitance, Iapp an
external applied current density and Iion the sum of the current densities through
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the membrane, that can be written using the general Hodgkin-Huxley formalism
introduced in [42] as

Iion(v,w, c) =
p
∑

k=1

gk(c)
q
∏

j=1

w
pjk
j (v − vk(c))+ I0(v,w, c). (1)

Here w is a vector of gating variables taking values in [0, 1] that represent the
portion of open channels on the membrane, whereas c is a vector describing the
concentration of ionic species within the cell. We denote by gk(c) and vk(c) the
conductance and the Nernst equilibrium potential associated to the k-th ion, and by
pjk the number of sub-units composing each ionic channel, so that the ion k can
flow through a ionic channel if all the sub-units forming the channel are opened.
Thus,

∏q

j=1 w
pjk
j represents the probability that the ions k flow through the cellular

membrane. The term I0(v,w, c) represents possible time independent ionic fluxes.
The dynamic of a single cell can thus be described in general by a ionic model under
the form:

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Cm
∂v

∂t
+ Iion(v,w, c) = Iapp inΩ0 × (0, T ),

∂w
∂t

= s(v,w) inΩ0 × (0, T ),
∂c
∂t

= r(v,w, c) inΩ0 × (0, T ),
w(t0) = w0, c(t0) = c0 inΩ0

(2)

where we denote by Ω0 the computational domain, here representing the cell. The
first set of ODEs is related to the evolution of the gating variables while the second
set characterizes the evolution of the ionic concentrations during the cardiac cycle.
The number of equations, the functions s and r and the overall complexity depend
on the considered model. In this work, we focus on the so-called minimal model
introduced by Bueno-Orovio in [17], developed to reproduce physiological action
potential morphologies, at moderate computational costs.

The minimal model is a four variables model, able to reproduce experimental
measures characteristics of human ventricular transmembrane potential. It can be
expressed as:

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Cm
∂v

∂t
+ If i(v,w1)+ Iso(v) + Isi(v,w2, w3) = Iapp, inΩ0 × (0, T )

∂w1

∂t
+H(v − θw1)

w1

τ+
w1

− [1 −H(v − θw1)]
w1,∞ − w1

τ−
w1

= 0, inΩ0 × (0, T )
∂w2

∂t
+H(v − θw2)

w2

τ+
w2

− [1 −H(v − θw2)]
w2,∞ − w2

τ−
w2

= 0, inΩ0 × (0, T )
∂w3

∂t
− [1 + tanh(ks(v − vs))]/2 −w3

τw3

= 0, inΩ0 × (0, T )
(3)
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where the three currents If i , Isi and Iso represent the fast inward, the overall slow
outward and the slow inward currents, respectively. In particular, we have:

If i(v,w1) = w1
(v − θw1)(cv − v)H(v − θw1)

τf i
,

Is0(v) = (v − v0)(1 −H(v − θw2))

τ0
+ H(v − θw2)

τso
,

Isi(v,w2, w3) = w2w3
H(v − θw)

τsi
,

where H(·) is the Heaviside function. The model parameters, provided in [17],
allow to reproduce the action potential morphologies and the dynamics of more
complex models, such as the Ten Tusscher model or the O’Hara and Rudy model
[72]. The evolution of the transmembrane potential v and the gating variables
w1, w2 and w3 obtained with the considered parameters are reported in Fig. 1. In
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Fig. 1 From top left to bottom right: transmembrane potential v and gating variables w1, w2 and
w3 of the minimal model during a heart beat
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particular, we observe that the variable v correctly reproduces the action potential
shape characteristic of the ventricular cardiomyocytes. We notice that the variable
v is dimensionless and it can be rescaled to dimensions of mV using the equations
vmv = 87.5v − 84.

Note that this model does not provide specific informations about intracellular
calcium concentration. However, the variable w3 can be assumed to be responsible
of calcium dynamics, as it shows a phenomenological behavior which is really
similar to the one of the calcium ions in the cardiac cells [72]. In what follows,
we refer to w3 as the calcium concentration c and denote by w = (w1, w2, c).

2.1.2 Tissue Models

To describe the propagation of the activation front in the cardiac muscle, we rely
on a tissue model able to characterize the evolution of the transmembrane potential.
This latter plays indeed a crucial role in the description of the heart contraction.
In particular, the bidomain and the monodomain models have been widely used
to study the cardiac electrophysiology (see e.g. [24, 66] and reference therein).
These models arise from a homogenization process applied to the cardiac tissue
and simulate the propagation of the electrical signal through the myocardium; a
complete derivation of the two models can be found in [28].

The bidomain model, first proposed in [83], represents the cardiac tissue as a
syncytium composed of intracellular and extracellular domains coexisting at every
point of the tissue. Each domain is thus considered as a continuum, rather than
a group of discrete cells connected with each other. Denoting by ve and vi the
extracellular and the intracellular potential, respectively, and by v = vi − ve the
transmembrane potential, the bidomain model can be expressed as:

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Cm
∂v

∂t
+ Iion(v,w, c) − ∇ · (Di∇vi) = 0 inΩ0 × (0, T ),

Cm
∂v

∂t
+ Iion(v,w, c) + ∇ · (De∇ve) = Iapp inΩ0 × (0, T ),

∂w
∂t

= s(v,w),
∂c
∂t

= r(v,w, c) inΩ0 × (0, T ),
Di∇vi · n = 0, De∇ve · n = 0 on∂Ω0 × (0, T ),
v(t0) = v0, w(t0) = w0, c(t0) = c0 inΩ0,

(4)

where the Neumann boundary conditions express the condition that the cardiac
tissue is electrically insulated. Here, Cm is the membrane capacitance, Iion is the
sum of the density currents through the membrane and Iapp is an external applied
density current. The domain Ω0 now represents a portion of myocardium; in the
case of the left ventricle, its boundary ∂Ω0 = Γendo ∪ Γepi ∪ Γbase is made by the
endocardium, the epicardium and the base, respectively. The conductivity tensors
Di ∈ R

3 and De ∈ R
3 model the anisotropy of the cardiac tissue, characterized by
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a higher conductivity in the fiber direction, and can be expressed as:

Di,e = σ
i,e
f f0 ⊗ f0 + σ i,es s0 ⊗ s0 + σ i,en n0 ⊗ n0,

where σ i,ef , σ i,es and σ i,en are the electrical conductivities in the intracellular and
extracellular domains. Here, f0 denotes the fibers direction, s0 the sheets direction
and n0 is orthogonal to both f0 and s0.

The bidomain model is currently the most complete mathematical model for
describing the electrical signal propagation in the heart. However, it is computa-
tionally demanding, since to capture the rapid dynamics of the cellular reactions
high resolutions in space and time is required. For this reason, a common approach
in the literature is to reduce the bidomain equations to simpler tissue models. In
particular, the monodomain model can be obtained by assuming that the intra and
extracellular domains have equal anisotropy ratios, σ if /σ

e
f = σ is /σ

e
s = σ in/σ

e
n . The

monodomain model is not suitable for the description of pathological situations,
such as, cardiac arrhythmias or fibrillation, since in these situations the extracellular
domain influence the transmembrane potential and the ionic currents. However, it
provides an accurate description of the cardiac tissue in physiological situations
[27, 66], at reduced computational costs. From now on, we adopt the monodomain
model as we are only interested, for the time being, to capture the relevant
phenomena for describing the electromechanical coupling in healthy conditions.

The monodomain model reads as follows:
⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Cm
∂v

∂t
+ Iion(v,w, c) − ∇ · (D∇v) = Iapp inΩ0 × (0, T ),

∂w
∂t

= s(v,w),
∂c
∂t

= r(v,w, c) inΩ0 × (0, T ),
D∇v · n = 0 on∂Ω0 × (0, T ),
v(t0) = v0, w(t0) = w0, c(t0) = c0 inΩ0,

(5)

where D ∈ R
3 is the conductivity tensor. In particular, we assume that

D = σf f0 ⊗ f0 + σss0 ⊗ s0 + σnn0 ⊗ n0 (6)

where we denote by σf , σs and σn the electrical conductivities in the direction f0, s0
and n0, respectively.

2.2 Cardiac Mechanics

The description of cardiac mechanics involves both a passive and an active
contribution; besides the hyper-elastic behavior of the tissue, the active contraction
of the muscular fibers has to be included in the force balance when modeling the
systolic part of the cardiac cycle.
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We consider a reference configuration Ω0 and an actual configuration Ω at the
current time t . We denote by X the position vector in Ω0 and by x the position
vector in Ω . We can now introduce the body deformation as the map ϕ : Ω0 → Ω

from the reference to the actual configuration, such that x = ϕ(X) for any X ∈ Ω0,
x ∈ Ω . The deformation gradient tensor F is defined as

F = ∂ϕ

∂X
, [Fij ] = ∂ϕi

∂Xj
, i, j = 1, 2, 3. (7)

By denoting u : Ω0 → Ω , u(X) = ϕ(X)−X the displacement field, the deformation
gradient tensor can be written as F = I + ∇u. We also denote by J = det (F) the
determinant of F and by C = FT F the left Cauchy-Green strain tensor.

2.2.1 Passive Mechanics

We first provide a description of the passive ventricular mechanics, by recalling the
hyperelastic model proposed by Holzapfel and Ogden in [43]. Cardiac deformations
can be modeled by considering the myocardium as orthotropic, hyperelastic, and
incompressible with passive properties characterized by means of an exponential
strain energy function.

The equations of motion for the cardiac tissue express the balance of linear
momentum in material coordinates, which reads as

ρ0
d2u
dt2

− ∇0 · Pp = b0,

where ρ0 is the tissue density and b0 are the body forces. Here, Pp is the first
(passive) Piola(-Kirchhoff) tensor, which is related to the surface tractions t0
through the relation t0 = Ppn, where n is the normal to the boundary of the
reference domain. As usual in cardiac mechanics literature (see e.g. [29, 37, 72]),
inertial forces can be neglected, since they are about two orders of magnitude
smaller than other terms [86], thus obtaining the quasi-static problem

−∇0 · Pp = b0. (8)

We impose Neumann boundary conditions on the endocardium (ΓN = Γendo)
to model the effect of blood pressure,1 and Robin boundary conditions on the
epicardium and on the base (ΓR = Γepi ∪ Γbase); the boundaries are reported for a
patient-specific left ventricle geometry in Fig. 4. We also neglect the body forces b0

1More specifically, we would have g = pendo(t)n where n is the unit normal vector to the
boundary, and pendo = pendo(t) is the external load applied by the fluid at the endocardium wall,
which in this context is assumed to be prescribed.
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because their contribution is negligible [72]. In conclusion, the cardiac deformation
u solves:

⎧

⎪⎪⎨

⎪⎪⎩

−∇0 · Pp(u) = 0 inΩ

Pp(u)n = g onΓendo

Pp(u)n + αu = 0 onΓepi ∪ Γbase.
(9)

The myocardium is considered as an hyperelastic material: there exists a strain
energy function W : Ω0 → R related to the Piola tensor through the relation

Pp(u) = ∂W (u)
∂F

. (10)

The description of the cardiac muscle mechanics faces a number of difficulties.
Indeed, the myocardium is non-homogeneous and it is composed by several layers;
moreover, fibers have different orientation in each layer and rotate across the heart
wall, featuring a complex mechanical characterization. To model this complex
behavior we consider the orthotropic model proposed by Holzapfel and Ogden
in [43], characterized by a simple invariant-based formulation. This model hinges
upon the idea that for an orthotropic, incompressible material the strain energy
density function can be written as

W = W1(I1)+ W4,f0(I4,f0)+ W4,s0(I4,s0)+ W8,f0s0(I8,f0s0),

where f0, s0 are the two (fibers and sheets respectively) preferred directions and I1,
I4,f0 , I4,s0 , I8,f0s0 are invariants of the right Cauchy-Green strain tensor,

I1 = tr(C), I4,f0 = f0 · Cf0, I4,s0 = s0 · Cs0, I8,f0s0 = f0 · Cs0,

respectively. In particular, we have

W1(I1) = a

2b

[

eb(I1−3) − 1
]

, W4,f0(I4,f0) = af

2bf

[

e
bf (I4,f0−1)2 − 1

]

,

W4,s0(I4,s0) = as

2bs

[

e
bs (I4,s0−1)2 − 1

]

, W8,f0s0(I8,f0s0) = af s

2bf s

[

e
bf sI 2

8,f0s0 − 1
]

.

(11)

The coefficients of the Holzapfel-Ogden constitutive law are taken from [33] and
are reported in Table 1.

Table 1 Parameters of the Holzapfel-Ogden model

a = 3.33 kPa af = 18.47 kPa as = 2.481 kPa af s = 0.417 kPa

b = 8.023 bf = 16.026 bs = 11.120 bf s = 11.436
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In order to describe myocardium deformations, we consider a quasi-
incompressible formulation [39, 77], which offers several advantages with respect
to a full incompressible one, from both a modeling and a numerical viewpoint.
Indeed, taking into account limited volumetric changes is possible according to
experimental evidence since the volume of cardiac tissue can vary until 7% during
systolic contraction [6]. Moreover, a quasi-incompressible formulation leads to a
simpler numerical problem with respect to a full incompressible one [65]. The
adopted formulation can be obtained by introducing a multiplicative decomposition
F = FisoFvol of the deformation gradient tensor, where we impose det (Fiso) = 1
and det (Fvol) = J . This formulation leads to an additive decomposition of the
isotropic part W1 of the strain energy function, which reads as

W1 = W1,iso + Wvol = a

2b

[

eb(J
− 2

3 I1−3) − 1
]

+ κ

2
JF−T (J − J−1) (12)

where κ > 0 denotes the Bulk modulus, which measures the material resistance to
a uniform compression.

2.2.2 Active Mechanics

The cardiomyocytes of the heart muscle contract after being electrically acti-
vated, without the need of an external load. This behavior can be modeled by
including the active contraction of the muscular fibers in the force balance (9);
however, this is a challenging task because muscular contraction occurring at
the macroscale is caused by release of energy at the microscale, inside each
cardiomyocyte. Different approaches have been investigated in order to obtain
accurate mathematical description of the active mechanics; the most popular ones
are the active stress [37, 52, 53, 62, 78] and the active strain approaches; see [4, 73]
for numerical comparisons. Both strategies allow to couple electrophysiology and
mechanics, defining a modified first Piola-Kirchhoff tensor P which involves a
passive component describing the stress required to obtain a given deformation of
the passive myocardium, and an active component denoting the tension generated
by the depolarization of the propagating electrical signal that provides the internal
active forces responsible for the contraction. Thus, Eq. (9) becomes

⎧

⎪⎪⎨

⎪⎪⎩

−∇0 · P(u(t); t, c) = 0 inΩ

P(u(t); t, c) n = g onΓendo

P(u(t); t, c) n + αu(t) = 0 onΓepi ∪ Γbase.
(13)

This leads to a coupled electromechanical problem, where the electrical solution
affects cardiac deformations. Here we focus on the active strain approach [3, 23, 51,
81], which is based on a multiplicative decomposition of the deformation gradient
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tensor, under the form

F(u, t) = Fe(u)Fa(t).

Fe describes the elastic deformation of the myocardium and Fa(t) is the anelastic
deformation due to the fibers contraction. The active strain decomposition is based
on the idea that fibers inside the muscle contract and shorten; the deformation
Fa can thus be seen as a prescribed distortion of the microstructure, whereas the
deformation at the macroscale Fe is needed to ensure compatibility of F.

In particular, the anelastic deformation takes the form

Fa(t) = I + γf (t)f0 ⊗ f0 + γs(t)s0 ⊗ s0 + γn(t)n0 ⊗ n0,

where n0 is a vector normal to f0 and s0; γf , γs and γn are time-dependent
coefficients describing the cell shortening respectively in the f0, s0 and n0 directions.
The fibers shortening γf can be computed from the following evolution law

⎧

⎪⎨

⎪⎩

μAγ̇f = fA(c)+ 2I4,f

(1 + γf )3 − 2I4,f |c=c0 inΩ0 × (0, T ),
γf (0) = γf,0 inΩ0,

(14)

where c(t) is the calcium concentration. We remark that the anelastic deformation
Fa depends on the calcium concentration through the coefficients γf , γs and γn.
Here, fA(c(t)) = α(c(t) − c0)

2RFL(I4,f ), where we assume α = −2.5 [72], and
RFL is the sarcomere force-length relationship of the cardiac cells given by

RFL(I4,f ) = χ[SLmin,SLmax](I4,f )

⎧

⎨

⎩

c0

2
+

3
∑

n=1

[cn sin(nI4,f l0)+ dn cos(nI4,f l0)]
⎫

⎬

⎭
;

here, l0 represents the initial length of a single contractile unit (sarcomere) and
we assume l0 = 1.95 μm, whereas the coefficients cn and dn are parameters of
a truncated Fourier series fitted to match the experimental length-force relations
reported in [79]; see [75] for further details. Moreover, χ[SLmin,SLmax](·) is the char-
acteristic function of the interval [SLmin, SLmax ], which represent the minimum
and maximum sarcomere length, respectively; here we assume SLmin = 0.87 μm
SLmax = 1.33 μm [72]. Here c0 represents the calcium concentration at the end of
the diastolic phase.

The other two coefficients γs and γn can be directly derived from the expression
of γf , relying on an orthotropic activation model, as

γs = κf γf , γn = 1

(1 + γf )(1 + γs) − 1.
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The parameter κf allows to correctly describe the thickening occurring during
myocardial contraction in the sheets direction. In the mechanical equations, the
Piola tensor takes the following form

P = det (Fa)
∂W (Fe)
∂Fe

F−T
a

leading to the following full mechanical problem, where we highlight the depen-
dence on γf (t):

⎧

⎪⎪⎨

⎪⎪⎩

−∇0 · P(u(t); γf (t)) = 0 inΩ

P(u(t); γf (t)) n = g onΓendo

P(u(t); γf (t)) n + αu(t) = 0 onΓepi ∪ Γbase.
(15)

We point out that in the active strain approach the solution of the mechanical
problem depends on the calcium concentration c, rather than on the transmembrane
potential. However, we need to compute the solution of the full electrical problem
in order to characterize the mechanical displacement, since c is coupled to the
transmembrane potential v, e.g., in the monodomain model (5).

A schematic representation of the model describing the electromechanical
coupling is reported in Fig. 2.

2.3 Parameters of Interest

ROM techniques allow to efficiently solve the problems introduced so far in
different scenarios in order assess the effect of clinically relevant parameters on
their solutions by taking into account a possible inter-patient variability. We denote
by μ ∈ P ⊂ R

p the set of p selected parameters.
In particular, we are interested in analyzing how the electrical conductivities—

σf , σs and σn introduced in (5)—and the fibers orientation f0 affect heart contrac-
tion. Electrical conductivities significantly influence the propagation of the electrical
signal and, consequently, the displacement of the cardiac muscle; fibers orientation
highly varies among subjects and can have a crucial impact on the correct torsion
and shortening of the ventricle. We will restrict our attention to these parameters
in this work; note that fibers’ orientation affects both the electrophysiology and
the mechanics since it directly enters in the monodomain Eq. (5) as well as in
the constitutive law (11). Instead, electrical conductivities affects primarily the
monodomain equation through the conductivity tensor D, and only indirectly the
myocardium displacement. Additional parameters of interest are, for instance, the
(isotropic) coefficient a(μ) introduced in (11), related to the stiffness of the cardiac
muscle, as well as the Bulk modulus κ defined in (12), related to the material
incompressibility; more can be found in [13, 14].
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Fig. 2 Schematical representation of the cardiac electromechanical model

Regarding electrophysiology, we thus have D = D(μ) and the parametrized
electrical model reads as:
⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Cm
∂v(μ)

∂t
+ Iion(v(μ),w(μ))− ∇ · (D(μ)∇v(μ)) = Iapp inΩ0 × (0, T ),

∂w(μ)
∂t

= s(v(μ),w(μ)) inΩ0 × (0, T ),
D(μ)∇v(μ) · n = 0 on∂Ω0 × (0, T ),
v(t0) = v0 w(t0) = w0 inΩ0.

(16)
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If D is μ-dependent, also the variables v and w will depend on parameters. Since
the activation equation depends on the solution of the electrical problem, we also
have γf = γf (μ), so that (14) reads as

μAγ̇f (μ) = fA(c(μ))+ 2I4,f

(1 + γf (μ))3 − 2I4,f |c=c0 inΩ0 × (0, T ).

As for the mechanical problem, we have u = u(μ), either if we consider
parameters directly affecting mechanics or parameters which directly enter only in
the electrophysiology, so that (13) modifies as:

⎧

⎪⎪⎨

⎪⎪⎩

−∇0 · P(u(t,μ); γf (t,μ)) = 0 inΩ

P(u(t,μ); γf (t,μ)) n = g onΓendo

P(u(t,μ); γf (t,μ)) n + αu(t,μ) = 0 onΓepi ∪ Γbase.
(17)

In this work, we neglect the influence of the blood in the ventricular chamber,
thus taking g = 0—that is, pendo(t) = 0, by assuming that no information on the
blood inside the ventricle are available. Note that the problem is not trivial: indeed,
even if external loads are zero, stress (and then deformation) originates because of
the presence of a term depending on the fiber shortening γf .

3 Full-Order Model: Finite Element Method

Before addressing the reduction of the electrophysiology and the mechanical
problems, we sketch their finite element (FE) approximation [31, 38, 82, 84], which
the reduced order model is built on, and plays the role of full-order model (FOM).
For the sake of notation the dependence on the parameter vector μ is understood in
this section.

3.1 Electrical Model

After deriving the weak formulation of problem (16), we introduce the discretization
Tep of the domainΩ0 and the finite dimensional spacesZh andQh with dim(Zh) =
Nz < ∞ and dim(Qh) = Nq < ∞, respectively, for the approximation of the

potential v and the ionic variables w ∈ R
d , d = 3. We denote by {ϕi}Nzi=1, ϕi ∈ Zh

and {ψi}Nqi=1, ψi ∈ Qh, their FE bases, so that the approximated potential vh and
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ionic variables wh can be expressed under the form

vh(x, t) =
Nz∑

i=1

vi (t)ϕi(x) and wh(x, t) =
⎛

⎜
⎝

w1,h(x, t)

w2,h(x, t)

ch(x, t)

⎞

⎟
⎠ =

Nq
∑

i=1

wi (t) ◦ ψi
d(x);

(18)

here ψi
d are the basis functions of the space Qdh and the operator ◦ is the element-

wise vector product. We denote the components of wi ∈ R
3, i = 1, . . . , Nq , as

w1,i , w2,i , ci , respectively. The FE approximation of the monodomain model (5)
turns into the following nonlinear system of algebraic equation

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

Nz∑

i=1

(

Cm
∂vi

∂t
(ϕi , ϕj )+ via(ϕi , ϕj )

)

+ I (
Nz∑

i=1

viϕi ,

Nq
∑

i=1

wi ◦ ψi
d ;ϕj ) = 0 ∀j = 1, . . . , Nz,

Nq
∑

i=1

∂wi
∂t
(ψ i ,ψj ) =

(

s(
Nz∑

i=1

viϕi ,

Nq
∑

i=1

wi ◦ ψi
d ),ψ j

)

∀j = 1, . . . , Nq

(19)

by defining the bilinear form a and the functional I as

a(v, z) =
∫

Ω0

D∇v · ∇zdΩ0, I (v,w; z) = (

Iion(v,w) − Iapp, z),

respectively, with

(v,w) =
∫

Ω0

vwdΩ0, (v,w) =
∫

Ω0

v · wdΩ0.

Here we restrict ourselves to the case of linear (P1) finite elements, so that Nz =
Nq = Neh . We denote by V = (v1, . . . , vNeh )

T , W = (W1,W2,C), where

W1 = (w1,1, . . . ,w1,Neh
)T , W2 = (w2,1, . . . ,w2,Neh

)T and C = (c1, . . . , cNeh )
T .

Moreover, Mij = (ϕj , ϕi), Md
q,ij = (ψj ,ψ i ) and Kij = a(ϕj , ϕi) denote the

mass matrices and the stiffness matrix associated to problem (19), respectively. To
treat the nonlinear term I , we rely on the so-called ionic current interpolation (ICI)
method, which introduces a linear interpolation of the ionic currents,

I (

Neh∑

i=1

viϕi,

Neh∑

i=1

wi ◦ ψi
d ; ϕj) ≈

∫

Ω0

I (vj ,wi )ϕj (x)ϕj (x) = I(V,W) (20)

and makes the assembling of the ionic currents term straightforward, only requir-
ing a matrix-vector multiplication, I(V,W) = MĨ(V,W), where Ĩ(V,W) =
(I (v1,w1), . . . , I (vNeh

,wNeh ))
T . A further enhancement of this procedure can be



Reduced Order Modeling for Cardiac Electrophysiology and Mechanics: New. . . 131

obtained by considering a lumped version of the ICI strategy (L-ICI) where the
ionic currents are interpolated nodally or, equivalently, the mass matrix arising in
the ICI method is lumped, thus yielding I(V,W) = MLĨ(V,W). We remark that
a possible alternative to the ICI method is the so-called state variable interpolation
(SVI) method, in which the transmembrane potential and the variables of the
ionic model are computed on the quadrature points and then used to evaluate
the ionic current in the monodomain equation. The SVI method turns out to be
more accurate than the ICI, since it does not approximate the nonlinear term with
piecewise linear functions. However, the ICI method represents a reasonable trade-
off between accuracy and computational cost; a detailed comparison between the
two approaches can be found in [63]. Moreover, the ICI method better fits with
the matrix formulation of the hyper-reduction techniques we have exploited, thus
making the coupling between the monodomain equation and the ionic model more
efficient when dealing with the reduced order model for electrophysiology. We also
point out that when using coarse meshes, the L-ICI method underestimates the
propagation velocity of the electrical signal. However, this problem can be solved
by artificially increasing the electrical conductivities σf , σs and σn in the L-ICI
method, as done in [72].

The nonlinear function s appearing in the ionic model is approximated as

(

s(
Neh∑

i=1

viϕi,

Neh∑

i=1

wi ◦ ψi
d),ψj

)

≈
Neh∑

i=1

s(vi ,wi )(ψi
d ,ψj

d) = S(V,W), (21)

so that S(V,W) = Md
q S̃(V,W), where S̃(V,W) = (s(v1,w1), . . . , s(vNeh ,wNeh ))

T .
Since the ionic variables can be computed at each node independently, the second
equation of (19) yields to a system of Neh uncoupled ODEs, Ẇ − S̃(V,W) = 0.

The spatial FE discretization of (19) thus leads to the following system:

{

CmMV̇ + KV + MLĨ(V,W) = 0

Ẇ − S̃(V,W) = 0
(22)

Let us now introduce a time discretization of (22), denoting by�te = T/nt the time
step, with tn = n�te, n = 1, . . . , nt ; the superscript n denotes a quantity evaluated
at time tn. We adopt a forward Euler scheme to solve the ODEs representing the
ionic model, with a sufficiently small �t to preserve the stability of the method. To
discretize in time the monodomain equation, we rely on a semi-implicit scheme; in
particular, we treat the diffusion term implicitly and the reaction term explicitly. This
strategy allows us to solve, at each time step, a linear system instead of a nonlinear
one, as it would have been instead required by an implicit method.

We finally assume a weak coupling between all the electrophysiology fields,
that is we consider an explicit algorithm to compute the solution of (22), solving
sequentially two separate problems in order to compute the ionic variables w and
the potential v. In conclusion, we obtain the following system: given V0,W0, for
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n = 0, . . . , nt − 1 compute

⎧

⎨

⎩

Wn+1 = Wn +�tS̃(Vn,Wn)
(Cm

�t
ML + K

)

Vn+1 = Cm

�t
MLVn + MLĨ(Vn,Wn+1),

(23)

where mass lumping is commonly used (note the presence of the matrix ML) to
reduce possible oscillations near the wave-front [46, 67].

3.2 Activation Equation

Regarding the activation Eq. (14), we first perform a Taylor series expansion around
γf = 0 of the quantity

F (γf ) = 2I4,f

(1 + γf )3 =
∞
∑

j=0

−1j (j + 1)(j + 2)I4,f γ
j

f (24)

appearing at the right-hand side of the ODE in (14). Since F (u, 0) = 2I4,f |c=c0 ,
we can approximate the ODE under the form

μAγ̇f = fA(c)+
M
∑

j=1

−1j (j + 1)(j + 2)I4,f γ
j
f =: F(c, γf ); (25)

the choiceM = 5 ensures that ||F (u, γf )−∑M
j=1 −1j (j + 1)(j + 2)I4,f γ

j
f || <

0.005, see [72]. Similarly to the discretization of the ionic model (21), the spatial
semidiscretization reads

μAMqĠf = F(C,Gf ) :=
Neh∑

i=1

F(ci , γfi )(ψi, ψj ),

where linear finite elements have been chosen to approximate γf . Here Gf =
(γf1, . . . , γfN )

T ∈ R
Neh and C ∈ R

Neh denote the vectors of degrees of freedom
(dofs) related to γf and to the calcium variable c, respectively. The fully discretized
problem, obtained by adopting the forward Euler scheme for the time discretization,
then reads as follows: given G0

f , for n = 0, . . . , nt − 1 compute

MqGn+1
f = MqGnf + �t

μA
F(Cn+1,Gnf ). (26)
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3.3 Mechanical Model

We now turn to the FE approximation of the mechanical subproblem (15), which is
a fully nonlinear, quasi-static problem since it depends on time through the coupling
with the electrical subproblem. We rely on the Newton method to solve, at a given
time instant, such a nonlinear problem. Performing a Newton step at the continuous
level around a generic displacement û(t) yields a weak problem under the following
form to be solved: find δu(t) such that

Jû(t)(δu(t), v) = −(Rû(t), v) ∀v ∈ V, t ∈ [0, T ), (27)

where

Jû(t)(δu(t), v) =
∫

Ω0

[
∂P
∂F
(û(t)) : ∇δu(t)

]

: ∇vdΩ +
∫

ΓR

αδu(t) · vdσ

and

(Rû(t), v) =
∫

Ω0

P(û(t)) : ∇vdΩ +
∫

ΓR

αû(t) · vdσ −
∫

ΓN

g · vdσ.

This problem arises after integrating (15) by parts over Ω0 and linearizing the
resulting problem; recall that F is the deformation gradient tensor defined in (7).

The FE approximation of problem (27) over a suitable triangulation Tm of the
domain Ω0 can be obtained in a straightforward way; in this work, we use linear
(P1) finite elements to approximate the mechanical displacement, denoting by Nmh
the dimension of the FE space for the approximated displacement. We then obtain
the following algebraic form of the Newton problem: for each tn, n = 0, . . . , Nt−1,
given U(0)(tn), for every k ≥ 1 we search δU(tn) satisfying

{

J(U(k−1)(tn))δU(k)(tn) = −R(U(k−1)(tn)),

U(k)(tn) = U(k−1)(tn)+ δU(k)(tn)
(28)

until ||R(ukh(tn))||2 < ε, being ε > 0 a small fixed tolerance. Here, for any U ∈
R
Nmh ,

[J(U(t))]ij = Ju(t)(ϕj ,ϕi ), i, j = 1, . . . , Nmh

[R(U(t))]i = (Ru(t),ϕi ), i = 1, . . . , Nmh
(29)

are the components of the Jacobian J(U) ∈ R
Nmh ×Nmh and the residual R(U) ∈ R

Nmh

evaluated at U ∈ R
Nmh ; {ϕi , i = 1, . . . , Nmh } denote the (vector) basis functions of

the FE space for the displacement and U(t) = (u1(t), . . . , uNmh
(t))T the vector of
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Algorithm 1 FOM for the (one-way) coupled electromechanical model
INPUT: v0, w0, H0 and u0
OUTPUT: u

1: for m = 0, . . . , T /�tm do
2: for n = mD, . . . , (m+ 1)D − 1 do solve
3:

Wn+1 = Wn +�t S̃(Vn,Wn) (ionic model)
(Cm

�t
ML + K

)

Vn+1 = Cm

�t
MLVn + MLĨ(Vn,Wn+1) (monodomain model)

MqG
n+1
f = MqGnf + �t

μA
F(Cn+1,Gnf ) (activation model (active strain))

4: end for
5: Interpolate Gn+1

f on the mesh Tm using the RBF strategy

6: while ||R(U(k−1)(tm+1);Gn+1
f )||L2 < ε do solve (Newton step)

7:

{

J(U(k−1)(tm+1);Gn+1
f )δU(k)(tm+1) = −R(U(k−1)(tm+1);Gn+1

f ),

U(k)(tm+1) = U(k−1)(tm+1)+ δU(k)(tm+1)
(30)

8: end while
9: end for

dofs of its high-fidelity approximation u(t)—here denoted, with a slight abuse of
notation, in the same way as the displacement at the continuous level.

A segregated algorithm is finally chosen for the solution of the electromechanical
problem, in which the governing equations are solved sequentially—that is, segre-
gated from one another; see Algorithm 1. This approach is shown to be appropriate
when considering a model which is independent on the fibers stretch or which
depends on the stretch but not on the stretch-rate [62]. In particular:

• we consider two different time steps for the electrical and the mechanical prob-
lem. The electrophysiology requires a significantly small time-step �te = T/nt
in order to correctly capture the propagation front of the electrical potential. Since
the mechanical displacement is slower (of a factor ranging between 10 and 100)
than the electrical signal propagation, for the mechanical model it is sufficient to
consider a time step �tm = T/Nt small enough to guarantee the convergence
of the Newton method. In particular, we set them so that �tm = D�te, that is,
nt = DNt . Since we are discretizing the activation equation with the forward
Euler method, we need to solve (26) using the time step �te of the electrical
model to guarantee the stability of the overall numerical scheme. Therefore,
D time steps for the electrical subproblem (23) and the activation Eq. (26) are
evaluated between two time instants in which the mechanical subproblem is
solved;

• different meshes Tep, Tm are employed for the electrical and mechanical prob-
lems, respectively; the latter problem requires less mesh-size restrictions than the
former and can thus be solved on a coarser mesh [69]. This implies the need of
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transferring information between the two meshes: to impose the activation in the
mechanical problem we need to evaluate the solution of the electrophysiology
problem on Tm, whereas the electromechanical feedback (which here is not
considered) would require to evaluate the solution of the mechanical problem
on Tep. This inter-grid transfer is performed by means of a rescaled localized
radial basis functions (RBF) interpolation technique introduced in [32]; see also
[9, 72].

4 Reduced Order Modeling Techniques

The reduced basis (RB) method allows to speed up the approximation of a
parameter-dependent PDE in the case multiple evaluations of its solution are
required for several values of the parameter μ ∈ P . The basic idea of the RB
method is to seek the solution of a problem in a subspace of much smaller dimension
than the one,Nh, of the FOM space. During the offline stage, the parameter domain
is explored, and a set of high-fidelity solutions (snapshots) is computed to generate a
low dimensional RB space of dimensionN � Nh. This space can be built by means
of either a greedy algorithm (if suitable a posteriori error estimators are available
and can be efficiently evaluated) or, in more general situations, proper orthogonal
decomposition (POD) technique; see Sect. 4.1. Then, during the online phase, for
each new value of μ, the RB approximation is rapidly computed by combining
(possibly few) arrays stored offline, whose complexity must no longer depend on
Nh.

The technique is well-established for linear PDEs (both of elliptic and parabolic
type) showing an affine dependence on μ; see, e.g., [68] for an in-depth presentation
of the methodology. Under the assumption of affine parametric dependence, the
differential operators and data can be expressed as a linear combination of μ-
independent forms (which can thus be precomputed) weighted by μ-dependent
coefficients, which can be inexpensively evaluated. The RB method in its classical
formulation, however, is no longer efficient when dealing with nonlinear (and/or
nonaffinely parametrized) problems, unless we employ suitable hyper-reduction
techniques to perform system approximation in addition to solution-space reduction;
in the nonlinear case, these two operations shall be performed at the same time.

We first address the issue of solution-space reduction, which is achieved by
means of the POD technique. We consider the case of a nonlinear stationary
problem, a class which the mechanical subproblem fits in, for the sake of general
exposition. We postpone the case of time-dependent nonlinear problems—albeit
treated in a semi-implicit way, thus requiring the solution of a linear system at each
time step—to Sect. 5, where we address the reduction of the monodomain equation.
For the sake of exposition, we formulate everything in a purely algebraic form.
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4.1 POD-Galerkin Method

Let us consider the following, abstract, nonlinear μ-dependent algebraic system

R(U(μ); μ) = 0. (31)

and the associated Newton method: given U(0)(μ) ∈ R
Nh , for k ≥ 1, find δU(μ) ∈

R
Nh s.t.

{

J(U(k−1)(μ); μ)δU(k)(μ) = −R(U(k−1)(μ); μ),

U(k)(μ) = U(k−1)(μ)+ δU(k)(μ) (32)

and iterate until ||R(U(k)(μ); μ)||2 < ε, being ε > 0 a small, given tolerance.
As before, J(U(μ); μ) ∈ R

Nh×Nh denotes the μ-dependent Jacobian matrix (with
linearization aroundU(μ)) and R(U(μ); μ) ∈ R

Nh the μ-dependent residual vector.
In the case of mechanical problems characterized by complex nonlinear con-

stitutive laws, the computational burden in solving (32)1 is represented by the
assembling of the Jacobian matrix, which can consume almost the entire CPU
time required by each Newton step. To reduce the computational complexity of
problem (32), the RB method seeks, for any μ ∈ P , an approximation of U(k)(μ)
given by a linear combination of (possibly few) basis functions,

U(k)(μ) ≈ Zu(k)N (μ), ∀k ≥ 1, N � Nh, (33)

where u(k)N (μ) ∈ R
N and Z ∈ R

Nh×N is a matrix whose N � Nh columns
contained the nodal values of the RB functions. Problem (32) is then replaced by
the following: given u(0)N (μ) ∈ R

N , for k ≥ 1, find δuN ∈ R
N s.t.

{

ZT J(Zu(k−1)
N (μ); μ)ZδuN(μ) = −ZTR(Zu(k−1)

N (μ); μ),

u(k)N (μ) = u(k−1)
N (μ)+ δuN(μ),

(34)

and iterate until ||ZTR(Zu(k)N (μ); μ)||2 < εRB , being εRB > 0 a small, given
tolerance. If (34) converges, ZuN(μ) can be regarded as an approximation of
U(μ) in the RB space, with uN = limk→∞ u(k)N . Problem (34)1 is obtained by
requiring that the Galerkin projection over VN of the FOM residual computed on
the ansatz (33) vanishes, where VN has to be intended as the space spanned by the
columns of Z.

The POD technique—through the so-called method of snapshots—can be used to
compute the reduced basis Z (and, as we shall see in Sect. 4.2, for the construction of
both DEIM and MDEIM bases). In the case of a stationary, μ-dependent nonlinear
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problem, POD performs the singular value decomposition of a matrix

S = [U(1)(μ1) U(2)(μ1) . . . U(1)(μns ) U(2)(μns ) . . .]

of snapshots of the high-fidelity problem and returns an orthonormal basis of
the RB space made by the first N right singular vectors of S. Here snapshots
are represented by Newton steps obtained for ns parameter vectors μi ∈ D ,
i = 1, . . . , ns , randomly sampled over P; more ad-hoc strategies, such as e.g.
latin hypercube sampling or sparse grid, could be exploited especially for high-
dimensional parameter spaces.

Hence, from the factorization S = Z
�T , where � = diag(σ1, σ2, . . .) is
the matrix of singular values of S, the POD basis ZN of dimension N ≤ ns is
obtained by collecting the firstN columns of Z (i.e. the firstN left singular vectors),
corresponding to the firstN (largest) singular values; we can set the basis dimension
N as the minimum integer such that

∑N
i=1 σ

2
i

∑ns
i=1 σ

2
i

≥ 1 − εPOD,

given a suitable, small tolerance εPOD > 0. The reduced basis provided by POD
is optimal, in the sense that it minimizes the sum of the squared distances between
each snapshot and the corresponding projection onto the subspace. When denoting
by Z the POD basis, its dimensionN will be understood.

4.2 Hyper-Reduction Techniques

When using Newton iterations to solve nonlinear problems, assembling the ROM
for any new parameter would require to assemble (also in the online phase) the
FOM arrays first and then to project them onto the reduced space, thus calling into
play high-fidelity arrays at the online stage, too. This issue is even more relevant
when dealing with fully nonlinear problems, for which the global Jacobian matrix
has to be entirely reassembled at each Newton step.

Hyper-reduction (or system approximation) techniques aim to recover an approx-
imate affine structure of nonlinear terms to guarantee an efficient offline-online
decomposition. The archetypical hyper-reduction technique introduced in the RB
framework is the empirical interpolation method (EIM), developed in [10, 49] to
approximate nonaffinely parametrized functions. Its discrete variant, the so-called
Discrete EIM (DEIM), was originally proposed in [21] to efficiently deal with
nonlinear problems, but has also been applied to nonaffinely parametrized linear
operators. More recently, a matrix version of DEIM (MDEIM) has been developed
[19, 87], and then further explored in [55] to approximate the full-order parametrized
operators in a purely algebraic way.
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4.2.1 DEIM for Residual Approximation

For the problem at hand, at each Newton step, DEIM [21] allows to efficiently
express the residual vector as a linear combination of (possibly few) μ-independent
terms so that the μ-dependent weights of this combination can be efficiently
computed by solving an interpolation problem. In particular, we project the residual
vector R(Zu(k)N (μ); μ) onto a low-dimensional subspace spanned by a basis ΦR ∈
R
Nh×mR such that, ∀k ≥ 1

R(Zu(k)N (μ); μ) ≈ Rm(Zu
(k)
N (μ); μ) = ΦRθR(Zu

(k)
N (μ),μ) (35)

where θR(Zu
(k)
N (μ),μ) ∈ R

mR is a coefficient vector to be determined. In
particular:

• the basis ΦR can be computed (once for all) by performing POD on a set of
snapshots

SR = {R(Zu(k)N (μi ); μi ) i = 1, . . . , ns, k = 1, . . .}.

To obtain the residual snapshots R(Zu(k)N (μi ); μi ), we need to solve the reduced
problem (34) for different values of μ and, at each Newton iteration, to store the
computed residual vectors;

• the coefficient vector θR(Zu
(k)
N (μ),μ) can be evaluated for each new value of

μ by imposing mR interpolation constraints on a subset ℘ = [℘1, . . . , ℘mR ]
of entries of R(Zu(k)N (μ); μ) (the so-called magic points, introduced in [49]),
selected by the DEIM algorithm, see Algorithm 2. For ease of notation, we
introduce the matrix

P = [e℘1, · · · , e℘mR ] ∈ R
Nh×mR , (36)

where e℘i = [0, · · · , 0, 1, 0, · · · , 0]T ∈ R
Nh is the ℘i-th column of the identity

matrix I ∈ R
Nh×Nh , for i = 1, · · · ,mR . The coefficient vector θR(Zu

(k)
N (μ),μ)

Algorithm 2 DEIM algorithm (as originally proposed in [21])

INPUT: Φ = [

φ1, . . . ,φm
] ∈ R

Nh×m made by linearly independent columns
OUTPUT: ℘ = [℘1, . . . , ℘m] ∈ R

m

1: ℘1 = maxpos{φ1}
2: Φ = [φ1], P = [e℘1 ]
3: for k = 2, . . . , m do
4: Solve (PTΦ)c = (PT φk)

5: r = φk − Φc
6: ℘k = maxpos{r}
7: Φ ← [Φ φk], P ← [P e℘k ]
8: end for
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is then obtained as the solution of

PTΦRθR(Zu
(k)
N (μ),μ) = PTR(Zu(k)N (μ); μ);

PTΦR and PTR(Zu(k)N (μ); μ) are the restrictions of ΦR and R(Zu(k)N (μ); μ) to
the subset of indices ℘, respectively.

The approximation of the reduced residual vector in (34) can be obtained by
projecting (35) onto the reduced space yielding

ZTR(Zu(k)N (μ);μ) ≈ ZTΦR(P
TΦR)

−1PTR(Zu(k)N (μ);μ) := RN,m(Zu
(k)
N (μ);μ).

(37)

All the quantities appearing in (37) which do not depend on μ can be precomputed
offline; in the online stage we only need to assemble PTR(Zu(k)N (μ); μ), which
is the restriction of the residual to the subset of DEIM nodes. In the FE context,
this restriction can be computed by simply integrating the residual only on the
quadrature points belonging to those mesh elements which provide a non-zero
contribution to the entries ℘; this set of elements is usually referred to as reduced
mesh [18].

4.3 Jacobian Approximation

An affine approximation of the reduced Jacobian matrix JN(Zu
(k)
N (μ); μ) can

be obtained by relying on either the DEIM algorithm or a MDEIM alternative
technique.

The classical DEIM approach to tackle nonlinear problems (see e.g. [11, 22,
45, 64]) computes the reduced Jacobian JN(ZwN(μ); μ), for any wN ∈ R

N , as
the derivative of the reduced approximated residual vector (i.e. the right-hand side
of (37)),

JN,m(ZwN(μ);μ) = ∂RN,m(ZwN(μ);μ)

∂wN
= ZTΦR(P

TΦR)
−1PT J(ZwN(μ);μ)Z.

(38)

As for the residual vector, we can precompute the μ-independent quantities offline,
while online we have to assemble PT J(ZwN(μ); μ) ∈ R

mR×Nh , that is the
restriction of the Jacobian matrix to the rows which correspond to the indices in
℘. Consequently, we need to assemble online, at each Newton step, a matrix of
dimension mR × Nh, which still depends on the dimension Nh of the FE problem,
which is unfeasible when mR becomes large. Note that since the reduced Jacobian
matrix is obtained as the derivative of the reduced residual, DEIM yields the
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application of the exact Newton method (i.e. with the exact reduced Jacobian matrix)
although on an approximated version of problem (34).

When a large number mR of DEIM terms is obtained, a matrix version of
DEIM (MDEIM) can be employed to perform hyper-reduction of the Jacobian
matrices arising in (34). The idea is to directly approximate the reduced Jacobian
ZT J(Zu(k)N (μ); μ)Z by relying on a different basis than the one used for the
residual. This yields a quasi-Newton method since the reduced Jacobian matrix is
not the exact derivative of the reduced residual; nevertheless, since the μ-dependent
Jacobian matrix usually varies in a significantly smaller range compared to the
residual vector, few (much less than mR) terms are required.

MDEIM provides an approximation of the Jacobian matrix J(Zu(k)N (μ); μ) ∈
R
Nh×Nh under the form

J(Zu(k)N (μ); μ) ≈ Jm(Zu
(k)
N (μ); μ) =

mJ∑

i=1

θ iJ (μ)J
i, (39)

being {Ji ∈ R
Nh×Nh , i = 1, . . . ,mJ } a set of μ-independent matrices that

can be computed once for all and θJ (μ) = (θ1
J (μ), · · · , θmJJ (μ))T a coef-

ficient vector. This approximation is obtained by defining j (Zu(k)N (μ); μ) =
vec(J(Zu(k)N (μ); μ) ∈ R

N2
h as the vector obtained by stacking all the columns of

J(Zu(k)N (μ); μ), and approximating j (Zu(k)N (μ); μ) by its DEIM counterpart

j (Zu(k)
N
(μ);μ) ≈ jm(Zu

(k)
N
(μ);μ) = ΦJ θJ (μ), ΦJ = (φ1, . . . ,φn)

T ∈ R
N2
h×mJ .

Then, the matrices Ji can be computed transforming each column φi ∈ R
N2
h of ΦJ

into a matrix Ji ∈ R
Nh×Nh by reverting the vec operation, as Ji = vec−1(φi ), so

that Jm(Zu
(k)
N (μ); μ) = vec−1(jm(Zu

(k)
N (μ); μ)). The basis ΦJ and the coefficient

vector θJ (μ) are determined following the same procedure used for the residual
vectors, relying on a set of snapshots SJ = {J(Zu(k)N (μi ); μi ), i = 1, . . . , ns, k =
1, . . .}, evaluated on the reduced solution. Finally, the reduced Jacobian matrix
in (34) can be approximated as

ZT J(Zu(k)N (μ); μ)Z ≈
mJ∑

i=1

θ iJ (μ)Z
T JiZ. (40)

4.3.1 Efficient Assembling on a Reduced Mesh

By using DEIM and MDEIM as above, the POD solution-space reduction is first
performed, while the bases associated to the DEIM and MDEIM approximations of
R and J are computed at a later time. The major drawback of this strategy is that
problem (34) must be solved ns times. To avoid this, we can rely on an intermediate
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Algorithm 3 ROM construction (stationary, nonlinear problem)
INPUT: ns combinations of parameters {μ1, . . . ,μns }
OUTPUT: Z, ΦJ , ΦR

1: for i = 1, . . . , ns do
2: Solve problem (32) for μi
3: At each Newton iteration k:
4: SU ← [SU U(k)(μi )], SJ ← [SJ vec(J(U(k−1)(μi ),μi ))]
5: end for
6: Z = POD(SU ; ε), ΦJ = POD(SJ ; εJ )
7: for i = 1, . . . , ns do
8: Solve problem (41) for μi
9: At each Newton iteration k:

10: SR ← [SR R(Zu(k−1)
N (μi ),μi )]

11: end for
12: ΦR = POD(UR; εR).

problem where the Jacobian matrix is replaced by its MDEIM approximation and
the residual is exact: given u(0)N,m ∈ R

N , at each Newton step we search δu(k)N,m ∈ R
N ,

k ≥ 1 satisfying

⎧

⎪⎪⎨

⎪⎪⎩

mJ∑

i=1

θJi (μ)Z
T JiZ δuN,m(μ) = −ZTR(Zu(k−1)

N,m (μ))

u(k)N,m(μ) = u(k−1)
N,m (μ)+ δuN,m(μ)

(41)

and iterate until ||ZTR(Zu(k)N (μ); μ)||2 < εRB . Solving this problem is significantly
faster than solving problem (34), since J is assembled only onto the reduced mesh.
Moreover, problem (41) is very fast to solve since it requires almost the same
effort of the full hyper-reduced problem. The complete procedure for the ROM
construction is reported in Algorithm 3.

5 RB Methods for Cardiac Electrophysiology

We now apply the techniques introduced in the previous section to the electrical
problem. The parametrized version of problem (23) reads: given μ ∈ D , V0(μ) and
W0(μ), for each n = 0, . . . , nt − 1 solve

⎧

⎪⎨

⎪⎩

Wn+1(μ) = Wn(μ)+�tS̃(Vn(μ),Wn(μ))

(Cm

�t
ML + K(μ)

)

Vn+1(μ) = Cm

�t
MLVn(μ)+ MLĨ(Vn(μ),Wn+1(μ)).

(42)
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A ROM for the monodomain Eq. (42)1, exploits the POD technique for the
construction of the reduced space, and on the DEIM technique to approximate the
nonlinear terms. Moreover, we exploit the MDEIM technique to efficiently recover
an affine decomposition for the μ-dependent stiffness matrix, and use the DEIM
technique to reduce the computational cost associated to the ionic model (42)2.

We consider a vector of physical parameters μ ∈ P as in Eq. (16) affecting
the conductivity tensor D = D(μ) (and possibly the initial data); this yields
a μ-dependent stiffness matrix K(μ) ∈ R

Neh×Neh ; in the case we considered a
geometrical parametrization of the domain where the problem is set, also the mass
matrix ML would be μ-dependent. Moreover, for the sake of simplicity we do not
consider the case of parameters affecting the ionic terms; see [59] for more about
this subject.

5.1 Monodomain Equation

We rely on the POD-Galerkin method recalled in Sect. 4.1: for each value of μ ∈ P ,
we approximate the FE discretization of the potential at time tn as

Vn(μ) ≈ ZeVnNe (μ), n = 0, . . . , nt , (43)

where VNe (μ) ∈ R
Ne denotes the reduced transmembrane potential and Ze denotes

the matrix whose columns span the RB space for the monodomain equation. By
substituting (43) in (23)1 and projecting the resulting residual onto the reduced space
spanned by the columns of Ze, we obtain the following problem: given μ ∈ P and
V0
Ne (μ), for each n = 0, . . . , nt − 1 solve

ZTe
(Cm

�t
ML + K(μ)

)

ZeV
n+1
Ne (μ) = Cm

�t
ZTeMLZeVnNe (μ)

+ ZTeMLĨ(ZeVnNe (μ),W
n+1(μ)).

(44)

Since the matrix ZTe K(μ)Ze depends on μ, it has to be reassembled for each new
value of μ; to avoid this, we replace K(μ) by an approximate affine expansion

K(μ) ≈
mK∑

i=1

θ iK(μ)K
i (45)

obtained through the MDEIM technique. Here {Ki ∈ R
Neh×Neh , i = 1, . . . ,mK } are

a set of μ-independent matrices that can be computed once for all and θK(μ) =
[θ1
K(μ), · · · , θmKK (μ)] a vector of coefficients to be evaluated for any μ ∈ P . In

this way, no matter which kind of μ-dependence is considered in the expression of
the diffusion tensor (6), the ROM stiffness matrix can be assembled using a set of
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precomputed quantities; in particular, if μ also includes the maximum fibers rotation
angle θmax , the vector defining the fiber direction f0(μ) cannot be written under
affine form; see [13]. We point out that K(μ) is time-independent, hence it has to
be assembled only once for each value of μ; in particular, during the online stage,
we can compute θK(μ) and the corresponding approximation (45) of K(μ) when
selecting a new μ, and then use the computed quantities for all time instants.

Using approximation (45), problem (44) becomes: given μ ∈ P and V0
Ne (μ),

for each n = 0, . . . , nt − 1 solve

[
Cm

�t
ZTeMLZe +

mK∑

i=1

θ iK(μ)Z
T
e KiZe

]

Vn+1
Ne (μ) = Cm

�t
ZTe MLZeVnNe (μ)

+ ZTe MLĨ(ZeVnNe (μ),W
n+1(μ)).

(46)

Since the term describing the ionic current is nonlinear, we replace it by its DEIM
approximation. We introduce a basis ΦI ∈ R

Neh×mI , and express

Ĩ(ZeVnNe (μ),W
n+1(μ)) ≈ ΦIθ I (VnNe (μ),W

n+1(μ)). (47)

The basis ΦI ∈ R
Neh×mI has to be precomputed during the offline phase by

performing a POD on a set of snapshots {Ĩ(ZeVnNe (μi ),Wn+1(μi )), i = 1, . . . , ns};
instead, the coefficient vector θ I (VnNe (μ),W

n+1(μ)) ∈ R
mI has to be computed

online, by solving the interpolation problem

PTI ΦIθ I (VnNe (μ),W
n+1(μ)) = PTI Ĩ(ZeV

n
Ne (μ),W

n+1(μ)), (48)

where PTI = [e℘I,1, · · · , e℘I,mR ]T ∈ R
Neh×mI is the restriction matrix to the set of

DEIM indices ℘I defined in (36). The DEIM approximation of (47) is thus

Ĩ(ZeVnNe (μ),W
n+1(μ)) ≈ ΦI (PTI ΦI )

−1PTI Ĩ(ZeV
n
Ne (μ),W

n+1(μ)). (49)

To obtain the second term of the right hand side of (44) we can simply
project (49) onto the reduced space spanned by Ze, thus getting

ZTeMLĨ(VnNe (μ),W
n+1(μ)) ≈ ZTeMLΦI (PTI ΦI )

−1PTI Ĩ(ZeV
n
Ne (μ),W

n+1(μ)).

(50)

We point out that the matrices ZTeMLΦI ∈ R
Ne×mI and PTI ΦI ∈ R

mI×mI can be
precomputed during the offline stage, since they are μ-independent. For the sake of
system approximation, during the online stage we only need to evaluate (only once)
the restriction of Ĩ to the indices ℘I , that is, PTI Ĩ(ZeV

n
Ne (μ),W

n+1(μ)) ∈ R
mI .
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Relying on (50), instead of (44) we thus obtain the following hyper-reduced
monodomain equation: given μ ∈ P and V0

Ne (μ), for each n = 0, . . . , nt − 1
solve

[
Cm

�t
ZTe MLZe +

mK∑

i=1

θiK(μ)Z
T
e KiZe

]

Vn+1
Ne

(μ) = Cm

�t
ZTe MLZeV

n
Ne (μ)

+ ZTe MLΦI (P
TΦI )

−1PTI Ĩ(ZeV
n
Ne (μ),W

n+1(μ)).

(51)

The construction of the reduced basis Ze and the snapshots selection strategy will
be addressed in Sect. 5.3.

5.2 The Full Electrophysiology Problem

In this section we aim at developing an efficient ROM for the full electrical
problem (42), which involves a PDE (monodomain equation) and a system of ODEs
(ionic model). Replacing the second equation of (42) with the ROM (51) derived in
the previous section, we obtain the following problem: given μ ∈ D and V0

Ne (μ)

and W0(μ), for each n = 0, . . . , nt − 1 solve

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Wn+1(μ) = Wn(μ)+�tS̃(Vn(μ),Wn(μ))

[
Cm

�t
ZTe MLZe +

mK∑

i=1

θ iK(μ)Z
T
e KiZe

]

Vn+1
Ne (μ) = Cm

�t
ZTeMLZeVnNe (μ)

+ ZTeMLΦI (PTI ΦI )
−1PTI Ĩ(ZeV

n
Ne (μ),W

n+1(μ)).

(52)

Since the ODEs still depend on the high-fidelity approximation of the potential Vn

at each time tn, n = 1, . . . , nt , we should in principle compute the matrix-vector
product Vn = ZeVnNe at each time tn to evaluate S̃(Vn(μ),Wn(μ)) and solve the
ionic model. To avoid this operation, we can again rely on a DEIM approximation.
In fact, we can express the restriction of Ĩ(V,W) to the subset of DEIM indices ℘I
as

PTI Ĩ(ZeV
n
Ne (μ),W

n+1(μ)) = Ĩ(ZeVnNe (μ),W
n+1(μ))|℘I

= Ĩ(ZeVnNe (μ)|℘I ,Wn+1(μ)|℘I ).
(53)

In particular, we observe that in order to solve (52)2, only the restriction of the
ionic variables vector Wn+1(μ) to the indices ℘I is required. Hence, (52) becomes:
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given μ ∈ D , V0
Ne (μ) and W0(μ), for each n = 0, . . . , nt − 1 solve

⎧

⎪⎪
⎪⎪
⎪⎨

⎪⎪⎪
⎪⎪
⎩

Wn+1(μ)|℘I = Wn(μ)|℘I +�t S̃(Vn(μ),Wn(μ))|℘I
[
Cm

�t
ZTe MLZe +

mK∑

i=1

θiK(μ)Z
T
e KiZe

]

Vn+1
Ne

(μ) = Cm

�t
ZTe MLZeV

n
Ne (μ)

+ ZTe MLΦI (P
TΦI )

−1 Ĩ(ZeVnNe (μ)|℘I ,Wn+1(μ)|℘I ).
(54)

As done in (53) for the ionic current, we write

S̃(Vn(μ),Wn(μ))|℘I = S̃(ZeVnNe (μ)|℘I ,Wn(μ)|℘I )

so that, exploiting the approximation Vn(μ) ≈ ZeVnNe (μ), n = 0, . . . , nt − 1, the
hyper-reduced order model for the electrical problem reads as follows: given μ ∈ D ,
V0
Ne (μ) and W0(μ), for each n = 0, . . . , nt − 1 solve

⎧

⎪⎪
⎪⎪
⎪⎨

⎪⎪⎪
⎪⎪
⎩

Wn+1(μ)|℘I = Wn(μ)|℘I +�t S̃(ZeVnNe (μ)|℘I ,Wn(μ)|℘I )
[Cm

�t
ZTe MLZe +

mK∑

i=1

θiK(μ)Z
T
e KiZe

]

Vn+1
Ne

(μ) = Cm

�t
ZTe MLZeV

n
Ne (μ)

+ ZTe MLΦI (P
TΦI )

−1 Ĩ(ZeVnNe (μ)|℘I ,Wn+1(μ)|℘I ).
(55)

Hence, instead of solving the ODEs (54)1 for each degree of freedom of Tep, we
compute their solution only at mI nodes, with mI � Neh . Indeed, both the ionic
model and the monodomain equation only depend on the restriction of the potential
to the indices ℘I ; in particular, by recalling that

ZeVnNe (μ)|℘I = PTI ZeV
n
Ne (μ),

we notice that the matrix PTI Ze ∈ R
mI×Ne can be precomputed offline. Solving the

ODEs system at each node of the mesh would have been required if the activation
equation underwent a similar reduction procedure and a ROM for the coupled
electromechanical problem was built; see [13] for more on this subject.

5.3 Snapshots Selection Strategy

To build Ze and ΦI we rely on a POD-POD strategy, namely we perform POD with
respect to both the time and the parameter vector. In particular:

• for each parameter value μ1, . . . ,μns randomly chosen in P , we solve the high-
fidelity problem (42) and perform a POD in time to compress the snapshots
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Vn(μi ), n = 1, . . . , nt , thus obtaining a basis Zi ; finally, we obtain the POD
basis Ze performing a POD on the ns bases Z1, . . . , Znt ;

• regarding the nonlinear term, we collect the snapshots Ĩ(ZVnNe (μi ),W
n+1(μi )),

n = 1, . . . , nt , i = 1, . . . , ns by solving the following problem: given V0
Ne (μi )

and W0(μi ), i = 1, . . . , ns , for each n = 0, . . . , nt − 1 compute

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Wn+1(μ) = Wn(μ)+�tS̃(Vn(μ),Wn(μ))
[Cm

�t
ZTMLZ +

mK∑

i=1

θ iK(μ)Z
TKiZ

]

Vn+1
Ne (μ) = Cm

�t
ZTMLZVnNe (μ)

+ ZTMLĨ(ZVnNe (μ),W
n+1(μ))

(56)

and then perform the same POD-POD procedure with respect to time and
parameters as in the previous case; see Algorithm 4.

Here we rely on global reduced bases; considering local bases obtained by
partitioning the snapshot set either with respect to time or the parameters, or,
alternatively, produced by a clustering procedure in the physical space, represents a
further improvement, currently under investigation; see [59] for further details.

Algorithm 4 ROM construction (electrophysiology)

INPUT: ns parameter values {μ1, . . . ,μns }, V0(μi ), W
0(μi ), i = 1, . . . , ns

OUTPUT: Ze, ΦI , ΦK

1: for i = 1, . . . , ns do
2: SK ← [SK vec(K(μi ))]
3: for n = 0, . . . , Nt − 1 do
4: Solve problem (42) for μi
5: SV ← [SV Vn+1(μi )]
6: end for
7: Zi = POD(SV , ε)
8: end for
9: Ze=POD(Z1, . . . ,Zns ; ε)

10: ΦK=POD(SK ; εMDEIM ), Kl = vec−1(ΦK(l, :)), l = 1, . . . , mK
11: for i = 1, . . . , ns do
12: for n = 0, . . . , Nt − 1 do
13: Solve problem (56) for μi
14: SI ← [SI Ĩ(ZVnNe (μ),W

n+1(μ))]
15: end for
16: Φi = POD(SI ; εDEIM )
17: end for
18: ΦI=POD(Φ1, . . . ,Φns ; εDEIM )



Reduced Order Modeling for Cardiac Electrophysiology and Mechanics: New. . . 147

6 RB Methods for Cardiac Mechanics

We now show how to take advantage of the techniques presented in Sect. 4 in
order to build a ROM for the mechanical problem. This latter is a time-driven
problem, since its solution depends on time only through its coupling with the
electrophysiology model, which is intrinsically unsteady. Relying on the RB method
provides a twofold advantage, since the problem has to be solved not only for
different parameters, but also at several time instants.

The parametrized version of problem (28) reads: givenU(0)(tn; μ) = U(tn−1; μ),
for n = 1, . . . , Nt , Nt = T/�tm, for k ≥ 1 solve:

{

J(U(k−1)(tn,μ);Gmf (μ))δU(tn; μ) = −R(U(k−1)(tn; μ);Glf (μ)),
U(k)(tn; μ) = U(k−1)(tn; μ)+ δU(tn; μ),

(57)

until ||R(U(k−1)(tn; μ);Glf (μ)||2 < ε, where k is the index of the Newton
iterations, tn denotes the time instant which the mechanical problem is computed
at, and l = (n + 1)D − 1, with D = �tm/�te. Here we also have made the
dependence on the (discrete representation of the) fibers shortening Gf ; recall that
the time stepping for this latter variable follows the one of the electrical problem.

For the mechanical problem, time is instead considered as an additional param-
eter, although with peculiar features. Indeed, as we are not interested in solving
problem (57) for generic values of t selected online, we use the same time step
�tm in both the offline and online stages; in particular, online we solve the reduced
problem associated with (57) only in the time instants of the form tn = n�tm used
during the offline stage for the snapshots computation.

6.1 Jacobian Approximation by the Broyden Method

When dealing with time dependent (and/or large scale) problems, (M)DEIM might
be not efficient enough to guarantee a rapid approximation of the Jacobian matrix
during the online phase. In particular, the classical DEIM technique (see Sect. 4.3)
provides moderate computational speed-up when dealing with nonlinear problems
which require a large number of terms mR. On the other hand, MDEIM may
require an overwhelming amount of CPU time and memory to store the snapshots
J(U(k−1)(tn; μi );Glf (μi )), and to build the basis ΦJ during the offline phase. For
these reasons, a possible alternative to approximate the reduced Jacobian matrix (38)
is to rely on a purely algebraic technique such as the Broyden method [16],
developed to effectively approximate the Jacobian matrix when its analytic form
is unknown, or it is too expensive to compute. This approach has been applied for
the reduction of nonlinear structural problems in [71] and further improved in [13].
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This yields the following hyper-reduced order model for the mechanical problem:
for each tn, n = 1, . . . , Nt , given u(0)N,m(tn; μ), for k ≥ 1 solve:

{

JBN(u
(k)
N,m(tn; μ);Glf (μ))δu(k)N,m(tn; μ) = −RN,m(Zu

(k)
N,m(tn; μ);Glf (μ)),

u(k+1)
N,m (tn; μ) = u(k)N,m(tn; μ)+ δu(k)N,m(tn; μ),

(58)

and iterate until ||RN,m(Zu(k)N,m(tn; μ);Glf (μ))||2 < εRB ; as in (57), here l = (n+
1)D − 1. We underline that the high-fidelity approximation of the fibers shortening
variable Gf is considered, that is, we do not deal in this work with the reduction of
the coupled electro-mechanical problem; rather, we focus on the efficient reduction
of the mechanical problem only.

At each Newton step, the Broyden approximation of the reduced Jacobian matrix
is computed as

JBN(u
(k)
N,m(tn;μ)) = JBN(u

(k−1)
N,m (tn;μ))+ �R̄N,m − JBN(u

(k−1)
N,m (tn;μ))�ūN,m

�ūTN,m�ūN,m
�ūTN,m,

(59)

where

�R̄N,m = RN,m(Zu
(k)
N,m(tn; μ); tn,μ)− RN,m(Zu

(k−1)
N,m (tn; μ); tnμ)

and

�ūN,m = u(k)N,m(tn; μ)− u(k−1)
N,m (tn; μ).

The method is based on a rank-one update of the Jacobian matrix JBN(u
(k)
N,m(tn; μ));

indeed, the second term of the right hand side of (59) is a rank one matrix since
every column is a scalar multiple of �ūTN,m, and only require simple operations
between vectors of dimension N . Therefore, at the online stage each Newton step
only requires a residual assembling, since the update of the reduced Jacobian matrix
and the solution of the low dimensional linear system are extremely fast. On the
other hand, the initialization of the Jacobian matrix JBN(u

(0)
N,m(tn; μ); γf (tn,μ)) at

step k = 0 represents a critical aspect of the Broyden technique. To provide a
suitable approximation of the exact Jacobian matrix, we consider a finite difference
approximation of the form

[JBN(u(0)N,m(tn; μ))]i,j = [RN,m(Z(u(0)N,m(tn;μ)+ ηei ))]j − [RN,m(Zu(0)N,m(tn;μ))]j
η

,
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where ei is the i-th column of the identity matrix and η ∈ R is a coefficient to be
properly chosen (here we take η = 10−5). η shall be small enough to guarantee an
accurate approximation of the derivatives, however an excessively small value may
lead to undesired cancellation errors. Note that the initialization requires to assemble
online N times the residual vector—an affordable operation if N is relatively
small. Instead, if N > mR , relying on DEIM to initialize the Jacobian matrix
is more convenient than the finite difference approximation. In general, problems
characterized by a large dimension of the reduced spaceN can be efficiently reduced
exploiting the MDEIM technique, provided a small number mJ of terms can be
selected to accurately approximate the Jacobian matrix.

We close this section by pointing out that, during the online stage, only the
reduced basis Z and a DEIM basis ΦR for the residual approximation are required.
To build this latter, we rely on a strategy similar to the one described in Sect. 4.3.1,
introducing the following intermediate problem similar to (41): for each tn, n =
0, . . . , Nt , given u(0)N (tn; μ) ∈ R

N , for k ≥ 1 solve:

{

J̃BN(u
(k)
N (tn; μ);Glf (μ))δu(k)N (tn; μ) = −ZTR(Zu(k)N (tn; μ);Glf (μ)),

u(k+1)
N (tn; μ) = u(k)N (tn; μ)+ δu(k)N (tn; μ),

(60)

and iterate until ||ZTR(Zu(k)N (tn; μ);Glf (μ))||2 < εRB .
Precisely, we first solve the high-fidelity problem (28) ns times to compute the

reduced basis Z; then, we solve (60) to store the residual snapshots R(Zu(k)N (tn; μi ))

needed to build the DEIM basis ΦR . Problem (60)1 is an inexact Newton step,
for which the Jacobian matrix J̃BN is approximated through the Broyden technique,
however relying on the projection of the high-fidelity residual onto the RB space—
rather than on the reduced residual, as in (59). Solving (60) is significantly faster
than solving (28) since the only operation to perform is the assembling of the high-
fidelity residual.The full snapshots selection procedure is summarized in the next
section (see Algorithm 5).

6.2 Local-in-Time Reduced Basis

If the μ-dependent solution of a non stationary problem significantly varies
throughout the time interval [0, T ], describing the whole set of solutions for μ ∈ P
may require a large number of RB functions and, in particular, a large number
of terms mR when considering nonlinear problems where the residual vector is
approximated by DEIM. To overcome this issue, we build local-in-time bases
of smaller dimension, instead than a unique (larger) global basis on [0, T ], thus
yielding a strong reduction in terms of online computational time, still retaining the
same cost during the offline stage. In particular, we split the full time interval [0, T ]
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Algorithm 5 ROM construction (mechanics)
INPUT: ns combinations of parameters {μ1, . . . ,μns }, nb time subintervals {I1, . . . , Inb }
OUTPUT: Zs , Φs

R , Φs
J (only for MDEIM), s = 1, . . . , nb

1: for i = 1, . . . , ns do
2: for s = 1, . . . , nb do
3: for tn ∈ τs do
4: Solve problem (57) for tn,μi
5: At each Newton step k: SU ← [SU U(k)(tn; μi )]
6: At each Newton step k: SJ ← [SJ vec(J(U(k)(tn; μi )))] (only for MDEIM)
7: end for
8: Zi,s = POD(SU ; ε); Φs ← [Φs Zi,s ]; delete [SU ]
9: Φ

i,s
J = POD(SJ ; ε); Φs

J ← [Φs
J Φ

i,s
J ] (only for MDEIM); delete [SJ ]

10: end for
11: end for
12: for s = 1, . . . , nb do
13: Zs = POD(Φs; ε)
14: Φs

J ← POD(Φs
J ; ε) (only for MDEIM)

15: end for
16: for i = 1, . . . , ns do
17: for s = 1, . . . , nb do
18: for tn ∈ τs do
19: Solve problem (41) (for MDEIM) or (60) (for Broyden) for tn,μi
20: At each Newton step k: SR ← [SR R(U(k)(tn; μi ))]
21: end for
22: Φ

i,s
R = POD(SR; ε), Φs

R ← [Φs
R Φ

i,s
R ]; delete [SR ]

23: end for
24: end for
25: for s = 1, . . . , nb do
26: Φs

R ← POD(Φs
R; ε)

27: end for

into nb subintervals

I1 = [0, T1], I2 = [T1, T2], . . . , Inb = [Tnb−1, T ]

and we build different bases on each subinterval. In particular, we compute nb set
of bases {Zs ,Φs

R}, s = 1, . . . , nb (and Φs
J if using MDEIM), and each basis

associated to the s-th interval is obtained by performing the POD only on the set
of snapshots related to Is = [Ts−1, Ts ].

We remark that the mechanical problem is solved in correspondence of evenly
spaced time instants {tn}Ntn=0, whereas the new partition in subintervals Is is not
necessarily uniform. This means that, denoting by τs = {tn | tn ∈ Is}, the number of
elements of τs can be different from the number of elements of τr when s �= r; in
particular, larger subintervals Is are taken if the solution features a small variability
in time, while narrow subintervals where the solution rapidly changes. The choice
of number and width of the different subintervals is not trivial and multiple options
can be considered. Here, we opt for an heuristic choice of the subintervals Is , s =
1, . . . , nb; a more-in-depth investigation is required in this respect. More general
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strategies to obtain multiple, local bases have been proposed in the literature; see
e.g. [5, 85] for the use of proper clustering algorithms. They require to compute
and store the solution snapshots, when varying time and parameters, and then to
apply a clustering algorithm in order to build different bases, one for each cluster.
While guaranteeing a satisfactory accuracy, snapshots storage can be quite large.
Promising results in the case of cardiac electrophysiology can be found in [59].

The local-in-time basis approach combined with a POD-POD strategy allows
to avoid the storage of all snapshots. Following this approach, for each μi , i =
1, . . . , ns , we perform a full time-driven simulation and we store separately the
snapshots U(k)(tn; μi ) associated with the subintervals Is , s = 1, . . . , nb . Then, for
each subinterval Is , we apply the POD algorithm to the local snapshots U(k)(tn; μi ),
tn ∈ Is , obtaining the POD bases Zi,s . Once we have performed the high-fidelity
simulations for all μi and we have computed all the POD bases, we build our final
bases for each subinterval Is as:

Zs = POD(Zi,s , ε).

A schematic representation of the method is reported in Fig. 3. The same procedure
is used also to build Φs

R and, if required, Φs
J . In this way, different snapshots can

be computed simultaneously; at the end of each simulation, we can only retain the
POD bases {Zi,s ,Φ is

R ,Φ
is
J }, thus saving significant memory resources.

Fig. 3 Flowchart of the POD-POD procedure combined with local-in-time bases to compute the
bases Zs , s = 1, . . . , nb, of the reduced space
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The procedure described above has to be integrated with the generation of
snapshots (and bases) to approximate residual vectors and Jacobian matrices; in
particular, we split in two different stages the construction of {Zs,Φs

J } and Φs
R . The

full procedure is described in Algorithm 5 in the case either MDEIM or Broyden
approximations are considered.

7 Numerical Results

We apply the strategies described in the previous sections for the reduction of an
electrical and a mechanical problem, both solved on a patient-specific left ventricle
geometry, by focusing on the systolic phase of the heart beat. This geometry was
generated from medical images using the semi-automatic segmentation method
proposed in [34]. Fibers and sheets have been computed according to the algorithm
proposed in [74]; this procedure is based on the assumption that sheets are lying
along the radial direction s0 and requires the solution of a Laplace problem over the
ventricular domain to compute the sheets direction.

We rely on two different computational meshes: Tep with 248,216 elements
and Neh = 45,817 dofs for the electrical problem and Tm with 31,027 elements
and Nh = 18,567 dofs for the mechanics. In Fig. 4 we show the two meshes, as
well as the fibers distribution computed using the algorithm proposed in [74] with
maximum fibers orientation on the epicardium and endocardium of θepi = −60◦
and θendo = 60◦, respectively. For both problems we consider as high-fidelity full-
order model (FOM) the approximation obtained with linear (P1) finite elements.

Fig. 4 Computational grids adopted for the electrical problem (left) and the mechanical problem
(center); fibers orientation (right)
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7.1 Test Case 1: Electrophysiology

In the case of the electrophysiology problem, the parameters that we consider are
those representing the electrical conductivities:

• σf ∈ [30 kΩ−1 cm−1, 80 kΩ−1 cm−1];
• σs = σn ∈ [10 kΩ−1 cm−1, 30 kΩ−1 cm−1].
in the fibers direction (σf ) and in the plane orthogonal to the former (σs = σn), see
Eq. (6). For the time discretization of the monodomain equation and the ionic model
we employ a time step �te = 0.02ms. The depolarization wave is initialized on a
layer in the bottom part of the endocardium; this choice is motivated by the fact that
the Purkinje fibers terminations are mainly located near the apex of the ventricle.

By employing the POD-Galerkin method with DEIM/MDEIM approximations
for the nonlinear ionic terms/parametrized diffusion matrix described in Sect. 5
we reduce the two-way coupled electrical problem (42), which involves a PDE
(monodomain equation) and a system of ODEs (ionic model). The proposed ROM
yields a speed-up of more than one order of magnitude, since it takes about 0.01 s for
each time step, while the FOM takes 0.12 s. The RB solutions have been computed
using Ne = 217 basis functions for the solution and mI = 363 DEIM terms to
approximate the ionic currents, as specified in Table 2. Provided a sufficient number
of basis functionsNe,mI is considered, the front propagation captured by the ROM
is similar to the one obtained with the FOM. However, depending on the chosen
parametrization, this achievement might be more difficult to obtain; for instance,
if parameters describe local variations of tissue properties (such as, for instance,
the presence of a scar) the behavior of the solution is much more involved, thus
requiring a larger number of basis functions to reach a good accuracy.

A comparison between the high-fidelity and the reduced solutions is reported in
Fig. 5, where we observe that the two models provide very similar results from a
qualitative point of view. The average relative error between the ROM and the FOM
is shown in Fig. 6 for three different values of mI and is about 5%. The error has
been computed over a test set of 50 randomly chosen parameters different than the
values of the training sample used to compute the snapshots.

Moreover, we report in Fig. 7 the activation maps obtained for different parameter
values. The electrical signal first activates the central area of the epicardium, then
it spreads towards the apex and finally reaches the base. As expected, the duration

Table 2 Test case 1: numerical data

POD tolerances 10−4/5 · 10−1 RB dofs 217

DEIM tolerances 10−4/5 · 10−1 MDEIM tolerance 10−10

DEIM terms 363 MDEIM terms 5

FE time ionic model 0.022 RB time ionic model 0.001 s

FE time monodomain 0.09 s RB time monodomain 0.0085 s

FE time 0.12 s RB time 0.01 s
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Fig. 5 Test case 1: FOM and ROM solutions computed at different time instants for μ1 = [30, 10]
and μ2 = [80, 30]
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Fig. 6 Test case 1: average L2(0, T ;H 1(Ω0)) relative error between FOM and ROM solutions

of the depolarization phase is longer if electrical conductivities are smaller. The
depolarization time as a function of σf is reported in Fig. 8.
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Fig. 7 Test case 1: activation maps for μ1 = [30, 10], μ2 = [45, 10], μ3 = [65, 30] and μ4 =
[80, 30]
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Fig. 8 Test case 1: whole depolarization times (ms) when varying σf , considering σs = σn = 20

7.2 Test Case 2: Mechanics

We now turn to the reduction of the mechanical problem, recalling that for the case
at hand, the electromechanical coupling is not included in the ROM—that is, for
each parameter value queried online we rely on the FOM approximation of the
electrophysiology model and, in particular, of the fibers’ shortening variable.

We consider as parameters the electrical conductivities (similarly to test case 1)
and the orientation of the fibers:

• σf ∈ [30 kΩ−1 cm−1, 80 kΩ−1 cm−1];
• σs = σn ∈ [10 kΩ−1 cm−1, 30 kΩ−1 cm−1];
• θmax ∈ [30◦, 80◦];
• t ∈ [0, 100ms].
Time can be seen as an additional parameter, since the problem is quasi-static, and
needs to be solved at different time steps. In particular, we split the [0, 100 ms],
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corresponding to the systolic phase of the heart beat, into nb = 4 subintervals:
[0, 30 ms], [30 ms, 60 ms], [60 ms, 90 ms], [90 ms, 100 ms]. Such a partition is
introduced heuristically, taking into account the fact that the solution changes very
rapidly during the last part of the systole; for this reason the last interval is smaller
than the others. We consider a time step�te = 0.02 ms for the time discretization of
the electrical problem, and time instants equispaced with�m = 3 ms for t ∈ [0, 90)
and �m = 0.5 ms for t ∈ [90, 100] for the mechanical problem. This latter is then
solved, for different parameter values, at these time instants.

In Figs. 9 and 10 we show the displacement of the myocardium obtained with
the FOM and the ROM on the whole ventricle and on a longitudinal section for two
different parameters.

Employing the POD-Galerkin method with DEIM/Broyden approximations for
the residual vector and the Jacobian matrix described in Sect. 6 we obtain also in the
case of the mechanical problem even more promising results: the proposed ROM
yields a speed-up of about 20, since the ROM takes about 20 s while the FOM
requires 7 min for each solution of the mechanical problem at a single time instant,
on a single-core processor. In particular, the Broyden technique turns out to be really
appropriate since to efficiently reduce the cardiac mechanical problem we have to
choosemR significantly bigger than N .

The proposed ROM correctly captures the high-fidelity solution, as it can be seen
also from the behavior of the average relative error shown in Fig. 11; the difference

Fig. 9 Test case 2: displacement at different time instants, μ1 = [60, 10, 78◦] (first two rows),
μ2 = [80, 30, 34◦] (last two rows), obtained with the FOM and the ROM
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Fig. 10 Test case 2: section of the ventricle at different time instants, μ1 = [60, 10, 78◦] (first two
rows), μ2 = [80, 30, 34◦] (last two rows), obtained with the FOM and the ROM
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Fig. 11 Test case 2: average L2(0, T ;H 1(Ω0)) relative error

between the FOM and the ROM solutions is about 2%. Numerical data associated
to this test case are reported in Table 3.

We show in Fig. 12 the variation of the volume inside the ventricular cavity for
different values of θmax and σf . In particular, the cases σf = 60, σs = σn = 20
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Table 3 Test case 2: numerical data

POD tolerances 10−3 − 0.05 RB dofs 22

Residual DEIM tolerances 10−5 − 10−2 Residual DEIM terms 72

Newton iterations 8 Newton tolerance 10−7

FE time residual assembling 4 s RB time residual assembling 0.52 s

FE time 7min RB time 20 s

0 20 40 60 80 100
t (ms)

40

50

60

70

80

90

100

V
 (

m
L)

Internal Volume

θmax = 30

θmax = 45

θmax = 60

θmax = 80

0 20 40 60 80 100
t (ms)

40

50

60

70

80

90

100

V
 (

m
L)

Internal Volume

σf = 30

σf = 50

σf = 60

σf = 70

σf = 80

Fig. 12 Test case 2: internal volume variation when varying θmax (left) and σf (right)
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Fig. 13 Test case 2: ejection fraction and ventricular shortening as functions of σf and θmax

(left) and θmax = 60◦, σs = σn = 20 (right) have been considered. The associated
ejection fraction has been reported in Fig. 13, where also the ventricular shortening
is shown. These analyses have been carried out by varying θmax and σf since σs
and σn have a moderate effect on the solution. The quantity of blood ejected by
the ventricle is larger when θmax and σf assume large values. On the contrary,
shortening is higher when considering small values of θmax . This behavior appears
counterintuitive since we may expect that higher shortening corresponds to higher



Reduced Order Modeling for Cardiac Electrophysiology and Mechanics: New. . . 159

Fig. 14 Displacement of the myocardium for θmax = 30◦ (up) and θmax = 80◦

ejection fraction. To explain this phenomenon, we report in Fig. 14 the displacement
of the muscle for two different values of θmax : even if for θmax = 80◦ the shortening
is smaller, the cavity is more shrunk due to a larger wall thickening.

The model is able to reproduce the wall thickening and the ventricular shortening
of the heart contraction. In particular, we obtain a ventricular shortening ranging
from 13% to 23%, coherent with physiological values. The ejection fraction, usually
measured by an echocardiogram, varies between 50% and 55% in healthy patients.

8 Challenges and Perspectives

The proper integration of several techniques to perform both solution-space reduc-
tion (Galerkin-POD method) and system approximation (DEIM/MDEIM or, alter-
natively to this latter, Broyden approximation) has enabled the application of
the reduced basis method for parametrized PDEs to problems arising in car-
diac electromechanics. Cardiac electrophysiology and mechanics problems pose
several challenges to ROM techniques, because of their complex, nonlinear, mul-
tiscale (both in space and time) nature; moreover, parameter dependence might be
extremely involved, for instance when aiming at describing subject-specific clinical
data and exploring inter-patient variability. On the other hand, ROM techniques
provide a unique opportunity to solve relevant problems related with data-model
integration, such as model calibration, uncertainty characterization and propagation,
parameter identification and inverse problems, data assimilation.

All these problems are of primary importance in order to translate mathematical
models into clinical care. Quantitative insights coming from the repeated solution
of electrophysiology corresponding to different values of material parameter could
provide better understanding of heart (mis)functionality; parameter identification
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has potential to improve the diagnosis of cardiovascular diseases; model calibration
may be beneficial to develop therapies tailored to the subject characteristics. All
these problems would be computationally unaffordable when relied only on high-
fidelity techniques, aiming at considering variability of geometries, a wide number
of scenarios to explore, and several parameters to deal with.

The roadmap to make ROM techniques even more efficient to tackle these
challenging problems needs to address several bottlenecks. Among these, we
mention those which, in our opinion, are the most relevant:

1. local ROMs. Using a global reduced basis for the whole parameter set and
the whole time interval can be an extremely limiting approach. For instance,
if the solution shows moving fronts and this latter is highly sensible with
respect to parameter variations (as it might happen in the case of cardiac elec-
trophysiology), applying the standard ROM techniques can become unfeasible.
Local-in-time bases, as shown in this paper, can partially cure this problem,
however more general and robust techniques to build local ROMs are required.
As shown in [59, 60], a k-means clustering in the state space of the snapshots for
both the solution and the nonlinear term can be a viable strategy to overcome this
bottleneck;

2. time behavior. So far, POD has been applied also with respect to the time
independent variable, to compress information carried by a set of solution
snapshots computed at different time steps, no matter which is the time behavior
characterizing the problem. In general, however, reduction of parametrized PDEs
becomes much more difficult when passing from elliptic (or dissipative time-
dependent) to hyperbolic problems (for instance pure transport equations). More
ad-hoc strategies, able for instance to detect time invariances, or to track traveling
waves, should be considered in the case of cardiac electrophysiology, because of
the sharpness of the front and its extremely rapid dynamics;

3. coupled andmultiphysics problems. Designing efficient ROMs (either monolithic
or segregated) to couple different problems, such as cardiac electrophysiology
and mechanics, is still an open issue, and almost untouched in the field of
cardiovascular applications; preliminary investigations on the electromechanical
case can be found in [13]. In this latter work it is also shown a possible strategy
to realize a fully coupled electromechanical problem by including the mechano-
electrical feedback only during the online stage, and relying on different ROMs
for the two subproblems; Similarly, in this work the choice of using the
monodomain model is performed. Such a model is adequate in physiological
conditions, however the richer—but more complicated—bidomain model is
required for treating some pathological conditions. The methods described in
the previous sections can also apply to the bidomain model, however entailing
an extra burden from a computational standpoint, because of the presence of two
fields to be computed, and the different overall nature of the PDEs system.

4. multiscale problems. The multiscale nature of the electromechanical model
should be properly taken into account in a ROM aiming at describing multiple
behaviors at different scales. Among the mentioned open problems, this is by
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far the most involved one, because of the intrinsic difficulty of the models at
the cellular scale. Several extensions of the RB method to multiscale problems
showing highly oscillating coefficients have been considered in the last decade,
however only focusing on elliptic problems [1, 2, 40, 57]. When applied to
these problems, the RB method enables to speed up a large number of similar
computations on the fine local mesh for each new realization of the coefficient;
its application to complex nonlinear materials, however, is still completely open.

5. multi-fidelity problems. In view of exploiting reduced order modeling techniques
to solve uncertainty quantification problems, the use of models characterized by
different fidelities is also foreseen. Following, e.g., the approach relying on multi-
fidelity sampling and a Bayesian formulation proposed in [12], information from
an approximate, low-fidelity model can be rigorously exploited and incorporated
to perform output evaluations, estimates on their variability and, ultimately,
parameter studies. In this respect, the eikonal model and a recently proposed
reaction-eikonal source model [56], this latter offering the computational advan-
tages of the eikonal model while preserving the full biophysical details of
a computationally costly reaction-diffusion model, could be considered as an
extremely cheap, yet detailed, low-fidelity model.

The investigation and development of reliable and efficient reduced-order model-
ing techniques is a very active field of numerical analysis and scientific computing;
with no doubt, cardiovascular applications represent one of the most challenging
and significant environments.
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Abstract The continuous technological improvements of medical instruments and
devices make minimally-invasive approaches a real and valid alternative to standard
open surgery in more and more cases. Recent developments in cardiovascular
surgery, in particular, have led to the success of thoracic endovascular repair
(TEVAR) and transcatheter aortic valve implantation (TAVI). If, on the one hand,
minimally-invasive interventions induce shorter hospital stays, faster recovery, and
thus reduced costs, on the other hand, since, for obvious reasons, the direct control
of the operator on the procedure is much more limited, operation planning and
decision-making steps cover a crucial importance. In this context, computational
tools have demonstrated to play a remarkable role, providing the surgeon with
predictive information regarding the potential optimality of the treatment strategy.
In the present chapter, we aim at describing recent developments of TEVAR and
TAVI modeling, from both the structural and fluid-dynamic point of view.
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1 Introduction

Cardiovascular diseases still represent the major cause of death in Western countries
[21]. Among the many different cardiovascular pathologies, the structural deteriora-
tion and impairment of arteries (e.g., aortic aneurysm or carotid artery stenosis), as
well as of heart valves (e.g., aortic valve stenosis or mitral valve prolapse) certainly
plays a crucial role.

In the recent years, for the treatment of such a class of pathologies, minimally-
invasive endovascular approaches have met an increasing interest and stimulated
continued developments. In fact, endovascular procedures, consisting in the inser-
tion of miniature devices through a blood vessel for the treatment of the specific
vascular disease, present many advantages over open surgery. Benefits of minimally-
invasive procedures include: (1) shorter hospital stay, being much less traumatic
than standard open procedures, and, consequently, (2) reduced costs for institutions,
(3) fewer complications traditionally associated with open surgery, and (4) faster
recovery and return to normal physical activity. For these reasons, currently, in many
cases and whenever possible, surgeons opt for endovascular treatments, especially
for high-risk patients.

However, the less invasiveness of endovascular treatments makes the direct
control of the procedure more difficult for the surgeon, since only radiological
images (usually angiographic images) can guide him when performing the opera-
tion. Moreover, like all medical procedures, also endovascular surgery is not without
risks. In particular, possible risks that can occur include: (endo- or paravalvular)
leaks, device movement and migration, device excessive deformation preventing
optimal performance, etc. All these possible complications make the procedure
heavily dependent on the correct choice of the device type, size, and positioning
strategy; which is the main reason why physicians are more and more recognizing
the importance of pre-surgical planning for these interventions.

In this context, in order to predict the complications that may occur and, at
the same time, in order to optimize the entire surgical strategy, a very promising
approach is given by virtual computer-based simulations taking into account the
specific details of the anatomy and characteristics of arteries and valves, as
they can greatly differ from one individual to another. There is little doubt that
patient-specific simulations will help minimally-invasive procedures expand their
recommended patient population.

In the present chapter we focus on two of the most routinely performed
endovascular procedures, i.e., thoracic endovascular repair (TEVAR) and tran-
scatheter aortic valve implantation (TAVI), with the aim of presenting computational
strategies and tools mainly based on finite element to obtain predictions that may
support the decision-making process and procedure planning. In particular, after
a brief description of the state-of-the art, we will present both structural and fluid-
dynamics results obtained by simulating TEVAR and TAVI in patient-specific cases.
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2 Structural Simulation of TEVAR

TEVAR is a consolidated procedure to treat thoracic aortic diseases such as
aneurysms and dissections, especially in those patients who are unsuitable for
standard open surgery [12]. The procedure is performed through a catheter-guided
deployment of one or more stent-grafts, which are metallic tubular structures
covered by a polymeric skirt. Such devices are normally used to diverge the arterial
blood flow within pathologic vascular anatomies; for instance, stent-grafts are used
to reduce the pressurization of aneurysmatic sac or to exclude the perfusion of false
lumen in a dissected artery. The rapid evolution of self-expandable stent-grafts in
the last decade motivates the use of structural Finite Element Analysis (FEA) also
in this emerging sector.

One of the pioneer investigations in this area was presented in 2008 by
Kleinstreuer et al. [18] who discussed a FEA of tubular, diamond-shaped stent
grafts under representative cyclic loading for abdominal aortic aneurysm (AAA)
repair. In particular, the authors studied the mechanical behavior and fatigue
performance of different materials resembling commercially available stent-graft
systems, evaluating and comparing the effects of the different stages of the device
usage (crimping, deployment, and cyclic pressure loading) on stent-graft fatigue
life, radial force, and wall compliance through the numerical simulations.

In 2012, De Bock and colleagues [7] experimentally validated the use of
structural FEA to virtually deploy a bifurcated stent graft (Medtronic Talent) in
a patient-specific model of an abdominal aorta. The authors modeled the entire
deployment procedure, with the stent graft being crimped and bent according to the
vessel geometry, and subsequently released. The numerical procedure was validated
comparing the simulation outcomes with the in-vitro data regarding the placement
of the device in a silicone mock aneurysm, scan by high resolution Computed
Tomography (CT) scan.

In the same year, Demanget et al. [8] simulated numerically the bending of two
manufactured stent-grafts (Aorfix by Lombard Medical and Zenith by Cook Medical
Europe) using FEA. The authors studied the overall behavior of the stent-grafts
by assessing stent spacing variation and cross-section deformation. The study is
motivated by the potential relationship between the clinical complications and the
insufficient stent-graft flexibility, especially when devices are deployed in tortuous
arteries.

The same authors validated the numerical procedure in a subsequent study [9]
where the two commercially available stent-grafts were subjected to severe bending
tests and their 3D geometries in undeformed and bent configurations were imaged
from X-ray microtomography to set up stent-graft numerical models, subjected to
the boundary conditions measured experimentally. The computational framework
was further used to numerically assess the flexibility and mechanical stresses
undergone by stents and fabric of currently marketed stent-graft limbs (Aorfix,
Anaconda, Endurant, Excluder, Talent, Zenith Flex, Zenith LP, and Zenith Spiral-Z)
[10].
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In 2013, Auricchio and colleagues [2] described the use of a custom-made stent-
graft to perform a fully endovascular repair of an asymptomatic ascending aortic
pseudoaneurysm in a patient who was a poor candidate for open surgery. The authors
also discussed the possible contribution of a dedicated medical images analysis
and patient-specific simulation as support to procedural planning. In particular, the
authors have compared the simulation prediction based on pre-operative images
with post-operative outcomes. The agreement between the computer-based analysis
and reality demonstrated by this study further encourages the use of FEA-based
simulations not only as a tool for device designers but also as a procedural planning
tool for the physicians.

Perrin and colleagues [22] investigated the expansion of five marketed stent-graft
iliac limbs to evaluate quantitatively their mechanical performances. The simulation
of the deployment was modeled in a simplified manner according to the following
steps: stent-graft crimping and insertion in the delivery sheath, removal of the sheath
and stent-graft deployment in the aneurysm, application of arterial pressure. Their
results showed that in the most curved aneurysm and for some devices kinks and
apposition defects are present especially at the outer curve of the artery.

Analogously, the same research group [23] proposed a numerical methodology
to predict stent-graft final deployed shapes after surgery, applied on three clinical
cases, using preoperative scans to generate patient-specific vessel models. The
numerical results were compared to the actual deployed geometry of the stent-grafts
after surgery that was extracted from postoperative scans. They observed relevant
matching between simulated and actual deployed stent-graft geometries, especially
for proximal and distal stents outside the aneurysm sac which are particularly
important for practitioners. Such a good agreement between numerical results and
clinical cases makes finite element simulation very promising for preoperative
planning of endovascular repair; in fact, part of such technology is the ground of
PrediSurge company.

The aforementioned studies clearly show that, nowadays, structural simulation
of endografting is a consolidated technology. Certainly the time of proof-of-concept
case studies is gone; the simulations are ready for the validation with perspective
studies and to benchmarked by the clinical market. In such a scenario it is essential
to promote the clinical applications of such tools. With this aim, in the following
we briefly provide an example about the use of structural FEA to plan the surgery,
accounting for patient-specific anatomical features, which are particular important
in borderline patients where the pre-operative decisions based on static images are
not straightforward.

Two patients with thoracic aortic dilations underwent contrast enhanced CT scans
to visualize the diseased morphology. Patient 1 (P1) presented a saccular aneurysm
having a maximum diameter of 55 mm just below the aortic arch, whereas Patient
2 (P2) had a maximum diameter of 40 mm in the same position. Both CT scans
were segmented with the Vascular Modeling Toolkit (VMTK) open source library
in order to create a 3D surface of the vessel wall.

Based on TEVAR guidelines to evaluate the length of the proximal landing
zone and the radius of curvature of the arch, TEVAR was performed in P1 with



Aortic Endovascular Surgery 171

the deployment of one stent-graft Medtronic Valiant 28-24-150 (Medtronic, Santa
Rosa, CA, USA), consisting of 8 NiTiNOL rings covering a polyester skirt to limit
blood flow into the sac plus a proximal uncovered ring to improve stability without
occluding the left common carotid artery. Due to the borderline morphology of P2
arch, characterized by a short proximal aneurysm neck and high arch angulation,
decision to undergo TEVAR was not taken immediately. Surgeons proposed to
virtually deploy a stent-graft according to aortic characteristics, in this case a
Medtronic Valiant 26-26-100.

Virtual stent-graft models were created for both patients to define meshes suitable
for structural FEA using Abaqus/Explicit v. 6.16 (Simulia, Dassault Systèmes,
Providence, RI, USA). Meshes consisted on a group of nodes connected by two
sets of elements: one composed by linear brick elements (C3D8R) representing the
struts and one of triangular membrane elements (M3D3) representing the fabric
coverage. Struts were made of Nitinol whereas the fabric was made of woven
polyester adopting the material properties reported in [18]. Aorta was considered
rigid and surface meshes of triangular elements (R3D3) were also then imported in
Abaqus.

Set-up of the input file for the structural FEA was supported by an in-house
Python script allowing the user to select the given stent-graft model and the
proximal landing point within the diseased vessel. Numerical analysis of stent-graft
deployment in the aortic model is a non-linear problem involving large deformations
and contact; Abaqus/Explicit was used as finite element solver. The steps of the
deployment for the case of patient P1 are depicted in Fig. 1: first the stent-graft is
crimped by a catheter and curved from a straight position to the vessel centerline;
in this step, a frictionless contact interaction is enforced between the catheter and
the struts of the prosthesis. Once the stent is in place, the widening of the catheter
surface allows for the stent-graft to re-expand and thus simulate its deployment. To
do so, a contact pair between the stent-graft struts and the luminal surface of the
artery is activated.

Results of the deployment in P2 are shown in Fig. 2. To evaluate the quality of the
apposition to the vessels wall, the point-wise distances between the surface of the

Fig. 1 On the left, steps of the endograft simulation in Patient 1 model; on the right, 3D
reconstruction from actual post-operative CT scan, showing the endograft configuration after the
implant, which matches the prediction of numerical analysis
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Fig. 2 Final configuration of Patient 2 device together with a map of the distances between the
stent-graft and the vessel. A significant bird-beak—incomplete endograft apposition to the aortic
wall—is shown

deployed stent-graft and the aorta were calculated; P2 showed a significant proximal
bird-beak and a diameter mismatch in the distal landing zone, leading to endograft
folding.

Based on our results, the impossibility to undergo TEVAR in P2 was confirmed.
Considering the simulations and the clinical condition of the patient, vascular
surgeons opted for an alternative treatment.

3 Fluid-Dynamics Simulation of TEVAR

The implant of endovascular prosthesis has an obvious impact on the post-operative
aortic haemodynamics, which cannot not be easily quantified by the sole medical
images. With such an aim, Computational Fluid Dynamics (CFD), integrated
by clinical data, has extensively proved to be a valuable tool to quantify aorta
hemodynamics [14]. In the following two examples about the use of numerical
simulations to integrate clinical considerations about post-TEVAR haemodynamics
are reported.

The considered patient is a 51-year-old male suffering hypertension and hav-
ing an asymptomatic post-dissecting thoracic aortic aneurysm with a maximum
diameter of 6.1 cm. Given his condition, the patient was selected for endovas-
cular exclusion of the aneurysm using two cTAG stent-grafts (conformable TAG,
W.L. GORE & Associates. Inc., Flagstaff, Arizona, USA), sized 34-34-20 and
28-28-15 mm, with the proximal landing zone covering the origin of the left
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subclavian artery. At 6 months follow-up, imaging showed successful exclusion
of the aneurysm without endoleak but the post-operative CT scan showed a bird-
beak configuration of the proximal prosthesis. Further collection of clinical data and
medical images has been performed also 1 year after the intervention. In particular,
magnetic resonance imaging (MRI) was performed using a 1.5-T scan (Magnetom
Sonata Maestro Class, Siemens, Erlangen, Germany) to acquire phase-contrast (PC)
sequences able to provide in-vivo measures of the flow at predefined aortic cross-
sections. Such a measurements have been integrated with CFD to compute the actual
haemodynamic conditions of the patient after the treatment. Although the main
clinical concern was firstly directed to the endoluminal protrusion of the prosthesis,
the CFD simulations have demonstrated that there are two other important areas
where the local hemodynamics is impaired and a disturbed blood flow is present:
the first one is the ostium of the left subclavian artery, which is partially closed
by the graft; the second one is the stenosis of the distal thoracic aorta. Besides the
clinical relevance of these specific findings, this study highlights how CFD analyses
allow observing important flow effects resulting from the specific features of patient
vessel geometries. Such results demonstrate the potential impact of computational
biomechanics not only on the basic knowledge of physiopathology, but also on the
clinical practice, thanks to a quantitative extraction of knowledge made possible by
merging medical data and mathematical models [3] (see Fig. 3).

The same clinical case has been analyzed to evaluate how the aortic haemo-
dynamics evolves in time [15]; also in this case the integration of numerical
simulations and clinical data has been performed, pre-op, post-op, and 1-year
follow up data. We focus on both geometrical features like curvature, torsion

Fig. 3 Illustrative representation of the patient-specific post-operative haemodynamics, predicted
by Computational Fluid Dynamics. The analysis is based on dedicated medical image elaboration
and can be compared to in-vivo measures, performed through phase-contrast MRI. The images are
adapted from Auricchio et al. [3]
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and area variations, as well as near-wall and intravascular flow-related quantities
(i.e., wall shear stress-based descriptors and helicity). Comparison of the different
morphologies indicates a partial restoration of normal flow in the region of interest,
even though low wall shear stresses are still present with the associated risks.
Overall, this study demonstrates the efficacy of quantitative computational tools in
understanding the long-term impact of TEVAR.

4 TAVI

4.1 Background and State of the Art

TAVI procedure is a quite innovative approach for the treatment of severe aortic
stenosis. Instead of standard open-heart surgery, a catheter carrying a compressed
prosthetic heart valve is placed usually in the femoral artery (or alternatively through
the subclavian artery or even directly through the apex of the heart) and guided into
the left ventricle to let the device be positioned over the diseased aortic valve.

This new approach for the treatment of symptomatic patients with severe aortic
stenosis has been shown to be feasible and safe in patients at very high or prohibitive
surgical risk and it has developed rapidly since the first-in-man implantation
performed by Cribier in 2002 [6].

In the last decade, also numerical models and simulations aiming at predicting
the behavior of implanted prosthetic device have significantly grown. From the first
publication by Dwyer et al. [11] aiming at characterizing the blood ejection force
able to induce a prosthesis migration, several other works have been published
focusing on different specific aspects, ranging from the aortic rupture [26] to the
device deployment [2, 4, 5, 17], from the extraction of postoperative stress and
displacements by post-processing medical images [16] to the evaluation of the
radial force [25]. An example is given in Fig. 4. Mainly contributions focusing on
structural aspects have been published, but also fluid-dynamic analyses using CFD
technology have been performed in this field [24].

4.2 Structural Simulation of TAVI

Many structural simulations of TAVI can be found in the literature, analyzing
the performance of both balloon-expandable devices and self-expandable ones,
demonstrating the important role that computer simulations may play in the context
of predictive medicine.

We here mention and detail two examples of application of the finite element
technology in real clinical cases: one taking into consideration a balloon-expandable
device (i.e., the Edwards Sapien valve), and one taking into consideration a
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Fig. 4 Different frames of balloon expansion and stent apposition: (a) initial configuration; (b)
the balloon starts to deploy the stent; (c) the balloon is fully expanded and the stent fully deployed;
(d) final configuration after balloon deflation. The figure is adapted from [2]

self-expandable one (i.e., the Medtronic Corevalve valve). We finally draw some
considerations of modeling the structural problem of TAVI using finite elements.

4.2.1 The Balloon-Expandable Edwards Sapien Device: A Clinical
Application of FEA

Two patients who underwent TAVI with very different procedure outcomes were
retrospectively selected. In this chapter section, we aim at demonstrating the
capability of computational tools and, in particular, of FEA of reproducing the
device performance as measured by physicians in the postoperative course. This
can consequently prove the predictive potential of computer-based simulations in
terms of valve performance and possible complications.

The simulation procedure is quite complex and can be summarized in seven
principal steps [2]: (1) creation of stent model, (2) simulation of stent crimping,
(3) creation of the patient-specific aortic valve model, (4) simulation of balloon
inflation and stent expansion, (5) creation of prosthetic valve model, (6) simulation
of valve mapping onto the deployed stent and (7) simulation of valve closure.

Both patients were treated with an Edwards Sapien XT valve, size 26. An
accurate geometrical model of the device is reconstructed based on a high-resolution
micro-CT scan (Skyscan 1172 with a resolution of 0.17 micron) of a real device
sample. The obtained stent model is then meshed using about 85,000 solid elements
with reduced integration. A Von Mises plasticity model with an isotropic hardening
is adopted for the stent, which is made of a cobaltchromium alloy. In particular,
the following parameters are used: 233 GPa, 0.35, 414 MPa, 933 MPa and 44.5%
in terms of Young modulus, Poissons coefficient, yield stress, ultimate stress, and
deformation at break, respectively [20].
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Fig. 5 Reconstruction of the patient-specific model of the aortic valve complex used for the
simulation of TAVI

The native aortic valve complex model is obtained by processing preoperative
CT medical images (see Fig. 5). In particular, the aortic root wall geometry is recon-
structed using standard approaches well known for blood vessel reconstruction.
We assume hyperelastic isotropic properties of the aortic tissue, modeled using
a nearly-incompressible reduced sixth-order polynomial formulation. Parameters
are tabled in [19]. The leaflets are constructed in open-configuration by coupling
information coming from the CT scan (related to the leaflet attachment lines) and
measurements of the free margin from ultrasound. Calcifications are also extracted
from CT data and modeled assuming elastic behavior (Young modulus equal to
10 MPa and Poissons ratio equal to 0.35).

After simulating the crimping of the device, we perform the simulation of device
implantation by mimicking the effects of a balloon, as happens in clinical practice.
Once the stent is implanted, we simulate the prosthetic leaflets mapping on the stent
and valve closure. All the numerical analyses are non-linear problems involving
large deformations and contact. For this reason, Abaqus/Explicit solver is used to
perform large deformation analyses; in particular, quasi-static procedures are used
again assuming that inertia forces do not change the solution. Kinetic energy is
monitored to ensure that the ratio of kinetic energy to internal energy remains less
than 10%.

Stress distribution is characterized by concentrated spots of higher stress values
induced by the contact between the stent and the aortic wall (see Fig. 6). On one side,
higher stress values can be related to higher force of adherence between stent and
aortic wall; on the other side, high stress patterns concentrated in the annular region
can indicate a major risk of aortic rupture, which is a possible TAVI complication
leading to cardiac tamponade and subsequent fatal events.

Paravalvular leakage is one of the most frequent complications which may
occur after TAVI due to incomplete adherence of the prosthetic stent to the aortic
wall. For the considered patients, we can quantitatively evaluate the area of the
paravalvular orifices (see Fig. 7), which can be assumed to be proportional to the
amount of retrograde paravalvular blood flow. Interestingly, the obtained results
agree with postoperative medical data, which showed a greater regurgitation in the
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Fig. 6 Von Mises stress
distribution on the aortic root
(and, in particular, on the left
ventricular outflow tract) after
prosthesis implantation

same patient with bigger (virtually reproduced) paravalular orifices. This may be
seen as a qualitative validation of the developed computational procedure.

4.2.2 The Self-Expandable Medtronic Corevalve Device: A Clinical
Application of FEA

A similar framework has been developed for the simulation of the most common
self-expandable device, namely the Medtronic Corevalve prosthesis. In this chapter
section we aim at demonstrating the ability of computational tools in providing to
the medical operator predictive information about the optimal intervention strategy.
To this end, we focus on a single real clinical case of Corevalve implantation. The
native aortic valve and the calcifications are reconstructed from CT images and
included in the finite element model, while the prosthetic device is generated from
a micro-CT scan, thus allowing very realistic simulation outcomes. Our ultimate
goal is to understand and quantitatively evaluate the effects of the stent implantation
angle and depth in terms of clinically relevant parameters, i.e., post-implant
asymmetries, stress/strain patterns, paravalvular leakage, and valve coaptation.

The investigated case-study concerns a 75 year-old male patient treated with a
Corevalve 26 device to cure severe aortic stenosis. The reconstruction procedure of
the patient-specific geometry (aortic root wall, native leaflets, and calcifications) is
very similar to that adopted in the previous case (i.e., the Edwards Sapien case).
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Fig. 7 Paravalvular leakage measurements from computational analyses: both the orifice dimen-
sions generated after stent apposition and distance maps showing the quality of the adherence
between stent and aortic root (red means maximum distance equal to 2 mm, blue means perfect
adherence) can be measured

The main difference with the case described in the previous chapter section is the
prosthetic model, having a very different geometry that we are able to accurately
model again by scanning the device using a micro CT machine and very different
material properties, being made of NiTiNOL, whose superelastic effect is modeled
using the same material parameters as reported in [1]. After native aortic valve
modeling, the simulation framework requires that (1) the Corevalve stent is crimped
to reach the device dimension during catheter insertion; (2) then it is expanded by
gradually removing the radial constraint imposed by the catheter and, finally, (3)
the prosthetic leaflets are mapped inside the stent and closed by applying a uniform
pressure equivalent to a physiologic diastolic ventriculo-aortic pressure gradient.

From the simulation of the different implantation strategies (reported in Fig. 8),
it is possible to evaluate (and quantitatively measure) the different post-operative
performance, make a comparison among them, and identify the potentially optimal
implantation option.

To this end, (1) stent-root interaction pressure and area can measured to extract
information about the device anchoring to the aortic wall, (2) the stress pattern on
the aortic root can give indications about the triggering of possible inflammatory
processes due to excessive stress, (3) paravalular leakage and, (4) prosthetic
leaflets coaptation measures can be extracted as predictors of procedure success
or failure. As an example, in Fig. 9 we provide the measure of stent eccentricity
after implantation. Clearly, the more the stent is deformed from the ideal (original)
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Fig. 8 Different positioning strategies may be investigated using computational tools. In particu-
lar, the device depth (d) and inclination angle (θ) are angiographic measurable parameters during
the intervention that can be analyzed using FEA. Three different options for each parameter are
taken into consideration

Fig. 9 An example of post-processing of the simulation results. The eccentricity of the implanted
stent can be measured to get a measure of its deformation after expansion. This information can be
also related to prosthesis performance since a distorted stent can induce non-proper functioning of
the bioprosthetic leaflets

geometry (eccentricity = 1 everywhere) the more the prosthesis performance are
compromised.

4.3 Fluid-Dynamics Simulation of TAVI

Among the risks of TAVI, stroke induced by dislodged debris (as depicted in Fig. 10)
is the most detrimental; a (clinically evident) post-TAVI stroke rate up to 9% has
been observed. Even more prevalent but more difficult to assess is the occurrence of
sub-clinical brain insults due to micro-emboli that are released during the procedure
and migrate to the brain: clinically silent but morphologically detectable perfusion
deficits occur in 84% of patients undergoing a TAVI procedure. Even if the potential
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Fig. 10 Illustration of the embolisms induced by TAVI procedure. Emboli can be dislodged along
the whole procedure, from the delivery stage up to the prosthesis deployment. Right: examples of
commercial embolic filters. Adapted from [13]

impact of these lesions to the neurocognitive function in the long term remains
unknown, these numbers are worrisome.

Although several devices aiming at capturing or deflecting embolic material have
been developed and tested, their installation also holds its own risks, and therefore,
their real-world use is limited. Hence, there is still a high need for a mechanism to
prevent peri-procedural cerebral embolism, especially of micro-emboli.

Given such considerations, we have developed a simulation framework inte-
grating experimental (in-vitro) and numerical simulation (in-silico) approaches,
intended to support the design of novel embo-protective solutions. Preliminary
results are reported in the following.

The in-vitro set-up consists of a hydraulic simulation of the aorta where particles
can be released, captured, and counted to quantify how the emboli distribute along
the supra-aortic branches under different hemodynamic conditions. The set-up is
composed of a fluid circuit (Fig. 11) with an aorta model, a centrifugal pump, and
a reservoir; an injection system for releasing particles; two filters for capturing
particles; a data acquisition system to record flow and pressure patterns. In the
aorta model, the supra-aortic branches are distally merged in order to enable a
flow quantification in two major directions: cranial (CRA), i.e., towards the cerebral
circulation; caudal (CAU), i.e., towards the descending aorta. For our preliminary
experiments, the CRA/CAU flow distribution ratio was kept constant at 35/65.
A bolus with particles with an average diameter of 0.7 mm, (Amberlite, Sigma-
Aldrich), was injected at the level of the aortic valve (root) by a syringe pump
over 4 s. After travelling through the aorta model, the particles were captured in
either the cranial or caudal filter and counted. The distribution (split) of particles
was repeatedly assessed for four different combinations of flow rate (range 3–
5 l/min) and release location (left or right). The standard deviation for the repeated
measures (5× per setting) was <6%, suggesting that the release and catch method
is sufficiently consistent to use as a test platform for comparing various emboli-
prevention devices.
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(a) Mock aortic model
created using 3D print-
ing and average geomet-
rical data retrieved from
literature review.

(b) Left: schematic representation
of the mock circulatory loop;
Right: assembly of the plug and
play filter elements

(c) Actual set-up and en-
hanced contrast imaging of
the released particles

Fig. 11 From the 3D printed mock aortic model (a) to the mock circulatory loop (b) and analysis
set-up (c)

Computer Simulations The experiments have been corroborated by CFD simu-
lations, widely used for similar purposes. In particular, the aortic model used for
the in-vitro experiments has been reproduced by CAD software. CFD simulations
have been carried out on this model by solving the incompressible unsteady Navier-
Stokes equations in the region of interest. Three types of boundaries exist: the model
entry, the two exits, and the vessel walls. The latter have prescribed null velocity
as boundary condition, assuming a non-compliant wall. On the inflow section we
prescribed a constant flow rate of 4 L/min. On the exit sections, the flow distribution
conditions adopted for the experiments were prescribed: 35% of the outflow in the
cranial direction and 65% in the caudal direction. The simulation results were then
post-processed to perform particle tracking, i.e., plot the path of a set of particles
and assess the particle distribution (CRA/CAU).

First Embodeviation Approach A first concept of an active embo-deviator was
tested in both the computer model and the in vitro model. It represents the insertion
of a catheter in the right subclavian artery (RSA) through which a bolus of saline is
ejected at the time of aortic valve deployment. This has the advantage that perfusion
to the brain is maintained, and that potentially the flow in the aorta can be disturbed
such that particles move to the less critical descending aorta (caudal) and avoid the
brain. Simulations and experiments were performed for various bolus flow rates and
results are depicted in Fig. 12. Both platforms confirm the same result, namely that
a bolus flow of 0.5 l/min completely prevents emboli from entering the brain via the
right carotid artery and reduces the embolic load in the left carotid artery.
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Fig. 12 CFD simulations and in vitro tests on the same mock aortic model. (a) CFD simulation
of standard condition when auxiliary flow is not activated (Left panel) and when right subclavian
artery is perfused shielding the brachiocephalic trunk. The images color refers to the computed flow
velocity: red high flow velocity region, blue: low flow velocity region. (b) On the left, schematic
representation of the mock circulatory loop with red box highlighting the region depicted in the
right side of the figure showing the case when particles are released without auxiliary flow from
right subclavian artery (RSA) (top) and when the auxiliary flow is present (bottom)

Acknowledgements MC acknowledges the support of ESC Research Grant 2016 and Prof. S.
Demertzis (MD), Dr. E. Ferrari (MD) and Dr. S. Vandenberghe—Cardiocentro Ticino for the
activity regarding TAVI embolism.

References

1. Auricchio, F., Conti, M., Morganti, S., et al.: Shape-memory alloys: from constitutive modeling
to finite element analysis of stent deployment. Comput. Model Eng. Sci. 57, 225–243 (2010)

2. Auricchio, F., Conti, M., Marconi, S., et al.: Patient-specific aortic endografting simulation:
from diagnosis to prediction. Comput. Biol. Med. 43(4), 386–394 (2013)

3. Auricchio, F., Conti, M., Lefieux, A., et al.: Patient-specific analysis of post-operative aortic
hemodynamics: a focus on thoracic endovascular repair (TEVAR). Comput. Mech. 54(4), 943–
953 (2014)

4. Auricchio, F., Conti, M., Morganti, S., et al.: Simulation of transcatheter aortic valve
implantation: a patient-specific finite element approach. Comput. Methods Biomech. Biomed.
Eng. 17(12), 1347–1357 (2014)

5. Capelli, C., Bosi, G.M., Cerri, E., et al.: Patient-specific simulations of transcatheter aortic
valve stent implantation. Med. Biol. Eng. Comput. 50(2), 183–192 (2012)

6. Cribier, A., Eltchaninoff, H., Bash, A., et al.: Percutaneous transcatheter implantation of an
aortic valve prosthesis for calcific aortic stenosis: first human case description. Circulation
106, 3006–3008 (2002)

7. De Bock, S., Iannaccone, F., De Santis, G., et al.: Virtual evaluation of stent graft deployment: a
validated modeling and simulation study. J. Mech. Behav. Biomed. Mater. 13, 129–139 (2012)

8. Demanget, N., Avril, S., Badel, P., et al.: Computational comparison of the bending behavior
of aortic stent-grafts. J. Mech. Behav. Biomed. Mater. 5(1), 272–282 (2012)

9. Demanget, N., Latil, P., Orgeas, L., et al.: Severe bending of two aortic stent-grafts: an
experimental and numerical mechanical analysis. Ann. Biomed. Eng. 40(12), 2674–2686
(2012)



Aortic Endovascular Surgery 183

10. Demanget, N., Duprey, A., Badel, P., et al.: Finite element analysis of the mechanical
performances of 8 marketed aortic stent-grafts. J. Endovasc. Ther. 20(4), 523–535 (2013)

11. Dwyer, H.A., Matthews, P.B., Azadan, A., et al.: Computational fluid dynamics simulation
of transcatheter aortic valve degeneration. Interact. Cardiovasc. Thorac. Surg. 9(2), 301–308
(2009)

12. Erbel, R., Aboyans, V., Boileau, C., et al.: ESC guidelines on the diagnosis and treatment of
aortic diseases. Eur. Heart J. 35, 2873–2926 (2014)

13. Fanning, J.P., Walters, D.L., Platts, D.G., et al.: Characterization of neurological injury in
transcatheter aortic valve implantation. Circulation 129(4), 504–515 (2014)

14. Figueroa, C.A., Taylor, C.A., Chiou, A.J., et al.: Magnitude and direction of pulsatile
displacement forces acting on thoracic aortic endografts. J. Endovasc. Ther. 16(3), 350–358
(2009)

15. Gallo, D., Lefieux, A., Morganti, S., et al.: A patient-specific follow up study of the
impact of thoracic endovascular repair (TEVAR) on aortic anatomy and on post-operative
hemodynamics. Comput. Fluids 141, 54–61 (2016)

16. Gessat, M., Hopf, R., Polloket, T., et al.: Image-based mechanical analysis of stent deformation:
concept and exemplary implementation for aortic valve stents. IEEE Trans. Biomed. Eng.
61(1), 4–15 (2014)

17. Gunning, P.S., Vaughan, T.J., McNamara, L.M.: Simulation of self expanding transcatheter aor-
tic valve in a realistic aortic root: implications of deployment geometry on leaflet deformation.
Ann. Biomed. Eng. 42(9), 1989–2001 (2014)

18. Kleinstreuer, C., Li, Z., Basciano, C.A., et al.: Computational mechanics of Nitinol stent grafts.
J. Biomech. 41(11), 2370–2378 (2008)

19. Morganti, S., Conti, M., Aiello, M., et al.: Simulation of transcatheter aortic valve implantation
through patient-specific finite element analysis: two clinical cases. J. Biomech. 47(11), 2547–
2555 (2014)

20. Morlacchi, S., Colleoni, S.G., Cardenes, R., et al.: Patient-specific simulations of stenting
procedures in coronary bifurcations: two clinical cases. Med. Eng. Phys. 35, 1272–1281 (2013)

21. Mozaffarian, D., Benjamin, E.J., Go, A.S., et al.: Executive summary: heart disease and stroke
statistics-2016: update: a report from the American Heart Association. Circulation 133, 447–
454 (2016)

22. Perrin, D., Demanget, N., Badel, P., et al.: Deployment of stent grafts in curved aneurysmal
arteries: toward a predictive numerical tool. Int. J. Numer. Methods Biomed. Eng. 31(1),
e02698 (2015)

23. Perrin, D., Badel, P., Orgeas, L., et al.: Patient-specific numerical simulation of stent-graft
deployment: validation on three clinical cases. J. Biomech. 48(10), 1868–1875 (2015)

24. Sirois, E., Wang, Q., Sun, W.: Fluid simulation of a transcatheter aortic valve deployment into
a patient-specific aortic root. Cardiovasc. Eng. Technol. 2(3), 186–195 (2011)

25. Tzamtzis, S., Viquerat, J., Yapet, J., et al.: Numerical analysis of the radial force produced by
the Medtronic-CoreValve and Edwards-SAPIEN after transcatheter aortic valve implantation
(TAVI). Med. Eng. Phys. 35(1), 125–130 (2013)

26. Wang, Q., Kodali, S., Primiano, C., et al.: Simulations of transcatheter aortic valve implanta-
tion: implications for aortic root rupture. Biomech. Model Mechanobiol. 14(1), 29–38 (2014)

Michele Conti is assistant professor of Industrial Bioengineering at the University of Pavia, Italy.
He has coauthored over 40 publications on Peer Reviewed Journals. His current main research
interest is cardiovascular biomechanics combining in-silico and in-vitro analysis.

Simone Morganti is assistant professor of Mechanics of Solids at the University of Pavia, Italy.
He has coauthored over 30 publications on Peer Reviewed Journals. His current research interests
range from the modeling of transcatheter aortic valve implantation to the simulation of the additive
manufacturing process.



184 M. Conti et al.

Alice Finotello is currently a PhD student in the Department of Experimental Medicine (University
of Genoa) and she is also a research member of the CompMech Group (University of Pavia).
She received her MSc in Bioengineering from University of Pavia in 2015. Her research interests
include medical image processing and computational modelling.

Rodrigo M. Romarowski is a researcher in the group of Vascular Surgery at the Policlinico San
Donato research hospital in Milan, Italy. His research interests include medical image processing,
computational fluid dynamics as well as the translational aspect of cardiovascular research. He
closely collaborates with the group of Computational Mechanics and Advanced Materials of the
University of Pavia to develop virtual tools for endovascular treatment in the aorta.

Alessandro Reali is Full Professor of Mechanics of Solids and Structures at the University of
Pavia and a renowned expert of Computational Mechanics (with broad research interests including
among others isogeometric analysis, finite elements, strong-form methods). He is an ISI Highly
Cited Researcher and an ERC grantee, as well as the recipient of many awards (including, e.g., the
Bruno Finzi Prize, the IACM Fellows Award, the TUM-IAS Hans Fischer Fellowship, the IACM
John Argyris Award, the AIMETA Junior Prize, the ECCOMAS O.C. Zienkiewicz Award).

Ferdinando Auricchio is currently the Head of the Department of Civil Engineering and
Architecture (University of Pavia), a Full Professor of Mechanics of Solids at the University
of Pavia, and a Research Associate at IMATI-CNR (Pavia, Italy). He received his PhD in
Civil Engineering at the University of California at Berkeley in 1995. He is also vice-president
of the European Community of Computational Methods in Applied Sciences (ECCOMAS),
and Member of the Additive Manufacturing Thematic Group Steering Committee (Lombardy
Association for Intelligent Industry). His research interests include biomechanics, 3D printing,
material constitutive modeling.



Combined Parameter and Model
Reduction of Cardiovascular Problems
by Means of Active Subspaces
and POD-Galerkin Methods

Marco Tezzele, Francesco Ballarin, and Gianluigi Rozza

Abstract In this chapter we introduce a combined parameter and model reduction
methodology and present its application to the efficient numerical estimation of a
pressure drop in a set of deformed carotids. The aim is to simulate a wide range of
possible occlusions after the bifurcation of the carotid. A parametric description
of the admissible deformations, based on radial basis functions interpolation, is
introduced. Since the parameter space may be very large, the first step in the
combined reduction technique is to look for active subspaces in order to reduce the
parameter space dimension. Then, we rely on model order reduction methods over
the lower dimensional parameter subspace, based on a POD-Galerkin approach,
to further reduce the required computational effort and enhance computational
efficiency.

1 Introduction

Numerical simulations of biomedical problems is a topic of large interest nowadays,
especially for what concerns the application of shape optimization techniques aimed
at the improvement of long-term outcomes of clinical interventions [4, 49]. Several
challenging aspects can be identified in such a task, especially when seeking
a personalized (patient-specific) treatment [15, 35, 65]: model construction and
segmentation, numerical solution of the underlying fluid dynamics equations, assim-
ilation of clinical data (e.g. for boundary conditions), choice of the cost functional
and medical indices to be optimized [1, 2], as well as model deformation during the
optimization procedure. The latter is a topic of remarkable interest, since it is well
known that local geometrical features may severely affect the computational fluid
dynamics (CFD) simulation and thus the results of the optimization [30].
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A challenge in the applicability of optimization procedures in the clinical
environment is the large computational time that each procedure would entail.
Indeed, such optimal control problems are usually tackled by means of iterative
solvers that require several expensive CFD simulations for different geometrical
configurations [37]. To this end, several authors have proposed to employ computa-
tional reduction techniques based on reduced order (or surrogate) models. We refer
to [7, 10, 28, 36, 48, 50] for a few representative applications, as well as e.g. to
[21, 38] for introductory textbooks on the underlying methodology. These methods
rely on the definition of a parameter space, which is related to the set of admissible
deformations that can be considered during the iterative optimization procedure,
and its exploration to retain the most relevant features of the CFD solution on the
parameter space. It is however well known that reduced order methods suffer from
the so-called “curse of dimensionality” if the parameter space is high-dimensional.
Although there exists techniques to account for high-dimensional parameter spaces
in the reduced order modelling framework, based e.g. on sparse grids [20, 64] or on
a proper weighting of the parameter space [19, 63], the approach that we propose
in this manuscript is different and aims at reducing the high-dimensional parameter
space as well, while preserving a very broad set of admissible deformations.

We have recently dealt with several techniques concerning efficient shape
parametrization techniques in the framework of reduced order modelling. A first
possible choice is related to the shape morphing method itself. For our goals it
suffices to classify them in two groups: general purpose or problem specific. The
design of a problem specific shape parametrization technique should aim at reducing
the high-dimensional parameter space; for instance, the centerlines-based approach
proposed in [7] is able to reduce the parameter space accounting only for deforma-
tions in a cylindrical coordinates frame of reference. In contrast, in this chapter we
show a parameter space reduction technique for general purpose shape morphing
methods. Among possible general purpose methods we mention Free Form Defor-
mation (FFD) [45, 59], Radial Basis Functions (RBF) interpolation [16, 48, 53] or
Inverse Distance Weighting (IDW) interpolation [33, 60, 66]. Broadly speaking, the
aforementioned methods require the displacement of some control points to induce
a deformation on the domain, and we identify the parameters as the displacements
of the control points. In these context, our earlier approaches to parameter space
reduction have relied on screening procedures based on Morris’ randomized one-
at-a-time design [5, 52], modal analysis [33] or semi-automatic reduction of the
number of control points [9]. Each of these approaches results in lower dimensional
parameter spaces by retaining an “optimal” subset of the possible control points.
Unfortunately, when requiring very low dimensional parameter spaces (order of
unity) the resulting set of admissible deformations may be considerably shrunk.
Not only, another goal to achieve for complex shape parametrizations is also an
efficient positioning of control points, requiring versatility and “full” capability
in the geometric representation. To this end, in this manuscript we propose to
exploit an active subspaces (AS) method [22], building on our previous experience



Combined Parameter and Model Reduction of Cardiovascular Problems 187

Problem
settings
(sec. 2)

RBF
(sec. 3)

FEM
(sec. 4)

AS
(sec. 5)

POD
(sec. 6)

Reduced CFD
evaluation
(sec. 7)

Fig. 1 Outline of the chapter

on a shape optimization of a naval engineering problem in [62]. AS has been
employed in many real world problems; among others, we mention aerodynamic
shape optimization [47], integrated hydrologic model [42], the parameter reduction
for the HyShot II scramjet model [24], a satellite system model [40]. The main
difference between our previous approaches and the AS property is that our former
approaches were constraining the search of a lower dimensional parameter subspace
to be parallel to a subset of the axes of the parameter space, while the AS method
will automatically identify the “optimal” lower dimensional subspace without any
such constraint, taking a linear combination of all the original parameters. To show
an example of the resulting methodology we will consider a cardiovascular test case
related to the computation of the pressure drop of a series of deformed carotids.

The outline of the chapter is presented in Fig. 1. The formulation of the problem
of estimation of the pressure drop across a stenosed carotid artery is summarized
in Sect. 2. Shape morphing by means of RBF interpolation is then introduced in
Sect. 3. The high fidelity method, based on finite elements, is briefly summarized
in Sect. 4. The computed values of the quantity of interest will be used to train
the AS reduction of the parameter space in Sect. 5. The same high fidelity solver
will be used in Sect. 6 to train a Proper Orthogonal Decomposition (POD)-Galerkin
method on the lower dimensional parameter subspace. This combination will further
enhance computational efficiency for the procedure. Numerical results and error
analyses of the whole pipeline will be presented in Sect. 7. Conclusions and future
perspectives follow in Sect. 8.

2 A Model Cardiovascular Problem: Pressure Drop
Estimation Across a Stenosis

In this section we introduce the problem of the estimation of the pressure drop across
two parametrized stenoses in a carotid bifurcation.

Let Ω ⊂ R
n, n = 3, be a domain (see Fig. 2), obtained from the INRIA 3D

Meshes Research Database [41], that describes an idealized carotid bifurcation.
We will call Ω the reference domain; for practical reasons this domain happens
to correspond to the healthy case (no stenoses), even though this assumption is not
fundamental for the remainder of the paper.

Let D ⊂ R
m, be the set of parameters, that we assume to be a box in R

m, for
m ∈ N. Moreover, let M(x; μ) : Rn → R

n, with μ ∈ D, be a shape morphing
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Fig. 2 Representation of the
reference domain Ω , inlet
section Γin, rigid walls Γwall
and outlet section Γout

that maps the reference domainΩ into the deformed domainΩ(μ) as follows:

Ω(μ) = M(Ω; μ).

We refer to Sect. 3 for the actual definition of m and M for the case at hand.
Let us consider the following steady Navier-Stokes equations: for any μ ∈ D,

find (u(μ), p(μ)) ∈ H 1(Ω(μ); R
n)× L2(Ω(μ)) such that:

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

−νΔu(μ)+ u(μ) · ∇u(μ)+ ∇p(μ) = 0 inΩ(μ),

div u(μ) = 0 inΩ(μ),

u(μ) = uin on Γin,

u(μ) = 0, on Γwall(μ),

ν
∂u(μ)

∂n
− p(μ)n = 0, on Γout,

(1)

where Γin is the inlet section, Γout the outlet section and Γwall(μ) are (rigid) walls
of the carotid artery. Since our interest is to vary the degree of stenosis immediately
after the bifurcation point (see Fig. 3), we assume that Γin and Γout are far away
from the bifurcation and are not affected by μ. Here u(μ) represents the unknown
velocity, while p(μ) the unknown pressure. Moreover, the inlet velocity uin is a
parabolic profile and the viscosity ν is chosen such that the resulting Reynolds
number is equal to 400, corresponding to the average Reynolds number over a
cardiac cycle [67].

As quantity of interest we would have liked to consider the pressure drop across
the stenoses. However, due to the lack of physiological boundary conditions that
prescribe the pressure at the inlet, as well as non-physiological homogeneous
Neumann boundary conditions that prescribe zero pressure at the outlet, this
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Fig. 3 Sections S0, . . . , S5
employed in the relative
pressure drop computation

quantity of interest would be severely affected by a variation of the degree of
stenosis. To mitigate this, we resort to a relative pressure drop dividing by the inlet
pressure (i.e., the pressure drop between the inlet and the outlet). To be more precise,
denote with Pi(μ) the average of the pressure on the section Si , i = 0, . . . , 5,
as shown in Fig. 3. Sections S3 and S4 (S5, respectively) are used to quantify the
pressure drop for the stenosis on the left (right, resp.) branch, which is then divided
by the pressure drop between the inlet S0 and the left (right, resp.) outlet S1 (S2,
resp.). Therefore, the quantity of interest that we consider is the sum of the relative
pressure drop of the two branches:

f (μ) = P3(μ)− P4(μ)

P0(μ)− P1(μ)
+ P3(μ)− P5(μ)

P0(μ)− P2(μ)
. (2)

3 Shape Morphing Based on Radial Basis Functions
Interpolation

Radial Basis Functions (RBF) are a powerful tool for shape parametrization due to
their good approximation properties [16, 48]. In this section we summarize RBF-
based shape morphing following the presentation in [33]. All the algorithms have
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Fig. 4 Portion of a carotid.
In black the original mesh
represented by points, while
in plain colors the deformed
carotid. RBF interpolation
control points are denoted by
spherical markers (blue:
fixed, red: not fixed)

been implemented in the open source python package PyGeM [55], which is used
to perform the shape morphing in the numerical results showed in Sect. 7.

A radial basis function is any smooth real-valued function ϕ̃ : Rn → R such that
it exists ϕ : R+ → R and ϕ̃(x) = ϕ(‖x‖), where ‖ · ‖ is the Euclidean norm in R

n.
Let us recall that parameters are denoted by μ ∈ D. The RBF shape parametriza-

tion technique is based on the map M(x; μ) : Rn → R
n , defined as follows

M(x; μ) = q(x; μ)+
NC∑

i=1

γi(μ) ϕ(‖x − xCi‖). (3)

where q(x; μ) is a polynomial term to be determined, {γi(μ)}NC

i=1 are weights to

be determined, and {xCi }NC

i=1 are control points selected by the user (denoted by
spherical markers in Fig. 4), and x ∈ Ω . Among all the possible RBF for modeling
shapes we select the so-called thin plate splines [32] defined as

ϕ(r;R) =
( r

R

)2
ln
( r

R

)

where r is the radial coordinate and R > 0 is a given radius.
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In order to find the unknowns q(x; μ) and {γi(μ)}NC

i=1, let us assume that q(x; μ)

is a polynomial function of degree 1, that is

q(x; μ) = c(μ)+ Q(μ)x,

for some unknown c(μ) ∈ R
n and Q(μ) ∈ R

n×n. Therefore Eq. (3) can be rewritten
in matrix form as follows:

M(x; μ) = c(μ)+ Q(μ)x + GT (μ)d(x), (4)

being d(x) = [ϕ(‖x − xC1‖), . . . , ϕ(‖x − xNC
‖)] ∈ R

NC the vector constructed
evaluating the radial basis function on the Euclidean distance between the control
points position xCi and x, and the unknown G(μ) = [γ1(μ), . . . , γNC

(μ)] ∈
R
NC×n. To compute the unknowns c(μ), Q(μ) and G(μ) we enforce interpolation

conditions on the set of control points, that is, given their initial position as

xC = [xC1, . . . , xCNC ] ∈ R
NC×n

and their μ-dependent deformed positions as

yC(μ) = [yC1(μ), . . . , yCNC (μ)] ∈ R
NC×n, (5)

we enforce that

M(xCi ; μ) = yCi (μ) ∀i ∈ {1, . . . ,NC}. (6)

The system is then completed by additional constraints that represent the conser-
vation of the total force and momentum [16, 31, 53], due to the presence of the
polynomial term, as follows

NC∑

i=1

γi(μ) = 0, (7)

NC∑

i=1

γi(μ)xC1,i = · · · =
NC∑

i=1

γi(μ)xCn,i = 0, (8)

being xCi = [xC1,i , . . . , xCn,i ] a vector collecting the i-th coordinates of all control
points. These additional constraints, together with the presence of the polynomial
term of degree one, ensures that the resulting linear system (6)–(8) has always a
unique solution (c(μ), Q(μ), G(μ)). Once the system is solved, we can deform all
the points of the mesh through M(·; μ) to obtain the deformed configuration.

In order to exemplify (5) in our case, let us consider again Fig. 4, where control
points are denoted by spherical markers. In order to enforce the deformation to be
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Fig. 5 Three different deformations produced varying the m = 10 parameters

localized, we will move all control points close to the stenosis (colored in red) in the
normal direction, thus varying the occlusion, while we will keep fixed a few control
points far away from the stenosis (colored in blue). Therefore, for all fixed control
points the right hand side of (6) is defined employing

yCi (μ) = xCi ∀i ∈ {1, . . . ,N fixed
C },

while for all non-fixed control points

yCi (μ) = xCi − μini ∀i ∈ {1, . . . ,m},

where NC = N fixed
C + m, μi denotes the i-th element in μ and ni the outer unit

normal to the wall evaluated at xCi . In our case we have chosen m = 10, N fixed
C =

55 (not all control points are shown in Fig. 4), and the parameter range is D =
[0, 0.3]m, resulting in a wide range of possible different stenosis scenarios (see Fig. 5
for an idea of the possible configurations).

4 High Fidelity Solver Based on the Finite Element Method

In this section we summarize the high fidelity solver that will be used in the training
of both the active subspace (see Sect. 5) and the POD-Galerkin reduction (see
Sect. 6). Let (V ,Q) be an inf-sup stable finite element (FE) pair, being Vδ(μ) ⊂
H 1(Ωδ(μ); R

n) and Qδ(μ) ⊂ L2(Ωδ(μ)), being δ the maximum diameter size of
a tetrahedralization1 Ωδ of Ω ; Taylor-Hood P

2 − P
1 FE has been employed in the

numerical experiments shown in Sect. 7.

1In order to simplify the exposition we will report the FE formulation on the deformed domain
Ω(μ). However, it should be noted that only the meshΩδ of the reference domainΩ is generated,
and deformed meshes Ωδ(μ) are obtained through the mapping M(·; μ).
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The high fidelity approximation of (1) reads: for any μ ∈ D, find
(uδ(μ), pδ(μ)) ∈ Vδ(μ) × Qδ(μ) such that uδ(μ) = uin on Γin, uδ(μ) =
0, on Γwall(μ) and:

{

a(uδ, vδ; μ)+ b(vδ, pδ; μ)+ c(uδ,uδ, vδ; μ) = 0, ∀vδ ∈ Vδ(μ),
b(uδ, qδ; μ) = 0, ∀q ∈ Qδ(μ),

(9)

where

a(uδ, vδ; μ) =
∫

Ω(μ)

ν∇uδ : ∇vδ dx, b(vδ, qδ; μ) = −
∫

Ω(μ)

qδ div vδ dx

are the bilinear forms associated to the diffusion and divergence operators, respec-
tively, whereas

c(uδ, vδ, zδ; μ) =
∫

Ω(μ)

(∇vδ uδ) · zδ dx

is the trilinear form related to the nonlinear advection term. Let {ϕδi }N
δ
u
i=1 and {ζ δk }

Nδp
k=1

the bases of Vδ(μ) andQδ(μ), respectively. Then, (9) can be equivalently rewritten

as the following nonlinear system: for any μ ∈ D, find (u(μ),p(μ)) ∈ R
Nδu ×R

Nδp

such that2:

[

A(μ)+ C(u(μ); μ) BT (μ)
B(μ) 0

] [

u(μ)
p(μ)

]

=
[

f(μ)
g(μ)

]

, (10)

where, for 1 ≤ i, j ≤ Nδu and 1 ≤ k ≤ Nδp :

(A(μ))ij = a(ϕδj ,ϕ
δ
i ; μ), (B(μ))ki = b(ϕδi , ζ

δ
k ; μ),

(C(u(μ); μ))ij = c
(

uδ(μ),ϕ
δ
j ,ϕ

δ
i ; μ

)

,
(11)

and

uδ(μ) =
Nδu∑

i=1

ui(μ)ϕ
δ
i , pδ(μ) =

Nδp
∑

k=1

pk(μ)ζ
δ
k ,

For any μ ∈ D the nonlinear system (10) is solved via a Newton method, and the
quantity of interest f (μ) is computed according to (2) in a postprocessing stage.
The solution of the Navier-Stokes problem for a representative value of μ is shown
in Fig. 6.

2The non-homogeneous right-hand side accounts for boundary conditions via a lifting.
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Fig. 6 Velocity and vorticity fields for a representative choice of μ ∈ D. (a) Velocity field. (b)
Vorticity

5 Parameter Space Reduction by Active Subspaces Property

The active subspaces (AS) property has been emphasized recently, see for example
P. Constantine in [22]. It concerns the properties of a parametric scalar function and
it is exploited for dimension reduction in parameter studies. The main idea behind
the active subspaces is the following: we rescale the inputs (the parameters μ, in our
case) and then rotate the inputs domain with respect to the origin in such a way lower
dimension behavior of the output function (the normalized pressure drop f (μ), in
our case) is revealed. The active subspaces identify a set of important directions in
the space of all inputs, instead of identifying a subset of the inputs as important. The
latter approach would have indeed resulted in similar limitations as in our previous
works [5, 9, 33]. If the output of the simulation does not change on average along a
particular direction of the parameters, then we can safely ignore that direction in the
parameter study. When an active subspace is identified for the problem of interest, it
is possible to perform different parameter studies such as integration, optimization,
response surfaces [14], and statistical inversion [43].

Now we review the process of finding active subspaces. Let us assume3 f :
R
m → R is a scalar function and ρ : Rm → R

+ a probability density function.

3In this section we will omit the dependence on μ. It should be understood that f = f (μ), ρ =
ρ(μ), etc.
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For our sake a uniform probability density will suffice, as all possible geometrical
configurations can be drawn with equal probability. In particular, we assume f
continuous and differentiable in the support of ρ, with continuous and square-
integrable (with respect to the measure induced by ρ) derivatives. The active
subspaces of the pair (f, ρ) are the eigenspaces of the covariance matrix associated
to the gradients ∇μf . To this end we define the so-called uncentered covariance
matrix of the gradients of f (among others see [29] for a more deep understanding of
these operators), denoted by Σ , whose elements are the average products of partial
derivatives of the simulations’ input/output map, i.e.:

Σ = E [∇μf ∇μf
T ] =

∫

D

(∇μf )(∇μf )
T ρ dμ, (12)

where E[·] is the expected value. To approximate the eigenpairs of this matrix it is
common to use a Monte Carlo method as follows [23, 51]:

Σ ≈ 1

NAS
train

NAS
train∑

i=1

∇μfi ∇μf
T
i , (13)

where we draw NAS
train independent samples μ(i) from the measure ρ and where

∇μfi = ∇μf (μ
(i)). The matrix Σ is symmetric and positive semidefinite, so it

admits a real eigenvalue decomposition

Σ = W�WT , (14)

where W is am×m orthogonal matrix of eigenvectors, and � is the diagonal matrix
of non-negative eigenvalues arranged in descending order.

We now form a lower dimensional parameter subspace by selecting the first
M eigenvectors, for some M < m. On average, perturbations in the first set of
coordinates change f more than perturbations in the second set of coordinates.
While low eigenvalues suggest that the corresponding vector is in the nullspace of
the covariance matrix. Discarding these vectors we can construct an approximation
of f . For the sake of notation, let us partition � and W as follows:

� =
[

�1

�2

]

, W = [W1 W2] ,

where �1 = diag(λ1, . . . , λM), and W1 contains the first M eigenvectors. The
active subspace is the range of W1. The inactive subspace is the range of the
remaining eigenvectors in W2. The linear combinations of the input parameters with
weights from the important eigenvectors are the active variables. We approximate
the behaviour of the objective function by projecting the full parameter space onto
the active subspace.
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Given the input parameters in the full space we can map forward to the active
subspace. Respectively we have the following formulas for the active variable μM
and the inactive variable η:

μM = WT
1 μ ∈ R

M, η = WT
2 μ ∈ R

m−M. (15)

That means that any point in the parameter space μ ∈ R
m can be expressed in terms

of μM and η as follows:

μ = WWTμ = W1WT
1 μ + W2WT

2 μ = W1μM + W2η.

So it is possible to rewrite f as

f (μ) = f (W1μM + W2η),

and construct a surrogate quantity of interest g using only the active variables

f (μ) ≈ g(WT
1 μ) = g(μM).

In our pipeline, the surrogate quantity of interest g will be obtained querying a
POD-Galerkin reduced order model, as described in the next section.

Active subspaces can be seen in the more general context of ridge approximation
(see for example [44, 54]). It can be proved that, under certain conditions, the active
subspace is a good starting point in optimal ridge approximation and it is nearly
stationary as shown in [25, 39].

6 Model Order Reduction Based on a POD-Galerkin Method

In this section we now briefly summarize the POD-Galerkin method that we employ
for the model order reduction of the high fidelity approximation (10) of the Navier-
Stokes equations (1), based on the usual offline-online paradigm [6, 12, 38, 56]. The
main novelty in this section is that the training during the offline stage (as well as
the testing during the online one) will be carried out only over the active (parameter)
subspace, and not over the full parameter space D.

Let us denote by ΞPOD
train = {μ(i)M }N

POD
train
i=1 ⊂ D a training set of NPOD

train points chosen
randomly over the active subspace, i.e. the range of W1. During the offline stage,
we assemble the following snapshots matrices:

Su = [u(μ(1)M ) | . . . | u(μ(Ntrain)
M )] ∈ R

Nδu×NPOD
train ,

Sp = [p(μ(1)M ) | . . . | p(μ(Ntrain)
M )] ∈ R

Nδp×NPOD
train ,

Ss = [s(μ(1)M ) | . . . | s(μ(Ntrain)
M )] ∈ R

Nδu×NPOD
train ,
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where (u(·),p(·)) is the FE solution of (10), and the supremizer solution s(·) is
obtained by a FE approximation of the following elliptic equation: for each μ ∈
ΞPOD

train , assuming (an approximation of) pδ(μ) to be known, find sδ(μ) ∈ Vδ(μ)

such that

(sδ(μ), vδ)Vδ(μ) = b(vδ, pδ(μ); μ) ∀vδ ∈ Vδ(μ),

where (·, ·)Vδ(μ) represents the inner products in H 1(Ω(μ); R
n). Indeed, sδ(μ) is

such that

sδ(μ) = arg sup
vδ �=0

b(vδ, pδ(μ); μ)

‖vδ‖Vδ(μ)
,

and the inf-sup constant

βδ(μ) = inf
qδ �=0

sup
vδ �=0

b(vδ, pδ(μ); μ)

‖vδ‖Vδ(μ)‖qδ‖Qδ(μ)
is related to the supremizer solution as follows:

(βδ(μ))
2 = inf

qδ �=0

‖sδ(μ)‖Vδ(μ)
‖qδ‖Qδ(μ)

.

Such supremizers are employed at the reduced order level to enhance the inf-
sup stability of the reduced system, which is essential to obtain an accurate
approximation of the pressure. We refer to [6, 58] for further details on supremizers,
as well as to [3, 17, 61] for possible alternative approaches.

A POD basis for the velocity, pressure and supremizer spaces can be obtained by
considering the singular value decomposition of the following matrices [13, 57]

X
1/2
u Su, X

1/2
p Sp, X

1/2
u Ss,

beingXu and Xp FE matrices corresponding to the discretization of the inner prod-
ucts inH 1(Ω; R

n) andL2(Ω), respectively. The firstNu, Np,Ns (respectively) left

singular vectors are then considered as basis functions {ϕn}Nu
n=1, {ζn}

Np
n=1, {φn}Ns

n=1 of
the reduced basis spaces. Therefore, the reduced spaces for velocityVN and pressure
QN , of cardinality Nu,s = Nu +Ns and Np, respectively, are then obtained as

VN = span({ϕn}Nu
n=1, {φn}Ns

n=1), QN = span({ζn}Npn=1).

Finally, let us introduce the corresponding basis functions matrices

Zu,s = [ϕ1| . . . |ϕNu
|φ1| . . . |φNs

] ∈ R
Nδu×Nu,s ,

Zp = [ζ1| . . . |ζNp ] ∈ R
Nδp×Np .
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Let us now denote by ΞPOD
test = {μ(j)M }NPOD

test
j=1 ⊂ D a testing set of NPOD

test
points chosen randomly over the active subspace. During the online stage,
for any μM ∈ ΞPOD

test , we solve the following reduced nonlinear system: find
(uN(μM),pN(μM)) ∈ R

Nu,s × R
Np such that

[

AN(μM)+ CN(uN(μM); μM) B
T
N(μM)

BN(μM) 0

] [

uN(μM)
pN(μM)

]

=
[

fN(μM)
gN(μM)

]

,

where

AN(μM) = ZTu,s A(μM) Zu, s, BN(μM) = ZTp B(μM) Zu,s,

CN(w; μM) = ZTu,s C(Zu,s w; μM) Zu,s.

In order to obtain the maximum efficiency, the reduced system should not require
evaluations of quantities defined on the high fidelity mesh; a standard approach
based on the empirical interpolation method [11] and its discrete variants, as well as
alternatives based on gappy POD [18], could be considered. We omit any additional
detail on this topic for the sake of brevity, as this is already extensively discussed in
the literature cited in this section.

7 Numerical Results

In this section we present the results of the complete pipeline applied to a specific
artery bifurcation. Moreover we demonstrate the improvements obtained using the
pipeline with respect to the POD approach on the full parameter space.

The mesh is discretized using tetrahedral cells; a FE approximation by P
2 − P

1

elements is used, resulting in 265049 degrees of freedom. FEniCS is employed for
the implementation of the high fidelity solver [46].

Let us recall that the parameter space is a m = 10 dimensional space. In
particular the parameters are the displacements of 10 different RBF control points
along the orthogonal direction with respect to the surface. The moving control points
are located in the two branches just after the bifurcation in order to simulate a
stenosed carotid. In Fig. 4 it is possible to observe the original undeformed carotid in
black and the moving control points in red with a possible deformation. The PyGeM
open source package is used to perform the deformation [55].

Since the deformations are made with respect to the reference geometry, the
quality of the resulting mesh after interpolation could decrease. To address this
problem we computed the aspect ratio [34] of all the tetrahedra of each deformed
mesh. In Fig. 7a we plot the minimum, the maximum and the mean of such ratio.
Even though the maximum values of such index are increased by the deformation
process, a sensible deterioration in mesh quality affects at most 0.07% of the
total number of tetrahedra. Results are reported in Fig. 7b, which summarizes the
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(a) Maximum, minimum, and mean value
of the aspect ratio for all the mesh defor-
mations.

(b) Percentage of tetrahedra with an aspect
ratio above the maximum value of the refer-
ence geometry.

Fig. 7 Aspect ratio for each deformed mesh in the training set (a) and percentage of cells above
the maximum aspect ratio of the reference mesh with respect to the total number of cells (b)

percentage of cells for which the aspect ratio is above the maximum value it had in
the reference configuration. Thus, we conclude that the deformations impact on the
mesh quality is negligible.

Recalling Sect. 5, we need to construct the uncentered covariance matrix Σ

defined in (12). As shown in (13), we use a Monte Carlo method, in order to
construct the matrix Σ , using the software [26]. The number of training samples
that we employ is NAS

train = 250. Even though it may be challenging to explore a 10
dimensional space, heuristics reported in [22] suggest this choice ofNAS

train is enough
for the purposes of the active subspaces identification. In order to approximate
the gradients of the pressure drop f with respect to the parameters, that is ∇μf ,
we use a local linear model that approximates the gradients with the best linear
approximation using 17 nearest neighbors. After constructing the matrix Σ we
calculate its real eigenvalue decomposition.

The eigenvalues of the covariance matrix in descending order are depicted in
Fig. 8. The presence of gaps between the eigenvalues supports the existence of an
active subspace. We can investigate the proper dimension of the active subspace
using scatter plots that contain all available regression information that are called
sufficient summary plots [27]. Recalling (15), Fig. 9 shows f (μ) against μM =
WT

1 μ, where WT
1 contains the first one and the first two eigenvectors, respectively.

An active subspace of dimension one could suffice, but the band-width of the scatter
points is quite large, so we prefer to retain more information about the output
function by using a two dimensional active subspace.

To support this decision we construct a response surface varying the dimension
of the active subspace and the order of the polynomial surface and we compute the
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Fig. 8 Eigenvalue estimates in block circles with the bootstrap intervals (grey region). The order-
of-magnitude gaps between the eigenvalues suggest confidence in the dominance of the active
subspace

Fig. 9 Sufficient summary plots for (a) one and (b) two active variables using the training dataset

relative error with respect to a test dataset. We can see from Fig. 10 that on average
the bidimensional subspace is the best choice in terms of information retention and
dimension of the reduced parameter space. We underline that the choice of the
active subspace dimension depends on the problem, the accuracy, and the goal you
want to achieve. For the purpose of this chapter the choice we made is a very good
compromise and does not affect the following results.

Once the active subspace W1 has been identified, we turn to the POD-Galerkin
model order reduction defined in Sect. 6. The proposed combined methodology
(denoted as “ROM + AS” in Figs. 11 and 12) will be compared to the standard
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Fig. 10 Surrogate model
error with respect to the active
subspace dimension and the
order of the response surface

POD-Galerkin approach on the full parameter space (denoted as “ROM” in Figs. 11
and 12) in order to highlight the effectiveness of our proposed method. The open
source library RBniCS [8, 38] is employed to implement both methodologies.
During the training phase, we select a training set of size NPOD

train and compute a POD
of the resulting snapshots. In the case of the combined methodology we have chosen
NPOD

train = 100, while in the standard approach we have chosen NPOD
train = NAS

train.
Corresponding POD singular values are show in Fig. 11 for velocity, supremizers
and pressure, as a function of the number N of selected POD modes. The results
show a slower decay for the standard approach when compared to the combined one,
meaning that the standard approach has to deal with a considerably larger solution
manifold. If the final goal is to evaluate the quantity of interest, it is much more
convenient to use the combined method, which is able to provide a much smaller
solution manifold by neglecting the inactive (and so less interesting) directions.
Indeed, Fig. 12 shows that the combined methodology is able to reach relative errors
which are up to an order of magnitude smaller when compared to the standard one,
for both velocity (Fig. 12a) and pressure (Fig. 12b) when N = 20. The errors are
average relative errors on a testing set of cardinality NPOD

test = 100. A similar error
analysis can be carried out for the quantity of interest, showing a trend similar to the
one in Fig. 12b.

8 Conclusions and Perspectives

In this chapter we have presented a combined parameter and computational model
reduction by means of active subspaces and POD-Galerkin methods, and we
applied the proposed combined method on a synthetic problem related to the
estimation of the pressure drop across a stenosed artery bifurcation. First, we
reduced the high dimensional parameter space into a lower dimensional parameter
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Fig. 11 POD singular values as a function of the number N of POD modes for (a) velocity, (b)
supremizers, and (c) pressure

subspace by means of the active subspaces property. Our numerical test case,
related to the deformation of two stenoses, shows an effective reduction of the
dimensionality of the parameter space, from 10 control points displacements to
2 active variables. Just the active parameter subspace is then employed for a
further model reduction by means of a POD-Galerkin method. When comparing
the performance (in terms of errors) of the resulting reduced order model with
a standard one (without active subspaces preprocessing), the proposed approach
shows better results up to an order of magnitude. This is due to the fact that the
standard approach has to account for several directions in the parameter space (the
inactive subspaces) which only account for negligible variations in the pressure
drop and thus could have been neglected. The proposed methodology could find
further developments in more realistic cardiovascular problems, for what concerns
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Fig. 12 Relative errors between the high fidelity solution and the reduced order one, as a function
N , for (a) velocity and (b) pressure component

both the geometry (e.g. patient’s personalization) and the mathematical model (e.g.
unsteadiness, compliance). Moreover, several enhancements on the combination of
the two approaches could be foreseen; among the possible ones, we mention a more
tight coupling between the training stages of active subspaces and POD-Galerkin
sampling methods based on a greedy approach in order to avoid the solution of
several high fidelity problems for two (possibly large) training sets.
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Extended Finite Elements Method
for Fluid-Structure Interaction
with an Immersed Thick Non-linear
Structure

Christian Vergara and Stefano Zonca

Abstract We consider an Extended Finite Element method to solve fluid-structure
interaction problems in the case of an immersed thick structure described by non-
linear finite elasticity. This method, that belongs to the family of the Cut Finite
Element methods, allows to consider unfitted meshes for the fluid and solid domains
by maintaining the fluid mesh fixed in time as the solid moves. We review the state of
the art about the numerical methods for fluid-structure interaction problems and we
present an overview of the Cut Finite Element methods. We describe the numerical
discretization proposed here to handle the case of a thick immersed structure with
size comparable or smaller than the fluid mesh element size in the case of non-linear
finite elasticity. Finally, we present some three-dimensional numerical results of the
proposed method.

1 Introduction

The interaction between a fluid and an immersed structure may be significant in
many applications, for example in aeronautic engineering to study the response of
the air on the aircraft [10, 31, 32, 61], in civil engineering to understand the effect of
wind on bridges [19, 75, 95], towers [54], and suspended cable [12, 82], in energy
engineering to study the modeling of wind-turbines, heat exchangers and hydro-
turbines [8, 81, 86], in sport engineering to investigate the impact of the waves
over a rowing boat [33, 34] or the flow around a sailing yacht [79], in biomedical
application, for instance in hemodynamics to study the stresses exerted by blood
flow to the leaflets of an heart valve [68, 90], or to study the blood pressure exerted
to the retinal vessels walls [2, 4].

In some cases, it may be interesting to consider a full three-dimensional (3D)
model for the structure, even though the thickness of the structure is small with
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respect to the characteristic size of the domain. For example, in the simulation of
heart valves, one should consider the interaction between the blood and the valve
leaflets. Often, for clinical purposes, there is the need to accurately evaluate the
internal structural stresses, which can be computed only by means of a full 3D
geometric model.

The numerical simulation of such a fluid-structure interaction problem is very
challenging. First of all, the structure undergoes large displacements, thus its
movement cannot be ignored from the geometric point of view. Second, the
immersed structure is very thin, often smaller than the characteristic mesh size of
the fluid problem, and this leads to numerical and computational difficulties due to
the cut of some fluid mesh elements.

In this work, we propose an Extended Finite Elements discretization for FSI
problem with an immersed 3D non-linear elastic structure in the regime of large
displacements. In Sect. 2 we briefly review the most important numerical strategies
introduced so far to handle this problem, whereas in Sect. 3 we specifically focus on
the family of Cut Finite Elements, to which our method belongs. Then, in Sect. 4 we
introduce the mathematical problem and the proposed numerical approximation,
whereas in Sect. 5 we give some detail on the algorithm for the solution of the
non-linear system arising after discretization. Finally, in Sect. 6 we present some
numerical results.

2 State of the Art

Several numerical methods have been developed so far to solve the FSI problem
with an immersed structure. We subdivide them depending on the treatment of the
computational meshes. Accordingly, we arrange them into two main categories:
body-fitted mesh methods and fixed/unfitted mesh methods.

In the first category, we place all the methods that use a conforming and
fitted mesh at the fluid-structure interface. Among them, we cite the Arbitrary
Lagrangian Eulerian approach introduced in [28, 55, 58]. In presence of very
large displacements, this method may fail due to the high distortion of the fluid
mesh, so that a remeshing procedure is required. Moreover, this procedure has
the disadvantage that may introduce an artificial diffusivity due to the need of
interpolating from one mesh to the new one. Nonetheless, the ALE method has
been used by some authors to deal with immersed structures. For example, in [64]
an ALE approach with remeshing is proposed to simulate heart valve closure on a
2D simplified geometry, in [76] a synthetic 3D model was employed to study the
valve opening, in [63] a 3D model is used to study the influence of the sinus of
Valsalva in the aortic valve, in [92] a 2D simulation of the aortic valve is performed
on a plane of symmetry along the center of a leaflet for an entire cardiac cycle.
A similar approach based on local adaptation is presented in [7]. This “Extended
ALE” method allows the structure mesh to move independently of the fluid one that
is kept fixed, resulting in a pair of meshes that are not fitted at the interface. Then,
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the fitting between the two meshes is obtained via local remeshing or local changes
in the connectivity.

Another fitted method is given by Space-Time Finite Elements [29, 57, 59, 77].
The basic idea is to divide the time domain into slabs and then to use the Finite
Element (FE) basis functions on each slab for both the spatial and temporal
discretizations.

In the second family of numerical methods, we place the methods based on a
fixed background mesh and on an overlapped unfitted mesh for the fluid and the
solid, respectively. These approaches were developed to avoid the movement, or the
remeshing, of the fluid mesh. In particular, they have been specifically designed for
treating the case of large deformations.

The first fixed/unfitted mesh method proposed in the literature is the Immersed
Boundary (IB) method, introduced in [80] in the context of Finite Differences for an
immersed membrane and specifically realized for studying the fluid-dynamics in the
heart. In this framework, the fluid is represented in Eulerian coordinates, while the
structure in Lagrangian coordinates by means of a forcing term for the fluid problem
that acts on the fluid-structure interface. The extension of the IB approach to the FE
method is presented in [14, 15]. The FE formulation is extendable to the case of
thick structures and allows to easily manage the forcing term given by the action
of the structure on the fluid, see, e.g., [16, 91, 94]. As regards the applications, the
Finite Difference IB method has been used in [47] to simulate the blood dynamics
in a realistic domain of the heart and in [46, 48] to simulate the dynamics of the
heart valves. The Finite Element IB method has been employed in [93] to study an
immersed structure interacting with a viscous fluid and in [67] for several biological
applications regarding valve dynamics, vessel stents, red blood cells interaction
and cells migrations. See also [56] for an application to bioprosthetic heart valves.
Another IB approach widely used in the context of heart valves is the Curvilinear
Immersed Boundary (CURVIB) method [36] which is particularly suited for the
3D case. The CURVIB method was successfully employed for FSI problems for
simulating the dynamics of prosthetic heart valves, see [17, 18, 36, 65].

A different approach in the category of the fixed/unfitted mesh methods is the
Fictitious Domain (FD) method. This method was introduced in [41] for solving
the viscous-plastic flow equations inside complex domains, then in [13, 42] it was
used for solving the Navier-Stokes equations around immersed objects, and in [43]
it was extended to treat the case of moving rigid bodies inside incompressible
viscous flows with applications to particle flows, see also [44, 45]. Several works
based on the FD method have been produced for the solution of FSI problems with
immersed structures: in [87, 88] an application to FSI for heart valves including
contact with rigid bodies is presented; in [6] a procedure for dealing with the
interaction of an incompressible fluid and different structures is proposed, allowing
the contact among the deformable bodies; in [84] an application for heart valves
is compared with experimental data; in [62] an application to bioprosthetic heart
valves is considered; in [89] a comparison of some FD approaches with the ALE
one is presented for several FSI problems. A variant to the FD approach for dealing
with valve dynamics is proposed in [25, 26]. In the latter works, the FD approach is
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combined with the ALE one in order to exploit their advantages: the ALE approach
is used to describe the movement of the root of the valve, that undergoes a limited
displacement, so that no remeshing is necessary, allowing to build a fitted mesh at
the fluid-structure interface; the FD approach is instead used to describe the leaflets
of the valve that, on the contrary, undergo large displacements.

3 Cut Finite Element Methods

The methods presented above feature two main limitations:

• the body-fitted mesh methods require the remeshing of the fluid domain due
to the highly distorted fluid elements that appear when the displacement of the
immersed structure is too large;

• the fixed/unfitted mesh methods require the implementation of ad-hoc strategies
to sharply capture the interface. Indeed, in the case of “diffuse interface” methods
(such as the IB method), the interface conditions are imposed through forcing
terms which spread the effect of such conditions on a cluster of neighbouring
cells. This results in a lack of sharpness in capturing the boundaries and the
inability of enforcing boundary conditions for strongly fluctuating quantities,
such as in turbulent flows, see, e.g., [73].

Here, we consider a specific class of methods belonging to the fixed/unfitted
family that tries to overcome these limitations. The advantages of this class, referred
to as Cut Finite Element (CFE) methods, are that they maintain the accuracy of
classical FEM and can be developed by extending the features of FEM, see, e.g.,
[24] for a review of this class of methods.

Let us consider a finite set of domainsΩi ∈ R
d , with i = 1, . . . , N, and d = 3.

We indicate with

• background domain, a domain Ω such that Ω ⊇ ⋃N
i=1Ω

i , i.e. a domain that
covers all the domainsΩi ;

• foreground domain, each of the domains Ωi , i = 1, . . . , N , that overlaps the
background domainΩ ;

• interface, a curve Σi , i = 1, . . . , N , of co-dimension one that separates the
background domainΩ to the foreground domainΩi .

Moreover, we distinguish the foreground domains into three categories, depend-
ing on their thickness:

• zero-thickness domain, a foreground domain of co-dimension one (contained in
the background domainΩ) that dividesΩ into two parts (Σ in Fig. 1);

• thin domain, a foreground domain such that its thickness is smaller than the
characteristic size of the background mesh (Ω1 in Fig. 1);

• thick domain, a foreground domain Ωi such that the thickness of the domain is
comparable with its characteristic size (Ω2 in Fig. 1).
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Fig. 1 The background
domain Ω (white) contains
the zero-thickness domain Σ ,
the thin foreground domain
Ω1 (grey) and the thick
foreground domain Ω2

(grey). The interfaces Σ1 and
Σ2 delimitΩ1 and Ω2,
respectively

Fig. 2 Top, left: the
background process domain
ΩBP associated with the
process PB . Top, right: the
foreground domain ΩF

associated with the process
PF . Bottom: the background
domain Ω is the union of the
background process domain
ΩBP and the foreground
domain ΩF

With the final aim of describing how the physical processes are related to the
domains and the meshes, in what follows we consider two processes, PB and PF ,
that represent the background and foreground processes, respectively. Process PB

occurs in the background process domain ΩBP , while process PF occurs in the
foreground domain ΩF , see Fig. 2 (top). The union of the domains ΩBP and ΩF

generates the background domainΩ , see Fig. 2 (bottom).
For each of these three domains we generate the corresponding mesh. In

particular, for the background domain Ω , we generate the background mesh Th,
and for the foreground domain ΩF , we generate the foreground mesh T F

h , see
Fig. 3 (top). The background process meshT BP

h is instead generated by considering
only the portions of the elements of the background mesh Th that belong to the
background process domainΩBP , see Fig. 3 (bottom), i.e.

T BP
h = {K : K = K ′

|ΩBP ,∀K ′ ∈ Th}. (1)

We have indicated by h > 0 the mesh size. Notice that the background process
mesh contains elements of arbitrary shape, in particular polygons. We also define
by T̃ BP

h the smallest mesh contained in Th that covers the background process
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Th
T F

h

T BP
h

Fig. 3 Top, left: the background mesh Th related to the background domain Ω . Top, right: the
foreground mesh T F

h related to the foreground domainΩF . Bottom: the background process mesh
T BP
h (grey) associated with the background process domain PB

domainΩBP as

T̃ BP
h = {K ∈ Th : K ∩ΩBP �= ∅}, (2)

i.e. T̃ BP
h is composed by the elements K that belong (also partially) to the domain

ΩBP , see Fig. 4 (left). Finally, we define by Ω̃BP the domain associated with the
mesh T̃ BP

h , see Fig. 4 (right), i.e.

Ω̃BP = int

⎛

⎜
⎝

⋃

K∈T̃ BP
h

K

⎞

⎟
⎠ . (3)

With the above definitions, we can provide the following statement:
The common idea of Cut Finite Element methods is

(1) to take a fixed background mesh overlapped by foreground meshes,
(2) to cut the elements of the background mesh with the zero-thickness mesh or with

the interfaces of the thin and thick foreground meshes, generating elements of
arbitrary shape (polytopes), and
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T BP
h

Fig. 4 Left: the mesh T̃ BP
h (grey). Right: the domain Ω̃BP (grey)

(3) to write a suitable weak formulation within the background process and
foreground domains.

We stress that the nature of the foreground domain may be either geometric or
physical. In particular:

• for a geometric foreground domain, the zero-thickness domain describes a
discontinuity in the properties of the background domain, but it is not subject to a
process; instead, the thin and thick domains may represent (1) either a portion of
the space with different physical properties with respect to the background one,
however being described by the same process, (2) or a “hole” in the background
geometry that is not subject to any process (empty process);

• for a physical foreground domain, the zero-thickness, thin and thick domains
represent a different physical process with respect to the background one,
represented by a different partial differential equation, as it happens in the FSI
problem.

Different formulations have been proposed depending on the thickness and
nature of the foreground domains, and each of these leads to a different CFE method.
A graphical representation of all the possible combinations in the case of two
processes is shown in Table 1. In the literature, the geometric cases are considered in
the following works: the zero-thickness case is treated in [3, 11, 49, 74] for elliptic
problems, in [9, 50, 78] for solid mechanics and in [52] for the Stokes problem; the
thin case is treated in [83] for solving the Navier-Stokes equations; the thick case
is considered in [51, 69] for elliptic problems and in [70] for the Stokes problem.
The physical cases have been studied in the following works for FSI problems: the
zero-thickness case in [1]; the thin case in [37–39] in a two-dimensional framework
and in [96] for 3D problems; the thick case in [22] in two-dimensions, and in
[37, 40, 71, 72] in three-dimensions. A particular physical case is considered in
[53, 60] for solving PDEs only on the zero-thickness foreground domain, i.e. on
immersed surfaces.

In particular, the thickness of the foreground domain has a strong effect on the
approach employed to tackle the problem in the background process domain. In
fact, when a foreground domain crosses the elements of the background mesh, three
different configurations may appear, see Fig. 5.
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Table 1 Schematic representation of possible scenarios when considering overlapping back-
ground (white) and foreground (grey) domains

Geometric Physical

Zero-thickness

P1P1

empty

P1P1

P2

Thin

P1P1

P1 or empty

P1P1

P2

Thick

P1 or empty
P1 P1 P2

On each resulting domain, we have indicated the underlying process (P 1, P 2 or empty)

Fig. 5 Configurations of the background element K depending on the thickness of the foreground
domain. Left: a foreground zero-thickness domainΣ intersects the background elementK . Center:
a thin foreground domain Ω1 overlaps the background element K . Right: a thick foreground
domain Ω2 overlaps the background element K . In white, the background process element

In the case of a zero-thickness domain Σ , see Fig. 5 (left), the background
elementK is split into two parts and a numerical approximation is required on each
portion of K . In the case of a thin domain Ω1, see Fig. 5 (center), the background
element K is partially overlapped and is divided into three parts: only the two parts
that belong to the background process domain require a numerical approximation
for the background process. Finally, in the case of thick domain Ω2, see Fig. 5
(right), the background element K is divided into two portions and the numerical
solution for the background process is required only on the background process
mesh.
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In any case, conforming grids at the interface between the background and
foreground domains are difficult to generate, since the immersed foreground domain
provides a severe constraint for the mesh generation. For this reason, unfitted
overlapping meshes are considered in order to avoid the computational issue that
may arise when generating fitted meshes.

The conditions to couple the problem at the interface are usually imposed via the
Discontinuous Galerkin (DG) method (or, as some authors refer to, the Nitsche’s
method). Lagrange multipliers are also considered, see, e.g., [37–40].

The majority of the methods presented above allow to consider a background
domain overlapped by a thick foreground domain or crossed by a zero-thickness
foreground domain. However, they do not deal with the case of a thin foreground
domain immersed in the background one and, in fact, the extension of these methods
to the thin case is not straightforward, since the thickness of the foreground domain
is smaller than the characteristic size of the background mesh elements. Some
works in this direction has been proposed in the literature: in [38–40], the authors
consider two and three-dimensional approaches that are able to combine the feature
of the Extended Finite Element method (XFEM) with overlapping meshes in the
case of thin and thick foreground domains, by employing Lagrange multipliers for
imposing the interface conditions; in [83] a method has been proposed to solve the
Navier-Stokes equation solely with immersed fixed obstacles in a three-dimensional
framework, where the interface conditions are imposed via the Nitsche’s method.
Recently, in [96], an XFEM method to handle the case of a thin foreground domain
for 3D computations has been proposed for a linear structure, see also [35] for the
case of ellipric problems.

The goal of this work is to describe a method for solving three-dimensional FSI
problems with a non-linear immersed thin structure that combine the features of
the approaches presented above, i.e. (1) the possibility of considering a numerical
solution in each portion of the fluid background elements split by the interface and
(2) the employment of composite grids to represent two domains, see Fig. 6.

Fig. 6 Left: the background domain is overlapped by a thin foreground domainΩs . The interface
Σ separates the fluid background process domains (Ωf,1 andΩf,2) to the solid foreground domain.
Right: The solid foreground mesh T s

h overlaps the background mesh Th that covers the entire
domain. The thickness of T s

h is smaller than the size of the background mesh elements
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4 The Continuous Problem and the Extended Finite
Elements Approximation

We consider a fluid background process domain ΩBP = Ωf and a structure
foreground domain ΩF = Ωs such that Ω = Ωf ∪ Ωs ⊂ R

d , d = 2, 3, is the

background domain andΣ = Ω
f ∩Ωs is the fluid-structure interface, see Fig. 7. We

denote by ∂Ωf and ∂Ωs the boundaries of the fluid and solid domains, respectively,
and we define Γ f = ∂Ωf \Σ and Γ s = ∂Ωs \Σ . Finally, we indicate by nf and
ns the outward unit normal to the domainΩf andΩs , respectively. On the interface
Σ we have nf = −ns = n.

The continuous fluid-structure interaction problem reads as follows: Find for any
t ∈ (0, T ], the fluid velocity u(t) : Ωf (t) → R

d , the fluid pressure p(t) : Ωf (t) →
R, the solid displacement d̂(t) : Ω̂s → R

d , and the fluid domain displacement
df (t) : Σ → R

d , such that

• Fluid problem:

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρf ∂tu + ρf u · ∇u − ∇ · Tf (u, p) = 0 in Ωf (df ),

∇ · u = 0 in Ωf (df ),

u = g on Γ fD (d
f ),

Tf (u, p)nf = h on Γ fN (d
f );

(4)

• Solid problem:

⎧

⎨

⎩

ρs∂tt d̂ − ∇ · T̂s (̂d) = 0 in Ω̂s,

d̂ = 0 on Γ̂ s;
(5)

Fig. 7 Sketch of the fluid
and structure domain Ωf and
Ωs with the fluid-structure
interface Σ

ns n f
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• Coupling conditions:

⎧

⎨

⎩

u = ∂td on Σ(df ),

Tf (u, p)nf = −Ts(d)ns on Σ(df );
(6)

• Geometric condition:

df = d on Σ(df ), (7)

where (4) are the Navier-Stokes equation, (5) are the equations of elasto-
dynamics, (6) are the physical coupling conditions (kinematic and dynamic,
respectively), and (7) is the condition that guarantees the geometric adherence
between the fluid and solid domains. We have highlighted the dependence of the
fluid domain and of its boundaries on the interface displacement df , which in fact
couples geometrically the fluid and the structure sub-problems. We point out that
the fluid problem (4) is written in an Eulerian framework, i.e. in the deformed
configuration, while the solid problem (5) is written in the Lagrangian framework,
i.e. in the reference configuration. We have indicated with the superscript ·̂ the
quantities evaluated in the reference configuration. The quantities without ·̂ are
referred to the current instant t . We have Γ f = Γ

f
D ∪ Γ fN and we have considered

a Dirichlet boundary condition on Γ fD and a Neumann condition on Γ fN , with g
and h suitable functions with the required regularity. . Moreover, ρf and ρs are
the fluid and structure densities, Tf (u, p) = −pI + 2μfD(u) is the fluid Cauchy

stress tensor, with μf the fluid viscosity and D(w) = ∇w + ∇Tw
2

, T̂s (̂d) is the first

Piola-Kirchhoff solid stress tensor. Moreover, T̂s = JTsF−T is the formula to pass
from the solid Cauchy stress tensor Ts to the Piola-Kirchhoff tensor, with F = ∇x
the deformation gradient, i.e. the gradient of the coordinates in the current position
with respect to the reference space coordinates, and J = det(F) is its determinant.
For the sake of simplicity we have considered homogeneous Dirichlet conditions
on Γ̂ s . Moreover, the FSI problem given by Eqs. (4)–(7) has to be completed with
initial conditions for the fluid and solid velocity and displacement.

The mechanical behaviour is described by a second order exponential model
defined by the following the strain energy function:

W (I1) = κ

4

(

(J − 1)2 + ln2 (J )

)

+ α

2γ

(

eγ (I1−3)2 − 1
)

, (8)

where I1 = tr (C), C = FT F is the right Cauchy-Green tensor, α is the shear
modulus that represents the mechanical stiffness of the material, κ is the bulk
modulus and γ is a positive parameter that represents the level of non-linearity of
the mechanical response of the body. The corresponding first Piola-Kirchhoff solid
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Fig. 8 Left: the structure
foreground mesh T s

h overlaps
the background mesh Th.
Right: representation of a
background element split into
three disconnected polyhedra
(in blue/dark) by the solid
foreground mesh (in
grey/light)

T f
h

stress tensor reads as follows:

T̂s (F) =κ
2

(

J 2 − J − ln (J )
)

F−T

+ 2α
(

J−2/3I1 − 3
)

eγ
(

J−2/3I1−3
)2

J−2/3

(

F − 1

3
I1F−T

)

.

In what follows, with the aim of writing the Extended Finite Ele-
ments/Discontinuous Galerkin (XFEM/DG) discrete formulation, we follow [96]
and we introduce the meshes and the numerical spaces. To ease the presentation,
we assume that Ωf , Ωs and Σ are polyhedral. Referring to the notation of Sect. 4,
we denote by T F

h = T s
h the solid foreground mesh that covers the domainΩs and

is fitted to ∂Ωs , and by Th the background mesh that covers the whole domain Ω
and is fitted to Γ f , but in general not to Σ and Γ s . We indicate by h > 0 the space
discretization parameter, which is a function that may vary among the elements K
of the meshes and between the background and foreground meshes. As a result,
the solid foreground mesh T s

h overlaps the background mesh Th, see Fig. 8 (left).

Then, accordingly to definition (1), we denote by T BP
h = T

f
h the fluid background

process mesh, i.e. the mesh generated by considering the restriction of Th to Ωf ,
defined as

T
f
h = {K : K = K ′

|Ωf ,∀K ′ ∈ Th}.

In the case of a thin foreground structure, the elements of the background mesh
Th could be cut by the foreground mesh and divided into several disconnected
polyhedra, with a portion of the background elements overlapped by the foreground
mesh, see Fig. 8. We refer to these elements as split elements.

We introduce the following mesh

Gh = {K : K ∈ Th, K ∩Σ �= ∅, K ∩Ωf is a non − connected set},



Extended Finite Elements Method for Fluid-Structure Interaction 221

Gh G P
h

Fig. 9 Left: representation of the mesh Gh. Notice that Gh contains also the portion of the elements
overlapped by the structure. Right: representation of the non-connected mesh G Ph

that consists of all the elements K in Th cut by the interface Σ which are split
elements, see Fig. 9 (left). This means that each elementK ∈ Gh is split into NK ≥
2 fluid sub-parts, which in general are polyhedra. We denote byPKi , i = 1, . . . , NK ,
the polyhedra of a split elementK . We define by G Ph the union of all such polyhedra
PKi , for i = 1, . . . , NK and for each K ∈ Gh, see Fig. 9 (right) where NK = 2.
More precisely

P ∈ G Ph ←→ ∃K ∈ Gh s.t. P ⊂ K ∩Ωf is a connected set.

The set G Ph in now partitioned into its Nf = maxK NK connected subsetsΩf,ih .
For example, by considering the same configuration in Fig. 10 (left), we haveNf =
2 connected subregions (Ωf,1h andΩf,2h ).

Moving from these definitions, we set

Ω
f,0
h = Ωf \

⋃

K∈Gh
K.

Notice that Ωf = ⋃

i=0,...,Nf Ω
f,i
h and that Ωf,ih ∩Ωf,jh = ∅,∀i �= j . We denote

by T
f,0
h the smallest mesh composed of the elements K ∈ Th that covers the set

Ω
f,0
h , i.e.

K ∈ T
f,0
h ←→ K ∩Ωf,0h �= ∅.

Finally, we denote by T
f,i

h , for i = 1, . . . , Nf , the smallest mesh that consists of

all the elements of Gh that covers the set Ωf,ih , i.e.

K ∈ T
f,i
h ←→ K ∩Ωf,ih �= ∅, i = 1, . . . , Nf .
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T f
h

T s
h

T f ,0
h

T f ,1
h ≡ T f ,2

h

Fig. 10 Left: sketch of the background (Th) and foreground (T s
h ) meshes (top) and the setsΩf,0h

(blue), Ωf,1h (pink) and Ωf,2h (yellow) (bottom). Right: the shaded regions represent the meshes

T
f,0
h (top) and T

f,i

h (bottom)

Thus, each element K ∈ Gh belongs to NK different meshes T
f,i

h , and this will
allow us to duplicate the dofs ofK NK times. The idea is to build the classical FEM
approximation in T

f,0
h , i.e. by using the classical dofs and shape functions, and to

employ the XFEM strategy in T
f,i
h , i = 1, . . . , Nf , so that the dofs associated

with the elements in T
f,i
h , i = 1, . . . , Nf , are duplicated: a set of dofs is used to

compute the solution over each mesh T
f,i
h .

The unfitted nature of the fluid and solid meshes requires a specific treatment of
the coupling conditions between the corresponding fluid and solid problems at the
interface Σ . A possibility, considered here, is to employ a Discontinuous Galerkin
(DG) mortaring, see, e.g., [21, 22], in order to weakly impose the continuity of
the fluid solution between the elements of the meshes T

f,i
h , i = 1, . . . , Nf , see

below. On the contrary, in T
f,0
h it is possible to use either a non-conforming or

a conforming discretization. For the sake of simplicity, we consider a conforming
discretization, thus we impose a strong continuity in T

f,0
h . We also notice that some

operators of the discrete formulation will act on the domains Ωf,ih ⊂ Ωf , while

other operators, such as the stabilization terms, will act on the meshes T f,i
h , as we

explain later on.
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We observe that the set covered by T
f,i
h is larger than the one covered by

the corresponding Ωf,ih , see Fig. 10 (right) for the case Nf = 2. More complex
configurations may happen for realistic three-dimensional domains.

Remark 1 We point out that the elements of the background mesh crossed by the
interface Σ may be arbitrarily small due to the overlapping of the foreground
domain. This may generate instabilities in the numerical solution and lead to an
ill-conditioned matrix. For these reasons, to prevent instabilities and to maintain
the robustness of the method, a possible strategy consists in the introduction of the
ghost-penalty stabilization, see below and [20].

We classify the faces involved in the discrete formulation as follows:

• the faces belonging to the fluid-structure interface Σ , where we impose weakly
the continuity of the velocity and stresses by means of the DG formulation, see,
e.g., [21, 22];

• F
f,i

h,p , the faces in T
f,i

h , i = 1, . . . , Nf , that belong to the background process

domain Ωf , where we impose weakly the continuity of the fluid velocity and
stresses by means of the DG formulation, see below and, e.g., [5, 27];

• F
f,i
h,Σ , the faces of T f,i

h , i = 1, . . . , Nf , cut by the interfaceΣ , where the ghost
penalty stabilization term (10) is applied, see below and [20].

For a representation of these faces, we refer to Fig. 11.
After a suitable time discretization of the FSI problem (4)–(7), we denote by

Ωf,n the approximation ofΩf at time tn. The discrete spaces for the fluid velocity
and pressure read as follows:

Vnh = {vh ∈ [Xf,nh ]d : vh|Γ f = 0}, Qnh = {qh ∈ Xf,nh },
Wh = {wh ∈ [Xsh]d : wh|Γ s = 0},

Fig. 11 Representation of the sets of faces involved in the discrete formulation (highlighted
in red): (left) faces of the interface Σ; (center) faces F

f,1
h,p and F

f,2
h,p for the mortaring in the

background process domain; (right) faces F
f,1
h,Σ and F

f,2
h,Σ for the ghost penalty stabilization
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where

X
f,n

h = {vh ∈ L2(Ωf,n) : vh ∈ C 0(Ω
f,0,n
h ), vh|K ∈ P1(K),

∀K ∈ T
f,i,n
h for i = 0, . . . , Nf },

and

Xsh = {vh ∈ C 0(Ω̂s) : vh|K ∈ P1(K),∀K ∈ T s
h }.

To write the discrete formulation, we introduce the trace operators defined over
an interface I that separates a generic domain Ω1,2 into Ω1 and Ω2. For a (scalar
or vectorial) function q , we denote by �·�I the jump and by {{·}}I ,ε the ε-weighted
mean across the interface I , defined as

�q�I = q1 − q2, {{q}}I ,ε = εq1 + (1 − ε)q2, (9)

where q1 and q2 are the traces of q at the two sides of the interface and ε ∈ [0, 1].
If the subscript ε is not indicated, we assume that ε = 1

2 .
We consider a DG mortaring on Σ to impose the coupling conditions (6) and

on the faces F
f,i
h,p to impose the continuity of the background fluid solution, by

mimicking the (symmetric) interior penalty method, introduced for example in
[5, 30] for the Poisson problem. Moreover, a ghost penalty term, see [20], is applied
on F

f,i
h,Σ to guarantee robustness of the method with respect to the elements crossed

by the interfaceΣ , defined as

gh(uh, vh) = γg

Nf∑

i=1

∑

F∈F f,i
h,Σ

μf hF

∫

F

�∇uh�Fn · �∇vh�Fn, (10)

with γg > 0;
We also introduce a stabilizing term sh to handle spurious pressure and velocity

instabilities due to equal order Finite Elements and to dominating convection
regimes, respectively. In this work we considered the interior penalty (IP) stabi-
lization, see [23], as done in [83].

We now introduce the following forms.

– Fluid form collecting the classical Navier-Stokes terms and the ghost and IP
stabilizations:

A f (z,u, p; v, q)r = ρf

Δt
(u, v)Ωf,r + 2μf (D(u),D(v))Ωf,r

− (p,∇ · v)Ωf,r + (q,∇ · u)Ωf,r + ρf (z · ∇u, v)Ωf,r

+ sh(u, p; v, q)r + gh(u, v)r;
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– Structure form:

A s
(

d̂; ŵ) = ρs

Δt2
(̂d, ŵ)Ω̂s + (T̂s (̂d),∇ŵ)Ω̂s ;

– Form related to the DG terms involving only the fluid unknowns and test
functions:

Dff (u, p; v, q)r = −
Nf∑

i=1

∑

F∈Ff,i,r
h,p

({{

Tf (u, p)
}}

F
n, �v�F

)

F

−
Nf
∑

i=1

∑

F∈Ff,i,r
h,p

(

�u�F ,
{{

Tf (v,−q)
}}

F
n
)

F

+
Nf∑

i=1

∑

F∈Ff,i,r
h,p

γpμ
f

hF

(

�u�F , �v�F
)

F
,

−
(

εTf (u, p)n, v
)

Σr
−
(

u, εTf (v,−q)n
)

Σr
+ γΣμ

f

h
(u, v)Σr ;

(11)

– Form related to the DG terms involving only the structure unknowns and test
functions:

D ss
(

d̂; ŵ) = − ((1 − ε)T̂s (̂d)n,−ŵ
)

Σ̂

−
(

− d̂

Δt
, (1 − ε)T̂s (ŵ)n

)

Σ̂

+ γΣμ
f

h

(

− d̂

Δt
,−ŵ

)

Σ̂

;

(12)

– Form related to the DG terms involving mixed (fluid and structure) unknowns
and test functions:

Df s (u, p,d; v, q,w)r = −
(

εTf (u, p)n,−w
)

Σr
− ((1 − ε)Ts (d)n, v)

Σr

− (u, (1 − ε)Ts (w)n)
Σr

−
(

− d

Δt
, εTf (v,−q)n

)

Σr

+ γΣμ
f

h
(u,−w)Σr + γΣμ

f

h

(

− d

Δt
, v

)

Σr

;
(13)
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– Right hand side given by terms coming from time discretization and forcing
terms:

F
(

um,pm,dm; v, q,w)r = ρf

Δt
(um, v)Ωf,r + 2ρs

Δt2
(̂dm, ŵ)Ω̂s − ρs

Δt2
(̂dm−1, ŵ)Ω̂s

+
(

dm

Δt
, εTf (v,−q)n + (1 − ε)Ts (w)n

)

Σr

− γΣμ
f

h

(

dm

Δt
, v − w

)

Σr

+ (ff,m+1, v)Ωf,r + (̂fs,m+1, ŵ)Ω̂s .

Notice that the DG mortaring terms introduce two penalty parameters, γp > 0
and γΣ > 0. The first parameter appears in the term Dff and it is related to the
mortaring on the faces in F

f,i,r
h,p , while the latter appears in terms Dff ,Df s,D ss

and it is related to the mortaring on the fluid-structure interfaceΣ .
Thus, the XFEM/DG approximation of the monolithic FSI problem (4)–(7)

reads: For each n, find (un+1
h , pn+1

h , d̂n+1
h ) ∈ Vn+1

h ×Qn+1
h × Wh such that

A f
(

un+1
h , un+1

h , pn+1
h ; vh, qh

)n+1 + A s
(

d̂n+1
h ; ŵh

)

+Dff
(

un+1
h , pn+1

h ; vh, qh
)n+1 + D ss

(

d̂n+1
h ; ŵh

)

+ Df s
(

un+1
h , pn+1

h , dn+1
h ; vh, qh,wh

)n+1

= F
(

unh, p
n
h, d

n
h; vh, qh, ŵh

)n

(14)

for all (vh, qh, ŵh) ∈ Vn+1
h ×Qn+1

h × Wh. In compact form we write

H
(

un+1
h , pn+1

h , d̂n+1
h ; vh, qh, ŵh

)n+1 = 0

for all (vh, qh, ŵh) ∈ Vn+1
h ×Qn+1

h × Wh

Remark 2 Notice that in the previous formulation we could consider also a
correction in the trilinear form to maintain the condition that the latter vanishes
for z = u at the discrete level [27, 85] and a term to maintain the consistency of
the formulation [96]. This is what we did in the numerical experiments. However, to
simplify the notation and focus on the XFEM/DG discretization, we omitted these
terms in (14).

5 An Inexact-Newton Method for the Solution of the FSI
Problem

For the solution of the FSI problem (14), we introduce in what follows an
inexact Newton-Krylov method, used in combination with a block Gauss-Seidel
preconditioner.
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To this aim, we indicate by δy(k) = y(k) − y(k−1) the increment of a quantity y
and we consider the following linearized forms:

–

Ã s
(

δd̂(k); ŵ
) = ρs

Δt2

(

δd̂(k), ŵ
)

Ω̂s
+ (DF T̂s (̂d(k−1)) : δd̂(k),∇ŵ

)

Ω̂s
,

where DF indicated the Gateaux derivative with respect to F;
–

D̃ ss
(

δd̂(k); ŵ
) = − (((1 − ε)DF T̂s (̂d(k−1)) : δd̂(k)

)

n,−ŵ
)

Σ̂

−
(

−δd̂(k)
Δt

,
(

(1 − ε)DF T̂s (̂d(k−1)) : ∇ŵ
)

n

)

Σ̂

+ γΣμ
f

h

(

−δd̂(k)
Δt

,−ŵ

)

Σ̂

;

–

D̃f s
(

u(k), p(k), δd(k); v, q,w
)r = −

(

εTf (u(k), p(k))n,−w
)

Σr

− (((1 − ε)DFTs(d(k−1)) : ∇δd(k)
)

n, v
)

Σr

−
(

u(k),
(

(1 − ε)DFTs(dm(k−1)) : ∇w
)

n
)

Σr

−
(

− δd(k)
Δt

, εTf (v,−q)n
)

Σr

+ γΣμ
f

h

(

u(k),−w
)

Σr
+ γΣμ

f

h

(

− δd(k)
Δt

, v

)

Σr

.

Moreover, we consider the approximated form ̂̃D
f s

instead of D̃f s obtained by
considering the following approximation

∂Ts

∂F
= ∂

∂F
(J−1T̂sFT ) ≈ J−1 ∂T̂

s

∂F
FT .

This, together with the fixed point iteration strategy (instead of the full Newton
method) used for the fluid problem (see (15)) leads to an inexact Newton method.

Finally, we point out that at each iteration of the inexact Newton method, we
have to update the fluid mesh obtained by the intersections generated by the moving
structure mesh onto the background fixed one (see Fig. 4), and, accordingly, the
velocity and pressure spaces. In particular, we introduce the compact notation



228 C. Vergara and S. Zonca

updatedDomainsAndSpaces() that at time tn+1, iteration k, performs the following
steps:

1. given the displacement at the previous iteration d̂n+1
h,(k−1), computation of the new

position of the solid mesh (T s
h )
n+1
(k−1);

2. computation of the new fluid mesh (T f
h )

n+1
(k−1). This is done by intersecting the

background mesh Th and the solid mesh (T s
h )
n+1
(k−1);

3. definition of the new discrete spaces Vn+1
h,(k−1) andQn+1

h,(k−1).

The FSI problem (14) is solved by means of the following algorithm:

Remark 3 Notice that in this case, due to the fixed nature of the background mesh,
we do not have any geometric problem, thus no shape derivatives appear in the exact
Jacobian.

6 Numerical Results

In this section, we present some numerical results for the FSI problem given by
Eqs. (4)–(7). We consider Algorithm 1 for its numerical solution. We present the
following test cases:

– Blocked channel: A time-dependent FSI problem with an immersed non-linear
elastic structure that completely blocks a channel;

– Non-linear elastic slab: A time-dependent FSI problem with an immersed non-
linear elastic slab with a high Reynolds number;

Algorithm 1 Inexact Newton method for the FSI problem (14)

At time tn+1, given an initial solution un+1
h,(0), p

n+1
h,(0), d̂

n+1
h,(0):

for k = 1 : kmax do
1. updateDomainsAndSpaces();
2. Find (un+1

h,(k)
, pn+1
h,(k)

, δd̂n+1
h,(k)

) ∈ Vn+1
h,(k−1) ×Qn+1

h,(k−1) × Wh such that

A f
(

un+1
h,(k−1),u

n+1
h,(k), p

n+1
h,(k); vh, qh

)n+1

(k−1)
+ Ã s

(

δd̂n+1
h,(k); ŵh

)

+Dff
(

un+1
h,(k)

, pn+1
h,(k)

; vh, qh
)n+1

(k−1)
+ D̃ss

(

δd̂n+1
h,(k)

; ŵh
)

+̂̃Df s
(

un+1
h,(k)

, pn+1
h,(k)

, δdn+1
h,(k)

; vh, qh,wh
)n+1

(k−1)

= −H
(

un+1
h,(k−1), p

n+1
h,(k−1),d

n+1
h,(k−1); vh, qh, ŵh

)n+1

(k−1)
,

(15)

for all (vh, qh, ŵh) ∈ Vn+1
h,(k−1) ×Qn+1

h,(k−1) × Wh;

3. d̂n+1
h,(k)

= d̂n+1
h,(k−1) + δd̂n+1

h,(k)
.

end for
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– Ideal aortic valve: A time-dependent FSI problem in the case of three immersed
linear elastic leaflets.

The proposed examples are simulated in a three-dimensional (3D) framework,
and for the structure we use the non-linear strain energy function (8) for the blocked
channel and non-linear elastic slab tests, whereas the Hooke law for the ideal
aortic valve. The mortaring parameter ε for the fluid-solid coupling in the forms
Dff , Df s, D ss and in functional F is set equal to 1, see [22]. Moreover, we point
out that at iteration k of Algorithm 1, the fluid velocity unh at the previous time
step appearing in the term coming from time discretization (which is defined in
Ωf,n) and the fluid velocity un+1

h,(k−1) at the previous iteration used in the convective

term (which is defined in Ωf,n+1
(k−2) ) are not defined in the current domain Ωf,n+1

(k−1)

(remember that at iteration k the fluid problem is solved in Ωf,n+1
(k−1) ). Thus, these

terms should be properly defined in the new computational domainΩf,n+1
(k−1) in order

to be used in the discrete formulation. In particular, issues may occur when the
uncovered portion of a fluid element change between time n and n + 1 and/or
between iteration k−1 and k. For the numerical treatment of these cases, we employ
the procedure proposed in [96].

The simulations have been performed with the Finite Element library LifeV [66].

6.1 Blocked Channel

In this experiment we consider a thick membrane placed in the middle of a channel
so that the structure completely blocks the flow in the channel, see Fig. 12. The
aim of this example is to assess the validity of the proposed method. We consider

Fig. 12 Top view of the fluid Ωf and structure Ωs domains. Blocking channel test
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a background domain Ω = 0.4 cm × 0.2 cm × 0.00625 cm and a structure domain
Ωs = 0.01 cm×0.2 cm×0.00625 cm. The resulting fluid domain isΩf = Ω \Ωs .
Notice that, to ease the computational cost, we reduce the size of the domain along
the z-axis. We impose Tf n = (−1000, 0, 0) dyne/cm2 at the inlet Γin, Tf n = 0
at the outlet Γout , u = 0 on Γ fwall , and u · k̂ = 0, (Tf n) · l̂ = 0, l = {i, j}, on
the remaining portions of the fluid boundary, i.e. for z = {0, 0.00625}. Notice that
the latter choice allows the fluid to move in the xy-plane at the extreme surfaces
z = {0, 0.00625}. The solid is fixed at Γ swall , i.e. d = 0, and, like the fluid, is
allowed to move in the xy-plane on the remaining portions of the boundary, i.e.
d · k̂ = 0, (Tsn) · l̂ = 0, l = {i, j}, for z = {0, 0.00625} . As initial conditions,
we set u(x, 0) = d(x, 0) = ḋ(x, 0) = 0. We also use the following values for
the parameters: ρf = 1 g/cm3, ρs = 1.2 g/cm3, μf = 0.035 poise, α = 1 ·
108 dyne/cm2, κ = 1.034 · 107 dyne/cm2, γ = 1, and T = 0.02 s.

We employ a background mesh Th composed of 16 · 103 tetrahedra (have =
0.00571 cm) and a solid mesh T s

h composed of 1.4 · 103 tetrahedra (have =
0.00377 cm). Notice that, the thickness of the structure domain (0.01 cm) is higher
than the average size of the fluid elements, so that we are in the thick case. The time
step Δt is 2 · 10−4 s. We choose γΣ = 104 (see Eqs. (11)–(13)), γp = 103 (see
Eq. (11)) and γg = 1 (see Eq. (10)).

In Figs. 13 and 14, we show the numerical solution at different time steps. In
particular, we plot the velocity and the pressure fields in the fluid domain and the
structure displacement in the solid domain. A quantitative plot of the displacement
of the center of mass of the structure is reported in Fig. 15.

Finally, in Fig. 16 (left), we plot the behaviour in time of the total amount of
fluid (in cm3) that goes through Γin (indicated by Vin) and Γout (indicated by
Vout ), the variation of the structure volume (in cm3) with respect to the initial time
(indicated by ΔV s ), and the sum of these three quantities (indicated by Vbalance)
which represents the error with respect to the balance of volume. In Fig. 16 (right),
we plot relative error of the balance of volume, i.e. the ratio r = Vbalance/V

f

eff ,

where V feff is the effective volume available for the fluid. We see that the error
committed by the method is very small compared to the total amount of volume.

6.2 Non-linear Elastic Slab

We consider a background domainΩ = (0, 0.5)3 cm and a structure domainΩs =
(0.025, 0.425) cm × (0.15, 0.35) cm × (0.10, 0.13) cm, so that the fluid domain
is Ωf = Ω \ Ωs , see Fig. 17. We impose u = (0, 0, 100) cm/s at the inlet Γin,
Tf n = 0 at the outlet Γout , u · î = 0, (Tf n) · l̂ = 0, l = {j,k}, at Γsymm, and
u = 0 on the remaining portions of the fluid boundary. The structure is fixed at
x = 0.025 cm, i.e. d = 0 at Γ swall . The fluid-structure interface is given by Σ =
∂Ωs \ Γ swall . As initial conditions, we set u(x, 0) = d(x, 0) = ḋ(x, 0) = 0. We
also use the following values for the parameters: ρf = 1 g/cm3, ρs = 1.2 g/cm3,
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Fig. 13 Plot of the fluid velocity magnitude (in cm/s) and structure displacement magnitude (in
cm) at different time steps. Top: t = 0.0026 s. Center: t = 0.0040 s. Bottom: t = 0.0066 s.
Blocking channel test

μf = 0.035 poise, α = 1.667 · 108 dyne/cm2, κ = 1.724 · 107 dyne/cm2, γ = 1,
and T = 0.015 · 10−3 s. The Reynolds number is equal to Re = 1400.

We employ a background mesh Th composed of 56 · 103 tetrahedra (have =
0.025 cm) and a solid mesh T s

h composed of 30·103 tetrahedra (have = 0.0078 cm).
Notice that, the thickness of the structure domain (0.03 cm) is comparable to the



232 C. Vergara and S. Zonca

Fig. 14 Plot of the fluid pressure filed (in dyne/cm2) and structure displacement magnitude (in
cm) at different time steps. Top: t = 0.0026 s. Center: t = 0.0040 s. Bottom: t = 0.0066 s.
Blocking channel test

average size of the fluid elements. The time stepΔt is 10−3 s. We choose γΣ = 102

(see Eqs. (11)–(13)), γp = 103 (see Eq. (11)) and γg = 1 (see Eq. (10)).
In Fig. 18, we show the fluid velocity (in cm/s) and the structure displacement

(in cm) at four different time steps. The maximum velocity is about 160 cm/s and
the maximum displacement reached by the structure is 0.35 cm. We see that the
method is able to deal with high Reynolds number and large displacement.
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Fig. 15 Plot of the x-displacement (in cm) at the center of mass of the structure. Blocking channel
test
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Fig. 16 Left: Plot of volumes (in cm3) ΔV s , Vin, Vout and Vbalance in time. Right: Plot of the
relative error of the volume in time. Blocking channel test

In Fig. 19, we show the z-displacement (in cm) of the tip of the structure, i.e. at
xt ip = (0.425, 0.25, 0.115) cm, in time.

In Fig. 20, we plot the velocity field in the fluid domain and we represent the
moving structure accordingly to the computed displacement at different time-steps.
We see that the fluid elements crossed by the structure may change in time. We point
out that the refinement appearing near the structure is made only for a visualization
purpose, in fact the background fluid mesh never changes.
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Fig. 17 Sketch of the fluid Ωf and structure Ωs domains. Non-linear elastic slab test

Fig. 18 Solution at two different time steps. We plot the fluid velocity (in cm/s) and the solid
displacement (in cm). Top, left: t = 1 · 10−3. Top, right: t = 2 · 10−3. Bottom, left: t = 4 · 10−3.
Bottom, right: t = 6 · 10−3. Non-linear elastic slab test
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Fig. 19 Plot of the z-displacement (in cm) at the tip of the structure in time. Non-linear elastic
slab test

Fig. 20 Velocity magnitude on the slice y = 0.25 cm at time t = 1 · 10−3 s (top) and at time
t = 2 ·10−3 s (bottom). The element highlighted in red at time t = 1 ·10−3 s is partially overlapped
by the interface, while at time t = 2 · 10−3 s is not crossed by the structure. Non-linear elastic slab
test
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Fig. 21 Sketch of the fluid background domain Ωf and the three foreground domains Ωs . To the
right, we report the top view of the domains. Notice in black the region Γwall where the leaflets are
clamped. Ideal aortic valve test

6.3 Ideal Aortic Valve

In this example, we consider the domain Ω defined by a cylinder of radius 0.5 cm
and height 1 cm and three linear immersed structures that are an ideal representation
of the leaflets of an aortic valve, see Fig. 21. The thickness of the leaflets is 0.02 cm.
We impose the velocity profile u = (0, 0, 50 sin(π8 t)) cm/s at the inlet Γin, we set
Tf n = 0 at the outlet Γout , and u = 0 on the remaining portions of the fluid
boundary. At the fluid-structure interface, we impose the kinematic and dynamic
coupling conditions, except on Γwall where the leaflets are fixed, i.e. d = 0.
As initial conditions, we set u(x, 0) = d(x, 0) = ḋ(x, 0) = 0. We use the
following values for the physical parameters: ρf = 1 g/cm3, ρs = 1.2 g/cm3,
μf = 0.035 poise, α = 1.667·108 dyne/cm2, κ = 1.724·107 dyne/cm2 and γ = 1.
We simulate only the initial phase of the movement of the leaflets, i.e. T = 0.45 s.
The Reynolds number is equal to Re = 1430.

For the numerical simulation, we employ a background mesh Th of 110 · 103

elements with the average size of the mesh elements have = 0.035 cm, while each
structure mesh is composed of 16 · 103 elements with have = 0.011 cm. We set
Δt = 0.05 s. We choose γΣ = 102 (see Eqs. (11)–(13)), γp = 103 (see Eq. (11))
and γg = 1 (see Eq. (10)).

In what follows we report preliminary results for this test. At the instant where the
fluid flow reverses, numerical instabilities occurs. For this reason, we have reported
the numerical results until the solution features a stable behaviour. The study of
such oscillations is under investigation. A qualitative representation of the solution
at time t = 0.4 s is shown in Fig. 22. More specifically, in Fig. 23 (left), we plot
the z-displacement at the tip (point A in Fig. 21) of the three leaflets in time. We
observe that the three leaflets behave very similarly during time. In Fig. 23 (right),
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Fig. 22 Solution at time t = 0.4 s. We plot the fluid velocity (in cm/s) and the structure
displacement (in cm). Ideal aortic valve test
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Fig. 23 Left: evolution of the displacement (in cm) at the tip of the three leaflets. Right: fluid
pressure (in dyne/cm2) along the line l at two different time steps. The position of the leaflet is
denoted by the dashed lines. Ideal aortic valve test

we plot the fluid pressure along line l : x = 0 cm, y = 0.25 cm, 0 ≤ z ≤ 1 cm at
two different time steps, namely, t = 0.20 s and t = 0.45 s. From this result, we see
the different value of the fluid pressure upstream and downstream the leaflet. Notice
that, the position of the leaflet (dashed lines) has changed in time.
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Fig. 24 Fluid pressure (in dyne/cm2 ) and structure displacement (in cm) at slice y = 0.5 cm.
The initial position of the leaflets is denoted by the black lines. Left: time t = 0.2 s. Right: time
t = 0.45 s. Ideal aortic valve test

The maximum z-displacement reached by the leaflets is 0.24 cm and the maxi-
mum value of fluid velocity is 17.5 cm/s.

In Fig. 24, we show the pressure field (in dyne/cm2) and the structure displace-
ment (in cm) on the slice y = 0.5 cm at time t = 0.20 s and t = 0.45 s. In particular,
we observe the different position of the leaflets with respect to their initial position
outlined in black. Again, it is possible to see the different values of the fluid pressure
upstream and downstream the leaflets.
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