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Preface

The present volume is devoted to the 14th edition of a cyclic scientific event—
the International Conference “Dynamical Systems: Theory and Applications”
(DSTA)—organised by the Department of Automation, Biomechanics and
Mechatronics of the Lodz University of Technology every two years. DSTA belong to
important events gathering a great number of researchers and engineers from different
fields of sciencewheremodelling and analysis of dynamical systems play an important
role. The volume is a result of a selection of the representative, theory-oriented
chapters written by the participants of the 14th edition of the DSTA Conference.

The book not only provides the readers with an overview of the recent devel-
opments in the field of dynamical systems but also helps finding answers to readers’
own problems and aims to inspire further research.

Argáez et al. (Chapter “Computational Approach for Complete Lyapunov
Functions”) presented results of the research aimed to improve the complete
algorithm for Lyapunov function computation that resulted in better approximation
to the chain-recurrent set in the system.

In Chapter “Non-conservative Instability of Cantilevered Nanotube Via Cell
Discretization Method”, Auciello et al. employed the cell discretization method to
analyse the dynamic instability of the cantilevered single-walled carbon nanotube
with concentrated mass and subjected to a follower force at the end. Application
of the discrete system model obtained by reduction of the nanotube to a set of rigid
bars linked by elastic constraints allowed the authors to take into account non-local
effects, added mass and the direction of the follower force.

Bełdowski et al. (Chapter “Fractional Calculus Evaluation of Hyaluronic Acid
Crosslinking in a Nanoscopic Part of Articular Cartilage Model System”) studied
mechanics of physical crosslinking of hyaluronic acid in the presence of common
phospholipids in the synovial joint organ systems. Applying fractional calculus,
they obtained results suggesting sub-diffusion characteristics in the investigated
system.

Biś and Namiecińska (Chapter “Topological and Measure-Theoretical Entropies
of a Solenoid”) applied the topological and measure-theoretical approach to
dynamical properties of a solenoid and discussed homogeneous measures.

v



Björnsson and Hafstein (Chapter “Lyapunov Functions for Almost Sure
Exponential Stability”) focused on proving Mao’s theorems on the Lyapunov
functions for a wider class of functions aiming to make them much more applicable.

In Chapter “Numerical Analysis of Dynamic Stability of an Isotropic Plate by
Applying Tools Used in Dynamics”, Borkowski presented the results of an analysis
of an isotropic plate in terms of its dynamic stability (or instability). For this
purpose, he applied tools that are usually used in the vibrations theory of dynamical
systems.

Byrtus and Dyk (Chapter “Rigid Jeffcott Rotor Bifurcation Behaviour Using
Different Models of Hydrodynamic Bearings”) focused on dynamics of a modified
version of the Jeffcott rotor. They applied different models of hydrodynamic bearings.
The research allowed them to detect non-linear phenomena such as bifurcations.

In Chapter “The Burden of the Coinfection of HIV and TB in the Presence of
Multi-drug Resistant Strains”, Carvalho and Pinto introduced fractional-order
modelling of infection with HIV and multi-drug resistant tuberculosis strains. It
yielded biologically reliable results for analysis of the burden of the coinfection and
treatment for both diseases.

In Chapter “Value Distribution and Growth of Solutions of Certain Painlevé
Equations”, Ciechanowicz and Filipuk estimated new results for four chosen
Painlevé equations for value distribution and the growth theory, with such values as
defect, deviation or multiplicity index.

Based on the singular perturbation method, Danik et al. (Chapter “Numerical-
Analytical Algorithms for Nonlinear Optimal Control Problems on a Large Time
Interval”) obtained algorithms that can be applied for numerical-analytical inves-
tigations of the non-linear continuous and discrete optimal control on a large finite
time interval.

In Chapter “The Dynamic Behavior of the Vehicle Wheels Under Impact
Loads—FEM and Experimental Researches”, Demiyanushko et al. applied exper-
imental and finite element methods for studies of the dynamic behaviour of the
vehicle wheels subjected to the impact load.

Goncalves Luz Junior et al. (Chapter “Optimal Control for Robot Manipulators
with Three-Degrees-of-Freedom”) focused on the modelling and simulation of optimal
control of robot manipulators for a planar robot with three-degrees-of-freedom.

In Chapter “Optimal Control of Automotive Multivariable Dynamical Systems”,
Jackiewicz discussed adaptive systems for automotive applications based on the
direct or self-tuning optimal controller strategies fixed by means of memetic
algorithms.

Jackowska-Zduniak and Foryś (Chapter “Mathematical Model of Two Types of
Atrioventricular Nodal Reentrant Tachycardia: Slow/Fast and Slow/Slow”) pro-
posed application of a model consisting of two coupled van der Pol equations to
describe heart’s pathological behaviour in heart’s conducting system such as
slow/fast and slow/slow type of atrioventricular nodal reentrant tachycardia.

Motion of a small-scale Darrieus counter-rotating vertical axis wind turbine was
the subject of the study described by Klimina et al. in Chapter “Two-Frequency
Averaging in the Problem of Motion of a Counter-Rotating Vertical Axis Wind
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Turbine”. The authors focused on two-frequency averaging over two angular
coordinates of the designed dynamical model.

Knap et al. (Chapter “Process-Oriented Approach to the Design of Cyber-
Physical Systems”) described a simple way of projecting the cyber-physical sys-
tems projects, which is comprehensible for engineers working in different fields.
The proposed task-oriented approach to designing CPS draws attention to identi-
fication of the connection between resources and allows for identification of threats
to the components, connections between them or to the working system.

A dynamic model of a hypothetical missile-artillery system mounted on a
moving object was presented by Koruba et al. in Chapter “An Inverse Dynamics
Analysis of the Remote Controlled Artillery-Missile System Under the Influence of
Disturbances”, taking into account driving torques for the azimuth, the elevation
angle and the angular and linear displacements of the set base relative to the given
stationary coordinate system.

In Chapter “Approximate Identification of Dynamical Systems”, Kozánek et al.
dealt with an approximate identification of linear dynamical systems by time
response on unknown initial displacement (or velocity) with the help of the Fourier
transform.

Makowski (Chapter “Algorithm for Damping Control in Vehicle Suspension
Equipped with Magneto-Rheological Dampers”) devoted his study to the control
algorithms of semi-active systems for suspension of a vehicle equipped with con-
trolled magneto-rheological dampers.

In Chapter “Shadowing, Entropy and Minimal Sets”, Oprocha described con-
sequences of the shadowing property for global and local aspects of dynamics,
taking into account, for instance, approximation of invariant measures by ergodic
measures.

Ozga (Chapter “Analysis of Vibrations of an Oscillator Using Statistical Series”)
applied the statistical series method to solve problems of determination of an
approximate distribution of the strength of stochastic impulses forcing vibrations of
an oscillator with damping in systems subjected to random series of impulses.

Pawlak and Korczak-Kubiak (Chapter “On Local Aspects of Entropy”) intro-
duced the notion of a full entropy point and an unbalanced point. Also, they used
graphical approximation by functions having either the full entropy point or the
unbalanced point.

In Chapter “Optimal Control of Hybrid Systems with Sliding Modes”, Pytlak
et al. focused on the numerical procedure for solving hybrid optimal control
problems with sliding modes. The proposed approach was coped with differential–
algebraic equations and guaranteed accurate tracking of the sliding motion surface.

Rysak et al. (Chapter “Study of the High-Amplitude Solutions in the System of
Magnetic Sliding Oscillator with Many Degrees of Freedom”) investigated phe-
nomena of the high-amplitude solutions in the system of magnetic sliding oscillator
with many degrees of freedom.
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In Chapter “Theoretical Investigations on the Behavior of Artificial Sensors for
Surface Texture Detection”, Scharff et al. analysed the influence of different
magnitudes of velocities and friction coefficients on the proposed quasi-static model
of the artificial tactile sensor.

Sumi et al. (Chapter “Dynamic Analysis of a Compliant Tensegrity Structure for
the Use in a Gripper Application”) focused on investigations of the dynamic
behaviour of a planar tensegrity structure with multiple static equilibrium config-
urations with respect to its further use in a two-finger-gripper application.

A study of a synchronisation phenomenon as observed in a rotating structure
consisting of three composite beams and a hub was described by Szmit et al. in
Chapter “Synchronisation Analysis of a De-tuned Three-Bladed Rotor”.

Szulim and Radkowski (Chapter “The Analytical Approach for Identification of
Magnetically Induced Vibrations of Working in Faulty State BLDC Motor”) pre-
sented a comparison of numerical and experimental results for identification of
magnetically induced vibrations of a BLDC motor working in a faulty state.

In Chapter “Micro-Dynamics of Thin Tolerance-Periodic Cylindrical Shells”,
Tomczyk and Szczerba focused on thin linearly elastic Kirchhoff–Love-type open
circular cylindrical shells of a functionally graded macrostructure and on the
tolerance-periodic microstructure in circumferential direction.

Bielski and Wojnar (Chapter “Stokes Flow Through a Tube with Wavy Wall”)
investigated the propagation of long gravity waves past an incompressible fluid in a
channel and in a tank with an uneven bottom by means of an asymptotic
homogenisation theory.

In Chapter “Implementation of the Adaptive Control Algorithm for the KUKA
LWR 4+ Robot”, Woliński investigated a dynamical model of the adaptive con-
troller for the KUKA lightweight redundant robotic manipulator robot.

In Chapter “Vibrations of a Multi-span Beam Subjected to a Moving Stochastic
Load”, Zakęś and Śniady presented a study of the dynamic behaviour of a
multi-span uniform continuous beam excited by a moving stochastic load.

I greatly appreciate the help of the Springer Editor, Elizabeth Leow, in pub-
lishing the chapters recommended by the Scientific Committee of the DSTA 2017
Conference after a standard peer review procedure. Also, I would like to express my
gratitude to reviewers for their voluntary help and support.

Łódź, Poland Jan Awrejcewicz
June 2018
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Computational Approach for Complete
Lyapunov Functions

Carlos Argáez, Peter Giesl and Sigurdur Freyr Hafstein

Abstract Ordinary differential equations arise in a variety of applications, includ-
ing climate modeling, electronics, predator-prey modeling, etc., and they can exhibit
highly complicated dynamical behaviour. Complete Lyapunov functions capture this
behaviour by dividing the phase space into two disjoint sets: the chain-recurrent part
and the transient part. If a complete Lyapunov function is known for a dynamical
system the qualitative behaviour of the system’s solutions is transparent to a large
degree. The computation of a complete Lyapunov function for a given system is, how-
ever, a very hard task. We present significant improvements of an algorithm recently
suggested by the authors to compute complete Lyapunov functions. Previously this
methodology was incapable to fully detect chain-recurrent sets in dynamical systems
with high differences in speed. In the new approach we replace the system under con-
sideration with another one having the same solution trajectories but such that they
are traversed at a more uniform speed. The qualitative properties of the new system
such as attractors and repellers are the same as for the original one. This approach
gives a better approximation to the chain-recurrent set of the system under study.
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2 C. Argáez et al.

1 Introduction

Let us consider a general autonomous ordinary differential equation (ODE) ẋ = f(x),
where x ∈ R

n. A (classical) Lyapunov function [1] is a scalar-valued function defined
in a neighborhood of an invariant set. It is built to show the stability of such a set and
can be used to analyse its basin of attraction. Hence, it is linked to one attractor, e.g.
an equilibrium or a periodic orbit. In particular, a (strict) Lyapunov function attains
its minimum on the attractor and is strictly decreasing along solutions of the ODE.

This idea is generalized to a complete Lyapunov function [2–5], which completely
characterizes the behaviour of the dynamical system in the whole phase space.

A complete Lyapunov function is a scalar-valued function V : Rn → Rwhich
is defined not only on a neighbourhood of one attractor but in the whole phase
space under the condition of being non-increasing along solutions of the ODE.

The phase space can be divided into the area where the complete Lyapunov func-
tion strictly decreases along solution trajectories and the area where it is constant
along solution trajectories. If the complete Lyapunov function is sufficiently smooth,
these properties can be expressed by the orbital derivative V ′(x) = ∇V (x) · f(x), i.e.
the derivative along solutions of the ODE. The first area, where V ′(x) < 0, charac-
terizes the region where solutions pass through and the larger this area is, the more
information is obtained from the complete Lyapunov function. The second area,
where V ′(x) = 0, includes the chain-recurrent set; the complete Lyapunov function
is constant on each transitive component of the chain-recurrent set. In short, the
first one determines where solutions pass through while the second accounts for
determining the long-time behaviour.

Dynamical systems model real-world systems and describe their often compli-
cated behaviour, e.g. the double [6] and triple pendulumwith periodic forcing [7] and
dry friction [8], leading to time-periodic and non-smooth systems, or the dynamics
of the wobblestone [9]. There are many methods to analyse the qualitative behaviour
of a given dynamical systems: one of them directly simulates solutions with many
different initial conditions. This becomes very expensive and unable to provide gen-
eral information on the behaviour of a given system, unless estimates are available,
e.g. when shadowing solutions. More sophisticated methods include invariant man-
ifolds and their computation, which form boundaries of basins of attraction for the
attractors [10]. The cell mapping approach [11] or set oriented methods [12] divide
the phase space into cells and compute the dynamics between them, see e.g. [13].
These ideas have been used for a computational approach to construct complete Lya-
punov functions [14], where the authors consider the discrete system given by the
time-T map, divide the phase space into cells and compute the dynamics between
them through an induced multivalued map. This is done with the computer pack-
age GAIO [15]. Then, using graphs algorithms, an approximate complete Lyapunov
function is computed [16]. However, even for low dimensions, a high number of
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cells is required to compute the Lyapunov function under this approach. We will use
a different methodology, significantly improving the method described in [17].

Our newapproach follows fromamethod to compute classicalLyapunov functions
for a given equilibrium by approximating the solution to V ′(x) = −1, i.e. the orbital
derivative. We approximate the solution of this partial differential equation (PDE)
by means of mesh-free collocation with Radial Basis Functions: over a finite set of
collocation points X , we compute an approximation v to V that solves the PDE in
all collocation points.

At points of the chain-recurrent set, such as an equilibrium or periodic orbit,
the PDE does not have a solution; the numerical method, however, always has one.
The idea is to use the area F , where the approximation is poor, to approximate the
chain-recurrent set. Following the fact that a complete Lyapunov function should be
constant in the chain-recurrent set, in the next step, we solve the PDE V ′(x) = 0 for
x ∈ F and V ′(x) = −1 elsewhere.

For the numerical method we thus split the collocation points X into a set X 0 =
X ∩ F , where the approximation is poor, andX− = X \ X 0, where it works correctly.
Then we solve the PDE V ′(x) = 0 for all x ∈ X 0 and V ′(x) = −1 for all x ∈ X−.

As a result, the approximated function v gives us information about the solution to
the ODE under consideration. On the one hand, the set X 0 where v′(x) ≈ 0 approx-
imates the chain-recurrent set, including equilibria, periodic orbits and homoclinic
orbits, and on the other hand, the set X− in which v′(x) ≈ −1 approximates the part
where the flow is gradient-like. Information about the stability and attraction prop-
erties is obtained through the level sets of the function v: minima of v correspond to
attractors while maxima represent repellers. For more details of the method see [17].

In this paper we significantly improve the method from [17], described above.
Firstly, the method in [17] was not able to accurately identify the chain-recurrent set
in more complicated examples, in particular examples where the speed ‖f(x)‖ with
which solutions of the ODE are passed through varies considerably. Hence, in this
paper we replace the original system ẋ = f(x) with the system

ẋ = f̂(x), where f̂(x) = f(x)
√

δ2 + ‖f(x)‖2 (1)

with parameter δ > 0.

The new system has the same solution trajectories as the original system, but
these are traversed at amore uniform speed, namely ‖f̂(x)‖ = ‖f(x)‖√

δ2+‖f(x)‖2 ≈ 1.

The smaller δ is, the closer the speed is to 1.

This modification improves the ability of the method to find the chain-recurrent
set significantly, as we will show in the paper.

Secondly, the function V satisfying V ′(x) = 0 for x ∈ F and V ′(x) = −1 else-
where is not smooth due to the jump in the orbital derivative, while the error estimates
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in mesh-free collocation require the solution of the PDE to be smooth. To overcome
this problem, we propose to replace the discontinuous right-hand side function by a
smooth function.

Let us give an overview of the paper: In Sect. 2 we present the method with the
modified system (1) and show the improvements over the previous method from
[17] in three examples. Section 3 studies the dependence on the parameter δ. Sec-
tion 4 discusses replacing the discontinuous right-hand side by a smooth function
and applies the improved method to the same three examples before ending with
conclusions in Sect. 5.

2 Normalized Speed

As discussed above, we fix a parameter δ > 0 and consider the modified system (1)
with normalized speed. We fix a finite set of collocation points X , none of which
is an equilibrium point for the system. For our examples we used a subset of the
hexagonal grid

αHexa-basis

{
k

(
1
0

)
+ l/2

(
1√
3

)
: k, l ∈ Z

}

with parameter αHexa-basis > 0. We approximate the solution of the PDE V ′(x) =
∇V (x) · f̂(x) = −1 using mesh-free collocation with the kernel�(x) := ψl,k(c‖x‖)
given by the Wendland function ψl,k and parameter c > 0, for details see [17, 18].
We denote the approximation by v.

To identify the collocation points where the approximation is poor, indicating the
chain-recurrent set, we evaluate v′(x) near each collocation point – note that in the
collocation point the orbital derivative is−1 by construction. In particular, inR2, for
a given collocation point xj, we build a set of points Yxj placed in two spheres with
center xj, namely:

Yxj = {xj + rαHexa-basis(cos(θ), sin(θ)) : θ ∈ {0, 2π/32, 4π/32, 6π/32, . . . , 2π}}
(2)

∪{xj + r

2
αHexa-basis(cos(θ), sin(θ)) : θ ∈ {0, 2π/32, 4π/32, 6π/32, . . . , 2π}}

(3)

where r > 0 is a parameter and αHexa-basis is the parameter used to build the hexagonal
grid defined above. We define a tolerance parameter γ > −1 and mark a collocation
point xj as being in the chain-recurrent set (xj ∈ X 0) if there is at least one point
y ∈ Yxj such that v′(y) > γ .

Wewill now present themethod applied to three systemswith different properties;
these are the same systems as in [17] so that we can compare the two methods.
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2.1 Attractive and Repelling Periodic Orbits

The dynamical system given by

(
ẋ
ẏ

)
= f(x, y) =

{
−x(x2 + y2 − 1/4)(x2 + y2 − 1) − y

−y(x2 + y2 − 1/4)(x2 + y2 − 1) + x
(4)

has two periodic orbits and an equilibrium. The equilibrium at the origin is asymp-
totically stable, and so is the periodic orbit with radius 1, while the periodic orbit
with radius 1/2 is unstable.

We used a hexagonal grid with αHexa-basis = 0.02 in the set [−1.5, 1.5]2 ⊂ R
2

which gives a total of 29,440 collocation points, the Wendland function with param-
eters (l, k, c) = (5, 3, 1), the critical value γ = −0.5, and δ2 = 10−8. Furthermore,
for the evaluation grid we set r = 0.5. We have compared the new method (normal-
ized, right-hand side) with the non-normalized method of [17] (left-hand side), see
Fig. 1.

In the lower right figure in Fig. 1, we can see that the equilibrium at the origin is
found with less error than in the lower left figure where there are more points around
(0, 0). The chain-recurrent set actually looks very well-defined in both cases because
of the relatively simple dynamics.

Fig. 1 Lyapunov functions for system (4) under both non-normalized (upper left) and for the
normalized approach (upper right). Chain-recurrent set for both systems non-normalized (lower
left) and normalized (lower right)
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2.2 Van der Pol Oscillator

System (5) is the two-dimensional form of the Van der Pol oscillator. The system has
an asymptotically stable periodic orbit and an unstable equilibrium at the origin.

(
ẋ
ẏ

)
= f(x, y) =

{
y

(1 − x2)y − x
(5)

We have a hexagonal grid with αHexa-basis = 0.1 in the set [−4.0, 4.0]2 ⊂ R
2 which

gives a total of 7708 collocation points, the Wendland function with parameters
(l, k, c) = (4, 2, 1), the critical value γ = −0.5, and δ2 = 10−8. As before we set
r = 0.5 in the evaluation grid. We have compared the newmethod (normalized) with
the non-normalized method of [17], see Fig. 2.

The improvement of the proposed method can be seen clearly in the lower figures
in Fig. 2: the chain-recurrent set is much better detected in the normalized system.

Fig. 2 Lyapunov functions for system (5) under both non-normalized (upper left) and for the
normalized approach (upper right). Chain-recurrent set for both systems non-normalized (lower
left) and normalized (lower right)
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2.3 Homoclinic Orbit

The system (6) has an asymptotically stable homoclinic orbit and an unstable equi-
librium at the origin.

(
ẋ
ẏ

)
= f(x, y) =

{
x(1 − x2 − y2) − y((x − 1)2 + (x2 + y2 − 1)2)

y(1 − x2 − y2) + x((x − 1)2 + (x2 + y2 − 1)2)
(6)

We used a hexagonal grid with αHexa-basis = 0.02 in the set [−1.5, 1.5]2 ⊂ R
2 which

gives a total of 29,440 collocation points, the Wendland function with parameters
(l, k, c) = (4, 2, 1), the critical value γ = −0.75, and δ2 = 10−8. Again we used
r = 0.5 in the evaluation grid. The new method (normalized) is compared with the
non-normalized method of [17] in Fig. 3.

In this case, we can see a clear enhancement on the detection of the chain-recurrent
set. In Fig. 3 (lower left) the failing set over-estimates the chain-recurrent set, while
in Fig. 3 (lower right) the normalized method detects the chain-recurrent set much
better.

Summarizing, the new method is able to better detect chain-recurrent sets.

Fig. 3 Lyapunov functions for system (6) under both non-normalized (upper left) and for the
normalized approach (upper right). Chain-recurrent set for both systems non-normalized (lower
left) and normalized (lower right)
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3 Behaviour of the Lyapunov Functions Depending
on the Values of δ

Using the system defined in Sect. 2.1 by Eq. (4), we show the dependence of the
behaviour of the Lyapunov function for a normalized system with different parame-
ters δ. We have chosen to show examples for δ2 = 10−10 and δ2 = 1. Figure 4 shows
how the Lyapunov function changes with different values of δ2: for small δ2 (black)
the function has a derivative close to 0 around the equilibrium point, while for large
δ2 (red) the function has a steep slope. Since Eq. (1) leads to the PDE

∇V (x) · f(x) = −
√

δ2 + ‖f(x)‖2,

near the equilibrium the right-hand side is ≈ −δ. Hence, the gradient of V must
become large because f(x) is small close to the equilibrium.

Fig. 4 Lyapunov function for system (4) around the equilibrium point. With δ2 = 1 the gradient
of V is much larger close to the equilibrium at zero than with δ2 = 10−10
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4 Smooth Function

Our second main objective is in the next step to find a PDE which has a smooth
solution and, subsequently, approximate its solution numerically.

The method from [17] starts with the PDE V ′(x) = −1, which does not have a
solution on chain-recurrent sets; for an equilibrium x0, e.g. we clearly have V ′(x0) =
0. By usingmesh-free collocation to approximate a solution of V ′(x) = −1we obtain
an approximation vwhich satisfies v′(x) ≈ −1 in areas which are not chain-recurrent
and results in a poor approximation in the chain-recurrent set. Let us denote the area
where the approximation is poor by F .

In the method described in [17] we then study the PDE

V ′(x) =
{
0 if x ∈ F,

−1 if x /∈ F .

As the right-hand side is discontinuous, the solution V will not be a smooth function.
We assume that F is a compact set and improve the method by considering the

following PDE with smooth right-hand side

V ′(x) = r(x) :=
{
0 if x ∈ F,

− exp
(
− 1

ξ ·d2(x)

)
if x /∈ F,

(7)

where d(x) = miny∈F ‖x − y‖ is the distance between the point x and the set F and
ξ > 0 is a parameter.

To implement the method numerically, we construct the approximation to the
complete Lyapunov function with our new approach. We first normalize our system
ẋ = f(x) by replacing it with the system (1). Note that we only need to evaluate the
right-hand side r(x) at the collocation points. Recall that we identify a collocation
point xj to be in an area of poor approximation F , as described above, if there exists
at least one y ∈ Yxj with v

′(y) > γ . Then we split the set of collocation points X into
the subsetX 0 consisting of points in an area of poor approximation and the remaining
points X− = X \ X 0.

For all collocation points xj ∈ X we then approximate the distance of x to the set
F , represented by X 0, by

d(xj) ≈ min
y∈X 0

‖xj − y‖;

note that d(xj) = 0 for all xj ∈ X 0.
Now, the right-hand side r(x) of the Eq. (7) at a collocation point xj ∈ X is set to

be r(xj) = 0 if xj ∈ X 0, and r(xj) = exp
(
− 1

ξ ·d2(xj)

)
if xj ∈ X−.

For our test systems (4), (5) and (6) we have already shown the normalized Lya-
punov functions in Figs. 1, 2 and 3, respectively, so now we show the solution of
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Fig. 5 First row: values of d as a function of the collocation points for systems (4) in column 1,
(5) in column 2 and (6) in column 3, respectively. Second and third row: Lyapunov functions (third
row) and their derivatives (second row) for systems (4) in column 1, (5) in column 2 and (6) in
column 3 respectively, with the modified, smooth right-hand side

(7) as described above in Fig. 5. In this case, for all computations in Fig. 5, the
normalization factor used is δ = 10−8 with ξ = 300. The second row shows that the
orbital derivatives of the approximated functions are smooth functions.

5 Conclusions

In this paper we have significantly improved a method to construct complete Lya-
punov functions and determine the chain-recurrent set. The two main improvements
were firstly to consider a system with normalized speed, which enabled us to detect
the chain-recurrent set more accurately. Secondly, we have replaced the discontinu-
ous right-hand side of the PDE under consideration by a smooth function so that the
PDE has a smooth solution, which is well approximated by the proposed method.
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of Cantilevered Nanotube Via Cell
Discretization Method
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Abstract Based on the nonloocal elasticity theory, this paper deals with the dynamic
instability analysis of cantilevered single-walled carbon nanotube with concentrated
mass, located at a generic position, and subject to a follower force at the free end.
Accounting for the small scale effect, the governing equations of motion are derived
using an alternative Hamilton’s variational principle and the governing equations
are solved numerically employing the Cell-Discretization Method (CDM) in which
the nanotube is reduced to a set of rigid bars linked together by means of elas-
tic constraints. The resulting discrete system takes into account nonlocal effects,
added mass, and position of added mass, and follower force direction. A compara-
tive analysis is performed in order to verify the accuracy and validity of the proposed
numerical method. The effects of the nonlocal parameter and dimensionless mass on
the dynamic instability of single-walled carbon nanotube are shown and discussed
in details. The effect of a sub-tangential follower force on the stability of cantilever
single-walled carbon nanotube is studied. Finally, the validity of the proposed anal-
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1 Introduction

Outstanding mechanical, physical and electronic properties of carbon nanotubes
(CNTs) have stimulated intensive studies in a variety of fields of science and engi-
neering since their first discovery in 1991 thanks to Iijima’s paper [1].

The literature regarding thematerial properties andmechanical behaviour ofCNTs
is very rich and two main theoretical approaches, based on the molecular dynamics
and continuum mechanics, have been developed. Although the classical continuum
theories are able to predict the mechanical behavior of nanostructures, it turned up
to be unsuitable, because the small size effects are neglected. Thus adopting the
nonlocal elasticity theory, as developed by Eringen in [2, 3], is usual. Applying the
Erigen’s theory, many papers investigating the mechanical properties of CNTs have
been appearing. In particular, elastic models of beams have been implemented to
study static and dynamic problems, such as bending, buckling and free vibration of
carbon nanotubes, using Euler- Bernoulli [4, 5] and Timoshenko [6–8] beammodels.

In recent years, due to the remarkable properties of CNTs, a growing interest, in
the analysis of the vibrations of nanotubes under a nonconservative field, such as
a follower forces, and their influence on free-vibration of CNTs, has attracted the
attention of many reseachers, although few papers regarding the structural stability
of the CNTs can be found in literature (see [9–11]).

The present paper deals with the nonlocal dynamic instability of a cantilevered
single-walled carbon nanotube with an attached concentrated mass, located at a
generic position, and its position of added mass and subject to a follower force, at
the free-end. The governing equations of motion are derived using an alternative
Hamilton’s variational principle and are solved numerically employing the Cell-
Discretization Method (CDM), which reduces the nanotube to a set of rigid bars
linked together by means of elastic constraints. The resulting discrete system takes
into account nonlocal effects, added mass, and its position, and follower force direc-
tion. A comparative analysis is performed in order to verify accuracy and validity of
the proposed numericalmethod. The effects of nonlocal parameter and dimensionless
mass on the dynamic instability of SWCNT are shown and discussed in details. The
effect of a sub-tangential follower force on the stability of cantilever single-walled
carbon nanotube is studied.

2 Formulation and Solution of the Problem

2.1 Governing Equations of Motion for Dynamic Instability
of Nonlocal Single-Walled Nanotube

Consider a single-walled carbon nanotube (SWCNT), clamped at the left end and
free at the right one, of length L. The nanotube is subject to a subtangential force p, at
the free end, and carrying a concentrated mass Mγ , located at a generic position, as
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Fig. 1 Geometry of single-walled carbon nanotube (SWCNT)

shown in Fig. 1. The direction of the force p is specified by ε ψ , where ε ψ denotes
the angle between the z-axis and the direction of the compressive subtangential force.

According to the Hamilton’s Principle, the motion equations of the system are
derived as follows:

∫ t2

t1

(δT − δEt) dt +
∫ t2

t1

δWncdt = 0 (1)

where δ denotes the variation, t is time, T and E are the kinetic and total potential
energy of the nanotube, respectively, while Wnc represents the nonconservative vir-
tual work of the applied load.
The kinetic energy of the nanostructure under consideration can be expressed as:

T = 1

2

∫ L

0

[
ρA

(
∂v(z, t)

∂t

)2
]
dz + 1

2
Mγ

(
∂v(γL, t)

∂t

)2

+ 1

2
Jm

(
∂

∂z

∂v(γL, t)

∂t

)2

,

(2)

where v(z) is the transverse displacement of the nanotube, with z being the spatial
coordinate along the nanotube, A is the cross-sectional area, ρ the mass density of
SWCNT,Mγ denotes the concentrated mass, at the abscissa z = γL, and Jm is rotary
inertia of the added mass.
The total potential energy Et assumes the following form:

Et = Le − P − V

= 1

2

∫ L

0
EI

(
∂2v(z, t)

∂z2

)2

dz −
∫ L

0

(
(e0a)

2 ρA
∂2v(z, t)

∂t2

) (
∂2v(z, t)

∂z2

)
dz

−
∫ L

0

(
(e0a)

2 p
∂2v(z, t)

∂z2

) (
∂2v(z, t)

∂z2

)
dz − 1

2

∫ L

0
p

(
∂v

∂z

)2

dz (3)

i.e. Et is sum of three different contributions: the strain energy Le of the nanotube, the

potential energy P of the inertial force
(
ρA ∂2v(z,t)

∂t2

)
due to additional displacement(

(e0a)
2 ∂2v(z,t)

∂z2

)
and finally the potential energy V of axial component of the follower
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force p. In Eq. (3), E is Young’s modulus, I the second moment of the cross-sectional
areaA, e0 is a nonlocal scaling parameter, which has to be experimentally determined
for each material, and a is an internal characteristic length.
Taking into account the expressions of kinetic and potential energy, one gets:

T − Et =
1

2

∫ L

0

[
ρA

(
∂v(z, t)

∂t

)2
]
dz + 1

2
Mγ

(
∂v(γL, t)

∂t

)2

+ 1

2
Jm

(
∂

∂z

∂v(γL, t)

∂t

)2

−

1

2

∫ L

0
EI

(
∂2v(z, t)

∂z2

)2

dz −
∫ L

0

(
(e0a)

2 ρA
∂2v(z, t)

∂t2

)(
∂2v(z, t)

∂z2

)
dz +

∫ L

0

(
(e0a)

2 p
∂2v(z, t)

∂z2

) (
∂2v(z, t)

∂z2

)
dz + 1

2

∫ L

0
p

(
∂v

∂z

)2

dz (4)

Finally, the nonconservative virtual work of these transverse components can be
expressed as:

δW nc = −pε
∂v(L, t)

∂z
δv(L, t) (5)

The parameter ε completely defines the dynamic behaviour of the system: for ε = 0
the classical conservative Euler case is recovered, whereas for ε = 1 the nanobeam
is subject to purely tangential forces (Beck problem). As ε varies in the range [0,1]
critical loads are reached by means of divergence or flutter instability.

Since obtaining an exact analytical solution to Eq. (1) is not that easy, the present
study relies on the approximation solution. For linear free vibration of a nanotube,
the vibration modes are harmonic in time. Hence, the temporal and spatial terms for
transverse deformation can be separeted as:

v(z, t) = v(z)eiωt (6)

where v(z) represents the vibration amplitude shape function, i =
√−1 and ω is the

natural frequency. To find the solution of the Eq. (1), the Cell-Discretization Method
(CDM) is applied to solve the eigenvalue problem.

2.2 Method of Solution: Cell-Discretization Method (CDM)

The Cell Discretization Method (CDM) is an efficient numerical method for the
solution of linear partial differential equations. The method has already been used by
the authors [12, 13] and by Raithel and Franciosi [14] for different structural prob-
lems. Recently, De Rosa and Lippiello [15] have employed the CDM to investigate
the free vibration frequencies problem of coaxial double-walled carbon nanotubes
(DWCNTs) and in [16] for analyzing the free vibration analysis of single-walled
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Fig. 2 Structural system
discretization CD method

carbon nanotube (SWCNT) bounded at the ends, with translational and elastic con-
straints, and attached mass. In the present paper the CD method has been properly
modified for the considered problem. The nanotube is reduced to a set of t rigid bars,
linked together by t + 1 elastic cells, where masses and stiffnesses are supposed to
be concentrated, (see Fig. 2). In this way, the structure is reduced to a system with
finite number of degrees of freedom (MDOF). The Lagragian parameters can be
assumed to be the ϕi rotations of the rigid bars, i.e. the generalized coordinates of the
rigid-elastic system. All the possible configurations are functions of the following
vector:

ccc = [ϕ1, ϕ2, . . . , ϕi, . . . ϕt]
T (7)

and the vertical components of the nodal displacements and the relative rotations
between the two faces of the elastic cells are given by the following expressions:

v1 = 0, vi = −
i−1∑
j=1

ϕj
L

t
, i = 1, . . . , t + 1 (8)

ψ1 = ϕ1, ψi = ϕi − ϕi−1, ψt+1 = 0, (9)
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In matrix form, being AAA the displacements matrix and BBB the rotations matrix, it is
possible to write:

vvv = AcAcAc,,, ψψψ = BcBcBc. (10)

The rectangular matrices AAA and BBB have t + 1 rows and t columns, and each entry can
be calculated according to Fig. 2. The form of matrix AAA is:

Aij =
t+1∑
i=2

i−1∑
j=2

i
L

t
(11)

with A1j = 0, for j = 1, …,t; while the matrix BBBhas Bii = 1 and B(i+1)i = −1, for
i = 1, . . . , t − 1. According to the present discretization, the axial components of
the nodal displacements assume the following form:

w1 = 0, wi = −1

2

i−1∑
j=1

ϕ2
j

L

t
, i = 1, . . . , t + 1 (12)

In the matrix form, the axial displacements of cell t+1 becomes:

wn+1 = −1

2

t∑
j=1

ϕ2
j

L

t
= −1

2
cccTDlDlDlccc. (13)

where DlDlDl is diagonal matrix of the terms L
t .

Substituting the Eqs. (8–9) and (12–13) into Eq. (4), the kinetic energy should be
expressed as functions of the Lagrangian coordinates as follows:

T = 1

2

∫ L

0
ρAv̇vv2dz + 1

2
Mγ

(
v̇vv2

)
γL + 1

2
Jm

(
v̇vv′)2

γL (14)

or, in discretized form:

T = 1

2

t+1∑
i=1

miv̇
2
i + 1

2
Mγ

(
v̇2

)
γL + 1

2
Jm

(
ϕ̇2

)
γL . (15)

The mass is concentrated at the elastic cells and it is represented by the following
terms of the diagonal matrix:

mt1 = ρA1
L

2t
, mti = ρ

Ai + Ai−1

2

L

t
, mtt+1 = ρAt

L

2t
, i = 2 . . . .t, (16)

and the Eq. (15) becomes:

T = 1

2
ċccT

[
AAAT

(
mmmt + δiγMMMγAAA + δiγ JJJ

)]
ċcċccċccc (17)
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where δiγ denotes the Kronecker index, relative to the concentrated mass at the
generic abscissa γL, and the matrix JJJ represents the rotational inertia of the added
mass.

The virtual work L′
f of the inertial forces due to nonlocal additional displacement

can be expressed as:

L′
f =

∫ L

0

(
(e0a)

2 ρA(z)v̈vv2vvv′′) dz = t
(e0a)

2

L

[
AAAċcc

]T
mmmmmmmmmtBBBċcc = ċccTbflbflbflċcc (18)

where

bflbflbfl = t
(e0a)

2

L
AAATmmmtBBB. (19)

The strain energy is concentrated at the elastic cell of the nanotube and it should be
expressed as functions of the Lagragian coordinates as follows:

Le = −1

2

∫ L

0
EI(z)vvv′′2dz = −1

2

t∑
i=1

Miψi =

−1

2

[
kf Bckf Bckf Bc

]T
BcBcBc = −1

2
cccTBBBTkfkfkfBBBccc = 1

2
cccTktktktccc (20)

where Mi = t E(Ii+Ii−1)

2L ψi = kfiψi, and kfkfkf denotes the diagonal stiffness matrix, and

ktktkt = BBBTkfkfkfBBB (21)

The potential energy L′′
f of follower force due to nonlocal effect is given by:

L′′
f =

∫ L

0
(e0a)

2 p vvv′′vvv′′dz =
p (e0a)

2 [BcBcBc]TBBBccc = p (e0a)
2 cccTBBBTBBBccc = p cccTkfLkfLkfLccc (22)

with
kflkflkfl = BBBTBBB (23)

The virtual work LN of the conservative axial load is expressed as

LN = 1

2

∫ L

0
p

(
vvv′)2 dz = 1

2
p cccTDlDlDlccc (24)

and the energy of the nonconservative axial load is given by:

δWnc = −ε p
∂vvv(L, t)

∂z
δvvv(L, t) = −ε p ϕt δvt+1 = −ε p cccTkncknckncδccc (25)
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where knckncknc is a matrix with t rows and t columns, with knckncknct,j = −1 for j = 1, . . . , t.
The global stiffness matrix is:

KKK = ktktkt + p kfLkfLkfL + ε p knckncknc − p DlDlDl, (26)

and the global masses matrix is given by:

MMM = mmm − bflbflbfl. (27)

with mmm = [
AAAT

(
mmmt + δiγMMMγ ) AAA + δiγJJJ

]
.

The Lagrange equation for discrete systems is expressed as follows:

d

dt

(
∂T

∂φ̇i

)
− ∂T

∂φi
+ ∂Le

∂φi
= Qi (28)

and one gets: (
KKK − ω2MMM

)
ccc = 0, (29)

where ω is the circular frequency and ccc denotes the mode shape or eigenvector. A
solution to this homogeneous system of equations exists only if the determinant of
the coefficient’s matrix is setted equal to zero:

det
(
KKK − ω2MMM

) = 0, (30)

where ω2 are the frequencies of natural vibration, or eigenvalues.

3 Numerical Comparisons and Discussion

In order to show the potentialities of the proposed approach (CDM), several numer-
ical examples have been performed, using a general code developed inMathematica
[17]. Numerical results are illustrated and compared against the ones available in
literature. In the numerical analyses, the influence of the nonlocal parameter, mass
and position of the added mass, and the follower force on the natural frequency value
is evaluated.
For convenience of analysis, the following nondimensional parameters are also intro-
duced:

Ω1 = 4

√
ω2
1ρA0L4

EI0
(31)
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where Ω1 denotes the first nondimensional frequency value, A0 and I0 are the cross-
sectional area and moment of inertia, respectively, of an uniform nanotube;

Ms = Mγ

ρA0L
; η = e0a

L
, P = pL2

EI0
(32)

whereMs is the nondimensional added mass, η is the non local parameter and finally,
P is the nondimensional coefficient of the axial load.

3.1 Model Validation

A prelimary numerical example aims at comparing the present results with the exact
ones proposed in [16] and we refer to the parameters listed in Table 1 of [18]. A
cantilevered single-walled carbon nanotube with attached mass and follower force p
= 0 is considered. For two different values of nonlocal parameter η = [0, 1] and for
nondimensional addedmassMs, which varies in the range [0, 1], in Table 1 the values
of the first nondimensional frequency Ω1 are tabled. As one can see, the numerical
results by the CDM, obtained using a lower number of cells, i.e. t = 100, are in perfect
agreement with the exact ones obtained in [16]. Moreover, from Table 1, one can
see that the first non dimensional natural frequency value decreases with increases
in concentrated mass Ms value. It is also observed that Ω1 increases if the nonlocal
effect η increases.

Table 1 Comparison of the first nondimensional frequency Ω1 obtained from exact solution in
[16] and CDM, for P = 0

Ms η = 0 [16] CDM η = 0.1 [16] CDM

0 1.8751 1.8751 1.8792 1.8792

0.1 1.7227 1.7227 1.7258 1.7258

0.2 1.6164 1.6164 1.6187 1.6187

0.3 1.6164 1.5361 1.53808 1.5380

0.4 1.4724 1.4724 1.4740 1.4740

0.5 1.4200 1.4200 1.4213 1.4213

0.6 1.3757 1.3757 1.3768 1.3768

0.7 1.3375 1.3375 1.3385 1.3385

0.8 1.3041 1.3041 1.3050 1.3050

0.9 1.2745 1.2745 1.2753 1.2753

1 1.2479 1.2479 1.2486 1.2486
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3.2 Effect of Nondimensional Added Mass Ms and Taper
Ratio Coefficient c on the First Nondimensional
Frequency Ω1 of a Non-uniform Nanotube

In this numerical example, the influence of nondimensional added mass Ms and the
nondimensional taper ratio coefficient c on the first nondimensional frequency value
of non-uniform nanotube is investigated. For this purpose, a clamped non-uniform
nanotube with circular hallow cross-section and carrying a concentrated mass Ms,
placed on the right-end of the nanotube, i.e. Ms = 0.5, is considered. In order to solve
this problem, the geometrical and physical properties of nanotube of [19] are used
and the following variations of cross-sectional area A and moment of inertia I are
assumed:

A(z) = A0

(
1 + c

z

L

)q ; I(z) = I0
(
1 + c

z

L

)q+2
(33)

where A0 and I0 represent the cross-sectional area and moment of inertia of the
SWCNT at the left end, for z = 0, respectively, and c that must satisfy the inequality
c > −1, in order to avoid the nanotube tapers to zero between its ends.

Assuming P = 0 and q = 1, in Table 2, the first nondimensional natural frequency
Ω1 is reported, as obtained using CDM, for different values of nonlocal effect coef-
ficient η and taper ratio coefficient c, namely −0.5 and 0.5. As it can be noticed,
the nondimensional natural frequency Ω1 increases by increasing c and η. More-
over, from Table 2, it can be easily observed that the present results are in excellent
agreement with the results given by De Rosa et al. in [19].

3.3 Effect of Nondimensional Nonconservative Force p
and Nonlocal Coefficient η on the First Nondimensional
Frequency Ω1

In the following numerical example, the effect of nonlocal effect coefficient η and
nonconservative force P on the first nondimensional frequency valueΩ1 is evaluated.

Table 2 First nondimensional natural frequency Ω1 value for varying nonlocal effect η and taper
ratio coefficient c, with Ms = 0.5 and q = 1

η DQM CDM DQM CDM DQM CDM

c = −0.5 c = −0.5 c = 0 c = 0 c = 0.5 c = 0.5

0 1.31181 1.31173 1.41996 1.41995 1.47881 1.47873

0.04 1.31208 1.31199 1.42017 1.42016 1.47898 1.47891

0.08 1.31287 1.31279 1.42081 1.42079 1.47950 1.47942

0.12 1.31412 1.31412 1.42187 1.42185 1.48036 1.48028

0.16 1.31611 1.31602 1.42337 1.42335 1.48157 1.48150

0.2 1.31858 1.31850 1.42532 1.42530 1.48315 1.48307
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Fig. 3 The influence of nonconservative force P on the first nondimensional frequency Ω1, for
varying of nonlocal effect η = 0, 0.1, 0.2

In Fig. 3, the load-frequency curves are plotted for three values of nonlocal effect
parameter η [0, 0.1, 0.2] and by fixing q = 1, P = 1 andMs = 0.5. The three curves of
Fig. 3 refer to different values of taper ratio coefficient c.As shown, by increasing c the
first frequency increases, whereas if the nonlocal effect increases the first frequency
value decreases.Moreover, it is interesting to note that if the nonlocal effect increases
the first nondimensional natural frequency decreases when the nonconservative force
is considered.More particularly, comparing the results quoted in Table 2, obtained for
P = 0, with those plotted in Fig. 3, it can be easily observed that the nonconservative
force P, at the free-end, influences the behavior of the nanotube significantly. In
fact, for P = 0 if the nonlocal effect increases, Ω1 increases; whereas for P = 1, Ω1

decreases if the nonlocal coefficient η increases.

4 Conclusions

In the present paper, the nonlocal dynamic instability of a cantilevered single-walled
carbon nanotube carrying a concentrated mass, at a generic position, and subject
to a follower force, at the right end, is studied. According to the Eringen’s and
Euler-Bernoulli beam theories, the equation of motion are derived using the varia-
tional approach and are subsequently solved usingCell-DiscretizationMethod. Some
numerical examples show the effectiveness of the proposed approach, even through
a comparison against the results in literature. The influence of nonlocal parame-
ter, added mass and taper ratio coefficient on the dynamic instability of SWCNT is
discussed.
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Abstract This work presents a study of the mechanism of physical crosslinking of
hyaluronic acid in the presence of common phospholipids in synovial joint organ
systems. Molecular dynamic simulations have been executed to understand the for-
mation of hyaluronan networks at various phospholipid concentrations. The results
of the simulations suggest that the mechanisms exhibit subdiffusion characteristics.
Transportation quantities derive as a function of time during numerical calculations
of mean square displacement, and observations of sublinear growth were noted.
Coarse-grained models are deployed to obtain a mathematical description where a
random walker and several subdiffusion schemes of its motion describe the models.
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Gdańsk University of Technology, Gdańsk, Poland
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1 Introduction

Hyaluronic acid is a major component in many systems in the body, and serves an
important role in each of those systems. This study focuses on hyaluronic acid and its
role in the complex synovial joint system and how it is influenced by common phos-
pholipids [4, 9, 11, 19, 20]. In a healthy AC synovial joint system, hyaluronic acid
contributes to viscoelasticity, lubrication, and overall joint support [1]. Hyaluronic
acid is beneficial to the system when it is allowed to crosslink into a supramolecular
structure needed for facilitated lubrication [5]. As changes in physiology occur, the
properties of the hyaluronic acid in the system change [8]. In pathogenesis, a number
of changes in the system occur, which ultimately alters the efficacy of HA. When
common phospholipids interact with the HA, physical crosslinking is inhibited and
the viscoelasticity of the synovial fluid decreases [17]. Using in silica experiments on
the YASARA software program [21], models were designed to imitate a nanoscopic
section of the fluid filled synovial joint. This occurence is examined by the findings
of this study and indicate that the traditional treatment for osteoathritic joints of
intra-articular HA injections is ineffective for lubrication, and other options should
be explored.

Hyaluronic acid and phospholipids are both very important in the biolubrication
mechanism of synovial joint organ systems. Both molecules are consider in non-
surgical treatment of osteoarthritis via intra-articular injections in the clinical field
and provide short term relief, but are not permanent solutions. As depicted in Fig. 1,
the top image presents a healthy systemwith crosslinked HAwhile the bottom image
depicts a system in which the green hyaluronic acid chains are not able to crosslink
due to the increased levels of phospholipids.

2 Methods

The molecular dynamics simulation method has been used to look at the interactions
between two components of synovial fluid. The system is composed of 16 chains of
hyaluronic acid with a length of 25nm (10kDa) in the extended form and parallel to
each other. The simulation box is filled with saline solution 0.9% NaCl to obtain 5%
solution of HA, and then the different numbers of lipids (DPPC) are added to obtain
concentration of HA and lipids at ratios between components denoted as kPL:HA =
cPL
cHA

, where cPL and cHA represent concentration of PL and HA respectively. The
modeled lipid DPPC (dipalmityphophatidocholine) has been chosed because of its
highest concentration among other lipids in synovial fluid [7]. The simulation that ran
for 10ns was performed at constant temperature of 310K at constant pH = 7. Figure
2 presents the initial structure of a system without water and lipids visualisation.

Assisted Model Building with Energy Refinement (AMBER) force field has
been employed to mimic interactions between molecules, due to its universality and
good description of interaction. YASARA structure package was used for molecular
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Fig. 1 The artistic depiction of articular cartilage at different stages of functionality. The top part
present the healthy (normal) physiological conditions. Lower part present the abnormal (patho-
logical conditions). Degeneration of AC surface leads to increase of phospholipids and lowers
crosslinking mechanism

dynamics simulations. To describle a process of crosslinking ofHA thiswork focused
on two main phenomena when physical crosslinking occurs, namely hydrophobicity
of the network and number of contacts reflecting how close chains are to each other.

The number of hydrophobic interactions between hydrophobic atoms is calculated
by number of carbon atoms of groups close to other carbon based goroups with a
distance less than 0.5nm. Radius of gyration Rg is a measure:

Rg =
√
√
√
√

1

N

N
∑

i=1

(Ri − C)2 (1)



28 P. Bełdowski et al.

Fig. 2 The initial structures of systems of interest. Water molecules as well as lipids are not
presented. Red dots represent oxygen atoms, blue - carbon and white hydrogen

Here Ri stand for position of each atom in the system and C is a center of a mass.
Solvent accessible surface, a measure describing penetration of water molecules into
molecule, consists of all the points that the center of the water probe (i.e. the nucleus
of the oxygen atom in the water molecule) can reach while rolling over the solute.
The shortest possible distance between the water oxygen nucleus and a solute atom
is simply the sum of the Van der Waals radii of the solute atom and the water probe
was calculated with method descibed by [14]. The number of contacts between atom
lists those pairs of selected units that are closer than the specified cutoff parameter
which in our case is 0.5nm.

3 Results

Figure3 presents the final structures of system at different PL concentrations with
increasing number of phospholipids from top to bottom. Evolution of Rg (Fig. 4)
shows that there is no significant difference between all three cases. The reasonbehind
these is low cmc (critical micelle concentration) of DPPC lipids, where they tend to
create micelles rather than interact with HA. Hence the penetration of HA network is
low. The result is different that one obtained previously [17], however this is a result
of initial conditions that imitates well established network. As presented in Fig. 5
water molecules penetration is increased with PLs concentration. Figure6 shows an
apparentmechanismof repellingwater fromnetwork in absence of lipids. Thismeans
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Fig. 3 The final structures of systems of interest. The HA has been colored green for better visu-
alisation, color of atoms building lipids are colored in the same fashion as in the Fig. 2. From left
to right the concentration of lipids increases

Fig. 4 Relative radius of gyration in function of time. All the cases are described in legend of a
plot

that the presence of lipids helpwatermolecules to better penetrate system.Thismeans
that the denser, stronger network is created in absence or low concentration of lipids.
Figure7 shows that mechanism from perspective of overall number of intramolecular
contacts inside network.

4 Fractional Model of Phenomenon

Polymeric system usually exhibit anomalous dynamics, where the mean-square dis-
placement of a single monomer increases as tα, 0 < α < 1 until to a certain time
limit τ . It means that until time τ the dynamics has subdiffusive character. After τ the
process becomes diffusive, where mean-square displacement of a single monomer
is proportional to time [10].
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Fig. 5 Solvent accessible surface in function of time. All the cases are sescribed in legend of a plot

Fig. 6 Number of hydrophobic interactions between atoms in function of time. All the cases are
described in legend of a plot

There is many models, that explain such observations [2]. This work uses various
ideas coming from several of them. Example of such a model is the self-avoiding
Rouse model [10], that gives an incomplete explanation about the observations.
This model is based on assumptions of both: Rouse model [15] and self-avoiding
walk model. The polymeric macromolecule is divided into smaller parts called sub-
molecules. Submolecules can be treated as a rigid bead. In the most simple formu-
lation of the Rouse model there is assumption that in polymeric dynamics neglect
interactions between the submolecules that perform gaussian motion. Motions of
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Fig. 7 Contacts between atoms in function of time.All the cases are described in legend of a plot.On
the left hand side one can see the results for intra-molecular, on the right hand side inter-molceular
contacts between HA chains

submolecules are independent between each other. This is a drawback of this theory.
Self avoiding walk completes the Rouse theory, but not fully. There is introduced
the fact, that submolecules (bead) of polymer can’t occupy the same point in space.
More advance models assume that between submolecules there are interactions (for
example: the Zimmmodel). But our results suggest to use another model to describe
them. We propose to use ideas presented in [3].

Polymeric systems are large macromolecules that have several lenght - scale
dependent relaxation times. The longest one of them is called the terminal relaxation
time τ . Time τ manifested in the decay of the polymer’s end-to-end vector correlation
function. Using idea of Rouse model one can divide HA molecule on submolecules
and we follow their dynamics. Mean square displacement of a single submolecule of
a polymer, for t < τ , behave as tα. For t > τ process is proportional to time. So one
can conclude that the dynamics of a tagged submolecule in a polymer chain must be
anomalous till the terminal relaxation time τ .

To compare simulations results with theoretical predictionswe have plottedmean-
square displacement of a single submolecule in the function of time in logarithmic -
logarithmic scale. This results are presented on the Fig. 8. One can see that depen-
dency of mean-square displacement of a single submolecule from time as power
function, untill time τ is well fulfilled. Goodness of fit of a model to data from sim-
ulation is measured by using coefficient of determination R2. In the table one can
see that R2 has very high values. It means that assumption about power dependency
mean-square displacement of a single submolecule from time is well fulfilled.
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Fig. 8 MSD in loglog scale top row represent organised structure while lower row show random
structure. Top to bottom one can see a system with growing concentration of lipids. Parameters of
the fit are presented in Table 1

Table 1 Parameters of fitting with a linear function to MSD

Case HA HA+24 HA+56

R2 0.9640 0.9801 0.9884

α 0.8621 0.9537 0.9192

Taking into account values of α parameter and its dependency from concentration
we propose to describe process in the framework of a model presented in [3]. In the
article there is explanation of behaviour of fully hydrated dipalmitoylphosphatidyl-
choline membrane during the gel-to-subgel phase transformation process. Author
argumented that description of it is a problem of time scale. This work uses this idea
to presented here results of simulations.

In dynamics of HA molecule one can distinguish two phases. First when one
observes anomalous dynamics and the second when the system achieved its final
structure and motion of its part is random. There is of course not only one system
but statistical ensemble of such molecular systems. Properties of single polymeric
molecule generally is determined by hydrophobic and hydrophilic forces. So the
properties of statistical ensemble of molecule is also determined by them. To pro-
posed model that describe the ensemble one can assume that there are some number
of hydrophobic forces Nf and some number of hydrophilic forces Nh, both depend
on time. One assumes that numbers of all forces acting on a molecule is constant:

N = Nf (t) + Nh(t). (2)
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Taking into account results of simulations of hydrophobic contacts we propose to
use in description of Nf (t) after time τ equation in the form:

M
d

dt
Nf (t) = (N − Nf (t)) (3)

This equation has solution in the form:

Nf (t) = Nf (0)e
−At + N

(

1 − e−At
)

(4)

whereNf (0) represents initial number of contacts. But before time τ one can observe
processes, that causes unnormal kinetic. This part of the process can be described by
formula:

RL
0 Dα

t

[

Nf (t)
] = Aα(N − Nf (t)), (5)

where 0Dα
t [·] is a Riemann-Liouville derivative defined, for 0 < α < 1, by formula

[12, 16]
RL
0 Dα

t

[

f (t)
] = 1

�(1 − α)

d

dt

∫ t

0

f (τ )

(t − τ )α
dτ . (6)

To solve this equation one can use Caputo derivative defined, for 0 < α < 1, by:

C
0 D

α
t

[

f (t)
] = 1

�(1 − α)

∫ t

0

1

(t − τ )α

df (τ )

dτ
dτ (7)

and relatonship between both kind of derivatives [12, 13]

RL
a Dα

t

[

f (t)
] =C

a Dα
t

[

f (t)
] + t−α

�(1 − α)
f (0). (8)

Using the last relation one can write proposed equation in the following way:

C
0 D

α
t

[

Nf (t)
] + t−α

�(1 − α)
Nf (0) = Aα(N − Nf (t)). (9)

Using the Laplace transform method to solve differential equation one can obtain
following solution for proposed equation and initial condition Nf (0) = 0:

Nf (t) = AαN
[

1 − (

Eα,1 (−Aαt
α) + (Aα − 1) tαEα,1+α (−Aαt

α)
)]

. (10)

Here, for x > 0, α > 0 and β > 0, :

Eα,β (x) =
∞

∑

k=0

xk

� (β + αk)
(11)
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is a Mittag-Leffler function [6]. Transition from anomalous to normal kinetics is
equivalent to replace fractional derivative to normal derivative.

5 Conclusions

There is well established connection between AC tribology and mechanisms of syn-
ovial joint organ system lubrication as governed in partial by HA:PL interaction [1,
18]. Presented results continues the description of system of interest as an inter-
play between HA network creation in various physiological conditions [8, 17]. This
study further demonstrates that the increased concentration of PL connected to var-
ious physiological conditions have an influence on HA network creation.

Results show a mechanism of HA network creation/mentainance in a presence
of phospholipids. Unlike in previous work on HA:PL interaction [17] there is no
difference in geometrical parameters of a system, namely radius of gyration Rg (see
Fig. 4). This is caused by initial conditions of the systems which meant to mimick
the well established network of HA. Due to its hydrophilic nature HA interact rather
within network than with lipids. There is however changed in interaction inside net-
work. As presented in Fig. 1 increase in PL concentration results in lower number
of intermolecular contacts between HA chains. Final strucures of simulations (Fig.
3) show that PL can penetrate HA network and can create complexes of HA net-
work micelle like structures. This can also be seen when looking at the behavior
of water molecules. Figure 5 shows that HA without phospholipids create denser
network repelling water molecules from the interior. This can also be seen in Fig. 6,
PL concentration cause in higher number of hydrophobic interactions between HA
chains. This result is in good agreement with experimental results which show that
PLs increase hydrophobicity of HA. Presented model of HA gel formation ratio-
nalize the obtained results in terms of fractional calculus. Process is governed by
hydrophobic interactions therefore it is useful to describe HA gel formation in pre-
sented fashion.Due to the nature ofHA:PL interactions polymer dynamics desciption
approaches such as Rouse model are not useful.
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Topological and Measure-Theoretical
Entropies of a Solenoid

Andrzej Biś and Agnieszka Namiecińska

Abstract A mathematical solenoid is a geometric object which can be presented
either in an abstract way as an inverse limit or in a geometric way as nested inter-
sections of solid tori. In dynamical systems solenoids were introduced by Smale
as hyperbolic attractors of a diffeomorphism of a three-dimensional manifold. The
topological complexity of a solenoid can be expressed by a topological entropy
which is equal to an upper capacity of some Carathéodory structure, in the sense
of Pesin. We consider topological and measure-theoretical approach to dynamical
properties of a solenoid and discuss homogeneous measures. In general case there is
no invariant measure for a solenoid, therefore one can not say neither about measure-
theoretical entropy nor about a measure of maximal entropy of a solenoid. We define
δ−measure-theoretical entropy of a solenoid, in sense of Katok, which is related to
the topological entropy.

Keywords Charatheodory structure · Entropy · Homogeneous measure · Solenoid

1 Introduction

Nowadays, the notion of a solenoid appears in different areas of science, it is well-
known inphysics, biology andmathematics. In thepaperwe focus on itsmathematical
meaning. In the late 1920s a solenoid as a mathematical object was introduced by
Vietoris [19] as inverse limit space over circle maps. A solenoid can be presented
either in an abstract way as an inverse limit or in a geometric way as nested inter-
sections of solid tori. For a given sequence of positive integers {kn}n∈N, a solenoid
can be described as the intersection of a sequence of tori {Tn}n∈N such that Tn+1 is
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wrapped around inside Tn longitudinally kn times. Topological properties of inverse
limits on intervals are relatively good understood (see [13]).

The standard construction of a solenoid, presented by Vietoris [19], was general-
ized and modified by McCord [16], Williams [22] and many other authors in differ-
ent contexts. In dynamical systems a solenoid was introduced by S. Smale [18] as
hyperbolic attractor of a diffeomorphism of a three-dimensional manifold. Solenoids
appeared in many branches of mathematics: in geometry, dynamical systems, theory
of groups, continuum theory, foliations and so on.

In the paper we study a sequence f∞ = (fn : Xn → Xn−1)
∞
n=1 of continuous epi-

morphisms of compact metric spaces Xn, called bonding maps. We assume that all
spaces Xn coincide with a compact metrizable space X . By solenoid determined by
f∞, we mean the inverse limit

X∞ = lim←− Xk = {(xk)∞k=0 : xk−1 = fk(xk), k ∈ N ∪ {0}}.

Clearly, X∞ is a compact subset of the Hilbert cube ΠXk . A distance function d∞
on X∞ is given by usual formula

d∞((xk), (uk)) =
∞∑

k=0

1

2k
dk(xk , uk).

Since X∞ is uniquely determined by f∞, we will often identify these two objects. A
solenoid is both a metric space and a dynamical object of a complicated structure.
Its complexity yields from the dynamics of bonding maps and can be investigated
from topological or ergodic point of view.

Let X be a compact metric space and f : X → X be a continuous map or a home-
omorphism. The pair (X , f ) is called a topological dynamical system. Topological
entropy is a main concept in topological dynamics, it is a nonnegative number which
measures disorder and complexity of the system (X , f ). Positive entropy of the
dynamical system reflects its chaotic behaviour. The classical topological entropy
of a single map was a very fruitful notion, therefore the concept of entropy was
generalized to an action of algebraic structures (such as semigroups, groups and
pseudogroups) on topological spaces, and to geometric objects such as distributions,
laminations and foliations (see [20]).

In the paper we focus on dynamics of a solenoid. In general case there is no
invariant measure for a solenoid, therefore it is not clear how to define its measure-
theoretical entropy. Bowen [4] defined a notion of homogeneous measure for a clas-
sical dynamical system determined by a continuous map f : X → X of a compact
metric spaceX .Wediscuss homogeneousmeasures for a solenoid. On the other hand
a local measure entropy, which was originally introduced by Brin and Katok [6] for
a dynamics of a single map, is also a powerful tool for investigations of dynamics of
solenoids.

In Theorem 2 we show that if a solenoid admits a homogeneous measure then its
local measure entropy does not depend on a point of the solenoid. Theorem 3 states
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that the topological entropy of a solenoid, with a homogeneous measure, coincides
with the local measure entropy.

Dimension theory is a very useful tool to analyze the complicated structure of
invariant sets of dynamical systems. Bowen [5] pointed out that the topological
entropy of a continuous map can be defined in a way similar to construction of
Hausdorff dimension. Twenty five years later, Pesin in [17] discussed the interre-
lation between dimension theory and the theory of classical dynamical systems, he
noticed that the construction of Hausdorff dimension and well-known Carathéodory
construction in general measure theory can be generalized. To this aim, Pesin intro-
duced in axiomatic way so called Carathéodory structure, which gives a new insight
into thermodynamical formalism and allows to extend the classical notion of the
topological pressure to non-compact or non-invariant sets. Also, a Carathéodory
structure generates the Carathéodory dimension, lower and upper capacities of a set.
Carathéodory structures applied to dynamical systems are a very powerful tool.

In general case, there is no invariant measure for a solenoid, therefore it is not clear
how to define its measure-theoretical entropy, but we define δ−measure-theoretical
entropy of a solenoid, in the sense of A. Katok, which is related to its topological
entropy. In Theorem 7 we prove that δ−measure-theoretical entropy of a solenoid is
upper estimated by its topological entropy.

2 A Classical Dynamical System

In mathematics, the study of a disrete dynamical system, determined by a continuous
map f : X → X of a compact metric spaceX , as a whole is primarily concerned with
the asymptotic behavior of such systems, that is how the system evolves after repeated
applications of f . Its complexity can be described by its topological entropy htop(f )
andmeasure-theoretical entropy hμ(f ) calculatedwith respect to an f -invariant Borel
probability measure μ. For convenience of the reader, we recall briefly the basic
definitions related to measure-theoretical entropy and topological entropy. For more
detailed introduction to dynamical systems we recommend [21].

2.1 Measure-Theoretical Entropy of a Map

Let (X1,B1, μ1) and (X2,B2, μ2) be measure spaces. A map T : X1 → X2 is called
measurable if the preimage of any measurable set is measurable. A measurable
transformation T : X1 → X2 is measure preserving if μ1(T−1(A2)) = μ2(A2) for
every A2 ∈ B2. Let f : X → X be a continuous map defined on a compact metric
space (X , d). Assume that (X ,B, μ) is a measure space and the map f is measure
preserving.Themeasureμ is called f −invariant ifμ(f −1(A)) = μ(A), for anyA ∈ B.

TheKrylov-Bogoliubov Theorem (see [21]) guarantees the existence of a probability
f -invariantmeasureμ defined onBorel σ -algebra generated by the collection of open
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subsets of X. A partition of X is a finite family A = {A1,A2, . . . ,An} of pairwise
disjoint measurable subsets of X such that A1 ∪ A2 ∪ · · · ∪ An = X . For partitions A
and B of X we define the following partitions:

A ∨ B = {Ai ∩ Bj : Ai ∈ A and Bj ∈ B},

f −1(A) = {f −1(Ai) : Ai ∈ A},

A(n) = A ∨ f −1(A) ∨ · · · ∨ f −(n−1)(A).

A measure entropy of a partition A of X with respect to the measure μ is defined by

Hμ(A) = −
∑

Ai∈A
μ(Ai) log(μ(Ai)).

It is known (for details see [21]) that for any partition A of X there exists a limit

Hμ(f ,A) = lim
n→∞

1

n
Hμ(A(n)).

Definition 1 Kolmogorov-Sinai or measure-theoretical entropy of a measurable
map f : X → X with respect to an f -invariant measure μ is the quantity defined
by

hμ(f ) := sup{Hμ(f ,A) : A is a partition of X }.

2.2 Topological Entropy of a Map

Topological entropy of a continuous map was first introduced in 1965 by Adler et al.
[1]. In metric spaces a different definition of entropy was introduced by Bowen [4]
in 1971 and independently by Dinaburg [9] in 1970. Later, Bowen [5] proved that
both definitions are equivalent. Bowen’s approach uses a notion of (n, ε)-separated
points.

Again, let f : X → X be a continuous map defined on a compact metric space
(X , d). Following Bowen we say that a subset E ⊂ X is (n, ε)-separated (where n is
a positive integer and ε > 0) if the inequality

max{d(f i(x), f i(y)) : i = 0, 1, . . . , n − 1} ≥ ε

holds for any distinct points x, y ∈ E. Since X is a compact space the cardinal-
ity card(A) of any (n, ε)-separated set A is finite. Let s(n, ε) = max{card(A) :
A is (n, ε) − separated subset of X }.
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Definition 2 The topological entropy of a continuous map f : X → X defined on a
compact metric space (X , d) is defined as

htop(f ) := lim
ε→0+

lim sup
n→∞

1

n
log s(n, ε).

We recommend textbooks [7, 21] or [10] which treat in details properties of topo-
logical and measure-theoretical entropies of classical dynamical systems.

2.3 Katok Formula for Measure-Theoretical Entropy

Denote by B(x, ε) an open ball in (X , d), centered at x ∈ X and of radius ε. The
sequence of metrics

d f
n (x, y) := max{d(f i(x), f i(y)) : i = 0, 1, . . . , n − 1}

determines the family of ε−balls centered at x ∈ X , in the df
n−metric:

Bf
n(x, ε) :=

n−1⋂

i=0

f −i(B(f i(x), ε)).

In 1980, Katok [14] proposed the definition of the measure-theoretical entropy hμ(f )
of f : X → X , with respect to Borel probability f -invariant measure μ, which mim-
ics the definition of topological entropy given by R. Bowen. His definition reads as
follows. For ε > 0 and δ ∈ (0, 1), let us denote by Nf (n, ε, δ) the minimal number

of ε−balls in the df
n−metric which cover the set of measure more than or equal to

1 − δ. Finally, put

hK,δ
μ (f ) = lim

ε→0
lim sup
n→∞

1

n
logNf (n, ε, δ).

Using combinatorial arguments A. Katok proves the relation between hK,δ
μ (f ) and

hμ(f ).

Theorem 1 (Theorem 1.1 in [14]) For any homeomorphism f : X → X of a com-
pact metric space (X , d) and for every δ > 0

hK,δ
μ (f ) = lim

ε→0
lim sup
n→∞

1

n
logNf (n, ε, δ) = lim

ε→0
lim inf
n→∞

1

n
logNf (n, ε, δ)

and
hK,δ

μ (f ) = hμ(f ).
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2.4 Variational Principle

Due to the Krilov-Bogoliubov Theorem for a continuous map f : X → X the set
M (f ,X ) of f -invariantBorel probabilitymeasures onX is not empty. The topological
entropy and measure-theoretic entropies of f are interrelated. The relation between
them is stated in the famous Variational Principle. One inequality in the Variational
Principle was proved by Dinaburg [9] and Goodman [11] the other inequality by
Goodwyn [12].

Theorem 2 (Variational Principle) For a continuous map f : X → X defined on a
compact metric space (X , d)

htop(f ) = sup{hμ(f ) : μ ∈ M (f ,X )}

i.e., topological entropy equals the supremum of the Kolmogorov-Sinai entropies
hμ(f ) of f , where μ ranges over the set M (f ,X ) all f -invariant Borel probability
measures on X .

Remark 1 If htop(f ) = hμ(f ) then the f -invariant measure μ is called the measure
of maximal entropy. In many cases a measure of maximal entropy exists (see [8]).

3 Topological Entropy of a Solenoid

Let f∞ = (fn : Xn → Xn−1)
∞
n=1 be a sequence of continuous epimorphismsof compact

metric spaces Xn. We assume that all spaces Xn coincide with a compact metrizable
space X , (i.e. Xn = X ). Each space Xn is equipped with a metric dn. In the case of a
solenoid, which can be consider as a generalized dynamical system, one can define
its topological entropy. Following Bowen [4] we define a topological entropy of a
solenoid by (n, ε)-separated sets. For any positive integer n we define a new metric
Dn on Xn by

Dn(x, y) = max{di−1(fi ◦ fi+1 ◦ · · · ◦ fn(x), fi ◦ fi+1 ◦ · · · ◦ fn(y)) : i ∈ {1, . . . , n}}.

We say that a subset E ⊂ Xn is (n, ε)− separated if for any distinct points a1, a2 ∈ E
the inequalityDn(a1, a2) ≥ ε holds. Since (Xn, dn) is the compact metric space, then
any (n, ε)− separated set E is finite. Let

s(n, ε) := max{card(E) : E is (n, ε) − separated subset of Xn}.
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Definition 3 The quantity

htop(f∞) := lim
ε→0+

lim sup
n→∞

1

n
log s(n, ε)

is called the topological entropy of the solenoid f∞.

Remark 2 The topological entropy of a solenoid also can be expressed in the lan-
guage of (n, ε)-spannings sets. A subset F ⊂ Xn is (n, ε)-spanning if for any x ∈ Xn

there exists y ∈ F such that Dn(x, y) < ε. Let

r(n, ε) := min{card(F) : F is (n, ε) − spanning subset of Xn}.

Using standard arguments (e.g. [21]) we get an estimation r(n, ε) ≤ s(n, ε) ≤
r(n, ε/2). Consequently, passing to the suitable limits, we obtain the equality

htop(f∞) = lim
ε→0+

lim sup
n→∞

1

n
log r(n, ε).

4 Homogeneous Measures

If there exists a homogeneous measure for a solenoid then one can express topo-
logical entropy by local measure entropies calculated with respect to this particular
homogeneous measure. The metric Dn on Xn given by

Dn(x, y) := max{di−1(fi ◦ fi+1 ◦ · · · ◦ fn(x), fi ◦ fi+1 ◦ · · · ◦ fn(y)) : i ∈ {1, . . . , n}}

determines a family of sets

Bn(x, ε) :=
n⋂

i=1

(fi ◦ fi+1 ◦ · · · ◦ fn)
−1[Bdi−1(fi ◦ fi+1 ◦ · · · ◦ fn(x), ε)],

whereBdi (y, r) = {z ∈ Xi : di(z, y) < r} is a standard ball in (Xi, di) centered at y and
of radius r. Following Bowen [4] we introduce a notion of a homogeneous measure
for a solenoid.

Definition 4 We say that a Borel measureμ on ametric spaceX is f∞-homogeneous
measure for a solenoid f∞ if:

(1) μ(K) < ∞ for any compact K ⊂ X ,
(2) there exists K0 ⊂ X with μ(K0) > 0 and
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(3) for any ε > 0 there exist δ > 0 and c > 0 such that the inequality

μ(Bn(y, δ)) ≤ c · μ(Bn(x, ε))

holds for all n ∈ N and all x, y ∈ X .

The authors in [3] provide the following examples of homogeneous measures for
solenoids:

Example 1 Choose a closed compact and oriented Riemannian manifold (M , d)

with volume form dV . Let (Xn, dn) = (M , d), for any n ∈ N , and f∞ = (fn : Xn →
Xn−1)

∞
n=1 be a sequence of isometries of M . The volume form induces a natural

measure μ on M :
μ(A) =

∫

A
1 · dV,

where A is a Borel subset of M , which is f∞-homogeneous measure.

Example 2 LetGbe a compact topological groupwith a right invariantHaarmeasure
μ thenG admits a right invariant metric d. Fix an isomorphism (so a homeomorphism
and homomorphism)H : G → G of topological group and infinite sequence {gn}n∈N
of elements ofG.Define fi := Rgi ◦ H ,where Rgi (x) = x · gi is a right multiplication
for any x ∈ G. The sequence f∞ = (fn : Xn → Xn−1)n∈N,where Xn = G, determines
a solenoid with a homogeneous measure.

4.1 f∞-Homogeneous Measures and Topological Entropy

Brin and Katok [6] introduced a notion of the local measure entropy for a single
continuous map f : X → X of a compact metric space X . We adapt this notion of
the local measure entropy to a solenoid determined by f∞ = (fn : Xn → Xn−1)n∈N in
the following way:

Definition 5 For any x ∈ X and a Borel probability measure μ on X the quantity

hμ

f∞(x) = lim
ε→0

lim sup
n→∞

−1

n
logμ(Bn(x, ε))

is called a local upper μ-measure entropy at the point x, with respect to f∞, while
the quantity

hμ,f∞(x) = lim
ε→0

lim inf
n→∞ −1

n
logμ(Bn(x, ε))

is called a local lower μ-measure entropy at the point x, with respect to f∞.

The authors of [3] studied the properties of homogeneous measures for a solenoid
and obtained the following results:
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Theorem 3 (Theorem 3 in [3]) If μ is an f∞-homogeneous measure on X then the
equalities hμ

f∞(x) = hμ

f∞(y) and hμ,f∞(x) = hμ,f∞(y) hold for any x, y ∈ X .

Definition 6 If μ is an f∞-homogeneous measure on X , then the common value of
local upper μ−measure entropies is denoted by hμ

f∞ .

Theorem 4 (Theorem 4 in [3]) For a solenoid f∞ = (fn : Xn → Xn−1)
∞
n=1 admitting

an f∞-homogeneous measure μ on X , we have

htop(f∞) = hμ

f∞ .

5 Dynamics of Solenoids Via Carathéodory Structures

Dimension theory is a very useful tool in theory of dynamical systems. Bowen [5]
pointed out that the topological entropy of a continuous map can be defined in a way
similar to the construction of Hausdorff dimension. Twenty five years later, Pesin in
[17] discussed the interrelation between dimension theory and the theory of classical
dynamical systems, he noticed that the construction ofHausdorff dimension andwell-
known Carathéodory construction in general measure theory can be generalized. To
this aim, Pesin introduced in axiomatic way so called Carathéodory structure, which
allows to extend the classical notion of the topological pressure to non-compact
or non-invariant sets. Also, a Carathéodory structure generates the Carathéodory
dimension, lower and upper capacities of a set. Carathéodory structures applied to
dynamical systems are a very powerful tool.

In this section we study entropy of a solenoid from the dimension theory point of
view, applying Pesin theory of Carathéodory structures.

5.1 Carathéodory Dimension Structure

Following Pesin [17] we define a Carathéodory structure.
Let Y be a nonempty set. Suppose that a cover F of a subset of Y and three set

functions η,ψ, ξ : F → R+ are given. Assume that the following conditions are
satisfied:

1. ∅ ∈ F and ψ(∅) = η(∅) = 0. If ∅ �= U ∈ F then ψ(U )η(U ) > 0.
2. For every δ > 0 there exists ε > 0 such that η(U ) < δ for any U ∈ F with

ψ(U ) < ε.
3. For every ε > 0 there exists a finite or countable subcover G ⊂ F of Y such that

ψ(V ) < ε, for every V ∈ G .
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A system τ = (F , ξ, η, ψ) is called a Carathéodory structure (or shortly a C-
structure) on Y . Suppose that the C-structure τ = (F , ξ, η, ψ) on Y is given. If
G ⊂ F is finite or countable subcollection then we write G ≺ F . We put ψ(G ) =
sup{ψ(V ) : V ∈ G }.

Let α ∈ R. Following Pesin, we define an outer measure mα on Y as follows:
Choose a subset Z ⊂ Y , ε > 0 and put

Mα(Z, ε) = inf{
∑

V∈G
ξ(V )η(V )α : G ≺ F , Z ⊂

⋃
V∈G V and ψ(G ) < ε}.

One can show that there exists a limit

mα(Z) = lim
ε→0+

Mα(Z, ε).

According to the general measure theory the outer measuremα induces a σ−additive
measure on Y called the α-Carathéodory measure.

It turns out that there exists a critical value αC ∈ [−∞,∞] such that

mα(Z) = ∞ for α ≤ αC and mα(Z) = 0 for α > αC .

The quantity dimτ (Z) = αC is called a C-dimension of Z with respect to the C-
structure τ .

Now suppose that the set functionψ satisfies a stronger condition than 3. Namely,
assume that

4. There exists ε0 > 0 such that for every ε0 > ε1 > 0 there exist ε ∈ (0, ε1) and a
subcover G ≺ F such that ψ(V ) = ε for every V ∈ G .

Take α ∈ R and ε ∈ (0, ε0). As before, for any Z ⊂ Y we define the quantity

Rα(Z, ε) = inf{
∑

V∈G
ξ(V )η(V )α : G ≺ F , Z ⊂

⋃
V∈G V and ψ(G ) = ε}.

Due to 4, the quantity Rα(Z, ε) is well defined. It yields the existence of the limits

rα(Z) = lim inf
ε→0+

Rα(Z, ε),

rα(Z) = lim sup
ε→0+

Rα(Z, ε).

As before, there exist αC, αC ∈ [−∞,∞] such that

rα(Z) = ∞ for α ≤ αC and rα(Z) = 0 for α > αC ,
rα(Z) = ∞ for α ≤ αC and rα(Z) = 0 for α > αC .

The quantity αC (resp. αC) is called lower (resp. upper) C-capacity of Z with respect
to a C-structure τ . We denote lower (resp. upper) C-capacity of Z by Cap (Z) (resp.

Cap (Z)), i.e.,



Topological and Measure-Theoretical Entropies of a Solenoid 47

Cap (Z) = αC and Cap (Z) = αC . (1)

Moreover, we assume that the set functions η and ψ are related as follows:

5. IfU, V ∈ F andψ(U ) = ψ(V ) thenη(U ) = η(V ). In otherwords,η is constant
on each level set ψ−1(a), a ∈ R, of the set function ψ .

The Carathéodory structure τ is called Carathéodory-Pesin-structure (or CP-
structure), if τ satisfies additionally both conditions 4 and 5.

Let Z ⊂ Y and ε > 0. Put

Λ(Z, ε) = inf{
∑

V∈G
ξ(V ) : G ≺ F , Z ⊂

⋃
V∈G V and G ⊂ ψ−1(ε)}.

Observe that for every such G as above η|G is constant. Denote its value by ηε, i.e.,
ηε = η(V ) if V ∈ ψ−1(ε).

Lower and upper capacities determined by CP-structures have the following prop-
erties: Let Z, S ⊂ Y then

Cap (S ∪ Z) = max{Cap (S),Cap (Z)},
Cap (S ∪ Z) = max{Cap (S),Cap (Z)}.

Moreover, lower and upper capacities are related to Λ as follows:

Theorem 5 (Theorem 2.2 in [17]) If the set function η satisfies Condition A4 then
for any subset Z ⊂ X

Cap (Z) = lim inf
ε→0+

− logΛ(Z, ε)

log ηε

, (2)

Cap (Z) = lim sup
ε→0+

− logΛ(Z, ε)

log ηε

. (3)

5.2 Entropies of a Solenoid Via Carathéodory-Pesin
Structures

The first author and Kozłowski in [2] studied the relation of topological entropy
of a solenoid with Carathéodory-Pesin structures. Among others, they noticed that
bounding maps of a solenoid determine a Carathéodory-Pesin structure that its upper
capacity coincides with the topological entropy of the solenoid. More precisely, they
proved the following result for the topological entropy htop(f∞|Z) of the solenoid,
restricted to a subset Z ⊂ X0.

Theorem 6 (Theorem 2 in [2]) For a solenoid f∞ = (fn : Xn → Xn−1)
∞
n=1 described

by a sequence of continuous epimorphisms of compact metric spaces Xn there exists
a Carathéodory-Pesin structure τ such that
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htop(f∞|Z) = CPτ (Z), (4)

where CPτ (Z) is an upper capacity of a subset Z ⊂ X0, with respect to
the Carathéodory-Pesin structure τ. In particular,

htop(f∞) = CPτ (X0). (5)

Wemimic the definitionofmeasure-theoretic entropygivenbyKatok for a continuous
map f : X → X with respect to f −invariant Borel probability measure.

Definition 7 Given a solenoid f∞ = (fn : Xn → Xn−1)
∞
n=1 described by a sequence

of continuous epimorphisms of compact metric spaces Xn, real number δ ∈ (0, 1)
and Borel probability measure μ on X0. For ε > 0 let us denote by Nf∞(n, ε, δ) the
minimal number of ε−balls in the Dn−metric which cover the set of measure more
than or equal to 1 − δ. We define measure-theoretic entropy of f∞ as follows

hδ
μ(f∞) := lim

ε→0
lim sup
n→∞

1

n
logNf∞(n, ε, δ).

Theorem 7 For a solenoid f∞ = (fn : Xn → Xn−1)
∞
n=1 described by a sequence of

continuous epimorphisms of compact metric spaces Xn, positive number δ ∈ (0, 1)
and Borel probability measure μ on X0

hδ
μ(f∞) ≤ htop(f∞). (6)

Proof The sequence f∞ = (fn : Xn → Xn−1)
∞
n=1 of continuous epimorphisms of com-

pact metric spaces (Xn, dn) determines a sequence of Dn−metrics and the fam-
ily Bn(ε) = {Bn(z, ε) : z ∈ X0} of ε−balls in Dn−metric. We construct a Pesin-
Caratheodory structure as follows. The familyBn(r) = {Bn(z, r) : z ∈ X0} is an open
cover of X0. Fix γ > 0 and let Fγ = {∅,

⋃∞
n=0 Bn(γ )}.

Consider set functions ξ, η, ψ : Fγ → R given by: ξ(V ) = 1, η(V ) = exp(−n)
and ψ(V ) = n−1, for V = Bn(z, γ ) and n ≥ 1 and ξ(V ) = ψ(V ) = η(V ) = 1 if
V = B0(z, γ ). It is clear that τγ = (Fγ , ξ, η, ψ) is a Carathéodory-Pesin structure
determined by f∞. To emphasize that all objects depend on γ we will sometimes
write Λγ , Capγ etc. instead of Λ, Cap.

For any α ∈ R we define

Rα,1 (γ,m) := inf{
∑

V∈G
exp(−mα) : G ≺ Bm(γ ), and X0 ⊂

⋃
V∈G V },

Rα,2 (γ,m) := inf{
∑

V∈G
exp(−mα) : G ≺ Bm(γ ), and μ(

⋃
V∈G V ) > 1 − δ}.

It is clear that
Rα,2 (γ,m) ≤ Rα,1 (γ,m) . (7)
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Taking limit superior, for i = 1, 2 we denote

rα(i, γ ) := lim sup
m→∞

Rα,i(γ,m). (8)

Due to (3), for Z = X0 we obtain

Capγ (i) = lim sup
n→∞

n−1 logΛγ (i,X0, n
−1) = lim sup

n→∞
n−1 logΛγ (i, n−1),

where i = 1, 2. Following arguments of Pesin [17] we get the existence of limit
capacities

CP (i) = lim
γ→0+

Capγ (i).

Consequently,

CP (i) = lim
γ→0+

lim sup
n→∞

1

n
logΛγ (i,

1

n
).

Observe that the definition of Λ yields that:

1. Λγ (1, n−1) is equal to r(n, γ ), the minimal cardinality of (n, γ )-spanned subset
of X0, i.e. minimal number of γ−balls in Dn−metric which cover X0. Thus

CP (1) = htop(f∞) = lim
γ→0+

lim sup
n→∞

1

n
log r(n, γ ).

2. Λγ (2, n−1) is equal to Nf∞(n, γ, δ), minimal number of γ−balls in Dn−metric
which cover the set of measure more than or equal to 1 − δ. Thus

CP (2) = hδ
μ(f∞) = lim

γ→0+
lim sup
n→∞

1

n
logNf∞(n, γ, δ).

The inequality (7) yields that

hδ
μ(f∞) = CP (2) ≤ CP (1) = htop(f∞).
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Lyapunov Functions for Almost Sure
Exponential Stability

Hjortur Björnsson and Sigurdur Freyr Hafstein

Abstract We present a generalization of results obtained by X. Mao in his book
“Stochastic Differential Equations and Applications” (2008). When studying what
Mao calls “almost sure exponential stability”, essentially a negative upper bound
on the almost sure Lyapunov exponents, he works with Lyapunov functions that are
twice continuously differentiable in the spatial variable and continuously differen-
tiable in time. Mao gives sufficient conditions in terms of such a Lyapunov function
for a solution of a stochastic differential equation to be almost surely exponentially
stable. Further, he gives sufficient conditions of a similar kind for the solution to be
almost surely exponentially unstable. Unfortunately, this class of Lyapunov functions
is too restrictive. Indeed, R. Khasminskii showed in his book “Stochastic Stability
of Differential Equations” (1979/2012) that even for an autonomous stochastic dif-
ferential equation with constant coefficients, of which the solution is stochastically
stable and such that the deterministic part has an unstable equilibrium, there cannot
exists a Lyapunov function that is differentiable at the origin. These restrictions are
inherited by Mao’s Lyapunov functions. We therefore consider Lyapunov functions
that are not necessarily differentiable at the origin and we show that the sufficiency
conditions Mao proves can be generalized to Lyapunov functions of this form.

Keywords Almost sure exponential stability · Lyapunov function · Almost sure
Lyapunov exponent

1 Introduction

Lyapunov methods, as first described in [1], have been widely used to study the
behaviour of various dynamical systems, both real-world examples or purely theo-
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retical ones. This is a very active field due to the complicated dynamics exhibited in
several real-world systems, as for example the wobblestone model presented in [2].
Other specific examples include the dynamics of the double [3] or triple pendulum
[4, 5], where Lyapunov exponents were used to study the chaotic behavior of the
systems. Often it is necessary to modify a dynamical system to include either an
unknown force, or to consider the perturbation of the system by some noise, and that
is where stochastic differential equations (SDEs) are commonly used. Here in this
paper, we are concerned with applying Lyapunov methods for classical dynamical
systems to the stochastic framework, as done by Khasminskii [8].

We work in a complete probability space (Ω,F , P) with a right continuous
filtration {Ft}t≥0 and such thatF0 contains all P null sets. In this paper we consider
strong solutions of the d -dimensional stochastic differential equation

dx(t) = f (x(t), t)dt + g(x(t), t)dB(t) on t ≥ t0 (1)

where B(t) is anm-dimensional Brownian motion. For a more detailed description of
the setting cf. [9, Sec. 2.1].We assume that for any given initial value x(t0) = x0 ∈ Rd

there exists a unique global solution, denoted by t �→ x(t, t0, x0), with continuous
sample paths. Furthermore, we assume that

f (0, t) = 0 and g(0, t) = 0 for all t ≥ t0.

Sufficient condition for the existence of such solutions are, for example, given by
the following statement, cf. [9, Thm. 2.3.6].

For any real number T > 0 and integer n ≥ 1, the following hold true:

1. There exists a positive constant KT ,n, such that for all t ∈ [t0,T ] and all x, y ∈ Rd with
|x| ∨ |y| ≤ n,

|f (x, t) − f (y, t)|2
∨

|g(x, t) − g(y, t)|2 ≤ KT ,n|x − y|2.

2. There exists a positive constant KT , such that for all (x, t) ∈ Rd × [t0,T ]

x�f (x, t) + 1

2
|g(x, t)|2 ≤ KT (1 + |x|2).

Here | · | is the Euclidean norm and the symbols ∧ and ∨ are defined to be the
minimum and the maximum respectively:

a ∧ b := min(a, b) and a ∨ b := max(a, b).

Corresponding to the initial value x(t0) = 0, we have the solution x(t) = 0 for all
t. This solution is called the trivial solution. In this paper we are studying the stability
of the trivial solution and, more specifically, when it is almost surely exponentially
stable. This definition is taken fromMao’s book [9, Def. 4.3.1], see also e.g. [6, 11].
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Definition 1 The trivial solution of (1) is said to be almost surely exponentially
stable if

lim sup
t→∞

1

t
log |x(t, t0, x0)| < 0

almost surely, for all x0 ∈ Rd .

First, we clarify some of the notation used in the paper. For our purposes all
integrals in this paper of the form

∫ · dB(s) are to be interpreted in the Itô sense.
We write bn ↑ a if the sequence bn is increasing and has limit a. We denote by
L 2(R+, Rd×m) the family of all (d × m)-matrix valuedmeasurable {Ft}t≥0-adapted
processes f = {f (t)}t≥0 such that

∫ T

0
|f (t)|2dt < ∞ a.s. for every T > 0

and by M 2(R+, Rd×m) the family of all processes f ∈ L 2(R+, Rd×m) such that

E
{∫ T

0
|f (t)|2dt

}
< ∞ for every T > 0.

Here E denotes the expectation and a.s. is an abbreviation for almost surely as
usual. Let f ∈ M 2(R+, Rd×m) and consider the process

Mt =
∫ t

0
f (s)dB(s)

then there exists a t-continuous version of the processMt . Furthermore the process is
{Ft} adapted and is a square integrablemartingale [10, Thm. 3.2.5]. By the preceding
remark, we will assume that

∫ t
0 f (s)dB(s) refers to a t-continuous version of the

integral.
A sequence of stopping times {τk}k≥1 is called a localization if it is non-decreasing

and τk ↑ ∞ almost surely. A right continuous adapted process M = {Mt}t≥0 is
called a local martingale if there exists a localization {τk}k≥1 such that the process
{Mτk∧t − M0}t≥0 is a martingale for every k ≥ 1. We denote the quadratic variation
of a continuous local martingale M by 〈M ,M 〉t , which is the unique continuous
adapted process of finite variation, such that {M 2

t − 〈M ,M 〉t}t≥0 is a continuous
local martingale which takes the value 0 at t = 0.

Let Mt be a continuous martingale of the form

Mt =
∫ t

0
f (s)dB(s).
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Then the quadratic variation 〈M ,M 〉t is given by

〈M ,M 〉t =
∫ t

0
|f (s)|2ds

almost surely [9, Thm. 1.5.14].
Let τ be a stopping time and let [[0, τ ]] be the stochastic interval

[[0, τ ]] = {(t, ω) ∈ R+ × Ω : 0 ≤ t ≤ τ(ω)}.

We now list a few facts needed to give rigid proofs of our results. For any f ∈
L 2(R+, Rd×m) we can define a sequence of stopping times

τn := n ∧ inf{t ≥ 0 :
∫ t

0
|f (s)|2ds ≥ n}.

It is easy to see that τn ↑ ∞ almost surely. Let IA, for A ⊂ R+ × Ω , be the indicator
function, that is IA(x) = 1 if x ∈ A and zero otherwise. Thenwe can define the process
gn(t) = f (t)I[[0,τn]](t). We see that gn ∈ M 2(R+, Rd×m) so the integral

Jn(t) =
∫ t

0
gn(s)dB(s)

is a martingale. That is to say, the process

J (t) :=
∫ t

0
f (s)dB(s)

is a local martingale with localization {τn}, since for any n ≥ 1

J (t ∧ τn) =
∫ t∧τn

0
f (s)dB(s) =

∫ t

0
f (s)I[[0,τn]](s)dB(s) =

∫ t

0
gn(s)dB(s) = Jn(t)

is a martingale.
In his book [9], Mao considers Lyapunov functions V (x, t) ∈ C2,1(Rd × [t0,

∞[; R+) where C2,1(Rd × [t0,∞[ ; R+) is the set of all continuous functions
Rd × [t0,∞[ → R+, which are continuously differentiable twice in the first coordi-
nate x, with x ∈ Rd , and once in t with t ∈ [t0,∞[ . Now define a differential operator
L associated with (1) by

L = ∂

∂t
+

d∑

i=1

fi(x, t)
∂

∂xi
+ 1

2

d∑

i,j=1

[g(x, t)g�(x, t)]ij ∂2

∂xi∂xj
, (2)
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where [g(x, t)g�(x, t)]ij is the (i, j)-th component of the (d × d)-matrix gg� at (x, t).
If x(t) is a solution of (1) then by Itô’s formula

dV (x(t), t) = LV (x(t), t)dt + Vx(x(t), t)dB(t)

where Vx ∈ R1×d is the derivative (gradient) of V with respect to x.
Khasminskii showed in his book [8, p. 154–155] that even for SDEs with constant

coefficients there cannot exist Lyapunov functions that are differentiable at 0 unless
the deterministic part of the SDE is already stable. Therefore we extend the results
from Mao’s book using the larger class of functions C2,1

0 (Rd × [t0,∞[ ; R+) which
are continuous, continuously differentiable in t, and twice continuously differentiable
in x except at the point x = 0.

Below is a theorem taken from Mao’s book [9] which we will use in the next
chapter. For completeness we give a more worked out proof than in the book.

Theorem 1 [9, Thm.1.7.4]
Let g = (g1, . . . , gm) ∈ L 2(R+, Rd×m), and T , α, β be any numbers ≥ 0. Then

P
{
sup

0≤t≤T

[∫ t

0
g(s)dB(s) − α

2

∫ t

0
|g(s)|2ds

]
> β

}
≤ e−αβ. (3)

Proof Define the process

x(t) = α

∫ t

0
g(s)dB(s) − α2

2

∫ t

0
|g(s)|2ds

and for every integer n ≥ 1, define the stopping time

τn = inf

{
t ≥ 0 :

∣∣∣∣
∫ t

0
g(s)dB(s)

∣∣∣∣ +
∫ t

0
|g(s)|2ds ≥ n

}
.

Then τn is a localization, and since

|xn(t)| ≤ α

∣∣∣∣
∫ t

0
g(s)I[[0,τn]](s)dB(s)

∣∣∣∣ + α2

2

∫ t

0
|g(s)|2I[[0,τn]]ds

≤ αn + α2

2
n = n

2α + α2

2

we see that the process xn(t) := x(t ∧ τn) is bounded.
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Apply Itô’s formula to exp(xn(t)) and we obtain

exp(xn(t)) = 1 +
∫ t

0
exp(xn(s))dxn(s) + α2

2

∫ t

0
exp(xn(s))|g(s)|2I[[0,τn]](s)ds

= 1 +
(

α

∫ t

0
exp(xn(s))g(s)I[[0,τn]](s)dB(s)

−α2

2

∫ t

0
exp(xn(s))|g(s)|2I[[0,τn]](s)ds

)

+ α2

2

∫ t

0
exp(xn(s))|g(s)|2I[[0,τn]](s)ds

= 1 + α

∫ t

0
exp(xn(s))g(s)I[[0,τn]](s)dB(s).

The term inside the integral is bounded by n2 2α+α2

2 almost surely, therefore the
process exp(xn) is a non negative martingale with E {exp(xn(T ))} = 1, for all n ≥ 1.
This construction is known as the Doléans-Dade exponential of the local martingale
Yt := ∫ t

0 g(s)dB(s), see [8, Thm. 26.8].
By Doob’s martingale inequality [9, Thm. 1.3.8] we get that

P
{
sup

0≤t≤T
exp[xn(t)] ≥ eαβ

}
≤ e−αβE {exp(xn(T ))} = e−αβ.

Then it follows that

P
{
sup

0≤t≤T

xn(t)

α
> β

}
≤ e−αβ.

Since this inequality holds for any n ≥ 1, and

lim
n→∞ xn(t) = x(t)

almost surely, we get by the dominated convergence theorem that

P
{
sup

0≤t≤T

x(t)

α
> β

}
≤ e−αβ

and the proof is complete. ��

2 The Theorems and Their Proofs

As discussed above, we state two theorems from Mao’s book [9], more specifically
Theorem4.3.3 andTheorem4.3.5, exceptwe allow theLyapunov functions V to be in
the C2,1

0 space instead of the too restrictive space C2,1, like Mao does. The difference
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is that in the former space the functions are not required to be differentiable at the
origin, while functions in the latter one are smooth everywhere. As already explained
before, this makes the results much more relevant and useful.
First we state and proof Theorem 4.3.3 from [9] with the weaker conditions. Note
that, like above, Vx ∈ R1×d is the derivative (gradient) of V with respect to x.

Theorem 2 (advancement of Thm. 4.3.3 in Mao)
Assume there exists a function V ∈ C2,1

0 (Rd × [t0,∞); R+) and constants p > 0,
c1 > 0, c2 ∈ R, c3 ≥ 0, such that for all x �= 0 and t ≥ t0:

1. c1|x|p ≤ V (x, t),
2. LV (x, t) ≤ c2V (x, t),
3. |Vx(x, t)g(x, t)|2 ≥ c3V 2(x, t).

Then

lim sup
t→∞

1

t
log |x(t; t0, x0)| ≤ −c3 − 2c2

2p
a.s.

for all x0 ∈ Rd . In particular, if c3 > 2c2, the trivial solution of Eq. (1) is almost
surely exponentially stable, see Definition 1.

The proof heremostly followsMao’s original argument, butwith somemodifications,
since the process M (t) below isn’t necessarily a martingale.

Proof Clearly the inequality holds for x0 = 0 since x(t, t0, 0) = 0 for all t. We
only need to show the inequality for all x0 �= 0. Fix any x0 �= 0 and write x(t) :=
x(t; t0, x0). It is well known that 0 is an inaccessible point, cf. e.g. [9, Lemma 4.3.2],
that is to say, x(t) �= 0 for all t ≥ t0 almost surely. Thus one can apply Itô’s formula
and get

log V (x(t), t)

= log V (x0, t0) +
∫ t

t0

LV (x(s), s)

V (x(s), s)
ds + M (t) − 1

2

∫ t

t0

|Vx(x(s), s)g(x(s), s)|2
(V (x(s), s))2

ds

≤ log V (x0, t0) + c2(t − t0) + M (t) − 1

2

∫ t

t0

|Vx(x(s), s)g(x(s), s)|2
(V (x(s), s))2

ds

where we used condition 2 for the last inequality and

M (t) :=
∫ t

t0

Vx(x(s), s)g(x(s), s)

V (x(s), s)
dB(s).

We claim the process

h(s) := Vx(x(s), s)g(x(s), s)

V (x(s), s)

is in L 2([t0,∞[, Rd ). Indeed, for almost all ω ∈ Ω , the trajectory of x(t)(ω), t0 ≤
t ≤ T , is a compact subset of Rd \ {0}. Hence, for almost all ω, the function h(s)(ω)



58 H. Björnsson and S. F. Hafstein

is continuous on the compact set t0 ≤ s ≤ T and thus bounded. Since this holds true
for all T , we have h(s) ∈ L 2([t0,∞[, Rd ).

Fix an arbitrary ε > 0. We can now use Theorem 1 and get for all n ∈ N:

P
{

sup
t0≤t≤t0+n

[
M (t) − ε

2

∫ t

t0

|Vx(x(s), s)g(x(s), s)|2
(V (x(s), s))2

ds

]
>

2

ε
log(n)

}
≤ 1

n2

By the Borel Cantelli theorem, cf. e.g. [7, Thm. 3.18], there exists an n0(ω) > 0 for
almost all ω, such that

M (t) ≤ 2

ε
log(n) + ε

2

∫ t

t0

|Vx(x(s), s)g(x(s), s)|2
(V (x(s), s))2

ds.

for all t0 ≤ t ≤ t0 + n if n > n0. By condition 3,

log V (x(t), t)

≤ log V (x0, t0) + c2(t − t0) + 1

2
(ε − 1)

∫ t

t0

|Vx(x(s), s)g(x(s), s)|2
(V (x(s), s))2

ds + 2

ε
log(n)

≤ log V (x0, t0) + c2(t − t0) − 1

2
(1 − ε)c3(t − t0) + 2

ε
log(n)

= log V (x0, t0) − 1

2
((1 − ε)c3 − 2c2)(t − t0) + 2

ε
log(n)

for all t0 ≤ t ≤ t0 + n if n > n0 for almost all ω. Therefore we have for almost all ω,
that

1

t
log V (x(t), t) ≤ − t − t0

2t
[(1 − ε)c3 − 2c2] + log V (x0, t0) + 2 log(n)/ε

t0 + n − 1

if t0 + n − 1 ≤ t ≤ t0 + n and n > n0.
Fix ω and let n → ∞, then

lim sup
t→∞

1

t
log V (x(t), t) ≤ −1

2
((1 − ε)c3 − 2c2)

holds point-wise for almost all ω. Finally using condition 1 we have

lim sup
t→∞

1

t
log |x(t)| ≤ − (1 − ε)c3 − 2c2

2p

for almost all ω. Since ε > 0 was arbitrary we have the conclusion. ��
Now we state and proof Theorem 4.3.5 from [9] with the weaker conditions.



Lyapunov Functions for Almost Sure Exponential Stability 59

Theorem 3 (advancement of Thm. 4.3.5 in Mao)
Assume that there exists a function V ∈ C2,1

0 (Rd × [t0,∞); R+), and constants p >

0, c1 > 0, c2 ∈ R, c3 > 0, such that for all x �= 0 and t ≥ t0,

1. c1|xp| ≥ V (x, t) > 0,
2. LV (x, t) ≥ c2V (x, t),
3. |Vx(x, t)g(x, t)|2 ≤ c3V 2(x, t).

Then

lim inf
t→∞

1

t
log |x(t; t0, x0)| ≥ 2c2 − c3

2p
a.s.

for all x0 �= 0 in Rd .

The proof again follows the same method Mao used in his book, but here it works
without modifications for our weaker assumptions on the function V . For complete-
ness we, however, give a more worked out proof than given in [9].

Proof Just like in the proof of Theorem 2 we fix some x0 �= 0 and we write x(t) =
x(t; t0, x0). Furthermore we define M (t) and h(s) as in the proof of Theorem 2, and
by Itô’s formula we have that

log V (x(t), t) (4)

= log V (x0, t0) +
∫ t

t0

LV (x(s), s)

V (x(s), s)
ds + M (t) − 1

2

∫ t

t0

|Vx(x(s), s)g(x(s), s)|2
(V (x(s), s))2

ds.

By condition 3, we have that |h(s)|2 < c3, so h ∈ M 2(R+, R1×m) and M (t) =∫ t
t0
h(s)dB(s) is a martingale. By Eq. (4) and condition 2

log V (x(t), t) ≥ log V (x0, t0) + c2(t − t0) − c3
2

(t − t0) + M (t)

= log V (x0, t0) + 1

2
(2c2 − c3)(t − t0) + M (t).

(5)

Since M (t) is a martingale with quadratic variation

〈M (t),M (t)〉 =
∫ t

t0

|h(s)|2ds ≤ c3(t − t0),

wehave by the strong lawof large numbers, cf. e.g. [9, Thm1.3.4], that lim
t→∞M (t)/t =

0 a.s. It therefore follows from (5) that

lim inf
t→∞

1

t
log V (x(t), t) ≥ 1

2
(2c2 − c3) a.s.
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Finally by condition 1 then

lim inf
t→∞

1

t
log |x(t; t0, x0)| ≥ 2c2 − c3

2p
.

��
Remark If in the last theorem we have 2c2 > c3, then almost all the sample paths of
t �→ |x(t; t0, x0)| will tend to infinity, and in this case the trivial solution of Eq. (1)
is said to be almost surely exponentially unstable.

Example Consider the 1-dimensional SDE

dX (t) = f (X (t), t)dt + g(X (t), t)dB(t) := 1

4
X (t)dt + X (t)dB(t) (6)

Set V (x, t) = |x|1/2, then V ∈ C2,1
0 and, by Eq. (2), the function LV (x) is given by

LV (x) = 1

4
x · (1/2)|x|−1/2 + 1

2
x2 · (−1/2)(1/2)|x|−3/2 = 1

8
|x|1/2 − 1

8
|x|1/2 = 0.

Furthermore we see that

|Vx(x)g(x, t)|2 = |(1/2)|x|−1/2x|2 = 1

4
(|x|1/2)2 = 1

4
V (x)2.

Fixing constants c1 = 1, p = 1/2, c2 = 0 and 0 < c3 < 1/4, we see by Theorem 2
that for any solution x(t) of Eq. (6) the following inequality holds

lim sup
t→∞

1

t
log |x(t)| ≤ −c3 − 2c2

2p
= −c3 < 0 a.s.

In particular the trivial solution of system (6) is almost surely exponentially stable
(in fact the solution is stable in probability, see [8, Thm. 5.3]), and the function V we
used is not differentiable at 0. Moreover, as shown by Khasminskii [8, p. 154–155],
there cannot exists a Lyapunov function for this system that is differentiable at the
origin.

3 Conclusions

In his book [9] X. Mao states and proves two theorems, Theorem 4.3.3 and Theorem
4.3.5, where he shows that the existence of a certain auxiliary function, so-called
Lyapunov function, implies the almost sure exponential stability or, for a different
kind of function, the almost sure exponential instability respectively of the zero
solution of a SDE. Unfortunately, the class of functions C2,1(Rd × [t0,∞); R+)
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he considers to serve as the foundation for Lyapunov functions is too restrictive as
had already been pointed out in the literature [8, p. 154–155]. The adequate class
of functions is given by C2,1

0 (Rd × [t0,∞); R+) and we formulate and prove Mao’s
theorems for this wider class of functions. This renders these theorems much more
useful for applications.

Acknowledgements This research was supported by the Icelandic Research Fund (Rannís) grant
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Numerical Analysis of Dynamic
Stability of an Isotropic Plate by
Applying Tools Used in Dynamics

Lukasz Borkowski

Abstract The aim of the study is to analyze an isotropic plate in terms of its dynamic
stability (or its instability), by applying tools that are mainly used in the vibrations
theory of dynamical systems e.g. in the theory of bifurcation and chaos. The results
achieved by using tools such as phase portraits, Poincaré maps, FFT analysis, the
largest Lyapunov exponents were compared with the results obtained by using the
Volmir criterion.

Keywords Dynamic stability · Dynamic response · Phase portraits · Poincaré
maps · FFT analysis · The largest Lyapunov exponents

1 Introduction

Dynamic stability of plates is a subject, the beginning of which can be found in the
middle of twentieth century. The first publication on the dynamic stability of plates
was published by Zizicas in 1952 [42]. He presented the theoretical solution for
the joint supported plate where a time-dependent load was added. In this work, the
critical dynamic loads was not calculated and criteria for dynamic stability was not
formulated. In subsequent years, intense research on the dynamic stability of plates
led to the emergence of criteria by means of which can be estimated the load causing
loss of stability. The criteria of dynamic stability can be divided into geometrical
[17], energy [33], failure [32].

One of the first criterion of dynamic stability was a Budiansky-Hutchinson crite-
rion [21]. It concerned rods and cylindrical shells with an axial load. They analyzed
the load in the form of pulse of a finite and infinite duration. According to authors,
the loss of stability of structures under dynamic load occurs when the small load
increments cause rapid increase in deflection. A similar criterion for the cylindrical

L. Borkowski (B)
Department of Strength of Materials, Lodz University of Technology,
Stefanowskiego 1/15, 90-924 Lodz, Poland
e-mail: lukasz.borkowski@p.lodz.pl

© Springer International Publishing AG, part of Springer Nature 2018
J. Awrejcewicz (ed.), Dynamical Systems in Theoretical Perspective,
Springer Proceedings in Mathematics & Statistics 248,
https://doi.org/10.1007/978-3-319-96598-7_6

63

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96598-7_6&domain=pdf


64 L. Borkowski

shells with a transverse load was formulated by Budiansky and Roth [15]. Many
researchers have implemented the above criterion for plate structures [27, 34, 41].
The adapted Budiansky-Hutchinson criterion says that the loss of stability for the
construction with the pulse load corresponds to the amplitude, for which the velocity
of rise of deflection is the greatest.

In 2000, Petry and Fahlbusch [32] said that the Budiansky-Hutchinson criterion
for plate structures does not allow the full use of capacity of structural elements.
They said that the analysis of the stress state should determine the dynamic critical
load for the construction with a stable post-critical equilibrium path. Based on this
analysis, it is possible to determine the value of the load, for which the destruction of
the structure take place. According to the Petry-Fahlbusch criterion, if the condition
– a reduced stress is smaller or equal to a boundary stress – is fulfilled at any time
and at any point of study structure then a dynamic response of the construction under
the pulse load is dynamically stable. Petry and Fahlbusch also defined the dynamic
load factor as:

DLFf = Ndyn
f

N stat
f

, (1)

where: Ndyn
f – the dynamic failure load, Nstat

f – the static failure load.
In 1972, a study for joint supported rectangular plates which were subjected to

different pulse loads was presented by Volmir [36]. He analyzed the pulses of a finite
duration: a rectangular pulse and an exponentially decreasing pulse, the pulses of an
infinite duration and a linearly increasing load. He studied the pulses that caused both
compression and shear. The problem of dynamic stability was solved by applying
the Bubnov-Galerkin method [30], and the resulting equations by the Runge-Kutta
method [16, 18]. Based on the study, Volmir proposed the criterion of dynamic
stability assuming that the loss of stability for the pulse load plates occurs when
the maximum deflection of the plates are equal to a certain constant value. Most
often, the thickness or the half thickness of plate is assumed as the critical value of
deflection.

Another criteria of dynamic stability was proposed by Ari-Gur and Simonetta [3].
They described the value of critical load depending on the following parameters: a
measured deflection in the middle of length and width of the plate, the intensity of
load, for the plates fixed at all edges and loaded a pulse of half-wave shaped (a pulse
of finite duration). On the basis of analytical and numerical studies, Ari-Gur and
Simonetta suggested four criteria of dynamic stability. The first concerns the value
of deflection and the intensity of load pulse – the dynamic buckling occurs when a
slight increase the intensity of the load pulse causes a significant increase the value of
deflection. Another criterion is based on the analysis of the maximum values of the
load pulse and deflection. According to this criterion, the dynamic buckling occurs
when a slight increase of the amplitude of load pulse causes a decrease the value of
deflection. The following two criteria are the failure criteria, which are based on a
response analysis for the loaded edge of a plate – shortening (for load of the force
pulse) or reaction (for load of the displacement pulse) at the edges. According to the
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third criterion, the dynamic buckling occurswhen a small increase of the amplitude of
force pulse causes a sudden increase the value of shortening of loaded plate edge. The
fourth criterion concerns the case when the load is realized by the displacement pulse
and defines the critical intensity of the displacement pulse – the dynamic buckling
occurs when a small increase of the intensity of displacement pulse of loaded edge
causes the change of sign of reaction at the plate edge.

In 1987, Kleiber, Kotula, Saran [23] analyzed the behavior of rod systems by
finite element method. They formulated the quasi-bifurcation criterion of dynamic
stability for the construction that are jumping loaded of Heaviside pulse by using the
properties of a tangent stiffness matrix in the point of bifurcation. According to this
criterion, the structure loses stability and a deflection begin to growboundlesslywhen
the determinant of the tangent stiffness matrix is equal to zero and the absolute value
of the smallest eigenvalue is greater than the absolute value of the nearest maximum,
which the smallest eigenvalue reaches. In the stability theory of dynamical systems,
a tangent stiffness matrix corresponds to the Jacobi matrix [22].

The above-mentioned criteria are widely used by many researchers, who are en-
gaged in the analysis of dynamic stability of plates and shells [13, 20, 24–26, 28,
29, 31, 38]. Using the dynamic criteria (for example in the theory of bifurcation and
chaos) it is also possible to evaluation of stability of system. [1, 2, 19, 35, 37, 39,
40]. An analysis of the stability of plates and shells was presented by Awrejcewicz
et al. in many papers [4–11]. In these articles, the dynamic analysis by applying the
Bubnov-Galerkinmethodwas implemented. The Bubnov-Galerkinmethodwas used
to reduce partial differential equations governing the dynamics of flexible plates and
shells to a discrete system with finite degrees of freedom.

In this work, the criteria of phase portraits, Poincaré Maps, FFT analysis, largest
Lyapunov exponents are computed and compared with the results obtained by using
the Volmir criterion.

2 Analyzed Plate

In this work, a square isotropic plate with dimensions b= l =100mm, h=1mm and
the material constants E =200 GPa, υ =0.3, joint supported on the all edges (Fig. 1)
was examined. Dynamic compressive load in the plane of the plate was included.
The dynamic load means the load, which was suddenly introduced and lasted for
infinite duration.

Using research done by Volmir [36], the above plate can be described by the
following equation:

ζ̈ + Ω2
0 (1 − k cos θ t)ζ + ηζ 3 = 0 (2)

where: k = σ ∗
t /σ ∗

cr
1−σ ∗

0 /σ ∗
cr
, Ω2

0 = ω2
0(1 − σ ∗

0
σ ∗
cr
), ζ – deflection of the plate, ω0 – natural fre-

quency, σ ∗
cr – critical stress, σ

∗
0 –medium stress, σ ∗

t – stress amplitude, η – parameter,
whose value is dependent on the boundary conditions.
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Fig. 1 Analyzed plate

For the studied plate the values of parameterswere:ω0 = 3014.3[rad/s],σ ∗
cr =72.3

[MPa], η = 0.23[rad/s2] - the value of parameter for the plate joint supported on the
all edges.

Transforming the Eq. (2) to dimensionless form we get:

ẍ + a(1 − k cosψτ)x + bx3 = 0 (3)

where: a = 1 − σ ∗
0

σ ∗
cr
, b = η

ω2
0
, ẍ = 1

ω2
0
ζ̈ , x = ζ , x3 = ζ 3, ψ = θ

ω0
, τ – dimensionless

time. For the purpose of the further numerical analysis, the Eq. (3) was described by
two first-order differential equations:

ẋ1 = x2
ẋ2 = −a(1 − k cosψτ)x1 − bx31 (4)

The studies were made for the following initial conditions: x1 =0.01, x2 =0.

3 Numerical Analysis of the Study Plate

The analysis of dynamic stability of the plate was made by changing the values of
the parameters σ0 and σt . This allowed to create the graph of stability and instability
areas.

Figure 2 presents the graphs of dynamic stability and instability (a circled area) of
the plate (a) and the timing diagram of stress (b) presented in the Volmir studies [36].
Whereas, Fig. 3 shows the areas of dynamic stability and instability (a circled area) for
the analyzedplate obtainedbyusing the criteria of phaseportraits (PP), Poincarémaps
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Fig. 2 The graph of dynamic stability and instability of the plate (a) and the timing diagram of
stress (b) presented in the Volmir studies [36]

Fig. 3 The graph of dynamic stability and instability areas for the study plate

(PM), FFT analysis (FFT) in the coordinates k − ψ/2Ω (ψ = θ/ω0,Ω = Ω0/ω0).
Calculations for parameters k and ψ/2Ω changing every 0,01 were made.

This graph shows the extended study which were presented in the Volmir work
[36]. Applying tools used in dynamics, it is possible to not only the full agreement
with the Volmir results (the area nr 1 in Fig. 3), but also presented the larger areas of
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Fig. 4 The graph of the areas representing the chaotic solution – the criteria of Poincaré maps and
the largest Lyapunov exponents

dynamic instability (the area nr 2 in Fig. 3). In the areas of dynamic stability quasi-
periodic solutions were obtained. Besides, for the areas of dynamic instability quasi-
periodic as well as chaotic solutions were observed. Therefore, the graph (Fig. 4)
on which were indicated the areas representing the chaotic solution (gray areas) by
applying the criteria of Poincarémaps and the largest Lyapunov exponents wasmade.
The dashed line marks the boundary of stability solution which corresponds to the
areas of dynamic stability and instability presented in Fig. 3. In addition, magnifying
for the above two graphs (Figs. 3 and 4) in the beginning part ofψ/2Ω parameter was
made (Fig. 5). In both figures, it can notice the appearance of small dynamic stability
areas within the dynamic instability range. For the initial value of the parameter
ψ/2Ω (for the parameter value up to 0.1) the areas of the chaotic solution are small
and occurs for the specific values (marked with gray circles) or ranges (marked with
gray rectangles).

For a detailed presentation anddescription of the results using the dynamic criteria,
the results for three selected points were analyzed. These points represent the areas
of dynamic stability (k =0.5, ψ/2Ω =0.3), dynamic instability with a quasi-periodic
solution (k =0.3, ψ/2Ω =1.0), dynamic instability with a chaotic solution (k =1.3,
ψ/2Ω =0.5). The phase portraits (a, d, g), FFT analysis (b, e, h) and Poincaré maps
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Fig. 5 The detailed graphs of dynamic stability and instability areas (a) and the areas representing
the chaotic solution (b)

(c, f, i) for the areas of dynamic stability (a, b, c), dynamic instability – quasiperiodic
solution (d, e, f) and dynamic instability – chaotic solution (g, h, i) were presented
on the Fig. 6.

Analyzing the graphs of the phase portraits can be observed that for the assumed
initial conditions (x1 =0.01, x2 =0), the loss of dynamic stability (Fig. 6d, g) is repre-
sented by a rapid increase the values of the displacement x1 and velocity x2 as against
the areas of dynamic stability (Fig. 6a). According to the study [12], the coordinate
values of the phase trajectory with the loss of dynamic stability are endless. This is
when the analysis time of tested structure is close to the period of natural vibration
of the structure. From a mathematical viewpoint – as is described in the research
– the coordinate values of the phase trajectory are limited if the analysis time of
the tested structure far exceeds the period of natural vibration of the analyzed plate.
Their maximum values depend on the value of the parameter k. However, from the
physical point of view, presented displacement values are unattainable to obtain.
Nevertheless, a full compliance of the solutions for the areas of dynamic stability
and instability for the short and long durations of analysis for the study plate was
obtained.

Using the criterion of FFT analysis, it can be concluded that the areas of the
dynamic stability are represented by the signal spectrum, from which the dominant
frequencies can be precisely specify (Fig. 6b). In the areas of loss of stability it is
not possible to specify the dominant frequencies. For some frequency ranges, the
signal spectrum is continuous (Fig. 6e) or is continuous for almost the entire range
of the analyzed frequencies (Fig. 6h). The loss of stability is represented also by a
substantial increase of the amplitude of the analyzed signal,which has been expressed
in decibels.
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Fig. 6 The phase portraits (Zhejiang, d, g), FFT analysis (b, e, h) and Poincaré maps (c, f, i) for
the areas of dynamic stability (a, b, c), dynamic instability – quasiperiodic solution (d, e, f) and
dynamic instability – chaotic solution (g, h, i)

Similar as for the phase portraits graphs, the loss of dynamic stability on the
Poincaré maps (Fig. 6f, i) is associated with the rapid growth of the displacement
x1 and velocity x2. In addition, analyzing the results obtained for the stability area
(Fig. 6c), it can be concluded that the solution is quasi-periodic. There are two
disproportionate to each other frequencies which form the so-called 2D torus [14].
The existence of 2D torus for a point from the stationary area (k =0.5,ψ/2Ω =0.3) is
confirmedby the zero values of the largest Lyapunov exponents –λ1 =0.000002,λ2 =
−0.000002. In the areas of the dynamic instability with a quasi-periodic solution
(k = 0.3,ψ/2Ω = 1.0), the values of the largest Lyapunov exponents are also equal
to zero – λ1 = 0.000004, λ2 = −0.000004. The existence of the torus 2d also in
this area was proved. However, it should be noted that the occurrence of the 2D
torus in the areas of the dynamic stability is related to the lack of damping in the
system. Consequently, there is no attractor (or attractors) to which the trajectory
would coincide. Introducing the damping to the system would lead to two negative
values of the largest Lyapunov exponents [14]. In the areas of the dynamic instability
with a chaotic solution (k = 1.3, ψ/2Ω = 0.5), the value of the largest Lyapunov
exponent is positive – λ1 = 0.026312, λ2 = −0.026312. In addition, in order to
accurately present the transition from the unstable quasi-periodic solution to the
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Fig. 7 The Poincaré maps for the areas of dynamic instability – quasiperiodic solution (a) and
dynamic instability – chaotic solution (b)

unstable chaotic solution, the Poincaré maps for the points k = 0.40, ψ/2Ω = 1.0
(a) and k=0.42, ψ/2Ω = 1.0 (b) were presented (Fig. 7). The magnified centered
part for each graph clearly indicates the nature of the solution.

4 Summary

The aim of the study was to analyze an isotropic plate in terms of its dynamic
stability (or its instability), by using the criteria of phase portraits, Poincaré maps,
FFT analysis, largest Lyapunov exponents and compared the obtained results with
the results received by using the Volmir criterion. Summing up the results, it can be
concluded that using the criteria of phase portraits, Poincaré maps, FFT analysis, it
is possibile to designate the areas of dynamic stability and instability for the study
system. The results obtained with the above criteria are consistent with the results
which were presented in the Volmir work [36]. Furthermore, the larger areas of
dynamic stability and instability as compared with the Volmir results were presented.
In addition, using the criteria of Poincaré maps and the largest Lyapunov exponents
the areas in which the solution is chaotic were presented.

For the criteria of phase portraits and Poincaré maps, the loss of stability was
associated with a significant increase in the value of the displacement x1 and velocity
x2 (in comparison with the area of dynamic stability for given initial conditions). On
the FFT analysis graphs, the area of dynamic stability is represented by the signal
spectrum, from which the dominant frequencies can be precisely specify. On the
graphs of the FFT analysis, during the transition into the area of instability, the signal
spectrum is continuous (specification of the dominant frequencies is impossible) and
significantly increased their amplitude. Besides, applying the criteria of Poincaré
maps and the largest Lyapunov exponents can present the complex quasi-periodic
and chaotic solutions and precisely determine the values of the parameters for which
these solutions appear.
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The criteria which were used in this article can be very useful during the following
research.
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Rigid Jeffcott Rotor Bifurcation
Behaviour Using Different Models
of Hydrodynamic Bearings

Miroslav Byrtus and Štěpán Dyk

Abstract The paper studies dynamical behaviour of Jeffcott rotor supported by a
hydrodynamic bearings. It uses different analytical formulations for hydrodynamic
bearing forces acting on Jeffcott rotor. The model is nonlinear due to the presence of
hydrodynamic bearings and can show different subharmonic behaviour like oil whip
and oil whirl. Such a system is subjected to dynamical analysis using numerical con-
tinuation aimed at detection of nonlinear phenomena like bifurcations and unstable
behaviours with respect to basic system parameters.

Keywords Rotordynamics · Hydrodynamic bearings · Vibration · Bifurcation

1 Introduction

This paper is focused on dynamics of a modified version of the Jeffcott rotor [12],
also known as the Laval rotor [9], neglecting the shaft bending stiffness. The main
motivation for this model is to understand the phenomena resulting from fluid-film
bearing forces. The modifications of Jeffcott rotor are widely used to show various
rotordynamics phenomena such as influence of rotor clearances and rotor-stator con-
tacts [18], effects of seals [14], parametric vibration caused by cracked shaft [11] or
influence of thermo hydrodynamic effects [13]. In general, non-linear phenomena
are studied on different mechanical systems [2–4].

Recently, using the developed computer based tools for non-linear dynamic sys-
tem analysis, existence of equilibria, periodic orbits can be predicted along with
various bifurcations [10]. In [1, 8] the numerical continuation is used for an analysis
of a Jeffcott rotor model supported by hydrodynamic bearing loaded by the grav-
ity. The bifurcation of equilibria and limit cycles is studied. Numerical continuation
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method is applied to Jeffcott rotor supported by semi-floating ring bearings in [6].
Different subsynchronous oscillations like oil whirl and oil whip are detected along
with various bifurcations of the solutions. Further, authors in [16] studied nonlinear
stability of a flexible rotor-bearing system using the Hopf bifurcation theory.

Thework presented here is similar in spirit to the analyses performed by numerical
continuation mentioned above but the Jeffcott rotor model is moreover completed by
the unbalance load.Mathematical model of the system is derived in polar coordinates
and the fluid-filmbearing forces are adopted for both infinitely long (IL) and infinitely
short (IS) hydrodynamic journal bearings (JB) [5]. Both ILJB and ISJB are subjected
to stability analysis with gravity load only. And then the continuation of limit cycles
is performed for a system loaded by gravity and unbalance forces simultaneously.

2 Mathematical Model of Jeffcott Rotor
with Hydrodynamic Journal Bearing

Based on the scheme depicted in Fig. 1, the mathematical model of Jeffcott rotor
can be formulated. In the original Jeffcott model, the elastic forces of flexible shaft
or elastic forces in the bearing were considered. However, the phenomena occurring
in the journal bearings are more complex and the bearing forces can be represented
more precisely using an approximate solution of Reynolds equation which describes
a pressure distribution in the bearing andwhich can be transformed to the force acting
to the journal.

According to Fig. 1, position of the geometric centre C of journal is described
by polar coordinates e (radial displacement) and ϕ (angular displacement) in the
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Fig. 1 The scheme of the considered Jeffcott rotor
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non-rotating space. The rotor rotates with angular speed ω, it has the mass m and its
static unbalance isΔmE. In central position, the radial clearance between the journal
and a bearing is c.

Themathematicalmodel of the Jeffcott rotor in journal bearings can be formulated
in polar coordinates considering gravity load [1] and unbalance load in following
way

ε′′ − εϕ′2 = F (X )
ε

mcω2
+ W

mcω2
cosϕ + ΔmE

mc
cos(τ − ϕ),

εϕ′′ + 2ε′ϕ′ = F (X )
ϕ

mcω2
− W

mcω2
sin ϕ + ΔmE

mc
sin(τ − ϕ),

(1)

where superscripts X = IL, IS correspond to the infinitely long and infinitely short
journal bearings. The relative (dimensionless) eccentricity is given as ε = e/c.

The equations of motion (1) are formulated in dependence on dimensionless time
τ = ωt. This assumption results in following relationships for the time derivative of
used time-dependent variables �̇ = �′ω, where �̇ = d

dt� and �′ = d
dτ

�.
Formulas for forces in HD journal bearings introduced in [17] (IL) and [7, 15]

(IS) have been summarized in [5]. Corresponding to the directions indicated in Fig. 1
(the influence of oil film on the shaft), the forces can be expressed in dependence on
dimensionless eccentricity and time in following way

F (IL)
ε = −6μRL

(
R

c

)2

ω

[
(1 − 2ϕ′)

2ε2

(2 + ε2)(1 − ε2)
+ πε′

(1 − ε2)3/2

]
︸ ︷︷ ︸

f (IL)
ε

, (2)

F (IL)
ϕ = 6μRL

(
R

c

)2

ω

[
(1 − 2ϕ′)

πε

(2 + ε2)(1 − ε2)1/2
+ 4ε′

(1 + ε)(1 − ε2)

]
︸ ︷︷ ︸

f (IL)
ϕ

, (3)

F (IS)
ε = −μRL

(
L

c

)2

ω

[
(1 − 2ϕ′)

ε2

(1 − ε2)2
+ π(1 + 2ε2)ε′

2(1 − ε2)5/2

]
︸ ︷︷ ︸

f (IS)
ε

, (4)

F (IS)
ϕ = μRL

(
L

c

)2

ω

[
(1 − 2ϕ′)

πε

4(1 − ε2)3/2
+ 2εε′

(1 − ε2)2

]
︸ ︷︷ ︸

f (IS)
ϕ

. (5)

The equations of motion (1) along with journal bearing forces expressions (2)–(5)
were rewritten in the form
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ε′′ − εϕ′2 = −λ(X )

ω
f (X )
ε + 1

ω2 cosϕ + ΔmE

mc
cos(τ − ϕ),

εϕ′′ + 2ε′ϕ′ = λ(X )

ω
f (X )
ϕ − 1

ω2 sin ϕ + ΔmE

mc
sin(τ − ϕ),

(6)

where the introduced dimensionless parameters are formulated as follows

ω = ω

√
c

g
, λ(IL) = 6μLR3

mc2.5g0.5
, λ(IS) = μRL3

mc2.5g0.5
. (7)

The variable μ stands for the oil viscosity and g corresponds to gravity constant.

3 Computational Analysis

The mathematical model (6) is analysed using time integration and numerical con-
tinuation methods using the software MATCONT [10]. Therefore, it needs to be
rewritten in the state space

x′ = f (X )(x, ω, λ(X )), X = IS, IL. (8)

The state-space is defined by the vector x = [x1, x2, x3, x4]T = [ε, ϕ, ε′, ϕ′]T . Par-
ticularly, the model (8) states as follows

x′
1 = x3,

x′
2 = x4,

x′
3 = x1x4

2 − λ(X )

ω
f (X )
x1 + 1

ω2 cos x2 + ΔmE

mc
cos(τ − x2),

x′
4 = 1

x1

[
−2x3x4 + λ(X )

ω
f (X )
ϕ − 1

ω2 sin x2 + ΔmE

mc
sin(τ − x2)

]
.

(9)

4 Parametric Study by Numerical Continuation

The mathematical model (8) has two (dimensionless) free parameters: rotational
velocity ω and mass-geometric-material parameter λ(X ) whose form depends on
bearing type. These parameters characterize bearing properties in general. Further,
dynamical properties of the Jeffcott rotor model are studied in dependence on these
two parameters.
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The analyses are performed for both considered bearing models (ISJB, ILJB) and
two main cases are taken into account: (i) perfectly balanced rotor (only gravity load
is considered), (ii) unbalanced rotor (gravity load along with unbalance forces are
considered).

4.1 Perfectly Balanced Rotor

By the term perfectly balanced rotor we assume such a rotor which is very well
balanced and which is operated up to such conditions when the unbalance forces
can be neglected in the response. However, the model based on this assumption can
reveal basic dynamical properties of the system.

In Fig. 2, different responses of the system (9) for ISJB are plotted. The blue solid
lines correspond to equilibrium solutions for different values of the parameter λ(IS).
One can for example imagine, the higher the parameter λ is the higher the mass of
the rotor is. If the rotor rotates with a given angular velocity, the position of the rotor
is formed by a stable equilibrium – the eccentricity ε and the angle ϕ are constant
in time. As the velocity increases, the eccentricity decreases up to it reaches the
Hopf bifurcation point. Crossing the Hopf point the equilibrium becomes unstable
(designated by dashed blue line). All the Hopf points for different form the so called
Hopf curve (black line) as the parameter λ changes. The Hopf curve is divided into
two parts by the Generalized Hopf bifurcation point. The black solid line contains
all Hopf points which give arise to supercritical bifurcation (limit cycles are born).
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Fig. 3 Equilibrium points of IL bearing

The black dashed line contains Hopf point which give arise to subcritical bifurcation.
According to Fig. 2, the supercritical Hopf bifurcation limits at limit point of cycles
and forms back subcritically. The limit cycles develop up to a limiting cycle where
the eccentricity reaches the limit values (ε ∈ [0, 1]) within the cycle. The limit cycles
bifurcating from Hopf points correspond to the oil whirl instability.

In the case of perfectly balanced rotor supported by ILJB presented in Fig. 3, the
dynamical behaviour is qualitatively very similar. The operational area is divided
into stable and unstable regions of equilibria by the Hopf curve. However, the Hopf
curve does not limit to a given angular velocity as the the case of ISJB. The limit
cycles arising from Hopf points are even subcritical or supercritical and they do not
cross over limit point of cycles.

4.1.1 Sensitivity to Initial Conditions

When the rotor operating speed approaches the border of the stability but still staying
in the stable region, the response becomes more sensitive to initial conditions of the
system. The set of possible initial conditions (from the position point of view) is
divided into two areas (basins of attraction). In Fig. 4, in the plane given by axes
named horizontal and vertical direction lay all possible initial conditions. The blue
area corresponds to initial conditions which form the equilibrium solution. Initial
conditions laying in the yellow area form a stable limit cycle where the eccentricity
draws completely the bearing clearance. The basins of attraction evolve with respect
to rotor velocity and depend on the bearing model as well.
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Fig. 4 Basins of attractions

4.2 Unbalanced Rotor - Real Case Study

In real cases, the unbalance is the main source of excitation of rotating systems.
Here, the model of Jeffcott rotor is excited by the gravity load and by a rotating force
induced by the rotor unbalance.

In the case of unbalanced rotor, continuation of periodic solution is performed
for a chosen mass-geometric-material parameter λ(IL) = 1.1577 and λ(IS) = 0.7718,
these values correspond to rotor parameters which are summarized in Tab. 1. To show
the influence how change of the parameter λ influences the behaviour of the system,
analyses for λ(IL) = λ(Is) = 1 is performed as well. Figures 5 and 6 correspond to
rotor supported by ISJB. The mechanism how the bifurcations arise is the same, the
bifurcation point are shifted only with respect to relative angular velocity of the rotor.
As the angular velocity increases, the amplitude of the limit cycles grows up to it
reaches period doubling point. At this point the solution bifurcates and the 2-period
solutions trends to limiting point of cycles and it goes over Neimarck-Sacker point.
The 2-period limit cycles then tends to second period doubling point. Between the
two period doubling points, there is a neutral saddle on the 1-period solution branch.

Figures 7 and 8 correspond to rotor supported by ILJB. The ILJB model is more
sensitive to the change of the parameter λ. Comparing both figures, one can clearly
see the formation of period doubling scenarios. The fundamental behaviour of the ro-
tor is similar to the previous model. For small relative angular velocity, the behaviour
is moreover comparable to the perfectly balanced rotor, i.e. here, a very small limit
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Table 1 Reference parameters of the Jeffcott rotor in HD journal bearings [5]

Parameter Value

Radial clearance c = 0.9 × 10−3 m

Unbalance Δm = 0.01 kg

Unbalance eccentricity E = 0.01 m

Rotor mass m = 3 kg

Rotor RPM n = 〈0; 8000〉 rpm
Dynamic viscosity μ = 0.07 Pa s

Bearing diameter D = 47.37 × 10−3 m

Bearing axial length L = ηD, η = 1
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Fig. 5 Response to rotor unbalance ISJB for real parameters given inTable 1 resulting inλ = 0.7718

cycle develops and grows as the velocity increases up to it reaches the period dou-
bling point. In dependence on the λ parameter the 2-period solution bifurcates either
supercritically or subcritically. In case of λ = 1.1577, the 2-period solutions trends
through Neimarck-Sacker point and it limits for angular velocity approx. 4.4. And
for the velocity 5.7 another period doubling point appears. The 2-period solution
arising form this point is subcritical and at branching point it turns to supercritical
one. Taking into account the parameters λ = 1, in the followed region there appears
one period doubling point only. The 2-period solution then disappears for velocity
5, since the 1-period solution disappears around the velocity 7.3. The disappearing
of the 1-period solution is influenced by the borders where the model is valid. Since
the parameter λ = 1 correspond to the ration L/D < 1, the validity of the model is
limited.

The period doubling scenario can be practically explained as the oil whirl
instability.
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Fig. 6 Response to rotor unbalance ISJB, λ = 1
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Fig. 7 Response to rotor unbalance ILJB for real parameters given in Table 1 resulting in
λ = 1.1577

5 Conclusions

The paper focuses on the dynamical analysis of modified Jeffcott rotor supported
by HD journal bearings using numerical continuation. For the purpose of this pa-
per, two analytical models of hydrodynamic bearing forces are taken into account:
i) for infinitely long journal bearing model (ILJB) and ii) for infinitely short journal
bearing model (ILJB).
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Fig. 8 Response to rotor unbalance ILJB, λ = 1

Firstly, a stability analyses of both ILJB and ISJBwere performed considering the
gravity load only. The analyses are performed for a wide range of mass-geometric-
material parameter to show its influence on the formation of the stability boundary.
For both cases, the stability boundary is formed by so calledHopf curvewhich is itself
divided by Generalized Hopf bifurcation point, i.e. one part of the boundary gives
rise to supercritical bifurcation of limit cycles, since the other part forms subcritical
limit cycles bifurcation. Numerical experiment further show a strong dependence
of the system response to the initial conditions in the vicinity of the border of the
stability. Such a behaviour is demonstrated by basins of attraction formed by initial
conditions. Two sets were revealed where one set limits to equilibrium since the other
one limits to unstable limit cycle completely drawing the bearing clearance.

In the next, a parametric study of a Jeffcott rotor with real parameters were per-
formed. In case of ISJB, an area bounded by period doubling points was detected.
The 2-period solutions transit between the period doubling points through limit point
of cycles. In case of ILJB, themodel is more sensitive to themass-geometric-material
parameter as the presented bifurcation diagrams show.

The analyses of the modified Jeffcott rotor explain the fundamental dynamic
properties of the fluid-film journal bearings, especially the stability properties
and mechanisms of loosing the stability (oil whirl) have an important impact to
engineering applications.
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The Burden of the Coinfection of HIV
and TB in the Presence of Multi-drug
Resistant Strains

Ana Carvalho and Carla M. A. Pinto

Abstract We introduce a fractional-order model for the coinfection of the
immunodeficiency virus and tuberculosis, in the presence of drug resistant tuber-
culosis strains and treatment for both diseases. We compute the reproduction num-
ber of the model. Numerical simulations show the different dynamics of the model
for variation of relevant parameters. Moreover, the order of the fractional derivative
plays an important role in the severity of the epidemics.

Keywords Tuberculosis · HIV · Resistant strains · Coinfection

1 Introduction

The human immunodeficiency virus (HIV) and the Mycobacterium tuberculosis
(Mtb) have a synergistic relationship. In coinfected individuals, tuberculosis (TB)
causes cell activation and excessive cytokine and chemokine productions. The later
stimulates HIV replication and accelerates the progression to acquired immunodefi-
ciency syndrome (AIDS). On the other hand, HIV increases twenty times the odds
of TB reactivation and increases the risk of infection by multi-drug resistant strains
(MDR-TB) of Mtb, since it expands the number of individuals with active TB [1, 2].

Resurgence of TB in the 1980’s is attributed jointly to the emergence of MDR-TB
strains and the AIDS pandemic, which led theWorld Health Organization (WHO) to
declare TB as a global emergency in 1983. MDR-TB and, more recently, extensively
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resistant TB (XDR-TB), jeopardize TB control, and rise concerns of a future of
non-effective drugs [3].

Severalmathematicalmodels have been derivedwith the purpose of understanding
the dynamics ofHIV, andTB, and of the coinfection [4–10]. In 1997, Castillo-Chavez
and Feng [7], formulated amodel for TBwhere it is possible to determine the survival
and spread of naturally resistant strains of TB and resistant strains of TB generated
by antibiotics. They concluded that the coexistence of the two strains only occurs
in treated individuals and results from the lack of adherence to treatment. In 2012,
Sergeev et al. [9] explored the effect of HIV on the dynamics of MDR-TB. An
increase in the HIV viral load in coinfected individuals increased the prevalence of
MDR-TB within populations. That occurred even as it lowered the average fitness of
circulatingMDR-TB strains, when compared to similar HIV uninfected populations.
Silva and Torres [10] proposed a HIV/TB coinfection model, where treatments for
latent and active TB are included. They applied optimal control techniques to derive
optimal treatment protocols for HIV/TB coinfected individuals. Numerical results of
the model pointed to some measures to reduce the number of individuals developing
active TB and AIDS.
Fractional calculus
Fractional calculus (FC) is a generalization of the integer order calculus. It is first
mentioned in the literature in 1695 in a letter exchange between L’Hôpital and Leib-
niz. Since then, the meaning and methods to compute 1/2-order derivatives or, in
general, α-order derivatives, with α non-integer, has been a major research in math-
ematics [11, 12]. Some well-known mathematicians that have devoted their work to
fractional differentiation and integration are Euler, Abel, Liouville, Riemann, Grün-
wald, Letnikov, Caputo, amongst others [13–18].

Fractional models have been used in the literature to understand the behavior
of epidemiological models, where the integer-order models fail to give a complete
explanation. Pinto andCarvalho [19] proposed a fractional-order (FO)model forHIV
and TB co-infection. They observed that the results from both the integer-order and
the FO versions of the model provided biologically feasible results for the coinfec-
tion. Sardar et al. [20] derived three mathematical models for a common single strain
mosquito-transmitted infection. The first model used ordinary differential equations
to describe the patterns of the infection, whereas the other two were based on frac-
tional order equations. The authors found that the model with memory (fractional
model), in both the host and the vector population, fitted better epidemic data.

Driven by the aforementioned research, in this paper, we analyze the burden of
the coinfection in a non-integer order model for HIV and TB coinfection, in the
presence of drug resistant TB strains and treatment for both diseases. In Sect. 2 we
introduce the model. Then, in Sect. 3, we simulate the model for distinct values of the
order of the fractional derivative and two relevant parameters. The obtained
the results are discussed. Finally, we conclude our work and mention future research
headlines.
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2 The Model

The model is composed of 13 classes. The individuals in the susceptible class, S, are
recruited at a rate Λ. They are infected by HIV and TB at rates

λH = βH (IH + ET IH + RIH + ηH (ITH + TRIH ))

N

and

λT = βT (IT + ηT (TR + ITH + TRIH ))

N

respectively. Parameters βH and βT are the effective contact rates for HIV and
TB infection, respectively. The modification parameters ηH and ηT account for the
increased infectiousness of individuals coinfected with HIV and TB, when compared
to individuals solely infected with either HIV or TB. We consider, for simplification,
that people showing symptoms of AIDS do not infect others.

The individuals exposed to TB, ET , develop active TB at rate ε and move to the
class of infected individuals, IT . The exposed, ET , may also be infected with HIV at
a rate λH and move to the class of individuals exposed to TB and infected with HIV,
ET IH . Individuals IT may recover from TB at rate γ and move to the recovered class,
R. They are also resistant to the first line of TB treatment at rate σT , and move to the
MDR-TB drug-resistant individuals’ class, TR. IT individuals are infected with HIV
at rate ψ3λH , where ψ3 captures the fact that individuals infected with TB are more
infectious than the ones only exposed to TB, and move to the dually infected class,
ITH . The individuals infected with the MDR-TB strains, TR, recover from TB at rate
a. The recovered individuals, R, become susceptible to TB at rate ρ.

The individuals infected with HIV, IH , develop AIDS at a rate σH moving to the
class of patients showing symptoms of AIDS, A. They are also infected with TB
at rate ψ1λT , where ψ1 is a modification parameter, and move to class ET IH . The
individuals with AIDS, A, are treated at rate τ2, and move to class IH . They are
infected with TB at rate ψ2λT , where ψ2 > ψ1 are modification parameters, and
move to the class of individuals exposed to TB and showing symptoms of AIDS,
ETA. The inequality ψ2 > ψ1 models the fact that the individuals with AIDS are
more infectious than those only infected with HIV. The individuals in class ET IH ,
and in class ETA, develop active TB at rates η1ε and η2ε, and move to classes ITH
and ITA, respectively. The class ITA are the dually infected individuals with active
TB and AIDS. We note that η2 > η1, since patients with AIDS develop active TB
faster than individuals infected only with HIV. The patients in class ET IH and in
class ITH proceed to AIDS at rates θ1σH and θ2σH , respectively, where θ2 > θ1. The
later translates the fact that individuals infected with TB proceed faster to AIDS than
the ones exposed to TB. The individuals in class ITH and the ones in class ITA are
treated at rates γ1 and γ2, respectively, and move to class RIH (patients recovered
from TB and infected with HIV). Moreover, patients in classes ITH and ITAmay also
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develop MDR-TB strains at rates σT1 and σT2, respectively, and move to class TRIH
(individuals dually infected with MDR-TB strains). The later recover from TB at
rate a1.

All individuals die from natural causes at rate μ. Depending on the state of infec-
tion, individuals die from the HIV, or TB, or HIV and TB coinfection at rates δi,
i = 1, . . . , 9.

The nonlinear system of fractional-order differential equations describing the
dynamics of the model is:

dαS
dtα = Λα − λT S − λHS + ραR − μαS

dαET
dtα = λT S − (λH + εα + μα)ET

dα IT
dtα = εαET − (ψ3λH + γ α + σα

T + μα + δα
1 )IT

dαR
dtα = γ αIT + aαTR − (ρα + μα)R

dαTR
dtα = σα

T IT − (aα + μα + δα
2 )TR

dα IH
dtα = λHS + τα

2 A − (ψ1λT + σα
H + μα + δα

3 )IH

dαA
dtα = σα

H IH − (ψ2λT + τα
2 + μα + δα

4 )A

dαET IH
dtα = λHET + ψ1λT IH + τα

2 ETA − (η1ε
α + θ1σ

α
H + μα + δα

5 )ET IH

dαETA
dtα = θ1σ

α
HET IH + ψ2λTA − (η2ε

α + τα
2 + μα + δα

6 )ETA

dα ITH
dtα = η1ε

αET IH + ψ3λH IT − (γ α
1 + σα

T1 + θ2σ
α
H + μα + δα

7 )ITH

dα IT A
dtα = θ2σ

α
H ITH + η2ε

αETA − (γ α
2 + σα

T2 + μα + δα
8 )ITA

dαRIH
dtα = γ α

1 ITH + γ α
2 ITA + aα

1TRIH − (μα + δα
3 )RIH

dαTRIH
dtα = σα

T1ITH + σα
T2ITA − (aα

1 + μα + δα
9 )TRIH

(1)

where λH = βα
H (IH+ET IH+RIH+ηH (ITH+TRIH ))

N and λT = βα
T (IT+ηT (TR+ITH+TRIH ))

N .
Parameter α ∈ (0, 1] is the order of the fractional derivative. When α = 1, then

the model is the integer order counterpart. The fractional derivative of the proposed
model is used in the Caputo sense, i.e.:

dαy(t)

dtα
= I p−αy(p)(t), t > 0
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where p = [α] is the value of α rounded up to the nearest integer, y(p) is the p-th
derivative of y(r), I p1 is the Riemann-Liouville fractional integral given by:

I p1z(t) = 1

�(p1)

∫ t

0

(
t − t

′)p1−1
z(t

′
)dt

′

We compute the reproduction number of model (1), R0, using the next generation
method [21]. R0 is defined as the number of secondary infections due to an infected
individual in a completely susceptible population. The associative basic reproduction
number is given by:

R0 = max{RT ,RH } (2)

where

RT = εαβα
T (ηTσα

T + aα + δα
2 + μα)

(εα + μα)(γ α + σα
T + μα + δα

1 )(aα + μα + δα
2 )

(3)

is the reproduction number for the TB-only submodel.

RH = βα
H (τα

2 + μα + δα
4 )

(μα + δα
3 )(μα + δα

4 + τα
2 ) + σα

H (μα + δα
4 )

(4)

is the reproduction number for the HIV-only submodel. We have the following
lemma:

Lemma 1 The disease-free equilibrium P0 is locally asymptotically stable if all
eigenvalues λi of the linearization matrix of model (1), satisfy |arg(λi)| > α π

2 .

3 Numerical Results

We simulate the model (1) for different values of the order of the fractional deriva-
tive, α and for parameters ηH and ηT . The parameters used in the simulations,
based on [4, 6], are Λ = 50000, βT = 0.75, ηT = 1.02, βH = 0.2, ηH = 1.05, ρ =
0.05, μ = 0.02, ψ3 = 1.03, ε = 0.25, γ = 0.15, σT = 0.003, δ1 = 0.01, a = 0.11,
δ2 = 0.02, τ2 = 0.08, ψ1 = 1.1, ψ2 = 1.2, σH = 0.15, δ3 = 0.01, δ4 = 0.02, η1 =
1.5, θ1 = 1.02, δ5 = 0.1, η2 = 1.8, δ6 = 0.03, γ1 = 0.13, σT1 = 0.005, γ2 = 0.11,
σT2 = 0.005, α1 = 0.10, θ2 = 2.5, δ7 = 0.03, δ8 = 0.03, δ9 = 0.03, and the inicial
conditions are: S(0) = 500, ET (0) = A(0) = 50, IT (0) = 25, R(0) = 10, TR(0) =
5, IH (0) = 100 andET IH (0) = ETA(0) = ITH (0) = ITA(0) = RIH (0) = TRIH (0) =
10.

In Figs. 1 and 2, it is shown the dynamics of the variables of system (1) for
different values of ηT , the parameter that accounts for the increased infectiousness
of individuals coinfected with HIV and TB, when compared to individuals solely
infected with TB, and for two values of α. We observe that as ηT increases, there
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Fig. 1 Dynamics of the relevant variables of system (1) for different values of ηT , which accounts
for the increased infectiousness of individuals coinfected with HIV and TB, when compared to
individuals solely infectedwith TB. Parameter values and initial conditions in the text (ηT = 1.001 -
RT = 3.8707,RH = 2.5,R0 = 3.8707,ηT = 1.1 -RT = 3.8783,RH = 2.5,R0 = 3.8783,ηT = 1.4
- RT = 3.9010, RH = 2.5, R0 = 3.9010)
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Fig. 2 Dynamics of the relevant variables of system (1) for different values of ηT , which accounts
for the increased infectiousness of individuals coinfected with HIV and TB, when compared to
individuals solely infected with TB. Parameter values and initial conditions in the text (ηT = 1.001
- RT = 1.0873, RH = 1.0279, R0 = 1.0873, ηT = 1.1 - RT = 1.1440, RH = 1.0279, R0 = 1.1440,
ηT = 1.4 - RT = 1.3159, RH = 1.0279, R0 = 1.3159)
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Fig. 3 Dynamics of the relevant variables of system (1) for different values of ηH , which accounts
for the increased infectiousness of individuals coinfected with HIV and TB, when compared to
individuals solely infected with HIV. Parameter values and initial conditions in the text (RT =
3.8722, RH = 2.5, R0 = 3.8722)
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Fig. 4 Dynamics of the relevant variables of system (1) for different values of ηH , which accounts
for the increased infectiousness of individuals coinfected with HIV and TB, when compared to
individuals solely infected with HIV. Parameter values and initial conditions in the text (RT =
1.0982, RH = 1.0279, R0 = 1.0982)
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is an overall increase in individuals, exposed and actively infected with TB and
coinfected with HIV and TB, showing or not symptoms of AIDS. This suggests a
higher disease burden for coinfected individuals, with AIDS and TB fuelling each
other’s symptoms. The patterns of the model are similar for the two values of the
order of the fractional derivative, α. Though, the severity of the disease (in terms of
higher number of infected individuals) decreaseswithα. The corresponding values of
the reproduction number, R0, are calculated and validate this behaviour, i.e., smaller
values of R0 are obtained for increased values of α.

In Figs. 3 and 4, it is depicted the dynamics of the variables of system (1) for
different values of ηH , which refers to the increased infectiousness of individuals
coinfected with HIV and TB, when compared to individuals solely infected with
HIV, and two values of α. As ηH increases, there is an overall increase of the number
of infected individuals, either with HIV, xor TB, or both, in the first few years of the
infection. This is epidemiologically relevant since we expect heavier symptoms, due
to weakened immune systems, in the presence of both HIV andMtb in the organism.
Then, as time goes by, and people get treatment for TB, they evolve favourably from
TB, but infection by HIV persists. Similar dynamics occur for the two simulated
values of α.

The results of the model appear to be biologically reasonable. We note that the
model may be adjusted to fit real data from HIV and TB solely and coinfected
individuals. This will be considered in our future work.

4 Conclusions

We proposed a FO model for the coinfection of HIV and TB, in the presence of
MDR-TB strains. We analysed the model’s behaviour for distinct values of the order
of the fractional derivative, α, and for two epidemiologically relevant parameters ηH
and ηT , which accounted for the increased infectiousness of individuals coinfected
with HIV and TB, when compared to individuals solely infected with either HIV
xor TB. We observed that the coinfection burden (translated by higher values of ηH
and ηT ) increased the severity of the disease, i.e., augments the number of infected
individuals. This was observed for distinct values of α. Moreover, the burden of the
coinfection seemed to be reduced with α. In future work, fitting of real data by the
proposed model will be considered.
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of Solutions of Certain Painlevé
Equations

Ewa Ciechanowicz and Galina Filipuk

Abstract As a result of classification of second order ordinary differential equations
without movable branch points, a number of the so-called Painlevé equations was
obtained. Among them, six irreducible equations are the best known. They led to
the recognition of new functions, called the Painlevé transcendents. The Painlevé
equations have numerous applications in modern mathematics and mathematical
physics. The solutions of these equations, as they are meromorphic in the complex
plane can be studied from the perspective of value distribution and growth theory,
with such values as defect, deviation or multiplicity index estimated.
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1 Introduction

During 1895–1910 Painlevé and his student Gambier studied the problem posed by
Picard [15] of finding second order ordinary differential equations of the form

f ′′ = F(z, f , f ′), f = f (z), ′ = d/dz, (1)
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where F is rational in f , algebraic in f ′ and analytic in z, with the property that
movable singularities (which depend on initial data) of solutions are at most poles.
This property was later referred to as the Painlevé property and the equations were
called equations of Painlevé type or P-type equations. Painlevé and Gambier found
fiftyP-type differential equations of the form (1) ([3, 12], see also [8]). Among those,
the following six equations are considered to be the most important:

f ′′ = 6f 2 + z, (P1)

f ′′ = 2f 3 + zf + α, (P2)

f ′′ = (f ′)2

f
− 1

z
f ′ + 1

z
(αf 2 + β) + γ f 3 + δ

f
, (P3)

f ′′ = f ′2

2f
+ 3f 3

2
+ 4zf 2 + 2(z2 − α)f + β

f
, (P4)

f ′′ = 3f − 1

2f (f − 1)
(f ′)2 − 1

z
f ′ + 1

z2
(f − 1)2(αf + β

f
) + γ f

z
+ δf (f + 1)

f − 1
, (P5)

f ′′ = 1

2

(
1

f
+ 1

f − 1
+ 1

f − z

)
(f ′)2 −

(
1

z
+ 1

z − 1
+ 1

f − z

)
f ′

+ f (f − 1)(f − z)

z2(z − 1)2

(
α + β

z

f 2
+ γ

z − 1

(f − 1)2
+ δ

z(z − 1)

(f − z)2

)
, (P6)

where α, β, γ, δ are fixed complex parameters and f = f (z).
Apart from movable poles and a singularity at infinity, the solutions of P3, P5

and P6 also have a singularity at 0, and P6 also at 1. This singularity structure
suggests that in case ofP1, P2 andP4 local solutions can be extended tomeromorphic
functions in the complex plane. Recent proofs of this fact were given by Hinkkanen
andLaine in [7], Steinmetz in [21] andShimomura in [17]. It follows that the solutions
of P1, P2, P4, and, after a suitable substitution, of modified P3 and P5 equations
are meromorphic functions in the plane and they can be examined by methods of
value distribution theory [6]. In this paper we concentrate on P1, P2 and P4 and an
additional equation, the so-called P34, given by

f ′′ = (f ′)2

2f
+ 2Bf 2 − Bzf − A

2f
, P34(A, B)

where A, B are complex parameters and which is connected with P2 via the Hamilto-
nian system.We review theknownandpresent some recent results for these equations.
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2 Value Distribution and Growth of Meromorphic
Functions

We say that a complex function of a complex variable is meromorphic in a region
D if it is holomorphic in D, possibly apart from isolated points where it has poles.
In the paper, whenever we say that a function is meromorphic, we mean that it is a
function meromorphic in the whole complex plane.

By Picard theorem, a transcendental entire function assumes every finite value
possibly except one, whereas a transcendental meromorphic function in the plane
assumes every value in C infinitely often apart from at most two exceptions [14].
Here the term transcendental simply means non-rational.

2.1 Nevanlinna Theory

Modern theory of value distribution of meromorphic functions was introduced in the
1920’s in the papers ofRolphNevanlinna.Ameromorphic function f is characterized
by a real-valued function

T (r, f ) := m(r,∞, f ) + N (r,∞, f ),

the Nevanlinna characteristic function of f . Here

m(r,∞, f ) = 1

2π

∫ 2π

0
log+ |f (reiθ )|dθ

denotes a mean proximity (to infinity) function and

N (r,∞, f ) =
∫ r

0
[n(t,∞, f ) − n(0,∞, f )]dt

t
+ n(0,∞, f ) log r

is a function counting poles (n(t,∞, f ) is the number of poles of f in the disc
{z : |z| ≤ t}, counted with multiplicity, n(0,∞, f ) is the multiplicity of a pole at
zero). The integrated counting function N (r,∞, f ) grows with r, m(r,∞, f ) in
general does not. Nevertheless, T (r, f ) is a nondecreasing, convex function of log r.

For a number a ∈ C we can consider accompanying functions

m(r, a, f ) := m(r,∞,
1

f − a
) and N (r, a, f ) := N (r,∞,

1

f − a
)

measuring mean proximity of f to a on the circle and the density of distribution of
a−points of f in the disc, respectively. Nevanlinna, applying the notions presented
above, transformed the Poisson-Jensen formula into the following form.
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Theorem 1 [11] For any function f meromorphic in |z| < R ≤ ∞ the equality

m(r, a, f ) + N (r, a, f ) = T (r, f ) + φ(r, a) (2)

holds for each a ∈ C, where |φ(r, a)| ≤ log+ |a| + | log |c|| + log 2, c is the first
non-vanishing coefficient of the Laurent expansion of f − a at zero.

Theorem 1, known as the First Main Theorem of Nevanlinna, says that the sum
m(r, a, f ) + N (r, a, f ) is relatively independent from the choice of the value a ∈ C.

The SecondMain Theorem of Nevanlinna, on the other hand, shows that for most
values a the main role in the invariant sum (2) belongs to the counting function
N (r, a, f ).

Theorem 2 [11] Let f be a meromorphic function and {ak}q
k=1 ∈ C be a finite set of

distinct values. The following inequality is true

q∑
k=1

m(r, ak , f ) ≤ 2T (r, f ) + O(log(rT (r, f ))) (3)

for r → ∞, possibly outside of a set E ⊂ [0,∞) of finite linear measure.

Inequality (3) in the SecondMainTheoremcan also be formulated in the following
way:

(q − 2)T (r, f ) ≤
q∑

k=1

N (r, ak , f ) + O(log(rT (r, f ))), (4)

where N (r, a, f ) is the integrated function counting each a-point once, regardless of
its multiplicity.

For various purposes it is necessary to estimate not only the sum of multiplicities
of a-points, which is done by means of N (r, a, f ), but also the number of a-points
itself and the number of multiple a-points. Thus, we can introduce the function

N1(r, a, f ) := N (r, a, f ) − N (r, a, f ).

Itmeans thatN1(r, a, f )does not include simplea-points, and eachmultiplea point of
multiplicitym is countedm − 1 times. By ϑ(a, f )we denote the index of multiplicity
(ramification index) of a value a,

ϑ(a, f ) = lim inf
r→∞

N1(r, a, f )

T (r, f )
.

If ϑ(a, f ) > 0 we say that a is a ramified value. It follows from the inequality (4)
that ∑

a∈C
ϑ(a, f ) ≤ 2.
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Value distribution theory refers to a ∈ C as a defective (exceptional, deficient)
value of f if this value is assumed by f relatively less frequently. This notion does
not apply to rational functions, as they take up each value at most a finite number
of times. Thus a is a Picard defective value of a transcendental function f if f has
only a finite number of a-points. A Nevanlinna defective value, on the other hand, is
a value for which the condition

δ(a, f ) := lim inf
r→∞

m(r, a, f )

T (r, f )
= 1 − lim sup

r→∞
N (r, a, f )

T (r, f )
> 0

holds. The First Main Theorem of Nevanlinna implies that for all a ∈ C, Nevanlinna
defect δ(a, f ) fulfills the inequality

0 ≤ δ(a, f ) ≤ 1. (5)

The Second Main Theorem, on the other hand, means that the set of Nevanlinna
defective values is at most countable and

∑
a∈C

δ(a, f ) ≤ 2. (6)

The rate of growth of a polynomial is fully determined by its degree. The growth
of a meromorphic function can be described with respect to the characteristic.
Values

ρ := lim sup
r→∞

logT (r, f )

log r
and λ := lim inf

r→∞
log T (r, f )

log r

are called, respectively, order and lower order of a meromorphic function f . Thus,
all rational functions are of order 0, exp z is of order 1 and exp(exp z) is of infinite
order.

2.2 Petrenko’s Theory

Proximity of a meromorphic function to a value a may also be estimated by means
of a different metric. In 1969 Petrenko introduced the function

L (r, a, f ) :=
⎧⎨
⎩
max|z|=r

log+ |f (z)| for a = ∞,

max|z|=r
log+ |f (z) − a|−1 for a �= ∞.
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Hence, a ∈ C is a defective value in the sense of Petrenko if

β(a, f ) := lim inf
r→∞

L (r, a, f )

T (r, f )
> 0.

The quantity β(a, f ) is called Petrenko’s deviation. It is easy to notice that for all
a ∈ Cwehave δ(a, f ) ≤ β(a, f ).Therefore, the set of defective values in the sense of
Nevanlinna is a subset of the set of Petrenko’s defective values. If f is of infinite order,
it is possible that β(a, f ) = ∞. Indeed, β(∞, exp(exp z)) = ∞. For meromorphic
functions of finite lower order λ we have upper estimates of β(a, f ) parallel to the
Nevanlinna defect relations (5) and (6). In 1969 Petrenko showed [13] that if f is a
meromorphic function of finite lower order λ, then for all a ∈ C we have

β(a, f ) ≤ B(λ) :=
{

πλ
sin πλ

if λ ≤ 0.5 ,

πλ if λ > 0.5 ,
(7)

and in 1990 Marchenko and Shcherba proved the inequality [10]

∑
a∈C

β(a, f ) ≤ 2B(λ). (8)

Gol’dberg, Eremenko and Sodin in 1987 [4, 5] gave a full answer to the question
of the relationship between the sets of defective values in the sense of Nevanlinna
and in the sense of Petrenko. They proved that for any two fixed, at most countable
sets E1, E2 such that E1 ⊂ E2 ⊂ C and for any fixed number ρ > 0 we can find a
meromorphic function of order ρ such that E1 is the set of Nevanlinna’s defective
values and E2 is the set of Petrenko’s defective values of f .

3 Value Distribution of Painlevé Transcendents

This section is devoted to review of the basic features of transcendental meromorphic
solutions of the equations P1, P2, P4 and P34, including the finiteness of order of
growth, relatively regular distribution of values and limits for ramification indices.
We conclude with a new estimate of Petrenko’s deficiency for solutions of P1.

3.1 Order of Growth

The following theorem gives estimates of growth for solutions of P1.
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Theorem 3 The solutions of the Painlevé equation P1 are transcendental mero-
morphic functions of finite growth order ρ(f ) = 5/2. Moreover, they are of regular
growth, that is λ(f ) = ρ(f ).

The result was known since 1913–14 and the papers of Boutroux, but the rigorous
proofs were given by Steinmetz in 2002 [22] and, independently, by Shimomura in
2001 [16] and in 2003 [17]. The same authors also proved the following estimates
of the growth of transcendental solutions of P2 and P4.

Theorem 4 Solutions of P2 fulfill the condition

T (r, f ) = O(r3) (r → ∞),

while for solutions of P4 the equality

T (r, f ) = O(r4) (r → ∞)

holds. Thus, ρ(f ) ≤ 3 in the first case and ρ(f ) ≤ 4 in the second.

Apart from solutions of order 3, equation P2 may admit rational solutions and solu-
tions of order 3/2 for some values of the parameter of the equation. Similarly, apart
from solutions of order 4, equation P4 may admit rational solutions and solutions
of order 2 for some values of the parameters. Solutions corresponding to order 3/2
for P2 and to order 2 for P4 are classical special function solutions. It is conjectured
that, in both cases, no other values of order of solutions are possible.

Ciechanowicz and Filipuk in 2017 [2], applying known results for P2 presented
above, obtained the following estimate of growth of solutions of P34.

Theorem 5 Solutions of P34(A, B) are meromorphic functions in C, of order
ρ(f ) ≤ 3. In particular, if B = 0 the solutions are polynomial

f (z) = (C2
1 − A)

4C2
z2 + C1z + C2,

so ρ(f ) = 0 in this case.

3.2 Nevanlinna Defective Values

All solutions of equation P1 are transcendental, that is the equation does not admit
rational solutions. The well-known estimates of defects for solutions of P1 were
given by Schubart and Wittich in 1957 [19].

Theorem 6 For solutions of P1 for every a ∈ C, we have m(r, a, f ) = O(log r) and
δ(a, f ) = 0.
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The estimates of defects for transcendental solutions ofP2 were given by Schubart
in 1956 [18] and by Schubart and Wittich in 1957 [19].

Theorem 7 Transcendental solutions of P2(α) fulfill the conditions:

1. if α �= 0, then, for every a ∈ C, we have m(r, a, f ) = O(log r) and δ(a, f ) = 0;
2. if α = 0 for every a ∈ C \ {0} we have m(r, a, f ) = O(log r) and δ(a, f ) = 0,

and for a = 0 we have m(r, 1
f ) ≤ 1

2T (r, f ) + O(log r) and δ(0, f ) ≤ 1
2 .

Is should be added that Steinmetz in 2013 [23] proved that δ(0, f ) = 0 also for all
transcendental solutions of P2(0). Let us now recall the estimates for transcendental
solutions of P4 which were originally given by Steinmetz in 1982 [20].

Theorem 8 Transcendental solutions of P4(α, β) fulfill the conditions:

1. if β �= 0, then for a ∈ C we have m(r, a, f ) = O(log r) and δ(a, f ) = 0;
2. if β = 0 and a �= 0, then we have m(r, a, f ) = O(log r) and δ(a, f ) = 0;
3. if β = 0 and if f does not satisfy the Riccati differential equation

f ′ = ±(f 2 + 2zf ),

then

m(r,
1

f
) ≤ 1

2
T (r, f ) + O(log r) and δ(0, f ) ≤ 1

2
.

If a solution of P4(α, 0) satisfies f ′ = ±(f 2 + 2zf ), then α = ∓1 and
δ(0, f ) = 1.

In the same paper Steinmetz also presented the following example. The equation

2ff ′′ = (f ′)2 + 3f 4 + 8zf 3 + 4(z2 − 1)f 2 P4(1, 0)

is solved by f (z) =
(

ez2
∫ z
0 e−t2dt

)−1
. Here f solves the Riccati equation

f ′ = −(f 2 + 2zf ),

and f (z) �= 0, so zero is defective in every sense. In particular, δ(0, f ) = 1.
Estimates of defects of transcendental solutions of P34 were given by Filipuk and

Ciechanowicz in [1, 2].

Theorem 9 Transcendental meromorphic solutions of P34(A, B) satisfy the follow-
ing conditions:

1. m(r, a, f ) = O(log r) and δ(a, f ) = 0 for all a ∈ C \ {0};
2. if A �= 0, then m(r, 1/f ) = O(log r) and δ(0, f ) = 0;
3. if A = 0, then m(r, 1/f ) ≤ 1

2T (r, f ) + O(log r) and δ(0, f ) ≤ 1
2 .
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3.3 Multiplicity and Ramification Indices

Like in the case of defects, the ramification estimates for P1 were also obtained by
Schubart and Wittich in 1957 [19].

Theorem 10 Transcendental solutions of P1 fulfill the conditions:

1. for every a ∈ C we have N1(r, a, f ) ≤ 1
6T (r, f ) + O(log r) and ϑ(a, f ) ≤ 1

6 ;
2. N1(r, f ) = 1

2T (r, f ) + O(log r) and ϑ(∞, f ) = 1
2 .

The following estimates of ramification indices for P2 were given by Kiessling in
1996 [9].

Theorem 11 Transcendental solutions of P2 fulfill the conditions:

1. for every a ∈ C \ {0} we have N1(r,
1

f −a ) ≤ 1
4T (r, f ) + O(log r) and

ϑ(a, f ) ≤ 1
4 ;

2. if α �= 0, then N1(r,
1
f ) ≤ 1

5T (r, f ) + O(log r) and ϑ(0, f ) ≤ 1
5 , and if α = 0,

then N1(r,
1
f ) = 0 and ϑ(0, f ) = 0;

3. N1(r, f ) = 0 and ϑ(∞, f ) = 0.

The estimates for transcendental solutions of P4 were given by Steinmetz in
1982 [20].

Theorem 12 Transcendental solutions of P4 fulfill the conditions:

1. for every a ∈ C \ {0}, N1(r,
1

f −a ) ≤ 1
4T (r, f ) + O(log r) and ϑ(a, f ) ≤ 1

4 ;
2. if β �= 0, then N1(r,

1
f ) = 0 and ϑ(0, f ) = 0;

3. if β = 0, then N1(r,
1
f ) = 1

2T (r, f ) + O(log r) and ϑ(0, f ) = 1
2 ;

4. N1(r, f ) = 0 and ϑ(∞, f ) = 0.

The description of multiple values of solutions of P34 was given in [1].

Theorem 13 A transcendental meromorphic solution f of P34(A, B) satisfies the
following conditions:

1. all the poles of f are double and ϑ(∞, f ) = 1/2;
2. for P34(A, B), (A �= 0) all the zeros of f are simple and ϑ(0, f ) = 0, for

P34(0, B), the zeros are double and ϑ(0, f ) ≤ 1
2 ;

3. if a ∈ C \ {0}, we have ϑ(a, f ) ≤ 1
4 .

3.4 Petrenko’s Defective Values

Even though for measuring Petrenko’s deviation a stronger metrics is applied, tran-
scendental solutions of Painlevé equations do not show any stronger irregularity of
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their behaviour towards values in C in comparison to what is known about Nevan-
linna defects. Also in this case the only possibly ‘troublesome’ value remains zero.
Moreover, even this exception happens only for particular choice of parameters.

The structure of the sets of defective values in the sense of Petrenko for P2, P4

and P34 was examined by Ciechanowicz and Filipuk in 2016 [1].

Theorem 14 Let f be a transcendental meromorphic solution of P2(α). Then we
have the following conditions:

1. if α �= 0, then L (r, a, f ) = S(r, f ) for all a ∈ C;
2. for P2(0) we have L (r, a, f ) = S(r, f ) for all a ∈ C \ {0}.

Theorem 15 Let f be a transcendental meromorphic solution of P4(α, β). Then we
have the following conditions:

1. if β �= 0, then L (r, a, f ) = S(r, f ) for all a ∈ C;
2. for P4(, α, 0) we have L (r, a, f ) = S(r, f ) for all a ∈ C \ {0}.

Theorem 16 Transcendental meromorphic solutions of P34 satisfy the condition

L (r, a, f ) = S(r, f ) for all a ∈ C \ {0}.

If α �= 0 we also have L (r, 0, f ) = S(r, f ).

Let us add that by S(r, f )we understand any function s : [0,+∞) → R satisfying
s(r) = o(T (r, f )) (r → ∞) for r outside a set E of finite linear measure.

Corollary 1 Transcendental meromorphic solutions of equation P2(α) when α �= 0,
or P4(α, β) when β �= 0, or P34(A, B) when A �= 0 for all a ∈ C fulfill the conditions
δ(a, f ) = 0 and β(a, f ) = 0. Both the set of defective values in the sense of Nevan-
linna, and the set of defective values in the sense of Petrenko are empty. For P2(0)
it has been proved that the set of Nevanlinna defective values is empty. For P4(α, 0)
and P34(0, β) we have δ(a, f ) = 0 and β(a, f ) = 0 for all a ∈ C \ {0}. In this case,
the sets of defective values in both senses may not be empty, with the only possible
element being zero.

3.5 Petrenko’s Defective Values and P1

Finally, let us formulate the following theorem concerning solutions of P1.

Theorem 17 Let f be a solution of P1. Then for all values a ∈ C we have
L (r, a, f ) = S(r, f ) and β(a, f ) = 0.

To prove the theoremwe need the following three lemmas. The first of them concerns
the estimate of deviation for logarithmic derivative, the other two are analogues of
Clunie lemma and Mohon’ko-Mohon’ko lemma.
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Lemma 1 [1] Let f be a meromorphic function. Then, possibly except for r in a set
of finite linear measure, for k = 1, 2, . . . we have

L

(
r,∞,

f (k)

f

)
= O(log(rT (r, f ))) (r → ∞),

where f (k) means the k-th derivative of f .

Lemma 2 [1] Let f be a transcendental meromorphic solution of

f nP(z, f ) = Q(z, f ),

where n is a positive integer, P(z, f ), Q(z, f ) are polynomials in f and its derivatives
with meromorphic coefficients aν, bν , respectively, which are small with respect to
f in the sense that

L (r,∞, aν) = S(r, f ), L (r,∞, bν) = S(r, f ).

If the total degree d of Q(z, f ) as a polynomial in f and its derivatives is d ≤ n, then

L (r,∞, P(z, f )) = S(r, f ).

Lemma 3 [1] Let P(z, f , f ′, . . . , f (n)) = 0 be an algebraic differential equation
(P(z, u0, u1, . . . , un) is a polynomial in all arguments) and let f be its transcendental
meromorphic solution. If a constant a does not solve the equation, then L (r, a, f ) =
S(r, f ) and β(a, f ) = 0.

Proof of Theorem 17. Equation P1 can be transformed into

f 2 = 1

6
f ′′ − 1

6
z,

so it fulfills conditions of Lemma 2 with P(z, f ) = f , Q(z, f ) = 1
6 f ′′ − 1

6 z and
n = 1. It follows that

L (r, f ) = L (r, P(z, f )) = S(r, f ) (r → ∞).

Next, we need to notice that a constant a �= 0 does not solve P1, so by Lemma 3, we
get L (r, 1

f −a ) = S(r, f ). Finally, we can estimate
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L (r,
1

f
) ≤ L (r,

z

f
) + L (r,

1

z
)

= L (r,
f ′′

f
− 6f ) + L (r,

1

z
)

≤ L (r,
f ′′

f
) + L (r, f ) + O(log r).

Applying Lemma 1 and the estimate L (r, f ) = S(r, f ) completes the proof.
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Abstract Some nonlinear and discrete optimal control problems with phase con-
straints on a fixed but sufficiently large time interval are considered as singularly
perturbed problems. In continuous-time case the state equations are reduced to sin-
gularly perturbed equations on a finite time interval and, in discrete-time case, the
state equations have the form of systems with a small step. Using the technique for
singularly perturbed systems, the formal asymptotic expansions by the corresponding
small parameter are constructed which contain the structural information about the
solution. That is usually sufficient for most applications to obtain an initial approxi-
mation to control in the global optimum neighborhood. The obtained algorithms can
be applied to mathematical economics and technical objects control problems with
phase and control constraints, and with turnpike effects in the trajectories, where the
turnpike trajectories can be discontinuous. The use of traditional algorithms for these
problems is inefficient due to the large increase of computational difficulty.
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1 Introduction

The existing algorithms [5, 9] of optimal control problems solution use local opti-
mization methods and, therefore, large computing resources are needed to find the
optimal control with a given accuracy. In the case of autonomous objects, the prob-
lem of effective algorithms development is worsened by the necessity of solving
linear and nonlinear control problems with time and resource constraints. Therefore,
it is important to create computationally efficient algorithms that with greater prob-
ability allow to find in real time the admissible control which is rather close to the
global optimum. One of the possible ways to do this is to make use of the specific
characteristics of a mathematical model of an optimal control problem. The paper
illustrates the possibility of such algorithms creation based on the segregation of for-
mal small parameters in the mathematical models of control objects [3, 4, 6, 7] and
on the use of possible turnpike properties of optimal trajectories in control problems
with sufficiently large time intervals. On the one hand, accounting for the turnpike
nature of optimal trajectories makes it possible to generate initial approximations
to the control that are close to the global optimum. On the other hand, the asymp-
totic analysis of the model generates numerical-analytical procedures that reduce the
amount of necessary calculations. In this paper, the possibility of constructing effi-
cient numerical-analytical algorithms for solving such problems using the singular
perturbations technique is illustrated for two classes of continuous and discrete time
optimal control problems with a large finite horizon.

2 Continuous Large Finite Horizon Problems with Slowly
Varying Coefficients

Let us consider the following large finite horizon optimal control problemwith slowly
varying coefficients

J (u) � εφ(y(T )) + ε

T∫

0

F(y, u, sε)ds → min
u

, T � 1, 0 < ε � 1,

dy

ds
� A(sε)y + B(sε)u + f (sε), y ∈ Rn, u ∈ Rr , y(0) � y0, (1)

whereu is the control variable, y is the state vector, ε is a small parameter, s ∈ [0, T ] is
the timevariable, T is thefinal timepoint, εφ(y(T )) is the terminal payoff, F(y, u, sε)
is an integrand function, J (u) is the criterion function, A(sε) ∈ Rn×n, B(sε) ∈ Rn×r

are time-varying matrices, f (sε) ∈ Rn is a vector function.
Performing the replacement t � sε in (1) we get the next singularly perturbed

variational problem
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Iε(u) � εφ(y(T0)) +

T0∫

0

F(y, u, t)dt → min
u

,

ε
dy

dt
� A(t)y + B(t)u + f (t), y ∈ Rn, u ∈ Rr , y(0) � y0, (2)

where T0 � T ε, t ∈ [0, T0] is the modified time variable. Here, because of the
nonlinear criterion, the singularly perturbed nonlinear boundary value problem for
Pontryagin extremals has the form

ε
dy

dt
� A(t)y + B(t)u(y, ψ, t) + f (t), ε

dψ

dt
� −A′ψ + Fy,

y(0) � y0, ψ(T0) � −∂φ(y(T0))

∂y
, (3)

where ψ̃ is the conjugate variable of the maximum principle, ψ �
ψ̃

ε
, u(y, ψ, t) is the maximum point of the corresponding hamiltonian H �

1
ε
ψ̃ ′(A(t)y + B(t)u + f (t)) − F(y, u, t) with respect to u and the prime denotes

transposition.
There can be several equilibrium points (the roots of the right parts) in the corre-

sponding associated system. Let there be three equilibrium points, then the existence
of internal transition layers (so-called contrast structures) is possible in the solution
of the perturbed problem. For example, this is true when there are two equal Hamil-
tonian maximum points u � u(y, ψ̃, t) along the extremal of the next degenerate
problem

J (y, u) �
T0∫

0

F(y, u, t)dt → min
y,u

,

0 � A(t)y + B(t)u + f (t), y ∈ Rn, u ∈ Rr , t ∈ [0, T0], (4)

herewe suppose that the solution (4) has one internal point of discontinuity (transition
point).

Using the direct scheme [1, 2, 4], we seek the asymptotic approximation of the
solution in the next form
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z(t, ε) �

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

y(t, ε) �
∞∑
k�0

εk(ȳk(t) + �k y(τ0) + R(−)
k y(τ ))

u(t, ε) �
∞∑
k�0

εk(ūk(t) + �ku(τ0) + R(−)
k u(τ ))

, 0 ≤ t ≤ t∗(ε),

z(t, ε) �

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

y(t, ε) �
∞∑
k�0

εk(ȳk(t) + R(+)
k y(τ ) + Qk y(τ1))

u(t, ε) �
∞∑
k�0

εk(ūk(t) + R(+)
k u(τ ) + Qku(τ1))

, t∗(ε) ≤ t ≤ T0, (5)

where z �
(
y
u

)
, z̄i (t),�i z(τ0), Qi z(τ1), R

(
+−

)
i z(τ ) are the terms of regular, left

boundary, right boundary and inner boundary series accordingly. It is assumed that
the terms of all boundary series decrease at infinity τ0 � t

ε
→ +∞, τ � t−t0

ε
→

±∞, τ1 � t−T0
ε

→ −∞, ε → 0, t∗(ε) � t0 + εt1 + · · ·. The direct scheme algorithm
for constructing the formal asymptotics of the variational problem solution consists
in substituting (5) in (4), expanding all the conditions of the problem into the corre-
sponding series and the solution of the obtained variational problems for the terms
of the asymptotics in each approximation.

Thus,we obtain I � I0+ε I1+· · ·+εm Im+O
(
εm+1

)
, m � 2n+1,where in the zero

approximation we have the next conditional extremum problem for time-dependent
terms of the regular series

I0 �
T0∫

0

F(ȳ0, ū0, t)dt → min
(ȳ0,ū0)

, yT00 � argmin
y

φ(y), 0 � A(t)y0 + B(t)u0 + f (t).

Let us define z̄0(t) � (
ȳ′
0(t), ū

′
0(t)

)′ �
{
z̄−
0 (t), 0 < t < t0,

z̄+0(t), t0 < t < T0
, then the optimality

conditions take the form H̄y(t) � Hy
(
z̄0, ψ̄0, t

) � 0, H̄u(t) � Hu
(
z̄0, ψ̄0, t

) � 0,
where H (z, ψ, t) � ψT (Ay + Bu)− F(y, u, t). Further, we seek all the terms of the
asymptotic expansions by solving the corresponding optimal control problems.

So, for example, the boundary layers �0z(τ0), Q0z(τ1) and R

(
+−

)
0 z(τ ) are the

trajectories and controls in the auxiliary nonlinear infinite-horizon optimal control
problems [1]:

�0 I � −
∞∫

0

(H(τ0) − H(0))dτ0 → min
�0u

,
d�0y

dτ0
� g(ȳ0(0) + �0y, ū0(0) + �0u, 0),

�0y(0) � y0 − ȳ0(0), (6)
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Q0 I �
−∞∫

0

(H(τ1) − H(T0))dτ1 → min
Q0u

,

dQ0y

dτ1
� g(ȳ0(T0) + Q0y(τ1), ū0(T0) + Q0u(τ1), T0), Q0y(0) � yT00 − ȳ0(T0),

(7)

R

(
+−

)
0 I � ∓

±∞∫

0

(H(τ ) − H(t0))dτ → min
R0u

,

dR

(
+−

)
0 y

dτ
� g

(
ȳ0(t0) + R

(
+−

)
0 y(τ ), ū0(t0) + R

(
+−

)
0 u(τ ), t0

)
,

R

(
+−

)
0 y(0) � y∗

0 − ȳ0(t0), (8)

where g � A(t)y + B(t)u + f (t) and y∗(T0, ε), yt
∗

ε � y∗(t∗, ε), are the optimal final
value of the trajectory and the optimal value of the trajectory at the optimal transition
time t∗(ε) respectively in accordance with the criterion (2). Note that t∗(ε) is a point
of smooth gluing of the left and right approximations of the trajectory and controls

R

(
+−

)
0 z(τ ).
Thus, suppose that all the variational problems obtained by the expansion of the

functional in (2) are solvable and that all terms of the asymptotic expansions up to
the n-th order are calculated. Let us introduce

Definition A k-th order partial sum of all series for all elements of the problem (1)
solution is called a k-th formal asymptotic solution.

Let us state the following

Theorem Let all functions in problem (2) be sufficiently smooth and, in addition,

1. A solution z̄0(t) �
(
ȳ0(t)

ū0(t)

)
of the degenerate problem (4) is an isolated station-

ary solution in the adjoint system for all t on intervals 0 < t < t0, t0 < t < T0.

2.

(
H̄yy H̄yu

H̄uy H̄uu

)
< 0 along z̄0(t) on each interval 0 < t < t0, t0 < t < T0.

3. {A(t), B(t)} is a controllable pair for each 0 ≤ t ≤ T0.
4. y0 − ȳ0(0) ∈ G+, yT0 − ȳ0(T0) ∈ G−, y∗

0 − ȳ+0 (t0) ∈ R+, y∗
0 − ȳ−

0 (t0) ∈ R−,
where G+,G−, R+, R− are the corresponding regions of influence in problems
(6)–(8).

Then, for sufficiently small ε, in addition to the exponential esti-
mates for the boundary functions, the formal asymptotic solution of
problem (2) exists in some neighborhood z̄0(t) and the following is
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true
∥∥∥ε

dyk
dt − A(t)yk − B(t)uk − f (t)

∥∥∥
Cn
[0, T0]

� O(εk+1), yk(0, ε) � y0 +

O(εk+1),J (uk) ≤ J (uk−1), k � 1, 2, . . ., where J (uk) < J (uk−1) if uk �� uk−1.

Thus, the discrepancies in the variational problem constraints decrease with the
increase of the order of the formal uniform asymptotic approximation. That allows
us to construct minimizing control sequences by the solution of computationally
simpler problems: the degenerate finite-horizon problem (4) and the boundary layer
problems, the solution of which can also be found on finite intervals because of the
exponential nature of the decrease. So there is no significant accumulation of errors.

In the presence of asymptotic estimates of the closeness of the initial and degen-
erate problems solutions, we can state that the solution of the degenerate problem
contains qualitative information about the optimal control. This makes it possible
to employ simplified algorithms for optimal control nonlinear problems using, for
example, the control structure from the degenerate problem and reducing the initial
problem to the problem of non-linear programming, where the global optimum of
the criterion can already be found by local optimization methods. This can be done
because the initial approximation, as a rule, is in the global optimum neighborhood.

Example 1 Let us have the next minimization problem

I (u) � 1

2
ε(y(2π) − 2)2 +

2π∫

0

(
1

4
y4 − 1

3
y3 sin t − 1

2
y2 + y sin t +

1

2
t2 + tu +

1

2
u2

)
dt

→ min
u

,

ε
dy

dt
� u + t, 0 ≤ t ≤ 2π(A � 0; B � 1), y(0, ε) � 0, T0 � 2π. (9)

This example was for the first time considered from the asymptotic analysis
point of view in [8]. The solution of the degenerate problem is ū � −t, ȳ(t) �{

−1, 0 ≤ t ≤ t0,

1, t0 ≤ t ≤ 2π
, where the transition point t0 � π is determined from the con-

tinuity condition of the corresponding Hamiltonian of the Pontryagin maximum
principle. It is obvious now that the optimal control in (9) can be described at the
qualitative level by the next zero order uniform asymptotic approximation

u0(t, ε) � ū0(t)+�0u(τ0)+ Q0u(τ1)+ R−
0 u

(
τ−
t0

)
+ R+

0u
(
τ +
t0

)
, τ−

t0 → −∞, τ +
t0 →

+∞,ε → 0. Let ε � 0.1. First, take u(t) � 0, the criterion value in (9) is 2.662×108

for u(t) � 0, i.e. the problem is very “stiff”. This “stiffness” is conditioned by not
only the value of ε, but also the presence of an internal transition point in the trajectory.
It turns out that by successively finding the elements of the zeroth approximation
of the control we obtain a set of first terms of the minimizing control sequence in
the variation problem (9). Let us introduce the sequence {ui (t, ε)}, i � 1, . . . , 5,
where u1 � ū0(t) � −t, u2 � ū0(t) + R̃−

0 u
(
τ−
t0

)
, u3 � ū0(t) + �̃0u(τ0) + R̃−

0 u
(
τ−
t0

)
,

u4 � ū0(t) + �̃0u(τ0) + R̃−
0 u

(
τ−
t0

)
+ R̃+

0u
(
τ +
t0

)
, u5 � ū0(t) + �̃0u(τ0) + R̃−

0 u
(
τ−
t0

)
+
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Fig. 1 The state trajectory
corresponding to u5

R̃+
0u

(
τ +
t0

)
+ Q̃0u(τ1), and �̃0u(τ0) � L1e− a1 t

ε , Q̃0u(τ1) � L2e
a2(t−T0)

ε , R̃+
0u

(
τ +
t0

) �{
L3e

a3(t−t0)
ε , i f t ≤ t0

0, otherwise
,

R̃−
0 u

(
τ−
t0

) �
{
L3e− a4(t−t0)

ε , i f t ≥ t0
0, otherwise

, L1 � −0.325, a1 � 0.303, L2 �
0.414, a2 � 1, L3 � 0.784, a3 � 0.507, a4 � 1.567. We obtain the following
criterion values along these controls I (uadm � 0) � 2.662 × 108 > I (u1) � 0.2 >

I (u2) � −1.081 > I (u3) � −2.536 >I (u4) � −3.968 > I (u5) � −3.988. This
sequence of criterion values corresponds to the successive use of information about
the structure of the exact solution taken from the structure of the degenerate problem
solution.

Note, that here �̃0u(τ0), R̃
−
0 u

(
τ−
t0

)
, Q̃0u(τ1), R̃+

0u
(
τ +
t0

)
are rough two-parameter

approximations, which are in the form of decreasing scalar exponents for the corre-
sponding external and internal boundary functions. Optimizing the free coefficients
in each term we can improve the quality of the minimizing control sequence. The
state trajectory is presented in Fig. 1.

The best functional value of I ∗
ε ≈ −4.0125 was found using OPTCON software

with the initial condition u � 0.1 and required the solution of the specified Cauchy
problem approximately 3298 times. The usage of ū0(t) as the initial condition allows
to reduce the amount of calculations to 1938 times. In contrast, the presented approx-
imate solution u5(t, ε) required to solve the same Cauchy problem only 26 times.

3 Discrete Optimal Control Problems with a Small Step

Optimal control problems with large finite horizon often have one common property,
i.e. their trajectories lie in a small neighborhood of the so-called turnpikes, which
are the trajectories of certain degenerate problems on almost the entire time horizon.
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If the optimal trajectory is connected with the turnpike, then this trajectory can
be approximated by a trajectory consisting of three sections: a section of a transition
to the turnpike, a section of a turnpike neighborhood, and a section of a transition
from a turnpike neighborhood to the end point neighborhood. Such structure of
the solution is typical for singularly perturbed optimal control problems [4] in the
classical formulation, that is, there are no control and state constraints in them. Here
on the example of a class of discrete finite-horizon optimal control problems or the
problems with a large number of steps on a given time interval we show that the
singular perturbations technique allows to propose algorithms for their solution even
in the presence of control or state constraints.

Let us consider the following problem

J (u) � (x(1) − x f i x )
T F(x(1) − x f i x ) → min

u
, (10)

x(t + ε) � Ax(t) + Bu(t) + f (t), x(0) � x0, x, f ∈ Rn, u ∈ Rr , (11)

Cu(t) ≤ x(t), u(t) ≥ 0, x(t) ≥ 0, (12)

where x is the state vector, x f i x is the desired final state, u is the control vector, J (u) is
the criterion function, A ∈ Rn×n, B ∈ Rn×r ,C ∈ Rn×r are constant matrices, f (t)
is a vector function, t ∈ Tε � {t : t � kε, k � 0, 1, . . . , N − 1} ∈ [0, 1], N �
1
ε
,ε > 0 is a small step, F > 0 is a symmetric positive definite matrix. The known

results in literature [4] related to the direct scheme method deals with the cases
where the optimal control is unique in the degenerated problem and the optimization
problems for the terms of asymptotic approximations have only one solution. But in
our case, because of the specific form of the criterion, it does not appear in some of
the obtained problems or these problems have a nonunique solution.

The problem (10)–(12) is singularly perturbed as in both continuous- and discrete-
time case if ε � 0, then there is a loss of additional boundary conditions required for
the determination of original problem trajectories. So, there are fast-change zones in
the solution (so called boundary layers) to compensate for this loss. As above, using
the direct scheme and substituting the expansions for x and u into all conditions
(11)–(12) and into the cost function (10) and expanding these conditions into the
corresponding serieswe obtain the relations for the formal zeroth uniform asymptotic
approximation of the solution for the defined variational problem [4].

Assuming that the terms of the boundary series have the corresponding exponen-
tial estimates. As in the continuous case, assuming that the terms of the boundary
series have the corresponding exponential estimates, we have

J (u) � (x̄0(T ) + Q0x(0) − x f i x )
T F(x̄0(T ) + Q0x(0) − x f i x ) + . . . , (13)

x̄0(t) + Π0x(τ0 + 1) + Q0x(τ1 + 1) + . . . � A[x̄0(t) + Π0x(τ0) + Q0x(τ1) + . . .]

+ B[ū0(t) + Π0u(τ0) + Q0u(τ1) + . . .] + f (t), (14)

x̄0(0) + Π0x(0) + . . . � x0,
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C(ū0(t) + Π0u(τo) + Q0u(τ1) + . . .) ≤ x̄0(t) + Π0x(τo) + Q0x(τ1) + . . . ;

ū0(t) + Π0u(τo) + Q0u(τ1) + . . . ≥ 0; x̄0(t) + Π0x(τo) + Q0x(τ1) + . . . ≥ 0,

where τ0 � 0, 1, 2 . . . , τ1 � 0,−1,−2, . . .
Then from (13), (14)we have the following expressions for the terms of the regular

series

x̄0(t) � (E − A)−1Bū0(t) + (E − A)−1 f (t), (15)

Cū0(t) ≤ x̄0(t), ū0(t) ≥ 0, x̄0(t) ≥ 0. (16)

Let us introduce a condition which is, in particular, satisfied if the unit cost matrix
is productive

I. The matrix (E − A)−1 exists and the system of constraints (15), (16) is uniquely
solvable.

For the left boundary layer we obtain a system of difference equations

Π0x(τ0 + 1) � AΠ0x(τ0) + BΠ0u(τ0), x̄0(0) + Π0x(0) � x0, (17)

under the next constrains

C(ū0(t) + Π0u(τ0)) ≤ x̄0(t) + Π0x(τ0), ū0(t) + Π0u(τ0) ≥ 0

x̄0(t) + Π0x(τ0) ≥ 0. (18)

Then we have a simple optimization problem for finding Q0x(0)

(x̄0(1) + Q0x(0) − x f i x )
T F(x̄0(1) + Q0x(0) − x f i x ) → min

Q0x(0)
.

Here, Q0x(0) � x f i x − x̄0(1) is the solution of this problem and we obtain the
following system of equalities and inequalities for Q0x(τ1), Q0u(τ1)

Q0x(τ1) � Aτ1 (x f i x − x̄0(1)) −
−1∑
s�τ1

Aτ1−s−1BQ0u(s), (19)

C(ū0(t) + Q0u(τ1)) ≤ x̄0(t) + Q0x(τ1), ū0(t) + Q0u(τ1) ≥ 0, x̄0(t) + Q0x(τ1) ≥ 0.

(20)

Let us introduce the condition

II. There exist the sets of admissible continuous controls Π0u(τ0), Q0u(τ1) sat-
isfying the constraints (15), (16) and (17), (18) respectively for all τ0 �
0, 1, 2, . . . , τ1 � 0,−1,−2, . . . and there exist constants K > 0, α > 0, such
that the estimates
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(‖Π0x(τ0)‖, ‖Π0u(τ0)‖) ≤ Ke−ατ0 , τ0 � 0, 1, 2, . . . ,

(‖Q0x(τ1)‖, ‖Q0u(τ1)‖) ≤ Keατ1 , τ1 � 0,−1,−2, . . . (21)

are true for all admissible pairs Π0x(τ0),Π0u(τ0) and Q0x(τ1), Q0u(τ1), and at the
same time the control

u0(t, ε) � ū0(t) + Π0u(τ0) + Q0u(τ1), τ0 � 0, 1, 2, . . . , τ1 � 0,−1,−2, . . . (22)

is admissible in problem (10)–(12) for all sufficiently small ε > 0.
Now, because of the asymptotic approximations properties, taking into account the

estimates (21) and the representations for x̄0(t), ū0(t),Π0x(τ0), Q0x(τ1) obtained
from (15), (17), (19), we can state that the conditions discrepancies in problem
(10)–(12) strictly decrease along the control sequence u0(t, εk−1) �� u0(t, εk), k �
1, 2, . . . under conditions I and II for any strictly decreasing sequence {εk}, k �
0, 1, 2, . . . and sufficiently small numbers ε0 > ε1 > ε2 . . . ..

The noted property of the formal asymptotic approximation can be used in another
heuristic approximate solution algorithm. Firstly, we find an admissible control
u0(t, ε0) for some fixed time step which is significantly greater than the initial step.
Of course, u0(t, ε0) will be a rough approximation to the exact control, but it is
calculated much faster and, at the same time, it may have a similar structure as the
exact solution. Then the number of steps is successively increased, i.e. either the time
horizon is expanded or the step becomes smaller. The step is changed until we reach
the initial small step. Such iterations can be combined with the local descent method
in nonlinear programming problems on each step. This can be done using the control
vector coordinates values defined in grid nodes as initial values for the unknown
variables. Thus, performing fairly “cheap” calculations based on the analytical rep-
resentations, we obtain a solution with a given accuracy within time acceptable for
various applications.

Example 2 Let us consider problem (10)–(12), where

A �
(
0, 56 0, 33

0, 37 0, 45

)
, B �

(
1.12 0.13
0.1 1.11

)(
5 +

√
165

20

(
0.6 0.2
0.1 0.7

)
−

(
0.3 0.5
0.4 0.2

))

≈
(

0.223 −0.305
−0.321 0.439

)
, x0 �

(
0, 5

0, 4

)
, x f i x �

(
0, 8

1

)
, f (t) �

(
0, 12

0, 1

)
tβ,

β � 1.005, N � 12, t ∈ [0, 1].

In general, the pair x̄0(t), ū0(t) is chosen from (15), (16). In the particular case
when the quadratic matrix B is degenerate, we may have ū0(t) � p(t)uA,where p(t)
is a scalar function. From (15) we obtain x̄0(t) � (E − A)−1 f (t) “which reminds
the output trajectory in Leontiev’s balance equation” if input-output matrix A is
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Fig. 2 The trajectories for the different control strategies

productive and f (t) is the vector of final demand. Now we get the representation of
the control function

u0(t, ε, p(t),Π0u(τ0), Q0u(τ1)) � ū0(t, p(t)) + Π0u

(
t

ε

)
+ Q0u

(
t − 1

ε

)
. (23)

This approach allows us to propose additional procedures for the sequential
improvement of the obtained approximation within the found structure. Taking into
account the supposed exponential nature of boundary functions decrease, it is pos-
sible to assume without loss of generality that the boundary functions identically
equal zero on a certain part of the time horizon at some distance from the cor-
responding boundaries. This assumption reduces the amount of computation and
simplifies the admissible control calculation. We solve the initial problem using the
zero-approximation structure (23) for increasing number of steps (N � 7; 8; 9) and
get the corresponding minimizing control sequence (Fig. 2).

It can be seen from the graphs that suboptimal trajectories approach the exact
ones during the process of the uniform zero control approximation correction, and
the sum of deviation squares between the exact trajectory, and the resulting subop-
timal trajectories along the three optimal control approximations successively take
the values 1.388, 0.468, 0.188 and the corresponding criterion values sequence is
0.194, 0.092, 0.035.
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4 Conclusions

Specific algorithms for the solution of continuous- and discrete-time optimal control
problems on a large finite time interval based on the singular perturbations theory
methods are proposed. These algorithms use the zero order uniform asymptotic
approximations which describe the structure of the global optimal control and, by
so, significantly reduce the computational difficulty and simplify the finding of the
approximate suboptimal control with high accuracy. The examples illustrating the
work of algorithms for problemswhere trajectories contain fast internal transitions, or
the so-called contrast structures, and the problems with control and state constraints
are presented.
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The Dynamic Behavior of the Vehicle
Wheels Under Impact Loads—FEM
and Experimental Researches

Irina Demiyanushko , Aleksandr Vakhromeev , Evgeny Loginov
and Violetta Mironova

Abstract Results of the analysis of dynamic impact effect for vehicle light alloy
wheels of various types, which may occur in various road situations (head-on crash,
drift, collision with another car) are given. This study applied to simulate the impact
behavior caused by a dynamic loading of vehicle wheels by impact testing according
to the scheme of certification tests with static and dynamic strain measurement for
definitionof deformationfields and impact stresses.Newapproach to creationofFEM
model of virtual impact tests of wheels with use of program complex of nonlinear
dynamics Ls-Dyna is developed and validation of models by comparison with results
of dynamic strain-gaging is carried out.

Keywords Finite element method · Wheel · Dynamic impact

1 Introduction

Aluminum alloy wheels, both cast and forged, are used for cars. While it is critical
for car safety, such wheels’ behavior at dynamic impact has not been adequately
explored. Impact effects occur in a variety of emergencies (head-on crash, drift,
collision with another car etc.). Statistic studies of typical accidents show that the
average head-on crash angle is 27.6°. Impact loading of aluminum cast wheels at 30°
angle (so called “oblique impact”) is a mandatory phase of car wheel certification
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testing [1, 2]. Standard oblique impact test simulates a 1t car going at 60 km/h,
running with its wheel over a fixed obstacle at an angle of 30°. Complicated design of
modern wheels, especially cast ones, requires analysis of the space stress/strain state
(SSS) that normally uses the finite elements method in static position (FEM) [3–5].
Experimental impact tests ofwheels are carried out on specific benches, which design
is conventionally reflected in regulatory documents, however, it may affect the results
significantly. Moreover, such impact testing requires considerable computational
efforts, especially when the cast wheel configuration needs to be varied in design
analysis.

This paper contains the results of computational studies of stress/strain state of
an aluminum cast wheel for a car in case of oblique impact. The object under inves-
tigation was a 7JX16H2 modern standard aluminum cast wheel. Experimental SSS
study of the wheels was made by strain measurement. Of interest, therefore, are cal-
culation/experimental research of static and dynamic behavior of a cast aluminum
wheel, when loaded in impact bench testing, to identify FEM model adequacy and
possibility to use the dynamic factor for preliminary comparative structure analy-
sis based on static calculation to evaluate their behavior at impact, without detailed
dynamic option analyses. The dynamic factor is the ratio of the maximum impact
deformation to deformation caused by similar static loading.

2 Experimental Study

The study was carried out on an impact test bench (see Fig. 1a) both for static and
dynamic loading that was applied to the wheel rim against (see Fig. 1b) and between
the spokes (see Fig. 1c). The wheel was mounted on the impact bench support at 30°
to the horizontal surface and rigidly secured to the bearing surface with bolts. The
tests were carried out both with a tired and bare wheel.

Two loads (basic mass and striking bar) represented the loading element with
the total weight amounting to one t interconnected via a spring simulating a car
suspension. The wheel was turned about its mounting axis to ensure various test
load applications. The height of the striking bar above the tire is determined by the
maximum static loading Fv applied to wheel being subject to investigation [1].

Resistive strain gages were mounted on the disks to measure deformations (strain
gages’ register surface—3 mm) on flat areas in radial axis of the spokes, and on the
rim along the wheel axis (see Fig. 2) [6]. Areas chosen for installation of the strain
gages were next to the highest expected deformation points. Impact deformations
were recorded at strain-measuring channel polling frequency.

16-channel strain-measuring equipment was used for measurement and digital
recording of loaded wheel deformation values. In case of static tests, a load was
slowly applied to the wheel rim edge. Dispersion and mean values were calculated in
result of automated test data statistical processing. Bare wheel static loading results
are shown in Fig. 3 in form of deformation curves measured by 16 resistive strain
gages. Testing data analysis proved no after flow and showed that tired and bare
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Fig. 1 a Impact test bench and installation diagram of resistive strain gages on b outer and c inner
surface of the wheel
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Fig. 2 Installation diagram of resistive strain gages on outer and inner surfaces of the wheel
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Fig. 3 Deformation curves for static loading

wheel deformations were practically the same under static loading (spread in values,
when applying loading to a tired and bare wheel spoke did not exceed 5 and 7% for
inter-spoke impact).

Impact loading was also performed in two areas: against and between spokes.
The obtained research results are represented as impact load deformation curves in
Fig. 4. For all loading options, it is found that rapidly, damping oscillations similar to
harmonic ones occur after an impact impulse. Analysis of resistive strain gage read-
ings allowed to identify that complete damping of oscillations takes place within ca.
2.5 s. Oscillation time and damping in all measurement points turned out to be virtu-
ally the same: averaged by all measurement points, the oscillation time T�0.256 s.
Determination of damping logarithmic decrement (1) value was based on compari-
son of subsequent oscillation amplitudes resulting in assessment of the conventional
absorption factor value ϕ of the wheel material which amounted to ca. 0.6–0.7. The
obtained value indicates a substantial internal friction in the wheel aluminum cast
material leading to significant absorption of impact energy [7]. Additionally oscilla-
tion processes could be analyzed using technique designed and described in [8].

δ � ln As/As+1 (1)

Maximum impact-caused deformations occur in the spoke middle on the wheel
face. No considerable impact-caused permanent plastic deformations or breakages
occur. Research results (see Table 1) allowed establishing the ratios of impact-caused
deformations εdin to deformations caused by static loading εst, which turned out to
be practically the same regardless of the measurement points. Thus, an approximate
engineering judgment of impact-caused wheel SSS can be recommended by using
the obtained average value of dynamic factor (2) and static loading computation
results [9].
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Fig. 4 Deformation curves for impact loading

Table 1 Static and impact loading caused deformations measurements

Strain gage no. Impact εdin × 105 Static εst × 105 Dynamic factor KD

1 378.6 37.6 10.07

3 378.5 34.7 10.91

4 378.4 36.8 10.28

5 397.8 39.8 9.99

6 350.0 28.7 12.20

13 197.3 14.8 13.33

14 184.7 15.3 12.07

16 354.4 31.2 11.36

Average value KD: 11.28

KD � εdin/εs (2)

3 Structural Analysis SSS at Static Loading and Dynamic
Impact Using FEM

Calculation of wheel impact SSS was done using LS-Dyna multifunction software
package [10], designed for solving nonlinear dynamics tasks. Description of the
elements motion was based on Lagrange formulation, the solution of the system of
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Fig. 5 Computed FE model of the a, b wheel and c impact test bench

dynamic equations and state equations performed using of the explicit integration
method [11].

As shown by our research, the calculation results depend on materially on the
quality of wheel FE [12, 13]. The computed finite-element model (see Fig. 5a) of
a wheel under static loading applied at an angle of 30° (oblique impact conditions)
accounts for the main mechanical properties of the wheel, its geometrical peculiari-
ties, holding forces (see Fig. 5b). The comparison of tests and the calculation results
carried out without regard for the tire. 3-D FE model consisted of 224,175 nodes and
483,910 components which average size amounted to 3 mm. 8-node hexagonal com-
ponents prevailed in the model volumewize. The external edge of the flange-secured
model was statically loaded at an angle of 300 to the wheel plane and uniformly
distributed at 25 points where the striking element contacts with the outer wheel
edge.

For dynamic loading the FE model of the wheel consisted of 48,281 nodes and
38,480 elements, with 8-node hexagonal elements prevailing in the construction both
in quantity and in volume. Moreover, FE-model comprises test bench components
[12, 13] making possible to account for their stiffness, location and conditions of
wheel fastening on the test bench support (see Fig. 5c), so that studies are in fact
virtual experiment [14]. The wheel support consists of a cylinder system made of
8-node hexagonal components and channel welded structure modelled by 4-node
shell members. The impact load consists of three parts comprising 8-node hexagonal
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Fig. 6 Distribution of deformation rate on the a outer and b inner wheel surface

Table 2 Comparison of the main oscillatory process parameters obtained in result of calculations
and experiment/test

Parameter Calculation Experiment Inaccuracy (%)

Oscillation time T, s 0.246 0.260 5.4

Oscillation frequency
ν, rad-1

25.559 24.127 5.9

Damping logarithmic
decrement

≈0.27 ≈0.31 ≈13

components. The wheel is bonded to the support surface of the test bench using
of equivalent compressing force applied from two sides to the system of rigid beam
elements of the support. In the designmodel, thewheel is exposed to permanent loads
occurringwhen tightening the fastening bolts, as well as variable loads resulting from
contact interaction with the impact element.

In the course of calculations, an impact was simulated both against and between
spokes just as during the test. The height of load fall complied with certification test
requirements and test conditions.

SSS components in the wheel are determined based on the values of deformation
velocity in each node. In order to account for effect of deformation velocity on
the form and key points of the wheel’s material deformation curve, including the
dynamic yield stress, the calculation uses Cowper-Symonds stiffening condition
[15]. Damping properties of materials are accounted for as well. Figure 6 shows the
deformation rate values obtained with impact on the wheel rim in the spoke area.

For comparison with test results, the calculation estimated values of oscillation
frequency, oscillation time and the damping logarithmic decrement for the first six
amplitude deformation values. These values shown in Table 2 and Fig. 7. The dif-
ference between the calculated and experimentally recorded values of oscillation
frequency, oscillation time and damping logarithmic decrement is within 13%.

Table 3 shows comparison of the maximum deformation rate values under static
and dynamic loading. Results obtained within impact computational simulation
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Table 3 Comparison of the maximum deformation values under static and dynamic loading

Strain gage
no.

Impact εdin
(calculation)

Impact εdin
(experiment)

Inaccuracy
(%)

Static εst
(calculation)

KD

1 0.4478 0.3786 18 0.0549 11.06

3 0.4274 0.3785 13 0.0165 11.07

4 0.4203 0.3784 11 0.0449 9.77

5 0.4232 0.3978 6 0.0449 9.08

6 0.3875 0.3500 11 0.0182 12.26

13 0.2167 0.1973 10 0.0104 11.22

14 0.2003 0.1847 8 0.0314 10.75

16 0.3848 0.3544 9 0.0296 10.87

reflect ca. 11% deviation from the test results in respective measurement points.
Analyses of comparative results of deformation calculations under static and impact
loading conditions (with loads been applied against the spoke) show, that the average
value of ratio between the impact calculated deformations and calculated deforma-
tions in similar areas under static loading, close to KD �10.94 with the standard
deviation of 0.82. These value, in fact, fully concurs with the same result obtained
during the testing.
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4 Conclusion

The carried out comprehensive calculation and experimental researches of deformed
condition of aluminum cast wheels under static and impact loads applied to different
areas of a wheel rim demonstrated the adequacy of the wheel design FE models
and possibility to carry out a virtual impact test when creating and elaborating new
structures. Moreover, the research made it possible to establish the mean value of
the dynamic factor for aluminum cast wheels under an impact which amounts to ca.
KD ≈10 (ratio between dynamic and static deformation). This ratio can used for
all cast wheels made from aluminum-silicon alloys in the approximate engineering
analysis. It established that the dynamic behavior of a cast wheel at an oblique impact
does not practically depend on the availability of the tire and determined mainly by
mechanical properties of the material and the design.
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Optimal Control for Robot Manipulators
with Three-Degress-of-Freedom

Jose Adenilson Gonalves Luz Junior, Angelo Marcelo Tusset,
Frederic Conrad Janzen, Rodrigo Tumolin Rocha,
Jose Manoel Balthazar and Airton Nabarrete

Abstract This work presents the modeling and simulation of a manipulator robot
with three degrees of freedom and considering its structures with rigid behavior. The
concepts of kinematics for themathematical deduction and theLagrangianmechanics
were used to obtain the dynamic models of the manipulator and the DC actuators
with permanent magnet. Due to nonlinearity and dynamics characteristics, both the
states observer and the control used were based on State Dependet Ricatti Equation
(SDRE). The simulations made for constant performance parameters demonstrated
the effectiveness of the optimal control applied to the manipulator and to the chosen
DC actuator models. The applications of trajectories to the manipulator enrich the
applicability of the project and the results obtained with the techniques chosen show
his efficiency.

Keywords Robot manipulator · Control design · Nonlinear dynamics

J. A. G. Luz Junior · A. M. Tusset · F. C. Janzen · R. T. Rocha
Federal University of Technology - Parana, Ponta Grossa, PR 84016-210, Brazil
e-mail: jose.adg@hotmail.com

A. M. Tusset
e-mail: tusset@utfpr.edu.br

F. C. Janzen
e-mail: fcjanzen@utfpr.edu.br

R. T. Rocha
e-mail: digao.rocha@gmail.com

J. M. Balthazar (B) · A. Nabarrete
Aeronautics Technological Institute, Sao Jose dos Campos, SP 12228-900, Brazil
e-mail: jmbaltha@gmail.com

A. Nabarrete
e-mail: nabarret@ita.br

© Springer International Publishing AG, part of Springer Nature 2018
J. Awrejcewicz (ed.), Dynamical Systems in Theoretical Perspective,
Springer Proceedings in Mathematics & Statistics 248,
https://doi.org/10.1007/978-3-319-96598-7_12

135

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96598-7_12&domain=pdf


136 J. A. G. Luz Junior et al.

1 Introduction

Robotic systems are composed of several parts that can be considered linear such
as mechanical structures and some types of actuators. However, when the physical
structure presents high nonlinear and complex interactions, the linear system or a
system with linearized modes of vibration may present a very different result from
the desired model [1]. Even if linear control can be used in the actuators, in a robot,
it is not feasible [2].

The inclusion of nonlinearities inherent in a robot is a very complex process and
raises the need to apply more refined techniques in the model and control process
[3]. In [1, 4, 5] the SDRE controller has a great applicability for systems with a
complex dynamics. Using optimal control allows to have more precision and good
performance on consumption of energy [6].

Generally, friction applications in a robot have been strongly considered in the
joints for, due to the contact of the link of the joints, it generates such friction inwhich
breaks the robot motion. According to [7], such friction phenomenon is related to
dissipation of energy, for example as heat, and leads to friction and wear on surfaces
of contact bodies, that is, the contact of the links of the robot joints generates a dry
friction phenomenon. There exist many well-designed mathematical models to dry
friction model, as for example, Bay-Wanheim, Dahl and many others.

Therefore, in this paper is proposed the optimal control for a planar robot with
three-degrees-of-freedom, considering the influence of the friction phenomenon by
a mechanical differential equation as in [8]. The efficiency of the control was tested
with fixed points simulation and path planning.

2 Equations of Motion

Several approaches can be made to find the mathematical representation of the ma-
nipulator, which will depend on the structure, model and its use. Denavit-Hartenberg
algorithm is a very widespread approach on robotics because of its universality and
applicability [9]. Cartesian, polar or cylindrical coordinates are other ways of rep-
resenting points and structures in space. Each one of them have advantages and
disadvantages always depending on the model and its possible movements. Using
the correct coordinate system can simplify the mathematical model.

2.1 Manipulator Model/Kinematics Model

The robot manipulator which was used is of three-degrees-of-freedom and can be
represented by Fig. 1. In this deduction, the link length is ln, the center of mass is
cmn and the position angles θn.
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Fig. 1 Structure of the manipulator with three planar degrees of freedom

As the manipulator can only move in two of the three possible axes, by coherence,
the positions of the manipulator were deduced based on the cartesian representation
[10]. The kinect energy was deduced through the links, i.e., the place where the
actuators are coupled in the manipulator structure as Eqs. (1)–(6).

px1 = l1cm1 cos θ1 (1)

py1 = −l1cm1 sin θ1 (2)

px2 = l1 cos θ1 + l2cm2 cos (θ1 + θ2) (3)

py2 = −l1 sin θ1 − l2cm2 sin (θ1 + θ2) (4)

px3 = l1 cos θ1 + l2cm2 cos (θ1 + θ2) + l3cm3 cos (θ1 + θ2 + θ3) (5)

py3 = −l1 sin θ1 − l2cm2 sin (θ1 + θ2) − l3cm3 cos (θ1 + θ2 + θ3) (6)

where li is the length of each link, cmi is the center of mass of each link and θi is the
angular position of each link, being that i = 1, 3 are the first, second and third links
of the robot arm.

2.2 Dynamic Model

The dynamic model can be obtained using the Lagranges energy method which
consists of the Lagranges function and Euler-Lagrange equation based on the energy
balance of the kinematics and potential components of the body:
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L =
n∑

k=1

Ekinetic −
n∑

k=1

Epotential n = 1, 2, 3 . . . (7)

Euler-Lagrange equation is expressed in terms of the non-conservative generic
force (τk ), which do not depend on the space variable (qk ) used in mathematical
deduction, and by considering a non-damping system [10]:

d

dt

(
∂L

∂ q̇k

)
−

(
∂L

∂qk

)
= τk k = 1, 2, . . . , n (8)

For all k degrees-of-freedomof the dynamic system (Fig. 1), a differential equation
is generated. Therefore, the total kinetic andpotential energies are a sumof the 3DOFs
of the body and the Lagrangian function is expressed as:

L = θ̇2
2Ω1 + θ̇2

2Ω2 + θ̇2
2Ω3 + θ̇1θ̇2Ω4 + θ̇1θ̇2Ω5 + θ̇1θ̇2Ω6

−g (cos θ2 (m2cm2l2 + m3l2) + cos θ3 (l3cm3m3)

+ cos θ1 (m1cm1l1 + m2l1 + l1m3))

(9)

Substituting Eq. (9) into Euler-Lagrange equation to each coordinate, the non-
conservative generalized forces of the three links are given by:

τ1 = θ̇1θ̇2 (− sin θ2 (2cm2l1l2m2 + 2l1l2m3)) − sin (θ1 + θ2 + θ3) l3cm3m3 (10)

τ2 = θ̇1θ̇2 (− sin θ2 (cm2l1l2m2 + l1l2m3)) − sin (θ1 + θ2 + θ3) l3cm3m3 (11)

τ3 = θ̈1Ω5 + θ̈2Ω6 + θ̈3Ω3 − θ̇1θ̇2 sin (θ2 + θ3)

+g sin (θ1 + θ2 + θ3) l3cm3m3 (12)

In the following, the accelerations are isolated to be highlighted in each respective
equation, i.e., the equation of motion of the first link will be only dependent on
the component θ̈1 (excluding θ̈2 and θ̈3). To rewrite, the system was exceptionally
compared to a linear system composed by the acceleration multiplied by a constant
and an additional constant that summarizes all the other terms:

τ1 = θ̈1c1 + θ̈2c2 + θ̈3c3 + c4 (13)

τ2 = θ̈1c5 + θ̈2c6 + θ̈3c7 + c8 (14)

τ3 = θ̈1c9 + θ̈2c10 + θ̈3c11 + c12 (15)

Therefore, the isolated accelerations are obtained by solving the system of equa-
tions of Eqs. (13), (14) and (15). Hence, the final representation is denoted by:

θ̈1 = τ1 (c10c7 − c11c6) + τ2 (c11c2 − c10c3) + τ3 (c3c6 − c2c7)

c1c10c7 − c1c11c6 − c10c3c5 + c11c2c5 − c2c7c9 + c3c6c9

+ c10 (c3c8 − c4c7) + c11 (c4c6 − c2c8) + c12 (c2c7 − c3c6)

c1c10c7 − c1c11c6 − c10c3c5 + c11c2c5 − c2c7c9 + c3c6c9
(16)
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θ̈2 = τ1 (c11c5 − c7c9) + τ2 (c3c9 − c1c11) + τ3 (c1c7 − c3c5)

c1c7c11 − c1c7c11 − c10c3c5 + c11c2c5 − c2c7c9 + c3c6c9

+c1 (c8c11 − c12c7) + c5 (c12c3 − c11c4) + c9 (c3c8 − c4c7)

c1c7c11 − c1c7c11 − c10c3c5 + c11c2c5 − c2c7c9 + c3c6c9
(17)

θ̈3 = − τ1 (c10c5 − c6c9) + τ2 (c2c9 − c1c10) + τ3 (c1c6 − c2c5)

c1c10c7 − c1c11c6 − c10c3c5 + c11c2c5 − c2c7c9 + c3c6c9

+c1 (c10c8 − c12c6) + c5 (c12c2 − c10c4) + c9 (c4c6 − c2c8)

c1c10c7 − c1c11c6 − c10c3c5 + c11c2c5 − c2c7c9 + c3c6c9
(18)

2.3 Dissipation components

In this model, every dissipation in the system was summarized in a mechanical
differential equation based on the variables of movement and a constant denoted by
[8]:

D(t)n = 1

2

n∑

i=1

n∑

j=1

cijq̇iq̇j = 1

2
μ1θ̇

2
1 + 1

2
μ2

(
θ̇1 + θ̇2

)2 + 1

2
μ3

(
θ̇1 + θ̇2 + θ̇3

)2

(19)

2.4 State-Space representation

In [1, 4, 5], to use optimal control, it is necessary to represent the system in state-space
notation, as given by:

ẋ = A(x)x + B(x)uf + G (20)

y = C(x)x + D(x)uf (21)

where A(x) and B(x) are based on the state of the system and G summarizes all
the non-state dependent components [11]. The final matrices of the systems can be
represented, with the elements based on Eqs. (16), (17) and (18), by:

A(x) =

⎡

⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0
0 0 0 ϕ24 0 ϕ63

0 0 0 1 0 0
0 0 ϕ44 0 ϕ64

0 0 0 0 0 1
0 1 0 ϕ46 0 ϕ66

⎤

⎥⎥⎥⎥⎥⎥⎦
B(x) =

⎡

⎢⎢⎢⎢⎢⎢⎣

0 0 0
β21 β22 β23

0 0 0
β41 β42 β43

0 0 0
β61 β62 β63

⎤

⎥⎥⎥⎥⎥⎥⎦
G =

⎡

⎢⎢⎢⎢⎢⎢⎣

0
ψ1

0
ψ2

0
ψ3

⎤

⎥⎥⎥⎥⎥⎥⎦
(22)

The values used in C(x), Eq. (23), were defined by the output requirement. The
elements of the main diagonal are associated with the system states; δ11 associated
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with the state x1, δ22 associated with x2 and so on. If the state is needed in the output,
the respective element turns to 1 and if it is dispensable, the element turns to 0.

C =

⎡

⎢⎢⎢⎢⎢⎢⎣

δ11 0 0 0 0 0
0 δ22 0 0 0 0
0 0 δ33 0 0 0
0 0 0 δ44 0 0
0 0 0 0 δ55 0
0 0 0 0 0 δ66

⎤

⎥⎥⎥⎥⎥⎥⎦
(23)

By the system of control, the vector of states and vector of input are defined as
x = (

θ1, θ2, θ3, θ̇1, θ̇2, θ̇3
)
and u(x) = (τ1, τ2, τ3), respectively.

3 Optimal Control

The optimal control represented in state-space form uses the matrices A(x), B(x) and
C(x) to determine if the control is possible and to reach the feedback control law. For
a controller, there exist the matrices (A,B) that must be controllable (stabilizable).
Equation (24) shows how to define the controllability.

Mc = [
B AB A2B . . . An−1B

]
(24)

With the value of Mc, the rank (r) of Mc is calculated. For the system to be
controllable, if the rank of the matrix (Mc) is six, the system is controllable and the
SDRE solution use the actual value for the matrix A(x) [6]. If r is lower or higher
than the system size, the last controllable value for A(x) is used in SDRE solution.

Once the controllability was verified, the control law can be determined by [5]:

u(t) = R−1B(x)TP(x)x(t) (25)

The matrix P(x) is based on the solution of Riccati equation:

A (xn)P(x)n+1 + P(x)n+1A (xn) − P(x)B (xn)R (xn)
−1 B (xn)

T P(x)n+1

+Q(x) = 0
(26)

The matrices Q(x) and R(x) must be defined positive. The values used in the ma-
trices are defined by the planner and control guidelines to perform the minimization
of a functional:

J (x0, u) = 1

2

∫ ∞

0

(
xTQx + uTRu

)
dt (27)

As the considered system is nonlinear and possesses a high state dependence, the
controllability needs to be recalculated in all interactions defined in the simulation



Optimal Control for Robot Manipulators … 141

of the parameters. Basically, the controllability and the matrices A(x), B(x) and C(x)
are recalculated every step of the numerical solution [6].

For the matrices Q and R two fronts were addressed. First, Q was deemed as the
multiplication of C by CT . When all states are considered in C, this first approach
leadsQ to an identity matrix. With the first results usingQ as C · CT , some elements
of Q were tuned in to improve the final response. This process of refinement is
guided by the need to improve the responses of the output of each state. In Q, the
columns and rows are associated with the system states [6]. Then, the values used in
the elements of Q dictate the control gains for every system state. The tune is chosen
to increase or decrease the pitch in the states. If the planner wants more attention on
the position of the first link and less in speed, the elements on the first column should
be increased and so on.

To follow the changes and improvements, thematrixR, Eq. (29), was kept constant
with the same number of columns as B(x). The elements r11, r22 and r33 were kept
as 1. As R is multiplied by Q, in this case, keeping R constant or floating makes no
difference if Q is already floating.

Q(x) =

⎡

⎢⎢⎢⎢⎢⎢⎣

q11 0 0 0 0 0
0 q22 0 0 0 0
0 0 q33 0 0 0
0 0 0 q44 0 0
0 0 0 0 q55 0
0 0 0 0 0 q66

⎤

⎥⎥⎥⎥⎥⎥⎦
(28)

R =
⎡

⎣
r11 0 0
0 r22 0
0 0 r33

⎤

⎦ (29)

4 Nonlinear States Observer and Estimation

The State Observer is designed to estimate the robot state variables [12]. In this paper,
it is analyzed the estimation for the robot speed, in this case, the second and fourth
system states. The system represented in Eqs. (20) and (21) is used as the basis for
the observer. Assuming that the state xi can be estimated by the state x̂i [11], the
observer can be represented in the form of:

ẋ = A(x) + Buf − K0(x̂)
(
C(x) − C(x̂)

)
(30)

ŷ = Cx̂(t) + Duf (31)
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To define if the system is Observable, a similar approach used for Controllability
is used, however using the matrix C(x) instead of matrix B(x) [12]. Equation (32)
shows how to define the observability.

Mo =

⎡

⎢⎢⎢⎢⎣

C
CA
CA2

· · ·
CAn−1

⎤

⎥⎥⎥⎥⎦
(32)

The rank (r) of the matrix Mo is calculated, if the result is six the system is
completely Observable. If the rank is lower than six, that means there are states of
the system that are not observable.

The Observer Gain is denoted by K0 given by Eq. (33). The matrix size must
be such that the dynamic behavior matrices are stable and the values of K0 can be
obtained by the implementation of optimal feedback control.

K0 = −R−1CP(x̂)x̂ (33)

By using optimal feedback control, the matrix P(x̂) is determined by the solution
of the Riccati equation, as shown in Eq. (26).

The matrix Q̂ is based on the same previously discussed statements on Eq. (28).
Otherwise, the matrix R̂ is defined as the same number of columns as C(x) shown in
Eq. (23).

R̂ =

⎡

⎢⎢⎢⎢⎢⎢⎣

r11 0 0 0 0 0
0 r22 0 0 0 0
0 0 r33 0 0 0
0 0 0 r44 0 0
0 0 0 0 r55 0
0 0 0 0 0 r66

⎤

⎥⎥⎥⎥⎥⎥⎦
(34)

Subtracting the Eqs. (20) and (21) and (30) and (31), which are the system and
the observer representation, respectively, the observer error is given by:

ê0 = (
A(x) − K0(x̂)C

)
x − (

A(x̂) − K0(x̂)C
)
x̂ (35)

ê0 = x(t) − x̂(t) (36)

The dynamic behavior of the error vector is determined by the eigenvalues of the
matrices:

[
A(x) − K0(x̂)C(x)

]
(37)[

A(x̂) − K0(x̂)C(x)
]

(38)
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where

A(x) =

⎡

⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0
0 0 0 ϕ24 0 ϕ63

0 0 0 1 0 0
0 0 ϕ44 0 ϕ64

0 0 0 0 0 1
0 1 0 ϕ46 0 ϕ66

⎤

⎥⎥⎥⎥⎥⎥⎦
C(x) =

⎡

⎢⎢⎢⎢⎢⎢⎣

δ11 0 0 0 0 0
0 δ22 0 0 0 0
0 0 δ33 0 0 0
0 0 0 δ44 0 0
0 0 0 0 δ55 0
0 0 0 0 0 δ66

⎤

⎥⎥⎥⎥⎥⎥⎦

K0 = −R−1CP(x̂)x̂

5 Path Planning

To analyze the effectiveness of the control, the model was tested by placing values
for the three possible variables of each link: position, speed and acceleration [13].

For this purpose, a fifth order polynomial was used. To the position, the fifth
order was used and for speed and acceleration were used the first and the second
derivatives, respectively:

qi(t) = ai5t
5 + ai4t

4 + ai3t
3 + ai2t

2 + ai1t + ai0 (39)

q̇i(t) = 5ai5t
4 + 4ai4t

3 + 3ai3t
2 + 2ai2t + ai1 (40)

q̈i(t) = 20ai5t
3 + 12ai4t2 + 6ai3t + 2ai2 (41)

6 Numerical Simulations

In the simulations for path planning, the matrix of control without the State Observer
is considered as:

kij =
⎡

⎣
k11 k12 k13 k14 k15 k16
k21 k22 k23 k24 k25 k26
k31 k32 k33 k34 k35 k36

⎤

⎦ (42)

The elements of ki are used to determine the error in the control law. As each
element is associated with one of the system states and one control law equation, the
elements of kij are in the (ij)ht state and nht control law. For example, the element
k12 is associated with the speed, θ̇2, of the first link and the first control law, u1. Such
elements and error are denoted by Eqs. (43)–(46). In the simulation, the 4th order
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Table 1 Parameters for SDRE control with path planning without state observer

Parameters Symbol Unit Final value

Initial time t0 s 0

Final time tf s 0.1

Initial position—link 1 θ01 rad 0

Desired position—link 1 θf 1 rad 0.1745 (10◦)
Initial position—link 2 θ02 rad 0

Desired position—link 2 θf 2 rad 0.5236 (30◦)
Initial position—link 3 θ03 rad 0

Desired position—link 3 θf 3 rad 0.5236 (30◦)
Initial speed—link 1, 2 and 3 ω0 rad/s 0

Desired speed—link 1, 2 and 3 ωf rad/s 0

Initial acceleration—link 1, 2 and 3 ω̇0 rad/s2 0

Desired acceleration—link 1, 2 and 3 ω̇f rad/s2 0

Runge-Kutta method was used in the integration of all the presented equations of
motion, using the parameters of Table 1.

exn = xn = xnd (43)

u1 = −k11(x1 − x1d ) − k16(x6 − x6d ) (44)

u2 = −k21(x1 − x1d ) − k26(x6 − x6d ) (45)

u3 = −k31(x1 − x1d ) − k36(x6 − x6d ) (46)

Figures 2 show the path planning simulation without state observer. The curves
show the efficiency of the controller in leading the position of the three links to
the desired position with a small time and low levels of velocity, in this way, not
compromising the controller.

The state observer was used to estimate separately two system states related to
velocity of the first and the second link, x2 and x4 without path planning. The analysis
ofObservability, Eq. (32), indicated these two states allow to apply theStateObserver.
The gain matrix of the State Observer was product of the matrix A(x) and C(x) and
the generic result is shown in Eq. (47).

K0i =

⎡

⎢⎢⎢⎢⎢⎢⎣

K011 K012 K013 K014 K015 K016

K021 K022 K023 K024 K025 K026

K031 K032 K033 K034 K035 K036

K041 K042 K043 K044 K045 K046

K051 K052 K053 K054 K055 K056

K061 K062 K063 K064 K065 K066

⎤

⎥⎥⎥⎥⎥⎥⎦
(47)
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Fig. 2 Position and speed path following for all the system states

The control action L0i used on the state observer control was found Eq. (49)
based on the product of C(x), the matrix of the error estimation γi, Eq. (48), and the
matrix K0i.

γi =

⎡

⎢⎢⎢⎢⎢⎢⎣

x1 − x̂1
x2 − x̂2
x3 − x̂3
x4 − x̂4
x5 − x̂5
x6 − x̂6

⎤

⎥⎥⎥⎥⎥⎥⎦
(48)

δ0i =

⎡

⎢⎢⎢⎢⎢⎢⎣

γ11C11K011 γ22C22K012 γ33C33K013 γ44C44K014 γ55C55K015 γ66C66K016

γ11C11K021 γ22C22K022 γ33C33K023 γ44C44K024 γ55C55K025 γ66C66K026

γ11C11K031 γ22C22K032 γ33C33K033 γ44C44K034 γ55C55K035 γ66C66K036

γ11C11K041 γ22C22K042 γ33C33K043 γ44C44K044 γ55C55K045 γ66C66K046

γ11C11K051 γ22C22K052 γ33C33K053 γ44C44K054 γ55C55K055 γ66C66K056

γ11C11K061 γ22C22K062 γ33C33K063 γ44C44K064 γ55C55K065 γ66C66K066

⎤

⎥⎥⎥⎥⎥⎥⎦

(49)

Each one of the six equations of the state observer, represented by the i index on
the matrices, receives one element of the matrix L0i, given by Eq. (50).
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Fig. 3 Position with state observer in the second system state

L0i =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

∑6
n=1 δn1∑6
n=1 δn2∑6
n=1 δn3∑6
n=1 δn4∑6
n=1 δn5∑6
n=1 δn6

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

(50)

The matrixC(x) presented in Eq. (23) is changed to define the systems states used
in the State Observer. The main diagonal of C(x) variates the values to define the
states in the Observer, if the state was used on the observer, the index was 0 and if
the state is not used, the index was 1. Based on that the element δ2 turns to 0 when
the observer was estimated to the second system state and the element δ4 turns to 0
when estimating the fourth system state.

Figures 3 and 5 show the positioning of the system and the position of the state
observer in the second and fourth system state, respectively. The SDRE control
showed to be effective in guide the position of the manipulator and control the speed.
It is shown by the errors minimized to almost zero, presented in Figs. 4 and 6.

7 Conclusions

In this paper, a robotmanipulator of three-degrees-of-freedomand a nonlinear control
law based on the SDRE (State Dependent Riccati Equation) was used for positioning
control. The application of the robot was analyzed proposing a path for all positions,
as illustrated in Fig. 2, and delimitations for speed and acceleration.
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Fig. 4 Error of the observer in the second system state

Fig. 5 Position with state observer in the fourth system state

The use of the State Observer showed its efficacy in the solution for the control
of the manipulator, as illustrated in Figs. 3 and 5. The analysis of the Observability
indicated the possibility to use the state observer only be a two-states system. The
results showed that the SDRE control was effective to guide the position motion and
control the speed.

The application of the state observer in some combination of the system states
require a new approach and union between the equations of the actuator, DC motor,
and the manipulator on the same application, which are some of the next steps of
this research.
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Fig. 6 Error of the observer in the fourth system state
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Optimal Control of Automotive
Multivariable Dynamical Systems

Jacek Jackiewicz

Abstract Two distinctive features of challenging control engineering problems are
commonly taken into consideration in design of dynamical, mechatronics systems,
namely operation ranges, of such systemswith nonlinear effects,which are not always
near to equilibrium states, as well as a fairly high level of uncertainties of their phys-
ical description with which controllers have to cope despite a lack of knowledge on
the all system parameters although physical modeling allows to identify their partic-
ular nonlinear effects. It should be noted that usage of nonlinear physical modeling in
real-time control systems can be computationally very demanding. Hence, it seems to
be suitable to use robust control methods based on linearized models with adaptive
updating algorithms. However, usually strong nonlinearities can reduce the effec-
tiveness of control methods, and thus of adaptive control algorithms. The controller
gains can be often updated by using the estimated parameters. In this contribution
the adaptive control systems for automotive applications, which are based on indirect
(or self-tuning) controller strategies are discussed. The modeling issue of indirect
optimal controller strategies is illustrated by the application example.

Keywords Control systems · Adaptive systems · Cruise control · Nonlinear
optimal control

1 Introduction

From its beginnings in the middle of the 20th century, a multidisciplinary field of
dynamical systems and feedback control has rapidly become an attractive research
area for both scientists and engineers. Nowadays, the field of science that includes
mainly a combination of mechanical engineering, electronics, computer engineer-
ing, systems engineering and control engineering is known as mechatronics. Thus,
mechatronics relates to design of systems, which are often understood as an amal-
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gamation of components acting together to accomplish certain objectives and, at the
same time, which are aimed at achieving an optimal balance between basis mechan-
ical structure and its overall control.

Electronic control systems engineering has become the backbone enabling auto-
motive industry products to meet quality and functionality criteria regarding the
cars’ fuel consumption, improvement of vehicle dynamic properties and also safety.
Recently, according to the statement of manufacturers [1], about 90% of all innova-
tions in the automobile industry are implemented thanks to remarkable technological
progress in electronics. In consequence, new series of actuators are introduced again
and again into the automotive systems due to progressive increase in the requirements
for the emission reduction as well as the power and safety. As has been indicated in
[1], all aspects of the ultimate performance of any types of vehicles are increasingly
dependent on the development of control technology. However, in this paper only
aspects of cruise control systems are considered.

2 Automatic Cruise Control

Automatic cruise control can be considered as an example of a feedback control
system applied in many modern vehicles. The purpose of the conventional cruise
control system is to maintain a constant vehicle speed despite external disturbances,
such as changes in wind or road grade. This aim is accomplished through measuring
the vehicle speed, comparing it to the desired or reference speed, and automatically
adjusting the throttle according to a control law.

The vehicle (see Fig. 1), of mass m, is acted on by a motive force, F, which
represents the force generated at the road/tire interface. The force, F, available at the
drive wheels is:

F � T

r
iTOTηTOT � P

v
ηTOT, (1)

Fig. 1 Forces acting on a
vehicle
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where T is the motive torque, P the motive power, iTOT the total transmission ratio, r
the tire radius, ηTOT the total drive-train efficiency, and v is the vehicle velocity. For
this simplified model, it is assumed that the force, F, can be controlled directly.

Referring to Fig. 1, the total running resistive force, FW, acts in the direction
opposite to the vehicle’s motion and is calculated as FW �FL +FRO +FST, where
FL is the aerodynamic drag, FRO the rolling resistance and FST is the climbing
resistance. The drag, FL, is proportional to the square of the sum of car velocity, v,
and the head-wind velocity, vHW, (or (v + vHW)2) as shown in the following equation:

FL � 0.5ρCW A(v + vHW)2, (2)

where ρ it the air density, CW the coefficient of aerodynamic drag, and A is the largest
cross-section of the vehicle. The other two resistances, FRO and FST, are functions
of vehicle weight, m g, and the gradient of the road (given by the gradient angle, θ ).
These resistances can be calculated as follows:

FRO � f mg cos θ, (3)

FST � mg sin θ, (4)

where f is the dimensionless coefficient of rolling resistance (or the coefficient of
rolling friction—CRF), and g is the gravitational acceleration.

A simple nonlinear model of the vehicle dynamics can be obtained by summing
external forces in the direction of the vehicle velocity (i.e., the longitudinal direction)
and by applying the Newton’s 2nd law in the following form:

F∗
NL � −m

dv

dt
+ F − 0.5 ρCWA(v + vHW)2 − f mg cos θ − mg sin θ � 0, (5)

Equation 5 is nonlinear in the forward velocity, v(t). Difficulties in design of the
cruise-control system stem mainly from two uncertainties, which might be beyond
control due to: (i) change of vehicle weight, or due to (ii) external disturbances
caused by road grade [2]. Thus, a good cruise-control algorithm should work well
under these uncertainties.

Three approaches are often taken in analysis of nonlinear systems:

1. replacing nonlinear elements by their linear equivalents
2. directly solving nonlinear models of these systems
3. linearizing equation systems of nonlinear models for small perturbations.

Considering accurate results and the cost of their computation, the third approach
seems tobe themost rational. Thepurpose of linearization is to replace nonlinearEq. 5
with its linear approximation, like linearizing the nonlinear function, FNL(x), means
replacing it locally with an approximating straight line. However, such a formulation
of the linearization process is not precise and may yield inaccurate results, unless
restrictions are placed on its use. In particular, a limit must be somehow established

for the small variation, x̂ , of its variable, x
def� x̄ + x̂ , from its average value, x̄ , at the
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operating point. This limit on the range of acceptable variation of the independent
variable, x, is influenced by the shape of the nonlinear function curve and the location
of the operating point on the curve. The term “operating point” used here refers to
the condition of a system when it is in a state of equilibrium with the input variables
constant and equal to their mean values averaged over time. At equilibrium (i.e.,
when d v̄/dt � 0), Eq. 5 can be solved for:

F
∗
NL � F − 0.5 ρCW A(v̄ + v̄HW)2 − f mg cos θ̄ − mg sin θ̄ � 0. (6)

Hence, the value of the nonlinear function, F
∗
NL, at the “operating point” could

be defined as

F
∗
NL

def� F∗
NL

((
dv

dt

)
, F, v̄, v̄HW, θ̄

)
. (7)

Equation 5 may be linearized by using the first order Taylor series approximation
of F∗

NL about the specified operating (i.e., equilibrium) state:

F∗
NL

((
dv

dt

)
, F, v, vHW, θ

)

≡ F∗
NL

((
dv

dt

)
+

(
dv
dt

)∧

, F + F
∧

, v̄ + v̂, v̄HW + v̂HW, θ̄ + θ̂

)

≈ F
∗
NL +

∂F∗
NL

∂
(
dv
dt

)
∣∣∣∣∣(

( dv
dt ),F,v̄,v̄HW,θ̄

) · (
dv
dt

)∧

+
∂F∗

NL

∂F

∣∣∣∣(
( dv

dt ),F,v̄,v̄HW,θ̄
) · F

∧

+
∂F∗

NL

∂v

∣∣∣∣(
( dv

dt ),F,v̄,v̄HW,θ̄
) · v̂

+
∂F∗

NL

∂vHW

∣∣∣∣(
( dv

dt ),F,v̄,v̄HW,θ̄
) · v̂HW +

∂F∗
NL

∂θ

∣∣∣∣(
( dv

dt ),F,v̄,v̄HW,θ̄
) · θ̂ (8)

with the following derivatives evaluated at the equilibrium state:
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∂F∗
NL

∂( dv
dt )

∣∣∣(
( dv

dt ),F,v̄,v̄HW,θ̄
) � −m (a)

∂F∗
NL

∂F

∣∣∣(
( dv

dt ),F,v̄,v̄HW,θ̄
) � 1 (b)

∂F∗
NL

∂v

∣∣∣(
( dv

dt ),F,v̄,v̄HW,θ̄
) � −ρCW A (v̄ + v̄HW) (c)

∂F∗
NL

∂vHW

∣∣∣(
( dv

dt ),F,v̄,v̄HW,θ̄
) � −ρCW A (v̄ + v̄HW) (d)

∂F∗
NL

∂θ

∣∣∣(
( dv

dt ),F,v̄,v̄HW,θ̄
) � −mg cos θ̄ + f mg sin θ̄ (e)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (9)

So, the linearized governing differential equation is

m
(
dv
dt

)∧

+ ρCW A(v̄ + v̄HW)
(
v̂ + v̂HW

) − F
∧

− m g
(
f sin θ̄ − cos θ̄

)
θ̂ � 0, (10)

which might be rearranged to a more compact form:

τ
(
dv
dt

)∧

+ v̂ � K
(
F
∧

+ d̂
)
, (11)

where the estimates of incremental, or perturbated, variables are defined

as: F(t)
def� F + F̂(t), θ (t)

def� θ̄ + θ̂ (t), v(t)
def� v̄ + v̂(t), and vHW

def� v̄HW
(because of v̂HW ≈ 0). Furthermore, in Eq. 11 the following function:

d̂(t)
def� mg

(
f sin θ̄ − cos θ̄

)
θ̂ (t) represents uncertainties and external disturbances,

while K
def� 1/(ρCW A(v̄ + v̄HW)) and τ

def� m K are both parameters, which vary
with operating conditions (e.g., mass, speed, and wind velocity).

The next step is to take the Laplace transform of the linearized differential equa-
tion, assuming zero initial conditions [3]. The signal, x(t), and its associated Laplace
transform, X (s), form the following Laplace transform pair:

X (s) � L[x(t)], (12)

where the operator notation, L, means to multiply the signal being operated upon,
x(t), by the complex exponential, e−st , and then to integrate that product over the
time interval (−∞, +∞), as follows:

∫ +∞
−∞ x(t) e−st dt . The operator of time-domain

differentiation has then been found to correspond to a multiplication by s in the
Laplace variable s-domain. The Laplace transform of differential signal, dx(t)/dt ,
from the t-domain into the s-domain is

L
[
dx(t)

dt

]
� s X (s). (13)

The Laplace transform of Eq. 11 can now be written as:
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(τ s + 1)V (s) � K
[
F∗(s) + D(s)

]
, (14)

where V (s) � L[
v̂(t)

]
, F∗(s) � L

[
F̂(t)

]
, and D(s) � L

[
d̂(t)

]
are the associated

Laplace transforms.
Finally, in Eq. 14 the input variables, F∗(s) and D(s), and the output variable,

V (s), are separated, and then the vehicle transfer function, GV(s), takes the form:

GV(s) � K

τ s + 1
. (15)

The transfer function of any linear system, T (s), (represented here by Eq. 15) can
be considered as a ratio of polynomials [4]:

T (s) � B(s)

A(s)
, (16)

where the polynomials A(s) and B(s) take the following form:

A(s) � ansn + · · · + a1s + a0 (a)

B(s) � bmsm + · · · + b1s + b0 (b)

}
. (17)

For such system, the roots of the system characteristic equation (which are the
poles of the system transfer function) are the same as the roots of the equation
A(s) � 0.

Compensation is the process of modifying a closed-loop control system (usually
by adding a compensator or controller) in such a way that the compensated system
satisfies a given set of design specifications [5]. The design specifications of control
systems are often used to describe some design criteria that the compensated system
should achieve (e.g., a vehicle should be able to accelerate up to specified velocities
at designated times taking into account actuator limitations encountered in control
systems engineering). These specifications are unique to each individual applica-
tion and often include specifications about relative stability, steady-state accuracy
(error), transient-response characteristics, and frequency-response characteristics.
The design of control systems can be carried out in either the time domain (e.g., the
steady-state control accuracy is often specified with respect to a step input, a ramp
input, or a parabolic input) or the frequency domain (e.g., by means of frequency-
domain specifications, which should be used in conjunction with such tools as the
Bode plot, polar plot, gain-phase plot, and Nichols chart).

In general, the dynamics of a controlled process can be represented by the block
diagram of a typical negative feedback system illustrated in Fig. 2. This system
consists of a simplified vehiclemodel and a proportional-plus-integral (PI) controller.
The transfer function of the PI controller is given by

GC(s) � KP +
KI

s
, (18)
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Fig. 2 Block diagram of a closed-loop system with a series PI controller

where KP is the proportional gain and K I is the integral gain (note that both gains
are tuning parameters).

The transfer function of the feedback system shown in Fig. 2 is

TCL(s) � GC(s)GV(s)

1 + GC(s)GV(s)
, (19)

where GC(s) � NGC(s)/DGC(s) and GV(s) � NGV(s)/DGV(s). Thus, the system
characteristic equation is

1 + GC(s)GV(s) � 0 or NGC(s)NGV(s) + DGC(s)DGV(s) � 0. (20)

All roots of Eq. 20 must be located in the left half of the complex plane for
asymptotic stability of the system and,moreover, the controller gains (i.e., parameters
KP andK I) must be selected to achieve good performance for the closed-loop system.

3 Design of an Optimal Adaptive Cruise Controller

Not only dynamic but also static properties of controlled processes may often change
in time. In such cases, there is a need to use adaptive control techniques, which enable
an adaptation to unknown and changing process behavior [6]. Adaptive algorithms
may be used to compute directly the gains of the controller (for direct adaptive
control), as well as indirectly. So, adaptive controllers can be classified as either
indirect or direct. The direct adaptive control can be, in essence, implemented in
several ways. One of them is the self-tuning control based on pole placement [2].
The pole-placement procedure places all poles of the closed-loop transfer function
(or all roots of the closed-loop system characteristic equation) at desirable locations.
The pole-placement procedure is a feasible design technique only for systems that
are controllable. Furthermore, for a robust closed loop system, the poles and zeros
of the process impose severe restrictions on the location of the closed loop poles.
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Having regard to the closed-loop system illustrated in Fig. 2 with models of the
vehicle and the PI controller (note that their transfer functions are given by Eqs. 15
and 18, respectively), the loop transfer function of this system takes the following
form:

L(s)
def� GC(s)GV(s) � K (KPs + KI)

s(τ s + 1)
(21)

and hence the corresponding closed-loop characteristic polynomial can be written
as follows

s(s + 1/τ) + (K/τ)(KPs + KI) � s2 + (1/τ + KPK/τ)s + KIK/τ. (22)

If the desired closed-loop characteristic polynomial is rewritten in the factored
form: (s +p1) (s +p2), then the controller gains are given by:

KP � p1 + p2 − 1/τ

K/τ
, KI � p1 p2

K/τ
. (23)

However, as parameters for the vehicle model (i.e., K and τ ) cannot be deter-
mined successfully by means of physical quantities, which are directly ascertained
by measurements, a recursive parameter identification algorithm might be used to
estimate indirectly unspecified quantities assuming that the vehicle model is linear,
and then the indirect adaptive controller design is based on the parameters so identi-
fied (for indirect adaptive control). An example block diagram showing an indirect
self-tuning discrete-time control system of a single variable process is demonstrated
on Fig. 3.

The self-tuning control system with a discrete-time controller estimates process
model parameters of a given structure, and then calculates new controller gains in
each sampling instant. Afterwards, a manipulated variable is calculated. The identi-

Fig. 3 Block diagram of an indirect self-tuning discrete-time control system



Optimal Control of Automotive Multivariable … 159

fied parameters, as well as the manipulated variable, remain constant until the new
sampling time.

Several following approaches can be considered for deriving parameter adaptation
algorithms: least squares minimization, reconciliation with Kalman filter, gradient
technique, stability approach, and heuristic approach [7]. Thus, indirect adaptive con-
trollers employ an estimation algorithm to determine the unknown systemparameters
and adaptive controller gains. It should be noted that many adaptive control tech-
niques are nonlinear adaptive analogues of pole-placement methods in some form
[8].

The classical controller design procedures are based on a transfer-function model
of a system. However, modern controller design procedures are based on a state-
variable model of the vehicle.The state-variable model for a single-input–single-
output vehicle model can be mathematically written as:⎧⎨

⎩
dx(t)
dt � Ax(t) + B u(t)

y(t) � Cx(t)
(24)

where x(t) is the n× 1 state vector, u(t) is the vehicle input signal, y(t) is the vehicle
output signal, A is the n × n system matrix, B is the n × 1 input matrix, and C is
the 1 × n output matrix. The vehicle transfer function, GV(s), can be considered as
an input-output model. The function, GV(s), is related to the state model, defined by
Eq. 24, by

GV(s) � C(s I − A)−1B. (25)

Note that the state model yields the same input-output model and, in addition,
includes an internal model of the system. Moreover, this model is without difficulty
adaptable to a multiple-input–multiple-output system. For this case, u(t) and y(t) are
vectors.

In general, in modern controller design procedures [9] a common method for
negative feedback is to multiply the estimated state vector, x̂(t), by a 1× n feedback-
gain matrix,K, wherein the states of the system are estimated from the measurement
of the output vector, y(t). In addition to feedback, an input vector, r(t), can be added
such that

u(t) � r(t) − K x̂(t), (26)

where u(t) is the input (or control) vector. The feedback-gain matrix, K, is deter-
mined based on the following relationship:

|s I − (A − BK)| � (s − μ1)(s − μ2) . . . (s − μn), (27)

where μ1, . . . , μn are the desired pole locations. For the observer pole-placement
controller design the course of this mathematical operation is depicted in Fig. 4.
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Fig. 4 Implementation of the observer pole-placement controller design

In general, there are three basic approaches, which relate to problems of optimal
control [10, 11], namely: (a) indirect methods (b) direct methods, and (c) dynamic
programming. Indirect methods of optimal control rely on the Pontryagin maximum
principle [12]. According to these methods, the optimal control problem is turned
into a two point boundary value problem containing the same mathematical infor-
mation as the original one by means of necessary conditions of optimality. Then, the
boundary value problem is discretized by some numerical technique to get a solu-
tion. It can be stated that indirect methods follow a “first optimize, then discretize”
scheme. Numerical techniques for solving the two point boundary value problem
of optimal control can be categorized as indirect collocation [13], gradient methods
[14], and indirect shooting and indirect multiple shooting [15]. Direct methods of
optimal control can be appliedwithout deriving the necessary condition of optimality,
and they are based on a finite dimensional parameterization of the infinite dimen-
sional problem (i.e., they convert the original infinite dimensional problem of optimal
control into a problem with a finite set of variables). Then, the finite dimensional
problem is solved by means of an optimization method, known as the technique of
nonlinear programming problem. Thus, direct methods follow an approach known
as “first discretize, then optimize” [16]. The dynamic programming approach applied
to optimal control uses the optimality criteria in continuous time, which are based
on the Hamilton-Jacobi-Belman partial differential equation [17]. The solution of
this equation is treated as the value function, which gives the minimum cost for a
given dynamical system with an associated cost function. According to dynamic
programming the problem is subdivided and solved in a number of stages. Each
stage is associated with one subproblem and the subproblems are linked together by
a recurrence relation. Thus, using recursive computations the solution of the whole
problem is obtained by solving the subproblems [17].
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Fig. 5 Forward system
identification approach

In spite of the fact that some key theoretical problems continue to exist in applica-
tion of memetic algorithms based on genetic algorithm [18–20] with artificial neural
networks to design of an optimal adaptive cruise controller, properties of these algo-
rithmsdemonstrate that they have great promise in themodeling of nonlinear systems.
An open problem in system identification is whether a system under study can be
properly represented within a given model structure. As a rule, it is assumed that the
system under consideration belongs to a certain class of systems, which the chosen
network is able to represent. Two kinds of system identification techniques can be
distinguished: forward modeling and inverse modeling. A schematic diagram of the
procedure of training a neural network to represent the forward dynamics of a system
is shown in Fig. 5. The neural network is placed in parallel with the system, and the
error vector, e between the system output vector, y, and the network output vector, ŷ,
is used to train the network. This diagram illustrates a classical supervised learning
problem for which the teacher (i.e., the system) provides target values (i.e., system
outputs) directly in the output coordinate system of the learner (i.e., the network
model).

The inverse modeling structure depicted in Fig. 6 is supposed to provide the
opportunity to represent the inverse of the vehicle model by network. However, there
are potential drawbacks to this approach. The training signal must be chosen to
sample over a wide range of system inputs, and the actual operational inputs may
be difficult to define a priori. A second drawback is that an incorrect inverse model
can be obtained if the nonlinear system mapping is not one-to-one. An approach
called specialized inverse modeling has been proposed in an effort to overcome
these problems [21]. The neural network identification models can be used in the
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Fig. 6 Direct inverse system identification approach

adaptive control of vehicles for which their models do not have known values of
parameters.

4 Application Example

As an application example is considered the design of the adaptive cruise controller
for a model of the two-door, two-seater sports car: 16MY Jaguar F-Type. The vehicle
parameters are taken from [22]. The parameters of the car model give a good match
comparedwith the advertised vehicle parameters. For a 60 s simulation, themaximum
vehicle speed is 253 kph, as shown at Fig. 7.

Fig. 7 Vehicle speed plot for the 16MY Jaguar F-Type (Xcos simulation results)
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Fig. 8 Wheel forces plot for the 16MY Jaguar F-Type (Xcos simulation results)

Fig. 9 Wheel forces at full load function of engine speed and gear for the 16MY Jaguar F-Type
(Scilab simulation results)

According to Fig. 8, the total force of 17,766N, available at thewheels for traction,
is obtained in 1st gear. However, since of the maximum traction force is limited by
the friction force to the value of 13,383 N the wheels cannot deploy a higher motive
force on the road, even if, according to Fig. 9, the engine and transmission are capable
to deliver this amount of force.
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In a computer controlled system, the control applied to the vehicle is not con-
tinuous and varies discontinuously at the sampling instants (see [23]). In addition,
a sample of the control signal is constant and hold between the sampling instants
(effect of the zero order hold). Therefore, it is important to relate the vehicle transfer
function,GV(s), of the continuous-time system to the corresponding sampledmodel.
The converted continuous time Laplace transfer function of GV(s) to a discrete time
z transfer function is

GV(z) � b z−1

1 + a z−1
, (28)

where the parameters a
def� 1/τ and b

def� K/τ � 1/m are estimated by means of a
recursive least squares (RLS) parameter-estimation method.

A deadbeat-like procedure is adopted for the design of a digital controller, D(z).
According to a desired discrete transfer function,GM(z), of the system for the overall
control loop, the controller transfer function, D(z), can be expressed in the following
form:

GM(z)
def� Y (z)

V (z)
� D(z)GV(z)

1 + D(z)GV(z)
hence−→ D(z) � GM(z)

GV(z)[1 − GM(z)]
, (29)

with

GM(z) � (1 + c1 + c2)z−1

1 + c1z−1 + c2z−2
, (30)

where

c1
def� e−ζωnkTs cos

(
ωn

√
1 − ζ2kTs

)
, c2

def� e−2ζωnkTs , (31)

V (z) stands for the desired reference input, Y (z) represents the output of the process,
k is the sample number, Ts is the sampling period, while ζ (i.e., the damping coeffi-
cient) and ωn (i.e., the natural frequency) are parameters used to specify the desired
response.

The Scilab program is used to generate the results shown in Figs. 10, 11, 12, 13,
14 and 15. The implementation is digital, so a discrete-time process model is used,
obtained for two different sampling rates, Ts, both of 0.1 s and of 1 s, as well. As
can be seen in Figs. 11 and 14, the parameter estimates converge quickly (i.e., well
below 4 s), despite the fact that the unknown parameters a and b are initialized to
two different values.

During the computer calculations, it was assumed that ζ � 0.95 and ωn � 0.1.
It should be noted that the sampling time (Ts � 0.1 s), taken to calculations, is

too small for the power transmission capacity of the drive system of the modeled
vehicle.
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Fig. 10 Vehicle speed change for the 16MY Jaguar F-Type (Scilab simulation results)

Fig. 11 Change of the parameters, a and b, over time during control for the model of 16MY
Jaguar F-Type (Scilab simulation results). (for v�25 m/s, a (required): 0.0137206, a (estab-
lished): 0.0137265, b (required): 0.0005241, b (established): 0.0005241, for v�36m/s, a (required):
0.0197576, a (established): 0.0197605, b (required): 0.0005241, b (established): 0.0005241)

5 Conclusions

The applied adaptive control method based on the RLS algorithm for estimating
the parameters of the nonlinear systems is very efficient and has the ability to adjust
quickly the control parameters. In addition, expanding the possibilities of thismethod
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Fig. 12 Controlling motive force of the 16MY Jaguar F-Type (Scilab simulation results)

Fig. 13 Vehicle speed change for the 16MY Jaguar F-Type (Scilab simulation results)

by the usage of memetic algorithms based on genetic algorithm with artificial neural
networks can improve process controller performance for variety automotive multi-
variable dynamical systems. Nowadays, the implementation of systems of optimal
control is relatively easy taking into account the widespread availability of micro-
controllers.

However, the engineering practice usually demonstrates that the best choose is
the implementation of the simplest possible controller that meets all the design spec-
ifications. In most cases, the more complex a controller is, the less reliable it could
be, the more it could cost, and, first of all, the more difficult it could be to design.
Furthermore, choosing a specific controller for a specific application is sometimes
based on the designer’s intuition and quite often past experience. Considering that
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Fig. 14 Change of the parameters, a and b, over time during control for the model of 16MY
Jaguar F-Type (Scilab simulation results). (for v�25 m/s, a (required): 0.0137206, a (estab-
lished): 0.0137377, b (required): 0.0005241, b (established): 0.0005241, for v�36m/s, a (required):
0.0197576, a (established): 0.0197665, b (required): 0.0005241, b (established): 0.0005241)

Fig. 15 Controlling motive force of the 16MY Jaguar F-Type (Scilab simulation results)

for a novice, any task of design of an optimal adaptive controller may be initially
found difficult to achieve, it cannot be forgotten about using appropriate software,
which supports the designer’s work to a large extend.
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Mathematical Model of Two Types
of Atrioventricular Nodal Reentrant
Tachycardia: Slow/Fast and Slow/Slow

Beata Jackowska-Zduniak and Urszula Foryś

Abstract Proposed model consisting of two coupled van der Pol equations is
considered as a description of the heart’s action potential. System of ordinary dif-
ferential equations with time delay is used to recreate pathological behaviour in the
heart’s conducting system such as slow/fast and slow/slow type of atrioventricular
nodal reentrant tachycardia (AVNRT). In our study, introducing the feedback loops
and couplings entails the creation of waves which can correspond to the re-entry
waves occurring in the AVNRT. Our main aim is to study solutions of the given
equations and take into consideration the influence of feedback and delays which oc-
cur in these pathological modes. Analytical results are illustrated by some numerical
examples of the model dynamics.

Keywords Delay differential equation · Stability analysis · Model of
tachycardia · Van der Pol equation

1 Introduction

In this paper, we propose a mathematical model which allows to reconstruct patho-
logical behaviours in the system of the heart.We consider a system of ordinary differ-
ential equations with time delays which is based on the van der Pol equations. We try
to model two types of pathology such as: slow/fast and rare slow/slow AVNRT. The
structure of the AV node has a multi-level architecture in which there may be many
pathways (slow and fast) at different locations in the AV node; cf. [6, 7]. This knowl-
edge of architecture helped to recognise many types of AVNRT, which previously
were understood as one, although the mechanisms of action are different. We can
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distinguish five different forms of the AVNRT (typical: slow/fast, atypical: fast/slow,
and other forms: slow/slow, more than two re-entries waves, one fast pathway with
depolarisation of slow pathway) [2, 3, 8, 9]. Part of the population has abnormal
accessory pathways: fast and slow. The pathways in the AV node are anatomical and
functional contributions of the most popular supra-ventricular tachycardia, which is
a re-entry tachycardia from the AV node. The pathways connect at two points within
the AV node so as to form a circle. One pathway conducts impulses quickly but has a
long refractory period. The other conducts impulses slowly but recovers quickly from
depolarisation. Because of the existence of the accessory conducting pathway out-
side the AV node, a flutter wave starts to circle. The motivation for this paper was that
there is a problem with making the appropriate diagnosis, and therefore with treating
patients with this disease effectively. This kind of problem is observed mainly in
different types of AVNRT. The mechanisms of these pathologies are not fully under-
stood. Moreover, the symptoms are often mistakenly taken for other heart diseases.
As a result, an ablation therapy is often done, which does not give expected effect.
Especially, when slow/slow type of AVNRT is diagnosed as a slow/fast, then abla-
tion therapy is used only for one slow pathway instead of two or more. This implies
that the re-entry circuits are not destroyed and tachycardia can return. We propose
mathematical models of a rare or rarely diagnosed type of AVNRT: slow/slow and
also slow/fast. We try to distinguish and show the main difference between the action
potential in both pathologies. We hope it will allow to understand these arrhythmias
better.

1.1 Typical AVNRT

The most common form of the AVNRT, is slow anterograde and fast retrograde
pattern (slow/fast type), which is shown in Fig. 1a.

Fig. 1 a Sketch of the
typical location of the
slow/fast AVNRT; b
uncommon form of AVNRT:
slow/slow
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In Fig. 1a, we can observe a re-entry circus inwhich an action potential goes by the
slow pathway in the anterograde direction and by the fast pathway in the retrograde
direction. Typical AVNRTs are easily inducible during incremental atrial pacing as
well as atrial extra stimulation techniques. This type of AVNRT is about 85% of all
cases of AVNRT.

1.2 Slow/Slow Type of AVNRT

The next type ofAVNRTmodelled in this paper is slow/slow typeAVNRT. It involves
the anterograde slow and retrograde slow pathways; c.f. Fig. 1b. It is very rare and
difficult to distinguish from other arrhythmias AVNRT. However, it is about 12%
of all types of AVNRT. It is associated with atypical, non-physiological structure
of the atrio-ventricular node and multiple pathways of slow conduct. In slow/slow
AVNRT and slow/fast AVNRT with programmed atrial pacing, tachycardia occurs
after a sudden increase in period (“jump”). Patients often present “jump” in the
atrio-ventricular conduction curve during atrial pacing with additional pulse due to
the presence of multiple slow pathways; [7]. The distinction between slow/slow and
slow/fast AVNRT is important for at least two reasons: ablation technique of the fast
pathway does not eliminate slow/slow AVNRT and part of relapse after ablation of
the slow pathway is higher for slow/slow AVNRT.

2 Model Construction

The van der Polmodel is a relaxation oscillator, which is very useful in the description
of the heart dynamics because it easily adjusts its frequency to excitation frequency.
The van der Pol equation provides rich dynamical behaviour which we would like
to exploit in the modelling of the heart action; cf. [5]. At the beginning, we present
the modified van der Pol system, which can be applied to model either SA or AV
node. The main property of this oscillator is the mutual interaction of a limit cycle
which is present around an unstable focus with a saddle and a stable node. This
allows reproducing correctly the refraction period and non-linear phase sensitivity
of an action potential of node cells. The modified van der Pol equation in its two-
dimensional first order form reads

ẋ = y,
ẏ = −a(x2 − 1)y − fx(x + d)(x + e),

(1)

where a influences time intervals between pulses, f corresponds to a harmonic os-
cillator’s frequency, e and d regulate the location of steady states in the phase space.



172 B. Jackowska-Zduniak and U. Foryś

Fig. 2 a Dynamics of action potential for Eqs. (1). b Phase space portrait with the vector field: [5]

The selection of physiological values of parameters was done after a verification in
[4]. The reference model has the following parameter values:

a = 5, f = 3, d = 3, e = 7.

A solution of this system in time presents the action potential; cf. Fig. 2a. Figure 2b
presents a phase portrait with a very important feature – limit cycle appearing in the
phase space. In this system, there are three steady states: x1 = 0 (an unstable focus),
x2 = −d (a saddle) and x3 = −e (a stable node).

A model consisting of two coupled modified van der Pol systems is considered
in this paper. For the slow/fast and slow/slow types of AVNRT we model the fast
pathway as the first modified van der Pol system and the slow pathway (or slow
pathways) as the second one. The difference between these systems is related to the
length of period of oscillations – the slow pathway is modelled as slower, so we fit
parameter e as to be equal to 4.5 (three steady states of the type described above
exist). In the first system all parameters are the same as the reference values. We
introduce a feedback and time delay in order to reproduce slow/fast and slow/slow
types of AVNRT. Introducing feedback loops entails the creation of waves which can
correspond to re-entrywaves,which is presented in Fig. 1. The feedback is introduced
to the third equation because the re-entry wave is from the slow pathway to the fast
one (or from the slow pathway to the slow one). Moreover, small delays are observed
in this type of AVNRT. The time when a wave goes along uncontrolled in order to
return to the node is reflected by the delay which is added to the feedback part.
Including this time delay in the feedback we obtain the final version of the model.
Therefore, we consider the following system of ordinary differential equations with
time delay

ẋ1 = y1 − k1x2,

ẏ1 = −a(x1
2 − 1)y1 − fx1(x1 + d)(x1 + e1),

ẋ2 = y2 − k2(x2 − x2(t − T )),

ẏ2 = −a(x2
2 − 1)y2 − fx2(x2 + d)(x2 + e2),

(2)
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where k1 and k2 denote coupling coefficients, and T is time delay. The values of pa-
rameters are given as: k1 = 0.75, k2 = 0.3, a = 5, f = 3, d = 3, e1 = 7 and e2 = 4.5.

In the analysis of differential equations, steady states and their stability are one
of the most important aspects. Notice, that each of uncoupled van der Pol systems
(i.e. subsystems (x1, y1) and (x2, y2) for k1 = k2 = 0) has three steady states (0, 0),
(0,−ei), (0,−d), i = 1, 2. Recall that (0, 0) is an unstable focus, and for ei > d ,
(0,−d) is a saddle, (0,−ei) is a stable node. In the following,we assume ei > di > 1.

3 Analysis of Equations (2)

3.1 Existence of Steady States

We start the analysis of Eqs. (2) for ki > 0 with checking the number of steady states.
First notice that at any steady state x2(t) = x2(t − T ), and therefore from the third
equation we have ẋ2 = 0 if y2 = 0. Hence, from the fourth equation we obtain x2 = 0
or x2 = −d , or x2 = −e2.

• Consider x2 = 0.
In this case we have y1 = 0 and this yields x1 = 0 or x1 = −d , or x1 = −e1, like
in the uncoupled case. Therefore, we obtain three steady states S1 = (0, 0, 0, 0),
S2 = (−d , 0, 0, 0), S3 = (−e1, 0, 0, 0) and these states exist independently of the
model parameters.

• Consider x2 = −d .
Then we obtain y1 = −k1d , which yields adk1

(
x21 − 1

) − fx1
(
x1 + d

)(
x1 + e1

) = 0.
Let us denote

G1(x) = adk1
(
x2 − 1

)
, G2(x) = fx

(
x + d

)(
x + e1

)
,

andG(x) = G1(x) − G2(x). At the steady statewe haveG1(x1) = G2(x1), or equiva-
lentlyG(x1) = 0, where x1 is the first coordinate of this state. Possible cross-sections
of G1 and G2, yielding different number of steady states, are shown in Fig. 3.

It is obvious that there is at least one x such that G(x) = 0, namely x = xI ∈
(−d , 0); cf. Fig. 3. Next, we can show that for small values of k1 there are three zeros
of G; except xI there are two additional zeros xII , xIII ∈ (−e1,−d). Moreover, we
can check that the condition

ak1 < f
e1
2

(3)

is sufficient forG has no positive zeros, while the sufficient condition of the existence
of two zeros of G in the interval (−e1,−d) reads

G1(xmax) = adk1

⎛

⎝
(
2(d + e1) + √

Δ

6

)2

− 1

⎞

⎠

< −f
2(d + e1) + √

Δ

6

(

d − 2(d + e1) + √
Δ

6

)(

e1 − 2(d + e1) + √
Δ

6

)

= G2(xmax).

(4)
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Fig. 3 Various possibilities of the cross-sections of G1 and G2. a There is one cross-section for
intermediate values of k1. b Bifurcation between 2 and 3 cross-sections. c There are three cross-
sections with x < 0 for k1 small. d There are three cross-sections for k1 large, two of them with
x > 0.

Let us denoteD = d + e1 +
√
d2 + e21 − de1. Using this notation xmax = −D/3 and

the sufficient condition for the existence of three negative zeros xI , xII , xIII has the
following form

ak1 < f min

{
D(D − 3d)(3e1 − D)

3d(D2 − 9)
,
e1
2

}
. (5)

• Consider x2 = −e2.
Then we obtain y1 = −k1e2, which yields ae2k1

(
x21 − 1

) − fx1
(
x1 + d

)(
x1 + e1

) =
0. Let us denote

G̃1(x) = ae2k1
(
x2 − 1

)
, G̃(x) = G̃1(x) − G2(x),
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and in the casewe consider there is G̃1(x) > G1(x) for |x| > 1.Moreover, the analysis
for G1 could be repeated for G̃1. We easily see that Condition (3) changes to

ak1 < f
de1
2e2

, (6)

while Condition (5) could be rewritten as

ak1 < f min

{
D(D − 3d)(3e1 − D)

3e2(D2 − 9)
,
de1
2e2

}
, (7)

and this is the sufficient condition for the existence of three zeros of G̃:
x̃I ∈ (−d ,−1), x̃II , x̃III ∈ (−e1, d).

Notice, that if both Conditions (5) and (7) are satisfied, then there are nine steady
states which is a simple consequence of the dynamics of uncoupled van der Pol
subsystems. However, these Conditions are not independent.

Analysing relations between these inequalities we are able to formulate our first
result.

Theorem 1 If ak1 < f min
{
D(D−3d)(3e1−D)

3e2(D2−9) , de1
2e2

}
, then Eqs. (2) has exactly nine

steady states:

(0, 0, 0, 0), (−d , 0, 0, 0), (−e1, 0, 0, 0),
(xI ,−dk1,−d , 0), (xII ,−dk1,−d , 0), (xIII ,−dk1,−d , 0),
(x̃I ,−e2k1,−e2, 0), (x̃II ,−e2k1,−e2, 0), (x̃III ,−e2k1,−e2, 0),

where xI , x̃I ∈ (−1, 0) and xII , x̃II , xIII , x̃III ∈ (−e1,−d).

Corollary 1 If d > 2 and e1 ≥ 2d
d−2 , then the statement of Corollary 1 holds true

for ak1 < f D(D−3d)(3e1−D)

3e2(D2−9) .

On the other hand, one can be also interested in the case when there is only five
steady states,which is the smallest possible number. To get the sufficient condition for
it we only need to study the behaviour of the function G for x < 0 and the behaviour
of G̃ for x > 0. Both functions tend to +∞ as x → −∞ and to −∞ as x → +∞.
As the sufficient condition for G̃(x) > 0 for x > 0 is formulated above, we turn to
the analysis of G(x) for x < 0. In fact, we are only interested in the sign of this
function in the interval (−xmax,−d) ⊂ (−e1,−d), because it is clear that G(x) > 0
for x < xmax if G(xmax) > 0 (G is decreasing in the whole interval (−∞, xmax) as
G1 is decreasing and G2 is increasing), while in the interval (−d , 0) there is one
zero xI .

We have G ′(x) = −
(
3fx2 + 2

(
f (d + e1) − adk1

)
x + fde1

)
, and we can check

that

• if f ∈ (f1, f2), then G ′ has no zeros, G is decreasing for all x and there is only one
zero of G;
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• if f ∈ (0, f1) ∪ (f2,∞), then G ′ has two zeros, xG1 < xG2 , so G has minimum at
x = xG1 , and if xG1 > −d , then G(x) > 0 for x < −d ;

where f1 = adk1
d+e1−√

3de1
d2+e21−de1

, f2 = adk1
d+e1+√

3de1
d2+e21−de1

.

Let us calculate xG1 . We have xG1 = 2
(
adk1−f (d+e1)

)
−√

ΔG′
6f , where ΔG ′ is the dis-

criminant of G ′. Therefore xG1 > −d ⇔ √
ΔG ′ < 2

(
adk1 − 2f (e1 − 2d)

)
.

Analysing this inequality we arrive at the sufficient condition for G has only one
negative zero.

Corollary 2 If one of the following conditions holds

1. e1 > 2d and f < min
{
2adk1
e1−d , adk1

2(e1−2d)

}
;

2. e1 ≤ 2d and f < 2adk1
e1−d ;

then Eqs. (2) has only one steady state with y1 = −dk1 and x1 < 0.

Analysing conditions of Corollary 2 for e1 ≤ 7
3d and e1 > 7

3d and combining
these results with Condition (6) guaranteeing that both G̃ and G have no positive
zeros we are in a position to formulate our final result.

Theorem 2 Assume that

H1 e1 > 7
3d and ak1

2e2
de1

< f < ak1
d

2(e1−2d)
;

H2 7
3d ≥ e1 > 2d and ak1

2e2
de1

< f < ak1
2d

e1−d .

If H1 or H2 is satisfied, then Eqs. (2) has exactly 5 steady states:

(0, 0, 0, 0), (−d , 0, 0, 0), (−e1, 0, 0, 0), (x
I ,−dk1,−d , 0), (x̃I ,−e2k1,−e2, 0),

where xI , x̃I ∈ (−1, 0).

Notice that for our reference parameter values assumptionH2 is satisfied. Clearly,
e1 = 7 ≤ 7

3d and

ak1
2e2
de1

= 5 · 3
4

· 2 · 4.5
3 · 7 = 45

28
< 3 = f < ak1

2d

e1 − d
= 5 · 3

4
· 2 · 3
7 − 3

= 3 · 45
16

,

which implies that for these parameter values there are 5 steady states, as stated in
Theorem 2. These steady states have the following coordinates:

(0, 0, 0, 0), (−3, 0, 0, 0), (−7, 0, 0, 0), (−0.188866899,−2.25,−3, 0),
(−0.283518286,−3.375,−4.5, 0).
At the end of this section we should mark that Theorems 1 and 2 do not exhaust

a topic of the existence and number of steady states. However, as we are mainly
interested in the dynamics of Eqs. (2) for our reference parameter values, we decided
to present only Theorems 1 and 2.
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3.2 Stability of the Steady States

In this section we turn to the analysis of stability of the steady states focusing on the
influence of time delay T . In general this analysis is complex, so we focus on the
case when only 5 steady states exist, as for our reference parameter values.

Case T = 0. Calculating Jacobian matrix for Eqs. (2) with T = 0 we easily see that
it has a specific block form. Hence, the characteristic polynomial separates into the
polynomials for two van der Pol subsystems

W (λ) = det
(
J − λI

) =
(
λ2 + a(x21 − 1)λ − A1

)(
λ2 + a(x22 − 1)λ − A2

)
,

− Ai = 3fx2i + 2 (f (d + ei) + ayi) xi + deif , i = 1, 2.
(8)

Looking at Eq. (8) we easily see that if at least one of Ai, i = 1, 2, is positive, then
corresponding steady state is unstable (a saddle). Moreover, any steady state with
|xi| < 1, i = 1 or i = 2 is also unstable, independently of the sign of corresponding
Ai.

• Consider (0, 0, 0, 0).
For this state (8) reads

W (λ) =
(
λ2 − aλ + de1f

)(
λ2 − aλ + de2f

)
,

yielding instability. Moreover, for a2 < 4de2f (the case of our reference parameter
values) it is an unstable focus in both directions.

• Consider (−d , 0, 0, 0).
For this state (8) reads

W (λ) =
(
λ2 + a(d2 − 1)λ − fd(e1 − d)

)(
λ2 − aλ + de2f

)
.

Hence, it is a saddle.
• Consider (−e1, 0, 0, 0).

For this state (8) reads

W (λ) =
(
λ2 + a(e21 − 1)λ + fd(e1 − d)

)(
λ2 − aλ + de2f

)
,

yielding instability.
• Consider (xI ,−dk1,−d , 0), xI ∈ (−1, 0).

For this state (8) reads

W (λ) =
(
λ2 + a

(
(xI )2 − 1

)
λ − A1)(λ

2 + a(d2 − 1)λ − fd(e2 − d)
)
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with A1 = −
(
3f (xI )2 + 2

(
f (d + e1) − adk1

)
xI + de1f

)
. From the second van der

Pol subsystem we obtain that it is a saddle. For our reference parameter values we
have A1 ≈ −56.23852764 and the eigenvalues are complex (λ1,2 ≈ 2.410823236 ±
7.101158987 i), so that it is an unstable focus in this direction.

• Consider (x̃I ,−e2k1,−e2, 0), x̃I ∈ (−1, 0).
For this state (8) reads

W (λ) =
(
λ2 + a

((
x̃I

)2 − 1
)
λ − A1

)(
λ2 + a

(
e22 − 1

)
λ + fe2(e2 − d)

)

with A1 = −
(
3f

(
x̃I

)2 + 2
(
f (d + e1) − ae2k1

)
x̃I + de1f

)
. The second subsystem

yields stability, while the first one has the same properties as above, i.e. we have in-
stability in the (x1, y1) direction. For the reference parameter valuesA1 ≈ −56.28109
and we have unstable focus in this direction (λ1,2 ≈ 2.29904 ± 7.14111 i), and a sta-
ble node in (x2, y2) direction (λ3,λ4 < 0).

Case T > 0. To check stability of the steady states for T > 0 we use the method
proposed by Cooke and Driessche [1]. Characteristic quasi-polynomial for Eqs. (2)
reads

W (λ) =λ4 +
(
B + k2

(
1 − e−λT

) )
λ3 +

(
C − A1 − A2 + k2B

(
1 − e−λT

) )
λ2

−
(
a

(
A2(x

2
1 − 1) + A1(x

2
2 − 1)

) − k2
(
1 − e−λT

)
(C − A1)

)
λ + A1A2

− aA1k2
(
1 − e−λT

)
(x22 − 1),

(9)
where Ai are as above, and B = a(x22 + x21 − 2), C = a2(x21 − 1)(x22 − 1).

Now, following the method described in [1] we rewrite the characteristic quasi-
polynomial (9) as W (λ) = P(λ) + Q(λ)eλT and define an auxiliary function as

F(ω2) = |P(iω)|2 − |Q(iω)|2.

The change of stability can occur only if F(z) = 0 for some z > 0. Moreover, the
direction of movement of eigenvalues in the complex plane is determined by the sign
of the derivative F ′ at the considered zero point–positive derivative means movement
from left to right, while negative one means movement in the opposite direction.

For any steady state (x1, y1, x2, y2) we calculate

P(iω) =ω4 − (k2B + C − A1 − A2) ω2 − ak2A1(x
2
2 − 1) + A1A2

−
(
(B + k2)ω

3 − (
k2(C − A1) − aA2(x

2
1 − 1) − aA1(x

2
2 − 1)

)
ω
)
i,

Q(iω) =k2Bω2 + ak2A1(x
2
2 − 1) +

(
k2ω

3 − k2 (C − A1)ω
)
i .
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Hence

lclF(ω2) =
(
ω4 − (C − A1 − A2)ω2 + A1A2

)2

− 2(
Q(iω)

)(
ω4 − (C − A1 − A2) ω2 + A1A2

)

+
(
Bω3 + a

(
A2(x

2
1 − 1) + A1(x

2
2 − 1)

)
ω
)2

+ 2�(
Q(iω)

)(
Bω3 + a

(
A2(x

2
1 − 1) + A1(x

2
2 − 1)

)
ω
)
,

where
(

Q(iω)
) = k2

(
Bω2 + aA1(x22 − 1)

)
, �(

Q(iω)
) = k2

(
ω2 − (C − A1)

)
ω.

Notice that in general

F(z) = z4 + c3z
3 + c2z

2 + c1z + c0,

where
c0 = A2

1A
2
2 − 2ak2A2

1A2(x22 − 1) = A2
1A2

(
A2 − 2ak2(x22 − 1)

)
,

c3 = B2 − 2(C − A1 − A2) = a2
(
(x21 − 1) + (x22 − 1)

) + 2 (A1 + A2).
Hence, the sign of c0 does not depend on the sign of A1.

Analysis of the auxiliary function F is complex and could be not possible for the
whole range of parameter values. As an example of this analysis, below we present
results obtained for the trivial steady state and next we formulate the final result for
the reference parameter values.

For the trivial steady state the auxiliary function takes the form

F(z) = z4 + 2(a2 + A1 + A2)z3

+ (
a4 + 2a2(A1 + A2) + 2ak2A2 + 4A1A2 + A2

1 + A2
2

)
z2

+ (
2a3k2A2 + a2(A2

1 + A2
2) + 2A1A2(A1 + A2 + 2ak2)

)
z

+A2
1A2(A2 + 2ak2),

with A1 = −de1f , A2 = −de2f . Notice that whenever 2ak2 < −A2 = de2f , the free
term is positive. Notice also, that Condition (6) implies this condition under the
assumption e1 < e22, as then ak2 < f de1

2e2
< f de2

2 . Moreover, this is the case of As-
sumption H1 of Theorem 2.

For sufficiently large |A1|, |A2|we expect four changes of the signs of coefficients
of F . Clearly the coefficient of cubic term a2 + A1 + A2 < 0 iff a2 < df (e1 + e2).
Next, the coefficient of squared term a4 + 2a2(A1 + A2) + 2ak2A2 + (A1 + A2)

2 +
2A1A2 = a4 + (A1 + A2)(2a2 + A1 + A2) + 2A2(ak2 + A1) > 0 for ak2 < de1f and
a2 < df e1+e2

2 . The first inequality follows from the positivity of the free term as e2 <

e1. Eventually, the coefficient of linear term 2a3k2A2 + 4ak2A1A2 + a2(A1 + A2)
2 −

2a2A1A2 + 2A1A2(A1 + A2) = 2a3k2A2 + 2aA1A2(2k2 − a) + (a2(A1 + A2) + 2A1

A2)(A1 + A2) < 0 for a2 < 2df e1e2
e1+e2

and k2 < a
2 .
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To sum up, if e1 < 3e2 and k2 < a
2 , then to get four changes of signs it is enough

to assume
a2 < 2df

e1e2
e1 + e2

.

Clearly, a2 < 2df e1e2
e1+e2

≤ df e1+e2
2 . Moreover, as a > 2k2, we obtain 2ak2 < a2 <

df e1+e2
2 < 2dfe2 < 2dfe1.

According to Descarte’s Rule of Signs four changes of signs mean that F has an
even number of positive zeros. Hence, in general there are 0, 2 or 4 positive zeros. It
is obvious that if there is no positive zero then stability switches do not occur. In this
case (0, 0, 0, 0) is unstable independently of the delay. It could be checked that there
is no real zeros for reference parameter values meaning that the state (0, 0, 0, 0) is
always unstable. In the case when 2 positive zeros 0 < z1 < z2 exist, we have two
pairs of purely imaginary eigenvalues ±√

z1i and ±√
z2i for corresponding critical

delays T1 and T2, which could be found from the characteristic quasi-polynomial (8),
that is we are able to calculate sinus and cosinus of ωT .

However, in a general case it is not easy to check the relation between T1 and T2.
Assuming T1 < T2 we have the following dynamics of eigenvalues with respect

to delays. For T < T1 we have four eigenvalues in the right-hand complex half-
plane (due to continuous dependence and presence of these eigenvalues for T = 0).
At T = T1 a pair of eigenvalues moves from right to left (according to the negative
derivative ofF at z1), but still two eigenvalues remain on right, so the state is unstable.
Next, for T = T2 a pair of eigenvalues goes from right to left, so again the number
of eigenvalues on right increases implying instability. The only possibility of getting
stable steady state iswhen 2T1 < T2. In such a case atT = 2T1 there is no eigenvalues
on right and the pair of purely imaginary eigenvalues goes to left implying stability.
However, this stability will be lost at T = T2.

Assuming T2 < T1 we obtain that for T < T2 we have four eigenvalues on right,
at T = T2 next two eigenvalues move from left to right, so in this case the switch of
stability is impossible.

When there are 4 positive zeros of F , then the situation is even more complex and
stability switches are more probable than in the case of 2 zeros.

On the other hand, when a is large comparing to |A1| and |A2|, then the signs
of coefficients of F could be different. Assume a2 > 2df (e1 + e2) and ak2 < df e2

2 .
Then the free term A2

1A2(2ak2 + A2) > 0, the cubic coefficient a2 + A1 + A2 > 0,
and the square coefficient a2

(
a2 + 2(A1 + A2)

) + A2(2ak2 + A2) + 4A1A2 + A2
1 >

0. Hence, there could be either 0 or 1 change of signs, implying 0 or 1 positive zero
of F . If there is no positive zero, then switches of stability are impossible. If there is
one positive zero z1, we have the corresponding delay T1 and for T < T1 we have 4
eigenvalues on right, while at T = T1 a pair of eigenvalues moves from left to right
implying increasing number of eigenvalues on right. Therefore, stability switch is
also impossible in this case. Hence, for such parameter values (0, 0, 0, 0) remains
unstable for all T > 0.

Making similar analysis for other steady states we are able to formulate our main
result.
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Proposition 1 For the reference parameter values the stability of steady states does
not change with increasing delay.

Proof For the reference parameter values and five possible steady states auxiliary
functions have no positive zeros or there is one zero but eigenvalues go through the
imaginary axis in the direction which does not allow the change of stability.

4 Numerical Analysis

In this section we illustrate analytical results presented above by numerical simu-
lations for given parameters. Now we consider slow/fast AVNRT pathology. In this
case, we have coexistent conduction by two pathways. We assume that the fast path-
way is described by the first van der Pol system but the slow pathway is treated as
an action potential in other characteristic, so we use the second van der Pol model
to describe this pathway. We treat a re-entry wave from slow pathway as an external
pulse which is added to the main pathway, so it is reflected by the kx2 term. As a
result, we obtain faster rhythm than reference one (model as a physiological rhythm),
which is a typical behaviour for this kind of pathology (during this type of tachycar-
dia, the rhythm of the heart is about 35% more frequent than normal rhythm, which
is in accordance with our results), Fig. 4. In Fig. 4c, we see a longer period in the
initial phase of the rhythm, which is described as “jump” in the literature. It is the
phenomenon often observed before appearing of tachycardia, especially in slow/fast
and slow/slow types of AVNRT.

To model additional slow pathways which create new re-entry waves in given
system, we assume bigger value of k2 parameter, which corresponds to the sum
of consecutive re-entry waves. In this pathology, the presence of more than two
conduction paths is possible which is associated with more re-entry waves. The
behaviour is similar to the previous one –we can also observe shortening of the period
of oscillations but bi-period behaviour appears in this case. Increasing the number
of feedbacks modelling re-entry waves of the slow pathways causes a progressive
shortening of the period of oscillation, while the rhythm remains almost regular.

5 Conclusions

The main aim of the paper was to propose the system of differential equations de-
scribing the dynamics of action potential that accompanies various types of AVNRT
(slow/fast and slow/slow). In this work, by using proposed models we were able to
reproduce the most important physiological properties of the discussed pathologies.
We try to continue the validation of these models with the use of medical data. How-
ever, to collect the necessary data, only the invasive methods can be used, which
constitutes an important difficulty.
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Fig. 4 a Dynamics of action potential for Eqs. (2) with k2 = 0.3. b Solution in (x1, y1) plane. c
Jump in the initial phase
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Two-Frequency Averaging in the
Problem of Motion of a Counter-Rotating
Vertical Axis Wind Turbine

Liubov Klimina, Ekaterina Shalimova, Marat Dosaev,
Boris Lokshin and Vitaly Samsonov

Abstract Motion of a small-scale Darrieus counter-rotating vertical axis wind
turbine (VAWT) in a steady wind flow is studied. The system consists of two turbines
that rotate in opposite directions. The shaft of the first turbine is rigidly joined to the
rotor of a generator and the shaft of the second turbine is rigidly joined to the stator.
A closed few-parametric mathematical model that takes into account the changeable
electrical load in the local circuit of the generator is constructed. The corresponding
dynamical system is a two-frequency system. In order to describe operating modes
of the model, the system is averaged over two angles under the assumption that both
frequencies are bounded away from zero. It is shown that passage through resonances
has no crucial effect on the system behavior in the considered range of the parameters
of the model.

Keywords Counter-rotating darrieus wind turbine · Closed dynamical model ·
Steady motions

1 Introduction

The idea of extracting energy from the flow using counter rotating turbines is rapidly
developed in different ways. Counter rotating horizontal axis wind turbines become
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more and more popular and attract attention of researchers and industry [1–5]. For
these turbines, the rotor of generator is attached to one of the propellers, the stator
is attached to the other, so the relative angular speed of the rotor with respect to
the stator increases. Moreover, one propeller is located in the wake of the other, so
aerodynamic torque acting on the rear propeller is influenced greatly by the front
propeller. Thus, for such turbines, both electromechanical interaction between two
counter-rotating parts and aeromechanical interaction are present.

The situation with the counter rotating vertical axis wind turbines (VAWTs) is
rather different. At least two classes of such turbines can be distinguished. It is
supposed that in models of the first class very essential aeromechanical interaction
between counter-rotating turbines [6, 7] without any electromechanical interaction
takes place. For the second class the electromechanical interaction takes place [8]
while the aeromechanical interaction can be neglected (for example, one turbine
is located above the other). The scheme including both types of interaction can be
obtained from a turbine of the first class using additional gears in such a way that
one turbine will drive the rotor of the generator and the other will drive the stator of
the same generator.

In this paper we focus on the second class of counter-rotating VAWTs. They have
the following advantage compared to classical VAWTs: the relative speed of the rotor
of the generator with respect to the stator increases without using a gear. Significance
of increase in the relative angular speed was discussed earlier (see [9]). Moreover,
counter-rotating VAWTs have the following advantage compared to counter-rotating
HAWTs: VAWTs do not need to be orientated with respect to the wind direction.

A small-scale counter-rotating VAWT of the Darrieus type is studied (Fig. 1). A
closed few-parametric mathematical model of this system that takes into account
changeable electrical load in the local circuit of the generator is constructed. The
similar model for a single-turbine Darrieus setup was discussed in [10]. Such kind
of model allows performing detailed parametric analysis of operation modes of the
turbine. In [10] the single-frequency averaging method is applied to analyse the
behavior of the system. However, two-frequency averaging is needed to perform a
similar study in the case of a counter-rotating VAWT. Further, the general conditions,
under which the two-frequency averaging in the model of a counter-rotating VAWT
is correct, are provided, the qualitative parametric analysis of the averaged system is
performed, the results of the study are discussed.

2 Description of the Mechanical System

The system consists of two Darrieus type vertical axis wind turbines, one of which is
mounted above the other (Fig. 1). The wind-receiving blades are orientated in such
a way that they maintain the counter rotation of turbines. The shaft of one of the
turbines carries a rotor of an electric generator; the shaft of the other is joined to a
stator of the same generator. The generator is connected to a local electric circuit
with a changeable external resistance.
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Fig. 1 The scheme of the
Darrieus type
counter-rotating VAWT

Let θ and ϕ be the angles of rotation of the lower and upper turbines, respec-
tively. These angles are counted counterclockwise and clockwise, correspondingly,
if observe from the tip of the axis z of rotation. Each turbine has n blades (in the figure
each turbine has 3 blades). It is supposed that θ is the angle between the direction of
the wind and the holder of one of the blades of the lower turbine, which is chosen as
the first blade. Then the angle between the wind direction and the holder of the blade
number k is (θ + 2π(k − 1)/n). Similar formulas hold for the angles of location of
the blades of the upper turbine with ϕ instead of θ .

Let r be the radius, h be the height, J be the moment of inertia about the axis
of rotation z for each turbine. Assume that each blade has a character area S. The
airfoil of each blade is characterized by the coefficients Cd (α), Cl(α) of drag and lift
aerodynamic forces, respectively, where α is the instantaneous angle of attack.

The system is located in a steady horizontal wind flow of the speedV. Let ρ be the
air density, ω1 = rθ̇/V be the tip speed ratio (t.s.r.) of the lower turbine, ω2 = rϕ̇/V
be the t.s.r. of the upper turbine. Notice, that these two tip speed ratios are counted
in the opposite directions.

The quasi-steadymodel [11, 12] is used to describe the aerodynamic forces acting
upon each blade. Further D is the drag force, L is the lift force, U is the airspeed
of the point of the blade located at distance r from the axis z, values u and w are
intermediate variables, k is the number of the blade:

Dk = 0.5ρSU 2
k Cd (αk), Lk = 0.5ρSU 2

k Cl(αk), U 2
k = u2k + w2

k ,
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αk =

⎧
⎪⎨

⎪⎩

arctan
( uk
wk

)
, if wk ≥ 0,

arctan
( uk
wk

) + π, if wk < 0,
(1)

uk = cos
(
θ + 2π

3
k
)
, wi = (

ω1 + sin
(
θ + 2π

3
k
)) − for the lower turbine;

uk = cos
(
ϕ + 2π

3
k
)
, wi = (

ω2 + sin
(
ϕ + 2π

3
k
)) − for the upper turbine.

An electromagnetic torque T is responsible for the interaction between the rotor
and the stator of the generator. This torque is supposed to be a linear function of the
angular speed (ω1 + ω2) of the rotor with respect to the stator [11]:

T = C

σ + R

V

r
(ω1 + ω2). (2)

HereC is the coefficient of electromechanical interaction, σ is the inner resistance
of the generator,R is the external resistance in the local electric circuit of the generator.

3 Equations of Motion and Statement of the Problem

The equations of motion of the system can be represented in the following dimen-
sionless form:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

θ̇ = ω1,

ϕ̇ = ω2,

ω̇1 = ε(f (θ, ω1) − c(ω1 + ω2)),

ω̇2 = ε(f (ϕ, ω2) − c(ω1 + ω2)),

where ε = ρSr3

2J
, c = 2C

VρSr2(σ + R)
,

(3)

f =
3∑

k=1

√

u2k + w2
k (Ci(αk)uk − Cd (αk)wk).

The system (3) is closed by the relations (1).
The external load coefficient c is responsible for changeable conditions of oper-

ation of the counter-rotating VAWTs, namely, for the wind speed and the external
resistance. The more consumers are in the circuit, the smaller R and the larger c are.

The solution of (3) with quasi-periodically changing ω1(t), ω2(t) corresponds to
the autorotation of both turbines. If this regime is stable, it represents the operation
mode of the device.
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The problem is to find and describe quasi-steady solutions ω1(t), ω2(t) of the
system (3) under the assumption that ε is a small parameter. In practice, sufficiently
small values of ε can be obtained by increasing of the moment of inertia J .

4 The Averaging Approach, Passing Through Resonances

Assume that ε is a small parameter of the system (3). Then both angles θ and ϕ are
fast variables, and both t.s.r. ω1 and ω2 are slow variables. Consider the behavior
of the system in the phase domain G = {ω1 > ω0 > 0, ω2 > ω0 > 0}, where ω0 is
some positive value.

To perform a constructive parametric analysis of quasi-periodic phase trajectories
of (3), it is convenient to begin with the averaging with respect to both fast variables.
The formal averaging leads to the following system:

{
ω̇1 = ε(F(ω1) − c(ω1 + ω2)),

ω̇2 = ε(F(ω2) − c(ω1 + ω2)),
where F(ω) = 1

2π

2π∫

0

f (x, ω)dx. (4)

However, to prove the correspondence between the behavior of systems (3) and
(4), we should check how the passing through resonances happens in (3): whether
trajectories can be trapped into resonances [13–18].

4.1 Passing through resonances

In the domain G, the angle θ can be chosen as a new time in the system (3):

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dϕ

dθ
= ω2

ω1
,

dω1

dθ
= ε

ω1
f1(θ, ω1, ω2),

dω2

dθ
= ε

ω1
f2(ϕ, ω1, ω2),

(5)

where

f1(θ, ω1, ω2) = f (θ, ω1) − c(ω1 + ω2), f2(ϕ, ω1, ω2) = f (ϕ, ω2) − c(ω1 + ω2).

Both functions f1 and f2 are 2π -periodic with respect to the first argument, and
they are indefinitely differentiable with respect to all arguments. In our case functions
f1 and f2 are in fact similar, but this does not affect the calculations in this paragraph.
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Suppose that the system is in the ε-vicinity of a resonance:

mω1 − nω2 = εg(ω1, ω2). (6)

Here m, n are the natural numbers, g(ω1, ω2) is some indefinitely differentiable
function of the order O(1) or less.

Introduce a new angle coordinate:

ψ = mθ − nϕ,
dψ

dθ
= ε

ω1
g(ω1, ω2). (7)

The coordinate ψ is a slow variable. Rewrite the system (5) in the variables
ψ,ω1, ω2: ⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dψ

dθ
= ε

ω1
g(ω1, ω2),

dω1

dθ
= ε

ω1
f1(θ, ω1, ω2),

dω2

dθ
= ε

ω1
f2(

m

n
θ − 1

n
ψ,ω1, ω2).

(8)

All variables of the system (8) are slow variables, all functions in the right-hand
side are indefinitely differentiable, the period of the right-hand side with respect to
θ is 2πn . Apply the classical single-frequency averaging to the system (8):

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dψ

dθ
= ε

ω1
g(ω1, ω2),

dω1

dθ
= ε

ω1
F1(ω1, ω2),

dω2

dθ
= ε

ω1
F2(ω1, ω2),

(9)

where

F1(ω1, ω2) = 1

2π

2π∫

0

f1(x, ω1, ω2)dx,

F2(ω1, ω2) = 1

2πn

2πn∫

0

f2(
m

n
x − 1

n
ψ,ω1, ω2)dx.

Due to [19], steady points of the system (9) correspond to quasi-periodic trajec-
tories of (8); moreover, if all real parts of eigenvalues at a steady point are negative,
then the corresponding quasi-periodic trajectory of (8) is attracting, if at least one
of the eigenvalues has a negative real part, then the corresponding quasi-periodic
trajectory of (8) is repelling.
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Notice, that the first equation of (9) is separated from the two others, so equations
that describe the change of ω1, ω2 can be studied without taking into consideration
the angle ψ . Moreover, the following holds:

F2(ω1, ω2) = 1

2πn

2πn∫

0

f2(
m

n
x − 1

n
ψ,ω1, ω2)dx = 1

2πn

n

m

2πm− 1
nψ∫

− 1
nψ

f2(y, ω1, ω2)dy

(10)

= 1

2π

1

m

2πm∫

0

f2(y, ω1, ω2)dy = 1

2π

2π∫

0

f2(y, ω1, ω2)dy.

Thus, the two last equations of (9) transform to the following system:

⎧
⎪⎨

⎪⎩

dω1

dθ
= ε

ω1
F1(ω1, ω2),

dω2

dθ
= ε

ω1
F2(ω1, ω2),

(11)

where

F1(ω1, ω2) = 1

2π

2π∫

0

f1(x, ω1, ω2)dx, F2(ω1, ω2) = 1

2π

2π∫

0

f2(x, ω1, ω2)dx.

The system (11) coincides exactly with the result of the direct two-frequency
averaging of the system (5). The system (11) does not depend on the resonance
number n/m. Thus, it is shown that in the domain G all the resonances are passed
without a capture.

5 Quasi-Steady Motions

In the initial problem the averaged system (11) takes the form (4). Thus, as it was
noticed above, the operation modes of the counter-rotating VAWT correspond to the
steady points of (4) with eigenvalues with negative real parts.

The system of the form (4) was discussed in [5] in the frames of model
of a counter-rotating horizontal axis turbine neglecting aerodynamic interaction
between propellers. The condition of existence of a steady point ω1 ≡ Ω1 ≡ const,
ω2 ≡ Ω2 ≡ const is:

F(Ω1) = F(Ω2),
F(Ω1)

Ω1 + Ω2
= c. (12)
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The conditions of stability of the corresponding autorotation mode are the fol-
lowing (the prime denotes differentiation with respect to ω):

{
G1 = −F ′(Ω1) − F ′(Ω2) + 2c > 0,

G2 = F ′(Ω1)F ′(Ω2) + c(−F ′(Ω1) − F ′(Ω2)) > 0,
(13)

where F ′(Ω1) = F ′|ω=Ω1 , F ′(Ω2) = F ′|ω=Ω2

The characteristic polynomial corresponding to the steady point of (4) is: λ2 +
εG1λ + ε2G2 = 0.

If G1 < 0 or G2 < 0, then the corresponding autorotation motion is unstable.
Figure 2 represents the qualitative shape of the curve F(ω).
Qualitative dependence of t.s.r. Ω1, Ω2 corresponding to autorotations on the

parameter c is shown in Fig. 3. Solid branches correspond to attracting motions,
thin branches correspond to repelling motions. The diagram is constructed for
Ω1 ≤ Ω2 due to the symmetry of the system.

The part of the diagram, where Ω is close to zero, represents the behavior not of
the initial system (3), but of the averaged system (4). For small Ω the behavior of
the system (3) can be more complicated that of the averaged system.

Fig. 2 The qualitative view
of the function F(ω)

Fig. 3 The qualitative
bifurcation diagram of
averaged t.s.r. at
autorotations depending on
the parameter c
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6 Discussion

The obtained diagram corresponds to the averaged system. So for every given value
of ε, ifω1 andω2 become too small, there is no correspondence between the averaged
system (4) and the initial system (3). Thus, there is some area near the abscissa axis,
for which the diagram is not valid for the initial system. This area depends on ε: the
smaller ε is, the more narrow this area is.

Three types of quasi-steady motions are possible: the motion for which the aver-
aged tip speed ratios are equal Ω1 = Ω2 = Ω(c), the motion for which the averaged
Ω2 is larger than the averaged Ω1, and the motion for which the averaged Ω1 is
larger than the averaged Ω2 (not shown in Fig. 3). Each of these kinds of quasi-
steady motions can be attracting or repelling.

For a given value of the parameter c there can exist fromone up to five quasi-steady
motions. If only one quasi-steady motion exists, then it is stable.

7 Conclusions

The closed dynamical model of a counter-rotating Darrieus type VAWT is con-
structed. The system consists of two turbines driving the same generator. The relative
angular speed of the rotor of the generator with respect to the stator is the sum of
angular speeds of turbines.

The correspondingdynamical systempossesses two angular coordinates. The two-
frequency averaging over these coordinates is performed. The fact that each angle
appears only in the differential equation for its angular speed leads to simplicity of
passing through resonances.

The domain of phase space where the correspondence between averaged and
precise system takes place is described.

Sufficient conditions of the existence and stability of quasi-steady motions are
obtained. The qualitative bifurcation diagram is constructed.
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Lech Knap, Jędrzej Mączak and Michał Trojgo

Abstract The paper is focused on the problem of lack of the uniformmethod of CPS
systems description. In this paper a new, task-oriented, method of designing the CPS
systems is proposed. The method is based on the process approach and continuous
improvement of the design. This new method should be considered as extremely
versatile and useful in the design and construction of the CPSs. The proposedmethod
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1 Introduction

This work is dedicated to issues related to the design, construction and operation
of the Cyber-Physical Systems that combine and coordinate the computational and
physical resources.

In theworld surrounding us, for the last decade or two, an increasingly growing use
ofmechatronic systems consisting ofmechanical systems cooperatingwith electronic
systems, has been observed. In the human environment, many such systems can be
found, supporting people in their duties or just providing a better quality of life. Even
though many of these systems fulfill vital functions, such as controlling drivetrains,
vehicle active safety systems, robots, vehicle traffic, etc., they still remain mostly
invisible and we often do not realize their existence [1–4, 20]. Most frequently,
these invisible mechatronic systems are called embedded systems working under
the control of the embedded software. Combination of mechanical systems with
electronic ones offers numerous advantages but also poses a series of potential threats
and challenges—not only for the users of these systems but for their designers and
people in their surroundings, too.

Nowadays, almost every new vehicle is equipped with mechatronic systems sup-
porting the operator’s work. Each of these systems can constitute an individual
mechatronic system or, in combination with other systems, it can compose a greater
system of the whole vehicle, for example a tractor. Each of the mentioned mecha-
tronic systems is characterized by typical features, i.e. has an electronic control unit
and physical interfaces allowing for the mechatronic system’s influence on its envi-
ronment. The electronic unit works under the control of the software, i.e. control
algorithms, and accounts for the main component of the so-called cybernetic layer.

The cyber layer is connected with the physical layer by means of physical inter-
faces, which comprise sensors of physical magnitudes allowing for observation of
phenomena taking place in the environment of the mechatronic system, as well as
actuators enabling the mechatronic system’s affecting the physical processes occur-
ring in the physical layer. Such mechatronic systems (Fig. 1), integrating the cyber
layer with the physical layer, and characterized by a new level of “integrated intelli-
gence” enabling interaction and coordination of many physical processes at the same
time, are customarily named cyber-physical systems or CPS [5–8].

One of the important problems the CPS designers have to face is lack of universal
and widely acceptable methods of description of these systems’ design and their
components. This can be seen as resulting from a particularly high degree of com-
plexity of their design and the necessity of applying various forms of requirement
description among designers from different domains.

This is why a task-oriented method for designing the CPSs has been proposed
in this work. It is based on the process approach and the constant improving of the
project. This work illustrates how this new method should be deemed exceptionally
universal and user-friendly in the process of design and building of the CPSs.
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Fig. 1 Simplified example of the cyber-physical system of the agricultural tractor

2 Applied Models of System Design

Models play a key role in the process of designing the CPSs because they allow for
dividing the area of the designed system into components connected with particular
science domains. Thanks to this arrangement, it is possible to design a system or its
components in parallel by various teams of designers from different domains and
providing mechanisms for integration of all the components into a fully operative
system.

Nowadays, as far as the CPS system design is concerned, there is practically no
single, commonly acknowledged method of the model creation and design. Many
centers and scientists working on CPS suggested several methods but currently none
of them is unequivocally dominating. What is interesting, practically each of these
methods depicts the way of the CPS model creation considering a different factor as
crucial. The most popular methods of designing the systems, based on development
of the system’s model [9], include: business-model-based design [10], model-based
design and model-driven development, actor-oriented design [11], adaptive discrete
event model (temporal and spatial properties of events model) [12].

One of the most popular ways of designing based on the so-called model-based
method, described by Jensen et al. [9], can be divided into several stages: problem
description, model of physical processes, problem characteristics, developing the
control algorithm, selection of the model of computation—MoC), selection of the
equipment platform, simulations, construction, developing the software and its ver-
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ification, validation, and testing. This model is focused on the system designing and
testing stages, systematizing activities so that the created system is well-composed
and efficiently operating. Many of the abovementioned steps are sets of general rules
which should be taken successively. Additionally, the possibility of using the model
is limited to the stage of system verification and testing, without considering the
stage of practical operation, which should be included in the stage of designing. It
could allow for the elimination of factors disturbing the system’s work under normal
operating conditions. Similar problems were observed during modeling the software
development, and in recent years, it led to the creation of practical new models
including: Agile [13] or DevOps [14], based on a different approach to the processes
of design, verification, implementation, and practical operation.

The CPS design, based on the other models indicated above, can also render very
good results due to the possibility of the profound comprehension of the CPS func-
tionality. However, it can be burdened with limitations resulting from the necessity of
identification of all events and participants, as early as during the designing stage. In
real life, the CPS design requires the precise determination of the system’s function-
ality in the project’s initial phase. These functionalities together with completion of
the project often change as a result of “new” requirements of the end users (unidenti-
fied and undefined in the early phase of the project), or of the staff responsible for the
system’s maintenance. Meeting these requirements at the later stages of the project
often leads to discrepancies of goals for different groups of interested parties and to
discarding of the project having incurred substantial costs.

Despite the existence of the CPS design and construction methods mentioned
before, the complex approach comprising themajority of problems to be encountered
in the course designing the CPS is still missing. Complexity and interdisciplinary
character of the CPSs indicates the need of developing a more complex character
which can be based on the selected elements of the modeling methods mentioned
above.

3 Process-Oriented Approach to the Design
of Cyber-Physical Systems

The process-oriented approach in organization management has undergone changes
and transformations over the years, recently, however, it has been subject to devel-
opment and revival again [15]. It means employing the system of processes in the
organization together with identification and interaction, as well as managing these
processes. According to the assumptions of the theory of process management, their
use should lead to achieving goals efficiently and effectively. In order to provide for
the correct operation of the process, it is necessary to identify the numerous con-
nections and interactions that can take place within the process or among processes.
Fulfilling the tasks in turn, as part of the process, is possible due to controlling the
necessary resources. In the process-oriented approach, resources are defined as, for
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example: financial means, workers (providing competencies and in possession of the
know-how), equipment, machines, etc.

Taking into consideration the possibility of ensuring efficient and effective real-
ization of the processes, it is also necessary to determine the methods of monitoring
the process, thus of achieving the goals. Monitoring the processes is most frequently
based on coefficients, which are determined and measured on an ongoing basis in
the course of the process. Thanks to the carefully selected process indicators, taking
decisions regarding correctness of the process functioning or necessity of its modi-
fication is possible—which is understood as perfecting of the process functioning.

Functioning of the main processes—i.e. the processes realizing the values for
the client—almost always requires that the management processes and support pro-
cesses should function. The task for the management processes will be controlling
and providing the resources and controlling the efficient and effective realization
of the remaining processes (for example monitoring and calibrating the activity of
the CPS components). The task of the support processes however, is ensuring the
resources and other assets necessary for the functioning of the main processes (e.g.
providing the appropriate supply voltage in situations related to normal or emer-
gency operation). The diagram illustrating the range of processes and their possible
relations and interconnections is often called the process map.

An example of application of the process approach has been discussed using0 the
case of designing the system controlling the main transmission of the agricultural
tractor [16]. One of the main tasks to be performed by the discussed system is
selection of an appropriate gear and the method of its shifting. Building such a
system is complicated because it involves ensuring the operation of a few dozens of
processes, including securing adequate safety procedures, for example the automatic
disconnecting of the PTO drive.

The first step of designing the CPS for the tractor’s main transmission requires
determining the set of tasks to be performed by the system. For instance, the following
functional requirements can be considered: Power Shuttle (drive control providing
the gear shifting under load conditions), Power Shift (semiautomatic control with
the system adapted to the automatic control system), accelerating and stopping the
vehicle, control of the differential lock of the rear axle, connecting/disconnecting of
the front drive, connecting/disconnecting of the PTO shaft, blocking of selected gears
with the Creeper gear option on, managing the Brake & Clutch function (depressing
the brake pedal results in disconnecting the drive), control of the tractor’s maximal
speed, providing the diagnostics, on-board communications, storage of work param-
eters of the transmission, enabling the cooperation of the gear unit control system
with the EHR system, etc. On the basis of identification of tasks and requirements,
it is possible to develop processes to be performed by the system and their depic-
tion on the process map, illustrating possible connections among processes (Fig. 2).
Nevertheless, the figure shows a simplified version of the basic processes related
to functionalities which are desirable and required by the tractor manufacturer, and
supporting the Power Shift gear unit. In the subsequent considerations, the authors
will discuss one of the functionalities, connected with shifting the gear in the section
of the gear unit where shifting gears takes place under load. To perform this activity,
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Fig. 2 Exemplary fragment of the process map of the transmission CPS of an agricultural tractor

it is necessary to select properly characteristics of the valves: the one controlling the
work of engaging the clutch with the new gear and the one controlling disengaging
of the clutch. The decision regarding selection of control signals is taken after the
operator decides to shift the gear.

Based on the sensors mounted on the tractor, as well as on information from the
ECU (Engine Control Unit), values of adequate signals controlling the valves of
neighboring gears (controlling operation of multiplate clutches) are computed so as
to keep the break in transmission of the driving force accordingly small. In some
cases, admission of work of both clutches in parallel is necessary, which means
that before one gear is disengaged, another one is engaged, in spite of the lack of
kinematic compatibility. In such a case, clutch slipping is acceptable throughout a
short period of shifting time.

A signal to start the process of shifting is the moment when the driver pushes the
button initiating the sequential gear shift. The system should then measure the infor-
mation signals: the settings of high and low gears, the engaged gear in the manually
operated gear unit, as well as the signals of engine settings (speed, momentary fuel
dose, engine moment), received from the ECU by means of the CAN bus. The next
activity is signal analysis allowing for determination and generation of the signals
controlling actuators of the clutches engaging the current gear and the gear selected
by the operator.
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In accordance with the manufacturer’s indications, for the service purposes, the
necessity of generating information about conditions under which the shifting took
place should also be taken into consideration. In the end, after overdriving the actua-
tors with the CANbus, the processmakes the signals available, allowing for changing
the information shown on the operator’s dashboard or storage for diagnostic reasons.
In parallel, the information is generated for the associated process of the monitoring
of the semiautomatic gear change. This is a continuous process, whose purpose is an
on-line monitoring of the tractor’s work parameters, of the engine in particular, and
indicating the information about the gear unit work state to the operator. Figure 3
shows the simplified process where the relationships and the sequence of the task
fulfillment through the resources are also shown.

To illustrate the process, the following basic elements of the description were
used:

indicates the beginning or the end of a given process in the CPS, often the
beginning or the end of a given process is connected with the change in the actuator
state, e.g. as a result of the change in the state of the system’s physical layer. In the
discussed example, this symbol is used to observe the change in the state of position
of the gear shift lever—upwards or downwards. Similarly, this symbol was used to
generate in the CAN bus the appropriate information packets about the gear shift.
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This information can be used by other electronic systems, including appliances used
to diagnose the transmission work;

depending on the complexity of the process diagram, this symbol indicates a
single action (sometimes a set) of the resource, e.g. generating the signal realized by
the gear shift lever;

most frequently this symbol describes the so-called “decision block” in the
process, on the basis of which the successive activities arranged into various paths
can be differently realized. Often, in designing the process, this symbol is used during
taking decision about switching on and off the given actuator or verification of the
correctness of the system components’ operation. Even though the diagram does not
show this symbol, it can be used, for example after more detailed account of the
activity was given—Analysis of Conditions– e.g. when there is no change in the
state of the lever, no action is taken and the process is terminated;

this symbol is used most frequently to illustrate the relations between the
described process and the other process performed by the system. It can be a con-
nection with both the process performed in parallel and in sequence. Symbols of
this kind are important because they show the flow of signals (information) between
individual processes.

It should be indicated, that for the process description, a series of other symbols
can be used, e.g. connections with external data bases, creation of archived data,
delay to meet the needs of the synchronizing the tasks performed in parallel, the
alternative task or activity, preparation or collection of data, etc.

The featured process enables meeting yet another requirement in future, i.e. mak-
ing possible the automation of gear shifting and shifting gears without operator’s
involvement. Connection with the supporting process of monitoring is important
because due to the maintenance data, i.e. information from the history of gear-
shifting, taking corrective actions possible, regarding the algorithm determining val-
ues of the signals controlling actuators of clutches for individual gears.

Another advantage present in the suggested approach is using in the process
diagram, in individual rows, the resources to be applied during its realization. For
example, in the considered process, in the first stage of designing, it was assumed
that the following resources will be used:

• in the field of integration of the cybernetic and physical layers: sensors and
switches, as well as actuators (hydraulic cylinders together with valves and mul-
tiplate clutches),

• in the field of internal structure of the controller: electronic system in a broad
sense,

• in the field of transmission: internal network—the CAN bus.

Certainly, at the initial stage of designing, it is difficult to define precisely the
construction of, for example, an electronic system. The first stage of designing,
based on the processes, enables selection of the majority of main (or all) physical
interfaces necessary to complete the process. On the basis of the specified sensors,
it is possible to select and design an electronic system ensuring the supply for the
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sensors, measurement of physical quantities, and generating the signals controlling
the proportional valves. This is what makes it possible performing the subsequent
stages of designing, allowing for increasingly precise selection of all components of
the system.

Together with the development of the CPS project description, it is necessary to
modify the process diagram, which will thus become growingly complete, but also
more and more detailed. It is clear that from the beginning of the cyclic designing
the process indicates also, how the algorithm will have to work in the controller. The
algorithm needs to complete the actions in the successive steps, which were defined
in the process diagram (Fig. 3). It is thus apparent that the process diagram can be
used by the engineers specializing in designing the physical as well as the cybernetic
layers. The process approach is therefore a designing method that can be employed
by engineers from various domains and allows for finding a common ground while
building a system at the level of integration of different domains.

The concept of using the activities interrelatedwith the resources in the description
of processes is similar and contains the aspects of different approaches to the CPS
design. For example, it comprises the elements of themodel-based design andmodel-
driven development, and actor-oriented design. It also includes the selected elements
of the methodology of the IT project development of the kind of DevOps as well as
methods of constraints that were not mentioned before.

Comparing the model-oriented design with the process approach enables identi-
fication of several common areas. In the model-oriented design, the concept of the
CPS design consisting of many phases emerges; the alternating phases are analyzed
and realized in the process approach with every single process. In the user-oriented
modeling, a considerable emphasis is laid on the director, actor, and the defining of
relations between actors. In the presented process approach, relations between the
successive activities performed by different resources within the processes are also
defined. If the definition of an actor is adopted describing them as the resource act-
ing within the CPS, the process approach becomes an approach similar very close,
and in many cases very much the same as the user-oriented modeling. Employing a
deterministic or stochastic approach [17] to describe the CPS model is possible, too,
as well as the connection in serial or in parallel. The process approach—as can be
seen on the diagram of the exemplary process—also allows for the locating in time
of the events realized by particular resources.

Applying the process approach in the CPS design offers a lot of advantages, which
result from the identification of processes and interactions among these processes.
These advantages include

• understanding and meeting functional requirements set for the system,
• ensuring the running monitoring of the relationships among individual processes
within the system, as well as of their combinations and mutual influence,

• ensuring the possibility of measurement with the correctness of process function-
ing,

• ensuring the possibility of continuous improving the processes on the basis of the
objective measurement,
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• ensuring the possibility of integrating the work of engineers from different
domains, due to the simplicity of the description of connections between tasks
and resources,

• ensuring identification of the resources and their parameters, necessary to provide
for the given process functioning,

• possibility of determination of the effects resulting from events in the course of
the process.

As seen above, the process approach can be successfully used in the design of the
task-oriented CPSs. This means concentrating attention on the processes reflecting
the functionalities expected by the client and enables the adequate control of the
processes. The concept of the process approachmayoffer newpossibilities of creating
competitive advantage in building the CPSs. It has also the merit consisting in the
possibility of being employed at building the systemswhichmust undergo the process
of certification—i.e. verification that the design and construction have been carried
out in accordance with the requirements of the industry. In the certification process,
the focus is on correct documentation of the process of designing and building the
systems that interacts with the operator.

4 CPS Safety Context at the Design Stage Using a Process
Approach

Problems of safety connected with the use of the CPSs have been in certain countries
subject to research for the last few years. Its purpose is protecting these systems from
an unauthorized access and ensuring the system resistance to the majority of attacks.
This is why in some countries, where the remote control of the CPSs is not isolated
from the environment, e.g. from different networks, the objectives for designing such
systems have been developed, aiming at the system’s security. For example, in the
NIST directives [18] an increased emphasis is put on many aspects to be taken into
consideration at the designing stage, e.g. efficiency requirements, availability of the
systems, risk management, system and software management, change management,
communication management. It is apparent that much significance is being attached
to the typical elements of the IT infrastructure, i.e. issues related to the life cycle of
the equipment and software.

The issue of safety, considered as early as at the stage of designing, seems to
be justified because already in an early phase it is possible to consider the secu-
rity aspects, for example, during selection of the components or determination of
the software functional requirements. Such an approach can lead to lowering the
maintenance costs in the operation of the mass-produced CPSs. An approach to the
security aspects, as signaled by the NIST, is not the only one to be employed. Tools
and an approach to security can be used, as formulated in the information security
management systems in Europe, i.e. based on the standard of the ISO/IEC-27000
series requirements that can be integrated with the considered process approach in
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an almost natural way. This approach is also based on the identification of activities
within the processes. Thus, it is possible to place the security requirements on the
key locations in the processes realized by the CPS. One of the main requirements
of the ISO27000 series that can be transmitted onto the designing stage of the CPS
relatively easy, are the requirements related to the risk analysis. The starting point
for the risk analysis can be directives of the ISO/IEC-27005 [19], regarding the risk
assessment in IT systems. The risk analysis is based on acquiring information about
possible threats and their influence on the future activity of processes, the CPS sys-
tem, and its surrounding, aswell as determination of the effects resulting from current
events that can affect security of the CPS functioning. Security is understood in this
approach in a much broader sense than usual and regards not only the confidentiality
but also efficiency, integrity, availability of functionalities realised by the designed
CPS.

5 Conclusions

The presented approach to designing and building the CPSs allows for creation
of the universal description of the system’s project, which can be seen as a kind
of language, the so-called “meta-description”. Applying this description allows for
interchangeability of components within the CPSs—assuming that the processes
within would realise the same goals. In the custom software, this corresponds to the
possibility of using different libraries, which despite being different still realise the
same goal.

The suggested method of the CPS description is based on the assumption that
its task is nothing short of the goal of one or many processes. The processes are, in
turn, sets of activities realised by individual CPS components. The activities can be
performed both in serial or in parallel, and the proposed record allows for envisaging
this fact. The key advantage of the discussed method is drawing special attention to
identification not only of the connections between resources but also determination
of precise requirements of all the interested parties as early as possible.

The presented approach enables describing the CPS project in a simple way, com-
prehensible for engineers in different fields. This is exactly the simplicity and uni-
versality that make it useful in solving a series of problems connected with designing
and building the task-oriented CPSs.

An additional advantage of the presented process approach, in view of the dis-
cussed threats that can affect the cyber-physical system, is the possibility of taking
into consideration the security aspects. Identification of activities taking place within
the process also enables identification of threats which can influence individual com-
ponents, connections between these components (e.g. networks connecting the com-
ponents) or the cyber-layer supporting the component (e.g. services of the software)
or the whole system (e.g. environmental threats).
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An Inverse Dynamics Analysis
of the Remote Controlled
Artillery-Missile System Under
the Influence of Disturbances

Zbigniew Koruba, Daniel Gapiński and Piotr Szmidt

Abstract The paper presents a dynamic model of hypothetical missile-artillery sys-
tem mounted on a moving object (e.g. mobile platform or warship). Model inputs
are driving torques for the azimuth and elevation angle, and the angular and linear
displacements of the set base relative to the given stationary coordinate system. The
output of the model is the resulting position of the line of sight relative to the men-
tioned stationary coordinate system. The effect of disturbances (motion) from the
moving object was studied and the reverse dynamic analysis of the presented system
under the influence of the disturbances was performed. This has been investigated
to check if the set’s drive systems will be able to work out the required torque in
time to maintain the desired line of sight. Simulations were made using the SciLab
environment. Some results of numerical simulation tests was presented in graphical
form.

Keywords Control · Artillery-missile system · Nonlinear system · Kinematic
disturbances

1 Introduction

In today’s battlefield, there is a constant need for increased combat capabilities includ-
ing speed, target detection and identification, as well as firefighting capabilities by
short range artillery missile systems. The challenge is to be able to successfully
fire such systems in response to disturbance not only from the cannon side but also
from the moving platform on which the cannon and homing missiles are mounted.
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In addition, this is a system with variable mass because in a short time can be fired
from a few to dozens or even hundreds of bullets—so we are dealing with a strongly
nonlinear system with variable parameters (non-stationary). The aim of this paper is
to investigate problem of stabilizing artillery-missile system (AMS) on which exter-
nal forces and kinematic extortions are acting. Manually maintaining desired line of
sight in such conditions, e.g. AMS mounted on warship or moveable platform, is in
principle impossible. Furthermore, training operators is expensive and time consum-
ing [8] and they are in addition exposed to the aggressor’s fire. The development of
automated guidance systems and precision tracking of the target by moving system
is a current research problem. For example 35 mm canons are being tested in this
area in Poland [2, 3].

For the work presented in this study, the ZU-23-2MR artillery-missile system
was chosen. This is a widely used naval set manufactured in Poland. The system is
equipped with two 23 mm cannons as well two GROM missiles and is designed to
combat lightly armoured aircraft, helicopters or other air or land targets. The actual
rate of fire is 400 shots per minute, and the maximum effective fire range is 1.5 km
for vertical targets up to 3 km for land targets [11].

2 Artillery-Missile System Dynamics Model

Prior to determining the equations of motion of the set, a 3D model was constructed
to obtain physical parameters such as mass and moments of inertia. This model is
shown in Fig. 1 along with the designation of the most important elements.

Figure 2 shows a diagram of a mechanical model. It was assumed that the gener-
alized torque M1 rotates the body 1 by an azimuth angle θ1 about the axis z1. Further,
the generalized torque M2 rotates the body 2 by the elevation angle θ2 about the axis
y2 that moves along with the body 1.

Designations presented in Fig. 2: θ1—azimuth angle, θ2—elevation angle,
Qi—generalised torque impacting on i-th element, I1—constantmass inertiamoment
of body 1 in relation to z1 axis, Is(n)—variable mass inertia moment of body 1 in
relation to z1 axis depending on a number of cartridges n in boxes, I2—constant

Fig. 1 General view of 3D
model
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Fig. 2 Artillery-missile system mechanical model

mass inertia moment of body 2 in relation to y2 axis, Ia(θ2)—variable mass inertia
moment of body 2 in relation to z1 axis depending on elevation angle θ1, m—mass
of body 2, g—gravitational acceleration, z̈0—acceleration of set’s base vertical dis-
placement, r—distance from the centre of gravity of body 2 in relation to y2 rotation
axis, γ—angular displacement of the centre of gravity of body 2 in relation to an axis
of a gun barrel.

The nonlinear differential equations of generalized torquesQ1 andQ2 are given by
(1) and (2). Some simplifications has been made. The model assumes that kinematic
disturbances from the moving object on which the system is located may appear as
roll and pitch angles to relatively the longitudinal and transverse axes of the carrier
and as the linear displacement in the vertical direction (parallel to the action of
gravity). Furthermore, acceleration in the horizontal plane is negligible and centre of
gravity of the body 1 lies on the z1 axis and does not significantly alter its position.

Q1 � (
3aθ2

2 + 2bθ2 + c
)
θ̇1θ̇2 +

(
I1 + pn + q + aθ3

2 + bθ2
2 + cθ2 + d

)
θ̈1 (1)

Q2 � I2
(
θ̈2 + τ̈x sin θ1 + τ̈y cos θ1

) − 1

2

(
3aθ2

2 + 2bθ2 + c
)
θ̇2
1 · · ·

+ mr
(
z̈ cos τx cos τy − g

)
cos

(
θ2 + γ + τx sin θ1 + τy cos θ1

)
(2)

where: τx—roll angle, τy—pitch angle, Qi �Mi − Ti and Mi—driving torque of
motor with reduction gear, Ti—friction torque; a, b, c, d, q, p—parameters of the
set described in detail in the paper [6].
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Fig. 3 Original friction
curve and fitted polynomial

2.1 Friction Model

In real systems, especially in those where very precise control is required, friction
plays an important role. An example of interesting works, in which this friction phe-
nomenon in dynamic systems is analyzed in depth are works [1, 10]. For considered
AMS the assumed friction model is nonlinear and is given by (3). This is a viscos-
ity model based on empirical and geometrical parameters. Because of the fractional
power in the equation, the friction domain is only positive arguments (i.e. velocity
ni). Thus, the friction value for negative velocities cannot be calculated without the
abs() and sign() functions.

Ti (ni ) � f0 · 10−7 · ni · (νni )
2
3 · d3

i (3)

where: f 0—coefficient depended of bearing, ni—rotational speed of body i,
v—kinematic viscosity, di—mean diameter of i-th body bearing

Function fitting was used for simplifying and speeding up calculations during
simulations. The third degree polynomial was chosen to obtain the odd function
shape and then the polynomial coefficients were found by the least squares method.
The found functions are T 1 �86.15n3

1 +77.44n1 and T2 � 8.98n3
2 − 8.04n2. As

example the original and the fitted function of T 1 are shown in the Fig. 3. As we
can see, the polynomial of the third degree fairly accurately maps the graph of the
friction torque calculated from the original formula.

3 Target Coordinates

In fixed Cartesian coordinate system Oxyz (Fig. 4) there is missile-artillery system
at the origin and target described by vector vT with coordinates xT , yT and zT . For
our purposes let us suppose that the target denotes the point in the space on which
the line of sight should be directed, i.e. ballistic and weather correction are already
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Fig. 4 Target coordinates in
fixed coordinate system

included. The position of the target can also be specified by spherical coordinates,
which is actually done. These are: deviation in azimuth αT , tilt in elevation εT , and
distance rT .

Target observations coordinates can be obtained, for example, from an optoelec-
tronic scanning seeker head [4] mounted on the artillery system. Since the geometry
of the set is much smaller than the target distance rT , we can assume that the angles
of the azimuth and the elevation of the cannons must be equal to the angles of the
target observation. Therefore we can write (4) and (5) but these equations are true
only if the observation coordinate system and AMS coordinate system are identical.

θ1 � αT (4)

θ2 � εT (5)

In case where kinematic disturbances start acting on the set, set starts to move and
above equations are not true if we know target observation angles αT and εT in fixed
or other than AMS coordinate system. Target observation angles must be given in
the new coordinate system O′x′y′z′ (Fig. 5) which is stiff associated with the AMS,
i.e. x′y′ plane is where azimuth θ1 is generated and elevation θ2 is generated in plane
perpendicular to x′y′ plane. Let the new spherical azimuth, elevation and distance
coordinates be αc

T , εc
T and rc

T respectively as they compensate for set displacement.
Cartesian coordinates of the target in O′x′y′z′ coordinate system are xc

T , yc
T and zc

T .
To express the coordinates of a target in a AMS coordinate system, we must first

move from spherical coordinates to Cartesian coordinates in fixed coordinate system
Oxyz by formulas (6), (7) and (8). Note that Eqs. (6) and (7) are different from its
standard form [7] since nonstandard convection was used to specify elevation angle
εT .

xT � rT cos εT cosαT (6)
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Fig. 5 Target coordinates in
displaced coordinate system

yT � rT cos εT sin αT (7)

zT � rT sin εT (8)

Nowwe can formulate Cartesian target coordinates as a vector vT (9). Next, target
coordinates transition to the set’sO′x′y′z′ coordinate system is given by formula (10).
The rotation matrices Rx and Ry [5] are already transposed because we do not rotate
point in fixed coordinates but we rotate coordinate system while the point (target)
remains at the same place.

vT �
⎡

⎣
xT

yT

zT

⎤

⎦ (9)

vc
T � RxRy(vT − Tz) � Rxy(vT − Tz) (10)

where:

Rx �
⎡

⎢
⎣
1 0 0
0 cos τx sin τx

0 − sin τx cos τx

⎤

⎥
⎦ (11)

Ry �
⎡

⎢
⎣

cos τy 0 − sin τy

0 1 0
sin τy 0 cos τy

⎤

⎥
⎦ (12)

Tz �
⎡

⎣
0
0
z

⎤

⎦ (13)



An Inverse Dynamics Analysis of the Remote Controlled … 211

Rxy �
⎡

⎢
⎣

cos τy 0 − sin τy

sin τx sin τy cos τx sin τx cos τy

cos τx sin τy − sin τx cos τx cos τy

⎤

⎥
⎦ (14)

Target position vector vc
T in displaced coordinate system O′x′y′z′ contains Carte-

sian coordinates xc
T , yc

T and zc
T (15).

vc
T �

⎡

⎢
⎢
⎣

xc
T

yc
T

zc
T

⎤

⎥
⎥
⎦ (15)

To go back to spherical coordinates, (16), (17) and (18) formulas are used.

rc
T �

√
xc2

T + yc2
T + zc2

T (16)

εc
T � arcsin

zc
T

rc
T

(17)

αc
T � arctan

yc
T

xc
T

(18)

Finally, we can write that cannons position in azimuth (19) and elevation (20)
should be equal to target observation angles in AMS coordinate system.

θ1 � αc
T (19)

θ2 � εc
T (20)

4 An Inverse Analysis of AMS Dynamics

As an example of inverse analysis of AMS dynamics let’s consider a case where the
target remains in a position αT �15 deg, εT �30 deg and rT �500 m in fixed coor-
dinate system and the system is mounded on a warship. The kinematic disturbances
are given by rotations angles τ x and τ y as shown in Fig. 6. Waveforms (Fig. 7) of
rotations angles τ x and τ y were generated by inverse Fourier transform and linear
amplitude scaling. Coefficients have been selected so that the graphs are similar
in their character to those shown in the work [4] but with the difference that the
extortions gradually increase.

In Fig. 8 there are angular displacements, velocities and accelerations both for
azimuth and elevation that have to be generated by AMS to maintain target at line of
sight. And, therefore, the barrels will trace a fairly complicated trajectory, as shown
in Fig. 9. The simulations were conducted for fully armament system.
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Fig. 6 System rotations for considered case

Fig. 7 Assumed angular disturbances (rotations) τ x and τ y

As a result of inverse dynamic analysis, driving torque M1 which must be applied
to body 1 to produce proper azimuth angle in time was calculated and is shown in
Fig. 10.

The gray lines (Fig. 10) indicates themaximum andminimum torque that the SBL
4-0530 motor with reducer at the instantaneous speed can produce. As we can see
the required torque is safely within acceptable limits. In Fig. 11 there is presented
peak torque-speed curve for used motors. The graph has been drawn on the basis
of the data contained in the catalogue [9]. At speeds above 2000 rpm the maximum
peak torque generated by motor starts to drop significantly with increasing speed.
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Fig. 8 Required angular displacements, velocities and accelerations of azimuth θ1 and elevation
θ2 angles

Although this occurrence in the elevation driving system does not occur, the required
driving torqueM2 exceeds the drive limits. There are some peaksmarkedwith arrows
in the Fig. 12. It should be noted that Figs. 10 and 12 illustrate the driving torques
already taking into account the transmission ratios of i1 �52 and i2 �38 respectively
in the azimuth and elevation system and with included 95% efficiency.
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Fig. 9 Required line of sight trajectory

Fig. 10 Required driving torque M1

Fig. 11 Peak torque-speed curve for the SBL 4-0530 servo-motor
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Fig. 12 Required driving torque M2

5 Conclusions

The paper presents a mathematical model of a ZU 23-2MR system on a moveable
object. Some simplifications have been made, however, the model allows to estimate
the forces acting on the system. For the preliminary study that was conducted pseudo
random kinematic signals acting on the system were generated. Efforts were made
that the waveforms are similar to those that may occur in the actual movement of
the warship on the sea wave. Obviously, it would be preferable to know the real
waveforms for a given class of ship and apply them in simulations.

A procedure was proposed to determine the corrections of azimuth and elevations
angles during kinematic disturbances acting on the system. Maintaining motionless
target at line of sight was chosen as primary case to investigate required driving
torques. As a result of the tests it can be stated that in the case of azimuth, the driv-
ing motor with a maximum torque of 20 Nm will be able to work out appropriate
compensating movements. In case of elevation the power of motor will not be suf-
ficient in certain moments. This is mainly due to the lower gear ratio in the drive
system of the elevation. Also, the character of disturbances has strong impact and
for the case under study, especially accelerations. Full attainment of the target in the
elevation was possible for compensating angle up to about±1° for considered kine-
matic disturbances. Still, most of the time of the simulation (about 80–85%) motors
theoretically should be able to drive the elevation system properly. This would be a
significant improvement over the control systemwithout compensating for kinematic
disturbances.

An additional very important issue is the dynamics of the drives themselves. If
there are any delays or too high inertia in the drive systems, it may not be possible to
properly compensate for the disturbances. Thedrive torquewill thenbeunable to keep
up with the quick changes required. In the preliminary tests, the AMS control was
simulated with different controllers, PID and SMC, and the drive models assumed
as first order inertia systems with the time constant T �0.02 s. The system control
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was correct. However, for the time constant T �0.05 s and larger, there were already
slight oscillations of the output variables. Therefore, it can be expected that for the
stability of the entire control system, not only the controllers, but also the driving
systems will be essential.
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6. Koruba, Z., Gapiński, D., Szmidt, P.: The analysis of optimal PID controllers parameters selec-
tion for missile-artillery system. In: Fuis, V. (ed.) Engineering Mechanics 2017, pp. 970–973
(2017)

7. Koruba, Z., Osiecki, J.W.: Mechanika elementarna (Elementary mechanics). Kielce University
of Technology Publishing House, Kielce (2005)

8. Milewski, S., Kobierski, J.W.: Szkolenie funkcyjnych okrętowych systemów rozpoznawczo-
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Approximate Identification of Dynamical
Systems

Jan Kozánek, Štěpán Chládek, Jaroslav Zapoměl and Lucie Švamberová

Abstract Usually, as the input data of the parametric identification methods in
the frequency domain, the corresponding pairs of the “unit harmonic force exci-
tation”—“steady state harmonic response” are considered. This paper deals with
approximate identification of linear dynamical systems by time response on unknown
initial displacement (or velocity) with the help of the Fourier transform. In this paper,
basic analytical relationships and identification alternatives are analyzed. Formulae
are completed and presented with special consideration given to the simplest one
mass dynamical system.

Keywords Linear dynamical systems · Parametric identification · Time
response · Fourier transform · One mass dynamical system

1 Introduction

We suppose a mathematical model of vibrating discrete dynamical system as the
n (n ≥ 1) 2nd order linear non-homogeneous differential equations, written (see
[1–4]) in matrix form as

K ṽ(t) + B ˙̃v(t) + M ¨̃v(t) � f̃(t) (1)
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with generally real non-symmetric stiffness, viscous damping and mass matrices
K, B, M ∈ Rn, n of order n, where M is supposed to be non-singular. The position
vectors (linear or angular displacements in different points and directions), veloci-
ties, accelerations ṽ(t), ˙̃v(t), ¨̃v(t) ∈ Rn are real time vector functions. On the right
hand side of Eq. (1) there is a real vector of excitation forces (moments) f̃(t) ∈ Rn

depending on time t. We assume that our mathematical model is asymptotically sta-
ble (all corresponding eigenvalues have negative real parts). The initial position and
velocity vectors we write as real vectors

ṽ(t � 0) � v0 ∈ Rn, ˙̃v(t � 0) � vd0 ∈ Rn. (2)

The homogeneous matrix equation to the (1) will be for zero right hand part
f̃(t) � o ∈ Rn

K vh(t) + B v̇h(t) + M v̈h(t) � o. (3)

Supposing the homogeneous solution of the (3) as “exponential type”

vh(t) � vh aes t, s ∈ C,

we obtain the non-linear (with respect to s)—quadratic eigenvalue problem

(K + sB + s2M) vh a � o. (4)

Defining the 2n order matrices

P �
[

B K
−M 0

]
, N �

[
M 0
0 M

]
∈ R2n, 2n, (0 ∈ Rn, n is zero matrix),

the above quadratic eigenvalue problem can be transformed to the helping linear (the
so called generalized) eigenvalue problem (in 2n state space)—see [2–4]

(P + sN)

[
vh as
vh a

]
� (P + sN)uh a � o2 (5)

(o2 ∈ R2n is 2n-dimension zero vector) and 2nd order n linear non-homogeneous
differential equations (1) are replaced by 2n first order equations

Pũ(t) + N ˙̃u(t) � p̃(t), (6)

where ũ(t) �
[ ˙̃v(t)

ṽ(t)

]
, p̃(t) �

[
f̃(t)
o

]
with ũ(t � 0) �

[
vd0
v0

]
� u0. Similarly, the

homogeneous equation to Eq. (6) will be
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Puh(t) + Nu̇h(t) � o2. (7)

Supposing

uh(t) � uh ae
s t,

the (linear) eigenvalue problem is

(A − sI2n)uh a � o2, (8)

where

A � −N−1P �
[

−M−1B −M−1K
In 0

]
∈ R2n, 2n, In, I2n

are identity matrices of order n, 2n, respectively. The eigenvalues and eigenvectors
of A can give the solutions of Eqs. (1) and (3). If we for simplicity suppose that
matrix A is non-derogatory (Jordan normal form of A is diagonal) and that all its
eigenvalues have non-zero and increasing imaginary parts and “small” damping, we
can write its complex and diagonal spectral matrix as

D �
[

S

S

]
,

where diagonal matrix of order n is

S � [\sv\], sv � −αv + iωv, ωv � αv > 0, v � 1, 2, . . . , n, i � √−1,

ωv−1 < ωv, v � 2, . . . , n,

where αv, ωv, v � 1, 2, . . . n are eigendampings and eigenfrequencies, respectively.
The notation S is complex conjugate of the matrix S and similarly for the other
matrices further in the text. Corresponding eigenvectors of the matrix A are the
columns of the complex matrix U ∈ C2n, 2n:

AU � UD, (9)

where the submatrix form of the matrix

U �
[

VS V S

V V

]

and for the complex non-singular matrix V ∈ Cn, n holds:
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KV + BVS + MVS2 � 0, (10)

where zero matrix 0 ∈ Rn, n. From Eq. (9) follows that

PU + NUD � 02 � PT Z + NT ZD, (11)

where 02 ∈ R2n, 2n is zero matrix and

ZT � U−1N−1

and ZT is the transposition of the matrix Z ∈ C2n, 2n and

ZTNU � I2n, ZTPU � −D. (12)

The submatrix form of the matrix

Z �
[

W W

Q Q

]
, W, Q ∈ Cn, n,

and

WTK + SWTB + S2WTM � 0 � KTW + BTWS + MTWS2.

From Eq. (12) we can also simply prove the very important equation

Re (VWT) � 0.

Then the solution of (7) is

uh(t) � UeD t ZTNu0 (13)

and the solution of homogeneous Eq. (4) is

vh(t) � VeSt(WTMvd0 + QTMv0) + VeSt(W
T
Mvd0 + Q

T
Mv0)

�
n∑

v�1

vv(wT
vMvd0 + qT

vMv0) e
sv t +

n∑
v�1

vv(wT
vMvd0 + qT

vMv0)e
sv t (14)

where vectors vv, wv, qv ∈ Cn and complex conjugate vv, wv, qv ∈ Cn are columns
of matrices V � [−vv−], W � [−wv−], Q � [−qv−], V � [−vv−], W �
[−wv−], Q � [−qv−] ∈ Cn,n, respectively.

Note also, that the right- (vv, vv) and left-eigenvectors (wv, wv) satisfy the above
quadratic eigenvalue problems (4):
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(K + svB + s2vM)vv � o and wT
v (K + svB + sv2M) � oT,

(K + svB + s2vM)vv � o and wT
v (K + svB + s2vM) � oT, v � 1, 2, . . . , n.

Harmonic excitation of dynamical system modelled by Eqs. (1) and (6) with
angular frequency ω > 0 in complex (“mathematical”) form reads:

f̃(t) � feiωt and p̃(t) �
[

f
o

]
eiωt � peiωt,

and the solution of Eq. (6) with non-zero initial condition ũ(t � 0) � u0 we can
write as

ũ(ω, t) � UeD ta0 + U(iωI2n − D)−1
[

W W
]T

feiω t, (15)

where

a0 � ZT Nu0 − (iωI2n − D)−1
[

W W
]T

f .

The steady state (after the disappearance of the influence of the initial condi-
tions) harmonic solution of Eqs. (1) and (6) will be less complicated than (15). The
displacement vector

ṽ(ω, t) � v(ω)eiωt

with time independent complex amplitude vector v(ω) satisfies the equation:

(K + iωB − ω2M)v(ω) � f with the solution v(ω) � (K + iωB − ω2M)−1f,
(16)

where the relationship between the real displacement vector ṽ(t) and the com-
plex “mathematical” amplitude vector v(ω) ∈ Cn is unambiguous, ṽ(ω, t) �
Re(v(ω)eiω t).

In the steady state harmonic regime, the complex amplitudes v(ω), vv(ω), va(ω)
of displacements ṽ(ω, t) � v(ω)eiω t, velocities ˙̃v(ω, t) � vv(ω)eiω t, and accelera-
tions ¨̃v(ω, t) � va(ω)eiω t are related by simple relations:

vv(ω) � iωv(ω) and va(ω) � iωvv(ω) � −ω2v(ω). (17)

Similarly, in a steady state regime, the complex amplitude u(ω) of the solution

ũ(ω, t) � u(ω)eiω t

for harmonic excitation
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p̃(t) � peiω t

satisfies the equation: (P + iωN)u(ω) � p with the solution

u(ω) � (P + iωN)−1p. (18)

The resolvent formulae (16) and (18) are disadvantageous because the spectral
characteristics (resonance positions, spectrum density, or possible different damping
of the individual modes of vibration) and modal properties (vibration modes, orthog-
onality or “parallelity” of the excitation vector f in relation to structure eigenmodes)
are included in the complex matrices

(K + iωB − ω2M)−1 and (P + iωN)−1

in implicit (non-transparent) form. Therefore, we express the above formulae in
a more transparent way, by using partial fraction decomposition with the help of
eigenvalue problem (9). According to Eq. (15), in 2n state space we can the steady
state solution write as

u(ω) � U(iωI2n − D)−1
[

W W
]T

f . (19)

The resolvent (16) can then be expressed in a “matrix” compact form, or in “vec-
tor” expansion form (as Green resolvent with the expansion of the excited harmonic
displacement to the eigenmodes of the vibrating system):

v(ω) � (V(iωIn − S)−1WT + V(iωIn − S)−1W
T
)f

�
n∑

v�1

vν

wT
v f

iω − sv
+

n∑
v�1

vv
wT

ν f
iω − sv

(20)

2 The Parametric Identification Methods and Approximate
Identifications

The parametric identification of machines can be defined as the creation of a math-
ematical model, which well defines its dynamical behaviour in the given frequency
interval of the harmonic excitation frequencies < ω > and for all excitation forces
f ∈ Rn, described by means of excited displacements or by spectral and modal
properties—[1, 5–7].

The so called “direct methods” determine directly the coefficient matrices
K, B, M ∈ Rn, n, where n is a small number mostly not exceeding n � 4 because this
problem is frequently very badly numerically conditioned. On the other hand, in the
determination of spectral and modal properties (modal analysis methods), i.e. com-
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plex eigenvalues sv, v � 1, 2, . . . n and corresponding right- and left- eigenvectors
vv, wv , v � 1, 2, . . . n, the number n is not limited—[4, 8].

2.1 Dynamical Experiments with Known and Unknown
Excitations

Most of the currentmeasurementmethods in the field of vibration are based on known
force (moment) excitations. The known harmonic or pulse excitation is used and the
corresponding complex amplitude of the harmonic steady-state excited displacement,
velocity or acceleration are measured or subsequently evaluated.

As the input data of the identification methods in the frequency domain—see
[9], corresponding pairs of “unit harmonic excitation”—“steady state harmonic
response” related to the angular frequency ω, i.e. the response-vectors of the
complex amplitude v(ω), v(ω) � [−vj(ω)−]T:

{
ω, f(t) � f eiω t} → {v � v(ω, f)} (21)

are considered, e.g. see Figs. 1 and 2. In the case of known impulse excitation, the
harmonic components of harmonic response are determined by application of the
Fourier transform of the known time excitation and of the measured time response.

In many practical situations, it is possible that the dynamical system is excited by
a given but unknown force (moment) excitation or is excited by an unknown non-zero
initial displacement or velocity. These two above situations can even be considered
as a single case, because when a force (moment) impulse ceases to operate, we
consider a new time origin in which the system is excited by some non-zero initial
displacement or velocity.

Let us now consider the response of the dynamical system on unknown non-zero
initial displacement, velocity,

ṽ(t � 0) � v0 �� o, ˙̃v(t � 0) � vd0 �� o, respectively.

In this above context we can define the approximate identification as the determi-
nation of the complex eigenvalues (eigendampings and eigenfrequencies, where the
eigenfrequencies are from a given frequency interval, most often, the eigenvalues
with lowest eigenfrequencies) sv, v � 1, 2, . . .m < n and corresponding approxi-
mate right-eigenvectors vv, v � 1, 2, . . .m.

As follows from Eq. (14), the time displacement of the dynamical system will be

vh(t) �
n∑

v�1

vvcvesvt +
n∑

v�1

vvcve
svt, (22)

where cv � cv(v0, vd 0) � wT
vMvd 0 + qT

vMv0, e.g. in Fig. 3.
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Fig. 1 Nyquist diagram v(ω) ∈ C in some measured point of the dynamical system with simulated
experimental errors about 2%

Fig. 2 Amplitude-frequency response function |v(ω)| corresponding to Fig. 1
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Fig. 3 Time-response vh(t) in the same measured point as in Fig. 1 on some initial displacement
and with simulated experimental errors about 2%

For some m (1 ≤ m < n) Eq. (22) can be rewritten as an approximate form

vh(t) �
m∑

v�1

vvcvesvt +
m∑

v�1

vvcve
svt + �vh(t), (23)

where the residual vector �vh(t) is small enough:

‖�vh(t)‖ � ‖vh(t)‖, t > 0.

2.2 The Relation Between Homogeneous Solution
and Steady State Harmonic Response

If we define the Fourier transform of a time vector function g(t) ∈ Cn, t ≥ 0, g(t) �
0, t < 0 as

ĝ(ω) �
∞∫
0

g(t)e−iω tdt,

then Fourier transform of the homogeneous solution (23) will be
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v̂h(ω) �
m∑

v�1

vv
cv

iω − sv
+

m∑
v�1

vv
cv

iω − sv
+

∞∫
0

�vh(t)e−iω tdt. (24)

For dynamical systems with small damping and for ω ∈< 0,ωm > will be

1

|iω − sv| � 1

|iω − sv| , v � 1, 2, . . . ,m

and we can approximately write Eq. (24) as

v̂h(ω) �
m∑

v�1

vv
cv

iω − sv
+ �v̂h(ω), (25)

where the vector �v̂h(ω) is small enough:

∥∥�v̂h(ω)
∥∥ � ∥∥v̂h(ω)

∥∥, ω ∈< 0,ωm > .

The steady state harmonic response (20) forω ∈< 0,ωm >will be approximately

v(ω) �
n∑

v�1

vv
wT

v f
iω − sv

+
n∑

v�1

vv
wT

v f
iω − sv

�
m∑

v�1

vv
wT

v f
iω − sv

+ �v(ω) �
m∑

v�1

vv
dv

iω − sv
+ �v(ω), (26)

where dv � wT
v f ∈ C, v � 1, 2, . . . ,m and ‖�v(ω)‖ � ‖v(ω)‖, ω ∈< 0,ωm >.

When comparing Eqs. (25) and (26) it is evident that (except for different coeffi-
cients cv, dv, v � 1, 2, . . . ,m) the steady state harmonic response on a known force
(moment) harmonic excitation and Fourier transform of a time response of dynam-
ical system on unknown non-zero initial displacement and (or) velocity (Fourier
transform of homogeneous solution) give a similar expression.

This means that a time response of dynamical system on unknown non-zero initial
displacement or velocity can be theoretically used as input data for spectral andmodal
identification methods, as well as the steady state harmonic response—see Fig. 4.

Fourier and wavelet spectra of quasi-periodic, chaotic and periodic vibrations
have been investigated for example in [10].

The fundamental difference here is in the fact that while in Eqs. (20) and (26)
the steady state harmonic response occurs the right- and left-eigenvectors vv, wv in
“symmetric” form, in Eqs. (22) and (25) the left-eigenvectors wv (see [11]) are in
implicit form through coefficients

cv � wT
vMvd 0 + qT

vMv0.
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Fig. 4 Amplitude of the Fourier transform
∣∣∣�vh (ω)

∣∣∣- a) and complex Fourier transform
�
vh(ω)- b)

of the time-response vh(t) from Fig. 3. The resonance locations in this figure and in Fig. 2 are the
same, the amplitudes of corresponding eigenmodes are different, but this fact is not relevant for the
identification of eigenmodes
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This results in the fact, that for unknown excitation forces it is not possible to
even approximate identification of left-eigenvectors.

We recall that from steady state harmonic responses v(ω, f) (for known excitation
f)

v(ω, f) �
m∑

v�1

vv
wT

v f
iω − sv

+ �v(ω, f)

we can identify left-eigenvectorswv by the followingway.We select some coordinate
(for example, j) of the vector

v(ω, f) � [v1(ω, f), v2(ω, f), . . . , vn(ω, f)]T

and we will write it for all unit excitation forces

f � ek � [0, 0, . . . 1 . . . 0]T, k � 1, 2, . . . , n, (1 is in k-th position)

as the following row vector

[vj(ω, f � e1), vj(ω, f � e2), . . . , vj(ω, f � en)] �
m∑

v�1

wT
v

bv
iω − sv

+ �wT(ω).

(27)

Another, muchmore serious problem in the case of using time response of dynam-
ical system on unknown non-zero initial displacement or velocity as possible input
data for spectral and modal identification methods, is the exponential time function

e−αvt, αv > 0

derived from the function esvt � e−αvt(cos(ωvt) + i sin(ωvt)) in Eq. (23). In this equa-
tion the numerically non zero components will only be components corresponding in
absolute value to the smallest real parts of eigenvalues sv, v � 1, 2, . . .. In practice,
we should take advantage of vh (t) corresponding to a very small time interval and
therefore with the least (technically possible) time step. Another possibility is the
use of frequency filters, analog and (or) digital, selectively “drawing” investigated
eigenmodes. Vanishingmotions of triple pendulum as a non-linear dynamical system
have been studied numerically and experimentally in [12].

2.3 One Mass Dynamical System

The mathematical model of one mass (n � 1) vibrating dynamical system can be
written in scalar form as one 2nd order linear non-homogeneous differential equation
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k ṽ(t) + b
.

ṽ(t) + m
..

ṽ(t) � f̃(t) (28)

with real stiffness k > 0, viscous damping b > 0 andmass m > 0 (k/m � (b/2m)2)
and with position ṽ(t) and external force (moment) f̃(t) as in Eq. (1). The scalar initial
conditions are generally

ṽ(t � 0) � v0 ∈ R,
.

ṽ(t � 0) � vd0 ∈ R.

The corresponding homogeneous scalar equation is

k vh(t) + bv̇h(t) + m v̈h(t) � 0 (29)

and for an “exponential type solution”

vh(t) � vh ae
s t, s ∈ C

we have the simple quadratic equation

k + sb + s2m � 0

with the solution, two complex conjugated eigenvalues

s1, s1 ∈ C, s1 � − b

2m
+ i

√
k

m
−

(
b

2m

)2

� −α1 + iω1,ω1 � α1 > 0.

The solution of the homogeneous Eq. (29) with the above initial conditions is

vh(t) � −i

2ω1

[
(es1t − es1t)vd 0 + (s1e

s1t − s1e
s1t)v0

]
� i(s1 v0 − vd 0)

2ω1
es1t +

−i(s1 v0 − vd 0)

2ω1
es1t

� e−α1t

[
vd 0
ω1

sin(ω1t) +

(
cos(ω1t) +

α1

ω1
sin(ω1t)

)
v0

]

and its Fourier transform will be

�

vh(ω, vd 0, v0) �
∞∫
0

vh(t)e
−iω tdt � c1

iω − s1
+

c1
iω − s1

, c1 � i(s1 v0 − vd0)

2ω1
,

(30)

corresponding to the general case for n ≥ 1 in Eq. (22). This mean that Fourier
transform of the homogeneous time solution (a response to an unknown non-zero
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excitation of the investigated dynamical system) vh(t) can be used as an input data
for spectral identification in frequency domain.

For special initial conditions—with zero initial position ṽ(t � 0) � v0 � 0 and

non-zero initial velocity
.

ṽ(t � 0) � vd0 �� 0 we have

vh(t) � −i

2ω1
(es1t − es1t)vd 0 � vd 0

ω1
e−α1t sin(ω1t) (31)

and just in this special case is Fourier transform of the homogeneous solution (30)
up to the multiplicative constant equal to the steady state harmonic solution of one
mass vibrating system because

�

vh(ω, vd 0) �
∞∫
0

vh(t)e
−iω tdt � mvd0

k + iω b − ω2m
. (32)

We recall that in the above derivation

k/m � α2
1 + ω2

1 and b/m � 2α1.

Apparently, the steady state harmonic solution of Eq. (28) for

f̃(t) � feiω t, f > 0

is

ṽ(ω, t) � v(ω) eiω t

and

v(ω) � f

k + iω b − ω2m
, (33)

or in partial fraction resolvent form

v(ω) � a1
iω − s1

+
a1

iω − s1
, a1 � −i f

2mω1
(34)

with purely imaginary coefficient

a1 ∈ C, Re(a1) � 0

and with negative imaginary part

Im(a1) < 0.
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Let’s go back now to the general case of a discrete dynamical system with n ≥ 1
and let us consider the scalar case of the measured position in one point (direction)
excited by a force (moment) applied also at a single point (direction). One (j-th)
coordinate vj k(ω) of steady state harmonic response (20) on special force excitation

f � ek � [0, 0, . . . 1 . . . 0]T (in k-th point)

we can write in “scalar form” as

vj k(ω) �
n∑

v�1

av j k
iω − sv

+
n∑

v�1

av j k
iω − sv

, (35)

where “modal parameters”

avjk � vvjwvk ∈ C and vv � [−vvj−]T, j � 1, 2, . . . n,wv � [−wvk−]T, k � 1, 2, . . . n

For ω ∈< 0,ωm > we have approximately

vj k(ω) �
m∑

v�1

av j k
iω − sv

+ � vj k(ω), (36)

where 1 ≤ m < n,
∥∥�vj k(ω)

∥∥ � ∥∥vj k(ω)∥∥. In both cases (35) and (36), we there-
fore have the steady state harmonic response vj k(ω) composed of more components
corresponding to each eigenmodes either of the type

av j k
iω − sv

, or
av j k

iω − sv
+

av j k
iω − sv

, av j k ∈ C. (37)

Let us now question whether it is possible to model this v − th term (37) using
one mass dynamical system (28)—see Figs. 5 and 6, where one selected eigenmode
is underlined. By comparing Eqs. (34) with (37), it is understood that the answer is
in general case unfavourable. Only in the special case when vth modal coefficient
av j k ∈ C has a zero real part and a negative imaginary part, we can define real
and positive parameters k,b,m i.e., the alternative one mass dynamical system. In
this context, it is very interesting that Fourier transform of one mass dynamical
system (31) for initial condition with non zero initial position v0 �� 0 gives “steady
state harmonic response” of the “general, n > 1 type (37)” for which there are no
corresponding system coefficients k, b, m > 0 because Re(c1) �� 0.
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Fig. 5 Nyquist diagram v(ω) from Fig. 1, where the second eigenmode is underlined. In this case
it is not possible to model the underlined part using one mass dynamical system with real k, b, m
> 0

Fig. 6 Amplitude-frequency response function |v(ω)| corresponding to Fig. 5
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3 Conclusions

In this contribution the theoretical possibility of using the time response on unknown
initial displacement (or velocity) as input data for identificationmethods in frequency
domain is studied. The harmonic steady state solution and homogeneous solution of
discrete dynamical systems with real stiffness, viscous damping and mass matrices
of order n via state space 2n formulation were derived. The Fourier transform of
homogeneous solution is (up to multiplicative coefficients) formally the same as
steady state harmonic solution. The dynamical experiments with known harmonic or
pulse excitations are comparedwith frequent practical situations, when the excitation
of an investigated dynamical system is unknown. The relation between the response
on unknown excitation and on known harmonic excitation was formulated by the
Fourier transform.

The time response of dynamical systemon unknown non-zero initial displacement
or velocity can be theoretically used as input data for spectral andmodal identification
methods, as well as the steady state harmonic response. It seems hard to believe that
this simple fact has not yet been described in detail in the literature. At least the
authors of this article are not aware of its previous publication.

The simplest one mass damped dynamical system is compared with its general
case and the necessary condition for modelling of the one eigenmode of general
dynamical systems by the one mass model with real stiffness, damping and mass
was formulated.
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Algorithm for Damping Control
in Vehicle Suspension Equipped
with Magneto-Rheological Dampers

Michal Makowski

Abstract This paper is devoted to developing the control algorithms of semi-active
systems of vehicle suspensions. In order to accomplish the goal, a vehicle was
equipped with controlled magneto-rheological (MR) dampers. The model of a vehi-
cle with the controlled suspension was developed. It was assumed that controlling
the force in the suspension will be based on two criteria: ride comfort and safety. On
the basis of the adopted evaluation criteria, the algorithm for controlling the damping
force of vehicle vibrations. The mathematical vehicle model and the control algo-
rithm helped develop a simulation programme. The coefficients adopted in themodel
were determined empirically. The numerical study of the vehicle model with the con-
trolled suspension was conducted in the Matlab/Simulink programme. As a result
of the performed work, the control algorithm was developed, taking into account
two conflicting criteria of the drive comfort and safety. A vehicle with the controlled
suspension can be driven in the conditions of maximal comfort and safety. A com-
promise solution was suggested, where a weight factor of the influence of individual
control criteria is introduced. In this paper, some sample results of the numerical
tests of a vehicle with the MR dampers are presented.

Keywords Magneto-rheological damper · Control algorithms
Mathematical model · Vehicle · Vibration control · Ride comfort

1 Introduction

The presented subject matter of this work comprises semi-active systems of vibration
damping in mechanical systems. Development of active and semi-active systems is
closely related to development of electronic control systems. These solutions made
possible building mechanical systems in which change in the damping force takes
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place within a few milliseconds. These properties contributed to application of the
semi-active systems of vibration damping in vehicles, machines, and building con-
structions [1, 3, 4, 10].

Nowadays, in motor vehicles, electronic systems of driving control are
widespread, for example. Operation of the active safety systems is influenced to a
great extent by the vertical wheel load and lateral forces occurring in the wheel–road
contact [11] or wheel–rail contact [2]. Reducing the body vibrations significantly
improves the ride comfort. The solution consists of a system improving the ride
comfort. This problem was discussed in works [5, 8], where the control system tak-
ing into account the ride comfort was presented (minimising the module of the body
vertical accelerations).

In this work, the strategy of the compromise choice of the control parameters
for the vehicle suspension has been presented. The developed control algorithm
takes into account two criteria: of comfort and safety. In the two-criterion control
system, an improvement in comfort while keeping the constant value of driving
safety is possible. A mathematical model of the vehicle was developed to enable
the investigation. This model takes into account the possibility of the wheels losing
contact with the road surface. Magneto-rheological dampers were used in the vehicle
suspension. Then, the friction force in the dampers is dependent upon the control
parameter, i.e. the current. The range of values of the damper friction forceswhich are
possible to obtain was determined on the basis of the earlier experimental research.
The simulation programme in the Matlab/Simulink environment was created based
on themathematical vehiclemodel and the control algorithm. The numerical research
was conducted with various kinematic excitations which reflect different conditions
of the vehicle motion. During the tests, it was indicated that improving the ride
comfort and safety is possible in the controlled system compared to the system
without control. The tests with a double-criterion function were also conducted.
Analysis of the results showed that improving comfort is possible while maintaining
a high level of safety.

2 Mathematical Model of the Vehicle with Controlled MR
Dampers

The suggested vehicle model is shown in Fig. 1. The coordinates of the position-
defining characteristic points were adopted. The mechanical system is shown in the
gravitational field, and the coordinates define the vehicle in the equilibrium position.

The adopted vehicle model was described in the coordinates:

X :� [
z,�x ,�y,x01, x02, x03, x04

]T
(1)

The equation of motion of the mechanical system was shown in the form:
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Fig. 1 Vehicle model in generalised coordinates

MẌ + H(S + T ) � Q (2)

Interaction of the vehicle wheels with the road surface is described in the form of
an equation:

S0 + T0 � R0 (3)

The inertia matrix of the system is described as:

M :� diag
(
m, Jx , Jy,m0,m0,m0,m0

)
(4)

The gravitational forces vector is shown in the form of:

Q :� [mg, 0, 0,m0g,m0g,m0g,m0g]
T (5)

The vectors of the spring forces S and friction forces T , presenting the suspension
with the wheels are described in the form:

S � [S1, S2, S3, S4, S01, S02, S03, S04]
T , T � [T1, T2, T3, T4, T01, T02, T03, T04]

T .

(6)

Vector H defines the directions of activity of forces S and T

H � [H1, H2, H3, H4, H01, H02, H03, H04]
T (7)
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where vectors Hi (i � 1, . . . , 4) define the directions of activity of the forces in the
suspension:

H1 � [1,+b,−a1,−1, 0, 0, 0]T H2 � [1,+b,+a2, 0,−1, 0, 0]T

H3 � [1,−b,−a1, 0, 0,−1, 0]T H4 � [1,−b,+a2, 0, 0, 0,−1]T
, (8)

vectors H0i (i � 1, . . . , 4) define the directions of forces acting in tyres:

H01 � [0, 0, 0, 1, 0, 0, 0]T H02 � [0, 0, 0, 0, 1, 0, 0]T

H03 � [0, 0, 0, 0, 0, 1, 0]T H04 � [0, 0, 0, 0, 0, 0, 1]T
, (9)

The spring forces vector in the tyres and the vector of damping forces in the tyres
were described in the form:

S0 � [S01, S02, S03, S04]
T , T0 � [T01, T02, T03, T04]

T . (10)

The vector of the response forces, presenting the wheel vertical force on the road
surface:

R0 � [R01, R02, R03, R04]
T , (11)

The spring and damping forces in the suspension are determined on the basis of
the equations:

Si � kiUi , Ti � F(Vi , Ii ), i � 1, . . . , 4. (12)

where F—is function of (Vi , Ii ) and described the control damping forces.
However, the spring and damping forces in the wheels are determined on the basis

of the equations:

S0i � k0U0i , T0i � c0V0i , i � 1, . . . , 4. (13)

Values of the Ui springs deformations and the deformation velocity of the Vi

dampers representing the suspension are shown in the form:

Ui � HT
i X + uist , Vi � HT

i Ẋ , i � 1, . . . , 4 (14)

where uist is the static deformation of springs caused by the forces of gravity.
Magnitudes of the tyre deformations and the deformation velocities have the form:

U0i � HT
0i X + z0i + u0ist , V0i � HT

i Ẋ + ż0i , i � 1, . . . , 4. (15)

where u0ist is a static tyre deformation.
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Vector of the position of the wheel points of contact with the road surface is
described as:

z0 � [z01, z02, z03, z04]
T , (16)

Kinematic excitations of the vehicle vibrations were presented in the form of a
vector:

ξ � [ξ1, ξ2, ξ3, ξ4]
T , (17)

where ξi (i � 1, . . . , 4)—are kinematic excitations and ξ1 �� ξ2 �� ξ3 �� ξ4.
To solve the system of equations describing the vehicle vibrations, the relations

were determined describing interaction of the wheels with the road surface, which
was shown as:

R0i � 0 where z0i − ξi ≥ 0 and R0i ≥ 0 where z0i − ξi � 0, (18)

where i � 1, . . . , 4.
In the case where the relation z0i − ξi � 0 takes place, the vertical wheel force

on the road surface R0i is determined on the basis of the relation:

c0i (ż0i − ξ̇i ) + Fi � R0i , Fi :� c0i ẋ0i + c0i ξ̇i + k0i x0i + k0i z0i + k0i u0ist , (19)

Next, the conditions of the cooperation between the wheel and the road surface
are verified on the basis of the relation:

ż0i − ξ̇i ≥ 0, R0i ≥ 0, R0i (ż0i − ξ̇i ) � 0, (20)

On the basis of the conditions shown above, the value of the force R0i and velocity
ż0i can be unequivocally determined:

R0i �
{
0 when Fi < 0

Fi when Fi ≥ 0
when z0i − ξi � 0, (21)

The presented task serves the purpose of determining the conditions of the inter-
action between the wheel and the road surface, and it is repeated for every wheel.
In the discussed case, the task is repeated four times. The abovementioned relations
allow for simultaneous determination of values of the forces of the tyre response to
the road surface in cases when the response force is greater than zero and equal to
zero.

The equations of motion of the mechanical system describe the vibrating motion
of the vehicle body and suspension, with the wheel masses taken into consideration.
The reaction of the wheels to the road surface was described on the basis of relations
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illustrating the interactions of the ith vehicle wheel. On the basis of the derived
equations of motion, it is possible to determine the vehicle body accelerations.

The vehicle was equippedwith controlledMRdampers so as to control the friction
force in the suspension. The equations describing phenomena taking place in the
electric system were used to illustrate the phenomena occurring in the magneto-
rheological damper. Change in the current supplying the coil influences the friction
force in the mechanical system. These relations were determined on the basis of the
experimental investigations.

Supplying the MR dampers takes place with the help of the electronic system. An
assumption was made that the signal generator does not introduce the decelerations.
Then, the MR damper coil is supplied with the control voltage value determined on
the basis of the control algorithm.

The model of the electric system is presented by the currents supplying the coils
in MR dampers, where the current vector is shown as:

I � [I1, I2, I3, I4], (22)

The equation of an electrical system assumes the form:

L İ + RI � Uw, (23)

It was assumed that the electric parameters of the coils are the same and have
inductiveness L, and resistance R. The vector of voltages supplying the coil circuit
is described as:

Uw � [Uw1,Uw2,Uw3,Uw4], (24)

The value of the controlling voltage is generated on the basis of the displacement
signals in the mechanical system. Then, the value of the controlling voltage for the
i-th damper assumes the form:

Uwi � RF−1(HT
i Ẋ , Twi ), i � 1, . . . , 4. (25)

However, the value of the friction forces is determined on the basis of the algo-
rithm:

Tw � A(HT X, HT Ẋ ), (26)

where A is an operator determining the vector of the friction forces on the basis of
the adopted control criterion.

Then, the vector of the friction forces takes the form:

Tw � [Tw1, Tw2, Tw3, Tw4]. (27)
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Fig. 2 MR damper characteristics

The relation between the control voltage and the friction force in the MR damper
was schematically illustrated in Fig. 2. The characteristics was developed on the
basis of experimental research presented in [7]. The presented characteristics was
generated based on the Grzesikiewicz model [6]. In this figure, the dependence of
the friction forces Tw on the current supplying the windings of the coils of the MR
damper was shown, at the present velocity of the damper deformation.

The value of the friction forces determined on the basis of the control algorithm.
The force is limited by the obtainable currents supplying the damper coil. The limit
values of the currents Imin and Imax determine the limit values of the damper friction
forces Twmin and Twmax .

The mathematical vehicle model with the controlled magneto-rheological
dampers consists of the equations describing the operation of the mechanical and
electric systems. In the vehicle mechanical system, there are described: the motion
of the vehicle body, displacements of the suspension, and the contact of the wheels
with the road surface.

3 Algorithm for Determination of Forces in MR Dampers

Controlling the magneto-rheological dampers takes place by means of the developed
algorithm taking into account the assumed criterion. It was assumed that the friction
force will be determined based on two criteria: drive comfort and safety.

In the control system, under the criterion of comfort, the module of vertical accel-
erations isminimised of the selected point on the vehicle body. This pointwasmarked
with letter K, and is shown in Fig. 1. The friction forces in the dampers are selected
so that the vertical acceleration module is minimal at K point.

To evaluate the system’s control under the comfort criterion, the ISO2631 standard
was used. The lined amplitude spectrum of the acceleration signal defined by the
Discrete Fourier Transform is evaluated here. The standard shows three levels of
vibration effect on humans: the lowest acceptable values of acceleration regard the
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comfort, higher values are related to nuisance, and the highest values determine the
level of harmfulness.

In the control algorithm, an indicator was used, i.e. the acceleration module at
a selected point on the vehicle body:

K(T ) � ∣∣a0 + DT T
∣∣. (28)

The value of acceleration in the chosen K point, located on the body (Fig. 1) is
determined from the relation:

aK � GT Ẍ , (29)

where vector G � [1, xk, yk, 0, 0, 0, 0]T defines the vector characterising the loca-
tion of point K.

Relations (29) can be shown in the form:

aK � −GT M−1H(S + T ), (30)

where forces in the spring elements are measured from the position of equilibrium.
The relation describing acceleration at the point K was transformed into:

aK � −GT M−1H(S + T ), (31)

where the following was denoted:

DT :� −GT M−1H ∈ R4 (32)

a0 :� DT S ∈ R1 (33)

The friction forces in the system are selected based on the comfort criterion so that
the value of the vertical accelerations module at the point K could be at a minimum.

Next, to control the system, the criterion of the vehicle ride safety was adopted,
where the ratio was represented by the variability of the wheel vertical forces on the
road surface (change in the dynamic loads in the suspension). Change in the vertical
forces is caused by the kinematic excitations and vehicle vibrations. Evaluation of
the control is conducted on the basis of the minimalization of the difference in the
wheel vertical forces acting on the road surface. The ratio of the drive safety was
adopted, which is constituted by the mean value of the integral of the difference in
the vertical forces in relation to the vehicle static load.

The form of the criterion function relative to the safety criterion was adopted in
the form:

W � 1

Qst

√√√√
N∑

i�1

(�Si + Ti − Fwi )
2 (34)
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where: Qst—is the static load, �Si—is the spring force change, Ti—is the friction
force in magneto-rheological device, N—number of wheels, Fwi—is the force of
inertia of a vehicle wheel.

The indexW defined above can be employed to quantify the efficacy ofminimizing
variations of the wheel vertical forces (forces in the suspension) of a vehicle.W takes
into account the value of the sum of changes of spring forces �Si , but not the entire
spring force which is equal:

�Si � ki H
T
i X (35)

Force of inertia of a vehicle is described:

Fwi � m0i ẍ0i (36)

Determining the optimum friction forces requires solving optimisation problems.
In the following considerations, the criterion functions will be addressed as func-
tional. In further discussion criterion functions are addressed as functionals.

In the first optimisation task, the friction force vector TK is determined, for which
the value of the first functional K reaches the minimum. It should be noted that the
K functional is not strictly convex. It means that there exists a set of arguments, for
which the K functional reaches the minimum. In the considered case, this set has a
form of a linear variety (hyperplane).

In the considered problem, the limitations of the friction forces occur, resulting
from the characteristics shown in Fig. 2. An illustration can be the situation in which
the damper is stretched with the velocity V , then the set of permissible values of the
friction force has the form of a section χ(V )marked in the plot of the characteristics.
In the task discussed here, a set of permissible friction forces is as follows:

Ω(V ) :� {
T ∈ R4 : Ti ∈ χ(Vi )

} � {
Ti ∈ R4 : Tmin(Vi ) ≤ Ti ≤ Tmax (Vi )

}
(37)

where: Vi—stretching velocity of the ith—damper, i � 1, . . . , 4, Tmin ,
Tmax—functions describing the limit values of the friction force depending on the
stretching velocity.

The description of the first optimisation task is shown as follows:

TK ∈ ArgminT∈�(V ) K(T ). (38)

where Arg min is an operatorwhich determines the set of arguments theK functional
in the set �. A detailed description of the solution of the optimization task was
presented in the paper [5].

The presented task consists in determining the vector of the friction forces in
the damper, that is comprised in the set determined from the comfort criterion. On
the basis of the solution to the optimisation task, the vector of the friction forces is
determined in the form:
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TK � [TK1, TK2, TK3, TK4] (39)

The second task includes the minimalisation of the functionalN on the set � this
task is described with the safety criterion taken into consideration. The functional is
strictly convex and was described with the relation in the form:

TN ∈ arg min
T∈�(V )

N (T ). (40)

in this case arg min is an operator, which determines the only argument minimis-
ing the functional N . On the basis of the task solution, the friction force vector is
determined in the form:

TN � [TN1, TN2, TN3, TN4] (41)

On the basis of the vectors of the friction forces obtained from the optimisation
tasks, an optimisation task is determined, which is a double-criterion task with an
influence coefficient and determined by the formula:

Tw � αTK + (1 − α)TN . (42)

where α is an influence coefficient 0 ≤ α ≤ 1.
The solution to the double-criterion optimisation task described above determines

the value of the A operator described by Eq. (26).

4 Simulation Research of the Vehicle with Controlled
Dampers

The simulation research of the vehicle with the controlled MR dampers was carried
out on the basis of the describedmathematicalmodel of the vehicle, and on the basis of
the algorithm for determining the friction forces. To conduct the tests, the simulation
programme in theMatlab/Simulink environment was developed. The numerical tests
were performed with the assumption that the vehicle model is symmetrical relative
to the x- and y- axes, and the centre of mass is located in the geometric centre of the
system. The vehicle body is represented by the object with the parameters in Table 1.

Table 1 The parameters values of vehicle body

Parameter m Jx Jy k1,…,4 a1,2 b xk yk

Unit (kg) (kg m2) (kg m2) (N/m) (m) (m) (m) (m)

Value 2400 1536 6144 47,500 1.6 0.8 0.7 0.3
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Table 2 The parameters values of suspension and MR damper with electric circuits supplying

Parameter m01,..,04 k01,…,04 c01,…,04 cmin cmax

Unit (kg) (N/m) (Ns/m) (Ns/m) (Ns/m)

Value 20 47,500 240 750 80,000

Parameter gr Vgr R L

Unit (N) (m/s) (�) (mH)

Value 800 0.01 2 6

The simulation research with controlling the damping force was performed based
on the characteristics shown in Fig. 2, where the set of permissible solutions is
determined by the limit values of the friction forces Tmin and Tmax . The suspension
and MR damper with electric circuits supplying vehicle body is represented by the
parameters in Table 2.

In order to compare the controlled system, the tests were conducted of the system
with the constant damping coefficient (with no control). Due to the limited volume of
this paper, a simpleNewton’smodel of frictionwas adopted for comparative research.
The subject literature offers insight into other friction models, e.g. the Maxwell’s,
Kelvin’s, or the fractional model [9, 12]. The value of the damping coefficient was
assumed at c1, . . . , c4 � 4500Ns/m this value was determined on the basis of the
dimensionless damping ratio γ � 0.3.

The friction force in the system with no control is determined on the basis of the
relation:

Ti � ci Vi , i � 1, . . . , 4. (43)

The simulation investigations were conducted under kinematic excitation ξ

defined by the harmonic function with amplitude A � 0.02m and frequency of
1.5 Hz. This excitation corresponds to the ride on the rough road with the velocity
V0 � 60 km/h.

The effectiveness of the control algorithm is measured by the index value of WG

which can be calculated by the following formula:

WG � 1

Qst N

t∫

0

√√√√
N∑

i�1

(�Si + Ti − Fwi )
2 (44)

where: W—is the value of index WG in time step described by sample, N—is the
total number of time step samples.

Figure 3 shows the curve of the acceleration module, which is a result of the
simulation research. The accelerations were determined at point K located on the
vehicle body. Two curves are presented here: with control and with the comfort
criterion taken into account (alpha�1), andwithout control. In the controlled system,
reduction of themodule of vertical accelerations of the selected point Kwas obtained.
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Fig. 3 Acceleration module at the point K under harmonic excitation, with control, given the
comfort criterion (alpha�1), and with no control (const.)
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Fig. 4 Curve of the vertical force change ratio under harmonic excitation, with control, given the
criterion of safety (alpha�0), and with no control (const.)

The evaluation of the acceleration curves was performed on the basis of the ISO-
2631 standard. The exposure time was extended in the conditions of comfort, from
6 min in the system with no control, to the value above 9 h in the system with the
controlled MR dampers.

The vehicle numerical research was conducted taking into account the criterion
of safety. Figure 4 shows the curve of the vertical force change ratio under harmonic
excitation. Two curves are shown: with control under the criterion of safety (alpha�
0), and the system with the constant damping (const). On the basis of the analysis,
the dynamic load ratios WG were determined: with no control 1.08× 10−1, and with
control 6.61× 10−2. In the systemwith control, there was the improvement obtained
in the ratio by 38.5%.
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5 Conclusion

The suggested control algorithm enables combining two opposing criteria for con-
trolling the vehicle suspension: minimising the acceleration module (comfort) and
minimising the dynamic loads (safety).

Using the MR damper control with the comfort criterion taken into account
allowed for minimising the acceleration module relative to the system without con-
trol. On the basis of the analysis of the tests results, a significant extension of exposure
time was observed in the system with the friction force control. The analysis of test
results conducted with the safety criterion taken into consideration indicates the
decrease in vertical force changes under individual vehicle wheels.

Acknowledgements This work was supported by the Polish National Center for Research and
Development allocated on the basis of the decision number project PBS3/B6/34/2015.

References
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Shadowing, Entropy and Minimal Sets

Piotr Oprocha

Abstract In this review paper we describe some consequences of the shadowing
property for global and local aspects of dynamics.Wewill put additional emphasis on
approximation of invariant measures by ergodic measures with additional properties
of their supports (minimality, positive entropy, mixing).

Keywords Shadowing · Entropy · Transitive · Mixing · Minimal · Odometer
Invariant measure · Poulsen simplex

1 Introduction

Theory of shadowing (or tracing) of approximate trajectories by exact trajectories is
an important part of modern theory of dynamical systems. Beginnings of the notion
of pseudo-trajectory, which is fundamental for our considerations, can be derived
from old papers of Birkhoff [2].

Suppose that we are given a dynamical system (X ,T ), that is a compact metric
space (X , d) together with a continuousmap T : X → X . One of the classical objects
studied in dynamics are recurrent points, that is points x ∈ X such that for any
open neighborhood U � x there is an integer n > 0 such that Tn(x) ∈ U . A natural
generalization of these are nonwandering points, i.e. points x ∈ X such that there
is a sequence (xk)k∈N ⊂ X and an increasing sequence of integers (nk)k∈N such
that limk→∞ xk = x and limk→∞ Tnk (xk) = x. Generalizing the above approximation
property even further we come to the definition of chain-recurrent point. Given δ > 0
we say that a finite sequence (x0, . . . , xn) is a δ-pseudo orbit from x to y if x0 = x,
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xn = y and d(T (xk), xk+1) < δ for k = 0, . . . , n − 1. A point x is chain-recurrent if
for every δ > 0 there is a δ-pseudo orbit from x to x. It is not hard to check that the
set of chain-recurrent points (denoted CR(T )) is always closed and T -invariant. The
same can be said about the set of non-wandering pointsΩ(T ). On the other hand, the
set of recurrent points Rec(T ) does not have to be closed, so it is worth to consider
so-called Birkhoff center Rec(T ). It is clear from definitions that

Rec(T ) ⊂ Rec(T ) ⊂ Ω(T ) ⊂ CR(T ).

Unfortunately it may happen in practice that all of the above inclusions are strict.
When searching for the property under which Rec(T ) = CR(T )we arrive in a natural
way to the definition of shadowing property. A point x is ε-tracing a pseudo-orbit
(x0, . . . , xn) if d(T i(x), xi) < ε for i = 0, . . . , n. A dynamical system (X ,T ) has the
shadowing property if for any ε > 0 there is δ > 0 such that any finite δ-pseudo
orbit (x0, . . . , xn) can be ε-traced. Roughly speaking, if a dynamical system has the
shadowing property then orbits calculated with sufficiently small error (e.g. these
visualized in numerical simulations) very well approximate real trajectories, and the
error of this approximation depends only on magnitude of error in single step but not
on the number of steps in simulation.

In this paper we will present selected results on consequences of shadowing
property for the dynamics.

2 Preliminaries

In this section we are going to recall a few basic concepts from topological dynamics.
For a more extensive exposition, the reader is referred to a standard textbook, such as
[1, 7]. An accessible treatment of dynamical systems with view towards shadowing
property can be found in monographs [1, 11–13].

By the orbit of a point x ∈ X we as usual mean the set O+(x) = {Tn(x) : n ≥ 0}.
Point is periodic if Tn(x) = x for some n > 0 and its period ism = min{n : Tn(x) =
x}. Point of period 1, that is point satisfying T (x) = x is called a fixed point.

If it is clear from the context thatM ⊂ X and we are restricted to this smaller set,
we write T instead of T |M . In particular, for any closed and T -invariant set M (i.e.
T (M ) ⊂ M ) we write (M ,T ) instead of (M ,T |M ).

2.1 Recurrence, Minimality and Mixing

The definition of recurrence leads us immediately to the following standard global
properties. A dynamical system (X ,T ) is:
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– transitive when for any two nonempty open sets U, V there is n > 0 such that
Tn(U ) ∩ V 	= ∅;

– totally transitive if (X ,Tn) is transitive for each n = 1, 2, . . .;
– weakly mixing if (X × X ,T × T ) si transitive;
– mixing if for any two nonempty open setsU, V there is N > 0 such that Tn(U ) ∩
V 	= ∅ for every n > N .

It is well known that the above ordering is strict, i.e. each property is implied by the
next in the list, but there is no converse implication in general (e.g. cyclic permutation
of finite set is transitive but not totally transitive).

As an example of a transitive map we may consider x �→ 4x(1 − x) acting on
[0, 1]. It is not hard to deduce that this example is transitive but some points are not
even recurrent. On the other hand, by Baire category theorem, the set of points whose
orbit is dense is residual in X for every transitive dynamical system (X ,T ).

If orbit of every point is dense in X then we say that (X ,T ) is minimal. Equiva-
lently it means that there are no proper, nonempty, closed and invariant sets A ⊂ X
(invariant means T (A) ⊂ A). A subset M ⊂ X is minimal if it is closed, invariant
and (M ,T ) is a minimal dynamical system.

There aremany natural examples ofminimal systems. Probably themost known is
rotation of the unit circle by an irrational angle (also note that rotation is totally tran-
sitive, but not weakly mixing). The other less popular, however crucial for our further
considerations are so-called adding machines or odometers. The formal definition is
as follows.

Let s = (sn)n∈N be a nondecreasing sequence of positive integers such that sn
divides sn+1. For each n ≥ 1 define πn : Zsn+1 → Zsn by the natural formula πn(m) =
m (mod sn). These maps define in a natural way the following inverse limit

Gs = lim←−
n

(Zsn ,πn) =
{
x ∈

∞∏
i=1

Zsn : xn = πn(xn+1)
}
,

where eachZsn is given the discrete topology, and on
∏∞

i=1 Zsn we have the Tychonoff
product topology (thus is compact metrizable space).

On Gs we define a natural map Ts : Gs → Gs by Ts(x)n = xn + 1 (mod sn). It is
not hard to see that Gs is closed and Ts is a homeomorphism, therefore (Gs,Ts) is a
dynamical system. Note that each coordinate in this inverse limit is periodic under
action of Ts which easily shows that each odometer is a minimal dynamical system. It
is also not hard to see that odometers (whennot reduced to a single point) are transitive
but not totally transitive. Note that if the sequence s is bounded, then constructed
system is in fact a periodic orbit. Some authors do not call these “degenerate” systems
odometers, but we do not put this restriction here.

There are many equivalent ways to define odometers, for example we can also
represent them on the space of sequences with dynamics defined by addition by 1
witch “carry”. Probably this definition is responsible for the name “addingmachine”.
A detailed exposition on odometers and their properties can be found in [6] (see also
[7]).
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A dynamical system (X ,T ) is an almost 1-1 extension of an odometer (Y , S)

if there exists a surjection π : X → Y such that π ◦ T = S ◦ π and the set {x ∈ X :
π−1(π(x)) = {x}} is residual in X . Clearly, almost 1-1 extension of an odometer is a
minimal system.

2.2 Chain Recurrence

Given two points x, y ∈ X , we write x ∼ y if for every δ > 0 there is a δ-pseudo
orbit from x to y and from y to x. Observe that the relation ∼ is an equivalence
relation of the set CR(T ). We call equivalence classes under ∼ the chain-recurrent
classes. Themost desirable case iswhenwehave [x]∼ = CR(T ) for some (thus every)
x ∈ CR(T ). If X = [x]∼ for some x ∈ X , we say that (X ,T ) is chain-transitive. It
is clear that chain-recurrent classes are always closed however it may happen that
there are infinitely many of them. To see this, it is enough to consider identity map on
the Cantor set (note that this map has the shadowing property as well). We say that
(X ,T ) is chain mixing if for every δ > 0 there is N such that for every x, y ∈ X and
any n ≥ N there exists a δ-pseudo orbit from x to y consisting exactly of n elements.

It is not hard to verify that T (CR(T )) = CR(T ). It is much less obvious that
CR(T ) = CR(T |CR(T )), see [15]. By the above we see that ([x]∼,T ) is a dynamical
system for any x ∈ CR(T ). In general not much can be said about dynamics on these
classes, so usually additional assumptions on dynamics are made.

The following theorem is among strongest properties that can be proven about
chain-recurrent classes (see [14]).

Theorem 2.1 Suppose that (X ,T ) is chain transitive. Then one of the following
assertions hold:

1. there exists n > 0 such that (X ,T ) permutes cyclically n closed and open chain-
recurrent classes of (X ,Tn) and (X ,Tn) is chain mixing on each of these classes;

2. (X ,T ) factors onto odometer.

2.3 Invariant Measures

Let (X ,T ) be a dynamical system, let B = BX denote the Borel σ-algebra on X and
denote by M (X ) the space of all Borel probability measures on X . It is well known
that M (X ) endowed with weak* topology is convex and compact metrizable space.
We say that a measure μ ∈ M (X ) is T -invariant if μ(T−1(A)) = μ(A) for every
A ∈ B. The set of all T -invariant measures will be denoted byMT (X ). It is standard
fact thatMT (X ) is convex and compact subset ofM (X ), and by Krylov-Bogolyubov
theorem it is also nonempty (see [18] for more details).
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For x ∈ X and n ∈ N, define the nth empirical measure of x as

En(x) := 1

n

n−1∑
j=0

δT j(x)

and observe that any limit points of the sequence (En(x))n∈N ⊂ M (X ) is T -invariant
measure. Since M (X ) is compact, always at least one accumulation point exists (in
fact, it is the main idea behind the proof of Krylov-Bogolyubov theorem).

An invariant measure μ ∈ MT (X ) is ergodic if for any A ∈ B condition T−1(A) =
A implies μ(A) = 0 or μ(A) = 1. The set of all ergodic measures will be denoted
by Me

T (X ). A useful property of Me
T (X ) is that it coincides with the set of extreme

points of MT (X ). A dynamical system (X ,T ) is called uniquely ergodic if MT (X )

is a singleton, and strictly ergodic if (X ,T ) is minimal and uniquely ergodic. If
(X ,T ) is an odometer or an irrational rotation on the circle, then we may view T as
a translation in a compact metrizable group. Therefore these dynamical systems are
strictly ergodic, with the Haar measure as the only invariant measure (e.g. see [18,
Theorem 6.20]).

A point x ∈ X is generic for measure μ ∈ MT (X ) if En(x) → μ as n → ∞. If
μ is ergodic, then Birkhoff ergodic theorem implies that μ-almost every point is
generic. It is also clear that if (X ,T ) is uniquely ergodic, then every point is generic,
because En(x) must have the unique measure as its only accumulation point. If μ is
not ergodic, then it may be the case that none of the points in X is generic for it.

For each μ ∈ MT (X ) there exists a Borel probability measure τ on Me
T (X ) such

that (see Remark (2) in page 153 of [18])

μ =
∫

Me
T (X )

νdτ (ν). (1)

We call (1) the ergodic decomposition of μ.

2.4 Entropy

Let (X ,T ) be a dynamical system. For any two finite coversU ,V ofX we define their
refinement U ∨ V by the formula U ∨ V = {U ∩ V : U ∈ U , V ∈ V,U ∩ V 	= ∅}
and for each n = 0, 1, 2, . . . we denote T−n(U) = {T−n(U ) : U ∈ U}.

Fix a finite open cover U of X . For any A ⊆ X let r(U ,A) denote the minimal
cardinality of cover of A consisting of elements of U . The topological entropy of U
is the number

htop(f ,U) = lim
n→∞

1

n
log r

(
n−1∨
i=0

T−i(U),X

)
= inf

n∈N
1

n
log r

(
n−1∨
i=0

T−i(U),X

)
.
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It is well known that the above limit always exist. Then the topological entropy
of (X ,T ) is defined as htop(T ) = sup

U∈CX

htop(T ,U), where, CX denotes the set of all

possible finite open covers of X .
For a finite Borel partition A = {A1, . . . ,An} of X and a measure μ ∈ MT (X )

define its entropy H (A) = −∑n
i=1 μ(Ai) log(μ(Ai)) and entropy of T with respect

to A is hμ(T ,A) = limn→∞ 1
nH (

∨n−1
i=0 T

−i(A)). Let us emphasize that we always
consider partitions without degenerate elements, that is μ(Ai) 	= 0 for every i. Again,
by standard argument the above limit always exist. Entropy of an invariant measure
μ is defined by hμ(T ) = supA∈PX

hμ(T ,A), where PX denotes the set of all finite
Borel partitions of X . One of the most useful tools to deal with entropy is variational
principle:

htop(X ,T ) = sup
μ∈MT (X )

hμ(T ) = sup
μ∈Me

T (X )

hμ(T ). (2)

Another important tool, which works when hμ(T ) < ∞ is the ergodic decompo-
sition of the entropy (see [18, Theorem 8.4 (ii)]), which can be stated as

hμ(T ) =
∫

Me
T (X )

hν(T )dτ (ν) (3)

where τ is themeasure fromergodic decomposition ofμ. In fact (2) and (3) are among
most effective tools when constructing measures approximating given entropy. An
example of their utility can be found in [9].

We refer the reader to the textbooks [5] or [18] for basic properties of entropy.

3 Specification Property

Let (X ,T ) be a dynamical system with surjective T and consider inverse limit

XT = lim←−(X ,T ) =
{
x ∈

∞∏
i=0

X : T (xi+1) = xi for all i ≥ 0

}

where
∏∞

i=0 X is endowed with Tychonoff product topology (hence we may regard
it as a compact metric space). Clearly XT is compact and additionally we have a
natural homeomorphism σ of XT defined by the formula σ(x)i = xi+1 = T (xi) for
very i ≥ 0. We call (XT ,σ) a natural extension of (X ,T ). Natural extension shares
many properties with original dynamical system, such as density of periodic points,
value of topological entropy or the shadowing property (see [4, 19]). It also allows
us to extend the standard definition of expansive homeomorphism to continuous
surjections (many authors call such maps c-expansive, e.g. see [1]). An invertible
dynamical system (X ,T ) is expansive if there exists λ > 0 (an expansive constant)
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such that for every x 	= y there is n ∈ Z such that d(Tn(x),Tn(y)) ≥ λ. We say that
(X ,T ), with T surjective, is expansive is (XT ,σ) is expansive. It is clear that for
homeomorphism both definitions coincide.

Expansiveness combined with shadowing property has strong consequences for
the dynamics. Among most beautiful examples of its utility is the following theorem
(see Theorem 3.4.4 in [1]).

Theorem 3.1 (Topological decomposition theorem) Let (X ,T ) be a dynamical sys-
tem with T surjective. Assume additionally that (X ,T ) is expansive with the shad-
owing property. Then the following assertions hold.

1. (Spectral decomposition due to Smale) There are finitelymany closed, T -invariant
and pairwise disjoint sets B1, . . . ,Bl ⊂ Ω(T ) such that:

(a) Ω(T ) = ∑l
i=1 Bi,

(b) Each dynamical system (Bi,T ) is topologically transitive.

Sets Bi are called basic sets.
2. (Spectral decomposition due to Bowen) For each basic set B there is k and a finite

sequence of pairwise disjoint closed sets C0, . . . ,Ck−1 such that:

(a) T (Ci) = Ci+1 for i = 0, . . . , k − 1, where for technical reasons Ck = C0,
(b) B = ∑k−1

i=0 Ci,
(c) (Ci,Tk) is topologically mixing for each i.

Sets Ci are called elementary sets.

Wesay that a dynamical system (X ,T ) satisfies the periodic specification property
if for any ε > 0 there existsM > 0 such that for any k ≥ 2, any sequence of k points
x1, x1, . . . , xk ∈ X , any non-negative integers 0 ≤ a1 ≤ b1 < a2 ≤ b2 < · · · < ak ≤
bk with ai − bi−1 ≥ M for each i = 2, 3, . . . , k and any integer p ≥ M + bk − a1,
there exists a periodic point z ∈ X with Tp(z) = z and d(T j(z),T j(xi)) < ε for all
ai ≤ j ≤ bi and 1 ≤ i ≤ k. We say that (X ,T ) satisfies the specification property
if the point z from the definition of periodic specification property is not any more
requested to be periodic (i.e. we drop the requirement that Tp(z) = z).

The following result summarizes relations between various mixing properties in
dynamical systems with shadowing property. Dependences between shadowing and
stronger forms of mixing were known to specialists in the field for some time (see
[3, 5]); in particular relation between mixing and specification property was first
provided by Bowen. We present a longer list of such dependences after [8].

Theorem 3.2 If (X ,T ) is a dynamical system with the shadowing property, then the
following conditions are equivalent:

1. (X ,T ) is totally transitive,
2. (X ,T ) is weakly mixing,
3. (X ,T ) is mixing,
4. T is surjective and (X ,T ) has the specification property,
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If any of the above conditions is satisfied and (X ,T ) is expansive then it has the pe-
riodic specification property.

Then as we see, mixing on elementary sets from the decomposition theorem is in
fact the specification property (or even periodic specification property). Motivated
by works of Bowen, Sigmund in a series of papers [16, 17] presented deep results
on relations between specification property and the structure of the set of invariant
measures. Among most classical is the following (see [1, 5]).

Theorem 3.3 If (X ,T ) has the periodic specification property then the set of ergodic
measures supported on periodic points is dense in MT (X ).

Sigmund also proved that the set of ergodic measures, the set of non-atomic
measures, the set of measures positive on all open sets, and the set of measures
vanishing on all proper closed invariant subsets in residual in the set of all invariant
measures (e.g. see [5]). In particular, by Baire theorem there always exists a fully
supported ergodic measure in that case. On the other hand, strongly mixing measures
form a set of the first category in the space of invariant measures, therefore it cannot
be guaranteed that a map with specification property has such a measure.

4 Shadowing Property and Local Dynamics

In is not surprising that the shadowing property can exists without expansiveness.
In fact, there are many cases when expansiveness is not very common or even is
not admissible (the simplest example is the class of interval maps [1]). On the other
hand, shadowing itself is enough to induce interesting consequences for properties of
dynamics and the structure of invariant measures. In fact, a slightly weaker version
of Theorem 3.3 is still valid for systems with the shadowing property as seen in the
following two theorems, which are the main results of [9].

Theorem 4.1 Suppose that a dynamical system (X ,T ) is transitive and has the
shadowing property. Then the collection of ergodic measures which are supported
on odometers is dense MT (X ). In particular ergodic measures form a residual subset
of MT (X ).

Theorem 4.2 Suppose that a dynamical system (X ,T ) is transitive and has the
shadowingproperty. Then for every invariantmeasureμ ∈ MT (X )and every0 ≤ c ≤
hμ(T ) there exists a sequence of ergodic measures (μn)

∞
n=1 ⊂ MT (X ) supported on

almost 1-1 extensions of odometers such that limn→∞ μn = μ and limn→∞ hμn(T ) =
c.

In [9] the authors constructed an example of a dynamical system with the shad-
owing property and positive topological entropy which is not weakly mixing (so in
particular, transitive dynamical system with the shadowing property is not necessar-
ily totally transitive). In that example, every minimal system has an odometer as a
factor.

In [10, Question 3] the following question was stated:
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Question: Does every non-wandering sensitive dynamical system with shadowing
property contain an equicontinuous minimal subsystem?

The answer to this question can be easily derived from result of [9], which is a local
version of Theorem 4.1.

Theorem 4.3 Suppose that (X ,T ) has the shadowing property and μ ∈ MT (X ). If
supp(μ) is contained in a single chain-recurrent class, then for every ε > 0 there is
an ergodic measure ν supported on an odometer such that ρ(ν,μ) < ε, where ρ is a
metric on M (X ) compatible with weak* topology.

We have an immediate Corollary from this result (recall that with our notation,
periodic orbits are also odometers), providing a positive answer to the above question
form [10].

Corollary 4.4 If (X ,T ) has the shadowing property then it contains an odometer
as a minimal subset (recall that according to our definition periodic points are
odometers).

Proof First recall that by Krylov-Bogolyubov theorem there is always an invariant
measure, and then by ergodic decomposition theoremalwaysMe

T (X ) 	= ∅. Therefore,
let us fix an ergodicmeasureμ. If supp(μ) is an odometer thenwe are done, so assume
it is not the case. But (supp(μ),T ) is a transitive dynamical system, hence supp(μ)

is contained in a chain-recurrent class. Now, we can apply Theorem 4.3 and find ν
supported on an odometer.

We finish this section by announcing the following two results (Theorem 4.5 and
4.6). The complete proofs of these statement will be published in a separate paper.

Theorem 4.5 There exists a topologically mixing dynamical system (X ,T ) with the
shadowing property and a unique fixed point p, such that if M ⊂ X is minimal and
(M ,T ) is weakly mixing then M = {p}.
The above system is not proximal (in fact it cannot be), but any of its (numerous)
minimal systems is either degenerate or not weakly mixing. It is worth mentioning
at this point another [10, Question 2]:

Question: Does every weakly mixing dynamical system with shadowing contain a
weakly mixing minimal subsystem.

While our Theorem 4.5 does not answer this question completely, at least it shows
that sometimes there are no nontrivial such subsets.

While there is no chance for minimal weakly mixing sets to be dense in the space,
still a little weaker version of weak mixing is present in the dynamical system from
Theorem 4.5. Price we must pay is that we no more require that the invariant set on
which we have weak mixing is minimal (which in fact cannot be required).
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Theorem 4.6 Suppose that a dynamical system (X ,T ) is topologically mixing and
has the shadowing property. Then, for every invariant measure μ ∈ MT (X ) there
exists a sequence of ergodic measures (μn)

∞
n=1 ⊂ Me

T (X ) such that limn→∞ μn = μ
and each (supp(μn),T ) is weakly mixing.

Itwould be nice to knowwhethermeasuresμn in the above sequence can beweakly
mixingmeasures. Unfortunately, we do not know the answer for this question. Surely,
by Theorem 4.5 dynamical systems (supp(μn),T ) are not minimal in general.
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Analysis of Vibrations of an Oscillator
Using Statistical Series

Ozga Agnieszka

Abstract Solving of a problem for systems subjected to random series of impulses
is aimed at determining an approximate distribution of the strength of stochastic
impulses forcing vibrations of an oscillator with damping. The difficulties that arose
in connection with interpretation of experimental data forced us to search for a
mathematical model, where algorithms were applied based on precise solutions.
Under appropriate assumptions regarding random variables: the time of action of
impulse and their strength, the deviation of the oscillator from its balanced position
is a process which, in the limit as time tends to infinity, is stationary and ergodic.
At the first stage of the simulation study discussed in this paper, classification of
the elements of the structure of statistical series is necessary. The work was inspired
by attempts at constructing a measuring device that would control granularity of
the medium in a dust pipeline. The device had to signal appearance of big or small
particles in excessive quantity in the transported dust.

Keywords Random series of impulses · Stochastic impulses · Random
vibrations · Statistical series

1 Introduction

The discussed problem is connected with an attempt at designing and construction
of a measuring device controlling homogeneity of granularity of the medium in a
dust pipe. To be more precise, the device had to signal appearance of big or small
particles in excessive quantity in the transported dust, at a given mean input value in
a real technological system.

A mathematical model the inverse identification problem [18] that allows for
determining the distribution of strength of impulses forcing the vibrations of the
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system was developed in several stages and was constructed on the basis of linear
differential equations [14–17] using the ergodic theory together with the basics of
the theory of dynamic systems, measure theory, group theory, probability calculus
and the theory of stochastic processes based on it [2–4]. This universal mathematical
model will enable us to perform a statistical interpretation of the measurement data.
It can be applied both for discrete systems and for continuous ones.

The problem of control of medium homogeneity may be solved by examining the
motion of a vibrating system that is influenced by this medium. The motion of such a
system is a stochastic process that can be mathematically described in the following
way:

ε(t, x) �
∑

0<ti<t

G(x, ηi , εi , t − ti ) (1)

where G is a function dependent on the choice of the vibrating system [10],
x—coordinates of the point of the vibrating system,
ηi is the value of strength of ith impulse, and ηi is a sequence of independent

identically random variables with finite expectation,
εi is the place where the ith impulse acts,
ti—ith moment of excitation of the movement.

τi � (ti − ti−1) (2)

{τi }+∞−∞ is a sequence of independent identically distributed random variables with
exponential distribution.

F(τ ) �
{
1 − exp(−λτ ) if τ ≥ 0

0 if τ < 0
(3)

The constant λ [6] is the impulse rate.
The intervals between the impulses {τi }+∞−∞ and strength of the impulses {ηi }+∞−∞

are independent random variables [11].
The force f (t) exciting vibrations of the system is defined as a series of random

impulses with strength ηi occurring at random instants of time ti:

f (t) �
∑

ti<t

ηiδ(t − ti ) (4)

In the case of the oscillator with damping function G and f(t) do not depend on εi ,

d2x

dt2
+ 2b

dx

dt
+ a2x �

∑

ti<t

ηiδ(t − ti ) (5)

with the following initial conditions
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x(0)� 0 and x′(0)� 0 (6)

and parameters of the vibrating system the damping coefficient b [1, 7, 8, 13] and
the frequency c.

c �
√
a2 − b2 (7)

Using the assumptions listed above it was proved that the motion of a vibrating
system for t→∞ is ergodic and stationary [5, 9]. The ergodic theorem allows for
approximately calculating all jth stochastic moments mj(t) of location x(t) of the
vibrating system.

x(t) � 1

c

∑

0<ti<t

ηi exp(−b(t − ti )) sin(c(t − ti )) (8)

m j (t) ∼� 1

[t/h]

∑

lh<t

x j (lh) (9)

where l is the counter, h �10−6 is the sampling interval and t is a present time.
Statistical moments, in turn, distinctly show the distributions of the random vari-

able from the Eqs. (7) and (8)

k∑

i�1

p̄i

⎡

⎣(mnm1 − mn+1)ηi +
n∑

j�1

(
n
j

)
mn− jm1η

j+1
i

C( j + 1)

C(1)c j

⎤

⎦ � 0 (10)

k∑

i�1

p̄i � 1 (11)

where k is the number of the sought values of random variable ηk , and for j>1 and
even j

C( j) � j!
∏ j/2−1

r�0

(
( jb/c)2 + (2r )2

)
c

jb
(12)

whereas for odd j >0,

C( j) � j!
∏( j−1)/2−1

r�0

(
( jb/c)2 + (2r + 1)2

) . (13)
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2 Investigations

In this case the mathematical model of an oscillator is understood in accord with
the terminology used for defining statistical models as a formalized description of a
certain theory or causal situation that are assumed to generate the observed data.

The simulations executed, among others with the use of PLGrid Infrastructure
allowed for assessment of difficulty of statistical analysis of the obtained data in the
context of the c and b parameters of the oscillating system. This simplified image of
reality makes it possible to observe (Table 1) the interdependence between:

1. oscillators with five different values of damping b [12]
2. oscillators with five different vibration frequency c.

The goal of the study presented here is to analyze twenty five one-dimensional
vibrating systems for two different distributions of impulses strength ηi (Fig. 1) for
the strike impulse rate λ=50,000 (Table 2).

The object studied is the influence of the smallest values of strength of stochastic
impulses ηi in the distribution forcing the vibrations of the oscillator on the differ-
ences between the distribution ηi p̃i executed by the program and the distribution
ηi p̄i calculated for model. The algorithm selecting random impulses p̃i is similar to,

Table 1 Parameters and numbers of twenty five one-dimensional vibrating systems

The damping
b

The frequency c

288,588 240,490 192,392 144,294 96,196

231,000 1 6 11 16 21

92,400 2 7 12 17 22

46,200 3 8 13 18 23

23,100 4 9 14 19 24

4620 5 10 15 20 25

Fig. 1 Probability
distribution function.
Probabilities and impulses
strength used in the
distributions �1 and �2

Table 2 Parameters of distributions of the random variables ηi

Distribution/Parameter �1 �2

Expected value 209,011.75 175,047.38

Standard deviation 110,158.73 136,600.9

Changeability coefficient (%) 52.7 78.0

Asymmetry coefficient 0 0.011
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Table 3 Strength ηi of the random impulses used in algorithm

η1 η2 η3 η4

�1 η 0.8η 0.4η 0.2η

�2 η 0.75η 0.25η 0.01η

but not identical with, the imposed distributions �1 and �2. The results are saved in
the file at every second of the motion, hence p̃i assumes different values depending
on time.

To achieve this goal we pose two research questions:

1. What is the influence of the introduced change of the distributions calculated
from the model if the vibrations are forced at the same random time interval?

2. Will this influence be independent of the parameters of the vibrating system?

In order to answer the questions posed above, the results of the simulation have
to be comparable. It should be remembered that x(t) are realizations of a random
variable. In the algorithm used to execute the study, the time of a hit and the impulse
are selected at random. In both cases in the imposed distributions �1 and �2 the
time remains the same while the strength depends on which of the distributions
is analyzed. Accordingly with the algorithm settings, if the impulse of the highest
strength η1 is randomly selected in the first distribution, in the second distribution
it will involve the same, strongest impulse of the value η=348, 353. The difference
becomes significant at the weakest impulse, since the strength in the distribution �1

amounts to 0.2η, while in �2 it is 0.01η. The middle impulses in the distribution �2

have lower strength than those occurring in the distribution �1, and their values are
presented in Table 3. The computations were executed in MATLAB software.

3 Classification of the Elements of the Structure
of Statistical Series Used In the Analysis
of One-Dimensional Dynamic Systems. Simulations

The data in the form of time series including sequences of observation of the exam-
ined phenomenon are saved in files as the distribution ηi p̃i executed by the program
and the distribution ηi p̄i calculated for the model. For each sample the results from
each oscillator were saved in a different file. The files are composed of eight vectors
including the calculated and executed distributions for four values of ηi forcing the
oscillator vibrations. The differences between p̄i and p̃i define the error of calcula-
tions from themodel issuing from the selected time section between 1 and 1800 s [9].
For t→∞ this error would equal zero regardless of the oscillator parameters or the
distribution forcing the oscillator vibration, because the deviation of the oscillator
from its balanced position is a process which, in the limit as time tends to infinity, is
stationary and ergodic. Sample values of p̄i– p̃i for tone test are presented in panel
charts 2–3.
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Analyzing the vertical panels we can notice the following properties:

1. For different values of ηi at the same time, different values of error in model
application were calculated from the model. The biggest errors were recorded
for the weakest impulse in the distribution �2, while the smallest error—for the
strongest impulse in the distribution �1 (Figs. 2 and 3).

Fig. 2 A panel chart containing a string of observations of formation of the studied phenomenon
in subsequent time intervals for twenty-five oscillators with five different values b and five different
values c. The data are for the distribution of �1 impulse forcing

Fig. 3 A panel chart containing a string of observations of formation of the studied phenomenon
in subsequent time intervals for twenty five oscillators with five different values b and five different
values c. The data are for the distribution of �2 impulse forcing
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Fig. 4 Errors in the determined distributions of the forced vibrations of an oscillator. Each of the
obtained time series for the distribution �1 was divided into six five-minute intervals

Answering the first of the research questions posed in the introduction,

1. For the same oscillators, bigger errors in application of the model were observed
for the distributions including impulses with lesser strength, and therefore lesser
expected value and greater standard deviation, changeability coefficient and
asymmetry coefficient.

The content of the horizontal panels shows that the changes in p̄i– p̃i fluctuate.
The changes are visible when each time series is divided into five-minute intervals
and the obtained results are compared using boxplot graphs (Figs. 4 and 5). The
great differences can be noticed for the first two time intervals from 0 to 600 s, but
the greatest one for the twenty-fourth oscillator (Figs. 6 and 7). Analyzing the data
obtained for the first, seventh, thirteenth, sixteenth, twentieth and the twenty-fourth
oscillator we can give a positive answer to the questions asked at the beginning.
We can confirm that a change in the distribution of impulse strength influences
significantly the errors in the distributions determined from the model, and the scope
of these changes is dependent on the b and c parameters of the vibrating system.
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Fig. 5 Errors in the determined distributions of the forced vibrations of an oscillator. Each of the
obtained time series for the distribution �1 was divided into six five-minute intervals

Fig. 6 Errors in the determined distributions of the forced vibrations of an oscillator. Each of the
obtained time series for the distribution �1 was divided into six five-minute intervals
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Fig. 7 Errors in the determined distributions of the forced vibrations of an oscillator. Each of the
obtained time series for the distribution �2 was divided into six five-minute intervals

4 Conclusions

The applied model of investigations has pointed out the source of some difficulties
connected with interpretation of the obtained results. For the same systems whose
vibrations are forced by various distributions of impulses we observe increased dif-
ferences between the distribution generated in simulation and the distribution com-
puted from themodel in the situationwhen the distribution includes impulses of small
strength. The decrease of the difference is possible for appropriately selected param-
eters—the frequency c of vibrations of the oscillator and the damping coefficient b,
which will be subjected to extended study.
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On Local Aspects of Entropy

Ryszard J. Pawlak and Ewa Korczak-Kubiak

Abstract Although the notion of an entropy has a global character, in many cases
the value of an entropy depends on the behaviour of a function near some point.
For that reason, in many papers various versions of a notion of “entropy point” are
considered. We will examine properties and relations between full entropy points
and focal entropy points. Moreover, we will introduce the notion of a full∗ entropy
point and unbalanced point and examine the possibility of graph approximation of
some kind of functions by functions having either full∗ entropy point or unbalanced
point.

Keywords Entropy · Discrete dynamical system · F -focal entropy point · Full
entropy point · full∗ entropy point · Unbalanced point · Almost (approximately)
continuous function
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1 Introduction

The notion of entropy has been introduced with respect to the issues connected with
thermodynamics as a result of observations concerning “energy loss” and “lost infor-
mation” [13, 20]. It led to examining an entropy connected with invariant measures
(see e.g. [23]). As the next step in the development of this concept in mathematics,
there appeared a notion of a topological entropy (for discrete dynamical systems)
which is based on two classical definitions: formulated by Adler et al. [1] using the
cover theory for compact spaces and by Bowen [4] and Dinaburg [7] for suitable

R. J. Pawlak (B) · E. Korczak-Kubiak
Faculty of Mathematics and Computer Science, Łódź University,
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metric spaces. In many papers, the notion of a topological entropy is joined with the
chaos theory. Although the notion of an entropy has a global character, in many cases
the value of an entropy depends on the behaviour of a function around some point.
For that reason, in many papers various versions of a notion of “entropy point” are
considered (e.g. [8, 10, 14, 19, 24]). In this paper we will examine properties and
relations between full entropy points [24] and focal entropy points [10].

An original impulse for our investigation were the problems posed by prof. P.
Walczak during the conference Foliations 2016 (7-th European Congress of Mathe-
matics, Satellite Conference), Będlewo, July 11–17, 2016. Consider selfmaps which
are almost continuous or Darboux Baire class one and for such a function f look
into the points with the property that f is constant on a “big set” lying near these
points and for any function g lying “close enough” to f (in the sense of the metric
of uniform convergence) these points are simultaneously focal entropy points and
full entropy points of g (according to Theorem1 it is known that the requirements
may be reduced to the demand that x0 is a focal entropy point). The questions are as
follows:

[PW1] What can we say about the family of functions having such kind of points?
[PW2] May the set of such points be big (for example in the sense of measure)?

The last two theorems presented in this paper are connected with the above questions.

2 Preliminaries

Throughout the paper we will use the letters N, Z and R to denote the set of all
positive integers, the set of all integers and the set of all real numbers, respectively.
Moreover, for any x ∈ R let us introduce the notation E(x) := max{k ∈ Z : k ≤ x}.
The symbol λ will stand for the Lebesgue measure on R and the symbol D for the
class of all Darboux functions.

Let (an)n∈N, (bn)n∈N, (cn)n∈N, (dn)n∈N ⊂ [0, 1] be sequences such that limn→∞
an = limn→∞ bn = limn→∞ cn = limn→∞ dn = x0 ∈ (0, 1) and an < bn < an+1 <

x0 < dn+1 < cn < dn, for n ∈ N. Then the sets Al = ⋃
n∈N(an, bn) and Ap = ⋃

n∈N
(cn, dn) will be called left-sided and right-sided interval set at the point x0,
respectively. For x0 = 0 and x0 = 1 we define one-sided interval sets in analogous
way. For a Lebesgue measurable set A ⊂ R the number d(A, x0) =
limh→0+ λ(A∩[x0−h,x0+h])

2h (d+(A, x0) = limh→0+ λ(A∩[x0,x0+h])
h , d−(A, x0) = limh→0+

λ(A∩[x0−h,x0])
h ) is called a density (right-sided density, left-sided density) of the set

A at the point x0, respectively.
Throughout the paper, writing X we will always mean a compact metric space

(equipped with the metric ρ).
Let A ⊂ X . The symbols int(A) and cl(A) will stand for the interior and for the

closure of the set A, respectively and by #(A) we will denote the cardinality of A.
We will use the symbol O(x0) to denote the family of all open neighbourhoods of
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x0 ∈ X . By a closed neighbourhood of a point x0 ∈ X we will mean any closed set
containing a set from the family O(x0). We will use the symbol B(x0, r) (B(x0, r))
to denote an open (closed) ball with the centre at x0 ∈ X and radius r. The symbol
f � A will stand for the restriction of a function f : X → Y to a set A ⊂ X and by
Γ (f ) we will denote the graph of f . The set of all fixed points of a function f will
be denoted by Fix(f ). We will say that a set A f -covers a set B (denoted by A →

f
B)

if B ⊂ f (A).
Based on [6, 9] we adopt the following definition of the entropy. Let f : X → X ,

ε > 0, n ∈ N andA ⊂ X be a nonempty compact set. A setK ⊂ A is (n, ε)-separated
for f if for each x, y ∈ K , x 	= y there is 0 ≤ i < n such that ρ(f i(x), f i(y)) > ε. A
topological entropy of f � A is the number

h(f � A) = lim
ε→0

lim sup
n→∞

(
1

n
log sAn (ε, f )

)

,

where
sAn (ε, f ) = max{#(K) : K ⊂ A is (n, ε)-separated set for f }.

If A = X then we simply write a topological entropy of f and we denote it by h(f ).
The notion of an F -focal entropy point was introduced in [10]. The main idea

of this definition was based on tending to express such kind of focusing entropy at a
point that would depend mainly on the behaviour of a function in sufficiently small
neighbourhoods of that point. We present below a precise definition of this notion.

Throughout the paper the symbolF will stand for a family of nonempty subsets of
X such that each nonempty open set contains some set from the familyF . Whenever
we consider X = [0, 1] with the natural metric, we assume that F is the family of
nondegenerate closed subintervals of [0, 1].

By ϑY
F we will denote the family of all finite sequences of sets fromF contained

in Y ⊂ X such that their closures are pairwise disjoint i.e. F = (A1, . . . ,Am) ∈ ϑY
F

iff Ai ∈ F , Ai ⊂ Y for any i ∈ {1, . . . ,m} and cl(Ai) ∩ cl(Aj) = ∅ for any i, j ∈
{1, . . . ,m} and i 	= j. For simplicity of notation, let ϑF stand for ϑX

F . Moreover,
F |Y = {K ∩ Y : K ∈ F }.

Let n,m ∈ N, f : X → X and F = (F1,F2, . . . ,Fm−1,F1), where Fi ∈ F for
i ∈ {1, . . . ,m − 1}. If Fi →

f n
Fi+1 for i ∈ {1, . . . ,m − 2} and Fm−1 →

f n
F1 then we

will denote this sequence F by [F1,F2, . . . ,Fm−1,F1]f n .
We shall say that f ∈ J (F ) if for any n,m ∈ N and any sequence [F1,F2, . . . ,

Fm−1,F1]f n there exists x0 ∈ F1 such that f n(m−1)(x0) = x0 and f n·i(x0) ∈ Fi+1 for
i ∈ {1, 2, . . . ,m − 1}, where Fm = F1.

IfF = (A1, . . . ,Am) ∈ ϑF and f : X → X is a function then for i, j ∈ {1, . . . ,m}
put aij = 1 if Ai →

f
Aj and aij = 0 otherwise. The matrix MF,f = [aij]mi,j=1 will be

called a structural matrix.
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A generalized entropy of f with respect to the sequence F ∈ ϑF is the number

Hf (F) =
{
log σ(MF,f ) if σ(MF,f ) > 0,

0 if σ(MF,f ) = 0,

where σ(MF,f ) = lim sup
n→∞

n

√
tr(M n

F,f ) (cf. [18]).

Let Y ⊂ X be a nonempty open set. We define the number
HF ,f (Y ) = sup

{
1
nHf n(F) : F ∈ ϑY

F ∧ n ∈ N
}
.

Next one can consider quantities

d(F , f ,Y ) =

⎧
⎪⎨

⎪⎩

HF ,f (Y )

h(f ) if h(f ) ∈ (0,∞),

1 if HF ,f (Y ) = ∞ or h(f ) = 0,

0 if HF ,f (Y ) ∈ [0,∞) and h(f ) = ∞,

and EF ,f (x0) = inf{d(F , f , V ) : V ∈ O(x0)}.
Obviously we have 0 ≤ EF ,f (x0) ≤ 1. We say that x0 ∈ X is anF -focal entropy

point of f if EF ,f (x0) = 1. The set of allF -focal entropy points of f will be denoted
by EF (f ).

Complexity of the definition of a focal entropy point causes that a natural question
arises: what kind of functions have such a point? A partial answer to this question is
contained in [10]. We will formulate it in the following way:

Lemma 1 Let f : [0, 1] → [0, 1] be a continuous function. Then EF (f ) 	= ∅.
In [24], the notion of a full entropy point has been introduced. A point x0 ∈ X

is called a full entropy point of a function f if h(f � K) = h(f ) > 0 for each closed
neighbourhood K of x0.

Notice that if h(f ) = 0 then we may consider F -focal entropy points of f (each
point of the domain of f is its F -focal entropy point) but we may not consider full
entropy points.

The below-presented notions connected with properties of dynamical systems at
a point are commonly known (see [2, 3]). Let f : X → X . We say that a point x0 ∈ X
is a wandering point of f if there exists a set U ∈ O(x0) such that U ∩ f i(U ) = ∅
for any i ∈ N. A point which is not a wandering point of f is called nonwandering
point of f . We say that a point x0 ∈ X is a recurrent point of f if for any U ∈ O(x0)
there exists n ∈ N such that f n(x0) ∈ U . The set of all recurrent points of f will be
denoted by Rc(f ). The closure cl(Rc(f )) of the set of all recurrent points of f will
be called a centre of f .

In 1959 Stalling distinguished a new class of functions - almost continuous func-
tions [21] - which arose in the context of the research connected with the fixed point
theory (if X is a Hausdorff space with the fixed point property then each almost
continuous function f : X → X has a fixed point). It may be also joined with some
kind of approximation.
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Let f : X → Y and K be some class of functions from X to Y . We say that a
function f is Γ -approximated by functions from the class K if for every open set
U ⊂ X × Y containing the graph of f there exists a function g ∈ K such that the
graph of g is contained in U .

A function f : X → Y is almost continuous if it isΓ -approximated by continuous
functions. The class of all almost continuous functions will be denoted by A .

A function f : [0, 1] → [0, 1] is turbulent provided there exist closed nondegen-
erate disjoint intervals J ,K ⊂ [0, 1] such that J ∪ K ⊂ f (J ) ∩ f (K).

The method of proof presented in [6] or the results contained in [17] allow to
formulate the following lemma.

Lemma 2 If f : [0, 1] → [0, 1] is turbulent, then h(f ) ≥ log 2.

In many considerations connected with real functions of real variables, a special
role is played by functions from Baire class one i.e. functions which are pointwise
limits of continuous functions (this class is denoted by B1). However, sometimes
it is essential to consider discontinuous functions, but “closer to continuity” than
functions from Baire class one. For that reason, there were distinguished the class
B∗
1 [15] and B∗∗

1 [16] (we will only use the class B∗∗
1 ).

B∗
1 is the class of all functions f : [0, 1] → R such that for every perfect set P

there exists a portion T (i.e. nonempty set of the form T = P ∩ (a, b)) such that f � T
is continuous. A function f : [0, 1] → R belongs do the class B∗∗

1 if the restriction
of f to the set of all discontinuity points of f is a continuous function. Notice that if
C denotes the class of all continuous functions then C ⊂ B∗∗

1 ⊂ B∗
1 ⊂ B1 [16]. Let

us consider functions fi : [0, 1] → [0, 1] (for i ∈ {0, 1}) given by the formulas:

f0(x)=
⎧
⎨

⎩

0 forx∈{0}∪
∞⋃

n=1
( 1
n+1 ,

1
n ),

1 forx∈{ 1n :n=1, 2, . . . }
and f1(x)=

⎧
⎨

⎩

0 forx∈
∞⋃

n=1
( 1
n+1 ,

1
n ),

1 forx∈{0}∪{ 1n :n=1, 2, . . .}.
Then f0 ∈ B∗

1 \ B∗∗
1 and f1 ∈ B∗∗

1 \ C.

3 Full* Entropy Points

We will start this section with presenting the connections betweenF -focal entropy
points and full entropy points of a function f . Next we will introduce the notion of
a full* entropy point.

Theorem 1 Let f : X → X be a function (not necessarily continuous) and h(f ) > 0.
If x0 ∈ X is an F -focal entropy point of f then x0 is a full entropy point of f .

Proof Let K be an arbitrary closed neighbourhood of the point x0. We need to show
that

h(f ) = h(f � K). (1)

Take η > 0 such that αη = h(f ) − η > 0.
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Obviously, we have HF ,f (Int(K)) > αη, which gives that there exists l ∈ N

and T = (A1, . . . ,Ak) ∈ ϑ
Int(K)

F , where k > 1, such that 1
l Hf l (T ) > αη. Let σ > 0

denote the minimum of the distances between closures of sets belonging to T . Fix

a strictly increasing sequence {μn} of positive integers such that log μn

√
tr(M μn

T ,f l ) >

l αη and set M μn

T ,f l = [zμn
i,j ]1≤i,j≤k . Fix n0 ∈ N. We see at once that log tr(M

μn0

T ,f l ) >

μn0 l αη and, consequently, we have J = {m ∈ {1, . . . , k} : zμn0
m,m > 0} 	= ∅. For

each m ∈ J there are z
μn0
m,m different sequences [Am,As1 , . . . ,Asμn0−1 ,Am]f l , where

s1, . . . , sμn0−1 ∈ {1, . . . , k}. LetBμn0
m = {Bm

1 , . . . ,Bm
z
μn0
m,m

}be the set of these sequences.
Denote Bm

i = [Am,Ai
s1 , . . . ,A

i
sμn0−1

,Am]f l for i ∈ {1, . . . , zμn0
m,m}. Then for any i ∈

{1, . . . , zμn0
m,m} one can find points bip for p ∈ {0, 1, . . . , μn0} such that bi0, b

i
μn0

∈ Am,

bij ∈ Ai
sμn0−j

for j ∈ {1, . . . , μn0 − 1} and f l(bij) = bij−1 for j ∈ {1, . . . , μn0}.
For each m ∈ J and i ∈ {1, . . . , zμn0

m,m} we can assign an element biμn0
to the set

Bm
i ∈ B

μn0
m , and so we create an injection Φm : Bμn0

m → Am (m ∈ J ). Obviously,
for any m ∈ J we have Φm(Bm

i ) ∈ Am, (f l)j(Φm(Bm
i )) ∈ Ai

sj for each j ∈ {1, . . . ,
μn0 − 1} and (f l)μn0 (Φm(Bm

i )) ∈ Am, for i ∈ {1, . . . , zμn0
m,m}. Note that

#(Φm(B
μn0
m )) = z

μn0
m,m for m ∈ J . (2)

Let us denote Pμn0
= ⋃

m∈J
Φm(B

μn0
m ) ⊂ Int(K).

Now we prove that

Pμn0
is a (μn0 , δ)-separated set for f l for each δ ∈ (0, σ ). (3)

Let x1, x2 ∈ Pμn0
and x1 	= x2. So, there exist mx1 ,mx2 ∈ J such that

x1 ∈ Φmx1
(B

μn0
mx1

) ⊂ Amx1
and x2 ∈ Φmx2

(B
μn0
mx2

) ⊂ Amx2
. Obviously ρ(x1, x2) ≥ σ >

δ, if mx1 	= mx2 . In the opposite situation mx1 = mx2 = τ . So, there exist ix1 , ix2 ∈
{1, . . . , zμn0

τ,τ } such that x1 = Φτ(Bτ
ix1

) and x2 = Φτ(Bτ
ix2

). Obviously, Bτ
ix1

	= Bτ
ix2
.

Thus there is p ∈ {1, . . . , μn0 − 1} such that Aix1
sp ∩ A

ix2
sp = ∅. Consequently, we have

(f l)p(x1) ∈ A
ix1
sp and (f l)p(x2) ∈ A

ix2
sp , so ρ((f l)p(x1), (f l)p(x2)) ≥ σ > δ. Finally, we

obtain ρ((f l)ν(x1), (f l)ν(x2)) > δ for some ν ∈ {0, . . . , μn0 − 1}.
SinceΦm1(B

μn0
m1 ) ∩ Φm2(B

μn0
m2 ) = ∅ for anym1,m2 ∈ J andm1 	= m2, by (2) we

obtain #(Pμn0
) = z

μn0
1,1 + · · · + z

μn0
k,k = tr(M

μn0

T ,f l ), which finishes the proof of (3).
In consequence, we have

log sInt(K)
μn0

(δ, f l) ≥ log(#(Pμn0
)) = log(tr(M

μn0

T ,f l )) > μn0 l αη

for any δ ∈ (0, σ ).
Since n0 ∈ N was chosen arbitrarily, we obtain log sInt(K)

μn
(δ, f l) > μnl αη for any

δ ∈ (0, σ ) and any n ∈ N. Consequently,
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lim sup
ν→∞

1

ν
log sInt(K)

ν (δ, f l) ≥ lim sup
n→∞

1

μn
log sInt(K)

μn
(δ, f l) ≥ l αη

for any δ ∈ (0, σ ). Therefore,

h(f l � K) ≥ h(f l � Int(K)) = lim
δ→0+

lim sup
ν→∞

1

ν
log sInt(K)

ν (δ, f l) ≥ l αη,

so by Proposition 3.6 [6] we have l h(f � K) ≥ l αη which means that h(f � K) ≥
h(f ) − η and it easily leads to our assertion. �

For further considerations, it seems to be interesting to distinguish points which
are full entropy points of a function but simultaneously are not F -focal entropy
points of this function. Such points will be called full∗ entropy points of f .

One can show that there exists a function with positive entropy which does not
have any full* entropy point (in order to avoid repetition of analogous notations, a
suitable example will be shown after the proof of Theorem2). With reference to the
definition of almost continuity, it seems to be interestingwhether there is a possibility
of Γ - approximation of functions belonging toA by continuous functions with full∗
entropy points.

Lemma 3 Let f : X → X , x0 ∈ X . Assume that y0 ∈ X is a full entropy point of f ,
f (x0) = y0 and y0 ∈ int(f (B(x0, r))), for some r > 0. Then x0 is a full entropy point
of f .

Proof Obviously h(f ) > 0. Let F be an arbitrary closed neighbourhood of x0.
There exist r0 > 0 such that B(x0, r0) ⊂ F and r1 > 0 such that y0 ∈ B(y0, r1) ⊂
int(f (B(x0, r0))). Let S ⊂ B(y0, r1) be an (n, ε)-separated set for f � B(y0, r1) with

a maximal possible cardinality sB(y0,r1)
n (ε, f ). For each α ∈ S choose xα ∈ f −1(α) ∩

B(x0, r0) and put S1 = {xα : α ∈ S}. One can show that S1 is an (n + 1, ε)-separated

set for f � F . So, we have sFn+1(ε, f ) ≥ #(S1) = #(S) = sB(y0,r1)
n (ε, f ). Consequently

h(f � F) ≥ lim
ε→0

lim sup
n→∞

(
1

n
log sB(y0,r1)

n (ε, f )

)

= h(f � B(y0, r1)). (4)

Obviously h(f � B(y0, r1)) = h(f ). Therefore, using (4) we conclude h(f � F) ≥
h(f ). Clearly, we have also h(f � F) ≤ h(f ). �

Theorem 2 Each almost continuous f : [0, 1] → [0, 1] can be Γ -approximated by
continuous functions having a full∗-entropy point.

Proof To simplify the notation of the proof, let us accept:

• the symbol wn
a,b to denote a function wn

a,b : [a, b] → [a, b] fulfilling the follow-

ing conditions: (wn
a,b)

−1(a) = {a + 2k(b−a)
n : k = 0, 1, . . . ,E( n2 )}, (wn

a,b)
−1(b) =

{a + (2k+1)(b−a)
n : k = 0, 1, . . . ,E( n−1

2 )},wn
a,b is linear on the intervals [a + k(b−a)

n ,

a + (k+1)(b−a)
n ], where k ∈ {0, 1, . . . , n − 1};
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• the symbol wc,d to denote a function wc,d : [c, d ] → [c, d ] such that wc,d (d) = d
and wc,d (x) = w2j+1

c+ (2j−1)(d−c)
2j

,c+ (2j+1−1)(d−c)
2j+1

(x), dla x ∈ [c + (2j−1)(d−c)
2j

, c + (2j+1−1)(d−c)
2j+1 ],

j ∈ N ∪ {0}.
LetU ⊂ [0, 1] × [0, 1] be open in [0, 1] × [0, 1] and such that Γ (f ) ⊂ U . There

exist a continuous function fc : [0, 1] → [0, 1] such that Γ (fc) ⊂ U and a point x0 ∈
Fix(fc) ∩ (0, 1). Let δ1 > 0 be such that [x0 − δ1, x0 + δ1] × [x0 − δ1, x0 + δ1] ⊂ U .
Choose a number δ ∈ (0, δ1

2 ) such that fc([x0 − 2δ, x0 + 2δ]) ⊂ [x0 − δ1, x0 + δ1].
Let g : [0, 1] → [0, 1] be defined as follows: g(x) = fc(x) for x ∈ [0, x0 − 2δ] ∪

[x0 + 2δ, 1], g linear on [x0 − 2δ, x0 − 3δ
2 ], g(x) = −x + 2x0 for x ∈ [x0 − 3δ

2 , x0],
g(x) = wx0,x0+δ(x) dla x ∈ [x0, x0 + δ], g(x) = x for x ∈ (x0 + δ, x0 + 3δ

2 ), g linear
on [x0 + 3δ

2 , x0 + 2δ]. It is easy to observe that Γ (g) ⊂ U and g is continuous.
Now, we will show that x0 − δ is a full∗ entropy point of g.
First notice that x0 − δ is not a focal entropy point of g. Indeed, aiming for a

contradiction, suppose that x0 − δ is a focal entropy point of g. Then, by ([10],
Proposition 3.3), x0 − δ is a nonwandering point of g. On the other hand gi((x0 −
3δ
2 , x0 − δ

2 )) ⊂ [x0 + δ
2 , x0 + 3δ

2 ] (i ∈ N), which contradicts the fact that x0 − δ is a
nonwandering point of g and we can conclude that x0 − δ is not a focal entropy point
of g.

We have g(x0 − δ) = x0 + δ. Let r > 0. Put ε = min{r, δ
4 }. Then g(B(x0 −

δ, r)) ⊃ (x0 + δ − ε, x0 + δ + ε), so x0 + δ ∈ int(g(B(x0 − δ, r))). Let K be an
arbitrary closed neighbourhood of x0 + δ. There exists k0 ∈ N such that [x0 +
(2k0−1)δ

2k0
, x0 + δ] ⊂ K . Denote Yj = [x0 + (2j−1)δ

2j , x0 + (2j+1−1)δ
2j+1 ] for j ≥ k0. Then

log(2j − 1) ≤ h(g � K), for j ≥ k0 ([2], Theorem 4.2.4). Thus h(g � K) = +∞ =
h(g), which means that x0 + δ is a full entropy point of g.

Hence and by Lemma3 we conclude that x0 − δ is a full∗ entropy point of g. �

Now, we will present the example which was announced before Lemma3.
Consider the function f : [0, 1] → [0, 1], f (x) = w0,1(x) (see notations intro-

duced at the beginning of the proof of Theorem2). We have h(f ) = ∞ ([2]) and
1 is a full entropy point of f (see proof of Theorem2). We will show that 1 is the
only one full entropy point of f . Let x0 	= 1. Consider the following cases:

1. x0 /∈ { 2k−1
2k : k = 0, 1, . . . }. Then, there exists k0 ∈ N such that x0 ∈ ( 2

k0−1
2k0

,
2k0+1−1
2k0+1 ). The interval K = [ 2k0−1

2k0
, 2k0+1−1

2k0+1 ] is a closed neighbourhood of x0. We
have h(f � K) = log(2k0 + 1) 	= ∞ = h(f ). Thus x0 is not a full entropy point
of f .

2. x0 = 2k1−1
2k1

for some k1 ∈ {1, 2, . . . }. Then K = [ 2k1−1−1
2k1−1 , 2k1+1−1

2k1+1 ] is a closed

neighbourhood of x0. Put Yk1−1 = [ 2k1−1−1
2k1−1 , 2k1−1

2k1
] and Yk1 = [ 2k1−1

2k1
, 2k1+1−1

2k1+1 ].
Clearly K = Yk1−1 ∪ Yk1 . Moreover, the sets Yk1−1 and Yk1 are closed and f -
invariant. We have h(f � K) = max{h(f � Yk1−1), h(f � Yk1)} = max{log(2k1 −
1), log(2k1 + 1)} 	= ∞ = h(f ). Thus x0 is not a full entropy point of f .

3. x0 = 0. PutK = [0, 1
2 ]. Then h(f � K) = 0 	= h(f ), so x0 = 0 is not a full entropy

point of f .
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We have shown that 1 is the only one full entropy point of f . By Theorem1 no
point x 	= 1 is a focal entropy point of f . Moreover, by Lemma1 we know that the
set of all focal entropy points of f is nonempty, thus 1 is a focal entropy point of f .

4 Focal Entropy Points - Unbalanced Points

It has been mentioned that a lot of considerations regarding discrete dynamical sys-
tems are concentrated on functions mapping the closed unit interval into itself (piece-
wise monotonne functions, unimodal functions, etc.). In this case, it is also worth to
examine classes of functions which are important in real analysis [5, 12]. Note that
if f : [0, 1] → [0, 1] then the following implications hold:

f is approximately continuous ⇒ f is a derivative ⇒

f is a Darboux Baire class one function ⇒ f is almost continuous.

In the further part of the paper, the facts connected with F -focal entropy points
will be examined under as weak as possible assumptions imposed on considered
functions. We will start with proving the following theorem.

Theorem 3 Let f ∈ DB1 and h(f ) > 0. Then the set of all F -focal entropy points
of f is contained in the centre of f .

Proof Let x0 be anF -focal entropy point of f andU ∈ O(x0). It is sufficient to show
that U ∩ Rc(f ) 	= ∅. We have h(f ) > 0. Let β ∈ (0, h(f )). Then HF ,f (U ) > β. We
haveHF ,f (U ) = sup{ 1nHf n(F) : F ∈ ϑU

F ∧ n ∈ N} > β, thus there exist n0 ∈ N and
F0 = (I1, . . . , Ik) ∈ ϑU

F such thatHf n0 (F0) > n0β. This gives the existence of strictly
increasing sequence {dn}n∈N of positive integers such that

log dn

√
tr(M dn

F0,f n0
) > n0 β. (5)

Let us adopt the following notation: M dn
F0,f n0

= [adni,j]1≤i,j≤k and fix n∗ ∈ N. By (5)
we have

tr(M dn∗
F0,f n0

) > dn∗n0 β. (6)

Set Π = {m ∈ {1, . . . , k} : adn∗m,m > 0}. Condition (6) implies Π 	= ∅. Fix m0 ∈ Π .
There exists a sequence [Im0 , Is1 , . . . , Isdn∗ −1 , Im0 ]f n0 ,where s1, . . . , sdn∗ −1 ∈ {1, . . . , k}.
By Remark 2.4 [22] there is x ∈ Im0 ⊂ U such that (f n0)dn∗ (x) = x. Thus x ∈
U ∩ Rc(f ) and the proof is finished. �

Let us note that the assumption h(f ) > 0 in Theorem3 is essential. Consider the
function f (x) = log2(x + 1). Then each point of the interval (0, 1) is an F -focal
entropy point of f and simultaneously it does not lie in the centre of f .
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One can construct an example of a function with a positive entropy and such that
it has an F -focal entropy point which is not a recurrent point.

As it was mentioned in the introduction, it is commonly thought that the basic
criterion for dynamical system to be chaotic is a positive entropy of this system.
Thus, the fact that x0 is a focal entropy point of f suggests that f is “chaotic” in the
neighbourhood of x0. What is more, this fact may cause an effect of a “black hole”,
i.e. each function which is “close” to f is also chaotic in the neighbourhood of x0.
Simultaneously, such a function may be “non-chaotic” (even constant) on a big set
(in the sense of Lebesgue measure) lying close to x0. It leads to the definition of an
unbalanced point.

Let f be a Darboux function such that h(f ) > 0. We say that a point x0 ∈ (0, 1)
(respectively x0 = 0, x0 = 1) is an unbalanced point of f if

[U1] f is approximately constant at x0, i.e. there is a Lebesgue measurable set
A such that d(A, x0) = 1 (respectively d+(A, x0) = 1, d−(A, x0) = 1) and
f (x) = f (x0) for x ∈ A;

[U2] there exists σ > 0 such that for any g ∈ Bρu(f , σ ) ∩ Dwe have h(g) > 0 and
x0 ∈ EF (g).

The set of all unbalanced points of a function f will be denoted by U(f ). It is not
difficult to notice that if a point x0 is an unbalanced point of a function f then it
is a 0-approximate continuity point of f and f attracts positive entropy at x0 (see
definitions presented in [11]).

The following theorem is connected with the question [PW1] formulated in the
introduction.

Theorem 4 Each almost continuous function can be Γ -approximated by approxi-
mately continuous functions having an unbalanced point.

Proof Let f be an almost continuous function and U ⊂ [0, 1] × [0, 1] be an open
set in [0, 1] × [0, 1] containing Γ (f ).

Clearly, there exist a continuous function fc : [0, 1] → [0, 1] such that Γ (fc) ⊂
U and a point x0 ∈ Fix(fc) ∩ (0, 1). Moreover, there is a number δ1 > 0 such that
[x0 − δ1, x0 + δ1] × [x0 − δ1, x0 + δ1] ⊂ U . By continuity of fc, one can choose δ2 ∈
(0, δ1) such that fc([x0 − δ2, x0 + δ2]) ⊂ [x0 − δ1, x0 + δ1].

Let Ap =
∞⋃

n=1
(cn, dn) ⊂ (x0, x0 + δ2

2 ) be a right-sided interval set at the point x0

such that d+(Ap, x0) = 1. Put A = (x0 − δ2
2 , x0) ∪ Ap, xn = 3dn+1+cn

4 and

yn = 3cn+dn+1

4 , for n ∈ N.
Define f0 as follows: f0(x) = fc(x) for x ∈ [0, 1] \ (x0 − δ2, x0 + δ2), f0(x) = x0

for x ∈ cl (A) ∪ (d1, x0 + δ2
2 ], f0(x) = x0 + δ2

2 for x = yn, n ∈ N, f0(x) = x0 − δ2
2 for

x = xn, n ∈ N, f0 linear respectively on the intervals [dn+1, xn], [xn, yn], [yn, cn], n ∈
N. Obviously Γ (f0) ⊂ U and f0 is an approximately continuous function.

We will show that x0 is an unbalanced point of f0.
It is easy to check that f0 is a turbulent function, so by Lemma2we have h(f0) > 0.

Moreover, d(A, x0) = 1 and f0(x) = x0, for x ∈ A.
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It remains to prove that there exists σ > 0 such that for any function g ∈
Bρu(f , σ ) ∩ D we have h(g) > 0 and x0 ∈ EF (g).
Let us put σ = δ2

4 . Let g ∈ Bρu(f , σ ) ∩ D. First observe that g(yn) > x0 + δ2
4 and

g(xn) < x0 − δ2
4 . The function g is Darboux, so [x0 − δ2

4 , x0 + δ2
4 ] ⊂ g([xn, yn]).

Notice that there exists n1 ∈ N such that [xn, yn] ⊂ [x0 − δ2
4 , x0 + δ2

4 ] for n ≥ n1. Let
n∗, n∗∗ ≥ n1 andn∗ 	= n∗∗. Then [xn∗ , yn∗ ] ∩ [xn∗∗ , yn∗∗ ] = ∅, [xn∗ , yn∗ ] ∪ [xn∗∗ , yn∗∗ ] ⊂
[x0 − δ2

4 , x0 + δ2
4 ] ⊂ g([xn∗ , yn∗ ]) ∩ g([xn∗∗, yn∗∗ ]). Thus g is a turbulent function and

by Lemma2 we conclude that h(g) > 0.
Wewill show now that x0 ∈ EF (g). Let V ∈ O(x0) and n2 > n1 be such that yn2 ∈

V . PutFk = {[xn, yn] : n = n2, . . . , n2 + k} for k ∈ N. Clearly
⋃

Fk ⊂ V . Fix k ∈ N.
We have g([xn, yn]) ⊃ [x0 − δ2

4 , x0 + δ2
4 ] ⊃ [xm, ym], for n,m ∈ {n2, . . . , n2 + k}.

This means that [xn, yn] →
g

[xm, ym] for n,m ∈ {n2, . . . , n2 + k}, so MFk ,g is a

(k + 1) × (k + 1) matrix whose all entries are equal to 1. Hence, for any i ∈ N

the matrix M i
Fk ,g

is a (k + 1) × (k + 1) matrix whose all entries are of the form
(k + 1)i−1. Therefore for any i ∈ N we have tr(M i

Fk ,g
) = (k + 1)i. Thus Hg(Fk) =

log(k + 1). Moreover

HF ,g(V ) ≥ sup{Hg(Fk) : k ∈ N} = sup{log(k + 1) : k ∈ N} = ∞,

so x0 ∈ EF (g). This completes the proof of the fact that x0 is an unbalanced point
of f0. �

The answer to the question [PW2] is the following theorem.

Theorem 5 For any α ∈ [0, 1) there exists a function f : [0, 1] → [0, 1] such that
f ∈ DB∗∗

1 and λ(U(f )) = α.

Proof Let us first consider the case α ∈ (0, 1). Let C ⊂ [0, 1] be a Cantor set such
that λ(C) = α. Define a function f : [0, 1] → [0, 1] in the following way: f (x) = 0
for x ∈ C; for each component (a, b) of the complement of C put f ( a+b

2 ) = 1 and
let f be linear on the intervals [a, a+b

2 ] and [ a+b
2 , b].

It is easy to see that f ∈ DB∗∗
1 and h(f ) > 0.

LetC∗ ⊂ C be the set of all density points ofC. ByLebesgueDensity Theoremwe
have λ(C∗) = λ(C) = α. We will show that U(f ) = C∗. It is clear that U(f ) ⊂ C∗.
Let x0 ∈ C∗. Then f (x0) = 0. The function f is approximately constant at x0, because
C is a Lebesgue measurable set such that d(C, x0) = 1 and f (x) = 0 = f (x0), for
x ∈ C.

Put σ = min{ x02 , 1−x0
2 }. Let g ∈ Bρu(f , σ ) ∩ D. We need to show that h(g) > 0

and x0 ∈ EF (g). This follows by the same method as in the proof of Theorem4.

We now turn to the case α = 0. Let x0 ∈ (0, 1) and Ap =
∞⋃

n=1
(cn, dn) ⊂ (0, 1) be

a right-sided interval set at x0 such that d+(Ap, x0) = 1. Put A = [0, x0) ∪ Ap and
xn = dn+1+cn

2 , n ∈ N. Define f : [0, 1] → [0, 1] as follows: f (x) = 0 for x ∈ cl (A),
f (x) = 1 for x = xn, n ∈ N and f is linear on the intervals [dn+1, xn], [xn, cn], n ∈ N.
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Clearly f ∈ DB∗∗
1 and h(f ) > 0. If we apply similar reasoning as before, we obtain

U(f ) = {x0} and consequently λ(U(f )) = 0. �
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Optimal Control of Hybrid Systems
with Sliding Modes

Radosław Pytlak, Damian Suski and Tomasz Tarnawski

Abstract This paper concerns the numerical procedure for solving hybrid optimal
control problems with sliding modes. The proposed procedure has several features
which distinguish it from the other procedures for the problem. First of all a slid-
ing mode is coped with differential–algebraic equations (DAEs) and that guarantees
accurate tracking of the sliding motion surface. The second important feature is the
calculation of cost and constraints functions gradients with the help of adjoint equa-
tions. The adjoint equations presented in the paper take into account sliding motion.
The third feature is the integration of the presented procedure with the Interactive
Dynamic Optimization Server (IDOS) which is a computing environment dedicated
to optimal control problems. IDOS user interface relies on Dynamic Optimization
Modeling Language (DOML) which is an extension of Modelica language. In the
paper we discuss the elements of DOMLwhich help defining hybrid optimal control
problems. The paper presents the application of the proposed procedure to an optimal
control problem related to a mechanical system with dry friction.
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1 Introduction

Hybrid systems are systems with mixed discrete–continuous dynamics [1]. In this
work we use a definition of a hybrid system given in [2], which is similar to many
other definitions given in the literature e.g. [1, 3–6]. We restrict our analysis to
systems with autonomous transitions and without state jumps during transitions

Definition 1 A hybrid systemH is a tuple

H = (Q,U ,I ,F ,T ,G ) (1)

where

• Q is a finite set of discrete states. Its elements are denoted by q.
• U is a set of admissible controls. The elements of U are measurable functions
u : I → U , where I can be any closed interval of R andU is a fixed subset of Rm.

• I is a function which assigns to every discrete state q a set

I (q) = {
x ∈ R

n : hq(x) ≤ 0
}
, hq : Rn → R

nI q (2)

such that as long as a hybrid systems is in a discrete state q the continuous state
trajectory x stays in I (q). We therefore say that I (q) is an invariant set for a
discrete state q.

• F is a functionwhich assigns to every discrete state q a function fq : I (q) ×U →
R

n such that in a discrete state q the continuous state evolves according to a
differential equation

x′ = fq(x, u) (3)

• T is a subset ofQ × Q, which collects all pairs of discrete states (q, q′) such that
the transition from a state q to a state q′ is possible.

• G assigns to each pair (q, q′) ∈ T a subset of I (q) boundary such that when a
continuous state trajectory is about to leave I (q) through its boundary at a point
xt ∈ G (q, q′) ⊂ ∂I (q) a discrete state changes from q to q′. We call such an event
a transition and G plays a role of a transition guard.

2 Sliding Mode

In ourworkwe consider hybrid systemswith slidingmodes. For the sake of simplicity
let us consider a hybrid system with two discrete states collected in a setQ = {1, 2}.
Let us assume that the invariant sets are I (1) = {x ∈ R

n : h(x) ≤ 0} and I (2) =
{x ∈ R

n : h(x) ≥ 0}where h : Rn → R. If the hybrid system starts its evolution from
a discrete state q = 1 the continuous state evolves according to an equation x′ =
f1(x, u). At a transition time tt the continuous state trajectory reaches the boundary of
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an invariant set and we have h(x(tt)) = 0. The first order condition which guarantees
that the continuous state trajectory will leave the invariant set I (1) is [2, 3]

hx(x(tt))f1(x(tt), u(tt)) > 0 (4)

where hTx (x) is the normal vector to a surface

Σ = {x ∈ R
n : h(x) = 0} (5)

at x. If at a transition time we have

hx(x(tt))f2(x(tt), u(tt)) > 0 (6)

then the discrete state changes from q = 1 to q = 2 and the continuous state continues
the evolution according to an equation x′ = f2(x, u). If at a transition time we have

hx(x(tt))f2(x(tt), u(tt)) < 0 (7)

then both vector fields f1(x, u) and f2(x, u) points towards the surface Σ and we face
the sliding motion phenomenon [7].

The sliding motion can be handled with the concept of Filippov solutions [7]. We
say that a continuous state trajectory is a Filippov solution of the considered hybrid
system if

x′ =

⎧
⎪⎨

⎪⎩

f1(x, u) if h(x) < 0

fF(x, u) if h(x) = 0

f2(x, u) if h(x) > 0

where fF(x, u) is a convex combination of f1(x, u) and f2(x, u)

fF(x, u) = (1 − α)f1(x, u) + αf2(x, u), α ∈ [0, 1] (8)

During the sliding motion the continuous state trajectory must stay in the surface
Σ , so the condition

hx(x)fF(x, u) = 0 (9)

must be satisfied. From (8) and (9) it is easy to find the formula for α coefficient

α(x, u) = hx(x)f1(x, u)

hx(x) (f1(x, u) − f2(x, u))
(10)

The hybrid system exits the sliding motion when one of the vector fields f1(x, u)
and f2(x, u) stops pointing towards the surface Σ . It is easy to track that event by
checking the value of α(x, u). If at a moment tt we have
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α(x(tt), u(tt)) = 0 (11)
d

dt
α(x(tt), u(tt)) < 0 (12)

the hybrid system transits to a discrete state q = 1 [7]. If at a moment tt we have

α(x(tt), u(tt)) = 1 (13)
d

dt
α(x(tt), u(tt)) > 0 (14)

the hybrid system transits to a discrete state q = 2 [7].
During the slidingmotion the continuous state trajectory should stay in a setΣ . To

keep this condition satisfied during the numerical integration, we follow the approach
proposed in [8] and integrate the differential-algebraic equations (DAEs)

x′ = fF(x, u) + hTx (x)z (15)

0 = h(x) (16)

instead of ODEs
x′ = fF(x, u) (17)

Equations (15)–(16) are index two DAEs under the assumption that at each x ∈ Σ

hx(x) �= 0 (18)

The hidden algebraic equation resulting from differentiation of Eq. (16) is

0 = hx(x)
(
fF(x, u) + hTx (x)z

)
(19)

From Eqs. (9), (18) and (19) we get that z = 0 for an exact solution of Eqs. (15)–(16).

3 Calculating the Optimal Control

Taking into account the considerations and definitions presented in the previous
section, in particular including the possibility of the system entering (and spending
some time) in the sliding mode, we now put down the optimal control problem of
interest, as follows:

min
u∈U φ(x(t1)) (20)

x(t0) = x0 (21)
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x′ =

⎧
⎪⎨

⎪⎩

f1(x, u) if h(x) < 0

fF(x, u) if h(x) = 0

f2(x, u) if h(x) > 0

g1i (x(t1)) = 0, for i ∈ E (22)

g2j (x(t1)) ≤ 0, for j ∈ I . (23)

The admissible control is a function u : [t0, t1] → U .
To calculate the optimal control for hybrid systems with sliding modes we fol-

low the approach presented in [9, 10] for systems described by DAEs and in [2]
for hybrid systems without sliding modes. The numerical algorithm calculates the
gradients of cost and constraint functionals with the help of adjoint equations. Here
we formulate the adjoint equations for two cases, which complement the formulation
of adjoint equations presented in [2]. The adjoint equation are derived on the basis
of a variational approach presented in [11].

In the first case we assume that in the time interval [t0, tt] the system evolves
according to the equation x′ = f1(x, u). At a transition time tt the continuous state
trajectory meets the switching surface and we have h(x(tt)) = 0. After the transition
the system evolves according to DAEs (15)–(16) up to an ending time t1. The adjoint
equations have the following form
for t ∈ [t0, tt]

λ′
f = − (f1)

T
x (x, u)λf (24)

for t ∈ [tt, t1] [10]

λ′
f = − (fF)Tx (x, u)λf − (

hTx (x)z
)T
x λf + hTx (x)λh (25)

0 = hx(x)λf (26)

Let us notice that the adjoint Eqs. (25)–(26) are also index two DAEs under the
condition (18). The hidden algebraic equation resulting from differentiation of
Eq. (26) is

0 = (hx(x))
′ λf − hx(x) (fF)Tx (x, u)λf − hx(x)

(
hTx (x)z

)T
x λf + hx(x)h

T
x (x)λh. (27)

The DAEs (25)–(26) have to be consistently initialized. To provide the consistent
endpoint conditions for the adjoint variablesλf , λh we utilize the approach presented
in [12] and solve the following system of equations at time t1 for the variables
λf ,λh, ν
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φT
x (x(t1)) + λf (t1) = ν1h

T
x (x(t1)) (28)

0 = hx(x(t1))λf (t1) (29)

0 = (hx(x(t1)))
′ λf (t1) (30)

−hx(x(t1)) (fF)Tx (x(t1), u(t1))λf (t1) − hx(x(t1))
(
hTx (x(t1))z(t1)

)T
x

λf

+hx(x(t1))h
T
x (x(t1))λh(t1) (31)

where ν1 is some real number.
At the transition time tt the adjoint variable λf undergoes a jump. To calculate the

value of λf (t
−
t ) the following system of equations have to be solved for the variables

λf (t
−
t ), π (t−t and t+t are instant of times after and before the jump)

λf (t
−
t ) = λf (t

+
t ) − πhTx (x(tt)) (32)

λT
f (t−t )f1(x(t

−
t 1), u(t

−
t )) = λT

f (t+t )fF(x(t+t ), u(t+t ))

+λT
f (t+t )hTx (x(t+t ))z(t+t ) − λT

h (t+t )h(x(t+t )) (33)

where π is an additional Lagrange multiplier (see the analysis in [11]).
Once we solve Eqs. (24)–(33) we get the adjoint variables λf and λh. Now we can

calculate the first variation of a cost function δφ as a function of a control function
variation δu as follows

δφ(δu) =
∫ tt

t0

−λT
f (f1)u (x, u)δu dt −

∫ t1

tt

λT
f (fF)u (x, u)δu dt. (34)

In the second case we assume that in the time interval [t0, tt] the system evolves
according to DAEs (15)–(16). At a transition time tt the continuous state trajectory
leaves the switching surface with the conditionα(x(tt), u(tt)) = 0 satisfied. After the
transition the system evolves according to the equation x′ = f1(x, u) up to an ending
time t1. The adjoint equations are (25)–(26) for t ∈ [t0, tt] and (24) for t ∈ [tt, t1].

The endpoint condition for an adjoint variable λf is

λf (t1) = −φT
x (x(t1)) (35)

To calculate the consistent values of λf (t
−
t ) and λh(t

−
t ) the following system of

equations have to be solved for the variables λf (t
−
t ), λh(t

−
t ), π, νt

λf (t
−
t ) − λf (t

+
t ) + πhTx (x(t−t )) = νth

T
x (x(t−t )) (36)

λT
f (t−t )fF(x(t−t ), u(t−t )) + λT

f (t−t )hTx (x(t−t ))z(t−t )

−λT
h (t−t )h(x(t−t )) − παu(x(t

−
t ), u(t−t ))u′(t−t )

= λT
f (t+t )f1(x(t

+
t ), u(t+t )) (37)

where π and νt are some real numbers.
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Once we solve the adjoint equations we get the adjoint variables λf and λh. Now
we can calculate the first variation of a cost function δφ as a function of a control
function variation δu as follows

δφ(δu) =
tt∫

t0

−λT
f (fF)u (x, u)δu dt −

t1∫

tt

λT
f (f1)u (x, u)δu dt

+παu(x(t
−
t ), u(t−t ))δu(t−t ). (38)

4 Numerical Results

Our code for solving optimal control problems with hybrid systems is based on
RADAU5 procedure which is the implementation of the implicit Radau IIA Runge–
Kutta method [13, 14]. The RADAU5 procedure is modified in two ways. First, the
subroutine for evaluating adjoint equations is added in the way given in [15]. The
subroutine does also take into account jumps of adjoint variables if applied to hybrid
systems–how the switching condition looks in the case of a discrete time dynamics
is described in [16]. Secondly, the integration procedure is supplemented by the
subroutine which effectively determines switching times locations, these subroutines
were borrowed from LSODE package. We have made several modifications to these
subroutines in order to allow state variables to be in several discrete states during
a simulation process—LSODE package (and its successor CVODE) does not allow
that, if the discrete state changes the integration process is terminated. As a result,
we have used our unique software for integrating hybrid systems.

The optimal control of hybrid systems is much more complicated process than its
simulation. We are strongly convinced that the numerical treatment of the process
must be based on variable stepsize selection procedure for equations evaluation. The
first reason for that is that we can guarantee a desired accuracy through a single
run of a simulation. Secondly, due to switching points location, stepsizes evaluated
during hybrid system integration will not be equal. The direct implication of using
variable stepsizes integration procedures is the elimination of the direct approach
(i.e., the approach based on an a’priori discretization of system equations and then
on the transformation of an optimal control problem into, possibly large-scale, non-
linear programming problem) as a potential approach for solving an optimal control
problem with hybrid systems. Therefore, we are limited to procedures that use the
numerical integration (with possibly high accuracy) of hybrid differential equations
on each optimization step.

As a result of numerical integration of hybrid equations we have state trajectories
whose values depend on current values of controls which will change during the
optimization process. In order to apply efficient optimization procedures we need
at least gradients of all functional defining an optimal control problem. For that
purpose we can either apply sensitivity equations, or adjoint equations. The use of
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sensitivity equations [17] is not advised when control variables are approximated
using mesh points (each mesh point introduces the set of sensitivity equations of
dimension equal to the dimension of the original equations), therefore we based
our optimization approach on adjoint equations. Having adjoint trajectories one can
calculate the gradient of any problem functional with respect to control variables
and, consequently, efficient optimization procedures for constrained problems can
be used.

As the optimization procedure we have used the exact penalty method which is
presented in [18] (see also [19])which have beenmodified by replacing the procedure
for direction finding subproblems—we have applied the interior point methodOOQP
[20].

Example 1 The example concerns the Coulomb–Stribeck friction model. We have
a mass m attached to inertial space by a spring k. The mass is moving on a belt at
constant velocity vdr (see Fig. 6.4a in [21]).The relative velocity of the mass with
respect to the belt is equal to vrel = v − vdr . Between the mass and the belt there is
the dry friction with a friction force FT . In the slip phase it is the function of vrel and
is given by the relation

FT = − μs

1 + δ|vrel |FN sign(vrel). (39)

Here, FN = mg. Furthermore, in the stick phase the friction force is limited by the
relation |FT | ≤ Fs = μsmg. Eventually the function f1, f2 and h in are given as

f1(x, u) =
⎡

⎣
x2

− k
mx1 + 1

m
Fs

1+δ|x2−vdr | + x3
u

⎤

⎦ ,

f2(x, u) =
⎡

⎣
x2

− k
mx1 − 1

m
Fs

1+δ|x2−vdr | + x3
u

⎤

⎦

and

h(x) = x2 − vdr . (40)

Here, x1 corresponds to the mass position, x2 to its velocity and x3 influences the
mass movement through the control u.

The optimal control problem is as follows.

minu∈U x2(x(t1)) (41)

s.t. (42)

x(t0) = x0 (43)
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x′ =

⎧
⎪⎨

⎪⎩

f1(x, u) if h(x) < 0

fF(x, u) if h(x) = 0

f2(x, u) if h(x) > 0

and

x1 − 0.6 = 0, (44)

with the additional constraint which follow from the assumption that u must lie in
the interval [−2.5 2.5]. Furthermore, we set

U = {
u ∈ L 1

1 [0, t1] : −2.5 ≤ u(t) ≤ 2.5 a.e. on [0, t1]
}
.

t1 = 1.0.
The optimal control is shown in Fig. 2 and the optimal trajectories in Fig. 1. One

can observe that from the time t ≈ 0.8 the system is in the slidingmode. The program
needed 4 iterations to find the solution with the accuracy 10−8. The results have been
obtained by using piecewise–constant approximations to the control function with
N = 100 subintervals. The system equations have been integrated with absolute and
relative accuracies equal to 10−9.
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Fig. 1 Mass–spring example–optimal trajectories (variable x corresponds to x1 and variable v to
x2 in the model)
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Fig. 2 Mass–spring example–optimal control

5 Conclusions

The paper presents the computational approach to hybrid optimal control problems
with sliding modes. To much extent the approach is automated. For the lack of space
we do not present here how our numerical procedures could be integrated with our
server IDOS (Interactive Dynamic Optimization Server, [22]) dedicated to solving
optimal control problems. The server IDOS requires representing optimal control
problems as scripts of our language DOML (Dynamic Optimization Modeling Lan-
guage [23]) for modeling and optimization of dynamical systems. Once the optimal
control problem is represented by a DOML script the other calculations are carried
out at the IDOS server. In particular it is not necessary to provide gradients of func-
tions defining the problem. It will be shown elsewhere how hybrid optimal control
problem can be described in DOML—to some extents it is described in [24].
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Study of the High-Amplitude Solutions
in the System of Magnetic Sliding
Oscillator with Many Degrees
of Freedom

Andrzej Rysak, Magdalena Gregorczyk, Konrad Chwełatiuk
and Daniel Ga̧ska

Abstract Magnetic interactions are strongly non-linear, especially for small dis-
tances between magnets. Their implementation to the oscillator gives it the ability to
display complex non-linear and chaotic behaviours. These phenomena under certain
conditions can lead towidening of the vibration bandwidth of the systemwhich in the
case of energy harvesting systems increases their efficiency, especially under varying
excitation conditions. In this paperwe compare the numerical and experimental study
of different systems of longitudinal magnetic oscillators with one and many degrees
of freedom. Tested oscillator configurations differ in magnet parameters and system
rigidity. In systems modelling we look for conditions in which the high-amplitude
solutions occur over a wide frequency range. Predictions of models are next verified
in experimental investigations.

Keywords Magnetic interactions · Energy harvesting · Nonlinear vibrations
Magnetic oscillator

1 Introduction

The system of levitating magnet has a simple design, but due to the nonlinearity of
magnetic interactions, their various implementations are characterized by complex
dynamics. In one of the first works dedicated to this, Heddle [1] suggested that the
arrangement of levitating ring magnets could be used to study the properties of mag-
netic oscillators. He also pointed out that such magnets allow for stabilization of
theirs position by a simple mechanical construction. More recently, Mann and Sims
[2] were the first to use such a system to the analytical and experimental exploration
of the possibility of improving its energy efficiency through exploiting the nonlinear
phenomenon. They have shown that nonlinearity is the source of high-amplitude
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solutions that can occur over a wide frequency range. However, they pointed out that
the mechanical damping of the magnets movement raises the excitation threshold
at which the system is induced to the high-amplitude vibrations. Various configu-
rations of the levitating magnet system were tested mainly for energy efficiency. In
work [3], the free oscillations of the levitating ring magnet were studied. By com-
parison with the analytical results, the authors have verified that the magnetic field
of large ring magnets is significantly different from the magnetic dipole field. They
also noticed that a friction significantly effects the vibrations of the coupled magnets.
For a levitating cylindrical magnet and single coil, Santos et al. [4] have developed
a semi-analytical model that enables geometric optimization of such a energy har-
vester system, even prior to design and fabrication. Foisal et al. [5] examined the
horizontal and vertical layouts of mechanically connected independent electromag-
netic generators. Each generator was built with a levitating cylindrical magnet and
coil. The slight modification of the magnets of the individual generators resulted in
the widening of the frequency band of the efficient energy harvesting. In this work,
mechanical friction was reduced by placing the moving magnets in plastic straws
with a smooth outer surface. In turn, Munaz et al. [6] investigated the energy effi-
ciency of a single-coil system with the levitating multi-pole cylindrical magnet. The
multi-pole magnet was built as a screwed stack of several magnets arranged in a
repelling configuration. Wang et al. [7] analysed a similar levitating system with a
stack consisted of two separated magnets. Using the FEM method, they found that
the setting of magnets in configuration with opposite pole facing each other produces
a stronger magnetic field in their surroundings than in the configuration of setting
with the same poles facing each other. Next, they checked that the voltage generated
by the device in a more efficient magnetic configuration almost does not change
when changing the distance between the magnets.

Current research focuses on the system of several levitating ringmagnets arranged
in a repelling configuration that can move individually along a vertical plastic tube.
The whole is enclosed in a plexiglas tube. At the ends of the tube are attached two
fixed magnets which act as magnetic springs. The purpose of this work is to study the
dynamics of the system, especially in the mode of high-amplitude vibration. Because
the dynamics of such a system depends on many variables and parameters, only the
selected results are discussed for the configuration with two moving magnets. The
next section presents the system geometry and equations that govern its dynamics as
well as the base parameters of the magnets available in reported research. Section3
describes the details of the measuring system. The experimental results presented in
Sect. 4 are divided into two parts. Section4.1 shows the results directly measured in
the experiment and describes the normalization method, which partially eliminates
the effect of large changes in excitation amplitude. The next subsection discusses
the results of a series of measurements obtained for different values of the system
stiffness. Also Sect. 5, dedicated to numerical analysis, has been divided into two
parts. Section5.1 describes the studies of forces acting between magnets. The results
obtained are used in the next subsection for the numericalmodelingof the investigated
system. The last section gives a brief summary of the results.
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2 System Geometry and Its Mathematical Description

The investigated one-way magnetic oscillator has a simple mechanical construction.
The scheme of the device is sketched in Fig. 1a. The main supporting element is a
plastic tube along which movable magnets are located on the low friction sliding
sleeves (Fig. 1b). All of the studied magnets were ring type NdFeB of N35 and N38
grades. The tube with movable magnets is enclosed in an outer tubular casing made
of transparent plexiglass. Fixed magnets are mounted in the lower and upper part of
the casing and act as magnetic springs. The upper fixed magnet is attached to the end
of the threaded cylinder and its position can be adjusted by screwing. In this way,
the mechanical stiffness of the entire oscillator can be regulated. The inner diameter
of the housing pipe is 36 mm. The diameter of the guide tube is 10 mm.

In the modeling, on moving magnets act magnetic forces, gravity, inertia, and
damping,whereas friction is not included. In this report, itwas adopted the convention
of naming magnets with Roman numerals. MII and MIII are movable magnets, the
first one being the bottommagnet and the other the top one. The bottom and top coils
are denoted by C3 and C4, respectively. Casing tubes of different lengths could be
used in the experiment. The set was used which enabled to change the stiffness of
the system L in the range of 50–160 mm. In the case of the considered system with
two degrees of freedom, vectors of forces in the reference system associated with
the housing of the device are shown in Fig. 2. Based on this figure, the equations of
motion of both moving magnets can be written as:

m2ẍ2 = F12(x2) − F32(x3 − x2) − c2ẋ2 − m2g − m2a

m3ẍ3 = F23(x3 − x2) − F43(L− x3) − c3ẋ3 − m3g − m3a, (1)

Fig. 1 The scheme of the investigated magnetic slider (a),M1,MIV - magnets fixed to the housing.
The position of the M4 magnet determines the stiffness of the system (L). MII and MIII - moving
magnets,C3,C4 - electromagnetic coils, TC - threaded cylinder. bmagnetM 5 located on the sliding
sleeve
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Fig. 2 The frame of the device with the central guide tube is shown in the top drawing. For better
readability, no coils and magnets were drawn. The layout of magnets relative to the device frame
is sketched in the lower figure, which also shows the forces acting on the moving magnets MII
and MIII. Acceleration vectors g and a generally represent gravity and inertia forces. Distance L
determines the mechanical stress of the system

Table 1 Magnets markings and their parameters

Magnet Grade Mass (kg) Height (m) Diameter (m) Inner diameter
(m)

M1 N35 0.02212 0.0050 0.030 0.012

M2 N38 0.01526 0.0060 0.025 0.014

M3 N38 0.02246 0.0080 0.025 0.012

M4 N38 0.02087 0.0080 0.024 0.012

M5 N38 0.04109 0.0160 0.024 0.012

M6 N35 0.05465 0.0145 0.030 0.012

where c2, c3 are the damping factors and m2, m3 are the masses of both magnetsMII

andMIII, respectively. Several different ring magnets were used in the experimental
studies. Their markings and parameters are listed in Table1. In the model under
consideration, we neglect friction and interactions between coils and magnets. With
such assumptions, the dynamics of the system is determined by the characteristics of
the magnets, the interactions between them, and by the stiffness L. In all conducted
tests of the two-degree of freedom system, the magnets M 3 of Table1 were used
as permanent magnets MI and MIV. Therefore, to fully specify a particular system
configuration, it is enough to give the types of magnets MII and MIII as well as
the distance L between unmovable magnets. Hence, in the further part of the work
the configuration of the system is marked in simplified form, eg: M 5M 3 : L90 or
M 5M 3. Where the description of the first magnet (M 5) relates to the bottommagnet
and the second (M 3) refers to the top magnet. The dimension L is expressed in mm.
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Fig. 3 The scheme of the
measuring system. PC -
computer, DAQ - data
acquisition card, R - coils’
loads, A - accelerometer,
PCB - signal conditioner, G -
voltage generator, Amp -
shaker amplifier

3 Experiment

The scheme of the experiment is presented in Fig. 3. In the experimental system the
following scientific equipment were used: data acquisition card AdvantechPCI−
1742u, shaker TIRA TV51110, shaker amplifier TIRA BAA120, function generator
Rigol DG5071, accelerometer PCB 352C03 and signal conditioner PCB 482C05.
All measured values are collected by the acquisition card DAQ and written by the
computer system PC with a sampling rate of 10000 S/s per channel. The casing
of the device is accelerated by the shaker which is driven by the voltage of gener-
ator G. In reported results the generator frequency is programmed to sweep in the
range of f0 to fk at a constant rate. In all experiments, the amplitude of generator
G voltage was constant and equal to 200 mV peak-to-peak. An experimental data
processing program calculated the instantaneous values of frequencies based on a
time-dependent generator voltage. The A accelerometer measured the acceleration
of the casing. Both identical coils were loaded with resistances R having an optimal
values for the generated electric power. In the system with small ‘L’ (high stress)
both magnets are moved downward. As a result, they are located near the bottom
coil and far away from the upper one. For this reason, the voltage generated in the
upper coil is much smaller than the voltage of the bottom coil, what is clearly visible
in the measurement results.

4 Experimental Results

4.1 Data Normalization

The small maximum shaker force (100 N) and the relatively large mass of the test
system (0.880 kg) cause large variations in the excitation amplitude in the mea-
surement mode in which the voltage controlling the shaker amplifier has a constant
amplitude at varying frequency. Figure4a shows changes in the excitation amplitude
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Fig. 4 Changes in the
excitation amplitude along
with the frequency variation
(a). The power generated by
the coils: top (U4) and
bottom (U3) as a function of
frequency. The system
configuration: M 5M 4 : L80

0

5

-0.1

0

0.1

0.2

5 10 15 20 25
-1

-0.5

0

0.5

1

along with the frequency variation for the system configuration M 5M 4 : L80. This
strongly affects the quantitative and qualitative results obtained from the nonlinear
system. Therefore, the experimental data has been processed in such a way as to
reduce the effect of non-stationary excitation and to show how the electric power
generated in the coils varies with respect to the square of the excitation acceleration
unit. For this purpose, the following conversions were made. Firstly, the window
was moved along the time axis with discrete values corresponding to the measuring
points. The width of the window equals n points on time axis and the length of the
shift step is Δts. Next, for each window was calculated the square of the standard
deviation of the excitation σ 2

a whichwas expressed in (m/s2)2. For both coil voltages,
the average normalized electrical power in the window was calculated according to
the formula:

P = 1

nRσ 2
a

n∑

i=1

U 2
i , (2)

where σa is a standard deviation of excitation acceleration. The results of these
transformations for the system configuration M 5M 4 : L80 are presented in Fig. 5.
where P3 and P4 are normalized powers generated on the bottom and top coil,
respectively. The curves in Figs. 5 were obtained by moving the time window of
width 0.1 s with a shift step Δts = 0.05 s in the time range corresponding to a
frequency change of f0 = 2 Hz to fk = 30 Hz. The final curves show how the mean
power generated in the coil changes with the frequency, relative to the square of the
excitation unit. The results obtained in this way for different system configurations
are compared and analysed in the next subsection.



Study of the High-Amplitude Solutions in the System … 301

Fig. 5 Changes in
amplitude of shaker
excitation (a) and coil
voltages (b− c) depending
on frequency. The system
configuration: M 5M 4 : L80
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4.2 Influence of the System Stiffness on Generated Power

One-way magnetic oscillator dynamics study was performed for several magnets
and stiffness configurations (different pairs of magnets and values of the stiffness
L). The dynamics of the magnets and the energy efficiency of the system clearly
depend on its specific configuration. The experiments were performed in series. For
each pair of magnets a number of measurements were carried out for different values
of system stiffness as this is one of the most important parameters on which the
oscillator dynamics depends. Here, is applied a convention whereby the results of
each series are presented on a common 3D chart, separately for each coil.

Out of many of the obtained results, two particular are discussed in this work.The
first one, obtained for a one-magnet system and the second for the system with two
relatively heavy magnets differing in mass. As a point of reference for further study,
the results obtained for a singlemagnet configuration were assumed. TheM 5magnet
was chosen for this study. Next, are presented the measurement results of the system
in theM 6M 5 configuration.

The measuring results obtained for the bottom coil in the tests of the one-magnet
system when the stiffness was changed from L = 60 mm to L = 160 mm are shown
in Fig. 6. The average power values P were obtained by normalizing the measured
power with respect to the square of the acceleration unit in accordance with the
formula (2). As it is seen, in this basic measurement series the average power has
significant values only in a narrow range of a high system stiffness (L = 60–70 mm).
In this range of stiffness, a broadband power spectrum with maximum values of
about 5× 10−4 mW/(m/s2)2 was registered. A clear resonance peak of a maximum
value equals to approximately 2× 10−3 mW/(m/s2)2 (for L = 70) is superimposed
on the broad spectrum and decreases with increasing system stiffness.

In the next series of measurements, theM 5M 6 magnets configuration was tested
for different stiffness and frequency values. The M 6 (top) magnet is heavier than
the bottom one. Obtained results after normalization are shown in Fig. 7. Comparing
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Fig. 6 Average power of the bottom coil for the one-magnet (M 5) system
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Fig. 7 Power of the bottom (a) and top (b) coils. System in configurationwith twomagnets different
in mass: M5 - bottom, M6 - top. The M6 magnet is heavier than the M5 magnet

these results with previous ones (obtained forM 5 configuration) shows that the lower
coil generated higher power in a wider range of stress and frequency. In both coils,
narrow and high power peaks were detected under various experimental conditions.
The top coil generated less power due to its non-optimal position. However, this coil
generated relatively high average power in almost full range of the system stiffness.
Particularly high energy efficiency in a very wide frequency band was measured for
a range of stiffness L from 105 to 120 mm.

The discussed here selected experimental results demonstrate the possibility of
modifying the characteristics of the tested system by easy modification of its con-
figuration. Changes of magnets type and in the system stiffness strongly affect the
frequency band in which high-amplitude magnets vibrations occur.
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5 Numerical Results

5.1 Characterization of Magnetic Forces

Numerical studies of the oscillator require knowledge of the relationship between
magnetic force and distance F(x) for all magnets pairs of the system. In this section
the experimental results of F(x) measurements for different magnets configurations
are presented and discussed. Based on the measured characteristics F(x) analytical
formulas describing the interaction between pairs of magnets were derived. Let us
start with the mathematical description of the forces acting between the magnets
with the equation:

F(x) = A

(
1

x2
+ 1

(x + 2h)2
− 2

(x + h)2

)
, (3)

which was developed in [8] to describe the magnetic interaction between two iden-
tical cylindrical magnets oriented coaxially and located at a considerable distance
from each other. h is the height of each one. In the present study, magnetic forces
characteristics were determined experimentally by using special stand (Fig. 8). In
contrast to the case described by (3), the examined magnets are of ring type and have
different diameters and heights. Moreover, during high amplitude vibrations, they
can come close together at short distances. Therefore, the formula suitable for the
applied magnets was sought by testing several expressions similar to (3). Many of
the conducted fitting tests had shown that the best formula describing this interaction
for different pairs of ring magnets is as follows:

F(x) = A

(
1

(x + 2h)2
− b

(x + h)2

)
, (4)

where A, b, and h are three fitting parameters. The proposed form is simpler than
the starting one (3) and gives satisfactory results for the different pairs of ring mag-
nets. Figure9 shows the results of fitting (4) to the experimental points for three
different configurations of magnets: two identical (M 1M 1) (a), smaller lightweight
- bigger heavier (M 1M 6) (b), and two heavy, differing in masses and dimensions
(M 5M 6) (c). The fitting process gives back values of all three parameters (A, b, h).

Fig. 8 A stand for
measuring the interactions
between magnets. D -
dynamometer
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Fig. 9 Results of fitting (4) to the experimental points for three different configurations of ring
magnets pairs: a two identical lightweight (M 1M 1), b one lightweight and one heavy (M 1M 6),
and c two heavy differing in mass (M 5M 6)

Values of the fitting parameters obtained for all measured characteristics of interac-
tions between pairs of magnets are listed in Table2. Designated interactions between
magnets enable modeling of all these system configurations for which the needed
forces Fij(x) (in (1)) are known.

The analytical formula adopted in this article to describe magnetic interactions is
an alternative to other approaches, such as, for example, the polynomial dependence
used by Kęcik [9] in the study of a similar system with one cylindrical magnet and
one coil. The basics of magnetism and magnetic interactions are described in detail
in Chap.3 of monograph [10].

5.2 Modeling

Simulations of the dynamics of magnets described by equations (1) were made using
MATLAB program and the ode45 solver. In the experimental studies, the amplitude
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Table 2 Parameters of fitting of the curve described by (4) to the results of magnetic force mea-
surements for different pairs of magnets

Bottom magnet Top magnet A (Nm2) b h (m)

M1 M1 −0.010380 0.8292 0.006321

M1 M2 −0.003943 1.0190 0.006362

M1 M3 −0.005694 1.0470 0.007754

M1 M6 −0.010990 0.9385 0.009027

M2 M3 −0.004534 0.9872 0.006912

M2 M6 −0.004730 1.1720 0.007290

M3 M4 −0.002459 1.4970 0.005472

M3 M5 −0.004790 1.3290 0.006634

M3 M6 −0.010280 1.0050 0.008740

M4 M5 −0.007051 1.0710 0.007484

M4 M6 −0.011010 0.9525 0.009923

M5 M6 −0.020640 0.8725 0.012200

of the acceleration was frequency dependent. As was mentioned out, the dynamics of
a nonlinear systems also depends on the excitation amplitude. Wherefore, presented
in this paper numerical calculations were made for two different excitation modes.
In the a10 mode, which simulates the typical results of an experiment with excitation
control, the excitation acceleration amplitude had a constant value of 10 m/s2. In the
aEXPmode the amplitude of the excitation acceleration was changed with frequency
in the way according to the function a(F) which is the experimental excitation pro-
file obtained from the measurement of the system in theM 5M 6L075 configuration.
Therefore, in further numerical research were used parameters with values corre-
sponding to this reference experimental settings. As a result, the numerical analysis
can be narrowed down to the study of changes of the magnets dynamics that follow
the variation of both viscous damping coefficients (c2, c3). The purpose of these anal-
yses is to examine how the dynamics of the system depends on the viscous damping
coefficients and to determine their values in the measured reference configuration.

Normalized powers obtained experimentally for M 5M 6L075 system are pre-
sented in Fig. 10. Figure11 shows the excitation amplitude profile which was derived
from this measurement. For both excitation modes, numerical calculations were per-
formed for the decreasing values of viscous damping coefficients (c2, c3) of both
magnets. Since the difference in values between the two damping coefficients less
influence the dynamics of the magnets than their values, it was assumed that both
coefficients have the same value in the all discussed numerical tests. Based on the
results obtained from modeling, the kinetic energies of both magnets are calculated.
The kinetic energy of the magnet is proportional to the square of its velocity, and
the power generated on the coils is in turn proportional to the square of the voltage.
Since the rate of change of the magnetic flux passing through the coil depends on
the speed of the magnet (nonlinearly), Faraday’s equation E = −Φ̇ transfers this
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Fig. 10 Normalized average
power of M 5M 6L75
oscillator as a function of
frequency. P3 - power
generated by the bottom coil,
P4 - by the top one
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Fig. 11 Profile of the
excitation acceleration
amplitude as derived from
measurement of the system
inM 5M 6L075 configuration
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relation to the relation between the kinetic energy of the magnet and the electric
power generated in the coil. Although comparable variables (Ek ,P) are not directly
and linearly dependent, both are closely related to vibrations of the magnets. For
both modes of numerical simulations: a10 and aEXP, the calculated energy on time
dependencies were normalized in the same way as the powers measured in experi-
ments. E2 and E4 are the average normalized kinetic energies of the bottom and top
magnets, respectively.

Modeling results of the system excited in the a10 mode are shown in Fig. 12.
The average normalized vibration energy of the bottom magnet (E2), obtained for
c = 0.3, represents the excitation peak in the narrow frequency band, approximately
from F = 12.5 to F = 14.5 Hz. Comparing it with the results obtained experimen-
tally, it can be seen that the high-amplitude vibration bandwidth obtained in the
measurement is clearly wider. Moving towards the lower c-values, it is observed
systematic increase of the high-amplitude frequency band. The left limit of the band
does not change its value; the extension of the band is made by shifting the right
boundary towards higher frequency values. In the case of ‘c’, the frequency band of
the high-amplitude vibrations is comparable to the band recorded experimentally. In
parallel with the decreasing of the damping coefficients’ values, there is an increase
in the vibration energy of the magnets. Analysing changes in the numerical results
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Fig. 12 The average energy
of the bottom coil obtained
in simulations of system
M 5M 6L075 for
c = 0.3 Ns/m (a),
c = 0.1 Ns/m (b), and
c = 0.03 Ns/m (c). Please
note that the energy of the Y
axis in case (c) is scaled in
mJ
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obtained in the aEXP excitation mode with the decrease in the damping coefficient c
(Fig. 13), it can be noticed that the high-amplitude vibrations frequency band evolve
in the similar way as is observed in the a10 excitation mode. Right boundary of the
high-amplitude frequency band is moving toward higher frequencies, giving a clear
increase of the bandwidth. The result (c) obtained for c = 0.03 Ns/m is very similar
to the experimental result, not only due to the approximately the same width of the
excitation band, but also to the qualitatively similar changes of energy (in model)
and power (in experiment) with frequency.

By analysing the presented numerical results obtained for both excitation modes,
there are some general changes in dynamics of the system under consideration.
Presented curves of energy on frequency dependencies make it possible to observe
that the reduction of the viscous damping coefficients causes new vibration modes
to rise at higher frequencies. Figure12a shows one weak mod in the frequency range
from 12 to 14Hz. The second mod appears in case (b) in the range of 14–19 Hz and
its vibrations have much higher values of energy. Figure (c) shows another strong
mod that grows in the range of 20–23 Hz. Results obtained for a10 excitations
mode differ from these calculated for aEXPmode because of the nonlinearity of the
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Fig. 13 Energy of the
bottom coil obtained in
simulations of system
M 5M 6L075 for
c = 0.3 Ns/m (a),
c = 0.1 Ns/m (b), and
c = 0.03 Ns/m (c)
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system. But still, a similar tendency for new mods to appear, with reducing values
of damping coefficients, is noticeable. Based on this observation, it can be assumed
that the further reduction of the damping coefficient will generate additional modes
of high amplitude vibrations at higher frequencies. In order to prove this, numerical
calculations were performed, for which the values c = 0.02 were assumed for both
damping coefficients. The results obtained (Fig. 14) confirm this assumption. New
vibration mode appeared in the frequency range from 25 to 30 Hz.

The numerical tests described in this section dealt with a system with the selected
magnets configuration and a fixed stress value. They focused mainly on the study
of the effect of viscous damping on the dynamics and effectiveness of the system.
Comparison of numerical results (Fig. 13c) with experimental (Fig. 10) shows their
apparent qualitative similarity. As was shown by the conducted tests, viscous damp-
ing greatly influences the dynamics of the system. This may indicate that the system
is also sensitive to change in sliding friction occurring in the movement of the mag-
nets but the considered model does not take it take into account. Incorporation of
the friction into modeling should bring significant modifications that will make the
numerical results more closely matched to real ones.
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Fig. 14 Numerical results
obtained for the considered
system with c = 0.02 Ns/m.
Decreasing the damping
coefficient extends the range
of effective vibrations up to
30Hz
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6 Conclusions

The paper presents the results of investigation of the one-way magnetic oscillator,
with the possibility to easily modify its various parameters, including the number
of degrees of freedom. The experimental part of the work shows changes in the dy-
namics of the system following variations in the configuration of magnets, system
stiffness as well as in the amplitude and frequency of excitation. The results change
considerably under the influence of system modifications. The numerical research
focus on the system with two degrees of freedom. Characteristics of interactions
between magnets were determined experimentally and the relevant relationships ap-
proximated by (4) were used in modeling. Experiments were performed without
control of the excitation level, so the procedure for normalizing the results against
the square of the acceleration unit was performed. To allow comparison of the exper-
imental and numerical results some of calculations were made using the excitation
profile a(F) which was measured in the corresponding experiment.

The results show that reducing viscous damping leads to an increase in vibration
energy and a widening of the frequency band in which the vibrations have a high
amplitude. In addition, the comparison of numerical results with experimental data
allowed to estimate the value of viscous damping of the real system.

The carried out analysis concerned only a narrow range of parameters selected
among many which influence the properties of the system. Obtained results show
that the frequency range of high-frequency vibrations and hence the dynamics and
efficiency of the system are altered not only by damping and friction but also by
several other factors and parameters related to the magnets configuration and system
rigidity. That’s why the tested device, despite the simplicity of its construction, is well
suited for the applications where the control and tuning capabilities are of particular
importance.
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Theoretical Investigations
on the Behavior of Artificial Sensors
for Surface Texture Detection

Moritz Scharff , Maximilian Darnieder, Joachim Steigenberger,
Jorge H. Alencastre and Carsten Behn

Abstract Animal vibrissae are used as natural inspiration for artificial tactile sen-
sors, e.g., the mystacial vibrissae enable rodents to perform several tasks in using
these tactile hairs: object shape determination and surface texture discrimination.
Referring to the literature, the Kinetic Signature Hypothesis states that the surface
texture detection is a highly dynamic process. It is assumed that the animals gather
information about the surface texture out of a spatial, temporal pattern of kinetic
events. This process has to be analyzed in detail to develop an artificial tactile sen-
sor with similar functionalities. Hence, we set up a mechanical model for theoretical
investigations of the process. This model is analyzed in two different directions using
numerical simulations: at first a quasi-static and then a fully dynamic description.

Keywords Vibrissa · Tactile sensing · Surface texture · Friction · Dynamical
model
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1 Introduction

The mystacial vibrissae are part of the somatosensory system of rodents. They are
powerful tactile sensors. Using these sensors, the animals can detect the distance
to an object and recognize the object’s shape. Furthermore, the surface texture of
the object can be detected also [3]. Each mystacial vibrissa is characterized by a
generic geometric shape, e.g., a slender conical body, an inherent pre-curvature and
is supported by its own elastic follicle-sinus complex (FSC) [14]. The FSC includes
various types of mechanoreceptors to transduce the mechanical stimuli around the
vibrissa shaft to a neuronal potential for further processing at the neuronal level [17].
All mystacial vibrissae are arranged in a fixed spatial pattern, on both sides of the
animal’s muzzle [5]. With this sophisticated sensory system the mentioned tasks can
be performed on a high level, e.g., surface texture elements down to a size of 30µm
can be identified [4].

For the procedure of surface texture detection there are two hypotheses: The
Resonance Hypothesis relates the surface information to a vibro-tactile signal in
the FSC, this signal is scaled by the natural frequencies of the different vibrissa [7].
Following, theKinetic Signature Hypothesis, a surface texture is coded in a sequence
of velocity and acceleration events depending on time. So, surface texture detection
is a dynamical process [1, 16]. To design an artificial tactile sensor for surface texture
detection inspired by the natural mystacial vibrissa, the process is analyzed out of
the mechanical point of view. The authors of [13] discretize the vibrissa within the
limits of the Finite-Element Method as a straight, cylindric, linear elastic beam and
model the surface in representation of a spatial distribution of spaces and gaps. Here,
the support of the beam is quasi-statical displaced, all inertial effects are neglected.
In [8], a quasi-static motion is assumed, too. Using a Multi-Body System, the beam
has a tapered shape with an inherent pre-curvature. In a further step, the authors
include inertial effects and damping [9]. Both works analyze the initial contact with
an object and not the process of surface texture detection. For this case, the quasi-
static simulationmatches the dynamic one for a very slowdisplacement of the support
of the beam. Another approach is done in [15]: the cylindrical, inherent per-curved
Euler-Bernoulli beam is loaded by a periodic time-varying force. The force acts at
the beam’s tip and represents the surface texture. This model is analyzed in context
to parametric resonance of the beam and corresponding amplification of the signals
at the support of the beam. The connection between the acting force and properties of
the surface texture, like friction, is not analyzed. In [2], the natural vibrissa is assumed
as Euler-Bernoulli beam respecting large deflections under quasi-static conditions.
These large deflections are superposedwith small deformation induced by vibrations.
The surface is characterized by a fixed pattern of spaces and gaps. The contact
between beam and surface is a point contact underlying the influence of Coulomb’s
Law of friction. The information for the surface texture is only generated out of the
macroscopic effects of the spaces and gaps. Friction is assumed as a disturbance
and not as source of information. The work [12] focuses on the coefficient of static
friction as source of information for the surface texture. The vibrissa is modeled
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within the limits of the nonlinear Euler-Bernoulli beam theory and has a straight,
cylindrical shape. The beam is one-sided clamped and touches the surface at the other
side. Between beam tip and surface there is a point contact. The contact forces result
out of Coulomb’s Law of friction. The clamping is displaced quasi-statically, out of
the resulting support reactions the coefficient of static friction can be determined.
This model is advanced and further analyzed in [10, 11] and is the starting point for
the present work.

All mentioned examples analyze different aspects of surface texture detection.
But, there is no information if the quasi-static simulations consider all effects of
the dynamic process for the procedure of surface texture detection. Considering one
example, this work discusses the limits of validity of the quasi-static simulation and
the need of full dynamic simulations. First, the different simulations are introduced
in Sect. 2. In Sect. 3, the simulations are compared for different parameter sets. The
differences between the simulations are discussed. Finally, Sect. 4 summarizes the
results.

2 Modeling

Three different types of numerical simulations are used to analyze the process of
surface texture detection. First, the vibrissa is modeled as an Euler-Bernoulli beam
with continuumbehavior, respecting large deflections and a quasi-static displacement
(QS), see Sect. 2.1. To consider all dynamic effects of the process, the vibrissa is
approximated as a Multi-Body system (MBS), see Sect. 2.2 and with the Finite-
Element-Method (FEM) as well, see Sect. 2.3. Since both ways of approximation
include different peculiarities and effects, every parameter set is performed with both
types.
For all simulations, the process of surface texture detection is assumed as follows:

• The vibrissa is modeled as slender, straight (length L), cylindrical (diameter d )
beam.

• The FSC is simplified to a clamping.
• The contact between vibrissa and surface is assumed as a point contact within the
limits of Coulomb’s Law of friction (1) at the point (xL, yL).

tan (α) = |Fx|
|Fy| = μ ≤ μ0 = tan (α0) (1)

• In the initial position, the beam is bent and in contact with the surface (clamping to
surface distance η). Hence, the contact force consists only of a vertical component.

• Out of the initial position, the clamping gets translationally displaced against the
beam’s curvature. The beam’s tip is sticking to the surface until the coefficient of
static friction μ0 is reached.
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Table 1 System parameters

d (m) L (m) E
(

N
m2

)
G

(
N
m2

)
ρ

(
kg
m3

)
η (m)

4e−4 0.1 0.211e12 0.769e11 0.785e4 0.09

• After sticking, the tip starts to slide over the surface and is loaded by a friction
force in dependence on the kinetic friction coefficient μk .

• During the procedure, the reaction forces and moments are gathered and used the
characterize surface properties.

The parameters in Table1 are used for every simulation.

Remark 1 The following brief description of the three models gives no overview of
all details, considered in the simulations. Only the most important facts are reported.

2.1 Continuum System (QS)

Since, there is a quasi-static displacement of the clamping the outer equilibrium state
(2) is given for all times with:

→: Fx + fx = 0 ⇐⇒Fx = −fx
↑: Fy + fy = 0 ⇐⇒Fy = −fy
�: Mz + fy · xL − fx · yL = 0 ⇐⇒Mz = −fy · xL + fx · yL

⎫
⎪⎬
⎪⎭

(2)

with: fx = sin (α) · f ; fy = − cos (α) · f
According to the nonlinear Euler-Bernoulli beam theory, the following nonlinear
system of Eq. (3) describes the elastic line of the beam, see Fig. 1b:

x′(s) = cos (ϕ(s))

y′(s) = sin (ϕ(s))

ϕ′(s) = f

E · Iz (sin (α) (y(s) − yL) + cos (α) (x(s) − xL))

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3)

with Iz as second moment of area and the boundary conditions (4):

x(0) = x0 ; x(L) = xL
y(0) = 0 ; y(L) = yL

ϕ(0) = π

2
; ϕ(L) = ϕL

⎫⎪⎪⎬
⎪⎪⎭

(4)
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Fig. 1 Beam models: a illustates the model without load; b shows the QS model and related
parameters; c summarizes the used elements for the MBS model and d for the FEMmodel; all with
E as Young’s modulus, G as shear modulus, ρ as density and v as velocity

A sequence of x0 = 0 : Δx0 : x0max is given for the quasi-static displacement. For
every increment Δx0, (3) is solved. The clamping is displaced until the given μ0 is
reached. In this state, the beam tip starts so slide over the surface.Also, thismovement
is assumed as a quasi-static one. Here, a sequence of xL = xLinitial : ΔxL : xLmax is used
under the influence ofμk , whileμk < μ0. The beam tip slides until the present friction
force prevents a further movement and a new period of sticking starts.

2.2 Multi-Body System (MBS)

For the MBS simulation the software ALASKA v.9.1 is used. Figure1c shows the
used elements incorporated in the software and their arrangement. The MBS model
consists of 10 beamelementswhile one beamelement consists of various rigid bodies,
torsional springs and normal springs, in turn. The beam element is based on the Euler-
Bernoulli beam theory. The beam elements are connected by fixed joints. The contact
elements are realized by a point contact at the tip of the beam, along the central axis
and a contact plane as representation of the surface. The contact between these two
elements is subjected to friction and characterized by corresponding forces. To switch
from μs to μk themagic formula is used. Using a prismatic joint, the clamping of the
beam is displaced.

2.3 Finite-Element System (FEM)

The FEM simulation is done using ANSYS 16.0. The beam is discretized with 100
beam elements respecting the Timoshenko-Beam theory and a quadratic shape func-
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tion. The mass properties are considered by the consistent mass matrix. Using the
contact and target elements (Fig. 1d) the contact is subjected to friction an related
forces, again. Here, the switch from μs to μk is implemented by a jump function
incorporated into the software.

2.4 Verification

The verification of the three models is done with respect to three criteria:

• large deflection (nonlinear theory) of the tip of the beam under a direction pre-
serving load at the beam tip, see Fig. 2,

• large deflection (nonlinear theory) of the tip of the beam under a angle preserving
load at the beam tip, see Fig. 3,

• the first three eigenfrequencies of the vibrations with small amplitude (linear the-
ory), see Fig. 4.

The three criteria are chosen to show that the large deflection of the beam as well as
the dynamic properties are nearly equal for all three models. All model properties are
identical to the given information in the previous section. Only, the loaded and the
boundary conditions are modified. For the verification, the beam is one side clamped
and the beam tip is loaded, free, respectively. Three different magnitudes for load
and the first three eigenfrequencies are considered.
Thefirst criterion is analyzed in Fig. 2. The deflection of the beam tip under a direction
preserving load shows a good matching of the different models for all three forces.

(a) Deflection v(L) of the beam tip. (b) Relative deviation of v(L).

Fig. 2 Part a shows the total deflection v(L) of the beam tip that is loadedwith a direction preserving
force. Part b shows the corresponding relative deviation of the solution with the MBS- and FEM
model to the QS model. The symbol “·” marks a deflection of the tip in x-direction, an “∗” one in
y-direction
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(a) Deflection v(L) of the beam tip. (b) Relative deviation of v(L).

Fig. 3 Part a shows the total deflection v(L) of the beam tip that is loaded with a angle preserving
force. Part b shows the corresponding relative deviation of the solution with the MBS- and FEM
model to the QS model. The symbol “·” marks a deflection of the tip in x-direction, an “∗” one in
y-direction

(a) Total values of the
eigenfrequencies.

(b) Relative deviation of the
eigenfrequencies.

Fig. 4 Part a shows the total values for the eigenfrequencies of all three models. Part b illustrates
the relative deviation of the solution with the MBS- and FEM model to the continuum model

The results for the case of the angle preserving load are more divergent, see Fig. 3.
Especially in the case of the FEM model there is a constant deviation to the QS
model. The MBS model matches the QS model in a good way, exclusive for the
largest force. There are several possibilities to explain this deviation, but since they
are still small they are acquiesced.
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Remark 2 For the MBS simulation it has to be noted, that v(L) is alternating in a
small range. The mean value of this alternating signal is used for the verification.

Figure4 illustrates the results for the first three eigenfrequencies. The total values
for all models and corresponding eigenfrequencies are nearly equal. The values for
the MBS model are smaller than the one for the QS model. In contrast to the well
known fact that eigenfrequencies determined by FEM are larger than the one of
the continuum model, the first eigenfrequency of the FEM model is smaller than
the one of QS model. This is caused by the fact that the continuum model is an
Euler-Bernoulli beam and the FEM model a Timoshenko one [6]. This discrepancy
counteracts the effect of the discretization method itself.

Summarizing the verification, all three models matches in a sufficient way the
chosen verification criteria.

3 Simulations

Performing the simulations, the signals at the clamping are shown in Fig. 5. Starting
with a sticking phase, the typical behavior of the stick-slip effect is in evidence.
Qualitatively, there is a good matching of the signals.

In the case of the amplitude of the signals, they are smaller for the QS model than
for the MBS- and FEM one. The MBS- and FEM model are nearly equal.

In contrast, for the stick-slip frequency there is a discrepancy. The discrepancy
between the QSmodel and the other ones is caused by the influence of v. For larger v
there are higher stick-slip frequencies, see Table2. For the offset between the MBS-
and FEM model there are several possible reasons, e.g., different mass matrices or
differences in the contact and friction model. But, the general behavior, tendencies
and influences of different values for v, μs and μs are similar, see Fig. 6 and Table2.

To determine μs and μk , (1) is evaluated for all values of the clamping reactions
Fx and Fy, see Fig. 7 and Table2.

Nearly all results are in the same order of magnitude like the initially assumed
values. Only for small velocities there discrepancies and conspicuities for the MBS-
and FEM model. The dynamic simulations show that every parameter combination
of v, μs and μk results in a specific stick-slip frequency.

4 Conclusions

The procedure of surface texture detection with an artificial tactile sensor is success-
fully reproduced by the quasi-static model, the Multi-Body-System and the Finite
ElementMethod simulation. The influences of different magnitudes of velocities and
friction coefficients are analyzed. For a certain range of velocities, the simulations
with the quasi-static model gather the principal effects of the procedure of surface



Theoretical Investigations on the Behavior of Artificial … 319

(a) Fx over x0.

(b) Fy over x0.

(c) Mz over x0.

Fig. 5 The simulations a–c illustrates the magnitude of the reaction forces and moments in depen-
dence on x0 for v = 0.005 m

s and μs = 0.2500, μk = 0.1666. The colors are assigned as follows:
black - QS, blue - MBS, red - FEM

texture detection and qualitative statements of the corresponding influences could be
done. So, this model could be used to study further refinements of the geometrical
shape etc., with respect to the natural vibrissa. The results of the Multi-Body System
and Finite Element model show that the parameter velocity has a strong influence
on the signals at the clamping and has to be taken into account for analyses of real
measurement tasks.

In further works, the effects of varying conditions for the contact and damping
will be analyzed, also the validation of the theoretic results by experimental data.
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Table 2 Parameter studies
μs
μk

v
(m
s

)
μs (−) μk (−) f1 (Hz)

QS MBS FEM QS MBS FEM MBS FEM
0.2500
0.1666 0.001 0.2506 0.3035 0.2500 0.1641 0.1648 0.1362 0.2674 0.1750

0.005 0.2506 0.2513 0.2589 0.1641 0.1607 0.1617 6.8966 8.000

0.010 0.2506 0.2586 0.2785 0.1641 0.1689 0.1568 13.2184 16.9091

0.015 0.2506 0.2459 0.2753 0.1641 0.1691 0.1659 40.8046 40.6363
0.2000
0.1333 0.001 0.2027 0.2151 0.2000 0.1334 0.1379 0.079 0.5348 1.0633

0.005 0.2027 0.2308 0.2105 0.1334 0.1305 0.1318 9.1954 14.2727

0.010 0.2027 0.2343 0.2185 0.1334 0.1344 0.1283 45.4023 34.0001

0.015 0.2027 0.2463 0.2459 0.1334 0.1360 0.1329 59.1954 52.9090

(a) Amplitude spectrum of Mz(t) for the MBS
model.

(b) Amplitude spectrum of Mz(t) for the FEM
model.

Fig. 6 The plots a and b show the amplitude spectra of theMBS- and FEMmodel for v = 0.005 m
s

and μs = 0.2500, μk = 0.1666

Fig. 7 Comparison of the trend of μ for v = 0.005 m
s
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Dynamic Analysis of a Compliant
Tensegrity Structure for the Use
in a Gripper Application

Susanne Sumi, Philipp Schorr, Valter Böhm and Klaus Zimmermann

Abstract The use of compliant tensegrity structures in robotic applications offers
several advantageous properties. In this work the dynamic behaviour of a planar
tensegrity structure with multiple static equilibrium configurations is analysed, with
respect to its further use in a two-finger-gripper application. In this application,
two equilibrium configurations of the structure correspond to the opened and closed
states of the gripper. The transition between these equilibrium configurations, caused
by a proper selected actuation method, is essentially dependent on the actuation
parameters and on the system parameters. To study the behaviour of the dynamic
system and possible actuationmethods, the nonlinear equations ofmotion are derived
and transient dynamic analyses are performed. The movement behaviour is analysed
in relation to the prestress of the structure and actuation parameters.

Keywords Compliant tensegrity structure · Multiple states of self equilibrium
Dynamic behaviour · Dynamic system · Gripper application

1 Introduction

The use of compliant, mechanically prestressed structures in robotic applications is
a recently discussed topic [1, 2, 4, 12]. Compliant free standing tensegrity structures
are one class of such structures. Tensegrity structures consist of a group of discon-
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nected compressed members connected with compliant tensioned members. Robots
based on these structures have a high strength to weight ratio, shock absorbing capa-
bilities and they are lightweight and deployable. An overview of recent development
directions can be found in [3, 11, 13].

Known robotic systems use conventional tensegrity structures with only one state
of self-equilibrium (equilibrium configuration) [5, 7–9]. In contrast to that, so called
multistable tensegrity structures, have more than one state of self-equilibrium and
different mechanical properties within these equilibrium configurations. In literature
only few structures of this kind are reported [6, 10, 16]. The potential use of these
structures in robotic applications is promising in several aspects: The shape change
can be realised by transformation between the equilibrium configurations and the
structures have different mechanical properties in different equilibrium configura-
tions.

In this work a planer multistable tensegrity structure is investigated, with respect
to its future use in a gripper application. This article is based on preliminary studies
in [14, 15]. It is composed as follows: After the introduction, in Sect. 2, a parameter
study is done: the influence of the member parameters to the existence, stability and
shape of the equilibrium configurations is considered. In Sect. 3, the equations of
motion are derived and in Sect. 4 two actuation methods are discussed exemplarily.
In the first example the time and amplitude of the actuation force is varied, in the
second example the influence of the prestress of the structure to the actuation is
investigated. Finally conclusions and research directions are given.

In this paper a planar tensegrity structure is analysed. If the parameters are chosen
carefully, this is a multistable tensegrity structure (see parameter study in Sect. 2).
With suitable parameters the structure has three different static stable equilibrium
configurations. The used notations and the three equilibrium configurations are qual-
itatively depicted in Fig. 1.

This tensegrity structure can be used in a gripper application. Therefor gripper
arms are added to obtain a compliant two-finger-gripper. Two of the equilibrium
configurations (A and B) represent the opened and the closed state of the gripper,
see Fig. 2. An actuation is needed to change between both equilibrium configura-
tions. Different actuation principles are discussed in Sect. 4. This gripper has been
introduced in [14, 15].

2 Parameter Study

In this chapter the influence of the member parameters to the existence, stability and
shape of the equilibrium configurations is considered.

The compressed members of the tensegrity structure are assumed to be rigid, with
the centre of gravity in the middle of each member. The tensioned members are
assumed to be massless linear springs. Parallel to each tensioned member a linear
damper is modelled.
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Fig. 1 The tensegrity structure with the used notations and three equilibrium configurations

Fig. 2 Design of a two-finger-gripper based on the tensegrity structure

The tensegrity structure has a degree of freedom of 4, for the depicted bearing.
The used coordinates (x4, y4, ϕ2, ϕ3) ∈ R

4 are shown in Fig. 3. To obtain symmetry
and with respect to the application, there are some assumption on the parameters of
the tensegrity structure:

• lengths of members 2 and 3 are equal,
• free-lengths and stiffnesses of members 4 and 7 are equal,
• free-lengths and stiffnesses of members 5 and 6 are equal,
• free-lengths and stiffnesses of members 8 and 9 are equal.

For the specific application equilibrium configuration C (see Fig. 1) is not needed,
so node 4 is set to be on the x-axis: y4 := 0.Due to symmetry it applies thatϕ3 = −ϕ2.
So the degree of freedom is reduced to two: (x4, ϕ2) ∈ R

2.
Neglecting the gravitational forces, the (static) equilibrium configurations can be

determined with the sum of the potential energy of the tensile members. Every sta-
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Fig. 3 Used coordinates to determine the position of the nodes and parameters of the members

tionary point of the energy function is an equilibrium configuration of the tensegrity
structure. The potential energy of the structure may be calculated with

U = 1
2

9∑

f =4

kf (Lf − L0f )
2, (1)

where Lf ∈ R are the deformed lengths of the tensile members.
The basis of this study are the parameters listed in Fig. 3. The dependency of

the equilibrium configurations on the segment parameters is investigated, while the
stiffness of member 8 (k8) is set to 0.8 N/mm and the stiffness of member 9 (k9) is
varied between 0.05 and 0.60 N/mm with a step size of 0.001 N/mm. The results are
plotted in Fig. 4. It shows the number of different static equilibrium configurations
and the coordinates (x4, ϕ2) within these equilibrium configurations. The stable equi-
librium configurations are marked in black and the instable in grey. Note, that the
equilibrium configurations with ϕ2 < 0 are symmetric to the equilibrium configura-
tions with ϕ2 > 0, and have the samemechanical properties. There are regions for k9,
in which only one stable equilibrium configuration exists: if k9 < 0.338 N/mm only
equilibrium configurationA exists and if k9 > 0.401N/mm, only equilibrium config-
uration B exists. If k9 ∈ [0.338, 0.401]N/mm both stable equilibrium configurations
A and B exist, with an unstable equilibrium configuration (D) in between.

It can be concluded, that it is possible to obtain parameters that both equilibrium
configurations, A and B, are stable and exist, but these parameters have to be chosen
carefully.



Dynamic Analysis of a Compliant Tensegrity Structure … 327

Fig. 4 Diagram, with a variation of k9 and the corresponding shapes of the tensegrity structure.
Black: stable-, grey: unstable equilibrium configurations
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The two stable equilibrium configurations A and B and the unstable equilibrium
configuration D between A and B, with the segment parameters as listed in Fig. 3
are:

PA = (41.016 mm, 0 mm, 0.765 rad,−0.765 rad), (2)

PB = (100.908 mm, 0 mm, 2.531 rad,−2.531 rad), (3)

PD = (68.585 mm, 0 mm, 1.546 rad,−1.546 rad) =: (xcrit, ycrit, ϕcrit,−ϕcrit).

(4)

3 The Equations of Motion

The planned application of the tensegrity structure is a two-finger-gripper. Two equi-
librium configurations correspond to the opened and closed states of the gripper.
To study possible actuation methods and the dynamic system behaviour, the non-
linear equations of motion are derived (see [14]). The equations of motion can be
determined with the Lagranges equations of the second kind for non-conservative
forces:

d

dt

∂L

∂ q̇a
− ∂L

∂qa
= − ∂D

∂ q̇a
+ Qa, with a = 1, . . . , n (5)

where

• n: degree of freedom of the tensegrity structure,
• qa: generalised coordinates, q̇a: generalised velocities,
• L = T −U : Lagrangian function,
• T : kinetic energy of the tensegrity structure,
• U : potential energy of the tensegrity structure,
• D: damping of the tensegrity structure.

The degree of freedom has been discussed in Sect. 2. The generalised coordinates
are (see Fig. 3):

(q1, q2, q3, q4) := (x4, y4, ϕ2, ϕ3). (6)

The potential energy of the tensile members can be calculated with (1). The damping
is assumed as

D = 1
2

9∑

i=4

diṙ
�
pi ṙpi , (7)

where di are the damping coefficients of the dampers and ṙpi ∈ R
2 are the relative

velocities of the dampers.
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Furthermore, Qqa ∈ R are the generalised forces. Let Fk ∈ R
2 be external loads

(for example actuation forces) applied to the tensegrity structure and let rk ∈ R
2 be

the position vector to the corresponding external load Fk . The generalised forcesQqa
are calculated with

Qqa =
∑

k

F�
k

∂rk
∂qa

, with a = 1, . . . , n. (8)

Starting with (5) and exploiting (1), (6), (7) and (8) the equation of motion is given
by:

M

⎛

⎜⎜⎝

ẍ4
ÿ4
ϕ̈2

ϕ̈3

⎞

⎟⎟⎠ = b, M ∈ R
4×4, b ∈ R

4 (9)

with

M :=

⎛

⎜⎜⎝

m2 + m3 0 −c2 cos(ϕ2) −c3 sin(ϕ3)

0 m2 + m3 c2 cos(ϕ2) c3 cos(ϕ3)

−c2 sin(ϕ2) c2 cos(ϕ2)
1
3m2L22 0

−c3 sin(ϕ3) c3 cos(ϕ3) 0 1
3m3L23

⎞

⎟⎟⎠ (10)

b :=

⎛

⎜⎜⎜⎝

c2 cos(ϕ2)ϕ̇
2
2 + c3 cos(ϕ3)ϕ̇

2
3 − ∂U

∂x4
− ∂D

∂ ẋ4
+ Qx4

c2 sin(ϕ2)ϕ̇
2
2 + c3 sin(ϕ3)ϕ̇

2
3 − ∂U

∂y4
− ∂D

∂ ẏ4
+ Qy4

− ∂U
∂ϕ2

− ∂D
∂ϕ̇2

+ Qϕ2

− ∂U
∂ϕ3

− ∂D
∂ϕ̇3

+ Qϕ3

⎞

⎟⎟⎟⎠ (11)

and c2 := 1
2m2L2 and c3 := 1

2m3L3.

Observe that (9) is an implicit, coupled, nonlinear differential equation system.

4 Actuation

In this chapter different actuation principles are examined. The aim of this chapter
is to obtain actuation principles, so that the tensegrity structure changes between
equilibrium configuration A and B, and vice versa. The actuation force is applied to
node 4 in direction of the x-axis. According to whether the change is from A to B or
from B to A, the actuation force is positive or negative, respectively.

The unstable equilibrium configuration (PD, see (4)) is between equilibrium con-
figuration A and B. If node 4 is slightly over the critical position (xcrit, ycrit) or if the
angles ϕ2 and ϕ3 are slightly over the critical position ϕcrit a snap-through happens
and no further force is needed to reach the other equilibrium configuration. So there
are two different actuation principles:
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1. an unforced change,
2. a forced change.

In the unforced change, the actuation force is zero before the tensegrity structure
reaches the critical position. The change into the other equilibrium happens because
of the inertia of the structure. In the forced change the actuation force is not zero in
the critical position, so it is a guided change between the equilibrium configurations.

4.1 Example 1: Sinusoidal Actuation

In this section a sinusoidal force is applied to node 4. It is investigated,whichmaximal
force and duration of the actuation leads to a change between A and B, and B to A.

The actuation force is assumed to be continuous. It is symmetric and starts and
ends with 0 N. More precisely the actuation force is F1 := (F(t), 0)� with maximal
force Fmax ∈ R and duration of the actuation tmax ∈ R:

F(t) :=
{

Fmax
2 sin

(
t 2π
tmax

− π
2

)
+ Fmax

2 , t ≤ tmax

0, else,
(12)

and r1 := (x4, y4)�.
If the initial configuration (t = 0 s) is A (PA, see (2)), the actuation force is F1 and

if the initial configuration is B (PB (see (3)), the actuation force is −F1. The initial
velocities (t = 0 s) are zero.

The maximal force Fmax is varied between −200 and 200 N with a step size of
0.1 N. The duration of the actuation tmax is varied between 0.01 and 0.1 s with a step
size of 0.001 s. The results are depicted in Fig. 5. In the upper picture the unforced
change between the equilibrium configurations is considered: if the actuation force
is not zero while xcrit is reached, the point is marked in white. If, after the actuation,
the tensegrity structure is again in its initial configuration, it is marked in dark grey. If
the structure moves into the other initial configuration, the point is marked in black
(this is the case that is needed for application). And if node 3 and 5 change their
position (in Fig. 3 the region with ϕ2 < 0), the point is marked in light grey. In the
lower picture in Fig. 5, there is not distinguished between the unforced (1) and the
forced change (2). The colours correspond to the upper picture, but white means,
that the tensegrity structure changes more than one time between the equilibrium
configurations. If both cases happen (node 3 and 5 change their position and several
changes between the equilibrium configurations), the colour white is used, too.

In Fig. 6 the case Fmax = 30 N is analysed in more detail. Five different durations
of the actuation are considered: tmax ∈ {0.011, 0.015, 0.019, 0.023, 0.03} s and the
initial configuration is PA, see (2). The actuation force is depicted in Fig. 6 in the
upper left picture. In the upper middle and upper right pictures phase portraits are
plotted. If the duration is small (maximal 0.015 s), the structure is in equilibrium
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Fig. 5 Behaviour of the tensegrity structure during and after actuation with varied maximal forces
and actuation durations



332 S. Sumi et al.

Fig. 6 Actuation force, phase portraits and movement of the nodes during different durations of
actuation

configuration A again, after actuation. These points are marked in dark grey in Fig.5.
The movement of the nodes is depicted in the lower left picture. If the duration is
larger (at least 0.019 s) the tensegrity structure changes from A to B. These points
are marked in black in Fig. 5 and the movement of the nodes is depicted in the lower
middle picture in Fig. 6. If the duration is too large (0.03 s), the structure changes
fromA to B, but nodes 3 and 5 change their positions, see the movement of the nodes
in Fig. 6, lower right picture. In Fig. 5 in the upper diagram this point is markedwhite,
since the actuation force is not zero at xcrit and in the lower picture this point ismarked
light grey, since node 3 and 5 change their positions.

This example shows that it is possible to change between both equilibrium config-
urations with the given sinusoidal actuation force. But the duration of the actuation
and the maximal force have to be chosen carefully. If one of both parameters is too
small, nothing happens and if it is too big, different unwanted effects occur. The
force that is needed to change from A to B is smaller than from B to A. This can be
used in the gripper design if distinguished behaviour while opening and closing the
gripper is desired.

4.2 Example 2: Constant Actuation and Variation
of the Prestress

In this chapter, as a second possibility for the gripper actuation, a constant force
Fmax is applied for a duration tmax at node 4. The force Fmax and the prestress of the
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Fig. 7 Behaviour of the tensegrity structure during actuation with varied maximal forces and
prestress

structure is varied and the movement of the structure is investigated. More precisely
the actuation force is F1 = (F(t), 0)�, with

F(t) :=
{
Fmax, t ≤ tmax

0, else
, (13)

and r1 := (x4, y4)�.
The maximal force is varied between −45 and 45 N with a step size of 0.5 N. The

duration of the actuation is exemplarily set to 0.02 s. To investigate the dependency
of the prestress of the structure to the dynamical system behaviour, the prestress of
the structure is varied while scaling the stiffnesses of the tensile members by a factor
kfac. The factor kfac lies between 0.05 and 4 with a step size of 0.05. The results are
depicted in Fig. 7. The meaning of the colours is the same as in Fig. 5. In the right
picture in Fig. 7 the black region is bigger than in the left picture (unforced actuation).
This shows that it is possible, that the structure changes between both equilibrium
configurations in a forced actuation, too.

For all considered prestress states of the structure it is possible to change between
both equilibrium configurations with the force defined in (13). If the prestress is
larger, a larger force is needed to change between the equilibrium configurations.

5 Conclusions

In this article the equations of motion of a tensegrity structure have been derived.
Therewith the motion behaviour can be determined. This has been done for two
different kinds of actuation.

The parameter study showed, that this tensegrity structure can be a multistable
tensegrity structure, if the parameters are suitable. The analysis of the dynamic system
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behaviour showed, that it is possible to change between both equilibrium configu-
rations, if the actuation force is big enough but not too big. It also showed, that the
dynamic system behaviour is dependent on the prestress of the structure.

In a future study this could be done with the whole gripper, not only with the
underlying tensegrity structure.
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References

1. Boehler, Q., et al.: Definition and computation of tensegrity mechanism workspace. J. Mech.
Robot. 7(4), 044502 (2015)

2. Böhm, V., et al.: Vibration-driven mobile robots based on single actuated tensegrity structures.
In: Proceeedings of the IEEE International Conference on Robotics and Automation, pp. 5455–
5460 (2013)

3. Böhm, V., et al.: An approach to the dynamics and control of a planar tensegrity structure with
application in locomotion systems. Int. J. Dyn. Control 3(1), 41–49 (2015)

4. Caluwaerts, K., et al.: Design and control of compliant tensegrity robots through simulation
and hardware validation. J. R. Soc. Interf. 11, 98 (2014)

5. Chen, L., et al.: Soft spherical tensegrity robot design using rod-centered actuation and con-
trol. In: ASME International Design Engineering Technical Conferences and Computers and
Information in Engineering Conference (2016)

6. Defossez, M.: Shape memory effect in tensegrity structures. Mech. Res. Commun. 30(4), 311–
316 (2003)

7. Friesen, J.M., et al.: The second generation prototype of a duct climbing tensegrity robot,
DuCTTv2. In: IEEE International Conference on Robotics and Automation, pp. 2123–2128
(2016)

8. Hustig-Schultz, D., et al.: Morphological design for controlled tensegrity quadruped locomo-
tion. In: IEEE International Conference on Intelligent Robots and Systems, pp. 4714–4719
(2016)

9. Lessard, S., et al.: A bio-inspired tensegritymanipulatorwithmulti-DOF, structurally compliant
joints. In: Proceedings of the International Conference on Intelligent Robots and Systems,
Daejeon, Korea (2016)

10. Micheletti, A.: Bistable regimes in an elastic tensegrity system. Proc. R. Soc. A 469, 2154
(2013)

11. Mirats Tur, J.M., et al.: Tensegrity frameworks: dynamic analysis review and open problems.
Mech. Mach. Theory 44(1), 1–18 (2009)

12. Rieffel, J.A., et al.: Morphological communication: exploiting coupled dynamics in a complex
mechanical structure to achieve locomotion. J. R. Soc. Interf. 7, 613–621 (2010)

13. Skelton, R.E., et al.: Tensegrity Systems. Springer, Berlin (2009)
14. Sumi, S., et al.: A multistable tensegrity structure with a gripper application. Mech. Mach.

Theory 114, 204–217 (2017)
15. Sumi, S., et al.: A Novel Gripper Based on a Compliant Multistable Tensegrity Mechanism.

Microactuators and Micromechanisms, pp. 115–126. Springer, Berlin (2017)
16. Xu, X., et al.: Multistable tensegrity structures. J. Struct. Eng. 137(1), 117–123 (2011)



Synchronisation Analysis of a De-Tuned
Three-Bladed Rotor

Zofia Szmit, Jerzy Warmiński and Jarosław Latalski

Abstract The aim of the paper is to study a synchronisation phenomenon as
observed in a rotating structure consisting of three composite beams and a hub.
The beams are made of eighteen carbon-epoxy prepreg material layers stacked in
a specific sequence. In the performed analysis it is assumed one of the beams is de-
tuned due to smallmisalignment of its reinforcing fibers orientationwith regard to the
two remaining nominal design blades. The non-classical effects like transverse shear,
material anisotropy, non-uniform torsion and cross-section warping are taken into
account in the mathematical model of the blades. The partial differential equations of
motion of the structure are derived by the Hamilton principle; next the reduction to
the ordinary differential ones is done by the Galerkin method. Finally, the equations
are solved numerically and the resonance curves for the hub and the individual beams
are plotted. In the performed studies two possible variants of the rotor excitation are
considered: (a) driving torque expressed by a harmonic function or (b) torque given
by a chaotic oscillator formula. The analysis of the synchronisation phenomenon of
the hub and the blades motion is based on the study of the resonance curves and
time histories in the prepared graphs. The analysis of the structure driven by chaotic
oscillator revealed the existence of the strange chaotic attractor for every beam of
the rotor; in the particular, nominal beams are fully synchronised, but the de-tuned
one is synchronised with a small difference in amplitude.
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1 Introduction

The synchronisation phenomenon was discovered by Christiaan Huygens in XVII
century, who found out that pendulums of two clocks hanging on the same beam
moved synchronously after some transient time. The studies on synchronisation
effect for different types of pendulums and structures were continued over the next
centuries. This topic is now well established within scientific community and still
stays the subject of continuing research. For instance, the Huygens experiment was
repeated recently by Kapitaniak et al. and discussed in detail in the paper [6]. The
authors used two clocks as identical as possible and observed the behaviour of their
pendulums. Furthermore, they performed computer simulations to check the influ-
ence of any possible differences in clocks on the synchronisation process. The syn-
chronous motion of two pendulums mounted on the horizontally excited platform
was analysed later in the research [7]. The authors proved that the pendulums could
exhibit synchronous oscillatory and rotation motion. Moreover, it was shown the
stable in-phase and anti-phase synchronous states always co-existed. The synchro-
nisation effect in the structure consisting of two double pendulums was studied by
Koluda et al. in [8]. The authors derived the mathematical conditions that allowed to
explain the types of observed synchronisation scenarios in the analysed system.

However, all the above mentioned papers discussed the dynamics and synchroni-
sation of pendulums rotating in a vertical plane. As opposed to these studies a sys-
tem consisting of two pendulums attached to a rigid hub and rotating in a horizontal
plane was examined by Warminski et al. in [16]. The nonlinear dynamics of the
full rotor structure as well as the synchronisation phenomenon were investigated.
Similar studies were performed on rotors consisting of a rigid hub and a flexible
beam. In particular, in the paper [15] the system of a beam and a heavy tip mass
was investigated. The proposed nonlinear mathematical model of the blade bending
accounted for high curvatures arising from large transversal displacements. Similar
studies were performed by Yigit et al. [17] who derived fully coupled non-linear
equations of motion considering the hub and beam interactions. Moreover, a torque
profile function was used to represent the rotor drive so that the rigid body motion
of the structure was not known a priori.

The idea of studying a non-perfect excitation source was adopted by other
researches studying the dynamics of flexible beams. In particular, Awrejcewicz et al.
[1] investigated the chaotic dynamics of straight as well as curved Euler-Bernoulli
beams in geometrically non-linear regime. A series of tests for different boundary
conditions were carried out. Time histories, phase and modal portraits, as well as
a compression factor of the phase volume of an attractor were investigated. These
studies were continued later to incorporate thermal effects and the influence of elec-
trical potential generated on the specimen surface [9].

Most of the presented above studies on rotating structures were motivated by
aerospace and mechanical engineering problems; typical examples might be heli-
copter rotors, aircraft propellers, jet engines etc. A specific nonlinear model of rotat-
ing beam dedicated to the helicopter blades was presented by Crespo da Silva in
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the papers [2, 3]. This model was derived assuming the homogeneity and isotropic
properties of the specimen material. Another model of rotating flexible beams was
proposed by Librescu and Song [11]. In contrast to Crespo da Silva their approach
accounted for directional properties of the specimenmaterial. However, the presented
formulation was limited to the linear regime only.

The current research paper is inspired by the evolution of materials used in
mechanical and aerospace engineering. Especially compositematerials are becoming
more and more popular because of their unique mechanical and physical properties.
The multilayered laminates made of unidirectional orthotropic laminas are used due
to their directional dependent properties that can be exploited to design a mate-
rial dedicated for the specific engineering needs. However, independently of their
anisotropic properties, the laminated composites can also be used for designs where
the fully isotropic properties of the material are called for. For instance, when a thin
specimen is subjected to various loading conditions, a macroscopically isotropic
composite can be well suited for the purpose, especially if weight of the structure is
an additional design constraint. These types of applications require specific combi-
nations of fibres orientations and plies stacking sequences resulting in macroscopic
material isotropy. Several exemplary material designs were discussed by Fukunaga
[4], and by Vannucci and Verchery [14].

One of the principal weaknesses of the multilayered laminates is their suscep-
tibility to any deviations from the tight manufacturing technology regimes. These
include precise prepreg laying orientation, appropriate temperature, pressure and cur-
ing time, proper prepreg storage and handling conditions etc. All these factors might
be a source of potential error, resulting in deterioration of the composite mechanical
characteristics. In certain specific cases also physical macroscopic properties of the
material may be affected. For instance in-plane to out-of-plane mechanical coupling
might be induced due to deviated orientation of individual laminas. This in turn may
lead to inappropriate structural behaviour and/or unexpected dynamic phenomena.

To address the aforementioned issues the current paper studies the problem of
the influence of inaccurate multilayered lamination scheme in nominally isotropic
laminated material on the dynamic properties of three-bladed composite rotor. In
the presented consideration it is assumed that one of the beams is de-tuned due
to misalignment of reinforcing fibres angles in subsequent laminate layers, while
the other two blades stay nominal. This deviation from the standard design results
in different mechanical properties of the affected blade. In particular, the inherent
mechanical coupling of in-plane to out of plane deformation is observed.

2 Mathematical Model of the Structure and Equations
of Motion

Let us consider a rotor consisting of three slender, straight, and elastic composite
beams of solid section clamped at the rigid hub of radius R0 and inertia Jh rotating
about a fixed frame vertical axis CZ0 as shown in Fig. 1.
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Fig. 1 Model of the rotating hub with three elastic beams

The hub temporary position is represented by an angle ψ(t) with respect to an
inertial reference frame (X0,Y0,Z0) and the rotational speed of the system ψ̇(t) is
assumed to be arbitrary i.e. not necessarily constant. The system is driven by an exter-
nal torque Text applied to the hub. The length of each beam is denoted by li, the width
and thickness of the cross-section by di and hi (i = 1, 2, 3), respectively. It is assumed
the beams are made of 18 laminate layers of graphite-epoxymaterial with the follow-
ing stacking sequence (0◦,−60◦, 60◦, 0◦,−60◦, 60◦, 60◦, 60◦,−60◦,−60◦, 0◦, 0◦,
−60◦, 0◦, 0◦, 60◦, 60◦,−60◦). This specific configuration exhibits fully isotropic
material properties i.e. macroscopic material isotropy and isotropy of the three stiff-
ness tensors A, B and D as well [14].

Furthermore, it is assumed one of these three beams is made of an imperfect
laminate due to a slight misalignment of reinforcing fibers in individual layers. Thus,
one presumes the actual fiber orientation angle in each kth ply (k = 1, . . . , 18)maybe
varied from its nominal value αk but stays within a range 〈αk − �αk;αk + �αk〉 —
see Fig. 2. So�αk represents the assumedmaximumallowable deviation of the actual
fiber direction in ply k, and therefore it may correspond to the accuracy of laminate
layer positioning. Moreover, it is assumed that the magnitude of this misalignment
is set ’a priori’ and equal for all layers – so it does not depend on the nominal fiber
orientations αk .

Thismodel of the imperfectmaterial/structure, where only themaximal deviations
of fiber orientation angles are given, renders their exact values unknown. However,
this approach allows to estimate themaximumpossible impact of the assumed change
in fibres orientations on the mechanical properties of the material by performing
a simple sensitivity analysis. This treatment is often encountered in reliability based
structural design — see e.g. [10] and represents the so called ’a worst case scenario’
analysis. More details are given in Sect. 2.2.
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(a) (b)

Fig. 2 Model of an inaccurate composite material

2.1 Derivation of Governing Equations

The mechanical equations of motion of the rotor structure are derived according to
the extended Hamilton principle of the least action

δJ =
t2∫

t1

(
δT − δU + δWext

)
dt = 0 (1)

where J is the action, T is the kinetic energy,U is the potential energy, and the work
done by the external loads is given by the Wext term.

Following the detailed derivation procedure given in the former authors paper [5]
the system of partial differential equations of motion and the associated boundary
conditions can be obtained. Considering the solid cross-section of the beams and
their clamping position, as well as multilayered laminate configuration the dynamics
of every blade is represented by three equations of motion. These correspond to the
individual degrees of freedom, namely bending deflection w0, transverse shear angle
ϑy and twist angle ϕ. The additional differential relation represents the dynamics of
the hub given by the rigid body rotation angle ψ . Therefore, the dynamics of the
structure is represented by a total of ten partial differential equations of motion.

Since the general form of any individual beam governing equations is identical,
for the sake of brevity, only one subset for the representative blade is given below

• δw0

b1ẅ0 + 2b1u̇0 ψ̇(t) − b1w0ψ̇
2(t)+b1(R0 + x + u0)ψ̈(t)

−[
a55(ϑy + w′

0)
]′ − (

Txw
′
0

)′ = 0
(2)

BC: w0

∣∣
x=0 = 0,

(
ϑy + w′

0

)∣∣
x=l = 0
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• δϑy

B4
[
ϑ̈y − ϑyψ̇

2(t) + ψ̈(t)
] + a55ϑy + a55w

′
0 − (

a33ϑ
′
y

)′ − (
a37ϕ

′)′ = 0 (3)

BC:
ϑy

∣∣
x=0 = 0,

(
a33ϑ

′
y + a37ϕ

′)∣∣
x=l

= 0,

• δϕ

(B4 + B5)ϕ̈ + (B4 − B5)ϕψ̇2(t) − (
a37ϑ

′
y

)′−(
a77ϕ

′)′

+
[
B4 + B5

m0d
Txϕ

′
]′

= 0,
(4)

BC:
ϕ
∣∣
x=0 = 0,

(
a37ϑ

′
y + a77ϕ

′)∣∣
x=l = 0,

In the above given relations terms b1,B4,B5 represent specimen cross-section iner-
tias in translation and rotations, respectively. Coefficients a33, a55, a77, a37 are the
stiffnesses of the beam in bending, shear, twist and bending-twist coupling stiff-
ness. Them0 factor is a reduced mass term given as

∫ h/2
−h/2 ρ dnwhere ρ is laminate

mass density and n is dummy variable measured in specimen thickness direction.
Detailed definitions of all these terms can be found in the previous authors paper
[5]. Moreover, the term Tx = b1(l − x)[R0 + 1

2 (l + x)]ψ̇2 represents the centrifu-
gal stiffening effect.

The above set of Eqs. (2)–(4) is supplemented by the additional equation governing
the hub motion

• δψ

Jh + 3 (B22 + B4l) ψ̈(t) +
3∑

i=1

∫ l

0

[
2b1(R0 + xi)u0iψ̈(t)

+ 2b1(R0 + xi)u̇0iψ̇(t) + b1(R0 + xi)ẅ0i−B4ϑ̈yi

]
dx = Text

(5)

The term B22 corresponds to the inertia of the beam in rotation about its tip as
a rigid body. When studying this equation please mind the assumed misalignment
of reinforcing fibres affects only the blade stiffnesses while all the inertia terms
stay unchanged with respect to the nominal beam. Therefore, the beam denotation
index i is skipped in the inertia subscripts.
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2.2 Impact of Reinforcing Fibers Misalignment

Thedeviation of composite reinforcingfibers from their nominal orientation results in
the change of the material stiffness and, consequently, the blade stiffness coefficients
aij. However, the inertia terms bi and Bj are not affected since the density of the
material is uniform layerwise.

Following the adopted assumptions to the mathematical model of the structure
[5], the blade stiffness coefficients aij are calculated according to the Classical Lami-
nate Theory scheme. Thus, they are expressed in terms of Aij, Bij andDij members of
matrices representing stretching, bending-stretching and bending stiffnesses, respec-
tively. These in turn are given by reduced plane stress state stiffnessesQij and finally
by individual components C̃ij of material stiffness tensor in rotated 3D coordinate
frame – see appropriate mathematical formulas in [5].

The possible impact of the considered reinforcing fibers misalignment may be
reasonably evaluated by performing a simple sensitivity analysis. Therefore, the
change of any beam stiffness aij is given as follows

�aij =
k=18∑
k=1

∣∣∣∣∂aij∂αk
�αk

∣∣∣∣ = f (C̃(αk)) (6)

where ij pair is 33, 37, 55 or 77, and k represents the individual laminae order.
The expression ∂aij

∂αk
represents the sensitivity of the material stiffness with respect

to changes in fibre orientations in k individual laminate layer. Since the sign of the
possible deviation �αk is not arbitrary known, to consider the most unfavourable
case, the absolute value operator is used. The proposed general function f (·) repre-
sents the dependence of the stiffness change with respect to individual components
of material stiffness tensor in rotated coordinate frame.

To calculate the necessary sensitivities a concept of invariants proposed by Tsai
and Pagano [12] describing mechanical properties of anisotropic materials has been
adopted. This is a convenient approach that allows to represent stiffness transforma-
tion equations for any ply rotation in a laminate as a function of general material
invariants ui (i = 1, 2, . . . , 11) and material rotation angle α. Thus the relevant rela-
tions may be simplified and the requested components of the material stiffness tensor
C̃ij in rotated coordinate frame are given as
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Table 1 The values of individual coefficients in partial differential equations of motion (2–4) for
the nominal laminate and for the perturbed one

Nominal values

a33 = 0.117568Nm2 a37 = 0.0Nm2 a55 = 67957.50N a77 = 0.081397Nm2

Perturbed values

a33 = 0.138754Nm2 a37 =
−0.000116Nm2

a55 = 69537.77N a77 = 0.091819Nm2

C̃11(αk) = u1 + u2 cos(2αk) + u3 cos(4αk) C̃12(αk) = u4 − u3 cos(4αk)

C̃16(αk) = 0.5u2 sin(2αk) + u3 sin(4αk) C̃13(αk) = u8 + u9 cos(2αk)

C̃22(αk) = u1 − u2 cos(2αk) + u3 cos(4αk) C̃23(αk) = u8 − u9 cos(2αk)

C̃26(αk) = 0.5u2 sin(2αk) − u3 sin(4αk) C̃33(αk) = C33 (7)

C̃36(αk) = u9 sin(2αk) C̃44(αk) = u10 − u11 cos(2αk)

C̃45(αk) = u11 sin(2αk) C̃55(αk) = u10 + u11 cos(2αk)

C̃66(αk) = u5 − u3 cos(4αk)

Results of the calculations for the proposed 18 layers stacking sequence and
nominal fibre orientations are given in the first row of Table1. Next, the changes
in values of individual coefficients for the misaligned material have been calculated
assuming the deviation magnitude�αk = 5◦; final results for the mistuned specimen
are listed in the second row in Table1.

The performed numerical simulations confirm the assumed specific stacking
sequence to exhibit the fully isotropic properties for the nominal values of fibre
orientations – note the bending-twisting stiffness a37 = 0. However, this stacking
sequence configuration is sensitive to possible variations in fibres orientations as con-
firmed by changes in beam stiffnesses. In particular, it can be observed the possible
permitted small misalignment of fibres angle leads to anisotropic material behaviour
and induces the mutual coupling of in-plane and out-of-plane specimen deforma-
tions (a37 �= 0). This can be also observed if comparing the individual components
of natural mode shapes of the beam for the nominal material (Fig. 3a) and for the
de-tuned one (Fig. 3b), where a minor torsional component ϕ(η) is coexistent.

2.3 Ordinary Differential Equations of Motion

In the following stage the individual equations of motion have been rewritten by
introducing a dimensionless notation, i.e. a spanwise coordinate η = x/l (η ∈ 〈0, 1〉)
as well as time τ = ω0 · t, where t is physical time and ω0 = √

a33/(b1l4).
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(a) (b)

Fig. 3 Mode shape components for nominal (a) and de-tuned blade (b)

Next, the Galerkin projection method has been applied to reduce the set of PDEs
to the system of ordinary differential equations ofmotion. For this purpose an orthog-
onality condition for the boundary value problemwith the bending-shear-twist vibra-
tion components involved has been derived, and is as follows

(
ω2
m − ω2

n

) ∫ 1

0

[
b1l

2Wm(η)Wn(η) + B4Ym(η)Yn(η)

+ (
B4 + B5

)
Φm(η)Φn(η)

]
dη = 0

(8)

In the above formula W (η), Y (η) and Φ(η) correspond to the assumed mode func-
tions representing spatial distribution of transverse displacement, shear and twist
angles, respectively. Therefore, for two distinct mode shapes (m �= n) the integral is
zero; otherwise it takes a nonzero value depending on the mode normalisation rule.
When using the formulated orthogonality condition (8) the three Eqs. (2)–(4) for any
individual i (i = 1, 2, 3) beam can be added. Thus they are reduced to just one (see
any of Eqs. (9)2−4) where the generalised coordinate qi(τ ) i = 1, 2, 3 represents the
complex deformation of the i blade involving transverse displacement, shear and
twist. The final set of governing equations takes the form:

(Jh + Jb1 + Jb2 + Jb3 + αh12q
2
1 + αh22q

2
2 + αh32q

2
3)�̇ + αh11q̈1

+αh21q̈2 + αh31q̈3 + αh13q1q̇1� + αh23q2q̇2� + αh33q3q̇3� + ζh� = μ

q̈1 + α12�̇ + α14q1q̇1� + (α11 + α13�
2)q1 + ζ1q̇1 = 0

q̈2 + α22�̇ + α24q2q̇2� + (α21 + α23�
2)q2 + ζ2q̇2 = 0

q̈3 + α32�̇ + α34q3q̇3� + (α31 + α33�
2)q3 + ζ3q̇3 = 0

(9)

The first of these equations represents dynamics of the rigid hub. Terms Jh and Jbi are
dimensionless mass moment of inertia of the hub and each beam, respectively. All
these are expressed as amagnitude of the inertia of the first beam. Since the specimens
mass and geometrical dimensions are identical Jb1 = Jb2 = Jb3 = 1. Moreover, the
term� = dψ

dτ present in (9) denotes the dimensionless angular velocity of the hub that
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is an independent variable of the problem. The parameterμ corresponds to the system
excitation (external torque). Within performed numerical simulations this excitation
has been considered in two variants: (a) as a driving torque, expressed by a harmonic
functionμ = μ0 + ρ sinωτ or (b) as a chaotic Duffing oscillator whereμ = ρx. The
variable xwas calculated from theDuffing’s equation ẍ + kẋ + x3 = B0 + B1 cosωτ

as originally presented by Ueda in [13].
As already reported the last three equations in the set (9) describe dynamics of

each beam, where q1, q2 and q3 are the generalised coordinates. Furthermore, ζ1,
ζ2, ζ3 and ζh are arbitrary introduced viscous damping coefficients, for beams and
the hub, respectively. In the performed numerical simulations the beam number 2 is
assumed to be a de-tuned one.

3 Numerical Studies

All coefficients αij (Table2) representing the dynamic properties of the blades have
been calculated based on the specimens stiffnesses amn as given in Table1. These cor-
respond to the actual graphite-epoxy laminate material E1 = 143.2GPa, E2 = E3 =
3.1GPa,G23 = 2.05GPa,G12 = G13 = 3.28GPa, ν21 = 0.0075768, ν32 = 0.2439,
ρ = 1350.0 kg/m3 and blade geometry l = 0.350m, d = 0.034m, h = 0.0009m.

Dynamics of the system is studied by direct numerical simulation of the system
represented by Eq. (9). The resonance curves and time series plots are obtained
for a system excited by a harmonic torque μ(τ). The solutions for the system with
harmonic function are sought near the resonance zones for the selected amplitude
of excitation (ρ = 0.01). The mass moment of inertia of the hub is assumed to be
Jh = 14.11.

The obtained resonance curves for amplitude of angular velocity of the hub and
displacements of each beam are presented in Fig. 4a, b, respectively. On both graphs
two resonances can be observed, the first one close to ω ≈ 3.52 and the second one
close to ω ≈ 3.82. The main resonance is observed for beams No. 1 and No. 3,
with very small oscillations of the second beam. In this frequency zone we observe

Table 2 Dimensionless coefficients used in numerical simulations

α11 = α31 =
12.3644536

α21 = 14.5917312 αh11 = αh31 =
0.010086768

αh21 = 0.010085874

α12 = α32 =
1.77991378

α22 = 1.78007586 αh12 = αh32 =
−0.00765586

αh22 = −0.00765438

α13 = α33 =
0.35095587

α23 = 0.35093716 αh13 = αh33 =
−0.01531173

αh23 = −0.01530876

α14 = α34 =
−1.55179595

α24 = −1.5516347

ζ1 = ζ2 = ζ3 = 0.002 ζh = 0.1
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(a) (b)

Fig. 4 Resonance curve for amplitude of excitation ρ = 0.01 a angular velocity of the hub �, b
displacements of each beam q1, q2, q3
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Fig. 5 Time series of each beam a close to first resonance zone; b close to second resonance zone

synchronisation of motion of beamsNo. 1 and No. 3 and large reduction in vibrations
of the beam No. 2. Around the second resonance zone oscillations are localised
in beam No. 2, while motions of beams No. 1 and No. 3 are very small but still
synchronised, see time histories in Fig. 5. We may note that the hub motion plays
important role in the beams response.

In case of the structure excited by the Duffing oscillator, the Poincaré maps for the
individual beams have been obtained. A strange chaotic attractor has been found for
each beam, see Figs. 6 and 7a. To study the synchronisation phenomenon the time
series plots (Fig. 7b) are studied. It is found the beamsNo. 1 andNo. 3 are completely
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(a) (b)

Fig. 6 Portrait of a strange chaotic attractor for a beam No. 1; b beam No. 3
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Fig. 7 Portrait of a strange chaotic attractor for a beam No. 2 and time series of each beam

synchronised due to the symmetry. However, the beam No. 2 is synchronised too but
its amplitude is smaller than the others ones.

4 Conclusions

For the de-tuned structure excited by harmonic torque two resonances have been
observed. The fist resonance occurs close to ω ≈ 3.52 and the second one at ω ≈
3.82. The frequency-amplitude curves are exactly the same for the first and the third
beam (q1, q3). This is due to their full symmetry resulting from analogy in stiffness
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and inertia terms. Simultaneously the amplitude of the beam No. 2 is very small. On
the other hand, for the second resonance zone vibrations are localised in the beam
No. 2 with very small oscillations of beams No. 1 and 3. It should be noted the
identical beams No. 1 and 3 exhibit the complete synchronisation of motion, both at
the first and the second resonance as well. For the second beam the synchronisation
with locked phase is noticed.

In the studied case of the rotor driven by chaotic oscillator the strange chaotic
attractor has been observed for each beam. BeamsNo. 1 and 3 are fully synchronised,
beam No. 2 is synchronised too but with a small difference of the amplitude.

Acknowledgements This work was supported by grant UMO-2015/19/N/ST8/03906 from Polish
National Science Centre.
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The Analytical Approach
for Identification of Magnetically
Induced Vibrations of Working in Faulty
State BLDC Motor

Przemysław Szulim and Stanisław Radkowski

Abstract The article discusses themost important stages ofmodelling the processes
taking place in the BLDC motor working in the faulty state. The purpose of the
analyses was to determine the relations between magnetically induced vibrations
and mechanical damages, which can occur on a real object. Several chapters of this
work focus on the successive stages of modelling. Vibrations created as a result of
the fluctuation of the rotor magnetic field were analysed, as of the source of the field
of the greatest magnitude, dominating inside the motor and playing the key role,
from the point of view of the generated vibrations. The obtained results have been
discussed and compared with the results obtained from the real object. Usefulness
of the conducted analyses in support of diagnostics of this type of motors has been
indicated.

Keywords BLDC motor · Analytical modeling · Motor diagnosis

1 Introduction

Precise analysis of an examined object is a primary stage in an assignment of the
state diagnostics. It is essential not only because of the more profound knowledge
of the object’s operation rules but also allows for development of more advanced
methods of signal analysis. Diagnostics of the brushless synchronous DC motors is
a very interesting scientific task, in which many methods were developed and have
since been successfully applied. Still, the most intensively used methods comprise
those based on the analysis of the current signal [1, 2], vibration signal [3–5], or
methods based on the analysis of the magnetic field around the motor [6–10]. For
a better knowledge of the mechanisms of fault influence on the diagnostic symp-
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toms, adequate models are built. In the BLDS motors domain, there have been many
modelling strategies developed, among which field methods, circuit methods, and
analytical methods are worth mentioning. The latter strategy of BLDC motor mod-
elling has been employed in the last 40 years basically to help designing this kind of
motors [11, 12]. Despite available and commonly usedMES tools, a large number of
publications can be indicated, in which the authors attempted to describe phenomena
taking place in the motor by means of analytical description of physical phenom-
ena. Reviewing of the literature shows the development of analytical tools and the
models, starting with the simple one-dimensional [13, 14] to relatively advanced
two-dimensional motor models [13, 15, 16]. However, a three-dimensional model,
precisely describing a rather complex geometric motor structure, still remains quite
a challenge. It is worth emphasising that fully analytical models have several seri-
ous disadvantages, including: complicatedness and quality of being time-consuming
in regard to building the model, the necessity of adopting a series of simplifying
assumptions. Their undoubted merit is the mathematical description which can be a
starting point for the more sophisticated analyses. In this work, the results of analy-
ses have been shown, conducted based on the electric motor of the BLDC type with
particular attention focused on the influence of the selected mechanical damages on
the frequency structure of the forces exerted on the motor body.

At the stage of model building, apart from modelling the motor itself, the impair-
ment in the form of demagnetisation, load pulsation and lack of coaxiality were
described in an analytical way, the phenomena that will be discussed later on in this
work. The model-based description of the component forces exerted on the motor
body was compared with results obtained in the course of real tests. They proved
several observations made on the basis of the analysis of the analytical motor model,
and can constitute the foundation for development of advanced methods of damage
detection based on the motor vibroacoustic signal. In this work, a series of simpli-
fying assumptions, discussed in de-tail in subsequent chapters, have been made. In
the first step, it should be noticed that only vibrations (forces) arising from the mag-
netic field of the rotor permanent magnets, will be analyzed in this work. The BLDC
motor design has two sources of magnetic field, i.e. permanent magnets located on
the rotor, and the stator currents. Focusing attention on one source was dictated by
the necessity of limiting the material volume on one hand, and the dominating source
of the motor magnetic field was analyzed on the other. In successive publications,
the aspect of influence of the stator field will be also analyzed in detail.

2 Analytical Model

In this work, the starting point for acquisition of the desired description of the com-
ponent forces acting on the motor is an analytical model describing distribution of
the magnetic field inside the motor. From the point of view of vibration analysis,
only the knowledge of distribution of the magnetic field in the area of the so-called
air gap is essential. However, because of different types of use, the most important
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Fig. 1 Two-dimensional motor model: a modelled motor, b motor cross-section, c indication of
basic data of characteristic areas, d simplified cross-section with characteristic areas indicated

stages of building a complete two-dimensionalmodel describing the field distribution
in six characteristic motor regions will be addressed, which is illustrated in Fig. 1.
The analysed two-dimensional model assumes the infinitely long body of the motor,
which is obviously a great simplification. Another such simplification is substitut-
ing the complicated geometry of the cross-section with simple geometric shapes,
for which it is relatively easy to generate equations describing the field distribution.
Effects connected with the complicated geometry can be introduced into the model
through certain functions, which will be discussed in detail later in this article. Each
of the six characteristic areas is described by means of certain magnetic permeability
and range of changes of the radius r. In the following sub-chapter, the basics of
the mathematical apparatus will be discussed and analytical equations derived that
constitute the starting point for the subsequent derivations.
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2.1 Mathematical Background

Using the Maxwell equation (1) for the magnetostatics case allows for

divB � 0 (1)

generation of the Eq. (2) of the so-called scalar magnetic potential ϕ.

�ϕ � 0 (2)

Using this notion will significantly facilitate calculations. Because of the symmetry,
it is worth to analyse the problem in the polar coordinate system r − θ . In such a
case, the Laplace equation (2) assumes the following form:

�ϕ � ∂2ϕ

∂r2
+
1

r

∂ϕ

∂r
+

1

r2
∂2ϕ

∂θ2
� 0 (3)

Using the separation of variables method makes it possible to obtain the general
solution to the Laplace equation (4), where the desired coefficients A,D, C,D, and β

are determined by generating an appropriate equation system and using the boundary
conditions for individual characteristic areas.

ϕ(r, θ) � (A0θ + B0)(C0ln(r) + D0)

+
∞∑

n�1

(Ancos(βnx) + Bnsin(βnx))
(
Cnr

n + Dnr
−n

)
(4)

Hr (r, θ) � − ∂ϕ

∂r

H θ (r, θ) � − 1
r

∂ϕ

∂θ

(5)

where Hr is the radial component of the field, and H θ—the tangential component.
It is worth emphasising that the requested magnetic field is computed from the

equation of potential using the relationships (5): Given the general solution of the
potential in the form of (4), describing its distribution in one area, and using the
equation of the field refraction on the border of two areas in the form (6), the unknown
coefficients of the Eq. (4) can be determined.

n × H I V � n × H I I I

n · B I V � n · B I I I
(6)

where:B—magnetic field induction vector, n—vector perpendicular to the boundary
surface.

In the case of there being a full symmetry in the geometry of characteristic regions,
the Eq. (6) describe the equality of the tangential component of the magnetic field
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strength and the radial component of the magnetic induction. A more precise deter-
mination of full equations for all characteristic areas exceeds the framework of this
article but it can be found in works [7, 17]. The most important results will be
mentioned further on in this article.

2.2 Magnetic Field in Magnets Region

From the perspective of further analyses, expansion of Eq. (4) for the region of
permanentmagnets isworth taking a closer look at. In this case, the region is described
by the Poisson partial differential equation (7).

�ϕ � div
M
μr

� Mr

rμr
(7)

where μr—relative magnetic permeability of magnets.
More precise calculations lead to obtaining the full equation of potential (8).

Factors MC
n and MS

n (9) are the coefficients of the Fourier series of the distribution
of the magnetisation vectorM for permanent magnets. This vector is shown in Fig. 2
as a function of angle. Even though this is not the only possibility, only the radial
magnetisation of the magnets was taken into consideration, which is characterised by
the lack of the tangential component of magnetisation and rectangular curve of the
vector radial component. At this stage, the effect of demagnetisation of one magnet
was taken into account, i.e. the loss of themagnet’s magnetic properties. Equation (9)
describes the relations of individual coefficients and a certain functionMC (n),whose
precise description can be found in work [17], and the rotation angle of the motor
shaft β.

H I I I
r (r, θ) � −DI I I

0

R2
− A0

μ3
−

∞∑

n�1

[(
nAI I I

n rn−1 − nBI I I
n r−n−1 − MC

n

μr
(
n2 − 1

)
)

cos(nθ) + n

(
C I I I
n Rn−1

2 − DI I I
n R−nrn−1−1

2 − MS
n

μr
(
n2 − 1

)
)
sin(nθ)

]

H I I I
θ (r, θ) � −

∞∑

n�1

[
−n

(
AI I I
n rn−1 + BI I I

n rn−1 − MC
n

μr
(
n2 − 1

)
)
sin(nθ)

+n

(
C I I I
n rn−1 + DI I I

n rn−1 − MS
n

μr
(
n2 − 1

)
)
cos(nθ)

]
(8)

MC
n � MC(n)cos(nβ)

MS
n � MC(n)sin(nβ) (9)
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Fig. 2 Radial component of the magnetization vector of permanent magnets with demagnetization
effect marked

The system of Eq. (8) is maintained for the remaining five areas. Each of the
equations, just like (8), can be expanded into a series of sines and cosines. Using
Eq. (6) for two boundaries of the given region, four equations in total are obtained
from the equation of potential of a given region. They are comparedwith the adequate
four equations of the neighbouring region using the properties of the Fourier series.
Thus, for each of five boundaries of six regions, 20 equations are obtained in total,
constituting the system of equations determining the sought coefficients. The system
of these equations can be written in the matrix form.

A · Xa � −I · MC
n

A · Xb � −I · MS
n

(10)

where:
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A �

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

μ1R
n−1
1 −μ2R

n−1
1 μ2R

−n−1
1 0 0 0 0 0 0 0

Rn−1
1 −Rn−1

1 −R−n−1
1 0 0 0 0 0 0 0

0 μ2R
n−1
2 −μ2R

−n−1
2 −μ3R

n−1
2 μ3R

−n−1
2 0 0 0 0 0

0 Rn−1
2 R−n−1

2 −Rn−1
2 −R−n−1

2 0 0 0 0 0

0 0 0 −μ3R
n−1
3 μ3R

−n−1
3 μ0R

n−1
3 −μ0R

−n−1
3 0 0 0

0 0 0 −Rn−1
3 −R−n−1

3 Rn−1
3 R−n−1

3 0 0 0

0 0 0 0 0 −μ0R
n−1
4 μ0R

−n−1
4 μ5R

n−1
4 −μ5R

−n−1
4 0

0 0 0 0 0 −Rn−1
4 −R−n−1

4 Rn−1
4 R−n−1

4 0

0 0 0 0 0 0 0 μ5R
n−1
5 −μ5R

−n−1
5 μ0R

−n−1
5

0 0 0 0 0 0 0 Rn−1
5 R−n−1

5 −R−n−1
5

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

I �

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

μ0
n
(
n2−1

)

1
μr

(
n2−1

)

μ0
n
(
n2−1

)

1
μr

(
n2−1

)

04x1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Xa �

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

AIn

AI In

B I In

AI I In

B I I In

AI Vn

B I Vn

AVn

BVn

AV I
n

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Xb �

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

BIn

C I I
n

DI I
n

C I I I
n

DI I I
n

C I V
n

DIV
n

CV
n

DV
n

BV I
n

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Xa and Xb are vectors of the sought coefficients of equations.

2.3 Modelling of the Eccentricity Fault

The eccentricity fault can result from the presence of failure of, for example, bearings,
and ismanifested by creation of the heterogenous air gap between the stator and rotor.
Mathematically, the description of this process can be started by defining the system
of coordinates r ′ − θ ′ related to the rotor, which is illustrated in Fig. 3.

The parameters describing the eccentricity effect are: the shift parameter ε and
the revolution angle α. Figure 3 illustrates that part of characteristic regions (rings)
remains coaxial relative to the general coordinate system, whereas the other part
does not. This results in substantial complicating of calculations because the form
of Eq. (6) is getting complicated to a very large degree (the normal vector n for the
shifted regions is a function of the ε shift and the revolution angle α). It proves that
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Fig. 3 Geometric description of the eccentricity phenomenon

finding the precise distribution of field for such a case is very difficult or impossible.
This is why the perturbation method has been called for, i.e. the method finding
the approximate solution. Thanks to the employment of this method, the ultimate
equation of potential could be rendered as a sum of the undisturbed solution (without
eccentricity) and the successive orders describing the eccentricity effect (11).

ϕi (r, θ) � ϕi
(0)(r, θ) + εϕi

(1)(r, θ) + ε2ϕi
(2)(r, θ) + . . . (11)

Only the zeroth and the first orders were taken into account in the model. The
equation of potential ϕi

(1) for the ith region requires determining the appropriate
coefficients like in the case of Eq. (8), which is practically equal to finding the solution
to the potential. The description of the way the sought coefficients were determined
was limited to indicating only the ultimate equation allowing for pinpointing the
desired coefficients, because of its ample size.

A · Xa(1) � sin(α − θ)
(
E · Xb(0) + J ∗ MS

n

)
+ cos(α − θ)F · Xa(0) − I · MC

n

A · Xb(1) � −sin(α − θ)
(
E ∗ Xa(0) + J ∗ MC

n

)
+ cos(α − θ)F · Xb(0) − I · MS

n

⎫
⎬

⎭

(12)

where: Xa(1) and Xb(1) are vectors of the sought coefficients, the E, F, I, J matrixes,
however, were defined in work [7].
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3 Mathematical Description of Forces Exerted
on the Motor Body

Analysis of forces in motor was based on the Maxwell stress tensor. Two equations
below allow to calculate tangential and normal stress acting on a motor mechanical
component.

τ � Br Bθ

μ0
(13)

σ � B2
r − B2

θ

2μ0
(14)

Component of total axial forces in X and in Y direction was presented on Fig. 4.
They can be calculated from the Eq. (15). These forces appear due to normal motor
work. In case of effect of eccentricity or demagnetization, new frequency components
of the force could appear, which will be shown in this paragraph.

Fx
(
α, ε, θ ′) � R4l

2π∫

0

σcos(ϑ)dϑ

Fy
(
α, ε, θ ′) � R4l

2π∫

0

σ sin(ϑ)dϑ (15)

After expanding Eq. (15) one can observe that the force can be presented as a
sum of combination of magnetic field components (radial, tangential, generated by
magnets or currents).

Fig. 4 Forces in BLDC
motor
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Table 1 Sums and harmonic differences

n1 +n2 n1 n1 – n2 n1
4 12 20 28 4 12 20 28

n2 4 8 16 24 32 n2 4 0 8 16 24

12 16 24 32 40 12 −8 0 8 16

20 24 32 40 48 20 −16 −8 0 8

28 32 40 48 56 28 −24 −16 −8 0

Frx (ε, t) � R4l

2μ0

2π∫

0

(
BR2

r + 2BR
r BS

r + BS2
r −

(
BR2

θ + 2BR
θ BS

θ + BS2
θ

))
cos(ϑ)dϑ

(16)

where: BR and BS magnetic field with indicated source (magnets and phase current
respectively), l—axial length of the motor. Due to the assumptions made, described
in the introductory part to this work, only the BR2

r component of the Eq. (16) will
be taken into account. Because the integrator in Eq. (16) integrates on dimension it
has no influence on the frequency component of the force equation. Square of radial
component of themagnetsmagnetic field is shown in Eq. (17). X1A, X2A, AA are the
functions of two parameters and are time independent. This equation reveals effect of
the amplitudemodulation. One can expect many harmonics in frequency spectrum of
signal like this. In case of lack of demagnetization, n1, n2 � 4, 12, 20, 28, 36 . . . �
(2k − 1)p. The sums of the coefficients lead to appearance of harmonics from the
series 2kp. Due to eccentricity, around each harmonic in spectrum signal appears two
additional component with frequency 2kpωβ ± ωα . From Eq. (17) one can predict
that amplitudes of modulation component can differ left and right. These differences
depend on combination of coefficient n1, n2. From Eq. (17) one can observe two
series of harmonic order: n1 − n2 and n1+n2. Practically both of them create a series
of similar values presented in form of the Table 1.

BR2

r � μ2
0

N∑

n1�1

N∑

n2�1

n1n2M
C(n1)M

C(n2)
{
0.5(1 + ε2AA(n1, n2) [cos

(
(n1 − n2)ωβ t

)

+ cos
(
(n1 + n2)ωβ t

)
+ 0.25ε(1 + ε)

∗[
(X1A(n1, n2) + X2A(n2, n1))cos

(
(n1 − n2)ωβ t − ωαt

)

+ (X1A(n1, n2) + X1A(n2, n1))cos
(
(n1 + n2)ωβ t − ωαt

)

+ (X2A(n1, n2) + X1A(n2, n1))cos
(
(n1 − n2)ωβ t + ωαt

)

+(X2A(n1, n2) + X2A(n2, n1))cos
(
(n1 + n2)ωβ t + ωαt

)]}
(17)
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BR2

r � μ2
0

N∑

n�1

{
K−n∑

k�1

[ f1(n, k, ε) cos(2np(θ − β))

+ f2(n, k, ε) cos(2np(θ − β) − θ − α)

+ f3(n, k, ε)cos(2np(θ − β) + θ + α)]

+
n∑

k�1

[ f4(n, k, ε) cos(2np(θ − β))

+ f5(n, k, ε) cos(2np(θ − β) − θ − α)

+ f6(n, k, ε)cos(2np(θ − β) + θ + α)]}
(18)

First conclusion is fact, that to findfirstN harmonics one need to sumsomenumber
of components. This observation allows for rewriting Eq. (17) in the form shown in
(18). Equation (18) is a simplified form of Eq. (17). Additional elements f 1()–f 6()
represent some function independent on time and position. This equation gives a brief
look on the mechanism of the frequency component creation. The form of equation
allows for an easy analysis from the point of view of the frequency component
creation. Also, the effect of the amplitude modulation is clearer. To calculate the
amplitude of n-th harmonic one can sum K particular elements (where K → ∞).
Equation (18) is valid only in the case of lack of the demagnetization effect. Another
interesting property that can be deduced from this equation is different amplitudes
of the modulated frequency component due to different f 1()–f 6() function values.

4 Test Stand

The view on the test stand was presented in Fig. 5. Analysed was the middle
powerBLDCmotorBG75×75manufactured byDunkermotren. Themost important
parameters were presented in the Table 2.

Table 2 Investigated motor
parameters

Parameters Value

Motor nominal power 530 W

Nominal torque 1.5 Nm

Weight 2.8 kg

Size 0.075×0.140 m

Number of pole pairs 4

Number of phases 3
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On the test stand signals like: vibration, phase currents, magnetic field, torque
and speed were measured. Measurement systemwas composed of dedicated sensors,
National Instrument measurement staff and dedicated application.

5 Real Object Investigation

During the experiment, different type of fault (like: eccentricity or unbalance) was
applied to the motor. For each type of the fault, measurements were conducted for
different load state and different rotational speed. Next, only the selected results
from analysis will be presented. In Fig. 6a, one can observe the order analysis of
a component of the acceleration signal. The most intensive components belong to
the series of 2kp (8, 16, 24, 32, 40) which agreed with Eq. (18) and their analysis.
Figure 6a shows influence of different degree of eccentricity on spectrum. In this
picture, modulation component, especially around the 16-th harmonic, can be clearly
observed. This also agrees well with the model. It is worth to note, that modulation
components have different amplitude on the left and right sides. The 17-th component
shows that its amplitude very strongly depends on the eccentricity level. Another
interesting result was presented in Fig. 6b. In this picture, three different levels of
load of the motor in presence of eccentricity were presented. From analysis of the
Eq. (18) the force theoretically doesn’t depend on current so it also doesn’t depend
on load condition.

Practically, in Fig. 6b one can observe that when load condition changes from
no load to the full load state, also amplitudes of frequency component change. But,
what is interesting and has practical application, these changes are quite small.

Fig. 5 Test stand
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Fig. 6 a Frequency spectrum of the radial component of acceleration signal for three degrees of
eccentricity. b Frequency spectrum of the radial component signal for three load levels

6 Summary

In the paper, comparison analysis of results of the model and real object investigation
was presented. At first, the most important steps of building the motor model were
briefly presented. The result of this stage was an equation describing distribution of
the magnetic field in the air gap region. Next, based on this equation, an analytical
formula of force was developed. Analysis of this equation proved that eccentricity
or demagnetisation effect should be observed in frequency spectrum of the vibration
signal. This prediction was confirmed by the analysis of measurement registered
on the real object. This analysis showed that modulation effect is a good measure
of dynamic eccentricity defect. Model analysis explained presence of the major
component in spectrum. It also explained the effect such as different amplitudes
of the modulation frequency component. The prepared analysis proved that model
based analysis allows for better prediction of signal changes caused by mechanical
faults.

Acknowledgements The works described in the project was funded by the National Research and
Development Center under the project: “Technologies for autonomous reconfiguration of materials
in vehicles”.
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Micro-dynamics of Thin
Tolerance-Periodic Cylindrical Shells

Barbara Tomczyk and Paweł Szczerba

Abstract Thin linearly elastic Kirchhoff-Love-type open circular cylindrical shells
having a functionally (transversally) graded macrostructure and a tolerance-periodic
microstructure in circumferential direction are objects of consideration. At the same
time, the shells have constant structure in axial direction. On the microscopic level,
the geometrical, elastic and inertial properties of these shells are determined by
highly oscillating, non-continuous and tolerance-periodic functions in circumferen-
tial direction. On the other hand, on the macroscopic level, the averaged (effective)
properties of the shells are described by functions being smooth and slowly vary-
ing along circumferential direction. The aim of this note is to study some problems
of micro-dynamics of these shells, e.g. micro-vibrations depending on a cell size,
The micro-dynamic problems will be analysed in the framework of the averaged
asymptotic-tolerance model. Contrary to the exact shell equations with highly oscil-
lating, non-continuous and tolerance-periodic coefficients, governing equations of
the averaged model mentioned above have continuous and slowly varying coeffi-
cients depending also on a cell size. An important advantage of this model is that
it makes it possible to investigate micro-dynamics of the tolerance-periodic shells
independently of their macro-dynamics.

Keywords Functionally graded shells · Tolerance modelling · Micro-vibrations

1 Introduction

Thin linearly elastic Kirchhoff-Love-type open circular cylindrical shells with a
tolerance-periodic microstructure in circumferential direction are analysed. It means
that on the microscopic level, the shells under consideration consist of many small
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Fig. 1 An example of a shell
with a tolerance-periodic
microstructure

elements. These elements, called cells, are treated as thin shells. It is assumed that the
adjacent cells are nearly identical, but the distant elements can be very different. An
example of such shell is shown in Fig. 1. At the same time, the shells have constant
structure in axial direction. On the microscopic level, the geometrical, elastic and
inertial properties of such shells are determined by highly oscillating non-continuous
tolerance-periodic functions in x. By tolerance periodic functions we shall mean
functions which in every cell can be approximated by periodic functions in x.

On the other hand, on the macroscopic level, the averaged (effective) proper-
ties of the shells are described by functions being smooth and slowly varying along
circumferential direction. It means that the tolerance-periodic shells under consid-
eration can be treated as made of functionally graded materials (FGM), cf. [9], and
called functionally graded shells. Moreover, since effective properties of the shells
are graded in direction normal to interfaces between constituents, this gradation is
referred to as the transversal gradation.

Dynamic problems of such shells are described by partial differential equations
with highly oscillating, tolerance-periodic and non-continuous coefficients. Thus,
these equations are too complicated to be applied to the investigations of engineer-
ing problems. To obtain averaged equations with continuous and slowly varying
coefficients, a lot of different approximate modelling methods have been proposed.
Periodic and tolerance-periodic structures are usually described using homogenized
models derived by means of asymptotic methods. The mathematical foundations of
the asymptotic modelling technique can be found in Jikov et al. [5]. Unfortunately,
in the models of this kind the effect of a microstructure size (called the length-scale
effect) on the overall shell behaviour is neglected in the first approximation which is
usually employed, cf. [1].

This effect can be taken into account using the modified couple stress-based
theories of continuous media, cf. [13]. The mathematical non-classical models of
micro/nano-scale structures derived by means of the modified couple stress theory
contain an internal material length-scale parameter. Hence, these models make it
possible to investigate the size effect in static and dynamic problems of micro/nano-
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structures. We mention here papers by Awrejcewicz et al. [2–4]. In [2, 3], the length-
scale effect in chaotic dynamics of size-dependent Timoshenko micro-beams with
functionally graded properties along their thickness is studied. In [4], mathemati-
cal model for the analysis of static and dynamic problems of functionally graded
micro/nano-beams is derived and discussed; the size-dependent model equations
are formulated on the basis of the Grigolyuk-Chulkov hypotheses and the modi-
fied couple stress theory. We mention also papers by Krysko et al. [7, 8], where
the length-scale effect in geometrically and physically nonlinear static and dynamic
problems for size-dependent nano-scale beams is investigated; the considerations
are carried out within non-classical Bernoulli-Euler, Timoshenko and Sheremetev-
Pelekh-Reddy-Levinson mathematical models derived on the basis of the modified
couple stress theory.

The length-scale effect can be also taken into account using the non-asymptotic
tolerance averaging technique, cf. [12]. Governing equations of the tolerancemodels
have constant or slowly varying coefficients depending also on a cell size. Some
applications of this method to the modelling of mechanical and thermomechanical
problems for various periodic and tolerance-periodic (functionally graded) structures
are shown in many works. The extended list of papers and books on this topic can
be found in [12].

Recently, the new tolerance and asymptotic models of dynamic problems for
thin transversally graded cylindrical shells have been proposed by Tomczyk and
Szczerba in [10]. The models introduced in [10] were combined together into a
certain new combined asymptotic-tolerance model, cf. [11]. An important advantage
of the asymptotic-tolerancemodel is that itmakes it possible to studymicro-dynamics
of tolerance-periodic shells independently of their macro-dynamics.

The aim of the present contribution is to investigate free micro-vibrations of
the transversally graded shells under consideration. To this end, the combined
asymptotic-tolerance model presented by Tomczyk and Szczerba in [11] will be
applied. Governing equations of this model make it possible to analyse the micro-
vibrations depending on a microstructure size independently of the shell macro-
vibrations (i.e. vibrations independent of a cell size).

2 Formulation of the Problem, Starting Equations

We assume that x1 and x2 are coordinates parametrizing the shell midsurface M in
circumferential and axial directions, respectively. We denote x ≡ x1 ∈ Ω ≡ (0, L1)
and ξ ≡ x2 ∈ Ξ ≡ (0, L2),where L1, L2 are length dimensions ofM, cf. Fig. 1. Let
O x̄1 x̄2 x̄3 stand for a Cartesian orthogonal coordinate system in the physical space
R3 and denote x̄ ≡ (x̄1, x̄2, x̄3). A cylindrical shell midsurface M is given by M ≡{

x̄ ∈ R3 : x̄ � r̄
(
x1, x2

)
,
(
x1, x2

) ∈ Ω × Ξ
}
, where r̄(·) is the smooth function

such that ∂ r̄/∂x1 · ∂ r̄/∂x2 � 0, ∂ r̄/∂x1 · ∂ r̄/∂x1 � 1, ∂ r̄/∂x2 · ∂ r̄/∂x2 � 1. It
means that on M we have introduced the orthonormal parametrization.
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Sub- and superscripts α, β, … run over 1, 2 and are related to x1, x2 , summation
convention holds. Partial differentiation related to xα is represented by ∂α . Moreover,
it is denoted ∂α...δ ≡ ∂α . . . ∂δ . Let aαβ stand for the midsurface first metric tensor.
Under orthonormal parametrization aαβ is the unit tensor.

The time coordinate is denoted by t ∈ I ≡ [t0, t1]. Let d(x) and r stand for the
shell thickness and the midsurface curvature radius, respectively.

The basic cell 	 is defined by: 	 ≡ [−λ/2, λ/2] ∈ Ω ≡ (0, L1), where λ is a
cell length dimension in x ≡ x1-direction. The microstructure length parameter λ

satisfies conditions: λ/dmax >> 1, λ/r << 1 and λ/L1 << 1.
Denote by uα � uα(x, ξ, t), w � w(x, ξ, t), (x, ξ, t) ∈ Ω × Ξ × I, the shell

displacements in directions tangent and normal toM, respectively. Elastic properties
of the shells are described by shell stiffness tensors Dαβγ δ(x), Bαβγ δ(x). Let μ(x)
stand for a shell mass density per midsurface unit area. The external forces will be
neglected.

It is assumed that the behaviour of the shell under consideration is described by
the action functional determined by Lagrange function L being a highly oscillating
function with respect to x and having the well-known form, cf. [6]

L � − 1

2
(Dαβγ δ∂βuα∂δuγ +

2

r
Dαβ11w∂βuα +

1

r2
D1111ww

+ Bαβγ δ∂αβw∂γ δw − μ aαβ u̇α u̇β − μẇ2). (1)

Applying the principle of stationary action we arrive at the system of Euler-
Lagrange equations, which can be written in explicit form as

∂β(D
αβγ δ∂δuγ ) + r−1∂β(D

αβ11w) − μ aαβ üβ � 0 ,

r−1Dαβ11∂βuα + ∂αβ(B
αβγ δ∂γ δw) + r−2D1111w + μẅ � 0. (2)

It can be observed that equations (2) coincide with the well-known governing
equations of Kirchhoff-Love theory of thin elastic shells, cf. [6]. For tolerance-
periodic shells, coefficients Dαβγ δ(x), Bαβγ δ(x), μ(x) of equations (2) are highly
oscillating, non-continuous and tolerance-periodic functions in x .Applying the com-
bined asymptotic-tolerancemodelling technique (cf. [12]) to lagrangian (1), the aver-
aged model equations with continuous and slowly varying coefficients depending
also on a cell size were derived in [11]. Here, these equations will be used to investi-
gations of free micro-vibration frequencies of an open simply supported cylindrical
shell having constant thickness and made of two linearly elastic isotropic materials
tolerance-periodically distributed in circumferential direction as shown in Fig. 1. To
make the analysis more clear, in the next section the combined asymptotic-tolerance
model equations proposed in [11] will be reminded.
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3 Modelling Procedure, Equations of Combined Model

The combined modelling technique used to starting lagrangian (1) is realized in two
steps. The first step is based on the consistent asymptotic averaging of lagrangian
(1) under the consistent asymptotic decomposition of fields uα, w, in 	(x) × Ξ × I

uεα(x, z, ξ, t) ≡ uα(x, z/ε, ξ, t) � u0α(z, ξ, t) + εh̃ε(x, z)Uα(z, ξ, t) ,

wε(x, z, ξ, t) ≡ w(x, z/ε, ξ, t) � w0(z, ξ, t) + ε2 g̃ε(x, z)W (z, ξ, t). (3)

where ε � 1/m, m � 1, 2, . . . , z ∈ 	ε(x), 	ε ≡ (−ελ/2, ελ/2), x ∈ Ω ,
(ξ, t) ∈ Ξ × I.

Unknown functions u0α, w0 and Uα,W in (3) are assumed to be continuous and
bounded inΩ.Unknowns u0α, w0 andUα,W are calledmacrodisplacements and fluc-
tuation amplitudes, respectively. They are independent of ε. By h̃ε(x, z) ≡ h̃(x, z/ε)
and g̃ε(x, z) ≡ g̃(x, z/ε) in (3) we denote periodic approximations of highly oscil-
lating, given a priori fluctuation shape functions h(·) and g(·) in 	(x). They have
to satisfy conditions: h ∈ O(λ), λ∂1h ∈ O(λ), g ∈ O(λ2), λ∂1g ∈ O(λ2),
λ2∂11g ∈ O(λ2), < μ h >�< μ g >� 0, where the averaging operator < · >

for function f (x) integrable and bounded in every cell is defined by

< f > (x) ≡ 1

λ

x+λ/2∫

x−λ/2

f̃ (x, z)dz, z ∈ 	(x) , x ∈ Ω , (4)

where f̃ (·) is a periodic approximation of f (·) in 	 .
Introducing decomposition (3) into (1), underweak limit passage ε → 0weobtain

the averaged form of lagrangian (1). Then, applying the principle of stationary action
we arrive at the governing equations of consistent asymptoticmodel for the tolerance-
periodic shells under consideration. These equations consist of partial differential
equations for macrodisplacements u0α, w0 coupled with linear algebraic equations
for fluctuation amplitudesUα, W. After eliminating fluctuation amplitudes from the
governing equations by means of

Uγ � −(G−1)γ η [< ∂1hD
1ημϑ > ∂ϑu

0
μ + r−1 < ∂1hD

1η11 > w0],

W � −E−1 < ∂11gB
11γ δ > ∂γ δw

0 , (5)

where averages< · > are calculated using (4) andwhereGαγ (x) �< Dα1γ 1(∂1h)2 >

(x), E(x) �< B1111(∂11g)2 > (x), we arrive finally at the asymptotic model equa-
tions expressed only in macrodisplacements u0α, w0

∂β(D
αβγ δ

h ∂δu
0
γ + r−1Dαβ11

h w0)− < μ > aαβ ü0β � 0 ,

∂αβ(B
αβγ δ
g ∂γ δw

0) + r−1D11γ δ

h ∂δu
0
γ + r−2D1111

h w0+ < μ > ẅ0 � 0 , (6)



368 B. Tomczyk and P. Szczerba

where Dαβγ δ

h (x) ≡< Dαβγ δ > − < Dαβη1 ∂1h > (G−1)ηζ < ∂1hD1ζγ δ >,

Bαβγ δ
g (x) ≡< Bαβγ δ > − < Bαβ11∂11g > E−1 < ∂11gB

11γ δ > .

Coefficients of equations (6) are slowly varying in x but they are independent of the
microstructure cell size. Hence, this model is not able to describe the length-scale
effect on the overall shell dynamics and it will be referred to as the macroscopic
model.

In the first step of combined modelling it is assumed that within the asymptotic
model, solutions u0α, w0 to the problem under consideration are known. Hence, there
are also known functions u0α � u0α + hUα and w0 � w0 + gW , where Uα, W are
given by means of (5).

The second step is based on the tolerance averaging of lagrangian (1) under
so-called superimposed decomposition.

The fundamental concepts of the tolerance approach under consideration are those
of two tolerance relations between points and real numbers determined by toler-
ance parameters, slowly-varying functions, tolerance-periodic functions, fluctuation
shape functions and the averaging operation, cf. [12].

A continuous, bounded and differentiable function F(·) defined in Ω̄ ≡ [0, L1] is
called slowly-varying of the R-th kind with respect to cell	 and tolerance parameters
δ, F ∈ SV R

δ (Ω,	), if it can be treated (together with its derivatives up to the R-th
order) as constant on the cell. Nonnegative integer R is assumed to be specified in
every problem under consideration.

An integrable and bounded function f (·) defined in Ω̄ ≡ [0, L1] is called
tolerance-periodic of the R-th kind with respect to cell 	 and tolerance parame-
ters δ, f ∈ T PR

δ (Ω,	), if it can be treated (together with its derivatives up to the
R-th order) as periodic on the cell.

The averaging operation is defined by (4).
The tolerance modelling is based on two assumptions, which strictly related to the

concepts of the tolerance periodic, slowly-varying and fluctuation shape functions.
The first of them is called the tolerance averaging approximation (tolerance relations
which make it possible to neglect terms of an order of tolerance parameters δ), cf.
[12]. The second one is termed the micro-macro decomposition.

In the problemunder consideration,we introduce the extramicro-macro decompo-
sition superimposed on the known solutions u0α, w0 obtainedwithin themacroscopic
model

ucα(x, ξ, t) � u0α(x, ξ, t) + c(x)Qα(x, ξ, t),

wb(x, ξ, t) � w0(x, ξ, t) + b(x)V (x, ξ, t), (7)

where fluctuation amplitudes Qα, V are the new slowly-varying unknowns, i.e.
Qα ∈ SV 1

δ (Ω,	), V ∈ SV 2
δ (Ω,	). Functions c(x) and b(x) are the new tolerance-

periodic, continuous and highly-oscillating fluctuation shape functions which are
assumed to be known in every problem under consideration. These functions have
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to satisfy conditions: c ∈ O(λ), λ∂1c ∈ O(λ), b ∈ O(λ2), λ∂1b ∈ O(λ2),
λ2∂11b ∈ O(λ2), < μ c >�< μ b >� 0.

We substitute the right-hand sides of (7) into (1). The resulting lagrangian is
denoted by Lcb . Then, we average Lcb over cell 	 using averaging formula (4)
and applying the tolerance averaging approximation. As a result we obtain function
< Lcb > called the tolerance averaging of starting lagrangian (1) in 	 under
superimposed decomposition (7). Then, applying the principle of stationary action
and introducing the extra approximation 1 + λ/r ≈ 1, we obtain the system of
Euler-Lagrange equations for Qα, V , which can be written in explicit form as

< Dα22δ(c)2 > (x)∂22Qδ− < Dα11δ(∂1c )
2 > (x)Qδ − < μ(c)2 > (x)aαβ Q̈β

� r−1 < Dα111∂1cw0 > (x)+ < Dαβγ 1∂1c ∂βu0γ > (x), (8)

< B2222(b)2 >(x)∂2222V + [2 < B1122b∂11b >(x) − 4< B1212(∂1b)
2 >(x)]∂22V

+ < B1111(∂11b)
2 > (x)V+ < μ(b)2 >(x)V̈ � − < Bαβ11∂11b∂αβw0 > (x). (9)

Equations (8) and (9) together with the micro-macro decomposition (7) consti-
tute the superimposed microscopic model (i.e. microscopic model imposed on the
macroscopic model obtained in the first step of combined modelling).

Coefficients of the derived model equations are smooth and slowly-varying in x
and some of them depend on a cell size λ (underlined terms). The right-hand sides
of (8) and (9) are known under assumption that u0α, w0 were determined in the first
step of modelling. The basic unknowns Qα, V of the model equations must be the
slowly-varying functions in tolerance periodicity direction. This requirement can be
verified only a posteriori and it determines the range of the physical applicability of
the model. The boundary conditions for Qα, V should be defined only on boundaries
ξ � 0, ξ � L2 .

It can be shown, cf. [11], that under assumption that fluctuation shape functions
h(x), g(x) of macroscopic model coincide with fluctuation shape functions c(x),
b(x) of microscopic model we can obtain microscopic model equations, which are
independent of the solutions obtained in the framework of the macroscopic model

< D1221(h)2 > (x)∂22Q1− < D1111(∂1h )
2 > (x)Q1 − < μ(h)2 > (x)Q̈1 � 0 ,

(10)

< D2222(h)2 > (x)∂22Q2− < D2112(∂1h )
2 > (x)Q2 − < μ(h)2 > (x)Q̈2 � 0 ,

(11)

< B2222(g)2 > (x)∂2222V + [2 < B1122g∂11b > (x)+

− 4< B1212(∂1g)
2 > (x) ]∂22V+ < B1111(∂11g)

2 > (x)V+ < μ(g)2 > (x)V̈ � 0.
(12)

It means, that an important advantage of the combined model is that it makes
it possible to describe selected problems of the shell micro-dynamics (e.g. the free
micro-vibrations, propagation of waves related to the micro-fluctuation amplitudes)
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Fig. 2 Basic cell 	 ≡ [−λ/2, λ/2] ⊂ Ω̄ ≡ [0, L1] of the transversally graded shell

independently of the shell macro-dynamics. Moreover, micro-dynamic behaviour
of the shells in the axial, circumferential and normal directions can be analysed
independently of each other.

4 Applications—Free Micro-vibration Frequencies

4.1 Description of the Problem

In this section we shall investigate micro-vibrations of an open thin simply sup-
ported cylindrical shell with L1, L2, r, d as its circumferential length, axial length,
midsurface curvature radius and constant thickness, respectively. The shell has a
functionally graded material structure along circumferential direction and constant
structure in the axial direction, cf. Fig. 1. It is assumed that the shell is made of two
elastic isotropic materials, which are perfectly bonded on interfaces.

The basic cell 	 is defined by: 	 ≡ [−λ/2, λ/2] ⊂ Ω ≡ [0, L1], where λ is
a cell length dimension in x ≡ x1-direction, cf. Figs. 1 and 2. We recall that the
microstructure length parameter λ has to satisfy conditions: λ/d >> 1, λ/r << 1
and λ/L1 << 1. Setting z ≡ z1 ∈ [−λ/2, λ/2], we assume that the cell has
a symmetry axis for z � 0. Inside the cell, the geometrical, elastic and inertial
properties of the shell are described by symmetric (i.e. even) functions of argument
z.

Properties of the component materials are described by: Young’s moduli E1,
E2, Poisson’s ratios ν1, ν2 and mass densities ρ1, ρ2, cf. Fig. 2. It is assumed that
elastic E(·) and inertial ρ(·) properties of the composite shell are tolerance-periodic
functions in x, E(x), ρ(x) ∈ T P0

δ (Ω,	), but Poisson’s ratio ν ≡ ν1 � ν2 is
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constant. Inside the cell, periodic approximations Ẽ(x, z), ρ̃(x, z) of functions E(x),
ρ(x) take the form

Ẽ(x, z), ρ̃(x, z) �
{
E1, ρ1 f or z ∈ (−η̃(x)λ/2, η̃(x) λ/2 ),

E2, ρ2 f or z ∈ [−λ/2 , −η̃(x)λ/2] ∪ [η̃(x)λ/2, λ/2],

(13)

where η̃(x) is a periodic approximation of distribution function η(x) of material
properties, cf. Fig. 2. The rigidities Dαβγ δ(x), Bαβγ δ(x) of the shell are described
by: Dαβγ δ(x) � DHαβγ δ , Bαβγ δ(x) � BHαβγ δ , where D � E(x)d/(1 − ν2), B �
E(x) d3/(12(1 − ν2)) and the nonzero components of tensor Hαβγ δ are: H 1111 �
H 2222 � 1, H 1122 � H 2211 � ν, H 1212 � H 1221 � H 2121 � H 2112 � (1 − ν)/2.
The shell mass density per midsurface unit area is given by μ(x) � ρ(x) d.

The periodic approximations of fluctuation shape functions h(x) ∈ FS1δ (Ω,	),
g(x) ∈ FS2δ (Ω,	) can be taken as: h̃(x, z) � λ sin(2π z/λ), g̃(x, z) �
λ2[cos(2π z/λ) + c(x)], z ∈ 	(x), x ∈ Ω , where c(x) is a slowly-varying func-
tion in x and is determined by condition < μ g >� 0:

c(x) � − (ρ1 − ρ2) sin(π (η̃(x))

π (ρ1η̃(x) + ρ2(1 − η̃(x))
.

Function c(x) is treated as constant in calculations of derivatives ∂1g̃, ∂11g̃.
The subsequent analysis will be based on Eqs. (10)–(12). Since coefficients of

these equations are functions of x , then the approximate formulae of free vibration
frequencies will be derived applying the known Galerkin’s method, cf. [6], in the
range 0 ≤ x ≤ L1 .

4.2 Free Micro-vibrations in Circumferential Direction

The shell free micro-vibrations along circumferential direction are described by
Eq. (10).

Solution to Eq. (10) satisfying the boundary conditions for a shell simply sup-
ported on edges ξ � 0, ξ � L2 can be assumed in the form

Q1(x, ξ, t) � Q∗
1(x) sin(πξ/L2) cos(ω̄ t) , (14)

where Q∗
1(x) is a slowly-varying function in x satisfying boundary conditions on

edges x � 0, x � L1 and ω̄ is a frequency of free micro-vibrations along circum-
ferential direction. Substituting (14) into (10), for sin(πξ/L2) �� 0, we arrive at
equation for Q∗

1(x)
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Q∗
1(x)[−(π/L2)

2 < D1221(h)2 > (x) > − < D1111(∂1h)
2 > (x)

+ ω̄2 < μ(h)2 > (x)] � 0 , (15)

In order to obtain approximate formula of free vibration frequency ω̄, the known
Galerkin’s method, cf. [6], can be applied to Eq. (15). Solution to Eq. (15) satisfying
the boundary conditions for a shell simply supported on edges x � 0, x � L1

is assumed as Q∗
1(x) � A cos(πx/L1). We substitute this solution into (15). For

A �� 0, the orthogonality condition of the resulting left-hand side of Eq. (15) and
function cos(πx/L1) has the following form

L1∫

0

[−(π /L2)
2 < D1221(h)2 > (x) > − < D1111(∂1h)

2 > (x)

+ ω2 < μ(h)2 > (x)] cos2(πx/L1)dx � 0

.

Setting h̄ � λ−1h, from the above orthogonality condition, we obtain the follow-
ing formula for ω̄

ω̄2 �

L1∫

0
[(π/L2)2λ2 < D1221(h̄)2 > (x) > + < D1111(∂1h)2 > (x)] cos2(πx/L1)dx

λ2
L1∫

0
< μ(h̄)2 > (x) cos2(πx/L1)dx

. (16)

4.3 Free Micro-vibrations in Axial Direction

The shell free micro-vibrations in axial direction are described by Eq. (11).
Solution to Eq. (11) satisfying the boundary conditions for a shell simply sup-

ported on edges ξ � 0, ξ � L2 can be assumed in the form

Q2(x, ξ, t) � Q∗
2(x) cos(πξ/L2) cos(

�
ω t) , (17)

where Q∗
2(x) is a slowly-varying function in x satisfying boundary conditions on

edges x � 0, x � L1 and �
ω is a frequency of free micro-vibrations along axial

direction. Substituting (17) into (11), for cos(πξ/L2) �� 0, we arrive at equation for
Q∗

2(x)

Q∗
2(x)[−(π/L2)

2 < D2222(h)2 > (x) > − < D1221(∂1h)
2 > (x)

+ �
ω
2

< μ(h)2 > (x)] � 0 , (18)

Solution to Eq. (18) satisfying the boundary conditions for a shell simply sup-
ported on edges x � 0, x � L1 is assumed as Q∗

2(x) � B sin(πx/L1).We substitute
this solution into (18). By means of Galerkin’s method, for B �� 0, the follow-
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ing orthogonality condition of the resulting left-hand side of Eq. (18) and function
sin(πx/L1) is obtained

L1∫

0

[−(π/L2)
2 < D2222(h)2 > (x) > − < D1221(∂1h)

2 > (x)

+ �
ω
2

< μ(h)2 > (x)] sin2(πx/L1)dx � 0.

Setting h̄ � λ−1h, from the above orthogonality condition, we obtain the follow-
ing formula for �

ω

�
ω
2 �

L1∫

0
[(π/L2)2λ2 < D2222(h̄)2 > (x) > + < D1221(∂1h)2 > (x)] sin2(πx/L1)dx

λ2
L1∫

0
< μ(h̄)2 > (x) sin2(πx/L1)dx

.

(19)

4.4 Transversal Free Micro-vibrations

Free transversal micro-vibrations of the shell under consideration are described by
Eq. (12).

Solution to Eq. (12) satisfying the boundary conditions for a shell simply sup-
ported on edges ξ � 0, ξ � L2 can be assumed in the form

V (x, ξ, t) � V ∗(x) sin(πξ/L2) cos(ω t) , (20)

where V (x) is a slowly-varying function in x satisfying boundary conditions on edges
x � 0, x � L1 andω is a frequency of free transversal micro-vibrations. Substituting
(20) into (12), for sin(πξ/L2) �� 0, we arrive at equation for V ∗(x)

V ∗(x)[(π/L2)
4 < B2222(g)2 > (x) > −2(π/L2)

2(< B1122g∂11g > (x)+

− 2 < B1212(∂1g)
2 > (x))+ < B1111(∂11g)

2 > (x) − ω2 < μ(g)2 > (x)] � 0.
(21)

Solution to Eq. (21) satisfying the boundary conditions for a shell simply sup-
ported on edges x � 0, x � L1 is assumed as V ∗(x) � C sin(πx/L1).We substitute
this solution into (21). By means of Galerkin’s method, for C �� 0, the orthogonal-
ity condition of the resulting left-hand side of Eq. (21) and function sin(πx/L1) is
obtained. Setting

�

g(x) � λ−1g(x), ḡ(x) � λ−2g(x), from this orthogonality condi-
tion, we derive the following formula for ω
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ω2 � [λ4

L1∫

0

< μ(ḡ)2 > (x) sin2(πx/L1)dx]
−1

L1∫

0

[(π/L2)
4λ4 < B2222(ḡ)2 > (x) >+

− 2(π/L2)
2λ2(< B1122 ḡ∂11g > (x) > −2 < B1212(∂1

�

g)2 > (x))

+ < B1111(∂11g)
2 > (x) >] sin2(πx/L1)dx . (22)

4.5 Numerical Results

Let us introduce two distribution functions of material properties η(x):

η̃(x) � sin2(πx/L1) , (23)

η̃(x) � (x/L1)
2. (24)

We also define the following dimensionless free micro-vibration frequencies

Ω̄2 ≡ (1 − ν2)ρ1(L1)2

E1
ω̄2,

�

Ω
2

≡ (1 − ν2)ρ1(L1)2

E1

�
ω
2
,

Ω2 ≡ 12(1 − ν2)ρ1(L1)2

E1
ω2, (25)

where frequencies ω̄,
�
ω, ω are determined by formulae (16), (19) and (22), respec-

tively.
The subsequent calculations will be made for Poisson’s ratio ν � 0.3, for fixed

ratios L2/L1 � 2, d/λ � 0.1, λ/L1 � 0.1 and for various ratios E2/E1 ∈ [0.01, 1],
ρ2/ρ1 ∈ [0.01, 1].

In Figs. 3, 4 and 5, there are presented diagrams of dimensionless free micro-

vibration frequencies Ω̄ ,
�

Ω ,Ω given by (25)1, (25)2, (25)3, respectively, versus both
ratios E2/E1 − ρ2/ρ1, made for distribution functions of material properties η(x)
given by (23), cf. Figs. 3a, 4a and 5a, and by (24), cf. Figs. 3b, 4b and 5b.

4.6 Discussion of Results

On the basis of results shown in Figs. 3, 4 and 5, the following conclusions can be
formulated:

• Values of dimensionless freemicro-vibration frequencies increasewith the increas-
ing of ratio E2/E1 and decrease with the increasing of ratio ρ2/ρ1 .
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Fig. 3 Diagrams of dimensionless free micro-vibration frequency Ω̄ versus ratios E2/E1 −ρ2/ρ1
made for distribution function η(x) given by a (23), b (24)

Fig. 4 Diagrams of dimensionless free micro-vibration frequency versus ratios E2/E1 −ρ2/ρ1
made for distribution function η(x) given by a (23), b (24)

• The highest value of frequency Ω̄ , cf. Fig. 3, is obtained for η(x) given by (23)
and for pair of ratios (E2/E1 � 1.0 , ρ2/ρ1 � 0.1). The smallest value of Ω̄ is
obtained forη(x) given by (24) and for pair of ratios (E2/E1 � 0.1 , ρ2/ρ1 � 1.0).

• The highest value of frequency
�

Ω , cf. Fig. 4, is obtained for η(x) given by (24)
and for pair of ratios (E2/E1 � 1.0 , ρ2/ρ1 � 0.1). The smallest value of Ω̄ is
obtained forη(x) given by (23) and for pair of ratios (E2/E1 � 0.1 , ρ2/ρ1 � 1.0).

• The highest value of frequency
�

Ω , cf. Fig. 5, is obtained for η(x) given by (24)
and for pair of ratios (E2/E1 � 1.0 , ρ2/ρ1 � 0.1). The smallest value of Ω̄ is
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Fig. 5 Diagrams of dimensionless free micro-vibration frequency Ω versus ratios E2/E1 −ρ2/ρ1
made for distribution function η(x) given by a (23), b (24)

obtained for η(x) given by (23) and for pairs of ratios (E2/E1 � 0.1 , ρ2/ρ1 �
1.0).

5 Final Remarks

Thin linearly elastic Kirchhoff-Love-type open circular cylindrical shells hav-
ing a functionally (transversally) graded macrostructure and a tolerance-periodic
microstructure in circumferential direction are objects of consideration, cf. Fig. 1.
At the same time, the shells have constant structure in axial direction. The averaged
combined asymptotic-tolerance model of dynamic problems for such shells was
derived in [11]. Contrary to the well-known governing equations of Kirchhoff-Love
theory with highly oscillating, non-continuous and tolerance-periodic coefficients,
equations of the asymptotic-tolerance model have continuous and slowly varying
coefficients depending also on a microstructure size. Hence, this model allows us to
describe the effect of a length scale on the dynamic shell behaviour. The main advan-
tage of this model is that it makes it possible to separate the macroscopic description
of some special problems from their microscopic description.

In the present paper, applying the asymptotic-tolerance model proposed in [11],
the free micro-vibration frequencies of a simply supported tolerance-periodic shell
under consideration have been determined, cf. Eqs. (16), (19), (22), and investigated
for two different distribution functions of material properties. These frequencies
depend on a cell size. The influence of elastic and inertial properties of the consid-
eredmicrostructured shell on the freemicro-vibration frequencies has been analysed.
From the calculational example it follows that the free micro-vibration frequencies
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decrease with the decreasing of differences between inertial properties of the com-
ponent materials, but they increase with the decreasing of differences between elastic
properties of the shell material components.
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Stokes Flow Through a Tube
with Wavy Wall

Włodzimierz Bielski and Ryszard Wojnar

Abstract Wepropose a study of the flow in a tubewithwavywall adoptingMalevich
- Mityushev - Adler’s method, and find a correction to Hagen-Poiseuille’s solution.
The problem is to be solved by expanding the velocity and pressure fields in Fourier
series involving an infinite set of unknown coefficients. The boundary surface is
expanded in Taylor’s series. A perturbation expansion in terms of the powers of the
small parameter ε of the full set of Stokes’ equations yields a cascade of boundary
value problems which are solved at each step in closed form. Even in the first order
approximation O(ε), new results are obtained.

Keywords Hagen-Bouillabaisse flow · Hemorheology · Fourier series
Perturbation expansion · Rough bottom

1 Introduction

The problemof flow through a tubewith awavywall appears in different applications.
It is important in hemorheology and hemodynamics, both fields of physiology [1,
2]. It is well known that the two leading causes of death, myocardial infarction
(heart attack), and stroke, may each directly result from an arterial system that has
been slowly and progressively compromised by years of deterioration. An artery
wall thickens as a result of invasion and accumulation of white blood cells and
proliferation of intimal-smooth-muscle cell creating an atheromatous (fibro-fatty)
plaque. This limits dynamic blood flow and in the consequence the oxygen flow
within the brain.
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The task is related also to problem of stream flow past the rough bottom and walls,
in peculiarity in a channel with obstacles on the bottom, studied in geophysics and
civil engineering [3, 4] and [5]. And so, M. Lessen and P.-S. Huang investigated
Hagen-Poiseuille’s flow in a pipe with axially symmetric wavy walls, and studied
the effect of small amplitude wall waviness on a steady flow. They assumed that
the steady motion is composed of a spatially averaged mean flow and a periodic
disturbance due to the wall wave [4].

We adopt the method introduced in Malevich - Mityushev - Adler’s papers [6, 7].
The application of an analytical algorithm yields efficient formula for the velocities
and discharge. We consider a Stokesian pressure driven flow in pipe with a wavy
wall, see Fig. 1. The problem is axially-symmetric, and in cylindrical co-ordinates
r, ϕ, z it does not depend on ϕ. The radius R of the pipe cross-section is a periodic
function of the z-axis. In our example the waviness is described by a cosinus function
R = R0 + εa cosKz, with K = 2π/λ, where λ denotes the length of the wall wave.
When the small parameter ε increases, Hagen - Poiseuille’s flow (ε = 0) is disturbed
and eddies can arise above a critical value.

We apply an overall external gradient pressure ∇p ≡ −G along the z-direction.
It can be described by a constant jump along the z-axis of the periodic cell p(z +
λ, r) − p(z, r) = −λG.

Malevich et al. [6, 7], have shown how to apply the asymptotic analysis to reduce
the problem of flow in channels with curvilinear walls to the problem of flow with
the plane ones.

We consider flow through an axially symmetric pipe with a curvilinear (wavy)
wall. Its radius is, however, constant in the mean. In the cylindrical coordinates
the z-axis is simply the axis of rotational symmetry of the tube, and the r-axis is
perpendicular to the z-axis. In an example, we will accept the wall surface S(x)
described by the sinusoid, cf. Fig. 1

r = S(z) = R0 + ε a cosKz

Fig. 1 Cross-section of the considered axially-symmetric tube. Here R0 is the mean value of the
pipe radius, ε is a dimensionless smallness parameter, a is the amplititude of the wall waveness,
and λ denotes the length of the wall waveness
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where S(z) is a smooth periodic function and ε is a small parameter. The mean value
of the S(z) is R0. The coefficient a renders the amplitude of the wavy shape of the
wall, and K = 2π/λ, where λ denotes the length of the wall wave.

For the infinitely differentiable function S(z) a cascade of boundary value prob-
lems is deduced. The boundary conditions are substituted byMaclaurin’s expansions,
and the solution (the velocity and pressure fields) is calculated in the form of both, ε
expansions and Fourier’s series. The case ε = 0 corresponds to the zero-th approxi-
mation problem.

We express the velocity and the pressure as the expansions in powers of ε.

p(r, z) =
∞∑

m=0

pmεm and v(r, z) =
∞∑

m=0

vmεm

2 Geometrical Description

Further the steady flow will be considered only. Moreover, the gravity components
will be assumed to be zero, and the fluid will be assumed to be incompressible, it
is ρ = constant. The axisymmetric flow will be considered with the assumption of
no tangential velocity (vϕ = 0), and the remaining quantities are being independent
of the angle ϕ. The problem becomes two-dimensional. We simplify notation by
substitution

vr ≡ u and vz ≡ v

The continuity equation for the steady flow reads

1

r

∂

∂r
(ru) + ∂v

∂z
= 0. (1)

Navier-Stokes’ equations are

ρ

(
u

∂u

∂r
+ v

∂u

∂z

)
= −∂p

∂r
+ η

{
1

r

∂

∂r

(
r

∂u

∂r

)
+ ∂2u

∂z2
− u

r2

}

ρ

(
u
∂v

∂r
+ v

∂v

∂z

)
= −∂p

∂z
+ η

{
1

r

∂

∂r

(
r
∂v

∂r

)
+ ∂2v

∂z2

} (2)

In the case of Hagen-Poiseuille’s flow in a tube with constant radius equal to R0, it
is a = 0. Because the problem is axially-symmetric, we deal with only one velocity
component v, directed parallely to the z-axis of the cylindrical co-ordinates. Two
equations are identically satisfied and the third equation reads

1

r

∂

∂r

(
r

∂v

∂r

)
= − 1

η

∂p

∂z
(3)
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Integrating Eq. (3) with ∂p/∂z = constant, and with the boundary condition v = 0 at
r = R0 results in [8],

v = G

4η
(R2

0 − r2) (4)

Here G denotes the constant pressure gradient G ≡ − dp/dz = constant. We write
also

v = G
R2
0

4η

(
1 − r2

R2
0

)
(5)

This is Hagen-Poiseuille’s law describing the velocity distribution in the steady flow
in tube.

3 Axially Symmetric Steady Stokesian Flow

We neglect the inertial terms (at left hand side) in Navier-Stokes equations, and
introduce notation u(r, z) ≡ vr(r, z) and v(r, z) ≡ vz(r, z).

Letv = (u, v)be anunknown twodimensional velocityfield, andpbe anunknown
field of the pressure. We have u = u(r, z), v = v(r, z) and p = p(r, z). These fields
satisfy:
the equation of incompressibility

1

r

∂(ru)

∂r
+ ∂v

∂z
= 0 (6)

and Stokes’ equations

− ∂p

∂r
+ η

{
1

r

∂

∂r

(
r
∂u

∂r

)
+ ∂2u

∂z2
− u

r2

}
= 0

− ∂p

∂z
+ η

{
1

r

∂

∂r

(
r
∂v

∂r

)
+ ∂2v

∂z2

}
= 0

(7)

The equations are subject to the boundary conditions

u = 0 and v = 0 at S(z) (8)

3.1 Natural Units

For convenience, new units are introduced, and new variables indicated by primes
are given

r = R0 r
′ and z = R0 z

′ (9)
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Moreover,
u = v̆ u′, v = v̆ v′ and p = p̆ p′ (10)

Here R0 is the mean radius of the pipe cross-section, v̆ is equal to four times the max-
imum velocity in Hagen-Poiseuille’s problem, cf. Eq. (5), v̆ = (G/η)R2

0 and p̆ =
G R0. The following equality holds (R0/η) (p̆/v̆) = 1. In these units our equations
are: equation of incompressibility

1

r′
∂(r′u′)

∂r′ + ∂v′

∂z′ = 0

and Stokes’ equations

− ∂p′

∂r′ + 1

r′
∂

∂r′

(
r′ ∂u

′

∂r′

)
+ ∂2u′

∂(z′)2
− u′

(r′)2
= 0

−∂p′

∂z′ + 1

r′
∂

∂r′

(
r′ ∂v′

∂r′

)
+ ∂2v′

∂(z′)2
= 0

with the boundary conditions u′ = 0 and v′ = 0 at S(z′).For brevity, the primes
for new variables are suppressed in the rest of this paper.

3.2 Zero-th Approximation

We regard Hagen-Poiseuille’s solution as the zero-th approximation of a solution
we are looking for. We consider the following set of equations treated a zero-th
approximation

∂p0
∂r

= 0 and
1

r

∂

∂r

(
r

∂v0

∂r

)
= 1 (11)

which are subject to the boundary conditions

v0 = 0 at r = R0 (12)

Moreover, we have

u0 = 0 and
∂p0
∂z

= − 1 for 0 ≤ r ≤ R0 and − ∞ < z < ∞ (13)

In this approximation the velocity vector has only one not vanishing component
v0 = v0(r), cf. [8]. Hagen-Poiseuille’s solution in the natural units reads

u0 = 0, v0 = 1

4

(
1 − r2

)
and

∂p0
∂z

= − 1 (14)
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4 General Solution

The unknown fields u, v and p satisfy the following set composed of the equation of
incompressibility and Stokes’ equations

1

r

∂(ru)

∂r
+ ∂v

∂z
= 0

{
1

r

∂

∂r

(
r
∂u

∂r

)
+ ∂2u

∂z2
− u

r2

}
− ∂p

∂r
= 0

{
1

r

∂

∂r

(
r
∂v

∂r

)
+ ∂2v

∂z2

}
− ∂p

∂z
= 0

(15)

The equations are subject to the boundary conditions

u = 0 and v = 0 at S(z) (16)

In the accepted frame of reference, see Fig.1,

r = S(x) = 1 + εa cos Kz (17)

4.1 Expansion in ε Series

The unknown velocity components and pressure functions are expanded in the ε

series

u(r, z) =
∞∑

m=0

um(r, z) εm, v(r, z) =
∞∑

m=0

vm(r, z) εm, p(r, z) =
∞∑

m=0

pm(r, z) εm

(18)
At thewall, it is at r = 1 + εa cos z a Taylor’s series of a function, say g = g(r, z), is

g(1 + εa cos z, z) =
∞∑

m=0

εm
(εa cos z)m

m! · ∂mg

∂rm

∣∣∣∣
r=1

and the wall boundary conditions for the functions (18) are represented by series

u(1 + εa cos z, z) =
∞∑

m=0

εm
m∑

k=0

ak

k! cosk z · ∂kum−k

∂rk
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r=1
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m=0

εm
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ak

k! cosk z · ∂kvm−k

∂rk
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r=1

p(1 + εa cos z, z) =
∞∑

m=0

εm
m∑

k=0

ak

k! cosk z · ∂kpm−k

∂rk

∣∣∣∣
r=1

(19)
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In this manner the search for solution of the set of Eqs. (15) with the boundary
conditions (16) is substituted by solving these equations with the conditions (19).

4.2 Reduced Problem

Solving the problem subject to the boundary conditions given at the waved boundary
r = 1 + εa cos z was reduced to the problem with the boundary being a cylindrical
surface r = 1 without waves, but with modified values of boundary conditions. This
means that at each step m the set (15) must be solved with the modified boundary
conditions (19).

Substituting expansions (18) into Eq. (15) leads to the equations

1

r

∂(rum)

∂r
+ ∂vm

∂z
= 0

{
1

r

∂

∂r

(
r
∂um
∂r

)
+ ∂2um

∂z2
− um

r2

}
− ∂pm

∂r
= 0

{
1

r

∂

∂r

(
r
∂vm

∂r

)
+ ∂2vm

∂z2

}
− ∂pm

∂z
= 0

(20)

The solution um, vm and pm is looked for in the form of Fourier’s series

um(r, z) =
∞∑

s=1

α(m)
s (r) (A(m) sin sz + B(m) cos sz)

vm(r, z) =
∞∑

s=1

β(m)
s (r)

∂

∂z
(A(m) sin sz + B(m) cos sz)

pm(r, z) =
∞∑

s=1

γ (m)
s (r) (A(m) sin sz + B(m) cos sz)

(21)

with r-functions α(m)
s , β(m)

s and γ (m)
s , as well the constants A(m) and B(m) must be

found. Substituting the expansions (21) into Eq. (20) we obtain for the incompress-
ibility equation and for Stokes’ equations, respectively,

1

r

d

dr

(
rα(m)

s (r)
) − β(m)

s (r)s2 = 0 (22)

1

r

d

dr

(
r
d

dr
α(m)
s (r)

)
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(
s2 + 1

r2

)
α(m)
s (r) − d

dr

(
γ (m)
s (r)

) = 0 (23)

1

r

d

dr

(
r
d

dr
β(m)
s (r)

)
− s2β(m)

s (r) − γ (m)
s (r) = 0 (24)
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4.3 Solution of the System

To solve the system (22)–(24) we differentiate Eq. (24). To eliminate γ (m)
s (r) we

subtract (23) from the result and get the equation, in which we substitute β(m)
s (r)

using Eq. (22)

β(m)
s (r) = 1

s2
1

r

d

dr

(
rα(m)

s (r)
)

(25)

After an arrangement we have

d4α(m)
s

dr4
+ 2

r

d3α(m)
s

dr3
−

(
3

r2
+ 2s2

)
d2α(m)

s

dr2
+

(
3

r3
− 2s2

r

)
dα(m)

s

dr
+

+
(
s4 + 2s2

r2
− 3

r4

)
α(m)
s = 0

(26)

A comment: Equation (26) for large r reads

d4α(m)
s

dr4
− 2s2

d2α(m)
s

dr2
+ s4α(m)

s = 0

Such an equation is discussed in [6]. Its general solution reads

α(m)
s (r) = (C(sm)

1 r + C(sm)
2 ) esr + (C(sm)

3 r + C(sm)
4 ) e−sr

But this is not our case, as we need the range of 0 ≤ r ≤ 1 (the interior of the
tube). �
The solution of the Eq. (26) reads

α(m)
s (r) =C1 r I0(sr) + C2 x K0(sr)+

+ C3[2 · K1(sr) + K0(sr) sr] · x · [I0(sr) · K1(sr) + K0(sr) · I1(sr)] +
+ C4

(
4x2I20 (sr) · K1(sr) · s2 − 8r · Io(sr) · K1(sr) · I1(sr) · s+)

+ C4
(
4r2I0(sr) · K0(sr) · I1(sr) · s2 − 8r · I2o (sr) · K0(sr) · s+)

+ C4

(
16I0(sr) · K0(sr) · I1(sr) − s3r3F(

3

2
, 3, 3, s2r2) · K0(sr)

)

(27)
where I0(sr), I1(sr) and K0(sr),K1(sr) are modified Bessel functions of the first

and the second kind, respectively, [9].Unlike the ordinaryBessel functions,which are
oscillating as functions of a real argument, In and Kn are exponentially growing and
decaying functions, respectively. Like the ordinary Bessel function Jn, the function In
goes to zero at r = 0 for n > 0 and is finite (equal 1) at r = 0 for n = 0. Analogously,
as Bessel functions of the second kind, the modified function Kn diverges at x = 0
with the singularity being of logarithmic type [10].
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For small arguments r ≤ n, both In(r) and Kn(r) become, asymptotically, simple
powers of their argument

In(r) ≈ 1

n!
( r
2

)n
n ≥ 0, K0(r) ≈ − ln r, Kn(r) ≈ (n − 1)!

2

( r
2

)−n
n > 0

(28)
The confluent function is defined as

F(a; b; c, r) =
∞∑

n=0

(a)n (b)n
(c)n n! rn (29)

where, for example, (a)n ≡ a · (a + 1) · (a + 2) · · · · (a + n − 1).
Finding α(m)

s by Eq. (27), the expressions (25) and (24) give β(m)
s and γ (m)

s , re-
spectively.

5 An Example

In this example we consider the waviness of the tube wall described by the relation

R = 1 + ε cos z (30)

it is we take a = 1 and K = 1. Moreover, in this example all terms with coefficients
ε in powers greater than 2 are omitted. In peculiar, the small parameter expansions
(18) read

u(r, z) = u0(r, z) + ε u1(r, z) + ε2 u2(r, z)
v(r, z) = v0(r, z) + ε v1(r, z) + ε2 v2(r, z)
p(r, z) = p0(r, z) + ε p1(r, z) + ε2 p2(r, z)

(31)

In calculations of the functions α(m)
s , β(m)

s and γ (m)
s we use approximations of the

type (28),

I0(r) = 1, I1(r) = r

2
K0(r) ≈ − ln r, K1(r) ≈ 1

r
, F(

3

2
, 3, 3, s2r2) = 1, s = 0, 1, 2

(32)

We get

α
(m)
s (r) = C1 · r − C2 · r · ln(sr) + C3

(
2

sr
− r · ln(sr) − sr

2
ln(sr)

)
− C4 · s3r3 · ln(sr)

(33)
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and consequently, by Eq. (25)

β(m)
s (r) = 1

s2
1

r

d

dr

(
rα(m)

s (r)
) = 1

s2
{2C1 − C2[1 + 2 ln(sr)]}

−C3
1

s2

{
5

2
+ (2 + s) · ln(sr)

}
− C4 · sr2 · [1 + 4 · ln(sr)]

(34)

By Eqs. (24) and (34) we obtain

γ (m)
s (r) = − {2C1 − C2[1 + 2 ln(sr)]} + C3

{
5

2
+ (2 + s) · ln(sr)

}
+

+C4

{
4 · s ·

(
1 + 1

r
− 4 ln(sr)

)
+ s3r2 · [1 + 4 · ln(sr)]

} (35)

Above, u0(1, z) and v0(1, z) are known and equal to zero, while p0(1, z) = −z + C
is a linear function of z, with C being an arbitrary constant.

5.1 Elaboration of the Example

By Eq. (21) for m = 1 we have

u1(r, z) = α1(r)(A sin z + B cos z)
v1(r, z) = β1(r)(A cos z − B sin z)
p1(r, z) = γ1(r)(A sin z + B cos z)

(36)

where α1(r), β1(r) and γ1(r) are given by Eqs. (33), (34) and (35) with s = 1, it is
We get

α1(r) = C1 · r − C2 · r · ln r + C3

(
2

r
− r · ln r − r

2
ln r

)
− C4 · r3 · ln r

β1(r) = 2C1 − C2[1 + 2 ln(sr)] − C3

(
5

2
+ 3 · ln r

)
− C4 · r2 · (1 + 4 · ln r)

γ1(r) = −[2C1 − C2(1 + 2 ln r) + C3

(
5

2
+ 3 · ln r

)
+

+C4

{
4 ·

(
1 + 1

r
− 4 ln r

)
+ r2 · (1 + 4 · ln r)

}

(37)
To avoid the singularity at r = 0 in expressions for v1(r) and p1(r) in the set (36) we
put

C2 = 0, C3 = 0 and C4 = 0 (38)

Then
α1(r) = C1 · r, β1(r) = 2C1 and γ1(r) = − 2C1 (39)
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and Eq. (36) become

u1(r, z) = C1 · r · (A sin z + B cos z)
v1(r, z) = 2C1 · (A cos z − B sin z)
p1(r, z) = − 2C1 · (A sin z + B cos z)

(40)

If the expansions (18) are limited up to O(ε2), only the terms with m = 0, 1 must be
left, and the boundary conditions (19) reduce to the following ones

u(1 + εa cos z, z)
.= u0(1, z) + ε

(
u1(1, z) + cos z · ∂u0(r, z)

∂r

∣∣∣∣
r=1

)

v(1 + εa cos z, z)
.= v0(1, z) + ε

(
v1(1, z) + cos z · ∂v0(r, z)

∂r

∣∣∣∣
r=1

)

p(1 + εa cos z, z)
.= p0(1, z) + ε

(
p1(1, z) + cos z · ∂p0(r, z)

∂r

∣∣∣∣
r=1

)
(41)

where
.= means the asymptotic equality with the accuracy O(ε2). By solution (14)

u0(1, z) = 0, v0(1, z) = 0

and p0 is a linear function of z only. Moreover

∂u0(r, z)

∂r

∣∣∣∣
r=1

= 0,
∂v0(r, z)

∂r

∣∣∣∣
r=1

= − 1

2
and

∂p0(r, z)

∂r

∣∣∣∣
r=1

= 0

Hence
u(1 + εa cos z, z)

.= u0(1, z) + ε u1(1, z)

v(1 + εa cos z, z)
.= v0(1, z) + ε

(
v1(1, z) − 1

2
cos z

)

p(1 + εa cos z, z)
.= p0(1, z) + ε p1(1, z)

(42)

Next, we submit Fourier’s series (21) into Taylor’s expansions (19) taken at the wall
boundary up toO(ε2) approximation, and after exploiting relations (39) we received

u(1 + εa cos z, z)
.= u0(1, z) + ε · C1 (A sin z + B cos z)

v(1 + εa cos z, z)
.= v0(1, z) + ε ·

(
2C1 (A cos z − B sin z) − 1

2
cos z

)

p(1 + εa cos z, z)
.= p0(1, z) − ε · 2C1 (A sin z + B cos z)

(43)

The subscripts and coefficients at z are put s = 1. Above, u0(1, z) and v0(1, z) are
known and equal to zero, cf. Eq. (14).

The boundary conditions should be satisfied separately at each power of ε. Thus
we find

2C1A = 1

2
and B = 0 (44)



390 W. Bielski and R. Wojnar

Finally, we get

u(r, z) = u0(r, z) + εu1(r, z) = 1

2
ε sin z

v(r, z) = v0(r, z) + εv1(r, z) = 1

4

(
1 − r2

) + ε cos z

p(r, z) = p0(r, z) + εp1(r, z) = −z − 1

2
ε sin z + C

(45)

whereC is an arbitrary constant (only gradient of pressure are important in the flow).

6 Conclusions

We have presented a study of an axisymmetrical (it is two-dimensional) flow in
the tube with wavy wall in the first order approximation of the parameter ε, which
denotes the amplitude of the wall waviness. The wall waviness results in appearance
of transversal velocity and variations of pressure. These two phenomena are periodic
functions of the longitudinal variable z.
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Implementation of the Adaptive Control
Algorithm for the KUKA LWR 4+ Robot

Łukasz Woliński

Abstract Model-based control methods are very attractive in the field of robotics as
their tracking performance can exceed the classical controllers (such as the indepen-
dent joint PID controllers). Using the dynamic model of the manipulator, however,
requires detailed knowledge about the manipulator’s dynamic parameters such as
link masses and inertias or joint friction properties. These parameters are not al-
ways easily identifiable and, to some degree, might vary between robots of one kind
(e.g. slight differences in masses/inertias) or during the robot operation (e.g. friction
changes related to the temperature). Thus, the identified model might not always
be suitable for the desired control tasks. A possible method to overcome the afore-
mentioned problems is to use the adaptive control scheme. In that approach, the
parameters of the model are constantly updating their values in real-time to assure
good tracking performance. This paper deals with the implementation of such an
adaptive controller for the KUKA LWR 4+ robot. Using the KUKA’s communica-
tion protocols, a C++ implementation of the outer-loop adaptive controller (which
feeds the KUKA controller with the desired joint torques) was created and its quality
evaluated.

Keywords Adaptive control · Redundant robot · Dynamic modeling

1 Introduction

Nowadays, after decades of progress, there are various approaches to the robotic
manipulator control. The methods range from the classical independent joint PID
control tomore advancedmodel-basedmethods [14, 17, 23, 25]. Taking into account
the dynamic model of the manipulator should, in theory, improve the performance
in the position tracking task. In practice, it requires the knowledge of the dynamic
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parameters (masses, locations of the centers of mass, and moments of inertia). As
these parameters are seldom available, an identification has to be performed. It is
often a demanding task during which a researcher has to solve problems of selecting
the set of identifiable parameters and obtaining a sufficiently rich data [26, 27]. There
is also a possibility that some dynamic parameters (for example friction coefficients)
might vary in robots of one kind, requiring separate identification of each robot [29].
The biggest issue, however, is that if the parameters are not known with the sufficient
accuracy, the control quality might not be acceptable.

The aforementioned problems can be overcome with the model not depending on
the constant parameters but updating their values over time, based on the position
and velocity errors. That is the idea of the adaptive control scheme, first proposed in
the 1980s [24]. In that approach, the perfect knowledge of the dynamic parameters
is not needed, as the model is constantly updating itself, ensuring small tracking
error. Although the adaptive control is not an entirely new concept now, it is still
actively researched and extended. In one of the recent papers, the authors propose
usingmultiple adaptive models with a control switchingmechanism to select the best
model of the manipulator dynamics [9]. Another example is [19] where the adaptive
control of manipulators subject to motion constraints is proposed. In yet another
example, the adaptive controller based on nonlinear sliding mode control is designed
and implemented for the upper-limb medical exoskeleton [5]. Other examples of the
adaptive control include: [4, 10, 18].

In this paper, the adaptive control scheme and its implementation for the KUKA
lightweight redundant robotic manipulator (LWR 4+) are discussed. Performance of
the implemented controller is evaluated on the position tracking task.

The paper is organized as follows: Sect. 2 deals with the controlled object and its
model, Sect. 3 describes the theoretical background on the adaptive controller and
its implementation, Sect. 4 presents the experimental validation of the controller and
the discussion of the results, and Sect. 5 concludes the paper.

2 The KUKA LWR 4+ Model

The studied manipulator is the KUKA LWR 4+ [3], a 7-degree-of-freedom light-
weight robot with a redundant anthropomorphic structure. For the purpose of this
work, the manipulator is modeled as a multibody system comprised of n rigid links:

M(q)q̈ + C(q, q̇)q̇ + G(q) = τ − τ diss (1)

where q ∈ Rn×1 is the vector of joint coordinates, M(q) ∈ Rn×n is the manipulator
inertia matrix, C(q, q̇)q̇ ∈ Rn×1 is the Coriolis and centrifugal force vector, G(q) ∈
Rn×1 is the gravitational force vector, τ ∈ Rn×1 contains driving torques in joints,
τ diss ∈ Rn×1 is a vector of dissipative torques (caused by effects like friction), and
n = 7, as the manipulator has 7 degrees of freedom.



Implementation of the Adaptive Control Algorithm for the KUKA LWR 4+ Robot 393

To create themodel describedbyEq. (1), a recursive algorithm, basedon the spatial
operator algebra [21],was used [28]. The necessary kinematic datawas obtained from
the official KUKA documentation [16] and used to derive the modified Denavit-
Hartenberg parameters (see Table 1).

The dynamic parameters had to be obtained through the identification procedures
described in [26, 27]. Typically, each link can be described by the 10 parameters:

θ rbd j =
[
mj mjrxj mjryj mjrzj Jxxj Jyyj Jzzj Jxyj Jxzj Jyzj

]T
1×10

, j = 1, . . . , n (2)

wheremj is the j-th link’s mass,mjrxj ,mjryj andmjrzj are the j-th link’s first moments
of mass, and Jxxj , Jyyj , Jzzj , Jxyj , Jxzj and Jyzj are the elements of the j-th link’s inertia
tensor. However, not all of the dynamic parameters could have their values obtained
during the identification experiment. Moreover, the values of some theoretically
identifiable parameters are close to zero and their contribution to themodel is neglible.
Therefore, only a set of the most essential parameters was used in the model. That
parameters and their values are listed in Table 2. It is worth noting that the dynamic
identification of the LWR 4+ was of great importance to many research teams which
is documented in [2, 7, 8, 11].

Table 1 Modified DH parameters of the LWR 4+

j αj (rad) aj (m) φj (rad) dj (m)

1 0 0 q1 0

2 π
2 0 q2 0

3 − π
2 0 q3 0.4

4 − π
2 0 q4 0

5 π
2 0 q5 0.39

6 π
2 0 q6 0

7 − π
2 0 q7 0

Table 2 Rigid-body dynamic parameters

Parameter Value Unit

m2ry2 3.5 kgm

Jxx2 1.23 kgm2

Jzz2 0.87 kgm2

m4ry4 −1.38 kgm

Jxx4 0.49 kgm2

Jzz4 0.42 kgm2

m5ry5 0.05 kgm

m6ry6 0.02 kgm
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The obtained model was used for simulations of the adaptive control before the
implementation on the real robot.

3 Adaptive Controller

3.1 Theoretical Background

The idea of the presented adaptive controller [13, 24] is to minimize the position
error while estimating online unknown dynamic parameters. The control law is given
by the following equation describing the desired driving torques in joints:

τ cmd = Y(q, q̇, q̇r, q̈r)θ̂ − Ks (3)

where:

s = q̇ − q̇r, (4)

q̇r = q̇d + �e, (5)

e = qd − q (6)

while qd ∈ Rn×1 is the desired joint trajectory, and K ∈ Rn×n and � ∈ Rn×n are
diagonal positive definite matrices. The vector θ̂ ∈ Rp×1 is a current estimate of the
dynamic parameters θ ∈ Rp×1 (where p is the number of the parameters), and is
defined as:

θ̂ =
[
θ̂
T

rbd θ̂
T

f

]T
1×p

(7)

with θ̂ rbd containing the estimates of mass and inertia parameters of the links (see
Eq. (2)) and θ̂ f containing friction parameters.

The manipulator regressor matrix Y(q, q̇, q̇r, q̈r) ∈ Rn×p satisfies the equation:

Y(q, q̇, q̇r, q̈r)θ̂ = M(q)q̈r + C(q, q̇)q̇r + G(q) + τ f (q̇r) (8)

which is based on the linearity-in-parameters property of the manipulator dynamic
model. The term τ f (q̇r) in Eq. (8) represents the dissipation torques caused by the
viscous and Coulomb friction:

τfj = Fvj q̇rj + FCj sgn(q̇rj ), j = 1, . . . , n (9)

whereFvj andFCj are j-th joint viscous andCoulomb frictionparameters, respectively.
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Basically, Eq. (3) describes the model-based controller with a PD compensation.
The parameters of the manipulator dynamic model are updated according to the
following adaptation law:

˙̂
θ = −Γ YT (q, q̇, q̇r, q̈r)s (10)

where Γ ∈ Rp×p is a diagonal positive definite matrix describing the speed of pa-
rameters’ adaptation.

To implement the controller based on Eqs. (3) and (10), the formula to derive the
regressor matrix Y is needed. In general, this is a demanding task [25]. However, an
efficient algorithm, based on the recursive Newton-Euler formulation, for computing
the regressor Yrbd corresponding to the rigid-body dynamics of the manipulator is
presented in [13]. It requires only the knowledge of the kinematic parameters such
as link lenghts and locations of joints. In this work, to account for the viscous and
Coulomb friction (modeled as Eq. (9)) the algorithm from [13] was extended to
compute the regressor in the following form:

Y = [
Yrbd Yf

]
n×p

(11)

where:

Yf =

⎡
⎢⎢⎢⎣

q̇r1 0 . . . 0 sgn(q̇r1) 0 . . . 0
0 q̇r2 . . . 0 0 sgn(q̇r2) . . . 0
...

...
. . . 0

...
...

. . . 0
0 . . . 0 q̇rn 0 . . . 0 sgn(q̇rn)

⎤
⎥⎥⎥⎦

n×2n

. (12)

The stability issues of the adaptive control method are discussed in [13, 24].
It should also be mentioned that the elements of θ̂ do not necessarily converge to

the real values of the dynamic parameters given in θ . Similarly as in the case of the
offline identification, a sufficiently exciting trajectory has to be used as the desired
trajectory qd to obtain the real θ [24].

3.2 Implementation

The implementation of the controller described in Sect. 3.1 was possible thanks to the
KUKA’s Fast Research Interface (FRI), which allows for a communication between
the KUKA Robot Controller (KRC) and a remote PC over the Ethernet [22]. The
data includes measured and commanded joint positions and torques, and it can be
exchanged with a frequency between 10 and 1000Hz. On the side of the user PC,
the FRI consists of C++ libraries which allow implementation of the various control
algorithms. In this work, software libraries developed at Stanford [15] were used,
as they extend the KUKA FRI libraries and facilitate saving the measured data in
real-time.
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The FRI allows two control modes: position control and impedance control. For
the purpose of this work, a joint impedance controller was used as it allows to com-
mand the desired driving torques in joints. It is described by the following equation
[22]:

τj = kj(qdj − qj) + D(dj) + G(qj) + τcmdj , j = 1, . . . , 7 (13)

where kj is the stiffnes of the virtual spring, qdj is the desired postion of the j-th joint,
qj is the measured postion of the j-th joint, D(dj) is the damping term dependent
on the standardized damping value dj ∈< 0, 1 >, G(qj) is the gravity compensation
term, and τcmdj is the joint torque commanded by the user.

For the experiment, the parameters from Eq. (13) were set to: kj = 0 Nm
rad and

dj = 0.7, the same for each joint, and τcmdj was used to set the desired joint torques.
Since the KRC already compensates the gravity, as shown in Eq. (13), the algo-

rithm for the computation of the manipulator regressor matrix Y was used with the
gravity acceleration set to zero. As a result, Eq. (8) was transformed to:

Y(q, q̇, q̇r, q̈r)θ̂ = M(q)q̈r + C(q, q̇)q̇r + τ f (q̇r) (14)

while the user-commanded torques τ cmd remained in the same form as in Eq. (3).
The mass and inertia part of the vector θ̂ ∈ R21×1 (Eq. (7)) consisted of the fol-

lowing 7 dynamic parameters (m2ry2 was omitted as it does not generate any torque
in Eq. (3) because of the gravity acceleration being set to zero):

θ̂ rbd = [
Jxx2 Jzz2 m4ry4 Jxx4 Jzz4 m5ry5 m6ry6

]T
1×7 , (15)

while the viscous and Coulomb friction coefficients were grouped in the following
order:

θ̂ f = [
Fv1 . . . Fv7 FC1 . . . FC7

]T
1×14 . (16)

The dynamic parameters θ̂ rbd (Eq. (15)) were initialized with the values from
Table 2 while the friction parameters θ̂ f (Eq. (16)) were initialized with zeroes. The
parameters were updated according to the discrete version of Eq. (10):

θ̂ = θ̂prev − Γ YT (q, q̇, q̇r, q̈r)sΔt (17)

where θ̂prev is the estimate of the dynamic parameters from the previous step and Δt
is a length of the time step.

As the FRI allows to read the measured joint positions but not the velocities, the
Kalman filter [12] had to be implemented in C++ to estimate the joint velocities.
Because the computation time of Eqs. (3) and (17) in each time step never exceeded
0.3ms (using the Dell Vostro 3900PC with 8GB RAM and Intel® CoreTM i5-4460
CPU @ 3.20GHz × 4), the FRI was exchanging measured and commanded data
each 1ms (i.e., in the fastest possible way).
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4 Experimental Validation

The end effector trajectory for the experiment was designed to contain the linear and
circular segments. The desired joint positions qd , velocities q̇d and accelerations q̈d
were precomputed, for use in the controller, by solving offline the inverse kinemat-
ics task. As LWR 4+ is a redundant robot, damping on the null-space motion was
introduced in the inverse kinematics solution to ensure all the joints coming to rest
when the end effector stops [6].

The result of the experiment is shown in Fig. 1 with the actual trajectory of the
end effector in solid line and desired in dashed line. It is clearly visible that the
end effector does not perfectly track the reference path. However, the shape of the
actual trajectory is similar to the desired one. Furthermore, Fig. 2 shows good position
tracking of the first joint (again – actual positions in solid line and desired in dashed).
On the other hand, position errors are bigger on the seventh joint (see Fig. 3). Overall,
the position tracking of joints 1 to 4 is much better than of joints 5 to 7.

The last three links are much lighter than the first four and therefore effects like
friction (rather than inertia) dominate their dynamics. Various attempts were made to
improve the behavior of that lighter joints. Increasing the gainsK and� did not result
with noticeably better outcome. Similarly, modifying the elements of Γ responsible
for the speed of adaptation of the friction parameters of the last three joints did not
improve the situation, as it led to inducing vibrations of that joints.

The biggest position errors are visible during joints’ braking and accelerating
from rest, suggesting the insufficient stiction compensation. Therefore, the attempt
to smooth the Coulomb friction model was made. Based on [1], the sign function

Fig. 1 Comparison of actual and desired positions of the robot end effector
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Fig. 2 Comparison of actual and desired positions of joint 1

Fig. 3 Comparison of actual and desired positions of joint 7

was changed to the arctangent to avoid sudden changes of the control torque (and,
in turn, vibration of the joints):

τCj = 2
π
FCjatan(Aq̇rj ), j = 1, . . . , 7 (18)
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with different values of the scaling parameter A (ranging from 5 to 1000). Again, it
did not increase the control quality nor eliminated the oscillations problem.

The cause of the control problems with the last three joints probably lies in un-
modeled effects. Perhaps the Coulomb friction model should be more advanced and
include more sophisticated terms than the simple sign function or arctangent from
Eq. (18). As this phenomenon involves discontinuities (caused by the appearance
of the zero relative velocity between two neighboring links connected by a revolute
joint), a model of the stick-slip dynamics should be considered [20].

It is worth noting that the authors of [2] received similar results, that is, the good
position tracking for the first four joints but worse for the last three. As their model-
based controller (with constant, time-invariant parameters) workedwith the sampling
time of 10ms, they suggested that lower sampling period would improve the tracking
performance. However, as described earlier, the adaptive controller of the author of
this project works with the smallest possible sampling time in FRI, which is 1ms. It
is conceivable that there is not much room to drastically improve the quality of one’s
own position controller as FRI allows only the high-level access, and the low-level
internal KUKA servocontrollers work with a cycle rate of 3kHz [3], i.e. much faster
than the FRI is communicating with the user’s computer.

5 Conclusions

In this paper, an implementation of the adaptive controller for the KUKA LWR 4+
robot was presented. The dynamic model of the manipulator was discussed and the
controller was described. The experimental validation of the implemented controller
(position tracking task) is shown and the results are discussed. Although the control
quality is not perfect, the results are promising. Future works will include testing
more stiction models to improve the position tracking. Furthermore, including the
measurements from theLWR’s joint torque sensors in the control algorithm is planned
to enable interaction with the environment.
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3. Bischoff, R., Kurth, J., Schreiber, G., Koeppe, R., Albu-Schaeffer, A., Beyer, A., Eiberger,
O., Haddadin, S., Stemmer, A., Grunwald, G., Hirzinger, G.: The KUKA-DLR lightweight
robot arm – a new reference platform for robotics research and manufacturing. In: ISR 2010
(41st International Symposium on Robotics) and ROBOTIK 2010 (6th German Conference on
Robotics), pp. 1–8 (2010)

4. Bottero, A., Gerio, G., Perna, V., Gagliano, A.: Adaptive control techniques and feed forward
compensation of periodic disturbances in industrial manipulators. In: 2014 IEEE/ASME 10th
International Conference on Mechatronic and Embedded Systems and Applications (MESA),
pp. 1–7 (2014). https://doi.org/10.1109/MESA.2014.6935612

5. Brahmi, B., Saad, M., Ochoa-Luna, C., Rahman, M.H.: Adaptive control of an exoskeleton
robot with uncertainties on kinematics and dynamics. In: 2017 International Conference on
Rehabilitation Robotics (ICORR), pp. 1369–1374, (2017). https://doi.org/10.1109/ICORR.
2017.8009439

6. Flacco, F., De Luca, A.: Discrete-time redundancy resolution at the velocity level with accel-
eration/torque optimization properties. Rob. Autonomous Syst. 70, 191–201 (2015). https://
doi.org/10.1016/j.robot.2015.02.008, URL http://www.sciencedirect.com/science/article/pii/
S0921889015000329

7. Gaz, C., Flacco, F., Luca, A.D.: Identifying the dynamic model used by the KUKA LWR:
a reverse engineering approach. In: 2014 IEEE International Conference on Robotics and
Automation (ICRA), pp. 1386–1392 (2014). https://doi.org/10.1109/ICRA.2014.6907033

8. Gaz, C., Flacco, F., Luca, A.D.: Extracting feasible robot parameters from dynamic coefficients
using nonlinear optimization methods. In: 2016 IEEE International Conference on Robotics
and Automation (ICRA), pp. 2075–2081, (2016) https://doi.org/10.1109/ICRA.2016.7487356

9. Hao, J., Tao, G., Rugthum, T.: A dynamic prediction error based adaptive multiple-model
control scheme for robotic manipulators. In: 2017 American Control Conference (ACC), pp.
1791–1796 (2017). https://doi.org/10.23919/ACC.2017.7963212

10. Hayat, R., Buss, M.: Model identification for robot manipulators using regressor-free adaptive
control. In: 2016 UKACC 11th International Conference on Control (CONTROL), pp. 1–7
(2016). https://doi.org/10.1109/CONTROL.2016.7737544

11. Jubien, A., Gautier, M., Janot, A.: Dynamic identification of the Kuka LightWeight robot:
comparison between actual and confidential KUKA’s parameters. In: Proceedings of the
IEEE/ASME International Conference on Advanced Intelligent Mechatronics 2014, Besan-
con, France, pp. 483–488 (2014)

12. Kalman, R.E.: A new approach to linear filtering and prediction problems. J. Basic Eng. 82(1),
35–45 (1960)

13. Kawasaki, H., Bito, T., Kanzaki, K.: An efficient algorithm for themodel-based adaptive control
of robotic manipulators. IEEE Trans. Rob. Autom. 12(3), 496–501 (1996)

14. Kelly, J., Davila, V.S., Loría, A.: Control of Robot Manipulators in Joint Space. Springer,
London (2005)

15. Kröger, T.: Fast Research Interface Library. http://cs.stanford.edu/people/tkr/fri/html/
annotated.html (2014). online; Accessed: 25 Apr (2017)

16. KUKA (06.07.2010) Lightweight Robot 4+ Specification, Version: Spez LBR 4+ V2en
17. Lewis, F.W., Dawson, D.M., Abdallah, C.T.: Robot Manipulator Control: Theory and Practice.

CRC Press (2003)
18. Li, J., Ma, H., Yang, C., Fu, M.: Discrete-time adaptive control of robot manipulator with

payload uncertainties. In: 2015 IEEE International Conference on Cyber Technology in Au-
tomation, Control, and Intelligent Systems (CYBER), pp. 1971–1976 (2015) https://doi.org/
10.1109/CYBER.2015.7288249

19. Li, M., Li, Y., Ge, S.S., Lee, T.H.: Adaptive control of robotic manipulators with unifiedmotion
constraints. IEEE Trans. Syst.ems, Man, and Cyber.: Syst. 47(1), 184–194 (2017). https://doi.
org/10.1109/TSMC.2016.2608969
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Vibrations of a Multi-span Beam
Subjected to a Moving Stochastic Load

Filip Zakęś and Paweł Śniady

Abstract The dynamic behavior of multi-span uniform continuous beam excited by
moving stochastic load is studied. In this paper we consider two models of moving
load, namely: load described by space-time stochastic process and random train
of concentrated forces moving with constant velocity. It is assumed that forces have
random amplitudes and their appearance on the beam is described by point stochastic
process (Poisson process). Solution of the problem in terms of expected values,
variances and cumulants of the higher order (for the second case of load)was obtained
by introducingdynamic influence function. In determinationof the dynamic influence
function Volterra integral equations was applied. Solution is illustrated with two
numerical examples of 2- and 3-span beam.

Keywords Multi-span beam · Moving load · Stochastic vibrations

1 Introduction

The problem of a dynamic response of a structure subjected to a moving load is both
interesting from the theoretical point of view and significant in structural designing.
This problem occurs in dynamics of various types of structures such as bridges, road-
ways, railways and runways. Different types of structures and girders like beams,
plates, shells, frames as well as different models of moving loads have been con-
sidered [1]. Most studies were focused on single-span girders like a string, a beam,
a plate or a shell. An important and interesting problem are the vibrations of a
multi-span beam caused by the moving load. There are many structures, for example
bridges, which are multi-span. There are not so many papers focused on the dynamic
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response problem of the multi-span beam due to the moving load. Vibrations of a
multi-span Bernoulli-Euler beam with an arbitrary geometry in each span subjected
to moving forces [2–5], or moving masses [6, 7] or moving oscillators [8–10] have
been considered. Also the vibration of amulti-span Timoshenko beam due tomoving
load have been considered [11, 12]. In terms of stochastic vibrations the analytical
methods have been developed to determine probabilistic characteristics of dynamic
response of a single-span beam [13], a suspension bridge [14] and a composite sand-
wich beam [15]. The impulse response function is frequently applied to cases of
non-moving “white noise” type of stochastic loads. Recently published papers [16]
and [17] including this type of random excitation are worth mentioning.

Main goal of thiswork is to propose a numericalmethod to determine probabilistic
characteristics of a multi span Euler-Bernoulli uniform continuous beam subjected
to two types of moving random load, namely load described by space-time stochastic
process and random train of point forces moving with constant velocity. Solution of
the problem in terms of expected values, variances and cumulants of the higher order
was obtained by applying dynamic influence function instead of impulse response
function.

2 Vibrations of Multi-span Beam Due to a Moving Force

Let us consider a uniform multi-span Euler-Bernoulli beam subjected to a force P
moving with constant velocity v. The beam rests on k+2 supports (see Fig. 1), where
intermediate supports are arbitrarily located. Number k corresponds with degree of
static indeterminacy of the beam. In further analysis we will replace the multi-span
beam with a simply supported one loaded with given moving force and k redundant
forces Xi (t) (i � 1, 2, . . . , k) situated in the positions of the intermediate supports
(see Fig. 2).

Let us introduce dimensionless variables ξ � x
L and T � vt

L . Equation of motion
describing vibrations of the beam resulting from the moving force P has the form:

Fig. 1 A multi-span beam subjected to a moving force



Vibrations of a Multi-span Beam Subjected … 405

Fig. 2 A single-span beam subjected to a moving force and “k” redundant forces

[
wP(ξ, T )

]I V
+ coẇ

P(ξ, T ) + σ 2ẅP(ξ, T ) � P0δ(ξ − T ), (1)

while vibrations due to a concentrated time-varying force Xi (T ) can be described
as:

[
wXi (ξ, T )

]I V
+ coẇ

Xi (ξ, T ) + σ 2ẅXi (ξ, T ) � X0i (T )δ(ξ − ξi ), (2)

where: c0 � c vL3

E I , σ 2 � mv2L2

E I , P0 � PL3

E I , X0i � Xi (T )L3

E I . E I , L , m and c denote
flexural rigidity, length of the beam, mass per unit length and damping coefficient
respectively.Romannumerals inEqs. (1) and (2) denote differentiationwith respect to
spatial coordinate ξ while dots (·) denote differentiationwith respect to dimensionless
time T . Vibrations of the simply supported beam resulting from the moving force
have the form:

wP(ξ, T ) � 2P0

∞∑

n�1

[
(nπ)2 − σ 2

]
sinnπT sinnπξ

(nπ)2
[
(nπ)2 − σ 2

]2
+ 4α2σ 4

− 4P0ασ 2
∞∑

n�1

cosnπT sinnπξ

(nπ)
{[

(nπ)2 − σ 2
]2

+ 4α2σ 4
}

+ 4P0α
2σ 2e−αT

∞∑

n�1

sin�nT sinnπξ

�n(nπ)
{
(nπ)2

[
(nπ)2 − σ 2

]2
+ 4α2σ 4

}

− 2P0e
−αT

∞∑

n�1

(nπ)
[
(nπ)2 − σ 2

]
sin�nT sinnπξ

�n

{
(nπ)2

[
(nπ)2 − σ 2

]2
+ 4α2σ 4

}

+ 4P0ασ 2e−αT
∞∑

n�1

cos�nT sinnπξ

(nπ)
{
(nπ)2

[
(nπ)2 − σ 2

]2
+ 4α2σ 4

} , (3)

while solution for the case of concentrated time-varying force can be presented in
the convolution form:
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[
wP(ξ, T )

]I V
+ coẇ

P(ξ, T ) + σ 2ẅP(ξ, T ) � P0δ(ξ − T ), (4)

where hi (ξ, T ) is the impulse response function described as:

hi (ξ, T ) � 2vL2

σ 2E I
e−αT

∞∑

n�1

sin�nT sinnπξi sinnπξ

�n
, (5)

where α � cL
2mv

and �n �
√

(nπ)4

σ 2 − α2.
By combining solutions presented above we can present vibrations of the multi-

span beam as:

w(ξ, T ) � L

v

k∑

i�1

T∫

0

hi (ξ, T − τ)Xi (τ )dτ + wP(ξ, T ). (6)

Functions Xi (T ) describing reactions in the intermediate supports are obtained
from Volterra integral equations of the first order:

L

v

k∑

i�1

T∫

0

hi
(
ξ j , T − τ

)
Xi (τ )dτ + wP(ξi , T ) � 0 k j � 1, 2, . . . , k. (7)

Zero value on the right side of the Eq. (7) corresponds with zero deflection at the
position ξi of the “i” intermediate support. Numerical procedure of solving Volterra
integral equations as well as more detailed description of themethod presented above
was given in the authors previous works [18, 19].

3 Stochastic Moving Load

There are many cases when moving load has to be described as a stochastic process,
particularly the motions of vehicles on a bridge. Solution for a multi-span beam
excited by amoving point force can be used to determine probabilistic characteristics
of a dynamic response resulting from themoving random load. For this purpose let us
introduce the dynamic influence function H(ξ, T ) which describes vibrations of the
multi span beam due to a unitary concentrated force P � 1. In further calculations it
will be used instead of impulse response function in analysis of two types of moving
random loads. In the first case we assume the random moving load as a weak space-
time stationary stochastic process (see Fig. 3) and in the second one the beam is
subjected to a random train of moving forces (see Fig. 4). Finding solution by using
the direct eigen function transformation, as can be done in other types of stochastic
excitations is difficult even for a single span beam. Therefore method based on the
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dynamic influence function and the numerical procedures for the multi-span beam
will be applied.

3.1 Space-Time Stationary Stochastic Process

Let us consider a beam subjected to amoving load process p(x − vt) � p[L(ξ − T )]
which can be considered as a weak space-time stationary stochastic process (see
Fig. 3). Load is presented as a sum of deterministic and stochastic part:

p(x − vt) � p̄ + p̃(x − vt) � p̄ + p̃[L(ξ − T )] � p̄ + p̃(Lτ), (8)

where p̄ � const. and E
[
p̃(x − vt)

] � 0. Symbol E[] denotes expected value.
Solution for the deterministic part p̄ � const. is presented above. Therefore we

shall focus only on the vibration of the beam resulting from the stochastic load. Let
as assume that the covariance function of the load process is known and has the form:

CPP(τ1, τ2) � E
[
p̃(Lτ1) p̃(Lτ2)

] � CPP [L(τ1 − τ2)]. (9)

If we take into account only the load which at given time T is on the beam, the
dynamic response will be presented as:

w(ξ, T ) � L

v

T∫

T−1

H(ξ, T − τ) p̃(Lτ)dτ . (10)

and therefore the variance of the beam deflection has the form:

σ 2
w(ξ, T ) �

(
L

v

)2
1∫

0

1∫

0

H(ξ, τ1)H(ξ, τ2)CPP [L(τ1 − τ2)]dτ1dτ2. (11)

Fig. 3 Multi-span beam subjected to a space-time stochastic process
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Let us assume the moving excitation as a stationary “white noise” where covari-
ance function of the load is described as:

CPP [L(τ1 − τ2)] � σ 2
Pδ[L(τ1 − τ2)], (12)

where σ 2
P is the variance of the load and δ denotes the Dirac delta. Substituting

expression (12) into Eq. (11) we obtain integral formulae for the variance of the
deflection of the multi-span beam:

σ 2
w(ξ, T ) � σ 2

P L

v2

1∫

0

H 2(ξ, T − τ)dτ. (13)

3.2 Random Train of Moving Forces

Let us consider a multi-span beam loaded by a train of moving forces (see Fig. 4).
All of the forces Ar move in the same direction with equal velocity v. Times tr of
the forces arrival at the beam are random and described by a Poisson process N (t)
with parameter λ:

E[dN (t)] � λdt ; E
[
d2N (t)

] � λdt,

E[dN (t1)dN (t2)] � λ2dt1dt2 for t1 �� t2. (14)

The dynamic response of the multi-span beam can be presented in the form of a
Stieltjes stochastic integral with respect to the Poisson process in terms of dimen-
sionless variables ξ and T :

Fig. 4 Multi-span beam subjected to a random train of moving forces
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w(ξ, T ) � L

v

T∫

0

A(τ )H(ξ, T − τ)dN (τ ). (15)

where amplitudes A(τ ) are random variables that are mutually independent and
independent of the instant τ . We assume that expected values E[As(τ )] � E[As] �
const. for s � 1, 2, 3 . . . are known. Taking into account the Poisson process prop-
erties we obtain formulas for the expected value E[w(ξ, T )], variance σ 2

w(ξ, T ) and
cumulants of the s-order κs

w(ξ, T ) of the multi-span beam deflection:

E[w(ξ, T )] � E[A]λ
L

v

T∫

0

H(ξ, T − τ)dτ, (16)

σ 2
w(ξ, T ) � E

[
A2

]
λ
L

v

T∫

0

H 2(ξ, T − τ)dτ, (17)

κs
w(ξ, T ) � E

[
As

]
λ
L

v

T∫

0

Hs(ξ, T − τ)dτ . (18)

4 Numerical Examples

4.1 Two-Span Beam

First example is of a two-span beam subjected to space-time stationary stochastic
load (see Fig. 5). Total length of the beam is equal to L � 40 m, its flexural rigidity
is equal to E I � 2 × 109 Nm2 and mass per unit length m � 1000 kg/m. Figure 6

Fig. 5 Two-span beam subjected to a space-time stochastic process
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Fig. 6 Variance of the beam
deflection at time T � 1

presents variance of the beam deflection due to a stochastic load moving with various
velocities v equal to 30, 60 and 90 m/s.

4.2 Three-Span Beam

In the second example we shall consider three-span beam subjected to a random train
of moving forces (see Fig. 7). Total length of the beam is equal to L � 60 m while
the other beam properties E I and m are the same as in the previous example. Three
various velocities v equal to 30, 60 and 90 m/s have been analyzed. Figure 8 presents
the expected value of beam deflection in the middle of left, central and right span
as well as expected value of the beam deflection at time T � 1. Figure 9 presents
variances of the beam deflection. It can be observed that both expected values and
variances of the dynamic response decrease while load velocity increases.

Fig. 7 Three-span beam subjected to a random stream of moving forces
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Fig. 8 Variance Expected value of the beam deflection a in the middle of left span, b in the middle
of the central span, c in the middle of the right span, d expected value of beam deflection at time
T � 1

Fig. 9 Variance of the beam deflection a in the middle of left span, b in the middle of the central
span, c in the middle of the right span, d variance of beam deflection at time T � 1
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5 Conclusions

In this paper an analytical-numerical method of determining vibrations of a multi-
span uniform continuous Euler-Bernoulli beam resulting from the moving random
load was presented. Main idea of the method is to introduce dynamic influence
function instead of impulse response functionwhich leads to simple integral formulas
that are convenient in numerical calculations. By applyingVolterra integral equations
of the first order, known analytical solutions for the simply supported beam loaded
with moving force and concentrated time-varying force can be used in analysis of
more complex system that is a multi-span beam.

In the paper twomodels of moving stochastic load was considered. The first one is
space-time stationary stochastic “white noise” process and the second one is random
stream of moving point forces arriving at the beam according to Poisson process with
parameter λ which can simulate traffic flow on the bridge. Two numerical examples
was presented in order to show the effectiveness of proposed method. Results show
that with the increase of load speed the probabilistic characteristics of dynamic
response (expected value and variance) decrease.

After introduction of proper modifications presented method can be expanded
for beams with different boundary conditions or beams with elastic intermediate
supports [18]. It is also possible to apply the method in analysis of more complex
structures such as plates subjected to moving stochastic load.
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19. Śniady, P., Zakęś, F.: Vibrations of multi-span continuous beams under moving force. J. Civil
Eng. Env. Architec. 61, 185–195 (2014). Publishing House Rzeszow University of Technology


	Preface
	Contents
	Computational Approach for Complete Lyapunov Functions
	1 Introduction
	2 Normalized Speed
	2.1 Attractive and Repelling Periodic Orbits
	2.2 Van der Pol Oscillator
	2.3 Homoclinic Orbit

	3 Behaviour of the Lyapunov Functions Depending  on the Values of δ
	4 Smooth Function
	5 Conclusions
	References

	Non-conservative Instability of Cantilevered Nanotube Via Cell Discretization Method
	1 Introduction
	2 Formulation and Solution of the Problem
	2.1 Governing Equations of Motion for Dynamic Instability of Nonlocal Single-Walled Nanotube
	2.2 Method of Solution: Cell-Discretization Method (CDM)

	3 Numerical Comparisons and Discussion
	3.1 Model Validation
	3.2 Effect of Nondimensional Added Mass Ms and Taper Ratio Coefficient c on the First Nondimensional Frequency Ω1 of a Non-uniform Nanotube
	3.3 Effect of Nondimensional Nonconservative Force p and Nonlocal Coefficient η on the First Nondimensional Frequency Ω1

	4 Conclusions
	References

	Fractional Calculus Evaluation of Hyaluronic Acid Crosslinking  in a Nanoscopic Part of Articular Cartilage Model System
	1 Introduction
	2 Methods
	3 Results
	4 Fractional Model of Phenomenon
	5 Conclusions
	References

	Topological and Measure-Theoretical Entropies of a Solenoid
	1 Introduction
	2 A Classical Dynamical System
	2.1 Measure-Theoretical Entropy of a Map
	2.2 Topological Entropy of a Map
	2.3 Katok Formula for Measure-Theoretical Entropy
	2.4 Variational Principle

	3 Topological Entropy of a Solenoid
	4 Homogeneous Measures
	4.1 finfty-Homogeneous Measures and Topological Entropy

	5 Dynamics of Solenoids Via Carathéodory Structures
	5.1 Carathéodory Dimension Structure
	5.2 Entropies of a Solenoid Via Carathéodory-Pesin Structures

	References

	Lyapunov Functions for Almost Sure Exponential Stability
	1 Introduction
	2 The Theorems and Their Proofs
	3 Conclusions
	References

	Numerical Analysis of Dynamic  Stability of an Isotropic Plate by Applying Tools Used in Dynamics
	1 Introduction
	2 Analyzed Plate
	3 Numerical Analysis of the Study Plate
	4 Summary
	References

	Rigid Jeffcott Rotor Bifurcation Behaviour Using Different Models  of Hydrodynamic Bearings
	1 Introduction
	2 Mathematical Model of Jeffcott Rotor with Hydrodynamic Journal Bearing
	3 Computational Analysis
	4 Parametric Study by Numerical Continuation
	4.1 Perfectly Balanced Rotor
	4.2 Unbalanced Rotor - Real Case Study

	5 Conclusions
	References

	The Burden of the Coinfection of HIV and TB in the Presence of Multi-drug Resistant Strains
	1 Introduction
	2 The Model
	3 Numerical Results
	4 Conclusions
	References

	Value Distribution and Growth of Solutions of Certain Painlevé Equations
	1 Introduction
	2 Value Distribution and Growth of Meromorphic Functions
	2.1 Nevanlinna Theory
	2.2 Petrenko's Theory

	3 Value Distribution of Painlevé Transcendents
	3.1 Order of Growth
	3.2 Nevanlinna Defective Values
	3.3 Multiplicity and Ramification Indices
	3.4 Petrenko's Defective Values
	3.5 Petrenko's Defective Values and P1

	References

	Numerical-Analytical Algorithms for Nonlinear Optimal Control Problems on a Large Time Interval
	1 Introduction
	2 Continuous Large Finite Horizon Problems with Slowly Varying Coefficients
	3 Discrete Optimal Control Problems with a Small Step
	4 Conclusions
	References

	The Dynamic Behavior of the Vehicle Wheels Under Impact Loads—FEM and Experimental Researches
	1 Introduction
	2 Experimental Study
	3 Structural Analysis SSS at Static Loading and Dynamic Impact Using FEM
	4 Conclusion
	References

	Optimal Control for Robot Manipulators with Three-Degress-of-Freedom
	1 Introduction
	2 Equations of Motion
	2.1 Manipulator Model/Kinematics Model
	2.2 Dynamic Model
	2.3 Dissipation components
	2.4 State-Space representation

	3 Optimal Control
	4 Nonlinear States Observer and Estimation
	5 Path Planning
	6 Numerical Simulations
	7 Conclusions
	References

	Optimal Control of Automotive Multivariable Dynamical Systems
	1 Introduction
	2 Automatic Cruise Control
	3 Design of an Optimal Adaptive Cruise Controller
	4 Application Example
	5 Conclusions
	References

	Mathematical Model of Two Types of Atrioventricular Nodal Reentrant Tachycardia: Slow/Fast and Slow/Slow
	1 Introduction
	1.1 Typical AVNRT
	1.2 Slow/Slow Type of AVNRT

	2 Model Construction
	3 Analysis of Equations (2)
	3.1 Existence of Steady States
	3.2 Stability of the Steady States

	4 Numerical Analysis
	5 Conclusions
	References

	Two-Frequency Averaging in the Problem of Motion of a Counter-Rotating Vertical Axis Wind Turbine
	1 Introduction
	2 Description of the Mechanical System
	3 Equations of Motion and Statement of the Problem
	4 The Averaging Approach, Passing Through Resonances
	4.1 Passing through resonances

	5 Quasi-Steady Motions
	6 Discussion
	7 Conclusions
	References

	Process-Oriented Approach to the Design of Cyber-Physical Systems
	1 Introduction
	2 Applied Models of System Design
	3 Process-Oriented Approach to the Design of Cyber-Physical Systems
	4 CPS Safety Context at the Design Stage Using a Process Approach
	5 Conclusions
	References

	An Inverse Dynamics Analysis of the Remote Controlled Artillery-Missile System Under the Influence of Disturbances
	1 Introduction
	2 Artillery-Missile System Dynamics Model
	2.1 Friction Model

	3 Target Coordinates
	4 An Inverse Analysis of AMS Dynamics
	5 Conclusions
	References

	Approximate Identification of Dynamical Systems
	1 Introduction
	2 The Parametric Identification Methods and Approximate Identifications
	2.1 Dynamical Experiments with Known and Unknown Excitations
	2.2 The Relation Between Homogeneous Solution and Steady State Harmonic Response
	2.3 One Mass Dynamical System

	3 Conclusions
	References

	Algorithm for Damping Control in Vehicle Suspension Equipped with Magneto-Rheological Dampers
	1 Introduction
	2 Mathematical Model of the Vehicle with Controlled MR Dampers
	3 Algorithm for Determination of Forces in MR Dampers
	4 Simulation Research of the Vehicle with Controlled Dampers
	5 Conclusion
	References

	Shadowing, Entropy and Minimal Sets
	1 Introduction
	2 Preliminaries
	2.1 Recurrence, Minimality and Mixing
	2.2 Chain Recurrence
	2.3 Invariant Measures
	2.4 Entropy

	3 Specification Property
	4 Shadowing Property and Local Dynamics
	References

	Analysis of Vibrations of an Oscillator Using Statistical Series
	1 Introduction
	2 Investigations
	3 Classification of the Elements of the Structure of Statistical Series Used In the Analysis of One-Dimensional Dynamic Systems. Simulations
	4 Conclusions
	References

	On Local Aspects of Entropy
	1 Introduction
	2 Preliminaries
	3 Full* Entropy Points
	4 Focal Entropy Points - Unbalanced Points
	References

	Optimal Control of Hybrid Systems with Sliding Modes
	1 Introduction
	2 Sliding Mode
	3 Calculating the Optimal Control
	4 Numerical Results
	5 Conclusions
	References

	Study of the High-Amplitude Solutions  in the System of Magnetic Sliding Oscillator with Many Degrees  of Freedom
	1 Introduction
	2 System Geometry and Its Mathematical Description
	3 Experiment
	4 Experimental Results
	4.1 Data Normalization
	4.2 Influence of the System Stiffness on Generated Power

	5 Numerical Results
	5.1 Characterization of Magnetic Forces
	5.2 Modeling

	6 Conclusions
	References

	Theoretical Investigations  on the Behavior of Artificial Sensors  for Surface Texture Detection
	1 Introduction
	2 Modeling
	2.1 Continuum System (QS)
	2.2 Multi-Body System (MBS)
	2.3 Finite-Element System (FEM)
	2.4 Verification

	3 Simulations
	4 Conclusions
	References

	Dynamic Analysis of a Compliant Tensegrity Structure for the Use  in a Gripper Application
	1 Introduction
	2 Parameter Study
	3 The Equations of Motion
	4 Actuation
	4.1 Example 1: Sinusoidal Actuation
	4.2 Example 2: Constant Actuation and Variation  of the Prestress

	5 Conclusions
	References

	Synchronisation Analysis of a De-Tuned Three-Bladed Rotor
	1 Introduction
	2 Mathematical Model of the Structure and Equations of Motion
	2.1 Derivation of Governing Equations
	2.2 Impact of Reinforcing Fibers Misalignment
	2.3 Ordinary Differential Equations of Motion

	3 Numerical Studies
	4 Conclusions
	References

	The Analytical Approach for Identification of Magnetically Induced Vibrations of Working in Faulty State BLDC Motor
	1 Introduction
	2 Analytical Model
	2.1 Mathematical Background
	2.2 Magnetic Field in Magnets Region
	2.3 Modelling of the Eccentricity Fault

	3 Mathematical Description of Forces Exerted on the Motor Body
	4 Test Stand
	5 Real Object Investigation
	6 Summary
	References

	Micro-dynamics of Thin Tolerance-Periodic Cylindrical Shells
	1 Introduction
	2 Formulation of the Problem, Starting Equations
	3 Modelling Procedure, Equations of Combined Model
	4 Applications—Free Micro-vibration Frequencies
	4.1 Description of the Problem
	4.2 Free Micro-vibrations in Circumferential Direction
	4.3 Free Micro-vibrations in Axial Direction
	4.4 Transversal Free Micro-vibrations
	4.5 Numerical Results
	4.6 Discussion of Results

	5 Final Remarks
	References

	Stokes Flow Through a Tube  with Wavy Wall
	1 Introduction
	2 Geometrical Description
	3 Axially Symmetric Steady Stokesian Flow
	3.1 Natural Units
	3.2 Zero-th Approximation

	4 General Solution
	4.1 Expansion in ε Series
	4.2 Reduced Problem
	4.3 Solution of the System

	5 An Example
	5.1 Elaboration of the Example

	6 Conclusions
	References

	Implementation of the Adaptive Control Algorithm for the KUKA LWR 4+ Robot
	1 Introduction
	2 The KUKA LWR 4+ Model
	3 Adaptive Controller
	3.1 Theoretical Background
	3.2 Implementation

	4 Experimental Validation
	5 Conclusions
	References

	Vibrations of a Multi-span Beam Subjected to a Moving Stochastic Load
	1 Introduction
	2 Vibrations of Multi-span Beam Due to a Moving Force
	3 Stochastic Moving Load
	3.1 Space-Time Stationary Stochastic Process
	3.2 Random Train of Moving Forces

	4 Numerical Examples
	4.1 Two-Span Beam
	4.2 Three-Span Beam

	5 Conclusions
	References




