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Abstract This chapter contributes to the modeling, analysis and control of ter-
restrial artificial locomotion systems. Inspired by previous models, we set up an
unconventional model for a snake-like locomotion systems in form of a chain of
visco-elastically interconnected mass points in a plane with passive joints, but – in
contrast to literature – active links (time-varying link-length) and rotatable skids to
change the movement direction and to avoid obstacles. We investigate this model
in a dynamical way and focus on controlling these link lengths to achieve a global
movement, steered by the skids. From dynamics, the actuator forces have to adjust
the prescribed link length for the locomotion. Since it is impossible to determine the
necessary actuator forces a-priori, we apply an adaptive lambda-tracking controller
to enable the system to adjust these force outputs on-line on its own. Prescribed
motion patterns, i.e. specific gaits, are required to guarantee a controlled movement
that differ in the number of resting mass points, the load of actuators and spikes,
and the lateral forces of the skids. In contrast to literature, the investigated system of
n = 10 mass points exhibit a large variety of possible gaits. To determine the most
advantageous gaits, numerical investigations are performed and a weighting function
offers a decision of best possible gaits. Using these gaits, a gait transition algorithm,
which autonomously changes velocity and number of resting mass points depending
on the spike, actuator and lateral skid force load, is presented and tested in numerical
simulations.
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1 Introduction

Earthworms and snakes serve as a biological inspiration for terrestrial robotic loco-
motion systems [16]. Most of the works within this field are inspired by the remark-
able works of Miller (since 1987, important works e.g. [7, 8]) and Shigeo Hirose
[4]. In recent years, most research focussed on fabrication, navigation and con-
trol/measurement problems, see [6, 9, 15] from a technical point of view with minor
analytical investigations. This is our starting point, to present some modeling and
analytical investigations on snake-like systems. For this, we introduce a non-standard
mechanical model of a snake-like robots in Sect. 2 in order to extend some models
and ideas from worm-like locomotion systems in [13]. Moreover, almost all pro-
totypes use active joints to achieve a special kind of snake locomotion (serpentine
movement) [3]. Hence, contrary to literature, we model a snake-like locomotion
system using passive joints, active links, spikes and rotatable skids to change the
movement direction and to avoid obstacles. To achieve movement, special gaits have
to be generated in Sect. 3 and are adaptively tracked in dynamics Sect. 4. Because of
an uncertain environment, the snake has to adjust its locomotion pattern, i.e., has to
perform a gait shift in Sect. 5. Finally, all theoretic items are tested in simulations in
Sect. 6.

2 Kinematic Model

The kinematic model is presented in Fig. 1. It contains several mass points mi which
are connected by links with lengths r j (hereafter named l j ). The unit vector �ei,i−1

points from element mi to element mi−1. Each mass element is equipped with rotat-
able and spikes skids by the angle Γi preventing backward displacements. The angle
Θ j describes the angle between the x-axis and the link l j , introducing γ j := Γ j − Θ j .
Each mass element has a skid-fixed coordinate system with �ei in tangential and �gi in
the normal direction, Eq. (1).

�ei = cos(Γi )�ex + sin(Γ )�ey , �gi = − sin(Γi )�ex + cos(Γ )�ey (1)

The positions �xi of the mass elements mi are here (in inertial system):

�ri = xi �ex + yi �ey (2)

We assume the spiked skids to be ideal, i.e., preventing a backwards movement of
the mass element in the skid direction, and a movement laterally to the skid direction,
which is hereafter named as no side-slip condition. Therefore, it yields Eq. (3):

vt,i = �̇ri · �ei ≥ 0 , vn,i = �̇ri · �gi = 0 (3)



Gait Transitions in Artificial Non-standard Snake-Like … 3

Fig. 1 Mass-point model of a snake from [11]

The input variables of the model are the link lengths l j (t) and the skid angles
Γi (xi , yi ) which are prescribed as functions of the position �ri of mass element mi .
According to [11], the kinematic model is (with the special case Γ0 = Θ1 + γ0):

Γi = Θi + γi
ẋi = vi cos(Γi )

ẏi = vi sin(Γi )

backward: vi = vi−1 cos(γi−1+Θi−1−Θi )−l̇i
cos(γi )

- special case: v1 = v0 cos(Γ0−Θ1)−l̇1
cos(γ1)

forward: vi = vi+1 cos(γi+1)+l̇i
cos(γi+Θi−Θi+1)

- special case: v0 = v1 cos(γ1)+l̇1
cos(Γ0−Θ1)

generally: Θ̇i = vi−1 sin(γi−1+Θi−1−Θi )−vi sin(γi )
li (t)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4)

Rotatable skids allow for a plane movement. Their angle Γi referring to the inertial
system is a system input for tracking predefined paths. For this, the skid angle of the
head segment Γ0 is defined as a function of the position and the rearward skid angles.
There are several (testing) paths possible, e.g., U-turn, lane change or sinusoid.
According to [3], we focus on 4 different types of skid adjusting mechanisms for the
rearwards mass elements:

tractrix/exact following/swerve backwards/swerve forwards.
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These 4 different skid adjusting mechanisms describe the way in which a mass
element mi follows the predecessor mi−1 and the head segment m0, resp. This may
be useful, when traversing an obstacle in order to allow a larger curve radius for
rearwards segments.

3 Gaits

To allow a movement of the snake model, the distances between the mass points
have to be shortened and lengthened. To guarantee forward movement, at least one
mass element has to move forward and at least one has to rest. There are sev-
eral motion patterns conceivably, so-called gaits. As shown in [12], gaits have to
be designed systematically: At first, gaits differ in the number of active spikes
a ∈ {1, . . . , n} (i.e., restingmass elements). Furthermore, there is a periodic sequence
of active spikes A(t), e.g., for a system with N = 4 mass points and a = 2 a possi-
ble sequence is A(t) = {0, 1} → {1, 2} → {2, 3} → {3, 0}, while A(t) = {0, 1} →
{2, 3} → {1, 2} → {3, 0} is not recommended (no traveling wave). With this knowl-
edge, it can be deduced whether a distance l j (t) has to be shortened or lengthened
at a certain time. Following the recommendation from [12], the sequence of active
spike should move to left or to the right, like a worm does. Thus, admissible gaits
can be described explicitly by the start sequence A0 of the resting mass points and
the direction dir of the wave of active spikes (“l” for left or “r” for right).
The reference distance functions are built w.r.t. [12]. The time intervals are defined as:

t ∈
[

p
T

N
, (p + 1)

T

N

]

, p ∈ N0.

To guarantee a smooth movement of the system, i.e., there are no jerks to the mass
points, approximations like sin2(·)-functions are used for the link lengths, while
τ = t − p T

N :

l j (τ ) = l0∗ + εl0N f τ − 1

2π
εl0 sin (2π f Nτ) , with l̇ j (τ ) = εl02N f sin2 (π f Nτ)

(5)

• |ε| ∈ (0; 1) is the relative factor of the maximum distance change,
• f is the frequency of the A(t)-sequence with its periodic time T = 1

f , chosen in
simulation to avoid a rigid-body-movement of the whole system,

• l0 > 0 is the initial distance,
• l0∗ is the distance at the beginning of the time interval (τ = 0), depending on the
previous interval either l0, l0(1 + ε) or l0(1 − ε), [10].

Further investigations in [5] – considering one-dimensional, worm-like locomo-
tion and generation of optimal gaits – have determined the most advantageous gaits
regarding the loads of spikes and actuators for a system with N = 10 mass elements.
Hence, these gaits are used for the considerations here and are listed in Table1.
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Table 1 Most advantageous gaits for N = 10

a Gait

1 A0 = {1}, dir = r

2 A0 = {2, 3}, dir = r

3 A0 = {0, 1, 2}, dir = r

4 A0 = {6, 7, 8, 9}, dir = l

5 A0 = {2, 3, 4, 5, 6}, dir = l

6 A0 = {5, 6, 7, 8, 9, 0}, dir = l

7 A0 = {2, 3, 4, 5, 6, 7, 8}, dir = l

8 A0 = {1, 2, 3, 4, 5, 6, 7, 8}, dir = l

9 A0 = {1, 2, 3, 4, 5, 6, 7, 8, 9}, dir = l

4 Dynamic Model

To allow the system to shorten and lengthen its links between the mass elements,
viscoelastic actuators are assumed between the segments in the following dynamic
model. The applied forces are exemplarily given to element i , see Fig. 2. The linear
spring forces Fc,i and Fc,i+1 are obtained from the distances between the neighboring
mass elements:

�Fc,i = ci · (‖(�ri−1 − �ri )‖ − l0,i
) �ei,i−1

�Fc,i+1 = −ci+1 · (‖(�ri − �ri+1)‖ − l0,i+1
) �ei+1,i

(6)

Fig. 2 Mass element with forces



6 C. Behn and J. Kräml

The linear damper forces Fd,i and Fd,i+1 are determined (under the assumption of
the no side-slip condition, i.e., the normal velocity component vn,i = 0) using vt,i as
the velocity of the mass element mi in the skid direction (�ei direction):

�Fd,i = di · [
vt,i−1 · cos(Γi−1 − Θi ) − vt,i · cos(γi )

] �ei,i−1

�Fd,i+1 = −di+1 · [
vt,i · cos(Γi − Θi+1) − vt,i+1 · cos(γi+1)

] �ei+1,i

(7)

The weight forces �FGx,i and �FGy,i are calculated in dependence on the slope angles
αx and αy (rotation of the plane around x- respectively y-axis):

�FGx,i = −mig sin(αx )�ex and �FGy,i = −mig sin(αy)�ey (8)

According to [3], Stokes’s friction forces are assumed in the skid direction:

�FR,i = −kStvt,i �ei (9)

According to [13], the ideal spikes (spike force FZ ) have to fulfill:

ẋi ≥ 0, FZ ,i ≥ 0 with complementary-slackness condition ẋi · FZ ,i = 0 .

(10)
This condition is fulfilled using Eq. (11), where �Fi is the sum of all applied forces.

�FZ ,i (vt,i , �Fi ) =
[

−1

2
[1 − sign(vt,i )][1 − sign( �Fi · �ei )] �Fi · �ei

]

�ei (11)

Because the skids are considered to be ideal –fulfilling the no side-slip condition–
the skid forces are, taking the inertial fraction into account:

�FK ,i =
(
mivt,i Γ̇i − �Fi · �gi

)
�gi (12)

Applied actuators shall generate amovement of the system and serve as inputs to con-
trol the distances between the segments. To track a prescribed motion pattern/gait in
an uncertain environment, an adaptive λ-tracking controller is used which generates
the necessary actuator forces on its own. Introducing on the error e j (t):

• l j (t) := x j−1(t) − x j (t), the distance between neighboring mass points (outputs);
• lre f, j (t), the predefined reference distance functions of Eq. (5);
• e j (t) := l j (t) − lre f, j (t), error of the output;

we apply the controller Eq. (13), see [1, 2]. It contains regular PD-feedback, which
adapts the gain of P- and D- elements depending on the 2-norm of the error ‖e(t)‖.
The controller’s goal is to track a reference function of the outputs and to keep the
error within a certain tolerated accuracy λ:



Gait Transitions in Artificial Non-standard Snake-Like … 7

e(t) := l(t) − lre f (t)

u(t) = k(t) e(t) + k(t) κ ė(t) = k(t) · (e(t) + κ ė(t))

k̇(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

γ · (‖e(t)‖ − λ)2, ‖e(t)‖ ≥ λ + 1

γ · (‖e(t)‖ − λ)0.5, λ + 1 > ‖e(t)‖ ≥ λ

0, (‖e(t)‖ < λ) ∧ (t − tE < td)

−σk(t), (‖e(t)‖ < λ) ∧ (t − tE ≥ td)

(13)

with γ > 1, κ > 0, σ > 0, td ≥ 0, λ ≥ 0, k0 > 0, determined in [5]. Remark: It
is obvious that the proposed controller is based on output derivative. This is some-
times quite hard to arrange, see [14] for a way out.
With this relation, Newton’s second law can be applied to get the equations ofmotion.
At first, the following relationships between the skid-fixed and the inertial coordinate
system are needed:

�ei = cos(Γi )�ex + sin(Γi )�ey and �gi = − sin(Γi )�ex + cos(Γi )�ey (14)

Furthermore, by differentiating, we get:

�̇r i = vt,i �ei + vn,i �gi and �̈r i = (
v̇t,i − vn,i Γ̇i

) �ei + (
v̇n,i + vt,i Γ̇i

) �gi (15)

Summarizing, the differential equation for element mi in skid coordinates is:
In skid direction �ei :

m0
(
v̇t,0 − vn,0Γ̇0

) = (−Fc,1 − Fd,1 − u1
)
cos(Γ0 − Θ1) + FZ ,0 + FR,0

+ FGx,0 cos(Γ0) + FGy,0 sin(Γ0)

mi
(
v̇t,i − vn,i Γ̇i

) = (−Fc,i+1 − Fd,i+1 − ui+1
)
cos(Γi − Θi+1) + FZ ,i + FR,i

+ (
Fc,i + Fd,i + ui

)
cos(γi ) + FGx,i cos(Γi ) + FGy,i sin(Γi )

mn
(
v̇t,n − vn,n Γ̇n

) = (
Fc,n + Fd,n + un

)
cos(γn) + FZ ,n + FR,n

+ FGx,n cos(Γn) + FGy,n sin(Γn)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

(16)
Normal to skid direction �gi :

m0
(
v̇n,0 + vt,0Γ̇0

) = (+Fc,1 + Fd,1 + u1
)
sin(Γ0 − Θ1) + FK ,0

− FGx,0 sin(Γ0) + FGy,0 cos(Γ0)

mi
(
v̇n,i + vt,i Γ̇i

) = (+Fc,i+1 + Fd,i+1 + ui+1
)
sin(Γi − Θi+1) − FGx,i sin(Γi )

+ (−Fc,i − Fd,i − ui
)
sin(γi ) + FK ,i + FGy,i cos(Γi )

mn
(
v̇n,n + vt,n Γ̇n

) = (−Fc,n − Fd,n − un
)
sin(γn) + FK ,n

− FGx,n sin(Γn) + FGy,n cos(Γn)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

(17)
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5 Gait Transition

In Sect. 3, most advantageous gaits are presented, which have to be autonomously
selected to be the best for actual situation. Thinking of an uncertain environ-
ment (changing slope, malfunction of actuators, failing of spikes), a gait transition
becomes important, because changes result in different loads of (the remaining) actu-
ators, spikes and skids. Hence, the system has to be enabled to react to such changes
in switching its gait and frequency on its own. Remark: Analogous example of driv-
ing a car – increasing the frequency can be compared to accelerating while gait
changing is similar to gear shifting.
The frequency shall only be changed after concluding a single period, i.e., when a
part of the sequence A(t) is finished. Changing the frequency has a large influence
on the loads of actuators and spikes. To adjust the frequency, a P-feedback is used. It
is possible to weight the load of actuators, spikes and skids against each other using
factors wu , wFz and wFk :

f1 = wFz f0(1 + kp,Fz(Fz,soll − Fz,ist )) + wu f0(1 + kp,u(usoll − uist ))

wFz + wu + wFk

+ wFk f0(1 + kp,Fk(Fk,soll − Fk,ist ))

wFz + wu + wFk

(18)

with kp,u , kp,Fz and kp,Fk as gain parameters for actuators, spikes and skids, f0 as
the previous frequency and f1 as the newly adjusted frequency. The set points uset ,
Fz,set and Fk,set are predefined, while the actual values are within a single period:

Fz,act = max
{
Fz,0, Fz,1, . . . , Fz,9

}
, Fk,act = max

{
Fk,0, Fk,1, . . . , Fk,9

}

ū j = 1
Te

t∫

t−Te

u j (τ ) dτ , uact = max {ū1, ū2, . . . , ū9} (19)

The value for the frequency has to be limited to fmax . Otherwise, therewould occur
rigid-body-movement, if the frequency exceeded fmax , according to [13]. During
the period of existence of such rigid-body motion, it is uncontrollable in this time-
interval. This maximum frequency fmax , from a kinematical theory according to
[13], is given by:

fmax (a) =
√

g sin(α)

2πεl0N (N − a)
(20)

After finishing a total period T , i.e., when the sequence of active spikes would start
again, the systemchanges the number of active spikesa. Themodel upshifts (decrease
the number of active spikes a), if the maximum frequency fmax of a gait is reached. It
downshifts (increases the number of active spikes a), if the current reference velocity
Eq. (21) is also reachable with the next slower gait without exceeding the maximum
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frequency of the slower gait [13]:

v̄re f (a, f ) = (N − a)εl0 f (21)

This downshift frequency fmin is:

v̄min,a = v̄max,a+1 ⇔ fmin = N − (a + 1)

N − a
fmax,a+1 (22)

After shifting the gait, the frequency has to be adapted to guarantee the same velocity
before and after a gait transition. The analogy to car driving is the adaption of the
engine speed while shifting. The frequency after the transition is:

v̄new = v̄old ⇔ fnew = N − aold
N − anew

fold (23)

In Fig. 3, the algorithm of frequency control and gait transition is shown, which is
executed after the end of the first single period.

Fig. 3 Algorithm of frequency control and gait transition
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Fig. 4 Model movement (left), and skid angles Γi (right)

Fig. 5 Frequency and number of active spikes (left), gain and error norm (left)

Fig. 6 Actuator forces (left), and spike forces (right)

6 Simulation

To demonstrate the functionality of themodel, the results of a simulation are shown in
Figs. 4, 5 and 6. Themodel performs a lane changewhile the rearwardsmass elements
swerve backwards. In Fig. 5(left) can be seen that the frequency and number of active
spikes are adjusted depending on the loads of actuators, spikes and skids, see Fig. 6.
Furthermore, theworking principle of the adaptiveλ-tracking PD-controller is shown
in Fig. 5(right).

7 Conclusion and Outlook

The presented snake-like model consisting of 10 mass points is able to move two-
dimensionally by shortening and lengthening its links between each mass point.
This is achieved by using viscoelastic actuators which are controlled by an adap-
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tive λ-tracking PD-controller. To allow lateral movement, spikes respectively skids
are mounted at each mass points which are considered as ideal. They inhibit back-
wardmovement (spikes) and side-slip (skids) of themass points. Themodel is able to
adjust the gait and its frequency depending on the loads of actuators, spikes and skids.
The gathered knowledge from previous investigations considering one-dimensional
worm-like locomotion is transferred to this model, e.g., most advantageous gaits,
limitation of actuator forces and using only three different gaits in order to reduce
the number of gait shifting. The model is able to use different types of skid adjust-
ing mechanisms, such as tractrix, exact following, swerve backwards and swerve
forwards, as well as different curve paths, e.g., U-turns, lane changes and sinusoid.

To conclude the presented work, an example of application is presented hereafter.
The model shall move through an environment with obstacles while using differ-
ent types of skid adjusting mechanisms and curve paths (future work is obviously
addressed to path planning). As shown in Fig. 7(left), the model is able to move even
through narrow spaces. It adjusts its frequency and gait, see Fig. 8(left). Furthermore,
the described adaptive λ-tracking PD-controller for the actuators works reliably, as
one can clearly see in Fig. 8(right). The system loads are presented in Fig. 9.

Fig. 7 Model movement (left), and skid angle Γi (right)

Fig. 8 Frequency and number of active spikes (left), gain and error norm (right)

Fig. 9 Actuator forces (left), and spike forces (right)
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