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Abstract Development of a new derivation method of a reference dynamics model
of a flexible linkmanipulator is presented in the paper. Themodel including flexibility
can map dynamics and performance of lightweight and fast manipulators correctly
and may serve their motion analysis and control design in the presence of kinematic
or programmed constraints, which are assumed to be position or first order non-
holonomic. The reference dynamics model is derived using the formalism of joint
coordinates and homogeneous transformation matrices. This approach allows gener-
ating dynamics equations of a manipulator without formulating additional material
constraint equations. The constraints present in the reference dynamics model are
the programmed ones only. The flexibility of a link is modelled using the rigid finite
element method. Themain advantage of this method is its ability of application of the
rigid-body approach tomodeling dynamics ofmulti-body systemswith flexible links.
The novelty of the presentedmethod relies on the combination of dynamicsmodeling
of flexible system models with the programmed constraints satisfaction problem for
them. The computational algorithm underlying the derivation method presented in
the paper is based onGeneralized ProgrammedMotionEquations (GPME) approach.
The reference dynamics model derivation is demonstrated for a flexible link manip-
ulator model.
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Nomenclature

rfe(l, r ) rigid finite element r of a link l
sde(l, s) spring-damping element s of a link l
n(l)sde number of spring-damping elements of a link l
n(l)r f e number of rigid finite elements of a link l, n(l)r f e � n(l)sde + 1
g acceleration of gravity
iic , idc index of independent and dependent coordinates
l (l) length of a link l
m(l),m(l,r ) mass of a link l (rfe(l, r ))
n(l)dof , n

(l,r )
dof number of generalized coordinates describing motion of a link l

(rfe(l, r )) with respect to the reference frame
ndof number of generalized coordinates describing motion of the manip-

ulator
nl number of links
c(l, s)α

∣
∣
α∈{ψ, θ, ϕ} rotational stiffness coefficient of sde(l, s)

t (l)dr drive torque acting on a link l
rE,a radius of a reference circle
y(0)E,a assumed time course of y coordinate of a point E
Ek kinetic energy of a system
Ep potential energy of a system
Ep, f potential energy resulting from spring deformations of flexible links
Ep,g potential energy of gravity forces
r(l)E position vector of a point E defined in a local coordinate frame of a

link l
H(l),H(l,r ) pseudo-inertia matrix of a link l (rfe(l, r ))
T(l), T(l,r ) homogeneous transformation matrix from a local coordinate frame

of a link l or rfe(l, r ) to the inertial reference frame T(l)
i �

∂T(l)

∂q (l)
i

,T(l)
i, j � ∂T(l)

i

∂q (l)
j

� ∂2T(l)

∂q (l)
i ∂q (l)

j

1 Introduction

Dynamics modeling methods, both analytical and computational, for rigid models
of multibody systems are well developed and many of their specializations for spe-
cific classes of systems are available. Due to the presence of friction, compliance,
flexibility and other real system properties that need to be accounted for in modeling
to obtain reliable dynamics models, many specializations of the modeling methods
were developed within the classical mechanics approach. Also, constraints that are
present in mechanical systems, both material and task-based, are merged into sys-
tem dynamics using the classical mechanics approach. However, demands for high
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fidelity and accurate dynamical models from one hand and fast and simple deriva-
tions from the other hand, make room for new development methods for dynamics
models of rigid-flexible and constrained multibody systems.

The paper presents a development of a new derivation method of a reference
dynamics model of a rigid-flexible system model. The model including flexibil-
ity may describe dynamics and performance of lightweight and fast systems, e.g.
ground or space manipulators, correctly and may serve their motion analysis and
control design in the presence of constraints put upon them. The reference dynamics
is the system model dynamics including all constraints upon it, i.e. kinematic or pro-
grammed constraints, which are assumed to be position or first order nonholonomic.
The new derivation method of reference dynamics model of a rigid-flexible system
models combines latest research results in dynamics of flexible multibody systems,
a finite element method for modelling flexibility of spatial linkage links [1, 7, 8] as
well as the dynamics modeling method for constrained systems, which does not use
the Lagrange approach, i.e. bothmaterial and programmed constraints can bemerged
into a system dynamics [3–5]. The modeling method is referred to as the general-
ized programmedmotion equations (GPME)method and it was originally developed
for rigid system models [5]. The GPME method was automated for computational
generation of constrained rigid body models in Jarzębowska et al. [6].

The reference dynamicsmodel presented in the paper is derived for a rigid-flexible
system model using the formalism of joint coordinates and homogeneous transfor-
mation matrices. This approach allows generating dynamics equations of a system,
which is a manipulator model, without formulating additional material constraint
equations. The constraints present in the reference dynamics model are the pro-
grammed ones only. The flexibility of a link is modeled using the rigid finite element
method. The main advantage of this method is its ability of application of the rigid-
body approach to modeling dynamics of multi-body systems with flexible links. The
novelty of the presented method relies on the combination of dynamics modeling
of flexible system models with the programmed constraints satisfaction problem for
them. The computational algorithm underlying the derivation method presented in
the paper is based onGeneralized ProgrammedMotionEquations (GPME) approach.
The reference dynamics model derivation is demonstrated for a flexible link manip-
ulator model.

The paper is organized as follows. Section 1 delivers a short introduction of the
ideas,motivation and the origin of the presentedmodeling approach. Section 2 details
a mathematical model of a three link manipulator with a flexible link. Simulation
studies illustrating the application of the derivation of the reference dynamics for
the manipulator are presented in Sect. 3. The paper ends with conclusions and a
reference list.
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(2)x̂

(2)

(3)ŷ
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Fig. 1 Model of spatial manipulator with a flexible link

2 Mathematical Model of a Three Link Manipulator Model
with a Flexible Link

Three link spatial manipulator model composed of a rotary column 1, a rotary arm
2 and a slider 3 (Fig. 1) is analysed in the paper. It is assumed that the link 2 can
be flexible and other links are treated as non-deformable. All joints are modelled as
ideal, i.e. friction and clearance are neglected, and the rotary column 1 is driven by a
driving torque t (1)dr . Motion of each link is described by homogeneous transformations
and joint coordinates. The flexible link 2 is discretized bymeans of themodifiedRigid
Finite ElementMethod proposed in [1, 7, 8]. In thismethod flexible links are replaced
by a set of rigid finite elements (rfe) connected bymassless and dimensionless spring-
damping elements (sde).

The vector of generalized coordinates of the manipulator is composed of the
following sub-vectors:

q � (qi )i�1,...,ndof �
[

q̃(1)T q̃(2)T q̃(3)T
]T

�
[

θ (1) ψ (2) q̃(2)T

f x (3)
]T , (1)

where

q̃(2)
f vector containing generalized coordinates of rfes,

q̃(2)
f �

⎧

⎪⎪⎨

⎪⎪⎩

∅, if the link is rigid (n(2)r f e � 1),
[

q̃(2,1)T . . . q̃(2,r )T . . . q̃(2,n(2)r f e−1)T
]T

, if the link is flexible (n(2)r f e > 1),
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q̃(2,r ) �
[

ψ (2,r ) θ (2,r ) ϕ(2,r )
]T

vector of generalized coordinates of rfe(2, r ).

The motion of the manipulator is subjected to programmed constraints, which
specify a desired motion of the manipulator end effector E, in z direction. It is
assumed that a circle of radius rE,a is the desired trajectory of the end-effector E in
the plane x̂(0)ẑ(0).

The programmed position constraints can be written in the form of algebraic
equations as

�1 ≡
(

x (0)E

)2
+

(

z(0)E

)2 − r2E,a � 0, (2)

�2 ≡ y(0)E − y(0)E,a(t) � 0, (3)

where r(0)E �
[

x (0)E y(0)E z(0)E

]T � �T(3)r(3)E , � �
⎡

⎢
⎣

�1

�2

�3

⎤

⎥
⎦ �

⎡

⎣

1 0 0 0
0 1 0 0
0 0 1 0

⎤

⎦.

The derivation method of a reference dynamics model for a constrained system
based upon the GPME requires double differentiation of the position constraints (2)
and (3). After their differentiation with respect to time, velocity level programmed
constraints are obtained as

�̇1 ≡ Dr (q) q̇ � 0, (4)

�̇2 ≡ D2(q) q̇ − ẏ(0)E,a(t) � 0, (5)

where Dr � ẋ (0)E D1 + ż(0)E D3, D �
⎡

⎢
⎣

D1

D2

D3

⎤

⎥
⎦ �

[

T(3)
1 r(3)E . . . T(3)

ndof r
(3)
E

]

.

Differentiating (4) and (5) again with respect to time leads to the programmed
constraint equations at the acceleration level:

�̈1 ≡ Dr (q) q̈ − ξ1(q, q̇) � 0, (6)

�̈2 ≡ D2(q) q̈ − ξ2(q, q̇) − ÿ(0)E,a(t) � 0, (7)

where ξ1 � −
(

ẋ (0)E D1 + x (0)E Ḋ1 + ż(0)E D3 + z(0)E Ḋ3

)

q̇, ξ2 � −Ḋ2 q̇.
In the considered manipulator model the number of control inputs nc � 2 is less

than the number degrees of freedom of the manipulator, nc < ndof , and it means that
the considered model is underactuated.

Let us define sets containing dependent and independent coordinates of indices
iic and idc , respectively, in the generalized coordinate vector q. The resultant vector
q can be thus partitioned into the set of independent coordinates qic and the set of
dependent coordinates qdc . Indices of dependent and independent coordinates can
be selected as follow:
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iic ∈ {

1, 3, 4, . . . , ndof − 1
}

, (8)

idc ∈ {

2, ndof
}

. (9)

The corresponding generalized coordinate vector contains elements:

qic �
[

θ (1) ψ (2,1) θ (2,1) ϕ(2,1) . . . ψ (2,n(2)r f e−1) θ (2,n(2)r f e−1) ϕ(2,n(2)r f e−1)
]T

, (10)

qdc �
[

ψ (2) x (3)
]T

. (11)

Dynamical equations of motion of the spatial manipulator with the first pro-
grammed constraints are derived using the algorithm based upon the GPME [3–6]
and can be presented as follows:

∂R1

∂q̇ic
+

∑

j∈idc

∂R1

∂q̇ j

∂q̇ j

∂q̇ic
� 0, (12)

where

R1 � Ėk − 2
ndof
∑

i�1

[
∂Ek

∂q

]T

q̇ +
ndof
∑

i�1

[
∂Ep

∂q

]T

q̇ −
ndof
∑

i�1

QT q̇,

Ek �
nl∑

l�1

E (l)
k , E (l)

k �

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

1
2 tr

{

Ṫ(l)H(l)
(

Ṫ(l)
)T

}

, n(l)r f e � 1

n(l)sde∑

r�0

1
2 tr

{

Ṫ(l, r )H(l, r )
(

Ṫ(l, r )
)T

}

n(l)r f e > 1
,

Ep � Ep,g + Ep, f ,

Ep,g �
nl∑

l�1

E (l)
p,g, E

(l)
p,g �

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

m(l)g�2T(l)r(l)C (l) , n(l)r f e � 1

n(l)sde∑

r�0
m(l, r )g�2T(l, r )r(l, r )C (l, r ) , n

(l)
r f e > 1

,

Ep, f �
nl∑

l�1

n(2)sde∑

s�1

E (l,s)
p, f , E (l,s)

p, f � 1

2
q̃(l, s)TC(l, s) q̃(l, s),

C(l,s) � diag
{

c(l, s)ψ , c(l, s)θ , c(l, s)ϕ

}

,

Q �
[

t (1)dr 0
]T

.

After performing computations as indicated in (18), the generalized program
motion equations (GPME) can be presented in the following form:
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⎡

⎢
⎣

Mic + 
Mic

Dr

Dy

⎤

⎥
⎦q̈ �

⎡

⎢
⎢
⎣

fic + 
fic
ξ1

ÿ(0)E,a + ξ2

⎤

⎥
⎥
⎦

, (13)

where

Mic � (

mi, j
)

i∈iic ,
j�1,...,ndof

,M � (

mi, j
)

i, j�1,...,ndof
�

nl∑

l�1

M(l),

M(l) �

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(

m(l)
i j

)

i, j�1,...,n(l)dof
, n(l)r f e � 1

n(l)r f e−1
∑

r�0
M(l,r ), n(l)r f e > 1

,M(l,r ) �
(

m(l,r )
i j

)

i, j�1,...,n(l,r )dof

,

m(b)
i j

∣
∣
∣
b∈{l,(l,r )}

� tr

{

T(b)
i H(b)

(

T(b)
j

)T
}

,


Mic � (


mi, j
)

i∈iic
j�1,...,ndof

,
mi, j �
∑

k∈idc
mk, j

∂ q̇k
∂q̇i

,

fic � ( fi )i∈iic , f � (

fi, j
)

i, j�1, ..., ndof
� Q +

nl∑

l�1

(

h(l) − g(l)
) − Cq,

h � (

hi
)

i�1, ..., ndof
�

nl∑

l�1
h(l),h(l) �

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(

h(l)i

)

i�1, ..., n(l)dof
, n(l)r f e � 1

n(l)r f e−1
∑

r�0
h(l,r ), n(l)r f e > 0

,

h(l,r ) �
(

h(l,r )i

)

i�1,...,n(l,r )dof

,

h(b)i

∣
∣
∣
b∈{l,(l,r)}

�
n(b)dof
∑

m�1

n(b)dof
∑

n�1

tr
{

T(b)
i H(b)

(

T(b)
m,n

)T
}

q̇ (b)
m q̇ (b)

n

+ 2

n(b)dof
∑

m�1

n(b)dof
∑

n�1

tr

{

T(b)
m H(b)

(

T(b)
i,n

)T
}

q̇ (b)
m q̇ (b)

n ,
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g � (gi )i�1,...,ndof �
nl∑

l�1

g(l), g(l) �

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(

g(l)i

)

i�1,...,n(l)dof
, n(l)r f e � 1

n(l)r f e−1
∑

r�0
g(l,r ), n(l)r f e > 1

,

g(l,r ) �
(

g(l,r )i

)

i�1,...,n(l,r )dof

,

g(b)i

∣
∣
∣
b∈{l,(l,r )}

� m(b)g�2T
(b)
i r(b)C (b) ,

C � diag
{

C(1), . . . ,C(nl )
}

,

C(l) �
(

c(l)i, j

)

i, j�1,...,n(l)dof
�

⎧

⎨

⎩

0, n(l)sde � 0

diag{0,C(l,1), . . . ,C(n(l)sde,1)}, n(l)sde > 0


fic � (
 fi )i∈iic ,
 fi � ∑

k∈idc
fk

∂q̇k
∂q̇i

.

,

Partial derivatives of dependent coordinates with respect to independent coordi-

nates ∂q̇k
∂q̇i

∣
∣
∣
k∈{2, ndof }

can be obtained from the solution of the following system of linear

equations:

∂q̇2
∂q̇i

+
Dr,ndof

Dr,2

∂q̇ndof
∂ q̇i

� − Dr,i

Dr,2
, (14)

∂q̇ndof
∂q̇i

+
D2,2

D2,ndof

∂q̇2
∂q̇i

� − D2,i

D2,ndof
. (15)

Constraints violation at the position and velocity levels is eliminated using the
Baumgarte stabilization method [2]. The final form of the GPME is as follows:

⎡

⎢
⎣

Mic + 
Mic

Dr

D2

⎤

⎥
⎦q̈ �

⎡

⎢
⎢
⎣

fic + 
fic

ξ1 − 2α1Φ̇1 − β2
1�1

ÿ(0)E,a + ξ2 − 2α2Φ̇2 − β2
2�2

⎤

⎥
⎥
⎦

. (16)

In numerical simulations it has been assumed that αi |i�1, 2 � 100, βi |i�1, 2 � 50.
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3 Numerical Study Results for the Flexible Link
Manipulator Model

Numerical simulation results obtained for analysing the reference motion of the
spatialmanipulator subjected to the programmed constraints (2) and (3) are presented
in this section. It is assumed that the driving torque is applied to the vertical column
(1) and its time course is described by the following formula:

t (1)dr (t) �

⎧

⎪⎨

⎪⎩

10 t (1)dr,0

(
t
t0

)3 − 15 t (1)dr,0

(
t
t0

)4
+ 6 t (1)dr,0

(
t
t0

)5
, t < t0

t (1)dr,0, t ≥ t0

, (17)

where t (1)dr,0 is an assumed value of the driving torque at time t ≥ t0. In simulations it

is assumed t0 � 5 s and t (1)dr,0 � 1 Nm.
The flexible link is divided into 5 rfes. Such division is a good compromise

between numerical effectiveness and sufficient results quality. The GPME has been
integrated usingRunge-Kutta 4th ordermethod. The presented numerical simulations
are performedwith a constant integration step
h � 10−5 s. The initial configuration
of the system results from the solution of the statics task for increasing values of the
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50 10
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1050
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-0.075

0.1

[s]t

(3)[m]x rigid
flexible

0.4 1.2 2
-0.25

-0.22

-0.19

(3)[m]x

[s]t

Fig. 2 Time courses of the joint coordinates
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gravity g � 0, 1, 2, . . . , 9.81. The initial values of the configuration variables used
in the statics problem for g � 0 are as follows: θ (1) � 0

◦
, ψ (2) � 45

◦
, x (3) � 0m.

Newton-Raphsonmethod is applied to solve the statics task.When the rotary arm 2 is
treated as flexible, the initial position of the slider (Fig. 2) and end-effector E (Fig. 4)
change due to deformation of the flexible link. Vertical motion of the end-effector E
is defined by:

y(0)E,a(t) � y0 + A cos

(
2π

T
t

)

, (18)

where y0 is the initial position of the end-effector, A is the amplitude and T is a time
period of oscillations. It is assumed that A � 0.5m and T � 2.5 s.

Time courses of the configuration variables of the manipulator obtained from
simulations are presented in Fig. 2.

It can be observed that for the arm 2, which is flexible, additional oscillations
appear in time courses of displacements of the rotary arm 2 and the slider 3. It
can be concluded that influence of the flexibility on the programmed motion of the
manipulator is compensated by the appropriate combination of the rotation angle of
the arm 2 and the displacement of the slider 3.

Figure 3 shows time courses of the global Cartesian coordinates of the end-
effector E.

A good agreement of the time course of y-component of the end-effector E dis-
placement with the ones assumed by the programmed constraints can be observed.

A trajectory of the end effector E in the planes x̂(0) ẑ(0) and x̂(0) ŷ(0) is presented
in Fig. 4.

A starting point of the end-effector E is different for each considered model of the
manipulator. The gravity forces cause bending of the flexible arm 2 and as a result
the end-effector moves in the plane x̂(0) ŷ(0) from the position E

′
r to the position E

′
f .

It can also be observed that the required circular trajectory of the end-effector in the
plane x̂(0) ẑ(0) is achieved.

4 Conclusions

A dynamics model of the spatial manipulator with a flexible link whose end-effector
motion is limited by first order programmed constraints is presented in the paper.
Flexible links aremodeledbymeans ofmodified approachof theRigidFiniteElement
Method. An algorithm of generation of the generalized program motion equations
formulated in the paper can be applied to any open-loop kinematic chain whose
links can be flexible. Thanks to homogeneous transformations and joint coordinates
dynamics of the system is described by a minimal set of coordinates without the
need for determination of constraints reaction forces. It can be seen that constraint
reaction forces are also eliminated at the derivation level. As a result, dynamics of the
system is described by a set of ordinary differential equations. Numerical simulation
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∣
∣
∣
i∈{r, f } is a starting point of the end-effector for a

rigid (r) and flexible (f ) model of the arm 2

results show that flexibility of links has significant influence on driving function
courses realizing the desired programmed motion. In further works it is planned to
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extend the presented algorithm to model dynamics and control of spatial linkages
with flexible links.
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1. Augustynek, K., Urbaś, A.: Two approaches of the rigid finite element method to modelling the
flexibility of spatial linkage links. In: Proceedings of the ECCOMAS Thematic Conference on
Multibody Dynamics, Prague, pp. 19–22 (June 2017)

2. Baumgarte, J.: Stabilization of constraints and integrals of motion in dynamic systems. Comput.
Methods Appl. Mech. Eng. 1, 1–16 (1972)
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