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Abstract. Active automata learning is slowly becoming a standard tool
in the toolbox of the software engineer. As systems become ever more
complex and development becomes more distributed, inferred models of
system behavior become an increasingly valuable asset for understand-
ing and analyzing a system’s behavior. Five years ago (in 2011) we have
surveyed the then current state of active automata learning research
and applications of active automata learning in practice. We predicted
four major topics to be addressed in the then near future: efficiency,
expressivity of models, bridging the semantic gap between formal lan-
guages and analyzed components, and solutions to the inherent problem
of incompleteness of active learning in black-box scenarios. In this paper
we review the progress that has been made over the past five years,
assess the status of active automata learning techniques with respect to
applications in the field of software engineering, and present an updated
agenda for future research.

1 Introduction

Active automata learning [13] infers models from observations. Alternating
between deriving conjectures from experiments and observations and then trying
to corroborate or disprove conjectures, active automata learning can be seen as
one instance of the fundamental method in science described by Popper [126],
who postulates that models (of the world) cannot be verified or reliably gen-
eralized, not even probabilistically. Rather, models (of the world) can only be
falsified and repaired.

In a world of evermore complex man-made systems that consist of many com-
ponents, developed by large groups of engineers, and use independently devel-
oped libraries or basic software, referring to Popper’s scientific method seems
appropriate for analyzing, understanding, and validating the behavior of (soft-
ware) systems whose complexity is beyond the reach of deductive methods.

When learning the behavior of software systems, an observation can be a
simple execution of some target component, or a sequence of packages exchanged
with a networked system, but also an instance of model checking the feasibility
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of a sequence of steps on a system. Learned models enable the application of
(formal) analysis and verification techniques or testing approaches, e.g., of model
checking [42] or model-based testing [27].

This has first been demonstrated in the concrete scenario of testing com-
puter telephony integrated (CTI) systems [12,69,71], where a finite automaton
model was inferred from experiments and used as a basis for regression testing.
When analyzing bigger systems, however, it became clear quickly that the suc-
cess of automata learning in practice would hinge on practical optimizations like
efficient implementation of existing learning algorithms, strategies for selecting
experiments, and the development of new and more efficient learning algorithms
that infer more expressive models. An example of early practical optimizations is
the exploitation of the prefix-closedness of a system’s set of traces for generating
observations to many experiments performed by a learning algorithm without
executing actual tests on a system [72,86,107,140].

In 2011, we wrote a report and published a book chapter on the practi-
cal challenges in applying active automata learning in software engineering and
surveyed the then current state of active automata learning research and appli-
cations [81]. We predicted four major topics to be addressed in the then near
future: efficiency, expressivity of models, bridging the semantic gap between for-
mal languages and analyzed components, and solutions to the inherent problem
of incompleteness of active learning in black-box scenarios. In this paper, we
survey the literature on active automata and provide a brief overview of the
progress that has been made in the years 2011 to 2016 towards these challenges.

Organization. We give a very brief introduction to active automata learning in
Sect. 2 and revisit the challenges that we identified in 2011 in Sect. 3. Section 4
surveys work that focuses on active automata learning in software engineering
in the past six years (i.e., from 2011 to 2016). Finally, we asses the progress that
has been made and update the list of challenges, taking into account the results
of the survey, in Sect. 5.

2 Active Automata Learning

Active automata learning [13] is concerned with the problem of inferring an
automaton model for an unknown formal language L over some alphabet Σ.

MAT Model. Active learning is often formulated as a cooperative game
between a learner and a teacher, as is sketched in Fig. 1. The task of the learner
is to learn a model of some unknown formal language L. The teacher can assist
the learner by answering two kinds of queries:

Membership queries ask for a single word w ∈ Σ∗ if it is in the unknown
language L. The teacher answers these queries with “yes” or “no”.

Equivalence queries ask for a candidate language LH if LH equals L. In
case a conjectured language LH does not equal L, the teacher will provide a
counterexample: a word from the symmetric difference of LH and L.
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Learner Teacher
Is w in L?

Yes or No

Is LH = L?
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ce ∈ (L ⊗ LH)

LH L

Fig. 1. Active automata learning in the MAT model.

The teacher in this model is called a minimally adequate teacher (MAT) and the
learning model is hence often referred to as MAT learning.

Dana Angluin’s original contribution (in hindsight) is twofold: with the MAT
learning model, she introduced an abstraction that allowed for the separation of
concerns (constructing stable preliminary models and checking the correctness
of these models). This enabled an algorithmic pattern or framework of reasoning
that allowed the formulation and optimization of learning algorithms. The second
contribution is the original L∗ learning algorithm for regular languages and a
sequence of lemmas on the status of preliminary models, e.g., showing that for
L∗ all conjectured models are consistent with all previous observations. The
learning algorithm and the sequence of lemmas have served as a basis for proving
corresponding properties for many learning algorithms for more complex classes
of concepts.

Languages and Automata. A conjectured language LH is represented by
its canonical deterministic acceptor and identified using its residual languages.
Intuitively, a residual language [48] of a language is the language after some
prefix. Formally, for some language L and a word u ∈ Σ∗, the residual language
u−1L is the set {w ∈ Σ∗ | uw ∈ L}. A regular language L can be characterized
by a finite set of residual languages and every state of the language’s canonical
acceptor corresponds to one of these languages.

Definition 1. A Deterministic Finite Automaton (DFA) is a tuple
A = 〈Q, q0, Σ, δ, F 〉 where:

– Q is a finite nonempty set of states,
– q0 ∈ Q is the initial state,
– Σ is a finite alphabet,
– δ : Q × Σ → Q is the transition function, and
– F ⊆ Q is the set of accepting states.

We extend δ to words in the natural way by defining δ(q, ε) = q for the empty
word ε and δ(q, ua) = δ(δ(q, u), a) for u ∈ Σ∗ and a ∈ Σ. A word w is accepted
by A if d(q0, w) ∈ F .
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The well-known Nerode congruence is the basis for the construction of the canon-
ical acceptor for a regular language L: Two words u, v are Nerode-equivalent
w.r.t. L if their residual languages in L are identical [120]. The canonical DFA
AL for L has one state for every residual language of L (i.e., for every class of
the Nerode-relation induced by L). The residual language u−1L after word u is
represented by state qu. With qε = q0 and δ(qu, a) = qua for u ∈ Σ∗ and a ∈ Σ
in AL, a word u leads to the state qu = δ(q0, u), representing the corresponding
residual language u−1L. Finally, letting qu ∈ F iff u ∈ L makes AL an acceptor
for L and Au

L, the automaton obtained from AL by making qu the initial state,
an acceptor for u−1L.

The L∗ Algorithm. Active learning algorithms are based on the dual charac-
terization of states in the canonical acceptor AL, by words leading to states and
their residual languages. The key observation is that words u and u′ cannot lead
to the same state if for some v ∈ Σ∗ the word uv is in L while u′v is not in L
(or vice versa). Thus, a finite nonempty set U of prefixes can be used to identify
states and a finite nonempty set V of suffixes can be used to distinguish states.

The L∗ algorithm1 for regular languages uses an observation table Obs :
(U ∪ U · Σ) × V �→ {1, 0} for organizing results of membership queries, letting
Obs(u, v) = 1 iff uv ∈ L and 0 otherwise. Sets U and V are initialized as {ε},
i.e., with a prefix for the initial state and a suffix that distinguishes final states
from non-final states, and are extended incrementally. An automaton AObs can
be generated from Obs with states qu for u ∈ U , initial state qε, transitions
δ(qu, a) = qu′ for u, u′ ∈ U and a ∈ Σ where Obs(ua) = Obs(u′) and qu ∈ F iff
Obs(u, ε) = 1. This automaton is only well-defined if δ is total. The algorithm
ensures this when extending the table (and hence refining the corresponding
automaton) on the basis of query results, iterating the two main steps (1) estab-
lishing closedness via membership queries, and (2) testing for equivalence via
equivalence queries.

Local exploration. The first phase checks whether the knowledge, gathered from
membership queries and accumulated in the observation table, suffices to con-
struct a hypothesis automaton with a total transition function. This requires
that the table is closed, meaning that for every word w ∈ U · Σ there is a prefix
u ∈ U with Obs(u) = Obs(w). The set U of prefixes is extended by words from
U · Σ until the table is closed and a hypothesis automaton AObs (accepting LH

in Fig. 1) can be generated.

Checking Equivalence. An equivalence query checks whether AObs is the canonic
acceptor of the target language L. Once this is true, the learning procedure ter-
minates successfully. Otherwise, the equivalence query returns a counterexam-
ple from the symmetric difference of L and LH . As was shown by Rivest and

1 We only provide a very brief sketch of the improved version of L∗ due to Rivest and
Schapire here [130]. A more detailed presentation can be found in Angluin’s original
paper [13].
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Schapire [130], a counterexample w indicates that the set V of suffixes, approx-
imating the characterization of states by residual languages, can be refined by
adding one of the suffixes of w to V : The word w = a1 · · · am traverses states
q0, q1, . . . , qm in AObs. For index 0 ≤ i ≤ m, let ũi be the prefix for qi in U with
δ(q0, ũi) = qi and for 1 ≤ j ≤ m let vj be the suffix aj · · · am of w. There is a pair
ũi−1 and ũi of prefixes in U with Obs(ũi−1ai) = Obs(ũi) while ũi−1ai · vi+1 ∈ L
and ũi ·vi+1 
∈ L (or vice versa).2 Adding vi+1 to the set V of suffixes will lead to
unclosedness of the observation table, which in turn will lead to adding prefixes
to U , and result in a refined conjecture.

Correctness and Termination. The correctness argument for this approach
follows a straightforward pattern, which does not only hold for L∗, but also for
all of the derivatives [96,107,123,130,132] presented so far.

Partial correctness [75] is obvious, because learning only terminates after
the equivalence oracle guaranteed the correctness of the inferred model. What
remains to be shown is termination. The following four steps suffice to prove that
the learning procedure always terminates after at most n equivalence queries,
where n is the number of states of the desired minimal acceptor for L:

1. The state construction, using distinguishing suffixes in lieu of residual lan-
guages, guarantees that the number of states of the hypothesis automaton can
never exceed the number of states of the smallest deterministic automaton
accepting the considered language.

2. The closedness procedure guarantees that each transition of the hypothesis
automaton is represented by a prefix during learning. This means in particular
that a hypothesis automaton of the size (in terms of number of states) of the
smallest deterministic automaton for the considered language must already
be isomorphic to this (canonic) automaton.

3. The analysis of counterexamples guarantees that at least one additional state
is added to the hypothesis automaton for each counterexample. Thus, due to
(1) and (2), such treatments can happen only n times.

4. The equivalence checking mechanism, often called equivalence oracle, provides
new counterexamples as long as the language of the hypothesis automaton
does not match the desired result.

Using the underlying concept of query learning a number of optimizations
and akin algorithms have been proposed in the 1990s [96,130], Balcázar et al.
give a unifying overview [17].

Application in Model Learning. To meet the requirements in practical sce-
narios, Margaria et al. transferred automata learning to Mealy machines [107].

2 While the word w = ũ0 · v1 is a counterexample, ũm cannot be a counterexample
(by construction of AObs), and all words ũi · vi+1 with 0 ≤ i ≤ m − 1 lead to the
same state as ũm in AObs. As a consequence, at one index ũi−1ai · vi+1 ∈ L and
ũi · vi+1 �∈ L (or vice versa).
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Mealy machines are widely used models of deterministic reactive systems and
multiple optimized algorithms have been proposed [72,129,132]. Examples of
applications in the years before 2011 are the learning of behavioral models for
Web Services [127], communication protocol entities [139], or software compo-
nents [86,117,128].

Extensions to inference methods focus on modeling phenomena that occur in
real systems. On the basis of inference algorithms for Mealy machines, inference
algorithms for I/O-automata [8], timed automata [124], Petri Nets [52], and
Message Sequence Charts [22,23] have been developed. With the I/O-automata
model, a wide range of systems that comprise quiescence is made accessible for
query learning. Timed automata model explicitly time dependent behavior. With
Petri Nets, systems with explicit parallel state are addressed.

3 A Short Review of Challenges in Applications

In this section, we discuss the challenges we identified in 2011 for the practical
application of active automata learning. Automata learning can be considered
as a key technology for dealing with black-box systems, i.e., systems that can
be observed, but for which no or little knowledge about the internal structure
is available. Active automata learning is characterized by its specific means of
observation, i.e., its proactive way of posing membership queries and equivalence
queries. It requires some way to realize this query-based interaction for the con-
sidered application contexts. Whereas membership queries may often be realized
via testing in practice, equivalence queries are typically unrealistic.

3.1 Interacting with Real Systems

The interaction with a realistic target system comes with a number of challenges.
A merely technical problem is establishing an adequate interface that allows one
to realize membership queries. This can be rather simple for systems designed
for connectivity (e.g., Web-services or libraries) which have a native concept
of being invoked from the outside and come with documentation on how to
accomplish this (cf. the work on so-called dynamic Web testing [128]). It may be
more difficult for other systems, e.g., embedded systems that work on streams
of data.

Establishing an adequate abstraction for learning is a second challenge: An
abstraction has to produce a useful and finite model while at the same time
allowing for an automatic back and forth translation between the abstract model
and the concrete target system. At the time, there was some work focusing
explicitly on the use of abstraction in learning [4,6] and even first steps in the
direction of automatic abstraction refinement [84,89].

Another challenge is that active learning requires membership queries to
be independent. Solutions range here from reset mechanisms via homing
sequences [130] or snapshots of the system state to the generation of observ-
ably equivalent initial conditions. E.g., for session-based protocols, it may be
sufficient to perform every membership query with a fresh session identifier [81].
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3.2 Efficiency

Whereas small learning experiments typically require only a few hundred mem-
bership queries, learning realistic systems may easily require several orders of
magnitude more. In some scenarios, each membership query may need multiple
seconds or sometime even minutes to compute. In such a case minimizing the
number of required membership queries is the key to success.

In [83,132] optimizations are discussed to classic learning algorithms that
aim at saving membership queries in practical scenarios. Additionally, the use of
filters (exploiting domain specific expert knowledge) has been proven as a prac-
tical solution to the problem [72,140]. Finally, the choice of a concrete learning
algorithm may have a huge influence on the number of membership queries that
are used to infer a model of a target system [77].

3.3 Expressivity of Models

Active learning classically is based on abstract communication alphabets. Param-
eters and interpreted values are only treated to an extend expressible within the
abstract alphabet. In practice, this typically is not sufficient, not even for systems
as simple as communication protocols, where, e.g., increasing sequence numbers
must be handled, or where authentication requires matching user/password com-
binations.

First attempts to deal with parameters in models range from case studies
with manual solutions [117] to extensions of learning algorithms that can deal
with Boolean parameters [137,138]. One big future challenge at the time was
extending learning to models with state variables and arbitrary data parameters
in a more generic way, as explored by [10].

3.4 Equivalence Queries

Equivalence queries compare a learned hypothesis model with the target system
for language equivalence and, in case of failure, return a counterexample exposing
a difference. Their realization is rather simple in white-box scenarios: equivalence
can be checked. In black-box scenarios, however, equivalence queries have to be
approximated using membership queries. Without the introduction of additional
assumptions, such equivalence tests are not decidable: the possibility of having
not tested extensively enough always remains.

Conformance testing has been used to simulate equivalence queries. If, e.g.,
an upper bound on the number of states the target system can have is known,
the W-method [41] or the Wp-method [57] can be applied. Both methods have
an exponential complexity (in the size of the target system and measured in
the number of membership queries needed). The relationship between regular
extrapolation and conformance testing methods is discussed in [19].

Without introducing any additional assumptions, only approximate solutions
exploiting membership queries exist. Here, conformance testing methods may
not always be a wise choice. It has turned out that changing the view from
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“trying to proof equivalence”, e.g., by using conformance testing techniques,
to “finding counter examples fast” has a strong positive impact. An attempt
to intensify research in this direction was the 2010 Zulu challenge [44]. The
winning solution is discussed in [83]. The main contribution of this solution is a
strategy for sharing information on test coverage for the evolving model between
individual equivalence queries.

4 Recent Advances in Active Automata Learning

In order to assess the advances in practical application of active automata learn-
ing in the domain of Software engineering, we survey the literature on active
automata learning in the years 2011 to 2016. Basis for the survey are the ACM’s
digital library and the proceedings of several big software engineering confer-
ences (i.e., ICSE, CAV, ETAPS). The survey is not exhaustive since the number
of candidate publications is in the thousands. We have used different heuristics
for filtering out relevant publications: cited foundational papers, used keywords,
and authors known to work in the field.

We sort publications into categories based on their main focus and differenti-
ate between advances that have been made by application of automata learning
and those that have been made to the methodology of active automata learning
itself. Finally we discuss advances in lines of work that are closely related (i.e.,
learning from examples or active learning of other classes of concepts).

4.1 Advances in Applications

There have been impressive advances in the application of automata learning in
diverse scenarios over the past years. Applications are found in black-box con-
texts as well as in white-box scenarios. The broad range of application areas doc-
uments that active (automata) learning is becoming one of the well-established
tools in the toolbox of the formal methods trained software engineer.

Specification Generation. The most obvious application of active automata
learning is the a posteriori generation of specifications from prototypes or from
running (legacy) systems. Esparza et al. present a learning algorithm for Work-
flow Petri Nets [52] using log data and a teacher that answers executability of con-
jectured workflows. Sun et al. use active automata learning in combination with
automated abstraction refinement and random testing for finding abstract behav-
ioral models of Java classes [136]. Aarts et al. demonstrate how a combination of
active automata learning with manually crafted abstraction mappers can be used
to infer models of the SIP and TCP protocols [7]. Gu and Roychowdhury present
a variant of L∗ for inferring finite state abstractions of continuous circuits defined
by differential equations [67]. Aadithya and Roychowdhury go on and extend the
approach from learning regular abstractions to models with arbitrary I/O alpha-
bets [1].
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Model-based Testing without Models. One of the earliest practical appli-
cations of active automata learning was testing of telecommunication sys-
tems [12,69]. The idea of model-based testing without (a priori) models was
later elaborated and, e.g., applied to Web-based systems [128]. In recent years
this line of application has been continued for several different types of systems.
Dinca et al. develop an approach for generating test-suites for Event-B mod-
els through active automata learning [49,50]. Choi et al. use active automata
learning for testing the behavior of the graphical user interfaces of Android
applications [39,40]. Shahbaz and Groz use automata learning for integration
testing [133]. They infer models of embedded components and use these mod-
els as a basis for test case generation. Meinke and Sindhu present LBTest, a
tool for learning-based testing for reactive systems, integrating model checking,
active automata learning, and random testing [111]. In this volume, the relation
between learning and testing is discussed in [11] and an overview of learning-
based testing is presented in [109].

Software Re-engineering. Inferred models cannot only be used for testing but
also for comparing different versions or implementations of a system. This can,
e.g., be useful for searching (accidental) differences in the behavior of subsequent
version of a software system. Neubauer et al. develop ‘active continuous quality
control’: they use active automata learning on subsequent versions of a Web-
application (during development) and analyze models for unintended behav-
ioral changes between versions [121,122,145]. The approach integrates active
automata learning, model checking, regression testing, and risk-based testing.
Schuts et al. use model learning and equivalence checking to assist re-engineering
of legacy software in an industrial context at Philips [131]. Howar et al. vali-
date a model-to-code translator. They use active automata learning to extract
behavioral models from generated implementations and compare these models
to specification models [80]. Bainczyk et al. presented an easy to use tool for
mixed-mode learning, which, in particular, allows one to compare back-end and
front-end functionality of web applications [16].

Verification and Validation. Inferred models can be used in (formal) verifi-
cation and system analysis as well, as sketched below.

Security. Behavioral models of systems can be used for identifying vulnerabili-
ties. Active learning in these scenarios is often used to automate the work of a
prospective attacker, exploring state of a systems in a structured way. Over the
past years, a number of real vulnerabilities have been identified in this manner.

Cho et al. present MACE an approach for concolic exploration of protocol
behavior. The approach uses active automata learning for discovering so-called
deep states in the protocol behavior. From these states, concolic execution is
employed in order to discover vulnerabilities [38]. Chalupar et al. use active
automata learning and a LEGO robot to physically interact with smart cards
and reverse engineer their protocols [34]. De Ruiter and Poll use active automata
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learning for inferring models of TLS implementations and discover previously
unknown security flaws in the inferred models [46].

Botinčan and Babić present a learning algorithm for inferring models of
stream transducers that integrates active automata learning with symbolic
execution and counterexample-guided abstraction refinement [26]. They show
how the models can be used to verify properties of input sanitizers in Web-
applications. Xue et al. use active automata learning for inferring models of
JavaScript malware [146].

Argyros et al. present SFADiff, a tool based on active automata learning
for inferring symbolic automata that characterize the difference between similar
programs [15]. The work is motivated by the security challenge of fingerprinting
programs based on their behavior.

Safety/Correctness. Active learning can be used to generate (abstract) models at
interfaces of systems. The behavior at such interfaces is often an issue when inte-
grating systems into environments (virtual or physical). Inferred models can be
used for analyzing safety in such situations. Combéfis et al. use active learning to
generate abstract models of systems as a basis for analyzing potential mode con-
fusion, a well-known problem in human machine interaction [45], while Howar et
al. use the register automaton model [32] for inferring precise semantic interfaces
of data structures [79]. Giannakopoulou et al. develop an active learning algo-
rithm that infers safe interfaces of software components with guarded actions. In
their model, the teacher is implemented using concolic execution [62,78]. Khalili
et al. [97] use active automata learning to obtain behavioral models of the mid-
dleware of a robotic platform. The models are used during verification of control
software for this platform. Fiterău-Broştean et al. use learning and model check-
ing to analyze the behavior of different implementations of the TCP protocol
stack and document several instances of implementations violating RFC specifi-
cations [56].

Assume-Guarantee Reasoning. Assume-guarantee reasoning has been a big
area of application of active automata learning algorithms for much longer than
the past couple of years (cf. [43,101,125]). The moderate style of exploration
that is achieved by learning is used to reduce the problem of state space explo-
sion. Recent advances have been made by finding active automata learning to
many classes of systems. Learning algorithms are usually based quite directly on
the classic L∗ algorithm. The required extensions in expressivity of models are
usually realized through powerful teachers.

Chaki and Gurfinkel infer assumptions for ω-regular systems [33]. He et al.
present a framework automated symbolic assume-guarantee reasoning that incor-
porates a MAT learning algorithm for BDDs [74]. He and some of the same
and some other co-authors also present a compositional reasoning framework for
concurrent probabilistic systems using an active learning algorithm for multi-
terminal binary decision diagrams [73]. Feng et al. present an algorithm for infer-
ring assumptions for probabilistic assume/guarantee reasoning [53,54]. Komurav-
elli et al. develop automata learning of non-deterministic probabilistic models that
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then serve as assumptions during automated assume/guarantee reasoning [99].
Meller et al. develop learning-based assume-guarantee reasoning for behavioral
UML systems, using the L∗ algorithm “off the shelf” [112].

Synthesis. The latest area of application of active automata learning that
could be identified is synthesis. In synthesis, active learning is used for exploring
and constructing formal models of safe (emerging) behavior that can be used
as a basis for synthesizing safe mediators or controllers. Lin and Hsiung use
learning-based assume-guarantee reasoning to build a compositional synthesis
algorithm [104]. Cheng et al. synthesize safe and deadlock-free component-based
systems using priorities and automated assumption learning [37]. Neider and
Topcu use active automata learning to solve safety games [118,119].

4.2 Tools and Libraries

There are many tools presented in the work surveyed that integrate active learn-
ing algorithms. For this category we focus on tools and libraries that provide
active automata learning algorithms to applications.

Since 2004, Bernhard Steffen’s group develops LearnLib3, a library for active
automata learning that comprises infrastructure (e.g., filters and abstractions)
for learning models of real-world systems [116,129]. Merten et al. present an
extension of LearnLib for inferring data-aware models of Web-Services [115] fully
automatically using only WSDL interface descriptions to bootstrap the learning
process. The maturity of today’s version of the LearnLib, which is now open
source, is witnessed by the CAV 2015 artifact award [91].

There exist at least two other open-source automata learning libraries that
provide implementations of textbook algorithms, complemented by own develop-
ments: libalf4, the Automata Learning Framework [24], was developed primarily
at the RWTH Aachen. Its active development seems to have ceased; the last ver-
sion was released in April 2011. AIDE5 [98], the Automata-Identification Engine,
developed by a group at University of Genoa. It is not clear from the web-page
if the library is still maintained.

Several tools and libraries for learning more expressive automata models have
been developed over the past couple of years. The Tomte6 [3] tool is developed at
Radboud University. The tool fully automatically constructs abstractions (i.e.,
mappers) for automata learning and uses LearnLib for inferring models. Drews
and D’Antoni develop a library for symbolic automata and symbolic visibly
pushdown automata7 [51]. The library provides learning algorithms for sym-
bolic automata. Cassel et al. develop RaLib8 [134], an extension to LearnLib for

3 https://learnlib.de/.
4 http://libalf.informatik.rwth-aachen.de/.
5 http://aide.codeplex.com/.
6 http://tomte.cs.ru.nl/.
7 https://github.com/lorisdanto/symbolicautomata.
8 https://bitbucket.org/learnlib/ralib/.

https://learnlib.de/
http://libalf.informatik.rwth-aachen.de/
http://aide.codeplex.com/
http://tomte.cs.ru.nl/
https://github.com/lorisdanto/symbolicautomata
https://bitbucket.org/learnlib/ralib/
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learning algorithms that infer extended finite state machine models. All three
tools seem to be actively maintained.

4.3 Algorithmic Advances

While active automata learning has gained a lot of traction as a tool in software
engineering applications, there is another group of work aiming at improving
the foundations of active automata learning by extending it to semantically
richer models, by developing more efficient learning algorithms, by exploring new
learning models, and by working on techniques for approximating equivalence
queries in black-box scenarios that yield quantifiable correctness guarantees for
inferred models.

Expressivity. Meinke and Sindhu present IKL, a learning algorithm in the
MAT model that infers Kripke structures [110]. Lin et al. develop a mixed active
and passive learning algorithm that infers a subclass of timed automata, so-called
event-recording automata [103].

Howar et al. extend active automata learning in the MAT model to register
automata, which model control-flow as well as data-flow between data parame-
ters of inputs, outputs, and a set of registers [82,114]. Registers and data param-
eters can be compared for equality. The authors demonstrate the effectiveness
of their approach by inferring models of data structures [79] and extent the
expressivity to allow for arbitrary data relations that meet certain learnability
criteria [31,134]. A summary of this work can be found in this volume [30]. Aarts
et al. develop a slightly different approach for inferring register automata mod-
els that can compare registers and data parameter for equality [2,3]. The two
approaches are compared in [5].

Garg et al. develop an active learning algorithm for so-called quantified data
automata over words that can model quantified invariants over linear data struc-
tures [59]. Volpato and Tretmans investigate the necessary assumptions under
which models of nondeterministic systems can be inferred [141]. Kasprzik shows
how residual finite-state tree automata can be inferred from membership queries
and positive examples [95]. Isberner presents an active learning algorithm that
infers visibly push-down automata [88].

Learning Models. Abel and Reinecke address the problem of inferring a model
of a component that can only be addressed through a given and known intermedi-
ate component [9]. Decker et al. present active learning of networks of automata
that consist of one base automaton and a number of identical components [47].

Groz et al. present a learning algorithm of scenarios in which the system
cannot be reset into a well-defined initial state [66] (an extended version can
be found in this volume [65]). Leucker and Neider present an active learning
algorithm that learns models from an ‘inexperienced’ teacher, i.e., a teacher
that fails to answer some membership queries [102].

A separate line of work focuses on learning regular languages from so-called
automatic classes in different learning models [28,29,92,93].
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Efficiency. For the case of finite regular languages, Ipate presents an active
learning algorithm that infers deterministic finite cover automata and in some
cases leads to substantial savings compared to more generic active learning algo-
rithms [87]. Groz et al. develop optimizations of the L∗ algorithm targeting
large input sets, parameterized inputs, and processing counterexamples [64].
Björklund et al. develop a MAT-model learning algorithm that infers universal
automata as a representation of regular languages [21]. Angluin et al. develop
learning algorithms for universal automata, and alternating automata [14] and
evaluate the performance trade offs for inferring these automata models—
compared to deterministic finite state automata.

Means and Maler present a variant of L∗ that learns concise models for sys-
tems with big sets of inputs by inferring symbolic characterizations of equivalent
sets of inputs [113], an approach reminiscent of [89].

Finally, Isberner et al. develop the TTT algorithm [90], a space-optimal
active learning algorithm that computes minimal distinguishing suffixes from
counterexamples. The TTT algorithms is particularly well-suited when aiming
at lifelong learning [20], where equivalence queries are essentially replaced by
cont́ınuous monitoring of the running system.

Quality of Models. Van den Bos et al. develop a quality metric for inferred
models and introduce a so-called ‘Comparator’ that can be used to enforce that
the quality of intermediate models obtained during learning always increases
(w.r.t. to the introduced metric) [25]. Chen et al. use the PAC result presented
in Angluin’s original paper on L∗ for implementing a learning-based framework
for program verification [35]. Using a PAC result allows them to quantify the
confidence in the verification result in the absence of a perfect equivalence oracle.

4.4 Related Lines of Work

Learning in general is gaining traction in software engineering. This includes
active learning of different concepts, as well learning from examples, which is
the method of choice when inferring models from logs and traces.

Active Learning of Loop Invariants. One line of work aims at synthesizing
invariants for loops in programs using combinations of active learning of logic
formulas, predicate abstraction, and counterexample-guided abstraction refine-
ment (e.g., [94]). Konev et al. present an algorithm for learning logic TBoxes
from a teacher that answers entailment queries and equivalence queries [100].
Chen and Wang present an active learning algorithm for Boolean functions and
use it for inferring loop invariants [36].

Garg et al. develop several learning algorithms for invariants in different
learning models. In [60], they present algorithms for inferring Boolean combi-
nations of numerical invariants for scalar variables and for quantified invariants
of arrays and dynamic lists. In [61], they infer inductive invariants in a model
where the teacher instructs a learner through positive, negative, and implication
examples [61].
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Learning from Examples. Passive automata learning infers automata mod-
els from positive or from positive and negative examples - the learning model
is referred to as “in the limit” [63]. Learning from examples has an equally big
recent impact in software engineering as active learning. The application scenar-
ios and advances resemble closely the ones of active learning, as the following
examples show.

Applications. Walkinshaw uses passively inferred models as a basis for deciding
the adequacy of test suites for black-box systems [142]. Adamis et al. mine for
sequential patterns (i.e., frequently observed transitions) in conformance test
logs and use these to generate a finite state machine model. The finite state
model is then used for performance testing [10].

Medhat et al. present an approach for mining hybrid automata specifications
from input/output traces using several machine learning techniques [108]. Mao
et al. extend the Alergia algorithm that learns probabilistic models from pos-
itive examples to more expressive reactive and timed models [106]. They then
investigate how these models can be used for model checking and demonstrate
the feasibility in a comparison to statistical model checking. Statistical model
checking samples the system directly for a property, while in their approach first
a model is inferred and then a property is checked on this model.

Another line of work focuses on designing domain-specific languages for
Object processing and formatting, e.g., in Excel, and then learning models in
the respective DSL from examples [68,85,144]. Barowy et al. learn formatting
rules for spread sheet data from examples [18].

Algorithmic Advances. One recent theoretic results is shown by Garćıa et al.:
the authors prove the existence of polynomial characteristic samples for every
order in which states are merged during learning, i.e., sets of examples that allow
correct identification of unknown regular languages [58].

Staworko and Wieczorek present learning algorithms that learn XML path
queries from positive and negative examples [135]. Walkinshaw et al. develop a
passive learning algorithm that infers extended finite state machines that model
control-flow and data-flow from [143]. Högberg presents an algorithm for infer-
ring regular tree languages from positive and negative examples [76].

5 Discussion and Open Challenges

The survey of the literature documents progress concerning all challenges that
we identified in our earlier work. A careful analysis shows that progress in some
directions has been stronger than in other directions. This yields some potential
directions for further research.

Interacting with Real Systems. There is, by now, a considerable number of
case studies that show how active learning can be beneficial in different scenar-
ios: In our survey, the number of publications that present applications exceeds
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the number of publications that focus primarily on algorithmic or theoretic con-
tributions. It can be observed that in black-box scenarios, membership queries
are typically realized through tests, and equivalence queries are approximated
by tests. In white-box scenarios, both types of queries are often implemented
using model-checking or program analysis.

While interaction with real systems is reported in many publications their
corresponding conceptual progress is typically small. Specifically, the proposed
methods for establishing appropriate abstractions underlying the learning alpha-
bet or for guaranteeing equivalent initial conditions for membership queries are
still mostly a case-specific manual effort.

Efficiency and Tools. In the past ten years, many improved active automata
learning algorithms have been developed. Some rely on the observation table,
the basic data structure introduced by Angluin, and differ from the original L∗

algorithm mostly in the way counterexamples are analyzed. Others use decision
trees as data structures. Observations clearly indicate the superiority of tree-
based algorithms, combined with efficient counter example analysis. It is striking
that despite this algorithmic progress, many applications still use the original
L∗ algorithm or one of the optimized versions that have been developed in the
early 1990s. Sometimes heuristics to overcome well-known weaknesses of L∗ are
even proposed as general achievements.

One future challenge is therefore the systematic transfer of the existing algo-
rithmic improvements into tools. As of today, there seem to exist only very few
tools and libraries that are actively maintained and publicly available (compared
to, e.g., the tools in the areas of satisfiability modulo theories or automated theo-
rem proving). In these other domains, competitions have been used to encourage
development of new methods and implementation of tools. Maybe model learning
needs a similar vehicle for driving the transfer of theoretic results into tools.

Expressivity. Over the years, active learning has been extended to produce
more expressive models, like register automata, extended finite state machines,
visibly push-down automata, event recording automata, or symbolic automata.
It appears that most of the corresponding active learning approaches use the L∗

algorithm (or one of its variants) as a reference and often adapt correctness proofs
(e.g., [51,105]). This does not only result in inefficient solutions, but often also in
quite indirect correctness arguments. The more efficient algorithms are typically
technically more involved than the original L∗ algorithm making their adaptation
to new domains harder. On the other hand, e.g., the TTT algorithm reveals very
much of the information-theoretic essence of active automata learning which
promotes a better understanding and provides significant performance gains.

One direction for future work is therefore leveraging this potential and pro-
viding modular conceptual frameworks that support the adaptation of learning
algorithms to new domains and classes of models. Conceptual frameworks have
to be complemented by implementations enabling the systematic profiling of
various learning algorithms in order to identify the best fitting algorithm for a
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given application domain. The LearnLib Studio [116] was a first step into this
direction and the authors are currently working on transferring this idea to the
open-sourced version of LearnLib.

Equivalence Queries. Equivalence queries are mostly addressed on a per-
case-study basis. They are usually implemented as conformance tests or through
random testing in black-box scenarios. The concrete strategy for generating test
cases varies, but there has hardly been progress on efficient and effective meth-
ods for approximating equivalence queries. In order to further develop active
automata learning to a point where it can be used by verification techniques or
for documentation even in industrial (black-box) contexts, equivalence queries
will have to provide a quantifiable measure for the likelihood or precision of
inferred models.

One way of obtaining such results is the PAC (probably approximately cor-
rect) framework. Angluin obtained a PAC result for the original L∗ algorithm
by implementing equivalence queries using sequences of membership queries [13].
Recently, this result (which had been largely ignored for 20 years) was picked up
and extended [55,105]. In some application scenarios “lifelong learning” seems
to be an adequate answer, i.e., monitoring running systems relative the current
hypothesis model, identifying behavioral discrepancies, and correcting either the
model or, if required, the systems. One major obstacle to this approach are
the resulting excessively long counterexamples. The TTT algorithm has been
specifically designed to address this challenge [90].

6 Conclusions

In the last 15 years, active automata learning, an originally merely theoretical
enterprise, has received attention as a method for dealing with black-box or third-
party systems in software engineering. Especially, in the past six years (2011 to
2016) active automata learning has found many applications, ranging from secu-
rity analysis, to testing, to verification, and even synthesis. At the same time,
algorithmic and theoretic advances have led to more efficient learning algorithms
that can infer more expressive models (e.g. [30], in this volume) Scalability of
active automata learning is still a major challenge. Hybrid approaches that com-
plement the power of black box analysis with white box analysis methods seem
to emerge as one possible technique for addressing this challenge (cf. [70], in this
volume). Summarizing, active automata learning has developed far beyond what
could have been anticipated 15 years ago. However, with every solved problem,
news questions arise - making active automata learning a very fruitful area of
research with increasingly high practical impact.
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guages. In: Kivinen, J., Szepesvári, C., Ukkonen, E., Zeugmann, T. (eds.) ALT
2011. LNCS (LNAI), vol. 6925, pp. 55–69. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-24412-4 8

94. Jung, Y., Lee, W., Wang, B.-Y., Yi, K.: Predicate generation for learning-based
quantifier-free loop invariant inference. In: Abdulla, P.A., Leino, K.R.M. (eds.)
TACAS 2011. LNCS, vol. 6605, pp. 205–219. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-19835-9 17

95. Kasprzik, A.: Inference of residual finite-state tree automata from membership
queries and finite positive data. In: Mauri, G., Leporati, A. (eds.) DLT 2011.
LNCS, vol. 6795, pp. 476–477. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22321-1 45

96. Kearns, M.J., Vazirani, U.V.: An Introduction to Computational Learning The-
ory. MIT Press, Cambridge (1994)

97. Khalili, A., Natale, L., Tacchella, A.: Reverse engineering of middleware for verifi-
cation of robot control architectures. In: Brugali, D., Broenink, J.F., Kroeger, T.,
MacDonald, B.A. (eds.) SIMPAR 2014. LNCS (LNAI), vol. 8810, pp. 315–326.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11900-7 27

98. Khalili, A., Tacchella, A.: Learning nondeterministic mealy machines. In: Pro-
ceedings of the 12th International Conference on Grammatical Inference, ICGI
2014, Kyoto, Japan, 17–19 September 2014, pp. 109–123 (2014)

99. Komuravelli, A., Pasareanu, C.S., Clarke, E.M.: Learning probabilistic systems
from tree samples. In: Proceedings of the 2012 27th Annual IEEE/ACM Sympo-
sium on Logic in Computer Science, LICS 2012, pp. 441–450. IEEE Computer
Society, Washington, DC (2012)

100. Konev, B., Lutz, C., Ozaki, A., Wolter, F.: Exact learning of lightweight descrip-
tion logic ontologies. In: Proceedings of the Fourteenth International Conference
on Principles of Knowledge Representation and Reasoning, KR 2014, pp. 298–307.
AAAI Press (2014)

101. Kwiatkowska, M., Norman, G., Parker, D., Qu, H.: Assume-guarantee verification
for probabilistic systems. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010.
LNCS, vol. 6015, pp. 23–37. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-12002-2 3

102. Leucker, M., Neider, D.: Learning minimal deterministic automata from inex-
perienced teachers. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012. LNCS, vol.
7609, pp. 524–538. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-34026-0 39
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