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Abstract A planar 2 DOF model of an unbalanced rigid disc on a massless rigid
shaft (rigid Jeffcott rotor) is extended considering nonlinear forces in plain journal
bearings. To express the fluid-film forces in the journal bearings, several approximate
analytical solutions of theReynolds equation are used, includingwidely used approx-
imations for infinitely long and infinitely short journal bearing and a method using
correction polynomial functions to extend the area of aspect ratios. The differences
in steady-state response of such a rotor are studied. The influence of the approximate
solution type, eccentricity ratio and aspect ratio is analysed. The aim is to find out the
more effective approach to journal bearing description which could be further used
in detailed dynamical analyses of both stable and unstable dynamic behaviour along
with nonlinear phenomena like bifurcations and transitions to chaotic motions.
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1 Introduction

The Jeffcott rotor [1], also known as the Laval rotor [2], is one of the most-simplified
mathematical models of rotor. It was used as the first-approximation in simulations
of rotor behaviour. Although the 2 DOF model could be perceived as an oversimpli-
fication, its simplicity enables to easily include various complex phenomena and to
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make a fundamental analyses of their influence on the rotor behaviour. The modifi-
cations of Jeffcott rotor are widely used to show various rotordynamics phenomena
such as influence of rotor clearances and rotor-stator contacts [3], effects of seals [4],
parametric vibration caused by cracked shaft [5] and a number of other phenomena.

One of the most studied subjects is the influence of a hydrodynamic lubrication
in journal bearings on the dynamics of the rotor. A partial differential equation
which describes the pressure distribution of thin viscous films in journal bearings
was derived at the end of 19th century by Reynolds [6]. An analytical solution of the
Reynolds equation for the finite length journal bearing has been found only lately
[7]. However, the approximate analytical solutions could be highly useful as well,
considering their relative simplicity and closed-form expression that can be easily
used in wide class of engineering applications. There are twowell-known and widely
used approximations for the solution of pressure distribution in journal bearing:
infinitely long journal bearing approximation (ILJB) for aspect ratios1 L/D � 1 and
infinitely short journal bearing approximation (ISJB) for aspect ratios L/D � 1.
In case of ILJB [8], the pressure gradient in the circumferential direction is much
larger than in the axial direction and in case of ISJB [9, 10] the pressure gradient
in the circumferential direction is much smaller than in the axial direction. In both
cases, the Reynolds partial equation is reduced to an ordinary differential equation,
whose solution in closed form can be found. However, the solution is limited by the
appropriate assumptions and it does not hold for aspect ratios L/D → 1.

There are some approaches such as perturbation method that extends the interval
of aspect ratios where the solution holds. The method and the solution are discussed
in [11] for the Reynolds equation without squeeze-term and it has been subsequently
extended for full Reynolds equation [12]. However, even if using these methods,
the analytical solution for aspect ratios L/D ∈ 〈0.5; 2〉 does not hold as the assump-
tions are not satisfied. One of the possible ways to obtain an analytical closed-form
expression for the solution of Reynolds equation with L/D → 1 is a usage of cor-
rection functions [13]. The multiplicative polynomial functions are used to fit the
approximate solution (ISJB, ILJB) to the referential (numerically obtained) pressure
distribution in the bearing.

There are several another approaches for solving the Reynolds equation. Hydro-
dynamic lubrication in systems with Hertzian contacts is often computed employing
Grubin’s approximation [14]. Another analytical methods are focused for the special
cases of finite journal bearings such as a porous bearing [15], which employs analyt-
ical solution for the infinitely long porous bearing and Warner’s correction factors
[16], a journal bearing in a turbulent flow regime [17], or a tilting pad bearing [18].

Relatively small number of authors employ analytical methods for a stability
analysis of finite length journal bearings. Various perturbation methods [19, 20] and
spectral element methods [21] are the most widely used techniques for such analysis.

1The aspect ratio is formulated for axial length L of the bearing and journal diameter D.
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2 Jeffcott Rotor with Hydrodynamic Journal Bearing
Forces

Based on the scheme depicted in the Fig. 1, the mathematical model of Jeffcott rotor
can be formulated. In the original Jeffcott model, the elastic forces of flexible shaft
or elastic forces in the bearing were considered. However, the phenomena occuring
in the journal bearings are more complex and the bearing forces can be represented
more precisely using an approximate solution of Reynolds equation which describes
a pressure distribution in the bearing andwhich can be transformed to the force acting
to the journal.

As shown in the Fig. 1, a position of the geometric centreC of journal is described
in the non-rotating space by the horizontal displacement x and vertical displacement
y. The angular speed of the rotor is ω, mass of the rotor is m and its static unbalance
is ΔmE. In central position, the radial clearance between the journal and a bearing
is c.

Themathematicalmodel of the Jeffcott rotor in journal bearings can be formulated
in the matrix form
[
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Fig. 1 The schematic of the considered Jeffcott rotor
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where indices X = IL, IS, ILcor, IScor correspond to the infinitely long, infinitely
short, corrected infinitely long and corrected infinitely short journal bearing, respec-
tively.

The eccentricity e and relative eccentricity ε are defined in the form

e(t) = √
x(t)2 + y(t)2, ε(t) = e(t)

c
. (2)

The derivatives of excentricity and relative excentricity are

ė(t) = de(t)

dt
= x(t)ẋ(t) + y(t)ẏ(t)

e(t)
, ε̇(t) = dε(t)

dt
= 1

c

de(t)

dt
= ė(t)

c
. (3)

The goniometric functions of the angle Φ are obviously

cosΦ = x

e
, sinΦ = y

e
, (4)

and the angle Φ can be directly expressed in the form

Φ = arctg2
(y
x

)
=

⎧⎨
⎩
arctg

( y
x

)
x > 0 ∧ y > 0,

arctg
( y
x

) + π x < 0,
arctg

( y
x

) + 2π x > 0 ∧ y < 0.
(5)

The derivative Φ̇ of angle Φ is

Φ̇ = x(t)ẏ(t) − y(t)ẋ(t)

x(t)2 + y(t)2
. (6)

Formulas for forces in HD journal bearings introduced in [8] (IL) and [9, 10] (IS)
have been summarized in [13]. Corresponding to the directions indicated in the Fig. 1
(the influence of oil film on the shaft), the forces can be expressed as

F (IL)

rad = −6μRL

(
R

c

)2 [
|ω − 2Φ̇| 2ε2

(2 + ε2)(1 − ε2)
+ πε̇

(1 − ε2)3/2

]
, (7)
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c

)2 [
(ω − 2Φ̇)

πε

(2 + ε2)(1 − ε2)1/2
+ 4ε̇

(1 + ε)(1 − ε2)

]
, (8)
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The IL-based and IS-based forces corrected for the finite journal bearing have been
published in [13]. They are considered in the form

F (ILcor)
rad = C(ILcor)

rad (L/D, ε)F (IL)

rad , F (ILcor)
tan = C(ILcor)

tan (L/D, ε)F (IL)
tan , (11)

F (IScor)
rad = C(IScor)

rad (L/D, ε)F (IS)

rad , F (IScor)
tan = C(IScor)

tan (L/D, ε)F (IS)
tan , (12)

where C(X )
Y (L/D, ε) are correction polynomials defined for X = IL, IS and

Y = rad , tan.

3 Application and Results

To find a numerical solution for the system (1), the set of second order ODEs can be
rewritten in state-space. Mathematical model (1) can be formally rewritten as

Mq̈ = f G + f e(t) + f (X )
o (q, q̇, ω, t),︸ ︷︷ ︸

f (X )(q,q̇,ω,t)

X = IS, IL, IScor, ILcor, (13)

where q = [x, y]T is vector of generalized coordinates andM is mass matrix. At the
right hand side, a vector of gravitation forces f G , vector of unbalance forces f e(t)
and vector of oil-film forces f (X )

o (q, q̇, ω, t) are defined. The model can be written in
the state-space with state vector u = [qT , q̇T ]T as

u̇ =
[
q̇
q̈

]
=

[
q̇

M−1f (X )(q, q̇, ω, t)

]
, X = IS, IL, IScor, ILcor . (14)

The set of first order Eq. (14) is solved using the Runge-Kutta method with adaptive
time step. The simulation is performed for t ∈ 〈0, 1.5〉 [s] and the time interval
tss ∈ 〈1, 1.5〉 [s] of steady-state behaviour is subjected to the subsequent analyses.
Particular parameters of the Jeffcott rotor used in the analyses are shown in the
Table 1. For the comparison of results, numerical simulations in AVL Excite software
have been performed. Herein, the model is created using a multibody approach and
the Reynolds equation is solved using finite element method.

Two different types of analyses were performed to investigate the dynamical
behaviour of the system: unbalance response analysis of the Jeffcott rotor and the
analysis of whirl instability caused by the fluid-film of HD bearings. In the Figs. 2,
3 and 4, an unbalance response of the Jeffcott rotor is shown via orbits of the cen-
tre of journal for chosen rotational speeds. The aspect ratio η = 1 is considered
for finite length bearing (Fig. 3) and for limit values of the approximate solutions
η = 0.5, η = 2 for IS and IL journal bearing (Figs. 2 and 4, respectively). Qualitative
and quantitative change of the orbits occurs with increasing speed of the rotor. How-
ever, orbits of the rotor also differ for the different HD bearings models at the same
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Table 1 Parameters of the Jeffcott rotor in HD journal bearings [13]

Parameter Value

Radial clearance c = 0.9 × 10−3 m

Unbalance Δm = 0.01 kg

Unbalance eccentricity E = 0.01 m

Rotor mass m = 3 kg

Rotor RPM n = 〈500; 2900〉 RPM
Dynamic viscosity μ = 0.07 Pa·s
Bearing diameter D = 47.37 × 10−3 m

Bearing axial length L = ηD, η ∈ 〈0, 5; 2〉

Fig. 2 Orbits of the Jeffcott rotor with all the considered hydrodynamic forces for aspect ratio
η = L

D = 0.5

Fig. 3 Orbits of the Jeffcott rotor with all the considered hydrodynamic forces for aspect ratio
η = L

D = 1

speeds. The IScor and ILcor solutions are relatively close, particularly at lower speeds.
As expected, the approximate solution IS is closer to the both corrected solutions for
η = 0.5 and IL is closer to the both corrected solution for η = 2.

The analysis of the oil-film whirl instability is induced even in case of perfectly
balanced rotor (ΔmE = 0). The motion of Jeffcott rotor with parameters shown in the
Table 1 has been simulated for all the considered HD forces in journal bearings and
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Fig. 4 Orbits of the Jeffcott rotor with all the considered hydrodynamic forces for aspect ratio
η = L

D = 2
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Fig. 5 Bifurcation of eccentricities of the Jeffcott rotor with all the considered hydrodynamic forces
for η = L

D = 1. Solution obtained by the static analysis is depicted by the dashed line

for the rotational speeds ω = πn/30, n = 〈2000, 2900〉 RPM. To depict the whirl
instability, bifurcation diagram Fig. 5 was used. The extremes of the eccentricities
e(tss) are evaluated at all the considered rotational speeds. It enables to distinguish
the areas with fixed point attractor (single point at the particular speed) and areas of
the limit-cycle attractor (two or more different points at the particular speed).

The diagram in Fig. 5 shows almost identical extremes of eccentricities for both
correctedmodels IScor and ILcor in the area of fixed point attractor and the bifurcation
occurs at the pretty close rotational speeds. However, the behaviour of both models
differs in the area of limit cycle attractor. The amplitudes of IS basedmodel growmore
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rapidly and it even does not converge to the limit cycle for larger values of rotational
speeds. The location of a bifurcation point differs for IS and IL approximations.

An additional information of the bifurcation analyses can be obtained using static
analysis. This follows from (13) with omitted dynamical forces: inertial forces Mq̈
and centrifugal forces f e(t). All the terms in formulas of oil-film forces (7)–(12) that
are dependent on ε̇ also equals zero in the static case. The problem can be formulated
in the form of set of nonlinear algebraic equations

f G + f o(q, ω) = 0 (15)

which is solved using Trust-Region Dogleg Method. For the chosen rotational speed
ω of the rotor, a static solution qstatic is find which satisfies (15). Corresponding
eccentricities [transformed using (2)] are depicted in the bifurcation diagram by the
dashed line.

Obviously, for the stable area before bifurcation of the dynamical solution a static
solution directly corresponds to the dynamical solution (without unbalance). How-
ever, in the area after bifurcation point, the static solution corresponds to unstable
dynamical solution.

4 Conclusions

The paper focuses on the behaviour of Jeffcott rotor supported by HD journal
bearings. To describe bearing forces, various approximate analytical solutions of
Reynolds equation for plain journal bearings are used. The differences in the rotor
behaviour are demonstrated using the unbalance response and the analysis of the
whirl instability. The unbalance response analysis shows the similar behaviour of
the corrected IL and IS models, particularly at lower speeds. Both of these two mod-
els come to the IL or IS approximations with the aspect ratio coming close to the
corresponding limit state (IS or IL).

The analysis of whirl instability shows the different location of Hopf bifurcation
for all the considered forces. Qualitatively different behaviour in the limit-cycle area
is observed. The dynamical steady-state computations are supplemented by the static
analysis of the system via numerical solution of set of nonlinear algebraic equations.
This shows the possible unstable equilibria in the area of limit-cycle attractor of the
Jeffcott rotor.

To provide a comparison, multibody simulation-based computations have been
performed in AVL Excite where the Reynolds equation is solved using the finite
element method. The comparison shows satisfactory agreement particularly for the
corrected IL and IS based approximations in wide range of aspect ratios η = L

D ∈
{0.5; 1; 2} in case of unbalance response. The agreement of the bifurcation point for
corrected IS and IL models with numerical model have been provided for the case
of η = 1.
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